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Abstract

Proteins are the essential units of biological processes, but modelling

their dynamics is a very computationally expensive task. A wide vari-

ety of simulation techniques exist, a popular example being Molecular

Dynamics. However, such models typically involve detailed simula-

tion of the protein’s structure at or near the atomic level and as such

are unsuitable for modelling biological systems composed of large or

multiply interacting proteins.

This research takes a coarse-graining approach, called Fluctuating

Finite Element Analysis, in which large, globular proteins are ap-

proximated by viscoelastic continua subject to thermal noise. Each

protein is discretised into a tetrahedral mesh, parameterised locally

by its bulk continuum properties. The forces are then calculated using

Finite Element Analysis.

A parallel implementation of the FFEA algorithm has been developed

for use on high performance computing facilities. The scalability of

the algorithm with respect to number of cores and system size, and its

stability with respect to integration time step has been investigated.

A pipeline for fully automated FFEA system creation from atomistic

(X-ray crystallography and NMR) or low resolution data (cryo-EM

and SAXS) has also been developed.

In order to tackle multiprotein systems, the FFEA model has been ex-

tended to include van der Waals interactions and electrostatics. FFEA

has been applied to a number of diverse biological systems. The van

der Waals scheme was tested through simulation of myoglobins inter-

acting with a polystyrene substrate. The major modes of motion of

V- and A- type rotary ATPases were extracted using Principal Com-

ponent Analysis, and compared with the normal modes obtained from

the Elastic Network Model. Finally, the effect of axonemal dynein c’s

interaction with the microtubule track on its step length and explo-

ration of binding sites was investigated. A mapping was developed to

allow in-simulation conformational switching of the dynein motor.
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Chapter 1

Introduction

Life is an intrinsically multiscale process. From electron transfer in photosynthesis[1]

to the beating of a human heart there are eight orders of magnitude in length

(10−9m to 10−1m) and twelve orders of magnitude in time (ps to seconds). A

full spectrum understanding of the physics of life is therefore reliant on connect-

ing and integrating the various physical descriptions appropriate to each scale.

While experimental techniques provide an invaluable source of knowledge on the

workings of biological systems, the fragility and complexity of living organisms

can make it challenging or impossible to observe many processes in vivo. In such

cases, computer simulations may provide useful insights into the system of in-

terest and act as a comparatively inexpensive means of testing hypotheses and

the effects of experimental artifacts. Crucially, simulations also provide a means

of visualising these complex processes and drawing together often diverse exper-

imental data into a coherent physical model. Atomistic computer simulations,

for example, have been described as providing a “computational microscope for

biomolecular systems”[2].
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1. INTRODUCTION

It is unsurprising, therefore, that there exist a vast number of different sim-

ulation methods, each suitable to processes occurring on particular length and

time scales (see section 1.1 below). The computational cost of simulations typi-

cally increases as a function of length and time, often with a prohibitive power

law of system size, limiting the applicability of accurate, high resolution mod-

elling techniques, and necessitating substantial approximations to access larger

and more complex systems. This process of coarse-graining lies behind the tran-

sition from the quantum physical treatment of photosynthesis to the classical

continuum treatment of a heart.

1.1 Current simulation methods

For the purposes of this project, we shall crudely divide the length-time-scale spec-

trum into three scale regimes: the nanoscale, the mesoscale and the macroscale.

Figure 1.1 illustrates this spectrum of length and time scales with the relevant

biological processes. The nanoscale concerns processes with length scales of

Angstroms or nanometres, or time scales on the order of nanoseconds. Molecular

recognition of genes[4], protein folding[7], enzyme catalysis[3] and photosynthesis[1]

are all processes that can be said to occur on the nanoscale. On the other hand,

the macroscale scale is concerned with processes on lengths exceeding a hundred

µm, or times greater than a millisecond. The biology of organs and tissue occurs

at this scale. The physics appropriate to the macroscale averages over the atom-

istic interactions of the nanoscale, treating matter as a continuum defined by its

bulk properties. Furthermore, thermal fluctuations are negligible (due to the large

length and time scale). The mesoscale (indicated in orange in the figure) refers to

2



1.1 Current simulation methods

Figure 1.1: Illustration of the length-time scale of existing methods of biological
simulation. Photosynthesis[1], enzyme catalysis[3] and molecular recognition[4]
are processes said to occur at the nanoscale (lengths of around 10 nm or less, and
times of around 10 ns or less). The physics of biological tissues and organs[5].
belongs to the macroscale (lengths greater than around 100 µm, and times of ms
or greater). Between these two extremes we have the mesoscale (shown in orange),
in which interesting biophysical systems exist, such as cytoplasmic crowding (left
figure, reference [6]) or the molecular motors found in flagella (right figure, see
chapter 5).
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1. INTRODUCTION

the regime lying between the two extremes of the nanoscale and the macroscale,

in which the quantum physical (or even atomistic) detail is unimportant but the

systems are small enough such that thermal fluctuations are significant. The

available simulation techniques applicable to each of these three scales are now

discussed.

1.1.1 Nanoscale

At the nanoscale the individual atoms, and frequently even the electron clouds,

are important. Processes that depend on electrons (such as enzyme catalysis

and photosynthesis) must be treated using quantum physical models, whereas

processes such as molecular recognition and protein folding may be treated using

classical methods.

At the lower end of the length-time scale we have ab initio quantum chem-

istry approaches such as density functional theory (DFT). DFT is a method for

solving the Schrödinger equation in many-body systems, allowing study of the

electronic structure of materials[8]. Popular DFT codes include Gaussian[9] and

CASTEP[10].

However, these quantum physics based simulations are generally too compu-

tationally expensive to treat molecules of much more than 100 atoms[11]. For this

reason, it is necessary to resort to classical approximations to simulate more com-

plex systems. Molecular Dynamics (MD) calculates the trajectory of molecules

using classical potentials and Newtonian physics. The force-fields within these

models can be parameterised empirically, or using DFT[12]. Widely used MD

packages include CHARMM[13], Amber[14], Gromacs[15] and NAMD[16]. It is
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possible to combine quantum mechanical methods such as DFT with MD, by

using DFT to take into account the electronic structure during the breaking or

formation of covalent bonds, a technique known as Ab Initio MD[17]. Alterna-

tively, the simulation may treat only a specific region of interest using quantum

mechanical (QM) methods, embedding it in a larger region treated with molecu-

lar mechanics (MM), a technique known as hybrid QM/MM [18]. QM/MM can

be used to gain insight into biological processes such as enzyme reactions[19] but

is still limited to systems of tens or hundreds of atoms[20].

Even with fully classical MD simulations running on specialised resources it

is typically only possible to simulate dynamics over a millisecond time scale for

objects of around 1 nm[7]. Substantial improvements to techniques and hardware

in recent years allow probing of microsecond time scales for systems comprising

tens of thousands of atoms[21]. This is clearly not sufficient for handling the

much larger proteins and protein complexes (such as the hundreds of thousands

of atoms making up the ribosome[22]) that are essential to life processes.

1.1.2 Macroscale

At the macroscale, the molecular detail is replaced by a continuum approximation,

in which the locally spatially averaged dynamics are described by differentiable

fields satisfying partial differential equations (PDEs). There are a number of

ways of solving the PDEs which arise from this continuum treatment. Perhaps

the simplest is the Finite Difference Method which spatially divides the system

into a regular grid, reducing the PDE to a simple set of discretised equations

acting on this grid. However, this method requires the material boundaries to
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be mapped onto the grid, making it computationally expensive for geometrically

complex systems[23]. The Finite Element Method, which discretises the domain

into a mesh of elements (simple shapes, such as tetrahedra) with the solution

defined at the nodes, allows solution on unstructured meshes and so is better

suited to irregular geometries. This method is described in detail in section 1.2.1

below. A related technique is Finite Volume, in which we define a volume around

each grid point, and convert the continuum equation into surface integrals across

the boundaries between the volumes[24]. This technique is good for modelling

fluid flow and is used in the study of processes such as blood flow[5; 25].

1.1.3 Mesoscale

This scale is loosely defined as comprising systems between 10 nm and less than a

µm, with time scales from ns to hundreds of µs. Interesting biology occurs on this

scale, for example molecular motors in flagella [26] and cytoplasmic crowding[6].

Towards the upper end of the mesoscale we find individual cells and micro swim-

mers like sperm (lengths of µm), with little effect from thermal fluctuations. In

this thesis we are primarily concerned with the lower end of the mesoscale, in

which thermal noise is not only significant, but is also one of the main drivers of

dynamics in the system.

To tackle these larger scale problems, a number of coarse-grained (CG) mod-

els based on Molecular Dynamics have been developed. The advantages and

disadvantages of each model are determined mainly by the class of problems each

is designed to address. In processes such as protein folding, for example, it is

necessary to coarse grain the protein representation no further than to the scale
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at which it can still reliably and accurately describe the secondary and tertiary

structure1 of the protein. Commonly used representations for this are the “one-

bead” models, in which each amino acid building block is reduced to a single

“bead” with an interaction potential encapsulating the behavioural parameters

of that part of the chain[27]. A number of levels of coarse-graining are possible,

such as increasing the number of beads to include explicitly the side-chains of

the amino acids, or reducing the number of beads so that each bead represents

several amino acids[27]. The most common force-field in use for this type of

coarse-grained MD simulation is the MARTINI force-field [28].

An alternative means of reducing simulation time is to bias the potential

such that the energy landscape resembles a funnel towards the protein’s native

state[29], by defining favourable interactions for native contacts. This type of

technique is referred to as a Gō-model and is applied to protein folding problems.

For even larger proteins, a more extreme coarse-graining technique may be

used, in the form of Elastic Network Models (ENMs). ENMs are a widely used

type of structure-based coarse-grained model that represent the protein’s native

structure by a set of beads connected by springs[30]. The coarse-graining step

consists of mapping the nodes onto protein structural elements (typically one

node per alpha carbon atom). Cut-off distances are usually employed to set

interacting nodes. ENMs have been used to investigate biomolecular dynamics of

both high-resolution X-ray structures and low-resolution cryo-electron microscopy

data[31; 32].

The coarse-grained models described above are “particle-based”, meaning that

1The primary structure is the linear sequence of amino acids the protein is built from.
Secondary and tertiary structure describe how these blocks position themselves in the protein’s
local and global structure.
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they represent molecules as collections of particles or other structural units (e.g.

α-helices) that represent groups of atoms and model the forces between them

resulting from hydrodynamics, electrostatics and thermal fluctuations. One key

differentiation between these different algorithms is in their treatment of the

solvent environment. In Brownian Dynamics (BD) the solvent is treated implic-

itly through a hydrodynamic force on each particle derived on the assumption

of Stokes flow in the solvent. The simplest treatment is to use Stokes drag on

an isolated particle. This widely adopted approximation is simply implemented

and minimises the computational cost, but neglects hydrodynamic interactions

between particles (other than through a mean-field approximation) and so does

not capture hydrodynamic coupling. The lack of explicit solvent and long range

hydrodynamics allows far longer time scales to be simulated, and is particularly

apt for crowded solutions for which experimentally observable trends in diffusion

can be reproduced[6]. In 2010, McGuffee and Elcock used BD in order to simu-

late diffusion of 1008 macromolecules (made up from 50 common types) within

the crowded bacterial cytoplasm for up to 20 µs[33] (to probe such time scales,

however, the molecules were modelled as completely rigid). The inclusion of hy-

drodynamics interactions results in a formulation of the fluctuation-dissipation

theorem that requires the factorisation of a full matrix of the size of the number of

particles at each time-step, greatly increasing the computational costs as the sys-

tem increases. However, recently schemes that truncate long-range interactions

have been developed to provide O(N) dependence on system size [34; 35].

The alternative is to include the solvent explicitly either as particles or as

a continuum. Dissipative Particle Dynamics (DPD) [36] uses dissipative inter-

actions between soft-spheres to reproduce fluid motion with significantly fewer
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solvent particles and longer time steps than that required by classical MD. It has

been used to model a wide range of problems, including drug delivery vehicles and

their transport across lipid membranes[37] or in modelling suspension flows and

the assembly of objects such as micelles[36]. An additional coarse-grained par-

ticulate solvent technique is Multiparticle Collision Dynamics (MPC), in which

the solvent behaviour is modelled through alternating ‘streaming’ and ‘collision’

steps[38]. Particle interaction is modelled in the collision step by grouping par-

ticles into a number of ‘collision cells’, for which the velocities of the member

particles are rotated by some angle around a random rotation axis, such that

momentum and energy are conserved in each cell.

All of the above methods in essence approach the mesoscale via the coarse-

graining of nanoscale simulations. The alternative is to incorporate mesoscale

physics into macroscale simulation techniques. Lattice Boltzmann (LB) methods

use a discrete version of the Boltzmann equation to determine fluid flow from the

particle velocity distribution function on a lattice. Although originally devised

for macroscopic flows, LB methods can be applied to mesoscale systems by in-

corporating thermal fluctuations within the LB framework [39]. These methods

require only local collisions and so are linear in system size and straightforward to

parallelise. However, since they require calculation of the velocity distribution to

determine the fluid motion they are typically several orders of magnitude slower

than methods such as Finite Element Analysis (FEA) and finite volume methods

that solve the continuum equations directly. These continuum mechanics meth-

ods have also recently been used to model systems over smaller length scales by

including thermal fluctuations, for example to model the Brownian motion of

nanoparticles in a Newtonian fluid due to thermally induced hydrodynamic fluc-
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tuations [40], and through a stochastic version of the immersed boundary method

[41].

1.2 FFEA

1.2.1 Finite Element Analysis

As discussed above, the Finite Element Method (FEM) provides a flexible ap-

proach for solving partial differential equations (PDEs) in problems with complex

geometries. This method involves subdividing the domain of integration into a

set of elements (generally simple shapes such as triangles in 2-d, or tetrahedra

in 3-d) and then finding an approximate solution to the PDE from a piecewise

polynomial solution constructed for each of these elements. Rather than solve

the equation exactly, a so-called weak form of the equation is introduced[42].

The basis of the Finite Element Method is as follows. Consider the solution

of the PDE:

Du = 0, (1.1)

where u satisfies the appropriate boundary conditions (BCs). For any function

u, we can define the residual:

R(u) = Du. (1.2)

Now we seek the best approximation for u of the form:

u =
N∑
i=1

ciψi (1.3)
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where the ψi are a prescribed set of basis functions and the ci are unknown

coefficients. In general there will be no solution for the ci that exactly solves the

PDE Du = 0, for which R is identically zero. Instead we seek to find solutions

for ci for which some weighted integral of R is zero:

∫
Ω

wiRdV = 0 (1.4)

where wi are weighting functions and Ω is the domain of integration. This is

referred to as the weak formulation. If D is a linear differential operator then a

set of weighting functions equal in number to the set of basis functions will give

a unique solution for the ci. A simple choice is therefore to take the ψi as the

weighting functions in which case we have:

∫
Ω

ψiRdV = 0 (1.5)

which is referred to as the Galerkin formulation of the problem. It then remains

to choose appropriate basis functions (known as shape functions). It is usual to

choose ci to be the value of the function at a particular node xi and so the ψi are

chosen such that:

ψi(x) =


1 x = xi

0 x = xj, i 6= j

(1.6)

For example, for tetrahedral elements we can choose the nodes to be the vertices

of the tetrahedron. The shape functions can then be chosen to be linear functions

that take the value of unity or zero at the vertices, yielding a piecewise linear

approximate solution to the PDE within that element.
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1.2.2 Fluctuating Finite Element Analysis

Figure 1.2: An illustration of the transformation of a protein (myoglobin) to
its continuum representation. An FFEA simulation of myoglobin proteins is
presented in chapter 3.

Fluctuating Finite Element Analysis (FFEA) treats molecules as continuum

viscoelastic solids subject to thermal noise chosen so as to satisfy the fluctuation-

dissipation theorem, and was introduced as a method for simulation of biological

macromolecules by Oliver et al. in 2013 [43; 44]. The equation of motion for a

viscoelastic continuum subject to a thermal stress is given by equation (1.7):

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=
∂σij
∂xj

(1.7)

where xi and ui denote the position and velocity, respectively, of a point in the

material. i and j are indices denoting the three spatial dimensions.
(
∂ui
∂t

+ uj
∂ui
∂xj

)
is the total time derivative of the velocity vector field in the material’s Lagrangian

frame. The stress σij has three contributions:

σij = σvij + σeij + σtij (1.8)

where σv, σe and σt, are the viscous, elastic and thermal stress contributions

respectively. Conceptually, the viscosity term is the combined effect of non-

12



1.2 FFEA

conservative, short range molecular friction within the protein while the elastic

term represents the effects of conservative forces due to recoverable changes in lo-

cal molecular configuration. In the present model, the viscous and elastic stresses

are derived from the current state of deformation and deformation rate using a

Kelvin-Voigt model1. Experiments have suggested that a folded protein behaves

as a viscoelastic solid with a relaxation time of order 10−2s[45]. This relaxation is

negligible when compared with the time scales intended for treatment with FFEA

(µs), indicating that a Kelvin-Voigt model of viscoelasticity is indeed appropriate.

In FFEA the material is given an isotropic linear viscous stress σvij:

σvij = ηS

(
∂ui
∂xj

+
∂uj
∂xi

)
+ (ηB − 2

3
ηS)

∂um
∂xm

δij (1.9)

where ~u is the velocity field, and ηS and ηB are the shear and bulk viscosities

respectively. The elastic stress is determined from the local deformation gradient

from equilibrium, Fij = ∂xi
∂Xj

(where ~x represents the current location of the

material and ~X the initial, equilibrium location), as follows:

σeij =
G

det(Fij)
FikF

T
kj +B(det(Fij)− α)δij (1.10)

where G is the shear modulus, K = B − G
3

is the bulk modulus and α = 1 + G
B

.

Oliver et al. demonstrated that equations (1.7) and (1.8) could be discretised

using the finite element method, yielding equation (1.11), the equation of motion

1The material properties of a Kelvin-Voigt solid can be expressed as an elastic spring and
a viscous damper connected in parallel.
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1. INTRODUCTION

for a single protein[43]:

Mpq
∂uq
∂t

= −Kpquq + Ep +Np (1.11)

where M is the mass matrix, ~u is the velocity, t is time, K is the viscosity matrix,

E is the elasticity vector and ~N is the thermal stress vector. The thermal stress

arises from the fluctuation dissipation. In the Kelvin-Voigt model this is depen-

dent purely on the viscosities. The matrices in equation (1.11) are constructed

as follows:

Mpq = δij

(∫
V

ρψαψβdV

)
(1.12)

Kpq =

∫
V

ηS
∂ψβ
∂xc

∂ψα
∂xc

δij + ηS
∂ψβ
∂xj

∂ψα
∂xi

+ (ηB − 2
3
ηS)

∂ψβ
∂xi

∂ψα
∂xj

dV (1.13)

Ep = −
∫
V

∂ψβ
∂xj

σeijdV (1.14)

where α and β count over the nodes, i and j refer to the spatial dimension, and

p and q are counting indices for the full dimensions of the FE system. p and q

can therefore be written as p(i, β) and q(j, α)1. The return values of the p and

q functions depend on the connectivity of the mesh. The vector Np in equation

(1.11) represents stochastic forces and has the following statistics:

〈NpNq〉 =

(
kBT

∆t

)
(Kpq +Kqp), 〈Np〉 = 0 (1.15)

where kBT is the thermal energy. Oliver showed further that for linear elements

1For example, for a 3-d linear mesh we have i, j = 1..3 and α, β = 1..4, resulting in a 12×12
(mass or viscosity) matrix per element, consisting of nine 4× 4 blocks.
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1.2 FFEA

N could be constructed locally. In this representation, each element represents a

fixed set of atoms within the protein, so that fluctuations in molecular configu-

ration are represented by the deformation of the element.

Oliver et al. introduced external fluid dynamics to the FFEA model through

a simple, isolated Stokes drag on a sphere positioned on each node[44]. The size

of each sphere is determined by the length scale of the mesh. The drag force Fp

on node p is therefore given by:

Fp = −6πRpµ
svp (1.16)

where R(p) is the radius of the sphere around node p, µs is the external solvent

viscosity and vp is the velocity of node p. This dissipation leads to a corresponding

noise vector N e with the following statistics[44]:

〈N e
pN

e
q 〉 =

12kBTπRpµ
s

∆t
δpq (1.17)

Equations (1.16) and (1.17) describe the external fluid dynamics implementation

used in the present work. A full hydrodynamics treatment of the external solvent

through solving the Navier Stokes equation is non-trivial and beyond the scope

of this thesis.

Equation (1.11) is integrated numerically to update the positions of the nodes

through a given time interval ∆t. As there is no mass transport between elements

of a protein, the mass matrix M (equation (1.12)) is constant throughout any

simulation, and is calculated only once, during the initialisation of the simulation.

Any implementation of code solving this equation therefore concerns itself with

15



1. INTRODUCTION

building the vector on the right hand side in the most efficient manner possible. In

its naivest form, the viscosity matrices would be fully re-assembled at each step,

but such an approach does not lend itself well to parallelisation, as discussed in

chapter 2.

1.2.3 Experimental data and parameterisation

In order to apply FFEA to a biological system, it is first necessary to obtain a

3-d mesh of the relevant proteins. The structure of molecules can be determined

from experimental data in several different ways, depending primarily on the

level of structural resolution available. The higher resolution experimental tech-

niques, such as X-Ray crystallography[46] and Nuclear Magnetic Resonance[47]

can resolve detail at the atomistic level. Data from these techniques is therefore

necessary to set up Molecular Dynamics simulations. However, there also exist

low resolution methods of obtaining information about the structure of biological

entities, notably Cryo Electron Microscopy (Cryo-EM)[48] and Small Angle X-

Ray Scattering (SAXS)[49]. These low resolution techniques are unable to give

information regarding the atomic level structure of the proteins, but they do pro-

vide a 3-d envelope describing its shape. Low resolution techniques are important

particularly in biological contexts since not all proteins are amenable to crystal-

isation, and the process of drying out biological systems can partially denature

or completely destroy the structure[50]. Cryo-EM involves rapid freezing of a

specimen in solution (by plunging into liquid ethane), resulting in vitreous ice

with no crystals[50]. This allows the specimen to keep its natural form, such that

its different functional states can be observed.
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1.3 Summary and aims

Unlike existing methods of simulation, FFEA can use data as input from

all of these experimental sources and, indeed, is particularly well suited to the

low resolution case since the continuum representation has no concept of atomic

positions. Consequently, FFEA is uniquely able to make use of the structural

information provided by cryo-EM.

Aside from shape data, a continuum description of protein matter also requires

estimates of density, viscosity and elasticity. The average density of biomolecules

is of order 1500 kg m3[51]. The viscosity of protein matter (on the time scales

of interest to FFEA) can be measured through solvent based techniques and

is found to be of order 10−3 Pa s[52]. The elasticity can be parameterised from

experimental data (as in chapter 5), or, when such data is not available, a sensible

guess may be made based on Atomic Force Microscopy (AFM) experiments on

proteins such as lysozyme which place the Young’s modulus in the range of 300

MPa to 700 MPa[53]. The Poisson ratio is generally assumed to be between 0.3

and 0.4[54].

1.3 Summary and aims

The general aim of this work is to continue the development of Fluctuating Fi-

nite Element Analysis[43], a technique which brings continuum finite element

approaches down into the mesoscale region. More specifically, the aims of the

work presented in this thesis are as follows:

• To produce an efficient, parallel implementation of the FFEA model, and to

develop a pipeline for fully automated FFEA system creation from atomistic

or low resolution data (see chapter 2).
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1. INTRODUCTION

• To extend the model to include new physics (see chapters 3 and 6).

• To compare the FFEA method against existing models, specifically the

Elastic Network Model (see chapter 4).

• To apply the model to real biological systems (chapters 4 and 5).

A description of ongoing work and the future direction of the project is given

in chapter 7.

18



Chapter 2

Simulation package and tools

2.1 Introduction

In order to facilitate the future adoption and continued usage of the FFEA model,

it is necessary that there exist a user-ready simulation package and tools satisfying

criteria described in the following categories:

1. Performance: In order to be able to exploit HPC resources, the chosen

implementation must scale well with both system size and number of cores.

2. Usability: The pipeline from structural data to FFEA-ready input files

should be automated as much as is feasible, handling all technical details

that could be a barrier to less experienced users.

3. Analysis: A set of tools for manipulating, analysing and visualising the

output simulation data must be provided.

4. Interoperability: The FFEA package exists amongst a great many other

codes and visualisation programs, so convertability between FFEA files and
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2. SIMULATION PACKAGE AND TOOLS

comparable formats is necessary to ease entry to this community.

This chapter will describe the development of a parallel, multiprotein imple-

mentation of FFEA and the corresponding FFEA tools package. It will explain

the procedure for typical usage, and detail the results of performance testing and

validation of the code. An existing serial, single protein implementation will serve

as additional validation of the new implementation.

2.2 Code and Parallelisation Strategy

2.2.1 Shared memory, Distributed memory and Amdahl’s

law

There are two major API1s for parallelisation of code in C and Fortran (among

others), and the choice of which one to use is generally made based on what type

of system architecture the program is to be executed on. For distributed memory

systems, in which each individual processor has its own distinct memory space

(only accessible by itself), we use MPI (Message Passing Interface)[55; 56]. For

shared memory systems, in which multiple processors read and write from the

same memory space, we might use the OpenMP (Open Multi-Processing) API[57].

In some cases (such as in certain supercomputers) there may be an architecture

consisting of multiple shared memory units networked together. In this case

a hybrid form of parallelisation may be used, involving both OpenMP and MPI.

In recent years there has also been great interest in using the highly vectorised

capabilities of graphics cards, particularly as these are typically optimised for

1Application Programming Interface
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2.2 Code and Parallelisation Strategy

the matrix and vector operations common in graphics rendering (especially 3-

d scenes). CUDA[58] is a popular parallel programming architecture developed

by NVIDIA for such a use, and has seen usage in recent Molecular Dynamics

applications[59]. In this project, OpenMP has been used for parallelisation. In

future some level of hybrid parallelisation may be introduced, depending on the

system architecture, but this is beyond the scope of this thesis.

