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Abstract 

Structural Health Monitoring (SHM) is traditionally concerned with fitting sensors 

inside structural systems and analyzing the features of signals from the sensor 

measurements using appropriate signal processing techniques in order to reveal the 

systems’ health status. A significant change of signal features is often considered to be 

an indication of damage. However, generally speaking, these techniques often cannot 

distinguish normal structural changes due to variations in system environmental or 

operating conditions from the changes which are induced by damage. For example, 

transmissibility analysis is a widely used signal analysis method for SHM. But 

traditional transmissibility is determined by the ratio of the spectra of two different 

system outputs, which generally depends on the location of loadings on the system 

and is, consequently, affected by system environmental conditions. In order to solve 

this challenge, a series of studies are conducted in this PhD project. The objectives are 

to develop new SHM and damage localization methods, which can effectively address 

the effects of changing system environmental or operational conditions and have 

potential to be applied in practice to more effectively solve practical SHM and damage 

localization problems. 

First, a general baseline model based SHM method is developed in this thesis. This 

method can be used to address a wide class of SHM problems via a baseline modelling 

and baseline model based analysis. The method can systematically take the effects of 

system’s operating or environmental conditions such as, e.g., environmental 

temperature etc. on signal analysis into account, and can therefore solve relevant 

challenges. Both simulation studies and field data analyses have been conducted to 

demonstrate the performance of the proposed new technique. 

Moreover, new transmissibility analysis methods are proposed for the detection and 



location of damage with nonlinear features in Multi-Degree-Of-Freedom (MDOF) 

structural systems. These methods extend the traditional transmissibility analysis to 

the nonlinear case. More importantly, the methods are independent from the 

locations of loading inputs to the systems and, to a great extent, provide effective 

solutions to the above mentioned problems with traditional transmissibility analysis. 

Again both numerical simulation studies and experimental data analysis have been 

conducted to verify the effectiveness and demonstrate potential practical applications 

of the new methods. 

Based on the results of nonlinearity detection and localization, new guidelines are 

proposed for the application of transmissibility analysis based modal identification 

method to nonlinear structural systems, which have potential to be further developed 

into a new approach to transmissibility based nonlinear modal analysis.  

In summary, the present study has addressed a series of fundamental problems with 

SHM, especially, problems associated with how to deal with the effects of changing 

system environmental or operational conditions on SHM results. Experimental studies 

have demonstrated the potential and significance of these results in practical 

engineering applications. 
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Chapter 1 

Introduction 

This introduction addresses three topics: background of structural health monitoring 

and damage localization, research motivation and contributions, and the layout of the 

thesis. 

1.1 Backgrounds 

Engineering systems including, for example, mechanical, aerospace and civil systems 

and structures are prone to suffering damage including fatigue damage after long 

service time and damage due to improper use, hostile working environment or 

operational conditions. In most general terms, damage is defined as any changes to 

the material properties and/or geometric features of structural systems, including 

variation of system connectivity and boundary conditions, which affect the systems’ 

current and future behaviours or characteristics adversely [1-3]. In terms of length 

scales, all damage stems from the defects or flaws in materials encompassing 

inclusions, voids and dislocations, which are inherent and present to some degree but 

will not cause changes of overall system behaviours. As the structural system keeps 

working under some loadings scenarios, such defects or flaws will grow, get serious 

and coalesce at different speed until they reach a point where the system cannot work 

in its ideal condition. This point is referred to as damage. Therefore, damage means 

the system is no longer operating optimally but it is still functioning. When damage 

grows continually, it may reach to another point where system functionality is no 

longer satisfactory. This point is referred to as failure. In terms of time scales, damage 

such as fatigue related damage, corrosion, erosion or even creep can be accumulated 

over long periods of time. Besides, damage can be the result of unscheduled events 



 
Chapter 1 Introduction 

2 

 

such as earthquakes and wind loading and scheduled events such as aircraft landings 

[1, 3]. 

The structural health monitoring (SHM) refers to the process of implementing damage 

detection and identification technique for mechanical, aerospace and civil engineering 

structures [1]. SHM is becoming increasingly significant in life-safety and economic 

benefits during the service lifespan of these structural systems or components. First, 

the life-safety and reliability of the structural systems can be guaranteed [4] when 

SHM techniques are conducted to make sure that these systems are operating in a 

healthy condition. Then the structural systems can serve for a longer time than the 

designed lifespan if the results of SHM indicate that no damage arises at that moment. 

Besides, SHM can help to avoid unnecessary economic loss caused by unpredicted 

downtime. When damage is detected, the SHM system will raise alarm so that the 

maintenance or repair work can be scheduled in time and corresponding actions can 

be taken to avoid the consequences of failure. Finally, SHM allows 

time-based/preventive maintenance, which means that maintenance is carried out 

periodically, to evolve into condition-based/corrective maintenance maintenance, 

which means that maintenance will be taken only when SHM indicates that damage 

has arisen. Condition-based/corrective maintenance is more cost effective than 

time-based/preventive maintenance [1, 3, 5, 6]. 

SHM can be achieved by measuring various signals related to the structure health 

status (such as vibration, bearing temperature, oil pressure and oil debris), such that 

the change of the features extracted from measurements can indicate a developing 

structural damage. The main procedure of SHM is shown in Fig.1.1 [1, 3]. Obviously, 

SHM involves the process of operational evaluation, data acquisition and cleansing, 

feature selection and statistical model development [1, 3, 7].  

Operational evaluation: This is to provide for possible damage to the system to be 
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monitored, to evaluate the operational and environmental conditions under which the 

system is working, and to understand the limitations on data measurements under 

these conditions.  

Data acquisition and cleansing: Data acquisition is to select the type and number of 

sensors used in data acquisition and to determine the location of sensors to be placed 

and the hardware for data-acquisition/storage. In the process of data acquisition, in 

order to obtain a faithful reproduction of the signal, Nyquist Sampling Theorem must 

be meet, which is the sampling frequency must be at least twice the highest analogue 

frequency component. Data cleansing is to choose data which are suitable for the 

feature selection process. 

Working machine/structure Operational evaluation Data acquisition and cleansing

Feature selectionStatistical model developmentDamage identification
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Fig. 1.1 Procedure of SHM [1, 3] 

Feature selection: Large amounts of data are typically produced in the step of data 

acquisition. It is complicated and inconvenient to evaluate the difference among these 

data directly therefore, information condensation is necessary and advantageous. 

Feature selection is to identify data features that can indicate the difference between 
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damaged and undamaged systems. The features can be either the properties of the 

structural systems, such as natural frequencies and output frequency response, or the 

features of the signal itself, such as time-waveform. The features that depend on the 

presence and severity of damage are named as damage sensitive features. Damage 

sensitive features will change significantly when damage arises in structural systems, 

so they can help to distinguish damaged and undamaged structures. Feature selection 

is the part of SHM to which the researchers pay the most attention.  

Statistical model development: This is to determine the current state of system health 

by implementing the statistical algorithms on the extracted features. There are 

different ways to summarise the different levels of damage identification. For example, 

Rytter proposed the following four levels of damage identification [8]: 

Level 1: Determine whether the damage occurs in the structure.  

Level 2: Determine where the damage happens geometrically. 

Level 3: Quantify how serious the damage is. 

Level 4: Predict how long the structure can serve in the future.  

However, Farrar and Worden [1, 3, 9] pointed out that the type of damage should also 

be taken into account. Consequently, they have classified damage identification into 

five levels: 

Level 1: Determine whether the damage occurs in the structure.  

Level 2: Determine where the damage happens geometrically. 

Level 3: Determine what the type of damage is. 

Level 4: Quantify how serious the damage is. 

Level 5: Predict how long the structure can serve in the future.  
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These are hierarchical structures; each level requires that all lower-level information is 

available. Obviously, the later levels of SHM provide more details of damage and thus 

are more appropriated. The process to determine the existence of the damage in the 

structure is defined as damage detection. The process involving the determination of 

location, type and severity of damage is defined as damage diagnosis[10], while the 

process to predict the remaining service life time of a structure is defined as damage 

prognosis [11]. The research in this thesis focuses primarily on the first two Levels, 

namely, damage detection and damage diagnosis. 

1.2 Research motivation and contributions 

Extensive research studies on SHM have been conducted to solve one or more 

problems above. The effective features, which are sensitive to the existence of damage 

and are able to indicate the appearance and location of damage, are most important 

for SHM. Therefore, significant researches focus on signal analysis methods and 

extensive techniques are available to obtain useful features for SHM purpose.  

Many researchers consider the characteristics of structural systems as damage 

sensitive features, including natural frequency, mode shape, modal strain energy, 

generalized frequency response functions (GFRFs) and transmissibility. Salawu [12] 

discussed the effect of structural damage on the natural frequency and reviewed the 

application of natural frequency on the SHM. Fan [13] and Fanning [14] reviewed 

comprehensively modal parameter-based damage identification methods including 

natural frequency-based methods, curvature mode shape-based methods, mode 

shape-based methods, and methods using both natural frequencies and mode shapes. 

Fan [13] also discussed the merits and drawbacks of each method. 

Researchers have also investigated the variation of features extracted from measured 

signals to find the health states of structural systems. The corresponding techniques 

can be divided into three categories: time domain analysis, frequency domain analysis 
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and time-frequency domain analysis. The techniques in the time domain analysis are 

composed of time-waveform analysis, time-waveform indices, orbits, probability 

density function and probability density moments. Techniques in the frequency 

domain analysis include envelope spectrum, cepstrum, high-order spectrum, 

coherence function. A summary of damage identification methods in the time and 

frequency domains can be found in Ref. [15]. Time-frequency domain analysis is used 

to study non-stationary signals as the analysis can simultaneously reveal the signal 

features in both the time and frequency domains. The corresponding techniques 

include short time Fourier transform, wavelet analysis, Hilbert-Huang transform and 

Wigner-Ville distribution. Peng [16] discussed the advantages and disadvantages of 

these methods and reviewed the application of wavelet transform on SHM. 

However, the problem with all these available techniques is that most of them cannot 

take the system operational and environmental conditions into account. But these 

factors often have a significant impact on the measurements and signal features. 

Environmental factors which can change the behaviors of the structural system include 

temperature, pressure, humidity [12, 17-19] and loading conditions such as traffic 

loading [20] and wind loading [21]. The operational parameters which have an impact 

on system responses include speed of operation [22, 23] and loading conditions. Sohn 

[24] reviewed the influence of the environmental and operational factors on the SHM. 

For example, Farrar et al. [17] tested the vibration of a bridge in the USA for about 9 

months when four different levels of damage severity were introduced intentionally in 

this bridge. The severer damage in the bridge is expected to reduce the bridge’s 

stiffness more and so result in lowering the bridge’s natural frequency. However, Farrar 

found that adversely the natural frequency of the bridge became larger at first and 

then dropped down when the damage became more and more serious. Further 

investigation explained that the environmental temperature contributed considerably 

to the change of the bridge’s natural frequency. From the analysis of measurements 
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from another bridge carried on continuously over 24 hours, Farrar et al. observed that 

the first modal frequency of the bridge altered about 5% during a day circle [18]. 

It is obvious that neglecting environmental and operating conditions, which often have 

an impact on sensor measurements, will result in that sensor measurements cannot 

show what happens in an inspected structure correctly. But, all available techniques 

considering the effect of environmental and operating conditions are only effective in 

special cases. There is still no relatively general method which is able to deal with any 

number and type of sensor measurements and environmental parameters, and can 

also address this and related issues for a wide range of SHM problems.  

If damage has been detected in a system, its location should be identified so that 

corresponding repair work can be scheduled intentionally. Transmissibility analysis is 

one class of the most popular techniques for damage detection and location [25-29]. 

Transmissibility is traditionally defined as the ratio of the spectra of two different 

system outputs. It has been comprehensively studied frequently, and is widely used for 

damage detection and localization. However, there are many problems when applying 

this approach in practice. Firstly, traditional transmissibility between two system 

responses depends on the location of loadings on the system. Namely, if a loading acts 

on the system at a different location, the transmissibility between the two responses 

will be different. Consequently, the position of loading on monitored systems has to be 

known a priori, which implies that traditional transmissibility based methods may not 

be able to be applied in many practical systems. In addition, because traditional 

transmissibility is basically a linear system concept, it cannot be used to propose a 

systematic approach to detecting and locating damage of nonlinear features.  

In engineering structural systems, some damage often manifests itself as the 

introduction of nonlinearity into an otherwise linear system. Examples include 

post-buckled structures (Duffing non-linearity), rattling joints (impacting system with 
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discontinuities), or breathing cracks (bilinear stiffness), etc., and such damage has 

been referred to as damage with nonlinear features [30]. Recently, Lang developed a 

novel nonlinear frequency analysis method: Nonlinear Output Frequency Response 

Functions [31] (NOFRFs) and furthermore proposed a new transmissibility concept 

known as the transmissibility of NOFRFs [28]. The transmissibility of NOFRFs extends, 

for the first time, the concept of transmissibility to the nonlinear case. By using this 

new concept, important properties of system nonlinear responses can be revealed and 

exploited to identify the existence and the location of structural damage with 

nonlinear nature. 

The research study in this thesis is motivated by the aforementioned practical needs 

for SHM, the recent development in nonlinear structural system transmissibility 

analysis, and the great potential of applying nonlinear transmissibility analysis in 

damage localization. A general structural health monitoring method is proposed in this 

thesis. This approach can be used to address a wide class of SHM problems via 

systematically taking the effects of operating conditions and environmental changes 

into account. Moreover, a new and more general transmissibility analysis methodology 

for the detection and location of damage with nonlinear features in structural systems 

is developed. The algorithms under the framework of this novel methodology can deal 

with an arbitrary number of nonlinearly damaged components in the system, does not 

need specific tests, and does not require that the loading on inspected structural 

systems is measurable. This methodology enables the basic principles of the NOFRF 

transmissibility based damage detection and localization to be literally applied in 

engineering practice to address many significant practical SHM problems. 

1.3 Layout of this thesis 

This thesis consists of seven chapters. The first one is an introductory chapter which 

introduces the concept of SHM and damage localization, points out possible problems 
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during application of the methods in SHM and damage localization and covers the 

research motivation and contributions of this thesis. Chapter 2 reviews the available 

techniques in SHM and damage localization in detail. Chapters 3-6 are dedicated to the 

main research work of the present studies on SHM and damage localization. Finally, 

Chapter 7 summarizes the main results achieved by the studies presented in this thesis. 

A more detailed summary of Chapters 2-7 is provided as follows.  

Chapter 2 reviews the commonly used damage sensitive features in SHM and damage 

localization firstly including features in time domain, frequency domain, 

time-frequency domain, modal domain and frequency response analysis, and then 

introduces the effect of environmental and operational conditions on these features 

such as temperature, humidity, operational speed, traffic loading and wind loading. 

Finally, the techniques in SHM and fault localization under changing environmental 

and operational conditions are reviewed. 

Chapter 3 proposes a novel health probability based SHM method. In this method, the 

relationship between a signal feature and the normal changes in the system 

environmental and operating parameters, known as the baseline model, is first 

established. Then, a tolerance range of the signal feature's deviation from what is 

determined by the baseline model is evaluated via a data based training process. 

Furthermore, the health probability, which is defined as the proportion of the cases 

where the system’s working status as represented by the signal feature is within the 

tolerance range, is used to determine whether a system is in a normal working 

condition or not so as to implement the system condition and health monitoring. Both 

simulation studies and experimental data analyses have been conducted to 

demonstrate the performance of the proposed new technique. 

In Chapter 4, a new transmissibility analysis method is proposed for the detection and 

location of damage via nonlinear features in MDOF structural systems. The method is 
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derived based on the concept of the transmissibility of NOFRFs, a concept which 

extends the traditional transmissibility concept to the nonlinear system case [28]. The 

implementation of the method is only based on measured system output responses 

and by evaluating and analyzing the transmissibility of these system responses at 

super-harmonics. Both numerical simulation studies and experimental data analysis 

have been conducted to verify the effectiveness and demonstrate the potential 

practical applications of the new method. 

In Chapter 5, the proposed method in Chapter 4 is extended to the nonlinearity 

detection and localization in multi-input multi-output (MIMO) nonlinear systems. In 

this chapter, after the description of the model and mathematical representation of a 

class of MIMO systems, the concept of NOFRFs of MIMO nonlinear systems is 

introduced and some important properties of the transmissibility of NOFRFs of MIMO 

nonlinear systems are derived. Then, the transmissibility at frequencies generated by 

system nonlinearities is studied. Finally, a transmissibility analysis based method is 

developed to detect and localize the nonlinearities in MIMO systems and the 

effectiveness of this method is verified by simulation case studies. 

Based on the results in Chapters 4 and 5, Chapter 6 studies nonlinearity detection and 

localization when a system is subject to an arbitrary number and type of general 

loadings. The determination of the output frequency range of a nonlinear system 

subject to general loadings is investigated so that a procedure similar to that in 

Chapter 4 or Chapter 5 can be followed to find the location of nonlinearity in the 

system. Finally, based on the results of nonlinearity detection and localization, some 

guidelines are provided for how to apply the transmissibility analysis based modal 

identification to nonlinear structural systems.  

Finally, in Chapter 7, the main conclusions of this thesis and suggestions for further 

studies are provided. 
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Chapter 2   

Structural health monitoring and damage localization: 

literature review 

Structural health monitoring can be achieved by measuring various signals related to 

the structure health status and then evaluating the changes in the features of signal 

measurements. Two different kinds of features are usually used in SHM. One is the 

features extracted from measurements by different signal analysis methods, including 

the time domain analysis, frequency domain analysis, and time-frequency domain 

analysis. The other one is the features which can represent the characteristics of the 

structural systems, including modal parameters such as natural frequency and mode 

shape and frequency response features such as coherence functions and 

transmissibility. These methods of SHM are summarized in Fig. 2.1 and will be 

discussed in the following sections [15, 32]. 

Structural health monitoring

Time domain analysisFrequency domain analysisTime-frequency  analysisModal analysis

Signal feature based methodsStructure feature based methods
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Fig. 2.1 Techniques in structural health monitoring [15, 32] 
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2.1 Time domain analysis 

Traditionally, the approach of analyzing signals is to observe them in the time domain 

which means that the measured data are displayed and analyzed as a function of time. 

The signal analysis in the time domain is a direct technique for feature extraction 

because measured signals always are in the time domain. Therefore, the significant 

merit of this kind of analysis is that little or even no information is missing before 

processing. However, the drawback is that too much data will be involved. Main 

time-domain analysis methods are introduced as follows.  

2.1.1  Time-waveform analysis 

Time-waveform analysis is to observe visually the time-history of the data set. 

Different signals look different in time-waveform. Especially, distinctions among 

sinusoidal, random, repetitive, and transient events can be clearly seen [15]. In 

addition, some faults can be observed by the abnormal time-waveform. For example, 

in a rotor system with rub-impact fault, the waveform displays clipping characteristics. 

The more serious the fault is, the more abnormal the deformation in the waveform 

will appear [33]. 

2.1.2  Time-waveform indices 

Numerous useful features obtained from time-waveform can be applied in SHM, but 

they are difficult to be used directly for trending and comparisons and there are 

always too many data to store. From this viewpoint, time-waveform indices, the 

separate numbers extracted from original measured data by some calculation, look like 

more applicable and convenient for SHM [34]. These indices include, for example, 

Peak level: Largest value of amplitude within the data set. 

𝑃 =    *𝑥(𝑛), 𝑛 = 1,2, … ,𝑁+ (2.1)  
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where 𝑥(𝑛) is data set in the time domain, and 𝑁 is the length of the data. Tandon 

[35] reported that peak levels of both outer and inner races of a bearing increased 

obviously and became much greater than that of healthy bearings when the defect 

diameter became larger. So he concluded that peak level could serve as an indicator of 

defect bearing.  

Mean level: Average amplitude.  

𝑥̅ =
∑ 𝑥(𝑛)𝑁
𝑛<1

𝑁
 (2.2)  

RMS level: Root-mean-square (RMS). 

𝑅 = √
∑ 𝑥2(𝑛)𝑁
𝑛<1

𝑁
 (2.3)  

The overall RMS of a signal is a representative of the energy. Williams [36] investigated 

the change of RMS of accelerometer signal when there was damage in inner race of 

ball bearing. He found that the variation of the signal RMS level reflected the 

development of the damage. The existence and growth of the damage on the surface 

induced the incipient rise of RMS level. When the bearing keeps working and rolling 

contact continues, the rough edges of a crack or small damage zone will become 

smoothed. Therefore, the signal RMS level tends to drop down. However, as cracks 

develop and extend to a large zone, the signal RMS increases again. The research in Ref. 

[35] found that the overall RMS increases when damage becomes serious. So the RMS 

can indicate not only the development of damage but also the severity of damage. 

Peak-to-peak amplitude: The ratio of positive peak to negative peak of signal 

amplitudes. 

𝑃𝑝 =
𝑃

   *−𝑥(𝑛), 𝑛 = 1,2, … ,𝑁+
 (2.4)  

Crest factor: The ratio of maximum amplitude of the signal to its RMS level. 
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𝐶 =
𝑃

𝑅
 (2.5)  

The incipient structural damage can be reflected by the crest factor. However, when 

damage becomes serious, the crest factor will generally drop down because the level 

of RMS goes up with a developing damage. 

2.1.3  Orbits 

Orbit is a diagram displaying vibration in horizontal vs vertical directions. An orbit can, 

for example, represent different characteristics of faults in rotating structures such as 

shaft unbalance [37], lubrication instabilities (whirl [38] and whip), and impact-rubs 

between rotor and stator [22], etc.  

2.1.4  Probability density function 

Probability density function (PDF) of a random variable is a function that represents 

the relative probability for this random variable to take a special value [39]. In 

engineering, the shape of the PDF of a health structure is similar to a Gaussian 

probability distribution. However, the damage will cause the change of the shape. For 

example, the impulse, which often indicates there is an abnormality in 

rolling-element-bearing systems, will lead to large probability at the average value with 

a wide spread of low probabilities [15]. 

2.1.5  Probability density moments 

Like the time-waveform indices, probability density moments are separate-number 

indices based on the probability density function. 

𝑀𝑁 = ∫ 𝑥𝑁
 

 

𝑓(𝑥)𝑑𝑥 (2.6)  

where 𝑁 is the order of the moments, 𝑥 is a time series, 𝑓(𝑥) is the PDF of 𝑥, and 

,𝑎, 𝑏- is the interval in which the moments are defined. Probability density moments 
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of the first four orders have special meaning as listed in Table 2.1 [3]. 

Table 2.1 Meaning of the first four order probability density moments 

Probability density moments Meaning 

The first order: 𝑀1 Mean 

The second order: 𝑀2 Variance  

The third order: 𝑀3 Skewness 

The fourth order: 𝑀4 Kurtosis 

 

Odd moments (mean 𝑀1 and skewness 𝑀3) reflect the maximum location of PDF 

relative to the average value, while even moments (variance 𝑀2  and kurtosis 𝑀4) 

provide an extension of PDF [15]. Among these moments, the fourth one is most 

commonly used in SHM, because kurtosis is sensitive to the impulsiveness in a signal 

which can be the result of a damaged component, for example, a 

rolling-element-bearing in the early damage stage [15]. Dyer and Stewart [40], for the 

first time, applied kurtosis in damage diagnosis of bearings. They found that the value 

of kurtosis is approximately around 3 when a bearing suffers no defect. When 

impending failure happens, this value would be greater than 3. Other studies [41-43] 

also succeeded in the application of kurtosis in bearing damage detection. However, in 

some other cases [44, 45] kurtosis failed to detect impending bearing defects. 

2.2 Frequency domain analysis 

In the frequency domain, a signal is represented as a function of frequency. The 

frequency-domain representation of a signal can be obtained from Fourier transform 

(FT) of the signal, usually using the fast Fourier transform (FFT) algorithm. The signal 

can also be transferred back into the time-domain by the inverse Fourier transform 

(IFT). Although the process of Fourier transform will lead to the loss of some 

information, such as transients or non-repetitive signal components, its advantage is 
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also obvious. For example, the periodical information of the original signal in the time 

domain is distinctly represented by amplitude peaks in the frequency spectrum at the 

corresponding frequencies. Structural damage can induce specific periodical signals. If 

the frequency characteristics are exploited properly, such damage can be diagnosed 

early [15]. Therefore, various SHM techniques in the frequency domain have been 

developed. 

The main procedure of the frequency domain analysis is firstly to look closely at either 

special interesting frequency components or the whole frequency spectrum and then 

extract features from the signal spectrum. Some commonly used techniques in the 

spectrum analysis are envelope analysis, cepstrum and high-order spectrum analysis. 

2.2.1  Envelope spectrum 

Envelope spectrum can be obtained by taking the Fourier transform on the envelope 

signal of an original amplitude-modulated signal [46]. System response with 

modulated amplitude is a common phenomenon in damaged rotating systems, such as 

gearboxes, turbines and induction motors as well as rolling element bearings. For 

example, with rolling element bearings, if the surface of a ball is suffering damage, the 

impact between the damaged spot and other components will produce an impulse 

force. When such strike continues, impulse responses with modulated amplitude will 

be induced and the strike frequency can be observed on envelope spectrum [47]. So 

the analysis of envelope spectrum can be applied to detect the damage which can 

generate a signal with modulated amplitude at given frequencies.  
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Fig. 2.2 Signal with modulated amplitude and its envelope signal [48] 

Konstantin-Hansen [48] studied the application of envelope spectrum in damage 

detection of a rolling element bearing system. Fig. 2.2 shows a simulated 

amplitude-modulated signal, the red curve illustrates the envelope of the black curve. 

The Fourier transform of the red curve is referred to as the envelope spectrum of the 

black curve. Fig. 2.3 shows an acceleration signal measured on a bearing which has 

outer race damage, the corresponding spectrum and envelope spectrum. It can be 

observed from Fig. 2.3 (a) that an impulse is induced when a ball in the bearing system 

passes the local damaged area of the outer race about every 0.0095 second. So there 

are sideband frequencies around the carrier frequency. The frequency intervals among 

them is about 105 Hz( ≈ 1/0.0095 second) as shown in Fig. 2.3 (b). This is indicated by 

the envelope frequency at 105.45Hz and its second order harmonic at 210.9 Hz on the 

envelope spectrum in Fig. 2.3 (c).  
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Fig. 2.3 (a) Acceleration signal measured on a bearing suffering outer race damage  

(b) Spectrum of the acceleration signal  

(c) Envelope spectrum of the acceleration signal [48] 

Envelope spectrum based techniques have been used in SHM successfully [46, 48, 49], 

but it is only efficient for a modulated signal which sets an annoying limitation in its 

application. 

2.2.2  Cepstrum 

Literally, cepstrum is an anagram of spectrum. The calculation of cepstrum involves the 
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IFT of the natural logarithm of spectrum. Concrete definitions are not the same in 

different literatures. Given a discrete time signal 𝑥,𝑛- and its corresponding Discrete 

Time Fourier Transform 𝑋(𝑒𝑗𝜔), there are three different forms of cepstrum [48, 49]: 

                  𝐶 𝑝𝑙 ,𝑛- =
1

2 
∫     ,𝑋(𝑒𝑗𝜔)-
 

; 

𝑒𝑗𝜔𝑛𝑑𝜔 (2.7)  

               𝐶𝑟  𝑙,𝑛- =
1

2 
∫     |𝑋(𝑒𝑗𝜔)|
 

; 

𝑒𝑗𝜔𝑛𝑑𝜔 (2.8)  

                𝐶𝑝𝑜𝑤 𝑟,𝑛- =
1

2 
∫     ,𝑋𝑋 -
 

; 

𝑒𝑗𝜔𝑛𝑑𝜔 (2.9)  

Different terms are used in the cepstral analysis and they are listed in Table 2.2. 

Table 2.2 Different terms employed in the spectral and cepstral analyses [48, 49] 

Spectral analysis Cepstral analysis 

Spectrum Cepstrum 

Frequency (unit: Hz) Quefrency ( unit: second) 

Harmonic Rahmonic 

Filter Lifter 

 

The cepstrum reflects particular periodical information in the frequency spectrum, 

such as sidebands in gearbox vibration signals, and this is similar to frequency 

spectrum, which represents periodicities in the time domain.  

Liang [50] stated that the damage in the circuit of an induction motor will cause a 

modulation effect in stator vibration. So he implemented cepstrum analysis to detect 

the harmonics and sidebands in the vibration spectra of a damaged induction motor 

so that the damage in the motor circuit can be found. Figs. 2.4 (a) and (b) show the 

vibration power spectra of health and damaged induction motors respectively when 

induction motors are under 50% loading. The motor speed 24.5 Hz, several harmonics 

and sidebands can be observed clearly from the vibration power spectrum of damaged 

induction motor in Fig. 2.4 (b). Figs. 2.5 (a) and (b) show the vibration cepstrum of 
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health and damaged induction motors respectively. Quefrency components at 40.8ms 

and 20.4ms which are roughly equal to 24.5 Hz and its second order harmonic 49 Hz 

are obviously displayed in Fig. 2.5 (b). In addition, the sidebands in Fig. 2.4(b) are 

represented by the quefrency components at 285.7 ms (1/3.5Hz) and 142.8 ms (1/7Hz) 

respectively. Therefore, cepstrum can detect the damage in induction motor correctly. 

Other applications of cepstrum can be found in Refs. [48, 49].  

 

Fig. 2.4 Vibration power spectra of healthy and damaged induction motors [50] 

 

Fig. 2.5 Vibration cepstrum of healthy and damaged induction motors [50] 
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2.2.3  High-order spectrum 

The definitions of the commonly used high-order spectrum, including bi-spectrum and 

tri-spectrum, as well as power spectrum density (PSD) are as follows [51]: 

PSD: 

𝑆  = 𝐸,𝑋(𝑓𝑙)𝑋
 (𝑓𝑙)-, 𝑙 = 1,2,3, … , 𝑁 (2.10)  

bi-spectrum: 

𝐵   (𝑓𝑙, 𝑓𝑚) = 𝐸,𝑋(𝑓𝑙)𝑋(𝑓𝑚)𝑋
 (𝑓𝑙:𝑚)-, 𝑙 + 𝑚  𝑁 (2.11)  

tri-spectrum: 

𝑇    (𝑓𝑙, 𝑓𝑚, 𝑓𝑛) = 𝐸,𝑋
 (𝑓𝑙)𝑋

 (𝑓𝑚)𝑋
 (𝑓𝑘)𝑋(𝑓𝑙 + 𝑓𝑚 + 𝑓𝑘)-, 𝑙 + 𝑚 + 𝑘  𝑁 (2.12)  

where 𝐸, - means expectation; 𝑋(∎) denotes the DFT of the original data series 

𝑥,𝑛- ; 𝑋 (∎)  is the complex conjugate of 𝑋(∎)  and 𝑓𝑙, 𝑓𝑚 , 𝑓𝑘   and 𝑁  are 

frequency variables and the number of their points, respectively. 

Obviously, the second-order characteristic of a signal, such as energy, is provided by 

the conventional power spectrum density while the bi-spectrum and tri-spectrum can 

offer information on the signal’s third- and fourth-order features. The traditional PSD 

only provides insight into different frequencies and their corresponding amplitudes in 

a signal. However, because high-order spectrum involves both amplitudes and phases 

in the frequency domain, it can give information about nonlinear coupling between 

frequencies of a signal so that high-order spectrum can be used to detect higher order 

harmonics and their phase relationship in the signal, and to detect nonlinear behavior 

in dynamic response of a structural system. Therefore, high-order spectrum analysis 

has been extensively used in SHM for different rotating related components and 

systems such as gears [52], bearings [53] and rotating machines [54]. McCormick et al 

in [55] discuss the application of both bi-spectrum and tri-spectrum in bearing fault 

diagnostics.  
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2.3 Time-frequency domain analysis 

The above reviewed time and frequency domain methods are based on the stationary 

signals. However, in practical engineering, this is not always the case. Structures often 

experience some degree of unpredicted damage inevitably before they are out of 

service, and certain damage will induce some nonlinear or time-varying behaviours. 

Therefore, the properties of measurements on these structures are often time-variant 

[56, 57]. The above reviewed stationary signal based techniques may not be able to be 

used in these cases. 

The time-frequency methods are especially appropriate to analyse such kind of signals 

because they can offer simultaneously both time and frequency properties of a signal. 

Therefore, time-frequency analysis based techniques have been extensively 

investigated in SHM in recent years. Three most popular methods will be reviewed 

below including the Short-time Fourier Transform (STFT) [58, 59] method, the Wavelet 

Transforms (WT) [60] method and the Hilbert–Huang Transform (HHT) [61, 62] 

respectively. 

2.3.1  Short time Fourier transform 

The traditional procedure of STFT is as follows. Firstly, the signal is sliced up into 

numerous suitable overlapping time segments by a windowing method. Then Fourier 

analysis is conducted for each segment to extract frequency information in it. Finally, 

these spectra are accumulated in the spectrogram which indicates how the frequency 

components are varying in time. The corresponding formula for continuous-time 

signals is : 

𝑆𝑇𝐹𝑇(𝑓, 𝑡) = ∫ 𝑥(𝜏)
 

; 

𝜔(𝜏 − 𝑡)𝑒;𝑗2 𝑓 𝑑𝜏 (2.13)  

where 𝜔( ∎) is a window, which can be chosen according to the characteristics of 

the signal. 
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Some applications of STFT in SHM can be found in [63-65]. However, STFT has inherent 

shortcomings. One is that resolution for all frequencies is the same because STFT 

employed the fixed window for the analysis of the entire signal. This means that good 

frequency resolution and excellent time resolution cannot be achieved at the same 

time. Another is that STFT has no orthogonal bases so that no fast and effective 

algorithm is available for the calculation of STFT [66]. 

2.3.2  Wavelet analysis 

Unlike STFT, the window in wavelet transform (WT) is flexible by dilation and 

translation. Morlet proposed the wavelet firstly in 1984 and then defined continuous 

wavelet transform (CWT) as follows [16]. 

  (𝑎, 𝑏,  ) = 𝑎
;
1
2∫𝑥(𝑡)  (

𝑡 − 𝑏

𝑎
) 𝑑𝑡 (2.14)  

where   (𝑎, 𝑏,  ) is CWT of 𝑥(𝑡), 𝑎 is the scale or dilation parameter for changing 

the oscillating frequency , 𝑏 is the time parameter,  (𝑡) is an analysing wavelet, 

and   (𝑡) is the complex conjugate of  (𝑡). 

Compared with the STFT, whose window remains the same for the entire signal, the 

window of WT varies with the frequency of the signal so that both good time and 

frequency resolution can be achieved [66]. Therefore, wavelet analysis is competent to 

process non-stationary signal in SHM.  

The wavelet transform can be classified into three categories: the continuous wavelet 

transform (CWT), the continuous wavelet transform with discrete coefficients, and the 

discrete wavelet transform (DWT). In order to improve computing effectiveness and 

efficiency, different wavelets have been developed, such as Haar Wavelet, Morlet 

Wavelet and Mexican Hat Wavelet.  

Peng [67] analysed two signals with changing frequency by wavelet transform. The 

representations of the two signals are given by Eqs. (2.15) and (2.16). The wavelet 
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scalograms are shown in Figs. 2.6 (a) and (b) respectively. 

𝑠1 = {
   (6 𝑡) ,                          𝑡  1

2    (24 (𝑡 − 1)2) ,    1  𝑡  2
 (2.15)  

𝑠2 =    (6 𝑡) + 𝑠𝑖𝑛    (24 (𝑡 − 1)
2) ,   𝑡  1 (2.16)  

 

(a) Signal in Eq. (2.15)     (b) Signal in Eq. (2.16) 

Fig. 2.6 Wavelet scalograms of the two signals [67] 

Obviously, both the constant frequency component and time-varying frequency 

component in 𝑠1 and 𝑠2 can be recognized from the wavelet scalograms in Fig. 2.6. 

The two kinds of components are represented by different type of lines. One is straight 

line at 𝑓 = 3Hz which means that the frequency does not vary with time; the other is 

skew line which means that the frequency changes with time linearly. The duration of 

each line indicates the existence time of the corresponding frequency components. It 

can be observed from Fig. 2.6 (a) that the constant frequency component exists 

between 0-1s and the time-varying frequency component appears from 1s to 2s. But 

interference terms make the frequency components between 1-1.3s not to be 

identified correctly. The duration of both frequency components in 𝑠2 is from 0s to 1s 

as shown in Fig. 2.6 (b). The above results are consistent with the properties of the 

signals in Eqs. (2.15) and (2.16). Therefore, the wavelet analysis can provide the time 

and frequency information in a signal simultaneously. 

Currently, WT based techniques have been widely applied in SHM [68-75]. Sometimes, 

they are integral with the modern signal analysis method, such as fuzzy-logic inference 

[76], genetic algorithms [77] and artificial neural networks [78-82]. However, 
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compared with the FT, WT technique is still immature due to many factors.  

Firstly, although some algorithms, such as fast wavelet transform (FWT) by Mallat [83], 

have been developed to improve computing efficiency of wavelet analysis, the 

algorithm of CWT is still too time consuming to analyze large data sets. Also , no 

criteria exist for the selection of wavelet basis of various signals [84]. Furthermore, the 

choice of range scales in the WT is very important. An inappropriate choice of range 

scales will produce interferential information that can confuse signal analysis [85]. 

2.3.3  Hilbert-Huang Transform 

The Hilbert-Huang transform (HHT) is an empirical data-analysis method. It consists of 

two parts: a time adaptive decomposition operation named empirical mode 

decomposition (EMD) and Hilbert spectral analysis (HSA).  

The goal of EMD is to decompose a signal 𝑥(𝑡) into monocomponent ‘intrinsic mode 

functions’ (IMFs) which are the components to be used to conduct well-behaved HHT. 

The concrete procedure of EMD can be found in Ref. [61]. 

The original signal can be rewritten as follows: 

𝑥(𝑡) =∑𝑐𝑗(𝑡) + 𝑟𝑛

𝑛

𝑗<1

(𝑡) (2.17)  

where, 𝑐𝑗(𝑡) (𝑗 = 1,2, … , 𝑛) is the IMFs of the original signal 𝑥(𝑡), and 𝑟𝑛(𝑡) is 

residue. 

For general signal 𝑦(𝑡), its Hilbert transform, 𝑦̃(𝑡) is defined as: 

𝑦̃(𝑡) = 𝐻𝑇,𝑦(𝑥)- = ∫
𝑦(𝜏)

 (𝑡 − 𝜏)

: 

; 

𝑑𝜏 (2.18)  

The analytical signal 𝑌(𝑡) of 𝑦(𝑡) is expressed as: 

𝑌(𝑡) = 𝑦(𝑡) + 𝑖𝑦̃(𝑡) = 𝐴(𝑡)𝑒𝑖 (𝑡) (2.19)  
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where 𝐴(𝑡) is the instantaneous amplitude and 𝜃(𝑡) is the instantaneous phase 

angle. The instantaneous frequency 𝜔(𝑡) is obtained as: 

𝜔(𝑡) =
𝑑𝜃

𝑑𝑡
 (2.20)  

For signal 𝑥(𝑡) with 𝑛 IMFs, analytical signal 𝑋(𝑡) is:  

𝑋(𝑡) =∑𝐴𝑗

𝑛

𝑗<1

(𝑡)𝑒𝑖 ∫𝜔 (𝑡)𝑑𝑡 =∑𝐴𝑗

𝑛

𝑗<1

(𝑡, 𝜔𝑗)𝑒
𝑖 ∫𝜔 (𝑡)𝑑𝑡 (2.21)  

where the 𝐴𝑗(𝑡, 𝜔𝑗) is the amplitude of the 𝑗th IMF 𝑐𝑗 at time 𝑡 with frequency 

𝜔𝑗. Finally, the amplitude of the frequency-time decomposition of 𝑥(𝑡) is given by: 

𝐴(𝑡, 𝜔, 𝑥) =∑𝐴𝑗

𝑛

𝑗<1

(𝑡, 𝜔𝑗) (2.22)  

Definitely, the EMD operation is the most computation consuming step in the whole 

HHT procedure, but there is no time-consuming procedure, so the HHT can process 

large size signals. Moreover, although HHT is time-frequency analysis, it involves only 

the instantaneous frequency instead of the time and frequency resolution. 

The HHT based techniques have their specific advantages in time efficiency and 

reliability when processing nonstationary data sets and have been applied in SHM 

successfully [86-93]. However, Bao [56] believed that the classic HHT still suffered 

some deficiencies, especially in the EMD process. Apart from numerous needless low 

amplitude IMFs and inseparable closely-spaced modes, the classic HHT method is 

sensitive to unpleasant noise. Moreover, the first IMF always covers too broad 

frequency range to become mono-component. 

2.3.4  Others 

Other time-frequency domain analysis methods include Wigner-Ville distribution 

(WVD), Choi-Williams distribution (CWD) and Cone-Shape distribution (CSD). They are 
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all capable of detecting faults [94-97]. Staszewski and Worden successfully detected a 

broken tooth in a spur gear by using Wigner-Ville distribution [96]. However, the 

disadvantage of WVD is the severe interference terms which can exist in the 

time-frequency domain results and may mislead the signal analysis[16]. So Li 

conducted the Empirical Mode Decomposition which is the first step of Hilbert-Huang 

Transform, then evaluated the Wigner-Ville distribution on the intrinsic modes 

function. In this case, WVD contained no interference terms because IMF is a 

mono-component function. Finally, this WVD based on the EMD method effectively 

diagnosed the fault in a ball bearing [97]. The CWD and CSD can overcome the 

shortcoming of the interference term, but bring the problem of the reduction of 

time-frequency concentration [16]. 

2.4 Modal analysis 

In the preceding sections signal analysis in the time, frequency and time-frequency 

domains are discussed. In this section, modal analysis will be investigated. This kind of 

signal processing method is especially suitable for analysing the vibration of 

mechanical and civil structures. 

2.4.1  Natural frequency 

Natural frequency is the particular vibration frequency at which a system naturally 

oscillates. It is the inherent characteristics of a system, and one system can have one 

or more natural frequencies. 

Salawu [12] reviewed the contribution of natural frequencies in SHM. For example, the 

crack in a beam would reduce its natural frequency by decreasing the local bending 

stiffness at corresponding cross-section. Therefore, the natural frequency based 

technique has been considered as one of the most useful damage detection methods. 

However, other findings [12, 98, 99] suggest that if the fault occurred at low stresses 



 
Chapter 2 Structural health monitoring and damage localization: literature review 

28 

region, the change of natural frequency might be unreliable for SHM. In addition, Chen 

et al. [100] argued that the information of the natural frequency variation was not 

sufficient enough to serve as an effective damage indicator because they found the 

variations of the first four natural frequencies were smaller than 10% even when the 

fault was serious enough to induce structural failure. 

2.4.2  Mode shape 

Mode shape is defined as a particular vibrating pattern at a given natural frequency of 

mechanical/civil structures. It varies with the different natural frequencies. Generally, a 

unique modal shape is associated with one natural frequency, but symmetrical 

structure sometimes has two modal shapes at one frequency. The damage or 

abnormal behaviour in a structure can cause changes in modal shape. 

Two approaches are frequently adopted to directly compare two mode shapes. One is 

Modal Assurance Criterion (MAC) [101, 102], the other is the Coordinate Modal 

Assurance Criterion (COMAC [102]). The MAC denotes the similarity between two sets 

of mode shapes. When two modal shapes are completely different, the value of MAC 

is 0, while when they match perfectly, the value of MAC is equal to 1. Therefore, the 

value of MAC can be considered as a fault indicator. The COMAC shows discordance 

between two mode shapes and its value also changes between 0 and 1. The value of 

COMAC at a damage region is greater than that at a normal spot, so the COMAC is able 

to reflect potential damage location[14]. 

Another indirect method is mode shape curvature, the change of which is more 

prominent than that of the mode shapes and is highly focused on the damage zone. 

Wahab and De Roeck [103] proposed ‘curvature damage factor’, which involved the 

difference of healthy and faulty curvatures, and successfully applied it to the Z24 

Bridge in Switzerland. Some other examples of applications of modal shape in SHM can 

be found in Refs. [104-108]. 
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SHM techniques based on mode shapes possess numerous merits that natural 

frequencies related methods cannot achieve. For example, mode shapes depend on 

local information, so they are susceptible to local damage and can be applied directly 

in the identification of damage location. Furthermore, the mode shapes are less prone 

to be affected by environments than natural frequencies [109]. However, such 

approaches are imperfect. The first disadvantage is that measurement of the mode 

shapes requires a series of sensors to measure displacements. The second one is that 

the measured mode shapes are more likely to be polluted by unwanted noise than 

natural frequencies [13]. 

2.4.3  Modal strain energy 

Similar to modal shape, modal strain energy is also sensitive to local damage so that it 

can be exploited to identify the location of damage. Kim and Stubbs [110] proposed a 

damage indicator according to the ratio of modal strain energy of a healthy structure 

to that of a damaged structure. Then a proper damage identification algorithm about 

locating and sizing the damage was verified by an experimental plate girder with a 

single crack and a simulated plate girder with up to two damage sites. 

Law [111] defined the ratio of the modal strain energy of an element to its kinetic 

energy as elemental energy quotient (EEQ) and proposed a damage location indicator 

which is the deviation of the EEQ before and after damage normalized and averaged 

over numerous modes. Further simulation studies verified that such indicator could 

identify damage location successfully not only when 10% random noise was added but 

also when the experimental two-storey plane frame suffered two loosened joints. 

Damage location and size identification method based on modal strain energy was 

compared with natural frequency analysis based method in Ref. [112]. It was found 

that the former could provide more precise information about fault location than the 

latter. In addition, modal strain energy based methods were considered as a special 
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case of modal based methods by some researchers [13, 112]. 

2.5 Frequency response analysis 

2.5.1  Coherence function 

Coherence function is used to inspect the relationship between two different signals, 

𝑢(𝑡)  and 𝑥(𝑡)  in the frequency domain. It is mathematically defined as the 

cross-power spectrum normalized by spectral densities of the two signals as follows.  

 𝐶 𝑢(𝑓) =
|𝑃 𝑢(𝑓)|

2

𝑃  (𝑓)𝑃𝑢𝑢(𝑓)
 (2.23)  

where 𝑃  (𝑓)  and 𝑃𝑢𝑢(𝑓)  represent spectral densities of 𝑢(𝑡)  and 𝑥(𝑡) 

respectively; and 𝑃 𝑢(𝑓)  denotes cross-power spectrum of these two signals. 

Coherence function 𝐶 𝑢(𝑓) can determine the linearity between 𝑥(𝑡) and 𝑢(𝑡). For 

a linear system with output 𝑥(𝑡), input 𝑢(𝑡), and frequency response function 𝐻(𝑓), 

𝑋(𝑓) = 𝐻(𝑓)𝑈(𝑓) , where 𝑋(𝑓)  and 𝑈(𝑓)  are the spectrum of 𝑥(𝑡)  and 𝑢(𝑡) 

respectively. Moreover, it is known that 𝑃  (𝑓) = |𝐻(𝑓)|
2𝑃𝑢𝑢(𝑓)  and 𝑃 𝑢(𝑓) =

𝐻(𝑓)𝑃𝑢𝑢(𝑓), therefore, in this case, coherence function 𝐶 𝑢(𝑓) becomes 

𝐶 𝑢(𝑓) =
|𝑃 𝑢(𝑓)|

2

𝑃  (𝑓)𝑃𝑢𝑢(𝑓)
=

|𝐻(𝑓)𝑃𝑢𝑢(𝑓)|
2

|𝐻(𝑓)|2𝑃𝑢𝑢(𝑓)𝑃𝑢𝑢(𝑓)
= 1 (2.24)  

When the output signal is mixed with white noise, 𝑋(𝑓) = 𝐻(𝑓)𝑈(𝑓) + 𝑁(𝑓), so 

𝑃  (𝑓) = |𝐻(𝑓)|
2𝑃𝑢𝑢(𝑓) + 𝑃𝑛𝑛(𝑓)  and 𝑃 𝑢(𝑓) = 𝐻(𝑓)𝑃𝑢𝑢(𝑓) , where 𝑁(𝑓)  and 

𝑃𝑛𝑛(𝑓)  are spectrum and spectral density of noise, respectively. In this case, 

coherence function 𝐶 𝑢(𝑓) becomes 

𝐶 𝑢(𝑓) =
|𝑃 𝑢(𝑓)|

2

𝑃  (𝑓)𝑃𝑢𝑢(𝑓)
=
|𝐻(𝑓)𝑃𝑢𝑢(𝑓)|

2

𝑃  (𝑓)𝑃𝑢𝑢(𝑓)
=
|𝐻(𝑓)|2𝑃𝑢𝑢(𝑓)

𝑃  (𝑓)
= 1 −

𝑃𝑛𝑛(𝑓)

𝑃  (𝑓)
 (2.25)  

Because 𝑃 𝑢(𝑓) , 𝑃  (𝑓) , 𝑃𝑢𝑢(𝑓)  and 𝑃𝑛𝑛(𝑓)  are all positive values, so the 

coherence function 𝐶 𝑢(𝑓)  1 and  
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𝐶 𝑢(𝑓) {

= 1   𝑓𝑜𝑟 𝑙𝑖𝑛𝑒𝑎𝑟 𝑠𝑦𝑠𝑡𝑒𝑚                     
≈ 1  𝑓𝑜𝑟 𝑙𝑖𝑛𝑒𝑎𝑟 𝑠𝑦𝑠𝑡𝑒𝑚 𝑤𝑖𝑡𝑕 𝑙𝑖𝑡𝑡𝑙𝑒 𝑛𝑜𝑖𝑠𝑒 
 1  𝑓𝑜𝑟 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑠𝑦𝑠𝑡𝑒𝑚              

 (2.26)  

In other words, 𝐶 𝑢(𝑓) = 1 indicates the system is linear; when 𝐶 𝑢(𝑓) ≈ 1, the 

system may still be linear but the measured signals are mixed with noise. 𝐶 𝑢(𝑓)  1 

means that the system behaves nonlinearly, which can, in many cases, be induced by a 

damage. Therefore, these characteristics are often employed to detect damage in 

different systems. For example, Bejger investigated the coherence function in the 

application of marine engine injection pump diagnosis, and concluded that the 

coherence function was sensitive to damage in the lower frequency range and this 

phenomenon corresponds to his previous research results [113]. Reddy found that 

coherence function could help to detect the damage in a power transformer by 

directly observing the coherence spectrum [114].  

