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Abstract 
 

 The research presented is this thesis entails the study of microarray-based 

bladder cancer data and the development of new model-based data mining 

methodologies for accurate prediction of cancer stage, grade and survival. The main 

focus of the presented research work, from a systems engineering perspective, is on 

producing models that are more accurate, while maintaining a simple computational 

structure, interpretable and with good generalisation performance. Such traits deem the 

developed methodologies as easier to create and use by non-experts.  

The presented data-driven computational modelling framework includes a 

Radial-Basis-Function (RBF) Neural-Fuzzy function, where the universal 

approximation property is utilised to create an accurate, yet simple, model structure.  

The scaling-up performance of the developed model is also examined, resulting in a 

proposal for an enhanced knowledge-capture and model optimisation method. The 

predictive modelling results show that the RBF-Neural-Fuzzy model outperforms 

existing modelling attempts in the literature, while identifying clinically relevant gene 

signatures. 

A major contribution of this thesis is the creation of model-based feature-

selection framework, as an embedded method for gene signature identification for 

bladder cancer. For the first time in the literature, an entropy-based iterative algorithm is 

combined with the previously created RBF model to create an efficient feature selection 

technique. The Tagaki-Sugeno-Kang (TSK) output layer of the RBF model is used as a 

feature discriminator, to estimate the relative contribution of each gene to the overall 

gene signature. The reduced size model (as a result of the iterative feature-selection) 

achieves more than 80% accuracy on the prediction of patient survival on new 
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(“unseen”) patient cohorts, whilst achieving this with less than 25 genes. This is the best 

performing model-based approach in the literature for this type of cancer, for a gene-

signature of less than 25 genes (typical microarray-based signature size in the literature 

is 100-200 genes). 

 An in-depth analysis of the generalisation performance of the developed models 

is carried out by cross-validating distinct microarray data and applying data integration 

techniques. Three data integration approaches are utilised, to address the well-known 

issue of data cohort mismatch (for different microarray technologies), and based on the 

results a model-based non-linear mapping approach is introduced. The obtained results 

demonstrate how data integration methods for model cross-validation can have a 

significant increase in the generalisation performance, and enable previously developed 

models to be used in different patient cohorts. 
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Chapter 1: Motivation 
and thesis overview 

The healthcare professionals community (medical, biology, chemistry, and 

engineering) have improved gradually the quality and length of life. It is expected that 

in developed countries, by year 2020 the female life expectancy will be of around 90 

years, however the male life expectancy is not expected to have a considerable life 

expectancy increase [1]. New vaccinations and novel treatments have been developed 

for diseases years ago where not possible to treat or cure. These advances in medicine 

led to a decrease in the mortality rate in many countries. However, it can be said that 

several diseases are still the focus of research. For example, tobacco-related diseases, 

which include: respiratory diseases, circulatory diseases and several types of cancer [1].   

 In healthcare, it is accepted that: “If we live long enough, at certain point of our 

lives we would develop some type of cancer” [2]. This is why cancer research is of 

paramount importance, if a cure is found quality and length of life for the patients could 

be improved. Cancer analysis used to be an area of research destined only for clinicians 

but as the new technologies emerged and the amount of information increased 

meteorically, Systems Engineering was required to analyse all of this information. The 

research presented in this thesis is based on the study of microarray bladder cancer data. 

Bladder cancer is a highly recursive type of cancer and that it is challenging to treat. 

The classification of the tumour’s behaviour is a crucial point, particularly at the early 

stage of the cancer when clinicians try to decide which treatment strategy to follow. 
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This early categorisation of cancer aggressiveness not only helps the patient 

avoid unnecessary treatment but will also allow substantial cost savings. The focus of 

this research is to produce a data-driven computational model that identifies the genes 

(feature selection) significant to the prediction of stage, grade, and survival of bladder 

cancer while maintaining simplicity, transparency and accuracy.  

1.1 Background and Motivation 

 Bladder cancer is a type of cancer that is extremely recursive, and depending on 

the type it can affect the patient’s life even after being cured [3]. From a medical point 

of view, there are two types of cancer according to the evolution of the tumour: 

aggressive tumours (tumours of poor prognosis and resistant to conventional treatments) 

and non-aggressive tumours (tumours that respond well to conventional treatment and 

with good prognosis). However, currently there are no biological markers or reliable 

parameters to categorise the two types of the disease.  

 Biology methods based on the analysis of clinical history and biopsies studies 

are the only routine tools for identification and confirmation of the stage of the disease. 

From a molecular level since a few years ago genetic profiles and possible markers have 

been studied. These markers may help us discover the cause and development of the 

disease; however research is on-going in this area.  

 Existing analytical techniques, predictive methodologies (regression, prognostic 

nomograms) and statistical data analysis methods struggle to cope with the inherited 

noise and uncertainty associated with this type of clinical data therefore yielding 

average prediction results [4, 5]. 
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  In recent years, new techniques have been developed and the study of genetic 

markers has become more common, however the research is ongoing in this area as at 

the moment there is still no irrefutable list of genetic markers related to bladder cancer 

[4-12]. The main prognostic tools are based on histologic stage and grade, and as 

explained before these tools have their drawbacks. It is logical to assume that there is a 

research gap, and this is where Systems Engineering may be able to contribute and 

improve the diagnosis methods via the analysis of both clinical data sets and gene data, 

in order to find suitable markers that predict cancer stage, grade and survival. The 

Systems Engineering’s aim is to achieve a correct diagnosis, which will lead to the 

optimisation of the patient’s therapy.  

 For certain cancer types the clinicians perform a number of tests to diagnose the 

patient. This involves clinical data, chemical tests, and medical examinations and more 

recently there is interest to investigate gene expression data. Unfortunately, these 

tests/data are not very well understood. This is where systems engineering and data-

driven modelling come in. If hybrid models are built from the test data along with 

behaviour from cancer biopsies and gene expression data, the understanding of how 

these tests relate to cancer prediction could be improved, and a treatment therapy could 

be informed; part of this study is focused on the analysis of microarray data. Microarray 

is a new technique to analyse tissue samples, and this will be explained in detail in the 

Chapter 2. Microarray data analysis has opened new possibilities for diagnosis and 

treatment of numerous diseases, including cancer; however microarray data comes with 

its limitations. For example, high-dimensionality, low sample size, noisy, missing data 

and the necessity of applying feature selection methods to identify relevant markers. 

The diagnosis of numerous malignancies has been improved by the use of microarrays. 
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For this reason, the search for a robust classifier for the tumours’ categorisation and 

feature selection algorithm has been intensive.  

1.2 Research Objectives and Contributions 
 

One of the biggest challenges in bladder cancer prediction is the accurate and 

early classification; in recent years microarray technologies and related research have 

helped with this task with feature selection and systems engineering models. Current 

clinical diagnostic methods are not definitive enough; to date the search for conclusive 

markers to lead to a precise classification is still ongoing [9, 13, 14]. 

The main challenges that microarray studies run across are the thousands of 

genes combined with a small number of samples (patients) and the uncertainty of raw 

data due to measurement process and variation in the technology. This presents a 

challenging Systems Engineering classification and identification problem (high 

dimensionality, low number of samples). To tackle the challenge of high number of 

features, feature selection algorithms have become indispensable components of the 

data mining process [15].  

 The objectives of this research are to:  

1. Introduce a Radial-Basis-Function Neural-Fuzzy modelling structure for the 

analysis of noisy high dimensional low sample size data; the main characteristics 

of the model are transparency and simplicity. 

2. Investigate the scaling-up performance of Radial Basis Function Neural-Fuzzy 

models using a standard PC and a High Performance Computing (HPC) server. 

The aim of the research is to find the limit for the maximum number of inputs to 

use in the model while maintaining low computational complexity and high 

accuracy.  
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3. Introduce a new model-based iterative method for feature selection that directly 

links the relative contribution of each feature to the system’s performance.  

4. Improve the generalisation performance in microarray bladder cancer data 

5. Maintain simplicity, transparency and accuracy. 

 The main novelty of this research relies on producing models that are accurate, 

simpler, interpretable, with good generalisation performance (robust) and easier to 

develop and to be used by non-experts given their simplicity and transparency.  

 A Neural-Fuzzy algorithm was chosen because it possesses the learning abilities 

of Neural-Networks, the interpretability of Fuzzy logic and can model non-linearity. 

Furthermore, Neural-Fuzzy models require less data than Neural-Networks [16].  Apart 

from the previously mentioned characteristics, Neural-Fuzzy models already proved to 

make accurate bladder cancer classification [7, 16-19]. Compared to Neural-Networks, 

Support Vector Machines (SVM) or Logistic Regression, Neural-Fuzzy models deliver 

comparable or improved accuracy in classification with the advantage of being more 

interpretable [17]. A drawback of Neural-Fuzzy models is that they encounter problems 

when the dimensionality is relatively high [20].  

 In this thesis, the following research contributions have been made:  

1. Reduction in the complexity of the model: number of inputs of the model 

(features) and linguistic statements to describe the model (fuzzy rules).  

2. An enhanced rule-base extraction framework is proposed to improve the 

model’s performance for high-dimensional low sample size data (microarray 

data). With the enhanced rule-base, the scaling-up performance of Radial Basis 

Function (RBF) Neural-Fuzzy models was improved.  
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3. For the first time, a Neural-Fuzzy model (Radial-Basis-Function with a TSK 

output) was applied to microarray bladder cancer data to make a feature 

selection in the training phase (embedded feature selection): the aim of the 

iterative feature selection method is to use a measure of uncertainty (fuzzy 

entropy) to select relevant features during the model-training phase, whilst 

maintaining the system’s simplicity and interpretability and taking into account 

the interactions between the genes.  

4. The inclusion of the cancer stage and grade as extra features of the predictive 

model is evaluated, thus producing a hybrid gene-clinical data model. 

5. Improve the generalisation performance in microarray bladder cancer data: two 

different data integration approaches were presented for the first time: median 

adjust and NN mapping of input-output. The results obtained prove that the data 

integration methods for cross validation of the models helps to have a 

considerable increase in the performance. 

 Considering the aforementioned objectives and contributions, and the impact of 

this disease in the society, the research work described in this thesis is underpinning for 

the development of new methods of diagnosis and prediction of the behaviour of 

bladder cancer. 

1.2.1 Publications: 

Each publication is linked to a Chapter and objective within the thesis and study 

respectively, for example: 

 Chapter 3 is linked to publications 1 and 4 and objectives 1 and 5.  

 Chapter 4 is linked to publications 2 and 2b and objective 2. 

 Chapter 5 is linked to publications 1, 3 and 4 and objectives 1,3 and 5 

 Chapter 6 is linked to objective 4 and 5.   
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1.3 Thesis Outline 

The rest of this thesis is organised as follows: 

 Chapter 2: definition of cancer, microarrays and a brief literature review is 

presented. Previous methods used for microarray data analysis, either for feature 

selection or cancer classification are also covered in this Chapter. 

 Chapter 3: This Chapter introduces a Radial-Basis-Function Neural-Fuzzy 

modelling structure, aiming to maintain simplicity and transparency in the form 

of a linguistic Fuzzy-Logic rule-base. The proposed methodology is validated by 

selecting a signature for the identification of the stage, grade and survival of 

bladder cancer. The signature selection and predictive modelling results are 

compared to previous research work on the same dataset, showing that the RBF-

NF model outperforms the previous modelling attempts by achieving high 

predictive accuracy (>80% on average).  

 Chapter 4: the scaling-up performance of Radial Basis Function Neural-Fuzzy 

models is investigated. Based on the findings, an enhanced rule-base extraction 

framework is proposed to improve the model’s performance for high-

dimensional low sample size data. To overcome the challenges present when 

high dimensional data is used, a Weighted Fuzzy C-means (WFCM) algorithm 

for the analysis of high-dimensional low sample size data is introduced. A 

second contribution of this chapter is a cluster optimisation algorithm based on 

the Xie-Beni cluster validity index to improve the quality of the initial clusters 

(rule-base) calculated by the WFCM. Via the proposed framework the scaling-

up performance of RBF Neural-Fuzzy models is enhanced, hence the predictive 

modelling framework can be used without the use of filter-based feature 

selection methods. The aim is to find the rational limit for the maximum number 
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of useful inputs (genes) to use in the model while still maintaining low 

computational complexity and high accuracy.   

 Chapter 5: In this chapter, a new model-based iterative method for feature 

selection based on fuzzy entropy measures is introduced. The presented 

approach is based on a Radial Basis Function – Neural-Fuzzy which is designed 

to be equivalent to a Fuzzy Logic TSK-based system. A fuzzy entropy measure 

is used to directly link the relative contribution of each feature to the system’s 

performance. An iterative algorithm is then used to identify the most relevant 

features of the process under investigation; the modelling-feature selection is 

performed in one iterative process. In predicting the patients’ survival as a result 

of their bladder cancer gene signature, the inclusion of the cancer stage and 

grade as extra features of the predictive model is evaluated, thus producing a 

hybrid gene-clinical data model. The simulation results confirm that the new 

approach outperforms existing predictive models in the literature for bladder 

cancer survival based on gene signature only; the additional novelty of the 

presented approach relies on the added benefit of producing models that are 

simpler (considerably less genes in the signature), interpretable, with good 

generalisation performance and easier to develop and use by non-experts due to 

the absence of complex pre-processing which is common in this field.  

 Chapter 6:  In this Chapter, the generalisation performance of the developed 

models is investigated. The approach studied in this chapter is to cross-validate 

distinct microarray data by applying data integration techniques. Three different 

data integration approaches were analysed: quantile discretisation, median adjust 

and NN mapping of input-output. The latter two approaches are introduced for 

the first time to a bladder cancer classification algorithm. The results obtained 
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demonstrate that the data integration methods for cross validation of the models 

helps to have a significant increase in the performance.  

 Chapter 7: Conclusions and future research directions: the conclusions of the 

thesis and the direction for future research. This covers performance 

summarisation of the presented work and research proposals towards multi-

cohort modelling approaches. 



 
 

Chapter 2: Microarray 
technologies and data-
driven modelling for 
cancer 

 Case Study on Bladder Cancer; definition of cancer, microarrays and a brief 

literature review is presented. This Chapter also presents previous methods used for 

microarray data analysis, either for feature selection or cancer classification. 

2.1 Cancer Overview 

In order to assess the complexity of the problem of cancer and cancer research in 

the world a brief literature review is presented here. There are more than 200 types of 

cancer and millions of new cases of cancer are recorded each year [21-24]. According to 

[23], the most common cancers occurring in the UK are:  

 Female breast  

 Lung 

 Prostate Cancer 

 Bowel 

 Malignant Melanoma 

 Non-Hodgkin Lymphoma  

 Bladder 
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As stated in [23], “More than 331000 people were diagnosed with cancer in the 

UK in 2011. More than 1 in 3 people in the UK will develop some type of cancer during 

their lifetime”.  

For the UK, the survival rates for cancer have increased considerably in the last 

decades; nevertheless cancer is the cause of more than 25% of  all deaths [23]. 

2.2 Bladder Cancer 

 Bladder cancer is the 11
th

 most common type of cancer in the world [21, 25]. In 

the UK, is the 7
th

 most common type of cancer [21, 23].  

The bladder is an organ (Figure 2.1) [26] that stores urine and it is located in the 

abdomen, the majority of the bladder cancer forms in the tissues of the bladder.  

  

Figure 2.1: Bladder and nearby organs 

The risk factors linked to bladder cancer are [27, 28]: 

 Age 

 Cancer therapies 

 Ethnicity 
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Cancer occurs when something goes wrong with the cell reproduction and the 

cells do not die but instead they continue reproducing. If those cells are not dying and 

new cells are reproducing, eventually a tumour may form [23]. The correct 

classification of future tumour behaviour is one of the biggest challenges in cancer. 

Whilst it is crucial to avoid unnecessary treatment for indolent tumours, delays in 

radical intervention for aggressive disease lead to worsening survival and quality of life 

[29-31]. The prediction of outcome is best performed using pathological stage, grade 

and various other histological and clinical parameters.  

The cancer Stage encoding is based on the staging system that uses numbers to 

indicate the stage of the cancer, this is defined as follows: 

“Stage 0a, there is a small area of cancer only in the bladder 

lining. 

Stage 0, the cancer cells are confined to the inside layer of the 

lining of the bladder. 

Stage 1, the cancer has grown into the layer of connective tissue 

beneath the bladder lining. 

Stage 2, the cancer has grown into the muscle of the bladder wall 

under the connective tissue layer. 

Stage 3, the cancer has grown through the muscle of the bladder 

and into the fat layer surrounding it. It may have spread to other 

organs. 

Stage 4, the cancer has spread to the wall of the abdomen or 

pelvis, the lymph nodes or to other parts of the body” [32].  
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Similar to the encoding applied to the previous model for the prediction of stage; 

three grades are used to rate cancer. The Grading of bladder cancer tumours is defined 

according to:  

Grade 1 or low-grade cancer 

Grade 2 or moderate/intermediate grade 

Grade 3 or high-grade cancer [22]. 

The risk of disease-progression, as well as the frequent reoccurrences, require 

extensive clinical monitoring of bladder cancer patients, making this disease one of the 

most expensive to manage [33]. One of the challenges in the screening of cancer is the 

search for markers that identify tumour of aggressive and non-aggressive behaviour. 

This is a crucial point, especially at the early stage of the cancer when clinicians try to 

decide which treatment strategy to follow. This early categorisation of cancer 

aggressiveness not only helps the patient avoid unnecessary treatment (often avoiding 

serious side-effects) but will also allow substantial cost savings.  

There is a high lifetime cost on patients with superficial tumours. Removing the 

bladder can treat the disease, but it may result in various complications that the person 

has to live with for the rest of their life [28] . Current clinical diagnostic methods are not 

definitive enough; at this time there are no determinant markers to do a precise 

detection. Biology methods based on the analysis of clinical history and biopsies studies 

are the only routine tools for identification and confirmation of the stage of the disease. 

From a molecular level since a few years ago genetic profiles and possible markers have 

been studied. These markers may help discover the cause and development of the 

disease; however research is on-going in this area. Limitations in the accuracy of 

clinical diagnostic methods have led to the search for more robust biomarkers such as 
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those derived from gene expression data [7, 34, 35]. In recent years microarray 

technologies and related research help with the task of making an accurate and early 

classification of the cancer and with the identification of clinically relevant genes.   

 

2.3 Microarray Analysis 

Microarray is a technique to analyse tissue samples. Microarrays make possible 

the analysis of thousands of genes simultaneously; since thousands of genes are 

analysed, the data generated from each microarray is enormous. This literature review 

will focus on giving the basic concepts of microarray and explain what the data 

represents. 

The present section is divided into 3 sub-sections:  

1. Microarray Basic concepts.   

2. Representation and extraction of information 

3. Analysis of Gene Expression Data; different methods for the analysis of 

microarrays, from statistical to soft computing.  

 

2.3.1 Microarrays Basic Concepts:  

Deoxyribonucleic acid (DNA) microarrays are a technology to simultaneously 

monitor the expression levels for thousands of genes [36]. The process of transcription 

of genes into messenger Ribonucleic acid (mRNA) and subsequent conversion to form 

proteins is called Gene expression [36]. DNA microarrays are used to identify disease 

biomarkers in many applications, for example: in neurological diseases, Alzheimer, 

multiple sclerosis, diabetes [37, 38]. As shown in Figure 2.2 [39], DNA microarrays are 

solid supports where gene sequences are immobilised [38].  
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Figure 2.2: DNA microarray 

 In a microarray, the gene sequences must be attached to their support in a 

permanent way, since scientists use the position of each spot in the array to detect a 

gene sequence [38]. The entire process is based on hybridisation probing, defined in 

[40] as: “a technique that uses fluorescently labelled nucleic acid molecules to 

identify complementary molecules and sequences that are able to base-pair with one 

another.”  

Once the hybridisation is complete, a ‘scanner’ will examine the microarray. A 

laser stimulates the fluorescent tags, and the scanner produces a digital image of the 

array. The image is stored and, as explained in Section 2.3.2, is subsequently analysed.  

2.3.2 Representation and Extraction of Information  

i. Image Processing and analysis 

As mentioned in section 2.3.1, the expression level for each gene can be stored 

as an image. The processing of the image is the initial step in the analysis of microarray 

data.  
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Image processing involves:  

 Identification of the spots 

 Determination of the area to be analysed  

 Assigning the spot intensity [41].  

After the image processing and analysis, normalisation is necessary to adjust for 

any bias that arises from differences in the microarray process [38, 41].  

ii. Gene Expression Data Matrices 

As stated in [41], there are several representations for the measurements of 

microarray data: 

 Absolute; the expression level of the gene is represented in abstract units.  

 Relative; the gene expression of a gene in abstract units is normalised with 

respect to its expression in a reference.  

 Log2; the gene expression values are converted to log2 to eliminate the high 

variations between the gene’s intensities.  

 Discrete; the gene expression values are converted to discrete numbers. 

Microarray data can be also seen as a vector, where the gene expressions are 

represented in a vector space [41].  

2.4 Feature selection methods applied to microarray  

One of the biggest challenges in cancer is the correct classification of future 

tumour behaviour and it may be achieved via a number of information sources, 

including clinical and radiological data and potentially, biochemical or molecular tests. 

However, limitations in the accuracy of these data have led to the search for more robust 
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biomarkers such as gene expression data. In recent years microarray technologies and 

related research help with this task. A reliable predictor capable of an accurate 

assessment at an early stage of the cancer will undoubtedly avoid unnecessary 

treatment, save costs and in general would improve the patients’ quality of life.  

Current clinical diagnostic methods are not definitive enough; to date the search 

for the conclusive markers to lead to a precise classification is still ongoing [9, 13, 14]. 

The main challenges that these types of studies run across are a) the high 

dimensionality, translated into tens of thousands of genes combined with a small 

number of samples (patients) and b) uncertainty of the raw data due to measurement 

process and variation in the technology. This presents a challenging Systems 

Engineering classification and identification problem (high dimensionality, low number 

of samples). To tackle the challenge of high number of features, feature selection 

algorithms have become indispensable components of the data mining process [15]. The 

objective of feature selection is to improve the performance of the predictor, provide 

faster and more computationally inexpensive predictor. There are numerous benefits of 

feature selection: simplifying data understanding, decreasing the computational 

complexity, and most importantly decreasing training times [42]. There are three 

categories for feature selection: filters (typically applied as a pre-processing step), 

wrappers (optimise a classifier as part of the feature selection procedure) and embedded 

methods (perform feature selection in the process of training). The goal of this literature 

review is to offer an analysis of the current feature selection methods applied to 

microarray data (high dimensional low sample size).  
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2.4.1 Filter Methods 

Filter methods evaluate the correctness of the proposed feature subset by 

analysing the relation of each gene with the class by the calculation of basic statistics 

[43, 44]. Filter approaches are the most used feature selection method in microarray 

literature for gene selection [36, 45]. 

Filter methods rank the features depending on a score: then, the features with the 

highest score are chosen and applied as inputs for the classifier [44]. Filter feature 

selection methods can be separated in two categories: multivariate and univariate. 

Multivariate methods consider, to some extent, the dependencies between the features; 

on the contrary, univariate filter methods consider each feature individually [43, 44]. 

The costs of considering the dependency is being slower, loose some scalability while at 

the same time still not has interaction with the classifier [24].  

i. Univariate Filter Feature selection Methods 

The majority of the filter methods belong to the univariate category. The advantages 

of Univariate filter feature selection methods are that they are fast, scalable and 

independent from the classifier [24]. The disadvantages of using univariate feature 

selection methods are that they ignore feature dependencies and lack interaction with 

the classifier [24]. Some of the most common examples of univariate filter feature 

selection methods are t-test [46], ANNOVA [46], Information Gain [47].  

ii. Multivariate Filter Feature selection Methods 

Examples of filter methods applying correlation for feature selection are the 

Correlation-Based feature selection (CFS) [48] and the fast correlation-based filter 

method [49].  
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In [48], the method selects the feature (genes) subsets based on correlation or 

dependence. The method’s objective is to select subsets of genes that show a high 

correlation with the class but no correlation between the genes. The CFS method reports 

results (breast cancer) comparable or better than wrapper approaches, with the benefit of 

being faster.  

In [49], the filter method is based on measuring the ‘predominant correlation’, 

identifying the features relevant to the class and minimising the redundancy between the 

selected features. The method is applied to lung cancer, reporting high classification 

results.  

Numerous multivariate filter feature selection approaches [50-53] have been 

applied to microarray analysis, reporting similar or improved results compared to more 

specialised methods.  

iii. Recent approaches  

Recent approaches [54, 55] are considering applying discretisation followed by a 

filter feature selection algorithm.  The authors report an increase in the classification 

accuracy and the complexity of the model (applied to prostate cancer).  

The benefits of using filter techniques are that they can be applied without 

difficulty to high-dimensional datasets (microarray data); they are computationally 

inexpensive and fast [24]. A drawback of filter methods is that most techniques consider 

each feature separately, ignoring feature dependencies, and that they do not interact with 

the classifier [44]. This could result in an inferior performance of the classifier when 

compared to more complex methods [44].  
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2.4.2 Feature Selection: Wrapper Methods 

 Wrapper feature selection methods optimise a predictor as part of the selection 

procedure; their computational complexity is high because it grows with the number of 

features [24]. Consequently, wrapper feature selection approaches have been avoided in 

recent years. In wrapper feature selection methods, several subsets are produced and 

assessed [24]. The assessment of each subset is achieved by training and testing each 

classification model [43]. Wrapper feature selection approaches are popular in machine 

learning, however due to its large computational cost they are not popular in microarray 

analysis [43].   

Most of the work applying wrapper methods was done in the early years of microarray 

analysis, and that wrapper methods have not evolve as the same speed as filter or 

embedded feature selection methods [44]. Despite their high computational cost, several 

authors [56, 57] state that they have better predictive accuracy.   

 In [58], the authors evaluate widely applied wrapper feature selection algorithms 

finding that by using these algorithms the accuracy is improved and the number of 

genes of the classification model is considerably reduced in size.  

 In [59], the authors introduce a procedure named successive feature selection. 

The proposed algorithm consists on separating the genes into subsets (of size s), and 

subsequently selecting smaller subsets (of size bs) containing the best genes from each 

subset (of size bs<s) based on their classification accuracy. Afterwards, all the selected 

genes are merged to obtain the ‘top genes subset’.  
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2.4.3 Embedded Methods 

  

 Embedded methods perform feature selection in the process of training the 

classifier [44]. Similar to wrapper methods, embedded methods also have interaction 

with the classifier, which increase the computational complexity. However, compared to 

wrapper methods, the computational complexity is smaller. Embedded methods can be 

seen as an intermediate solution for feature selection with less computational burden 

than wrapper methods but higher computational burden than filter methods, without 

being independent from the classifier [44].  

 Perhaps the most applied embedded method is a SVM using Recursive Feature 

Elimination (SVM-RFE) [60]. SVM-RFE is a weighted-based method that trains a 

SVM with a set of genes and eliminates the genes that are not significant to the solution 

based on a feature ranking criteria. However, as reported by [44] in their study for 

breast and cancer prediction, the SVM-RFE achieves comparable or inferior 

classification accuracy compared to simpler feature selection techniques.  

 A different SVM approach presented in [61], consists of simultaneously 

determining a classifier with good classification performance and an small number of 

features by ‘penalising’ the usefulness of each feature in the elicitation of the model. 

The approach selects the relevant features according to the width of a Gaussian 

function, where a small width represents that a feature is important.  
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2.5 Feature selection methods in high dimensional low sample size 

data  

 Although microarray data can be considered as the most representative and 

complex case of high dimensional data low sample size data (HDLSS), it must not be 

overlooked that in many different areas HDLSS data is present. Several publications 

[24, 43, 44, 51, 58, 62-64] have reviewed feature selection algorithms in different areas, 

for example: image processing, text recognition, financial data, and climate data.  

 As stated in, [24], the analysis of HDLSS has evolved simultaneously for all the 

different areas. All the areas come to an agreement that the limitations of the study must 

be defined: filter feature selection methods are faster but they do not take into account 

the interactions between the features, wrapper methods consider the interactions but the 

computational complexity and the necessary time for the calculations augments 

exponentially, embedded methods suffer from computational high complexity (smaller 

than wrapper methods but still considerable).  

 For microarray gene expression feature selection, the interaction of the features 

is of paramount importance; moreover a low complexity is desirable to work closer with 

clinicians. Nevertheless, it is essential not to fail to recall that feature selection is half of 

the necessary work for making a correct classification. Typically, feature selection is 

done and subsequently a much smaller subset of features is analysed to make the 

classification. In section 2.6: Machine-learning models for microarray cancer 

classification, an overview of the most important methods for cancer classifications is 

presented.  
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2.6 Machine learning models for microarray Cancer Classification 
 

It is stated previously that the classification of microarray gene expression data 

is data dependent; furthermore cancer classification is also dependent on the type of 

cancer. The most common types of cancer analysed are: 

 Breast 

 Prostate 

 Lung 

While breast cancer may report high accuracies (circa 90-95 of accuracy) for the 

prediction of survival using machine learning algorithms, bladder cancer (which is one 

of the least popular and more recursive) report accuracies approximately 65-80% for the 

prediction of survival.  

2.6.1 Computational Intelligence Modelling for Cancer Classification  

 

Computational Intelligence (CI) can be defined as “the study of adaptive 

mechanisms to enable or facilitate intelligent behaviour in complex problems” [65]. CI 

algorithms have proven to be popular in the analysis of microarray data because they 

can detect complex nonlinear associations between the different variables and offer 

substantial benefits in terms of tolerance to imprecision and system interpretability. 

Computational Intelligence includes techniques such as Neural Networks (NN), Fuzzy 

Logic (FL), Neural-Fuzzy Logic, Support Vector Machine and Bayesian Networks. A 

review of a number of CI techniques applied to bioinformatics is presented in [66].  

In, [7, 17, 18], the authors compared different CI approaches for cancer 

classification and state that traditional analytic methods fail to give accurate results in 

microarray data applications because this methods assume biological linearity and use 
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correlation or dependence to find the relationship between a gene and its class. Within 

CI there is an area of study called Soft computing. Soft computing could be seen as a 

number of methods so that real problems could be solved in a similar way as humans 

solve them [67]. This is one of the most important reasons for the use of Soft 

Computing, to apply the human reasoning to solve a problem and a human 

understandable explanation of the model.  

Soft Computing includes techniques such as Neural Networks, Fuzzy Logic, 

Neural-Fuzzy Logic, and Support Vector Machine. 

i. Fuzzy Logic  

 Fuzzy Logic is a linguistic method based on a number of rules that describe the 

system. The transparency of FL and the possibility of easily interpret the results makes 

it an attractive and effective method for the analysis of gene expression data [68-71].  

 An important aspect to take into account at the moment of reducing the number 

of rules is that in fact is important reduce the rules but the most important is to prove 

that the reduction of rules does not affects the accuracy of the model. The goal is to 

have a minimum number of rules with the best accuracy of prediction, not one rule per 

input.  

 That is the same case with the number of genes; there is a discussion between 

the effectiveness of using a large or a small number of genes. As stated previously in 

this chapter, microarray data is composed of thousands of genes so the main purpose is 

to find the best genes that could lead us to make a good prediction.  

 Recent research has shown that a small number of genes are enough for 

accurate prediction of most cancers, nevertheless the number of genes vary between 
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diseases [72]. A large set of gene expression will decrease the classification accuracy 

due to the curse of dimensionality [73]. In this phenomenon, the classification accuracy 

decreases as the dimensionality increases. 

 A list with the advantages of Fuzzy Logic method: 

 Transparency because of the linguistic rules.  

 Easy interpretation of the output because of the Low, Low Medium, Medium, 

Medium High, High states.  

 Rules explaining the model, making easier to clinicians to understand the 

model.  

 Due to the characteristics of microarray data (high dimension and low sample 

size) Fuzzy logic models (as many other methodologies) struggle to make an accurate 

classification [68]. 

ii. Neural Networks  

 

Neural Networks are inspired by how the human brain learns and processes 

information, they have the capability to solve complex tasks [74]. Their concept 

simulates the behaviour of a biological neural network [74]. While in humans, 

learning is done by adjusting the synaptic connections between neurons; in NNs, 

learning is done by adjusting the weights existing between the processing elements of 

the network [74]. 

 Neural networks can obtain a good performance with higher learning speed in 

many applications. However, a high complexity of the network (large number of 

hidden nodes) translates into a slower response of the trained network [75]. 
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 A possible disadvantage of neural networks, especially with microarray data, is 

overtraining. In overtraining, a model can learn a local solution for each example as 

opposed to finding a global solution [76].  

 Neural Networks have been successfully applied to the prediction of cancer 

[77, 78], but some of the informed disadvantages are that the elicited network is hidden 

within a ‘black box’, consequently deeming the gain of any insight into the process 

aspects and into a clinical interpretation [7].   

iii. Neural-Fuzzy  

 

 The characteristics of Fuzzy Logic and Neural Networks have been discussed 

in this Chapter; these two methodologies can be combined to form a hybrid Neural-

Fuzzy (NF) model. Neural-Fuzzy models combine the learning ability of Neural 

Networks and the interpreting ability of Fuzzy systems [72]. The fuzzy logic rules of 

this type of models can be translated into linguistic statements to allow understanding 

and interrogation of the model. 

Neural-Fuzzy systems, are a popular approach for addressing tolerance to 

imprecision and system simplicity (interpretability) and is widely used in literature [79-

82] and more recently also used for the prediction bladder cancer [7, 16-18]. Neural-

Fuzzy systems take advantage of the simplicity and tolerance to imprecision of Fuzzy 

Logic structures and the adaptive learning ability of NN while the inclusion of 

knowledge to the model is still possible. In general, fuzzy set theory [83] has been 

extensively applied to pattern classification and FL system have been proven to perform 

well on uncertain information [84-86]. In terms of their simplicity and interpretability, 

Neural-Fuzzy models allow model knowledge to be represented in the form of just a 
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few simple linguistic rules thus rendering such modelling structures appropriate for 

systems oriented towards human-reasoning (human-centric systems) e.g. clinical 

decision support systems [87-89]. 

iv. Support Vector Machines 

 

 The support vector machine was initially created to solve classification 

problems and has been successfully applied to a number of real world problems.  

Support Vector Machines has exhibited outstanding performance in classification 

tasks. SVM aims at searching for a hyper plane that separates the two classes of data 

with largest margin. SVM is shown to be a good classifier for microarray data [90]. 

