# Appendix A

## Amino acids

| Amino Acid                              | Structure                                                                     | 3 Letter<br>Abbreviation | 1 Letter<br>Abbreviation |
|-----------------------------------------|-------------------------------------------------------------------------------|--------------------------|--------------------------|
| Naturally Occurri                       | ng Hydrophobic Amino Acids                                                    |                          |                          |
| Alanine                                 | H <sub>3</sub> C<br>NH <sub>2</sub> OH                                        | Ala                      | A                        |
| Isoleucine                              | H <sub>3</sub> C<br>H <sub>3</sub> C<br>H <sub>1</sub> C<br>H <sub>2</sub> OH | lle                      | Ι                        |
| Leucine                                 | H <sub>3</sub> C<br>CH <sub>3</sub> NH <sub>2</sub> OH                        | Leu                      | L                        |
| Methionine                              | H <sub>3</sub> C <sup>-S</sup><br>NH <sub>2</sub> OH                          | Met                      | Μ                        |
| Phenylalanine                           | O<br>NH <sub>2</sub> OH                                                       | Phe                      | F                        |
| Proline                                 | ОН                                                                            | Pro                      | Р                        |
| Valine                                  | H <sub>3</sub> C H <sub>3</sub> O<br>NH <sub>2</sub> OH                       | Val                      | V                        |
| Naturally Occurring Charged Amino Acids |                                                                               |                          |                          |





# Appendix B

## Peptide quality control

### 1.1 Peptide content

Charged peptides contain bound counter-ions, due to the processing conditions used to purify them. The use of TFA in peptide synthesis and purification results in cationic peptides often being produced as trifluoroacetate salts. Any trifluoroacetate bound cannot be easily removed by freeze drying.<sup>1</sup> Consequently, knowledge of peptide content is important. What is labelled, for example, as a 95% HPLC pure material may contain considerably less peptide than this, due to bound counter-ions.

As a simple approximation, at a neutral pH, every positively charged residue was assumed to have an associated trifluoroacetate counter-ion, and every negatively charged residue assumed to have an associated ammonium counter-ion, due to the use of ammonium acetate buffers. The true peptide content could then be estimated by dividing the molecular weight of the peptide sequence by its effective molecular weight (peptide added to total counter ions), and multiplied by 100 to convert to a percentage.

| Peptide             | Calculated peptide content (%) |
|---------------------|--------------------------------|
| P <sub>11</sub> -4  | 90.5                           |
| P <sub>11</sub> -7  | 91.1                           |
| P <sub>11</sub> -8  | 81.3                           |
| P <sub>11</sub> -9  | 89.5                           |
| P <sub>11</sub> -12 | 79.6                           |
| P <sub>11</sub> -13 | 93.6                           |
| P <sub>11</sub> -14 | 76.8                           |
| P <sub>11</sub> -28 | 68.4                           |
| P <sub>11</sub> -29 | 95.6                           |

#### 1.2 Individual batch data

#### 1.2.1 P<sub>11</sub>-4 (DN1 2E)

Sequence: CH3CO-Q-Q-R-F-E-W-E-F-E-Q-Q-NH2

Empirical Formula: C<sub>72</sub>H<sub>98</sub>N<sub>20</sub>O<sub>22</sub>

Expected Molecular weight: 1596

Net charge = -2

Actual peptide content (calculated as average from company provided data and UV analysis) = 0.944

| Manufacture found MW        | 1595.5                     |
|-----------------------------|----------------------------|
| HPLC (purity)               | 97.3 %                     |
| Manufacturer AAA            | 89.6 %                     |
|                             |                            |
|                             | 99.2 %                     |
| In house elemental analysis | C 51.8%, H 6.2 %, N 16.9 % |

Table 2 - Manufacturer: Polypeptide Group, Batch: CF10141A

#### 1.2.2 P<sub>11</sub>-7 (SDN1)

Sequence: CH<sub>3</sub>CO-S-S-R-F-S-W-S-F-E-S-S-NH<sub>2</sub>

Empirical Formula: C<sub>60</sub>H<sub>82</sub>N<sub>16</sub>O<sub>20</sub>

Expected molecular weight: 1347.4

Net charge = 0

Actual peptide content (calculated as average from company provided data and UV analysis) = 0.899

| Manufacturer found MW       | 1348.2                   |
|-----------------------------|--------------------------|
| HPLC (purity)               | 94.5 %                   |
| Manufacturer UV             | 85.8 %                   |
| In house UV                 | 94 %                     |
| In house elemental analysis | C 48.7%, H 5.7%, N 14.4% |

Table 3 – P<sub>11</sub>-7 QC - Manufacturer: Neo MPS Batch: HF31 434S

#### 1.2.3 P<sub>11</sub>-8 (DN1-20)

Sequence: CH3CO-Q-Q-R-F-O-W-O-F-E-Q-Q-NH2

Empirical Formula: C<sub>68</sub>H<sub>98</sub>N<sub>20</sub>O<sub>18</sub>

Expected molecular weight: 1566

Net charge = +2

Actual peptide content (calculated as average from company provided data and UV analysis) = 0.785

| Manufacturer found MW       | 1565.7                      |
|-----------------------------|-----------------------------|
| HPLC (purity)               | 96.3 %                      |
| Manufacturer AAA            | 76.6 %                      |
| Manufacturer UV             | 78.7 %                      |
| In house UV                 | 80.2 %                      |
| In house elemental analysis | C 47.1 %, H 5.6 %, N 15.3 % |

Table 4 – P<sub>11</sub>-8 QC - Manufacturer: Polypeptide Group, Batch: HF34148A

#### 1.2.4 P<sub>11</sub>-9 (DN1-S2E)

Sequence: CH3CO-S-S-R-F-E-W-E-F-E-S-S-NH2

Counter ions:  $3NH_4^+$  and  $CF_3COO^-$ 

Empirical Formula: C<sub>64</sub>H<sub>86</sub>N<sub>16</sub>O<sub>22</sub>

Expected molecular weight: 1432

Charge = -2

Actual peptide content (calculated as average from company provided data and UV analysis) = 0.955 (CG-01-562), 0.889 (CF08380D)

| Manufacturer found MW       | 1431.4                   |
|-----------------------------|--------------------------|
| HPLC (purity)               | 95.2%                    |
| Manufacturer AAA            | 90 %                     |
| In house UV                 | 101 %                    |
| In house elemental analysis | C 51.4%, H 6.0%, N 14.7% |

#### Table 5 – P<sub>11</sub>-9 QC - Manufacturer: CPC Scientific, Batch: CG-01-562

| Manufacturer found MW       | 1431.5                 |
|-----------------------------|------------------------|
| HPLC (purity)               | 98.8%                  |
| Manufacturer UV             | 91.8 %                 |
| In house UV                 | 86 %                   |
| In house elemental analysis | C 50.2%, H 6.0%, N 14% |

#### Table 6 – P<sub>11</sub>-9 QC - Manufacturer: Polypeptide Group, Batch: CF08380D

#### 1.2.5 P<sub>11</sub>-12 (DN1-S2O)

Sequence: CH<sub>3</sub>CO-S-S-R-F-O-W-O-F-E-S-S-NH<sub>2</sub>

Counter ions =  $NH_4^+$  and  $3CF_3COO^-$ 

Empirical Formula: C<sub>64</sub>H<sub>92</sub>N<sub>18</sub>O<sub>18</sub>

Expected molecular weight: 1402.2

Charge = +2

Actual peptide content (calculated as average from company provided data and UV analysis) = 0.732 (AW09357a), 0.753 (AW09357b)

| Manufacturer found MW       | 1401.2                   |
|-----------------------------|--------------------------|
| HPLC (purity)               | 98.2%                    |
| Manufacturer AAA            | 68.4 %                   |
| In house UV                 | 78 %                     |
| In house elemental analysis | C 46.4%, H 5.5%, N 13.8% |

#### Table 7 – P<sub>11</sub>-12 QC - Manufacturer: Neo MPS, Batch: AW09357a

| Manufacturer found MW       | 1401.2                   |
|-----------------------------|--------------------------|
| HPLC (purity)               | 96.2%                    |
| Manufacturer AAA            | 68.4 %                   |
| In house UV                 | 82.1 %                   |
| In house elemental analysis | C 45.8%, H 5.5%, N 13.8% |

Table 8 – P<sub>11</sub>-12 QC - Manufacturer: Polypeptide Group, Batch: AW09357b

#### 1.2.6 P<sub>11</sub>-13 (DN1-6E)

Sequence:  $CH_3CO$ -E-Q-E-F-E-W-E-F-E-Q-E-HN<sub>2</sub>

Counter ions =  $6 \text{ NH}_4^+$ 

Empirical Formula:C<sub>71</sub>H<sub>91</sub>N<sub>15</sub>O<sub>26</sub>

Expected molecular weight: 1571

Charge = -6

Actual peptide content (calculated as average from company provided data and UV analysis) = 0.688

| Manufacturer found MW       | 1570.3                    |
|-----------------------------|---------------------------|
| HPLC (purity)               | 97.2 %                    |
| Manufacturer AAA            | 70.6 %                    |
| In house UV                 | 67 %                      |
| In house elemental analysis | C 40.7 %, H 4.8%, N 12.6% |

#### Table 9 – P<sub>11</sub>-13 QC - Manufacturer: Polypeptide group, Batch: AW11279K

| Manufacturer found MW       | 1570.5                  |
|-----------------------------|-------------------------|
| HPLC (purity)               | 95.1 %                  |
| Manufacturer AAA            | 88 %                    |
| In house UV                 | 94.6 %                  |
| In house elemental analysis | C 52 %, H 5.9%, N 13.4% |

Table 10 – P<sub>11</sub>-13 QC - Manufacturer: CPC Scientific, Batch: CG-08-00242