Although analysis of coherence function has detected damage successfully, it has 

inevitable limitations. For example, it is only effective to detect nonlinear fault. The 

level of coherence still keeps 1 in linear damage cases because the relationship 

between the input and output remains linear even though the linear relationship 

changes when a linear fault occurs.  

2.5.2  GFRFs 

The Volterra series can describe a class of nonlinear systems which are stable at zero 

equilibrium. The output in the neighborhood of the equilibrium can be represented as 

follows[115]. 

𝑥(𝑡) = ∑∫ …
 

; 

𝑁

𝑛̅<1

∫ 𝑕𝑛̅(𝜏1, … , 𝜏𝑛̅)
 

; 

∏𝑢(𝑡 − 𝜏𝑖)

𝑛̅

𝑖<1

𝑑𝜏𝑖  (2.27)  

where 𝑁 is the maximum order of the system nonlinearity; 𝑕𝑛̅(𝜏1, … , 𝜏𝑛̅) is the 𝑛̅th 

order Volterra kernel.  
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The Volterra series is always considered as a powerful tool for analyzing nonlinear 

systems and has been extensively researched in the last several decades. Basic 

principles about the Volterra series are systematically introduced in Refs. [116, 117]. 

Its development is reviewed by Billings [118], Korenberg and Hunter [119, 120]. 

Kotsios [121] studied the possible problems when an infinite Volterra system was 

transformed to a finite input/output form and proposed an effective operator to solve 

them. The application of the Volterra series involves studies in different fields including 

civil and mechanical engineering, electrical engineering, biological engineering and 

control system. 

The multi-dimensional Fourier transforms of the Volterra kernels are defined as 

higher-order frequency response functions (HFRFs) or generalized frequency response 

functions (GFRFs)[122].  

𝐻𝑛̅(𝑗𝜔1, … , 𝑗𝜔𝑛̅) = ∫ …
 

; 

∫ 𝑕𝑛̅(𝜏1, … , 𝜏𝑛̅)𝑒
;(𝜔1 1: :𝜔 ̅  ̅)

 

; 

𝑑𝜏1…𝑑𝜏𝑛̅ (2.28)  

So the response of a nonlinear system in the frequency domain to a general input can 

be described by [123] 

{
 
 

 
 𝑋(𝑗𝜔) = ∑𝑋𝑛̅(𝑗𝜔)

𝑁

𝑛̅<1

         𝜔 

𝑋𝑛̅(𝑗𝜔) =
1 √𝑛̅⁄

(2 )𝑛̅;1
∫ 𝐻𝑛̅(𝑗𝜔1, … , 𝑗𝜔𝑛̅)∏𝑈(𝑗𝜔𝑖)

𝑛̅

𝑖<1

𝑑𝜎𝑛̅𝜔
𝜔1: :𝜔 ̅<𝜔

 (2.29)  

Here 𝑋𝑛̅(𝑗𝜔) denotes the 𝑛̅th order frequency response of the system’s response. 

The term  

∫ 𝐻𝑛̅(𝑗𝜔1, … , 𝑗𝜔𝑛̅)∏𝑈(𝑗𝜔𝑖)

𝑛̅

𝑖<1

𝑑𝜎𝑛̅𝜔
𝜔1: :𝜔 ̅<𝜔

 

represents the integration of 𝐻𝑛̅(𝑗𝜔1, … , 𝑗𝜔𝑛̅)∏ 𝑈(𝑗𝜔𝑖)
𝑛̅
𝑖<1  over the 𝑛̅-dimensional 

hyper-plane 𝜔1 + +𝜔𝑛̅ = 𝜔. 
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The nth order GFRF is the extension of the frequency response function of a linear 

system to the 𝑛̅th order nonlinear case. The GFRFs can be used to describe the 

nonlinear system characteristics. The algorithm for determining GFRFs was studied in 

Refs. [31, 124-129]. The GFRFs of discrete-time system are introduced in Refs. [124, 

125, 129] and have been applied to analyze the Duffing’s equation and a Van der Pol 

model successfully. For continuous-time systems, harmonic probing method is a useful 

tool to determine the GFRFs [126-128]. Rijlaarsdam [130, 131] analyzed the 

relationship between the GFRFs and the higher order sinusoidal input describing 

function, and verified his conclusions by numerical examples. The nonlinear 

information in GFRFs can be used in damage detection [132-134] and system control 

[135].  

2.5.3  NOFRFs 

The GFRFs are difficult to measure and interpret in practical engineering because they 

are multi-dimensional. So Lang proposed the novel concept of nonlinear output 

frequency response functions (NOFRFs) which are determined by both the input and 

the GFRFs of a nonlinear system and defined as follows [31].  

𝐺𝑛̅(𝑗𝜔) =
∫ 𝐻𝑛̅(𝑗𝜔1, … , 𝑗𝜔𝑛̅)∏ 𝑈(𝑗𝜔𝑖)

𝑛̅
𝑖<1 𝑑𝜎𝑛̅𝜔𝜔1: :𝜔 ̅<𝜔

∫ ∏ 𝑈(𝑗𝜔𝑖)
𝑛̅
𝑖<1 𝑑𝜎𝑛̅𝜔𝜔1: :𝜔 ̅<𝜔

 (2.30)  

under the condition that  

∫ ∏𝑈(𝑗𝜔𝑖)

𝑛̅

𝑖<1

𝑑𝜎𝑛̅𝜔
𝜔1: :𝜔 ̅<𝜔

   (2.31)  

By introducing the NOFRFs, the output frequency response of a nonlinear system can 

be written as 
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{
𝑋(𝑗𝜔) = ∑𝑋𝑛̅(𝑗𝜔)

𝑁

𝑛̅<1

  𝑖 = 1,… , 𝑛

𝑋𝑛̅(𝑗𝜔) = 𝐺𝑛̅(𝑗𝜔)𝑈𝑛̅(𝑗𝜔)

 (2.32)  

Here, 𝑈𝑛̅(𝑗𝜔) is the Fourier transform of the 𝑛̅ order power of the input, 𝑢𝑛̅(𝑡), it 

can be written as follows. 

𝑈𝑛̅(𝑗𝜔) =
1 √𝑛̅⁄

(2 )𝑛̅;1
∫ ∏𝑈(𝑗𝜔𝑖)

𝑛̅

𝑖<1

𝑑𝜎𝑛̅𝜔
𝜔1: :𝜔 ̅<𝜔

 (2.33)  

The NOFRFs 𝐺𝑛̅(𝑗𝜔) defined by Eq. (2.30) can be regarded as an alternative extension 

of the frequency response function of a linear system to the 𝑛̅th order nonlinear case. 

The most distinctive characteristic of the NOFRFs is their one-dimensional nature, 

which can significantly facilitate the analysis of nonlinear systems in the frequency 

domain. Lang explained the energy transfer phenomenon in a nonlinear system using 

the concept of NOFRFs[31]. The NOFRFs could also be used to explain resonances and 

determine resonant frequencies in nonlinear systems [136] and nonlinear effects in 

cracked beams[137, 138]. Lang and Peng also studied the properties of the NOFRFs for 

a kind of periodic structures in Refs.[139-141] and applied the results to the detection 

and localization of nonlinear components in the systems [28, 142-145]. 

2.5.4  Transmissibility based damage detection and localization 

Traditionally, the transmissibility is defined as the ratio of the spectra of two different 

system outputs, has been comprehensively studied, and is widely used for damage 

detection and localization. For example, Cao [146] investigated the rate of change of 

both the system transmissibility and the system frequency response functions when a 

damage occurred, and found that the transmissibility was much more sensitive to the 

damage than the FRF. Maia [147] conducted a comprehensive research on the 

transmissibility based damage detection detection technique, and proposed a DRQ 

(Detection and Relative Damage Quantification) Indicator, which was the correlation 
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between the measured system response and the response estimated from the 

undamaged transmissibility function. He also proposed the concept of TDI 

(Transmissibility Damage Indicator) in [25], which was defined as the correlation 

between the transmissibility of a undamaged system and the transmissibility of a 

damaged system. The performance of these transmissibility based indicators in 

damage detection has been verified by experimental studies. In addition to damage 

detection, the transmissibility has also been used for damage localization. Zhang [148] 

studied the influence of damage on the transmissibility, and found that the 

transmissibility near the damaged area could cause a more significant change. 

Consequently, he proposed several damage indicators based on translational 

transmissibility and curvature transmissibility and verified that these damage 

indicators could help to find the location of damage correctly by both simulation 

studies and experimental tests. Jonson [26, 29, 149] analyzed the characteristics of the 

transmissibility response function and concluded that transmissibility response 

function was entirely independent of the poles but solely dependent on the zeros of 

the system transfer function so that the damage could be trapped and identified. 

Sampaio and Maia [27] pointed out that the summation of the difference between the 

damaged and the undamaged transmissibility would mask the true damage location if 

the frequency range was inappropriate. This is because the transmissibility difference 

near the resonances and anti-resonances was much larger than that in the other 

frequency range. So he counted the occurrences of maximum transmissibility 

difference at different frequencies and considered the result as a damage indicator. 

But if the location of operational forces changes, the transmissibility between 

responses at two fixed points will also change making such techniques become invalid. 

Devriendt [150] found that the transmissibility around the natural resonance 

frequencies changed slightly when the location of operational forces changed. So he 

considered the occurrence times of maximum transmissibility around the resonance 

frequencies as a damage location indicator and demonstrated its effectiveness by 



 
Chapter 2 Structural health monitoring and damage localization: literature review 

36 

simulation and experimental studies. Chesne  ́[151] reviewed available transmissibility 

based damage detection and localization techniques and pointed out the possible 

factors which affect the results of transmissibility analysis and should be taken into 

consideration such as frequency bands, force location and environment. 

2.6 SHM under changing environmental and operational 

conditions 

2.6.1 The effect of Environmental and operational conditions 

It is known that structural damage usually causes variations in the dynamic 

characteristics of the structure and changes features of the measured signals from the 

structure. Here, the signal features can be extracted from signal processing methods, 

and those which change because of the existence and different severities of damage 

are known as damage sensitive features. SHM and damage localization are always 

implemented by evaluating how much the damage sensitive features extracted from 

the measurements on a monitored structure deviate from the same features extracted 

from a healthy structure. A significant departure will cause damage alarm, while a 

similarity in the features is considered as an indication of being normal, namely, no 

damage occurs at the moment. The potential problem with these SHM and damage 

localization techniques is that the variability of the signal features can be the results of 

the changing environmental factors and operating parameters, but most available 

techniques do not take these effects into account. Environmental factors are the 

environmental conditions where the signals are measured such as temperature, wind, 

and humidity, while the operating parameters include different loading conditions. 

Sohn reviewed the possible environmental and operational conditions which will affect 

structural dynamic behaviours [24].  
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2.6.1.1  Temperature 

Variation of environmental temperature can cause more significant fluctuation in 

structural dynamic features than damage in some circumstances. The environmental 

temperature always changes hour by hour, and day by day. When the process of the 

measuring signals lasts quite a long time and the temperature varies a lot, the 

variation of the damage sensitive features can be the results of both damage and the 

environmental temperature. Temperature changes the damage sensitive features in 

two ways. One is by altering the material characteristics of the structure, particularly, 

material stiffness which the natural frequency depends on. So the natural frequency 

will change with the variation of the temperature. The other is by varying the 

structural boundary conditions [24]. 

Several investigations have been conducted to study the temperature effect on the 

dynamic features of a structural system [18]. The measurements on a footbridge which 

were conducted by Askegaard and Mossing and lasted 3 years show that the natural 

frequency changes about 10% and seasonal temperature variation contributes 

partially to this [19]. Brenner found that the temperature could also cause the change 

of bridge deflection and strains [152]. As for gearbox, Loutas [153] researched how the 

features of the vibration and acoustic emission (AE) signals in the frequency domain 

changed when the gearbox kept working until the 4 teeth were cut and considerable 

damage on the shaft happened. It was concluded that the oil temperature had an 

effect on the recordings.  

Ambient temperature can also alter the dynamic responses of a structure by changing 

its boundary condition. Alampalli compared the first three natural frequencies of a 

damaged bridge with their counterpart on a the healthy bridge when the bridge deck 

was in different ambient temperature and found that the first three natural 

frequencies of the damaged bridge at above-freezing temperatures were all slightly 

lower than those of the healthy bridge, while the first three natural frequencies of the 
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damaged bridge at below-freezing temperatures increased significantly and were 

about 1.5 times those of the healthy bridge [154].  

2.6.1.2  Unpredicted loadings  

Unpredicted loadings such as wind-induced and traffic-induced loadings on bridges 

would be a factor that is difficult to measure, but may change the dynamic responses 

of a structure significantly. It is intuitive that moving vehicles and passengers on a 

bridge will increase its mass and change its modal frequencies. But the number of 

vehicles and passengers and their masses usually keep changing from time to time and 

cannot be measured accurately. Wind is able to induce certain distributed pressure on 

a structure and make it vibrate even though there is no external loading at all. 

Therefore, these unpredicted loadings play an important role on the structure 

dynamics. 

Many researchers pay attention to the effects of traffic loadings on the structural 

dynamics. Zhang [20] analysed the ambient vibration measured on a cable-stayed 

bridge during a 24 hours period and concluded that the modal frequencies of the 

bridge changed as much as 1% during a day period and the damping ratios depended 

on the traffic mass, especially when the vibration of the deck exceeded a critical level. 

However, the modal amplitudes and modal deflection were insensitive to the traffic 

conditions. Kim [155] compared traffic-induced vibration of three bridges with 

different lengths and reported that the traffic changed the natural frequencies of the 

shortest bridge most obviously. The second natural frequency of the shortest bridge 

was decreased by as much as 5.4% as a result of the heavy traffic. Sohn [24] concluded 

that the mass loading effect on the bridge depended on the traffic mass relative to the 

bridge magnitude. He also [156] investigated feature changes of a theme park ride and 

found that the feature variation caused by mass loading (customers simulated by rock 

dummies) in a train was much larger than that caused by the delamination damage. 
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Wind-induced loading should also be considered when analysing the structure 

dynamic behaviours. Metwally [21] investigated the dependency of bridge modal 

parameters and responses on wind speed based on the vibration data of a bridge 

measured over 100 continuous hours. It is observed that the vertical vibration 

amplitude of the bridge was almost a quadratic function of the wind speed; both 

damping ratio and higher order mode shapes depended on the vibration amplitude 

when the wind speed was up to 13m/s. Other researchers studied the vibration of 

bridges caused by wind and rain and found that this kind of vibration could be 

considered as an instability phenomenon [157, 158].  

2.6.1.3  Operational speed 

The temperature and unpredicted loadings usually affect structural dynamics by 

changing the modal parameters of the structures as reviewed above, while operational 

speed such as rotating speed of a rotor system will cause unexpected dynamic 

responses. Han [22] studied the stability of a rotor system suffering rub-impact 

damage under different rotating speeds and found that the rotor behaved in the state 

of a stable periodic motion firstly when the rotating speed of the system was low, 

while if the speed increased up to a certain range, the system exhibited 

period-doubling bifurcations and then reached stable periodic motion again when the 

rotating speed kept increasing. Ma [23] also observed the bifurcation phenomena in 

another rotor system which was also subject to the rub-impact damage when the 

rotating speeds became faster, and verified it by experimental studies.  

Different environmental factors such as temperature and humidity and operational 

conditions may affect the structural dynamic responses at the same time and their 

effects cannot be separated from each other easily [12, 24, 159]. Pirner [159] found it 

was difficult to directly distinguish wind-induced loadings and temperature-induced 

ones in a TV tower by using time histories. 
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In summary, the change of measured features can be contributed not only by damage 

but also by environmental and operational conditions. It is obvious that neglect of 

these factors, which often impact on structural dynamics and sensor measurements, 

will make some features of sensor measurements not show what happens with 

inspected components. Therefore, the effect of changing environmental and 

operational conditions should be filtered out when conducting SHM so that any 

change in the signal features which are literally produced by abnormality of 

components and/or system can be correctly identified. 

2.6.2 SHM under changing environmental and operational conditions 

Some researchers have paid attention to the influence of changing environmental and 

operational conditions on the system behaviours, and tried to eliminate the effect of 

the non-damage factors so as to enhance the reliability of damage detection. The 

corresponding techniques can be divided into three different categories. Firstly, when 

variable environmental factors and operational parameters, such as temperature and 

operational speed, can be measured directly, extensive modelling methods can help to 

build the relationship among the damage-sensitive features, damage situation and 

non-damage factors including environmental factors and operational parameters. 

Secondly, if it is difficult and impractical to measure environmental and operational 

conditions, such as unpredicted loadings, these changing conditions can be considered 

as intrinsic characteristics of the system itself, so that the damage-sensitive features, 

which are ‘orthogonal’ to the variation induced by changing environmental and 

operational conditions, can be extracted. Thirdly, some researchers try to extract signal 

features explicitly which are insensitive to changing environmental and operational 

conditions but are still sensitive to damage situation. It should be pointed out that in 

this case it is possible to distinguish feature variation caused by damage from those 

induced by changing environmental and operational parameters even though no 

measurements on environmental and operational parameters are available. 
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The models which describe the damage-sensitive features, damage situation and 

environmental and operational factors can indicate quantitatively the contribution of 

variable environmental and operational factors to the change of damage-sensitive 

features so that the effects of these non-damage factors can be eliminated when 

conducting SHM. De Roeck and Peeters [160] monitored the Z24 Bridge in Switzerland 

for one year and then considered the environmental factors including air temperature, 

humidity, rain, wind speed and wind direction when conducting damage detection on 

this bridge. The results demonstrated that once the effects of these environmental 

influences were filtered out, stiffness degradations could be detected if the 

corresponding frequency shifts were more than just 1%. They [161] also built an ARX 

(autoregressive model with an exogenous input) model for modal frequencies and 

temperature, and determined the possible health threshold of the simulation errors 

between measured modal frequencies and these predicted from the ARX model by 

statistical analysis. It is expected that the predicted errors based on modal frequencies 

of the healthy bridge should be within the threshold. Yang [162] pointed out that most 

research about gearbox damage detection always assumed that the load was a 

constant and the vibration signals caused by a fluctuating load were not interpreted 

correctly. Therefore, the model developed under the constant load assumption cannot 

recognize whether the vibration signature changes are caused by the load variation or 

by a failure occurrence. To settle this problem, he proposed a proper approach which 

considered load as additional information in a time series ARX model. Sohn [163] 

conducted damage detection by using AR-ARX (auto-regression and auto-regression 

with eXogenous) models from time series of the vibration signals. Firstly, the reference 

data set which is assumed to be collected under the same environmental and 

operational conditions as the new data set was selected when the sum of the squared 

differences between reference AR model coefficients and that of the new data set was 

minimum. Then the damage-sensitive feature was defined as the residual error 

between the new data set and the predicted value of the ARX model which was 
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modelled based on the selected reference data set. This AR-ARX models based method 

was verified by experimental tests from an 8DOF mass-spring system. He further 

employed outlier analysis with the Mahalanobis distance measure for AR model 

coefficients in the above AR-ARX models based method to identify the abnormal 

variation of a patrol boat. The effectiveness of this outlier analysis technique and 

AR-ARX models based method was validated by the strain data sets measured from 

the patrol boat under different conditions [164]. Worden [165] considered the 

coefficients of the AR model from a data set as damage sensitive features and revised 

conventional outlier analysis method by replacing traditional mean vector of the 

damage sensitive features with features at the same temperature predicted from a 

polynomial regression model in terms of the temperature and the mean vector of 

damage sensitive features at this temperature. He further demonstrated by simulation 

studies that the higher AR model order was able to help to identify the damage state 

more clearly. Finally Worden pointed out that interpolation could be applied to predict 

the mean vector of damage sensitive features when more environmental and/or 

operational factors were considered. 

When the values of environmental and operational factors are difficult to measure but 

the signal features under different environmental and operational conditions are 

available, certain techniques such as neural network and singular value decomposition 

(SVD) can help to take environmental and operational variation into consideration 

while conducting SHM. Zhou [166] applied back-propagation neural network (BPNN) 

technique to build the correlation model between the temperature and modal feature 

of a bridge in Hong Kong so as to eliminate the temperature effect, and then 

auto-associative neural network (AANN) was employed to detect damage in the bridge. 

Experimental studies showed that this technique could detect the natural frequency 

change caused by damage as small as 1%. Sohn [167] proposed that if the reference 

signal wasn’t selected based on the AR model, an auto-associative neural network 

could be employed to distinguish the change of the damage-sensitive feature caused 
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by damage and that caused by variation of ambient conditions; this proposal was also 

verified by the experimental tests from an 8DOF mass-spring system. Besides, in order 

to monitor the health state of a bridge in the USA effectively, Sohn built a linear 

adaptive filter model for the modal parameters including fundamental frequency and 

temperature inputs to reduce the temperature effect on the measured modal 

parameters [168]. Moreover, Sohn summarized the possible environmental and 

operational factors which may affect the structural health monitoring and reviewed 

available techniques to eliminate these effects including regression analysis, 

subspace-based identification method, novelty detection, singular value 

decomposition, auto-associative neural network, factor analysis and lamb-wave 

propagation method [24]. Ruotolo and Surace [169] think that when damage-sensitive 

feature vectors under possible environmental and operational conditions are put 

together into a matrix, the rank of this matrix will increase by 1 if another 

damage-sensitive feature vector extracted from damaged structure is added into this 

matrix while the rank of this matrix will keep the same if the new feature vector is 

collected from a healthy structure. So a singular value decomposition technique was 

developed and its capability in SHM was illustrated by both simulation investigation 

and experimental studies on a cantilever beam. The results indicated that the 

proposed technique was able to successfully detect not only damage occurrence but 

also damage severity. Another SVD based method was applied to a composite beam in 

Ref. [170]. Surace and Worden [171, 172] proposed a negative selection approach to 

distinguish the feature fluctuation induced by the environmental and operational 

conditions and that caused by damage occurrence. This negative selection is to 

simulate the human immune system which can differentiate the antigens from human 

body. Kullaa [173] removed the effects of operational and environmental fluctuations 

by using linear factor analysis (FA) or the nonlinear combination of linear factor 

analyzers, then the application of this factor analysis based method was verified by 

both simulated data sets from a wooden bridge and a vehicle crane. 
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Finally, several methods have been proposed to construct signal features which are 

only sensitive to damage but insensitive to changing environments and operational 

conditions. Cross and Worden [174] combined linearly several damage sensitive 

features to produce a new feature which was independent to environmental and 

operational variation but was sensitive to damage. They [175] also tried to extract 

signal features which are insensitive to environmental variation but still 

damage-sensitive by three different methods including the co-integration technique as 

discussed above, outlier analysis and the minor principal components techniques. A 

univariate novelty index was used to select this kind of feature for outlier analysis. The 

minor components were assumed to be independent from environmental changes. 

Devriendt [150] reduced the frequency range to a small frequency band around the 

resonance frequencies of a structure, so that the transmissibility based SHM was more 

robust because it became independent of the changing loading condition to a certain 

extent. Figueiredo [176] reviewed machine learning algorithms including factor 

analysis, Mahalanobis squared distance (MSD), singular value decomposition and 

auto-associative neural network and compared the damage detection results for a 

three floor building under changing stiffness and mass conditions and concluded that 

the algorithms based on the first two methods were more suitable to minimize the 

false-positive damage indications, while the algorithm based on the last two methods 

is more applicable to minimize false-negative damage indications.  

All above techniques treat features under all possible environmental and operational 

conditions equally, the judgment criteria on the occurrence of damage are determined 

when the whole variable range of environmental and operational parameters are 

taken into consideration. The problem is the features of measurements are always 

only sensitive to damage under certain values of environmental and operating 

parameters, and the features in such range can represent the healthy condition more 

effectively. Motivated by this phenomenon, a new SHM method considering changing 

environmental and operational conditions is proposed in this thesis. The overall 
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environmental and operational conditions are divided into several ranges (bins) which 

contain different values of operating parameters, then an SHM strategy is conducted 

within these different ranges separately. 

2.7 Damage localization under changing environmental 

and operational conditions 

As stated above, transmissibility analysis methods is one class of the most popular 

techniques to detect damage location. However, because the transmissibility is 

basically a linear system concept, all the techniques above assume the systems behave 

linearly. This has several limitations [151]. Firstly, the transmissibility between 

responses at two fixed points depends on the location of the excitation. Namely, if the 

loading is applied on the system at different locations, the transmissibility even 

between responses at two fixed points will also change. Secondly, the potential of the 

available transmissibility based techniques in damage localization requires the use 

signals of an appropriate frequency band. An unsuitable frequency band used in 

transmissibility analysis may cause a false alarm in fault location. Finally, because 

traditional transmissibility is basically a linear system concept, it cannot be used to 

propose a systematic approach to detecting and locating damage of nonlinear features. 

Therefore, alternative damage sensitive features need to be explored to overcome 

these limitations. The new method can be based on the nonlinear features in the 

responses of the damaged system.  

In MDOF (Multi-Degree-Of-Freedom) structural systems, certain types of damage 

often manifest themselves as the introduction of non-linearity into an otherwise linear 

system. One obvious example is crack. The breathing crack [177], which may open and 

close as loading increases and decreases [178], will change the stiffness of the 

operating structure and further induce nonlinear behaviors in the whole system [137, 

179, 180]. At the same time, the super-harmonic components and sub-harmonic 
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resonances can be observed when the cracked object is excited by a harmonic loading 

[137, 138, 180-182]. Another common example is clearances between subassemblies. 

This gap can be caused by the long-time wear or extreme defection or displacement 

due to excessive loading so that different structural parts interfere with each other and 

induce piecewise linear response [183, 184]. Ref. [185] also indicated that high order 

harmonic components such as 2X, 3X appeared and changed with the variation of 

looseness clearance when a bolt on the pedestal became loosened. In rotary 

machineries, rub-impact damage in rotor systems makes the rotor rubbing the stator 

regularly so that the stiffness of the system becomes bilinear. This will induce super- 

and/or sub-harmonic components of the driving frequency [186-188]. Similarly, some 

damage, including misalignment [189-191] and oil whirl [192], can potentially cause 

nonlinear frequency components. Overall, nonlinear behaviors often manifest in many 

damaged MDOF structural systems and nonlinear components can be used to 

represent damage with nonlinear features in such systems. 

Some damage in the electrical system could also induce a system’s nonlinear behavior. 

For example, in power transmission line, the insulation of power cables may be 

degraded because of electric stress after a long-time work. When the water tree 

deterioration occurs, the relationship between the voltage and the current will 

become nonlinear, so that the whole system behaves nonlinearly [193, 194]. Besides, if 

the power cables electrically contact with poor conductive surface, such as a tree 

branch and a road surface, the current will be restricted to a lower level. In this case, 

nonlinear high-impedance ground damage happens [195, 196].  

2.7.1 Alternative transmissibility analysis based on nonlinear features 

In order to extend the transmissibility based damage detection and localization 

approaches to MDOF structural systems which can behave nonlinearly due to the 

occurrence of damage with nonlinear features, several methods have recently been 
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developed [28, 137-139, 142-145, 193]. These methods are based on the concept of 

nonlinear output frequency response functions [31, 197] and use the system response 

signals to deterministic inputs including sinusoids to detect and locate such damage in 

the systems. Moreover, Lang et al. [28] proposed the concept of transmissibility of the 

NOFRFs which systematically extends the transmissibility concept to the nonlinear 

case, and has been used to develop a technique that can detect and locate damage 

with linear and/or nonlinear features in MDOF structural systems. The effectiveness of 

the technique has been verified by both numerical simulation studies and 

experimental tests [28]. However there are many limitations with these recently 

developed techniques. All but the one in [142] of these methods assume that when 

damage occurs in a MDOF system and makes the system behave nonlinearly, there is 

only one nonlinear component in the system. Although the method proposed in [142] 

has overcome this problem and can deal with more than one nonlinear components, 

the method requires that the loading on structural systems is measurable, which is 

difficult in many practical applications. 

One of the important studies in this thesis is concerned with the development of a 

new and more general transmissibility analysis method for the detection and location 

of damage via nonlinear features in MDOF structural systems. By evaluating and 

analyzing the transmissibility at super-harmonics/ frequencies generated by 

nonlinearity a concept that will be introduced in the thesis for MDOF nonlinear 

structural systems, the method can deal with more than one nonlinearly damaged 

components in the system and does not require that loadings on inspected structural 

systems are measurable. 
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Chapter 3 

A novel health probability based structural health 

monitoring method 

Structural health monitoring is traditionally concerned with fitting sensors inside or 

outside systems and analyzing the features of signals from sensor measurements using 

appropriate signal processing techniques to reveal the system's condition and health 

status. However, the conventional signal only based analysis often cannot distinguish 

the normal changes due to the differences in system environmental or operating 

parameters from the changes which are induced by damage. This is because the 

changes revealed by sensor signal analysis can not only show what happens with the 

condition and health status of inspected systems but also reflect normal changes in 

the system such as changes in system environmental or operating conditions.  

Motivated by the need to correctly identify the changes in signal features which are 

produced by abnormality in inspected systems, a novel health probability based 

structural health monitoring method is proposed in this chapter. In this method, the 

relationship between a signal feature and the normal changes in the system 

environmental and operating parameters, known as baseline model, is first established. 

Then, a tolerance range of the signal feature's deviation from what is determined by 

the baseline model is evaluated via a data based training process. Furthermore, the 

health probability, which is defined as the proportion of the cases where the system’s 

working status as represented by the signal feature is within the tolerance range, is 

used to decide whether the system is in a normal working condition or not so as to 

implement SHM. Both simulation studies and experimental data analyses have been 

conducted to demonstrate the performance of the proposed new technique.    
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3.1 Methodology 

3.1.1 B-spline baseline model  

The purpose of building a baseline model is to map the system environmental and 

operating parameters to a signal feature extracted from the sensor measurements so 

that the effects of these environmental and operating conditions can be taken into 

consideration when conducting structural health monitoring. Many methods can be 

employed to build the baseline model, such as polynomial regression, least squares 

method and maximum likelihood estimation. In this chapter, a B-spline approximation 

model which has been extensively applied in modelling due to its excellent capability 

in smoothly data fitting is used to determine the baseline model. 

Given  control coefficients , a knot vector  

and degree 𝑝, univariate B-spline approximation model between variables 𝑥 and 𝑧̃ 

can be determined as[198] 

 (3.1)  

where  is 𝑖th B-spline basis functions with degree  and is usually defined 

by Cox-de Boor recursion formula as 

 (3.2)  

Here, ,  must satisfy the relationship . Namely, if a 

B-spline approximation model with degree  and  control coefficients is 

expected,  knots are needed.  
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If there are  variables, say,  multivariate B-spline 

approximation model is defined as [198] 

 (3.3)  

Similarly,  are the B-spline basis functions 

of degree  with respect to variables  respectively, and can be 

determined according to Eq.(3.2) with ;  are the 

corresponding control coefficients. 

The major problem in using the B-spline approximation model as shown in Eq. (3.1) or 

Eq. (3.3) is the significant increase in the number of B-spline basis functions and the 

terms associated with the multiplication of these functions when there are a large 

number of knots and variables. These lead to complicated and tedious computations 

when fitting a B-spline approximation model. In addition, the contribution of some 

B-spline basis functions and their multiplications is often insignificant and can be 

ignored. Therefore, recursive forward-regression orthogonal estimator proposed by 

Billings [199] will be employed to select the important terms and to avoid under-fitting 

or over-fitting a B-spline approximation model. The detail of this estimator is 

introduced in Appendix A.  

In order to ensure the obtained baseline model is a good representation of the 

underlying process, Mean Square Error (MSE), that is the average of the squares of the 

errors between the features extracted from sensor measurements 𝑧 and predicted 

features by baseline model 𝑧̃, is defined as Eq. (3.4) to assess model performance: 

𝑀𝑆𝐸 =
1

𝑁̅
∑(𝑧 − 𝑧̃)2
𝑁̅

𝑖<1

 
(3.4)  
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for remaining datasets, the obtained baseline model is capable of representing the 

underlying process and can be used for structural health monitoring purpose. 

3.1.2 Modeling error tolerance range and bins for environmental and 

operating parameters  

Denote the error between the feature extracted from a sensor measurement and the 

feature predicted by a baseline model as 

 (3.5)  

where 𝑧 is the feature extracted from a sensor measurement and 𝑧̃ is the feature 

predicted by a baseline model in Eqs. (3.1) or (3.3), 𝜀 is the error between 𝑧 and 𝑧̃. 

This error is generally determined by many factors, including modelling error, noise, 

and the effects of less significant environmental and operating parameter changes 

which can’t be covered by the baseline model. In principle, all of these factors can be 

neglected in the system normal working conditions if the baseline model is good 

enough in representing the changes in sensor signal features in these conditions. 

However, a possible damage in the system can make a significant increase in the error, 

and this phenomenon can be exploited for the system health monitoring purpose. 

Under the assumption that error 𝜀 follows a normal distribution when the system is 

working normally, that is, , where  is the mean and  is the 

standard deviation, ,𝜇 − 3𝜎, 𝜇 + 3𝜎- can cover 99.73% of the error values in the 

system normal working conditions. Therefore, the tolerance range of the error 

between the feature of a sensor measurement and the feature predicted by a baseline 

model can be set as ,𝜇 − 3𝜎, 𝜇 + 3𝜎-.  

However, the error between the feature of a sensor measurement from health 

structures and the feature predicted by a baseline model is likely to vary with the 

environmental and operating conditions, which means that the error is large in some 
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conditions but small in other conditions. In addition, in practice, sensor signal features 

of damaged systems change slightly in some environmental and operating conditions 

but change significantly in other environmental and operating conditions. Motivated 

by these phenomena, the whole operating conditions are divided into several 

cases/bins according to the value of operating parameters, so that the errors which 

have the similar level can be calculated and their tolerance range can be determined in 

each bin. The bins can be defined as:   

 (3.6)  

where  is the number of the segments for th variable ;  is the 

minimum value of variable ,  is the length of th segment for variable . 

When the length is fixed for the same operating parameter, the bins can be written as: 








 







i

ii

ii

i

ii

iii

ii

N

nnn

M

xxn
x

M

xxn
xx

NiMnxxxB
N

)(
,

))(1(

,...,2,1,,...,2,1},,...,,{

)(

min

)(

max)(

min

)(

min

)(

max)(

min

)(

)()2()1(

,...,, 21

 
(3.7)  

In order to describe bins more precisely, the bins are numbered by single subscript. Fig. 

3.1 demonstrates one simple way to number the bins in one dimension case and two 

dimensions case respectively. 

              

(a)  One dimension case        (b)  Two dimensions case 

Fig. 3.1 Definition of bins 
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3.1.3 Health probability  

According to the definition of tolerance range above, if a monitored structural system 

is operating in a healthy status, most of errors 𝜀 should fall into the tolerance range 

associated with a corresponding bin. If there is a change or damage, only a small 

number of values of 𝜀 should be within the corresponding tolerance range. This 

phenomenon can be represented quantitatively by the concept of health probability 

defined as follows: 

 (3.8)  

where  is the number of the values of 𝜀 which are within the tolerance range, 

and  is the total number of 𝜀 evaluated in a particular bin. 

In order to illustrate how health probability 𝑃 is evaluated and how bin is related to 

this concept, a simple example is provided in the following. 

Example 3.1: Calculate health probability 𝑃 in different bins based on data shown in 

Fig. 3.2 

In Fig.3.2, horizontal axis represents the environmental parameter 𝑥, vertical axis 

reveals signal features either extracted from measurements or predicted from baseline 

model; the line represents baseline model, blue points represent signal features of 

healthy structure and red points represent signal features of monitored structure. The 

whole value of 𝑥 are divided into three bins which cover the range of 𝑥 ∈ , ,3), 

𝑥 ∈ ,3,6), 𝑥 ∈ ,6,9-, and denoted by bin 1, bin 2 and bin 3 respectively. There are 100 

signal features of healthy structure in range of 𝑥 ∈ , ,3), namely, bin 1, and mean 𝜇1 

and standard deviation 𝜎1 of the errors between these 100 signal features and 

corresponding features predicted by baseline model are used to calculate error 

tolerance range for bin 1, that is , 𝜇1 − 3𝜎1, 𝜇1 + 3𝜎1-. There are 20 signal features of 

monitored structure in range of 𝑥 ∈ , ,3), and errors between these 20 signal 
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features and corresponding features predicted by baseline model are also calculated 

and 14 errors are within the error tolerance range , 𝜇1 − 3𝜎1, 𝜇1 + 3𝜎1-. Therefore, 

the health probability 𝑃 for bin 1 is 14 2 ⁄ =  .7 . Similarly, health probability 𝑃 

for bin 2 and bin 3 can be calculated. The results are shown in Table 3.1. 

 

Fig. 3.2 Signal features 

Table 3.1 Calculation of health probability 

Bin index 𝑁𝑖𝑛 𝑁 𝑙𝑙  𝑝 

Bin 1 14 20 0.70 

Bin 2 7 20 0.35 

Bin 3 19 20 0.95 

    

3.2 Simulation case study 

3.2.1 Simulation model 

In this section, the health probability based structural health monitoring technique is 

applied on a dual-disc rotor system suffering rub-impact damage by numerical 

simulation study. The test rig of a dual-disc rotor system is shown in Fig. 3.3 (a); the 

simplified finite element (FE) model of the test rig is shown in Fig. 3.3 (b). If the 

vibration caused by unbalance mass is very serious so that elastic rod in the test rig 

contact the shaft, the additional nonlinear force will be produced. This can simulate 

the rub-impact damage between rotor and stator in the rotor system and is 

represented by nonlinear spring and damper in FE model. 

The dynamic equation of the rotor system suffering rub-impact damage is as follows. 

 (3.9)  
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where  is the displacement vector;  are mass matrix, damping matrix, 

gyroscopic moment matrix and stiffness matrix of the rotor system respectively; 

represent the input force vector and the effects of rub-impact damage, 

respectively. Detailed information about the model and rub-impact mechanism can be 

found in Ref. [187]. Equation (3.9) can be solved by the Newmark method to find the 

vibration responses of the rotor system. 

Left bearing

Bearing holder Right bearing

Motor

Shaft Left disc

Bolt

Eddy current transducers

Fixed-point elastic rod

Coupling

Holders

Right disc

 

(a) Test rig  

Right discLeft disc Right bearingLeft bearing

T

Nonlinear spring and damper

 

(b) Simplified FE model 

Fig. 3.3 A dual-disc rotor system and FE model 

3.2.2 Simulation data analysis 

The vibration of right disc in horizontal direction is measured when the rotating speed 

changes from 60 Hz to 100Hz. Many signal signatures of sensor measurements can be 
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considered, including kurtosis, crest factor, standard deviation, median, total energy, 

root mean square (RMS) in the time domain and the frequency, amplitude, and phase 

etc in the frequency domain. RMS is a signal signature that has been widely employed 

in many structural health monitoring methods [36, 200, 201] and therefore, is used as 

damage sensitive feature in this chapter. When there is no damage in the rotor system, 

namely, it is operating under healthy status, the vibration level of right disc 

represented by RMS feature is shown in Fig. 3.4 by ‘’. When there is a rub-impact 

damage in the rotor system, the vibration level of right disc represented by RMS 

feature is displayed in Fig.3.4 by ‘’.  

The measured vibration data are divided into 8 groups; the data in the first group are 

used to fit the baseline model, the remaining ones are used to validate the model by 

assessing MSE error. In this simulation case study, there is only one variable, namely, 

rotating speed, so baseline model is fitted by univariate B-spline approximation model 

in Eq. (3.1). In this model, the order of B-spline basis functions is set as 𝑝 = 3, and it is 

assumed that there are 14 knots which are 60, 65.6, 68.4, 71.2, 74, 76.8, 79.6, 82.4, 

85.2, 88, 90.8, 93.6, 96.4, 100, respectively. In order to enable the model be capable of 

representing the data at two ends, the first and last knots are extended three times, 

thus, the knot series become 60, 60, 60, 60, 65.6, 68.4, 71.2, 74, 76.8, 79.6, 82.4, 85.2, 

88, 90.8, 93.6, 96.4, 100, 100, 100 and 100, respectively. Then, B-spline basis functions 

𝑁𝑖,𝑝(𝑥) can be determined according to Eq. (3.2), and some of them are displayed in 

Fig. 3.5. By using recursive forward-regression orthogonal estimator which is 

introduced in Ref. [199] and Appendix A, when ERR (Error Reduction Ratio) is set as 1, 

the selected terms and corresponding coefficients are listed in Table 3.2. Consequently, 

baseline model is determined by B-spline approximation model represented by Eq.(3.1) 

with selected terms and corresponding coefficients in Table 3.2. 
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Fig. 3.4 Vibration levels of the rotor system  Fig. 3.5 Basis functions for B-spline  

                                          approximation model 

Table 3.2 Selected terms and corresponding coefficients for B-spline approximation 

model 

Terms Coeffeicent Terms Coeffeicent Terms Coeffeicent Terms Coeffeicent 

 452.3393  502.4466  483.7022  241.7277 

 377.2505  220.3154  411.5025  200.4327 

 316.6062  181.9595  345.7081  134.1698 

 264.8062  143.71  289.7054  159.0669 

 

The suitability of the B-spline approximation model represented by Eq.(3.1) with 

selected terms and corresponding coefficients in Table 3.2 is validated by assessing 

MSE error with remaining 7 data groups which are not involved in modeling, the 

results are shown by bar charts in Fig. 3.6. It can be obviously observed that the values 

of MSE errors for the data groups that have not been used for the modeling are only 

slightly different from the MSE for the modeling data. So the model is considered to be 

valid to be used for condition monitoring. 

Bins are constructed by using Eq.(3.7) and the method in Fig. 3.1 (a) according to the 
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minimum and maximum of measured rotating speed when M1 = 4 and N = 1, and are 

numbered as bin 1, bin 2, bin 3 and bin 4, respectively. In each bin, not only the errors 

of the healthy rotor systems and their tolerance range are calculated, but the errors of 

the damaged rotor systems are also calculated, the result is displayed in Fig. 3.7 which 

reveals that the tolerance ranges capture very few error data points of damaged rotor 

system. In order to describe this quantitatively, health probability for each bin is 

calculated according to Eq. (3.8) and listed in Table 3.3 which indicates that the health 

probabilities for all bins are 0. Therefore, it can be concluded that there is damage in 

this rotor system, which is consistent with the real situation of the simulated system. 

   

Fig. 3.6 Validation of baseline model   Fig. 3.7 Errors and tolerance ranges 

Table 3.3 Health probability for rotor system suffering rub-impact damage 

Bin index Bin 1 Bin 2 Bin 3 Bin 4 

P 0 0 0 0 

3.3 Experimental case study 

In order to demonstrate the potential of the proposed structural health monitoring 

method in practical applications, it was applied to analyse the experimental data from 

an operating wind turbine in this section.  
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3.3.1 Experimental measurements 

The gearbox, the function of which is to tranform input power from hub to shaft 

between the gearbox and the generator, and the generator, which will transmit 

mechanical power initially from wind to electrical power, are two of the most critical 

components for wind turbines but likely to suffering from damage particularly after 

serving long time. For example, in the gearbox, the surface of gear teeth can be 

weared because of inadequate lubration film, debris, abrasive, or initial cracks, then 

the kissing surfaces will not be able to contact smoothly which eventually induces 

abnormal vibration. The vibration levels change with the rotating speed of gear and 

seriousity of wear or damage in gearbox componnets. Therefore, the vibration levels 

need to be monitored when conducting health monitoring on gearbox.  

However, vibration signals only cover the low frequency range (under 20k Hz) and can 

be detected if the defects/damage is serious enough. Accoustic emission (AE) signals 

which covers the frequency range from 100kHz to 1MHz in most cases, can be a 

supplementary. AE is defined as transient accoustic (elastic) wave which is produced 

from a rapid release of local strain energy due to a damage or deformation within or 

on the surface of a structure. Since AE is at microscopic level, AE is sensitive to early 

stage defects/damage and can be used to detect the damage at an early stage and 

monitor its develop. Therefore, in this experiments, two accelerometers and two 

accoustic emission(AE) sensors are installed on the top of gearbox (labelled as AE 

sensor 1 and vibration accelerometer 1) and at the back of generator near the high 

speed shaft (labelled as AE sensor 2 and vibration accelerometer 2) respectively, so 

that the possible useful information in both low and high frequency range can be 

exploited from these sensor measurements. During data collection, data acquistion 

from each sensor in one second duration are recorded, at the same time, the average 

values of the wind speeds and power outputs are also recorded over a ten minutes 

period, and are considered as the representation of the operating conditions, as 
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shown in Fig.3.8. The types and locations of the sensors are listed in Table 3.4. 

 

Fig. 3.8 Data acquisition schedule 

Table 3.4 Location of each sensor 

Type of sensor Location 

Acoustic Emission 1 
On the top of 

gearbox 

Accelerometer 1 
On the top of 

gearbox 

Acoustic Emission 2 Back of generator 

Accelerometer 2 Back of generator 

 

Because it is impossible to inject damage into healthy wind turbine systems without 

great expense, the measurements were conducted on an operating wind turbine 

without artificial damage. Data were recorded over three periods: November 2010, 

December 2010 and February 2011. For data analysis in this section, one part of the 

data in November 2010 is used to build the baseline model which can represent the 

relationship between the signal feature of sensor measurements and the turbine 

operating parameters including wind speed and power output, the remaining data in 

November 2010 are used to validate this model, and the tolerance range of modeling 

error 𝜀 between the signal feature extracted directly from sensor measurements and 

feature predicted from the baseline model is determined according to the datasets in 

November 2010. Datasets in December 2010 and February 2011 are used to 

demonstrate the capability of the proposed method in health monitoring of wind 

turbine. 

3.3.2 Experimental data analyses 

In experimental data analyses, the measurement data from each sensor in November 

2010 are divided into 8 groups, the data in the first group are used to build the 

baseline model, and the remaining ones are used to validate the baseline model by 
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assessing MSE error.  

When wind speed is represented by 𝑥, power output is represented by 𝑦, and the 

order of basis functions is set as 3, the bivariate B-spline approximation model for the 

relationship between the predicted signal feature 𝑧̃ and 𝑥, 𝑦 can be derived from Eq. 

(3.3) and expressed by 

 
 


1

1

2

2

2121
0 0

3,3,, )()(...)(~
n

i

n

i

iiii yNxNyxfz ，  (3.10)  

In this experimental case study, it is assumed that there are 21 knots for variable 𝑥 

and 20 knots for variable 𝑦, then B-spline basis functions  and  can 

be determined according to Eq.(3.2), and some of them are shown in Fig. 3.9. By using 

the forward-regression orthogonal estimator, which is introduced in Ref. [199] and 

Appendix A, when ERR is set as 0.95, 0.935, 0.985 and 0.955 for AE 1, AE 2, vibration 1 

and vibration 2, respectively, the selected terms and corresponding coefficients for 

each sensor measurement are listed in Table 3.5. Consequently, the baseline model is 

determined by bivariate B-spline approximation model represented by Eq. (3.10) with 

selected terms and corresponding coefficients in Table 3.5. 

 

Fig. 3.9 Basis functions for B-spline approximation model 
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Table 3.5 Selected terms and corresponding coefficients for B-spline approximation 

model 

AE 1 Vibration 1 AE 2 Vibration 2 

Terms  Terms  terms  terms  

 0.007682  0.033153  0.002775  0.027974 

 -0.00488  -0.0265  -0.00219  -0.02678 

 0.005279 )(3,1 yN  -0.03273 )(3,14 yN  0.001704  0.017192 

 0.005514  0.01063 )(3,12 xN  0.001172  0.023969 

)(3,1 yN  -0.00688 )(3,2 xN  -0.0149 )(3,1 yN  -0.00238 )(3,10 yN  0.022916 

 0.007622  -0.03447  -0.00131 )(3,1 yN  -0.02771 

)()( 3,133,14 yNxN  -0.0101 
 

0.041281    -0.04292 

 -0.00414     
 

0.049619 

 -0.00489       

 

The suitability of the B-spline approximation models represented by Eq.(3.10) with 

selected terms and corresponding coefficients given in Table 3.5 is validated by 

assessing MSE with remaining 7 data groups which are not involved in the modeling 

process, the results are shown by bar charts in Fig. 3.10. It can be observed that the 

values of MSE errors for the data groups not used in the modeling process are all only 

slightly different from those for modeling data. So the modeling results are validated 

and can therefore be used for condition monitoring. 

21,ii 21,ii 21,ii 21,ii
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 (a) Acoustic emission 1   (b) Vibration 1   (c) Acoustic emission 2  (d) Vibration 2 

Fig. 3.10 Validation of each model 

When there are two variables, and the length of each bin is fixed for the same 

operating parameter, the bins are determined according to Eq. (3.11) as follows: 

𝐵𝑛1,𝑛2 = *𝑥, 𝑦+ 

𝑥 ∈ 6𝑥m  +
(𝑛1 − 1)(𝑥max − 𝑥m  )

𝑀1
, 𝑥m  +

𝑛1(𝑥max − 𝑥m  )

𝑀1
7 

𝑦 ∈ 6𝑦m  +
(𝑛2 − 1)(𝑦max − 𝑦m  )

𝑀2
, 𝑦m  +

𝑛2(𝑦max − 𝑦m  )

𝑀2
7 

(3.11)  

where 𝑥m  , 𝑥max, 𝑦m   and 𝑦max are the minimum and maximum of measured 

wind speed and power outputs. When it is assumed that , bins are 

constructed according to Eq. (3.11), and the results are shown in Fig. 3.11. After 

neglecting bins where very few or no measured wind speeds and power outputs fall 

inside, five bins are retained and numbered as shown in Fig. 3.11.  

 

Fig. 3.11 Bins used to calculate error distribution 
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measurements in November 2010 and the RMS features predicted using the baseline 

model and its tolerance range are calculated. The results are shown in Figs. 3.12 and 

3.13. In addition, the errors between the predicted RMS and the RMS of signals 

measured in December 2010 and February 2011, respectively, are also evaluated and 

shown in Figs. 3.12 and 3.13. It can be observed from Fig. 3.12 that most data points 

for AE sensor 1 and accelerometer 2 are inside the corresponding tolerance range, 

while a significant number of data points for accelerometer 1 and AE sensor 2 are 

outside the corresponding tolerance range, and a similar phenomenon can be 

observed from Fig 3.13.  

