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Abstract 

The thesis comprises five chapters. Chapter one, the introduction, starts with a brief 

discussion of the more famous Pd catalysed reactions and their relevance to Pd as a 

catalyst in allene chemistry. The main part of the introduction reviews the recent 

work in Pd catalysed allene chemistry (formation of C-C, C-O and C-N bonds) and 

its importance in both synthetic and natural product syntheses.  

The second chapter “results and discussion” discusses the author own work 

including the selection of a broad series of novel substrates chosen to enable a wide 

range of multicomponent cascades to be designed. These cascades enable the 

combination of 3, 4, 5, 7 and 9 substrates in a regio and stereoselective manner 

delivering novel products that enabled exploration of “biochemical space”. In all 

cases 1-4 Z-double bonds are created stereoselectively. These strategies are applied 

to the novel synthesis of potentially bioactive heterocycles including those derived 

from reactions of the rigid adamantyl tecton involving formation of eight new bonds.  

The third chapter “results and discussion” summarises preliminary work on 1,3-

dipolar cycloaddition generating pyrimidinylpyrrolidine. 

The fourth chapter contains the experimental details of all new compounds. 
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Chapter 1 (Introduction): 

Palladium Catalysed Allene Chemistry 

Firstly, I briefly discuss important aspects of palladium chemistry relevant to allene 

chemistry including reactions used to form C-C and C-heteroatom bonds. Next, I 

review palladium catalysed allene chemistry and its application to generate 

carbo/heterocyclic skeletons and natural products. I will highlight the latest 

publications in each area. Ligands are omitted in the mechanisms for clarity.  

1.1  Fundamental Palladium Chemistry  

Palladium (0) is a 4d
10 

transition metal. It coordinates with four ligands, each 

donating two electrons to achieve a square planar eighteen electron configuration, 

i.e.  tetrakis(triphenylphosphine)palladium(0).  Also, Pd forms stable complexes 

with a sixteen electron configuration in certain cases, i.e. 

bis(acetonitrile)dichloropalladium(II). These complexes dissociate in solution and 

produce more reactive unsaturated coordination complexes with a fourteen electron 

configuration which interact with substrates (Scheme 1). 

 

Scheme 1. Equilibrium between 18- and 14-electron species. 

 

Pd complexes are widely employed to create new carbon-carbon bonds which are 

difficult to achieve by traditional methods. These cross-coupling reactions involve 

an electrophile (vinyllic/aryl/heteroaryl halide, triflate, phosphate, tosylate, mesylate 

or diazonium salt) reacting with a nucleophile (alkenes, organometallics, etc.) 

catalysed by a Pd catalyst and play important and diverse roles in synthetic, 

medicinal and agro-chemistry.
1
 For example a widely used coupling reaction of an 

electrophile with an alkene (nucleophile) under palladium catalysed conditions, 

known as the Mizoroki-Heck reaction, delivers substituted alkenes and has found a 

multitude of applications.
1,2

 The reaction mechanism involves four main steps 

(Scheme 2, right): (1) Pd(0) inserts in the Ar-X bond giving ArPd(II)X (M1), (2) 



- 3 - 

alkene coordination with Pd(II) complex M2 and migratory insertion into the Pd-Ar 

bond affords M3 or M4, (3) syn-β-hydride elimination then delivers the product 

followed by (4) base initiated reductive elimination of Pd(0) from M5.  

A variety of organometallic compounds (nucleophiles) of Mg (Kumada),
1,3

 Cu 

(Sonogashira),
1,4

 Zn (Negishi),
1,5

 Sn (Stille-Migita),
1,6

 B (Suzuki-Miyaura),
1,7

 Si 

(Hiyama)
1,8

 couple with various electrophiles under Pd catalysis affording a diverse 

range of novel C-C bonds (Scheme 2, left). The organometallic cross-coupling 

mechanism starts with oxidative addition to generate the Pd(II) species M1 followed 

by concomitant migration of the nucleophile from the metal to the Pd(II) complex 

with the halide (X) moves in the opposite direction in a transmetallation step (rate 

determining step) to give intermediate M6 which undergoes reductive elimination to 

give the product and regenerates Pd(0). These reactions can be regio-, stereo-, and 

enantio-selective processes and involve inter- and intra-molecular coupling.
1j,2a,9

  

 

Scheme 2. Catalytic cycle of Heck (right) and organometallic (left) cross-coupling 

reactions.  

 

In the past, cross-coupling processes were used to furnish C−C bonds between 

Csp2−Csp2, Csp2−Csp and Csp−Csp partners. During the last two decades, enormous 

efforts have been expended to modify reaction conditions, catalysts and substrates.
1e-

h,1o,p,6b,c,10
 Also, palladium catalysed C−H activation is a relatively recent but 

powerful tool from the economic and waste reduction point of view. This process 

does not require specially activated functional groups in the reactants and allows 

functionalisation of aliphatic and aromatic compounds.
11

 In general, the driving 
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force in C−H functionalisation is the existence of directing group on the substrate 

which coordinates with the catalyst and facilitates regioselective C-H activation. All 

of these processes extend cross-coupling to involve Csp3-Csp3, Csp3-Csp2 and Csp3-Csp 

coupling.    

Pd catalysis has also been extensively used to create carbon-heteroatom bond 

formation.
1o,10i,11g,12

 Buchwald and Hartwig developed Pd catalysed C−N bond 

formation by coupling aryl halides and amine nucleophiles in the presence of 

base.
8c,d.10i,11h,13

  

Other important examples include Pd catalysed carbonylation of aromatic 

electrophiles in the presence of a range of nucleophiles which furnish a broad range 

of products, i.e. aldehydes, ketones, amides, carboxylic acids, esters and 

anhydrides.
14

 For example, Fukuyama modified Negishi coupling employing 

thioesters as electrophiles, instead of aryl halides, and organo-zinc compounds 

generating ketones with no need for CO pressure.
15

 Carboxylation of 

organometallics and alkenes using CO2 gas in the presence of transition metals (Pd, 

Rh, Cu, Ni, Au) furnish carboxylic acid derivatives.
16

 In the same vein, palladium 

catalysed cyanation of aryl halides generates benzonitriles.
17

 

Transition metals catalysed nucleophilic substitution of allylic electrophiles is 

known as Tsuji-Trost reaction (Scheme 3).
18

 The initial reaction used allylic esters 

and carbonates. This was extended to include benzylic esters/carbonates, vinyl 

epoxides and allylic halides, alcohols, carboxylic acids, phosphates, phenoxides, 

sulfones, carbamates, nitrates, etc.
18

 Recently, C-H functionalisation of unactivated 

allylic compounds has attracted considerable attention. This reaction provides a way 

to install C-C and C-heteroatom bonds regio-, stereo- and enantio-selectively using a 

broad range of nucleophiles. Additionally, organometallics can participate as 

nucleophiles. The mechanism (Scheme 3) starts with coordination of Pd(0) with the 

allyl double bond M1 followed by oxidative addition to give the η
1
-σ-complex M2 

which equilibrates with the η
3
-π-allyl Pd(II) complex M3. Nucleophilic attack on 

M3 followed by reductive elimination and dissociation of Pd(0) affords the product 

(B).  

The Wacker company invented the first catalytic organopalladium reaction applied 

on an industrial scale. It comprises a Pd(II) catalysed process for oxidation of 

ethylene to acetaldehyde in the presence of water and oxidants (oxygen and CuCl2) 



- 5 - 

which reoxidise the generated Pd(0) to the active Pd(II) species. Wacker oxidation 

has been extended to include terminal substituted alkenes which affords the 

corresponding ketones. The Pd(II)-alkene π-complex activates the alkene to 

nucleophilic attack. The process is applicable to inter- and intra-nucleophilic 

addition in a regio-, stereo- and enantio-selective manner.
19

 

 

Scheme 3. General mechanism of Tsuji-Trost reaction. 

 

 

Scheme 4. Activation of alkene with Pd(II) toward nucleophilic substitution. 

 

1.2  Pd catalysed allene chemistry. 

Allenes are 1,2-dienes, e.g. propadiene (Fig. 1), with a central sp hybridized carbon 

linked to two sp
2
 hybridized carbons. The two adjacent π-bonds are perpendicular to 

one another and have linear geometry. 

 

Figure 1. The chemical formula and orbital structure of propadiene. 
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Initially, allenes were considered to be difficult to synthesise and highly unstable 

which deterred work on their synthesis and applications. Allene chemistry has grown 

very rapidly during the last decade providing allenes with many different 

substituents
20

 fueling their application to a wide range of allene reactions, e.g. 

addition, free radical, cycloaddition, cyclisation, etc.
21,22

 Transition metal catalysed 

allene reactions provide a wide range of novel processes dependent on the metal.
23,24

 

In the same vein, the successful preparation of chiral allenes permits transfer of 

chirality to the products enabling natural product synthesis and the syntheses of 

biologically active compounds.
25

 Allene chemistry provides powerful methods for 

the regio- and stereoselective C-C and C-heteroatom bond construction in an 

enantio-selective fashion through both inter- and intra-molecular reactions.
26 

To the author’s knowledge, a review
27a

 and a book
27b

 published in 2000 and 2004, 

respectively, are the only publications that have discussed Pd catalysed allene 

reactions in depth. Other reviews have treated this topic in general with other 

topics.
23f, 27c-f

 The focus of this review is on allene reactions catalysed by palladium 

complexes which furnish C-C and C-heteroatom bonds in an inter/intra-molecular 

manner together with examples of their application to biologically active carbo-

/heterocyclic backbones. 

 

1.2.1  C−C Bond Formation. 

Allenes coordinate to Pd generating π-allyl electrophilic intermediates which can be 

trapped by carbo-nucleophiles.
28

 This methodology affords a versatile way of 

forming inter- and intra-molecular C-C bonds which are often difficult to achieve by 

traditional methods. 

For example, Grigg’s group utilised C-pronucleophiles, especially heterocyclic 

scaffolds having an enolic system, in Pd catalysed allene reactions.
29a-d

 Thus, 

compounds 1 or 2 react with allene 4 (1 atm) and aryl iodides 3a (electron 

rich/neutral) in three component cascade processes to furnish C-allylated 

intermediates 5 or 6, respectively (Scheme 5). These were not isolated but converted 

to the dihydrofurocoumarines 7 (53-70%) or dihydrofuro[2,3-b]pyridinones 8 (35-

55%), respectively, under acidic work up. However, incorporation of electron poor 

aryl iodides 3b in these cascades suppressed the cyclisation process. In the presence 
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of acid and in the case of 1 monoallylation products 5 were obtained in 65-97% 

yield.
29a 

 

Scheme 5. 3-Component cascade generating fused heterocyclic products. Arrows 

denote the active sites. 

 

Heterocyclic pronucleophiles with activated methylene groups 9a-d reacted with 

propadiene 4 (1 atm) and a range of ArI 3 (2.1-2.4 equiv.), both e-rich and e-poor, in  

five component cascades to give C,C-diallylation products 10 (Scheme 6).
29a,b

   

 

Scheme 6. Five component C,C-diallylation cascades of active methylene 

heterocycles. 

 

Allenyl malonamide 11a was found to couple with a broad range of aryl iodides 3a 

under phosphine free conditions (i) (n-BuLi was used to reduce Pd(II) and DMSO 

acted as both solvent and ligand) to generate, regio- and stereo-selectively, 4-(α-

styryl)-γ-lactams 12a in 61-88% yield (Scheme 7).
30

 The mechanism involves 

oxidative addition of aryl iodide 3a to Pd(0) followed by allene coordination 
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(intermediate (B)) and insertion to give π-allyl complex (C) which is 

intramolecularly attacked by the active methylene nucleophile at the α-position to 

deliver γ-lactam 12a with regeneration of the active catalyst (Scheme 8, left).  

 

Scheme 7. Allenes as γ-lactam or γ-lactone precursors.  

 

Scheme 8. Proposed mechanism for formation of 12a and 12b (left) or 13c (right). 

 

In the same vein, O-α-allenyl ester 11b reacted with the electron poor aryl iodide 3b 

under two different catalytic conditions (i) or (ii) (Scheme 7) to form only 4-(4-

styryl)-γ-lactones 12b in 49-53% yield.
31

 The reaction of 11c in the presence or 

absence of an electron neutral aryl iodide 3c under conditions (iii) gave 3,4-trans-γ-

lactone 13c in 45% yield. A plausible strategy for the formation of 13c (Scheme 8, 

right) proceeds via the Pd(0) π-complex (A). Oxidative addition affords η
3
-π-allyl 

complex (B) (this step is faster than the oxidative addition in the presence of ArI) 

which is in equilibrium with η
1
-σ-complex (B′). A second molecule of 11c 

coordinates with (B′) then migratory inserts to afford η
3
-π-allyl complex (D) which 

is attacked by the activated methylene group to form 13c with regeneration of Pd(0).  
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Larger ring systems can be accessed with appropriate methylene tethered allenes 

14a. Aryl iodides 3 under Pd(0) catalysed conditions furnish 60-91% yields of 10-, 

11- and 12-membered rings 15 in a regio- and stereoselective fashion (Scheme 9)
32

 

whilst allenes 14b and 14c react under the same conditions to give 9- and 10-

membered carbocycles in 70 and 89% yield, respectively. 

 

 

Scheme 9. Macrocycle formation via allene tethered C-nucleophiles. 

 

Dixon and Li prepared spirocyclic lactams 17, in 30-86 % yield, with diastereomeric 

ratios ranging from 3:1 to 47:1, via Pd catalysed reaction of tethered allene 16 with a 

broad range of aryl iodides 3 (Scheme 10).
33

 The process is applicable to a variety of 

spirocyclic products. 

 

Scheme 10. Arylative carbocyclisation of allenes linked C-pronucleophiles. 

 

Ma’s group used acyclic 1,3-diketone 19 for the regio- and stereo-selective 

hydroalkylation of allene 18 in the presence of [(PdCl2(LB-Phos)2]/TFA. The sole 

product was E-20 (63%, Scheme 11).
34

 The reaction starts with formation of 

complex (A) by coordination of Pd(II) to allene 18 followed by nucleophilic addition 

at the allene γ-position to give intermediate (B) (Scheme 12). Protonation of (B) 

gives exclusively E-20 and recycles the Pd catalyst. 
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Scheme 11. Hydroalkylation of allene 18 with 1,3-diketone 19. 

 

 

Scheme 12. Plausible mechanism for hydroalkylation of 18 with 19.  

 

Asymmetric addition of 1,3-diketones 22 to benzyloxyallene 21 was investigated by 

Trost’s group using their chiral ligand 23.
35a,b

 The reactivity and enantioselectivity 

depends on the pH of the reaction mixture. Meldrum’s acid 22a reacted under acidic 

conditions (TFA, 1 mol%) to give 24a (61-90%) with 82-99% ee (Scheme 13). The 

reaction of acyclic 22b or cyclic-diketones 22c,d occurs in buffer (benzoic 

acid/TEA, 2:1) or neutral medium (no additives), respectively, to furnish 67-97% 

yield and 77-99% ee of 24b-d.
35b

 
 

 

Scheme 13. Asymmetric hydroalkylation of allene 21 with activated C-nucleophiles 

22. 
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A versatile bimetallic Pd/In catalytic system was developed by Grigg et al for the 

construction of 26 (sec/tert-homoallyl alcohols,
36

 β-amino acids,
37

 enantioselective 

non-proteinogenic α-amino acids,
38

 N-substituted pyrrolidines
39

 and N-substituted 

piperidines
39

) via inter/intra-molecular reaction of aldehydes, ketones or imines 25 

with allene 4 and aryl halides 3 (Scheme 14). The general Scheme involves the 

oxidative addition of Pd(0) to an aryl halide 3 followed by allene 4 coordination to 

ArPdX (M1) and migratory insertion into the Ar-Pd bond to give the electrophilic π-

allyl Pd(II) species M2 (Scheme 14). Reductive transmetallation of M2 with indium 

reverses the electronic nature of the allyl species, affords the nucleophilic η
1
-

allylindium complex M3 and regenerates Pd(0). Allylation of the electrophilic 

carbon centre of the aldehyde/ketone or imine 25 with M3 delivers the desired 

product 26. 

 

Scheme 14. Pd/In catalysed allylation of aldehydes, ketones and imines. 

 

Thus, annulation of isoquinolines 27 to benzazepines 31 proceedes via sequential 

one pot reaction of 27 with 2-iodobenzyl bromide 28 to generate iminium salt 29 

(Scheme 15).
40

 Propadiene (1 bar) is then charged into the flask containing the Pd/In 

catalytic system generating 30 which undergoes regiospecific cyclisation to 

tetracycles 31 in 49-84% yield.  

 
Scheme 15. Pd/In catalysed synthesis of homoprotoberberine analogues.  
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The reaction of substituted allene 32 with boronic acid 33 under Pd catalysed 

conditions (Pd(PPh3)4, AcOH, THF, rt) afforded tri- and tetra-substituted alkenes 34 

and 35 (Scheme 16).
41

 The regio- and stereo-selectivity ratios depend on the 

substituents on the allene 32. Thus, reaction of 32a with boronic acid 33 was >97:3 

regioselective for 34 and 35 and 91:9 stereoselective for trans-34:cis-34. When less 

substituted allene 32b was used, a 100% regio- and stereo-selectivity of trans-34 

was observed, while 1,3-disubstituted allene 32c gave poor regioselectivity (64:36, 

trans-34:trans-35) but excellent stereoselectivity (only trans-isomers observed). 

 

Scheme 16. Allene controlled regio- and stereo-selectivity. 

 

Malinakova studied the cascade reaction of allene 36 with boronic acid 37 and imine 

38 with two different Pd(II) complexes.
42

 Palladacycle 39 (condition (i)) was more 

effective than Pd(OAc)2 (conditions (ii)) (Scheme 17). Phosphine ligand (HP(t-

Bu)3BF4) was necessary for conditions (i) (R = CO2Me, 6 % yield in absence of 

ligand). A catalytic cycle (Scheme 18) was suggested. The ligand assisted in the 

splitting of Pd(II) dimer 39. The resultant Pd(II) species transmetallated with boron 

37 and coordinated with the allene 36 giving η
3
-/η

1
-complexes (B and C, 

respectively). Imine 38 displaces the phosphine ligand in (C) to give η
1
-complex (D) 

which undergoes allyl transfer to afford intermediate (E). Transmetallation finally 

releases homoallyl amine 40 via intermediate (F) and regenerates intermediate 

(A).
42a

   

 

Scheme 17. Three component cascades delivering homoallyl amines. 
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Scheme 18. Plausible palladacycle/phosphine mechanism. 

 

1.2.2  C−C Bond formation via carbocyclisation. 

Pd catalysed carbocyclisation of allene tethered cyclic 1,3-dienes in the presence of 

different nucleophiles furnishes fused carbocyclic skeletons.
43

 Thus, trans-1,4-

carbohydroxylation of terminally symmetrical substituted allene linked conjugated 

diene 41a under aerobic/non-aerobic conditions (i) and (ii) in aqueous THF gave a 

41-90% yield of cis-fused products 43a (Scheme 19).
44a,b

 However, allene 

substituted cycloheptadiene 41b afforded the trans-fused product 44b in 90-94% 

yield whilst non-symmetrical substituted allene 41c provided a mixture of isomers 

with E-43c as the major product.  

 

Scheme 19. trans-Carbohydroxylation of allene tethered conjugated dienes. 

 

Bäckvall simulated biological processes in aerobic conditions by using a catalytic 

system comprising benzoquinone (BQ) and iron phthalocyanine (FePc) 42 to oxidize 

Pd(0) to Pd(II) and reduce O2 to H2O through two interlocked redox cycles (Scheme 

20).
44a,45

 The catalytic cycle of the previous reaction is illustrated in Scheme 21. The 
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allenyl and alkenyl double bonds in 41a coordinate with Pd(II) followed by the 

nucleophilic allenyl central carbon atom attacking the electrophilic Pd(II) complex 

which furnishes intermediate (A). Rearrangement affords σ-complex (B) which is in 

equilibrium with the η
3
-complex (C). Subsequent exo-water attack gives the product 

43a.  

 

Scheme 20. Aerobic oxidation of Pd(0) to Pd(II). 

 

Scheme 21. Sequential carbocyclisation and nucleophilic addition of water to 41a. 

 

Pd(OAc)2 was found to catalyse the cis-addition of carbon and boron derivatives to 

acyclic, cyclic and aza-enallenes. Thus, 45a-c with bis(pinacolato)diboron (B2pin2) 

46 gave carbocyclic, fused bicyclic and heterocyclic products 47a-c, respectively, in 

58-89% yield (Scheme 22).
46

 However, allene substituted cycloheptene 45b (R
1
, R

2
 

= -(CH2)4-) gave trans-5,7-fused bicyclic 48 (63% yield) via cis-addition of carbon 

and boron to the cyclic double bond.  

 

Scheme 22. Oxidative carbocyclisation/borylation of enallenes 45. 
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Analogously, aryl boronic acid 50 was used in Pd(II) catalysed 

carbocyclisation/arylation of acyclic and cyclic enallenes 49 to construct mono- and 

dicarbocyclic skeletons 51 in 55-95% yield (Scheme 23).
47

 Both carbocyclisation 

and arylation processes were selective for the cis-isomer.  

 

 

Scheme 23. Oxidative carbocyclisation/arylation of enallene 49. 

 

As previously mentioned in Scheme 21, the mechanism for 47 or 51 begins with 

Pd(OAc)2 coordination of the alkene and allene double bonds which allows the 

middle allenyl carbon to attack Pd(II) followed by intramolecular cis-

carbocyclisation generating intermediate (A) (Scheme 24). Sequential 

transmetallation of (A) with B2pin2 46 or ArB(OH)2 50 gives Pd(II) complex (B). 

Reductive elimination of Pd(0) gives 47 or 51, respectively. The catalytic cycle is 

completed via reoxidation of Pd(0) to Pd(II) with BQ.  

    

 

Scheme 24. Mechanism of oxidative cyclisation/borylation or arylation of enallene 

45 or 49.  

 

A related process involving allenyne 52a with arylboronic acid 50a under the same 

conditions (Pd(OAc)2, BQ, THF, rt, 20h) affords cross-conjugated trienes 53a in 50-

81% yield (Scheme 25).
48

 However, allenyne 52b (R
1
 = Et, n-pentyl) under the same 

conditions gave mixtures of 54b and 53b ranging from 65:10% to 85:<2% yield, 

respectively. 
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Scheme 25. Oxidative carbocyclisation/arylation of allenyne 52. 

 

Formation of 53 fits a Scheme 24 mechanism but 54 does not fit the same catalytic 

cycle. The authors directed their attention towards initial transmetallation (Scheme 

26) between the arylboronic acid 50 and palladium acetate giving ArPdOAc. The 

latter coordinates with the alkyne and allene 52 to furnish complex (A) followed by 

insertion to give vinyl palladium(II) intermediate (B). The terminal allene double 

bond inserts into the preformed Pd-Cvinyl bond to afford (C) which undergoes β-

hydride elimination to give 53. Compound 54 arises from the same intermediate (A) 

through sequential insertion of allene into the Pd-Ar bond to give (D) followed by 

insertion of the alkyne group into the preformed Pd-Cvinyl bond to afford (E) which 

undergoes β-hydride elimination to produce 54. Regeneration of the complex 

involves loss of AcOH from HPdOAc generating Pd(0) which is oxidised by BQ to 

regenerate Pd(II).   

Scheme 26. A possible mechanism for the formation of 53 and 54 from a common 

intermediate (A). BQ participates as a ligand and an oxidising agent. 

 

Oxidative carbocyclisation of enallenes under both aerobic and non-aerobic 

conditions have been developed.
45,49

 Aza-enallenes 55a cyclised under conditions (i) 

and gave 71-84% yield of pyrrolines 57a with small amounts of 58a (X = CH=CH). 



- 17 - 

The latter resulted from [4+2] cycloaddition of 1,4-benzoquinone (BQ) to 57a 

(Scheme 27).
50

 Using BQ (2.1 equiv.) resulted in exclusive formation of endo-58a 

(R
1
 = H, R

2 
= Me, R

3
 = H) in 95% yield. Applying aerobic conditions (ii) to Pd 

catalysed oxidative carbocyclisation of aza-enallenes 55b gave only 57b in 86-94% 

yield. Compound 55c undergoes an oxidative carbocyclisation/Diels-Alder cascade 

in the presence of maleimide (as dipolarophile) under conditions (ii) to give a 91% 

yield of the fused tricyclic endo-adduct 58c (X = NH). The catalytic cycle providing 

57 is similar to Scheme 24 except the transmetallation step is replaced by a β-

hydride elimination. Bäckvall and his co-workers enhanced the performance of the 

previous aerobic oxidation (Scheme 20) and engineered a new biomimetic hybrid 

cobalt catalyst 56 via covalently linking the 1,4-hydroquinone with Co(salmdpt) 

(salmdptH2 = bis[3-(salicylideneimino)propyl]methylamine). Catalyst 56 combines 

the two redox cycles in Scheme 20 into one cycle and facilitates electron transfer 

between Pd(0) and the oxidant O2.
49a,b, 50

    

 

Scheme 27. Carbocyclisation of enallene 55 under aerobic and non-aerobic 

conditions. 

 

Palladium catalysed carbocyclisation/borylation of allenyne 59a (n = 1) in the 

presence of B2pin2 46 gave a 36-82% yield of allylboronates 60a and 61a with ratios 

ranging from 67:33 to 100:0, respectively (Scheme 28).
51

 Allenyne 59b (n = 2) 

reacted under the same conditions to give the six-member allylboronates 60b and 

61b (33-97%) with isomeric ratios of 23:77 to 100:0, respectively. The yield and the 

isomeric ratio are sensitive to the alkyne substituents (R
3
 = Me, Ph) and the bulky 

groups (R
1
, R

2
 = Me, 

i-
Pr) on the terminal allenyl carbon. A possible mechanism is 

given in Scheme 29. Oxidative addition of MeOH to Pd(0) generates Pd-hydride 

species M1 which hydropalladates the alkyne moiety in 59 forming vinyl-palladium 

intermediate M2. The allenyl group inserts into the Pd-vinyl carbon bond and 
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affords π-allyl complex M3. Transmetallation between M3 and B2(pin)2 46 gives 

M4. Reductive elimination of Pd(0) releases the products 60 and 61.  

 

Scheme 28. Pd catalysed carbocyclisation/borylation of allenyne 59. 

 

Scheme 29.  Proposed mechanism for the formation of 60 and 61.  

 

1.2.3  C−N Bond Formation. 

The Pd catalysed nucleophilic addition of amines to allenes generates a C-N bond 

and provides a versatile and robust method for incorporating amines into acyclic and 

cyclic frameworks via both inter- and intramolecular reactions.
28a-c,52

 A new 

synthesis of multisubstituted indoles was achieved with Pd(II)/XantPhos catalyst by 

reacting terminal substituted ortho-haloarylallenes 62a with primary amines 63a 

under conditions (i) to afford 60-94% of 64a (Scheme 30).
53

  

 

Scheme 30. Synthesis of indoles 64 via Pd catalysed ortho-haloarylallene/amine 

cascades. 
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However, terminal unsubstituted ortho-bromoallenes 62b required modified 

(Pd(0)/JohnPhos) conditions (ii) to give indoles 64b in 53-83% yield. A possible 

mechanism  is shown in Scheme 31. 

 

Scheme 31. Synthesis of substituted indoles through Pd catalysed allene reactions. 

 

Homopropargyl amines 65 add to alkoxyallenes 66 (70 equiv.) using Pd(OAc)2 in 

the presence of chiral ligand (R,R)-23 (Scheme 13, page 10) to afford the N,O-

acetals 67 and 68 in 96-99% yield with a diastereomeric ratio ranging from 14:1 to 

>25:1, respectively (Scheme 32).
54

 The incorporation of (S,S)-23 reversed the 

diastereoselectivity of 67 and 68 (ratio 1:13 to 1:25) with the same yield. A possible 

mechanism is depicted in Scheme 33. The reaction is initiated by oxidative addition 

of Pd(0) into N-H bond followed by hydropalladation of allene 66 to give π-allyl 

complex (C). Nucleophilic attack of anion (A) on (C) followed by reductive 

regeneration of Pd(0) afforded (S)-N,O-acetal 67 using chiral ligand (R,R)-23.     

 

Scheme 32. Hydroamination of alkoxyallenes 66. 

 

 

Scheme 33. Plausible hydroamination mechanism for the formation of 67. 
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Broggini et al used allenamides as versatile scaffolds for creating 5- and 6-

membered heterocycles.
55a-c

 Thus, allenamide 69a reacted with aryl iodides 3 and 

Pd(0) under thermal conditions (i) to generate the carbopalladation intermediate 70 

which cyclised at the indolyl nitrogen to give tricyclic products 72 in 68-88% yield 

(Scheme 34). Subjecting 69b to microwave conditions(ii), in the absence of ArI, 

afforded 73 (67-89%) via hydropalladation intermediate 71.
55d

   

 

Scheme 34. Carboamination and hydroamination of allenamide 69. 

 

Ma and co-workers prepared allene tethered N-nucleophiles and coupled them with 

aryl halides using Pd conditions to generate an intermediate π-allyl which cyclised to 

give N-heterocycles.
56a-d

 Thus, trans-1,2-diazetidines 75 (62-77%) were obtained 

from the reaction of allenyl hydrazines 74 with aryl iodides 3 (Scheme 35). Optically 

active allenes (S)-74 (R = n-C5H11, n-C7H15) reacted with aryl iodides 3 (Ar = 4-

MeC6H4, 4-MeOC6H4) under the same conditions to give 68-75% yield and 98.5-

99.4% ee of (S,S)-75.
56e

 The paper gives no explanation for the preference for 

formation of the 4-membered ring rather than the alternative 5- or 6-membered 

rings. 

 

Scheme 35. Synthesis of trans-1,2-diazetidines 75. 

 

In the same vein, the Pd catalysed cascade reaction of allenyl amine 76 with 

isocyanate 77 and aryl iodide 3 afforded, via 78, a 54-96% yield of imidazolidinones 

79 (Scheme 36).
57
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Scheme 36. Pd Catalysed three component synthesis of imidazolidinones. 

 

Homoallenol 80 undergoes Pd(0) catalysed reaction with aryl iodide 3 and amine 81 

to give (Z)-1,5-amino alcohols 82 regio- and stereo-selectively in 54-90% yield 

(Scheme 37).
58

 This process is applicable to both racemic and chiral (R and S) 

alcohol 80. In the latter case, the chirality of the starting allene 80 was retained in the 

product (95-97% ee) with no involvement of the hydroxyl group. 

 

Scheme 37. Cascade synthesis of 1,5-amino alcohols. 

 

Pyrrolidine and piperidine heterocycles 85 were synthesised in 41-85% yield from 

N-(allenyl)tosylamide 83 via a Pd(II) catalysed regio- and trans-selective 

hydroamination process in the presence of bathocuproin ligand 84, an oxygen 

atmosphere and isopropanol (Scheme 38).
59

 The proposed reaction sequence 

(Scheme 39) involves: (i) oxidation of isopropanol to acetone with generation of a 

Pd(II) hydride species, (ii) allene 83 coordination to the metal (intermediate M1) and 

insertion into the Pd-H bond to deliver π-allyl intermediate M2, (iii) intramolecular 

nucleophilic addition at the inner π-allyl-carbon gives the product 85 and reductively 

releases Pd(0), (iv) oxidation of Pd(0) by the oxygen atmosphere regenerates Pd(II).   

 

Scheme 38. Synthesis of 5- and 6-membered nitrogen heterocycles. 
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Scheme 39. Pd(II) catalysed hydroamination. 

 

The Pd(0) catalysed reaction of allene 86 with protected hydroxylamine/formamide 

87 and an aryl halide/triflate 3 afforded allylamines 88 in 67-97% yield (Scheme 

40).
60

 In the case of 1,1-dimethylpropadiene 86 (R
1
 = Me), the nucleophile attacks 

the substituted end of π-allyl intermediate regioselectively and produces 88 as the 

sole product.   

 

Scheme 40. Synthesis of multisubstituted allyl amines. 

 

Grigg et al reported a sequential Pd catalysed allylation of N-nucleophiles tethered 

alkene in the presence of aryl halides and propadiene followed by Ru catalysed ring 

closing metathesis to give a broad range of five and six membered N-

heterocycles.
61a,b

 Rewardingly, combination of [3+2]cycloadditions with Pd 

catalysed allenylation strategies enabled the construction of triazolo- and tetrazolo-

tetrahydroisoquinolines and isoquinolines in a one pot reaction.
61c

 In the same vein, 

they reacted ortho-haloaryl aldehyde 89 with an α-amino acid ester or hydrazine or 

hydroxylamine 90 together with propadiene 4 and N-methylmaleimide 91 in the 

presence of a Pd(0) catalyst in four component cascade processes to form tetracyclic 

products 92 or 93 (Scheme 41). α-Amino acid ester 89a gave exclusively endo-92a 

(54-69%) whilst hydrazine 90b and hydroxylamine 90c afforded exo-93b (53-72%) 

and exo-93c (62%), respectively.
61d
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Scheme 41. Four component cascades. 

 

Interestingly, the Grigg group developed sequential 1,3-dipolar cycloaddition/Pictet-

Spengler/Pd catalysed allenylation reactions using solid phase technology.
62a

 

Furthermore, polymer supported allene and amines were involved in Pd catalysed 

four and three component cascades, respectively.
62b,c

 In the latter case the resin, 

containing a protected primary amino group (Rink Amide MBHA) 94, was 

sequentially deprotected then used as a nucleophile 95 together with propadiene 4 

and aryl iodides 3 in three component Pd(0) catalysed process to give resin 

supported substituted allylamines 96 which were acylated with benzoyl chloride and 

finally removed from the resin to give high purity (96 - >99%) products 98 in 55-

97% overall yield (Scheme 42).
62c 

 

Scheme 42. Solid phase cascades. 

 

1.2.4  C−O Bond Formation. 

The hydroxyl group is a well known nucleophile and allene tethered hydroxyl groups 

(e.g. alcohols, phenols, acids, enols) are used to attack both π-allyl species and 

activated allene double bonds intramolecularly affording broad range of oxygenated 

heterocycles.
63

 Thus, N-(buta-2,3-dienyl)amide 99 couples with aryl iodide 3 to form 



- 24 - 

π-allyl intermediate 100 in situ which undergoes intramolecular O-cyclisation to 

form oxazoline derivatives 101 (52-94%) (Scheme 43).
64

  

 

Scheme 43. Heterocyclisation of N-allenylamide.  

 

Allene tethered hydroxyl groups at the α-δ positions provide access to 5-8 membered 

oxygen heterocycles through Pd(II) catalysed intramolecular oxycyclisation.
65a-i

 For 

example, β,γ-allendiol 102a reacts with allyl bromide in the presence of PdCl2 in 

DMF at rt (conditions (i)) to give dihydropyrans 103a in 65-78% yield (Scheme 44) 

whilst allene 102b reacts under different conditions (conditions (ii)) to furnish 

oxybromination products 103b in 51-53% yield. These reactions involve chemo- and 

regio-specific attack of β-OH groups at the terminal allene carbon atom. In contrast, 

γ,δ-allendiol 104c,d reacts under both conditions (i and ii) to form 8-membered 

oxycycles 105c,d in 58-73 and 44-52% yield, respectively. In the latter cases, the δ-

OH group reacts chemoselectively and adds regioselectively to the terminal allenic 

carbon.
65c

   

 

Scheme 44. Chemo- and regioselectivity formation of 103 and 105. (PMP = 4-

methoxyphenyl, TPS = tert-butyldiphenylsilyl). 

 

A possible catalytic cycle for oxybromination of allene 102b to give 

bromodihydropyran 103b is shown on the left hand side of Scheme 45. Chelation of 

the metal to the allene double bond gives the intermediate (A) which is attacked by 

bromide anion giving π-allyl palladium (II) complex (B). Chemospecific addition of 

the secondary β-OH group to the terminal carbon atom on the π-allyl gives the 
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product 103b. Pd(II) is regenerated from Pd(0) via Cu(OAc)2/O2 oxidation. The 

formation of the 8-membered product 105c (Scheme 45, right) proceeds via allene-

palladium complex (A) which undergoes chemoselective intramolecular addition of 

the primary δ-OH group to the terminal allene carbon atom giving intermediate (B). 

Allyl bromide coordinates with the metal complex (B) to give (C) followed by 

migratory insertion to afford σ-complex (D) which under acidic conditions gives the 

product 105c via β-bromide elimination.      

Scheme 45. Possible mechanisms for the formation of 103b (left) and 105c (right). 

 

An interesting cascade process which generates tricyclic N/O-heterocycles has been 

reported (Scheme 46).
66

 The cascade combins the 2,7-diynylic carbonate 106a with 

the 2,3-allenoic acid 107a in the presence of Pd(PPh3)4 in nitromethane and 

generates tricyclic products 108a (54-87%) whereas allenoic acid 106b gives 

aromatized products 108b in 59-69% yield. The proposed mechanism (Scheme 47) 

involves, (i) oxidative addition of Pd(0) to propargylic carbonate 106 (Pd complex 

promotes the decarboxylation) generating complex (A), (ii) the terminal alkyne 

group coordinates to Pd(II) and inserts to give alkenyl-palladium methoxide (B), (iii) 

coordination of Pd(II) to the allenyl double bond facilitates intermolecular addition 

of the allenoic anion 107 to the terminal allene carbon which produces 

palladabicycle (C), (iv) intramolecular carbopalladation of the electron rich allenyl 

terminal double bond generates palladacycle (D), (v) reductive elimination of Pd(0) 

from (D) affords the tricyclic product 108a which aromatizes when R
5
 = H to 

produce 108b.    
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Scheme 46. Pd(0) catalysed formation of fused tricyclic skeletons. 

 

 
Scheme 47. Possible mechanism for the formation of 108a and 108b. 

 

Grigg’s group developed a palladium catalysed cascade reaction of propadiene 4 

with aryl iodide 3 and the phenol ortho-tethered nitrone 109 which generates the 

dipolarophile linked nitrone intermediate 110 in situ and subsequently undergoes 

intramolecular [3+2]cycloaddition to give tricyclic isoxazolidines 111 in 50-77% 

yield (Scheme 48).
67 

 

Scheme 48. Palladium catalysed allene cascade with in situ dipolarophile 

generation/cycloaddition. 

 

Ma and others have reported homodimeric-cyclisation of 1,2-allenyl ketones
68a,b

 and 

2,3-allenoic acids
68c,d

 (Scheme 49, a and b), and heterodimeric cyclisation of 2,3-

allenoic acids or 2,3-allenamides with 1,2-allenyl ketones
69a-c

 (c, e) or 2,3-allenols
69d
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(d) or unfunctionalized allenes
69e

 (f) as a versatile method for constructing new 

scaffolds employing Pd(II) catalysts.  

Scheme 49. Pd(II) catalysed homo- (right) and heterodimeric cyclisation (left) of 

allenes. 

 

In related work, Alcaide and Almendros heterocoupled 2,3-allenols with protected 

2,3-allenols to furnish 2,5-dihydrofurans 114.
70a

 In this strategy, the unprotected 2,3-

allenol supplies the 2,5-dihydrofuran moiety and the protected 2,3-allenol supplies 

the buta-1,3-diene fragment regioselectively at the 4-position of the dihydrofuran. 

Subsequently, Ma et al reported homodimeric coupling-cyclisation of 2,3-allenols 

giving the same backbone 114.
70b

 Interestingly, two different 2,3-allenols 112 and 

113 couple to give dihydrofurans 114 in 38-81% yield (Scheme 50, left).
70c

  

 

Scheme 50. Coupling-cyclisation reaction of two different α-allenols (left) and the 

proposed mechanism (right). 

 

In this case the first 2,3-allenol 112, which has a substituent at the 2-position, prefers 

to form a dihydrofuran moiety whereas the second 2,3-allenol 113, which has no 

substituent at the 2-position, generates a 1,3-butadiene fragment at the 4-position of 

the preformed dihydrofuran species.
70c

 A general mechanism for this strategy is 

depicted on the right hand side of Scheme 50. Pd(II) coordinates with the 2,3-allenol 
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112 terminal double bond and activates intramolecular OH addition to afford 

intermediate (A) which carbopalladates 113 to give the π-allyl complex (B). The 

latter undergoes β-hydroxide elimination to give the product 114 and PdIOH. The 

preformed HI converts PdIOH into the active PdI2 to complete the catalytic cycle.  

In 2010, Ma and his co-workers reported a process which creates 3-rings from 1,5-

bisallenes 115 and  2,3-allenoic acids 116 and afforded cis-products 117 in 52-81% 

yield (Scheme 51).
71

 A possible mechanism (Scheme 52) involves initial Pd(II) 

mediated cyclisation of allene 116 to afford oxypalladation intermediate (A). 

Carbopalladation of one allenyl group in 115 with (A) generates η
1
-complexes (B) 

and (C). The latter complex (C) suffers from steric congestion which directs the 

equilibrium toward the stable intermediate (B). Intramolecular cis-carbopalladation 

of the second allenyl group gives σ-complex (D). A second molecule of 116 

coordinates to complex (D) and promotes intramolecular cyclisation to give 

intermediate (E). The latter undergoes reductive elimination of Pd(0) and released 

the tricyclic product 117. Oxidation of Pd(0) by benzoquinone in the presence of 

acid regenerates the active Pd(II) catalyst.   

 
 

Scheme 51. Pd(II) catalysed tricyclisation of 115 with 116. 

 

 

 
 

Scheme 52. A rational catalytic cycle for the formation of 117.  
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1.2.5  Pd catalysed allene chemistry via C-H activation. 

Palladium catalysed C-H functionalisation has attracted strong interest, from 

economic and green chemistry points of view, due to not requiring palladium 

activating scaffolds such as halogens, etc. Currently, few examples of Pd catalysed 

C-H functionalisation of arenes involving allenes are known. A typical example is 

the hydroarylation of 2,3-allenoates 118a,b via Pd(II) catalysed C-H activation of 

1,3,5-trimethoxybenzene 119a or anisole 119b (R
3
, R

4
 = Me, H) or phenol 119b (R

3
 

= R
4
 = H) to afford 4,4-diarylbut-2(E)-enoate 120 (37-70%) in a regio- and stereo-

selective manner (Scheme 53).
72

 A possible catalytic cycle (Scheme 54) is as 

follows: (i) PdCl2(MeCN)2 in the presence of TFA gives Pd(MeCN)2(OCOCF3)2 

(A), (ii) electrophilic palladation of Ar-H 119 gives aryl-palladium complex (B), (iii) 

chelation of 118 by the double bond and the carbonyl group  gives intermediate (C) 

which undergoes migratory insertion regioselectively to give carbopalladation 

intermediate (D) in which Pd chelating C=O group and supporting E-isomer, (iv) 

protonation of (D) releases the product 120 and the Pd(II) species (A). 

 

Scheme 53. Pd catalysed C-H functionalisation of 119 with 118. 

 

 

Scheme 54. Proposed mechanism for hydroarylation of 118. 

 

A further example is the reaction of allenylphosphonate 121a with 1-methylindol-2-

carboxylic acid 122a via Pd(OAc)2 catalysed C-H activation to give the Z-

indolopyranone 123a (65-68%) as the sole product whereas allenylphosphine oxide 

121b gives a 7:3 mixture of Z/E isomers 123b and 124b in 54-65% yield, 

respectively, (Scheme 55).
73

 On the other hand, arylallene 121c reacts 
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regioselectively with N-substituted indole-2-carboxylic acid 122c under the same 

conditions to give the indolopyranones 123c (43-68%). 

 

Scheme 55. Synthesis of indolopyranones 123 and 124. 

 

A mechanism for the formation of 123a and 123c is proposed in Scheme 56: (i) the 

acetate ligand on Pd(II) is displaced by the indole carboxylate ligand 122 which 

enhances intramolecular C-H activation of the indole 3-position and cyclisation to 

the palladacycle M1, (ii) allenes 121a and 121c coordinate with the Pd(II) complex 

M1 and the external β,γ-C=C group in 121a or the internal α,β-C=C group in 121c 

undergo migratory insertion to M2 or M3, respectively, (iii) reductive elimination of 

Pd(0), which is oxidized by Ag2CO3 and regenerates the Pd(II) complex, gives the 

products 123a or 123c, respectively. 

 

Scheme 56. Proposed mechanistic route to pyranoindoles 123a and 123c. 

 

N-Cinnamylaminoallene 125a reacts with aryl iodide 126a in the presence of 

Pd(PPh3)4 and K2CO3 to furnish tricyclic products 127a and 128a in 21-41% and 2-

36% yield, respectively (Scheme 57)
74 

whereas 2-iodopyridine and 2-iodopyrazine 

under the same conditions afford 127b as the sole product in 49-62% yield.  
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Scheme 57. Production of fused tricyclic skeletons via C-H functionalisation. (Mts = 

2,4,6-trimethylphenylsulfonyl) 

 

A possible mechanism for the formation of 127 and 128 (Scheme 58) involves: (i) π-

allyl Pd(II) intermediates M1 and M2 formed from sequential oxidative addition of 

Pd(0) to Ar-I, allene 128 coordination with ArPdI and insertion into Ar-Pd bond, (ii) 

intramolecular carbopalladation of the linked alkene group results in M3 and M4, 

respectively, (iii) aromatic C-H activation followed by reductive elimination affords 

products 127 and 128, respectively, and regenerated Pd(0). Activation of the C-H 

group could proceed in three possible ways. The first involves intramolecular 

oxidative addition of Pd(II) into the aromatic C-H bond forming Pd(IV) intermediate 

M5. The second is carbopalladation of the phenyl group to afford M6 followed by an 

unusual anti-β-hydride elimination (supported by rearomatisation) or stereomutation 

of the allyl Pd(II) species through η
3
-η

1
-η

3
 mechanism to deliver the acceptable syn-

β-hydride elimination. The third is electrophilic addition of Pd(II) onto the aromatic 

group generating the cationic intermediate M7.                 

 

Scheme 58. Possible mechanisms for formation of 127 and 128. 
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1.2.6  Allene scaffolds and natural product synthesis. 

There are significant number of allenic natural products many of which have 

interesting biological activities.
25b,c,75

 Derivatisation of bioactive compounds (e.g. 

steroids, amino acids, nucleoside analogues) with allenyl groups potentially offer 

access to modified biologically and pharmaceutically active products.
26

 Moreover, 

chiral allenes have the ability to transfer chirality to new stereogenic centres in such 

products and thus permit construction of C-C and C-heteroatom bonds in a regio- 

and stereoselective manner. These features also encourage incorporation of allenes 

in asymmetric syntheses of biologically interesting skeletons and natural 

products.
25a,26

 Some examples of the latter are given below.  

Ergot alkaloids are a class of compounds produced by the fungus Claviceps 

purpurea and they have hallucinogenic, psychotropic, analgesic and uterus and 

intestine-stimulating properties.
76a,e,f

 They find use as dopamine and serotonin 

receptors agonists, antimigraine, induce uterine muscle contraction and facilitate the 

transport of the antibiotics across cell membranes.
76a-c,e,f

 These natural products are 

used in a broad range of drugs, e.g. cafergot, ergometrine, nicergoline, pergolide, 

cabergoline,....etc.
76d,e

 Ergot alkaloids (lysergol, isolysergol and lysergic acid) have 

been synthesized by Fujii and Ohno via Pd(0) mediated intramolecular cyclisation of 

an allene tethered 4-bromoindolyl group from one end and an amino group from the 

other.
77a-c

 Thus, Pd(PPh3)4 induced intramolecular carboamination of allene 129 (dr 

= 94:6) to give a 92:8 diastereomeric mixture of 131 and 132 in 76% yield (Scheme 

59).
77a

 The opposite diastereomer 130 (dr = 94:6) reacted under the same conditions 

to afford a 31:69 mixture of  131 and 132 in 43% yield. A rational carboamination 

mechanism is proposed in Scheme 60. Oxidative addition of 129 to Pd(0) affords 

intermediate M1. Intramolecular coordination between the allenyl group and the 

Pd(II) (intermediate M2) activates regioselective aminopalladation of the allenyl 

double bond and delivers palladacycle M3 which undergoes a reductive elimination 

sequence to provide the major isomer 131. Following the same sequence, 130 gave 

the opposite isomer 132 through intermediates M1′, M2′ and M3′. The low yield in 

the case of 130 is ascribed to steric congestion between the NTs and methylene 

protons in the intermediate M2′ which suppress the aminopalladation step.   
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Scheme 59. Pd(0) catalysed synthesis of ergot alkaloids. 

 

 

Scheme 60. Suggested aminopalladation mechanism for the synthesis 131 and 132. 

 

Enokipodins A and B are natural products isolated from the cultural broth of the 

edible mushroom Flammulina velutipes. They exhibit antimicrobial activity against 

the fungus Cladosporium herbarum and against both the gram positive bacteria 

Staphylococcus aureus and Bacillus subtilis.
78a-c 

Aplysin is also a natural product 

isolated from the sea hare Aplysia kurodai, opisthobranchs and the red sea alga 

Laurencia. The latter is responsible for the natural occurrence of aplysin because the 

sea hare Aplysia and opisthobranchs feed on Laurencia and exhibit antifeedant 

properties to protect themselves from predators.
78d-f

 Yoshida and co-workers based 

their synthesis of these natural products on a previous palladium catalysed 

regiospecific addition of an arylboronic acid to an allenol.
79a

 Chiral allenol 133 

coupled with arylboronic acid 134 in the presence of [Pd2(OH)2(PPh3)4][BF4]2 and 
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Et3N in dioxane/H2O (20:1) at 80 °C to afford E-allyl alcohol 135 (68%) (Scheme 

61).
79b

 Eschenmoser-Claisen rearrangement of alcohol 135 afforded the key 

intermediate 136 in 80% yield and 91% ee. A further five steps afforded enokipodin 

B which, when treated with Na2S2O4, delivered enokipodin A. A reasonable catalytic 

sequence involves transmetallation between PdLn(OH)2 and ArB(OH)2 134 to give 

ArPdLn(OH). Allene 133 coordinates with ArPdLn(OH) then the terminal allene 

double bond inserts between Ar-Pd and generates an allyl palladium intermediate 

which hydrolyses to give 135 and regenerated PdLn(OH)2.
79c

  

 

Scheme 61. Synthesis of enokipodins A and B. 

 

A similar formal total synthesis of aplysin is depicted in Scheme 62.
79d

 The reverse 

enantiomer 137 coupled with 138 and produced E-allyl alcohol 139 (74% yield, 95% 

ee). Claisen-type rearrangement of 139 gave the building block 140 (84% yield, 95% 

ee) which was subjected to further steps to finally deliver aplysin. 

 

 

Scheme 62. Outline enantioselective synthesis of aplysin. 
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Bromoallenes tethered (N, O, C)-nucleophiles and bromoallenes linked with two 

nucleophiles separated by a linker have been developed by Ohno and Tanaka to 

furnish heterocyclic and fused bicyclic products, respectively.
80a-d

 Furthermore, 

Ohno and Fujii designed propargyl chloride/carbonate and bromoallene scaffolds 

carrying a branched alkyl group with two nucleophiles as key starting materials for 

their synthesis of pachastrissamine (jaspine B).
80e,f

 Pachastrissamine, isolated from 

two marine sponge Pachastrissa sp. and Jaspis sp., showed inhibition of melanoma 

cell growth and cytotoxicity (IC50 0.01 µg/mL) against P388, A549, HT29 and 

MEL28 cell lines.
81

 Pd(0) catalysed double cyclisation of bromoallene 141 or 142 

gave the bicyclic tetrahydrofuran 143 (89 and 88%, respectively) which was 

converted to pachastrissamine in 5-steps (Scheme 63).
80e

 The mechanism for the 

generation of the pachastrissamine precursor 143 is illustrated in Scheme 64: (i) 

oxidative addition of bromoallene 141 to Pd(0) produces η
1
-allenyl palladium 

intermediate M1 which is in equilibrium with η
3
-propargyl palladium complex M2; 

(ii) intramolecular OH attack at the central carbon atom of the propargyl species M2 

furnishes palladacycle M3; (iii) protonation of M3 generates π-allyl palladium 

complex M4; (iv) a second intramolecular amidic addition to the internal carbon of 

π-allyl M4 releases the product 143 and Pd(II) which regenerated Pd(0) in the 

presence of base.   

 

Scheme 63. Bromoallenes 141 and 142 gave the same pachastrissamine scaffold 

143. 

 

Scheme 64. Suggest mechanism generating key scaffold 143.   
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Natural products (−)-isoavenaciolide and (−)-avenaciolide were isolated from the 

fermentation broth of Aspergillus and Penicillium species. The first has antibacterial 

and antifungal activity and inhibits the glutamate transporter in rat liver 

mitochondria whereas the second inhibits vaccinia H1-related (VAR) phosphatise 

activity.
82

 Yu’s group have reported their synthesis via stannyl allene 144 (Scheme 

65).
83

 Thus, sequential one pot cross-coupling between 144 and (R,R)-145 produced 

boronylallene 146. Addition of R
1
CHO allowed an enantioselective allylic transfer 

to occur (boron group controlled the chirality and activated the aldehyde) affording 

147. Distannylation of allene 147 with Me3SnSnMe3 in the presence of [(π-

allyl)2Pd2Cl2] gave 148. Addition of a second aldehyde (R
2
CHO) achieved a second 

enantioselective allylic transfer via intermediate 149. Aqueous work up gave a 63-

81% yield of 2-(1-stannylvinyl)-1,3-diols 150 with three continuous stereogenic 

centres. This strategy was used to prepare (−)-isoavenaciolide in three steps (Scheme 

66). (−)-Avenaciolide was synthesized using the same protocol but starting with 

(S,S)-bromoborane 145 which gave 151 which was reacted with N-iodosuccinimide 

(NIS) to give 153. Carbonylation and epimerisation of 153 in the presence of 

Pd(PPh3)4, CO (100 atm) and K2CO3 in MeCN at 70 °C afforded (−)-avenaciolide 

together with 154 in 95:5 ratio, respectively.   

 
Scheme 65. Sequential enantioselective allylic transfer. 

 

 
Scheme 66. Synthesis of (−)-avenaciolide and (−)-isoavenaciolide. 



- 37 - 

1.3  Conclusion. 

Discovering new methods for constructing C-C bonds are challenging targets. 

Palladium catalysed processes have proved fertile ground for this with Heck, Negishi 

and Suzuki leading the way. Their pioneering work led to the award of the shared 

Noble prize in 2010 due to the importance of these reactions in synthetic and 

industrial chemistry. I discussed in brief the general features of some palladium 

mediated reactions and their versatility in building C-C and C-heteroatom bonds. 

The review then focused on palladium catalysed allene chemistry as a potential 

method for constructing C-C and C-heteroatom bonds through inter- and 

intramolecular reactions. In particular, the versatility and uniqueness of the 

propadiene moiety of allenes as key building blocks in the synthesis of carbo- and 

heterocycles. Also, under the reaction conditions, the chirality of the starting 

materials can be transferred to the products as emphasised by the application of 

palladium catalysed allene chemistry in natural product synthesis.     
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Chapter 2 

Results and Discussion 

Palladium (0) catalysed allene cascade reactions 
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Chapter 2 (Results and Discussion): Palladium (0) catalysed allene 

cascade reactions 

2.1  Introduction 

As demonstrated in the introduction, allenes are versatile building blocks capable of 

a broad range of reactions. These features make allenes attractive starting materials 

and the chemistry of allenes is growing rapidly. My interest lies in palladium 

catalysed allene cascade reactions and their applications. This has involved creating 

di-, tri and tetra-trigger building blocks and their application in five, seven and nine 

component cascades, respectively. These complex cascades “open the door” to the 

synthesis of multivalent ligands which have numerous applications. I discuss in brief 

both the biological importance of the starting materials and the general features of 

our cascade chemistry in which 3-, 5-, 7- and 9-component cascades are discussed 

sequentially.     

 

2.1.1  Potentially biologically active building blocks. 

In this brief introduction, I highlight the broad biological importance of the building 

blocks which are used in my Pd(0) catalysed cascade chemistry. These are invariably 

heterocycles with two or more heteroatoms. Methylxanthines, (theobromine 155, 

caffeine 156, and theophylline 157), have a range of bioactivities (Chart 1). They 

stimulate heart rate, force of contraction and cause cardiac arrhythmias at high 

concentrations.
84

 In the CNS they increase alertness, stimulate the respiratory centre, 

and are used for treatment of infantile apnea.
85a-c

 In high doses they can lead to 

convulsions that are resistant to anticonvulsants.
85a

 They also induce acid and pepsin 

secretions in the GI tract and act as competitive nonselective phosphodiesterase 

inhibitors which raise intracellular cyclic adenosine monophosphate levels, activate 

protein kinase A, inhibit tumour necrosis factor TNF-alpha and leukotriene 

synthesis, and reduce inflammation and innate immunity.
86a-d

 They are also 

nonselective adenosine receptor antagonists which inhibit sleep-inducing 

adenosine.
87

 

http://en.wikipedia.org/wiki/Phosphodiesterase_inhibitors
http://en.wikipedia.org/wiki/Phosphodiesterase_inhibitors
http://en.wikipedia.org/wiki/TNF_inhibitor
http://en.wikipedia.org/wiki/Leukotriene
http://en.wikipedia.org/wiki/Anti-inflammatory
http://en.wikipedia.org/wiki/Innate_immunity
http://en.wikipedia.org/wiki/Adenosine_receptor
http://en.wikipedia.org/wiki/Adenosine
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Chart 1. Methylxanthine group. 

 

Tetrahydro-γ-carbolines have a broad spectrum of biological activity (i.e. 

antihistamine, serotonin inhibition, antidepressant, anti-inflammatory, neuroleptic 

activity, etc.).
88a-d

 Dimebon 158 (Chart 2) is an old antihistamine drug which has 

recently shown inhibition of brain cell death in preclinical studies of Alzheimer and 

Huntington diseases as well as different types of schizophrenia, making it a potential 

treatment of these and other neurodegenerative diseases.
88c,d,89

 Mebhydrolin 159 is 

an antihistamine drug used for relief of allergic symptoms caused by histamine 

release. Puig et al.,
90 

recently used mebhydrolin as a scaffold and introduced a 

quinoline substituent on the benzyl group and added a carboxyl group to piperidine 

moiety to form a potent and selective cystinyl leukotriene (cys LT1) antagonist  160 

for treating asthma. Bridoux and his co-workers introduced N-aroyl-tetrahydro-γ-

carbolines 161 as dual 5-lipoxygenase (5-LOX)/cyclooxygenase (COX) inhibitors 

for treating the proliferation of malignant prostate cancer.
91

 

     

Chart 2. Broad biological application of tetrahydro-γ-carbolines.   

 

The carboline nucleus appears to block central dopamine receptors and tetrahydro- 

162, 163 and hexahydro-γ-carboline derivatives 164, 165 (Chart 3) were found to 
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have potential antipsychotic activity.
92

 γ-Carbolines have affinity for serotonin (5-

HT2A and 5-HT5A) receptors e.g. 166 shows high affinity for 5-HT5A receptors.
93

 

 

Chart 3. Some bioactive tetra/hexa-hydro-γ-carbolines. 

 

An estimated 39.4 million people are infected with human immunodeficiency virus 

(HIV). Approximately 5 million new cases are diagnosed each year and there are 6 

deaths from the disease per minute.
94a

 The virus binds to chemokine receptor 5 

(CCR-5) and targets white blood cells. It is incorporated into the cell’s DNA where 

it mutates easily, adapts rapidly
94 

and develops drug resistance.
95

 Maraviroc (UK-

427,857) 167 (Chart 4) is a CCR-5 antagonist, and is used in the treatment of HIV. It 

is potentially capable of blocking viral entry into human immune system cells, 

resulting in slowing progression of the disease.
94, 96

 

Cocaine is one of the most powerfully addictive drugs known. Cocaine abuse puts a 

great burden on public health and safety and plays an important role in the rapid 

spread of AIDS and drug-resistant tuberculosis. It is also a factor in drug-related 

violent and nonviolent crimes.
97a

 Cocaine binds to the dopamine transporter (DAT) 

and inhibits dopamine (DA) uptake thus elevating the concentration of dopamine in 

the synapse.
97b

 Hence DAT is a target for drugs to treat cocaine abuse. The strategy 

is to develop compounds with high-affinity for, and slow-dissociation from DAT. 

Compounds GBR 12935, 12909, 12783 (Chart 4)
97

 were among the first compounds 

showing high-affinity for, and selective inhibition of, DA reuptake. Replacing the 

piperazine moiety in GBR 12935 with homopiperazine gives LR 1111 with similar 

binding affinity to GBR 12935 for DAT but with a greater than 4000 fold inhibition 
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selectivity of DA uptake. Replacing the piperazine fragment in GBR
’
s with a 

bridged piperazine or bridged homopiperazine 168 gives the same binding but with 

higher affinity and selectivity for DA uptake inhibition. Modification of the 

phenylpropyl tail of compound GBR 12909 by incorporation of an OH group causes 

increased binding affinity and selectivity at the DAT binding site.  