An issue with parallelisation of any algorithm is that of communication costs

between processors (such as in MPI) or the size of the serial fraction of the code

(in OpenMP). These costs effectively define an upper limit for the number of

processors after which no further increase in speed can be obtained. This is the

basis of Amdahl’s law :

Max. Speedup =
1

1− fp
(2.1)

the theoretical maximum speedup (wall clock time on 1 processor divided by wall

clock time on N processors) when fp is the fraction of the code that is parallelised.

This maximum is for an infinite number of processors, but in practice the limit

can be reached quickly, even for large fp (fp close to 1)[60]. Note that the serial

fraction (1−fp) represents all interprocessor communication and synchronisation

costs, and therefore Amdahl’s law applies to all parallel programs (not just shared

memory).

2.2.2 Implementation

Language

The C++ programming language[61] was chosen for developing the simulation code

for the reason that it is a well established, object oriented language with compilers
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2. SIMULATION PACKAGE AND TOOLS

for more or less every known platform. It can produce fast and efficient programs

using well tested compilers (e.g. gcc). Although some older highly optimised

scientific programming libraries exist only in Fortran, C++ can interface relatively

easily with Fortran functions, and many modern libraries are built with C or C++,

so this is not a significant issue.

The object oriented nature of C++ is also an asset when producing large and

complex programs. The ability for data encapsulation[62] was useful in imple-

menting the many possible cases in multiple protein, multiple solver simulations.

Although the Fortran 90 standard onwards implements a number of the features

of object oriented languages, and as such would be suitable to tackle such issues,

its (intentionally) limited memory pointer capabilities and smaller set of standard

list types and containing classes render it a less attractive option than C++ for

the complex data types required in this project.

Algorithm

In FFEA the conformation of the protein is evolved in time according to the

equation of motion (1.11) from section 1.2.2:

Mpq
∂uq
∂t

= −Kpquq + Ep +Np.

Here ~u is the vector of node velocities, M is the mass matrix and K is the viscosity

matrix. The vector ~E contains all the continuum forces arising from elasticity,

van der Waals (see chapter 3) and electrostatics (see chapter 6), while ~N is the

stochastic forcing from thermal fluctuations. This equation is solved using a

first order (forward Euler) time-stepping scheme. As noted by Oliver et al., the
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2.2 Code and Parallelisation Strategy

Figure 2.1: A flowchart of the basic FFEA algorithm used in this project. For
simplicity, the algorithm is given for a single protein with no external forces
(more detail is given in Appendix A). There are synchronisation barriers after the
element loop, the force aggregation, the solve step and the numerical integration,
due to each of these steps requiring the results of the calculation in the previous
step. These barriers are the main contributors to the ‘serial fraction’ (1 − fp)
from Amdahl’s law, whose effects can be seen for small systems in figure 2.4.
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2. SIMULATION PACKAGE AND TOOLS

presence of the stochastic term means that the size of the time step is dictated by

stability rather than accuracy so that a higher order is not beneficial. Once the

velocities of the nodes are known, the positions of the nodes can be updated. A

simplified flowchart of the algorithm for a single protein with no external forces is

given in figure 2.1. A more detailed pseudo-code description is given in Appendix

A.

Matrix structure

The mass matrix M is sparse and positive definite1. Furthermore, the three

coordinate directions (x, y, z) are independent from one another with identical

components, so that it has a block diagonal structure in which the block for each

spatial direction is identical. Consequently only one block is created and used for

all three spatial components.

The viscosity matrix K has similar sparsity to M , but contains coupling of

the different spatial directions.

Both matrices can be assembled from the local contributions to each element.

Indeed, the code never generates the full sparse matrix for the entire system, but

instead stores the contributions from each element individually, summing these

contributions after all the elements have been processed. This independency

allows work sharing of the element loop, in which all the elements are divided up

between the available processors, and processed in parallel.

The main problem in parallelising this code lies in the “solve” step, in which

M~a = ~f must be solved for ~a. A typical direct method for solving this equation

is to perform a Cholesky decomposition[63] of matrix M . We then perform a

1A matrix A is positive-definite if ~xTA~x > 0 ∀~x.

24
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forward and backward substitution with the resulting upper and lower triangular

matrices to find ~a. However, the parallelisation of the forward and backward

substitution still requires the starting and stopping of parallel regions 2N times,

where N is the number of nodes. The overhead for starting parallel regions is

sufficiently high that this only provides a speed increase in the case of large N

and for matrices much denser than we typically find in this model. In fact, the

size of M required before the parallel version shows any significant speed-up is

so large that iterative methods will have long outstripped it by that point.

The alternative is to use an indirect method to solve matrix equations. Since

M is a symmetric positive-definite matrix, we can use the Conjugate Gradient

Method 1[64]. As the Conjugate Gradient algorithm is composed of repeated

matrix-vector multiplications and dot product calculations, it lends itself to par-

allelisation. Iterative methods such as this can be more efficient than ‘direct’

solvers for large sparse matrices (see figure 2.5), particularly if they have a large

bandwidth2 (since a Cholesky decomposition will fill-in all elements between the

initial and final non-zero elements on each row, potentially destroying the sparse-

ness of the matrix). To speed up the rate of convergence of the Conjugate Gra-

dient method it is normal to use a preconditioner[65]. Fortunately the matrix

M is sufficiently diagonally dominant that a simple Jacobi-preconditioner3 pro-

vides sufficiently rapid convergence. The parallelised code for the Preconditioned

1To solve for ~x in the matrix equation A~x = ~b using the iterative CG method, we define a
residual, ~ri = ~b − A~xi, where ri is the residual after the ith step. The residual is exactly zero
if ~x is the true solution. Starting from an initial guess for ~x, ~x0, the CG algorithm seeks to
minimise ~r by moving ~x along vectors conjugate with A.

2The length, in number of entries, between the first non-zero entry and the last non-zero
entry in a matrix row.

3The inverse diagonal of the matrix.
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Conjugate Gradient solver (PCGS) involves an initial barrier 1 followed by four

barriers per iteration. In the typical systems considered for this project, the num-

ber of iterations was typically around 12, leading to (very) roughly 50 barriers

per solve. An unfortunate result of this is that the solve step is not as scalable

as the assembly loop. The number of iterations, however, remains fairly constant

even up to very large systems2, so the PCGS is generally a better choice than

the Direct solver for systems comprised of a large number of elements (see figure

2.5).

With regards to parallel efficiency, the manner in which data is divided up

and sent to the various cores is also important. When parallelising a for loop,

one has three choices: divide the entire loop into approximately equal ‘chunks’

and distribute to all threads immediately; break loop into small, uniform ‘chunks’

and distribute to idle threads on a first come first served basis; or progressively

reduce the ‘chunk’ size, starting large. These three types of ‘scheduling’ are

known as static, dynamic and guided, respectively[66]. The latter two schedules

are designed to smooth the load imbalance caused by the different wall clock

time taken by different threads to process the given data. In the shared memory

implementation of this code, it was found that a guided schedule for processor

intensive loops (such as the element calculation loop, or force aggregation) was

more efficient, and a static schedule worked best for naturally load balanced,

short calculations (such as the Euler integration over all nodes). This is simply

due to the fact that the overhead in the guided schedule outweighs the benefit

1A synchronisation ‘barrier’ refers to any point in an algorithm at which parallel threads
must wait until all threads have reached this point. This is necessary when the next step in the
algorithm requires the combined result of a previous step (e.g. a dot product operation).

2Typically 6 to 10 iterations were sufficient for convergence for small systems (1000 elements
or less). This rises to 12 or 13 for large systems (50000 elements).
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it brings in short calculation loops. The most effective schedule to use can in

principle be architecture dependent, however these choices were found to work

well on both the ARC1[67] and Polaris[68] supercomputers1, as well as various

x86 AMD workstations.

x6
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x1

x6

x4

x1

x6

x4

x1

x6

x4

x1

Proc 1

x7 x7 x7 x6

Parallelisation by element Parallelisation by protein

Proc 2 Proc 3 Proc 4 Proc 1 Proc 2 Proc 3 Proc 4

Figure 2.2: An illustration of the parallel subdivision of two simulation systems
between four cores in the case of a single large protein (for which the by element
scheme is favoured) and for a large ensemble of interacting proteins (using the by
protein scheme). Both the matrix construction and solution steps are affected by
the choice of parallelisation scheme.

The above describes the parallelisation strategy used for simulations of one or

a few very large element number proteins. It is, however, not the optimal strategy

for simulating large numbers of interacting proteins. In such a case, it is more

1The Advanced Research Computing Node 1 (ARC1) and the N8 HPC Polaris are super-
computing facilities based at the University of Leeds[67; 68].
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efficient to process entire groups of proteins on each core, rather than dividing up

their elements as this reduces the number of synchronisation barriers drastically.

Figure 2.2 gives an illustration of the two schemes implemented in FFEA, termed

by element and by protein.

Random Number Generation and Parallelisation

The stochastic vector ~N requires the code to generate 7Ne random numbers per

time step, where Ne is the number of elements. The time required can there-

fore become significant as Ne increases. Equally, as the model is fundamentally

stochastic, the quality of the random numbers produced is also very important

(uncorrelated output, uniform distribution, large period etc). An example of a

rapid Random Number Generator (RNG) (and indeed the choice for this code)

which performs well on tests of statistical randomness is the Mersenne-Twister

(MT) algorithm developed by Matsumoto et al.[69]. The MT RNG is notable

for its large period of 219937−1 and speed[69] (particularly the SIMD-oriented Fast

Mersenne Twister, developed in 2006[70]).

There are some troublesome issues surrounding the parallelisation of the RNG.

If only one RNG is shared by all threads then there will concurrent modification

of the state of the RNG, resulting in unpredictable behaviour that is not guaran-

teed to fulfill the criteria of statistical randomness. Threads accessing the RNG

at almost the same time may end up producing the same random numbers, for

example. One solution is to ‘lock’ the state of the RNG so that only one thread

may access it at a time. Clearly, however, this will have an enormous impact

on the performance of the code and make its scalability very poor. The method

employed in this project is for each thread to have its own, individual RNG. This
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solves the concurrent modification and scalability problems but introduces a new,

more subtle issue - each RNG requires a different seed, but not all seed combi-

nations are guaranteed to produce uncorrelated parallel RNGs (though methods

exist to produce independent parallel RNGs for different process identifiers[71]).

Similarly, depending on the availability of a particular processor in a given time

step, it may process more or fewer elements. This means that running the same

simulation again with the same seeds will not necessarily produce the same re-

sults, depending on which processor (and therefore which RNG) an element is

allocated to. However, this non-deterministic behaviour does not affect the va-

lidity of the physics itself; the resultant dynamics will still be physically sound.

Lookup tables

The van der Waals (chapter 3) and electrostatics (chapter 6) calculations both

involve cut-off distances beyond which two faces can be said to be not interacting.

In order to exploit this for improving performance, it is necessary to build and

maintain a 3-d lookup table, partitioning the simulation box into a number of

cells within one of which each face can be said to reside. The electrostatics solver

is required to build two types of matrix; one for which the sparsity pattern is

known at the start of the run, and one for which it is unknown and can change

every step. Building these matrices and lookup tables consumes a lot of processor

time and therefore a scalable method of building the relevant data structures was

necessary. This is discussed in more detail in chapters 3 and 6.
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Figure 2.3: The kinetic and potential energy of a five element cube under an Euler
integration scheme, averaged over 1 × 109 time steps, for various values of ∆t.
Blue line shows the theoretical average upon convergence (with kBT = 0.0001).
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Validation

The initial testing of the code was performed on a five element cube. The ‘val-

idation’ of the code here comes in the form of checking that the following two

conditions are met for an FFEA protein in vacuo (no external forces):

1. After a suitable equilibration period the average kinetic and potential en-

ergy of the simulated system at thermal equilibrium converges to 〈KE〉 =

〈PE〉 = 3N−6
2
kBTwhere N is the number of nodes.

2. The angular momentum at every time step is ‘zero’ (in practice ‘negligible’,

due to machine precision errors).

Satisfying the above by no means ensures that the code is entirely sound, but it

gives confidence since, in practice, this should uncover many (but not all) coding

errors. Figure 2.3 shows the average kinetic energy and potential energy of a

5 element cube (of unit size) against time step size under an Euler integration

scheme. The figure shows the expected convergence behaviour for the 〈KE〉, and

the 〈PE〉 (which converges very quickly, although it has a much higher variance,

as can be seen in a couple of anomalous points). There are 3 degrees of freedom

per node, from which we subtract 3 translational and 3 rotational degrees of free-

dom as all forces are internal (in this test case). Applying equipartion theorem,

we have kBT
2

per degree of freedom, resulting in the analytically determined value

plotted in 2.3 (for N = 8). As both the KE and PE converge to the theoretical

value with reducing ∆t, we conclude that the first validation criterion is met.
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Speedup vs number of processors on Arc1 for different system sizes
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Figure 2.4: Simulation speedup vs number of processors for various system sizes.

Scalability

Figure 2.4 shows the results of benchmarking the code using the ARC1 high

performance supercomputing facility, on a series of cubes with different numbers

of elements. The speedup is defined as the average wall clock time to complete a

task with 1 processor divided by the average wall clock time to complete a task

with n processors. The wall clock run times used in the calculation of speedup

were obtained from the average of 20 separate runs on ARC1’s AMD processor

shared memory nodes. No more than 16 processors were used due to this being

the maximum number of processors on a shared memory node. A larger number

of processors would result in extra communication costs and therefore would mask

the true scalability of the code in a pure shared memory environment.

The code shows acceptable speedup with number of processors for large prob-
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lem sizes. For the largest problem (a cube of 46305 elements) we find a speedup

of 12.6 with 16 processors. Note that the same sort of parallel efficiency can be

obtained with fewer elements if more intensive work is carried out per element.

For example, replacing the first order (linear) elements, used here, with 2nd order

(quadratic) elements would result in high parallel efficiency for systems with far

fewer elements.
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Figure 2.5: Effect of solver choice on time taken for FFEA code to complete
ten thousand time steps for increasing number of mesh elements. The meshes
are cuboid, with varying dimensions and connectivities. The time step, material
parameters and spatial size of the system do not affect the time taken.

Three different linear solvers for the M~a = ~f step (discussed in 2.2.2) are

compared in figure 2.5. The first is the direct method using a Cholesky factori-

sation, referred to here as the “Sparse Substitution Solver”. The second is the

preconditioned conjugate gradient method with Jacobi preconditioner. The third
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is not an actual solution of the linear system, but an approximation derived from

lumping all the mass terms on each row of M onto the diagonal.

Figure 2.5 shows the time taken to complete 104 time steps for cuboid meshes

of varying dimensions and element number, and the scalability of each solver. The

fluctuations (most pronounced in the direct “sparse substitution solver”) are the

result of connectivity differences in the mesh. While the current FFEA algorithm

has its bottleneck in the computation of internal element forces, the mass matrix

has the dimensionality of the number of nodes in the system. This means that

for large systems, the number of nodes in the mesh can become significant. It is

unsurprising, therefore, that the “mass lumped” case (in which the mass matrix is

diagonal) shows an almost constant scaling, and the best speed of all the solvers.

In the case of distributed mass, the direct sparse substitution solver is fastest for

smaller system sizes, but quickly becomes uncompetitive for systems larger than

around ten thousand elements. This is due to the fact that Cholesky decompo-

sition of a sparse matrix “fills in” all matrix elements between the first and last

nonzero element of each row. While bandwidth minimisation algorithms exist to

minimise this fill-in, large or high connectivity meshes will always compromise

the original sparsity of the mass matrix. The iterative Conjugate Gradient solver

requires only matrix multiplication, and therefore wins out over the sparse sub-

stitution method for larger system sizes. Figure 2.5 shows the effect of altering

the PCGS’s error tolerance, ε. The shape of the scalability curve is essentially

the same, as the code merely takes more or less iterations to complete. While

mesh shapes other than cuboid (spherical, cylindrical, etc.) will produce their

own particular scaling, the figure shows the general trend, and suggests that the

choice of solver to use for each protein in the simulation should be based on the
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2.2 Code and Parallelisation Strategy

elements to node ratio of its mesh. It should also be noted that the analysis

provided in figure 2.5 strongly favours the Sparse Substitution Solver due to the

use of a growing cuboid as test mesh. It should be noted that this shape produces

meshes with low bandwidth, minimising fill-in from the Cholesky decomposition

of the mass matrix and thus allowing this solver to remain competitive up to a

larger system size than typically seen with meshes for real applications.

Figure 2.6: Stability analysis of a single, right handed tetrahedral mesh element
for different values of time step and edge length. Stability is measured as mean
time to inversion. Simulations completing ten runs of (arbitrarily) 100 ns without
inversion are considered stable, and are shown in yellow. Simulations with a
mixtures of inversions and stable runs are considered metastable and shown in
red/orange. Note the acutely sharp boundary between stable and unstable; very
few simulations resulted in times between the two extremes (0 ns and 100 ns)
despite each data point being the average of ten separate runs.
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Mean time (ns) to inversion for a five element cube
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Figure 2.7: Stability analysis for a 5 element cube for different choices of time step
and edge length. Stability is measured as mean time to inversion. Simulations
completing ten runs of (arbitrarily) 100 ns without inversion are considered stable,
and are shown in yellow. Simulations with a mixtures of inversions and stable
runs are considered metastable and shown in red/orange. The stable/unstable
boundary shows the same sharpness as in figure 2.6.
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Finally, the ability of the code to simulate long time scales is also highly de-

pendent on the size of the time step, ∆t. Due to the random nature of the thermal

noise, there is always a finite probability of an element inverting or becoming un-

stable, due to random forces stacking up in one particular direction. Modifying

∆t is, in a sense, simply changing the probability of an element inverting during

an FFEA simulation. Figure 2.6 shows the result of a stability analysis for a mesh

comprised of one right handed tetrahedral element with the material properties

given in table 2.1 (using some typical values for the density[51], viscosity[52] and

Young’s modulus[53] of protein matter as discussed in section 1.2.3). The mean

Density 1500 kg m−3

Young’s modulus 338.8 MPa
Poissons Ratio 0.41
Shear Viscosity 1 mPa.s
Bulk Viscosity 1 mPa.s

Time step 10 fs
Temperature 290 K

Table 2.1: Material parameters used in the stability analyses shown in figures 2.6
and 2.7.

time to inversion is calculated for varying edge lengths and time steps, with the

average of 10 runs at each parameter pair. Cases where no element inverts during

an arbitrarily chosen time of 100 ns are considered “stable”. Changing this time

will decrease the size of the stable (yellow) region, and in the limit of infinite sim-

ulation time, all elements would eventually explode. Nevertheless, the analysis

shows that there is a very sharp and well defined phase boundary for each element

size, across which the mean time to inversion increases dramatically. In practice,

the meshes being simulated are comprised of many thousands of elements, and

the surrounding mesh has several stabilising effects. These can be seen in figure
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2.7 which shows the results of a similar stability analysis for a 5 element cube

(but for a smaller range of parameters). For example, we can see that for an

edge length of 40Å, the mean time to instability increases from around 330 fs

in the single element case, to around 530 fs in the 5 element case, illustrating

the sizable effect the neighbouring elements have on mesh stability. The stability

diagram is therefore dependent on the specific mesh (and material properties)

being used. As a general rule, however, the mean time to inversion is determined

by the volume of the smallest element in that mesh.

2.3 Preparation of an FFEA system

The process of transforming experimentally derived structural and dynamical

data into a form appropriate for the FFEA model takes the following steps:

1. Creation of a protein surface mesh from the structural data (section 2.3.1).

2. Coarse-graining of the protein surface mesh (section 2.3.2).

3. Meshing of the protein interior and assignment of material parameters (sec-

tion 2.3.3).

4. Positioning within protein ensemble and assignment of exterior interactions

(section 2.3.5).

2.3.1 Creation of a surface mesh

The input files used by FFEA can be generated from any cryo-EM density map,

PDB structure or SAXS envelope. The method used throughout this thesis relies
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2.3 Preparation of an FFEA system

A            B             C

Figure 2.8: A: A cryo-EM density map of a section of a measles virus (top).
Surface mesh output from FFEA tools meshmap at various levels of coarsening
shown below. B: Use of addmap function to produce a longer measles system.
C: An example of a 3GHG PDB structure[72] (Left) being converted to an MRC
CCP4 electron density map using FFEA tools pdbtomap (Centre), then meshed
using netgen (Right).
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on first producing a density map1 When starting from a PDB structure, each

point in the PDB file is assigned a particular sphere radius (generally 20 to 30

Å). The density contribution is chosen to vary linearly from 1 at the centre of

the sphere, to 0 at the edge. The density contributions of these spheres are then

mapped onto a cartesian 3-d grid. Figure 2.8C illustrates this conversion from

a PDB structure to a density map. The same method could be applied in the

conversion of SAXS data to a density map (although no SAXS data is used for

the work presented in this thesis), using the SAXS ‘particle beads’ as the points.

In some cases, such as the measles virus shown in figure 2.8B, the data only

represents a short section and so in this case density maps are combined into a

larger system formed from smaller repeating units.

A surface mesh can then be produced from the resultant density map using

the marching cubes algorithm[73]. This requires a contour level (isovalue) de-

termining the surface. For maps obtained from the EMDB there is typically a

‘recommended’ level at which the relevant biological features are deemed to be

present. The density map may contain ‘dust’ (extraneous specs of density related

to noise in the experimental data) which must be removed. There may also be

small cavities present (at the chosen contour level) which are problematic as they

introduce small length scales to the system and create poorer quality meshes

during the 3-d interior meshing step. Using a modified version of the flood fill

algorithm (implemented in three dimensions rather than the usual two), all bod-

ies and cavities can be identified. Any bodies below a certain volume (measured

in number of voxels) can be designated ‘dust’ and culled. Similarly, any cavities

1Clearly this is unnecessary in the case of cryo-EM, for which the data is already in this
form.
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below a certain volume may be filled in. Filling cavities is particularly necessary

in the case of maps produced from atomistic structures, which are frequently rid-

dled with holes rendering any output mesh virtually unusable. Figure 2.8C shows

the full conversion from atomistic structure to density map to surface mesh.

2.3.2 Surface coarse-graining methods

Having obtained a surface mesh, it is now necessary to coarsen it. This is to avoid

the small length scales which make the FFEA model unstable and necessitate

small ∆t (as discussed in section 2.2.2). Three different methods are employed,

each being appropriate in certain cases.

The Face pair collapse (FPC) method iteratively finds the smallest edge length

in the mesh and culls it, collapsing the two parent faces. Each cull removes one

node, two faces and three edges. This scheme is continued until a threshold min-

imum edge length is reached that depends on the smallest biologically significant

feature of the mesh. This method works well as a ‘polishing’ stage, but can be-

come stuck when handling meshes with complicated connectivities. The FPC

method is also poor at keeping the overall shape (since it will always cull the

smallest edge, regardless of whether this is an important feature).

For meshes with a mixture of large smooth regions (which can be heavily

coarse grained with no loss of important detail) and small finer regions (which

would be culled by the FPC method) it is possible to use the Decimation approach

from the blender 3-d modelling package[74]. This method takes into account the

overall shape of the mesh and attempts to remove a proportion of faces such that

the shape is preserved. However, like the FPC method this approach does not
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work well with meshes with highly complex connectivities (such as that generated

from the measles map in figure 2.8A), and is prone to producing intersecting

surface elements at high coarse-graining levels.

A final method of coarse-graining surface meshes which can be applied when

FPC and decimation fail, is voxel averaging. This method is applied before the

creation of a surface mesh, and coarsens the density map itself by grouping to-

gether cubes of voxels and averaging the densities. For example, coarse grain level

3 would correspond to averaging each 3× 3× 3 block of voxels into one average

voxel. This is the coarse-graining being represented in 2.8A. The drawbacks of

this method are that it is very crude and can easily average over important detail

in the density map.

In practice a mixture of the above three methods may be used if necessary

(for example, decimation or voxel averaging first, and FPC to finish).

2.3.3 FFEA model creation

The coarse-grained surface mesh can now be meshed using any standard 3-d

meshing software such as NETGEN1[75] or TETGEN[76]). The output mesh is then

converted into the FFEA input files described in table 2.2. These FFEA files

must satisfy a number of requirements (such as all surface face normals pointing

outwards) and encode extra information (such as which nodes lie at the surface)

that is not generally provided by NETGEN or TETGEN. At this stage it is also possible

to cull small (below a given volume threshold) elements, although this should be

used with caution. Such culling is appropriate in the case of meshes with a large

1For the purposes of the FFEA project, NETGEN version 4.4 should be used, as later versions
produce meshes with small elements by default.
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FFEA input file Contains
.node Node positions of mesh
.top Topology (element connectivity)

of mesh
.surf Surface faces and parent element
.vdw Face ‘type’ for van der Waals in-

teraction
.mat Material properties (density, bulk

and shear modulus, bulk and
shear viscosity) of each element

.stokes Stokes radius of each node
.pin Indices of nodes to be ‘pinned’

(immobilised) during simulation.

Table 2.2: The 7 input files describing an FFEA protein.

number of very small surface elements whose removal changes little about the

shape or connectivity of the mesh. The whole FFEA system is described in a

.ffea file, an example of which is given in Appendix B.

2.3.4 Simulation states

Each FFEA model in the simulation can be assigned one of three states: ‘DY-

NAMIC’, ‘FROZEN’ and ‘STATIC’. ‘DYNAMIC’ is the default state, in which

all the protein’s dynamics are simulated in full. A ‘FROZEN’ protein has its

dynamics temporarily disabled, but can be set to ‘DYNAMIC’ at any time and

resume its function. This is useful in cases where the protein has more than one

conformation with different mesh topologies (see chapter 5). ‘STATIC’ proteins

are fixed, unmoving surface meshes only. This state is useful for large, rigid (on

the scale of the simulation) structures, such as the microtubule surface in chapter

5. It avoids the computationally expensive dynamics calculation, while allowing

van der Waals interactions (described in chapter 3).
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2.3.5 Visualisation

A custom visualisation program, FFEA viewer was produced for the project, de-

signed to read a given .ffea input script file and render the trajectory with

various visual settings. While FFEA tools is able to convert FFEA trajectories to,

for example, PDB files, for viewing with existing visualisation software (e.g. VMD

[77] or chimera [78]) the viewer is designed to allow FFEA specific editing. For

example, specifying the van der Waals type of individual surface faces of a protein

can be done visually through point-and-click interaction using this viewer. The

viewer is written in python, using the standard tkinter for the control panel

and with OpenGL bindings through pythongl. Performance increases are brought

in via cython.