In order to represent this phenomenon quantitatively, health probability for each bin is 

calculated according to Eq. (3.8) and shown in Tables 3.6 and 3.7. In the tables, all the 

probabilities highlighted are smaller than 0.8, which indicates that a possible change 

has taken place. This indication is consistent with the practical situation of the wind 

turbine as some parts in the wind turbine were replaced after November 2010. In 

addition to this correct inference that has been made from the baseline model based 

analysis, the analysis results also show that AE signals are more sensitive to the 

condition variation in generator while vibration is more sensitive to the condition 

change in gearbox. This conclusion is clearly very helpful for the use of appropriate 

sensors for the condition monitoring of different wind turbine components.  
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 (c) Acoustic emission 2                     (d) Vibration 2 

Fig. 3.12 The tolerance range of errors in each bin and errors between signal features 

of measurements in December 2010 and predicted features 

 

(a) Acoustic emission 1              (b) Vibration 1 

 

(c) Acoustic emission 2                     (d) Vibration 2 

Fig. 3.13 The tolerance range of errors in each bin and errors between signal features 

of measurements on February 2011 and predicted features 
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Table 3.6 Health probability for measurements in December 2010 

 On the top of gearbox At the back of generator 

Bin index AE 1 Vibration 1 AE 2 Vibration 2 

Bin 1 0.89557 0.734177 0.987342 0.892405 

Bin 2 1 0.515152 0.333333 0.848485 

Bin 3 1 0.72549 0.039216 1 

Bin 4 0.808 0.976 0.008 1 

Bin 5 1 0.6 0 1 

 

Table 3.7 Health probability for measurements in February 2011 

 On the top of gearbox At the back of generator 

Bin index AE 1 Vibration 1 AE 2 Vibration 2 

Bin 1 0.897143 0.828571 0.957143 0.86 

Bin 2 0.977273 0.022727 0.454545 0.886364 

Bin 3 0.935484 0.129032 0.451613 0.967742 

Bin 4 0.833333 1 0 0.833333 

Bin 5 1 1 0 1 

3.4 Conclusions 

A novel health probability based structural health monitoring method has been 

proposed in this chapter and its effectiveness has been investigated by both simulation 

studies and field data analysis.  

The effects of operating and environmental parameters on structural health 

monitoring can be systematically taken into account by a baseline model which 

represents the relationship between the RMS feature of sensor data and the changes 

in the system environmental and operating parameters. From the baseline model and 

corresponding data, the tolerance range of baseline modelling error can be 
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determined; the health probability defined as the proportion of the cases where the 

system’s working status as represented by the signal RMS feature is within the 

tolerance range can be used to determine whether an inspected system is in an 

expected working condition or not, so as to implement the system condition and 

health monitoring. 

The simulation study on the rotor system indicates that the technique can correctly 

find out the system's damage condition. The correct analysis of the field data from an 

operating wind turbine has demonstrated the potential engineering significance of the 

new baseline model based condition and health monitoring approach. 
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Chapter 4    

Transmissibility analysis method for detection and 

localization of damage via nonlinear features in MDOF 

structural systems 

In Chapter 3, the effect of environmental and operational conditions has been taken 

into consideration when conducting SHM by building a model between the features of 

the measured signals and the environmental and operational conditions. In this 

chapter, an alternative damage sensitive feature which is insensitive to the change of 

environmental and operational conditions is exploited. This damage sensitive feature is 

analyzed based on the transmissibility analysis and can be used to find the location of 

the damage with nonlinear features in Multi-Degree-Of-Freedom (MDOF) structural 

systems. 

Traditional transmissibility of two system responses depends on the location of the 

system input. When a system is excited by the same input but at different locations, 

the traditional transmissibility analysis results will be different. Therefore, if the 

traditional transmissibility is employed in damage detection or localization, the input 

location should be taken into consideration carefully; otherwise the variation of input 

locations may mask the damage information. In this chapter, a new transmissibility 

analysis method is proposed for the detection and location of damage via nonlinear 

features in MDOF structural systems. The method is derived based on the 

transmissibility of Nonlinear Output Frequency Response Functions (NOFRFs), a 

concept recently proposed to extend the traditional transmissibility concept to 

nonlinear cases. The implementation of the method is only based on measured system 

output responses and by evaluating and analyzing the transmissibility of these system 
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responses at super-harmonics. The new method can overcome the problems with 

traditional transmissibility analysis based methods, which are normally loading input 

location dependent and can only be applied in locating damage with linear features. In 

addition, the method can also overcome the problems with available NOFRF 

transmissibility based techniques which either assume that there is only one damaged 

component with nonlinear features in the system and/or require the loading on 

inspected structural systems is measurable. Both numerical simulation studies and 

experimental data analysis have been conducted to verify the effectiveness and 

demonstrate the potential practical applications of the new method. 

4.1 MDOF nonlinear structural systems and associated 

engineering backgrounds 

In engineering practice the behaviors of many mechanical and civil structural systems, 

such as, rotary machineries[202-204], multi-storey buildings [28, 205, 206] and 

multi-span bridges [207, 208], should be described by more than one set of 

coordinates and can, therefore, be modeled by MDOF systems. A simplified 

representation of these mechanical and civil structural systems is shown in Fig. 4.1 

where the motion of all masses is one-dimensional and the input force 𝑓 is applied 

on one of the masses. 

1m 2m m m
1k 2k k k

1c cc2c

  -1
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x
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JJ

Fig. 4.1 An MDOF nonlinear structural system  

If all the springs and dampers in the system in Fig. 4.1 are linear, then the system is a 

linear MDOF system with governing equation  
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𝑴𝒙̈(𝑡) + 𝑪𝒙̇(𝑡) + 𝑲𝒙( ) = 𝑭(𝑡) (4.1)  

where  

, 
, 

, 

𝒙(𝑡) = ,𝑥1(𝑡), … , 𝑥𝑛(𝑡)-
𝑇  

are the system mass matrix, damping matrix, stiffness matrix and displacement vector, 

respectively. 𝑭(𝑡) is the force vector. When, as shown in Fig 4.1, only one input force 

is applied on the system, the MDOF system is a Single-Input Multi-Output (SIMO) 

system. While if many input forces are applied on the system at the same time, the 

system is a Multi-Input Multi-Output (MIMO) system. In this chapter, the case of one 

input force applied on the 𝑆 th mass will be considered so that 

𝑭(𝑡) = 0
 …  ⏞      

𝑆;1

𝑓(𝑡)     . . .  ⏞      
𝑛;𝑆

1
𝑇

. 

The MDOF structural systems described by Eq. (4.1) are also known as periodic 

structures which consist fundamentally of several identical structural components that 

are joined together side by side and/or to end to end form the whole structure [209]. 

A wide class of engineering structures including multi-blade turbines and rotary 

compressors, multi-storey buildings, multi-span bridges and elevated guideways for 

high speed transportation vehicles, etc. can be or have been treated as periodic 

structures. For example, the model can be used to describe the transversal vibration 

on each floor of multi-storey buildings as shown in Fig. 4.2 where floor 𝑖 is modeled 
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by inertial 𝑚𝑖, stiffness 𝑘𝑖  and power dissipation 𝑐𝑖. The bending and shear of a 

beam can be approximated by transverse and rotational springs respectively. So a 

beam can also be represented by some discrete blocks which are connected side by 

side by transverse springs and rotational springs as shown in Fig. 4.3. Similarly, a 

rotor-bearing system can be modelled by lumped masses connected by horizontal and 

vertical springs as shown in Fig. 4.4. When the motions of a structural system in 

different directions are considered as in the examples shown in Figs 4.3 and 4.4, 

𝑚𝑖, 𝑘𝑖  𝑎𝑛𝑑 𝑐𝑖 in Eq. (4.1) should be replaced by matrixes. However, if the motion in 

one direction is significantly more considerable than in other directions, the motion in 

only one particular direction needs to be studied. In such cases, the system can be well 

represented by Eq. (4.1). 
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Fig. 4.2 Modelling of a multi-storey building 
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Fig.4.3 Modelling of a simple supported beam 
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Fig. 4.4 Modelling of a rotor-bearing system 

In engineering practice, all structural systems are prone to suffering certain damage 

due to long service time, improper use or hostile working environments. And certain 

types of damage often manifest themselves as the introduction of nonlinearity into an 

otherwise linear system, such as breathing cracks, pedestal looseness and rub-impacts 

as reviewed in Section 2.7. In the MDOF system shown in Fig. 4.1, damaged 

components can often be represented by nonlinear springs/dampers denoted by the 

spring and damper symbols with an arrow. 

When there are 𝐽(̅𝐽 ̅ ≥ 1) nonlinear springs/dampers in the system which are located 

between the 𝐽𝑖 − 1 and 𝐽𝑖th masses, namely 𝐽𝑖th springs/dampers, (𝑖 = 1, 2, … , 𝐽)̅ 

( it is assumed that 𝐽1 <  𝐽2 <  <  𝐽𝐽̅), and the first spring and damper, which are 

connected to the fixed ground, are not nonlinear, that is, 𝐽1 > 1, the restoring forces 

of these nonlinear springs/dampers are the nonlinear functions of the 

deformation/the deformation derivative. Under the assumption that these functions 

are continuous, they can be approximated by a polynomial with its nonlinear part 

represented by  

{
 
 

 
 
𝑓𝑠𝑖(𝑡) = ∑ 𝑟(𝐽𝑖,𝑛̅)

𝑁̅

𝑛̅<2

.𝑥𝐽𝑖(𝑡) − 𝑥𝐽𝑖;1(𝑡)/
𝑛̅

𝑓𝑑𝑖(𝑡) = ∑𝑤(𝐽𝑖,𝑛̅)

𝑁̅

𝑛̅<2

.𝑥̇𝐽𝑖(𝑡) − 𝑥̇𝐽𝑖;1(𝑡)/
𝑛̅

  𝑖 = 1,… , 𝐽 ̅ (4.2)  

where 𝑟(𝐽𝑖,𝑛̅) and 𝑤(𝐽𝑖,𝑛̅) are the polynomial coefficients. Denote 
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𝑛𝑓𝑖(𝑡) = [ …  ⏞      
𝐽𝑖;2

−(𝑓𝑠𝑖(𝑡) + 𝑓𝑑𝑖(𝑡)) 𝑓𝑠𝑖(𝑡) + 𝑓𝑑𝑖(𝑡)     …  ⏞      
𝑛;𝐽𝑖

]
𝑇

𝑖 = 1,… , 𝐽 ̅ (4.3)  

and 

𝑵𝑭(𝑡) =∑𝑛𝑓𝑖(𝑡)

𝐽̅

𝑖<1

 (4.4)  

Then, the motion of MDOF system in Fig. 4.1 can be described by 

𝑴𝒙̈(𝑡) + 𝑪𝒙̇(𝑡) + 𝑲𝒙(𝑡) = 𝑭(𝑡) + 𝑵𝑭(𝑡) (4.5)  

Eq. (4.5) represents a class of SIMO nonlinear systems with the input and outputs 

being 𝑓(𝑡) and 𝑥𝑖(𝑡), 𝑖 = 1,… , 𝑛, respectively, and 𝑵𝑭(𝑡) represents the effects 

of nonlinear springs/dampers in the system.  

The detection and localization of nonlinear components in such structural systems are 

equivalent to detecting and locating a wide class of damage in the systems and, 

therefore, have significant implications in engineering practices. The present study is 

motivated by this practical need and aims to address the basic issues of how to detect 

whether there exist nonlinear components in the system (4.5) and to find their 

location from the system output responses measured on the masses. The solution to 

these issues with system (4.5) can be directly applied to address damage detection and 

location problems of simple rotor and building etc. structures [210, 211] and, more 

importantly, has potential to be extended to address more complicated damage 

detection and location problems with similar natures. Therefore, this chapter and the 

following chapters 5 and 6 will address the nonlinear component detection and 

localization problems with system (4.5) when the system is subject to single sinusoidal 

loading, multiple sinusoidal loadings, and multiple general loadings, respectively in 

order to systematically develop a series of method to address relevant engineering 

problems.  
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4.2 The NOFRFs of Single-Input Multi-Output nonlinear 

systems 

In engineering structures especially mechatronic systems such as rotors [185-187, 203, 

212] and civil structures such as buildings [28, 210], the appearance of 

super-harmonics, i.e., the system responses contain integer multiples of the driving 

frequency, often indicates the occurrence of structural damage, and such phenomena 

are often referred to 2×, 3×, etc harmonics in engineering practice [185]. Theoretically, 

these engineering structural systems can often be represented by a SIMO nonlinear 

system of a Volterra series model as follows [115, 213]. 

𝑥𝑖(𝑡) = ∑∫ …
 

; 

𝑁

𝑛̅<1

∫ 𝑕(𝑖,𝑛̅)(𝜏1, … , 𝜏𝑛)
 

; 

∏𝑓(𝑡 − 𝜏𝑖)

𝑛̅

𝑖<1

𝑑𝜏𝑖   𝑖 = 1,2, … , 𝑛 (4.6)  

where 𝑥𝑖(𝑡) and 𝑓(𝑡) are the 𝑖th output and the input of the system, respectively; 𝑛 

is the number of the system outputs; 𝑁 is the maximum order of the system 

nonlinearity; 𝑕(𝑖,𝑛̅)(𝜏1, … , 𝜏𝑛) is the 𝑛̅th order Volterra kernel associated with the 𝑖th 

system output. Super-harmonic is a typical phenomenon with nonlinear systems 

described by equation Eq. (4.6). For example, Eq. (4.6) can represent a slightly 

damaged rotor system. In this case, 𝑓(𝑡) is an unbalanced force acting on rotor shaft, 

which is periodic and of the same frequency as that of rotor rotation. 𝑥𝑖(𝑡) 𝑖 =

1,2, … , 𝑛 are vibration measurements at different positions of the shaft, 𝑁 is the 

highest order of super-harmonics observed from the vibration measurements, and 

𝑕(𝑖,𝑛̅)(𝜏1, … , 𝜏𝑛̅) 𝑖 = 1,2, … , 𝑛, 𝑛̅=1,...,N are the functions determined by the rotor 

dynamics. 

The output frequency responses of system (4.6) to a general input can be described by 

[123, 213] 
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{
 
 

 
 𝑋𝑖(𝑗𝜔) =∑ 𝑋(𝑖,𝑛̅)(𝑗𝜔)

𝑁

𝑛̅<1
    𝜔

𝑋(𝑖,𝑛̅)(𝑗𝜔) =
1 √𝑛̅⁄

(2 )𝑛̅;1
∫ 𝐻(𝑖,𝑛̅)(𝑗𝜔1, … , 𝑗𝜔𝑛̅)∏ 𝐹(𝑗𝜔𝑖)

𝑛̅

𝑖<1
𝑑𝜎𝑛̅𝜔

𝜔1: :𝜔 ̅<𝜔

 (4.7)  

Here 𝑋𝑖(𝑗𝜔) and 𝐹(𝑗𝜔) are the spectra of the 𝑖th system output 𝑥𝑖  and the system 

input 𝑓(𝑡), respectively; 𝑋(𝑖,𝑛̅)(𝑗𝜔) denotes the 𝑛̅th order frequency response of the 

system’s 𝑖th output, and 

𝐻(𝑖,𝑛̅)(𝑗𝜔1, … , 𝑗𝜔𝑛̅) = ∫ …
 

; 

∫ 𝑕(𝑖,𝑛̅)(𝜏1, … , 𝜏𝑛̅)𝑒
;(𝜔1 1: :𝜔 ̅  ̅)

 

; 

𝑑𝜏1…𝑑𝜏𝑛̅ (4.8)  

is known as the 𝑛̅th order Generalized Frequency Response Function(GFRF) associated 

with the 𝑖 th system output, which is the extension of the frequency response 

functions (FRF) of a SIMO linear system to the 𝑛̅th order nonlinear case [31]. In Eq. 

(4.7),  

∫ 𝐻(𝑖,𝑛̅)(𝑗𝜔1, … , 𝑗𝜔𝑛̅)∏𝐹(𝑗𝜔𝑖)

𝑛̅

𝑖<1

𝑑𝜎𝑛̅𝜔
𝜔1: :𝜔 ̅<𝜔

 

represents the integration of 𝐻(𝑖,𝑛̅)(𝑗𝜔1, … , 𝑗𝜔𝑛̅)∏ 𝐹(𝑗𝜔𝑖)
𝑛̅
𝑖<1  over the 

𝑛̅-dimensional hyper-plane 𝜔1 + +𝜔𝑛̅ = 𝜔. Eq. (4.7) is the representation of 

system (4.6) in the frequency domain and a theoretical basis for studying 

super-harmonics and many well-known nonlinear phenomena. 

As shown in Eq. (4.8), the GFRFs are multi-dimensional functions of frequency 

variables. This makes the frequency domain analysis of nonlinear systems considerably 

difficult. In order to solve this problem, the concept of NOFRFs was proposed by Lang 

and Billings [31]. For the SIMO nonlinear system (4.6), the NOFRFs are defined as 

𝐺(𝑖,𝑛̅)(𝑗𝜔) =
∫ 𝐻(𝑖,𝑛̅)(𝑗𝜔1, … , 𝑗𝜔𝑛̅)∏ 𝐹(𝑗𝜔𝑖)

𝑛̅
𝑖<1 𝑑𝜎𝑛̅𝜔𝜔1: :𝜔 ̅<𝜔

∫ ∏ 𝐹(𝑗𝜔𝑖)
𝑛̅
𝑖<1 𝑑𝜎𝑛̅𝜔𝜔1: :𝜔 ̅<𝜔

, 𝑛̅ = ,1, … ,𝑁, 𝑖 = 1,… , 𝑛  (4.9)  

under the condition that 
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∫ ∏𝐹(𝑗𝜔𝑖)

𝑛̅

𝑖<1

𝑑𝜎𝑛̅𝜔
𝜔1: :𝜔 ̅<𝜔

   (4.10)  

From Eqs. (4.7) and (4.9), it can be shown that the output frequency responses of 

SIMO nonlinear systems can be represented using the NOFRFs as 

{
𝑋𝑖(𝑗𝜔) = ∑𝑋(𝑖,𝑛̅)(𝑗𝜔)

𝑁

𝑛̅<1

  𝑖 = 1, … , 𝑛

𝑋(𝑖,𝑛̅)(𝑗𝜔) = 𝐺(𝑖,𝑛̅)(𝑗𝜔)𝐹𝑛̅(𝑗𝜔)

 (4.11)  

where 

𝐹𝑛̅(𝑗𝜔) =
1 √𝑛̅⁄

(2 )𝑛̅;1
∫ ∏𝐹(𝑗𝜔𝑖)

𝑛̅

𝑖<1

𝑑𝜎𝑛̅𝜔
𝜔1: :𝜔 ̅<𝜔

 (4.12)  

which is the Fourier Transform of 𝑓𝑛̅(𝑡). Eq. (4.11) shows that, using the NOFRFs, the 

output spectra of nonlinear systems can be represented in a way similar to the FRF 

based representation of the output spectra of linear systems. This has significantly 

facilitated the analysis of nonlinear systems in the frequency domain [137, 211]. 

4.3 The NOFRF transmissibility of MDOF nonlinear 

structural systems 

For SIMO linear systems, the transmissibility is defined as the ratio between the 

spectra of two different outputs and is equal to the ratio between the systems FRFs 

corresponding to the two outputs [25, 29]. To extend this well-known concept to the 

SIMO nonlinear system case, the transmissibility of the NOFRFs between the 𝑖th and 

𝑘th outputs of the system (4.5) was introduced in [28] as 

𝑇𝑖,𝑘
𝑁𝐿(𝑗𝜔) =

𝐺(𝑖,𝑁)(𝑗𝜔)

𝐺(𝑘,𝑁)(𝑗𝜔)
 (4.13)  

where 𝑖, 𝑘 ∈ *1,… , 𝑛+. It can be observed that when 𝑁 = 1, the transmissibility of the 

NOFRFs as defined in (4.13) reduces to the traditional concept of transmissibility for 
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linear systems. Besides, as the NOFRFs do not depend on the change of the system 

input strength [31, 139, 143], the NOFRF transmissibility also is dependent from the 

system input strength. This property is the same as the input amplitude independent 

property with the traditional transmissibility concept.  

Because system (4.5) is a SIMO nonlinear system, traditional transmissibility analysis 

methods can't be applied directly to the system. In [28], the NOFRF transmissibility 

given by Eq. (4.13) was introduced, which for the first time extended the 

transmissibility concept to the nonlinear case. In order to apply transmissibility 

analysis to the system (4.5), a series of relationships regarding the NOFRF 

transmissibility of the system are derived and the results are summarized in 

Proposition 4.1 as follows. 

Proposition 4.1 The properties of the NOFRF transmissibility of the SIMO nonlinear 

system 

If the outputs of system (4.5) can also be represented by the Volterra series model 

(4.6), there exit following results regarding the NOFRF transmissibility of the system: 

(i) When 𝐽 ̅ > 1, that is, there are multiple nonlinear components in the system, 

{
  
 

  
 𝑇𝑖,𝑘

𝑁𝐿(𝑗𝜔) =
𝐺(𝑖,𝑛̅)(𝑗𝜔)

𝐺(𝑘,𝑛̅)(𝑗𝜔)
= 𝑄̅𝑖,𝑘(𝑗𝜔) , 𝑛̅ ∈ *2, …𝑁 − 1+          

 𝑖𝑓 1  𝑖 < 𝑘   𝐽1 − 1  𝑜𝑟 𝐽𝐽̅   𝑖 < 𝑘  𝑛    

𝑇𝑖,𝑘
𝑁𝐿(𝑗𝜔)  

𝐺(𝑖,𝑛̅)(𝑗𝜔)

𝐺(𝑘,𝑛̅)(𝑗𝜔)
 , 𝑛̅ ∈ *2, …𝑁 − 1+.                           

 (4.14)  

where 𝑄̅𝑖,𝑘(𝑗𝜔)  is only dependent on the 𝑀 , 𝐶 , and 𝐾 , that is, the linear 

characteristic parameters of the system (4.5). 

(ii) When 𝐽 ̅ = 1, that is, there is only one nonlinear component in system (4.5), 

𝑇𝑖,𝑘
𝑁𝐿(𝑗𝜔) =

𝐺(𝑖,𝑛̅)(𝑗𝜔)

𝐺(𝑘,𝑛̅)(𝑗𝜔)
= 𝑄̿𝑖,𝑘(𝑗𝜔), 𝑛̅ ∈ *2, …𝑁 − 1+  𝑖𝑓 𝑖, 𝑘 ∈ *1,…𝑛+, 𝑖 < 𝑘 (4.15)  
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where 𝑄̿𝑖,𝑘(𝑗𝜔) are of the same nature as 𝑄̅𝑖,𝑘(𝑗𝜔), that is, only dependent on 𝑀, 

𝐶, and 𝐾. 

In addition, if 𝑆 ≥  𝐽1, 

{
 
 
 

 
 
 𝑇𝑖,𝑘

𝐿 (𝑗𝜔) =
𝐺(𝑖,1)(𝑗𝜔)

𝐺(𝑘,1)(𝑗𝜔)
= 𝑄𝑖,𝑘(𝑗𝜔) =

𝐺(𝑖,𝑛̅)(𝑗𝜔)

𝐺(𝑘,𝑛̅)(𝑗𝜔)
= 𝑇𝑖,𝑘

𝑁𝐿(𝑗𝜔), 𝑛̅ ∈ *2,…𝑁 − 1+  

𝑖𝑓 1  𝑖 < 𝑘  𝐽1 − 1  𝑜𝑟 𝑆  𝑖 < 𝑘  𝑛

𝑇𝑖,𝑘
𝐿 (𝑗𝜔) =

𝐺(𝑖,1)(𝑗𝜔)

𝐺(𝑘,1)(𝑗𝜔)
= 𝑄𝑖,𝑘(𝑗𝜔)  

𝐺(𝑖,𝑛̅)(𝑗𝜔)

𝐺(𝑘,𝑛̅)(𝑗𝜔)
= 𝑇𝑖,𝑘

𝑁𝐿(𝑗𝜔), 𝑛̅ ∈ *2,…𝑁 − 1+     

                                    

 (4.16)  

and if 𝑆 < 𝐽1, 

{
  
 

  
 𝑇𝑖,𝑘

𝐿 (𝑗𝜔) =
𝐺(𝑖,1)(𝑗𝜔)

𝐺(𝑘,1)(𝑗𝜔)
= 𝑄𝑖,𝑘(𝑗𝜔) =

𝐺(𝑖,𝑛̅)(𝑗𝜔)

𝐺(𝑘,𝑛̅)(𝑗𝜔)
= 𝑇𝑖,𝑘

𝑁𝐿(𝑗𝜔)  , 𝑛̅ ∈ *2, …𝑁 − 1+   

𝑖𝑓 1  𝑖 < 𝑘   𝑆  𝑜𝑟 𝐽1  𝑖 < 𝑘  𝑛

𝑇𝑖,𝑘
𝐿 (𝑗𝜔) =

𝐺(𝑖,1)(𝑗𝜔)

𝐺(𝑘,1)(𝑗𝜔)
= 𝑄𝑖,𝑘(𝑗𝜔)  

𝐺(𝑖,𝑛̅)(𝑗𝜔)

𝐺(𝑘,𝑛̅)(𝑗𝜔)
= 𝑇𝑖,𝑘

𝑁𝐿(𝑗𝜔), 𝑛̅ ∈ *2,…𝑁 − 1+       

                                    

 (4.17)  

In Eqs. (4.16) and (4.17), 𝑇𝑖,𝑘
𝐿 (𝑗𝜔) represents the traditional transmissibility and 

𝑄𝑖,𝑘(𝑗𝜔) is again only dependent on 𝑀, 𝐶, and 𝐾. 

Proof: The conclusions of the Proposition 4.1 can be reached by using the analysis 

results in [139] for the system (4.5) and the definition of transmissibility of the NOFRFs 

given by Eq. (4.13). 

Point (i) of Proposition 4.1 indicates that the NOFRF transmissibility and the ratio 

between other higher order NOFRFs are the same and only dependent on the system 

linear characteristic parameter 𝑴, 𝑪, and 𝑲 when associated system output points 

are on either side of the nonlinear components , but this relationship does not hold 

when the output points are within the span of nonlinear components.  

Point (ii) of Proposition 4.1 shows that, if there is only one nonlinear component in 

system (4.5), the NOFRF transmissibility and the ratio between other higher order 
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NOFRFs are the same as the traditional linear transmissibility when associated system 

output points are both on the same side of the only nonlinear component and the 

input force. Otherwise, the relationships do not hold.  

These results are the theoretical basis for reaching the conclusions of Proposition 4.3 

in the Section 4.4 below, from which effective algorithms will be derived in Section 4.5 

for the detection and localization of nonlinear components in system (4.5). 

4.4 Transmissibility at super-harmonics 

In order to more clearly demonstrate the main ideas, the study in this chapter assumes 

that the input force 𝑓(𝑡) to the system (4.5) is sinusoidal and the location 𝑆 where 

the input is applied is known a priori. These assumptions are, in fact, valid in many 

practical cases. For example, in rotors, the input is sinusoidal with frequency the same 

as rotating frequency and located in the position where the unbalanced force is 

applied [185-187]; in buildings, the ground motions due to earthquakes can also be 

considered to be sinusoidal in many cases [214, 215]. Under these assumptions, the 

output frequency response of the system (4.5) can be represented using the system 

NOFRFs as described in Proposition 4.2 below. 

Proposition 4.2 Frequency properties of the SIMO system to a harmonic input 

Under the condition that the outputs of the system (4.5) can be represented by the 

Volterra series (4.6) and the input to the system is a harmonic 

𝑓(𝑡) = 𝐴   (𝜔𝐹𝑡 +  ) (4.18)  

the range of the system output frequencies are Ω = * ,±1𝜔𝐹 , ±2𝜔𝐹 , … , ±𝑁𝜔𝐹+ and 

the system output responses at these frequencies can be determined by  
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{
  
 

  
 

𝑋𝑖(𝑗𝜔𝐹) = 𝐺(𝑖,1)(𝑗𝜔𝐹)𝐹1(𝑗𝜔𝐹) + 𝐺(𝑖,3)(𝑗𝜔𝐹)𝐹3(𝑗𝜔𝐹) +

…+ 𝐺(𝑖,𝑁)(𝑗𝜔𝐹)𝐹𝑁(𝑗𝜔𝐹)

𝑋𝑖(𝑗2𝜔𝐹) = 𝐺(𝑖,2)(𝑗2𝜔𝐹)𝐹2(𝑗2𝜔𝐹) + 𝐺(𝑖,4)(𝑗2𝜔𝐹)𝐹4(2𝑗𝜔𝐹) +

…+ 𝐺(𝑖,𝑁;1)(𝑗2𝜔𝐹)𝐹𝑁;1(𝑗2𝜔𝐹)
…  …  …

𝑋𝑖(𝑗𝑁𝜔𝐹) = 𝐺(𝑖,𝑁)(𝑗𝑁𝜔𝐹)𝐹𝑁(𝑗𝑁𝜔𝐹)

 (4.19)  

for 𝑖 = 1,… , 𝑛 when 𝑁 is odd or  

{
  
 

  
 

𝑋𝑖(𝑗𝜔𝐹) = 𝐺(𝑖,1)(𝑗𝜔𝐹)𝐹1(𝑗𝜔𝐹) + 𝐺(𝑖,3)(𝑗𝜔𝐹)𝐹3(𝑗𝜔𝐹) +

…+ 𝐺(𝑖,𝑁;1)(𝑗𝜔𝐹)𝐹𝑁;1(𝑗𝜔𝐹)

𝑋𝑖(𝑗2𝜔𝐹) = 𝐺(𝑖,2)(𝑗2𝜔𝐹)𝐹2(𝑗2𝜔𝐹) + 𝐺(𝑖,4)(𝑗2𝜔𝐹)𝐹4(2𝑗𝜔𝐹) +

…+ 𝐺(𝑖,𝑁)(𝑗2𝜔𝐹)𝐹𝑁(𝑗2𝜔𝐹)
…  …  …

𝑋𝑖(𝑗𝑁𝜔𝐹) = 𝐺(𝑖,𝑁)(𝑗𝑁𝜔𝐹)𝐹𝑁(𝑗𝑁𝜔𝐹)

 (4.20)  

when 𝑁 is even. 

Proof: See Appendix B. 

Proposition 4.2 indicates that when subject to a sinusoidal input with frequency 𝜔𝐹, 

the output frequencies of the system (4.5) are 𝜔𝐹  and 2𝜔𝐹 , 3𝜔𝐹 ,… etc. 

super-harmonics, which are the output frequencies generated by system nonlinearity 

[137, 138, 185-187], and the system output responses at these super-harmonic 

frequencies are determined by the system higher order NOFRFs and the Fourier 

Transform of system input raised to corresponding orders . 

The concept of transmissibility at super-harmonics is introduced and defined as the 

ratio of the super-harmonic responses on two consecutive masses, that is 

𝑆𝑇𝑖,𝑖:1(𝑗𝑘̅𝜔𝐹) =
𝑋𝑖(𝑗𝑘̅𝜔𝐹)

𝑋𝑖:1(𝑗𝑘̅𝜔𝐹)
  𝑘̅ = 2, … , 𝑁     𝑖 = 1,… , 𝑛 − 1 (4.21)  

Moreover, from Propositions 4.1 and 4.2, the relationship between the transmissibility 

at super-harmonics as defined in (4.21) and the NOFRF transmissibility can be derived. 

The result is summarized in Proposition 4.3 as follows. 

Proposition 4.3 Properties of transmissibility at super-harmonics for the SIMO 
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nonlinear system 

Under the same condition of Proposition 4.2, 

(i) When there are multiple nonlinear components in the system (4.5), that is 𝐽 ̅ > 1, if 

two consecutive masses of the system are all on the left or right side of the nonlinear 

components, namely,1  𝑖  𝐽1 − 2    𝐽𝐽̅   𝑖  𝑛 − 1, then 

𝑆𝑇𝑖,𝑖:1(𝑗𝑘̅𝜔𝐹) = 𝑇𝑖,𝑖:1
𝑁𝐿 (𝑗𝑘̅𝜔𝐹) = 𝑄̅𝑖,𝑖:1(𝑗𝑘̅𝜔𝐹), 𝑘̅ = 2,… , 𝑁 (4.22)  

If at least one mass is within the range of nonlinear components, namely, 𝐽1 − 1  

𝑖   𝐽𝐽̅ − 1, then 

𝑆𝑇𝑖,𝑖:1(𝑗𝑘̅𝜔𝐹)  𝑇𝑖,𝑖:1
𝑁𝐿 (𝑗𝑘̅𝜔𝐹)  𝑘̅ = 2,… , 𝑁 (4.23)  

 (ii) When there is only one nonlinear component in the system, that is, 𝐽 ̅ = 1 , then 

𝑆𝑇𝑖,𝑖:1(𝑗𝑘̅𝜔𝐹) = 𝑇𝑖,𝑖:1
𝑁𝐿 (𝑗𝑘̅𝜔𝐹) = 𝑄̿𝑖,𝑖:1(𝑗𝑘̅𝜔𝐹), 𝑖 = 1, . . . , 𝑛 − 1, 𝑘̅ = 2, … , 𝑁 (4.24)  

and  

{
 
 

 
 𝑆𝑇

𝑖,𝑖:1(𝑗𝜔𝐹) = 𝑇𝑖,𝑖:1
𝐿 (𝑗𝜔𝐹) = 𝑄𝑖,𝑖:1(𝑗𝜔𝐹),                                          

    1  𝑖  𝐽1 − 2  𝑜𝑟 𝑆  𝑖  𝑛 − 1      𝑆 ≥  𝐽1   
𝑜𝑟  𝑖𝑓   1  𝑖  𝑆 − 1  𝑜𝑟 𝐽1  𝑖  𝑛 − 1      𝑆 < 𝐽1

𝑆𝑇𝑖,𝑖:1(𝑗𝜔𝐹)  𝑇𝑖,𝑖:1
𝐿 (𝑗𝜔𝐹) = 𝑄𝑖,𝑖:1(𝑗𝜔𝐹)                                             

         

 (4.25)  

 (iii) Results (i) and (ii) above hold for 𝑘̅ = 2,4… , 𝑁 if 𝑘̅ and 𝑁 are all even; for 

𝑘̅ = 3,5, … ,𝑁, if 𝑘̅ and 𝑁 are all odd; for 𝑘̅ = 2,4, . . . , 𝑁 − 1 if 𝑘̅ is even but 𝑁 is 

odd; and for 𝑘̅ = 3,5, . . . , 𝑁 − 1 if 𝑘̅ is odd but 𝑁 is even. 

Proof: See Appendix C. 

Result (i) of Proposition 4.3 indicates that if there are multiple nonlinear components 

in the system and the two consecutive masses involved in the transmissibility 

evaluation are located both on the same side of the nonlinear components, then the 

transmissibility at super-harmonics only depends on the system linear characteristic 
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parameters and is, therefore, independent from the system input. Otherwise, that is, 

when the two masses involved in the transmissibility evaluation are located inside the 

area of system nonlinear components, the transmissibility at super-harmonics may be 

dependent on the system input. This observation implies that the transmissibility at 

super-harmonics can be exploited to find the locations of nonlinear components when 

there are multiple nonlinear components in the system. 

Result (ii) of Proposition 4.3 indicates that if there is only one nonlinear component in 

the system, the transmissibility at super-harmonics is completely dependent on the 

system linear characteristic parameters and independent from the system input. This 

implies that whether there is only one nonlinear component in the system or not can 

also be determined from the analysis of transmissibility at super-harmonics. 

In addition, result (ii) of Proposition 4.3 indicates that if there is only one nonlinear 

component in the system, and the two consecutive masses involved in the 

transmissibility evaluation are not located between this nonlinear component and the 

mass where an input excitation is applied, the transmissibility at driving frequency also 

only depends on the system linear characteristic parameters and is independent from 

the system input. This implies that the transmissibility at driving frequency can be 

exploited to find the location of the only nonlinear component in this case. 

According to [137, 185, 187], the damage with nonlinear features in MDOF systems 

can make the whole system behave nonlinearly and, particularly, produce 

super-harmonics. Therefore, as far as the systems’ damage detection and location are 

concerned, the phenomena of higher order harmonics can be used to determine 

whether there exists such damage in the system, and the observations from 

Proposition 4.3 can be exploited to find out whether there is only one or multiple 

damaged components with nonlinear features in the system and the locations of the 

damage. These are the basis of a new method that will be proposed in the following 

for detection and localization of damage in MDOF systems via nonlinear features.  
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4.5 Detection and location of damage via nonlinear 

features using a new transmissibility analysis method 

4.5.1 Basic ideas 

According to [137, 185, 187], the damage with nonlinear features in MDOF systems 

can make the whole system behave nonlinearly and, particularly, produce 

super-harmonics. So the higher order harmonics can be used to determine whether 

there exists such damage in the system. 

When damage with nonlinear features has been detected in system (4.5), the results 

of Proposition 4.3 can be used to find out whether there is only one or more than one 

damage with nonlinear features in the system and the locations of the damage. This is 

based on the following observations. 

First, Eq. (4.24) in Proposition 4.3 (ii) indicates that when there is only one nonlinear 

component in MDOF system (4.5), the transmissibility at super-harmonics depends 

only on the system parameters 𝑀,𝐶, 𝐾 and does not change with the system input. 

This is a very distinctive feature and can be used, if damage with nonlinear features 

has been detected in system (4.5), to determine whether there is only one nonlinear 

component in the system or not. 

Secondly, if there is only one nonlinear component in the system, Eq. (4.25) in 

Proposition 4.3 (ii) indicates that whether the transmissibility at base frequency 

𝜔𝐹 varies with a change in the system input depends on the location of the two 

masses involved in the transmissibility evaluation. This property can be exploited to 

find the location of the only nonlinear component in the system. 

Finally, if there are multiple nonlinear components in the system (4.5), Eqs. (4.22) and 

(4.23) in Proposition 4.3 (i) indicate that whether the transmissibility at 

super-harmonics varies with a change in the system input depends on the location of 
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the two masses involved in the transmissibility evaluation. This can be used to find the 

locations of nonlinear components in the system. 

4.5.2 The method 

From the super-harmonic analysis based damage detection idea, and the above 

observations from Proposition 4.3, a new transmissibility analysis method for the 

detection and localization of damage with nonlinear features in system (4.5) can be 

proposed under the following two assumptions. 

a) The output responses of system (4.5) to two different sinusoidal inputs 

𝑓(𝑡) = 𝑓(1)(𝑡) = 𝐴1   (𝑤𝐹𝑡 +  1) and  𝑓(𝑡) = 𝑓(2)(𝑡) = 𝐴2   (𝑤𝐹𝑡 +  2) (4.26)  

 can be obtained, respectively, so that two sets of transmissibility analysis results  

{
 
 

 
 𝑆𝑇1𝑖,𝑖:1(𝑗𝑘̅𝜔𝐹) =

𝑋𝑖
1(𝑗𝑘̅𝜔𝐹)

𝑋𝑖:1
1 (𝑗𝑘̅𝜔𝐹)

=
𝑋𝑖(𝑗𝑘̅𝜔𝐹)

𝑋𝑖:1(𝑗𝑘̅𝜔𝐹)
|
𝑓(𝑡)<𝑓(1)(𝑡)< 1    (𝜔 𝑡: 1)

𝑆𝑇2𝑖,𝑖:1(𝑗𝑘̅𝜔𝐹) =
𝑋𝑖
2(𝑗𝑘̅𝜔𝐹)

𝑋𝑖:1
2 (𝑗𝑘̅𝜔𝐹)

=
𝑋𝑖(𝑗𝑘̅𝜔𝐹)

𝑋𝑖:1(𝑗𝑘̅𝜔𝐹)
|
𝑓(𝑡)<𝑓(2)(𝑡)< 2   (𝜔 𝑡: 2)     

 (4.27)  

 and their differences 

𝑆𝛿𝑖,𝑖:1(𝑗𝑘̅𝜔𝐹) = |𝑆𝑇1
𝑖,𝑖:1(𝑗𝑘̅𝜔𝐹) − 𝑆𝑇2

𝑖,𝑖:1(𝑗𝑘̅𝜔𝐹)| (4.28)  

  can be determined. Here, 𝑖 = 1,… , 𝑛 − 1  𝑘̅ = 1,2, …𝑁 . In (4.27), 

𝑋𝑖
1(𝑗𝑘̅𝜔𝐹)      𝑋𝑖

2(𝑗𝑘̅𝜔𝐹) are the spectra of the 𝑘̅th harmonic responses of the 

system to inputs 𝑓(1)(𝑡) and 𝑓(2)(𝑡), respectively, and 𝐴1  𝐴2.  

b) The location where the input force 𝑓(𝑡) is applied to the system, that is, mass 

number 𝑆 is known a priori. 

The detailed procedures of the new method can be described as follows. 

Step 1) Evaluate the spectra of the output responses of the system (4.5) to inputs 

𝑓1(𝑡) and 𝑓2(𝑡), respectively, and determine the amplitudes of these spectra at 

all the harmonics, that is, 𝑋𝑖
1(𝑗𝑘̅𝜔𝐹)  and 𝑋𝑖

2(𝑗𝑘̅𝜔𝐹) , for 𝑖 = 1,… , 𝑛  and 
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𝑘̅ = 2,… ,𝑁. Here, 𝑁 can be determined as the highest order at which the 

harmonics are observed in the system outputs. Determine the value of index 

𝐼𝑁𝐷1 as defined below to represent the strength of higher order harmonics in the 

system output responses   

𝐼𝑁𝐷1 =    8|
𝑋𝑖
1(𝑗𝑘̅𝜔𝐹)

𝑋𝑖
1(𝑗𝜔𝐹)

| , |
𝑋𝑖
2(𝑗𝑘̅𝜔𝐹)

𝑋𝑖
2(𝑗𝜔𝐹)

| , 𝑖 = 1,… , 𝑛,     𝑘̅ = 2, … , 𝑁9 (4.29)  

 If  

𝐼𝑁𝐷1 ≥ 𝜀1 (4.30)  

 then it can be concluded that there exists damage with nonlinear features in the 

system. Otherwise, there is no such damage in the system. In (4.30), 𝜀1  is a 

threshold to be determined a priori. 

Step 2) If Step 1) indicates there is damage with nonlinear features in the system, 

select a 𝑘̃ ∈ *2, … ,𝑁+  such that both 𝑋𝑖
1(𝑗𝑘̃𝜔𝐹) 𝑖 = 1,… , 𝑛 and 𝑋𝑖

2(𝑗𝑘̃𝜔𝐹) 𝑖 =

1, … , 𝑛 have significant amplitudes. Calculate 𝑆𝑇1𝑖,𝑖:1(𝑗𝑘̃𝜔𝐹), 𝑆𝑇2
𝑖,𝑖:1(𝑗𝑘̃𝜔𝐹), 

and 𝑆𝛿𝑖,𝑖:1(𝑗𝑘̃𝜔𝐹) for 𝑖 = 1,… , 𝑛 − 1 using (4.27) and (4.28). Then, evaluate 

𝑆𝛿max(𝑘̃) =    {S𝛿
𝑖,𝑖:1(𝑗𝑘̃𝜔𝐹), 𝑖 ∈ *1,2, … , 𝑛 − 1+ } (4.31)  

 to see whether  

𝑆𝛿max(𝑘̃)   𝜀2 (4.32)  

 where 𝜀2  is another a priori determined threshold. If (4.32) holds, it can be 

concluded that there exists only one damaged component with nonlinear features 

in the system. Otherwise, there are more than one damaged components with 

nonlinear features.  

Step 3) If Step 2) indicates there exists only one damaged component with nonlinear 

features, calculate 𝑆𝑇1𝑖,𝑖:1(𝑗𝜔𝐹) , 𝑆𝑇2𝑖,𝑖:1(𝑗𝜔𝐹) , and 𝑆𝛿𝑖,𝑖:1(𝑗𝜔𝐹)  for 

𝑖 = 1, … , 𝑛 − 1 using (4.27) and (4.28). Then evaluate  
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𝑆𝛿max(1) =    2S𝛿
𝑖,𝑖:1(𝑗𝜔𝐹), 𝑖 ∈ *1,2, … , 𝑛 − 1+3 (4.33)  

  and 

𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝐹) =
𝑆𝛿𝑖,𝑖:1(𝑗𝜔𝐹)

𝑆𝛿max(1)
 𝑓𝑜𝑟 𝑖 = 1,… , 𝑛 − 1 (4.34)  

  to find those i’s such that  

𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝐹) ≥ 𝜀3 (4.35)  

  where 𝜀3 is again a priori determined threshold.  

  Denote those i’s such that (4.35) holds as  

𝑖′, 𝑖′ + 1,… , 𝑖′ +𝑚′ − 1 

  where 𝑚′ ≥ 1. 

Then, there are only two possibilities which are 𝑆 = 𝑖′    𝑆 = 𝑖′ +𝑚′. If  𝑆 = 𝑖′, 

it can be concluded that the only nonlinear component is located between mass 

( 𝑖′ +𝑚′ − 1)  and mass (𝑖′ +𝑚′) . Otherwise, 𝑆 = 𝑖′ +𝑚′ , and it can be 

concluded that the only nonlinear component is located between mass 𝑖′ and 

mass (𝑖′ + 1). 

Step 4) If Step 2) indicates there exist more than one damaged components with 

nonlinear features in the system, evaluate  

𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝑘̃𝜔𝐹) =
𝑆𝛿𝑖,𝑖:1(𝑗𝑘̃𝜔𝐹)

𝑆𝛿max(𝑘̃)
     𝑖 = 1, … , 𝑛 − 1 (4.36)  

  to find those i’s such that  

𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝑘̃𝜔𝐹) ≥ 𝜀4 (4.37)  

 where 𝜀4 is also a priori determined threshold. Denote those i’s such that (4.37) 
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hold as  

𝑖′′, 𝑖′′ + 1,… , 𝑖′′ +𝑚′′ − 1 

 where 𝑚′′ > 1. Then, it can be concluded that these nonlinear components are 

located between mass 𝑖′′ and mass 𝑖′′ +𝑚′′. 

The method above can be represented by the flow chart in Fig. 4.5 which illustrates 

each step and the order of the whole procedure clearly. 

Begin

Step 1): determine

the existence of nonlinear 

components

Step 2): determine  the  number 

of nonlinear components 

output spectra of a 

SIMO system

End

Yes

One

Multiple

No

Step 3): determine the location 

of the only nonlinear component

Step 4): determine  the location of 

the nonlinear components

End

 

Fig. 4.5 Flow chart of damage detection and localization method for SIMO systems 

4.5.3 Remarks 

For the new method described above, following remarks can be made regarding the 

theoretical basis of relevant steps and the choice of the threshold parameters that are 

required to be determined a priori. 

a) Step 1) of the method is based on the well-known fact that nonlinearity will 

generate harmonics in the system output response. Step 2) exploits the property 

of system (4.5) described in the first point of Proposition 4.3 (ii), which indicates if 
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there is only one nonlinear component in the system, the transmissibility at 

super-harmonics is completely determined by the system linear characteristic 

parameters and, therefore, independent of the system input. The theoretical basis 

of Step 3) is the second point of Proposition 4.3 (ii), which reveals an important 

relationship between the transmissibility at base frequency and the location of 

the only nonlinear component in the system. Step 4) makes use of the property of 

the transmissibility at super-harmonics of system (4.5) described by Proposition 

4.3 (i) , which shows where the transmissibility at super-harmonics is only 

dependent on the system linear characteristic parameters and, therefore, 

independent of the system input and where this is not the case.  

b) 𝜀1, 𝜀2, 𝜀3, 𝜀4 are four threshold parameters in the method. In practice, these 

thresholds are determined a priori from experimental data using statistical 

analyses. For example, 𝜀1  can be a small number associated with a noise 

threshold in the cases where the system basically behaves linearly and can be 

determined as the mean plus three times the standard deviation of the values of 

𝐼𝑁𝐷1 in the situations when there is no damage with nonlinear features in the 

system. 𝜀2, 𝜀3, 𝜀4 can be determined in the same way but based on the mean and 

standard deviation of 𝑆𝛿max(𝑘̃), 𝑆𝛿̅̅ ̅
𝑖,𝑖:1(𝑗𝜔𝐹), and 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝑘̃𝜔𝐹), respectively, 

in corresponding situations. The details of this threshold determination procedure 

will be demonstrated in Section 4.7. The threshold parameters thus determined 

allow the effects of un-modeled dynamics, noise, and inherent but less significant 

system nonlinearity to be neglected when the new method is used in practice.  

c) The determination of 𝑁     𝑘̃ can be achieved by observing the spectra of the 

system outputs, which will also be demonstrated in Section 4.7.  

d) It is worth pointing out that as the method only uses structural output response 

measurements, it can readily be implemented in real time by directly processing 

signals from a network of sensors such as accelerometers fitted in structural 

systems for condition monitoring purposes.  
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In the next two sections, simulation and experimental studies will be conducted to 

demonstrate the performance of the proposed method and its potential in practical 

applications. 

4.6 Simulation studies 

In order to verify the effectiveness of the proposed method, simulation studies are 

conducted in this section. For this purpose, a 10DOF system as described by Eq. (4.5) is 

considered where: 𝑚1 = 𝑚2 =  = 𝑚10 = 1,  

 𝑘1 = 𝑘2 =  = 𝑘5 = 𝑘10 = 3.6 × 1 
4, 

 𝑘6 = 𝑘7 = 𝑘8 =  .8𝑘1, 𝑘9 =  .9𝑘1, 𝜇 =  . 1, 𝐶 = 𝜇𝐾, 

and the parameters of nonlinear springs and dampers are 

𝑁̅ = 3, 𝑟(𝐽𝑖,2) =  .8𝑘1
2, 𝑟(𝐽𝑖,3) =  .4𝑘1

3, 𝑤(𝐽𝑖,2) = 𝑤(𝐽𝑖,3) =  , 𝑖 = 1,… , 𝐽 ̅ . 

where 𝐽,̅ the number of nonlinear components in the system, is 𝐽 ̅ = 3     𝐽 ̅ = 1, 

respectively in the two cases of simulation studies below. In addition, the position of 

loading on the system is 𝑆 = 7 and 𝑆 = 3 in the following two simulation studies, 

respectively. 

