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Thesis abstract 

 

The small GTPase Rho1 is the positive regulatory subunit of β-1,3 glucan synthase, 

responsible for the main structural component of the cell wall. In turn Rho1 is negatively 

regulated by Lrg1, its GTPase activating protein (GAP).  

Here it is shown that a C. albicans lrg1ΔΔ mutant constitutively forms highly elongated and 

invasive pseudohyphae.  Using Rho1 and Exo84 as markers, it is shown that the extended 

polarised growth is in part due to a failure to relocate the polarity machinery from the bud 

tip to the bud neck.  A GFP reporter that binds specifically to active Rho1 also shows this 

increase in polarised growth in lrg1ΔΔ is due to an increase in Rho1 activity. CaLrg1 contains 

4 complete motifs and an additional 15 minimal sites for phosphorylation by Cdc28/Cdk1. 

These sites are clustered in an N-terminal extension missing from the S. cerevisiae Lrg1 

homologue. Consistent with this, GST-Lrg1 is phosphorylated in vitro by Cdc28. Substitution 

of the putative Cdk1 targets with non-phosphorylatable alanine has little phenotypic effect. 

However, phosphomimetic glutamate substitutions results in highly polarised growth similar 

to, but milder than the lrg1ΔΔ phenotype.  

CaLrg1 also contains 4 motifs for phosphorylation by the Cbk1 kinase, one of which is also 

within the N-terminal extension.  Cbk1 phosphorylates GST-Lrg1 in vitro and replacement of 

the Cbk1 motifs with phospho-mimetic residues also produces a similar phenotype to the 

lrg1ΔΔ strain. Phosphomimetic mutations of Lrg1 in either Cdc28 or Cbk1 sites was also 

shown to increase the susceptibility of C. albicans to the echinocandin class of drug, a major 

tool in the treatment of Candida albicans infection. Taken together these results suggest 

that the regulation of polarised growth of the yeast bud is mediated by Rho1 whose activity 

and mobility is in turn controlled by the action of both Cdc28 and Cbk1 on Lrg1.  
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1 General Introduction 
 

1.1    Candida albicans is a major human pathogen 
 

Candida albicans (C. albicans) is a fungal pathogen which lives commensally in both the 

genito-urinary and gastro-intestinal tract of humans. Usually the organism does not cause a 

problem to its host, but can be the cause of opportunistic infections on mucosal surfaces 

such as candidiasis (thrush). However, in immuno-compromised patients such as those with 

AIDS or receiving cancer related chemo-therapy, the fungus can disseminate from the gut or 

in-dwelling devices and cause a serious infection in the blood stream -candidemia.  

In a 10 year study of 30,000 patients with hospital acquired fungal infections in the U.S.A, it 

was shown that nearly 80 % of fungal nosocomial infections are caused by Candida spp, with 

three quarters of these due to C. albicans alone (Becksague and Jarvis, 1993). Another 

similar study of 24,000 patients in the U.S.A indicated that C. albicans is the 4th most 

common nosocomial infection, accounting for around 10 % of the total. In addition, 

mortality rates among those infections caused by C. albicans approached 40 %, the highest 

of any of the organism in the study. The same study also estimated the cost of Candida 

infections to be $1 billion a year (Wisplinghoff et al., 2004). It is for this reason, and the fact 

that most anti-fungal drugs also target human processes, that C. albicans requires rigorous 

study.  

 

1.2    The genetics and evolution of C.albicans 
 

Although C. albicans shares many processes with the budding yeast Saccharomyces 

cerevisiae (S. cerevisiae)- which has provided many insights into cellular processes- it is 

thought that the two organisms diverged  as long as 840 million years ago (Heckman et al., 

2001) and as such they differ in many ways. For example, S. cerevisiae interprets the codon 

CUG  as the amino acid leucine as in the universal code,  whereas some Candida species, 

including C. albicans read the same codon as the amino acid serine (Ohama et al., 1993). 

Another distinction between the C. albicans and S. cerevisiae is their growth morphology. S. 
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cerevisiae grows in ovoid, typical “budding yeast” form and as elongated pseudohyphae, 

while C. albicans can grow in three different morphologies, which will be discussed in more 

detail later. As a consequence of this divergence, although similarities can be drawn from 

the better studied model organism, it again emphasizes the importance of direct study on C. 

albicans.   

 In approaching research of C. albicans, there are many challenges and difficulties that must 

be faced. As mentioned above, problems with translation of the genetic code means that 

any popular research tools, such as the use of the Green Fluorescent Protein (GFP) and 

selectable markers used in S. cerevisiae research, need to be codon optimised. It also means 

that C. albicans proteins cannot be used in the S. cerevisiae two-hybrid system for 

interaction studies -although a similar system for direct use in Candida has recently been 

published (Stynen et al.).  More significantly perhaps, is the fact that until recently no 

haploid stage has been identified in C. albicans and it was classed as an obligate diploid, 

ruling out mating of haploid forms to create new strains as a tool for research.  Although 

Candida species do contain a mating-type loci (MTL) similar to that in S. cerevisiae (Hull and 

Johnson, 1999),  and strains that are homozygous for either mating type a or α can mate, 

(Lockhart et al., 2002a)  a meiotic system had never been found (Taylor et al., 1999) and 

diversity was thought to be brought about by the ability to maintain different karyotypes 

and random chromosome loss  (Bennett and Johnson, 2003).  This ability to maintain 

different karyotype number presented obvious difficulties in research. Recently however, 

research has indicated that C. albicans do exist in a haploid state of which opposite mating 

types are capable of mating (Hickman et al., 2013).  

 

1.3    The different morphologies of C. albicans 
 

As mentioned earlier, C. albicans is unusual as it is capable of growth in three different 

morphologies (Figure 1.1). In the yeast morphology, much the same as S. cerevisiae, cells 

grow in spherical/ovoid nature and once daughter cells reach a defined size, they undergo 

cytokinesis and separate easily from each other. Pseudohyphal cells on the other hand, 

grow as chains of elongated cells that have visible constrictions at the septum but remain 

joined together at this point. Highly polarised true hyphal cells grow with parallel sides and 
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do not branch like the pseudohyphal morphology. True hyphal cells do not appear to have 

any constrictions at the septum, despite the fact the septum is present on a molecular level, 

as seen by GFP-fused septin proteins which mark the site of septation (Berman and Sudbery, 

2002). There are many hypotheses on why C. albicans is polymorphic. The highly branched 

nature of pseudohyphal cells could be seen perhaps, as a mechanism for foraging for 

nutrients away from the mother cell (Berman and Sudbery, 2002). Another hypothesis 

centres on the switch between yeast and true hyphal morphologies being an ideal 

mechanism for dissemination and invasion of the host tissues and cells. Although some 

evidence does point towards this hypothesis, such as invasion of agar by hyphal cells and 

mutants in hyphal growth being less virulent in mouse and human infection models 

(Dieterich et al., 2002; Lo et al., 1997), the idea is still controversial amongst the scientific 

community and is reviewed fully in: (Gow et al., 2002). The transition between the three 

different morphologies can be induced by changes in temperature, pH, concentration of CO2 

and serum etc (as shown in table 1.1), so it seems likely that transition between them is in 

some way related to interaction with the host. 

 

C. albicans also has the ability to undergo White-Opaque switching. This involves switching 

from the more common white, domed colonies with round cells to the less common 

opaque, flat colonies that contain cells which are larger and more ovoid (Figure 1.2).  The 

switch occurs roughly once in every one thousand cell divisions (Slutsky et al., 1987).  It has 

been observed that homozygous strains at the MTL locus are capable of undergoing the 

white-opaque switch, whilst heterozygotes are not (Lockhart et al., 2002b) (Miller and 

Johnson, 2002). Interestingly, opaque cells are 106 times more efficient at mating than white 

cells (Miller and Johnson, 2002), suggesting that the mating-type locus is responsible for the 

switch.  
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Images taken from (Sudbery et al., 2004) 

 

Figure 1.1 The different growth morphologies of Candida albicans   

C. albicans grow in three different morphologies that are induced by changes in 

temperature, pH and the presence of serum. The organism grows as budding yeast type 

growth with spherical to ovoid cells, pseudohyphae, which are long chains of elongated 

cells which remain joined at the constricted septum and as true hyphae. True hyphae 

posess parallel walls within the germ tube and lack of constrictions at the septum sites 

between each cell in the tube.  

 

 

 

 

 

 

 

 

 

 

Table 1.1 C. albicans morphology is affected by environmental conditions 

 

 

 

 

 

 

Yeast Pseudohyphae Hyphae  

≤30 °C 35 °C 37° C 

pH 4 pH 6 pH 7 

 Nitrogen starvation Serum 

 High levels of phosphate GlcNac 

  CO2 
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Taken from (Berman and Sudbery, 2002) 

 

Figure 1.2 The White-Opaque switch in C. albicans 

White (W) and opaque (O) cells can be seen here after 3 days growth at 23°C on 

synthetic complete medium. The White-Opaque switch is thought to be controlled by the 

mating type locus.  

 

1.4    S. cerevisiae provides a model of polarised growth 
 

The three different morphologies of C. albicans require either short (yeast) or sustained 

(hyphae/pseudohyphae) periods of polarised growth and polarised growth is an essential 

process for the majority of eukaryotes. In order for polarised growth to occur, secretory 

vesicles containing all the components for cell expansion must be directed to the correct 

site in the cell cortex. This process has been studied extensively in S. cerevisiae to provide a 

model which is mirrored in many cell types, such neurons and microvilli in higher organisms 

and hyphal growth in fungi. 

 

1.4.1    Cdc42: the hub of cell polarisation 

 

Cdc42 is a small GTPase that was first discovered in S. cerevisiae in a temperature sensitive 

mutant of cell growth and actin polarisation  (Adams et al., 1990; Johnson and Pringle, 1990) 

and homologs across other species complement yeast cdc42 mutants (Chen et al., 1993).  

Cdc42 cycles between its active GTP-bound state and its inactive GDP-bound state using its 

intrinsic GTPase activity. However, GTP hydrolysis is stimulated by the GTPase activating 

proteins (GAPs): Bem2, Bem3, Rga1 and Rga2 (Tong et al., 2007; Zheng et al., 1994; Zheng et 

al., 1993). Activation of Cdc42 is controlled by the guanine nucleotide exchange factor (GEF) 
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Cdc24 (Zheng et al., 1994). To initiate polarised growth, Cdc42 must localise towards a 

chosen site in the cell cortex, defined by bud-site selection markers. One such marker is the 

Ras-family GTPase, Rsr1. It is thought that upon conversion of Rsr1-GTP to Rsr1-GDP by its 

GAP Bud2, Rsr1 releases Cdc24, stimulating the formation of Cdc42-GTP which can then 

signal to the actin cytoskeleton for polarisation, reviewed in (Park and Bi, 2007). It is this link 

between the bud site selection marker Rsr1 and the centre of cell polarisation Cdc42, shown 

in figure 1.3, which dictates that a new bud will emerge in the correct place.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Polarisation of the actin cytoskeleton to the incipient bud site in S. 

cerevisiae requires Rsr1 and Cdc42.  

The bud site selection marker Rsr1 marks the site of bud emergence. Once converted to 

its GDP bound form it releases the guanine nucleotide exchange factor Cdc24 which in 

turn activates Cdc42. Cdc42 then acts to polarise the actin cytoskeleton to this site 

through the formin Bni1 (discussed below).  
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1.4.2    The polarisome 

  

Once Cdc42 has been localised to the site of bud emergence, it must transduce a signal for 

the actin cytoskeleton to polarise towards this site. It is thought to do this through the 

formin protein Bni1, which physically interacts with Cdc42 and another Rho-GTPase, Rho1, 

and requires Cdc42 for its localisation (Evangelista et al., 1997; Kohno et al., 1996; Ozaki-

Kuroda et al., 2001). Through its formin homology 1 (FH1) domain Bni1 binds profilin, which 

in turn adds actin monomers to actin cables, nucleating non-branched actin filaments and 

preventing  “capping” of the elongated structure (Sagot et al., 2002b; Zigmond et al., 2003). 

Bni1 is a member of the polarisome, a multimeric protein complex localised at the site of 

polarised growth, which also contains the scaffold protein Spa2 and its localisation regulator 

Pea2, the Bni1 activator Bud6, and the Sec4 GAPs Msb3 and Msb4 involved in vesicle 

tethering (discussed later).  Therefore the polarisome allows transduction of the Cdc42 

signal to the actin cytoskeleton through Bni1 and links this with the subsequent delivery and 

tethering of vesicles to the plasma membrane.  

 

1.4.3    The actin cytoskeleton 

 

S. cerevisiae contains three distinct actin structures: actin cables for exocytosis, actin 

patches for endocytosis and actin rings for cytokinesis.  

Actin cables consist of single linear actin filaments bundled together by actin binding 

proteins (Moseley and Goode, 2006). They are polarised towards sites of polarised growth 

and provide the major system for exocytosis (Pruyne et al., 1998; Sagot et al., 2002a). The 

formin Bni1 nucleates actin cables towards the bud cortex whilst a different formin Bnr1 

nucleates them towards the mother bud neck (Imamura et al., 1997). The purpose of actin 

cables is to allow delivery of secretory vesicles from the Golgi to the sites of growth. This 

process is controlled by a number of Rab GTPases and is depicted in figure 1.4. Ypt31 allows 

vesicles to bud off the Golgi and then recruits the GEF (Sec2) for Sec4 (Ortiz et al., 2002). 

Sec2 and Sec4 then mediate vesicle transport along actin cables via the class-V myosin Myo2 

and its light chain Mlc1, to the site of polarised growth (Goud et al., 1988; Walch-Solimena 

et al., 1997) (Schott et al., 2002). 
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Actin patches are  focused at sites of polarised growth (Adams and Pringle, 1984) and 

possibly polarised by Cdc42 (Adams et al., 1990). They are short, branched actin filaments 

(Young et al., 2004)  and are nucleated by the Arp2/3 complex (Winter et al., 1997). The role 

of actin patches is one in endocytosis. They are required for the uptake of excess membrane 

lipids and synthetic enzymes that were first delivered along the actin cables (Valdivia et al., 

2002; Ziman et al., 1996).  

 

1.4.4    The Exocyst  

 

Upon reaching the plasma membrane vesicles must be tethered to it in order for fusion to 

take place. Tethering is mediated by a protein complex called the exocyst. This multimeric 

complex comprises eight subunits: Sec3, Sec15, Sec5, Sec6, Sec8, Sec10, Exo70 and Exo84 

(TerBush et al., 1996).  All subunits except Sec3 can associate with vesicles and a pool of 

Exo70 along with Sec3 can localise to the plasma membrane independently of the actin 

cytoskeleton (Boyd et al., 2004). Cdc42 has been shown to interact directly with both Exo70 

and Sec3 (Wu and Brennwald, 2010; Zhang et al., 2001), with Sec3 localisation required for 

correct exocyst localisation (Finger et al., 1998). Thus Cdc42 is acting upon Sec3 to provide a 

spatial landmark for the exocyst to assemble at the site of polarised growth. Once vesicles 

reach the site of growth, a complete exocyst is formed and the vesicle is tethered at the 

plasma membrane before membrane fusion mediated by the T-SNARE and V-SNARE 

proteins (Rothman, 1996).  A model of polarised growth in S. cerevisiae is shown in figure 

1.4. 

 

1.4.5    Polarised growth and the cell cycle 

 

The cell cycle of S. cerevisiae contains 2 periods of polarised growth, interspersed with 

isotropic or uniform growth. During G1, growth is polarised towards the site of bud 

emergence and later on the bud tip before becoming isotropic during G2 to expand the 

daughter cell size (figure 1.5). Growth again becomes polarised during cytokinesis in order 

to produce the primary septum consisting of chitin and secondary septum of in-growing cell 

wall before cell division. These changes in growth require careful control of signalling 
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proteins, membrane proteins and other species to bring about the correct response of the 

processes discussed above to ensure secretory vesicles are targeted to the sites of growth. 

 

 

 

 

 

 

 

 

 

Figure 1.4 Polarised growth in Saccharomyces cerevisiae 

Polarised secretion in S. cerevisiae requires Rab GTPases, actin cables, Myo2 and the 

Exocyst. The Rab GTPase, Ypt31, allows secretory vesicles to leave the Golgi before 

recruiting the Sec4 GEF Sec2. Sec2 and Sec4 license vesicle transport along actin cables 

(polarised via the polarisome complex at the bud tip), using the class V myosin Myo2 

and its light chain Mlc1. Upon arriving at the growing bud tip, exocyst components on 

the vesicles combine with the independently localising exocyst components Exo70 and 

Sec3 to create a complete exocyst complex. Vesicles are now tethered at the bud tip 

membrane ready for fusion mediated by the SNARE proteins. Image taken from 

(Sudbery, 2008).  

 

 

As polarised growth in S. cerevisiae is linked to the cell cycle, many of the cues for polarised 

growth are controlled by the master cell cycle regulator Cdk1 (Cyclin-Dependent Kinase 1), 

also known as Cdc28. Cdk1 requires different cyclins during stages of the cell cycle; three 

during G1 (Cln1-3) and six during G2 (Clb1-6) 

During G1, Cdk1-G1 cyclins promote the activation the Rho-GTPase Cdc42 in a number of 

ways.  Firstly Cdk1-Cln2 allows release of Cdc24, the Cdc42 exchange factor (positive 
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regulator), from its sequestering protein in the nucleus to the presumptive bud-site (Nern 

and Arkowitz, 2000).  Cdk1-Cln2 also phosphorylates the negative regulators of Cdc42 Bem3 

and Bem2 (Knaus et al., 2007) and Rga2 (Sopko et al., 2007). These events allow active 

Cdc42 to send signals that promote reorganisation of the actin cytoskeleton towards the 

bud site. Then, during G2, Cdc42 is required to re-distribute from the bud tip to the 

daughter cell cortex, a process requiring Cdk1-Clb2 (Pruyne and Bretscher, 2000). It has also 

been speculated that Cdk1G2 may regulate phospholipid flippases that are required  for 

Cdc42 re-localisation from the bud tip to the cortex (Enserink and Kolodner, 2010).  

The morphogenesis checkpoint is mediated by Swe1 and Mih1 and serves to ensure that 

there is no disturbance to the actin cytoskeleton or septin ring before cells progress through 

the G2/M transition. Swe1 can phosphorylate Cdk1 on tyrosine 19, inhibiting the kinase and 

hence stalling the cell cycle (Booher et al., 1993). Whilst Mih1 is thought to reverse this 

phosphorylation so that mitosis can continue (Enserink and Kolodner, 2010).  Further 

reinforcing the relationship between the cell cycle and polarised growth is the fact that S. 

cerevisiae can use the morphogenesis checkpoint through Swe1 to encourage pseudohyphal 

growth (La Valle and Wittenberg, 2001).  

Finally, Cdk1G2 is required for exit from mitosis through the anaphase promoting complex 

(APC). Cdk1 phosphorylates components of the APC resulting in binding of the APC to Cdc20 

(Rudner and Murray, 2000) and subsequent degradation of the G2 cyclins.  
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Figure 1.5  Polarised growth is linked to the cell cycle in S. cerevisiae 

During the yeast cell cycle there are multiple periods of both isotropic and polarised 

growth mediated by localisation of Cdc42 (green). During the majority of G1, growth 

(indicated by arrows) is isotropic, leading to expansion of the mother cell. Then, late in 

G1 and near the S phase transition, growth becomes polarised towards the incipient bud 

site so that the daughter bud emerges. During G2/M phase, growth again becomes 

isotropic so that the whole of the daughter cell expands to two thirds the size of the 

mother. Growth is then directed at the mother bud neck during cytokinesis to provide the 

primary and secondary septum between the two cells ready for cell separation.  

 

1.5    Polarised growth in C. albicans hyphae 
 

S. cerevisiae provides a good model for polarised growth in yeast but does not provide any 

insight into the highly polarised nature of the C. albicans hyphal morphology. In this 

morphology, the polarisation machinery remains at the hyphal tip throughout the cell cycle 

instead of re-distributing to the daughter cell cortex to promote isotropic growth. What 

follows will be a discussion of the key differences in the molecular machinery of polarised 

growth in C albicans.   
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1.5.1    Selection and maintenance of the site of hyphal growth 

 

The role of Rsr1 in marking the site of bud emergence in S. cerevisiae was discussed above. 

Deletions of the Rsr1 protein in C. albicans result in abnormal yeast and hyphal 

morphologies, with hyphae containing frequent bends and an increased amount of 

branching (Hausauer et al., 2005). Furthermore, the same study associated these defects in 

morphology with irregular actin patch polarisation and mis-localisation of the polarisome 

and septin rings. These pieces of evidence point to Rsr1 acting not only as a cortical marker 

for the establishment of the site of germ tube evagination, but also as a stabiliser of the 

polarity machinery later on in hyphal growth. It has also been shown that Rsr1 activity is 

localised to hyphal tips, which is necessary for the localisation of the Rho-GTPase Cdc42 

(Pulver et al., 2013). This led to the proposal that in C. albicans, Rsr1 is required to “fine-

tune” the distribution of Cdc42 at the hyphal tip and does not just act as a bud-site selector.  

The model of Cdc42 discussed earlier requires that the protein transduce its signal through 

the polarisome member, Bni1, to organise the actin network towards the site of polarised 

growth. Components of the polarisome of C. albicans have been shown to localise to a 

crescent at the hyphal tip surface along with Cdc42, signifying that the model may also be 

true here (Crampin et al., 2005; Jones and Sudbery, 2010).  The exocyst also localises to a 

surface crescent in C. albicans and is thought to be controlled by Cdc42 in the same way as 

in S. cerevisiae, except not all vesicles are thought to be carrying exocyst components (Jones 

and Sudbery, 2010). Another role Cdc42 plays in hyphal growth is the induction of hyphal-

specific genes (Bassilana et al., 2005) especially when localised at the tip (Pulver et al., 

2013). Hyphal growth also requires a higher level of Cdc42 than yeast growth (Bassilana et 

al., 2005). The ability of Cdc42 to cycle between its GTP-bound and GDP-bound states has 

been shown to be important for hyphal growth, with mutants lacking the GAPs Rga2 and 

Bem3 being competent at growing as hyphae in pseudohyphal conditions whilst in strains 

with constitutively bound GTP-Cdc42, cells were swollen with stable septin bars (discussed 

later) indicating lack of progression of hyphal growth (Court and Sudbery, 2007).   
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1.5.2    Hyphal tips have a Spitzenkörper structure 

 

When the myosin light chain Mlc1, which is associated with vesicles, is visualised with a GFP 

tag in C. albicans hyphae, it can be seen to localise to a spot just behind the hyphal tip 

(Crampin et al., 2005). This implies the presence of a Spitzenkörper structure. The 

Spitzenkörper has been known for some time in filamentous fungi to drive the growth and 

direction of hyphae (Virag and Harris, 2006).  The Spitzenkörper is a very dynamic structure 

(Jones and Sudbery, 2010), with a stream of incoming vesicles being balanced exactly by an 

outward stream. S. cerevisiae and C. albicans yeast and pseudohyphal morphologies do not 

contain the Spitzenkörper (Crampin et al., 2005).  

The vesicle supply centre model was first proposed in 1989 and suggested that the shape of 

a C. albicans hyphae was dictated by the equal diffusion in all directions of vesicles from a 

vesicle supply centre behind the hyphal tip (Bartnicki-Garcia et al., 1989). Taking the vesicle 

supply centre model, the molecular evidence of hyphal growth in C.albicans and polarised 

growth in S. cerevisiae, leads to a model of hyphal growth (Sudbery, 2011) (shown in figure 

1.6). In this model, vesicles are licensed for exit from the Golgi by the GTPase Ypt31, 

recruiting Sec2 and hence Sec4. Vesicles then travel along actin cables thorough the hyphae 

until they accumulate in the Spitzenkörper before docking with the exocyst and fusion with 

the plasma membrane. However, this has recently been challenged with the idea that the 

hyphal shape is brought about by the density of exocyst components on the hyphal tip 

determining the rate of vesicle fusion, rather than their rate of diffusion from the 

Spitzenkörper (Caballero-Lima et al., 2013). 

 

1.5.3   The septins localise differently in the  three C. albicans morphologies.  

 

In S. cerevisiae, the four septins (GTPases) Cdc3, Cdc10, Cdc11, and Cdc12, have been shown 

to make a ring around the bud neck composed of 10 nm filaments.  The septins act as 

scaffolds, recruiting proteins required for cytokinesis later on in the cell cycle, and also 

acting as a diffusion barrier between the mother cell and the growing daughter bud. The 

septins are reviewed fully in (Oh and Bi, 2011).  
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Image taken from (Sudbery, 2011).  

 

 

Figure 1.6 A model of hyphal growth in C. albicans 

During hyphal growth in C. albicans, secretory vesicles are transported along actin 

cables to sites of polarised growth in a manner similar to that in S. cerevisiae, regulated 

by the Rab GTPases Ypt31, and Sec4 (Figure1.4). In C. albicans, vesicles accumulate at 

a structure just behind the growing tip called the Spitzenkörper before tethering to the 

membrane via the exocyst. In the vesicle supply centre model, the diffusion of vesicles 

from the Spitzenkörper dictates the shape of the hyphal tip, however recent research 

suggest the shape is more likely defined by the localisation of exocyst subunits on the 

plasma membrane.  

 

In C. albicans there are two essential septins, Cdc3 and Cdc12  and non-essential septins 

Cdc10, Cdc11 and Sep7, which all play a role in septum formation and cytokinesis (Sudbery, 

2007; Sudbery, 2001; Warenda and Konopka, 2002). The septins localise differently in yeast, 

pseudohyphal and hyphal morphologies of C. albicans (Sudbery, 2001). In the yeast 

morphology, septins first form a ring at the mother-bud neck before later splitting in two 

before cytokinesis for the primary and secondary septum to form in between.  

Pseudohyphae show a similar localisation pattern. During hyphal growth, septins first form 

bars at the neck of early germ tubes before later re-assembling into a ring structure in the 

hyphal tube that marks where the septum will form. Again this ring later splits in two before 
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cytokinesis.  This different localisation of the septins provides a useful technique in 

distinguishing between the different C. albicans morphologies and is shown in figure 1.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Image taken from (Sudbery, 2007) 

 

Figure 1.7 The differential localisation of the septins in C. albicans morphologies 

During growth as yeast (A) and pseudohyphae (B) the C. albicans septins localise to a 

ring around the mother-bud neck which later splits in two during cytokinesis. During 

hyphal growth, the septins first appear as bars at the base of the early hyphal germ tube 

(C). Later on they form a ring (D) along the length of the hyphae before splitting in two 

for the septum to form in between (E). 

 

1.5.4    Hyphal growth and the cell cycle 

 

As discussed above, in S. cerevisiae, the cell cycle is linked to morphogenesis by the master 

cell cycle regulator Cdc28/Cdk1. However, in C. albicans hyphae, polarised growth is not 

linked to the cell cycle. The Spitzenkörper drives emergence of the early germ tube before 

the cell cycle has started, before spindle pole body duplication and DNA replication (Hazan 

et al., 2002). However, the cell cycle and polarised growth in hyphae are both controlled by 

Cdc28 (Bishop et al., 2010).  
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As discussed earlier, Cdc28 activity is regulated in part by binding to cyclins. Three G1 cyclins 

control cell cycle progression and morphogenesis in C. albicans:  Ccn1 (Sinha et al., 2007); 

Cln3 (Chapa y Lazo et al., 2005)and Hgc1 (Hyphal-specific G1 cyclin) (Zheng and Wang, 

2004). Mutants of either of these cyclins are able to start hyphal growth but fail to maintain 

it. The cln3 shut-down is lethal, with cells arresting in G1 with swollen tips and bends in the 

hyphae. The ccn1ΔΔ mutant fails to maintain hyphal growth after germ tube formation and 

hgc1ΔΔ mutants cease hyphal growth early after induction, producing only small 

protrusions. Deletion of CCN1 and HGC1 does not inhibit cell cycle progression, but does 

inhibit growth dramatically, suggesting that they play a bigger part in morphogenesis than 

the cell cycle (Biswas et al., 2007) 

 

1.5.5    Targets of Cdc28 during polarised growth 

 

The kinase Cdc28 regulates many of the proteins that are involved in polarised growth. 

Perhaps most interestingly, Cdc28-Hgc1 phosphorylates and inactivates Rga2, the Cdc42 

GAP (Zheng et al., 2007). As Cdc42 is seen as the master regulator of polarised growth, this 

provides a mechanism for the highly polarised growth of hyphae in which inactivation of 

Rga2 allows continued activation of Cdc42 at the hyphal tip and hence continued polarised 

growth. Cdc28-Hgc1 and Cdc28-Ccn1 also phosphorylates Sec2, which is important for its 

localisation to the Spitzenkörper and normal hyphal growth (Bishop et al., 2010). An 

important part of the hyphal morphology is the lack of cell separation at the end of the cell 

cycle. This is regulated in two ways by Cdc28. Firstly, Cdc28-Hgc1 phosphorylates the 

transcription factor Efg1 leading to down regulation of the septum degradation enzymes 

(SDE’s) (Wang et al., 2009). Secondly, Cdc28-Hgc1 phosphorylates the septin Sep7. This 

prevents Cdc14 localising to the septin ring and hence the kinase Cbk1 (discussed later in 

this chapter) licensing Ace2 to transcribe the SDE’s (Gonzalez-Novo et al., 2008). Cbk1 itself 

and its regulator Mob2, is also a target of Cdc28 and will be discussed in due course.  A 

model of the Cdc28 action to repress the SDE’s is shown in figure 1.8. 
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Figure 1.8 Cdc28 represses cell separation in C. albicans hyphae 

During yeast growth, Cdc14 is released from the nucleus upon activation of the mitotic 

exit network. This allows dephosphorylation of Cdc28 sites on Cbk1 by Cdc14 so that 

Cbk1 can licence Ace2 to the daughter nucleus for the transcription of the septum 

degrading enzymes (SDEs) and cell separation can occur.  

During hyphal growth, Cdc28-Hgc1 represses cell separation in two ways. Firstly, it 

phosphorylates the transcription factor Efg1, which in turn represses expression of the 

SDEs. Secondly, it phosphorylates the septin Sep7, making the septin Cdc10 more 

dynamic and blocking Cdc14 from entering the septum. This allows Cbk1-Mob2 to 

remain at the hyphal tip so they don’t licence Ace2 to enter the daughter nuclei and 

transcribe the SDEs. Image modified from (Sudbery, 2011).  

 
 

 



18 
 

1.6    Cell signalling pathways that control morphogenesis in C. 

albicans 
 

Hyphal-specific genes that are induced upon environmental cues in C. albicans include those 

for proteins involved in cell wall reorganisation and adherence such as Hwp1 (Hyphal cell 

wall protein 1), Ece1 (Extent of cell elongation 1) and Als3 (Agglutinin-like synthase) (Biswas 

et al., 2007). Transcription of these genes is controlled by two major transcription factors 

Efg1 and Cph1 and others such as Rim101 and Czf1.  C. albicans senses environmental cues 

such as temperature,  pH, N-acetylglucosamine and CO2 levels using membrane receptors 

and must transduce these signals to bring about a transcriptional response (Biswas et al., 

2007).  There are two well studied signal transduction pathways that lead to hyphal growth, 

the Cek1 pathway leads to stimulation of the Cph1 transcription factor, whilst the cAMP-

PKA pathway stimulates the Efg1 transcription factor.  Both pathways are reviewed in 

(Biswas et al., 2007) and are shown in figure 1.9.  

The Cek1 pathway is a Mitogen-Activated Protein Kinase pathway (MAPK) consisting of 

Cst20, Ste11, Hst7, and Cek1. Deletion of any of these components results in defects in 

hyphal growth in response to many conditions except serum. This pathway can also be 

activated by Cdc42 binding to Cst20 (Su et al., 2005). 

The cAMP-PKA pathway consists of Tpk1 and Tpk2- the catalytic subunits of the cAMP 

dependent protein kinase A (cAMP-PKA) - and their regulatory subunit Bcy1. Both Tpk1 and 

Tpk2 are needed for hyphal growth, although Tpk1 appears to be more important on solid 

medium and Tpk2 more so in liquid medium (Sonneborn et al., 2000).  

Both the cAMP-PKA and MAPK pathway are regulated by the upstream component Ras1, 

most probably by increasing production of cAMP in the former and an unknown mechanism 

in the latter. 

Hyphal-specific genes are negatively regulated by the transcription factor Tup1 in concert 

with any one of its co-repressors: Rfg1, Mig1 or Nrg1, deletion of which cause constitutive 

filamentation (Biswas et al., 2007). Interestingly, recent unpublished work showed that 

Cdc28 phosphorylates Nrg1 in order to repress it and allow hyphal morphogenesis to occur 

(Alaalm, LM, PhD thesis, Sheffield University). 
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1.6.1    The small GTPase Rac1 is required for embedded filamentous growth in C. 

albicans 

 

This study has already discussed the importance of two small G-proteins, Cdc42 and Rho1 in 

cell polarity in both S. cerevisiae and C. albicans. The small G-protein Rac1 has been shown 

to be required for hyphal growth and invasiveness in other fungi (Mahlert et al., 2006; 

Vallim et al., 2005; Virag et al., 2007), whilst in mammals, Rac1 homologs regulate signalling 

pathways that also control cell polarity (Bosco et al., 2009).  It has been shown that the C. 

albicans Rac1 and its GEF Dck1 are required for hyphal growth when the organism is 

embedded in a matrix but not when grown in liquid culture (Hope et al., 2008) (Bassilana 

and Arkowitz, 2006). Rac1 is not needed for organisation of the cytoskeleton and its role is 

independent of Cdc42, (Bassilana and Arkowitz, 2006). These results show that even though 

both Cdc42 and Rac1 are involved in cell polarity, they each perform different roles in C. 

albicans. Like human Rac1, it has been shown that C. albicans Rac1 shuttles between the 

plasma membrane and the nucleus (Vauchelles et al., 2010), although the purpose of this 

remains unknown. It has been shown that Rac1 functions upstream of the mitogen 

activated protein Cek1 and Mkc1 (Mpk1 in the S. cerevisiae CWI) (discussed above) (Hope et 

al., 2010) which links it to both hyphal growth and cell wall integrity.  
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Figure 1.9 Numerous signalling pathways contribute to C. albicans hyphal 

morphogenesis 

 

1.7    The C. albicans cell wall 
 

The Candida albicans cell wall has two main functions: maintenance of the structural 

integrity of the cell and recognition/adhesion to either the human host or other surfaces 

such as catheters. The cell wall and its role in adhesion is reviewed fully in (Gow and Hube, 

2012) and (Chaffin, 2008). Briefly, the cell wall is composed of two main layers which have 

been identified by differing electron densities. The outer cell wall is composed of N- and O- 

linked mannans and cell wall proteins such as adhesins and invasins. The inner layer is 

comprised of two different forms of polysaccharide: β-glucans (β-1,3 and β-1,6) and chitin.  

β-1,3-glucan provides a flexible branched network to which β-1,6-glucan and chitin are 
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attached. This inner layer provides structural rigidity to the cell whilst the outer layer is less 

permeable, preventing host molecules from entering (Gow and Hube, 2012). The majority of 

cell wall proteins (CWPs) are covalently attached to the β-1,6-glucan via a 

Glycosylphosphatidylinositol (GPI) anchor. Pir proteins are also covalently attached to the β-

1,3-glucan, whilst some proteins do not use a covalent bond but remain cell wall associated 

(Chaffin, 2008).  In S. cerevisiae, the glucan synthases are embedded in the plasma 

membrane and extrude glucan polymers into the cell wall by addition of UDP-glucose (Klis et 

al., 2006; Lesage and Bussey, 2006) which is also thought to be the case in C. albicans. The 

chitin synthases operate in a similar way (Lesage and Bussey, 2006).  

 

1.8    Rho1 is a central member of the cell wall integrity pathway 
 

In S. cerevisiae, Rho1 is a small GTPase that localises to sites of growth (Yamochi et al., 

1994), which is anchored in the cell membrane via prenyl groups. RHO1 is essential and 

temperature sensitive mutants show a failure to maintain growth of the daughter bud  

(Yamochi et al., 1994). Rho1 is a central member of the cell wall integrity pathway (CWI) 

shown in Figure 1.10.  The CWI pathway has been well studied in S. cerevisiae, is mainly 

conserved in C. albicans (Blankenship et al., 2010) and is required to maintain the structure, 

shape and strength of the cell wall in response to both external stimuli and internal cues for 

cell wall remodelling. The CWI pathway consists of a series of membrane sensors (Wsc1-3, 

Mid2, Slt2) and a MAP kinase signalling cascade that are linked by Rho1-GTP.  

The MAP kinase pathway consists of: Pkc1, Bck1, Mkk1/2 and Mpk1, with each one 

activating the next in turn by phosphorylation (Levin, 2011).  The deletion of any kinase 

downstream of Pkc1 results in osmoremedial cell lysis at 37 °C, whereas loss of Pkc1 itself 

results in osmoremedial cell lysis at all temperatures (Levin and Bartlett-Heubusch, 1992; 

Paravicini et al., 1992). Interestingly, Mpk1 is mainly located in the nucleus but shuttles to 

the cytoplasm under cell wall stress (Kamada et al., 1995) and is also seen at sites of 

polarised growth (van Drogen and Peter, 2002) which requires the polarisome scaffold Spa2. 