2.3.6 FFEA tools

As detailed above, FFEA input files can be generated from any cryo-EM density

map, PDB structure or SAXS envelope, but this process requires a lot of “clean-

ing” and sanitisation of the resultant meshes to be carried out. As such, the

process of manually preparing input files for FFEA can be laborious and opaque.

The FFEA tools program seeks to remedy this by providing a number of fully

automated conversion and clean up tools. An example of using the FFEA tools

suite to automate the process of setting up an FFEA system is given in Appendix

C.
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2.3 Preparation of an FFEA system

Figure 2.9: A sample screenshot of the FFEA viewer visualisation program, dis-
playing an FFEA trajectory of molecular motor dynein interacting with the ax-
oneme.
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2.4 Summary

A shared memory implementation of the FFEA model has been produced which

scales reasonably with the number of processors. A pipeline has been created to

automate the production of FFEA files given atomistic or cryo-EM input files,

and several coarsening methods have been explored and discussed. The scaling

with system size was investigated for different solvers, and the effect of mesh

connectivity on simulation speed. The stability of a single element and a group

of elements under the explicit, inertial scheme was analysed. A viewer was created

for use in editing and visualising FFEA simulations.
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Chapter 3

van der Waals interaction

3.1 Introduction

The mesoscale model described in chapter 1 includes internal forces within the

protein only and neglects surface forces preventing interpenetration of surfaces.

This is sufficient for modelling experimental data from isolated proteins such as

that produced by SAXS[44], as this technique focuses on the low resolution shape

of individual proteins, seeking to eliminate aggregation or crowding effects[79].

However, the FFEA model is by design very versatile and scales (to a good ap-

proximation) linearly with system size. It is therefore desirable to consider the

case of very many interacting proteins, with complex and varied geometries, such

as is the case in the cell cytoplasm[80]. This clearly requires an accurate and ef-

ficient implementation of interactions between the proteins. One such important

interaction is the electrostatic interaction (implemented in Chapter 6), but aside

from this there are a myriad of other important forces present in a protein solution

that must be taken into account. Perhaps most obviously, there is steric repul-
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3. VAN DER WAALS INTERACTION

sion. That is to say, the protein cannot pass through itself or another protein.

There also exist complex protein-solvent interactions due to the effect different

functional groups have on water’s ability to form a hydrogen bond network, and

the associated energy penalty. This can be greatly simplified by treating different

parts of the protein surface as either “hydrophobic” or “hydrophilic”.

3.2 ‘van der Waals’ forces in simulations
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Figure 3.1: Magnitude of the Lennard-Jones potential (equation (3.1)) and the
corresponding force (equation (3.2)) for an equilibrium separation req = 1.0 and
well depth ε = 1.0.

In simulation techniques such as Molecular Dynamics, the combined steric
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repulsion, hydrophobicity and dispersion forces between two atoms (or ‘beads’)

are often modelled using the simple Lennard-Jones potential[81]. The functional

form of this potential, ELJ , is given by

ELJ(r) = εLJ

((req
r

)12

− 2
(req
r

)6
)

(3.1)

where req is the equilibrium separation distance and εLJ is the depth of the energy

well at r = req. This results in the following force

FLJ(r) = −−dELJ(r)

dr
= 12r6

eqεLJ

(
r6
eq

r13
− 1

r7

)
. (3.2)

The force and energy are plotted in figure 3.1. For separations r < req,

the potential is strongly repulsive, modelling the hard, steric repulsion between

atoms. For separations with r > req, the potential is weakly attractive, modelling

the dispersion forces between atoms. At high r (typically r > 3req) the force is

sufficiently close to zero to be neglected, reducing the amount of computation

required to model systems with large numbers of atoms.

There are other potentials in use, notably the Morse potential[82] and the

Buckingham potential[83], which approximate the basic shape of the LJ potential.

While the following implementation can accept these other potential forms, the

LJ potential was sufficiently inexpensive for the needs of the project, and is the

potential used for simulations in chapters 4 and 5.
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3.3 Considerations for FFEA implementation

The approach considered here treats vdW forces in the FFEA model as the con-

tinuum limit of vdW forces in an MD simulation. That is to say, the finite

sum of pairwise force contributions in MD becomes a volume integral for every

infinitesimal volume in the system. This is represented below

N∑
j 6=i

~F (~ri − ~rj) −→
∫

Ωi

∫
Ωj

ψi(~ri)~F (~ri, ~rj)dVidVj (3.3)

where Ω is the entire protein domain, ψi(~ri) is the shape function corresponding

to node i (in the finite element formulation), and N is the number of atoms.

Thus, for each element equation (3.3) requires the sum of interactions with all

parts of all proteins including itself. Given the continuum nature of the model,

this could clearly be very costly. These problems can be avoided, however, with

a number of physical justifications:

• The protein interior can be excluded : The effects of vdW interactions be-

tween the atoms that compose the interior of the protein have already been

taken into account through the moduli, viscosity and noise terms in the

current equation of motion. Adding a vdW term for this would create an

additional, unwanted coupling, making parameterisation of the protein’s

mechanical properties very difficult.

• Solvent interactions are ‘short range’ : The disruption of the water network

that introduces the energy penalty driving the attraction occurs on a very

short range relative to the length scales normally explored with this model.

This means “distant” (in terms of mesh connectivity) parts of a protein will
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only feel an interaction when brought close by.

• The vdW force only takes place through the exterior : As per points 1 and 2,

the interior short range interactions have already been taken into account,

and long range interactions are excluded. Therefore, the vdW force is lim-

ited to the surface of the proteins only, and takes place through the exterior

medium. This allows us to exclude any pair of faces which are not both in

front of and facing each other.

The above points allow most face pair interactions to be neglected, and thus

preserve the computational efficiency of the algorithm.

3.4 Technical issues regarding Surface-Surface

vs Element-Element

Given that the van der Waals force is a volume-volume interaction, it may at first

seem counter intuitive to treat it as a surface interaction. However, a volume-

volume interaction does not provide a convenient way of introducing localised

hydrophobicity/hydrophilicity to the surface, since parameterisation would be on

an element by element basis rather than face by face. To allow proteins to “stick”

to each other would require additional surface-surface calculations. Furthermore,

although a volume-volume interaction would allow for a softer interaction (as

surfaces could overlap without consequence), the electrostatics solver described

in chapter 6 would not converge in the case of overlapping proteins (since that

would require multiple solutions for the potential at the same point in space).

More importantly, from an implementation point of view, the look-up table
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and connectivity problem for an element which can have surface nodes on several

sides of the same protein is extremely complicated and inefficient. To avoid

the mechanical properties ‘coupling’ problem (discussed in the previous section)

would involve excluding all pairs of elements sharing at least one node. Using

face-face interactions allows us to use a simple look-up table. A cubic array of

Linked Lists acts as a nearest neighbour look-up table to exclude distant pairs

(see figure 3.4). Interactions are only included if the faces are sufficiently close

and satisfy the following two criteria:

~n1.~n2 < 0 (3.4)

and

(~x− ~c).~n1 > 0 (3.5)

where ~n1, ~n2 are the normals of the two faces, ~x represents the three nodes of face

2, and ~c is a point on face 1. These two checks ensure that both faces are facing

each other, and that no force is being transmitted through a protein interior.

It is physically more consistent to convert this into a surface interaction for

the exterior, and leave the interior physics to be determined by the elasticity

parameters (which are, effectively, already taking internal vdW into account).

The Surface-Surface approach avoids the problem of singularities by excluding

any face pairs which share one or more mesh nodes. This is a relatively rapid

search which can easily be precalculated in a lookup table, but most importantly

it is not dependent on the mesh, providing the mesh is of good quality (broadly

equliateral faces, and no sharp surface angles). The Element-Element case, on

the other hand, must exclude elements linked via the interior of the mesh too,
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which results in highly inconsistent pairings, in locational terms. FFEA meshes

are mainly generated from surface data alone - the meshing algorithm gives no

physical consideration to the internal mesh structure, but merely optimises it

according to a user specified volume and element angle. Small changes to the

surface mesh can produce profound changes in the internal mesh structure, and

therefore completely change the internal dynamics of the protein when simulated.

This inconsistency is even more problematic than the coupling problem between

vdW and material parameters, discussed in the previous section.

3.5 Finite Element Formulation

Consider a protein whose surface is Γp. Now consider a point ~p on the surface Γp

interacting with a point ~q on a full-system surface Γq with force density ~f(~p, ~q),

noting that Γp ∈ Γq (see figure 3.2). ~f(~p, ~q) is pairwise and acts along the line

of separation (we can use a Lennard-Jones potential, for example). So the total

surface force at point ~p is given by

~F (~p) =

∫
Γq

~f(~p, ~q)dAq. (3.6)

In order to include this force in the finite element calculation, we must put this

in the appropriate weak form. The weak form of the FFEA momentum equation

(equation (1.7)) is given by:

∫
Ω

w

(
ρ
Dui
Dt
− ∂σij
∂xj

)
dV = 0. (3.7)
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Figure 3.2: Steric repulsion and hydrophobic/hydrophilic solvent interactions
modelled through a pairwise force per unit area. Shown here are two triangular
faces interacting through such a force. The grey, dotted lines are intended to
suggest the rest of the protein surface. By integrating the pairwise force f(~p− ~q)
over both areas, the force on each of the nodes can be calculated. Note that both
faces may in fact belong to the same protein surface.
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Integrating by parts this becomes:

∫
Ω

ρ
Dui
Dt

wdV +

∫
Ω

σij
∂w

∂xj
dV =

∫
Γ

wFidA (3.8)

where ~F is the surface force density arising from vdW and σij is the internal

stress. Hence using equation (3.6) we have:

∫
Γp

ω(~p)F (~p)dAp =

∫
Γp

ω(~p)

∫
Γq

f(~p, ~q)dAqdAp. (3.9)

By decomposing F (~p) in terms of the surface restriction of the shape functions

of the system

F (~p) =
N∑
i

ψiFi (3.10)

and choosing the weight function to be the shape function ψj, we arrive at the

Galerkin form for the contribution of vdW forcing:

∫
Γp

ψjψiFidAp =

∫
Γp

ψj

∫
Γq

f(~p, ~q)dAqdAp. (3.11)

The LHS is now essentially a surface mass matrix multiplying a vector of un-

knowns, so we can write this term as

Mp
Γ
~F p =

∫
Γp

ψj

∫
Γq

f(~p, ~q)dAqdAp. (3.12)
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The integral on the RHS of equation (3.12) cannot be solved analytically (in

general) so we use a Gaussian Quadrature scheme for triangles:

∫
4
g(~x)dA4 ≈ A4

Ngp∑
k

Wkg(ηk1 , η
k
2 , η

k
3) (3.13)

where the integral is approximated by a weighted sum of the integrand’s values

at the Ngp different Gauss Points. We then use this scheme with equation (3.12)

to obtain:

∫
Γp

ψj

∫
Γq

f(~p, ~q)dAqdAp ≈
4p∑ 4q∑

ApAq

Ngp∑
l

Ngp∑
k

WlWkη
k
j f(~pk, ~ql) (3.14)

where ~pk = ηk1~n1 + ηk2~n2 + ηk3~n3 and we have used the fact that, in this case,

ψj = ηj. Calculating this quantity leads to the force per unit volume on the

protein due to van der Waals interactions with all surfaces in the system. Some

further considerations:

• The net interaction force of an element with itself is zero and can be ignored.

• Adjacent face pairs can in principle be safely ignored, as the angle between

the faces necessary for the interaction to be significant is so small that it

would indicate a badly formed mesh. Ignoring such faces avoids the need

to deal with the singularities in the potential.

The implementation described above can also handle different types of surface

interaction. As illustrated in figure 3.3, the different surface elements of the

protein surface may be assigned a particular index representing their ‘type’. A

(symmetric) interaction matrix defines the LJ parameters for interaction between
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each pair of face types. This allows the FFEA model to recreate, for example,

the attraction between hydrophobic regions of a surface. Amino acids such as

Valine, Cysteine and Leucine are strongly hydrophobic, and will therefore interact

with different strengths than with surfaces composed of more weakly hydrophobic

groups such as Glycine or Alanine[84]. Note that if the atomistic structure is

known (and hence the amino acid side groups lying at the surface), then in

principle a map of hydrophobic/hydrophilic regions (strong and weak) could be

produced automatically.

Figure 3.3: Example van der Waals patterning of the 3GHG human fibrinogen
from figure 2.8 using the FFEA viewer developed in section 2.3.5. The colour of
the faces indicates their type (red, green, blue indicate types 1, 2 and 3 respec-
tively). Any number of different face types is possible in general. Black faces
(not shown on this figure) indicate non-interacting faces. See figures 4.4, 5.6 and
5.13 for examples of vdW patterning of FFEA systems.

3.6 Practical implementation

A naive implementation of the vdW scheme in section 3.5 would compute inter-

actions between all face pairs in the system, resulting in a scaling of O(N2) which

rapidly becomes prohibitively expensive, particularly for higher order Gaussian

quadrature schemes. Given that the long range part of the vdW interaction goes

as r−6 and tails off after distances of a few req (see figure 3.1), we introduce

a cutoff distance (4req, for the simulations presented in this thesis). Any faces
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3. VAN DER WAALS INTERACTION

Figure 3.4: An illustration of a nearest neighbour look-up grid, shown here in
2-d for simplicity. The black circles represent BEM nodes (one at the centre of
each surface element). The dotted grid shows the conceptual discretisation of
the system. On the RHS of the figure a linked list stack has been constructed
for each cell, containing the nodes within that area. In reality this grid is three
dimensional and can be of any number of cells in length.

further apart than this distance will be assumed to have negligible interactions.

This gives large improvements to the efficiency of the algorithm, but for large

systems even the calculation of separation distance between face pairs can be

expensive. To minimise this, a 3-d nearest neighbour lookup table is generated

every few steps. The parameters defining the functioning of the lookup table (cell

side length and update frequency) need to be carefully set based on the maximum

size of surface faces and the maximum drift speed of proteins through the system

(see section 3.7.3).

It is also necessary to choose an appropriate number of Gauss points for the

face size. Interacting faces in the simulations presented in this thesis were gener-

ally no larger than 100Å2, for which a 3-point Gaussian quadrature scheme was

adequate. A spurious unphysical torque can sometimes be observed1 in systems

1For systems with no external damping.
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3.7 Test system: Myoglobins interacting with an attractive substrate

for which the number of Gauss points is too low for the face size, particularly

when there is a large difference in size between the interacting faces.

The efficacy of the scheme was tested by running simulations of two interacting

elements, two cubes, multiple spheres and, finally, a large number of irregularly

shaped meshes. The latter were constructed from the atomistic structure of

myoglobin (shown in figure 3.5).

3.7 Test system: Myoglobins interacting with

an attractive substrate

3.7.1 Introduction

As a test system for the stability and performance of the vdW implementa-

tion on the arc1 supercomputer, FFEA was used to model a crowded system

of myoglobin molecules interacting with a hydrophobic surface (non-oxidized

polystyrene). This was inspired by the work of Muntean et al. in which they use

MD to investigate the adsorption of a single myoglobin molecule to a polystyrene

surface[85]. The adsorption of proteins onto surfaces is important for the creation

of biosensors. Due to the performance constraints of all-atom MD (discussed in

chapter 1) it is not currently feasible to simulate the entire adsorption process,

even for a single molecule, and therefore separate simulations were carried out

for the molecule placed at different distances from the substrate. Most of the

runs were of 1 ns in length, although some longer runs at 15 ns were performed

to check agreement between the time scales[85].

The coarse-grained nature of FFEA allows it to simulate not only the full
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adsorption trajectory of a single molecule, but equally the effects of crowding

from a large number of such molecules interacting. Myoglobin is around 4.7 ×

3.4× 3.9 nm in size, and therefore towards the lower end of the scale applicable

for FFEA. Nevertheless, experimental evidence that folded proteins can behave

as viscoelastic continua[45] suggests this simple vdW implementation test case

could yield results of biophysical interest. However, the aim here is to assess the

code as applied to a ‘real’ system, and as this is one of the types of mesoscale

system FFEA was designed to address, it was decided it would be an appropriate

test system for the vdW interactions.

A                 B                   C                   D

Figure 3.5: Transformation from the atomistic structure of myoglobin (A) to
a density map (B) to a (very crude) FFEA representation (C). D shows the
simulation box setup as described in section 3.7.2. The simulation box is shown
in dark blue. Myoglobins are shown in red apart from the protein being tracked
(light blue, interacting with surface).
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3.7 Test system: Myoglobins interacting with an attractive substrate

3.7.2 Method

128 interacting myoglobins were simulated interacting with attractive surfaces on

the top and bottom x-z planes, and periodic boundary conditions on the other

four faces. The proteins were initially tiled in a cubic lattice 4×8×4 resulting in a

simulation box of dimensions 21×42×18 nm with a lookup cell side length of 3 nm

(dimensions 7×14×6). The equilibrium separation distance in the LJ potential,

req = 1nm for proteins interacting with the surface. The interaction energy

between myoglobins was chosen to be 1012Jm−4 with an equilibrium separation

of 0.5 nm. The rest state volume of the myoglobin mesh is around 22.7nm3, giving

a volume fraction of around 20% (note that the concentration will effectively be

higher due to the LJ equilibrium separation distance around each myoglobin). A

protein was determined to be ‘on’ the surface when the centroid of its surface

face nearest either of the attractive surfaces was less than 3 nm from the surface.

The time evolution of the on-off ratio of a single molecule was calculated for 10

values of Young’s modulus (ranging from 40 to 130 MPa), and 7 values of Poisson

ratio (0.3 to 0.42), thus 70 simulations were run per surface interaction energy.

The simulations were run until convergence of the on-off ratio. This typically

required simulating a few µs of dynamics. Depending on the stiffness of the

elastic properties, the contact area the myoglobins made with the polystyrene

surface was typically 10 nm2 (but almost 14 nm2 for low Young’s modulus).

The energy of interaction between a myoglobin and the surface was chosen as

1013Jm−4, resulting in interaction energies of order kBT or more (broadly similar

to that in reference [85]).
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3.7.3 Observations
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Figure 3.6: A: Graphs of on-off sticking ratios for myoglobins on an LJ surface
for different energy well depth, εLJ . There are 70 simulations for each interaction
energy (10 values of Young’s modulus and 7 values of Poisson ratio.) Poisson
ratio appears to have little effect on the sticking ratios. B: A plot of the on-
off ratio at each value of Young’s modulus (averaged over the 7 Poisson ratio
simulations) with standard error. This makes the sharp transition between high
and low sticking rates around 100 Mpa clearer.

The results of the on-off ratios calculated in the simulations described in sec-

tion 3.7.2 are given in figure 3.6. In physical terms, we observe several interesting

features. First that there appear to be two distinct regimes (high ratio and low

ratio) with a relatively abrupt transition at Y = 100 MPa. This change is ap-

parent in figure 3.6 despite the statistical noise (due to only one run per set of

parameters). The softer proteins can deform to provide a greater area of contact,
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allowing them to stick to the surface strongly. Second, the Poisson ratio appears

to have a negligible effect on the sticking ratio. The weak effect of the Poisson

ratio on dynamics is a recurring observation, also seen for the systems studied

in chapters 4 and 5 of this thesis. Finally, despite a comparatively low energy of

sticking (around 1kBT ) some proteins achieved very high on-off ratios, particu-

larly for the 3× 1013Jm−4 simulations. Qualitative observations suggest that the

crowding near the surface may obstruct a protein’s attempt to diffuse away, thus

increasing the probability that it will be re-adsorbed to the surface.

Despite these general observations, the aim of the simulations was also to

assess the functioning of the vdW implementation in a more realistic system.

The scheme was found to produce stable simulations for the simulated µs for

all chosen elastic parameters and interaction energies. It was found adequate to

rebuild the lookup table only every 10 simulation steps as the diffusion rate of

the myoglobins was sufficiently small that faces were not traversing the lookup

grid too quickly.

3.8 Conclusions

The ‘van der Waals’ interaction is widely used in molecular simulations to simu-

late the effects of steric repulsion and attractive dispersion forces. In this chapter

a method of incorporating van der Waals forces into the FFEA model was pre-

sented which allows for different types of surface interaction (e.g. hydrophobicity).

A surface-surface method (rather than volume-volume) was chosen to prevent un-

desirable coupling of material properties in the protein interior (in which vdW

forces are already effectively accounted for by the viscous and elastic parame-
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3. VAN DER WAALS INTERACTION

ters) and to resolve inconsistencies in self-interaction of elements arising from

complicated topologies. The interaction was implemented as a Lennard-Jones

force integrated over the surface. Performance improvements were introduced

via a nearest neighbour lookup grid. The efficacy of the scheme was investigated

through application to a ‘real’ system of 128 myoglobin molecules interacting with

an oxidised polystyrene substrate via a hydrophobic attraction.
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Chapter 4

ATPase

The work presented in this chapter emerged from a collaboration with K. Pa-

pachristos, D. J. Read, O. G. Harlen, M. Harrison, E. Paci, S. P. Muench, and S.

A. Harris, and is published in reference [86] (see page i for attribution details).

4.1 Introduction

4.1.1 The rotary ATPase family

The rotary ATPase family is a set of proteins which exist within biological mem-

branes. They are highly efficient energy-conversion machines: they can either use

a gradient of protons across the membrane to fuel the production of ATP or, con-

versely, use ATP to generate a proton gradient[87]. This is achieved through the

coupling of two distinct motors; an ATP binding domain, and a membrane bound

proton pump. The rotary ATPase family is composed of three sub families: F-

ATPases, V-ATPases and A-ATPases. The F1F◦-ATPases (F-ATPase) are mainly

responsible for synthesising ATP using a proton gradient across the membrane.
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4. ATPASE

The vacuolar H+-ATPases (V-ATPase), on the other hand, use ATP hydrolysis

to drive proton transport across the membrane (see figure 4.1A). Contrastingly,

the third family, archaeal A-ATPase (figure 4.1B), is capable of working in either

direction, producing ATP synthesis or proton transport according to the poten-

tial across the membrane. These three cases all involve rotation of the rotor and

c-ring as part of the mechanism.

In the V- and A- type ATPases, the soluble domain (V1 and A1 respectively)

consumes ATP, driving the mechanism that pumps protons across the membrane.

The three AB dimers that make up the soluble domain form a three step motor,

cycling in sequence through three states: open (no nucleotide bound), loose (ADP

+ Pi bound) and tight (ATP hydrolysing)[88]. This cycle induces conformational

changes in the AB dimers, producing a torque on the central rotor axle and

consequently driving rotation of the c-ring.

4.1.2 The apparent stator-rotor connection

The a-subunit and AB domains (responsible for ATP hydrolysis) are held relative

to the central rotor and c-ring (responsible for proton pumping) via coiled-coil

structures known as stators (figure 4.1). There are three stators connecting the

motors in the V-ATPase, two stators connecting the motors in the A-ATPase,

and one stator connecting the F1 and F◦ domains in the F-ATPase. There is

also an apparent second rotor/stator connection observable in the complete V-

and A-ATPase structures, linking the EG stator to either the d subunit of the

central axle, or the c-ring. A connection at this point prevents the c-ring from

rotating freely against subunit a during hydrolysis of ATP. Figures 4.1C-E show
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the effects of varying the contour level to the point at which this connection

disappears, showing that other (known) features of the motor disappear first.

This provides evidence that the connection is real, rather than an experimental

artifact.

Figure 4.1: Subunit fitting for the V-ATPase (A) and A-ATPase (B) com-
plex with those subunits involved in the ATPase motor domain (A/B), stator
(E/G/C/H), rotor (D/F/d/a) and c-ring labelled. Single particle cryo-EM re-
construction of the T. thermophilus A-ATPase (C) M. sexta (D) and yeast (E)
V-ATPase contoured at the recommended level in the EMDB (left) and at a level
where the apparent link between stator and rotor axle is removed (right).
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4.1.3 Elasticity studies in the V- and A-ATPases

There is substantial structural conservation between corresponding subunits in

the V- and A-ATPase. However, some important differences exist, notably in the

size of the c-ring. As the c-ring is not commonly formed from a multiple of 3

subunits, there is a symmetry mismatch with the 3 step ATP hydrolysis/synthesis

domain[89; 90; 91]. As ATP hydrolysis is the rate limiting step, this symmetry

mismatch cannot be overcome by applying constant torque to the central rotor

to generate continuous rotation of the c-ring. It has therefore been suggested

that there may be an elastic connection between the ATP hydrolysing domain

and the c-ring acting as an energy buffering device[92; 93; 94; 95; 96]. This

elasticity is proposed to increase motor efficiency by minimising the free energy

cost of the ATP induced conformational changes[97]. Possible candidates for this

elastic energy buffer are the stators or the central rotor axle (or both). Indeed,

such flexibility has been observed in crystal structures and electron microscopy

data[98; 99; 100].

