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iii Abstract 

Abstract 
 

Back pain affects 80% of adults at some stage during their lifetimes, with one of the 

most common causes being disc degeneration. Currently, early stage interventions are 

limited and many patients continue to suffer further. This work focuses for the first time 

on using self-assembling peptide gels in the treatment of disc degeneration by 

providing an injectable nucleus replacement that can mimic the mechanical function of 

the natural tissue and restore the swelling pressure of the disc. 

 

Here the behaviour of a range of designed P11 peptide blocks with systematic 

variations in their structure was studied and the design criteria for a suitable peptide 

hydrogel were established. The peptides were analysed using a series of 

complementary analytical techniques (proton nuclear magnetic resonance 

spectroscopy, Fourier transform infra-red spectroscopy, circular dichroism ultra-violet 

spectroscopy and transmission electron microscopy) to determine their behaviour at 

the molecular and nanoscale levels. Tests were also carried out on the gels to 

establish their behaviour both inside and outside the disc. The results have shown that 

the mechanical properties of the gels can be controlled by allowing up to a 10,000 fold 

variation in the stiffness.  

 

The peptides were further optimised by mixing with glycosaminoglycans (GAGs) that 

occur naturally within the disc. It was found that the presence of GAGs in the peptide 

gels can enhance their material properties, making them more similar to that of the 

natural nucleus.  The GAGs also acted as a trigger to the onset of gelation and speed 

up the time for gelation to occur. 

 

P11-12:GAG solutions, injected in bovine caudal discs ex vivo, were evaluated under 

compressive loading, and they were found to partly restore the biomechanical function 

of degenerated discs. The results also demonstrate that the new peptide:GAG 

materials could have applications in other fields of regenerative medicine, e.g. as 

substrates for cell growth or cartilage tissue engineering. 
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1 Introduction 

Chapter 1 

1 Introduction 

 

1.1 Intervertebral disc degeneration in the spine and potential 

treatments 

 

Back pain affects a large proportion of the population. In the United Kingdom it was 

found to impose the greatest economic burden of any illness studied, costing up to 

£12 billion per annum.1 80% of adults will experience an episode of back pain during 

their lifetimes, resulting in a wide range of effects from mild discomfort to complete 

immobilisation. Intervertebral disc degeneration in the lower back is one of the most 

common causes of back pain and in an autopsy study, 97% of individuals 50 years or 

older showed disc degeneration.2,3,4  

 

The intervertebral disc is a complex hierarchical structure made up of the annulus 

fibrosus (AF) and the nucleus pulposus (NP), which are attached to the vertebral 

bodies by cartilaginous endplates (Figure 1).5 Normal discs are approximately 7-10 mm 

thick and 40 mm in diameter.4 

 

Figure 1 - The intervertebral disc structure taken from http://www.backpain-
guide.com/Chapter_Fig_folders/Ch05_Anatomy_Folder/6LumbarDisk.html
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Together the annulus fibrosus (annulus) and nucleus pulposus (nucleus) permit motion 

in the spinal column as well as helping to transmit loads down the spine. The annulus 

is formed from 15-25 concentric lamellae consisting of dense collagen bundles, with 

elastin fibres lying between the lamellae.1,4 In contrast, the central nucleus has a loose 

collagen network organised randomly with elastin fibres up to 150 μm in length 

arranged radially.1,7 These nucleus fibres are embedded in a highly hydrated 

proteoglycan-containing gel.7 The healthy adult disc has very few blood vessels and 

some nerves.7 In the normal disc, oxygen and glucose concentrations are low and 

lactic acid concentrations are high, causing steep gradients in metabolites to develop 

resulting in the pH in the disc centre being acidic.1 

 

Proteoglycans make up 5-15% of the wet tissue weight of the disc with the largest 

concentration being found within the nucleus pulposus.1 The main proteoglycan of the 

disc is aggrecan.8-10 Aggrecan consists of a protein core with up to 100 highly 

sulphated glycosaminoglycan (GAG) chains covalently attached.9 The GAG chains are 

principally chondroitin and keratan sulphate.9 The disc aggrecan molecules are less 

aggregated (30%) than in articluar cartilage (80%) and with increasing age become 

more difficult to extract from the matrix due to extensive cross-linking.8 The ability of the 

disc to resist compression has been found to be dependent on a high proteoglycan 

concentration.11  

 

During growth, the boundary between the annulus and nucleus becomes less obvious4 

and the nucleus pulposus undergoes major morphological and compositional changes 

with age and degeneration. The most significant biochemical change to occur in disc 

degeneration is a decrease in size and quantity of proteoglycan aggregates, resulting 

in the nucleus becoming more fibrotic and less gel-like.4,11 The aggrecan molecules 

degrade and the smaller fragments are then able to leach from the tissue more readily 

than the large portions, which in turn results in a loss of GAGs.4 This is significant 

because the osmotic pressure provided by the sulphated side chains of aggrecan is 

thought to be responsible for maintaining tissue hydration, which helps to maintain disc 

height and turgor against high compressive loads.9 The elevated osmotic pressure is 

due to the greatly sulphated GAG groups providing a highly fixed negative charge on 

the matrix. This in turn attracts positively charged molecules such as small cations into 

the tissue to balance the negative charges. In the centre of a normal disc the 

concentration of Na+ is around 400 mM and the concentration of Cl- is around           
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80-100 mM compared to a concentration of around 130 mM for both ions in serum.9 

The osmotic pressure arising from this increased number of ions is responsible for the 

swelling pressure of the disc. Disc degeneration alters disc height and the mechanics 

of the rest of the spinal column, which in some cases results in patient pain. 

 

Since the disc is avascular, its regenerative ability is limited.12 Damage to the annulus 

fibrosus as it occurs in either disc degeneration or surgical disectomy causes gradual 

loss of disc height, which leads to changes in the biomechanics of the remaining disc. 

A loss in disc height causes additional loading of the facet joints and can lead to 

circumferential spinal segment degenerative changes.13,14 

 

There are no cures for back pain and current interventions that aim at limiting pain 

often involve highly invasive surgeries such as total disc replacement or spinal fusion. 

Spinal fusion is currently the standard surgical treatment, and although it addresses 

both the disc and facet joint as potential sources of pain, it completely eliminates 

movement from the motion segment.  This treatment option has unpredictable results 

with satisfactory clinical outcomes reported as low as 46%15  and reoperation rates for 

adjacent level disc disease (i.e. a symptomatic condition) of 20%.16 Total disc 

replacements aim to preserve the motion of the joint as well as restoring disc height, 

but there are concerns around wear particle generation and the success rates are still 

in the range of the spinal fusion procedure with reoperation rates being around 

10%.17,18  Therefore, in recent years there has been an interest in developing new 

therapies to address disc degeneration, such as transplantation, regeneration, repair 

and replacement.10,19-24  

 

1.1.1 Transplantation 

Disc allografts have seen some success in canine and non-human primate models.25,26 

Disc allografts have also been successfully transplanted into the cervical spine of five 

patients with a minimum five year follow up, with no immunoreactions and improved 

neurological symptoms of all patients.27 However, this technique is obviously limited by 

the availability of non-degenerate human allografts.27 
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1.1.2 Regeneration 

Some studies have explored potential therapies that focus on reviving or healing disc 

tissue by altering the native cells or implanting new cell populations.28-31  In order to 

stimulate extracellular matrix (ECM) production and cell proliferation, injections of 

proteins including growth factors, such as TGF-β and BMP-2 have been investigated.32-

34 Furthermore, injections of mesenchymal stem cells have reduced degenerative 

changes in animal models. Such therapies are injectable and therefore minimally 

invasive; however, these require a structurally sound disc in the very early stages of 

degeneration. 

 

1.1.3 Repair 

Repair strategies concentrate on either augmenting or replacing degenerative tissue in 

order to re-establish healthy disc function. NP region containing chondrocyte-like cells 

and/or AF region containing fibroblast-like cells have been seeded in a variety of 

scaffolds or hydrogels.35,36  The critical role of swelling pressure in the NP has not yet 

been sufficiently addressed in engineered NP constructs, whereas a particular 

challenge for the engineered AF tissue is in providing the mechanical function of this 

tissue, specifically the multilamellar organization.37 A few groups have attempted to 

engineer the entire disc. However, even if the cells inside the constructs achieved 

appropriate phenotypes the mechanics remained inferior to the native disc.38,39 

 

1.1.4 Nucleus pulposus replacement 

The main challenge with the tissue engineered approaches is successfully 

growing/keeping the cells alive in the hostile environment inside the disc due to the disc 

being the largest avascular tissue in the body. An alternative to the cell based therapies 

is to replace the tissue with a synthetic equivalent.  

 

In order to maintain motion in the spinal segment, the replacement of the NP without 

annular obliteration represents a tempting alternative to spinal fusion and total disc 

replacement procedures. 
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The aims in nucleus pulposus replacement are to slow adjacent level degeneration, 

restore normal load distribution to the diseased level and restore segmental spinal 

mechanics. The primary aim is to reconstruct the nucleus pulposus, whilst preserving 

the biomechanics of the annulus fibrosus and cartilage endplates. At present, the 

indications for nucleus pulposus replacement are for symptomatic lumbar discogenic 

back pain not responding to active conservative treatment for a minimum of six 

months.13 

 

The use of synthetic hydrogels has been explored, particularly because their 

hydrophilic nature can mimic the transport and biomechanical properties of the natural 

tissue.10 There are three classes of hydrogels currently being investigated as nucleus 

replacements: constrained devices, unconstrained devices and injectable devices. 

 

1.1.4.1 Constrained devices 

The most extensively studied nucleus replacement is the Prosthetic Disc Nucleus 

(PDN), produced by Raymedica Inc. (Minneapolis, United States), which is a hydrogel 

pellet surrounded by a polyethylene layer (Figure 2a). The pellet can absorb up to 80% 

of its weight in water because of its hydrophilic and non-hydrophilic copolymers 

(polyacrylamide and polyacrylonitrile), which maintain disc height, while the 

polyethylene layer prevents over swelling and therefore avoids consequent fractures of 

the vertebral endplates.10,13  

 

The PDN has performed favourably in both biocompatibility and biomechanical testing. 

The device was found to maintain disc height, implant form and viscoelasticity up to 

50 million cycles, with loads ranging from 200-800 N.13 A schematic of the device being 

inserted into a cavity of the disc after the nucleus material is removed is shown in 

Figure 2b. 
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a.)  b.)  

Figure 2 – a.)PDN-SOLO device in dehydrated and hydrated states. Partially taken from Di Martino 
et al.

13 b.) A schematic of the PDBN device being implanted. Adapted from Viscogliosi et al.
40 

  

 

Implantation of the PDN device into cadaveric lumbar spinal motion segments restored 

disc height and mobility of the segment close to that of the disc before nucleus 

removal.41 In 2002, Klara and Ray reported favourably on clinical trials carried out on 

this device, with over 400 completed procedures resulting in an increase in disc height 

and overall reduction of pain. From 1996 – 2002, 423 patients had a surgical success 

rate of 90% and four year follow up data on these patients showed a significant 

reduction in the symptoms of disc degeneration.42 

 

The NeuDisc (Figure 3) produced by Replication Medical Inc., (New Brunswick, NJ) is 

a hydrogel implant composed of two grades of a modified hydrolyzed polyacrylonitrile 

polymer. This device uses structured layers of a Dacron mesh inside the disc to 

prevent unlimited swelling.10  

 

Figure 3 - Neudisc hydrogel, prehydration (A) and posthydration (B) Hydration occurs in an 
anisotropic fashion, mainly in the vertical plane. Taken from Di Martino et al.
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The disc can be inserted by minimally invasive methods because it is implanted in a 

dehydrated state. Implants of the device into the paravertebral muscle of New Zealand 

rabbits have not elicited toxic reactions; however results of mechanical testing are not 

yet available.13 
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The DASCOR produced by Disc Dynamics Inc. is a polyurethane balloon device that is 

filled with an injectable cool polyurethane polymer that polymerises in minutes.10 The 

DASCOR® System received CE Mark approval in Europe and was sold on a limited 

basis for three years prior to 2010. Disc Dynamics, Inc. was unable to obtain United 

States Food and Drug Administration (FDA) approval to start a pivotal clinical trial in 

the United States and, in December 2009, Disc Dynamics shut down operations.43 

 

1.1.4.2 Unconstrained devices: 

Zimmer Spine (Warsaw, Indiana) have developed an elastic memory coiling spiral 

called the Newcleus (Figure 4). It is made of a polycarbonate urethane elastomeric 

material that is a biocompatible and biostable polymer with a history of use in 

cardiovascular applications.10,44,45  It works by acting as a spacer with some ability to 

act as a shock absorber.40,46,47 

 

Figure 4 - The Newcleus Spiral Implant; once implanted, the device reconstitutes its original spiral 
shape. Taken from Di Martino et al.
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After implantation the device absorbs water up to 3-5% of its weight. The device has 

been tested in fatigue loading for up to 50 million cycles with 1200 N multidirectional 

loads. No significant wear was observed and static testing did not reveal failure as a 

result of the compressive load.44 Histological studies after implantation in an animal 

model demonstrated good compatibility.44 A preliminary clinical trial on five patients 

with a mean follow up time of 24 months resulted in decreased radicular and low back 

pain as well as all patients being satisfied with the outcome.44 

 

The Aquarelle by Stryker Spine Corp. (Allendale, NJ) is a polyvinyl alcohol hydrogel 

that is implanted in a semi-hydrated state and provides uniform pressure across the 
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endplates (Figure 5).10 The implanted component contains 80% water, which is 

responsible for its viscoelastic properties. 

 

Figure 5 - The Aquerelle hydrogel final volume depends on the water content at equilibrium. Taken 
from Di Martino et al.
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The Aquarelle gel has shown no evidence of device-related pathology in the adjacent 

disc tissue, spinal cord, or remote tissues when tested in animal models46 and has also 

shown biomechanical durability up to 40 million cycles.13 The device is inserted semi-

hydrated through a small anulotomy via a 4-5 mm tapered cannula and it is delivered 

into the cavity by a pressurised trochar.13 However, when tested in an experimental 

baboon model, high rates of extrusion have been reported depending on the insertion 

approach.46 High extrusion rates of 20-33% have also been reported in cadaveric 

studies, although when fully hydrated extrusion only occurred when the disc was 

placed under higher loads than expected in vivo. Clinical trials in Europe are currently 

ongoing.46  

 

1.1.4.3 Injectable Devices 

The injectable devices are often liquid-based in situ curing polymers and act as a void 

filler, they are advantageous to the devices discussed above because their 

implantation is minimally invasive and they minimize the risk of implant migration 

following implantation.13 Some of the most common injectable elastomers used within 

the disc space are silicon and polyurethane because both can be implanted through a 

small anulotomy.13,47 The polymers are designed to perform best with an intact or 

minimally violated annulus, therefore minimizing the possibility of polymer spread. The 

polymers have fast polymerising times because most monomers are toxic if absorbed 

in high doses.13 
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Vernengo et al. have developed an in situ forming replacement for the nucleus, which 

is based on branched copolymers of poly(N-isopropylacrylamide) (PNIPAAm) and 

poly(ethylene glycol) (PEG).48 The PNIPAAm component is a thermoresponsive 

polymer and is free flowing at ambient temperatures and a gel at body temperature. 

The PEG component was used to enhance the swelling and mechanical properties of 

the PNIPAAm polymer: the resulting gels had a stiffness value of over 50 kPa.48 

 

J&J DePuy (Raynham, Massachusetts) have developed a liquid polymethylsiloxane 

polymer called the SINUX ANR, which is injected in after the nuclear material is 

completely removed and forms an elastic mass.10 The SINUX ANR received its CE 

mark in January 2004.40 

 

Gelifex, Inc., (Philadelphia, Pennsylvania) have developed a polymer hydrogel (Gelifex) 

that is liquid at room temperature and solidifies at body temperature.10  

 

Replication Medical Inc., (Cranbury, New Jersey) developed a thermoplastic hydrogel 

based on acrylic multiblock copolymers called GelStixTM.49 The hydrogel is injected in a 

hydrated state through an 18 G needle and reaches full hydration within an hour 

(Figure 6).50  

 

Figure 6 - GelStix
TM

 Hydration. Taken from 
http://d2grup.com/files/GelStix%20Datasheet%2009Mar2011-2.pdf.
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Once implanted the hydrogel increases the pH of the disc, which is believed to enable 

the proteoglycans within the disc to bind water more effectively. Over 20 patients 

between the ages of 41 and 65 have been treated with GelStix to date with no reported 

complications.50 All patients followed up have shown significant and prolonged 

reduction in pain with average reduction in visual analogue pain scores of 40% at one 

week post-operative and 80% at three months follow up. 50 

 

The Biodisc developed by Cryolife Inc. is an injectable protein-based hydrogel 

consisting of a mixture of protein solution (serum albumin) and a cross-linking 

component (gluteraldehyde). The distinct solutions are kept in separate chambers prior 

to exposure inside the wall of the annulus. The solutions mix as liquids in vivo, forming 

a polymerized matrix within minutes after direct injection into the disc space.13 The 

cross-linking component also allows the hydrogel to be covalently bound to the 

surrounding annular tissue.51 The Biodisc material is similar to epoxy glue. 

 

Figure 7 - Schematic of the Biodisc being injected into the disc. Taken from 
www.cryolife.com/about/research/emerging/biodisc
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The NuCore injectable nucleus by Spine Wave Inc., (Shelton, Connecticut) is another 

protein polymer produced through DNA bacterial synthesis fermentation.10
 The 

advantage of using these bacterially synthesised proteins is that they are biocompatible 

when used or implanted in humans, but contain no human or animal components that 

could potentially transmit or cause disease. As a result of the synthetic design, protein 

polymers are capable of combining the biological functionality of natural proteins with 

the chemical functionality and exceptional physical properties of synthetic polymers.40 
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The NuCore material comprises a binary formula of a diisocyanate-based chemical 

cross-linker and a protein co-polymer solution of silk and elastin that, when injected into 

the disc nucleus space, cures rapidly in situ forming a durable, adhesive hydrogel. In 

extensive preclinical bench and animal testing, the injected material, when cured, has 

shown to be very resistant to the extrusion seen in other nuclear devices. This is due 

to, firstly, the bolus of cured material being much larger than the surgical entry site, 

therefore forming a mechanical barrier, and, secondly, to the hydrogel’s adhesive 

properties contributing to its ability to resist extrusion.40 

 

Studies have shown extensive integration of the Nucore material into the surrounding 

disc tissue, which prevented the implant from being extruded in any of the test 

specimens. The biomechanical properties of the biomaterial closely mimic the intact 

disc and, most importantly, extensive animal studies have shown it to be biocompatible 

and non-toxic.40 

 

The NuCore is currently classed as an Investigational Device and its use is limited to 

clinical investigation only. Currently patient enrolment in clinical trials for the NuCore® 

injectable nucleus include patients in Switzerland, Germany, Australia and the United 

States.52  

 

1.1.5 Discussion 

 

Advances in nucleus augmentation therapies are underway; however, most of the 

devices are still in the early stages of development and further optimisation is still 

required.  

 

Often the constrained devices restore disc height and provide similar biomechanical 

properties, but they do not perform the biological function that a hydrogel implant 

theoretically performs of maintaining the osmotic nutrient pumping action of an intact 

disc nucleus. One of the issues with the hard devices such as the Newcleus is the 

potential to produce wear particles. The constrained and unconstrained devices offer 
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mechanical support but invasive surgeries are still frequently required to put them in 

place leaving tears in the annulus, which can lead to high levels of implant extrusion.  

 

The injectable devices are minimally invasive and so tend to observe lower levels of 

implant extrusion. However, they are often injected as gels either in a hydrated or 

dehydrated state, therefore requiring a wide bore needle. There are concerns that the 

use of wide bore needles can damage the annulus beyond repair, which causes 

problems not only with hydrogel expulsion but has also been linked to further 

degenerative changes.  The use of totally synthetic polymers can also lead to 

biocompatibility problems if the monomers are toxic. Polymers that polymerise in situ 

can lead to cell death if an excessive amount of heat is given off upon curing. 

 

From previous studies, it is clear that in order to be successful an ideal nucleus 

replacement device should be: 

1. biocompatible without significant systemic reactions of toxicity or 

carcinogenicity 

2. able to endure a considerable amount of loading and exhibit low wear 

characteristics 

3. capable of restoring disc height and osmotic pressures 

4. similar in stiffness to the native tissue 

5. implanted using minimally invasive procedures, which limit the destruction of 

the surrounding tissue, for example, a hydrogel that forms in situ and is 

injected through a narrow gauge needle as a liquid. 

 

A class of materials not yet considered for a potential spinal therapy in the form of a 

nucleus pulposus replacement is that of self-assembling peptides.  
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1.2 Introduction to peptides 

 

Peptides are linear biopolymers, which are made up of amino acids through their 

condensation to form peptide bonds as shown in Figure 8.53  

 

Figure 8 - The condensation of two amino acids to form a dipeptide bond. The peptide bond is 
shown in red.  

 

There are 20 common natural amino acids that are used to synthesise peptides and 

proteins in biology, and they are often classified according to the polarities of their side 

chains. All 20 amino acids except for glycine are chiral and have the same basic 

structure as can be seen in Figure 9, varying only in R group.54  

 

In the physiological pH range all amino acids, apart from histidine, that has a pKa in the 

range, are completely ionized and therefore can act as either an acid or a base. The 

salt concentration can have an effect on the behaviour of peptides, as salt ions act 

electrostatically to shield the side chain charges from one another, therefore reducing 

the charge-charge interactions.  

 

Proteins can be considered to have four levels of structural organisation, making them 

more complex than peptides which generally only have two levels.55 These two orders 

are the primary structure, which is the sequence of the amino acid residues in the chain 

that determines the specific conformation that is adopted by the peptide, and the 
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secondary structure, which refers to the regular orientation of the peptide backbone 

due to hydrogen bonding.56 The main secondary structures are the α-helix and the β-

sheet. 

 

Figure 9 - Chemical structure of the 20 natural amino acids,
57

 taken from 
http://en.wikipedia.org/wiki/Amino_acid. 

 

1.2.1  α-helix 

 

As is seen in Figure 10, hydrogen bonds are formed between the C=O and the N-H 

groups on the peptide backbone causing the peptide to coil into a helical structure.58 

Many α-helices are polar on one side and non-polar on the other and so are said to be 

amphipathic. This often causes them to aggregate along the non-polar side. 

http://en.wikipedia.org/wiki/Amino_acid
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Figure 10 – Diagram of α-helix showing its rotation, hydrogen bonding and macroscopic dipole, 
taken from http://wiz2.pharm.wayne.edu/biochem/prot.html

59
 

 

The α-helix structure is stabilised by intramolecular hydrogen bonds of the peptide 

backbone between residues i and i+4, as well as side chain interactions along the 

same side of the helix. The helix has a macroscopic dipole so helices tend to pack in 

an antiparallel manner to form bundles of helices.  

 

1.2.2  β-sheet 

 

Peptides can exist as extended macromolecules with a zigzag backbone. This 

conformation has rows of complementary hydrogen bonding sites protruding out on 

both sides of the peptide backbone, with rows of side chains decorating the upper and 

lower surfaces and is known as the β-strand. The β-sheet consists of several β-strands 

arranged in either a parallel or anti-parallel manner as is demonstrated in Figure 11.58  

 

Hydrogen bonds form when two electronegative atoms compete for the same hydrogen 

atom: the hydrogen atom is covalently bound to the donor atom but interacts with the 

acceptor atom. The scission energy/bond strength of a hydrogen bond is typically 

around 20 kJ mol-1, which is weak in comparison to a covalent bond that has a typical 

bond strength of 200-500 kJ mol-1 or an ionic bond, which has a typical bond strength 

of 250 kJ mol-1.60 In the anti-parallel structure the dipoles associated with the parallel 

hydrogen bond interactions enhance the overall stability, however, in the parallel 

structure the dipoles associated with each diagonal hydrogen bond partially cancel 

each other out and so do not have a stabilising effect. The stabilising effect of the 
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hydrogen bond dipoles on the anti-parallel sheet means that it is more favourable than 

the parallel β-sheet.  

 

Figure 11 – β-sheet structures 

 

A β-strand composed of all L amino acids will have a right-handed twist along its long 

axis to minimise the steric clashes between side chains, this will in turn cause the 

resulting β-sheet to have an intrinsic left handed twist along its long axis. 

 

Since the development of solid phase peptide synthesis by Merrifield in 1959,61-66 

peptide synthesis at the laboratory scale can be readily carried out as can be seen in 

Figure 12.  

 

This allows peptides to be exploited as self-assembly building blocks. 
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Figure 12 - Sequence of steps in solid-phase peptide synthesis.
55

 

 

1.3 Introduction to self-assembly 

 

Molecular self-assembly is the reversible association of molecules into 

thermodynamically stable, structurally well-defined aggregates (1-100 nm) held 

together by weak non-covalent forces, such as hydrogen bonds, ionic bonds, 

electrostatic interactions and van der Waals interactions.54,67-69 

 

In recent years, the concept of molecular self-assembly has become a driving force for 

the development of new biomaterials. Molecular self-assembly is one of the two main 

approaches to the production of well defined, functional nanostructures essential for 

the fast growing field of nanotechnology; in particular molecular self-assembly is seen 

as the main bottom-up approach in nanoscience and nanotechnology.  
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All information for self-assembly is programmed into the structure of the individual 

building blocks and therefore the design of the building blocks is vital to achieve 

materials with the desirable self-assembly and functional properties. The non-covalent 

forces govern the energetics and dynamics of the self-assembling systems. 

 

The process of self-assembly can occur via two different routes, nucleated or non-

nucleated (classical). Which mechanism is followed can be determined by constructing 

a self-assembly curve that gives the fraction of molecules in aggregates or the fraction 

present as monomers as a function of increasing concentration.70 In the non-nucleated 

process, self-assembly takes place continuously at all concentrations and only one 

energetic parameter is involved; the free energy change accompanying the formation 

of one dimer (αKBT, where α=association energy, KB = Boltzmann constant, T = 

temperature). In nucleated self-assembly there is a critical concentration for the 

formation of the first aggregates (nuclei) and two energetic parameters are involved; 

nucleation energy and growth energy. 

 

Many biomolecules undergo self-assembly from protein aggregation, DNA double helix 

annealing to lipid tubes development,67 however, some of the most diverse building 

blocks in terms of chemistry, nanostructure formation and functionality are peptides 

and proteins. 

 

1.4 Self-assembling model peptides  

 

In most cases the self-assembly of linear peptides follows a nucleated mechanism and 

so only occurs at peptide concentrations greater than a certain value known as the 

critical concentration (c*).  Self-assembly starts when the loss of entropy is balanced by 

a gain of enthalpy in the process. The main entropy loss is associated with 

straightening out a peptide chain from its random coil to its β-strand conformation. This 

is described by the energetic parameter, εtransKBT, (where εtrans = peptide conformational 

energy), and is the free energy change per molecule. Self-assembly will only progress 

when there are positive bonding interactions between the monomers, this is described 

by the energetic parameter, εxKBT (where εx = free energy change per molecule in the 
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aggregate of type x), due to the association of two peptides.70 The enthalpy can be 

gained from interactions between the hydrophilic charged and uncharged residues, 

which can be involved in hydrogen bonding and electrostatic interactions. The 

presence of aromatic hydrophobic residues can not only provide a hydrophobic 

environment, but the residues can also be involved in π-π stacking through the overlap 

of p-orbitals in the conjugated π system.54 

 

As the self-assembly of peptides follows a nucleated mechanism, it has three distinct 

phases. The first phase is nucleation, during which there are stable monomeric 

peptides and some small unstable tapes rapidly forming and unforming due to the 

enthalpic energy gain not being great enough to counteract the entropic energy loss. 

The second phase is the nucleus. At this phase the enthalpic gain balances the 

entropic loss and so the first stable aggregates begin to form. The concentration at 

which this happens is the c*. The final stage is the growth stage, where the aggregates 

grow in size until they precipitate out of solution, phase separation occurs and a new 

equilibrium is set up. These three phases are observed in what is known as the self-

assembly curve, which is the fraction of aggregate vs. the total peptide concentration, a 

schematic of an ideal self-assembly curve is given in Figure 13.  

 

Figure 13 – Schematic of the self-assembly curve for the nucleated self-assembly of peptides. Blue 
line = nucleation phase, green point = nucleus or c*, red line= growth phase. 

 

It is possible to experimentally determine the c* value by plotting a graph of monomer 

concentration as a function of peptide concentration. An ideal curve is shown in Figure 

14. 
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Figure 14 – Schematic of the ideal plot of monomer concentration as a function of peptide 
concentration for the nucleated self-assembly of peptides.  Blue line = linear regime, green point = 
c*, red line= plateau regime. 

 

A plot of monomer concentration as a function of peptide concentration for the 

nucleated self-assembly of peptides should have a linear regime below c*, where the 

concentration of monomers is equal to the total peptide concentration. The c* is the 

point at which this linear regime ceases to exist, aggregation begins to occur and the 

monomer concentration is less than the total peptide concentration. At a total peptide 

concentration greater than the c*, there is a plateau where the concentration of 

monomer is equal to that of the c*.  

 

This method for calculating the critical aggregation concentration follows the standard 

method for establishing the critical micelle concentration (CMC) used within the 

surfactant field, where the monomer and or aggregate concentrations are plotted as a 

function of total concentration (Figure 15). The CMC is the point at which the linear and 

non-linear regimes intercept. 
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Figure 15 – Monomer (X1) and aggregate (XN) concentrations as a function of total concentration. 
The larger the aggregation number (N) the sharper the transition at the CMC. Taken from 
Israelachvili et al. 

71
 

 

The methods used most commonly to determine the CMC of surfactants experimentally 

are light scattering, conductivity, density, surface tension and viscosity. These methods 

are used to determine the point at which the linear regime changes i.e. where 

aggregation begins. The CMC corresponds to the intercept of the lines through the 

data points below and above the CMC as can be seen in the following examples:  

 

In Figure 16 the CMC of 6-0 stearoyl ascorbate is determined by the crossing point of 

the two straight lines obtained from the least square fitting of the surface tension vs. log 

c data.72 

 

In Figure 17, determination of the N-Acetyl-S-geranylgeranyl-L-cysteine (AGGC) CMC 

in the buffer used to extract Rho proteins by absorption spectroscopy is shown. 

 

The CMC of cationic micelles can be determined by electrical conductivity 

measurements; Figure 18 shows the variation of the electrical conductivity with the 

cationic surfactant concentration. Again, the CMC is obtained from the interception of 

conductivity lines above and below the CMC. 
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 Figure 16 – Calculation of the CMC value from 
the surface tension vs. concentration plot. The 
red spots are the experimental data, the black 
lines are the fitting linear curves. CMC is 
determined as the intersection point of the two 
lines. Taken from http://www.netsci-
journal.com/97v4/97014/vitc4.html
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Figure 17 - Determination of AGGC critical 
micellar concentration using absorption 
spectroscopy. Taken from Desrosiers et al.
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Figure 18 - Variation of the electrical conductivity with concentration for cationic surfactants. 
Taken from López-Díaz and Velázquez 
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Although the above methods commonly used for surfactant self-assembly could be 

used to measure the critical concentration for peptide self-assembly, similar but more 

appropriate methods will be used within this thesis, i.e. ones that are more informative 

and more quantitative. The above methods provide the CMC value, however, they do 

not provide important structural information such that Fourier transform infra-red (FTIR) 

or circular dichroism ultraviolet (CDUV) spectroscopy can provide, or the background 

monomer concentration as provided by proton nuclear magnetic resonance 

spectroscopy (1HNMR). 
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1.5 Self-assembling peptides as a new class of medical 

devices  

 

It is essential to study simple model peptides so that the basic scientific principles can 

then be applied to much more complicated systems such as the proteins found in 

nature. Not only will studying model peptides help to gain an understanding of the 

properties and structures of peptides found in biology, but this knowledge can then be 

used to develop new and useful materials.  

  

Regenerative medicine is defined by the National Institute of Health as “the process of 

creating living, functional tissues to repair or replace tissue or organ function lost due to 

age, disease, damage, or congenital defects.”74 This field holds the promise of 

regenerating damaged tissues and organs in the body by stimulating previously 

irreparable organs to heal themselves as well as allowing scientists to grow tissues and 

organs in the laboratory and safely implant them when the body cannot heal itself.74 

Although self-assembling peptides have not yet been investigated for their use as a 

nucleus pulposus replacement, they have been investigated in general for their 

potential use as medical devices, in particular in regenerative medicine and tissue 

engineering. In this section, the use of self-assembling peptides in regenerative 

medicine will be presented, with a focus on tissue engineering because this not only 

demonstrates their ability to self-assemble in physiological conditions but also shows 

their non-cytotoxicity and biocompatibility with numerous cell lines and types.  

 

One of the most important branches of regenerative medicine is that of tissue 

engineering. The aim of which is to replace damaged or lost tissue by new healthy or 

equivalent tissue usually by the application of a combination of cells, bioactive reagents 

and a scaffold. In this context, the scaffold is classified as a medical device and holds a 

prominent place in regenerative medicine. The US Food and Drug Administration 

(FDA) definition of a medical device is amongst others, “an implant or in vitro reagent 

intended for use in the cure or treatment of disease, which does not achieve any of its 

intended purposes through chemical action in the body and is not dependent upon 

being metabolised for the achievement of its intended purposes”.75 In recent years, 

significant research effort internationally has been undertaken to establish self-
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assembling peptide nanostructures as a new type of biomaterial that can act as a 

scaffold for tissue engineering and thus be considered as an innovative kind of medical 

device for regenerative medicine.  

 

Not only do new biomaterials for biomedical applications such as regenerative 

medicine need to have the correct chemical, physical and mechanical properties, but 

they also need to be biocompatible. This means that the material must not have any 

toxic, allergenic, carcinogenic or mutagenic effects, as well as not affect the fertility of 

the patient.76 Testing for biocompatibility can be split roughly into four levels starting 

with in vitro cell free tests, followed by in vitro cell based and in vivo animal studies and 

finally with human clinical trials. Biocompatibility ideally should be confirmed at the 

previous level prior to investigation at the next level, due to the added costs and 

complexity involved as well as ethical issues. 

 

Peptide based biomaterials have various advantages over most synthetic materials, 

such as they may be biocompatible and easily degraded within the body and therefore 

are desirable for use in the field of regenerative medicine and in particular tissue 

engineering.  

 

In tissue engineering, cells (usually within a medical device known as a scaffold and in 

the presence of biological factors) are used to repair damaged tissue. As the scaffold is 

ideally meant to mimic the extracellular matrix (ECM), it is vital that it allows the cells to 

migrate and proliferate, whilst providing a porous network to allow the movement of 

nutrients and metabolites to and from the cells. The scaffold needs to be non-cytotoxic, 

able to withstand mechanical stimuli, and an added benefit would be the ability to 

deliver important bioactive substances such as growth factors 

 

Peptides are logical building blocks for tissue engineering scaffolds for many reasons 

including: 

- the peptide building blocks are easily synthesised, and recombinant 

approaches are currently being investigated to make their synthesis even more 

efficient.77 
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- the building blocks are chemically versatile and so structure activity 

relationships can be determined. 

- self-assembly and gelation can be designed to be externally responsive, and so 

can occur in situ, leading to injectable and minimally invasive treatments for 

patients.78 

- the gels that are formed are fairly strong despite being intrinsically soft matter, 

therefore giving mechanical rigidity to provide a self-supporting scaffold in the 

presence of the desired cells. 

- the gel networks are not covalently linked and so the matrix has the ability to 

remodel during cell proliferation. 

- peptide gels consist of a very low dry peptide weight (typically 0.5-3%)  and 

their porous structure allows both cellular nutrients and waste to diffuse through 

the gel. 

- peptide materials are biodegradable. 

- if natural amino acids are used, then minimum immunogenicity and maximum 

biocompatibility is expected. 

- bioactivity can be incorporated into the building block design such as the RGD 

(Arg-Gly-Asp) cell adhesion domain.79 

- peptide nanofibres are similar in size to the extracellular matrix in vivo. 

 

Not only are peptide nanofibres currently being investigated for their potential 

applications as scaffolds for musculoskeletal, skin, neural, and vascular tissue 

engineering, but there is also interest in their use as controlled delivery vehicles for 

drugs, proteins and DNA.80 

 

In the following section, an overview of the self-assembly of peptides will be discussed, 

in particular how self-assembling peptides can be used as biomedical devices in 

regenerative medicine, especially within the context of tissue engineering, where most 

of the advancements have taken place in the past years. The individual main families 

of peptide building blocks will be considered alongside their self-assembly pathways, 

their biocompatibility and usefulness as new scaffolds. 
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1.5.1 Self-assembling de novo designed peptides in physiological 

conditions and their applications as scaffolds in tissue 

engineering 

 

In the early 1950’s Pauling and Corey81 and others identified possible structures that 

proteins and peptides could adopt such as the parallel and anti-parallel β-sheets. Early 

research found that alternating hydrophobic and hydrophilic residues led to the 

formation of water soluble β-sheet structures through self-assembly in the presence of 

salts.67  

 

1.5.1.1 β-structured systems 

 

The self-assembly of β-structured peptides typically follows a nucleated mechanism as 

described above in Section 1.4. A range of peptide building blocks have been designed 

to undergo self-assembly in physiological-like conditions for applications in tissue 

engineering. These β-structured peptides can be broadly divided into five categories: 

ionic β-sheet peptides, tape-forming peptides, β-hairpins, aromatic short peptides and 

peptide amphiphiles.  

 

Ionic β-sheet peptides 

The first peptide structures on the nanoscale were designed by Ghadiri et al. in the 

1990s. His group developed cyclic peptide nanotubes.69,82 At around the same time 

Shuguang Zhang and his co-workers were investigating the use of charged peptide 

building blocks, which would readily self-assemble into peptide nanostructures due to 

charge complementary interactions between negatively charged glutamic and aspartic 

acids and positively charged lysines and arginines.83,84   

 

EAK16 and RAD16 (Figure 19) both have 16 residues and were designed to study the 

properties of ionic complementary peptides and to develop biological scaffolds for 

tissue engineering.78,85  
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Figure 19 - Zhang et al. complementary ionic peptides
78

 

 

The RAD16-I self-assembles into a nanofibre structure as demonstrated in Figure 20. 

  

Figure 20 - (A) Molecular model of peptide RAD16-I. (B) Molecular model of the nanofiber 
developed by self-assembling RAD16-I molecules. (C) RAD16-I nanofiber network viewed by SEM. 
White bar represents 200 nm. Taken from Semino et al.

67
 

 

From these building blocks it was proposed that several features of the monomer 

contributed to the formation and stability of the self-assembled structures such as:78
  

i. the formation of intermolecular ionic bonds between the side chains of 

the charged residues; 

ii. formation of hydrophobic β-sheet interactions between methyl groups of 

the alanine residues; 

iii. staggered individual peptides, suggesting initially a two-dimensional 

rather than a one-dimensional self-assembly process. 
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Some of the ionic self-complementary peptides of the Zhang group have been found to 

form both stable β-sheets and α-helices, with the resulting structure being dependent 

on the environment.84 However, the β-sheet forming peptides were selected for 

evaluation as medical devices in tissue engineering. 

 

Control of the process in molecular self-assembly is of great importance. Many 

systems suffer from the disadvantage of spontaneous self-assembly as soon as the 

sample is placed in to solution, due to the nucleation and growth being poorly 

controlled.54 For this reason there has been a large amount of interest in developing 

methods to trigger self-assembly or dis-assembly on cue. The size of the energetic 

parameters of the self-assembling peptides are dependent on a number of variables 

including solution conditions, therefore peptides can be designed to undergo self-

assembly after an external trigger, such as a change in pH, ionic strength or 

temperature.70,86,87 It has been established that the presence of glutamic acid or 

ornithine amino acid residues in the primary structure of the peptide can provide a 

reversible control through changing the pH or ionic strength of the solution.70,88,89 

Further stimuli of use can be metal ions, enzymes and light.90 

 

Zhang and co-workers have used the pH stimuli to trigger reversible α-helix to β-sheet 

transitions. They have used the EAK amino acid sequence originally found in zuotin, a 

yeast protein, to demonstrate how the nanostructures formed are dependent on the pH 

of the solution. The EAK16-IV peptide (Ac-AEAEAEAEAKEKEKEK-Am) forms globular 

assemblies in the physiological pH range but below 6.5 or above 7.5 it forms fibrillar 

structures.91 The EAK12 peptide (Ac-AEAEAEAEAKAK-Am) forms a stable β-sheet at 

pH 1-3 but with an increase of pH up to 5, 30% helical structure was observed.84 Their 

DAR16-IV (Ac-ADADADADARARARAR-Am) peptide showed the opposite behaviour.  

 

The Tan group use a design principle similar to that above exploiting the protonation of 

glutamic acid and arginine residues. Their peptide RATEA16 (Ac-

RATARAEARATARAEA-Am) forms a high water content hydrogel around neutral pH, 

because the peptide has an overall charge of +2 and so electrostatic interaction 

between arginine and glutamate residues occur as well as interstrand repulsion. By 

contrast, below pH 3.5, due to an overall peptide charge of +4, the peptide exists as a 
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monomer, while above pH 12.5 the peptide has no net charge and so aggregation 

occurs with no interstrand repulsion.92  

 

The solution property of ionic strength has also been exploited by designing a series of 

self-complementary ionic de novo peptides that have been found to form hydrogels 

when exposed to physiological concentrations of monovalent alkaline salts.84 

 

Peptide folding is sensitive to temperature changes and therefore temperature can be 

used as another self-assembly stimuli. Temperature as well as pH can be used to 

trigger the reversible β-sheet to α-helix transition of the two peptides EAK12 and 

DAR16-IV. For EAK12 a β-sheet conformation is seen at 25oC and an α-helical 

conformation at 85oC, whereas for the DAR16-IV peptide the transition to an α-helix 

conformation occurred at 75oC. 