The Mkk1-2 kinases are also localised to sites of polarised growth in a manner dependent on 

Spa2 (van Drogen and Peter, 2002).  Perhaps this provides a link between sites of polarised 
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growth and the cell wall integrity machinery. The MAP kinase cascade in the CWI culminates 

on two transcription factors: Rlm1 and SBF (Swi4 and Swi6).  

Rlm1 is phosphorylated by Mpk1 so that it remains nuclear (Jung et al., 2002) and is 

responsible for the majority of CWI mediated transcription and as such has been subjected 

to many genome-wide analyses (Jung and Levin, 1999) (Lagorce et al., 2003). Around 25 

genes are differentially transcribed when Mkk1 is constitutively active (Jung and Levin, 

1999), with the majority being suspected or known cell wall proteins.  Another study used 

constitutively active Rho1 and Pkc1 to identify a set of genes common between the two 

(Roberts et al., 2000), which included Rlm1 itself, suggesting that a feedback loop exists.  

SBF is composed of both Swi4 and Swi6, with the former being recruited to the promoters of 

cell wall stress genes first before the latter is recruited to allow binding of RNA polymerase II 

(Kim and Levin, 2011; Kim et al., 2008). This mechanism of activation is important so that 

SBF is not recruited to the promoters of cell cycle genes that it can control on its own during 

G1 instead of the CWI regulated genes. SBF is thought to regulate cell wall and 

morphogenesis genes, especially the β-1,3-glucan synthase component FKS2 (discussed 

later) and PLC1, a cyclin (Baetz et al., 2001). 

 

1.9    Targets of Rho1 
 

Other than Pkc1 and the subsequent MAP kinase cascade discussed above, Rho1 targets: 

Bni1 and Bnr1, Sec3, Skn7 and β-1,3-glucan synthase, which are discussed in detail below.  

1.9.1    Bni1 and Bnr1 

 

As previously mentioned Bni1 and Bnr1 are both formins that nucleate and protect actin 

filaments from capping. Bni1, a member of the polarisome, polarises actin to the bud tip 

(Ozaki-Kuroda et al., 2001), whereas Bnr1 polarises actin to the mother-bud 
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Figure 1.10 The yeast cell wall integrity (CWI) pathway 

The CWI consists of a series of cell surface sensors linked to various output pathways via 

the GTPase Rho1, and serves to maintain cell wall integrity under external stresses and in 

response to cell wall growth needs. Regulation of transcription programmes and links to 

actin reorganisation, exocyst regulation and glucan synthesis are mechanisms through 

which the CWI achieves its goal and all are discussed in the text. Like all GTPases, Rho1 

is regulated by numerous GEFs and GAPs that may be specific for each potential target.  

 

neck (Buttery et al., 2007).  Rho1-GTP (along with other Rho proteins) has been shown to 

interact with Bni1 (Kohno et al., 1996). This interaction prevents auto-inhibitory binding of 

the N-terminal Rho-binding domain (RBD) of Bni1 to its own C-terminal domain (Alberts, 

2001).  Furthermore, the localisation of Bni1 to the bud tip is dependent on its Rho1-binding 

domain (Fujiwara et al., 1998).  This evidence points to Rho1 affecting polarisation of the 

actin cytoskeleton during cell wall remodelling. 

1.9.2    Sec3 

 

Discussed earlier, Sec3 is a member of the exocyst structure, acting as a landmark for 

exocyst assembly at sites of polarised growth. Rho1, Rho3 and Cdc42 all associate with Sec3 

(Zhang et al., 2001; Zhang et al., 2008). Rho1-GTP interacts with Sec3, is required to 

establish and maintain Sec3 polarity (Guo et al., 2001) and Rho1 and Cdc42 actively 

compete in vitro for the N-terminal Domain of Sec3 (Zhang et al., 2001).  This data suggests 
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that both Cdc42 and Rho1 are directing information for Sec3 to mark the site of polarisation 

and exocyst docking but at different times during polarised growth. 

 

1.9.3    Skn7 

 

Ssk1 and the transcription factor, Skn7, are the only currently identified yeast proteins that 

are related to the bacterial two-component signal transduction pathways (Li et al., 1998). 

Both are known to be regulated through the HOG1-MAPK signalling pathway and work 

antagonistically  under changes in extracellular osmolarity, reviewed in (Levin, 2011). 

However, there have been numerous lines of evidence to suggest that Skn7 is also regulated 

by Rho1. Rho1-GTP has been shown to associate with Skn7 between the transcription 

factor’s DNA-binding and response regulator domains (Alberts et al., 1998). Skn7 also 

contributes to cell wall integrity. Overexpression of the CWI sensor MID2 stimulates a Skn7 

transcriptional reporter (Ketela et al., 1999) and has been implicated in the function of Crz1, 

required for induced expression of FKS2 (required for β-1,3-glucan synthesis) (Williams and 

Cyert, 2001).  Growth defects of a pkc1 mutant can also be overcome by overexpression of 

SKN7 (Brown et al., 1994). These lines of evidence all point towards a role for Skn7 in cell 

wall integrity and biogenesis, although genes regulated by the transcription factor as a 

result of stimulation by the CWI pathways have yet to be elucidated. 

1.9.4   β-1,3-glucan synthase 

 

A major component of the yeast cell wall is β-1,3-glucan (Kollar et al., 1997). The polymer 

consists of chains of glucose linked by β-glycosidic bonds and provides the main structural 

support to the cell wall. The enzyme responsible for glucan synthesis, glucan synthase (GS), 

catalyses the glucan chains from monomers of UDP-glucose and is the major target of a 

large proportion of anti fungal drugs, the echinocandins, which interfere with GS activity 

(Beauvais et al., 1993; Perlin, 2007). GS is located in the plasma membrane and extrudes 

polymers onto the outside of the cell (Kopecka and Kreger, 1986). There are two alternative 

catalytic domains of the S. cerevisiae glucan synthase, encoded by the closely related genes 

FKS1 and FKS2 (Mazur et al., 1995). Fks1 and Fks2 have multiple transmembrane domains 

and a large cytoplasmic domain. Rho1 is an essential regulatory subunit of glucan synthase 
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and the GTPase stimulates activity of the GS in a manner dependent on GTP (Qadota et al., 

1996). As would be expected, both proteins localise to sites of cell wall growth (Qadota et 

al., 1996). Further to this, glucan synthase co-localises and moves in concert with actin 

patches (Utsugi et al., 2002). As well as controlling GS directly, Rho1 plays a role in the 

transcription of the FKS1 and FKS2 genes. 

FKS1 is the major gene expressed under normal growth conditions (Ram et al., 1995), and is 

regulated in a cell-cycle dependent manner by the transcription factor SBF (see above) (Igual 

et al., 1996; Spellman et al., 1998). FKS1 is also weakly regulated by the Rlm1 transcription 

factor after activation via the CWI MAPK pathway (Igual et al., 1996; Jung and Levin, 1999). 

FKS2 is expressed at low levels under good growth conditions and is up-regulated in 

response to stresses on the cell wall, lack of carbon, mating pheromone or absence of FKS1 

(Mazur et al., 1995; Zhao et al., 1998). Cell wall stress causes an increase in FKS2 expression 

in the short-term by the calcineurin-activated transcription factor Crz1 (Zhao et al., 1998). 

However, this high expression is maintained during prolonged cell wall stress by the 

activation of SBF through the CWI MAPK pathway (discussed earlier) (Zhao et al., 1998). It is 

important then to note that Rho1 controls β-1,3- glucan synthase production in multiple 

ways, not only through direct interaction with GS but also through regulation of the 

expression of FKS1 and FKS2.  

 

1.9.5    Rho1 is regulated by multiple GAPs and GEFs 

 

As a GTPase, Rho1 must cycle between GTP and GDP bound states and there are multiple 

GEFs and GAPs that regulate Rho1 between these states, shown in figure 1.11 

There are 3 GEFs that regulate Rho1: Tus1, Rom1 and Rom2 (Kono et al., 2008; Ozaki et al., 

1996).  Loss of either TUS1 or ROM2 causes temperature sensitive growth, whereas loss of 

both ROM1 and ROM2 is lethal. (Ozaki et al., 1996; Schmelzle et al., 2002). By binding to cell 

surface sensors Mid2 and Wsc1 with their N-terminal domain and to Rho1 via a RhoGEF 

domain, Rom1 and Rom2 transduce signals at the cell membrane to the CWI pathway (Philip 

and Levin, 2001).  Tus1 however, does not contain the N-terminal domain to bind surface 

sensors as its role is mainly in cell cycle activation of Rho1. This activation occurs through 

Cdc28-Cln2 phosphorylation of Tus1, and recruits Tus1 to the growing bud (Kono et al., 
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2008). Interestingly, it has been speculated that further phosphorylation of Tus1 by the 

polo-like kinase Cdc5 (Yoshida et al., 2006) serves to relocate Rho1 to the mother bud neck 

later on in the cell cycle (Levin, 2011). As expected by the localisation of Rho1, all three 

Rho1 GEFs require the actin cytoskeleton to localise to sites of polarised growth (Kono et al., 

2008; Manning et al., 1997).  

Four GTPase-activating proteins (GAPs) are known to act on Rho1; Bem2 (also a GAP of 

Cdc42), Sac7, Bag7 and Lrg1.  These GAPs seem to stimulate Rho1 according to its different 

downstream targets.  Bem2 and Sac7 are both involved in down-regulation of the MAPK 

signalling pathway through lack of Pkc1 stimulation by Rho1 (Martin et al., 2000; Schmidt et 

al., 2002). Sac7 is also involved in organisation of the actin cytoskeleton (Schmidt et al., 

2002) along with Bag7. Lrg1 serves as the only GAP that negatively regulates the β-1,3-

glucan synthase through its action on Rho1 (Watanabe et al., 2001).  However, a study in N. 

crassa revealed that Lrg1 affected the PKC/MAK1 pathway and actin organisation, as well as 

GS activity. The study also showed that Lrg1 was required for hyphal tip extension and to 

prevent aberrant branch formation (Vogt and Seiler, 2008a). This then indicates that the 

function of Lrg1 may have diverged from S. cerevisiae in the highly polarised N. crassa.  

As well as regulation by GAPs and GEFs, Rho1 can be regulated by guanine nucleotide 

exchange factors (GDIs). S. cerevisiae possess one GDI, Rdi1 which can extract both Rho1 

and Cdc42 from the plasma membrane and hence inhibit their activity (Eitzen et al., 2001; 

Richman et al., 2004). Interestingly, the C. albicans ortholog of Rdi1 is regulated by the 

hyphal repressor Nrg1 (Kadosh and Johnson, 2005). Due to Rho1 being essential for growth 

and targeting multiple mechanisms such as cell wall signalling, the actin cytoskeleton, cell 

wall synthesis and the exocyst, Rho1 has been implicated in controlling cell polarity in S. 

cerevisiae, reviewed in (Madden and Snyder, 1998).  
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Figure 1.11 Multiple GAPs and GEFs regulate Rho1 GTP cycling 

The GTP-bound state of Rho1 is regulated by multiple factors. The GEFs Tus1, Rom2 

and Rom1 stimulate exchange of GDP for GTP on Rho1. However, the GAPs Lrg1, 

Bag7, Sac7 and Bem2 stimulate the inherent GTPase activity of Rho1 to hydrolyse GTP 

to GDP.  

 

1.10    Candida albicans Cbk1 is a member of the NDR family kinases 
 

The Candida albicans CBK1 (cell wall biosynthesis kinase) gene was first identified due to its 

homology to a serine/threonine kinase, UKC1, in Ustilago maydis (McNemar and Fonzi, 

2002). Candida albicans Cbk1 was noted as being required for maintaining cell morphology, 

differentiation of yeast cells into hyphae and cell separation. It was also shown that cbk1 

null mutants have an altered pattern of expression in genes associated with the cell wall and 

the transition from yeast to hyphal growth.  

Candida albicans Cbk1 is a member of the NDR (nuclear dbf2-related) kinase group (a sub-

class of AGC protein kinases) which is highly conserved amongst many organisms (Hergovich 

et al., 2006). Members of this group include: Trc in Drosphila melanogaster, SAX-1 in 

Caenorhabditis elegans, Sid2 and Orb6 in Schizosaccharmyces pombe and namesake of 

Candida albicans Cbk1 due to its high homology, Cbk1 in S. cerevisiae.  The family of kinases 

are involved in important cellular processes such as morphological changes, proliferation, 

apoptosis and mitotic exit and are reviewed fully in (Hergovich et al., 2006). All members of 

the family share structural similarities. They contain a conserved serine/threonine residue 

within the activation domain which is auto-phosphorylated- (unlike other AGC kinases)- and 

a serine/threonine at a C-terminal hydrophobic region, phosphorylation of which is also 
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important in activation (Tamaskovic et al., 2003). Phosphorylation of this C-terminal site is 

often by a Ste-20 like kinase such as Mst3 in humans (Stegert et al., 2005). In contrast to 

other NDR kinases, yeast variants also have weakly conserved extensions at the N-Terminus 

(Hergovich et al., 2006). 

 

1.11    Cbk1 is a member of the RAM network  
 

The Cbk1 protein is a component of the yeast RAM (regulation of Ace2 transcription factor 

and polarised morphogenesis) network, shown in figure 1.12. In S. cerevisiae, the RAM 

network is understood well and it is comprised of at least 5 other proteins with varying 

functions: Mob2 forms a complex with Cbk1 and is required for its localisation and 

activation (Weiss et al., 2002); Kic1 (a Ste20-like kinase) acts upstream of Cbk1 and probably 

activates it through phosphorylation (see above); Hym1 interacts with both Cbk1 and Kic1 

and is important for proper localisation of the complex; Pag1 is a large scaffold protein that 

may aid the action of Kic1 and Sog2 is an essential component of the network with as yet an 

unidentified function (Nelson et al., 2003). As the name suggests the role of the RAM 

network is two-fold: In the first instance it is responsible for maintaining polarised growth 

within the cell. Mob2 and Cbk1 both localise to the bud tip during polarised growth and the 

daughter nucleus and bud neck during late mitosis, with Cbk1 being activated throughout 

this time (Weiss et al., 2002). Furthermore, all components of the network are localised to 

sites of polarised growth and mutants of each fail to maintain polarised growth correctly, as 

shown by the following: more spherical cells, wider bud necks and an increase in the 

number of aborted mating projections (Nelson et al., 2003).  

The second role of the RAM network is to maintain daughter cell-specific localisation of 

Ace2. As discussed above, Ace2 is a transcription factor that, when localised to the daughter 

cell by the Cbk1/Mob2 complex, activates the expression of daughter-specific genes, such as 

CTS1 and SCW11, that encode chitinases or glucanases responsible for the cell wall 

degradation that  separates the two cells (Colman-Lerner et al., 2001). This process of 

licensing Ace2 to the daughter nuclei is dependent on dephosphorylation of Cdc28 sites on 

Cbk1 by Cdc14 (Brace et al., 2011) (figure 1.8). Hence, any deletion in the RAM network 

leads to cell separation defects. 
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Figure 1.12 The S. cerevisiae RAM network 

The Regulation of Ace2 and Morphogenesis (RAM) network is responsible for 

localisation of the Ace2 transcription factor to the daughter nucleus and is essential for 

polarised growth. It is composed of at least six proteins of which Cbk1 is the key kinase. 

Cbk1 is activated in two ways: by phosphorylation by the upstream kinase Kic1 and 

auto-phosphorylation whilst bound to its partner Mob2.  

 

Song et al,  sought to investigate the role of the RAM network in C. albicans and its function 

in cell polarity and hyphal growth (Song et al., 2008). It was found that each of the S. 

cerevisiae orthologs in C. albicans were critical for the network to function properly. 

Mutants in any of the components result in cells that appear more spherical with a cell lysis 

phenotype. RAM network mutants also form large aggregates with mother and daughter 

cells failing to separate after mitosis. Furthermore, it was observed that RAM network 

mutants in C. albicans fail to form hyphae under all laboratory conditions that normally 

induce the morphology. In addition, it was found that expression of many genes required for 

hyphal growth is also RAM network dependent. These results show that although the C. 

albicans RAM network functions in much the same way as the S. cerevisiae model, it has 

diverged to include control of hyphal morphogenesis. Interestingly, homologs of Cbk1 in N. 

crassa and A. nidulans are also required for hyphal growth (Shi et al., 2008; Yarden et al., 

1992). The N. crassa CBK1 homolog COT1 has also been shown to interact genetically with 

the Rho1 GAP LRG1. It is clear that the RAM network plays an important role in C. albicans 

and Cbk1 is a central member which requires further study. In 2010 Regan, H (Phd thesis, 
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University of Sheffield) sought to identify targets of the Cbk1 kinase in C. albicans by 

searching the proteome for targets with Cbk1 phosphorylation consensus motifs. A total of 

1,445 potential targets were identified with varying numbers of internal motifs. Potential 

targets for investigation were then chosen based on those with the highest number of 

phosphorylation sites and their known/predicted role in polarised growth. The study 

identified the Rho1 GAP Lrg1 (above) as a potential target of Cbk1 but no further 

investigation was conducted.  

 

1.12    Aims of this study 
 

The critical role that Cdc28, Cbk1 and Rho1 all play in cell morphogenesis and polarised 

growth in C. albicans is discussed above. In S. cerevisiae it has been shown that Cdc28 

regulates Rho1 activity through its action on the GEF Tus1. It has also been shown that in N. 

crassa, the Rho1 GAP Lrg1 is required for hyphal tip extension and maintenance of cell 

polarity. This study sought to investigate to what degree the as yet uncharacterised C. 

albicans Lrg1 protein played in the organism’s morphogenesis and polarisation. It was also 

investigated whether Cdc28 regulates the cell wall integrity pathway through 

phosphorylation of Lrg1 and the potential cellular consequences resulting from this. Due to 

the joint action of Cdc28 and Cbk1 in bringing about hyphal growth, as well as genetic 

evidence linking CBK1 and LRG1 homologs, the regulation of Lrg1 by Cbk1 was also 

examined.  
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2 Materials and Methods 

 

2.1    Culture Media 
 

Media was prepared with deionised water and separated into 0.1 L aliquots before 

autoclaving at 121 °C, 15 psi for 20 minutes. Broth was stored at room temperature and 

plates were stored at 4 °C. 

 

2.2    Candida albicans growth media 
 

YPD 

YPD contained 1 % w/v BactoTM-yeast extract, 2 % w/v BactoTM-peptone, 2 % w/v D-glucose 

(Fisher Scientific) and 80 mg L-1 uridine (Sigma Aldrich). For plates 2 % BactoTM-agar was 

added. 

YPM 

YPM is the same as YPD but contains 2 % w/v Maltose instead of glucose. 

Minimal medium (YNB) 

Minimal medium contained 2 % w/v D-glucose (Fisher Scientific), 0.67 % w/v yeast nitrogen 

base (without amino acids), 80 mg L-1 histidine (Sigma Aldrich), 80 mg L-1 arginine (Sigma 

Aldrich) and 80 mg L-1 uridine (Sigma Aldrich). For agar plates 2 % BactoTM-agar was added. 

If the media was required to select for prototrophic strains, the appropriate amino acid was 

omitted from the media. 
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Met3-OFF media 

Met3-Off media contained: 2 % w/v D-glucose (Fisher scientific), 0.67 % w/v yeast nitrogen 

base (without amino acids), 60.6 mg L-1 methionine, 373 mg L-1 cysteine, 770 mg L-1 

complete supplement media lacking methionine, 80 mg L-1 uridine. 

 

Met3-On media 

Met3-On media contains the same ingredients as Met3-Off media but lacking both 

methionine and cysteine.  

 

2.3    Escherichia coli growth media 
 

2TY plus Ampicillin 

2TY contained 1 % w/v BactoTM-yeast extract, 1.1 % w/v BactoTM-tryptone and 0.5 % w/v 

NaCl (Fisher Scientific). Media was then adjusted to pH 7.4 with NaOH. For plates, 1.5 % 

BactoTM-agar was then added. 

If selection for resistance to ampicillin was required, the media was cooled after autoclaving 

to approximately 55°C before ampicillin was added to a final concentration of 100 µg ml-1. 

2.4    Growth conditions for C. albicans and E. coli 
 

To induce the three different morphologies of C. albicans, the following conditions were 

used: 

Morphology pH of media Temperature (°C) New-born calf serum (v/v %) 

Yeast 4.0 30 - 

Pseudohyphae 5.5 36 - 

Hyphae 7.0 37 20 
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Overnight cultures were grown in YPD media, unless otherwise stated, with shaking at 30 °C. 

For experimental cultures, after addition of serum if required and then pH adjustment, 

relevant media was pre-warmed at the required temperature for at least 30 minutes prior 

to inoculation.  

Growth on Caspofungin 

To analyse susceptibility to caspofungin, C. albicans strains were first inoculated into YPD 

and grown at 30°C overnight to stationary phase. Cultures were then sonicated for 5s to 

break up any clumps of cells and then adjusted with fresh YPD to read the same absorbance 

at OD600. The cells were subjected to serial dilutions to 1x104 and 1x06 final concentrations. 

1 µl of each dilution was then spotted onto YPD agar plates containing different 

concentrations of Caspofungin acetate (Sigma Aldrich). 

 Transformation of Candida albicans 

Transformation of C. albicans was carried out using the lithium acetate method adapted 

from (Wilson et al., 1999).  

A single C. albicans colony to be transformed was inoculated into 10 ml YEPD and left to 

incubate at 30 °C with shaking overnight. Using the overnight culture, 50 ml  pre-warmed 

and aerated fresh YEPD was inoculated to an OD600 of 0.2 and incubated at 30 °C with 

shaking until the OD600 reached  approximately 0.6. Cells were harvested by centrifugation 

at 3000 rpm for 5 minutes, re-suspended in wash buffer (10 mM Tris-HCL, pH 7.5, 1 mM 

EDTA and 100 mM LiAc) and centrifuged at 8,000 rpm for 15 seconds. The cell pellet was 

again re-suspended in 200 µl wash buffer. The cell re-suspension was then split in half, with 

each half added to the following: 300 µl 55 % w/v polyethylene glycol 4400 (PEG), 30 µl 10x 

TE buffer (100mM Tris-HCL, pH 7.5, 10mM EDTA), 36 µl of 1 M lithium acetate and 10 µl of 

10 mg/ml denatured salmon sperm (boiled for 3 minutes, kept on ice thereafter) (Sigma 

Aldrich). To the experimental sample 100 µl of transforming DNA from a PCR reaction (see 

Polymerase chain reaction (PCR) for C. albicans transformation) or 8-10 mg linearised 

plasmid DNA was added whilst 100 µl of sterile, deionised water was added to the negative 

control. After gentle mixing using a pipette tip, the cells were incubated in a 30 °C water 

bath overnight. 40 µl of dimethyl sulfoxide (DMSO) was then added to each tube followed 
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by a gentle inversion and heat-shock at 42 °C for 15 minutes. Cells were then harvested by 

centrifugation at 8000 rpm for 15 seconds and gently re-suspended in 200 µl sterilised, 

distilled water. Cells were spread onto pre-warmed plates of the required selection media 

and left to incubate at 30 °C for 3-4 days before any colonies present were re-streaked onto 

selective media, incubated at 30 °C and then tested for correct integration by colony PCR. 

Preparation of chemically competent E. coli 

The DH5α strain of E. coli (Delta Biotechnology) was made chemically competent using the 

Rubidium chloride method. The strain was grown in one litre of 2TY media to an OD550 of 

0.48. Cells were harvested and re-suspended in 40 ml ice cold TfbI buffer (30 mM KAc, 10 

mM RbCl2, 10 mM CaCl2 50 MnCl2, 15 % glycerol, pH 5.8 (adjusted with acetic acid)) before 

incubation on ice for 10 minutes. Cells were again harvested and re-suspended in 5 ml ice 

cold TfbII buffer (10 mM MOPS, 75 mM CaCl2, 10 mM RbCl2, 15 % glycerol, pH 6.5 (adjusted 

with potassium hydroxide)) before being incubated on ice for 15 minutes. Cells were then 

dispensed into 100 µl aliquots and flash-frozen in liquid nitrogen before being stored at -80 

°C.  

Transformation of E. coli 

Transformation of E. coli was carried out using DH5α chemically competent cells. Cells were 

taken from storage at -80 °C and thawed on ice. To 50 µl of cells, 200-300ng of DNA was 

added and left to incubate on ice for 10 minutes. The cells were then heat-shocked at 42 °C 

for 45 seconds before the addition of 450 µl of 2TY broth and incubation at 37 °C for 60-90 

minutes. 50, 100 and 300 µl aliquots were spread onto 2TY plus ampicillin plates and 

incubated at 37 °C overnight. Colonies obtained were subjected to Miniprep procedure and 

restriction digest to test for presence of correct plasmid. 
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2.5    DNA techniques 
 

Polymerase chain reaction (PCR) for C. albicans transformation 

DNA for a Candida albicans transformation was prepared in the following PCR reaction: 20 

µl 20 µM forward primer, 20 µl 20 µM reverse primer, ~200 ng DNA plasmid template, 6.5 µl 

Milli-Q filtered water, 12.5 µl Biomix Red tm (Bioline). Biomix Redtm is a master-mix, ready to 

use, mixture of buffer, dNTP’s, magnesium and Taq polymerase. The resulting mixture was 

then split into 10x 50 µl PCR reaction tubes before being amplified on the following PCR 

programme: 

 

 

 

 

 

After the reaction 5 μl was run on a 1% agarose gel to check for correct amplification and 

precipitated into 100 μl sterilised distilled water (see below) 

DNA precipitation 

DNA was precipitated in the following manner. PCR reaction samples were pooled and 

1/10th the volume 3M sodium acetate, pH 5.3, was added. Twice the volume of 100 % 

ethanol was then added before gentle mixing by inversion. The samples were incubated at - 

80°C for a minimum of 1hr before centrifugation at 13,000 rpm for 25 minutes. The resulting 

pellet was washed twice by addition of 70% ethanol and centrifugation for 2 minutes at 

13,000 rpm.  The final pellet was air dried in a sterile hood for 10 minutes before being re-

suspended in 105 µl sterile, distilled water. 5 µl of the final solution was run on a 1 % 

agarose gel to ensure DNA was still present. 

 

 Temperature (°C) Time  Cycle 

Initial denature 94 2 min x1 

Denature 94 30 sec  

x30 Anneal Dependent on Primer Tm 30 sec 

Extend 68 1 min/kb 

Final extension 68 8 min x1 
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Agarose gel electrophoresis 

In order to analyse a DNA sample, 5-10 μl was loaded onto a 1 % agarose gel made with 1X 

TAE buffer (0.4 M Tris, 0.2 M acetate, 0.01 M EDTA). Gels were submerged horizontally in 1X 

TAE buffer and 10 µl ethidium bromide added for visualisation of the DNA. Loading dye was 

added to samples to a concentration of 1X if needed and DNA Hyperladder 1 (Bioline) was 

used to indicate size of bands present. Gels were run at 70 V for 90 minutes before an image 

was taken using a UV transilluminator with CCD camera (UVItec Ltd). 

Colony PCR 

For each colony gained from a C. albicans transformation, a small amount of cells were 

added to 6 µl Milli-QTM water, boiled at 95°C for 6 minutes and incubated at -80°C for 

45minutes. Once defrosted, 2 µl of the mixture was added to the following: 2 µl 20 µM 

forward primer, 2 µl 20 µM reverse primer, 12.5 µl BiomixTM Red, 6.5 µl Milli-QTM water. For 

the lrg1ΔΔ strain 2 μl genomic DNA (see Genomic DNA extraction) was used in the reaction. 

The 25 µl reaction was then run on the following PCR reaction: 

 

 

 

 

 

 

 

   

After amplification, 15 µl the reaction was run on a 1 % agarose electrophoresis gel to check 

for presence of a product. 

 

 Temperature (°C) Time  Cycle 

Denature 94 3 min  

X1 Anneal Dependent on Primer Tm 1 min 

Extend 68 1 min/kb 

    

Denature 94 30 sec  

X30 Anneal Dependent on Primer Tm 30 sec 

Extend 68 1 min/kb 

    

Final extension 68 8 min x1 
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Genomic DNA extraction 

Genomic DNA from C. albicans was extracted in the following way: 1.5 ml of a stationary 

phase overnight culture was pelleted and re-suspended in 250 µl extraction buffer (100 mM 

NaCl, 10 mM Tris pH 7.8, 1 mM EDTA, 0.1 % SDS), 300 µl phenol:chloroform:isoamylalcohol 

(24:24:1) was added followed by 200 µl acid washed 600 µm glass beads (Sigma Aldrich 425-

600 µm diameter) before vortexing for 3 minutes. 200 µl TE buffer (10 mM Tris-HCL, pH 7.5, 

1 mM EDTA) was added and the sample centrifuged at 13,000 rpm for 5 minutes. The top 

aqueous layer of the sample was removed and added to a fresh microfuge tube before 

addition of 1 ml 100 % ethanol and centrifugation at 13,000 rpm for 1 minute. The 

supernatant was then removed and the pellet re-suspended in 400 µl TE buffer before 

addition of RNAse to a final concentration of 75 µg/ml and incubation at 37°C for 14 

minutes. 1/10th volume of 3 M NaAc pH 5.3 and 2x volume 100 % ethanol was added and 

the sample incubated at -80°C for 2 hours.  The sample was then centrifuged for 15 minutes 

at 4°C, 13,000 rpm, the pellet was washed in 70 % ethanol and centrifuged again for 5 

minutes, 4°, 13,000 rpm. The final pellet was re-suspended in 50 µl sterilised, distilled water. 

PCR Preparation of DNA for cloning and sequencing.  

DNA fragments prepared from genomic DNA for sequencing or cloning were amplified with 

the proofreading Velocity™ Enzyme (Bioline). 500 ng genomic DNA was added to a reaction 

containing: 1 µl 20 µM forward primer, 1 µl 20 µM reverse primer, 10 µl Hi-Fi enzyme 

buffer, 0.5 µl 100mM dNTP mix, 1.5 µl DMSO, 1µl (2 units) velocity enzyme, plus the 

required amount of Milli-Q ™ water to make the reaction up to 50 µl. The reaction was then 

run on the following program: 

 

 

 

 

 

 Temperature (°C) Time  Cycle 

Initial denature 98 5 min x1 

Denature 98 30 sec  

x35 Anneal Dependent on Primer Tm 30 sec 

Extend 72 1 min/kb 

Final extension 72 8 min x1 
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1 µl of the reaction was run on an agarose gel to check amplification and the rest of the 

product was cleaned up (see Purification of DNA fragments from agarose gels and PCR 

products) before further analysis. 

Sequencing of DNA fragments was carried out by Sheffield University’s Core Genomic 

Facility. 

Preparation of plasmid DNA 

For first analysis of plasmids possibly containing ligated inserts, an alkaline extraction or 

dirty mini-prep was performed. 1.5ml of overnight E. coli culture from a single colony was 

pelleted for 1 minute at 13,000 rpm before re-suspension in 100 µl solution 1 (50 mM 

glucose, 25 mM tris-HCL pH 8, 10 mM EDTA). 200 µl solution 2 (0.2 M NaOH, 1 % SDS) was 

added and the sample inverted 4-5 times before addition of 150 µl solution 3 (5 M KOAC, 

11.5 % acetic acid) and immediate inversion. The sample was incubated on ice for 10 

minutes, centrifuged for 5 minutes at 13,000 rpm and the supernatant extracted to a fresh 

tube. 400 µl phenol:chloroform:isoamylalcohol (24:24:1) was added and vortexed for 5 

seconds before centrifugation at 13,000 rpm for 5 minutes. The top aqueous layer was then 

extracted and transferred to a fresh tube before addition of 1 ml 100% ethanol and 

precipitation at -20°C for 30 minutes.  The DNA was pelleted at 13,000 rpm for 15 minutes 

at 4°C, washed with 70% ethanol and pelleted again at 4°C for 5 minutes. The final pellet 

was re-suspended in 50 µl sterilised, distilled water. 1 µl 10mg/ml RNase was added per 2 µl 

DNA in a restriction endonuclease digest (described below) to check for correct presence of 

ligated inserts. 

Pure plasmid DNA for transformation, sequencing, etc, was isolated from single colonies of 

E. coli by either a Qiaprep Spin Miniprep Kit (Qiagen®) or PureYieldTm Plasmid Midiprep 

system (Promega). A single colony was grown in 5 ml (Miniprep) or 100 ml (Midiprep) 2TY 

plus ampicillin (100 µg ml-l) overnight at 37 °C before performing isolation of DNA according 

to manufacturer’s instructions. After each procedure, presence of the correct plasmid was 

checked by restriction endonuclease digestion and visualisation on a 1 % agarose gel.  
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Restriction endonuclease digestion 

Restriction endonuclease enzymes were obtained from New England Biolabs (NEB) and 

typically used in 20 µl reactions according to manufacturer’s instructions. Plasmids used to 

transform into C. albicans were used in 30 µl reactions for higher transformation efficiency. 

Enzyme reactions were incubated at 37 °C for a minimum of 2 hours with gentle agitation 

before visualisation on a 1 % agarose gel to check if restriction had proceeded to completion 

and estimate concentration.  For downstream reactions other than transformations, the 

enzyme was inactivated at 65 °C for 20 minutes.  

Dephosphorylation of Vector DNA 

To reduce re-ligation of linearised plasmid vector, 5’ phosphate groups were removed using 

Antarctic Phosphatase (AP) enzyme (NEB). 1-5 µg of linearised vector was used along with 

AP buffer (NEB) to a final concentration of 1X and 2 µl (10 units) of AP enzyme. The reaction 

mixture was incubated at 37 °C for 30 minutes before inactivation of the enzyme at 65 °C for 

15 minutes. After inactivation, the mixture was subjected to a Qiagen© PCR purification kit 

according to manufacturer’s instructions to yield pure, linearised DNA. 

Purification of DNA fragments from agarose gels and PCR products 

DNA to be purified from restriction endonuclease reactions was separated on a 1 % agarose 

gel before being cut out and purified by QIAquick Gel Extraction Kit (Qiagen©) according to 

manufacturer’s instructions.  

DNA from PCR reactions to be sequenced was purified by Qiagen© PCR purification kit 

according to manufacturer’s instructions. 

Ligation of DNA fragments 

After preparation of vector (de-phosphorylation) and insert fragments, they were mixed 

together in molar ratios of 1:1, 1:3 and 1:5 respectively, with 30 ng of vector being used. 

Each ligation was performed in a final volume of 10 µl with 1 µl (400 units) of T4 DNA ligase  

(NEB) and 1 µl 10X T4 Buffer. Reactions were left at room temperature overnight before 1 µl 

and 5 µl of each was transformed into E. coli. Plasmids were recovered from single colonies 



40 
 

via dirty miniprep (see Preparation of plasmid DNA) nd subjected to an endonuclease 

reaction to test for correct orientation of insert. 

Site directed mutagenesis 

Site directed mutagenesis was carried out using the Agilent QuickChange Multi Site-Directed 

Mutagenesis kit. Primers were designed with the Stratagene primer design program (Agilent 

technologies: www.genomics.agilent.com/primerDesignProgram). 50 ng of plasmid DNA to 

be mutated was subjected to a PCR reaction and Dpn1 treatment according to 

manufacturer’s instructions before transformation into the XL10-Gold Ultracompetent cells 

provided.  

Mutated plasmids we recovered from single colonies by Mini-prep kit (see Preparation of 

plasmid DNA) and sent to be sequenced by Sheffield University’s Core Genomic Facility. 

 

2.6    Protein techniques 
 

RIPA buffer 

RIPA buffer used for protein extractions contains: 50 mM Tris-HCl pH 7.2, 0.1 % TritonX-100, 

0.1 % sodium deoxycholate, 150 mM NaCl. EDTA-free protease inhibitor cocktail (Roche) 

was added to RIPA buffer according to manufacturer’s instructions. When protein 

extractions were used to look for phosphorylation, phosphatase inhibitor cocktail III (Roche) 

was also added to the buffer according to manufacturer’s instructions.  