4.6.1 Simulation study: case 1 

In this case, there are three (𝐽 ̅ = 3 ) nonlinear components in the system, which are 

the 3rd, 5th and 6th springs. Two loading conditions are considered where the input 

forces are 

𝑓(𝑡) = 𝑓(1)(𝑡) = 1    (4  𝑡) 

and 𝑓(𝑡) = 𝑓(2)(𝑡) = 2    (4  𝑡) 

respectively, and are applied on the 7th mass, that is, 𝑆 = 7. The new method was 

applied to the spectra of the output responses of the system under the two loading 
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conditions, that is, 

𝑋𝑖
1(𝑗𝑘̅𝜔𝐹) and 𝑋𝑖

2(𝑗𝑘̅𝜔𝐹), 𝑖 = 1,… ,1  , 𝑘̅ = 1,…𝑁. 

where 𝑁 was determined as 4. The four threshold parameters 𝜀1, 𝜀2, 𝜀3, 𝜀4 were 

determined using the procedure introduced in Remark b) in Section 4.5.3. The results 

are given in Table 4.1.  

Table 4.1 Threshold parameters used in the simulation studies 

T                   𝜀1 𝜀2 𝜀3 𝜀4 

Value 8.42× 1 ;6 0.0099 9.82× 1 ;6 0.0015 

 

The results of the simulation study obtained in each step of the proposed method are 

given as follows. 

Step 1) 

In this case, the index 𝐼𝑁𝐷1 was evaluated using Eq. (4.29) as 

𝐼𝑁𝐷1 =    {|
𝑋𝑖
1(𝑗𝑘̅𝜔 )

𝑋𝑖
1(𝑗𝜔 )

| , |
𝑋𝑖
2(𝑗𝑘̅𝜔 )

𝑋𝑖
2(𝑗𝜔 )

| , 𝑖 = 1,… ,1 ,     𝑘̅ = 2,… ,4} = . 287 ≥ 𝜀1 = 8.42 × 1 ;6 

Therefore, it is concluded that damage with nonlinear features exists in the system.  

Step 2) 

At this step, 𝑘̃ was determined as 𝑘̃ = 2. So 

𝑆𝑇1𝑖,𝑖:1(𝑗2𝜔𝐹), 𝑆𝑇2
𝑖,𝑖:1(𝑗2𝜔𝐹), and 𝑆𝛿𝑖,𝑖:1(𝑗2𝜔𝐹) 𝑖 = 1,… ,9 

were evaluated using Eqs. (4.27) and (4.28). Then, 𝑆𝛿max(2) was determined using 

Eq. (4.31); the result is 

𝑆𝛿max(2) = 1.5349 > 𝜀2 =  .  99 

So it is known that there are multiple nonlinear components in the system.  

Step 4)  
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As Step 2) has shown that there are multiple nonlinear components in the system, 

Step 4) rather than Step 3) of the proposed method is needed in this case. At this step, 

𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝑘̃𝜔𝐹) = 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗2𝜔𝐹), 𝑖 = 1,… ,9 were evaluated using Eq. (4.36). The 

results are shown in Table 4.2, in which it can be observed that 

𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗2𝜔𝐹) ≥ 𝜀4 =  .  15, 𝑖 = 2,3,4,5 

Therefore 𝑖′′ = 2 and 𝑚′′ = 4 , and it can be concluded that nonlinear components 

are located between mass 𝑖′′ = 2 and mass 𝑖′′ +𝑚′′ = 6 in the system. 

Table 4.2 The value of 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗2𝜔𝐹) when the 3rd, 5th and 6th springs are nonlinear 

𝑖 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗2𝜔𝐹) 𝑖 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗2𝜔𝐹) 𝑖 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗2𝜔𝐹) 

1 5.16× 1 ;5 4 1 7 0.000133 

2 0.109899 5 0.340627 8 8.63× 1 ;5 

3 0.071504 6 9.63× 1 ;5 9 9.59× 1 ;6 

 

Obviously, the conclusions reached at each step are all consistent with the real 

situation of the simulated system. So the effectiveness of the proposed method is 

verified by this simulation study. 

4.6.2 Simulation study: case 2 

In this case, there is only one (𝐽 ̅ = 1 ) nonlinear component in the system, which is 

the 8th spring. The same two loading conditions as in the above simulation study case 

1 were considered and the input force was applied on the 3rd mass, that is, 𝑆 = 3. The 

new method was again applied to the spectra of the output responses of the system 

under the two loading conditions. Again, 𝑁 was determined as 4 and the same 

threshold parameters 𝜀1, 𝜀2, 𝜀3, 𝜀4  as given in Table 4.1 were used. The results 

obtained in each step of the method are given as follows.  
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Step 1) 

In this case, the index 𝐼𝑁𝐷1 was evaluated by (4.29) as 

𝐼𝑁𝐷1 =    8|
𝑋𝑖
1(𝑗𝑘̅𝜔𝐹)

𝑋𝑖
1(𝑗𝜔𝐹)

| , |
𝑋𝑖
2(𝑗𝑘̅𝜔𝐹)

𝑋𝑖
2(𝑗𝜔𝐹)

| , 𝑖 = 1,… ,1 ,     𝑘̅ = 2,… ,49 

=0.0387≥ 𝜀1 = 8.42 × 1 
;6 

So, damage with nonlinear features exists in the system. 

Step 2) 

At this step, 𝑘̃ is again determined as 𝑘̃ = 2. Therefore, in the same way as in Step 2), 

simulation case study 1, 𝑆𝛿max(2) was determined; the result is 

𝑆𝛿max(2) = 6.7163 × 1 
;4 < 𝜀2 =  .  99 

So it is known that there is only one nonlinear component in the system. 

Step 3)  

Because Step 2) indicates there is only one nonlinear component in the system, Step 3) 

of the proposed method was followed to evaluate 𝑆𝑇1𝑖,𝑖:1(𝑗𝜔𝐹), 𝑆𝑇2
𝑖,𝑖:1(𝑗𝜔𝐹), and 

𝑆𝛿𝑖,𝑖:1(𝑗𝜔𝐹) for 𝑖 = 1,… ,9 using Eqs. (4.27) and (4.28). Then, 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝐹) for 

𝑖 = 1, … ,9 were evaluated using Eqs. (4.33) and (4.34). The results are shown in Table 

4.3 indicating  

𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝐹) ≥ 𝜀3 = 9.82 × 1 
;6, 𝑖 = 3, … ,7 

So 𝑖′ = 3 and 𝑚′ = 5. As 𝑆 = 3 = 𝑖′, it is known that the only nonlinear component 

is located between mass (𝑖′ +𝑚′ − 1) = 7 and mass (𝑖′ +𝑚′) = 8. 

Again, the conclusions reached at each step above are all consistent with the real 

situation of the simulated system. So the effectiveness of the proposed method is 

further verified by the second simulation study. 



Chapter 4 Transmissibility analysis method for detection and localization of damage via 
nonlinear features in MDOF structural systems 

93 

Table 4.3 The value of 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝐹) when the 8th spring is nonlinear 

𝑖 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝐹) 𝑖 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝐹) 𝑖 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝐹) 

1 2.2 × 1 ;6 4 0.112423 7 1 

2 3.56 × 1 ;6 5 0.305335 8 5.79× 1 ;6 

3 0.076072 6 0.986996 9 3.44× 1 ;6 

4.7 Experimental studies 

4.7.1 Experimental setup 

In order to demonstrate the potential of the new transmissibility analysis based 

damage dectection and location method in practical applications, the method was 

applied to analyse the experimental data from a three-storey building structure shown 

in Fig.4.6. The structure consists of aluminum plates and columns, which are 

assembled together by bolted joints. The bottom and top aluminum plates are 

connected by four columns between them, which form a 4DOF structural system. An 

electromagnetic shaker is used to excite the ground floor directly. The whole building 

structure can move on rails in only one direction. There are four accelerometers to 

measure the response of floors, which are installed to each floor at the opposite side 

from the electromagnetic shaker. In addition, the top of each floor suspends a center 

column, which can contact a bumper fitted on bottom of the floor so as to produce 

nonlinear behaviors. The strength of the nonlinearity can be changed by adjusting the 

location of the bumper. This kind of nonlinearity can simulate the fatigue cracks which 

are open and close under different loading conditions.  

The three-storey building structure can be described by a spring-damper model shown 

in Fig. 4.7, which is clearly a specific case of the nonlinear MDOF model in Fig. 4.1. 
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Fig. 4.6 Three-storey building structure used for the experimental studies 
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Fig. 4.7 4DOF system model of the three-storey building structure 

4.7.2 Experiments and experimental data analyses 

Data were collected from six different experiments on the three-storey building 

structure. The details of the experiments are summarized in Table 4.4. Three different 

state conditions of the structure were investigated. These are the structural state 

conditions under Experiments #1 and #2, under Experiments #3 and #4, and under 

Experiments #5 and #6, respectively. The data collected from Experiments #1 and #2 

were used to determine the situation of state condition 1, the data collected from 

Experiments #3 and #4 were used to determine the situation of state condition 2, and 

the data collected from Experiments #5 and #6 were used to determine the situation 

of state condition 3. The objectives of the experimental data analysis were to apply the 

method proposed in this chapter for each state condition to detect whether there exist 

nonlinear components in the experimental system and, if this is the case, determine 

the location of the nonlinear components in the system. 
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Table 4.4 Details of the experiments 

Experiments 

Input excitation 

applied by shaker 

control computer 

Structure state condition under which 

experiment was conducted 

Experiment 

#1 

25 Hz sinusoidal 

with amplitude 2 State Condition 1: A 0.13mm gap was introduced 

between the column and bumper on the first 

floor to generate a nonlinear effect. Experiment 

#2 

25 Hz sinusoidal 

with amplitude 2.5 

Experiment 

#3 

25 Hz sinusoidal 

with amplitude 2 State Condition 2: A 0.20mm gap was introduced 

between the column and bumper on the second 

(top) floor to generate a nonlinear effect. Experiment 

#4 

25 Hz sinusoidal 

with amplitude 2.5 

Experiment 

#5 

25 Hz sinusoidal 

with amplitude 1 

State Condition 3: A 0.30mm gap was introduced 

between the column and bumper on both the 

ground (bottom) floor and on the first floor to 

produce two nonlinear components in the 

structure. 

Experiment 

#6 

25 Hz sinusoidal 

with amplitude 1.5 

Before the proposed method was applied to analyze the experimental data, 𝑁 and  𝑘̃ 

were determined as 𝑁 = 3 and  𝑘̃ = 3 from observing the spectra of the system 

outputs in the six experiments shown in Fig. 4.7. 

 

   

Fig.4.7 Output spectra on the first floor in Experiments #1 - #6 
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By using the procedure introduced in Remark b) in Section 4.5.3 again, threshold 

parameters 𝜀1, 𝜀2, 𝜀3, 𝜀4 in this case were determined as shown in Table 4.5.  

Table 4.5 The threshold parameters used in the experimental data analysis 

Threshold parameters 𝜀1 𝜀2 𝜀3 𝜀4 

Value  . 19897 0.0179 0.0483 0.0881 

 

In order to demonstrate how these thresholds were obtained using this procedure for 

the experimental data analysis, take the process of determining 𝜀1, as an example, 

Table 4.6 shows the values of 𝐼𝑁𝐷1 evaluated from Eq. (4.29) using data collected 

from 16 different tests where there are no nonlinear components introduced in the 

experimental structural system. By using the results in Table 4.6, it was obtained that  

𝐼𝑁𝐷̅̅ ̅̅ ̅̅
1 =

∑ 𝐼𝑁𝐷1(𝑖)
16
𝑖<1

16
=  . 11722 

𝜎 = √
∑ (𝐼𝑁𝐷1(𝑖) − 𝐼𝑁𝐷̅̅ ̅̅ ̅̅

1(𝑖))2
16
𝑖<1

16
=  .  2725 

Consequently, 𝜀1 = 𝐼𝑁𝐷̅̅ ̅̅ ̅̅
1 + 3𝜎 =  . 19897. 

Table 4.6 The values of 𝐼𝑁𝐷1 evaluated using data for different tests where no 

nonlinear components were introduced 

Tests Values of 𝐼𝑁𝐷1 

Tests 1-4 0.012792 0.015297 0.010087 0.00882 

Tests 5-8 0.013415 0.015845 0.010125 0.008762 

Tests 9-12 0.014219 0.01538 0.009981 0.009003 

Tests 13-16 0.015069 0.009937 0.009317 0.009499 

 

Table 4.7 shows all the results of experimental data analyses. Because 

𝐼𝑁𝐷1=0.3453>𝜀1 =  . 19897 in state condition 1, 𝐼𝑁𝐷1=0.1714>𝜀1 =  . 19897 in 
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state condition 2, and 𝐼𝑁𝐷1=0.1604>𝜀1 =  . 19897 in state condition 3, it was 

concluded that there exists nonlinear damage in the structural system in all the three 

state conditions.  

Moreover, because     

𝑆𝛿max(𝑘̃) = 𝑆𝛿max(3) =  . 16 < 𝜀2 =  . 179 

in state condition 1, 

𝑆𝛿max(𝑘̃) = 𝑆𝛿max(3) =  . 13 < 𝜀2 =  . 179 

in state condition 2, and 

𝑆𝛿max(𝑘̃) = 𝑆𝛿max(3) =  .8988 > 𝜀2 =  . 179 

in state condition 3, it was concluded that there is only one nonlinear component in 

state conditions 1 and 2 but there are more than one nonlinear components in state 

condition 3. Therefore, Step 3) of the proposed method should be used to find the 

location of the nonlinear component under state conditions 1 and 2, but Step 4) of the 

proposed method should be used to find the location of the nonlinear components 

under state condition 3. 

The last row of Table 4.7 shows the data analysis results for localization of nonlinear 

components in the three state conditions. The analysis results for state condition 1 

using Step 3) of the proposed method indicate  

𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝐹) ≥ 𝜀3 =  . 483, 𝑖 = 2,3 

So 𝑖′ = 2 and  𝑖′ +𝑚′ − 1 = 3 → 𝑚′ = 2. Because 𝐿 = 4 = 𝑖′ +𝑚′ in this case, it 

is known that the nonlinear component is located between mass 𝑖′ = 2 and mass 

𝑖′ + 1 = 3 in state condition 1, that is, on the first floor. 

The analysis results for state condition 2 again using Step 3) of the proposed method 

indicate  
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𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝐹) ≥ 𝜀3 =  . 483, 𝑖 = 1,2,3 

So 𝑖′ = 1 and 𝑖′ +𝑚′ − 1 = 3 → 𝑚′ = 3. Because again 𝐿 = 4 = 𝑖′ +𝑚′ in this 

case, it is known that the nonlinear component is located between mass 𝑖′ = 1 and 

mass 𝑖′ + 1 = 2 in state condition 2, that is, on the second floor. 

The analysis results for state condition 3 using Step 4) of the proposed method 

indicate  

𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝑘̃𝜔𝐹) = 𝑆𝛿̅̅ ̅
𝑖,𝑖:1(𝑗3𝜔𝐹) ≥ 𝜀4 =  . 881, 𝑖 = 2,3 

Therefore 𝑖′′ = 2 and 𝑚′′ + 𝑖′′ − 1 = 3 ⟶ 𝑚′′ = 2 , and it can be concluded that 

nonlinear components are located between mass 𝑖′′ = 2 and mass 𝑖′′ +𝑚′′ = 4 in 

the system in state condition 3, that is , on the ground and first floors. 

Obviously, the conclusions reached by the analysis of the experimental data from the 

three state conditions of the experimental system using the proposed method are 

completely consistent with the real situations of the system. Therefore, the potential 

of the proposed method in engineering applications have been verified. 

Table 4.7 Details of the experimental data analysis results 

  

The experimental data 

analysis results for the 

three-storey building 

structure under state 

condition 1 

The experimental data 

analysis results for the 

three-storey building 

structure under state 

condition 2 

The experimental data 

analysis results for the 

three-storey building 

structure under state 

condition 3 

𝑁 3 3 3 

𝐼𝑁𝐷1 
 .3453 > 𝜀1

=  . 19897 

 .1747 > 𝜀1

=  . 19897 

 .16 4 > 𝜀1

=  . 19897 

𝑘̃ 3 3 3 

𝑆𝛿max(𝑘̃) 0.016< 𝜀2 =  . 179 0.013< 𝜀2 =  . 179 0.8988>𝜀2 =  . 179 

𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝐹) or 

𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗3𝜔𝐹) for 

𝑖 = 1,… ,3 
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4.8 Conclusions 

Transmissibility analysis is a well-established method and has been widely applied in 

structural analysis including damage detection and localization. However, traditional 

transmissibility is a linear system concept which cannot be directly applied to the 

analysis of nonlinear structural systems. Recently, the concept of transmissibility of the 

NOFRFs has been introduced to extend the transmissibility concept to nonlinear cases, 

and the NOFRF transmissibility based/related techniques have been developed to 

detect and locate damage in MDOF structural systems. However, these techniques 

assume that there is only one nonlinear component in a damaged system and /or 

require that the loading on inspected structural systems is measurable. To address 

these issues so as to enable NOFRF transmissibility based damage detection and 

location to be applicable in engineering practice, a new transmissibility analysis 

method has been developed in this chapter for the detection and location of damage 

via nonlinear features in MDOF structural systems. The new method is derived using 

the NOFRF transmissibility concept and can be implemented by evaluation and 

analysis of the transmissibility of system responses at super-harmonics. Both 

numerical simulation studies and experimental data analysis have been conducted to 

verify the effectiveness and demonstrate the potential practical applications of the 

proposed new technique. Although, for convenience of introducing main ideas, a 

relatively simple MDOF system model and sinusoidal loadings are considered in this 

study, the method can be extended to more complicated systems and more general 

multi-frequency and band limited loading cases and, therefore, has potential to be 

applied in practice to tackle nonlinear damage detection and location problems. The 

research in the next two chapters will be focused on these more general loading 

conditions to enable the ideas to be applicable in a much wider range of practical 

structural systems. 
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Chapter 5  

Nonlinearity detection and location for MIMO nonlinear 

systems using transmissibility analysis  

Chapter 4 deals with the problem of nonlinearity detection and localization when the 

structural system is subject to only one input. In this chapter, the case where several 

loadings are applied on a structural system simultaneously is studied. The concept of 

the NOFRFs is extended to multi-input case so that the outputs of multi-input 

multi-output (MIMO) nonlinear systems can be analysed and transmissibility analysis 

based method can be used to detect and localize nonlinear components in MIMO 

systems. The distinctive differences of output responses between the SIMO and MIMO 

systems are that the NOFRFs of MIMO systems are much more complicated and the 

frequency components of output responses are more abundant. For example, in the 

case of two sinusoidal inputs with frequencies 𝜔𝑓1 and 𝜔𝑓2, respectively, not only 

the harmonics of the driving frequencies such as 2𝜔𝑓1 , 3𝜔𝑓1  as mentioned in 

Chapter 4 can be observed in the frequency spectra of output responses, but also the 

combination of driving frequencies such as 𝜔𝑓1 + 𝜔𝑓2 and 2𝜔𝑓1 + 𝜔𝑓2 will appear. 

Both super-harmonic frequencies and the combination of driving frequencies are 

induced by the system nonlinearity, are unique phenomena with nonlinear systems, 

and are, later on, referred to as nonlinearity generated frequencies.  

In this chapter, after the description of the model and mathematical representation of 

a class of MIMO systems, the concept of the NOFRFs of MIMO nonlinear systems is 

introduced and the properties of the transmissibility of the NOFRFs of MIMO nonlinear 

systems are derived. Then, the transmissibility at nonlinearity generated frequency is 

proposed and its properties are investigated. Finally, a transmissibility analysis based 

method is developed to detect and localize nonlinear components in MIMO nonlinear 
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systems and the effectiveness of this method is verified by simulation case studies. 

5.1 A class of MIMO dynamic systems  

The MIMO systems studied in this chapter are similar to the MDOF systems considered 

in Chapter 4, but there are 𝑚 rather than one inputs applied at different locations as 

shown in Fig. 5.1. In this system description, the nonlinear components are also 

represented by nonlinear springs and dampings, which is denoted by the spring and 

damper symbols with arrows, these components can represent structural damage with 

nonlinear features in many practical systems as mentioned in Chapter 4.  
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Fig. 5.1 MIMO nonlinear structural system subject to 𝑚 inputs 

The motion of the MIMO system in Fig. 5.1 can be described by  

𝑴𝒙̈(𝑡) + 𝑪𝒙̇(𝑡) + 𝑲𝒙(𝑡) = 𝑭𝑚(𝑡) + 𝑵𝑭(𝑡) (5.1)  

where the mass matrix 𝑴, damping matrix 𝑪, stiffness matrix 𝑲, and displacement 

vector 𝒙(𝑡) are exactly the same as that in Eq. (4.5); the effects of nonlinear 

components represented by 𝑵𝑭(𝑡) are also the same as that described by Eqs. (4.2), 

(4.3) and (4.4). But, because 𝑚 inputs are applied on the 𝑆1, 𝑆2, … , 𝑆𝑚
th masses 

respectively, assuming 𝑆1 < 𝑆2 <  < 𝑆𝑚, the force vector can be described as 

𝑭𝑚(𝑡) = , … 𝑓1(𝑡)   … 𝑓2(𝑡) …   𝑓𝑚(𝑡) . . .  -𝑇  (5.2)  
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5.2 Description of MIMO nonlinear systems in the time 

and frequency domains 

Volterrra series are capable of representing not only SIMO nonlinear systems but also 

MIMO systems. However, the Volterra kernels of MIMO nonlinear systems are more 

complicated. When MIMO nonlinear systems are stable at zero equilibrium, the system 

outputs around equilibrium can be represented by the multi-input Volterra series as 

follows. 

𝑥𝑖(𝑡) = ∑𝑥𝑖
(𝑛̅)(𝑡)

𝑁

𝑛̅<1

 (5.3)  

where 

𝑥𝑖
(𝑛̅)(𝑡) = ∑ ∫ … ∫ 𝑕(𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)

(𝑛̅) (𝜏1, 𝜏2, … , 𝜏𝑛̅)𝑓1(𝑡

: 

; 

: 

; 𝑛1:𝑛2: :𝑛𝑚<𝑛̅

− 𝜏1)…𝑓1(𝑡 − 𝜏𝑛1)𝑓2(𝑡 − 𝜏𝑛1:1)…𝑓2(𝑡 − 𝜏𝑛1:𝑛2)…𝑓𝑚(𝑡

− 𝜏𝑛1:𝑛2: :𝑛𝑚 1:1)…𝑓𝑚(𝑡 − 𝜏𝑛1:𝑛2: :𝑛𝑚) 𝑑𝜏1…𝑑𝜏𝑛̅ 

(5.4)  

where, 𝑥𝑖(𝑡),     𝑓1(𝑡) , 𝑓2(𝑡) , …, 𝑓𝑚(𝑡)  are the system 𝑖 th output and inputs, 

respectively; 𝑛̅ denotes the order of system nonlinearity; 𝑁 is the maximum order 

of the system nonlinearity, 𝑕(𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝜏1, 𝜏2, … , 𝜏𝑛̅) is the 𝑛̅th order 

Volterra kernel of 𝑖th output associated with the first input 𝑓1(𝑡) with order 𝑛1, the 

second input 𝑓2(𝑡) with order 𝑛2, …, the 𝑚th inputs 𝑓𝑚(𝑡) with order 𝑛𝑚, and 

𝑛1 + 𝑛2 + + 𝑛𝑚 = 𝑛̅. Given the order, the Volterra kernel of SIMO nonlinear system 

is unique, while there are many more Volterra kernels in MIMO nonlinear systems 

where the contribution of each input is different [126]. For example, if the system is 

excited by two inputs at different locations, there are two first order Volterra kernels 

for the 𝑖 th output, namely, 𝑕(𝑖,𝑝1<1,𝑝2<0)
(1) (𝜏1) and 𝑕(𝑖,𝑝1<0,𝑝2<1)

(1) (𝜏2); three second 
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order Volterra kernels, namely, 𝑕(𝑖,𝑝1<2,𝑝2<0)
(2) (𝜏1, 𝜏2) , 𝑕(𝑖,𝑝1<1,𝑝2<1)

(2) (𝜏1, 𝜏2) 

and 𝑕(𝑖,𝑝1<0,𝑝2<2)
(2) (𝜏1, 𝜏2).  

The output frequency responses of system (5.3) to input (5.2) can be described as 

follows [197]. 

𝑋𝑖(𝑗𝜔) = ∑𝑋𝑖
(𝑛̅)(𝑗𝜔)

𝑁

𝑛̅<1

 (5.5)  

𝑋𝑖
(𝑛̅)(𝑗𝜔)

=
1

√𝑛̅
(
1

2 
)
𝑛̅;1

∑ ∫ 𝐻(𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

𝜔1:𝜔2: :𝜔 ̅<𝜔𝑛1:𝑛2: :𝑛𝑚<𝑛̅

 

∏ ∏ 𝐹𝑞(𝑗𝜔𝑝)

𝑛1: :𝑛𝑞

𝑝<𝑛 :𝑛1: :𝑛𝑞 1:1

𝑚

𝑞<1

𝑑𝜎𝑛̅𝜔 

(5.6)  

where, 𝑛0 =  ; 𝑋𝑖
(𝑛̅)(𝑗𝜔) is the 𝑛̅ th order nonlinear output spectrum of the 𝑖 th 

output; 𝐹𝑞(𝑗𝜔𝑝) is the frequency spectrum of the 𝑞th input; ∫ (∎)𝑑𝜎𝑛̅𝜔𝜔1:𝜔2: :𝜔 ̅
 

represents the integration of (∎) over the 𝑛̅-dimensional hyper-plane 𝜔1 + 𝜔2 +

 +𝜔𝑛̅ = 𝜔; 𝐻(𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅) is the Fourier Transform of the 

𝑛̅
th order Volterra kernel 𝑕(𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)

(𝑛̅) (𝜏1, 𝜏2, … , 𝜏𝑛̅), and is named as 𝑛̅th 

Generalized Frequency Response Function(GFRF) associated with 𝑖th output and 𝑛1 

first input 𝑓1(𝑡), 𝑛2  second input 𝑓2(𝑡), …, and 𝑛𝑚  𝑚
th input 𝑓𝑚(𝑡). It should be 

noticed that for every GFRF, the sum of every input order is equal to the order of the 

GFRF, namely, 𝑛1 + 𝑛2 + + 𝑛𝑚 = 𝑛̅. The GFRFs here are the extension of the 

frequency response function (FRF) of MIMO linear systems to nonlinear cases. 

Obviously, one MIMO nonlinear system can have several GFRFs at each order. 
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5.3 The NOFRFs and NOFRF transmissibility of MIMO 

nonlinear systems 

Similar to the GFRFs of SIMO nonlinear system, the GFRFs of MIMO nonlinear systems 

are also multi-dimensional which makes it difficult for them to be used in analysing the 

nonlinear systems directly. Therefore, Lang and Peng proposed the concept of the 

NOFRFs of MIMO nonlinear systems to address this problem [31, 197]. 

For the MIMO system (5.5), the NOFRFs are defined as  

𝐺(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

=
∫ 𝐻(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)

(𝑛̅) (𝑗𝜔1, … , 𝑗𝜔𝑛̅)𝜔1:𝜔2: :𝜔 ̅<𝜔
∏ ∏ 𝐹𝑞(𝑗𝜔𝑝)

𝑛1: :𝑛𝑞
𝑝<𝑛 :𝑛1: :𝑛𝑞 1:1

𝑚
𝑞<1 𝑑𝜎𝑛̅𝜔

∫ ∏ ∏ 𝐹𝑞(𝑗𝜔𝑝)𝑑𝜎𝑛̅𝜔
𝑛1: :𝑛𝑞
𝑝<𝑛 :𝑛1: :𝑛𝑞 1:1

𝑚
𝑞<1𝜔1:𝜔2: :𝜔 ̅<𝜔

 

(5.7)  

under the condition that 

∫ ∏ ∏ 𝐹𝑞

𝑛1: :𝑛𝑞

𝑝<𝑛 :𝑛1: :𝑛𝑞 1:1

𝑚

𝑞<1

(𝑗𝜔𝑝)𝑑𝜎𝑛̅𝜔
𝜔1:𝜔2: :𝜔 ̅<𝜔

   (5.8)  

Define 

𝑋(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

=
1

√𝑛̅
(
1

2 
)
𝑛̅;1

∫ 𝐻(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, … , 𝑗𝜔𝑛̅)

𝜔1: :𝜔 ̅<𝜔

∏ ∏ 𝐹𝑞(𝑗𝜔𝑝)

𝑛1: :𝑛𝑞

𝑝<𝑛 :𝑛1: :𝑛𝑞 1:1

𝑚

𝑞<1

𝑑𝜎𝑛̅𝜔 

(5.9)  

Eq.(5.6) can be rewritten as following. 

𝑋𝑖
(𝑛̅)(𝑗𝜔) = ∑ 𝑋(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)

(𝑛̅) (𝑗𝜔)

𝑛1:𝑛2: :𝑛𝑚<𝑛̅

 (5.10)  

Based on the definition of the NOFRFs in Eq. (5.7), Eq.(5.9) can be rewritten as 

following. 
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𝑋(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔) = 𝐺(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)

(𝑛̅) (𝑗𝜔)𝐹(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔) (5.11)  

where  

𝐹(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔) =

1

√𝑛̅
(
1

2 
)
𝑛̅;1

∫ ∏ ∏ 𝐹𝑞(𝑗𝜔𝑝)

𝑛1: :𝑛𝑞

𝑝<𝑛 :𝑛1: :𝑛𝑞 1:1

𝑚

𝑞<1𝜔1: :𝜔 ̅<𝜔

𝑑𝜎𝑛̅𝜔 (5.12)  

and Eq.(5.10) can further be rewritten as following. 

𝑋𝑖
(𝑛̅)(𝑗𝜔) = ∑ 𝐺(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)

(𝑛̅) (𝑗𝜔)𝐹(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

𝑛1:𝑛2: :𝑛𝑚<𝑛̅

 (5.13)  

Consequently, the frequency domain representation of system outputs in Eqs. (5.3) 

and (5.4) can be written as follows. 

{
 
 

 
 𝑋𝑖(𝑗𝜔) = ∑𝑋𝑖

(𝑛̅)(𝑗𝜔)

𝑁

𝑛̅<1

𝑋𝑖
(𝑛̅)(𝑗𝜔) = ∑ 𝐺

(𝑖,𝑝1=𝑛1,…,𝑝𝑚=𝑛𝑚)

(𝑛̅) (𝑗𝜔)𝐹
(𝑖,𝑝1=𝑛1,…,𝑝𝑚=𝑛𝑚)

(𝑛̅) (𝑗𝜔)

𝑛1+𝑛2+ +𝑛𝑚=𝑛̅

 (5.14)  

According to [31, 197], the NOFRF 𝐺(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)  has the following 

properties: 

(i) The 𝐺(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔) is valid only over the frequency range where 

𝐹(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)   . 

(ii) As indicated by Eq. (5.11), 𝐺(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔) makes it possible for 

𝑋(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔) to be represented in a manner which is similar to the 

description for the output frequency system response of linear systems. 

(iii)  𝐺(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔) is independent from the amplitude change of the 

input spectra by constant gains, namely, 
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𝐺(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)|

𝐹1< 1𝐹1,…,𝐹𝑚< 𝑚𝐹𝑚
= 𝐺(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)

(𝑛̅) (𝑗𝜔)|
𝐹1<𝐹̅1,…,𝐹𝑚<𝐹̅𝑚

 (5.15)  

Here, 𝛼1, 𝛼2, … , 𝛼𝑚 are constant gains. This means that the NOFRFs keep the same 

when the strength of inputs changes only by constant gains.  

Similar to the NOFRF transmissibility of SIMO nonlinear system, the transmissibility of 

the NOFRFs between two outputs of the MIMO nonlinear system, say 𝑖th and 𝑘th, is 

defined as follows. 

𝛾(𝑖,𝑘,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑁) (𝑗𝜔) =

𝐺(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑁) (𝑗𝜔)

𝐺(𝑘,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑁) (𝑗𝜔)

 (5.16)  

where 𝑖, 𝑘 ∈ *1,… , 𝑛+ and 𝑛1 + 𝑛2 + + 𝑛𝑚 = 𝑁. In this definition, the NOFRFs are 

associated with the first input 𝑓1(𝑡) with order 𝑛1, the second input 𝑓2(𝑡) with 

order 𝑛2 , …, the 𝑚th inputs 𝑓𝑚(𝑡) with order 𝑛𝑚 . Obviously, when 𝑁 = 1, the 

transmissibility of the NOFRFs as defined in Eq. (5.16) reduces to the traditional 

concept of transmissibility for MIMO linear systems; when 𝑚 = 1 , the NOFRF 

transmissibility in Eq. (5.16) is the same as that in Eq. (4.13). Besides, as stated above, 

the NOFRFs are independent of the change of the system input amplitude, the NOFRF 

transmissibility defined in Eq.(5.16) does not change with the system input amplitude 

either. This is the same as the input amplitude independent property with the 

traditional transmissibility concept. Some important properties of the NOFRF 

transmissibility of MIMO nonlinear systems are summarized in Proposition 5.1 below. 

Proposition 5.1 Properties of the NOFRF transmissibility of MIMO nonlinear systems 

If the system (5.1) can be represented by the Volterra series model (5.3), and it is 

assumed that 𝑛̅ ∈ *2,3,4, … , 𝑁 − 1+, 𝑛𝑖,𝑛̅, 𝑖 = 1,2, … ,𝑚 are integer, and ∑ 𝑛𝑖,𝑛̅
𝑚
𝑖<1 =

𝑛̅, the following significant properties regarding the NOFRF transmissibility of MINO 

nonlinear systems can be derived.  
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(i) When 𝐽 ̅ > 1, namely, there are more than one nonlinear components in 

system (5.1), 

{
 
 
 

 
 
 
𝛾(𝑖,𝑘,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑁) (𝑗𝜔) =

𝐺
(𝑖,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)

𝐺
(𝑘,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)
= 𝑄̅𝑖,𝑘(𝑗𝜔)

𝑖𝑓 1  𝑖 < 𝑘  𝐽1 − 1 𝑜𝑟 𝐽𝐽̅  𝑖 < 𝑘  𝑛

𝛾(𝑖,𝑘,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑁) (𝑗𝜔)  

𝐺
(𝑖,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)

𝐺
(𝑘,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)
            

 (5.17)  

where 𝑄̅𝑖,𝑘(𝑗𝜔) is the same as that in Eq. (4.14), and is only dependent on the linear 

characteristic parameters of system (5.1), namely, 𝑴,𝑪,𝑲. 

(ii) When 𝐽 ̅ = 1, that is, there is only one nonlinear component in system (5.1), 

𝛾(𝑖,𝑘,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑁) (𝑗𝜔) =

𝐺
(𝑖,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)

𝐺
(𝑘,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)
= 𝑄̿𝑖,𝑘(𝑗𝜔)  1  𝑖 < 𝑘  𝑛 (5.18)  

where 𝑄̿𝑖,𝑘(𝑗𝜔) is the same as that in Eq. (4.15), and holds the same nature as 

𝑄̅𝑖,𝑘(𝑗𝜔), that is, dependent only on the linear parameters of the system (5.1). 

In addition, if the multiple inputs are all sinusoidal, the driving frequency of 𝑚̃th input 

is considered, that is 𝜔 = 𝜔𝑓𝑚̃, and the 𝑚̃th input is on the right side of the nonlinear 

component, that is 𝑆𝑚̃ ≥ 𝐽1 , then, 

{
 
 
 
 

 
 
 
 
𝛾(𝑖,𝑘, 1<0,…, 𝑚̃<1…, 𝑚<0)
(1)

(𝑗𝜔𝑓𝑚̃) =
𝐺
(𝑖,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅)
(𝑗𝜔𝑓𝑚̃)

𝐺
(𝑘,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅)
(𝑗𝜔𝑓𝑚̃)

= 𝑄𝑖,𝑘(𝑗𝜔𝑓𝑚̃) = 𝛾(𝑖,𝑘,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑁)

(𝑗𝜔𝑓𝑚̃)

𝑖𝑓 1  𝑖 < 𝑘  𝐽1 − 1   𝑆𝑚̃  𝑖 < 𝑘  𝑛

𝛾(𝑖,𝑘, 1<0,…, 𝑚̃<1…, 𝑚<0)
(1)

(𝑗𝜔𝑓𝑚̃)  
𝐺
(𝑖,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅)
(𝑗𝜔𝑓𝑚̃)

𝐺
(𝑘,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗)(𝑗𝜔𝑓𝑚̃)
= 𝑄𝑖,𝑘(𝑗𝜔𝑓𝑚̃) = 𝛾(𝑖,𝑘,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)

(𝑁)
(𝑗𝜔𝑓𝑚̃)

         

 (5.19)  

 if the 𝑚̃th input is on the left side of the nonlinear component, that is 𝑆𝑚̃ < 𝐽1, 

{
 
 
 
 

 
 
 
 
𝛾(𝑖,𝑘, 1<0,…, 𝑚̃<1…, 𝑚<0)
(1)

(𝑗𝜔𝑓𝑚̃) =
𝐺
(𝑖,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅)
(𝑗𝜔𝑓𝑚̃)

𝐺
(𝑘,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅)
(𝑗𝜔𝑓𝑚̃)

= 𝑄𝑖,𝑘(𝑗𝜔𝑓𝑚̃) = 𝛾(𝑖,𝑘,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑁)

(𝑗𝜔𝑓𝑚̃)

𝑖𝑓 1  𝑖 < 𝑘  𝑆𝑚̃    𝐽1  𝑖 < 𝑘  𝑛

𝛾(𝑖,𝑘, 1<0,…, 𝑚̃<1…, 𝑚<0)
(1)

(𝑗𝜔𝑓𝑚̃)  
𝐺
(𝑖,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅)
(𝑗𝜔𝑓𝑚̃)

𝐺
(𝑘,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅)
(𝑗𝜔𝑓𝑚̃)

= 𝑄𝑖,𝑘(𝑗𝜔𝑓𝑚̃) = 𝛾(𝑖,𝑘,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑁)

(𝑗𝜔𝑓𝑚̃)

         

 (5.20)  
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Proof: See Appendix D.  

Point (i) of Proposition 5.1 indicates that if there are multiple nonlinear components in 

system (5.1), no matter where the system’s multiple inputs are located and what 

effects these inputs have on the system, the NOFRF transmissibility is the same as the 

ratio between other higher order NOFRFs; they are all independent of the system 

inputs and only dependent on system linear characteristic parameters 𝑴, 𝑪, and 𝑲 

when the locations of associated system output responses are on either side of the 

nonlinear components. However, these relationships do not hold when at least one 

output location is within the span of the nonlinear components. This property is 

similar to that in point (i) of Proposition 4.1. 

Point (ii) of Proposition 5.1 shows that, if there is only one nonlinear component in 

system (5.1), the NOFRF transmissibility and the ratio between other higher order 

NOFRFs are always the same and only dependent on system linear characteristic 

parameters 𝑴, 𝑪, and 𝑲, no matter where the associated system output responses 

and system inputs are. However, they are only the same as the traditional linear 

transmissibility when associated system output responses are both on the same side 

of the only nonlinear component and the input forces. Otherwise, the relationships do 

not hold when at least one output locates within the span of the nonlinear component 

and the input forces. This property is similar to that in point (ii) of Proposition 4.1.  

The results of Proposition 5.1 are the theoretical basis for deriving the properties of 

the transmissibility at nonlinearity generated frequencies for the MIMO nonlinear 

system in Proposition 5.3 in the following section, from which effective nonlinearity 

detection and localization method for MIMO nonlinear system (5.1) will be derived in 

Section 5.5. 
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5.4 Transmissibility at nonlinearity generated 

frequencies 

In order to demonstrate the main ideas more clearly, the loadings to the MIMO 

nonlinear system are all assumed to be harmonic in this chapter. Under this 

assumption, the output frequency responses of MIMO system (5.1) can be easily 

represented using the NOFRFs as described in Proposition 5.2 below. 

Proposition 5.2 Frequency responses of MIMO systems subject to multiple harmonic 

inputs 

When the loadings on the MIMO system (5.1) are all harmonics as follows, 

{
 
 

 
 𝑓1(𝑡) = 𝛼1    (𝜔𝑓1𝑡 +  1)

𝑓2(𝑡) = 𝛼2    (𝜔𝑓2𝑡 +  2)
…

𝑓𝑚(𝑡) = 𝛼𝑚    (𝜔𝑓𝑚𝑡 +  𝑚)

 (5.21)  

according to Eq. (5.14), the system output responses can be represented by  

𝑋𝑖(𝑗𝜔) = ∑ ∑ 𝐺(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)𝐹(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)

(𝑛̅) (𝑗𝜔)

𝑛1: :𝑛𝑚<𝑛̅

𝑁

𝑛̅<1

 (5.22)  

and the terms on the right hand side of Eq. (5.22) which can make real contribution to 

the frequency component of the system output at frequency 𝜔 are associated with 

those 𝑛1 , 𝑛2 ,…, 𝑛𝑚 such that  

{
 
 

 
 

𝑛1
: + 𝑛1

; = 𝑛1
𝑛2
: + 𝑛2

; = 𝑛2
 

𝑛𝑚
: + 𝑛𝑚

; = 𝑛𝑚
𝑛1 + 𝑛2 + + 𝑛𝑚 = 𝑛̅

𝑛̅ = 1,2, . . , 𝑁

 (5.23)  

where 𝑁 is the highest order of system nonlinearity, and 𝑛1
:, 𝑛2

:,…, 𝑛𝑚
:  , 𝑛1

;, 𝑛2
;,…, 

𝑛𝑚
;  are all nonnegative integers and satisfy the following relationship. 

𝜔 = (𝑛1
: − 𝑛1

;)𝜔𝑓1 + (𝑛2
: − 𝑛2

;)𝜔𝑓2 + + (𝑛𝑚
: − 𝑛𝑚

; )𝜔𝑓𝑚 (5.24)  
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Proof: Proposition 5.2 can be derived directly by using the frequency output 

representation of nonlinear system in Eq.(5.14) and requirements of frequency 𝜔 in 

Eq.(5.6), that is, 𝜔1 +𝜔2 + +𝜔𝑛̅ = 𝜔.  

In order to demonstrate how to determine the system output responses using 

Proposition 5.2, one example is provided in the following.  

Example 5.1: Determine the system output responses where 𝑚 = 2, 𝜔𝑓1 = 3 , 

𝜔𝑓2 = 4  and 𝑁 = 4. 

Firstly, the frequency components are calculated by solving equations in Eqs. (5.23) 

and (5.24), the possible value of 𝑛1
:, 𝑛1

;, 𝑛2
: , 𝑛2

;, 𝑛̅ and 𝜔 are listed in the Table 5.1. 

Table 5.1 Frequency components when 𝑚 = 2, 𝜔𝑓1 = 3 , 𝜔𝑓2 = 4  and 𝑁 = 4 

𝑛1
: 𝑛1

; 𝑛2
: 𝑛2

; 𝑛̅ 𝜔  𝑛1
: 𝑛1

; 𝑛2
: 𝑛2

; 𝑛̅ 𝜔  

0 0 1 1 2 (1 − 1)𝜔𝑓2 =   

0 

2 0 0 0 2 2𝜔𝑓1 = 6  

60 0 0 2 2 4 (2 − 2)𝜔𝑓2 =   2 0 1 1 4 2𝜔𝑓1 − (1 − 1)𝜔𝑓2 = 6  

1 1 0 0 2 (1 − 1)𝜔𝑓1 =   3 1 0 0 4 (3 − 1)𝜔𝑓1 = 6  

1 1 1 1 4 (1 − 1)𝜔𝑓1 + (1 − 1)𝜔𝑓2 =   1 0 1 0 2 𝜔𝑓1 +𝜔𝑓2 = 7  

70 2 2 0 0 4 (2 − 2)𝜔𝑓1 =   1 0 2 1 4 𝜔𝑓1 + (2 − 1)𝜔𝑓2 = 7  

0 1 1 0 2 −𝜔𝑓1 +𝜔𝑓2 = 1  

10 

2 1 1 0 4 (2 − 1)𝜔𝑓1 +𝜔𝑓2 = 7  

0 1 2 1 4 −𝜔𝑓1 + (2 − 1)𝜔𝑓2 = 1  0 0 2 0 2 2𝜔𝑓2 = 8  

80 1 2 1 0 4 (1 − 2)𝜔𝑓1 +𝜔𝑓2 = 1  0 0 3 1 4 (3 − 1)𝜔𝑓2 = 8  

0 2 2 0 4 −2𝜔𝑓1 + 2𝜔𝑓2 = 2  
20 

1 1 2 0 4 (1 − 1)𝜔𝑓1 + 2𝜔𝑓2 = 8  

2 0 0 1 3 2𝜔𝑓1 −𝜔𝑓2 = 2  0 1 3 0 4 −1𝜔𝑓1 + 3𝜔𝑓2 = 9  
90 

1 0 0 0 1 𝜔𝑓1 = 3  

30 

3 0 0 0 3 3𝜔𝑓1 = 9  

1 0 1 1 3 𝜔𝑓1 − (1 − 1)𝜔𝑓2 = 3  2 0 1 0 3 2𝜔𝑓1 +𝜔𝑓2 = 1   100 

2 1 0 0 3 (2 − 1)𝜔𝑓1 = 3  1 0 2 0 3 𝜔𝑓1 + 2𝜔𝑓2 = 11  110 

0 0 1 0 1 𝜔𝑓2 = 4  

40 

0 0 3 0 3 3𝜔𝑓2 = 12  
120 

0 0 2 1 3 (2 − 1)𝜔𝑓2 = 4  4 0 0 0 4 4𝜔𝑓1 = 12  

1 1 1 0 3 (1 − 1)𝜔𝑓1 +𝜔𝑓2 = 4  3 0 1 0 4 3𝜔𝑓1 +𝜔𝑓2 = 13  130 

0 1 2 0 3 𝜔𝑓1 + 2𝜔𝑓2 = 5  
50 

2 0 2 0 4 2𝜔𝑓1 + 2𝜔𝑓2 = 14  140 

3 0 0 1 4 3𝜔𝑓1 −𝜔𝑓2 = 5  1 0 3 0 4 𝜔𝑓1 + 3𝜔𝑓2 = 15  150 

       0 0 4 0 4 4𝜔𝑓2 = 16  160 



Chapter 5 Nonlinearity detection and location for MIMO nonlinear systems using 
transmissibility analysis 

111 

Then the system output frequencies are determined as: 

𝜔 =⋃1 𝑖

16

𝑖<0

 (5.25)  

and the system output responses are determined as:  

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 𝑋𝑖(𝑗 ) = 𝐺(𝑖,𝑝1= ,𝑝2=2)

(2) (𝑗 )𝐹
(𝑖,𝑝1= ,𝑝2=2)

(2) (𝑗 ) + 𝐺
(𝑖,𝑝1=2,𝑝2= )

(2) (𝑗 )𝐹
(𝑖,𝑝1=2,𝑝2= )

(2) (𝑗 )

+𝐺
(𝑖,𝑝1= ,𝑝2=4)

(4) (𝑗 )𝐹
(𝑖,𝑝1= ,𝑝2=4)

(4) (𝑗 ) + 𝐺
(𝑖,𝑝1=4,𝑝2= )

(4) (𝑗 )𝐹
(𝑖,𝑝1=4,𝑝2= )

(4) (𝑗 )

+𝐺
(𝑖,𝑝1=2,𝑝2=2)

(4) (𝑗 )𝐹
(𝑖,𝑝1=2,𝑝2=2)

(4) (𝑗 )

𝑋𝑖(𝑗1 ) = 𝐺(𝑖,𝑝1=1,𝑝2=1)
(2) (𝑗1 )𝐹

(𝑖,𝑝1=1,𝑝2=1)

(2) (𝑗1 ) + 𝐺
(𝑖,𝑝1=1,𝑝2=3)

(4) (𝑗1 )𝐹
(𝑖,𝑝1=1,𝑝2=3)

(4) (𝑗1 )

+𝐺
(𝑖,𝑝1=3,𝑝2=1)

(4) (𝑗1 )𝐹
(𝑖,𝑝1=3,𝑝2=1)

(4) (𝑗1 )

𝑋𝑖(𝑗2 ) = 𝐺(𝑖,𝑝1=2,𝑝2=1)
(3) (𝑗2 )𝐹

(𝑖,𝑝1=2,𝑝2=1)

(3) (𝑗2 ) + 𝐺
(𝑖,𝑝1=2,𝑝2=2)

(4) (𝑗2 )𝐹
(𝑖,𝑝1=2,𝑝2=2)

(4) (𝑗2 )

𝑋𝑖(𝑗3 ) = 𝐺(𝑖,𝑝1=1,𝑝2= )
(1) (𝑗3 )𝐹

(𝑖,𝑝1=1,𝑝2= )

(1) (𝑗3 ) + 𝐺
(𝑖,𝑝1=1,𝑝2=2)

(3) (𝑗3 )𝐹
(𝑖,𝑝1=1,𝑝2=2)

(3) (𝑗3 )

+𝐺
(𝑖,𝑝1=3,𝑝2= )

(3) (𝑗3 )𝐹
(𝑖,𝑝1=3,𝑝2= )

(3) (𝑗3 )

 

𝑋𝑖(𝑗15 ) = 𝐺(𝑖,𝑝1=1,𝑝2=3)
(4) (𝑗15 )𝐹

(𝑖,𝑝1=1,𝑝2=3)

(4) (𝑗15 )                                                                  

𝑋𝑖(𝑗16 ) = 𝐺(𝑖,𝑝1= ,𝑝2=4)
(4) (𝑗16 )𝐹

(𝑖,𝑝1= ,𝑝2=4)

(4) (𝑗16 )                                                                  

 (5.26)  

Obviously, the frequency components contain not only driving frequencies 𝜔𝑓1 and 

𝜔𝑓2, but also the so-called nonlinearity generated frequencies which are incurred by 

nonlinear components, including the super-harmonic frequencies, such as 2𝜔𝑓1 and 

combinations of driving frequencies, such as 𝜔𝑓1 +𝜔𝑓2. The information contained in 

the nonlinearity generated frequencies will be exploited to conduct nonlinearity 

detection and localization.  

In addition, it can be observed from Table 5.1 that the frequency range determined by 

nonlinearity order 𝑛̅  contains that determined by nonlinearity order 𝑛̅ − 2𝑖, if 

𝑛̅ − 2𝑖 >  , where 𝑖  is positive integer and 𝑖 <  ̅

2
. This is consistent with the 

conclusions made by Lang in [216]. 

It should be noted that in the case where the range of nonlinearity generated 
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frequencies is overlapped with that of driving frequencies, for example, 𝜔𝑓1 −

(1 − 1)𝜔𝑓2 = 𝜔𝑓1 = 3 , the overlapped frequencies are treated as driving frequencies. 

Furthermore, the first order NOFRFs does not contribute to the frequency components 

at nonlinearity generated frequencies. This can be concluded easily by observing the 

system responses at nonlinearity generated frequencies represented in Eq.(5.26). 