 

Chart 4. Selected biologically active cyclic and bridged cyclic amines.  

 

Aromatic and heterocyclic sulphonamides (e.g. 169-174, Chart 5) are carbonic 

anhydrase inhibitors
98

 and also find application in treatment of glaucoma,
99

 

epilepsy,
100a

 gastro-duodenal ulcers,
100b

 osteoporosis,
100b

 acute mountain 

sickness,
100c

 and other neurological abnormal states.
99d,101

 Aromatic sulphonamides 

also find application as diuretics
102a

 and antimicrobial
102b

 agents. Particular effort 

has been directed to screen aromatic and heterocyclic sulphonamides as isozyme-

selective carbonic anhydrase inhibitors.
103

   

 

Chart 5. Selected biologically active sulphonamides. 
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The adamantane nucleus differs substantially from benzene in structure and physical 

properties.
104

 It has great polarizability, occupies a larger volume of space and 

permits selective exploration of the space allowing drug discovery to benefit from 

controllable electrostatic steric and ionic interactions between adamantane and 

receptors/enzymes.
104b

 These properties allow the absorption, distribution, 

metabolism and excretion properties of chemical candidates to be varied, e.g. the 

passage of 1-adamantylcarboxamide 175 and dopamantine 176 (Chart 6) through the 

blood brain barrier is attributed to the adamantyl moiety.
105

 Kitagawa used an 

adamantane moiety, with high lipophilicity and low toxicity, as a carrier to deliver 

poorly absorbed drugs to the central nervous system across the blood brain barrier.
106

 

 

Chart 6. Adamantyl group enhancing blood brain barrier penetration. 

 

The size and shape of the adamantyl group can be used to promote hydrophobic 

interactions, e.g. tetrahydrocannabinol 177 binds equally to two cannabinoid 

receptors: CB1 (found in CNS) and CB2 (found in the immune system), (Chart 7). 

Replacing the C-3 pentyl group in 177 with a 1-adamantyl group, as in 178, 

promoted affinity and selectivity for the CB1 receptor whereas replacing C-3 pentyl 

group with a 2-adamantyl group, as in 179, promoted affinity for the CB2 

receptor.
107 

 

Chart 7. Derivatisation position of adamantyl group controlled the selectivity. 

 

Adamantyl moieties perturb the influenza virus ion channels by disrupting the 

transmembrane flux through two mechanisms.
104b 

The first mechanism “cork in the 

bottle” (adamantane derivatives in the ion channel cavity) disrupts the 
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transmembrane proton flux. The second mechanism “membrane side” involves 

adamantane derivatives that do not bind in the channel cavity but bind between the 

membrane and the proton channel. Adamantane derivatives have been developed to 

treat a broad spectrum of diseases (Chart 8).      

 

Chart 8. Selected examples of adamantane biological activity. 

 

There are several ways to achieve potential bioactive lead compounds.
109a,b

 One way 

is to use a known drug or compounds with the desired activity as a key intermediate 

for preparing novel lead compounds. The advantages are that the biological target is 

well known and the binding affinity to that target is maximised beside the other 

properties. Privileged structures are a class of frameworks capable of binding to 

several biological targets with high affinity.
109c,d

 These structures provide a way for 

medicinal chemists to build a library of compounds based on one core scaffold and 

screen it against different biological targets. Thus, theobromine 155, tetrahydro-γ-

carboline 187, 1-aminoadamantane 180, maraviroc amine 188, piperazine 189a, 

homopiperazine 189b and mafenide 174 (Chart 9) all have the ability to hit a range 

of biological targets and could be considered as privileged structures. Based on this 

principle, I incorporated such compounds into Pd(0) mediated allene cascade 

reactions in order to discover new lead compounds.  

 

Chart 9. Some biologically active privileged scaffolds. 
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2.2  Palladium (0) catalysed allene cascade reactions. 

2.2.1  Background 

The Pd(0) catalysed reactions of an allene 190 with aryl halides 3 and nucleophiles 

191 is well established (Scheme 67). There are notionally six possible products 

192a-f depending on regio/stereo-chemistry of addition of the aryl and nucleophile 

groups to the allene double bonds. In practice the process is normally regio- and 

stereo-selective.  

 

Scheme 67. Possible outcome from the reaction of allene with aryl iodide and 

nucleophile 

 

My task was to design novel Pd mediated mono- and poly-allene cascade reactions 

with aryl halides and nucleophiles. Simple mono-allene cascades generate 

trisubstituted olefins 192a in a regio- and stereo-selective manner (Scheme 67). 

Typical conditions employ Pd2dba3 (tris(dibenzylideneacetone)dipalladium(0)), TFP 

(tri-(2-furyl)phosphine), K2CO3, MeCN and 80 °C. The mechanism (Scheme 68)
110

 

involves four steps. The first step is an oxidative addition of Pd(0) to the 

aryl/heteroaryl iodide 3 to form M1. The second step involves coordination of allene 

190 to M1 and insertion (Ar group adds regioselectively to the allene central carbon 

atom) creating a π-allyl complex M2. The third step involves nucleophilic attack of 

191 on the π-allyl complex M2 to produce tri-substituted alkene 192a 

stereoselectively and a Pd(II) hydride species M3. The final step involves reductive 

elimination of Pd(II) in the presence of a base to generate Pd(0).  

There are two possible E/Z stereoisomers in the case of monosubstituted allenes due 

to the possible interconversion between the intermediate syn- and anti-π-allyl 

complexes (C and D) through σ-complexes (A and B) (Scheme 69).
110

 Nucleophilic 

attack at the least hindered site on the syn-complex (D) results in the formation of 



- 46 - 

the E-isomer, whilst nucleophilic attack at the least hindered site on the anti-

complex (C) leads to the Z-isomer. Under our conditions, the Z-isomer is normally 

formed stereoselectively reflecting the steric interaction between the R-group and the 

aryl/heteroaryl group in the syn-π-allyl complex (D). 1,2-Disubstituted π-allyl 

complexes are normally completely regioselective for the Z-isomer. According to 

Glorius,
111

 we can rationalise the selectivity of the process by considering 

intermediate (E). The carbopalladation of the terminal allene double bond from the 

top will deliver the favourable Z-isomer, whereas carbopalladation from the bottom 

(sterically congested intermediate) will lead to the disfavoured E-isomer.   

 
Scheme 68. A rational mechanism for the Pd(0) catalysed 3-component cascade. 

 

 

Scheme 69. A plausible E/Z-stereoselective mechanism. 

 

The general thrust of my work can be highlighted in the following points: (i) involve 

privileged compounds (e.g. theobromine 155, γ-carboline 187, maraviroc amine 188, 

1-aminoadamantane 180, mafenide 174, etc) in Pd catalysed allene cascades in order 

to discover novel, potentially bioactive, lead compounds, (ii) design multi-trigger 

scaffolds and incorporate them into novel cascade reactions in order to increase 

cascade complexity and provide more varied and efficient probes of the biological 

space. 
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2.2.2  Pd(0) catalysed three component cascades. 

The first target of this work was to develop three component cascades of 

monosubstituted allenes with various ary/heteroaryl iodides and potentially bioactive 

N-nucleophiles in the presence of a palladium catalyst to furnish, stereoselectively, 

Z-trisubstituted olefins carrying pharmacophore moieties. All of these compounds 

would have one or more privileged groups. 

 

2.2.2.1  Synthesis of an N-allenylpurine 195 using theobromine 155. 

A previous worker in Grigg’s group had used theobromine 155 to prepare 1-buta-

2,3-dienyl-3,7-dimethyl-3,7-dihydro-purine-2,6-dione 195 in two steps.
112 

The first 

step involved the N-alkylation of theobromine 155 with propargyl bromide 193 in 

the presence of TBAF (tetra-n-butylammonium fluoride) and THF to afford an 80% 

yield of 194 (Scheme 70).
113

 In the second step, 194 was converted into the 

corresponding allene 195 via the Crabbé reaction (Scheme 70).
114

 The Crabbé 

reaction is a homologation of 194 involving paraformaldehyde (2.5 equiv.) and 

diisopropylamine (2.0 equiv.) catalysed by CuBr (0.5 equiv.) in refluxing dioxane 

which afforded allene 195 (62%). The reaction proceeds via an intermediate 

Mannich base 196, and is postulated involve π-complexed CuBr first accepting a 

hydride ion and then transferring it to the acetylenic carbon atom.
115

 Ma’s group
116

 

modified the Crabbé conditions by replacing diisopropylamine and CuBr by 

dicyclohexylamine (1.8 equiv.) and CuI (0.5 equiv.). I applied the Ma conditions to 

the alkyne 194 and obtained, after reflux for 3 h, an 83% yield of 195.  

 

Scheme 70. Formation of N-allenyl purine 195 via the proposed Crabbé mechanism. 
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2.2.2.2  rac-Methionine methyl ester as nucleophile. 

Previously, a member of the Grigg group synthesized compound 198,
117 

using a 

Pd(0) catalysed 3-component cascade reaction, as a potential antimalarial compound.  

 

This result prompted me to synthesise further related compounds (Scheme 71) and 

introduce myself to allene cascade chemistry. Thus, reacting a mixture of allene 195, 

aryl/heteroaryl iodide 3 and rac-methionine methyl ester hydrochloride 199 at 80
 °
C 

in MeCN containing Pd2(dba)3, TFP and K2CO3 afforded the Z-isomers 200 (72-

85%). The reaction went only once at the methionine amino group and there was no 

indication of further functionalisation of the product NH-group under the reaction 

conditions.  

 

 
200a (82%) 

 
200b (75%) 

 
200c (85%) 

 
200d (72%) 

Reaction carried out at 80 ºC in MeCN (5 mL) for 10-18 h and employed N-allenylpurine 195 (0.5 

mmol), ArI 3 (0.6 mmol), rac-methionine methyl ester hydrochloride 199 (0.75 mmol), Pd2(dba)3 

(2.5 mol%), TFP (10 mol%), and K2CO3 (3 equiv.).                     
 

Scheme 71. Three component cascade using rac-methionine 199 as nucleophile. 
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2.2.2.3  γ-Carboline 187 as a nucleophile. 

The excellent selectivity and productivity results achieved from the incorporation of 

rac-methionine methyl ester hydrochloride 199 as a nucleophile encouraged use of 

γ-carboline (8-fluoro-2,3,4,4a,5,9b-hexahydro-1H-pyrido[4,3-b]indole) 187 as a 

nucleophile in 3-component cascade reactions (Scheme 72). The 3-component 

cascade proceeded smoothly to give Z-isomers 201 stereoselectively in 60-92% 

yield. It is worth mentioning that the cascade products precipitated from the hot 

reaction solution, so the reaction was self indicating and there was no need for 

sophisticated purification.  

 

 
201a (92%) 

 
201b (71%) 

 
201c (60%) 201d (78%) 

Reaction carried out at 80 ºC in MeCN (5 mL) for 2-3 h and employed N-allenylpurine 195 (0.5 

mmol), ArI 3 (0.6 mmol), γ-carboline 187 (0.6 mmol), Pd2(dba)3 (2.5 mol%), TFP (10 mol%), and 

K2CO3 (3 equiv.) 

 

Scheme 72. Cascade products of 195 with γ-carboline 187 as nucleophile. 

 

The 
1
H-NMR spectrum of 201c (Fig. 2) confirmed the formation of only one 

stereoisomer. The Z-configuration of 201a-201d was assigned on the basis of NOE 

studies on 201b (Scheme 72). Irradiation of 2-H (δ 6.13) caused 3.74% enhancement 

of 1-CH2 and 4.22% enhancement of thienyl 3-H but no enhancement of 4-CH2 

protons. However, irradiation of 1-CH2 (δ 4.92) resulted in 6.63% enhancement of 

2-H and 3.52% enhancement of 4-CH2 protons but no enhancement of thienyl 
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protons was observed. Irradiation of 4-CH2 (δ 3.84) caused 4.21% enhancement of 

thienyl 3-H, 4.39% enhancement of 1-CH2 and 3.39% enhancement of 

tetrahydropyridoindolyl 3-CH2 protons but no enhancement of the 2-H proton.  
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Figure 2. 
1
H-NMR (CDCl3, 300 MHz) of 201c. 

 

2.2.2.4  Maraviroc amine 188 as a nucleophile. 

Maraviroc amine (3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-

azabicyclo[3.2.1]octane) 188 potentially brings two biological benefits to the Pd 

cascade chemistry. Firstly, it contains a major fragment of maraviroc 167 (an HIV 

drug marketed by Pfizer), so our products might be active against HIV. Secondly, 

188 has the tropane moiety found in cocaine and might bind to the dopamine 

transporter (DAT) and block dopamine uptake. Heating a mixture of 195, aryl/ 

heteroaryl iodide 3, and 188 with Pd2(dba)3, TFP, and K2CO3 in MeCN at 80 °C 

gave the Z-product 202 together with E-isomer in 72-92% yield and in a ratio 

ranging from 93:7 to 88:12 (Scheme 73). The formation of some E-isomer despite 

the expected high NH-nucleophlicity of 188 (conjugate acid pKa = 10.7)
118 

compared 

with 199 and 187 (conjugate acid pKa = 7.1 and 9.8, respectively)
118

 suggested some 

steric congestion occurred in the transition state. Framework molecular models of 

188 showed that the bicycle hydrogen atoms hindered the nucleophilic attack of the 

amino-group at the favourable anti-π-allyl complex (see Scheme 69) allowing the 

syn-π-allyl complex to compete thus forming some E-isomer.  

Z-Stereochemistry was assigned to the major isomer of 202c from NOE 

experimental data (Table 1). Thus, irradiation of 1-H (δ 4.89) caused a 5.92% 

enhancement of 2-H and irradiation of 2-H (δ 6.00) resulted in a 3.26 and 1.95% 
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enhancement of 1-H and the o-phenyl protons, respectively. Irradiation of 4-H (δ 

3.69) caused 4.35% enhancement of 1-H, 7.13% enhancement of o-phenyl protons 

and 5.66 and 3.97% enhancement of azabicyclooctyl protons (δ 3.46 and 2.30). The 

stereochemistry of the rest of cascade products was assigned based on this result 

(Scheme 73). 

 

 
202a (Z:E 93:7, 92%) 

 
202b (Z:E 90:10, 88%) 

 
202c (Z:E 90:10, 86%) 

 
202d (Z:E 88:12, 72%) 

Reaction carried out at 80 ºC in MeCN (5 mL) for 8-26 h and employed 195 (0.5 mmol), ArI 3 (0.6 

mmol), 188 (0.6 mmol), Pd2(dba)3 (2.5 mol%), TFP (10 mol%), and K2CO3 (3 equiv.) 

Scheme 73. 3-Component cascades of maraviroc amine as a nucleophile. 

 

Table 1. NOE experimental data for Z-202c.  

 % Enhancement 

Irradiated proton 1-H 2-H 4-H Ph Azabicyclooctyl-H 

1-H  5.92 - - - 

2-H 3.26  - 1.95 - 

4-H 4.35 -  7.13 
5.66 (δ 3.46),  

3.97 (δ 2.30) 
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2.2.2.5  Mafenide 174 as a nucleophile. 

Mafenide ((2-aminomethyl)benzensulfonamide), is a well known ointment used to 

treat severe burns.
119 

It is also a carbonic anhydrase inhibitor and is bacteriostatic 

against gram positive and gram negative organisms.
119

 Thus, the potential 

therapeutic benefits of sulphonamides prompted the evaluation of mafenide 

hydrochloride 174 as a nucleophile in three component cascade chemistry with N-

allenylpurine 195 and aryl/heteroary iodide 3 at 80 °C in DMF in presence of 

Pd2(dba)3, TFP and K2CO3. The reaction occurred stereoselectively to afford cascade 

compounds Z-203 (Scheme 74) in which the aliphatic amine, and not the 

sulphonamide, participated as a nucleophile. The reaction, in acetonitrile, was 

significantly slower (7 h) and the proton n.m.r of the crude mixture showed a 

mixture of isomers. This is attributed to the low solubility of mafenide hydrochloride 

in MeCN allowing both the sulphonamide NH2-group and the syn-π-allyl complex 

(see Scheme 69) to participate in the reaction. 

 

 
 203a (44%)                                 203b (52%)                               203c (54%) 

Reaction carried out at 80 ºC in DMF (2 mL) for 2-3 h and employed N-allenylpurine 195 (0.5 

mmol), ArI 3 (0.6 mmol), (2-aminomethyl)benzensulfonamide HCl 174 (0.6 mmol), Pd2(dba)3 (2.5 

mol%), TFP (10 mol%), and K2CO3 (3 equiv.). 

Scheme 74. 3-Component cascade with mafenide as nucleophile. 

 

2.2.2.6  Amantadine (1-aminoadamantane) 180 as a nucleophile. 

Amantadine 180 is a drug which has potential applications in drug design and 

discovery.
120

 It was therefore used as a nucleophile in the cascade chemistry to create 

“privileged” adamantyl backbone products. Thus, 1-aminoadamantane 180 was 

incorporated in three component cascades by reacting with purine allene 195 and 
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aryl iodides 3 under Pd(0) catalysed conditions to give the Z-products 204 

stereoselectively in 69-78% yield (Scheme 75). 

 

         
 204a (78%)                              204b (69%)                      204c (91%) 

Reaction carried out at 80 ºC in MeCN (5 mL) for 2-5 h and employed N-allenylpurine 195 (0.5 

mmol), ArI 3 (0.6 mmol), 1-aminoadamantane 180 (0.6 mmol), Pd2(dba)3 (2.5 mol%), TFP (10 

mol%), and K2CO3 (3 equiv.) 

Scheme 75. Three component cascade products of 1-aminoadamantane 180. 

 

The Z-stereochemistry of 204a-c was assigned on the basis of NOE studies on 204a 

(Scheme 75). Irradiation of 2-H (δ 5.90) caused 3.24% enhancement of 1-CH2 and 

8.35 and 6.14% enhancement of pyridyl 2-H (δ 8.77) and pyridyl 4-H (δ 7.86), 

respectively, but no enhancement of the 4-CH2 protons. However, irradiation of 1-

CH2 (δ 4.90) resulted in 6.76% enhancement of 2-H and 3.60% enhancement of 4-

CH2 protons but no enhancement of the pyridyl protons was observed. Irradiation of 

4-CH2 (δ 3.82) gave 4.34, 4.37, 3.58 % enhancements of 1-CH2, pyridyl 2-H (δ 8.77) 

and pyridyl 4-H (δ 7.86) protons, respectively, but no enhancement of the 2-H proton 

was observed.  

The potentially broad biological applications of the adamantyl core and the 

successful incorporation of amantadine 180 as a nucleophile in three component 

cascades (Scheme 75) prompted replacing the N-allenyl purine 195 with uridine and 

thymidine allenes 207a,b (Scheme 76). Propargylation of 2',3',5'-tri-O-acetyluridine 

205a or 3',5'-di-O-acetylthymidine 205b with propargyl bromide 193 in the presence 

of K2CO3 in acetone afforded N-propargyl derivatives 206a and 206b, 

respectively.
117,121

 Compounds 206a,b were subjected to the modified Crabbé 



- 54 - 

conditions
116

 ((CH2O)n, dicyclohexylamine, CuI). The corresponding allenes 207a,b 

were obtained in 80% and 75% yield, respectively. With allenes 207a,b in hand, 

incorporation of amantadine 180 with a broad range of electron neutral, rich and 

deficient aryl iodides furnished products 208a-f each of which contain two bioactive 

fragments (Scheme 76). The reactions occurred smoothly and in excellent yields to 

give single products (see Fig. 3).  

 

 
208a (77%) 

 
208b (86%) 

 

 
208c (87%) 

 

 
208d (99%) 

 

 
208e (93%) 

 
208f (87%) 

Reaction carried out at 80 ºC in MeCN for 2-5 h and employed substituted allene 207 (1 equiv.), 

aryl iodide (1.2 equiv.), 1-aminoadamantane 180 (1.2 equiv.), Pd2(dba)3 (2.5 mol%), TFP (10 

mol%), and K2CO3 (3 equiv.) 

 

Scheme 76. Synthesis of uridine and thymidine allenes 207a,b and their 

incorporation in 3-component cascade reactions with amantadine 180. 
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Figure 3. 
1
H-NMR (CDCl3, 300MHz) of 208e. 

 

The reaction of 1-aminoadamantane (1 equiv.) 180 with thymidine allene 207b (2 

equiv.) and iodobenzene (2.4 equiv.) under the same conditions but heating at 80 °C 

for 34h was tried in an attempt to force the remaining adamantyl NH group in 208d 

to react again in a 5-component cascade. However, only 208d was formed with no 

indication of further functionalisation of the remaining NH-group in 208d. The Z-

stereochemistry of 204a-c and 208a-f was assigned on the basis of NOE studies (see 

experimental). NOE data for 208d indicated the Z-configuration (Scheme 76). 

Irradiation of 2-H (δ 5.82) caused 4.3% enhancement of 1-CH2 and 11.9% 

enhancement of phenyl 2-H but no enhancement of 4-CH2 protons. However, 

irradiation of 1-CH2 (δ 4.82) resulted in 5.8% enhancement of 2-H and 3.6% 

enhancement of 4-CH2 protons but no enhancement for phenyl protons was 

observed. Irradiation of 4-CH2 (δ 3.83) caused 6.8, 4.3 and 7.0 % enhancements of 

phenyl 2-H, 1-CH2 and adamantyl-CH2 protons, respectively, but no enhancement of 

2-H proton was observed.  

 

2.2.2.7  Miscellaneous primary/secondary amines as nucleophiles. 

The successful incorporation of rac-methionine methyl ester hydrochloride as a 

representative amino acid nucleophile (Scheme 71) encouraged expanding the scope 

of the cascade to incorporate glycyl-(S)-alanine methyl ester hydrochloride (Gly-

AlaOMe) 209 as a representative peptide nucleophile to study the effect of the 

reaction conditions on the peptide bond and the chirality of the starting material. The 
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three component Pd(0) catalysed reaction of purine allene 195, an aryl iodide and 

Gly-AlaOMe 209 afforded Z-double bond products 215a-c stereoselectively in 76-

85% yield (Chart 10). Furthermore, the chirality of 209 transferred cleanly to the 

products and there was no effect on the peptide bond. NOE data for 215c established 

the formation of the Z-product (Chart 10). Irradiation of 3-H (δ 5.94) caused 3.20 

and 11.64% enhancements of 4-H and phenyl-H protons, respectively, but no 

enhancement of 1-HA/1-HB protons was observed. Irradiation of 4-HA/4-HB (δ 4.94) 

resulted in 5.73, 4.40 and 1.60% enhancements of 3-H, 1-HA and 1-HB, respectively, 

but no enhancement of the phenyl protons whilst irradiation of 1-HA (δ 4.00) caused 

a 2.92% enhancement of 4-H and 13.19% enhancement of 1-HB protons but no 

enhancement of 3-H proton. Irradiation of 1-HB (δ 3.83) caused a 4.68% 

enhancement of 4-H, 5.85% enhancement of 1-HA and 6.20% enhancement of 

phenyl-H protons but no enhancement of 3-H proton. Accordingly, Z-

stereochemistry was assigned to 215a,b based on these data. 

(S)-Serine methyl ester hydrochloride 210 was also studied as a nucleophile to probe 

the reactivity of the NH2 group versus the OH group as nucleophiles. Note that the 

Grigg group has shown that phenols and activated methylenes are active cascade 

nucleophiles (see the introduction). The reaction went only at the NH2 group with no 

sign of reaction of the OH group (compound 216, Chart 10). 
1
H-

1
H COSY nmr 

experiments provided good evidence for the incorporation of the NH2 as the 

nucleophile (Fig. 4) as judged by the strong correlation between OH (δ 6.67) and 7-

CH2 at (δ 4.20). Also, good interaction between NH (δ 2.91) and both 6-CH (δ 3.83) 

and 4-CH2 (δ 4.27 and 4.07, HA and HB) were observed. 

Further cascades using bioactive privileged structures, a metal chelator and 

fluorophors were successfully achieved. Thus, N-deacetylcolchicine 211 was 

incorporated, after deprotecting the amino group in colchicine,
122

 as a nucleophile in 

the 3-component cascade reactions with allene 195 and aryl iodides. This delivered 

the novel colchicine derivatives 217a,b in 94 and 85% yield (Chart 10). The 
1
H-

NMR of compound 217b confirmed the formation of Z-isomer (Fig. 5) and showed 

the hybrid combination of the zinc binding HDAC benzamide moiety with bioactive 

deacetylcolchicine group was viable. 1-Aminomethylnaphthalene 212 and 1-

aminomethylpyrene 213 are well known fluorophors
123

 and we incorporated them as 

nucleophiles into our cascades. They reacted with purine allene 195 and 3-
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iodopyridine under Pd(0) catalysed conditions to furnish the Z-products 218 and 219 

in 86 and 89% yield, respectively, (Chart 10).      

 

Figure 4. 
1
H-

1
H COSY nmr (300 MHz, pyridine-d5) of 216. 
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Figure 5. 
1
H-NMR (CDCl3, 300 MHz) of 217b. 



- 58 - 

 

 
215a (85%) 

 
215b (76%) 

 
215c (76%) 

 
216 (70%) 

 
217a (94%) 

 
217b (85%) 

       
           218 (86%)                            219 (89%)                          220 (91%)

*
 

Reaction carried out at 80 ºC in MeCN for 3-8 h and employed purine allene 195 (1 equiv.), aryl 

iodide (1.2 equiv.), nucleophile (1.0-1.2 equiv.), Pd2(dba)3 (2.5 mol%), TFP (10 mol%), and 

K2CO3 (3 equiv.). 
*
In case of 220, the reaction was carried out at 80 ºC in MeCN for 7 h and 

employed purine allene (2 equiv.), aryl iodide (2 equiv.), nucleophile (1 equiv.), Pd2(dba)3 (2.5 

mol%), TFP (10 mol%), and K2CO3 (3 equiv.) 

Chart 10. 3-Component cascade products. 
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The metal chelator
124

 (di-(2-picolyl)amine) 214 (1 equiv.) was employed as a 

nucleophile in a Pd cascade reaction with purine allene 195 (2 equiv.) and 3-

iodopyridine (2 equiv.) to afford 91% yield of Z-product 220 (Chart 10) showing that 

metal chelation of the catalyst was not a problem. This reaction ratio was used 

because when di-(2-picolyl)amine 214 (1.2 equiv.) was used with 195 (1 equiv.) and 

3-iodopyridine (1.2 equiv.) the isolated product was extensively contaminated by the 

excess of 214.  

 

2.2.2.8  Design and preparation of potential histone deacetylase (HDAC) 

inhibitors via three component cascade chemistry. 

Histones are primary protein components of chromatin used to compact the DNA in the cell 

nucleus through the interaction between the histones positive charged “tails”, due to basic 

lysine and arginine residues, and the DNA negatively charged phosphate groups. The living 

cell controls the coiling and uncoiling of DNA around histones via the acetylation and 

deacetylation of lysine and this regulates gene transcription (Fig. 6). The coiling state is 

achieved by the assistance of HDAC enzymes which remove the acetyl groups from the 

lysine tails causing condensation of the DNA-histones resulting in gene transcription 

repression. The opposite, uncoiling, process is accomplished by histone acetyltransferases 

(HAT’s) which acetylate the basic lysine tails of histones which destroys the charge 

interactions and opens up the DNA coil allowing gene transcription expression. 

 

Figure 6. Coiling and uncoiling of DNA around histones. 

 

The HDAC active site consists of a sock-shaped pocket with a zinc ion in the heel 

region bound to two His-Asp residues.
125a 

An X-ray crystal structure of HDAC like 
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protein (HDLP), from Aquifex aeolicus, indicate a 11 Å tubelike “leg” channel with 

a 14 Å long internal “foot” or “toe” cavity near to the zinc ion (Fig. 7).
125b

 

 
Figure 7. X-ray crystal structures of HDAC like protein.

125b 

 

HDAC inhibitors are used to suppress the histone deacetylation process, encourage 

relaxation of chromatin and facilitate gene transcription-expression. Major efforts 

are being directed to use this epigenetic mechanism to treat various cancers,
126

 

neurological diseases,
124,127 

psychiatric diseases,
127a,128

 malaria,
129

 etc. (Chart 11). 

 

Chart 11. Some current areas of HDAC inhibitor activity. 

 

The general structural features of HDAC inhibitors can be divided into three sections 

(Chart 12). The head, zinc binding, group is the first part which coordinates with the 

zinc active site. The second part is a hydrophobic linker of between four to six 

carbon atoms in length. The final part is a surface recognition cap to interact with the 

HDAC surface. There are many variations of HDAC inhibitors and Chart 13 lists the 
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four currently most popular groups: hydroxamic acids, short-chain fatty acids, cyclic 

peptides and benzamides. Our group have extensive experience in the preparation of 

potential benzamide HDAC inhibitors.
130

 Our current lead compound is HDAC3 

selective with 16 nM activity (Chart 13, MI-192
130b

).  

 

 
 

Chart 12. General structure features of HDAC inhibitors. 

 

 

 

Chart 13. Classes of HDAC inhibitors. 



- 62 - 

The author has studied some further Pd cascade processes to supplement this work 

(Chart 14). This involved the Pd(0) catalysed reaction of N-(2-aminophenyl)-4-

iodobenzamide 221
130c

 (aryl iodide) with purine allene 195 and nucleophiles which 

gave the Z-products 223a-d stereoselectively in 67-83% yield. Also, 4-

(aminomethyl)-N-(2-aminophenyl)-benzamide 222
130b

 was reacted as a nucleophile 

with 3-iodopyridine to give 223e (60%).  

 

 
223a (67%)* 

 
223b (83%) 

 
223c (76%) 

 
223d (82%) 

 
223e (60%) 

 
223f (51%) 

Reaction carried out at 80 ºC in MeCN (7 mL) and employed purine allene 195 (1.00 mmol), aryl 

iodide (1.20 mmol), nucleophile (1.20-1.50 mmol), Pd2(dba)3 (2.5 mol%), TFP (10 mol%), and 

K2CO3 (3equiv.). *Reaction carried out in DMF (4 mL). 

Chart 14. Potential HDAC inhibitors. 
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Furthermore, 223f with two zinc binding domains was prepared (51%) by reaction of 

221 (aryl iodide) with 222 (nucleophile) and purine allene 195. Interestingly, the 

reaction went chemoselectively and there is no indication of incorporation of aniline-

NH2 or amide-NH or sulphonamide-NH2 groups into the cascades. 

The Z-stereochemistry of 223a-f was assigned on the basis of NOE studies on 223f 

(Chart 14). Irradiation of 2-H (δ 5.91) caused -3.17% enhancement of 1-CH2 but no 

enhancement of 4-CH2 protons. However, irradiation of 1-CH2 (δ 4.74) resulted in -

6.74% enhancement of 2-H but no enhancement of 3-phenyl protons was observed. 

Irradiation of 4-CH2 (δ 3.75) caused -1.83% enhancement of 3-phenyl-H and -1.58% 

enhancement of 1-CH2 but no enhancement of 2-H proton was observed. The 

negative NOE data is attributed to the shape and molecular weight
 
of the molecule 

rather than to the viscosity of the solvent which could also prevent mobility of the 

molecule in solution.
131

   

A further two potential MI192 analogues were prepared in order to extend the 

library of the compounds and study the effect of substituents on the exocyclic 

methylene double bond and also the effect of sulphonamide as zinc binding head 

group instead of the benzamide group. Thus, the reaction of purine allene 195 with 

methyl 2-iodobenzoate 224 and mafenide 174 or benzamide 222 under palladium 

catalysed conditions afforded 226a and 226b in 54% and 56% yield, respectively via 

the intermediate 225 (Scheme 77). NOE data of 226b confirmed the Z-configuration 

of the exocyclic double bond (see experimental).   

 

Scheme 77. Synthesis of MI192 analogues. 
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2.2.3  Pd(0) catalysed multi-component cascades. 

2.2.3.1  Introduction. 

Protein-substrate recognition is crucial in drug design and recognition of the target 

protein can be achieved by several strategies. A common method is to design and 

synthesize compounds that target well defined cavities inside a protein to disrupt the 

normal protein-ligand interactions. An alternative strategy involves targeting a 

unique area on the protein surface and designing molecules to bind to it and disrupt 

protein-ligand and protein-protein interactions (PPIs).
132a-f

 PPIs are important 

processes in cellular functions.
132g,133a

 For example, the loss of essential PPIs or the 

formation and/or stabilization of PPIs at an inopportune time or location can cause 

cervical cancer, leukemia, bacterial infections and neurodegenerative diseases.
133

 

Non-obligate (short lived) and permanent interactions are two types of PPIs that 

depend on the stability and mechanism of their formation.
131b

 The common forces 

governing PPIs are steric, hydrophobic/hydrophilic, electrostatic, Van der Waals 

interactions and hydrogen bonding. The complementarity of these forces are 

responsible for the life time, stability and specificity of the PPI and decide which 

partner is associated.
131a-d

 The recognition surfaces range from 550 - >4400 Å
2
 and 

are not necessarily flat and are covered with pockets, clefts and dentations.
131d-f,134a 

Inhibitors of PPIs are not required to cover all the protein interface but they need to 

recognise some amino acids on the protein surface.
134

 There are two targets, “hot 

spots” and “allosteric” sites, on the protein surface available to the 

inhibitors.
131e,f,134a

 The hot spots are located as patches of amino acids on the protein 

surface and are responsible for the main interactions and stability of the interaction 

between the protein and its partner. Designing molecules having the ability to bind 

to protein hot spots and preventing normal protein partner association results in 

disruption of the protein function.
135

 Allosteric sites are small groups of amino acids 

located away from the protein-protein interface where binding of inhibitors result in 

disruption of protein conformation and change of protein interfaces, resulting in 

inhibition of PPIs.
136

        

     

2.2.3.1.1  Mechanism of multivalent ligand interactions.
 

Multivalent ligands (MLs) have multiple copies of receptor recognition elements and 

work as inhibitors or effectors in living cells. Multivalent inhibitors prevent 

receptor-ligand binding whereas multivalent effectors induce cellular response. The 



- 65 - 

mechanism of MLs interaction determines the particular purpose and potency of 

these ligands.
137

  

 

Figure 8.
137a

 Mechanisms of MLs interactions.  

 

There are different mechanisms for the binding of MLs with receptors (Fig. 8): (a) 

Chelate effect: MLs bind oligomeric receptors, chelate multiple recognition sites, 

decrease off-rate and increase interaction affinity. The rotational and translational 

entropy “fees” are paid only once by the first interaction between one of the MLs 

recognition groups and the receptor and successive binding of the recognition groups 

with the receptors is enhanced. (b) Subsite binding: some proteins contain both a 

primary binding site and an additional sub-binding site and MLs chelate these 

binding sites. (c) Steric stabilisation: the size of MLs prevents addition interactions 

between the receptors and other recognition groups. (d) Receptor clustering: the 

binding of MLs can change proximity and orientation of a group of receptors and 

enhance receptor clustering. (e) Statistical effect: high local concentration of 

binding elements on MLs increases statistical rebinding affinity.      

 

2.2.3.1.2  Some examples of biologically active multivalent compounds.  

Cytochrome c interacts with other proteins (e.g. cytochrome c oxidase, cytochrome c 

peroxidase, Apaf1) and activates mitochondrial electron transfer and cell death or 

apoptosis. The critical recognition region on cytochrome c exterior surface includes 

an array of lysine and arginine residues which surround a heme core in the middle of 

a hydrophobic patch. The exterior surface of cytochrome c partner proteins consist of 
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a hydrophobic area surrounded by various aspartic and glutamic residues which 

recognize cytochrome c surface active sites. Hamilton and his co-workers
138

 used 

cytochrome c-partner protein interaction features and designed artificial partners 

227a-j (Fig. 9) through the incorporation of tetraphenylporphyrin as a hydrophobic 

core terminated with acidic (anionic) groups to match the hydrophobic and cationic 

residues on the cytochrome c surface thus disrupting the cytochrome c-partner 

interaction. They extended the hydrophobic diameter from 15.5 Å, 

tetraphenylporphyrin, to 24.0 Å, tetrabiphenylporphyrin and increased the number of 

carboxylic acid groups to 16 and used flexible binding groups. These modifications 

resulted in sub-nanomolar affinity to cytochrome c. The selectivity of 227j for other 

proteins, cytochrome c551 and ferredoxin, was 270 and 25000 fold, respectively, 

weaker than for cytochrome c. These results indicated that the size of hydrophobic 

core and the number of negative charges are important for strong binding and 

selectivity. 

 

Figure 9. Substituted phenylporphyrin inhibitors. (I) Tetraphenylporphyrin coloured 

black cylindrical bonds drawn in the centre of X-ray crystal structure of horse heart 

cytochrome c. The heme group is coloured gray, lysine and arginine residues are 

coloured black and other residues coloured white.
138a
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Potassium channels consist of four identical protein subunits associated to form 

homo-tetrameric complexes around central ion pores. Ion channels blockers target 

only the central pores.
139

 Recently, hot spots, glutamate or aspartate, were explored 

on the surface of the voltage-gated potassium channel Kv1x family. Thus, cationic 

tetraphenylporphyrin derivatives 228a-g ( Fig. 10) were developed by Trauner et al. 

These fourfold symmetrical multivalent molecules mimic, and interact with, 

homotetrameric anionic subunits on the channel surface (Fig. 10, I) with nanomolar 

affinities.
140

          

 

Figure 10. Tetraphenylporphyrin derivatives 228a-g. (I) X-ray crystal structure of 

KcsA ion channel with tetraphenylporphyrin 228 (R = OH) coloured magenta.
140 

 

Strong metal-ligand interactions strategy was employed by Mallik and his group to 

recognise histidine residues on the surface of carbonic anhydrase protein (Chart 15). 

Good recognition was achieved by tris-Cu
+2

 complex 229 which was distance 

matched with tri-histidine residues on the enzyme surface. Other metal complexes 

afforded weak binding affinity due to low valency or distance not matched with the 

distance between histidine residues (Chart 15).
141

  

 

 

 

Chart 15. Carbonic anhydrase inhibitors. 
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Also, they modified the poor carbonic anhydrase inhibitor 230 to good inhibitors 231 

and 232 (Chart 15) by attaching an enzyme surface recognition group. In this case, 

the sulphonamide group binds the enzyme active site Zn
2+

 and Cu
2+

 complexes of 

the recognition groups bind the enzyme surface histidine residues.
142 

Hamachi and his co-workers explored the first steps in the recognition of protein 

surface and the regulation of PPIs.
143

 Their studies cover the recognition and 

fluorescence chemosensing of histidine and phosphorylated amino acid residues on 

the protein surface using metal-ligand interactions.
144

 These interactions work 

efficiently in aqueous medium and they are much stronger than H-bonding and 

electrostatic interactions. They used Pd(en), palladium(II) ethylene diamine dinitrate 

complex, which has the ability to selectively recognise and stabilize the α-helix 

conformation of peptides having two histidine residues located at i and i + (3 or 4) 

through the coordination between Pd(en) and two histidine units (Fig. 11a). 
145a

  

 

Figure 11.
143

 Metal complexes used to recognise histidine and phosphorylated 

residues on peptide surfaces. 

 

Complexes contain two di(2-picolyl)amine-Zn(II) recognition groups (di-Zn(II)) are 

used to recognise peptides having two histidine residues located at specific positions 
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and induce conformation of coiling α-helix (Fig 11b).
145b 

The same authors designed 

di-Zn(II) complexes as novel fluorescent chemosensors to associate phosphorylated 

tyrosine peptides in aqueous solution (Fig. 11c).
145c

 The chelation between two 

Zn(II) sites and phosphate group enhanced the fluorescence and binding affinity 

significantly. Di-Zn(II) complexes selectively recognise phosphate anion but no 

recognition was detected with sulfonate, nitrate, acetate and chloride ions. 

Fluorescent di-Zn(II) complexes are used to recognise diphosphorylated peptides 

through a two point intrapeptide cross linking strategy (Fig. 11d) and considerably 

stabilised α-helix conformation and afforded good binding affinity especially when 

the distance between the two phosphorylated serine units fits with the distance 

between two Zn(II) centers.
145d

 

Hamachi collaborated with Tamamura and tested dipicolylamine-Zn(II) complexes 

as lower molecular weight nonpeptide chemokine receptor CXCR4 antagonists.
146

 

They found that di-Zn(II) complexes are stronger inhibitors than mono-Zn(II) 

complexes and the angle between the divalent complexes affected on the inhibition. 

 

2.2.3.2  Pd(0) catalysed five component cascades using splayed allenes. 

All of the previous three component products which carry one recognition group are 

designed to target a well defined protein active site. This is the old and the 

predominant strategy in the drug design and discovery. There is also a newer strategy 

in drug discovery which targets hot spots or allosteric groups on the protein surfaces 

and disrupts protein-ligand and protein-protein interactions. In the latter case you 

need a multivalent ligand which has two or more recognition groups to associate 

with the hot spots or the allosteric groups on the protein surface. Increasing the 

multivalence order, in another word increasing the number of recognition groups in 

the ligand, can lead to increasing the selectivity and binding affinity to the protein 

surface. Also, the complementarity between the ligand and the protein surface is 

very important.  

My next goal was to direct our cascade processes to synthesize multivalent 

compounds. There are three ways to achieve multivalent compounds in our cascades, 

i.e. using multivalent allenes, aryl iodides or nucleophiles. Thus, I prepared and 

involved splayed bisallenes and piperazine/homopiperazine as bis-scaffolds targeted 

at constructing compounds bearing two identical recognition groups. 
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2.2.3.2.1 Synthesis and incorporation of N
1
,N

3
-diallenyluracil 234 into cascade 

reactions. 

Uracil shows broad biological activity
147 

and in order to increase the diversity and 

complexity of cascade products, we synthesised N
1
,N

3
-diallenyluracil 234 as a 

building block for Pd cascade chemistry. Compound 234 was synthesized from 

reaction of N
1
,N

3
-dipropargyluracil 233

148a 
with dicyclohexylamine (3.6 equiv.), 

paraformaldehyde (5 equiv.) and CuI (1 equiv.) in dioxane under reflux for 3h to 

give 234 in 68% yield (Scheme 78).  

 

Scheme 78. Preparation of bisallene 234. 

 

With bisallene 234 in hand, I started incorporating it into five component cascade 

reactions. I was delighted to find that the reaction of 234 with aryl/heteroaryl iodides 

3 (2.4 equiv.) and γ-carboline 187 (2.4 equiv.) under the optimum cascade 

conditions (Pd2(dba)3, TFP, K2CO3, MeCN, 80 °C) produced the desired Z,Z-

adducts 235a-d cleanly in 55-96% yield (Chart 16), e.g. the 
1
H-NMR of 235a (Fig. 

12) showed only one stereoisomer. The stereochemistry of the Z,Z-products 235a-d 

were assigned on the basis of NOE studies on 235c (Chart 16). Irradiation of 2-H (δ 

6.06) caused 8.87% enhancement of o-phenyl protons whilst irradiation of 1-CH2 (δ 

4.71) resulted in a 1.38% enhancement of 2-H and a 1.97% enhancement of the 

pyrimidinyl 6-H (δ 7.25) but no enhancement of the o-phenyl protons was observed. 

Irradiation of 4-CH2 (δ 3.77) caused 1.40% enhancement of 1-CH2, 5.88% 

enhancement of o-phenyl-H and 1.45% enhancement of tetrahydropyridoindolyl 3-

CH2 (δ 2.91) protons but no enhancement of 2-H proton was observed. Furthermore, 

irradiation of 1′-H (δ 4.87) caused a 1.74% enhancement of 4′-H and irradiation of 

2′-H (δ 5.98) resulted in 1.34 and 7.73% enhancements of 1′-H and the o-phenyl 

protons, respectively. Irradiation of 4′-H (δ 3.83) caused 1.86% enhancement of 1′-

H, 3.71% enhancement of o-phenyl protons and 1.59% enhancement of 

tetrahydropyridoindolyl 3′-CH2 (δ 2.91).  

Similarly, maraviroc amine 188 (2.4 equiv.) was involved in five component 

processes by reaction with N
1
,N

3
-diallenyluracil 234 (1 equiv.) and aryl iodides 3 
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(2.4 equiv.) in the presence of Pd2(dba)3, TFP and K2CO3 in MeCN at 80 °C. In each 

case a 5-component Z,Z-product 235e-g was obtained in 74-85% yield together with 

a second 5-component isomer in ratio’s ranging from 90:10 to 84:16 (Chart 16). 

Comparing this result with the corresponding 3-component cascade (Scheme 73), the 

isomer ratio in both the 5-component and 3-component cascades are very similar.  
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Figure 12. 
1
H-NMR (CDCl3, 300MHz) of 235a.  
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 (continued) 

 
235e (76%, 90:10) 

 
235f (85%. 84:16) 

 
235g (74%, 88:12) 

 
235h (83%) 

 
235i (70%) 

 

235j (70%) 

 
235k (67%) 

 

Reaction carried out at 80 ºC in MeCN (3-5 mL) and employed N
1
,N

3
-diallenyl uracil 234 (0.25 

mmol), ArI (0.6 mmol), nucleophile (0.6 mmol), Pd2(dba)3 (5 mol%), TFP (20 mol%), and K2CO3 (6 

equiv.). 

Chart 16. 5-Component cascades with N
1
,N

3
-diallenyluracil 234. 

 

Analogously, the Z,Z-stereochemistry of 235g was assigned based on NOE data 

which showed negative enhancements
131

 (Chart 16). Irradiation of 1-H (δ 4.90) 

caused -14.19, -9.52 and -4.83% enhancements of 2-H, 4-H and pyrimidinyl 6-H 

protons, respectively.  Irradiation of 2-H (δ 5.87) resulted in a -18.02% enhancement 
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of 1-H and -18.01% enhancement of pyrimidinyl 6-H. Irradiation of 4-H (δ 3.71) 

caused -16.79 and -15.01% enhancements of 1-H and pyrimidinyl 6-H, respectively 

whilst irradiation of 2′-H (δ 5.81) caused -14.55% enhancement 1′-H proton. 

Irradiation of 1′-H (δ 4.70) resulted in -14.38, -10.00 and -7.57% enhancements of 

2′-H, 4′-H and pyrimidinyl 5-H, respectively whilst irradiation of 4′-H (δ 3.62) 

caused -12.88% enhancement of 1′-H.  

Moreover, the reaction of the splayed bisallene 234 (1 equiv.) with aryl iodide 3 (2.4 

equiv.) and 1-aminoadamantane 180 or  Gly-AlaOMe 209 (2.4 equiv.) in a five 

component reaction gave the desired products 235h-k Z,Z-stereoselectively in 67-

83% yield (Chart 16) with no indication of other isomers. 

Reactions involving the splayed allene 234 contain two different environments for 

the allene moiety and the potential for chemoselectivity was briefly explored. Thus, 

the reaction of bisallene 234 (1 equiv.) with 3-iodopyridine (1.2 equiv.) and 1-

aminoadamantane 180 (1 equiv.) was studied. Three products 236a, 236b and 235h 

were obtained in 25, 23 and 19% yield, respectively, together with unreacted 

bisallene 234. Based on this result, the reactivity of two allenyl moieties in 234 are 

essentially equal, i.e. the reaction went at both ends with no chemoselectivity. 

Furthermore, the different spacial orientation of the unreacted allenyl groups in 236a 

and 236b leaves them free from conjestion facilitating the formation of 235h.  The 

structure of 236a and 236b were assigned based on the NMR experiments and 

HRMS spectra. An HMBC experiment on 236a showed correlations between the 8-

CH2 protons and both 6-C and 2-C=O carbons, while the 7-CH2 protons correlated 

with 2-C=O and 4-C=O carbons. Analogously, the HMBC results of 236b confirmed 

the relation between the 8-CH2 protons and both 6-CH and 2-C=O carbons, whereas 

the 7-CH2 protons showed correlations with 2-C=O and 4-C=O carbons.    

 

 

 

Scheme 79. Observed lack of cascade chemoselectivity of 234. 
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2.2.3.2.2  Screening more complex splayed bisallenes in 5-component processes. 

The success in designing and incorporating of N
1
,N

3
-diallenyluracil 234 into five 

component cascade processes generating two Z-double bonds and four new C-C and 

C-N bonds encouraged the attachment of two similar privileged fragments which 

might serve as targets for protein surfaces and/or disrupt protein-protein interaction.  

AstraZeneca
148b

 provided five pyridopyrimidine compounds which looked promising 

substrates and these compounds gave us the opportunity to generalise the five 

component cascade using bisallene scaffolds and to probe any buttressing effects of 

the adjacent pyridine N-atom on the reaction. 

 

2.2.3.2.3  Synthesis of splayed bisallenes. 

The preparation of the bisallenes involves two steps (Scheme 80). The first involved 

propargylation of pyridopyrimidine 237
148b

 with propargyl bromide and K2CO3 in 

DMF at room temperature to give dialkyne derivatives 238 in 69-96% yield. The 

second homologation step used the modified Crabbé method
116

 to afford the splayed 

bisallenes 239 in 42-68% yield (Scheme 80). It is worth noting that compounds 238d 

and 239d are yellow coloured and emit bright yellow fluorescence under UV light. 

Hence, compound 239d could be used as fluorophor and as divalent precursor to 

generate biologically active divalent fluorophors.    

 

 
237a 

 
238a (71%)  

239a (59%) 

 
237b 

 
238b (89%)  

239b (60%) 
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(continued) 

          
237c 

 
238c (69%)  

239c (42%) 

237d 238d (74%) 

 

239d (68%) 

 

 
237e 

 

 
238e (96%) 

 

 
239e (56%) 

Synthesis of dialkynes 238a-e: a mixture of pyridopyrimidine 237a-e (1 equiv.), propargyl bromide 

(80% in toluene, 4 equiv.) and K2CO3 (6 equiv.) in DMF was stirred at rt for 16 h. 

Synthesis of bisallenes 239a-e: a mixture of dialkyne 238a-e (1 equiv.), (CH2O)n (5 equiv.), 

dicyclohexylamine (4 equiv.) and CuI (1 equiv.) in dioxane was refluxed for 40 min to 2.5 h. 

Scheme 80. Propargylation and homologation sequence to prepare bisallenes 239. 

 

2.2.3.2.4  Incorporation of splayed bisallenes 239a-e in 5-component cascades. 

Molecularly diverse bisallenes enables Pd cascade chemistry to develop new 

architecture with two recognition divalent groups directed into two areas of 

biological space. Bisallenes 239a-e (1 equiv.) were used successfully with aryl 

iodides (2.4 equiv.) and nucleophiles (2.4 equiv.) in a 5-component protocol in the 

presence of a Pd catalyst to generate the molecular diverse and complex materials 

240a-n in a stereoselective manner (Chart 17). A wide range of aryl iodides and 

amine nucleophiles were involved in this chemistry. Compounds 240h-j are yellow 

to deep yellow colour and emit bright yellow fluorescence under UV light. Hence, 

they can be modified and used in biological systems as dual fluorophors and divalent 

ligands. 
1
H-NMR spectra of selected compounds 240c and 240l  (Fig. 13 and 14) 

showed only one product was formed. Extensive NOE studies on five selected 

cascade products based on bisallene scaffolds were used to assign the 

stereochemistry of the product double bonds. 
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240a (63%) 

 

 
240b (55%) 

 
240c (78%) 

 

 
240d (53%) 

 
240e (65%) 

 
240f (71%) 

 
240g (86%) 

 
240h (78%) 

 
240i (79%) 

 
240j (80%) 
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(continued) 

 
240k (68%) 

 

 
240l (75%) 

240m (58%) 
 

240n (71%) 

Reaction carried out at 80 ºC in MeCN for 1-4 h and employed bis-allene (1 equiv.), aryl iodide (2.4 

equiv.), nucleophile (2.4 equiv.), Pd2(dba)3 (5 mol%), TFP (20 mol%), and K2CO3 (6 equiv.) 
 

Chart 17. Pd catalysed 5-component cascades using splayed bisallenes. 

 

All the NOE experiments showed the formation of two Z-double bonds (see 

experimental). The NOE data of 240c (Chart 17) established the formation of two 

Z,Z-trisubstituted alkenes. Irradiation of 1-CH2 (δ 5.03) resulted in 5.9 and 3.3% 

enhancements of 2-H and 4-CH2, respectively, but no enhancement of the 3-pyridyl 

protons was observed. However, irradiation of 2-H (δ 5.92) caused 3.0, 6.5 and 4.6% 

enhancements of 1-CH2, 3-pyridyl 2-H and 3-pyridyl 4-H, respectively, but no 

enhancement of the 4-CH2 protons. Irradiation of 4-CH2 (δ 3.76) caused 3.1, 3.6, 3.6 

and 5.4% enhancements of 1-CH2, 3-pyridyl 2-H, 3-pyridyl 4-H and 4-pyrrolidinyl 

2-CH2, respectively, but no enhancement of the 2-H proton was observed. 

Irradiation of 1′-CH2 (δ 5.41) resulted in 5.5, 3.4 and 1.7% enhancements of 2′-H, 4′-

CH2 and benzoquinoline 1-H, respectively, but no enhancement of the 3′-pyridyl 

protons were observed. However, irradiation of 2′-H (δ 6.03) caused 2.7, 6.4 and 

4.2% enhancements of 1′-CH2, 3′-pyridyl 2-H and 3′-pyridyl 4-H, respectively, but 

no enhancement of 4′-CH2 protons. Irradiation of 4′-CH2 (δ 3.81) caused 3.4, 4.0, 

4.1, 2.1 and 8.7% enhancements of 1′-CH2, 3′-pyridyl 2-H, 3′-pyridyl 4-H, 
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benzoquinoline 1-H and 4′-pyrrolidinyl 2-CH2, respectively, but no enhancement of 

the 2′-H proton was observed. 
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Figure 13. 

1
H-NMR (CDCl3, 300 MHz) of 240c. 
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Figure 14. 

1
H-NMR (CDCl3, 300 MHz) of 240l. 

 

2.2.3.3  Pd(0) Catalysed formation of macrocycles via bisallenes vs bisamines: 

preliminary studies.  

Synthesis of macrocycles continues to attract the interest of synthetic chemists and 

biologists.
149

 However, to our knowledge, there are only a few strategies that 

generate macrocycles using allene chemistry e.g. intramolecular cyclisation of allene 

tethered nucleophile or aryl iodide,
150

 macrocyclisation of 1,n-diallenyl diketones
151

 

and a four component reaction
152

 of bisallene (1 component) with a primary amine 

(1 component) and an aryl iodide (2 components). This encouraged us to explore 
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such processes using splayed bisallenes as a key scaffold. Two bisallene strategies 

were considered to accomplish this target. The first is the reaction of a bisallene with 

a dinucleophile and an aryl iodide (2 equiv.) and the second involves reaction of a 

bisallene with an aryl diiodide and a nucleophile (2 equiv.). Furthermore, the 

reaction of dinucleophile (1 equiv.) with aryl diiodide (1 equiv.) and mono-allene (2 

equiv.) could also provide access to macrocycles.    

The first strategy was applied to the reaction of (S)-lysine ethyl ester hydrochloride 

241 (1 equiv.) as di-nucleophile with bisallene 234 (1 equiv.) and 3-iodopyridine 3 

(2.4 equiv.) in a four component cascade reaction. The product comprise a mixture 

of two 18-membered macrocycles 242a (29%) and 242b (25%) together with an 

inseparable complex mixture which contains 36-membered macrocycles (supported 

by HRMS) (Scheme 81). Thus, the rate of formation of 242a and 242b is 

approximately equal. This result paralleled the previous observation (Scheme 79) 

that the reactivity of the N
1
- and N

3
- allenyl groups in 234 are similar. We expect the 

terminal basic (S)-lysine amino group (conjugate acid pKa 10.47)
118

 to react first 

with either of the allene groups in 234 followed by the second (S)-lysine amino 

group (conjugate acid pKa 7.46,
118

 and more hindered) to react intramolecularly with 

the second allene group to give the two 18-membered macrocycles 242a and 242b.   

 

 

Scheme 81. Macrocycles via reaction of splayed bisallene 234 with bis-amine 

nucleophiles. 

 

Interestingly, using 2,6-diaminopimelic acid dimethyl ester 243
153

 (commercial 

50:50 rac-/meso-mixture) as the di-nucleophile gave the 18-memberd macrocycle 

244 as a mixture of rac- and meso-isomers in 48% yield together with an inseparable 

mixture which may contain 36-membered macrocycles.  
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From these results we can predict the following: (1) bis-symmetrical triggers (allene, 

aryl iodide, nucleophile) containing an appropriate linker between them may direct 

the reaction to form only one macrocycle, (2) the formation of 36-membered 

macrocycles might be reasoned to the strain which could exist in 18-membered 

macrocycles and directed the reaction toward the stable 36-membered ring. 

The structure of macrocycle 242a was assigned based on spectroscopic data. The 

HRMS spectrum provided crucial evidence of the 18-membered macrocycle which 

has molecular ion peak at m/z 545 (M+H)
+
. The 

1
H-NMR (Fig. 15) showed the same 

coupling constant between the triplet at δ 5.86 (15-H, J 6.2) and the two doublet of 

doublets, which have similar coupling between each other, at δ 4.84 (16-HA, J 6.2 

and 14.3) and δ 4.78 (16-HB, J 6.2 and 14.3). There is also a good coupling relation 

between the triplet at δ 5.72 (3-H, J 6.7) and the two methylene doublet of doublets, 

which have the same relationship to each other, at δ 4.94 (2-HA, J 6.7 and 15.7) and 

δ 4.59 (2-HB, J 6.7 and 15.7). 
1
H-NMR results were confirmed with a 

1
H-

1
H COSY 

spectrum which presented a correlation between the proton at δ 5.86 (15-H) and the 

two protons at δ 4.84 (16-HA) and δ 4.78 (16-HB) which showed a good relation 

between each other. Also, a relationship was observed between the proton at δ 5.72 

(3-H) and the two methylene protons at δ 4.94 (2-HA) and δ 4.59 (2-HB) which had a 

good relation between each other. Furthermore, the protons at δ 3.77 (13-HA) and δ 

3.73 (5-HA) correlate with the protons at δ 3.55 (13-HB) and δ 3.44 (5-HB), 

respectively.  

The HMBC spectrum (CDCl3) (Fig. 16) delivered useful long range correlations 

between the protons and the neighbouring carbons, which support the 18-membered 

macrocycle 242a structure. The correlations between the 2-H proton and 3-C, 20-C 

and 21-C support the connection of 2-C to the pyrimidinyl 1-N. Also, the 

correlations between 16-H and 15-C, 21-C and 18-C support the connection of 16-C 

to the pyrimidinyl 17-N and the relation between 5-HA,B and 7-C confirmed the 

connection of 5-C with the 6-N amino ester (S)-lysine amino group.   

Finally, NOE data provided a strong evidence for the formation of 242a with two 

Z,Z-double bonds (see Appendix 1). Thus, irradiation the proton at δ 5.86 (15-H) 

caused 1.32, 3.36 and 2.58% enhancements to the protons at δ 4.80 (16-HA), 8.75 

(Py-β) and 7.86 (Py-β), respectively but there was no effect on the protons at δ 3.77 

(13-HA) and δ 3.55 (13-HB). Also, irradiation at δ 4.80 (16-HA,B) resulted in 5.07, 
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1.52 and 1.01% enhancements of the protons at δ 5.86 (15-H), 3.77 (13-HA) and 3.55 

(13-HB), respectively, but no enhancement of the pyridyl (Py-β) protons was 

observed. Furthermore, irradiation the protons at δ 3.77 (13-HA) and δ 3.55 (13-HB) 

caused 2.78 and 2.87% enhancements to the protons at δ 4.80 (16-HA,B), 2.28 and 

2.38% enhancements to the two methylene protons at δ 2.76 (11-H), 1.46 and 2.38% 

enhancements to the pyridyl protons (Py-β) at δ 8.75 and 1.52, 2.88% enhancements 

to the pyridyl protons (Py-β) at δ 87.86, respectively, but no enhancement of the 15-

H proton at δ 5.86 was observed. These results support the formation of a 14-C Z-

double bond and the connection of 13-C to the terminal (S)-lysine nitrogen (12-N). 

At the other end of the macrocycle, irradiation the proton at δ 5.72 (3-H) caused 

1.02, 1.20, 7.02, 3.34 and 2.56% enhancements to the protons at δ 4.94 (2-HA), 4.59 

(2-HB), 8.70 (Py-α), 7.96 (Py-α) and 7.33 (20-H), respectively, but no enhancements 

of the protons at δ 3.73 (5-HA) and δ 3.44 (5-HB) was observed. However, irradiation 

the protons at δ 4.94 (2-HA) and δ 4.59 (2-HB) caused 2.97 and 3.70% enhancements 

to the proton at δ 5.72 (3-H), 2.93 and 2.20 % enhancements to the protons at δ 3.75 

(5-HA) and δ 3.44 (5-HB) and 3.35, 7.43% enhancements to the proton at δ 7.33 (20-

H), respectively, but no enhancement of the pyridyl (Py-α) protons was observed. 