Protein extraction of C. albicans 

From an overnight culture of C. albicans, 2.5 ml was inoculated into 47.5 ml pre-warmed 

YEPD (or Met3 ON-OFF media if required) prepared to induce the relevant morphology and 

incubated at the relevant temperature for the required amount of time. After incubation, 

cells were harvested by centrifugation at 4,000 rpm for 1 minute. Supernatant was 

discarded and the pellet re-suspended in 1 ml of chilled, sterilised distilled water before 

being transferred to a 1.5 ml screw-top microfuge tube. Cells were pelleted again at 13,000 

rpm for 15 seconds, supernatant was discarded and the pellet kept on ice. The pellet was re-
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suspended in up to 250 µl of the relevant RIPA buffer (chilled) depending on pellet size and 

roughly the same amount of chilled, sterilised glass beads was added. Proteins were 

extracted using a Mini-Beadbeater-16 (Biospec) or FastPrep®24 cell disrupter (MP 

Biomedical). For the FastPrep® cell disrupter, the machine head was pre-cooled by using 50g 

of dry-ice and setting the machine to 6.0 m/s for 10 seconds. Samples were then subjected 

to 3 x 4.0 m/s for 30 seconds with 10 seconds on ice in between. Alternatively, samples 

were subjected to 3x 30 second bursts with 1 minute on ice in between on the Mini-

Beadbeater-16 machine.  Samples were then subjected to centrifugation at 4°C, 11,000 rpm 

for 6 minutes to separate cell lysate from debris. The lysate was transferred to a fresh tube 

and centrifuged again at 11,000 rpm for 15 seconds before supernatant was again 

transferred to a fresh tube. Protein concentration was calculated using a Bradford assay (see 

below). If the total cell lysate was to be analysed, 5X protein loading dye (250mM Tris pH 

6.8, 10% SDS, 30% glycerol, 20% β-mercaptoethanol, 0.02% Bromo Phenol Blue,) was added 

to the sample to a final concentration of 1X and samples boiled for 5 minutes before storage 

at -80°C if not being used immediately. Otherwise samples were subjected to purification by 

immuno-precipitation.  

Measurement of Protein concentration using the Bradford Assay 

Protein samples were diluted 1/50 in RIPA buffer and 20 μl of the resulting solution added 

to 1 ml Protein Assay Dye (Biorad), vortexed and left to equilibrate for 5 minutes. Optical 

density (OD) of the sample was measure at OD595. Similarly, solutions with known 

concentrations of bovine serum albumin (BSA) were also measured in the same manner to 

provide a standard curve of protein concentration versus optical density. Protein 

concentrations of samples could then be estimated from this standard curve. 

Inhibition of Cdc28-as1 by 1NM-PP1 

An overnight culture of the Cdc28-as1 strain was re-inoculated 1/20 into fresh media with a 

final concentration of 25 μM 1NM-PP1 (Merck Calbiocehm®) and grown for two hours. 
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De-phosphorylation of protein samples by Lambda phosphatase 

Protein samples were prepared with RIPA buffer in the absence of phosphatase inhibitors. 

10 µl MgCl2, 10 µl PMP buffer (NEB) and 1 µl (400 units) lambda phosphatase (NEB) was 

added to 2 mg protein sample in a final volume of 100 µl and incubated at 37°C for 1 hour. 

Immuno-precipitation of epitope tagged proteins using Novex ® Protein G magnetic 

Dynabeads®  

Dynabeads® were prepared and bound with 7.5 μg of the relevant antibody according to 

manufacturer’s instructions. A total cell lysate with 2 mg ml-1 of protein and 50 μl magnetic 

beads were incubated at 4 °C, rolling, for 1 hour. Beads and lysate were then separated with 

a magnet and the beads washed 3 times with 200 μl RIPA buffer. Antibody and bound target 

proteins were eluted in 50 μl 1X protein loading dye by boiling for 5 minutes and the 

supernatant stored at -80 °C. 

Purification of GST tagged proteins from E. coli 

An overnight culture of GST plasmid containing strain was diluted 1:100 into 400ml fresh LB 

media plus ampicillin and incubated at 37°C until an OD600 of 0.6 was reached. Isopropyl β-

D-1-thiogalactopyranoside (IPTG) was then added to a final concentration of 1mM to induce 

protein expression and further incubated for 3 hours at 37°C. Cells were pelleted at 4,500 

rpm for 10 minutes, resuspended in ice-cold PBS (137 mM NaCl, 2.7 mM KCl, 10 mM 

Na2HPO4, 1.8 mM KH2PO4), pelleted again at 4,000 rpm for 10 minutes and placed at -80°C 

for 1 hour. The cell pellet was re-suspended in 15 ml lysis buffer (50 ml PBS plus 1 protease 

inhibitor tablet (Roche)) and sonicated for 5x 30 seconds with 1 minute on ice in between. 

Triton X-100 (Sigma) was added to a final concentration of 1% and incubated at 4°C, rolling 

for 30 minutes before centrifugation at 15,000 rpm for 30 minutes. The supernatant was 

added to a fresh tube with 400 µl Glutathione sepharose 4B beads (GE Healthcare) and 

incubated at 4°C, rolling, for 2 hours. The whole sample was then applied to a poly-prep 

chromatography column (Biorad) and lysate allowed to run through before washing with 2 

ml PBS 3 times. Protein was eluted by sealing the column, addition of 500 µl elution buffer 

(20 mM reduced glutathione (Sigma), 20 mM Tris-HCl pH 8, 100 mM NaCl, 10 % glycerol)  
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and incubating at 4°C, rolling, for 30 minutes before allowing the elution to run through the 

column. The elution step was repeated twice.  

Cdc28 in-vitro kinase assay using phospho(Ser)-CDK antibodies 

Kinase assay was carried out as described in (Bishop et al., 2010). Cdc28-HA was immuno-

precipitated as stated above from total cell lysates as using modified RIPA buffer (50mM Tris 

HCl pH 7.2, 0.1% sodium deoxycholate, 0.1% Triton X-100, 50mM sodium fluoride, 0.2 mM 

Sodium orthophosphate, 0.2mM β-glycerol phosphate and 1x complete protease inhibitor 

cocktail (Roche)) and the protein left bound to the magnetic beads. The beads were then 

washed twice with 750 mM NaCl, once with 150 mM NaCl and once with 50 mM Tris-HCl pH 

7.5. A BWP17 lysate was also used as a negative control. 10 μg substrate polypeptide, 

prepared as (see Purification of GST tagged proteins from E. coli), were added to the beads 

along with 5X kinase buffer (50 mM Tris-HCl pH 7.5, 10mM EGTA pH 8, 0.1 % tween, 1 mM 

DTT, 1mM β-Glycerol phosphate, 200 μm ATP) to a final concentration of 1X. One control 

was carried out without ATP. The final mix of beads, substrate and buffer were incubated 

for 1 hour at 37 °C, shaking, before boiling in 1X Protein loading Dye for elution. Samples 

were run on an SDS-PAGE gel, transferred to PVDF membrane (GE Healthcare) and probed 

with rabbit anti-phospho(Ser)-CDK (Cell-Signalling) antibody. Membranes were then 

stripped (see Stripping of PVDF membrane) and re-probed with anti-GST antibody. 

Cbk1 In-vitro kinase assay using 32P-ATP 

Radioactive kinase assay was performed using a modified protocol from (Jansen et al., 

2006). Total cell lysate was prepared using lysis buffer (40 mM Tris [pH 8.0], 150 mM NaCl, 

25 mM NaF, 1 mM PMSF and 1x protease inhibitor cocktail III (Roche)) and a cell disrupter 

(Constant Systems).  Cbk1-Myc was immuno-precipitated using EZview agarose beads 

(Sigma Aldrich) according to manufacturer’s instructions before being washed once with 

lysis buffer, 3 times with wash buffer (40 mM Tris pH 8.0, 500 mM NaCl) and once with 

kinase buffer (20 mM Tris pH 8.0, 150 mM NaCl and 5 mM MnCl2). Beads were then 

incubated with 30 µl kinase buffer, 10 µg substrate polypeptide, 20 µm ATP and 10 μCi γ-

32P-ATP for one hour at room temperature. The reaction was stopped by adding 7 µl 5x 

loading buffer and boiling for 3 minutes. Samples were then separated by SDS-PAGE, the gel 

then stained with Instant Blue Coomassie (Expedeon) and dried on blotting paper. 
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Phosphorylation was then visualised using Kodak Phosphor screens which were scanned 

using a Personal FX phosphoimager (Bio-Rad)  

Sodium-dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

Percentage of acrylamide in 

gel 
Range of separation  (kDa) 

15 10-43 

12 12-60 

10 20-80 

7.5 36-94 

5.0 57-212 

  

 

Resolving gel  6 % 8 % 10 % 12 % 14 % 

SDW (ml) 6.1 5.7 5.3 4.9 4.5 

Prosieve 50 (acrylamide) (ml) 1.2 1.6 2.0 2.4 2.8 

1.5 M Tris-HCl, pH  8.8 (ml) 2.5 2.5 2.5 2.5 2.5 

10% SDS (ml) 0.1 0.1 0.1 0.1 0.1 

10% Ammonium persulphate 

(ml) 

0.1 0.1 0.1 0.1 0.1 

TEMED (µl) 4  4  4  4  4  
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Stacking gel (5%) Volume 

SDW (ml) 3.1  

Prosieve 50 (acrylamide) (ml) 0.5  

0.5 M Tris-HCl, pH  6.8 (ml) 1.3  

10% SDS (µl) 50  

10% Ammonium persulphate 

(µl) 
50  

TEMED (µl) 5  

 

Once the gel had set, the comb was removed, wells washed out and tank filled with 1X 

running buffer:  125 mM Tris-base, 460 mM glycine, 0.5 % SDS. Once samples were loaded, 

empty lanes were loaded with 1X protein loading dye to prevent smiling of the gel. Gels 

were run first at 90 V for around 15 minutes until samples were pulled through the stacking 

gel into the resolving one. The voltage was then increased to 140 V and gels run until the 

relevant size standards were resolved.  

Proteins were transferred from the gel to a nitrocellulose membrane (Hybond-C) using the 

Mini-Trans blot cell (BioRad). Transfer Buffer (125 mM Tris-base, 460 mM glycine, 20 % 

methanol) was cooled at -80°C briefly and 4 pieces of Whatman filter paper, 1 piece of 

membrane and 2 fibre pads were soaked in it. A sandwich was then prepared, consisting of 

1 fibre pad laid on the black side of a transfer cassette, followed by 2x Whatman paper and 

then the smoothed protein gel. The membrane was then laid on top, air bubbles removed 

and 2x Whatman paper laid on top followed by the last fibre pad. The cassette was closed 

and immersed in cooled transfer buffer in the tank system with the gel to the anode, before 

being run at 150 mA for 90 minutes per gel. 

After, protein transfer was checked by staining the membrane with Ponceau S solution 

(Sigma-Aldrich) and then washing with distilled water. 
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For the In-Vitro kinase assay, proteins were transferred to PVDF membrane (GE Healthcare) 

which requires activation in 100 % methanol for 30 seconds and equilibration in transfer 

buffer for 15 minutes before transfer takes place.  

Western blotting 

Western blotting block buffer consists of 2.5 g of milk powder (Sigma-Aldrich) dissolved in 

50ml Tris-buffered saline with Tween20-TBS-T (2.44 % Tris-HCl, 8 % NaCl, pH7.6, 0.1% 

Tween-20). After protein transfer, membranes were blocked in a falcon tube with 10 ml milk 

and incubated at 4°C, rolling for 90 minutes to overnight. The blocking milk was discarded 

before 10 ml of milk with a 1:3000 dilution of primary antibody was added and incubated at 

4°C, rolling for 90 minutes to overnight. This milk was then discarded and the blot washed in 

10ml TBS-T for 15 minutes and then twice more for 5 minutes, rolling all the time. 10 ml of 

milk with a 1:3000 dilution of secondary antibody with HRP conjugated was then added and 

incubated at 4°C, rolling for no longer than 1 hour. The membrane was again washed with 

TBS-T, once for 15 minutes then four more times for 5 minutes each, rolling all the time. 

Western blots were visualised using AmershamTM ECL Advance (GE Healthcare) or 

laboratory- made ECL, depending on strength of signal required. For the commercial ECL,   

200 µl solution A was mixed with 200 µl solution B, pipetted onto a glass plate and the blot 

laid protein side down on top of the solution for 4 minutes, being turned 90° halfway 

through. For laboratory made ECL, 1 ml solution 1 (100 mM Tris-HCl pH 8.5, 2.5 mM 

Luminol, 0.4 mM p-coumaric acid) and 1ml solution 2 (100 mM Tris-HCl pH 8.5, 0.0006 % 

H2O2) was incubated with the membrane at 4 °C, rolling for 4 minutes.  Blots were imaged 

using a GenGnome (Syngene) western blot visualiser.  

Stripping of PVDF membrane 

The PVDF membrane was incubated in stripping buffer (20 ml SDS 10%, 12.5 ml Tris HCl pH 

6.8 0.5M, 67.5 ml MilliQ water, 0.8 ml β-mercaptoethanol) for 1 hour at 37 °C, rolling. The 

membrane was then washed 5 times in distilled water, 4 times in TBS-T for 15 minutes 

rolling, before re-probing. 
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Elutriation of C. albicans cells 

Elutriation of C. albicans cells was carried out using a Beckman JE 5.0 elutriation rotor. The 

strain in question was grown to stationary phase in liquid YPD before re-inoculation into 1 L 

fresh YPD to a dilution of 1:10,000. Cells were then grown overnight at 30 °C and the OD600 

read to ensure that cells were still in logarithmic growth phase (between 0.4-0.6). The 

culture was then sonicated briefly to aid separation of daughter cells. 

The rotor was set up in a centrifuge and all air bubbles removed via flow through of SDW 

(sterilised deionised water) at 200 ml/min and centrifugation at 1000 rpm. Once set up the 

rpm was increased to 4200 and flow-rate set to 60 ml/min. The culture was added to the 

elutriator via the input pipe until the chamber had filled with cells at which point the input 

was switched back to SDW. The rotor was left to spin at 4200 rpm for 5-10 minutes in order 

that the cells form a density gradient. The rotor was then lowered to 4100 rpm so that cells 

could migrate towards the output pipe. 100ml fractions were collected and checked to 

ensure only small, unbudded cells were being collected. The centrifuge was slowed at 100 

rpm at a time down to 3800 rpm to ensure all un-budded cells were extracted. The collected 

cells were then concentrated and re-inoculated into fresh YPD for time-course experiments.  

 

2.7    Microscopy 
 

Formaldehyde fixing of cells. 

To fix cells for differential interference contrast (DIC) microscopy, 40 µl 37% formalydehyde 

(Sigma-Aldrich) was added to 1ml of cell culture and mixed gently by inversion before 

incubation at room temperature for 15 minutes. Cells were pelleted by centrifugation for 15 

seconds, 13,000 rpm, washed in PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM 

KH2PO4), pelleted again and re-suspended in PBS and kept at 4°C until visualised on a Leica 

DIC microscope.  
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Ethanol fixing of cells 

Cultured cells were first pelleted by centrifugation for 15 seconds, 13,000 rpm, before being 

fixed in 70% ethanol. The cells were then kept at 4°C until they were visualised, when they 

were pelleted and re-suspended in PBS.  

Staining cells with Aniline Blue 

An overnight culture of C. albicans was diluted 1/20 into fresh YPD media and grown for the 

required length of time. 1 ml of the resulting culture was then pelleted and washed twice in 

PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4) before re-suspension in 

PBS plus aniline blue stain to a final concentration of 0.05%. Cells were visualised as 

described below with the CFP filter. 

DAPI staining  

Fixed cell were suspended in PBS and mixed with 4',6-diamidino-2-phenylindole (DAPI) to a 

final concentration of 0.002 mg/ml and incubated for 5 minutes at room temperature. They 

were then visualised as described below with the DAPI filter.  

Florescence microscopy 

Fluorescence microscopy imaging was performed on a Delta Vision Spectris 4.0 microscope 

with SoftworxTM 3.2.2 software (Applied Precision Instruments). The microscope had a hood 

that was heated to the relevant temperature for the morphology being examined. The FITC 

filter (ex 494 nm, em 518 nm) was used to visualise YFP or GFP, CFP (ex 436 nm, em 465 

nm) filter for Aniline blue and DAPI filter (ex 358 nm, em 461 nm) for DAPI stained cells.  Z-

stack images were taken of cells and deconvolved using the SoftworxTM programme; sum 

projections of multiple Z-planes are used in the text.   

 

DIC microscopy 

DIC microscopy was performed on a Leica microscope (model; 0202-519-508L). Images 

were captured using HC Image live software (Hamamatsu). 
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2.8    C. albicans strains used in this study 
 

Strain name Genotype Reference 

BWP17 ura3::λimm434/ ura3::λimm434his1::hisG/ 

his1::hisG arg4::hisG/arg4::hisG 

 

(Wilson et al., 1999) 

lrg1ΔΔ BWP17 lrg1::URA3/ lrg1::HIS1 
 

This study 

pMAL2-GFP-RHO1 BWP17 HIS1:pMAL2-GFP-RHO1 
 
 

(Caballero-Lima et al., 
2013) 

pMAL2-GFP-RHO1/lrg1ΔΔ BWP17 HIS1:pMAL2-GFP-RHO1/ 
 lrg1::URA3/ lrg1::HIS1 

 

This study 

lrg1Δ/pMET3-LRG1/EXO84-
GFP 

BWP17 lrg1::ARG4/ URA3:pMet3-
LRG1/EXO84-GFP-HIS1 

 

This study 

lrg1Δ/pMAL2-GFP-LRG1(993-
4404) 

BWP17 lrg1::ARG4/ HIS1:pMAL2-GFP-
LRG1(993-4404) 

 

This study 

lrg1Δ/pMAL2-GFP-LRG1 BWP17 lrg1::ARG4/ HIS1:pMAL2-GFP-LRG1 
 

This study 

GFP-RID BWP17 RP10::ARG4-pACT1GFPRID This study- produced 
with plasmid from: 

(Corvest et al., 2013) 

lrg1ΔΔ/GFP-RID BWP17 lrg1::URA3/ lrg1::HIS1/RP10::ARG4-
pACT1GFPRID 

This study- produced 
with plasmid 

from:(Corvest et al., 
2013) 

LRG1-MYC BWP17 LRG1-5xMYC-URA3 
 

This study 

CDC28-1as BWP17 CDC28-1as:URA3/ cdc28::HIS1 
 
 

(Bishop et al., 2010) 

LRG1-MYC/CDC28-1as BWP17 LRG1-5xMYC-ARG4 CDC28-
1as:URA3/ cdc28::HIS1 

 

This study 

CDC28-HA/CDC28-HA BWP17 CDC28-HA-URA3/CDC28-HA-
ARG4 

 

(Caballero-Lima et al., 
2013) 

pMET3-CLN3 BWP17 cln3Δ::ARG4/URA3-MET3 
 
 

(Chapa y Lazo et al., 
2005) 

pMET3-CLB2 clb2::HIS1/PMET3-CLB2:URA3 
 
 

(Bensen et al., 2005) 

pMET3-CLB4 clb4::ARG4/PMET3-CLB4:URA3 
 
 

(Bensen et al., 2005) 
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pMET3-CLN3/LRG1-MYC BWP17 cln3Δ::ARG4/URA3-MET3/LRG1-
MYC-HIS1 

 

This study 

pMET3-CLB2/LRG1-MYC clb2::HIS1/PMET3-CLB2:URA3/LRG1-MYC-
ARG4 

 

This study 

pMET3-CLB4/LRG1-MYC clb4::ARG4/PMET3-CLB4:URA3/LRG1-MYC-
HIS1 

 

This study 

lrg1ΔΔ/LRG1-MYC BWP17 lrg1::ARG4/ lrg1::HIS1/LRG1-
6xMYC-URA3 

 

This study 

lrg1ΔΔ/LRG1(2E2DCDC28)-
MYC 

BWP17 lrg1::ARG4/ lrg1::HIS1/LRG1(T7E, 
S65D, T273E, S319D)-6xMYC-URA3 

 

This study 

lrg1ΔΔ/LRG1(4ACDC28)-MYC BWP17 lrg1::ARG4/ lrg1::HIS1/LRG1(T7A, 
S65A, T273A, S319A)-6xMYC-URA3 

 

This study 

lrg1ΔΔ (URA-, ARG-) BWP17 lrg1::FRT / lrg1::HIS1 
 

This study 

lrg1ΔΔ/LRG1(2E2DCDC28)-
MYC/GFP-RID 

BWP17 lrg1::ARG4/ lrg1::HIS1/LRG1(T7E, 
S65D, T273E, S319D)-6xMYC-

URA3/RP10::ARG4-pACT1GFPRID 
 

This study- produced 
with plasmid 

from:(Corvest et al., 
2013) 

lrg1ΔΔ/LRG1(4ACDC28)-
MYC/GFP-RID 

BWP17 lrg1::ARG4/ lrg1::HIS1/LRG1(T7A, 
S65A, T273A, S319A)-6xMYC-URA3/ 

RP10::ARG4-pACT1GFPRID 
 

This study- produced 
with plasmid 

from:(Corvest et al., 
2013) 

CBK1-MYC BWP17 CBK1-MYC-URA3 Caballero-Lima, D. 
University of Sheffield 

cbk1ΔΔ BWP17 cbk1::HIS1/cbk1::ARG4 This study 

Cbk1ΔΔ/LRG1-MYC BWP17 cbk1::HIS1/cbk1::ARG4/LRG1-MYC-
URA3 

This study 

lrg1ΔΔ/LRG1(2E2DCBK1)-
MYC 

BWP17 lrg1::ARG4/ lrg1::HIS1/LRG1(S80D, 
T623E, S1009D, 1059E)-6xMYC-URA3 

 

This study 

lrg1ΔΔ/LRG1(4ACBK1)-MYC BWP17 lrg1::ARG4/ lrg1::HIS1/LRG1(S80A, 
T623A, S1009A, 1059A)-6xMYC-URA3 

 

This study 

lrg1ΔΔ/LRG1(15ECDC28)-
MYC 

BWP17 lrg1::ARG4/ lrg1::HIS1/LRG1 (T7E,  
S65D, T273E, S319D, S36D, S50D, 

S120D, S125D, T127E, T129E, 
S173D, S195D, S271D, 

T503E,T1067E)-6xMYC-URA3 
 

This study 
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2.9    E. coli strains used in this study 
 

Strain 
Name 

Genotype Reference  

BL-21 E. coli B F-, ompT, hsdS (rB-, mB-), gal, dcm 
 

G.E. Life 
Sciences 

DH5α F-, supE44, ΔlacU169 (80lacZΔM15), hsdR17, recA1, endA1, gyrA96, 
thi‐1, relA1 
 

Delta 
Biotechnology 

 

 

2.10    Plasmids used in this study 
 

Plasmid Description Reference 

pCIP10-LRG1-MYC-
URA  

Contains CaLRG1 tagged with 6xMYC flanked by 600 bp 
LRG1 promoter and 300 bp LRG1 3’ UTR. Used for re-
integration of LRG1 into its native promoter. 
 

Greig, J. University 
of Sheffield 

pCIP10-
LRG1(2E2DCDC28)-
MYC-URA 

As pCIP10-LRG1-MYC-URA, with mutations to produce 
phospho-mimetic residues in the four full Cdc28 motifs 
 
 

This study 

pCIP10-
LRG1(2E2DCBK1)-
MYC-URA 

As pCIP10-LRG1-MYC-URA, with mutations to produce 
phospho-mimetic residues in the four Cbk1 motifs. 
 
 

This study 

pCIP10-
LRG1(4ACDC28)-MYC-
URA 

As pCIP10-LRG1-MYC-URA, with mutations to produce 
non-phosphorylatable residues in the four full Cdc28 
motifs. 
 

This study 

pCIP10-LRG1(4ACBK1)-
MYC-URA 

As pCIP10-LRG1-MYC-URA, with mutations to produce 
non-phosphorylatable residues in the four Cbk1 motifs 
 

This study 

pExpArg-
pACT1GFPRID 

Contains the GFP-RID reporter under control of the 
ACT1 promoter. Integrates into the CIP10 locus. 
 

(Corvest et al., 
2013) 

pBKs-FKH2-URAF C. albicans Ura Flipper selectable marker flanked by 5’ 
and 3’ FKH2 fragments. 
 
 

Greig, J. PhD thesis, 
University of 
Sheffield, 2014 

pBKs-LRG1-URAF As pBKs-FKH2-URAF with FKH2 fragments replaced 
with KpnI-LRG1(5’)-XhoI and NotI- LRG1(3’)-SacII. 
 

This study 

pGEX-4T1 N-terminal GST tagging and expression vector. G.E. Life Sciences 
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GST-LRG1(NT) Contains the first 990 bp of C. albicans LRG1 cloned 
into the multiple cloning site of pGEX-4T1 with BamHI 
and XhoI. 
 

This study 

GST-LRG1-4A(NT) As GST-LRG1(NT) with mutations to produce non-
phosphorylatable residues in the four full Cdc28 
motifs. 
 

This study 

pFa-URA3 Used to produce a deletion cassette with the URA3 
gene. 
 

(Gola et al., 2003) 

pFa-HIS1 Used to produce a deletion cassette with the HIS1 
gene. 
 
 

(Gola et al., 2003) 

pFa-ARG4 Used to produce a deletion cassette with the ARG4 
gene. 
 

(Gola et al., 2003) 

pFA-HIS1-MAL2p-
GFP 

Produces a transformation cassette for N-terminal 
tagging of LRG1( full length and N-terminal deletion) 
with GFP and under the control of the regulatable 
MAL2 promoter. 
 

(Schaub et al., 
2006) 

pFA-URA3-MET3p Generates a PCR product in order to place LRG1 under 
the control of the MET3 promoter. 
 

(Gola et al., 2003) 

pFa-MYC-URA3 Produced a C-terminal tagging cassette to tag LRG1 
with 5xMYC. 
 

(Lavoie et al., 2008) 

 

2.11    Oligonucleotides used in this study 
 

Purpose Name Sequence 

LRG1 deletion Lrg1-del-F TTTGATTTTGTTTATTATTTGTTTTACTGGGTTT 
TGTTTTGTGATTTTGATTTTTGACAGTTTAATA 
ACGAAGCTTCGTACGCTGCAGGTC 
 

Lrg1-del-R TATACATATAAAAGAAAAGAATACGGGGGAA 
AAAAAAGGAATGATTGGCAATTCTTTATTAAT 
TTCTGTTCTGATATCATCGATGAATTCGAG 
 

LRG1 deletion 
check 

Lrg1-del-F-Check GTCTTCCTCCTCCTAACTAA 

ARG4 check R-Arg4 AATGGATCAGTGGACCGGTG 

HIS1 check Reverse His1  

LRG1 internal 
check 

Lrg1-F1 GCAGTTTCCCCGACCCCGG 
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Lrg1-R1 AGACACCAAATGGAACCCGGT 
 

Placing LRG1 
under the  
MET3 promoter 

Lrg1-Met3-S1 TTGCCAAGAAGTATCTTTAAGAGGTATATTGA 
TTCTAACCCTGTATTGATCAAAACAAACATCTA 
GATCGAAGCTTCGTACGCTGCAGGTC 
 

Lrg1-Met3-S2 TGCATTAGGGTTGCCAAATGAATGGTGTATACT 
ATTACCTCGTTGAGGGGTATCAAACGAATGCT 
TCATCATGTTTTCTGGGGAGGGTATTTAC 

 

Checking MET3 
promoter 

Met3-F TATGCGATTGTGGCTCATAGTAACG 
 

Lrg1-R2 ATTGAGTTGCTGAATCTTGT 
 

C-terminal 
tagging of Exo84 
with GFP 

S1-Exo84-XFP ACAATTGGAAGAATTAAAACTGGTGGGATTAAA 
TGTTGATTATATATTTGAGTCTATATTAAATCTT 
GAAGGTCGACGGATCCCCGGGTT 
 

S2-Exo84-XFP GATTGGAGCAGGTGTTTTATTTAGTATTATTGC 
TGGGATATTATTGGTTTCTTCATTGGTTTTGTTA 
TATTCGATGAATTCGAGCTCGTT 
 

Checking EXO84-
GFP 

G1-Exo84 CGTCATGGTGATGTTGATTC 
 

GFP-R1 ATTTGTGCCCATTAACATCA 
 

N-terminal Lrg1 
tagging  
with GFP 

Lrg1-Nterm-GFP-F TTGCCAAGAAGTATCTTTAAGAGGTATATTGAT 
TCTAACCCTGTATTGATCAAAACAAACATCTAG 
ATCAGCACCTGCGCCAGCCCCTGCGC 
 

Lrg1-Nterm-GFP-R TGCATTAGGGTTGCCAAATGAATGGTGTATACT 
ATTACCTCGTTGAGGGGTATCAAACGAATGCTT 
CATAGCACCTGCGCCAGCCCCTGCGC 
 

Deleting the first 
990 bp of LRG1 

Lrg1-Nterm- 
del- F 

 

TTTGATTTTGTTTATTATTTGTTTTACTGGGTTTT 
GTTTTGTGATTTTGATTTTTGACAGTTTAATAAC 
GAAGCTTCGTACGCTGCAGGTC 
 

Lrg1-Nterm- 
del-R 
 

ATTTAAAGCTCGAACAAACTGACTGGTGATTTCC 
AATCCACATTTGGCACAAACTTTACGACTTTTCT 
TAGCACCTGCGCCAGCCCCTGCGC 
 

Checking GFP-
LRG1 
 

GFP-seq3 AATACTCCAATTGGCGATGGCCCTG 
 

Lrg1-R1 AGACACCAAATGGAACCCGGT 
 

Checking GFP-
LRG1(991-4404) 

Lrg1-R3 GTTTTCGTGCCATCTTGTTC 

C-terminal 
tagging Lrg1 with 
Myc 

Lrg1-TAP-MYC-F AAACGAAACTCTGTTTCTCGAATTGAATCCAAA 
ATCCAAAATAGAGAATTAAATGGTATTAGTGA 
GAGAGGTCGACGGATCCCCGGGTTAGAACAGA 
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AGCTTATATCCGAA 
 

Lrg1-TAP-HA-MYC-R GCTTGAAAAAAAATTAGTCGTGTGGTGTTTAAC 
ACTATTGATGGTTTAGATTAAGCAGAGTTTTGC 
TTC TCGATGAATTCGAGCTCGTT 
 

Checking LRG1-
MYC 

Myc-R GTATACATGCATTTACTTATAATGGCGCGC 
 

Lrg1-F3 AGCTGACAAGGCAAGAAAGG 
 

Amplification of 
LRG1 1-330 for 
cloning into GST 
vector 

L GST BamHI Fwd CGCGGATCC ATGAAGCATTCGTTTGATACC 
 

L GST XhoI Rev CCG CTCGAGCTTACGACCTGG 
TTTCCTTTC 

 
Amplification of 
LRG1 5’ and 3’ 
fragments for 
the URAF 
plasmid 

Lrg1-UraF-s1-KpnI 
 

CGGGGTACCAACCAAGAAAAGAAAAACAAT 
 

Lrg1-UraF-s2-XhoI 
 

CCGCTCGAGGTTATTAAACTGTCAAAAAT 

Lrg1-UraF-s3-NotI AAGGAAAAAAGCGGCCGCACAGAAATTAATAA 
AGAATT 
 

Lrg1-UraF-s4-SacII 
 

TCCCCGCGGTAAACCCCTTTTGAGTAAAT 
 

Deletion of CBK1 Cbk1-del-F CTCAATTCAACAAGTTTGAACTTTTGTATCA 
ATCAAAAAGAAACGATTCATTTTTTGACAA 
GTGTGTCCTGAAGCTTCGTACGCTGCAGGTC 
 

Cbk1-del-R TGGCAACTATCAAAGATAATGCATAAACAAT 
AACATCATCCGGCTGTACTACCATTCCAAATG 
ACCACCTTCTGATATCATCGATGAATTCGAG 
 

Checking CBK1 
deletion 

Cbk1-del-check-F CAACACACTCAAAATCAACACG 

CBK1 internal 
primers 

Cbk1-F1 CCAGTTCAACAACATCCACA 
 

Pfa-cbk1-seq-r1 GGAACCTTCAAACACTCATT 
 

Deletion of CBK1 
via 500 bp 
homology 

Cbk1-s1 GAAGCTTCGTACGCTGCAGGTCAAGATCTATAA 
AACTCTATT 
 

Cbk1-s2 TCTGATATCATCGATGAATTCGAGTAGTGTGG 
TACGAGTAGAAC 
 

Cbk1-s3 GACATTTTCTCAAAACAGGC 
 

Cbk1-s4 TTCTACACTTCAAAGCAATT 
 

Checking CBK1 
deletion with 
500bp 

Cbk1-pst1-F ATTAGCCTGCAGAAGCTTTACAATTTTAATAG 
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Mutagenesis of 
Cdc28 motifs 

T7A AACATGAAGCATTCGTTTGATGCCCCTCAACG 
AGGTAATAGTA 
 

T7E AACATGAAGCATTCGTTTGATGAACCTCAACG 
AGGTAATAGTATA 
 

S65A CCCCTCAAAGACTCAGGTTCAGCTCCTAGACGA 
AAATTCAATCCA 
 

S65D CCCCTCAAAGACTCAGGTTCAGATCCTAGACGA 
AAATTCAATCCA 
 

T273A CATTCAATAGCAGTTTCCCCGGCCCCGGAAAA 
ACAAGATTCAGCA 
 

T273E CATTCAATAGCAGTTTCCCCGGAACCGGAAAA 
ACAAGATTCAGCA 
 

S319A CAACAACAACAAGAACCATCAGCACCTTCAAA 
ACTGGAAAGGAAA 
 

S319D CAACAACAACAAGAACCATCAGATCCTTCAAA 
ACTGGAAAGGAAA 
 

S36A ATCGACAATAAATATTGTTGAAGCTCCCGACA 
ATAGAGGATCAATAA 
 

S36D ATCGACA ATAAATATTG 
TTGAAGATCCCGACAATAGAGGATC 
AATAA 
 

S50A TAGCTACAACTGAACCATCA GCACCGCCGCCA 
CCACAACA ACCCC 
 

S50D TAGCTACAACTGAACCATCAGATCCGCCGCCA 
CCACAACA ACCCC 
 

S120A,S125A,T127A,T129A TTCACAATCAATGCATCCATCTGCGCCAGTTC 
CTT CTGCACCTGCACCTGCACCAGCACCAGCA 
CCTACAACCA 
 

S120D,S125D,T127E,T129E TTCACAATCAATGCATCCATCTGATCCAGTTCC 
TT CTGATCCTGAACCTGAACCAGCACCAGCAC 
CTACAACCA 
 

T156A,T160A,S173A GCTAAGATACTATATACCCCGAGATGCCCCACC 
ACAAGCC CCACCAATGAGTCAACTTCCGAAAC 
CTGTG GGGAAAGCGC CCCAACCTAATTGGAC 
AAACT 
 

T156E,T160E,S173D GCTAAGATACTATATACCCCGAGATGAGCCACCA 
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CAAGAG CCACCAATGAGTCAACTTCCGAAACCTG 
TGGGGAAAGATC CCCAACCTAATTGGACAAACT 

S195A CCATCATATAATGCTCCTGATAGTTTTCAGCAACA 
GA 
 

S195D CCATCATATAATGATCCTGATAGTTTTCAGCAACA 
GA 
 

S223A ATTTTGGCACTGAACCAATA ATATCGGCACCAGA 
ACTGTC GTCAAGGCAAC 
 

S223D ATTTTGGCACTGAACCAATAATATCGGATCCAGA 
ACTGTC GTCAAGGCAAC 
 

S271A GACCCTTCTCAAAGACATTCAATAGCAGTTGCCCCG 
GCCC CGGAAAAACAAGATTCAGCAACTC 
 

S271D GACCCTTCTCAAAGACATTCAATAGCAGTTGACCC 
GGAAC CGGAAAAACAAGATTCAGCAACTC 
 

T503A TAAATTTTGGAACGTTTGTATTGCTCCAGATTCAGT 
TGGTCTCCAAA 

T503E GGT CATACTTCTACTGTTATTGAACCAACTGGTGT 
ATTGGATA ATA 

 

T1067A GGTCATACTTCTACTGTTATTGCCCCAACTGGTGT 
ATTGGATA ATA 

T1067E GGTCATACTTCTACTGTTATTGAACCAACTGGTGT 
ATTGGATA ATA 

S1230A CAAATCA ATAAAAATCC CTTGAAAGCACCTGAT 
TTTA GTATTCAGAATGCTG 
 

S1230D CAAATCAATAAAAATCCCTTGAAAGATCCTGATT 
TTAGTATTCAGAATGCTG 
 

Mutagenesis of 
Cbk1 motifs 

S80A TTGGACATTCTCGTTCCCATGCTCATACTTCTAAT 
AACGG 

S80D CCATTTGGACATTCTCGTTCCCATGATCATACTTC 
TAATAACGGCAAACGA 

T623A GTTATTGCATAAAAAGTTTGGTGCTCCTCCTAATA 
AGGATGACCT 
 

T623E AAAAGTTCACATGAGTTATTGCATAAAAAGTTTG 
GTGAGCCTCCTAATAAGGATGACC 
 

S1009A CACAAATACTCATCTTGATAGAACAGCTGATTTGT 
TAAAGAATGAGAAATC 
 

S1009E GGCAAACCACAAATACTCATCTTGATAGAACAGA 
TGATTTGTTAAAGAATGAGAAATCATTAACTTT 
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T1059A CTCACCGACTCAAAGCTGCTGGTCATACTTCTACT 
 

T1059E CTGCTCCTCACCGACTCAAAGCTGAGGGTCATA 
CTTCTACTGTTAT 
 

Sequencing of 
Lrg1 

FS1 GCATCAAATACAACTCGATCG 
 

FS2 CAGCAACAGAAACAGAATAAACTAATC 
 

FS3 CAAGTGGCATTATGTGAATATG 
 

FS4 GTGCAAAAGTTCACATGAGTT 
 

FS5 GTAATTCATCAATCGATTGTTTG 
 

FS6 GATGAGAACCTTTCGGTAACC 
 

FS7 GGTATTGATTCAGATTTAGGTGTAGG 
 

FS8 GCACCTAACATATTAATTTCCAA 
 

Lrg1-F6 GGATATTCTTGAGTTTTACG 
 

Lrg1-R2 ATTGAGTTGCTGAATCTTGT 
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3 Lrg1 controls polarised growth in C. 

albicans 

3.1    Introduction 

3.1.1    The Lrg1 protein 

 

The S. cerevisiae Lrg1 protein is a GTPase activating protein (GAP) for the GTPase Rho1. 