 

One of the most comprehensively studied self-assembling peptide systems applied to 

tissue engineering is the RAD-based self-assembling ionic peptides, RAD16-I          

(Ac-RADARADARADARADA-Am) and RAD16-II (Ac-RARADADARARADADA-Am), 

which, form hydrogels in physiological conditions. It is the RAD16-I peptide, which was 

one of the first commercially available self-assembling peptides and is marketed under 

the name of PuraMatrix (3DM, Inc. Cambridge, MA, USA) (BD, 

Erembodegem,Belgium). It has been shown that these peptide hydrogels can support 

cell attachment of numerous types of mammalian cells including human carcinoma, 

embryonic kidney, hepatocytes, neuroblastoma, fibroblasts, neural cells, and 

osteoblasts.3,93-98 Six week old BALB/cAnNCrI mice have been used to test the 

biocompatibility of  RAD16-I peptide cell culture scaffolds and it was found to elicit no 

inflammation or immunologic responses.99,100  

 

A study was carried out comparing several hydrogels including PuraMatrix to test their 

compatibility with human neural stem cells, hNSC.101 PuraMatrix was found to be a 

superior hydrogel to both Matrigel and pluronic F127, showing less toxicity, lower 

gelation concentrations, allowing hNSC migration and neuronal differentiation.101 

McGrath et al. confirmed these findings in another investigation using PuraMatrix as a 
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cell carrier for neurotransplantation in peripheral nerve regeneration: the peptide gel 

supported cell attachment and differentiation by providing a suitable extracellular matrix 

for cultured Schwann cells and also provided a substrate for neurite outgrowth from 

dorsal root ganglia.102 The RAD16-I peptide 3D scaffold has also been found to 

promote the survival and growth of implanted mouse embryonic fibroblast cells.99   

 

RAD16-I has been used to promote axon regeneration in hamsters with a severed optic 

tract, the result of which was functional return of vision. The self-assembled peptide 

scaffold provided an environment similar in scale to the extracellular matrix for axons to 

regenerate and to reconnect to brain tissue.100 Functionalisation of RAD16-I, with the 

addition of either an RGD binding sequence or a growth factor specific to endothelial 

cells, has led to successful 2D and 3D cell culture of human umbilical vein endothelial 

cells, promoting cell survival, proliferation and morphological differentiation in vitro.103 

 

Zou et al. have enriched the RAD16-I peptide further by linking it to the FGL neural cell 

adhesion motif. This peptide nanofibre scaffold again showed no cytotoxicity, and 

promoted adhesion and neurite sprouting of dorsal root ganglion neurons.104 

 

Kisiday et al. used another ionic β-sheet forming peptide KLD-12 (Ac-KLDLKLDLKLDL-

Am), to produce a self-assembled peptide hydrogel 3D cell culture scaffold. This 

supported the growth of chondrocytes and therefore has the potential for the repair of 

cartilage. During 4 weeks in the scaffold, the cells maintained their morphologies and 

developed a cartilage extracellular matrix. 96,105,106 

 

The KLD-12 peptide has also been shown to have good biocompatibility with nucleus 

pulposus cells and shown to provide a microenvironment for the cells to survive and 

divide in vitro. The nucleus cells grown in 3D within the hydrogel scaffold were found to 

be functionally normal and phenotypically stable.107  

 

Another short ionic peptide RWDW was found to undergo spontaneous self-assembly 

into a gel in cell culture medium. Desil et al. investigated it as a support for cell 
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adhesion and growth. They found that the peptide is not cytotoxic up to a concentration 

of at least 70 mg/L and that it supports human hepatoblastoma cell growth in 3D.108 

 

Tape-forming peptides 

The Aggeli group have designed de novo β-sheet tape forming peptides taking 

inspiration from the biological β-sheet motif. These peptides self-assemble in one 

dimension into a hierarchy of well defined structures.70,109  If used at high enough 

concentrations, these peptides can form hydrogels, organogels, or nematic fluids and 

gels.109 This behaviour has been explained by a model suggesting hierarchical self-

assembly of β-sheet tapes (Figure 21). The model in principle applies to self-assembly 

in all solvents, but to date it has only been experimentally verified in polar organic 

solvents (methanol) and pure water.70,110 

 

Due to the chirality of the amino acid residues, the hierarchical structures of the 

peptides will have an intrinsic twist. For aggregation to occur, these twisted peptides 

must bend and change their twist to fit the packing constraints imposed by their 

neighbours. This results in an elastic energy cost that must be compensated for by the 

gain in attraction energy from the aggregation itself.70,110 

 

Figure 21 – Model of hierarchical self-assembly of chiral rod-like units. Local arrangements (c–f) 
and the corresponding global equilibrium conformations (c’–f’) for the hierarchical self-assembling 
structures formed in solutions of chiral molecules (a), which have complementary donor and 
acceptor groups, shown by arrows, via which they interact and align to form tapes (c). Taken from 
Davies et al.

70
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The tape is the simplest form of β-sheet aggregate and they are usually helical in 

shape at equilibrium, due to simultaneous twisting and bending. The twisting comes 

from the chirality, and the bending from the asymmetry of the two faces.111 For tape 

formation to occur the free energy gained, εtape, (mainly enthalpic in nature) from 

hydrogen bond backbone interactions and side chain interactions needs to be greater 

than the free energy lost, εtrans (mainly entropic in nature).70  

 

Two tapes can stack together to form a pair. This type of aggregate is called a ribbon 

and they are stabilised by εribbonKBT, which is mainly the enthalpy gain per stacked 

peptide pair. The size of εribbonKBT is dependent on intermolecular side chain – side 

chain interactions.70 Ribbons have a twist but no bend, and are more rigid and longer 

than tapes.110,112 

 

Several ribbons can further stack one on top of the other to form a fibril stabilised by 

εfibrilKBT, which is mainly the enthalpy gain per pair of stacked peptides in a fibril. The 

magnitude of εfibril  is determined by favourable interactions between side chains on the 

exposed side of the ribbons. One side of the aggregate consists of N and C 

termini.70,110 Again fibrils have a twist but no bend and a well defined diameter; they are 

more rigid and longer than ribbons.109,110 

 

A pair of fibrils can undergo further self-assembly by entwining edge to edge to form a 

fibre. Fibres are stabilised by εfibreKBT, which is mainly the enthalpy gain because of 

interactions between groups at N and C termini per peptide pair in the fibre.70  

 

εtape, εribbon, εfibril and εfibre are all free energy changes per molecule in the aggregate. If 

εtrans>εtape>εribbon>εfibril>εfibre, then the critical concentrations necessary for the 

corresponding aggregates to form are in the order of c*tape <c*ribbon <c*fibril <c*fibre .
70

 

 

Peptides of 7-40 amino acid residues have a tendency to form β-sheets88 and previous 

work in the Aggeli group has established a set of design criteria that will produce β-

sheet tapes in solution:113 
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i.) cross-strand attractive forces; 

ii.) lateral recognition between adjacent β-strands; 

iii.) strong adhesion of solvent to the surface of the tapes. 

 

If followed, these will constrain the self-assembly in one dimension and avoid 

heterogeneous aggregates, as well as providing control of solubility.36 

 

Various de novo β-sheet tape-forming peptides have been found to respond to pH 

changes (Table 1). 70,89,114 P11-2 forms a stable gel below pH 5, and a study of this 

peptide showed that stabilisation of fibrillar dispersions requires the order of one unit of 

net charge per peptide in low ionic strength aqueous solution.70,89  

Peptide Primary Structure 

P11-2 CH3CO-Q-Q-R-F-Q-W-Q-F-E-Q-Q- NH2 

P11-4 CH3CO-Q-Q-R-F-E-W-E-F-E-Q-Q-NH2 

P11-5 CH3CO-Q-Q-O-F-O-W-O-F-Q-Q-Q-NH2 
Table 1 - Peptide primary structures for P11-2, P11-4 and P11-5 

 

Insertion of further charged groups to the primary structure of P11-2, as is the case with 

P11-4 and P11-5, enables self-assembly to be rapidly and reversibly controlled by small 

additions of acid or base.89 

 

P11-4 was designed to form fibrils at low pH and to be in the monomeric state at high 

pH whereas P11-5 was designed to have the opposite switching behaviour.89 Changes 

in pH were not only found to trigger self-assembly but could also be used to 

instantaneously switch between nematic gels and isotropic fluids.89 

 

An increase in the ionic strength of the solution would be expected to screen the 

charged groups from each other and therefore shift the critical self-assembly 

concentration.114   
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Model peptides of 11 residues (see Table 2) were used to show that a change in the 

ionic strength of solution altered the pH responsiveness of the peptides gel-fluid 

transitions.114  

Peptide Primary Structure 

P11-4 CH3CO-Q-Q-R-F-E-W-E-F-E-Q-Q-NH2 

P11-8 CH3CO-Q-Q-R-F-O-W-O-F-E-Q-Q-NH2 

P11-9 CH3CO-S-S-R-F-E-W-E-F-E-S-S-NH2 
Table 2 - Peptide primary structures for P11-4, P11-8 and P11-9 

  

In the study, the addition of 130 mM NaCl to P11-4, a peptide designed to form β-sheet 

fibrils and gels at low pH, shifted the transition to monomer to higher pH values by 

more than 4 units, and the pH regions over which a nematic gel occurs was also 

increased. The most frequently observed fibrillar morphologies were found to be 

independent of ionic strength.114 Addition of 130 mM NaCl to a solution of P11-8, a 

peptide which was designed to have the opposite pH switching behaviour to P11-4, was 

found to switch the random coil to β-sheet transition by three units to a lower pH.114 

Addition of 130 mM NaCl to P11-9, a peptide that was designed to have the same pH 

responsiveness to P11-4 but a higher relative hydrophilicity, resulted in a shift in the 

conformation transition by more than three units to a higher pH and also broadened the 

transition.114 

 

The potential use of peptide based materials in biomedical applications leads to a need 

to assess their biological membrane activity. It is thought that peptides with an 

increased tendency to interact with phospholipid bilayers might exhibit membrane 

toxicity. Nelson et al. investigated the interaction of six self-assembling β-sheet 

peptides from the Aggeli group with phospholipid monolayers. They examined the 

effect of four factors using the model system of a phospholipid monolayer on a mercury 

electrode: peptide aggregation, polarity, net charge and applied electric field.  They 

concluded that: i.) the solution monomer peptide species is the monolayer active 

moiety, ii.) β-sheet tape forming peptides are significantly less monolayer disruptive 

than antimicrobial peptides, iii.) amphiphilic peptides are more monolayer active than 

polar ones and iv.) neutral amphiphilic peptides permeabilise the phospholipid layers to 

ions to the greatest extent.115  

 



 

 

 

35 Introduction 

Nelson and co-workers, also carried out a study into the effect serine, threonine, 

glutamine and asparagine amino acids in β-sheet tape forming peptides again on 

phospholipid monolayers.116 They found that peptides with serine/threonine side chains 

and therefore an –OH group interact more strongly with the phospholipid monolayer 

than glutamine/asparagine side chains with a –CONH2 group. 116 

 

A series of positively charged P11 peptides varying in polar amino acid were tested for 

their cytotoxicity using L929 murine fibroblast cell lines and the propensity for cell 

growth on the peptide gels was assessed using ATPlite assays. All peptides tested 

were found to be non-cytotoxic with their propensity to successfully support cell growth 

being dependent on the polar amino acid present (glutamine producing the best 

results) which is thought to be due to overall gel strength and stability.117  

 

As well as soft tissue engineering, peptides may be of use in hard tissue engineering. 

For example, P11-4 has been shown in vitro to increase the remineralisation of tooth 

enamel over a five day period as well as being capable of inducing hydroxyapatite 

nucleation.118 

 

Another of the P11 series that has shown potential in regenerative medicine is P11-9, 

which is a negatively charged serine based analogue of P11-4. A series of peptides was 

investigated for the use as injectable lubricants for osteoarthritis and P11-9 was found to 

perform better than hyaluronic acid in healthy static and dynamic friction testing 

models88 indicating that self-assembling peptides could be developed as a therapeutic 

lubricant for early stage osteoarthritis. 

  

β-Hairpins 

The Schneider group have developed a group of peptides each adopting a β-hairpin 

structure, which are the building blocks for self-assembly. One such peptide can be 

seen in Figure 22.  
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Figure 22 - Molecular structure of MAX1. Taken from Ozbas et al.
119

 

 

MAX1 is a 20-residue peptide that was designed to have a β-hairpin secondary 

structure.119 Figure 23 shows the self-assembly process occurring after intramolecular 

folding of the peptide, which is made possible by stimuli such as pH or 

temperature.119,120 

 

Schneider et al. found that this design contradicts previous literature, which states that 

peptides composed exclusively of alternating positively charged and hydrophobic 

residues only form disordered precipitates and not organized gel scaffolds. However, 

MAX1 self-assembles without precipitating.121  

 

Figure 23 - Proposed self-assembly pathway. Taken from Branco et al.
120

 

 

The self-assembly of the monomeric hairpins into fibrils is driven both sideways via    

H-bond formation between distinct hairpins and facially by hydrophobic association of 

the valine-rich faces of the amphiphilic folded peptide.121 The resultant fibrils are 

composed of a bilayer of β-hairpins and have been found to be connected by 

noncovalent, interfibrillar junctions and entanglements. 119,121-123 If one hairpin is rotated 

relative to another in the bilayer, interfibril branching will occur and therefore will further 

self-assemble in two dimensions.120 
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The Schneider group have also designed a three stranded β-sheet that undergoes   

self-assembly in physiological-like conditions called TSS1.124 The peptide undergoes a 

thermally induced folding, which results in a three stranded β-sheet amphiphilic 

monomer that self-assembles into a network of fibrils, 3 nm in width, forming a hydrogel 

(Figure 24). 

 

As with MAX1 in the folded state, TSS1 self-assembles in a facial manner to form a 

bilayer sheltering its hydrophobic valine residues, as well as in a lateral manner forming 

a network of hydrogen bonds to give the long axis of a fibril.123,124 

 

The peptide MAX1 can use pH as a trigger for self-assembly. At a pH of below 5.5, it 

exists as a random coil, whereas on increasing the pH to 9 a reversible β-sheet 

transition and gelation occur. 121,123 Temperature also plays a part in this triggerability, 

at pH 9 folding is only favoured above 25 oC. If this pH is decreased, folding no longer 

occurs, whereas if it is increased to pH 9.7 the transition temperature decreases. This 

shows that the net charge of MAX1 plays a vital role and requires less energy to fold 

the β-haripin when the overall charge is small.121  

 

Figure 24 - A) Proposed mechanism of folding and self-assembly of TSS1, B) Structure of TSS1. 
Taken from Rughani et al.

124
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For the TSS1 peptide, folding and subsequent self-assembly and gelation in 

physiological conditions can be triggered by raising the temperature from 5oC to 

37oC.124 

 

The MAX1 peptide has been shown to form a hydrogel, whose surface is antibacterial 

with broad spectrum-activity against both Gram-negative and -positive bacteria, whilst 

being nonhaemolytic toward human blood cells. During co-culture experiments, MAX1 

gels inhibited bacterial proliferation, yet allowed mammalian NIH3T3 fibroblast cell 

adhesion and proliferation.125,126 

 

The TSS1 peptide has been proven to be noncytotoxic to mesenchymal stem cells 

when cultured on a gel surface for 24 hours. The peptide hydrogel surface supported 

cell adhesion and allowed cell migration, as well as allowing the cells to adopt typical 

morphologies.124  

 

Schneider et al. have recently simplified their β-hairpin peptide and have designed a 

class of short amphiphilic peptides that undergo triggered self-assembly into β-sheet 

fibrils with alternating hydrophobic and hydrophilic amino acids along a linear sequence 

(e.g., (XZ)n). In a study into the effect of length, they found 13 residues to be optimum. 

They went on to investigate the rheological properties and influence of hydrophobicity 

and charge on this new class of XZ13 peptides.127 LK13 undergoes saline triggered 

self-assembly and was found to provide the most rigid hydrogel (G’ = 795 ± 105 kPa) 

with fast gelation kinetics. LK13 has shear thin-recovery behaviour, allowing its delivery 

by syringe and was assessed to be cytocompatible with murine C3H10t1/2 

mesenchymal stem cells.127 

 

Most of the β-peptide systems mentioned up until now are still at the design stages, 

however, the injectable therapeutic octapeptide lanreotide (Figure 25), which self-

assembles in water into hollow and monodisperse β-sheet nanotubes (Figure 26)128 

was approved for sale in the United States by the FDA in 2007. 
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Figure 25 - Chemical structure of 
Lanreotide 

 

Figure 26 - (b) Molecular and supramolecular 
stacking of lanreotide in the nanotube wall. 
Colour code: green, hydrophilic; red, aromatic 
hydrophobic; and blue, aliphatic hydrophobic 
surface of the peptide. Partially taken from 
Pouget  et al.

129
 

 

Lanreotide is sold under the trade name of Somatuline130 for an injectable treatment of 

acromegaly, which is a syndrome resulting from an excess in growth hormone.131 It has 

also been indicated in the treatment for the relief of symptoms associated with 

neuroendocrine (particularly carcinoid). tumours132 

 

The self-assembly of lanreotide nanotubes has three stages, i) peptide dimerisation, 

which occurs at low concentrations through a balance of hydrophobic interactions and 

electrostatic forces, ii.) ribbon growth then begins after a critical concentration up to a 

critical size and iii.) nanotube closure.129 

 

Aromatic short peptides  

Gazit and his fellow researchers, discovered that diphenylalanine (Figure 27), the core 

recognition motif of the β-amyloid polypeptide, forms discrete and hollow nanotubes in 

solution.133 Self-assembly of this system is driven by π-stacking interactions, as well as 

the hydrophobic effect and hydrogen bonding.86  
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This dipeptide motif has been further developed by linking it to aromatic groups such as 

fluorenylmethoxycarbonyl (Fmoc) (Figure 28), resulting in structures with fibrillar 

morphology.86,134-136 

 
 

 

Figure 27– Molecular structure of 
diphenylalanine 

Figure 28 - Molecular structure of Fmoc-
dipetides 

 

In 1995 Vegners et al. reported the formation of hydrogels with Fmoc-protected 

peptides137 and since it has been found that the Fmoc diphenylalanine building blocks 

self-assemble under physiological conditions. A molecular model has been proposed 

for this process, which is based on the two main features of anti-parallel β-sheets and 

π-stacked fluorenyl groups,134 with the driving force for assembly being hydrogen 

bonding and π-π stacking.86 The aromatic interactions also provide order and 

directionality to the self-assembly process.138 The β-sheets are stabilized by the 

fluorenyl groups, which are on alternating sides within the fibrillar structures.134 The 

Fmoc-diphenylanine along with other combinations of dipeptides have been identified 

to form hydrogels that are stable under cell-culture conditions and have dimensions 

similar to that of the fibrous components of the extracellular matrix.86,138  

 

The advantage of this peptide is that it is simple and therefore cheap to produce. 

However, the disadvantages are that it again contains a hydrophobic section, which 

could be toxic to lipid bilayers, as well as it not being composed entirely of naturally 

occurring chemical groups. The cell cytotoxicty of various Fmoc-short peptides was 

investigated by growing Chinese hamster ovary cells on the surface of the gels formed 

and was found to be very structure dependent, with the highest viability observed in 

peptides containing the well known cell adhesion motif RGD and the lowest in peptides 

containing synthetic amino acids.138 Chinese hamster ovary cells grown on a hydrogel 

scaffold made of Fmoc-diphenylamine peptide were found to have the same 

proliferation, viability and morphology as those grown as a control on a plastic culture 

plate.139 In addition to this, the RGD motif has been attached to the Fmoc-FF peptide 
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(Fmoc-FFRGDF) to evaluate its biocompatibility and potential use in ophthalmology. 

The peptide showed good biocompatibility with minimal inflammation, when injected 

into the eye of Japanese albino rabbits both through clinical follow up and histology.140 

 

Peptide Amphiphiles 

As already detailed in the previous section, there is a class of peptide building block 

containing non-peptide segments that drive or influence to some extent the self-

assembly process. Another such peptide design is the peptide-based amphiphiles 

(PA). These building blocks have two separate sections: one hydrophobic and one 

hydrophilic. The hydrophilic part is usually a peptide with its role being mainly bioactive 

rather than driving self-assembly and the hydrophobic section is usually aliphatic with 

its role being the driving force of self-assembly.69 It has been discovered that an 

amphiphile with 16 carbon atoms in its alkyl tail attached to an ionic peptide will self-

assemble in water into cylindrical micelles, due to the amphiphile’s conical shape.87 

Stupp and his researchers have worked on a family of peptide amphiphiles that self-

assemble into elongated nanostructures under physiological conditions and can display 

bioactive peptide epitopes.87,141-143 One such peptide amphiphile building block was 

designed by Stupp et al. to direct mineralization of hydroxyapatite (Figure 29).87 

 
Figure 29 - Stupp et al. peptide amphiphile. Adapted from Hartgerink et al.

87
 

 

The peptide section was designed to incorporate the RGD sequence, which has been 

found to play an important role in integrin–mediated cell adhesion.87,144 The peptide 

amphiphile behaves as a surfactant in the self-assembly process and the surfaces of 

the micelles formed are the peptide section of the amphiphiles and therefore are 

bioactive (Figure 30). 
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Figure 30 - Schematic showing the self-assembly of PA molecules into a cylindrical micelle. Taken 
from Hartgerink et al.

87
 

 

A possible disadvantage with this form of building block is that the hydrophobic 

component of these molecules means that they cannot be delivered in vivo as 

monomers, because they may be toxic to lipid bilayers.  Many of the currently reported 

self-assembling peptide systems are either amphiphilic or hydrophobic, which can 

create problems for tissue engineering, e.g. by interfering with cell membranes or 

natural folded protein. Cell membranes in particular are amphiphilic and so the 

amphiphilic or hydrophobic peptides may disrupt them. Stupp et al. have included 

cysteine residues into their peptides, which will form covalent disulphide bridges and 

therefore lock the self-assembled structure by cross-peptide linking, preventing free 

monomers escaping and causing cell death.80 The disulphide bonds that are formed 

are enthalpically favourable, and assist with self-assembly. 54 

 

This Stupp peptide amphiphile utilises the self-assembly trigger of pH by self-

assembling into cylindrical micelles forming self-supporting gels once the pH is lower 

than 4 and reversibly disassembles upon raising the pH.87 It was found that with 

oxidation this reversibility was removed, however, upon reduction the pH reversibility 

was once again restored. This is thought to be due to the formation and breaking of 

disulphide bridges.145 Stupp et al. also showed that the shape of nanostructures is pH 

dependent. 145 

 

Shorter peptide amphiphiles are also able to change morphology with a change of pH. 

The peptides P1 (Fmoc-VRGDV-COOH) and P2 (C11H19O-NH-VRGDV-COOH) of the 

Zhuo group both form interwoven fibres at pH 4; however, as the pH is increased they 

form large vesicle structures.146 
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Negative peptide amphiphiles analogous to that in Figure 29 have been designed to 

take advantage of electrostatic attractions between molecules of opposite charge, 

resulting in a self-assembly mechanism that can be triggered by the presence of metal 

ions, such as those found in tissue fluids and cell culture medium.147 It was observed 

that gels prepared with transition metals had a higher modulus than those with earth 

metals and that polyvalent ions were much more effective initiators than monovalent 

ions. 

 

The Stupp group have used their peptide amphiphiles, which have a high density of 

bioactive domains on their surface, to promote cell growth and differentiation leading to 

enamel regeneration within an in vivo cell and organ culture system.148 They have also 

shown that, when injected in the spinal cord of mouse models, the peptide amphiphile 

incorporating the neuroactive domain IKVAV reduced scar formation and cell death. 

Moreover, this treatment increased axon regeneration after degeneration of the 

injected material, leading to an improvement in hind limb movement.149  

 

Further to this, they have used a heparin binding peptide amphiphile that forms 

nanofiber gel networks in vivo and binds heparan sulphate like glycosaminoglycans.150 

The resultant heparan-sulphate containing peptide gels stayed within the tissue for up 

to 30 days and showed excellent biocompatibility. In addition to this, as the gel 

degraded, vascularised connective tissue formed.150  

 

Interestingly, in another study, it was noted that MC3T3-E1 cells entrapped within 

negatively charged peptide amphiphile gels prepared using metal ion mediated       

self-assembly, not only survived and proliferated but also internalized the nanofibres. 

This suggests that not only were the nanofibres non-cytotoxic but that the cells were 

able to utilize the peptide molecules in their metabolic pathways and use the nanofibres 

as a source of nutrients.147 

 

The Hartgerink laboratory has developed a self-assembling peptide system arranged in 

a block sequence, ABA, with the B block consisting of alternating hydrophilic and 

hydrophobic residues driving self-assembly and the A block consisting of charged 
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residues e.g. MDP1 KK-SLSLSLSLSLSL-KK.151 In aqueous solutions, this results in a 

facial peptide amphiphile being created.151 The peptides first self-assemble as dimers 

stabilized by hydrophobic packing of the leucine residues. These dimers then go on to 

form fibres stabilized by anti-parallel β-sheet hydrogen bonding along the axis of the 

fibre. The charged end A blocks provide water solubility and to work against fibre 

assembly through electrostatic repulsions, thus allowing for fibre assembly and length 

to be controlled by A block design.152 Multivalent ions with an opposite charge to the A 

block can then be used to trigger physical cross linking, fibre elongation and gelation.153 

 

MDP1 was modified to include both an enzyme cleavage site and a cell adhesion motif 

(K-SLSLSLRGSLSLSL-KGRGDS) to increase its compatibility to living cells and 

enhance its role as a tissue engineering scaffold. Both of these modifications together 

lead to good cell proliferation and increased migration into the assembled hydrogel of 

human mesenchymal stem cells from teeth.151 

 

Another peptide amphiphile was designed to include an enzyme-cleavable site as well 

as a cell adhesion motif (GTAGLIGQERGDS). This peptide formed a nanofibrous 

hydrogel which was found to support two adult tooth derived mesenchymal cell lines. 

Within the gel the cells were able to proliferate, remodel the gel by enzymatic 

degradation, and differentiate.154 

 

The use of self-assembling peptide-amphiphiles containing the IKVAV domain as a cell 

culture scaffold has also been investigated by Zou et al.. They have demonstrated their 

biocompatibility and bioactivity towards rat dorsal root ganglion neurons.155  

 

Further to this, another group of dipeptide-based cationic amphiphiles have been 

developed by Kumar Das et al., which are lethal to microbial cells, whilst having low to 

no cytotoxic effects on various human cancer cells. 156 

 

It becomes obvious from the cited examples above, that because of their intrinsic ability 

to self-assemble into fibrous and gelatinous materials; much effort has been directed 
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so far towards β-structured systems. However, in recent years researchers have also 

been increasingly exploring α-helical structured systems. 

 

α-helix/coiled coil systems 

The α-helix motif tends not to be favourable for the construction of self-assembling 

nanostructures of increased stability due to weak intermolecular interactions stabilising 

the aggregates: the intramolecular hydrogen bonding on the helical peptide backbone 

means that intermolecular backbone hydrogen bonding is not available; therefore, for 

the enthalpic gain of self-assembly to override the entropic loss, the α-helical peptide 

typically has to be significantly longer (and thus more expensive to produce) compared 

to its β-sheet counterparts. 

 

The coiled coil motif is a structure consisting of two or more α-helices that are wrapped 

around each other in a superhelical manner. The building block has a heptad repeat of 

hydrophobic and polar residues which are often designated abcdefg (Figure 31).157 

 

When in an α-helix conformation, the hydrophobic residues at a and d are brought 

together to form an amphipatic structure. It is then through these hydrophobic faces 

that two or more helices can associate together to form a helical fibre. The number of 

helices in a coiled-coil is determined by the packing of the core residues. Stabilizing 

interstrand salt bridges can be formed if complementary charged residues are placed 

at positions e and g. 

 

Figure 31 - Schematic representation of a coiled coil structure using a helical wheel. The letters 
indicate the different residue positions. Taken from Lowik et al.

90
 

 

The Woolfson group have designed peptides based on α-helical building blocks and 

have elucidated design principles to drive the self-assembly of the building blocks into 

helical coiled-coil fibres. In the early 2000s work began on a dual peptide system, 

which comprised of two complementary short peptides that assembled to form an offset 
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or sticky ended dimer in water. Using various solution-phase biophysical methods and 

microscopy, they were able to determine the pathway of self-assembly for an α-helical 

fibre. The self-assembly process is nucleated, with nucleation involving the aggregation 

of six or more partially helical dimers. After nucleation, the initial growth is somewhere 

between 2.5 and 3-dimensional with the fibres first growing as thick cylinders, then, as 

they reach an equilibrium width, further growth occurs only through elongation (Figure 

32). An important consideration with this peptide design is that all faces of the helical 

building block are used in the self-assembly process. Therefore it can be quite 

challenging to incorporate additional functional domains without disrupting the self-

assembling nanostructures.  

 

Figure 32 - Schematic of self-assembly pathway. Taken from Bromley et al.
158

 

 

More recently, the Woolfson group’s work has been on a single designed peptide that 

assembles into stable ordered α-helical fibres, which has been named the 

MagicWand.159 The MagicWand again has a basic heptad repeat abcdefg with 

hydrophobic residues at positions a and d and polar residues elsewhere. Isoleucine 

was placed at position a and leucine at position d as this pattern strongly promotes 

coiled coil dimers (Figure 33). To maximize the thermodynamic stability of MagicWand 

and to favour the staggered alignment of helices, charged residues were used at 

position e and g.159 The self-assembled fibres of this peptide in phosphate buffered 

saline solution are microns long and tens of nanometres thick. The fibres are straight 

and do not branch, and form at sub-micromolar peptide concentrations.159 

 

As with the β-structured peptides, the folding and unfolding of coiled coils, and hence 

their self-assembly, can be controlled by physical triggers. pH can be used to induce 

folding or unfolding of coiled coils by the (de)protonation of side chains. With the coiled 

coil peptides, (de)protonation of amino acid residues at positions e and g leads to the 

disruption of interchain salt bridges and therefore destabilizes the coiled coil.157 
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Figure 33 - (A) Helical-wheel representations for two R-helices showing various coiled-coil 
interactions: 1, hydrophobic packing; 2, charge-charge interactions; and intrahelical; 3, 
interhelical; 4 cation-π interactions.  (B) Cartoon of the coiled-coil target structure. Taken from 
Gribbon et al.

159 

 

It is also possible to observe a structural rearrangement of a coiled coil peptide by 

increasing the ionic strength of solution through the addition of NaCl from 2 mM to 

150 mM at pH 7.160 An increase in temperature has been used to trigger the α-helix to 

β-sheet switch in a range of short coiled coil peptides.161,162  

 

Hydrogels based on purely α-helical structures with a >99 % water content have been 

used as substrates in cell culture of rat adrenal pheochromocytoma cells. The 

hydrogels not only supported cell proliferation and differentiation but also maintained a 

similar appearance of the cells to ones seeded on the widely used ECM extract, 

Matrigel.163 The coiled coil system used has the advantage of having two peptide 

components and therefore only gels upon mixing, offering considerable control.   

 

1.5.2 Discussion and future perspectives 

 

All the examples outlined above show the potential for self-assembling peptides to act 

as scaffolds for tissue engineering and show great promise in regenerative medicine. 

The use of “smart” materials that are externally responsive makes them favourable for 

minimally invasive treatments and 3D cell culture scaffolds. The optimisation of these 

smart materials to include cell adhesion motifs takes their potential even further.  

 

Even though the field is in its infancy, it is already very difficult to compare the 

biocompatibility of the different peptide systems due to the numerous different tests 

B A 
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and cell lines used. Further to this, the different systems have been used as tissue 

engineering scaffolds for different cell lines, and contrasted to different controls, again 

making comparisons between the different peptide materials virtually impossible. 

Standard tests and cell lines to use in all cases would be of great benefit to take this 

field further into understanding the key design principles that would lead to even more 

impressive scaffolds, more closely fulfilling the specific needs of individual applications. 

 

Due to the inherent complex nature of these systems, one of their potential issues 

when it comes to their application is the reproducibility of their properties. The lack of 

reproducibility sometimes observed in self-assembling peptides has many origins; one 

of them is related to slow kinetics as demonstrated by the P11-12 peptide.117 This is one 

of the reasons why it is so essential to study the fundamental principles to truly 

understand peptide self-assembly prior to application.   

 

Another factor often partly overlooked, that can lead to irreproducible behaviour is 

peptide purity, including HPLC purity, but equally important and largely ignored 

percentage peptide content, and type of non-peptide impurities. It is important to 

complete a full quality control of the peptides (including those purchased from 

companies and certified to be pure),  prior to their usage to ensure that the peptides 

are not only free from impurities, but are also producing samples with correct peptide 

concentration taking into account possible counter ions. 

 

One concern that has arisen over the use of peptides for biomedical applications is that 

they often have a fibre assembly process reminiscent of amyloid fibrils, which are 

associated with numerous diseases such as Alzheimer’s. Simple tests with amyloid 

dyes such as congo red and thioflavin T can be carried out, however these are not 

conclusive because the dyes bind through aromatic interactions. So it can be 

hypothesised that many peptides containing aromatic residues, whether amyloidogenic 

or not, will bind to these dyes. Although this dye method was used by Gazit to confirm 

the completely different amyloidogenic potential of nearly identical peptide 

fragments,164 the only real way to test for amyloid nucleation is to carry out in vivo 

studies using appropriate animal models.  Westermark et al. have investigated the 

seeding specificity in amyloid growth induced by heterologous fibrils and the results 

showed that in general seeding of fibril elongation is highly specific, being exquisitely 
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sensitive to point mutations at certain positions in the amyloidogenic peptide.165 They 

have also investigated the possible amyloidogenicity of RAD16-I and found it to be 

amyloidogenic when the fibrils were made by dilution of the peptide in DMSO but not 

when dissolved directly in water, suggesting that that subtle variations in secondary 

and tertiary structure can alter the efficacy of cross-seeding.166 

 

This said there have been many important milestones for the use of self-assembling 

peptides for biomedical applications. β-sheet based polypeptide silk fibres have been 

used in medicine for many years, as well as the lanreotide β-sheet peptide, which has 

received FDA approval. These peptides, as well as others that are in the process of 

entering the market, pave the way for the establishment of self-assembling peptide 

nanostructures as innovative medical devices for regenerative medicine, with, no 

doubt, many more to follow.  

 

1.6 Summary 

 

Disc degeneration is one of the major causes of back pain especially in the lower back. 

At present, late stage interventions have poor long term outcomes. A potential earlier 

stage treatment is nucleus augmentation, however current devices are not optimal, in 

particular often failing due to expulsion. 

 

Although the devices in development at the moment are beginning to tackle the 

problems associated with disc degeneration, the lack of standard mechanical and 

biological models and tests hinders their development. It is difficult to compare the 

devices as different models and tests have been used throughout. A greater 

understanding of disc behaviour in a healthy and degenerated state is needed to fully 

develop suitable models for the testing of such devices. With better models the high 

expulsion levels seen in the early clinical trials for some of these devices may have 

been avoided. 
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Self-assembling peptides are a new class of materials with the potential application as 

biomaterials. They are starting to be investigated for their use in regenerative medicine 

and are already showing good biocompatibility. As yet the use of self-assembling 

peptides for nucleus augmentation has not been evaluated. All of the reasons that 

make peptides logical building blocks for tissue engineering scaffolds stand true for a 

nucleus pulposus replacement material, e.g. their chemical versatility, biocompatibility 

and triggerability. 

 

The P11 series of β-sheet tape forming peptides are particularly advantageous as they 

are based on entirely natural amino acids and are shorter than other equivalent 

families, therefore being easier and more cost effective to make. They also undergo 1D 

hierarchical β-sheet self-assembly that can be controlled through the use of triggers 

such as pH, temperature and ionic strength. The ability to change the polar uncharged 

group offers them great versatility in terms of not only their chemical, but also 

mechanical properties. By using peptides with entirely natural amino acids, maximum 

biocompatibility is expected. However, as peptides are very versatile in their chemistry, 

if it is found that certain types of amino acids or a certain size of peptide elicits an 

immune response in vivo, they can be immediately modified.  

 

The behaviour and self-assembly mechanism of the P11 peptides have not been fully 

characterised in physiological conditions, in particular the design criteria needed to 

make them suitable candidates for biomedical applications.  For nucleus augmentation, 

ideally the material produced will undergo a transition from being soluble outside the 

human body to a gel after injection into the body. In other words, a suitable peptide will 

need a chemical trigger to undergo self-assembly: for example, a change of pH or ionic 

strength to that of physiological conditions. This will enable the therapy to be minimally 

invasive and reduce the potential for expulsion from the treatment site. The use of 

charge on the peptides should not only help to provide a self-assembly trigger, but also 

mimic the high charge found in the natural disc, which is crucial to maintaining the 

swelling pressure of the disc. 
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Aims and Objectives 

 

The aim of the work presented in this thesis is to investigate peptide building blocks 

that self-assemble into β-sheet tapes and give rise to self-supporting gels in 

physiological conditions, with a particular focus on their application as a biomaterial for 

use in nucleus augmentation. 

 

The investigation of these simple peptides can provide a deep insight into the forces 

and principles that guide self-assembly of biological peptides and β-sheet motifs in 

nature. It can also lead to the production of exciting new nanomaterials for a wide 

range of applications.  

 

The three main objectives are to: 

1. characterise the peptide self-assembly in physiological conditions; 

2. optimise the peptides for the application of nucleus augmentation; 

3. assess the ability of the hydrogel to restore disc mechanics and remain within 

the disc. 

 

1. Characterisation 

The self-assembly mechanism model of β-sheet tapes in pure water and methanol has 

previously been established and provides a starting point for understanding the β-sheet 

tape motif. In this work, the same process will be studied but in physiological-like 

conditions, which has never been done before. This research will investigate if the 

hierarchical model is also followed in physiological-like conditions. 

 

Three pre-designed peptides will be studied initially that are the same in terms of 

primary structure, i.e. length and hydrophilicity, and differ only in overall charge. By 

studying the self-assembly curves of these simple model peptides as a function of 

peptide concentration, the effect of peptide charge on self-assembly in physiological-

like solutions can be determined. 
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These three peptides will then be compared with other peptide analogues studied in 

parallel within the Aggeli group that have the same charge profiles but differ in a 

systematic way in hydrophilicity and polarity, to determine the effects of polar side 

chains on peptide self-assembly in physiological like solutions. 

 

2. Optimisation 

Once an insight has been gained into the basic scientific principles of the effect of 

peptide charge and polar side chains on the self-assembly of these building blocks in 

physiological-like solutions, the peptide system can be further optimised for biomedical 

applications.  

 

Optimisation of the simple peptide systems may be achieved through creating new 

hybrid peptide materials by the interaction between the peptide material and a charged 

bio-polymer such as the GAG chains found within the disc. The addition of GAG chains 

may not only provide the high charge found in the natural tissue, but may also help to 

improve the self-assembling and rheological properties of the resulting gels to mimic 

the mechanical function and properties of the healthy nucleus pulposus 

 

3. Nucleus augmentation 

In this project, the focus will be on studying new peptidic materials for use in the 

replacement of the nucleus pulposus in degenerated intervertebral discs in the spine.  

Once the optimum peptide system has been determined, ex vivo mechanical loading 

and compression testing will be carried out to ascertain how the chosen material 

behaves within the disc. A model will be developed in order to act as a tool for 

comparing the best candidate gels. 

 

A leakage study will also be performed to assess the ability of the chosen peptide to 

hold the GAGs in situ. 
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Chapter 2 

2 Experimental procedures 

2.1 Materials 

2.1.1 Chemicals 

Deuterated sodium 3-(trimethylsilyl)propionate-2,2,3,3-d4 (TMSP) manufactured by 

Cambridge Isotope Laboratories was purchased from Goss Scientific Instruments Ltd., 

Great Baddow, Essex, UK. 

 

Sodium hydroxide pellets, deuterium oxide, deuterated sodium hydroxide, deuterated 

hydrochloric acid, concentrated hydrochloric acid, sodium azide, sodium carbonate, 

citric acid, 1,9 dimethylene blue, formic acid, Dulbecco’s phosphate buffered saline 

(PBS) without calcium chloride or magnesium chloride sterile filtered, and Dulbecco's 

Modified Eagle's Medium (DMEM), were purchased from Sigma-Aldrich Ltd., 

Gillingham, Dorset, UK. 

 

Sodium di-hydrogen orthophosphate, di-sodium hydrogen orthophosphate, ethanol, 

sodium formate, hydrochloric acid and sodium hydroxide were purchased from VWR 

International, Lutterworth, Leicestershire, UK. 

 

Acrylic denture materials – rapid repair liquid, type 2 class 1 and acrylic denture 

materials old cire A31 purchased from WHW plastics, Hull, UK. 

 

All water was ultrapure water (18.2 MΩ cm-1 resistivity), unless otherwise stated. 
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2.1.2 Peptides 

P11-4, P11-7, P11-8, P11-9, P11-12, P11-13, P11-14, P11-28 and P11-29 were purchased 

from CPC Scientific, NeoMPS or the Polypeptide Group. These peptides were 

analysed in house to check their content and purity using mass spectrometry, HPLC, 

amino acid analysis, elemental analysis and UV spectroscopy (see Appendix B for full 

details).  

 

Manufacturer peptide content values were confirmed using the UV procedure as 

described in section 2.2.6., except for the solutions were prepared at 1 mg/ml and the 

pH adjust to a value known to make the peptides fully monomeric and therefore 

soluble. The in-house peptide content value from UV spectroscopy was calculated 

using Equation 1:  

                 
                      

                   
    
      

     
 

Equation 1  

 

Peptides were stored in a freezer in a lyophilised state, and prior to use left to thaw at 

room temperature. 

 

2.1.3 Glycosaminoglycan, GAG, chains 

Chondroitin-6-sulfate sodium salt from shark cartilage was purchased from Sigma-

Aldrich Ltd., Gillingham, Dorset, UK. 

 

2.1.4 1H Nuclear Magnetic Resonance Spectroscopy, NMR 

NMR 500 MHz borosilicate glass tubes were obtained from chemistry stores (University 

of Leeds). 

 



 

 

 

55 Experimental procedures 

2.1.5 Transmission Electron Microscopy, TEM  

Hexagonal mesh copper grids size 400, mica sheets used for carbon film preparation 

and round copper quanntifoil 300 mesh carbon support films were obtained from Agar 

Scientific, Stansted, Essex, UK. 

 

2.1.6 Circular Dichroism Ultra-Violet Spectroscopy, CD UV, and 

Ultra-Violet Spectroscopy, UV  

Quartz SUPRASIL 10 mm, 1 mm and demountable cells were obtained from Hellma, 

Southend on Sea, Essex, UK. 

 

2.1.7 Quantification of glycosaminoglycan leakage, DMB assay 

Flat bottom 96 well plates were purchased from Nunc, Roskilde, Denmark.  

 

2.2 Sample preparation and collection of data 

This section summarises the typical procedure used to prepare all peptide solutions in 

this thesis. Any exceptions to these procedures are detailed in the appropriate section 

for each technique.  

 

2.2.1 Weighing 

All solids were weighed out on a Mettler AE240 balance. 

 

2.2.2 Dissolution 

Gilson micropipettes were used to add solvent to weighed peptide. The sample vials 

were sealed with Parafilm® and vortexed for ≈30 seconds (Scientific Industries Vortex 

Genie 2 vortexer), following this, the samples were sonicated for ≈30 minutes (Bandelin 

Sonorex RK52H sonicator). 
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2.2.3  pH measurement and adjustment 

All samples were adjusted to a pH or pD (pH in deuterated solutions) of range 7.4 ± 

0.1, unless otherwise specified. Measured pD values quoted here are those following 

the addition of a 0.4 correction value added to the pH meter reading.167 

 

Sample pH was determined using either a WPA CD720 meter and a CMW711      

semi-micro single junction probe, or a Sartorius Docu-pH meter and a VWR sympHony 

semi-micro combination double junction probe. Both probes were filled with, and stored 

in, 3.5 M KCl solution.  

 

Prior to use, the WPA meter was calibrated using two of the pH 4, 7 and 10 standards 

(from pH 4, 7 and 10 Sigma-Aldrich reference standard buffers, each within ±0.01 pH 

units at 25oC) that were closest to the final desired pH. At least two of the three buffers 

were used to calibrate the Sartorius meter dependent on the most appropriate pH 

range.  

 

The pH of solutions was altered using microlitre aliquots of 0.1, 0.5 or 1 M HCl or 

NaOH (for deuterated solutions, DCl or NaOD were used). After each addition of acid 

or base, the solution was vortexed for ≈10 seconds, and its pH or pD rechecked.  

 

2.2.4 Warming 

After pH adjustment samples were sealed with PTFE tape and Parafilm® and then 

warmed on a hotplate at 80oC, either until cloudy solutions became clear or bubbles 

began to appear at the bottom of the vial. After cooling, samples were stored in a 

closed cupboard at room temperature.  

 

2.2.5 Storage 

After sample preparation and between sample measurements, samples were stored in 

a closed dark cupboard at room temperature. 
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2.2.6 Molarity measurement by Ultra-Violet Spectroscopy, UV 

 

2.2.6.1 Background 

Solution molarity is normally calculated from, Equation 2:  

          
              

                 
 

Equation 2  

 

Unfortunately, for peptides this approach is not always suitable due to the material 

used having less than 100% peptide content due to the counter-ions bound during 

purification, such as, trifluoroacetic acid or ammonium salts. 

 

For peptides containing the tryptophan residue the UV absorption spectra can be used 

to calculate the molar concentration. The wavelength of 279 nm corresponds to the 

electronic excitation of the indol side chain of the tryptophan residue. When the spectra 

are collected in a 1 cm path length cell, the molar concentration of the peptides can be 

determined by Equation 3 : 

            
      
    

 

Equation 3  

 

Where 5600 M−1cm−1 is the molar extinction coefficient of the tryptophan residue at 

279 nm. 