Finally, irradiation at δ 3.44 (5-HB) afforded 2.52, 12.87, 2.05 and 2.86% 

enhancements to δ 4.59 (2-HB), 3.73 (5-HA), 8.70 (Py-α) and 7.96 (Py-α), 

respectively, but no enhancement of δ 5.72 (3-H) was observed. These results 

supported the formation of a 3-C Z-double bond and the proximity of 2-C to the 

pyrimidinyl nitrogen (1-N).  
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Figure 15.
 1

H-NMR (CDCl3, 300 MHz) of 242a. 
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Figure 16. Important HMBC correlation of 242a (H→C). 

 

Similarly, the macrocycle 242b was assigned by HRMS, 
1
H-NMR, 

13
C-NMR, 

DEPT135, 
1
H-

1
H COSY, HMQC and HMBC data. The high resolution mass 

spectrum gave a molecular ion at m/z 545 (M+H)
+
 in agreement with the 18-

membered macrocycle structure. The 
1
H-NMR (Fig. 17) showed similar coupling 

constants between the triplet at δ 5.80 (3-H, J 6.7) and the doublet at δ 4.92 (2-H, J 

6.7). There is a coupling correlation between the doublet of doublets at δ 5.73 (15-H, 

J 6.2 and 8.1) and the two methylene doublet of doublets, which have the similar 

coupling constants between each other, at δ 4.83 (16-HA, J 8.1 and 15.0) and δ 4.44 

(16-HB, J 6.2 and 15.0). Also, the doublet signals at δ 3.76 (13-HA, J 12.2) and δ 

3.72 (5-HA, J 11.2) closely correlate with the two doublets at δ 3.57 (13-HB, J 12.2) 

and δ 3.50 (5-HB, J 11.2), respectively. 
1
H-

1
H COSY spectrum data was in 

agreement with 
1
H-NMR results. Thus, a correlation between the proton at δ 5.80 (3-

H) and the methylene protons at δ 4.92 (2-H) was assigned. Also, a relationship 

between the proton at δ 5.73 (15-H) and the two protons at δ 4.83 (16-HA) and δ 4.44 

(16-HB), which had a good relation between each other, was observed.  

Crucial HMBC evidence supporting structure 242b was delivered with long range 

H-C correlations (Fig. 18). The correlations between 2-H proton and 3-C, 20-C and 

21-C supported the connection of 2-C to the pyrimidinyl 1-N. Also, the correlations 

between 16-HA,B and 15-C, 21-C and 18-C support the connection of 16-C to the 

pyrimidinyl 17-N whilst the relation between 5-HA,B and 7-C confirms the 

connection of 5-C with 6-N (S)-lysine amino group.  

The NOE analysis (see Appendix 2) of the first part of 242b afforded a relationship 

between the 3-H proton and the 2-H, pyridyl (Py-β) protons, but no correlation was 

observed with the 5-H protons. The 2-H protons correlated with 3-H and 5-HA,B but 

no correlation with the pyridyl (Py-β) protons was observed. Also, irradiation of 5-

HB enhanced the 2-H, pyridyl (Py-β) protons, but no enhancement of the 3-H proton 

was observed. The previous NOE results predicted the formation of 3-C Z-double 
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bond. Analogously, the NOE data of the second part of 242b delivered correlations 

between the 15-H proton and 16 HA,B, 18-H and pyridyl (Py-α) protons but no 

correlation with 13-HA,B was observed. Irradiation of 16-HA,B caused enhancements 

to 15-H, 13-HA,B and 18-H protons but no enhancement of the pyridyl (Py-α) protons 

was detected. Finally, irradiation of 13-HA,B afforded enhancements to 16-HA,B, 11-

H, pyridyl (Py-α) protons but no enhancement of 15-H was observed. These results 

support the existence of 14-C in a Z-stereochemistry, the attaching of 13-C to the 

basic amino group 12-N of (S)-lysine ester and the connection of 16-C with the 

pyrimidinyl 17-N.   
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Figure 17. 

1
H-NMR (CDCl3, 300 MHz) of 242b. 

 

 
Figure 18. Important HMBC correlation of 242b (H→C). 

 

2.2.3.4  Pd(0) catalysed five component cascades using di-amines (piperazine 

and homopiperazine). 

Piperazine 189a and homopiperazine 189b are privileged structure existing in a 

broad range of biologically active compounds.
154

 They were explored as bidentate 

nucleophiles (Scheme 82). They reacted with 195 and aryl/heteroaryl-iodides 3 

under our cascade conditions to afford the corresponding Z,Z-products 245 and 246 

via 5-component cascades (Table 2). Compounds 245a-d (Table 2, entries 1-4) 

precipitated from hot solution in 80-92% yield whereas compounds 246a-d (entries 

5-8) were separated by chromatography and gave 47-66% yields. 
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Scheme 82. 5-component cascades of di-amine nucleophiles 189. 

 

Table 2. Five component cascade products with diamine nucleophiles.
a 

 

Entry n Compound Yield (%)
b 

1 1 

 
245a 

88 

2 1 

 
245b 

92 

3 1 

 
245c 

80 

4 1 

 
245d 

80 

5 2 

 
246a 

58 

6 2 

 
246b 

53 
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7 2 

 
246c 

47 

(89:11)
c 

8 2 

 
246d 

66 

a) Reaction carried out at 80 ºC in MeCN (5 mL) for 3-11 h and employed piperazine or 

homopiperazine (0.5 mmol), N-allenylpurine (1 mmol), ArI (1.1 mmol), Pd2(dba)3 (5 mol%), TFP (20 

mol%), and K2CO3 (6 equiv.). b) Isolated yield. c) Mixture of two isomers with the Z,Z-product as the 

major isomer. 

 

The variation in yield of 245 and 246 is attributed to the different conformations of 

the piperazine and homopiperazine scaffolds. Piperazine favours the chair 

conformation in which the two N,N-substituents are far from each other with no 

steric problems resulting in excellent yields (Table 2, entries 1-4). However, 

homopiperazine favours twist chair and chair conformations (Scheme 83).
155

 In both 

conformations there is steric clash between the two substituents which leads to low 

yields (Table 2, entries 5-8) and an isomeric mixture in case of 1-iodo-bis(3,5-

trifluoromethyl)benzene as an aryl iodide (Table 2, entry 7). 

 

Scheme 83. Stable conformations of homopiperazine. 

 

Product stereochemistry was assigned by 
1
H-NMR spectra e.g. Fig. 20 and 21. NOE 

data for 246a (n = 2) established the formation of the Z,Z-product (Table 2, entry 5). 

Irradiation of Ha (δ 5.85) caused a 3.97% enhancement of Hb, a 3.57% enhancement 

of pyridinyl Hd, and 4.02% enhancement of pyridinyl He but no enhancement of Hc. 

However, irradiation of Hb (δ 4.88) resulted in 5.20% enhancement of Ha and 3.57% 

enhancement of Hc but no enhancement of the pyridinyl protons was observed. 

Irradiation of Hc (δ 3.33) caused a 4.54% enhancement of Hb, 2.56% enhancement of 
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pyridinyl Hd, 3.50% enhancement of pyridinyl He and 4.50% enhancement of the 

diazepane protons (δ 2.64) but also no enhancement of Ha was observed.  

The NOE data was confirmed by an X-ray crystal structure of 245d which showed 

the formation of Z,Z-product (Fig. 19, Appendix 3). Accordingly, Z,Z-

stereochemistry was assigned the remaining five component products (Table 2). 

 
Figure 19. X-ray crystal structure of 245d (Appendix 3).  
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Figure 20. 
1
H-NMR (CDCl3, 300 MHz) of 245a. 
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Figure 21. 
1
H-NMR (CDCl3, 300 MHz) of 246b. 
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2.2.3.5  Catalytic reactions of ammonia surrogates. 

2.2.3.5.1  Pd(0) catalysed 5-component cascade synthesis of complex Z,Z-

bisallylamines using ammonium tartrate. 

Ammonia and its equivalents are among the most attractive nitrogen sources from a 

cost and industrial point of view. Thus, creating efficient methods for the synthesis 

of amines using commercial cheap nitrogen sources have attracted attention.
156

 The 

former literature work invariably used special catalytic systems,
157

 high loading of 

ammonia,
157b

 handling of ammonia gas and most of the work was done in sealed 

vessels under high temperature and pressure.
158

 These disadvantages might restrict 

the application of these methods. Our approach was targeted at developing Pd 

catalysed cascade alkylation of ammonia using commercially available cheap 

ammonia surrogates and ambient pressure. A preliminary exploratory reaction of 

purine allene 195 (1 equiv.), 3-iodopyridine 3 (1.2 equiv.) and ammonium carbonate 

(11 equiv.) in the presence of Pd2(dba)3, TFP and K2CO3 in MeCN at 80 °C was 

carried out (Scheme 83). After 38 h, monitoring by TLC, a new product was 

observed together with unreacted purine allene 195. Workup afforded the 

diallylamine 247a in 25% yield (Table 3, entry 1). Thus, ammonium carbonate is 

thermally unstable under these conditions and liberates ammonia which reacts as a 

nucleophile and affords the primary allylamine. The primary allylamine is highly 

nucleophilic and reacted in situ to give diallylamine 247a. Increasing the amount of 

ammonium carbonate (25 equiv.) and heating for 102 h in the absence of K2CO3 

produced the desired diallylamine 247a in 58% yield (Table 3, entry 2). The long 

reaction time is attributed to the sublimation of ammonium carbonate on the inside 

wall of the condenser. A mixed aqueous solvent kept ammonium carbonate in the 

reaction and reduced the amount of ammonium salt needed and the reaction time 

(Table 3, entries 3-7). In case of DMF/H2O or 1,4-dioxane/H2O (2:1) and 

ammonium carbonate (6 equiv.) and in the absence of K2CO3, the desired product 

247a was obtained in 58 and 65% yield, respectively, (Table 3, entries 4 and 7). 

Increasing the amount of water lead to increased reaction time and lower yield (entry 

5). Addition of K2CO3 gave a mixture of products in the case of DMF/H2O (2:1) 

(entry 3) and did not affect the yield and the time in case of 1,4-dioxane/H2O (2:1) 

(entry 6). Repeat of entry 4 with ammonium carbonate (100 equiv.) in a sealed tube 

in order to try and isolate the primary allylamine failed but compound 249 was 



- 88 - 

isolated in 45% yield (entry 8) via transamidation of DMF with ammonia to produce 

dimethylamine which reacted as nucleophile to afford 249.
157a, 159

 

 

Scheme 83. Pd Catalysed reaction of 195 with 3-iodopyridine 3 and ammonia 

surrogates.  

 

Table 3. The scope of ammonia surrogates as nucleophiles.  

Entry 
Ammonia 

surrogate (equiv.) 
Solvent K2CO3 

Time 

(h) 
Temp. Yield

a
 

1 (NH4)2CO3 (11 equiv.) MeCN 3 equiv. 38 80 247a (25%) 

2 (NH4)2CO3 (25 equiv.) MeCN - 102 80 247a (58%) 

3 (NH4)2CO3 (6 equiv.) DMF/H2O (2:1) 3 equiv. 3 80 mixture
b 

4 (NH4)2CO3 (6 equiv.) DMF/H2O (2:1) - 3 80 247a (58%) 

5 (NH4)2CO3 (6 equiv.) DMF/H2O (1:2) - 7 80 247a (24%) 

6 (NH4)2CO3 (6 equiv.) dioxane/H2O (2:1) 3 equiv. 8 80 247a (65%) 

7 (NH4)2CO3 (6 equiv.) dioxane/H2O (2:1) - 8 80 247a (65%) 

8
c 

(NH4)2CO3 (100 equiv.) DMF/H2O (2:1) - 5 80 249 (45%) 

9 AcONH4 (6 equiv.) DMF/H2O (2:1) - 3 80 
247a (7%) 

248 (37%) 

10 NH2CONH2 (12 equiv.) DMF/H2O (2:1) 3 equiv. 4 80 249 (79%) 

11
d 

Ammonium tartrate 

(6 equiv.) 

dioxane/DMF 

(5:1) 
2 equiv. 22 100 247a (80%) 

12
d 

Ammonium tartrate 

(3 equiv.) 

dioxane/DMF 

(5:1) 
2 equiv. 22 100 247a (77%) 

a) Isolated yield. b) Unseparated mixture of products. c) Sealed tube reaction. d) Reaction was done 

by my colleague. 
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Screening ammonium acetate as an ammonia equivalent, gave a mixture of 247a and 

248 in 7 and 37% yield, respectively (entry 9). The formation of 248 is due to the 

reaction of acetate anion as a nucleophile. Testing urea as the ammonia source 

afforded 249 in 79% yield (entry 10). In this case urea accelerates transamidation of 

DMF to liberate dimethylamine. Finally, one of my colleagues repeated entry 4 with 

dibasic ammonium tartrate (3 and 6 equiv.) in the presence of K2CO3 (2 equiv.) and 

1,4-dioxane/DMF (5:1) as reaction solvent at 100 °C. This gave the diallylamine 

247a in 77-80% yield, respectively, (entries 11 and 12).              

With optimum conditions in hand, the scope of the reaction was expanded to include 

purine and uridine allenes 195 and 207a (1 equiv.) with diverse aryl iodides 3 (1.2 

equiv.) and ammonium tartrate (3-6 equiv.). The diallylamines 247 were obtained in 

67-93% yield (Scheme 84, Table 4). 
1
H-NMR experiments (e.g. Fig. 22 and 23) 

showed a single product in each case with four new bonds (2 x C-C and 2 x C-N) 

and NOE studies (see experimental) confirmed the Z,Z-configuration of the two 

double bonds generated.   

 

Scheme 84. Pd Catalysed 5-component cascades using ammonia equivalent as a 

nucleophile. 
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Figure 22. 
1
H-NMR (CDCl3, 300 MHz) of 247c. 
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Figure 23. 
1
H-NMR (CDCl3, 300 MHz) of 247j. 

 

Table 4. Pd Catalysed Z,Z-diallylamine formation.
a
  

Entry Allene  Product 
Ammonium  

tartrate (equiv.) 

Yield 

(%)
b 

1 

 
195 

 
247b 

3 86 

2 

 
195 

 
247c 

6 93 

3 

 
195 

 
247d 

6 67 
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4 

(continued) 

 

 
195 

  
247e 

6 87 

5 

 

207a 
247f 

3 71 

6 

207a 

247g 

3 74 

7 

 

207a 

247h 

3 71 

8 

 

207a 

247i 

3 77 

9 

 

207a 

247j 

3 62 

a) Reaction carried out at 100 ºC in 1,4-dioxane/DMF (5:1) for 9-29 h and employed substituted 

allene (1 equiv.), aryl iodide (1.2 equiv.), ammonium tartrate (3-6 equiv.), Pd2(dba)3 (2.5 mol%), TFP 

(10 mol%), and K2CO3 (2 equiv.). b) Isolated yield 
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A plausible mechanism for the cascade (Scheme 85) involves oxidative addition 

followed by allene coordination and migratory insertion to furnish the π-allyl 

complex (A) which is attacked by the in situ generated ammonia to afford a mono-

allylamine intermediate (B) which reacts with the π-complex (A) faster than 

ammonia to give the desired Z,Z-bisallylamine 247. The created H−Pd
II
-I species 

regenerates Pd(0) via reductive elimination in the presence of K2CO3. The 

mechanism requires the intermediate allyl amine (B) to be more nucleophilic than 

ammonia. This has already been commented on by Hartwig
156a, 157b,e 

for Ir-catalysed 

allylic amination whilst Kobayashi and Nagano
160

 reported optimization of a Pd-

catalysed process for monoallylic aminations. We note that the calculated pKa’s 

using the ACD/I-Lab web service give conjugate acid pKa’s for the monoallyl 

amines of ~8.58-9.08 and 9.24 for ammonia.
118

 Furthermore, reaction of 247-NH 

group with the π-allyl intermediate (A) to give triallyl amine is not detected due to 

both steric hindrance and lower nucleophilicity of bisallyl amine NH group (pKa 

~8.0-8.3).    

 

Scheme 85. Plausible mechanism for Z,Z-bisallylamine synthesis. 

 

2.2.3.5.2  Pd(0) catalysed synthesis of isoquinolinone and isoquinoline using 

ammonium tartrate. 

Despite the natural occurrence,
161

 biological importance
161a,162 

and existing broad 

synthetic methods
163

 for the isoquinolines and isoquinolinones, little attention has 

been paid to the incorporation of allenes as a new building block in this area. The 

first application was published by Larock in which a substituted allene annulated 

with N-tosyl-2-iodobenzylamine under Pd(II) catalysis to afford isoquinolines as a 

mixture of three regio- and stereo-isomers.
164

 2-Iodobenzaldehyde imines have also 

been used with Pd(0) catalysis to annulate substituted allenes giving isoquinoline 
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derivatives.
165

 Ni(0)/chiral phosphine ligand mediated regio- and enantioselective 

synthesis of isoquinoline-1(2H)-one derivatives has been reported via 

denitrogenation or decarbonylation of N-aryl-1,2,3-benzotriazin-4(3H)-ones or N-

substituted phthalimide, respectively, followed by intermolecular annulation with 

substituted allenes.
166

 Recently, Glorius et al., employed Rh(III) to catalyse C-H 

activation of N-(pivaloyloxy)benzamide involving intermolecular annulation with 

substituted allenes to furnish isoquinoline-1(2H)-ones.
111

   

 

Synthesis of isoquinolinones: Grigg et al designed three types of cascades to 

furnish isoquinolinone derivatives. The first was the palladium catalysed 

intermolecular insertion of allene into 2-iodobenzoate (C-I bond) followed by 

intermolecular N-nucleophile addition and intramolecular cyclisation.
52b

 The second 

type was achieved by designing nitrogen tethered three functional groups (aryl 

iodide, allene and N-nucleophile) to facilitate Pd mediated intramolecular allene 

insertion and intramolecular nucleophilic addition to give tetra-fused ring systems 

containing an isoquinolinone centre.
167a

 The third type involved N-allenyl-2-

iodobenzamide as a model for intramolecular allene insertion catalysed by Pd(0) 

followed by intermolecular nucleophilic addition.
167b,c 

 

This new approach utilises our “ammonium surrogate” technology to furnish 

isoquinolinone derivatives 251 (Scheme 86). Methyl 2-iodobenzoate derivatives 224 

were reacted with substituted allenes 195/207a,b in the presence of ammonium 

tartrate (ammonia equivalent) under the previously developed optimum conditions 

(Table 3, entry 11) to give a 51-70% yield of isoquinolinones 251 via intramolecular 

cyclisation of the intermediate 250.  1
H-NMR spectra (e.g. Fig. 24) showed only one 

set of protons and NOE data supported Z-configuration of the exocyclic double 

bonds (see compound 251f, Scheme 86). The reaction sequence is analogous to 

previous work from the Grigg group
52b

 and this was further confirmed by reacting 2-

iodobenzamide with purine allene 195 under the same conditions in Scheme 86 

except heating for 24 h and the absence of ammonium tartrate when no reaction was 

observed and the starting materials recovered. This experiment supported the 

addition of ammonia to the π-allyl intermediate forming allyl amine 250 which 

subsequently cyclised to give 251. Thus, the cyclisation step in 250→251 is faster 

than further allylation of the allyl-NH2 group. In case of methyl 5-bromo-2-

iodobenzoate, the reaction is chemoselective for oxidative addition at the C-I bond 
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leaving the C-Br bond intact. It is worth notice that the additional methyl ester group 

in 251e-g was untouched under the reaction conditions.        

 

 
251a (63%)

*
  

251b (51%) 

 
251c (70%)  

251d (63%) 

 
251e (78%) 

251f (65%) 
 

251g (54%) 

Reaction carried out at 100 ºC in 1,4-dioxane/DMF (5:1) for 21-31 h and employed substituted 

allene (1 equiv.), 224 (1.2 equiv.), ammonium tartrate (6 equiv.), Pd2(dba)3 (2.5 mol%), TFP (10 

mol%), and K2CO3 (3 equiv.). *This reaction used ammonium carbonate (6 equiv.) and DMF/H2O 

(2:1, 3 mL) (see experimental).     

 

Scheme 86. Pd(0) catalysed annulation of allenes with methyl 2-iodobenzoates in 

the presence of ammonium tartrate generates isoquinolinones 251a-g.  
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Figure 24. 
1
H-NMR (CDCl3, 300 MHz) experiment of 251d. 
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Synthesis of isoquinolines: Isoquinoline/tetrahydroisoquinoline derivatives were 

prepared by Grigg and his co-workers via designing two types of cascade reactions; 

(i) intermolecular allene insertion into the C-I bond of an aryl iodide linked N-

nucleophile then intramolecular N-addition to the generated π-allyl,
52a,61d

 (ii) 

intermolecular allene insertion to an aryl iodide carrying a dipolarophile/Michael 

acceptor followed by intermolecular N-addition of azide/amine and finally 

intramolecular 1,3-dipolar cycloaddition/Michael addition, respectively.
28a,b,61c

 This 

previous work prompted the application of the optimum conditions in Table 3 (entry 

11) to the reaction of 2-iodobenzaldehydes/2′-iodoacetophenone 252 with 

substituted allenes 195/207a to give intermediate 253 which undergoes a 1,3-

hydrogen rearrangement generating the aromatized isoquinolines 254 (Scheme 87). 

1
H-NMR data (e.g. Fig. 25) showed no indication of allyl signals (triplet at ~6-6.5 

ppm and doublet at ~4.5-5 ppm) but instead comprised an AA′BB′ nmr pattern for 

the two methylene groups at 3-3.5 and 4-4.5 ppm. The low yields may reflect the 

thermal instability of the substrates or the products and this hypothesis is supported 

by isolation of theobromine 155 in the case of 254b,c and of 2',3',5'-tri-O-

acetyluridine 205a in the case of 254a as byproducts. This evidence suggests a 

competition between the 1,3-H shift and a degradation mechanism of some kind. 

Unfortunately, there was insufficient time to follow up this process.    

 

 
254a (47%) 

 
254b (45%) 

 
254c (40%) 

Reaction carried out at 100 ºC in 1,4-dioxane/DMF (5:1) for 12-26 h and employed substituted allene 

(1 equiv.), 224 (1.2 equiv.), ammonium tartrate (6 equiv.), Pd2(dba)3 (2.5 mol%), TFP (10 mol%), 

and K2CO3 (2-3 equiv.). 

 

Scheme 87. Pd catalysed preparation of isoquinoline derivatives. 
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Figure 25. 
1
H-NMR (CDCl3, 300 MHz) of 254c. 

 

2.2.3.6  Pd catalysed seven component cascades. 

The chemical space of allene chemistry can be expanded by enhancing the 

multivalence of the products using novel splayed trisallenes to prepare trivalent 

compounds. Also, it may in the future prove possible to use trisaryl iodides or 

trisamino-nucleophiles to create different skeletons containing three recognition 

groups.  

 

2.2.3.6.1  Design and preparation of a novel splayed trisallene 257. 

To the authors knowledge there is only one, very recent, example of a trisallene in 

the literature.
168a

 This is a cyclododeca-1,2,5,6,9,10-hexaene. Thus a manipulatable 

functionalised trisallene for incorporation into Pd cascade chemistry is very 

attractive from a synthetic point of view and from its potential biochemical outlets. 

The unknown 1,3,5-tri(buta-2,3-dien-1-yl)-1,3,5-triazinane-2,4,6-trione 257 was 

selected as a splayed trisallene target to explore this area. It was prepared by heating 

a mixture of cyanuric acid 255 and propargyl bromide 193 in DMF at 50 °C which 

afforded the trisalkyne 256 (46%) (Scheme 88). This was then converted to the 

splayed trisallene 257 (37%) in one step using the Crabbé reaction (Scheme 88). 

Scheme 88. Preparation of trisallene 257. 
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2.2.3.6.2  Incorporation of the splayed trisallene 257 in 7-component cascade 

reactions. 

The reaction of 257 (1 equiv.), 3-iodopyridine (3.6 equiv.), a nucleophile (3.6 

equiv.), Pd2(dba)3, TFP and K2CO3 in MeCN at 80 °C gave the products 258a-c in 

66-70% yield (Scheme 89, Table 5). In this multicomponent cascade, six new bonds 

(3 x C-C and 3 x C-N) and three double bonds were formed. In case of γ-carboline 

187 and 1-aminoadamantane 180 as nucleophiles the reaction afforded only one 

product 258a and 258b, respectively, (e.g. Fig. 26). However, when maraviroc 

amine 188 was used as the nucleophile, a mixture of E/Z-isomers of 258c was 

formed (Fig. 27). All attempts to separate this mixture failed and it is not possible to 

calculate the isomer ratio due to peak overlap. The isomeric mixture in the latter 

case is attributed, as mentioned earlier, to the steric congestion around the secondary 

amine centre in 188 which impedes the addition to the π-allyl intermediate and 

permits anti/syn-equilibrium to give E/Z-isomers. Also, the existence of three 

flexible allenyl groups close to each other in 257 could cause steric hindrance during 

the addition of maraviroc amine 188 to the π-allyl intermediate which would 

decrease the stereoselectivity.  

Scheme 89. General 7-Component cascade using trisallene 257. 

 

The Z,Z,Z-stereochemistry of 258a was assigned on the basis of NOE studies (Table 

5, entry 1). Irradiation of 2-H (δ 6.07) caused -11.18% enhancement of 1-CH2 and -

3.02 and -1.91% enhancement of two of the pyridyl-H but no enhancement of 4-CH2 

protons. However, irradiation of 1-CH2 (δ 4.77) resulted in -10.58% enhancement of 

2-H and -5.77% enhancement of 4-CH2 protons but no enhancement of pyridyl 

protons. Irradiation of 4-CH2 (δ 3.76) caused 2.52% enhancement of pyridyl-H, -

4.71% enhancement of 1-CH2 and -4.22, 4.79 and 3.07% enhancement of 

tetrahydropyridoindolyl-CH2 protons but no enhancement of the 2-H proton was 

observed. The negative NOE enhancements might be due to the shape, temperature, 
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molecular weight and slow reorientation of the molecule.
131

 The stereochemistry of 

258b was assigned on the basis of the stereochemistry of 258a.  

To our knowledge, the carboamination of trisallenes using Pd(0) catalysed cascades 

is a previously unknown process. This type of cascade is very attractive to both 

chemists and biologists because we can install three bioactive recognition groups 

(six groups are also possible by using both aryl iodide and nucleophile as bioactive 

moieties) at once in a stereoselective manner.  
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Figure 26. 
1
H-NMR (CDCl3, 300 MHz) of 258b. 
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Figure 27. 
1
H-NMR (CDCl3, 300 MHz) of 258c. 
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Table 5. Seven component cascades with trisallene 257.
a 

Entry Nucleophile Product Yield (%)
b 

1 
 

187 

 
258a 

70 

2 
 

180 

 
258b 

66 

3 

 

188 

258c 

69 

(mixture 

of E/Z 

isomers) 

a) Reaction carried out at 80 ºC in MeCN (5 mL) for 2-3 h and employed trisallene 257 (0.25 mmol), 

3-iodopyridine (0.9 mmol), nucleophile (0.9 mmol), Pd2(dba)3 (7.5 mol%), TFP (30 mol%), and 

K2CO3 (9 equiv.). b) Isolated yield 
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2.2.3.7  1,3,5,7-tetrakis-(4-iodophenyl)adamantane as a splayed tetra-aryl 

iodide. 

1,3,5,7-Tetrakis-(4-iodophenyl)adamantane 259
168b

 was used as a tetrahedral  aryl 

iodide core (1 equiv.) in reactions with various substituted allenes (4 equiv.) and 

nucleophiles (4 equiv.) enabling  nine component cascades populating four 

orthogonal regions of space (Scheme 90). N-Allenylpurine 195 and N-allenyl 

nucleosides, uridine 207a and thymidine 207b, were reacted as substituted allenes 

with a range of amine nucleophiles, e.g. maraviroc amine 188, γ-carboline 187 and 

1-aminoadamantane 180, generating compounds 262a-g in 45-87% yield (Table 6, 

entries 1-6). In this case, maraviroc amine 188 reacted smoothly and produced 9-

component cascade products contaminated with only a trace amount of another 

isomer (Fig. 28) which is in contrast with the previous 3, 5- and 7-component results 

(Scheme 73, Chart 16 (compounds 235e-g), Table 5, entry 3 (Fig. 27)). This 

variation can be attributed to the geometry of the multitrigger scaffold. Thus, 

tetrahedral arrangement of the 4-iodophenyl groups on the rigid adamantane core in 

259 afforded products directed in four dimensions, far from each other, which 

minimises the steric clash between their substituents and leads exclusively to the Z-

product. In the same vein, the aryl iodide 259 is very bulky and restricts the 

formation of syn-π-allyl complex (see Scheme 69) thus inhibiting the E-

configuration of the double bonds.   

Further incorporation of 259 as a tetraiodo rigged tecton in a fourfold 3-component 

cascade strategy was carried out to probe reactivity of chiral amines. We used 

representative amino acid esters, (S)-tryptophan methyl ester hydrochloride 260 and 

(S)-serine methyl ester hydrochloride 210, as nucleophiles to afford 262g and 262h, 

respectively, (Table 6, entries 7 and 8). Scaffold 210 was involved as a model for the 

reaction of an NH2 group in the presence of an unprotected OH. The reaction went 

exclusively, and only once, 262h at the NH2 site with no reaction of OH group as a 

nucleophile. Also, we involved a simple representative peptide, glycyl-(S)-leucine 

methyl ester hydrochloride 261, as a nucleophile under the same conditions. We 

observed no effect on the peptide bond and the reaction moved smoothly to afford 

262i. It is worth noting that the chirality of 260, 210 and 261 are retained in the 

cascade product 262g-i under the reaction conditions (see experimental). Finally, 1-
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aminomethylnaphthalene 212 was incorporated as both nucleophile and fluorophore 

under the same conditions to afford 262j in 51% yield. It is worth mentioning that, 

the mild cascade conditions generate four Z-double bonds and eight new bonds (4 x 

C and 4 x N). Additionally, a broad range of privileged structures are readily 

installed four times stereoselectively on the tetrahedral tecton.  

 

Scheme 90. 9-Component cascades using tetraiodo-scaffold 259. 

The four-fold assembling of substituted allenes and nucleophiles on tetrahedral 

1,3,5,7-tetrakis-(4-iodophenyl)adamantane was confirmed by high resolution mass 

spectrometry. It is worth mentioning that, due to the high molecular mass >1200, we 

see double and triple charge molecular ions beside the common mono-charge 

molecular ion (see experimental).  

The configuration of the double bonds in the 9-component products was assigned 

based on NOE studies on 262a,b and 262e (see experimental). The stereochemistry 

of 262a (Table 6, entry 1) was assigned as follows: irradiation of 1-H (δ 4.93) caused 

a -8.68% enhancement of 2-H and irradiation of 2-H (δ 5.88) resulted in a -6.31% 

enhancement of 1-H. Irradiation of 4-H (δ 3.68) caused -1.02% enhancement of 1-H, 

-2.21% enhancement of o-phenyl protons and -2.71% enhancement of the 

azabicyclooctyl proton at (δ 3.46). The negative NOE enhancements normally arise 

for several reasons, e.g. shape of the molecule, molecular weight, viscosity of the 

solvent, temperature and slow reorientation of the molecule.
131
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Table 6. Nine component cascade reactions of 259.
 a 

Entry 
Allene 

Product 
Yield 

(%)
b 

Nucleophile 

1 

 

195 

 
262a 

52 

 
188 

2 
 

207b 

262b 

69
 

 
188 

3 

 
207a 

262c 

56
 

 
188 
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(continued)  

4 
 

207b 

 

262d 

74 

 
187 

5  
207a 

 
262e 

62
 

 
187 

6 

 

195 

 
262f 

87 

 
180 
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(continued) 

7 

 

195 

 
262g 

45 

 
260 

8 

 

195 

 
262h 

49 

 
210 

9 

 

195 

262i 

55 

 
261 
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(continued) 

10 

 

195 

 

 

 
262j 

51 

 
212 

a) Reaction carried out at 80 ºC in MeCN (3 mL) for 3-32 h and employed substituted allene (0.4 

mmol), 1,3,5,7-tetrakis-(4-iodophenyl)adamantane (0.1 mmol), nucleophile (0.48 mmol), Pd2(dba)3 

(2.5 mol%), TFP (10 mol%), and K2CO3 (6 equiv.). b) Isolated yield.     

Figure 28. 
1
H-NMR (CDCl3, 300 MHz) of 262a-c arranged from the top. The 

arrows are directed toward suspected minor isomers. 
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The previous success encouraged us to determine the chemoselectivity of the 

1,3,5,7-tetrakis-(4-iodophenyl)adamantane 259 and the possibility of sequentially 

attaching both four different nucleophiles and allenes on 259. In a preliminary study, 

the reaction of 259 (1.2 equiv.) with purine allene 195 (1 equiv.) and 1-

aminoadamantane 180 (1.2 equiv.)  under the same conditions afforded a mixture of 

the 3-component product 263a (36%)  and the 5-component product 263b (29%) but 

none of the 7- and 9-component products (Chart 18). This result indicated that the 

first and second step functionalisations of 259 are selectively accessible. 

Additionally, the formation rate of 263a is slightly faster than 263b. Unfortunately, 

there was insufficient time to develop this study further. 

Chart 18. Chemoselectivity of 259. 

 

2.3  Conclusion 

The main objective of my work was to develop new Pd chemistry applicable to drug 

design and discovery. One way to do this is to use biologically active compounds as 

building blocks. Thus drugs or parts of drugs were used as scaffolds and 

incorporated regio- and stereoselectively in multicomponent cascades. Also, amino 

acids and short peptides were successfully involved as nucleophiles and these results 

will encourage our group to try short proteins/DNA or sugars as scaffolds. In the 

same vein, zinc binding benzamide scaffolds were incorporated into 3-component 

cascades in order to increase the inhibition of HDAC enzymes and the metal chelator 

di-(2-picolyl)amine was employed as a nucleophile in the cascades to provide a 

modified metal scavenger. This latter reaction opens a link to organometallic 

chemistry. Furthermore, I developed (in collaboration with two Thai students) a 

range of new bivalent ligands based on bisallylamines that are generated catalytically 

and employ ammonium salts as an NH3 source. Splayed bisallenes and 
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piperazine/homopiperazine were successfully incorporated into 5-component 

cascades. Additionally, a splayed bisallene reacted with bis-amine nucleophiles in an 

exploratory creation of macrocycles which clearly requires further work. Splayed 

trisallene was designed and involved in 7-component cascades. Interestingly, I 

achieved the first stereoselective 9-component cascade synthesis based on the 

adamantyl core and demonstrated (a) its potential for attachment of peptide ligands 

(b) the selectivity for amine nucleophiles over oxygen nucleophiles (c) the ability to 

cleanly generate Z-trisubstituted alkenes. Screening samples have been sent to 

universities in USA, Australia, Holland as well as Leeds University (Biomedical 

Sciences), Sheffield University (Department of Chemistry), Leeds Institute of 

Molecular Medicine (LIMM), and Scottish Biomedical. Three compounds have been 

tested so far at 10 µM, 100 nM and 10 nM against Human HDACs 1-3 by Scottish 

biomedical. No inhibition was observed over 10% against Human HDAC 1. 

Compounds 223a, 223b and 223f showed 63.9, 54.3 and 69.3% inhibition, 

respectively, at 10 µM against Human HDAC 2. Furthermore, 223a, 223b and 223f 

showed 92.5, 71.6 and 97.6% inhibition, respectively, at 10 µM and 223f showed 

32.3% inhibition at 100 nM against Human HDAC3. 

Hence, the new versatile catalytic multicomponent reactions have provided access to 

potentially bioactive products stereo and regioselectively with high atom economy. I 

believe that this allene chemistry is capable of substantial further development and 

will afford diverse and complex molecular materials in a stereoselective fashion.  At 

the moment we have only scratched the surface of its power and reach. 
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Chapter 3 

Results and Discussion 

1,3-Dipolar cycloaddition approach to pyrimidinylpyrrolidine 
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Chapter 3 (Results and Discussion): 1,3-dipolar cycloaddition 

approach to pyrimidinylpyrrolidines 

Pyrimidine-based compounds find many applications in medicine and 

agrochemistry.
169

 Several authors have developed methods for the synthesis of 

pyrimidinylpyrrolidines and have evaluated their biological activity
170

 but hardly any 

have employed 1,3-dipolar cycloaddition reactions. Such an approach provides an 

efficient method for the construction of highly functionalized five-membered 

heterocycles.
171

 The author’s work seeks to employ azomethine ylides which are a 

cornerstone of work in the Grigg group. These versatile 1,3-dipoles provide access to 

a multitude of nitrogen-containing heterocycles with wide ranging applications.
172 

A 

number of methods have been developed for the generation of azomethine ylides. 

One of these methods is the formal 1,2-prototropic shift method, in which an 

aldehyde or ketone 264 reacts with an amine 265 that has an α-hydrogen through a 

condensation process to afford an imine 266a (Scheme 91)
173

 which generates the 

azomethine ylide 266b via a formal 1,2-prototropic shift. This process is catalysed 

by both Bronsted acids and bases. Subsequently, the azomethine ylide 266b 

cycloadds to a wide variety of dipolarophiles 267 to furnish pyrrolidine cycloadducts 

268. The conversion of 266a to 266b probably occurs by a bimolecular process. 

 

Scheme 91. Azomethine ylide generation via a 1,2-prototropic shift.  

 

We have used 4,6-dimethyl-2-formylpyrimidine 269 to prepare a library of 

pyrimidinylpyrrolidines via the 1,3-dipolar cycloaddition methodology. Thus, a one 

pot reaction of a mixture of 269, α-amino acid ester hydrochloride 270, and 

maleimide 271 in toluene containing Et3N at 100 ºC gave endo-cycloadducts 273a-d 

as sole products in 66-83% yield (Scheme 92) via endo-transition state 272. It is 

worth noting that the cycloadducts 273a-d precipitated from hot solution during the 

reaction and afforded pure products after filtering and washing with water. The 

proton NMR spectra (DMSO-d6) of 273a-c showed a singlet for the maleimide NH 
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proton at δ 11.14-11.16 ppm and doublet for the pyrrolidine NH proton at δ 3.68-

3.38 ppm. The corresponding signals for 273d in CDCl3 occurred at δ 8.29 and 4.14 

ppm.  

 

 
273a (66%) 

 
273b (83%) 

 
273c (74%) 

 
273d (64%) 

The reaction was carried out using an equimolar mixture of 4,6-dimethyl-2-formylpyrimidine (1 

mmol), α-amino acid ester hydrochloride (1 mmol), maleimide (1 mmol) and Et3N (1 mmol) in 

toluene (7 mL) at 100 °C for 1-2 h. 

Scheme 92. Cycloaddition products of α-amino acid ester 270. 

 

Furthermore, 4,6-dimethyl-2-formylpyrimidine 269 reacted with 2-aminomethyl 

heteroaromatic compounds 274 and maleimide 271 under the same conditions (Et3N, 

toluene, 100 ºC) to produce the corresponding endo-cycloadducts 275 in 58-84% 

yield, (Scheme 93). 

The scope of 269 in cycloaddition reactions was extended by reacting it with (S)-

prolinamide 276 and N-phenylmaleimide 277 in toluene containing Et3N  at 100 °C 

for 2 h to afford the corresponding tricyclic cycloadduct 278 in 89% yield (Scheme 

94). The stereochemistry of 278 was established by an X-ray crystal structure (Fig. 

29, Appendix 4). The high yield of a single isomer suggests that a series of 

prolinamide peptides would react similarly. It is interesting to note that the proton 

n.m.r. of 278 clearly shows the well known restricted rotation about the amide bond 

showing two doublet signals for the NH2 protons at δ 7.63 and 7.32 (J = 2.3 Hz). 
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275a (84%) 

 
275b (80%) 

 
275c (58%) 

The reaction was carried out using an equimolar mixture of 4,6-dimethyl-2-formylpyrimidine (1 

mmol), aminomethyl heteroaromatic (1 mmol), maleimide (1 mmol) and Et3N (1 mmol) in toluene (7 

mL) at 100 °C for 10 min-1.5 h. 

Scheme 93. Cycloadducts of 2-aminomethyl heteroaromatic compounds 274. 

 

 

Scheme 94. Formation of fused tricyclic product 278.  

 

Figure 29. X-ray crystal structure of 278 (Appendix 4). 
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The high stereoselectivity of 4,6-dimethyl-2-formylpyrimidine 269 in these 

cycloadditions encouraged us to study the regioselectivity in more details. The 

reaction of 269 with 2-aminomethylpyridine 274a and phenyl vinylsulfone 279 

under the same conditions (Et3N, toluene, 100 °C) gave the corresponding 

cycloadduct 280 regio- and stero-selectively in 64% yield (Scheme 95). Thus, the 

ability of the pyrimidinyl group to stabilise the azomethine ylide negative charge is 

greater than the pyridyl group. Furthermore, steric congestion between the PhSO2 

group on the dipolarophile and the pyridyl group on the dipole in the endo-transition 

state directed the cycloaddition toward the favourable exo-cycloadduct 280. The 

regio- and stereochemistry of 280 was confirmed by an X-ray crystal structure (Fig 

30).  

 

Scheme 95. Reaction of 279 as dipolarophile. 

 

Figure 30. X-ray crystal structure of 280 (Appendix 5). 
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The reaction of 269 with (R)-alanine methyl ester 270a and phenyl vinylsulfone 279 

under the same conditions afforded a 2.5:1.3:1 mixture of three isomers 281a-c in 

54% combined yield. From this result, the capability of the carboxylic ester group in 

the azomethine ylide to stabilise the negative charge on the dipole is 3.8 times more 

favourable than the pyrimidinyl group. Furthermore, the 2.5:1.3 ratio of 281a and 

281b, respectively, reflects favourable exo-cycloaddition over endo-cycloaddition. 

The regiochemistry of 281a was suggested on the basis of its 
1
H-NMR spectrum and 

NOE data (Fig. 31, 281a). The 5-H proton appeared as a doublet (δ 4.72, J 6.4) and 

4-H proton appeared as a doublet of triplets (δ 4.61, J 6.4 and 8.9). Furthermore, 

irradiation of 5-H (δ 4.72) caused a 3.9% enhancement of the o-phenyl protons 

whilst irradiation of 4-H (δ 4.61) resulted in 6.4% enhancement of 3-Ha and 4.6% 

enhancement of the o-phenyl protons. Irradiation of 3-Ha (δ 2.86) caused 11.6% 

enhancement of 4-H and 25.5% enhancement of 3-Hb. Irradiation of 3-Hb (δ 2.44) 

effected a 27.4% enhancement of 3-Ha, 3.8% enhancement of 5-H and 2.8% 

enhancement of the o-phenyl protons.  

The NOE data was confirmed by an X-ray crystal structure of 281a which showed a 

trans-relation between phenylsulphonyl group and pyrimidinyl group (Fig. 32). 

Figure 31. NOE data for 281a-c. 

 
Figure 32. X-ray crystal structure of 281a (Appendix 6). 
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The 
1
H-NMR spectrum of 281b showed the appearance of 5-H as a doublet (δ 4.69, 

J 5.6) and 4-H as doublet of triplets (δ 4.17, J 5.6 and 7.8). The NOE data (Fig. 31, 

281b) showed that irradiation of 5-H (δ 4.69) caused 10.4% enhancement of 4-H 

whilst irradiation of 4-H (δ 4.17) resulted in 9.5% enhancement of 5-H and 8.3% 

enhancement of the o-phenyl protons. Irradiation of 3-Ha (δ 3.38) caused 21.5% 

enhancement of 3-Hb proton whilst irradiation of 3-Hb proton (δ 2.25) effected a 

25.4% enhancement of 3-Ha, 17.2% enhancement of 4-H and 3.5% enhancement of 

the 2-Me protons.  

In contrast with the regiochemistry of 281a and 281b, the minor adduct 281c had 

opposite regiochemistry. Thus, 5-H appeared as double of doublets (δ 4.38, J 7.2 and 

9.7) as did the 3-H (δ 3.70, J 7.2 and 9.7). NOE data (Fig. 31, 218c) showed 

irradiation of 5-H (δ 4.38) caused 7.9 and 4.1% enhancements of 4-H and 3-H, 

respectively whilst irradiation of 3-H resulted in 5.6, 4.1 and 5.9% enhancements of 

4-H, 2-Me and o-phenyl protons, respectively.     

 

Conclusion 

We have established 4,6-dimethyl-2-formylpyrimidine as an important carbonyl 

component in 1,3-dipolar cycloadditions and demonstrated its reactivity with a range 

of primary and secondary amino acids in the presence of maleimide as dipolarophile. 

Additionally, phenyl vinylsulfone was incorporated as an unsymmetrical 

dipolarophile to determine the regioselectivity of the cycloaddition process. In case 

of 2-aminomethylpyridine, the reaction was regio- and stereo-selective affording a 

single product whereas (R)-alanine methyl ester afforded a mixture of three regio- 

and stereo-isomers. Future work will focus on combinations of 1,3-dipolar 

cycloaddition chemistry with allene chemistry in super cascade reactions.  
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Chapter 4 

Experimental 
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Experimental 

General details: Thin layer chromatography (TLC) was carried out on aluminium 

plates pre-coated with silica gel 60 F254 (Merck), and were visualised using 

ultraviolet light and/or aqueous KMnO4/I2. Flash column chromatography employed 

silica gel 60 (Merck, 230-400 mesh). Melting points were determined on a Reichert 

hot-stage microscope and are uncorrected. Microanalyses were performed on a Carlo 

Erba 1108 elemental analyser. Optical rotations measured on a Polartronic H 532 

(Schmidt + Haensch) instrument. Infrared spectra were recorded on a Perkin-Elmer 

Spectrum FT-IR spectrometer either as thin films on sodium chloride discs or as 

solids using a golden gate apparatus. The former were created by dissolving the 

compound in CHCl3 and transfering the solution to a sodium chloride disc and 

allowing the solvent to evaporate. Proton nuclear magnetic resonance spectra were 

recorded at 300MHz on a Bruker DPX300 instrument. Chemical shifts (δ) are 

reported in parts per million relative to tetramethylsilane (δ = 0.00) and coupling 

constants are given in hertz (Hz). The following abbreviations are used: s = singlet, 

br = broad, d = doublet, dd = doublet of doublets, ddd = doublet of double doublets, 

dt = doublet of triplets, m = multiplet, t = triplet, td = triplet of doublets. 
13

C-NMR 

spectra were recorded at 75 MHz on a Bruker DPX300 instrument and chemical 

shifts are reported in parts per million (ppm). 
1
H-NMR peak assignments are mainly 

based on DEPT135, COSY, HMQC and HMBC spectral data. Accurate masses were 

obtained using a Bruker Daltonics micrOTOF spectrometer. The m/z data mentioned 

in the case of 9-component cascade products are the result of two runs one using the 

auto sampler technique and the other by injecting the sample directly into the 

machine using a syringe pump.  All compounds are named according to the IUPAC 

system using the ACD/ILAB (ACD/IUPAC v.12.0 programme) web service 

(http:/www.acdlabs.com). 

 

General Procedure A: Allene formation.
116 

A mixture of alkyne (1 equiv.), dicyclohexylamine (1.8 equiv.), paraformaldehyde 

(2.5 equiv.) and CuI (0.5 equiv.) in dry dioxane was refluxed for 3 h. The reaction 

mixture was cooled and the solvent removed under reduced pressure. The residue 

was dissolved in CHCl3 and the organic layer washed three times with 10% aqueous 
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NH4OH three times  then with water, dried over anhydrous MgSO4, filtered and the 

filtrate evaporated under vacuo to give the crude allene which was purified by flash 

column chromatography. 

   

1-(Buta-2,3-dien-1-yl)-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione  (195).
115 

Prepared by general procedure A from 3,7-dimethyl-1-(prop-2-yn-

1-yl)-3,7-dihydro-1H-purine-2,6-dione 194
174

 (2.34 g, 11.1 

mmol), dicyclohexylamine (4.0 mL, 20.1 mmol), 

paraformaldehyde (0.84 g, 27.9 mmol) and CuI (1.06 g, 5.6 mmol) in dioxane (50 

mL). Flash column chromatography eluting with EtOAc gave 195 as colourless fine 

needles (2.14 g, 83%), mp. 128-130 °C; (Found: C, 56.70; H, 5.10; N, 24.15; 

C11H12N4O2 requires C, 56.89; H, 5.21; N, 24.12%); δH (300 MHz, CDCl3); 7.53 

(1H, s, purine 8-H), 5.36-5.27 (1H, m, CH2CH=),  4.83-4.78 (2H, m, NCH2CH=), 

4.65-4.61 (2H, m, =CH2), 4.00 (3H, s, NMe), 3.58 (3H, s, NMe); δc (75 MHz, 

CDCl3); 208.8, 154.9, 151.2, 148.8, 141.5, 107.6, 86.3, 77.0, 39.5, 33.6, 29.7; 

υmax/cm
-1

 (film); 3115, 2950, 1701, 1654, 1598, 1477, 1332; m/z (ESI
+
) 255.1 

(100%, MNa
+
); (Found MNa

+
, 255.0844. C11H12N4NaO2 requires MNa, 255.0852).  

 

General Procedure B: Pd catalysed 3-component cascades. 

A mixture of substituted allene (1 equiv.), aryl/heteroaryl iodide (1.2 equiv.), 

nucleophile (1.2 equiv.), Pd2(dba)3 (2.5 mol%), TFP (tri-(2-furyl)phosphine) (10 

mol%) and K2CO3 (3 equiv.) in MeCN or DMF was stirred and heated at 80 °C (oil 

bath temperature). The mixture was then cooled, evaporated under reduced pressure 

and the resulting residue dissolved in CHCl3 and washed with H2O. The organic 

layer was dried over anhydrous MgSO4, filtered and the filtrate evaporated under 

reduced pressure. The residue was purified by flash chromatography. 

 

Methyl 2-{[(2Z)-4-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)-2-

(pyridin-3-yl)but-2-en-1-yl]amino}-4-(methylthio)butanoate (200a). 

Prepared by general procedure B from N-allenylpurine 195 (0.116 g, 0.50 mmol), 3-

iodopyridine (0.123 g, 0.60 mmol), rac-methionine methyl ester hydrochloride 199 

(0.149 g, 0.75 mmol), Pd2(dba)3 (0.0115 g, 2.5 mol%), TFP (0.0116 g, 10 mol%) 

and K2CO3 (0.21 g, 1.5 mmol) in MeCN (5 mL) at 80 ºC for 18 h. Flash column 



- 118 - 

chromatography eluting with 10:1 v/v EtOAc/MeOH gave 

the product 200a (0.39 g, 82%) as a pale yellow gum; δH 

(300 MHz, C6D6); 9.03 (1H, d, J 1.5, pyridinyl-H), 8.45 

(1H, d, J 3.9, pyridinyl-H), 7.66 (1H, d, J 7.8, pyridinyl-

H), 6.78 (1H, dd, J 7.8 and 4.8, pyridinyl-H), 6.71 (1H, s, purine 8-H), 6.03 (1H, t, J 

6.9, NCH2CH=), 4.99 (2H, d, J 6.9, NCH2CH=), 3.94 (1H, d, J 12, =CCH2NH), 3.58 

(1H, d, J 12, =CCH2NH), 3.50 (1H, dd, J 8.6 and 4.7, NHCHCO2CH3), 3.45 (3H, s, 

purine 3-NCH3), 3.36 (3H, s, CO2CH3), 3.20 (3H, s, purine 7-NCH3), 2.53 (2H, t, J 

7.3, CH2SCH3), 2.42 (1H, br s, NHCHCO2CH3), 1.98 (1H, m, CH2CH2S), 1.83 (1H, 

m, CH2CH2S), 1.81 (3H, s, SCH3); δC (75 MHz, CDCl3); 175.8, 155.3, 151.7, 149.2, 

148.7, 148.0, 142.1, 138.3, 137.2, 134.1, 127.5, 123.4, 107.9, 60.2, 52.3, 47.0, 39.9, 

34.0, 33.0, 30.9, 30.1, 15.7; υmax/cm
-1

 (film); 3310, 3104, 2950, 2912, 2851, 1732, 

1704, 1661, 1604, 1549, 1455, 1356, 1314, 1285, 1234; m/z (ESI
+
) 473.2 (100%, 

MH
+
); (Found MH

+
, 473.1973. C22H29N6O4

32
S requires MH, 473.1966).  

 

Methyl 2-{[(2E)-4-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)-2-

(2-thienyl)but-2-en-1-yl]amino}-4-(methylthio)butanoate (200b). 

Prepared by general procedure B from N-allenylpurine 

195 (0.116 g, 0.50 mmol), 2-iodothiophine (0.066 mL, 

0.60 mmol), rac-methionine methyl ester hydrochloride 

199 (0.149 g, 0.75 mmol), Pd2(dba)3 (0.0115 g, 2.5 

mol%), TFP (0.0116 g, 10 mol%) and K2CO3 (0.21 g, 1.50 mmol) in MeCN (5 mL) 

at 80 ºC for 11 h. Flash column chromatography eluting with EtOAC gave the 

product 200b (0.18, 75%) as a pale yellow gum; δH (300 MHz, C6D6); 7.29 (1H, t, J 

2.2, thienyl-H), 6.73 (2H, d, J 2.4, 2 x thienyl-H), 6.47 (1H, s, purine 8-H), 6.42 (1H, 

t, J 7.2, NCH2CH=), 5.01 (2H, d, J 7.2, NCH2CH=), 4.07 (1H, d, J 11.6, 

=CCH2NH), 3.80 (1H, d, J 11.6, =CCH2NH), 3.61 (1H, dd, J 8.6 and 4.7, 

NHCHCO2CH3), 3.42 (3H, s, purine 3-NCH3), 3.31 (3H, s, CO2CH3), 3.06 (3H, s, 

purine 7-NCH3), 2.61 (2H, m, CH2SCH3), 2.02 (1H, m, CH2CH2S), 1.85 (1H, m, 

CH2CH2S), 1.80 (3H, s, SCH3); δC (75 MHz, CDCl3); 175.5, 155.0, 151.4, 148.9, 

144.9, 141.5, 135.0, 127.3, 124.3, 124.0, 123.3, 107.7, 60.1, 51.9, 47.0, 39.3, 33.6, 

32.8, 30.6, 29.8, 15.3; υmax/cm
-1

 (film); 3310, 3110, 2949, 1733, 1704, 1660, 1604, 
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1549, 1487, 1454, 1432, 1359, 1233; m/z (ESI
+
) 478.2 (100%, MH

+
); (Found MH

+
, 

478.1599. C21H28N5O4
32

S2 requires MH, 478.1577).  

 

Methyl 2-{[(2Z)-2-[3,5-bis(trifluoromethyl)phenyl]-4-(3,7-dimethyl-2,6-dioxo-

2,3,6,7-tetrahydro-1H-purin-1-yl)but-2-en-1-yl]amino}-4-(methylthio)butanoate 

(200c). 

Prepared by general procedure B from N-allenylpurine 195 

(0.116 g, 0.50 mmol), 1-iodo-bis(3,5-

trifluoromethyl)benzene (0.11 mL, 0.60 mmol), rac-

methionine methyl ester hydrochloride 199 (0.149 g, 0.75 mmol), Pd2(dba)3 (0.0115 

g, 2.5 mol%), TFP (0.0116 g, 10 mol%) and K2CO3 (0.21 g, 1.50 mmol) in MeCN 

(5 mL) at 80 ºC for 10 h. Flash column chromatography eluting with EtOAc gave the 

product 200c (0.26 g, 85%) as a pale yellow gum; δH (300 MHz, CDCl3); 8.02 (2H, 

s, phenyl 2-H and 6-H), 7.74 (1H, s, phenyl 4-H), 7.55 (1H, s, purine 8-H), 5.94 (1H, 

t, J 6.9, NCH2CH=), 4.95 (2H, d, J 6.9, NCH2CH=), 4.01 (3H, s, purine 7-NCH3), 

3.98 (1H, d, J 11.9, =CCH2NH), 3.79 (3H, s, CO2CH3), 3.60 (3H, s, purine 3-

NCH3), 3.59 (1H, d, J 11.9, =CCH2NH), 3.52 (1H, dd, J 8.9 and 4.4, 

NHCHCO2CH3), 2.63 (2H, m, CH2SCH3), 2.15 (1H, br s, NHCHCO2CH3), 2.08 

(3H, s, SCH3), 2.00 (1H, m, CH2CH2S), 1.87 (1H, m, CH2CH2S); δC (75 MHz, 

CDCl3); 174.1, 153.7, 150.1, 147.7, 142.4, 140.5, 137.1, 130.1 (J 32.2), 127.6 (J 

2.3), 125.3 (J 4.6), 122.2 (J 272.8), 119.6 (J 4.6), 106.4, 58.6, 50.7, 45.7, 38.3, 32.4, 

31.3, 29.4, 28.5, 14.0; υmax/cm
-1

 (film); 3307, 3109, 2953, 2829, 1734, 1708, 1661, 

1605, 1550, 1456, 1381, 1280, 1234; m/z (ESI
+
) 608.2 (100%, MH

+
); (Found MH

+
, 

608.1782. C25H28F6N5O4
32

S requires MH, 608.1761).  

 

Methyl 2-{[(2Z)-4-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)-2-

(1H-indol-5-yl)but-2-en-1-yl]amino}-4-(methylthio)butanoate (200d). 

Prepared by general procedure B from N-allenylpurine 

195 (0.116 g, 0.50 mmol), 5-iodoindole (0.145 g, 0.60 

mmol), rac-methionine methyl ester hydrochloride 199 

(0.149 g, 0.75 mmol), Pd2(dba)3 (0.0115 g, 2.5 mol%), 

TFP (0.0116 g, 10 mol%) and K2CO3 (0.21 g, 1.50 mmol) in MeCN (5 mL) at 80 ºC 

for 18 h. Flash column chromatography eluting with EtOAc gave the product 200d 
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(0.18 g, 72%) as a pale yellow gum; δH (300 MHz, CDCl3); 8.36 (1H, s, indolyl-

NH), 7.74 (1H, s, indolyl-H), 7.49 (1H, s, purine 8-H), 7.30-7.28 (2H, m, 2 x 

indolyl-H), 7.15 (1H, t, J 2.5, indolyl-H), 6.49 (1H, t, J 2.3, indolyl-H), 5.87 (1H, t, J 

7.2, NCH2CH=), 4.91 (2H, d, J 7.2, NCH2CH=), 3.99 (1H, d, J 11.4, =CCH2NH), 

3.97 (3H, s, purine 7-NCH3), 3.79 (1H, d, J 11.4, =CCH2NH), 3.75 (3H, s, 

CO2CH3), 3.57 (3H, s, purine 3-NCH3), 3.53 (1H, dd, J 8.7 and 4.8, 

NHCHCO2CH3), 2.57 (2H, t, J 7.5, CH2SCH3), 2.13 (1H, brs, NHCHCO2CH3), 2.04 

(3H, s, SCH3), 2.01 (1H, m, CH2CH2S), 1.85 (1H, m, CH2CH2S); υmax/cm
-1

 (film); 

3318, 3104, 2922, 2853, 1725, 1703, 1660, 1602, 1549, 1456, 1312, 1234; m/z 

(ESI
+
) 511.2 (100%, MH

+
); (Found MH

+
, 511.2137. C25H31N6O4

32
S requires MH, 

511.2122).  

   

General Procedure C: Pd catalysed 3-component cascades. 

As for general procedure A except the reaction time was 2-3 h and the cascade 

product precipitated out of the hot solution. The solution was filtered and the 

precipitate was washed with water and crystallized from MeOH. 

 

1-[(2Z)-4-(8-Fluoro-1,3,4,5-tetrahydro-2H-pyrido[4,3-b]indol-2-yl)-3-(pyridin-3-

yl)but-2-en-1-yl]-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione (201a). 