Elastic Network Models (described in section 1.1.3) have also been used to

study questions of elasticity in the rotary ATPases. Normal Mode Analysis on

the coiled-coil dimeric protein that forms the A-ATPase stator stalk revealed

flexing in a radial direction [101]. More recently, Song et al. have shown that

both the Saccharomyces cerevisiae and Manduca sexta V-ATPases are capable of

bending along their long axis such that the V1 domain is displaced by up to 10◦

relative to the V◦ domain[102].
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4.2 Methods

4.1.4 Aims

The aim of this chapter is to apply the FFEA model to a real biological system,

in this case the V- and A-ATPase rotary proteins (F-ATPases are too small for

treatment with FFEA), and to show where FFEA can exceed the scope of the

Elastic Network Model, with which it shares several conceptual similarities. As

we seek to compare the results of a typical FFEA approach with those of a

typical ENM approach, we initially limit ourselves to a system in which both

ENM and FFEA are applicable. Having compared the two models, FFEA is

then used to investigate differences in the dynamics of the rotary ATPase family

in the presence and absence of the apparent stator-rotor connection, as well as

the effects of stator number (2 or 3) on the principal modes of motion. Finally,

the results of an FFEA simulation of the dissociation of the V◦ and V1 domains

is presented as an example of a simulation that could not be carried out with

standard ENM implementations.

4.2 Methods

4.2.1 Meshing

The Manduca sexta (M. sexta) V-ATPase (EMD-1590 at 17 Å resolution), Sac-

charomyces cerevisiae (S. cerevisiae) V-ATPase (EMD-5476 at 11 Å resolution)

and the Thermus thermophilus (T. thermophilus) A-ATPase (EMD-5335 at 9.7 Å

resolution) maps were obtained from the EMDB database[103]. Surface meshes

were calculated from the maps using the marching cubes algorithm at the rec-

ommended contour levels, and ‘cleaned’ and coarse grained using the decimate
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and FPC procedures described in section 2.3.2 of this thesis. The finite element

meshes were then created from these surface meshes using NETGEN [104] as

illustrated in figure 4.2.

4.2.2 FFEA simulations of base structures

4 µs FFEA simulations of these base structures were run using the simulation

parameters listed in table 4.1. The typical material parameters for a protein were

chosen (as described in section 1.2.3): The Young’s modulus was taken from the

range for lysozyme[53] and the viscous parameters were taken to be the same as

for water. As for all the FFEA simulations in this thesis, the density parameter

was chosen to be the average density of biomolecules.

As the aim of this chapter is to compare modes of motion, the precise choice

of material parameters is not crucial. The density and viscous parameters affect

the time scale of the simulation, and the manner in which the model explores

conformational space, but they do not affect the range of configurations available

to the protein (which corresponds to the modes). Similarly, varying the Young’s

modulus will change the mode amplitudes, but not the resultant eigenvectors

themselves (except where the deformation is large and non-linear). To test this,

simulations with a 20% difference in Young’s modulus were analysed for the M.

sexta and S. saccharomyces V-ATPases. The results, given later in figure 4.15,

show the eigenvectors to be largely unchanged. The Poisson ratio also has only

a weak effect on the modes. As with ENM, it is the shape and topology of the

protein that determines the modes of motion in FFEA.
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Figure 4.2: The single particle cryo-EM map (left) vs FFEA models (centre and
right) for the M. sexta V-ATPase (top), the T. thermophilus A-ATPase (middle)
and the S. cerevisiae V-ATPase (bottom). The location of the apparent con-
nection between the stator network and rotor axle is indicated on each FFEA
representation via an arrow.
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Density 1500 kg m−3

Young’s Modulus 338.8 MPa
Poisson’s Ratio 0.41
Shear Viscosity 1 mPa.s
Bulk Viscosity 1 mPa.s

Time step 5 fs
Temperature 290 K

Table 4.1: Simulation parameters for FFEA calculations.

4.2.3 FFEA simulation of partially severed structures

The apparent connections between the stator and rotor (shown in figure 4.2) in

the above base structures were severed by removing a small amount of matter

from the connecting area. The simulations were then repeated using the same

material parameters with these topologically different meshes.

4.2.4 Comparison with elastic network models

The ENM normal-mode analysis calculations were carried out by K. Papachristos.

The M. sexta V-ATPase and T. thermophilus A-ATPase were coarse-grained into

a total of 250 beads, and the S. cerevisiae V-ATPase into 256 beads, using a

topology-preserving algorithm[105] to reproduce the overall shape and topology

of the complexes. The beads were connected by springs with spring constants

derived by Stember and Wriggers[106]. The eigenvectors were calculated using

MODEHUNTER[106].

Principal Component Analysis [107] was used to extract the quasi-harmonic

normal modes from the FFEA trajectories. The first six trivial modes, which

describe the overall translation and rotation of the system, are removed prior

to the PCA. In order to compare the ENM modes with the FFEA modes, it
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Figure 4.3: Continuum model showing the FE mesh (left) and embedding the
ENM pseudo-particle structure (red) inside the FFEA continuum mesh (grey)
represented here by the nodes of the finite elements (right).

was necessary to obtain eigenvectors of the same dimension. To achieve this,

the ENM structure was aligned within the finite element mesh by minimising

the square of the total pair-pair separation distance between all ENM pseudo-

particles and FFEA nodes. A Monte Carlo approach to minimisation was applied,

sampling many random translations and rotations of the ENM structure. The

probability of accepting a new configuration is given by the Boltzmann probabil-

ity P = exp(−dE
kT

) where dE represents the change in the “energy penalty” of the

configuration (the total pair-pair distance squared) resulting from that step, and

T is a scaling energy analogous to thermal energy in a real system. The purpose

of this artificial “temperature” is to allow the structure to sample the whole con-

figurational space and find the global minimum. T was slowly reduced, allowing

the ENM structure to settle with optimal alignment in the FFEA structure.
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Each bead of the ENM structure was then assigned to its local (containing)

element in the continuum mesh, as shown in figure 4.3. The barycentric coordi-

nates (equivalent to the linear shape functions) of the particle within that local

tetrahedron were calculated, and could then be used to map the new position

of the particle in all subsequent frames. This allows the motions of the FFEA

derived modes to be mapped onto the ENM structure, allowing a direct com-

parison to be made between the two models (as both eigenvectors now have the

dimensions of the ENM structure).

180
o

Figure 4.4: The vdW surface patterning of the S. cerevisiae, shown from the
‘front’ (left) and ‘back’ (right). All non-black faces are interacting. Red faces
interact with all non-black faces through a hard repulsion (negligible attraction
εLJ = 1012Jm−4). All other non-black faces interact strongly (εLJ = 1015Jm−4)
with faces of matching colour, and through hard repulsion otherwise. This is to
prevent, say, the severed axle attempting to bind strongly with the C subunit.
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4.2.5 FFEA simulation of fully severed (dissociating) struc-

tures

For the purposes of comparison with ENM, the above simulations intentionally

limited FFEA and its analysis to systems treatable with ENM. We now apply

FFEA to the simulation of the dissociation of the V◦ and V1 domains, a dynamical

process for which ENM is not applicable. The S. cerevisiae was severed along the

interface of its V◦ (c, a and d) and V1 (motor domain, D, H and stators) domains,

and the C subunit. This disconnection was performed as described in section

4.2.3, however the interface at each cut was now modelled as two interacting

vdW surfaces. These three now distinct parts were then allowed to interact via

a vdW surface interaction (as described in chapter 3), until dissociation. As the

V◦ domain is embedded in the membrane, its lower half was pinned in place by

pinning (immobilising) the corresponding nodes. The exterior solvent viscosity

was chosen to be 10−6 Pa.s to increase the rate of exploration of conformational

space. The LJ equilibrium separation distance was taken to be 5Å (as around 5

Å of matter was removed), and the surface interaction energy to be 1015 Jm−4 1.

The separation distance between the centres of mass of the V◦ and V1 domains

with time was then calculated.

1For comparison, consider that an interaction energy of 1015 Jm−4 with an interacting
surface area of 2 nm2 corresponds to a total interaction energy of 1kBT .
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4.3 Results

4.3.1 Comparison of FFEA and ENM dynamics

The quasi-harmonic modes extracted from the 4µs FFEA simulations, and the

normal modes for the same complexes calculated using an ENM approach are

represented in figures 4.5 and 4.6 respectively. In both models the first two

modes corresponded to twisting and bending.

A quantitative comparison of the ENM and FFEA model was obtained by

calculating the dot products of each eigenvector obtained from the ENM with

each eigenvector extracted from the FFEA trajectories using PCA, as shown

in figure 4.7. The differences in shape of the ATPase models in figure 4.5 and

figure 4.6 are due to the fact that the FFEA mesh contained more nodes than

the number of pseudo-particles in the ENM, and this is accounted for by the

alignment procedure in section 4.2.4. Nevertheless, figure 4.7 shows that there is

a clustering of high correlation between modes close to the diagonal, indicating

that similar modes of flexibility of the ATPases are predicted by both the ENM

and FFEA calculations. Although the agreement between the two modelling

methods is reduced for the higher order modes in each of the three ATPases,

these modes have far smaller amplitudes (figure 4.11) suggesting that the major

modes of flexibility captured by the two methods are comparable.

Differences in the ordering of these modes are due to the contrasting treat-

ment of local elasticity by ENM and FFEA. The characteristic “springs” of the

BTS ENM are one-dimensional objects and, in isolation, exhibit little torsional

resistance, whereas the volume elements of FFEA strongly resist torsion as well

as extension. This is particularly evident in the central stalk region of the simu-
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Figure 4.5: First three modes of the FFEA model for the M. sexta V-ATPase (row
A), the T. thermophilus A-ATPase (row B) and the Saccharomyces V-ATPase
(row C). Colours represent time range of motion, with red indicating the start of
the motion and blue indicating the end.
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Figure 4.6: First three modes of the ENM model for the M. sexta V-ATPase (row
A), the T. thermophilus A-ATPase (row B) and the S. cerevisiae V-ATPase (row
C). Colours represent time range of motion, with red indicating the start of the
motion and blue indicating the end.
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Eigenvector dot products for ENM vs FFEA (Saccharomyces)
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Figure 4.7: Comparison of the ENM modes with the FFEA modes for the M.
sexta V-ATPase, T. thermophilus A-ATPase and S. cerevisiae V-ATPase. The
shading scale runs from white (dot product of eigenvectors yields 0) signifying
total disagreement, to black (dot product yields 1 or 0.9) signifying perfect agree-
ment.
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A
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Figure 4.8: The mobility of four sections of the FFEA representation of M. sexta
V-ATPase, divided by motor domain (green), rotor (blue), c-ring (red) and the
remainder of the C, H and a subunits (orange), for the first three modes (A, B
and C, respectively). The white arrow shows the normalised rotational velocity
vector of that section, and the black arrow shows the motion of the centre of mass
during the motion.
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Figure 4.9: The mobility of four sections of the ENM representation of M. sexta
V-ATPase, divided by motor domain (green), rotor (blue), c-ring (red) and the
remainder of the C, H and a subunits (orange), for the first three modes (A, B
and C, respectively). The white arrow shows the normalised rotational velocity
vector of that section, and the black arrow shows the motion of the centre of mass
during the motion.
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Figure 4.10: A comparison of the agreement in mobility profile of the four motor
sections (as shown in figure 4.8 and figure 4.9) for the first two FFEA modes and
first three ENM modes of M. sexta V-ATPase. The shading scale runs from white
(dot product of eigenvectors yields 0) signifying total disagreement, to black (dot
product yields 1) signifying perfect agreement.

lations, which contains only a few elements or springs; in this region the FFEA

simulations are more resistant to torsion than the corresponding ENM simula-

tion. As a result, in the M. sexta V-ATPase, the bending mode dominates in the

FFEA, whereas the twisting motion dominates in the ENM.

Further insight into the agreement between FFEA and ENM models of the

ATPase protein complex can be obtained by considering the relative motions of

the different subunits of the motor. Figure 4.8 and figure 4.9 show the bulk

mobility of four separate domains of the M. sexta V-ATPase motor, in terms

of the rotational velocity vector, and the centre of mass velocity vector, for the

first three modes in the FFEA and ENM representations. Figure 4.10 shows a

quantitative comparison of the agreement in mobility between the four sections

in the two representations, and demonstrates that, in agreement with the dot

products presented in figure 4.7, the first two modes of flexibility of the ATPase

are conserved between the ENM and FFEA.
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4.3.2 Comparison of the FFEA dynamics in the M. sexta

and the S. cerevisiae V-ATPases and the T. ther-

mophilus A-ATPase

The eigenvalue spectrum obtained for the six FFEA models is shown in figure

4.11. The larger eigenvalues obtained for the T. thermophilus A-ATPase show

that it is the most flexible of the three motors. Similarly, the S. cerevisiae V-

ATPase is marginally more flexible than the M. sexta. The differences between the

two V-ATPase reconstructions may be attributed to species variation and/or dif-

ferences in resolution (11Å rather than 17Å) with a decreased volume associated

with more detailed structural information permitting larger amplitude thermal

fluctuations to occur within the FFEA model. Significant topological changes

can affect the output of the simulations therefore it is important to verify the

effect of changes in resolution. Figure 4.12 shows the mode comparison between

the high resolution EMD-5335 structure (9.7 Å resolution) and the low resolution

EMD-1888 structure[108] (16 Å resolution). This is a rather substantial change

in resolution, but as expected the low order modes appear broadly unchanged. It

is clear that the first three modes of the T. thermophilus A-ATPase are resilient

to changes in resolution. Both simulations appear to agree on a fourth mode,

although not on the ordering (fourth for the EMD-1888, fifth for the EMD-5335).

The cumulative proportion of the eigenvalues of the first five modes relative to

the total for all modes is given in figure 4.13. This shows that the lower modes in

the flexible topologies (those with a severed stator-rotor connection) represent a

significantly larger proportion of their total dynamics than the more rigid, uncut

topologies.
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Dot-product matrices comparing the eigenvectors of the M. sexta and S. cere-

visiae V-ATPases (figure 4.14A) show that the major modes of flexibility of the

two structures are almost identical. Comparing the eigenvectors of the M. sexta

and S. cerevisiae V-ATPases with the T. thermophilus A-ATPase (figure 4.14B

and C respectively) shows that the twisting mode is promoted in the A-ATPase

relative to the two V-ATPases, presumably because the former contains only two

stator filaments as opposed to three in the V-type complex. This result indicates

the importance of connectivity within the structure of the rotary ATPases to the

dynamics of these molecular motors.
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Figure 4.12: Comparison of the FFEA modes for the T. thermophilus A-ATPase
at 16 Å resolution (EMD-1888) and 9.7 Å resolution (EMD-5335).
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4.3.3 Changes in Rotary ATPase FFEA dynamics with

Stator-Rotor connectivity

We then used FFEA simulations to explore the effect of disconnecting stator fil-

ament 1 (S1 in figure 4.1A) from the rotor (as indicated in figure 4.2) on the

dynamics of the three rotary motors. A quantitative comparison of FFEA sim-

ulations with and without the connection was obtained by performing PCA on

the FFEA trajectories. Comparing the eigenvalue spectrums obtained (see figure

4.11) shows that all three motors have enhanced flexibility when this connection

is severed. Taking dot products between the eigenvectors extracted by PCA, fig-

ure 4.14D shows that for M. sexta the original twist (figure 4.5A, mode 2) and

x-y bend (figure 4.5A, mode 3) motions become mixed when the connection is

severed, but that the most important dynamic mode (bending in the y-z plane)

persists. For the T. thermophilus A-ATPase, all of the top three modes of flex-

ibility are preserved when the connection is severed, as shown in figure 4.14E.

Since this motor has only two stator connections as opposed to three, its stiffness

is dominated by the central rotor axle. Consequently, changes to stator connec-

tivity have a negligible effect on the dynamics. However, for the S. cerevisiae

V-ATPase, the major modes of flexibility are more severely affected by severing

the stator-rotor connection. In all three of the principal modes, the flexibility is

dominated by motion of the unconnected stator local to the point of severance.

In the first mode, this motion appears to be coupled to a rotation of the c-ring,

the second mode is similar to the y-z plane bending mode dominant in the con-

nected system and the third involves a twist of the motor around the central

rotor axle. However, since the large flexibility of the stator local to the severance
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point dominates in all of these modes, the magnitude of the correlations quan-

tified by the dot-product matrices is reduced (see figure 4.14F). In the higher

resolution S. cerevisiae V-ATPase in which the stator elements of the structure

are better defined, stator 1 becomes sufficiently flexible when it is disconnected

from the central axle that its independent motion dominates the dynamics of the

motor, and the collectiveness of the dynamics across all three of the top modes

is reduced. Nevertheless, the principal modes of the disconnected S. cerevisiae

V-ATPase do still retain aspects of the bending and twisting modes present in

all other systems investigated.

In order to further test the FFEA model for its wider application, it was

applied to the V-ATPase dissociation mechanism, by fully severing the V◦, V1

and C subunits as described in section 4.2.5. Figure 4.16 shows the results of

the FFEA simulation of V◦, V1 and the C subunit dissociating. The separation

distance between the centres of mass of V◦ and V1 fluctuates as the two domains

detach and reattach. The C subunit breaks away first, weakening the cohesion of

the structure which finally dissociates completely.

4.4 Discussion

A common method for visualising low frequency motions of large proteins is Elas-

tic Network Modelling, in which each pseudo-atom is linked to its neighbouring

particle by a spring with a defined elasticity. In order to quantitatively test the

level of agreement between FFEA and ENM, the eigenvectors extracted from both

techniques were compared by taking dot products. The two modelling methods

show that bending and twisting of the motor dominates the dynamics in both
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Figure 4.14: Left: Comparison of the FFEA modes for the M. sexta V-ATPase
with those of S. cerevisiae V-ATPase (A), M. sexta V-ATPase with T. ther-
mophilus A-ATPase (B) and S. cervisiae with T. Thermophilus (C). Right: Com-
parison of the FFEA modes for the M. sexta V-ATPase (D), the T. thermophilus
A-ATPase (E) and the S. cerevisiae V-ATPase (F) with and without the stator
connection.
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Figure 4.15: A comparison of the PCA modes for M. sexta (A) and S. cerevisiae
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ferent choice of elastic parameters would not change the overall results presented
in this chapter.
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cases (figures 4.5, 4.6 and 4.8) but diverge after the first two modes.

The single particle cryo-EM reconstructions for the V and A-ATPase have

revealed an intricate network of subunits that contribute to the stator of each

motor, which allow for the efficient power transfer between the two motor domains

[109; 110; 111]. However, implicit within these motors is the need for the central

rotor axle and c-ring to be able to rotate relative to the V1/A1 motor domain and

stator network. Importantly, in addition to the a/c interface that is proposed

to be the site of proton transport, there is a clearly visible connection between

stator 1 in both the A-and V-ATPase and either the central rotor axle or the

c-ring (figure 4.1). The interface between the a/c subunits is still poorly defined

due to the lack of structural data on subunit a, however the role of this interface

within the family of rotary ATPases in proton transport makes it likely to be

a transient interface whereby the c-ring can rotate against the a subunit. The

second interface which is seen in the reconstructions involves a connection between

stator 1 and the c-ring or rotor axle and its role is unknown. This connection

can be seen in both the cryo-EM and negative stain reconstructions and is found

in a region away from the detergent which covers the membrane bound regions.

In order to see how this connection may influence the inherent flexibility within

the complex and the ability of these large complex macro-molecular motors to

function, an FFEA approach was used to calculate how the major modes of

flexibility are affected by severance of this connection. While disconnecting stator

1 from the central axle increased the flexibility of all three motors, for the higher

resolution S. cerevisiae structure the major modes of flexibility become dominated

by the local motion of the stator, and the collective nature of the dynamics was

lost.
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The reasons for the linkage between the stator network and the central rotor

axle or rotor ring are yet to be determined experimentally, but there are a number

of possible roles that this may play. The first possible role is to maintain the a

subunit c-ring interface during rotation. The nature of this interface means it

must allow for the c-ring to rotate against subunit a, but not permit proton

leakage, especially if operating close to equilibrium (for which the free energy of

ATP hydrolysis is approximately the same as the energy of the established pH

gradient), in which a back flow of protons could occur. Moreover, the generation

of a pH gradient results in an increased backward rotation pressure on the V-

ATPase and a fall in the ATP/ADP ratio equilibrium can result in the proton

motive force exceeding the free energy of ATP hydrolysis. The ability of an

inactive V-ATPase to still maintain a high proton gradient means that the c-

ring/a-subunit interface must not allow for the back flow of protons when there

is a fall in the ATP/ADP ratio. This resistance to backwards rotation occurs

through an as yet undetermined process, however the presence of this linkage

may act as a ratchet mechanism, permitting rotation in pump mode but stopping

rotation in synthesis mode, allowing for the build up of a proton gradient. The

apparent flexibility inherent within the V-ATPase system [102] during catalysis

can move the stator connection away from the c-ring/rotor axle and would permit

proton translocation. Upon the lowering of the cellular ATP/ADP ratio, the

stator would adopt the position seen in the apparent “low energy/low ATP”

ground state (4.1), which would stop proton leakage through reverse rotation of

the c-ring.

The V-ATPase has been shown to be regulated through a process which in-

volves the dissociation of V1 from V◦[112]. The linkage present between stator 1
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and the central rotor axle/c-ring may play a role in this process in tethering V1 to

V◦. Alternatively it may play a role in re-association of the V-ATPase complex, a

process which is currently poorly understood. FFEA can provide insight into this

process through simulation of the dissociation of the V◦ and V1 domains and the

C subunit. Figure 4.16 shows an example trajectory of such a system. Interest-

ingly, the model predicts the departure of subunit C from the complex before full

dissociation occurs, which is consistent with subunit C being implicitly involved

in this process as it is predicted to, in response to cellular signals, be removed

from the complex causing dissociation. Moreover the stator elements show appar-

ent rigidity in the dissociated complex as shown in the cryo-EM reconstruction

of the isolated V1 domain.

4.5 Conclusion

A quantitative comparison of the results of a standard ENM and FFEA approach

to simulating the dynamics of two rotary V-ATPases and one rotary A-ATPase

has been performed, revealing agreement in the first two modes of motion. Ad-

ditional simulations suggest that the apparent connection between the stator

network and the central rotor axle and c-ring acts to both restrict rotation and

limit the available flexibility within the system. The additional flexing seen upon

the breakage of this connection may be used to accommodate the cycling be-

tween the different ATP bound states of the A1/V1 motor, in particular that of

the open state which adopts a lower position. Finally, an FFEA simulation of

the V-ATPase dissociation mechanism was performed by fully severing the V◦,

V1 and C subunits. The simulation emphasised the role the C subunit plays in
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maintaining the structural integrity of the motor.
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Chapter 5

Axonemal dynein c

5.1 Introduction

5.1.1 Motor proteins

While chapter 4 dealt with rotary molecular motors, this chapter is concerned

with the application of FFEA to a member of the dynein family of motor proteins.

Motor proteins are nanoscopic biomolecular machines involved in essential cellular

processes such as mitosis, vesicle tansport and cell motility. As with the V-

ATPase proton pump discussed in chapter 4, the action of these motors is fuelled

by consumption of ATP. The ATP molecule binds to a region of the motor protein

called the motor domain. Subsequent hydrolysis of the ATP into ADP breaks

the phosphate bond, releasing chemical energy and resulting in conformational

change of the motor protein, referred to as its “power-stroke”.

There exist three families of motor proteins in eukaryotes (cells with nuclei):

kinesin, dynein and myosin. Kinesin and dynein both bind to microtubules,
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whereas myosin binds to actin filaments. Myosin is involved in the contraction

of muscle fibres. Dyneins walk towards the minus ends of microtubules thus

generally towards the cell nucleus [113], while kinesins typically walk towards

the plus end of microtubules thus generally towards the cell periphery [114].

Despite walking on different tracks, kinesin and myosin have similarities in size

(around 100 kDa molecular weight) and mechanism. Dynein is a much larger

protein (greater than 1 MDa), and as such is likely to have a different mechanism

[115; 116].

5.1.2 Dynein

The two main classes of dynein molecular motors in eukaryotes are cytoplasmic

and flagellar [118]. Cytoplasmic dyneins are involved in vesicle transport [119;

120], positioning of the nucleus during cell division [121; 122], collecting organelles

and proteins from the cell periphery and transporting them towards the interior

for degradation [123; 124], and the separation of chromosomes during mitosis,

among many others.

Flagellar dynein is responsible for producing the propagating bending motions

of cilia and flagella, such as the beating of sperm tails [117]. It is located in a

cytoskeletal structure known as the axoneme. Figure 5.1 gives a diagramatic

breakdown of a ‘9 + 2’ axoneme (typical in eukaryotes [115]), so-called because it

is composed of nine microtubule doublets (forming the cylindrical exterior) and

two singlet microtubules down the central axis. An array of different flagellar

dyneins are positioned on the interior and exterior sides of each microtubule

doublet, referred to as the inner arm and outer arm dyneins respectively. These
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Cross section of '9 + 2' axoneme

Tomogram of subsection of axoneme

Outer arm dyneins
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Outer arm dyneins

Microtubule doublet

Figure 5.1: Top: A cross-sectional view of a ‘9 + 2’ axoneme, with microtubules
shown in orange, inner arm dyneins in red and outer arm dyneins in blue. Bottom:
A cryo-EM tomogram of a microtubule doublet with the motor domains of the
inner and outer arm dyneins labelled as in the cross-section.
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Figure 5.2: The two conformational states of axonemal dynein c as obtained
from Cryo-EM experiments [44; 117]. Left: The ADP•Vi state (pre-powerstroke,
mimic of ADP•Pi state). Right: The apo state, no nucleotide (no ATP or ADP
bound).
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are labelled in red and blue in figure 5.1 There are 11 [125] different subspecies of

dynein in Chlamydomonas flagella, of which 8 are inner arm dyneins and 3 outer

arm dyneins[125].

Constructing a realistic simulation model of a fully functioning axoneme would

provide a valuable insight into the collective operation of these motors. Towards

this goal, this chapter develops a simulation procedure for a single subspecies of

axonemal dynein, dynein c, interacting with the axoneme.

Cryo-EM data has been used to build a 3-d structure for axonemal flagellar

dynein c [44; 117]. The two experimentally derived conformations are shown in

figure 5.2. The ADP•Vi structure is a transition state mimic of ADP•Pi which

binds strongly to the microtubule binding sites, and corresponds to the pre-

powerstroke conformation. The apo structure is the no nucleotide state (i.e. no

ATP or ADP bound to the motor domain). The motor is formed of four regions:

the motor domain (globular ring region in the centre), the stalk (which binds to

the microtubule track), the stem (which binds to cargo) and the linker (which

changes connectivity across the motor domain when undergoing ATP induced

conformational change). The small globular domain at the end of the stalk is the

microtubule binding domain. Dynein c binds strongly to the microtubule bind-

ing sites via this domain, but slips backwards under heavy loads[126], allowing

the microtubule doublets to slide past each other during the oscillatory bending

motion of the flagella.