Rho1 is the central member of the cell wall integrity pathway (CWI), responsible for 

transducing signals based on external or internal stress cues to gene expression and cell wall 

remodelling proteins. The CWI pathway’s main outputs are: the formins Bni1 and Bnr1, the 

exocyst component responsible for vesicle tethering at the plasma membrane Sec3, Skn7 

and the β-1,3-glucan synthase (see chapter 1 and (Levin, 2011)). S. cerevisiae Lrg1 contains 3 

LIM (protein-protein interaction) domains and a RhoGAP domain (Muller et al., 1994) and is 

required for cell fusion (Fitch et al., 2004). Lrg1 is also required for efficient cell separation 

and deletion mutants show increased invasiveness (Svarovsky and Palecek, 2005). The main 

role of the Lrg1 GAP is to negatively regulate the activity of Rho1 on the β1,3-glucan 

synthase, preventing new cell wall material from being made (Watanabe et al., 2001), 

although negative effects on the Pkc1 pathway have also been reported (Lorberg et al., 

2001a). The CWI is largely conserved in C. albicans and on the Candida Genome Database 

(CGD), the open reading frame, orf19.7489, is annotated as LRG1 based on its homology to 

the S. cerevisiae gene (61%), with 35.5% identity at the amino acid level. A detailed study of 

the hypothetical C.albicans Lrg1 protein will be discussed later in this chapter. Furthermore, 

in the filamentous fungi Neurospora crassa, Lrg1 is required for hyphal tip extension and 

prevention of excessive branch formation, indicating a divergence in function from that in S. 

cerevisiae (Vogt and Seiler, 2008b).                                                                                                

3.1.2    The exocyst is responsible for secretory vesicle docking 

 

The exocyst is a multimeric protein complex comprised of eight subunits in S. cerevisiae: 

Sec3, Sec15, Sec5, Sec6, Sec8, Sec 19, Exo70 and Exo84 (TerBush et al., 1996). Sec3 and a 

pool of Exo70 localise to the plasma membrane independently of the actin cytoskeleton, 

whilst the remaining subunits are delivered to the plasma membrane on vesicles along actin 
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cables (Boyd et al., 2004). The role of the exocyst is to tether secretory vesicles containing 

the materials for cell growth to the plasma membrane when they arrive at sites of polarised 

growth. Once tethered, the vesicle and plasma membrane fuse.  

Jones and Sudbery, 2010, localised the components of the exocyst in C. albicans and 

characterised their dynamics (Jones and Sudbery, 2010). They identified the C. albicans 

orthologues of S. cerevisiae Sec3, Sec6, Sec8, Exo70, and Exo84 proteins and showed that 

they localise to a surface crescent at the growing hyphal tip. Furthermore, in contrast to S. 

cerevisiae, they identified that exocyst components were not present on each vesicle 

arriving at the hyphal tip due to their moderate fluorescence recovery rates after 

photobleaching. Multiple members of the C. albicans exocyst have also been identified as 

being required for hyphal growth. Sec3 has been shown to be required for maintenance of 

hyphal growth after the formation of the first septin ring (Li et al., 2007). S cerevisiae Exo84  

has been shown to be phosphorylated by Cdc28 and its cyclin Clb2, causing disassembly of 

the exocyst complex and hence inhibition of cell growth at the metaphase-anaphase 

transition (Luo et al., 2013). However, recent research has shown that during C. albicans 

hyphal growth, Exo84 is instead phosphorylated by Cdc28-Hgc1 (a hyphal-specific cyclin) 

and growth continues to occur throughout mitosis (Caballero-Lima and Sudbery, 2014).  

These observations suggest that the C. albicans exocyst has a large part to play in the highly 

polarised growth required during hyphal growth. 

A recent study attempted to model the 3-dimensional characteristics of hyphal growth 

based on the localisation of key components (Caballero-Lima et al., 2013). The localisation 

of members of the exocyst, Rho1 and its positive regulator Rom2 were all determined and 

this data was used to model how a hyphal germ tube would grow based on the fact that β-

1,3-glucan was being added in these locations. Interestingly, the study assumed that Rho1, 

and therefore the β-1,3-glucan synthase was always active at the hyphal tip because the 

crescent of its positive regulator Rom2 was broader than the crescent of Rho1. It has also 

been shown that active Rho1 is localised to sites of growth such as the yeast bud or hyphal 

tip and the eventual sites of septum formation in C. albicans (Corvest et al., 2013).  

However, it is still not known what regulation lies behind this re-localisation of Rho1 from 

the growing tip to the sites of septum formation and whether it is the location or activity of 

Rho1 that denotes where cell wall growth occurs.   
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3.1.3    The echinocandins forms a group of drugs targeting the β-1,3-glucan 

synthase 

 

As described above, one target of the Rho1 GTPase in C.albicans, and for which it is a 

regulatory subunit, is the β-1,3-glucan synthase, encoded by FKS1 or FKS2. The enzyme 

produces β-1,3-glucan chains from monomers of UDP-glucose (Beauvais et al., 1993) and is 

thought to extrude them out of the cell and into the cell wall structure (Kopecka and Kreger, 

1986). Glucan polymers make up a large component of the cell wall and as such provide 

major structural integrity to the organism (Kollar et al., 1997). Due to the high structural 

integrity provided by this cell wall component, the glucan synthase is a major target for a 

group of anti-fungal drugs, the echinocandins, of which caspofungin is a synthetically 

produced member. This family of drugs work by non-competitive inhibition of the glucan 

synthase (Perlin, 2007), resulting in a lack of glucan production, a decrease in cell wall 

integrity and ultimately cell death. Due to this family of drugs being so important for clinical 

treatment of C. albicans, it is perhaps not surprising that mutations in the FKS1 and FKS2 

genes (both naturally occurring and acquired) produce major resistance to drug therapy 

(Beyda et al., 2012).  

3.1.4    Activity of Rho proteins can be measured with reporters containing the 

Rho-binding domain  

 

As discussed earlier, Rho1 has many cellular targets. In mammalian cells, the 

serine/threonine kinase Rock1 is a target protein of the Rho1 homolog, RhoA, and has been 

shown to bind through a Rho-binding domain (Dvorsky et al., 2004; Fujisawa et al., 1996). 

This domain is known to only bind Rho1 when the GTPase itself is already bound to GTP and 

therefore active, which has been useful in detecting levels of active cellular RhoA via pull 

down-assays (Kimura et al., 2000). Similarly, in S. cerevisiae, the Pkc1 protein has also been 

shown to bind to Rho1-GTP through a domain also named Rho1-binding domain (Nonaka et 

al., 1995a) which has been used in pull-down assays to estimate the level of active Rho1 in 

the cell (Kono et al., 2008).  The S. cerevisiae domain has been used to map the Rho1 

binding domain on the C. albicans Pkc1 protein (Corvest et al., 2013) to a 265 amino acid 

region of the protein, assigned the Rho1 Interaction Domain (RID). Corvest et al, cloned this 

region into a plasmid with a promoter and C-terminal green fluorescent protein (GFP) tag. 
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Once integrated into the C. albicans genome, the GFP-RID construct would bind to active 

Rho1 (Rho1-GTP) and provide an in vivo reporter on the level and location of active-Rho1 

that could be visualised via fluorescence microscopy. GFP-RID was confirmed as being a 

reporter of active Rho1 and had no deleterious effects on the growth of cells, despite 

effectively acting as a competitive inhibitor to other Rho1 binding proteins.   

 

3.1.5    Aims of this chapter 

 

This study sets out to try and characterise the C. albicans putative Rho1 GAP, Lrg1, and its 

role during polarised growth in C. albicans. The theoretical sequence of the protein will be 

analysed before phenotypic analysis of LRG1 gene deletion.  The effect on the localisation 

and activity of Rho1 will be analysed in cells lacking Lrg1 in an attempt to elucidate the 

regulatory role of the protein on Rho1. The localisation of other polarity components will 

also be examined in an lrg1ΔΔ strain. An lrg1ΔΔ strain will also be tested for sensitivity to 

the echinocandin, caspofungin.  
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3.2    Strain construction 
 

3.2.1    Construction of an lrg1ΔΔ null strain 

 

To determine the role of Lrg1 in C. albicans it was first decided to delete both copies of LRG1 

and assess the resulting cellular phenotype. Deletion of the two copies of the LRG1 gene 

was performed in the BWP17 (Wilson et al., 1999) strain. The BWP17 strain is auxotrophic 

for three amino acids: Arginine, Uridine and Histidine, and is made prototrophic for these 

markers by the addition of the ARG4, URA3 or HIS1 genes, respectively. All strains in this 

study use BWP17 as the parental strain unless otherwise stated. LRG1 was deleted via 

transformation of a PCR product containing the ARG4 or HIS1 marker and flanked by 

fragments of identity to the regions 5’ and 3’ of the CaLRG1 gene. (figure3.1a). 

Transformants showing prototrophy for the relevant marker were tested for correct 

integration of the cassette with a PCR reaction (figure 3.1b).  Once both markers had been 

shown to be integrated, forward and reverse LRG1 internal primers were used to ensure no 

copy of the gene remained elsewhere in the genome (figure 3.1c) and an lrg1ΔΔ strain had 

been created.  

3.2.2    Construction of a MAL2-GFP-RHO1/lrg1ΔΔ strain 

 

During growth as yeast in wild-type C. albicans, active Rho1 has been shown to localise to 

sites of growth, i.e. the bud tip, cell cortex and the bud neck (Corvest et al., 2013). To assess 

whether Rho1 has  a different localisation pattern in the absence of its regulator Lrg1, both 

copies of LRG1 were deleted (as shown in figure 3.1) in a strain where Rho1 was already N-

terminally epitope tagged with GFP (HIS1- PMAL2-GFP-RHO1) (Caballero-Lima et al., 2013) to 

create a PMAL2-GFP-RHO1/lrg1ΔΔ strain.  As a GTPase, Rho1 must be N-terminally tagged in 

order not to disturb the CAAX box at the C-terminus required for prenylation. In performing 

the N-terminal tagging, the RHO1 promoter would be disturbed, so the whole GFP-RHO1 

construct was placed under the control of the maltose regulatable MAL2 promoter to 

ensure expression of the gene.  
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A)  

 

 

 

 

B) 

 

 

C) 

 

 

 

Figure 3.1 Strategy for deletion of the LRG1 ORF in C. albicans 

(A) The lrg1-del-F and lrg1-del-R primers amplify the pFA-ARG4/HIS1 plasmid to 

produce a cassette with a 5’ segment identical to a region upstream of LRG1 and a 3’ 

segment identical to a region downstream of LRG1. Transformation of either cassette 

results in homologous recombination and therefore deletion of the ORF and prototrophy 

for that particular marker. 5 µl of each PCR reaction was visualised on a 1% agarose gel 

before transformation to ensure correct amplification. (B) Correct integration of the 

cassette into the genome was checked by PCR using a forward primer upstream of 

LRG1and a reverse primer in the marker gene sequence, followed by visualisation of the 

product on a 1% agarose gel. (C) Once both copies of LRG1 had been deleted with two 

separate selectable markers, primers with homology to a sequence inside LRG1 were 

used in PCR to ensure no copy of the gene remained elsewhere in the C. albicans 

genome. 
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3.2.3    Construction of PMET3 driven LRG1 in an EXO84-GFP strain 

 

Exo84 is a member of a multi-subunit complex known as the exocyst, responsible for 

tethering of secretory vesicles to the plasma membrane during polarised growth. It was of 

interest to investigate whether Rho1 regulates the relocation of the exocyst from the bud 

tip to the mother-bud neck. In order to investigate this issue, it was necessary to tag EXO84 

with a GFP epitope in a strain where LRG1 was not present. One copy of LRG1 was deleted 

in the BWP17 parental strain whilst the other copy was placed under the control of the 

regulatable MET3 promoter. 

A regulatable promoter was used in order to follow the localisation of Exo84-GFP as the cells 

were depleted of Lrg1, instead of visualising cells that were already growing in the lrg1ΔΔ 

phenotype. However, in reality the Lrg1 protein was too stable and cells did not grow as the 

correct phenotype until around twenty hours after repression by methionine, therefore it 

was not possible to follow Exo84-GFP as Lrg1 was depleted. Instead the strain was used to 

view the localisation of Exo84 in cells that which PMET3-LRG1 was already fully repressed.  

The first copy of LRG1 was deleted as is shown in figure 3.1. To place the remaining copy of 

LRG1 under a regulatable promoter, PCR was used to create a URA3- PMET3 cassette with 

identical regions at either end to the region directly upstream of C. albicans LRG1 so that 

the LRG1 promoter was replaced as shown in figure 3.2. This strain was then used to tag 

EXO84 with GFP via a PCR generated GFP-HIS1 cassette with identity at either end to the 

region directly downstream of EXO84 as shown in 3.3. The resulting strain was named 

lrg1Δ/ PMET3-LRG1/EXO84-GFP. 
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A) 

 

 

 

B) 

 

 

 

 

 

Figure 3.2 Construction of a PMET3 driven LRG1 

(A) The lrg1-Met3-F and lrg1-Met3-R primers amplify URA3- PMET3 cassette with a 5’ 

segment homologous to a region upstream of LRG1 and a 3’ segment homologous to the 

region at the start of LRG1, minus the ATG start codon. Transformation of either cassette 

results in homologous recombination to place a copy of the gene under control of the 

PMET3 promoter and autotrophy for uridine. A small amount of each cassette was 

visualised on a 1% agarose gel before transformation to ensure correct amplification. 

 (B) Correct integration of the cassette into the genome was checked by PCR using a 

forward primer within PMET3 and a reverse primer in LRG1 before visualisation on a 1% 

agarose gel.  
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A) 

 

 

 

 

 

B) 

 

 

 

 

 

Figure 3.3 C-terminal tagging of EXO84 with GFP-HIS1 

(A) The pFA-GFP-HIS1 plasmid was used to amplify a cassette with 5’ identity to the 

end of EXO84 minus a stop codon and 3’ identity to a region downstream of EXO84. 

Correct amplification was checked by visualisation of 1% agarose gel, followed by 

transformation in C. albicans. (B) Integration of the cassette was checked using a 

forward primer in EXO84 and a reverse primer in GFP, before protein expression was 

detected by western blot.  
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3.2.4    Deletion of the C. albicans Lrg1 N-terminus 

 

To further explore the role of the Lrg1 N-terminal extension seen in CaLrg1, the region of 

the gene encoding this part of the protein was deleted and the resulting phenotype 

assessed. It was necessary to replace the first 990 bp of LRG1 with a prototrophic marker; 

however in doing so, the promoter region would be separated from the remainder of LRG1. 

This problem was overcome by replacing the region of the gene with a HIS1-MAL2p-GFP 

cassette as shown in figure 3.4, providing both a regulatable maltose promoter for gene 

expression and a GFP tag to visualise the truncated protein. To ensure that any phenotype 

seen was a result of the truncated protein only, the part gene deletion was performed in an 

LRG1/lrg1Δ heterozygote, meaning this was the only copy of CaLRG1 present. To also make 

sure that the N-Terminal GFP tag on the Lrg1 protein did not cause any deleterious effects, 

the HIS1-MAL2p-GFP cassette was also placed in front of the full length LRG1.  The resulting 

strains were named lrg1Δ/ PMAL2-GFP-LRG1(993-4404) and lrg1Δ/PMAL2-GFP-LRG1. 

 

A) 

 

 

 

 

B) 
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C) 

 

 

 

 

 

 

Figure 3.4 Construction of N-terminally GFP tagged LRG1 and an N-terminally 

GFP tagged LRG1 lacking its N-terminal extension 

A) The pFA-HIS1- MAL2p-GFP plasmid was used as a backbone to produce two 

separate transformation cassettes. Both had a 5’ region homologous to a sequence 

upstream of LRG1, with one cassette having a 3’ region homologous to the start of LRG1 

minus the ATG start codon, producing an N-terminally GFP-tagged LRG1 under the 

control of the MAL2 promoter after transformation and integration.  The other cassette 

had 3’ identity to a region of LRG1 starting at 990 bases; this also produced an N-

terminally GFP-tagged LRG1 under the control of the MAL2 promoter, but excluded the 

N-terminal extension. (B) Correct integration of either cassette was confirmed in a PCR 

reaction using forward primers in GFP and reverse primers in LRG1. The differing size 

products are attributed to differing primers being used. (C) Both the wild-type GFP-Lrg1 

and GFP-Lrg1 N-terminal deletion were checked for correct protein expression by 

western blot. 
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3.3    Results 
 

3.3.1    C. albicans Lrg1 contains an N-terminal extension that is absent from S. 

cerevisiae Lrg1. 

 

A search of multiple protein databases using the NCBI Conserved Domain Database (CDD) 

(Marchler-Bauer et al., 2013) was performed on the C. albicans protein sequence, with 

results shown in (figure 3.5 top).  The CDD search shows 4 major domains in the Lrg1 

protein; 3 LIM domains (Zinc-finger domains responsible for protein-protein interactions  

(Dawid et al., 1998) and the RhoGAP domain at the C-terminus that provides the main 

function of the protein.  These four domains are the same as those seen in the S. cerevisiae 

homolog of the Lrg1 protein.  Interestingly, when the C. albicans Lrg1 homolog is aligned 

with the S. cerevisiae Lrg1 protein using the ExPASy SIM alignment tool (Huang and Miller, 

1991) (figure 3.5 middle) the two align over almost the whole length of ScLrg1 with an 

identity of 41.54%. The LIM domains are highlighted in yellow with ~40% homology, and the 

RhoGAP domain at the C-terminus has ~50% homology. However, there is an N-terminal 

extension of 330 amino acids in CaLrg1 that is not present in ScLrg1. This N-terminal 

extension is only seen in the Candida spp and is not present in other fungi such as, S. pombe, 

A. gossypii, A. nidulans, N.crassa, U. maydis or C. neoformans. Furthermore, the CDD search 

of CaLrg1 does not identify any known domains in this N-terminal extension (figure 3.5 top). 

Additionally, using the IUPred web server (Dosztanyi et al., 2005)  to predict regions of 

disorder of a protein based on free energy, it can be seen that the N-terminal extension 

seen in C. albicans Lrg1 is highly disordered up until the start of the first two LIM domains 

where the protein becomes globular  (figure 3.5 bottom). Regions of disorder in a protein 

are potential areas for its regulation as they are free for other proteins to interact with. Due 

to this N-terminal extension gained by the C. albicans protein we speculated that Lrg1 had 

gained both extra function and regulation of function compared to the S. cerevisiae 

homolog.  
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Figure 3.5 CaLrg1 contains a non-conserved N-terminal extension not seen in S. 

cerevisiae Lrg1 

Top: An NCBI Conserved Domain Database (CDD) (Marchler-Bauer et al., 2013)  

analysis of C. albicans Lrg1 reveals conserved LIM and RhoGAP domains. 

Middle: CaLrg1 and ScLrg1 were aligned using SIM from ExPASy (Huang and Miller, 

1991), and visualised using the graphical viewer LALNVIEW (Duret et al., 1996),  

identifying a non-conserved N-terminal extension in C. albicans Lrg1. LIM domains are 

yellow, the RhoGAP domain is grey.  

Bottom: Free energy prediction of CaLrg1 using IUPred (Dosztanyi et al., 2005) 

shows the N-terminal extension as highly disordered. Red line depicts disorder 

tendency and Blue boxes show predicted domains.  
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3.3.2    LRG1 is a negative regulator of polarised growth 

 

In order to deduce the phenotype of the lrg1ΔΔ strain, an overnight culture was re-

inoculated into both yeast (30°C, pH4) and hyphal (37°C, pH7, 20% calf serum) inducing 

conditions and grown for 3 hours and 90 minutes respectively. Cells were then fixed with 

formaldehyde before visualisation (figure 3.6). This was also performed with the parent 

strain- BWP17- as a control. When grown under yeast inducing conditions, the lrg1ΔΔ strain 

is highly polarised, growing with extremely elongated cells that fail to separate and show 

branching similar to the pseudohyphal morphology. To quantify the lrg1ΔΔ phenotype when 

grown as yeast, images of this and the BWP17 strain were used to calculate the average 

length: width ratios of cells (figure 3.6). The calculated length: width ratios clearly show that 

the cells lacking LRG1 are longer (4.884± .37) in comparison to the wild-type strain (1.384± 

.032), which is seen as statically significant when an un-paired t-test is performed.  

 

When grown under hyphal-inducing conditions, cells still appear highly branched; however 

this could be a consequence of the overnight growth as yeast. In order to test whether the 

branched cells seen in cells grown as hyphae are actually from before the strain was 

induced, lrg1ΔΔ was induced to form hyphae and individual cells visualised every 30 

minutes over a period of 210 minutes from stationary phase. An example of cells followed 

like this is shown in (figure 7.-top). Cell “A” has already formed the start of a yeast bud at 

the time of induction, however it goes on to form a germ tube and then a mature hyphal cell 

with parallel sides, showing that cells can grow as hyphae even when they lack LRG1.   

However, a germ tube emerges from cell “B” after 30 minutes and this continues to grow as 

normal hyphae with parallel sides up until around 150 minutes. At this point the cell wall 

appears to become increasingly thick and what appears to be a pointed tip forms within the 

cell a considerable distance from the outer hyphal tip. As time passes, growth appears to 

continue at the “inside” tip causing the hyphae to swell at this point. To further analyse this 

strange thick cell wall seen in cell “B”, the lrg1ΔΔ strain was grown in hyphal-inducing 

conditions for 2 hours and then stained with aniline blue to visualise whether it is composed 

of β-1,3-glucan. Cells were then visualised by fluorescence microscopy and images are 

shown in figure 3.7 (bottom). It can be seen that in the cells that exhibit this “double” tip 
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phenotype, each tip shows a crescent of aniline blue corresponding to β-1,3-glucan but the 

space in between is not stained. This could indicate that the thick cell wall seen is not glucan 

and is chitin. However, there is also a possibility that the dye is unable to penetrate the thick 

cell wall.  

The lrg1ΔΔ hyphal cells shown in the above time-course also appear to be extending slower 

than one would expect from a wild-type strain. To investigate this, fifteen cells of both the 

BWP17 and lrg1ΔΔ strain were induced to form hyphae and visualised every 20 minutes for 

140 minutes to follow germ tube extension. The average length of hyphae at each time 

point was calculated for each strain and is shown in figure 3.8. It can be seen that after 140 

minutes, the average hyphal length for the BWP17 strain is 27.1 ±2.3 µm, whilst the average 

length for the lrg1ΔΔ mutant is 7.8 ±2.3 µm, indicating a much slower rate of hyphal 

extension in this strain.  

In conclusion, it can be said that cells lacking LRG1 show unregulated polarised growth when 

grown in yeast-inducing conditions. When grown under hyphal-inducing conditions, lrg1ΔΔ 

hyphae grow at a much slower rate than would be expected in wild-type cells. However, in a 

small proportion of hyphae, growth appears to become un-regulated, resulting in a thick cell 

wall which isn’t composed of glucan and swelling of the hyphal tube.  

 

 

 

 

 

 

 

 

 



73 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6 Lrg1 is required to negatively regulate polarised growth in C. albicans 

Top: Overnight cultures of a wild-type BWP17 (right panel) strain and the lrg1ΔΔ null 

strain (left panel) were re-inoculated into media to induce either the yeast (top) or hyphal 

(bottom) morphologies.  Yeast were grown for 3 hours, Hyphae for 2 hours, before being 

fixed with formaldehyde and visualised on a Leica Differential Interference Contrast 

(DIC) Microscope. Scale bars represent 10 µm. 

Bottom: The above images of cells grown as yeast were used to calculate the average 

length: width ratio of each strain.  N=100 (BWP17), 60 (lrg1ΔΔ). 
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lrg1ΔΔ aniline stain, 2 hours  after hyphal induction 
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Figure 3.7 Growth of lrg1ΔΔ as hyphae 

Top: lrg1ΔΔ cells were induced to form hyphae on agar pads embedded on microscope 

slides. Cells were imaged every 20 minutes from induction up until 210 minutes on a 

Delta Vision Spectris 4.0 microscope with Softworx
TM

 3.2.2 software (Applied Precision 

Instruments). Two cells can be seen, one that grows as a normal hyphae (A), albeit 

slower than one would expect, and one (B) that shows an unusual phenotype of a 

“double” tip with a thick cell wall. Scale bars represent 5 µm.  

Bottom: lrg1ΔΔ cells were induced to form hyphae and grown for 2 hours before staining 

with aniline blue and hyphae with a “double tip” and thick cell wall imaged as above 

using the CFP filter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8 lrg1ΔΔ shows slower hyphal extension than the wild-type strain 

BWP17 and lrg1ΔΔ cells were induced to form hyphae on agar pads and individual cells 

were visualised every 20 minutes for 140 minutes on a Delta Vision Spectris 4.0 

microscope with Softworx
TM

 3.2.2 software (Applied Precision Instruments). The 

average hyphal length for each strain was then calculated at each time point. Error bars 

represent SEM and N=20. 
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3.3.3    Loss of LRG1 results in an increase in invasiveness 

 

Both the pseudohyphal and hyphal morphologies of C. albicans are known to be more 

invasive  than the yeast morphology (Sudbery et al., 2004). To test whether the highly 

polarised nature of the lrg1ΔΔ strain is correlated with an increase in invasiveness of the 

cells, the strain was streaked onto YPD agar plates and incubated at 30 °C for 3 days. The 

resulting colonies were washed of the plate with water and gentle agitation, whilst any 

invasive cells would remain embedded in the matrix. As seen in figure 3.9, the majority of 

the cells in the BWP17 control strain are washed off the agar matrix, with a small amount of 

cells, if any, observed where single colonies once grew. However, on the lrg1ΔΔ plate, a 

large majority of even the single colonies remain in the agar after washing. This shows that 

deletion of LRG1 is associated with an increase in cell invasiveness. 

3.3.4    Lrg1 localises to sites of polarised growth 

 

It has been shown above that Lrg1 is a negative regulator of polarised growth, so it was of 

interest to deduce the cellular location of the protein to gain further insights into its 

function. A strain in which LRG1 was C-terminally tagged with the green fluorescent protein 

(GFP) (Regan, H. Unpublished) was used. The LRG1-GFP strain was grown for 3 hours in 

yeast inducing conditions before visualisation on a fluorescence microscope. Images are 

shown in figure 3.10. It can be seen that in small buds, Lrg1-GFP localises to a crescent at 

the tip, whereas in larger cells, Lrg1-GFP localises to the site of septum formation. These are 

both sites of polarised growth and match the localisation pattern of Rho1 as one would 

expect due to its putative regulatory role on Rho1 in C. albicans. 
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A) 
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Figure 3.9 Loss of LRG1 results in an increase in invasiveness 

A) BWP17(top) and lrg1ΔΔ (bottom) cells were plated onto YPD agar plates to obtain 

single colonies. Plates after incubation for 3 days at 30°C are shown on the left panel. 

The plates were then washed using water and gentle agitation to remove any non-

attached cell matter (right panel).  

B) Zoomed images of single colonies from (A).  
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Figure 3.10 Lrg1 localises to sites of polarised growth in C. albicans 

LRG1-GFP was grown in yeast inducing conditions for three hours before visualisation 

on a Delta Vision Spectris 4.0 microscope with Softworx
TM

 3.2.2 software (Applied 

Precision Instruments). Images taken using the DIC and FITC filters are shown along 

with a merged image of the two. White arrows show small buds with Lrg1 located at the 

tip, whilst red arrows depict large buds where Lrg1 has re-localised to the site of septum 

formation.  
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3.3.5    Re-localisation of GFP-Rho1 in an lrg1ΔΔ background during yeast growth 

is delayed 

 

To investigate the location of Rho1 as the yeast bud forms in the absence of Lrg1, the PMAL2-

GFP-RHO1/lrg1ΔΔ and PMAL2-GFP-RHO1 strain were grown on maltose containing agar 

microscopy pads to induce expression of Rho1 under yeast inducing conditions. As can be 

seen in figure 3.11 (left panel), in the strain with two copies of LRG1 present, GFP-Rho1 

localises first to the apical tip of the growing bud. Once the bud becomes larger, GFP-Rho1 

relocates to the mother-bud neck, presumably to direct the cell wall remodelling apparatus 

for formation of the primary and secondary septa and cytokinesis. On the other hand, in the 

lrg1ΔΔ background, whilst GFP-Rho1 does re-locate to the mother-bud neck, it does so 

when the bud is markedly more elongated than in a wild-type background (figure 3.11, right 

panel). To confirm this observation, the length of cells that showed GFP-Rho1 at either the 

bud tip or bud-neck was measured so as to give an indication of when Rho1 re-localised 

from one to the other. Results are shown in figure 3.12a. 

It can be seen that the average length of wild-type cells with GFP-Rho1 at the tip is less than 

in the average length of cells lacking LRG1. Likewise this pattern is seen when the lengths of 

cells with GFP-Rho1 at the forming bud-neck are compared. Furthermore, an unpaired t-test 

on this data by GraphPad Prism (GraphPad Software 6, San Diego California USA, 

www.graphpad.com) shows that the difference between the wild-type strain and lrg1ΔΔ 

strain of both Tip and Bud-neck data sets are significantly different, with a p-value of 0.05.  

This shows that in the absence of LRG1, there is a delay in relocation of Rho1 from the apical 

tip to the mother-bud neck.  

Further evidence for this delay in re-localisation is the fact that during growth as yeast, the 

wild type cells shows GFP-Rho1 at either the tip or the mother-bud neck, never both, but in 

cells lacking LRG1, 22% of cells show GFP-Rho1 at both locations at the same time (figure 

3.12b) This indicates not only a delay in the re-localisation of Rho1 but also an incomplete 

re-localisation in the lrg1ΔΔ strain. The maintenance of Rho1 at the bud tip could result in 

continuous cell wall growth and provide a mechanistic explanation for the highly polarised 

nature of the lrg1ΔΔ mutant.  
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Figure 3.11 The localisation during yeast growth of GFP-Rho1 in an lrg1ΔΔ background 

Overnight cultures of PMAL2-GFP-RHO1 and PMAL2-GFP-RHO1/lrg1ΔΔ were re-inoculated onto 

minimal media agar pads grown at 30°C for 3 hours. Cells were visualised on a Delta Vision Spectris 

4.0 microscope with Softworx
TM

 3.2.2 software (Applied Precision Instruments) using DIC and FITC 

filters. In wild type cells (left), GFP-Rho1 can be seen at the tip of small buds (blue arrow) and then 

the bud-neck of larger cells (white arrow). However, in cells lacking LRG1, cells where GFP-Rho1 

can be seen at the tip have an increased length compared to the wild-type strain (red arrow).  Scale 

bars represent 5 µm. 
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Figure 3.12 Re-localisation of Rho1 from apical tip to mother-bud neck is delayed in 

an lrg1ΔΔ background during yeast growth 

A) PMAL2-GFP-RHO1 and PMAL2-GFP-RHO1/lrg1ΔΔ strains were grown as yeast as 

depicted in figure 3.11 and cells were analysed to measure their length when GFP-Rho1 

could be seen at either the tip or mother-bud neck.  The average lengths of cells ± SEM is 

depicted. N=60. A t-Test was performed using GraphPad Prism, with connecting bars 

above data sets showing a statistical difference, with a p-value of 0.05.  

B) Cells were counted in PMAL2-GFP-RHO1 and PMAL2-GFP-RHO1/lrg1ΔΔ strains to 

record the percentage of cells where GFP-Rho1 could be seen at both the tip and mother-

bud neck. N=50 

 Length of cells when GFP-

Rho1 is seen at 

each location (µm) 

 TIP Bud neck 

BWP17 0.98± 0.118 3.45± 0.062 

lrg1ΔΔ 2.76± 0.319 4.96 ± 0.307 
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3.3.6    GFP-Rho1 becomes less focused at the hyphal tip in an lrg1ΔΔ background 

 

To examine the distribution of GFP-Rho1 at the hyphal tip in wild-type and lrg1ΔΔ cells, 

PMAL2-GFP-RHO1/lrg1ΔΔ and PMAL2-GFP-RHO1 cells were induced to form hyphae on maltose-

based media, grown for 90 minutes and then visualised by fluorescence microscopy. In the 

wild-type strain it can be seen that GFP-Rho1 is localised to a relatively small cap around the 

hyphal tip (figure 3.13, left panel). In an lrg1ΔΔ mutant, Rho1 is still localised to a cap at the 

hyphal tip. However, the cap appears to be broader around the tip than in the wild-type 

strain (figure 3.13, right panel). To quantify this, the distance around the hyphal tip (“A” in 

figure 3.14) that GFP-Rho1 extends and the distance along the hyphae (“B” in figure 3.14) 

from the tip that GFP-Rho1 can be seen, was measured (figure 3.13).  The average distance 

that GFP-Rho1 extends around the tip-measurement “A”-in wild-type cells is 1.80 µm ± 0.58, 

compared to 3.43 µm ± 0.41 in the absence of Lrg1. Similarly, the distance that Rho1 

extends down the walls of the hyphae-measurement “B”-is 0.66 µm ± 0.24 in the wild-type 

strain but 1.39 µm ± 0.41 in lrg1ΔΔ. This suggests that Lrg1 is required to focus the 

localisation of Rho1 to a very precise region at the apical tips of hyphae. One could also 

speculate that an increased spread of Rho1 further around the hyphal tip could produce 

wider hyphae due to increased spread in deposition of cell wall material. However, when 

the widths of the hyphae of wild-type and lrg1ΔΔ mutants are compared (figure 3.14) - 1.00 

µm ± 0.18 and 1.06 µm ± 0.29 respectively- no significant difference can be seen.  
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Figure 3.13 The localisation during hyphal growth of GFP-Rho1 in an lrg1ΔΔ 

background 

Overnight cultures of PMAL2-GFP-RHO1 and PMAL2-GFP-RHO1/lrg1ΔΔ were re-

inoculated onto minimal media agar pads and grown at 37°C for 90 minutes to induce the 

hyphal morphology. Cells were visualised on a Delta Vision Spectris 4.0 microscope 

with SoftworxTM 3.2.2 software (Applied Precision Instruments). GFP-Rho1 appears to 

form a broader cap around hyphae in cells lacking LRG1 than in hyphae from wild-type 

cells. Scale bars represent 5 µm. 
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Figure 3.14 Rho1 is less precisely focused at the hyphal tip in an lrg1ΔΔ background 

PMAL2-GFP-RHO1 and PMAL2-GFP-RHO1/lrg1ΔΔ were grown as hyphae as depicted in 

figure 3.13 and cells were analysed to measure A) the length that GFP-Rho1 can be seen  

curving around the tip of the hyphae, B) the distance from the tip that GFP-Rho1 can be 

seen and C) their width. The average of each measurement ± SEM is depicted on the 

graph. N=45. A t-Test was performed using GraphPad Prism, with connecting bars above 

data sets showing a statistical difference, with a p-value of 0.05. 

 

3.3.7    GFP-RID localises to sites where Rho1 is active 

 

The above data uses an N-terminally GFP tagged Rho1 protein to try and assess the effects 

of deletion of the LRG1 gene in C. albicans. However there are a number of problems with 

this strategy. Firstly, there are concerns that GFP tagged Rho1 is non-functional due to the 

inability to construct a strain in which this was the only copy of RHO1 present and the fact 

that it is unable to complement a PTET-RHO1 strain  (Caballero-Lima et al., 2013; Corvest et 

al., 2013). Furthermore, even if GFP-Rho1 is functional, the fluorescence that it emits only 

reports on the location of the protein, regardless of whether it is in the GTP-bound active 

form or not. To try and analyse the effects of LRG1 deletion on active Rho1, a GFP-RID 

fluorescent reporter construct was used. The pExpArg-pACT1GFPRID plasmid (figure 3.15a), 

(Corvest et al., 2013) contains a 265 amino acid region from C. albicans Pkc1, homologous to 

the mapped region of S. cerevisiae Pkc1 that is known to interact with Rho1 bound to GTP 

only (Nonaka et al., 1995b) that is called the Rho1 Interaction Domain (RID). The RID domain 

is fused to GFP and placed in front of an ACT1 promoter for cell-cycle independent 

expression, whilst the plasmid contains part of the RP10 locus for integration and the ARG4 
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gene for selection of transformants. Thus when transformed into C. albicans GFP-RID should 

bind to and be seen at sites where active Rho1 is localised.  