#### 1.2.7 P<sub>11</sub>-14 (DN1-40)

Sequence: CH<sub>3</sub>CO-Q-Q-O-F-O-W-O-F-O-Q-Q-NH<sub>2</sub>

Counter ions =  $4 \text{ CF}_3 \text{COO}^-$ 

Empirical Formula: C71H109N21O16

Expected molecular weight: 1508.7

Charge = +4

Actual peptide content (calculated as average from company provided data and UV analysis) = 0.741

| Manufacturer found MW       | 1508.1                    |
|-----------------------------|---------------------------|
| HPLC (purity)               | 97.5 %                    |
| Manufacturer UV             | 72.6 %                    |
| In house UV                 | 75.5%                     |
| In house elemental analysis | C 46.7 %, H 5.6%, N 14.3% |

Table 11 – P<sub>11</sub>-14 QC - Manufacturer: Polypeptide Group, Batch: CF08498A

#### 1.2.8 P<sub>11</sub>-28

Sequence: CH<sub>3</sub>CO-O-Q-O-F-O-W-O-F-O-Q-O-NH<sub>2</sub>

Counter ions =  $6 \text{ CF}_3 \text{COO}^-$ 

Empirical Formula: C71H109N21O14

Expected molecular weight: 1481.1

Charge = +6

Actual peptide content (calculated as average from company provided data and UV analysis) = 0.633

| Manufacturer found MW       | 1480.6                 |
|-----------------------------|------------------------|
| HPLC (purity)               | 98.5 %                 |
| Manufacturer AAA            | 65.8 %                 |
| In house UV                 | 60.8 %                 |
| In house elemental analysis | C 45.1%, H 5.1%, N 13% |

Table 12 – P<sub>11</sub>-28 QC - Manufacturer: Polypeptide Group, Batch: AK09397

#### 1.2.9 P<sub>11</sub>-29

Sequence: CH<sub>3</sub>CO-O-Q-O-F-O-W-O-F-O-Q-O-NH<sub>2</sub>

Counter ions =  $6 \text{ CF}_3 \text{COO}^-$ 

Empirical Formula: C<sub>71</sub>H<sub>93</sub>N<sub>17</sub>O<sub>24</sub>

Expected molecular weight: 1568.6

Charge = +6

Actual peptide content (calculated as average from company provided data and UV analysis) = 0.877

| Manufacturer found MW       | 1568.5                    |
|-----------------------------|---------------------------|
| HPLC (purity)               | 97.5 %                    |
| Manufacturer AAA            | 92 %                      |
| In house UV                 | 83.3 %                    |
| In house elemental analysis | C 53.4 %, H 5.8%, N 14.8% |

Table 13 – P<sub>11</sub>-29 QC - Manufacturer: Polypeptide Group, Batch: AW12192D

#### 1.3 Thermo gravimetric analysis (TGA)

A preliminary study was carried out looking into the thermo gravimetric analysis of the peptides used in this thesis. All moisture and volatiles should come off before 150°C, therefore the mass lost between room temp and 150°C is of interest when determining peptide content.

The runs were performed by Dr Algy Kazlauciunas (School of Chemistry, University of Leeds, UK) and were carried out on a 2050TGA V5.4A instrument at a ramp rate of 10°C per minute in nitrogen gas (200ccs per min). The results of which are presented in the following figures.



Figure 1 - P<sub>11</sub>-9 TGA data







Figure 3 - P<sub>11</sub>-13 TGA data



Figure 4 - P<sub>11</sub>-14 TGA data



Figure 5 - P<sub>11</sub>-28 TGA data



Figure 6 - P<sub>11</sub>-29 TGA data

1. S. Roux, E. Zekri, B. Rousseau, M. Paternostre, J. C. Cintrat and N. Fay, *Journal of Peptide Science*, 2008, 14, 354-359.

# Appendix C

# Optimisation of conditions for collection of CD UV spectra in physiological like solutions

CD analysis can be used to look at the conformational change due to the selfassembly of peptides. The presence of a  $\beta$ -sheet band at 218 nm in the spectra will suggest that self-assembly has occurred whereas the presence of the random coil spectral bands will suggest that self-assembly has not taken place. Above a critical concentration, C\* self-assembly occurs and so by obtaining the CD spectra for a range of concentrations the C\* values determined from NMR studies previously carried out can be confirmed.

Initial CD analysis was carried out using a 1 mm cell with  $P_{11}$ -7,  $P_{11}$ -9 and  $P_{11}$ -12. The samples of  $P_{11}$ -7 at pH 7.4, 130mM NaCl in H<sub>2</sub>O were not clear solutions with the presence of insoluble precipitate at concentrations higher than 100  $\mu$ M and so this caused issues with the technique especially at higher concentrations. Samples with precipitate causes light scattering and this effect, affects the transmitted light giving rise to artefacts in the CD spectrum. As the self-assembly in these conditions is what is of interest it is not possible to change them to help with solubility. Therefore CD is not a suitable technique for use on peptide  $P_{11}$ -7 at a concentration higher than 100  $\mu$ M but it can give valuable information at lower peptide concentrations. This will be studied further in the future.

Sodium chloride absorbs strongly over the wavelength range of interest. Blank subtraction was used to minimise this effect, however a strongly absorbing blank is not ideal.<sup>79</sup> The absorbance of the sample is monitored by the trace of the High Tension, HT, voltage (the voltage applied to the photomultiplier). For reliable data, this should remain within specified bounds (generally the voltage should be less than 700 V, but this value will depend on the particular instrument being used).<sup>79</sup>

The high salt concentration in all the peptide samples ran caused the high tension voltage to be high. In all samples the results were ignored over a HT voltage of 700

V but due to the salt effect this often resulted in a wavelength cut off before the wavelengths of interest.

From the work carried out by Kelly et al<sup>79</sup> on Lysozyme it can be seen that potentially changing the buffer system will result in a lower HT voltage and also possibly a better spectrum as is demonstrated by Figure 7.



Figure 7 - The effects of buffer components on far UV CD spectra. The upper panel shows the CD spectra and the lower panel the corresponding High Tension voltage traces.<sup>79</sup>

In the present study three different physiological salts were chosen to determine the best salt to use to keep the high tension voltage low. The salts chosen were NaCl, NaF and Na<sub>2</sub>HPO<sub>4</sub>. The peptide  $P_{11}$ -9 was chosen as under the solution conditions the samples are clear solutions and so light scattering would not be a problem. A 1 mm pathlength quartz cuvette was used and the solutions conditions were 130 mM of salt, 0.02% NaN<sub>3</sub> (preservative to prevent bacterial growth), in H<sub>2</sub>O at pH 7.4, with a P<sub>11</sub>-9 concentration of 0.2 mM.

From the blank spectrum and high tension voltage in Figure 8 it can be seen that altering the salt does not greatly affect the HT, however the Na<sub>2</sub>HPO<sub>4</sub> blank sample provides the best baseline.



Figure 8 – a. Blank CD spectrum with a HT voltage cut-off of 700 V and b. High Tension Voltage plot for blank samples, 1mm cell, solutions 23 days old



Figure 9 – a.  $P_{11}$ -9 CD spectrum with a HT voltage cut-off of 700 V and b. without a HT voltage cut off at 700V, 1mm cell, samples 23 days old



Figure 10 - High tension voltage plot for P<sub>11</sub>-9, 1mm cell, samples 23 days old.

As demonstrated in Figure 10 once again with the  $P_{11}$ -9 samples altering the salt used does not greatly affect the high voltage tension of the system, and again the salt Na<sub>2</sub>HPO<sub>4</sub> provides the best baseline.

The spectra collected in all three different salt for  $P_{11}$ -9 at a concentration of around 0.2 mM shows that the peptide is in a random coil conformation.

In the experiment described above the same concentration of salt was used in all three salt solutions however NaCl and NaF are 1:1 electrolytes whereas  $Na_2HPO_4$  is a 2:1 electrolyte. This results in slightly different ionic strengths of solution. The ionic strength of a solution can be calculated using Equation 1:

$$I_c = \frac{1}{2} \sum C_B Z_B^2$$

#### **Equation 1**

Where:  $I_c$  = ionic strength of the solution,  $C_B$  = concentration of the solution / M,  $Z_B$  = charge number of the ion.

The ionic strength of NaCl and NaF in the above samples is 0.13 M and for  $Na_2HPO_4$  the ionic strength is 0.39 M. The ionic strength of the  $Na_2HPO_4$  solution is

much greater than that of the other two salts, this will potentially affect the selfassembly and C\* concentration of the peptide but it should not affect the high tension voltage. So for this study it is not a problem, if in future it is used as the physiological salt in samples then a concentration that equals an ionic strength of 0.13 M will be used.

The effect of salt absorbance can be decreased by using a cell with a smaller pathlength. In the initial experiments run a 1 mm cell was used, however, it may be possible to look at a smaller pathlength by using a demountable cell, although a study by Miles et al has shown that the pathlength of such cells can vary by up to 50% as stated by the manufactures.<sup>104</sup> To investigate the effect of changing to a smaller cell the samples above of the three different salts, blank and 0.2 mM P<sub>11</sub>-9 were studied using a demountable cell with a nominal pathlength of 0.1 mm. The CD data for this can only be used qualitatively rather than quantitatively as the molar ellipticity cannot be quoted as to calculate it the accurate cell pathlength is required.



Figure 11 – a. Blank CD spectrum with a HT voltage cut-off of 700 V and b. High Tension Voltage plot for blank samples, demountable cell, solutions 23 days old,

From the blank spectrum and HT plot in Figure 11 it can be seen that by changing the salt when using the demountable cell causes a change in the HT voltage and baseline observed. For that solutions containing NaF and Na<sub>2</sub>HPO<sub>4</sub> the high tension cut off point is at the lowest wavelength measured and so the entire CD spectrum can be used. With the solutions containing NaCl this is not the case the HT becomes greater than 700 V at around 215 nm and so the CD spectrum below this wavelength is ignored. The baseline for all three samples is poor.



Figure 12 – a.  $P_{11}$ -9 CD spectrum with a HT voltage cut-off of 700 V and b. without a HT voltage cut off at 700V, demountable cell, samples 23 days old.



Figure 13 - High tension voltage plot for P<sub>11</sub>-9, demountable cell, 23 days old

From the  $P_{11}$ -9 spectrum and HT plot in Figure 12 and Figure 13 it can be seen that by changing the salt when using the demountable cell again there is a change in the HT and baseline observed. However this time for these solutions containing NaCl and Na<sub>2</sub>HPO<sub>4</sub> the high tension cut off point is at the lowest wavelength measured and so the entire CD spectrum can be used, while with the sample containing NaF this is not the case as the HT becomes greater than 700 V at around 220 nm and so the CD spectrum below this wavelength is ignored.