While much is known about the axoneme at the molecular level, the mech-

anism that coordinates the dynein motors to produce the rythmic oscillatory

motion is as yet unknown, but is believed to be regulated by some ‘switching’

event (which causes the flagellum to bend the other way)[127]. This switch-
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ing event has been hypothesised to occur through elastic recoil, relative sliding

of microtubules passing a ‘switch point’, or the flagellum reaching a threshold

curvature or threshold transverse force, among other potential causes[128]. A

functioning simulation model of the axoneme could provide important insights

into the nature of the switching event, and a means of testing hypotheses.

5.1.3 Prior work on modelling dynein c

Negative stain electron microscopy experiments by Burgess et al. produced im-

ages of dynein in solution for both the ADP•Vi and apo conformations, from

which could be extracted histograms of the length (from stem tip to stalk tip)

and angle (between stem and stalk) distributions [118]. Using this data, R. C.

Oliver determined inhomogeneous elastic parameters for both conformations that

matched the same statistical variance [44]. The mean values for the ADP•Vi and

apo states in the length distribution and apo in the anglular distribution also

showed good agreement. The mean angle for the ADP•Vi state was found to

differ by around 20 degrees from that measured by Burgess et al., and could be

due to distortions caused by the drying process of the 3-d structure onto the 2-d

film[44]. The mean angle is determined by the cryo-EM derived structure and

not by the elastic parameters.

The Young’s moduli determined for the stalk and stem are given in table 5.1

(all remaining parameters for this chapter are detailed in table 5.2). The material

parameters for the motor domain were determined by a linear interpolation be-

tween the stalk and the stem to ensure a smooth transition in material properties.

The Poisson ratio did not have a significant effect on distribution and was fixed
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at 0.35 for all elements in the mesh.

State Stalk Y (MPa) Stem Y (MPa)
ADP•Vi 175 125

Apo 400 100

Table 5.1: Inhomogeneous parameters (Young’s modulus) for dynein stalk and
stem as determined by Oliver [44].

5.1.4 Aims

The aim of the work presented in this chapter is to progress the development

of a fully functioning simulation model of the axoneme in order to understand

the mechanism that coordinates the dynein motors to produce the characteristic

oscillatory motion of flagella. Towards this aim, we attempt to determine what

characteristics dynein c may have in vivo by simulating its functioning in its

biologically relevant environment, the axoneme. This chapter is concerned with

measures such as the step length of the motor and the potential reach of the

microtubule binding domain, and what effect interaction with the axoneme might

have.

5.2 Validation of elastic parameters

As a validation of the restructured code, the simulations described in section 5.2

were repeated and the length and angle distributions recalculated and checked

against the experimental data in reference [118]. Eighteen 2µs simulations (nine

for each state) were run with the different material parameters described in ref-

erence [44]. The results for the best fit elastic parameters (table 5.1) are given in
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Figure 5.3: Length and angle distributions for dynein c calculated from 2µs crit-
ically damped simulations against distributions obtained from experiment [118].

figure 5.3, showing very similar agreement with those obtained by R. C. Oliver

using a different implementation of FFEA. The same discrepancy in mean angle

for the ADP•Vi state is observed, as discussed in the previous section. The dis-

tance d and angle φ (as indicated in figure 5.3) were extracted from the simulation

trajectories by transforming each frame such that the view is straight through

the motor domain ring, as it was in the experiments. The transformation was

carried out via the Gram-Schmidt process [129].

Density 1500 kg m−3

Poissons Ratio 0.35
Shear Viscosity 1 mPa.s
Bulk Viscosity 1 mPa.s

External Viscosity 1 µ Pa.s
Time step 10 fs

Temperature 290 K

Table 5.2: FFEA simulation parameters for all simulations in Chapter 5.
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5.3 Meshing the Axoneme

5.3 Meshing the Axoneme

The density map of the two microtubule doublets1 represents two of the nine

microtubule doublets in Chlamydomonas reinhardtii flagella. A surface mesh

was extracted from the density map with a linearly interpolated marching cubes

algorithm (section 2.3.1) at an isolevel of 119 and culling debris with volume of

1514 voxels or less. Voxel averaging was not appropriate for this map as the fine

detail is easily destroyed even for 2×2×2 averaging. The resultant surface mesh

was then coarse-grained using the face-pair-collapse method (section 2.3.2) with

a 25Å minimum edge length in the interaction region. This process is illustrated

in figure 5.4, showing the effect of coarse-graining the surface mesh and cleaning

up debris. Note that despite a 95% reduction in the number of faces (739720 to

35108) using a very basic algorithm, the final mesh still retains all the essential

shape and features of the original mesh.

5.4 Alignment of Dynein in the axoneme

In order to simulate dynein’s interaction with the axoneme, it was necessary to

determine its position and orientation within the axoneme. The full axoneme

tomogram (as seen in figures 5.1 and 5.5) is problematic because, despite being

obtained from the system in its apo state, the motor domains are lowered towards

the cargo microtubule, and as such do not correspond to the apo dynein confor-

mation obtained from cryo-EM of a solution of free dyneins. To remedy this, two

higher resolution boxed tomograms of the apo and the ADP•Vi state can be used.

The apo tomogram is used to find the position along the axoneme both boxed

1A kind gift of Dr Takashi Ishikawa, created from the data in reference [130].
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Figure 5.4: Preparation of the static axoneme surface mesh from the experimen-
tally derived tomogram. Top: The tomogram rendered at an isolevel of 119. The
location of the dynein c motor domain is highlighted in red. The diameter of
the minor microtubule in the doublet is 25 nm. The length of the repeat pattern
along the axoneme is 96 nm. Middle: The high resolution surface mesh extracted
through linearly interpolated marching cubes. Bottom: The surface mesh after
coarse-graining and clean-up of surrounding debris.
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5.5 Interaction of dynein c with axoneme

regions represent. Then, the ADP•Vi tomogram was located in the same place.

A ‘fit selection’ was cut from the ADP•Vi tomogram (at isolevel 1.79). Using a

similar process to that used for alignment of the ATPase models in chapter 4, the

ADP•Vi mesh was aligned within this fit selection by minimising the sum of the

distances between each pair of nodes. As the tomogram effectively represents a

time average of the axoneme, the stalks of the various motors are averaged out.

Therefore only the stem and motor domain of the dynein model are involved in

the fitting process. Figure 5.5 shows the fitting process.

5.5 Interaction of dynein c with axoneme

5.5.1 Method

Using the elastic parameters given in table 5.1, and the remaining parameters in

table 5.2, eighteen simulations (nine for each conformation) were run at varying

vdW surface interaction energies: 0, 1012, 1013, 1014, 1015, 2× 1015, 3× 1015, 1016

and 1017 Jm−4. The simulations were run till the trajectories exceeded 3µs in the

case of non-zero interaction energy (and 6µs for the non-interacting simulations).

The node positions were output every 100ps. The nearest neighbour lookup grid

was set at 25× 30× 50 with a cell edge length of 4 nm. The axoneme and dynein

meshes were patterned as shown in figure 5.6 and designated ‘STATIC’, while the

apo and ADP•Vi models were designated ‘DYNAMIC’ (see section 2.3.4).

The node positions of the ADP•Vi mesh over the entire trajectory were binned

in a fixed 50×60×100 cell box with dimensions 1000×1200×2000 Å producing

a density map of the simulation data. The resulting maps (at similar surface
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(i)                      (ii)                             (iii)

A

B

C

D

Figure 5.5: Alignment of the dynein models within the axoneme. A: Best fit
positioning of a higher resolution boxed apo tomogram in the main axoneme
tomogram. B: Positioning of boxed ADP•Vi tomogram for the same region,
located according to the position of A. C: Alignment of ADP•Vi dynein model
in a selection of the boxed ADP•Vi tomogram. (i) The fit selection, cut out
from B, excluding the neck region. (ii) Nodes of the ADP•Vi mesh model, with
active nodes (those involved in the alignment) in white, and inactive nodes in
black. (iii) The final calculated alignment of the ADP•Vi model (red) in the fit
selection (grey). The alignment of the apo state (blue) is determined from the
shared stem. D: Both dynein states aligned in the axoneme tomogram.
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5.5 Interaction of dynein c with axoneme

Figure 5.6: vdW surface patterning of the FFEA models. Black indicates non-
interacting faces, and green indicates interacting.

levels) are compared with the corresponding motor domain and stem from the

original axoneme tomogram in figure 5.7.

The positions of the nodes corresponding to the microtubule binding domain

(tip of the stalk) were then extracted from all apo and ADP•Vi trajectories and

binned in histograms of the same dimension as above. The maps were normalised

by the total number of nodes binned, producing a probability density map of the

binding domain’s position at various interaction energies between the binding

domain and the microtubule track. For the purpose of data visualisation, the

density levels corresponding to 10%, 30%, 60% and 95% total probability were

calculated for each map. This was achieved by sorting the probability-per-bin

for all bins in descending order, and summing the bin probabilities until the

cumulative probability matched the desired total probability. As an exact match

would be rare, the level was chosen by linearly interpolating between the bin

probability directly before and after the desired total probability is attained.
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Figure 5.7: Density maps of ADP•Vi dynein (blue) generated from simulations
at varying surface interaction energy, compared with the relevant section of the
axoneme tomogram (yellow, solid and wire frame) seen from the front (top row)
and side (bottom row). The isolevels were chosen to give similar surface levels.
Note that the stalk is averaged out at lower interaction energies due to high
mobility.
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5.5 Interaction of dynein c with axoneme

This interpolation (h) and the resulting isolevel (L) is given in equation (5.1):

h =
(P − Si−1)

(Si − Si−1)

L = Bi−1 + h(Bi −Bi−1) (5.1)

where P is the desired cumulative probability, i is the bin index, Si−1 and Si are

the sum of bin probabilities before and after S has surpassed P respectively, and

Bi−1 and Bi are the actual probabilities of being in bin i − 1 and i respectively.

The process of determining levels corresponding to P = 0.1, 0.3, 0.6, 0.95 is given

in figure 5.8 using the εLJ = 1015 Jm−4 ADP•Vi run as an example. This anal-

ysis was carried out for each simulation’s probability density map, and the four

contour surfaces plotted. The resultant probability maps are given in figures 5.9

and 5.10 (for only three interaction energies, in the interest of space).

The step length of the motor at each energy was determined by calculating

the mean position of the stalk head in each conformational state independently

and finding the distance between these two positions. The standard deviation of

the head about the mean in each state (∆ADP•V i and ∆apo) was also calculated for

each state. The standard deviation in the step length was therefore calculated as√
∆2
ADP•V i + ∆2

apo. The step length at each interaction energy is given in figure

5.11 with the standard error as error bars. The standard error ( ∆√
N

, where ∆ is

the standard deviation and N the number of data points) is very small as the

simulations are converged. The variation in step length is therefore a feature of

the steric repulsion and attraction to the microtubule surface.

A helical set of points representing the positions of the microtubule binding

sites was then created, as shown in figure 5.12A. By comparing each of these
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sites with their corresponding bins in the probability density histograms, it was

possible to count how many sites were visited by the microtubule binding domain

in each of the four probability levels (P = 0.1, 0.3, 0.6, 0.95). This analysis was

carried out for all the simulations, and the results are presented in figures 5.12B

and 5.12C.
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Figure 5.8: Isolevel choice based on cumulative binning probability for ADP•Vi
run εLJ = 1015 Jm−4. Top: The probability of the microtubule binding domain
lying in each bin, sorted in descending order. Bottom: The cumulative proba-
bility of the binding domain lying in all preceding bins. This graph represents
a running total of the binning probabilities in the top graph. When the cumu-
lative probability reaches the desired probability (10%, 30%, 60% or 95%), the
probability of the bin at which this occurs determines the isolevel.
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5.5 Interaction of dynein c with axoneme

5.5.2 Results

The results of the simulations and analyses described in section 5.5.1 are presented

in figures 5.7, 5.11, 5.9, 5.10 and 5.12.

Figure 5.7 shows the density maps generated from the ADP•Vi trajectories at

various interaction energies. It is presented as a sanity check that the simulations

do not predict an entirely different map to that seen in the axoneme tomogram.

We see from this figure that at energies of 1016 Jm−4 and above, the stalk is

strongly fixed to the microtubule and is no longer time averaged out as it should

be. This suggests that energies of order 1015 Jm−4 give the closest match to the

real interaction.

Figure 5.11 gives the calculated step length of the motor at different interac-

tion energies with the MT, with error bars indicating the standard deviation in

step length. This indicates that the presence of the axoneme has an effect on the

step length of the motor. The step length is increased from around 24.7 nm (in

the non interacting case) to around 27.5 nm (for εLJ = 1013Jm−4), due to steric

effects preventing the binding domain from adopting its preferred equilibrium po-

sition. Strong attraction to the microtubule increases this further, to 28.7 nm, at

the expense of exploration of the stalk head (the standard deviation drops from

around 6.7 nm to around 1.4 nm).

Qualitatively, from figures 5.9 and 5.10 we can also see that the ADP•Vi state

has an enormous head search volume as compared to apo, and is able to reach

around the other side of the doublet, accessing binding sites on both microtubules.

We note that even in the non-interacting case, the apo state dynein has a markedly

smaller stalk head search (standard deviation 3.9 nm) as compared to the ADP•Vi
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Figure 5.9: Probability density maps of microtubule binding domain spatial
search as calculated from simulation trajectories of ADP•Vi dynein at interaction
energies εLJ = 1013, 1015, 1016 (top, middle and bottom, respectively). The head
spends 95% of its time within the blue surface, 60% within the green, 30% within
the orange and 10% within the red. Two viewing angles are shown for each en-
ergy: perpendicular to the axoneme (left) and down the centre of the axoneme
(right). 114
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Figure 5.10: Probability density maps of microtubule binding domain spatial
search as calculated from simulation trajectories of apo dynein at interaction
energies εLJ = 1013, 1015, 1016 (top, middle and bottom, respectively). The head
spends 95% of its time within the blue surface, 60% within the green, 30% within
the orange and 10% within the red. Two viewing angles are shown for each
energy: perpendicular to the axoneme (left) and down the centre of the axoneme
(right). 115
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Figure 5.11: Step length of axonemal dynein c in the presence of the axoneme.
Error bars show the standard error for each interaction energy. The standard
errors in the means were of order 1

100
of a nm.
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5.5 Interaction of dynein c with axoneme

state (standard deviation 5.6 nm), but the presence of the axoneme amplifies

this difference. Indeed, it would appear (from figure 5.11) that the hard-body

interaction alone can bias the configuration towards a larger step length.

At very strong interaction energies (1016Jm−4 upwards) there appears to be

a strongly favoured position for the stalk head to adopt. As the MT mesh has

retained more or less all the detail of the original tomogram, this is due to a

feature of the experimental data. This could be an experimental artifact, or real

(although there is not necessarily a microtubule binding site at that location).

Finally, it is useful to consider a quantitative measure of the reach of the

stalk head, in terms of number of microtubule binding sites. The results of

this calculation are given in figure 5.12B and 5.12C (5.12A shows the pattern

of binding sites on the microtubule doublet). In the flagellum microtubules are

fused together into doublets, but the protofilaments and spacings are similar to

those in singlets. We have therefore used 8 nm axial spacing between binding

sites, with a 12 nm pitch[131]. As there are typically 13 protofilaments making

up the MT [131], this results in a helical distribution with each protofilament

staggered by 0.9 nm relative to its neighbour.

The bar charts show how many sites the stalk head explores at each probability

level in each conformation. For example, at 1015 Jm−4 the ADP•Vi has the ability

to reach around 18 binding sites (95% probability), although it spends 30% of its

time exploring the same 5 binding sites. For the same energy in the apo state, the

head only searches 7 binding sites at 95% and 2 at 30%. This corresponds with

the large difference in search volume between the two conformations observable

in figures 5.9 and 5.10.

The range of interaction energies allows us to see the effect of introducing the
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Figure 5.12: A: Position of microtubule binding sites on microtubule surface (8
nm separation, 0.9 nm staggered), indicated by red spheres. B: The number of
microtubule binding sites explored by the microtubule binding domain of dynein
c in its ADP•Vi state. C: The number of microtubule binding sites explored by
the microtubule binding domain of dynein c in its apo state.
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microtubule doublet. As discussed above, figure 5.7 shows 1016 Jm−4 to be likely

too strong an interaction. As we know from experiment that the head remains

close to the MT surface, we treat the results for 2× 1015 Jm−4 and 3× 1015 Jm−4

as most likely closest to modelling the real interaction strength. Therefore the

model as parameterised suggests that dynein’s microtubule binding domain can

explore 10 to 15 binding sites in its ADP•Vi conformation, and 7 sites in the apo

state.

Interestingly, figure 5.12B suggests that there is an optimum binding energy

with respect to sampling of MT binding sites. In the above simulations, this

corresponds to interaction energies of order 1015Jm−4.

5.6 Patterning microtubule binding sites

In order to investigate the effect on the ADP•Vi stalk head search in the presence

of interacting microtubule binding sites, the microtubule was patterned with more

strongly interacting patches, as shown in figure 5.13. Seven 2µs simulations were

run at energies of 1×1015, 2×1015, 3×1015, 4×1015, 5×1015, 1016 and 1017 Jm−4.

The number of MT binding sites explored by the stalk head was calculated as

previously.

Comparing figure 5.14 with figure 5.12 we can see that the results are very

similar, suggesting that the binding sites are sufficiently close together on the

scale of the binding domain that the initial uniformly attractive surface used in

section 5.5 is a good approximation. Furthermore, the microtubules themselves

slide past each other during the functioning of the axoneme, meaning that the

location of the binding sites is likely to be smeared out in terms of the interaction
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Figure 5.13: vdW surface patterning of the FFEA models for simulations in-
cluding the microtubule binding sites. As in figure 5.6, black indicates non-
interacting faces. However, now there are two types of interacting faces: green
and blue. Green faces represent steric repulsion interactions. Blue faces corre-
spond to microtubule binding sites on the axoneme (8 nm repeating [126] with
0.9 nm stagger), and are strongly interacting.

experienced by the stalk head (multiple dynein motors can move the microtubule

at 5.1µm s−1 [126]).

5.7 Switching between apo and ADP•Vi states

The previous section is concerned with simulating dynein c in its two conforma-

tions independently. However, in reality this motor frequently undergoes confor-

mational changes as part of its function. A simulation model of a fully functioning

axoneme therefore requires the molecular motors to be able to change conforma-

tion during the course of the simulation. While this is a relatively trivial problem

for different conformations of the same mesh (we need simply define a new equi-

librium structure), it is non-trivial in this case due to the two dynein states having
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ADP Vi deformed onto apo Apo deformed onto ADP VI

A

B

Determined node
Undetermined node

(i)                          (ii)                         (iii)                        (iv)                         (v)

Figure 5.15: Row A: Deformation of the ADP•Vi mesh onto the rest state apo
mesh and vice versa. Control nodes were mainly along the stalk and stem, while
the motor domain was free to adopt a suitable orientation. Row B: Illustration
of the mixed mapping process (in 2-d, for simplicity). The α state is shown in
red, and the nodes of the β state shown as circles. White circles indicate that the
node’s position has been determined, and grey circles are yet to be determined.
(i) Those β nodes that lie directly in an element of α are determined by the
barycentric coordinates of their position in that triangle. Those nodes lying
outside α are undetermined. (ii) and (iii) New triangles are formed from existing
determined nodes. Those with the shortest distance to an undetermined node are
used to fix its position. (iv) In this case it is possible to form a triangle from
determined nodes that encompasses the remaining undetermined node. This is
preferential. (v) All node positions for β have been determined in terms of
elements in α or determined nodes in β.
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5.7 Switching between apo and ADP•Vi states

Apo       ADP Vi ADP Vi     Apo Apo       ADP ViTime Time

Figure 5.16: Key frames from a simulation of dynein undergoing changes in con-
formational state, showing both the active (blue) and inactive (red) FFEA mod-
els. We begin (far left) with apo as the active model. The nodes of the currently
inactive ADP•Vi model are then mapped to give the closest valid fit to the apo
model. ADP•Vi now becomes the active model, and is allowed to fluctuate away
from this position. After some number of steps, the nodes of the (currently inac-
tive) apo model, are mapped to give the closest valid fit to the ADP•Vi model.
Apo becomes the new active model, and the process continues anew.

different meshes with different topologies, and which do not overlap. As such,

there is no clear one-to-one mapping between the node positions in one mesh and

those in the other.

If our protein is in some conformation, α, and we wish it to switch to another

conformation, β, then we need some mapping procedure which, for a given array

of node positions ~rα, returns a set of node positions ~rβ corresponding to the closest

valid configuration of the β topology to the shape defined by ~rα. We can write

this simply as:

Mαβ~rα = ~rβ (5.2)

Note that if the node position vectors, ~rα and ~rβ, are of equal length then Mαβ

is a square matrix. In general this is not the case, and Mαβ is some complicated,

singular mapping. Furthermore, complications arise from the requirement that
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Mαβ only produce valid conformations of β. This is defined as a mesh that has

no inverted elements and no large local deformations leading to instabilities in

subsequent simulation.

Initial attempts at mapping used the same barycentric mapping scheme as

in section 4.2, using a β state deformed onto the α rest state to determine the

mapping. However, this approach works very poorly when a large number of

nodes in β do not lie in (or sufficiently near to) elements of α. Indeed, this was

found to be the case for mapping between the apo and ADP•Vi dynein meshes

(as can be seen in row A of figure 5.15) whose motor domains and linkers have

very different topologies and no overlap. Trying to define ~rβ purely in terms

of ~rα created very large distortions in the motor region whenever ~rα deviated

significantly from its rest state.

Instead, a two-stage approach to mapping between these states was taken:

1. Use the barycentric mapping for only those nodes in β that lie within an

element of α during determination of the mapping.

2. Map the remaining β nodes by relation to other, already determined nodes

(both alpha and beta).

Step 2 is illustrated in row B of figure 5.15. We repeatedly iterate through the list

of nodes until a node is found that is connected to 4 other fully determined nodes

(‘determined’ meaning their positions have already been mapped either in step

1 or in the course of step 2). If the node lies within the tetrahedron formed by

these 4 determined nodes, then its position is now also determined. This process

continues until all such nodes in β have been determined. The requirement that

the node must lie in the tetrahedron formed by 4 other determined nodes is then
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5.7 Switching between apo and ADP•Vi states

gradually relaxed to allow nodes within a threshold distance, dt:

dt =
√
a2
max + b2

max + c2
max (5.3)

where

amax =


a− 1 if a > 1

0 if 0 ≤ a ≤ 1

a if a < 0

(5.4)

where a is one of the barycentric coordinates of the given node in the coordinate

system of the tetrahedron. bmax and cmax are defined likewise. The purpose of

equation (5.3) is to penalise distance from the surface of the tetrahedron, rather

than distance from its origin. This continues until all the nodes in β have their

positions determined in terms of the positions of other nodes (from either α or

β). While this mapping can be comparatively slow to calculate, it only needs

to be generated once for any given transition. Once calculated, the mapping is

very fast and can be incorporated into the simulation. It thus forms part of the

preprocessing stage of the simulation.

The ADP•Vi mesh was deformed onto the apo state by creating a constant

attractive force between selected nodes on the two meshes. For example, the

nodes of the stalk and stem of the former were pushed towards the stalk and

stem nodes of the latter. The motor domain and linker, being the problematic

region, was mostly allowed to adopt whatever configuration it settled in, although

a few control nodes were used to ensure that the ring holes were aligned. The

mixed mapping was then generated as detailed above. A similar procedure was

used to obtain the mapping between the apo and ADP•Vi states. Row A of figure
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5.15 shows these two deformed states.

Two FFEA models for the dynein are simulated, one ‘DYNAMIC’ and one

‘FROZEN’. When switching conformation, the states are swapped, and the node

positions mapped. The vdW map for the ‘FROZEN’ state is also set to non-

interacting. Figure 5.16 shows key frames from an example FFEA trajectory with

conformational switching, with the active (‘DYNAMIC’) motor shown in blue,

and the inactive (‘FROZEN’) motor shown in red. In the course of the simulation,

the active model fluctuates around, exploring its conformational space. If the

probability of switching is ps per step, then the probability of not switching for

Ns steps is (1 − ps)
Ns . The number of steps to run in each conformation is

therefore:

Ns =
ln(r)

ln(1− ps)
(5.5)

where r is a random variable chosen in the interval [0, 1]. Upon switching, the

nodes are mapped to the other state, and a new value of Ns is chosen. Loosely

speaking, ps could be interpreted as being a function of the ATP concentration.

To test the stability of the mapping, simulations were run with conformational

switching at ps = 10−4, 10−5, 10−6 and 10−7. This found that above ps = 10−5 the

irregularities in mesh caused by the mapping did not have sufficient time to relax,

and became amplified by the frequent switching, often causing the simulation to

become unstable after around 6 transitions. This means that the mapping is

not suitable if the model is required to undergo conformational changes more

frequently than around once a nanosecond. This is therefore not a problem for

dynein as the motor operates on time scales far exceeding this.
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5.8 Conclusions

FFEA was used to model dynein c and its interaction with the axoneme. The

presence of the axoneme was found to increase step length by between 3 and 4

nm, depending on the energy of attraction. The exploration of the MT binding

domain was also examined for the apo and ADP•Vi states independently, finding

that the latter has a potentially very large search range, particularly around the

microtubule (more so than along its length). The number of microtubule binding

sites explored by the MT binding domain in each state was also calculated for

various interaction energies, and found to be between 10 and 15 in the ADP•Vi

state, and around 7 in the apo state. The simulations suggest there is an optimum

interaction energy for sampling of MT binding sites (of order 1015Jm−4).