 

 

A) 

 

 

 

B) 

 

C) 

 

 

 

Figure 3.15 Transforming the pExpArg-pACT1GFPRID plasmid into C. albicans 

The pExpArg-pACT1GFPRID plasmid is represented in (A) and contains a Stu1 

restriction site in its RP10 locus used to linearise the plasmid. Once linearised, the 

plasmid goes through homologous recombination with the C. albicans genome at this 

locus, resulting in integration (B).  Correct expression of the integrated GFP-RID 

construct was confirmed via SDS-PAGE, western blot and detection with antibodies to 

GFP (C) 
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3.3.8    The localisation of active Rho1 in the wild-type and lrg1ΔΔ strains.  

 

To analyse the distribution of active Rho1 in yeast cells, the pExpArg-pACT1GFPRID plasmid 

was linearised and transformed into both the BWP17 wild-type strain and the lrg1ΔΔ 

mutant. Correct integration (figure 3.15b) and expression of GFP-RID was confirmed by 

protein extraction, SDS-PAGE and western blot figure (3.15c).  The resulting strains were 

named GFP-RID and lrg1ΔΔ/GFP-RID. These two strains were then grown on agar 

microscopy pads to induce the yeast morphology for 3 hours before visualisation via a 

DeltaVision fluorescence microscope. The images are shown in figure 3.16 (top-left). As with 

the GFP-Rho1 construct, GFP-RID can be seen localising to both the tips of small buds and 

the bud neck of large buds indicating that Rho1 is active at those locations in wild-type cells. 

In medium sized buds, active Rho1 can also be seen around the whole cell cortex, most 

probably indicating that growth has switched from a polarised to an isotropic state. To 

analyse the location of active Rho1 further, the lengths of wild-type cells with active Rho1 at 

the tip, cortex or bud neck was measured. The average lengths with SEM are shown in figure 

3.16 (centre-left panel). It can be seen that the cells with active Rho1 at the tip have an 

average length in microns of 2.249± 0.214 µm, whilst in cells with active Rho1 at the cortex 

the length is 3.228± 0.158 µm, and when re-localised to the bud neck the cells are 4.165± 

0.163 µm long. This demonstrates that active Rho1 is first localised to the tip of small buds, 

then as they grow in size it is re-localised to the cortex for a period of isotropic growth, 

before again re-localising to the mother-bud neck once the cells reach a defined size in 

order to form the primary and secondary septa and go through cytokinesis.  

It can also be seen that active Rho1 is present at the tip, cortex and septum of lrg1ΔΔ/GFP-

RID cells. Unlike in wild-type cells, active Rho1 can also be seen at both the tip and the 

septum of cells simultaneously (figure 3.16, top-right, yellow arrow), similar to the result 

from visualisation of GFP-Rho1, with 30% of cells displaying this phenotype compared to 8% 

of wild-type cells (figure 3.16, bottom panel). This again indicates that the protein is failing 

to show appropriate re-localisation from the tip in large buds, providing a mechanism for 

the highly polarised phenotype the lrg1ΔΔ strain displays. In addition, GFP-RID can be seen 

at the tips of cells that are extremely long (figure 3.16, top-right, white arrow), indicating 

that active Rho1 has failed to re-localise to the cortex. It can be seen that the relevant 
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lengths of lrg1ΔΔ cells where active Rho1 is at the tip, cortex and bud neck are; 8.38± 1.496 

µm, 4.707± 0.694 µm and 6.278± 0.497 µm respectively. A number of observations can be 

made here. Firstly, it can be noted that under all three active Rho1 locations, the average 

bud length of the mutant are greater than in wild-type cells, which are statistically different 

in an unpaired t-test, with a confidence interval of 0.01. This confirms that there is a delay in 

re-localisation of the growth machinery from the tip to the cortex and then subsequently 

the mother-bud neck in cells lacking Lrg1. Secondly, when the average lengths of the lrg1ΔΔ 

mutant cells analysed, it can be seen that those with active Rho1 at the tip are, on average, 

longer than those with the active GTPase at either the cortex or bud neck. This is counter 

intuitive, as one would expect the average bud length to increase and to be longest when 

Rho1 is at the bud neck, as is the case in the wild-type cells. However, one possible 

explanation for this is that there are effectively two populations of lrg1ΔΔ cells: 

1. Cells where there is a complete failure of Rho1 re-localisation from the bud tip 

 Rho1 and the growth machinery become locked at the bud tip, growth 

remains polarised towards this location and the cells continue to increase in 

length. 

2. Cells that only show a delay or incomplete re-localisation of Rho1 from the bud tip 

 The increase in time that growth remains polarised at the tip results in cells 

becoming longer 

 Rho1 eventually re-localises to the cell cortex and then the mother-bud neck 

to form the primary and secondary septum. 

 Resulting cells are longer than the average wild-type cell but not as long as 

cells where Rho1 remains fixed at the bud tip.  

In the lrg1ΔΔ strain, the range of bud length with active Rho1 at the tip is from 1.293 µm to 

36.616 µm, whereas at the cortex the range is from 2.19 µm to 12.98 µm and the septum 

2.45 µm to 10.209 µm, showing that a proportion of buds with active Rho1 at the tip are 

much longer than any seen with active Rho1 at either the cortex or septum (figure 3.12, 

centre-right panel).  

Overall, it can be concluded that lack of Lrg1 results in a delay in active Rho1 leaving the tip 

of buds, resulting in lengthening of buds compared to a wild-type strain. Furthermore, it can 
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be noted that in some cells active Rho1 fails to leave the tip at all giving rise to 

hyperpolarised long daughter cells. 
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Figure 3.16   Re-localisation of GFP-RID is delayed in the lrg1ΔΔ strain 

Top: The GFP-RID and lrg1ΔΔ/GFP-RID strains were grown for 3 hours in yeast 

inducing conditions on agar pads, before visualisation on a DeltaVision fluorescence 

microscope using DIC and FITC filters. White arrows indicate long cells with active 

Rho1 still localised to the septum, whilst yellow arrows indicate cells that possess active 

Rho1 at both the tip and septum.  Scale bars represent 5 µm.  

Centre left: The images of each strain were used to determine the average length (plus 

SEM) of cells when GFP-RID could be seen at the bud tip, cortex or septum. N=50   

Centre right: Displays the same data as the bottom left panel but with the range of the 

data shown instead of SEM.  

Bottom: The percentage of cell displaying GFP signal at both the tip and septum, 

concurrently. 

 **= statistically different with a confidence interval of ≤ 0.01 

***= ≤ 0.001 

 

 

3.3.9    Activity of Rho1 is increased in C. albicans cells lacking LRG1 

 

To further investigate the activity of Rho1, the images of GFP-RID and lrg1ΔΔ/GFP-RID taken 

above were used in additional analyses. An image processing programme, FIJI (Schindelin et 

al., 2012), was first used to trace around cells expressing GFP-RID, with the line starting in 

the middle of the septum then bisecting the growing bud to the middle of the tip before 

tracing around the whole circumference of the buds cell wall. An example of this is seen in 

figure 3.17 (top panel). An in-house programme (Craven, J. University of Sheffield), then 

used the coordinates of this line to project the fluorescence intensity signal around the 

circumference of the cell wall onto the straight line from the mother-bud neck to the bud 

tip. In total, 52 cells of the GFP-RID strain and 64 cells of the lrg1ΔΔ strain were analysed this 

way and the plots from a selection of cells shown in figure 3.17 (bottom panel). This figure 

shows fluorescence intensity on the Y-axis, whilst the X-axis shows increasing distance from 

the bud tip from left to the septum on the right. Two lines of data are shown to represent 

each side of the daughter bud. The BWP17 cells appear to show fluorescence from around 

700 to 2000 units, whilst the graphs of cells lacking LRG1 show fluorescence much higher, 

anything from 1000 to 4000 units, with the majority appearing to average between 2000 
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and 3000 units. To confirm this observation, the tracing of each cell was used to calculate its 

average fluorescence intensity, and then each value utilised to produce an overall average 

intensity for the BWP17 and lrg1ΔΔ strains (Figure 3.18-left). The average (± SEM) intensity 

value for the wild-type strain is 1101± 5.80, whilst for the cells lacking LRG1 the average is 

1833± 84.96 and an unpaired t-test reveals that there is a significant difference between the 

two values with a p-value of 0.0001.  

Next, to investigate the distribution of active Rho1 in the cell, the co-ordinates of the cell 

traces were used to take 3 individual fluorescence readings for each cell corresponding to 

the centre of the tip, centre of the septum and also halfway along the bud. Cells were then 

sorted as to which of the three measurements had the highest reading so that three groups 

were gained, each having cells which contained the majority of GFP-RID at the tip, septum 

or cortex. The average fluorescence intensity was then calculated for the relevant location 

of each of the 3 categories and is shown in figure 3.18 (right panel). Similar to the overall 

average GFP-RID fluorescence above, the average intensity seen in either the tip, septum 

and cortex of cells is around 2-fold higher in the strain lacking LRG1 to that detected in wild-

type cells.  This difference is shown as significant when using an un-paired t-test.  Also, in 

both strains the fluorescence seen in all three locations shows no significant difference 

between each other meaning that the tip, cortex and septum receive the same amount of 

active Rho1 at different stages of cell growth. 

As the localisation and therefore level of fluorescence directly related to the level of active 

Rho1 in the cell, through binding of GFP-RID, these results indicate that lack of Lrg1 in C. 

albicans produces an increase in active Rho1 at the cell wall, which is independent of 

cellular location. 
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Figure 3.17 Projecting the intensity of GFP-RID onto bud length 

Top: In order to analyse the GFP-RID strains, the wall of individual cells was traced 

around and the fluorescence intensity measured using the image processing programme 

FIJI (Schindelin et al., 2012) . Using an in house programme (Craven, J. University of 

Sheffield), this fluorescence intensity was projected onto the length of the bud to produce 

a graphical representation of fluorescence intensity (y-axis) vs. bud length (x-axis), with 

the tip of buds on the left and the septum on the right. Both units are arbitrary. 

Bottom: A selection of GFP-Rid projections from both wild-type and lrg1ΔΔ cells. Scale 

bars represent 5 µm.  
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Figure 3.18 Rho1 activity is increased in cells lacking LRG1 

Left: Using the fluorescence intensity plots above, the average GFP-RID signal from 

each cell was used to calculate an overall cell average for the wild type GFP-RID strain 

(BWP17) and the lrg1ΔΔ/GFP-RID strain. The values were significantly different to a p-

value of 0.0001 in an unpaired t-test. GFP-RID n=52, lrg1ΔΔ/GFP-RID n=64 

Right: Cell traces were categorised into group’s dependent on whether their highest 

intensity reading was at the tip, cortex or septum. Each group was then used to calculate 

an average fluorescence reading for that particular location. 4 stars indicate a p-value of 

0.0001 whilst 3 stars indicate a p-value of 0.001 in an unpaired t-test. 

 

3.3.10    Deletion of LRG1 causes hyper-susceptibility to caspofungin 

 

Due to the increase in Rho1 activity seen in the lrg1ΔΔ strain via the GFP-RID construct, an 

increase in activity of the β-1,3-glucan synthase and hence an increased resistance to the 

echinocandin family of drugs that target this enzyme would be expected. This is indeed the 

case seen in other fungi such as N. crassa (Vogt and Seiler, 2008b). To test this hypothesis, 

overnight cultures of BWP17 and lrg1ΔΔ were sonicated briefly to disturb clumps of cells, 

adjusted to read the same absorbance at OD600, and then diluted to 1x10-4 and 1x10-6. The 

dilutions were then spotted onto agar plates containing increasing concentrations of 

caspofungin and incubated for three days at 30 °C. The results are shown in figure 3.19. In 

both dilutions of BWP17, it can be seen that as the concentration of caspofungin increases, 

the level of growth decreases as expected showing that drug is having the desired effect. 

With no caspofungin present the lrg1ΔΔ strain already grows slower than the wild-type, 

which must be taken into account when analysing the effect growth on caspofungin. Even at 
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the lowest concentration of caspofungin, growth of lrg1ΔΔ is highly inhibited when 

compared to that of the wild-type. This increased inhibition of growth continues to be 

observed at all drug concentrations tested with only a few small colonies seen at the highest 

concentration of 1 µg/ml of caspofungin. This is in contrast to what was first expected.  

 

 

 

 

 

 

Figure 3.19 Lack of LRG1 leads to hyper-susceptibility to caspofungin in C. albicans 

BWP17 and lrg1ΔΔ strains were grown in YPD overnight, sonicated briefly and then 

adjusted so that they both read the same absorbance at OD600. Cultures were then diluted 

to the indicated dilutions and spotted onto YPD agar plates with increasing 

concentrations of caspofungin.  

 

3.3.11    Exo84 shows an incomplete re-localisation from the apical tip to mother-

bud neck upon repression of LRG1 

 

To investigate the localisation of Exo84 in the lrg1Δ/ PMET3-LRG1/EXO84-GFP strain, cells 

were grown in yeast inducing conditions in either the presence or absence of methionine to 

repress and derepress the MET3 promoter, respectively. As shown in figure 3.20, whilst 

LRG1 is being expressed under the MET3 promoter in the absence of methionine, Exo84-

GFP localises first to the growing bud tip, resulting in polarised growth. There is then a 

period where Exo84-GFP is absent from the bud tip and is spread throughout the cell cortex 

(data not shown), before Exo84 then localises to the mother-bud neck resulting in the 

polarised growth required for cytokinesis. During yeast growth, Exo84 is only seen at both 

the tip and mother-bud neck in 2% of cells (figure 3.20, bottom). In contrast, when 

expression of LRG1 is shut down by the addition of methionine, 24 % of cells show Exo84-
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GFP at the apical tip of the highly polarised bud, but can also be seen at the site of the 

septum at the same time. This indicates that the exocyst is failing to properly relocate to the 

mother-bud neck in the same manner that Rho1 fails to re-localise. Therefore exocytosis 

and growth is continuing to occur at the apical tip as well as at the site of septum 

production. This is the pattern of Exo84 localisation seen in true hyphae (Caballero-Lima and 

Sudbery, 2014) and thus provides a reason for the increase in polarisation of lrg1ΔΔ cells. 

The observation also suggests that it is not only active Rho1 that fails to re-localise from the 

tip of buds when Lrg1 is absent, but that a large proportion of the whole cell growth 

machinery is also showing a delay in re-localisation. 

 

3.3.12    Deletion of the CaLrg1 N-terminal extension has no deleterious effects 

during yeast or hyphal growth 

 

To discover the effects of the Lrg1 N-terminal deletion, the lrg1Δ/ PMAL2-GFP-LRG1 (993-

4404) strain along with BWP17 and lrg1Δ/ PMAL2-GFP-LRG1, were induced to form both yeast 

and hyphae on maltose containing media. As shown in figure 3.21, the lrg1Δ/ PMAL2-GFP-

LRG1 strain grows as both yeast and hyphae in a similar fashion to the BWP17 wild-type 

control. Thus, it can be concluded that N-terminal GFP tagging of Lrg1 does not negatively 

affect the function of the protein.   The strain with N-terminal deletion, lrg1Δ/ PMAL2-GFP-

LRG1 (993-4404), also grows in a wild-type fashion as both yeast and hyphae. Consequently, 

it can be concluded that loss of the Lrg1 N-terminal extension does not have any deleterious 

effects. Nevertheless, as shown later in chapter 4, this part of the protein does have a role in 

regulating Lrg1 activity.  
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Figure 3.20 Re-location of Exo84 from apical tip to mother-bud neck is delayed in 

the absence of LRG1 

Top: The PMET3LRG1/lrg1Δ/EXO84-GFP strain was grown in the presence/absence of 

methionine to either derepress/induce the MET3 promoter respectively. Cells were re-

inoculated onto required synthetic media from an overnight culture and induced to grow 

as yeast for 3 hours. Samples were then visualised using on a Delta Vision Spectris 4.0 

microscope. Scale bars represent 1 µm.  

Bottom: Images were analysed to count the percentage of cells that possessed Exo84-

GFP at both the tip and septum. N=50. 
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Figure 3.21 The Lrg1 N-terminal extension is not required for yeast or hyphal 

growth 

BWP17, lrg1Δ/ PMAL2-GFP-LRG1 and lrg1Δ/ PMAL2-GFP-LRG1(993-4404), were re-

inoculated from an overnight culture of YPM, to fresh YPM prepared to induce either 

yeast or hyphal growth. Cells were then grown for 2 hours as hyphae or 3 hours as yeast 

before formaldehyde fixing and visualisation using differential interference microscopy 

(DIC).   
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3.4    Discussion 
 

3.4.1    C. albicans Lrg1 has an N-terminal extension not present in S. cerevisiae 

 

Alignment of the hypothetical C. albicans Lrg1 sequence against the sequence of its 

S.cerevisiae ortholog revealed a 330 amino acid N-terminal extension in the C. albicans 

protein. Further analysis of CaLrg1 via IUPRED and the NCBI conserved domain database 

shows that this N-terminal domain is both highly disordered and does not contain any 

predicted domains.  These pieces of data suggest an ideal region for the regulation of Lrg1. 

However, when the N-terminal extension of Lrg1 was deleted from the only copy of LRG1 

present in an LRG1/lrg1Δ heterozygote, no severe deleterious effect was detected during 

either yeast or hyphal growth. Hence the role of the N-terminal extension remains unclear. 

3.4.2    Lrg1 is a negative regulator of polarised growth in C. albicans 

 

To assess the cellular role of Lrg1 in C. albicans, both copies of LRG1 were deleted in a 

BWP17 parental strain and the resulting phenotype observed. During yeast growth, the 

lrg1ΔΔ strain shows extremely polarised, long cells that fail to separate, similar to 

pseudohyphal growth. The length: width ratio of these cells is 3.5 times larger than that of 

the wild type strain, demonstrating this elongated phenotype. During growth as hyphae, 

cells lacking LRG1 also appear to grow as pseudohyphae due to the cells growth before 

hyphal induction. However, when hyphal growth is followed in the same cell from induction, 

hyphae appear to form correctly but extend at a rate greatly slower than wild-type cells. A 

number of cells also display a strange “double” tip as described above. 

C. albicans pseudohyphal and hyphal cells are known to invade an agar matrix to a greater 

extent than cells grown as yeast. Therefore it is no surprise that the elongated, highly 

polarised cells of the lrg1ΔΔ strain also show an increased invasiveness into an agar plate 

when compared to the parental wild-type strain. This study showed that in the same 

manner as Rho1, Lrg1 localises to sites of polarised growth, raising the possibility that it has 

a regulatory role on the GTPase during this time.  
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3.4.3    CaLrg1 regulates the distribution of Rho1 during yeast growth 

 

This study investigated the cellular distribution of Rho1 in cells lacking its negative regulator 

Lrg1 via visualisation of a GFP tagged version of the GTPase. In wild-type cells it is known 

that active Rho1 localises to sites of cell growth such as the growing tip and the site of 

septum formation during both yeast and hyphal growth (Corvest et al., 2013). This was also 

shown in this study. It was also shown that Lrg1 is required in C. albicans hyphal growth to 

focus the distribution of Rho1 to a small cap at the hyphal tip, rather than a broader area 

seen in the lrg1ΔΔ strain. Perhaps this lack of focus is the reason behind the “double” tip 

seen during hyphal growth as Rho1 produces unsolicited growth other than at the very tip 

of hyphae.  

During growth as yeast, Rho1 was seen to delay its re-localisation from the growing bud tip 

to the mother-bud neck in cells lacking LRG1. The lrg1ΔΔ cells are on average longer when 

GFP-Rho1 is seen at either the tip or bud neck indicating the delay. Moreover, Rho1 re-

localisation is not only delayed in lrg1ΔΔ, but in a substantial proportion of cells it is 

incomplete, shown by cells displaying GFP-Rho1 at both the tip and bud neck 

simultaneously. Indeed some cells exhibit a complete lack of re-localisation where Rho1 

remains fixed at the growing tip and the bud becomes extremely long.  This delayed, 

incomplete or non-existent re-localisation of Rho1 in lrg1ΔΔ is also seen when the GFP-RID 

reporter is used.  This construct reports on the distribution and levels of GTP-bound active 

Rho1. Its use has both pros and cons. Firstly; the reporter allows both the levels of activity of 

Rho1 and its localisation simultaneously. The reporter also allows quantification of active 

Rho1 under physiological conditions. However, as GFP-RID binds to Rho1-GTP, the reporter 

will act as a competitor of Rho1 targets, so care must be taken to ensure this causes no 

deleterious effects.  The observation of a defect in Rho1 distribution where no copy of LRG1 

is present, suggests that Rho1, through its regulator Lrg1, is a key protein in driving the re-

location of the polarity complex, and therefore polarised growth from the bud tip to the site 

of septum formation. Further evidence for this is that the exocyst component Exo84 also 

shows this re-localisation defect in lrg1ΔΔ, proving other polarity components are also 

reliant on Rho1 and Lrg1 for their re-localisation. This has implications for growth as hyphae 

as one would assume Lrg1 may also delay Rho1 re-localisation during the highly polarised 

growth seen in this morphology.  
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3.4.4    CaLrg1 regulates the activity of Rho1 during yeast growth 

 

The GFP-RID reporter construct was used to quantify the level of active Rho1 in wild-type 

and lrg1ΔΔ cells. The fluorescence emitted from the cell wall of growing yeast buds 

expressing GFP-RID was first projected onto the axis length of the bud itself. This data was 

then used to calculate an average active Rho1 content for the wild-type and lrg1ΔΔ strains. 

It was shown that in cells lacking Lrg1, average active Rho1 at the cell wall was almost 

double that of the parental strain. Furthermore, average active Rho1 at each site of growth-

the tip, cortex or bud neck- was increased to the same extent. This shows that Lrg1 is 

required to regulate Rho1 activity to the same level at each location. One could also 

speculate that this lack of Rho1 inhibition in lrg1ΔΔ is responsible for the delay in its 

localisation.  

An increase in Rho1 activity in cells lacking LRG1 would lead to an increase in the production 

of β-1,3-glucan through the regulatory role of Rho1 on the glucan synthase. As mutants in 

the β-1,3-glucan synthase genes FKS1 and FKS2 lead to resistance to echinocandins, it was 

expected that an lrg1ΔΔ strain would also show a decreased sensitivity to  these drugs as 

has been shown in N. crassa (Vogt and Seiler, 2008b). However, when grown on 

caspofungin, the strain lacking LRG1 is shown to be more sensitive to the drug than the wild-

type strain. The reason behind this is not known. Perhaps an increase in glucan synthase 

activity through Rho1 provides an increased number of targets for the drug to act upon 

rather than the limited number of active Rho1 molecules in the wild-type strain. 

Nonetheless, this result provides Lrg1 as interesting focal point for drug research.  
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4 Phospho-regulation of Lrg1 by Cdc28  
 

4.1    Introduction 
 

4.1.1    The Cdc28 kinase and the cell cycle 

 

 Eukaryotic cells use cyclin dependent kinases (CDKs) to control their cell cycle, with S. 

cerevisiae possessing 6 such kinases; Cdc28, Pho85, Kin28, Ssn3, Ctk1 and Bur1 (Enserink 

and Kolodner, 2010). Hartwell first discovered the Cdc28 kinase in S. cerevisiae in an 

important genetic screen for regulators of the cell cycle (Hartwell, 1974; Hartwell et al., 

1973). The kinase phosphorylates either serine or threonine residues, but is proline 

directed, utilising the full consensus sequence S/T-P-x-K/R or the minimal consensus site 

S/T-P (Nigg, 1993). These consensus sites appear to be clustered  in Cdc28 substrates 

(Moses et al., 2007). The Cdc28 kinase is necessary and adequate to drive the cell cycle but 

is supported in some early cell cycle functions by Pho85 (Huang et al., 2007), whilst the 

remaining CDKs are thought to be involved mainly in transcriptional processes (Meinhart et 

al., 2005).   

To provide functional diversity, each CDK binds to multiple cyclins in order to phosphorylate 

different substrates. S. cerevisiae Cdc28 uses 9 such cyclins throughout the cell to alter its 

functionality; three G1 cyclins (Cln1-3) and six B-type cyclins (Clb1-6).  Cln3 regulates the SBF 

(Swi4 cell-cycle box binding factor) and MBF (Mlu1 cell‐cycle box binding factor) 

transcription factors that control transcription profiles for entry into S-Phase (START), 

including transcription of Cln1 and 2 (Dirick et al., 1995). Cln1 and Cln2 are required for the 

spindle pole body duplication (Haase et al., 2001) and bud morphogenesis (Cvrckova and 

Nasmyth, 1993) (discussed later). Clb5 and Clb6 are expressed later in G1 to regulate the 

initiation of S-phase (Schwob et al., 1994) and origin of replication firing (Dahmann et al., 

1995), with Clb5 staying stable until mitosis, but Clb6 being degraded at the G1/S phase 

transition. Thus Clb5 is also responsible for efficient DNA replication (Donaldson et al., 

1998). Clb3 and Clb4 are expressed from S phase until anaphase and required for DNA 

replication, spindle assembly and the transition from G2 to M phase (Richardson et al., 



101 
 

1992). Clb1 and Clb2, involved in regulation of mitosis and bud morphogenesis (Lew and 

Reed, 1993), are expressed during G2-M phase of the cycle.  

The kinase activating kinase Cak1, phosphorylates CDKs at residue T169, resulting in 

movement of the proteins T-loop which normally blocks the active site and PSTAIRE cyclin-

binding helix, thus increasing the affinity of CDKs for cyclins  (Kaldis et al., 1996; Ross et al., 

2000). Far1 inhibits Cdc28 in response to mating pheromone and arrest cells at START 

(Chang and Herskowitz, 1990). 

As well as regulation by differential cyclin utilisation, CDKs are also controlled by  the cyclin 

dependent kinase inhibitors (CKIs) Far1 and Sic1 during G1, which bind to cyclin-CDK 

complexes and prevent substrate interaction (Peter and Herskowitz, 1994), (Nugroho and 

Mendenhall, 1994).  

Cdc28 is further regulated at the morphogenesis checkpoint by the tyrosine kinase Swe1 

and phosphatase Mih1. Swe1 delays the transition from G2 to M phase via the 

phosphorylation of tyrosine 19-resulting in inhibition of kinase activity and cyclin binding-on 

Cdc28 in response to actin and cytoskeleton stresses (Booher et al., 1993). The exact role of 

this checkpoint is controversial, possibly thought to be ensuring that the cells reach a critical 

size  or shape before going through mitosis, reviewed in (Keaton and Lew, 2006), as deletion 

of Swe1 results in cells with a smaller size (Harvey and Kellogg, 2003). Conversely, the Mih1 

phosphatase reverses the phosphorylation of tyrosine 19 on Cdc28 when all the conditions 

for cell cycle progression are met (Russell et al., 1989).  

At the end of the cell cycle, Cdc28 substrates are de-phosphorylated by the phosphatase 

Cdc14 which is released from the nucleolus during late mitosis through the FEAR and MEN 

network, reviewed in (Enserink and Kolodner, 2010). This de-phosphorylation of substrates 

effectively resets the state of the cell ready for the next cell cycle.  

4.1.2    The role of Cdc28 in morphogenesis in the model yeast S. cerevisiae 

 

As discussed earlier, Cdc28 regulates morphogenesis of S. cerevisiae in multiple ways 

throughout the cell cycle. Firstly, once the site for bud emergence has been marked by the 

bud site selection pathway, and the levels of Cln2 have reached a critical stage, Cdc28-Cln2 

marks Far1 for degradation which in turn releases Cdc24 from the nucleus (Henchoz et al., 

1997). Cdc24 is the GEF for the GTPase Cdc42 and hence this action stimulates Cdc42 
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activity (Nern and Arkowitz, 2000). At the same time, Cdc28-Cln2 and Pho85 also 

phosphorylates the Cdc42 GAPs, preventing them from negatively regulating the GTPase 

(Sopko et al., 2007). Cdc42 is thought to be the key player in polarisation of the actin 

cytoskeleton toward the presumptive bud site so that the necessary material for growth can 

be delivered there. It has also been shown that as well as regulation of the vesicle delivery 

machinery, Cdc28 may also regulate the proteins that are required for regulation of vesicle 

transport itself, such as Sec2, Sec3 and Myo2 (McCusker et al., 2007) and also members of 

the exocyst required for fusion of the vesicle with the membrane (Luo et al., 2013).  

Polarised growth requires both cell wall material- consisting of chitin and β-1,3-glucan- and 

phospholipids for the cell membrane. Cdc28 is thought to regulate all 3 of these 

components. Cdc28 phosphorylates the Tgl4 lipase, which then breaks down triglycerols 

into the precursors for membrane lipids (Kurat et al., 2009). Cdc28 is also known to 

phosphorylate the Chs2 chitin synthase, thus retaining it in the endoplasmic reticulum until 

it is required for formation of the septum at the end of mitosis (Teh et al., 2009). 

Perhaps most interestingly for this study, Cdc28 has been shown to regulate the Rho1 

GTPase (discussed earlier). One of the GEFs for Rho1, Tus1, has been shown to be directly 

phosphorylated by Cdc28-Cln2 at the G1/S phase (Kono et al., 2008). This phosphorylation 

activates Rho1 at the G1/S transition through Tus1 GEF activity and is also required for 

normal actin patch organisation.  This indicates that Cdc28 is positively regulating cell wall 

remodelling through the CWI pathway via Rho1. Could Cdc28 also negatively regulate this 

process through Rho1 GAPs?  

Cdc28 is also required for the switch from polarised to isotropic growth, although the direct 

target for this process is not known. It has however, been observed that redistribution of 

Cdc42 from the bud tip to the bud cortex is dependent on Cdc28-Clb2 and inhibited by Swe1 

(Pruyne and Bretscher, 2000), giving rise to the possibility that Cdc28-Clb2 inhibit polar 

growth by turning off transcription of the G1 cyclins (Enserink and Kolodner, 2010). Enserink 

and Kolodner also raise the possibility that Cdc28G2 regulation of phospholipid flippases is 

required for Cdc42 redistribution.  
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4.1.3    C. albicans morphogenesis and the Cdc28 kinase 

 

Unlike S. cerevisiae, C. albicans possesses only 5 cyclins; two G1 cyclins Ccn1 and Cln3, two 

G2 cyclins Clb2 and Clb4, and a hyphal-specific cyclin Hgc1. Cln3 is essential, required for 

yeast and hyphal growth (Chapa y Lazo et al., 2005), depletion of which causes formation  of 

non- budded hyphal-like filamented cells in yeast inducing conditions and bent hyphae with 

swollen tips in hyphal inducing conditions.  The second G1 cyclin Ccn1 is not essential, 

however it is required for maintenance of hyphal growth once germ-tubes have formed 

(Loeb et al., 1999). Clb2 is essential, required for mitotic exit and regulates pseudohyphal 

growth with the 2nd G2 cyclin Clb4 (Bensen et al., 2005). During hyphal growth, the 

accumulation of the G2 cyclins is delayed (Bensen et al., 2005). The last cyclin, Hgc1 is 

hyphal-specific and expression is not dependent on the cell cycle, perhaps explaining why 

hyphal formation is also cell cycle stage  independent (Zheng and Wang, 2004).  

Given the presence of a hyphal-specific cyclin, it would be reasonable to assume that Cdc28-

Hgc1 has a role in C. albicans morphogenesis. There have been a number of papers that 

have sought to investigate the role that Cdc28-Hgc1 plays in hyphal growth, summarised 

figure 4.1. The Cdc28-Hgc1 complex is known to phosphorylate and inactivate the Cdc42 

GAP Rga2, allowing persistent Cdc42 activation at the hyphal tip (Zheng et al., 2007). The 

kinase-cyclin complex also phosphorylates Sec2, the GEF for Sec4 (Bishop et al., 2010) which 

is required for delivery of post-Golgi vesicles to the hyphal tip. As well as a direct 

involvement in polarised growth in hyphae, Cdc28-Hgc1 is required to inhibit cell separation 

at the end of the hyphal cell cycle. It regulates this in two main ways:  firstly, the complex 

phosphorylates the transcription factor Efg1 leading to down regulation of the septum 

degradation enzymes (SDE’s) (Wang et al., 2009); secondly, Cdc28-Hgc1 phosphorylates the 

septin Sep7 preventing Cdc14 and hence the kinase Cbk1 localising to the septin ring and 

licensing Ace2 to transcribe the SDE’s (Gonzalez-Novo et al., 2008).  

A recurring theme amongst the information above is that numerous cellular-growth 

processes are regulated via post-translational phosphorylation, of which many are reliant on 

Cdc28 kinase activity.  Considering that: (i) Cdc28 is known to regulate Rho1 via 

phosphorylation of one of its GEFs Tus1 in S. cerevisiae; (ii) Cdc28 has diverged to play an 

extensive role in cell morphogenesis, including highly polarised growth in C. albicans and (iii) 
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deletion of Lrg1 in C. albicans results in highly polarised growth, we sought to investigate 

whether Cdc28 regulated C. albicans Lrg1 through phosphorylation and if so, what was the 

effect on growth at a cellular level.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 The role of Cdc28p in hyphal growth and cell separation in C. albicans 

The master cell cycle regulator has many roles within C. albicans hyphal morphogenesis 

and cell separation. It acts to maintain polarised growth at the hyphal tip by negatively 

regulating the Cdc42 GAP Rga2. It also represses cell separation during hyphal growth 

by activating the inhibitor of SDE transcription, Efg1 and preventing Cdc14 

dephosphorylation which would eventually lead to the transcription factor responsible for 

SDE expression from entering the daughter nucleus. “Pi” represents phosphorylation 

taking place. Image adapted from (Wang, 2009). 
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4.1.4    Aims of this chapter 

 

This chapter aims to understand the underlying regulation of the C. albicans Lrg1 protein 

and how this relates to the phenotype seen in an lrg1ΔΔ strain. Bioinformatics is used to 

analyse the protein, identifying potential regulatory phosphorylation sites. Evidence is then 

presented to provide Cdc28 as the potential regulatory partner. The relationship between 

Lrg1 and the master cell cycle regulator Cdc28 is discussed, as is the physiological role of 

Cdc28 action on Lrg1.  
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4.2    Strain construction 

4.2.1    C-Terminal tagging of C. albicans Lrg1 with Myc 

 

To investigate the phosphorylation state of the Lrg1 protein, it was first tagged at its C-

terminus with a MYC epitope in a BWP17 laboratory strain. A PFA-MYC-URA plasmid was 

used to produce a transformation cassette with 5’ identity to the 3’ end of LRG1 (minus stop 

codon) and 3’ identity to region downstream of LRG1 (figure 4.2a) Correct transformants 

were confirmed using diagnostic PCR primers in LRG1 and MYC (figure 4.2b) Colonies 

showing the correct PCR product were checked for protein expression by SDS-PAGE and 

western blot (figure 4.2b). The resulting strain will be referred to as LRG1-MYC. 

4.2.2    Construction of a GST-LRG1 expression vector 

 

To investigate whether Cdc28 is capable of directly phosphorylating Lrg1 in vitro, an in vitro 

kinase assay was performed. To perform the assay, it was first necessary to obtain purified 

Lrg1. As Lrg1 is a large protein of 1468 amino acids, it was decided to purify only the N-

terminal extension of Lrg1 corresponding to the first 330 amino acids to help aid protein 

folding when expressed in E. coli. 

The pGEX‐4T1 plasmid (GE Healthcare) contains the glutathione S-transferase gene under 

the control of an Isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible promoter, followed 

by multiple cloning site containing XhoI and BamHI. Cloning of the Lrg1 N-terminal region, 

shown in figure 4.3, into these sites created an N-terminally tagged GST-LRG1(NT) construct 

that can be induced for expression in E. coli by addition of IPTG.  After expression, the GST 

tag then allows relatively clean and simple purification of the GST-Lrg1(NT) protein. The 

GST-LRG1(NT) plasmid was also then treated to multi-site directed mutagenesis in order to 

mutate the 4 codons that correspond to the full predicted Cdc28 consensus sites at 

positions T7, S65, T273 and S319 to codons that code for alanine. This residue is unable to 

be phosphorylated so will act as a negative control when assessing phosphorylation of GST-

LRG1(NT) by Cdc28. The GST-LRG1-4A(NT) plasmid was sequenced in full to ensure no other 

mutations had been introduced. 
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Figure 4.2 Tagging of CaLrg1 with the MYC epitope 

A) A PFA-MYC-URA plasmid was used to amplify a MYC-URA3 cassette that possessed 

5’identity to the end of C. albicans LRG1 open reading frame (minus stop codon) and 3’ 

identity to a region downstream of LRG1. Amplification was visualised via agarose gel 

electrophoresis and then transformed into C. albicans. 

B)  Correct integration of the cassette was confirmed via diagnostic PCR with a forward 

primer in LRG1 and a reverse one in the MYC epitope, whilst correct expression of the 

fusion protein was detected by SDS-PAGE and anti-Myc western blot.  
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Figure 4.3 Construction of a GST-LRG1 expression vector 

Top: The first 990 bps of the CaLRG1 ORF was amplified with primers that incorporated 

a 5’ BamHI and 3’ Xho1 restriction endonuclease site. 