Prepared by general procedure C from N-allenylpurine 195 

(0.116 g, 0.50 mmol), 3-iodopyridine (0.123 g, 0.60 mmol), 

8-fluoro-2,3,4,4a,5,9b-hexahydro-1H-pyrido[4,3-b]indole 

187  (0.114 g, 0.60 mmol), Pd2(dba)3 (0.0115 g, 2.5 mol%), 

TFP (0.0116 g, 10 mol%) and K2CO3 (0.21 g, 1.50 mmol) 

in MeCN (5 mL) for 3 h. The product 201a precipitated 

from MeOH as an off-white amorphous powder (0.23 g, 92%), mp 262-264 °C;  δH 

(300 MHz, DMSO-d6); 10.86 (1H, s, pyridoindolyl-NH), 8.71 (1H, d, J 1.0 

pyridinyl-H), 8.40 (1H, d, J 4.6, pyridinyl-H), 8.04 (1H, s, purine 8-H), 7.91 (1H, d, 

J 8.2, pyridinyl-H), 7.29 (1H, dd, J 7.7 and 4.6, pyridinyl-H), 7.22 (1H, dd, J 9.0 and 

4.9, pyridoindolyl-H), 7.10 (1H, dd, J 9.5 and 1.8, pyridoindolyl-H), 6.80 (1H, td, J 

9.4, and 2.6, pyridoindolyl-H), 5.98 (1H, t, J 6.1, NCH2CH=), 4.83 (2H, d, J 6.1, 

NCH2CH=), 3.91 (3H, s, purine 7-NCH3), 3.81 (2H, s, =CCH2N), 3.66 (2H, s, 

pyridoindoly 1-CH2), 3.45 (3H, s, purine 3-NCH3), 2.86 (2H, brt, J 5.5, 
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pyridoindolyl-CH2), 2.71 (2H, brt, J 5.5, pyridoindolyl-CH2); δC (75 MHz, DMSO-

d6); 156.5 (J 229.9), 154.2, 150.8, 148.3, 147.8, 147.4, 142.8, 136.5, 135.5, 134.9, 

133.6, 132.4, 129.1, 125.6 (J 9.2), 123.0, 111.3 (J 9.2), 107.7 (J 27.6), 107.5 (J 4.6), 

106.7, 101.9 (J 25.3), 54.8, 49.5, 48.9, 39.0, 33.1, 29.3, 23.5; υmax/cm
-1

 (solid); 2917, 

1698, 1650, 1544, 1454, 1407, 1360, 1293, 1231; m/z (ESI
+
) 500.2 (100%, MH

+
); 

(Found MH
+
, 500.2198. C27H27FN7O2 requires MH, 500.2205).  

 

1-[(2E)-4-(8-Fluoro-1,3,4,5-tetrahydro-2H-pyrido[4,3-b]indol-2-yl)-3-(2-

thienyl)but-2-en-1-yl]-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione (201b). 

Prepared by general procedure C from N-allenylpurine 195 

(0.116 g, 0.50 mmol), 2-iodothiophene (0.066 mL, 0.60 

mmol), 8-fluoro-2,3,4,4a,5,9b-hexahydro-1H-pyrido[4,3-

b]indole  187 (0.114 g, 0.60 mmol), Pd2(dba)3 (0.0115 g, 

2.5 mol%), TFP (0.0116 g, 10 mol%) and K2CO3 (0.21 g, 

1.50 mmol) in MeCN (5 mL) for 3 h. The product 201b 

crystallized from MeOH as off-white needles (0.18 g, 71%), mp 243-245 °C; δH 

(300 MHz, CDCl3); 7.76 (1H, s, pyridoindolyl-NH), 7.49 (1H, s, purine 8-H),  7.23 

(1H, d, J 3.6, thienyl-H), 7.18 (1H, dd, J 8.7 and 4.2, pyridoindolyl-H),  7.11 (1H, d, 

J 5.7, thienyl-H), 7.07 (1H, dd, J 9.7 and 2.1, pyridoindolyl-H),  6.91 (1H, dd, J 4.9 

and 3.8, thienyl-H), 6.83 (1H, td, J 9.3 and 2.4, pyridoindolyl-H), 6.13 (1H, t, J 6.8, 

NCH2CH=), 4.92 (2H, d, J 6.8, NCH2CH=), 3.99 (3H, s, purine 7-NCH3), 3.84 (2H, 

s, =CCH2N), 3.80 ( 2H, s, pyridoindolyl 1-CH2), 3.59 (3H, s, purine 3-NCH3), 2.98 

(2H, brt, J 5.6, pyridoindolyl-CH2), 2.84 (2H, brt, J 5.6, pyridoindolyl-CH2); δC (75 

MHz, DMSO-d6); 156.6 (J 229.3), 154.2, 150.8, 148.3, 144.6, 142.9, 135.0, 132.5, 

132.4, 127.1, 125. 8 (J 9.7), 125.5, 124.8, 124.0, 111.3 (J 9.7), 107.7 (J 26), 107.4 (J 

4.3), 106.7, 101.9 (J 23.1), 55.9, 49.6, 49.0, 38.8, 33.1, 29.3, 23.6; υmax/cm
-1

 (solid); 

3305, 1699, 1560, 1550, 1457, 1426, 1283, 1233; m/z (ESI
+
) 505.2 (100%, MH

+
); 

(Found MH
+
, 505.1806. C26H27FN6O2

32
S requires MH, 505.1816).  

NOE data for 201b: 

 % Enhancement 

Irradiated proton 1-H 2-H 4-H Thienyl 3-H Pyridoindolyl 3-H 

1-H  6.6 3.5 - - 

2-H 3.7  - 4.2 - 

4-H 4.4 -  4.2 3.4 
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1-[(2Z)-3-[3,5-Bis(trifluoromethyl)phenyl]-4-(8-fluoro-1,3,4,5-tetrahydro-2H-

pyrido[4,3-b]indol-2-yl)but-2-en-1-yl]-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-

dione (201c). 

Prepared by general procedure C from N-allenylpurine 195 

(0.116 g, 0.50 mmol), 1-iodo-bis(3,5-

trifluoromethyl)benzene (0.1 mL, 0.60 mmol), 8-fluoro-

2,3,4,4a,5,9b-hexahydro-1H-pyrido[4,3-b]indole 187 

(0.114 g, 0.60 mmol), Pd2(dba)3 (0.0115 g, 2.5 mol%), TFP 

(0.0116 g, 10 mol%) and K2CO3 (0.21 g, 1.50 mmol) in MeCN (5 mL) at 80 °C for 3 

h. The product 201c crystallized from MeOH as off-white needles (0.19 g, 60%), mp 

148-250 °C; δH (300 MHz, CDCl3); 7.96 (2H, s, phenyl 2-H and 6-H), 7.75 (1H, s, 

pyridoindolyl-NH), 7.70 (1H, s, phenyl 4-H), 7.53 (1H, s, purine 8-H), 7.17 (1H, dd, 

J 8.7 and 4.1, pyridoindolyl-H), 7.08 (1H, dd, J 9.5 and 2.3, pyridoindolyl-H), 6.83 

(1H, td, J 9.0 and 2.6, pyridoindolyl-H), 6.02 (1H, t, J 6.4, NCH2CH=), 4.98 (2H, d, 

J 6.4, NCH2CH=), 4.01 (3H, s, purine 7-NCH3), 3.89 (2H, s, =CCH2N), 3.77 (2H, s, 

pyridoindolyl 1-CH2), 3.61 (3H, s, purine 3-NCH3), 2.98 (2H, t, J 5.5, pyridoindolyl-

CH2), 2.81 (2H, brt, J 5.5, pyridoindolyl-CH2); ); δC (75 MHz, DMSO-d6); 156.6 (J 

228.8), 154.3, 150.9, 148.4, 143.6, 142.9, 135.1, 134.8, 132.4, 131.7, 129.9 (J 32.2), 

126.9, 125.6 (J 9.2), 123.4 (J 273.6), 120.2, 111.4 (J 9.2), 107.8 (J 27.6), 107.4 (J 

4.6), 106.8, 101.9 (J 23.0), 54.6, 49.7, 48.7, 39.2, 33.1, 29.4, 23.5; υmax/cm
-1

 (film); 

3313, 3241, 2939, 2824, 1708, 1660, 1602, 1551, 1455, 1381, 1278, 1233; m/z 

(ESI
+
) 635.2 (100%, MH

+
); (Found MH

+
, 635.1985. C30H26F7N6O2 requires MH, 

635.2000).  

   

1-[(2Z)-4-(8-Fluoro-1,3,4,5-tetrahydro-2H-pyrido[4,3-b]indol-2-yl)-3-(1H-indol-

5-yl)but-2-en-1-yl]-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione (201d). 

Prepared by general procedure C (the product was 

precipitated from cold solution) from N-allenylpurine 195 

(0.116 g, 0.50 mmol), 5-iodoindole (0.145 g, 0.60 mmol), 

8-fluoro-2,3,4,4a,5,9b-hexahydro-1H-pyrido[4,3-b]indole 

187  (0.114 g, 0.60 mmol), Pd2(dba)3 (0.0115 g, 2.5 mol%), 

TFP (tri-(2-furyl)phosphine) (0.0116 g, 10 mol%) and 

K2CO3 (0.21 g, 1.50 mmol) in MeCN (5 mL) for 2 h. The product 201d crystallized 

from MeOH as an off-white powder (0.21 g, 78%), mp 250-252 °C; δH (300 MHz, 
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CDCl3/MeOH-d4); 7.73 (1H, s, NH), 7.64 (1H, s, indolyl-H), 7.47 (1H, s, purine 8-

H), 7.31 (2H, dd, J 4.1 and 1.5, 2 x indolyl-H), 7.19-7.16 (2H, m, indolyl-H and 

pyridoindolyl-H), 7.01 (1H, dd, J 9.7 and 2.6, pyridoindolyl-H), 6.78 (1H, td, J 9.2 

and 2.6, pyridoindolyl-H), 5.94 (1H, t, J 7.1, NCH2CH=), 4.95 (2H, d, J 7.1, 

NCH2CH=), 3.86 (2H, s, =CCH2N), 3.82 (3H, s, purine 7-NCH3), 3.62 (2H, s, 

pyridoindolyl 1-CH2), 3.40 (3H, s, purine 3-NCH3), 2.76 (2H, t, J 5.4, pyridoindolyl-

CH2), 2.61 (2H, brt, J 5.4, pyridoindolyl-CH2); δC (75 MHz, DMSO-d6); 156.5 (J 

229.1), 154.3, 150.8,148.3, 142.8, 139.5, 135.1, 135.0, 132.7, 132.4, 127.4, 125.7 (J 

10.3), 125.6, 125.4, 120.0, 117.7, 111.3 (J 9.7), 110.7, 107.7 (J 4.3), 107.6 (J 25.4), 

106.7, 101.8 (J 23.0), 101.2, 56.1, 49.6, 49.1, 39.3, 33.1, 29.3, 23.6; υmax/cm
-1

 

(solid); 3314, 2919, 1695, 1647, 1544, 1454, 1434, 1410, 1358, 1227; m/z (ESI
+
) 

538.2 (100%, MH
+
); (Found MH

+
, 538.2353. C30H29F1N7O2 requires MH, 

538.2361).  

 

1-[(2Z)-4-[3-(3-Isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]oct-

8-yl]-3-(pyridin-3-yl)but-2-en-1-yl]-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-

dione (202a). 

Prepared by general procedure B from N-allenylpurine 

195 (0.116 g, 0.50 mmol), 3-iodopyridine (0.123 g, 

0.60 mmol), 3-(3-isopropyl-5-methyl-4H-1,2,4-

triazol-4-yl)-8-azabicyclo[3.2.1]octane 188 (0.149 g, 0.60 mmol), Pd2(dba)3 (0.0115 

g, 2.5 mol%), TFP (0.0116 g, 10 mol%) and K2CO3 (0.21 g, 1.50 mmol) in MeCN 

(5 mL) at 80 ºC for 8 h. Flash column chromatography gradient elution with EtOAc 

to 10:5 v/v EtOAc/MeOH gave the product 202a (0.25 g, 92%, Z:E 93:7) as a 

colourless amorphous solid, mp 112-114 °C; δH (300 MHz, CDCl3); 8.71 (1H, d, J 

2.1, pyridinyl-H), 8.47 (1H, dd, J 1.4 and 4.7, pyridinyl-H), 7.80 (1H, dt, J 1.9 and 

7.9, pyridinyl-H), 7.60 (1H, s, purine 8-H), 7.23 (1H, dd, J 4.9 and 7.9, pyridinyl-H), 

5.92 (1H, t, J 6.6, NCH2CH=), 4.90 (2H, d, J 6.6, NCH2CH=), 4.25 (1H, m, 

azabicyclooctyl-H), 4.01 (3H, s, purine 7-NCH3), 3.70 (2H, s, =CCH2N), 3.59 (3H, 

s, purine 3-NCH3), 3.42 (2H, brs, 2 × azabicyclooctyl-H), 2.91 (1H, m, triazolyl 3-

CH(CH3)2), 2.34 (3H, s, triazolyl 5-CH3), 2.27-2.24 (2H, brdd, J 4.6 and 6.1, 2 × 

azabicyclooctyl-H), 2.06-1.97 (2H, brdt, J 2.3 and 12.0, 2 x azabicyclooctyl-H), 

1.74-1.63 (4H, brm, 4 × azabicyclooctyl-H), 1.33 (6H, d, J 6.9, triazolyl 3-

CH(CH3)2); δC (75 MHz, CDCl3); 159.1, 154.9, 151.4, 150.7, 148.9, 148.3, 148.0, 
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141.9, 138.1, 137.2, 134.4, 127.7, 122.6, 107.6, 58.8, 50.9, 47.2, 39.3, 37.6, 33.7, 

29.8, 26.6, 25.7, 21.6, 12.7; υmax/cm
-1

 (film); 3109, 2962, 2868, 1704, 1660, 1602, 

1550, 1455, 1357, 1287, 1235; m/z (ESI
+
) 544.3 (100%, MH

+
); (Found MH

+
, 

544.3162. C29H38N9O2 requires MH, 544.3143).  

 

1-[(2E)-4-[3-(3-Isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]oct-

8-yl]-3-(2-thienyl)but-2-en-1-yl]-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione 

(202b). 

Prepared by general procedure B from N-allenylpurine 

195 (0.116 g, 0.50 mmol), 2-iodothiophene (0.066 

mL, 0.60 mmol), 3-(3-isopropyl-5-methyl-4H-1,2,4-

triazol-4-yl)-8-azabicyclo[3.2.1]octane 188 (0.149 g, 0.60 mmol), Pd2(dba)3 (0.0115 

g, 2.5 mol%), TFP (0.0116 g, 10 mol%) and K2CO3 (0.21 g, 1.50 mmol) in MeCN 

(5 mL) at 80 ºC for 10 h. Flash column chromatography gradient elution with EtOAc 

to 5:1 v/v EtOAc/MeOH gave the product 202b (0.24 g, 88%, Z:E 90:10) as a 

colourless amorphous solid, mp 118-120 °C; δH (300 MHz, CDCl3); 7.53 (1H, s, 

purine 8-H), 7.20 (1H, d, J 3.4, thienyl-H), 7.18 (1H, d, J 5.1, thienyl-H), 6.94 (1H, t, 

J 4.7, thienyl-H), 6.06 (1H, t, J 6.8, NCH2CH=), 4.88 (2H, d, J 6.8, NCH2CH=), 

4.31 (1H, m, azabicyclooctyl-H), 4.00 (3H, s, purine 7-NCH3), 3.59 (5H, s, purine 3-

NCH3 and =CCH2N), 3.53 (2H, brs, 2 × azabicyclooctyl-H), 3.07 (1H, m, triazolyl 

3-CH(CH3)2), 2.53 (3H, s, triazolyl 5-CH3), 2.34-2.28 (4H, brm, 4 × azabicyclooctyl-

H), 1.74-1.71 (4H, brm, 4 × azabicyclooctyl-H), 1.38 (6H, d, J 6.8, triazolyl 3-

CH(CH3)2); δC (75 MHz, CDCl3); 159.2, 155.0, 151.4, 150.8, 148.9, 144.9, 141.7, 

134.3, 126.6, 125.1, 124.5, 123.9, 107.7, 59.0, 51.9, 47.5, 39.4, 37.4, 33.7, 29.8, 

26.7, 25.8, 21.7, 13.0; υmax/cm
-1

 (film); 3051, 2963, 2873, 1704, 1652, 1603, 1549, 

1455, 1361, 1312, 1286, 1234; m/z (ESI
+
) 549.3 (100%, MH

+
); (Found MH

+
, 

549.2756. C28H37N8O2
32

S requires MH, 549.2755).  

 

1-{(2Z)-3-[3,5-Bis(trifluoromethyl)phenyl]-4-[3-(3-isopropyl-5-methyl-4H-1,2,4-

triazol-4-yl)-8-azabicyclo[3.2.1]oct-8-yl]but-2-en-1-yl}-3,7-dimethyl-3,7-

dihydro-1H-purine-2,6-dione (202c). 

Prepared by general procedure B from N-allenylpurine 195 (0.116 g, 0.50 mmol), 1-

iodo-bis(3,5-trifluoromethyl)benzene (0.11 mL, 0.60 mmol), 3-(3-isopropyl-5-

methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octane 188 (0.149 g, 0.60 mmol), 
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Pd2(dba)3 (0.0115 g, 2.5 mol%), TFP (0.0116 g, 10 

mol%) and K2CO3 (0.21 g, 1.50 mmol) in MeCN (5 

mL) at 80 ºC for 11 h. Flash column chromatography 

eluting with 10:1 v/v EtOAc/MeOH gave the product 

202c (0.29 g, 86%, Z:E 90:10) as a colourless 

amorphous solid, mp 118-120 °C; δH (300 MHz, CDCl3); 8.04 (2H, s, phenyl 2-H 

and 6-H), 7.76 (1H, s, phenyl 4-H),  7.58 (1H, s, purine 8-H), 6.00 (1H, t, J 6.7, 

NCH2CH=), 4.89 (2H, d, J 6.7, NCH2CH=), 4.26 (1H, m, azabicyclooctyl-H), 4.01 

(3H, s, purine 7-NCH3), 3.69 (1H, s, =CCH2NH), 3.61 (3H, s, purine 3-NCH3), 3.46 

(2H, brs, 2 × azabicyclooctyl-H), 2.89 (1H, m, triazolyl 3-CH(CH3)2), 2.41-2.28 (2H, 

brm, 2 × azabicyclooctyl-H), 2.34 (3H, s, triazolyl 5-CH3), 2.04 (2H, brdt, J 2.1 and 

12.3, 2 × azabicyclooctyl-H), 1.75-1.66 (4H, brm, 4 × azabicyclooctyl-H), 1.33 (6H, 

d, J 7.2, triazolyl 3-CH(CH3)2; δC (75 MHz, CDCl3); 159.5, 155.4, 151.8, 151.1, 

149.5, 144.1, 142.3, 138.5, 131.5 (J 33.0), 129.5, 127.5 (J 4.6), 123.8 (J 271.0), 

121.0 (J 4.6), 108.0, 59.4, 51.6, 47.6, 39.6, 38.1, 34.1, 30.3, 27.0, 26.2, 22.0, 13.0; 

υmax/cm
-1

 (film); 3055, 2969, 2882, 1708, 1661, 1604, 1550, 1515, 1455, 1416, 

1381, 1279, 1234; m/z (ESI
+
) 679.2 (100%, MH

+
); (Found MH

+
, 679.2950. 

C32H37F6N8O2 requires MH, 679.2938).  

NOE data for 202c: 

 % Enhancement 

Irradiated proton 1-H 2-H 4-H Ph Azabicyclooctyl-H 

1-H  5.92 - - - 

2-H 3.26  - 1.95 - 

4-H 4.35 -  7.13 
5.66 (δ 3.46) and 

3.97(δ 2.30) 

 

1-{(2Z)-3-(1H-Indol-5-yl)-4-[3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-

azabicyclo[3.2.1]oct-8-yl]but-2-en-1-yl}-3,7-dimethyl-3,7-dihydro-1H-purine-

2,6-dione (202d). 

Prepared by general procedure B from N-allenylpurine 

195 (0.116 g, 0.50 mmol), 5-iodoindole (0.145 g, 0.60 

mmol), 3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-

yl)-8-azabicyclo[3.2.1]octane 188 (0.149 g, 0.60 

mmol), Pd2(dba)3 (0.0115 g, 2.5 mol%), TFP (0.0116 g, 10 mol%) and K2CO3 (0.21 
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g, 1.50 mmol) in MeCN (5 mL) at 80 ºC for 11 h. Flash column chromatography 

gradient elution with EtOAc to 5:1 v/v EtOAc/MeOH gave the product 202d (0.24 

g, 72%, Z:E 88:12) as a colourless amorphous solid, mp 148-150 °C; δH (300 MHz, 

CDCl3); 9.81 (1H, brs, indolyl-NH), 7.72 (1H, s, indolyl-H), 7.53 (1H, s, purine 8-

H), 7.25 (2H, d, J 3.8, 2 x indolyl-H), 7.16 (1H, brt, J 2.7, indolyl-H),  6.42 (1H, brs, 

indolyl-H), 5.88 (1H, t, J 6.6, NCH2CH=), 4.96 (2H, d, J 6.6, NCH2CH=), 4.23 (1H, 

m, azabicyclooctyl-H), 3.96 (3H, s, purine 7-NCH3), 3.75 (1H, s, =CCH2NH), 3.58 

(3H, s, purine 3-NCH3), 3.48 (2H, brs, 2 × azabicyclooctyl-H), 2.90 (1H, m, triazolyl 

3-CH(CH3)2), 2.29 (3H, s, triazolyl 5-CH3), 2.21 (2H, brdd, J 3.1and 7.7, 2 × 

azabicyclooctyl-H), 2.07 (2H, brdt, J 2.8 and 12.0, 2 × azabicyclooctyl-H), 1.72-1.58 

(4H, brm, 4 × azabicyclooctyl-H), 1.27 (6H, d, J 7.2, triazolyl 3-CH(CH3)2; δC (75 

MHz, CDCl3); 159.7, 155.5, 151.9, 151.2, 149.2, 142.4, 142.2, 135.8, 134.1, 128.1, 

125.4, 125.1, 121.5, 119.1, 111.0, 108.1, 102.4, 59.0, 52.1, 47.9, 40.3, 37.8, 34.0, 

30.2, 27.1, 26.1, 22.1, 13.0;  υmax/cm
-1

 (film); 3333, 3038, 2969, 2873, 1704, 1660, 

1602, 1549, 1455, 1415, 1357, 1233; m/z (ESI
+
) 582.3 (100%, MH

+
); (Found MH

+
, 

582.3314. C32H40N9O2 requires MH, 582.3299).  

 

4-({[(2Z)-4-(3,7-Dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)-2-

(pyridin-3-yl)but-2-en-1-yl]amino}methyl)benzenesulfonamide (203a). 

Prepared by general procedure B from N-allenylpurine 

195 (0.116 g, 0.50 mmol), 3-iodopyridine (0.123 g, 

0.60 mmol), mafenide hydrochloride 174 (0.133 g, 0.60 

mmol), Pd2(dba)3 (0.0115 g, 2.5 mol%), TFP (0.0116 

g, 10 mol%) and K2CO3 (0.21 g, 1.5 mmol) in DMF (2 

mL) at 80 ºC for 2 h. Flash column chromatography eluting with 10:2 v/v 

EtOAC/MeOH gave the product 203a (0.11 g, 44%) as a colourless amorphous 

solid, mp 96-98 °C; δH (300 MHz, CDCl3); 8.56 (1H, brs, pyridinyl-H), 8.45 (1H, d, 

J 3.6, pyridinyl-H), 7.83 (2H, d, J 8.2, 2 x phenyl-H), 7.75 (1H, dt, J 8.0 and 1.8, 

pyridinyl-H), 7.53 (1H, s, purine 8-H), 7.48 (2H, d, J 8.2, 2 x phenyl-H), 7.21 (1H, 

dd, J 7.9 and 4.9, pyridinyl-H), 5.87 (1H, t, J 7.1, NCH2CH=), 5.27 (1H, s, NH), 

4.83 (2H, d, J 7.1, NCH2CH=), 3.97 (3H, s, purine 7-NCH3), 3.93 (2H, s, NHCH2), 

3.80 (2H, s, =CCH2NH), 3.57 (3H, s, purine 3-NCH3), 2.04 (1H, brs, NH); δC (75 

MHz, CDCl3); 155.0, 151.4, 149.0, 148.3, 147.5, 145.6, 141.8, 140.7, 138.5, 136.8, 
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133.9, 128.9, 126.8, 126.4, 123.2, 107.6, 53.2, 47.2, 39.4, 33.7, 28.9; υmax/cm
-1

 

(film); 3303, 2927, 2252, 1703, 1658, 1603, 1550, 1455, 1414, 1332, 1234; m/z 

(ESI
+
) 496.2 (100%, M

+
); (Found M

+
, 496.1707. C23H25N7O4

32
S requires M, 

495.1683).  

 

4-({[(2E)-4-(3,7-Dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)-2-(2-

thienyl)but-2-en-1-yl]amino}methyl)benzenesulfonamide (203b). 

Prepared by general procedure B from N-allenylpurine 

195 (0.116 g, 0.50 mmol), 2-iodothiophene (0.066 mL, 

0.60 mmol), mafenide hydrochloride 174 (0.133 g, 0.60 

mmol), Pd2(dba)3 (0.0115 g, 2.5 mol%), TFP (0.0116 

g, 10 mol%) and K2CO3 (0.21 g, 1.5 mmol) in DMF (2 

mL) at 80 ºC for 3 h. Flash column chromatography gradient eluting with EtOAc and 

then 50:1 v/v EtOAc/MeOH gave the product 203b (0.13 g, 52%) as a colourless 

amorphous solid, mp 103-105 °C; δH (300 MHz, CDCl3/MeOH-d4); 7.87 (2H, d, J 

8.2, 2 x phenyl-H), 7.64 (1H, s, purine 8-H), 7.53 (2H, d, J 8.4, 2 x phenyl-H), 7.18 

(1H, dd, J 5.1 and 1.0, thienyl-H), 7.07 (1H, dd, J 3.6 and 1.0, thienyl-H), 6.97 (1H, 

dd, J 5.1 and 3.6, thienyl-H), 6.02 (1H, t, J 7.3, NCH2CH=), 4.78 (2H, d, J 7.3, 

NCH2CH=), 4.01 (2H, brs, NH), 3.98 (3H, s, purine 7-NCH3), 3.94 (2H, s, NHCH2), 

3.82 (2H, s, =CCH2NH), 3.57 (3H, s, purine 3-NCH3); δC (75 MHz, CDCl3/MeOH-

d4); 159.3, 155.8, 153.1, 148.9, 148.8, 146.4, 145.7, 139.4, 133.1, 131.7, 130.5, 

129.0, 128.2, 127.6, 112.0, 57.1, 51.7, 43.7, 37.9, 34.0; υmax/cm
-1

 (film); 3300, 2924, 

1702, 1655, 1549, 1451, 1330, 1231; m/z (ESI
+
) 501.1 (100%, MH

+
); (Found MH

+
, 

501.1375. C22H25N6O4
32

S2 requires MH, 501.1373).  

 

4-({[(2Z)-2-[3,5-Bis(trifluoromethyl)phenyl]-4-(3,7-dimethyl-2,6-dioxo-2,3,6,7-

tetrahydro-1H-purin-1-yl)but-2-en-1-yl]amino}methyl)benzenesulfonamide 

(203c). 

Prepared by general procedure B from N-allenylpurine 

195 (0.116 g, 0.50 mmol), 1-iodo-bis(3,5-

trifluoromethyl)benzene (0.10 mL, 0.60 mmol), 

mafenide hydrochloride 174 (0.133 g, 0.60 mmol), 

Pd2(dba)3 (0.0115 g, 2.5 mol%), TFP (0.0116 g, 10 mol%) and K2CO3 (0.21 g, 1.5 
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mmol) in DMF (2 mL) at 80 ºC for 3 h. Flash column chromatography gradient 

eluting with EtOAc to 10:1 v/v EtOAc/MeOH gave the product 203c (0.17 g, 54%) 

as a colourless amorphous solid, mp 139-141 °C; δH (300 MHz, CDCl3); 7.96 (2H, s, 

2 x bis-3,5-trifluoromethylphenyl-H), 7.88 (2H, d, J 8.4, 2 x phenyl-H), 7.73(1H, s, 

bis-3,5-trifluoromethylphenyl-H), 7.56 (2H, d, J 8.4, 2 x phenyl-H), 7.53 (1H, s, 

purine 8-H), 5.94 (1H, t, J 7.1, NCH2CH=), 4.86 (2H, d, J 7.1, NCH2CH=), 4.82 

(1H, brs, NH), 4.00 (2H, s, NCH2), 3.98 (3H, s, purine NCH3), 3.74 (2H, s, NCH2), 

3.58 (3H, s, purine NCH3); δC (75 MHz, DMSO-d6); 154.7, 151.2, 148.7, 145.3, 

144.2, 143.3, 142.9, 137.4, 130.4 (J 32.2), 130.3, 126.5, 127.2 (brs), 123.8 (J 273.6), 

120.7 (J 4.6), 107.2, 52.5, 47.0, 39.5, 33.5, 29.8; υmax/cm
-1

 (solid); 3320, 1703, 1668, 

1551, 1458, 1384, 1331, 1282, 1237; m/z (ESI
+
) 631.2 (100%, MH

+
); (Found MH

+
, 

631.1559. C26H25F6N6O4
32

S requires MH, 631.1557).  

 

1-[(2Z)-4-(Adamantan-1-ylamino)-3-(pyridin-3-yl)but-2-en-1-yl]-3,7-dimethyl-

3,7-dihydro-1H-purine-2,6-dione (204a). 

Prepared by general procedure B from N-allenylpurine 195 

(0.116 g, 0.50 mmol), 3-iodopyridine (0.123 g, 0.60 mmol), 

1-aminoadamantane 180 (0.091 g, 0.60 mmol), Pd2(dba)3 

(0.0115 g, 2.5 mol%), TFP (0.0116 g, 10 mol%) and K2CO3 

(0.21 g, 1.50 mmol) in MeCN (5 mL) at 80 ºC for 5 h. Flash column 

chromatography gradient eluting with EtOAc and then 10:1 v/v EtOAc/MeOH gave 

the product 204a (0.18 g, 78%) as a colourless froth, mp 91-93 °C; δH (300 MHz, 

CDCl3); 8.77 (1H, d, J 1.5, pyridyl-H), 8.45 (1H, dd, J 1.5 and 4.9, pyridyl-H), 7. 87 

(1H, td, J 2.1 and 8.0, pyridyl-H), 7.55 (1H, s, purine-H), 7.21 (1H, ddd, J 0.5, 4.9 

and 8.0, pyridinyl-H), 5.90 (1H, t, J 7.1, NCH2CH=), 4.90 (2H, d, J 7.1, NCH2CH=), 

4.00 (3H, s, NMe), 3.82 (2H, s, =CCH2N), 3.59 (3H, s, NMe), 2.10 (3H, br s, 

adamantyl-H), 1.78 (6H, d, J 2.3, adamantyl-H), 1.67 (6H, br s, adamantyl-H); δC (75 

MHz, CDCl3); 155.4, 151.7, 149.3, 148.7, 148.1, 142.0, 139.6, 137.5, 134.1, 126.1, 

123.4, 108.0, 51.4, 42.9 (3 x C), 39.9, 39.6, 37.2 (3 x C), 34.0, 30.2, 30.0 (3 x C); 

υmax/cm
-1

 (film); 2906, 2848, 1704, 1661, 1550, 1455, 1358, 1310, 1234; m/z (ESI
+
) 

461.3 (100%, MH
+
); (Found MH

+
, 461.2675. C26H33N6O2 requires MH, 461.2660). 
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NOE data for 204a: 

 % Enhancement 

Irradiated proton 1-H 2-H 4-H Pyridyl 2-H  Pyridyl 4-H 

1-H  6.8 3.6 - - 

2-H 3.2  - 8.4 (δ 8.77) 6.1 (δ 7.87) 

4-H 4.3 -  4.4 (δ 8.77) 3.6 (δ 7.87) 

 

1-[(2E)-4-(Adamantan-1-ylamino)-3-(2-thienyl)but-2-en-1-yl]-3,7-dimethyl-3,7-

dihydro-1H-purine-2,6-dione (204b). 

Prepared by general procedure B from N-allenylpurine 195 

(0.116 g, 0.50 mmol), 2-iodothiophene (0.066 mL, 0.60 

mmol), 1-aminoadamantane 180 (0.091 g, 0.60 mmol), 

Pd2(dba)3 (0.0115 g, 2.5 mol%), TFP (0.0116 g, 10 mol%) and 

K2CO3 (0.21 g, 1.50 mmol) in MeCN (5 mL) at 80 ºC for 2 h. Flash column 

chromatography eluting with EtOAc gave the product 204b (0.16 g, 69%) as a 

colourless froth, mp 155-157 °C; δH (300 MHz, CDCl3); 7.50 (1H, s, purine-H), 7.17 

(1H, dd, J 1.0 and 3.6, thienyl-H), 7.11 (1H, dd, J 1.0 and 5.1, thienyl-H), 6.93 (1H, 

dd, J 3.6 and 5.1, thienyl-H), 5.97 (1H, t, J 7.2, NCH2CH=), 4.85 (2H, d, J 7.2, 

NCH2CH=), 3.98 (3H, s, NMe), 3.81 (2H, s, =CCH2N), 3.57 (3H, s, NMe), 2.11 

(3H, br s, adamantyl-H), 1.80 (6H, d, J 2.6, adamantyl-H), 1.68 (6H, d, J 2.1, 

adamantyl-H); δC (75 MHz, CDCl3); 154.9, 151.2, 148.7, 145.3, 141.5, 136.4, 127.2, 

124.1, 123.8, 122.1, 107.5, 50.9, 42.5 (3 x C), 39.7, 39.2, 36.8 (3 x C), 33.5, 29.7, 

29.4 (3 x C); υmax/cm
-1

 (film); 2903, 2846, 1702, 1660. 1549, 1454, 1361, 1310, 

1233; m/z (ESI
+
) 466.2 (100%, MH

+
); (Found MH

+
, 466.2289. C25H32N5O2

32
S 

requires MH, 466.2271). 

 

1-{(2Z)-4-(Adamantan-1-ylamino)-3-[3-(trifluoromethyl)phenyl]but-2-en-1-yl}-

3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione (204c). 

Prepared by general procedure B from N-allenylpurine 195 

(0.116 g, 0.50 mmol), 3-iodobenzotrifluoride (0.09 mL, 

0.60 mmol), 1-aminoadamantane 180 (0.09 g, 0.60 mmol), 

Pd2(dba)3 (0.0114 g, 2.5 mol%), TFP (0.0116 g, 10 mol%) 

and K2CO3 (0.21 g, 1.50 mmol) in MeCN (5 mL) at 80 ºC for 2 h. Work up by flash 

column chromatography eluting with 30:1 v/v CHCl3/MeOH gave the product 204c 
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(0.24 g, 91%) as a colourless froth, mp 68-70 °C; δH (300 MHz, CDCl3); 7.86 (1H, 

s, phenyl-H), 7.75 (1H, d, J 7.7, phenyl-H), 7.52 (1H, s, purine-H), 7.47 (1H, d, J 

7.7, phenyl-H), 7.39 (1H, t, J 7.7, phenyl-H), 5.90 (1H, t, J 7.1, NCH2CH=), 4.90 

(2H, d, J 7.1, NCH2CH=), 3.99 (3H, s, NMe), 3.82 (2H, s, =CCH2N), 3.59 (3H, s, 

NMe), 2.11 (3H, br s, 3 × adamantyl-CH), 1.79 (6H, br d, J 2.2, 3 × adamantyl-

CH2), 1.68 (6H, br d, J 1.6, 3 × adamantyl-CH2); δC (75 MHz, CDCl3); 155.0, 151.4, 

148.9, 142.5, 141.6, 140.9, 130.4 (J 32.1), 129.6, 128.6, 125.5, 124.2 (J 272.0), 

123.8 (J 4.4), 123.2 (J 4.4), 107.6, 50.9, 42.5, 39.6, 39.4, 36.8, 33.6, 29.8, 29.7; 

υmax/cm
-1

 (film); 3310, 2907, 2849, 1702, 1661, 1604, 1550, 1487, 1455, 1415, 

1334, 1258, 1234; m/z (ESI
+
) 528.3 (100%, MH

+
); (Found MH

+
, 528.2575. 

C28H33F3N5O2 requires MH, 528.2581). 

 

2',3',5'-Tri-O-acetyl-3-buta-2,3-dien-1-yluridine (207a). 

Prepared by general procedure A from 2',3',5'-tri-O-acetyl-3-prop-2-

yn-1-yluridine 206a
117

 (1.50 g, 3.67 mmol), dicyclohexylamine (1.32 

mL, 6.61 mmol), paraformaldehyde (0.28 g, 9.18 mmol) and CuI 

(0.35 g, 1.86 mmol) in dioxane (15 mL). Flash column chromatography eluting with 

2:1 v/v EtOAc/n-hexane gave 207a as a colourless gum (1.24 g, 80%), [α]D
20

 + 30.6 

(c, 4.2 mg/1 mL CH2Cl2); (Found: C, 53.85; H, 5.00; N, 6.45; C19H22N2O9 requires 

C, 54.03; H, 5.25; N, 6.63%); δH (500 MHz, CDCl3); 7.37 (1H, d, J 8.1, pyrimidinyl 

6-H), 6.01 (1H, d, J 4.3, ribosyl 1-H), 5.82 (1H, d, J 8.1, pyrimidinyl 5-H), 5.38 (1H, 

dd, J 5.9 and 4.3, ribosyl 2-H), 5.35-5.31 (1H, m, ribosyl 3-H), 5.29-5.23 (1H, m, 

CH2CH=), 4.83-4.80 (2H, m, NCH2CH=), 4.55-4.51 (2H, m, =CH2), 4.36 (3H, br s, 

ribosyl 4-H and 5-CH2), 2.15 (3H, s, OCOMe), 2.12 (3H, s, OCOMe), 2.11 (3H, s, 

OCOMe); δc (75 MHz, CDCl3); 209.2, 170.6, 170.5, 169.9, 162.1, 150.8, 137.8, 

103.1, 89.2, 86.0, 80.0, 77.6, 73.3, 71.3, 63.3, 39.6, 21.4, 21.1, 20.8 ; υmax/cm
-1

 

(film); 2107, 1960, 1746, 1666, 1457, 1423, 1388, 1229; m/z (ESI
+
) 445.1 (100%, 

MNa
+
); (Found MNa

+
, 445.1220. C19H22NaN2O9 requires MNa, 445.1218). 

 

3',5'-Di-O-acetyl-3-buta-2,3-dien-1-ylthymidine (207b). 

Prepared by general procedure A from 3',5'-di-O-acetyl-3-prop-2-

yn-1-ylthymidine 206b
117

 (1.82 g, 5.0 mmol), dicyclohexylamine 

(1.80 mL, 9.0 mmol), paraformaldehyde (0.38 g, 12.5 mmol) and 

CuI (0.48 g, 2.5 mmol) in dioxane (20 mL). Flash column chromatography eluting 



- 131 - 

with 1:1 v/v EtOAc/n-hexane gave 207b as a colourless gum (1.51 g, 75%), [α]D
20

 + 

17.0 (c, 10 mg/1 mL CH2Cl2); (Found: C, 57.05; H, 5.85; N, 7.40; C18H22N2O7 

requires C, 57.14; H, 5.86; N, 7.40%); δH (500 MHz, CDCl3); 7.27 (1H, br s, 

pyrimidinyl 6-H), 6.35 (1H, dd, J 8.6 and 5.6, deoxyribosyl 1-H), 5.27 (1H, tt, J 12.8 

1nd 6.4, CH2CH=), 5.23-5.21 (1H, m, deoxyribosyl 3-H), 4.80 (2H, dt, J 6.4 and 3.0, 

NCH2CH=), 4.56 (2H, dt, J 6.4 and 3.0, =CH2), 4.36 (2H, d, J 3.9, deoxyribosyl 5-

CH2), 4.25 (1H, dt, J 5.9 and 3.9, deoxyribosyl 4-H), 2.49 (1H, ddd, J 14.1, 5.6 and 

2.0, deoxyribosyl 2-HA), 2.18-2.15 (1H, m, deoxyribosyl 2-HB), 2.13 (3H, s, 

OCOMe), 2.11 (3H, s, OCOMe), 1.96 (3H, s, pyrimidinyl 5-Me); δc (75 MHz, 

CDCl3); 209.5, 170.8, 170.5, 163.1, 150.9, 132.9, 111.0, 86.1, 85.8, 82.4, 77.3, 74.5, 

64.2, 39.9, 38.0, 21.4, 21.2, 13.8; υmax/cm
-1

 (film); 2954, 1957, 1744, 1703, 1671, 

1647, 1466, 1367, 1232; m/z (ESI
+
) 401.1 (100%, MNa

+
); (Found MNa

+
, 401.1334. 

C18H22NaN2O7 requires MNa, 401.1319). 

 

2',3',5'-Tri-O-acetyl-3-{(2Z)-4-(adamantan-1-ylamino)-3-[3,5-

bis(trifluoromethyl)phenyl]but-2-en-1-yl}uridine (208a). 

Prepared by general procedure B from 2',3',5'-tri-O-

acetyl-3-buta-2,3-dien-1-yluridine 207a (0.33 g, 0.78 

mmol), 1-iodo-3,5-bis(trifluoromethyl)benzene 

(0.152 mL, 0.86 mmol), 1-aminoadamantane 180 

(0.13 g, 0.86 mmol), Pd2(dba)3 (0.0179 g, 2.5 mol%), 

TFP (0.0181 g, 10 mol%) and K2CO3 (0.324 g, 2.34 mmol) in MeCN (5 mL) at 80 

ºC for 5 h. Flash column chromatography eluting with 1:1 v/v EtOAc/n-hexane gave 

the product 208a (0.47 g, 77%) as a pale yellow gum; [α]D
20

 + 19.5 (c, 16 mg/1 mL 

CHCl3); δH (300 MHz, CDCl3); 8.00 (2H, s, 2 × phenyl-H), 7.61 (1H, s, phenyl-H),  

7.33 (1H, d, J 8.2, pyrimidinyl 6-H), 5.91 (1H, d, J 4.9, ribosyl 1-H), 5.78 (1H, t, J 

7.1, NCH2CH=), 5.74 (1H, d, J 8.2, pyrimidinyl 5-H), 5.28 (1H, dd, J 6.0 and 4.9, 

ribosyl 2-H), 5.23-5.19 (1H, m, ribosyl 3-H), 4.69 (2H, d, J 7.1, NCH2CH=), 4.24 

(3H, s, ribosyl 4-H and 5-CH2), 3.62 (2H, s, =CCH2N), 2.00 (9H, s,  2 × OCOMe 

and 3 × adamantyl-CH), 1.96 (3H, s, OCOMe), 1.64 (6H, br d, J 2.2, 3 × adamantyl-

CH2), 1.56 (6H, br s, 3 × adamantyl-CH2); δC (75 MHz, CDCl3); 170.1 (CO), 169.5 

(2 × CO), 161.9, 150.7, 144.0, 140.3, 137.5, 131.2 (q, J 33.2), 126.6 (brd, J 3.3), 

125.9, 123.5 (q, J 237.1), 120.7 (q, J 3.9), 102.7, 88.7, 79.7, 73.0, 69.9, 62.8, 50.8, 
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42.5, 39.5, 39.4, 36.7, 29.6, 20.7, 20.4, 20.3; υmax/cm
-1

 (film); 3313, 3023, 2908, 

2850, 1755, 1713, 1668, 1455, 1383, 1310, 1280, 1227; m/z (ESI
+
) 786.3 (100%, 

MH
+
); (Found MH

+
, 786.2941. C37H41F6N3O9 requires MH, 786.2820). 

 

2',3',5'-Tri-O-acetyl-3-[(2Z)-4-(adamantan-1-ylamino)-3-(3-chloro-4-

fluorophenyl)but-2-en-1-yl]uridine (208b). 

Prepared by general procedure B from 2',3',5'-tri-O-

acetyl-3-buta-2,3-dien-1-yluridine 207a (0.16 g, 0.38 

mmol), 3-chloro-4-fluoroiodobenzene (0.054 mL, 

0.42 mmol), 1-aminoadamantane 180 (0.063 g, 0.42 

mmol), Pd2(dba)3 (0.0087 g, 2.5 mol%), TFP (0.0088 g, 10 mol%) and K2CO3 

(0.157 g, 1.14 mmol) in MeCN (3 mL) at 80 ºC for 4 h. Flash column 

chromatography eluting with 1:1 v/v EtOAc/n-hexane gave the product 208b (0.23 

g, 86%) as a pale yellow gum; [α]D
20

 + 19.7 (c, 14 mg/1 mL CHCl3); δH (300 MHz, 

CDCl3); 7.62 (1H, dd, J 7.1 and 2.2, phenyl-H), 7.44-7.39 (1H, m, phenyl-H),  7.40 

(1H, d, J 8.2, pyrimidinyl 6-H), 7.05 (1H, t, J 8.5, phenyl-H), 6.00 (1H, d, J 4.4, 

ribosyl 1-H), 5.84 (1H, d, J 8.2, pyrimidinyl 5-H), 5.74 (1H, t, J 7.1, NCH2CH=), 

5.39 (1H, dd, J 5.5 and 4.4, ribosyl 2-H), 5.34-5.33 (1H, m, ribosyl 3-H), 4.75 (2H, 

d, J 7.1, NCH2CH=), 4.35 (3H, s, ribosyl 4-H and 5-CH2), 3.70 (2H, s, =CCH2N), 

2.13 (3H, s, OCOMe), 2.12 (3H, s, OCOMe), 2.10 (6H, s, OCOMe and 3 × 

adamantyl-CH), 1.74 (6H, br d, J 2.2, 3 × adamantyl-CH2), 1.67 (6H, br s, 3 × 

adamantyl-CH2); δC (75 MHz, CDCl3); 170.1 (CO), 169.6 (2 × CO), 162.0, 157.5 (J 

248.8), 150.7, 140.8, 139 (J 4.4), 137.4, 128.6, 126.1 (J 6.6), 123.9, 120.5 (J 17.7), 

116.1 (J 21.0), 102.8, 88.8, 79.7, 73.0, 69.9, 62.8, 50.8, 42.5, 39.54, 39.51, 36.8, 

29.6, 20.8, 20.5, 20.4; υmax/cm
-1

 (film); 3312, 2906, 2849, 1751, 1711, 1668, 1497, 

1455, 1386, 1310, 1228; m/z (ESI
+
) 702.3 (100%, MH

+
); (Found MH

+
, 702.2606. 

C35H42
35

ClFN3O9 requires MH, 702.2588).  

NOE data (CDCl3) for 208b: 

 % Enhancement 

Irradiated proton 1-H 2-H 4-H phenyl-H adamantyl-CH2  

1-H  6.8 4.0 - - 

2-H 3.7  - 
8.3 (δ 7.62)   

6.6 (δ 7.41) 
- 

4-H 4.1 -  
4.3 (δ 7.62)   

3.3 (δ 7.41) 
5.8 (δ 1.74) 
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2',3',5'-Tri-O-acetyl-3-[(2Z)-4-(adamantan-1-ylamino)-3-(4-methylphenyl)but-

2-en-1-yl]uridine (208c). 

Prepared by general procedure B from 2',3',5'-tri-O-

acetyl-3-buta-2,3-dien-1-yluridine 207a (0.213 g, 0.50 

mmol), 4-iodotoluene (0.132 g, 0.60 mmol), 1-

aminoadamantane 180 (0.092 g, 0.60 mmol), Pd2(dba)3 (0.0114 g, 2.5 mol%), TFP 

(0.0116 g, 10 mol%) and K2CO3 (0.207 g, 1.50 mmol) in MeCN (5 mL) at 80 ºC for 

3 h. Flash column chromatography eluting with 1:1 v/v EtOAc/n-hexane gave the 

product 208c (0.29 g, 87%) as a pale yellow gum; [α]D
20

 + 19.0 (c, 11 mg/1 mL 

CHCl3); δH (300 MHz, CDCl3); 7.38 (2H, d, J 8.2, 2 × phenyl-H), 7.37 (1H, d, J 8.2, 

pyrimidinyl 6-H), 7.10 (2H, d, J 7.7, 2 × phenyl-H),  6.02 (1H, d, J 4.9, ribosyl 1-H), 

5.82 (1H, d, J 8.2, pyrimidinyl 5-H), 5.76 (1H, t, J 7.1, NCH2CH=), 5.37 (1H, dd, J 

6.0 and 4.9, ribosyl 2-H), 5.35-5.31 (1H, m, ribosyl 3-H), 4.77 (2H, d, J 7.1, 

NCH2CH=), 4.34 (3H, s, ribosyl 4-H and 5-CH2), 3.79 (2H, s, =CCH2N), 2.32 (3H, 

s, phenyl-Me), 2.13 (3H, s, OCOMe), 2.11 (3H, s, OCOMe), 2.08 (6H, s, OCOMe 

and 3 × adamantyl-CH), 1.73 (6H, br d, J 2.2, 3 × adamantyl-CH2), 1.66 (6H, br d, J 

2.2, 3 × adamantyl-CH2); δC (75 MHz, CDCl3); 170.1 (CO), 169.6 (2 × CO), 162.0, 

150.7, 142.7, 138.4, 137.3, 137.1, 129.0, 126.2, 122.3, 102.9, 88.5, 79.6, 72.9, 69.9, 

62.9, 50.8, 42.5, 39.8, 39.2, 36.8, 29.7, 21.1, 20.8, 20.5, 20.4; υmax/cm
-1

 (film); 3313, 

3022, 2906, 2849, 1748, 1712, 1668, 1511, 1455, 1371, 1310, 1228; m/z (ESI
+
) 

664.3 (100%, MH
+
); (Found MH

+
, 664.3252. C36H46N3O9 requires MH, 664.3229). 

 

3',5'-Di-O-acetyl-3-[(2Z)-4-(adamantan-1-ylamino)-3-phenylbut-2-en-1-

yl]thymidine (208d).  

Prepared by general procedure B from 3',5'-di-O-acetyl-

3-buta-2,3-dien-1-ylthymidine 207b (0.189 g, 0.50 

mmol), iodobenzene (0.062 mL, 0.60 mmol), 1-

aminoadamantane 180 (0.083 g, 0.55 mmol), Pd2(dba)3 

(0.0114 g, 2.5 mol%), TFP (0.0116 g, 10 mol%) and 

K2CO3 (0.21 g, 1.50 mmol) in MeCN (5 mL) at 80 ºC for 3 h. Flash column 

chromatography eluting with 1:1 v/v EtOAc/n-hexane gave the product 208d (0.30 

g, 99%) as a pale yellow gum; [α]D
20

 + 5.2 (c, 12 mg/1 mL CHCl3); δH (300 MHz, 

CDCl3); 7.50 (2H, dd, J 8.0 and 1.4, 2 × phenyl-H), 7.31-7.22 (3H, m, 3 × phenyl-H 
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and pyrimidinyl 6-H), 6.37 (1H, dd, J 8.5 and 5.8, deoxyribosyl 1-H), 5.82 (1H, t, J 

7.1, NCH2CH=), 5.21 (1H, dt, J 6.6 and 2.2, deoxyribosyl 3-H), 4.82 (2H, d, J 7.1, 

NCH2CH=), 4.38 (1H, dd, J 12.1 and 3.8, deoxyribosyl 5-HA), 4.32 (1H, dd, J 12.1 

and 3.8, deoxyribosyl 5-HB), 4.24 (1H, dt, J 6.6 and 3.8, deoxyribosyl 4-H), 3.83 

(2H, s, =CCH2N), 2.48 (1H, ddd, J 13.7, 5.5 and 1.6, deoxyribosyl 2-HA), 2.20-2.08 

(1H, ddd, J 13.7 ,5.5 and 1.6, deoxyribosyl 5-HB), 2.12 (3H, s, OCOMe), 2.10 (3H, 

s, OCOMe), 2.09 (3H, s, 3 × adamantyl-CH), 1.95 (3H, s, pyrimidinyl 5-Me), 1.74 

(6H, br d, J 2.2, 3 × adamantyl-CH2), 1.66 (6H, br d, J 2.2, 3 × adamantyl-CH2); δC 

(75 MHz, CDCl3); 170.4, 170.2, 162.9, 150.7, 142.6, 141.4, 132.6, 128.3, 127.4, 

126.3, 123.5, 110.8, 85.4, 82.0, 74.1, 63.9, 50.9, 42.6, 39.9, 39.3, 37.6, 36.8, 29.7, 

20.9, 20.8, 13.5; υmax/cm
-1

 (film); 3312, 3020, 2906, 2848, 1747, 1704, 1668, 1644, 

1464, 1367, 1310, 1233; m/z (ESI
+
) 606.3 (100%, MH

+
); (Found MH

+
, 606.3194. 

C34H44N3O7 requires MH, 606.3174). 

NOE data (CDCl3) for 208d: 

 % Enhancement 

Irradiated proton 1-H 2-H 4-H 
phenyl-H  

(δ 7.50) 

adamantyl-CH2  

(δ 1.74) 

1-H  5.8 3.6 - - 

2-H 4.3  - 11.9 - 

4-H 4.3 -  6.8 7.0 

 

3',5'-Di-O-acetyl-3-{(2Z)-4-(adamantan-1-ylamino)-3-[4-

(methoxycarbonyl)phenyl]but-2-en-1-yl}thymidine (208e). 

Prepared by general procedure B from 3',5'-di-O-

acetyl-3-buta-2,3-dien-1-ylthymidine 207b (0.189 

g, 0.50 mmol), methyl 4-iodobenzoate (0.157 mL, 

0.60 mmol), 1-aminoadamantane 180 (0.091 g, 0.60 

mmol), Pd2(dba)3 (0.0114 g, 2.5 mol%), TFP 

(0.0116 g, 10 mol%) and K2CO3 (0.21 g, 1.50 mmol) in MeCN (5 mL) at 80 ºC for 4 

h. Flash column chromatography eluting with 1:1 v/v EtOAc/n-hexane gave the 

product 208e (0.31 g, 93%) as a pale yellow gum; [α]D
20

 + 7.6 (c, 13 mg/1 mL 

CHCl3); δH (300 MHz, CDCl3); 7.96 (2H, d, J 8.5, 2 × phenyl-H), 7.59 (2H, d, J 8.5, 

2 × phenyl-H), 7.29 (1H, s, pyrimidinyl 6-H), 6.38 (1H, dd, J 5.8 and 8.5, 

deoxyribosyl 1-H), 5.90 (1H, t, J 7.1, NCH2CH=), 5.22 (1H, dt, J 6.6 and 2.2, 

deoxyribosyl 3-H), 4.83 (2H, d, J 7.1, NCH2CH=), 4.39 (1H, dd, J 4.4 and 12.1, 
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deoxyribosyl 5-HA), 4.33 (1H, dd, J 3.3 and 12.1, deoxyribosyl 5-HB), 4.25 (1H, dt, J 

3.6 and 6.3, deoxyribosyl 4-H), 3.89 (3H, s, CO2Me), 3.81 (2H, s, =CCH2N), 2.49 

(1H, ddd, J 1.6, 5.5 and 13.7, deoxyribosyl 2-HA), 2.20 (1H, ddd, J 1.6, 6.6 and 13.7, 

deoxyribosyl 2-HB), 2.12 (3H, s, OCOMe), 2.11 (3H, s, OCOMe), 2.10 (3H, s, 3 × 

adamantyl-CH), 1.96 (3H, s, pyrimidinyl 5-Me), 1.75 (6H, br d, J 2.2, 3 × 

adamantyl-CH2), 1.67 (6H, br s, 3 × adamantyl-CH2); δC (75 MHz, CDCl3); 170.3, 

170.1, 166.9, 162.9, 150.6, 146.1, 141.8, 132.8, 129.6, 128.8, 126.3, 125.3, 110.8, 

85.4, 82.0, 74.1, 63.8, 52.0, 50.8, 42.5, 39.8, 39.2, 37.5, 36.8, 29.6, 20.9, 20.8, 13.4; 

υmax/cm
-1

 (film); 3311, 3018, 2906, 2848, 1746, 1704, 1669, 1645, 1606, 1465, 

1366, 1278, 1233; m/z (ESI
+
) 664.3 (100%, MH

+
); (Found MH

+
, 664.3239. 

C36H46N3O9 requires MH, 664.3229). 

 

3',5'-Di-O-acetyl-3-[(2Z)-4-(adamantan-1-ylamino)-3-(3,4-dichlorophenyl)but-2-

en-1-yl]thymidine (208f). 

Prepared by general procedure B from 3',5'-di-O-

acetyl-3-buta-2,3-dien-1-ylthymidine 207b (0.189 g, 

0.50 mmol), 1,2-dichloro-4-iodobenzene (0.164 g, 

0.60 mmol), 1-aminoadamantane 180 (0.091 g, 0.60 

mmol), Pd2(dba)3 (0.0114 g, 2.5 mol%), TFP (0.0116 g, 10 mol%) and K2CO3 (0.21 

g, 1.50 mmol) in MeCN (5 mL) at 80 ºC for 2 h. Flash column chromatography 

eluting with 1:1 v/v EtOAc/n-hexane gave the product 208f (0.29 g, 87%) as a pale 

yellow gum; [α]D
20 

 + 7.7 (c, 11 mg/1 mL CHCl3); δH (300 MHz, CDCl3); 7.56 (1H, 

d, J 1.6, phenyl-H), 7.28 (1H, dd, J 8.2 and 1.6, 2 × phenyl-H),  7.19 (1H, d, J 8.2, 

phenyl-H), 7.18 (1H, s, pyrimidinyl 6-H), 6.27 (1H, dd, J 8.2 and 6.0, deoxyribosyl 

1-H), 5.70 (1H, t, J 7.1, NCH2CH=), 5.12 (1H, dt, J 6.6 and 2.2, deoxyribosyl 3-H), 

4.68 (2H, d, J 7.1, NCH2CH=), 4.28 (1H, dd, J 12.3 and 3.6, deoxyribosyl 5-HA), 

4.23 (1H, dd, J 12.3 and 3.6, deoxyribosyl 5-HB), 4.15 (1H, dt, J 6.6 and 3.6, 

deoxyribosyl 4-H), 3.62 (2H, s, =CCH2N), 2.38 (1H, ddd, J 14.3, 6.6 and 2.2, 

deoxyribosyl 2-HA), 2.09 (1H, ddd, J 14.3, 8.2 and 1.6, deoxyribosyl 2-HB), 2.02 

(3H, s, OCOMe), 2.00 (6H, s, OCOMe and 3 × adamantyl-CH), 1.86 (3H, s, 

pyrimidinyl 5-Me), 1.64 (6H, br d, J 2.2, 3 × adamantyl-CH2), 1.56 (6H, br s, 3 × 

adamantyl-CH2); δC (75 MHz, CDCl3); 170.3, 170.1, 162.9, 150.6, 141.8, 140.5, 

132.8, 132.2, 130.9, 130.0, 128.3, 125,7, 124.8, 110.8, 85.4, 82.0, 74.1, 63.8, 50.9, 

42.5, 39.7, 39.3, 37.5, 36.8, 29.6, 20.9, 20.8, 13.4; υmax/cm
-1

 (film); 3310, 3018, 
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2906, 2848, 1746, 1702, 1670, 1644, 1550, 1466, 1366, 1336, 1310, 1233; m/z 

(ESI
+
) 674.2 (100%, MH

+
); (Found MH

+
, 674.2410. C34H42

35
Cl2N3O7 requires MH, 

674.2394). 

 

Methyl N-[(2Z)-4-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)-2-

(pyridin-3-yl)but-2-en-1-yl]glycyl-L-alaninate (215a). 

Prepared by general procedure B from N-allenylpurine 

195 (0.116 g, 0.50 mmol), 3-iodopyridine (0.123 g, 

0.60 mmol), methyl (2S)-2-

[(aminoacetyl)amino]propanoate hydrochloride 209 

(0.147 g, 0.75 mmol), Pd2(dba)3 (0.0115 g, 2.5 mol%), 

TFP (0.0116 g, 10 mol%) and K2CO3 (0.21 g, 1.50 mmol) in MeCN (5 mL) at 80 ºC 

for 13 h. Flash column chromatography eluting with 5:1 v/v EtOAc/MeOH gave the 

product 215a (0.26 g, 85%) as a pale yellow froth; [α]D
24

 + 6.8 (c, 11 mg/1 mL 

CHCl3); mp 57-59 °C; δH (300 MHz, CDCl3); 8.68 (1H, dd, J 0.8 and 2.3, pyridyl-

H), 8.50 (1H, dd, J 1.5 and 4.8, pyridyl-H), 7.78 (1H, ddd, J 1.7, 2.3 and 7.9, 

pyridyl-H), 7.63 (1H, d, J 7.9, CONH), 7.56 (1H, s, purine-H), 7.25 (1H, ddd, J 0.8, 

4.8 and 7.9, pyridinyl-H), 5.89 (1H, t, J 7.1, NCH2CH=), 4.93 (1H, dd, J 7.1 and 

14.5, HA, NCH2CH=), 4.86 (1H, dd, J 7.1 and 14.5, HB, NCH2CH=), 4.59 (1H, m, 

CHCO2Me), 4.00 (3H, s, NMe), 3.93 (1H, d, J 12.7, HA, =CCH2N), 3.81 (1H, d, J 

12.7, HB, =CCH2N), 3.72 (3H, s, CO2Me), 3.6 (3H, s, NMe), 3.37 (2H, s, 

NHCH2CO), 2.23 (1H, s, NH), 1.34 (3H, d, J 7.4, CHMe); δC (75 MHz, CDCl3); 

173.3, 171.4, 155, 151.4, 149, 148.7, 147.9, 141.8, 138.3, 136.6, 133.9, 127.1, 123.2, 

107.6, 52.3, 52.2, 47.9, 47.4, 39.3, 33.7, 29.8, 18.1; υmax/cm
-1

 (film); 3331, 2951, 

1742, 1703, 1658, 1550, 1455, 1355, 1233; m/z (ESI
+
) 470.2 (100%, MH

+
); (Found 

MH
+
, 470.2134. C22H28N7O5 requires MH, 470.2146). 