Support Vector Machine is a popular method in microarray analysis because it is 

possible to deal with data with a large number of features and a small number of 

samples [91]. One of the drawbacks for this method is the high algorithm complexity 

and the extensive computing requirements of the large-scale quadratic programming 

tasks. A second problem often mentioned is the poor interpretability as compared to 

other methods [92, 93].  

v. Bayesian Networks 

 

 Bayesian  networks (BNs) reflect the random  nature of gene expression and 

use Bayes’ rule [94]. They are also known as probabilistic networks or probabilistic 

graphical models. The hypothesis in BN is that gene expression values can be defined 

by random variables that follow probability distributions [94].   

 Bayesian networks provide a flexible framework for combining expert 

knowledge into the modelling process [95, 96]. An additional advantage of  BNs is that 

they are good with modelling the randomness and noise associated with  microarray 
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data [97]. Bayesian networks deal with probabilities but the ‘causality’ or factors that 

generated the solution are also important for the network [97].  

 Bayesian Networks have also been applied to Cancer Prediction [98-101] in 

particular in the form of a Bayesian Neural Networks (BNN). Bayesian Networks are 

modelling structures for expressing multidimensional joint probability distributions. 

The main challenge in using BNN is the necessity to estimate the topology of a BNN 

from observations, which is not a trivial problem due to the large amount of 

uncertainty and high computational complexity even for moderate sizes of networks 

[98, 102, 103].  

2.6.2 Machine learning models specific to microarray bladder cancer Stage, Grade 

and Survival Classification 

Specifically, in bladder cancer prediction with microarray, Statistical regression 

methods (Logistic Regression, Linear Regression) can estimate the progression rate of a 

population of tumours with limited accuracy (around 70%) [4, 5, 7]. One of the 

difficulties of statistical methods is that they do not take into account the interaction 

between the genes; they are only concerned about linear relations between the input and 

the output.  

Specifically to bladder cancer, there are examples in the literature that 

demonstrate the use of microarray biomarkers (gene signatures) for the prediction of 

Stage, Grade, Survival, Recurrence and Progression [7, 17, 18, 35, 104-112]. Lauss 

[113] and Riester [114] demonstrate the use of a SVM to model and predict bladder 

cancer progression. In [113, 114], the authors identify the most relevant genes for 

bladder cancer (feature selection) and subsequently develop a model to predict the 

Stage, Grade, Progression and Survival. In [113] an average prediction accuracy was 
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reported in the range of 70% to 90%, concluding that signatures with more than 150 

genes are needed to obtain robust performance in validation sets.  

In [114] it is reported that the simplicity of a predictive modelling structure for 

bladder cancer survival can be improved by the use of nomograms [115] combined to 

just 20 genes; however this was achieved at the expense of model accuracy (56% to 

75%). Specifically in predicting bladder cancer progression the publications [7, 17-19] 

report interesting results using a Neural-Fuzzy model that aims to be accurate and 

transparent, and contrary to the study presented in this thesis, the computational 

simplicity is not essential.  

In this Thesis, the use of a Radial Basis Function Neural-Fuzzy (RBF-NF) 

structure is proposed to address the challenges of: model simplicity, model 

generalisation and low computational cost. The proposed approach will consist of an 

embedded method based on a RBF-NF system. The proposed iterative feature selection 

method takes advantage of a Fuzzy-entropy measure to select relevant features during 

the model-training phase, whilst maintaining the system’s simplicity and 

interpretability. The biggest strengths of the proposed approach are that the feature 

selection occurs in the training phase, taking into account the interactions and making it 

recursive. The proposed approach will be applied to identify suitable gene signatures 

and predict bladder cancer survival. 

2.7 Summary 

 In this Chapter, the extensive use of microarray in the prediction and treatment 

of several diseases [9, 105, 107, 113, 114, 116-121] has been discussed. For that reason, 

there is an increasing amount of data sets available in the public domain; the next 

logical step would be to validate the results from those experiments. Making these 
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comparisons may help to obtain more valid and reliable results; however, several 

difficulties might arise due to the differences in technologies, protocols or analysis used 

to create each data set.  

 Several approaches had been made in the past years for analysing microarray 

data.  As described before one of the difficulties that microarray analysis has is the large 

number of genes, the method has to be effective, fast and as transparent as possible. An 

important feature of this type of systems is that they are effective working with noisy 

data. Joined to the trend of low number of genes, researchers are also focused on the 

robustness of the results and for that reason the cross validation of the results has also 

become of paramount importance. K-fold validation, Leave-one-out cross validation 

and Distribution optimally balanced stratified cross-validation are among the most used 

methods to overcome this issue [122].     

As stated in [123],the features in a dataset can be categorised into: 

 Relevant: features that help with the classification 

 Misleading: features that have a negative effect in the classification 

 Irrelevant: features that do not affect (either negatively or positively) the 

classification 

 Redundant: features of a class that has other relevant features. 

 As stated in [123], “the presence of misleading features will reduce the 

classification accuracy and, the presence of irrelevant and redundant features will 

increase the computational burden”.  
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 The use of microarrays for cancer classification still represents a great challenge 

for biologists, clinicians and researchers in general. It must not be forgotten that the 

amount of information coming from these data is massive and there are still some 

difficulties when the information is acquired. The biggest challenges to defeat are: 

1. There is no standard to make comparable the data obtained from various 

experiments.  

2. The quality of the samples needs to be standardised. 

3. Missing values in microarrays 

4. Errors and/or noise made in every step of the analysis. From the biologist to the 

image analysis. 

5. The classes are imbalanced 

To deal with imbalanced classes bootstrap [124] methods have been used in the 

literature. Bootstrap refers to resample from the sample data and create an n number of 

‘phantom samples’.   

What can be improved in bladder cancer classification is to provide sufficient 

information and description of any activity in a model, in other words, transparency and 

simplicity in the model. In the next chapters, a model with main characteristics of 

transparency and simplicity will be introduced; this human-centric approach aims to 

work closer with clinicians in order to identify new combination of genes to predict 

bladder cancer. This transparency and simplicity can be achieved, at a certain degree, 

via a RBF Neural-Fuzzy model. Nevertheless, it must never be overlooked that the data 

modelling performance is at the mercy of the quantity and quality of the measurements 

of the studied data, in this case the microarray data.   
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In the next Chapter, a Radial-Basis-Function Neural-Fuzzy modelling structure 

for the prediction of stage, grade and survival in bladder cancer via microarray data is 

presented. The resulting model maintains its simplicity and transparency in the form of 

a linguistic Fuzzy-Logic rule-base. The proposed methodology is validated using a real 

biomedical case-study, which concerns the signature selection for the identification of 

the stage, grade and survival of bladder cancer. 



34 
 

Chapter 3: Modelling of 

microarray gene signatures 

via Radial Basis Function 

networks 

  This Chapter introduces a Radial-Basis-Function Neural-Fuzzy modelling 

structure for the prediction of stage, grade and survival in bladder cancer via microarray 

data. The resulting model maintains its simplicity and transparency in the form of a 

linguistic Fuzzy-Logic rule-base. The proposed methodology is validated using a real 

biomedical case-study, which concerns the signature selection for the identification of 

the stage, grade and survival of bladder cancer. The signature selection and predictive 

modelling results are compared to previous research work on the same dataset, and it is 

shown that the RBF-NF model outperforms the previous modelling attempts by 

achieving high predictive accuracy (>80% on average) for a similar-sized gene 

signature. Crucially, the model is shown to maintain its good performance even when 

using just 20 genes in the gene based signature. 

3.1 Introduction 

In the previous chapters the advantages and disadvantages of Neural Networks 

and Fuzzy Logic have been discussed. It could rather be said that these systems are 

complementary: Fuzzy logic can deal with inaccurate information on a linguistic level 

while Neural Networks provide learning and optimisation abilities.  
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This Chapter describes a Radial Basis Function Neural-Fuzzy Network; this 

method is a combination of a Radial Basis Function Neural Network and a TSK Fuzzy 

Model [125].      

This combination is possible thanks to their functional equivalence [126]. One 

of the main characteristics of this type of Neural-Fuzzy is that the output is a linear 

combination of the inputs; this output is given as polynomial. For the first time, this 

method is applied to the prediction of bladder cancer stage, grade and survival based on 

microarray data analysis by means of a low number of inputs (20 as a minimum) and 

low number of linguistic statements or rules to describe the model (5 rules as a 

minimum); nevertheless the performance of the model is not sacrificed. As explained in 

previous chapters, microarray data analysis is challenging because of its dimensionality, 

complexity and high noise.  

An essential characteristic, which is the fundament of the method proposed in 

this chapter, is to provide enough information and description of any activity in the 

model. In other words, transparency in the model; and this can be achieved at a certain 

degree via an RBF Neural-Fuzzy model. Nevertheless, it must never be overlooked that 

the data modelling performance is at the mercy of the quantity and quality of the 

measurements of the studied data, in this case the microarray data.   

The proposed methodology is based on a systematic algorithmic procedure that 

aims to pre-process and clean the data, assign initial conditions to the modelling 

structure and finally iteratively optimise the model. The Radial Basis Function Neural-

Fuzzy Network structure addresses the challenges of: a) model simplicity (use of low 

number of features) b) model generalisation ability (performance in ‘unseen-new’ data 

and c) low computational cost. The proposed approach is successfully applied to predict 

bladder cancer survival, stage and grade in three independent data sets.  
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Figure 3.1: Radial Basis Function-Neural-Fuzzy Modelling Structure 

The data mining workflow is divided as follows: Data Pre-processing and gene 

selection with T-Test, Initial Rule-Base Creation via Fuzzy C- Means (FCM), RBF-

Based Neural-Fuzzy System, Optimisation of the predictor, Results and Conclusion. 

The overall approach is presented in Figure 3.1.  

The remainder of this chapter is organised as follows: Section 3.2 Data pre-

processing and initial gene selection, Section 3.3 Initial rule-base elicitation, Section 3.4 

RBF-Neural-Fuzzy Systems, Section 3.5 Levenberg-Marquardt Optimisation Method , 

Section 3.6 Simulation Results, Section 3.7: Summary. 

3.2 Data Pre-processing and Initial Gene Selection 

The case-study presented is focused on the prediction of bladder cancer stage, 

grade and survival using three different bladder data sets: Sanchez-Carbayo [106], Kim 

[107] and Blaveri [110] (Table 3.1) all of which consist of gene expression data and are 

considered some of the most complete literature data on bladder cancer gene expression. 

All the datasets are treated with the same pre-processing procedure. 
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Table 3.1: Bladder cancer – microarray gene intensity data sets 

 

Data Set 

Microarray 

platform 

Number of genes Number of Samples (patients) 

Blaveri CDNA microarray 10368 80 

Sanchez-Carbayo Affymetrix U133A 22283 90 

Kim Illumina human-6v2.0 43148 165 

 

3.2.1 Normalisation and Missing Values 

Prior to any modelling work the data-set is normalised in order to eliminate the 

high variances between the gene’s intensities or the differences in the way that 2 

samples are measured [41]. Normalisation is required to remain certain that the 

differences in two measurements are because different expression values and not 

because of the different conditions when the measurement was taken [127] .  There are 

numerous normalisation techniques (i.e. local normalisation, normalisation by 

regression, normalisation by inferring covariates); circa 2003 quantile normalisation 

gained popularity because it is fast and simple but works equally well than more 

complex procedures [127]. Quantile normalisation is the process of ordering the values 

in ascending order in one array, calculate the average between the probes and substitute 

that intensity with the average and finally change the order to its original [128]. 

However, no normalisation procedure is flawless; one of the possible drawbacks of 

quantile normalisation is that the intensities that are greater are forced to fit to the same 

distribution, decreasing the dissimilarities caused by technical or biological conditions 

[127]. 

Quantile normalisation has become a regular procedure [129, 130] to analyse 

microarrays because it is the default procedure to a very popular software for 

microarray analysis (Bioconductor [131]).  For that reason, the data sets were quantile 

normalised and then transformed to a log2 scale. The log2 scale allows us to adjust the 

difference in the intensities to be similar in all the data sets, perhaps it can be said that it 
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is standard to display the intensities in this scale. The gene expression values were 

subtracted by the mean intensity to obtain gene-centred log2 values. If the data set had 

missing values, they were filled using the median, the values with more than 20% 

missing data were omitted. Missing values are extremely common in this type of data 

because some of the microarray spots have no expression of the gene at that place or 

because of errors in the measurement.  

To perform the data analysis, Survival outcome is encoded according to Table 

3.2.  

Table 3.2: Encoding of the Survival Outcome 

Survival Code 

No Evidence of Disease (NED) -1 

Dead Of Disease (DOD) 1 

The cancer Stage values are ‘encoded’ into -1 and 1 according to Table 3.3. The 

Stage encoding is based on the staging system presented in Chapter 2.  

Table 3.3: Cancer Stage 

Encoded value Phenotype Stage 

 

-1 

 

Non-invasive 

PTA 

PT1 

 

 

 

1 

 

 

Muscle invasive 

PT2 

PT3A 

PT3B 

PT4 

PT4A 

Similar to the encoding applied to the previous model for the prediction of stage; 

three grades are used to rate cancer and are encoded according to Table 3.4.  

Table 3.4: Cancer Grade 

Value  Grade 

-1 Low/moderate 

grade 

Grade 1 

Grade 2 

1 High grade Grade 3 
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3.2.2 Initial Gene Selection with T-Test 

Microarray data set typically have thousands of inputs (genes) and a low number 

of patient’s samples, which added to the previously stated problems, make the 

classification a challenging task. For that reason, it is necessary to perform an input 

selection to delete the irrelevant features that are not related to the performance of a 

classifier. The process of identifying significant features and removing the irrelevant 

ones is called Feature selection.   

The data samples were randomly separated into ‘Training’ and ‘Testing’ 

datasets. The training set is only used to train the model. The testing dataset is only 

used after the model training is finished in order to test the generalisation performance 

of the model (i.e. on ‘unseen’ by the model data), as a form of cross-validation [132].   

Training data. The model trains with this data. They have the best performance 

and represent around 70% of the complete data set.  

Testing data. After the model is trained the training data makes predictions on 

the testing data, represents around 30% of the complete data set. This is the most 

important parameter to review.   

After the pre-processing of the data, the student’s distribution t-test is used as an 

initial feature selection gene based on the p-values.  

This is a common pre-processing step in microarray gene selection [128, 133], 

aiming at removing the irrelevant – ‘easily identifiable’ – to the process genes. The t-

test is a statistical test used to test premises regarding a population. Essentially, a level 

of significance (what the p-value will be compared to) was selected in order to 

determine how likely the hypothesis being tested may occur purely by chance[134]. The 
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disadvantage of using the t-test feature selection method is that it ignores feature 

dependencies and lacks of interaction with the classifier. 

A selection of the genes is made, individually, for the data sets of: Sanchez-

Carbayo, Blaveri and Kim, using the top 20 genes for the prediction of survival and 150 

genes for the prediction offstage and grade, as selected with the t-test. 

3.3 Initial rule-base elicitation via Fuzzy C-Means 

To ‘translate’ the raw datasets into knowledge a Fuzzy C-means algorithm was 

applied for the elicitation of the initial rule-base. The FCM method [135, 136] is 

frequently used in pattern recognition; the main justification for using it at this point is 

because the resulting clusters-rules can be used directly in the form of an RBF model 

thus simplifying the model creation process, as shown in [137, 138]. This rule-base is 

then ‘translated’ into a Radial-Basis-Function Neural-Fuzzy structure, and is finally 

parametrically optimised via the Levenberg-Marquardt function-minimisation 

algorithm. The essence of FCM is the exemplification of the similarity that a point 

shares with each cluster (rule); this exemplification is made with a function 

(membership function). FCM is based on the following objective function: 

 Jm= ∑ ∑ uC
j=1

N
i=1 ij  

m
‖xi   - cj ‖

2
, 1 ≤ m < ∞        (3.1) 

where m is any real number greater than 1, uij is the membership degree of xi in the 

cluster j, xi is the measured data, cj is the centre of the cluster. The membership uij and 

the cluster centres cj are calculated by: 

𝑢𝑖𝑗 =
1

∑ (
‖𝑥𝑖   − 𝑐𝑗‖

‖𝑥𝑖   − 𝑐𝑘‖
)

2
𝑚−1

𝑐
𝑘=1

  

  ,      𝑐𝑗 =
∑ 𝑢𝑖𝑗

𝑚∗𝑥𝑗𝑁
𝑖=1

∑ 𝑢𝑖𝑗
𝑚𝑁

𝑖=1

     (3.2) 
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Each sample will have a membership in every cluster; a higher membership 

would translate into a higher degree of similarity between the sample and the cluster. 

Each derived information granule (data-cluster) depicts a process rule in the Fuzzy 

Logic domain. Figure 3.2 illustrates the ‘information granules’ divided into three steps: 

raw data; 1) each data point is considered into the input space, 2) input space 

granulation via FCM; the initial clusters (information granules) are produced via FCM, 

3) Neuro-Fuzzy Rules; the third sub figure shows the initial values for the membership 

function after the granulation, these values are going to be optimised later.  

 

Figure 3.2: Data clustering towards ‘information granules’ in the Fuzzy Logic domain 

The data to be introduced is composed by all the patients and genes plus the real 

stage, grade and survival outcome. The output from Fuzzy C-Means contains the 

centres of the cluster, sigma and weights of the outputs. In this approach a threshold for 

the sigma (width of the membership function) is applied, this will help to make the rules 

more general, i.e. less specific to the training data, improving the performance in the 

testing data set.   

Another characteristic of Fuzzy C-Means is that the number of clusters (rules) 

needs to be specified. As explained in the introduction, the proposed model would be 
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computationally simple and with the lowest number of inputs. To ensure the low 

computational complexity 5, 10 and clusters (rules) are selected as the initial number of 

clusters.  

An interesting remark is that there is a constraint in the number of genes that can 

be applied to FCM, if more than a thousand (1000) genes are used, the centres of the 

clusters became the same among all the samples and only just vary between genes. This 

means that the clustering thought that the centre was the same for all the samples; it 

gave a centre for every gene. The next step of the process is the Radial Basis Function 

calculation. 

3.4 RBF- Neural-Fuzzy System  

Microarray datasets pose a significant data-mining challenge because of the 

associated high dimensionality, low number of samples, as well as complexity, non-

linearity and high noise (uncertainty). A Neural-Fuzzy system is basically a system that 

represents information in an interpretable approach but also have the learning ability of 

a Neural Network, reducing the disadvantages showed by both methods when they are 

applied by themselves.  An RBF-Neural-Fuzzy system offers a good balance of 

performance and simplicity while being tolerant to some imprecision and being capable 

of accurate model representations even when few samples are available [87, 88]. In 

addition, the Fuzzy Logic rule-base (‘model knowledge’) can be easily interpreted by 

clinicians as this is in the form of simple linguistic sentences (IF-THEN rules).  

The linguistic statements are given in the form: 

IF Gene 1 is 𝑥 intensity and Gene 2 is 𝑦 intensity THEN Output is 𝑍.  
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 The intensities of the Genes are divided in 7 categories according to their value, as in 

Table 3.5: 

Table 3.5: Interpretation of the Normalised Gene Intensity Range 

Gene Intensity Range 

Very Low -1.00 to -0.72 

 

Low 

-0.71 to -0.44 

Low Medium -0.43 to -0.16 

Medium -0.15 to 0.12 

Medium High 0.13 to 0.4 

High 0.5 to 0.68  

Very High 0.69 to 1.00 

If a Fuzzy logic system is considered. The consequent part of the linguistic 

statement (…THEN Output is) can be: 

a) Fuzzy Set ( Mamdani rule-base); output is given as a membership function 

b) Singleton (Mamdani singleton); output is given as a single point 

c) Lineal Function (Takagi-Sugeno-Kang, TSK); output is given as a polynomial 

The main justification to choose TSK type of Neural-Fuzzy is because the output 

of this system is a linear combination of the inputs; this output is given as a polynomial. 

In this fashion, it can be analysed how each individual input behaves in the system, 

allowing the clinicians to interrogate the model. In the Chapter 5 (Chapter 5: A new 

RBF-NF entropy approach for model-based input selection) a model that analyses the 

behaviour of a gene in the model and based on that, identifies if that gene may or may 

not be significant for the classification stage as it is not ‘involved’ in the training of a 

particular linguistic rule in the rule-base is presented. A new feature selection could be 

generated; this new feature selection approach would take into account the interactions 

between the genes.   
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   The method proposed in this Chapter is based on Fuzzy Logic systems having 

the centre of gravity (COG) defuzzification, the product inference rule and a TSK fuzzy 

output space, which can be expressed as follows [139]: 

𝑦 =  ∑ 𝑍𝑖
𝑝
𝑖=1 [

∏ 𝜇𝑖𝑗 (𝑥𝑗)𝑚
𝑗=1

∑ ∏ 𝜇𝑖𝑗 (𝑥𝑗)𝑚
𝑗=1

𝑝
𝑖=1

 ]                    (3.3) 

where 𝜇𝑖𝑗 (𝑥𝑗) is the RBF function of 𝑥𝑗 that belongs to the i-th rule: 

𝜇𝑖𝑗 (𝑥𝑗) = 𝑒
−(

(𝑥𝑗− 𝑐𝑖𝑗)
2

𝜎𝑖𝑗
2 )

         (3.4) 

where 𝑐𝑖𝑗 and 𝜎𝑖𝑗 are the centre and the width of each membership function, 

respectively, m the number of inputs and p the number of rules. Equation 3.3 can be re-

written as follows: 

          𝑦 =
∑ 𝑧𝑖

𝑝
𝑖=1 𝑚𝑖 (𝑥)

∑ 𝑚𝑖 (𝑥)
𝑝
𝑖=1

                    (3.5) 

where 𝑚𝑖 (𝑥) = 𝑒(−‖𝑥−𝑐𝑖‖2/ 𝜎𝑖
2) is the degree of membership of the current input 

vector x to the i-the fuzzy rule. Finally, using the radial basis function (RBF) definition: 

                                𝑔𝑖(𝑥) =
𝑚𝑖(𝑥)

∑ 𝑚𝑖(𝑥)
𝑝
𝑖=1

                                          (3.6) 

The neural-fuzzy input–output relationship then becomes: 

    𝑦 = ∑ 𝑧𝑖
𝑝
𝑖=1 𝑔𝑖(𝑥)                                                   (3.7) 

𝑧𝑖 = 𝑎1𝑥1 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ 𝑎𝑗𝑥𝑗                 (3.8) 

Figure 3.3 shows the equivalent NN structure of the RBF model, where the 

input, rule-base (hidden layer) and output layers can be identified.  The input layer is 

composed by the number of inputs of the system; the middle layer of the RBF is 
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calculated with the sigmas, output weights and centres of the membership function. 

Only one output is obtained, this process is repeated for 𝑞 (number of samples) times. 

 

Figure 3.3: Radial Basis Function Neural-Fuzzy Structure 

RBF-NF have been used for different applications in microarray analysis, 

including: breast cancer classification [117, 140], cancer classification in colon and 

leukaemia [141], multiple sclerosis [119], and lung cancer [142]. 

Every aspect of the a data-driven modelling approach is important and in the 

analysis process it was discovered how normalisation affects the data, the number of 

inputs a method can work with (complexity dependant). Taking these challenges into 

account, The Levenberg-Marquardt (LM) algorithm was applied for the optimisation 

[143]. The developed model was parametrically optimised via a suitable function 

minimisation algorithm.  In this approach, the Root Mean Square Error (RMSE) 

between the training data and the model predicted data was used as the cost function to 

be minimised. The RMSE is defined as: 

𝑅𝑀𝑆𝐸(∅) = √𝑀𝑆𝐸(∅) = √
∑(∅̂−∅)2

𝑛
                (3.9) 

where ∅̂, is the Real Stage, grade or survival of cancer, ∅ the Predicted value 

and 𝑛  the number of elements.   
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3.5 Levenberg Marquardt  Optimisation 

The Levenberg-Marquardt [144, 145] algorithm is a standard technique to solve 

non-linear least-squares problems [146], with this optimiser it is possible to go from a 

modelling structure to and optimised predictor. In this approach, the RMSE between the 

training data and the model predicted data is used as the cost function to be minimised. 

The algorithm is a combination of the steepest (gradient) descent and the 

Gauss-Newton method, depending on how far from the solution the method is. The 

assumption is that if the error is increasing, steepest descent should be used, if the error 

is decreasing, the algorithm should gradually shift to Gauss Newton.    

The Levenberg-Marquardt algorithm is described by the following equation: 

𝑤𝑖+1 = 𝑤𝑖 − (𝐻 + 𝑙 𝑑𝑖𝑎𝑔|𝐻|)−1𝑑                (3.10) 

The equation is a variation of the deepest descent equation, adding the H, 𝑙 

and 𝑑. H is an approximation to the Hessian, which is obtained by averaging outer 

products of the first order derivative (gradient).  The derivative is expressed by 𝑑 and 𝑙 

is the blending factor that determines the mix between steepest descent and the 

quadratic approximation.  

 It is important to emphasise that the optimisation approach is a standard 

technique; the Levenberg-Marquardt algorithm is beyond the scope of this Chapter. In 

this approach, the total variables to optimise for the optimisation are: 

 Centres of inputs  

 Sigma of inputs  

 Output weights (TSK polynomial) 
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The minimum value of sigma is set to 0.3; this approach would allow us to 

exploit the generalisation abilities of a Neural-Fuzzy model. The wider the rules are, 

the more general the model, increasing the performance to the unknown data (testing).    

Overall, the presented data-mining workflow provides an efficient and fast 

method for capturing numerical data-based information and converting it to a linguistic 

knowledge-base with a predictive capability.  

3.6 Simulation Results 

This section is sub-divided into three different parts as follows: 

A. Simulation results for Survival: a model is produced and validated using the 

previously mentioned data sets for the prediction of survival of bladder cancer.  

B. Simulation results for Stage and Grade: the model is validated using a real 

biomedical case-study, which concerns the prediction of the stage and grade of 

bladder cancer. 

C. Comparison to existing literature results: the obtained results for the prediction of 

stage, grade and survival are compared to previously published results.  

D. Fuzzy Logic-type linguistic rule-base: an example of the fuzzy rule-base 

describing the behaviour of the model.  

This section is focused on the prediction of Cancer Survival, stage and grade; the 

main focus is to identify the best possible combination of rules and training iterations 

for their prediction.  

The number of inputs used in this study is equal to the results for comparison of 

the models; Lauss[113] (150 inputs stage and grade) and Riester [114]  (20 inputs 
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survival). In this study, the RBF Neural-fuzzy model is applied to the Sanchez-Carbayo, 

Blaveri and Kim data set to predict Survival rate. At the same time the number of rules 

and iterations to train the model is assessed to identify how the performance is affected. 

 As mentioned earlier, there are several unknown parameters that should be taken 

into account for the prediction of survival; the number of rules for the model, the 

number of iterations for the trained model. The following plan for the prediction of 

Survival rate in the Sanchez-Carbayo, Blaveri and Kim data sets was produced, the 

intention was to be systematic with the computational time required. The methodology 

applied to this study is explained below (Figure 3.4):  

 

Figure 3.4: Modelling structure for the prediction of survival in bladder cancer. 

 

Train the model with; 5, 10 and 25. Train the model with the selected genes: 

 20 (Survival) 

o 10-50 iterations  

o Cross validation (10 models)  
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 The Survival rate was chosen because it is one of the most complex parameters 

to predict, the Training structure (number of rules) obtained from the modelling with 

Survival was later tested with the prediction of Stage and Grade. 

3.6.1 Survival Prediction 

The RBF-NF model was developed using microarray data intensities only for 

patients with Muscle-Invasive Cancer, this is to make a fair comparison with the 

previously published results from Riester [114].  

The classification functions of Specificity, Sensitivity and Accuracy are used as 

measures of performance [147]. The data samples were randomly separated into 

‘training’ (70% of the patients) and ‘testing’ (30 % of the patients) data-sets. The 

training set is only used to train the model, and the testing data-set is only used after the 

model training is finished in order to test the generalisation performance of the model 

(i.e. on ‘unseen’ by the model data), as a form of cross-validation. The model was 

trained with 20 inputs, 5, 10 and 25 rules and cross-validated 10 times. Survival was 

encoded according to Table 3.3. In order to select the best model it is relevant to analyse 

the behaviour of each individual model. From a modelling perception, the best model 

should be a combination of the best performance, lowest computational complexity and 

practical. The first model to analyse is Sanchez-Carbayo. 

a) Sanchez-Carbayo Data Set 

The results shown in Table 3.6 are the median of the 10 models for Accuracy, 

Specificity and Sensitivity respectively, the standard deviation is also shown to have an 

awareness of how large is the deviation between the values. 
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Table 3.6: Sanchez-Carbayo performance for Survival 

  Training Testing 

  Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity 

5 
rules 

Performance 
(%) 

98 100 97 82 82 82 

Standard 
Deviation 

1 0 3 7 10 14 

10 
rules 

Performance 
(%) 

99 100 99 80 75 86 

Standard 
Deviation 

7 0 1 5 7 9 

25 
rules 

Performance 
(%) 

99 100 98 84 80 87 

Standard 
Deviation 

1 0 2 5 13 8 

5 rules 

The testing accuracy performance had a variation from 81 to 84% (Table 3.6), 

showing that with a higher number of iterations the performance for testing decreases, 

having the point where the Accuracy, sensitivity and sensibility were more balanced at 

30 iterations. An interesting remark is that because of the low complexity of the number 

of rules and inputs, this model is trained and 10 fold cross validated in less than 60 

minutes.  

10 rules 

The performance of the model when the number of rules was increased did not 

affect the performance; in fact they were similar to the results obtained with 5 rules.  

On the other hand, the complexity of the model did increase the modelling time 

to the double (two hours) but because the number of inputs used (twenty) is not high, it 

is still practical. Compared to the results obtained with five rules (Table 3.6), the results 

with ten rules do not shown an improvement in the performance or the similar balance.  

 

 



Chapter 3: Modelling of microarray gene signatures via Radial Basis Function networks           51 
 
 

 

25 rules 

 As shown in Table 3.7, with twenty five rules the performance of the model was 

slightly better but less balanced if it is compared to the previous results with less 

number of rules. Nevertheless, the complexity and the increase in training time that the 

increase of rules brought are not reasonable.  

b) Blaveri Data Set 

The Blaveri data set is the smallest in number of samples (patients) making the 

computational complexity even lower, these models was trained and 10 fold cross 

validated in less than 50 minutes. 

Table 3.7: Blaveri performance for Survival 

  Training Testing 

  Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity 

5 
rules 

Performance 
(%) 

100 100 100 90 90 90 

Standard 
Deviation 

0 0 0 6 16 5 

10 
rules 

Performance 
(%) 

100 100 100 91 96 90 

Standard 
Deviation 

0 0 0 3 10 2 

25 
rules 

Performance 
(%) 

100 100 100 89 86 90 

Standard 
Deviation 

0 0 0 3 17 2 

 

5 rules 

The results shown in Table 3.7 reflect a similar behaviour that the one shown for 

five rules in the Sanchez-Carbayo data set, at 50 iterations the model is more balanced. 
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10 rules 

Similar to the behaviour with the Sanchez-Carbayo data set, the added 

complexity of the model increases the modelling time to the double but compared to the 

results obtained with five rules (Table 3.7), the results with ten rules do not shown a 

significant improvement in the performance or the balance.    

25 rules 

With twenty five rules the performance of the model was not better if it is 

compared it to the previous results with less number of rules. With the results of 

performance and the increase in complexity and in training time is not reasonable to 

select this model as the top one.  

c) Kim Data Set 

Table 3.8: Kim performance for Survival 

  Training Testing 

  Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity 

5 
rules 

Performance 
(%) 

97 95 99 67 64 70 

Standard 
Deviation 

2 4 1 10 23 20 

10 
rules 

Performance 
(%) 

98 98 99 65 57 70 

Standard 
Deviation 

1 2 1 10 14 11 

25 
rules 

Performance 
(%) 

96 93 97 68 63 74 

Standard 
Deviation 

3 6 2 8 2 2 

5 rules 

The results shown in Table 3.8 reflect a dissimilar behaviour that the one shown 

for five rules for the Sanchez-Carbayo and Blaveri data sets. The Kim data set is the 

largest in number of samples (patients) making the computational complexity higher. 

Another important remark is that this data set had more missing values than any other 
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from the previous results shown. An interesting remark is that the standard deviation 

between the ten models is high.   

10 rules 

The performance of the model when the number of rules was increased did not 

affect the performance in a positive manner; in fact they were similar to the results 

obtained with 5 rules. Compared to the results obtained with five rules (Table 3.8), the 

results with ten rules do not shown an improvement in the performance or the balance.  

25 rules 

As shown in Table 3.8, with twenty five rules the performance of the model was 

not better or balanced if it is compared to the previous results with less number of rules.  

The analysis of the results for the prediction of survival reveals that is possible 

to generate a simple model with five rules, reducing the complexity and training time. 

The generation of a model with more than five rules is not justified; the results revealed 

a number of disadvantages from the increase of the number of rules, such as; not 

significant improvement in the performance, increase in the training time, unnecessary 

computational complexity.  The Stage and Grade will be done with five rules and from 

10-50 iterations.  

The computational complexity of the models would be superior since one 

hundred and fifty inputs are going to be used.  

3.6.2 Stage and Grade Prediction 

From the previous results for the prediction of survival, it can be concluded that 

the elicitation of a model using five rules is adequate to obtain comparable or improved 

performances to the ones obtained with a higher number of rules (ten or twenty five). 
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The model will also benefit from the reduced of the number of rules by reducing the 

training iterations, making the model simpler. Applying the same methodology to the 

prediction of stage and grade for Sanchez-Carbayo, Blaveri and Kim tested the 

proposed hypothesis and the results were similar to the obtained with Survival. Stage 

and grade were encoded according to Table 3.3 and 3.4, respectively. The results 

presented in this section correspond to a model with 5 rules and 150 inputs.  