From looking at the blank and  $P_{11}$ -9 CD and HT plots it seems that the salt, Na<sub>2</sub>HPO<sub>4</sub>, would be the best to use to insure that all the wavelengths observed can

be used. However the baseline for all three salts in solution for the  $P_{11}$ -9 samples is poor, this is thought to be a result of the blank subtraction carried out. During processing the blank spectra is subtracted from the sample spectra to remove any solution absorption bands, but as the pathlength of the cell depends on how it is assembled it will not be the same for both the blank and the sample.

Even though the demountable cell offers the possibility of looking at higher concentration samples and improves the HT voltage when a high salt concentration is used it does not provide good quality spectra. It may still be possible to use the spectra to determine the presence of different conformations if the structural bands are larger than that of the noise in the baseline but this is not ideal. For the samples analysed above the spectra would suggest that for all three salt solutions  $P_{11}$ -9 at around 0.2 mM is in the random coil conformation as above with the 1 mm cell.

From the above study it can be concluded that experiments for quantitative studies in physiological like solutions carried out using CD, should be carried out using a 1 mm cell for the most accurate results and using the following solution conditions; 43 mM (0.13 M ionic strength)  $Na_2HPO_4$  in  $H_2O$  with 0.02%  $NaN_3$  to prevent bacterial growth at pH 7.4.

## Appendix D

#### Supplementary rheological data on peptide gels

#### 1.4 Equilibration time

All experiments were carried out on a sample of  $P_{11}$ -9 20 mg/ml in PBS with 0.02% NaN<sub>3</sub> at pH 7.4. In order to look at the effect of the equilibration time on the results, different wait times after loading prior to running the experiments was investigated. The results for the amplitude sweeps are presented in Figure 14 and for the frequency sweeps in Figure 15.





Figure 14 –  $P_{11}$ -9 comparison of 1hr wait and 10 min wait time after loading on amplitude sweeps. Strain controlled 0.01-100%, frequency 1Hz, temp 25°C

Figure  $15 - P_{11}$ -9 comparison of 1 hour wait and 15 min wait after loading on frequency sweeps. Strain controlled 0.5%, frequency 1 - 20 Hz, temp 25°C

The two different wait times made no difference to the results and so after loading of a sample a wait time of 15 minutes was chosen. The no difference in results for the two samples also suggested good reproducibility and this was investigated further with a selection of peptides.

#### 1.5 Reproducibility

In order to check the reproducibility of the results the same experiments were run on two different samples. The results for  $P_{11}$ -4,  $P_{11}$ -28/29 and  $P_{11}$ -12 are presented in Figure 16, Figure 17 and Figure 18 respectively.



Figure 16 –  $P_{11}$ -4 frequency sweeps carried out on two separate samples. Frequency 1 - 20 Hz, strain controlled 0.15%, temperature 25°C.

Figure 17 -  $P_{11}$ -28/29 frequency sweeps carried out on two separate samples. Frequency 1 - 20 Hz, strain controlled 0.25%, temperature 25°C.



Figure 18 -  $P_{11}$ -12 frequency sweeps carried out on two separate samples. Frequency 1 - 20 Hz, strain controlled 0.25%, temperature 25°C.

#### 1.6 LVER checks

In order to check that the frequency sweeps carried out were in the LVER region amplitude sweeps were run again in a stress controlled mode.



Figure 19 –  $P_{11}$ -9 amplitude sweeps carried out at 1 Hz and 20 Hz, stress controlled 0.005 - 1 Pa, temperature 25°C.

Figure 20 –  $P_{11}$ -12 amplitude sweeps carried out at 1 Hz and 20 Hz, stress controlled 10 - 100 Pa, temperature 25°C.





Figure 21 –  $P_{11}$ -4 amplitude sweeps carried out at 1 Hz and 20 Hz, stress controlled 0.1 - 10 Pa, temperature 25°C.







Figure 23 –  $P_{11}$ -13/14 amplitude sweeps carried out at 1 Hz and 20 Hz, stress controlled 0.05 - 5 Pa, temperature 25°C.

Figure 24 –  $P_{11}$ -28/29 amplitude sweeps carried out at 1 Hz and 20 Hz, stress controlled 10 - 140 Pa, temperature 25°C.

# Appendix E

## Peptide:GAG mixing study

### 1. Visual observations

## 1.1 P<sub>11</sub>-9

The following figures show how the physical appearance of the gels changes over time:



Figure 25 – samples 1 day old. From left to right P11-9:GAG 1:1, 1:0.5, 1:0.2, 1:0.1 and P11-9 control



Figure 26 - samples 3 days old. From left to right P11-9:GAG 1:10, 1:4, 1:3, 1:2, 1:1, 1:0.5, 1:0.2, 1:0.1 and P11-9 control



Figure 27 - samples 3 months old. From left to right P11-9:GAG 1:10, 1:4, 1:3, 1:2, 1:1, 1:0.5, 1:0.2, 1:0.1 and P11-9 control



Figure 28 - samples 7.5 months old. From left to right P11-9:GAG 1:4, 1:3, 1:1, 1:0.5, 1:0.2, 1:0.1



Figure 29 - samples 1 year and 4 months old. From left to right P11-9:GAG 1:10, 1:4, 1:3, 1:2, 1:1, 1:0.5, 1:0.2, 1:0.1 and P11-9 control

| P <sub>11</sub> -9 :<br>GAG | Time taken for<br>gel to form | Appearance                                                                                                                                                                                                                                       | Other<br>observations                                                                                                                                                            |
|-----------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:0.1                       | minutes                       | clear self-supporting gel<br>same after 3 months<br>same after 222 days<br>1yr 4mths clear self-supporting gel                                                                                                                                   | forms a viscous<br>liquid upon<br>shearing<br>birefringent                                                                                                                       |
| 1:0.2                       | minutes                       | clear self-supporting gel<br>same after 3 months<br>same after 222 days<br>1yr 4mths clear liquid with white<br>precipitate                                                                                                                      | forms a viscous<br>liquid upon<br>shearing<br>birefringent                                                                                                                       |
| 1:0.5                       | minutes                       | clear self-supporting gel with a very<br>small amount of white precipitate<br>after 3 months - clear self-supporting<br>gel<br>after 222 days clear viscous liquid with<br>white precipitate<br>1yr 4mths clear liquid with white<br>precipitate | forms a viscous<br>liquid upon<br>shearing<br>birefringent                                                                                                                       |
| 1:1                         | minutes                       | slightly cloudy self-supporting gel<br>same after 3 months<br>slightly cloudy self supporting gel<br>1yr 4mths cloudy gel                                                                                                                        | forms a viscous<br>liquid upon heavy<br>shearing<br>birefringent                                                                                                                 |
| 1:2                         | seconds when<br>still warm    | cloudy self supporting gel with a lot of<br>gel like precipitate on the vial walls<br>same after 3 months<br>1yr 4mths clear liquid some cloudy<br>self-supporting gel                                                                           | a lot of heating<br>and vortexing<br>needed to mix and<br>dissolve gag<br>forms a cloudy<br>solution on heating<br>and quickly<br>reforms previous<br>gel with slight<br>cooling |
| 1:3                         | seconds when                  | cloudy self supporting gel with a lot of                                                                                                                                                                                                         | a lot of heating                                                                                                                                                                 |

### Appendix E – Peptide:GAG mixing study 28

|         | still warm   | gel like precipitate on the vial walls   | and vortexing       |
|---------|--------------|------------------------------------------|---------------------|
|         |              | same after 3 months                      | needed to mix and   |
|         |              | after 222 days self supporting gel but   | dissolve gag        |
|         |              | top part cloudy and bottom part clear    | forms a cloudy      |
|         |              |                                          | solution on heating |
|         |              | 1yr 4mths some clear liquid some         | and quickly         |
|         |              | white viscous gel                        | reforms previous    |
|         |              |                                          | gel with slight     |
|         |              |                                          | cooling             |
|         |              |                                          | a lot of heating    |
|         |              |                                          | and vortexing       |
|         |              | less cloudy self-supporting gel than 1:2 | needed to mix and   |
|         |              | and 1:3 with some gel like precipitate   | dissolve gag        |
|         |              | on the vial walls                        |                     |
| 1:4     | seconds when |                                          | forms a cloudy      |
|         | still warm   | same after 3 months                      | solution on heating |
|         |              |                                          | and quickly         |
|         |              |                                          | reforms previous    |
|         |              |                                          | gel with slight     |
|         |              |                                          | cooling             |
|         |              |                                          | a lot of heating    |
|         |              |                                          | and vortexing       |
|         |              |                                          | needed to mix and   |
|         |              | very cloudy self-supporting gel with no  | dissolve gag        |
|         |              | precipitate on the vial walls            |                     |
| 1.10    | seconds when |                                          | forms a cloudy      |
| 1.10    | still warm   | after 3 months- cloudy viscous liquid    | solution on heating |
|         |              |                                          | and quickly         |
|         |              | 1yr 4mths cloudy self-supporting gel     | reforms previous    |
|         |              |                                          | gel with slight     |
|         |              |                                          | cooling (same       |
|         |              |                                          | after 3 months)     |
|         |              | clear self-supporting gel                | forms a viscous     |
| Dontido |              |                                          | liquid upon light   |
| control | minutes      | same after 3 months                      | shearing (same      |
| Control |              |                                          | after 3 months)     |
|         |              | 1yr 4mths clear self-supporting gel      | birefringent        |

Table 14 – P<sub>11</sub>-9:GAG mixing study observations

#### 1.2 P<sub>11</sub>-12

The following figures show how the physical appearance of the gels changes over time:



Figure 30 - samples 1 week old. From left to right P11-12 control 1:10, 1:4, 1:3 1:2, 1:1 and GAG control



Figure 31 – samples 1 day old. From left to right 1:100, 1:50, 1:20



Figure 32 - samples 5 days old. From left to right 1:100, 1:50, 1:20



Figure 33 – from left to right GAG control, 1:10, 1:4, 1:3, 1:2, 1:1, 1:0.5, 1:0.2, 1:0.1, P11-12 control. P11-12 control, 1:1, 1:2, 1:3, 1:4, 1:10, Gag control samples all 1 month old and 1:0.1, 1:0.2, 1:0.5 samples 2 weeks old.