Bottom: The pGEX‐4T1 plasmid (GE Healthcare) was linearised with Xho1 and BamHI 

endonucleases and used in ligation reaction with the amplified LRG1(NT). Correct 

ligations were sequenced to ensure that the correct fragment was present. The resulting 

plasmid was then subjected to site-directed mutagenesis to mutate the four full Cdc28 

consensus sites to non-phosphorylatable alanine. Two expression vectors were hence 

created: GST-LRG1(NT) and GST-LRG1-4A(NT).  
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4.2.3    The cloned  LRG1-MYC construct 

 

The physiological role of phosphorylation can be investigated by generating mutants in 

which the target residues are either substituted with non-phosphorylatable or 

phosphomimetic amino acids. Residues that are suspected of being phosphorylated can be 

mutated to phosphomimetic residues such as aspartic or glutamic acid, which will mimic the 

charge of a phosphate group so that the residue appears continually phosphorylated within 

the cell. Conversely, residues can be mutated to alanine which is unable to be 

phosphorylated within the cell. Using these two opposing mutations can give clues as to the 

cellular role of protein phosphorylation. It was of interest to see what were the effects of 

phosphomimetic and non-phosphorylatable mutations of the Cdc28 consensus sites in the 

N-terminus of Lrg1. 

Previously, the standard strategy for introducing gene mutations would be to produce a 

transformation cassette with the mutated region of LRG1 and selectable marker into a 

LRG1/lrg1Δ heterozygote. Homologous recombination would then take place and the 

mutated region would be introduced into the remaining copy of LRG1. However, problems 

have been identified using this method. Principally, it has been found that homologous 

recombination actually selects against deleterious mutations to produce integration of the 

selectable marker but not the mutated codons. For this reason, a different method of 

introducing a mutated version of LRG1 was used. A MYC-tagged full length, mutated LRG1 

would be re-integrated into an lrg1ΔΔ strain via recombination in the LRG1 promoter region 

to ensure this is the only copy of LRG1 present. This strategy is shown in figure 4.4. The 

resulting strain was named lrg1ΔΔ/LRG1-MYC. The plasmid was used then used to mutate 

potential phosphorylation sites as depicted below in section 4.3.12 
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A) 

 

 

 

 

 

B) 

 

C)    D)    E) 

 

 

 

 

 

 

 

Figure 4.4 Integration of the pCIP10-LRG1-MYC-URA plasmid into the lrg1ΔΔ 

strain 

A) The pCIP10-LRG1-MYC-URA (Greig, J. University of Sheffield) plasmid contains a 

cloned, full length copy of CaLRG1, preceded by its own promoter. The 6xMYC tag, 3’ 

LRG1 UTR and URA3 gene are placed after the LRG1 ORF. The plasmid is linearised via 

the AvrII site placed in the promoter region (C) and transformed into lrg1ΔΔ. 

Homologous recombination between promoter regions results in LRG1-MYC-URA3 re-

integrating at its native locus, whilst the selectable marker from the original gene 

deletion is retained within the genome.  

B) and D) Correct integration of the plasmid was confirmed via diagnostic PCR with a 

forward primer upstream of PLRG1 and a reverse primer inside LRG1. Product was 

visualised by agarose gel electrophoresis  

E) Correct expression of Lrg1-6xMYC was confirmed via SDS-PAGE and anti-MYC 

western blot.  
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4.2.4    Construction of the pBKs-LRG1-URAF plasmid 

 

The BWP17 lab strain contains only 3 selectable markers; Arginine, Uridine and Histidine. 

Therefore, to be able to visualise GFP-RID in the lrg1ΔΔ/LRG1-MYC phospho-site mutants, a 

recyclable marker was needed to provide an extra marker for the pExpArg-pACT1GFPRID 

plasmid. A plasmid was used (Greig, J. PhD thesis, University of Sheffield 2014) which 

contained a URA3 selectable marker flanked by FRT sequences. In between the FRT 

sequences, the plasmid also contained the FLP recombinase gene (Morschhauser et al., 

1999) under the control of the SAP2 promoter. The FKH2 regions either side of the FRT 

sequences were replaced with the regions 5’ and 3’ of C. albicans LRG1 as depicted in figure 

4.5. The resulting cassette was then cut from the plasmid and transformed into a 

LRG1/lrg1Δ homozygote. Homologous recombination resulted in replacement of the 

remaining LRG1 with FRT-PSAP2-FLP-URA3-FRT. Positive LRG1ΔHIS1/LRG1ΔURAF colonies 

were then grown in yeast carbon base-BSA (YCB-BSA) overnight before being plated onto 5-

FOA (5-Fluoroorotic acid) media. Growth on YCB-BSA uses protein as the sole carbon source 

which activates the SAP2 promoter, in turn expressing the FLP recombinase which utilises 

the FRT sequences either side of the URA3 gene to excise it (Morschhauser et al., 1999). 

Growth on 5-FOA then selects for colonies which have consequently lost the URA3 gene as 

5-Fluoroorotic acid is converted to a suicide inhibitor by the gene product. The resulting 

strain; lrg1ΔHIS1/lrg1Δ (URA-, ARG-) displays only histidine prototrophy.  
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B)    C)                                                      D) 

 

 

 

 

 

 

Figure 4.5 Construction of the pBKs-LRG1-URAF plasmid 

A) Schematic of the pBKs-FKH2-URAF plasmid being converted into pBKs-LRG1-

URAF, with the SAP2 promoter (pSAP2) FRT sequences, FLP recombinase and URA3 

gene shown. 

B) 600 bp fragments of DNA from the 5’ and 3’ regions either side of C. albicans LRG1 

were cloned into the unique KpnI-XhoI and NotI-SacII sites of pBKs-FKH2-URAF in 

order to replace the FKH2 5’ and 3’ fragments.  

C) and D) Confirmation of fragment insertion via digestion with the enzymes used for 

insertion. 
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4.2.5    Construction of lrg1ΔΔ/LRG1-MYC/GFP-RID phospho-mutants 

 

In order to investigate the activity of Rho1 in the Lrg1 phospho-mutants, the pCIP10-LRG1-

MYC-URA wild-type, 2E2D and 4A plasmids were linearised and transformed into the lrg1ΔΔ 

(URA-, ARG-) strain made with the recyclable URA marker. Transformants were selected for 

on the grounds of histidine and uridine prototrophy and were checked via diagnostic PCR 

and western blot to ensure protein expression as shown in figure 4.4. 

The three resulting strains were then used to transform the pExpArg-pACT1GFPRID (Corvest 

et al., 2013) plasmid into before selection on Uridine, Histidine and Arginine minus media. 

Correct expression of the GFP-RID protein was checked via SDS-PAGE and anti-GFP western 

blot as shown in chapter 3. The three strains produced were named lrg1ΔΔ/LRG1-MYC/GFP-

RID, lrg1ΔΔ/LRG1(2E2DCDC28)-MYC/GFP-RID and lrg1ΔΔ/LRG1(4ACDC28)-MYC/GFP-RID. 
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4.3    Results 

 

4.3.1    Analysis of C. albicans Lrg1 reveals multiple putative phosphorylation sites 

 

The Eukaryotic Linear Motif resource predicts functional sites and motifs in Eukaryotic 

proteins (Dinkel et al., 2014). Analysis of C. albicans Lrg1 with ELM reveals four consensus 

phosphorylation motifs for the Cdk1/Cdc28 kinase (figure 4.6, red), characterised as S/T-P-X-

K/R (Songyang et al., 1994). The four putative phosphorylation residues in these motifs are: 

threonine 7, serine 65, threonine 273 and serine 319. Furthermore, these motifs are located 

in the N-terminal extension identified as not being present in S.cerevisiae and one can 

speculate that these residues may provide a regulatory role in this protein extension.  The 

Cdc28 kinase is also known to phosphorylate the minimal consensus site S/T-P, and a search 

of CaLrg1 reveals 15 of these minimal sites, 12 of which are located in the N-terminal 

extension (figure 4.26, brown). It has been shown that confirmed substrates for Cdc28 in 

vivo often frequently contain clusters of phosphorylation motifs (Moses et al., 2007) giving 

further evidence for Lrg1 as a candidate substrate for Cdc28 in C. albicans. Given that the N-

terminal extension of CaLrg1 contains 16 of the possible 19 consensus sites adds to the 

evidence of a role in this region of the protein.  
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Figure 4.6    C. albicans Lrg1 contains multiple putative Cdc28 phosphorylation 

sites 

Analysis of Candida albicans Lrg1 via the ELM database (Dinkel et al., 2014), reveals 

four full Cdc28 phosphorylation consensus motifs (S/T-P-X-K/R) highlighted in red. 

Further examination of the protein using a protein pattern search tool (Stothard, 2000) for 

minimal Cdc28 phosphorylation sites of either TP or SP reveals 15 such sites, 

highlighted in brown. The N-terminal extension of the C. albicans protein not seen in S. 

cerevisiae is highlighted in yellow. Phosphorylation consensus sites for the Cbk1 kinase 

(discussed in chapter 5) are highlighted in blue.  
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4.3.2    C. albicans Lrg1 is a phospho-protein 

 

Phosphorylation of a protein can be detected via visualisation on a Western Blot  (Wegener 

and Jones, 1984) where proteins with phosphate groups produce a slower migrating band 

than non-phosphorylated proteins, seen as a band shift.  In order to analyse the 

phosphorylation state of Lrg1 in C. albicans, the LRG1-MYC strain was grown under yeast 

inducing conditions for 3 hours then subjected to protein extraction with phosphatase 

inhibitors. The cell lysate was run on SDS-PAGE and a western blot with anti-MYC antibody 

was performed. A separate lysate was also prepared without phosphatase inhibitors and 

treated with Lambda phosphatase and run alongside. A separate identical gel was also run 

and treated to an anti-PSTAIRE western blot, which recognises the PSTAIRE motif of cyclin 

dependent kinases, to show equal protein loading. The Results are shown in figure 4.7. In 

the lane with the untreated sample, two bands of Lrg1-Myc can clearly be seen, indicating a 

slower migrating form of the protein. The lane with the phosphatase treated sample 

however, shows a collapse of this doublet with only one concise band being observed. This 

indicates that the slower migrating band is indeed due to phosphorylation of Lrg1 during 

yeast growth.  

4.3.3    Phosphorylation of CaLrg1 is lost upon deletion of its N-terminal region 

 

If the phosphorylation of Lrg1 seen above is due to the cluster of Cdc28 motifs in the N-

terminal extension, it follows that a version of Lrg1 lacking this region will not display any 

phosphorylation. To test this hypothesis, the lrg1Δ/PMAL2-GFP-LRG1 and lrg1Δ/ PMAL2-GFP-

LRG1 (993-4404) strains were grown as yeast for three hours before protein extraction. A 

sample from each strain was then treated with lambda phosphatase treatment before being 

run on SDS-PAGE and subsequent western blot. The results are shown in figure 4.8. The 

untreated lrg1Δ/ PMAL2-GFP-LRG1 sample shows two differentially migrating bands as 

before, which collapse to a single band upon phosphatase treatment, indicating that the 

protein is phosphorylated at this time point. 
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Figure 4.7 C. albicans Lrg1 is a phospho-protein 

An overnight culture of the LRG1-MYC strain was re-inoculated into yeast inducing 

conditions for three hours. Total cell protein was then extracted in two separate samples, 

one with phosphatase inhibitors and one without, which was also subjected to lambda 

phosphatase treatment.  The lysates were then run on a SDS-PAGE, followed by western 

blot and probing with anti-Myc antibodies. An identical gel was also run and probed with 

anti-PSTAIRE antibodies to show equal loading. 

 

However, in the untreated lrg1Δ/ PMAL2-GFP-LRG1 (993-4404) sample, the majority of the 

signal is in one lower band and the upper band seen in the full length protein has 

disappeared. However this band is actually migrating slightly faster than the phosphatase- 

treated sample, possibly caused by a change in the truncated protein’s physical or chemical 

properties. There is still some slight band retardation of the protein, most probably due to 

phosphorylation at other sites along the protein. From this data, it can be concluded that a 

large amount of the phosphorylation seen on the C. albicans Lrg1 protein is located on the 

N-terminal extension, suggesting a possible role for the Cdc28 consensus motifs earlier 

identified.  
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Figure 4.8 Phosphorylation of C. albicans Lrg1 is lost upon deletion of its N-

terminal extension 

The lrg1Δ/PMAL2-GFP-LRG1 and lrg1Δ/PMAL2-GFP-LRG1 (993-4404) strains were grown 

in yeast-inducing conditions for 3 hours before being subjected to protein extraction. A 

sample of each was subjected to Lambda (λ) Phosphatase treatment before being  run on 

SDS-PAGE and western blot with anti-GFP antibodies (top) to detect the protein. A 

separate gel was also run and treated to an anti-PSTAIRE western blot (bottom) to ensure 

that the samples were loaded equally. 

 

4.3.4    The quantity and phosphorylation state of CaLrg1 changes upon inhibition 

of Cdc28 

 

To further investigate the relationship between Cdc28 and Lrg1 in vivo, the phosphorylation 

state of Lrg1 upon inhibition of Cdc28 was explored. For this, Lrg1 was C-terminally tagged 

with the Myc epitope (described above) in a CDC28-1as/cdc28Δ strain (Bishop et al., 2010). 

The Cdc28-1as protein is an analogue-sensitive mutant which binds the ATP analogue 1NM-

PP1, which then cannot be hydrolysed, hence locking the kinase in an inactive form (Bishop 

et al., 2000). The resulting strain was LRG1-MYC/CDC28-1as/cdc28Δ. This strain was then 

grown in yeast- and hyphal-inducing conditions both in the presence of 1NM-PP1 and DMSO 

as a negative control, respectively, before inhibition was checked by visualisation of the 

correct phenotype under the microscope. Cells induced to form hyphae whilst the Cdc28-



119 
 

1as protein is inhibited fail to maintain polarisation of germ tubes, resulting in kinked 

hyphae (Bishop et al., 2010) whilst undergo elongation and swelling when grown as yeast 

(figure 4.9a). Cells were then treated to protein extraction, SDS-PAGE and western blot. As 

seen in (figure 4.9b), there is considerably less Lrg1-Myc in the samples that were subjected 

to 1NM-PP1 treatment compared to the control sample, even though the same amount of 

total cell lysate was loaded as shown with the anti-PSTAIRE blot. This indicates either less 

Lrg1 protein is being produced, or the protein is less stable or degraded quicker upon 

inhibition of Cdc28. When around 4 times more of the analogue treated sample is run than 

the control (figure 4.9c), it can be seen that in both yeast and hyphae, the 1NM-PP1 sample 

shows only the slower migrating top band of the two seen in the control samples. This 

indicates a hyper-phosphorylated form of the protein being present.  Although at first it may 

seem counterintuitive that upon deletion of a kinase a protein becomes 

hyperphosphorylated, it has been previously reported that phosphorylation at one site is 

required for dephosphorylation at another, giving rise to this result (Jansen et al., 2006).   

However, there are other possibilities in this scenario; for example, Cdc28 may be required 

to act upon a phosphatase which then de-phosphorylates Lrg1. Either way, the 

phosphorylation state of Lrg1 changes upon inhibition of Cdc28.  

 

4.3.5    Expression of GST-Lrg1(NT)  

 

In order to express the recombinant GST-Lrg1(NT) wild-type and 4A phospho-mutant 

mutant proteins to use in an in vitro kinase assay, the relevant GST constructs were 

transformed into the BL21 E. coli strain. Protein expression was induced by addition of IPTG 

for 3 hours before protein extraction and purification via glutathione sepharose 

chromatography. The lysates from both induced and non-induced cells and the purified 

sample can be seen in figure 4.10. Induction of the Lrg1 fragment can be seen when IPTG is 

added at around 60 kDa (25 kDa for GST and 36 kDa for the Lrg1 fragment). It can also be 

seen that purification has resulted in only the GST-Lrg1 fragment and a fragment of GST 

alone being present.   
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A) 

 

 

 

 

 

B) 

 

 

 

 

C) 

 

Figure 4.9   C. albicans Lrg1 is less abundant and more phosphorylated upon 

inhibition of   Cdc28-1as 

A) Images of LRG1-MYC/CDC28-1as with and without 1NM-PP1. Scale bar represents 

10 µm. 

B) The LRG1-MYC/CDC28-1as strain was grown in either the presence or absence of 

1NM-PP1 for 90 minutes as both yeast and hyphae before protein extraction. A small 

sample was treated with λ phosphatase before 30 µg of each sample was run on SDS-

PAGE and analysed by anti-MYC western blot. An identical gel was also treated to anti-

PSTAIRE as a loading control. 

C) The samples from (B) were re-run but adjusted so that 4 times the amount of lysate 

present in the 1NM-PP1 samples was present to compensate for the lower levels of Lrg1-

MYC seen.  

Images have been colour inverted to better visualise separate bands. 
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4.3.6    Cdc28 phosphorylates C. albicans Lrg1 in vitro 

 

A strain where both copies of Cdc28 were C-terminally tagged with HA (CDC28-HA/CDC28-

HA) (Caballero-Lima et al., 2013), was grown in yeast inducing conditions for three hours, 

before a protein extraction was performed. A lysate containing 2mg ml-1 was treated to an 

anti-HA immuno-precipitation (IP) to isolate the Cdc28-HA protein. To the isolated protein, 

20 µg GST-Lrg1(NT) wild-type or 4A fragment was added with ATP before incubation at      

37 °C. A kinase assay with the wild type fragment minus ATP and the wild-type fragment 

with an IP of a BWP17 lysate was also performed as controls. After the kinase assay, 

reactions were run on SDS-PAGE and a western blot performed with an antibody that 

detects phosphorylated serine residues in the S/T-P-X-K/R CDK consensus motif. 

 

 

 

 

 

 

 

 

 

Figure 4.10 Purification of GST-Lrg1 from E. coli BL21 lysate 

Expression of GST-Lrg1(NT) wild-type (WT) and 4A fragments was induced in E.coli 

BL21 cells by addition of IPTG to a log phase culture for 3 hours before protein 

extraction, glutathione sepharose chromatography and SDS-PAGE. Gels were stained 

with Expedeon Instant Blue protein stain. The difference between induced and non-

induced cell lysates can be seen in the left panel whilst the purified fragment is seen in 

the right panel.  The GST-Lrg1(NT) protein can be seen at  around 60 kDa.   
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The results are shown in figure 4.11. The control lanes lacking either ATP or Cdc8-HA shows 

no signal as one would expect, indicating that both the IP is not contaminated with a 

different kinase that is capable of phosphorylating the fragment and that the reaction is 

dependent on ATP. The experimental lanes with the GST-Lrg1(NT) and GST-Lrg1-4A(NT) 

fragments each show two bands on the anti-P(SCDK) blot, indicating that Cdc28 has 

phosphorylated each fragment during the assay. The signal from these lanes also shows two 

clear bands, migrating at different speeds, also confirming phosphorylation has taken place. 

One would however expect the 4A fragment to show no phosphorylation due the antibody 

only recognising full Cdc28 consensus sites, which have been mutated on this fragment. This 

anomaly could therefore be due to the anti-P(SCDK) antibody recognising sites other than 

perfect Cdc28 consensus sites indicated by the manufacturer. Nonetheless, when the signal 

from lanes of the wild-type and 4A fragments are quantified using Syngene GeneTools gel 

analysis software and normalised against the amount of signal in the anti-GST and anti-HA 

blot, it can be seen that the wild-type fragment has a higher level of phosphorylation than 

the 4A mutant. It can be concluded from this that: 1) Cdc28 is capable of phosphorylating 

Lrg1 in vitro and 2) at least some of this phosphorylation occurs at the four full Cdc28 

consensus sites in Lrg1 identified above.  
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Figure 4.11 Cdc28 is capable of phosphorylating GST-Lrg1(NT) in vitro.  

Cdc28-HA was purified from a 2 mg ml
-1

 cell lysate and used in an in vitro kinase assay 

with 20 µg of both the GST-Lrg1(NT)  and GST-Lrg14A(NT) fragments. An assay with 

the wild-type fragment minus ATP was also carried out as a control, as was an assay 

lacking Cdc28-HA. After incubation, the samples were run on SDS-PAGE and treated to 

a western blot with anti-P(SCDK)  antibody (top) or probed with anti-GST  (middle) 

antibodies. After the kinase assay, the beads used for the IP of Cdc28-HA were boiled 

and the lysate treated to SDS-PAGE and western blot with anti-HA anti-bodies (bottom). 

Lanes on each blot were quantified using Syngene GeneTools gel analysis software and 

the anti-P(SCDK) blot normalised against the anti-GST and anti-HA images. The left lane 

was arbitrarily assigned a quantity of one, with other lanes shown as a proportion of this. 

 

4.3.7    No direct interaction can be found between Cdc28 and Lrg1 

 

In order to provide further evidence for a direct interaction between Lrg1 and Cdc28, a co-

immunoprecipitation (Co-IP) was carried out. The LRG1-MYC strain was treated to an 

immuno-precipitation (IP) with anti-MYC magnetic beads to purify Lrg1-Myc. The eluted 

protein was then run on SDS-PAGE, western blot and probed with anti-PSTAIRE antibody to 

test for the presence of Cdc28. In this way, presence of Cdc28 indicates a direct interaction 

between the two proteins during the IP. A BWP17 lysate was also subjected to an anti-MYC 

IP to ensure Cdc28 is not pulled-down non-specifically. Also due to the very transient 

interactions seen in kinase reactions, 4 separate IP’s were performed, each with a different 

number of washes before elution to maximise the chances of detecting an interaction. The 
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results are shown in figure 4.12. It can be seen that none of the Co-IP’s show any presence 

of Cdc28 when compared to the BWP17 IP. This would indicate that Cdc28 and Lrg1 do not 

interact, however it is known that it is extremely difficult to show an interaction between a 

kinase and substrate using a Co-IP. Hence lack of a result does not necessarily mean no 

interaction takes place.   

 

 

 

 

 

Figure 4.12 Cdc28 and Lrg1 show no interaction in a co-immunoprecipitation 

The LRG1-MYC (+) and BWP17 (-) strains were grown for 3 hours as yeast and then 

total cell lysate extracted. Lysates were adjusted to contain 2mg ml
-1

 protein and used for 

an IP with anti-MYC magnetic beads. To increase the chances of detecting an 

interaction, 4 IP’s were performed, each with different amount of washes before protein 

elution. Eluted protein was then run on SDS-PAGE, western blot and probed with either 

anti-MYC or anti-PSTAIRE antibody. The input of the IP is also shown.  

 

4.3.8    Analysis of Lrg1 phosphorylation in cyclin mutants 

 

As discussed previously, Cdc28 requires a regulatory cyclin in order to maintain full kinase 

activity and phosphorylate specific substrates.  The cyclin specificity of Cdc28 changes 

throughout the cell cycle. To try and assess which cyclin is responsible for the Cdc28 

phosphorylation of Lrg1, the Lrg1 protein was epitope tagged with MYC as shown in figure 

4.2, in different cyclin mutants. Strains with one copy of either the G1 cyclin Cln3 (Chapa y 

Lazo et al., 2005) or the mitotic cyclins Clb2 and Clb4 (Bensen et al., 2005) deleted, and the 

other copy placed under the control of the regulatable  MET3 promoter (Care et al., 1999) 

were used in order to create the following strains:  PMET3-CLN3/LRG1-MYC, PMET3-CLB2/LRG1-

MYC and PMET3-CLB4/LRG1-MYC.  
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4.3.9    The phosphorylation state of Lrg1 is altered when the G1-cyclin Cln3 is 

depleted 

 

To examine if the Cdc28 dependent phosphorylation of C. albicans requires the Cln3 cyclin, 

the PMET3-CLN3/LRG1-MYC strain was grown as yeast in both the presence and absence of 

methionine overnight (Chapa y Lazo et al., 2005) to either induce or repress expression of 

the only copy of CLN3 present, respectively. Correct repression of the gene was confirmed 

by visualisation of the phenotype, seen as swollen unbudded cells that form filaments 

(Chapa y Lazo et al., 2005), under a light microscope (figure 4.13a). Total cell protein was 

then extracted followed by SDS-PAGE and anti-MYC and anti-PSTAIRE western blot as a 

loading control.  The results in figure 4.13b show that in the sample where expression of 

CLN3 is repressed by methionine, presence of Lrg1-Myc is almost undetectable. This is a 

similar situation to when Cdc28 is inhibited and points to either enhanced degradation of 

the protein or reduced expression when CLN3 expression is repressed.  

However, when the levels of the lysate with CLN3 repressed are increased by a factor of 4 

(figure 4.13c), the signal present shows a darker collapsed band compared to the de-

repressed strain that has two bands present. This indicates that there is a loss of 

phosphorylation of Lrg1 upon repression of CLN3 expression. However, the CLN3-off sample 

still seems to show some residual band retardation compared to the de-phosphorylated 

sample signifying a level of phosphorylation still remains. Taken with the Cdc28 inhibition 

and kinase assay results, this implies that the Cdc28-Cln3 kinase complex is responsible in 

part for Lrg1 phosphorylation.  
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Figure 4.13 C. albicans Lrg1 is less abundant and less phosphorylated upon 

depletion of the G1 cyclin Cln3 

A) Images of PMET3-CLN3/LRG1-MYC grown under yeast inducing conditions both with 

and without methionine. Scale bar represents 10 µm. 

(B) A PMET3-CLN3/LRG1-MYC strain was grown for three hours in yeast-inducing 

conditions in both the presence and absence of methionine to either induce or repress 

expression of the G1 cyclin Cln3. Protein lysates were then extracted from cells before 

30 µg was run on  SDS-PAGE and treated to an anti-MYC western blot. An identical gel 

probed with anti-PSTAIRE antibody was also run as a loading control. 

(C) The protein lysates from (B) were re-run, increasing the levels of the repressed 

sample by a factor of 4 to allow for the reduced amount of Lrg1-Myc present. 
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4.3.10    The mitotic cyclins Clb2 and Clb4  are not responsible for the 

phosphorylation of C. albicans Lrg1 

 

The role of the mitotic cyclins Clb4 and Clb2 in phosphorylation of Lrg1 was assessed in a 

similar manner to that of Cln3. The PMET3-CLB2/LRG1-MYC and PMET3-CLB4/LRG1-MYC strains 

were re-inoculated into methionine plus or methionine minus media to induce yeast. After 

two hours, repression was confirmed by visualisation of the correct phenotype, seen as 

inviable cell with pointed, elongated projections upon depletion of Clb2 and viable 

pseudohyphae upon Clb4 depletion (figure 4.14a) (Bensen et al., 2005). Cells were then 

treated to total cell lysate extraction, SDS-PAGE and western blot (figure 4.14b) The first 

thing to note is that the phosphatase treated sample has run slower than the fast migrating 

Lrg1-Myc band, indicating that the phosphatase treatment has not worked correctly. 

Secondly, in contrast to the CLN3 repression and Cdc28 inhibition, the protein levels of Lrg1-

Myc remain the same when CLB2 and CLB4 are repressed. The phosphorylation state of Lrg1 

also remains the same in repressed samples, showing two different bands indicating 

different phospho-forms of the protein that are also present in the control samples where 

the cyclins are being expressed. It can be concluded that neither of the mitotic cyclins Clb4 

or Clb2 take part in the Cdc28 mediated phosphorylation of C. albicans Lrg1  

4.3.11    The lrg1ΔΔ/LRG1-MYC strain shows a wild-type phenotype 

 

To ensure that the Lrg1-Myc protein in the lrg1ΔΔ/LRG1-MYC re-integrated strain is 

functional, it was grown for 3 hours as yeast along with the LRG1-MYC strain, in which the 

promoter is native, and treated to a protein extraction, SDS-PAGE and western blot with 

anti-MYC antibody. An anti-PSTAIRE western blot was also performed as a loading control. 

As can be seen in figure 4.145a, the PSTAIRE blot shows that the samples from both strains 

have been equally loaded with cell lysate. In the anti-MYC blot, there is more signal from the 

lrg1ΔΔ/LRG1-MYC sample than the LRG1-MYC sample indicating more Lrg1 protein present. 

This increase in protein levels is most probably due to the fact that in the LRG1-MYC strain, 

only half of the total Lrg1 protein levels will be MYC tagged because a wild-type copy of the 

gene is still present, whereas in lrg1ΔΔ/LRG1-MYC strain, the total amount of Lrg1 is MYC 

tagged. 
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Figure 4.14 C. albicans Lrg1 shows no change in phosphorylation upon depletion of 

the G2 cyclins Clb2 and Clb4 

The PMET3-CLB2/LRG1-MYC and PMET3-CLB4/LRG1-MYC strains were each grown in 

both the presence and absence of methionine to either induce or repress the expression of 

Clb2 or Clb4 in yeast inducing conditions for 2 hours. After confirmation of correct 

phenotype via microscopy (A), cell protein was extracted and 30 µg run on SDS-PAGE 

followed by anti-MYC western blot (B). An identical gel was also run and probed with 

anti-PSTAIRE anti-bodies to serve as a loading control. Scale bar is 5 µm 

 



129 
 

A)                                                                        

 

 

 

B) 

 

 

 

 

 

 

 

 

 

 

C) 

 

 

 

 

 

 

 

 

 



130 
 

Figure 4.15 Re-integration of LRG1-MYC into its native locus via the pCIP10-LRG1-

MYC-URA plasmid restores wild-type levels of protein and complements the lrg1ΔΔ 

phenotype 

A) The LRG1-MYC and lrg1ΔΔ/LRG1-MYC strains were grown in yeast-inducing 

conditions for 3 hours before total cell protein was extracted and 30 µg run on SDS-

PAGE followed by both anti-MYC and anti-PSTAIRE western blot as a loading control. 

B) The wild-type BWP17 strain and the re-integrated lrg1ΔΔ/LRG1-MYC strain were 

grown for 3 hours in conditions to induce the yeast morphology, before they were fixed 

with formaldehyde and then visualised with a DIC light microscope. 

C) Images taken in (B) were analysed with ImageJ software to measure the length/width 

ratios of cells of the two strains. The mean ratio of 100 cells is shown with the error bars 

representing the standard error of the mean (SEM).  An unpaired t-test was performed on 

the data using GraphPad which found no significant difference between the two strains. 

The BWP17 and lrg1ΔΔ strains are statistically different to a confidence interval of 

0.0001. 

 

As the protein levels of the re-integrated LRG1 seem to be similar to the wild-type strain, 

the lrg1ΔΔ/LRG1-MYC was grown under yeast-inducing conditions along with the BWP17 

control strain, before formaldehyde fixing and visualisation via a DIC microscope. The 

images of the two strains are shown in figure 4.15b. The images show that the strain with 

LRG1 re-integrated into its own native locus has morphology similar to that of the control 

strain and no longer displays the phenotype of an LRG1 deletion. To confirm this, length to 

width ratios of 100 cells of lrg1ΔΔ/LRG1-MYC were compared to that of BWP17 (figure 

4.15c). The results show that BWP17 has an average length: width ratio of 1.411 with a 

standard error of +/- 0.031, whilst the re-integrated strain as a mean ratio of 1.423 +/- 

0.031. Using an unpaired t-test test reveals no significant difference between the two. It can 

be concluded then reintegration of LRG1-MYC via homologous recombination of the 

linearised plasmid restores normal growth phenotype and wild-type levels of Lrg1.  
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4.3.12    Mutation of LRG1 in the Cdc28 full phosphorylation consensus sites 

 

To investigate if C. albicans Cdc28 phosphorylates the four full phosphorylation consensus 

site in the N-terminus of Lrg1, the codon for each of the putative critical residues was 

mutated in the pCIP10-LRG1-MYC-URA plasmid using site directed mutagenesis. The codons 

for each of the four residues -T7, S65, T273 and S319- were mutated to the codon for non-

phosphorylatable alanine (figure 4.16b), sequenced in full to ensure no other mutations had 

been introduced and transformed into the lrg1ΔΔ strain as above. In the same manner, the 

two serine residues were also mutated to aspartic acid and the two threonine residues to 

glutamic acid (figure 4.16a), which mimic constant phosphorylation at these sites but retain 

the size of the side chain of the replaced residues. The mutated plasmids were then 

transformed into the lrg1ΔΔ strain as shown in figure 4.4, resulting in lrg1ΔΔ/LRG1(4ACDC28)-

MYC and lrg1ΔΔ/LRG1(2E2DCDC28)-MYC strains.  

4.3.13    The phenotypic effects of the Lrg1(4ACDC28) and Lrg1(4ECDC28) mutations  

 

The effects of the non-phosphorylatable and phosphomimetic mutations were analysed via 

growth of the lrg1ΔΔ/LRG1(4ACDC28)-MYC and lrg1ΔΔ/LRG1(2E2DCDC28)-MYC strains for 3 

hours as yeast followed by visualisation under a light microscope.  BWP17 was also grown as 

a control strain.  The images are shown in figure 4.17a. To analyse the phenotype of the 

different strains, the length to width ratios of 100 cells per strain was calculated and is 

represented in figure 4.17b. The length to width ratio of BWP17 is 1.411, with a standard 

error of ± 0.031 with the lrg1ΔΔ/LRG1(4ACDC28)-MYC strain having a slightly higher ratio of 

1.430 ± 0.039. However the two ratios do not show any significant difference in an unpaired 

t-test, implying that the inability to phosphorylate Lrg1 at the four full Cdc28 consensus sites 

does not impair the protein function. 
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Figure 4.16 Production of Lrg1(2E2D) and Lrg1(4A) phospho-mutants. 

Site directed mutagenesis was carried out on the pCIP10-LRG1-MYC-URA plasmid to 

replace the serine/threonine residues of the Cdc28 full consensus sites to either 

phosphomimetic aspartic/glutamic acid (A) or non-phosphorylatable alanine (B). These 

plasmids were then linearised and transformed into the lrg1ΔΔ strain to give rise to the 

lrg1ΔΔ/LRG1(4ACDC28)-MYC and lrg1ΔΔ/LRG1(2E2DCDC28)-MYC strains. 
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The images of lrg1ΔΔ/LRG1(2E2DCDC28)-MYC appear to show a similar phenotype to the 

lrg1ΔΔ strain, with cells that have an increase in polarisation and are elongated. The cells 

length: width ratio of 2.075 ± 0.078 confirms this increase in cell length, similar to, but not 

as severe as cells lacking Lrg1 entirely (4.916 ± 0.389). 

In addition, using the equation for the volume of a prolate ellipsoid, average cellular volume 

was calculated for each strain. As depicted in figure 4.17c, the lrg1ΔΔ/LRG1(2E2DCDC28)-MYC 

strain shows an increase in cellular volume, 94.88 ±4.6 µm3 compared to 67.04 ±2.3 µm3 in 

the wild-type cells. This is an increase of 1.4 times the volume of wild-type cells, similar to 

the increase seen in the length to width ratio, and is not surprising given the extra cell 

length shown in these cells. In contrast, the lrg1ΔΔ/LRG1(4ACDC28)-MYC strain shows 

decreased cell volume (54.51 ±2. µm3), a ratio of 0.8 times the volume of the wild-type 

strain. Perhaps this indicates that the cells have the same proportions as wild-type cells, but 

are slightly smaller. Both strains are significantly different to the wild-type strain in an 

unpaired t-test with p-values of 0.0001.  

From these results two things can be deduced. First, as the Lrg1(2E2DCDC28) mutant protein 

appears to possess a similar phenotype to that of the strain lacking the protein, it can be 

said that phosphorylation of Lrg1 by Cdc28 in C. albicans in these four full consensus sites 

effectively inhibits the action of the protein, either through its GAP activity on Rho1 or its 

localisation within the cell. Secondly, mutation of the four full Cdc28 consensus sites to non-

phosphorylatable alanine has little effect on the cells, only decreasing their volume. This is a 

similar situation to when the N-terminal extension containing the sites is deleted. Taking 

these pieces of evidence together suggests that the N-terminal extension of C. albicans Lrg1 

not seen in the homologous S. cerevisiae protein acts as a negative regulator of the protein 

rather than a positive one. That is the organism can grow happily without or being unable to 

phosphorylate the extension, but it can be modified in such a way as to inhibit the proteins 

function if required.  Given that the lack of Lrg1 in C. albicans results in highly polarised 

growth could this extension have emerged to allow the organism to grow in the hyphal and 

pseudohyphal morphologies required for its virulence?  
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Figure 4.17 The Lrg1(2E2D) mutant displays a similar phenotype to cells lacking 

Lrg1 

A) The lrg1ΔΔ/LRG1(4ACDC28)-MYC and lrg1ΔΔ/LRG1(2E2DCDC28)-MYC strain were 

grown in conditions to induce the yeast morphology for 3 hours before cells were fixed 

with formaldehyde. The wild-type BWP17 strain was also grown as control. Cells were 

then visualised via a Leica DIC light microscope.  