 

Methyl (2S)-2-[({[(2E)-4-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-

yl)-2-(2-thienyl)but-2-en-1-yl]amino}acetyl)amino]propanoate (215b). 

Prepared by general procedure B from N-allenylpurine 

195 (0.116 g, 0.50 mmol), 2-iodothiophene (0.066 mL, 

0.60 mmol), methyl (2S)-2-

[(aminoacetyl)amino]propanoate hydrochloride 209 

(0.147 g, 0.75 mmol), Pd2(dba)3 (0.0115 g, 2.5 mol%), 
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TFP (0.0116 g, 10 mol%) and K2CO3 (0.21 g, 1.50 mmol) in MeCN (5 mL) at 80 ºC 

for 6 h. Work up followed by flash column chromatography eluting with 10:1 v/v 

EtOAc/MeOH gave the product 215b (0.19 g, 76%) as a colourless gum; [α]D
24

 + 

3.3 (c, 13 mg/1 mL CHCl3); δH (300 MHz, CDCl3); 7.87 (1H, d, J 8.2, CONH), 7.55 

(1H, s, purine-H), 7.16 (2H, br s, 2 x thienyl-H), 7.95 (1H, m, thienyl-H), 6.01 (1H, 

t, J 7.4, NCH2CH=), 4.89 (1H, dd, J 7.4 and 14.3, HA, NCH2CH=), 4.82 (1H, dd, J 

7.4 and 14.3, HB, NCH2CH=), 4.64 (1H, m, CHCO2Me), 3.99 (3H, s, NMe), 3.90 

(1H, d, J 12.5, HA, =CCH2N), 3.79 (1H, d, J 12.5, HB, =CCH2N), 3.72 (3H, s, 

CO2Me), 3.43 (3H, s, NMe), 3.37 (2H, s, NHCH2CO), 2.31 (1H, s, NH), 1.40 (3H, 

d, J 7.2, CHMe); δC (75 MHz, CDCl3); 173.7, 172.0, 155.4, 151.7, 149.3, 145.0, 

142.2, 135.1, 127.8, 125.0, 124.3, 124.0, 108.0, 52.7, 52.6, 48.4, 47.9, 39.6, 34.0, 

30.2, 18.4; υmax/cm
-1

 (film); 3332, 3111, 3005, 2951, 1742, 1704, 1659, 1604, 1549, 

1454, 1365, 1316, 1286, 1234; m/z (ESI
+
) 475.2 (100%, MH

+
); (Found MH

+
, 

475.1745. C21H27N6O5 
32

S requires MH, 475.1758). 

 

Methyl (2S)-2-[({[(2Z)-2-[3,5-bis(trifluoromethyl)phenyl]-4-(3,7-dimethyl-2,6-

dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)but-2-en-1yl]amino}acetyl)amino] 

propanoate (215c).  

Prepared by general procedure B from N-allenylpurine 

195 (0.116 g, 0.50 mmol), 1-iodo-bis(3,5-

trifluoromethyl)benzene (0.10 mL, 0.60 mmol), methyl 

(2S)-2-[(aminoacetyl)amino]propanoate hydrochloride 

209 (0.147 g, 0.75 mmol), Pd2(dba)3 (0.0115 g, 2.5 mol%), TFP (0.0116 g, 10 

mol%) and K2CO3 (0.21 g, 1.50 mmol) in MeCN (5 mL) at 80 ºC for 5 h. Work up 

by flash column chromatography eluting with 10:1 v/v EtOAc/MeOH gave the 

product 215c (0.23 g, 76%) as a pale yellow froth, [α]D
24

 + 11.0 (c, 11 mg/1 mL 

CHCl3); mp 138-140 °C; δH (300 MHz, CDCl3); 7.93 (2H, s, 2 x phenyl-H), 7.78 

(1H, s, phenyl-H), 7.60 (1H, s, purine-H), 7.55 (1H, d, J 7.9, CONH), 5.94 (1H, t, J 

7.2, NCH2CH=), 4.97 (1H, dd, J 7.2 and 14.6, HA, NCH2CH=), 4.90 (1H, dd, J 7.2 

and 14.6, HB, NCH2CH=), 4.60 (1H, m, CHCO2Me), 4.02 (3H, s, NMe), 4.00 (1H, 

d, J 12.5, HA, =CCH2N), 3.83 (1H, d, J 12.5, HB, =CCH2N), 3.71 (3H, s, CO2Me), 

3.69 (3H, s, NMe), 3.33 (2H, s, NHCH2CO) 2.37 (1H, s, NH), 1.33 (3H, d, J 7.2, 

CHMe); δC (75 MHz, CDCl3); 173.5, 171.7, 155.3, 151.8, 149.4, 143.9, 142.6, 
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139.3, 131.9 (2 x C, J 33.0), 129.2, 127.1 (2 x C, J 4.6), 123.7 (2 x C, J 272.8), 

121.5 (J 4.6), 108.0, 52.7, 52.6, 48.3, 47.8, 39.7, 34.0, 30.2, 18.2; υmax/cm
-1

 (film); 

3333, 2954, 1744, 1706, 1661, 1550, 1455, 1382, 1279; m/z (ESI
+
) 605.2 (100%, 

MH
+
); (Found MH

+
, 605.1946. C25H27F6N6O5 requires MH, 605.1942). 

NOE data (CDCl3) for 215c: 

 % Enhancement 

Irradiated proton 4-H 3-H 1-HA 1-HB phenyl-H 

4-H  5.7 4.4 1.6 - 

3-H 3.2  -  11.6 (δ 7.93) 

1-HA 2.9 -  13.2 - 

1-HB 4.7  5.9  6.2 (δ 7.93) 

 

Methyl N-[(2Z)-4-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)-2-

(pyridin-3-yl)but-2-en-1-yl]serinate (216). 

Prepared by general procedure B from N-allenylpurine 195 

(0.116 g, 0.50 mmol), 3-iodopyridine (0.123 g, 0.60 mmol), 

(S)-serine methyl ester hydrochloride 210 (0.093 g, 0.60 

mmol), Pd2(dba)3 (0.0114 g, 2.5 mol%), TFP (0.0116 g, 10 mol%) and K2CO3 

(0.272 g, 2.00 mmol) in MeCN (4 mL) at 80 ºC for 8 h. Flash column 

chromatography eluting with 10:1 v/v EtOAc/MeOH gave the product 216 (0.15 g, 

70%) as a colourless amorphous solid; [α]D
20

 + 7.1 (c, 15 mg/1 mL CHCl3); mp 119-

121 °C; δH (300 MHz, pyridine-d5); 9.14 (1H, d, J 2.2, pyridinyl-H), 8.57 (1H, dd, J 

1.6 and 4.9, pyridinyl-H), 8.00 (1H, dt, J, 8.2 and 1.6, pyridinyl-H), 7.83 (1H, s, 

purine-H), 7.14 (1H, dd, J 4.9 and 8.2, pyridinyl-H), 6.67 (1H, br s, OH), 6.27 (1H, t, 

J 6.7, NCH2CH=), 5.18 (1H, dd, J 6.7 and 14.3, HA, NCH2CH=), 5.13 (1H, d, J 6.7 

and 14.3, HB, NCH2CH=), 4.27 (1H, d, J 11.8, HA, =CCH2N), 4.20 (2H, br s, 

NCHCH2OH), 4.07 (1H, d, J 11.8, HB,  =CCH2N), 3.83 (1H, br s, NCHCH2OH), 

3.82 (3H, s, purine 7-Me), 3.72 (3H, s, CO2Me), 3.54 (3H, s, purine 3-Me), 2.91 

(1H, br s, NH); δC (75 MHz, CDCl3); 173.3, 155.0, 151.4, 148.9, 148.7, 147.6, 

141.8, 138.0, 136.5, 133.7, 127.1, 123.1, 107.6, 62.7, 62.66, 52.1, 46.2, 39.4, 33.7, 

29.8; υmax/cm
-1

 (film); 3316, 2952, 1732, 1704, 1660, 1604, 1550, 1456, 1415, 1356, 

1315, 1286, 1234; m/z (ESI
+
) 429.2 (100 %, MH

+
); (Found MH

+
, 429.1891. 

C20H25N6O5 requires MH, 429.1881). 



- 139 - 

3,7-Dimethyl-1-[(2Z)-3-(pyridin-3-yl)-4-{[(7S)-1,2,3,10-tetramethoxy-9-oxo-

5,6,7,9-tetrahydrobenzo[a]heptalen-7-yl]amino}but-2-en-1-yl]-3,7-dihydro-1H-

purine-2,6-dione (217a). 

Prepared by general procedure B from N-allenylpurine 195 

(0.075 g, 0.32 mmol), 3-iodopyridine (0.08 g, 0.39 mmol), 

N-deacetylcolchicine 211
122

 (0.127 g, 0.36 mmol), 

Pd2(dba)3 (0.0074 g, 2.5 mol%), TFP (0.0075 g, 10 mol%) 

and K2CO3 (0.134 g, 0.96 mmol) in MeCN (3 mL) at 80 ºC 

for 7 h. Flash column chromatography eluting with 5:1 v/v EtOAc/MeOH gave the 

product 217a (0.20 g, 94%) as a pale yellow froth; [α]D
20

 -118.6 (c, 13 mg/1 mL 

CHCl3); mp 106-108 °C; δH (300 MHz, CDCl3); 8.59 (1H, d, J 2.2, pyridinyl-H), 

8.45 (1H, dd, J 1.6 and 4.48, pyridinyl-H), 7.91 (1H, s, colchicine-H), 7.81 (1H, dt, J 

7.7 and 1.6, pyridinyl-H),  7.53 (1H, s, purine 8-H), 7.27 (1H, dd, J 3.8 and 7.7, 

pyridinyl-H),  7.24 (1H, d, J 10.7, colchicine-H), 6.80 (1H, d, J 10.7, colchicine-H), 

6.55 (1H, s, colchicine-H), 5.81 (1H, t, J 7.1, NCH2CH=), 4.82 (1H, dd, J 7.1 and 

13.2, NCHACH=),4.77 (1H, dd, J 7.1 and 13.2, NCHBCH=),  3.99 (3H, s, Me), 3.97 

(3H, s, Me), 3.95 (3H, s, Me), 3.93 (3H, s, Me), 3.68 (3H, s, Me), 3.64 (1H, d, J 

12.6, =CCHAN), 3.56 (3H, s, Me), 3.51 (1H, d, J 12.6, =CCHBN), 3.50-3.41 (1H, m, 

colchicines-CHNH), 2.52-2.21 (3H, m, 3 × colchicine-H ), 2.14 (1H, br s, NH), 

1.77-1.67 (1H, m, colchicine-H); δC (75 MHz, CDCl3); 179.6, 163.9, 154.9, 153.2, 

151.3, 151.1, 150.7, 148.9, 148.5, 147.6, 141.6, 141.2, 138.5, 137.0, 136.9, 135.2, 

134.5, 133.8, 132.5, 126.5, 125.6, 123.3, 111.6, 107.6, 107.2, 61.3, 61.26, 61.0, 56.2, 

56.0, 46.7, 39.5, 38.4, 33.6, 30.4, 29.7; υmax/cm
-1

 (film); 3318, 2939, 1702, 1659, 

1588, 1553, 1487, 1457, 1396, 1345, 1318, 1248; m/z (ESI
+
) 667.3 (100%, MH

+
); 

(Found MH
+
, 667.2883. C36H39N6O7 requires MH, 667.2875). 

 

N-(2-Aminophenyl)-4-[(2Z)-4-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-

purin-1-yl)-1-{[(7S)-1,2,3,10-tetramethoxy-9-oxo-5,6,7,9-

tetrahydrobenzo[a]heptalen-7-yl]amino}but-2-en-2-yl]benzamide (217b). 

Prepared by general procedure B from N-allenylpurine 195 (0.103 g, 0.44 mmol), N-

(2-aminophenyl)-4-iodobenzamide (0.18 g, 0.53 mmol), N-deacetylcolchicine 211 

(0.158 g, 0.44 mmol), Pd2(dba)3 (0.01 g, 2.5 mol%), TFP (0.011 g, 10 mol%) and 

K2CO3 (0.183 g, 1.33 mmol) in MeCN (3 mL) at 80 ºC for 5 h. Flash column 
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chromatography eluting with 10:1 v/v EtOAc/MeOH 

gave the product 217b (0.29 g, 85%) as a pale yellow 

froth; [α]D
20

 -73.2 (c, 14 mg/1 mL CHCl3); mp 151-

153 °C; δH (300 MHz, CDCl3); 8.68 (1H, br s, 

CONH), 7.76 (2H, d, J 8.2, 2 × phenyl-H), 7.68 (1H, 

s, colchicine-H), 7.53 (1H, s, purine 8-H), 7.50 (1H, 

d, J 8.2, phenyl-H), 7.36 (2H, d, J 8.2, 2 × phenyl-H),7.24 (1H, d, J 10.4, colchicine-

H), 7.02 (1H, dt, J 1.1 and 8.2, phenyl-H), 9.79 (1H, d, J 8.2, phenyl-H), 6.78 (1H, d, 

J 10.4, colchicine-H), 6.77 (1H, dt, J 1,1 and 8.2, phenyl-H), 6.54 (1H, s, colchicine-

H), 5.80 (1H, t, J 7.7, NCH2CH=), 4.40 (1H, dd, J 7.7 and 14.2, NCHACH=), 4.73 

(1H, dd, J 7.7 and 14.2, NCHBCH=),  3.95 (6H, s, 2 × Me), 3.92 (3H, s, Me), 3.91 

(3H, s, Me), 3.76 (1H, d, J 12.1, =CCHAN), 3.68 (3H, s, Me), 3.54 (3H, s, Me), 3.49-

3.41 (1H, m, colchicines-CHNH), 3.44 (1H, d, J 12.6, =CCHBN), 2.48-2.17 (3H, m, 

3 × colchicine-H ), 1.69-1.59 (1H, m, colchicine-H); δC (75 MHz, CDCl3); 179.4, 

166.6, 163.8, 154.9, 153.2, 151.8, 151.3, 150.7, 148.9, 144.5, 141.8, 141.5, 141.1, 

140.6, 137.2, 135.2, 134.5, 133.8, 132.9, 127.5, 126.8, 126.5, 125.5, 125.4, 125.0, 

124.7, 118.9, 117.6, 111.8, 107.6, 107.3, 61.3, 61.0, 60.95, 56.2, 56.0, 47.0, 39.4, 

38.4, 33.6, 30.4, 29.7; υmax/cm
-1

 (film); 3329, 2940, 1703, 1660, 1589, 1552, 1487, 

1456, 1396, 1345, 1317, 1249; m/z (ESI
+
) 800.3 (100%, MH

+
); (Found MH

+
, 

800.3426. C44H46N7O8 requires MH, 800.3402). 

 

3,7-Dimethyl-1-[(2Z)-4-[(1-naphthylmethyl)amino]-3-(pyridin-3-yl)but-2-en-1-

yl]-3,7-dihydro-1H-purine-2,6-dione (218). 

Prepared by general procedure B from N-allenylpurine 195 

(0.116 g, 0.50 mmol), 3-iodopyridine (0.123 g, 0.60 mmol), 

1-naphthalenemethylamine 212 (0.088 mL, 0.60 mmol), 

Pd2(dba)3 (0.0114 g, 2.5 mol%), TFP (0.0116 g, 10 mol%) 

and K2CO3 (0.21 g, 1.50 mmol) in MeCN (5 mL) at 80 ºC for 3 h. The reaction was 

cooled, evaporated under vacuum, and the residue dissolved in CHCl3 (30 mL). The 

organic layer washed with water (10 mL), separated, dried over anhydrous MgSO4 

and evaporated under vacuum to afford viscous oil. The crude product was dissolved 

in MeCN (5 mL) and left at room temperature over night to give the product 218 

(0.20 g, 86%) as colourless needles, mp 146-148 °C; δH (300 MHz, CDCl3); 8.72 



- 141 - 

(1H, d, J 2.2, pyridinyl-H), 8.45 (1H, dd, J 1.6 and 4.9, pyridinyl-H), 8.13-8.07 (1H, 

m, naphthyl-H). 7.86-7.82 (1H, m, naphthyl-H), 7.77-7.72 (2H, m, pyridinyl-H and 

naphthyl-H), 7.49-7.37 (5H, m, purine-H and 4 × naphthyl-H), 7.12 (1H, dd, J 4.9 

and 8.2, pyridinyl-H), 5.95 (1H, t, J 7.1, NCH2CH=), 4.90 (2H, s, NCH2CH=), 4.31 

(3H, s, naphthyl-CH2NH), 3.97 (2H, s, =CCH2NH), 3.94 (3H, s, purine 7-Me), 3.57 

(3H, s, purine 3-Me), 1.91 (1H, brs, NH); δC (75 MHz, CDCl3); 155.0, 151.4, 148.9, 

148.5, 147.9, 141.6, 139.0, 136.9, 135.8, 133.9, 133.8, 131.9, 128.5, 127.8, 126.4, 

126.3, 125.9, 125.6, 125.3, 124.1, 123.0, 107.6, 51.6, 47.8, 39.4, 33.6, 29.8; υmax/cm
-

1
 (film); 1312, 3009, 2948, 1702, 1658, 1603, 1550, 1455, 1413, 1356, 1315, 1286, 

1233; m/z (ESI
+
) 467.2 (100%, MH

+
); (Found MH

+
, 467.2201. C27H27N6O2 requires 

MH, 467.2190). 

 

3,7-Dimethyl-1-[(2Z)-4-[(pyren-1-ylmethyl)amino]-3-(pyridin-3-yl)but-2-en-1-

yl]-3,7-dihydro-1H-purine-2,6-dione (219). 

Prepared by general procedure B from N-allenylpurine 195 

(0.116 g, 0.50 mmol), 3-iodopyridine (0.123 g, 0.60 

mmol), 1-pyrenemethylamine hydrochloride 213 (0.134 g, 

0.60 mmol), Pd2(dba)3 (0.0114 g, 2.5 mol%), TFP (0.0116 

g, 10 mol%) and K2CO3 (0.21 g, 1.50 mmol) in MeCN (5 

mL) at 80 ºC for 4 h. The product precipitated from hot solution. The reaction was 

cooled, filtered and the precipitate washed with water to give the crude product. 

Crystallisation from 5:1 v/v MeCN/CHCl3 gave the product 219  (0.24 g, 89%) as 

colourless needles, mp 166-168 °C; δH (300 MHz, CDCl3); 8.78 (1H, d, J 1.6, 

pyridinyl-H), 8.45 (1H, dd, J 1.6 and 4.9, pyridinyl-H), 8.35 (1H, d, J 9.3, pyrenyl-

H). 8.17-7.96 (8H, m, pyrenyl-H), 7.76 (1H, dt, J 7.7and 1.6, pyridinyl-H), 7.44 (1H, 

s, purine-H), 7.10 (1H, dd, J 4.9 and 7.7, pyridinyl-H), 5.96 (1H, t, J 7.1, 

NCH2CH=), 4.90 (2H, s, NCH2CH=), 4.57 (3H, s, pyrenyl-CH2NH), 4.02 (2H, s, 

=CCH2NH), 3.87 (3H, s, purine 7-Me), 3.55 (3H, s, purine 3-Me), 2.09 (1H, brs, 

NH); δC (75 MHz, CDCl3); 155.0, 151.4, 148.9, 148.5, 147.9, 141.5, 139.0, 137.0, 

133.9, 133.7, 131.3, 130.8, 130.7, 129.3, 127.4, 127.35, 127.3, 127.0, 126.4, 125.8, 

125.0, 124.8, 124.6, 123.6, 123.0, 107.6, 51.8, 47.9, 39.4, 33.5, 29.7 (two aromatic 

carbon atoms could not be located due to peak overlaps); υmax/cm
-1

 (film); 3304, 

3011, 2948, 1703, 1659, 1603, 1550, 1486, 1455, 1429, 1413, 1355, 1314, 1287, 
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1234; m/z (ESI
+
) 541.2 (100%, MH

+
); (Found MH

+
, 541.2366. C33H29N6O2 requires 

MH, 541.2347). 

 

1-[(2Z)-4-[Bis(pyridin-2-ylmethyl)amino]-3-(pyridin-3-yl)but-2-en-1-yl]-3,7-

dimethyl-3,7-dihydro-1H-purine-2,6-dione (220). 

Prepared by general procedure B from N-allenylpurine 

195 (0.232 g, 1.00 mmol), 3-iodopyridine (0.246 g, 1.1 

mmol), di-(2-picolyl)amine 214 (0.09 mL, 0.50 mmol), 

Pd2(dba)3 (0.0228 g, 5.0 mol%), TFP (0.023 g, 20 mol%) 

and K2CO3 (0.414 g, 6.0 mmol) in MeCN (5 mL) at 80 ºC for 7.5 h. Work up by 

flash column chromatography gradient elution with EtOAc and then 10:1 v/v 

EtOAc/MeOH gave the product 220 (0.23 g, 91%) as a colourless froth, mp 144-146 

°C; δH (300 MHz, CDCl3); 8.52-8.46 (4H, m, 4 × pyridyl-H), 7.56 (2H, dt, J 1.4 and 

7.6, 2 × pyridyl-H), 7.52 (1H, s, purine-H), 7.47 (1H, td, J 1.9, 8.1, pyridyl-H), 7.17-

7.11 (3H, m, 3 × pyridinyl-H), 7.06 (2H, d, J 7.6, 2 × pyridinyl-H), 5.86 (1H, t, J 6.7, 

NCH2CH=), 4.91 (2H, d, J 6.7, NCH2CH=), 3.98 (3H, s, NMe), 3.86 (2H, s, 

=CCH2N), 3.81 (4H, s, 2 × NCH2-pyridyl), 3.57 (3H, s, NMe); δC (75 MHz, CDCl3); 

159.4, 154.9, 151.3, 148.9, 148.8, 148.4, 148.2, 141.6, 138.0, 137.0, 136.3, 134.4, 

128.9, 123.1, 122.6, 122.0, 107.6, 60.1 (2 × C), 52.5, 39.4, 33.6, 29.7, ; υmax/cm
-1

 

(film); 2926, 2854, 1705, 1660, 1590, 1550, 1474, 1455, 1433, 1414, 1358, 1313, 

1234; m/z (ESI
+
) 509.2 (100%, MH

+
); (Found MH

+
, 509.2413. C28H29N8O2 requires 

MH, 509.2408). 

 

N-(2-Aminophenyl)-4-{(2Z)-4-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-

purin-1-yl)-1-[(4-sulfamoylbenzyl)amino]but-2-en-2-yl}benzamide (223a). 

Prepared by general procedure B from N-

allenylpurine 195 (0.232 g, 1.00 mmol), N-(2-

aminophenyl)-4-iodobenzamide 221
130c (0.406 g, 

1.20 mmol), mafenide hydrochloride 174 (0.266 g, 

1.20 mmol), Pd2(dba)3 (0.0228 g, 2.5 mol%), TFP 

(0.023 g, 10 mol%) and K2CO3 (0.414 g, 3.00 mmol) in DMF (4 mL) at 80 ºC for 5 

h. Work up by flash column chromatography eluting with 10:1 v/v EtOAc/MeOH 

gave the product 223a (0.42 g, 67%) as a colourless froth, mp 224-226 °C; δH (300 
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MHz, DMSO-d6); 9.67 (1H, s, CONH), 8.08 (1H, s, purine-H), 7.93 (2H, d, J 8.1, 2 

× phenyl-H), 7.78 (2H, d, J 8.1, 2 × phenyl-H), 7.59 (2H, d, J 8.1, 2 × phenyl-H), 

7.55 (2H, d, J 8.1, 2 × phenyl-H), 7.32 (2H, s, SO2NH2), 7.15 (1H, d, J 7.6, phenyl-

H), 6.97 (1H, t, J 8.1, phenyl-H), 6.78 (1H, d, J 8.1, phenyl-H), 6.60 (1H, t, J 7.6, 

phenyl-H), 5.90 (1H, t, J 6.7, NCH2CH=), 4.89 (2H, br s, phenyl-NH2), 4.73 (2H, d, 

J 6.7, NCH2CH=), 3.88 (3H, s, NMe), 3.85 (2H, s, NHCH2-phenyl),  3.74 (2H, s, 

=CCH2N), 3.46 (3H, s, NMe); δC (75 MHz, DMSO-d6); 164.9, 154.3, 150.9, 148.4, 

145.0, 144.0, 143.2, 143.0, 142.4, 139.4, 133.0, 128.2, 127.7, 127.2, 126.7, 126.5, 

125.9, 125.5, 123.3, 116.2, 116.1, 106.8, 52.2, 46.8, 39.0, 33.2, 29.4; υmax/cm
-1

 

(solid); 3282, 1697, 1626, 1539, 1506, 1492, 1456, 1411, 1325, 1227; m/z (ESI
+
) 

629.2 (41%, MH
+
); (Found MH

+
, 629.2291. C31H33N8O5

32
S requires MH, 629.2289). 

 

4-[(2Z)-1-(Adamantan-1-ylamino)-4-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-

1H-purin-1-yl)but-2-en-2-yl]-N-(2-aminophenyl)benzamide (223b). 

Prepared by general procedure B from N-

allenylpurine 195 (0.232 g, 1.00 mmol), N-(2-

aminophenyl)-4-iodobenzamide 221
130c (0.406 g, 

1.20 mmol), 1-aminoadamantane 180 (0.182 g, 1.20 

mmol), Pd2(dba)3 (0.0228 g, 2.5 mol%), TFP (0.023 

g, 10 mol%) and K2CO3 (0.414 g, 3.00 mmol) in MeCN (7 mL) at 80 ºC for 2 h. 

Work up by flash column chromatography eluting with 10:1 v/v EtOAc/MeOH gave 

the product 223b (0.49 g, 83%) as a colourless froth, mp 151-153 °C; δH (300 MHz, 

CDCl3); 8.15 (1H, s, CONH), 7.70 (2H, d, J 8.1, 2 × phenyl-H), 7.47 (2H, d, J 8.1, 2 

× phenyl-H), 7.40 (1H, s, purine-H), 7.14 (1H, d, J 7.6, phenyl-H), 6.93 (1H, dt, J 

1.4 and 8.1, phenyl-H), 6.68 (1H, d, J 7.6, phenyl-H), 6.67 (1H, t, J 8.1, phenyl-H), 

5.80 (1H, t, J 7.2, NCH2CH=), 4.78 (2H, d, J 7.2, NCH2CH=), 3.85 (3H, s, NMe), 

3.72 (2H, s, =CCH2N), 3.46 (3H, s, NMe), 2.00 (3H, br s, 3 × adamantyl-CH), 1.66 

(6H, d, J 1.9, 3 × adamantyl-CH2), 1.57 (6H, br s, 3 × adamantyl-CH2); δC (75 MHz, 

CDCl3); 165.7, 155.0, 151.4, 148.9, 145.1, 141.7, 141.2, 141.0, 132.7, 127.4, 127.1, 

126.5, 125.9, 125.4, 124.5, 119.4, 118.1, 107.6, 51.0, 42.5, 39.7, 39.2, 36.8, 33.6, 

29.8, 29.6; υmax/cm
-1

 (film); 3314, 3009, 2906, 2848, 1704, 1660, 1605, 1549, 1504, 

1455, 1414, 1358, 1311, 1234; m/z (ESI
+
) 594.3 (100%, MH

+
); (Found MH

+
, 

594.3179. C34H40N7O3 requires MH, 594.3187). 
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N-(2-Aminophenyl)-4-[(2Z)-1-(cyclopropylamino)-4-(3,7-dimethyl-2,6-dioxo-

2,3,6,7-tetrahydro-1H-purin-1-yl)but-2-en-2-yl]benzamide (223c). 

Prepared by general procedure B from N-

allenylpurine 195 (0.232 g, 1.00 mmol), N-(2-

aminophenyl)-4-iodobenzamide 221
130c (0.406 g, 

1.20 mmol), cyclopropylamine (0.10 mL, 1.50 

mmol), Pd2(dba)3 (0.0228 g, 2.5 mol%), TFP (0.023 g, 10 mol%) and K2CO3 (0.414 

g, 3.00 mmol) in MeCN (7 mL) at 80 ºC for 3 h. Work up by flash column 

chromatography eluting with 10:1 v/v EtOAc/MeOH gave the product 223c (0.38 g, 

76%) as a colourless froth, mp 117-119 °C; δH (300 MHz, CDCl3); 8.12 (1H, s, 

CONH), 7.81 (2H, d, J 8.1, 2 × phenyl-H), 7.52 (2H, d, J 8.1, 2 × phenyl-H), 7.51 

(1H, s, purine-H), 7.26 (1H, d, J 7.6, phenyl-H), 7.06 (1H, dt, J 1.4 and 8.1, phenyl-

H), 6.80 (1H, d, J 7.6, phenyl-H), 6.79 (1H, t, J 7.6, phenyl-H), 5.92 (1H, t, J 7.2, 

NCH2CH=), 4.91 (2H, d, J 7.2, NCH2CH=), 3.97 (3H, s, NMe), 3.94 (2H, s, 

=CCH2N), 3.57 (3H, s, NMe), 2.23-2.16 (1H, m, cyclopropyl-CH), 0.49-0.37 (4H, 

m, 2 × cyclopropyl-CH2); δC (75 MHz, CDCl3); 165.6, 155.0, 151.4, 148.9, 145.0, 

141.7, 140.9, 140.6, 132.8, 127.5, 127.2, 126.7, 126.4, 125.3, 124.5, 119.6, 118.2, 

107.7, 47.6, 39.7, 33.6, 30.4, 29.8, 6.5; υmax/cm
-1

 (film); 3319, 3007, 1703, 1657, 

1504, 1455, 1358, 1313, 1234; m/z (ESI
+
) 500.2 (100%, MH

+
); (Found MH

+
, 

500.2416. C27H30N7O3 requires MH, 500.2405). 

 

N-(2-Aminophenyl)-4-[(2Z)-4-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-

purin-1-yl)-1-(8-fluoro-1,3,4,5-tetrahydro-2H-pyrido[4,3-b]indol-2-yl)but-2-en-

2-yl]benzamide (223d). 

Prepared by general procedure B from N-

allenylpurine 195 (0.232 g, 1.00 mmol), N-(2-

aminophenyl)-4-iodobenzamide 221
130c (0.406 g, 

1.20 mmol), 8-fluoro-2,3,4,4a,5,9b-hexahydro-1H-

pyrido[4,3-b]indole 187 (0.228 g, 1.20 mmol), 

Pd2(dba)3 (0.0228 g, 2.5 mol%), TFP (0.023 g, 10 mol%) and K2CO3 (0.414 g, 3.00 

mmol) in MeCN (7 mL) at 80 ºC for 2 h. The product precipitated out of the hot 

solution. Work up by flash column chromatography eluting with 5:1 v/v 

EtOAc/MeOH gave the product 223d (0.52 g, 82%) as a colourless amorphous solid, 
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mp > 230 °C; δH (300 MHz, DMSO-d6); 10.86 (1H, s, pyridoindolyl-NH), 9.61 (1H, 

s, CONH), 8.03 (1H, s, purine 8-H), 7.90 (2H, d, J 8.6, 2 × phenyl-H), 7.64 (2H, d, J 

8.6, 2 × phenyl-H), 7.22 (1H, dd, J 4.5 and 8.8, pyridoindolyl-H), 7.14 (1H, d, J 8.1, 

phenyl-H), 7.10 (1H, dd, J 2.9 and 10.0, pyridoindolyl-H), 6.95 (1H, dt, J 1.4 and 

7.6, phenyl-H), 6.80 (1H, dt, J 2.9 and 9.5, pyridoindolyl-H), 6.76 (1H, dd, J 1.4 and 

8.1, phenyl-H), 6.57 (1H, dt, J 1.4 and 7.6, phenyl-H), 6.02 (1H, t, J 6.2, 

NCH2CH=), 4.88 (2H, s, phenyl-NH2), 4.85 (2H, d, J 6.2, NCH2CH=), 3.91 (3H, s, 

purine 7-NCH3), 3.83 (2H, s, =CCH2N), 3.67 (2H, s, pyridoindoly 1-CH2), 3.45 (3H, 

s, purine 3-NCH3), 2.87 (2H, t, J 5.2, pyridoindolyl-CH2), 2.70 (2H, t, J 5.2, 

pyridoindolyl-CH2); δC (75 MHz, DMSO-d6); 165.0, 156.6 (J 230.0), 154.3, 150.9, 

148.4, 144.2, 143.1, 142.9, 137.7, 135.9, 132.9, 132.4, 129.1, 127.6, 126.6, 126.4, 

126.1, 125.7 (J 10.0), 123.3, 116.2, 116.0, 111.4 (J 10.0), 107.8 (J 21.0), 107.6 (J 

4.4), 106.8, 101.9 (J 22.1), 55.1, 49.6, 49.1, 39.2, 33.2, 29.4, 23.6; υmax/cm
-1

 (solid); 

3413, 1687, 1641, 1550, 1504, 1448, 1318, 1234; m/z (ESI
+
) 633.3 (100%, MH

+
); 

(Found MH
+
, 633.2732. C35H34FN8O3 requires MH, 633.2732). 

 

N-(2-Aminophenyl)-4-({[(2Z)-4-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-

purin-1-yl)-2-(pyridin-3-yl)but-2-en-1-yl]amino}methyl)benzamide (223e). 

Prepared by general procedure B from N-

allenylpurine 195 (0.232 g, 1.00 mmol), 3-

iodopyridine (0.246 g, 1.20 mmol), 4-

(aminomethyl)-N-(2-aminophenyl)benzamide 

222
130b

  (0.362 g, 1.50 mmol), Pd2(dba)3 (0.0228 g, 

2.5 mol%), TFP (0.023 g, 10 mol%) and K2CO3 (0.414 g, 3.00 mmol) in MeCN (7 

mL) at 80 ºC for 7 h. Work up by flash column chromatography eluting with 10:3 

v/v EtOAc/MeOH gave the product 223e (0.33 g, 60%) as a colourless froth, mp 99-

101 °C; δH (300 MHz, CDCl3); 8.66 (1H, s, CONH), 8.64 (1H, d, J 2.4, pyridyl-H), 

8.42 (1H, dd, J 1.4 and 4.8, pyridyl-H), 7.82 (2H, d, J 8.1, 2 × phenyl-H), 7.75 (1H, 

td, J 1.9 and 8.1, pyridyl-H),  7.50 (1H, s, purine 8-H), 7.38 (2H, d, J 8.1, 2 × 

phenyl-H), 7.21 (1H, d, J 8.1, phenyl-H), 7.18 (1H, dd, J 4.8 and 8.1, pyridyl-H),  

7.00 (1H, dt, J 1.4 and 8.1, phenyl-H), 6.76 (1H, d, J 8.1, phenyl-H), 6.72 (1H, dt, J 

1.4 and 8.1, phenyl-H), 5.87 (1H, t, J 6.7, NCH2CH=), 4.79 (2H, d, J 6.7, 

NCH2CH=), 4.01 (1H, br s, NH), 3.90 (3H, s, NMe), 3.88 (2H, s, CH2), 3.76 (2H, s, 
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CH2), 3.53 (3H, s, NMe); δC (75 MHz, CDCl3); 166.0, 154.9, 151.3, 148.9, 148.4, 

147.7, 144.4, 141.8, 141.2, 138.5, 136.9, 133.8, 132.9, 128.4, 127.6, 127.1, 126.7, 

125.6, 124.4, 123.1, 119.2, 117.9, 107.6, 53.3, 50.3, 47.3, 39.4, 33.6, 29.8; υmax/cm
-1

 

(film); 3332, 3008, 1703, 1652, 1549, 1504, 1455, 1414, 1355, 1314, 1234; m/z 

(ESI
+
) 551.3 (100%, MH

+
); (Found MH

+
, 551.2529. C30H31N8O3 requires MH, 

551.2514). 

 

N-(2-Aminophenyl)-4-[(2Z)-1-({4-[(2-aminophenyl)carbamoyl]benzyl} -amino)-

4-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)but-2-en-2-

yl]benzamide (223f). 

Prepared by general procedure B from N-

allenylpurine 195 (0.232 g, 1.00 mmol), N-(2-

aminophenyl)-4-iodobenzamide 221
130c (0.406 g, 

1.20 mmol), 4-(aminomethyl)-N-(2-

aminophenyl)benzamide 222
130b

 (0.362 g, 1.50 

mmol), Pd2(dba)3 (0.0228 g, 2.5 mol%), TFP (0.023 g, 10 mol%) and K2CO3 (0.414 

g, 3.00 mmol) in MeCN (7 mL) at 80 ºC for 4 h. Work up by flash column 

chromatography eluting with 10:1 v/v EtOAc/MeOH gave the product 223f (0.35 g, 

51%) as a colourless froth, mp 215-217 °C; δH (300 MHz, DMSO-d6); 9.67 (1H, s, 

CONH), 9.66 (1H, s, CONH),  8.04 (1H, s, purine-H), 7.96 (2H, d, J 8.1, 2 × phenyl-

H), 7.94 (2H, d, J 8.1, 2 × phenyl-H),  7.62 (2H, d, J 8.1, 2 × phenyl-H), 7.51 (2H, d, 

J 8.1, 2 × phenyl-H), 7.16 (2H, br d, J 8.1, 2 × phenyl-H), 6.98 (1H, t, J 7.6, phenyl-

H), 6.97 (1H, t, J 8.1, phenyl-H), 6.79 (1H, d, J 7.6, phenyl-H), 6.78 (1H, d, J 8.1, 

phenyl-H), 6.60 (1H, t, J 7.6, phenyl-H), 6.59 (1H, t, J 8.1, phenyl-H), 5.91 (1H, t, J 

6.7, NCH2CH=), 4.90 (4H, br s, 2 × phenyl-NH2), 4.74 (2H, d, J 6.7, NCH2CH=), 

3.89 (3H, s, NMe), 3.87 (2H, s, NHCH2-phenyl), 3.75 (2H, s, =CCH2N), 3.44 (3H, s, 

NMe); δC (75 MHz, DMSO-d6); 165.13, 164.91, 154.33, 150.87, 148.39, 144.45, 

144.07, 143.16, 143.13, 142.98, 139.44, 132.97, 132.86, 127.72, 127.68, 127.16, 

126.68, 126.42, 125.90, 123.34, 123.28, 116.21, 116.08, 106.77, 52.36, 46.78, 39.06, 

33.17, 29.44, (Five aromatic carbon atoms could not be located due to peak 

overlaps); υmax/cm
-1

 (solid); 3336, 1697, 1662, 1625, 1505, 1456, 1352, 1302, 1225; 

m/z (ESI
+
) 706.3 (74%, MNa

+
); (Found MNa

+
, 706.2871. C38H37N9NaO4

 
requires 

MNa, 706.2861). 
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NOE data (DMSO-d6) for 223f:
 

 % Enhancement 

Irradiated proton 1-H 2-H 4-H phenyl-H 

1-H  -6.74 - - 

2-H -3.17  - - 

4-H -1.58 -  -1.83 (δ 7.62) 
 

4-{[(4Z)-4-[2-(3,7-Dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-

yl)ethylidene]-1-oxo-3,4-dihydroisoquinolin-2(1H)-

yl]methyl}benzenesulfonamide (226a). 

Prepared by general procedure B from N-allenylpurine 

195 (0.116 g, 0.50 mmol), methyl 2-iodobenzoate 224 

(0.09 mL, 0.60 mmol), mafenide hydrochloride 174 

(0.122 g, 0.55 mmol), Pd2(dba)3 (0.0114 g, 2.5 mol%), 

TFP (0.0116 g, 10 mol%) and K2CO3 (0.204 g, 1.50 mmol) in DMF (3 mL) at 80 ºC 

for 9 h. The crude product, without chromatography, was dissolved in CHCl3 and 

left overnight to give the product 226a (0.14 g, 54%) as a colourless amorphous 

solid, mp 194-196 °C; δH (300 MHz, DMSO-d6); 8.03 (1H, s, purine-H), 7.99 (1H, 

d, J 7.7, isoquinolin-H), 7.82 (2H, d, J 7.7, Ph-H), 7.64 (1H, d, J 7.7, isoquinolin-H), 

7.54 (2H, d, J 7.7, Ph-H), 7.53 (1H, t, J 7.7, isoquinolin-H), 7.43 (1H, t, J 7.7, 

isoquinolin-H), 7.36 (2H, s, SO2NH2), 6.13 (1H, t, J 6.6, NCH2CH=), 4.86 (2H, s, 

NCH2Ph), 4.63 (2H, d, J 6.6, NCH2CH=), 4.54 (2H, s, =CCH2N), 3.86 (3H, s, 

NMe), 3.41 (3H, s, NMe); δC (75 MHz, DMSO-d6); 162.2, 154.2, 150.8, 148.4, 

143.0, 142.9, 141.3, 135.9, 132.3, 129.7, 128.3, 127.8, 127.78, 126.8, 125.9, 123.3, 

123.2, 106.7, 49.7, 47.0, 38.1, 33.2, 29.4; υmax/cm
-1

 (solid); 3287, 2948, 1697, 1641, 

1599, 1546, 1492, 1431, 1412, 1360, 1334, 1227; m/z (ESI
+
) 543.1 (100%, MNa

+
); 

(Found MNa
+
, 543.1397. C25H24N6NaO5

32
S requires MNa, 543.1421). 

 

N-(2-Aminophenyl)-4-{[(4Z)-4-[2-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-

1H-purin-1-yl)ethylidene]-1-oxo-3,4-dihydroisoquinolin-2(1H)-

yl]methyl}benzamide (226b). 

Prepared by general procedure B from N-

allenylpurine 195 (0.116 g, 0.50 mmol), methyl 2-

iodobenzoate 224 (0.09 mL, 0.60 mmol), 4-

(aminomethyl)-N-(2-aminophenyl)benzamide 
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222
130b

 (0.169 g, 0.70 mmol), Pd2(dba)3 (0.0114 g, 2.5 mol%), TFP (0.0116 g, 10 

mol%) and K2CO3 (0.204 g, 1.50 mmol) in MeCN (4 mL) at 80 ºC for 3 h. The 

product precipitated from hot solution during the reaction. The reaction mixture was 

cooled, filtered and the precipitate washed with water to give the crude product 

which crystallised from CHCl3 to give the product 226b (0.16 g, 56%) as fine 

colourless needles, mp 222-224 °C; δH (300 MHz, CDCl3); 8.15 (1H, dd, J 1.4 and 

7.4, Ar-H), 8.11 (1H, br s, NH), 7.84 (2H, d, J 8.2, Ar-H), 7.54-7.37 (6H, m, Ar-H), 

7.31 (1H, d, J 7.7, Ar-H), 7.08 (1H, dt, J 1.4 and 8.2, Ar-H), 6.83 (1H, d, J 7.7, Ar-

H), 6.82 (1H, t, J 7.2, Ar-H), 6.20 (1H, t, J 7.2, NCH2CH=), 4.94 (2H, s, NCH2), 

4.66 (2H, d, J 7.2, NCH2CH=), 4.51 (2H, s, =CCH2N), 3.96 (2H, br s, NH2), 3.90 

(3H, s, NMe), 3.54 (3H, s, NMe); δC (75 MHz, CDCl3); 163.6, 154.8, 151.3, 148.9, 

141.8, 141.3, 140.8, 136.4, 133.3, 132.2, 131.9, 128.7, 128.6, 128.0, 127.7, 127.6, 

127.2, 125.3, 124.5, 123.1, 122.0, 119.6, 118.3, 107.5, 50.4, 47.2, 38.2, 33.6, 29.8 

(one aromatic carbon atom could not be located due to peak overlaps); υmax/cm
-1

 

(film); 3345, 3008, 1704, 1645, 1548, 1505, 1455, 1413, 1361, 1313, 1234; m/z 

(ESI
+
) 598.2 (74%, MNa

+
); (Found MNa

+
, 598.2164. C32H29N7NaO4 requires MNa, 

598.2173). NOE data (CDCl3) for 226b: 

 % Enhancement 

Irradiated proton 1-H 2-H 4-H NCH2 phenyl-H 

1-H  5.02 3.43 - - 

2-H 3.82  - - 14.25 (δ 7.52) 

4-H 3.63 -  2.42 2.38 (δ 7.46) 

 

General procedure D: preparation of bisallene. 

A mixture of dialkyne (1 equiv.), paraformaldehyde (5 equiv.), dicyclohexylamine 

(3.6 equiv.) and CuI (1 equiv.) in dry dioxane was refluxed and magnetically stirred 

for 40 min-3 h. The mixture was then cooled, filtered and the filtrate evaporated 

under vacuum. The residue was dissolved in CHCl3 and the organic layer washed 

with 10% v/v ammonia solution and finally with water. The organic layer was dried 

over anhydrous MgSO4, filtered and the filtrate evaporated under vacuum. The 

residue was purified by flash column chromatography. 

 

1,3-Di(buta-2,3-dien-1-yl)pyrimidine-2,4(1H,3H)-dione (234). 

Prepared by general procedure D from dialkyne 233 (0.5 g, 

2.66 mmol), paraformaldehyde (0.5 g, 13.30 mmol), 
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dicyclohexylamine (1.90 mL, 9.57 mmol) and CuI (0.51 g, 2.66 mmol) in dioxane 

(15 mL) for 3 h.   Flash column chromatography eluting with 3:1 v/v hexane/EtOAc 

gave pure N
1
,N

3
-diallenyluracil 234 ( 0.39 g, 68%) as a pale yellow viscous oil; δH 

(300 MHz, CDCl3); 7.22 (1H, d, J 7.9, pyrimidinyl-H), 5.75 (1H, d, J 7.9, 

pyrimidinyl-H), 5.72 (2H, m, 2 x NCH2CH=), 4.90 (2H, m, NCH2), 4.80 (2H, m, 

NCH2), 4.55 (2H, m, =CH2). 4.36 (2H, m, =CH2); δC (75 MHz, CDCl3); 205.5, 

205.1, 159.0, 147.3, 138.3, 98.1, 82.6, 82.2, 74.4, 73.5, 43.7, 35.6; υmax/cm
-1

 (film); 

2952, 1957, 1709, 1661, 1454, 1391, 1347, 1220; m/z (ESI
+
) 217.1 (100%, MH

+
); 

(Found MH
+
, 217.0976. C12H13N2O2

 
requires MH, 217.0972).  

 

General procedure E: Pd catalysed 5-component cascades using splayed 

bisallenes. 

A mixture of bisallene (1 equiv.), aryl/heteroaryl iodide (2.4 equiv.), nucleophile 

(2.4 equiv.), Pd2(dba)3 (5 mol%), TFP (tri-(2-furyl)phosphine) (20 mol%), and 

K2CO3 (6 equiv.) in MeCN was stirred and heated at 80 °C (oil bath temperature). 

The mixture was cooled and the solvent was removed under reduced pressure, the 

residue was dissolved in CHCl3 and washed with H2O (1 x 20 mL). The organic 

layer was dried (anhydrous MgSO4), filtered, and the filtrate evaporated under 

reduced pressure. The residue was purified by flash chromatography. 

 

1,3-Bis[(2Z)-4-(8-fluoro-1,3,4,5-tetrahydro-2H-pyrido[4,3-b]indol-2-yl)-3-

(pyridin-3-yl)but-2-en-1-yl]pyrimidine-2,4(1H,3H)-dione (235a). 

Prepared by general procedure E from N
1
,N

3
-

diallenyluracil 234 (0.054g, 0.25 mmol), 3-

iodopyridine (0.123 g, 0.60 mmol), 8-fluoro-

2,3,4,4a,5,9b-hexahydro-1H-pyrido[4,3-

b]indole 187 (0.114 g, 0.60 mmol), Pd2(dba)3 

(0.0115 g, 5 mol%), TFP (0.0116 g, 20 mol%) and K2CO3 (0.207 g, 1.5 mmol) in 

MeCN (3 mL) at 80 ºC for 1 h. Flash column chromatography gradient eluting with 

EtOAc and then 10:1 v/v EtOAc/MeOH gave the product 235a (0.18 g, 96%) as a 

colourless amorphous solid, mp 127-129 °C; δH (300 MHz, CDCl3); 8.71 (2H, d, J 

2.0, pyridyl-H), 8.50 (1H, dd, J 1.4 and 4.7, pyridyl-H), 8.42 (1H, dd, J 1.4 and 4.7, 

pyridyl-H), 8.25 (1H, s, NH), 8.13 (1H, s, NH), 7,78 (2H, m, 2H, pyridinyl-H), 7.25 

(1H, d, J 7.9, pyrimidinyl-H), 7.25-7.22 (1H, m, pyridinyl-H), 7.18-7.11 (3H, m, 2 x 



- 150 - 

pyridoindolyl-H and pyridinyl-H), 7.01 (2H, dt, J 9.2 and 2.4, pyridoindolyl-H), 6.80 

(2H, dq, J 9.0 and 2.2, pyridoindolyl-H), 6.00 (1H, t, J 7.1, NCH2CH=), 5.94 (1H, t, 

J 6.6, NCH2CH=), 5.58 (1H, d, J 7.9, pyrimidinyl-H), 4.85 (2H, d, J 6.6, 

NCH2CH=), 4.69 (2H, d, J 7.1, NCH2CH=), 3.80 (2H, s, =CCH2N), 3.72 (2H, s, 

=CCH2N), 3.68 (4H, s, pyridoindolyl-H), 2.90-2.84 (4H, m, pyridoindolyl-H), 2.76-

2.69 (4H, m, pyridoindolyl-H); δC (75 MHz, CDCl3); 163.1, 158.2 (J 239.1), 158.1 

(J 239.1), 151.8, 149.3, 148.6, 148.3, 148.1, 142.7, 139.7, 137.8, 137.7, 137.5, 

134.8, 134.6, 134.4, 134.3, 132.9, 132.8, 128.5, 127.6, 126.8 (J 9.1), 126.5 (J 9.1), 

123.6, 123.4, 111.7 (J 9.1), 111.4 (J 9.1), 109.7 (J 27.6), 109.4 (J 29.9), 109.4 (J 

4.6), 108.8 (J 4.6), 103.1 (J 25.3), 102.7 (J 25.3), 102.2, 56.7, 56.2, 50.2, 50.0, 49.7, 

47.6, 40.0, 24.2, 24.1, (One aliphatic carbon atom could not be located due to peak 

overlaps); υmax/cm
-1

 (film); 2930, 1703, 1656, 1455, 1390, 1325, 1231; m/z (ESI
+
) 

751.3 (100%, MH
+
); (Found MH

+
, 751.3336. C44H41F2N8O2

 
requires MH, 

751.3315).  

 

1-[(2E)-4-(8-Fluoro-1,3,4,5-tetrahydro-2H-pyrido[4,3-b]indol-2-yl)-3-(2-

thienyl)but-2-en-1-yl]-3-[(2Z)-4-(8-fluoro-1,3,4,5-tetrahydro-2H-pyrido[4,3-

b]indol-2-yl)-3-(3-thienyl)but-2-en-1-yl]pyrimidine-2,4(1H,3H)-dione (235b). 

Prepared by general procedure E from N
1
,N

3
-

diallenyluracil 234 (0.054g, 0.25 mmol), 2-

iodothiophene (0.066 mL, 0.60 mmol), 8-

fluoro-2,3,4,4a,5,9b-hexahydro-1H-pyrido[4,3-

b]indole 187 (0.114 g, 0.60 mmol), Pd2(dba)3 

(0.0115 g, 5 mol%), TFP (0.0116 g, 20 mol%) and K2CO3 (0.207 g, 1.5 mmol) in 

MeCN (3 mL) at 80 ºC for 3 h. Flash column chromatography gradient eluting with 

1:1 v/v EtOAc/hexane  and then EtOAc gave the product 235b (0.15 g, 79%) as a 

colourless amorphous solid, mp 137-139 °C; δH (300 MHz, CDCl3); 7.94 (1H, s, 

NH), 7.88 (1H, s, NH), 7.34 (1H, d, J 7.9, pyrimidinyl-H), 7.22-6.79 (12H, m, 6 x 

pyridoindolyl-H and 6 x thienyl-H), 6.14 (1H, t, J 7.4, NCH2CH=), 6.09 (1H, t, J 

7.0, NCH2CH=), 5.72 (1H, d, J 7.9, pyrimidinyl-H), 4.85 (2H, d, J 7.0, NCH2CH=), 

4.79 (2H, d, J 7.4, NCH2CH=), 3.77 (2H, s, CH2), 3.75 (2H, s, CH2), 3.70 (2H, s, 

CH2), 3.68 (2H, s, CH2),  2.92-2.88 (4H, m, pyridoindolyl-H), 2.77 (4H, brs, 

pyridoindolyl-H); δC (75 MHz, CDCl3); 162.6, 157.7 (J 234.5) (2C), 151.4, 145.1, 
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144.8, 142.4, 135.9, 134.4, 133.9, 132.4, 127.5, 127.0, 126.5 (J 9.8), 126.2 (J 9.8), 

125.4, 124.7, 124.5, 124.4, 124.1, 123.1, 111.2 (J 11.2), 111.0 (J 9.2), 109.3 (J 

25.3), 109.1 (J 4.6), 109.0 (J 25.3), 108.5 (J 4.6), 102.8 (J 23.0), 1102.7 (J 23.0), 

101.5, 56.7, 56.3, 49.7, 49.5, 49.3, 46.8, 39.5, 23.8, (Two aromatic and two aliphatic 

carbon atoms could not be located due to peak overlaps); υmax/cm
-1

 (film); 2927, 

1700, 1652, 1481, 1455, 1380, 1324, 1231; m/z (ESI
+
) 761 (100%, MH

+
); (Found 

MH
+
, 761.2548. C42H39F2N6O2

32
S2 requires MH, 761.2538).  

 

1,3-Bis[(2Z)-3-[3,5-bis(trifluoromethyl)phenyl]-4-(8-fluoro-1,3,4,5-tetrahydro-

2H-pyrido[4,3-b]indol-2-yl)but-2-en-1-yl]pyrimidine-2,4(1H,3H)-dione (235c). 

Prepared by general procedure E from N
1
,N

3
-

diallenyluracil 234 (0.054g, 0.25 mmol), 1-

iodo-bis(3,5-trifluoromethyl)benzene (0.0.1 

mL, 0.60 mmol), 8-fluoro-2,3,4,4a,5,9b-

hexahydro-1H-pyrido[4,3-b]indole 187  (0.114 

g, 0.60 mmol), Pd2(dba)3 (0.0115 g, 5 mol%), 

TFP (0.0116 g, 20 mol%) and K2CO3 (0.207 g, 1.5 mmol) in MeCN (3 mL) at 80 ºC 

for 4 h. Flash column chromatography eluting with 1:1 v/v EtOAc/hexane gave the 

product 235c (0.14 g, 55%) as a colourless amorphous solid, mp 115-117 °C; δH 

(300 MHz, CDCl3); 8.00 (1H, s, NH), 7.91 (5H, d, J 7.4, 4 x bis-3,5-

trifluoromethylphenyl-H and NH), 7.78 (1H, s, bis-3,5-trifluoromethylphenyl-H), 

7.70 (1H, s, bis-3,5-trifluoromethylphenyl-H), 7.25 (1H, d, J 7.9, pyrimidinyl-H), 

7.16- 7.10 (2H, m, pyridoindolyl-H), 6.98 (2H, dt, J 11.4 and 2.3, pyridoindolyl-H), 

6.82 (2H, dq, J 9.3 and 2.2, pyridoindolyl-H), 6.06 (1H, t, J 6.8, NCH2CH=), 5.98 

(1H, t, J 6.4, NCH2CH=), 5.63 (1H, d, J 7.9, pyrimidinyl-H), 4.87 (2H, d, J 6.4, 

NCH2CH=), 4.71 (2H, d, J 6.8, NCH2CH=), 3.83 (2H, s, =CCH2N), 3.77 (2H, s, 

=CCH2N), 3.70 (4H, s, 2 x pyridoindolyl-CH2),  2.94-2.86 (4H, m, 2 x 

pyridoindolyl-CH2), 2.80-2.74 (4H, m, 2 x pyridoindolyl-CH2); δC (75 MHz, 

CDCl3); 162.7, 157.8 (J 234.5), 157.7 (J 232.2), 151.4, 143.7, 143.4, 142.3, 139.8, 

138.0, 134.1, 133.8, 132.2 (J 32.2), 131.3 (J 32.2), 129.5, 128.7, 126.8 (J 4.6), 126.7 

(J 4.6), 126.1 (J 9.2), 126.2 (J 9.2), 123.8, 123.5, 123.4 (J 273.6), 123.3 (J 273.6), 

120.9 (J 4.6), 120.8 (J 4.6), 111.3 (J 9.2), 111.0 (J 9.2), 109.4 (J 29.9), 109.1 (J 

27.6), 108.7 (J 4.2), 108.1 (J 4.2), 102.8 (J 25.3), 102.6 (J 23.0), 102.0, 56.2, 55.7, 
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50.0, 49.9, 49.0 (2 x C), 47.4, 39.6, 23.7, 23.5. υmax/cm
-1

 (film); 2927, 1707, 1659, 

1481, 1455, 1382, 1324, 1278; m/z (ESI
+
) 1021.3 (100%, MH

+
); (Found MH

+
, 

1021.2924. C50H39F14N6O2
 
requires MH, 1021.2905). 

NOE data for 235c: 

 % Enhancement 

Irradiated  

proton 
1-H 2-H 4-H BTFMP-H

* 
pyridoindolyl-H Pyrimidyl-H 

1-H (δ 4.71)  1.38 - -  -  1.97 (δ 7.25) 

2-H (δ 6.06) -  - 8.87 (δ 7.91)  - - 

4-H (δ 3.77) 1.40 -  5.88 (δ 7.91) 1.45 (δ 2.91) - 
 

 % Enhancement 

Irradiated proton 1′-H 2′-H 4′-H BTFMP-H
* 

pyridoindolyl-H 

1′-H (δ 4.87)  - 1.74 - - 

2′-H (δ 5.98) 1.34  - 7.73 (δ 7.91) - 

4′-H (δ 3.83) 1.86 -  3.71 (δ 7.91) 1.59 (δ 2.91) 

             *
BTFMP = bis-3,5-trifluoromethylphenyl 

 

 1,3-Bis[(2Z)-4-(8-fluoro-1,3,4,5-tetrahydro-2H-pyrido[4,3-b]indol-2-yl)-3-(1H-

indol-5-yl)but-2-en-1-yl]pyrimidine-2,4(1H,3H)-dione (235d). 

Prepared by general procedure E from N
1
,N

3
-

diallenyluracil 234 (0.054g, 0.25 mmol), 5-

iodoindole (0.145 g, 0.60 mmol), 8-fluoro-

2,3,4,4a,5,9b-hexahydro-1H-pyrido[4,3-

b]indole 187 (0.14 g, 0.60 mmol), Pd2(dba)3 

(0.0115 g, 5 mol%), TFP (0.0116 g, 20 mol%) 

and K2CO3 (0.207 g, 1.5 mmol) in MeCN (3 mL) at 80 ºC for 1 h. The solvent was 

cooled to precipitate cascade product, filter and wash the precipitate with water to 

dissolve K2CO3. The product 235d (0.12 g, 58%) crystallized from CHCl3 as pale 

yellow needles, mp 175-177 °C; δH (300 MHz, DMSO-d6); 11.06 (1H, brs, NH), 

10.01 (1H, brs, NH), 10.86 (1H, s, NH), 10.84 (1H, s, NH), 7.80 (1H, d, J 7.9, 

pyrimidinyl-H), 7.70 (1H, s, Ar-H), 7.64 (1H, s, Ar-H), 7.32-7.18 (8H, m, Ar-H), 

7.08 (1H, t, J 2.8, Ar-H), 7.05 (1H, t, J 2.6, Ar-H), 6.79 (2H, brt, J 9.2, Ar-H), 6.36 

(2H, brs, Ar-H), 5.96 (1H, t, J 6.4, NCH2CH=), 5.79 (1H, t, J 6.5, NCH2CH=), 5.70 

(1H, d, J 7.2, pyrimidinyl-H), 4.75 (2H, d, J 7.2, NCH2CH=), 4.72 (2H, d, J 7.2, 

NCH2CH=), 3.78 (4H, s, 2 x =CCH2N), 3.63 (4H, s, 2 x pyridoindolyl-CH2), 2.83 
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(4H, brs, 2 x pyridoindolyl-CH2), 2.69 (4H, brs, 2 x pyridoindolyl-CH2); υmax/cm
-1

 

(film); 3406, 1697, 1649, 1453, 1391, 1323, 1231; m/z (ESI
+
) 827.4 (100%, MH

+
); 

(Found MH
+
, 827.3640. C50H45F2N8O2

 
requires MH, 827.3628).  