 

For samples which appeared turbid, an optical approach is less practical. In these 

cases, molarity was estimated from mass and volume, correcting the mass using an 

average of in-house measured and manufacturer recorded peptide content values (see 

Appendix B). 
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2.2.6.2 Method 

UV spectra were recorded at 279 nm using a Perkin-Elmer Lambda 2 UV/visible 2.3. 

spectrometer, controlled by Perkin-Elmer UV WinLab 2.85.04 software. Peptide 

solutions were pipetted into Hellma 110-QS quartz SUPRASIL® cuvettes with a 1 mm 

path length for measurement. Before measuring solution absorbance, the spectrometer 

was autozeroed using two cuvettes filled with blank solvent. An average of 10 

absorbance measurements was taken. 

 

2.3 1H Nuclear Magnetic Resonance Spectroscopy, NMR 

2.3.1 Background 

The proton has nuclear spin I = 1/2 and may adopt one of two orientations, mI = +1/2 

and mI = –1/2, in the presence of an applied magnetic field, Bo. As demonstrated in 

Figure 34, the two spin states (either aligned or opposed to the applied magnetic field) 

differ in energy by hB0/2(where h = Planck's constant, = magnetogyric ratio for the 

proton) and it is the transitions between these two states that are observed in 1H NMR 

spectroscopy.  

 

Figure 34 - The basic principles of 
1
H NMR spectroscopy. 

 

The familiar NMR parameters used to characterise organic compounds are also 

relevant to the study of proteins and peptides.168 Previous work has shown that NMR 

can be used to study the self-assembly of peptides in the solution phase.169-171 
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When peptide samples are placed in a static magnetic field (Bo) and irradiated, initially 

the net macroscopic magnetization (M) is in the direction of the static field. When the 

field is applied at 90o
 to the Bo field, this pushes M perpendicular to Bo. The transverse 

magnetization precesses due to the static magnetic field, which, in turn produces an 

electrical current in the detector. The free induction decay (FID) signal is observed 

whilst the system returns to its equilibrium state. It is this FID, which is observed by the 

NMR and is exploited when studying self-assembly. A Fourier transform algorithm is 

performed on this time domain signal, which in turn produces the conventional, 

frequency domain NMR spectrum.172,173 

 

To measure self-assembly, the line width broadening of the NMR spectra is exploited. 

The line width broadening is associated with two parameters known as spin lattice or 

longitudinal (T1) and spin-spin (T2) relaxation times. Relaxation depends on two 

factors174: 

1. magnetic interaction 

2. molecular motions 

 

T1 is the time taken in which the magnetization reorientates itself back into the Bo plane 

and back into thermodynamic equilibrium after the application of the radio frequency 

pulse. T1 is essentially associated with the tumbling of the molecule in solution. 

Subsequently it has a loose affinity to the self-assembled state of the molecule 

resulting from the intermolecular association between peptides. T2 is the decay rate of 

the magnetization perpendicular to Bo. For non viscous liquids T1 and T2 are almost 

equal.174 Often, due to the short relaxation time of T2, the NMR lines for 

macromolecules are broad compared to small molecules and further line broadening is 

seen after aggregation or increase of viscosity.172  Essentially as every nucleus has 

several neighbours, the NMR line of each spin is split as each nucleus interacts with 

one another. In a stable self-assembled aggregate this pattern is averaged out over all 

of the possible orientations, resulting in a single featureless peak. The width is related 

to the spin-spin relaxation time via the Equation 4: 172,173 

     
 

    
 

Equation 4  
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Where Δν is the linewidth and T2 is the relaxation time. 

 

In a monomeric state, the coupling interaction between each nucleus is fast, 

subsequently this molecular motion reduces the dipolar broadening and line widths 

become well defined. The more closely the molecules are held the shorter the T2 

relaxation time, i.e. when in a self-assembled state. The relaxation time increases 

when the molecules have a greater intermolecular freedom.173 

 

Self-assembly is measured by integrating the splitting pattern arising from the aromatic 

region and normalising it with respect to the peak observed due to a known standard. 

Plotting the integral with respect to the concentration, the fraction of monomer of the 

peptide can be measured. Below c*, the integral intensity is dependent on the 

concentration of peptide present. The fraction of monomer is observed as a positive 

linear function with a gradient that is dependent on the number of aromatic residues 

present. At and above c*, the gradient is no longer linear.173 

 

2.3.2 Measurement 

 

2.3.2.1 Sample preparation 

Solutions of peptides P11-7, P11-9, P11-12, P11-13/14 and P11-28/29 were prepared 

directly in D2O, containing 130 mM NaCl  and 0.125 mM of the NMR internal reference 

standard (2,2,3,3-d4)-trimethylsilyl-3-propionic acid, TMSP.  

 

2.3.2.2 Method 

Nuclear magnetic resonance spectroscopy was carried out using a Bruker DPX300 

300 MHz spectrometer at room temperature, operating at 300 MHz (5 mm probe, 

spectral width 5995 Hz), controlled by XwinNMR software. Spectra were recorded with 

an automatic largest solvent peak presaturation programme and 1024 scans/spectrum. 

Samples were placed in 500 MHz borosilicate glass tubes. The areas of the aromatic 

peaks of the peptides were normalised against the area of a sharp constant control 

peak of 0.125 mM 3-trimethylsilylpropionate occurring at 0 ppm. MestReNova 
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(Mestrelab Research, Santiago de Compostela, Spain) was used to Fourier transform 

and measure NMR peak integrals, and Origin 8.6 (OriginLab Corporation, 

Massachusetts, USA) was used to process and plot the results.  

 

The aromatic multiplet at chemical shift ~7.3-7.5 ppm was integrated, relative to the 

reference peak. To determine the estimated monomer concentration, the integral of the 

aromatic peak was divided by the slope of peptide concentration vs. integral, for the 

monomer/linear regime.115 The line widths of the aromatic region and chemical shifts of 

the peaks in this region were also measured to check whether they undergo any 

change as peptide concentration increases. 

 

The self-assembly curves were constructed by subtracting the estimated monomer 

concentration (derived from the aromatic integral) from the total peptide concentration 

to give the β-sheet concentration. 

 

P11-9 

The solution peptide concentration was calculated by UV above 100 μM and below 

500 μM. The sample concentration above 500 μM was calculated from the weighed 

peptide, multiplied by an average of the net peptide content from in house UV data and 

company data. The samples were analysed over 2.5 years at various time points, to 

establish equilibrium conditions. Once equilibrium conditions were believed to have 

been reached, the 3 mM sample was diluted down and studied at various time points 

once more, to confirm the equilibrium conditions. Diluted concentrations were 

calculated in the same way as above and then multiplied by the dilution factor.  

 

P11-12 

The solution peptide concentration was calculated from the weighed peptide, multiplied 

by an average of the net peptide content from in house UV data and company data. 

The samples were analysed over 1.5 years at various time points, to establish 

equilibrium conditions. 
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P11-7 

The solution peptide concentration was calculated from the weighed peptide, multiplied 

by an average of the net peptide content from in-house UV data and company data. 

The samples were analysed over a month at various time points, to establish 

equilibrium conditions.  

 

P11-7 aggregates in the solution conditions used for this study were insoluble and form 

a white precipitate. This not only makes UV difficult, but also dilutions inaccurate. 

Although there was precipitate in the solutions, this was not thought to be a problem 

with NMR, as this technique measures the monomer concentration and the precipitate 

was believed to be the aggregated form. 

 

P11-13 and P11-14 

P11-13 and P11-14 NMR samples were prepared separately in molar ratios to one 

another as stated in 2.3, apart from the pD was adjusted to 6.5 ± 0.5 for P11-14 and 8 ± 

0.5 for P11-13 to ensure totally monomeric solutions. P11-14 was then pipetted into the 

relevant P11-13 solution and vortexed for approximately 30 seconds using a Scientific 

Industries Vortex Genie 2. The solution peptide content was calculated for each 

peptide separately from the weighed peptide, multiplied by an average of the net 

peptide content from in-house UV data and company data, then an average taken for 

the P11-13+14 mix. The samples were analysed over four months at various time points 

to establish equilibrium conditions. 

 

P11-28 and P11-29 

P11-28 and P11-29 NMR samples were prepared separately in molar ratios to one 

another as stated in 2.3, apart from the pD was adjusted to 6.5 ± 0.5 for P11-28 and 8 ± 

0.5 for P11-29 to ensure totally monomeric solutions. P11-28 was then pipetted into the 

relevant P11-29 solution and vortexed for approximately 30 seconds using a Scientific 

Industries Vortex Genie 2. The solution peptide content was calculated for each 

peptide separately from the weighed peptide, multiplied by an average of the net 

peptide content from in house UV data and company data, then an average taken for 

the P11-28+29 mix. The samples were analysed over a month at various time points to 

establish equilibrium conditions. 
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2.4 Transmission Electron Microscopy, TEM 

2.4.1 Background 

The transmission electron microscope works on the same basic principles as the light 

microscope but uses electrons as its ‘light source’. As electrons are used rather than 

light, it is possible to get a resolution thousands of times better than with a light 

microscope as the de Broglie wavelength of an electron is much lower than that of light, 

therefore nanometer sized structures can be resolved.175 A schematic of a TEM is 

shown in Figure 35. 

 

Figure 35 – TEM schematic. Taken from 
http://www.nobelprize.org/educational/physics/microscopes/tem/index.html.

175
 

 

Electrons from a source at the top of the microscope travel as a beam through the 

vacuum in the column of the microscope. The beam is focussed by electromagnetic 

lenses and the beam passes through the sample. The sample will interact with the 

electron beam and depending on the density of the sample electrons can be scattered 

as back scattered electrons, elastically and inelastically scattered electrons and be lost 

as secondary electrons. X-rays and light will also be given off and can be used to 

gather elemental and chemical information. The transmitted electrons are used for 

imaging. At the bottom of the microscope they hit a fluorescent screen, resulting in a 

shadow image of the sample, with its different parts displayed in varied darkness 

according to its density.175,176 The TEM provides information on the internal structure of 

a material as the image is a 2D projection of the structure. 
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2.4.2 Sample preparation 

Solutions of peptides P11-7 and P11-9 were prepared directly in H2O, containing 

130 mM NaCl, and 0.02% NaN3 (w/w) to prevent bacterial growth.  

 

Solutions of peptide P11-12 and peptide:GAG were prepared directly in PBS containing 

0.04 % NaN3 as stated in 2.8.1.2. 

 

2.4.3 Method 

Transmission electron microscopy was carried out using a Philips CM10 electron 

microscope. Electron microscope (EM) grids (copper 300 mesh) were coated with 

carbon prior to use by the flotation of a carbon film from a mica sheet onto the grids, 

these EM grids were glow discharged using an Edwards 306 A high vacuum coating 

unit fitted with ionic bombardment arms. These pass high tension, HT, through a partial 

vacuum to create a glow discharge on the grids, which aids with the adhesion of the 

sample. Peptide samples were quickly diluted by various factors in pure water where 

stated and the freshly glow-discharged, carbon coated TEM copper grids (hexagonal 

mesh size 400) were exposed immediately to the peptide solutions. The peptide 

solutions remained in contact with the grids for one minute, the excess was then 

removed. The grids were negatively stained by absorption of uranyl acetate at 4% 

(w/w) in water for 20 seconds. The excess was removed and left to air dry. Images 

were obtained quickly to avoid artefacts and destruction of the sample with the TEM 

operating at 80 kV accelerating voltage. 

 

2.5 Circular Dichroism Ultra-Violet Spectroscopy, CD UV 

2.5.1 Background 

Circular dichroism UV spectroscopy, CD, works by measuring the difference in 

absorption between left and right handed circular polarised light as it passes through a 

sample, through the change in its electric field, E.177,178 A periodic variation in the 

polarization of the light beam is induced by the polarization modulator through all 

ellipticities from left circular through elliptical, unchanged linear and elliptical to right 
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circular. This polarized light passes through the sample to a photomultiplier detector.178 

With the introduction of a chiral sample, a preferential absorption is seen during one of 

the polarization periods and the intensity of the transmitted light now varies during the 

modulation cycle177,178 The variation is directly related to the circular dichroism of the 

sample at that wavelength. Successive detection is performed at various wavelengths 

and leads to the generation of the full CD spectrum. The spectral bands can be 

assigned to certain structural components of a molecule.178  

 

As the bands in CD are normal electronic absorption bands in the UV region, in an 

asymmetric molecule, the CD signal is zero if the molecule is not chiral.178 The 

absorbance for left-circularly polarised light can be defined as, Equation 5: 

          
  
 

  
        

Equation 5 - Absorbance for left-circularly polarised light.
173

 

 

Where Al = absorbance for left-circularly polarised light, Il
0 = intensity of left-circularly 

polarised incident light on the sample, Il = intensity of left-circularly polarised light after 

travelling through the sample, εl = molar extinction coefficient of the solute for left-

circularly polarised light / dm3.mol-1.cm-1 and C = concentration of the sample /mol.dm-3. 

 

The absorbance of right-circularly polarised light can be formulated with a similar 

definition. CD is then defined as the difference between the absorbencies, Equation 

6.173,178,179 

                          

Equation 6  

 

 Where          . 

 

CD is reported either in units of ΔE, the difference in absorbance of Er and El by an 

asymmetric molecule, or in degrees ellipticity, which is defined as the angle whose 
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tangent is the ratio of the minor to the major axis of the ellipse. [θ], the molar ellipticity 

in deg cm2 dmol–1 = 3,298ΔE.177 

 

If molecules absorb light they undergo a transition from a lower to a higher energy 

state. Evaluation of peptide/protein secondary structure using CD analysis is a well 

established approach.180 Absorption in the region below 240 nm for proteins is mainly 

due to the peptide bond.178 The regular secondary structure in proteins and peptides 

results in a characteristic CD spectrum in the far UV. The amide group on the peptide 

is associated with two distinct electronic excitations. The first is a weak but broad nπ* 

transition at around 220 nm: this is the excitation of electrons from a non-bonding (lone 

pair) orbital on the carbonyl oxygen to an anti-bonding π orbital.178 The second is a 

more intense transition ππ* around 190 nm and is the excitation of electrons from a 

bonding to an anti-bonding π orbital on the carbonyl double bond.178  

 

Figure 36 - Far UV CD spectra with various types of secondary structure.
181

 

 

As shown in Figure 36, α-helical proteins have negative bands at 222 nm and 208 nm, 

and a positive band at 193 nm. Proteins with well-defined antiparallel β-pleated sheets 

have negative bands at 217 nm and positive bands at 195 nm, whereas random coils 

have very low ellipticity above 210 nm and negative bands near 195 nm.177 

 

The acquisition of good quality CD UV spectra in physiological-like conditions is 

challenging. Therefore work was first carried out to establish the optimal conditions for 

the CD UV runs, as described in Appendix C. These conditions were then used for the 

experiments described here. 
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2.5.2 Solution preparation 

Solutions of peptides P11-9 and P11-12 were prepared directly in H2O, containing 

43 mM Na2HPO4 and 0.02% NaN3 (w/w) to prevent bacterial growth.  

 

2.5.3 Method 

CD spectra were recorded using a Jasco J-715 spectrometer using 1 mm and 

demountable quartz cuvettes at 20oC. Spectra were recorded with a step resolution of 

1 nm, a scan speed of 50 nm/minute, a sensitivity of 50 mdegs and a response time of 

1 second. Far and near UV spectra were recorded over the wavelength range         

300-190 nm and were the average of a number of scans, dependant on their 

smoothness. Each spectrum collected had the solvent spectrum subtracted. A first 

order smoothening was performed and finally an optical constant calculation converted 

the data to a mean residue molar ellipticity [θ]/deg cm2 dmol-1 
   

 

2.6 Fourier Transform Infra-Red Spectroscopy, FTIR 

 

2.6.1 Background 

Fourier transform infrared, FTIR is the measurement of wavelength and intensity of 

absorption of IR radiation by a sample. In FTIR the light (typically 4000-400 cm-1) is 

split into two beams and either one beam or both are passed through the sample. 

Usually one beam has a longer path than the other and when the two beams are 

recombined they produce an intereference pattern. By systematically changing the 

difference in the two paths an interferogram can be produced and Fourier 

transformation of this interferogram results in the spectrum.182 

 

Infrared light is absorbed by a molecule when the oscillating dipole moment interacts 

with the oscillating electric vector of the infrared beam.182 A bond within a molecule can 

undergo different types of oscillations depending on the energy between its ground 

state and its excited state. The amount of energy that is absorbed is dependent on 

changes in the dipole moment and therefore weak absorption is seen by bonds that are 
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non-polar and a strong absorption is seen for polar bonds such as C=O. A complex 

molecule will have a large number of vibrational modes; however, some of these will be 

the vibrations of individual bonds or functional groups and are known as localized 

vibrations and the various types are demonstrated in Figure 37. 

 

Figure 37 - Localized infrared vibrational modes.
182

 

 

FTIR is a well established technique for the study of protein and peptide secondary 

structure. Both solution and dry state FTIR have been used to good effect in the 

examination of peptide conformation. Nine characteristic absorption bands (amide A, B, 

I, II, III, IV, V, VI, VII) allow the study of peptide secondary structure (Table 3). 

Amide Band Wavenumber /cm
-1 

Origin 

A ~3300 NH stretching 

B ~3100 NH stretching 

I 1600-1690 C=O stretching 

II 1480-1575 CN stretching, NH bending, 

III 1229-1301 CN stretching, NH bending, 

IV 625-767 OCN bending mixed with other nodes 

V 640-800 Out-of plane NH bending 

VI 537-606 Out-of plane C=O bending 

VII ~200 Skeletal torsion 

Table 3 – Characteristic infrared bands of the peptide.
183

 

 

The amide I, II, III bands are the most prominent and sensitive to conformation of the 

peptide backbone and so are the most useful for probing secondary structure. The 

amide II band is the least sensitive of the three to conformation, and the amide III band 

is relatively weak and is affected by other vibrations, therefore the amide I band is the 

most often used. The amide I stretch is affected by the different hydrogen bonding 

patterns that the peptide backbone is involved in, thus manifests itself as a featureless 

peak (occurring at 1700-1600 cm−1) due to the overlap of component bands. The 

complex overlapping patterns of the peptide bands can also be masked by H-O-H 

bending at 1645 cm−1 whose intensity is an order of magnitude higher than the amide I 

band.184 For this reason, all samples were run in deuterated solvents. 
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The exact frequencies of the vibrations in the amide I band depends on the nature of 

the hydrogen bonding involving the C=O and NH groups, which varies for the different 

secondary structures of a peptide backbone. If spectra have been recorded in D2O, the 

amide bands have a prime symbol attached to them e.g. amide I’. The peak positions 

corresponding to the various secondary structures are presented in Table 4. 

amide I’ band (cm
-1

) secondary structure assignment 

1613-1630 β-sheet 

1642-1649 unordered 

1649-1655 a-helix 

1658-1674 Turn 

1673 TFA 

1682-1690 β-sheet 

1694-1697 Turn 
Table 4 - Secondary structural assignments of amide I’ infrared bands.

185-187
      

 

To obtain semi-quantitative information from the amide I’ region using FTIR, firstly the 

second derivative of the absorption spectrum in the region of 1700 - 1600 cm−1
 is 

calculated. This ascertains the number and positions of individual component bands. 

 

Secondly, the amide I’ line shape is band fitted, from which, the assignment of the 

amide I’ component bands can be correlated to different types of component bands. 

Amino acid side chains exhibit characteristic absorption frequencies in the amide I 

region and must be considered during the assignment of spectroscopic bands. 

However, the IR molar absorption coefficient for most side chains is a lot weaker 

compared to that of the peptide bond. A summary of amino acids that affect this region 

can be found in Table 5.  

 

Another feature of the IR spectrum to be aware of is the TFA band is located at 

1673 cm-1. In the purification of peptides by reverse phase HPLC trifluoroacetic acid is 

used, which leads to it being present in the peptide material as a counter ion bound to 

the positively charged residues.188 The amount of TFA present depends on the number 

of positively charged residues in the peptide, e.g. samples of peptides with greater 

numbers of arginine and ornithine residues will contain more TFA.  
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Amino Acid Wavenumber /cm
-1 

Origin 

Aspartic acid 1715 C=O stretch 
 1585 COO

-
 asymmetric stretch 

Glutamic acid 1710 C=O stretch 
 1565 COO

-
 asymmetric stretch 

Glutamine 1620-1640 ND2 stretch 
 1670 C=O stretch 

Arginine 1580 CN stretch 
 1610 CN asymmetric stretch 

Histidine 1600, 1625 ionised ring 
 1620 non-ionised ring 

Phenylalanine 1596,1607 ring 
Tyrosine 1500,1575 ionised ring 

 1517,1590,1615 non-ionised ring 
Tryptophan 1545 ring 

Table 5 - Infrared bands of amino acid side chains.
183

 

 

2.6.2 Sample preparation 

Solutions of peptides P11-9 and P11-12 were prepared directly in D2O containing 

130 mM NaCl. Any peptide concentrations given for the FTIR studies were values 

multiplied by an appropriate factor to account for the actual percentage peptide 

content.  

 

2.6.3  Method 

Samples were placed between CaF2 crystals and their spectra acquired with a Thermo 

Scientific Nicolet 6700 FTIR spectrometer. Spectra were averages of 32 scans 

recorded at room temperature whilst purging with dry air. Blank solvent spectra were 

subtracted from the sample trace, the baseline corrected and the spectra smoothed. 

Processed spectra were band fitted using the Peak Resolve routine in OMNIC 7.3 SP1 

(Thermo Electron Corporation, Loughborough, UK).  

 

Once the fitted peaks in the amide I’ region had been assigned secondary structure the 

proportion of the peptide adopting a particular secondary structure was determined 

from its relative areas, Equation 7:189,190 

                            
                     

                                   
 

Equation 7  
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2.7 Rheology 

2.7.1 Background 

When stressed, solids deform and liquids flow. Rheology involves applying a stress to 

a sample and measuring how much it deforms or how fast it flows. There are two basic 

kinds of flow with relative movement of adjacent particles of liquid; they are called 

shear and extensional flows. In shear flows, liquid elements flow over or past each 

other, while in extensional flow, adjacent elements flow towards or away from each 

other and all flows are resisted by viscosity.191 There are three general flow behaviours; 

Newtonian, shear-thinning and shear-thickening (Figure 38).  

 

Figure 38 - General flow behaviours
192

 

 

To determine the elasticity (resistance to deformation) of a material its modulus is 

measured. The modulus is a measure of shear stress divided by the strain, or the 

pushing force divided by the amount it moves. A rotational rheometer (Figure 39) can 

measure the modulus of a sample by oscillating back and forth, and so can show 

properties under deformation before flow. It can do this two different ways:  

1. Controlled stress – oscillate the top plate with a set force and measure its 

displacement; 

2. Controlled rate – oscillate the top plate with a set displacement and measure 

the force. 

 

Figure 39 - Schematic diagram of a rotational rheometer.
193
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Different types of material have a different lag/phase angle, δ, between the input stress 

and measured strain (Figure 40). 

 

Figure 40 - Origin of the phase angle and its relationship to viscous and elastic materials.
192

 

 

For a purely elastic material (solid-like behaviour), the stress and strain would be 

exactly in phase and therefore the phase angle would be zero. For a purely viscous 

material (liquid-like behaviour), however, the stress and strain would be ¼ of a cycle 

out of phase and therefore the phase angle would be 90o (Figure 40). 

 

The complex modulus, G*, is a measure of the stiffness of a material and is calculated 

from how much a sample moves (shear strain) for a given force (shear stress). It can 

be broken down into its component parts: 

1. Storage (elastic) modulus – G’ = G*cos δ 

2. Loss (viscous) modulus – G” = G*sin δ 

 

If G’>G’’ the phase angle will be less than 45o and so have solid-like behaviour, 

whereas if G”>G’ the phase angle will be more than 45o and so have liquid-like 

behaviour. 

 

In all structured liquids, there is a natural rest state of the microstructure that 

represents a minimum energy state. Thermodynamic forces work to restore this state 

when the liquids are deformed. This restoring force increases linearly at first with the 

distance that any deformation takes the material away from the state of rest, however 

eventually non-linearity will occur. A steady state condition where the elastic force 

becomes constant is reached at very large deformations and the microstructure 

becomes anisotropic.191  As well as the elastic forces, viscous forces will be present 

due to the dissipation and in proportion to the rate of deformation. Together these two 

forces produce viscoelastic effects. The viscoelastic profile of a material can be 

measured by applying an oscillating stress or strain as an input to the sample and 
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monitoring the resulting oscillatory strain or stress output. The same repetitive 

sinusoidal straining motion recurs over and over again, with each cycle taking a certain 

time, and having a frequency that is inversely proportional to that time.191 This can be 

used to study the microstructure and therefore predict a material’s behaviour. There 

are fundamentally two parts of the oscillation that can be controlled: 

1. Amplitude, stress or strain – an amplitude sweep experiment is carried out to 

determine the linear viscoelastic region (LVER); 

2. Frequency, oscillation time scale – a frequency sweep experiment is run to 

determine the response to different timescales and is carried out within the 

LVER. 

 

There are three general material behaviours: viscoelastic solid where the phase angle 

at rest (0 Hz) tends towards 0o; gel where the phase angle is independent of frequency; 

and viscoelastic liquid where the phase angle at rest tends towards 90o (Figure 41). 

 

Figure 41 – General material behaviours in terms of the phase angle and storage and viscous 
moduli.

192
 

 

An understanding of the rheological properties of hydrogels is extremely important, 

especially at the design stage for specific applications. The frequency dependence, 

gelation kinetics and gel stiffness are all critical hydrogel characteristics that can 

directly impact the final uses of the materials.194 Shear-thinning and self-healing 

hydrogels can be excellent candidates for injectable materials.194 Rheology has been 

used to probe peptide and protein based hydrogels, from understanding the 

fundamental mechanisms of gelation of globular peptide based hydrogels,195 to 

measuring the effects of cross-linking fibrous protein based hydrogels.196 Previously 

within the Aggeli group, the rheological properties of polypeptide K24 have been 

studied, determining that at a low concentration in 2-chloroethanol, a hydrogel is 

formed with an elastic modulus of around 300 Pa.111  Rheology can be used to not only 

look at the bulk mechanical properties of peptide hydrogels, but also gelation 

mechanisms and the behaviour of the gels during and after flow. Rheometers can also 
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be used to mimic the mechanical processes of specific applications such as the 

shearing effect of injection. 

 

2.7.2 Sample preparation 

 

2.7.2.1 P11-4, P11-8, P11-9, P11-12 control samples 

Approximately 20 mg/ml of peptide was weighed into a sample vial, to which 2 ml of 

PBS containing 0.04 % NaN3 was added.  

 

2.7.2.2 P11-13/14, P11-28/29 control samples 

Approximately 20 mg/ml of peptide was weighed into separate sample vials, to which 

2 ml of PBS containing 0.04 % NaN3 was added. The solutions were vortexed for 

20 seconds using a Scientific Industries Vortex Genie 2, and then sonicated in a 

Bandelin Sonorex RK52H sonicator for 20 minutes. Solution pH was measured and 

adjusted to 6.5 ± 0.5 for P11-14 and P11-28,  and 8 ± 0.5 for P11-13 and P11-29, using a 

calibrated pH meter (Sartorius Docu-pH+). Any adjustment of pH, if necessary, was 

made with minimal L volumes of 0.1, 0.5 or 1 M HCl and/or 0.1, 0.5 or 1 M NaOH. 

Finally, solution vials were closed, sealed with PTFE tape, and then warmed to 

approximately 80oC for around five minutes until samples were a clear liquid to 

maximise peptide solubility. 

 

2.7.3 Method 

All the rheological measurements were performed on a Malvern Kinexus Pro rheometer 

with a cone-plate geometry (cone angle: 1o, diameter: 50 mm, gap: 0.033 mm). All the 

tests were performed at 25oC, utilizing a solvent trap and the atmosphere within was 

kept saturated to minimize evaporation of the peptide samples.  

 

To ensure the measurements were made in the linear viscoelastic regime (LVER), 

amplitude sweeps were performed in a shear strain controlled mode from 0.01-100%. 

Two amplitude sweeps were carried out for each sample (1 Hz and 20 Hz) and a strain 
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level was chosen at which the elastic modulus (G’) and viscous modulus (G’’) were 

independent of strain amplitude at the two different frequency levels.  

 

The dynamic moduli of the hydrogels were measured as a frequency function with the 

sweeps carried out between 1 and 20 Hz. Peptide samples were allowed to equilibrate 

for 15 minutes once loaded prior to the start of testing (this was determined to be 

adequate following preliminary testing of P11-9 Appendix D). Fresh samples were used 

for the amplitude and frequency sweeps.  

 

After the frequency sweeps, two more amplitude sweeps (1 Hz and 20 Hz) were 

carried out in a stress controlled mode to confirm the testing was performed within the 

LVER. The stress range was chosen based on the stress values from the frequency 

sweeps at 1 and 20 Hz: if these two values were then independent of stress amplitude, 

then this confirmed that testing was within the LVER.  

 

In order to check the reproducibility of the results, the same experiments were run on 

two different samples for P11-4, P11-28/29 and P11-12, the results of which can be found 

in APPENDIX D. 

 

rSpace for Kinexus 1.10 (Malvern Instruments) was used to control the rheometer and 

to export the raw data and Origin 8.6 (OriginLab Corporation, USA) was used to 

process and plot the results. 

 

2.8 GAG mixing study  

It was hypothesised that the charged glycosaminoglycan, GAG, chains of chondroitin-

6-suplate, CS, would interact electrostatically with the charged peptides. In order to 

establish whether such an interaction was possible, a simple mixing study was carried 

out.  The concentration of peptide was kept the same for each sample and the molar 

ratio of GAG subunit to one peptide was increased. The samples were named by the 
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number of GAG subunits to each peptide present e.g. P11-12:GAG 1:10 = one P11-12 

peptide monomer to ten GAG dimer subunits.  

 

2.8.1 Sample preparation 

 

2.8.1.1 GAG control (equivalent concentration of GAG in 1:10 sample) 

0.034 g of chondroitin-6-sulphate was weighed into a sample vial, to which 0.5 ml of 

PBS was added containing 0.04% NaN3. The solution was then vortexed (20 secs) and 

sonicated (20 mins) before pH adjusting to 7.4 ± 0.1.   

 

2.8.1.2 P11-4, P11-8, P11-9, P11-12, P11-13/14 and P11-28/29 :GAG 

Approximately 20 mg/ml of peptide was weighed into a sample vial, to which 0.5 ml 

PBS was added containing 0.04% NaN3. The solutions were then vortexed (20 secs) 

and sonicated (20 mins) before pH adjusting to 7.4 ± 0.1.  After warming and whilst the 

solutions were still warm, a premeasured amount of chondroitin-6-sulphate was added 

and the mixture vortexed and heated again to approximately 80oC to ensure complete 

mixing of the monomers. 

 

2.8.1.3 P11-13:GAG + P11-14 

P11-13 and P11-14 peptide solutions were prepared as above in 2.8.1.2, however the 

premeasured amount of chondroitin-6-sulphate was only added to the P11-13 solution. 

The P11-13:GAG mix was then vortexed and heated again to approximately 80oC to 

ensure complete mixing of the monomers and the sample left overnight. The following 

morning the mix was heated once more, P11-14 was pipetted into the P11-13:GAG mix 

and the solution was then vortexed. 

 

2.8.1.4 P11-14:GAG + P11-13 

Prepared as above in 2.8.1.2, however the chondroitin-6-sulphate was added to the 

P11-14 peptide sample and left over-night. The following morning, the mix was heated 
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once more, P11-13 was pipetted into the P11-14:GAG mix and the solution was then 

vortexed. 

 

2.8.1.5 P11-28:GAG + P11-29 

P11-28 and P11-29 peptide solutions were prepared as above in 2.8.1.2, however the 

premeasured amount of chondroitin-6-sulphate was only added to the P11-28 solution. 

The P11-28:GAG mix was then vortexed and heated again to approximately 80oC to 

insure complete mixing of the monomers and the sample left overnight. The following 

morning, the mix was heated once more, P11-29 was pipetted into the P11-28:GAG mix 

and the solution was then vortexed. 

 

2.8.1.6 P11-29:GAG + P11-28 

Prepared as above in 2.8.1.2, however, the chondroitin-6-sulphate was added to the 

P11-29 peptide sample and left over night. The following morning, the mix was heated 

once more, P11-28 was pipetted into the P11-29:GAG mix and the solution was then 

vortexed. 

 

2.8.2 Method 

Visual observations were recorded including time for the gel to form and appearance of 

samples. 

 

For peptides P11-9 and P11-12, a TEM study was carried out on representative GAG 

ratios as well as the peptide control and GAG samples. The TEM protocol described in 

2.4.3 was followed. 

 

A rheological study was carried out on representative GAG ratios for all peptides under 

investigation: the procedure described in 2.7.3 was followed. 
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2.9 Ex vivo investigation 

 

The methods for the ex vivo investigation including the chondroitin-6-sulphate leakage 

study and the static loading study presented in Chapter 5 are detailed within the 

chapter as they rely on results from the previous chapters and do not follow standard 

protocols. 



 

 

 

79 
Self-assembly and morphology of peptide nanostructures and mechanical 

properties of their hydrogels 

Chapter 3 

3 Self-assembly and morphology of peptide nanostructures 

and mechanical properties of their hydrogels 

3.1 Self-assembling peptides 

 

3.1.1 Introduction 

The class of peptides used herein are from the Aggeli group and are β-sheet tape 

forming peptides, which self-assemble in one dimension into a hierarchy of well defined 

structures. They are based on entirely natural amino acids and are 11 amino acids 

long. They are shorter than other equivalent families and therefore are inherently easier 

and more cost effective to make. Figure 42 shows the generic structure of this class of 

peptide. 

 

Figure 42 - Generic β-sheet tape forming peptide structure 

 

All the peptides studied have a hydrophilic side and a hydrophobic side to help drive 

the self-assembly and an aromatic core recognition region to align the peptides for one 

dimensional self-assembly. This class of peptides is very versatile because the polar 

groups, R and X in Figure 42, can be changed to provide self-assembled molecules 

with different structures and therefore material properties.  
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3.1.2 Peptide design criteria 

 

The design criteria for self-assembly for this class of peptide in organic solvents and 

pure water has been experimentally verified and is explained by a model suggesting 

hierarchical self-assembly.110 The intension here was to study the self-assembly 

behaviour of a range of differing peptides, and to take the design criteria already 

established within the Aggeli group to optimise the peptides further to suit the 

application of a nucleus pulposus replacement. 

 

The first design criterion for this particular application was that the peptide should have 

a low critical concentration (c*) because it was hypothesised that this would provide as 

strong and stable a gel as possible, as well as resulting in a low background monomer 

concentration and therefore reducing possible leakage from the injection site. Finally, it 

would lead to a more cost effective medical device. 

 

Secondly, the peptide should be able to form a gel in basic physiological conditions 

(130mM NaCl, pH 7.4) and more complicated physiological conditions, such as cell 

media, and do so with short gelation times. The gels formed were also required to have 

good strengths and mechanical properties mimicking that of the natural tissue.  

 

On top of needing to have similar mechanical properties to the natural tissue, the gels 

needed to have similar biofunctionality, i.e. to provide a high swelling pressure within 

the disc, ideally through water binding similar to that found naturally. 

 

In order for the therapy to be minimally invasive, a trigger for self-assembly needed to 

be incorporated, so that the peptide could be injected as a liquid and form a gel once in 

situ. 

 

Finally, because the intended application is within the body, it was vital that the chosen 

peptides are biocompatible. 
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To establish the design criteria to give a low c*, the versatility of this class of peptides 

was explored.  

Three pre-designed peptides (Table 6) were studied initially that are the same in terms 

of primary structure i.e. length and hydrophilicity and differ only in overall charge. By 

studying the self-assembly curves of these simple model peptides as a function of 

peptide concentration, the effect of peptide charge on self-assembly in physiological 

like solutions could be determined.  

Table 6 – Peptide structures of P11-7, P11-9 and P11-12 

 

The peptides investigated here were then compared with other peptide analogues 

(Table 7) studied in parallel within the Aggeli group by Dr Steven Maude.189 These 

have the same charge profiles but differ in a systematic way in hydrophilicity and 

polarity, so would enable the effects of polar side chains on peptide self-assembly in 

physiological-like solutions to be determined. 

Table 7 - Peptide structures for P11-2, P11-4 and P11-8 

The intention was to study the self-assembly behaviour as a function of peptide 

concentration, because this had not previously been studied before with these peptides 

under physiological-type solution conditions and also to enable fitting to the theoretical 

data. A systematic 1H NMR study was chosen as a starting point because a wide range 

of concentrations could be studied, the complementary techniques of CD UV, FTIR and 

TEM were then used to confirm the NMR data.  

3.1.3 Results: Studies on peptide self-assembly and morphology  

 

Peptide 
Name 

Net 
Charge at 

pH 7.5 

Polar 
Amino 
Acid 

Peptide Structure 

P11-7 0 Serine CH3CO-S-S-R-F-S-W-S-F-E-S-S-NH2  
P11-9 -2 Serine CH3CO-S-S-R-F-E-W-E-F-E-S-S-NH2  
P11-12 +2 Serine CH3CO-S-S-R-F-O-W-O-F-E-S-S- NH2  

Peptide 
Name 

Net 
Charge at 

pH 7.5 

Polar 
Amino 
Acid 

Peptide Structure 

P11-2 0 Glutamine CH3CO-Q-Q-R-F-Q-W-Q-F-E-Q-Q-NH2  

P11-4 -2 Glutamine CH3CO-Q-Q-R-F-E-W-E-F-E-Q-Q-NH2  

P11-8 +2 Glutamine CH3CO-Q-Q-R-F-O-W-O-F-E-Q-Q-NH2  
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3.1.3.1 P11-9 

 

1H Nuclear Magnetic Resonance Spectroscopy, NMR 

 

To examine the self-assembly behaviour at equilibrium, various different concentrations 

were prepared one by one and observed as a function of time. To establish if a linear 

region was visible at lower peptide concentrations and a plateau at higher 

concentrations, the total peptide concentration vs. estimated monomer peptide 

concentration using this technique was plotted (Figure 43). 
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Figure 43 - 
1
H NMR aromatic region integral of P11-9 relative to integral of 0.125 mM TMSP reference 

peak as a function of increasing total peptide concentration and time from sample preparation.  

 

The samples were analysed over 2.5 years at various time points, to establish 

equilibrium conditions. This study revealed that the peptide solutions reached 

equilibrium slowly after approximately one month with the biggest changes in the 

solutions taking place after two weeks, as can be seen in Figure 43 and Figure 44. 

Below c*, equilibrium was reached quickly, whereas above c*, equilibrium took much 

longer to attain as illustrated in Figure 44.  
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Figure 44 - Time variation of aromatic integral and of peptide concentration in monomeric state in 
P11-9 solutions at three concentrations. Guidelines are first order decay fits created in OriginPro 
8.6. 

 

The line widths of the aromatic region and chemical shifts of the peaks in this region 

were also measured to check whether they underwent any change as peptide 

concentration increased. From Figure 45 a.) and b.), it can be seen that there was no 

change, implying that the molecular states that gave rise to the NMR signals plotted in 

Figure 43 are the same, i.e. monomeric random coils, irrespective of the total peptide 

concentration. 

 

Once equilibrium conditions were believed to have been reached, the 3 mM sample 

was diluted down and studied at various time points once more, to confirm the 

equilibrium conditions (Figure 46). 
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Figure 45 – a.) Line widths of aromatic peaks b.) Chemical shift of aromatic peaks in P11-9 
1
H NMR spectra as a function of increasing total peptide concentration, samples 87-103 

days old. 
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Figure 46 - 
1
H NMR aromatic region integral of P11-9 relative to integral of 0.125 mM TMSP reference 

peak as a function of increasing total peptide concentration and time from sample preparation.  

 

The diluted data and the time-point data showed good concordance suggesting that 

equilibrium conditions had been met.  

 

Determination of c* using surfactant model 

 

From Figure 43, it can be seen there was a linear region up to ~1000 μM, where the 

aromatic integral varied linearly with P11-9 concentration, this suggests that the peptide 

in solution remained monomeric. Any large peptide aggregates should have undergone 
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rapid relaxation after NMR excitation, therefore not contributing to the integral.  The c* 

was determined using the surfactant model as detailed in section 1.4 and is defined as 

the point at which the linear and the plateau region cross. Below, the c* was 

determined using only the data that was believed to be at equilibrium i.e. after 32 days 

(Figure 47). 
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Figure 47 - Equilibrium NMR data used to determine c* value for P11-9. Estimated concentration 
axis derived from P11-9 linear gradient of 0.01083 μM

-1
. The plateau region was taken to be a linear 

fit through the highest three concentrations, whereas the monomer/linear region was taken to be a 
linear fit through the rest of the concentrations. 

 

From Figure 47, and using the surfactant model, the c* for P11-9 was estimated as 

1160 ± 175 µM. The right hand estimated monomer concentration axis for the plot was 

calculated from the aromatic integral divided by the slope of the linear monomer region 

of the plot. As the peptide concentration increased and as the aggregates increased in 

length, they formed a network of entanglements ultimately leading to self-supporting 

gels above a concentration of 3-6 mM. 
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Estimated self-assembly curve 

 

From the above results of the P11-9 NMR data, the self-assembly curve for the 

equilibrium data was constructed (Figure 48). 
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Figure 48 - Estimated equilibrium self-assembling curve for P11-9, i.e. fraction of peptide in self-
assembled state as a function of increasing total peptide concentration. Dotted line = sigmoidal 
SGompertz fit. 

 

The self-assembly curve was constructed by subtracting the estimated monomer 

concentration (derived from the aromatic integral) from the total peptide concentration 

to give the β-sheet concentration. This was then divided by the total peptide 

concentration to produce the fraction of aggregate. From the above plots and from the 

data gathered so far it can be seen that the transition for monomer to aggregate is 

broad, this is thought to be due to either the precise magnitudes of εtape and εtrans that 

are unknown at this time, or due to the ionised state of the charged peptides being 

affected slightly by changes in pH, which in turn can slightly affect the self-assembly 

behaviour.  

 

This NMR technique has been validated against FTIR and CD data previously, showing 

that it is a good technique for the systematic study of self-assembling peptides.70,114 

From the work carried out by Carrick et al.114 it was found that in the pD range of 6 – 8, 

the c* values may not differ too greatly, as can be seen in Figure 49. 
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Figure 49 - Percentage β-sheet of P11-9 (concentration = 7 mM) as determined by FTIR (O) and NMR 
(∆) as a function of pD in 130 mM NaCl in D2O: I: nematic gel, II: flocculate, III: nematic fluid, IV: 
isotropic fluid.

114
 

  

The physiological pD region falls in the middle of this stable area and so small 

differences between sample pD may not greatly affect the construction of the true self-

assembly curve. However, from other work carried out within the Aggeli group, it has 

been found that the deprotonation of glutamic acid (γ-COOH), arginine (δ-guanidinium) 

and ornithine (δ-NH3
+) charged residues occur over wide bands of up to 5 pH units.89 

Therefore the charged peptides can have a complex range of ionisation states over a 

range of pH values. As εtape is strongly influenced by the direct electrostatic forces 

between the charged side chains, the c* for the charged peptides will be dependent on 

the ionised state of the side chains.89 The pD values as measured straight after sample 

preparation ranged from a pD value of 7.34 to 7.54. 

 

This NMR study was systematic; however, it was necessary to employ other 

complementary techniques to try to confirm the actual c* value and establish the nature 

of the conformational transition. These questions were addressed using circular 

dichroism UV and Fourier transform infra-red spectroscopies.  
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Circular Dichroism Ultra-Violet Spectroscopy, CD UV 

 

The CD UV spectra for a range of concentrations of P11-9 were obtained to confirm the 

c* value determined from the above NMR and to establish the peptide secondary 

structure (Figure 50). 
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Figure 50 - CD Spectra for P11-9 in 43mM Na2HPO4, 0.02% wt/wt NaN3, H2O, pH 7.4, with a high 
tension voltage cut off of 700 V. Concentrations calculated using UV.  Samples 7 days old.   