I. Stage 

Table 3.9: Performance for Stage 

  Training Testing 

  Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity 

Sanchez-
Carbayo 

Performance 
(%) 

99 99 100 94 97 92 

Standard 
Deviation 

.05 1 0 2 4 3 

Blaveri Performance 
(%) 

100 100 100 60 75 57 

Standard 
Deviation 

0 0 0 8 22 9 

Kim Performance 
(%) 

88 90 81 70 79 56 

Standard 
Deviation 

5 9 12 6 16 19 

a) Sanchez-Carbayo 

For Sanchez-Carbayo, the results showed in Table 3.9 demonstrate that the 

increase in the number of inputs did not decrease the performance or increase the 

iterations for the model to be trained. Similar to the results for survival, the best 

performance was found at 10 iterations. 

b) Blaveri 

Differing to the results found for survival, the results for the prediction of stage 

in the Blaveri data set are less than average. This is an interesting remark; perhaps the 

complexity of the increase in the number of inputs affected the model.  
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Nevertheless, it would be highly unpractical to produce a model with a higher 

number of rules because the computational complexity would increase exponentially. 

With 10 iterations, the best performance for Accuracy, sensitivity and specificity is 

shown in Table 3.9.   

c) Kim 

As explained in the previous section, Kim’s data set is the largest in the number of 

samples. There was no surprises in the performance of the model for the prediction of 

stage, it was similar to the one obtained for the prediction of survival.  The best 

performance is shown in Table 3.9.  

II. Grade 

Table 3.10: Performance for Grade 

  Training Testing 

  Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity 

Sanchez-
Carbayo 

Performance 
(%) 

99 98 99 94 97 92 

Standard 
Deviation 

1 2 1 3 4 3 

Blaveri Performance 
(%) 

99 99 100 97 76 98 

Standard 
Deviation 

6 2 0 2 25 1 

Kim Performance 
(%) 

91 93 89 80 83 74 

Standard 
Deviation 

4 4 10 4 7 18 

a) Sanchez-Carbayo 

For Sanchez-Carbayo, the results showed in Table 3.10, demonstrate the 

constant performance for all the prediction models (survival, stage and grade) produced. 

The increase in the number of inputs did not decrease the performance or increase the 

iterations for the model to be trained. Similar to the results for survival and stage, the 

best performance was found at 10 iterations. 
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b) Blaveri 

 Differing to the results found for stage and similar to the results for the 

prediction of survival stage, the results for the prediction of grade in the Blaveri data set 

are high. With 10 iterations, the best performance for Accuracy, sensitivity and 

specificity is shown in Table 3.10.   

c) Kim 

The results for the prediction of grade in Kim’s data set are the highest produced 

by all the predictor models in this study. The best performance was obtained at 30 

iterations; it is shown in Table 3.10. 

3.6.3 Fuzzy Logic-type linguistic rule-base 

The models presented in this Chapter maintain a transparent Fuzzy Logic-type 

linguistic rule-base. Figure 3.5 shows a sample of the rule-base describing the behaviour 

of the model. For simplicity, just two rules are shown (one for ‘negative outcome’ and 

one for ‘positive outcome’); these are shown for five out of the 20 genes in the gene 

signature.  

Two of the linguistic IF-THEN rules that describe the model are shown below to 

demonstrate the transparency (interpretability) of the modelling method. The 

corresponding numerical values of the linguistic hedges ‘high’, ‘medium’ etc. are 

determined by the optimisation algorithm via the training data-set. The equivalent 

linguistic-numerical interpretation of the normalised gene intensity is shown in Table 

3.5. 
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Figure 3.5: Example of a Radial Basis Function-Neural-Fuzzy rule base, here for simplicity just two 

rules are shown. 

Rule 5 (DOD): 

IF the intensity of  

the Gene ‘Secretoglobin, family 2A, member 1’ is Low Medium  and 

the Gene ‘Deoxyribonuclease I’ is Medium and 

the Gene ‘KLRC4-KLRK1 readthrough/// killer cell lectin-like receptor subfamily K, 

member 1’ is Medium and 

the Gene ‘Cannabinoid receptor 1 (brain)’ is Medium and 

the Gene ‘Intercellular adhesion molecule I’ is Medium High 

THEN the Patient will decease as results of the disease   

3.6.4 Comparative Study 

a) Survival Outcome 

Table 3.11 shows the performance of the RBF Neural-Fuzzy model compared to 

previous results published by Riester [114]. The Riester study makes use of three 
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independent datasets (Sanchez-Carbayo [106], Blaveri [110] and Kim [107]) to develop  

a hybrid model using both SVM and a clinical nomogram [115] to assist with the 

predictions based on 20 inputs. The RBF-NF model exhibits a better balanced 

performance (Area under the Curve of the Receiver operating characteristic curve) in 

two of the three cohorts (other performance indicators were not published).  It is 

important to note that the RBF-NF model achieves a superior or performance in the 

Sanchez-Carbayo and Blaveri case.  

The simplicity of the RBF-NF modelling structure could be crucial for developing 

easy to use clinical advisory tools. For example, the NF-based structure allows the 

direct interpretation of the system’s rule base to natural language (via Fuzzy Logic 

linguistic statements – see Figure 3.5), which can aid the development of human-centric 

systems for use in healthcare. 

Table 3.11:Performance of Survival using microarray data. For comparison purposed the results in 

this example are shown as the area under the curve (AUC) of a ROC plot 

  Survival 

 Riester [114] 
(SVM + Nomogram 

20 genes) 
 

RBF Neural-Fuzzy 
20 Inputs 

Sanchez-Carbayo 
 

0.74 0.82 

Blaveri 
 

0.76 0.90 

Kim 0.75 0.67 

 

b) Stage and Grade Outcome 

Tables 3.12 and 3.13 show the performance obtained from prediction of Stage 

and Grade. The presented model obtained better or comparable performances to 

previously published results [113] with a SVM approach using 150 genes. Table 3.12 

shows a comparison between a SVM model with 150 inputs and the RBF model with 

150 inputs. The RBF model performed better for the Sanchez-Carbayo data set but for 
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Blaveri Lauss had a better performance. No results for Kim were found to make a 

comparison.  

Table 3.12: Comparison of results from the prediction of Stage to existing publications in the 

literature 

Stage (Accuracy) 

 Lauss (SVM-150 genes) [113] RBF Neural-Fuzzy (150 genes) 

Sanchez-Carbayo 
 

87 % 94 % 

Blaveri 85 % 60 % 

Kim - 70 % 

 

Table 3.13 shows a comparison between the same Lauss SVM model with 150 

genes and the RBF Neural-Fuzzy model with 150 genes. The RBF model performed 

better for the Blaveri data set and or Sanchez-Carbayo. No results for Kim were found 

to make a comparison.  

Table 3.13: Comparison of results from the prediction of Grade to existing publications in the 

literature (Accuracy) 

Grade 

 Lauss (SVM-150 genes) [113] RBF Neural-Fuzzy (150 genes) 

Sanchez-Carbayo 
 

80 % 94 % 

Blaveri 86 % 97 % 

Kim - 80 % 

 

3.7 Summary  

The study of Cancer is of great significance due to several factors; including the 

increasing mortality rate, to help avoid unnecessary treatment and from a 

Bioinformatics perspective to help clinicians to understand these studies. There are 

several methods used in present days that do not take in account the subtle relation 

between the genes and the complexity of Gene Expression data, for that reason it is 

relevant to investigate this subject. The main problem that these types of studies run 



Chapter 3: Modelling of microarray gene signatures via Radial Basis Function networks           60 
 
 

 

across is the high dimensionality, translated in thousands of genes but a small number 

of samples.  

As there are no equations that represent the behaviour of the genes, a predictor 

model must be produced. With high dimensionality also comes noise in the intensities, 

a large presence of irrelevant and redundant genes.  The goal of these studies is to 

produce a model capable of making a prediction based on the existing data that is 

efficient, could be understood by clinicians (transparent) and with the lowest 

computational cost. Joined to the above description there is another quality that the 

predictor must give, the selected genes must be relevant from a clinical point of view. 

For that reason medical and engineering expertise must work together, to validate the 

performance of the study.   

The proposed RBF-NF methodology has successfully been applied to the case 

study of bladder cancer prediction with respect to the patient’s stage, grade and 

survival.  A list with the advantages of this method: 

 Transparency because of the linguistic rules.  

 Easy interpretation of the output because of the Very Low, Low, Low Medium, 

Medium, Medium High, High, Very High states.  

 Minimum number of rules explaining the model, making easier to clinicians to 

comprehend the model.  

 Universal approximation ability (RBF) 

 Low computational cost 
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Compared to previous modelling attempts from Martin Lauss [113] and Riester 

[114] based on SVM, the RBF-NF method shows improved performance in the same 

datasets. However, the attractiveness of this method is on the transparency that the 

rule-base exhibits and the good generalisation performance (even with just 20 genes 

and 5 rules) as compared to previous modelling attempts on the same dataset. The rule-

base’s transparency and interpretability, can aid the clinicians to directly interrogate 

the resulting model (human-centric system) and examine how the model uses 

individual genes and their intensity to provide predictions on the stage, grade and 

survival of bladder cancer.  

Chapter’s summary of achievements: 

 Development of a Radial-Basis-Function Neural-Fuzzy Linguistic 

Modelling algorithm (from data clustering to optimisation) 

 An RBF-NF model was applied for the accurate prediction of stage, grade 

and survival of bladder cancer.  

 The predictive modelling results show that the RBF-NF model outperforms 

the previous modelling attempts by achieving high predictive accuracy 

(>80%).  

 The model is shown to maintain its good performance even when using just 

20 genes in the gene based signature. 

The achievements summarised above are linked to one conference publication 

(Biostec 2013), and The University of Sheffield Engineering Symposium - USES 2013, 

Sheffield, UK (2013). 

On the next chapter, the scaling-up performance of Radial Basis Function Neural-

Fuzzy models is investigated. The aim is to find the rational limit for the maximum 
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number of useful inputs (genes) to use in the model while still maintaining low 

computational complexity and high accuracy. Nevertheless, it must not be overlooked 

that are several challenges to defeat:  

 the computational complexity of this models will increase exponentially and 

the ideal number of inputs to make the prediction must be found 

 Fuzzy C-means clustering which is known for having problems with a high 

number of inputs.  
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Chapter 4: Scaling-up of 
RBF models in bladder 
cancer prediction 

 In this chapter, the scaling-up performance of Radial Basis Function Neural-

Fuzzy models is investigated. The work presented is based on the challenge of 

analysing microarray data for the prediction of the patients’ cancer survival. The aim is 

to find: 1) the limit for the maximum number of inputs to use in the model while 

maintaining low computational complexity and high accuracy. Based on the simulation 

results presented in this Chapter, the combination of Fuzzy C-means and RBF-Neural-

Fuzzy models presents the challenge of scaling-up when more than a thousand inputs 

are used. To overcome this challenge a Weighted Fuzzy C-means algorithm is 

introduced. 2) A second contribution is a cluster optimisation algorithm based on the 

Xie-Beni cluster validity index to improve the quality of the clusters calculated by the 

WFCM.  

4.1 Introduction 

 The analysis of high dimension-low sample size data represents a systems 

engineering classification and identification challenge. This is due to the noisy 

characteristics of high dimensional data and the fact that the number of replications for 

the experiment is very low (not enough samples for the model’s training algorithm to 

use).  The study presented in this chapter is based on the healthcare informatics 

challenge of analysing large-scale microarray cancer data (high dimension-low sample 

size data) for the prediction of the patient’s cancer survival outcome.  
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 To tackle the challenge of high number of features, feature selection algorithms 

have become indispensable components of the data mining process [15]. As mentioned 

in Chapter 2, there are three categories for feature selection: filters, wrappers and 

embedded methods. Generally, filter feature selection methods are used in combination 

with wrapper methods to diminish the computational cost of examining the complete 

data set. The question raised is if the combination of filter and wrapper methods offers 

significant advantages in terms of tolerance to imprecision and accuracy in the 

prediction, compared to using only a wrapper method and a higher number of inputs. 

The combination of filter-wrapper methods have proven to be an effective method for 

classification [148] . 

 A number of challenges associated with the theme of this chapter can be 

addressed; it is important to know if it is possible to avoid the use of feature selection 

techniques. Specifically, avoid the use of univariate filter-based feature selection 

techniques that do not assess if there is interdependency in the data, but only assess one-

to-one variable dependence. Existing studies suggest that best classification results are 

obtained by selecting 100-500 genes in a Support Vector Machine model [149, 150]. 

However, is this limitation a result of the modelling characteristics of SVM models or 

would a different method provide a better outcome?    

 In this chapter, an assessment is performed of the scalability of Radial Basis 

Function Neural-fuzzy models with high dimensionality and low number of samples. 

An RBF-Neural-Fuzzy system was chosen because it offers a good balance of 

performance and simplicity while being tolerant to some imprecision and crucially 

being capable of accurate model representations even when few samples are available 

[87]. The aim is to assess if it is possible to avoid the use of filter-based feature 
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selection methods; and conclude if the proposed modelling approach scales-up (i.e. 

performs well when the number of genes is increased).  

 As stated in [151]: “One should not rely on clustering results alone for high 

dimensional data and one should do feature selection”. Clustering is a form of data 

analysis where the data is divided into groups or subsets where the objects present in 

that subset share some similarities.  

 Clustering can be divided into two types: hard clustering and fuzzy clustering. 

Hard clustering refers to an inflexible boundary for the partitions compared to the 

vagueness showed in fuzzy clustering where a data point may belong to different classes 

with different membership values [152]. Numerous methodologies have been applied to 

the problem of clustering HDLSS data, for example: based on p values [153], k-means 

clustering [154]. In [153] the authors propose a hard clustering algorithm based on p-

values as a measure of similarity where no optimisation is necessary. Nevertheless, it is 

believed that fuzzy clustering is a more appropriate method to find clusters due to its 

robustness to noise, which is evident in microarray data [120].  

 In this chapter, the change in the variation of the predictive accuracy of the 

models, when the number of inputs is increased or reduced, is evaluated using a model 

for the prediction of survival in bladder cancer [106]. As a pre-input selection the t-test 

statistical method was used to systematically reduce the large initial dataset. This is a 

widely applied pre-processing step in microarray gene selection, aiming at eliminating 

the ‘easy to identify’ and obviously irrelevant to the process genes.  

 The method used in the proposed approach, is based on Fuzzy Logic and a 

Radial-Basis-Function Neural-Fuzzy computational structure. An hybrid Neural-Fuzzy 

model was chosen for the reason that they have the learning ability of Neural Networks 
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and the interpretability of Fuzzy Systems. Three different approaches are used in this 

study to assess the effectiveness of modelling HDLSS data:  

a) Fuzzy C-Means and RBF-NF modelling structure;  

b) Weighted Fuzzy C-Means  and an RBF-NF modelling structure 

c) Weighted Fuzzy C-Means and an RBF-NF modelling structure with the help 

of a cluster validation index.  

 All the proposed approaches use the Levenberg-Marquardt [144] algorithm for 

the model’s parametric optimisation.  

 The remainder of this chapter is organised as follows: Section 4.2 Methodology: 

A description of the data-mining and modelling methodology is presented. Section 4.3 

Scaling-up performance of RBF-NF models: Results are shown for the three different 

modelling approaches applied to the prediction of survival in a bladder cancer, Section 

4.4 Analysis of predictive performance and Section 4.5: Summary. 

4.2 Methodology 

 The methodology is organised in three, incremental, parts, whereby a FCM-

based RBF-NF modelling approach is presented, then enhanced with measures of 

weighted-clustering followed by a cluster validity approach. 

4.2.1 FCM and RBF-NF function model  

 The data-mining workflow consists of an initial data pre-processing step, where 

data normalisation is performed followed by a student’s distribution t-test to eliminate 

easy to identify irrelevant to the process genes. The following step consists of applying 

Fuzzy C-means clustering for the creation of the initial rule-base. This rule-base is then 

‘translated’ into a Radial-Basis-Function Neural-Fuzzy structure (one multi-dimensional 

cluster corresponds to one Fuzzy Logic rule), and the modelling structure is finally 
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parametrically optimised via the Levenberg-Marquardt function-minimisation algorithm 

[144].  

In the same way as in the preceding chapters, the data to be analysed is 

composed of all the patients and genes plus the survival outcome. Another characteristic 

of the weighted Fuzzy C-Means is that the number of clusters (rules) needs to be 

specified, to ensure the low computational complexity; the number of clusters is fixed to 

5 (rules). Based on previous research work presented in Chapter 3, five rules in this case 

study offers a good balance of performance and model simplicity. 

4.2.2 WFCM and RBF-NF function model  

FCM algorithms consider each object equally important in the cluster solution. 

For that reason, when FCM is applied to a high number of inputs (more than a 

thousand), the rule-base loses clarity due to the high dimensional space and the values 

of the membership degree become truly small. The challenge that arises is that the FCM 

clusters are the initial conditions for the RBF Neural-Fuzzy and because of their poor 

quality, the optimisation algorithm fails. By applying Weighted FCM the relative 

importance of each object to the clustering solution is defined.  This weighted factor is 

applied to the output of the data to improve the membership degree of each cluster. This 

modification improves the quality of the initial Membership functions of the RBF 

Neural-Fuzzy model. The second contribution presented in this Chapter (Figure 4.1) 

consists of applying a Weighted Fuzzy C-means clustering algorithm for the creation of 

the initial rule-base and applying the rule-base directly to the RBF Neural-Fuzzy model. 

The rule-base is then ‘translated’ into a Radial-Basis-Function Neural-Fuzzy structure, 

and is parametrically optimised via the Levenberg-Marquardt function minimisation 

algorithm [144].  
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The weighted FCM (WFCM) is based on the minimisation of the following 

objective function: 

 𝐽𝑚= ∑ ∑ 𝑢𝐶
𝑗=1

𝑁
𝑖=1 𝑖𝑗  

𝑚
𝑤𝑖   ‖𝑥𝑖   −  𝑐𝑗  ‖

2
, 1 ≤ 𝑚 < ∞   (4.1) 

where m is any real number greater than 1, uij is the membership degree of xi in 

the cluster j, xi is the measured data, cj is the centre of the cluster, and 𝑤𝑖 is a weighted 

factor applied to the output of the data and is equal to the number of inputs.  

The membership uij and the cluster centres cj are calculated by: 

𝑢𝑖𝑗 =
1

∑ (
‖𝑥𝑖   −  𝑐𝑗‖
‖𝑥𝑖   −  𝑐𝑘‖

)

2
𝑚−1

𝑐
𝑘=1

  

  ,  

𝑐𝑗 =
∑ 𝑤𝑖 𝑢𝑖𝑗

𝑚 ∗ 𝑥𝑗𝑁
𝑖=1

∑ 𝑤𝑖 𝑢𝑖𝑗
𝑚𝑁

𝑖=1

 

(4.2) 

 

Figure 4.1: Data-mining workflow for the WFCM and RBF-NF model 

 



Chapter 4: Scaling-up of RBF models in bladder cancer prediction                                                  69 
 
 

 
 

Each sample will have a membership assigned (uij) in every cluster; a higher 

membership would translate into a higher degree of similarity between the sample and 

the cluster. Each derived information granule (data-cluster) depicts a process rule in the 

Fuzzy Logic domain. The weighted FCM is similar to the one proposed in [155, 156], 

however, the novelty of the present work is that the weighting factor changes in relation 

to the number of genes that are used by the model.  

4.2.3 WFCM, validation index and RBF-NF function model  

In this section, a cluster-validity index is introduced to the data-mining process 

to further improve the quality of the rule-base. Figure 4.2 depicts the validity index 

data-mining workflow. There are multiple indices for validation of the fuzzy clusters; 

partition coefficient [157], partition entropy[158] , Fukuyama and Sugeno [159], Xie-

Beni[160] . Most of the validation indices aim to find the optimal number of clusters, 

but in this Chapter a modification of the Xie-Beni index is used, as presented in [155], 

to improve the quality of the clusters calculated by the WFCM. A reliable validation 

index should take into consideration the compactness or how close each point of the 

cluster is and the separation of the FCM clusters, which is the case in the Xie-Beni 

index;  

𝐼𝑑 =
∑ ∑ 𝑤𝑘(𝑢𝑘𝑗)𝑚 ‖𝑥𝑘 − 𝑐𝑗‖

2𝑐
𝑗=1

𝑁
𝑘=1

𝑛 𝑚𝑖𝑛𝑗≠𝑖 {‖𝑐𝑗 − 𝑐𝑖‖
2

}
 

(4.3) 

The measure of Compactness (𝐶𝑡) is given by: 

𝐶𝑡 =
∑ ∑ 𝑤𝑘(𝑢𝑘𝑗)𝑚 ‖𝑥𝑘 − 𝑐𝑗‖

2𝑐
𝑗=1

𝑁
𝑘=1

𝑛 
 

(4.4) 
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The measure of separation is given by: 

𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑚𝑖𝑛𝑗≠𝑖 {‖𝑐𝑗 − 𝑐𝑖‖
2

} (4.5) 

where 𝐶 is the number of clusters, 𝑢𝑘𝑗 is the membership degree, 𝑤𝑘 is the 

weight of significance assigned to 𝑥𝑘, which is the complete data, and 𝑐𝑖 are the centres 

of the clusters. The optimal partition clusters would have to be as compact as possible, 

while they maintain a good balance between separation and coverage of the input space 

[152]; these characteristics would translate into a high quality rule-base.  

 

Figure 4.2: Flow chart of the processing of the data with weighted FCM and the validation index 

4.3 Scaling-up performance of RBF-NF models 

 In this section the healthcare-based case study is first introduced, and then the 

scaling-up simulation results of the modelling methodology are presented.  

The introduction of microarray-based technologies for analysing patient tissues 

has produced a significant challenge for healthcare clinicians as well as data analysis; 

the challenge of understanding and using efficiently thousands of gene-based data and 

linking them to clinically useful information. The case study presented in this chapter is 

focused on bladder cancer microarray data, specifically the ones presented in the 

Sanchez-Carbayo study [106].  
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For modelling purposes the survival outcome of the patients was numerically 

encoded as ‘-1’ for ‘No Evidence of Disease – NED’ and ‘1’ for ‘Dead of Disease - 

DOD’. 

The data samples were randomly separated into ‘training’ (70% of the patients) 

and ‘testing’ (30% of the patients) datasets. The training set is only used to train the 

model, and the testing dataset is only used after the model training is finished to test the 

generalisation performance of the model, as a form of cross-validation [147].  

In modelling such a dataset, gradually increasing the number of inputs (genes 

used in the model) also would increase the computational requirements of the process – 

this may or may not be an issue depending on the application. However, does a larger 

more complex model (in terms of number of inputs and structure) correspond to an 

enhanced performance? In the following section (scaling-up performance of RBF-NF 

models) a comparison between models of 25 to 5000 genes is presented. During this 

comparison, a number of computational and model performance-related challenges were 

identified, and it is shown how with the introduction of the proposed data mining and 

modelling framework helps resolve such challenges. The training time of each model 

depends on the number of samples and inputs. On average, using a standard PC with an 

Intel ® Core ™ i7 CPU 870 @ 2.93 GHz processor with 8 GB of RAM, it takes 

minutes to process (train, test) 25 inputs. The computational requirements increase 

dramatically, as the number of genes is also increased, to more than 24 hours for 1000 

genes. For the models that use 2000 to 5000 genes it was necessary to make use of a 

High Performance Computing (HPC) server with multiple computing cores [161]. 

 The RBF-NF model was developed as described in section II. The methodology 

was applied to the data set of Sanchez-Carbayo [106] for the prediction of survival in 
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bladder cancer. The research question raised at the beginning of this Chapter is if the 

combination of filter and wrapper methods offers significant advantages in terms of 

tolerance to imprecision and accuracy in the predictions, compared to using only a 

wrapper method and a higher number of inputs. 

 The results shown in this section confirm if it is possible to avoid the use of 

feature selection techniques. In the case that this premise is true, the rational limit for 

the maximum number of inputs to use in the model needs to be established. In terms of 

the modelling structure, five (5) fuzzy rules are maintained throughout the modelling 

study for comparison purposes. Based on previous research work presented in Chapter 

3, five rules in this case study offers a good balance of performance and model 

simplicity. 

Results with 25 inputs and 5 rules 

 The methodology was applied to the data set of Sanchez-Carbayo to predict the 

patient’s survival of bladder cancer. The results shown in Table 4.1 are the AUC of the 

models.  

Table 4.1: Performance of the model using 25 inputs and 5 rules 

Genes FCM WFCM WFCM and 
validation 

index 

 AUC AUC AUC 

 Train Test Train Test Train Test 

25 0.96 0.80 0.98 0.63 0.98 0.55 

 The highest performance is obtained with the FCM model. Also, if these results 

are compared, both models performed better using FCM. The model with the validation 

for the initial clusters shows an inferior performance compared to the model that did not 

used the validation index.  
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The Gene Signature obtained for the prediction of Survival is shown in Table 

4.2. Table 4.2 shows the 25 top ranked genes. For example: Gene RNF1RNF113A is 

associated to prostate cancer; HLA-A is associated to melanoma; WDR18 is associated 

with breast cancer; AP3D1 is associated to prostate cancer; ID2 is associated to 

tumours, cancer and colon carcinoma; PTENP1 is associated to lung cancer; TES is 

associated to prostate, gastric and ovarian cancer; MCRS1 is associated to breast cancer; 

GRM8 is associated to prostate cancer; NACC2 is associated to gastric cancer; 

DNAJC12 is associated to breast cancer; TBCC is related to breast cancer.  

Table 4.2:  Gene Signature for Bladder Cancer Survival in Sanchez-Carbayo Data Set 

Rank Gene 
Symbol 

Gene Title 

1  stage 

2 CNR1 cannabinoid receptor 1 (brain) 

3 RNF113A ring finger protein 113A 

4 ZHX3 zinc finger homeobox 3 

5 HLA-A major histocompatibility complex, class I, A 

6 WDR18 WD repeat domain 18 

7 TPST1 tyrosylprotein sulfotransferase 1 

8 KLF7 Kruppel-like factor 7 (ubiquitous) 

9  grade 

10 PRX periaxin 

11 AP3D1 adaptor-related protein complex 3, delta 1 subunit 

12 ID2 inhibitor of DNA binding 2, dominant negative helix-loop-helix protein 

13 C2orf55 Chromosome 2 open reading frame 55 

14 PTENP1 phosphatase and tensin homolog pseudogene 1 

15 TES testis derived transcript (3 LIM domains) 

16 MCRS1 microspherule protein 1 

17 NR1H3 nuclear receptor subfamily 1, group H, member 3 

18 GRM8 glutamate receptor, metabotropic 8 

19 FTO fat mass and obesity associated 

20 SLAMF8 SLAM family member 8 

21 NACC2 NACC family member 2, BEN and BTB (POZ) domain containing 

22 DNAJC12 DnaJ (Hsp40) homolog, subfamily C, member 12 

23 TBCC tubulin folding cofactor C 

24 KLHL4 kelch-like 4 (Drosophila) 

25 TMEM132A transmembrane protein 132A 
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Results with 50 inputs and 5 rules 

 The results shown in Table 4.3 are the AUC of the models. Once more, the 

model using FCM was the highest between the three models. The FCM model shows a 

slight increase in the performance. The model with the WFCM and validation for the 

initial clusters shows a better performance compared to the WFCM model that did not 

used the validation index. It also shows a notable improvement compared to the results 

obtained using 25 inputs. 

Table 4.3: Performance of the model using 50 inputs and 5 rules 

Genes FCM WFCM WFCM and 
validation 

index 

 AUC AUC AUC 

 Train Test Train Test Train Test 

50 0.92 0.83 0.98 0.81 0.96 0.82 

The Gene Signature obtained for the prediction of Survival is shown in Table 

4.4. Table 4.4 shows the 50 top ranked genes. For example: Gene C18orf8 is associated 

with prostate and colon cancer; GLI1 is associated with pancreatic cancer; SVIL is 

associated with prostate cancer; SIK1 is associated with breast and colon cancer; 

NUCB2 is associated with gastric cancer; PRSS3 is associated with lung and pancreatic 

cancer; AACS is associated with tracheal cancer; COL16A1 is associated with oral 

cancer; CEACAM5 is associated with colon cancer. 
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Table 4.4:  Gene Signature for Bladder Cancer Survival in Sanchez-Carbayo Data Set 

Rank Gene 
Symbol 

Gene Title 

1  stage 

2 CNR1 cannabinoid receptor 1 (brain) 

3 RNF113A ring finger protein 113A 

4 ZHX3 zinc finger homeobox 3 

5 HLA-A major histocompatibility complex, class I, A 

6 WDR18 WD repeat domain 18 

7 TPST1 tyrosylprotein sulfotransferase 1 

8 KLF7 Kruppel-like factor 7 (ubiquitous) 

9  grade 

10 PRX periaxin 

11 AP3D1 adaptor-related protein complex 3, delta 1 subunit 

12 ID2 inhibitor of DNA binding 2, dominant negative helix-loop-helix protein 

13 C2orf55 Chromosome 2 open reading frame 55 

14 PTENP1 phosphatase and tensin homolog pseudogene 1 

15 TES testis derived transcript (3 LIM domains) 

16 MCRS1 microspherule protein 1 

17 NR1H3 nuclear receptor subfamily 1, group H, member 3 

18 GRM8 glutamate receptor, metabotropic 8 

19 FTO fat mass and obesity associated 

20 SLAMF8 SLAM family member 8 

21 NACC2 NACC family member 2, BEN and BTB (POZ) domain containing 

22 DNAJC12 DnaJ (Hsp40) homolog, subfamily C, member 12 

23 TBCC tubulin folding cofactor C 

24 KLHL4 kelch-like 4 (Drosophila) 

25 TMEM132A transmembrane protein 132A 

26 DUSP2 dual specificity phosphatase 2 

27 NUP107 nucleoporin 107kDa 

28 CDK14 cyclin-dependent kinase 14 

29 MEIS3P1 Meis homeobox 3 pseudogene 1 

30 GJA1 gap junction protein, alpha 1, 43kDa 

31 LHPP phospholysine phosphohistidine inorganic pyrophosphate phosphatase 

32 FAM208B family with sequence similarity 208, member B 

33 FGF14 fibroblast growth factor 14 

34 IBTK inhibitor of Bruton agammaglobulinemia tyrosine kinase 

35 C18orf8 chromosome 18 open reading frame 8 

36 GLI1 GLI family zinc finger 1 

37 CPLX3 complexin 3 

38 NECAB3 N-terminal EF-hand calcium binding protein 3 

39 NUP210 nucleoporin 210kDa 

40 FAM192A family with sequence similarity 192, member A 
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41  receptor (TNFRSF)-interacting serine-threonine kinase 1 

42 KIAA1462 KIAA1462 

43 SVIL supervillin 

44 SIK1 salt-inducible kinase 1 

45 NUCB2 nucleobindin 2 

46 PRSS3 protease, serine, 3 

47 AACS acetoacetyl-CoA synthetase 

48 COL16A1 collagen, type XVI, alpha 1 

49 CEACAM5 carcinoembryonic antigen-related cell adhesion molecule 5 

50 COQ7 coenzyme Q7 homolog, ubiquinone (yeast) 

 

Results with 100 inputs and 5 rules 

 The FCM has the highest performance compared to the other two WFCM 

models. The difference in performance between the two models using WFCM is 

however not significant.  

Table 4.5:Performance of the model using 100 inputs and 5 rules 

Genes FCM WFCM WFCM and 
validation 

index 

 AUC AUC AUC 

 Train Test Train Test Train Test 

100 0.98 0.86 0.96 0.80 0.94 0.79 

 

The Gene Signature obtained for the prediction of Survival is shown in Table 

4.6. Table 4.6 shows the 100 top ranked genes. For example: Gene NFX1 is associated 

with gastric cancer; B3GAT1 is associated with carcinoma; SECISBP2L is associated 

with lung cancer; GMPS is associated with oral cancer; ST3GAL5 is associated with 

ovarian cancer; ADRBK2 is associated with colorectal cancer; PEMT is associated with 

gastric and breast cancer; TMSB10 is associated with breast and ovarian cancer; TAF12 

is associated with colorectal cancer; APEH is associated with lung cancer; CLDN1 is 

associated with breast cancer; FOXN2 is associated with colon cancer; RNF5 is 

associated with breast cancer; MBOAT7 is associated with bladder carcinoma; TYK2 is 
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associated with prostate carcinoma; SYDE1 is associated with pancreatic cancer; UBA7 

is associated with lung cancer; RPS26 is associated with breast and prostate cancer; 

LDOC1 is associated with pancreatic cancer; KARS  is associated with gastric cancer. 