Because the NOFRFs cannot be measured directly, but it is possible to measure the 

system output responses by installing sensors at corresponding locations in practice, 

the transmissibility of system output responses instead of the NOFRF transmissibility 

will be used for the system analysis and nonlinearity localization. Besides, Proposition 

5.1 indicates that, for nonlinear MIMO system (5.1), the NOFRF transmissibility is 

independent of the system inputs but only dependent on the system linear 

characteristic parameters 𝑴, 𝑪, and 𝑲 when the locations of associated system 

output responses are on the same side of the nonlinear components. Considering this 

and the fact revealed in Proposition 5.2 that when subject to sinusoidal inputs with 

frequencies 𝜔𝑓1 , 𝜔𝑓2  … 𝜔𝑓𝑚 , nonlinearity will induce nonlinearity generated 

frequencies in the output responses of system (5.1) , including 2𝜔𝑓1, 2𝜔𝑓2,… etc 

super-harmonics and 𝜔𝑓1 + 𝜔𝑓2 , etc combined frequencies, the concept of the 

transmissibility at nonlinearity generated frequencies is introduced and defined as the 

ratio of the system responses on two consecutive masses at nonlinearity generated 

frequencies, that is 

𝑆𝑇𝑖,𝑖:1
𝑁𝐿 (𝑗𝜔𝑁𝐿) =

𝑋𝑖(𝑗𝜔𝑁𝐿)

𝑋𝑖:1(𝑗𝜔𝑁𝐿)
 (5.27)  

where, 𝑋𝑖(𝑗𝜔𝑁𝐿) and 𝑋𝑖:1(𝑗𝜔𝑁𝐿) are the spectrum of the 𝑖th and (𝑖 + 1) th system 

outputs respectively; 𝜔𝑁𝐿  is a nonlinearity generated frequency. Apparently, the 

concept of transmissibility at super-harmonics proposed in Chapter 4 is a special case 

of transmissibility at nonlinearity generated frequencies.  

The relationship between the transmissibility at nonlinearity generated frequencies 
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and the NOFRF transmissibility is summarized in Proposition 5.3 as follows. 

Proposition 5.3 The properties of transmissibility at nonlinearity generated 

frequencies  

(i) When there are more than one nonlinear components in system (5.1), that is 𝐽 ̅ > 1, 

if two consecutive masses of the system are both on the left or right side of the 

nonlinear components, namely,1  𝑖  𝐽1 − 2    𝐽𝐽̅   𝑖  𝑛 − 1, then 

𝑆𝑇𝑖,𝑖:1
𝑁𝐿 (𝑗𝜔𝑁𝐿) = 𝛾(𝑖,𝑖:1,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)

(𝑁) (𝑗𝜔𝑁𝐿) = 𝑄̅𝑖,𝑖:1(𝑗𝜔𝑁𝐿)  (5.28)  

If at least one mass is within the range of nonlinear components, namely, 𝐽1 − 1  

𝑖   𝐽𝐽̅ − 1, then 

𝑆𝑇𝑖,𝑖:1
𝑁𝐿 (𝑗𝜔𝑁𝐿)  𝛾

(𝑖,𝑖+1,𝑝1=𝑛1,…,𝑝𝑚=𝑛𝑚)

(𝑁) (𝑗𝜔𝑁𝐿)  𝑄̅
𝑖,𝑖+1
(𝑗𝜔𝑁𝐿),   (5.29)  

(ii) When there is only one nonlinear component in the system, that is 𝐽 ̅ = 1 , then 

𝑆𝑇𝑖,𝑖:1(𝑗𝜔𝑁𝐿) = 𝛾
(𝑖,𝑖+1,𝑝1=𝑛1,…,𝑝𝑚=𝑛𝑚)

(𝑁) (𝑗𝜔𝑁𝐿) = 𝑄̿𝑖,𝑖:1(𝑗𝜔𝑁𝐿), 𝑖 = 1, . . . , 𝑛 − 1 (5.30)  

and if the driving frequency of 𝑚̃th input is considered, that is 𝜔 = 𝜔𝑓𝑚̃, and the 𝑚̃th 

input is applied on the 𝑆𝑚̃
th mass, then, 

{
 
 

 
 𝑆𝑇

𝑖,𝑖:1(𝑗𝜔𝑓𝑚̃) = 𝛾
(𝑖,𝑖+1,𝑝1= ,…,𝑝𝑚̃=1,…,𝑝𝑚= )

(1) (𝑗𝜔𝑓𝑚̃) = 𝑄𝑖,𝑖:1(𝑗𝜔𝑓𝑚̃), 𝑚̃ = 1,2, … ,𝑚

   1  𝑖  𝑆𝑚̃ − 1    𝐽1  𝑖 < 𝑛      𝑆𝑚̃ < 𝐽1
𝑜𝑟    1  𝑖  𝐽1 − 2    𝑆𝑚̃  𝑖 < 𝑛      𝑆𝑚̃ ≥ 𝐽1

𝑆𝑇𝑖,𝑖:1(𝑗𝜔𝑓𝑚̃)  𝛾
(𝑖,𝑖+1,𝑝1= ,…,𝑝𝑚̃=1,…,𝑝𝑚= )

(1) (𝑗𝜔𝑓𝑚̃) = 𝑄𝑖,𝑖:1(𝑗𝜔𝑓𝑚̃)  𝑚̃ = 1,2, … ,𝑚

         

 (5.31)  

Proof: See Appendix E.  

Proposition 5.3 describes the relationship between the transmissibility of the NOFRFs 

and transmissibility of system responses at nonlinearity generated frequencies for the 

MIMO nonlinear system (5.1), which is an extension of the results for SIMO system 

described in Proposition 4.3.  
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Result (i) of Proposition 5.3 indicates in the case that there are multiple nonlinear 

components in the MIMO nonlinear system, if the locations of outputs involved in the 

transmissibility evaluation are on the same side of nonlinear components, the 

transmissibility of the system responses at nonlinearity generated frequencies is equal 

to the corresponding NOFRF transmissibility; and they only depend on the system 

linear characteristic parameters and are independent from the system inputs. 

Otherwise, the conclusions do not hold. Therefore, the locations of nonlinear 

components can be identified from the analysis of transmissibility of the system 

responses at nonlinearity generated frequencies when there are multiple nonlinear 

components in the MIMO nonlinear system. 

First part of result (ii) of Proposition 5.3 indicates that in the case that there is only one 

nonlinearity in the MIMO nonlinear system, the transmissibility of the system 

responses at nonlinearity generated frequencies is always the same as the NOFRF 

transmissibility and they also only depend on the system linear characteristic 

parameters and are independent of the system inputs, no matter where the locations 

of output responses are. Therefore, the number of nonlinear components (one or 

multiple) can be determined by exploiting the sensitivity of the transmissibility of the 

system responses at nonlinearity generated frequencies.  

Second part of result (ii) of Proposition 5.3 indicates that in the case that there is only 

one nonlinearity in the MIMO nonlinear system, if the locations of outputs involved in 

the transmissibility evaluation are on the same side of the nonlinear component and 

any one of system inputs, the transmissibility of the system responses at 

corresponding driving frequency is equal to the NOFRF transmissibility and they all 

depend on the system linear characteristic parameters and are independent from the 

system inputs. Therefore, the location of the only nonlinear component can be 

identified by analysing the transmissibility of the system responses at a driving 

frequency.   



Chapter 5 Nonlinearity detection and location for MIMO nonlinear systems using 
transmissibility analysis 

115 

For MIMO nonlinear system (5.1), many features discussed above are unique with the 

transmissibility at nonlinearity generated frequencies while the transmissibility at 

driving frequencies, that is, the transmissibility traditionally used for system analysis is 

generally dependent on the locations of inputs.  

5.5 Detection and location of damage via nonlinear 

features using a transmissibility analysis method for 

MIMO nonlinear systems 

5.5.1 The method 

The observations from Proposition 5.3 above show that, when outputs involved in the 

transmissibility evaluation are located on the same side of nonlinear components, the 

transmissibility of system responses at nonlinearity generated frequencies only 

depends on the system linear characteristic parameters and is, to a great extent, 

insensitive to loading conditions. These are properties that can be exploited to 

conduct structural health monitoring and damage localization under changing 

environments. Consequently, a new transmissibility analysis method for the detection 

and location of damage with nonlinear features for MIMO structural system (5.1) can 

be proposed under the following assumptions. 

The output responses of system (5.1) to two loading conditions 

{
 
 

 
 𝑓1(𝑡) = 𝑓1

(1)(𝑡) = 𝛼1
(1)
   .𝜔𝑓1𝑡 +  1

(1)
/

𝑓2(𝑡) = 𝑓2
(1)(𝑡) = 𝛼2

(1)
   .𝜔𝑓2𝑡 +  2

(1)
/

…

𝑓𝑚(𝑡) = 𝑓𝑚
(1)(𝑡) = 𝛼𝑚

(1)
   .𝜔𝑓𝑚𝑡 +  𝑚

(1)
/

 (5.32)  

and 
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{
 
 

 
 𝑓1(𝑡) = 𝑓1

(2)(𝑡) = 𝛼1
(2)
   .𝜔𝑓1𝑡 +  1

(2)
/

𝑓2(𝑡) = 𝑓2
(2)(𝑡) = 𝛼2

(2)
   .𝜔𝑓2𝑡 +  2

(2)
/

…

𝑓𝑚(𝑡) = 𝑓𝑚
(2)(𝑡) = 𝛼𝑚

(2)
   .𝜔𝑓𝑚𝑡 +  𝑚

(2)
/

 (5.33)  

can be obtained, respectively, so that two sets of transmissibility analysis results 

{
 
 

 
 𝑆𝑇1𝑖,𝑖:1(𝑗𝜔) =

𝑋𝑖
1(𝑗𝜔)

𝑋𝑖:1
1 (𝑗𝜔)

=
𝑋𝑖(𝑗𝜔)

𝑋𝑖:1(𝑗𝜔)
|
𝑓1(𝑡)<𝑓1

(1)(𝑡),…,𝑓𝑚(𝑡)<𝑓𝑚
(1)
(𝑡)

𝑆𝑇2𝑖,𝑖:1(𝑗𝜔) =
𝑋𝑖
2(𝑗𝜔)

𝑋𝑖:1
2 (𝑗𝜔)

=
𝑋𝑖(𝑗𝜔)

𝑋𝑖:1(𝑗𝜔)
|
𝑓1(𝑡)<𝑓1

(2)(𝑡),…,𝑓𝑚(𝑡)<𝑓𝑚
(2)
(𝑡)

     

 (5.34)  

and their differences 

𝑆𝛿𝑖,𝑖:1(𝑗𝜔) = |𝑆𝑇1𝑖,𝑖:1(𝑗𝜔) − 𝑆𝑇2𝑖,𝑖:1(𝑗𝜔)| (5.35)  

can be obtained, where, 0𝛼1
(1)
, 𝛼2
(1)
, … , 𝛼𝑚

(1)
1
𝑇

 0𝛼1
(2)
, 𝛼2
(2)
, … , 𝛼𝑚

(2)
1
𝑇

so that second 

loading condition is different from first one; 𝑖 = 1, … , 𝑛 − 1  𝑋𝑖
1(𝑗𝜔)     𝑋𝑖

2(𝑗𝜔) are 

the spectra of the responses of the system subject to the first and second loading 

conditions, respectively, and 𝜔 are frequencies observed in the spectra of outputs 

which can be determined by solving Eqs. (5.23) and (5.24). 

The new method involves procedures similar to that in Section 4.5.2 and can be 

described as follows. 

Step 1) Evaluate the spectra of the output responses of system (5.1) to two different 

loading conditions as shown in Eqs. (5.32) and (5.33), respectively and determine 

the amplitudes of these observed spectra, that is, 𝑋𝑖
1(𝑗𝜔) and 𝑋𝑖

2(𝑗𝜔), for 

𝑖 = 1, … , 𝑛; determine 𝑁 as the highest order of the nonlinearity which takes a 

significant part in the system responses from observing the spectra of the system 

outputs and calculate all nonlinearity generated frequencies 𝜔𝑁𝐿 according to 

the highest order of the nonlinearity 𝑁 and the frequencies of system inputs by 

using Proposition 5.2; evaluate the ratio between the system response at every 

nonlinearity generated frequency and maximum amplitude of system inputs and 

calculate the value of index 𝐼𝑁𝐷1 as defined below to represent the strength of 

nonlinearity generated frequencies in the system output responses          



Chapter 5 Nonlinearity detection and location for MIMO nonlinear systems using 
transmissibility analysis 

117 

𝐼𝑁𝐷1 =    8|
𝑋𝑖
1(𝑗𝜔𝑁𝐿)

   {𝑋𝑖
1(𝑗𝜔𝑓1),… , 𝑋𝑖

1(𝑗𝜔𝑓𝑚)}
| , |

𝑋𝑖
2(𝑗𝜔𝑁𝐿)

   {𝑋𝑖
2(𝑗𝜔𝑓1),… , 𝑋𝑖

2(𝑗𝜔𝑓𝑚)} 
| , 𝑖 = 1,… , 𝑛9 (5.36)  

 If  

𝐼𝑁𝐷1 ≥ 𝜀1 (5.37)  

 then it can be concluded that there exists nonlinear components in the system. 

Otherwise, there are no such components in the system. In Eq. (5.37), 𝜀1 𝑖𝑠 a 

threshold to be determined a priori. 

Step 2) If Step 1) indicates there is nonlinear component in the system, select a 

nonlinearity generated frequency 𝜔𝑁𝐿1 such that both 𝑋𝑖
1(𝑗𝜔𝑁𝐿1) 

𝑖 = 1, … , 𝑛  and 𝑋𝑖
2(𝑗𝜔𝑁𝐿1) 𝑖 = 1, … , 𝑛  have significant amplitudes. 

Calculate 𝑆𝑇1𝑖,𝑖:1(𝑗𝜔𝑁𝐿1) , 𝑆𝑇2𝑖,𝑖:1(𝑗𝜔𝑁𝐿1) , and 𝑆𝛿𝑖,𝑖:1(𝑗𝜔𝑁𝐿1)  for 

𝑖 = 1, … , 𝑛 − 1 using Eqs. (5.34) and (5.35). Then, evaluate 

𝑆𝛿max(𝑗𝜔𝑁𝐿1) =    {𝑆𝛿
𝑖,𝑖:1(𝑗𝜔𝑁𝐿1), 𝑖 ∈ *1,2, … , 𝑛 − 1+ } (5.38)  

 to check whether  

𝑆𝛿max(𝑗𝜔𝑁𝐿1)   𝜀2 (5.39)  

 where 𝜀2 is another priori determined threshold. If Eq. (5.39) holds, it can be 

concluded that there exists only one nonlinear component in the system. 

Otherwise, there are more than one nonlinear components.  

Step 3) If Step 2) indicates there exists only one nonlinear component in the 

system, select the driving frequency of the 𝑚1̃th input, namely, 𝜔𝑓𝑚1̃, such 

that both 𝑋𝑖
1(𝜔𝑓𝑚1̃)  𝑖 = 1, … , 𝑛  and 𝑋𝑖

2(𝜔𝑓𝑚1̃) 𝑖 = 1,… , 𝑛  have 

significant amplitudes, calculate 𝑆𝑇1𝑖,𝑖:1(𝑗𝜔𝑓𝑚1̃) , 𝑆𝑇2𝑖,𝑖:1(𝑗𝜔𝑓𝑚1̃) and 

𝑆𝛿𝑖,𝑖:1(𝑗𝜔𝑓𝑚1̃)  for 𝑖 = 1,… , 𝑛 − 1  using Eqs (5.34) and (5.35). Then 

evaluate  
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𝑆𝛿max(𝑗𝜔𝑓𝑚1̃) =    2S𝛿
𝑖,𝑖:1(𝑗𝜔𝑓𝑚1̃), 𝑖 ∈ *1,2, … , 𝑛 − 1+3 (5.40a) 

  and 

𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑓𝑚1̃) =
𝑆𝛿𝑖,𝑖:1(𝑗𝜔𝑓𝑚1̃)

𝑆𝛿max(𝑗𝜔𝑓𝑚1̃)
  𝑓𝑜𝑟 𝑖 = 1,… , 𝑛 − 1 (5.41a) 

  to find those 𝑖’s such that  

𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑓𝑚1̃) ≥ 𝜀3 (5.42a) 

  where 𝜀3 is again a priori determined threshold.  

  Denote those 𝑖’s such that Eq. (5.42a) holds respectively as  

𝑖′, 𝑖′ + 1,… , 𝑖′ +𝑚′ − 1 

  where 𝑚′ ≥ 1. 

Then, for 𝑖′s, there are only two possibilities which are 𝑆𝑚1̃ = 𝑖
′ or 𝑆𝑚1̃ = 𝑖

′ +

𝑚′. If 𝑆𝑚1̃ = 𝑖
′, it can be concluded that the only nonlinear component is located 

between mass (𝑖′ +𝑚′ − 1) and mass (𝑖′ +𝑚′). Otherwise, 𝑆𝑚1̃ = 𝑖
′ +𝑚′, it 

can be concluded that the only nonlinear component is located between mass 𝑖′ 

and mass (𝑖′ + 1). 

Until now, two possible locations of nonlinear component have been identified. 

But if the location of the 𝑚1̃th input is unknown, the exact location of the only 

nonlinear component still cannot be determined. Therefore, more information is 

needed.  

For this purpose, the calculation above is repeated by considering the driving 

frequency of another input, say the 𝑚2̃th input, with driving frequency 𝜔𝑓𝑚2̃  

𝜔𝑓𝑚1̃  , calculating 𝑆𝑇1𝑖,𝑖:1(𝑗𝜔𝑓𝑚2̃),  𝑆𝑇2
𝑖,𝑖:1(𝑗𝜔𝑓𝑚2̃) and 𝑆𝛿𝑖,𝑖:1(𝑗𝜔𝑓𝑚2̃)  for 

𝑖 = 1, … , 𝑛 − 1 using Eqs (5.34) and (5.35), and evaluating  
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𝑆𝛿max(𝑗𝜔𝑓𝑚2̃) =    2S𝛿
𝑖,𝑖:1(𝑗𝜔𝑓𝑚2̃), 𝑖 ∈ *1,2, … , 𝑛 − 1+3 (5.40b) 

        and 

𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑓𝑚2̃) =
𝑆𝛿𝑖,𝑖:1(𝑗𝜔𝑓𝑚2̃)

𝑆𝛿max(𝑗𝜔𝑓𝑚2̃)
  𝑓𝑜𝑟 𝑖 = 1, … , 𝑛 − 1 (5.41b) 

       to find those 𝑖’s such that  

𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑓𝑚2̃) ≥ 𝜀3 (5.42b) 

       Denote those 𝑖’s such that Eq. (5.42b) holds respectively as  

𝑖,̅ 𝑖 ̅ + 1,… , 𝑖̅ + 𝑚̅ − 1 

       where  𝑚̅ ≥ 1. 

Similarly, there are also only two possibilities which are 𝑆𝑚2̃ = 𝑖 ̅or 𝑆𝑚2̃ = 𝑖̅ + 𝑚̅. 

If 𝑆𝑚2̃ = 𝑖,̅ it can be concluded that the only nonlinear component is located 

between mass (𝑖̅ + 𝑚̅ − 1) and mass (𝑖̅ + 𝑚̅). Otherwise, 𝑆𝑚2̃ = 𝑖̅ + 𝑚̅, it can be 

concluded that the only nonlinear component is located between mass 𝑖 ̅ and 

mass (𝑖̅ + 1).  

Because it has been concluded that there is only one nonlinear component in the 

system in Step 2), two of the four numbers 𝑖′, 𝑖′ +𝑚′ − 1, 𝑖 ̅    𝑖̅ + 𝑚̅ − 1 must 

be the same. By finding this number and denoting it as 𝐽′, it can then be 

concluded that the only nonlinear component is located between mass 𝐽′ and 

mass (𝐽′ + 1). 

Step 4) If Step 2) indicates there exist more than one nonlinear components in 

the system, evaluate  

𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑁𝐿1) =
𝑆𝛿𝑖,𝑖:1(𝑗𝜔𝑁𝐿1)

𝑆𝛿max(𝑗𝜔𝑁𝐿1)
     𝑖 = 1, … , 𝑛 − 1 (5.43)  

       to find those 𝑖’s such that  
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𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑁𝐿1) ≥ 𝜀4 (5.44)  

 where 𝜀4  is also a priori determined threshold. Denote those 𝑖’s such that (5.44) 

hold as  

𝑖′′, 𝑖′′ + 1,… , 𝑖′′ +𝑚′′ − 1 

 where 𝑚′′ > 1. Then, it can be concluded that these nonlinear components are 

located between mass 𝑖′′ and mass 𝑖′′ +𝑚′′. 

Similar to the method for detection and localization of damage with nonlinear features 

in Chapter 4, each step and the order of the whole procedure in the method above an 

be also represented by the flow chart shown in Fig. 5.2. 

Begin

Step 1): determine

the existence of nonlinear 

components

Step 2): determine  the  number 

of nonlinear components 

output spectra of a 

MIMO system

End

Yes

One

Multiple

No

Step 3): determine the location 

of the only nonlinear component

Step 4): determine  the location of 

the nonlinear components

End

 

Fig. 5.2 Flow chart of damage detection and localization method for MIMO systems 

The theoretical basis of each step, determination of the threshold parameters and 

advantage of the new nonlinearity detection and location method described above will 

be discussed in the following remarks.  
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5.5.2 Remarks 

a) Step 1) of the method is based on the well-known fact that nonlinearity will 

produce new frequency components in the system output responses. Step 2) 

exploits the property of system (5.1) described in the first point of Proposition 

5.3 (ii), which indicates if there is only one nonlinear component in the 

system, the transmissibility at nonlinearity generated frequency is completely 

determined by the system linear characteristic parameters and, therefore , 

independent of the system inputs. The theoretical basis of Step 3) is the 

second point of Proposition 5.3 (ii), which reveals an important relationship 

between the transmissibility at driving frequencies and the location of the 

only nonlinear component in the system. Step 4) makes use of the property of 

the transmissibility at nonlinearity generated frequencies of system (5.3) 

described by Proposition 5.3 (i), which shows where the transmissibility at 

nonlinearity generated frequencies is only dependent on the system linear 

characteristic parameters and, therefore, independent of the system inputs 

and where this is not the case. 

b) Similar to that in Chapter 4, 𝜀1, 𝜀2, 𝜀3, 𝜀4 are four threshold parameters in the 

method which need to be determined a priori from experimental data using 

statistical analyses as described by Remark b) in section 4.5.3. 

c) The method in Chapter 4 assumes that the location of input is known a priori, 

however, it can be seen from Step 3) and Step 4) above that when the system 

is subject to multiple inputs with different driving frequencies, the locations 

of nonlinear components can always be identified without any knowledge 

about the locations of these inputs. Thus, the application of the proposed 

method is independent from the locations of inputs. This is a distinctive 

advantage of the new nonlinearity detection and location method proposed 

in this chapter. 
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d) According to results of Proposition 5.3, the transmissibility of the system 

responses at nonlinearity generated frequencies is independent from the 

system inputs if the locations of outputs involved in the transmissibility 

evaluation are on the same side of the nonlinear components; but the 

transmissibility at driving frequency always depends on the locations of 

system inputs. Therefore, in the cases where there are more than one 

nonlinear components in the system, the method allows the multiple inputs 

in the considered different loading conditions to be at different locations. 

However, in the cases where there is only one nonlinear component in the 

system, the method requires the locations of the multiple inputs in the 

considered different loading conditions to be the same.  

5.6 Simulation studies  

In order to verify the effectiveness of the above proposed approach, three simulation 

studies are conducted in this section; the 10DOF system used in Chapter 4 but subject 

to multiple inputs is considered again for the simulation studies.  

5.6.1 Simulation study: case 1 

In this case, there are three (𝐽 ̅ = 3) nonlinear components in the system, which are the 

3rd, 5th and 6th springs. So 𝐽1 = 3,  𝐽2 = 5,  𝐽3 = 6. Two loading conditions are 

considered as 

{
𝑓1(𝑡) = 𝑓1

(1)(𝑡) = 3    (3  𝑡)

𝑓2(𝑡) = 𝑓2
(1)(𝑡) = 6    (4  𝑡)

 (5.45)  

and 

{
𝑓1(𝑡) = 𝑓1

(2)(𝑡) = 6    (3  𝑡)

𝑓2(𝑡) = 𝑓2
(2)(𝑡) = 12    (4  𝑡)

 (5.46)  
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respectively. In this case, two loading conditions are applied on the same locations, say, 

𝑆1 = 3 and 𝑆2 = 8. 

The new method was applied to the spectra of the system output responses under the 

two loading conditions, that is, 

𝑋𝑖
1(𝑗𝜔) and 𝑋𝑖

2(𝑗𝜔), 𝑖 = 1,… ,1 .  

The highest order of system nonlinearity is determined to be 𝑁 = 3 from the 

observation on spectra of the system output responses, for example, the output 

response of the 5th mass when the system is subject to the first loading condition as 

shown Fig. 5.3. So the possible frequencies can be calculated by Eqs. (5.23) and (5.24) 

and nonlinearity related frequencies are 

𝜔𝑁𝐿 = * ,1  , 2  , 5  , 6  , 7  , 8  , 9  , 1   , 11  , 12  + (5.47)  

 

Fig. 5.3 Output responses of the 5th mass when the system is subject to the 1st loading 

condition 

In this simulation study, the value of linear and nonlinear parameters of the system are 

the same as that in simulation studies in Section 4.6. Therefore, the value of 

thresholds 𝜀1, 𝜀2, 𝜀3 and 𝜀4 are assumed the same as that listed in Table 4.1.  

The results of the simulation study obtained in each step of the proposed method are 

given as follows. 
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Step 1) 

In this case, the ratio between the system response at every nonlinearity generated 

frequency in Eq. (5.47) and maximum amplitude of system inputs was calculated and 

the index 𝐼𝑁𝐷1 was evaluated using (5.36) as 

𝐼𝑁𝐷1 =    8|
𝑋𝑖
1(𝑗𝜔𝑁𝐿)

    {𝑋𝑖
1(𝑗𝜔𝑓1), 𝑋𝑖

1(𝑗𝜔𝑓2)}
| , |

𝑋𝑖
2(𝑗𝜔𝑁𝐿)

    {𝑋𝑖
2(𝑗𝜔𝑓1), 𝑋𝑖

2(𝑗𝜔𝑓2)}
| , 𝑖 = 1,… ,1 9  

=  .3591 ≥ 𝜀1 = 8.42 × 1 
;6 

where 𝜔𝑁𝐿  is shown in Eq. (5.47). Therefore, it is concluded that nonlinear 

components exist in the system.  

Step 2) 

At this step, the nonlinearity generated frequency 𝜔𝑁𝐿1 = 𝜔𝑓2 − 𝜔𝑓1 = 1   was 

used. So 

𝑆𝑇1𝑖,𝑖:1(𝑗1  ), 𝑆𝑇2𝑖,𝑖:1(𝑗1  ), and 𝑆𝛿𝑖,𝑖:1(𝑗1  ) 𝑖 = 1,… ,9 

were evaluated using Eqs. (5.34) and (5.35). Then, 𝑆𝛿max(𝑗1  ) was determined 

using (5.38), the result is 

𝑆𝛿max(𝑗1  ) =  .1398 > 𝜀2 =  .  99 

So it is known that there are more than one nonlinear components in the system. 

Step 4)  

As Step 2) has shown that there are more than one nonlinear components in the 

system, the two loading conditions can be applied on any locations, in this case, they 

are applied on the same locations; and Step 4) rather than Step 3) of the proposed 

method is needed in this case. At this step, 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑁𝐿1) = 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗1  ) , 

𝑖 = 1, … ,9 were evaluated using (5.43). The results are shown in Table 5.2, in which it 

can be observed that 
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𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗1  ) ≥ 𝜀4 =  .  15, 𝑖 = 2,3,4,5 

Therefore, 𝑖′′ = 2  and 𝑚′′ = 4  , and it can be concluded that nonlinear 

components are located between mass 𝑖′′ = 2  and mass 𝑖′′ +𝑚′′ = 6  in the 

system. 

Table 5.2 The value of 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑁𝐿1) when the 3rd, 5th and 6th springs are 

nonlinear 

𝑖 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑁𝐿1) 𝑖 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑁𝐿1) 𝑖 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑁𝐿1) 

1 3.96 × 1 ;6 4 0.866718 7 3.73 × 1 ;6 

2 1 5 0.501518 8 6.79× 1 ;6 

3 0.246067 6 3.84 × 1 ;6 9 4.29× 1 ;6 

Obviously, the conclusions reached at each step are all consistent with the real 

situation of the simulated system. So the effectiveness of the proposed method is 

verified by this simulation study. 

5.6.2 Simulation study: case 2 

This study was conducted in order to demonstrate the effectiveness of the proposed 

method when the loading inputs are applied on different locations in the considered 

different loading conditions. In this case study, the loading in the first loading condition 

is shown in Eq. (5.45) and applied on the 3rd and 8th masses respectively, namely, 

𝑆1
(1)
= 3, 𝑆2

(1)
= 8, and the loading in the second loading condition is shown in Eq. 

(5.46) and is applied on the 4th and 7th masses respectively, namely, 𝑆1
(2)
= 4, 

𝑆2
(2)
= 7. The other conditions are exactly the same as that in case study 1. The results 

of the simulation study obtained in each step of the proposed method are given as 
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follows. 

Step 1) 

In this case, the ratio between the system response at every nonlinearity generated 

frequency in Eq. (5.47) and maximum amplitude of system inputs is calculated and the 

index 𝐼𝑁𝐷1 was evaluated using (5.36) as 

𝐼𝑁𝐷1 =    8|
𝑋𝑖
1(𝑗𝜔𝑁𝐿)

    {𝑋𝑖
1(𝑗𝜔𝑓1), 𝑋𝑖

1(𝑗𝜔𝑓2)}
| , |

𝑋𝑖
2(𝑗𝜔𝑁𝐿)

    {𝑋𝑖
2(𝑗𝜔𝑓1), 𝑋𝑖

2(𝑗𝜔𝑓2)}
| , 𝑖 = 1,… ,1 9  

=  .3591 ≥ 𝜀1 = 8.42 × 1 
;6 

where 𝜔𝑁𝐿  is shown in Eq. (5.47). Therefore, it is concluded that nonlinear 

component exists in the system.  

Step 2) 

At this step, the nonlinearity generated frequency 𝜔𝑁𝐿1 = 𝜔𝑓2 − 𝜔𝑓1 = 1   was 

used again. So 

𝑆𝑇1𝑖,𝑖:1(𝑗1  ), 𝑆𝑇2𝑖,𝑖:1(𝑗1  ), and 𝑆𝛿𝑖,𝑖:1(𝑗1  ) 𝑖 = 1,… ,9 

were evaluated using Eqs. (5.34) and (5.35). Then, 𝑆𝛿max(𝑗1  ) was determined 

using Eq. (5.38); the result is 

𝑆𝛿max(𝑗1  ) =  .4255 > 𝜀2 =  .  99 

So it is known that there are more than one nonlinear components in the system. 

Step 4)  

As Step 2) has shown that there are more than one nonlinear components in the 

system, Step 4) rather than Step 3) of the proposed method is used in this case. At this 

step, 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑁𝐿1) = 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗1  ), 𝑖 = 1, … ,9 were evaluated using Eq. (5.43). 

The results are shown in Table 5.3, in which it can be observed that 
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𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗1  ) ≥ 𝜀4 =  .  15, 𝑖 = 2,3,4,5 

Therefore 𝑖′′ = 2 and 𝑚′′ = 4 , and it can be concluded that nonlinear components 

are located between mass 𝑖′′ = 2 and mass 𝑖′′ +𝑚′′ = 6 in the system. 

Table 5.3 The value of 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑁𝐿1) when the 3rd, 5th and 6th springs are 

nonlinear 

𝑖 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑁𝐿1) 𝑖 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑁𝐿1) 𝑖 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑁𝐿1) 

1 9.74 × 1 ;6 4 0.952396 7 3.35 × 1 ;6 

2 1 5 0.540621 8 3.18 × 1 ;6 

3 0.28236 6 2.87 × 1 ;6 9 1.5 × 1 ;6 

Obviously, the conclusions reached at each step are all consistent with the real 

situation of the simulated system. So the effectiveness of the proposed method is 

again verified by this simulation study. 

5.6.3 Simulation study: case 3 

In this case, there is only one (𝐽 ̅ = 1) nonlinear component in the system, which is the 

6th spring. The same two loading conditions as in simulation study case 1 (shown in 

Eqs.(5.45) and (5.46) and 𝑆1 = 3 and 𝑆2 = 8) were considered. The new method was 

applied to the spectra of the output responses of the system under the two loading 

conditions. Again, 𝑁 was determined as 3 from the observation on spectra of the 

system output responses, for example, the output response of the 8th mass when the 

system is subject to the second loading condition as shown Fig. 5.4, and 𝜔𝑁𝐿 is the 

same as that in Eq.(5.47), and the same threshold parameters 𝜀1, 𝜀2, 𝜀3, 𝜀4 as given in 

Table 4.1 were used. The results obtained in each step of the method are given as 

follows. 
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Fig. 5.4 Output response of the 8th mass when the system is subject to the 2nd loading 

condition 

Step 1) 

In this case, the ratio between the system response at every nonlinearity generated 

frequency in Eq.(5.47) and maximum amplitude of system inputs is calculated and the 

index 𝐼𝑁𝐷1 was evaluated by (5.36) as 

𝐼𝑁𝐷1 =    8|
𝑋𝑖
1(𝑗𝜔𝑁𝐿)

    {𝑋𝑖
1(𝑗𝜔𝑓1), 𝑋𝑖

1(𝑗𝜔𝑓2)}
| , |

𝑋𝑖
2(𝑗𝜔𝑁𝐿)

    {𝑋𝑖
2(𝑗𝜔𝑓1), 𝑋𝑖

2(𝑗𝜔𝑓2)}
| , 𝑖 = 1,… ,1 9 

= 0.1348 ≥ 𝜀1 = 8.42 × 1 
;6 

So, damage with nonlinear features exists in the system. 

Step 2) 

At this step, 𝜔𝑁𝐿1 = 𝜔𝑓2 − 𝜔𝑓1 = 1  . Therefore, in the same way as in Step 2), 

simulation case study 1, 𝑆𝛿max(𝑗𝜔𝑁𝐿1) was determined; the result is 

𝑆𝛿max(𝑗𝜔𝑁𝐿2) = 2.2383 × 1 
;6 < 𝜀2 =  .  99 

So it is known that there is only one nonlinear component in the system. 

Step 3)  

Because Step 2) indicates there is only one nonlinear component in the system, Step 3) 

of the proposed method was followed to evaluate 𝑆𝑇1𝑖,𝑖:1(𝑗𝜔𝑓𝑚1̃) , 

𝑆𝑇1𝑖,𝑖:1(𝑗𝜔𝑓𝑚2̃),  𝑆𝑇2𝑖,𝑖:1(𝑗𝜔𝑓𝑚1̃) , 𝑆𝑇2𝑖,𝑖:1(𝑗𝜔𝑓𝑚2̃),  𝑆𝛿𝑖,𝑖:1(𝑗𝜔𝑓𝑚1̃)  and 
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𝑆𝛿𝑖,𝑖:1(𝑗𝜔𝑓𝑚2̃) for 𝑖 = 1,… ,9 using Eqs. (5.34) and (5.35). In this case, 𝜔𝑓𝑚1̃ =

𝜔𝑓1 = 3  , and 𝜔𝑓𝑚2̃ = 𝜔𝑓2 = 4  . Then, 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗3  )  and 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗4  ) for 

𝑖 = 1, … ,9 were evaluated using Eqs. (5.40a), (5.41a), (5.40b) and (5.41b). The results 

are shown in Tables 5.4 and 5.5 indicating  

8
𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗3  ) ≥ 𝜀3 = 9.82 × 1 

;6 𝑖 = 3,4,5

𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗4  ) ≥ 𝜀3 = 9.82 × 1 
;6 𝑖 = 5,6,7

 

So 𝑖′ = 3, 𝑖′ +𝑚′ − 1 = 5, 𝑖̅ = 5     𝑖̅ + 𝑚̅ − 1 = 7, then 

𝐽′ = 𝑖′ +𝑚′ − 1 = 𝑖̅ = 5 

Therefore, the only nonlinear component is located between mass 𝐽′ = 5 and mass 

(𝐽′ + 1) = 6.  

Table 5.4 The value of 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑓1) when the 6th spring is nonlinear 

𝑖 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑓1) 𝑖 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑓1) 𝑖 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑓1) 

1 3.86 × 1 ;7 4 0.346388 7 9.74 × 1 ;7 

2 7. 6 × 1 ;7 5 1 8 6.65 × 1 ;7 

3 0.219297 6 1.22 × 1 ;6 9 2.31 × 1 ;7 

Table 5.5 The value of 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑓2) when the 6th spring is nonlinear 

𝑖 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑓2) 𝑖 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑓2) 𝑖 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑓2) 

1 2.27 × 1 ;6 4 3.15 × 1 ;6 7 0.176738 

2 4.97 × 1 ;6 5 1 8 3.23 × 1 ;6 

3 2.27 × 1 ;6 6 0.356747 9 1.18 × 1 ;6 
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Again, the conclusions reached at each step above are all consistent with the real 

situation of the simulated system. So the effectiveness of the proposed method is 

further verified by the third simulation study. 

5.7 General case 

The properties of systems (5.1) and (4.5) and the proposed nonlinearity detection and 

location methods in this and the last chapters can be extended to the more general 

case as follows. 

𝑨𝑁̅𝒙
*𝑁̅+ + 𝑨𝑁̅;1𝒙

*𝑁̅;1+ + + 𝑨 𝒙⃛ + 𝑨 𝒙̈ + 𝑨 𝒙̇ + 𝑨 𝒙 = 𝑭(𝑡) + 𝑵𝑭(𝑡) (5.48)  

where, 𝑭(𝑡)and 𝒙(𝑡) are system input and output vectors respectively; 𝑵𝑭(𝑡) is 

extra term produced by nonlinear components in the system. 𝒙*𝑛̅+, 𝑛̅ = 1,2, … 𝑁̅ is 

the 𝑛̅ th derivative of  𝒙(𝑡) ; there are 𝑚  inputs which correspond to the 

𝑆1, 𝑆2, … , 𝑆𝑚
th outputs respectively; the number of the system outputs is 

𝑛 ;  𝑨𝑁̅ , 𝑨𝑁̅;1, … , 𝑨  are the coefficient matrices associated with 

𝑁̅  , (𝑁̅ − 1)  , … ,1   order derivative of the system outputs, respectively; 𝑨  is the 

coefficient matrix of system output.  

The capability of the proposed method for detecting and locating nonlinearity in more 

general system (5.48) will be demonstrated by another case study in the following 

where water tree degradation detection issue with power cables will be studied. The 

power cables have a significant application in power distribution and transmission 

lines. The water tree degradation is one of the most common damages in the power 

cable system after long time service and will incur nonlinear behaviours of the whole 

system [217, 218]. The proposed technique will be applied to a power cable with water 

tree degradation to find the location of the degradation in this case study. 

5.7.1 Power cable systems 

Research studies have demonstrated that water tree degradations will cause the 
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power cable system to behave nonlinearly. The V-I relationship of water tree 

degradation can be approximated by the following nonlinear function [217]: 

𝑖𝑤𝑡(𝑡) =
1

𝑅𝑤𝑡
(𝑢𝑤𝑡(𝑡) + 𝑟𝑢𝑤𝑡

3 (𝑡)) (5.49)  

where 𝑖𝑤𝑡(𝑡) , 𝑢𝑤𝑡(𝑡)  are the current and voltage and 𝑅𝑤𝑡  and 𝑟  are the 

parameters in the water tree degradation V-I relationship. Fig. 5.5 shows the 

equivalent circuit of a typical 35kV, single-core, XLPE insulated power cable in 

transmission line where the 𝐽𝑗
th (𝑗 = 1,2, … 𝐽)̅ component have a water tree damage 

and consequently become nonlinear [193, 195], and 𝑅𝑗, 𝐿𝑗, 𝐺𝑖, 𝐶𝑖, 𝑗 = 1,… , 𝑛 + 1, 

𝑖 = 1, … , 𝑛, are the section resistance, section inductance, shunt conductance and 

shunt capacitance of the power cable system respectively; 𝑢𝑖(𝑡) and 𝑖𝑖(𝑡) are the 

voltage and the current of the 𝑖th cable section with 𝑖𝑖(𝑡) 𝑖 = 1,2, …𝑛  being 

considered as system output in the analysis. 

 

Fig. 5.5 Equivalent circuit of power cable system 

Applying Kirchhoff’s voltage and current laws to the power cable shown in Fig. 5.5, the 

mathematical model of the circuit system can be deduced (See Appendix F for details) 

showing that the model is of the form of Eq.(5.48) where 𝑁̅ = 3 and  

𝑭(𝑡) = ,𝑓1(𝑡)    …   𝑓2(𝑡)-
𝑇 

𝑨 =

[
 
 
 
 
     
 𝐿2𝐶2𝐶1  ⋱  
 ⋱ ⋱ ⋱  
 ⋱ ⋱ 𝐿𝑛;1𝐶𝑛;1𝐶𝑛;2  
     ]
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𝑨 =

[
 
 
 
 
𝐴2(1,1)     

 𝐴2(2,2)  ⋱  
 ⋱ ⋱ ⋱  
 ⋱  𝐴2(𝑛 − 1, 𝑛 − 1)  

   −𝐿𝑛:1𝐶𝑛 𝐴2(𝑛, 𝑛)]
 
 
 
 

 

𝑨 =

[
 
 
 
 
𝐴1(1,1)     

−𝐺2 𝐴1(2,2) −𝐺1 ⋱  
 ⋱ ⋱ ⋱  
 ⋱ −𝐺𝑛;1 𝐴1(𝑛 − 1, 𝑛 − 1) −𝐺𝑛;2
   𝐴1(𝑛, 𝑛 − 1) 𝐴1(𝑛, 𝑛)]

 
 
 
 

 

𝑨 =

[
 
 
 
 
𝐴0(1,1) −1    

−𝐶2 𝐴0(2,2) −𝐶1 ⋱  
 ⋱ ⋱ ⋱  
 ⋱ −𝐶𝑛;1 𝐴0(𝑛 − 1, 𝑛 − 1) −𝐶𝑛;2
   𝐴0(𝑛, 𝑛 − 1) 𝐴0(𝑛, 𝑛)]

 
 
 
 

 

𝑓1(𝑡) = 𝑢̇𝑠1(𝑠)𝐶1 + 𝑢𝑠1(𝑠)𝐺1 

𝑓2(𝑡) = 𝐶𝑛;1𝑢̇𝑠2(𝑡) + 𝐺𝑛;1𝑢𝑠2(𝑡) 

𝐴2(1,1) = 𝐿1𝐶1 

𝐴2(𝑝, 𝑝) = 𝑅𝑝𝐶𝑝;1𝐶𝑝 + 𝐿𝑝𝐺𝑝;1𝐶𝑝 + 𝐿𝑝𝐶𝑝;1𝐺𝑝, 𝑝 = 2,3, … , 𝑛 − 1 

𝐴2(𝑛, 𝑛) = 𝐿𝑛:1𝐶𝑛;1 + 𝐶𝑛𝐿𝑛:1 

𝐴1(1,1) = 𝑅1𝐶1 + 𝐿1𝐺1 

𝐴1(𝑝, 𝑝) = 𝑅𝑝𝐶𝑝𝐺𝑝;1 + 𝑅𝑝𝐶𝑝;1𝐺𝑝 + 𝐿𝑝𝐺𝑝;1𝐺𝑝 + 𝐶𝑝;1 + 𝐶𝑝  𝑝 = 2,3, … , 𝑛 − 1 

𝐴1(𝑛, 𝑛) = 𝑅𝑛:1𝐶𝑛;1 + 𝑧𝑙𝑜 𝑑𝐶𝑛;1 + 𝐿𝑛:1𝐺𝑛;1 + 𝐺𝑛𝐿𝑛:1 + 𝐶𝑛𝑅𝑛:1 + 𝐶𝑛𝑧𝑙𝑜 𝑑 

𝐴1(𝑛, 𝑛 − 1) = 𝐶𝑛𝑅𝑛:1 + 𝐶𝑛𝑧𝑙𝑜 𝑑 + 𝐺𝑛𝐿𝑛:1 

𝐴0(1,1) = 𝑅1𝐺1 + 1 

𝐴0(𝑝, 𝑝) = 𝑅𝑝𝐺𝑝;1𝐺𝑝 + 𝐺𝑝;1 + 𝐺𝑝 

𝐴0(𝑛, 𝑛) = 𝑅𝑛:1𝐺𝑛;1 + 𝑧𝑙𝑜 𝑑𝐺𝑛;1 + 1 + 𝐺𝑛𝑅𝑛:1 + 𝐺𝑛𝑧𝑙𝑜 𝑑 

𝐴0(𝑛, 𝑛 − 1)𝐺𝑛𝑅𝑛:1 + 𝐺𝑛𝑧𝑙𝑜 𝑑 − 1 
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In power transmission line, the mains frequency is fixed (either 50Hz or 60Hz). 

However, communications can be realised via power transmission line by using a 

modulated carrier signal to carry and transmit useful information such as current, 

voltage, switch status, temperature and oil level, etc between the base and 

substations[219]. In this study, carrier signal with low amplitude but very high carrier 

frequency is employed as the system input signal for water tree damage detection and 

location purposes. Such carrier signal has advantage in terms of low effect on the 

normal power transmission and good performance of anti-chirp [219].  

5.7.2 Application of proposed method on power cable system 

In order to verify the effectiveness of the proposed approach when applied in the 

more general system (5.48), a power cable system as described by Eq. (5.48) is 

considered where:. 

𝑛 = 5; 𝑅1 = 𝑅2 =  = 𝑅6 = 3.61 × 1 
;4Ω; 𝐿1 = 𝐿2 =  = 𝐿6 = 5.5 × 1 

;7H; 

𝐺1 = 𝐺2 =  = 𝐺5 = 3.58 × 1 
;10S; 𝐶1 = 𝐶2 =  = 𝐶5 = 2.85 × 1 

;10F;  

𝑍𝑙𝑜 𝑑 = 1.5 × 1 
4Ω.; 

and the parameters of the nonlinear components representing water tree damage are 

𝑟𝐽(𝑖) = 1.7 × 1 
;5, 𝑅𝐽(𝑖) = 2 × 1 

5Ω, 𝐶𝑟𝐽(𝑖) =  , 𝑖 = 1,… , 𝐽 ̅ . 

In this case, there are two (𝐽 ̅ = 2 ) nonlinear components in the system, which are in 

the 3rd and 4th sections. Two input conditions implemented by carrier signals are 

considered as 

{
𝑓1(𝑡) = 𝑓1

(1)(𝑡) = 2.5    (4 × 1 5 𝑡)

𝑓2(𝑡) = 𝑓2
(1)(𝑡) = 7.5    (2 × 1 5 𝑡)

 (5.50)  

and 

{
𝑓1(𝑡) = 𝑓1

(1)(𝑡) = 5    (4 × 1 5 𝑡)

𝑓2(𝑡) = 𝑓2
(1)(𝑡) = 15    (2 × 1 5 𝑡)

 (5.51)  
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respectively, and the inputs are applied on two ends of the system as shown in Fig. 5.5. 

It should be noted that the mains frequency (either 50Hz or 60Hz) are still in the 

power system but it cannot be detected because of very high sampling frequency and 

short sampling time which are 5 × 1 7 Hz and 0.001 second respectively. The new 

method was applied to the spectra of the output responses of the system under the 

two input conditions, that is, 

𝑋𝑖
1(𝑗𝜔) and 𝑋𝑖

2(𝑗𝜔),  𝑖 = 1,2,3,4,5.  

The highest order of nonlinearity is determined as 𝑁 = 4 from the observation on 

spectra of the system output responses, for example, spectra of the third current when 

the system is subject to the second loading condition as shown Fig. 5.6, so the possible 

frequencies produced by system nonlinearity are  

𝜔𝑁𝐿 = * ,6 × 1 
5 , 8 × 1 5 , 1 × 1 5 , 12 × 1 5 , 14 × 1 5 , 16 × 1 5 + (5.52)  

 

Fig. 5.6 Spectra of the 3rd current when the system is subject to the 2nd loading 

condition 

The four threshold parameters 𝜀1, 𝜀2, 𝜀3, 𝜀4 were determined using the procedure 

introduced in Remark b) in Section 4.5.2. The results are given in Table 5.6.  

Table 5.6 Threshold parameters used in the simulation study on power cable system 

Threshold parameters 𝜀1 𝜀2 𝜀3 𝜀4 

Value 3.81 × 1 ;5 0.000561 0.008441 9.8 × 1 ;5 
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The results of this case study obtained in each step of the proposed method are given 

as follows. 

Step 1) 

In this case, the ratio between the system response at every nonlinearity generated 

frequency in Eq. (5.52) and maximum amplitude of system inputs is calculated and the 

index 𝐼𝑁𝐷1 was evaluated using Eq. (5.36) as 

𝐼𝑁𝐷1 =    8|
𝑋𝑖
1(𝑗𝜔𝑁𝐿)

    {𝑋𝑖
1(𝑗𝜔𝑓1), 𝑋𝑖

1(𝑗𝜔𝑓2)}
| , |

𝑋𝑖
2(𝑗𝜔𝑁𝐿)

    {𝑋𝑖
2(𝑗𝜔𝑓1), 𝑋𝑖

2(𝑗𝜔𝑓2)}
| , 𝑖 = 1,… ,59  

=  .27 7 ≥ 𝜀1 = 3.81 × 1 
;5 

The value of 𝜔𝑁𝐿 is shown in Eq. (5.52). Therefore, it is concluded that damage with 

nonlinear features exists in the system.  

Step 2) 

At this step, 𝜔𝑁𝐿1  was determined as 𝜔𝑁𝐿1 = 𝜔𝑓1 + 𝜔𝑓2 = 6 × 1 
5 . So 

𝑆𝑇1𝑖,𝑖:1(𝑗6 × 1 5 ), 𝑆𝑇2𝑖,𝑖:1(𝑗6 × 1 5 ), and 𝑆𝛿𝑖,𝑖:1(𝑗6 × 1 5 ) 𝑖 = 1,… ,5 

were evaluated using Eqs. (5.34) and (5.35). Then, 𝑆𝛿max(𝑗6 × 1 
5 )  was 

determined using Eq. (5.38); the result is 

𝑆𝛿max(𝑗6 × 1 
5 ) = 5.4424 > 𝜀2 =  .   561 

So it is known that there are more than one nonlinear components in the system. 