 

A higher concentration than 500 μM could not be examined due to a high tension (HT) 

voltage cut off being at a higher wavelength than that of interest for peptide secondary 

structure features. It can be seen that below 230 μM, the spectra corresponds to a 

predominantly random coil conformation, because there was a slightly positive band 

around 220 nm and what appeared to be a negative band forming around 195 nm.  The 

percentage concentration of random coil appeared to decrease slightly in the final two 

spectra above a peptide concentration of 320 μM, as can be seen by the decrease of 

molar ellipticity of the positive band at around 220 nm. However, this decrease was 

minimal and is thought to be due to a broad rather than sharp c* transition. It is also 

possible that this small decrease in random coil may be due to an artefact of the high 

HT voltage cut off value. It is also important to note that the samples were analysed at 

7 days old, and, from the subsequent NMR data gathered (Figure 43), this would 

suggest that it is not true equilibrium behaviour that is being observed. 
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This preliminary CD work agrees qualitatively with the NMR data (Figure 43). In 

particular, the NMR data shows that all the peptide was in a monomeric state in 

solutions of low peptide concentration and up to seven days old; the CD shows that 

under the same conditions the peptide was in a predominantly random coil, i.e. 

monomeric state.  

 

To further confirm the c* for P11-9 and to provide information on the conformational 

transition, the technique of FTIR was employed because it is complementary to CD UV 

as samples of higher concentrations can be studied. 

 

Fourier Transform Infra-Red Spectroscopy, FTIR 

 

Examination of the FTIR spectra of P11-9 provided further evidence for the NMR 

findings. Three concentrations above the believed c* from the 1HNMR study for P11-9 

were analysed and the amide I’ region of the spectra was band fitted (Figure 51 and 

Figure 52). 

 

For the two highest concentrations studied, the spectrum was dominated by β-sheet 

components located at 1613 cm-1 and 1625 cm-1; weak peaks at higher wavenumbers 

of 1682 cm-1 and 1698 cm-1 implied antiparallel arrangement of the β-sheet structure. 

There was also a broad peak centred around 1650 cm-1 coexisting with the β-sheet 

bands, suggesting a small presence of monomeric peptide even at the highest 

concentrations studied by FTIR. 
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Figure 51 - FTIR amide I’ bands for P11-9 solutions at three peptide concentrations in 130 mM NaCl, 
D2O, pD 7.4, two weeks after sample preparation. 

 

 (a) 

 

(b)

 
(c) 

 

 
 
 
 
Figure 52 - Band fitted amide I’ region of P11-9 
samples at (a) 2840 μM (b) 5372 μM, (c) 
9546 μM. Red plot = result of band fitting, 
coloured peaks = components of the fit. 
 

 

The spectrum for the lowest concentration studied, 2840 μM, was not dominated by β-

sheet components at 1613 cm-1 and 1622 cm-1, however, they were still present 

alongside the peaks at higher wavenumbers implying an antiparallel arrangement once 

more. The random coil peak centered around 1650 cm-1 was of similar size to that of 

the β-sheet components, suggesting that neither peptide in an aggregated or 

monomeric state is the majority species.  
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The fitting data (Table 8) for the highest concentration investigated here was used to 

calculate a β-sheet content of 85.4%. 

Peak Type Center X Height FWHH Other Area Assignment 

Gaussian/Lorentzian 1613.1 0.1117 16.1368 0.4577 2.405 β-sheet 

Gaussian/Lorentzian 1614.7 0.0342 10.8807 0.4927 0.4909 β-sheet 

Gaussian/Lorentzian 1625.5 0.013 9.9377 0.4984 0.17 β-sheet 

Gaussian/Lorentzian 1635.3 0.0163 9.9492 0.4977 0.2129 β-sheet 

Gaussian/Lorentzian 1649.6 0.0246 18.4526 0.5017 0.5953 α-helix 

Gaussian/Lorentzian 1671.4 0.0104 14.304 0.5052 0.1942 TFA 

Gaussian/Lorentzian 1682.8 0.015 6.4159 0.5052 0.1264 β-sheet 

Gaussian/Lorentzian 1686.4 0.0076 3.1721 0.5057 0.0316 β-sheet 

Gaussian/Lorentzian 1698.5 0.0051 4.7792 0.5057 0.0323 β-sheet 

Table 8 – Peaks found on analysing the amide I’ band of P11-9 (9546 μM) spectrum at two weeks 
old, recorded in D2O containing 130 mM NaCl 

 

Again, like the CD work, the FTIR analysis was not carried out under equilibrium 

conditions. However it still agrees with the NMR data at the same timepoint of two 

weeks, concluding that below 2840 μM there was a conformational transition from 

monomeric peptide to anti-parallel β-sheet peptide. 

 

Transmission Electron Microscopy, TEM 

 

TEM was employed to study the morphology of the self-assembled aggregates. From 

Figure 53, it can be seen that the majority of the peptide was in thin aggregates, which 

can be seen forming a gel network covering the background of the grid. These 

aggregates vary in width from 2 to 4 nm, have an approximate persistence length of 10 

to 21 nm and are at least 20 to 68 nm long. The properties of these aggregates imply 

they are most likely ribbons rather than fibrils, which would be expected to be wider 

and much more rigid than observed.110 
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Figure 53 - TEM image of 0.5 mM P11-9 in H2O with 130 mM NaCl at pH 7.4. Magnification = 52000x. 
Sample = 3 months old. Scale bar = 200 nm 

 

The ribbon network was random, however, there were parts that were less dense and 

these would be the pores in the gel. There was no well defined structure and the 

ribbons were seen to associate in a loose manner forming bundles of fibril-like 

structures, which vary in width from 78 to 102 nm. The individual fibril-like structures 

varied in width from 7 to 12 nm with lateral striations with widths of 2 to 4 nm, meaning 

that the fibril-like structures are formed from around 2 to 6 loosely packed ribbons. 

 

Due to the high energy given off from the technique, often only the higher hierarchical 

structures such as the fibrils survived, and other structures like the ribbon were 

fragmented. 

 

Here it was found that the presence of the serine residues in the peptides favours the 

formation of ribbons rather than fibrils in physiological-like conditions. This may be due 

to the low magnitude of εfibril for peptides that contain serines. This is in agreement with 

previous work carried out by the Aggeli group114, where it was established that peptides 

that contain serines favour ribbon formation rather than fibrils in pure water conditions. 

 

Interestingly, aggregates were seen in the TEM images at a concentration below that of 

the c* value determined by NMR. This may be due to a high level of monomer present 

resulting in aggregate formation during the drying process. The fact that they do not 

resemble well formed fibrils therefore suggests they are rapidly formed fibrils instead. 

Fibrillar bundle 

Background network of ribbons 
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This study was only preliminary, therefore in order to truly gain an understanding of the 

aggregates formed in solution, more concentrations need to be investigated alongside 

different dilutions. Another hypothesis is that the fibrils may be present at a lower 

concentration than expected from the previous data due to the c* being a broad rather 

than abrupt transition.  

 

To further study the effect of the basic scientific principle of charge on self-assembly, 

the same experimental method for the study of P11-9 was carried out on the positively 

charged peptide P11-12. 

 

3.1.3.2  P11-12 

 

1H Nuclear Magnetic Resonance Spectroscopy, NMR 

 

As with the P11-9 NMR study, the intention was to study the equilibrium self-assembly 

behaviour of this peptide because this had not previously been studied under these 

solution conditions and it would also enable fitting to the theoretical data. To try to 

examine this behaviour, the various different concentrations were prepared one by one 

and observed as a function of time. To establish if the linear region was visible using 

this technique, the solution peptide concentration vs. solution monomer concentration 

was plotted in Figure 54. 
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Figure 54 -
1
H NMR aromatic region integral of 

P11-12 relative to integral of 0.125 mM TMSP 
reference peak as a function of increasing 
total peptide concentration and time from 
sample preparation.  

Figure 55 - Time variation of aromatic integral 
and of peptide concentration in monomeric 
state in P11-12 solutions at two 
concentrations. Guidelines are first order 
decay fits created in OriginPro 8.6. 
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Figure 56 - Chemical shifts of aromatic peaks 
in P11-12 

1
H NMR spectra as a function of 

increasing total peptide concentration. 

Figure 57 - Line widths of aromatic peaks in 
P11-12 

1
H NMR spectra as a function of 

increasing total peptide concentration. 

 

From Figure 54, it can be seen that the time to reach equilibrium conditions was within 

two months, with the main changes occurring in the first month. This is very slow, 

which is consistent with that of the charged peptide P11-9. Solutions below c* were 

again seen to reach equilibrium rapidly, as the monomeric random coil solutions of P11-

9, whilst solutions above c* achieved equilibrium over the course of two months (Figure 

55). It was important to be aware of such behaviour of self-assembling peptide 

materials for two reasons; firstly in order to obtain equilibrium data, one needs to wait a 

sufficient amount of time; secondly the use of gels in various applications requires 

consistency and reproducibility of their behaviour in vitro and in vivo; this may not 

always be possible unless materials in an equilibrium state are used.   

 

The chemical shifts and line widths of the P11-12 NMR lines, plotted in Figure 56 and 

Figure 57, did not appear to undergo any change as peptide concentration increased. 

This implies that the molecular states that give rise to the NMR signals plotted in Figure 

54 are the same i.e. monomeric random coils, irrespective of the total peptide 

concentration. 
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Determination of c* using the surfactant model 

 

Again, as with P11-9, the surfactant model was employed to determine the c* value for 

P11-12 (Figure 58). Only the equilibrium data above 27 days was used.  
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Figure 58 - Equilibrium NMR data used to 
determine c* value for P11-12. The estimated 
monomer concentration scale was derived 
from the gradient of the linear region fit of 
0.01479 μM

-1
. The plateau region was taken to 

be a linear fit through the last four 
concentrations, whereas the monomer/linear 
region was taken to be a linear fit through the 
rest of the concentrations.  
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Figure 59 - Estimated equilibrium self-
assembling curve for P11-12, i.e. fraction of 
peptide in self-assembled state as a function 
of increasing total peptide concentration. 
Dotted line = sigmodal SGompertz fit created 
in OriginPro 8.6. 
 

 

From Figure 58, and using the surfactant model, the c* for P11-12 was estimated as 

5600 ± 1750 µM. The right hand estimated monomer concentration axis for the plot 

was calculated from the aromatic integral divided by the slope of the linear monomer 

region of the plot. 

 

From the results of the P11-12 NMR data, the linear regime and plateau regime cross at 

5600 ± 1750 µM and so the assumption could be made that peptide at a concentration 

less than this was 100% monomeric. Typically c* for self-assembly is a lot lower than c* 

for gelation. However, P11-12 exhibits unusual behaviour, in that the c* for self-

assembly seems to coincide with c* for gelation. This is possibly because the c* for 

self-assembly is so high that as soon as aggregation starts, the solution immediately 

reaches the semi-dilute regime and the start of gelation is observed; this concentration 

is 2300 ± 750 μM. From this information, and following the same method used for P11-

9, the self-assembly curve was constructed (Figure 59). 
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From Figure 59, it can be seen that the self-assembly curve is broad as is the case with 

P11-9, this is thought to be due to either the precise magnitudes of εtape and εtrans that are 

unknown at this time, or due to the ionised state of the charged peptides being affected 

slightly by changes in pH, which in turn can slightly affect the self-assembly behaviour. 

 

From work previously carried out on this peptide under physiological like conditions by 

Carrick et al.,114 it was observed that there is an extremely abrupt transition region 

between pD 6-8, as can be seen in Figure 60.  

 
Figure 60 - Percentage β-sheet of P11-12 (concentration = 7.1 mM) as determined by FTIR (O) and 

NMR (∆) as a function of pD in 130 mM NaCl in D2O: I: isotropic fluid,II: weakly nematic viscous 
fluid, III: weakly nematic gel.

114
 

 

This would mean that a slight change of pD for the samples in the physiological range 

would results in very different c* values. The pD values for this study were measured 

straight after sample preparation and the samples range from a pD value of 7.34 to 

7.54. This would result in samples belonging to different self-assembly curves because 

they have different c* values dependent on the pD of the solution. For this reason, it is 

not appropriate to carry out an accurate study of the self-assembly curve because it is 

not justifiable to fine tune the pD of each sample to within two decimal places. This may 

also explain the broadness of the observed curve. 

 

As with P11-9, additional techniques to NMR were used to assist with the understanding 

of the self-assembly process of P11-12. CD UV and FTIR were used to reinforce where 

the c* is and to determine the conformational transition. 
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Circular Dichroism Ultra-Violet spectroscopy, CD UV 

 

The CD UV spectra for a range of concentrations were obtained to confirm the c* value 

determined using 1 H NMR (Figure 61).  
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Figure 61  - CD Spectra for P11-12 in 43 mM Na2HPO4, 0.02% wt/wt NaN3, H2O, pH 7.4, with a High 
Tension Voltage cut off of 700 V. Concentrations calculated using UV.  Samples 7 days old.  
Sample pH as measured straight after preparation: 110 μM = 7.43, 200 μM =7.44, 330 μM = 7.44 

 

As with P11-9, a higher concentration than 500 μM could not be examined due to a HT 

voltage cut off being at a higher wavelength than that of interest for peptide secondary 

structure features. It can be seen that for all the solution concentrations studied the 

spectra corresponds to a predominantly random coil conformation, because there was 

a slightly positive band around 220 nm and the start of a negative peak that was 

centred at much lower wavelengths.  Based on these data, the apparent c* is above 

330 μM. The red and blue spectra were a little distorted due to the HT voltage; 

however, there were enough data to observe a random coil conformation. The samples 

were analysed at 7 days old, and the subsequent NMR data gathered (Figure 54) 

would suggest that it was not equilibrium behaviour that was being observed. 

 

This preliminary CD work agrees qualitatively with the NMR data (Figure 54). In 

particular, the NMR data shows that all the peptide was in a monomeric state in 

solutions of low peptide concentration and up to 7 days old; the CD shows that under 
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the same conditions the peptide was in a predominantly random coil, i.e. monomeric 

state.  

 

Fourier Transform Infra-Red Spectroscopy, FTIR 

 

The FTIR spectra for a range of concentrations are shown in Figure 62 and their band 

fitting in Figure 63. 

 

At the lowest concentration of around 3000 μM, the percentage of β-sheet infra-red 

bands centered around 1615 and 1636 cm-1 was minimal and the spectrum was 

dominated by a broad band at 1650 cm-1, suggesting a majority monomeric state. 

However, at higher peptide concentrations of nearly 5700 μM and over, the peaks 

characteristic of an anti-parallel β-sheet peptide became increasingly the most 

prominent feature of the spectra, with the main peak centred around 1614 cm-1 and 

smaller peaks at ca. 1625 cm-1 and 1635 cm-1. Weak peaks observed at higher 

wavenumbers of 1684 and 1698 cm-1 imply antiparallel arrangement of the β-sheet 

structure. In all spectra, a large broad peak centred around 1650 cm-1 coexisted with 

the β-sheet bands. This suggests the presence of significant amount of peptide in non-

β-sheet state even at the highest concentration studied by FTIR. A prominent peak 

centred at 1672 cm-1 present in all spectra is again attributed to residual TFA. 
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Figure 62 - FTIR amide I’ bands for P11-12 solutions with a range of peptide concentrations in 130 
mM NaCl, D2O, pD 7.4, two weeks after sample preparation. 
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Figure 63 - Band fitted amide I’ region of P11-12 samples at (a) 2969 μM, (b) 5691 μM, (c) 8231 μM, 
and (d) 10654 μM. 

 

A table of the typical peaks present in the spectra for P11-12 is shown in Table 9. 

Peak Type Center X Height FWHH Other Area Assignment 

Gaussian/Lorentzian 1615.2 0.1067 16.4752 1 1.8719 β-sheet 

Gaussian/Lorentzian 1626.1 0.019 8.3789 0.5516 0.2051 β-sheet 

Gaussian/Lorentzian 1634.5 0.0351 12.9454 0.5346 0.5889 β-sheet 

Gaussian/Lorentzian 1650.4 0.0494 22.6382 0.5852 1.4204 α-helix 

Gaussian/Lorentzian 1672.6 0.0853 16.3756 0.5922 1.7722 TFA 

Gaussian/Lorentzian 1684.2 0.0237 9.2004 0.5225 0.2848 β-sheet 

Gaussian/Lorentzian 1697.3 0.0047 4.159 0.5074 0.0255 β-sheet 

Table 9 - Peaks found on analysing the amide I’ band of P11-12 (10654 μM) spectrum at 2 weeks old, 
recorded in D2O containing 130 mM NaCl. 

 

The peak area and assignments from the fitting data were used to calculate the % β-

sheet content within the samples studied here (Table 10). 

Sample concentration (μM) % β-sheet (±10%) 

2969 46 

5691 74 

8231 71 

10654 68 

Table 10 – P11-12 % β-sheet content as determined by FTIR 
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Again, like the CD work, the FTIR analysis was not carried out under equilibrium 

conditions. From the NMR data alone, a c* value of 5600 ± 1750 μM was estimated, 

however, a lower c* value of 2300 ± 750 μM was determined when visually observing 

gelation. The FTIR data confirmed that there is a broad conformational transition from 

monomeric peptide to anti-parallel β-sheet peptide below a concentration of 3000 μM.  

 

Transmission Electron Microscopy, TEM 

 

TEM was once again used to study the morphology of the peptide aggregates. From 

Figure 64 and Figure 65, it can be seen that P11-12 tends to form loose bundles with a 

width of 10 to 20 nm. The individual thin subunits had a width of approximately 2 nm. In 

Figure 64 the amorphous aggregates feeding the fibrillar bundle formation can be 

observed, as well as the background network of ribbons. 

 

These TEM images were taken four days after samples were prepared (Figure 64 and 

Figure 65). To see if the morphology of the peptide is the same for equilibrium 

conditions, samples were studied after 7.5 months (Figure 66, Figure 67 and Figure 

68).  

 
 

 

Figure 64 - TEM image of P11-12 at 14 mM 
(20 mg/ml) in phosphate buffered saline 
solution, 73000x magnification, diluted to 
approximately 3.6 mM (5 mg/ml), sample 4 
days old, scale bar = 100 nm. 
 

Figure 65 - TEM image of P11-12 at 14 mM 
(20 mg/ml) in phosphate buffered saline 
solution, 73000x magnification, observed 
undiluted, sample 4 days old, scale bar = 
100 nm 

amorphous aggregates 

Fibrillar bundle 

Background network of ribbons 
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Figure 66 - TEM image of  P11-12 at 14 mM 
(20 mg/ml) in phosphate buffered saline 
solution, 39000x magnification, diluted to 
approximately 20 μM, sample 7.5 months old, 
scale bar = 400 nm. 
 

Figure 67 – TEM image of  P11-12 at 14 mM 
(20 mg/ml) in phosphate buffered saline 
solution, 73000x,  magnification, diluted to 
approximately 20 μM, sample 7.5 months old, 
scale bar = 200 nm. 

  

 
Figure 68 - TEM image of P11-12 at 14 mM (20 mg/ml) in phosphate buffered saline solution, 
73000x magnification, diluted to approximately 5 mM (7 mg/ml), sample 7.5 months old, scale 
bar = 200 nm.  

 

As can be seen in Figure 66 and Figure 67 once again the majority of the peptide was 

in thin aggregates forming a background network of ribbons 2-4 nm wide. There was 

also a presence of highly twisted fibrils varying in width between 15 and 40 nm with a 

twist pitch from 100 – 250 nm. 

 

Interestingly, there also appeared to be another self-assembled structure present in 

this sample, which can be described as a nanotube and is visible in Figure 68.  It is 

believed that nanotube formation occurs via edge to edge interactions of β-sheet 

ribbons to form helical structures, whose width is a multiple of the width of an individual 

ribbon. The external width of the nanotubes was between 19 and 30 nm. 

nanotube 

twisted fibrils 

background network of ribbons 



 

 

 

102 
Self-assembly and morphology of peptide nanostructures and mechanical 

properties of their hydrogels 

Previously in the Aggeli group, it has only been possible to form nanotubes in the 

presence of hexafluoroisopropanol (HFIP), which is a very strong polar solvent. HFIP 

enhances the edge to edge interactions of ribbons by interacting with the faces of the 

ribbons and preventing them from stacking on top of one another to form fibrillar 

structures.197  

 

To complete the study of the effect of charge on self-assembly, the same experimental 

method for the study of P11-9 and P11-12 was carried out on the net neutrally charged 

peptide P11-7. 

 

3.1.3.3 P11-7 

 

The charged peptides P11-9 and P11-12 were soluble in physiological like conditions, so 

they underwent a transition from clear solutions to clear gels with an increase in 

concentration. In contrast, the net neutrally charged peptide P11-7 did not form soluble 

self-assembled structures in the same conditions and so as the concentration 

increased the amount of insoluble white precipitate increased with it. However, to 

enable a full understanding of the basic scientific principle of charge it was necessary 

to compare it with the positively and negatively charged peptides above.  

 

1H Nuclear Magnetic Resonance Spectroscopy, NMR 

 

A 1H NMR method has already been established in this project and so the same was 

applied here. To examine the self-assembly behaviour, various different concentrations 

were prepared one by one and observed as a function of time (Figure 69). 

 

This study revealed that the neutrally charged peptide has faster kinetics than the two 

charged peptides. From Figure 69 and Figure 70, it can be seen that the peptide has 

reached apparent equilibrium behaviour between one and two weeks, with not much 

movement between the time-point curves.  
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The chemical shifts and line widths of the P11-7 NMR lines plotted in Figure 69 do not 

appear to undergo any significant change as peptide concentration increases (Figure 

71 and Figure 72). This implies that the molecular states that give rise to the NMR 

signals plotted in Figure 69 are the same, i.e. monomeric random coils, irrespective of 

the total peptide concentration. 
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Figure 69 - 
1
H NMR aromatic region integral of 

P11-7 relative to integral of 0.125 mM TMSP 
reference peak as a function of increasing 
total peptide concentration and time from 
sample preparation. 

Figure 70 - Time variation of aromatic integral 
and of peptide concentration in monomeric 
state in P11-7 solutions at four concentrations. 
Guidelines are first order decay fits created in 
OriginPro 8.6. 

0 500 1000 1500 2000 2500 3000
7.0

7.2

7.4

7.6

7.8  Line 1 (~7.62ppm) Peak  Line 1 (~7.62ppm)centre

 Line 2 (~7.27ppm) peak  Line 2 (~7.27ppm) centre

C
h

e
m

ic
a

l 
s
h

if
t 

(p
p

m
)

P
11

-7 concentration (M)
  

0 500 1000 1500 2000 2500 3000
0.00

0.05

0.10

0.15

0.20

0.25

0.30

F
W

H
M

 (H
z
)

 Line 1 (~7.62ppm)  Line 2 (~7.27ppm)

F
W

H
M

 (
p

p
m

)

P
11

-7 concentration (M)

0

10

20

30

40

50

60

70

80

90

 

Figure 71 - Chemical shifts of aromatic peaks 
in P11-7 

1
H NMR spectra as a function of 

increasing total peptide concentration. 

Figure 72 - Line widths of aromatic peaks in 
P11-7 

1
H NMR spectra as a function of 

increasing total peptide concentration. 

 

From Figure 73, and using the surfactant model, the c* for P11-7 was estimated as 110 

± 20 µM. The right hand estimated monomer concentration axis for the plot was 

calculated from the aromatic integral divided by the slope of the linear monomer region 

of the plot. 
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From the above data, the self-assembly curve, Figure 74, showing the fraction of 

solution peptide in an aggregated state as a function of increasing peptide 

concentration in solution, was constructed.  
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Figure 73 - Equilibrium NMR data used to 
determine c* value for P11-7. The estimated 
monomer concentration scale is derived from 
the gradient of the linear region fit of 0.00749 
μM

-1
. The plateau region was taken to be a 

linear fit through the last five concentrations, 
whereas the monomer/linear region was taken 
to be a linear fit through the rest of the 
concentrations.  
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Figure 74 - Estimated equilibrium self-
assembling curve of P11-7, i.e. fraction of 
peptide in self-assembled state as a function 
of increasing total peptide concentration. 
Dotted line = OrginPro 8.6 sigmoidal 
SGompertz fitting. 

 

Due to this peptide not forming soluble aggregates, it was deemed not suitable for a 

CD UV study due to light scattering effects resulting in possible nonsensical spectra.  

 

Transmission Electron Microscopy, TEM 

 

Previously, it has been found that the peptide P11-7 has a low εfibril in pure water and so 

has a tendency to favour the formation of ribbons rather than fibrils.173 It has been 

found here that this is the same for physiological like conditions, as is demonstrated in 

Figure 75. The majority of the peptide was in ribbons, which were seen forming a 

network covering the background of the grid; these structures varied in width from 2 to 

5 nm. There was no well defined structure and the ribbons associated in a loose 

manner forming fibril-like bundles, which varied in width from 10 to 23 nm, meaning 

that they are formed from around 3 to 6 loosely packed ribbons with a width of 2 to 5 

nm. These loosely packed fibrils bundles are the start of phase separation/formation of 

precipitate, which is what leads this peptide to be insoluble. 
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Figure 75 - TEM image of 3 mM P11-7 in H2O with 130 mM NaCl at pH 7.4. Samples 25 days old. 
Magnification = 39000x. Scale bar = 200 nm 

 

There was also further evidence that is indicative of a peptide that preferentially forms 

ribbons, and this was the presence of ring structures with a diameter of 4 to 8 nm. A 

ring is formed when a ribbon is long enough to curl around and “bite its own tail” but not 

so long that the entropic penalty would be too great. Fibrils are too rigid to form rings 

and the lower hierarchical structures are not long enough. 

 

Now that an insight had been gained in the basic scientific principles of the self-

assembly of these peptide building blocks in physiological-like solutions, it was possible 

to optimise the peptide system further for biomedical applications, in particular for use 

in the treatment of disc degeneration. 

 

 P11-13 and P11-14 are glutamine-based peptides (Table 11) and have been designed 

to have complementary electric charges such that when mixed, fibril self-assembly and 

subsequent gel formation occurs spontaneously. P11-13 has an overall charge of -6 and 

P11-14 has an overall charge of +4 and so once mixed they have a net charge of -2. As 

these peptides prior to mixing do not favour self-assembly, they could potentially be 

used as an injectable biomaterial. Also, as they benefit from very large enthalpic gains 

from the electrostatic interactions, they have a low c* and therefore a low concentration 

of peptide in the monomeric state, which should benefit biocompatibility as well as help 

them to remain at a treatment site. 

fibrillar bundle 

Background network of ribbons 



 

 

 

106 
Self-assembly and morphology of peptide nanostructures and mechanical 

properties of their hydrogels 

Table 11 - Peptide structures of P11-13/14 and P11-28/29.  

 

3.1.3.4 P11-13 and P11-14 

 

1H Nuclear Magnetic Resonance Spectroscopy, NMR 

 

The NMR method already established in this project was also applied to these 

peptides. To examine the self-assembly behaviour, the various different concentrations 

were prepared one by one and observed as a function of time. 
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Figure 76 - 
1
H NMR aromatic region integral of 

P11-13+14 relative to integral of 0.125 mM 
TMSP reference peak as a function of 
increasing total peptide concentration and 
time from sample preparation. 

Figure 77 - Time variation of aromatic integral 
and of peptide concentration in monomeric 
state in P11-13+14 solutions. Guidelines are 
first order decay fits created in OriginPro 8. 

  

Peptide 
Name 

Net Charge 
at pH 7.5 

Polar Amino 
Acid 

Peptide Primary Structure 

P11-
13/14 

-2 Glutamine 
CH3CO-E-Q-E-F-E-W-E-F-E-Q-E-NH2 

CH3CO-Q-Q-O-F-O-W-O-F-O-Q-Q-NH2 

P11-
28/29 

+2 Glutamine 
CH3CO-O-Q-O-F-O-W-O-F-O-Q-O-NH2 
CH3CO-Q-Q-E-F-E-W-E-F-E-Q-Q-NH2 
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Figure 78 - Line widths of aromatic peaks in 
P11-13+14 

1
H NMR spectra as a function of 

increasing total peptide concentration. 

Figure 79 - Chemical shifts of aromatic peaks 
in P11-13+14 

1
H NMR spectra as a function of 

increasing total peptide concentration. 

 

From the data gathered (Figure 76), it was not possible to see a linear region, which 

would suggest that all the concentrations studied were above c*. Equilibrium conditions 

were reached much faster for these complementary peptides than for the single 

peptides previously studied (Figure 77). This is thought to be due to the strong 

electrostatic interactions between the two peptides driving self-assembly. 

 

The line widths of the aromatic region and chemical shifts of the peaks in this region 

were also measured to check whether they undergo any change as peptide 

concentration increases (Figure 78 and Figure 79). There was no change in chemical 

shifts, however, at a concentration of around 700 μM and greater, the line width 

increased, which is thought to be due to the onset of gelation. 

 

Determination of c*  

 

Due to there being no visible linear monomer region visible in the NMR plot (Figure 76), 

the surfactant model could not be employed here to determine the c* of P11-13/14. 

However, the plateau region visible in the plot could be thought of as the background 

monomer concentration. To estimate the monomer concentration, the integral was 

divided by the slope of the monomer linear line for P11-4 (0.0218 μM-1)189 because this 

had the same hydrophobicity and overall charge as P11-13/14, so is believed to be the 

closest representation. The c* for this complementary peptide was estimated as the 
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point at which the plateau region for P11-13/14 crosses the monomer line for P11-4. 

Therefore, from this information, c* for P11-13/14 was  estimated as 28 ± 7 μM. 
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Figure 80 - Equilibrium NMR data used to 
determine c* value for P11-13/14. 
 

Figure 81 - Estimated equilibrium self-
assembling curve for P11-13/14, i.e. fraction of 
peptide in self-assembled state as a function 
of increasing total peptide concentration. 
Dotted line = OriginPro 8.6 sigmodal 
SGompertz fitting. 

 

From the above data, the self-assembly curve (Figure 81), showing the fraction of 

solution peptide in an aggregated state as a function of increasing peptide 

concentration in solution, was constructed, following the same method as used for the 

previous peptides.  

 

To establish the effect of charge for the complimentary peptides, another 

complimentary pairing was investigated using P11-28 and P11-29 peptide analogues to 

P11-13 and P11-14. P11-28 has an overall charge of +6 and P11-29 has an overall charge 

of -4 and so once mixed they have a net charge of +2. Again, because these peptides 

do not favour self-assembly prior to mixing, they can potentially be used as an 

injectable biomaterial.  
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3.1.3.5 P11-28 and P11-29 

 

1H Nuclear Magnetic Resonance Spectroscopy, NMR 

 

The NMR method already established in this project was also applied to these 

peptides. To examine the self-assembly behaviour, the various different concentrations 

were prepared one by one and observed as a function of time. 
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Figure 82 - 
1
H NMR aromatic region integral of 

P11-28+29 relative to integral of 0.125 mM 
TMSP reference peak as a function of 
increasing total peptide concentration and 
time from sample preparation. 

Figure 83 - Time variation of aromatic integral 
and of peptide concentration in monomeric 
state in P11-28+29 solutions. Guidelines are 
first order decay fits created in OriginPro 8.6. 
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Figure 84 - Chemical shifts of aromatic peaks 
in P11-28+29 

1
H NMR spectra as a function of 

increasing total peptide concentration. 

Figure 85 - Line widths of aromatic peaks in 
P11-28+29 

1
H NMR spectra as a function of 

increasing total peptide concentration. 

 

As with P11-13+14, from the data gathered (Figure 82) it was not possible to see a 

linear region, which would suggest that all the concentrations studied were above c*. 

Equilibrium conditions were reached much faster for these complementary peptides 

than for the single peptides previously studied (Figure 83). This is thought to be due to 

the strong electrostatic interactions between the two peptides driving self-assembly. 



 

 

 

110 
Self-assembly and morphology of peptide nanostructures and mechanical 

properties of their hydrogels 

The line widths of the aromatic region and chemical shifts of the peaks in this region 

were also measured to check whether they undergo any change as peptide 

concentration increases (Figure 84 and Figure 85). There was no change in chemical 

shifts. However, for the aromatic peak at 7.27 ppm, there was an increase in line width 

with concentration, which is thought to be due to local or global gelation in the sample. 

 

Determination of c* 

 

Due to there being no visible linear monomer region visible in the NMR plot (Figure 82), 

the surfactant model could not be employed here to determine the c* of  P11-28/29. The 

plateau region visible in the plot could be thought of as the background monomer 

concentration. To estimate the monomer concentration, the integral was divided by the 

slope of the monomer linear line for P11-8 (0.0200 μM-1)189 because this has the same 

hydrophobicity and overall charge as P11-28/29, so was believed to be the closest 

representation. The c* for this complementary peptide was estimated as the point at 

which the plateau region for P11-28/29 crosses the monomer line for P11-8. (Figure 86) 

From this information, the c* value for P11-28/29 was estimated as 29 ± 11 μM. 
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Figure 86 – Equilibrium 

1
HNMR data used to 

determine c* value for P11-28/29. The 
estimated monomer concentration scale is 
derived from the gradient of the linear region 
fit of P11-8, 0.0200 μM

-1
. The plateau region is 

taken to be a linear fit through the all the 
concentrations whereas the monomer/linear 
fit is taken to be a theoretical linear fit of the 
P11-8 monomer line. 
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Figure 87 - Estimated equilibrium self-
assembling curve for P11-28/29, i.e. fraction of 
peptide in self-assembled state as a function 
of increasing total peptide concentration. 
Dotted line = sigmodal SGompertz fit created 
in OriginPro 8.6. 

 

From the above data the self-assembly curve, Figure 87 showing the fraction of 

solution peptide in an aggregated state as a function of increasing peptide 

concentration in solution, was constructed.  
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3.1.4 Discussion 

 

3.1.4.1 The effect of net peptide charge on self-assembly  

 

It has been found previously within the Aggeli group that overall peptide charge can 

play an important role in peptide self-assembly, with even a single increment of peptide 

charge magnitude resulting in large increases in the amount of free monomer present 

in equilibrium with aggregates, and the concentration at which aggregation occurs.189 It 

was also observed that the polarity of the charge had no effect; this hypothesis was 

tested again in this work by comparing the negatively charged P11-9 with the positively 

charged P11-12 and with the neutrally charged P11-7 peptide.  

 

The c* for P11-7 is lower than the c* values for the two charged peptides as is 

demonstrated in Figure 88, with the background monomer concentration being largest 

for P11-12. 
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Figure 88 - Concentration of peptide in the monomeric state vs. solution peptide concentration, 
after a month for P11-7, after 3 months for P11-9 and after around 10 months for P11-12.  The 
estimated monomer concentration scale is derived from the gradient of the linear region fit of 
0.01479 μM

-1 
for P11-12. 

 

The magnitude of c* is governed by the thermodynamic parameters involved, tape 

energy (εβ) and transformation energy (εtrans) (Equation 8): 
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Equation 8 - Critical concentration 

 

Where c* is the critical number density concentration of the peptide in number of 

molecules/m3, νβ is the effective volume of bonds between neighbouring peptides, εtrans 

is the transformation energy (entropy lost) and εβ is the tape scission energy (enthalpy 

gained). 

 

The tape energy for all three peptides should be similar because it is dependent on the 

length of the chain, and number and quality of non-covalent interactions, which is the 

same for P11-7, 9 and 12 with them only differing in charge. Therefore the difference in 

c* for these three peptides is due to the transformation energy, which is entropic in 

nature and is dependent on the straightening out of the highly flexible peptide chain 

and the immobilisation of counter ions and salts. In order for the charged peptides P11-

9 and P11-12 to form a fibril they need to be neutralised to overcome the electrostatic 

repulsions from the peptides inside the fibril being closer than their debye length. 

However, this neutralisation comes at an entropic cost because these counter-ions are 

also bound inside the fibrils therefore becoming more ordered. The difference in the c* 

of the three serine-based peptides is demonstrated by comparing their self-assembly 

curves (Figure 89). 
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Figure 89 - Estimated self -assembly curves 
for P11-7, P11-9 and P11-12. Lines =  OriginPro 
8.6 sigmodal SGompertz fitting. 

Figure 90 - Estimated self -assembly curves 
for P11-2, P11-4 and P11-8. Lines =  sigmodal 
SGompertz fits created in OriginPro 8.6. (Data 
from S. Maude).
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This same trend of the neutrally charged peptide having the lowest c* followed by the 

negatively charged peptide then the positively charged peptide having the highest c* is 

also true for the glutamine analogues P11-2, P11-4 and P11-8 (Figure 90). However, the 

effect is not as dramatic as the glutamine polar zipper effect dominates over the charge 

effect.  

 

It is hypothesised that the differences in the peptides’ isoelectric point may explain the 

difference between the positively charged P11-12 and negatively charged P11-9. The 

positively charged peptide may in physiological-like conditions have a net overall 

charge of 2, whereas the negatively charged peptide may only have a net overall 

charge of 1.5, therefore resulting in fewer counter-ions being immobilised inside the 

fibril for the negatively charged peptide, leading to a lower entropic penalty.  

 

The increase in c* for the positively charged P11-12 may also be due to the  positively 

charged ornithine residues having longer side chains than the negative glutamate 

residues (replacing the ornithines) in the P11-9 peptide. The longer side chain of 

ornithine will create a greater steric hindrance to two peptides self-assembling as well 

as there being a greater entropic energy loss upon self-assembly. 

 

Fitting of the experimental data for P11-2, P11-4 and P11-8 has been carried out by 

Steven Maude, using the model described by Nyrkova et al.198 set up as a Mathcad 

program (Figure 91). The parameters entered into Mathcad were: the volume of 

hydrogen bonds, the number of tapes in a fibril and c*, the critical aggregation 

concentration. (Steven Maude and Irina Nyrkova personal communications, 

unpublished data) 
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Figure 91 – Plot of P11-2, P11-4 and P11-8 Mathcad fits. (Steven Maude personal communications, 
unpublished data) 

 

As a starting point, the parameters derived for P11-2 in pure water were used,110 namely 

εtrans = 3 ± 1 kBT and εribbon = 0.6 ± 0.3 kBT.  

 

εribbon was estimated to be similar for all of these peptides (and similar to the value used 

for P11-2 in water) because it originates from the hydrophobic pairing of tapes. The 

residues on the hydrophobic face are identical (QFWFQ) for all of the peptides studied 

and so these interactions should be comparable.  

 

The fitting of the experimental data yields a tape scission energy, β (kBT), and 

predicted equilibrium lengths. The tape scission energy is calculated for the inputted 

energetic parameters using Equation 9, which is derived from Equation 8:  

                            

Equation 9 

 

Where εtrans is the free energy change of a monomer from random coil to rod, εβ is the 

enthalpic tape energy or the energy required to break a tape apart and εribbon is the 
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energy required to break a ribbon apart and  β is the effective volume of hydrogen 

bonds. 

 

From this information, the free energy change, G can be calculated for a peptide 

monomer when a monomer becomes incorporated inside a fibril using Equation 10: 

                     

Equation 10 

 

The fibril scission energy, εfibril, is the energy required to break a fibril and this can be 

calculated by Equation 11:  

            

Equation 11 

 

Where p is the number of tapes per fibril. 

 

The average equilibrium lengths are determined from the fits and given in units of 

number of peptides, therefore to find the total length this is multiplied by the width of 

one peptide, 0.47 nm.  

 

The energies and average lengths for peptides P11-2, P11-4 and P11-8 produced from 

the fitting carried out by Steven Maude are listed in Table 12. 
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Peptide (charge at pH 7) P11-4 (-2) P11-2 (0) P11-8 (+2) 

p (number of tapes per fibril) 8 6 8 

tr (kBT) 3.10 3.05 2.95 

ribbon(kBT) 0.65 0.60 0.60 

β (kBT) 23.36 25.74 21.52 

ΔG of peptide monomer to 

peptide in (middle of) fibril 
-51.6 kJ mol

-1
 -58.0 kJ mol

-1
 -50.3 kJ mol

-1
 

Scission energy for fibril 

(tape scission energy * p) 
461.3 kJ mol

-1
 382.9 kJ mol

-1
 449.4 kJ mol

-1
 

Average length at 18 mM 

(approx. 30 mg ml
-1

) 
2.35 * 10

7
 km 2.35 * 10

5
 km 1.41 * 10

6
 km 

Table 12 – Peptide fitting parameters and energies and lengths derived from the fits. (1 kBT = 2.479 
kJ.mol

-1
) (Unpublished data, Steven Maude, University of Leeds, 2012). 

 

The predicted fibril lengths are extraordinarily long. At approximately 30 mg ml-1, for 

peptides with net charges of 0 to 2, these are estimated to be hundreds of thousands, 

or even millions, of kilometers long (c.f. Earth’s circumference of 40000 km). However, 

these lengths are the equilibrium lengths, therefore these values would be approached 

as the number of fibril seeds tends to one. Considering restricted volumes and fibril 

breakage this means that many seeds, rather than a single one exist, reducing the 

ultimate length achieved. Fibril lengths therefore are dependent both on how fibrils are 

prepared (number of seeds) and handled (sonication, vortexing break up existing 

fibrils). There is also a large entropic barrier to having one fibril. 

 

The tape energy εβ is the free energy change accompanying the association of two 

monomeric β-strands to form a β-sheet (and is similar to the scission energy of the 

tape) and although mainly enthalpic in nature the differences in the values for each of 

the peptides can be attributed to the loss of entropy from not only the binding of the β-

strand peptide monomers in the fibril structures but also the binding of the counter ions, 

which is required for the fibrils to be internally neutral and to allow the peptides to 

overcome their Debye distances. The counter-ions are closely bound and ordered in 
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fibrils, relative to their solution state surrounding peptide monomers. As the differences 

in εβ for the different charged peptides are far more than for εtr, it can be concluded that 

εβ has the largest impact on the total free energy change of monomers.  

 

The tape scission energy for these peptides is roughly 2.5 times greater than the 

strength of hydrogen bond in water  (23 kJ.mol-1),199 whereas the fibril scission energy 

is around 19 times greater. 

 

Fibrils are, for the most part, internally electroneutral, since any excess charges are 

balanced by counter-ions present in the salt solution and the charge effect largely 

manifests in εβ, so the effect of charge in destabilising fibrils, i.e. εfibril, is minimal. 

 

From the energetics calculated here it is even more evident that charge has an effect 

on the self-assembly of the peptides. The neutral P11-2 peptide has a higher β and 

therefore more favourable free energy change for fibril formation than those of the 

charged peptides P11-4 and P11-8. For P11-2, only two peptide monomers are needed to 

form a dimer, whereas for P11-4 or P11-8 to form a dimer, not only are the two peptide 

monomers required, but four counter-ions to neutralise the charge. In this case, this 

process has a higher overall order of reaction than for P11-2 and may explain the effect 

of charge on the kinetics of self-assembly. 

 

3.1.4.2 The effect of polar amino acid residues on self-assembly 

 

The effect of polar amino acids on self-assembly in physiological like conditions is one 

of the design principles that was set out to be established by this work. The greater the 

electronegativity difference between atoms in a bond, the more polar the bond. Side 

chains, which have functional groups such as acids, amides, alcohols, and amines will 

impart a more polar character to the amino acid. To gain an insight into the role of polar 

side chains as another design principle for peptide self-assembly and gelation in a 

physiological environment the self-assembly curves of the three serine-based peptides 

P11-7, P11-9 and P11-12 were compared with the three charged analogous glutamine-

based peptides P11-2, P11-4 and P11-8 (work carried out by S Maude) (Table 13).117  
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Peptide 
Polar 

residue 
Charge c*sa (μM) c*gel (μM) 

P11-2 Q 0 14 ± 3.2 - 

P11-7 S 0 110 ± 20 - 

P11-4 Q -2 310 ± 72 2000 ± 600 

P11-9 S -2 1160 ± 175 4500 ± 1500 

P11-8 Q +2 400 ± 100 2000 ± 600 

P11-12 S +2 5600 ± 1750 2300 ± 750  

Table 13 - Peptide c* values (where c*sa = critical self-assembly concentration, as determined by 
1
HNMR and c*gel = gelation concentration).  

 

Comparing all of their estimated self-assembly curves (Figure 92) shows that the 

charge effect has a greater dominance on the serine analogues. 