Table 4.6:  Gene Signature for Bladder Cancer Survival in Sanchez-Carbayo Data Set 

Rank Gene 
Symbol 

Gene Title 

1  stage 

2 CNR1 cannabinoid receptor 1 (brain) 

3 RNF113A ring finger protein 113A 

4 ZHX3 zinc finger homeobox 3 

5 HLA-A major histocompatibility complex, class I, A 

6 WDR18 WD repeat domain 18 

7 TPST1 tyrosylprotein sulfotransferase 1 

8 KLF7 Kruppel-like factor 7 (ubiquitous) 

9  grade 

10 PRX periaxin 

11 AP3D1 adaptor-related protein complex 3, delta 1 subunit 

12 ID2 inhibitor of DNA binding 2, dominant negative helix-loop-helix protein 

13 C2orf55 Chromosome 2 open reading frame 55 

14 PTENP1 phosphatase and tensin homolog pseudogene 1 

15 TES testis derived transcript (3 LIM domains) 

16 MCRS1 microspherule protein 1 

17 NR1H3 nuclear receptor subfamily 1, group H, member 3 

18 GRM8 glutamate receptor, metabotropic 8 

19 FTO fat mass and obesity associated 

20 SLAMF8 SLAM family member 8 

21 NACC2 NACC family member 2, BEN and BTB (POZ) domain containing 

22 DNAJC12 DnaJ (Hsp40) homolog, subfamily C, member 12 

23 TBCC tubulin folding cofactor C 

24 KLHL4 kelch-like 4 (Drosophila) 

25 TMEM132A transmembrane protein 132A 

26 DUSP2 dual specificity phosphatase 2 

27 NUP107 nucleoporin 107kDa 

28 CDK14 cyclin-dependent kinase 14 

29 MEIS3P1 Meis homeobox 3 pseudogene 1 

30 GJA1 gap junction protein, alpha 1, 43kDa 

31 LHPP phospholysine phosphohistidine inorganic pyrophosphate phosphatase 

32 FAM208B family with sequence similarity 208, member B 

33 FGF14 fibroblast growth factor 14 

34 IBTK inhibitor of Bruton agammaglobulinemia tyrosine kinase 
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35 C18orf8 chromosome 18 open reading frame 8 

36 GLI1 GLI family zinc finger 1 

37 CPLX3 complexin 3 

38 NECAB3 N-terminal EF-hand calcium binding protein 3 

39 NUP210 nucleoporin 210kDa 

40 FAM192A family with sequence similarity 192, member A 

41  receptor (TNFRSF)-interacting serine-threonine kinase 1 

42 KIAA1462 KIAA1462 

43 SVIL supervillin 

44 SIK1 salt-inducible kinase 1 

45 NUCB2 nucleobindin 2 

46 PRSS3 protease, serine, 3 

47 AACS acetoacetyl-CoA synthetase 

48 COL16A1 collagen, type XVI, alpha 1 

49 CEACAM5 carcinoembryonic antigen-related cell adhesion molecule 5 

50 COQ7 coenzyme Q7 homolog, ubiquinone (yeast) 

51 PRAMEF10 PRAME family member 10 

52 DET1 de-etiolated homolog 1 (Arabidopsis) 

53 NXF1 nuclear RNA export factor 1 

54 B3GAT1 beta-1,3-glucuronyltransferase 1 (glucuronosyltransferase P) 

55 SECISBP2L SECIS binding protein 2 

56 ACTB actin, beta /// uncharacterized LOC100505829 

57 ASPHD1 aspartate beta-hydroxylase domain containing 1 

58 GMPS guanine monphosphate synthetase 

59 RGS9 regulator of G-protein signaling 9 

60 ST3GAL5 ST3 beta-galactoside alpha-2,3-sialyltransferase 5 

61 ADRBK2 adrenergic, beta, receptor kinase 2 

62 PEMT phosphatidylethanolamine N-methyltransferase 

63 GPER1 G protein-coupled receptor 1 

64 FOCAD focadhesin 

65 TMSB10 thymosin beta 10 

66 TAF12 TAF12 RNA polymerase II, TATA box binding protein (TBP)-associated 
factor, 20kDa 

67 NAGPA N-acetylglucosamine-1-phosphodiester alpha-N-acetylglucosaminidase 

68 MS4A1 membrane-spanning 4-domains, subfamily A, member 1 

69 ERVH-6 endogenous retrovirus group H, member 6 

70 PYROXD1 pyridine nucleotide-disulphide oxidoreductase domain 1 

71 TMCC3 transmembrane and coiled-coil domains 3 

72 PALLD palladin, cytoskeletal associated protein 

73 APEH N-acylaminoacyl-peptide hydrolase 

74 CD40 CD40 molecule, TNF receptor superfamily member 5 

75 CLDN1 claudin 1 

76 FOXN2 forkhead box N2 

77 RNF5 ring finger protein 5, E3 ubiquitin protein ligase 
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78 ZBTB48 zinc finger and BTB domain containing 48 

79 KCNK13 potassium channel, subfamily K, member 13 

80 GPM6B glycoprotein M6B 

81 MBOAT7 membrane bound O-acyltransferase domain containing 7 

82 ZNF259P1 zinc finger protein 259 pseudogene 1 

83 TNFSF11 tumor necrosis factor (ligand) superfamily, member 11 

84 TYK2 tyrosine kinase 2 

85 SYDE1 synapse defective 1, Rho GTPase, homolog 1 (C. elegans) 

86 VCL vinculin 

87  disabled homolog 1 (Drosophila) 

88 IL11 interleukin 11 

89 KLHDC8A kelch domain containing 8A 

90 PPP6R3 protein phosphatase 6, regulatory subunit 3 

91 AEN apoptosis enhancing nuclease 

92 UBA7 ubiquitin-like modifier activating enzyme 7 

93 COL5A1 collagen, type V, alpha 1 

94 RPS26 ribosomal protein S26 

95 FAM172A family with sequence similarity 172, member A 

96 ELMO3 engulfment and cell motility 3 

97 LDOC1 leucine zipper, down-regulated in cancer 1 

98 EXOC5 exocyst complex component 5 

99 KARS lysyl-tRNA synthetase 

100 MBTPS1 membrane-bound transcription factor peptidase, site 1 

 

Results with 300 inputs and 5 rules 

 The results shown in Table 4.7 are the AUC of the model with 300 inputs. In the 

same manner that the models behave with 100 inputs, the highest performance was 

obtained by the model using FCM and the difference in performance between the two 

WFCM models is not significant. Moreover, a trend of increase for the AUC can be 

perceived for all the models. 

Table 4.7:Performance of the model using 300 inputs and 5 rules 

Genes FCM WFCM WFCM and 
validation 
index 

  AUC AUC AUC 

  Train Test Train Test Train Test 

300 0.96 0.87 0.98 0.81 1.00 0.82 
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 The Gene Signature obtained for the prediction of Survival contained the 300 

top ranked genes. Additional forty two (42) of the included genes that are related with 

bladder cancer are: Gene THRAP3, TUFM, SERPINB3, GLYR1, TOP2B, FUT6, 

ICAM2, GLTSCR2, MDC1, C1QBP, MIP, SPG7, CALD1, ITPR1, POLE2, SEC14L2, 

ITGA5, IL1RN, GRN, FBL, ESRRG, PARP4, MAP2K2, CDH17, NID1, RALA, 

PCDH7, ISL1, BICD2, EPHX2, MUC3A, FLOT2, PTHLH, APOBEC3A, ASH2L, 

GOLIM4, ACTN1, GALNT2, ATIC, ALPP, UBC, LIMA1.  

Results with 500 inputs and 5 rules 

 The results shown in Table 4.8 include the AUC of the model with 500 inputs.  

Table 4.8: Performance of the model using 500 inputs and 5 rules 

Genes FCM WFCM WFCM and 
validation 

index 

  AUC AUC AUC 

  Train Test Train Test Train Test 

500 0.94 0.73 0.96 0.75 0.98 0.87 

 

 The WFCM model with the validation index for the initial clusters outperforms 

the WFCM model that did not use the validation index and the FCM model. The 

WFCM model with the validation index keeps the same trend of an increase in the AUC 

while the AUC for the WFCM and the FCM model start having a decrease in the 

performance. The Gene Signature obtained for the prediction of Survival the 500 top 

ranked genes. Additionally, 37 of the included genes that are related with bladder cancer 

are: Gene ID3, ZFHX4, POLR2E, OXA1L, BNIP2, PHF17, F2RL2, RBP1, GSTA4, 

MARS, HEXIM1, NMU, GHITM, IGF1R, NRIP1, IL17RA, MAP2K7, CD2AP, 

GDF15, CTSE, PENK, IGFBP3, BHMT, PSAP, ELK1, PDE1A, CD3EAP, TFF3, 

CDKN1C, LONP1, HAL, ALDH4A1, MUC16, CLIC4, AKR1A1, BYSL, TRPC1. 119 
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Results with 1000 inputs and 5 rules 

Table 4.9: Performance of the model using 1000 inputs and 5 rules 

Genes FCM WFCM WFCM and 
validation 

index 

 AUC AUC AUC 

 Train Test Train Test Train Test 

1000 0.96 0.65 0.96 0.69 0.98 0.80 

 Similar to the results obtained for the model with 500 inputs, the WFCM model 

with the validation index for the initial clusters clearly outperforms the WFCM model 

and the FCM model (Table 4.9). The WFCM model with the validation index now had a 

decrease in the AUC, the same case presents for the WFMC and the FCM. The Gene 

Signature obtained for the prediction of contains the 1000 top ranked genes.  

Results with 2000 inputs and 5 rules 

 As discussed earlier in the Chapter, the FCM fails to converge as the complexity 

increase to more than 2000 genes. This is noted as ‘N/A’ in the Table 4.10.   

Table 4.10: Performance of the model using 2000 inputs and 5 rules 

Genes FCM WFCM WFCM and 
validation 

index 

  AUC AUC AUC 

  Train Test Train Test Train Test 

2000 N/A N/A 0.75 0.67 0.75 0.73 

 The WFCM models have similar performance for training however testing 

performance is higher for the WFCM model with the validation index. The results also 

show a general trend of decrease in the performance for both models. The Gene 

Signature obtained for the prediction of Survival contains the 2000 top ranked genes. 

Additionally, 181 of the included genes that are related to bladder cancer (Appendix A). 
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Results with 5000 inputs and 5 rules   

Table 4.11: Performance of the model using 5000 inputs and 5 rules 

Genes FCM WFCM WFCM and 
validation 

index 

  AUC AUC AUC 

  Train Test Train Test Train Test 

5000 N/A N/A 0.57 0.52 0.57 0.52 

As shown in Table 4.11, both models have a significant decrease in the AUC, 

however they perform the same. Overall, up to around 300 genes, a simple FCM 

clustering technique is adequate to resolve the modelling complexity of RBF modelling 

structures. As the number of genes increases, but number of samples remains the same, 

the WFCM and WFCM with the validity index are needed to model the gene microarray 

data with a good level of performance. Above 500 genes the WFCM with the validity 

index starts to outperform the WFCM; however the modelling structure appears to reach 

its limit in terms of resolving complexity above 5000 genes, where there is a dramatic 

drop in performance. The Gene Signature obtained for the prediction of Survival 

contains the 5000 top ranked genes. A total of eight hundred and thirty eight (838) of 

the included genes that are related to bladder cancer are shown in Appendix A. 

4.4 Analysis of predictive performance 

 Figure 4.3 summarises all the results presented in this section. A clear trend of a 

decrease in the performance when the number of inputs is increased can be seen. The 

best performances were obtained when using 300 inputs for FCM and 500 for WFCM 

with the validation index. Which is consisting to the findings of [150] and [149]. 

 Nevertheless, if the model is produced using less than 300 inputs, the 

performance is considerably higher for the FCM models; even when using 25 inputs.  
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Figure 4.3: Behaviour of the performance for the 3 models. 

4.5 Summary 

 In this chapter, the scaling-up performance of Radial Basis Function (RBF) 

Neural-Fuzzy models is investigated. RBF-Neural-Fuzzy models offer balance of 

performance and simplicity (while being tolerant to imprecision); these are traits that are 

important in healthcare informatics. An enhanced rule-base extraction framework was 

proposed to improve the model’s performance for high-dimensional low sample size 

data. The work presented in this Chapter is based on the healthcare informatics 

challenge of analysing large-scale microarray cancer data for the prediction of the 

patients’ cancer survival outcome. The simulations obtained for the prediction of 

bladder cancer’s survival provides a better understanding of the scalability performance 

for RBF Neural-Fuzzy models.    

 From the results obtained it can be concluded that the RBF model using FCM 

alone performs best when less than 300 genes are used. Due to the characteristics of 

high-dimension low sample size data, as the number of genes increases but number of 

samples remains the same, the WFCM and WFCM with the validity index are needed to 

model the microarray data with a good level of performance. Above 500 genes the 

WFCM with the validity index starts to outperform the WFCM. A dramatic drop in the 
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performance is observed above 5000 genes, where the modelling structure appears to 

reach its limit in terms of resolving complexity. Maximum accuracy for the prediction 

was obtained by using five hundred inputs for the WFCM and the validation index (0.87 

AUC) and three hundred inputs for the FCM (0.87 AUC).  

 The developed models maintain the simple structure with just five (5) rules, but 

with very good performance (up to 2000 genes). The simple linguistic-based structure 

of the Fuzzy-logic system could be used in human-centric decision support systems. It 

is essential to remember that the training time for the models can still be up to 3-4 days 

on a high performance computing server, however other –more efficient- optimisation 

algorithm can be used instead.  

It must not be forgotten that the models are produced to work closer with 

clinicians: therefore, apart from a good performance in term of accuracy of AUC the 

model needs to be comprehensible.  

Chapter’s summary of achievements: 

 Investigate the scaling-up performance of Radial Basis Function Neural-

Fuzzy models using a standard PC and a High Performance Computing 

(HPC) server,  

 Find the limit for the maximum number of inputs to use in the model while 

maintaining low computational complexity and high accuracy.  

 An enhanced rule-base extraction framework is proposed to improve the 

model’s performance for high-dimensional low sample size data 

(microarray data). With the enhanced rule-base, the scaling-up performance 

of Radial Basis Function (RBF) Neural-Fuzzy models was improved. 
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The achievements summarised above are linked to one conference publication 

(International Conference on Computer and Computational Intelligence) and a journal 

publication in the International Journal of Machine Intelligence and Computing 

(IJMLC) (post-conference volume-invited).   

Based on the modelling structure found on Chapters 3 and 4 (5 rules and 300 

inputs using a filter feature selection), a new input selection method will be introduced 

in the next Chapter; this new method is be based on the polynomial output of the 

model. The hypothesis behind the New Input selection is to monitor the values of the 

output weights and membership degree during the training of the structure. 

Specifically, how the output weights change with every iteration. The assumption is 

that if the output weight of that particular gene in a certain rule is high that means that 

it is highly involved in the final output. However, the output not simply is subject to 

the output weight, the membership degree of certain rule tells us the strength with 

which that rules is fired. Because of the polynomial output of the model, it is 

conceivable to distinguish how much a gene is involved in the final output and if that 

rule is important for the system.   
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 In this chapter, a new model-based iterative method for feature selection based 

on fuzzy entropy measures is introduced. The presented approach is based on a Radial 

Basis Function – Neural Fuzzy modelling structure. A fuzzy entropy measure is used to 

directly link the relative contribution of each feature to the system’s performance. An 

iterative algorithm is then used for the first time in RBF literature to identify the most 

relevant features of the process under investigation. In terms of predicting the patients’ 

survival as a result of their bladder cancer gene signature, the inclusion of the cancer 

stage and grade as extra features of the predictive model is also evaluated, thus 

producing a hybrid gene-clinical data model. The simulation results confirm that the 

new approach outperforms existing predictive models in the literature for bladder cancer 

survival based on gene signature only; the additional novelty of the presented approach 

relies on the added benefit of producing models that are simpler (considerably less 

genes in the signature), interpretable, with good generalisation performance and easier 

to develop and use by non-experts due to the absence of complex pre-processing which 

is common in this field. The hybrid gene-clinical data model achieves on average 80% 

accuracy on the prediction of patient survival on “unseen” (new) patient cohorts, 

confirming the good generalisation of the model. The proposed iterative feature 
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selection method selects relevant features during the model-training phase, whilst 

maintaining the system’s simplicity and interpretability.  

5.1 Introduction 

The statement behind the present Chapter is that, as stated in [42]: “a variable 

that is completely useless by itself can provide a significant performance improvement 

when taken with others.”  

As opposed to univariate feature selection, the proposed approach is to generate 

an embedded model that takes into account the interaction between genes to produce 

powerful combinations of genes that perhaps are not good by their own, but without 

overlooking the good prediction performance of the model. In this Chapter, the use of a 

Radial Basis Function Neural-Fuzzy structure is proposed. The proposed approach 

consists of an embedded method based on a Radial Basis Function Neural-Fuzzy system 

[139], which is designed to be equivalent to a Fuzzy Logic Takagi-Sugeno-Kang -based 

system. A fuzzy entropy measure is used to directly link, for the first time in this 

modelling structure, the relative contribution of each feature to the system’s 

performance.  An iterative model-pruning algorithm is then used to identify the most 

relevant features of the process under investigation; in this case, a gene signature. The 

proposed method takes advantage of the link between the output layer of the TSK fuzzy 

logic modelling structure and each individual rule in the model’s rule-base to identify 

the most relevant genes in each rule of the rule-base. The signature identification is 

performed in an iterative procedure, thus eliminating the need to pre-process the data-

set before developing the process model. The proposed system is tolerant to 

imprecision, with good generalisation properties and ability to produce accurate 

predictions even with a low number of features. Because of the low number of features 

and the simple modelling structure the computational cost is also reduced. The RBF-NF 
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examines the relationship between gene expression and the outcome (survival, grade or 

stage) and because is based from fuzzy rules is open for scrutiny and it is possible to 

understand how the outputs are generated. The biggest strengths of the proposed 

approach are that the feature selection occurs in the training phase, taking into account 

the interactions and making it recursive, and that the model is accurate but at the same 

time interpretable and simple. 

The proposed approach is successfully applied to identify suitable gene 

signatures and predict bladder cancer stage, grade and survival. In three independent 

data sets [106, 107, 110] the model achieved accuracies ranging from 70% to 99%.  

The remainder of this Chapter is organised in four more sections as follows: 5.2 

Radial Basis Function for microarray signature identification; 5.3 Entropy Measures; 

5.4 RBF Neural-Fuzzy Entropy; 5.5 Simulation Results and 5.6 Summary.  

5.2 Radial Basis Function Model for microarray signature 

The overall RBF model approach presented in detail in the previous chapter is 

shown in Figure 3.1, this modelling framework is the core facet of the new Fuzzy 

Entropy Feature Selection. The new feature selection will be explained in detail in 

section 5.4 as illustrated in Figure 5.1, the Fuzzy Entropy Feature Selection takes place 

parallel to the RBF-Modelling and the Levenberg-Marquardt optimisation of the output.  
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Figure 5.1: RBF-NF Modelling Structure 

The datasets are normalised in order to eliminate the high variances between the 

gene’s intensities (quantile normalisation). After normalisation, the student’s 

distribution t-test is used as an initial gene-filter. Based on the p-values the genes from 

the Sanchez-Carbayo, Blaveri and Kim dataset were reduced from the original number 

of genes down to a set of 250 genes. Fuzzy C-means algorithm was applied for the 

elicitation of the initial rule-base. The second stage consists of applying the RBF-NF 

and optimisation method proposed in Chapter 3.  

5.3 Entropy Measures 

In this section the concept of entropy as a degree of randomness is used to 

quantify the fuzziness in a fuzzy system. There is a large dissimilarity between the 

classical entropy proposed by Shannon that deals with probabilistic uncertainties and 

the fuzzy entropy that deals with vagueness and ambiguous uncertainties [162].   



Chapter 5: A new fuzzy entropy model-based feature selection framework                                90 
 
 

 

5.3.1 Definition of Entropy  

The introduction of Entropy was made in thermodynamics; it was done by 

Rudolf Clasius [163] and later expanded by James Clerk Maxwell [164]. The definition 

of entropy is given by: 

S=Q/T                                (5.1) 

where S is the entropy, Q is the heat content of the system and T is the 

temperature of the system.  

Claude Shannon was one of the first ones to apply entropy outside a 

thermodynamics or physics. Shannon is acknowledged as the father of  Information 

theory [165]. Information theory deals with the amount of information transferred in an 

event and is determined by the probability of the event [162], this is referred as quantity 

of information. It is defined by Equation 5.2: 

𝐼(𝐴) = −log 𝑃(𝐴)                 (5.2) 

where 𝐴 is an event, 𝑃(𝐴) is the probability of the event.   

The average of information in all the events is called Entropy [162]. It is 

typically referred as Shannon’s entropy, defined by Equation 5.3: 

H(X) = -∑ 𝑃𝑖  log 𝑃𝑖
𝑛
𝑖=1                             (5.3) 

where X is a set of variables and 𝑃𝑖 is the set of the probabilities in X.  
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5.3.2 Fuzzy Entropy  

Fuzzy entropy is also a measure of information but it is specifically referred as 

fuzzy information measure [162]. The presented method is based on two features of the 

RBF-NF model:  The Fuzzy Entropy [166] and the Tagaki-Sugeno-Kang (TSK) [125] 

type of the output layer for the NF system. The fuzzy entropy is calculated via the 

membership degree of a given input vector to the rule-base of the system. There are 

various fuzzy entropy measures used in the literature, De Luca and Termini [166] 

defined the following Fuzzy Entropy measure, which is an average amount of fuzziness 

and it is based on Shannon’s entropy definition; De Luca and Termini introduced a set 

of properties that Fuzzy Entropy should satisfy: 

𝐻𝐴𝑖 =  −𝐾 ∑ {𝜇𝑗 log(𝜇𝑗) + (1 − 𝜇𝑗) log(1 − 𝜇𝑗)𝑚
𝑗=1 }                      (5.4) 

where: 

𝐻𝐴𝑖 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑝𝑒𝑟 𝑟𝑢𝑙𝑒, 𝐾 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑚 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠, 𝜇𝑗 = 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑑𝑒𝑔𝑟𝑒𝑒 

In the current literature, there are examples of use of Fuzzy Entropy in 

combination with several techniques for feature selection, including: Fuzzy-rough 

dimensionality reduction [167], microarray and image datasets [123], microarray [70], 

microarray breast cancer [168], credit scoring [169]. 

5.4 RBF- Neural-Fuzzy Entropy Feature Selection 

As presented in Chapter 3, the RBF modelling structure achieved good results in 

predicting cancer stage, grade and survival, but one of the best characteristic of this 

model is the transparency that it give us, translated into high interpretability due to the 

linguistic rules. In the introduction of this chapter it was discussed how it might be 
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conceivable to form more powerful combinations by using a combination of genes that 

do not have a linear or statistic strong dependence to the output, and as an alternative 

take an approach based on how different combinations of inputs (genes) can give an 

improved performance. To understand the basic reasoning behind how the New Fuzzy-

Entropy feature selection is made it is necessary to monitor the values of the output 

weights and membership degree during the training of the structure. What is significant 

to consider is how the output weights change with every iteration, for example if the 

stay constant or have large variations.  

If a weight that relates to a gene stays always constant, that gene may not be 

significant for the classification stage as it is not “involved” in the training of a 

particular linguistic rule in the rule-base. On the other hand if one gene fluctuates (either 

positively or negatively) it may be significant as it contributes towards the prediction 

strength (entropy) of a particular rule. 

The assumption is that if the output weight of that particular gene in a certain 

rule is high that means that it is highly involved in the final output. However, the output 

not simply depends on the output weight, the membership degree of certain rule 

expresses us the strength with which that rules is fired. Because of the characteristics of 

the RBF-NF model, it is conceivable to identify how strongly a gene is involved in the 

final output and if that rule is essential for the system.   

The method has several challenges to defeat, the number of iterations until a 

gene is marked as being not significant, or the number of genes the model can handle 

without losing interpretability and still make a good prediction.  

As found in Chapter 4, one of the drawbacks found for FCM clustering is that 

with high dimensional data, the effectiveness of creating clusters decreases, often 
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resulting in indistinguishable centres for all of the inputs. The first step is to analyse the 

dimension that FCM can handle, how many inputs, at what point is not possible to make 

difference between the clusters. The idea is to monitor the performance of every input 

of the system and based in the analysis remove the genes that show poor performance.   

There are some aspects to take into account: 

 The maximum number of inputs used in the model 

 Decide if FCM is adequate to calculate the initial clusters  

 Optimise the number of rules or clusters 

 Best performance of the model , with how many genes 

 Selected genes that have medical relevance 

 The number of iterations to review the model 

The presented methodology is based on two features of the RBF-NF model:  The 

Fuzzy Entropy described in the section 5.3 and the TSK [125] type of the output layer 

for the NF system described in the previous chapter. The novelty of the approach 

presented in this chapter is that the fuzzy entropy is used in combination with the 

antecedent of the RBF fuzzy rule-base (TSK output layer) to assign a relative 

importance (relevance) to each feature in the dataset (in this case, to each gene). Each 

single input of the system is analysed in a separate manner to produce a ‘factor’ that 

adjusts the aforementioned input based on the behaviour in the system, this is calculated 

via the fuzzy entropy that takes into account the interaction of the inputs. For the first 

time in bladder cancer analysis the relevance of input in the model is used to make a 

ranking of the inputs and a prediction of the cancer’s outcome.  
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While the RBF-NF model optimises the RMSE (see Figure 5.2) via the 

Levenberg-Marquardt optimisation to make an accurate prediction, the output of the 

model is analysed to make an input selection at the same time. Providing a distinctive 

additional characteristic to the embedded model because of the low level of pre-

processing needed with the added benefit of maintaining the model’s simplicity and low 

computational cost. 

 

  It is vital to emphasise that the data was separated into Training (70% of the 

data) and Testing (30% of the data) to constantly check if the performance parameters 

show any sign of over-fitting.  

The initial step for the Fuzzy Entropy based input selection is to analyse the 

TSK output layer of an RBF-NF model (see Figure 5.3). The TSK output layer 

represents a sum of polynomials that are a linear combination of its inputs (Equation 

3.8).   

Figure 5.2: RMSE behaviour 
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Figure 5.3: TSK output layer of RBF Linear combination of the inputs and each  𝒁𝒊 weight is 

directly linked to 𝒈𝒊 rule. 

Each TSK weight, zi, is directly linked to a corresponding rule gi. The 

contribution 𝑎𝑗 (output weight) of each input 𝑥𝑚 can be therefore associated to each rule 

𝑔𝑖 by the product ‘𝑎𝑗𝑥𝑗’. Hence, a relative measure of how important each input is to a 

specific rule is obtained. Based on the output weights [𝑎1, 𝑎2, … , 𝑎𝑗] it is possible to link 

how important each feature [𝑥1, 𝑥2, … , 𝑥𝑗] is to a specific rule.  

It would be possible to sum all the weights for a specific feature for all the rules 

to establish a cumulative importance for each feature, however not all the rules of the 

system contribute in the same way to each prediction. Therefore each rule’s 𝑔𝑖(firing 

strength) and the 𝐻𝐴𝑖 (entropy) of each fired rule are used to identify the contribution of 

each rule to the overall prediction of the model. 

The output weights for each rule are then adjusted based on the contribution of each 

rule, thus the rule-specific significance ‘𝐵𝑖𝑗’ of each gene ‘j’ per rule ‘i’ is formulated:  

𝐵𝑖𝑗 = (𝑔̅𝑖/𝐻𝐴𝑖) ∗  |𝑎𝑖𝑗|                   (5.5) 
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where 𝑔̅𝑖 is the median value of the firing strength 𝑔𝑖 of each rule, and 𝐻𝐴𝑖 is the 

entropy as defined in Eq. (5.4). Therefore, a rule is important if it has a high firing 

strength (high relevance to the data sample) and low entropy (fuzziness or uncertainty).  

The overall importance of each gene (variable) is then calculated by summing up all the 

rule-specific variable significance (Eq.5.6).  

                            𝐵0 = ∑ 𝐵𝑖𝑗
𝑝
𝑖=1                   (5.6) 

where 𝐵0 is the overall importance of each gene, 𝐵𝑖𝑗 is the contribution of each gene 

in a rule and p is the number of rules.    In the algorithmic process proposed here, the 

model is trained for ‘T’ iterations, while at ‘t’ iterations (t<T) the training can be 

‘paused’ and the model can be reviewed in terms of the gene ranking order.  

Figure 5.4 depicts the overall gene feature selection as a flowchart.  

 
Figure 5.4: Fuzzy Entropy Feature Selection 

 

 



Chapter 5: A new fuzzy entropy model-based feature selection framework                                97 
 
 

 

Described with more detail bellow:  

1. The first step is to rank the genes for each rule, based on the output weights 

(from highest to lowest). Only the top ‘n’ genes are selected and passed on to 

the second step. The threshold parameter (to select the top genes) may vary 

(process-specific). However, as it will be shown in the results section, it was 

established that, in this study, using twenty five (25) inputs offers a good 

balance between model simplicity and performance.  

2. Calculate the 𝑔̅𝑖 and the Fuzzy Entropy 𝐻𝐴𝑖 (fuzzy entropy Eq. 5.4).  

3. The next step is to calculate the rule-specific significance of each gene 𝐵𝑖𝑗 

(Eq. 5.5). The 𝐵𝑖𝑗 value represents the behaviour of a gene in a certain rule. 

For that reason a value of 𝐵𝑖𝑗 is obtained for each gene in all the rules.  

4. Now that the rule-specific significance (𝐵𝑖𝑗value) per gene is obtained, a new 

ranking is produced. If a gene is shown in several rules its value of 𝐵𝑖𝑗 is 

summed up. If a gene is shown in several rules that mean that this specific 

gene is involved a lot in the final output (hence significant). This measure is 

not an absolute one; however it provides a relevant measure of significance 

for the features (genes) in the database, which can be used to provide a feature 

selection mechanism.   

 The hypothesis of this algorithmic procedure is similar to using a regression 

model alone to identify relevant features from the regression coefficients of the 

polynomial model [170], with the difference here that the RBF-NF consists of multiple 

polynomials each weighted differently due to its corresponding rule. The advantage of 

the proposed approach is that here, a model-based approach is considered, where the 
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importance of each feature is derived by also considering the effect of the rest of the 

features – as opposed to filter-based approaches where each gene is considered alone, 

without the effect of the rest of the genes/features. 

 This procedure is repeated until the desired number of genes is obtained. The 

model’s performance can also be used as a criterion to stop the iterative gene 

elimination procedure. 

 During the model training it is possible to observe the cumulative weight of each 

feature; as the optimisation routine adjusts/optimises the weights of the model the most 

important genes can be visually identified by the absolute value of their weights (Figure 

5.5). The horizontal axis represents the training iterations of the model and the vertical 

axis the output weights[𝑎1, 𝑎2, … , 𝑎𝑚]. Genes, CHPT1, POLE2 and HGFAC are 

considered important to this example rule as they have a higher contribution compared 

to Genes, BIC2 or MIP.  

 

Figure 5.5: Example of the behaviour of the Output weights of 5 Genes in Rule 3. 
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5.5 Simulation Results 

The case-study presented in this Chapter is focused on the prediction of bladder 

cancer Stage, Grade and patient survival using three different bladder data sets: 

Sanchez-Carbayo [106], Kim [107] and Blaveri (Table 3.1 Chapter 3). This section is 

sub-divided into four different parts as follows: 

A. Simulation results for Stage and Grade: the model is validated using a real 

biomedical case-study, which concerns the prediction of the stage and grade of 

bladder cancer. 

B. Simulation results for Survival: a model is produced and validated using the 

previously mentioned data sets for the prediction of survival of bladder cancer. 

The present chapter also attempts to identify the best possible combination of 

clinical data and gene data for the prediction of survival. 

C. Fuzzy Logic-type linguistic rule-base: an example of the fuzzy rule-base 

describing the behaviour of the model.  

D. Comparison to existing literature results: the obtained results for the prediction of 

stage, grade and survival are compared to previously published results.  

All the datasets are treated with the same pre-processing procedure as described in 

the previous Chapter. A pre-selection of the genes was made using the top 250 genes 

as selected with the t-test.  Following the pre-processing stage each dataset is used 

separately to produce a predictive / feature selection model consisting of 25 inputs, 

with the results described in the following sections. The training iterations were 

defined according to the analysis of the results presented in the previous Chapter, 
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where it was concluded that someplace between 15 to 30 iterations would be 

sufficient for the model to be trained.  

5.5.1 Prediction of patient stage and grade for bladder cancer using microarray data 

a) Prediction of patient Stage 

The RBF-NF model is developed as described in section 5.2 and 5.4. The 

methodology was applied to the Sanchez-Carbayo, Kim and Blaveri datasets for the 

prediction of stage of bladder cancer. The cancer Stage values were ‘encoded’ into -1 

and 1 according to Table 3.4 from Chapter 3. The classification functions of Specificity, 

Sensitivity and Accuracy are used as measures of performance [147].   The resulting 

model consisted of 5 rules and 25 inputs. The data samples were randomly separated 

into ‘training’ (70% of the patients) and ‘testing’ (30% of the patients) data-sets. The 

training set is only used to train the model, and the testing data-set is only used after the 

model training is finished to test the generalisation performance of the model, as a form 

of cross-validation [147]. The results shown in Table 5.2 are the mean % of the 10 

models for Accuracy, Specificity and Sensitivity respectively. The highest performance 

was obtained with the Sanchez-Carbayo Data Set, the lowest with Blaveri. Kim had the 

more balanced performance. For simplicity, only one Gene Signature for the prediction 

of Stage is shown in Table 5.1. It shows the 25 top ranked genes, the signature has been 

confirmed from clinicians that is medically relevant.  

For example: Gene CEBPD is associated with prostate cancer; ITGB5 is 

associated with breast and ovarian cancer; HGF is associated with carcinoma; THBS2 is 

associated with breast cancer and melanoma; RGS1 is associated with melanoma and 

leukaemia; PVT1 is associated with leukaemia, pancreatic, breast, prostatic and gastric 

cancer; DUSP1 is associated with ovarian, breast and gastric cancer; SFRP4 is 
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associated with oral cancer; GADD45B is associated with ovarian cancer and 

leukaemia; CYR61 is associated with breast and endometrial cancer; NNMT is 

associated with thyroid, colorectal and gastric cancer; COL10A1 is associated with lung 

cancer and adenocarcinoma; TAGLN is associated with prostate, colorectal and lung 

cancer; FLNC is associated with gastric cancer and melanoma; MAPK4 is associated 

with pancreatic, lung and breast cancer. 

Table 5.1:  Gene Signature for Bladder Cancer Stage in Sanchez-Carbayo Data Set 

Rank Gene 
Symbol 

Gene Title 

1 CEBPD CCAAT/enhancer binding protein (C/EBP), delta 

2 NLGN1 neuroligin 1 

3 ITGB5 integrin, beta 5 

4 HGF hepatocyte growth factor (hepapoietin A; scatter factor) 

5 THBS2 thrombospondin 2 

6 COX7A1 cytochrome c oxidase subunit VIIa polypeptide 1 (muscle) 

7 RGS1 regulator of G-protein signaling 1 

8 FMO1 flavin containing monooxygenase 1 

9 TMEM231 transmembrane protein 231 

10 PVT1 Pvt1 oncogene (non-protein coding) 

11 DUSP1 dual specificity phosphatase 1 

12 SFRP4 secreted frizzled-related protein 4 

13 AEBP1 AE binding protein 1 

14 CHD8 chromodomain helicase DNA binding protein 8 

15 GADD45B growth arrest and DNA-damage-inducible, beta 

16 CYR61 cysteine-rich, angiogenic inducer, 61 

17 NNMT nicotinamide N-methyltransferase 

18 RGS2 regulator of G-protein signaling 2, 24kDa 

19 COL10A1 collagen, type X, alpha 1 

20 TAGLN Transgelin 

21 CYHR1 cysteine/histidine-rich 1 

22 TPST1 tyrosylprotein sulfotransferase 1 

23 FLNC filamin C, gamma 

24 KANK1 KN motif and ankyrin repeat domains 1 

25 MAPK4 mitogen-activated protein kinase kinase kinase kinase 4 
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In Section 5.5.4 a comparison between the results shown in Table 5.2 and 

previous publications is presented. The resulting models use a low number of genes (25) 

and rules (5).  