Step 4)  

As Step 2) has shown that there are more than one nonlinear components in the 

system, Step 4) rather than Step 3) of the proposed method is used in this case. At this 

step, 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑁𝐿1) = 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗6 × 1 5 ) , 𝑖 = 1,… ,5  were evaluated using Eq. 

(5.43). The results are shown in Table 5.7, in which it can be observed that 

𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗6 × 1 5 ) ≥ 𝜀4 = 9.8 × 1 
;5, 𝑖 = 3,4 
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Therefore 𝑖′′ = 3 and 𝑚′′ = 2 , and it can be concluded that nonlinear components 

are located between output 𝑖′′ = 3 and output 𝑖′′ +𝑚′′ = 5 in the system.  

Obviously, the conclusions reached at each step are all consistent with the real 

situation of the simulated power cable system. So the effectiveness of the proposed 

method when applied to the detection and location of damage in the more general 

power cable system has been verified. 

Table 5.7 The value of 𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑁𝐿1) in the simulation study on power cable system 

𝑖 1 2 3 4 

𝑆𝛿̅̅ ̅𝑖,𝑖:1(𝑗𝜔𝑁𝐿1) 5 × 1 ;6 4.82 × 1 ;5 1 0.039863 

 

5.8 Conclusions 

By analysing the NOFRFs and the NOFRF transmissibility of MIMO nonlinear systems, 

this chapter investigates the transmissibility at nonlinearity generated frequency and 

proposes a transmissibility based nonlinearity detection and location method for a 

class of MIMO structural systems. From the NOFRF transmissibility based analysis, it is 

found that the transmissibility at nonlinearity generated frequency is insensitive to the 

locations and strength of loading inputs. According to this observation, a novel 

technique is proposed to detect the existence and find the locations of nonlinear 

components in the MIMO structural systems. Moreover, the effectiveness of the new 

technique is verified by simulation case studies.  

Furthermore, the proposed nonlinearity detection and location method is applied to a 

more general case of higher order dynamics and used to detect and locate water tree 

damage in power cable system. Simulation studies have again verified the more 

general application. 
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Chapter 6  

Transmissibility analysis based nonlinearity localization 

and modal identification for nonlinear MDOF systems 

Chapters 4 and 5 deal with the problem of nonlinearity detection and localization 

when SIMO/MIMO structural systems are subject to only one or multiple harmonic 

inputs. However, in engineering practice, structural systems are often subject to 

loadings with band limited frequencies such as, for example, loadings on the blades of 

wind turbines and traffic loadings on bridges, etc. In order to address these more 

general problems, in this chapter, the new nonlinearity detection and localization 

methods proposed in chapters 4 and 5 are extended to the cases where structural 

systems are subject to loadings with band limited frequencies. The results also provide 

useful guidelines for the application of transmissibility analysis based modal 

identification methods [220] to nonlinear structural systems. 

In this chapter, the output frequencies of MIMO nonlinear systems subject to loadings 

with band limited frequencies are first analyzed to determine the nonlinearity 

generated frequencies in this more general case. Then the new methods proposed in 

chapters 4 and 5 are extended for the detection and localization of nonlinear 

components in a class of nonlinear systems subject to loadings with band limited 

frequencies, and the effectiveness of new developments is verified by numerical 

simulation studies. Finally, based on the results of nonlinearity detection and 

localization, some guidelines are provided for how to apply the transmissibility analysis 

based modal identification methods to nonlinear structural systems. 
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6.1 Output frequencies of multi-input nonlinear systems 

It is well known that for linear systems, the frequency range of outputs is exactly the 

same as that of system inputs. However, for nonlinear systems, new frequencies will 

be produced and the frequency components are much more complicated. Eqs. (4.11) 

and (5.14) show the output responses of nonlinear systems subject to one and 

multiple inputs, respectively and Eqs. (5.23) and (5.24) shows the output frequencies 

of nonlinear systems when subjected to multiple harmonic inputs. Lang [216] 

developed an algorithm to calculate the frequency ranges of output responses of 

single input nonlinear systems when the systems are subject to an input with 

frequency components within a limited range ,𝑎, 𝑏-. For 𝑚-input nonlinear systems, 

when the frequency ranges of the 𝑚 inputs are ,𝑎1, 𝑏1-, ,𝑎2, 𝑏2-,…,     ,𝑎𝑚, 𝑏𝑚-, 

respectively, the output frequency ranges can be determined by Proposition 6.1 as 

follows.  

Proposition 6.1 Output frequencies of multi-input nonlinear systems 

If a multi-input nonlinear system is subject to 𝑚 inputs, the frequency ranges of 

which are ,𝑎1, 𝑏1- , ,𝑎2, 𝑏2- ,…,     ,𝑎𝑚, 𝑏𝑚- , respectively, the system output 

frequencies can be determined as  

𝜔 =  (𝑛1
:, 𝑛1

;, 𝑎1, 𝑏1) +  (𝑛2
:, 𝑛2

;, 𝑎2, 𝑏2) +  +  (𝑛𝑚
: , 𝑛𝑚

; , 𝑎𝑚, 𝑏𝑚) (6.1)  

where, 

  (𝑛𝑖
:, 𝑛𝑖

;, 𝑎𝑖, 𝑏𝑖) = 8
,𝑛𝑖
:𝑎𝑖 − 𝑛𝑖

;𝑏𝑖, 𝑛𝑖
:𝑏𝑖 − 𝑛𝑖

;𝑎𝑖 -   𝑖𝑓 𝑛𝑖
:𝑎𝑖 − 𝑛𝑖

;𝑏𝑖 >  

, , 𝑛𝑖
:𝑏𝑖 − 𝑛𝑖

;𝑎𝑖 -                         𝑖𝑓 𝑛𝑖
:𝑎𝑖 − 𝑛𝑖

;𝑏𝑖   
 (6.2)  

and 𝑖 = 1,2, … ,𝑚 , 𝑛1
: , 𝑛2

: ,…, 𝑛𝑚
:  , 𝑛1

; , 𝑛2
; ,…, 𝑛𝑚

;  are nonnegative integer 

satisfying the following relationships: 
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{
 
 

 
 

𝑛1
: + 𝑛1

; = 𝑛1
𝑛2
: + 𝑛2

; = 𝑛2
 

𝑛𝑚
: + 𝑛𝑚

; = 𝑛𝑚
𝑛1 + 𝑛2 + + 𝑛𝑚 = 𝑛̅

𝑛̅ = 1,2, . . , 𝑁

 (6.3)  

where 𝑁 is the highest order of system nonlinearity. 

Proof: Proposition 6.1 can be derived directly by using the frequency output 

representation of nonlinear system and the requirements of frequency 𝜔 in Eq.(5.6), 

that is, 𝜔1 +𝜔2 + +𝜔𝑛̅ = 𝜔. 

Two examples are provided in the following to show how to determine the frequencies 

of system output responses using the algorithm in Eqs. (6.1)-(6.3). 

Example 6.1: Determine the system output frequencies where 𝑚 = 1, ,𝑎1, 𝑏1- =

,9 ,1  - and 𝑁 = 4. 

Firstly, the frequency components are calculated by solving Eqs. (6.1)-(6.3) in 

Proposition 6.1, the possible values of 𝑛1
:, 𝑛1

;, 𝑛̅  and 𝜔 are listed in Table 6.1. 

Table 6.1 Frequency components when  𝑚 = 1, ,𝑎1, 𝑏1- = ,9 ,1  - and 𝑁 = 4 

𝑛1
: 𝑛1

; 𝑛̅ 𝑛1
:𝑎1 − 𝑛1

;𝑏1 𝑛1
:𝑏1 − 𝑛1

;𝑎1 𝜔 

1 1 2 -10 10 , ,2 -  
2 2 4 -20 20 

1 0 1 90 100 
,8 ,11 -  

2 1 3 80 110 

2 0 2 180 200 
,17 ,21 -  

3 1 4 170 210 

3 0 3 270 300 ,27 ,3  - 

4 0 4 360 400 ,36 ,4  -  

Then the system output frequencies are determined as: 

𝜔 = , ,2 -⋃,8 ,11 -⋃,17 ,21 -⋃,27 ,3  -⋃,36 ,4  - (6.4)  



Chapter 6 Transmissibility analysis based nonlinearity localization and modal 
identification for nonlinear MDOF systems 

140 

In addition, it can be observed from Table 6.1 that the frequency range determined by 

nonlinearity order 𝑛̅  contains that determined by nonlinearity order 𝑛̅ − 2𝑖, if 

𝑛̅ − 2𝑖 >  , where 𝑖  is positive integer and 𝑖 <  ̅

2
. This is consistent with the 

conclusions made by Lang in Ref. [216]. 

Example 6.2: Determine the system output frequencies where 𝑚 = 2, ,𝑎1, 𝑏1- =

,9 ,1  -, ,𝑎2, 𝑏2- = ,3 ,35- and 𝑁 = 2. 

Firstly, the frequency components can be calculated by solving Eqs. (6.1)-(6.3) in 

Proposition 6.1, the possible values of 𝑛1
:, 𝑛1

;, 𝑛2
: , 𝑛2

;, 𝑛̅  and 𝜔 are listed in Table 

6.2. 

Table 6.2 Frequency components when  𝑚 = 2, ,𝑎1, 𝑏1- = ,9 ,1  -, ,𝑎2, 𝑏2- =

,3 ,35- and 𝑁 = 2 

𝑛1
: 𝑛1

; 𝑛2
: 𝑛2

; 𝑛̅ 𝑛1
:𝑎1 − 𝑛1

;𝑏1 𝑛1
:𝑏1 − 𝑛1

;𝑎1 𝜔 

0 0 1 1 2 -5 5 
, ,1 - 

1 1 0 0 2 -10 10 

0 0 1 0 1  30  35  ,3 ,5 - 

0 0 2 0 2 60 70 ,55,7 - 
1 0 0 1 2 55 70 

1 0 0 0 1 90 100 ,9 ,1  - 

1 0 1 0 2 120 135 ,12 ,135- 

2 0 0 0 2 180 200 ,18 ,2  - 

Then the system output frequencies are determined as: 

𝜔 = , ,1 -⋃,3 ,5 -⋃,55,7 -⋃,9 ,1  -⋃,12 ,13 -⋃,18 ,2  - (6.5)  

Just as in Chapter 5, the frequencies which are produced by system nonlinearity and 

do not overlap with the frequency range of system inputs are again referred to as 

nonlinearity generated frequencies in the following.  
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6.2 Transmissibility based nonlinearity detection and 

localization for MDOF nonlinear systems subject to 

band limited loading inputs 

In order to apply the nonlinearity detection and localization techniques proposed in 

Chapters 4 and 5 to the case where structural systems are subject to inputs with band 

limited frequencies as,  

𝑭( ) = , … 𝑓1(𝑡)   … 𝑓2(𝑡) …   𝑓𝑚(𝑡) . . .  -𝑇 (6.6)  

where 𝑓1(𝑡), 𝑓2(𝑡), …, 𝑓𝑚(𝑡) are 𝑚 inputs with band limited frequencies and are 

applied on the 𝑆1, 𝑆2, …, 𝑆𝑚
th masses respectively, an alternative transmissibility 

index is proposed as follows. 

𝑆𝑇𝐼𝑖:1 =
1

𝜔2 − 𝜔1
∫ 𝑆𝑇𝑖,𝑖:1(𝑗𝜔)
𝜔2

𝜔1

𝑑𝜔 =
1

𝜔2 − 𝜔1
∫

𝑋𝑖(𝑗𝜔)

𝑋𝑖:1(𝑗𝜔)

𝜔2

𝜔1

𝑑𝜔 (6.7)  

where 𝑆𝑇𝑖,𝑖:1(𝑗𝜔) is the transmissibility at frequency 𝜔. In addition, the following 

two assumptions are made: 

a) Two different loading conditions can be considered, and the frequency ranges of 

the loading inputs are known a priori but their locations applied on the system 

can be unknown when there are multiple inputs applied on the system. However, 

the location of the input is required to be known when there is only one input 

applied. 

b) The output spectra of structural systems to the two loading conditions are 

available, say, 𝑋𝑖
1(𝑗𝜔) and 𝑋𝑖

2(𝑗𝜔), and the following transmissibility indices  
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{
 
 

 
 𝑆𝑇𝐼1𝑖,𝑖:1 =

1

𝜔2 −𝜔1
∫

𝑋𝑖
1(𝑗𝜔)

𝑋𝑖:1
1 (𝑗𝜔)

𝑑𝜔
𝜔2

𝜔1

=
1

𝜔2 −𝜔1
∫

𝑋𝑖(𝑗𝜔)

𝑋𝑖:1(𝑗𝜔)

𝜔2

𝜔1

𝑑𝜔|

𝑓1(𝑡)<𝑓1
(1)(𝑡),…,𝑓𝑚(𝑡)<𝑓𝑚

(1)(𝑡)

𝑆𝑇𝐼2𝑖,𝑖:1 =
1

𝜔2 −𝜔1
∫

𝑋𝑖
2(𝑗𝜔)

𝑋𝑖:1
2 (𝑗𝜔)

𝑑𝜔
𝜔2

𝜔1

=
1

𝜔2 −𝜔1
∫

𝑋𝑖(𝑗𝜔)

𝑋𝑖:1(𝑗𝜔)

𝜔2

𝜔1

𝑑𝜔|
𝑓1(𝑡)<𝑓1

(2)(𝑡),…,𝑓𝑚(𝑡)<𝑓𝑚
(2)(𝑡)

 (6.8)  

and their difference 

𝑆𝐼𝛿 𝑖,𝑖+1 = |𝑆𝑇𝐼1𝑖,𝑖+1 − 𝑆𝑇𝐼2𝑖,𝑖+1|      𝑖 = 1,… , 𝑛 − 1 (6.9)  

can be determined, where, 𝜔 can be within the range of any driving frequencies or 

the nonlinearity generated frequencies.  

Based on the new transmissibility index defined above and under the two assumptions, 

the nonlinearity detection and localization techniques in Chapters 4 and 5 can be 

applied to the case where a structural system is subject to the inputs with band limited 

frequencies. The details will be demonstrated in the following two case studies where 

the system considered is the same as that in Chapters 4 and 5.  

6.2.1 Simulation study: case 1 

In this simulation study, system (4.5) is considered with the value of linear and 

nonlinear parameters the same as that in simulation studies in Section 4.6. Therefore, 

thresholds 𝜀1, 𝜀2, 𝜀3 and 𝜀4 listed in Table 4.1 are used.  

It is assumed that there are three nonlinear components which are 5th, 6th and 7th 

springs, namely, 𝐽 ̅ = 3, 𝐽1 = 5, 𝐽2 = 6 and 𝐽3 = 7 and only one input which is 

applied on the 4th mass, namely, 𝑚 = 1 , 𝑆1 = 4 . The following two loading 

conditions are considered  

𝑓(𝑡) = 𝑓
(1)(𝑡) =

𝐴1(𝑠𝑖𝑛(𝜔𝑓2𝑡 +  2) − 𝑠𝑖𝑛(𝜔𝑓1𝑡 +  1))

2 (𝑡 − 𝑡1)
 (6.10)  

and  

𝑓(𝑡) = 𝑓
(2)(𝑡) =

𝐴2(𝑠𝑖𝑛(𝜔𝑓2𝑡 +  2) − 𝑠𝑖𝑛(𝜔𝑓1𝑡 +  1))

2 (𝑡 − 𝑡1)
 (6.11)  



Chapter 6 Transmissibility analysis based nonlinearity localization and modal 
identification for nonlinear MDOF systems 

143 

where the frequency components are all within the range of  𝐹 = ,𝜔𝑓1, 𝜔𝑓2-, 

𝐴1 = 1 , 𝐴2 = 15, 𝜔𝑓1 = 9  , 𝜔𝑓2 = 1   ,  1 =  2 =   and 𝑡1 = 5 seconds. 

According to Proposition 6.1, when the system is subject to the input as shown in Eqs. 

(6.10) and (6.11); and the highest order of system nonlinearity is taken as 𝑁 = 3 

from the observation on spectra of the system output responses, for example, the 

output response of the 5th mass when the system is subject to the second loading 

condition as shown Fig. 6.1, the frequency range of system output can be calculated by 

solving Eqs. (6.1)-(6.3) in Proposition 6.1 and then the nonlinearity generated 

frequencies can be determined as 

𝜔𝑁𝐿 = , ,1  -⋃,8  , 9  )⋃(1   , 11  -⋃,18  , 2   -⋃,27  , 3   - (6.12)  

 

Fig. 6.1 Output response of the 5th mass when the system is subject to the 2nd loading 

condition 

Because there is only one input applied to the system, the technique in Chapter 4 is 

employed in this case, and the results obtained in each step are given as follows. 

Step 1) 

In this case, the ratio between the system response at every nonlinearity generated 

frequency in Eq. (6.12) and maximum amplitude of system inputs is calculated and the 

index 𝐼𝑁𝐷1 was evaluated by 
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𝐼𝑁𝐷1 =    8|
    *𝑋𝑖

1(𝑗𝜔𝑁𝐿
′ )+

    *𝑋𝑖
1(𝑗𝜔𝐹

′ )+
| , |
    *𝑋𝑖

2(𝑗𝜔𝑁𝐿
′ )+

    *𝑋𝑖
2(𝑗𝜔𝐹

′ )+
| , 𝑖 = 1,… ,1 ,𝜔𝐹

′ ∈ 𝜔𝐹     𝜔𝑁𝐿
′ ∈ 𝜔𝑁𝐿 9 (6.13)  

where 𝜔𝑁𝐿 is shown in Eq. (6.12) and it indicates that  

𝐼𝑁𝐷1 = 3. 1 4 ≥ 𝜀1 = 8.42 × 1 
;6 

Therefore, it is concluded that at least one nonlinear component exists in the system.  

Step 2) 

At this step, the nonlinearity generated frequency range 𝜔𝑁𝐿1 = ,𝜔1, 𝜔2- =

,3𝜔𝑓1, 3𝜔𝑓2- = ,27  , 3   - is used, and 

𝑆𝑇𝐼1𝑖,𝑖+1, 𝑆𝑇𝐼2𝑖,𝑖+1 and 𝑆𝐼𝛿 𝑖,𝑖+1, 𝑖 = 1,… ,9 

were evaluated using Eqs. (6.8) and (6.9). Then, 𝑆𝐼𝛿max was determined using  

𝑆𝐼𝛿max =    {𝑆𝐼𝛿
𝑖,𝑖+1, 𝑖 ∈ *1,2, … ,9+ } (6.14)  

the result is 

𝑆𝐼𝛿max =  .3111 > 𝜀2 =  .  99 

So it is known that there are more than one nonlinear components in the system. 

Step 4)  

As Step 2) has shown that there are more than one nonlinear components in the 

system, Step 4) rather than Step 3) of the proposed method is used in this case. At this 

step, 𝑆𝐼𝛿̅̅̅̅̅𝑖,𝑖:1 , 𝑖 = 1, … ,9 were evaluated by  

𝑆𝐼𝛿̅̅̅̅̅𝑖,𝑖:1 =
𝑆𝐼𝛿 𝑖,𝑖+1

𝑆𝐼𝛿max
     𝑖 = 1,… ,9 (6.15)  

The results are shown in Table 6.3, in which it can be observed that 

𝑆𝐼𝛿̅̅̅̅̅𝑖,𝑖:1 ≥ 𝜀4 =  .  15,   𝑖 = 4,5,6 

Therefore, 𝑖′′ = 4,  and 𝑚′′ = 3 , and it can be concluded that the nonlinear 
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components are located between mass 𝑖′′ = 4 and mass 𝑖′′ +𝑚′′ = 7 in the 

system.  

Table 6.3 The value of 𝑆𝐼𝛿̅̅̅̅̅𝑖,𝑖:1 when the 5th, 6th and 7th springs are nonlinear 

𝑖 𝑆𝐼𝛿̅̅̅̅̅𝑖,𝑖:1 𝑖 𝑆𝐼𝛿̅̅̅̅̅𝑖,𝑖:1 𝑖 𝑆𝐼𝛿̅̅̅̅̅𝑖,𝑖:1 

1 0.000177 4 0.473247 7 0.000459 

2 0.000323 5 0.833626 8 0.000985 

3 0.000192 6 1 9 0.001132 

 

Obviously, the conclusions reached at each step are all consistent with the real 

situation of the simulated system. 

6.2.2 Simulation study: case 2 

In this simulation study, system (5.1) is considered with the value of linear and 

nonlinear parameters the same as that in simulation studies in Section 5.6. Therefore, 

𝜀1, 𝜀2, 𝜀3 and 𝜀4  listed in Table 4.1 are used again.  

It is assumed that there is only one nonlinear component which is the 6th spring, 

namely, 𝐽 ̅ = 1, 𝐽1 = 6 and two inputs which are applied on the 3rd and 4th masses at 

the same time, namely, 𝑚 = 2, 𝑆1 = 3 and 𝑆2 = 4. Two following different loading 

conditions are considered  

{
 
 

 
 𝑓1(𝑡) = 𝑓1

(1)(𝑡) =
𝐴1(𝑠𝑖𝑛(𝜔𝑓2𝑡 +  2) − 𝑠𝑖𝑛(𝜔𝑓1𝑡 +  1))

2 (𝑡 − 𝑡1)

𝑓2(𝑡) = 𝑓2
(1)(𝑡) =

𝐵1(𝑠𝑖𝑛(𝜔𝑓4𝑡 +  4) − 𝑠𝑖𝑛(𝜔𝑓3𝑡 +  3))

2 (𝑡 − 𝑡1)

 (6.16)  

and 
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{
 
 

 
 𝑓1(𝑡) = 𝑓1

(2)(𝑡) =
𝐴2(𝑠𝑖𝑛(𝜔𝑓2𝑡 +  2) − 𝑠𝑖𝑛(𝜔𝑓1𝑡 +  1))

2 (𝑡 − 𝑡1)

𝑓2(𝑡) = 𝑓2
(2)(𝑡) =

𝐵2(𝑠𝑖𝑛(𝜔𝑓4𝑡 +  4) − 𝑠𝑖𝑛(𝜔𝑓3𝑡 +  3))

2 (𝑡 − 𝑡1)

 (6.17)  

where, 𝐴1 = 𝐵1 = 1 , 𝐴2 = 𝐵2 = 2 , 𝜔𝑓1 = 4  , 𝜔𝑓2 = 5  , 𝜔𝑓3 = 6  , 

𝜔𝑓4 = 7  ,  1 =  2 =  3 =  4 =   and 𝑡1 = 5. Eqs. (6.16) and (6.17) imply that 

under each loading condition, the loading input frequency ranges are  𝐹1 =

,𝜔𝑓1, 𝜔𝑓2- and  𝐹2 = [ 𝜔𝑓3, 𝜔𝑓4]  for the two inputs, respectively. Therefore, the 

range of driving frequencies are 

 𝐹 =  𝐹1⋃ 𝐹2 = [𝜔𝑓1, 𝜔𝑓2]⋃[𝜔𝑓3, 𝜔𝑓4] = ,4  , 5  -⋃,6  , 7  - 

According to Proposition 6.1, when the nonlinear system is subject to loading 

condition shown in Eqs. (6.16) and (6.17) and the highest order of system nonlinearity 

is considered as 𝑁 = 3 from the observation on spectra of the system output 

responses, for example, the output response of the 3rd mass when the system is 

subject to the second loading condition as shown Fig. 6.2, the frequency range of 

system output can be calculated by solving Eqs. (6.1)-(6.3) in Proposition 6.1 and the 

nonlinearity generated frequencies can be determined as 

𝜔𝑁𝐿 = , ,4  )⋃(5  , 6  )⋃(7  , 21  - (6.18)  

  

Fig. 6.2 Output response of the 3rd mass when the system is subject to the 2nd loading 

condition 
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Because there are two system inputs, the technique in Chapter 5 is applied in this case, 

and the results obtained in each step are given as follows. 

Step 1) 

In this case, the ratio between the system response at every nonlinearity generated 

frequency in Eq. (6.18) and maximum amplitude of system inputs is calculated and the 

index 𝐼𝑁𝐷1 was evaluated using Eq. (6.11) as 

𝐼𝑁𝐷1 =    8|
    *𝑋𝑖

1(𝑗𝜔𝑁𝐿
′ )+

    *𝑋𝑖
1(𝑗𝜔𝐹

′ )+
| , |
    *𝑋𝑖

2(𝑗𝜔𝑁𝐿
′ )+

    *𝑋𝑖
2(𝑗𝜔𝐹

′ )+
| , 𝑖 = 1,… ,1 ,𝜔𝐹

′ ∈ 𝜔𝐹     𝜔𝑁𝐿
′ ∈ 𝜔𝑁𝐿 9 

=  .4952 ≥ 𝜀1 = 8.42 × 1 
;6 

where 𝜔𝑁𝐿  is shown in Eq. (6.18). Therefore, it is concluded that at least one 

nonlinear component exists in the system.  

Step 2) 

At this step, the nonlinearity generated frequency range 𝜔𝑁𝐿1  was determined as  

𝜔𝑁𝐿1 = ,𝜔1, 𝜔2- = ,𝜔𝑓3 − 𝜔𝑓2, 𝜔𝑓4 − 𝜔𝑓1- = ,1  , 3  -.  

So 

𝑆𝑇𝐼1𝑖,𝑖+1, 𝑆𝑇𝐼2𝑖,𝑖+1 and 𝑆𝐼𝛿 𝑖,𝑖+1, 𝑖 = 1,… ,9 

were evaluated using Eqs. (6.8) and (6.9). Then, 𝑆𝛿max was determined using Eq. 

(6.14); the result is 

𝑆𝐼𝛿max = 1.4866 × 1 
;4 < 𝜀2 =  .  99 

So it is known that there is only one nonlinear component in the system. 

Step 3)  

Because Step 2) indicates there is only one nonlinear component in the system, Step 3) 

of the proposed method was followed. At this step, the range of driving frequency 

𝜔𝐹
1 = ,𝜔1, 𝜔2- = ,𝜔𝑓1, 𝜔𝑓2- was used first to evaluate  
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𝑆𝑇𝐼11
𝑖,𝑖+1, 𝑆𝑇𝐼21

𝑖,𝑖+1 and 𝑆𝐼𝛿1
𝑖,𝑖+1, 𝑖 = 1,… ,9 

using Eqs. (6.8) and (6.9) and 𝑆𝐼𝛿̅̅̅̅̅1
𝑖,𝑖:1 , 𝑖 = 1,… ,9 were evaluated using Eqs. (6.14) 

and (6.15). Then the range of driving frequency 𝜔𝐹
2 = ,𝜔1, 𝜔2- = ,𝜔𝑓3, 𝜔𝑓4- was 

used to evaluate  

𝑆𝑇𝐼12
𝑖,𝑖+1, 𝑆𝑇𝐼22

𝑖,𝑖+1 and 𝑆𝐼𝛿2
𝑖,𝑖+1, 𝑖 = 1,… ,9 

using Eqs. (6.8) and (6.9) and 𝑆𝐼𝛿̅̅̅̅̅2
𝑖,𝑖:1 , 𝑖 = 1,… ,9 were evaluated by Eqs. (6.14) and 

(6.15). The results are shown in Tables 6.4 and 6.5 indicating  

8
𝑆𝐼𝛿̅̅̅̅̅1

𝑖,𝑖:1 ≥ 𝜀3 = 9.82 × 1 
;6  𝑖 = 3,4,5

𝑆𝐼𝛿̅̅̅̅̅2
𝑖,𝑖:1 ≥ 𝜀3 = 9.82 × 1 

;6  𝑖 = 4,5     
 

So 𝑖′ = 3, 𝑖′ +𝑚′ − 1 = 5, 𝑖̅ = 4     𝑖̅ + 𝑚̅ − 1 = 5, then 

𝐽′ = 𝑖′ +𝑚′ − 1 = +𝑚̅ − 1 = 5 

Therefore, the only nonlinear component is located between mass 𝐽′ = 5 and mass 

(𝐽′ + 1) = 6.  

Table 6.4 The value of 𝑆𝐼𝛿̅̅̅̅̅1
𝑖,𝑖:1 when the 6th spring is nonlinear 

𝑖 𝑆𝛿̅̅ ̅1
𝑖,𝑖:1 𝑖 𝑆𝛿̅̅ ̅1

𝑖,𝑖:1 𝑖 𝑆𝛿̅̅ ̅1
𝑖,𝑖:1 

1 9.73 × 1 ;7 4 0.564982 7 2.81× 1 ;6 

2 2.71 × 1 ;6 5 1 8 1.13× 1 ;6 

3 0.331382 6 3.89× 1 ;6 9 2.58× 1 ;7 
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Table 6.5 The value of 𝑆𝐼𝛿̅̅̅̅̅2
𝑖,𝑖:1 when the 6th spring is nonlinear 

𝑖 𝑆𝛿̅̅ ̅2
𝑖,𝑖:1 𝑖 𝑆𝛿̅̅ ̅2

𝑖,𝑖:1 𝑖 𝑆𝛿̅̅ ̅2
𝑖,𝑖:1 

1 1.98 × 1 ;6 4 0.83277 7 8.26 × 1 ;6 

2 4.27 × 1 ;6 5 1 8 3.74 × 1 ;6 

3 4.48 × 1 ;6 6 2.28 × 1 ;6 9 1.41 × 1 ;6 

 

Again, the conclusions reached at each step above are all consistent with the real 

situation of the simulated system. 

From the results in Chapter 4, 5 and 6, it can be concluded that using the 

transmissibilities at nonlinearity generated frequencies, the location of nonlinear 

components can always be identified correctly, no matter what number and form of 

loading inputs are applied on the system. 

6.3 Modal identification 

Modal identification is one of the most important parts when conducting dynamic 

analysis on structural systems. Transmissibility analysis based method is an effective 

modal identification method by using output response measurements only [220]. But 

the method assumes that the system is linear; the effectiveness of the method in the 

case where the system is nonlinear has never been studied. Therefore, transmissibility 

analysis based modal identification method of nonlinear structural systems is 

investigated in this section. 
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6.3.1 Modal identification of linear MDOF systems using transmissibility 

analysis 

If all springs and dampers are linear, the governing equation of the systems shown in 

Fig. 4.1 and Fig. 5.1 are described by Eq. (4.1) or Eq.(5.1) without nonlinear term 

𝑵𝑭(𝑡), respectively. The modal parameters of the linear systems including natural 

frequency and damping ratio can be identified by transmissibility analysis as 

summarized in Proposition 6.2 below [220-222]. 

Proposition 6.2 Transmissibility analysis based modal identification of linear systems 

For linear systems described by Eq. (4.1) or Eq.(5.1) without nonlinear term 𝑵𝑭(𝑡) 

and subject to different loading conditions, define, 

∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔) =

1

𝑇𝑖,𝑘
𝑆′(𝜔) − 𝑇𝑖,𝑘

𝑆′′(𝜔)
 (6.19)  

where 𝑆′ and 𝑆′′ indicate two different loading conditions, namely, the loadings are 

applied on different masses under the two conditions (detailed definition and relevant 

discussions about different loading conditions can be found in Ref. [222]); 𝑇𝑖,𝑘
𝑆′(𝜔) 

and 𝑇𝑖,𝑘
𝑆′′(𝜔) are transmissibilities between 𝑖th and 𝑘th outputs under the loading 

condition 𝑆′ and 𝑆′′, respectively. Then, under the small damping assumption, the 

pole of the system's 𝑚̿   mode 𝜆𝑚̿  

𝜆𝑚̿ = 𝜎𝑚̿ + 𝑗𝜔𝑚̿, 𝑚̿ = 1,2, …𝑛 (6.20)  

can be obtained by identifying the peaks of ∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔). Consequently, the 𝑚̿th 

order natural frequency 𝜔𝑚̿  and corresponding damping ratio 

𝜁𝑚̿ = −𝜎𝑚̿ √𝜎𝑚̿
2 + 𝜔𝑚̿

2⁄  can be obtained 

Proof of Proposition 6.2 [220-222] 
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For linear system described by Eq. (4.1) or Eq.(5.1) without nonlinear term 𝑵𝑭(𝑡), 

under the small damping assumption, the transfer function matrix can be described by 

𝐻(𝜔) = ∑ 4
*𝜙𝑚̿+*𝜐𝑚̿+

𝑇

𝑗𝜔 − 𝜆𝑚̿
+
*𝜙𝑚̿+

 *𝜐𝑚̿+
𝐻

𝑗𝜔 − 𝜆𝑚̿
 5

𝑛

𝑚̿<1

 (6.21)  

where *∎+𝑇, *∎+  and *∎+𝐻 are all mathematical operators, indicating transpose, 

complex conjugate and Hermitian conjugate respectively; 𝑛 is the number of modes 

and is also the number of DOFs of linear system; 𝜙𝑚̿ and 𝜐𝑚̿ are the modal shape 

and modal participation factor of mode 𝑚̿, respectively. The objective of modal 

identification is to find the value of natural frequency 𝜔𝑚̿ and damping ratio 𝜁𝑚̿ 

from the system’s pole 𝜆𝑚̿. 

When the system is subject to the loading condition 𝑆′, and there are 𝑚 inputs 

which are applied on the 𝑆1, 𝑆2, … , 𝑆𝑚
th masses respectively, the transmissibility 

between the 𝑖th and 𝑘th outputs is 

𝑇𝑖,𝑘
𝑆′(𝜔) =

𝑋𝑖(𝜔)

𝑋𝑘(𝜔)
=
∑ 𝐻𝑖𝑆𝑝(𝜔)𝐹𝑆𝑝(𝜔)
𝑚
𝑝<1

∑ 𝐻𝑘𝑆𝑝(𝜔)𝐹𝑆𝑝(𝜔)
𝑚
𝑝<1

=

∑ ∑ 4
*𝜙𝑖𝑚̿+𝜐𝑆𝑝𝑚̿
𝑗𝜔 − 𝜆𝑚̿

+
*𝜙𝑖𝑚̿+

 𝜐𝑆𝑝𝑚̿
 

𝑗𝜔 − 𝜆𝑚̿
 5𝐹𝑆𝑝(𝜔)

𝑛
𝑚̿<1

𝑚
𝑝<1

∑ ∑ 4
*𝜙𝑘𝑚̿+𝜐𝑆𝑝𝑚̿
𝑗𝜔 − 𝜆𝑚̿

+
*𝜙𝑘𝑚̿+

 𝜐𝑆𝑝𝑚̿
 

𝑗𝜔 − 𝜆𝑚̿
 5𝐹𝑆𝑝(𝜔)

𝑛
𝑚̿<1

𝑚
𝑝<1

 

(6.22)  

where 𝐹𝑆𝑝(𝜔) is the spectrum of the 𝑝th input. 

When 𝜔 approaches to one of the system’s poles, say, 𝜆𝑖̿, then the value of 𝑇𝑖,𝑘
𝑆′(𝜔) 

can be calculated using Eq.(6.22) according to limiting algorithm. 

   
𝜔→  ̿

𝑇𝑖,𝑘
𝑆′(𝜔) =

𝜙𝑖𝑖̿∑ 𝜐𝑆𝑝𝑖̿𝐹𝑆𝑝(𝜔)
𝑆̅
𝑝<1

𝜙𝑘𝑖̿∑ 𝜐𝑆𝑝𝑖̿𝐹𝑆𝑝(𝜔)
𝑆̅
𝑝<1

=
𝜙𝑖𝑖̿
𝜙𝑘𝑖̿

 (6.23)  

Eq. (6.23) indicates that when the frequency is equal to one of the system’s poles, the 
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transmissibility between two fixed DOFs becomes independent of the locations of 

inputs. This accords with the fact that transmissibility changes with the positions of the 

inputs, but it is independent of them and becomes convergent at the system’s poles.  

Define the subtraction of two transmissibility functions as 

∆𝑇𝑖,𝑘
𝑆′ ,𝑆′′(𝜔) = 𝑇𝑖,𝑘

𝑆′(𝜔) − 𝑇𝑖,𝑘
𝑆′′(𝜔) (6.24)  

Consequently, the following relationship can be satisfied. 

   
𝜔→  ̿

∆𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔) =    

𝜔→  ̿
{𝑇𝑖,𝑘

𝑆′(𝜔) − 𝑇𝑖,𝑘
𝑆′′(𝜔)} =

𝜙𝑖𝑖̿
𝜙𝑘𝑖̿

−
𝜙𝑖𝑖̿
𝜙𝑘𝑖̿

=   (6.25)  

This indicates that the system’s poles are zeroes of function ∆𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔) , and 

consequently, poles of its inverse, namely, ∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′. Therefore, it is possible to 

identify the system poles 𝜆𝑚̅  by analyzing the transmissibility functions 

𝑇𝑖,𝑘
𝑆′(𝜔),𝑇𝑖,𝑘

𝑆′′(𝜔) and associated ∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔). Thus, the Proposition 6.2 is proved. 

 

(a) Transmissibility functions         (b) ∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔) 

Fig. 6.3 Some transmissibility functions and associated ∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔) of linear system 

(4.1) 

For system (4.1) with the same linear parameters as that in simulation studies in 

Section 6.2, some transmissibility functions 𝑇𝑖,𝑘
𝑆′(𝜔) , 𝑇𝑖,𝑘

𝑆′′(𝜔)  and associated 
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∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔) are shown in Fig. 6.3 where 𝑖 = 4 and 𝑘 = 7. It can be observed that 

all transmissibility functions intersect at the same points when  ≈4.7Hz in Fig. 6.3(a) 

and all ∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔) functions have a peak when  ≈ 4.7Hz in Fig. 6.3(b). These are 

in agreement with the above analysis. 

6.3.2 Modal identification of nonlinear MODF systems using 

transmissibility analysis 

Proposition 6.2 describes the theoretical principle of modal identification of linear 

MODF systems by analysing transmissibility functions and associated ∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔). 

However, when there are multiple nonlinear components in the system, the 

effectiveness of this method depends on the output DOFs used for transmissibility 

evaluations.  

For example, Fig. 6.4 shows some transmissibility functions 𝑇𝑖,𝑘
𝑆′(𝜔), 𝑇𝑖,𝑘

𝑆′′(𝜔) and 

associated ∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔) with system (4.5) where the 5th, 6th and 7th springs become 

nonlinear and output DOFs are chosen as 𝑖 = 3 and 𝑘 = 1 , 𝑖 = 7 and 𝑘 = 1 , 

𝑖 = 2  and 𝑘 = 4respectively. It can be found that all transmissibility functions 

intersect at one point in Figs. 6.4(a), (c) and (e) and all ∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔) reach a peak at 

 ≈5.4Hz in Figs. 6.4(b), (d) and (f). Therefore, the modal analysis method for the 

linear MDOF system is able to be used to identify the pole of the nonlinear system in 

these cases. In addition, a comparison between Fig. 6.3 and Fig. 6.4 reveals that even 

common peaks in these two figures can indicate the system’s pole, but the specific 

values of the pole that can be observed from the two figures are slightly different. This 

can be due to the fact that an introduction of nonlinearity can cause the change in a 

system’s equivalent stiffness and, consequently, slightly change the system’s natural 

frequency.  
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(a) Transmissibility functions         (b) ∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔) 

 

(c) Transmissibility functions         (d) ∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔) 

 

(e) Transmissibility functions         (f) ∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔) 

Fig. 6.4 Some transmissibility functions and associated ∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔) of the nonlinear 

system (4.5)  
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Fig. 6.5 shows some transmissibility functions 𝑇𝑖,𝑘
𝑆′(𝜔), 𝑇𝑖,𝑘

𝑆′′(𝜔)  and associated 

∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔) when the output DOFs are selected as 𝑖 = 4, 𝑘 = 7,. It can be seen 

that there are many intersection points among different transmissibility functions in 

Fig. 6.5(a) and many common peaks at different frequencies in Fig. 6.5(b). Therefore, 

the system’s pole cannot be identified in this case. 

 

(a) Transmissibility functions              (b) ∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔) 

Fig. 6.5 Some transmissibility functions and associated ∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔) of the nonlinear 

system (4.5)  

It can be concluded from above analysis on Figs. 6.4 and 6.5 that for the nonlinear 

systems described by (4.5) or (5.1), the linear method becomes invalid if the output 

DOFs are not appropriately selected; but if two output DOFs involved in 

transmissibility evaluation are both located outside the range of nonlinear 

components including on the same side and on the different sides of nonlinear 

components, transmissibility analysis based technique can still be used to identify the 

modal parameters. This can be because for a nonlinear system with several nonlinear 

components, if both output DOFs involved in transmissibility evaluations are outside of 

the locations of these nonlinear components, the nonlinear components can together 

be considered as one integrated part of the system that can approximately be 

represented by an equivalent linear subsystem.  
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In addition, there are always many peaks in the figure of every ∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔), but only 

the common peaks of different ∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔) are capable of representing the system 

poles. Therefore, the transmissibility functions of two system responses under at least 

three different loading conditions are required to identify the system modal 

parameters by transmissibility analysis method.  

Based on the above observations and similar assumptions as that in Section 6.2, that is, 

the output responses of the structural system to three different loading conditions, 

which are within the same frequency range but applied on different locations, are 

available, the following procedure can be proposed to identify the modal parameters 

of nonlinear systems by transmissibility analysis. 

Step 1) Evaluate 𝑋𝑖
1(𝑗𝜔) , 𝑋𝑖

2(𝑗𝜔)  and 𝑋𝑖
3(𝑗𝜔), 𝑖 = 1, . . . , 𝑛 , the spectra of the 

output responses of structural system under three different loading conditions, 

and determine the amplitudes of these spectra at all nonlinearity generated 

frequencies in the system outputs, that is, 𝑋𝑖
1(𝑗𝜔𝑁𝐿), 𝑋𝑖

2(𝑗𝜔𝑁𝐿) and 𝑋𝑖
3(𝑗𝜔𝑁𝐿), 

for 𝑖 = 1,… , 𝑛; determine the highest order 𝑁 of the system nonlinearity from 

observing the system output frequency responses; and calculate the value of 

index 𝐼𝑁𝐷1 as defined by Eq. (6.13) to represent the strength of the effect of 

system nonlinearity on the system output responses. If  

𝐼𝑁𝐷1 ≥ 𝜀1 (6.26)  

then it can be concluded that there exists nonlinear component in the system. 

Otherwise, there is no nonlinear component in the system. In Eq. (6.26), 𝜀1    a 

threshold to be determined a priori. 

Step 2) If Step 1) indicates there is nonlinear component in the system, select a 

nonlinearity generated frequency range 𝜔𝑁𝐿1 = ,𝜔1, 𝜔2-  such that 𝑋𝑖
1(𝑗𝜔𝑁𝐿1), 

𝑋𝑖
2(𝑗𝜔𝑁𝐿1)  and 𝑋𝑖

3(𝑗𝜔𝑁𝐿1) 𝑖 = 1,… , 𝑛 have significant amplitudes. Select any 

two sets of system frequency responses, say, 𝑋𝑖
1(𝑗𝜔𝑁𝐿1)and 𝑋𝑖

2(𝑗𝜔𝑁𝐿1)  to 
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calculate 𝑆𝑇1𝑖,𝑖:1 , 𝑆𝑇2𝑖,𝑖:1 , and 𝑆𝛿𝑖,𝑖:1  for 𝑖 = 1, … , 𝑛 − 1  using Eqs. (6.8) 

and (6.9). Then, evaluate 𝑆𝐼𝛿max using Eq.(6.14) to check whether  

𝑆𝐼𝛿max   𝜀2 (6.27)  

 where 𝜀2    another a priori determined threshold. If Eq. (6.27) holds, it can be 

concluded that there exists only one nonlinear component in the system. 

Otherwise, there are more than one nonlinear components.  

Step 3) If Step 2) indicates there exists only one nonlinear component, then, the 

modal parameters can be identified by using the same method as that in the 

linear case. 

Step 4) If Step 2) indicates there exist more than one nonlinear components in the 

system, evaluate 𝑆𝐼𝛿̅̅̅̅̅𝑖,𝑖:1 , 𝑖 = 1,… , 𝑛 − 1 by using Eq.(6.15) to find those i’s 

such that  

𝑆𝐼𝛿̅̅̅̅̅𝑖,𝑖:1 ≥ 𝜀4 (6.28)  

 where 𝜀4  is a priori determined threshold. Denote those i’s such that (6.28) holds 

as  

𝑖′′, 𝑖′′ + 1,… , 𝑖′′ +𝑚′′ − 1 

 where 𝑚′′ > 1. Then, it can be concluded that these nonlinear components are 

located between mass 𝑖′′ and mass 𝑖′′ +𝑚′′. 

Step 5) When the locations of nonlinear components are determined, two output 

DOFs involved in transmissibility evaluation can be chosen so that  

 𝑖, 𝑘 ∉ *𝑖′′, 𝑖′′ + 1,… , 𝑖′′ +𝑚′′ − 1+ 

This includes two possibilities: 

a) Both output DOFs involved are on the same side of nonlinear components, 

that is  
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1  𝑖, 𝑘  𝑖′′   𝑜𝑟  𝑖′′ +𝑚′′  𝑖, 𝑘  𝑛   𝑖  𝑘 (6.29)  

b) Two output DOFs involved are on the different sides of nonlinear 

components, that is 

2
1  𝑖  𝑖′′

𝑖′′ +𝑚′′  𝑘  𝑛
 𝑜𝑟 2

𝑖′′ +𝑚′′  𝑖  𝑛
1  𝑘  𝑖′′

 (6.30)  

Then evaluate ∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔) by using Eq. (6.19) in the situations where two different 

loading conditions are considered including, for example, situation 1): first and second 

loading conditions are considered, situation 2): first and third loading conditions are 

considered, etc. Consequently, the system’s poles can be identified from the common 

peaks of these ∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔). 

The theoretical basis of each step and some requirements for loading conditions are 

discussed in the following remarks. 

6.3.3 Remarks 

a) Steps 1), 2) and 4) can be used to detect the nonlinear components in the system 

and find their locations, the theoretical basis of these three steps are the same as 

corresponding steps of nonlinearity localization procedure in Chapters 4 and 5. 

Steps 3) and 5) are used to identify poles of the nonlinear system, they exploit the 

conclusion in Proposition 6.2 and the observations from Figs. 6.4 and 6.5. 

𝜀1, 𝜀2, 𝜀4 are three threshold parameters in the method which are determined in 

the same way as determining the corresponding thresholds in the nonlinearity 

localization procedure in Chapters 4 and 5. 

b) According to Proposition 6.2, the system can be subject to one input or multiple 

inputs. However, in different loading conditions, the loading inputs should be 

applied on different locations, and have the same frequency range which covers 

some natural frequencies of the system.  
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c) The proposed procedure for modal identification of nonlinear systems can be 

used for all cases where the nonlinear phenomenon is local including the cases 

when the system is subject to damage with nonlinear features and the cases 

when the nonlinearity is caused by other factors, such as extremely large loadings.  

6.3.4 Simulation study 

In order to demonstrate how to use above proposed procedure to identify poles of 

nonlinear systems, one simulation study is conducted in this section. The 10DOF 

system used in Chapter 4 with the value of linear and nonlinear parameters the same 

as that in simulation studies in Section 4.6 is considered again for the simulation study. 

Therefore, thresholds 𝜀1, 𝜀2, and 𝜀4 listed in Table 4.1 are used again.  

It is assumed that there are three nonlinear components which are 5th, 6th and 7th 

springs, namely, 𝐽 ̅ = 3, 𝐽1 = 5, 𝐽2 = 6 and 𝐽3 = 7, and the inputs under three 

different conditions are exactly the same, but applied on different locations, in this 

case, 2nd, 6th and 9th masses respectively. The input is shown as 

𝑓(𝑡) =
𝐴𝑠𝑖𝑛(𝜔𝑓𝑡 +  )

2 (𝑡 − 𝑡1)
 (6.31)  

where, 𝐴 = 3, 𝜔𝑓 = 8  ,  =   and 𝑡1 = 5 seconds. Therefore, the frequency 

range of the loadings is  𝐹 = , ,𝜔𝑓- = , , 8  - ; the highest order of system 

nonlinearity is determined as 𝑁 = 6 from the observation on spectra of the system 

output responses, for example, the output response of the 7th mass when the input is 

applied on the 2nd mass as shown Fig. 6.6; the nonlinearity generated frequencies are 

calculated by solving Eqs. (6.1)-(6.3) in Proposition 6.1 and the results are 

𝜔𝑁𝐿 = (8 ,48  - (6.32)  
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Fig. 6.6 Output response of the 7th mass when the input is applied on the 2nd mass 

The results of the simulation study obtained in each step of the proposed method are 

given as follows. 

Step 1) 

In this case, the ratio between the system response at every nonlinearity generated 

frequency in Eq. (6.32) and maximum amplitude of system inputs is calculated and the 

index 𝐼𝑁𝐷1 was evaluated using (6.11) as 

𝐼𝑁𝐷1 =    8|
   *𝑋𝑖

1(𝑗𝜔𝑁𝐿
′ )+

   *𝑋𝑖
1(𝑗𝜔𝐹

′ )+
| , |
   *𝑋𝑖

2(𝑗𝜔𝑁𝐿
′ )+

   *𝑋𝑖
2(𝑗𝜔𝐹

′ )+
| , 𝑖 = 1,… ,1 ,𝜔𝐹

′ ∈ 𝜔𝐹     𝜔𝑁𝐿
′ ∈ 𝜔𝑁𝐿 9 

=  .  35 ≥ 𝜀1 = 8.42 × 1 
;6 

(6.33)  

where 𝜔𝑁𝐿 is shown in Eq.(6.32). Therefore, it can be concluded that there exists 

nonlinear component in the system.  

Step 2) 

At this step, the nonlinearity generated frequency range was determined as 

𝜔𝑁𝐿1 = ,𝜔1, 𝜔2- = (8 ,16 - , and 𝑋𝑖
1(𝑗𝜔𝑁𝐿1) and 𝑋𝑖

2(𝑗𝜔𝑁𝐿1)  are used for 

nonlinearity localization. So 

𝑆𝑇𝐼1𝑖,𝑖+1, 𝑆𝑇𝐼2𝑖,𝑖+1 and 𝑆𝐼𝛿 𝑖,𝑖+1, 𝑖 = 1,… ,9 

were evaluated using Eqs. (6.8) and (6.9). Then, 𝑆𝐼𝛿max was determined using Eq. 
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(6.14), the result is 

𝑆𝐼𝛿max = 2.6245 > 𝜀2 =  .  99 

So it is known that there are more than one nonlinear components in the system. 