 

1,3-Bis[(2Z)-4-[3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-

azabicyclo[3.2.1]oct-8-yl]-3-(pyridin-3-yl)but-2-en-1-yl]pyrimidine-2,4(1H,3H)-

dione (235e). 

Prepared by general procedure E 

from N
1
,N

3
-diallenyluracil 234 

(0.054g, 0.25 mmol), 3-

iodopyridine (0.123 g, 0.60 mmol), 

3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octane 188 (0.14 

g, 0.60 mmol), Pd2(dba)3 (0.0115 g, 5 mol%), TFP (0.0116 g, 20 mol%) and K2CO3 

(0.207 g, 1.5 mmol) in MeCN (3 mL) at 80 ºC for 2.5 h. Flash column 

chromatography eluting with 2:1 v/v EtOAc/MeOH gave the product 235e (0.16 g, 

76%) as a colourless amorphous solid, mp 112-115 °C; δH (300 MHz, CDCl3); 8.69 

(2H, s, pyridinyl-H), 8.54 (1H, dd, J 4.7 and 1.4, pyridinyl-H), 8.48 (1H, dd, J 4.7 

and 1.4, pyridinyl-H), 7.78 (2H, dd, J 7.9 and 1.8, pyridinyl-H), 7.29 (1H, d, J 7.9, 

pyrimidinyl-H), 7.29-7.22 (2H, m, pyridinyl-H), 5.89 (1H, t, J 6.7, NCH2CH=), 5.88 

(1H, t, J 6.7, NCH2CH=), 5.83 (1H, d, J 6.7, pyrimidinyl-H), 4.83 (2H, d, J 6.7, 

NCH2CH=), 4.71 (2H, d, J 6.7,  NCH2CH=), 4.22 (2H, m, azabicyclooctyl-H), 3.66 

(2H, s, =CCH2N), 3.60 (2H, s, =CCH2N), 3.40 (2H, brs, azabicyclooctyl-H), 3.35 

(2H, brs, azabicyclooctyl-H), 2.88 (2H, m, 2 x triazolyl 3-CH(CH3)2), 2.34 (3H, s, 

triazolyl 5-CH3), 2.32 (3H, s, triazolyl 5-CH3), 2.24-2.21 (2H, m, azabicyclooctyl-

H), 2.18-2.14 (2H, m, azabicyclooctyl-H), 1.98 (4H, dt, J 12.2 and 1.7, 

azabicyclooctyl-H), 1.71-1.60 (8H, m, azabicyclooctyl-H), 1.32 (6H, d, J 6.9, 

triazolyl 3-CH(CH3)2), 1.31 (6H, d, J 6.7, triazolyl 3-CH(CH3)2); δC (75 MHz, 

CDCl3); 162.9, 159.5, 159.5, 151.7, 151.0, 150.9, 149.2, 148.7, 148.6, 148.5, 142.1, 

141.0, 139.2, 137.5, 137.0, 134.8, 134.7, 127.0, 126.3, 123.3, 123.1, 102.8, 59.3, 

59.2, 51.6, 51.3, 47.5, 47.3, 47.2, 39.7, 37.9, 37.8, 27.0, 26.9, 26.2, 22.0, 13.2, 13.1, 

(Two of the aliphatic carbon atoms could not be located due to peak overlaps); 

υmax/cm
-1

 (film); 2964, 1703, 1660, 1513, 1453, 1415, 1346, 1222; m/z (ESI
+
) 839.3 

(11%, MH
+
); (Found MH

+
, 839.5176. C48H63N12O2 requires MH, 839.5191).  
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1,3-Bis[(2Z)-4-[3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-

azabicyclo[3.2.1]oct-8-yl]-3-(3-thienyl)but-2-en-1-yl]pyrimidine-2,4(1H,3H)-

dione (235f). 

Prepared by general procedure E 

from N
1
,N

3
-diallenyluracil 234 

(0.054g, 0.25 mmol), 3-iodothiophene (0.066 mL, 0.60 mmol), 3-(3-isopropyl-5-

methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]octane 188 (0.14 g, 0.60 mmol), 

Pd2(dba)3 (0.0115 g, 5 mol%), TFP (0.0116 g, 20 mol%) and K2CO3 (0.207 g, 1.5 

mmol) in MeCN (3 mL) at 80 ºC for 2 h. Flash column chromatography gradient 

elution with EtOAc and then 10:3 v/v EtOAc/MeOH gave the product 235f (0.18 g, 

85%) as a colourless amorphous solid, mp 105-107 °C; δH (300 MHz, CDCl3); 7.34 

(1H, d, J 7.9, pyrimidinyl-H), 7.25-7.18 (4H, m, thienyl-H), 7.00-6.93 (2H, m, 

thienyl-H), 6.05 (1H, t, J 6.7, NCH2CH=), 6.03 (1H, t, J 7.0, NCH2CH=), 5.79 (1H, 

d, J 7.9, pyrimidinyl-H), 4.81 (2H, d, J 6.7, NCH2CH=), 4.70  (2H, d, J 7.0,  

NCH2CH=), 4.29 (2H, m, azabicyclooctyl-H), 3.53 (2H, s, =CCH2N), 3.48 (2H, brs, 

azabicyclooctyl-H), 3.45 (2H, s, =CCH2N), 3.40 (2H, brs, azabicyclooctyl-H), 3.11-

2.99 (2H, m, 2 x triazolyl 3-CH(CH3)2), 2.52 (3H, s, triazolyl 5-CH3), 2.51 (3H, s, 

triazolyl 5-CH3), 2.33-2.19 (8H, m, azabicyclooctyl-H), 1.73-1.67 (8H, m, 

azabicyclooctyl-H), 1.37 (12H, d, J 6.7, triazolyl 3-CH(CH3)2); δC (75 MHz, CDCl3); 

163.0, 159.6, 159.5, 151.7, 151.2, 151.0, 145.1, 144.4, 142.2, 136.6, 135.1, 127.2, 

126.7, 126.3, 125.7, 124.9, 124.4, 124.0, 122.8, 102.5, 59.4, 52.3, 52.2, 47.8, 47.6, 

47.0, 39.7, 37.8, 37.7, 27.0, 27.9, 26.2, 22.1, 13.4, 13.3, (three of the aliphatic 

carbon atoms could not be located due to peak overlaps); υmax/cm
-1

 (film); 2964, 

1704, 1660, 1514, 1453, 1390, 1343, 1216; m/z (ESI
+
) 849.4 (8%, MH

+
); (Found 

MH
+
, 849.4441. C46H61N10O2

32
S2 requires MH, 849.4415).  

 

1,3-Bis{(2Z)-3-(1H-indol-5-yl)-4-[3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-

8-azabicyclo[3.2.1]oct-8-yl]but-2-en-1-yl}pyrimidine-2,4(1H,3H)-dione (235g). 

Prepared by general procedure E 

from N
1
,N

3
-diallenyluracil 234 

(0.054g, 0.25 mmol), 5-iodoindole 

(0.145 g, 0.60 mmol), 3-(3-

isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]-octane 188 (0.14 g, 
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0.60 mmol), Pd2(dba)3 (0.0115 g, 5 mol%), TFP (0.0116 g, 20 mol%) and K2CO3 

(0.207 g, 1.5 mmol) in MeCN (3 mL) at 80 ºC for 2 h. Flash column 

chromatography gradient eluting with 10:1 to 10:3 v/v EtOAc/MeOH gave the 

product 235g (0.17 g, 74%) as a colourless amorphous solid, mp 152-154 °C; δH 

(300 MHz, CDCl3); 10.31 (1H, brs, NH), 9.98 (1H, brs, NH), 7.71 (1H, s, indolyl-

H), 7.66 (1H, s, indolyl-H), 7.35-7.14 (7H, m, 6 x indolyl-H and pyrimidinyl-H), 

6.42 (2H, d, J 6.9, 2 x indolyl-H),  5.87 (1H, t, J 6.0, NCH2CH=), 5.81 (1H, t, J 6.4, 

NCH2CH=), 5.75 (1H, d, J 7.9, pyrimidinyl-H), 4.90 (2H, d, J 6.0, NCH2CH=), 4.70  

(2H, d, J 6.4,  NCH2CH=), 4.22 (2H, m, azabicyclooctyl-H), 3.71 (2H, s, =CCH2N), 

3.62 (2H, s, =CCH2N), 3.44 (2H, brs, azabicyclooctyl-H), 3.36 (2H, brs, 

azabicyclooctyl-H), 2.92-2.84 (2H, m, 2 x triazolyl 3-CH(CH3)2), 2.30 (3H, s, 

triazolyl 5-CH3), 2.28 (3H, s, triazolyl 5-CH3), 5.17 (2H, brs, azabicyclooctyl-H), 

2.06-1.99 (6H, m, azabicyclooctyl-H), 1.60 (8H, brs, azabicyclooctyl-H), 1.24 (6H, 

d, J 6.7, triazolyl 3-CH(CH3)2), 1.1.23 (6H, d, J 6.7, triazolyl 3-CH(CH3)2); υmax/cm
-

1
 (film); 2963, 1702, 1657, 1514, 1453, 1388, 1344, 1215; m/z (ESI

+
) 915.6 (5%, 

MH)
+
; (Found MH

+
, 915.5544. C54H67N12O2 requires MH, 915.5504).  

NOE data for 235g. 

 % Enhancement 

Irradiated 

proton 
1-H 2-H 4-H Indolyl-H Azabicyclooctyl-H Pyrimidinyl-H 

1-H (δ 4.90)  -14.2 -9.52 -2.59 (δ 7.71) -5.03 (δ 3.44) -4.83 (δ 7.25) 

2-H (δ 5.87) -18.02  -5.19 
-11.22 (δ 

7.71) 
- -18.01 (δ 7.25) 

4-H (δ 3.71) -16.79 -5.21  

-8.60 (δ 7.71), 

and -2.20 (δ 

6.42) 

-17.07 (δ 3.44), -

12.92 (δ 2.28), -5.33 

(δ 2.18) and -9.45 (δ 

1.60) 

-15.01 (δ 7.25) 

 

Irradiated 

proton 
1

′
-H 2

′
-H 4

′
-H Indolyl-H Azabicyclooctyl-H Pyrimidinyl-H 

1
′
-H  

(δ 4.70) 
 -14.4 -10.0 

-3.18 (δ 7.66) 

and -16.45 (δ 

7.34) 

- -7.57 (δ 5.75) 

2
′
-H  

(δ 5.81) 
-14.55  - 

-10.51 (δ 

7.66), -13.46 

(δ 7.33),  

-11.37 (δ 7.18) 

and -3.00 (δ 

6.43) 

- - 

4
′
-H  

(δ 3.62) 
-12.88 -4.05  

-7.30 (δ 7.66), 

-7.21 (δ 7.33), 

and -7.87 (δ 

7.18) 

-15.29 (δ 3.36), -

3.75 (δ 2.30), -7.29 

(δ 2.08), -5.57 (δ 

1.99) and -10.86 (δ 

1.58) 

-2.07 (δ 5.75) 
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1,3-Bis[(2Z)-4-(adamantan-1-ylamino)-3-(pyridin-3-yl)but-2-en-1-

yl]pyrimidine-2,4(1H,3H)-dione (235h). 

Prepared by general procedure E from N
1
,N

3
-

diallenyluracil 234 (0.054 g, 0.25 mmol), 3-

iodopyridine (0.123 g, 0.60 mmol), 1-

aminoadamantane 180 (0.182 g, 0.60 mmol), 

Pd2(dba)3 (0.0115 g, 5 mol%), TFP (0.0116 g, 20 mol%) and K2CO3 (0.21 g, 1.50 

mmol) in MeCN (3 mL) at 80 ºC for 3 h. Flash column chromatography gradient 

eluting with EtOAc and then 10:3 v/v EtOAc/MeOH gave the product 235h (0.14 g, 

83%) as a colourless amorphous solid, mp 93-95 °C; δH (300 MHz, CDCl3); 8.77 

(1H, d, J 1.9, pyridyl-H), 8.68 (1H, d, J 2.4, pyridyl-H),  8.52 (1H, dd, J 1.4 and 4.8, 

pyridyl-H), 8.46 (1H, dd, J 1.4 and 4.8, pyridyl-H), 7.88 (1H, dt, J 8.1 and 1.9, 

pyridyl-H), 7.76 (1H, dt, J 8.1 and 2.4, pyridyl-H), 7.53 (1H, d, J 8.1, pyrimidinyl-

H), 7.29-7.19 (2H, m, 2 x pyridinyl-H), 5.87 (1H, t, J 7.2, NCH2CH=), 5.86 (1H, t, J 

7.2, NCH2CH=), 5.77 (1H, d, J 8.1, pyrimidinyl-H), 4.83 (2H, d, J 7.2, NCH2CH=), 

4.67 (2H, d, J 7.2, NCH2CH=), 3.78 (2H, s, =CCH2N), 3.72 (2H, s, =CCH2N), 2.09 

(6H, br s, 6 x adamantyl-H), 1.75 (6H, d, J 2.4, 6 x adamantyl-H), 1.67 (18H, d, J 

2.4, 18 x adamantyl-H); δC (75 MHz, CDCl3); 162.8, 151.4, 149.1, 148.4, 147.7, 

147.5, 142.2, 141.4, 139.8, 137.2, 136.4, 133.7, 133.6, 125.0, 124.9, 123.3, 123.1, 

102.1, 51.0, 50.9, 46.8, 42.7, 42.6, 39.6, 39.4, 39.3, 36.8, 36.7, 29.7, 29.5; υmax/cm
-1

 

(film); 3309, 2906, 2848, 1704, 1660, 1567, 1453, 1415, 1391, 1358, 1343, 1310, 

1222; m/z (ESI
+
) 673.4 (100%, MH

+
); (Found MH

+
, 673.4240. C42H56N6O2 requires 

MH, 673.4225). 

 

1,3-Bis[(2Z)-4-(adamantan-1-ylamino)-3-(1H-indol-5-yl)but-2-en-1-

yl]pyrimidine-2,4(1H,3H)-dione (235i). 

Prepared by general procedure E from N
1
,N

3
-

diallenyluracil 234 (0.054 g, 0.25 mmol), 5-

iodoindol (0.146 g, 0.60 mmol), 1-

aminoadamantane 180 (0.182 g, 0.60 mmol), 

Pd2(dba)3 (0.0115 g, 5 mol%), TFP (0.0116 g, 20 mol%) and K2CO3 (0.21 g, 1.50 

mmol) in MeCN (3 mL) at 80 ºC for 2 h. Flash column chromatography eluting with 

EtOAc gave the product 235i (0.13 g, 70%) as a colourless amorphous solid, mp 
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145-147 °C; δH (300 MHz, CDCl3/MeOH-d4); 8.86 (1H, br s, NH), 8.71 (1H, NH), 

7.70 (1H, d, J 1.0, indolyl-H), 7.63 (1H, d, J 1.0, indolyl-H), 7.58 (1H, d, J 8.1, 

pyrimidinyl-H), 7.32-7.15 (6H, m, 6 x indolyl-H), 6.51 (1H, d, J 2.9, indolyl-H), 

6.48 (1H, d, J 3.3, indolyl-H), 5.84 (1H, t, J 7.2, NCH2CH=), 5.74 (1H, t, J 7.2, 

NCH2CH=), 5.73 (1H, d, J 8.1, pyrimidinyl-H), 4.83 (2H, d, J 7.2, NCH2CH=), 4.63 

(2H, d, J 7.2, NCH2CH=), 3.93 (2H, s, =CCH2N), 3.76 (2H, s, =CCH2N), 2.06 (6H, 

br s, 6 x adamantyl-H), 1.73 (6H, d, J 1.9, 6 x adamantyl-H), 1.65 (18H, br d, J 5.2, 

18 x adamantyl-H); δC (75 MHz, CDCl3/MeOH-d4); 163.3, 151.6, 144.7, 143.3, 

142.6, 135.6, 135.4, 132.7, 131.7, 128.0, 127.9, 125.0, 124.5, 122.2, 121.9, 121.0, 

120.7, 118.6 118.5, 111.3, 110.9, 102.6, 101.6, 51.1, 51.0, 46.7, 42.4 (3 x C), 42.2 (3 

x C), 40.0, 39.2, 36.7 (3 x C), 36.6 (3 x C), 29.6 (3 x C), 29.5 (3 x C) (One aliphatic 

and one aromatic carbon atoms could not be located due to peak overlaps); υmax/cm
-1

 

(solid); 2902, 2847, 1703, 1651, 1454, 1390, 1356, 1310, 1215; m/z (ESI
+
) 749.5 

(12.5%, MH
+
); (Found MH

+
, 749.4537. C48H57N6O2 requires MH, 749.4538). 

 

Dimethyl (2S,2'S)-2,2'-[(2,4-dioxopyrimidine-1,3(2H,4H)-diyl)bis{[(2Z)-2-

(pyridin-3-yl)but-2-ene-4,1-diyl]imino(1-oxoethane-2,1-diyl)imino}]diprop-

anoate (235j). 

Prepared by general procedure E 

from N
1
,N

3
-diallenyluracil 234 

(0.054g, 0.25 mmol), 3-

iodopyridine (0.123 g, 0.60 mmol), 

methyl (2S)-2-[(aminoacetyl)amino]propanoate hydrochloride 209 (0.118 g, 0.60 

mmol), Pd2(dba)3 (0.0115 g, 5 mol%), TFP (0.0116 g, 20 mol%) and K2CO3 (0.207 

g, 1.5 mmol) in MeCN (3 mL) at 80 ºC for 3 h. Work up by flash column 

chromatography gradient elution with EtOAc and then 10:4 v/v EtOAc/MeOH gave 

the product 235j (0.12 g, 70%) as a colourless gum; [α]D
26

 -3.1 (c, 31 mg/ 1 mL 

CHCl3); δH (300 MHz, CDCl3); 8.67 (2H, d, J 1.5, 2 x pyridyl-H), 8.56 (1H, dd, J 

1.5 and 5.1, pyridyl-H), 8.51 (1H, dd, J 1.5 and 5.1, pyridyl-H), 7.77 (2H, m, 2 x 

pyridyl-H), 7.55 (1H, d, J 7.7, CONH), 7.39 (1H, d, J 7.7, pyrimidinyl-H), 7.34-7.24 

(2H, m, 2 x pyridinyl-H), 5.88 (1H, t, J 7.2, NCH2CH=), 5.85 (1H, t, J 7.2, 

NCH2CH=), 5.82 (1H, d, J 7.7, pyrimidinyl-H), 4.85 (1H, dd, 7.2 and 14.3, HA, 

NCH2CH=), 4.79 (1H, dd, 7.2 and 14.3, HB, NCH2CH=), 4.67 (2H, t, J 7.2, 

NCH2CH=),4.60-4.54 (2H, m, 2 x CHCO2Me), 3.91-3.72 (4H, m, 2 x =CCH2N), 
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3.73 (3H, s, CO2Me), 3.71 (3H, s, CO2Me), 3.35 (2H, s, NHCH2CO), 3.27 (2H, d, J 

9.7, NHCH2CO), 1.99 (2H, br s, 2 x NH), 1.37 (3H, d, J 7.7, CHMe), 1.31 (3H, d, J 

7.2, CHMe); δC (75 MHz, CDCl3); 173.9, 173.7, 171.8, 171.6, 163.1, 151.8, 149.7, 

149.2, 148.3, 148.2, 142.9, 139.8, 139.2, 137.0, 136.0, 134.5, 134.4, 126.8, 126.7, 

123.9, 123.6, 102.7, 52.9, 52.8, 52.5, 51.8, 48.2, 48.0, 47.9, 47.6, 39.7, 18.2 (2 x C), 

(One aliphatic carbon atom could not be located due to peak overlaps); υmax/cm
-1

 

(film); 3331, 2928, 1742, 1653, 1520, 1455, 1348, 1221; m/z (ESI
+
) 691.3 (100%, 

MH
+
); (Found MH

+
, 691.3215. C34H43N8O8 requires MH, 691.3198). 

 

Dimethyl (2S,2'S)-2,2'-[(2,4-dioxopyrimidine-1,3(2H,4H)-diyl)bis{[(2E)-2-(2-

thienyl)but-2-ene-4,1-diyl]imino(1-oxoethane-2,1-diyl)imino}]dipropa-noate 

(235k). 

Prepared by general procedure E 

from N
1
,N

3
-diallenyluracil 234 

(0.069 g, 0.319 mmol), 2-

iodothiophene (0.084 mL, 0.76 

mmol), methyl (2S)-2-

[(aminoacetyl)amino]propanoate hydrochloride 209 (0.15 g, 0.76 mmol), Pd2(dba)3 

(0.0145 g, 5 mol%), TFP (0.0147 g, 20 mol%) and K2CO3 (0.264 g, 1.91 mmol) in 

MeCN (3 mL) at 80 ºC for 1.5 h. Work up by flash column chromatography gradient 

elution with EtOAc and then 20:1 v/v EtOAc/MeOH gave the product 235k (0.15 g, 

67%) as a colourless gum; [α]D
24

 -3.6 (c, 14 mg/ 1 mL CHCl3); δH (300 MHz, 

CDCl3); 7.82 (1H, d, J 8.1, CONH), 7.55 (1H, d, J 7.6, CONH), 7.39 (1H, d, J 7.6, 

pyrimidinyl-H), 7.22 (1H, d, J 5.2, thienyl-H), 7.18-7.15 (3H, m, 3 x thienyl-H), 

7.02-6.95 (2H, m, 2 x thienyl-H), 5.99 (2H, t, J 7.4, 2 x NCH2CH=), 5.79 (1H, d, J 

7.6, pyrimidinyl-H), 4.81 (1H, dd, J 7.4 and 14.3, HA, NCH2CH=), 4.76 (1H, dd, J 

7.4 and 14.3, HB, NCH2CH=), 4.65-4.54 (4H, m, 2 x NCH2CH= and 2 x 

CHCO2Me), 3.88-3.71 (4H, m, 2 x =CCH2N), 3.72 (3H, s, CO2Me), 3.71 (3H, s, 

CO2Me), 3.40 (2H, s, NHCH2CO), 3.35 (2H, d, J 6.7, NHCH2CO), 2.27 (2H, br s, 2 

x NH), 1.39 (3H, d, J 7.2, CHMe), 1.38 (3H, d, J 7.2, CHMe); δC (75 MHz, CDCl3); 

173.7, 173.3, 171.6, 171.2, 162.8, 151.4, 144.5, 143.4, 142.5, 135.6, 135.1, 127.7, 

127.4, 125.3, 124.7, 124.6, 124.1, 122.9, 122.7, 102.1, 52.4, 52.3, 52.2, 51.7, 48.4, 

47.8, 47.6, 47.5, 47.1, 39.2, 18.01, 18.00 ; υmax/cm
-1

 (film); 3333, 3007, 2953, 1742, 
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1660, 1525, 1453, 1343, 1215; m/z (ESI
+
) 723.2 (100%, MNa

+
); (Found MNa

+
, 

723.2252. C32H40N6Na1O8
32

S2 requires MNa, 723.2241). 

 

3-[(2Z)-4-(Adamantan-1-ylamino)-3-(pyridin-3-yl)but-2-en-1-yl]-1-(buta-2,3-

dien-1-yl)pyrimidine-2,4(1H,3H)-dione (236a) and 1-[(2Z)-4-(Adamantan-1-

ylamino)-3-(pyridin-3-yl)but-2-en-1-yl]-3-(buta-2,3-dien-1-yl)pyrimidine-

2,4(1H,3H)-dione (236b). 

Prepared by general procedure B from N
1
,N

3
-diallenyluracil 234 (0.051 g, 0.236 

mmol), 3-iodopyridine (0.058 g, 0.283 mmol), 1-aminoadamantane 180 (0.036 g, 

0.236 mmol), Pd2(dba)3 (0.0054 g, 2.5 mol%), TFP (0.0055 g, 10 mol%) and K2CO3 

(0.11 g, 0.708 mmol) in MeCN (3 mL) at 80 ºC for 3 h. Flash column 

chromatography gradient elution with EtOAc and then 10:2 v/v EtOAc/MeOH gave 

the first two products 236a and 236b. Increasing the elution polarity to 10:3 v/v 

EtOAc/MeOH gave the third product 235h (0.031 g, 19%). 

Compound 236a was obtained as a pale yellow gum 

(0.026 g, 25%); δH (300 MHz, CDCl3); 8.77 (1H, d, J 1.6, 

pyridinyl-H), 8.46 (1H, dd, J 1.1 and 4.4, pyridinyl-H), 

7.88 (1H, dt, J 1.6 and 7.7, pyridinyl-H), 7.23 (1H, dd, J 

4.4 and 7.7, pyridinyl-H), 7.19 (1H, d, J 8.2, pyrimidinyl-H), 5.86 (1H, t, J 7.1, 

NCH2CH=CCH2), 5.78 (1H, d, J 8.2, pyrimidinyl-H), 5.33-5.24 (1H, m, 

NCH2CH=C=), 4.91-4.87 (2H, m, =C=CH2), 4.82 (2H, d, J 7.1, NCH2CH=), 4.38-

4.34 (2H, m, NCH2CH=C=), 3.78 (2H, s, CH=CCH2N), 2.09 (3H, br s, 3 × 

adamantyl-CH), 1.75 (6H, br d, J 2.2, 3 × adamantyl-CH2), 1.66 (6H, br s, 3 × 

adamantyl-CH2); δc (75 MHz, CDCl3); 209.3, 162.8, 151.2, 148.4, 147.7, 141.9, 

139.7, 137.2, 133.7, 124.9, 123.1, 102.0, 86.2, 78.1, 51.0, 47.4, 42.5, 39.5, 39.3, 

36.8, 29.6; υmax/cm
-1

 (film); 3308, 2906, 2848, 1957, 1705, 1661, 1454, 1416, 1391, 

1358, 1310, 1219; m/z (ESI
+
) 445.3 (100%, MH

+
); (Found MH

+
, 445.2608. 

C27H33N4O2 requires MH, 445.2598). 

Compound 236b was obtained as a pale yellow gum 

(0.024 g, 23%); δH (300 MHz, CDCl3); 8.69 (1H, d, J 2.2, 

pyridinyl-H), 8.52 (1H, dd, J 1.6 and 4.9, pyridinyl-H), 

7.77 (1H, dt, J 2.2 and 8.2, pyridinyl-H), 7.50 (1H, d, J 

8.0, pyrimidinyl-H), 7.27 (1H, dd, J 4.9 and 8.2, pyridinyl-H), 5.85 (1H, t, J 7.1, 
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NCH2CH=CCH2), 5.76 (1H, d, J 8.0, pyrimidinyl-H), 5.33-5.24 (1H, m, 

NCH2CH=C=), 4.82-4.78 (2H, m, =C=CH2), 4.67 (2H, d, J 7.1, NCH2CH=), 4.59-

4.55 (2H, m, NCH2CH=C=), 3.73 (2H, s, CH=CCH2N), 2.11 (3H, br s, 3 × 

adamantyl-CH), 1.70-1.60 (12H, br m, 6 × adamantyl-CH2); δc (75 MHz, CDCl3); 

208.9, 162.6, 151.3, 149.0, 147.5, 142.2, 141.0, 136.4, 133.7, 125.3, 123.3, 102.0, 

85.9, 77.1, 51.2, 46.9, 42.6, 39.4 (2 × C), 36.6, 29.5; υmax/cm
-1

 (film); 3312, 2906, 

2848, 1957, 1706, 1661, 1454, 1416, 1391, 1358, 1224; m/z (ESI
+
) 445.3 (100%, 

MH
+
); (Found MH

+
, 445.2619. C27H33N4O2 requires MH, 445.2598). 

 

General procedure F: preparation of more complex bis-alkynes 238. 

A mixture of pyridopyrimidine 237 (1 equiv.), K2CO3 (6 equiv.) and propargyl 

bromide 193 (4 equiv.) in DMF was magnetically stirred at rt for 16 h. The reaction 

mixture was poured into ice cold water and the solid product collected by filtration, 

washed with cold water and dried under vacuum. The crude solid was crystallised to 

give the dialkyne 238. 

 

7-(2-Furyl)-1,3-di(prop-2-yn-1-yl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione 

(238a). 

Prepared by general procedure F from 237a (1g, 4.37 mmol), 

propargyl bromide (2.10 mL, 17.47 mmol), K2CO3 (3.60 g, 

26.20 mmol) in DMF (20 mL). The product 238a crystallized 

from MeOH as colourless needles (0.92 g, 71%), mp 220-222 °C;  δH (300 MHz, 

DMSO-d6); 8.44 (1H, d, J 8.2, pyrido-H), 8.01 (1H, d, J 1.6, furyl-H), 7.69 (1H, d, J 

8.2, pyrido-H), 7.45 (1H, d, J 3.5, furyl-H), 6.77 (1H, dd, J 1.6 and 3.5, furyl-H), 

5.05 (2H, d, J 2.2, NCH2), 4.68 (2H, d, J 2.2, NCH2), 3.21-3.19 (2H, m, 2 × ≡CH); 

δC (75 MHz, DMSO-d6); 159.3, 151.7, 151.6, 149.4, 149.3, 146.6, 138.7, 113.9, 

113.5, 113.1, 108.3, 79.2, 78.8, 73.6, 73.5, 31.6, 30.7; υmax/cm
-1

 (solid); 3268, 1713, 

1667, 1601, 1552, 1472, 1451, 1416, 1336; m/z (ESI
+
) 328.1 (100%, MNa

+
); (Found 

MNa
+
, 328.0708. C17H11N3NaO3 requires MNa, 328.0693). 

 

9,11-Di(prop-2-yn-1-yl)-6,11-dihydrobenzo[h]pyrimido[4,5-b]quinoline-

8,10(5H,9H)-dione (238b). 

Prepared by general procedure F from 237b (1g, 3.77 mmol), 

propargyl bromide (1.81 mL, 16.29 mmol), K2CO3 (3.10 g, 
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22.79 mmol) in DMF (25 mL). The product 238b crystallized from MeOH as 

colourless needles (1.15 g, 89%), mp 212-214 °C;  δH (300 MHz, DMSO-d6); 8.33-

8.30 (1H, m, aryl-H), 8.30 (1H, s, 7-H), 7.49-7.42 (2H, m, 2 × aryl-H), 7.38-7.35 

(1H, m, aryl-H), 5.10 (2H, d, J 2.2, NCH2), 4.69 (2H, d, J 2.2, NCH2), 3.21 (2H, t, J 

2.2, 2 × ≡CH), 3.05-2.89 (4H, m, 5-CH2 and 6-CH2); δC (75 MHz, DMSO-d6); 

159.5, 155.9, 149.4, 148.0, 139.7, 136.5, 132.5, 131.1, 128.3, 127.8, 127.2, 125.9, 

108.6, 79.3, 78.9, 73.6, 73.5, 31.7, 30.7, 26.9, 25.9; υmax/cm
-1

 (film); 3287, 1712, 

1667, 1612, 1599, 1567, 1497, 1465, 1441, 1411, 1386, 1339, 1296, 1272; m/z 

(ESI
+
) 364.1 (100%, MNa

+
); (Found MNa

+
, 364.1067. C21H11N3NaO2 requires MNa, 

364.1054). 

 

7-(Biphenyl-4-yl)-1,3-di(prop-2-yn-1-yl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-

dione (238c). 

Prepared by general procedure F from 237c (1g, 3.17 

mmol), propargyl bromide (1.40 mL, 12.6 mmol), K2CO3 

(2.60 g, 19.12 mmol) in DMF (20 mL). The product 238c 

crystallized from CHCl3 as colourless needles (0.85 g, 69%), mp 218-220 °C;  δH 

(300 MHz, DMSO-d6); 8.40 (1H, d, J 8.2, pyrido-H), 8.28 (2H, d, J 8.2, aryl-H), 

7.97 (1H, d, J 8.2, pyrido-H), 7.82 (2H, d, J 8.2, aryl-H), 7.73 (2H, d, J 7.1, aryl-H), 

7.48 (2H, t, J 7.1, aryl-H), 7.40 (1H, d, J 7.1, aryl-H), 5.08 (2H, d, J 2.2, NCH2), 

4.66 (2H, d, J 2.2, NCH2), 43.26 (1H, t, J 2.2, ≡CH), 43.23 (1H, t, J 2.2, ≡CH); δC 

(75 MHz, DMSO-d6); 159.6, 159.4, 149.4, 149.0, 142.2, 138.9, 138.5, 135.4, 129.0, 

128.1, 127.9, 127.1, 126.7, 115.7, 108.7, 79.2, 78.8, 72.7, 73.5, 31.7, 30.7; υmax/cm
-1

 

(solid); 3259, 1710, 1667, 1598, 1454, 1412, 1341, 1266, 1231; m/z (ESI
+
) 414.1 

(70%, MNa
+
); (Found MNa

+
, 414.1195. C25H17N3NaO2 requires MNa, 414.1213). 

 

7-[4-(Dimethylamino)phenyl]-1,3-di(prop-2-yn-1-yl)pyrido[2,3-d]pyrimidine-

2,4(1H,3H)-dione (238d). 

Prepared by general procedure F from 237d (0.846 g, 

3.00 mmol), propargyl bromide (1.33 mL, 11.97 mmol), 

K2CO3 (2.48 g, 18.26 mmol) in DMF (20 mL). The 

product 238d crystallized from MeOH as yellow needles 

(0.79 g, 74%), mp 220-222 °C;  δH (300 MHz, DMSO-d6); 8.27 (1H, d, J 8.2, 
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pyrido-H), 8.10 (2H, d, J 8.8, 2 × phenyl-H), 7.78 (1H, d, J 8.2, pyrido-H), 6.80 (2H, 

d, J 8.8, phenyl-H), 5.05 (2H, d, J 2.2, NCH2), 4.67 (2H, d, J 2.2, NCH2), 3.20 (2H, 

br s, 2 × ≡CH), 3.2 (3H, s, NMe2); δC (75 MHz, DMSO-d6); 160.6, 159.5, 152.0, 

149.5, 149.0, 137.6, 128.7, 128.2, 123.3, 114.0, 111.7, 106.5, 79.3, 79.0, 73.44, 73.4, 

39.6, 21.0; υmax/cm
-1

 (film); 3285, 1711, 1667, 1590, 1446, 1415, 1394, 1347, 1281, 

1232; m/z (ESI
+
) 359.1 (53%, MH

+
); (Found MH

+
, 359.1498. C21H19N4O2 requires 

MH, 359.1503). 

 

7-(2,4-Dimethylphenyl)-1,3-di(prop-2-yn-1-yl)pyrido[2,3-d]pyrimidine-

2,4(1H,3H)-dione (238e). 

Prepared by general procedure F from 237e (0.69g, 2.58 

mmol), propargyl bromide (1.25 mL, 11.25 mmol), K2CO3 

(2.29 g, 16.84 mmol) in DMF (20 mL). The product 238e crystallized from 1:1 v/v 

CHCH3/n-hexane as colourless needles (0.85 g, 96%), mp 190-192 °C;  δH (300 

MHz, CDCl3); 8.52 (1H, d, J 8.2, pyrido-H), 7.43 (1H, d, J 7.2, phenyl-H), 7.41 (1H, 

d, J 8.2, pyrido-H), 7.16 (1H, s, phenyl-H), 7.15 (1H, d, J 7.2, phenyl-H),  5.18 (2H, 

d, J 2.7, NCH2), 4.89 (2H, d, J 2.7, NCH2), 2.50 (2H, s, Me), 2.40 (3H, s, Me), 2.23 

(1H, t, J 2.7, ≡CH), 2.19 (1H, t, J 2.7, ≡CH); δC (75 MHz, CDCl3); 165.2, 160.3, 

150.0, 149.0, 139.8, 138.1, 136.6, 135.6, 132.2, 130.0, 126.9, 119.9, 108.5, 78.6, 

77.9, 71.1(2 × C), 31.9, 31.0, 21.2, 21.0; υmax/cm
-1

 (film); 3271, 1715, 1673, 1601, 

1442, 1416, 1338, 1263, 1227; m/z (ESI
+
) 366.1 (100%, MNa

+
); (Found MNa

+
, 

366.1205. C21H17N3NaO2 requires MNa, 366.1213). 

 

1,3-Di(buta-2,3-dien-1-yl)-7-(2-furyl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione 

(239a). 

Prepared by general procedure D from dialkyne 238a (0.85 g, 

2.79 mmol), (CH2O)n (0.418 g, 13.95 mmol), 

dicyclohexylamine (1.99 mL, 10.04 mmol) and CuI (0.53 g, 

2.79 mmol) in 1,4-dioxane (4 mL) for 1.5 h. Flash column chromatography eluting 

with 6:1 v/v n-hexane/EtOAc gave the product 239a (0.56 g, 59%) as a colourless 

amorphous solid, mp 126-128 °C; δH (300 MHz, CDCl3); 8.46 (1H, d, J 8.2, pyrido-

H), 7.61 (1H, d, J 1.6, furyl-H), 7.59 (1H, d, J 8.2, pyrido-H), 7.28 (1H, dd, J 1.1 and 

3.3, furyl-H), 6.60 (1H, dd, J 1.6 and 3.3, furyl-H), 5.43-5.29 (2H, m, 2 × 
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NCH2CH=), 5.04-5.00 (2H, m, NCH2), 4.83-4.74 (4H, m, 2 × =CH2), 4.72-4.68 (2H, 

m, NCH2); δC (75 MHz, CDCl3); 209.6, 208.9, 160.6, 152.8, 152.7, 150.6, 150.3, 

145.1, 138.6, 113.4, 112.7, 112.5, 108.7, 86.0, 77.2, 76.8, 40.8, 39.9 (One aromatic 

carbon atom could not be located due to peak overlaps); υmax/cm
-1

 (solid); 1953, 

1707, 1660, 1599, 1558, 1473, 1445, 1421, 1289; m/z (ESI
+
) 356.1 (100%, MNa

+
); 

(Found MNa
+
, 356.1021. C19H15N3NaO3 requires MNa, 356.1006). 

 

9,11-Di(buta-2,3-dien-1-yl)-6,11-dihydrobenzo[h]pyrimido[4,5-b]quinoline-

8,10(5H,9H)-dione (239b). 

Prepared by general procedure D from dialkyne 238b (0.95 

g, 2.79 mmol), (CH2O)n (0.418 g, 13.95 mmol), 

dicyclohexylamine (1.99 mL, 10.04 mmol) and CuI (0.53 g, 

2.79 mmol) in 1,4-dioxane (4 mL) for 40 min. Flash column chromatography eluting 

with 10:1 v/v n-hexane/EtOAc gave the product 239b (0.61 g, 60%) as a colourless 

amorphous solid, mp 118-120 °C; δH (300 MHz, CDCl3); 8.37-8.34 (1H, m, aryl-H), 

8.22 (1H, s, 7-H), 7.42-7.34 (2H, m, 2 × aryl-H), 7.29-7.25 (1H, m, aryl-H), 5.47-

5.39 (1H, m, NCH2CH=), 5.38-5.30 (1H, m, NCH2CH=),  5.10-5.06 (2H, m, NCH2), 

4.82-4.76 (4H, m, 2 × =CH2), 4.71-4.67 (2H, m, NCH2), 2.99 (4H, br s, 5-CH2 and 

6-CH2); δC (75 MHz, CDCl3); 209.5, 208.9, 160.9, 156.7, 150.6, 149.0, 139.5, 136.5, 

133.2, 130.9, 128.1, 127.3, 127.26, 126.4, 109.0, 86.3, 86.1, 77.2, 76.9, 40.9, 39.9, 

27.9, 27.0; υmax/cm
-1

 (film); 2948, 1956, 1712, 1667, 1599, 1567, 1498, 1471, 1445, 

1417, 1385, 1353, 1297, 1259, 1219; m/z (ESI
+
) 392.1 (30%, MNa

+
); (Found MNa

+
, 

392.1364. C23H19N3NaO2 requires MNa, 392.1369). 

 

7-(Biphenyl-4-yl)-1,3-di(buta-2,3-dien-1-yl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-

dione (239c). 

Prepared by general procedure D from dialkyne 238c 

(1.0 g, 2.56 mmol), (CH2O)n (0.38 g, 12.8 mmol), 

dicyclohexylamine (1.83 mL, 9.21 mmol) and CuI 

(0.49 g, 2.56 mmol) in a mixture of 1,4-dioxane (4 mL) and DMF (2 mL) for 2.5 h. 

Flash column chromatography eluting with 5:1 v/v n-hexane/EtOAc gave the 

product 239c (0.40 g, 42%) as a colourless amorphous solid, mp 112-114 °C; δH 

(300 MHz, CDCl3); 8.45 (1H, d, J 8.2, pyrido-H), 8.22 (2H, d, J 8.8, aryl-H), 7.75-
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7.64 (5H, m, 4 × aryl-H and pyrido-H), 7.51-7.37 (3H, m, aryl-H), 5.49-5.40 (1H, m, 

NCH2CH=), 5.40-5.32 (1H, m, NCH2CH=), 5.12-5.09 (2H, m, NCH2), 4.84-4.77 

(4H, m, 2 × =CH2), 4.43-4.69 (2H, m, NCH2); δC (75 MHz, CDCl3); 209.5, 208.9, 

160.72, 160.7, 150.6, 150.2, 143.4, 140.1, 138.5, 136.2, 128.9, 128.0, 127.97, 127.6, 

127.1, 115.1, 109.0, 86.2, 86.0, 77.3, 77.0, 40.8, 39.9; υmax/cm
-1

 (film); 30.29, 1956, 

1712, 1667, 1597, 1558, 1492, 1455, 1423, 1319, 1354, 1262, 1227; m/z (ESI
+
) 

442.2 (18%, MNa
+
); (Found MNa

+
, 442.1515. C27H21N3NaO2 requires MNa, 

442.1526). 

 

1,3-Di(buta-2,3-dien-1-yl)-7-[4-(dimethylamino)phenyl]pyrido[2,3-

d]pyrimidine-2,4(1H,3H)-dione (239d). 

Prepared by general procedure D from di-alkyne 238d 

(0.70 g, 1.95 mmol), (CH2O)n (0.29 g, 9.8 mmol), 

dicyclohexylamine (1.39 mL, 7.02 mmol) and CuI (0.37 

g, 1.95 mmol) in 1,4-dioxane (3 mL) for 1.5 h. Flash column chromatography 

eluting with 5:1 v/v n-hexane/EtOAc and crystallization from 5:1 v/v n-

hexane/EtOAc gave the product 239d (0.51 g, 68%) as yellow needles, mp 130-132 

°C; δH (300 MHz, CDCl3); 8.37 (1H, d, J 8.2, pyrido-H), 8.09 (2H, d, J 9.1, 2 × 

phenyl-H), 7.56 (1H, d, J 8.2, pyrido-H), 6.78 (2H, d, J 9.1, phenyl-H), 5.48-5.40 

(1H, m, NCH2CH=), 5.39-5.31 (1H, m, NCH2CH=),  5.11-5.07 (2H, m, NCH2), 

4.83-4.76 (4H, m, 2 × =CH2), 4.72-4.68 (2H, m, NCH2), 3.08 (6H, s, NMe2); δC (75 

MHz, CDCl3); 209.5, 208.9, 161.4, 161.0, 152.1, 150.9, 150.1, 137.8, 128.9, 124.7, 

113.6,111.8, 107.8, 86.3, 86.2, 77.2, 76.8, 40.7, 40.2, 39.8; υmax/cm
-1

 (film); 1956, 

1705, 1661, 1590, 1450, 1422, 1392, 1349, 1229; m/z (ESI
+
) 387.2 (100%, MH

+
); 

(Found MH
+
, 387.1813. C23H23N4O2 requires MH, 387.1816). 

 

1,3-Di(buta-2,3-dien-1-yl)-7-(2,4-dimethylphenyl)pyrido[2,3-d]pyrimidine-

2,4(1H,3H)-dione (239e). 

Prepared by general procedure D from dialkyne 238e 

(0.75 g, 2.19 mmol), (CH2O)n (0.33 g, 11.00 mmol), 

dicyclohexylamine (1.56 mL, 7.88 mmol) and CuI (0.42 

g, 2.19 mmol) in 1,4-dioxane (4 mL) for 1.5 h. Flash column chromatography 

eluting with 5:1 v/v n-hexane/EtOAc followed by crystallization from 5:1 v/v n-
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hexane/CHCl3 gave the product 239e (0.45 g, 56%) as  colourless needles, mp 67-69 

°C; δH (300 MHz, CDCl3); 8.48 (1H, d, J 8.2, pyrido-H), 7.40 (1H, d, J 7.7, phenyl-

H), 7.35 (1H, d, J 8.2, pyrido-H), 7.14 (1H, s, phenyl-H), 7.13 (1H, d, J 7.7, phenyl-

H), 5.41-5.31 (2H, m, 2 × NCH2CH=), 5.02-4.98 (2H, m, NCH2), 4.84-4.79 (2H, m, 

NCH2), 4.74-4.69 (4H, m, 2 × =CH2), 2.46 (3H, s, Me), 2.39 (3H, s, Me); δC (75 

MHz, CDCl3); 209.0, 208.9, 164.8, 160.9, 150.6, 149.7, 139.6, 137.9, 136.4, 136.0, 

132.1, 130.0, 126.9, 119.4, 108.4, 86.6, 86.0, 77.2 (2 × C), 40.5, 40.0, 21.2, 20.9; 

υmax/cm
-1

 (film); 2957, 1957, 1713, 1667, 1598, 1563, 1447, 1390, 1354, 1260, 

1221; m/z (ESI
+
) 372.2 (48%, MH

+
); (Found MH

+
, 372.1696. C23H12N3O2 requires 

MH, 372.1707). 

 

1,3-Bis[(2Z)-4-(cyclopropylamino)-3-(pyridin-3-yl)but-2-en-1-yl]-7-(2-

furyl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (240a). 

Prepared by general procedure E from 239a (0.08 g, 0.24 

mmol), 3-iodopyridine (0.118 g, 0.57 mmol), 

cyclopropylamine (0.04 mL, 0.57 mmol), Pd2(dba)3 

(0.011 g, 5 mol%), TFP (0.011 g, 20 mol%) and K2CO3 

(0.196 g, 1.44 mmol) in MeCN (3 mL) at 80 ºC for 2 h. 

Flash column chromatography eluting with 5:1 v/v 

EtOAc/MeOH gave the product 240a (0.09 g, 63%) as a colourless froth, mp 70-72 

°C; δH (300 MHz, CDCl3); 8.71 (1H, d, J 1.6, aryl-H), 8.68 (1H, d, J 1.6, aryl-H), 

8.49-8.46 (3H, m, 3 × aryl-H), 7.80-7.74 (2H, m, 2 × aryl-H), 7.64 (1H, d, J 1.3, 

furyl-H), 7.61 (1H, d, J 8.2, aryl-H), 7.28 (1H, d, J 3.5, furyl-H), 7.24-7.19 (2H, m, 2 

× aryl-H), 6.61 (1H, dd, J 1.3 and 3.5, furyl-H), 6.04 (1H, t, J 7.1, NCH2CH=), 5.94 

(1H, t, J 7.1, NCH2CH=), 5.32 (2H, d, J 7.1, NCH2), 5.00 (2H, d, J 7.1, NCH2), 4.04 

(2H, s, NHCH2C=), 3.95 (2H, s, NHCH2C=), 2.27-2.20 (2H, m, 2 × cyclopropyl-

CH), 2.11 (2H, br s, 2 × NH), 0.51-0.39 (8H, m, 4 × cyclopropyl-CH2); δC (75 MHz, 

CDCl3); 160.7, 152.8, 152.5, 150.9, 150.3, 148.6, 148.57, 147.8, 145.3, 139.3, 

139.1, 138.6, 136.9, 136.8, 133.8, 126.1, 125.6, 123.2, 123.1, 113.9, 112.8, 112.7, 

108.8, 47.7, 47.6, 40.7, 40.1, 30.5, 30.4, 6.6, 6.5 (two aromatic carbon atoms could 

not be located due to peak overlaps); υmax/cm
-1

 (film); 3319, 3007, 2933, 1708, 1660, 

1598, 1563, 1475, 1449, 1417, 1399, 1360, 1334, 1291, 1265, 1224; m/z (ESI
+
) 

602.3 (100%, MH
+
); (Found MH

+
, 602.2879. C35H36N7O3 requires MH, 602.2874). 
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NOE data (CDCl3) for 240a: 

 % Enhancement 

Irradiated proton 1-H 2-H 4-H pyridinyl-H cyclopropyl-H 

1-H (δ 5.00)  5.07 3.82 - - 

2-H (δ 5.94) 2.79  - 
6.64 (δ 8.71), 

4.37 (δ 7.77) 
- 

4-H (δ 3.95) 4.76 -  
4.20 (δ 8.71), 

3.55 (δ 7.77) 
4.05 (δ 2.22) 

 % Enhancement 

Irradiated 

proton 
1′-H 2′-H 4′-H pyridinyl-H furyl-H 

cyclopropyl-

H 

1′-H (δ 5.32)  5.49 3.63 - - - 

2′-H (δ 6.04) 3.46  - 
6.65 (δ 8.68), 

4.21 (δ 7.75) 
- - 

4′-H (δ 4.04) 3.36 -  
3.62 (δ 8.68), 

3.18 (δ 7.75) 

1.16  

(δ 7.28) 
2.61 (δ 2.23) 

 

1,3-Bis[(2E)-4-(cyclopropylamino)-3-(2-thienyl)but-2-en-1-yl]-7-(2-

furyl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (240b). 

Prepared by general procedure E from 239a (0.08 g, 0.24 

mmol), 2-iodothiophene (0.06 mL, 0.57 mmol), 

cyclopropylamine (0.04 mL, 0.57 mmol), Pd2(dba)3 

(0.011 g, 5 mol%), TFP (0.011 g, 20 mol%) and K2CO3 

(0.196 g, 1.44 mmol) in MeCN (3 mL) at 80 ºC for 3 h. 

Flash column chromatography eluting with 6:1 v/v n-

hexane/EtOAc gave the product 240b (0.08 g, 55%) as a colourless froth; mp 94-96 

°C; δH (300 MHz, CDCl3); 8.46 (1H, d, J 8.2, pyrido-H), 7.62 (1H, d, J 1.4, furyl-H), 

7.60 (1H, d, J 8.2, pyrido-H), 7.28 (1H, d, J 3.3, furyl-H), 7.15-7.11 (4H, m, 4 × 

thienyl-H), 7.00-6.94 (2H, m, 2 × thienyl-H), 6.61 (1H, dd, J 1.4 and 3.3, furyl-H), 

6.17 (1H, t, J 7.1, NCH2CH=), 6.06 (1H, t, J 7.7, NCH2CH=), 5.28 (2H, d, J 7.1, 

NCH2), 4.96 (2H, d, J 7.7, NCH2), 4.04 (2H, s, NHCH2C=), 3.96 (2H, s, 

NHCH2C=), 2.32-2.24 (2H, m, 2 × cyclopropyl-CH), 1.95 (2H, br s, 2 × NH), 0.51-

0.47 (8H, m, 4 × cyclopropyl-CH2); δC (75 MHz, CDCl3); 160.8, 152.8, 152.6, 

150.9, 150.4, 145.2, 145.0, 144.9, 138.6, 135.9, 135.6, 127.4, 127.36, 124.5, 123.9, 

123.8, 122.7, 122.1, 113.8, 112.8, 112.6, 108.9, 48.1, 48.0, 40.6, 40.0, 30.3, 30.2, 

6.7, 6.6 (one aromatic carbon atom could not be located due to peak overlaps); 

υmax/cm
-1

 (film); 2926, 1706, 1661, 1597, 1562, 1475, 1448, 1399, 1367, 1335, 
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1267, 1224; m/z (ESI
+
) 612.2 (50%, MH

+
); (Found MH

+
, 612.2084. C33H34N5O3 

32
S2 

requires MH, 612.2098). 

 

9,11-Bis[(2Z)-3-(pyridin-3-yl)-4-(pyrrolidin-1-yl)but-2-en-1-yl]-6,11-

dihydrobenzo[h]pyrimido[4,5-b]quinoline-8,10(5H,9H)-dione (240c) 

Prepared by general procedure E from 239b (0.092 g, 

0.25 mmol), 3-iodopyridine (0.123 g, 0.60 mmol), 

pyrrolidine (0.05 mL, 0.60 mmol), Pd2(dba)3 (0.0114 g, 5 

mol%), TFP (0.0116 g, 20 mol%) and K2CO3 (0.20 g, 

1.50 mmol) in MeCN (3 mL) at 80 ºC for 1 h. Flash 

column chromatography eluting with 2:1 v/v 

EtOAc/MeOH gave the product 240c (0.13 g, 78%) as a colourless froth, mp 64-66 

°C; δH (300 MHz, CDCl3); 8.70 (2H, 2d, J 2.2, 2 × pyridinyl-H), 8.46-8.42 (2H, m, 2 

× pyridinyl-H), 8.34 (1H, dd, J 2.2 and 7.4, benzo-H), 8.27 (1H, s, 7-H), 7.81-7.75 

(2H, m, 2 × pyridinyl-H), 7.44-7.35 (2H, m, 2 × benzo-H), 7.30-7.27 (1H, m, benzo-

H), 7.27-7.15 (2H, m, 2 × pyridinyl-H), 6.03 (1H, t, J 6.6, NCH2CH=), 5.92 (1H, t, J 

6.6, NCH2CH=), 5.41 (2H, d, J 6.6, NCH2), 5.03 (2H, d, J 6.6, NCH2), 3.81 (2H, s, 

=CCH2N), 3.76 (2H, s, =CCH2N), 3.00 (4H, br s, 5-CH2 and 6-CH2), 2.58-2.55 (8H, 

m, 4 × pyrrolidinyl-CH2), 1.73-1.72 (8H, m, 4 × pyrrolidinyl-CH2); δC (75 MHz, 

CDCl3); 161.0, 157.0, 150.9, 149.2, 148.2, 148.0, 147.9, 139.6, 138.6, 138.1, 137.6, 

135.5, 136.6, 134.0, 133.9, 133.2, 131.0, 128.3, 127.6, 127.57, 127.3, 126.8, 126.3, 

122.9, 109.2, 54.4, 54.1, 54.0, 53.95, 40.9, 40.1, 27.8, 27.1, 23.63, 26.6 (two 

aromatic carbon atoms could not be located due to peak overlaps); υmax/cm
-1

 (film); 

2958, 2786, 1706, 1660, 1611, 1599, 1567, 1497, 1471, 1443, 1415, 1384, 1354, 

1295, 1259, 1219; m/z (ESI
+
) 666.4 (47%, MH

+
); (Found MH

+
, 666.3554. 

C41H44N7O2 requires MH, 666.3551). 

NOE data (CDCl3) for 240c: 

 % Enhancement 

Irradiated 

proton 
1-H 2-H 4-H pyridinyl-H pyrrolidinyl -H 

1-H (δ 5.03)  5.86 3.26 - - 

2-H (δ 5.92) 2.98  - 
6.45 (δ 8.70), 

4.58 (δ 7.76) 
- 

4-H (δ 3.76) 3.06 -  
3.57 (δ 8.70), 

3.57 (δ 7.76) 
5.44 (δ 2.55) 



- 168 - 

 % Enhancement 

Irradiated 

proton 
1′-H 2′-H 4′-H pyridinyl-H Benzo-H 

pyrrolidinyl -

H 

1′-H (δ 5.41)  5.48 3.35 - 1.65 (δ 8.34) - 

2′-H (δ 6.03) 2.68  - 
6.42 (δ 8.70), 

4.22 (δ 7.76) 
- - 

4′-H (δ 3.81) 3.42 -  
4.00 (δ 8.70), 

4.05 (δ 7.76) 
2.12 (δ 8.34) 8.68 (δ 2.58) 

 

9,11-Bis[(2E)-4-(pyrrolidin-1-yl)-3-(2-thienyl)but-2-en-1-yl]-6,11-

dihydrobenzo[h]pyrimido[4,5-b]quinoline-8,10(5H,9H)-dione (240d). 

Prepared by general procedure E from 239b (0.092 g, 

0.25 mmol), 2-iodothiophene (0.066 g, 0.60 mmol), 

pyrrolidine (0.05 mL, 0.60 mmol), Pd2(dba)3 (0.0114 g, 5 

mol%), TFP (0.0116 g, 20 mol%) and K2CO3 (0.20 g, 

1.50 mmol) in MeCN (3 mL) at 80 ºC for 3 h. Flash 

column chromatography eluting with EtOAc gave the 

product 240d (0.09 g, 53%) as a colourless froth, mp 66-68 °C; δH (300 MHz, 

CDCl3); 8.36 (1H, m, benzo-H), 8.26 (1H, s, 7-H), 7.44-7.35 (2H, m, 2 × benzo-H), 

7.29-7.26 (1H, m, benzo-H), 7.20-7.17 (2H, m, 2 × thienyl-H), 7.12-7.08 (2H, m, 2 × 

thienyl-H), 6.94-6.89 (2H, m, 2 × thienyl-H), 6.21 (1H, t, J 6.6, NCH2CH=), 6.08 

(1H, t, J 7.1, NCH2CH=), 5.36 (2H, d, J 6.6, NCH2), 4.99 (2H, d, J 7.1, NCH2), 3.78 

(2H, s, =CCH2N), 3.73 (2H, s, =CCH2N), 3.00 (4H, br s, 5-CH2 and 6-CH2), 2.64 

(8H, br dd, J 2.7 and 6.6, 4 × pyrrolidinyl-CH2), 1.77 (8H, dr d, J 5.5, 4 × 

pyrrolidinyl-CH2); δC (75 MHz, CDCl3); 161.1, 156.9, 150.9, 149.3, 145.5, 145.45, 

139.6, 136.6, 135.1, 134.7, 133.3, 130.9, 128.2, 127.5, 127.3, 127.0, 127.01, 126.4, 

124.5, 124.1, 124.0, 123.9, 123.3, 109.3, 54.9, 54.5, 54.0, 53.9, 40.9, 40.1, 27.9, 

27.1, 23.74, 23.7 (one aromatic carbon atom could not be located due to peak 

overlaps); υmax/cm
-1

 (film); 2960, 2785, 1705, 1660, 1611, 1599, 1567, 1497, 1470, 

1443, 1383, 1294, 1269, 1216; m/z (ESI
+
) 676.3 (14%, MH

+
); (Found MH

+
, 

676.2783. C39H42N5O2
32

S2 requires MH, 676.2774). 

 

9,11-Bis[(2Z)-3-(1H-indol-5-yl)-4-(pyrrolidin-1-yl)but-2-en-1-yl]-6,11-

dihydrobenzo[h]pyrimido[4,5-b]quinoline-8,10(5H,9H)-dione (240e). 

Prepared by general procedure E from 239b (0.09 g, 0.25 mmol), 5-iodoindole 

(0.146 g, 0.60 mmol), pyrrolidine (0.05 mL, 0.60 mmol), Pd2(dba)3 (0.0114 g, 5 
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mol%), TFP (0.0116 g, 20 mol%) and K2CO3 (0.20 g, 

1.50 mmol) in MeCN (3 mL) at 80 ºC for 1 h. The 

product precipitated from hot solution. The reaction 

was cooled, filtered and the precipitate washed with 

water to give the crude product crystallisation from 

DMF gave 240e  (0.12 g, 65%) as an amorphous 

solid, mp 187-189 °C; δH (300 MHz, DMSO-d6); 11.01 (1H, br s, NH), 10.98 (1H, 

br s, NH), 8.25 (1H, d, J 7.1, aryl-H), 8.20 (1H, s, 7-H), 7.59 (2H, d, J 11.0, 2 × aryl-

H), 7.44-7.13 (9H, m, 9 × aryl-H), 6.33 (2H, dt, J 13.2 and 2.2, 2 × indolyl-H), 5.87 

(1H, t, J 5.9, NCH2CH=), 5.79 (1H, t, J 6.2, NCH2CH=), 5.19 (2H, d, J 5.9, NCH2), 

4.81 (2H, d, J 6.2, NCH2), 3.73 (2H, s, =CCH2N), 3.66 (2H, s, =CCH2N), 2.92 (4H, 

br s, 5-CH2 and 6-CH2), 2.49 (8H, br s, 4 × pyrrolidinyl-CH2), 1.60 (8H, br d, J 4.4, 

4 × pyrrolidinyl-CH2); δC (75 MHz, DMSO-d6); 160.3, 155.3, 150.4, 148.9, 140.7, 

140.3, 139.6, 136.2, 135.2, 135.1, 132.8, 132.7, 132.69, 130.8, 128.3, 127.44, 127.4, 

127.0, 125.6, 125.5, 124.7, 123.9, 120.0, 119.9, 117.7, 117.6, 110.7 (2 × C), 109.2, 

101.3, 101.2, 54.4, 54.1, 53.4 (2 × C), 40.7, 39.7, 27.0, 26.0, 23.1 (2 × C) (two 

aromatic carbon atoms could not be located due to peak overlaps); υmax/cm
-1

 (solid); 

3246, 2973, 2790, 1706, 1651, 1614, 1567, 1442, 1384, 1355, 1223; m/z (ESI
+
) 

742.4 (12%, MH
+
); (Found MH

+
, 742.3890. C47H48N7O2 requires MH, 742.3864). 