 

It is apparent from this study that the type of polar neutral side chain greatly affects 

peptide self-assembly in physiological solutions. The peptides based on serine side 

chains exhibit much higher c* values for self-assembly than the peptides based on 

glutamine side chains. The higher c* of the serine peptides implies that the 

intermolecular interactions between serine side chains are much weaker compared to 

those between glutamine side chains. This observation is consistent with the “polar 

zipper” effect of glutamines known from previous studies.200 The much higher c* for 

self-assembly means that gels of the serine peptides contain a higher concentration of 

peptide in the monomer random coil state than glutamine gels (e.g. for P11-12, it is 

around five times higher than for P11-8.  P11-12 and P11-8 start self-assembling at 2,300 

and 440 M respectively).  
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Figure 92 - Estimated self-assembly curves for all serine (dash) and glutamine (solid) analogues. 
All lines are sigmoidal SGompertz fits created in OriginPro 8.6. 

 

The self-assembly of peptides relies on weak non-covalent interactions and it is clear 

from this data that the glutamine residues provide stability and strength to the 

aggregates resulting in a lower c*. Therefore, as we convert from glutamine to serine, 

for example with P11-2 and P11-7, the transformation energy is unaffected, but the tape 

energy is modified and the number and quality of hydrogen bonds and hydrophobic 

interactions is changed. Two glutamine residues contain two hydrogen acceptor sites 

and two hydrogen donor sites (see Figure 93) and therefore can form four 

intermolecular hydrogen bonds, which is enthalpically favourable; this is termed the 

polar zipper effect. In contrast two serine residues only have one hydrogen acceptor 

site and one hydrogen donor site (see Figure 94) and so can only form two 

intermolecular bonds, which is less enthalpically favourable. 

 

The hydroxyl functional group of serine also has a high affinity to hydrogen bond to 

water, resulting in water competing for the hydrogen bond interactions with the 

peptides containing serine residues, which may in turn cause self-assembly to be less 

favourable. All of these factors should result in a higher c* for the peptides containing 

serine residues instead of glutamine residues, as observed here. 
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Figure 93 - Two glutamine residues 

 
Figure 94 - Two serine residues 

 

 

Thus it becomes obvious that self-assembly of peptide tapes in physiological solutions 

follows a similar behaviour to the self-assembly of peptide tapes in simpler solvents 

(pure water and organic solvents) that were studied previously,110,111,113 i.e. it is 

nucleated self-assembly characterised by the presence of a critical concentration for 

self-assembly from monomeric random coil to β-sheet tape. This observation is also 

important because it implies it is possible to use the same theoretical model previously 

developed,110 in order to fit the experimental data obtained in physiological solutions. 

This makes it possible to gain quantitative information on the magnitudes of energetic 

parameters and intermolecular interactions that govern peptide self-assembly in 

physiological conditions and how they are affected by peptide modifications. This is 

essential not only because it can shed light into the intermolecular interactions that 

stabilise protein aggregates in vivo in general, but it also allows us to start learning how 

to better control peptide self-assembly and materials properties by peptide design. 

 

To date, the Nyrkova model fitting has only been applied to P11-2, P11-4 and P11-8 in 

physiological conditions. However, considering the energetic parameters obtained for 

these three peptides, we can estimate approximate values for β, G and average 

equilibrium lengths for P11-7, P11-9 and P11-12 using the estimated c* values 

determined with 1H NMR, and tr and ribbon values based on their glutamine analogues 

P11-2, P11-4 and P11-8 respectively  (Table 14). 
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Peptide 
(charge at 

pH 7) 

tr 
(kBT) 

ribbon 

(kBT) 
β 

(kBT) 

ΔG of peptide monomer to 
peptide in (middle of) fibril 

Average length at 18 
mM (~ 30 mg/ml) 

P11-9 (-2) 3.10 0.65 22 -19 kBT = -48 kJ mol
-1

 1.18 * 10
5
 km 

P11-4 (-2) 3.10 0.65 23.36 -51.6 kJ mol
-1

 2.35 * 10
7
 km 

P11-7 (0) 3.05 0.60 24 -22 kBT = -54 kJ mol
-1

 2.35 * 10
3
 km 

P11-2 (0) 3.05 0.60 25.74 -58.0 kJ mol
-1

 2.35 * 10
5
 km 

P11-12 (+2) 2.95 0.60 21 -19 kBT = -46. kJ mol
-1

 3.05 * 10
3
 km 

P11-8 (+2) 2.95 0.60 21.52 -50.3 kJ mol
-1

 1.41 * 10
6
 km 

Table 14 – Approximate peptide fitting parameters and estimated energies and lengths derived 
from the Nyrkova theoretical model. 

 

From comparing the energetics derived from the model for the serine and glutamine-

based peptides, it is found that by converting from glutamine to serine that the tape 

scission energy is decreased. In turn, the Gibbs free energy is increased. This means 

that aggregation is more favourable for the glutamine-based peptides, as suspected 

due to the polar zipper effect.  As well as the energetics being affected, the average 

equilibrium tape lengths are also a lot shorter for the serine-based peptides.  

 

3.1.4.3 Effect of having a complementary pair over a single peptide system on 

the self-assembly 

 

By comparing the self-assembly curves (Figure 95) for the complementary peptides 

P11-13/14 (Q,-2) and P1128/29 (Q,+2) with their single peptide analogues P11-4(Q,-2) 

and P11-8(Q,-2) (work carried out by S. Maude)189 it can be observed that, by moving to 

a complementary system, the c* value is greatly reduced (Table 15). As the c* is 

greatly reduced, so too is the background concentration of monomer that exists in 

equilibrium with aggregates above this critical concentration.  

 

The decrease in c* for the complementary peptides compared to their single analogue 

is due to a gain in their tape energy through the gain in enthalpy from the electrostatic 

interactions between the two complementary peptides and also a decrease in the loss 

of entropy, due to each peptide in a complementary pair only having a net charge of 

one therefore, resulting in less counterions being immobilised during aggregation.  
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Figure 95 - Self-assembly curves for P11-4, P11-8, P11-13/14 and P11-28/29. All lines are sigmoidal 
SGompertz fits created in OriginPro 8.6. 

 

Peptide 
Polar 

residue 
Charge c*sa (μM) c*gel 

P11-13/14 Q -2 (-6,+4) 28 ± 7 350-680 

P11-4 Q -2 310 ± 72  2000±600 

P11-28/29 Q +2 (+6,-4) 29 ± 11 300-600 

P11-8 Q +2 400 ± 100 2000±600 

Table 15 - Peptide c* values. 

 

As stated at the outset of this chapter, it is important to have a low c* because this 

means that there will be less background monomer present, which should mean less 

issues of toxicity, and slower gel dissolution rates.117 Based on the theory of surfactant 

self-assembly the amount of monomer present at any concentration below c* will be 

100 % and above c* will be the equivalent concentration to c*. This means that a 

peptide with a high c* will have a higher amount of monomer always present than for a 

peptide with a low c*. This is demonstrated in Figure 96 which shows that the 

glutamine peptides at this stage would be the best candidates for use in nucleus 

augmentation. 
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 Figure 96 – Plot of concentration of monomeric peptide present in a 20 mg/ml
 
(~13 mM) sample, 

based on peptide c* values.  

 

3.2 Mechanical and material properties of peptide hydrogels in 

physiological conditions 

 

If the correct design criteria are chosen, peptide aggregates will form that are long 

enough to become a network of entangled aggregates, for example fibrils. This 

entanglement of polymers can result in a self-supporting gel (Figure 97). 

 

Figure 97 - Schematic representation of an entangled network of peptide aggregates in a gel. 

 

Once the fundamental principles underlying the design of self-assembly peptides for 

use in physiological like conditions have been understood, an optimum peptide system 

could be used in a biomedical application. For this use, it is essential to understand not 
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only the chemical and thermodynamic behaviour of the peptide, but also its mechanical 

and rheological properties, i.e. its viscoelastic characteristics and how it behaves under 

shear loading. Such information can be obtained using rheological measurement 

methods. An initial study of the material properties of the above peptides was 

undertaken and is reported in this section. The details of the protocol used are 

described in section 2.7. The amplitude sweeps carried out after the frequency sweeps 

to confirm the experiment was carried out in the linear viscoelastic region (LVER) are 

presented in APPENDIX D. 

 

3.2.1 Results 

 

3.2.1.1 P11-9 

During the preparation of the higher concentration NMR samples, it was observed that 

P11-9 forms clear self-supporting gels above a concentration of ca. 3 to 6 mM.  

a.)  b.)  

Figure 98 - P11-9 self-supporting gel, 20 mg/ml (14 mM) 1 month old a.) in DMEM cell 
culture medium, b.) in PBS 

 

P11-9 gels at a concentration of 6 mM were not birefringent, whereas at 12 mM they 

were birefringent. Birefringence is a property of nematic gels, which have macroscopic 

directional organisation of the peptide aggregates in domains. It is this anisotropy that 

is visualised by the many colours seen in the birefringent samples when crossed 

polarised light is passed through it. The nematic ordering is a property of semi-rigid 

rods. The peptide aggregates behave like semi rigid rod-like objects and at a certain 

concentration CIN, their solution undergoes a transition from an isotropic to a nematic 

state.110 The concentration at which this transition will take place depends on the width 

and rigidity (i.e. persistence length) of the specific aggregate type. Thus solutions of 

peptide fibrils tend to have a very low CIN because they are very rigid. Solutions of 
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ribbons would be expected to have much higher CIN, because they are more flexible 

than fibrils.110  P11-9 not only forms gels in physiological like solutions (130mM NaCl, 

pH 7.4), but also forms gels in solutions closer to that found in the body, such as in the 

cell culture medium DMEM, as well as in phosphate buffered saline (PBS) solutions 

(Figure 98a and b). The rheological studies conducted here were carried out in PBS. 

 

A 20 mg/ml control sample was prepared as described in section 2.7.2 and produced a 

clear self-supporting gel that became a viscous liquid upon light shaking (Figure 98b). 

 

From the amplitude sweeps (Figure 99), a strain value of 0.5% was chosen within the 

LVER to carry out the frequency sweep. The frequency sweep spectrum for P11-9 is 

presented in Figure 100. The phase angle remained constant at around an average of 

33o. 
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Figure 99 – P11-9 Elastic and viscous modulus vs. shear strain. Starting shear strain 0.01%, end 
shear strain: 100%, Temp 25

o
C, a.) Frequency: 1 Hz and b.) Frequency: 20 Hz 
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Figure 100 - Elastic and viscous modulus vs. frequency. Starting frequency 1 Hz, end frequency: 20 
Hz, Strain controlled: 0.5%, Temp: 25

o
C. 

 

To examine the effect of changing the peptide’s polar amino acid on the rheological 

properties of the self-assembled gel P11-4 was compared to P11-9.  

 

3.2.1.2 P11-4 

 

A 20 mg/ml control sample was prepared as described in section 2.7.2 and produced a 

cloudy self-supporting gel that was observed to have a similar consistency to P11-9 

(Figure 101). 

 

Figure 101 - P11-4 20 mg/ml (12.5 mM) in PBS 20 days old. 

 

From the amplitude sweeps (Figure 102), a strain value of 0.15% was chosen within 

the LVER to carry out the frequency sweep. The frequency sweep spectrum for P11-4 is 

presented in Figure 103. The phase angle increased over the frequency range from 

8.7-17.2o. 
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Figure 102 – P11-4 Elastic and viscous modulus vs. shear strain. Starting shear strain 0.01%, 
end shear strain: 100%, Temp 25

o
C, a.) Frequency: 1 Hz and b.) Frequency: 20 Hz. 
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Figure 103 – P11-4 Elastic and viscous modulus vs. frequency. Starting frequency 1 Hz, end 
frequency: 20 Hz, Strain controlled: 0.15%, Temp: 25

o
C.  

 

3.2.1.3 P11-12 

 

During the preparation of the higher concentration NMR samples, it was observed that 

P11-12 formed clear self-supporting gels above a concentration of ca. 4 to 8 mM, 

although gelation began at around 2300 μM. At a concentration of 16 mM in 

physiological-like conditions, P11-12 formed a gel with a small amount of white 

precipitate as the peptide approached its solubility limit, upon reheating this precipitate 

became soluble again but only in a metastable manner. P11-12 gels at concentrations 

of 8 mM, 12 mM and 16 mM were all birefringent. The birefringence shows that the 

gels were nematic meaning that the peptide aggregates have long range directional 

organisation in domains. P11-12 not only formed gels in physiological like solutions (130 

mM NaCl, pH 7.4) but also formed gels in solutions closer to that found in the body 

such as the cell culture medium DMEM (Figure 104) as well as in PBS solutions. The 

rheological study conducted here was carried out in PBS. 
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 Figure 104 - P11-12 self-supporting gel, 20 
mg/ml (14 mM) in DMEM cell culture medium. 

Figure 105 - P11-12  20 mg/ml (14 mM) in PBS, 2 
months old. 

 

To look into the effect that changing the peptides charge had on the rheological 

properties of the self-assembled gel, P11-12 was compared to P11-9. A 20 mg/ml 

sample was prepared as described in section 2.7.2 and produced a cloudy self-

supporting gel (Figure 105). 

 

From the amplitude sweeps (Figure 106), a strain value of 0.25% was chosen within 

the LVER to carry out the frequency sweep. 
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Figure 106 – P11-12 Elastic and viscous modulus vs. shear strain. Starting shear strain 0.01%, 
end shear strain: 100%, Temp 25

o
C, a.) Frequency: 1 Hz and b.) Frequency : 20 Hz. 

 

The frequency sweep spectrum for P11-12 is presented in Figure 107. The phase angle 

remained constant at around an average of 8.8º. 

 

It was observed when trying to unload the sample from the machine that the top cone 

could not be easily raised, suggesting the gel had a strong molecular structure that was 

difficult to break and hence pull apart.  
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Figure 107 – P11-12 Elastic and viscous modulus vs. frequency. Starting frequency 1 Hz, end 
frequency: 20 Hz, Strain controlled: 0.25%, Temp: 25

o
C. 

  

In order to investigate the effect of charge on the rheological properties further and to 

see if the same effects are seen for the glutamine-based peptides, P11-8 (+2) was 

compared to P11-4 (-2). 

 

3.2.1.4 P11-8 

 

A 20 mg/ml control sample was prepared as described in section 2.7.2 and produced a 

sample of two phases, one a clear liquid and the other a cloudy gel on the walls of the 

vial (Figure 108). The rheometry was primarily carried out on the gel phase. 

 

It was noted during loading that the gel sample had a gritty texture and a lot was 

needed to cover the area under the top cone (Figure 109). 

 
 

Figure 108 - P11-8 13 mM (20 mg/ml) in 
PBS, 1.5 months old. 

Figure 109 - P11-8 13 mM (20 mg/ml) loading 
onto the rheometer. 
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It was also observed that, upon loading the rheometer, a large force was required to 

close the gap between the top cone and bottom plate, i.e. it struggled to compress the 

sample, which suggests a strong molecular structure and a material with a high 

modulus (Figure 110). 
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Figure 110 – P11-8 raw data plot of Gap and Normal force Vs experiment time for loading to the 
predefined cone and plate gap. 

 

It was observed that after running the experiments on the gel, the sample had split into 

two phases as illustrated in Figure 111. 

 

Figure 111 - P11-8 sample after 
experiments carried out. 

 

Figure 112 - Waxy residue of P11-8 gel after liquid phase is 
removed upon cleaning of the rheometer. 

 

It was also observed that when the liquid phase was removed during sample unloading 

and cleaning of the rheometer, a very waxy residue was left (Figure 112). 

 

From the amplitude sweeps (Figure 113), a strain value of 0.1% was chosen within the 

LVER to carry out the frequency sweep. 
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Figure 113 – P11-8 Elastic and viscous modulus vs. shear strain. Starting shear strain 0.01%, 
end shear strain: 100%, Temp 25

o
C, a.) Frequency: 1 Hz, b.) Frequency: 20 Hz. 

 

The frequency sweep spectrum for P11-8 is presented in Figure 114. The phase angle 

remained constant at around an average of 7.6º.   
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Figure 114 – P11-8 Elastic and viscous modulus vs. frequency. Starting frequency 1 Hz, end 
frequency: 20 Hz, Strain controlled: 0.1%, Temp: 25

o
C. 

 

In order to complete the rheological study of the self-assembling peptides, the 

rheological methods established so far were applied to the two pairs of complementary 

peptides P11-13/14 (-6, +4, overall -2) and P11-28/29 (+6, -4, overall +2). 
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3.2.1.5 P11-13/14 

During the preparation of the NMR samples, it was observed that the P11-13+14 mix 

formed clear self-supporting gels between a concentration of ca. 350-680 μM. 

Birefringence was seen in gels above a concentration of 1380 μM. 

 
Figure 115 - P11-13/14 20 mg/ml (13 mM) in PBS, 2 weeks old. 

 

The sample prepared as described in section 2.7.2 formed a self-supporting gel (Figure 

115), which upon light shearing became a viscous liquid that recovered into a self-

supporting gel again within a minute. Under crossed polarised light the sample was 

birefringent, showing that the gel was nematic meaning that the peptide aggregates 

had long range directional organisation in domains. 

 

From the amplitude sweeps (Figure 116) a strain value of 3% was chosen within the 

LVER to carry out the frequency sweep. 
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Figure 116 - P11-13/14 Elastic and viscous modulus vs. shear strain. Starting shear strain 
0.01%, end shear strain: 100%, Temp 25

o
C, a.) Frequency: 1 Hz and b.) Frequency: 20Hz. 

 

The frequency sweep spectrum for P11-13/14 is presented in Figure 117. The phase 

angle increased over the frequency range studied from 11-23º. 
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Figure 117 - P11-13/14 Elastic and viscous modulus vs. frequency. Starting frequency 1 Hz, end 
frequency: 20 Hz, Strain controlled: 3%, Temp: 25

o
C. 

 

In order to see if there is a charge effect for the complementary peptides, P11-13/14(-2) 

was compared with P11-28/29 (+2). 

 

3.2.1.6 P11-28/29 

 

During the preparation of the NMR samples, it was observed that the P11-28+29 mix 

formed clear self-supporting gels between a concentration of ca. 300-600 μM. The 

gelation was spontaneous upon mixing. 

 

A 20 mg/ml control sample was prepared as described in section 2.7.2 produced a 

cloudy self-supporting gel with a few bubbles. Sonication was then used to remove the 

bubbles but this led to the gel becoming cloudier in appearance (Figure 118).  
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Figure 118 - P11-28/29 20 mg/ml in PBS. 6 days old. 

 

From the amplitude sweeps (Figure 119), a strain value of 0.25% was chosen within 

the LVER to carry out the frequency sweep. 
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Figure 119 - P11-28/29 Elastic and viscous modulus vs. shear strain. Starting shear strain 
0.01%, end shear strain: 100%, Temp 25

o
C, a.) Frequency: 1 Hz and b.) Frequency: 20 Hz. 

 

The frequency sweep spectrum for P11-28/29 is presented in Figure 120. The phase 

angle remained constant at around an average of 6.5º. 
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Figure 120 - P11-28/29 Elastic and viscous modulus vs. frequency. Starting frequency 1 Hz, end 
frequency: 20 Hz, Strain controlled: 0.25%, Temp: 25

o
C. 

sonication



 

 

 

135 
Self-assembly and morphology of peptide nanostructures and mechanical 

properties of their hydrogels 

3.2.2   Discussion 

 

3.2.2.1 Common rheological properties for self-assembled peptide gels 

 

From the rheological experiments carried out here, some general rheological properties 

have been determined for this class of self-assembling peptide: 

 

1. In all cases the elastic modulus was higher than the viscous modulus, 

suggesting that the samples had more solid-like than liquid-like behaviour. This 

was further confirmed by the typically low phase angles (~10º).  

 

2. The shapes of the frequency sweeps were typical of gel-like behaviour over the 

frequency range studied and, with most peptides, this was confirmed with a 

constant phase angle. However, the increase in the phase angle for P11-4 and 

P11-13/14 is more typical of viscoelastic solid behaviour. 

 

3. The mechanical spectra of the peptides studied was flat over the frequency 

range studied, suggesting that the dominant viscoelastic relaxations were at 

lower frequencies than measured i.e. the relaxation time of the networks were 

long (Figure 121). This is indicative of either very long and stable polymers that 

are highly entangled or strong non-covalent chemical crosslinks between highly 

stable polymers. 

 

4. The reproducibility was investigated using P11-4, P11-9, P11-12 and P11-28/29 

(see appendix D). For the second frequency sweep on same sample, the shape 

and position of the plots were almost identical to those of the first samples, 

showing good reproducibility.  
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Figure 121 – Mechanical spectra of peptides studied over a frequency range of 1-20 Hz. 

 

The class of self-assembling peptide studied here have similar rheological properties to 

other classes of self-assembling peptides studied by other groups. In a study by 

Genove et al. the RADA16-I peptide at a concentration of ~3 mM in PBS was found to 

have an elastic modulus higher than its viscous modulus, both of which remained 

relatively constant over the frequency range studied, suggesting a gel profile. It had an 

average G’ of 2.5 kPa at room temperature (Figure 122).
201

 Sun et al. found that in pure 

water RADA16-1 had an elastic modulus of 7 Pa, however when exposed to DMEM 

medium the modulus increased to 4000 Pa both at 25oC.202
 

 
Figure 122 - Physicochemical 
characterization of peptides RAD16-I by 
rheometry: dynamic frequency sweep 
test for peptide scaffold at fixed strain of 
0.01%. Taken from Genove et al..

201 

 

 
Figure 123 - Frequency sweep data showing the 
storage modulus (G′) for MAX8 hydrogels at pH 
7.4, 50 mM BTP buffer, 150 mM NaCl, 20 °C. Taken 
from Hule et al..

203
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Figure 124 - Linear viscoelastic spectra for four Fmoc-FF analogues, 20 mM, 25 °C. Taken from 
Ozbas et al..

204
 

 

Numerous rheological studies have been carried out on the β-hairpin structures of the 

Pochan and Schneider group.  They have found that like the peptides studied here the 

G’ values are a magnitude higher than the corresponding G’’ for all concentrations. 

Hydrogels of the MAX8 peptide have been found to have a G’ in the region of 102-103 

Pa dependent on concentration203 (Figure 123). The authors have suggested that the 

rheological behaviour that they see for their peptides, i.e. a G’>G’’ and both being 

insensitive to frequency, suggests that the crosslink points of the fibrils are permanent 

junction points and not simple entanglements, possibly due to the formation of a 

supramolecular fibril structure.122 The same may be true for the P11 peptides studied 

here because they exhibited a similar behaviour.  

 

Gelain et al. carried out frequency sweep tests assessing G’ and G’’ moduli of various 

functionalised ionic β-sheet peptide hydrogels and found that values (in the 1–100 Hz 

range) of the assembled scaffolds resided in the 70–400 Pa and 8–20 Pa ranges 

respectively.
205

 

 

The Ulijn group have looked into the mechanical profiles of various Fmoc-FF 

analogues and they have elastic moduli in a similar range to the peptides tested here, 

with Fmoc-FF having an elastic modulus of 21.2 kPa.204 Once again, the elastic moduli 

exceeded that of their viscous moduli (Figure 124). 

 

 



 

 

 

138 
Self-assembly and morphology of peptide nanostructures and mechanical 

properties of their hydrogels 

3.2.2.2 The effect of polar amino acid residues on the rheological properties of 

the peptide hydrogels  

 

As with the case of investigating the polar residue effect on the peptide self-assembly, 

the serine-based peptide gels can be compared with their glutamine analogues to 

determine their effect on the rheological properties.  

 

The moduli for P11-4 (Q) are higher than those of P11-9 (S) by two orders of magnitude 

suggesting that a P11-4 gel is stiffer than a P11-9 gel (Figure 125).  
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Figure 125 - Comparison of elastic modulus 
and viscous modulus of P11-4 and P11-9. 

Figure 126 – Comparison of frequency 
sweeps of P11-8 and P11-12. 

 

To investigate the polar amino acid effect further, P11-8 (Q) can be compared directly to 

P11-12 (S) because they have the same charge but different polar side chains (Figure 

126). 

 

Unlike the case with P11-4 (Q) and P11-9 (S), where the glutamine-based peptide had 

much higher elastic and viscous moduli and therefore was a stiffer gel, P11-8 (Q) 

actually had a lower elastic and viscous moduli than serine-based P11-12 (Figure 127). 

Therefore there seems to be no obvious trend in the effect of polar amino acid residues 

on the rheological properties of the peptide hydrogels. 
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Figure 127 - Comparative plot for serine- and glutamine-based peptides of average modulus vs. 
peptide. 

 

It was hypothesised that because the rheological properties of the peptide gels would 

be governed by the size, length and type of structures making up the bulk material, i.e. 

the aggregates, that similar trends in c* would be seen in the rheological data. 

However, this was not the case and the stiffness of the gels did not appear to be 

related to their c* values. This is due to the energetics that determine the c*, i.e. how 

the monomers interact with one another to form an aggregate will not be the same for 

how the aggregates interact with one another. The self-assembly of the peptides is 

governed by the energetic parameter tape which dominates on a molecular level. 

However, gelation and the rheological properties are governed by other energetic 

parameters, which are small on a molecular level but must add up and become much 

more important at a bulk level. 

 

3.2.2.3 Effect of having a complementary pair over a single peptide system on 

the rheological properties of the peptide hydrogels  

 

The glutamine-based complementary pair P11-13/14 with an overall charge of -2 can be 

compared to P11-4 as its non complementary analogue (Figure 128). The moduli for 

P11-4 are almost two times the magnitude of that of the complementary pair, suggesting 

that P11-4 is the stiffer gel. 
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Figure 128 - Comparison of frequency sweeps 
for P11-13/14 and P11-4. 

Figure 129 - Comparison of frequency sweeps 
for P11-28/29 and P11-8. 

 

The complementary pair P11-28/29 that has an overall charge of +2 and is glutamine-

based can be compared to P11-8 as its non complementary analogue (Figure 129) 

Unlike the comparison between P11-13/14 and P11-4, the complementary peptide P11-

28/29 has higher moduli than P11-8 by one order of magnitude, suggesting in this case 

that the complementary peptide produces a stiffer gel.  

P11-4 P11-13/14 P11-8 P11-28/29

1

10

100

1000

10000

100000

1000000

G
',G

'' 
(P

a
)

Peptide

 single negatively charged peptide G'

 single negatively charged peptide G''

 complementary negatively charged peptide G'

 complementary negatively charged peptide G''

 single positively charged peptide G'

 single positively charged peptide G''

 complementary positively charged peptide G'

 complementary positively charged peptide G''

 

Figure 130 - Comparative plot for single and complementary glutamine-based peptides of average 
modulus vs. peptide. 

 

Figure 130 shows there to be no consistent trend in the effect of going from a single to 

complementary peptide system. This further reinforces the hypothesis that there is no 

link between the peptide c* and its rheological properties. 
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3.2.2.4 The effect of net peptide charge on the rheological properties of the 

peptide hydrogels  

 

By comparing the elastic and viscous moduli of the negatively charged peptides and 

the positively charged peptides, it would appear that charge has a large effect on the 

viscoelastic properties of their hydrogels (Figure 131). 
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Figure 131 – Comparison of frequency 
sweeps for P11-9 and P11-12. 

Figure 132 – Comparison of frequency 
sweeps of P11-4 and P11-8. 
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Figure 133 – Comparison of frequency 
sweeps for P11-13/14 and P11-28/29. 

 

 

The elastic modulus of the positively charged P11-12 was four times the magnitude of 

that of the negatively charged P11-9, meaning that the P11-12 gel was much stiffer 

(Figure 131). The elastic modulus, which can be thought of as the measure of stiffness, 

for P11-12 was in the order of 20,000 Pa which is relatively high for a gel made of soft 

matter at concentration of only 2% w/v. 
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As with the serine-based peptides, for the glutamine-based peptides the positively 

charged P11-8 has a greater elastic and viscous modulus than the negatively charged 

P11-4, although the effect is not as pronounced (Figure 132). 

 

This charge effect of a positive charge resulting in a stiffer gel is also true for the 

complementary peptides (Figure 133). The moduli for the positive P11-28/29 are three 

times the magnitude of that of the negatively charged P11-13/14. 

 

The effect of a positive charge increasing the elastic and viscous modulus of the 

peptide gels is illustrated again in Figure 134 
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Figure 134 – Comparative plot for negative and positive peptides of average modulus vs. peptide. 

 

This suggests that, as the positively charged peptides have a higher G’, they must also 

have a higher density of entanglements. This may be due to them having a high affinity 

for entanglements, or they may have narrower longer chains and therefore a greater 

probability of junction points occurring. Future work combining the rheological data with 

microscopy data may help to shed some light on this effect further.  
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Based on the three discussion points so far, the sign of the peptide is the most 

important factor. The other effects are dominated by the charge effect and it is hard to 

pick out the trends in their effects, therefore the safest way to design a peptide with a 

high G’ is to concentrate on controlling the charge. 

 

The Schneider and Pochan group have also found that the effect of charge is important 

in the rheological properties of gels as well as in the gelation kinetics. When comparing 

two peptides MAX1 (+9 charge) and MAX1K15E (+7 charge), they found that the 

peptides with a lower net positive charge form gels more quickly than gels of higher 

positive charge. They also determined that gels with a higher net positive charge have 

a lower elastic modulus than those with a lower charge, 50 Pa and 600 Pa 

respectively.123 

 

3.2.2.5 Estimating the mesh size of the peptide network for the magnitude of the 

plateau elastic modulus. 

 

It has been shown that, for gels formed with semiflexible polymers, small changes in 

the crosslink density at constant volume fractions can dramatically alter the elastic 

modulus over a few orders of magnitude.206,207 Using a model taken from the rubber-

like elasticity theory developed by Aggeli et al.,113 the magnitude of the plateau elastic 

modulus can be used to extract information about the mesh size of the peptide network 

and therefore the crosslink density. The lower limit distance (j) between two nearest 

entanglements or crosslinks in space is given by the following relationship: 

   
         

    
 

 
  

 

Equation 12  

 

Where gN is a numerical factor not far from unity, f is the number of tapes attributed to 

each entanglement, kB is the Boltzmann constant, T is the absolute temperature and 

G’
N

o is the plateau elastic modulus.  
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The lower limit j values have been calculated for the above peptides using Equation 12 

and are listed in Table 16.  

 

From these values it is clear to see how the mesh size affects the mechanical 

properties of the gels. The stiffer gels have shorter distances between crosslinks and 

therefore a greater number of crosslinks in the network per unit volume. 

Peptide 
G

’
N

o 

(kg m
-1

 s
-2

) 
j (nm) 

P11-4 1,240 18.8 

P11-9 13 85.2 

P11-13/14 33 64.0 

P11-8 5,221 11.6 

P11-12 22,285 7.2 

P11-28/29 27,302 6.7 

Table 16 - Plateau elastic modulus and lower limit of the distance between nearest cross links (j) in 
the peptide gels. (gN = 1± 0.2, f ≥ 4, kB = 1.38x10

-23 
m

2
 kg s

-2
 K

-1
, T = 298K) Negatively charged. 

Positively charged 

 

3.3  Summary 

 

Here the self-assembly and mechanical profiles of a series of P11 peptides were 

studied, and the results are summarised in Table 17. It is important to fully understand 

the underlying science of such systems in order to choose and optimise the best for 

biological applications such as the one in this thesis.  

 

In summary, to achieve a self-assembled peptide gel, the peptide needs to have an 

overall ±2 charge. To acquire a gel with a low c* using a single peptide system, a 

negatively charged peptide should be used and one based on glutamine rather than 

serine will provide the lowest c*. Complementary peptides will provide lower c* values 

than the single peptide systems and they also have the advantage of reaching an 

equilibrium state in shorter timescales. 

 

To achieve a stiff rather than weak hydrogel, a positively charged peptide should be 

used.  
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In order for a peptide gel to be used in regenerative medicine, other factors should also 

be considered such as the gel stability/lifetimes and biocompatibility.  

 

For the application of nucleus replacement therapy, on top of needing to have similar 

mechanical properties to the natural tissue, the gels need to have similar 

biofunctionality, i.e. provide a high swelling pressure within the disc, ideally through 

water binding similar to that found naturally. In order for the therapy to be minimally 

invasive, a trigger for self-assembly needs to be incorporated. These two design 

criteria will be addressed in the next chapter.  
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Peptide 
C* 

(μM) 
C*gel 
(μM) 

Time to gel 
20mg/ml 

Gel lifetime 
20 mg/ml 

G’ 
20mg/ml 

(Pa) 

G’’ 
20mg/ml  

(Pa) 

Phase 
angle 

trigger 
Gel 

appearance 
Other 

properties/notes 
Pros Cons 

P11-7 
(S,0) 

110 ± 
20 

- - - - - -  -  Low c* 
Doesn’t form a 

gel 

P11-2 
(Q,0) 

14 ± 
3.2 

- - - - - -  -  Low c* 
Doesn’t form a 

gel 

P11-9 
(S,-2) 

1160 
± 175 

4500  
± 1500 

Minutes >1yr 4mths 7.8  4.9  33 
pH 

GAG 
addition 

Clear, self-
supporting gel 

 
Gel 

stability 
Weak gel 

P11-4 
(Q,-2) 

310  
± 140 

2000 ± 
600 

Minutes-hours >1mth 1,065  205  
8.7-
17.2 

GAG 
addition 

Slightly cloudy, 
self-supporting 

gel 
 Low c* 

Long gelation 
time 

P11-12 
(S,+2) 

5600 
± 

1750 

2300 ± 
750 

Minutes >1yr 11mths 20,510  3067  8.8 
GAG 

addition 
Cloudy, self-

supporting gel 

Had to reheat at 
4mths to reform 

gel gel formed was 
then stable 

Gel 
stability 

Gel 
strength 

 

High c* 

P11-8 
(Q,+2) 

400  
± 100 

2000 ± 
600 

Days 

Still some 
self-

supporting 
gel at 90 
days but 

also liquid 
phase 

4,881  552  7.6 
GAG 

addition 

Bitty, cloudy, 
self-supporting 
gel with some 
liquid phase 

Liquid phase 
increases from 13 

days 
 

Poor gel 
lifetime 

Long gelation 
time 

 
P11-13/14 
(Q,[-6,+4] 

net -2) 

 

28 ± 

7 

 

350-

680 

spontaneous >10mth 27  7  11-23 
Peptide 
mixing 

Clear, self-
supporting gel 

 
Low c* 
Fast 

gelation 
Weak gel 

P11-28/29 
(Q,[+6,-4] 
net +2) 

29 ± 

11 

300-

600 
spontaneous 

>15 <41 
days 

25,980  2864  6.5 
Peptide 
mixing 

Cloudy, self-
supporting gel 

 

Low c* 
Fast 

gelation 
Strong 

gel 

Poor gel 
lifetime 

Table 17 - Summary of self-assembly and mechanical data for all peptides studied. 
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Chapter 4 

4 Self-assembling peptide and glycosaminoglycan hybrid gels 

 

4.1  Introduction 

4.1.1 The biological role and importance of glycosaminoglycans 

 

Glycosaminoglycans (GAGs) are long unbranched polysaccharides containing a 

repeating disaccharide unit and they are the most abundant heteropolysaccharides in 

the body.208 They have molecular weights ranging from 5 to 5000 kDa.209 GAGs are 

located mainly on the surface of cells or in the extracellular matrix.210 

 

The majority of GAGs in the body are linked to core proteins forming proteoglycans.209 

The GAGs extend out from the core in a brush-like structure (Figure 135). The protein 

cores of proteoglycans are rich in serine and threonine residues, which allow multiple 

GAG attachments.208 

 

Figure 135 – Basic structure of aggrecan. The proteoglycans in the large aggrecan complex are 
feather-like structures composed of a number of regularly spaced GAGs, such as keratin sulphate 
and chondroitin sulphate (in light blue), which are covalently linked to a protein core (yellow). 
Taken from Oussoren et al.
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Proteoglycans and GAGs perform numerous vital functions in the body. The GAGs of 

significant importance are chondroitin sulphate, dermatan sulphate, heparan sulphate, 

heparin sulphate, hyaluronic acid and keratin sulphate. Chondroitin sulphate is the 

most abundant GAG in the body and is found within cartilage, bone, heart valves and 

the intervertebral disc.212-216 Heparin sulphate has the highest negative charge density 

of any known biological molecule and is found lining the arteries of the lungs, liver and 

skin; it is well known for its role in preventing blood clotting.208,209 Heparan sulphate, 

although less sulphated than heparin sulphate, contains higher acetylated glucosamine 

than heparin. Heparan sulphate is found in basement membranes and makes up 

components of cell surfaces. Hyaluronic acid is a particularly large polymer and often 

plays the role of shock absorber and so is often found in the extracellular matrix (ECM) 

of loose connective tissue, as well as in synovial fluid and vitreous humor.217-221 

Keratan sulphate is found in the cornea, bone and in an aggregated form with 

chondroitin sulphate in cartilage and intervertebral discs.216,222-224 Finally, dermatan 

sulphate is located in the skin, blood vessels and heart valves.208 

 

GAGs are highly negatively charged and have an extended conformation, which results 

in a high viscosity of the solution. Along with the high viscosity of GAGs comes low 

compressibility, making these molecules excellent for lubricating fluid in the joints.208 

 

In terms of the application of self-assembling peptides in the treatment of disc 

degeneration, an important factor is the significant loss of water that occurs with 

degeneration. Therefore a replacement biomaterial needs to have high water content 

and be able to retain this water. The natural tissue achieves this by the presence of a 

large number of negative charges, which causes an influx of small cations to balance 

these charges. This high salt content results in a high osmotic pressure. The peptides 

studied so far in this project may be optimised for this application by mixing with 

another charged bio-polymer to create a peptide hybrid material.  

 

The high negative charge density within the disc is due to the high concentration of 

proteoglycans and therefore GAG chains. Specifically within the disc tissue, these 

GAGs are chondroitin and keratin sulphate, with chondroitin sulphate being the most 

prevalent.  
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There are four different types of chondroitin sulphate differing at the site of sulphation; 

chondroitin-4-sulphate, chondroitin-6-sulphate, chondroitin-2,6-sulphate and 

chondroitin-4,6-sulphate, also sometimes known as chondroitin sulphate A, C, D and E 

respectively. Chondroitin sulphate B is the old name for dermatan sulphate. Both 

chondroitin-4-sulphate and chondroitin-6-sulphate are found within the disc, with their 

ratio varying with age.225 A ratio of 2:1 chondroitin-6-sulphate:chondroitin-4-sulphate is 

found in young healthy discs, however, chondroitin-4-sulphate prevails in old 

degenerate discs.226 

 

4.1.2 Peptide hybridisation and GAG selection 

 

In this chapter, the effects of mixing a GAG with the peptides reported previously are 

investigated. It was hypothesised that the charged GAG chains would interact 

electrostatically with the charged peptides. To establish whether such an interaction 

was possible, visual observations of a simple mixing study was carried out as 

described in section 2.8.2, the morphology of the mixing studied using TEM as 

described in section 2.4.3 and the mechanical properties of a selection of the gels 

formed was investigated using rheometry as described in section 2.7.3. Throughout 

this work the terminology 1:n refers to the molar ratio of one peptide to n GAG 

subunits. 

 

The GAG selected for the mixing study was chondroitin-6-sulphate (Figure 136). 

Chondroitin-6-sulphate was chosen as it is the most abundant GAG in the healthy disc, 

so the most likely candidate to provide mechanical and biological behaviour similar to 

that of the natural tissue. 

 

Figure 136 - One subunit of chondroitin-6-sulphate. 
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The concentration of peptide was kept the same for each sample (20 mg/ml) and the 

molar ratio of GAG subunit to one peptide was increased to see how the presence of 

another charged bio-polymer affected the propensity for the peptide to self-assemble 

and the morphologies of the self-assembled state. From this, an understanding of the 

mixing interactions could be gained. 

 

Once the fundamental principles underlying the design of self-assembling peptides for 

use in physiological-like conditions and the interactions between the self-assembling 

peptides and GAGs have been understood, an optimum peptide hybrid system will be 

trialled in a biomedical application. For this use it is essential to understand not only the 

chemical and thermodynamic behaviour of the peptide, but also its mechanical and 

rheological properties i.e. its viscoelastic characteristics, how it behaves under shear 

loading, and the gel recovery times and profiles. Such information can be obtained 

using rheological measurement methods. An initial study into the material properties of 

the peptides and how these vary upon mixing with GAGs was undertaken and is 

reported in this chapter. 

 

In the previous chapter, it was discussed that for the use in the treatment of 

degenerative disc disease, complementary peptides would be advantageous because 

they are triggerable, they form self-supporting gels and have low c* both for self-

assembly and gelation. For this reason, a GAG mixing experiment was carried out on 

the single peptides and complementary pairs of peptides. It was envisioned that the 

order in which mixing occurred would potentially affect the observed outcomes, GAG 

peptide interactions and the peptides propensity to self-assemble. To ensure 

reproducible and complete mixing with the complementary peptides, mixing within the 

peptide monomer state is essential and so the GAG was mixed with one peptide before 

the addition of the other complementary peptide.  

 

In this chapter, the main observations and findings from the mixing study are 

presented, but further details on individual observations including time for the gel to 

form and appearance of sample, are presented in Appendix E. The full results for the 

LVER checks performed for each peptide:GAG ratio during the rheological testing can 

also be found in Appendix E. 
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4.2 Results 

 

4.2.1 P11-9:GAG 

 

Both P11-9 and chondroitin-6-sulphate have an overall negative charge, and so the two 

molecules should repel each other, however, by mixing in physiological-like conditions 

it was hypothesised that the salts present might act as salt bridges enabling an ionic 

interaction to form.  

 

4.2.1.1 Mixing study observations 

 

Peptide:GAG ratios from 1:0.1 to 1:10 were investigated. Self-supporting gels were 

formed at all GAG molar ratios (Figure 137). However, as the GAG concentration was 

increased the quality of the gel differed and the gels became more turbid and “bitty”. 

The 1:10 sample was a very turbid milky gel. At a GAG ratio of 1:2 subunits and higher, 

a lot of heating and vortexing was needed to enable the GAG to dissolve. However, 

once the GAG was dissolved and the heating stopped, the gelation time of the samples 

was decreased from minutes to seconds even while the samples were still warm. 

 

Figure 137 - Samples 3 days old. From left to right P11-9:GAG 1:10, 1:4, 1:3, 1:2, 1:1, 1:0.5, 1:0.2, 
1:0.1 and P11-9 control. 

 

After a few months, the gel quality again differed as the GAG concentration increased 

(Figure 138). The 1:10 sample was no longer a gel, but after reheating and cooling the 

self-supporting gel was restored, suggesting that the gel was metastable. After very 

light shearing, the P11-9 control became a viscous liquid that given time would form a 

gel once more.  
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Figure 138 - Samples 3 months old. From left to right P11-9:GAG 1:10, 1:4, 1:3, 1:2, 1:1, 1:0.5, 1:0.2, 
1:0.1 and P11-9 control. 

 

From six months onwards, the lower GAG concentrations were still clear gels, the mid 

range GAG concentrations were easily broken bitty gels, while in the highest 

concentration GAG samples phase separation occurred and a precipitate was present. 

 

Figure 139 - Samples 1 year and 4 months old. From left to right P11-9:GAG 1:10, 1:4, 1:3, 1:2, 1:1, 
1:0.5, 1:0.2, 1:0.1 and P11-9 control. 

 

After a year, the P11-9 control was still a self-supporting gel alongside the lowest GAG 

concentration. However, as the GAG concentration increased the gel quality was once 

again reduced. From a ratio of 1:0.2 and upwards phase separation occurred and a 

gel-like precipitate was observed alongside a clear liquid phase. At the higher ratios in 

some cases, such as 1:10 and 1:3, a large self-supporting gel phase was still visible.  