Step 4)  

As Step 2) has shown that there are more than one nonlinear components in the 

system, Step 4) rather than Step 3) of the proposed method is used in this case. At this 

step, 𝑆𝐼𝛿̅̅̅̅̅𝑖,𝑖:1 , 𝑖 = 1, … ,9 were evaluated by Eq. (6.15), the results are shown in 

Table 6.6, in which it can be observed that 

𝑆𝐼𝛿̅̅̅̅̅𝑖,𝑖:1 ≥ 𝜀4 =  .  15,   𝑖 = 4,5,6 

Therefore, 𝑖′′ = 4,  and 𝑚′′ = 3 , and it can be concluded that the nonlinear 

components are located between mass 𝑖′′ = 4 and mass 𝑖′′ +𝑚′′ = 7 in the 

system. 

Table 6.6 The value of 𝑆𝐼𝛿̅̅̅̅̅𝑖,𝑖:1 when the 5th, 6th and 7th springs are nonlinear 

𝑖 𝑆𝐼𝛿̅̅̅̅̅𝑖,𝑖:1 𝑖 𝑆𝐼𝛿̅̅̅̅̅𝑖,𝑖:1 𝑖 𝑆𝐼𝛿̅̅̅̅̅𝑖,𝑖:1 

1 0.000424 4 1 7 0.000617 

2 0.000379 5 0.249364 8 0.000554 

3 0.000215 6 0.135129 9 0.000263 

 

Step 5)  

As Step 4) has determined the nonlinear components are located between 4th mass 

and 7th mass, therefore, two output DOFs involved in transmissibility evaluation can be 

chosen as 3rd and 8th. Then ∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔) are determined to obtain ∆;1𝑇3,8

2,6(𝜔) and 

∆;1𝑇3,8
2,9(𝜔) using Eq. (6.19), the results are shown in Fig. 6.7. 
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Fig. 6.7 ∆;1𝑇3,8
2,6(𝜔) and ∆;1𝑇3,8

2,9(𝜔) of the nonlinear system (4.5) 

It can be seen that the two ∆;1𝑇𝑖,𝑘
𝑆′,𝑆′′(𝜔) both reach a peak at  ≈5.4Hz in Fig. 6.7. 

Therefore, the modal analysis method for the nonlinear MDOF system can be used to 

identify the pole of the nonlinear system in this case. Obviously, the conclusions 

reached at each step are all consistent with the real situation of the simulated system. 

6.4 Conclusions 

This chapter studied the determination of the output frequency components of 

nonlinear systems subject to the loading inputs with band limited frequencies, and 

demonstrated, by examples, that the MIMO nonlinear system output frequency ranges 

can be correctly determined using the analysis results. 

Then the detection and localization of nonlinear components in the systems subject to 

inputs with band limited frequencies were studied by extending the results introduced 

in Chapters 4 and 5 to the more general and practical systems. 

Finally, the theoretical principle of transmissibility analysis based modal identification 

method for linear systems is introduced and demonstrated by simulation examples. 

Furthermore, studies were conducted to combine this method with the newly 

proposed nonlinearity detection and localization technique to identify the poles of 

nonlinear systems to implement a transmissibility analysis based modal identification 

for nonlinear structural systems.  
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Chapter 7  

Conclusions 

Structural health monitoring, which is concerned with damage detection and 

identification, is always applied for engineering systems in order to guarantee systems’ 

safety and reliability. Although extensive research works have been conducted in the 

area of SHM, there is still no approach that can systematically take the effect of system 

operational and environmental conditions on SHM results into account. 

Transmissibility analysis is a well-known technique for SHM. But traditional 

transmissibility is basically a linear system concept and relevant techniques assume 

the systems behave linearly. Consequently, the analysis results generally depend on 

the locations of system input and can therefore also be affected by system operational 

and environmental conditions.  

In order to address these fundamental problems with SHM, in the present study, a 

general structural health monitoring method is first proposed which can be used to 

address a wide class of SHM problems via systematically taking the effects of operating 

conditions and environmental changes into account. Moreover, considering the 

well-known facts that damage can often make a structural system behave nonlinearly, 

new transmissibility analysis methods have been developed for the detection and 

localization of damage with nonlinear features in MDOF structural systems. These 

methods do not require that much structural loading input information as needed by 

traditional transmissibility analysis, so as to be able to solve input location dependent 

problem with traditional transmissibility analysis when dealing with detection and 

localization of damage with nonlinear features for a wide range of engineering systems. 

In addition, new guidelines have also been proposed based on the new transmissibility 

analysis for the modal analysis for nonlinear structural systems. 
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7.1 Main contributions of this thesis 

The main contributions of this thesis can be summarized as follows.  

(1) A novel health probability based structural health monitoring method for changing 

environmental and operational conditions 

A baseline model, which represents the relationship between the RMS feature of 

sensor data and the changes in the system environmental and operating parameters, is 

built by a B-spline function based modeling approach. The tolerance range of baseline 

modelling error is determined by using a statistical analysis. Then the health 

probability, which is defined as the proportion of the cases where the modeling errors 

are within the tolerance range, is used to determine whether an inspected system is 

working in a normal or damaged working condition.  

(2) Transmissibility analysis methods for detection and location of damage via 

nonlinear features in MDOF structural systems 

New methods have been developed to determine the output frequencies of nonlinear 

systems under different types of inputs. The characteristics of NOFRFs transmissibility 

and transmissibility of system responses at frequencies generated by system 

nonlinearity are investigated to reveal the damage sensitive features which are 

independent from the locations of system inputs. A series of new transmissibility 

analysis based methods are then proposed to detect and localize damage with 

nonlinear features in MDOF structural systems. Furthermore, the proposed 

nonlinearity detection and location methods are extended to more general case of 

higher order dynamics and applied to study the detection and localization of water 

tree damage in power cable system. 

(3) Transmissibility analysis based modal identification for nonlinear MDOF systems  

Effects of damage with nonlinear features on the transmissibility analysis based modal 
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identification method are also investigated. Based on the results of nonlinearity 

detection and localization, new guidelines are developed for applying the 

transmissibility analysis based modal identification to nonlinear structural systems. 

These results provide a series of new SHM methods, which can systematically take 

many effects of system operating conditions and environmental changes on SHM 

results into account and provide more effective solutions to a wide range of 

engineering structural health monitoring problems. Both numerical simulation studies 

and experimental data analysis have been conducted to verify the effectiveness and 

demonstrate the potential practical applications of these new methods. 

7.2 Suggestions for further work 

Although, the present research has developed many new methods for structural 

health monitoring and damage localization, there are many further issues yet to be 

addressed. These issues mainly involve the extension of the new transmissibility 

methods to structural systems where there exist both damage which induces changes 

in system linear characteristics and damage with nonlinear features. Traditional 

transmissibility is a linear system concept, and can only be applied to detect and locate 

damage which manly induce system linear characteristic changes. The new 

transmissibility analysis based methods developed in this thesis are mainly concerned 

with detection and location of damage with nonlinear features. However, in 

engineering practice, damage which induce system linear characteristic changes and 

damage with nonlinear features can exist simultaneously in a system. Thus, the 

development of methods which can deal with the detection and location of damage 

with these different natures at the same time are important for engineering 

applications of the new transmissibility analysis methods proposed in this study.
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Appendix A  

Recursive forward-regression orthogonal estimator 

Identification of MIMO nonlinear systems using a forward-regression orthogonal 

estimator can be introduced as follows according to Ref. [199 ].  

Consider the following linear regression function: 

 =   +   (A.1)  

where  ,   are variable vectors,   is coefficient vector,   is error vector, 

 = *𝑦(1), 𝑦(2), … , 𝑦(𝑁)+𝑇 ,  = *𝑋(1), 𝑋(2),… , 𝑋(𝑁)+𝑇 ,  = * 1,  2, … ,  𝑀+
𝑇  and 

𝑋(𝑡) = *𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑀(𝑡)+
𝑇. The purpose of this estimator is to select the terms 

in 𝑋(𝑡) = *𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑀(𝑡)+  which contribute significantly to the model 

between   and  , and identify their coefficients. 

There are the assumptions for Eq.(A.1) are made as follows: 

1).   is a zero mean white sequence and is uncorrelated with  ; 

2). All stochastic process involved are ergodic; 

3).  𝑇  is positive definite so that it can be decomposed into: 

 𝑇 = 𝑨𝑇 𝑨 (A.2)  

where 𝑨 is an upper triangular matrix with unity diagonal elements, and   is a 

diagonal matrix with positive diagonal elements. 

Then, Eq.(A.1) can be rewritten as: 

 =  (𝑨;1𝑨) +  =    (A.3)  

where 
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{
 =  𝑨;1

 = 𝑨 
 (A.4)  

Because  

   = ( 𝑨;1)𝑇( 𝑨;1) =   (A.5)  

the matrix   is an orthogonal matrix. 

Auxiliary regressors 𝑤𝑖 can be obtained recursively from: 

 =  − (𝑨 −  ) (A.6)  

The upper triangular matrix 𝑨 satisfies 

𝑨 =  ;1 𝑇  (A.7)  

The auxiliary parameter vector 𝑨 satisfies: 

 =  ;1 𝑇 −  ;1 𝑇  (A.8)  

So that the estimated   is given by 

 ̂ =  ;1 𝑇  (A.9)  

The estimates of the original parameters can be computed from 

 ̂ =  ̂ − (𝑨 −  ) ̂ (A.10)  

The error reduction ratio (ERR) due to 𝑖th term is defined as: 

,𝑒𝑟𝑟-𝑖 =
𝑔̂𝑖 ∑ 𝑤𝑖

2(𝑡)𝑁
𝑡<1

∑ 𝑦2(𝑡)𝑁
𝑡<1

 (A.11)  

The terms that contribute greatly to the model can be selected as follows: 

Firstly, all the 𝑥𝑖(𝑡), 𝑖 = 1,2, … ,𝑀 are considered as possible candidates for 𝑤1(𝑡). 

For 𝑖 = 1,2, … ,𝑀, calculate 
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𝑤1
(𝑙)(𝑡) = 𝑥𝑖(𝑡), 𝑔̂1

(𝑙)
=
∑ 𝑤1

(𝑙)(𝑡)𝑦(𝑡)𝑁
𝑡<1

∑ .𝑤1
(𝑙)(𝑡)/

2
𝑁
𝑡<1

, ,𝑒𝑟𝑟-1
(𝑙)
=
.𝑔̂1

(𝑙)
/
2
∑ .𝑤1

(𝑙)(𝑡)/
2

𝑁
𝑡<1

∑ 𝑧2𝑁
𝑡<1 (𝑡)

 (A.12)  

Find the maximum of ,𝑒𝑟𝑟-1
(𝑙)

, for example, ,𝑒𝑟𝑟-1
(𝑓)
= 𝑚𝑎𝑥2,𝑒𝑟𝑟-1

(𝑙)
, 1  𝑙  𝑀3. 

Then the first term 𝑤1(𝑡) = 𝑤1
(𝑓)(𝑡), 𝑥𝑓(𝑡)  is selected with 𝑔̂1 = 𝑔̂1

(𝑓)
 and 

,𝑒𝑟𝑟-1 = ,𝑒𝑟𝑟-1
(𝑓)

. 

Secondly, all the 𝑥𝑖(𝑡), 𝑖 = 1,2, … ,𝑀, 𝑖  𝑓 are considered as possible candidates for 

𝑤2(𝑡). For 𝑖 = 1,2, … ,𝑀, 𝑖  𝑓, calculate 

𝑤2
(𝑙)(𝑡) = 𝑥𝑖(𝑡) − 𝛼12

(𝑙)
𝑤1(𝑡), 𝑔̂2

(𝑙)
=
∑ 𝑤2

(𝑙)(𝑡)𝑦(𝑡)𝑁
𝑡<1

∑ .𝑤2
(𝑙)(𝑡)/

2
𝑁
𝑡<1

, ,𝑒𝑟𝑟-2
(𝑙)

=
.𝑔̂2

(𝑙)
/
2
∑ .𝑤2

(𝑙)(𝑡)/
2

𝑁
𝑡<1

∑ 𝑧2𝑁
𝑡<1 (𝑡)

 

(A.13)  

where 

𝛼12
(𝑙)
=
∑ 𝑤1(𝑡)𝑥𝑙(𝑡)
𝑁
𝑡<1

∑ 𝑤1
2𝑁

𝑡<1 (𝑡)
 (A.14)  

Find the maximum of ,𝑒𝑟𝑟-2
(𝑙)

, for example, ,𝑒𝑟𝑟-2
(𝑘)
= 𝑚𝑎𝑥2,𝑒𝑟𝑟-2

(𝑙)
, 1  𝑙  𝑀, 𝑖  

𝑓3. Then the second term 𝑤2(𝑡) = 𝑤2
(𝑘)(𝑡) = 𝑥1(𝑡) − 𝛼12𝑤1(𝑡), 𝑥𝑘(𝑡) is selected 

with 𝛼12 = 𝛼12
(𝑘)
, 𝑔̂2 = 𝑔̂2

(𝑘)
 and ,𝑒𝑟𝑟-2 = ,𝑒𝑟𝑟-2

(𝑘)
. 

The procedure is terminated at the 𝑀𝑠th step either when 

1 −∑,𝑒𝑟𝑟-𝑖

𝑀 

𝑖<1

< 𝑎 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒,𝑀𝑠 < 𝑀 (A.15)  

or when 𝑀𝑠 = 𝑀. 

After the terms which contribute significantly to the model are selected by above 

procedure, their coefficients can be identified by using least square method.



 

170 

 

Appendix B  

Proof of Proposition 4.2 

According to Ref. [123], the 𝑛̅th order frequency response of the system’s 𝑖th output 

can be expressed as 

𝑋(𝑖,𝑛̅)(𝑗𝜔) =
1

2 ̅
∑ 𝐴(𝑗𝜔1)…𝐴(𝑗𝜔𝑛̅)𝐻(𝑖,𝑛̅)(𝑗𝜔1, … , 𝑗𝜔𝑛̅)𝜔1: :𝜔 ̅<𝜔         (B.1) 

where 

𝐴(𝑗𝜔𝑘) = {
𝐴𝑒𝑗     𝑖𝑓 𝜔𝑘 = 𝜔𝐹
𝐴𝑒;𝑗     𝑖𝑓 𝜔𝑘 = −𝜔𝐹
            𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

                   (B.2) 

Obviously, if 𝑏 (𝑏 ∊ * ,1,2, … , 𝑛̅+ ) 𝜔𝑘′𝑠 in 𝜔1, … , 𝜔𝑛̅ take the value of 𝜔𝐹, then 

the remaining (𝑛̅ − 𝑏) 𝜔𝑘′𝑠 in 𝜔1, … , 𝜔𝑛̅ take the value of −𝜔𝐹. Consequently, 

the possible frequency components in  𝑋(𝑖,𝑛̅)(𝑗𝜔) can be obtained as  

Ω𝑛̅ = *(−𝑛̅ + 2𝑏)𝜔𝐹, 𝑏 =  ,1,… , 𝑛̅ + = *−𝑛̅𝜔𝐹, −(𝑛̅ − 2)𝜔𝐹 , … , (𝑛̅ − 2)𝜔𝐹 , 𝑛̅𝜔𝐹+   (B.3) 

and the possible frequency components of system output are given by [46] 

Ω = ⋃ Ω𝑛̅

𝑁

𝑛̅<𝑁;1

= *−𝑁𝜔𝐹, −(𝑁 − 2)𝜔𝐹 , … , (𝑁 − 2)𝜔𝐹 , 𝑁𝜔𝐹+

∪ *−(𝑁 − 1)𝜔𝐹, −(𝑁 − 3)𝜔𝐹, … , (𝑁 − 3)𝜔𝐹 , (𝑁 − 1)𝜔𝐹+

= * , ±1𝜔𝐹, ±2𝜔𝐹 , … , ±𝑁𝜔𝐹+ 

  (B.4) 

From Eq. (B.1), it is known that 

𝑋(𝑖,𝑛̅)(𝑗𝜔) = 𝐺(𝑖,𝑛̅)(𝑗𝜔)𝐹𝑛̅(𝑗𝜔)                      (B.5) 

where 
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𝐺(𝑖,𝑛̅)(𝑗𝜔) =
∑ 𝐴(𝑗𝜔1)…𝐴(𝑗𝜔𝑛̅)𝐻(𝑖,𝑛̅)(𝑗𝜔1, … , 𝑗𝜔𝑛̅)𝜔1: :𝜔 ̅<𝜔

∑ 𝐴(𝑗𝜔1)…𝐴(𝑗𝜔𝑛̅)𝜔1: :𝜔 ̅<𝜔

 

and 

𝐹𝑛̅(𝑗𝜔) =
1

2𝑛̅
∑ 𝐴(𝑗𝜔1)…𝐴(𝑗𝜔𝑛̅)

𝜔1: :𝜔 ̅<𝜔

 

in this case. As Eq. (B.3) indicates even order harmonics are produced by even order 

nonlinearity and odd order harmonics are produced by odd order nonlinearity, Eqs. 

(4.19) and (4.20) can be obtained from (B.5) from the case of 𝑁 is odd and from the 

case of 𝑁 is even, respectively. Thus, the proof of Proposition 4.2 is completed. 
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Appendix C  

Proof of Proposition 4.3 

Consider 𝑘̅ and 𝑁 are all even first. In this case, it is known from (4.20) that 

𝑋𝑖(𝑗𝑘̅𝜔𝐹) = 𝐺(𝑖,𝑘̅)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅(𝑗𝑘̅𝜔𝐹) + 𝐺(𝑖,𝑘̅:2)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅:2(𝑘̅𝑗𝜔𝐹) + + 𝐺(𝑖,𝑁)(𝑗𝑘̅𝜔𝐹)𝐹𝑁(𝑗𝑘̅𝜔𝐹)    (C.1) 

and 

𝑋𝑖:1(𝑗𝑘̅𝜔𝐹) = 𝐺(𝑖:1,𝑘̅)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅(𝑗𝑘̅𝜔𝐹) + 𝐺(𝑖:1,𝑘̅:2)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅:2(𝑗𝑘̅𝜔𝐹) + + 𝐺(𝑖:1,𝑁)(𝑗𝑘̅𝜔𝐹)𝐹𝑁(𝑗𝑘̅𝜔𝐹)  (C.2) 

where 𝑘̅ = 2,4, …  𝑁 − 2,𝑁 . It is known from Property (i) of the NOFRF 

transmissibility given by Eq. (4.14) that if 𝐽 ̅ > 1,     1  𝑖   𝐽1 − 2 or 𝐽𝐽̅  𝑖  𝑛 − 1, 

𝐺(𝑖,𝑘̅)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅(𝑗𝑘̅𝜔𝐹)

𝐺(𝑖:1,𝑘̅)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅(𝑗𝑘̅𝜔𝐹)
=

𝐺(𝑖,𝑘̅:2)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅:2(𝑗𝑘̅𝜔𝐹)

𝐺(𝑖:1,𝑘̅:2)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅:2(𝑗𝑘̅𝜔𝐹)
=  

=
𝐺(𝑖,𝑁)(𝑗𝑘̅𝜔𝐹)𝐹𝑁(𝑗𝑘̅𝜔𝐹)

𝐺(𝑖:1,𝑁)(𝑗𝑘̅𝜔𝐹)𝐹𝑁(𝑗𝑘̅𝜔𝐹)
= 𝑇𝑖,𝑖:1

𝑁𝐿 (𝑗𝑘̅𝜔𝐹) 

= 𝑄̅𝑖,𝑖:1(𝑗𝑘̅𝜔𝐹)                                (C.3) 

Eqs. (C.1)-(C.3) imply that  

𝑆𝑇𝑖,𝑖:1(𝑗𝑘̅𝜔𝐹) =
𝑋𝑖(𝑗𝑘̅𝜔𝐹)

𝑋𝑖:1(𝑗𝑘̅𝜔𝐹)
= 

𝐺(𝑖,𝑘̅)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅(𝑗𝑘̅𝜔𝐹) + 𝐺(𝑖,𝑘̅:2)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅:2(𝑗𝑘̅𝜔𝐹) +  + 𝐺(𝑖,𝑁)(𝑗𝑘̅𝜔𝐹)𝐹𝑁(𝑗𝑘̅𝜔𝐹)

𝐺(𝑖:1,𝑘̅)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅(𝑗𝑘̅𝜔𝐹) + 𝐺(𝑖:1,𝑘̅:2)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅:2(𝑗𝑘̅𝜔𝐹) + + 𝐺(𝑖:1,𝑁)(𝑗𝑘̅𝜔𝐹)𝐹𝑁(𝑗𝑘̅𝜔𝐹)
 

                                = 𝑇𝑖,𝑖:1
𝑁𝐿 (𝑗𝑘̅𝜔𝐹) = 𝑄̅𝑖,𝑖:1(𝑗𝑘̅𝜔𝐹)                      (C.4) 

Therefore, Eq. (4.22) holds.  

Also according to Property (i) of the NOFRF transmissibility, it is known that if 
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𝐽 ̅ > 1,      𝐽1 − 1  𝑖  𝐽𝐽̅ − 1,  

𝐺(𝑖,𝑘̅)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅(𝑗𝑘̅𝜔𝐹)

𝐺(𝑖:1,𝑘̅)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅(𝑗𝑘̅𝜔𝐹)
 𝑇𝑖,𝑖:1

𝑁𝐿 (𝑗𝑘̅𝜔𝐹), 

𝐺(𝑖,𝑘̅:2)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅:2(𝑗𝑘̅𝜔𝐹)

𝐺(𝑖:1,𝑘̅:2)(𝑗𝑘𝜔𝐹)𝐹𝑘̅:2(𝑗𝑘̅𝜔𝐹)
 𝑇𝑖,𝑖:1

𝑁𝐿 (𝑗𝑘̅𝜔𝐹), …, 

    
𝐺(𝑖,𝑁;2)(𝑗𝑘̅𝜔𝐹)𝐹𝑁(𝑗𝑘̅𝜔𝐹)

𝐺(𝑖:1,𝑁;2)(𝑗𝑘̅𝜔𝐹)𝐹𝑁(𝑗𝑘̅𝜔𝐹)
 𝑇𝑖,𝑖:1

𝑁𝐿 (𝑗𝑘̅𝜔𝐹), 

so that    

𝑆𝑇𝑖,𝑖:1(𝑗𝑘̅𝜔𝐹) =
𝑋𝑖(𝑗𝑘̅𝜔𝐹)

𝑋𝑖:1(𝑗𝑘̅𝜔𝐹)

=
𝐺(𝑖,𝑘̅)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅(𝑗𝑘̅𝜔𝐹) + 𝐺(𝑖,𝑘̅:2)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅:2(𝑗𝑘̅𝜔𝐹) + + 𝐺(𝑖,𝑁)(𝑗𝑘̅𝜔𝐹)𝐹𝑁(𝑗𝑘̅𝜔𝐹)

𝐺(𝑖:1,𝑘̅)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅(𝑗𝑘̅𝜔𝐹) + 𝐺(𝑖:1,𝑘̅:2)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅:2(𝑗𝑘̅𝜔𝐹) +  + 𝐺(𝑖:1,𝑁)(𝑗𝑘̅𝜔𝐹)𝐹𝑁(𝑗𝑘̅𝜔𝐹)
 

 𝑇𝑖,𝑖:1
𝑁𝐿 (𝑗𝑘̅𝜔𝐹)                                                 (C.5) 

Therefore, Eq. (4.23) holds. 

According to Property (ii) of the NOFRF transmissibility given by (4.15), if 𝐽 ̅ =

1,      𝑖 = 1, . . . , 𝑛 − 1  

𝐺(𝑖,𝑘̅)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅(𝑗𝑘̅𝜔𝐹)

𝐺(𝑖:1,𝑘̅)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅(𝑗𝑘̅𝜔𝐹)
=

𝐺(𝑖,𝑘̅:2)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅:2(𝑗𝑘̅𝜔𝐹)

𝐺(𝑖:1,𝑘̅:2)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅:2(𝑗𝑘̅𝜔𝐹)
=  

=
𝐺(𝑖,𝑁)(𝑗𝑘̅𝜔𝐹)𝐹𝑁(𝑗𝑘̅𝜔𝐹)

𝐺(𝑖:1,𝑁)(𝑗𝑘̅𝜔𝐹)𝐹𝑁(𝑗𝑘̅𝜔𝐹)
= 𝑇𝑖,𝑖:1

𝑁𝐿 (𝑗𝑘̅𝜔𝐹) = 𝑄̿𝑖,𝑖:1(𝑗𝑘̅𝜔𝐹) 

                                 (C.6) 

Eqs. (C.1), (C.2) and (C.6) imply that  

𝑆𝑇𝑖,𝑖:1(𝑗𝑘̅𝜔𝐹) =
𝑋𝑖(𝑗𝑘̅𝜔𝐹)

𝑋𝑖:1(𝑗𝑘̅𝜔𝐹)

=
𝐺(𝑖,𝑘̅)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅(𝑗𝑘̅𝜔𝐹) + 𝐺(𝑖,𝑘̅:2)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅:2(𝑗𝑘̅𝜔𝐹) + + 𝐺(𝑖,𝑁)(𝑗𝑘̅𝜔𝐹)𝐹𝑁(𝑗𝑘̅𝜔𝐹)

𝐺(𝑖:1,𝑘̅)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅(𝑗𝑘̅𝜔𝐹) + 𝐺(𝑖:1,𝑘̅:2)(𝑗𝑘̅𝜔𝐹)𝐹𝑘̅:2(𝑗𝑘̅𝜔𝐹) +  + 𝐺(𝑖:1,𝑁)(𝑗𝑘̅𝜔𝐹)𝐹𝑁(𝑗𝑘̅𝜔𝐹)
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= 𝑇𝑖,𝑖:1
𝑁𝐿 (𝑗𝑘̅𝜔𝐹) = 𝑄̿𝑖,𝑖:1(𝑗𝑘̅𝜔𝐹)                                      (C.7) 

Therefore, Eq. (4.24) holds. 

As 𝑁 is assumed to be even, for  𝐽 ̅ = 1,  it is known from the first equation in Eqs. 

(4.16) and (4.17) and the first Eq. of (4.20) that  

when 𝑆 ≥  𝐽1, if  1  𝑖   𝐽1 − 2     𝑆  𝑖  𝑛 − 1, or when 𝑆 <  𝐽1 if 1  𝑖  𝑆 −

1      𝐽1  𝑖  𝑛 − 1,  

𝑆𝑇𝑖,𝑖:1(𝑗𝜔𝐹) =
𝑋𝑖(𝑗𝜔𝐹)

𝑋𝑖:1(𝑗𝜔𝐹)

=
𝐺(𝑖,1)(𝑗𝜔𝐹)𝐹1(𝑗𝜔𝐹) + 𝐺(𝑖,3)(𝑗𝜔𝐹)𝐹3(𝑗𝜔𝐹) +  + 𝐺(𝑖,𝑁;1)(𝑗𝜔𝐹)𝐹𝑁;1(𝑗𝜔𝐹)

𝐺(𝑖:1,1)(𝑗𝜔𝐹)𝐹1(𝑗𝜔𝐹) + 𝐺(𝑖:1,3)(𝑗𝜔𝐹)𝐹3(𝑗𝜔𝐹) +  + 𝐺(𝑖:1,𝑁;1)(𝑗𝜔𝐹)𝐹𝑁;1(𝑗𝜔𝐹)
 

  = 𝑇𝑖,𝑖:1
𝐿 (𝑗𝜔𝐹) = 𝑄𝑖,𝑖:1(𝑗𝜔𝐹)                   (C.8) 

that is, the first equation of Eq. (4.25) holds. Otherwise, it is known from the second 

equation of Eqs. (4.16)and (4.17) and the first Eq. of (4.20) that  

𝑆𝑇𝑖,𝑖:1(𝑗𝜔𝐹) =
𝑋𝑖(𝑗𝜔𝐹)

𝑋𝑖:1(𝑗𝜔𝐹)

=
𝐺(𝑖,1)(𝑗𝜔𝐹)𝐹1(𝑗𝜔𝐹) + 𝐺(𝑖,3)(𝑗𝜔𝐹)𝐹3(𝑗𝜔𝐹) +  + 𝐺(𝑖,𝑁;1)(𝑗𝜔𝐹)𝐹𝑁;1(𝑗𝜔𝐹)

𝐺(𝑖:1,1)(𝑗𝜔𝐹)𝐹1(𝑗𝜔𝐹) + 𝐺(𝑖:1,3)(𝑗𝜔𝐹)𝐹3(𝑗𝜔𝐹) +  + 𝐺(𝑖:1,𝑁;1)(𝑗𝜔𝐹)𝐹𝑁;1(𝑗𝜔𝐹)
 

 𝑇𝑖,𝑖:1
𝐿 (𝑗𝜔𝐹) = 𝑄𝑖,𝑖:1(𝑗𝜔𝐹)            (C.9) 

So the second equation of Eq. (4.26) holds. 

For all the other cases of 𝑁 and 𝑘̅, i.e., 𝑁 and 𝑘̅ are all odd, or 𝑁 is odd but 𝑘̅ is 

even, or 𝑁 is even but 𝑘̅ is odd, Eqs. (4.22)-(4.25) can be proved by following the 

same approach as above. Thus, the proof of Proposition 4.3 is completed.  
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Appendix D  

Proof of Proposition 5.1 

When the inputs applied on the MIMO nonlinear system (5.1) are  

{
 
 
 
 
 

 
 
 
 
 

𝑓1(𝑡) = ∑𝑒𝑗𝜔𝑞𝑡
𝑛1

𝑞<1

 

𝑓𝑙(𝑡) = ∑ 𝑒𝑗𝜔𝑞𝑡
𝑛1: :𝑛 

𝑞<𝑛1: :𝑛  1:1

 

𝑓𝑚(𝑡) = ∑ 𝑒𝑗𝜔𝑞𝑡
𝑛1: :𝑛𝑚

𝑞<𝑛1: :𝑛𝑚 1:1

 (D.1)  

where 𝑛1 + 𝑛2 + + 𝑛𝑚 = 𝑛̅ and 𝑛̅ ≥ 2, the corresponding 𝑖th output according 

to the Volterra series is 

𝑥𝑖 =∑𝐻
(𝑖,𝑝1=1,𝑝2= ,…,𝑝𝑚= )

(1)
(𝑗𝜔𝑞)𝑒

𝑗𝜔𝑞𝑡

𝑛1

𝑞<1

+  

+ ∑ 𝐻
(𝑖,𝑝1= ,…,𝑝𝑙=1,…,𝑝𝑚= )

(1)
(𝑗𝜔𝑞)𝑒

𝑗𝜔𝑞𝑡

𝑛1: :𝑛 

𝑞<𝑛1: :𝑛  1:1

+  

+ ∑ 𝐻
(𝑖,𝑝1= ,…,𝑝𝑚=1)

(1)
(𝑗𝜔𝑞)𝑒

𝑗𝜔𝑞𝑡

𝑛1: :𝑛𝑚

𝑞<𝑛1: :𝑛𝑚 1:1

+  

+ 𝜒𝐻(𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)𝑒

𝑗(𝜔1:𝜔2: 𝜔 ̅)𝑡 +  

(D.2)  

where, 𝜒 is the coefficient of  

𝐻(𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)𝑒

𝑗(𝜔1:𝜔2: 𝜔 ̅)𝑡. 

Substitute Eqs.(D.1) and (D.2) into Eq.(5.1), and extract the coefficients of 

𝑒𝑗(𝜔1:𝜔2: 𝜔𝑚)𝑡 in each row, and assume that 𝜔1 + 𝜔2 + 𝜔𝑛̅ = 𝜔, the following 
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relationships can be achieved. 

For the first row,  

(−𝑚1𝜔
2 + 𝑗(𝑐1 + 𝑐2)𝜔 + 𝑘1 + 𝑘2)𝐻(1,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)

(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

− (𝑗𝑐2𝜔 + 𝑘2)𝐻(2,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅) =   

(D.3)  

Then,  

𝐻(1,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

𝐻(2,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

=
𝑗𝑐2𝜔 + 𝑘2

−𝑚1𝜔2 + 𝑗(𝑐1 + 𝑐2)𝜔 + 𝑘1 + 𝑘2
 (D.4)  

According to the definition of NOFRF of MIMO nonlinear system in Eq. (5.7), it can be 

obtained that  

𝐺(1,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

=
∫ 𝑄1 (𝑗𝜔)𝐻(2,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)

(𝑛̅) (𝑗𝜔1, … , 𝑗𝜔𝑛̅)𝜔1:𝜔2: :𝜔 ̅<𝜔
∏ ∏ 𝐹𝑞(𝑗𝜔𝑝)

𝑛1: :𝑛𝑞
𝑝<𝑛 :𝑛1: :𝑛𝑞 1:1

𝑚
𝑞<1 𝑑𝜎𝑛̅𝜔

∫ ∏ ∏ 𝐹𝑞(𝑗𝜔𝑝)𝑑𝜎𝑛̅𝜔
𝑛1: :𝑛𝑞
𝑝<𝑛 :𝑛1: :𝑛𝑞 1:1

𝑚
𝑞<1𝜔1:𝜔2: :𝜔 ̅<𝜔

= 𝑄1 (𝑗𝜔)𝐺(2,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔) 

(D.5)  

where 𝑄1 (𝑗𝜔) =
𝑗 2𝜔:𝑘2

;𝑚1𝜔2:𝑗( 1: 2)𝜔:𝑘1:𝑘2
. Therefore, 

𝐺(1,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

𝐺(2,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

= 𝑄1 (𝑗𝜔) (D.6)  

It can be similarly deduced that, for the last mass, the GFRFs satisfy the following 

relationships: 

(−𝑚𝑛𝜔
2 + 𝑗𝑐𝑛𝜔 + 𝑘𝑛)𝐻(𝑛,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)

(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

− (𝑗𝑐𝑛𝜔 + 𝑘𝑛)𝐻(𝑛;1,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅) =   

(D.7)  

Then, 
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𝐻(𝑛,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

𝐻(𝑛;1,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

=
𝑗𝑐𝑛𝜔 + 𝑘𝑛

−𝑚𝑛𝜔2 + 𝑗𝑐𝑛𝜔 + 𝑘𝑛
 (D.8)  

According to the definition of NOFRF of MIMO nonlinear system in Eq. (5.7), it can be 

obtained that 

𝐺(𝑛,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

=
∫ 𝑄𝑛

′ (𝑗𝜔)𝐻(𝑛;1,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, … , 𝑗𝜔𝑛̅)𝜔1:𝜔2: :𝜔 ̅<𝜔

∏ ∏ 𝐹𝑞(𝑗𝜔𝑝)
𝑛1: :𝑛𝑞
𝑝<𝑛 :𝑛1: :𝑛𝑞 1:1

𝑚
𝑞<1 𝑑𝜎𝑛̅𝜔

∫ ∏ ∏ 𝐹𝑞(𝑗𝜔𝑝)𝑑𝜎𝑛̅𝜔
𝑛1: :𝑛𝑞
𝑝<𝑛 :𝑛1: :𝑛𝑞 1:1

𝑚
𝑞<1𝜔1:𝜔2: :𝜔 ̅<𝜔

= 𝑄𝑛
′ (𝑗𝜔)𝐺(𝑛;1,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)

(𝑛̅) (𝑗𝜔) 

(D.9)  

where 𝑄𝑛
′ (𝑗𝜔) =

𝑗  𝜔:𝑘 

;𝑚 𝜔2:𝑗  𝜔:𝑘 
. Therefore, 

𝐺(𝑛,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

𝐺(𝑛;1,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

= 𝑄𝑛
′ (𝑗𝜔) (D.10)  

For the masses that not connected to the 𝐽𝑖th (𝑖 = 1, . . . , 𝐽𝐽̅) spring, the GFRFs satisfy 

the following relationships: 

(−𝑚𝑖𝜔
2 + 𝑗(𝑐𝑖 + 𝑐𝑖:1)𝜔 + 𝑘𝑖 + 𝑘𝑖:1)𝐻(𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)

(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

− (𝑗𝑐𝑖𝜔 + 𝑘𝑖)𝐻(𝑖;1,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

− (𝑗𝑐𝑖:1𝜔 + 𝑘𝑖:1)𝐻(𝑖:1,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅) =   

(D.11)  

Then, 

𝐻(𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

𝐻(𝑖:1,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1 , 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

=
𝑗𝑐𝑖:1𝜔 + 𝑘𝑖:1

(−𝑚𝑖𝜔
2 + 𝑗(𝑐𝑖 + 𝑐𝑖:1)𝜔 + 𝑘𝑖 + 𝑘𝑖:1 − (𝑗𝑐𝑖𝜔 + 𝑘𝑖)

𝐻(𝑖;1,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

𝐻(𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

)

 (D.12)  

If mass 𝑖 and mass 𝑖 + 1 are both on the left side of all nonlinear components, 

namely, 1 < 𝑖  𝐽1 − 2, then 
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𝐺(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

=
∫ 𝑄𝑖 (𝑗𝜔)𝐻(𝑖:1,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)

(𝑛̅) (𝑗𝜔1, … , 𝑗𝜔𝑛̅)𝜔1:𝜔2: :𝜔 ̅<𝜔
∏ ∏ 𝐹𝑞(𝑗𝜔𝑝)

𝑛1: :𝑛𝑞
𝑝<𝑛 :𝑛1: :𝑛𝑞 1:1

𝑚
𝑞<1 𝑑𝜎𝑛̅𝜔

∫ ∏ ∏ 𝐹𝑞(𝑗𝜔𝑝)𝑑𝜎𝑛̅𝜔
𝑛1: :𝑛𝑞
𝑝<𝑛 :𝑛1: :𝑛𝑞 1:1

𝑚
𝑞<1𝜔1:𝜔2: :𝜔 ̅<𝜔

= 𝑄𝑖 (𝑗𝜔)𝐺(𝑖:1,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔) 

(D.13)  

where 𝑄𝑖 (𝑗𝜔) =
𝑗 𝑖+1𝜔:𝑘𝑖+1

(;𝑚𝑖𝜔
2:𝑗( 𝑖: 𝑖+1)𝜔:𝑘𝑖:𝑘𝑖+1:(𝑗 𝑖𝜔:𝑘𝑖)𝑄𝑖 1(𝑗𝜔))

. Therefore, 

𝐺(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

𝐺(𝑖:1,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

= 𝑄𝑖 (𝑗𝜔) (D.14)  

Consequently, if mass 𝑖 and mass 𝑘 are obth on the left side of the nonlinear 

components, that is, 1  𝑖 < 𝑘  𝐽1 − 1, then 

𝐺
(𝑖,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)

𝐺
(𝑘,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)
= 𝑄𝑖 (𝑗𝜔)𝑄𝑖:1(𝑗𝜔)…𝑄𝑘;1(𝑗𝜔) (D.15)  

It can also be obtained from Eq. (D.11) that 

𝐻(𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

𝐻(𝑖;1,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

=
𝑗𝑐𝑖𝜔 + 𝑘𝑖

(−𝑚𝑖𝜔
2 + 𝑗(𝑐𝑖 + 𝑐𝑖:1)𝜔 + 𝑘𝑖 + 𝑘𝑖:1 − (𝑗𝑐𝑖:1𝜔 + 𝑘𝑖:1)

𝐻(𝑖:1,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

𝐻(𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

)

 (D.16)  

If mass 𝑖 and mass 𝑖 + 1 are both on the right side of all nonlinear components, 

namely, 𝐽𝐽̅ + 1  𝑖 < 𝑛, then 

𝐺(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

=
∫ 𝑄𝑖

′(𝑗𝜔)𝐻(𝑖;1,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, … , 𝑗𝜔𝑛̅)𝜔1:𝜔2: :𝜔 ̅<𝜔

∏ ∏ 𝐹𝑞(𝑗𝜔𝑝)
𝑛1: :𝑛𝑞
𝑝<𝑛 :𝑛1: :𝑛𝑞 1:1

𝑚
𝑞<1 𝑑𝜎𝑛̅𝜔

∫ ∏ ∏ 𝐹𝑞(𝑗𝜔𝑝)𝑑𝜎𝑛̅𝜔
𝑛1: :𝑛𝑞
𝑝<𝑛 :𝑛1: :𝑛𝑞 1:1

𝑚
𝑞<1𝜔1:𝜔2: :𝜔 ̅<𝜔

= 𝑄𝑖
′(𝑗𝜔)𝐺(𝑖;1,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)

(𝑛̅) (𝑗𝜔) 

(D.17)  

where 𝑄𝑖
′(𝑗𝜔) =

𝑗 𝑖𝜔:𝑘𝑖

;𝑚𝑖𝜔
2:𝑗( 𝑖: 𝑖+1)𝜔:𝑘𝑖:𝑘𝑖+1;(𝑗 𝑖+1𝜔:𝑘𝑖+1)𝑄𝑖+1

′ (𝑗𝜔)
. Therefore, 
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𝐺(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

𝐺(𝑖;1,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

= 𝑄𝑖
′(𝑗𝜔) (D.18)  

Consequently, if mass 𝑖 and mass 𝑖 + 1 are both on the right side of the nonlinear 

components, that is,, 𝐽𝐽̅  𝑖 < 𝑘  𝑛, then 

𝐺
(𝑖,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)

𝐺
(𝑘,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)
=

1

𝑄𝑖:1
′ (𝑗𝜔)𝑄𝑖

′(𝑗𝜔)…𝑄𝑘
′ (𝑗𝜔)

 (D.19)  

it can be concluded according to eqs.(D.15) and (D.19) that, if 1  𝑖 < 𝑘  𝐽1 −

1 𝑜𝑟 𝐽𝐽̅  𝑖 < 𝑘  𝑛 

𝛾(𝑖,𝑘,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑁) (𝑗𝜔) =

𝐺
(𝑖,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)

𝐺
(𝑘,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)
= 𝑄̅𝑖,𝑘(𝑗𝜔) (D.20)  

where, 

𝑄̅𝑖,𝑘(𝑗𝜔) ∈ 8
1

𝑄𝑖:1
′ (𝑗𝜔)𝑄𝑖

′(𝑗𝜔)…𝑄𝑘
′ (𝑗𝜔)

, 𝑄𝑖 (𝑗𝜔)𝑄𝑖:1(𝑗𝜔)…𝑄𝑘;1(𝑗𝜔)9 (D.21)  

Therefore, first equation in Eq.(5.17) holds. 

For the masses that are connected to nonlinear springs, the GFRFs satisfy the following 

relationships: 

(−𝑚𝑖𝜔
2 + 𝑗(𝑐𝑖 + 𝑐𝑖:1)𝜔 + 𝑘𝑖 + 𝑘𝑖:1)𝐻(𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)

(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

− (𝑗𝑐𝑖𝜔 + 𝑘𝑖)𝐻(𝑖;1,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

− (𝑗𝑐𝑖:1𝜔 + 𝑘𝑖:1)𝐻(𝑖:1,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

− 𝑁𝐹(𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅) =   

(D.22)  

Then, 
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𝐻(𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

𝐻(𝑖:1,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

= 𝑄𝑖 (𝑗𝜔):1 +
𝑁𝐹(𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)

(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

(𝑗𝑐𝑖:1𝜔 + 𝑘𝑖:1)𝐻(𝑖:1,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)

; 

(D.23)  

where 𝑁𝐹(𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)denotes the extra terms produced 

by nonlinear components. When 𝑛̅ = 2 and 𝑝1 = 1, 𝑝2 = 1, 𝑝3 =  ,… , 𝑝𝑚 =   and 

if the 𝑖th mass is connected with only one nonlinear component and is on the left 

hand side, it can be expressed as follows. 

𝑁𝐹(𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅) =  (𝑖,𝑝1<1,𝑝2<1)

(2) (𝜔1, 𝑗𝜔2)

= 2(𝑟(𝑖,2) − 𝜔1𝜔2𝑤(𝑖,2)) (𝐻(𝑖,𝑝1<1,𝑝2<0)
(1) (𝑗𝜔1)𝐻(𝑖,𝑝1<0,𝑝2<1)

(1) (𝑗𝜔2)

− 𝐻(𝑖,𝑝1<1,𝑝2<0)
(1) (𝑗𝜔1)𝐻(𝑖:1,𝑝1<0,𝑝2<1)

(1) (𝑗𝜔2)

− 𝐻(𝑖:1,𝑝1<1,𝑝2<0)
(1) (𝑗𝜔1)𝐻(𝑖,𝑝1<0,𝑝2<1)

(1) (𝑗𝜔2)

+ 𝐻(𝑖:1,𝑝1<1,𝑝2<0)
(1) (𝑗𝜔1)𝐻(𝑖:1,𝑝1<0,𝑝2<1)

(1) (𝑗𝜔2)) 

(D.24)  

Obviously, 𝑁𝐹(𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔) depends not only linear parameters but 

also nonlinear parameters. According to the definition of NOFRF of MIMO nonlinear 

system in Eq. (5.7), if mass 𝑖 and mass 𝑖 + 1 are both within the range of the 

nonlinear components, namely, 𝐽1 − 1  𝑖  𝐽𝐽̅, then 

𝐺(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

=
∫ 𝑄𝑖 (𝑗𝜔)𝐻(𝑖:1,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)

(𝑛̅) (𝑗𝜔1, … , 𝑗𝜔𝑛̅)𝜔1:𝜔2: :𝜔 ̅<𝜔
∏ ∏ 𝐹𝑞(𝑗𝜔𝑝)

𝑛1: :𝑛𝑞
𝑝<𝑛 :𝑛1: :𝑛𝑞 1:1

𝑚
𝑞<1 𝑑𝜎𝑛̅𝜔

∫ ∏ ∏ 𝐹𝑞(𝑗𝜔𝑝)𝑑𝜎𝑛̅𝜔
𝑛1: :𝑛𝑞
𝑝<𝑛 :𝑛1: :𝑛𝑞 1:1

𝑚
𝑞<1𝜔1:𝜔2: :𝜔 ̅<𝜔

= 𝑄𝑖 (𝑗𝜔):1 +
 (𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

(𝑗𝑐𝑖:1𝜔 + 𝑘𝑖:1)𝐻(𝑖:1,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

;𝐺(𝑖:1,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔) 

(D.25)  

where 
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 (𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

=
∫ 𝑁𝐹(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)

(𝑛̅) (𝑗𝜔1, … , 𝑗𝜔𝑛̅)𝜔1:𝜔2: :𝜔 ̅<𝜔
∏ ∏ 𝐹𝑞(𝑗𝜔𝑝)

𝑛1: :𝑛𝑞
𝑝<𝑛 :𝑛1: :𝑛𝑞 1:1

𝑚
𝑞<1 𝑑𝜎𝑛̅𝜔

∫ ∏ ∏ 𝐹𝑞(𝑗𝜔𝑝)𝑑𝜎𝑛̅𝜔
𝑛1: :𝑛𝑞
𝑝<𝑛 :𝑛1: :𝑛𝑞 1:1

𝑚
𝑞<1𝜔1:𝜔2: :𝜔 ̅<𝜔

 

Therefore, 

𝐺(𝑖,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

𝐺(𝑖:1,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

= 𝑄𝑖 (𝑗𝜔):1 +
 (𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

(𝑗𝑐𝑖:1𝜔 + 𝑘𝑖:1)𝐻(𝑖:1,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔)

; (D.26)  

but  

𝛾(𝑖,𝑖:1,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑁) (𝑗𝜔)  

𝐺
(𝑖,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)

𝐺
(𝑖:1,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)
 (D.27)  

Because it always holds that 

𝐺
(𝑖,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)

𝐺
(𝑘,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)

=
𝐺
(𝑖,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)

𝐺
(𝑖:1,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)

𝐺
(𝑖:1,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)

𝐺
(𝑖:2,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)
…
𝐺
(𝑘;1,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)

𝐺
(𝑘,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)
 

(D.28)  

If any of mass 𝑖 and mass 𝑘 is within the range of the nonlinear components, it can 

be concluded easily that 

𝛾(𝑖,𝑘,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑁) (𝑗𝜔)  

𝐺
(𝑖,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)

𝐺
(𝑘,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)
 (D.29)  

Therefore, the second equation in Eq.(5.17) holds. 

When there is only one nonlinear components in system (5.1), that is, 𝐽 ̅ = 1, it can be 

easily deduced according to Eqs. (D.20) and (D.29) that  

𝛾(𝑖,𝑘,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑁) (𝑗𝜔) =

𝐺
(𝑖,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)

𝐺
(𝑘,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗𝜔)
= 𝑄̿𝑖,𝑘(𝑗𝜔) (D.30)  

where  
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𝑄̿𝑖,𝑘(𝑗𝜔) ∈ 8
1

𝑄𝑖:1
′ (𝑗𝜔)𝑄𝑖

′(𝑗𝜔)…𝑄𝑘
′ (𝑗𝜔)

, 𝑄𝑖 (𝑗𝜔)𝑄𝑖:1(𝑗𝜔)…𝑄𝑘;1(𝑗𝜔)9 (D.31)  

Therefore, Eq.(5.18) holds. 

When the inputs applied on the MIMO nonlinear system (5.1) are  

{
 
 

 
 
𝑓1(𝑡) = 𝑒

𝑗𝜔1𝑡

 
𝑓𝑙(𝑡) = 𝑒

𝑗𝜔 𝑡

 
𝑓𝑚(𝑡) = 𝑒

𝑗𝜔𝑚𝑡

 (D.32)  

the corresponding 𝑖th output according to the Volterra series is 

𝑥𝑖 = 𝐻
(𝑖,𝑝1=1,𝑝2= ,…,𝑝𝑚= )

(1) (𝑗𝜔1)𝑒
𝑗𝜔1𝑡 +  + 𝐻

(𝑖,𝑝1= ,…,𝑝𝑙=1,…,𝑝𝑚= )

(1) (𝑗𝜔𝑙)𝑒
𝑗𝜔 𝑡 +  

+ 𝐻
(𝑖,𝑝1= ,…,𝑝𝑚=1)

(1) (𝑗𝜔𝑚)𝑒
𝑗𝜔𝑚𝑡 +  

+ 𝜒𝐻(𝑖,𝑝1<𝑛1,𝑝2<𝑛2,…,𝑝𝑚<𝑛𝑚)
(𝑛̅) (𝑗𝜔1, 𝑗𝜔2, … , 𝑗𝜔𝑛̅)𝑒

𝑗(𝜔1:𝜔2: 𝜔 ̅)𝑡 +  

(D.33)  

Substitute Eqs. (D.32) and (D.33) into Eq.(5.1), and then extract the coefficients of one 

driving frequency, say, 𝑒𝑗𝜔𝑚̃𝑡in each row, the following relationship can be achieved. 