Table 5.2: Prediction of Stage using 5 rules and 25 inputs 

  Training Testing 

  Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity 

Sanchez-
Carbayo 

Performance 
(%) 

99 100 98 93 100 89 

Standard 
Deviation 

2 0 3 4 0 7 

Blaveri Performance 
(%) 

96 99 91 70 93 67 

Standard 
Deviation 

10 3 27 5 12 5 

Kim Performance 
(%) 

90 89 91 76 75 80 

Standard 
Deviation 

3 4 3 6 5 10 

b) Prediction of patient grade 

The same pre-processing process applied to the data for the prediction of stage 

was applied. The RBF-NF model was developed as described in Section 5.2 and 5.4.  

Three grades are used to rate cancer and are encoded according to Table 4.4.  

The gene signature for Grade is presented in Table 5.3, only common gene 

between the two signatures for stage and grade is secreted frizzled-related protein 4, 

which is associated with oral cancer.  

Other genes associated to different types of cancer include: EPHB4 is associated 

to prostate, ovarian and colon cancer; PCSK5 is associated with colon cancer; STX10 is 

associated with gastric cancer; AGFG1 is associated with melanoma; SFRP4 as 

mentioned before is associated with oral cancer; NID2 is associated with ovarian 

cancer; TMEM184C is associated with thyroid cancer and prostatitis, a disease linked 

with prostate cancer; CAMK2B is associated with breast cancer; CDC25B is associated 

with prostate, lung, neck and colon cancer; LAMB4 is associated with lung cancer; 
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TMPRSS6 is associated with prostatic and breast cancer and prostatitis; NOTCH2 is 

associated with prostatic and breast cancer and leukaemia; DHRS11 is associated with 

laryngeal cancer; COL6A3 is associated to colorectal and gastric cancer.  

Some of these genes (i.e. SPARC, COL6A3) are related with tumours in 

general; with the presented model it is conceivable to do an in-depth medical 

examination if the intensities of these genes are high, acting as an indicator of the 

malignancy.   

Table 5.3: Gene Signature for Bladder Cancer Grade in Sanchez-Carbayo Data Set 

Rank Symbol Gene Title 

1 EPHB4 EPH receptor B4 

2 PCSK5 proprotein convertase subtilisin/kexin type 5 

3 SLC1A3 solute carrier family 1 (glial high affinity glutamate transporter), 
member 3 

4 STX10 syntaxin 10 

5 SYBU syntabulin (syntaxin-interacting) 

6 GPATCH3 G patch domain containing 3 

7 AGFG1 ArfGAP with FG repeats 1 

8 SFRP4 secreted frizzled-related protein 4 

9 NID2 nidogen 2 (osteonidogen) 

10 TMEM184C transmembrane protein 184C 

11 RNF141 ring finger protein 141 

12 COL11A2 collagen, type XI, alpha 2 

13 GPR116 G protein-coupled receptor 116 

14 CAMK2B calcium/calmodulin-dependent protein kinase II beta 

15 CDC25B cell division cycle 25 homolog B (S. pombe) 

16 COL5A1 collagen, type V, alpha 1 

17 CXCL6 chemokine (C-X-C motif) ligand 6 (granulocyte chemotactic 
protein 2) 

18 LAMB4 laminin, beta 4 

19 HIST1H2AJ histone cluster 1, H2aj 

20 TMPRSS6 transmembrane protease, serine 6 

21 NOTCH2 notch 2 

22 DHRS11 dehydrogenase/reductase (SDR family) member 11 

23 SPARC uncharacterized LOC100505813 /// secreted protein, acidic, 
cysteine-rich (osteonectin) 

24 COL6A3 collagen, type VI, alpha 3 

25 FCGR2A Fc fragment of IgG, low affinity IIa, receptor (CD32) 
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The results shown in the Table 5.4 are the mean of the 10 models for Accuracy, 

Specificity and Sensitivity.  

Table 5.4: Prediction of Grade using 5 rules and 25 inputs 

  Training Testing 

  Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity 

Sanchez-
Carbayo 

Performance 
(%) 

96 98 95 72 77 70 

Standard 
Deviation 

12 6 13 4 8 5 

Blaveri Performance 
(%) 

99 95 99 97 93 98 

Standard 
Deviation 

1  16 1 5 5 6 

Kim Performance 
(%) 

91 97 84 80 82 77 

Standard 
Deviation 

3 2 7 5 7 12 

Contrary to the results obtained for Stage, the performance with the Sanchez-

Carbayo data set is the lowest and Blaveri is the highest. Sanchez-Carbayo, Blaveri and 

Kim had a similar behaviour when the balance in the performance is considered. A 

more detailed discussion of the results is given in section 5.5.4. 

5.5.2 Prediction of patient survival in bladder cancer   

This section is focused on the prediction of Cancer Survival; the main focus is to 

identify the best possible combination for prediction of Survival by combining all the 

available information from each data set.  

In this study, the same RBF Neural-Fuzzy model is applied to the Sanchez-

Carbayo, Blaveri and Kim data set to predict the Survival rate. At the same time clinical 

data (cancer stage and grade) is added to the model to assess if adding such data could 

enhance the performance or if a prediction can be made using simply clinical data. 

a) Prediction of patient survival using only clinical data  

The initial question of this Section is; is it possible to predict survival in bladder 

cancer using only clinical data? Is this information sufficient to produce an accurate 
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model? Is it essential the microarray data to generate a prediction? To respond this 

enquiry a model based only in clinical data must be produced and from the results a 

hypothesis that might be relevant and aid us enhance the model can be formulated. The 

model would be a combination of microarray and clinical data. As an initial attempt 

only Stage was modelled. The results shown in Table 5.5 demonstrate that it is not 

possible to make an accurate prediction of survival using only this input. If a model has 

an acceptable performance, the standard deviation is massive. Also the measurements of 

performance (accuracy, sensitivity and specificity) are not balanced.  

Table 5.5: Prediction of Survival using Stage Only 

  Training Testing 

  Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity 

Sanchez-
Carbayo 

Performance 
(%) 

72 62 90 62 43 86 

Standard 
Deviation 

8 16 32 2 21 30 

Blaveri Performance 
(%) 

58 39 85 36 26 51 

Standard 
Deviation 

2 3 2 4 6 7 

Kim Performance 
(%) 

59 78 47 59 80 45 

Standard 
Deviation 

1 34 29 4 31 28 

The results shown in Table 5.6 exhibit similar results to the ones found for 

Stage, it is not possible to make an accurate prediction of Survival using only this input. 

The performances are either excessively low or less than average but with a large 

standard deviation.   
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Table 5.6: Prediction of Survival using Grade Only 

  Training Testing 

  Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity 

Sanchez-
Carbayo 

Performance 
(%) 

59 62 60 58 57 58 

Standard 
Deviation 

3 33 52 2 37 50 

Blaveri Performance 
(%) 

57 38 84 39 27 55 

Standard 
Deviation 

2 2 1 5 5 5 

Kim Performance 
(%) 

71 62 89 62 42 86 

Standard  6 13 31 1 20 30 

The last attempt is to combine Stage and Grade to make the prediction of 

Survival. Table 5.7 shows the results for each data set.  

It is essential to highlight that regardless of the fact that the performance is not 

high or better that the previously published results for the same data sets, a certain 

degree of improvement is shown if the results are compared to Table 5.5 and 5.6. The 

results show that it is not possible to make an accurate prediction of Survival using only 

these inputs and that the best model is a combination between Stage and Grade.   

Table 5.7: Prediction of Survival using Stage and Grade Only 

  Training Testing 

  Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity 

Sanchez-
Carbayo 

Performance 
(%) 

78 68 98 64 42 92 

Standard 
Deviation 

4 8 4 2 4 2 

Blaveri Performance 
(%) 

65 92 20 58 86 19 

Standard 
Deviation 

5 15 5 6 27 10 

Kim Performance 
(%) 

66 92 20 58 86 40 

Standard 
Deviation 

7 12 42 1 20 19 

Based on the results presented in Chapter 3, it can be concluded that the RBF-

Neural-Fuzzy model can obtain improved performances than the ones presented in this 

section, nevertheless, the model can beneficiate from a combination of Stage and/or 
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Grade to enhance the performance of the model.  This assumption will be investigated 

in Section c) Prediction of Survival in bladder cancer via microarray data and clinical 

data.  

b) Prediction of patient survival via microarray data  

An RBF-NF model was developed as described in Section 5.2 and 5.4 using 

only microarray data intensities. The methodology was applied to the Sanchez-Carbayo, 

Blaveri and Kim Data-set, to reduce the number of features. The classification functions 

of Specificity, Sensitivity and Accuracy are used as measures of performance [147].   

The developed model consisted of 5 rules and 25 inputs. The data samples were 

randomly separated into ‘training’ (70% of the patients) and ‘testing’ (30 % of the 

patients) data-sets.  

This procedure was repeated ten (10) times as a form of k-fold cross-validation. 

The results shown in Table 5.8 include the mean of the ten models for Accuracy, 

Specificity and Sensitivity respectively, along with the standard deviation of each k-

fold. The obtained results showed that Sanchez-Carbayo and Blaveri have similar levels 

of performance, using the exact number of inputs. Kim had a lower and more 

unbalanced performance. Section b) will try to improve the performances achieved in 

this section by adding clinical data to the model. Survival was encoded according to 

Table 3.2 from Chapter 3.  
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Table 5.8: Survival Prediction using Microarray Data, 5 rules and 25 inputs 

  Training Testing 

  Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity 

Sanchez-
Carbayo 

Performance 
(%) 

97 100 94 84 86 79 

Standard 
Deviation 

1 0 3 4 7 8 

Blaveri Performance 
(%) 

99 99 99 79 75 83 

Standard 
Deviation 

1 1 1 3 9 5 

Kim Performance 
(%) 

86 89 81 67 74 64 

Standard 
Deviation 

2 4 4 6 10 13 

c) Prediction of patient survival in bladder cancer via microarray data 

and clinical data.  

Clinical data are then added to the database for the prediction of survival in 

bladder cancer. The clinical data, which consist of the stage and grade of cancer could 

improve the modelling performance – providing these new feature are selected by the 

algorithm.  

The cancer Stage and Grade values are ‘encoded’ into -1 and 1 according to 

Table 3.3 and 3.4.  

In comparison, the addition of stage and grade results in improved testing 

performance (generalisation), which is a very important aspect for survival outcome 

modelling (the ability to generalise and perform well in unseen data). The three 

measures of performance, Accuracy, Specificity and Sensitivity (shown in Table 5.10) 

also appear to be better balanced (evidence of model reliability - robustness). It was also 

observed that the number of iterations to train the model and the number of features 

could be reduced while maintaining a very good and balanced overall performance. The 

resulting gene signature consists of 23 genes, and with the inclusion of the two clinical 
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features it results to the final 25-input model. The model itself consists of just five (5) 

rules which represent a very simple modelling structure.  

As it shown in the next section, the developed model and signature outperform 

existing signatures and models in the literature for the same datasets, while the 

presented signature consists or considerably less genes and/or is much simpler as shown 

in the comparison in the following section. The identified gene signature is shown in 

Table 5.9. It has been confirmed with oncology experts that the identified gene 

signature represents a clinically feasible marker. Some of the selected genes related with 

cancer are: CHPT1 related with prostatic and breast cancer; CDH16 is related with renal 

cancer; FGF14 is associated with breast cancer and melanoma; GLI1 is associated with 

pancreatic and gastric cancer; MDC1 is associated with prostatic, cervical, breast, 

pancreatic and lung cancer and leukaemia; IGHV5-78 is associated with leukaemia; 

POLE2 is associated with colorectal cancer; SEC14L2 prostate cancer; HGFAC is 

associated with prostate, renal, pancreatic cancer; RNF5 is associated with breast 

cancer; LPHN2 is associated with breast cancer. Similar to the gene signatures for Stage 

and Grade, there exist several genes that are not certainly linked to any type of cancer 

but are linked to tumours; this is a remarkable occasion to collaborate with medical 

expertise and discover new markers related to a type of cancer. A comparable 

circumstance is presented with a large portion of the proteins included in the gene 

signature, the model links the prediction of survival to those markers but from a medical 

perspective the markers are unknown in terms of relation to a certain type of cancer; the 

same opportunity for the analysis of the markers presents.  
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Table 5.9: Gene Signature for Bladder Cancer Survival in Sanchez-Carbayo Data Set 

Rank Gene 
Symbol 

Gene Title  

1 CHPT1 choline phosphotransferase 1 

2 CDH16 cadherin 16, KSP-cadherin 

3 PPIAL4A//PP
IAL4B//PPIA
L4C//PPIAL4

G 

peptidylprolyl isomerase A (cyclophilin A)-like 4A /// peptidylprolyl isomerase A 
(cyclophilin A)-like 4B /// peptidylprolyl isomerase A (cyclophilin A)-like 4C /// 
peptidylprolyl isomerase A (cyclophilin A)-like 4G 

4 FGF14 fibroblast growth factor 14 

5 GLI1 GLI family zinc finger 1 

6 FBL fibrillarin 

7 RGS9 regulator of G-protein signaling 9 

8 CACNA1A calcium channel, voltage-dependent, P/Q type, alpha 1A subunit 

9 MDC1 mediator of DNA-damage checkpoint 1 

10 CNR1 cannabinoid receptor 1 (brain) 

11 KLHDC8A kelch domain containing 8A 

12 ISL1 ISL LIM homeobox 1 

13 CALML5 calmodulin-like 5 

14 PYROXD1 pyridine nucleotide-disulphide oxidoreductase domain 1 

15 IGHV5-78 immunoglobulin heavy variable 5-78 (pseudogene) 

16 BICD2 bicaudal D homolog 2 (Drosophila) 

17 POLE2 polymerase (DNA directed), epsilon 2, accessory subunit 

18 SEC14L2 SEC14-like 2 (S. cerevisiae) 

19 KIAA1211L Chromosome 2 open reading frame 55 

20 HGFAC HGF activator 

21 MIP major intrinsic protein of lens fiber 

22 RNF5 ring finger protein 5, E3 ubiquitin protein ligase 

23 LPHN2 latrophilin 2 

24 stage  

25 grade  
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Table 5.10: Prediction of Survival using Stage, Grade and Microarray data, 5 rules and 25 inputs 

  Training Testing 

  Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity 

Sanchez-
Carbayo 

Performance 
(%) 

99 98 99 88 89 87 

Standard 
Deviation 

8 1 1 2 3 4 

Blaveri Performance 
(%) 

98 100 95 80 73 85 

Standard 
Deviation 

1 0 2 5 11 5 

Kim Performance 
(%) 

88 84 91 73 66 79 

Standard 
Deviation 

3 6 4 3 10 8 

 

5.5.3 Fuzzy Logic-type linguistic rule-base 

Apart from the very good performance and modelling structure simplicity, the 

models presented in this chapter maintain a transparent Fuzzy Logic-type linguistic 

rule-base. Figure 5.6 shows a sample of the rule-base describing the behaviour of the 

model. For simplicity, just two rules are shown (one for ‘negative outcome’ and one for 

‘positive outcome’); these are shown for five out of the 23 genes in the gene signature 

(complete signature shown in Table 5.9) Two of the linguistic IF-THEN rules that 

describe the model are shown below to demonstrate the transparency (interpretability) 

of the modelling method. The corresponding numerical values of the linguistic hedges 

‘high’, ‘medium’ etc. are determined by the optimisation algorithm via the training 

data-set. The equivalent linguistic-numerical interpretation of the normalised gene 

intensity is shown in Table 3.5. 
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Rule 2 (NED): 

IF the intensity of  

the Gene ‘Major Intrinsic protein lens fibre’ is Low Medium  and 

the Gene ‘Fibrillarin’ is Low Medium and 

the Gene ‘Immunoglobulin heavy variable 5-78 finger’ is Low Medium and 

the Gene ‘mediator of DNA-damage checkpoint 1’ is Low Medium and 

the Gene ‘Cannabinoid receptor 1 (brain)’ is Low Medium  

THEN the Patient will survive as results of the disease   

Rule 3 (DOD): 

IF the intensity of  

the Gene ‘Major Intrinsic protein lens fibre’ is Medium  and 

the Gene ‘Fibrillarin’ is Medium and 

Figure 5.6: Example of a RBF-NF rule base, here for simplicity just two rules are shown, one for a 

positive outcome and one for a negative. 
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the Gene ‘Immunoglobulin heavy variable 5-78 finger’ is Medium and 

the Gene ‘mediator of DNA-damage checkpoint 1’ is Medium and 

the Gene ‘Cannabinoid receptor 1 (brain)’ is Medium High 

THEN the Patient will decease as results of the disease   

5.5.4 Comparative Study 

In this section the performance of the developed model and associated gene 

signature are compared to previously published results on the same datasets. Due to the 

availability of published results and different scope of the various research studies it is 

not possible to compare all aspects of the presented modelling and feature selection 

approach.  

Therefore, the following comparisons are performed: 

 Prediction of stage and grade outcome compared to the Lauss [113] model and 

the previous model presented in Chapter 3.  

 Prediction of survival outcome compared to the Sanchez-Carbayo [106] model 

and gene signature 

 Prediction of survival outcome – muscle invasive tumours only:  

o Compared to the Blaveri [110] model and gene signature 

o Compared to the Riester [114] model and signature. 

o Compared to the model presented in Chapter 3.  
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a) Comparison of patient stage and grade 

Tables 5.8-5.11 show the performance obtained from prediction of Stage and 

Grade. The RBF Neural-Fuzzy makes accurate predictions but the main advantage is 

that it is possible to perform input selection at the same time.  

The presented model obtained better or comparable performances to previously 

published results but with the advantage of a ranking of the inputs based in the 

performance they have in the model [113] with a SVM approach using 150 genes. Table 

5.11 shows a comparison between a SVM model with 150 inputs and the RBF model 

with 25 inputs. The RBF model performed better for the Sanchez-Carbayo data set but 

for Blaveri Lauss had a better performance. No results for Kim were found to make a 

comparison.  

Table 5.11: Comparison of results from the prediction of Stage to existing publications in the 

literature 

 Lauss (SVM-150 genes) [113] RBF Neural-Fuzzy (25 
genes) 

Sanchez-Carbayo 
 

87 % 93 % 

Blaveri 85 % 70 % 

Kim - 76 % 

Compared to the results shown in Chapter 3 for Stage, the presented model 

obtained better performances but with the advantage of a ranking of the inputs based in 

the performance they have in the model and using 25 genes. Table 5.12 shows a 

comparison between the RBF Neural Fuzzy model with t-test used in Chapter 3 and the 

RBF Neural Fuzzy model with the Fuzzy Entropy Feature Selection presented in this 

Chapter. The RBF model performed better or comparably for the Sanchez-Carbayo, 

Blaveri and Kim data. 
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Table 5.12: Comparison of results from the prediction of Stage to the results shown in Chapter 3 

 RBF Neural Fuzzy with t-test 
(150 Genes) 

RBF Neural-Fuzzy (25 
genes) 

Sanchez-Carbayo 
 

94 % 93 % 

Blaveri 60 % 70 % 

Kim 70 % 76 % 

Table 5.13 shows a comparison between the Lauss SVM model with 150 genes 

and the RBF Neural-Fuzzy Entropy model with 25 genes. The RBF model performed 

better for the Blaveri data set but for Sanchez-Carbayo Lauss had a better performance. 

No results for Kim were found to make a comparison.  

Table 5.13: Comparison of results from the prediction of Grade to existing publications in the 

literature (Accuracy) 

 Lauss (SVM-150 genes) [113] RBF Neural-Fuzzy (25 genes) 

Sanchez-Carbayo 
 

80 % 72 % 

Blaveri 86 % 97 % 

Kim - 80 % 

Table 5.14 displays a comparison between the RBF Neural Fuzzy model with t-

test used in Chapter 3 and the RBF Neural Fuzzy model with the Fuzzy Entropy Feature 

Selection presented in this Chapter. The RBF model performed comparably for the 

Blaveri and Kim data. Sanchez-Carbayo had a significant decrease in the performance.  

Table 5.14: Comparison of results from the prediction of Grade to the results shown in Chapter 3 

 RBF Neural Fuzzy with t-test (150 genes) RBF Neural-Fuzzy (25 genes) 

Sanchez-Carbayo 
 

94 % 72 % 

Blaveri 97 % 97 % 

Kim 80 % 80 % 

b) Survival Outcome Model 

In [171], the authors apply Bayesian Networks for predicting the prognosis in 

breast cancer cases. They showed how the inclusion of the clinical data to the 

microarray data boosts the modelling performance. In this Chapter, a new model-based 



Chapter 5: A new fuzzy entropy model-based feature selection framework                                116 
 
 

 

feature selection approach is presented, while showing that the addition of Stage and 

Grade (clinical data) to gene signature improves performance in the prediction of 

bladder cancer. The resulting simple structure (five rules and 25 inputs) also aids the 

computational efficiency of the model. 

Table 5.15 shows the performance of the RBF Neural-Fuzzy model compared to 

existing results from Sanchez-Carbayo [106]. In [25] a SVM modelling structure was 

utilised with a linear Kernel and the use 250 genes as inputs to the model. The 

methodology presented in this chapter outperforms the one presented in [25] while, 

crucially, achieving this with a much simpler structure (25 inputs as opposed to 250). 

Here only the accuracy measure is compared as sensitivity and specificity measures 

were not presented in [25]. 

Table 5.15: Accuracy of Survival using Stage, Grade and microarray data as inputs 

  Sanchez-Carbayo (SVM)  
250 genes [106] 

RBF Neural-Fuzzy 
25 Inputs (23 genes + 2 clinical) 

Sanchez-Carbayo 72 % 88 % 

 

i. Survival Outcome Model - Muscle Invasive Only  

The majority of the previously published results for survival in bladder cancer 

only include muscle invasive cases in order to simplify the modelling 

approach/structure. Also, from a clinical perspective, these cases are the most important 

ones to predict in terms of patient survival.  

The model developed in this chapter is more generic and includes different 

stages of bladder cancer.   To produce a fair comparison the model was redeveloped 

with just muscle-invasive patient data.  The RBF Neural-Fuzzy model using only 

muscle invasive patient data was compared to the published results of Blaveri [110], 

Riester [114] and the results presented in Chapter 3. 
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Table 5.16 shows the performance of the RBF Neural-Fuzzy model compared to 

existing results from Blaveri [110] using Prediction Analysis for Microarray (PAM) 

which uses a modified version of the nearest centroids classification method  and 25 

genes. 

Table 5.16: Performance of Survival (Accuracy) using Stage, Grade and microarray data as inputs 

 Blaveri (PAM) [110] 
(25 genes) 

RBF Neural-Fuzzy 
 
(23 genes + 2 clinical) 

 Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity 

Blaveri 78 % 65 % 93 % 92 % 66 % 100 % 

Table 5.17 shows the performance of the RBF Neural-Fuzzy model compared to 

previous results published by Riester [114]. The Riester study makes use of three 

independent datasets (Sanchez-Carbayo [106], Blaveri [110]and Kim [107]) to develop  

a hybrid model using both SVM and a clinical nomogram [115] to assist with the 

predictions based on 20 inputs. The RBF-NF model exhibits a better balanced 

performance, Area under the Curve of the Receiver Operating Characteristic (ROC) 

curve, in two of the three data sets.  The RBF-NF model achieves a  similar or better 

performance in all cases with a much simpler modelling structure as the SVM-based 

model has its predictions are further ‘filtered’ by a clinical nomogram. The simplicity of 

the RBF-NF modelling structure might be essential for developing easy to use clinical 

advisory tools.  
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Table 5.17: Performance of Survival using Stage, Grade and microarray data as inputs. For 

comparison purposed the results in this example are shown as the area under the curve (AUC) of a 

ROC plot 

  Survival 

 Riester [114] 
(SVM + Nomogram 

20 genes) 
 

RBF Neural-Fuzzy 
25 Inputs (23 genes + 2 clinical) 

Sanchez-Carbayo 
 

0.74 0.84 

Blaveri 
 

0.76 0.83 

Kim 0.75 0.72 

The results shown in Table 5.18 shows the RBF-NF Entropy model exhibits a 

better balanced performance (AUC of the ROC curve) in two of the three cohorts. It is 

important to note that the RBF-NF Entropy model achieves a superior or performance in 

the Sanchez-Carbayo and Kim case. The addition of stage and grade as an input did 

increase the performance compared to the results shown in Chapter 3 for the same 

model using t-test as input selection.  

Table 5.18: Performance (AUC) of Survival using Stage, Grade and microarray data as inputs 

  Survival 

 RBF Neural-Fuzzy with t-test 
20 Inputs  

RBF Neural-Fuzzy 
25 Inputs (23 genes + 2 clinical) 

Sanchez-Carbayo 
 

0.82 0.84 

Blaveri 
 

0.90 0.83 

Kim 0.67 0.72 

In summary, the simulation results (Tables 5.11-5.18) show that in most of the 

cases (where the performance is similar) the accuracy is better than the previously 

published results for both muscle invasive and non-invasive cases. 

  One of the main advantages of using the proposed approach is that, as the results 

demonstrate, via using the RBF-NF approach one can obtain improved or comparable 

performance but – crucially – via using less number of inputs and with low number of 

rules (reduced model complexity). The latter also results in very fast model computation 
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times, in the range of a few minutes when the algorithms are run on a standard single 

personal computer. 

5.6 Summary 

This Chapter introduces a new feature selection algorithm based on Fuzzy 

entropy and a RBF Neural-Fuzzy structure that links directly the fuzzy entropy to the 

relative significance of the features of the model. Because of the characteristics of the 

RBF-NF TSK output (input weighted polynomial) a new method is proposed to 

correlate the features that are more significant to the model’s prediction. This 

significance measure is used to rank the inputs (genes) of the model, via an iterative 

algorithm.  

The proposed methodology has successfully been applied to the case study of 

bladder cancer prediction for the prediction of the patients’ stage, grade and survival 

outcome.  

Another characteristic of this study is how different markers help to predict 

cancer survival and if they could be used alone (without microarray data). The results 

show that for the RBF Neural-fuzzy model it is not possible to make an accurate 

prediction using only Stage and/or Grade but the model benefits from the less noisy 

nature of that clinical data to generate a more robust prediction output and reduce the 

number of inputs required to make an accurate prediction. Considering that premise, the 

combination of clinical data as additional inputs to the most commonly used microarray 

gene intensities was assessed, finding that the addition of stage and grade improves the 

overall performance (with various levels of improvement). Crucially, the combination 

of Stage and Grade and the low number of genes resulted from the approach in this 

work, helps the model to be developed in simpler structures (low number of rules and 
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genes, thus reducing model complexity), while maintaining comparable or improved 

performance as compared to models with significantly more genes or more complex 

structure. The combination of Stage and Grade also helps the model to reduce the 

training iterations (easier to optimise), helping to reduce the computational cost to just a 

few seconds on a standard single personal computer. Via the presented approach a 

performance equal or better than the work reported in Lauss [113] and Riester [114] is 

achieved, with the added benefit of the feature selection methodology automatically 

producing simple models consisting of only 5 rules and  25 inputs (without any 

significant pre-processing of the data other than the standard normalisation procedures - 

common for microarray data), with an average performance around 80% success rate in 

the prediction of patient survival. 

Also important in the presented feature selection and modelling approach is the 

maintenance of the transparency and interpretability of the resulting modelling 

structure.  

The major benefit of this approach, apart from its good accuracy, is the 

transparency provided by the rule base, converting the rules from the model into a 

graphical output that can be better understood in a visual manner. Such traits can aid the 

development of easy to understand and use model by non-experts (non-engineers) such 

as clinicians in order to directly interrogate the resulting model (human-centric system). 

Even though the presented methodology was produced for the case study of microarray 

bladder cancer data, this method may also be applied to numerous other diseases, 

providing relevant input-output data exist.  
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Chapter’s summary of achievements: 

 Development of a Radial-Basis-Function Neural-Fuzzy (RBF-NF) Fuzzy-

Entropy based Feature Selection algorithm  

 For the first time an embedded RBF-NF model was applied to the feature 

selection and accurate prediction of stage, grade and survival of bladder 

cancer.  

 The model is shown to maintain its good performance using the inputs 

selected by the new Fuzzy-entropy feature selection, even when using just 

25 genes in the gene based signature. 

The achievements summarised above are linked to one conference publication 

(Biostec 2013, The University of Sheffield- INSIGNEO Institute for In-silico Medicine 

Showcase, Sheffield, UK (2014) and The University of Sheffield Engineering 

Symposium - USES 2013, Sheffield, UK (2013). 

 The present chapter presented the power of the RBF NF network to make 

accurate predictions even with a low number of inputs. However, all this analysis has 

been carried on by decreasing the initial data set (consistent of several thousands of 

genes) using first a filter method (t-test) and then a wrapper or the embedded Fuzzy 

Entropy feature selection presented in this chapter.  The biggest challenge though is 

presented in the generalisation ability of such data-driven models as identified by other 

research results too. Models that are trained based on a specific patient cohort should 

be tested against data from other cohorts to establish the developed models’ 

generalisation performance and predictive robustness. In the next Chapter, the 

generalisation issues of data-driven models based on microarray analysis will be 

investigated.  
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Chapter 6: Generalisation 
properties of microarray- 
based models 

 In this Chapter, the generalisation performance of the developed models is 

investigated. The approach studied in this chapter is to cross-validate distinct 

microarray data by applying data integration techniques. Three different data integration 

approaches were analysed: quantile discretisation, median adjust and NN input-output 

mapping. The latter two approaches are introduced for the first time to a bladder cancer 

classification algorithm. The results obtained demonstrate that the data integration 

methods for cross validation of the models helps to significant increase the predictive 

performance. 

6.1 Introduction 

 Previous microarray studies have addressed the possibility of comparing 

different studies (or microarray platforms) [172, 173], concluding that the 

measurements of gene expression cannot be directly compared but instead the 

prediction or classification results obtain from this studies can [174]. Most of the 

research in machine learning algorithms has concentrated on the generation of 

algorithms able to produce viable classifiers with respect of computational time and 

generalisation abilities [175]. The challenge investigated in this chapter is why a model 

that can predict with good accuracy in the same cohort shows poor performance when it 

is tested on a different data set (cross-validated). It is essential to  question if, as stated 
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in [176]: “on several cases drawbacks in the classifier performance could arise not 

because of machine learning algorithms, but due to characteristic intrinsic of the data”. 

Could these intrinsic characteristics be solved? And if so, what would the data require 

for this?  

  In the present chapter, the possibility of creating a general model that can be 

used with any type of microarray data set and still make a prediction with good 

accuracy is investigated. For example, let’s consider three data sets: Sanchez-Carbayo-

Kim and Blaveri. The first problem arises because the top genes selected by the 

classifier do not exist in the different data sets. If only the common genes are used, the 

genes would be a much smaller subset of the original cohort; if the initial number of 

genes in the data set was ten thousand genes by the time the genes are compared and 

only the common genes are used, only two thousand and three hundred genes would 

remain.  According to Table 3.1 from Chapter 3, each data set comes from a different 

platform, and as shown in Figure 6.1 there is no common behaviour between the three 

data sets. The horizontal axis corresponds to 9 common genes found in the three data 

sets; the vertical axis corresponds to the gene intensity values normalised from -1 to 1.  

 

Figure 6.1: Boxplot of behaviour of 3 different data sets. From left to right: Blaveri, Sanchez-

Carbayo and Kim.  
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 In Figure 6.1, the intensities are separated into DOD or NED. In Sanchez 

Carbayo-data set (centre image), a trend of how the median behaves for each of the 

class can be seen. While for DOD the median value stays closer to -0.2, for NED the 

median value is closer to 0. This is a clear example of the behaviour expected from a 

gene; a strong variance in the behaviour from one class to another. In the data set from 

Blaveri and Kim all the gene intensities behave in a dissimilar manner, there is no clear 

trend about the behaviour of the data; neither per class or even analysing each gene 

intensity in the same class.  

 It is clear that the gene expression intensities need to be processed to be 

compared directly, this could be due to differences in technologies or in the technique 

used for the data to be obtained. There are two different approaches to solve this 

problem: a meta-analysis approach and data integration.  

 The meta-analysis (Figure 6.2) approach consists of the use of statistical 

methods to combine results from independent studies [177, 178]. The key approach of 

meta-analysis is to avoid the direct comparison of gene expression values [174]. 

  

Figure 6.2: Meta-analysis approach 

 Many different publications have presented meta-analysis results, aiming to rank 

genes based on confidence measures [179], modelling the unwanted effects of different 

laboratories [180] or calculating a measure of precision for a study [181]. However, as 
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stated before, meta-analysis approaches avoid the direct comparison of gene expression 

values.  

 An alternative approach is to cross-validate distinct microarray data (Figure 6.3) 

by applying data integration techniques. Data integration techniques arise due to the 

high availability of different gene expression data and the opportunity to compare 

different microarray technologies and cross-validate the results from those experiments. 

The main challenge is that researchers use different microarray platforms and pre-

processing algorithms, making difficult to validate the results found on each data study 

[174].  

 

Figure 6.3: Data integration approach 

 In [182-185] researchers analysed the reproducibility of measurements using 

different platforms, finding that there is a high reproducibility between the same 

platforms. There is even a study that introduced a microarray gene expression 

calibration method [186], however this is only for certain types of microarray chips.  

 Multiple different data integration methods based on normalisation exist in the 

literature: [187] proposed a normalisation method using a Z-score, [188] applied 

rescaling of gene expression values, [189] used normalisation to combine different 

microarray platforms, [190]  proposed a gene scaling factor to integrate microarray data 

from different platforms.  
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 An alternative approach is to transform the distribution of the data set. This 

approach was proposed in [174] using quantile discretisation [191] and median rank 

scores in order to transform the microarray data from different platforms so their 

distributions become identical.  The above mentioned methods already proved to work 

well for classification tasks but as mentioned in [192], the methods can suffer from 

information reduction.  

 It must be emphasised that to date, there is no definitive approach for meta-

analysis or data integration because most of the results are data-dependent [177]. One of 

the biggest challenges is that there is no agreement on which pre-processing algorithm 

should be used to produce comparable expression measurements across different 

platforms [193].  

 The approach investigated in this Chapter, is to cross-validate distinct 

microarray data by applying three different data integration techniques. The remainder 

of this Chapter is organised in four more sections as follows: 6.2 Data integration: three 

different data integration methods are investigated; 6.3 Data Integration Simulation 

Results and 6.4 Analysis and comparison of results and Section 6.5 Summary.  