 

4.2.1.2 Transmission Electron Microscopy (TEM) 

 

After approximately four and a half months, three representative samples were chosen 

to be studied by TEM. Peptide:GAG ratios of 1:0.5, 1:2 and 1:10 were compared to the 

GAG and peptide control samples. Typical images are shown in Figure 140 to Figure 

148. 
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Figure 140 - GAG control, magnification = 73000x, scale bar = 100nm, diluted to approx 
7 mg/ml. 

In the GAG control sample, the main structures seen were amorphous with no well 

defined structures (Figure 140).  

 

In the P11-9 control sample a background carpet of ribbon structures was seen with 

ribbons having a width of 3-5 nm (Figure 141, Figure 145 and Figure 148 ). 

 



 

 

 

158 Self-assembling peptide and glycosaminoglycan hybrid gels 

    
Figure 141 - P11-9 control, magnification 
= 39000x, scale bar = 500 nm, diluted to 
approx 7 mg/ml 

Figure 142 - P11-9 1:0.5 GAG, 
magnification = 39000x, scale bar = 500 
nm, diluted to approx 7 mg/ml. 

Figure 143 - P11-9 1:2 GAG, 
magnification = 73000x, scale bar = 
200 nm, no dilution. 

Figure 144 - P11-9 1:10 GAG, 
magnification = 73000x, scale bar = 200 
nm, diluted to approx. 7 mg/ml. 

    
Figure 145 - P11-9 control, magnification 
=  105000x, scale bar = 200 nm, no 
dilution. 

Figure 146 - P11-9 1:0.5 GAG, 
magnification = 21000x, scale bar = 500 
nm, no dilution. 

Figure 147 - P11-9 1:2 GAG, 
magnification = 52000x, scale bar = 
200 nm, no dilution. 

Figure 148 - P11-9 control, magnification = 
73000x, scale bar = 200 nm, diluted to 
approx. 7 mg/ml. 

Background network of ribbons 

Fibrillar structures Background network of ribbons Large fibrillar bundle 
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At a low GAG ratio of 1:0.5 (Figure 142), a ribbon network was observed in the 

background of the image with larger, undefined fibrillar structures visible. The widths of 

large bundles varied from around 60 to 75 nm, and the widths of the individual ribbons 

were around 5 nm. An image was also taken of the undiluted sample (Figure 146): 

although the finite structures could not be clearly identified, it was possible to identify 

the porous and intertwined structure of the gel. 

 

At a medium GAG ratio of 1:2, again the ribbon network was observed in the 

background of the image with larger, undefined fibrillar structures visible (Figure 143 

and Figure 147). The width of these larger bundles varied from 30 to 100 nm and the 

background ribbons varied in width between 2 and 6 nm. 

 

In the high GAG ratio sample of 1:10, the background ribbon network was observed 

again with larger, undefined fibrillar structures visible (Figure 144). However, the larger 

bundles of ribbons were less commonly seen than with the lower GAG ratios. The 

width of these large bundles was around 100 to 130 nm and the width of the 

background ribbons was approximately 4 nm. 

 

In summary, in the 1:0.5 sample there was a very high density of bundles of ribbons 

forming undefined fibril like structures. In the 1:2 sample, there was mainly a 

background network of ribbons with very long bundles ½ width of a TEM grid in length 

and again in the 1:10 sample there was mainly a background network of ribbons visible 

with fewer but larger bundles present. 

 

As is the case with no GAG present, this peptide in the presence of GAG forms mainly 

ribbon structures with no well defined fibrils. However it was observed that the loose 

bundling of ribbons was reduced in the presence of GAG. 
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4.2.1.3 The effect of GAG addition on the gel mechanical properties 

 

Rheometry was chosen to study the effect of increased GAG ratio on the mechanical 

properties of P11-9.  Three ratios from the mixing study in 4.2.1.1 were chosen to 

determine the effect, 1:0.5, 1:2 and 1:10.  

 

The samples prepared for the rheological experiments coincided with the samples 

prepared for the mixing study having gels with similar appearances (Figure 149). It was 

also observed through polarised lenses that an addition of a small concentration of 

GAG actually led to the birefringence of the gel increasing (Figure 150). 

  

Figure 149 – Optical micrograph* From left to 
right P11-9 control, P11-9:GAG 1:0.5 and  P11-
9:GAG 1:10. 

Figure 150 - Optical micrograph
*
 taken 

through polarised lenses. From left to right 
P11-9 control, P11-9:GAG 1:0.5 and P11-9:GAG 
1:10. 

 

The 1:0.5 sample was a clear self-supporting gel that did not turn to viscous liquid 

under light shaking; it also appeared stiffer and stronger to the touch than the P11-9 

control sample.  

 

The 1:2 sample was a self-supporting gel. However, at one month old the 1:2 sample 

was a cloudy gel with clear liquid phase. There was still a small amount of self-

supporting gel that had a very stretchy texture as demonstrated in Figure 151. 

                                                

* Optical micrographs taken by Anthony Glossop (Leeds University Print and Copy 
Bureau) 
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Figure 151 - Schematic of stretchy texture of 
P11-9:GAG 1:2 sample at 1 month old. 

Figure 152 - P11-9:GAG 1:10 in PBS, 1 month 
old. 

 

The 1:10 sample at one month old was a cloudy self-supporting gel that also appeared 

to have a small amount of clear liquid phase and a cloudy gel bitty phase (Figure 152). 

 

From the rheometry carried out on P11-9 in the previous chapter, a strain value of 0.5% 

was chosen to carry out the frequency sweeps. For the 1:2 sample, the frequency 

sweep was carried out on the gel part of the sample, however, there may have still 

have been some heterogeneity to the sample. The frequency sweeps are shown in 

Figure 153 and compared to that of the P11-9 control. 

 

For all samples, the elastic modulus was higher than the viscous modulus, therefore 

the samples had more solid-like than liquid-like behaviour, except for the 1:2 sample. In 

the case of the 1:2 sample, the two moduli were very similar: This may be due to the 

inhomogeneous sample and so it is difficult to draw any true conclusions about its 

behaviour. 



 

 

 

162 Self-assembling peptide and glycosaminoglycan hybrid gels 

1 10

1

10

100

1000

 control elastic modulus  control viscous modulus

  1:0.5 elastic modulus  1:0.5 viscous modulus

  1:2 elastic modulus  1:2 viscous modulus

  1:10 elastic modulus  1:10 viscous modulus

G
',
G

'' 
(P

a
)

Frequency(Hz)
 

Figure 153 – P11-9:GAG Elastic and viscous modulus vs. frequency. Starting frequency 1 Hz, end 
frequency: 20 Hz, Strain controlled: 0.5%, Temp: 25

o
C. 

 

By adding a small amount of GAG (1:0.5) to the sample, the modulus of the material 

was not significantly changed from the control. This was also the case for the 1:2 

sample, however from the visual observations alone it was clear that the material 

properties of the gel had changed. By adding a larger amount of GAG (1:10) to P11-9, 

both the elastic and viscous moduli increased suggesting a much stiffer gel. The elastic 

component increased by around 50 times suggesting a much higher density of junction 

points. The bundles captured in the TEM study that form in the higher GAG samples 

may act as such junction points. 

 

The shape of the plot of the 1:10 sample is typical of that of a gel (i.e. moduli 

independent of frequency), whereas the other samples are typical of that of a 

viscoelastic solid (i.e. viscous modulus increases with frequency). This was also 

confirmed by the phase angle measurements, where for 1:10 the angle was unaffected 

by frequency and remained at around 6.3o, whereas the 1:0.5 and 1:2 phase angles 

increased with frequency from 3-14o and 31-40o respectively. 
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4.2.2 P11-12:GAG 

 

P11-12 has an overall charge of +2 and so the peptide and negatively charged GAGs 

should interact electrostatically directly with one another forming ionic bonds.  

 

4.2.2.1 Mixing study observations 

 

Peptide:GAG ratios from 0.1 to 1:100 were investigated. At all GAG ratios self-

supporting gels were formed (Figure 154), although as the GAG concentration was 

increased the quality of the gel differed and the gels became less turbid and “bitty” over 

the mid range ratios. Once above 1:20 the gels became more turbid and bitty again 

with the 1:100 ratio being a very thick gel. The addition of a small ratio of GAG 

increased the gelation time from minutes to hours, but the addition of a GAG ratio of 

1:1 and above took the gelation time down to seconds, with gelation in a ratio of 1:20 

and above happening spontaneously upon mixing. 

 

 

Figure 154 - Samples 1 week old. From left to right P11-12 control 1:10, 1:4, 1:3 1:2, 1:1 and GAG 
control. 

   

At two to four weeks, the quality of the gels observed again differed (Figure 155) with 

the lower and mid range GAG concentrations no longer being self-supporting gels, with 

the exception of the 1:0.5 ratio, which was still a self-supporting gel. At these lower 

GAG concentrations, there was a large amount of gel-like precipitate visible on the 

sides of the walls of the vials. At the higher GAG concentrations, the self-supporting 

gels remained intact although were “bitty” with the exception of the highest 1:10 ratio. 



 

 

 

164 Self-assembling peptide and glycosaminoglycan hybrid gels 

 

Figure 155 – From left to right GAG control, 1:10, 1:4, 1:3, 1:2, 1:1, 1:0.5, 1:0.2, 1:0.1, P11-12 control. 
P11-12 control, 1:1, 1:2, 1:3, 1:4, 1:10. GAG control samples all 1 month old and 1:0.1, 1:0.2, 1:0.5 
samples 2 weeks old. 

 

The samples that were no longer self-supporting gels (1:0.1, 1:0.2, 1:1, 1:2) were 

reheated and self-supporting gels reformed on cooling, suggesting that the gels that 

were first formed were only meta-stable. After a further 2.5 months, all gels were still 

self-supporting with the reheated sample gels being less bitty than when first prepared. 

 

After eight to ten months, all samples were still self-supporting gels. The quality of the 

gel still differed with increasing GAG concentration, at the very low ratios precipitation 

was observed, whereas, at the medium ratios less precipitate was visible and the gels 

were less bitty, at the high GAG ratios the gels became much more homogenous. 

 

After a year and five months, all samples were still self-supporting gels showing 

remarkable stability.  

 

At nearly two years, all gels were still self-supporting. The midrange ratios had less 

bitty gels on the walls of the vials. The 1:100 was by far the thickest gel and showed a 

yellow colour due to the GAG (Figure 156). 

 

Figure 156 –From left to right, 1:100, 1:50, 1:20, 1:4, 1:3, 1:1, 1:0.2, 1:0.1,  P11-12 control. Samples 
1:100, 1:50 and 1:20 6.5 months old; other samples 1 year and 11 months old. 
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4.2.2.2 Transmission Electron Microscopy 

 

After approximately five and a half months, three representative samples were chosen 

to be studied by TEM. Peptide:GAG ratios of 1:0.5, 1:2 and 1:5 were compared to the 

GAG and peptide control samples. Typical images are shown in Figure 157 to Figure 

170. 

  

Figure 157 - GAG control, magnification = 
73000x, scale bar = 100nm, diluted to approx 7  
mg/ml. 

Figure 158 - GAG control, magnification = 
105000x, scale bar = 100nm, diluted to 20 μM. 
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Figure 159 - P11-12 control, 
magnification = 73000x, scale bar = 
200 nm, diluted to approx 5000 µM. 

Figure 160 - P11-12:GAG 1:0.5, 
magnification = 73000x, scale bar = 
100 nm, diluted to approx 5000 µM. 

Figure 161 - P11-12:GAG 1:0.5, 
magnification = 39000x scale bar = 
400 nm, diluted to approx 5000 µM. 

Figure 162 - P11-12:GAG 1:10, 
magnification = 73000x, scale bar = 
200 nm diluted to approx 5000 µM. 

   

 

Figure 163 - P11-12 control, 
magnification = 105000x scale bar = 
100 nm, diluted to approx 5000 µM. 

Figure 164 - P11-12:GAG 1:0.5, 
magnification = 105000x scale bar = 
100 nm, diluted to approx 5000 µM. 

Figure 165 - P11-12:GAG 1:0.5, 
magnification = 39000x scale bar = 
400 nm, no dilution. 

 

Nanotube  Fibrils 
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Figure 166 - P11-12 control,, 
magnification = 73000x, scale bar = 
200 nm diluted to approx 20 μM. 

Figure 167 - P11-12:GAG 1:2, 
magnification = 73000x, scale bar = 
200 nm, diluted to approx 20 μM. 

Figure 168 - P11-12:GAG 1:10, 
magnification = 73000x, scale bar = 
200 nm, diluted to approx 20 μM. 

 

  

  

Figure 169 - P11-12 control, 
magnification = 39000x scale bar = 
400 nm, diluted to approx  20 μM. 

Figure 170 - P11-12:GAG 1:2, 
magnification = 52000x, scale bar = 
200 nm, diluted to approx 20 μM. 

  

Helical structures 

Twist pitch 

Fibrillar bundles 
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In the P11-12 control sample diluted down to approximately 5000 µM (7 mg/ml), the 

main structures seen were nanotubes with an external diameter of 20 to 39 nm (Figure 

159, Figure 163). In the P11-12 control sample diluted down to approximately 20 μM, 

the main structures observed were again tubular structures with a width of 25 ± 2 nm 

and a twist pitch of ~165 nm, there was also a presence of helical structures with a 

twist pitch of approx 230 nm and a width of 15 to 40 nm (Figure 166 and Figure 169). 

 

In the 1:0.5 ratio sample, fibril structures were observed with a width of 15 to 30 nm 

and a background network of ribbons of width 2 to 3 nm (Figure 160, Figure 161 and 

Figure 164). There was also the presence of an amorphous aggregate structure 

(Figure 165). 

 

In the 1:2 sample, there was a background network of ribbons with an average width of 

around 4 nm with larger fibrillar bundles varying in width from 8 to 40 nm. There was 

also a presence of needle like structures with a very uniform width of 60 to 90 nm 

(Figure 167). 

 

In Figure 162, the edge of a large fibril network can be seen. Once again, the presence 

of needle like structures could be seen that varied in width between 60 and 150 nm 

(Figure 168).  

 

In the GAG control sample, the main structures seen were amorphous with no well 

defined structures (Figure 157 and Figure 158). 

 

4.2.2.3 The effect of GAG addition to P11-12 on the gel mechanical properties 

 

The rheological properties of P11-12:GAG samples were examined and compared to 

the rheological properties of P11-12 determined in Chapter 3 to establish how the 

addition of GAG affected the material properties of the gels. 
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Four GAG ratios were chosen from the above mixing study for the rheological testing: 

1:0.5, 1:2, 1:10 and 1:100. All samples prepared for the rheological testing were 

consistent in appearance with those prepared for the initial mixing study showing 

process reproducibility. 

 

The 1:0.5 sample was a cloudy self-supporting gel similar to that of P11-12 on its own 

(Figure 171). It was observed that, after the rheological experiment was carried out, the 

top cone of the rheometer could not be easily separated from the sample upon 

unloading. This suggests a sample with a strong molecular structure that is hard to pull 

apart.  

 

 

 

Figure 171 - P11-12:GAG 1:0.5, 2 months 
old. 

 

Figure 172 - P11-12:GAG 1:2 in PBS, 2 months old. 

 

The 1:2 sample was a cloudy self-supporting gel with a slightly gritty texture (Figure 

172). Once again, the rheometer struggled to rise upon unloading, suggesting a strong 

molecular structure.  

 

The 1:10 sample was a cloudy self-supporting gel (Figure 173).  It was observed that 

the gel has a very slow relaxation time, even after 10 months the gel in Figure 174 had 

not relaxed from the position it was left in after some of the gel was removed from the 

vial for testing.  

 

Figure 173 - P11-12:GAG 1:2 in PBS,  on day 
of preparation. 

 

Figure 174 - P11-12:GAG 1:2 in PBS,  
1 month 20 days old. 
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The 1:100 sample produced a yellow, very thick self-supporting gel. It was observed 

when loading the gel onto the rheometer that the gel appeared to be very stretchy and 

not brittle at all, i.e. it flowed. It was also very sticky and resisted removal from the 

spatula being used for loading. It had an almost “wallpaper paste” or caramel-like 

texture. The top cone did not easily separate from the sample on unloading: upon 

cleaning, it was observed that the surfaces seemed to be greasy.  

 

Amplitude sweeps were carried out to determine the linear viscoelastic region (LVER) 

for the 1:2 sample. From these a strain value of 0.1% was chosen for  the 1:2 sample, 

0.05% for the 1:10 sample, and 0.15% for the 1:100 sample for the frequency sweeps 

(Figure 175, Figure 176, Figure 177 and Figure 178). For the 1:0.5 sample, the strain 

value of 0.25%, deduced for P11-12 in the previous chapter, was used for the frequency 

sweep. 
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Figure 175 - P11-12:GAG 1:2 elastic and viscous 
modulus vs. shear strain. Starting shear strain 
0.01%, end shear strain: 100%, Frequency: 1 Hz, 
temp 25

o
C. 2 months old. 

Figure 176 - P11-12:GAG 1:2 elastic and viscous 
modulus vs. shear strain. Starting shear strain 
0.01%, end shear strain: 100%, Frequency: 20 
Hz, temp 25

o
C. 2 months old. 
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Figure 177 - P11-12:GAG 1:100 elastic and 
viscous modulus vs. shear strain. Starting 
shear strain 0.01%, end shear strain: 100%, 
Frequency: 1 Hz, temp 25

o
C. 6 days old. 

Figure 178 - P11-12:GAG 1:100 elastic and 
viscous modulus vs. shear strain. Starting 
shear strain 0.01%, end shear strain: 100%, 
Frequency: 20 Hz, temp 25

o
C. 6 days old. 
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The results of the frequency sweeps are presented in Figure 179. 
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Figure 179 - P11-12:GAG Elastic and viscous modulus vs. frequency. Starting frequency 1 Hz, end 
frequency: 20 Hz, Strain controlled: 0.25% (1:0.5), 0.1% (1:2), 0.05%(1:10), 0.15% (1:100), Temp: 
25

o
C. 1:0.5, 1:2 and 1:10 2 months old and 1:100 6 days old. 

 

The 1:0.5, 1:2 and 1:10 samples had similar shaped plots and so are considered first. 

In all cases, as with the P11-12 control, the elastic modulus was higher than the viscous 

modulus suggesting more solid-like than liquid-like behaviour. The shape of the plots 

showed gel-like behaviour over the frequency range studied and this was confirmed by 

the phase angles being unaffected by the frequency (1:0.5 = 6.8o, 1:2 = 7.4o and 1:10 = 

8o). The increase in the phase angle and decrease in elastic modulus as the amount of 

GAG is increased suggests that gels become weaker with increasing GAG ratios. 

 

The 1:100 sample frequency sweep was very different to the others. At low 

frequencies, the gel was more solid-like, whereas at high frequencies it was more 

liquid-like. However, from looking at the combined moduli, the stiffness of the gel 

increased with frequency. In comparison to the other samples this sample also had a 

very high phase angle that increased from 39o to 55o over the frequency range, 

suggesting more liquid-like behaviour. The shape of the plot and the increasing phase 

angle was classic viscoelastic solid behaviour. 

 



 

 

 

172 
Self-assembling peptide and glycosaminoglycan hybrid gels 

4.2.3 P11-4:GAG 

 

4.2.3.1  Mixing study observations 

 

Peptide:GAG ratios from 1:2 to 1:10 were investigated. At all GAG ratios, self-

supporting gels were formed. However, as the GAG concentration was increased, the 

quality of the gel differed and the gels became cloudier in appearance. The addition of 

GAG reduced the samples’ gelation time from hours to seconds. 

 

Figure 180 - Samples 2 days old. From left to right, P11-4:GAG 1:10, 1:2 and P11-4 control. 

 

After two days, the gels were still self-supporting and did not appear to have changed 

since preparation. There was much more gel visible on the walls of the vial for          

P11-4:GAG 1:2 and 1:10 than the control. This was thought to be due to the having to 

sonicate and heat during preparation to remove the bubbles formed upon mixing with 

the GAG (Figure 180). 

 

At 10 and 20 days, the sample again appeared unchanged from the day of preparation 

with all gels remaining self-supporting. An increase in GAG concentration led to a more 

opaque gel.  

 

4.2.3.2 The effect of GAG addition to P11-4 on the gel mechanical properties 

 

The rheological properties of P11-4:GAG samples were examined and compared to 

those of P11-4 determined in Chapter 3, to establish how the addition of GAG affects 

the material properties of P11-4 gels. 
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The two GAG ratios (1:2, 1:10) prepared for the above mixing study were used for the 

rheological testing. 

 

The 1:2 sample was a very cloudy/white self-supporting gel that differed from the P11-4 

control sample in that it appeared to be more liquid-like, i.e. runnier. The 1:10 sample 

formed a very white, almost opaque self-supporting gel with a more solid consistency 

than that of the 1:2 sample. It was observed upon loading that there were still some 

bubbles present in the sample from preparation; however, these were attempted to be 

removed before testing commenced. 

 

First of all, amplitude sweeps were carried out at two frequencies to determine the 

LVER (Figure 181, Figure 182, Figure 183 and Figure 184). 
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Figure 181 - P11-4:GAG 1:2 elastic and 
viscous modulus vs. shear strain. Starting 
shear strain 0.01%, end shear strain: 100%, 
Frequency: 1 Hz, Temp 25

o
C. 20 days old. 

Figure 182 - P11-4:GAG 1:2 elastic and viscous 
modulus vs. shear strain. Starting shear strain 
0.01%, end shear strain: 100%, Frequency: 20 Hz, 
Temp 25

o
C. 20 days old. 
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Figure 183 - P11-4:GAG 1:10 elastic and 
viscous modulus vs. shear strain. Starting 
shear strain 0.01%, end shear strain: 100%, 
Frequency: 1 Hz, Temp 25

o
C. 20 days old. 

Figure 184 - P11-4:GAG 1:10 elastic and viscous 
modulus vs. shear strain. Starting shear strain 
0.01%, end shear strain: 100%, Frequency: 20 Hz, 
Temp 25

o
C. 20 days old. 
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By comparing the amplitude sweeps for both samples it can be seen that the 1:2 gel 

has a slightly greater LVER indicating the gel could undergo higher strains before there 

was a breakdown in molecular structure, i.e. a “stretchier” gel.  

 

From the amplitude sweeps above, a strain value of 0.175% was chosen within the 

LVER to carry out the frequency sweep for the 1:2 sample and 0.04% for the 1:10 

sample. The frequency sweeps for these two samples are compared to the P11-4 

control in Figure 185. 
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Figure 185 – P11-4:GAG and viscous modulus vs. frequency. Starting frequency 1Hz, end 
frequency: 20 Hz, Strain controlled: 0.15 % (control), 0.175% (1:2) and 0.04% (1:10). Temp: 25

o
C. 20 

days old. 

 

As with P11-4 on its own, for both GAG ratios, the elastic modulus was higher than the 

viscous modulus, suggesting the sample had more solid than liquid-like behaviour. The 

shape of the plot is typical of that of a gel although the increase of the phase angle 

from 7-14o for 1:2 and 9-13o for 1:10 suggests viscoelastic solid behaviour.  

 

The addition of a small amount of GAG (1:2) decreased the stiffness of the hydrogel 

formed. However, as the GAG concentration was increased further (1:10), the hybrid 

gels became stiffer than gels of the peptide alone.  
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4.2.4 P11-8:GAG 

 

4.2.4.1 Mixing study observations 

 

Peptide:GAG ratios from 1:2 to 1:10 were investigated. The addition of GAG to P11-8 

led to faster gelation, with self-supporting gels forming on the day of preparation unlike 

the control sample which took days (Figure 186). 

 

Figure 186 – Day of preparation. From left to right P11-8:GAG 1:10, 1:2 and P11-8 control. 

 

After five days, all gels were cloudy self-supporting gels with the quality of the gel 

differing with an increase in GAG ratio. As the GAG concentration increased, the gels 

became less turbid and ‘bitty’. 

 

At 13 days, differences in the gel quality became even more obvious. All were still self-

supporting gels, but the control sample was not as self-supporting as the rest as was 

observed by the gel starting to slip down the walls of the sample vial.  

 

Again, at 40 days, all samples were still gels but with clear differences in their 

appearances. 

 

4.2.4.2 The effect of GAG addition to P11-8 on the gel mechanical properties 

 

The rheological properties of P11-8:GAG samples were examined and compared to 

those of P11-8 determined in Chapter 3 to establish how the addition of GAG affects the 

material properties of P11-8 gels. 
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The two GAG ratios (1:2 and 1:10) prepared for the above mixing study were used for 

the rheological testing. 

 

The 1:2 sample was a cloudy self-supporting gel that appeared more similar to a P11-12 

gel than P11-9 (Figure 187). It was observed that upon loading, the gel seemed to split 

into a liquid and gel phase as with the control. It was also noted that when trying to 

unload the sample from the machine, the top cone of the rheometer did not easily 

separate from the sample, suggesting a strong molecular structure that was difficult pull 

apart. Also when the gel was wiped off the rheometer with tissue, the gel formed a 

substance on the tissue, which looked and felt like candle wax. 

  

Figure 187 - P11-8:GAG 1:2 in PBS, 1.5 months old, on loading onto rheometer.  

 

The 1:10 sample appeared much more liquid-like than the 1:2 gel and more similar to 

P11-9 gel samples than, for example, a stiff P11-12 gel. 

 

First, amplitude sweeps were carried out at two frequencies to determine the LVER 

(Figure 188, Figure 189, Figure 190 and Figure 191). 
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Figure 188 - P11-8:GAG 1:2 elastic and viscous 
modulus vs. shear strain. Starting shear strain 
0.01%, end shear strain: 100%, Frequency: 1Hz, 
Temp 25

o
C. 1.5 months old. 

Figure 189 - P11-8:GAG 1:2 elastic and viscous 
modulus vs. shear strain. Starting shear strain 
0.01%, end shear strain: 100%, Frequency: 20 
Hz, Temp 25

o
C. 1.5 months old. 
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Figure 190 - P11-8:GAG 1:10 elastic and viscous 
modulus vs. shear strain. Starting shear strain 
0.01%, end shear strain: 100%, Frequency: 1Hz, 
Temp 25

o
C. 1.5 months old. 

Figure 191 - P11-8:GAG 1:10 elastic and viscous 
modulus vs. shear strain. Starting shear strain 
0.01%, end shear strain: 100%, Frequency: 20 
Hz, Temp 25

o
C. 1.5 months old. 

 

By comparing the amplitude sweeps for both samples, it was observed that the 1:10 

sample had a slightly greater LVER indicating a stretchier gel. From the amplitude 

sweeps above, a strain value of 0.1% was chosen within the LVER for both the 

samples to carry out the frequency sweeps. The resulting frequency sweeps for these 

two samples are compared to the P11-8 control in Figure 192. 
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Figure 192 - P11-8:GAG elastic and viscous modulus vs. frequency. Starting frequency 1 Hz, end 
frequency: 20 Hz, Strain controlled: 0.1% (control) 0.1% (1:2 and 1:10), Temp: 25

o
C. 1.5 months old. 

 

Once more, both the frequency sweeps showed the gels had solid-like behaviour with 

higher elastic than viscous modulus. The addition of a small amount of GAG (1:2) 
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caused both moduli to greatly increase by over an order of magnitude. The elastic 

modulus for this peptide/GAG combination was the highest determined of those tested 

at nearly 50 kPa. The shape of this plot was typical for that of a gel and it had more 

solid-like than liquid-like behaviour with an average phase angle of ~7o. However, as 

the GAG concentration was increased further (1:10), the gels actually became weaker 

than the peptide gel on its own. The increased viscosity was not only shown in the 

decreased moduli of the 1:10 sample, but also in the increase of its phase angle (~9o) 

as well, again showing less solid-like behaviour (Figure 192). 

 

4.2.5 P11-13 + P11-14:GAG 

 

From the previous chapter it was discovered that this complementary pair did not form 

very stiff gels. Nonetheless, for some cases discussed above the addition of GAG to a 

peptide increased gel stiffness and therefore it was anticipated that this might be the 

case here too. 

 

4.2.5.1 P11-13:GAG+P11-14 Mixing study observations 

 

P11-13 was mixed with GAG ratios from 1:0.1 to 1:20, left overnight and then P11-14 in 

a molar ratio to P11-13 was added to the peptide GAG mix, as described in section 

2.8.1. Once again, the presence of the GAG chains did not inhibit self-assembly with 

self-supporting gels observed at all GAG ratios. At preparation and after a few days, all 

samples were clear self-supporting gels, except for the 1:10 sample, which was slightly 

cloudy. All gels seemed less turbid and bitty than seen with P11-9 and P11-12.  

 

After a few weeks, the quality of the gels differed with increasing GAG concentrations 

and from first observed. At low to medium GAG ratios, the gels were turbid and upon 

light shearing and/or vortexing easily broke down into “bitty” viscous liquids. By 

contrast, upon vortexing and heating, the P11-13+14 control did not break down, 

suggesting that a low concentration of the GAG chains diminished the gel properties. 

At the highest ratio of 1:10 the sample was no longer a self-supporting gel and instead 

was a cloudy liquid with precipitate on the walls.  Interestingly, the 1:5 ratio was still a 
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self-supporting gel and, much like the P11-13+14 control, did not break down upon 

vortexing or heating, therefore suggesting that there is an optimum GAG concentration 

to produce the best gel (Figure 193). 

 

Figure 193 - 19 days old. From left to right P11-13/14:GAG 1:10, 1:5, 1:2, 1:1, 1:0.1 and P11-13/14 
control. 

 

After a month, the presence of the low GAG concentrations still diminished the gel 

properties when compared to the control: the gels were very bitty in nature and were 

only found on the walls of the vials. The 1:5 sample was still a clear self-supporting gel, 

however. After 2 weeks, the 1:20 sample was also still a self-supporting gel.  

 

Figure 194 – 6 months old. From left to right P11-13/14:GAG 1:20, 1:10, 1:5, 1:2, 1:1, 1:0.1 and P11-
13/14 control.  

 

After 6 months, the quality of the majority of the gels had greatly decreased. At the 

lower GAG ratios the gels were inhomogeneous, with a liquid phase and bitty gel 

particles covering the vial walls. The 1:5 ratio was still a self-supporting gel, however, 

there was a precipitate present and upon shearing it became viscous. The 1:10 ratio 

sample was similar to that of the lower GAG ratios and the highest 1:20 ratio was 

similar to that of the 1:5 ratio sample. The control sample was still a self-supporting gel 

that was not broken apart upon shearing and was not birefringent (Figure 194). 
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At the 6 month time point, all samples were heated, vortexed and then cooled again, 

resulting in cloudy self-supporting gels once more. At 10 months, all samples except for 

the 1:20 ratio were self-supporting gels with the control sample being the most 

homogeneous. The rest of the samples had bitty gel particulates covering the vial 

walls. The 1:20 ratio had some gel particles, however, a liquid phase was also present.  

 

Figure 195 - 17 months old. From left to right P11-13/14:GAG 1:20, 1:10, 1:5, 1:2, 1:1 and P11-13/14 
control. All samples heated, vortexed and then cooled after 6 months. 

 

After 17 months, the appearance of the samples was similar to that at 10 months: all 

were still self-supporting other than the 1:20 ratio, which again had a liquid and bitty gel 

phase (Figure 195). 

 

4.2.5.2 The effect of GAG addition to P11-13/14 on the gel mechanical properties 

 

The rheological properties of P11-13/14:GAG samples were examined and compared to 

those of P11-13/14 determined in Chapter 3 to establish how the addition of GAG 

affects the material properties of P11-13/14 gels. 

 

The two GAG ratios (1:2 and 1:10) prepared for the above mixing study were used for 

the rheological testing. However, the 1:10 sample had two phases: a clear liquid phase 

and cloudy viscous liquid gel phase, which was very hard to pull apart. The 1:10 

sample was very different to the P11-13+14 control and, due to the two phases, it was 

difficult to obtain consistent rheological data as the mechanical properties of the bulk 

material was dependent on how much of each phase was tested (Figure 196). 
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Figure 196 - P11-13/14:GAG 1:10 2 weeks old. 

 

The 1:2 sample was a slightly cloudy, self-supporting gel that appeared very similar to 

the control sample and so the strain conditions of 3% used for the control were also 

used in the frequency sweep for this sample (Figure 197). 

 

The 1:2 sample, like the control, had a higher elastic than viscous modulus, and 

therefore had more solid-like than liquid-like behaviour. It behaved like a viscoelastic 

solid over the frequency range studied because the phase angle tended towards 0o at 

rest (17-30o). This means that over long timescales at low frequencies the sample was 

more liquid-like, but its stiffness increased to more solid-like over short timescales at 

high frequencies. 
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Figure 197 - P11-13/14:GAG elastic and viscous modulus vs. frequency. Starting frequency 1Hz, end 
frequency: 20 Hz, Strain controlled: 3%, Temp: 25

o
C. 2 weeks old. 
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4.2.6 P11-14:GAG+P11-13 mixing study observations 

 

From the initial mixing studies of GAGs with P11-9 and P11-12, it was found that the best 

resulting gels were formed by mixing P11-12 with the GAG. This may be due to 

favourable electrostatic interactions of the positively charged P11-12 with the negatively 

charged GAG. Therefore, to try to mimic this with the complementary peptides, the 

GAG was mixed with the positive P11-14 in the monomeric state, and then P11-13 was 

added as described in section 2.8.1.  

 

P11-14 was mixed with GAG ratios from 1:1 to 1:20, left overnight and then P11-13 in an 

equimolar ratio to P11-14 was added to the peptide GAG mix. Again, the presence of 

the GAG chains did not inhibit self-assembly because self-supporting gels were seen at 

all ratios. However, as the GAG concentration was increased the gel quality differed 

and became milkier (Figure 198). At a ratio of 1:10, the GAG actually acted as a trigger 

to self-assembly and a gel was formed even before P11-13 was mixed in. With the 

presence of the GAG chains, gel formation post P11-13 addition was not as 

spontaneous as was the case with the control, the gel formed within seconds only upon 

vortexing and for all samples, further shearing resulted in a viscous liquid, which was 

again not the case with the control sample. 

  

Figure 198 – Day of preparation. From left to 
right P11-14:GAG+P11-13 1:20, 1:10, 1:5 and 
1:1. 

Figure 199 - 9 months old. From left to right 
P11-14:GAG+P11-13 1:20, 1:10, 1:5, 1:1 and P11-
13/14 control. 

 

Figure 200 – 1 year and 3.5 months old. From 
left to right P11-14:GAG+P11-13 1:20, 1:10, 1:5, 
1:1 and P11-13/14 control. 
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After nearly two weeks, all the samples remained as self-supporting gels and were 

highly birefringent. With the lower GAG concentrations (1:1 and 1:5) the gels did not 

break apart upon vortexing, whereas with the higher (1:10 and 1:20) concentrations 

upon vortexing the gels were no longer self-supporting. 

 

After five months, the lower GAG ratios were still self-supporting with the 1:5 ratio 

providing the best quality gel. As the GAG concentration was increased, the turbidity of 

the gel increased. 

 

After nine months, the 1:10 ratio was no longer a self-supporting gel but was a liquid 

with some gel precipitate instead. The 1:20 ratio had some self-supporting gel and 

some liquid phase (Figure 199). 

 

After approximately 16 months, the control and 1:1 ratios were unchanged, i.e. they 

were self-supporting gels, although the control was cloudier. The 1:5 ratio was a liquid 

with some precipitate, whereas the 1:10 was in two phases: one a liquid and one a self-

supporting gel. Interestingly, the 1:20 sample had become a self-supporting gel once 

more (Figure 200). 

 

4.2.6.1 The effect of GAG addition to P11-14/13 on the gel mechanical 

properties  

 

The rheological properties of P11-14/13:GAG samples were examined and compared to 

those of P11-14/13 determined in Chapter 3 to establish how the addition of GAG 

affects the material properties of P11-14/13  gels. 

 

Two GAG ratios (1:2 and 1:10) were chosen from the above mixing study for the 

rheological testing. The new samples were consistent with those prepared above, 

showing good reproducibility in the process.  
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The 1:2 ratio produced a clear, self-supporting gel with a stretchy texture that seemed 

to flow. The 1:10 sample was very similar to that of P11-13:GAG+14 control in that it 

had two phases: a thick white gel inside a clear liquid phase. The gel was not self-

supporting but was very stretching with an ability to flow. The rheometry was carried 

out on this gel phase. 

 

First of all, amplitude sweeps were carried out at two frequencies to determine the 

LVER (Figure 201, Figure 202, Figure 203 and Figure 204). 

 

By comparing the amplitude sweeps for both samples, it was observed that the 1:2 

sample had a slightly greater LVER, indicating that higher strains were needed for a 

breakdown in molecular structure.  

 

From the amplitude sweeps above, a strain value of 0.6% for the 1:2 ratio and 0.7% for 

the 1:10 ratio were chosen within the LVER to carry out the frequency sweeps. The 

frequency sweeps were then compared to that of the control (Figure 205). 
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Figure 201 - P11-14:GAG+P11-13 1:2 elastic and 
viscous modulus vs. shear strain. Starting shear 
strain 0.01%, end shear strain: 100%, 
Frequency: 1Hz, Temp 25

o
C. 2 days old. 

Figure 202 - P11-14:GAG+P11-13 1:2 elastic and 
viscous modulus vs. shear strain. Starting 
shear strain 0.01%, end shear strain: 100%, 
Frequency: 20 Hz, Temp 25

o
C. 2 days old. 
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Figure 203 - P11-14:GAG+P11-13 1:10 elastic and 
viscous modulus vs. shear strain. Starting shear 
strain 0.01%, end shear strain: 100%, 
Frequency: 1 Hz, Temp 25

o
C. 2 days old. 

Figure 204 - P11-14:GAG+P11-13 1:10 elastic and 
viscous modulus vs. shear strain. Starting 
shear strain 0.01%, end shear strain: 100%, 
Frequency: 20 Hz, Temp 25

o
C. 2 days old. 

 

For both ratios, the elastic component was higher than the viscous component 

suggesting more solid than liquid-like behaviour as was the case with the control. Both 

samples had viscoelastic solid-like behaviour over the frequency range studied as the 

phase angle tended towards 0o at rest (1:2 phase angle = 14-27o and 1:10 phase 

angle = 9-16o). With the addition of a small amount of GAG, the moduli decreased 

resulting in a weaker gel. However, with a larger addition of GAG, the moduli were 

similar to that of the control. For both samples at low frequencies, the samples were 

more liquid-like, increasing their stiffness to more solid-like at higher frequencies. 
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Figure 205 - P11-14:GAG+P11-13 elastic and viscous modulus vs. frequency. Starting frequency 1 
Hz, end frequency: 20 Hz, Strain controlled: 3% (control), 0.6% (1:2) and 0.7% (1:10), Temp: 25

o
C. 2 

days old. 
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4.2.7 P11-13/14 then GAG 1:10 

 

In order to gain a full understanding of the effect of adding GAG to P11-13 and P11-14, 

the final stage was to add the GAG to an already prepared P11-13 and P11-14 gel.  

 

The P11-13/14 gel was prepared and left overnight (Figure 206). It was then sonicated 

and vortexed to attempt to break the gel apart. After 15 minutes of sonicating the gel 

was still self-supporting, but after around 30 seconds of vortexing it became a viscous 

liquid briefly before returning to the gel state (Figure 207). After the GAG was added, 

further vortexing was carried out to mix the GAG. Following a minute of vortexing, the 

clear gel turned into a cloudy viscous liquid (Figure 208). The sample was then left for 

three days, and was still a viscous liquid; however, at six days the sample was a cloudy 

self-supporting gel (Figure 209). After 25 days, the gel was still self-supporting; 

however, there was a very small amount of liquid phase present. At 57 days, the 

sample was still a cloudy self-supporting gel. 

  

 

 

 

Figure 206 – 
P11-13/14 gel 
on day after 
preparation. 

Figure 207 - 
P11-13/14 gel 
after 
sonication. 

Figure 208 - P11-13/14 gel 
after addition of GAG. 

Figure 209 - 
P11-13/14:GAG 
gel 6 days old. 

 

4.2.8 P11-28+P11-29:GAG 

 

To investigate the effect of adding GAG to an overall positively charged complementary 

peptide pair, the complementary peptides P11-28 and P11-29 were used.  As with P11-

13/14, three different process methods were used. 

 



 

 

 

187 
Self-assembling peptide and glycosaminoglycan hybrid gels 

4.2.8.1 P11-28:GAG+P11-29 Mixing study observations 

 

P11-28 was mixed with GAG ratios from 1:0.5 to 1:100, left overnight and then P11-29 in 

a equimolar ratio to P11-28 was added to the peptide GAG mix. The addition of GAG to 

P11-28 resulted in gelation at very high GAG concentrations (1:100) (Figure 210). After 

24 hours, all other ratios were still liquids except for the 1:100, which remained a self-

supporting gel. 

 

The addition of P11-29 to the P11-28:GAG samples led to gelation in all cases with the 

appearance of the gel becoming cloudier with increased GAG concentrations. The gels 

formed were self-supporting but all, except the 1:100 ratio, were weak gels and would 

flow down the sample vial within an observable time frame (Figure 211). 

 

Figure 210 – P11-28:GAG on day of 
preparation. From left to right 1:100, 1:10, 1:5, 
1:2, 1:0.5, control. 

 

 

Figure 211 - P11-28:GAG + P11-29 on day of 
preparation. From left to right 1:100, 1:10, 1:5, 
1:2, 1:0.5, control. 

 

 
 

Figure 212 - P11-28:GAG + P11-29 40 days old. 
From left to right 1:100, 1:10, 1:5, 1:2, 1:0.5, 
control. 

Figure 213 - P11-28:GAG + P11-29 1:100 81 
days old. 

 

At 20 days, the gel quality greatly differed with GAG concentration. The control sample 

was still a self-supporting gel, although some cloudy precipitate was present. At low to 

medium GAG ratios, the samples were no longer self-supporting gels, they were all 

liquids with some gel precipitate present on the vial walls. The 1:100 ratio, however, 
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was still a gel, although it was inhomogeneous in colour, with some of the gel clearer 

than other parts.  

 

After 40 days, the only sample left that was still a gel was the 1:100 ratio, suggesting 

that all the other gels that were formed were only metastable (Figure 212). 

 

Even after vortexing, and then vortexing and heating, the samples did not reform gels. 

The 1:100 ratio sample, however, remained a gel even after 80 days (Figure 213), 

suggesting that at very high GAG concentrations the GAG helped to stabilise the gel 

formed.  

 

4.2.8.2 The effect of GAG addition to P11-28/29 on the gel mechanical 

properties.  

 

The rheological properties P11-28/29:GAG samples were examined and compared to 

those of P11-28/29 determined in Chapter 3 to establish how the addition of GAG 

affects the material properties of P11-28/29 gels. 

 

Two GAG ratios (1:2 and 1:10) were chosen from the above mixing study for the 

rheological testing. The new samples were consistent with those prepared above 

showing good reproducibility in the process.  

 

The 1:2 ratio produced a cloudy self-supporting gel with a small amount of clear liquid 

phase. It had a slightly gritty texture and was not stretchy (Figure 214). 
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Figure 214 – P1128:GAG + 
P11-29 1:2 4 days old. 

a.)     b.)  

Figure 215 – P1128:GAG + P11-29 1:10 a.) on day of 
preparation b.) 4 days old. 

 

The 1:10 sample started as a cloudy self-supporting gel, but after 4 days it turned into a 

liquid with some precipitate, therefore rheological testing was not carried out on the 

sample (Figure 215). 

 

First, an amplitude sweep was carried out at two frequencies to determine the LVER 

(Figure 216 and Figure 217). 
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Figure 216 - P11-28:GAG+P11-29 1:2 elastic 
and viscous modulus vs. shear strain. 
Starting shear strain 0.01%, end shear 
strain: 100%, Frequency: 1Hz, Temp 25

o
C. 4 

days old. 

Figure 217 - P11-28:GAG+P11-29 1:2 elastic and 
viscous modulus vs. shear strain. Starting 
shear strain 0.01%, end shear strain: 100%, 
Frequency: 20 Hz, Temp 25

o
C. 4 days old. 