B) ImageJ was used to measure the length/width ratios of cells imaged in (A). The 

average ratio for each strain is shown with its SEM along with that of the lrg1ΔΔ strain 

and lrg1ΔΔ/LRG1-MYC. An unpaired two-tailed t-test revealed that he BWP17 and 

lrg1ΔΔ/LRG1(2E2DCDC28)-MYC data were statically different to within a 0.0001 

confidence interval. N=50 

C) Average cell volume for each strain was calculated using the equation for the volume 

of a prolate ellipsoid: V=4/3Pi*ab
2
. N=50 

 

4.3.14    The phosphorylation state of the Lrg1 phospho-mutants 

Due to the altered charge provided by phospho-mimetic or non-phosphorylatable 

mutations, mutated proteins should show differing mobility when run on SDS-PAGE.  To 

investigate whether the Lrg1 phospho-mutants had an altered mobility, the LRG1-MYC, 

lrg1ΔΔ/LRG1(2E2DCDC28)-MYC and lrg1ΔΔ/LRG1(4ACDC28)-MYC strains were grown as yeast 

for three hours before total cell lysate was extracted and run on SDS-PAGE. A western blot 

was then performed and probed with anti-MYC antibodies. A sample of Lrg1-Myc was also 

treated with lambda phosphatase and run alongside as a control. An identical gel was run 

and probed with anti-PSTAIRE as a loading control. Results are shown in figure 4.18. The 

Lrg1(2E2DCDC28)-MYC and Lrg1(4ACDC28)-MYC proteins both show the same two bands as 

Lrg1-Myc, indicating that the mutations haven’t had an effect on the mobility of either the 

non-phosphorylated or phosphorylated form of the proteins.  
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Figure 4.18 The Lrg1 (2E2D) and (4A) mutants do not have an altered mobility on 

SDS-PAGE 

The LRG1-MYC, lrg1ΔΔ/LRG1(2E2DCDC28)-MYC and lrg1ΔΔ/LRG1(4ACDC28)-MYC 

strains were grown as yeast for 3 hours before their cell lysate was run on SDS-PAGE 

along with a phosphatase treated Lrg1-Myc sample. A western blot was then performed 

and then probed with anti-MYC antibodies. An identical gel was run and probed with 

anti-PSTAIRE antibodies as a loading control. 

 

4.3.15    Growth of the Lrg1 phospho-mutants on Caspofungin 

 

Due to the similar phenotype to cells lacking LRG1 that the lrg1ΔΔ/LRG1(2E2D)-MYC strain 

shows, it was decided to analyse the phospho-mutant’s growth on the antifungal drug 

caspofungin. Overnight cultures of lrg1ΔΔ/LRG1(4ACDC28)-MYC and lrg1ΔΔ/LRG1(2E2D CDC28)-

MYC strains were sonicated briefly, adjusted to read the same absorbance at OD600, diluted 

to 1x104 and 1x106 before being spotted onto plates containing an increasing concentration 

of caspofungin (figure 4.19). The BWP17 and lrg1ΔΔ strains are also shown for comparison. 

The results show that cells growing with the Lrg1(2E2DCDC28)-MYC protein are hyper-

susceptible to all concentrations of the drug when compared to the wild-type cells. 

However, the phospho-mutant is seen to grow slightly better in the presence of caspofungin 

than the lrg1ΔΔ cells. This result confirms what is seen with the length: width ratios of the 

strains above: that the phospho-mimetic mutations result in a similar, but not as severe, 

phenotype to cells that lack LRG1. On the other hand, the strain with the Lrg1(4ACDC28)-MYC 

protein shows an increase in growth on all concentrations of the drug when compared to 

the wild-type strain, indicating a resistance to caspofungin. Interestingly, although no 
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obvious phenotype is seen visually in these cells, the mutation of the Cdc28 sites to non-

phosphorylatable alanine residues does result in caspofungin resistance. 

 

 

 

 

 

 

 

 

Figure 4.19 Phospho-mimetic mutations at the Cdc28 consensus sites within Lrg1 

increase susceptibility to caspofungin 

The two strains expressing Lrg1 with phosphomimetic or non-phosphorylatable 

mutations were grown in YPD overnight then sonicated briefly before adjustment to read 

the same absorbance at OD600. The cells were then prepared to the indicated dilutions and 

spotted onto YPD plates containing increasing concentrations of caspofungin.  

 

4.3.16    Mutagenesis of full and minimal Cdc28 sites within CaLrg1 

 

This study has already shown that full Cdc28 consensus sites on the C. albicans Lrg1 protein 

can exert control over polarised growth within the cell. However, there are also 15 minimal 

Cdc28 phosphorylation sites in the protein, 12 of which are within the N-terminal extension. 

To investigate the role of these sites, the pCIP10-LRG1(2E2DCDC28)-MYC-URA plasmid was 

mutated using multi-site directed mutagenesis to mutate the 15 remaining serine/threonine 

residues to either phospho-mimetic aspartic acid or glutamic acid, respectively.  Due to time 

constraints, it was only possible to mutate 11 of the 15 minimal sites, resulting in the 
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plasmid containing the following mutations: (T7E, S65D, T273E, 

S319D,S36D,S50D,S120D,S125D,T127E,T129E,S173D,S195D,S271D,T503E,T1067E). 

This plasmid was then transformed into the lrg1ΔΔ strain to produce lrg1ΔΔ/LRG1(15ECDC28)-

MYC. This strain was then induced to grow as yeast for 3 hours before ethanol fixation and 

visualisation with a Leica light microscope, shown in figure 4.20 (left panel). The BWP17 

strain was grown at the same time as a control.  Surprisingly, the 15E mutant, which 

includes the four phosphomimetic full Cdc28 sites, does not show the same hyperpolarised, 

elongated cell phenotype that the LRG1(2E2DCDC28)-MYC strain does. Instead, when the 

average length: width ratio of the lrg1ΔΔ/LRG1(15ECDC28)-MYC cells are compared to the 

BWP17 strain (figure 4.20, right panel), they are actually more spherical. The average 

BWP17 cells length: width ratio is 1.21± .02 (SEM) whilst the average for cells with the 

Lrg1(15ECDC28)-Myc protein is 1.08± .01. This indicates that the addition of the 11 phospho-

mimetic mutations in minimal Cdc28 consensus sites has conversely led to a loss of 

polarisation in the cell and an increase in isotropic growth. Interestingly, when the average 

cellular volume of the mutant is calculated, it is larger to a significant difference than the 

wild-type (figure 4.20, bottom panel) due to the more spherical shape. Because of the 

opposite effects of the 2E2D and 15E mutants, it could be speculated that phosphorylation 

at these sites is used to control the protein in antagonistic ways.  
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Figure 4.20   The Lrg1(15E) mutant results in a loss of polarisation. 

Top Left: BWP17 and lrg1ΔΔ/LRG1(15ECDC28)-MYC were grown in conditions to induce 

the yeast morphology for 3 hours before cells were fixed with formaldehyde. Cells were 

then visualised with a Leica DIC light microscope.  

Top Right:  ImageJ was used to measure the length/width ratios of cells. The average 

ratio for each strain is shown with its SEM. An unpaired two-tailed t-test was performed 

on the BWP17 and lrg1ΔΔ/LRG1(15ECDC28)-MYC data and revealed that the sets were 

statistically different to within a 0.0001 confidence interval. N=60 

Bottom: The average volumes of BWP17 and lrg1ΔΔ/LRG1(15ECDC28)-MYC strains were 

calculated using the formula shown in figure 4.17c. Error bars represent SEM. Values 

were found to be significantly different in an unpaired t-test with a p-value of 0.0001. 

N=60 
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4.3.17    Localisation of active Rho1 and phosphorylation of Lrg1 during the cell 

cycle in C. albicans yeast  

 

In an attempt to link the phosphorylation state of C. albicans Lrg1 with the localisation of 

Rho1 in the cell during different stages of the cell cycle, an elutriation experiment was 

carried out on the lrg1ΔΔ/LRG1-MYC/GFP-RID strain. For this, exponentially growing cells 

are treated to centrifugation whilst an opposing force is applied via fluid flow, thus setting 

up a gradient of cells due to their size. Then, small G1 phase cells were collected from 

elutriation and re-inoculated into media to induce yeast phase growth. This method 

attempts to collect synchronised cells by size fractionation while keeping disturbance 

minimal. Every 20 minutes after re-inoculation, a sample of lrg1ΔΔ/LRG1-MYC/GFP-RID cells 

was taken and flash-frozen for later protein extraction, SDS-PAGE and western blot. A 

sample of live cells was taken to visualise GFP-RID on a DeltaVision fluorescence microscope 

and a sample of cells was fixed with ethanol. The fixed cells were later stained with DAPI to 

visualise the nucleus of cells via the DeltaVision microscope.  

In order to deduce at which stage of the cell cycle the cells were in at each time point, the 

images of the fixed cells were used to count the number of cells that were mono- or bi-

nucleate, whilst images of the live cells were used to determine whether cells had a small, 

medium or large bud. The images of live cells were also used to determine where, when it 

could be seen in cells, GFP-RID was localised at each time point. The cell-cycle, GFP-RID 

localisation and phosphorylation state of Lrg1 is shown in figure 4.21  
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Figure 4.21   Elutriation of the lrg1ΔΔ/LRG1-MYC/GFP-RID strain 

The lrg1ΔΔ/LRG1-MYC/GFP-RID strain was subjected to elutriation in order to obtain 

synchronised, small, early G1 phase cells. These G1 cells were then inoculated into fresh 

media and grown for 4 hours in yeast inducing conditions. Every 20 minutes 3 samples 

of culture were taken, one ethanol-fixed one flash-frozen and the last imaged instantly on 

a DeltaVision fluorescence microscope using the FITC filter.   

A) The ethanol-fixed cells were later stained with DAPI, imaged on the DeltaVision 

fluorescence microscope and cells counted for small, medium or large buds and whether 

or not the cells were bi-nucleate. 

α-MYC 

α-PSTAIRE 
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B)  Total cell lysate was extracted from the flash-frozen cells before 30 µg was run on 

SDS-PAGE, followed by an anti-MYC western blot to detect the Lrg1-Myc protein (top). 

An identical gel was run subjected to an anti-PSTAIRE western blot as a loading control 

(bottom). 

C) The images taken of the live cells were used to count where GFP-RID could be seen 

in cells, whether it was localised at the bud tip, cortex or the septum.  

 

Analysis of the cell cycle data (figure 4.21a) shows that buds start emerging from mother 

cells at around 50 minutes, corresponding to the G1/S phase transition, with a peak of small 

buds at 80 minutes. Medium size buds then peak at 100 minutes corresponding to a switch 

to isotropic growth during G2. A peak of large buds is then seen at 120 minutes along with 

an increase in the number of cells that are bi-nucleate, corresponding to the mitotic phase 

of the cycle.  By 140 minutes the majority of cells are un-budded, indicating that they have 

gone through cytokinesis, and have started the next cell cycle. From 140-220 minutes, the 

synchrony of the cells is starting to fade, so data from these time points was disregarded.  

The GFP-RID localisation data (figure 4.21c) shows that at 80 minutes, where the majority of 

cells have small buds, GFP-RID is localised mainly to the tips of buds, indicating that active 

Rho1 is present and this is where cell wall remodelling (polarised growth) is occurring. Then 

at 100 minutes, where medium buds are present, GFP-RID is re-localised to the cell cortex, 

indicating a change in the location of active Rho1 and the switch from polarised to isotropic 

growth. Then when cells are large and mitosis is occurring at 120 minutes, GFP-RID is now 

re-localised to the septum where polarised growth takes place before cell division. It can be 

concluded that during the cell cycle, active Rho1 first localises to the growing bud tip during 

late G1/M phase where growth is polarised, before re-localising to the cell cortex during 

isotropic growth during G2 and finally localising to the septum for another phase of 

polarised growth for cell division. 

By growing a synchronised culture of lrg1ΔΔ/LRG1-MYC/GFP-RID cells, it is shown in figure 

4.21b, that during the early G1 phase of C. albicans cell cycle the Lrg1 protein remains 

phosphorylated from the previous cell cycle. Lrg1 is then de-phosphorylated before active 

Rho1 localises to the emerging daughter bud at the G1/S phase transition and remains that 

way during polarised growth of the bud tip and isotropic growth during G2.  During M phase 
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of the cell cycle, Lrg1 is again phosphorylated during which time, active Rho1 is re-localised 

to the cell septum for another period of polarised growth required to produce the β-1,3-

glucan for the secondary septum to form either side of the primary septum and cell division 

to occur. At first glance, this would seem counter intuitive when taken with the fact that 

phosphomimetic mutations in the four full Cdc28 consensus sites produces longer cells, as 

the protein isn’t phosphorylated during growth of the tip. However, the protein is 

phosphorylated during the highly polarised growth phase at the septum, so perhaps 

mutation of the protein at the Cdc28 sites results in increased activity in Rho1, wherever it is 

located, in other words, resulting in a complete loss of Rho1 regulation?  

4.3.18    Lrg1(2E2DCDC28) causes mis-localisation of active Rho1 

 

To examine the result of the Lrg1 phosphomimetic mutations on active Rho1, the GFP-RID 

and lrg1ΔΔ/LRG1(2E2DCDC28)-MYC/GFP-RID strains were grown in yeast-inducing conditions 

for 3 hours before visualisation on a DeltaVision fluorescence microscope. Images are 

shown in figure 4.22. The images show that in the presence of Lrg1(2E2DCDC28), GFP-RID can 

still be seen to localise to the tip, cortex or septum of cells like the control strain. However, 

as mentioned previously, the mutant cells have a larger length/width ratio which is also 

observed in this data-set. Analysis of the cells was carried out so that the lengths of cells 

were measured where GFP-RID could be seen at the tip, cortex or septum. Results are 

shown in figure 4.22 (centre-left panel).  As reported earlier, the average length and SEM of 

wild-type cells with active Rho1 at the tip, cortex and septum is 2.249± .214, 3.228± .158, 

and 4.165± .163 respectively. The corresponding data for the lrg1ΔΔ strain is 8.383± 1.496, 

4.707± .694 and 6.278± .497 respectively. The mutant strain expressing the Lrg1(2E2DCDC28) 

proteins shows similar values to that of the strain lacking a copy of LRG1. Cells with active 

Rho1 at the bud tip have an average length of 8.797± 1.098, where it can be seen at the 

cortex the average length is 5.627± .551 and at the septum 6.674± 0.579. A two-tailed T-test 

reveals that there is a statistical difference between the wild-type cells and those with the 

Lrg1(2E2DCDC28) mutant protein within a confidence interval of 0.01 where GFP-RID is at the 

septum and 0.0001 where it is at the tip or cortex. As with the lrg1ΔΔ strain discussed 

earlier, the average of lrg1ΔΔ/LRG1(2E2D CDC28)-MYC/GFP-RID cells where active Rho1 is at 

the tip is much higher than the average where it is at either the cortex or septum. Most 
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probably this effect is because some cells are present that are totally locked in the highly 

polarised state where the growth machinery doesn’t relocate from the tip and the cells 

become extremely long.  Whereas the cells that have active Rho1 relocated to the cortex 

and septum are still longer than the wild-type, but don’t have an overall average as large as 

those with the protein locked at the tip. This is confirmed when the standard deviation (SD) 

of the data sets is analysed (figure 4.22, centre-right panel).  The lrg1ΔΔ/LRG1(2E2DCDC28)-

MYC/GFP-RID strain has SD figures of 4.660, 2.915 and 3.379 for active Rho1 at the tip, 

cortex and septum respectively, compared to 0.910, 0.839 and 0.672 for the control strain. 

This shows that not only does the Lrg1(2E2D CDC28) mutant have a larger range of cell lengths 

but also that the cell length where active Rho1  is located at the tip is more variable than 

when the mutant displays it at the cell cortex or septum, confirming the above suggestion. 

Furthermore, as with the cells lacking LRG1 analysed earlier, 20% of those expressing the 

phosphomimetic 2E2D Lrg1 show GFP-RID at both the tip and septum concurrently, 

compared to 1% of cells in the wild type strain and 0% in the strain expressing the 

Lrg1(4ACDC28) protein (figure 4.22, bottom panel), indicating an incomplete localisation of 

the polarisation machinery as well as a delay.  
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Figure 4.22 Re-localisation of GFP-RID is delayed in the LRG1(2E2D)-MYC/GFP-

RID strain 

Top: The GFP-RID and lrg1ΔΔ/LRG1(2E2D CDC28)-MYC/GFP-RID strains were grown 

for 3 hours in yeast inducing conditions on microscopy agar pads, before visualisation on 

a DeltaVision fluorescence microscope using the FITC filter.  Blue arrows show cells 

with GFP-RID at the tip only, purple arrows show GFP-RID at the septum only and 

yellow arrows show GFP-RID at the tip and septum simultaneously. The red arrow 

shows a cell where GFP-RID has become locked at the end of a long cell. The scale bar 

represents 5 µm. 

Middle left: The images of each strain were used to determine the average length (plus 

SEM) of cells when GFP-RID could be seen at the bud tip, cortex or septum. The data 

from the lrg1ΔΔ strain is also shown for comparison. N=45 for each strain, 15 cells per 

GFP-RID location. 

Middle right: Displays the same data as the middle left panel but with the standard 

deviation of the data shown.  

Bottom: Cells were analysed to see what proportion contained GFP-RID at both the tip 

and septum concurrently. N=50 

**= statistically different with a confidence interval of ≤ 0.01 

***= ≤ 0.001 

****= ≤ 0.0001 

 

4.3.19    Lrg1 phospho-mutants modify the activity as well as the localisation of 

active Rho1 

 

In order to assess the effects of the phospho-mutations in Lrg1 on the activity of Rho1, the 

intensity of fluorescence emitted from of lrg1ΔΔ/LRG1(2E2D CDC28)-MYC/GFP-RID and 

lrg1ΔΔ/LRG1(4A CDC28)-MYC/GFP-RID was analysed along with the wild-type, GFP-RID strain. 

Cells were grown under yeast inducing conditions for three hours before being visualised on 

a DeltaVision fluorescence microscope. The cell wall of each bud was then traced and the 

fluorescence emitted from GFP-RID detected was projected onto the length of the bud from 

the tip to the bud neck, as described in chapter 3. First, each cell plot was used to calculate 

an average cellular level of GFP-RID, and therefore Rho1 activity for each strain, which is 

depicted in figure 4.23 (left panel) in arbitrary units of fluorescence intensity. The average 

cellular level of active Rho1 in the wild-type strain is 284.7± 2.038 (SEM), whereas in the 
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strain expressing Lrg1(2E2DCDC28) this figure is 335.5± 6.730, which is statistically different in 

an un-paired t-test to a confidence level of 0.0001. This indicates that the phosphomimetic 

mutations of the Cdc28 consensus sites within Lrg1 result in an increased activity in Rho1. In 

contrast, the average cellular level of active Rho1 in the lrg1ΔΔ/LRG1(4A CDC28)-MYC/GFP-RID 

strain is 225± 6.167, which is also statistically different to the wild-type cells. Therefore, the 

non-phosphorylatable mutations have the opposite effect to the phosphomimetic 

mutations and decrease the activity of Rho1.  

Next, cells from each strain were categorised depending whether their highest level of 

fluorescence was at the tip, cell cortex or the site of septum formation and an average 

fluorescence reading for each location calculated, shown in figure 4.23 (right panel). When 

the majority of GFP-RID is located at any of the three locations, the same pattern of active 

Rho1 is observed; Lrg1(2E2DCDC28) causes an increase in activity when compared to wild type 

and Lrg1(4ACDC28) causes a decrease in activity. Furthermore, these results are shown to be 

significantly different to the wild-type at both the tip and cortex locations. However, the 

2E2D and 4A strains show a statistical difference to each other but not to the wild-type 

strain when GFP-RID is present at the septum.  

From the above results, it can be concluded that phosphorylation of C. albicans Lrg1 by 

Cdc28 inhibits the proteins negative regulatory effect on Rho1.  
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Figure 4.23   The Lrg1 (2E2D) and (4A) mutants alter the activity of Rho1 in C. 

albicans 

Left: lrg1ΔΔ/LRG1(2E2D CDC28)-MYC/GFP-RID, lrg1ΔΔ/LRG1(4A CDC28)-MYC/GFP-

RID and GFP-RID (BWP17) strains were grown for three hours in yeast inducing 

conditions before being visualised on a DeltaVision fluorescence microscope. Images 

were used to project the fluorescence emitted from the cell wall of the bud onto its 

length. Average cellular fluorescence intensity was then calculated for each strain and an 

unpaired t-test performed on the results. The confidence interval is 0.0001. N=45 

Right: Cells were categorised according to the location of their highest intensity reading 

of either the tip, cell cortex of site of septum formation. Average readings for each 

category for each strain were then calculated and an unpaired t-test performed. Four stars 

equals a confidence level of 0.0001, two stars equals 0.01 and one star equals 0.05. N=15 

cells per GFP-RID location. 
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4.4 Discussion 
 

4.4.1    The N-terminal extension in C. albicans Lrg1 contains multiple 

phosphorylation motifs 

 

In the previous chapter, it was shown that the C. albicans Lrg1 protein has an N-terminal 

extension that is not present in the S. cerevisiae ortholog. In this chapter, it was discovered 

that this N-terminal extension contained four full and fifteen minimal consensus sites for 

potential phosphorylation by the master cell-cycle regulator Cdc28. It has been reported 

that Cdc28 targets often contain clustered consensus motifs (Moses et al., 2007). Given that 

this study has shown that deletion of LRG1 results in hyper-polarised, elongated cells and 

that Cdc28 is highly involved in producing the extended periods of polarised growth 

required for hyphal growth, it seems that the N-terminal domain of Lrg1 is a target for 

regulation by Cdc28 phosphorylation at these consensus motifs.  

It was shown that during yeast growth, full length Lrg1 displays a slow migrating band when 

run on SDS-PAGE compared to a phosphatase-treated sample, indicating that the protein is 

phosphorylated. However, when the N-terminal region of CaLrg1 is deleted, this slower 

migrating band disappears, indicating that this is the site of phosphorylation on the protein. 

On the other hand, it was shown in chapter 3 that deletion of the N-terminus did not have 

any phenotypic effect on the cells, even if the phosphorylation state of the protein is 

changed.  Perhaps the phosphorylation of the N-terminus negatively regulates Lrg1, but lack 

of the extension does not have any deleterious effects because the protein is still there to 

perform its cellular role. Another hypothesis may be that another form of Lrg1 regulation 

exists for instance its expression or degradation.  

4.4.2    C. albicans Lrg1 is a target for phosphorylation by the cell cycle regulator 

Cdc28 

 

To provide further evidence that Lrg1 is phosphorylated by Cdc28, this study used a number 

of approaches. Firstly, it was shown that the phosphorylation state of Lrg1 is altered when 

the Cdc28 kinase is inhibited by 1NM-PP1. However, instead of being less phosphorylated as 

expected, Lrg1 actually became hyperphosphorylated, possibly indicating that lack of Cdc28 

phosphorylation causes phosphorylation elsewhere on the protein by a different kinase? 
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This result also doesn’t provide evidence for direct phosphorylation via Cdc28. Hence, a 

kinase assay was performed with purified CaCdc28 and the bacterially expressed N-terminal 

region of C. albicans Lrg1. The kinase assay showed that Cdc28 could directly phosphorylate 

the N-terminal region of Lrg1. Furthermore, the lower level of phosphorylation seen on a 

fragment of Lrg1 with its four full Cdc28 consensus sites mutated to non-phosphorylatable 

alanine proves that the kinase does act on these sites as speculated above.  

This study also revealed at what point during the cell cycle that Cdc28 acted upon Lrg1. 

Analysing the phosphorylation state of Lrg1 in different cyclin mutants revealed that the 

protein loses its phosphorylation when expression of the G1 cyclin CLN3 is repressed 

suggesting that  Cdc28-Cln3 phosphorylates Lrg1 during this stage of the cell cycle. 

Interestingly, repression of CLN3 results a hyper-polarised elongated cells as a terminal 

phenotype. This observation was confirmed using elutriation to obtain synchronised cells 

based on their size. This experiment showed that phosphorylation of Lrg1 was present 

before a bud tip emerged from cells, but disappeared at the G1/S transition.  The data 

gained from elutriated cells also revealed that the phosphorylation of Lrg1 returned during 

M phase; however the phosphorylation state of the protein was not altered when 

expression of either of the mitotic cyclins (CLB2 or CLB4) was inhibited.  

4.4.3    Phosphorylation of Lrg1 by Cdc28 causes changes in polarised growth and 

the activity of Rho1 

 

The evidence presented above provides evidence that Cdc28 phosphorylates Lrg1 in C. 

albicans, but they do nothing to address the cellular role of this phosphorylation. The 

physiological role of phosphorylation can be deduced by replacement of key consensus 

residues with non-phosphorylatable alanine or phospho-mimetic glutamic/aspartic acid. The 

key residues in the four full Cdc28 consensus sites of Lrg1 were mutated this way in C. 

albicans. 

The phospho-mimetic mutations in Lrg1 had 4 main effects: 

1. Rho1 show delayed, incomplete or failed re-localisation from the bud tip to the 

cortex and site of septum formation. 

2. Highly polarised cells which possess a larger volume. 

3. Increased activity of Rho1 at all three sites of growth. 
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4. Increased sensitivity to caspofungin. 

In contrast, the effects of the Lrg1 non-phosphorylatable mutant are not as severe: 

1. A decrease in activity of Rho1 at all three sites of growth. 

2. Resistance to the action of caspofungin 

3. Decreased average cell volume. 

The effect of the Lrg1(2E2DCDC28) mutant produces a similar phenotype to that of the strain 

lacking any copy of LRG1, albeit not as severe. This suggests that phosphorylation of Lrg1 at 

the Cdc28 full consensus sites negatively regulates the protein. The fact that the 

Lrg1(4ACDC28) protein has opposite effects on the activity of Rho1 and sensitivity to 

caspofungin would also suggest this. However, the absence of any deleterious effect 

suggests that in the absence of phosphorylation, Lrg1 behaves normally, similar to what was 

found in Chapter 3 with the Lrg1 N-terminal truncation.  

The results of the Lrg1 phospho-mutants growth on caspofungin is of great significance. As 

discussed in Chapter 3, one would expect cells with a higher activity of Rho1 and therefore 

β-1,3-glucan synthase to build a resistance to the drug. However, similar to the lrg1ΔΔ 

strain, the Lrg1(2E2DCDC28) mutant protein causes increased sensitivity to caspofungin. Could 

this be due to an increased number of targets that are present in the cell? Fascinatingly, 

mutation of the full Cdc28 consensus sites to non-phosphorylatable alanine results in an 

increased resistance to caspofungin, providing an interesting area of further drug research.  

4.4.4    Model of Cdc28 action on Lrg1 in C. albicans 

 

Taking the above pieces of evidence together has led to the proposal for a model of the 

action of Cdc28 phosphorylation on Lrg1, depicted in figure 4.24 and the role of this 

phosphorylation in the cell cycle (figure 4.25). The model proposes that in the absence of 

phosphorylation of the Lrg1’s N-terminal domain by Cdc28, the LIM and RhoGAP domains of 

the protein remain accessible. This results in Rho1-GTP being hydrolysed to Rho1-GDP, 

decreasing Rho1 and hence β-1,3,glucan synthase activity. Conversely, phosphorylation of 

Lrg1 at the four full Cdc28 sites results in a change in conformation where the N-terminal 

extension inhibits binding of the LIM and RhoGAP domains to Rho1. This results in two 

things: 1) Regulation of Rho1 and hence the glucan synthase is lost and hence their activity 
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increases and 2) Control of Rho1 localisation is lost. This phosphorylation occurs at the 

M/G2 transition of the cell cycle to lock Rho1 at the site of septum formation, producing the 

large amounts of glucan to be laid down for the secondary septum. Upon lifting of this 

phosphorylation, Rho1 is free to localise to the cell cortex to produce isotropic growth. 

Presumably, although we have been unable to identify it, this phosphorylation also occurs 

from late G1 to G2 phase to lock Rho1 at the growing bud tip as suggested by the phenotype 

of the phospho-mimetic Lrg1 mutant.   

 There are however, problems with this model, most importantly, the phospho-mimetic 

mutations of Cdc28 consensus sites results in elongated cells, but phosphorylation of Lrg1 

has been shown to take place in the  M/G1 phase of the cell cycle and disappear before a 

bud emerges and Rho1 is localised to its tip. Conceivably, this phosphorylation in M-phase 

could be for the highly polarised growth required to form the secondary septum. Surely 

then, one would expect Rho1 to be instead locked at the septum in the phospho-mimetic 

mutant. However, perhaps Lrg1 is only partly responsible for Rho1 re-localisation, so that it 

can be distributed elsewhere by other means which are temporally slower in the absence of 

Lrg1 control, giving the hyper-active glucan synthase a longer time to extrude glucan into 

the cell wall, resulting in the increased polarisation. The fact that the Lrg1(15E) mutant- 

which contains mutations in the four full sites and 11 additional Cdc28 minimal sites- 

reverses the  polarised nature of the 2E2D mutation, proves that Lrg1 itself is under more 

complex regulation than just the four Cdc28 consensus motifs. Or perhaps the 

phosphorylation/de-phosphorylation occurring on Lrg1 when polarised growth is occurring 

at the bud tip is too fast to detect with the method used in this study.  

One would assume that the model of phosphorylation above allows Rho1 to become locked 

at the tips of hyphae and provide the continuous periods of polarised growth needed during 

this growth morphology.  However, hyphal growth is not impaired when the N-terminal 

extension of Lrg1, that is phosphorylated, is deleted. In contrast, when both copies of LRG1 

are deleted hyphal growth is still impaired, as shown in Chapter 3. Again this provides 

further evidence that there is a complex regulation of this process.  
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Figure 4.24 Model of Lrg1 phosphorylation by Cdc28 in C. albicans 

A) Without any phosphorylation of the N-terminal domain by Cdc28, Lrg1 is available to 

catalyse the reaction of Rho1-GTP to Rho1-GDP, inhibiting the glucan synthase. 

B) Phosphorylation (yellow stars) of Lrg1 by Cdc28 in the N-terminal domain causes a 

conformational change in the protein, preventing the Rho-GAP domain from accessing 

Rho1. This allows Rho1 to remain active and the glucan synthase activity also increases. 

This lack of Rho1 regulation causes a lack in Rho1 mobility throughout the cell. 

Therefore glucan is extruded into the cell wall for a longer amount of time, resulting in 

an increase in polarised growth. This action possibly takes place during the M/G1 phase 

of the cell cycle in order to provide the highly polarised growth needed to form the 

secondary septum. 
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Figure 4.25 The consequences of Cdc28 phosphorylation of Lrg1 on the cell cycle 

Using the data presented in this study has led to the following proposal of the effects of 

Cdc28 action on Lrg1 during the cell cycle. Cdc28 phosphorylates Lrg1 at the M/G2 

transition. This inhibits the negative regulation of Lrg1 on Rho1 (green), increasing its 

activity along with that of the β-1,3-glucan synthase. The phosphorylation also locks 

Rho1 at the site of septum formation. These two consequences cause the increase in 

deposition of glucan required for the secondary septum. Once this phosphorylation is 

lifted, Rho1 re-localises to the cell cortex for a period of isotropic growth. 

Phosphorylation of Lrg1 takes place again from late G1 to the G2 phase of the cycle, 

producing polarised growth at the growing bud tip. Again once this regulation is lifted, 

Rho1 re-localises to the cell cortex for a period of isotropic growth in G2.  

 

 

 



155 
 

5 Phospho-regulation of Lrg1 by Cbk1 

 

5.1    Introduction  
 

5.1.2    The Cbk1 kinase 

 

The C. albicans Cbk1 (cell wall biosynthesis kinase) protein is a member of the NDR (nuclear 

dbf2-related) kinase group (a sub-class of AGC protein kinases) which is highly conserved 

amongst many organisms (Hergovich et al., 2006). The kinase phosphorylates either serine 

or threonine residues and has been shown to have a high affinity for sites that contain a 

histidine residue at the minus 5 position to Ser/Thr, followed by any amino acid and then 

either arginine or lysine at -3 or -2. This consensus site for Cbk1 phosphorylation is 

abbreviated to HX(K/R)(K/R)S/T (Mazanka et al., 2008). All NDR kinases are activated via 

phosphorylation at two sites along the length of the protein. A serine/threonine residue in 

the C-terminal hydrophobic domain is phosphorylated often by a Ste-20-like kinase whilst a 

conserved serine/threonine residue in the activation domain of the protein is auto-

phosphorylated. Members of this kinase family are known to be involved in cellular 

processes such as such as morphological changes, proliferation, apoptosis and mitotic exit 

and are reviewed fully in (Hergovich et al., 2006). For example, Cbk1 in S. cerevisiae is 

required for shmoo formation, the Cbk1 homologs in N. crassa (Cot1) and A. nidulans (CotA) 

are both required for hyphal formation and the S. pombe homolog (Orb6) deletion mutant 

results in round cells  (Shi et al., 2008; Verde et al., 1998; Yarden et al., 1992). In N. crassa it 

has also been shown that COT1 and LRG1 interact genetically (Vogt and Seiler, 2008b).  

5.1.3    Cbk1 and the RAM network in S. cerevisiae 

 

The yeast RAM (regulation of Ace2 transcription factor and polarised morphogenesis) 

network is well studied in Saccharomyces cerevisiae and is known to be comprised of at 

least 6 essential proteins with varying functions. Mob2 forms a complex with Cbk1 and is 

required for both activation and localisation of the kinase (Weiss et al., 2002). Kic1, a Ste20-

like kinase acts upstream of Cbk1 and probably activates it via phosphorylation of its C-
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terminus (see above). Hym1 interacts with Cbk1 and Kic1 and is important for localisation of 

the complex, whilst Pag1 is a large scaffold protein that may aid the action of Kic1. The final 

member Sog2 has an unknown function (Nelson et al., 2003).  

As its name alludes, the RAM network has two main roles. The first is its responsibility for 

maintaining polarised growth. Although no direct link between the RAM network and 

polarised growth has been deduced, Cbk1 and Mob2 have been shown to localise to the two 

sites of highly polarised growth: the bud tip during bud enlargement and then the 

mother/bud neck during mitosis (Weiss et al., 2002). All other members of the RAM 

network have also been shown to localise to sites of polarised growth and mutants of any of 

the components form spherical cells with wider bud necks and an increase in aborted 

mating projections, indicating a loss of cell polarisation (Nelson et al., 2003).  

The second role of the RAM network is to ensure that the Ace2 transcription factor is 

localised to the daughter nucleus at the correct time. Ace 2 is responsible for the 

transcription of the chitinases and glucanases (septum degradation enzymes SDE’s) that will 

eventually degrade the septum formed between the mother and daughter cells, allowing 

them to separate (Colman-Lerner et al., 2001). It is for this reason that mutations in the 

RAM network result in cell-separation defects. During mitosis, both Cbk1 and Ace2 are 

inhibited by Cdc28 phosphorylation, until, during late anaphase/telophase, the mitotic exit 

network (MEN) is triggered, which leads to the release of Cdc14 from the nucleus (Brace et 

al., 2011). Cdc14 then de-phosphorylates Cbk1 at its Cdc28 consensus sites. This de-

phosphorylation activates the Cbk1-Mob2 complex and allows transport of Ace2 to the 

daughter nucleus. Ace2 is then phosphorylated at its nuclear export sequence by Cbk1 

which ensures it remains in the daughter nucleus and transcribes the genes for cell 

separation (Jansen et al., 2006). This process ensures that septum degradation takes place 

after mitosis has completed.  

5.1.4    The C. albicans RAM network  

 

The function of the RAM network in Candida albicans is less well studied. A study by Song et 

al, 2008, sought to explore the role of the RAM network in polarised and hyphal growth in 

the organism. They found that each of the C. albicans orthologs of the S. cerevisiae proteins 

were also essential for RAM network function. Mutants resulted in more spherical cells that 
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had a cell lysis defect, indicating both a loss of polarity and a cell wall defect. The phenotype 

of a cbk1ΔΔ mutant is depicted in figure 5.1. The mutants also formed large aggregates of 

cells due to a failing in cell separation. Perhaps most interestingly though was the failure of 

the RAM network mutants to form hyphae under any laboratory conditions and many genes 

required for hyphal growth were dependent on a functional RAM network (Song et al., 

2008).  

 

 

 

Yeast 

 

 

Hyphae 

 

Image taken from: (McNemar and Fonzi, 2002). 

Figure 5.1 Loss of C. albicans CBK1 results in loss of polarisation and a cell 

separation defect.  

Loss of any members of the C. albicans RAM network results in a cell separation defect 

and a loss of polarity resulting in an inability to grow as hyphae. A wild-type strain, 

CBK1/cbk1Δ heterozygote and a cbk1ΔΔ strain are shown above growing as both yeast 

(top) and hyphae (bottom).  

 

5.1.5    The RAM network and Cdc28 in C. albicans 

 

It has recently become apparent that in C. albicans, the RAM network and Cdc28 play similar 

or antagonistic roles in a number of ways. During hyphal growth, Cdc28-Hgc1 

phosphorylates the Sep7 septin, which in turn inhibits the Cdc14 phosphatase from locating 

at the septin ring. This inhibition results in Cbk1 remaining phosphorylated at its inhibiting 
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Cdc28 consensus sites. Cbk1 is then unable to licence Ace2 to the daughter nucleus to 

transcribe the SDE’s and hence hyphal cells remain attached (Gonzalez-Novo et al., 2008). 

Cdc28-Hgc1 also down regulates the SDE’s via phosphorylation of Efg1 (Wang et al., 2009). 

Cdc28 also directly interacts with the RAM network during hyphal growth. The kinase 

phosphorylates Cbk1’s partner Mob2 upon hyphal induction. This phosphorylation is 

necessary for correct hyphal growth and maintenance of the polarisome components at the 

hyphal tip (Gutierrez-Escribano et al., 2011). This suggests that Cbk1 is being controlled by 

the Cdc28 kinase. There is evidence that Cbk1, Cdc28 and the mechanism of polarised 

growth in C. albicans are all linked.  