6.2 Data Integration 

 The three different data integration methods, presented in this Chapter: 

1) median adjust  

2) quantile discretisation [191] 

3) NN Input-Output mapping.   

6.2 .1 Median Adjust  

 To adjust by the median value of the gene intensities is a common pre-

processing step for microarray [113] aiming to centre the gene expression values. In the 
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approach presented in this Chapter, as an alternative of median centre the data set with 

its own, a reference data set is used and the median gene expression value for each input 

are adjust to the median of the reference data set. The median adjust approach is 

introduced for the first time in this Chapter. This procedure is done by class; in this case 

two classes (DOD and NED). The resulting data set will have a similar distribution to 

the reference data; afterwards this process a cross-validation of the models is done.   

6.2.2 Quantile discretisation 

 This method was first applied to microarray breast and prostate cancer [174] and 

it is based on equal frequency binning [191]. The aim of this method is to discretise the 

expression values of all arrays into a predetermined number of bins; similar to the 

analysis investigated in [174], the number of bins is equal to eight for the current 

investigation. According to the description investigated in [174], for each data set 𝑞 

subsets with equal number of values are determined using the quantiles of the 

expression value as cut-off points. They defined a cut-off point as the expression value 

separating an ordered set of expression values into two subsets. The two bins located at 

the centre are combined into one central bin. The expression values are then substituted 

by an integer value equivalent to the bin it falls into, a value of zero is given to the 

central bin and the remaining of the bins are numbered consecutively beginning with the 

bins next to the centre, using positive integers for the bins containing values above the 

median and negative values for the rest.  

6.2.3 Input-Output Mapping using a Neural Network 

 The approach presented in this section consists on finding the non-linear relation 

(mapping) of each input (gene) to its corresponding input from a ‘reference set’. 

Recapturing the premise expressed at the beginning of the chapter, [176]: “on several 

cases drawbacks in the classifier performance could arise not because of machine 
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learning algorithms, but due to characteristic intrinsic of the data”. If the analysed data 

sets are substantially different in terms of gene expression behaviour, but a model that 

performed with a good accuracy has already been identified, would it be possible to 

select that data set as a reference and map the gene intensities to its corresponding gene 

intensity from the ‘reference set’? If this premise were correct, the resulting gene 

intensities would have a prediction performance similar to the one obtained by the 

‘reference set’. To calculate this relation, a Neural-Network [194] is used.  A Neural-

Network was used because they are known to be universal approximators, able to 

approximate any given mapping from inputs to outputs. One of the drawbacks of NN’s 

is that they behave as black boxes but in this case, the extraction of knowledge from the 

model is not relevant, the objective is to find the input-output relation. To the author’s 

knowledge, no similar approach has been applied for integrating microarray data sets, 

however an approach presented in [195] applies an ANN (Multi-layer perceptron) to 

predict functional relationships between proteins.    

 The NN used in this section is a one hidden-layer feed forward network. An NN 

consists of several layers; each layer contains a number of units [65]. Figure 6.4 shows 

the structure of a single hidden layer NN, it consists of an input layer, hidden layer and 

output layer. 

 

Figure 6.4: One hidden-layer Neural Network 
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  In the example shown in Figure 6.4: 𝑙 are the inputs, 𝑚 the hidden layer units 

and 𝑛 the outputs. The outputs of the hidden unit are a weighted linear combination of 

the inputs.  

𝑎𝑗 = ∑ 𝑤𝑗𝑖

𝑙

𝑖=0

𝑥𝑖 

(6.1) 

  where 𝑤𝑗𝑖 are the weights from the input layer to the hidden layer. 

 The activation of the hidden layer can be calculated by: 

       ℎ𝑗 = 𝑔(𝑎𝑗) (6.2) 

 The linear combination of the output of the hidden layer is obtained by,  

𝑎𝑘 = ∑ 𝑤𝑘𝑗

𝑚

𝑗=0

ℎ𝑗 
(6.3) 

Applying the activation function 𝑔2(𝑥) to 6.3 the value of the 𝑘th output is obtained.  

𝑦𝑘 = 𝑔2(𝑎𝑘) (6.4) 

Combining all the equations, the complete representation of the network is: 

𝑦𝑘 = 𝑔2(∑ 𝑤𝑘𝑗
𝑚
𝑗=0  𝑔 (∑ 𝑤𝑗𝑖

𝑙
𝑖=0 𝑥𝑖)) (6.5) 

 The methodology applied is simple, to map each input from the reference set to 

its correspondent input from the validation data sets. Once the corresponding mapping 

is obtained, the RBF-NF model produced with the reference data set is cross-validated 

with the corresponding mapped data set of validation data sets. A similar performance 

to the one obtained by the validation set when only the reference data set was used to 

produce the model is expected.  
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As a measure of performance of the model the MSE (Mean square error) is used. 

The data was separated by classes (NED or DOD) and the inputs were randomly 

separated into ‘training’ (70% of the genes), ‘testing’ (15% of the genes) and 

‘validation’ (15% of the genes) data-sets. A one hidden-layer Neural-Network is used to 

find the non-linear relation (mapping) of each input (gene) to its corresponding input 

from a ‘reference set’.  

6.3 Data Integration Results 

 In Chapter 5, the results for the prediction of Bladder Cancer’s Survival using 

the fuzzy entropy feature selection method were presented. The first problem arises 

when validating the gene signature obtained with one data set with the gene signature 

obtained with a different data set. For example, if the Top 25 Genes obtained from the 

model using the Sanchez-Carbayo data set are compared with the top 25 Genes obtained 

with Blaveri’s or Kim’s data set (Table 6.1 or Appendix B ) one would find that none of 

the genes are present in both lists. This is a generalised problem in microarray analysis 

because each data set behaves in a different manner [196]. To ensure that the RBF-NF 

feature selection algorithm was working properly, it was tested it with a benchmark data 

set, obtaining a median accuracy in selecting the correct inputs of 80% (Appendix C).   

Table 6.1: Top Genes for the prediction blader cancer’s survival from Sanchez-Carbato, Blaveri 

and Kim  

Rank Top 25 Gene Title for 
Sanchez-Carbayo 

Top 25 Gene Title for Blaveri Top 25 Gene Title for Kim 

1 choline 
phosphotransferase 1 

hypothetical protein PRO1847 grade 

2 cadherin 16, KSP-
cadherin 

enolase 2, (gamma, neuronal) stage 

3 peptidylprolyl isomerase 
A (cyclophilin A)-like 4A 

/// peptidylprolyl 
isomerase A (cyclophilin 

A)-like 4B /// 
peptidylprolyl isomerase 
A (cyclophilin A)-like 4C 

/// peptidylprolyl 

KIAA0672 gene product carbohydrate (N-
acetylgalactosamine 4-0) 

sulfotransferase 8 
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isomerase A (cyclophilin 
A)-like 4G 

4 fibroblast growth factor 
14 

transcription factor 15 (basic 
helix-loop-helix) 

adrenomedullin 2 

5 GLI family zinc finger 1 zinc finger protein 266 ribosome binding protein 1 
homolog 180kDa (dog) 

6 fibrillarin oxytocin receptor cyclin N-terminal domain 
containing 2 

7 regulator of G-protein 
signaling 9 

tubby like protein 3 lipase, endothelial 

8 calcium channel, 
voltage-dependent, P/Q 
type, alpha 1A subunit 

suppressor of Ty (S.cerevisiae) 
4 homolog 1 

chromosome 5 open reading 
frame 46 

9 mediator of DNA-
damage checkpoint 1 

KIAA0410 gene product espin 

10 cannabinoid receptor 1 
(brain) 

glutamyl-prolyl-tRNA 
synthetase 

phosphodiesterase 6B, cGMP-
specific, rod, beta 

11 kelch domain containing 
8A 

syntaxin binding protein 1 transmembrane protein 195 

12 ISL LIM homeobox 1 Homo sapiens cDNA FLJ13303 
fis, clone OVARC1001372, 

highly similar to Homo sapiens 
liprin-alpha4 mRNA 

FAT tumor suppressor homolog 1 
(Drosophila) 

13 calmodulin-like 5 Homo sapiens, clone 
IMAGE:3940519, mRNA, partial 

cds 

family with sequence similarity 
13, member B 

14 pyridine nucleotide-
disulphide 

oxidoreductase domain 
1 

BCL2/adenovirus E1B 19kD-
interacting protein 1 

N-6 adenine-specific DNA 
methyltransferase 2 (putative) 

15 immunoglobulin heavy 
variable 5-78 
(pseudogene) 

Rag D protein plexin domain containing 2 

16 bicaudal D homolog 2 
(Drosophila) 

Stage chromosome 1 open reading 
frame 186 

17 polymerase (DNA 
directed), epsilon 2, 
accessory subunit 

KIAA0027 protein homeobox and leucine zipper 
encoding 

18 SEC14-like 2 (S. 
cerevisiae) 

proteasome (prosome, 
macropain) subunit, beta type, 

1 

chromosome 7 open reading 
frame 41 

19 Chromosome 2 open 
reading frame 55 

guanine nucleotide binding 
protein 4 

aspartylglucosaminidase 

20 HGF activator mitochondrial ribosomal 
protein L12 

similar to programmed cell death 
2 

21 major intrinsic protein of 
lens fiber 

chromosome 2 open reading 
frame 8 

chloride channel 3 

22 ring finger protein 5, E3 
ubiquitin protein ligase 

Grade nuclear receptor subfamily 2, 
group C, member 1 

23 latrophilin 2 KIAA0981 protein N-acetylneuraminate pyruvate 
lyase 2 (putative) 

24 Stage alanyl-tRNA synthetase arrestin domain containing 4 

25 Grade Homo sapiens cDNA FLJ10447 
fis, clone NT2RP1000851 

G protein-coupled receptor 98 
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 From previous results (Chapter 3, 4 and 5) it is possible to conclude that the 

RBF Neural Fuzzy Model shows a good performance within the same data set. But 

several experiments must be conducted to conclude that the model can generalise well 

with a different cohort. To test the generalisation capabilities of the model 3 models 

were produced (Figure 6.5), the same RBF Neural-fuzzy model is applied to 2300 

common genes between Sanchez-Carbayo, Blaveri and Kim data set to predict Survival 

rate. In addition to the gene intensities, the parameters of cancer Stage classification and 

cancer Grade classification were considered as inputs to the predictive model. This 

analysis is investigated in Section 6.3.1. 

 

Figure 6.5: Methodology followed for the analysis of the Individual models  

 The reason to use this approach is to observe how the performance of each 

individual model is affected by using only the common genes between the three data 

sets. As shown in Table 6.1, if the three lists of the Top 25 genes selected by the fuzzy 

entropy feature selection model are compared it is possible to become conscious that 

none of the genes are repeated in the three data sets.  The common genes between the 

three data sets, which are 2300 in total, are genes that were discarded in the initial stage 

of pre-processing by t-test. This means that they do not even show a strong linear 

dependence to the survival outcome. Not only a much smaller subset of the original set 

remains but also, the quality of the remaining genes is not the ideal to make an accurate 

prediction. Here, the performance expectation would reduce to around 70% of accuracy.     
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 Once the analysis of how the use of only the common genes to produce a model 

is done, a reference set will be chosen to cross validate the models and adjusted them to 

a reference data set. The data set that shows the highest performance across all the 

results will be chosen as a reference set, which indicates that is the most reliable and 

with fewer variations in intensities data set.  

 The remaining 2 data sets will be cross-validated with the reference data set’s 

model and afterwards, three different data integrations methods will be applied (Figure 

6.6): 

 Median adjusted 

 Discretisation 

 Mapping Input-Output using a NN 

 

Figure 6.6: Methodology followed for the cross-validation of the models 

This analysis is presented in Section 6.3.2 

6.3.1 Produce models with common genes 

 The RBF-NF model is developed as described in section 5.2 and 5.4. The 

methodology described below was applied to analyse each one of the data sets. The first 

step was to make a gene input selection using t-test. The gene input selection using t-

test was done separately for the 3 data sets and the number of genes was reduced from 
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2300 genes to 250. The RBF-NF models were trained with the 250 genes and 5 rules; 

afterwards the Fuzzy entropy feature selection algorithm was used on each top 250 

genes list. With each data set a model that was trained with the 3 sets of Top 25 Genes 

selected by the Fuzzy Entropy feature selection was produced. This means that the 

Sanchez-Carbayo data set was trained 3 times, one with the top genes from his fuzzy 

entropy feature selection, a second time with the genes selected by Blaveri and a third 

and final time with the genes from Kim gene selection. The methodology was applied to 

the Sanchez-Carbayo, Kim and Blaveri datasets for the prediction of survival of bladder 

cancer. The classification functions of Specificity, Sensitivity and Accuracy are used as 

measures of performance [147]. The resulting model consisted of 5 rules and 25 inputs. 

The data samples were randomly separated into ‘training’ (70% of the patients) and 

‘testing’ (30% of the patients) data-sets. The training set is only used to train the model, 

and the testing data-set is only used after the model training is finished to test the 

generalisation performance of the model, as a form of cross-validation [147]. The 

results shown in Table 6.3 are the mean % of the 10 models for Accuracy, Specificity 

and Sensitivity respectively. The highest performance was obtained with the Sanchez-

Carbayo Data Set, the lowest with Kim. The Gene Signature for the prediction of 

Survival using the Sanchez-Carbayo data set is shown in Table 6.2. Table 6.2 shows the 

25 top ranked genes.   
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Table 6.2:  Gene Signature for Bladder Cancer Survival in Sanchez-Carbayo Data Set 

Rank Gene 
Symbol 

Gene Title 

1 FUT6 fucosyltransferase 6 (alpha (1,3) fucosyltransferase) 

2 FBL fibrillarin 

3 TOP2B topoisomerase (DNA) II beta 180kDa 

4 CNR1 cannabinoid receptor 1 (brain) 

5 MDK midkine (neurite growth-promoting factor 2) 

6 STAT5B signal transducer and activator of transcription 5B 

7 NPTX1 neuronal pentraxin I 

8 PTK7 protein tyrosine kinase 7 

9 GRIA1 glutamate receptor, ionotropic, AMPA 1 

10  grade 

11 BAIAP2 brain-specific angiogenesis inhibitor 2 

12 PTHLH parathyroid hormone-like hormone 

13 VEGFA hepatic leukemia factor 

14 TNFSF11 tumor necrosis factor (ligand) superfamily, member 11 

15 ECE1 endothelin converting enzyme 1 

16 GRP gastrin-releasing peptide 

17 TACC2 transforming, acidic coiled-coil containing protein 2 

18 TFF3 trefoil factor 3 (intestinal) 

19 DGCR2 DiGeorge syndrome critical region gene 2 

20 C8A complement component 8, alpha polypeptide 

21 SPAG16 sperm associated antigen 16 

22 CEACAM6 carcinoembryonic antigen-related cell adhesion molecule 6 (non-
specific cross reacting antigen) 

23 IGFBP3 insulin-like growth factor binding protein 3 

24 SH3GL3 SH3-domain GRB2-like 3 

25  stage 
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The results shown in Table 6.3 displays that the RBF-NF Entropy model 

produced with Sanchez-Carbayo’s data set exhibit a superior performance. These results 

are not surprising since a superior performance for the data set used for making the gene 

selection is expected, as opposed to the other two data sets that were used for 

comparison.  

Table 6.3: Prediction of Survival using 5 rules and 25 inputs with Sanchez-Carbayo’s Top 25 

Inputs 

  Training Testing 

  Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity 

Sanchez-
Carbayo 

Performance 
(%) 

91 95 86 84 91 71 

Standard 
Deviation 

1 2 4 5 11 21 

Blaveri Performance 
(%) 

92 90 94 56 49 60 

Standard 
Deviation 

6 6 7 9 20 19 

Kim Performance 
(%) 

87 92 81 54 63 42 

Standard 
Deviation 

3 3 4 4 7 13 
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Table 6.4 shows the 25 top ranked genes for Blaveri’s data set. 

Table 6.4:  Gene Signature for Bladder Cancer Survival in Blaveri Data Set 

Rank Gene 
Symbol 

Gene Title 

1 AARS alanyl-tRNA synthetase 

2 TULP3 tubby like protein 3 

3 TCF15 transcription factor 15 (basic helix-loop-helix) 

4 CYLC2 cylicin, basic protein of sperm head cytoskeleton 2 

5 MYF6 myogenic factor 6 (herculin) 

6 DAD1 defender against cell death 1 

7 ZNF266 zinc finger protein 266 

8 TANK TRAF family member-associated NFKB activator 

9 HAS2 hyaluronan synthase 2 

10 SLC4A2 solute carrier family 4, anion exchanger, member 2 (erythrocyte 
membrane protein band 3-like 1) 

11 SNRPB small nuclear ribonucleoprotein polypeptides B and B1 

12 FOXO1 forkhead box D1 

13 DNAJB2 DnaJ (Hsp40) homolog, subfamily B, member 9 

14 TERF2 telomeric repeat binding factor 2 

15 STXBP5 syntaxin binding protein 1 

16 ELK1 ELK1, member of ETS oncogene family 

17 BTG3 BTG family, member 3 

18 NR1H2 nuclear receptor subfamily 1, group H, member 2 

19 EPRS glutamyl-prolyl-tRNA synthetase 

20 TPD52L2 tumor protein D52-like 2 

21 CUBN cubilin (intrinsic factor-cobalamin receptor) 

22 BCL3 B-cell CLL/lymphoma 3 

23 SYN2 synapsin II 

24  stage 

25  grade 
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The results shown in Table 6.5 shows the RBF-NF Entropy model produced 

with Blaveri’s data set exhibits a higher Accuracy, if the results are compared to the 

results obtained using Sanchez-Carbayo’s and Kim’s data set. Nevertheless, for the 

results obtained using Blaveri’s data set, the Specificity and Sensitivity appear to be 

unbalanced and with a high standard deviation. The performance obtained by the RBF-

NF model using Kim’s data set was similar to the one shown in Table 6.3.  

Table 6.5: Prediction of Survival using 5 rules and 25 inputs with Blaveri’s Top 25 Inputs 

  Training Testing 

  Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity 

Sanchez-
Carbayo 

Performance 
(%) 

90 89 91 69 72 64 

Standard 
Deviation 

6 11 3 7 9 21 

Blaveri Performance 
(%) 

99 100 98 71 48 80 

Standard 
Deviation 

1 0 2 5 20 9 

Kim Performance 
(%) 

86 91 80 54 63 44 

Standard 
Deviation 

6 6 8 6 9 10 
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The Gene Signature for the prediction of Survival of bladder cancer using Kim’s 

data set is shown in Table 6.6. No common genes between the three data sets (Sanchez-

Carbayo, Kim and Blaveri) were found. 

Table 6.6:  Gene Signature for Bladder Cancer Survival in Kim Data Set 

Rank Gene 
Symbol 

Gene Title 

1  grade 

2 FGFR4 fibroblast growth factor receptor 4 

3 LMNB1 lamin B1 

4 SFN stratifin 

5 FOLR3 folate receptor 3 (gamma) 

6 ARC activity-regulated cytoskeleton-associated protein 

7 HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 

8 IFI27 interferon, alpha-inducible protein 27 

9 DHCR24 24-dehydrocholesterol reductase 

10 XRCC3 X-ray repair complementing defective repair in Chinese hamster 
cells 3 

11 TNFRSF9 tumor necrosis factor (ligand) superfamily, member 9 

12 CLK3 CDC-like kinase 3 

13 TFCP2 transcription factor CP2 

14 MAP7 microtubule-associated protein 7 

15 CFTR ATP-binding cassette, sub-family C (CFTR/MRP), member 5 

16 CDA cytidine deaminase 

17 PTPN13 protein tyrosine phosphatase, non-receptor type 13 (APO-1/CD95 
(Fas)-associated phosphatase) 

18 RFX5 regulatory factor X, 5 (influences HLA class II expression) 

19 IFIT1 interferon-induced protein with tetratricopeptide repeats 1 

20 GABRP gamma-aminobutyric acid (GABA) A receptor, pi 

21 ALDH1A1 aldehyde dehydrogenase 1 family, member A1 

22 SNCA synuclein, alpha (non A4 component of amyloid precursor) 

23 CAT catalase 

24 ACVR1 activin A receptor, type I 

25  stage 

Similar to the results shown in Table 6.5, the results shown in Table 6.7 exhibit 

a superior performance for RBF-NF model produced using Sanchez-Carbayo’s data set. 

This indicates a trend of superior performance when Sanchez-Carbayo data set is used. 

No matter which data set was used for making the gene selection, if an RBF-NF model 

using those genes was produced using Sanchez-Carbayo’s data set it would give the 
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highest validation performance among the three new data sets. These could be due to 

intrinsic characteristic of the data, the calibration of the instruments at the moment of 

taking the measurements or simply the processing of the microarray images. This also 

becomes clear if the distribution of the three data sets shown in Figure 6.1 is analysed. 

Certainly the same pre-processing of the data was used but they all behave in a different 

manner. From the results obtained it can be concluded that Sanchez-Carbayo’s data set 

is more ‘cleaner’ of outlier values and did not have to be filled in for missing values.  

Table 6.7: Prediction of Survival using 5 rules and 25 inputs with Kim’s Top 25 Inputs 

  Training Testing 

  Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity 

Sanchez-
Carbayo 

Performance 
(%) 

96 98 93 75 83 62 

Standard 
Deviation 

2 2 5 6 6 15 

Blaveri Performance 
(%) 

98 99 98 55 24 68 

Standard 
Deviation 

2 1 4 13 21 15 

Kim Performance 
(%) 

86 92 78 52 63 39 

Standard 
Deviation 

3 5 3 5 11 9 

 Before cross validating the results into a different data set, a logical approach 

would be to make a meta-analysis or combination of the results from the Top genes 

from each data set and produce one ‘Top Global Genes List’ (shown in Table 6.8). 

From the results shown in Tables 6.3, 6.5 and 6.7, it is clear that the models produced 

using Sanchez-Carbayo’s data set had the best performance, therefore it would be logic 

to include a higher number of Top Genes from this data set than from Blaveri or Kim. 

Since 25 inputs are used in the rest of the models and 2 are already designated for Stage 

and Grade, it is necessary to divide the rest 23 inputs to give a majority to Sanchez-

Carbayo and represent equally Kim and Blaveri. It was decided to use Stage and Grade 
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plus 13 inputs from Sanchez-Carbayo and 5 inputs from Kim and Blaveri, respectively 

to give a total of 25 inputs. 

Table 6.8: Top Global Genes List 

 Rank Gene 
Symbol 

Gene Title 

1 FUT6 fucosyltransferase 6 (alpha (1,3) fucosyltransferase) 

2 FBL fibrillarin 

3 TOP2B topoisomerase (DNA) II beta 180kDa 

4 CNR1 cannabinoid receptor 1 (brain) 

5 MDK midkine (neurite growth-promoting factor 2) 

6 STAT5B signal transducer and activator of transcription 5B 

7 NPTX1 neuronal pentraxin I 

8 PTK7 protein tyrosine kinase 7 

9 GRIA1 glutamate receptor, ionotropic, AMPA 1 

10 BAIAP2 brain-specific angiogenesis inhibitor 2 

11 PTHLH parathyroid hormone-like hormone 

12 VEGFA hepatic leukemia factor 

13 TNFSF11 tumor necrosis factor (ligand) superfamily, member 11 

14 AARS alanyl-tRNA synthetase 

15 TULP3 tubby like protein 3 

16 TCF15 transcription factor 15 (basic helix-loop-helix) 

17 CYLC2 cylicin, basic protein of sperm head cytoskeleton 2 

18 MYF6 myogenic factor 6 (herculin) 

19 FGFR4 fibroblast growth factor receptor 4 

20 LMNB1 lamin B1 

21 SFN stratifin 

22 FOLR3 folate receptor 3 (gamma) 

23 ARC activity-regulated cytoskeleton-associated protein 

24  grade 

25  stage 

 As shown in Table 6.9, there is no significant advantage of using this Top 

Global Gene list, in fact the performance for Sanchez-Carbayo’s model decreased 

considerably for the Specificity. While Kim and Blaveri showed lower and unbalanced 

performances.  
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Table 6.9: Prediction of Survival using 5 rules and 25 inputs with Top Global Gene List 

  Training Testing 

  Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity 

Sanchez-
Carbayo 

Performance 
(%) 

92 89 96 70 45 83 

Standard 
Deviation 

16 30 1 3 17 8 

Blaveri Performance 
(%) 

86 90 93 47 76 23 

Standard 
Deviation 

1 2 3 3 7 5 

Kim Performance 
(%) 

93 92 92 51 70 43 

Standard 
Deviation 

4 7 8 12 13 19 

In the next sections the effect of integrating data sets using Sanchez-Carbayo’s 

data set as a reference to try to ‘adjust’ Blaveri and Kim data sets to improve the 

Generalisation performance (Testing in unseen and cross validated data set) is 

investigated.  

6.3.2 Cross-validate models 

 Since the Top Global Genes list did not bring any benefit in performance it was 

decided to simplify the methodology and use only one data set as the reference. To 

cross validate the models and adjusted them to a reference data set, the Sanchez-

Carbayo’s data set was chosen. This data set showed the highest performance across all 

the results, which indicates that is the most reliable and with fewer variations in 

intensities data set.  

 The first approach consists of using the RBF-NF model developed with 

Sanchez-Carbayo’s data set. The data samples were randomly separated into ‘training’ 

(70% of the patients) and ‘testing’ (30% of the patients) data-sets. The training set is 

only used to train the model, and the testing data-set is only used after the model 

training is finished to test the generalisation performance of the model, as a form of 

cross-validation.  Instead of using the Testing data from Sanchez-Carbayo, Blaveri and 
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Kim’s complete data are used as Testing to review the generalisation of the model. 

Additionally, three different data integrations approaches are analysed:  

 Median adjusted 

 Discretisation 

 Input-Output Mapping using a NN 

a) Cross-Validate Results 

 As explained above, the methodology is to cross-validate (use as Testing) 

Blaveri and Kim’s complete data set to review the generalisation of the model. The data 

from Blaveri and Kim are cross validated with model created with Sanchez-Carbayo’s 

data. It must be emphasised that all the data sets had the same pre-processing. Table 

6.10 shows the performance obtained when using Sanchez-Carbayo’s data set to 

produce the model.  

Table 6.10: Prediction of Survival using 5 rules and 25 inputs with Sanchez-Carbayo’s Top 25 

Inputs 

   Training Testing 

  Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity 

Sanchez-
Carbayo 

Performance 
(%) 

91 95 86 84 91 71 

Standard 
Deviation 

1 2 4 5 11 21 

 

 Table 6.11 and 6.12 shows the Testing performance obtained when using 

Blaveri and Kim’s data set. Both accuracies were considerably low. 

 

Table 6.11: Prediction of Survival using 5 rules and 25 inputs with Sanchez-Carbayo’s Top 25 

Inputs Cross validated with Blaveri as Testing 

   Testing model using Blaveri data 
set 

  Accuracy Specificity Sensitivity 

Blaveri Performance 
(%) 

42 76 14 

Standard 
Deviation 

2 5 7 
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Table 6.12: Prediction of Survival using 5 rules and 25 inputs with Sanchez-Carbayo’s Top 25 

Inputs Cross validated with Kim as Testing 

  Testing model using Kim data set 

  Accuracy Specificity Sensitivity 

Kim Performance 
(%) 

56 93 05 

Standard 
Deviation 

3 17 17 

b) Median Adjusted  

 The median adjust approach is introduced for the first time in this Chapter. As 

an alternative of median centre the data set with its own median gene expression value 

for each input (gene), a reference data set (Sanchez-Carbayo) is used and the different 

data sets are adjust to the median value of the input from reference data set. This 

procedure is done by class; in this case two classes DOD and NED are used. The 

resulting data set will have a similar distribution to the reference data, afterwards this 

process the models are cross-validated per data set, in a similar way as the cross-

validation done in the previous sub-section of this chapter.  

 The performance presented in Table 6.13 is similar to the performance seen 

when the Blaveri data set was used as Testing without any processing of the data for the 

model produced with Sanchez-Carbayo’s data.  

Table 6.13: Prediction of Survival using 5 rules and 25 inputs with Sanchez-Carbayo’s Top 25 

Inputs with Data Integration Cross-validated with Blaveri 

  Testing model using Blaveri data 
set 

  Accuracy Specificity Sensitivity 

Blaveri 
Median 
Adjusted 

Performance 
(%) 

53 55 51 

Standard 
Deviation 

5 8 3 

 

 Similar results were obtained when Kim’s data set was used for testing the 

model produced with Sanchez-Carbayo’s data. An increase in the performance is seen 

for the median adjusted model compared to the performance presented in Table 6.14.  
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Table 6.14: Prediction of Survival using 5 rules and 25 inputs with Sanchez-Carbayo’s Top 25 

Inputs with Data Integration Cross-validated with Kim 

  Testing model using Kim data set 

  Accuracy Specificity Sensitivity 

Kim 
Median 
Adjusted 

Performance 
(%) 

62 82 33 

Standard 
Deviation 

2 12 10 

 By adjusting the median value across all the samples the data sets are forced to 

have a similar distribution to Sanchez-Carbayo’s data set (Figure 6.7, 6.8 and 6.9). The 

horizontal axis represents the gene intensities and the vertical axis the number of 

samples. Before any processing of the data, all the data sets had the same pre-

processing. 

 

Figure 6.7: Median adjusted for the three data sets using as reference Sanchez-Carbayo. 

Distribution from Sanchez-Carbayo data set. 

 

 

Figure 6.8: Median adjusted for the three data sets using as reference Sanchez-Carbayo. 

Distribution from Blaveri data set. 
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Figure 6.9: Median adjusted for the three data sets using as reference Sanchez-Carbayo. 

Distribution from Kim data set. 

c) Quantile discretisation 

  The aim of this method is to discretise the expression values of all arrays into a 

predetermined number of bins. For each data set 𝑞 subsets with equal number of values 

are determined using the quantiles of the expression value as cut points. They defined a 

cut-off point as the expression value separating an ordered set of expression values into 

two subsets. The two bins located at the centre are combined into one central bin. The 

expression values are then substituted by an integer value equivalent to the bin it falls 

into, a value of zero is given to the central bin and the remaining of the bins are 

numbered consecutively beginning with the bins next to the centre, using positive 

integers for the bins containing values above the median and negative values for the 

rest.  

 As shown in Table 6.15, the performance from Sanchez-Carbayo when the 

quantile discretisation method is applied was slightly lower compared to the results 

presented in Table 6.10.  
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Table 6.15: Prediction of Survival using 5 rules and 25 inputs with Sanchez-Carbayo’s Top 25 

Inputs with Data Integration 

  Training Testing 

  Accuracy Specificity Sensitivity Accuracy Specificity Sensitivity 

Sanchez-
Carbayo 
Discretisation 

Performance 
(%) 

98 97 99 76 77 74 

Standard 
Deviation 

1 1 1 7 8 16 

 When the Blaveri data set is used as Testing for the model produced with 

Sanchez-Carbayo’s data, a higher performance was achieved using the discretisation 

method (Table 6.16) as opposed as the results shown for median adjust (Table 6.13). 

Table 6.16: Prediction of Survival using 5 rules and 25 inputs with Sanchez-Carbayo’s Top 25 

Inputs with Data Integration Cross-validated with Blaveri 

  Testing model using Blaveri data 
set 

  Accuracy Specificity Sensitivity 

Blaveri 
Discretisation 

Performance 
(%) 

61 50 71 

Standard 
Deviation 

7 11 12 

 

 Similar results are obtained using Kim data set (Table 6.17); it can be seen an 

increase in the performance for the quantile discretisation model compared to the 

performance investigated in Table 6.14. 

Table 6.17: Prediction of Survival using 5 rules and 25 inputs with Sanchez-Carbayo’s Top 25 

Inputs with Data Integration Cross-validated with Kim 

  Testing model using Kim data set 

  Accuracy Specificity Sensitivity 

Kim 
Discretisation 

Performance 
(%) 

62 68 53 

Standard 
Deviation 

2 6 3 

 By applying quantile discretisation, the data sets are forced to have a similar 

distribution to Sanchez-Carbayo’s data set (Figure 6.10, 6.11 and 6.12). The horizontal 

axis represents the gene intensities and the vertical axis the number of samples. 
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Figure 6.10: Quantile discretisation for the three data sets using as reference Sanchez-Carbayo. 

Distribution from Sanchez-Carbayo Data set data set. 

 
Figure 6.11: Quantile discretisation for the three data sets using as reference Sanchez-Carbayo. 

Distribution from Blaveri data set. 

 
Figure 6.12: Quantile discretisation for the three data sets using as reference Sanchez-Carbayo. 

Distribution from Kim data set. 

d) Input-Output Mapping using a Neural-Network 

 The Sanchez-Carbayo data set was chosen as the reference data set to map the 

input-output mapping of two data sets. When the Blaveri data set was used as Testing 

for the model produced with Sanchez-Carbayo’s data a similar performance to the one 

presented in Table 6.10 is seen. The accuracy, specificity and sensitivity presented in 
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Table 6.18 are comparable to the corresponding values of Accuracy, Sensitivity and 

Specificity presented in Table 6.10. The standard deviation is higher for the accuracy 

performance, which means that there was more variation in performance between the 10 

folds.  

Table 6.18: Prediction of Survival using 5 rules and 25 inputs with Sanchez-Carbayo’s Top 25 

Inputs with Data Integration Cross-validated with Blaveri 

  Testing model using Blaveri data 
set 

  Accuracy Specificity Sensitivity 

Blaveri  Performance 
(%) 

85 94 77 

Standard 
Deviation 

11 16 10 

  

 Figures 6.13 and 6.14 display the behaviour of the MSE used as a measure of 

performance of the model. The best validation performance is obtained at 2 epochs for 

NED class and 3 epochs for DOD.  

 

Figure 6.13: Class NED best validation performance 
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Figure 6.14: Class DOD best validation performance 

 Similar results are obtained when Kim’s data set is used for testing the model 

produced with Sanchez-Carbayo’s data. It is possible to perceive an increase in the 

performance compared to the results presented in Tables 6.14 (median adjusted) and 

6.17 (quantile discretisation) compared to the performance investigated in Table 6.19.  