 

7-(Biphenyl-4-yl)-1,3-bis[(2Z)-3-(pyridin-3-yl)-4-(pyrrolidin-1-yl)but-2-en-1-

yl]pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (240f). 

Prepared by general procedure E from 239c (0.058 

g, 0.138 mmol), 3-iodopyridine (0.068 g, 0.33 

mmol), pyrrolidine (0.035 mL, 0.33 mmol), 

Pd2(dba)3 (0.006 g, 5 mol%), TFP (0.006 g, 20 

mol%) and K2CO3 (0.113 g, 0.83 mmol) in MeCN 

(2 mL) at 80 ºC for 1 h. The product precipitated 

from the cooled solution. The reaction mixture was filtered, and the precipitate 

washed with water to give the crude product. Crystallization from MeCN gave the 

product 240f (0.07 g, 71%) as a colourless amorphous solid, mp 172-174 °C; δH 

(300 MHz, CDCl3); 8.71 (2H, 2d, J 2.2, aryl-H), 8.53 (1H, d, J 8.2, aryl-H), 8.45 

(2H, td, J 1.6 and 4.9, aryl-H), 8.18 (2H, d, J 8.2, aryl-H), 7.81-7.72 (5H, m, aryl-H), 

7.66 (2H, d, J 7.1, aryl-H), 7.49 (2H, t, J 7.1, aryl-H), 7.41 (1H, d, J 7.1, aryl-H), 
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7.22-7.15 (2H, m, aryl-H), 6.03 (1H, t, J 6.6, NCH2CH=), 5.92 (1H, t, J 6.6, 

NCH2CH=), 5.43 (2H, d, J 6.6, NCH2), 5.04 (2H, d, J 6.6, NCH2), 3.80 (2H, s, 

=CCH2N), 3.73 (2H, s, =CCH2N), 2.55 (8H, br d, J 3.3, 4 × pyrrolidinyl-CH2), 1.71 

(8H, br s, 4 × pyrrolidinyl-CH2); δC (75 MHz, CDCl3); 159.2, 159.0, 149.1, 148.4, 

146.4, 146.1, 146.0, 141.7, 138.1, 136.9, 136.7, 136.4, 135.6, 135.55, 134.4, 132.0, 

131.9, 127.0, 126.1, 126.09, 125.7, 125.4, 125.2, 124.6,121.0, 113.7, 107.4, 52.5, 

52.2, 52.1, 52.0, 39.1, 38.3, 21.7, 21.5 (two aromatic carbon atoms could not be 

located due to peak overlaps); υmax/cm
-1

 (film); 3030, 2963, 3876, 2787, 1712, 1667, 

1595, 1455, 1417, 1392, 1344, 1264, 1227; m/z (ESI
+
) 716.4 (58%, MH

+
); (Found 

MH
+
, 716.3712. C45H46N7O2 requires MH, 716.3708). 

 

7-(Biphenyl-4-yl)-1,3-bis[(2Z)-3-(4-chlorophenyl)-4-(pyrrolidin-1-yl)but-2-en-1-

yl]pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (240g). 

Prepared by general procedure E from 239c (0.05 g, 

0.119 mmol), 1-chloro-4-iodobenzene (0.07 g, 

0.286 mmol), pyrrolidine (0.03 mL, 0.286 mmol), 

Pd2(dba)3 (0.005 g, 5 mol%), TFP (0.006 g, 20 

mol%) and K2CO3 (0.10 g, 0.71 mmol) in MeCN (2 

mL) at 80 ºC for 1 h. The product precipitated from 

the hot solution. The reaction mixture was cooled, filtered, and the precipitate 

washed with water to give the crude product. Crystallization from 3:1 v/v 

MeCN/CHCl3 gave the product 240g (0.08 g, 86%) as colourless needles, mp 164-

166 °C; δH (300 MHz, CDCl3); 8.51 (1H, 2d, J 8.2, pyrido-H), 8.18 (2H, d, J 8.8, 

aryl-H), 7.73 (1H, d, J 8.2, pyrido-H), 7.75-7.65 (4H, m, aryl-H), 7.49 (2H, t, J 7.4, 

aryl-H), 7.43-7.37 (5H, m, aryl-H), 7.25-7.20 (4H, m, aryl-H), 5.96 (1H, t, J 6.6, 

NCH2CH=), 5.87 (1H, t, J 6.6, NCH2CH=), 5.39 (2H, d, J 6.6, NCH2), 5.00 (2H, d, J 

6.6, NCH2), 3.77 (2H, s, =CCH2N), 3.73 (2H, s, =CCH2N), 2.54 (8H, br d, J 4.9, 4 × 

pyrrolidinyl-CH2), 1.72 (8H, br s, 4 × pyrrolidinyl-CH2); δC (75 MHz, CDCl3); 

161.1, 160.97, 151.1, 150.4, 143.6, 140.7, 140.6, 140.5, 140.1, 138.6, 136.4, 133.0, 

129.0, 128.3, 128.2, 128.1, 128.0, 127.98, 127.9, 127.6, 127.2, 126.6, 125.8, 115.5, 

109.3, 54.7, 54.3, 54.1, 54.07, 41.1, 30.4, 23.6, 23.59 (two aromatic carbon atoms 

could not be located due to peak overlaps); υmax/cm
-1

 (film); 3030, 2964, 2784, 1710, 

1661, 1595, 1557, 1490, 1454, 1422, 1390, 1344, 1263; m/z (ESI
+
) 782.3 (21%, 

MNa
+
); (Found MNa

+
, 782.3003. C45H47Cl2N5NaO2 requires MNa, 782.2999). 
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NOE data (CDCl3) for 240g:
 

 % Enhancement 

Irradiated proton 1-H 2-H 4-H p-chlorophenyl-H pyrrolidinyl-H 

1-H (δ 5.00)  4.48 1.75 - - 

2-H (δ 5.87) 2.06  - 8.66 (δ 7.40) - 

4-H (δ 3.73) 1.98 -  6.40 (δ 7.40) 4.12 (δ 2.54) 
 

 % Enhancement 

Irradiated proton 1′-H 2′-H 4′-H p-chlorophenyl-H pyrrolidinyl-H 

1′-H (δ 5.39)  5.05 2.86 - - 

2′-H (δ 5.96) 2.35  - 
9.75 (δ 7.36) 

1.06 (δ 8.18) 
- 

4′-H (δ 3.77) 1.60 -  
6.25 (δ 7.38) 

0.76 (δ 8.18) 
4.86 (δ 2.54) 

 

7-[4-(Dimethylamino)phenyl]-1,3-bis[(2Z)-4-(piperidin-1-yl)-3-(pyridin-3-

yl)but-2-en-1-yl]pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (240h). 

Prepared by general procedure E from 239d (0.096 

g, 0.25 mmol), 3-iodopyridine (0.123 g, 0.60 

mmol), piperidine (0.06 mL, 0.60 mmol), Pd2(dba)3 

(0.0114 g, 5 mol%), TFP (0.0116 g, 20 mol%) and 

K2CO3 (0.20 g, 1.50 mmol) in MeCN (3 mL) at 80 

ºC for 1 h. Flash column chromatography eluting with 10:1 v/v EtOAc/MeOH gave 

the product 240h which crystallizated from MeCN  as yellow needles (0.13 g, 78%), 

mp 149-151 °C; δH (300 MHz, CDCl3); 8.72 (2H, d, J 2.2, 2 × pyridinyl-H), 8.43 

(2H, td, J 1.3 and 4.9, 2 × pyridinyl-H), 8.38 (1H, d, J 8.2, pyrido-H), 8.04 (2H, d, J 

8.8, 2 × phenyl-H), 7.82-7.76 (2H, m, 2 × pyridinyl-H), 7.56 (1H, d, J 8.2, pyrido-

H), 7.20-7.14 (2H, m, 2 × pyridinyl-H), 6.75 (2H, d, J 8.8, 2 × phenyl-H), 6.08 (1H, 

t, J 6.2, NCH2CH=), 5.96 (1H, t, J 6.6, NCH2CH=), 5.36 (2H, d, J 6.2, NCH2), 5.00 

(2H, d, J 6.6, NCH2), 3.61 (2H, s, =CCH2N), 3.56 (2H, s, =CCH2N), 3.06 (6H, s, 

NMe2), 2.46 (8H, br s, 4 × piperidinyl-CH2), 1.51 (8H, br d, J 4.4, 4 × piperidinyl-

CH2), 1.41 (4H, br s, 2 × piperidinyl-CH2); δC (75 MHz, CDCl3); 161.6, 161.1, 

152.1, 151.2, 150.3, 148.1 (4 × C), 137.8, 137.7, 137.6, 137.5, 136.9, 134.03, 134.0, 

128.9, 128.7, 127.8, 124.6, 122.8, 122.76, 114.0, 111.8, 107.4, 57.9, 57.6, 54.34, 

54.3, 41.0, 40.2 (2 × C), 26.1 (2 × C), 24.4 (2 × C); υmax/cm
-1

 (film); 2935, 2853, 

1704, 1660, 1589, 1446, 1417, 1392, 1347, 1269, 1229; m/z (ESI
+
) 711.4 (42%, 

MH
+
); (Found MH

+
, 711.4133. C43H51N8O2 requires MH, 711.4129). 
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7-[4-(Dimethylamino)phenyl]-1,3-bis[(2Z)-3-phenyl-4-(piperidin-1-yl)but-2-en-

1-yl]pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (240i).  

Prepared by general procedure E from 239d (0.096 

g, 0.25 mmol), iodobenzene (0.067 mL, 0.60 

mmol), piperidine (0.06 mL, 0.60 mmol), Pd2(dba)3 

(0.0114 g, 5 mol%), TFP (0.0116 g, 20 mol%) and 

K2CO3 (0.20 g, 1.50 mmol) in MeCN (3 mL) at 80 

ºC for 1 h. The product precipitated from the cooled 

solution and was filtered, washed with water and crystallized from MeCN to give the 

product 240i (0.14 g, 79%) as a yellow amorphous solid, mp 142-144 °C; δH (300 

MHz, CDCl3); 8.37 (1H, d, J 8.2, pyrido-H), 8.05 (2H, d, J 9.3, 2 × 7-phenyl-H), 

7.54 (1H, d, J 8.2, pyrido-H), 7.46 (4H, td, J 1.6 and 8.2, 4 × phenyl-H), 7.29-7.18 

(6H, m, 6 × phenyl-H), 6.68 (2H, d, J 9.3, 2 × 7-phenyl-H), 6.01 (1H, t, J 6.0, 

NCH2CH=), 5.91 (1H, t, J 6.6, NCH2CH=), 5.36 (2H, d, J 6.0, NCH2), 5.01 (2H, d, J 

6.6, NCH2), 3.62 (2H, s, =CCH2N), 3.58 (2H, s, =CCH2N), 3.06 (6H, s, NMe2), 2.47 

(8H, br s, 4 × piperidinyl-CH2), 1.58-1.49 (8H, br m, 4 × piperidinyl-CH2), 1.41 (4H, 

br s, 2 × piperidinyl-CH2); δC (75 MHz, CDCl3); 161.5, 161.3, 152.1, 151.2, 150.4, 

142.7, 142.69, 140.2, 139.5, 137.8, 128.9, 128.0 (2 × C), 127.95, 127.7, 126.9, 126.7 

(2 × C), 126.6, 124.9, 113.8, 111.8, 107.5, 58.4, 58.1, 54.5, 54.4, 41.3, 40.5, 40.2, 

26.2, 26.1, 24.5 (2 × C); υmax/cm
-1

 (film); 3020, 2934, 2851, 2802, 1704, 1660, 1589, 

1557, 1530, 1490, 1446, 1422, 1391, 1346, 1300, 1267, 1227; m/z (ESI
+
) 709.4 

(40%, MH
+
); (Found MH

+
, 709.4218. C45H53N6O2 requires MH, 709.4225). 

NOE data (CDCl3) for 240i: 

 % Enhancement 

Irradiated proton 1-H 2-H 4-H phenyl-H piperidinyl-H 

1-H (δ 5.01)  5.59 3.27 - - 

2-H (δ 5.91) 2.79  - 9.37 (δ 7.46) - 

4-H (δ 3.58) 2.89 -  6.47 (δ 7.46) 6.15 (δ 2.47) 

 % Enhancement 

Irradiated proton 1′-H 2′-H 4′-H phenyl-H piperidinyl-H 

1′-H (δ 5.36)  - 3.02 1.12 (δ 8.05) - 

2′-H (δ 6.01) 2.60  - 
9.32 (δ 7.46), 

0.92 (δ 8.05) 
- 

4′-H (δ 3.62) 2.76 -  
5.90 (δ 7.46), 

1.06 (δ 8.05) 
5.89 (δ 2.47) 
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7-[4-(Dimethylamino)phenyl]-1,3-bis[(2Z)-3-(4-nitrophenyl)-4-(piperidin-1-

yl)but-2-en-1-yl]pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (240j). 

Prepared by general procedure E from 239d 

(0.096 g, 0.25 mmol), 4-iodonitrobenzene 

(0.149 g, 0.60 mmol), piperidine (0.06 mL, 0.60 

mmol), Pd2(dba)3 (0.0114 g, 5 mol%), TFP 

(0.0116 g, 20 mol%) and K2CO3 (0.20 g, 1.50 

mmol) in MeCN (3 mL) at 80 ºC for 1 h. The 

product precipitated from the hot solution. The reaction mixture was cooled, filtered 

and the precipitate washed with water to give the crude product. Crystallization from 

MeCN gave the product 240j (0.16 g, 80%) as a brownish yellow amorphous solid, 

mp 166-168 °C; δH (300 MHz, CDCl3); 8.39 (1H, d, J 8.2, pyrido-H), 8.10 (4H, dd, 

J 6.6 and 8.8, 4 × phenyl-H), 8.04 (2H, d, J 9.3, 2 × 7-phenyl-H), 7.66-7.57 (5H, m, 

pyrido-H and 4 × phenyl-H), 6.75 (2H, d, J 9.3, 2 × 7-phenyl-H), 6.17 (1H, t, J 6.0, 

NCH2CH=), 6.04 (1H, t, J 6.6, NCH2CH=), 5.38 (2H, d, J 6.0, NCH2), 5.02 (2H, d, J 

6.6, NCH2), 3.61 (2H, s, =CCH2N), 3.56 (2H, s, =CCH2N), 3.07 (6H, s, NMe2), 2.46 

(8H, br s, 4 × piperidinyl-CH2), 1.56-1.49 (8H, br m, 4 × piperidinyl-CH2), 1.42 (4H, 

br s, 2 × piperidinyl-CH2); δC (75 MHz, CDCl3); 161.7, 161.1, 152.2, 151.2, 150.3, 

148.9, 148.8, 146.7, 146.69, 138.8, 138.2, 137.9, 130.6, 129.6, 128.9, 127.5, 127.4, 

124.5, 123.3, 123.27, 114.1, 111.8, 107.4, 57.9, 57.6, 54.4, 54.3, 41.1, 40.3, 40.2, 

26.1 (2 × C), 24.4 (2 × C); υmax/cm
-1

 (film); 3020, 2935, 2852, 1704, 1660, 1589, 

1557, 1515, 1446, 1418, 1392, 1344, 1270, 1229; m/z (ESI
+
) 799.4 (39%, MH

+
); 

(Found MH
+
, 799.3960. C45H51N8O6 requires MH, 799.3926). 

 

1,3-Bis[(2Z)-4-(adamantan-1-ylamino)-3-(pyridin-3-yl)but-2-en-1-yl]-7-(2,4-

dimethylphenyl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (240k). 

Prepared by general procedure E from 239e (0.093 g, 

0.25 mmol), 3-iodopyridine (0.123 g, 0.60 mmol), 1-

aminoadamantane (0.091 mL, 0.60 mmol), Pd2(dba)3 

(0.0114 g, 5 mol%), TFP (0.0116 g, 20 mol%) and 

K2CO3 (0.20 g, 1.5 mmol) in MeCN (3 mL) at 80 ºC 

for 1 h. Flash column chromatography eluting with 

10:1 v/v EtOAc/MeOH gave the product 240k (0.14 g, 68%) as a colourless froth, 
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mp 102-104 °C; δH (300 MHz, CDCl3); 8.77 (1H, d, J 1.6, pyridinyl-H), 8.68 (1H, d, 

J 2.2, pyridinyl-H), 8.51 (1H, d, J 8.2, pyrido-H), 8.47-8.44 (2H, m, aryl-H), 7.88 

(1H, dt, J  7.7and 1.6, pyridinyl-H), 7.81 (1H, dt, J 8.2 and 2.2, pyridinyl-H), 7.35 

(1H, d, J 8.2, pyrido-H), 7.33 (1H, d, J 8.2, aryl-H), 7.23-7.18 (2H, m, aryl-H), 7.14 

(1H, br s, aryl-H),  7.13 (1H, br d, J 6.0, aryl-H), 5.95 (2H, t, J 6.9, 2 × NCH2CH=), 

5.27 (2H, d, J 6.7, NCH2), 4.99 (2H, d, J 7.1, NCH2), 3.85 (2H, s, =CCH2N), 3.78 

(2H, s, =CCH2N), 2.40 (3H, s, Me), 2.39 (3H, s, Me), 2.11 (3H, br s, 3 × adamantyl-

CH), 2.04 (3H, br s, 3 × adamantyl-CH), 1.78 (6H, br s, 3 × adamantyl-CH2), 1.68 

(6H, br s, 3 × adamantyl-CH2), 1.61 (12H, br s, 6 × adamantyl-CH2); δC (75 MHz, 

CDCl3); 165.1, 161.0, 150.9, 148.4, 147.7, 147.67, 139.9, 139.6, 139.5, 138.0, 

137.1, 137.0, 136.2, 136.0, 133.8, 133.7, 132.0, 129.7, 126.9, 125.8, 125.1, 123.1, 

123.09, 119.7, 108.7, 51.0, 50.8, 42.6, 42.5, 41.0, 40.2, 39.4, 39.3, 36.8, 36.7, 29.6, 

29.58, 21.2, 20.7 (two aromatic carbon atoms could not be located due to peak 

overlaps); υmax/cm
-1

 (film); 3313, 2905, 2848, 1708, 1661, 1598, 1446, 1423, 1390, 

1357, 1310, 1259, 1217; m/z (ESI
+
) 828.5 (63%, MH

+
); (Found MH

+
, 828.4959. 

C53H62N7O2 requires MH, 828.4960). 

 

1,3-Bis[(2Z)-4-(adamantan-1-ylamino)-3-phenylbut-2-en-1-yl]-7-(2,4-

dimethylphenyl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (240l). 

Prepared by general procedure E from 239e (0.054 g, 

0.145 mmol), iodobenzene (0.04 mL, 0.35 mmol), 1-

aminoadamantane (0.053 mL, 0.35 mmol), Pd2(dba)3 

(0.006 g, 5 mol%), TFP (0.007 g, 20 mol%) and K2CO3 

(0.118 g, 0.87 mmol) in MeCN (2 mL) at 80 ºC for 1 h. 

Flash column chromatography eluting with 1:1 v/v 

EtOAc/n-hexane gave the product 240l (0.09 g, 75%) as a colourless froth, mp 99-

101 °C; δH (300 MHz, CDCl3); 8.48 (1H, d, J 8.2, pyrido-H), 7.51 (2H, dd, J 1.4 and 

8.5, aryl-H), 7.42 (2H, dd, J 1.4 and 8.0, aryl-H), 7.36 (1H, d, J 8.2, pyrido-H), 7.31-

7.19 (7H, m, aryl-H), 7.14 (1H, br s, aryl-H7.13 (1H, br d, aryl-H), 5.91 (1H, t, J 7.1, 

NCH2CH=), 5.90 (1H, t, J 7.1, NCH2CH=), 5.24 (2H, d, J 7.1, NCH2), 4.97 (2H, d, J 

7.1, NCH2), 3.87 (2H, s, =CCH2N), 3.79 (2H, s, =CCH2N), 2.40 (3H, s, Me), 2.38 

(3H, s, Me), 2.10 (3H, br s, 3 × adamantyl-CH), 2.02 (3H, br s, 3 × adamantyl-CH), 

1.76 (6H, br d, J 2.1, 3 × adamantyl-CH2), 1.66 (6H, br d, J 1.1, 3 × adamantyl-
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CH2), 1.58 (12H, br s, 6 × adamantyl-CH2); δC (75 MHz, CDCl3); 164.9, 161.1, 

150.9, 149.9, 142.8, 142.4, 141.4, 141.3, 139.3, 137.9, 136.4, 136.0, 132.0, 129.7, 

128.34, 128.3, 127.4, 126.8, 126.4, 126.37, 124.3, 123.6, 119.5, 108.7, 50.9, 50.7, 

42.6, 42.5, 41.2, 40.4, 39.4, 39.37, 36.9, 36.7, 29.7, 29.6, 21.3, 20.8 (one aromatic 

carbon atom could not be located due to peak overlaps); υmax/cm
-1

 (film); 3314, 

2905, 2848, 1707, 1661, 1598, 1446, 1390, 1340, 1310, 1258, 1216; m/z (ESI
+
) 

826.5 (9 %, MH
+
); (Found MH

+
, 826.5034. C55H64N5O2 requires MH, 826.5055). 

 

1,3-Bis[(2Z)-4-(adamantan-1-ylamino)-3-(1H-indol-5-yl)but-2-en-1-yl]-7-(2,4-

dimethylphenyl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (240m). 

Prepared by general procedure E from 239e 

(0.093 g, 0.25 mmol), 5-iodoindole (0.146 g, 

0.60 mmol), 1-aminoadamantane (0.091 mL, 

0.60 mmol), Pd2(dba)3 (0.0114 g, 5 mol%), TFP 

(0.0116 g, 20 mol%) and K2CO3 (0.20 g, 1.5 

mmol) in MeCN (3 mL) at 80 ºC for 4 h. Flash 

column chromatography eluting with 2:1 v/v EtOAc/n-hexane gave the product 

240m (0.13 g, 58%) as a colourless froth, mp 138-140 °C; δH (300 MHz, CDCl3); 

8.71 (2H, br s, 2 × NH), 8.45 (1H, d, J 8.2, pyrido-H), 7.68 (1H, s, aryl-H), 7.60 (1H, 

s, aryl-H), 7.36 (1H, d, J 8.2, aryl-H), 7.26 (1H, d, J 8.2, pyrido-H), 7.22-7.10 (8H, 

m, aryl-H), 6.42 (2H, br s, aryl-H), 5.87 (1H, t, J 7.1, NCH2CH=), 5.86 (1H, t, J 7.1, 

NCH2CH=), 5.24 (2H, d, J 7.1, NCH2), 4.96 (2H, d, J 7.1, NCH2), 3.96 (2H, s, 

=CCH2N), 3.86 (2H, s, =CCH2N), 2.40 (3H, s, Me), 2.38 (3H, s, Me), 2.06 (3H, br s, 

3 × adamantyl-CH), 1.98 (3H, br s, 3 × adamantyl-CH), 1.74 (6H, br s, 3 × 

adamantyl-CH2), 1.63 (6H, br s, 3 × adamantyl-CH2), 1.57 (12H, br s, 6 × 

adamantyl-CH2); δC (75 MHz, CDCl3); 164.8, 161.2, 151.0, 149.95, 143.7, 143.4, 

139.2, 137.8, 136.4, 136.0, 135.5, 135.4, 132.8, 131.9, 129.8, 127.9, 126.8, 124.7, 

124.6, 122.7, 122.0, 121.0, 120.9, 119.4, 118.6, 118.5, 111.0, 108.8, 102.7, 102.6, 

51.0, 50.9, 42.5, 42.3, 41.3, 40.6, 39.6, 39.5, 36.8, 36.7, 29.7, 29.6, 21.3, 20.8 (three 

aromatic carbon atoms could not be located due to peak overlaps); υmax/cm
-1

 (film); 

3407, 3017, 2906, 2848, 1704, 1660, 1652, 1598, 1446, 1392, 1343, 1311, 1259, 

1216; m/z (ESI
+
) 904.5 (12%, MH

+
); (Found MH

+
, 904.5259. C59H66N7O2 requires 

MH, 904.5273). 
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1,3-Bis[(2Z)-4-(adamantan-1-ylamino)-3-(4-methylphenyl)but-2-en-1-yl]-7-(2,4-

dimethylphenyl)pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione (240n). 

Prepared by general procedure E from 239e 

(0.068 g, 0.183 mmol), 4-iodotoluene (0.10 g, 

0.44 mmol), 1-aminoadamantane (0.066 mL, 

0.44 mmol), Pd2(dba)3 (0.008 g, 5 mol%), TFP 

(0.009 g, 20 mol%) and K2CO3 (0.15 g, 1.1 

mmol) in MeCN (2 mL) at 80 ºC for 2 h. Flash 

column chromatography eluting with 1:1 v/v EtOAc/n-hexane gave the product 

240n (0.11 g, 71%) as a colourless froth, mp 102-104 °C; δH (300 MHz, CDCl3); 

8.47 (1H, d, J 8.2, pyrido-H), 7.40-7.29 (5H, m, aryl-H), 7.28 (1H, d, J 8.2, pyrido-

H), 7.13-7.06 (6H, m, aryl-H), 5.88 (1H, t, J 7.1, NCH2CH=), 5.87 (1H, t, J 7.1, 

NCH2CH=), 5.23 (2H, d, J 7.1, NCH2), 4.95 (2H, d, J 7.1, NCH2), 3.86 (2H, s, 

=CCH2N), 3.77 (2H, s, =CCH2N), 2.39 (3H, s, Me), 2.38 (3H, s, Me), 2.31 (3H, s, 

Me), 2.30 (3H, s, Me), 2.09 (3H, br s, 3 × adamantyl-CH), 2.02 (3H, br s, 3 × 

adamantyl-CH), 1.76 (6H, br d, J 2.2, 3 × adamantyl-CH2), 1.66 (6H, br s, 3 × 

adamantyl-CH2), 1.58 (12H, br s, 6 × adamantyl-CH2); δC (75 MHz, CDCl3); 164.9, 

161.2, 150.9, 150.0, 142.6, 142.3, 139.3, 138.4, 138.3, 137.8, 137.1, 137.06, 136.4, 

136.0, 132.0, 129.7, 129.1, 129.0, 126.8, 126.3, 126.25, 123.5, 122.8, 119.5, 108.8, 

50.9, 50.7, 42.7, 42.6, 42.5, 41.2, 40.4, 39.3, 36.9, 36.8, 29.7, 29.65, 21.5, 21.3, 21.1, 

20.9; υmax/cm
-1

 (film); 3313, 2905, 2848, 1707, 1662, 1598, 1511, 1447, 1389, 1357, 

1310, 1260, 1218; m/z (ESI
+
) 854.5 (44 %, MH

+
); (Found MH

+
, 854.5377. 

C57H68N5O2 requires MH, 854.5368).  

NOE data (CDCl3) for 240n: 

 % Enhancement 

Irradiated proton 1-H 2-H 4-H tolyl-H adamantyl-H 

1-H (δ 4.95)  3.50 2.62 - - 

2-H (δ 5.88) 1.20  - 
3.55 (δ 7.31), 

5.51 (δ 7.39) 
- 

4-H (δ 3.86) 2.54 -  5.42 (δ 7.39) 5.45 (δ 1.76) 
 

 % Enhancement 

Irradiated proton 1′-H 2′-H 4′-H tolyl-H adamantyl-H 

1′-H (δ 5.23)  3.13 2.34 - - 

2′-H (δ 5.87) 1.30  - 
3.75 (δ 7.31), 

4.03 (δ 7.39) 
- 

4′-H (δ 3.77) 3.00 -  5.57 (δ 7.31) 5.77 (δ 1.58) 
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General Procedure G: Pd catalysed 4-component cascades. 

A mixture of N
1
,N

3
-diallenyluracil 234 (0.25 mmol), 3-iodopyridine (0.60 mmol), 

nucleophile (0.25 mmol), Pd2(dba)3 (5 mol%), TFP (tri-(2-furyl)phosphine) (20 

mol%), and K2CO3 (1.50 mmol) in MeCN (3 mL) was stirred and heated at 80 °C 

(oil bath temperature) for 3-5 h. The mixture was filtered through a filter paper and 

the solid washed with MeCN (5 mL). The solvent was removed under reduced 

pressure, the residue dissolved in CHCl3 and washed with H2O (1 x 20 mL). The 

organic layer was dried (anhydrous MgSO4), filtered, and the filtrate evaporated 

under reduced pressure. The residue was purified by flash chromatography gradient 

elution with 10:3 v/v EtOAc/MeOH then 10:5 v/v EtOAc/MeOH and then 1:1 v/v 

EtOAc/MeOH to give the 18-membered macrocycles. Changing the eluting solvent 

to MeOH and then DMF gave inseparable mixtures of products. 

 

Ethyl (3Z,7S,14Z)-18,21-dioxo-4,14-di(pyridin-3-yl)-1,6,12,17-tetraazabicyclo-

[15.3.1]henicosa-3,14,19-triene-7-carboxylate (242a) and Ethyl (3Z,7S,14Z)-

20,21-dioxo-4,14-di(pyridin-3-yl)-1,6,12,17-tetraazabicyclo[15.3.1]henicosa-

3,14,18-triene-7-carboxylate (242b). 

Prepared by general procedure G from N
1
,N

3
-diallenyluracil 234 (0.054g, 0.25 

mmol), 3-iodopyridine (0.123 g, 0.60 mmol), (S)-lysine ethyl ester dihydrochloride 

241 (0.0617 g, 0.25 mmol), Pd2(dba)3 (0.0115 g, 5 mol%), TFP (0.0116 g, 20 mol%) 

and K2CO3 (0.276 g, 2.00 mmol) in MeCN (3 mL) at 80 ºC for 3 h. Work up by 

flash column chromatography gradient elution with 10:3 v/v EtOAc/MeOH then 

10:5 v/v EtOAc/MeOH and then  1:1 v/v EtOAc/MeOH gave 242a and then 242b. 

Further elution with DMF afforded a complex mixture of 36-membered 

macrocycles; m/z (ESI
+
) 1089.6 (10%, MH

+
); (Found MH

+
, 1089.5682. C60H73N12O8 

requires MH, 1089.5669); 1111.6 (10%, M+Na); 545.3 (100%, [M+2H]
2+

). 

 

Compound 242a was obtained as a colourless froth 

(0.039 g, 29%), mp 81-83 °C; δH (300 MHz, 

CDCl3); 8.75 (1H, d, J 1.9, pyridyl-H), 8.70 (1H, d, J 

1.4, pyridyl-H), 8.49 (1H, dd, J 1.4 and 4.8, pyridyl-H), 8.45 (1H, dd, J 1.4 and 4.8, 

pyridyl-H), 7.96 (1H, td, J 1.9 and 8.1, pyridyl-H), 7.86 (1H, td, J 1.9 and 8.1, 

pyridyl-H),  7.33 (1H, d, J 7.9, pyrimidinyl-H, 20-H), 7.26 (1H, dd, J 4.9 and 8.2, 

pyridinyl-H), 7.20 (1H, dd, J 4.9 and 8.2, pyridinyl-H), 5.86 (1H, t, J 6.2, 
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NCH2CH=, 15-H), 5.85 (1H, d, J 7.9, pyrimidinyl-H, 19-H), 5.72 (1H, t, J 6.7, 

NCH2CH=, 3-H), 4.94 (1H, dd, J 6.7 and 15.7, NCH2CH=, 2-HA), 4.84 (1H, dd, J 

6.2 and 14.3, NCH2CH=, 16-HA),  4.78 (1H, dd, J 6.2 and 14.3, NCH2CH=, 16-HB), 

4.59 (1H, dd, J 6.7 and 15.7, NCH2CH=, 2-HB), 4.27-4,12 (2H, m, CO2CH2Me), 

3.77 (1H, d, 12.4, =CCH2N, 13-HA), 3.73 (1H, d, 12.1, =CCH2N, 5-HA), 3.55 (1H, d, 

J 12.4, =CCH2N, 13-HB), 3.44 (1H, d, J 12.1, =CCH2N, 5-HB), 3.40 (1H, dd, J 4.4 

and 7.1, NHCHCO2Et, 7-H), 2.76 (2H, br s, =CH2NHCH2, 11-H), 2.55 (2H, br s, 2 x 

NH), 1.79 (2H, br s, NHCHCH2, 8-H), 1.61 (4H, br d, J 3.3, CH2CH2CH2NH, 9-H 

and 10-H), 1.29 (3H, t, J 7.2, CO2CH2Me); δC (75 MHz, CDCl3); 175.0, 162.8, 

151.4, 148.8, 148.4, 147.6, 147.2, 142.6, 139.6, 138.4, 137.0, 136.9, 133.7 (2 x C), 

125.3, 125.0, 123.3, 123.1, 102.5, 61.2, 60.6, 49.6, 48.9 48.6, 47.4, 39.8, 32.4, 28.6, 

22.7, 14.3; υmax/cm
-1

 (film); 3320, 2930, 1702, 1655, 1567, 1453, 1416, 1392, 1364, 

1224; m/z (ESI
+
) 545.3 (100%, MH

+
); (Found MH

+
, 545.2894. C30H37N6O4 requires 

MH, 545.2871).  

 

Compound 242b was obtained as a colourless froth 

(0.034 g, 25%), mp 69-71 °C; δH (300 MHz, 

CDCl3); 8.75 (1H, d, J 1.9, pyridyl-H), 8.71 (1H, d, J 1.9, pyridyl-H), 8.48 (1H, dd, J 

1.4 and 4.8, pyridyl-H), 8.45 (1H, dd, J 1.4 and 4.8, pyridyl-H), 7.93-7.88 (2H, m, 2 

x pyridyl-H), 7.34 (1H, d, J 8.1, pyrimidinyl-H, 18-H), 7.25-7.20 (2H, m, 2 x 

pyridinyl-H), 5.86 (1H, d, J 8.1, pyrimidinyl-H, 19-H), 5.80 (1H, t, J 6.7, NCH2CH=, 

3-H), 5.73 (1H, dd, J 6.2 and 8.1, NCH2CH=, 15-H), 4.92 (2H, d, J 6.7, NCH2CH=, 

2-H), 4.83 (1H, dd, J 8.1 and 15.0, NCH2CH=, 16-HA), 4.44 (1H, dd, J 6.2 and 15.0, 

NCH2CH=, 16-HB), 4.25-415 (2H, m, CO2CH2Me), 3.76 (1H, d, J 12.2, =CCH2N, 

13-HA), 3.72 (1H, d, J 11.2, =CCH2N, 5-HA), 3.57 (1H, d, J 12.2, =CCH2N, 13-HB), 

3.50 (1H, d, J 11.2, =CCH2N, 5-HB), 3.41 (1H, dd, J 4.1 and 6.9, NHCHCO2Et, 7-

H), 2.77 (2H, br s, =CH2NHCH2, 11-H), 2.58 (2H, br s, 2 x NH), 1.78 (2H, br s, 

NHCHCH2CH2, 8-H), 1.61 (4H, br s, CHCH2CH2 CH2CH2NH, 9-H and 10-H), 1.28 

(3H, t, J 7.2, CO2CH2Me); δC (75 MHz, CDCl3); 174.9, 162.7, 151.4, 148.9, 148.3, 

147.5, 147.4, 142.3, 140.1, 138.0, 137.2, 136.7, 133.9, 133.5, 126.1, 124.1, 123.3, 

123.1, 102.6, 61.5, 60.6, 49.5, 48.8, 48.0, 47.1, 40.1, 32.4, 28.7, 22.8, 14.3; υmax/cm
-1

 

(film); 3321, 2932, 1703, 1658, 1567, 1454, 1416, 1392, 1360, 1223; m/z (ESI
+
) 

545.3 (100%, MH
+
); (Found MH

+
, 545.2847. C30H37N6O4 requires MH, 545.2871). 
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Dimethyl (3Z,14Z)-20,21-dioxo-4,14-di(pyridin-3-yl)-1,6,12,17-

tetraazabicyclo[15.3.1]henicosa-3,14,18-triene-7,11-dicarboxylate (244). 

Prepared by general procedure G from N
1
,N

3
-

diallenyluracil 234 (0.054g, 0.25 mmol), 3-

iodopyridine (0.123 g, 0.60 mmol), 2,6-

diaminopimelic acid dimethyl ester 243 (0.055 g, 0.25 mmol) (1:1 rac-/meso-

mixture), Pd2(dba)3 (0.0115 g, 5 mol%), TFP (0.0116 g, 20 mol%) and K2CO3 

(0.207 g, 1.50 mmol) in MeCN (3 mL) at 80 ºC for 5 h. Work up by flash column 

chromatography gradient elution with 10:3 v/v EtOAc/MeOH then 10:5 v/v 

EtOAc/MeOH and then  1:1 v/v EtOAc/MeOH gave 244 (1:1 rac-/meso-mixture) as 

a colourless amorphous solid ( 0.071 g, 48%), mp 79-81°C. Due to the presence of 

both meso- and rac-isomers, two separate proton and/or carbon NMR signals are 

frequently observed and noted in the NMR data by asterisks. These assignments are 

based on DEPT135, HMBC, HMQC and also comparison with similar systems 242a 

and 242b. δH (300 MHz, CDCl3); 8.76 (1H, dd, J 1.4 and 2.4, pyridyl-H), 8.71 (1H, 

d, J 2.4, pyridyl-H), 8.49 (1H, dd, J 1.4 and 4.8, pyridyl-H), 8.46 (1H, dd, J 1.4 and 

4.8, pyridyl-H), 7.98-7.90 (2H, m, 2 x pyridyl-H), 7.32 (1H, dd, J 1.9 and 8.1, 

pyrimidinyl-H), 7.29-7.19 (2H, m, 2 x pyridinyl-H), 5.86 (1H, d, J 8.1, pyrimidinyl-

H), 5.82 (1H, t, J 7.4, NCH2CH=), 5.74-5.70 (1H, m, NCH2CH=), 5.08-4.45 (4H, 2 

x NCH2CH=)
*
, 3.74 (3H, s, CO2Me), 3.71 (3H, s, CO2Me),  3.77-3.66 (2H, m, 

=CCH2N), 3.51-3.38 (4H, m, =CCH2N and 2 x CHCO2Me), 2.43 (2H, br s, 2 x NH), 

1.80-1.67 (6H, br m, 3 x CH2); δC (75 MHz, CDCl3); 175.17
*
, 175.14

*
, 175.02

*
, 

174.97
*
, 162.85, 151.33, 148.86, 148.41, 147.44

*
, 147.41

*
, 147.27, 142.49

*
, 142.38

*
, 

139.43, 137.78
*
, 137.74

*
, 137.03

*
, 136.98

*
, 136.77

*
, 136.70

*
, 133.73, 133.51

*
, 

133.49
*
, 126.26

*
, 126.01

*
, 125.05

*
, 124.73

*
, 133.24, 123.10, 102.41

*
, 102.39

*
, 

61.33
*
, 61.14

*
, 61.04

*
, 60.72

*
, 51.78

*
, 51.75

*
, 51.74

*
, 51.70

*
, 48.83

*
, 48.60

*
, 47.37

*
, 

47.20
*
, 47.08

*
, 46.94

*
, 40.15

*
, 40.03

*
, 32.76

*
, 32.72

*
, 32.42

*
, 32.34

*
, 21.35

*
, 20.78

*
; 

υmax/cm
-1

 (film); 3321, 2951, 2855, 1732, 1704, 1660, 1567, 1455, 1393, 1354; m/z 

(ESI
+
) 589.3 (100%, MH

+
); (Found MH

+
, 589.2780. C31H37N6O6 requires MH, 

589.2769). *Two sets of NCH2CH= protons were observed in the presence of the 

chiral Eu(fod)3 reagent one for the meso-isomer [5.04 (0.5H, dd, J 7.6 and 15.7), 

4.80 (0.5H, dd, J 6.9 and 15.7), 4.69 (0.5H, dd, J 6.7 and 15.7) and 4.49 (0.5H, dd, J 

5.7 and 15.7)] and the second for the rac-isomer [4.95-4.89 (2H, m)]. *Some of 
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carbons appeared as two peaks, and the assignment based on DEPT 135, HMQC, 

comparison with similar systems.  

 

General Procedure H: Pd catalysed 5-component cascades using piperazine as a 

dinucleophile. 

A mixture of N-allenylpurine 195 (1.00 mmol), aryl/heteroaryl iodide (1.10 mmol), 

piperazine 189a (0.50 mmol), Pd2(dba)3 (5 mol%), TFP (tri-(2-furyl)phosphine) (20 

mol%) and K2CO3 (3.00 mmol) in MeCN (5 mL) was stirred and heated at 80 °C 

(oil bath temperature) for 3-5 h. The product precipitated from the hot solution. The 

cooled solution was filtered, the precipitate washed with water and crystallized from 

CHCl3. 

 

1,1'-{Piperazine-1,4-diylbis[(2Z)-3-(pyridin-3-yl)but-2-ene-4,1-diyl]}bis(3,7-

dimethyl-3,7-dihydro-1H-purine-2,6-dione) (245a). 

Prepared by general procedure H 

from N-allenylpurine 195 (0.232 g, 

1.00 mmol), 3-iodopyridine (0.246 g, 

1.10 mmol), piperazine 189a (0.043 

g, 0.50 mmol), Pd2(dba)3 (0.022 g, 5 mol%), TFP (0.023 g, 20 mol%) and K2CO3 

(0.40 g, 3.00 mmol) in MeCN (5 mL) at 80 °C for 3 h. The product 245a crystallized 

from CHCl3 as colourless needles (0.31 g, 88%), mp 248-250 °C;  δH (300 MHz, 

CDCl3); 8.68 (2H, d, J 2.6, 2 × pyridinyl-H), 8.44 (2H, dd, J 4.6 and 1.5, 2 × 

pyridinyl-H), 7.79 (2H, dt, J 7.9 and 2.0, 2 × pyridinyl-H), 7.52 (2H, s, 2 × purine 8-

H), 7.18 (2H, dd, J 7.9 and 4.9, 2 × pyridinyl-H), 5.91 (2H, t, J 6.7, 2 × NCH2CH=), 

4.89 (4H, d, J 6.7, 2 × NCH2CH=), 3.99 (6H, s, 2 × purine 7-NCH3), 3.58 (6H, s, 2 × 

purine 3-NCH3), 3.55 (4H, s, 2 × =CCH2N), 2.48 (8H, brs, 4 x piperazinyl-CH2); δC 

(75 MHz, CDCl3); 155.0, 151.4, 148.9, 148.1, 148.0, 141.6, 137.4, 136.7, 134.0, 

128.5, 122.8, 107.7, 56.7, 52.9, 39.6, 33.7, 29.8; υmax/cm
-1

 (film); 3104, 3038, 2943, 

2812, 1704, 1659, 1603, 1549, 1456, 1359, 1312, 1234; m/z (ESI
+
) 705.3 (19%, 

MH
+
); (Found MH

+
, 705.3339. C36H41N12O4 requires MH, 705.3368).  

 

1,1'-{Piperazine-1,4-diylbis[(2E)-3-(2-thienyl)but-2-ene-4,1-diyl]}bis(3,7-

dimethyl-3,7-dihydro-1H-purine-2,6-dione) (245b). 

Prepared by general procedure H from N-allenylpurine 195 (0.232 g, 1.00 mmol), 2-

iodothiophene (0.132 mL, 1.10 mmol), piperazine 189a (0.043 g, 0.50 mmol), 
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Pd2(dba)3 (0.022 g, 5 mol%), TFP 

(tri-(2-furyl)phosphine) (0.023 g, 20 

mol%) and K2CO3 (0.40 g, 3.00 

mmol) in MeCN (5 mL) at 80 °C for 

3 h. The product 245b crystallized from CHCl3 as colourless needles (0.33 g, 92%), 

mp 265-267 °C;  δH (300 MHz, CDCl3); 7.50 (2H, s, 2 × purine 8-H), 7.2 (2H, d, J 

3.6, 2 × thienyl-H), 7.11 (2H, d, J 4.1, 2 × thienyl-H), 6.92 (2H, dd, J 5.1 and 3.6, 2 

× thienyl-H), 6.04 (2H, t, J 6.7, 2 × NCH2CH=), 4.87 (4H, d, J 6.7, 2 × NCH2CH=), 

3.98 (6H, s, 2 × purine 7-NCH3), 3.58 (6H, s, 2 × purine 3-NCH3), 3.55 (4H, s, 2 × 

=CCH2N), 2.59 (8H, brs, 4 x piperazinyl-CH2); δC (75 MHz, DMSO-d6); 154.6, 

151.2, 148.7, 144.9, 143.3, 132.5, 127.6, 125.9, 125.3, 124.5, 197.1, 56.8, 52.9, 39.2, 

33.6, 29.8; υmax/cm
-1

 (solid); 2814, 1706, 1659, 1602, 1547, 1450, 1324, 1290, 1231; 

m/z (ESI
+
) 715.3 (100%, MH

+
); (Found MH

+
, 715.2587. C34H39N10O4

32
S2 requires 

MH, 715.2592).  

 

1,1'-(Piperazine-1,4-diylbis{(2Z)-3-[3,5-bis(trifluoromethyl)phenyl]but-2-ene-

4,1-diyl})bis(3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione) (245c). 

Prepared by general procedure H from 

N-allenylpurine 195 (0.232 g, 1.00 

mmol), 1-iodo-bis(3,5-

trifluoromethyl)benzene (0.20 mL, 

1.10 mmol), piperazine 189a (0.043 g, 0.50 mmol), Pd2(dba)3 (0.022 g, 5 mol%), 

TFP (tri-(2-furyl)phosphine) (0.023 g, 20 mol%) and K2CO3 (0.40 g, 3.00 mmol) in 

MeCN (5 mL) for 5 h. The product 245c crystallized from CHCl3 as colourless 

needles (0.39 g, 80%), mp 256-258 °C;  δH (300 MHz, CDCl3); 7.96 (4H, s, 2 × 

phenyl 2-H and 6-H), 7.72 (2H, s, 2 × phenyl 4-H), 7.27 (2H, s, 2 × purine 8-H), 

5.96 (2H, t, J 6.3, 2 × NCH2CH=), 4.90 (4H, d, J 6.3, 2 × NCH2CH=), 4.00 (6H, s, 2 

× purine NCH3), 3.60 (6H, s, 2 × purine NCH3), 3.58 (4H, s, 2 × =CCH2N), 2.52 

(8H, brs, 4 x piperazinyl-CH2); δC (75 MHz, AcOH-d4); 155.3, 152.0, 148.5, 143.6, 

142.3, 138.0, 131.8, 131.7 (J 32.9), 128.1 (brs), 123.8 (J 272.0), 122.2 (brs), 108.1, 

53.8, 49.6, 40.3, 33.7, 30.0; υmax/cm
-1

 (solid); 2919, 1705, 1660, 1547, 1458, 1383, 

1352, 1279; m/z (ESI
+
) 975.3 (100%, MH

+
); (Found MH

+
, 975.2965. 

C42H39F12N10O4 requires MH, 975.2959).  
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1,1'-{Piperazine-1,4-diylbis[(2Z)-3-(1H-indol-5-yl)but-2-ene-4,1-diyl]}bis(3,7-

dimethyl-3,7-dihydro-1H-purine-2,6-dione) (245d). 

Prepared by general procedure H from N-

allenylpurine 195 (0.232 g, 1.00 mmol), 

5-iodoindole (0.267, 1.10 mmol), 

piperazine 189a (0.043 g, 0.50 mmol), 

Pd2(dba)3 (0.022 g, 5 mol%), TFP (tri-(2-furyl)phosphine) (0.023 g, 20 mol%) and 

K2CO3 (0.40 g, 3.00 mmol) in MeCN (5 mL) for 3.5 h. The product 245d 

crystallized from CHCl3 as colourless needles (0.31 g, 80%), mp 187-189 °C; δH 

(300 MHz, DMSO-d6); 11.02 (2H, brs, 2x indolyl-NH), 8.00 (2H, d, J 0.5, 2 × 

indolyl-H), 7.60 (2H, brs, 2 × indolyl-H), 7.29 (2H, t, J 2.7, 2 × indolyl-H), 7.26 

(2H, s, 2 × purine 8-H), 7.18 (2H, dd, J 8.6 and 1.7, 2 x indolyl-H), 6.37 (2H, m, 2 × 

indolyl-H), 5.75 (2H, t, J 6.4, 2 × NCH2CH=), 4.74 (4H, d, J 6.4, 2 × NCH2CH=), 

3.87 (6H, s, 2 × purine 7-NCH3), 3.51 (4H, s, 2 × =CCH2N),  3.41 (6H, s, 2 × purine 

3-NCH3), 2.43 (8H, brs, 4 × piperazinyl-CH2); δC (75 MHz, DMSO-d6); 154.2, 

150.8, 148.2, 142.7, 138.9, 135.1, 132.7, 127.4, 125.6, 125.4, 119.9, 117.5, 110.7, 

106.7, 101.3, 56.8, 52.7, 39.2, 33.1, 29.3; υmax/cm
-1

 (solid); 3332, 2822, 1700, 1652, 

1548, 1454, 1309, 1233; m/z (ESI
+
) 781.4 (100%, MH

+
); (Found MH

+
, 781.3692. 

C42H45N12O4 requires MH, 781.3681).  

 

General Procedure I: Pd catalysed 5-component cascades using 

homopiperazine as a dinucleophile. 

As for general procedure H except the reaction time was 6-11 h. The mixture was 

filtered through a filter paper and the K2CO3 precipitate washed with MeCN (5 mL). 

The solvent was removed under reduced pressure and the resulting gum dissolved in 

CHCl3 and washed with saturated NH4Cl (1 x 20 mL) and then with saturated NaCl 

(1 x 20 mL). The organic layer was dried (anhydrous MgSO4), filtered, and the 

filtrate evaporated under reduced pressure. The residue was purified by flash 

chromatography. 

 

1,1'-{1,4-Diazepane-1,4-diylbis[(2Z)-3-(pyridin-3-yl)but-2-ene-4,1-diyl]}bis(3,7-

dimethyl-3,7-dihydro-1H-purine-2,6-dione) (246a). 

Prepared by general procedure I from N-allenylpurine 195 (0.232 g, 1.00 mmol), 3-

iodopyridine (0.246 g, 1.10 mmol), homopiperazine 189b (0.05 g, 0.50 mmol), 
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Pd2(dba)3 (0.022 g, 5 mol%), TFP 

(0.023 g, 20 mol%), and K2CO3 (0.4 g, 

3.00 mmol) in MeCN (5 mL) at 80 ºC 

for 6 h. Flash column chromatography 

eluting with 1:1 v/v EtOAc/MeOH gave the product 246a (0.21 g, 58%) as a 

colourless amorphous solid, mp 93-95 °C; δH (300 MHz, CDCl3); 8.65 (2H, d, J 1.8, 

2 × pyridinyl-H), 8.43 (2H, dd, J 4.9 and 1.5, 2 × pyridinyl-H), 7.74 (2H, dt, J 7.9 

and 1.7, 2 × pyridinyl-H), 7.52 (2H, s, 2 × purine 8-H), 7.18 (2H, dd, J 7.7 and 4.9, 2 

× pyridinyl-H), 5.85 (2H, t, J 6.7, 2 × NCH2CH=), 4.88 (4H, d, J 6.7, 2 × 

NCH2CH=), 3.99 (6H, s, 2 × purine 7-NCH3), 3.33 (4H, s, 2 × C=CH2N), 3.59 (6H, 

s, 2 × purine 3-NCH3), 2.65 (4H, t, J 5.6, diazepane 5- and 7-CH2), 2.61 (4H, s, 

diazepane 2- and 3-CH2), 1.67 (2H, quin, J 5.6, diazepane 6-CH2); δC (75 MHz, 

CDCl3); 155.0, 151.4, 148.9, 148.0 (2 x C), 141.5, 138.0, 137.3, 134.1, 127.8, 122.7, 

107.7, 56.1, 54.6, 53.5, 39.7, 33.7, 29.8, 27.8; υmax/cm
-1

 (film); 3104, 3048, 2941, 

2828, 1704, 1659, 1603, 1550, 1455, 1414, 1359, 1234; m/z (ESI
+
) 719.4 (100%, 

MH
+
); (Found MH

+
, 719.3525. C37H43N12O4 requires MH, 719.3525).  

NOE data for 246a: 

 % Enhancement 

Irradiated proton 1-H 2-H 4-H 
Pyridinyl-H 

(δ 8.65 and 7.74) 

Diazepanyl-H 

(δ 2.64) 

1-H  5.20 3.57 - - 

2-H 3.97  - 4.02 and 3.57 - 

4-H 4.54 -  3.50 and 2.56 4.50 

 

 

1,1'-{1,4-Diazepane-1,4-diylbis[(2E)-3-(2-thienyl)but-2-ene-4,1-diyl]}bis(3,7-

dimethyl-3,7-dihydro-1H-purine-2,6-dione) (246b). 

Prepared by general procedure I from 

N-allenylpurine 195 (0.232 g, 1.00 

mmol), 2-iodothiophene (0.132 mL, 

1.10 mmol), homopiperazine 189b 

(0.05 g, 0.50 mmol), Pd2(dba)3 (0.022 g, 5 mol%), TFP (0.023 g, 20 mol%), and 

K2CO3 (0.4 g, 3.00 mmol) in MeCN (5 mL) at 80 ºC for 10 h. Flash column 

chromatography eluting with 10:1 v/v EtOAc/MeOH gave the product 246b (0.19 g, 

53%) as colourless amorphous solid, mp 110-112 °C; δH (300 MHz, CDCl3); 7.50 
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(2H, s, 2 × purine 8-H), 7.19 (2H, d, J 3.8, 2 x thienyl-H), 7.11 (2H, d, J 5.1, 2 x 

thienyl-H), 6.91 (2H, dd, J 5.1 and 3.7, 2 x thienyl-H), 6.01 (2H, t, J 6.9, 2 × 

NCH2CH=), 4.88 (4H, d, J 6.9, 2 × NCH2CH=), 3.97 (6H, s, 2 × purine 7-NCH3), 

3.65 (4H, s, 2 × C=CH2N), 3.57 (6H, s, 2 × purine 3-NCH3), 2.81 (4H, t, J 5.6, 

diazepane 5- and 7-CH2), 2.79 (4H, s, diazepane 2- and 3-CH2), 1.85 (2H, quin, J 

5.6, diazepane 6-CH2); δC (75 MHz, CDCl3); 155.4, 151.8, 149.3, 145.7, 141.9, 

135.0, 127.1, 125.0, 124.7, 124.4, 108.1, 57.3, 55.1, 54.2, 40.0, 34.0, 30.2, 28.2; 

υmax/cm
-1

 (film); 3104, 2943, 2824, 1703, 1659, 1604, 1550, 1455, 1363, 1311, 

1233; m/z (ESI
+
) 729.3 (100%, MH

+
); (Found MH

+
, 729.2751. C35H41N10O4

32
S2 

requires MH, 729.2748).  

 

1,1'-(1,4-Diazepane-1,4-diylbis{(2Z)-3-[3,5-bis(trifluoromethyl)phenyl]but-2-

ene-4,1-diyl})bis(3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione) (246c). 

Prepared by general procedure I from 

N-allenylpurine 195 (0.232 g, 1.00 

mmol), 1-iodo-bis(3,5-

trifluoromethyl)benzene (0.2 mL, 1.10 

mmol), homopiperazine 189b (0.05 g, 

0.50 mmol), Pd2(dba)3 (0.022 g, 5 mol%), TFP (0.023 g, 20 mol%) and K2CO3 (0.4 

g, 3.00 mmol) in MeCN (5 mL) at 80 ºC for 11 h. Flash column gradient elution 

chromatography from 6:1 to 3:1 v/v EtOAc/MeOH gave the product 246c (0.23 g, 

47%) as a colourless amorphous solid, mp 95-97 °C; δH (300 MHz, CDCl3); 7.97 

(4H, s, 2 × phenyl 2-H and 6-H), 7.73 (2H, s, 2 × phenyl 4-H), 7.56 (2H, s, 2 × 

purine 8-H), 5.95 (2H, t, J 6.6, 2 × NCH2CH=), 4.90 (4H, d, J 6.6, 2 × NCH2CH=), 

4.01 (6H, s, 2 × purine 7-NCH3), 3.70 (4H, s, 2 × C=CH2N), 3.60 (6H, s, 2 × purine 

3-NCH3), 2.68 (4H, t, J 5.8, diazepane 5- and 7-CH2), 2.62 (4H, s, diazepane 2- and 

3-CH2), 1.72 (2H, quin, J 5.8, diazepane 6-CH2); δC (75 MHz, CDCl3); 154.0, 150.5, 

148.1, 142.7, 140.7, 137.3, 129.9 ( J 33.0), 128.4, 126.0 ( J 3.0), 122.6 ( J 271.0), 

119.7 ( J 3.0), 106.7, 55.3, 53.9, 52.3, 38.54, 32.7, 28.8, 26.9; υmax/cm
-1

 (film); 3056, 

2944, 2828, 1712, 1667, 1605, 1551, 1456, 1415, 1381, 1314, 1279, 1234; m/z 

(ESI
+
) 989.3 (100%, MH

+
); (Found MH

+
, 989.3109. C43H41F12N10O4 requires MH, 

989.3115).  
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1,1'-{1,4-Diazepane-1,4-diylbis[(2Z)-3-(1H-indol-5-yl)but-2-ene-4,1-

diyl]}bis(3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione) (246d). 

Prepared by general procedure I from 

N-allenylpurine 195 (0.232 g, 1.00 

mmol), 5-iodoindole (0.267 g, 1.10 

mmol), homopiperazine 189b (0.05 g, 

0.50 mmol), Pd2(dba)3 (0.022 g, 5 

mol%), TFP (0.023 g, 20 mol%), and K2CO3 (0.4 g, 3.00 mmol) in MeCN (5 mL) at 

80 ºC for 9 h. Flash column gradient elution chromatography from EtOAC to 1:1 v/v 

EtOAc/MeOH gave the product 246d (0.26 g, 66%) as a colourless amorphous solid, 

mp 107-110 °C; δH (300 MHz, CDCl3); 8.27 (2H, s, 2 × indolyl-NH), 7.66 (2H, s, 2 

× indolyl-H),7.46 (2H, s, 2 × purine 8-H), 7.20 (4H, s, 4 × indolyl-H), 7.09 (2H, t, J 

2.9, 2 × indolyl-H), 6.44 (2H, t, J 2.5, 2 × indolyl-H), 5.79 (2H, t, J 6.5, 2 × 

NCH2CH=), 4.89 (4H, d, J 6.5, 2 × NCH2CH=), 3.95 (6H, s, 2 × purine 7-NCH3), 

3.75 (4H, s, 2 × C=CH2N), 3.56 (6H, s, 2 × purine 3-NCH3), 2.70 (8H, brs, 

diazepane 2-, 3-, 5- and 7-CH2), 1.71 (2H, quin, J 5.1, diazepane 6-CH2); δC (75 

MHz, CDCl3); 154.7, 151.0, 148.3, 141.3, 140.9, 134.7, 134.1, 127.2, 124.7, 123.8, 

121.0, 118.2, 109.9, 107.3, 102.3, 56.5, 54.0, 53.4, 39.8, 33.2, 29.3, 27.2; υmax/cm
-1

 

(film); 3333, 3109, 3038, 2939, 2829, 1704, 1659, 1602, 1549, 1454, 1366, 1312, 

1233; m/z (ESI
+
) 795.4 (100%, MH

+
); (Found MH

+
, 795.3824. C43H47N12O4 requires 

MH, 795.3838).  

 

General procedure J: ammonia surrogates as nucleophiles. 

A mixture of substituted allene (1 equiv.), aryl/heteroaryl iodide (1.2 equiv.), 

ammonia equivalent (3-6 equiv.), Pd2(dba)3 (2.5 mol%), TFP (tri-(2-

furyl)phosphine) (10 mol%) and K2CO3 (2 equiv.) in 1,4-dioxane/DMF (5:1) was 

stirred and heated at 100 °C (oil bath temperature). The mixture was cooled, 

evaporated under reduced pressure and the resulting residue dissolved in CHCl3 and 

washed with H2O. The organic layer was dried over anhydrous MgSO4, filtered and 

the filtrate evaporated under reduced pressure. The residue was purified by flash 

chromatography. 
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1,1'-{Iminobis[(2Z)-3-(pyridin-3-yl)but-2-ene-4,1-diyl]}bis(3,7-dimethyl-3,7-

dihydro-1H-purine-2,6-dione) (247a). 