Simulations were run with the microtubule doublet’s vdW surface patterned

at 8 nm intervals to mimic the distribution of microtubule binding sites, and

the number of sites explored was calculated once more. Finally, to simulate

the motor’s power stroke, a mapping algorithm was developed to quickly switch

between the apo and ADP•Vi states, and this was tested at several switching

probabilities to determine sources of instability.

Further work on this system is discussed in the Outlook section of this thesis

(section 7.2).
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Chapter 6

Electrostatics

6.1 Introduction

In this chapter we consider the electrostatic force, which plays a crucial role in

the way proteins function[132]. The electrostatic potential, created by charges

in the protein, directs ligands to active sites on the protein’s surface[133] (aiding

in protein recognition and binding), affects the way in which proteins orient and

aggregate, and how they diffuse in a crowded environment[132].

6.2 Electrostatics in Biological computer mod-

els

Simulating the electrostatic interactions so crucial to biological systems is an enor-

mous and very active field of research, and one which is summarised with some

difficulty. Broadly speaking, the approaches fall into two categories: those which

use explicit, atomistically detailed solvents (in which water molecules and salt
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ions are simulated explicitly), and those which use a so-called implicit solvent,

which approximates the solvent as a continuum using some sort of mean field

approximation. The former of these approaches is used in Molecular Dynamics

simulations, in which electrostatic interactions are described through semiempiri-

cal pairwise potentials (for example the TIP3P [134]), and generally give accurate

results. The latter approach is also sometimes used in MD simulations[135] but

is typically employed in coarse-grained models such as the one-bead model (see

section 1.1), can give good results, but requires attention to be paid with regards

to its limits of applicability[136].

For simulations using implicit solvent models, the general method is usually

to solve Poisson’s Equation (PEQ):

∇.(ε(r)∇φ(r)) = −ρQ(r) (6.1)

or more commonly the Poisson-Boltzmann Equation (PBE)[136] (see Appendix

D):

ε∇2φ(r) + 2c∞e sinh(
eφ(r)

kT
) = −ρQ(r) (6.2)

which takes into account electrostatic charge screening due to salt ions in the

solvent. In the above ε, φ and ρQ refer to the electric permittivity, electrostatic

potential and charge density at a point r, respectively. Here, κ is the inverse

Debye screening length. In cases where eφ(r)
kT

is small, the PBE can be linearised

by approximating sinh[φ(r)]→ φ(r), creating the Linearised Poisson Boltzmann

Equation (LPBE):

∇2φ(r) + κ2φ(r) = −ρ
Q

ε
(6.3)
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with the inverse Debye screening length:

κ =

(
2c∞e

2

εkT

) 1
2

. (6.4)

Typically in biomolecules the electrostatic field is unscreened in the interior, so

that the electrostatic field satisfies the PEQ there, but strongly screened in the

exterior due to the presence of salt ions. In the case where κ−1 is small compared

to the dimensions of the molecule the exterior solution can be approximated (see

appendix E) by the boundary condition:

dφ

dn
= −κφ (6.5)

which assumes a locally flat surface at r (low radius of curvature) compared with

the screening length κ−1. The PBE is classed as an elliptic partial differential

equation, meaning that there is long-range communication across the solution

domain. Consequently solving the PBE or PEQ is generally costly, even for

moderately sized systems. There are three major classes of numerical scheme

that are most often used for solving continuum electrostatics:

• Finite Difference (FD): Approximates the continuum as a regular 3-d carte-

sian grid, and uses finite difference approximations for the derivatives in the

governing differential equations. Accuracy can be increased by using a finer

grid, or higher order approximations for the derivatives. There exist many

iterative FD solvers for electrostatics: Successive over-relaxation, Conjugate

gradient, Modified Incomplete Cholesky Conjugate Gradient (MICCG)[137],

Algebraic Multigrid and Geometric Multigrid (GMG)[138]. The fastest
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solvers tend to be the MICCG and GMG[138].

• Finite Element Method (FEM): As described in Chapter 1, section 1.2.1.

• Boundary Element Method (BEM): Since the LPBE is a linear equation, it is

possible to convert the differential equation to an integral equation, and use

Green’s 2nd identity to transform the volume integral to a surface one. This

reduces the dimension of the calculation, resulting in smaller matrices than

those found in FEM. However, these matrices are dense and non-symmetric.

While use of highly parallelisable[139] methods such as the Fast Multipole

Method (FMM) can produce an algorithm of time-complexity O(N), the

amount of extra computation required is so high that the prefactor (im-

plicit in the O(N)) is constant but very large[140]. BEM also suffers from a

severely reduced range of applicability (for example, it cannot handle inho-

mogeneity in general)[141]. Symmetric matrices can be produced through

‘Symmetric-Galerkin BEM’[142] but the stability of the scheme is not guar-

anteed for problems with multiple coupled domains (i.e. the solution is not

unique).

Various permutations and combinations of these methods also exist. ‘Hybrid’

schemes such as BEM-FD [143], BEM-GB[144] and BEM-FEM[145] can produce

increased speed or accuracy, depending on the type of electrostatics problem being

modelled. Some approaches even mix together implicit and explicit elements, such

as a BEM PBE solver with explicit ions[146] (a clever scheme which allows the

LPBE to still be used in systems with high ionic strength, for which the non-

linear PBE would normally be required[143]). Others speed up calculations by

approximating proteins as a collection of spheres and apply a spherical harmonics
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expansion to approximate the interactions[147].

6.3 Incorporating Electrostatics into the Mesoscale

Model

Numerous approaches to solving the electrostatics problem for the mesoscale

model were investigated with varying success. Some test codes were written

to investigate how effective a solution they might prove to be for this model. The

following subsections list the advantages and disadvantages of these approaches

as pertain directly to the model used in this project.

6.3.1 Finite Difference Approach

Method

In many ways, this is the simplest of the three classes of numerical solver in-

vestigated. Having discretised the continuum with a regular cartesian grid and

applied finite difference approximations to the governing differential equation,

the charge and dielectric constant are mapped onto this grid. Charges are “em-

bedded” within specified elements, with their position in that element defined

in terms of the three shape functions, s, t and u. The position of a charge q is

therefore given by:

rq = sq(n1 − n0) + tq(n2 − n0) + uq(n3 − n0) (6.6)
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for a linear tetrahedral element, where n0..2 refer to the positions of the element

vertices. This definition of position allows the charges to move with the medium

in which they are embedded. Mapping the charge onto the grid is carried out

by trilinear interpolation, in which a fraction of the charge is allocated to the

eight nearest grid nodes according to how close the charge lies to them, such that

the total allocated charge is equal to that of the original point charge. Such a

technique is used for implicit solvents in some MD simulation packages such as

Amber[135] and found to give very accurate potentials for charges separated by

at least two grid ‘cells’[148].

Advantages

The use of a regular, cartesian mesh in FD makes many forms of optimisation

possible. Equally, there exists an enormous body of literature on the topic, with

its use in solving problems in electrostatics well established and understood. This

is exemplified by the use of FD in packages such as DelPhi and AMBER[135],

for continuum electrostatics calculations. Many rapid solution techniques have

been developed, particularly as regards the Linearised Poisson-Boltzmann Equa-

tion (LPBE), for example Incomplete Modified Cholesky Preconditioned Conju-

gate Gradient (IMCPCG) solvers[149], and Geometric Multigrid[150]. Geometric

multigrid is perhaps the most desirable for this model, as one its key properties

is that it always takes the same number of iterations to reach convergence, re-

gardless of grid size N . FD methods are also highly parallelisable. Additionally,

adaptive techniques such as Multilevel Adaptive Technique (MLAT)[151] or Fast

Adaptive Composite (FAC)[152] allow for multiple grid resolutions in different ar-

eas, saving memory and computing time, and therefore achieving higher accuracy
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at lower cost. Furthermore, as the electrostatic potential does not vary greatly

from one time step to the next, its recalculation may only need to be performed

every 10 time steps (for example). This effectively increases the speed of the

solver by an order of magnitude.

Disadvantages

A major disadvantage comes when mapping the dielectric regions to the grid.

Unlike the point charges, the dielectric constant applies across the entire space

occupied by the element. We must therefore rasterise tetrahedra onto the grid

in order to endow cells with the appropriate dielectric constant and screening

length. This can be achieved by splitting the tetrahedra into multiple ‘slice’

planar triangles along one of the cartesian coordinates of the grid, and then

rendering each triangle as would be done in a regular 2-d rasteriser. Bresenham’s

line algorithm[153] can be used to speed this up a little, but it does not offset

the main issue: we have many calculations for each triangle, a problem that

is only exacerbated by having multiple resolution levels as in the MLAT[151]

or FAC[152] methods, where it would be necessary (in this model) to rasterise

each element repeatedly for each new level. Furthermore, as some elements will

inevitably share some cells with other elements, the process cannot be parallelised

in a simple manner. In short, mapping the charges and dielectric regions onto the

grids could become the most significant computational cost (due to poor parallel

scalability).

A related disadvantage is that the existing finite element mesh does not nat-

urally fit onto the regular grid used in FD, and therefore must be mapped onto

one. This means that important areas of interest, such as the protein surface, will
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necessarily suffer further discretisation errors. The effect of this is that we need

a (sometimes prohibitively) fine mesh to obtain accurate solutions, particularly

near the protein surface where the gradient of the potential will be highest. This

problem is exacerbated by salt ion screening of the potential in the surrounding

solvent. There is an additional problem as regards the very large jump in the

dielectric properties at the surface, which can lead to slow convergence from FD

solvers[150]. It is also a very expensive method (in terms of memory and com-

putation) even with efficient solvers such as MLAT and FAC. Grids with locally

varying degrees of resolution are necessary to make this approach viable, but this

results in so-called “hanging nodes” (nodes which are not fully connected) at the

boundaries of adjacent regions of different resolution, limiting how quickly the

resolution can change across space, and hampering parallelisation attempts.

6.3.2 Finite Element Approach

Method

Salt ions are typically only present in the exterior phase, where they screen the

external potential producing an electrostatic field that is confined to the interior

and a thin boundary region over the surface. For this problem we can derive the

Finite Element formulation for the Poisson equation in the protein interior, with

a boundary condition assuming a small but non-zero screening length κ−1. We

begin with the PEQ:

∇.(ε(r)∇φ(r)) + ρQ(r) = 0 , r ∈ Ω (6.7)
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where Ω is the full protein domain, φ(r) is the electrostatic potential and ε(r)

the dielectric constant at some position r. We formulate a weak approximation

to equation (6.7) by integrating over the volume with weight function ω(r):

∫
Ω

ω∇.(ε∇φ) dV +

∫
Ω

ωρQ dV = 0, (6.8)

to which we apply the Divergence theorem, yielding:

∫
Γ

ωε∇φ.n dS −
∫

Ω

ε∇ω.∇φ dV,+
∫

Ω

ωρQ dV = 0 (6.9)

where dS refers to an integral over the surface, Γ, of the protein domain and

n(r) is the unit normal pointing out of the surface at r (only for r ∈ Γ). In this

strongly screened limit the boundary condition at the surface is given by equation

(6.5) yielding:

dφ(r)

dn(r)
= −κφ(r) ⇒ ∇φ(r).n(r) = −κφ(r) , r ∈ Γ. (6.10)

Substituting this BC we can therefore write:

∫
Γ

wε∇φ.ndS = −
∫

Γ

wκεφdS. (6.11)

The Finite Element formulation requires that the domain be discretised into a

number of elements, with the potential defined only at the nodes of these elements,

and interpolation between the nodes carried out via element shape functions. We

therefore let the electrostatic potential be described by a superposition of the
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element shape functions, ψi:

φ(r)→
Nn∑
i

φiψi (6.12)

where Nn is the number of nodes and φi is the electrostatic potential at node

i, and such that
∫

Ω
ψi.ψjdV = 0 ∀i, j on different elements. In the Galerkin

formulation we choose the weight function ω to be a shape function ψj: ω(r)→

ψj: of the problem:

∫
Ω

ε (∇ψj.∇ψi)φidV −
∫

Ω

ψjρ
Q
i ψidV +

∫
Γ

κεψjψiφidS = 0 (6.13)

where we have discretised ρQ(r)→ ρQi ψi using the same shape function. Equation

(6.13) can then be written as a matrix equation:

(K +MΓ)φ = ρQ (6.14)

which can be solved for φ to find the electrostatic potential at each node.

Advantages

The finite element mesh for the protein is ready made and in use by the program.

Many of the operations required in solving the electrostatics FEM are already

being carried out every time step (such as the calculation of inverse Jacobians,

shape function derivatives, diffusion matrices etc.) so solving the electrostatics

by this method seems natural and efficient, both computationally and memory-

wise. It avoids entirely the problems associated with the regular grid in the finite

difference approach, as this mesh conforms to the existing protein mesh surface
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perfectly, and therefore all calculations of the potential will be “exact” for the

given mesh (no further discretisation errors).

Disadvantages

This solution method applies only to the case where κ−1 is very small compared

with the intermolecular distance. However, this approximation does not always

hold and electrostatic interactions will, rather importantly, extend beyond the

boundary of the protein. In the case of multiple interacting proteins, this pro-

duces interactions with nearby proteins. This could be included with the FEM

formulation by extending the domain to the entire domain containing all pro-

teins and solvent (which must be meshed). However, proteins are not station-

ary. Remeshing between arbitrarily positioned objects at arbitrary orientations

in constant movement makes this method impractical. While 3-d meshing codes

exist, the computational time required to produce good quality meshes over large

complex 3-d domains hundreds of times a second is extremely large.

As noted earlier, the typical salt concentrations found in biological systems

such as cells are such that electrostatic screening is relatively high (giving Debye

screening lengths of the order of 1 or 2 nanometres). This is small on the length

scales being considered in our coarse grained approach. Therefore an approach for

the cases of intermediate screening is to mesh an exterior “shell” of high dielectric

elements around the protein that extends to around 2 or 3 Debye lengths from the

surface (the distance at which the potential will be effectively totally screened).

When two or more proteins approach each other, the volume in which the meshes

overlap is then mathematically constrained to have the same solution (of the

potential). This idea was abandoned because it was unclear how accurate such
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a solution would become when the proteins were very close together (the point

at which electrostatics becomes most important) and whether or not the solution

was guaranteed to converge in complicated systems.

6.3.3 Boundary Element Approach

Γ

Ω

Ω

Figure 6.1: The single protein BEM case, illustrated here in 2-d for simplicity
purposes. The solute (protein) is represented by the homogeneous region Ω of
dielectric constant εΩ. The solvent is represented by the region Ω̄ of dielectric
constant εΩ, εΩ > εΩ. The boundary (surface of the protein) is termed Γ.

An alternative approach that removes the need to construct an external mesh

is to use a boundary method. We will first consider the case of a single molecule.

This derivation follows essentially the same approach to that taken by McCam-
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mon et al. for atomistic structures[154], including a continuous charge distribu-

tion for the FFEA case. We first consider the system shown in figure 6.1, in

which a protein is modelled as a closed, homogeneous region, Ω, of low dielectric

constant, εΩ, immersed in an infinite, homogeneous region, Ω̄, of high dielec-

tric constant, εΩ, both regions meeting at the boundary Γ. We assume that the

charge distribution ρQ(r) is confined to the interior of the protein. As most real

biological solvents have significant salt concentrations, the electrostatic potential

in the exterior region is assumed to be screened, with a Debye screening length

of κ−1. The interior region is assumed to have no significant screening effects on

the length scale of the protein. We can therefore model the potential, φ, at any

point, r, in our system as follows:

∇2φ(r)Ω = − 1

εΩ
ρQ(r) , r ∈ Ω (6.15)

∇2φ(r)Ω = κ2φ(r)Ω , r ∈ Ω̄ (6.16)

where we have modelled the interior region using the PEQ and the exterior region

using the LPBE. Since we assume that there are no surface charges, the following

BC apply at the surface:

φ(r)Ω = φ(r)Ω , r ∈ Γ (6.17)

εΩ
∂φΩ

∂nΩ

= εΩ
∂φΩ

∂nΩ

, r ∈ Γ (6.18)

where nΩ denotes an outward unit normal to the protein surface, ∂φ
∂n
≡ ∇φ.n.
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The first of these BCs enforces continuity of the potential on the surface, and the

second BC enforces continuity of the normal component of the electric displace-

ment.

We now derive a boundary integral formulation of this problem for the two

regions, starting with the interior region, Ω. Start with Green’s second identity:

∫
Ω

(
ψ∇2φ− φ∇2ψ

)
dV =

∮
Γ

(
ψ
∂φ

∂n
− φ∂ψ

∂n

)
dS (6.19)

where φ and ψ are any twice differentiable scalar functions, and the dV and dS

denote an integral over the volume Ω and the surface Γ respectively. We shall

let φ be the electrostatic potential (as before) and let ψ be G, where G is the

fundamental solution of the Laplace equation or Green’s function:

[−∇2
j ]G(xi − xj) = δ(xi − xj). (6.20)

From here on, we introduce a convenient compact notation, in which fi denotes

f(xi), and fij denotes f(xi − xj). Using this concise notation, equation (6.20)

becomes [−∇2
j ]Gij = δij, with

Gij =
1

4π|xi − xj|
. (6.21)

Recall that, as always, i and j denote the points xi and xj; they are not to be

confused with indices labelling vector components. Using (6.21) in Green’s second

identity yields:

∫
Ω

(
Gij∇2φj + φjδij

)
dVj =

∮
Γ

(
Gij

∂φj
∂nΩ

− φj
∂Gij

∂nΩ

)
dSj (6.22)
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and substituting our expression for ∇2φj:

∫
Ω

(
− 1

εΩ

nq∑
k

Gijqkδjk + φjδij

)
dVj =

∮
Γ

(
Gij

∂φj
∂nΩ

− φj
∂Gij

∂nΩ

)
dSj. (6.23)

Using the sifting property of δ we then obtain our boundary integral formulation

for the interior problem:

φΩ
i =

∮
Γ

(
Gij

∂φj
∂nΩ

− φj
∂Gij

∂nΩ

)
dSj +

1

εΩ

nq∑
k

Gikqk , i ∈ Ω (6.24)

where j is some arbitrary point on the surface Γ.

We perform essentially the same trick in order to obtain the boundary integral

for the exterior region, except this time we let ψ be u (instead of G) in equation

(6.19), where u is the fundamental solution of the LPBE:

∇2uij − κ2uij = −δij. (6.25)

Using similar notation as before, with

uij ≡ u(xi, xj) =
e−κ|xi−xj |

4π|xi − xj|
. (6.26)

Since the field decays sufficiently rapidly at large distance, we can ignore the

contributions from the surface integral at infinity and so using (6.25) in (6.19)

yields:

∫
Ω

[
uijκ

2φj − φj(κ2uij − δij)
]
dVj =

∮
Γ

(
uij

∂φj
∂nΩ̄

− φj
∂uij
∂nΩ̄

)
dSj. (6.27)
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Again, using the sifting property of δ and cancelling terms leads to the boundary

integral equation for the exterior problem:

φΩ
i =

∮
Γ

(
φj
∂uij
∂nΩ

− uij
∂φj
∂nΩ

)
dSj , i ∈ Ω̄. (6.28)

Note that we have reversed the sign of the “outward” normal, nΩ̄ = −nΩ, since

the normal pointing “out” of the exterior region is in fact pointing into interior

region Ω.

We now have boundary integral formulations for both Ω and Ω̄. However,

we wish to couple these two regions, and therefore we seek the solution at the

boundary between the two regions, Γ. We do this by allowing the point i to

approach the boundary Γ:

ciφ
Ω
i =

∮ (CPV )

Γ

(
Gij

∂φj
∂nΩ

− φj
∂Gij

∂nΩ

)
dSj +

1

εΩ

∫
Ω

Gikρ
Q
k dVk , i→ Γ (6.29)

ciφ
Ω
i =

∮ (CPV )

Γ

(
φj
∂uij
∂nΩ

− uij
∂φj
∂nΩ

)
dSj , i→ Γ. (6.30)

This introduces a factor ci to both equations (to account for the contribution of

each region when i lies exactly on the boundary). Note also that these integral

signs now refer to the Cauchy Principal Value (CPV) integral, as the regular

integrals have singular components as i→ j. For a locally smooth (flat) surface,

a point lying exactly at the boundary will effectively lie half in either region.

Assuming such a surface, we set the value of the prefactors ci = 1
2
. By introducing

the boundary conditions (equations (6.17) and (6.18)), we can determine the
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potential at any point in the system from two surface functions, φΓ and JΓ:

φΩ = φΩ = φΓ (6.31)

εΩ

εΩ
∂φΩ

∂nΩ

=
∂φΩ

∂nΩ

= JΓ. (6.32)

So that the interior equation now becomes:

[∮ (CPV )

Γ

(
∂Gij

∂nΩ

+
1

2
δij

)
dSj

]
φΓ
i +

[
−ε

Ω

εΩ

∮ (CPV )

Γ

GijdSj

]
JΓ
i =

1

εΩ

∫
Ω

Gikρ
Q
k dVk

(6.33)

and the exterior equation now becomes:

[∮ (CPV )

Γ

(
∂uij
∂nΩ

− 1

2
δij

)
dSj

]
φΓ
i +

[
−
∮ (CPV )

Γ

uijdSj

]
JΓ
i = 0. (6.34)

Thus we have two surface integral equations governing the unknown surface. We

now introduce a discretisation of the boundary for which we can use the existing

triangular surface mesh of the protein. The functions φΓ and JΓ are represented

as:

φΓ(xi) =
NΓ∑
j=1

φjψ
Γ
j (xi) (6.35)

and

JΓ(xi) =
NΓ∑
j=1

Jjψ
Γ
j (xi) (6.36)

where ψj are the surface shape functions. This reduces the integral equations
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(6.33) and (6.34) to the matrix equation (6.37):

A B

C D


φΓ

JΓ

 =

Q
0

 (6.37)

where we have converted our four integrals into matrices through a discretisation

of the boundary Γ, into N4 triangular elements.

Aij =

∫ (CPV )

4(i)

∂Gij

∂n4(i)

dS4(i) +
1

2
I (6.38)

Bij =

∫ (CPV )

4(i)

−ε
Ω

εΩ
GijdS4(j) (6.39)

Cij =

∫ (CPV )

4(i)

∂uij
∂n4(i)

dS4(i) −
1

2
I (6.40)

Dij =

∫ (CPV )

4(i)

−uijdS4(i) (6.41)

where I is the identity matrix and 4(i) indicates that the integral is over every

surface element 4 ∈ Γ for which i ∈ 4. Q is given by:

Qi =

∫
Ω

Gikρ
Q
k dVk. (6.42)

Note that in the case of nq distinct point charges this would become the sum

Qi =
∑nq

k Gikqk.

Generalising this to the case of Np > 1 interacting molecules is relatively

simple. We now have many, closed, independent, low dielectric regions immersed

in an infinite region of high dielectric constant (as before). We therefore have an

equation (6.33) for each of the Np separate proteins, while the surface integral

in equation (6.34) becomes the sum of integrals over each of the Np proteins so
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α          α       α     α 
11

 
12 13 14

α          α       α     α 
21

 
22 23 24

α          α       α     α 
31

 
32 33 34

α          α       α     α 
41

 
42 43 44

φ
1 1J,

Γ Γ

φ
2 2J,

Γ Γ

φ
3 3J,

Γ Γ

φ
4 4J,

Γ Γ

Figure 6.2: An example BEM matrix structure for a problem involving four
interacting proteins. α refers to any of matrices A, B, C and D. αij indicates a
portion of the matrix describing the interaction between nodes on the surface of
some protein i, with nodes on the surface of some protein j. For the A and B
matrices, the interaction block will only be non-zero for the diagonal case i = j.
For the C and D matrices, all interaction blocks are fully dense. The size of each
on-diagonal self-interaction block is N × N where N is the number of surface
nodes in that protein.
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that: ∮
Γ

· · · ≡
Np∑
p=1

∮
Γp

· · · (6.43)

Each of the matrices A, B, C and D can be constructed in the form:

A =


A11 A12 · · ·

A21 A22 · · ·
...

...
. . .

 (6.44)

where Anm represents the contributions from the surface integrals over protein m

to points on the surface of protein n. The A and B matrices describe interactions

between nodes through the protein interior. As the protein interior regions are

unconnected, these matrices will have no ‘knowledge’ of interactions between

nodes on different proteins. This means the full A and B matrices will be block

diagonal, e.g. 

A11 0 0 0 · · ·

0 A22 0 0 · · ·

0 0 A33 0 · · ·

0 0 0 A44 · · ·
...

...
...

...
. . .


(6.45)

whereA11..NpNp are dense, square, asymmetric matrices describing the self-interaction

of a protein’s surface with itself, through its interior. The C and D matrices,

on the other hand, represent interactions through the solvent and as such have

knowledge of every surface-surface interaction in the system. They are therefore

very large, fully dense and asymmetric: extremely bad properties for a problem

we wish to solve rapidly and efficiently. However, for cases where the screening
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length is small the contributions from distant elements will be negligible so that

sparsity can be recovered. Figure 6.2 gives an example of the meaning of different

parts of a typical matrix for a problem involving four interacting proteins.

Evaluating the BEM

The main difficulty with the BEM comes from having to deal with the evaluation

of integrals since the functions Gij and uij are singular at xi = xj. Thus the

integrals can be divided into 3 classes:

Points i and j lie on... Integral type Course of action

different (far apart) elements Regular Gaussian Quadrature

the same element Singular Coordinate transformation

different (very nearby) elements Near-singular Many proposed solutions[155; 156].

Within these broad cases there are further distinctions. In the case of the ‘reg-

ular’ integral, the integrand is finite everywhere within the limits of integration,

and therefore an ngp-point Gaussian Quadrature rule can be used to evaluate the

integral. The value of ngp, however, varies depending on how far apart points

i and j are (at their closest positions). In the ‘singular’ integral case, the solu-

tion method naturally depends on the strength of the singularity. The functions

uij and Gij have 1
r

singularities and can be evaluated by transforming to polar

coordinates, leading to a 1-d integral that can be solved with Gaussian Quadra-

ture (see below). The derivatives in A and C contain 1
r2 singularities, termed

hypersingular, and require a different approach.