Table 6.19: Prediction of Survival using 5 rules and 25 inputs with Sanchez-Carbayo’s Top 25 

Inputs with Data Integration Cross-validated with Kim 

  Testing model using Kim data set 

  Accuracy Specificity Sensitivity 

Kim Performance 
(%) 

79 92 62 

Standard 
Deviation 

17 23 22 
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Figures 6.15 and 6.16 display the behaviour of the MSE used as a measure of 

performance of the model. The best validation performance is obtained at 6 epochs for 

NED class and 5 epochs for DOD.  

 
Figure 6.15: Class NED best validation performance 

 
Figure 6.16: Class DOD best validation performance 
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e) Analysis and comparison of results. 

Table 6.20 shows a comparison of performance between the different data 

integration approaches presented in this chapter. The RBF-NF models (Sanchez-

Carbayo NN Input-Output mapping and Sanchez-Carbayo Discretisation) exhibit a 

higher performance (AUC of the ROC curve) in the three cohorts as compared to the 

results for cross-validation, median adjust and discretisation.  

Table 6.20: Comparison of results between RBF-NF models with 5 rules and 25 inputs 

 Testing 

Bladder 
Cancer 

AUC 
Sanchez 

AUC 
Blaveri 

AUC 
Kim 

Performance 
Cross-
validation 

0.81 0.45 0.49 

Performance 
Sanchez-
Carbayo 
Median 
Adjust   

0.81 0.53 0.66 

Performance 
Sanchez-
Carbayo 
Discretisation  

0.75 0.60 0.60 

Performance 
Sanchez-
Carbayo 
NN mapping   

0.81 0.86 0.78 

6.5 Summary 

 In this Chapter, the generalisation performance of the developed models is 

investigated. The question that investigated in this chapter is why a model that can 

predict with good accuracy in the same cohort is bad when it is tested on a different data 

set (cross-validated). Is this challenge arising due to characteristic intrinsic of the data? 

The approach studied in this chapter is to cross-validate distinct microarray data by 

applying data integration techniques. Three different data integration approaches are 

analysed: quantile discretisation, median adjust and NN input-output mapping. The 

latter two approaches are introduced for the first time to a bladder cancer classification 



Chapter 6: Analysis of generalisation of microarray based models                                               153 
 
 

 
 

algorithm. The results obtained demonstrate that the data integration methods for cross 

validation of the models helps to have a considerable increase in the accuracy.  

 The first challenge arises because the top genes selected by the classifier do not 

exist in the different data sets. The common genes between the data sets tend to be a 

much smaller subset of the original cohort; typically reduced from ten or twenty 

thousand to a couple of thousand.  

 The approach studied in this chapter is to cross-validate distinct microarray data 

by applying data integration techniques. The main challenge is that researchers use 

different microarray platforms and pre-processing algorithms, making difficult to 

validate the results found on each data study [174]. Three different data integration 

approaches are analysed: quantile discretisation, median adjust and NN input-output 

mapping. The last two approaches are introduced for the first time to a bladder cancer 

classification algorithm.  

 The results obtained (Tables 6.13-6.19) demonstrate that the data integration 

methods for cross validation of the models give an increase in the performance. If the 

results from the data integration methods are compared to previously published results it 

can be seen that the NN mapping and Discretisation and median adjust have a higher 

performance in terms of AUC of a ROC curve. The obtained results demonstrate how 

data integration methods for model cross-validation can have a significant increase in 

the generalisation performance, and enable previously developed models to be used in 

different patient cohorts.  

Despite the fact that more information can be extracted from microarray models, the 

generalisation issue makes them still unreliable for clinicians.  
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 At moment, there is no definitive approach for data integration because most of 

the results are data-dependent. One of the biggest challenges is that there is no 

agreement on which pre-processing algorithm should be used to produce comparable 

expression measurements across different platforms.  

Chapter’s summary of achievements: 

 Improve the generalisation performance in microarray bladder cancer data  

 Two different data integration approaches are presented for the first time: 

median adjust and NN mapping of input-output.  

 The results obtained prove that the data integration methods for cross 

validation of the models helps to have a significant increase in the accuracy. 
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Chapter 7: Conclusions 
and future research 
directions  

Through this entire thesis, it has been emphasised why the study of predicting 

cancer is of great significance. The main reasons are: to help decrease the mortality 

rate, to make a prompt and correct classification of the type of cancer that would later 

translate into avoiding unnecessary treatment and save costs. Because traditional 

prediction tools have struggled to make an accurate classification at the early stages of 

cancer, new technologies have emerged for the study of cancer. Microarray gene 

expression data is one of these new technologies. The main challenge that these types 

of studies run across is the high dimensionality, translated in thousands of genes but a 

small number of samples. As there are no physics/biology based equations that 

represent the behaviour of the genes, a predictor model (data-driven) must be 

produced.  

 An RBF-NF methodology for the case study of bladder cancer prediction with 

respect to the patient’s stage, grade and survival was proposed. RBF-Neural-Fuzzy 

models offer balance of performance and simplicity (while being tolerant to 

imprecision); these are traits that are important in healthcare informatics. The focus of 

this research is to produce a model to identify the parameters significant to the process 

(genes) maintain simplicity and transparency while at the same time makes an accurate 

prediction of cancer survival. The major benefit of this approach, apart from its good 
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accuracy, is the transparency given by the rule base, converting the rules from the model 

into a graphical output that can be better understood in a visual manner. Such traits can 

aid the development of easy to understand and use model by non-experts (non-

engineers) such as clinicians in order to directly interrogate the resulting model (human-

centric system). 

Compared to previous modelling attempts from Martin Lauss [113] and Riester 

[114] based on SVM, the developed RBF-NF method shows improved performance in 

the same datasets. However, the attractiveness of this method is on the transparency that 

the rule-base exhibits and the good generalisation performance (even with just 20 genes 

and 5 rules) as compared to previous modelling attempts on the same dataset. The rule-

base’s transparency and interpretability, can aid the clinicians to directly interrogate the 

resulting model (human-centric system) and examine how the model uses individual 

genes and their intensity to provide predictions on the stage, grade and survival of 

bladder cancer.  

The scaling-up performance of Radial Basis Function (RBF) Neural-Fuzzy 

models is also investigated. The aim was to find the rational limit for the maximum 

number of useful inputs (genes) to use in the model while still maintaining low 

computational complexity and high accuracy. An enhanced rule-base extraction 

framework is proposed to improve the model’s performance for high-dimensional low 

sample size data.   

 From the results obtained it can be concluded that the RBF model using FCM 

alone performs best when less than 300 genes are used. Due to the characteristics of 

high-dimension low sample size data, as the number of genes increases but number of 

samples remains the same, the WFCM and WFCM with the validity index are needed to 

model the microarray data with a good level of accuracy.  
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 The developed models maintain the simple structure with just five (5) rules, but 

with very good performance (up to 2000 genes). The training time for the models can 

still be up to 3-4 days on a high performance computing server; however other more 

efficient-optimisation algorithm can be used instead.  

One of the main contributions of this research is the introduction of a new input 

selection method; this new method is based on the polynomial output of the RBF-NF 

model. The hypothesis behind the new Input selection is to monitor the values of the 

output weights and membership degree during the training of the structure. Because of 

the polynomial output of the model, it is conceivable to distinguish how much a gene is 

involved in the final output and if that rule is important for the system.   

The new feature selection algorithm is based on Fuzzy entropy and a RBF 

Neural-Fuzzy structure that links directly the fuzzy entropy to the relative significance 

of the features of the model. Because of the characteristics of the RBF-NF TSK output 

(input weighted polynomial) it is possible to correlate the features that are more 

significant to the model’s prediction. This significance measure is used to rank the 

inputs of the model via an iterative algorithm.  

Another contribution of this research is how the combination of clinical data 

(stage and grade) as additional inputs to the most commonly used microarray gene 

intensities improves the overall performance (with various levels of improvement). 

Crucially, the combination of Stage and Grade and the low number of genes resulted 

from the approach helps the model to be developed in simpler structures (low number of 

rules and genes, thus reducing model complexity), while maintaining comparable or 

improved performance as compared to models with significantly more genes or more 

complex structure. The combination of Stage and Grade also helps the model to reduce 
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the training iterations (easier to optimise), helping to reduce the computational cost to 

just a few seconds on a standard single personal computer.  

 The biggest challenge though is presented in the generalisation ability of such 

data-driven models as identified by other research results too. Models that are trained 

based on a specific patient cohort should be tested against data from other cohorts to 

establish the developed models’ generalisation performance and predictive robustness. 

The possibility of creating a general model that can be used with any type of 

microarray data set and still make a prediction with respectable accuracy (around 75%) 

was also investigated.  

 The first challenge arises because the top genes selected by the classifier do not 

exist in the different data sets. The common genes between the data sets tend to be a 

much smaller subset of the original cohort; typically reduced from ten or twenty 

thousand to a couple of thousand. The main challenge is that researchers use different 

microarray platforms and pre-processing algorithms making difficult to validate the 

results found on each data study [174]. Three different data integration approaches are 

analysed: quantile discretisation, median adjust and NN input-output mapping. The 

latter two approaches are introduced for the first time to a bladder cancer classification 

algorithm.  

 The results obtained demonstrate that the data integration methods for cross 

validation of the models give an increase in the performance. If the results from the data 

integration methods are compared to previously published results it can be seen that the 

NN mapping and Discretisation have a higher performance in terms of AUC of a ROC 

curve. The obtained results demonstrate how data integration methods for model cross-

validation can have a significant increase in the generalisation performance, and enable 
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previously developed models to be used in different patient cohorts. Despite the fact 

that more information can be extracted from microarray models, the generalisation issue 

makes them still unreliable for clinicians. 

The generalisation performance of the predictive methods is the main limitation of this 

study.  

  The limitations of this study are given by the nature of microarray data: missing 

values, noise or error from scanners. The results obtained from this study are data-

dependent and are closely related to the quality of the microarray data. It must not be 

forgotten that the different analysis techniques applied in this study are not a remedy for 

low quality data.   

7.1 Future research directions 

 The work conducted revealed a number of weaknesses of existing 

methodologies (hence engineering challenges) for the reliable prediction of cancer from 

the clustering methods, input selection or the model selected to make the prediction.  

As explained in Chapter 2 of this Thesis, every aspect of the a data-driven 

modelling approach is important and in the past years it was discovered how 

normalisation can affect significantly the data, the number of inputs a method can work 

with (complexity dependant) and asses predictive performance via a Neural-Fuzzy 

approach. Even though the presented methodology is produced via the use of 

microarray bladder cancer data as a case study, this method may also be applied to 

numerous other diseases.  

 The aim of future work might consist of using the developed input selection and 

new modelling techniques to construct a multidimensional Patient Prognostic Map. This 

‘map’ will be a framework that uses the developed hybrid model, the gene selection, 
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and expert knowledge to provide to the clinicians linguistic advice on cancer 

progression.  

7.1.1 Future research directions for the RBF NF model 

i. Fusion the microarray data with clinical screening data as well as temporal 

data (hybrid model) 

 The aim is to integrate the microarray data with clinical screening data and 

Temporal Data (hybrid model). The term Temporal Data refers to a new design of 

experiments, in which a number of individuals of various cell classes are involved and 

gene expression is measured for each individual during a time course. In other words, 

the new experiments measure temporal gene expression multiple times for each cell 

class, but each time the measurement is performed on different individuals of that cell 

class. 

 As described above a hybrid model will be built based on the combination of the 

data sets, however expert knowledge will need to be embedded into the system to allow 

the fusion of the two sources of information. Furthermore, Fuzzy Fusion approach will 

be used to amalgamate all the information produced by the modelling scheme (patient 

map) and present this in a linguistic form.  

ii. Use a diagnosis of stage/grade/survival and based on that diagnosis to inform 

a treatment therapy 

 Based in the Predictions of survival, a Medical Diagnosis tool can be developed 

to assist therapy and treatment for the disease. 

  The prediction of the malignancy of the cancer will help to avoid unnecessary 

surgery, improving the life quality of the patient by only receiving absolutely necessary 

treatment for the disease. Another important improvement is the reduction in the overall 

therapy costs. 
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Figure 7.1 shows the overall architecture of the Multidimensional Patient Prognostic 

Map.  

 

Figure 7.1: Multidimensional Patient Prognostic Maps 

  In Figure 7.1, a diagram that represents the model is shown. The data to analyse 

comes from the fusion of Microarrays data set, clinical screening and Temporal Data. 

The fusion is possible thanks to the Medical knowledge and the Systems approach 

work. The role of the Medical expertise is going to be needed to help us amalgamate the 

medical screenings with the data sets and based on that fusion develop the Patient Maps. 

The proposed model is going to predict Stage, Grade and Survival based on that 

prediction a Clinical Diagnosis and Therapy will be develop.  
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7.1.2 Future research directions for microarray analysis  

 The generalisation performance of new predictive methods needs to be studied. 

As discussed in this Thesis, the real test for most data-driven cancer prediction models 

is the test of generalisation, i.e. when the model is confronted with a new patient cohort. 

The healthcare professionals community (medical, biology, chemistry, and engineering) 

is required to work together to produce a standard that unifies the analysis of tissue 

samples, image processing, normalisation and representation of gene intensities. 

  There are problems with microarray that perhaps will never get solved; however 

there is still place for improvement, for example:  

 Noise or error from scanners need to be reduced to the minimum 

 Reduction of the number of missing gene expression values  

 Because microarray analysis has been conducted since several years ago, it is 

important to re-use different studies (data sets) and validate the results previously 

obtained. It is also important to continue the research in the area of meta-analysis and 

data integration methods towards robust classification results.    
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Appendix A 

Results with 1000 inputs and 5 rules 

Ninety (90) of the included genes that are related with bladder cancer are: Gene NOS2, 

PRKCD, ALOX5, RBM3, CREBBP, RANBP3, GLB1, UQCRC2, CSE1L, GAST, 

HNRNPM, CSRP1, ASB8, SH3BGR, S100A7, MIF, HADHB, FER, HIF1AN, RGS2, 

LDHB, ENAH, MXD1, PRKACA, F3, ADA, CCL5, MVP, UPK2, IRF1, AR, TDG, 

CALU, MGMT, POLD1, AFF3, BCHE, XBP1, USP22, S100A10, ST3GAL1, VEGFA, 

HLA-B, CDCP1, GH2, ALDH1A2, CEACAM3, GALNS, HOPX, ADRB3, 

SERPINE1, STAT6, KIF20B, DNM2, FOXC1, SEMA3C, GABPB1, SOAT2, TNC, 

PPARG, TRADD, ITFG1, EGR1, NR3C1, OPCML, NAE1, ARHGDIB, POU4F2, 

MAP3K11, SEMA3A, JUN, MUC5B, TBX21, IGF1, DMBT1, DUSP10, ERCC3, 

IRF2, TP63, LGALS1, KLF4, PRDX3, DRAM1, MMP9, RECQL4, RPA2, LRP6, 

CAV2, AMACR, ME1.  

Results with 2000 inputs and 5 rules 

Additionally, 181 of the included genes that are related with bladder cancer are: Gene 

SUN2, SCYL2, BLNK, RHOC, HSPD1, FAAH, MMP11, TXNRD1, POLR2C, 

LZTS1, RNASE4, HLA-DRA, CDT1, AREG, IGFBP6, PLD3, IMP3, TLR4, GRHL2, 

NOTCH1, LEPREL4, L1TD1, PDE2A, ZNF135, MED12, CANT1, RNF43, HNF1A, 

EPCAM, FILIP1L, CALCOCO2, CCNE2, ATP5B, LGALS8, CST3, MSN, TEK, 

SCAMP3, ATPAF2, FIBP, PPFIBP1, SOCS3, TRPV2, CTH, CD59, EDNRA, S100A8, 

KAT7, ALPK3, LUM, MTHFR, USH2A, CYR61, XDH, PCDH17, ACVRL1, 

SLCO1B3, WWOX, RARB, SETD2, TERF2, ENPEP, NNMT, OXCT1,ERO1LB, 
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SULT1A1, YBX1, IL1R1,GDF9, TP73, FANCE, SHH, TP53I3, SULT1A2, HNF1B, 

DDX21, RCOR1, MAP4, RHOA, SELP, ACADM, EREG, MME, RAB15, ATPIF1, 

IL12A, GLIPR1, BMP6, CD44, SLIT2, FHIT, OS9, DIO2, BIRC7, FGF6, EIF3I, 

CD81, PSG1, HSPA4, SOX9, NID2, PLK2, HSP90B1, PBX3, RHOT1, FLNA, NQO1, 

CCL21, FGF1, MUC7, TERF1, OGT, NR5A1, TERT, ENO2, AKR1B10, TPM2, 

PSMB5, TAGLN, LY75, SRRM1, NCL, ADRA1A, TOP2A, F11R, ATP1A1, 

KIR2DS4, PDGFRB, OPRD1, GEMIN4, ESRP2, THBS2, DSP,TNKS, NFIL3, 

RANGAP1, PRKCSH, DES, ABCC4, 7-Sep, CAV1, COL1A1, STC1, HSPBAP1, 

WDR47, DFFB, TOMM34, CGA, TRAP1, TRIT1, POU5F1B, ZNF143, TAPBP, GLS, 

POLQ, GSTM5, STAM, CASK, CAT, FOXA1, FAH, PLAU, ACAT2, RACGAP1, 

GTF2I, MYH9, NFKBIB, PIN1, NR2F6, RGS6, GAA, CXADR, PAK6, RPA3, ADD3, 

IGFBP2, HRH1, CD36, MT3, VEGFC, CASP8. 

Results with 5000 inputs and 5 rules   

 The Gene Signature obtained for the prediction of Survival contains the 5000 top 

ranked genes. A total of eight hundred and thirty eight (838) of the included genes that 

are related to bladder cancer are shown in Appendix A. 

Table A.1:  Genes related with Bladder Cancer 

 Genes related with Bladder Cancer 

1 2,4-dienoyl CoA reductase 1, mitochondrial 

2 24-dehydrocholesterol reductase 

3 5-hydroxytryptamine (serotonin) receptor 1B, G protein-coupled 

4 5-hydroxytryptamine (serotonin) receptor 2A, G protein-coupled 

5 A kinase (PRKA) anchor protein 13 

6 actin related protein 2/3 complex, subunit 1B, 41kDa 

7 actin related protein 2/3 complex, subunit 2, 34kDa 

8 actin, alpha, cardiac muscle 1 

9 actinin, alpha 1 

10 activin A receptor type II-like 1 

11 ADAM metallopeptidase domain 12 

12 ADAM metallopeptidase with thrombospondin type 1 motif, 1 

13 adducin 3 (gamma) 
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14 adenosine deaminase 

15 adenylate cyclase 10 (soluble) 

16 adrenergic, beta, receptor kinase 2 

17 adrenoceptor alpha 1A 

18 adrenoceptor beta 3 

19 AE binding protein 1 

20 AHNAK nucleoprotein 

21 aldehyde dehydrogenase 1 family, member A2 

22 aldehyde dehydrogenase 1 family, member A3 

23 aldehyde dehydrogenase 3 family, member A2 

24 aldo-keto reductase family 1, member A1 (aldehyde reductase) 

25 aldo-keto reductase family 1, member B10 (aldose reductase) 

26 aldolase A, fructose-bisphosphate 

27 alkaline phosphatase, placental  

28 alpha-1-microglobulin/bikunin precursor 

29 alpha-methylacyl-CoA racemase 

30 aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 

31 aminolevulinate, delta-, synthase 1 

32 amphiregulin 

33 amyloid beta (A4) precursor protein 

34 anaphase promoting complex subunit 5 

35 androgen receptor 

36 angiogenin, ribonuclease, RNase A family, 5 

37 angiopoietin-like 2 

38 angiotensin II receptor, type 1 

39 annexin A1 

40 annexin A10 

41 annexin A5 

42 anthrax toxin receptor 1 

43 apolipoprotein A-I 

44 apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A 

45 apoptotic chromatin condensation inducer 1 

46 apoptotic peptidase activating factor 1 

47 aquaporin 8 

48 arachidonate 5-lipoxygenase 

49 arginine and glutamate rich 1 

50 argininosuccinate synthase 1 

51 ARP2 actin-related protein 2 homolog (yeast) 

52 ataxia telangiectasia mutated 

53 ATP citrate lyase 

54 ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide 

55 ATP synthase, H+ transporting, mitochondrial Fo complex, subunit B1 

56 ATP synthase, H+ transporting, mitochondrial Fo complex, subunit C2 (subunit 9) 

57 ATP synthase, H+ transporting, mitochondrial Fo complex, subunit d 
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58 ATP synthase, H+ transporting, mitochondrial Fo complex, subunit F6 

59 ATPase inhibitory factor 1 

60 ATPase, Ca++ transporting, cardiac muscle, slow twitch 2 

61 ATPase, Cu++ transporting, alpha polypeptide 

62 ATPase, Cu++ transporting, beta polypeptide 

63 ATPase, Na+/K+ transporting, alpha 1 polypeptide 

64 ATP-binding cassette, sub-family A (ABC1), member 7 

65 ATP-binding cassette, sub-family B (MDR/TAP), member 6 

66 ATP-binding cassette, sub-family C (CFTR/MRP), member 3 

67 ATP-binding cassette, sub-family C (CFTR/MRP), member 4 

68 aurora kinase A 

69 AXL receptor tyrosine kinase 

70 baculoviral IAP repeat containing 7 

71 basic helix-loop-helix family, member e40 

72 basic leucine zipper and W2 domains 1 

73 B-cell CLL/lymphoma 11A (zinc finger protein) 

74 BCL2-antagonist/killer 1 

75 BCL2-associated agonist of cell death 

76 BCL2-associated X protein 

77 BCL2-like 1 

78 BCL2-like 10 (apoptosis facilitator) 

79 beta-1,3-glucuronyltransferase 1 (glucuronosyltransferase P) 

80 betaine--homocysteine S-methyltransferase 

81 Bloom syndrome, RecQ helicase-like 

82 bone marrow stromal cell antigen 2 

83 bone morphogenetic protein 6 

84 bone morphogenetic protein 7 

85 bone morphogenetic protein receptor, type II (serine/threonine kinase) 

86 bradykinin receptor B2 

87 brain-derived neurotrophic factor 

88 BRCA1 associated RING domain 1 

89 breakpoint cluster region 

90 breast cancer 1, early onset 

91 breast cancer metastasis suppressor 1 

92 butyrylcholinesterase 

93 Ca++-dependent secretion activator 

94 cadherin 11, type 2, OB-cadherin (osteoblast) 

95 cadherin 2, type 1, N-cadherin (neuronal) 

96 cadherin 3, type 1, P-cadherin (placental) 

97 calcium binding and coiled-coil domain 2 

98 calcium/calmodulin-dependent serine protein kinase (MAGUK family) 

99 calcium-sensing receptor 

100 caldesmon 1 

101 calmodulin binding transcription activator 1 
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102 calpain 1, (mu/I) large subunit 

103 calpain 2, (m/II) large subunit 

104 calpastatin 

105 calumenin 

106 cannabinoid receptor 1 (brain) 

107 CAP, adenylate cyclase-associated protein 1 (yeast) 

108 carboxypeptidase A3 (mast cell) 

109 carboxypeptidase E 

110 carcinoembryonic antigen-related cell adhesion molecule 3 

111 carcinoembryonic antigen-related cell adhesion molecule 5 

112 carcinoembryonic antigen-related cell adhesion molecule 6 (non-specific cross reacting 
antigen) 

113 casein kinase 1, alpha 1 

114 casein kinase 1, delta 

115 caspase 10, apoptosis-related cysteine peptidase 

116 caspase 2, apoptosis-related cysteine peptidase 

117 caspase 8, apoptosis-related cysteine peptidase 

118 catalase 

119 catenin (cadherin-associated protein), beta 1, 88kDa 

120 cathelicidin antimicrobial peptide 

121 cathepsin H 

122 cathepsin S 

123 caudal type homeobox 1 

124 caveolin 1, caveolae protein, 22kDa 

125 caveolin 2 

126 CCCTC-binding factor (zinc finger protein) 

127 CD164 molecule, sialomucin 

128 CD36 molecule (thrombospondin receptor) 

129 CD3e molecule, epsilon associated protein 

130 CD4 molecule 

131 CD40 molecule, TNF receptor superfamily member 5 

132 CD44 molecule (Indian blood group) 

133 CD59 molecule, complement regulatory protein 

134 CD81 molecule 

135 CD82 molecule 

136 CD99 molecule 

137 cellular retinoic acid binding protein 1 

138 chaperonin containing TCP1, subunit 2 (beta) 

139 chaperonin containing TCP1, subunit 3 (gamma) 

140 chaperonin containing TCP1, subunit 4 (delta) 

141 chaperonin containing TCP1, subunit 6A (zeta 1) 

142 chaperonin containing TCP1, subunit 7 (eta) 

143 checkpoint kinase 1 

144 chemokine (C-C motif) ligand 2 
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145 chemokine (C-C motif) ligand 21 

146 chemokine (C-C motif) ligand 22 

147 chemokine (C-C motif) ligand 5 

148 chemokine (C-X-C motif) ligand 1 (melanoma growth stimulating activity, alpha) 

149 chitinase 3-like 1 (cartilage glycoprotein-39) 

150 chloride channel accessory 2 

151 chloride intracellular channel 4 

152 cholecystokinin B receptor 

153 choline kinase alpha 

154 choline O-acetyltransferase 

155 cholinergic receptor, muscarinic 3 

156 chromodomain helicase DNA binding protein 1-like 

157 citrate synthase 

158 clathrin, heavy chain (Hc) 

159 clathrin, light chain A 

160 claudin 10 

161 CNDP dipeptidase 2 (metallopeptidase M20 family) 

162 coagulation factor II (thrombin) receptor-like 2 

163 coagulation factor III (thromboplastin, tissue factor) 

164 coatomer protein complex, subunit alpha 

165 collagen, type I, alpha 1 

166 collagen, type V, alpha 1 

167 collagen, type VI, alpha 1 

168 collagen, type VI, alpha 2 

169 collagen, type VI, alpha 3 

170 collagen, type VII, alpha 1 

171 collagen, type XVI, alpha 1 

172 colony stimulating factor 1 (macrophage) 

173 complement component 1, q subcomponent binding protein 

174 contactin 2 (axonal) 

175 cortactin 

176 coxsackie virus and adenovirus receptor 

177 c-ros oncogene 1 , receptor tyrosine kinase 

178 crystallin, alpha B 

179 CSE1 chromosome segregation 1-like (yeast) 

180 C-terminal binding protein 1 

181 cyclin A1 

182 cyclin A2 

183 cyclin B2 

184 cyclin E2 

185 cyclin G1 

186 cyclin L1 

187 cyclin-dependent kinase 2 associated protein 1 

188 cyclin-dependent kinase 4 
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189 cyclin-dependent kinase 7 

190 cyclin-dependent kinase inhibitor 1C (p57, Kip2) 

191 cystathionase (cystathionine gamma-lyase) 

192 cystatin C 

193 cysteine and glycine-rich protein 1 

194 cysteine-rich, angiogenic inducer, 61 

195 cystic fibrosis transmembrane conductance regulator (ATP-binding cassette sub-family 
C, member 7) 

196 cytochrome c oxidase subunit VIc 

197 cytochrome P450, family 1, subfamily A, polypeptide 2 

198 cytochrome P450, family 2, subfamily A, polypeptide 13 

199 cytochrome P450, family 2, subfamily C, polypeptide 19 

200 cytochrome P450, family 2, subfamily D, polypeptide 6 

201 cytochrome P450, family 4, subfamily B, polypeptide 1 

202 cytochrome P450, family 7, subfamily B, polypeptide 1 

203 damage-specific DNA binding protein 2, 48kDa 

204 dCMP deaminase 

205 DEAH (Asp-Glu-Ala-His) box polypeptide 35 

206 death associated protein 3 

207 death-associated protein 

208 death-associated protein kinase 1 

209 death-associated protein kinase 2 

210 deiodinase, iodothyronine, type I 

211 deleted in malignant brain tumors 1 

212 desmin 

213 desmoglein 3 

214 desmoplakin 

215 destrin (actin depolymerizing factor) 

216 dihydropyrimidinase-like 3 

217 DNA (cytosine-5-)-methyltransferase 1 

218 DNA fragmentation factor, 40kDa, beta polypeptide (caspase-activated DNase) 

219 DnaJ (Hsp40) homolog, subfamily B, member 1 

220 dopamine beta-hydroxylase (dopamine beta-monooxygenase) 

221 dopamine receptor D2 

222 drosha, ribonuclease type III 

223 dual specificity phosphatase 1 

224 dynamin 2 

225 E2F transcription factor 1 

226 E2F transcription factor 3 

227 early growth response 1 

228 ectonucleoside triphosphate diphosphohydrolase 3 

229 ectonucleoside triphosphate diphosphohydrolase 4 

230 EGF containing fibulin-like extracellular matrix protein 1 

231 EGF containing fibulin-like extracellular matrix protein 2 
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232 EGF-like repeats and discoidin I-like domains 3 

233 EGF-like-domain, multiple 6 

234 ELK1, member of ETS oncogene family 

235 enabled homolog (Drosophila) 

236 endothelin 1 

237 endothelin receptor type A 

238 endothelin receptor type B 

239 enolase 2 (gamma, neuronal) 

240 EPH receptor B4 

241 ephrin-A1 

242 epidermal growth factor receptor 

243 epidermal growth factor receptor pathway substrate 8 

244 epiregulin 

245 epithelial cell adhesion molecule 

246 epithelial membrane protein 1 

247 epoxide hydrolase 2, cytoplasmic 

248 ERGIC and golgi 3 

249 estrogen receptor 1 

250 estrogen receptor 2 (ER beta) 

251 eukaryotic translation elongation factor 2 

252 eukaryotic translation initiation factor 3, subunit I 

253 eukaryotic translation initiation factor 4 gamma, 2 

254 eukaryotic translation initiation factor 4E binding protein 1 

255 eukaryotic translation initiation factor 4H 

256 eukaryotic translation initiation factor 5 

257 eukaryotic translation initiation factor 5A 

258 ezrin 

259 family with sequence similarity 215, member A (non-protein coding) 

260 Fanconi anemia, complementation group A 

261 Fanconi anemia, complementation group F 

262 far upstream element (FUSE) binding protein 1 

263 far upstream element (FUSE) binding protein 3 

264 fatty acid amide hydrolase 

265 fatty acid binding protein 1, liver 

266 FBJ murine osteosarcoma viral oncogene homolog B 

267 fer (fps/fes related) tyrosine kinase 

268 ferrochelatase 

269 fibrillarin 

270 fibroblast growth factor 1 (acidic) 

271 fibroblast growth factor 6 

272 fibroblast growth factor 7 

273 fibroblast growth factor receptor 3 

274 filamin A interacting protein 1-like 

275 filamin A, alpha 
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276 FK506 binding protein 4, 59kDa 

277 folate hydrolase (prostate-specific membrane antigen) 1 

278 folate receptor 1 (adult) 

279 follistatin-like 1 

280 forkhead box A1 

281 forkhead box C1 

282 fragile histidine triad 

283 fructose-1,6-bisphosphatase 1 

284 fucosidase, alpha-L- 1, tissue 

285 fucosyltransferase 3 (galactoside 3(4)-L-fucosyltransferase, Lewis blood group) 

286 fucosyltransferase 6 (alpha (1,3) fucosyltransferase) 

287 fused in sarcoma 

288 FXYD domain containing ion transport regulator 1 

289 FXYD domain containing ion transport regulator 3 

290 FYN oncogene related to SRC, FGR, YES 

291 G protein-coupled estrogen receptor 1 

292 galactosamine (N-acetyl)-6-sulfate sulfatase 

293 gamma-glutamyl hydrolase (conjugase, folylpolygammaglutamyl hydrolase) 

294 gap junction protein, alpha 1, 43kDa 

295 gastrin 

296 GDP-mannose 4,6-dehydratase 

297 gem (nuclear organelle) associated protein 4 

298 general transcription factor IIi 

299 GLI family zinc finger 1 

300 GLI family zinc finger 3 

301 GLI pathogenesis-related 1 

302 glioma tumor suppressor candidate region gene 2 

303 glucan (1,4-alpha-), branching enzyme 1 

304 glutamic-pyruvate transaminase (alanine aminotransferase) 

305 glutaminase 

306 glutamyl aminopeptidase (aminopeptidase A) 

307 glutamyl-prolyl-tRNA synthetase 

308 glutathione peroxidase 1 

309 glutathione peroxidase 2 (gastrointestinal) 

310 glutathione peroxidase 3 (plasma) 

311 glutathione reductase 

312 glutathione S-transferase alpha 3 

313 glutathione S-transferase alpha 4 

314 glutathione S-transferase pi 1 

315 glyceraldehyde-3-phosphate dehydrogenase 

316 glycoprotein (transmembrane) nmb 

317 glycoprotein hormones, alpha polypeptide 

318 golgi phosphoprotein 3 (coat-protein) 

319 gonadotropin-releasing hormone receptor 
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320 granulin 

321 growth arrest and DNA-damage-inducible, beta 

322 growth differentiation factor 15 

323 growth differentiation factor 9 

324 growth hormone 2 

325 growth hormone inducible transmembrane protein 

326 growth hormone receptor 

327 guanine nucleotide binding protein (G protein), gamma 11 

328 guanosine monophosphate reductase 2 

329 guanylate kinase 1 

330 H2A histone family, member X 

331 H3 histone, family 3A 

332 heat shock 60kDa protein 1 (chaperonin) 

333 heat shock 70kDa protein 4 

334 heat shock protein 90kDa alpha (cytosolic), class A member 1 

335 heat shock protein 90kDa alpha (cytosolic), class B member 1 

336 heat shock protein 90kDa beta (Grp94), member 1 

337 hemochromatosis 

338 heparanase 

339 heparin-binding EGF-like growth factor 

340 hepatocyte growth factor (hepapoietin A; scatter factor) 

341 heterogeneous nuclear ribonucleoprotein D (AU-rich element RNA binding protein 1, 
37kDa) 

342 heterogeneous nuclear ribonucleoprotein D-like 

343 heterogeneous nuclear ribonucleoprotein F 

344 heterogeneous nuclear ribonucleoprotein H1 (H) 