Figure 34 – Samples 4 months old. From left to right GAG control, 1:10, 1:4, 1:3, 1:2, 1:1, 1:0.5, 1:0.2, 1:0.1, P11-12 control. (1:0.1, 1:0.2, 1:1, 1:2 samples all reheated after 1 month)



Figure 35 – samples 10 months old. From left to right 1:4, 1:3, 1:1, 1:0.2, 1:0.1



Figure 36 – samples 1 year and 5 months old. From left to right 1:4, 1:3, 1:2, 1:1, 1:0.5, 1:0.2, 1:0.1, P11-12 control



Figure 37 –From left to right 1:100, 1:50, 1:20, 1:4, 1:3, 1:1, 1:0.2, 1:0.1, P11-12 control. Samples 1:100, 1:50 and 1:20 6.5 months old rest of samples 1 year and 11months old.

| P <sub>11</sub> -12 :<br>GAG | Time taken for gel to form | Appearance                                                                                                                                                                                                                                                                                          | Other observations                                                                                                | Picture                                                 |                               |
|------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------|
| 1:0.1                        | 2 hrs no gel               | after 72 hours cloudy solution<br>with gel like precipitate on the<br>walls of the sample vial<br>same after 1 month<br>same after 4 months<br>after 8 months cloudy self-<br>supporting gels with bits of gel on<br>sides of the vial walls<br>1yr 5 mth – slightly cloudy self-<br>supporting gel | after 2 weeks sample<br>was reheated and<br>upon cooling within<br>seconds a cloudy self<br>supporting gel formed | initial solution with gel like precipitate on the walls | after reheating after 1 month |

| 1:0.2 | 2 hrs no gel | after 72 hours cloudy solution<br>with gel like precipitate on the<br>walls of the sample vial<br>same after 1 month<br>same after 4 months<br>after 8 months cloudy self-<br>supporting gels with bits of gel on<br>sides of the vial walls<br>1yr 5 mth – slightly cloudy self-<br>supporting gel | after 2 weeks sample<br>was reheated and<br>upon cooling within<br>seconds a cloudy self<br>supporting gel formed | initial solution with gel like precipitate or the walls | gel after reheating after 1 mont |
|-------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------|
| 1:0.5 | minutes      | cloudy gel with precipitate<br>same after 4 months<br>1yr 5 mth – slightly cloudy self-<br>supporting gel                                                                                                                                                                                           | upon reheating =<br>cloudy solution                                                                               |                                                         |                                  |

|     |         | cloudy gel with precipitate after 4 months (with reheating                                    | upon reheating = cloudy solution                                |                                                        |
|-----|---------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|
|     |         | after 1 month) cloudy self-<br>supporting gel                                                 | after 2 weeks gel stops being self-supporting                   |                                                        |
| 1:1 | seconds | after 8 months cloudy self-<br>supporting gels with bits of gel on<br>sides of the vial walls | after 1 month sample<br>was reheated and<br>upon cooling within | initial gel formed 2 weeks old 1 month after reheating |
|     |         | 1yr 5 mth – slightly cloudy self-<br>supporting gel                                           | seconds a cloudy self supporting gel formed                     |                                                        |
|     |         |                                                                                               | upon reheating = cloudy solution                                |                                                        |
|     |         | cloudy gel with precipitate                                                                   | after 2 weeks gel stops being self-supporting                   |                                                        |
| 1:2 | seconds | 1yr 5 mth – slightly cloudy self-<br>supporting gel                                           | after 1 month sample<br>was reheated and                        | initial gel formed 2 weeks old 1 month after reheating |
|     |         |                                                                                               | seconds a cloudy self                                           |                                                        |
|     |         |                                                                                               | supporting gel formed                                           |                                                        |

|     |         | cloudy gel with precipitate         |                  |  |
|-----|---------|-------------------------------------|------------------|--|
|     |         | same after 1 1/2 months             |                  |  |
|     |         | same after 4 months                 | upon reheating = |  |
| 1:3 | seconds | after 8 months cloudy self-         | cloudy solution  |  |
|     |         | supporting gels with bits of gel on |                  |  |
|     |         | sides of the vial walls             |                  |  |
|     |         | 1yr 5 mth – slightly cloudy self-   |                  |  |
|     |         | supporting gel                      |                  |  |
|     |         | cloudy gel with precipitate         |                  |  |
|     |         | same after 1 1/2 months             |                  |  |
|     |         | same after 4 months                 | upon reheating = |  |
| 1:4 | seconds | after 8 months cloudy self-         | cloudy solution  |  |
|     |         | supporting gels with bits of gel on |                  |  |
|     |         | sides of the vial walls             |                  |  |
|     |         | 1yr 5 mth – slightly cloudy self-   |                  |  |
|     |         | supporting gel                      |                  |  |

-

| 1:10 | seconds     | cloudy gel<br>same after 1 ½ months<br>same after 4 months | upon reheating =<br>cloudy solution                                                                                                                                                                           |  |
|------|-------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1:20 | spontaneous | Cloudy gel                                                 | 5 days - Cloudy self<br>supporting gel with gel<br>on walls of vial<br>6.5mth - Cloudy self<br>supporting gel with gel<br>on walls of vial                                                                    |  |
| 1:50 | spontaneous | Opaque thick gel                                           | Took a long time for all<br>the gag to mix/dissolve<br>5 days - Cloudy self<br>supporting gel with gel<br>on walls of vial, slightly<br>yellow in colour<br>6.5 mths - Cloudy self<br>supporting gel with gel |  |

|                   |                  | on walls of vial                                                                                                                                                                          |             |         |
|-------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|
| 1:100 spontaneous | Opaque thick gel | Took a long time for all<br>the gag to mix/dissolve<br>5 days - Cloudy self<br>supporting gel with gel<br>on walls of vial, yellow<br>in colour, lots of<br>bubbles<br>6.5 mth yellow gel | Day of prep | 6.5 mth |



Table 15 – P<sub>11</sub>-12: GAG mixing study observations
## 1.3 P<sub>11</sub>-4

The following figures show how the physical appearances of the gels change over time:





Figure 38 - samples on day of prep after heating to remove bubbles. From left to right,  $P_{11}$ -4:GAG 1:10, 1:2 and  $P_{11}$ -4 control.

Figure 39 - samples 2 days old. From left to right From left to right,  $P_{11}$ -4:GAG 1:10, 1:2 and  $P_{11}$ -4 control.



Figure 40 - samples 10 days old. From left to right From left to right, P11-4:GAG 1:10, 1:2 and P11-4 control.



Figure 41 - samples 20 days old. From left to right From left to right,  $P_{11}$ -4:GAG 1:10, 1:2 and  $P_{11}$ -4 control. Still self-supporting gels.

| P11-4: GAG | Time taken for gel to<br>form | Appearance                          | Other observations                                                                                                        |
|------------|-------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| 1:2        | Secs-mins                     | Cloudy self-supporting gel          | Cloudy viscous liquid when warm<br>Thicker than that of control<br>Few bubbles upon mixing                                |
| 1:10       | Secs                          | Cloudy/white self-supporting<br>gel | Took a while to get gag to dissolve<br>Thicker than that of 1:2<br>Lots of bubbles took lots of heating to remove bubbles |
| control    | Mins - hours                  | Slightly cloudy self-supporting gel |                                                                                                                           |

#### Table 16 – P<sub>11</sub>-4:GAG mixing study observations

# 1.4 P<sub>11</sub>-8

The following figures show how the physical appearances of the gels change over time:



Figure 42 – Day of preparation. From left to right  $P_{11}$ -8:GAG 1:10, 1:2 and  $P_{11}$ -8 control



Figure 43 – Samples 5 days old. From left to right  $P_{11}$ -8:GAG 1:10, 1:2 and  $P_{11}$ -8 control



Figure 44 -Samples 13 days old. From left to right  $P_{11}$ -8:GAG 1:10, 1:2 and  $P_{11}$ -8 control

Figure 45 - Samples 40 days old. From left to right  $P_{11}\mbox{-}8\mbox{:}GAG$  1:10, 1:2 and  $P_{11}\mbox{-}8\mbox{:}control$ 

| P11-8 :<br>GAG | Time taken for gel<br>to form | Appearance                                                           | Other observations                                                                                                                                                                         |
|----------------|-------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:2            | Secs                          | Cloudy slightly bitty self-supporting gel                            | 13 days cloudy self supporting gel with bitty gel visible on walls<br>40 days cloudy bitty self-supporting gel that's less bitty than control<br>90 days cloudy self-supporting gel        |
| 1:10           | Secs                          | Cloudy self-supporting gel                                           | 13 days cloudy self supporting gel<br>40 days cloudy "smooth" self-supporting gel<br>90 days cloudy self-supporting gel                                                                    |
| control        | days                          | Cloudy liquid that forms a weak self supporting gel after a few days | 13 days bitty cloudy self-supporting gel with liquid phase<br>40 days cloudy very bitty self-supporting gel with liquid phase<br>90 days cloudy self-supporting gel with some liquid phase |

Table 17 – P<sub>11</sub>-8:GAG mixing study observation

#### 1.5 P<sub>11</sub>-13:GAG + P<sub>11</sub>-14

The following figures show how the physical appearances of the gels change over time:



Figure 46 – 3 days old. From left to right  $P_{11}$ -13/14:GAG 1:10, 1:5, 1:2 1:1, 1:0.1 and  $P_{11}$ -13/14 control





Figure 48 - 47 days old. From left to right  $P_{11}$ -13/14:GAG 1:20, 1:10, 1:5, 1:2, 1:1, 1:0.1 and  $P_{11}$ -13/14 control



Figure 49 – 6 months old. From left to right  $P_{11}$ -13/14:GAG 1:20, 1:10, 1:5, 1:2, 1:1, 1:0.1 and  $P_{11}$ -13/14 control.