For an element with constant shape functions, the surface node (and therefore
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ϴ
ϴ* ϴ

max

r

L

n
0

n
1

n
2

Figure 6.3: Diagram showing quantities used in an integral of a weakly singular
function over a general triangle, with singularity at node n0. In the course of the
integral, the vector ~r sweeps through the region θ = 0 .. θmax and r = 0 .. R(θ).
L⊥ is the altitude of the triangle and θ∗ is the angle between the vector ~n1 − ~n2

and the altitude vector of the triangle. The expressions for the quantities in this
diagram are given in equation (6.50).
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the singular portion of the integrand) lies at the centroid of the surface element. In

order to evaluate the 1
r

singular integral present in equation (6.41), the triangular

element is split into three sub triangles, with the central singularity on one of

these nodes. Then for each subtriangle 4′ we have:

−
∫
4′

e−κr

4πr
dS4′ ⇒ − 1

4π

∫ θmax

0

∫ R(θ)

0

e−κr

4πr
rdrdθ (6.46)

where r ≡ |r| and r ≡ xi − xj, the vector between point i and point j. Trans-

forming to polar coordinates removes the 1
r

singularity. Integrating with respect

to r yields:

1

4πκ

∫ θmax

0

e−κR(θ)dθ (6.47)

with

R(θ) =
L⊥

cos(θ − θ∗)
(6.48)

where R(θ) is the distance from the singular node to the opposite side of the

triangle for some angle θ. We are now left with a non-singular 1-d integral which

can be solved with Gaussian Quadrature:

θmax

8πκ

ngp∑
i=1

wi exp

(
−κL⊥

cos( θ
max

2
(ξi + 1)− θ∗)

)
(6.49)
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where wi are the weights and ξi the Gauss points for this ngp-point rule, and

θmax = cos−1

[
r01.r02

|r01||r02|

]
(6.50)

L01 = |r01| (6.51)

L⊥ =

∣∣∣∣r01 − (r01.r12)
r12

|r12|2

∣∣∣∣ (6.52)

θ∗ = cos−1

(
L⊥
L01

)
(6.53)

with r01 ≡ n1 − n0 and r02 ≡ n2 − n0. The meanings of L⊥, θ, θ∗ and θmax are

shown, for a general triangle, in figure 6.3.

In order to evaluate the integral found in (6.40) we transform to spherical

polar coordinates, in which the gradient ∇u term becomes:

∇u = r̂
∂u

∂r
+ θ̂

1

r

∂u

∂θ
+ φ̂

1

rsin(θ)

∂u

∂φ
(6.54)

= −e
−κr

4π

[
1

r2
+
κ

r

]
r̂. (6.55)

On a planar element, with singularity at the centroid, the vector between i and

j lies always in the plane, and therefore ∇u.n̂ must be zero everywhere on the

element. Hence, in the singular case, the ‘flux’ integral is zero (for constant

elements).

The regular integrals are comparatively simple to deal with, as the integrands

require no alterations to account for singularities. Special Gaussian Quadrature

rules for triangles are used to evaluate these. For the non-singular case of the
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integral found in equation (6.41):

−
∫
4

e−κr

4πr
dS4 ≈ −A4

ngp∑
i=1

wi
e−κr

′

4πr′
(6.56)

where r ≡ |xsrc−xobs|, xsrc and xobs are the positions of the source and observation

points respectively, ngp is the number of Gauss points, wi is the weight of each

point, A4 is the area of the triangle, and r′ ≡ |x(ξi1, ξ
i
2, ξ

i
3) − xobs| where the

ξ are the Gauss points given in barycentric coordinates. And similarly for the

non-singular case of the integral found in equation (6.40):

∫
4

∂u(r)

∂n
dS4 ≈ −A4

ngp∑
i=1

wi
e−κr

′

4π

[
1

r′2
+
κ

r′

]
r̂′.n̂4. (6.57)

Advantages

As with the FEM, the BEM has an advantage over the FD approach in that it

uses the surface of the FEM mesh already represented in the code, rather than

introducing further discretisation errors (by using a grid). It can also be less

expensive (computationally) than the FEM for systems with a low surface area

to volume ratio, since only the surface faces need to be considered, and not the

entire volume. Furthermore, it has one great advantage over both FD and FEM

approaches in that domains of infinite extent (such as the exterior of the proteins)

can be treated exactly in the integrals, rather than having to choose a “large

enough” domain to mesh or grid over, or approximative boundary conditions, as

is the case with FD and FEM[141].
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Disadvantages

Despite having smaller resultant matrices to deal with, the matrices generated

by the BEM are fully dense and nonsymmetric[141]. This can be contrasted with

the very sparse, symmetric, positive definite matrices generated by the FD and

FE methods. Evidently, this raises severe memory and computational issues,

particularly as the system becomes larger.

6.4 Discussion: Coupled FEM-BEM Method

Ω

Ω, ε

Ω

Ω, ε
i

Γ

Figure 6.4: A hybrid FEM-BEM system shown in 2-d for simplicity. Multiple
proteins Ω of low dielectric constant εΩi floating in an exterior solvent Ω̄ of high

dielectric constant εΩ. The inhomogeneous protein interiors are discretised by
Finite Element meshes, in which each element i may have a different dielectric
constant. The solvent is a homogeneous region described with a single dielec-
tric constant. BEM is used to solve the exterior region, and FEM the interior.
Coupling occurs through boundary conditions defined at the surfaces, Γ.
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As we have seen, the methods discussed above each have at least one significant

disadvantage for use with the FFEA model. The main disadvantages are: the

non-conforming mesh in FD (very fine mesh required for accuracy), the need for

frequent remeshing of 3-d space in FEM (extremely slow and prone to producing

‘bad elements’) and the construction of large dense matrices in BEM which,

additionally, can only deal efficiently with homogeneous domains. In order to

overcome these severe limitations, we therefore require a method which:

1. Uses only the existing protein meshes (i.e conforming boundary, but no

meshing/gridding of the exterior)

2. Can handle the inhomogeneity of proteins (i.e. spatially varying dielectric

constant)

3. Results in sparse matrices, whose size and construction cost grows as the

number of nodes in the system (not as the system volume)

Requirement 1 eliminates FD and FEM, leaving only BEM as suitable. Re-

quirements 2 and 3, however, are not satisfiable by a BEM approach, which

assumes a uniform dielectric constant and produces dense matrices. In order to

satisfy all three requirements we therefore consider a ’hybrid’ approach as follows:

Firstly, note that only the interior regions of proteins are inhomogeneous,

whereas we assume (by virtue of the LPBE) that the exterior (solvent) is a ho-

mogeneous region of high uniform dielectric constant. Secondly, note that the

exterior has a high salt concentration resulting in heavily screened electrostatic

interactions, as opposed to the low dielectric protein interiors in which electro-

static interactions are (comparatively) very long range. The interior BEM prob-

lem therefore results in fully dense matrices (every node may interact with every

155



6. ELECTROSTATICS

other node) whereas the exterior BEM problem can be made extremely sparse by

cutting out all interactions between nodes more than a few Debye lengths apart.

All three requirements may then be satisfied by a method which solves the

interior problem via FEM, the exterior via BEM, and couples the two methods

at the dielectric boundary (protein surface).

Note that the Fast Multipole Method (FMM) is generally used to speed up the

matrix vector multiplication steps in BEM solvers by grouping together distant

sources, but in this case the electrostatic screening simply cuts out distant sources

altogether. This allows the algorithm to achieve similar time complexity, without

the huge prefactor found in FMM[157].

The matrix construction phase of BEM requires the calculation of many in-

tegrals between a surface node and a surface element. For surface elements with

linear shape functions, the nodes lie on the vertices of the triangular elements,

and therefore the value of the matrix element corresponding to this node will

depend on the results of integrals on every element of which it is a member. This

introduces a high interconnectivity which is extremely difficult to parallelise ef-

ficiently, as a complex algorithm is required to subdivide the surface in a way

that minimises the cross-dependencies and allows the work to be shared across

processors. In order to avoid this problem, we use elements with piecewise con-

stant shape functions (that may be subdivided into many smaller elements if a

high level of accuracy is required). The surface nodes now lie at the centroid

of the surface elements, meaning that the matrix element corresponding to this

node depends only on integrals over this one element. This has the enormous

benefit of making each node completely independent of integrals over elements

other than the one of which it is a member, and therefore the elements may be
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workshared across all processors, leading to high parallel efficiency in the matrix

construction phase.

Having seen the highly desirable properties of this hybrid approach, there now

remains the task of coupling the two numerical schemes. The approach used in

this project begins by noting that the boundary condition introduced in equation

(6.32) (for JΓ, effectively a flux term) is of the same form as the surface flux term

found in the FEM formulation in equation (6.9). We therefore intuitively seek to

couple the FEM and BEM regions through this surface term.

The Galerkin formulation of the interior problem is:

∫
Γ

εΩi ψj∇φ.n dS −
∫

Ω

εΩi (∇ψj.∇ψi)φi dV +

∫
Ω

ψjρ
Q
i ψidV = 0 (6.58)

and applying the BC from equation (6.32), we have:

∫
Γ

εΩi ψj∇φ.n dS =
∑
4(i)

εΩJΓ
4(i)

∫
4(i)

ψj dS4(i) (6.59)

where the flux at the node i is given by the sum of the fluxes on the surface ele-

ments that meet at that point, 4(i). For the case of piecewise constant elements,

JΓ is constant across each element so we can take it outside the integral, and

are left simply with an integration of the shape function over the surface element

which yields a third of the area of the triangle (if node j is a member of triangle

4(i)). The FEM equation (in this hybrid scheme) is therefore:

∑
4(i)

δj4(i)ε
ΩA4(i)

3
JΓ
4(i) −

∫
Ω

εΩi (∇ψj.∇ψi)φi dV +

∫
Ω

ψjρ
Q
i ψidV = 0 (6.60)
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where A4 is the area of the surface element 4(i), and δj4(i) is equal to unity

if node j is on triangle 4(i) and zero otherwise. In our matrix representation,

equation (6.14) is now:

Kφ+ EJΓ = q (6.61)

where E is the matrix given by the first term in equation (6.60), for which only

rows corresponding to surface elements contain non-zero entries. A helpful prop-

erty of E is that it is constant and only needs to be calculated once in the

initialisation stages of the simulation. Thus by dividing the elements into interior

(Ω) and surface (Γ) nodes, we can write the linear system in the form:


KΩΩ KΩΓ 0

KΓΩ KΓΓ E

0 C D



φΩ

φΓ

JΓ

 =


qΩ

qΓ

0

 (6.62)

where the matrices C and D come from the BEM solution of the external LPBE

given in equations (6.40) and (6.41). Solving this system of equations can be

carried out using non-symmetric matrix solvers such as the Biconjugate Gradi-

ent Stabilized (BiCGSTAB) method with an appropriate pre-conditioner[158].

Rather than directly solving for the fully constructed matrix, it may be more effi-

cient to use an iterative approach in which we solve the system through alternate

application of BiCGSTAB for the nonsymmetric BEM region and regular Conju-

gate Gradient for the symmetric positive definite matrices in the FEM regions.

In order that the solution to equation (6.62) be rapid, it is important to avoid

dense matrices such as those found in a general BEM formulation. We therefore

take advantage of the electrostatic screening in order to cut out interactions more
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than a few Debye-lengths in separation. This allows us to greatly sparsify the

matrices C and D, cutting solution times greatly. Additionally, C and D are

diagonally dominant, leading to better convergence rates.

As illustrated in figure 3.4, sparsification of the matrices takes place by using

a large cubic grid stacks (implemented internally as linked lists). The position

of each node in turn is tested to see which cell it lies in. Then the data object

representing that node is “pushed” onto the appropriate stack. When it is time

to perform the BEM integrals for each node, it is necessary only to check the

current list (in which the node lies) and the surrounding 26 cells (for a 1.5 Debye-

length cell length). All interactions with nodes in cells further away are known

to be zero (due to screening) so there is no need to perform costly integrals

or create unnecessary fill-in for the C and D matrices. It was found that 1.5

Debye-lengths for a cell side length in the lookup-table gave the best compromise

between memory cost (storing N3 pointers for the stacks) and computational

cost (processing more near-zero interaction pairs). Note that only one pointer

for each cell needs to be stored, pointing to the topmost object in the stack, and

one pointer per node (pointing to the next object in the list after itself), so the

memory required by this nearest neighbour lookup grid is actually reasonably

small, even for spatially large systems.

6.5 Boundary Coupling through flux

A simple iterative scheme for solving equation 6.62 is as follows:

1. Choose initial ‘guess’ at flux on all surfaces.
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2.

Kφ+ EJΓ = Mq. (6.63)

Solve the interior electrostatics in each protein domain, using this flux J ,

in order to obtain the surface potential of the system, φΓ.

3.

DJΓ = −CφΓ. (6.64)

Solve the exterior electrostatics for the system, using the surface potential

φΓ in order to obtain the flux J .

4. Repeat steps 2 and 3 until convergence.

However, in practice this scheme does not converge. The problem is that

the interior PEQ with a Neumann boundary condition from the surface flux

has multiple solutions for the potential, as it is the condition of zero potential at

infinity that fixes the uniqueness of the potential. In order to rectify this problem,

it is necessary to determine the surface potential, φΓ, from the external solution.

The potential in the rest of the domain can then be obtained by solving:

KΩφΩ = MΩqΩ −KΓφΓ (6.65)

where, as before, Ω refers to the interior nodes of the meshes, and Γ to the surface

nodes. Having obtained an estimate for the interior potential, the surface flux is

calculated from:

JΓ ≡ ∂φ

∂n
≡ ∇φ.n =

N∑
i

∇ψiφi.n (6.66)
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where n is the normal of the surface element, and

∇ψi = J−1dψi
dηi

(6.67)

where

J =


∂s
∂x

∂t
∂x

∂u
∂x

∂s
∂y

∂t
∂y

∂u
∂y

∂s
∂z

∂t
∂z

∂u
∂z

 (6.68)

is the Jacobian of the transformation from the deformed element coordinate sys-

tem (x, y, z) to that of the right angled tetrahedron (see figure 6.7) which need

not be constant in (s, t, u) (see Section 6.5.2). Having thus obtained the flux JΓ,

the BEM equation may then be solved for the exterior:

CφΓ = −DJΓ (6.69)

yielding the surface potential, which can be fed back into equation (6.65) until

convergence.

6.5.1 Test problem: charged sphere

In order to verify the numerical algorithm we constructed two test problems for

which an analytic solution is known. These consisted of a spherical protein with

either a point charge at its centre or a uniform charge density in the interior.

For the first problem of the point charge, the solution converged (rapidly) to the

correct solution. However, for the uniformly charged sphere a large discrepancy

became apparent (see figures 6.5 and 6.6). In such a system it was found that
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Figure 6.5: Two spheres illustrating the “football” effect. The right sphere shows
the surface potential obtained from solving a uniformly charged sphere decom-
posed into linear elements. On the left we have the same sphere, but with each
face coloured according to the volume of the surface element it belongs to. This
demonstrates that the surface pattern actually occurs due to the inaccuracy of
evaluating the surface flux using linear elements, as larger elements tend to cause
an underestimation in the gradient of the potential within them.
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the surface potential did not converge to a uniform value across the surface.

Instead, a football-like pattern formed, with areas of high and low potential.

Figure 6.6 shows that this is not a small effect - the spread and deviation of

the potential from the analytic solution approaching the surface is enormous for

the low screening cases. Examination of the underlying mesh revealed that the

pattern was correlated with the volumes of the surface elements (see figure 6.5).

The source of this pattern arises from errors in the flux calculation. Specifically,

it is due to a large underestimate of the flux in ‘longer’ elements. This is because

the potential is assumed to be linear across an element, so that the gradient is

constant, whereas it actually becomes steeper as it approaches the surface. To

rectify this, it was decided that the electrostatics implementation needed to use

higher order, quadratic, shape functions.
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Figure 6.6: The plot shows the electrostatic potential profile of a uniformly
charged sphere (radius 1 m) for varying values of the inverse screening length, κ.
It can be seen that as soon as the screening is sufficiently low for parts of the
surface to ‘see’ other parts, we obtain a spreading of the potential, giving us the
‘football’ pattern illustrated in figure 6.5. By comparing the potential deep inside
the sphere to that as it approaches the surface, it is clear that this spreading is
very much a surface effect, and not a system wide effect as we would expect for
a bad interior solution scheme.
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6.5.2 Second order electrostatics scheme

4
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85
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Figure 6.7: The transformation from (s, t, u), the space in which the element is
a right angled unit tetrahedron, to its real space (x, y, z), deformed state, for a
10 node, second order (quadratic) tetrahedral element. Due to differing levels of
compression in different parts of the element, the Jacobian of the transformation
is not constant in space.

Instead of using 4-node linear elements for the potential φ, we instead use a

10-node quadratic element with nodes at each vertex and at the midpoints of each

edge (see figure 6.7). Conversion to this second order scheme involves replacing

the four simple shape functions of the linear case (ψ1 = 1−s− t−u, ψ2 = s, ψ3 =
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t, ψ4 = u) with ten quadratic shape functions:

ψ1 = (1− 2(s− t− u))(1− s− t− u) (6.70)

ψ2 = (2s− 1)s (6.71)

ψ3 = (2t− 1)t (6.72)

ψ4 = (2u− 1)u (6.73)

ψ5 = 4s(1− s− t− u) (6.74)

ψ6 = 4t(1− s− t− u) (6.75)

ψ7 = 4u(1− s− t− u) (6.76)

ψ8 = 4st (6.77)

ψ9 = 4su (6.78)

ψ10 = 4tu. (6.79)

The second order mass matrix is then calculated as:

Mij =

∫
ψiψjdxdydz =

∫
ψiψj| det J(s, t, u)|dsdtdu (6.80)

where J is the Jacobian of the transformation from real space to (s, t, u) space as

illustrated in figure 6.7 and given in equation (6.68). The Jacobian J is no longer

constant1 but depends on position within the element. Therefore the integrals

are no longer solvable analytically, and we must resort to Gaussian quadrature

schemes to evaluate them numerically. There is a similar dependence for the

1J is no longer constant in general (under isoparametric deformations). However, if the
tetrahedra faces remain flat then the Jacobian will remain constant, as this reduces to the
linear case.
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calculation of the Poisson matrix, Kij =
∫
∇ψi.∇ψjdxdydz. Beginning from the

form of the Jacobian given in equation (6.68), and taking a position within the

element of r = (x, y, z), with element nodes n1..10, we have:

∂r

∂s
=

10∑
i=1

∂ψi
∂s

ni (6.81)

= 4(n1 + n2 − 2n5)s+ 4(n1 − n5 − n6 + n8)t

+ 4(n1 − n5 − n7 + n9)u+ (4n5 − 3n1 − n2).

∂r

∂t
=

10∑
i=1

∂ψi
∂t

ni (6.82)

= 4(n1 − n5 − n6 + n8)s+ 4(n1 + n3 − 2n6)t

+ 4(n1 − n6 − n7 + n10)u+ (4n6 − 3n1 − n3).

∂r

∂u
=

10∑
i=1

∂ψi
∂u

ni (6.83)

= 4(n1 − n5 − n7 + n9)s+ 4(n1 − n6 − n7 + n10)t

+ 4(n1 + n4 − 2n7)u+ (4n7 − 3n1 − n4).

This second-order scheme greatly improved the accuracy of the JΓ calculation

and as such reduced the unphysical patterning of potential across the surface of

the uniformly charged sphere to negligible levels, as shown in figure 6.8). In

the case of very low screening (κ = 10−1), the potential spread is approximately
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Figure 6.8: The spread of potential values on the surface nodes of the uniformly
charged sphere. The mean surface potential 〈φΓ〉 has been subtracted in order
to compare the spreads at different kappa. The spreading is approximately 100
times lower in the second order implementation, therefore only surface potential
is shown here (as opposed to across the entire sphere as shown in figure 6.6).
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4×10−4 V in the second order implementation. Comparing this with the spread in

the first order implementation shown in figure 6.6 (approximately 5×10−2 V) we

see that the spreading of surface potential in the second order implementation is

approximately 100 times less. The spreading in the worst (lowest screening) case

is therefore now negligible when compared with the magnitude of the potential in

the rest of the sphere. Note that such spreading cannot in practice be eliminated

completely due to the discretisation of the sphere domain.

6.5.3 Technical Implementation

While solving the accuracy problem, this solution method introduces problems in

maintaining parallelisation efficiency. Due to the increased number of degrees of

freedom and interconnectivity required for the second order scheme, and the need

to use Gaussian quadrature in the matrix assembly, it is even more important

to ensure that such work does not count towards the serial fraction of the code.

Since both the interior matrices (referred to in previous sections as K) and the

exterior matrices (C and D) change with time (due to thermal fluctuation of the

mesh), it is necessary to rebuild them. Parallel construction of sparse matrices

is complex and not a present feature of the software libraries appropriate for

this project, particularly with regards to matrices having an unknown sparsity

pattern.

Sparse Matrices with known, fixed sparsity patterns

The full interior matrix, K, is the sum of all the individual element matrices

(4 × 4 and 10 × 10 in the linear and quadratic cases respectively). Each row

and column refers to a particular node in the mesh and therefore, providing the
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mesh connectivity is not changed, it is known at the beginning of the simulation

what position in the full K matrix each entry will contribute to. During the

initialisation stage, all contributions from all element matrices are aggregated into

a sorted list from which the matrix structure can be determined. The resulting

data structure knows not only which elements are non-zero (the sparsity pattern),

but also how many contributions there will be to each element in each build, and

also the list of the memory locations of all these contributions. The construction

of K can then proceed as follows:

1. Divide up the elements over all available processors, and calculate the indi-

vidual matrices. Note that these are symmetric matrices, so the computa-

tion and memory costs can be reduced quite significantly.

2. Divide all nonzero entries to the K matrix over all available processors.

Each entry can then be calculated by summing up all the values pointed to

in its list of contributing elements (in the individual element matrices).

Given that the matrix construction phase occurs once per time step, whereas the

matrix-vector multiplication operations can happen many times (in the Conjugate

Gradient (CG) solver algorithm) it is important to construct the matrix in a form

that is both succinct and sorted (to allow for parallel matrix-vector operations).

It is for this reason that alternative, less complex means of storing sparse matrices

were not used (for example, an unsorted list of non-zero entries).

Sparse Matrices with unknown sparsity patterns

While solutions to the interior problem can benefit from the constant mesh con-

nectivity, the exterior problem cannot. The BEM matrices, C and D, are in
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principle dense and have only been rendered sparse through a nearest neighbour

look-up table that discounts distant face pair interactions on the basis of electro-

static screening. This means that there is no a priori way of knowing the sparsity

pattern, or even how much memory should be allocated (“playing it safe” and

allocating the full memory that could be used in the case of no screening will

break the memory limit for even a moderately sized system). For this reason, a

very different data structure is required in the parallelisation of the BEM matri-

ces which is unavoidably less efficient than in the case of known sparsity patterns

explained above.

The matrix is stored as an array of Vectors1. The size of the array is fixed

by the total number of faces in the system, as there must be at least one contri-

bution (the self contribution) in each row. The number of additional interactions

contributing to each row is not fixed, so the rows are stored such that they can

expand in memory as required. Fortunately, there is only one contribution for

each face pair interaction. Furthermore, the ordering of entries within each row

is not important since the matrix-vector multiply is parallelised on a row by row

basis.

The construction of C and D can then be carried out by dividing up all the

faces in the system over the available processors. Then, for each face, we search

the nearest neighbour list and calculate the interaction with all nearby faces.

Finally, we add the results to the row corresponding to the primary face, in any

order.

1An extendable array whose elements are stored contiguously in memory.
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6.6 Conclusions

Electrostatic forces play a crucial role in protein-protein interactions. Most con-

tinuum based solvers treat proteins as a region of low dielectric constant immersed

in a solvent with high dielectric constant. The electric potential inside a protein

is modelled by the Poisson equation, while the solvent is modelled by the Poisson-

Boltzmann equation (due to salt ions present in the solvent that create a screening

effect). Three numerical methods were considered for solving the electrostatic po-

tential in the FFEA model: Finite Difference, the Finite Element Method, and

the Boundary Element Method. Each of these methods on their own were found

inadequate for the requirements of FFEA. A suitable electrostatics implementa-

tion for the FFEA model was found by solving the protein interior with FEM

and the exterior solvent with BEM, coupling the two methods via the electric

flux at the protein surface. This method was found to give the correct potential

for a spherical protein with a single point charge at its centre. A second-order

FEM scheme was required to give the correct potential for a uniformly charged

spherical protein.
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Chapter 7

Conclusions

7.1 Summary

Fluctuating Finite Element Analysis (FFEA) is a coarse-grained simulation tech-

nique designed for protein simulation in the mesoscale. FFEA describes protein

matter as a viscoelastic continuum subject to thermal noise, allowing it to probe

far longer length and time scales than available with coarse-grained MD. This

thesis presented work on the development of FFEA, mainly in terms of soft-

ware development (chapter 2), extensions to the model (chapters 3 and 6) and

applications to biological systems (chapters 4 and 5).

Chapter 1 described the range of length and time scales spanned by biological

processes, and the corresponding simulation techniques appropriate to each scale.

The spectrum can be crudely divided into the nanoscale, the mesoscale and the

macroscale. The mesoscale (lengths of 10 nm to 1 µm and times of ns to hundreds

of µs) is the domain of cytoplasmic crowding and molecular motors, making it

a very important and interesting scale in biology. There is a gap in suitable
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techniques for the lower mesoscale, which is small enough for thermal fluctuations

to be important, but too large for nanoscale techniques like MD (even coarse-

grained). FFEA is a suitable technique to use for modelling biological processes

on this scale.

Chapter 2 discussed the creation of the FFEA simulation package and tools,

including parallelisation of the code and benchmarking to determine the most

appropriate solvers for different mesh topologies. The stability of the model with

respect to time step and minimum edge length was investigated. The automated

pipeline for creation of FFEA input files from atomistic or low density cryo-EM

structure data was also presented, along with purpose-built visualisation software

for editing and preparing FFEA simulations.