345 high density lipoprotein binding protein 

346 high mobility group box 1 

347 histamine receptor H1 

348 histone deacetylase 9 

349 HNF1 homeobox B 

350 HOP homeobox 

351 HSPB (heat shock 27kDa) associated protein 1 

352 HtrA serine peptidase 1 

353 hyaluronan synthase 2 

354 hyaluronan-mediated motility receptor (RHAMM) 

355 hyaluronoglucosaminidase 1 

356 hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase 
(trifunctional protein), beta subunit 

357 hydroxyprostaglandin dehydrogenase 15-(NAD) 

358 hydroxysteroid (17-beta) dehydrogenase 2 

359 hypoxia inducible factor 1, alpha subunit (basic helix-loop-helix transcription factor) 

360 hypoxia inducible factor 1, alpha subunit inhibitor 

361 immunoglobulin superfamily containing leucine-rich repeat 

362 InaD-like (Drosophila) 
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363 inhibitor of DNA binding 2, dominant negative helix-loop-helix protein 

364 inhibitor of DNA binding 3, dominant negative helix-loop-helix protein 

365 inositol 1,4,5-trisphosphate receptor, type 1 

366 inositol hexakisphosphate kinase 2 

367 insulin receptor 

368 insulin receptor substrate 1 

369 insulin-like growth factor 1 (somatomedin C) 

370 insulin-like growth factor 1 receptor 

371 insulin-like growth factor 2 mRNA binding protein 3 

372 insulin-like growth factor binding protein 2, 36kDa 

373 insulin-like growth factor binding protein 3 

374 insulin-like growth factor binding protein 6 

375 integrin alpha FG-GAP repeat containing 1 

376 integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 receptor) 

377 integrin, alpha 5 (fibronectin receptor, alpha polypeptide) 

378 integrin, alpha L (antigen CD11A (p180), lymphocyte function-associated antigen 1; 
alpha polypeptide) 

379 integrin, alpha V 

380 integrin, beta 5 

381 integrin-linked kinase 

382 intercellular adhesion molecule 2 

383 interferon regulatory factor 1 

384 interferon regulatory factor 3 

385 interferon, gamma 

386 interleukin 1 receptor antagonist 

387 interleukin 1 receptor, type I 

388 interleukin 1, alpha 

389 interleukin 12A (natural killer cell stimulatory factor 1, cytotoxic lymphocyte 
maturation factor 1, p35) 

390 interleukin 13 

391 interleukin 17 receptor A 

392 interleukin 17A 

393 interleukin 5 (colony-stimulating factor, eosinophil) 

394 interleukin 6 (interferon, beta 2) 

395 interleukin 6 signal transducer (gp130, oncostatin M receptor) 

396 interleukin 7 receptor 

397 interleukin 8 

398 interleukin enhancer binding factor 3, 90kDa 

399 ISL LIM homeobox 1 

400 Janus kinase 1 

401 jumping translocation breakpoint 

402 jun proto-oncogene 

403 karyopherin (importin) beta 1 

404 keratin 1 

405 keratin 14 
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406 killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 4 

407 kinesin family member 16B 

408 kinesin family member 20B 

409 Kruppel-like factor 4 (gut) 

410 Kruppel-like factor 5 (intestinal) 

411 lactate dehydrogenase B 

412 laminin, alpha 3 

413 laminin, beta 2 (laminin S) 

414 laminin, gamma 2 

415 laminin, gamma 3 

416 latent transforming growth factor beta binding protein 1 

417 lecithin retinol acyltransferase (phosphatidylcholine--retinol O-acyltransferase) 

418 lectin, galactoside-binding, soluble, 1 

419 lectin, galactoside-binding, soluble, 3 binding protein 

420 lectin, galactoside-binding, soluble, 8 

421 lectin, galactoside-binding, soluble, 9 

422 legumain 

423 leucine zipper, putative tumor suppressor 1 

424 ligase IV, DNA, ATP-dependent 

425 LIM domain and actin binding 1 

426 LIM domain only 2 (rhombotin-like 1) 

427 LINE-1 type transposase domain containing 1 

428 lipase, hepatic 

429 lipocalin 2 

430 lipopolysaccharide-induced TNF factor 

431 low density lipoprotein receptor-related protein 5 

432 low density lipoprotein receptor-related protein 6 

433 low density lipoprotein receptor-related protein associated protein 1 

434 lumican 

435 lymphocyte antigen 6 complex, locus E 

436 lymphocyte antigen 75 

437 lysosomal-associated membrane protein 2 

438 lysozyme 

439 lysyl-tRNA synthetase 

440 macrophage migration inhibitory factor (glycosylation-inhibiting factor) 

441 major histocompatibility complex, class I, A 

442 major histocompatibility complex, class I, B 

443 major histocompatibility complex, class II, DR alpha 

444 major intrinsic protein of lens fiber 

445 major vault protein 

446 mannose-binding lectin (protein C) 2, soluble 

447 mannose-P-dolichol utilization defect 1 

448 MAP7 domain containing 1 

449 MAP-kinase activating death domain 
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450 matrix Gla protein 

451 matrix metallopeptidase 10 (stromelysin 2) 

452 matrix metallopeptidase 11 (stromelysin 3) 

453 matrix metallopeptidase 2 (gelatinase A, 72kDa gelatinase, 72kDa type IV collagenase) 

454 matrix metallopeptidase 9 (gelatinase B, 92kDa gelatinase, 92kDa type IV collagenase) 

455 mechanistic target of rapamycin (serine/threonine kinase) 

456 melanoma antigen family D, 2 

457 membrane metallo-endopeptidase 

458 metallothionein 1F 

459 metallothionein 1X 

460 metallothionein 2A 

461 metallothionein 3 

462 metastasis suppressor 1 

463 methyl CpG binding protein 2 (Rett syndrome) 

464 methylenetetrahydrofolate reductase (NAD(P)H) 

465 microtubule-associated protein 4 

466 midkine (neurite growth-promoting factor 2) 

467 mitochondrial calcium uptake 1 

468 mitogen-activated protein kinase 3 

469 mitogen-activated protein kinase 8 

470 mitogen-activated protein kinase associated protein 1 

471 mitogen-activated protein kinase kinase 2 

472 mitogen-activated protein kinase kinase 4 

473 mitogen-activated protein kinase kinase 7 

474 moesin 

475 mortality factor 4 like 2 

476 motilin 

477 mucin 16, cell surface associated 

478 mucin 3A, cell surface associated 

479 mucin 5B, oligomeric mucus/gel-forming 

480 mucin 7, secreted 

481 SDA1 domain containing 1 

482 RAB5B, member RAS oncogene family 

483 aldo-keto reductase family 1, member A1 (aldehyde reductase) 

484 growth arrest-specific 7 

485 downstream neighbor of SON 

486 insulin induced gene 2 

487 makorin ring finger protein 2 

488 mitogen-activated protein kinase kinase kinase kinase 4 

489 bystin-like 

490 SPC25, NDC80 kinetochore complex component, homolog (S. cerevisiae) 

491 small nucleolar RNA, H/ACA box 5B /// transforming growth factor beta regulator 4 

492 transmembrane and ubiquitin-like domain containing 2 

493 NKF3 kinase family member 



Appendix A                            200 
 
 

 

494 gon-4-like (C. elegans) 

495 transmembrane protease, serine 11D 

496 BAH domain and coiled-coil containing 1 

497 transient receptor potential cation channel, subfamily C, member 1 

498 ArfGAP with SH3 domain, ankyrin repeat and PH domain 2 

499 peptidase domain containing associated with muscle regeneration 1 

500 myosin, light chain 12A, regulatory, non-sarcomeric 

501 A kinase (PRKA) anchor protein 17A 

502 transmembrane protein 120B 

503 HLA complex group 26 (non-protein coding) 

504 nitric oxide synthase 2, inducible 

505 uncharacterized FLJ13197 

506 proteasome (prosome, macropain) subunit, beta type, 10 

507 protein kinase C, delta 

508 KN motif and ankyrin repeat domains 2 

509 transmembrane protein 126B 

510 CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) phosphatase, 
subunit 1 

511 paired related homeobox 2 

512 thiosulfate sulfurtransferase (rhodanese) 

513 visinin-like 1 

514 arachidonate 5-lipoxygenase 

515 collagen, type VI, alpha 3 

516 DEAD (Asp-Glu-Ala-Asp) box polypeptide 19A 

517 calcineurin binding protein 1 

518 dickkopf 3 homolog (Xenopus laevis) 

519 GTP binding protein 3 (mitochondrial) 

520 RNA binding motif (RNP1, RRM) protein 3 

521 DnaJ (Hsp40) homolog, subfamily C, member 28 

522 ABHD14A-ACY1 readthrough (non-protein coding) /// aminoacylase 1 

523 CREB binding protein 

524 chromosome 5 open reading frame 25 pseudogene 

525 lysine-rich coiled-coil 1 

526 ubiquitin-like 4A 

527 LIM homeobox 3 

528 HAUS augmin-like complex, subunit 4 /// microRNA 4707 

529 complement component 8, alpha polypeptide 

530 zinc finger protein 329 

531 integrin, beta 5 

532 Yes-associated protein 1 

533 neuronal pentraxin I 

534 FRY-like 

535 fermitin family member 1 

536 SMAD specific E3 ubiquitin protein ligase 2 
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537 solute carrier family 7 (orphan transporter), member 4 

538 uncharacterized LOC100508797 

539 chromosome 3 open reading frame 36 

540 myomesin 1, 185kDa 

541 small proline-rich protein 1B 

542 MOK protein kinase 

543 tumor necrosis factor receptor superfamily, member 10d, decoy with truncated death 
domain 

544 ring finger protein 114 

545 spermine synthase 

546 N-acetylated alpha-linked acidic dipeptidase-like 1 

547 secretoglobin, family 2A, member 1 

548 RAN binding protein 3 

549 MANSC domain containing 1 

550 myosin, light chain 1, alkali; skeletal, fast 

551 zinc finger protein 711 

552 RALY RNA binding protein-like 

553 adrenoceptor alpha 2A 

554 RAB8A, member RAS oncogene family 

555 chromodomain helicase DNA binding protein 8 

556 potassium channel tetramerisation domain containing 15 

557 four and a half LIM domains 5 

558 galactosidase, beta 1 

559 ubiquinol-cytochrome c reductase core protein II 

560 thromboxane A2 receptor 

561 transmembrane protein 30A 

562 TRM1 tRNA methyltransferase 1 homolog (S. cerevisiae) 

563 leucine rich repeat containing 41 

564 CSE1 chromosome segregation 1-like (yeast) 

565 protein phosphatase 1, regulatory subunit 16B 

566 early growth response 3 

567 complexin 2 

568 phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2 

569 ATP-binding cassette, sub-family B (MDR/TAP), member 8 

570 zinc finger CCCH-type containing 3 

571 methyl-CpG binding domain protein 1 

572 RNA binding motif protein 14 

573 pleckstrin homology domain containing, family G (with RhoGef domain) member 6 

574 secretoglobin, family 1A, member 1 (uteroglobin) 

575 TM2 domain containing 3 

576 kallikrein-related peptidase 13 

577 ankyrin repeat and SOCS box containing 6 

578 coiled-coil domain containing 22 

579 proteasome (prosome, macropain) inhibitor subunit 1 (PI31) 
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580 immunoglobulin lambda light chain-like 

581 single-stranded DNA binding protein 2 

582 gastrin 

583 cyclin-dependent kinase 10 

584 homeobox A6 

585 protein phosphatase 1, regulatory subunit 9A 

586 heterogeneous nuclear ribonucleoprotein M 

587 astrotactin 2 

588 tumor necrosis factor receptor superfamily, member 12A 

589 tyrosyl-tRNA synthetase 2, mitochondrial 

590 zinc finger, CW type with PWWP domain 1 

591 cysteine and glycine-rich protein 1 

592 nascent polypeptide-associated complex alpha subunit 2 

593 myosin light chain kinase 

594 DiGeorge syndrome critical region gene 11 (non-protein coding) 

595 glutamate receptor, ionotropic, N-methyl D-aspartate 2D 

596 THAP domain containing 7 

597 ankyrin repeat and SOCS box containing 8 

598 DDB1 and CUL4 associated factor 10 

599 chromodomain helicase DNA binding protein 1-like 

600 centrosomal protein 250kDa 

601 transcription elongation factor A (SII), 1 

602 RWD domain containing 2A 

603 F-box protein 5 

604 tubulin, alpha 1c 

605 MAP7 domain containing 3 

606 transcription factor 4 

607 chromosome 15 open reading frame 39 

608 nucleolar protein 10 

609 SH3 domain binding glutamic acid-rich protein 

610 S100 calcium binding protein A7 

611 fructosamine 3 kinase 

612 protein phosphatase 3, catalytic subunit, alpha isozyme 

613 leucine rich repeat containing 19 

614 fibronectin leucine rich transmembrane protein 1 

615 ribosomal protein L9 

616 ADP-ribosylation factor-like 4A 

617 MON1 homolog B (yeast) 

618 cryptochrome 2 (photolyase-like) 

619 exocyst complex component 7 

620 ring finger protein 139 

621 chromosome 19 open reading frame 80 

622 adaptor-related protein complex 3, sigma 2 subunit /// C15orf38-AP3S2 readthrough 

623 twinfilin, actin-binding protein, homolog 2 (Drosophila) 
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624 PBX/knotted 1 homeobox 1 

625 macrophage migration inhibitory factor (glycosylation-inhibiting factor) 

626 deoxyribonuclease I-like 2 

627 frizzled family receptor 2 

628 lysophosphatidic acid receptor 2 

629 heterogeneous nuclear ribonucleoprotein H2 (H) /// RPL36A-HNRNPH2 readthrough 

630 fucosyltransferase 5 (alpha (1,3) fucosyltransferase) 

631 gonadotropin-releasing hormone 2 

632 exosome component 1 

633 gremlin 2 

634 phosphorylase kinase, gamma 1 (muscle) 

635 blocked early in transport 1 homolog (S. cerevisiae)-like 

636 SMAD family member 7 

637 T-cell lymphoma invasion and metastasis 2 

638 hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase 
(trifunctional protein), beta subunit 

639 fer (fps/fes related) tyrosine kinase 

640 hypoxia inducible factor 1, alpha subunit inhibitor 

641 regulator of G-protein signaling 2, 24kDa 

642 lactate dehydrogenase B 

643 vav 1 guanine nucleotide exchange factor 

644 FtsJ methyltransferase domain containing 2 

645 microRNA 1292 /// NOP56 ribonucleoprotein homolog (yeast) /// small nucleolar RNA, 
C/D box 110 /// small nucleolar RNA, C/D box 57 /// small nucleolar RNA, C/D box 86 

646 enabled homolog (Drosophila) 

647 MAX dimerization protein 1 

648 SET binding protein 1 

649 PR domain containing 4 

650 partner of NOB1 homolog (S. cerevisiae) 

651 G protein-coupled receptor 161 

652 DEAD (Asp-Glu-Ala-Asp) box polypeptide 43 

653 TBC1 domain family, member 29 

654 killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 1 /// 
killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 2 /// 
killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 3 /// 
killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 4 /// 
killer cell immunoglobulin-like receptor, two domains, short cytoplasmic tail, 5 /// 
killer cell immunoglobulin-like receptor three domains long cytoplasmic tail 3 

655 T-box 4 

656 X antigen family, member 1A /// X antigen family, member 1B /// X antigen family, 
member 1C /// X antigen family, member 1D /// X antigen family, member 1E 

657 polymerase (RNA) III (DNA directed) polypeptide E (80kD) 

658 trafficking protein particle complex 12 

659 ATP-binding cassette, sub-family C (CFTR/MRP), member 5 

660 protein kinase, cAMP-dependent, catalytic, alpha 

661 coagulation factor III (thromboplastin, tissue factor) 



Appendix A                            204 
 
 

 

662 multimerin 2 

663 N-acetylglucosamine-1-phosphate transferase, alpha and beta subunits 

664 bicaudal C homolog 1 (Drosophila) 

665 potassium channel, subfamily K, member 15 

666 olfactory receptor, family 1, subfamily G, member 1 

667 sphingomyelin phosphodiesterase 2, neutral membrane (neutral sphingomyelinase) 

668 PH domain and leucine rich repeat protein phosphatase 2 

669 midkine (neurite growth-promoting factor 2) 

670 protein tyrosine phosphatase, non-receptor type 6 

671 gasdermin D 

672 pleckstrin homology-like domain, family A, member 2 

673 zinc finger protein 292 

674 adenosine deaminase 

675 ATP-binding cassette, sub-family F (GCN20), member 1 

676 misato homolog 1 (Drosophila) /// misato homolog 2 pseudogene 

677 cytochrome c oxidase subunit VIIa polypeptide 1 (muscle) 

678 myotubularin related protein 2 

679 ER degradation enhancer, mannosidase alpha-like 3 

680 amyloid beta (A4) precursor-like protein 1 

681 chemokine (C-C motif) ligand 5 

682 DEAD (Asp-Glu-Ala-Asp) box polypeptide 19A /// DEAD (Asp-Glu-Ala-Asp) box 
polypeptide 19B 

683 spermatogenesis associated 1 

684 major vault protein 

685 5-hydroxytryptamine (serotonin) receptor 6, G protein-coupled 

686 poly(rC) binding protein 1 

687 chondroitin polymerizing factor 

688 aspartyl aminopeptidase 

689 enhancer of rudimentary homolog (Drosophila) 

690 bolA homolog 1 (E. coli) 

691 coiled-coil domain containing 144A 

692 ARP1 actin-related protein 1 homolog B, centractin beta (yeast) 

693 uroplakin 2 

694 interferon regulatory factor 1 

695 CD96 molecule 

696 ubiquitin protein ligase E3 component n-recognin 5 

697 androgen receptor 

698 thymine-DNA glycosylase 

699 endothelial PAS domain protein 1 /// uncharacterized LOC100652809 

700 CDKN2A interacting protein 

701 solute carrier family 10 (sodium/bile acid cotransporter family), member 2 

702 glycerol-3-phosphate dehydrogenase 1-like 

703 calumenin 

704 keratin 12 



Appendix A                            205 
 
 

 

705 Ras suppressor protein 1 

706 recombination activating gene 2 

707 G protein-coupled receptor 15 

708 uncharacterized LOC257152 

709 FtsJ RNA methyltransferase homolog 2 (E. coli) 

710 origin recognition complex, subunit 3 

711 O-6-methylguanine-DNA methyltransferase 

712 polymerase (DNA directed), delta 1, catalytic subunit 

713 regulatory factor X-associated ankyrin-containing protein 

714 guanine nucleotide binding protein (G protein), alpha z polypeptide 

715 CCR4-NOT transcription complex, subunit 2 

716 hCG1732469 

717 microfibrillar-associated protein 2 

718 SND1 intronic transcript 1 (non-protein coding) 

719 D site of albumin promoter (albumin D-box) binding protein 

720 AF4/FMR2 family, member 3 

721 SPO11 meiotic protein covalently bound to DSB homolog (S. cerevisiae) 

722 akirin 1 

723 ASMTL antisense RNA 1 (non-protein coding) 

724 chaperonin containing TCP1, subunit 4 (delta) 

725 guanine nucleotide binding protein (G protein), beta 5 

726 methyltransferase like 9 

727 uncharacterized LOC100506190 

728 butyrylcholinesterase 

729 slowmo homolog 2 (Drosophila) 

730 transmembrane 4 L six family member 5 

731 X-box binding protein 1 

732 ubiquitin specific peptidase 22 

733 dapper, antagonist of beta-catenin, homolog 1 (Xenopus laevis) 

734 phosphatidylinositol transfer protein, membrane-associated 1 

735 cell division cycle 123 homolog (S. cerevisiae) 

736 olfactory receptor, family 1, subfamily F, member 1 

737 S100 calcium binding protein A10 

738 ST3 beta-galactoside alpha-2,3-sialyltransferase 1 

739 nitrogen permease regulator-like 2 (S. cerevisiae) 

740 lymphocyte antigen 6 complex, locus G6E (pseudogene) 

741 IKAROS family zinc finger 5 (Pegasus) 

742 purinergic receptor P2X, ligand-gated ion channel, 6 

743 exocyst complex component 6B 

744 polymerase (RNA) I polypeptide C, 30kDa 

745 vascular endothelial growth factor A 

746 major histocompatibility complex, class I, B 

747 centromere protein F, 350/400kDa (mitosin) 

748 SH3 domain containing, Ysc84-like 1 (S. cerevisiae) 
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749 CUB domain containing protein 1 

750 proline synthetase co-transcribed homolog (bacterial) 

751 growth hormone 2 

752 epidermal growth factor receptor pathway substrate 8 

753 acylphosphatase 2, muscle type 

754 THO complex 2 

755 aldehyde dehydrogenase 1 family, member A2 

756 tripartite motif containing 8 

757 carcinoembryonic antigen-related cell adhesion molecule 3 

758 WD repeat domain 77 

759 centrosomal protein 85kDa 

760 aminopeptidase-like 1 /// STX16-NPEPL1 readthrough (non-protein coding) 

761 zinc finger, DHHC-type containing 7 

762 protein phosphatase, Mg2+/Mn2+ dependent, 1E 

763 TAR (HIV-1) RNA binding protein 2 

764 galactosamine (N-acetyl)-6-sulfate sulfatase 

765 nucleoporin 98kDa 

766 Rho GTPase activating protein 15 

767 vaccinia related kinase 1 

768 zinc finger, BED-type containing 4 

769 thyrotropin-releasing hormone degrading enzyme 

770 membrane-spanning 4-domains, subfamily A, member 4A 

771 HOP homeobox 

772 ATPase, Ca++ transporting, plasma membrane 1 

773 adrenoceptor beta 3 

774 smg-5 homolog, nonsense mediated mRNA decay factor (C. elegans) 

775 vacuolar protein sorting 13 homolog D (S. cerevisiae) 

776 SLIT and NTRK-like family, member 3 

777 glucose 6 phosphatase, catalytic, 3 

778 succinate-CoA ligase, GDP-forming, beta subunit 

779 snail homolog 1 (Drosophila) 

780 vacuolar protein sorting 33 homolog B (yeast) 

781 serpin peptidase inhibitor, clade E (nexin, plasminogen activator inhibitor type 1), 
member 1 

782 signal transducer and activator of transcription 6, interleukin-4 induced 

783 RUN and FYVE domain containing 3 

784 solute carrier family 6 (neurotransmitter transporter, glycine), member 5 

785 signal sequence receptor, gamma (translocon-associated protein gamma) 

786 uncoupling protein 2 (mitochondrial, proton carrier) 

787 zinc finger protein 674 

788 HIG1 hypoxia inducible domain family, member 1A 

789 olfactory receptor, family 7, subfamily C, member 1 

790 ankyrin repeat domain 34C 

791 general transcription factor IIH, polypeptide 2B (pseudogene) 
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792 ATP5S-like 

793 coiled-coil domain containing 81 

794 hepatoma-derived growth factor, related protein 3 

795 transmembrane channel-like 7 

796 spastic paraplegia 11 (autosomal recessive) 

797 kinesin family member 20B 

798 190 kDa guanine nucleotide exchange factor 

799 chromosome 11 open reading frame 24 

800 dynamin 2 

801 CREB/ATF bZIP transcription factor 

802 mannosidase, alpha, class 2A, member 1 

803 G patch domain containing 3 

804 troponin I type 2 (skeletal, fast) 

805 EPH receptor A3 

806 CD3g molecule, gamma (CD3-TCR complex) 

807 ring finger protein 32 

808 zinc finger, MYND-type containing 8 

809 forkhead box C1 

810 phosphoribosyl pyrophosphate synthetase-associated protein 1 

811 ATPase, aminophospholipid transporter, class I, type 8B, member 3 

812 melanocortin 5 receptor 

813 family with sequence similarity 168, member A 

814 RAB21, member RAS oncogene family 

815 guanylate cyclase 1, soluble, beta 3 

816 sema domain, immunoglobulin domain (Ig), short basic domain, secreted, 
(semaphorin) 3C 

817 cerebellar degeneration-related protein 2, 62kDa 

818 NAG18 mRNA 

819 GA binding protein transcription factor, beta subunit 1 

820 late endosomal/lysosomal adaptor, MAPK and MTOR activator 2 

821 Ral GTPase activating protein, beta subunit (non-catalytic) 

822 Sin3A-associated protein, 130kDa 

823 alkylglycerone phosphate synthase 

824 collagen, type XIII, alpha 1 

825 WD repeat domain 46 

826 pleckstrin and Sec7 domain containing 

827 sterol O-acyltransferase 2 

828 tenascin C 

829 crystallin, mu 

830 pseudouridylate synthase 3 

831 chromosome 1 open reading frame 50 

832 lin-7 homolog B (C. elegans) 

833 G protein-coupled receptor 98 

834 peroxisome proliferator-activated receptor gamma 
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835 TNFRSF1A-associated via death domain 

836 NUAK family, SNF1-like kinase, 1 

837 pyruvate dehyrogenase phosphatase catalytic subunit 1 

838 macrophage erythroblast attacher 
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Appendix B 

Table B.1:  Top Genes 25 Blaveri Stage 

Rank Gene Title  

1 KIAA0914 gene product 

2 fibromodulin 

3 extracellular matrix protein 1 

4 matrix metalloproteinase 11 (stromelysin 3) 

5 MHC class II transactivator 

6 EGF-containing fibulin-like extracellular matrix protein 1 

7 integrin, alpha V (vitronectin receptor, alpha polypeptide, antigen CD51) 

8 Microfibril-associated glycoprotein-2 

9 S100 calcium-binding protein A7 (psoriasin 1) 

10 aquaporin 5 

11 membrane cofactor protein (CD46, trophoblast-lymphocyte cross-reactive 
antigen) 

12 KIAA0494 gene product 

13 AE-binding protein 1 

14 natural killer cell group 7 sequence 

15 inhibin, beta A (activin A, activin AB alpha polypeptide) 

16 contactin associated protein 1 

17 ESTs, Moderately similar to JC4969 pig-c protein [H.sapiens] 

18 duodenal cytochrome b 

19 KIAA1077 protein 

20 Human clone 23719 mRNA sequence 

21 myosin regulatory light chain interacting protein 

22 retinoic acid receptor responder (tazarotene induced) 2 

23 RAB31, member RAS oncogene family 

24 endothelin receptor type A 

25 guanine nucleotide binding protein (G protein), alpha 11 (Gq class) 

 

Table B.2:  Top Genes 25 Blaveri Grade 

Rank Gene Title  

1 keratin 19 

2 v-yes-1 Yamaguchi sarcoma viral related oncogene homolog 

3 nuclear cap binding protein subunit 1, 80kD 

4 major histocompatibility complex, class II, DR alpha 
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5 N-acetylneuraminic acid phosphate synthase 

6 erythrocyte membrane protein band 7.2 (stomatin) 

7 regulator of G-protein signalling 10 

8 FXYD domain containing ion transport regulator 3  

9 pre-alpha (globulin) inhibitor, H3 polypeptide 

10 ribosomal protein L5 

11 ret finger protein 2 

12 Homo sapiens MAIL mRNA, complete cds 

13 calumenin 

14 MAD (mothers against decapentaplegic, Drosophila) homolog 5 

15 protein tyrosine phosphatase, receptor type, F 

16 proteoglycan 1, secretory granule 

17 microfibrillar-associated protein 2 

18 STAT induced STAT inhibitor 3 

19 Tubulin, alpha, brain-specific 

20 major histocompatibility complex, class II, DQ alpha 1 

21 leucine aminopeptidase 

22 calponin 3, acidic 

23 mannose receptor, C type 1 

24 cathepsin L 

25 inositol 1,3,4-triphosphate 5/6 kinase 

 

Table B.3:  Top Genes 25 Blaveri Survival 

Rank Gene Title  

1 hypothetical protein PRO1847 

2 enolase 2, (gamma, neuronal) 

3 KIAA0672 gene product 

4 transcription factor 15 (basic helix-loop-helix) 

5 zinc finger protein 266 

6 oxytocin receptor 

7 tubby like protein 3 

8 suppressor of Ty (S.cerevisiae) 4 homolog 1 

9 KIAA0410 gene product 

10 glutamyl-prolyl-tRNA synthetase 

11 syntaxin binding protein 1 

12 Homo sapiens cDNA FLJ13303 fis, clone OVARC1001372, highly similar to Homo 
sapiens liprin-alpha4 mRNA 

13 Homo sapiens, clone IMAGE:3940519, mRNA, partial cds 

14 BCL2/adenovirus E1B 19kD-interacting protein 1 

15 Rag D protein 

16 alanyl-tRNA synthetase 

17 KIAA0027 protein 
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18 proteasome (prosome, macropain) subunit, beta type, 1 

19 guanine nucleotide binding protein 4 

20 mitochondrial ribosomal protein L12 

21 chromosome 2 open reading frame 8 

22 Homo sapiens cDNA FLJ10447 fis, clone NT2RP1000851 

23 KIAA0981 protein 

24 stage 

25 grade 

 

Table B.4:  Top Genes 25 Kim Stage 

Rank Gene Title  

1 dynamin 1 

2 extra spindle pole bodies homolog 1 (S. cerevisiae) 

3 cytoskeleton associated protein 2-like 

4 defective in sister chromatid cohesion 1 homolog (S. cerevisiae) 

5 chromosome 17 open reading frame 53 

6 trophinin associated protein (tastin) 

7 IQ motif containing GTPase activating protein 3 

8 citron (rho-interacting, serine/threonine kinase 21) 

9 cysteine-rich protein 1 (intestinal) 

10 E2F transcription factor 1 

11 CDC45 cell division cycle 45-like (S. cerevisiae) 

12 centromere protein A 

13 nucleolar and spindle associated protein 1 

14 cyclin-dependent kinase inhibitor 3 

15 monocyte to macrophage differentiation-associated 

16 cell division cycle 20 homolog (S. cerevisiae) 

17 aurora kinase A; aurora kinase A pseudogene 1 

18 non-SMC condensin I complex, subunit G 

19 cyclin B2 

20 Holliday junction recognition protein 

21 centrosomal protein 55kDa 

22 chromosome 1 open reading frame 175 

23 pyridine nucleotide-disulphide oxidoreductase domain 2 

24 chromosome 8 open reading frame 16 

25 interferon, epsilon 
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Table B.5:  Top Genes 25 Blaveri Grade 

Rank Gene Title  

1 GINS complex subunit 4 (Sld5 homolog) 

2 septin 3 

3 E2F transcription factor 1 

4 dimethylarginine dimethylaminohydrolase 2 

5 24-dehydrocholesterol reductase 

6 extra spindle pole bodies homolog 1 (S. cerevisiae) 

7 histone cluster 1, H1c 

8 histone cluster 1, H2bk 

9 eukaryotic translation initiation factor 4E binding protein 1 

10 olfactory receptor, family 2, subfamily B, member 6 

11 inositol(myo)-1(or 4)-monophosphatase 2 

12 RecQ protein-like 4 

13 defective in sister chromatid cohesion 1 homolog (S. cerevisiae) 

14 BCL2-like 12 (proline rich) 

15 cell division cycle associated 5 

16 p53 and DNA-damage regulated 1 

17 aurora kinase A; aurora kinase A pseudogene 1 

18 similar to ferritin, light polypeptide; ferritin, light polypeptide 

19 myelin protein zero-like 1 

20 chromosome 9 open reading frame 140 

21 solute carrier family 29 (nucleoside transporters), member 4; similar to solute 
carrier family 29 (nucleoside transporters), member 4 

22 thymidine kinase 1, soluble 

23 chromosome 1 open reading frame 112 

24 chromosome 15 open reading frame 48 

25 cell division cycle associated 8 

 

Table B.6:  Top Genes 25 Blaveri Survival 

Rank Gene Title  

1 grade 

2 stage 

3 carbohydrate (N-acetylgalactosamine 4-0) sulfotransferase 8 

4 adrenomedullin 2 

5 ribosome binding protein 1 homolog 180kDa (dog) 

6 cyclin N-terminal domain containing 2 

7 lipase, endothelial 

8 chromosome 5 open reading frame 46 

9 espin 

10 phosphodiesterase 6B, cGMP-specific, rod, beta 



Appendix B                                                                                                                                               213 
 
 

 
 

11 transmembrane protein 195 

12 FAT tumor suppressor homolog 1 (Drosophila) 

13 family with sequence similarity 13, member B 

14 N-6 adenine-specific DNA methyltransferase 2 (putative) 

15 plexin domain containing 2 

16 chromosome 1 open reading frame 186 

17 homeobox and leucine zipper encoding 

18 chromosome 7 open reading frame 41 

19 aspartylglucosaminidase 

20 similar to programmed cell death 2 

21 chloride channel 3 

22 nuclear receptor subfamily 2, group C, member 1 

23 N-acetylneuraminate pyruvate lyase 2 (putative) 

24 arrestin domain containing 4 

25 G protein-coupled receptor 98 
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Appendix C: Synthetic 
Data Set  

 A Synthetic Data Set was produced to test the new RBF Neural-Fuzzy Feature 

selection.  

 There are several factors to take in account to produce a synthetic Data Set: 

 The output of the system is only linked to the relevant genes 

 Add some noise to the data 

 Produce genes that are correlated to relevant genes 

 The synthetic data set consists in 100 patients and 150 genes. From the Synthetic 

Data Set 150 genes were selected, 100 irrelevant and 50 relevant. The expectation is that 

the RBF Method selects only the 50 relevant.  

 The RBF-NF model was developed as described in section 5.2 and 5.4. The 

output values were ‘encoded’ into -1 and 1. The classification function of Accuracy is 

used as measure of performance. The results shown are the mean % of the 10 models 

for Accuracy in selecting relevant features. 

The results of the new method based in the Entropy, Output Weights and Membership 

Functions applied to the Synthetic Data are shown below: 

Table C.1:  Accuracy in selecting relevant features 

  Accuracy 
in 

selecting 
relevant 
features 

5 
rules 

 (%) 80.2 

Standard 
Deviation 

3.8 
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Appendix D: Input-output 
mappings across 
different microarray 
technologies, showing 
the non-linear behaviour 

  

 Figure D.1: Blaveri Input-Output Mapping Gene 1 
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Figure D.2: Blaveri Input-Output Mapping Gene 2 

 

 

Figure D.3: Blaveri Input-Output Mapping Gene 3 
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Figure D.4: Kim Input-Output Mapping Gene 1 

 

 

Figure D.5: Kim Input-Output Mapping Gene 2 
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Figure D.6: Kim Input-Output Mapping Gene 3 

 