Figure 50 - 10 months old. From left to right  $P_{11}$ -13/14:GAG 1:20, 1:10, 1:5, 1:2, 1:1, 1:0.1 and  $P_{11}$ -13/14 control. All samples heated, vortexed and then cooled after 6 months.



Figure 51 - 1 year 5 months old. From left to right  $P_{11}$ -13/14:GAG 1:20, 1:10, 1:5, 1:2, 1:1 and  $P_{11}$ -13/14 control.

| P11-13: GAG+14 | Time taken for gel to form | Appearance                                                           | Other observations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------|----------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:0.1          | instantaneous              | clear self-supporting gel<br>at 19 days = cloudy self supporting gel | <ul> <li>when left overnight as just P11-13 and gag formed clear gel that upon light shearing became a viscous liquid</li> <li>19 days - turnt into cloudy liquid upon vortexing</li> <li>after heating and then cooling still cloudy liquid</li> <li>37 days – cloudy bitty gel in clear liquid with gel up edges of the vial wall</li> <li>6 mth bitty gel on vial walls</li> <li>Sample heated and vortexed → cloudy bitty liquid</li> <li>10 mth - cloudy self-supporting gel +gel on walls</li> </ul> |
| 1:1            | instantaneous              | clear self-supporting gel<br>at 19 days = cloudy self supporting gel | <ul> <li>when left overnight as just P11-13 and gag<br/>= clear liquid</li> <li>19 days - turnt into cloudy liquid upon<br/>vortexing</li> <li>after heating and then cooling still cloudy<br/>liquid</li> <li>37 days – cloudy bitty gel in clear liquid<br/>with gel up edges of the vial wall</li> </ul>                                                                                                                                                                                                |

-

|     |               |                                                                                                             | 6 mth bitty gel on vial walls some liquid<br>phase<br>Sample heated and vortexed→cloudy bitty<br>liquid<br>10 mth - cloudy self-supporting gel +gel on<br>walls                                                                                                                                                                                                                      |
|-----|---------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:2 | instantaneous | clear self-supporting gel<br>at 19 days = cloudy self supporting gel →<br>cloudy liquid upon light shearing | <ul> <li>= clear liquid</li> <li>19 days</li> <li>after heating and then cooling still cloudy liquid</li> <li>37 days – cloudy bitty gel in clear liquid with gel up edges of the vial wall</li> <li>6 mth bitty gel on vial walls some liquid phase</li> <li>Sample heated and vortexed → cloudy bitty liquid</li> <li>10 mth - cloudy self-supporting gel +gel on walls</li> </ul> |

| 1:5  | instantaneous | clear self-supporting gel<br>at 19 days = clear self supporting gel                   | <ul> <li>when left overnight as just P11-13 and gag<br/>= clear liquid</li> <li>19 days - upon vortexing<br/>after heating and then cooling still clear self<br/>supporting gel<br/>not birefringent</li> <li>37 – days clear self-supporting gel not<br/>birefringent</li> <li>6<sup>th</sup> mth cloudy self supporting gel upon<br/>shearing becomes viscous Sample heated<br/>and vortexed→cloudy bitty liquid</li> <li>10mth cloudy self-supporting gel +gel on<br/>walls with slight yellow colour</li> </ul> |
|------|---------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:10 | instantaneous | cloudy self-supporting gel<br>at 19 days = cloudy liquid with precipitate on<br>walls | <pre>when left overnight as just P11-13 and gag</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 1:20    | seconds       | cloudy self- supporting gel                                         | 13 days- cloudy self supporting gel<br>6 <sup>th</sup> mth cloudy self supporting gel upon<br>shearing becomes viscous Sample heated<br>and vortexed→cloudy bitty liquid<br>10 mth viscous liguid/gel |
|---------|---------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| control | instantaneous | clear self-supporting gel<br>at 19 days = clear self supporting gel | 19 days - upon vortexing<br>after heating and then cooling still clear self<br>supporting gel<br>not birefringent<br>37 days – cloudy self-supporting gel<br>10 mth cloudy self-supporting gel        |

Table 18 - P<sub>11</sub>-13:GAG+P<sub>11</sub>-14 mixing study observations

## 1.6 P<sub>11</sub>-14:GAG+P<sub>11</sub>-13

The following figures show how the physical appearances of the gels change over time:





to right P<sub>11</sub>-14:GAG+P<sub>11</sub>-13 1:20, 1:10, 1:5 P<sub>11</sub>-14:GAG+P<sub>11</sub>-13 1:20, 1:10, 1:5 and 1:1 and 1:1

Figure 52 – Day of preparation. From left Figure 53 – 13 days old. From left to right



Figure 54 – 5 months old. From left to right P<sub>11</sub>-14:GAG+P<sub>11</sub>-13 1:20, 1:10, 1:5, 1:1 and P<sub>11</sub>-13/14 control



Figure 55 - 9 months old. From left to right P<sub>11</sub>-14:GAG+P<sub>11</sub>-13 1:20, 1:10, 1:5, 1:1 and P<sub>11</sub>-13/14 control



Figure 56 – 1 year and 3.5 months old. From left to right P<sub>11</sub>-14:GAG+P<sub>11</sub>-13 1:20, 1:10, 1:5, 1:1 and P<sub>11</sub>-13/14 control

| P <sub>11</sub> -14:GAG+13 | Time taken for gel to<br>form | Appearance | Other observations                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pict           | ure         |
|----------------------------|-------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|
| 1:1                        | seconds                       | clear gel  | addition of gag to P <sub>11</sub> -14 → cloudy liquid<br>formed gel upon vortexing, upon light<br>shearing gel becomes viscous not self-<br>supporting<br>13 days clear self supporting birefringent<br>gel doesn't break upon vortexing<br>5mths – clear self-supporting gel<br>Heated ~80C and vortexed → stil clear<br>self-supporting gel<br>9mths clear self-supporting gel + very<br>small amount of clear liquid<br>1yr 3.5mths slightly cloudy self-<br>supporting gel | on day of prep | li days old |

| 1:5  | seconds | slightly cloudy gel | addition of gag to P <sub>11</sub> -14 → clear liquid<br>formed gel upon vortexing, upon light<br>shearing gel becomes viscous not self-<br>supporting<br>13 days – cloudy self supporting<br>birefringent gel doesn't break upon<br>vortexing<br>5mths – cloudy self-supporting gel<br>Heated ~80C and vortexed → stil cloudy<br>self-supporting gel<br>9mths cloudy self-supporting gel<br>1yr 3.5mths liquid phase with some bitty<br>gel on walls | on day of prep | 13 days old |
|------|---------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|
| 1:10 | seconds | cloudy gel          | addition of gag to P <sub>11</sub> -14 → spontaneous<br>gel formed with gag powder sitting on<br>top upon vortexing becomes viscous<br>liquid<br>gel formed before vortexing and upon                                                                                                                                                                                                                                                                 | on day of prep | 13 days old |

| shearing will form a viscous liquid           |                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13 days – cloudy self supporting              |                                                                                                                                                                                                                                                                                                                                                                                                   |
| birefringent gel upon vortexing gel no        |                                                                                                                                                                                                                                                                                                                                                                                                   |
| longer self-supporting                        |                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5mths – cloudy self-supporting gel with       |                                                                                                                                                                                                                                                                                                                                                                                                   |
| gel on walls                                  |                                                                                                                                                                                                                                                                                                                                                                                                   |
| Heated ~80C and vortexed $\rightarrow$ cloudy |                                                                                                                                                                                                                                                                                                                                                                                                   |
| bitty viscous liquid                          |                                                                                                                                                                                                                                                                                                                                                                                                   |
| 9mths cloudy viscous liquid full of gel       |                                                                                                                                                                                                                                                                                                                                                                                                   |
| precipitate                                   |                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1yr 3.5mths cloudy self-supporting gel        |                                                                                                                                                                                                                                                                                                                                                                                                   |
| with some liquid phase                        |                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                               | shearing will form a viscous liquid<br>13 days – cloudy self supporting<br>birefringent gel upon vortexing gel no<br>longer self-supporting<br>5mths – cloudy self-supporting gel with<br>gel on walls<br>Heated ~80C and vortexed → cloudy<br>bitty viscous liquid<br>9mths cloudy viscous liquid full of gel<br>precipitate<br>1yr 3.5mths cloudy self-supporting gel<br>with some liquid phase |

|      |         |            | addition of gag to $P_{11}$ -14 $\rightarrow$ spontaneous |                              |           |             |
|------|---------|------------|-----------------------------------------------------------|------------------------------|-----------|-------------|
|      |         |            | gel formed with gag powder sitting on                     |                              |           |             |
|      |         |            | top upon vortexing becomes viscous                        |                              |           |             |
|      |         |            | liquid                                                    |                              |           |             |
|      |         |            | gel formed before vortexing and upon                      | a                            |           | 15-2 A      |
|      |         |            | shearing will form a viscous liquid                       | and and                      | (0 m 1)   |             |
|      |         |            | 13 days – cloudy self supporting                          |                              | 1000      |             |
|      |         |            | birefringent gel upon vortexing gel no                    |                              |           |             |
| 1:20 | seconds | cloudy gel | longer self-supporting                                    | P <sub>11</sub> -14:Gag only | on day of | 13 days old |
|      |         |            | 5mths – bitty gel on walls and some                       |                              | prep      |             |
|      |         |            | liquid phase                                              |                              |           |             |
|      |         |            | Heated ~80C and vortexed $\rightarrow$ cloudy             |                              |           |             |
|      |         |            | bitty viscous liquid                                      |                              |           |             |
|      |         |            | 9mths cloudy self-supporting gel hint of                  |                              |           |             |
|      |         |            | yellow colour and a small amount of                       |                              |           |             |
|      |         |            | liquid                                                    |                              |           |             |
|      |         |            | 1yr 3.5mths cloudy self-supporting gel                    |                              |           |             |

Table 19 –  $P_{11}$ -14:GAG+ $P_{11}$ -13 mixing study observation

#### 1.7 P<sub>11</sub>-28:GAG+ P<sub>11</sub>-29

The following figures show how the physical appearances of the gels change over time:



Figure 57 –  $P_{11}$ -28:GAG on day of preparation. From left to right 1:100, 1:10, 1:5, 1:2, 1:0.5, control



Figure 58 -  $P_{11}$ -28:GAG 1 day old. From left to right 1:100, 1:10, 1:5, 1:2, 1:0.5, control



Figure 59 -  $P_{11}$ -28:GAG +  $P_{11}$ -29 on day of preparation. From left to right 1:100, 1:10, 1:5, 1:2, 1:0.5, control



Figure 61 -  $P_{11}$ -28:GAG +  $P_{11}$ -29 40 days old. From left to right 1:100, 1:10, 1:5, 1:2, 1:0.5, control



Figure 63 -  $P_{11}$ -28:GAG +  $P_{11}$ -29 40 days old. From left to right 1:100, 1:10, 1:5, 1:2, 1:0.5, control. All samples vortexed and heated



Figure 64 - P<sub>11</sub>-28:GAG + P<sub>11</sub>-29 1:100 81 days old



Figure 60 -  $P_{11}$ -28:GAG +  $P_{11}$ -29 20 days old. From left to right 1:100, 1:10, 1:5, 1:2, 1:0.5, control



Figure 62 -  $P_{11}$ -28:GAG +  $P_{11}$ -29 40 days old. From left to right 1:100, 1:10, 1:5, 1:2, 1:0.5, control. All samples vortexed

| P <sub>11</sub> -28<br>+GAG: 29 | Time taken<br>for gel to<br>form | Appearance | Other observations                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------|----------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:0.5                           | spontaneous                      | cloudy gel | addition of gag to P <sub>11</sub> -28 → cloudy liquid becoming clear overnight<br>spontaneous self-supporting gel formation on addition on P11-29 to<br>P11-28:GAG<br>20 days – 2 phases clear liquid with white gel precipitate and self-<br>supporting cloudy gel<br>40 days – as 20 days<br>After vortexing and reheating sample still the same precipitate didn't<br>solubilise |
| 1:2                             | mins                             | cloudy gel | addition of gag to P <sub>11</sub> -28 → cloudy liquid becoming clear overnight<br>self-supporting gel formed after a few mins post addition of P11-29 to<br>P11-28:GAG<br>20 days –clear liquid with white gel precipitate some gel on walls of vial<br>40 days – as 20 days<br>After vortexing and reheating sample still the same precipitate didn't<br>solubilise                |

| 1:5   | Secs        | cloudy gel        | addition of gag to P <sub>11</sub> -28 → cloudy liquid<br>self-supporting gel formed within seconds after addition of P11-29 to<br>P11-28:GAG<br>20 days –clear liquid with white gel precipitate some gel on walls of vial<br>40 days – as 20 days After vortexing and reheating sample still the<br>same precipitate didn't solubilise                                                    |
|-------|-------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:10  | Secs        | cloudy gel        | addition of gag to P <sub>11</sub> -28 → cloudy liquid<br>self-supporting gel formed within seconds after addition of P11-29 to<br>P11-28:GAG (quicker than 1:5)<br>20 days – 2 phases clear liquid with white gel precipitate and self-<br>supporting cloudy ge<br>40 days – as 20 days After vortexing and reheating sample still the<br>same precipitate didn't solubilise               |
| 1:100 | spontaneous | cloudy yellow gel | addition of gag to P <sub>11</sub> -28 → very hard to dissolve even after lots of<br>vortexing and heating still some GAG not dissolved. left over night →<br>yellow self-supporting gel that doesn't become viscous on vortexing<br>took a lot of vortexing to get P11-29 to mix with P11-28:GAG gel<br>20 days old yellow self-supporting gel that doesn't become viscous on<br>vortexing |

|         |             |        | 40 days – as 20 days                                                                                                                                            |
|---------|-------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |             |        | 81 days same as above!                                                                                                                                          |
|         |             |        | 99 days same as above                                                                                                                                           |
|         |             |        | 4 mths (131 days) same as above                                                                                                                                 |
| control | spontaneous | cloudy | 20 days old precipitate forming<br>40 days old liquid with gel precipitate After vortexing and reheating<br>sample still the same precipitate didn't solubilise |

Table 20 –P<sub>11</sub>-28:GAG +P<sub>11</sub>-29 mixing study observations

#### 1.8 P<sub>11</sub>-29:GAG + P<sub>11</sub>-28

The following figures show how the physical appearances of the gels change over time:



Figure 65 -  $P_{11}$ -29:GAG day of preparation. From left to right 1:50, 1:10, 1:2 and control



Figure 66 -  $P_{11}$ -29:GAG day after preparation. From left to right 1:50, 1:10, 1:2 and control





Figure 67 -  $P_{11}$ -29:GAG+ $P_{11}$ -28 day of preparation. From left to right 1:50, 1:10, 1:2 and control



Figure 69 -  $P_{11}$ -29:GAG+ $P_{11}$ -28 15 days old. From left to right 1:50, 1:10, 1:2 and control

Figure 68 -  $P_{11}$ -29:GAG+ $P_{11}$ -28 6 days old. From left to right 1:50, 1:10, 1:2 and control



Figure 70 -  $P_{11}$ -29:GAG+ $P_{11}$ -28 41 days old. From left to right 1:50, 1:10, 1:2 and control

| P <sub>11</sub> -29<br>+GAG :28 | Time taken for gel<br>to form                             | Appearance                                                                                                                                                                                                                                          | Other observations                                                                            |
|---------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 1:2                             | secs after vortexing                                      | milk white self-supporting gel<br>15 days old liquid with cloudy precipitate<br>41 days clear liquid with some cloudy gel precipitate<br>59 days liquid with gel precipitate<br>91 days grainy gel on walls and liquid phase                        | turnt white upon addition of P11-28                                                           |
| 1:10                            | secs-1 min slightly<br>longer than 1:2 after<br>vortexing | milk white self-supporting gel<br>15 days cloudy self-supporting gel v small amount of clear liquid<br>41 days clear liquid with some cloudy gel precipitate<br>59 days liquid with gel precipitate<br>91 days grainy gel on walls and liquid phase | P11-29 +GAG left overnight = slightly cloudy<br>liquid<br>turnt white upon addition of P11-28 |

| 1:50    | spontaneous with<br>vortexing | cloudy slightly yellow gel<br>15 days slightly yellow cloudy self-supporting gel<br>41 days slightly yellow viscous liquid with cloudy gel precipitate<br>59 days some yellow gel phase v small amount is self-supporting<br>91 days Some self-supporting grainy gel and liquid phase plus gel on walls | self-supporting gel formed within hrs of GAG<br>addition to P11-29<br>clear liquid P11-28 sat on top of gel P11-29<br>until vortexing when spontaneous gelation<br>was observed. |
|---------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| control | spontaneous with<br>vortexing | Clear self-supporting gel<br>Same at 15 days<br>41 days cloudy self-supporting gel<br>91 days grainy cloudy self-supporting gel                                                                                                                                                                         |                                                                                                                                                                                  |

Table 21 - P<sub>11</sub>-29:GAG +P<sub>11</sub>-28 mixing study observation

## 2. Rheology

#### 2.1 LVER checks

Following the frequency sweeps amplitude sweeps were performed again at 1 Hz and 20 Hz in a stress controlled mode to confirm that the frequency sweeps were carried out in the LVER. The following plots are the LVER checks carried out for all the peptide:GAG ratios studied.

#### 2.1.1 P<sub>11</sub>-9



Figure 71 – 1:0.5, frequency = 1 Hz and 20 Hz, temperature =  $25^{\circ}$ C, stress controlled 0.005-1 Pa

Figure 72 – 1:2, frequency = 1 Hz and 20 Hz, temperature =  $25^{\circ}$ C, stress controlled 0.005-1 Pa



Figure 73 – 1:10, frequency = 1 Hz, stress controlled 0.5-10 Pa and 20Hz stress controlled 0.1-10 Pa, temperature =  $25^{\circ}C$ 

# 2.1.2 P<sub>11</sub>-12





Figure 74 – 1:0.5, frequency = 1 Hz and 20 Hz, temperature =  $25^{\circ}$ C, stress controlled 10-100 Pa

Figure 75 - 1:2, frequency = 1 Hz and 20 Hz, temperature =  $25^{\circ}$ C, stress controlled 5 - 50 Pa



Figure 76 - 1:10, frequency = 1 Hz and 20 Hz, temperature =  $25^{\circ}$ C, stress controlled 1 -20 Pa

Figure 77 - 1:100, frequency = 1 Hz, stress controlled 1 -10 Pa, and frequency = 20 Hz, stress controlled 5 - 50 Pa, both at temperature =  $25^{\circ}$ C,

2.1.3 P<sub>11</sub>-4





Figure 78 - 1:2, frequency = 1 Hz and 20 Hz, temperature =  $25^{\circ}$ C, stress controlled 0.02 - 0.5 Pa

Figure 79 - 1:10, frequency = 1 Hz and 20 Hz, temperature =  $25^{\circ}$ C, stress controlled 0.1 - 10 Pa

2.1.4 P<sub>11</sub>-8





Figure 80 - 1:2, frequency = 1 Hz and 20 Hz, temperature =  $25^{\circ}$ C, stress controlled 10 - 100 Pa

Figure 81 - 1:10, frequency = 1 Hz and 20 Hz, temperature =  $25^{\circ}$ C, stress controlled 0.05 - 5 Pa

# 2.1.5 P<sub>11</sub>-13:GAG+P<sub>11</sub>-14



Figure 82 - 1:2, frequency = 1 Hz and 20 Hz, temperature =  $25^{\circ}$ C, stress controlled 0.05 - 5 Pa

2.1.6 P<sub>11</sub>-14:GAG+P<sub>11</sub>-13





Figure 83 - 1:2, frequency = 1 Hz , stress controlled 0.02 – 0.5 Pa, and 20 Hz stress controlled 0.05 – 1 Pa, temperature =  $25^{\circ}C$ 

Figure 84 - 1:10, frequency = 1 Hz, stress controlled 0.01 - 1 Pa and frequency = 20 Hz, stress controlled 0.05 - 1 Pa, both at at  $25^{\circ}$ C,

2.1.7 P<sub>11</sub>-28:GAG + P<sub>11</sub>-29



Figure 85 - 1:2, frequency = 1 Hz and 20 Hz, temperature =  $25^{\circ}$ C, stress controlled 10 - 100 Pa

2.1.8 P<sub>11</sub>-29:GAG + P<sub>11</sub>-28



Figure 86 - 1:2, frequency = 1 Hz and 20 Hz, temperature =  $25^{\circ}$ C, stress controlled 30 - 130 Pa

#### 2.1.9 P<sub>11</sub>-28+29:GAG



Figure 87 - 1:10, frequency = 1 Hz and 20 Hz, temperature =  $25^{\circ}$ C, stress controlled 5 - 50 Pa

## 2.2 Reproducibility

For a selection of the peptide:GAG samples the same frequency sweep was carried out on two separate samples in order to check the reproducibility of the results.