 

From the amplitude sweeps above, a strain value of 0.14% was chosen within the 

LVER to carry out the frequency sweep. The frequency sweep was then compared to 

that of the control (Figure 218). 
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Figure 218 - P11-28:GAG+P11-29 elastic and viscous modulus vs. frequency. Starting frequency 1 
Hz, end frequency: 20 Hz, Strain controlled: 0.25% (control), 0.14% (1:2), Temp: 25

o
C. 4 days old. 

 

From the rheological data, it was observed that the 1:2 ratio had a higher elastic than 

viscous modulus, therefore it had more solid-like than liquid-like behaviour as was the 

case with the control.  The phase angle for the 1:2 sample was independent of 

frequency (6o) and so had the material behaviour of a gel. The addition of a small 

amount of GAG to the sample increased the moduli of the gel slightly i.e. the gel 

became marginally stiffer. 

 

4.2.9  P11-29:GAG+P11-28 Mixing study observations 

 

P11-29 was mixed with GAG ratios from 1:2 to 1:50, left overnight and then P11-28 in a 

equimolar ratio to P11-29 was added to the peptide GAG mix. On the day of 

preparation, the addition of GAG to P11-29 did not result in gelation at any ratio. 

However, after 24 hours the 1:50 ratio had formed a self-supporting gel (Figure 219). 
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Figure 219 - P11-29:GAG day after preparation. 
From left to right 1:50, 1:10, 1:2 and control 

Figure 220 - P11-29:GAG+P11-28 day of 
preparation. From left to right 1:50, 1:10, 1:2 
and control 

 
 

Figure 221 - P11-29:GAG+P11-28 15 days old. 
From left to right 1:50, 1:10, 1:2 and control. 

Figure 222 - P11-29:GAG+P11-28 41 days old. 
From left to right 1:50, 1:10, 1:2 and control. 

 

Upon addition of P11-28 to the samples, they all became self-supporting gels. The 

cloudiness of the gels increased with increasing GAG concentration (Figure 220). 

  

After six days, all samples appeared as they were on the day of preparation with the 

transparency of the samples decreasing with increasing GAG. After 15 days, the gel 

quality differed with differing GAG concentrations, the lowest GAG ratio (1:2) was no 

longer a self-supporting gel and was instead a liquid with some gel precipitate. The 

higher GAG ratios however managed to maintain their gel integrity (Figure 221). 

 

After 40 days, the gel quality of all the samples had decreased. The control was no 

longer clear, but was a cloudy gel: it was still self-supporting, but only weakly as can be 

observed in Figure 222, where it was flowing down the wall of the vial. All GAG ratios 

were no longer self-supporting gels, but liquids with gel precipitate: the 1:50 sample still 

had a small amount of self-supporting gel present (Figure 222). 
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4.2.9.1 The effect of GAG addition to P11-13/14 on the gel mechanical 

properties 

 

The rheological properties P11-29/28:GAG samples were examined and compared to 

those of P11-29/28 determined in Chapter 3 to establish how the addition of GAG 

affects the material properties of P11- P11-29/28 gels. 

 

Two GAG ratios (1:2 and 1:10) were chosen from the above mixing study for the 

rheological testing. The new samples were consistent with those prepared above 

showing good reproducibility in the process.  

 

The 1:2 ratio produced a cloudy self-supporting gel with some clear liquid phase 

(Figure 223). 

 a.)  b.)  

Figure 223 – P11-29:GAG + P11-28 1:2 
4 days old. 

Figure 224 - P1129:GAG + P11-28 1:10 a.) on day of 
preparation b.) 4 days old. 

 

As in the case of the P11-28:GAG + P11-29 1:2 sample, the P11-29:GAG + P11-28 1:10 

started as a cloudy self-supporting gel, but after 4 days it was a liquid with some 

precipitate, therefore rheological testing was not carried out on the sample. (Figure 

224) 

 

First, an amplitude sweep was carried out at two frequencies to determine the LVER 

(Figure 225 and Figure 226). 
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Figure 225 - P11-29:GAG+P11-28 1:2 elastic and 
viscous modulus vs. shear strain. Starting shear 
strain 0.01%, end shear strain: 100%, Frequency: 
1 Hz, Temp 25

o
C. 4 days old. 

Figure 226 - P11-29:GAG+P11-28 1:2 elastic and 
viscous modulus vs. shear strain. Starting 
shear strain 0.01%, end shear strain: 100%, 
Frequency: 20 Hz, Temp 25

o
C. 4 days old. 

 

From the amplitude sweeps above, a strain value of 0.16% was chosen within the 

LVER to carry out the frequency sweeps. The frequency sweep was then compared to 

that of the control (Figure 227). 

 

From the rheological data it was observed that the 1:2 sample had a higher elastic than 

viscous modulus, therefore had more solid-like than liquid-like behaviour, just as for the 

control and the P11-28:GAG+P1129 1:2 sample. The phase angle of the 1:2 sample was 

independent of frequency (6o) and so had the material behaviour of a gel. The addition 

of a small amount of GAG to the sample slightly increased the moduli of the gel i.e. the 

gel became stiffer, even more so than when the GAG was added to the P11-28 peptide 

first. 
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Figure 227 - P11-29:GAG+P11-28 elastic and viscous modulus vs. frequency. Starting frequency 1 
Hz, end frequency: 20 Hz, Strain controlled: 0.25% (control), 0.16% (1:2), Temp: 25

o
C. 4 days old. 

 

4.2.10 P11-28/29 then GAG 1:10 

 

In order to gain a full understanding of the effect of adding GAG to P11-28 and P11-29, 

the final stage was to add the GAG to an already prepared P11-28 and P11-29 gel.  

 

The P11-28/29 gel was prepared and left overnight (Figure 228). It was then sonicated 

and vortexed to attempt to break the gel apart: the gel was still self-supporting; 

however, there were areas of cloudiness visible in the clear gel (Figure 229). After the 

GAG was added, further vortexing was carried out to mix the GAG. After three minutes 

of vortexing, the clear gel turned into a cloudy viscous liquid that became a self-

supporting gel once more within seconds of ceasing vortexing (Figure 230). 
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Figure 228 –P11-28/29 
gel on day of 
preparation. 

 

Figure 229 - P11-28/29 
gel after sonication to 
break gel apart. 

 

Figure 230 - P11-28/29 
after the addition of 
GAG on day of 
preparation. 

Figure 231 - P11-
28/29:GAG 6 days 
old. 

 

After six days, the sample was still a self-supporting gel (Figure 231). Even after 57 

days, the gel was still self-supporting; therefore this method of preparation led to much 

more stable gels than mixing the GAG with one of the peptides first before mixing with 

the other.  

 

4.2.10.1 The effect of GAG addition to P11-28/29 on the gel mechanical 

properties 

 

The sample prepared for the rheological testing was once again a cloudy self-

supporting gel as above, suggesting good reproducibility in the process (Figure 232). 

 

Figure 232 - P11-28/29:GAG 1:10 in PBS 5 days old. 

 

An amplitude sweep was carried out at two frequencies to determine the LVER (Figure 

233 and Figure 234). 
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Figure 233 - P11-28/29:GAG 1:10 elastic and 
viscous modulus vs. shear strain. Starting shear 
strain 0.01%, end shear strain: 100%, Frequency: 
1Hz, Temp 25

o
C. 5 days old. 

Figure 234 - P11-28/29:GAG 1:10 elastic and 
viscous modulus vs. shear strain. Starting 
shear strain 0.01%, end shear strain: 100%, 
Frequency: 20 Hz, Temp 25

o
C. 5 days old. 

 

From the amplitude sweeps, a strain value of 0.15% was chosen within the LVER to 

carry out the frequency sweep. The frequency sweep was then compared to that of the 

control (Figure 235). 
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Figure 235 - P11-28/29:GAG 1:10 elastic and viscous modulus vs. frequency. Starting frequency 1 
Hz, end frequency: 20 Hz, Strain controlled: 0.25% (control), 0.15% (1:10), Temp: 25

o
C. 5 days old. 

 

As with the other P11-28/29:GAG combinations, this sample had a higher elastic than 

viscous modulus and so was more solid-like than liquid-like. The shape of the plot was 
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typical of that of gel behaviour, which was also confirmed by an average phase angle 

of 7.9o, which was unaffected by frequency. The moduli were lower than that of the 

control for the P11-28/29:GAG 1:10 sample, suggesting a weaker gel than the control. 

 

4.3 Discussion 

 

From the evidence gathered so far, it is clear that there is an interaction between the 

GAG chains and the peptides because an increase in the GAG concentration affects 

not only the macroscopic properties of the gels formed, but also their microscopic 

structures.  

 

The presence of a large amount of GAG does not inhibit self-assembly of the P11 

peptides studied here and in some cases it actually enhanced rather than disrupted it, 

offering a trigger for gelation. Previous studies by Fraser et al. and Gelman and 

Blackwell have shown that GAGs can facilitate fibril formation and or stabilize 

aggregates of other β-sheet forming synthetic peptides.227,228 In particular, the presence 

of chondroitin sulphates has been found to accelerate random coil to β-sheet 

transitions as well as prompting morphological changes such as extensive lateral 

aggregation leading to the formation of large bundles and precipitation of the 

fibrils.229,230 

 

The gelation kinetics of all the peptides in this work were altered depending on the 

GAG ratio; for example, the addition of GAG to P11-8 decreased the gelation time from 

days to seconds. P11-9 and P11-12 both had their gelation times reduced from minutes 

to seconds and even spontaneous gelation was seen in the case of P11-12 at very high 

GAG ratios. However, with the complementary peptides, the gelation kinetics were 

slowed with gelation times increasing, for example from spontaneous to days with     

P11-13/14 then GAG addition. 
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A modification of viscous moduli, elastic moduli and the resultant lower limit between 

two nearest entanglements, known as j values, is observed upon GAG addition to the 

peptides as summarised in Table 18. 

 

For the negative peptides, all samples had a higher elastic modulus than the viscous 

suggesting solid-like behaviour (Figure 236). With P11-4 and P11-13/14 (not dependant 

on order of addition), an addition of a small amount of GAG (1:2) led to a decrease in 

both elastic and viscous modulus suggesting that the peptide alone resulted in a stiffer 

gel and therefore has a higher number of junction points. For P11-9, the moduli for the 

1:2 ratio and the control was similar, however, the 1:2 sample was stretchier. For P11-4 

and P11-9, an addition of a large amount of GAG (1:10) resulted in an increase in the 

elastic and viscous moduli when compared to the control, suggesting a stiffer gel with a 

larger number of junction points. For P11-14:GAG+P11-13, a large addition of GAG 

(1:10) resulted in moduli similar to that of the control.  
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Figure 236 - Elastic and viscous modulus at 2 Hz (walking frequency) for the negative peptides. 
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Table 18 - Summary of all peptide and peptide:GAG rheological data. 

 

Peptide:GAG 
G’ 

(2 Hz) 
/Pa 

G’’ 
(2 Hz) 

/Pa 

G’N
o
 

/Pa 
Phase 

angle /
o
 

Behaviour 
from plot 

shape 
j /nm 

P11-4 control 1065 205.1 - 8.7-17.2 
Visco-elastic 

solid 
- 

P11-4 1:2 54.5 8.8 - 7-14 
Visco-elastic 

solid 
- 

P11-4 1:10 3105 551.4 - 9-13 
Visco-elastic 

solid 
- 

P11-9 control 7.8 4.9 13.3 32.4 Gel 85.2 

P11-9 1:0.5 8.2 4.8 - 3 - 14 
Visco-elastic 

solid 
- 

P11-9 1:2 5.8 6.2 - 31-40 
Visco-elastic 

solid 
- 

P11-9 1:10 366.4 32.9 379.4 6.3 Gel 27.9 

P11-8 control 4881 552 5221 7.6 Gel 11.6 

P11-8 1:2 42350 4931 45369 7 Gel 5.7 

P11-8 1:10 201 28 229 9.2 Gel 33 

P11-12 control 20510 3067 22285 9 Gel 7.17 

P11-12 1:0.5 21600 2626 22874 6.8 Gel 7.11 

P11-12 1:2 13960 1895 15463 7.4 Gel 8.1 

P11-12 1:10 11320 1407 12195 8 Gel 8.77 

P11-12 1:100 2471 2435  39-55 Unkown - 

P11-13/14 
control 

26.8 6.8 - 11-23 
Visco-elastic 

solid 
- 

P11-13:GAG 
+P11-14 1:2 

14.9 5.3 - 17-30 
Visco-elastic 

solid 
- 

P11-14:GAG 
+P11-13 1:2 

13.7 4.3 - 14-27 
Visco-elastic 

solid 
- 

P11-14:GAG 
+P11-13 1:10 

26.9 5.4 - 9-16 
Visco-elastic 

solid 
- 

P11-28/29 
control 

25980 2864 27302 6.5 Gel 6.7 

P11-28:GAG 
+P11-29 1:2 

32580 3631 34532 6.2 Gel 6.2 

P11-29:GAG 
+P11-28 1:2 

41010 4402 43837 6.3 Gel 5.7 

P11-28/29 then 
GAG 1:10 

10750 1347 11307 7.9 Gel 9 
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The addition of a small amount of GAG to the positive peptides P11-8 and P11-28/P11-29 

(not dependent on order of addition) resulted in an increase of the moduli when 

compared to the control, suggesting a small addition of GAG led to a stiffer gel with a 

greater number of entanglements. However, with P11-12, a small addition of GAG led to 

a weaker gel. With all positive peptides, an addition of a larger GAG concentration 

(>1:10) led to a weaker gel than that of the control with fewer entanglements (Figure 

237). 
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Figure 237 - Elastic and viscous modulus at 2 Hz (walking frequency) for the positive peptides. 

 

The elastic modulus, or the stiffness of a material, is related to the number of junction 

points and the number of junction points is dependent on the: 

 density of chains; 

 width and length of chains; 

 “cross linking” affinity at the junction points. 
 

Therefore, if any of these three factors are altered, then G’ will be altered. The largest 

increase in elastic modulus due to an addition of GAG compared to the control was 

with P11-8:GAG 1:2, which saw an increase of nearly 40,000 Pa. The largest decrease 

in elastic modulus due to the presence of GAG was with P11-12:GAG 1:100, which saw 

a reduction of nearly 20,000 Pa. Various mechanisms for interactions between the 

peptides and GAGs can be considered to explain the increase or decrease in junction 

points, and therefore ultimately G’, such as those detailed in Figure 238. 
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Figure 238 – Hypothesised mechanisms for peptide:GAG interactions. 

 

It is thought that the negative GAG chains interact with the positive peptides via ionic 

bonding in a way similar to that demonstrated in the schematic diagram of Figure 239. 

 

Figure 239 - Schematic diagram of possible GAG and P11-12 interactions. 

 

At the lower GAG ratios, a small amount of GAG mixes with the peptide and the 

negative charge of the GAG balances the positive charge of the peptide causing an 
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overall neutral charge, which in physiological solutions results in a precipitated 

aggregated self-assembled state. As the GAG ratio is increased, the overall positive 

charge of the peptide becomes negative as the GAG chains wrap around the peptide 

exposing excess negative charges on the surface. Finally, at the highest GAG 

concentrations, as seen under the TEM for P11-12, all the individual peptide chains 

become massive bundles, therefore the density of chains is decreased resulting in few 

junction points and a lower G’.   

 

It is thought that the negative GAG chains interact with the negative peptides via 

positive ions acting as salt bridges in a way similar to that demonstrated in the 

schematic diagram of Figure 240. 

 

Figure 240 - Schematic diagram of possible GAG and P11-9 interactions. 

 

As the GAG concentration increases, these structures become larger, therefore 

increasing the turbidity of the gels as well as larger but fewer fibrillar bundles, as seen 

in the TEM images for P11-9.  

 

An interesting property that arose in some of the peptide:GAG gels was that there was 

a conversion from a rigid, brittle material to a stretchy material, due to an interaction 

between the rigid peptide and the flexible GAG chains. This was the case with an 
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addition of a small amount of GAG (1:2) to P11-9 and a large addition of GAG (1:100) to 

P11-12.  

 

One area that needs to be probed further is the exact intermolecular interactions 

between the peptides and GAGs and how this varies with polar residues. This may 

help to explain further the differing observed mechanical properties. It may be that, in 

addition to the differences in electrostatic interactions, the OH groups of the GAGs 

hydrogen bond with the hydroxyl group of the serine side chains better than with the 

amide group of the glutamine side chains. Also, the large glutamine side chains may 

provide more steric hindrance to the charged residues of the peptide, weakening the 

electrostatic interactions between the two charged biopolymers (Figure 241). 

 

Figure 241 – Potential intermolecular interactions between serine and glutamine based peptides 
and GAGs. 

 

A study on the effect of amino acid substitutions on peptide-GAG binding was carried 

out by McLaurin et al. 227 They suggested that GAG binding was more sensitive to 

changes in the secondary structure of the peptide than a loss of basic residues.227 This 

suggests that there may be more than just ionic interactions involved, such as 

hydrogen bonding and van der Waals packing. These non-ionic interactions may also 

be another mechanism for interaction of the negatively charged peptides with the 

negatively charged GAG chains. 
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4.4 Summary 

 

Here, work has been carried out into the formation of a new peptide hybrid material 

consisting of a mix of charged peptide and charged GAG chains. A systematic mixing 

study was carried out to determine the effect of the presence of GAG chains on peptide 

self-assembly and gel properties as a function of GAG concentration. The addition of 

GAG chains not only provided the high charge found in the natural tissue, mimicking 

the biological function of the nucleus pulposus, but also at an optimum ratio improved 

the self-assembling and rheological properties of the resulting gels. 

 

At certain ratios, the GAG biopolymer was found to act as a trigger for self-assembly 

for all the single peptides apart from P11-13 and P11-28. The gelation kinetics were also 

enhanced; for example, for P11-8, the gelation time was reduced from days to seconds. 

 

The GAG also acted as an additive, improving the rheological gel properties and, in 

some cases, altering the gel stiffness of the peptides to that resembling the natural 

tissue. In particular, GAG inclusion decreased the gel stiffness of the positively charged 

peptides at high GAG concentrations but slightly increased the stiffness at low GAG 

concentrations. By contrast for the negatively charged peptides, gel stiffness was 

increased at high GAG concentrations, but the stiffness values were still lower overall 

than that for the positive peptides. An increase or decrease in the stiffness of the gels 

is a direct result of an increase or decrease in the number of junction points. In some 

cases the GAG chains not only provided junction points, but they also made the gels 

stretchier most likely due to the GAGs acting as flexible crosslinkers.  

 

The order of mixing was found to be important when using the complementary 

peptides. By adding the GAG after the two peptides were mixed together, the best 

quality gels were formed. Mixing the positive peptide with the GAG before addition of 

the negative peptide seemed to produce more favourable gels than preparation vice 

versa. 
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In summary, new peptide:glycosaminoglycan hybrid materials have been developed 

with built-in triggerabilty and controllable mechanical properties. By the incorporation of 

chondroitin-6-sulphate and by choosing a ratio that provides the correct stiffness, the 

new material is anticipated to aid in the restoration of the mechanical and osmotic 

properties of disc post nucleus replacement. The ability of the peptide to maintain the 

GAG inside the disc alongside the ability of the gels to restore the biomechanics of the 

disc will be investigated in a preliminary study in the next chapter. 
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replacement 

Chapter 5  

5 Application of peptide/glycosaminoglycan hydrogels for 

nucleus pulposus replacement 

5.1 Introduction 

 

The ultimate goal for a nucleus pulposus replacement therapy is to maintain the motion 

and load bearing abilities of the functional spinal unit and prevent adjacent disc 

degeneration. Current total disc replacements aid in the preservation of some natural 

motion as well as disc height but, unlike the natural tissue, they are highly rigid 

because their composition is mostly metallic and high density polymeric components.231 

In 2005 the Orthopaedic and Rehabilitation Devices Advisory Panel of the US Food 

and Drug Administration (FDA) proposed that the introduction of less invasive surgical 

procedures earlier in the lumbar degenerative disease cascade could defer the need 

for fusion or disc replacements.232 

 

Tissue engineered intervertebral disc (IVD) replacements are one option, with the 

intent to replace the degenerated tissue with a functional scaffold that promotes the 

growth of new healthy tissue. However, due to the lack of vascular network within the 

tissue, cells within the matrix can be 5 mm from the nearest blood supply. The disc is 

also oxygen and glucose deficient and has lower pH levels and higher osmolarity than 

found in most normal physiological tissues. Calcification of the endplate cartilage and 

degeneration of the underlying bone are common in disc degeneration and minimise 

nutrient and solute transport even further.233 Even in a healthy natural disc, the cell 

density is low with the majority of the tissue consisting of the extra cellular matrix 

(ECM).9 Therefore, another option for a successful treatment may be the use of a 

hydrogel that mimics the biological and mechanical function of the nucleus pulposus 

ECM, and that can be injected through the annulus fibrosus. As discussed in Chapter 

1, there are a number of requirements for such a hydrogel. These include the need for 

the gel to have similar mechanical properties to the healthy nucleus so that it can 
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restore the functional behaviour. The gel also needs to be injectable and undergo 

gelation in-situ.  

 

Collagen gels have proven to restore disc height and some of the mechanical 

properties in bovine animal models.231,234  Polyvinyl alcohol (PVA) and polyvinyl 

pyrrolidone polymer hydrogels have also been found to restore the compressive 

stiffness of denucleated discs when compared with equivalent conditions of the IVD.235 

However, one issue with injectable hydrogels is their propensity to leak out of the 

injection site before completely curing/gelling. There is also some controversy 

surrounding whether a puncture to the annulus fibrosus can cause further or 

accelerated degeneration. This has mainly come from concerns surrounding the 

diagnostic procedure of discography, where a needle is inserted into the nucleus 

pulposus and then a radiocontrast dye is injected into the disc to aid in morphologic 

analysis of the disc. There are currently no conclusions as to whether the increased 

degeneration observed in some cases is due to the puncture wound, to the cytotoxity of 

the injected reagents or the increased nucleus pressurisation.236,237 Several studies 

have shown that the size of the needle compared to the relative size of the disc is 

important when assessing whether the puncture actually results in degeneration, with 

the smaller needles causing less perturbation of the annulus fibres.238-241 A 16 G needle 

has been found to consistently cause degenerative changes, whereas needles of 18 G 

and higher were deemed to not cause predictable degeneration, with a 25 G needle 

and above causing minimal to no damage. 238,240-242 

 

In this chapter, a series of preliminary tests were undertaken using an ex-vivo model to 

investigate the potential of the peptide gels presented in the previous chapters to 

satisfy the basic mechanical and leakage-resistant requirements for a nucleus 

augmentation material. 

 

The peptide:GAGs developed in Chapter 4 were designed to be injected as liquids and 

form a gel upon mixing in situ. This would enable injection through a narrow gauge 

needle, reducing damage to the annulus fibrosus and minimising the potential leakage.  

In this chapter, an investigation of GAG leakage through the disc was undertaken. The 

presence of the GAG in the new gel is key to restoring the swelling pressure and 
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allowing the new gel to as closely mimic the natural tissue as possible. This would also 

be another tool for assessing how well the peptides interact with the GAG chains.   

 

The intervertebral disc plays an important role in spinal biomechanics with the nucleus 

pulposus combined with the annulus fibrosus transmitting load and allowing motion. 

The disc is, in itself, aneural, and as the disc degenerates it is thought to be the change 

in biomechanics that can ultimately lead to patient pain. Therefore, it is vital to assess 

the biomechanical performance of any intervention. As a first step, the aim of the 

second study in this chapter was to investigate the capacity of the hydrogels to support 

static load in a denucleated disc model. 

 

5.2 Peptide selection 

 

In order to select the most likely candidates for a successful treatment from the 

hydrogels developed in the previous chapters, the advantages and disadvantages of 

each gel are compared in Table 19. 

 

 The ideal peptide:GAG hydrogel should have: 

 a low c*, resulting in a low level of background monomer present and therefore 

minimising potential leakage from the treatment site; 

 a trigger so that the gelation occurs in situ post injection; 

 a similar gel stiffness to that of the natural nucleus pulposus; 

 a short gelation time; 

 a high GAG content; 

 and good gel stability/lifetime. 

 

The P11-12:GAG 1:2 and 1:10 gels were chosen as the optimum at this stage because 

they had good gel stability, a similar elastic modulus to that of the natural tissue 

(Human G’ = 10 kPa, G’’ = 4.5 kPa)243 and in situ gelation was possible due to a trigger 

in the form of the GAG addition. P11-12:GAG 1:100 with its high GAG content was also 
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considered because the osmotic swelling caused by the GAGs is a critical load-bearing 

mechanism in the natural tissue.244  

 

Parallel to the work carried out in this project the biocompatibility of various P11 

peptides has been examined. P11-12 gels at 30 mg/ml have been assessed for their 

contact cytotoxity, and were found to be non-cytotoxic to L929 murine fibroblast 

cells,117 i.e. the cells grew up to and in contact with the peptide gel.  ISO standard 

extract cytotoxicty testing was also carried out using BHK and 3T3 cell lines and, again, 

P11-12 was found to be non-toxic. This test is particularly useful as it examines the 

toxicity of anything that may have leached off the gels, e.g. monomers or soluble 

aggregates. In addition to this, P11-12 gels have been found to be non-haemolytic to 

ovine red blood cells, to not have any effect on thrombus formation, and to have no 

inhibitory effect on complement activation, i.e. they don’t cause red blood cells to 

rupture, they don’t prevent or cause blood clotting, and they do not inhibit any natural 

immune responses (Robert Guilliatt personal communication). 
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Peptide c* (µM) c*gel (µM) GAG ratio 
Time to gel 

20 mg/ml 

Gel lifetime 

20 mg/ml 

G’ 

at 2 Hz 

20 mg/ml 

G’’ 

at 2 Hz 

20 mg/ml 

Trigger Gel appearance Main pros Main cons 

P11-9 

1160 ±175 4500 ± 1500 
control minutes >1yr 4mths 8 Pa 5 Pa pH 

Clear self-
supporting gel 

Gel stability Weak gel 

  
1:2 seconds >1yr 4mths 8 Pa 5 Pa GAG addition 

Cloudy self-
supporting gel 

GAG triggers 
gelation 

Weak gel 

  
1:10 Seconds >1yr 4mths 366 Pa 33 Pa GAG addition 

Cloudy self-
supporting gel 

Gel strength 
increases with 
higher GAG 

Weak gel 

P11-4 

310  ± 140 2000 ± 600 control mins-hours >1mth 1,065 Pa 205 Pa GAG addition 
Slightly cloudy 
self-supporting 

gel 
Low c* 

Long 
gelation 

time 

  1:2 secs-mins >20 days 55 Pa 9 Pa GAG addition 
Cloudy self-

supporting gel 
 

Decrease in 
gel strength 

  1:10 seconds >20 days 3,105 Pa 551 Pa GAG addition 
Cloudy white 

self-supporting 
gel 

Increase in gel 
strength 

GAG triggers 
gelation 

 

P11-12 

5600 ± 1750 2300 ± 750 control minutes >1yr 11mths 20,510 Pa 3067 Pa GAG addition 
Cloudy self-

supporting gel 

Gel stability 

Gel strength 

High c* 

  1:0.5 minutes >1yr 5mths 21,600 Pa 2,626 Pa 
Same as 
control 

Slightly cloudy 
self-supporting 

gel 

Gel strength 
slightly increases 
with small amount 

of GAG 
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Peptide c* (µM) 
c*gel 

(µM) 

GAG ratio 
Time to gel 

20 mg/ml 

Gel lifetime 

20 mg/ml 

G’ 

at 2 Hz 

20 mg/ml 

G’’ 

at 2 Hz 

20 mg/ml 

Trigger Gel appearance Main pros Main cons 

P11-12 

  
1:2 seconds >1yr 5mths 13,960 Pa 1,895 Pa GAG addition Cloudy bitty gel 

Strong gel 

GAG triggers gelation 

Good gel lifetime 

 

  
1:10 seconds >4 mths 11,320 Pa 1,407 Pa GAG addition 

Cloudy self-
supporting gel 

Strong gel 

GAG triggers gelation 

Gel 
strength 

decreases 
with higher 

GAG 
addition 

  
1:20 spontaneous >6.5 mths - - GAG addition 

Cloudy self-
supporting gel 

Spontaneous gelation  

  1:50 spontaneous >6.5 mths - - GAG addition 
Cloudy self-

supporting gel 
Spontaneous gelation  

  1:100 spontaneous >6.5 mths 2,471 Pa 2,435 Pa GAG addition 
Cloudy self-

supporting gel 

High GAG content 

Spontaneous gelation 

 

P11-8 

400  ± 
100 

2000 ± 
600 

control days 

Still some self-
supporting gel 
at 90 days but 

also liquid 
phase 

4,881 Pa 552 Pa GAG addition 

Bitty cloudy self-
supporting gel 

with some liquid 
phase 

Poor gel lifetime 
Long 

gelation 

  1:2 seconds >90 days 42,350 Pa 4,931 Pa GAG addition 
Cloudy self-

supporting gel 
slightly bitty 

Increased gel life 

Increased gel strength 

Gel may be 
too stiff 
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Peptide 
c* 

(µM) 
c*gel (µM) GAG ratio 

Time to gel 

20 mg/ml 

Gel lifetime 

20 mg/ml 

G’ 

at 2 Hz 

20 mg/ml 

G’’ 

at 2 Hz 

20 mg/ml 

Trigger Gel appearance Main pros Main cons 

P11-8   
1:10 seconds >90 days 201 Pa 28 Pa GAG addition 

Cloudy self-
supporting gel 

Increased gel life 
Decreased gel 

strength 

P11-13/14 

28 ± 
7 

350-680 control spontaneous >10 mths 27 Pa 7 Pa Peptide mixing 
Clear self-

supporting gel 

Low c* 

Fast gelation 

Weak gel 

  1:2 spontaneous > 30 days 15 Pa 5 Pa Peptide mixing 

Clear self-
supporting gel 
cloudy over 

time 

Fast gelation 
Decreased gel 

strength 

  1:10 spontaneous > 30 days - - Peptide mixing 
Cloudy self-

supporting gel 
Fast gelation  

  1:20 seconds >10 mths - - Peptide mixing 
Cloudy self-

supporting gel 
Fast gelation Decreased gel time 

P11-14/13 

  1:2 seconds 
>9 mths <1yr 4 

mths 
14 Pa 4 Pa Peptide mixing 

Cloudy self-
supporting gel 

Fast gelation Decreased gel time 

  1:10 seconds <9 mths 27 Pa 5 Pa GAG addition 
Cloudy self-

supporting gel 
Fast gelation 

Decreased gel life 

Decreased gel time 

  1:20 seconds >1yr 4mths - - GAG addition 
Cloudy self-

supporting gel 
Fast gelation Decreased gel time 

P11-13/14 then 

GAG   1:10 
3-6 days after 
GAG addition 

>60 days - - 
No trigger 

GAG added to 
gel 

Cloudy self-
supporting gel 

 

Inhibits gelation 

Not injectable 
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Peptide 
c* 

(µM) 

c*gel 

(µM) 

GAG ratio 
Time to gel 

20 mg/ml 

Gel lifetime 

20 mg/ml 

G’ 

at 2 Hz 

20 mg/ml 

G’’ 

at 2 Hz 

20 mg/ml 

Trigger Gel appearance Main pros Main cons 

P11-28/29 

29 ± 
11 

300-600 control spontaneous >15 <41 days 25,980 Pa 2864 Pa Peptide mixing 
Cloudy self-

supporting gel 

Low c* 

Fast gelation 

Strong gel 

Poor gel lifetime 

  1:2 mins <20 days 32, 580 Pa 3,631 Pa Peptide mixing 
Cloudy self-

supporting gel 
Increased gel 

strength 

Lengthened gelation 
time 

Decreased gel life 

  1:10 secs 4 days - - Peptide mixing 
Cloudy self-

supporting gel 
Fast gelation 

Lengthened gelation 
time 

Decreased gel life 

  1:100 spontaneous >4 mths - - 
GAG addition 

or peptide 
mixing 

Cloudy yellow 
gel 

Increased gel life  

P11-29/28 

  1:2 secs <15 days 41,010 Pa 4,402 Pa Peptide mixing Cloudy white gel 
Increased gel 

strength 

Lengthened gelation 
time 

Decreased gel life 

  1:10 secs-mins 4 days - - Peptide mixing Cloudy white gel  

Lengthened gelation 
time 

Decreased gel life 
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Peptide c* (µM) c*gel (µM) GAG ratio 
Time to gel 

20 mg/ml 

Gel lifetime 

20 mg/ml 

G’ 

at 2 Hz 

20 mg/ml 

G’’ 

at 2 Hz 

20 mg/ml 

Trigger Gel appearance Main pros Main cons 

P11-29/28 
  1:50 spontaneous >15 <41 days - - 

GAG addition 
or peptide 

mixing 

Cloudy yellow 
gel 

Fast gelation  

P11-28/29 then 

GAG   1:10 secs >60 days 10, 750 Pa 1,347 Pa 
No trigger 

GAG added to 
gel 

Cloudy self-
supporting gel 

Increases gel life 

Decreases gel 
strength 

Not injectable 

 

Table 19 – Peptide:GAG summary 
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5.3 Materials and methods 

 

5.3.1 Specimens 

 

Ethical issues in using healthy juvenile human spinal segments for basic research 

required an alternative to be sought for testing. The selection of animal models to 

evaluate disc treatment methods is based on several factors - such as size, cost, disc 

geometry, biochemistry, cellularity, and biomechanics - with the choice ultimately being 

down to the question being asked.245 For this study, bovine caudal discs were 

considered to be an adequate replacement, as those from C1 to C6 are representative 

of the size, biochemical makeup and elastic fibre organisation of healthy young human 

discs.7,246,247  Bovine discs have previously been used in numerous studies as a source 

of disc tissue and were deemed an appropriate model for initial investigations because 

they would allow comparison with the ‘healthy’ state, which ideally the treatment would 

attempt to replicate.20,248-255 Further to this, the relatively narrow age band of the 

specimens gave greater homogeneity in terms of size and material properties, reducing 

the inter-specimen variation.  

 

Bovine tails were harvested from calves aged less than 30 months (typically 24-28 

months) at a local abattoir. The specimens were transported to the laboratory and 

sealed in plastic bags within three days of slaughter. To avoid potential damage to the 

tissue, the discs were maintained at 2-8oC prior to experimentation and were not 

frozen. The caudal discs were isolated from the tail and used experimentally.  

 

5.3.2 Chondroitin-6-sulphate leakage study 

 

5.3.2.1 Background  

 

As a first step, the aim of this study was to investigate GAG leakage from the 

intervertebral disc through the annulus fibrosus and injection hole under zero load.   



 

 

 

216 
Application of peptide/glycosaminoglycan hydrogels for nucleus pulposus 

replacement 

In order to quantify the GAG leakage from the discs the 1,9 dimethylmethylene blue 

(DMMB) assay was employed, which takes advantage of a colour change in the dye 

that can be monitored spectroscopically upon GAG and dye binding. Until the early 

1980s, most assays for proteoglycans either measured carbohydrate constituents of 

the glycosaminoglycans, such as hexuronate or hexosamine, or measured the binding 

of cationic dyes to the glycosaminoglycan polyanionic moieties of the proteoglycans. 

However, in 1986, Farndale et al. developed a rapid spectrophotometric assay for 

proteoglycans based on the reaction of glycosaminoglycans with the DMMB dye.256 

This method was subsequently automated by Sabiston et al.257 The assay using DMMB 

takes advantage of the metachromatic phenomenon258 of GAGs and is more sensitive 

than that of alcian blue,259 which is commonly used to stain for GAGs in histology. 

 

The DMMB assay is now commonly used for the quantification of glycosaminoglycans 

in biological samples, from the measurement of sulphated glycosaminoglycan 

concentrations in synovial fluid to their measurement in cell cultures 260-263 

 

5.3.2.2 Ex vivo model preparation 

 

Upon receipt of the specimens, the caudal intervertebral discs (C1-C6) were extracted 

with only the distal endplate still attached. They were placed in monosodium citrate 

solution (1.98g NaHCO3, 3.93g C6H8O7, 1000 ml distilled H2O, pH adjusted to 7.4 

(Jenway 3510 pH meter)) for 20 minutes to remove excess blood and through swelling 

pressures help differentiate the nucleus pulposus from the annulus fibrosus tissue. The 

discs were then removed from the solution and the nucleus pulposus tissue was 

excised. The disc and nucleus tissue were weighed prior to and post removal (Figure 

242) (APPENDIX F). 

  

Figure 242 - Disc post nucleus pulposus 
removal. Scale bar = 10 mm. 

Figure 243 - Disc post endplate attachment. 
Scale bar = 10 mm. 
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The discs were then attached to lightly sanded artificial Perspex endplates (2x40x40 

mm) using the adhesive Loctite 3090 (Henkel, Hatfield, United Kingdom) (Figure 243). 

 

During analysis, special consideration must be given to the initial disc location, as the 

amount of GAG present naturally decreases from the proximal to distal caudal discs, 

i.e. C6 has less GAG present than C1.264 Also, the size of the disc itself will give rise to 

different volumes of nucleus. The experiment was designed so that a range of discs 

were selected from C1 to C6 over the six tails, so that when an average was taken the 

effects of the change in background GAG content and disc size would be minimised.  

 

The natural GAG leakage through the AF of discs with intact NP and denucleated NP 

were compared to that of denucleated discs with additional CS added. In turn, the 

presence of P11-12 was investigated to determine whether this affected the added CS 

leakage. 

 

For each GAG or P11-12:GAG ratio investigated, discs were chosen from more than 

one tail over the range of C1 to C6 to try to eliminate variables in disc size, natural 

GAG levels and tail health. For each group studied, a control of no GAG injection to a 

denucleated disc was used to determine the average natural GAG leakage over all six 

tails. The exact tails and discs used for each group are listed in Table 20. 
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Group Tail and disc used 

no injection T1C1 T2C3 T1C5 T3C1 T4C3 T3C5 T5C1 T6C3 T5C5 

1:2 GAG only 
injection 

T2C1 T1C3 T2C5       

1:10 GAG only 
injection 

T1C2 T2C4 T1C6       

1:100 GAG, CS 
added as dry 
powder and PBS 
injection 

T4C2 T3C4 T4C6       

1:100 P11-12:GAG, 
CS added as dry 
powder and P11-12 
injection 

T3C2 T4C4 T3C6       

1:10 P11-12:GAG 
injection 

T4C1 T3C3 T4C5       

1:100 GAG, added 
as a gel 

T5C2 T6C4 T5C6       

1:100 P11-12:GAG,  
added as a gel 

T6C2 T5C4 T6C6       

Natural NP placed 
back into disc 

T6C1 T5C3 T6C5      

Table 20 - Tail and discs used for each group (T = tail, C = caudal disc), 1:n GAG only = the same 
amount of GAG there would be in a 1:n ratio peptide:GAG preparation. 

 

One drawback to the bovine caudal model employed here was the use of ex vivo 

tissue. When cells begin to die, they release their own chemicals including matrix 

metalloproteinases (MMPs), which break down the matrix and the natural GAGs are 

cleaved proteolytically. Therefore, it was vital to compare any additional GAG leakage 

to the natural leakage of the tissue over the same time period. The DMMB assay used 

to detect the GAG leakage is not specific to the chondroitin-6-sulphate (CS) GAG 

injected and it stains for all GAGs present. Therefore, it was important to determine 

what level of added CS was detectable above the background.  

 

5.3.2.3 Preparation of solutions and injection procedure 

 

1:2 (0.0266 M CS) GAG only 

1 ml of PBS was added to 0.01289 g chondroitin-6-sulphate (0.0266 M solution). The 

solution was vortexed for 1 min until all the powder was dissolved. 250 μl of solution 
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was then injected into a disc using a 25 G needle and syringe with a second 25 G 

needle as an air hole.  

 

1:10 (0.133 M CS) GAG only 

Prepared as the 1:2 solution, but using 2 ml of PBS added to 0.12688 g chondroitin-6-

sulphate. 

 

1:10 P11-12:GAG  

1 ml of PBS was added to 40 mg of P11-12, and vortexed for 1 min with heating, until 

the solution was a clear liquid. 0.5 ml of PBS was added to 0.068 g of chondroitin-6-

sulphate and the solution was vortexed for 1 min. 125 μl of the P11-12 solution was then 

injected into each disc using a 25 G needle and syringe with a second 25 G needle as 

an air hole. This was followed by a 125 μl injection of the CS solution through the 

second 25 G needle, retaining the needle used for the P11-12 injection as a new air 

hole. 

 

1:100 (1.33M CS) GAG dry powder 

A solution of CS in PBS at an equivalent ratio of 1:100 P11-12:GAG resulted in a 

viscous liquid that was deemed to be too thick to inject through a narrow gauge needle. 

For a therapy to be successful, injection through a narrow gauge needle is necessary, 

but it was still considered important to investigate the GAG leakage and interaction with 

P11-12 at a high GAG ratio. Therefore, to get around this injection drawback, the GAG 

was added to the disc as a dry powder prior to addition of the Perspex endplate (Figure 

244). 

a.) b.)  

Figure 244 – a.) Disc prior to GAG powder addition b.) disc post GAG powder addition and endplate 
attachment. Scale bar = 10 mm 
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0.17 g of chondroitin-6-sulphate was weighed directly into the disc and packed down 

prior to endplate attachment. 250 μl of PBS was then injected into each disc after 

endplate attachment, using a 25 G needle and syringe with a 25 G needle as an air 

hole.  

 

1:100 P11-12:GAG dry powder  

0.17 g of chondroitin-6-sulphate was weighed directly into the discs and packed down 

prior to endplate attachment. 1 ml of PBS was added to 40 mg of P11-12. The solution 

was vortexed for 1 min and heated until the solution was a clear liquid. 125 μl of the 

P11-12 solution was then injected into each disc after endplate attachment, followed by 

a 125 μl injection of PBS using a 25 G needle and syringe with a second 25 G needle 

as an air hole.  

  

1:100 GAG gel 

1 ml of PBS was added to 0.68 g of chondroitin-6-sulphate (1.33 M). The solution was 

vortexed for 1 min and resulted in a very viscous, gel-like liquid. The gel was then 

added to the disc prior to endplate attachment using a spatula and the disc weighed 

before and after to determine the amount added. The artificial endplate was then 

attached and the disc punctured with a 25 G needle to mimic the injection (Figure 245). 

a.) b.)    c.)  

Figure 245 – a.) 1:100 GAG gel, b.) disc with nucleus pulposus removed. c.) disc with 1.33 M GAG 
gel added prior to endplate attachment. Scale bar = 10 mm. 

 

1:100 P11-12:GAG gel  

2 ml of PBS was added to 0.04 g of P11-12 (0.014 M). The solution was vortexed for 1 

min and sonicated for 15 mins then pH adjusted to 7.4. The gel was then heated at 

80oC until the solution became a clear liquid and then 1.36 g of chondroitin-6-sulphate 

was added and vortexed. The gel was then added to the disc prior to artificial endplate 

attachment using a spatula and the disc weighed before and after to determine the 
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amount added. The artificial endplate was then attached and the disc punctured with a 

25 G needle to mimic injection. 

 

The injection procedure is illustrated in Figure 246. After the GAG or P11-12:GAG 

additions to the discs were carried out, the discs were placed in 30 ml of PBS on a 

orbital shaker (Grant-Bio POS-300, Cambridge, UK)  for 48 hours (Figure 247). 3 ml of 

PBS was removed at 24 and 48 hour timepoints. 

 

Figure 246 – Sample injected into disc through 
25 G needle with a 25 G needle airhole. 

 

Figure 247 – Discs placed in 30 ml PBS solution 
on an orbital shaker plate for 48 hours. 

 

Further timepoints were not studied due to cell necrosis occurring from 5 days after 

animal slaughter, at which time MMPs are released resulting in matrix degradation. In 

order for further testing to be carried out a sterile hypoxic (<2% O2) atmosphere would 

need to be maintained to retain cell viability and phenotype in the matrix and prevent 

contamination. 