For the first row, 

(−𝑚1𝜔𝑚̃
2 + 𝑗(𝑐1 + 𝑐2)𝜔𝑚̃ + 𝑘1 + 𝑘2)𝐻(1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)

(1) (𝑗𝜔𝑚̃)

− (𝑗𝑐2𝜔𝑚̃ + 𝑘2)𝐻(2,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃) =   

(D.34)  

Then, it can be obtained that 

𝐻(1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

𝐻(2,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

=
𝑗𝑐2𝜔𝑚̃ + 𝑘2

−𝑚1𝜔𝑚̃
2 + 𝑗(𝑐1 + 𝑐2)𝜔𝑚̃ + 𝑘1 + 𝑘2

= 𝑄1 (𝑗𝜔𝑚̃) (D.35)  

According to the definition of NOFRF of MIMO nonlinear system in Eq. (5.7), then 
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𝐺(1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃) =

∫ 𝑄1 (𝑗𝜔𝑚̃)𝐻(2,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)𝜔𝑚̃<𝜔

𝐹𝑚̃(𝑗𝜔𝑚̃)𝑑𝜎𝑛̅𝜔

∫ 𝐹𝑚̃(𝑗𝜔𝑚̃)𝑑𝜎𝑛̅𝜔𝜔1:𝜔2: :𝜔 ̅<𝜔

= 𝑄1 (𝑗𝜔𝑚̃)𝐺(2,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃) 

(D.36)  

Therefore, 

𝐺(1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

𝐺(2,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(𝑛̅) (𝑗𝜔𝑚̃)

= 𝑄1 (𝑗𝜔𝑚̃) (D.37)  

For the last mass, the GFRFs satisfy the following relationships: 

(−𝑚𝑛𝜔𝑚̃
2 + 𝑗𝑐𝑛𝜔𝑚̃ + 𝑘𝑛)𝐻(𝑛,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)

(1) (𝑗𝜔𝑚̃)

− (𝑗𝑐𝑛𝜔 + 𝑘𝑛)𝐻(𝑛;1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃) =   

(D.38)  

Then, 

𝐻(𝑛,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

𝐻(𝑛;1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

=
𝑗𝑐𝑛𝜔𝑚̃ + 𝑘𝑛

−𝑚𝑛𝜔𝑚̃
2 + 𝑗𝑐𝑛𝜔𝑚̃ + 𝑘𝑛

= 𝑄𝑛
′ (𝑗𝜔𝑚̃) (D.39)  

According to the definition of NOFRF of MIMO nonlinear system in Eq. (5.7), then, 

𝐺(𝑛,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃) =

∫ 𝑄𝑛
′ (𝑗𝜔𝑚̃)𝐻(𝑛;1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)

(1) (𝑗𝜔𝑚̃)𝜔𝑚̃<𝜔
𝐹𝑚̃(𝑗𝜔𝑚̃)𝑑𝜎𝑛̅𝜔

∫ 𝐹𝑚̃(𝑗𝜔𝑚̃)𝑑𝜎𝑛̅𝜔𝜔1:𝜔2: :𝜔 ̅<𝜔

= 𝑄𝑛
′ (𝑗𝜔𝑚̃)𝐺(𝑛;1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)

(1) (𝑗𝜔𝑚̃) 

(D.40)  

Therefore, 

𝐺(𝑛,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

𝐺(𝑛;1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

= 𝑄𝑛
′ (𝑗𝜔𝑚̃) (D.41)  

for the masses that not connected to the 𝐽𝑖th (𝑖 = 1, . . . , 𝐽𝐽̅) spring and is not 𝑆𝑚̃th 

mass, the GFRFs satisfy the following relationships: 
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(−𝑚𝑖𝜔𝑚̃
2 + 𝑗(𝑐𝑖 + 𝑐𝑖:1)𝜔𝑚̃ + 𝑘𝑖 + 𝑘𝑖:1)𝐻(𝑖,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)

(1) (𝑗𝜔𝑚̃)

− (𝑗𝑐𝑖𝜔𝑚̃ + 𝑘𝑖)𝐻(𝑖;1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

− (𝑗𝑐𝑖:1𝜔𝑚̃ + 𝑘𝑖:1)𝐻(𝑖:1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃) =   

(D.42)  

Then, 

𝐻(𝑖,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

𝐻(𝑖:1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

=
𝑗𝑐𝑖:1𝜔 + 𝑘𝑖:1

(−𝑚𝑖𝜔𝑚̃
2 + 𝑗(𝑐𝑖 + 𝑐𝑖:1)𝜔𝑚̃ + 𝑘𝑖 + 𝑘𝑖:1 − (𝑗𝑐𝑖𝜔𝑚̃ + 𝑘𝑖)

𝐻(𝑖;1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

𝐻(𝑖,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

)

 
(D.43)  

if mass 𝑖 is on the left side of all nonlinear components and 𝑆𝑚̃th mass, namely, 

1 < 𝑖  𝐽1 − 2, and 𝑖 < 𝑆𝑚̃ then 

𝐺(𝑖,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

=
∫ 𝑄𝑖 (𝑗𝜔𝑚̃)𝐻(𝑖:1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)

(1) (𝑗𝜔𝑚̃)𝜔𝑚̃<𝜔
𝐹𝑚̃(𝑗𝜔𝑚̃)𝑑𝜎𝑛̅𝜔

∫ 𝐹𝑚̃(𝑗𝜔𝑚̃)𝑑𝜎𝑛̅𝜔𝜔1:𝜔2: :𝜔 ̅<𝜔

= 𝑄𝑖 (𝑗𝜔𝑚̃)𝐺(𝑖:1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃) 

(D.44)  

Therefore, 

𝐺(𝑖,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

𝐺(𝑖:1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

= 𝑄𝑖 (𝑗𝜔𝑚̃) (D.45)  

If the 𝑚̃th input is on the right side of the nonlinear component, that is 𝑆𝑚̃ ≥ 𝐽1 , and 

masses 𝑖 and 𝑘 are both on the left side of all nonlinear components and 𝑆𝑚̃th 

mass, that is 1  𝑖 < 𝑘  𝐽1 − 1, then  

𝛾(𝑖,𝑘, 1<0,…, 𝑚̃<1…, 𝑚<0)
(1)

(𝑗𝜔𝑓𝑚̃) =
𝐺(𝑖,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

𝐺(𝑘,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

= 𝑄𝑖 (𝑗𝜔𝑚̃)𝑄𝑖:1(𝑗𝜔𝑚̃)…𝑄𝑘;1(𝑗𝜔𝑚̃) (D.46)  

If the 𝑚̃th input is on the right side of the nonlinear component, that is 𝑆𝑚̃ ≥ 𝐽1 , and 

masses 𝑖 and 𝑘 are both on the right side of all nonlinear components and 𝑆𝑚̃th 

mass, that is 𝑆𝑚̃  𝑖 < 𝑘  𝑛, then  
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𝛾(𝑖,𝑘, 1<0,…, 𝑚̃<1…, 𝑚<0)
(1)

(𝑗𝜔𝑓𝑚̃) =
𝐺(𝑖,𝑝1= ,…,𝑝𝑚̃=1,…,𝑝𝑚= )
(1)

(𝑗𝜔𝑚̃)

𝐺(𝑘,𝑝1= ,…,𝑝𝑚̃=1,…,𝑝𝑚= )
(1)

(𝑗𝜔𝑚̃)

=
1

𝑄𝑖
′
(𝑗𝜔𝑚̃)𝑄𝑖+1

′
(𝑗𝜔𝑚̃)…𝑄𝑘−1

′
(𝑗𝜔𝑚̃)

 

(D.47)  

According to Eqs.(D.46) and (D.47), it can be concluded that if 𝑆𝑚̃ ≥ 𝐽1, 1  𝑖 < 𝑘  

𝐽1 − 1 or 𝑆𝑚̃  𝑖 < 𝑘  𝑛, then 

𝛾(𝑖,𝑘, 1<0,…, 𝑚̃<1…, 𝑚<0)
(1)

(𝑗𝜔𝑓𝑚̃) =
𝐺
(𝑖,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅)
(𝑗𝜔𝑓𝑚̃)

𝐺
(𝑘,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

( ̅ )
(𝑗𝜔𝑓𝑚̃)

= 𝑄𝑖,𝑘(𝑗𝜔𝑓𝑚̃) = 𝛾(𝑖,𝑘,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)
(𝑁)

(𝑗𝜔𝑓𝑚̃) (D.48)  

where 

𝑄𝑖,𝑘(𝑗𝜔𝑓𝑚̃) ∈ {
1

𝑄𝑖
′
(𝑗𝜔𝑚̃)𝑄𝑖+1

′
(𝑗𝜔𝑚̃)…𝑄𝑘−1

′
(𝑗𝜔𝑚̃)

,𝑄𝑖 (𝑗𝜔𝑚̃)𝑄𝑖+1(𝑗𝜔𝑚̃)…𝑄𝑘−1(𝑗𝜔𝑚̃)} (D.49)  

Therefore, the first equation in Eq.(5.19) holds. 

For the 𝑆𝑚̃th mass, namely, 𝑖 = 𝑆𝑚̃, the GFRFs satisfy the following relationships: 

(−𝑚𝑖𝜔𝑚̃
2 + 𝑗(𝑐𝑖 + 𝑐𝑖:1)𝜔𝑚̃ + 𝑘𝑖 + 𝑘𝑖:1)𝐻(𝑖,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)

(1) (𝑗𝜔𝑚̃)

− (𝑗𝑐𝑖𝜔𝑚̃ + 𝑘𝑖)𝐻(𝑖;1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

− (𝑗𝑐𝑖:1𝜔𝑚̃ + 𝑘𝑖:1)𝐻(𝑖:1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃) − 1 =   

(D.50)  

Then, 

𝐻(𝑖,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

𝐻(𝑖:1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

= 𝑄𝑖 (𝑗𝜔𝑚̃):1 +
1

(𝑗𝑐𝑖:1𝜔𝑚̃ + 𝑘𝑖:1)𝐻(𝑖:1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

; (D.51)  

According to the definition of NOFRF of MIMO nonlinear system in Eq. (5.7), if mass 𝑖 

connect with the nonlinear component, namely, 𝑖 = 𝐽1 − 1 𝑜𝑟 𝐽1, then 

𝐺(𝑖,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃) =

∫ 𝑄𝑖 (𝑗𝜔𝑚̃)𝐻(𝑖;1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)𝜔1:𝜔2: :𝜔 ̅<𝜔

𝐹𝑚̃(𝑗𝜔𝑚̃)𝑑𝜎𝑛̅𝜔

∫ 𝐹𝑚̃(𝑗𝜔𝑚̃)𝑑𝜎𝑛̅𝜔𝜔1:𝜔2: :𝜔 ̅<𝜔

 (D.52)  
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= 𝑄𝑖 (𝑗𝜔𝑚̃) :1 +
1

(𝑗𝑐𝑖:1𝜔 + 𝑘𝑖:1)𝐻(𝑖:1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

;𝐺(𝑖:1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃) 

Therefore, 

𝐺
(𝑖,𝑝

1
= ,…,𝑝

𝑚̃
=1,…,𝑝

𝑚
= )

(1) (𝑗𝜔𝑚̃)

𝐺
(𝑖+1,𝑝

1
= ,…,𝑝

𝑚̃
=1,…,𝑝

𝑚
= )

(1) (𝑗𝜔𝑚̃)
= 𝑄

𝑖
(𝑗𝜔𝑚̃) :1 +

1

(𝑗𝑐𝑖+1𝜔 + 𝑘𝑖+1)𝐻(𝑖+1,𝑝
1
= ,…,𝑝

𝑚̃
=1,…,𝑝

𝑚
= )

(1) (𝑗𝜔𝑚̃)
; (D.53)  

but  

𝛾(𝑖,𝑘, 1<0,…, 𝑚̃<1…, 𝑚<0)
(1)

(𝑗𝜔𝑓𝑚̃) 
𝐺
.𝑖,𝑝1=𝑛1,𝑛̅,…,𝑝𝑚=𝑛𝑚,𝑛̅/
(𝑛̅)

(𝑗𝜔)

𝐺
.𝑖+1,𝑝1=𝑛1,𝑛̅,…,𝑝𝑚=𝑛𝑚,𝑛̅/
(𝑛̅)

(𝑗𝜔)
 (D.54)  

For the masses that are connected to nonlinear springs, the GFRFs satisfy the following 

relationships: 

(−𝑚𝑖𝜔𝑚̃
2 + 𝑗(𝑐𝑖 + 𝑐𝑖:1)𝜔𝑚̃ + 𝑘𝑖 + 𝑘𝑖:1)𝐻(𝑖,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)

(1) (𝑗𝜔𝑚̃)

− (𝑗𝑐𝑖𝜔𝑚̃ + 𝑘𝑖)𝐻(𝑖;1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

− (𝑗 𝑖:1𝜔𝑚̃ + 𝑘𝑖:1)𝐻(𝑖:1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

− 𝑁𝐹(𝑖,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃) =   

(D.55)  

Then, 

𝐻(𝑖,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

𝐻(𝑖:1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

= 𝑄𝑖 (𝑗𝜔𝑚̃):1 +
𝑁𝐹(𝑖,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)

(1) (𝑗𝜔𝑚̃)

(𝑗𝑐𝑖:1𝜔𝑚̃ + 𝑘𝑖:1)𝐻(𝑖:1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

; (D.56)  

According to the definition of NOFRF of MIMO nonlinear system in Eq. (5.7), if mass 𝑖 

connect with the nonlinear component, namely, 𝑖 = 𝐽1 − 1 𝑜𝑟 𝐽1, then 
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𝐺(𝑖,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃) =

∫ 𝑄𝑖 (𝑗𝜔𝑚̃)𝐻(𝑖;1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)𝜔1:𝜔2: :𝜔 ̅<𝜔

𝐹𝑚̃(𝑗𝜔𝑚̃)𝑑𝜎𝑛̅𝜔

∫ 𝐹𝑚̃(𝑗𝜔𝑚̃)𝑑𝜎𝑛̅𝜔𝜔1:𝜔2: :𝜔 ̅<𝜔

 

= 𝑄𝑖 (𝑗𝜔𝑚̃) :1 +
 (𝑖,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

(𝑗𝑐𝑖:1𝜔 + 𝑘𝑖:1)𝐻(𝑖:1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)

;𝐺(𝑖:1,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃) 

(D.57)  

Obviously,  (𝑖,𝑝1<0,…,𝑝𝑚̃<1,…,𝑝𝑚<0)
(1) (𝑗𝜔𝑚̃)  depends not only linear parameters but also 

nonlinear parameters. 

Therefore, 

𝐺
(𝑖,𝑝

1
= ,…,𝑝

𝑚̃
=1,…,𝑝

𝑚
= )

(1) (𝑗𝜔𝑚̃)

𝐺
(𝑖+1,𝑝

1
= ,…,𝑝

𝑚̃
=1,…,𝑝

𝑚
= )

(1) (𝑗𝜔𝑚̃)
= 𝑄

𝑖
(𝑗𝜔𝑚̃) :1 +

 
(𝑖,𝑝

1
= ,…,𝑝

𝑚̃
=1,…,𝑝

𝑚
= )

(1) (𝑗𝜔𝑚̃)

(𝑗𝑐𝑖+1𝜔 + 𝑘𝑖+1)𝐻(𝑖+1,𝑝
1
= ,…,𝑝

𝑚̃
=1,…,𝑝

𝑚
= )

(1) (𝑗𝜔𝑚̃)
; (D.58)  

but  

𝛾(𝑖,𝑘, 1<0,…, 𝑚̃<1…, 𝑚<0)
(1)

(𝑗𝜔𝑓𝑚̃) 
𝐺
.𝑖,𝑝1=𝑛1,𝑛̅,…,𝑝𝑚=𝑛𝑚,𝑛̅/
(𝑛̅)

(𝑗𝜔)

𝐺
.𝑖+1,𝑝1=𝑛1,𝑛̅,…,𝑝𝑚=𝑛𝑚,𝑛̅/
(𝑛̅)

(𝑗𝜔)
 (D.59)  

Because it always holds that 

𝐺
(𝑖,𝑝

1
= ,…,𝑝

𝑚̃
=1,…,𝑝

𝑚
= )

(1) (𝑗𝜔𝑚̃)

𝐺
(𝑘,𝑝

1
= ,…,𝑝

𝑚̃
=1,…,𝑝

𝑚
= )

(1) (𝑗𝜔𝑚̃)

=
𝐺
(𝑖,𝑝

1
= ,…,𝑝

𝑚̃
=1,…,𝑝

𝑚
= )

(1) (𝑗𝜔𝑚̃)

𝐺
(𝑖+1,𝑝

1
= ,…,𝑝

𝑚̃
=1,…,𝑝

𝑚
= )

(1) (𝑗𝜔𝑚̃)

𝐺
(𝑖+1,𝑝

1
= ,…,𝑝

𝑚̃
=1,…,𝑝

𝑚
= )

(1) (𝑗𝜔𝑚̃)

𝐺
(𝑖+2,𝑝

1
= ,…,𝑝

𝑚̃
=1,…,𝑝

𝑚
= )

(1) (𝑗𝜔𝑚̃)
…
𝐺
(𝑘−1,𝑝

1
= ,…,𝑝

𝑚̃
=1,…,𝑝

𝑚
= )

(1) (𝑗𝜔𝑚̃)

𝐺
(𝑘,𝑝

1
= ,…,𝑝

𝑚̃
=1,…,𝑝

𝑚
= )

(1) (𝑗𝜔𝑚̃)
 

(D.60)  

if any of mass 𝑖 and mass 𝑘 is within the range of the nonlinear components and 

the 𝑆𝑚̃th mass, there is only one nonlinear components in system (5.1), according to 

Eqs.(D.30), (D.54) and (D.59), it can be concluded easily that 

𝛾(𝑖,𝑘, 1<0,…, 𝑚̃<1…, 𝑚<0)
(1)

(𝑗𝜔𝑓𝑚̃)  
𝐺
(𝑖,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅)
(𝑗𝜔𝑓𝑚̃)

𝐺
(𝑘,𝑝1<𝑛1, ̅,…,𝑝𝑚<𝑛𝑚, ̅)

(𝑛̅) (𝑗)(𝑗𝜔𝑓𝑚̃)
= 𝑄𝑖,𝑘(𝑗𝜔𝑓𝑚̃) = 𝛾(𝑖,𝑘,𝑝1<𝑛1,…,𝑝𝑚<𝑛𝑚)

(𝑁)
(𝑗𝜔𝑓𝑚̃) (D.61)  

Therefore, the second equation in Eq.(5.19) holds. 

Similarly, the first and second equations in Eq.(5.20) can be proved by following the 

same approach above. Thus, the proof of Proposition 5.1 is completed. 
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Appendix E  

Proof of Proposition 5.3 

Proposition 5.3 can be proved by using similar method in the proof of proposition 4.3. 

Because nonlinearity generated frequency 𝜔𝑁𝐿 is different from any one of driving 

frequencies, it can only be produced by the combination of different driving 

frequencies. Consequently, only higher order NOFRFs contribute to nonlinearity 

generated frequency components, that is 𝑛̅ ≥ 2. Therefore, the system response at 

one nonlinearity generated frequency 𝜔𝑁𝐿 can be determined by using Proposition 

5.2 as    

𝑋𝑖(𝑗𝜔𝑁𝐿) = ∑ ∑ 𝐺
(𝑖,𝑝1<𝑛1

′ ,…,𝑝𝑚<𝑛𝑚
′ )

(𝑛̅) (𝑗𝜔𝑁𝐿)𝐹(𝑖,𝑝1<𝑛1′ ,…,𝑝𝑚<𝑛𝑚′ )
(𝑛̅) (𝑗𝜔𝑁𝐿)

𝑛1: :𝑛𝑚<𝑛̅

𝑁

𝑛̅<2

 (E.1)  

where 𝑛̅, 𝑛1
′ , 𝑛2

′ ,…, 𝑛𝑚
′  should satisfy the following relationships  

{
  
 

  
 𝑛1

: + 𝑛1
; = 𝑛1

′

𝑛2
: + 𝑛2

; = 𝑛2
′

 
𝑛𝑚
: + 𝑛𝑚

; = 𝑛𝑚
′

𝑛1
′ + 𝑛2

′ + + 𝑛𝑚
′ = 𝑛̅

𝑛̅ = 2,3, . . , 𝑁

 (E.2)  

and 

𝜔𝑁𝐿 = (𝑛1
: − 𝑛1

;)𝜔𝑓1 + (𝑛2
: − 𝑛2

;)𝜔𝑓2 + + (𝑛𝑚
: − 𝑛𝑚

; )𝜔𝑓𝑚 (E.3)  

It is known from Property (i) of the NOFRF transmissibility of MIMO nonlinear system 

given by Eq.(5.17) that if 𝐽 ̅ > 1, for 1  𝑖  𝐽1 − 2    𝐽𝐽̅   𝑖  𝑛 − 1 
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𝛾
(𝑖,𝑖:1,𝑝1<𝑛1

′ ,…,𝑝𝑚<𝑛𝑚
′ )

(𝑁) (𝑗𝜔𝑁𝐿)

=
𝐺
(𝑖,𝑝1<𝑛1

′ ,…,𝑝𝑚<𝑛𝑚
′ )

(𝑛̅) (𝑗𝜔𝑁𝐿)𝐹(𝑖,𝑝1<𝑛1′ ,…,𝑝𝑚<𝑛𝑚′ )
(𝑛̅) (𝑗𝜔𝑁𝐿)

𝐺
(𝑖:1,𝑝1<𝑛1

′ ,…,𝑝𝑚<𝑛𝑚
′ )

(𝑛̅) (𝑗𝜔𝑁𝐿)𝐹(𝑖:1,𝑝1<𝑛1′ ,…,𝑝𝑚<𝑛𝑚′ )
(𝑛̅) (𝑗𝜔𝑁𝐿)

= 𝑄̅𝑖,𝑖:1(𝑗𝜔𝑁𝐿) 

(E.4)  

Eqs.(E.1)-(E.4) imply that 

𝑆𝑇𝑖,𝑖:1
𝑁𝐿 (𝑗𝜔𝑁𝐿) =

𝑋𝑖(𝑗𝜔𝑁𝐿)

𝑋𝑖:1(𝑗𝜔𝑁𝐿)

=
∑ ∑ 𝐺

(𝑖,𝑝1<𝑛1
′ ,…,𝑝𝑚<𝑛𝑚

′ )

(𝑛̅) (𝑗𝜔𝑁𝐿)𝐹(𝑖,𝑝1<𝑛1′ ,…,𝑝𝑚<𝑛𝑚′ )
(𝑛̅) (𝑗𝜔𝑁𝐿)𝑛1

′: :𝑛𝑚
′ <𝑛̅

𝑁
𝑛̅<2

∑ ∑ 𝐺
(𝑖:1,𝑝1<𝑛1

′ ,…,𝑝𝑚<𝑛𝑚
′ )

(𝑛̅) (𝑗𝜔𝑁𝐿)𝐹(𝑖:1,𝑝1<𝑛1′ ,…,𝑝𝑚<𝑛𝑚′ )
(𝑛̅) (𝑗𝜔𝑁𝐿)𝑛1

′: :𝑛𝑚
′ <𝑛̅

𝑁
𝑛̅<2

= 𝛾
(𝑖,𝑖:1,𝑝1<𝑛1

′ ,…,𝑝𝑚<𝑛𝑚
′ )

(𝑁) (𝑗𝜔𝑁𝐿) = 𝑄̅𝑖,𝑖:1(𝑗𝜔𝑁𝐿) 

(E.5)  

Therefore, Eq.(5.28) holds. 

Similarly, according to Property (i) of the NOFRF transmissibility of MIMO nonlinear 

system given by Eq.(5.17) that if 𝐽 ̅ > 1, for 𝐽1 − 1  𝑖   𝐽𝐽̅ − 1, 

𝛾
(𝑖,𝑖:1,𝑝1<𝑛1

′ ,…,𝑝𝑚<𝑛𝑚
′ )

(𝑁) (𝑗𝜔𝑁𝐿)

 
𝐺
(𝑖,𝑝1<𝑛1

′ ,…,𝑝𝑚<𝑛𝑚
′ )

(𝑛̅) (𝑗𝜔𝑁𝐿)𝐹(𝑖,𝑝1<𝑛1′ ,…,𝑝𝑚<𝑛𝑚′ )
(𝑛̅) (𝑗𝜔𝑁𝐿)

𝐺
(𝑖:1,𝑝1<𝑛1

′ ,…,𝑝𝑚<𝑛𝑚
′ )

(𝑛̅) (𝑗𝜔𝑁𝐿)𝐹(𝑖:1,𝑝1<𝑛1′ ,…,𝑝𝑚<𝑛𝑚′ )
(𝑛̅) (𝑗𝜔𝑁𝐿)

 𝑄̅𝑖,𝑖:1(𝑗𝜔𝑁𝐿) 

(E.6)  

Eqs.(E.1)-(E.3) and (E.6) imply that 

𝑆𝑇𝑖,𝑖:1
𝑁𝐿 (𝑗𝜔𝑁𝐿) =

𝑋𝑖(𝑗𝜔𝑁𝐿)

𝑋𝑖:1(𝑗𝜔𝑁𝐿)

=
∑ ∑ 𝐺

(𝑖,𝑝1<𝑛1
′ ,…,𝑝𝑚<𝑛𝑚

′ )

(𝑛̅) (𝑗𝜔𝑁𝐿)𝐹(𝑖,𝑝1<𝑛1′ ,…,𝑝𝑚<𝑛𝑚′ )
(𝑛̅) (𝑗𝜔𝑁𝐿)𝑛1

′: :𝑛𝑚
′ <𝑛̅

𝑁
𝑛̅<2

∑ ∑ 𝐺
(𝑖:1,𝑝1<𝑛1

′ ,…,𝑝𝑚<𝑛𝑚
′ )

(𝑛̅) (𝑗𝜔𝑁𝐿)𝐹(𝑖:1,𝑝1<𝑛1′ ,…,𝑝𝑚<𝑛𝑚′ )
(𝑛̅) (𝑗𝜔𝑁𝐿)𝑛1

′: :𝑛𝑚
′ <𝑛̅

𝑁
𝑛̅<2

 𝛾
(𝑖,𝑖:1,𝑝1<𝑛1

′ ,…,𝑝𝑚<𝑛𝑚
′ )

(𝑁) (𝑗𝜔𝑁𝐿)  𝑄̅𝑖,𝑖:1(𝑗𝜔𝑁𝐿) 

(E.7)  

Therefore, Eq.(5.29) holds. 

According to Property (ii) of the NOFRF transmissibility of MIMO nonlinear system 
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given by Eq.(5.18) that if 𝐽 ̅ = 1, for 𝑖 = 1,2, … 𝑛 − 1 

𝛾
(𝑖,𝑖:1,𝑝1<𝑛1

′ ,…,𝑝𝑚<𝑛𝑚
′ )

(𝑁) (𝑗𝜔𝑁𝐿)

=
𝐺
(𝑖,𝑝1<𝑛1

′ ,…,𝑝𝑚<𝑛𝑚
′ )

(𝑛̅) (𝑗𝜔𝑁𝐿)𝐹(𝑖,𝑝1<𝑛1′ ,…,𝑝𝑚<𝑛𝑚′ )
(𝑛̅) (𝑗𝜔𝑁𝐿)

𝐺
(𝑖:1,𝑝1<𝑛1

′ ,…,𝑝𝑚<𝑛𝑚
′ )

(𝑛̅) (𝑗𝜔𝑁𝐿)𝐹(𝑖:1,𝑝1<𝑛1′ ,…,𝑝𝑚<𝑛𝑚′ )
(𝑛̅) (𝑗𝜔𝑁𝐿)

= 𝑄̿𝑖,𝑖:1(𝑗𝜔𝑁𝐿) 

(E.8)  

Eqs.(E.1)-(E.3) and (E.8) imply that 

𝑆𝑇𝑖,𝑖:1
𝑁𝐿 (𝑗𝜔𝑁𝐿) =

𝑋𝑖(𝑗𝜔𝑁𝐿)

𝑋𝑖:1(𝑗𝜔𝑁𝐿)

=
∑ ∑ 𝐺

(𝑖,𝑝1<𝑛1
′ ,…,𝑝𝑚<𝑛𝑚

′ )

(𝑛̅) (𝑗𝜔𝑁𝐿)𝐹(𝑖,𝑝1<𝑛1′ ,…,𝑝𝑚<𝑛𝑚′ )
(𝑛̅) (𝑗𝜔𝑁𝐿)𝑛1

′: :𝑛𝑚
′ <𝑛̅

𝑁
𝑛̅<2

∑ ∑ 𝐺
(𝑖:1,𝑝1<𝑛1

′ ,…,𝑝𝑚<𝑛𝑚
′ )

(𝑛̅) (𝑗𝜔𝑁𝐿)𝐹(𝑖:1,𝑝1<𝑛1′ ,…,𝑝𝑚<𝑛𝑚′ )
(𝑛̅) (𝑗𝜔𝑁𝐿)𝑛1

′: :𝑛𝑚
′ <𝑛̅

𝑁
𝑛̅<2

= 𝛾
(𝑖,𝑖:1,𝑝1<𝑛1

′ ,…,𝑝𝑚<𝑛𝑚
′ )

(𝑁) (𝑗𝜔𝑁𝐿) = 𝑄̿𝑖,𝑖:1(𝑗𝜔𝑁𝐿) 

(E.9)  

Therefore, Eq.(5.30) holds. 

The system response at the driving frequency of 𝑚̃th input 𝜔𝑓𝑚̃  can also be 

determined by using Proposition 5.2 as 

𝑋𝑖(𝑗𝜔𝑓𝑚̃) = ∑ ∑ 𝐺
(𝑖,𝑝1<𝑛1

′′,…,𝑝𝑚<𝑛𝑚
′′ )

(𝑛̅)
(𝑗𝜔𝑓𝑚̃)𝐹(𝑖,𝑝1<𝑛1′′,…,𝑝𝑚<𝑛𝑚′′ )

(𝑛̅)
(𝑗𝜔𝑓𝑚̃)

𝑛1: :𝑛𝑚<𝑛̅

𝑁

𝑛̅<1

 (E.10)  

where 𝑛̅, 𝑛1
′′, 𝑛2

′′,…, 𝑛𝑚
′′  should satisfy the following relationship  

{
  
 

  
 𝑛1

: + 𝑛1
; = 𝑛1

′′

𝑛2
: + 𝑛2

; = 𝑛2
′′

 
𝑛𝑚
: + 𝑛𝑚

; = 𝑛𝑚
′′

𝑛1
′′ + 𝑛2

′′ + + 𝑛𝑚
′′ = 𝑛̅

𝑛̅ = 1,2,3, . . , 𝑁

 (E.11)  

and 

𝜔𝑓𝑚̃ = (𝑛1
: − 𝑛1

;)𝜔𝑓1 + (𝑛2
: − 𝑛2

;)𝜔𝑓2 + + (𝑛𝑚
: − 𝑛𝑚

; )𝜔𝑓𝑚 (E.12)  
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It is know from the Property (ii) of the NOFRF transmissibility of MIMO nonlinear 

system given by the first equation in Eqs.(5.19) and (5.20) and Eqs.(E.10)-(E.12) that for 

𝐽 ̅ = 1 , when 𝑆𝑚̃ < 𝐽1 ,    1  𝑖  𝑆𝑚̃ − 1    𝐽1  𝑖 < 𝑛 , or when 𝑆𝑚̃ ≥ 𝐽1 ,    

1  𝑖  𝐽1 − 2    𝑆𝑚̃  𝑖 < 𝑛 

𝑆𝑇𝑖,𝑖:1
𝑁𝐿 (𝑗𝜔𝑓𝑚̃) =

𝑋𝑖(𝑗𝜔𝑓𝑚̃)

𝑋𝑖:1(𝑗𝜔𝑓𝑚̃)

=
∑ ∑ 𝐺

(𝑖,𝑝1<𝑛1
′′,…,𝑝𝑚<𝑛𝑚

′′ )

(𝑛̅)
(𝑗𝜔𝑓𝑚̃)𝐹(𝑖,𝑝1<𝑛1′′,…,𝑝𝑚<𝑛𝑚′′ )

(𝑛̅)
(𝑗𝜔𝑓𝑚̃)𝑛1

′′: :𝑛𝑚
′′<𝑛̅

𝑁
𝑛̅<1

∑ ∑ 𝐺
(𝑖:1,𝑝1<𝑛1

′′,…,𝑝𝑚<𝑛𝑚
′′ )

(𝑛̅) (𝑗𝜔𝑓𝑚̃)𝐹(𝑖:1,𝑝1<𝑛1′′,…,𝑝𝑚<𝑛𝑚′′ )
(𝑛̅) (𝑗𝜔𝑓𝑚̃)𝑛1

′′: :𝑛𝑚
′′<𝑛̅

𝑁
𝑛̅<1

= 𝛾
(𝑖,𝑖:1,𝑝1<𝑛1

′′,…,𝑝𝑚<𝑛𝑚
′′ )

(𝑁)
(𝑗𝜔𝑓𝑚̃) = 𝑄𝑖,𝑖:1(𝑗𝜔𝑓𝑚̃) 

(E.13)  

Therefore, the first equation in Eq.(5.31) holds. Otherwise, it is know from the second 

equation in Eqs.(5.19) and (5.20) and Eqs.(E.10)-(E.12) that 

𝑆𝑇𝑖,𝑖:1
𝑁𝐿 (𝑗𝜔𝑓𝑚̃) =

𝑋𝑖(𝑗𝜔𝑓𝑚̃)

𝑋𝑖:1(𝑗𝜔𝑓𝑚̃)

=
∑ ∑ 𝐺

(𝑖,𝑝1<𝑛1
′′,…,𝑝𝑚<𝑛𝑚

′′ )

(𝑛̅)
(𝑗𝜔𝑓𝑚̃)𝐹(𝑖,𝑝1<𝑛1′′,…,𝑝𝑚<𝑛𝑚′′ )

(𝑛̅)
(𝑗𝜔𝑓𝑚̃)𝑛1

′′: :𝑛𝑚
′′<𝑛̅

𝑁
𝑛̅<1

∑ ∑ 𝐺
(𝑖:1,𝑝1<𝑛1

′′,…,𝑝𝑚<𝑛𝑚
′′ )

(𝑛̅) (𝑗𝜔𝑓𝑚̃)𝐹(𝑖:1,𝑝1<𝑛1′′,…,𝑝𝑚<𝑛𝑚′′ )
(𝑛̅) (𝑗𝜔𝑓𝑚̃)𝑛1

′′: :𝑛𝑚
′′<𝑛̅

𝑁
𝑛̅<1

 𝛾
(𝑖,𝑖:1,𝑝1<𝑛1

′′,…,𝑝𝑚<𝑛𝑚
′′ )

(𝑁)
(𝑗𝜔𝑓𝑚̃) = 𝑄𝑖,𝑖:1(𝑗𝜔𝑓𝑚̃) 

(E.14)  

Therefore, the first equation in Eq.(5.31) holds. Thus, the proof of Proposition 5.3 is 

completed. 
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Appendix F  

Mathematical model of the power cable system  

Applying Kirchhoff’s voltage laws and current laws to the first section, it can be 

obtained that: 

{
𝐿1

𝑑𝑖1(𝑡)

𝑑𝑡
+ 𝑅1𝑖1(𝑡) = 𝑢𝑠1(𝑡) − 𝑢1(𝑡)

𝑖1(𝑡) = 𝑖2(𝑡) + 𝐶1
𝑑𝑢1(𝑡)

𝑑𝑡
+ 𝐺1𝑢1(𝑡)

                   (F.1) 

Taking Laplace transform for equation (F.1) and assuming all initial conditions are zero 

yields: 

{
𝐿1𝑠𝑖1(𝑠) + 𝑅1𝑖1(𝑠) = 𝑢𝑠1(𝑠) − 𝑢1(𝑠)

𝑖1(𝑠) = 𝑖2(𝑠) + 𝐶1𝑠𝑢1(𝑠) + 𝐺1𝑢1(𝑠)
                 (F.2) 

Then it can be obtained that 

𝑢1(𝑠) =
𝑖1(𝑠);𝑖2(𝑠)

𝐶1𝑠:𝐺1
                          (F.3) 

and 

𝐿1𝑠𝑖1(𝑠) + 𝑅1𝑖1(𝑠) = 𝑢𝑠1(𝑠) − 𝑢1(𝑠) = 𝑢𝑠(𝑠) −
𝑖1(𝑠);𝑖2(𝑠)

𝐶1𝑠:𝐺1
        (F.4) 

Equation (F.4) can be further written as: 

𝐿1𝐶1𝑠
2𝑖1(𝑠) + (𝑅1𝐶1 + 𝐿1𝐺1)𝑠𝑖1(𝑠) + (𝑅1𝐺1 + 1)𝑖1(𝑠) − 𝑖2(𝑠)

= 𝑢𝑠1(𝑠)𝐶1𝑠 + 𝑢𝑠1(𝑠)𝐺1 
(F.5) 

Applying Kirchhoff’s voltage laws and current laws to the 𝑝th section, it can be 

obtained that: 
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{
 
 

 
 𝑖𝑝;1 = 𝑖𝑝(𝑡) − 𝐶𝑝;1

𝑑𝑢𝑝 1(𝑡)

𝑑𝑡
+ 𝐺𝑝;1𝑢𝑝;1(𝑡)

𝐿𝑝
𝑑𝑖𝑝(𝑡)

𝑑𝑡
+ 𝑅𝑝𝑖𝑝(𝑡) = 𝑢𝑝;1(𝑡) − 𝑢𝑝(𝑡)

𝑖𝑝(𝑡) = 𝑖𝑝:1(𝑡) + 𝐶𝑝
𝑑𝑢𝑝(𝑡)

𝑑𝑡
+ 𝐺𝑝𝑢𝑝(𝑡)

           (F.6) 

Taking Laplace transform for equation (F.6) and assuming all initial conditions are zero 

yields: 

{

𝑖𝑝;1(𝑠) = 𝑖𝑝(𝑠) + 𝐶𝑝;1𝑠𝑢𝑝;1(𝑠) + 𝐺𝑝;1𝑢𝑝;1(𝑠)

𝐿𝑝𝑠𝑖𝑝(𝑠) + 𝑅𝑝𝑖𝑝(𝑠) = 𝑢𝑝;1(𝑠) − 𝑢𝑝(𝑠)

𝑖𝑝(𝑠) = 𝑖𝑝:1(𝑠) + 𝐶𝑝𝑠𝑢𝑝(𝑠) + 𝐺𝑝𝑢𝑝(𝑠)

          (F.7) 

Then it can be obtained that 

𝑢𝑝;1(𝑠) =
𝑖𝑝 1(𝑠);𝑖𝑝(𝑠)

𝐶𝑝 1𝑠:𝐺𝑝 1
 and 𝑢𝑝(𝑠) =

𝑖𝑝(𝑠);𝑖𝑝+1(𝑠)

𝐶𝑝𝑠:𝐺𝑝
                     (F.8) 

and 

𝐿𝑝𝑠𝑖𝑝(𝑠) + 𝑅𝑝𝑖𝑝(𝑠) =
𝑖𝑝 1(𝑠);𝑖𝑝(𝑠)

𝐶𝑝 1𝑠:𝐺𝑝 1
−
𝑖𝑝(𝑠);𝑖𝑝+1(𝑠)

𝐶𝑝𝑠:𝐺𝑝
          (F.9) 

Equation (F.9) can be further written as: 

𝐿𝑝𝐶𝑝;1𝐶𝑝𝑠
3𝑖𝑝(𝑠) + (𝑅𝑝𝐶𝑝;1𝐶𝑝 + 𝐿𝑝𝐺𝑝;1𝐶𝑝 + 𝐿𝑝𝐶𝑝;1𝐺𝑝)𝑠

2𝑖𝑝(𝑠)

+ (𝑅𝑝𝐶𝑝𝐺𝑝;1 + 𝑅𝑝𝐶𝑝;1𝐺𝑝 + 𝐿𝑝𝐺𝑝;1𝐺𝑝 + 𝐶𝑝;1

+ 𝐶𝑝)𝑠𝑖𝑝(𝑠) + (𝑅𝑝𝐺𝑝;1𝐺𝑝 + 𝐺𝑝;1 + 𝐺𝑝)𝑖𝑝(𝑠)

− 𝐶𝑝𝑠𝑖𝑝;1(𝑠) − 𝐺𝑝𝑖𝑝;1(𝑠) − 𝐶𝑝;1𝑖𝑝:1(𝑠)𝑠 − 𝐺𝑝;1𝑖𝑝:1(𝑠) 

(F.10) 

Applying Kirchhoff’s voltage laws and current laws to the last section, it can be 

obtained that: 

{
  
 

  
 𝐿𝑛

𝑑𝑖 (𝑡)

𝑑𝑡
+ 𝑅𝑛𝑖𝑛(𝑡) = 𝑢𝑛;1(𝑡) − 𝑢𝑛(𝑡)

𝑖𝑛(𝑡) = 𝑖𝑛:1(𝑡) + 𝐶𝑛
𝑑𝑢 (𝑡)

𝑑𝑡
+ 𝐺𝑛𝑢𝑛(𝑡)

𝑖𝑛;1(𝑡) = 𝑖𝑛(𝑡) + 𝐶𝑛;1
𝑑𝑢  1(𝑡)

𝑑𝑡
+ 𝐺𝑛;1𝑢𝑛;1(𝑡)

𝐿𝑛:1
𝑑𝑖 +1(𝑡)

𝑑𝑡
+ 𝑅𝑛:1𝑖𝑛:1 + 𝑍𝑙𝑜 𝑑𝑖𝑛:1(𝑡) = 𝑢𝑛(𝑡) − 𝑢𝑠2(𝑡)

       (F.11) 
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Taking Laplace transform for equation (F.11) and assuming all initial conditions are zero 

yields: 

{
 

 
𝑖𝑛;1(𝑠) = 𝑖𝑛(𝑠) + 𝐶𝑛;1𝑠𝑢𝑛;1(𝑠) + 𝐺𝑛;1𝑢𝑛;1(𝑠)

𝐿𝑛𝑠𝑖𝑛(𝑠) + 𝑅𝑛𝑖𝑛(𝑠) = 𝑢𝑛;1(𝑠) − 𝑢𝑛(𝑠)

𝑖𝑛(𝑠) = 𝑖𝑛:1(𝑠) + 𝐶𝑛𝑠𝑢𝑛(𝑠) + 𝐺𝑛𝑢𝑛(𝑠)

(𝐿𝑛:1𝑠 + 𝑅𝑛:1 + 𝑧𝑙𝑜 𝑑)𝑖𝑛:1(𝑠) = 𝑢𝑛(𝑠) − 𝑢𝑠2(𝑠)

          (F.12) 

Then it can be obtained that 

{
 
 

 
 𝑢𝑛;1(𝑠) =

𝑖  1(𝑠);𝑖 (𝑠)

𝐶  1𝑠:𝐺  1

𝑢𝑛(𝑠) =
𝑖  1(𝑠);𝑖 (𝑠)

𝐶  1𝑠:𝐺  1
− 𝐿𝑛𝑠𝑖𝑛(𝑠) − 𝑅𝑛𝑖𝑛(𝑠)

𝑖𝑛:1(𝑠) =
𝑢 (𝑠)

𝐿 +1𝑠:𝑅 +1:𝑧 𝑜𝑎𝑑
−

𝑢 2(𝑠)

𝐿 +1𝑠:𝑅 +1:𝑧 𝑜𝑎𝑑

           (F.13) 

Then, 

𝑖𝑛(𝑠) = 𝑖𝑛:1(𝑠) + 𝐶𝑛𝑠𝑢𝑛(𝑠) + 𝐺𝑛𝑢𝑛(𝑠)

= (
1

𝐿𝑛:1𝑠 + 𝑅𝑛:1 + 𝑧𝑙𝑜 𝑑
+ 𝐶𝑛𝑠 + 𝐺𝑛)

𝑖𝑛;1(𝑠) − 𝑖𝑛(𝑠)

𝐶𝑛;1𝑠 + 𝐺𝑛;1

−
𝑢𝑠2(𝑡)

𝐿𝑛:1𝑠 + 𝑅𝑛:1 + 𝑧𝑙𝑜 𝑑
 

(F.14) 

Equation (F.14) can be further written as: 

𝐿𝑛:1𝐶𝑛;1𝑠𝑠𝑖𝑛(𝑠) − 𝐶𝑛𝐿𝑛:1𝑠𝑠𝑖𝑛;1(𝑠) + 𝐶𝑛𝐿𝑛:1𝑠𝑠𝑖𝑛(𝑠)

+ (𝑅𝑛:1𝐶𝑛;1 + 𝑧𝑙𝑜 𝑑𝐶𝑛;1 + 𝐿𝑛:1𝐺𝑛;1 + 𝐺𝑛𝐿𝑛:1

+ 𝐶𝑛𝑅𝑛:1 + 𝐶 𝑧𝑙𝑜 𝑑)𝑠𝑖𝑛(𝑠)

+ (𝑅𝑛:1𝐺𝑛;1 + 𝑧𝑙𝑜 𝑑𝐺𝑛;1 + 1 + 𝐺𝑛𝑅𝑛:1 + 𝐺𝑛𝑧𝑙𝑜 𝑑)𝑖𝑛(𝑠)

− (𝐶𝑛𝑅𝑛:1 + 𝐶𝑛𝑧𝑙𝑜 𝑑 + 𝐺𝑛𝐿𝑛:1)𝑠𝑖𝑛;1(𝑠)

− (𝐺𝑛𝑅𝑛:1 + 𝐺𝑛𝑧𝑙𝑜 𝑑 − 1)𝑖𝑛;1(𝑠)

= 𝐶𝑛;1𝑠𝑢𝑠2(𝑡) + 𝐺𝑛;1𝑢𝑠2(𝑡) 

(F.5) 

Eqs. (F.5), (F.10) and (F.15) can be written with the form of Eq. (5.48) where 

𝑭(𝑡) = ,𝑓1(𝑡)    …   𝑓2(𝑡)-
𝑇 
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𝑨 =

[
 
 
 
 
     
 𝐿2𝐶2𝐶1  ⋱  
 ⋱ ⋱ ⋱  
 ⋱ ⋱ 𝐿𝑛;1𝐶𝑛;1𝐶𝑛;2  
     ]

 
 
 
 

 

𝑨 =

[
 
 
 
 
𝐴2(1,1)     

 𝐴2(2,2)  ⋱  
 ⋱ ⋱ ⋱  
 ⋱  𝐴2(𝑛 − 1, 𝑛 − 1)  

   −𝐿𝑛:1𝐶𝑛 𝐴2(𝑛, 𝑛)]
 
 
 
 

 

𝑨 =

[
 
 
 
 
𝐴1(1,1)     

−𝐺2 𝐴1(2,2) −𝐺1 ⋱  
 ⋱ ⋱ ⋱  
 ⋱ −𝐺𝑛;1 𝐴1(𝑛 − 1, 𝑛 − 1) −𝐺𝑛;2
   𝐴1(𝑛, 𝑛 − 1) 𝐴1(𝑛, 𝑛)]

 
 
 
 

 

𝑨 =

[
 
 
 
 
𝐴0(1,1) −1    

−𝐶2 𝐴0(2,2) −𝐶1 ⋱  
 ⋱ ⋱ ⋱  
 ⋱ −𝐶𝑛;1 𝐴0(𝑛 − 1, 𝑛 − 1) −𝐶𝑛;2
   𝐴0(𝑛, 𝑛 − 1) 𝐴0(𝑛, 𝑛)]

 
 
 
 

 

𝑓1(𝑡) = 𝑢̇𝑠1(𝑠)𝐶1 + 𝑢𝑠1(𝑠)𝐺1 

𝑓2(𝑡) = 𝐶𝑛;1𝑢̇𝑠2(𝑡) + 𝐺𝑛;1𝑢𝑠2(𝑡) 

𝐴2(1,1) = 𝐿1𝐶1 

𝐴2(𝑝, 𝑝) = 𝑅𝑝𝐶𝑝;1𝐶𝑝 + 𝐿𝑝𝐺𝑝;1𝐶𝑝 + 𝐿𝑝𝐶𝑝;1𝐺𝑝, 𝑝 = 2,3, … , 𝑛 − 1 

𝐴2(𝑛, 𝑛) = 𝐿𝑛:1𝐶𝑛;1 + 𝐶𝑛𝐿𝑛:1 

𝐴1(1,1) = 𝑅1𝐶1 + 𝐿1𝐺1 

𝐴1(𝑝, 𝑝) = 𝑅𝑝𝐶𝑝𝐺𝑝;1 + 𝑅𝑝𝐶𝑝;1𝐺𝑝 + 𝐿𝑝𝐺𝑝;1𝐺𝑝 + 𝐶𝑝;1 + 𝐶𝑝  𝑝 = 2,3, … , 𝑛 − 1 

𝐴1(𝑛, 𝑛) = 𝑅𝑛:1𝐶𝑛;1 + 𝑧𝑙𝑜 𝑑𝐶𝑛;1 + 𝐿𝑛:1𝐺𝑛;1 + 𝐺𝑛𝐿𝑛:1 + 𝐶𝑛𝑅𝑛:1 + 𝐶𝑛𝑧𝑙𝑜 𝑑 

𝐴1(𝑛, 𝑛 − 1) = 𝐶𝑛𝑅𝑛:1 + 𝐶𝑛𝑧𝑙𝑜 𝑑 + 𝐺𝑛𝐿𝑛:1 

𝐴0(1,1) = 𝑅1𝐺1 + 1 
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𝐴0(𝑝, 𝑝) = 𝑅𝑝𝐺𝑝;1𝐺𝑝 + 𝐺𝑝;1 + 𝐺𝑝 

𝐴0(𝑛, 𝑛) = 𝑅𝑛:1𝐺𝑛;1 + 𝑧𝑙𝑜 𝑑𝐺𝑛;1 + 1 + 𝐺𝑛𝑅𝑛:1 + 𝐺𝑛𝑧𝑙𝑜 𝑑 

𝐴0(𝑛, 𝑛 − 1)𝐺𝑛𝑅𝑛:1 + 𝐺𝑛𝑧𝑙𝑜 𝑑 − 1 
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