Figure 88 –  $P_{11}$ -12 1:2 frequency sweeps, frequency 1 – 20 Hz, strain controlled 0.1%, temperature = 25°C

Figure 89 -  $P_{11}$ -12 1:100 frequency sweeps, frequency 1 - 20 Hz, strain controlled 0.15%, temperature = 25°C





Figure 90 –  $P_{11}$ -4 1:10 frequency sweeps, frequency 1 – 20 Hz, strain controlled 0.04%, temperature = 25°C

Figure 91 –  $P_{11}$ -8 1:2 frequency sweeps, frequency 1 – 20 Hz, strain controlled 0.1%, temperature = 25°C



Figure 92 –  $P_{11}$ -8 1:10 frequency sweeps, frequency 1 – 20 Hz, strain controlled 0.1%, temperature = 25°C

Figure 93 -  $P_{11}$ -14:GAG+ $P_{11}$ -13 1:2 frequency sweeps, frequency 1 - 20 Hz, strain controlled 0.6%, temperature = 25°C





Figure 94 -  $P_{11}$ -14:GAG+ $P_{11}$ -13 1:10 frequency sweeps, frequency 1 – 20 Hz, strain controlled 0.7%, temperature =  $25^{\circ}C$ 

Figure 95-  $P_{11}$ -28:GAG+ $P_{11}$ -29 1:2 frequency sweeps, frequency 1 – 20 Hz, strain controlled 0.14%, temperature = 25°C



Figure 96 -  $P_{11}$ -29:GAG+ $P_{11}$ -28 1:2 frequency sweeps, frequency 1 – 20 Hz, strain controlled 0.16%, temperature =  $25^{\circ}C$ 

# Appendix F

# Ex vivo study

# 1. GAG leakage study

|   | Sample type                    | [    | Disc to us | e    |
|---|--------------------------------|------|------------|------|
| А | No inj                         | T1C1 | T2C3       | T1C5 |
| В | 1:2 CS                         | T2C1 | T1C3       | T2C5 |
| С | 1:10 CS                        | T1C2 | T2C4       | T1C6 |
| Е | No inj                         | T3C1 | T4C3       | T3C5 |
| F | 1:10 P11-12:GAG                | T4C1 | T3C3       | T4C5 |
| G | 1:100 CS dry powder            | T3C2 | T4C4       | T3C6 |
| н | 1:100 P11-12:GAG CS dry powder | T4C2 | T3C4       | T4C6 |
| I | no inj                         | T5C1 | T6C3       | T5C5 |
| J | 1:100 CS premade gel           | T5C2 | T6C4       | T5C6 |
| к | 1:100 P11-12:GAG premade gel   | T6C2 | T5C4       | T6C6 |
| L | NP put back in disc            | T6C1 | T5C3       | T6C5 |

#### Table 22 - Sample types and discs used

|   | Tail | Disc | Injection                  | NP removed<br>(g) | Notes                                                        |
|---|------|------|----------------------------|-------------------|--------------------------------------------------------------|
| А | T1   | C1   | Nothing                    | 0.39              |                                                              |
|   | T2   | C3   | Nothing                    | 0.21              |                                                              |
|   | T1   | C5   | Nothing                    | 0.24              |                                                              |
| В | T2   | C1   | 250 µl 0.027M<br>CS (1:2)  | 0.25              |                                                              |
|   | T1   | C3   | 250 µl 0.027M<br>CS (1:2)  | 0.39              |                                                              |
|   | T2   | C5   | 250 μl 0.027M<br>CS (1:2)  | 0.17              | Back pressure on inj ∴seal broke                             |
|   |      |      |                            |                   | Disc removed from Perspex and restuck                        |
|   |      |      |                            |                   | Reinjected however may have been some residual from last inj |
| с | T1   | C2   | C2<br>CS (1:10)            | 0.47              | Small leakage on inj                                         |
|   |      |      |                            |                   | Edge resealed with super clue                                |
|   |      |      |                            |                   | Some CS lost ∴inj 100 µl more of<br>CS                       |
|   | T2   | C4   | 250 μl 0.133M<br>CS (1:10) | 0.22              | Edge sealed with super glue prior<br>to inj                  |
|   | T1   | C6   | 250 μl 0.133M<br>CS (1:10) | 0.17              | Edge sealed with super glue prior<br>to inj                  |

Table 23 - Samples A-C amount of NP removed and injection notes





Figure 97 – DMB assay standard curve used to calculate GAG concentration of samples at 24 hours (y=mx+c.  $y=A_{525}$ , m=0.007653, c=0)



Figure 98 - DMB assay standard curve used to calculate GAG concentration of samples at 48 hours (y=mx+c.  $y=A_{525}$ , m=0.00695, c=0)



Figure 99 – GAG concentration in PBS solution at 24 hours for each assay replicate for each of the individual discs in samples A-C

Figure 100 - GAG concentration in PBS solution at 48 hours for each assay replicate for each of the individual discs in samples A-C



Figure 101 – Average of DMB assay replicates for each timepoint for each of the individual discs in samples A-C

|   | Tail | Disc | Injection                                                | NP<br>removed<br>(g) | Notes                                                                                                                                         |
|---|------|------|----------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| E | Т3   | C1   | Nothing                                                  | 0.59                 |                                                                                                                                               |
|   | Τ4   | C3   | Nothing                                                  | 0.78                 |                                                                                                                                               |
|   | Т3   | C5   | Nothing                                                  | 0.55                 |                                                                                                                                               |
| F | Τ4   | C1   | 125 µl P11-12<br>40 mg/ml<br>125 µl 1:20 CS<br>136 mg/ml | 0.46                 | P11-12 inj fine<br>Injected half GAG through opposite<br>needle then back pressure became to<br>high so inj through same needle as P11-<br>12 |
|   | ТЗ   | C3   | 125 µl P11-12<br>40 mg/ml<br>125 µl 1:20 CS<br>136 mg/ml | 0.25                 | About 20 μl of P11-12 came out of air<br>hole on injection<br>Injected CS through same hole as P11-12                                         |







Table 24 - Samples E-H amount of NP removed and injection notes



Figure 102 – DMB assay standard curve used to calculate GAG concentration of samples E-H at 24 and 48 hours (y=mx+c.  $y=A_{525}$ , m=0.0070167, c=0)



Figure 103 - GAG concentration in PBS soluition at 24 hours for each assay replicate for each of the individual discs in samples E-H





Figure 104 - GAG concentration in PBS solution at 48 hours for each assay replicate for each of the individual discs in samples E-H

Figure 105 - Average of DMB assay replicates for each timepoint for each of the individual discs in samples E-H
|   | Tail | Disc | Injection                           | NP removed<br>(g) | Amount of NP/Gel put<br>back in (g) |
|---|------|------|-------------------------------------|-------------------|-------------------------------------|
|   | T5   | C1   | nothing                             | 0.39              |                                     |
| I | Т6   | C3   | nothing                             | 0.25              |                                     |
|   | T5   | C5   | nothing                             | 0.18              |                                     |
|   | T5   | C2   | GAG 1:100 gel spooned in            | 0.27              | 0.25                                |
| J | Τ6   | C4   | GAG 1:100 gel spooned in            | 0.14              | 0.14                                |
|   | T5   | C6   | GAG 1:100 gel spooned in            | 0.17              | 0.15                                |
|   | Т6   | C2   | P11-12: GAG 1:100 gel<br>spooned in | 0.29              | 0.17                                |
| к | T5   | C4   | P11-12: GAG 1:100 gel<br>spooned in | 0.20              | 0.14                                |
|   | Т6   | C6   | P11-12: GAG 1:100 gel<br>spooned in | 0.19              | 0.09                                |
|   | Т6   | C1   | NP cut out and then put back in     | 0.32              | 0.28                                |
| L | T5   | C3   | NP cut out and then put back in     | 0.29              | 0.23                                |
|   | Т6   | C5   | NP cut out and then put back in     | 0.16              | 0.25                                |

Table 25 - Samples I-L amount of NP removed and injection notes



Figure 106 - DMB assay standard curve used to calculate GAG concentration of samples I and L at 24 and 48 hours (y=mx+c. y= $A_{525}$ , m=0.00654, c=0)



Figure 108 - GAG concentration in PBS solution at 24 hours for each assay replicate for each of the individual discs in samples I-L



Figure 107 - DMB assay standard curve used to calculate GAG concentration of samples J and K at 24 and 48 hours (y=mx+c.  $y=A_{525}$ , m=0.006313, c=0)



Figure 109 - GAG concentration in PBS solution at 48 hours for each assay replicate for each of the individual discs in samples I-L