Chapter 3 presented a finite element formulation of van der Waals interactions

and discussed the practical issues surrounding its implementation. This formula-

tion introduced steric repulsion and dispersion forces/hydrophobic attraction to

the model. A surface-surface interaction was chosen to avoid duplication (contin-

uum elastic properties already conceptually incorporate vdW forces within the

protein interior) and singularity issues. The stability of the scheme was inves-

tigated with 140 simulations of 128 myoglobins interacting with a polystyrene

substrate for different values of Young’s modulus, Poisson ratio and interaction

energy.

Chapter 4 used PCA to provide a comparison of FFEA with a related tech-

nique, Elastic Network Model (ENM), using three rotary ATPases as a test sys-

tem, finding agreement on the first two modes. The effect on dynamics of differing

numbers of stators was also examined using PCA on simulation trajectories. The

effects of severing the connection between the c-ring and stator (potentially an
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experimental artifact) were similarly investigated. Finally, some simulations of

the Vo and V1 domains dissociating were run, predicting that the structural in-

tegrity of the motor is dependent on the C subunit. The method and results are

published in reference [86].

Chapter 5 presented a simulation study of flagellar dynein operating in the

confines of the axoneme. The simulations suggest that the step length of axonemal

dynein c is increased by 3 to 4 nm through interaction with the microtubule

doublet. The number of binding sites explored by the microtubule binding domain

was found to be between 10 and 15 in the ADP•Vi state, and around 7 in the

apo state. A scheme was developed for mapping between incompatible meshes,

and used to simulate conformational switching of the dynein motor during the

simulations.

Chapter 6 introduced electrostatics to the FFEA model, in the form of a

coupled FEM-BEM scheme, using FEM to solve for the electrostatic potential in

the protein interiors, and BEM for the potential in the exterior solvent. A second

order FEM implementation was required to overcome surface flux problems. The

implementation was tested with a uniformly charged sphere.

7.2 Outlook

At the time of submission of this thesis there are 2535 EMDB map entries in

the EMDataBank online resource[103]. This represents an enormous source of

structural data that is poorly exploited, if at all, by present simulation techniques.

The recent development of a means to detect electrons directly (providing higher

resolution than the indirect light-based CCD devices and faster readout time than
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Figure 7.1: Multiple inner arm dyneins operating in a ‘9 + 2’ axoneme. In
practice each dynein motor is different, whereas the shown simulation is using
the same dynein c model for each.
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film[159]) represents a great breakthrough in cryo-EM technology, particularly in

the area of electron cryo-tomography which can image the complex organisation of

cellular compartments at subnanometer resolution[160]. This will undoubtedly

lead to many more entries in the EMDB in the near future, giving important

information regarding the structural organisation of the cell at the mesoscale.

FFEA provides a natural method for simulating this low resolution data, allowing

computational biophysicists access to the diverse and important processes that

occur on the mesoscale.

There are ongoing simulations of axonemal dynein c’s proposed mechanochem-

ical cycle, which is believed to be based on the mechanochemical cycle of cyto-

plasmic dynein[161]. Ultimately, this work is intended to contribute to a fully

functioning simulation model of the axoneme, allowing visualisation and study

of the complex nature of its mechanism, which is as yet poorly understood. Fig-

ure 7.1 gives a purely illustrative image of this goal (in practice the motors are

all different variants of dynein), with all molecular motors present and pulling

on dynamic microtubule doublets. Important steps have been made towards this

objective (such as parameterisation of elastic properties and conformational map-

ping between states) but further work will be needed. Most notably, a proper

hydrodynamical treatment of the exterior solvent will be essential in the case of

multiple functioning dynein motors in the confines of the axoneme, as hydrody-

namic coupling will certainly influence the dynamics. Such a model could then be

integrated with higher length scale continuum models of the axoneme (such as fi-

nite element models[162]) and contribute towards a full multiscale understanding

of the axonemal switching process.

FFEA has the potential to act as the ‘missing link’ between coarse-grained
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MD simulations and macroscopic simulation techniques, providing a significant

advance towards computational modelling of the multiscale nature of life.
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Appendix A

Algorithm pseudo-code

For each Protein object:

Read parameters, nodes and topology input files

Construct protein object based on these parameters

Loop for num steps steps:

For each Protein object:

For each element in the protein structure:

Construct the Jacobian matrix

Invert the Jacobian matrix and calculate the shape function derivatives

Construct the bulk and shear viscous matrices

Construct the bulk and shear elastic stress tensors

Construct the fluctuating stress tensor

Calculate the forces on each of the four nodes due to this element

Calculate net force on each node in mesh by aggregating

contributions from each element

Calculate the forces arising from vdW, Electrostatics and Hydrodynamic drag
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Solve the linear equation set M~a = ~f , where M is the mass matrix,

~a is the (unknown) acceleration vector solution and ~f is the force vector before

application of the mass matrix

Integrate equation of motion using a numerical integration scheme

Update the nearest neighbour face look up table

If this is a “check” step:

Output the current node positions to the trajectory file

and measurements to the measurement file

Clean up: Release memory resources and close any open files
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Appendix B

Example .ffea script

<param>

<restart = 1>

<trajectory_out_fname = transition_run_trajectory.out>

<measurement_out_fname = transition_run_measurement.out>

<kT = 4e-21>

<dt = 1e-14>

<check = 10000>

<num_steps = 9420000>

<rng_seed = time>

<max_iterations_cg = 1000>

<epsilon = 1e-11>
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<calc_es = 0>

<kappa = 1e9>

<es_update = 1>

<epsilon_0 = 1>

<dielec_ext = 1>

<do_stokes = 1>

<stokes_visc = 1e-06>

<es_h = 4>

<es_N_x = 25>

<es_N_y = 30>

<es_N_z = 50>

<wall_x_1 = PBC>

<wall_x_2 = PBC>

<wall_y_1 = HARD>

<wall_y_2 = HARD>

<wall_z_1 = PBC>

<wall_z_2 = PBC>

<calc_vdw = 1>

<vdw_forcefield_params = ADPVI_axoneme.lj>

<num_blobs = 3>
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</param>

<system>

<blob>

<state = DYNAMIC>

<stokes = ADPVI_Dynein.stokes>

<pin = ADPVI_Dynein.pin>

<vdw = ADPVI_Dynein.vdw>

<solver = CG>

<material = ADPVI_Dynein.mat>

<surface = ADPVI_Dynein.surf>

<nodes = ADPVI_Dynein.node>

<topology = ADPVI_Dynein.top>

<scale = 1>

</blob>

<blob>

<state = FROZEN>

<stokes = APO_Dynein.stokes>

<pin = APO_Dynein.pin>

<vdw = APO_Dynein_non_interacting.vdw>

<solver = CG>

<material = APO_Dynein.mat>

<surface = APO_Dynein.surf>

<nodes = APO_Dynein.node>

183



B. EXAMPLE .FFEA SCRIPT

<topology = APO_Dynein.top>

<scale = 1>

</blob>

<blob>

<state = STATIC>

<vdw = axoneme.vdw>

<nodes = axoneme.node>

<surface = axoneme.surf>

<scale = 1>

</blob>

</system>
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Appendix C

Example simulation setup with

FFEA tools

The following example procedure is intended to illustrate how one might simulate

a protein interacting with a hard rough surface.

Convert the protein pdb file to 50× 50× 50 voxel density map, with each atom

rendered as a linear density sphere of van der Waals radius 10Å:

FFEA tools pdbtomap protein.pdb protein.mrc 50 50 50 10

Mesh the density map for the isosurface at level 0.01, filling interior cavities

(defined as closed volumes of less than 20 voxels) and coarsening each 2× 2× 2

block of voxels. Interpolate surface node positions based on difference between

local density and isolevel. Output the surface as a .off file.

FFEA tools meshmap -map protein.map -out protein.off -format off -level

0.01 -coarse 2 -fill cavities 20 -interpolate yes
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C. EXAMPLE SIMULATION SETUP WITH FFEA TOOLS

Produce all the necessary FFEA input files for this protein mesh, giving it the

viscosity of water, a density 1.5 times that of water, and shear and bulk moduli

of 120MPa and 640MPa respectively. Note that homogeneous material param-

eters are used here for simplicity, but they can in practice be different in each

element of the protein mesh.

FFEA tools makeffea -mesh protein.off -stokes radius 1e-9 -density 1500.0

-shear visc 1e-3 -bulk visc 1e-3 -shear mod 120e6 -bulk mod 640e6 -dielec

1.0

The FFEA viewer can now be used to select which faces on the protein mesh are

interacting, and what sort of surface type they have (hydrophobic, hydrophilic

etc.). Now, similarly, we produce a mesh of the surface, obtained from Cryo-EM

density map rough surface.ccp4. In this case, however, the -cull floaters

option is removing any joined group of voxels that number less than 120. This

has the effect of ‘cleaning’ the density map from the clutter of noisy artifacts,

leaving only the desired surface mesh. This surface will be STATIC, so the mate-

rial parameters do not matter.

FFEA tools meshmap -map rough surface.ccp4 -out surface.off -format off

-level 110 -coarse 3 -fill cavities 20 -cull floaters 120 -interpolate

yes

FFEA tools makeffea -mesh surface.off -stokes radius 1 -density 1

-shear visc 1 -bulk visc 1 -shear mod 1 -bulk mod 1 -dielec 1
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A .ffea script file, as given in Appendix B, can now be produced, instruct-

ing the FFEA program to simulate two proteins, one DYNAMIC and one STATIC, for

1 × 109 steps (sampling every 1 × 104), interacting via a van der Waals interac-

tion and using a nearest neighbour lookup table of size 100 × 60 × 40 nm. The

simulation can then be run:

FFEA surf interaction.ffea

And the resultant trajectory can be visualised with the viewer.

FFEA viewer surf interaction.ffea
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Appendix D

Derivation of the

Poisson-Boltzmann Equation

D.1 Nonlinear form

Begin with the Poisson Equation:

∇2φ(~r) +
ρ(~r)

ε
= 0 (D.1)

describing the electrostatic potential φ at some position ~r in a medium of permit-

tivity ε = εrε0. The density of charge in the system is made up of fixed charges:

ρ(~r)fixed =

nfixed∑
k

Qkδ(~r − ~rk) (D.2)

and mobile charges, the ions and counter ions in the (overall electroneutral) sol-

vent. For ns ion species, each with a valency zi and concentration ci(~r), we
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calculate the charge density of the system to be:

ρ(~r) =
ns∑
i

zieci(~r) +

nfixed∑
k

Qkδ(~r − ~rk) (D.3)

where as usual e is the elementary charge. We must now find an expression for

the concentration of ionic species in the solvent, c(~r). The energy of an amount of

charge zie positioned at some location ~r is zieφ(~r), and therefore the probability

of finding it there must be proportional to exp(− zieφ(~r)
kT

), assuming an equilibrium

state (for the Boltzmann statistics). The concentration of ions at a location ~r

must be proportional to the probability of those ions being at that point and

therefore:

ci(~r) ∝ exp(−zieφ(~r)

kT
). (D.4)

In the limit of ~r being infinitely far away from any macro ions, the potential φ

drops to zero, and the concentration becomes the bulk concentration, c0
i :

ci(~r) = c0
i exp(−zieφ(~r)

kT
). (D.5)

Substituting all this into Poisson’s equation yields the Poisson-Boltzmann equa-

tion (nonlinear form):

ε∇2φ(~r) +
ns∑
i

ziec
0
i exp(−zieφ(~r)

kT
) +

nfixed∑
k

Qkδ(~r − ~rk) = 0. (D.6)

If we so wish, we can choose 2 species (ions and counter-ions) of equal and opposite

charge (i.e. z1 = −1 , z2 = +1), and expand the sum into two exponential terms

with positive and negative arguments. We then use the following definition of
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hyberbolic sine:

2 sinh(x) = ex − e−x (D.7)

to combine these two terms, yielding the usual form of the nonlinear PBE:

ε∇2φ(~r) + 2c∞e sinh(
eφ(~r)

kT
) +

nfixed∑
k

Qkδ(~r − ~rk) = 0 (D.8)

where c∞ is the bulk concentration for both at infinity.

D.2 Linear form

As this equation is unpleasant to solve (even numerically), we seek to simplify

the equation through the approximation that the electrostatic potential is always

small. In physical terms, we restrict ourselves to the regime in which the energy

due to a charge in the given potential is much less than the thermal energy in

the system:

eφ(~r) << kT (D.9)

such that we may use the first term in the taylor expansion of sinh:

sinh(x) ≈ x , x << 1 (D.10)

yielding the linearised PBE:

∇2φ(~r) + κ2φ(~r) = −1

ε
ρfixed (D.11)
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where all the constants have been absorbed into the inverse Debye screening

length,

κ =

(
2c∞e

2

εkT

) 1
2

(D.12)
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Appendix E

Origin of the Robin Boundary

Condition

Two commonly used boundary conditions are the Dirichlet (fixed value on bound-

ary) and Neumann (fixed gradient on boundary) BCs. The Robin BC is merely

a (weighted) linear combination of both of these. Its general form is as follows:

c1φ+ c2
∂φ

∂n
= c3 (E.1)

at the boundary. If we assume that the screening length is very short (κ very

large), then the region of interest is therefore found very close to the surface of

the protein. At such a distance we say that the surface is locally flat and the

solution to the PBE is that for the 1-d case:

φ(x) = A exp(−κx). (E.2)

193



E. ORIGIN OF THE ROBIN BOUNDARY CONDITION

Taking the derivative we have:

dφ(x)

dx
= −κφ(x) (E.3)

from whence we obtain the (approximate) boundary condition

dφ

dn
= −κφ (E.4)

as used in chapter 6. Note that this has the form of the general Robin BC in

equation (E.1) with c1 = κ, c2 = 1 and c3 = 0.
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[15] S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M. R.

Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, et al., “GROMACS

4.5: a high-throughput and highly parallel open source molecular simulation

toolkit,” Bioinformatics, p. btt055, 2013. 4

[16] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa,

C. Chipot, R. D. Skeel, L. Kale, and K. Schulten, “Scalable molecular dy-

namics with NAMD,” Journal of Computational Chemistry, vol. 26, no. 16,

pp. 1781–1802, 2005. 4

[17] D. Marx and J. Hutter, Ab initio molecular dynamics: basic theory and

advanced methods. Cambridge University Press, 2009. 5

[18] G. Groenhof, “Introduction to QM/MM simulations,” pp. 43–66, Springer,

2013. 5

197



REFERENCES

[19] Y. Zhang, H. Liu, and W. Yang, “Free energy calculation on enzyme re-

actions with an efficient iterative procedure to determine minimum energy

paths on a combined ab initio QM/MM potential energy surface,” The

Journal of Chemical Physics, vol. 112, no. 8, pp. 3483–3492, 2000. 5

[20] H. Lin and D. G. Truhlar, “QM/MM: what have we learned, where are we,

and where do we go from here?,” Theoretical Chemistry Accounts, vol. 117,

no. 2, pp. 185–199, 2007. 5

[21] J. L. Klepeis, K. Lindorff-Larsen, R. O. Dror, and D. E. Shaw, “Long-

timescale molecular dynamics simulations of protein structure and func-

tion,” Current Opinion in Structural Biology, vol. 19, no. 2, pp. 120–127,

2009. 5

[22] R. M. Voorhees, A. Weixlbaumer, D. Loakes, A. C. Kelley, and V. Ra-

makrishnan, “Insights into substrate stabilization from snapshots of the

peptidyl transferase center of the intact 70S ribosome,” Nature Structural

& Molecular Biology, vol. 16, no. 5, pp. 528–533, 2009. 5

[23] A. R. Mitchell and D. F. Griffiths, The finite difference method in partial

differential equations. John Wiley, 1980. 6

[24] H. K. Versteeg and W. Malalasekera, An introduction to computational fluid

dynamics: the finite volume method. Pearson Education, 2007. 6

[25] B. M. Johnston, P. R. Johnston, S. Corney, and D. Kilpatrick, “Non-

Newtonian blood flow in human right coronary arteries: steady state sim-

ulations,” Journal of Biomechanics, vol. 37, no. 5, pp. 709–720, 2004. 6

198



REFERENCES

[26] E. Holzbaur and R. Vallee, “Dyneins: molecular structure and cellular func-

tion,” Annual Review of Cell Biology, vol. 10, no. 1, pp. 339–372, 1994. 6

[27] V. Tozzini, “Minimalist models for proteins: a comparative analysis,” Q.

Rev. Biophys., vol. 43, no. 3, pp. 333–371, 2010. 7

[28] S. J. Marrink, A. H. de Vries, and A. E. Mark, “Coarse grained model for

semiquantitative lipid simulations,” The Journal of Physical Chemistry B,

vol. 108, no. 2, pp. 750–760, 2004. 7

[29] S. Takada, “Gø-ing for the prediction of protein folding mechanisms,” Pro-

ceedings of the National Academy of Sciences, vol. 96, no. 21, pp. 11698–

11700, 1999. 7

[30] M. M. Tirion, “Large amplitude elastic motions in proteins from a single-

parameter, atomic analysis,” Physical Review Letters, vol. 77, no. 9, p. 1905,

1996. 7

[31] P. Chacón, F. Tama, and W. Wriggers, “Mega-Dalton biomolecular motion

captured from electron microscopy reconstructions,” Journal of Molecular

Biology, vol. 326, no. 2, pp. 485–492, 2003. 7

[32] F. Tama, W. Wriggers, and C. L. Brooks III, “Exploring global distor-

tions of biological macromolecules and assemblies from low-resolution struc-

tural information and elastic network theory,” Journal of Molecular Biology,

vol. 321, no. 2, pp. 297–305, 2002. 7

[33] S. McGuffee and A. Elcock, “Diffusion, crowding & protein stability in a

199



REFERENCES

dynamic molecular model of the bacterial cytoplasm,” PLoS computational

biology, vol. 6, no. 3, p. e1000694, 2010. 8

[34] Z. Liang, Z. Gimbutas, L. Greengard, J. Huang, and S. Jiang, “A fast multi-

pole method for the Rotne–Prager–Yamakawa tensor and its applications,”

Journal of Computational Physics, vol. 234, pp. 133–139, 2013. 8

[35] J. P. Hernández-Ortiz, J. J. de Pablo, and M. D. Graham, “Fast compu-

tation of many-particle hydrodynamic and electrostatic interactions in a

confined geometry,” Physical Review Letters, vol. 98, no. 14, p. 140602,

2007. 8

[36] R. Groot and P. Warren, “Dissipative particle dynamics: Bridging the

gap between atomistic and mesoscopic simulation,” Journal of Chemical

Physics, vol. 107, no. 11, p. 4423, 1997. 8, 9

[37] Z. G. Mills, W. Mao, and A. Alexeev, “Mesoscale modeling: solving com-

plex flows in biology and biotechnology,” Trends in Biotechnology, vol. 31,

no. 7, pp. 426–434, 2013. 9

[38] G. Gompper, T. Ihle, D. Kroll, and R. Winkler, “Multi-particle collision

dynamics: A particle-based mesoscale simulation approach to the hydrody-

namics of complex fluids,” 2008. 9

[39] B. Duenweg and A. J. C. Ladd, “Lattice Boltzmann Simulations of Soft

Matter Systems,” vol. 221 of Advances in Polymer Science, pp. 89–166,

Springer-Verlag Berlin, 2009. 9

200



REFERENCES

[40] B. Uma, T. Swaminathan, P. Ayyaswamy, D. Eckmann, and R. Radhakr-

ishnan, “Generalized Langevin dynamics of a nanoparticle using a finite

element approach: Thermostating with correlated noise,” The Journal of

Chemical Physics, vol. 135, no. 11, p. 114104, 2011. 10

[41] P. J. Atzberger, P. R. Kramer, and C. S. Peskin, “A stochastic im-

mersed boundary method for fluid-structure dynamics at microscopic length

scales,” Journal of Computational Physics, vol. 224, no. 2, pp. 1255–1292,

2007. 10

[42] Reddy, J N, An Introduction to the Finite Element Method (3rd Edition).

McGraw-Hill Education, 2005. 10

[43] R. C. Oliver, D. J. Read, O. G. Harlen, and S. A. Harris, “A stochastic finite

element model for the dynamics of globular macromolecules,” Journal of

Computational Physics, vol. 239, pp. 147–165, 2013. 12, 14, 17

[44] R. Oliver, A stochastic finite element model for the dynamics of globular

proteins. University of Leeds, 2013. xvii, 12, 15, 47, 100, 101, 102, 103

[45] Y. Wang and G. Zocchi, “The folded protein as a viscoelastic solid,” EPL

(Europhysics Letters), vol. 96, no. 1, p. 18003, 2011. 13, 60

[46] J. Drenth, Principles of protein X-ray crystallography. Springer, 2007. 16

[47] J. Cavanagh, W. J. Fairbrother, A. G. Palmer III, and N. J. Skelton, Protein

NMR spectroscopy: principles and practice. Academic Press, 1995. 16

[48] J. Dubochet, M. Adrian, J.-J. Chang, J.-C. Homo, J. Lepault, A. W. Mc-

201



REFERENCES

Dowall, and P. Schultz, “Cryo–electron microscopy of vitrified specimens,”

Quarterly Reviews of Biophysics, vol. 21, no. 02, pp. 129–228, 1988. 16

[49] J. Lipfert and S. Doniach, “Small-angle X-ray scattering from RNA, pro-

teins, and protein complexes,” Annu. Rev. Biophys. Biomol. Struct., vol. 36,

pp. 307–327, 2007. 16

[50] J. Frank, “Single-particle imaging of macromolecules by cryo–electron

microscopy,” Annual Review of Biophysics and Biomolecular Structure,

vol. 31, no. 1, pp. 303–319, 2002. 16

[51] H. Fischer, I. Polikarpov, and A. F. Craievich, “Average protein density is

a molecular-weight-dependent function,” Protein Science, vol. 13, no. 10,

pp. 2825–2828, 2004. 17, 37

[52] T. Cellmer, E. R. Henry, J. Hofrichter, and W. A. Eaton, “Measuring in-

ternal friction of an ultrafast-folding protein,” Proceedings of the National

Academy of Sciences, vol. 105, no. 47, pp. 18320–18325, 2008. 17, 37

[53] M. Radmacher, M. Fritz, J. P. Cleveland, D. A. Walters, and P. K. Hansma,

“Imaging adhesion forces and elasticity of lysozyme adsorbed on mica with

the atomic force microscope,” Langmuir, vol. 10, no. 10, pp. 3809–3814,

1994. 17, 37, 70

[54] A. Ikai, R. Afrin, and H. Sekiguchi, “Pulling and pushing protein molecules

by AFM,” Current Nanoscience, vol. 3, no. 1, pp. 17–29, 2007. 17

[55] D. W. Walker, “The design of a standard message passing interface for

202



REFERENCES

distributed memory concurrent computers,” Parallel Computing, vol. 20,

no. 4, pp. 657–673, 1994. 20

[56] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,

portable implementation of the MPI message passing interface standard,”

Parallel Computing, vol. 22, no. 6, pp. 789–828, 1996. 20

[57] L. Dagum and R. Menon, “OpenMP: an industry standard API for shared-

memory programming,” Computational Science & Engineering, IEEE,

vol. 5, no. 1, pp. 46–55, 1998. 20

[58] C. Nvidia, “Compute unified device architecture programming guide,” 2007.

21

[59] J. A. Anderson, C. D. Lorenz, and A. Travesset, “General purpose molecu-

lar dynamics simulations fully implemented on graphics processing units,”

Journal of Computational Physics, vol. 227, no. 10, pp. 5342–5359, 2008.

21

[60] G. Amdahl, “Limits of Expectation,” International Journal of Supercom-

puter Applications and High Performance Computing, vol. 2, pp. 88–94,

SPR 1988. 21

[61] B. Stroustrup et al., The C++ programming language. Pearson Education

India, 1995. 21

[62] A. T. Cohen, “Data abstraction, data encapsulation and object-oriented

programming,” ACM SIGPLAN Notices, vol. 19, no. 1, pp. 31–35, 1984. 22

203



REFERENCES

[63] A. George, M. T. Heath, J. Liu, and E. Ng, “Sparse Cholesky factoriza-

tion on a local-memory multiprocessor,” SIAM Journal on Scientific and

Statistical Computing, vol. 9, no. 2, pp. 327–340, 1988. 24

[64] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving

linear systems, vol. 49. National Bureau of Standards Washington, DC,

1952. 25

[65] J. Shewchuk, “An introduction to the conjugate gradient method with-

out the agonizing pain.” http://www.cs.cmu.edu/ quake-papers/painless-

conjugate-gradient.pdf, 1994. 25

[66] J. M. Bull, “Measuring synchronisation and scheduling overheads in

OpenMP,” vol. 8, p. 49, Citeseer, 1999. 26

[67] University of Leeds, Advanced Research Computing - ARC1. 27

[68] N8 HPC, N8 High Performance Computing - Polaris facility. 27

[69] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator,” ACM Trans.

Model. Comput. Simul., vol. 8, pp. 3–30, January 1998. 28

[70] M. Saito and M. Matsumoto, “SIMD-oriented fast Mersenne Twister: a

128-bit pseudorandom number generator,” pp. 607–622, Springer, 2008. 28

[71] M. Matsumoto and T. Nishimura, “Dynamic creation of pseudoran-

dom number generators,” Monte Carlo and Quasi-Monte Carlo Methods,

vol. 2000, pp. 56–69, 1998. 29

204



REFERENCES

[72] J. M. Kollman, L. Pandi, M. R. Sawaya, M. Riley, and R. F. Doolittle,

“Crystal structure of human fibrinogen,” Biochemistry, vol. 48, no. 18,

pp. 3877–3886, 2009. xiii, 39

[73] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D

surface construction algorithm,” vol. 21, pp. 163–169, ACM, 1987. 40

[74] Blender Foundation, Blender Institute, Amsterdam, Blender. 41
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