5.1.6    Aims of this chapter 

 

Given that this study has shown that Cdc28 regulates the activity of Lrg1 to bring about 

polarised growth, and it has been shown that Cdc28 and Cbk1 work together to bring about 

hyphal growth (discussed above), this chapter aims to address whether Cbk1 plays a 

regulatory role on the Lrg1 protein in C. albicans. The evidence presented addresses the 

potential phosphorylation of Lrg1 by the Cbk1 kinase. Also using evidence presented in 

chapter 4, the possible physiological role resulting from Cbk1 action on Lrg1 is discussed.  
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5.2    Strain construction 

5.2.1    Construction of an LRG1-MYC/cbk1ΔΔ strain 

 

In order to assess the relationship between C. albicans Lrg1 and Cbk1 in vivo, a strain with 

LRG1 epitope tagged with MYC and lacking any copy of CBK1 was needed. The 

Phosphorylation state of Lrg1 in this strain can then be compared to that in a strain 

possessing CBK1. The LRG1-MYC strain produced in chapter 4 was used as a base strain. The 

first copy of CBK1 was deleted in a similar way to the LRG1 deletion strain in chapter 3. A 

PCR cassette was created with a HIS1 selectable marker flanked by homologous sequences 

to the regions 5’ and 3’ of C. albicans CBK1, shown in figure 5.2 (top). 

Recombination with the C. albicans genome results in replacement of the CBK1 gene with 

the selectable marker and acquirement of histidine prototrophy. Correct integration was 

confirmed via PCR (figure 5.2, bottom).  

Due to the extremely sick nature of a cbk1ΔΔ strain, it was not possible to delete the second 

copy of CBK1 in the same way as above. Instead a PCR-based method was used to create 

larger regions of identity either side of the selectable marker (Derbise et al., 2003). The 

ARG4 marker was first amplified as shown above and purified. The 500 bp either side of the 

CaLRG1 gene, including the regions of identity on the selectable marker fragment, were 

then amplified from C. albicans genomic DNA and purified. The selectable marker, 5’ and 3’ 

fragments were used in another PCR reaction from which amplification results in one DNA 

fragment with the two regions of 500 bp identity fused either side of the selectable marker. 

The whole process is shown in figure 5.3a. Correct replacement of the second copy of CBK1 

was confirmed using diagnostic PCR (figure 5.3b). Lack of CBK1 was confirmed via a negative 

result using internal primers in a PCR reaction (figure 5.3b) and visualisation of the cbk1ΔΔ 

phenotype. The resulting strain was named LRG1-MYC/cbk1ΔΔ.  
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Figure 5.2 Deletion of the first copy of CaCBK1 

Cbk1-del-F and cbk1-del-R primers were used to amplify a HIS1 cassette with 5’ identity to the area 

upstream of CaCBK1 and 3’ identit to a region downstream of it (TOP). Integration results in deletion 

of CBK1 and replacement with HIS1. Correct insertion was selected for by growth on media lacking 

histidine and diagnostic PCR with a forward primer upstream of CBK1 and a reverse primer in the 

HIS1 gene (BOTTOM). 
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A) 

 

 

 

 

 

 

B) 

 

 

 

 

 

 

 

 

Figure 5.3 Producing a cbk1ΔΔ strain via multi-step PCR 

 The second copy of CBK1 was deleted in the following way. 

A) The 500 bp regions either side of C. albicans CBK1 were amplified from gDNA and 

purified. Cbk1 S1 and S3 primers were used for the 5’ fragment S2 and S4 for the 3’ 

fragment. These 500 bp fragments were used in a PCR reaction along with the ARG 

deletion cassette produced from the pFa-ARG4 plasmid, produced as shown in figure 5.2 

The reaction used primers at the 5’ end of 5’500  bp (Cbk1-S3) and at the 3’ end of 3’500 

bp (Cbk1-S4). The overlap on the fragments produced an end product with the ARG4 

gene flanked by 500 bp regions of identity.   

B) Correct integration into the genome was confirmed via diagnostic PCR with a forward 

primer upstream of the 5’ 500 bp region and a reverse primer in the ARG4 marker. 

Internal CBK1 primers were also used in PCR to ensure no other copy of the gene existed 

elsewhere in the genome. 
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5.3    Results 
 

5.3.1    C. albicans Lrg1 contains consensus sites for the kinase Cbk1 

 

As mentioned earlier, the Cbk1 kinase phosphorylates serine or threonine residues at the 

consensus site HX(K/R)(K/R)S/T, (Mazanka et al., 2008). Regan, 2010, performed a search of 

the Candida albicans proteome using a pattern match tool which searched for peptides that 

contained any of the possible permutations of the consensus sequence. Lrg1 was identified 

as having 4 possible Cbk1 consensus sites, with the 6th highest number of sites over the 

whole proteome (Regan, H., University of Sheffield, unpublished). The four sites are serine 

80, threonine 623, serine 1009 and threonine 1059 and are shown in figure 5.4 (top panel). 

Further analysis of the four identified sites reveals that the S80 residue lies inside the 

protein’s N-terminal extension, T623 is located in between the two LIM protein-protein 

interaction domains, whilst S1009 and T1059 are found just before the GTPase-activation 

domain. Figure 5.4 (bottom panel) also shows the free energy prediction of Lrg1 from 

chapter 3 and shows that all four consensus sites are present in regions of disorder 

suggesting that they are open to phosphorylation and possibly required for regulation of the 

protein. 
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Figure 5.4    C. albicans Lrg1 contains multiple consensus sites for the Cbk1 kinase 

Top: Regan, 2010, identified CaLrg1 as having 4 Cbk1 phosphorylation consensus sites 

(BLUE) via a protein pattern search of the C. albicans proteome. This was the 6
th
 highest 

number of sites seen in any protein. Further analysis revealed that one of these sites is 

located in the N-terminal extension discussed in Chapter 3 (yellow), another is located in 

between the two LIM domains of the protein (grey) and the last two are located just 

before the GTPase activating domain (green).  

Bottom: The free energy plot of CaLrg1 reveals that all four sites are located in regions 

of disorder.  
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5.3.2    The Lrg1 N-terminal extension is a substrate for Cbk1 in vitro 

 

In order to investigate whether C. albicans Lrg1 is a substrate for the Cbk1 kinase, an in vitro 

kinase assay was carried out on the purified recombinant GST-Lrg1(NT) fragment discussed 

in chapter 4. A strain which contained Cbk1 epitope tagged with MYC at its C-terminus 

(CBK1-MYC) (Caballero-Lima, D. University of Sheffield) was used in an anti-MYC 

immunoprecipitation (IP) to purify the active kinase which was then incubated with GST-

Lrg1(NT) in the kinase assay. As a positive control, the fragment was also incubated with 

purified Cdc28-MYC, whilst the fragment was incubated with an anti-MYC IP of a BWP17 

wild-type lysate as a negative control. Instead of using an antibody to detect the subsequent 

phosphorylation, the kinase and fragment were incubated with radioactive γ-labelled 32P-

ATP as performed in (Jansen et al., 2006). The results are shown in figure 5.5. The sample 

with both the Lrg1 N-terminal fragment and Cbk1 shows a band at the expected size for the 

fragment, indicating that Cbk1 has phosphorylated the peptide. However, this signal isn’t as 

intense as the lane with the Cdc28 kinase. This is due to the presence of only one of the four 

Cbk1 consensus sites being present in the N-terminal fragment, compared to 17 Cdc28 sites. 

The lane with the IP of the BWP17 lysate does not show any signal from the Lrg1 fragment, 

showing that there were no contaminants from the pull-down that and that the signal 

detected is specific to the target kinases. 
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Figure 5.5 Cbk1 phosphorylates Lrg1 in vitro 

The GST-Lrg1 N-terminal fragment produced in Chapter 4 was incubated with purified 

Cbk1-Myc and 
32

P-labelled ATP in a kinase assay. The fragment was also incubated with 

purified Cdc28 as a positive control, and an anti-Myc IP of a wild-type BWP17 lysate as 

a negative control.  After the reaction, phosphorylation of Lrg1 was detected by 

autoradiography.  

 

5.3.3    C. albicans is differentially phosphorylated in a cbk1ΔΔ background  

 

Using the LRG1-MYC and LRG1-MYC/cbk1ΔΔ strains, the in vivo phosphorylation state of C. 

albicans both in the presence and absence of the Cbk1 kinase was investigated. Overnight 

cultures of the two strains were re-inoculated into both yeast and hyphal inducing 

conditions and grown for a period of 120 and 90 minutes, respectively. Cultures were then 

treated to a protein extraction, SDS-PAGE and anti-MYC western blot. A sample of LRG1-

MYC protein extract was also subjected to phosphatase treatment and run alongside the 

above samples. Results are shown in figure 5.6.  In the yeast samples, it can be seen that at 

0 minutes, there is two separate bands of Lrg1-Myc in the strain possessing CBK1, 

corresponding to the different phospho-forms of the protein seen earlier. However, in the 

sample lacking CBK1, these two bands collapse into one, indicating that the protein fails to 

be phosphorylated. However, in the 120 minute yeast sample, this loss of the slower 

migrating band is less severe in the cbk1ΔΔ strain. Two clear bands do still exist, but the 

slower migrating band is not as high on the gel as the slow migrating band in the strain 

possessing the Cbk1 protein. This would suggest that the protein is failing to be 
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phosphorylated by Cbk1, but is maybe still being phosphorylated by another kinase.   The 

samples from the hyphal cells also show that in the strain lacking CBK1, only one band of 

Lrg1-Myc is seen which is fast migrating, compared to two separate bands in the wild-type 

strain.  It can be concluded that Cbk1 does phosphorylate Lrg1 in vivo at stationary phase, 

yeast and hyphal morphologies. Although Lrg1 is also phosphorylated by a different kinase 

during yeast growth, most probably by Cdc28 due to the results seen in chapter 4. 

 

 

 

 

 

 

Figure 5.6 Lrg1 is differentially phosphorylated in a cbk1ΔΔ background 

Stationary phase overnight cultures of the LRG1-MYC and LRG1-MYC/cbk1ΔΔ strains 

were re-inoculated into both yeast and hyphal inducing conditions and grown for the time 

indicated.  Total protein lysate was then extracted from these cells along with the 

stationary phase culture before being subjected to SDS-PAGE, and anti-MYC western 

blot. 

 

5.3.4    Mutagenesis of the Cbk1 consensus phosphorylation sites in C. albicans 

Lrg1 

 

In order to investigate the physiological role of Lrg1 phosphorylation by Cbk1, the pCIP10-

LRG1-MYC-URA plasmid was used to mutate the Cbk1 consensus sites on LRG1. The serine 

residues at positions 80 and 1009 were mutated to aspartic acid and the threonine residues 

at positions 623 and 1059 were mutated to glutamic acid on the same plasmid. Aspartic and 

glutamic acid mimic the charge of a constant phosphorylated residue whilst retaining the 

size and shape of amino acids they substituted. On a separate plasmid, all four residues 

were also mutated to alanine, which is incapable of being phosphorylated. The mutated 

residues are shown in figure 5.7. After mutagenesis, the full length of LRG1 and its promoter 



167 
 

in the two plasmids were sequenced to ensure no other mutations had been introduced. 

The plasmids were then linearised and transformed into the lrg1ΔΔ strain, before 

confirmation of integration and expression of Lrg1-Myc via PCR and anti-Myc western blot 

respectively as shown in chapter 4.  The two strains created were lrg1ΔΔ/LRG1(4ACBK1)-MYC 

and lrg1ΔΔ/LRG1(2E2DCBK1)-MYC 

 

 

Figure 5.7 Mutagenesis of Cbk1 consensus sites within C. albicans Lrg1 

The pCIP10-LRG1-MYC-URA was used in site directed mutagenesis in order to mutate 

the key phosphorylatable residue in the Cbk1 consensus sites within CaLrg1.  

Top: For phospho-mimetic mutations, Serine 80 and 1009 were mutated to aspartic acid 

(D) whilst threonine 623 and 1059 were mutated to glutamic acid (E).  

Bottom: All four residues were mutated to non-phosphorylatable alanine (A). 

The two resulting plasmids were then sequenced in full.  
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5.3.5    Analysis of the Lrg1 phospho-mutants in the Cbk1 consensus sites 

 

In order to investigate the cellular phenotypes resulting from mutation of the Cbk1 

consensus sites in C. albicans Lrg1, overnight cultures of the lrg1ΔΔ/LRG1(4ACBK1)-MYC and 

lrg1ΔΔ/LRG1(2E2DCBK1)-MYC strains were re-inoculated into yeast-inducing media and 

grown for 3 hours. The lrg1ΔΔ/LRG1-MYC and BWP17 strains were also grown in the same 

way to act as controls. Cells were then fixed with ethanol and visualised under a Leica DIC 

light microscope. Images of the visualised cells are shown in figure 5.8 (top).  On first 

inspection, it can be seen that cells expressing the Lrg1(2E2DCBK1)-Myc phospho-mimetic 

protein appear to be growing in a more polarised, elongated fashion than the control strain 

that has wild-type Lrg1-Myc. This phenotype is reminiscent of cells both lacking a copy of 

LRG1 and cells containing a copy of Lrg1 with its Cdc28 consensus sites also mutated to 

mimic phosphorylation. On the other hand, the cells expressing the mutated Lrg1 with non-

phosphorylatable alanine at the Cbk1 consensus sites- Lrg1(4ACBK1)-Myc- show only a minor 

elongation of cells. In order to properly assess the phenotype of the strains with mutated 

Cbk1 consensus sites, the average length to width ratio of the fixed cells was calculated. As 

can be seen in figure 5.8 (bottom left), the BWP17 and lrg1ΔΔ/LRG1-MYC strains have an 

average (± SEM) length: width ratio of 1.411± 0.031 and 1.423± 0.031 respectively, with no 

significant difference detected between them in am unpaired t-test. As suspected, the 

lrg1ΔΔ/LRG1(4ACBK1)-MYC cells have a slightly higher ratio of 1.555± 0.039, indicating more 

elongated, polarised cells. However, the t-test shows no significant difference between 

these cells and the control strain, demonstrating that mutation of the Cbk1 consensus sites 

in Lrg1 to non-phosphorylatable alanine does not cause any noticeable effects to cell 

growth. On the other hand, the length: width ratio of cells expressing the Lrg1(2E2DCBK1)-

Myc protein is 2.205± 0.180, significantly different to the control strains, indicating that the 

increase of polarisation seen in this strain is a defined phenotype caused by the mutated 

Cbk1 consensus sites mimicking phosphorylation. Interestingly, this strain shows a lower 

ratio than the strain lacking Lrg1 (4.916± 0.389) and the results from the two strains show a 

significant difference in an unpaired t-test. This indicates that although the strain lacking 

LRG1 and the strain expressing the Lrg1(2E2DCBK1)-Myc protein show a similar phenotype, 

with highly polarised elongated cells, the mutations in the Cbk1 sites are less severe and 

could be considered a separate phenotype to that of the lrg1ΔΔ strain. This is a similar 
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situation to that of the Lrg1(2E2DCDC28)-Myc protein discussed earlier and in fact the length 

to width ratios of cells with mutations in the Cbk1 sites show no significant difference to 

cells with mutations in the Cdc28 sites. 

The cells were then analysed to calculate an average cell volume for the two phospho-

mutants strains, shown in figure 5.8 (bottom right). The strain expressing the 

Lrg1(2E2DCBK1)-Myc protein have higher average cell volume than the wild type strain, whilst 

the Lrg1(4ACBK1)-Myc protein causes as lower cellular volume than the wild-type. These 

differences are seen to be significantly different using an unpaired t-test. This is a similar 

pattern seen with the Lrg1 phospho-mutants in the Cdc28 consensus motifs. In fact the non-

phosphorylatable mutants in the Cbk1 and Cdc28 sites show no significant difference in 

their average volumes. However,  the phosphomimetic mutant in the Cbk1 sites shows a 

significantly higher average volume (118.7 µm3 ± 7.42) compared to the phosphomimetic 

mutations in the four Cdc28 consensus sites (94.88 µm3 ± 4.60).  

 

5.3.6    The lrg1ΔΔ/LRG1(4ACBK1)-MYC strain grows as hyphae 

 

Due to the increased polarised growth seen in cells expressing Lrg1(2E2DCBK1), and the 

inability of cbk1ΔΔ to form hyphae, one could speculate that phosphorylation of Lrg1 by 

Cbk1 is required for hyphal growth. If this was true, it would follow that 

lrg1ΔΔ/LRG1(4ACBK1)-MYC would also be unable to form hyphae. To test this hypothesis 

lrg1ΔΔ/LRG1(4ACBK1)-MYC was induced to form hyphae on agar microscope slides and then 

visualised every 30 minutes. Results are shown in figure 5.9.  The images show that the cells 

with the non-phosphorylatable mutations in Lrg1 grow normal hyphae, contrary to the 

hypothesis above. Perhaps unsurprisingly, this indicates that the action of Cbk1 on Lrg1 is 

not the only mechanism for polarised growth that Cbk1 controls. 
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Figure 5.8 Phospho-mimetic mutations of Cbk1 consensus sites within Lrg1 result 

in an increase in polarisation  

Top: the BWP17, lrg1ΔΔ/LRG1(4ACBK1)-MYC and lrg1ΔΔ/LRG1(2E2DCBK1)-MYC strains 

were grown under yeast inducing conditions for 3 hours before ethanol fixation and 

visualisation on a Leica  DIC light microscope. 

Bottom left: Images were used to calculate the average length: width ratios of cells from 

each strain. The average length: width ratio of the lrg1ΔΔ strain is also shown. Four stars 

show the results are significantly different in an unpaired T-test with a p-value of 0.0001. 

Bottom right: Average cell lengths were calculated using the formulae for a prolate 

ellipsoid: V=4/3Pi*ab
2
. N=50 
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Figure 5.9 lrg1ΔΔ/LRG1(4ACBK1)-MYC shows normal hyphal growth 

The lrg1ΔΔ/LRG1(4ACBK1)-MYC strain was induced to form hyphae on agar 

microscopy pads and then visualised every 30 minutes using a Delta Vision 

Spectris 4.0 microscope with Softworx
TM

 3.2.2 software (Applied Precision Instruments). 

 

5.3.7    Phosphorylation of Cbk1 consensus sites within CaLrg1 results in altered 

sensitivity to caspofungin 

 

In order to assess the effect of echinocandins on the phospho-mimetic and non 

phosphorylatable mutants, lrg1ΔΔ/LRG1(4ACBK1)-MYC and lrg1ΔΔ/LRG1(2E2DCBK1)-MYC, 

were grown overnight in YPD media, sonicated briefly to break clumps of cells and adjusted 

to read the same absorbance  at OD600. Cultures were then diluted to 1x104 and 1x106 and 

plated on increasing concentrations of caspofungin. The results can be seen in figure 5.10 

along with BWP17, lrg1ΔΔ, and Cdc28 site phospho-mutants for comparison. The cells with 

lrg1ΔΔ/Lrg1(4ACBK1)-MYC 
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the Lrg1(2E2DCBK1) protein, appear to be almost completely growth inhibited at the lowest 

concentration of the drug, more so than even the strain lacking LRG1. However, inhibition of 

growth is lower at the higher drug concentrations and to a level similar to both lrg1ΔΔ and 

lrg1ΔΔ/LRG1(2E2DCDC28)-MYC, this seems counterintuitive but is probably due to the well 

observed phenomenon of paradoxical growth, where higher levels of drug seem to inhibit 

growth less than lower levels. (Rueda et al., 2014). On the other hand, growth of the strain 

with the Lrg1(4ACBK1) protein, shows an increased resistance to  caspofungin compared to 

the strain lacking LRG1, the one that contains the Lrg1(2E2DCBK1) protein and even the wild-

type strain. These results echo those seen in the phospho-mimetic and non-

phosphorylatable mutants of the Cdc28 consensus sites which are shown for comparison 

and provides evidence that the phenotypes of the phospho-mutants in the Cdc28 and Cbk1 

consensus sites are not only similar when observed visually via length: width ratios, but also 

have a similarity in terms of a molecular underpinning.   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 Lrg1 Phospho-mutants of Cbk1 consensus sites have altered sensitivity 

to caspofungin 

The lrg1ΔΔ/LRG1(4ACBK1)-MYC and lrg1ΔΔ/LRG1(2E2DCBK1)-MYC strains were grown 

in overnight cultures to stationary phase before brief sonication and adjustment to read 

the same absorbance at OD600. Cultures were then diluted to 1x10
4
 and 1x10

6 
before 

being spotted onto YPD agar plus increasing concentrations of caspofungin. The BWP17, 

lrg1ΔΔ and phospho-mutant strains from chapter 3 are shown for comparison. 
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5.4    Discussion 
 

5.4.1    C. albicans Lrg1 is a target for the Cbk1 kinase 

 

In chapter 4, it was shown that Lrg1 is negatively regulated by phosphorylation at four 

Cdc28 consensus motifs in its N-terminal extension. This negative regulation causes an 

increase in polarised growth. 

This chapter identified that one of the four Cbk1 consensus motifs previously identified, is 

also located in the N-terminal extension whilst the other 3 are located in regions of disorder 

next to the proteins LIM and RhoGAP domains. This and the fact that Cbk1 and Cdc28 are 

both implicated in C. albicans morphogenesis made Lrg1 a strong candidate for being 

targeted by Cbk1.  

This study showed that the N-terminal domain of Lrg1 is able to be phosphorylated by the 

Cbk1 kinase in vitro. We also showed that the phosphorylation pattern of Lrg1 in vivo is 

altered in cells lacking any copy of CBK1. During growth in hyphal-inducing conditions, the 

phosphorylation of Lrg1 appears to disappear completely in cells lacking Lrg1. This loss of 

phosphorylation is also seen in stationary phase cells. In contrast, after cells are grown in 

yeast-inducing conditions for two hours, some residual phosphorylation is still seen on Lrg1 

in cells that lack Cbk1. This could be due to the action of Cdc28 on Lrg1 described in chapter 

4.  

5.4.2    Phosphorylation of Lrg1 by Cbk1 results in an increase in polarised 

growth.  

 

To investigate the physiological role of Cbk1 phosphorylation upon Lrg1, two Lrg1 phospho-

mutants were created. The key residues in the Cbk1 consensus motifs were mutated to 

either phospho-mimetic or non-phosphorylatable amino acids. The Lrg1(2E2DCBK1) mutant 

causes cells to grow in a more elongated, polarised fashion, similar to the result obtained 

with the Lrg1(2E2DCDC28) mutant seen in chapter 4.  Also similar to the mutant Cdc28 sites, 

cells expressing Lrg1(2E2DCBK1) have an increased sensitivity to caspofungin, although this 

protein seems to cause a greater inhibition of growth than mutation in the Cdc28 sites. Due 

to time constraints, the consequences of the phospho-mimetic mutation on Rho1 were not 

investigated. However, due to the similar phenotypes seen in the two phospho-mimetic 
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strains, it could be inferred that phosphorylation of Lrg1 by Cbk1 also has the same effects 

on the localisation and activity of Rho1 as phosphorylation by Cdc28 observed earlier.  

Mutation of the four Cbk1 consensus motifs to non-phosphorylatable alanine also showed 

similar characteristics to the strains carrying mutations in the Cdc28 consensus sites. Cells 

did not show a change in their length or level of polarisation, but they did show a decreased 

average cell volume. The Lrg1(4Acbk1) mutant also cause increased resistance to 

caspofungin. 

5.4.3    Model of Cbk1 Phosphorylation upon Lrg1 

 

The data discussed above leads to a model of the physiological role of phosphorylation on 

Lrg1 by Cbk1 as shown in figure 5.11.   

Phosphorylation of Lrg1 by Cbk1 at its four consensus motifs results in increased polarised 

growth in the cells. Unlike in the results with the Cdc28 phosphorylation, we do not have as 

yet any data to suggest a molecular mechanism behind this regulation. However, due to the 

similar phenotypes of cells expressing Lrg1(2E2DCBK1) to cells lacking LRG1 or containing 

mutations in Cdc28 consensus sites,  it can be speculated that the phosphorylation by Cbk1 

leads to negative regulation of Lrg1. This negative regulation then presumably lifts the 

negative regulation upon Rho1 activity and possibly alters its mobility, producing polarised 

growth for longer periods of time, as seen in Chapter 3.  

The phosphorylation of Lrg1 and subsequent increase in polarised growth by Cbk1 could be 

required for hyphal growth. The fact that Lrg1 is phosphorylated by Cbk1 during hyphal 

growth and lack of CBK1 results in the inability to produce hyphae supports this. However, 

one would then expect the lrg1ΔΔ/LRG1(4ACBK1) mutant to be unable to grow as hyphae, 

which has been shown above to be untrue. Perhaps this is because of redundant processes 

that Cbk1 controls during hyphal growth. Either way it is obvious that control of Lrg1 by 

Cbk1 phosphorylation plays a part in polarised growth.  

Given the discussion in Chapter 4 on the possible role of Cdc28 on Lrg1 during formation of 

the secondary septum, could the action of Cbk1 on Lrg1 also be involved in this process. Due 

to the role that Cbk1 is involved plays in the processes behind degradation of the septum for 

cytokinesis, maybe it also has a role in the formation of it. 
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The resistance of the lrg1ΔΔ/LRG1(4ACBK1) strain to caspofungin is also counter-intuitive to 

what one would expect, as was seen the non-phosphorylatable Cdc28 motifs. This also 

suggests that phosphorylation by Cbk1 has the same result on Rho1 and the glucan synthase 

as phosphorylation by Cdc28: producing a higher number of targets for the drug to attack. 

 

 

 

 

 

 

 

 

 

 

Figure 5.11 Model of Cbk1 phosphorylation on Lrg1 in C. albicans 

A) Without any phosphorylation of the N-terminal domain by Cbk1, Lrg1 is available to 

catalyse the reaction of Rho1-GTP to Rho1-GDP, inhibiting the glucan synthase. 

B) Phosphorylation (black stars) of Lrg1 by Cbk1 preventing the Rho-GAP domain from 

accessing Rho1. This allows Rho1 to remain active and the glucan synthase activity also 

increases. This lack of Rho1 regulation possibly causes a lack in Rho1 mobility 

throughout the cell. Therefore glucan is extruded into the cell wall for a longer amount of 

time, resulting in an increase in polarised growth.  
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6 General discussion 
 

This study set out to try and characterise the putative C. albicans Lrg1 protein, its regulatory 

control and possible roles in morphogenesis. Initially it was found that C. albicans Lrg1 

contained a 330 amino acid extension that is not seen in the S. cerevisiae homolog, 

indicating both a possible divergence in function and a possible regulatory domain on the 

protein. Interestingly though, deletion of this N-terminal extension appears to have no 

effect on cell growth. 

The LRG1 homolog in S. cerevisiae is responsible for efficient cell separation and deletion 

mutants possess increased invasive growth, but no cell aberrant elongation is seen 

(Svarovsky and Palecek, 2005). On the other hand, the N. crassa homolog is essential for 

hyphal tip extension (Vogt and Seiler, 2008b). In both organisms, Lrg1 is a negative regulator 

of the β-1, 3-glucan synthase through its action on Rho1. This study showed that similar to 

N. crassa, CaLrg1 localises to sites of cell wall growth, however in contrast, deletion of the 

protein in C. albicans results in an increase in polarised growth and invasiveness in the yeast 

morphology, whilst there is little effect on the growth of hyphae. This increase in polarised 

growth is associated with an increase in the activity of Rho1 as visualised via a fluorescent 

Rho1-GTP binding reporter. The advantages of this reporter were that the activity of Rho1 

could be assessed as well as the cellular location and unlike in vitro GTPase assays, Rho1 

activity was gauged under physiological conditions. However, one must be careful due to 

the reporter effectively acting as a competitor of Rho1 targets.  Along with an increase in 

activity, during growth as yeast, Rho1 also shows a delayed or incomplete re-localisation 

from the growing tip to the site of septation. This distribution defect and increase in activity 

leads to the hypothesis that Lrg1 controls the switch from polarised growth at the growing 

tip, to isotropic growth at the cell cortex and then back to polarised growth at the site of 

septation  through its action on Rho1. Indeed there is a suggestion that in S. cerevisiae, 

although Cdc42 is responsible for setting up early polarisation in the cell, it is Rho1 that is 

responsible for maintaining polarised growth (Cabib et al., 1998; Zhang et al., 2001).  

Further analysis of the C. albicans Lrg1 N-terminal extension revealed sixteen potential 

Cdc28 phosphorylation motifs-four full and twelve minimal-plus three more minimal motifs 

were identified elsewhere in the protein. It is becoming more apparent that post-
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translational modifications such as phosphorylation play an important role in  protein 

regulation (Leach and Brown, 2012). Here, it was shown that the N-terminal extension of 

CaLrg1 is subjected to phosphorylation during yeast growth. Cdc28 was shown as being able 

to phosphorylate Lrg1 in vitro and Lrg1 phosphorylation was altered upon inhibition of 

Cdc28, pointing to this kinase as being responsible for the modification. Analysis of the 

phosphorylation state of Lrg1 in various cyclin mutants and in synchronised cells suggested 

that Cdc28 acts with its cyclin Cln3 to phosphorylate Lrg1 during late mitosis and early G1. In 

S. cerevisiae there is evidence for Cdc28 phosphorylating the Rho1 GEF Tus1 in late G1/S 

phase, priming Rho1 for activation for bud emergence (Kono et al., 2008). Perhaps 

phosphorylation of Lrg1 by Cdc28 operates antagonistically at this time? 

 The physiological role of Lrg1 phosphorylation by Cdc28 was investigated by producing 

mutants in which the four full Cdc28 motifs were altered to either mimic phosphorylation or 

be non-phosphorylatable. The phospho-mimetic mutant shows a similar phenotype to the 

lrg1ΔΔ mutant. Cells are elongated and highly polarised; Rho1 activity is increased and also 

shows a defect in re-localisation from the bud-tip. This indicates that Cdc28 phosphorylation 

upon Lrg1 negatively regulates the protein. This is then consistent with the observation that 

phosphorylation occurs in late M, early G1 phase so that Rho1 is available for the highly 

polarised growth needed for the secondary septum and cell division. Although it is strange 

that both the phosphomimetic and deletion mutants fail to separate.  

One would then expect that the non-phosphorylatable mutant would show the opposite 

phenotype. This is observed in terms of a lowered Rho1 activity level. However, visually the 

4A mutant is morphologically indistinguishable from wild-type cells other than a slightly 

reduced volume. This is a similar situation to when the N-terminal extension was deleted, 

further indicating that phosphorylation is inhibitory, and suggesting that Lrg1 lacking 

regulation in the N-terminus behaves normally.  

The phospho-mutant results led to the proposal of a model in which phosphorylation of Lrg1 

at the four full Cdc28 motifs causes the N-terminal domain to inhibit the binding and GAP 

activity of the protein, which increases the activity of Rho1, but decreases its mobility 

leading to an increase in polarised growth.  However, the results gained from the 

Lrg1(15ECDC28) mutant, which seems to reverse the phenotype of phosphomimetic mutants 

in the four full Cdc28 motifs, appears to indicate that the regulation of Lrg1 is more complex 

than the model describes and requires further investigation. It is plausible though, that 



178 
 

Cdc28 and the cell cycle are linked to Rho1, a controller of polarity, through its regulator 

Lrg1.  

C. albicans Lrg1 had previously been identified as having multiple Cbk1 phosphorylation 

motifs (Regan, H. PhD thesis University of Sheffield). Also, in N. crassa, LRG1 is genetically 

linked to the CBK1 homolog COT1. This study showed that in C. albicans, Lrg1 is capable of 

being phosphorylated in vitro by Cbk1. In addition Lrg1 lost phosphorylation in both yeast 

and hyphal morphologies when CBK1 was absent. To explore this further, as with the Cdc28 

motifs, phospho-mimetic and non-phosphorylatable mutants of the Cbk1 phosphorylation 

motifs were produced.  

The phospho-mimetic mutant showed the same phenotype as the Lrg1(2E2DCDC28) mutant, 

with highly polarised, elongated cells, further suggesting that phosphorylation of Lrg1 

negatively regulates the protein. This increase in polarised growth caused by 

phosphorylation may also explain why cbk1ΔΔ cells are unable to form hyphae, which 

requires extended periods of polarised growth (McNemar and Fonzi, 2002). If this were true, 

the non-phosphorylatable mutant should be defective in hyphal growth. However this is not 

the case and the Lrg1(4ACDC28) mutant is efficient in hyphal growth, possibly indicating that 

Cbk1 brings about polarised growth by other mechanisms. Conversely, it would be also be 

interesting to create a cbk1ΔΔ/lrg1ΔΔ strain, which would reveal whether the increase in 

polarised growth caused by loss of LRG1 could overcome the lack of polarised growth 

observed in cbk1ΔΔ. Much like the Lrg1(4ACDC28) and N-terminal deletion mutants, the 

Lrg1(4ACBK1) mutant shows little effect on growth, again indicating that non-phosphorylated 

form of the protein is not defective. Similarly, would a Lrg1(2E2DCDC282E2DCBK1) mutant 

produce the same phenotype as the lrg1ΔΔ strain.  

Due to time constraints, and difficulty in strain construction, it was not possible to assess 

the activity of Rho1 in the Cbk1 motif mutants. However, due to the similar phenotypes of 

the mutants to those in the Cdc28 consensus motifs, one could hypothesise that the 

Lrg1(2E2DCBK1) phosphomimetic mutant showed an increase in Rho1 activity whilst the non-

phosphorylatable mutant has the opposite effect. Further investigation into the 

phosphatase that is responsible for the de-phosphorylation of both the Cbk1 and Cdc28 

consensus motifs may also provide insights into the proteins regulation. The joint action of 

Cbk1 and Cdc28 phosphorylation on Lrg1 is shown in figure 6.1. 
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Figure 6.1 The joint action of Cdc28 and Cbk1 phosphorylation on Lrg1 brings                                                                                                                                               

about polarised growth   

A) In the absence of phosphorylation of Lrg1, the proteins GAP domain acts on Rho1, 

converting it from its GTP-bound, active form to its GDP-bound inactive form. This 

action also decreases the activity of the β-1,3-glucan synthase.  

B) Phosphorylation of Lrg1 by Cdc28 (yellow stars) and/or Cbk1 (black stars) results in 

the inhibition of the negative regulation Lrg1 exerts on Rho1. The Rho1 protein remains 

GTP-bound, increasing the activity of the glucan synthase. The active form of Rho1 also 

has a reduced mobility which, coupled with the increased glucan production, results in an 

increase in polarised growth at either the bud tip or site of septation.  
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The echinocandin class of drugs are a major defence in the treatment of C. albicans (Pea, 

2013). The drug targets the β-1,3-glucan synthase, inhibiting cell wall synthesis (Perlin, 

2007) and as such mutants in the synthase genes are a huge source of resistance (Beyda et 

al., 2012). If Lrg1 negatively regulates the β-1,3-glucan synthase through its action on Rho1, 

it would be expected that deletion of LRG1 would cause increased resistance to this class of 

drugs. Indeed, this is has been shown in N. crassa (Vogt and Seiler, 2008b). However, the 

lrg1ΔΔ, lrg1Δ/LRG1(2E2DCDC28) and lrg1Δ/LRG1(42E2DCBK1) strains, of which the former two 

show increased Rho1 activity, exhibit an increased sensitivity to caspofungin. Conversely, 

the lrg1Δ/LRG1(4ACDC28) which shows a decreased Rho1 activity, and lrg1Δ/LRG1(4ACBK1) 

both show a resistance to the drug not seen in the wild-type strain. This is the opposite 

result to what was expected. As alluded to in the text, perhaps the increase in Rho1 is 

producing an increased number of active glucan synthase molecules for the drug to attack. 

Or maybe Lrg1 is also controlling targets of Rho1 other than the glucan synthases, which has 

been reported in other fungi (Lorberg et al., 2001b) causing other defects of the cell wall 

that are shown when exposed to caspofungin. Either way, this study has shown that Lrg1 is 

an important protein for further study in relation to the echinocandins and also 

demonstrates that studying the basic molecular biology of C. albicans can provide real world 

benefits.  

In conclusion, this study has shown that the GTPase activating protein Lrg1 is responsible for 

controlling polarised growth in C. albicans. Through its negative action on Rho1, Lrg1 

controls the switch from polarised growth at the bud tip of yeast to isotropic growth at the 

cell cortex before a return again to polarised growth at the site of septum formation. The 

protein shows an evolutionary diversion from that of other fungi, with an N-terminal 

extension that plays a role in the regulation of the protein.  Lrg1 itself is negatively regulated 

by the concerted action of both Cdc28 in the N-terminal extension and Cbk1. 

Phosphorylation by Cdc28 links growth of the daughter bud to the cell cycle, whilst 

regulation by Cbk1 may provide an insight into the mechanisms behind the highly polarised 

nature of hyphal growth. We have also shown that phosphorylation of Lrg1 results in 

hypersensitivity to caspofungin, providing a point for further drug research. 
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