Figure 110 - Average of DMB assay replicates for each timepoint for each of the individual discs in samples I-L

|   | Disc                   | GAG      | if all leaked out | moo  | sured in s  | ample ur | v/ml           | natur | al leaka | ge subtra | octed | % ( | of adde | ed GA | G |
|---|------------------------|----------|-------------------|------|-------------|----------|----------------|-------|----------|-----------|-------|-----|---------|-------|---|
|   | Disc                   | auueu /y | ug/iii            | mea  | Suleu III S | ampie ug | <i>j/</i> 1111 |       | uy       | (111)     |       |     | iean    | eu    |   |
|   |                        |          |                   | 24   | SEM         | 48       | SEM            | 24    | ±        | 48        | ±     | 24  | ±       | 48    | ± |
| А | No injection           | -        | -                 | 34   | 10          | 131      | 14             |       |          |           |       |     |         |       |   |
| Е | No injection           | -        | -                 | -24  | 21          | 109      | 44             |       |          |           |       |     |         |       |   |
| Ι | No injection           | -        | -                 | 24   | 4           | 77       | 21             |       |          |           |       |     |         |       |   |
|   | No injection average   | -        | -                 | 12   | 5           | 106      | 9              |       |          |           |       |     |         |       |   |
| L | NP put back in         | -        | -                 | 17   | 6           | 80       | 6              | 5     | 7        | -26       | 11    |     |         |       |   |
| В | 1:2 GAG                | 0.0035   | 116.67            | 59   | 17          | 103      | 5              | 48    | 17       | -3        | 11    | 41  | 15      | -2    | 9 |
| С | 1:10 GAG               | 0.01575  | 525.00            | 220  | 16          | 324      | 15             | 209   | 16       | 218       | 17    | 40  | 3       | 42    | 3 |
| F | 1:10 P11-12:GAG        | 0.017    | 566.67            | 59   | 17          | 133      | 19             | 47    | 17       | 27        | 21    | 8   | 3       | 5     | 4 |
| Н | 1:100 GAG (dry powder) | 0.17     | 5666.67           | 1895 | 403         | 2097     | 127            | 1884  | 403      | 1992      | 128   | 33  | 7       | 35    | 2 |
| - | 1:100 p11-12:gag (dry  |          |                   |      |             |          |                |       |          |           |       |     |         |       |   |
| G | powder)                | 0.17     | 5666.67           | 1726 | 389         | 2397     | 384            | 1714  | 389      | 2291      | 385   | 30  | 7       | 40    | 7 |
| J | 1:100 GAG (gel)        | 0.177    | 5900.00           | 472  | 131         | 532      | 165            | 460   | 131      | 426       | 166   | 8   | 2       | 7     | 3 |
| к | 1:100 GAG:P11-12 (gel) | 0.157    | 5233.33           | 242  | 73          | 394      | 62             | 230   | 73       | 290       | 62    | 4   | 1       | 6     | 1 |

Table 26 - GAG leakage raw data used to calculate percentage of added GAG leaked

## 2. Compressive loading study

| Group | Tail and Disc used | I    |      |
|-------|--------------------|------|------|
| No NP | T1C1               | T2C3 | T1C5 |
|       | T3C4               | T4C4 | T3C6 |
| NP    | T2C1               | T1C3 | T2C5 |
|       | T4C2               | T3C4 | T4C6 |
| 1:10  | T1C2               | T2C4 | T1C6 |
|       | T3C1               | T4C3 | T3C5 |
| 1:2   | T2C2               | T1C4 | T2C6 |
|       | T4C1               | T3C3 | T4C5 |

Table 27 - Discs used for each group

| Group       | Disc    | Disc weight | Np weight | Disc without NP weight |
|-------------|---------|-------------|-----------|------------------------|
| Denucleated | T1C1    | 10.75       | 0.5049    | 10.2218                |
|             | T2C3    | 10.522      | 0.4076    | 9.8973                 |
|             | T1C5    | 8.395       | 0.2741    | 7.9659                 |
|             | T3C2    | 12.614      | 0.553     | 11.909                 |
|             | T4C4    | 9.224       | 0.323     | 8.765                  |
|             | T3C6    | 8.127       | 0.323     | 7.683                  |
| Intact NP   | T2C1    | 16.761      |           |                        |
|             | T1C3    | 12.5381     |           |                        |
|             | T2C5    | 8.6744      |           |                        |
|             | T4C2    | 12.629      |           |                        |
|             | T3C4    | 8.466       |           |                        |
|             | T4C6    | 7.795       |           |                        |
| 1:10        | T1C2    | 14.24       | 0.7169    | 13.3514                |
|             | T2C4    | 10.8911     | 0.3317    | 10.3436                |
|             | T1C6    | 7.552       | 0.1714    | 7.2677                 |
|             | T3C1    | 17.208      | 0.419     | 16.558                 |
|             | T4C3    | 12.233      | 0.44      | 11.691                 |
|             | T3C5    | 8.523       | 0.354     | 8.082                  |
| 1:2         | T2C2    | 13.4987     | 0.5857    | 12.6557                |
|             | T1C4    | 7.81        | 0.3262    | 7.3923                 |
|             | T2C6    | 6.4178      | 0.1501    | 6.1869                 |
|             | T4C1    | 16.462      | 0.731     | 15.563                 |
|             | T3C3    | 11.756      | 0.438     | 11.159                 |
|             | T4C5    | 8.602       | 0.256     | 8.239                  |
|             | Average | 10.904      | 0.406     | 10.274                 |
|             | SD      | 3.116       | 0.164     | 2.926                  |

Table 28 – Disc weights pre- and post- nucleus removal

| Group       | Disc | Preload     |         | Post load  |         | Other     |
|-------------|------|-------------|---------|------------|---------|-----------|
|             | T1C1 |             |         |            |         |           |
| Denucleated | T2C3 |             |         | 10 20 30 4 |         | post load |
|             | T1C5 | 10 20 30 40 |         | 10 20 30   |         |           |
|             | T3C2 |             | T3C2 1. |            | T3CT I. | post load |











Table 29 - Photographs of discs pre- and post-load

| Group       | Disc | Slope of<br>linear<br>region<br>200-500N | disc<br>height | disc<br>width a | disc<br>width b | disc<br>length | Α     | normalised stiffness |         |            |               |            |
|-------------|------|------------------------------------------|----------------|-----------------|-----------------|----------------|-------|----------------------|---------|------------|---------------|------------|
|             |      | N/mm                                     | mm             | mm              | mm              | mm             | mm    | N/mm                 | AVERAGE | SD         | 95% conf lim  | SEM        |
|             | T1C1 | 2534.2                                   | 5.0            | 26.5            | 28.0            | 5.0            | 582.8 | 21.7                 |         |            |               |            |
|             | T2C3 | 1391.5                                   | 4.5            | 25.0            | 27.0            | 4.5            | 530.1 | 11.8                 |         |            |               |            |
| Donucleated | T1C5 | 1563.0                                   | 5.0            | 21.0            | 23.0            | 5.0            | 379.3 | 20.6                 | 40.4    | 0.070500   | 2 4 9 2 4 5 9 | 4 004044   |
| Denucleated | T3C2 | 1090.2                                   | 12             | 30              | 27.5            | 8              | 648.0 | 13.5                 | 16.4    | 3.978568   | 3.183459      | 1.624244   |
|             | T4C4 | 1320.1                                   | 7              | 29              | 22              | 6              | 501.1 | 15.8                 |         |            |               |            |
|             | T3C6 | 973.26                                   | 6              | 23              | 22              | 6              | 397.4 | 14.7                 |         |            |               |            |
|             | T2C1 | 1310.8                                   | 8.0            | 30.0            | 30.0            | 8.0            | 706.9 | 14.8                 |         |            |               |            |
|             | T1C3 | 731.1                                    | 6.0            | 26.0            | 26.0            | 6.0            | 530.9 | 8.3                  |         |            |               |            |
| Nin intent  | T2C5 | 1097.3                                   | 5.5            | 23.0            | 22.0            | 5.5            | 397.4 | 15.2                 | 44 7    | 0.045404   | 0.00040       | 4 400000   |
| Np Intact   | T4C2 | 827.47                                   | 6              | 26              | 27              | 6.5            | 551.3 | 9.8                  | 11.7    | 2.915461   | 2.332812      | 1.190232   |
|             | T3C4 | 946.01                                   | 5              | 29              | 26              | 6              | 592.2 | 9.6                  |         |            |               |            |
|             | T4C6 | 971.54                                   | 8              | 24              | 25              | 6              | 471.2 | 12.4                 |         |            |               |            |
|             | T1C2 | 1067.8                                   | 7.0            | 26.5            | 28.0            | 7.0            | 582.8 | 12.8                 |         |            |               |            |
|             | T2C4 | 1190.1                                   | 6.0            | 24.0            | 24.0            | 6.0            | 452.4 | 15.8                 |         |            |               |            |
| 1.10        | T1C6 | 1234.5                                   | 4.0            | 22.0            | 20.0            | 4.0            | 345.6 | 14.3                 |         | 4 50 40 40 | 2 00005       | 4 074705   |
| 1.10        | T3C1 | 1912.5                                   | 8              | 27              | 28              | 8              | 593.8 | 25.8                 | 17.5    | 4.584942   | 3.00800       | 1.8/1/95   |
|             | T4C3 | 1227.4                                   | 9              | 24              | 26              | 7.5            | 490.1 | 18.8                 |         |            |               |            |
|             | T3C5 | 962.99                                   | 8              | 22              | 24              | 7.5            | 414.7 | 17.4                 |         |            |               |            |
|             | T2C2 | 906.2                                    | 6.0            | 27.0            | 26.0            | 6.0            | 551.3 | 9.9                  |         |            |               |            |
| 1.0         | T1C4 | 1335.1                                   | 5.0            | 25.0            | 25.0            | 5.0            | 490.9 | 13.6                 | 40.0    | 0.07000    | 0.404004      | 4 00 40 70 |
| 1:2         | T2C6 | 1464.6                                   | 4.0            | 23.0            | 23.0            | 4.0            | 415.5 | 14.1                 | 13.9    | 3.97962    | 3.184301      | 1.624673   |
|             | T4C1 | 1657.7                                   | 8              | 29              | 31              | 7              | 706.1 | 16.4                 |         |            |               |            |

| T3C | C3 | 822.26 | 7 | 27 | 27 | 6.5 | 572.6 | 9.3  |
|-----|----|--------|---|----|----|-----|-------|------|
| T4C | C5 | 1176.4 | 8 | 24 | 22 | 7   | 414.7 | 19.9 |

Table 30 - Raw data used to calculate normalised stiffness values