 

5.3.2.4  Quantification of glycosaminoglycan accumulation in PBS 

 

In order to quantify the amount of GAG leaked from the discs over a 48 hour time 

period, the 3 ml PBS samples from each disc at the two timepoints were analysed with 

a DMMB assay via the following protocol: 

 

SOLUTION PREPARATION 

Assay buffer  

137 ml of 0.1 M sodium di-hydrogen orthophosphate was combined with 63 ml 0.1 M 

di-sodium hydrogen orthophosphate. The solution was stirred using a magnetic stirrer 
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(Stuart Scientific CB161) and pH adjusted (Jenway 3510 pH meter) to 6.8 using 6 M 

hydrochloric acid or 6 M sodium hydroxide.  

 

DMMB Dye solution  

16 mg of DMMB was dissolved into 5 ml of ethanol and 2 ml of formic acid using a 

magnetic stirrer (Stuart Scientific CB161). 2 g of sodium formate was added and the 

volume increased to 1000 ml using distilled water. The pH was adjusted (Jenway 3510 

pH meter) to 3.0 using formic acid.  

 

Chondroitin sulphate standard stock  

10 mg chondroitin-6-sulphate was diluted in 10 ml assay buffer to give a 1 mg/ml stock 

solution.  

 

METHOD 

Preparation of CS standards:  

1 mg/ml stock CS was diluted with PBS to 50 μg/ml. Serial two-fold dilutions were 

performed to give a range of CS standards for the reference curve (50, 25, 12.5, 6.25, 

3.13, 1.56, 0.78 and 0 μg/ml). 40 μl of each of the standards was added to a 96 well 

plate, in triplicate.  

 

GAG measurement:  

40 μl of each sample, diluted in PBS as necessary, was added to wells in triplicate. 250 

μl DMMB solution was dispensed into all wells. The plate was left for 2 minutes and the 

absorbance read at 525 nm using a Multiskan spectrum microplate spectrometer 

(Thermo Scientific, Loughborough, United Kingdom). 

 

Analysis of assay data  

The average 0 μg/ml standard reading was subtracted from all other standards and 

sample readings to remove any background measurements. The CS standard sample 

concentrations were plotted against the absorbance, A525. The sample A525 readings 

were then compared to the standard curve to determine the GAG concentrations and, 
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where required, multiplied by a dilution factor to give the GAG concentration of the 

sample in μg/ml (for raw data and standard curves see APPENDIX F). In order to 

determine the percentage of added CS that leaked from the samples the following 

calculations were performed:  

1. Calculation of CS concentration in 30 ml PBS if all the added amount of CS had 

leaked out of the disc (e.g. 0.01575 g of CS added *1000 *1000 /30 = 525 μg/ml). 

2. The natural GAG leakage was determined from the discs with no GAG added (e.g. 

12 ± 5 μg/ml at 24 hrs, 106 ± 6 μg/ml at 48 hours). 

3. The natural GAG leakage (μg/ml) was subtracted from the sample GAG 

concentrations (μg/ml) to give the non-natural GAG leakage (e.g. at 24 hours 220 

μg/ml – 12μg/ml = 208 μg/ml). 

4. The non-natural GAG leakage was divided by the GAG concentration that would 

result if the entire added GAG had leaked out, and then multiplied by 100 to give the 

percentage (e.g. at 24 hours (208/525)*100 = 39 %). 

 

Data sets were processed using GraphPad Prism 5 software (La Jolla, CA, USA). 

Values are reported as means ± standard error of the mean (SEM). Results of DMMB 

assays were analyzed by one-way ANOVA, followed by Tukey’s multiple comparison 

test and were assessed for their statistical significance via paired t-tests (P values < 

0.05 were considered as statistically significant).  OriginPro 8.6 (OriginLab Corporation, 

USA) was used to plot the results. 

 

5.3.3  Static loading study 

 

5.3.3.1 Background 

 

A number of studies have investigated the mechanical behaviour of the intervertebral 

disc using a range of testing methods.235,244,265-268 However, as yet, there are no 

standardised test methods available for the evaluation of nucleus implants or injectable 

gels. In the current work, due to the need to extract one endplate to remove the 

nucleus, previously published methods were not applicable. Therefore, a basic new 



 

 

 

224 
Application of peptide/glycosaminoglycan hydrogels for nucleus pulposus 

replacement 

static test method was developed to undertake an initial comparison between discs 

with the nucleus removed, discs with the nucleus intact and discs augmented with the 

peptide gels. 

 

5.3.3.2 Ex vivo model preparation 

 

Four different groups were investigated as listed in Table 21. Four tails and six discs 

spanning from C1 to C6 were used for each group. 

Table 21 – Static loading study showing the tail (T) and caudal disc (C) used for each group 

 

The tails were cleaned and the processes removed. The discs were then excised via a 

transverse cut between the disc and the proximal cartilage end plate and via a 

transverse cut through the vertebra leaving ~10mm of bone attached to the distal side 

of the disc, as illustrated in Figure 248. 

 

Figure 248 – Schematic diagram of disc removal 

 

Group Disc and tail used 

No NP 
Nucleus pulposus 

removed 

T1C1 T2C3 T1C5 

T3C2 T4C4 T3C6 

NP Nucleus pulposus intact 
T2C1 T1C3 T2C5 

T4C2 T3C4 T4C6 

1:10 P11-12:GAG 1:10 
T1C2 T2C4 T1C6 

T3C1 T4C3 T3C5 

1:2 P11-12:GAG 1:2 
T2C2 T1C4 T2C6 

T4C1 T3C3 T4C5 
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The discs were soaked in monosodium citrate for 20 minutes and then the nucleus 

pulposus was extracted from the discs to be used in groups No NP, 1:10 and 1:2. The 

discs were weighed pre and post removal (APPENDIX F). Artificial Perspex endplates 

(2x40x40mm) were then attached to all the discs with an adhesive (Loctite 3090, 

Henkel, Hatfield, UK) (Figure 249). 

  

Figure 249 - Disc post endplate attachment. Figure 250 - Disc cast in PMMA cement ready 
for testing. 

 

Discs for the 1:10 and 1:2 group were prepared in the following manner: 

A solution of P11-12 was prepared by adding 1 ml of PBS to 40 mg of P11-12. The 

solution was vortexed for 1 min and heated until the solution was a clear liquid. It was 

injected into each disc using a 25 G needle and syringe with a 25 G needle as an air 

hole followed by a 125 μl injection of CS solution. The CS solution was prepared by 

adding 0.5 ml of PBS to 0.068 g of CS for the 1:10 group and 0.0137 g of CS for the 

1:2 group. In both cases, the solution was then vortexed for 1 min. The CS injection 

was through the 25 G needle that had previously been used as the air hole and with 

the needle used for the P11-12 injection as the new air hole 

 

Following preparation, all discs were sealed in individual plastic bags with PBS soaked 

tissue paper to prevent samples drying and stored at 2-8oC overnight. The distal 

vertebra section of each sample was then cast in 70 mm diameter 

polymethylmethacrylate (PMMA) cement to produce a flat surface that was parallel to 

the Perspex endplate as shown in Figure 250 and Figure 251. Once set, the samples 

were stored in individual sealed plastic bags containing PBS soaked tissue paper at 2-

8oC until testing. 
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Figure 251 - Schematic diagram of casting procedure. 

 

5.3.3.3 Loading 

 

Prior to testing the disc heights and widths were recorded. (APPENDIX F). 

 

All specimens underwent static axial compressive loading from 0 to 9 kN using 

displacement control at a low load rate of 1 mm/min. The experiments were carried out 

on an Instron 3366 materials testing machine with a 10 kN load cell (Instron, High 

Wycombe, Bucks, UK) (Figure 252). 

 

Figure 252 - Specimen loading on the Instron materials testing machine 

 

It should be noted that at the start of each test, the fixture on the crosshead of the 

materials testing machine was brought into contact with the Perspex endplate until a 

load of 0.3 N was recorded. At this point, the displacement and load was then rezeroed 

and the test was started. Force/displacement data were collected using the Instron 

material testing software, Bluehill 2. The data were then plotted using Origin Pro 8.6.  
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In terms of analysing the resultant load-displacement curves, the stiffness of a 

physiologically relevant region was evaluated as well as the extent of the lax zone. 

 

Calculation of the normalised stiffness 

 

Stiffness is a measure of how much an object resists deformation in response to an 

applied force. It is also known as the rigidity of an object. The stiffness of an object can 

be calculated by Equation 13:  

  
 

 
 

Equation 13 

 

Where k = stiffness, F= force applied to the object, δ = the displacement produced by 

the force along the same degree of freedom. 

 

In order to take into account the differences in the disc sizes when calculating their 

stiffness values, we can think of their stiffness in terms of their elastic modulus, 

Equation 14: 

                 
 

 
 

Equation 14   

 

Where σ = stress and ε= strain. 

 

This can also be written as Equation 15: 

 

                 
 
  

 
  
  

  

  
 

Equation 15 
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Where F = force, A = area, δ = displacement and l= length. 

 

In this study, the gradient of the linear part of the load vs. displacement plot was taken 

between 200-500 N (Figure 253) to give the stiffness F/δ = k.  
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Figure 253 – Example of load vs. displacement plot for a disc. Red line = linear fit of curve from 
200-500 N. 

 

Then the normalised stiffness or elastic modulus for each disc in this load region was 

determined using Equation 16: 

                      
  

 
 

Equation 16 

 

Where k = stiffness, A = area and l = length. 

 

The areas and lengths were determined by taking measurements from photographs 

taken of each of each discs prior to testing (Figure 254) (APPENDIX F). 

 

Figure 254 – Photographs of one of the disc used to determine l and A measurements.  

A = a/2*b/2*π 
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The normalised stiffness value was calculated for each disc and then the average of 

the 6 discs for each sample type was taken.  

 

Determination of the lax zone 

 

When looking at the load-displacement plots for the individual disc specimens, it was 

observed that there were variations in the toe region of the plots, i.e. there was a 

plateau region prior to the linear region where an increase in the displacement required 

little change in the applied load. Here this plateau region is termed the lax zone.  This 

non-linearity in the load displacement plot is due to a high flexibility around the neutral 

position and stiffening effect towards the end of the range of motion and is necessary 

for the proper functioning of the spinal system.269 This lax zone is termed the ‘neutral’ 

zone in a spinal motion segment (disc with two vertebra attached as well as its 

ligaments).269,270 To quantify this lax zone, the compressive displacement for the region 

from the preload 0 N to 1 N was determined, i.e. the displacement at which the curve 

went above 1 N as illustrated in Figure 255. 
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Figure 255 – Determination of the lax zone 
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5.4 Results and discussion 

 

5.4.1 Assessment of GAG leakage through the annulus fibrosus 

and injection hole 

 

5.4.1.1 Chondroitin sulphate only injection and leakage 

 

No injection and CS injections of 1:2 and 1:10 GAG only  

 

In order to determine what level of added chondroitin sulphate was detectable above 

the natural leakage/background, three groups were compared: those with no GAG 

injection, and those with 1:2 GAG only and 1:10 GAG only injections. (The latter two 

were used to represent the GAG concentrations in P11-12:GAG 1:2 and 1:10 

respectively, although in this case no peptide was used)  (Figure 256). 

24 hours 48 hours

0

50

100

150

200

250

300

350

G
A

G
 c

o
n
c
e
n
tr

a
ti
o
n
 (

 g

/m
l)

Average of three discs for each injection type

 no injection

 1:2 GAG only

 1:10 GAG only

 

Figure 256 - Plot of the average GAG concentration leaked from discs with no injection, (i.e. natural 
leakage), 1:2 GAG only and 1:10 GAG only injections over a 48 hour time period. (error bars = SEM, 
n=3, One way ANOVA carried out using GraphPad Prism v.5, [unless stated difference is non-
significant, *≥95%, **≥98%, ***≥99% confidence that the means are significantly different.]) 
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At 24 and 48 hours no significant difference was found between a low concentration 

injection (1:2) of CS and no CS injected into the disc (i.e. background GAG leakage). 

However, for an injection of 1:10 CS there was a significant increase compared to no 

CS injected into the disc. 

 

From this initial trial, it was determined that an addition of a lower GAG concentration of 

0.0266 M (1:2) was not detectable above the background natural leakage of the disc. 

Therefore, in the following studies, a GAG concentration of 0.133 M (1:10) and above 

was used.  

 

No injection and an injection of 1:100 GAG only (CS added as dry powder) 

 

The results of the study comparing discs with no CS injection and discs containing 

1:100 GAG only are presented in Figure 257: 
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Figure 257 - Plot of the average GAG concentration leaked from discs with no injection, (i.e. natural 
leakage) and 1:100 GAG only added as a dry powder then injected with PBS over a 48 hour time 
period. (error bars = SEM, n=3, One way ANOVA carried out using GraphPad Prism v.5 [unless 
stated difference is non-significant, *≥95%, **≥98%, ***≥99% confidence that the means are 
significantly different.]) 

 

 

** 

** 



 

 

 

232 
Application of peptide/glycosaminoglycan hydrogels for nucleus pulposus 

replacement 

As can be observed in Figure 257, a significant difference was seen between the 

natural GAG leakage and the discs with 1:100 GAG only added, at both time points, 

suggesting a large leakage of GAG into the surrounding PBS solution. It was not truly 

understood if this large leakage was due to just the high levels of GAG added. The 

increase could also have been caused by inefficient mixing of the CS and PBS injection 

and therefore formation of the viscous liquid inside the disc. 

 

No injection, 1:100 GAG only (CS added as gel) and dissected nucleus restored 

back in to the disc 

 

The GAG leakage concentrations for no injection, 1:100 GAG only (added as gel) and 

the group with the nucleus dissected and reinserted into the disc are shown in Figure 

258.  A  large amount of GAG was detected in the surrounding PBS solution for the 

1:100 GAG only addition sample, however, it was less when added as a gel than when 

added as a dry powder (Figure 257), suggesting that the processing has a big part to 

play. There was a significant difference at both time points between the natural GAG 

leakage of the discs and the cases where a 1:100 GAG only gel was added. However, 

there was no significant difference between the two time points for the individual 

samples, suggesting that most of the leakage occurred in the first 24 hours. 

 

In this trial, another group of discs were investigated where the natural nucleus tissue 

was first removed and then loosely packed back into the hole. It can be seen in Figure 

258 that the GAG leakage when the denucleated discs and the reinserted nucleus 

discs are compared there is no significant difference between the amounts of GAG 

leaked. This confirmed that the cells have not yet began releasing matrix degrading 

enzymes, which would result in a breakdown of the proteoglycans leading to an 

increase in the natural GAG leakage. This is important as it shows that the experiment 

was carried out in a time window prior to detectable cell necrosis interference. 
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Figure 258 - Plot of the average GAG concentration leaked from discs with no injection, with the NP 
removed then placed back in the disc and 1:100 GAG only added as a premade gel over a 48 hour 
time period. (error bars = SEM, n=3, One way ANOVA carried out using GraphPad Prism v.5, 
[unless stated difference is non-significant, *≥95%, **≥98%, ***≥99% confidence that the means are 
significantly different.]) 

 

5.4.1.2 Chondroitin sulphate and P11-12 injection and leakage 

 

This study was to investigate the effect of the presence of P11-12 on GAG leakage, i.e. 

whether the self-assembled peptide structure interacted in such a way with the GAG 

chains as to prevent them from leaking out of the disc.  

 

The GAG concentration leakage is compared with that of the natural leakage of the 

tissue as before.  
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No injection, P11-12:GAG 1:10 injection, P11-12:GAG 1:100 (GAG added as dry 

powder) 

 

The GAG concentrations found with no injection, P11-12:GAG 1:10 injection,             

P11-12:GAG 1:100 (GAG added as dry powder) are presented in Figure 259. 
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Figure 259 - Plot of the average GAG concentration leaked from discs with no injection, (i.e. natural 
leakage), with 1:10 P11-12:GAG and 1:100 P11-12:GAG where the GAG was added as a dry powder 
to the disc prior to an injection of P11-12 over a 48 hour time period. (error bars = SEM, n=3, One 
way ANOVA carried out using GraphPad Prism v.5, [unless stated difference is non-significant, 
*≥95%, **≥98%, ***≥99% confidence that the means are significantly different.]) 

 

As can be seen in Figure 259, the 1:10 P11-12:GAG injections show no significant GAG 

leakage compared to that seen in the discs with no additional GAG added. However, 

with the 1:100 P11-12:GAG sample, there was a significant increase in the GAG 

leakage compared to that of the natural disc. This may have been an artefact of 

processing, i.e. complete mixing not occurring and therefore a homogeneous gel not 

forming, or due to the CS concentration reaching saturation of the P11-12. 
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No injection, P11-12:GAG 1:100 (GAG added as gel) 

 

To overcome the potential processing issue as with the 1:100 GAG only sample above, 

the 1:100 P11-12:GAG gel was prepared outside of the disc and then added prior to 

endplate attachment.  

24 hours 48 hours

0

100

200

300

400

500
G

A
G

 c
o

n
c
e

n
tr

a
ti
o

n
 (

 g

/m
l)

Average of three discs for each injection type

 no injection

 1:100 P11-12:GAG (GAG gel)

 

Figure 260 - Plot of the average GAG concentration leaked from discs with no injection, (i.e. natural 
leakage) and with 1:100 P11-12:GAG where the gel was added to the disc rather than formed in situ 
over a 48 hour time period. (error bars = SEM, n=3, One way ANOVA carried out using GraphPad 
Prism v.5, [unless stated difference is non-significant, *≥95%, **≥98%, ***≥99% confidence that the 
means are significantly different.]) 

 

The GAG concentrations are shown in Figure 260. It can be seen that again there was 

significantly more GAG leakage than was seen naturally from the disc, but it was less 

than when the GAG was added in a dry powder form. There is no significant increase 

in GAG leakage over the second day, implying that the GAGs retained in the disc after 

one day have remained there. 

 

5.4.1.3 The effect of the presence of P11-12 on chondroitin sulphate 

leakage 

 

In order for the effect of the presence of P11-12 on GAG leakage to be truly understood 

from the data already presented, the percentage of added GAG leaked was determined 

using Equation 17: 

** 
** 



 

 

 

236 
Application of peptide/glycosaminoglycan hydrogels for nucleus pulposus 

replacement 

                        
                                

                                      
      

Equation 17 

 

Where GAG measured is the concentration of GAG measured in the 3 ml PBS aliquots 

for each of the groups and natural GAG leakage is the GAG measured concentration in 

the 3 ml PBS aliquots for the denucleated group with no additional GAG. 

 

Peptide and GAG injected as liquids and gelation triggered in situ 

 

In Figure 261, an injection of GAG only at a ratio of 1:10 is compared to an injection of 

P11-12 and then GAG at a ratio of 1:10. The presence of P11-12 significantly reduced 

the percentage of GAG added to the disc leaking out when taking into account the 

natural GAG leakage from the disc as well.  This suggests that gelation and             

self-assembly were successful within the disc and that the P11-12 aggregates were 

interacting with the GAG chains to hold them in place.  
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Figure 261 - Comparison of percentage of added GAG leaked (GAG concentration – natural 
leakage) from a disc when injected with 1:10 GAG only and 1:10 P11-12:GAG over a 48 hour time 
period. (error bars = SEM of CS concentration detected then propagated, n=3, One way ANOVA 
carried out using GraphPad Prism v.5, [unless stated difference is non-significant, *≥95%, **≥98%, 
***≥99% confidence that the means are significantly different.]) 
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When looking into the effect of a higher GAG ratio, two different processing methods 

were used.   

 

P11-12 injected as liquid but GAG added to disc prior to injection as powdered 

form 

 

Here the dry powder method was examined. As can be seen in Figure 262, the 

presence of P11-12 has little to no effect on a high GAG concentration. This could be 

due to only a certain amount of GAG being able to interact with the P11-12 aggregates 

and this may be at its optimum below a ratio of 1:100. Another possibility is that the 

processing method did not allow the GAG and the P11-12 to fully mix within the disc 

cavity.  
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Figure 262 - Comparison of percentage of added GAG leaked (GAG concentration – natural 
leakage) from a disc when injected with 1:100 GAG only (GAG added to disc as dry powder prior to 
PBS injection) and 1:100 P11-12:GAG (GAG added to disc as dry powder prior to P11-12 injection) 
over a 48 hour time period. (error bars = SEM of CS concentration detected then propagated, n=3, 
One way ANOVA carried out using GraphPad Prism v.5, [unless stated difference is non-
significant, *≥95%, **≥98%, ***≥99% confidence that the means are significantly different.]) 
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P11-12:GAG 1:100 gel prepared then placed in disc. Disc then punctured with 25 

gauge needle to mimic injection  

 

By preparing the 1:100 GAG only and P11-12:GAG and then adding to the disc, again 

the presence of P11-12 appears to have little effect on the overall GAG leakage when 

compared to that of the a GAG only gel (Figure 263). This suggests that there is an 

optimum ratio and that there was simply too high a level of GAG in this sample for the 

P11-12 aggregates to interact with. However, it can be seen that this processing method 

leads to a reduced GAG leakage across both samples showing how important it is that 

the gel has mixed properly in situ.  
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Figure 263 - Comparison of percentage of added GAG leaked (GAG concentration – natural 
leakage) from a disc when 1:100 GAG gel added  and 1:100 P11-12:GAG gel added over a 48 hour 
time period. (error bars = SEM of CS concentration detected then propagated, n=3, One way 
ANOVA carried out using GraphPad Prism v.5, [unless stated difference is non-significant, *≥95%, 
**≥98%, ***≥99% confidence that the means are significantly different.]) 

 

5.4.1.4 Natural GAG leakage with and without the NP 

 

As three different trials were carried out, there were three batches of disc that had no 

GAG added. As an interesting side point, the variation in natural GAG leakage over 6 

different tails is shown in Figure 264. There was no significant difference found 

between any of the three trials in the natural leakage. This is a positive result, because 

six different tails were used that could have had different degeneration/healthy states, 
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which would have been dependent on many external factors. Also, due to the nature of 

using animal tissue obtained from an abattoir, the following could not be controlled: 

 Exact age of the animal (~24-28 months) 

 Breed of animal 

 Time since slaughter (within 3 days) 

 Sex (although not expected to have an effect until animals are much older) 

 Diseases that may affect the health of the spine 

 

The natural leakage from a denucleated disc can be compared to the natural GAG 

leakage from the disc when the nucleus is excised and then placed back in the disc. As 

illustrated in Figure 264, there was no significant difference over a 48 hour time period 

with or without the nucleus present. 
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Figure 264 - Plot of the average GAG concentration leaked from discs with the NP excised (ie the 
no injection samples) compared to that with the natural NP excised and then placed back over a 48 
hour time period. (error bars = SEM, n=3, One way ANOVA carried out using GraphPad Prism v.5, 
[unless stated difference is non-significant, *≥95%, **≥98%, ***≥99% confidence that the means are 
significantly different.]) 
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5.4.2 Assessment of the capacity of the hydrogels to restore 

the disc biomechanics 

 

5.4.2.1 Compressive loading of intervertebral discs  

 

In order to gain an initial understanding of how these new peptide:GAG hybrid gels 

compared to the natural tissue, a very simple compressive loading experiment was 

designed. 

 

The load-displacement curves for the 4 sample types tested are presented in Figure 

265. 

 

A comparison of the curves, (Figure 266) shows that there are some trends visible in 

the shapes and positions of the curves. The denucleated samples (red) are to the left-

hand side of the plot suggesting that they do not deform as much for a given load in 

comparison to the samples with the nucleus intact (green), which are towards the right-

hand side of the plot. The samples that have had their nucleus replaced with P11-

12:GAG gels fall somewhere between the two (Figure 266). 
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Figure 265 – Compressive load vs. displacement for 6 disc from 4 tails containing a.) denucleated, 
b.) nucleus pulposus intact, c.) nucleus pulposus removed and replaced with a 1:10 P11-12:GAG 
gel, d.) nucleus pulposus removed and replaced with a 1:2 P11-12:GAG gel. 

 

From the load-displacement plots (Figure 266 b.), the normalised stiffness values for 

each group were calculated. These values are presented in Figure 267. The two 

control groups (No NP and NP) were significantly different from one another. The 1:2 

sample showed no significant difference to the disc with the natural nucleus intact and 

was significantly different to the denucleated disc; however the 1:10 sample showed 

the opposite behaviour.  
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Figure 266 - Compressive extension vs. compressive load for all test samples a.) full scale, b.) 
showing the linear region 200-500 N used to calculate the normalised stiffness for each disc, c.) 
and d.) zoom in of the plot to show the lax zone. 

 

The lax zone from the load-displacement plots (Figure 266 d.) is plotted as the 

compressive displacement at a force of 1 N (Figure 268). None of the groups were 

found to be significantly different. 
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Figure 267 – Plot of normalised stiffness for each sample type as an average of the 6 discs tested. 
(Error bars = SEM, n=6, One way ANOVA carried out using GraphPad Prism v.5, [unless stated 
difference is non-significant, *≥95%, **≥98%, ***≥99% confidence that the means are significantly 
different.]). 
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Figure 268 – Compressive extension at a load of 1N. (n=6, error bars = SEM, One way ANOVA 
carried out using GraphPad Prism v.5, [unless stated difference is non-significant, *≥95%, **≥98%, 
***≥99% confidence that the means are significantly different.]). 
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5.4.3 Discussion 

 

From the rheology investigation carried out in section 4.2.2, the P11-12:GAG 1:2 gel 

was expected to restore the most similar biomechanics to the natural tissue as it had 

the most similar elastic modulus to that of the unconfined nucleus pulposus.271 From 

Figure 267, it can be seen that the P11-12:GAG 1:2 sample was significantly different 

from the denucleated disc; however, it was not significantly different from the disc with 

its nucleus still intact, indicating that the gel does indeed appear to have the desired 

effect. Although no significant difference is seen between the denucleated discs and 

the disc containing P11-12:GAG 1:10, from observing the general trends it is clear that 

replacement of the nucleus with a P11-12:GAG gel improves the stiffness to a value in 

the direction of the natural tissue.  

 

Interestingly, the denucleated discs (no NP) were found to be stiffer than the discs with 

the nucleus still intact (NP). Compressive loading of an intact disc simultaneously 

produces narrowing of the disc height and outward bulging of the NP, placing axial and 

radial compressive stresses on the AF.233 Meakin et al. carried out a study on the 

deformations of the disc with an intact and denucleated nucleus. They found that the 

outer margins of the annulus deform outwards both when an intact, and denucleated, 

disc is compressed. However, they found a difference in the inner margins of the 

annulus when the disc is compressed, with them deforming outwards with an intact 

disc but deforming inwards with a denucleated disc.268 They also found the same 

behaviour in a partially denucleated disc (Figure 269).272  

 

The observations seen here can be explained by how the compressive load is 

distributed by the tissue. When loading the intact nucleus, the fluid part of the tissue is 

pressurised, causing the AF to bulge outwards, whereas when loading the denucleated 

samples, only the solid phase of the tissue is loaded and the AF bulges into the 

denucleated cavity. Also when the discs are denucleated, it is likely that there is a 

relaxation of the AF and a reduction in height of the disc even before load is applied. 

Therefore the AF has already slightly compressed and so is stiffer than in the intact 

case. Effectively, the discs are starting from a different position.   
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Figure 269 - Diagram showing the effects of partial denucleation on the response of human lumbar 
discs to a compressive load.

272
 

 

The repaired samples fall somewhere between the intact and denucleated nuclei, 

which is thought to be due to two reasons. Firstly, because the AF has bulged slightly 

into the nucleated cavity prior to injection and loading, the load is carried partly by the 

solid phase of the AF and partly by the fluid phase of the hydrogel as demonstrated in 

Figure 270. Secondly, because the disc height will have been altered during the 

denucleation process prior to injection, this will again result in a different starting 

position.  

 

Figure 270 - Schematic diagram of loading 

 

In another study by Meakin et al., they found that when the nucleus was replaced with 

polymer materials, the inward bulging behaviour of the AF was prevented.266 

 

The disc is known to exhibit biphasic behaviour, where the fluid phase dominates 

during compression and bending, and the solid phase dominates in shear directions of 

loading.273 The biphasic response ensures that the fluid phase bears most of the 
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applied stresses initially until the gradual movement of fluid out of the matrix transfers 

the stresses to the solid phase.37 The observed lax zone may be due to the biphasic 

nature of the disc, with the lax zone being where the fluid phase is dominating and 

being expelled from the disc, whereas the linear elastic region that follows is dominated 

by the solid phase. Although no statistical difference was found in the lax zones, there 

was a clear trend of the intact discs having the longest lax zone and the denucleated 

discs having the shortest lax zone. Both the P11-12:GAG containing discs fall 

somewhere in the middle of the two, suggesting that the natural biomechanics of the 

disc are heading towards being restored. The reduction of the fluid phase in the 

denucleated samples would explain why they have shortened lax zones.  

 

While the NP is quite soft in unconfined compression, results in confined compression 

show it to withstand much larger loads, attributed directly to the considerable role of 

fluid pressurization in NP mechanics.244 In the repaired samples, the pressurization of 

the disc may not yet be at the optimum level.  

 

As the caudal discs increase in level distally, they become smaller in size and also 

decrease in GAG content. Although the experiment was designed such that for each 

group a disc of each level would be used to minimise these effects, the values were 

plotted as a function of disc level to check that the stiffness and lax zone values were 

not dependant on disc size or GAG content, (Figure 271 and Figure 272). 

 

In both Figure 271 and Figure 272, no obvious trends were observed as the level 

changes, suggesting the results were not level dependant.  
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Figure 271 – Plot of normalised stiffness vs. 
disc level 

Figure 272 - Plot of lax zone vs. disc level 

 

The correlation between the normalised stiffness and amount of nucleus removed 

(Figure 273) as well as the correlation between stiffness and ratio of injection 

weight:NP removed weight (Figure 274) were also examined.  
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Figure 273 – Normalised stiffness vs. weight 
of nucleus removed from each disc 

Figure 274 – Normalised stiffness vs. ratio of 
injection weight:nucleus removed weight for 
each disc. 

Figure 273 shows that there was no bias between groups in terms of the baseline 

model, and that the variation in the amount of nucleus removed from specimen to 

specimen did not have an effect on the outcome. Figure 274 shows that the variation in 

the amount replaced as a fraction of the amount removed from specimen to specimen 

did not have a great effect either. From Figure 274, it can be observed that the ratio 

never got higher than 100%, i.e. there was never a case when more material was put in 

than was taken out, which could have potentially led to pressurisation issues. In fact, 

the ratio is mostly in the 30-50% region, which may explain why the stiffness was never 

fully restored in the repaired models. 
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5.5  Conclusions and future plans 

 

The de novo bovine model developed here was used to compare the behaviour of the 

natural tissue, whether intact or denucleated with repaired tissue in order to act as a 

tool for choosing the best peptide:GAG combination to optimise and develop further. 

 

Injections of GAG followed by P11-12 successfully resulted in a gel forming in situ inside 

the denucleated cavity. The presence of P11-12 minimised the amount of injected GAG 

that leaked through the AF and injection hole: in the case of P11-12:GAG 1:10, the GAG 

loss over 48 hours was reduced from 42 ± 3 % to 5 ± 4 %. This provides further 

evidence for peptide - GAG interactions. However, it is vital that mixing and total gel 

formation occurs between the GAG and peptide within the disc to limit leakage. By 

using a narrow gauge needle, minimal leakage was seen, which is likely to be the 

result of minimal damage to the AF. 

 

A denucleated disc repaired with P11-12:GAG restored the mechanical behaviour of the 

disc under static loading to that not significantly different to a disc with a healthy 

nucleus intact. A peptide GAG combination of 1:2 gave the best results. As the 1:2 ratio 

had a similar G’ to that of the natural nucleus, this suggests that rheology on the 

hydrogels alone could be used as an indicator of behaviour in vivo. 

 

The next stage in the development of this therapy will be to test its behaviour in more 

advanced animal models that mimic the behaviour in vivo, and to use protocols 

developed by other researchers that mimic the natural physiological behaviour and 

loads experienced in the spine, such as loading the specimens in a PBS bath, 

employing cyclic loading rather than static loading and pre-loading the 

samples.235,268,272,274  The tests should not only measure the compressive stiffness of 

the disc, but also capture the changes in disc height and AF bulging behaviour. A 

combination of the leakage study and loading study should also be carried out to 

assess the level of GAG and peptide leakage with loading.  
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Chapter 6 

6  Summary, major findings and future work 

6.1 Summary 

 

Back pain affects 80% of adults at some stage during their lifetimes, costing the UK 

economy around £10 billion per year. One of the most common causes of lower back 

pain is disc degeneration. Currently, early stage interventions are limited and many 

patients continue to suffer further. A successful treatment requires a multidisciplinary 

approach, combining chemical, biological and mechanical expertise. The research 

carried out here is highly novel: it is the first time that designed self-assembling peptide 

hydrogels have been developed and assessed as a potential treatment for back pain. 

These solutions can be switched from fluid to gel inside the body, offering the 

opportunity to develop an injectable treatment as opposed to more costly and traumatic 

surgical interventions. Another exciting finding is strong evidence that the mechanical 

properties of the gels can be controlled by peptide design, a key issue for success in 

this application and also in other fields of regenerative medicine. The economic impact 

of this work could be significant due to its innovative nature and the increasing growth 

of the medical industry.  

 

6.2 Major Findings 

In summary, a gel material has been developed that: 

 Has triggerable gelation and therefore is injectable, and potentially a  minimally 

invasive treatment; 

 Forms a stable hydrogel with mechanical properties similar to that of the natural 

tissue; 

 Contains a high GAG content to aid in maintaining the swelling pressure of the 

disc. 
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The work of this thesis can be broken down into the three following sections: 

 

6.2.1 Assessment of peptide self-assembly and design criteria for a 

suitable hydrogel 

 

The behaviour of different peptide building blocks was examined and the design criteria 

for a suitable peptide hydrogel were established. The peptides were analysed using a 

series of complementary analytical techniques (NMR, FTIR, CDUV & TEM) to 

determine their behaviour at the molecular & nanoscale levels.   

 

c* values were determined experimentally for three serine based peptides and, from 

these, their self-assembly curves were constructed and compared to that of their 

glutamine analogues. TEM, FTIR and CDUV were used to determine the secondary 

structure and morphology of the peptide aggregates. It was found that the serine along 

with glutamine based peptides follow a hierarchical self-assembly process similar to 

that in pure water and other solvents and so the same theoretical model can be used. 

Preliminary fitting with the theoretical model resulted in first estimates of the energetic 

parameters that govern self-assembly as well as magnitudes of overall Gibbs energies 

associated with the process. 

 

In order to achieve a self-assembled peptide gel in physiological conditions, it was 

found that the peptide needs to have an overall ±2 charge.  

 

Serine peptides have a higher c* than their glutamine analogues due to a lower β. 

Complementary peptides will provide lower c* values than the single peptide systems 

and they also have the advantage of reaching an equilibrium state in much shorter 

timescales. 

 



 

 

 

251 Summary, major findings and future work 

To form a gel with a low c* using a single peptide system, a negatively charged peptide 

would have to be used and one based on glutamine rather than serine will provide the 

lowest c*.  

The efforts made to understand the kinetics and equilibrium behaviour of the peptides, 

as well as rigorous quality control, led to consistency and reproducibility of behaviour 

throughout the studies. 

 

Rheological tests were carried out on the peptide gels. The results showed that the 

mechanical properties of the gels can be controlled, allowing up to a 10,000 fold 

variation in the stiffness. To achieve a stiff rather than weak hydrogel, a positively 

charged peptide should be used. The lower limit of the distance between nearest cross 

links was calculated using the plateau elastic moduli determined experimentally, which 

provided a picture of gel mesh size. 

 

For the application of nucleus augmentation, a peptide with as low a c* as possible was 

deemed advantageous because this may lead to lower leakage from the disc, due to 

the monomer concentration being lower, i.e. P11-4 or P11-9. However, it is also vital that 

the peptide gel has a similar elastic modulus to that of the NP, i.e. P11-12 or P11-8. 

Another important criterion for the application was the possibility of triggering gelation 

in situ, which the mixing of the complementary peptides would provide. Therefore at 

this stage there was no clear optimum peptide and further optimisation was required. 

 

6.2.2 Optimisation of the peptide hydrogels by combining them with 

glycosaminoglycans 

 

The peptide materials were further optimised by mixing with glycosaminoglycans that 

are naturally found within the disc. A mixing study revealed that the addition of GAG to 

the peptide samples can affect their gelation kinetics and speed up gelation, possibly 

by lowering the c*, for example with P11-12. 
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Rheology showed that the presence of GAGs in the peptide gels can enhance their 

material properties making them more like that of the natural nucleus. GAGs added to 

peptide were found to decrease the gel stiffness of positively charged peptides at high 

concentrations, but slightly increased stiffness at low GAG concentrations. By contrast, 

GAGs increased the gel stiffness values of negatively charged peptides at high 

concentrations, although the stiffness values were still lower overall than the positively 

charged peptides. 

 

The effect of GAGs on the lower limit of the distance between nearest cross links was 

calculated, with stronger gels having smaller distances between cross 

links/entanglements/junction points. 

 

From this work, the peptide:GAG hybrids P11-12:CS 1:2 and 1:10 were discovered to 

have the most similar G’ to natural nucleus and good gel lifetimes. The gelation of the 

peptide could be triggered by the addition of the GAG and after mixing the gel formed 

within seconds, making them an ideal candidate for an injectable therapy.  

 

6.2.3 Assessment of the hydrogels’ potential to remain in the disc 

and to restore disc mechanics 

 

The bovine model that was developed here was used to compare the behaviour of the 

natural tissue, both intact and denucleated, with repaired tissue. This was used as a 

tool for choosing the best peptide:GAG combination to optimise and develop further, 

rather than to mimic the in vivo physiology or biomechanics. 

 

Injections of GAG followed by P11-12 successfully resulted in a gel forming in situ inside 

the denucleated cavity. The presence of P11-12 minimised the amount of injected GAG 

that leaked through the AF and injection hole. This provided further evidence for 

peptide-GAG electrostatic interactions, cross linking the two biopolymer chains 

together. However, it is vital that thorough mixing and total gel formation occurred 

between the GAG and peptide within the disc to minimise leakage. By using a narrow 



 

 

 

253 Summary, major findings and future work 

gauge needle, minimal leakage was seen, which is likely to be the result of minimal 

damage to the AF. 

 

A denucleated disc repaired with P11-12:GAG restored the mechanical behaviour of the 

disc under static loading to that comparable to a disc with a healthy nucleus intact. A 

peptide:GAG combination of 1:2 gave the most positive results, which is thought to be 

due to the 1:2 ratio having the most similar G’ to that of the natural nucleus.   

 

In summary, the P11-12:GAG hydrogels have the potential to be a therapy in the 

treatment of disc degeneration and the results here demonstrate that the peptides 

could also have applications in other fields of regenerative medicine, e.g. as substrates 

for cell growth or cartilage tissue engineering. 

 

6.3 Directions for future work 

 

Although the aims of this thesis have been met, further work to gain a greater 

understanding of these novel systems could be carried out. Further optimisation is also 

required to discover the prime gel to use for the application of nucleus augmentation 

and better models for testing these gels would be beneficial. 

 

To gain more knowledge on the self-assembly behaviour of the peptides themselves, 

further TEM studies could be carried out especially at concentrations around the 

estimated c* to enable more accurate fitting with the theoretical model. To aid with the 

fitting further, dilutions of a high concentration sample should be carried out and 

analysed again as a function of time by 1HNMR in order to elucidate true equilibrium 

behaviour. In addition to this zeta potential measurements would be useful to 

determine the charges on the aggregates in solution. 

 

To gain a better understanding of the GAG-peptide interactions, further TEM studies 

would again be useful, in particular to establish the effects of the GAGs on the peptide 
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aggregate morphologies. It would also be beneficial to investigate the use of labelling 

the GAG chains with gold nanoparticles so that they could be detected in the TEM 

images. The use of immunochemistry and antibody labelling could also be employed to 

gain a better understanding of the interactions. Atomic force microscopy (AFM) could 

be used to look at the electrostatic bond strength between the GAG and peptide chains 

to establish if true cross linking has occurred. One of the reasons for including the 

GAGs in the gels was their osmotic effect and it would be useful to try to 

quantify/qualify this in comparison to the natural tissue, perhaps with the use of 

differential scanning calorimetry (DSC) and by measurement of the gels’ swelling 

properties. It would be useful to gain a more in-depth knowledge of how the presence 

of GAG affects the self-assembly of the peptides by using 1H NMR once more to study 

the monomer concentration as a function of total peptide concentration, in order to 

construct self-assembly curves in the presence of GAGs. 

 

Continuing on from this, further rheological studies could be employed to study more 

GAG ratios and also to investigate the effect of changing the peptide concentration on 

the mechanical properties of the gels. It would be useful to carry out creep and 

recovery testing on the gels to characterise their rheological properties further, as well 

as using rheometry to measure the gelation times. 

 

In order to develop the optimum gels chosen for the potential use in the application, a 

more sophisticated in vitro or ex vivo model is needed. In particular, a method to 

generate the necessary space in the nucleus is needed. It may be possible to use 

ultrasound to create a denucleated cavity without the need to remove an endplate.  

 

Once a better model has been established, a similar leakage study should be carried 

out looking into the GAG leakage through the AF and injection hole. However, to make 

it more physiologically relevant, this should be done under loading. It would also be 

useful to develop a method to quantify the amount of peptide leakage at the same time, 

possibly using HPLC or even fluorescence spectroscopy and fluorescently labelled 

peptides. These leakage studies could be carried out initially with static loading, but 

cyclic loading would be more relevant to the application. 
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Once these basic tests have been performed, more complex directional loading should 

be investigated alongside fatigue testing to establish the life times of the gels in vivo. 

Parallel to this, an investigation into the gels’ biological lifetime should be performed in 

order to examine the degradation profile of the gels and enzymatic activity. 

 

Following on from these tests, further optimisation of the peptide may be required, such 

as the introduction of cysteine residues to the peptide to enable covalent cross-linking, 

which should provide stronger gels with less potential for leakage. It may also lead to 

cross linking of the gel to the AF tissue which would secure the gel in place even 

further. 

 

Finally, due to the hostile conditions of the disc, tissue engineering techniques 

investigating regeneration of the nucleus using scaffolds and implanted cells are 

deemed to be extremely difficult to achieve. There has been some investigation into the 

migration of intervertebral disc cells into dense collagen scaffolds intended for 

functional replacement.275 Although the peptide:GAG hybrids have not yet been tested 

for their propensity to act as cell culture scaffolds, certain peptides of the P11 series 

have been very successful in this application. Therefore it would be interesting to 

investigate the migration of disc cells through the chosen gels to establish if the 

materials could replace the nucleus, restoring the biomechanics of the disc, whilst at 

the same time become populated with the natural cells leading to possible regeneration 

of the tissue. Some of the P11 peptides have also had bioactive domains covalently 

linked to their ends such as the cell adhesion ligand RGD, and it may be possible to 

introduce these and other similar ligands into the gels to encourage the migration. 

Alongside this biological testing, the biocompatibility testing currently underway should 

be continued in addition to assessment of the inflammatory and angiogenesis activity of 

the gels. 

 

6.4 Clinical Outlook 

 

The diagnosis and treatment of degenerative disc disease remain major challenges in 

the management of back pain. In order for new treatments to be successful, it is 
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essential that an approach able to identify those patients who will respond should be 

developed. Current techniques for identifying the source of pain, such as discography, 

are invasive and not always reliable at locating pain, and there is a poor relationship 

between the features observed in MRI imaging and patient pain. By improving 

diagnosis techniques alongside novel therapies, as well as increasing the 

understanding of the causes of pain, better patient management/treatment would be 

possible. 

 

There is also a requirement for standardised testing procedures for new devices, with 

significant challenges in the development of appropriate preclinical models of 

degeneration, implantation, and more severe biomechanical tests including fatigue and 

extremes of bending. There are concerns that current technology is driven by what it is 

possible to measure and pre-clinically test, rather than by the end requirements. 

 

There are numerous therapies currently under investigation and it may be that 

combining various treatment options will lead to a new gold standard in disc 

degeneration.  
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