Prepared by general procedure J from purine allene 

195 (0.102 g, 0.439 mmol), 3-iodopyridine (0.108 

g, 0.53 mmol), ammonium carbonate (0.253 g, 2.6 

mmol), Pd2(dba)3 (0.01 g, 2.5 mol%) and TFP (0.01 

g, 10 mol%) in 2:1 v/v 1,4-dioxane/water (3 mL) at 80 ºC for 8 h. Flash column 

chromatography eluting with 5:3 v/v EtOAc/MeOH gave the product 247a (0.09 g, 

65%) as a colourless froth, mp 106-108 °C; δH (300 MHz, CDCl3); 8.70 (2H, br s, 2 

× pyridinyl-H), 8.44 (2H, br d, J 4.4, 2 × pyridinyl-H), 7.76 (2H, dt, J  7.7 and 1.6, 2 

× pyridinyl-H), 7.52 (2H, s, 2 × purine-H), 7.15 (2H, dd, J 4.4 and 7.7, 2 × pyridinyl-

H), 5.92 (2H, t, J 7.1, 2 × NCH2CH=), 4.90 (4H, d, J 7.1, 2 × NCH2CH=), 3.98 (6H, 

s, 2 × purine 7-Me), 3.93 (4H, s, 2 × =CCH2N), 3.57 (6H, s, 2 × purine 3-Me), 2.19 

(1H, br s, NH); δC (75 MHz, CDCl3);155.0, 151.4, 148.9, 148.3, 147.8, 141.6, 138.7, 

137.0, 133.8, 126.5, 123.0, 107.6, 48.1, 39.5, 33.7, 29.8; υmax/cm
-1

 (film); 3312, 

2950, 1704, 1658, 1603, 1550, 1455, 1414, 1356, 1314, 1286, 1234; m/z (ESI
+
) 

636.3 (100%, MH
+
); (Found MH

+
, 636.2804. C32H34N11O4 requires MH, 636.2790). 

 

(2Z)-4-(3,7-Dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)-2-(pyridin-3-

yl)but-2-en-1-yl acetate (248). 

Prepared by general procedure J from purine allene 195 (0.102 

g, 0.439 mmol), 3-iodopyridine (0.108 g, 0.53 mmol), 

ammonium acetate (0.203 g, 2.60 mmol), Pd2(dba)3 (0.01 g, 

2.5 mol%) and TFP (0.01 g, 10 mol%) in 2:1 v/v DMF/water (3 mL) at 80 ºC for 3 

h. Flash column chromatography gradient eluting with 10:1 then 5:3 v/v 

EtOAc/MeOH gave the products 248 (0.06 g, 37%) and 247a (0.01 g, 7%), 

respectively, as a colourless froth. Product 248: mp 106-108 °C; δH (300 MHz, 

CDCl3); 8.65 (1H, d, J 2.2, pyridinyl-H), 8.50 (1H, dd, J 1.6 and 4.9, pyridinyl-H), 

7.72 (1H, dt, J  7.7 and 1,6, pyridinyl-H), 7.57 (1H, s, purine-H), 7.25 (1H, dd, J 4.9 

and 7.7, pyridinyl-H), 6.07 (1H, t, J 6.6, NCH2CH=), 5.29 (2H, s, =CCH2O), 4.94 

(2H, d, J 6.6, NCH2CH=), 4.01 (3H, s, purine 7-Me), 3.59 (3H, s, purine 3-Me), 2.04 

(3H, s, CO2Me); δC (75 MHz, CDCl3); 170.7, 154.9, 151.3, 148.9, 148.7, 147.7, 

141.7, 135.3, 153.1, 133.7, 127.7, 123.1, 107.6, 60.7, 39.2, 33.6, 29.7, 20.9; υmax/cm
-
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1
 (film); 2949, 1737, 1704, 1660, 1603, 1459, 1455, 1415, 1364, 1316, 1286, 1232; 

m/z (ESI
+
) 370.2 (100%, MH

+
); (Found MH

+
, 370.1516. C18H20N5O4 requires MH, 

370.1510). 

 

1-[(2Z)-4-(Dimethylamino)-3-(pyridin-3-yl)but-2-en-1-yl]-3,7-dimethyl-3,7-

dihydro-1H-purine-2,6-dione (249). 

Prepared by general procedure J from purine allene 195 (0.116 

g, 0.50 mmol), 3-iodopyridine (0.123 g, 0.60 mmol), urea 

(0.36 g, 6.00 mmol), Pd2(dba)3 (0.011 g, 2.5 mol%), TFP 

(0.012 g, 10 mol%) and K2CO3 (0.207 g, 1.50 mmol) in 2:1 v/v DMF/water (3 mL) 

at 80 ºC for 4 h. Flash column chromatography eluting with 5:1 v/v EtOAc/MeOH 

gave the product 249 (0.14 g, 79%) as a colourless amorphous solid, mp 172-174 

°C; δH (300 MHz, CDCl3); 8.68 (1H, d, J 1.6, pyridinyl-H), 8.45 (1H, dd, J 1.6 and 

4.9, pyridinyl-H), 7.76 (1H, dt, J 7.7 and 1.6, pyridinyl-H), 7.54 (1H, s, purine-H), 

7.21 (1H, dd, J 4.9 and 7.7, pyridinyl-H), 5.92 (1H, t, J 6.6, NCH2CH=), 4.93 (2H, d, 

J 6.6, NCH2CH=), 4.00 (3H, s, purine 7-Me), 3.59 (3H, s, purine 3-Me), 3.56 (2H, s, 

=CCH2N), 2.27 (6H, s, NMe2); δC (75 MHz, CDCl3); 155.0, 151.4, 148.9, 148.3, 

147.8, 141.6, 137.6, 137.1, 133.8, 128.1, 122.9, 107.6, 57.6, 45.3, 39.5, 33.6, 29.8; 

υmax/cm
-1

 (film); 2943, 2818, 2766, 1704, 1660, 1603, 1549, 1455, 1414, 1366, 

1315, 1286, 1234; m/z (ESI
+
) 355.2 (100%, MH

+
); (Found MH

+
, 355.1886. 

C18H23N6O2 requires MH, 355.1877). 

 

1,1'-(Iminobis{(2Z)-3-[3,5-bis(trifluoromethyl)phenyl]but-2-ene-4,1-

diyl})bis(3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione) (247b). 

Prepared by general procedure J from purine allene 

195 (0.116 g, 0.50 mmol), 1-iodo-3,5-bis-

(trifluoromethyl)benzene (0.11 mL, 0.60 mmol), 

ammonium tartrate (0.276 g, 1.50 mmol), Pd2(dba)3 

(0.0114 g, 2.5 mol%), TFP (0.0116 g, 10 mol%) and 

K2CO3 (0.138 g, 1.00 mmol) in 5:1 v/v 1,4-dioxane/DMF (12 mL) at 100 ºC for 14 

h. Flash column chromatography eluting with 20:1 v/v EtOAc/MeOH gave the 

product 247b (0.194 g, 86%) as a colourless froth, mp 94-96 °C; δH (300 MHz, 

CDCl3); 7.94 (2H, s, 4 × phenyl-H), 7.70 (2H, s, 2 × phenyl-H), 7.54 (2H, s, 2 × 
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purine-H), 5.95 (2H, t, J 7.1, 2 × NCH2CH=), 4.92 (4H, d, J 7.1, 2 × NCH2CH=), 

3.98 (10H, s, 2 × purine 7-Me and 2 × =CCH2N), 3.58 (6H, s, 2 × purine 3-Me); δC 

(75 MHz, CDCl3);155.0, 151.3, 149.0, 143.8, 141.7, 139.3, 131.3 (J 33.2), 128.3, 

126.6 (J 3.3), 123.3 (J 273.1), 120.9 (J 3.3), 107.6, 48.4, 39.5, 33.6, 29.8; υmax/cm
-1

 

(film); 3312, 3017, 2952, 1710, 1660, 1605, 1550, 1456, 1430, 1415, 1382, 1312, 

1279, 1235; m/z (ESI
+
) 906.2 (100%, MH

+
); (Found MH

+
, 906.2366. C38H32F12N9O4 

requires MH, 906.2380). 

 

1,1'-{Iminobis[(2Z)-3-(3,4-difluorophenyl)but-2-ene-4,1-diyl]}bis(3,7-dimethyl-

3,7-dihydro-1H-purine-2,6-dione) (247c). 

Prepared by general procedure J from purine allene 

195 (0.116 g, 0.50 mmol), 3,4-difluoroiodobenzene 

(0.144 gm, 0.60 mmol), ammonium tartrate (0.552 

g, 3.00 mmol), Pd2(dba)3 (0.0114 g, 2.5 mol%), 

TFP (0.0116 g, 10 mol%) and K2CO3 (0.138 g, 1.00 mmol) in 5:1 v/v 1,4-

dioxane/DMF (12 mL) at 100 ºC for 13 h. Flash column chromatography eluting 

with 10:1 v/v EtOAc/MeOH gave the product 247c (0.164 g, 93%) as a colourless 

froth, mp 92-94 °C; δH (300 MHz, CDCl3); 7.53 (2H, s, 2 × purine-H), 7.36-7.29 

(2H, m, 2 × phenyl-H), 7.21-7.16 (2H, m, 2 × phenyl-H), 7.06-6.97 (2H, m, 2 × 

phenyl-H), 5.85 (2H, t, J 7.1, 2 × NCH2CH=), 4.87 (4H, d, J 7.1, 2 × NCH2CH=), 

3.98 (6H, s, 2 × purine 7-Me), 3.87 (4H, s, 2 × =CCH2N), 3.57 (6H, s, 2 × purine 3-

Me), 2.17 (1H, br s, NH); δC (75 MHz, CDCl3); 154.9, 151.3, 150.0 (dd, J 246.6 and 

13.3), 149.6 (dd, J 248.2 and 12.7), 148.9, 141.6, 139.6, 138.6 (dd, J 5.5 and 4.4), 

125.8, 122.5 (dd, J 5.5 and 3.3), 116.7 (d, J 16.6), 115.5 (d, J 17.7), 107.6, 48.1, 

39.5, 33.6, 29.7; υmax/cm
-1

 (film); 3313, 3015, 2950, 1704, 1660, 1602, 1549, 1515, 

1487, 1455, 1415, 1357, 1287, 1234; m/z (ESI
+
) 706.2 (100%, MH

+
); (Found MH

+
, 

706.2475. C34H32F4N9O4 requires MH, 706.2508). 

 

1,1'-{Iminobis[(2Z)-3-(4-acetylphenyl)but-2-ene-4,1-diyl]}bis(3,7-dimethyl-3,7-

dihydro-1H-purine-2,6-dione) (247d). 

Prepared by general procedure J from purine allene 195 (0.116 g, 0.50 mmol), 4-

iodoacetophenone (0.148 g, 0.60 mmol), ammonium tartrate (0.552 g, 3.00 mmol), 

Pd2(dba)3 (0.0114 g, 2.5 mol%), TFP (0.0116 g, 10 mol%) and K2CO3 (0.138 g, 1.00 
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mmol) in 5:1 v/v 1,4-dioxane/DMF (12 mL) at 100 

ºC for 13 h. Flash column chromatography eluting 

with 40:1 v/v CHCl3/MeOH gave the product 247d 

(0.12 g, 67%) as a colourless froth, mp 110-112 °C; 

δH (300 MHz, CDCl3); 7.82 (4H, d, J 8.2, 4 × 

phenyl-H), 7.56 (2H, s, 2 × purine-H), 7.54 (4H,d, J 8.2, 4 × phenyl-H), 5.83 (2H, t, 

J 7.1, 2 × NCH2CH=), 4.91 (4H, d, J 7.1, 2 × NCH2CH=), 3.99 (6H, s, 2 × purine 7-

Me), 3.97 (4H, s, 2 × =CCH2N), 3.58 (6H, s, 2 × purine 3-Me), 2.58 (6H, s, 3 × 

COMe), 2.23 (1H, br s, NH); δC (75 MHz, CDCl3); 197.7, 154.9, 151.3, 148.8, 

146.2, 141.7, 140.6, 135.7, 128.3, 127.1, 126.6, 107.6, 47.8, 39.6, 33.6, 29.7, 26.6; 

υmax/cm
-1

 (film); 3320, 3114, 3012, 2945, 1704, 1659, 1602, 1549, 1487, 1455, 

1428, 1412, 1358, 1312, 1270, 1234; m/z (ESI
+
) 718.3 (100%, MH

+
); (Found MH

+
, 

718.3111. C38H40N9O6 requires MH, 718.3096). 

 

1,1'-{Iminobis[(2Z)-3-(3,5-dichlorophenyl)but-2-ene-4,1-diyl]}bis(3,7-dimethyl-

3,7-dihydro-1H-purine-2,6-dione) (247e). 

Prepared by general procedure J from purine allene 

195 (0.109 g, 0.47 mmol), 3,5-

dichloroiodobenzene (0.154 g, 0.60 mmol), 

ammonium tartrate (0.51 g, 2.82 mmol), Pd2(dba)3 

(0.011 g, 2.5 mol%), TFP (0.011 g, 10 mol%) and K2CO3 (0.13 g, 0.94 mmol) in 4:1 

v/v 1,4-dioxane/DMF (10 mL) at 100 ºC for 16 h. Flash column chromatography 

eluting with 20:1 v/v EtOAc/MeOH gave the product 247e (0.157 g, 87%) as a 

colourless froth, mp 102-104 °C; δH (300 MHz, CDCl3); 7.53 (2H, s, 2 × purine-H), 

7.39 (4H, d, J 1.6, 4 × phenyl-H), 7.18 (2H, t, J 1.6, 2 × phenyl-H), 5.89 (2H, t, J 

7.1, 2 × NCH2CH=), 4.88 (4H, d, J 7.1, 2 × NCH2CH=), 3.98 (6H, s, 2 × purine 7-

Me), 3.87 (4H, s, 2 × =CCH2N), 3.58 (6H, s, 2 × purine 3-Me), 2.17 (1H, br s, NH); 

δC (75 MHz, CDCl3); 154.9, 151.3, 148.9, 144.7, 141.6, 139.4, 134.6, 127.2, 127.1, 

125.0, 107.6, 48.1, 39.5, 33.7, 29.8; υmax/cm
-1

 (film); 3311, 3071, 3014, 2949, 1704, 

1660, 1604, 1584, 1557, 1487, 1455, 1414, 1355, 1313, 1286, 1234; m/z (ESI
+
) 

770.1 (100%, MH
+
); (Found MH

+
, 770.1328. C34H32Cl4N9O4 requires MH, 

770.1326). 

 



- 190 - 

NOE data (CDCl3) for 247e. 

 % Enhancement 

Irradiated proton 1-H 2-H 4-H phenyl-H (δ 7.39) 

1-H  5.87 2.91 - 

2-H 4.09  - 16.75 

4-H 4.79 -  11.38 

 

3,3'-{Iminobis[(2Z)-3-(pyridin-3-yl)but-2-ene-4,1-diyl]}bis(2',3',5'-tri-O-

acetyluridine) (247f). 

Prepared by general procedure J from 

2',3',5'-tri-O-acetyl-3-buta-2,3-dien-1-

yluridine 207a (0.377 g, 0.89 mmol), 

3-iodopyridine (0.22 g, 1.07 mmol), ammonium tartrate (0.493 g, 2.68 mmol), 

Pd2(dba)3 (0.02 g, 2.5 mol%), TFP (0.02 g, 10 mol%) and K2CO3 (0.25 g, 1.79 

mmol) in 5:1 v/v 1,4-dioxane/DMF (18 mL) at 100 ºC for 29 h. Flash column 

chromatography eluting with 10:1 v/v EtOAc/MeOH gave the product 247f (0.32 g, 

71%) as a yellow froth; [α]D
20

 + 32.0 (c, 10 mg/1mL CHCl3); mp 76-78 °C; δH (300 

MHz, CDCl3); 8.68 (2H, d, J 2.2, 2 × pyridyl-H), 8.45 (2H, dd, J 1.6 and 4.9, 2 × 

pyridyl-H), 7.70 (2H, dt, J 8.0 and 2.2, 2 × pyridyl-H), 7.39 (2H, d, J 8.2, 2 × 

pyrimidinyl 6-H), 7.15 (2H, dd, J 4.9 and 8.0, 2 × pyridyl-H), 6.02 (2H, d, J 4.9, 2 × 

ribosyl 1-H), 5.84 (2H, t, J 7.1, 2 × NCH2CH=), 5.83 (2H, d, J 8.2, 2 × pyrimidinyl 

5-H), 5.37-5.30 (4H, m, 2 ×  ribosyl 2-H and 2 ×  ribosyl 3-H), 4.80 (2H, dd, J 7.1 

and 14.3, 2 × NCHACH=), 4.74 (2H, dd, J 7.1 and 14.3,  2 × NCHBCH=), 4.35 (6H, 

s, 2 × (ribosyl 4-H and 5-CH2)), 3.85 (2H, s, 2 × =CCH2N), 2.13 (6H, s,  2 × 

OCOMe), 2.12 (6H, s, 2 × OCOMe), 2.07 (6H, s, 2 × OCOMe); δC (75 MHz, 

CDCl3); 170.1, 169.6 (2 × C), 161.9, 150.7, 148.4, 147.8, 139.2, 137.4, 136.9, 133.9, 

125.6, 123.0, 102.9, 88.4, 79.7, 72.9, 70.0, 63.0, 47.8, 39.3, 20.8, 20.5, 20.46; 

υmax/cm
-1

 (film); 3318, 3022, 1753, 1710, 1665, 1563, 1455, 1415, 1375, 1235; m/z 

(ESI
+
) 1016.4 (100%, MH

+
); (Found MH

+
, 1016.3504. C48H54N7O18 requires MH, 

1016.3520). 

 

3,3'-(Iminobis{(2Z)-3-[3,5-bis(trifluoromethyl)phenyl]but-2-ene-4,1-

diyl}]bis(2',3',5'-tri-O-acetyluridine) (247g). 

Prepared by general procedure J from 2',3',5'-tri-O-acetyl-3-buta-2,3-dien-1-yluridine 

207a (0.192 g, 0.455 mmol), 1-iodo-3,5-bis(trifluoromethyl)-benzene (0.10 mL, 0.55 
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mmol), ammonium tartrate (0.250 g, 

1.37 mmol), Pd2(dba)3 (0.011 g, 2.5 

mol%), TFP (0.011 g, 10 mol%) and 

K2CO3 (0.126 g, 0.91 mmol) in 5:1 

v/v 1,4-dioxane/DMF (12 mL) at 100 

ºC for 9 h. Flash column chromatography eluting with 1.5:1 v/v EtOAc/n-hexane 

gave the product 247g (0.215 g, 74%) as a colourless froth; [α]D
20

 + 27.2 (c, 10 

mg/1mL CHCl3); mp 72-74 °C; δH (300 MHz, CDCl3); 7.90 (4H, d, J 1.1, 4 × 

phenyl-H), 7.71 (2H, br s, 2 × phenyl-H),  7.31 (2H, d, J 8.2, 2 × pyrimidinyl 6-H), 

6.03 (2H, d, J 4.4, 2 × ribosyl 1-H), 5.89 (2H, t, J 7.1, 2 × NCH2CH=), 5.84 (2H, d, J 

8.2, 2 × pyrimidinyl 5-H), 5.37-5.30 (4H, m, 2 ×  ribosyl 2-H and 2 ×  ribosyl 3-H), 

4.85 (2H, dd, J 7.1 and 14.5, 2 × NCHACH=), 4.76 (2H, dd, J 7.1 and 14.5,  2 × 

NCHBCH=), 4.36 (6H, s, 2 × (ribosyl 4-H and 5-CH2)), 3.92 (2H, d, J 15.6, 2 × 

=CCHAN), 3.88 (2H, d, J 15.6, 2 × =CCHBN), 2.13 (6H, s,  2 × OCOMe), 2.12 (6H, 

s, 2 × OCOMe), 2.06 (6H, s, 2 × OCOMe); δC (75 MHz, CDCl3); 170.1, 169.7, 

169.6, 161.9, 150.7, 143.6, 139.8, 137.4, 131.4 (q, J 33.2), 127.2, 126.6 (br d, J 2.2), 

123.1 (q, J 273.1), 121.5 (br d, J 3.3), 102.9, 88.3, 79.8, 72.9, 70.0, 63.0, 48.2, 39.3, 

20.8, 20.5, 20.3; υmax/cm
-1

 (film); 3317, 3024, 1755, 1714, 1668, 1455, 1380, 1281, 

1228; m/z (ESI
+
) 1286.3 (100%, MH

+
); (Found MH

+
, 1286.3130. C54H52F12N5O18 

requires MH, 1286.3110). 

NOE data (CDCl3) for 247g. 

 % Enhancement  

Irradiated proton 1-H 2-H 4-H phenyl-H (δ 7.90) 

1-H  2.41 2.50 - 

2-H 2.64  - 10.41 

4-H 2.18 -  5.64 

 
3,3'-{Iminobis[(2Z)-3-(3,4-dichlorophenyl)but-2-ene-4,1-diyl]}bis(2',3',5'-tri-O-

acetyluridine)  (247h). 

Prepared by general procedure J from 

2',3',5'-tri-O-acetyl-3-buta-2,3-dien-1-

yluridine 207a (0.134 g, 0.317 mmol), 

1,2-dichloro-4-iodobenzene (0.104 g, 

0.38 mmol), ammonium tartrate (0.175 g, 0.95 mmol), Pd2(dba)3 (0.007 g, 2.5 

mol%), TFP (0.007 g, 10 mol%) and K2CO3 (0.09 g, 0.64 mmol) in 5:1 v/v 1,4-
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dioxane/DMF (6 mL) at 100 ºC for 16 h. Flash column chromatography eluting with 

2:1 v/v EtOAc/n-hexane gave the product 247h (0.13 g, 71%) as a pale yellow froth; 

[α]D
20

 + 32.9 (c, 10 mg/1 mL CHCl3); mp 76-78 °C; δH (300 MHz, CDCl3); 7.55 

(2H, d, J 2.2, 2 × phenyl-H), 7.40 (2H, d, J 8.2, 2 × pyrimidinyl 6-H), 7.32-7.23 (4H, 

m, 4 × phenyl-H),  6.03 (2H, d, J 4.9, 2 × ribosyl 1-H), 5.84 (2H, d, J 8.2, 2 × 

pyrimidinyl 5-H), 5.81 (2H, t, J 7.1, 2 × NCH2CH=), 5.38-5.30 (4H, m, 2 ×  ribosyl 

2-H and 2 ×  ribosyl 3-H), 4.78 (2H, dd, J 7.1 and 14.3, 2 × NCHACH=), 4.72 (2H, 

dd, J 7.1 and 14.3,  2 × NCHBCH=), 4.35 (6H, s, 2 × (ribosyl 4-H and 5-CH2)), 3.79 

(4H, s, 2 × =CCH2N), 2.14 (6H, s,  2 × OCOMe), 2.13 (6H, s, 2 × OCOMe), 2.08 

(6H, s, 2 × OCOMe), 1.88 (1H, br s, NH); δC (75 MHz, CDCl3); 170.1, 169.6 (2 × 

C), 161.9, 150.7, 141.4, 140.0, 137.4, 132.2, 131.1, 130.0, 128.5, 125.9, 125.4, 

102.9, 88.4, 79.7, 72.9, 70.0, 63.0, 47.8, 39.3, 20.8, 20.5, 20.46; υmax/cm
-1

 (film); 

3318, 3021, 1752, 1711, 1665, 1552, 1455, 1376, 1232; m/z (ESI
+
) 1150.2 (100%, 

MH
+
); (Found MH

+
, 1150.2002. C50H51

35
Cl4N5O18 requires MH 1150.2056). 

 

3,3'-{Iminobis[(2Z)-3-(6-chloropyridin-3-yl)but-2-ene-4,1-diyl]}bis(2',3',5'-tri-

O-acetyluridine)  (247i) 

Prepared by general procedure J from 

2',3',5'-tri-O-acetyl-3-buta-2,3-dien-1-

yluridine 207a (0.112 g, 0.265 mmol), 

2-chloro-5-iodopyridine (0.076 g, 

0.318 mmol), ammonium tartrate (0.293 g, 1.59 mmol), Pd2(dba)3 (0.006 g, 2.5 

mol%), TFP (0.006 g, 10 mol%) and K2CO3 (0.07 g, 0.53 mmol) in 5:1 v/v 1,4-

dioxane/DMF (6 mL) at 100 ºC for 19 h. Flash column chromatography eluting with 

4:1 v/v EtOAc/n-hexane gave the product 247i (0.11 g, 77%) as a colourless froth; 

[α]D
20

 + 34.8 (c, 12 mg/ 1 mL CHCl3); mp 80-82 °C; δH (300 MHz, CDCl3); 8.43 

(2H, d, J 2.4, 2 × pyridyl-H), 7.69 (2H, dd, J 8.2 and 2.4, 2 × pyridyl-H), 7.42 (2H, d, 

J 8.2, 2 × pyrimidinyl 6-H), 7.20 (2H, d, J 8.0, 2 × pyridyl-H), 6.01 (2H, d, J 4.9, 2 × 

ribosyl 1-H), 5.84 (2H, d, J 8.2, 2 × pyrimidinyl 5-H), 5.83 (2H, t, J 7.1, 2 × 

NCH2CH=),  5.39-5.30 (4H, m, 2 ×  ribosyl 2-H and 2 ×  ribosyl 3-H), 4.80 (2H, dd, 

J 14.5 and 7.1, 2 × NCHACH=), 4.72 (2H, dd, J 14.5 and 7.1, 2 × NCHBCH=), 4.36 

(6H, s, 2 × (ribosyl 4-H and 5-CH2)), 3.81 (2H, s, 2 × =CCH2N), 2.14 (6H, s,  2 × 

OCOMe), 2.13 (6H, s, 2 × OCOMe), 2.09 (6H, s, 2 × OCOMe); δC (75 MHz, 

CDCl3); 170.1, 169.6 (2 × C), 161.9, 150.7, 150.0, 147.6, 138.0, 137.6, 136.9, 135.9, 
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126.0, 123.5, 102.8, 88.6, 79.7, 72.9, 69.9, 62.9, 47.8, 39.2, 20.8, 20.5. 20.47; 

υmax/cm
-1

 (film); 3320, 3019, 1748, 1712, 1668, 1580, 1553, 1456, 1376, 1228; m/z 

(ESI
+
) 1084.3 (100%, MH

+
); (Found MH

+
, 1084.2752. C47H52

35
Cl2N7O18 requires 

MH 1084.2740). 

 

Dimethyl 4,4'-{Iminobis[(2Z)-4-(2',3',5'-tri-O-acetryuridine)but-2-ene-1,2-

diyl]}dibenzoate (247j).  

Prepared by general procedure J from 

2',3',5'-tri-O-acetyl-3-buta-2,3-dien-1-

yluridine 207a (0.152 g, 0.36 mmol), 

methyl 4-iodobenzoate (0.113 g, 0.43 

mmol), ammonium tartrate (0.199 g, 1.08 mmol), Pd2(dba)3 (0.008 g, 2.5 mol%), 

TFP (0.008 g, 10 mol%) and K2CO3 (0.10 g, 0.72 mmol) in 5:1 v/v 1,4-

dioxane/DMF (6 mL) at 100 ºC for 21 h. Flash column chromatography eluting with 

5:1 v/v EtOAc/n-hexane gave the product 247j (0.125 g, 62%) as a pale yellow 

froth; [α]D
20

 + 33.0 (c, 11 mg/ 1 mL CHCl3); mp 78-80 °C; δH (300 MHz, CDCl3); 

7.90 (4H, d, J 8.5, 4 × phenyl-H), 7.47 (4H, d, J 8.5, 4 × phenyl-H), 7.39 (2H, d, J 

8.2, 2 × pyrimidinyl 6-H), 6.03 (2H, d, J 4.4, 2 × ribosyl 1-H), 5.88 (2H, t, J 7.1, 2 × 

NCH2CH=), 5.84 (2H, d, J 8.2, 2 × pyrimidinyl 5-H), 5.37-5.31 (4H, m, 2 ×  ribosyl 

2-H and 2 ×  ribosyl 3-H), 4.79 (2H, dd, J 7.1 and 14.8, 2 × NCHACH=), 4.72 (2H, 

dd, J 7.1 and 14.8,  2 × NCHBCH=), 4.35 (6H, s, 2 × (ribosyl 4-H and 5-CH2)), 3.90 

(6H, s, 2 × CO2Me), 3.86 (4H, s, 2 × =CCH2N), 2.13 (6H, s,  2 × OCOMe), 2.12 

(6H, s, 2 × OCOMe), 2.07 (6H, s, 2 × OCOMe); δC (75 MHz, CDCl3); 170.1, 169.6 

(2 × C), 166.9, 161.9, 150.7, 145.9, 141.3, 137.3, 129.5, 128.8, 126.5, 125.8, 102.9, 

88.4, 79.7, 72.9, 70.0, 63.0, 52.0, 47.7, 39.4, 20.8, 20.5, 20.45; υmax/cm
-1

 (film); 

3322, 3021, 2953, 1748, 1714, 1668, 1607, 1564, 1455, 1435, 1373, 1280, 1227; m/z 

(ESI
+
) 1130.4 (100%, MH

+
); (Found MH

+
, 1130.3753. C54H60N5O22 requires MH 

1130.3724). 

 

3,7-Dimethyl-1-[(2Z)-2-(1-oxo-2,3-dihydroisoquinolin-4(1H)-ylidene)ethyl]-3,7-

dihydro-1H-purine-2,6-dione (251a). 

A mixture of purine allene 195 (0.116 g, 0.50 mmol), methyl 2-iodobenzoate (0.088 

mL, 0.60 mmol), ammonium carbonate (0.288 g, 3.0 mmol), Pd2(dba)3 (0.011 g, 2.5 

mol%) and TFP (0.011 g, 10 mol%) in 2:1 v/v DMF/water (3 mL) was heated at 80 
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ºC for 7 h. the product precipitated from hot solution during the 

reaction. The reaction mixture was filtered and the precipitate washed 

with water (10 mL) and MeOH (3 mL) to give a first crop of product 

as a colourless amorphous solid (0.09 g). The reaction solvent was 

removed under vacuo, the residue dissolved in CHCl3 (30 mL) and the 

organic layer washed with water (2 x 10 mL), dried over anhydrous MgSO4, filtered 

and the filtrate removed under vacuo. The residue was dissolved in CHCl3 (5 mL) 

and left to stand giving a second crop precipitate as a colourless amorphous solid 

(0.02 g). Compound 251a (0.11 g, 63%), mp 239-241 °C; δH (300 MHz, DMSO-d6); 

8.16 (1H, br s, NH), 8.03 (1H, s, purine-H), 7.90 (1H, dd, J 7.7 and 1.6, 

isoquinolinyl-H), 7.61 (1H, dd, J 7.7 and 1.6, isoquinolinyl-H), 7.50 (1H, td, J 7.7 

and 1.6, isoquinolinyl-H), ), 7.40 (1H, td, J 7.7 and 1.6, isoquinolinyl-H), 6.08 (1H, 

t, J 6.9, NCH2CH=), 4.66 (2H, d, J 6.9, NCH2CH=), 4.36 (2H, br s, =CCH2NH), 

3.89 (3H, s, purine 7-Me), 3.43 (3H, s, purine 3-Me); δC (75 MHz, DMSO-d6); 

163.0, 154.2, 150.8, 148.4, 143.0, 136.2, 132.1, 130.3, 128.2, 127.2, 123.2, 122.4, 

106.7, 40.7, 38.2, 33.2, 29.4 (One aromatic carbon atom could not be located due to 

peak overlaps); υmax/cm
-1

 (solid); 3197, 1660, 1607, 1552, 1495, 1451, 1361, 1317, 

1289, 1232; m/z (ESI
+
) 374.1 (100%, MNa

+
); (Found MNa

+
, 374.1239. 

C18H17N5NaO3 requires MNa, 374.1224). 

 

2',3',5'-Tri-O-acetyl-3-[(2Z)-2-(1-oxo-2,3-dihydroisoquinolin-4(1H)-

ylidene)ethyl]uridine (251b). 

Prepared by general procedure J from 2',3',5'-tri-O-acetyl-3-buta-

2,3-dien-1-yluridine 207a (0.106 g, 0.25 mmol), methyl 2-

iodobenzoate (0.046 g, 0.30 mmol), ammonium tartrate (0.277 g, 

1.51 mmol), Pd2(dba)3 (0.006 g, 2.5 mol%), TFP (0.006 g, 10 

mol%) and K2CO3 (0.11 g, 0.75 mmol) in 5:1 v/v 1,4-

dioxane/DMF (6 mL) at 100 ºC for 31 h. Flash column chromatography eluting with 

EtOAc gave the product 251b (0.07 g, 51%) as a pale yellow froth; [α]D
24

 + 26.9 (c, 

10 mg/ 1 mL CHCl3); mp 78-80 °C; δH (300 MHz, CDCl3); 8.10 (1H, dd, J 7.7 and 

1.1, isoquinolinyl-H), 7.56 (1H, dd, J 7.7 and 1.1, isoquinolinyl-H), 7.49 (1H, td, J 

7.7 and 1.1, isoquinolinyl-H), ), 7.42 (1H, d, J 8.2, pyrimidinyl 6-H), 7.42 (1H, td, 

overlapped, isoquinolinyl-H), 6.68 (1H, br s, NH), 6.12 (1H, t, J 7.7, NCH2CH=), 
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6.00 (1H, d, J 4.9, ribosyl 1-H), 5.86 (1H, d, J 8.2, pyrimidinyl 5-H), 5.42-5.32 (2H, 

m,  ribosyl 2-H and ribosyl 3-H), 4.73 (1H, dd, J 14.6 and 7.7,  NCHACH=), 4.66 

(1H, dd, J 14.6 and 7.7, NCHBCH=), 4.54 (2H, s, =CCH2N), 4.36 (3H, s, ribosyl 4-H 

and 5-CH2), 2.13 (3H, s, OCOMe), 2.12 (3H, s, OCOMe), 2.09 (3H, s, OCOMe); δC 

(75 MHz, CDCl3); 170.2, 169.7 (2 × C),165.0, 161.9, 150.6, 137.7, 136.7, 132.5, 

132.4, 128.7, 128.1, 127.2, 123.4, 120.4, 102.8, 88.8, 79.7, 73.0, 69.9, 62.9, 41.7, 

38.4, ,20.8, 20.5, 20.28; υmax/cm
-1

 (film); 3356, 3019, 1749, 1712, 1668, 1601, 1571, 

1456, 1372, 1230; m/z (ESI
+
) 564.2 (100%, MNa

+
); (Found MNa

+
, 564.1573. 

C26H27N3NaO10 requires MNa 564.1589). 

 

1-[(2Z)-2-(7-Bromo-1-oxo-2,3-dihydroisoquinolin-4(1H)-ylidene)ethyl]-3,7-

dimethyl-3,7-dihydro-1H-purine-2,6-dione (251c). 

Prepared by general procedure J from purine allene 195 (0.093 g, 

0.40 mmol), methyl 5-bromo-2-iodobenzoate (0.164 g, 0.48 mmol), 

ammonium tartrate (0.442 g, 2.40 mmol), Pd2(dba)3 (0.009 g, 2.5 

mol%), TFP (0.009 g, 10 mol%) and K2CO3 (0.166 g, 1.20 mmol) 

in 5:1 v/v 1,4-dioxane/DMF (6 mL) at 100 ºC for 24 h. The crude product dissolved 

in CHCl3 and left overnight to give the product 251c (0.12 g, 70%) as a white 

amorphous solid, mp 160-162 °C; δH (300 MHz, CDCl3); 8.23 (1H, d, J 2.2, 

isoquinolinyl-H), 7.57 (1H, dd, J 8.4 and 2.2, isoquinolinyl-H), 7.54 (1H, s, purine-

H), 7.42 (1H, d, J 8.4, isoquinolinyl-H), ), 6.41 (1H, br s, NH), 6.18 (1H, t, J 7.7, 

NCH2CH=), 4.78 (2H, d, J 7.7, NCH2CH=), 4.61 (2H, br s, =CCH2NH), 4.00 (3H, s, 

purine 7-Me), 3.59 (3H, s, purine 3-Me); δC (75 MHz, CDCl3); 163.6, 154.9, 151.4, 

149.0, 141.8, 135.5, 135.3, 131.0, 130.9, 128.8, 125.2, 122.8, 122.2, 107.6, 41.7, 

38.5, 33.7, 29.8; υmax/cm
-1

 (solid); 3523, 3400, 3308, 1702, 1660, 1553, 1491, 1431, 

1321, 1286, 1233; m/z (ESI
+
) 452.0 (100%, MNa

+
); (Found MNa

+
, 452.0327. 

C18H16
79

BrN5NaO3 requires MNa, 452.0329). 

 

2',3',5'-Tri-O-acetyl-3-[(2Z)-2-(7-bromo-1-oxo-2,3-dihydroisoquinolin-4(1H)-

ylidene)ethyl]uridine (251d). 

Prepared by general procedure J from 2',3',5'-tri-O-acetyl-3-buta-2,3-dien-1-yluridine 

207a (0.12 g, 0.284 mmol), methyl 5-bromo-2-iodobenzoate (0.116 g, 0.341 mmol), 

ammonium tartrate (0.314 g, 1.08 mmol), Pd2(dba)3 (0.007 g, 2.5 mol%), TFP 

(0.007 g, 10 mol%) and K2CO3 (0.08 g, 0.57 mmol) in 5:1 v/v 1,4-dioxane/DMF (6 
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mL) at 100 ºC for 24 h. Flash column chromatography eluting with 

4:1 v/v EtOAc/n-hexane gave the product 251d (0.11 g, 63%) as a 

colourless froth; [α]D
24

 + 29.7 (c, 10 mg/ 1 mL CHCl3); mp 90-92 

°C; δH (300 MHz, CDCl3); 8.23 (1H, d, J 2.2, isoquinolin-H), 7.59 

(1H, dd, J 8.2 and 2.2, isoquinolin-H), 7.34 (2H, d, J 8.2, 

isoquinolin-H and pyrimidinyl 6-H), 6.89 (1H, br s, NH), 6.11 

(1H, t, J 7.7, NCH2CH=), 5.98 (1H, d, J 4.9, ribosyl 1-H), 5.86 (1H, d, J 8.2, 

pyrimidinyl 5-H), 5.42-5.32 (2H, m,  ribosyl 2-H and ribosyl 3-H), 4.72 (1H, dd, J 

14.3 and 7.7,  NCHACH=), 4.64 (1H, dd, J 14.3 and 7.7, NCHBCH=), 4.54 (2H, s, 

=CCH2N), 4.37 (3H, s, ribosyl 4-H and 5-CH2), 2.14 (3H, s, OCOMe), 2.13 (3H, s, 

OCOMe), 2.10 (3H, s, OCOMe); δC (75 MHz, CDCl3); 170.2, 169.7 (2 × C), 163.7, 

161.9, 150.6, 137.8, 135.4, 135.3, 131.5, 131.0, 128.8, 125.2, 122.8, 121.1, 102.7, 

89.0, 79.7, 73.0, 69.9, 62.9, 41.6, 38.4, 20.8, 20.50, 20.51; υmax/cm
-1

 (film); 3356, 

3018, 1748, 1712, 1667, 1591, 1556, 1455, 1373, 1335, 1307, 1231; m/z (ESI
+
) 

642.1 (100%, MNa
+
); (Found MNa

+
, 642.0691. C26H26

79
BrN3NaO10 requires MNa 

642.0694). 

 

Methyl (4Z)-4-[2-(3,7-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-

yl)ethylidene]-1-oxo-1,2,3,4-tetrahydroisoquinoline-6-carboxylate (251e). 

Prepared by general procedure J from purine allene 195 (0.116 g, 

0.50 mmol), dimethyl iodoterephthalate (0.192 g, 0.60 mmol), 

ammonium tartrate (0.552 g, 3.00 mmol), Pd2(dba)3 (0.0114 g, 

2.5 mol%), TFP (0.0116 g, 10 mol%) and K2CO3 (0.207 g, 1.50 

mmol) in 5:1 v/v 1,4-dioxane/DMF (12 mL) at 100 ºC for 23 h. 

Flash column chromatography eluting with 40:1 v/v CHCl3/MeOH gave the product 

251e (0.16 g, 78%) as a white amorphous solid which crystallised from CHCl3 as 

colourless fine needles; mp 202-204 °C; δH (300 MHz, CDCl3/MeOH-d4); 8.21 (1H, 

d, J 1.5, isoquinolin-H), 8.15 (1H, d, J 8.2, isoquinolin-H), 8.03 (1H, dd, J 8.2 and 

1.5, isoquinolin-H), 7.60  (1H, s, purine-H), 6.24 (1H, tt, J 7.7 and 1.6, NCH2CH=), 

4.82 (2H, d, J 7.7, NCH2CH=), 4.61 (2H, d, J 1.6, =CCH2NH), 4.01 (3H, s, purine 7-

Me), 3.95 (3H, s, purine 3-Me), 3.60 (3H, s, CO2Me); δC (75 MHz, CDCl3/MeOH-

d4); 166.3, 164.3, 154.9, 151.3, 148.9, 141.9, 137.0, 133.5, 130.8, 130.5, 129.1, 

128.3, 124.9, 122.8, 107.6, 52.3, 41.4, 38.5, 33.7, 29.8; υmax/cm
-1

 (solid); 3605, 
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3095, 2957, 1701, 1661, 1603, 1549, 1434, 1359, 1293, 1260, 1189; m/z (ESI
+
) 

432.13(100%, MNa
+
); (Found MNa

+
, 432.1296. C20H19N5NaO5 requires MNa, 

432.1278). 

 

3',5'-Di-O-acetyl-3-{(2Z)-2-[6-(methoxycarbonyl)-1-oxo-2,3-dihydroisoquinolin-

4(1H)-ylidene]ethyl}thymidine (251f) 

Prepared by general procedure J from 2'3',5'-di-O-acetyl-3-buta-

2,3-dien-1-ylthymidine 207b (0.189 g, 0.50 mmol), dimethyl 

iodoterephthalate (0.192 g, 0.60 mmol), ammonium tartrate 

(0.552 g, 3.00 mmol), Pd2(dba)3 (0.0114 g, 2.5 mol%), TFP 

(0.0116 g, 10 mol%) and K2CO3 (0.207 g, 1.50 mmol) in 5:1 v/v 

1,4-dioxane/DMF (12 mL) at 100 ºC for 21 h. Flash column 

chromatography eluting with EtOAc gave the product 251f (0.18 g, 65%) as a 

colourless froth; [α]D
24

 + 6.1 (c, 10 mg/ 1 mL CHCl3); mp 84-86 °C; δH (300 MHz, 

CDCl3); 8.20 (1H, d, J 1.6, isoquinolinyl-H), 8.17 (1H, d, J 8.2, , isoquinolinyl-H),  

8.03 (1H, dd, J 8.2 and 1.6, isoquinolinyl-H), 7.33 (1H, d, J 1.1, pyrimidinyl 6-H), 

7.07 (1H, br s, NH), 6.38 (1H, dd, J 8.2 and 5.5, deoxyribosyl 1-H), 6.21 (1H, t, J 

7.1, NCH2CH=), 5.25 (1H, dt, J 6.6 and 2.2, deoxyribosyl 3-H), 4.76 (2H, d, J 7.1, 

NCH2CH=), 4.61 (2H, s, =CCH2N), 4.41 (1H, dd, J 12.1 and 4.4, deoxyribosyl 5-

HA), 4.35 (1H, dd, J 12.1 and 4.4, deoxyribosyl 5-HB), 4.28 (1H, dt, J 5.5 and 2.7, 

deoxyribosyl 4-H), 3.96 (3H, s, CO2Me), 2.52 (1H, ddd, J 14.3, 5.5 and 1.6, 

deoxyribosyl 2-HA), 2.23 (1H, ddd, J 14.8, 8.2 and 6.7, deoxyribosyl 2-HB), 2.14 

(3H, s, OCOMe), 2.12 (3H, s, OCOMe), 1.98 (3H, d, J 1.1, pyrimidinyl 5-Me); δC 

(75 MHz, CDCl3); 170.4, 170.2, 166.2, 164.1, 162.9, 150.6, 136.8, 133.4, 133.1, 

131.2, 130.7, 129.1, 128.3, 124.8, 122.0, 110.7, 85.5, 82.0, 74.1, 63.8, 52.5, 41.6, 

38.6, 37.5, 20.9, 20.8, 13.4; υmax/cm
-1

 (film); 3330, 3018, 2954, 1744, 1703, 1673, 

1644, 1568, 1467, 1366, 1236, 1194; m/z (ESI
+
) 578.2 (100%, MNa

+
); (Found 

MNa
+
, 578.1769. C27H29N3NaO10 requires MNa, 578.1745). 

NOE data (CDCl3) for 251f. 

 % Enhancement  

Irradiated 

proton 
Ha Hb Hd 

isoquinolinyl-He  

(δ 8.20) 

deoxyribosyl 1-H 

Ha  4.47 4.03 - - 

Hb 3.28  - 19.00 - 

Hd 2.62 -  - 1.77 
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2',3',5'-Tri-O-acetyl-3-{(2Z)-2-[6-(methoxycarbonyl)-1-oxo-2,3-

dihydroisoquinolin-4(1H)-ylidene]ethyl}uridine (251g). 

Prepared by general procedure J from 2',3',5'-tri-O-acetyl-3-buta-

2,3-dien-1-yluridine 207a (0.146 g, 0.345 mmol), dimethyl 

iodoterephthalate (0.133 g, 0.414 mmol), ammonium tartrate 

(0.381 g, 2.07 mmol), Pd2(dba)3 (0.008 g, 2.5 mol%), TFP (0.008 

g, 10 mol%) and K2CO3 (0.143 g, 1.04 mmol) in 5:1 v/v 1,4-

dioxane/DMF (8.5 mL) at 100 ºC for 21 h. Flash column chromatography eluting 

with EtOAc gave the product 251g (0.11 g, 54%) as a colourless froth; [α]D
24

 + 22.6 

(c, 10 mg/ 1 mL CHCl3); mp 86-88 °C; δH (300 MHz, CDCl3); 8.21 (1H, d, J 1.4, 

isoquinolinyl-H), 8.18 (1H, dd, J 8.2, isoquinolinyl-H), 8.04 (1H, dd, J 8.2 and 1.4, 

isoquinolinyl-H), ), 7.45 (1H, d, J 8.2, pyrimidinyl 6-H), 6.84 (1H, br s, NH), 6.21 

(1H, t, J 7.7, NCH2CH=), 6.03 (1H, d, J 4.4, ribosyl 1-H), 5.88 (1H, d, J 8.2, 

pyrimidinyl 5-H), 5.41-5.32 (2H, m,  ribosyl 2-H and ribosyl 3-H), 4.74 (1H, dd, J 

14.3 and 7.7,  NCHACH=), 4.64 (1H, dd, J 14.3 and 7.7, NCHBCH=), 4.57 (2H, s, 

=CCH2N), 4.37 (3H, s, ribosyl 4-H and 5-CH2), 3.95 (3H, s, isoquinoline-OCOMe), 

2.14 (3H, s, OCOMe), 2.13 (3H, s, OCOMe), 2.10 (3H, s, OCOMe); δC (75 MHz, 

CDCl3); 170.2, 169.7 (2 × C), 166.2, 164.1, 161.9, 150.6, 137.7, 136.8, 133.5, 131.5, 

130.7, 129.2, 128.4, 124.9, 121.7, 102.8, 88.7, 79.8, 73.0, 69.9, 62.9, 52.5, 41.7, 

38.4, 20.8, 20.5, 20.5; υmax/cm
-1

 (film); 3346, 3020, 2954, 1749, 1667, 1456, 1372, 

1234; m/z (ESI
+
) 622.2 (100%, MNa

+
); (Found MNa

+
, 622.1672. C28H29N3NaO12 

requires MNa 622.1643). 

 

2',3',5'-Tri-O-acetyl-3-[2-(isoquinolin-4-yl)ethyl]uridine (254a). 

Prepared by general procedure J from 2',3',5'-tri-O-acetyl-3-

buta-2,3-dien-1-yluridine 207a (0.173 g, 0.41 mmol), 2-

iodobenzaldehyde (0.114 g, 0.49 mmol), ammonium tartrate 

(0.453 g, 2.46 mmol), Pd2(dba)3 (0.01 g, 2.5 mol%), TFP 

(0.01 g, 10 mol%) and K2CO3 (0.113 g, 0.82 mmol) in 5:1 

v/v 1,4-dioxane/DMF (6 mL) at 100 ºC for 12 h. Flash column chromatography 

gradient eluting with 2:1 to 3:1 v/v EtOAc/n-hexane gave the product 254a (0.10 g, 

47%) as a yellow froth; [α]D
24

 + 18.0 (c, 11 mg/ 1 mL CHCl3); mp 58-60 °C; δH (300 

MHz, CDCl3); 9.16 (1H, s, isoquinolinyl-H), 8.45 (1H, s, isoquinolinyl-H), 8.38 
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(1H, d, J 8.2, isoquinolinyl-H), 7.99 (1H, d, J 8.2, isoquinolinyl-H), 7.82 (1H, ddd, J 

8.2, 7.1 and 1.1, isoquinolinyl-H), 7.63 (1H, ddd, J 8.2, 7.1 and 1.1, isoquinolinyl-

H), 7.44 (1H, d, J 8.0, pyrimidinyl 6-H), 6.06 (1H, d, J 3.8, ribosyl 1-H), 5.87 (H, d, 

J 8.0, pyrimidinyl 5-H), 5.41-5.34 (2H, m, ribosyl 2-H and ribosyl 3-H), 4.38 (3H, s, 

ribosyl 4-H and 5-CH2), 4.23 (2H, AA′BB′, J 8.2 and 5.5, -CH2CH2-), 3.32 (2H, 

AA′BB′, J 8.2 and 5.5, -CH2CH2-), 2.16 (3H, s, OCOMe), 2.14 (6H, s, 2 × OCOMe); 

δC (75 MHz, CDCl3); 170.2, 169.64, 169.6, 162.1, 152.0, 150.8, 143.4, 137.6, 134.9, 

130.8, 128.4, 128.2, 127.7, 127.1, 123.2, 102.8, 88.7, 79.7, 73.0, 70.0, 62.9, 41.7, 

28.1, 20.8, 20.5 (2 × C); υmax/cm
-1

 (film); 3020, 2963, 1748, 1712, 1673, 1585, 1504, 

1456, 1390, 1373, 1231; m/z (ESI
+
) 526.2 (100%, MH

+
); (Found MH

+
, 526.1830. 

C26H28N3O9 requires MH, 526.1820). 

 

1-[2-(8-Fluoroisoquinolin-4-yl)ethyl]-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-

dione (254b). 

Prepared by general procedure J from purine allene 195 (0.116 g, 0.50 

mmol), 2-fluoro-6-iodobenzaldehyde (0.150 g, 0.60 mmol), 

ammonium tartrate (0.552 g, 3.00 mmol), Pd2(dba)3 (0.0114 g, 2.5 

mol%), TFP (0.0116 g, 10 mol%) and K2CO3 (0.207 g, 1.50 mmol) in 

5:1 v/v 1,4-dioxane/DMF (12 mL) at 100 ºC for 26 h. Flash column 

chromatography eluting with 70:1 v/v EtOAc/MeOH gave the product 254b (0.08 g, 

45%) as a white amorphous solid; mp 236-238 °C; δH (300 MHz, CDCl3); 9.47 (1H, 

br s, isoquinolinyl-H), 8.56 (1H, br s, isoquinolinyl-H), 8.26 (1H, d, J 8.2, 

isoquinolinyl-H), 7.78 (1H, td, J 8.2 and 5.8, isoquinolinyl-H), 7.56 (1H, s, purine-

H), 7.27 (1H, dd, J 9.6 and 8.2, isoquinolinyl-H), 4.31 (2H, AA′BB′, J 8.2 and 4.9, 

NCH2CH2-), 4.03 (3H, s, purine 7-Me), 3.64 (3H, s, purine 3-Me), 3.35 (2H, 

AA′BB′, J 8.2 and 4.9, NCH2CH2-); δC (75 MHz, CDCl3); 159.5 (J 255.4), 155.1, 

151.5, 148.9, 145.5 (J 5.5), 144.4, 141.7, 136.4 (J 3.3), 131.1 (J 8.8), 127.7, 119.4 (J 

4.4), 110.9 (J 18.8), 107.7, 41.8, 33.7, 29.8, 29.1(One aromatic carbon atom could 

not be located due to peak overlaps); υmax/cm
-1

 (film); 2955, 1703, 1651, 1603, 1572, 

1550, 1447, 1402, 1357, 1327, 1288, 1238; m/z (ESI
+
) 354.1 (100%, MH

+
); (Found 

MH
+
, 354.1376. C18H17FN5O2 requires MH, 354.1361). 
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3,7-Dimethyl-1-[2-(1-methylisoquinolin-4-yl)ethyl]-3,7-dihydro-1H-purine-2,6-

dione (254c). 

Prepared by general procedure J from purine allene 195 (0.116 g, 

0.50 mmol), 2′-iodoacetophenone (0.086 mL, 0.60 mmol), 

ammonium tartrate (0.552 g, 3.00 mmol), Pd2(dba)3 (0.0114 g, 2.5 

mol%), TFP (0.0116 g, 10 mol%) and K2CO3 (0.207 g, 1.50 mmol) 

in 5:1 v/v 1,4-dioxane/DMF (12 mL) at 100 ºC for 23 h. Flash 

column chromatography eluting with 20:1 v/v EtOAc/MeOH gave the product 254c 

(0.07 g, 40%) as a white amorphous solid; mp 212-214 °C; δH (300 MHz, CDCl3); 

8.48 (1H, d, J 8.2, isoquinolin-H), 8.36 (1H, s, isoquinolin-H), 8.16 (1H, d, J 8.2, 

isoquinolin-H), 7.84 (1H, ddd, J 8.2 and 6.6 and 1.1, isoquinolin-H), 7.63 (1H, ddd, 

J 8.2, 6.6 and 1.1, isoquinolin-H), 7.55 (1H, s, purine-H), 4.31 (2H, AA′BB′, J 8.2 

and 4.9, NCH2CH2-), 4.03 (3H, s, purine 7-Me), 3.64 (3H, s, purine 3-Me), 3.32 

(2H, AA′BB′, J 8.2 and 4.9, NCH2CH2-), 2.96 (3H, s, isoquinoline-Me); δC (75 

MHz, CDCl3); 157.8, 155.2, 151.6, 148.9, 142.2, 141.6, 135.1, 130.4, 127.2, 126.8, 

126.3, 126.1, 124.0, 107.7, 42.1, 33.7, 29.8, 28.8, 22.5; υmax/cm
-1

 (solid); 1698, 

1657, 1550, 1433, 1391, 1357, 1322, 1287, 1232; m/z (ESI
+
) 350.2 (100%, MH

+
); 

(Found MH
+
, 350.1626. C19H20N5O2 requires MH, 350.1612). 

 

1,3,5-Tri(prop-2-yn-1-yl)-1,3,5-triazinane-2,4,6-trione (256). 

A mixture of cyanuric acid 255 (5.0 g, 38.76 mmol), K2CO3 

(20.86 g, 151.16 mmol), DMF (90 mL), and propargyl bromide 

193 (15.5 mL, 139.50 mmol) was magnetically stirred at 50 °C 

for 16 h. The solution was cooled, filtered and the filtrate removed under vacuum. 

The resultant residue was dissolved in CHCl3 (200 mL) and the organic layer 

washed with 10% v/v NH4Cl solution (3 x 100 mL) and finally with water (100 mL). 

The organic layer was dried over anhydrous MgSO4, filtered and the filtrate was 

removed under vacuum. The resulted solid was crystallised from 1:1 v/v  

MeOH/CHCl3 to give the pure trisalkyne 256 ( 4.3 g, 46%) as colourless plates, mp 

164-166 °C; δH (300 MHz, CDCl3); 4.70 (6H, d, J 2.4, 3 × CH2), 2.31 (3H, t, J 2.4, 3 

× ≡CH); δC (75 MHz, CDCl3); 147.3, 76.7, 72.7, 32.6; υmax/cm
-1

 (film); 3277, 3011, 

2128, 1693, 1461, 1414, 1356, 1310; m/z (ESI
+
) 266.1 (100%, MNa

+
); (Found 

MNa
+
, 266.0540. C12H9N3NaO3 requires MNa, 266.0536). 
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1,3,5-Tri(buta-2,3-dien-1-yl)-1,3,5-triazinane-2,4,6-trione (257). 

A mixture of trisalkyne 256 (1.5 g, 6.17 mmol), 

paraformaldehyde (1.39 g, 46.3 mmol), diisopropylamine 

(5.22 mL, 37.11 mmol) and CuBr (1.30 g, 9.10 mmol) in 

dry dioxane (9 mL) was refluxed and magnetically stirred for 3 h. The mixture was 

then cooled, filtered and the filtrate evaporated under vacuum. The residue was 

dissolved in CHCl3 (100 mL) and the organic layer washed with 10% ammonium 

hydroxide solution (2 x 100 mL), 10% HCl (3 x 100 mL) and finally with water (100 

mL). The organic layer was dried over anhydrous MgSO4, filtered and the filtrate 

evaporated under vacuum. The residue was purified by flash column 

chromatography eluting with 2:1 v/v hexane/EtOAc to give the pure trisallene 257 ( 

0.65, 37%) as a pale yellow viscous oil; δH (300 MHz, CDCl3); 5.26 (3H, m, 3 × 

CH), 4.85 (6H, dt, J 2.9 and 6.4, 3 × CH2), 4.50 (6H, dt, J 2.9 and 6.4, 3 × CH2); δC 

(75 MHz, CDCl3); 208.9, 148.3, 85.5, 77.6, 41.1; υmax/cm
-1

 (film); 3384, 3066, 

2991, 2959, 1957, 1685, 1458, 1361, 1317; m/z (ESI
+
) 308.1 (100%, MNa

+
); (Found 

MNa
+
, 308.1003. C15H15N3NaO3 requires MNa, 308.1006). 

 

General Procedure K: Pd catalysed 7-component cascades. 

A mixture of trisallene 257 (0.25 mmol), 3-iodopyridine (0.90 mmol), nucleophile 

(0.90 mmol), Pd2(dba)3 (7.5 mol%), TFP (tri-(2-furyl)phosphine) (30 mol%), and 

K2CO3 (2.25 mmol) in MeCN (5 mL) was stirred and heated at 80 °C (oil bath 

temperature) for 2-3 h. The mixture was cooled, filtered through a filter paper and 

the solid washed with MeCN (5 mL). The solvent was removed under reduced 

pressure, the residue dissolved in CHCl3 and washed with H2O (1 x 20 mL). The 

organic layer was dried (anhydrous MgSO4), filtered, and the filtrate evaporated 

under reduced pressure. The residue was purified by flash chromatography. 

 

1,3,5-Tris[(2Z)-4-(8-fluoro-1,3,4,5-tetrahydro-2H-pyrido[4,3-b]indol-2-yl)-3-

(pyridin-3-yl)but-2-en-1-yl]-1,3,5-triazinane-2,4,6-trione (258a). 

Prepared by general procedure K from trisallene 257 (0.0713 g, 0.25 mmol), 3-

iodopyridine (0.185 g, 0.90 mmol), 8-fluoro-2,3,4,4a,5,9b-hexahydro-1H-pyrido[4,3-

b]indole 187 (0.171 g, 0.90 mmol), Pd2(dba)3 (0.0172 g, 7.5 mol%), TFP (0.0174 g, 

30 mol%) and K2CO3 (0.31 g, 2.25 mmol) in MeCN (5 mL) at 80 ºC for 2 h. Flash 
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column chromatography gradient eluting 

with EtOAc and then 5:1 v/v EtOAc/MeOH 

gave the product 258a (0.19 g, 70%) as a 

colourless froth, mp 199-201 °C; δH (300 

MHz, DMSO); 10.86 (3H, s, 3 × NH), 8.71 

(3H, d, J 1.4, 3 × pyridyl-H), 8.41 (3H, dd, 

J 1.4 and 4.8, 3 × pyridyl-H), 7.89 (3H, td, J 

1.4 and 8.1, 3 × pyridyl-H), 7.30 (3H, dd, J 

4.8 and 8.1, 3 × pyridyl-H), 7.21 (3H, dd, J 4.5 and 9.1, 3 × pyridoindolyl-H), 7.07 

(3H, dd, J 2.5 and 10.0, 3 × pyridoindolyl-H), 6.79 (3H, dt, J 2.5 and 9.1, 3 × 

pyridoindolyl-H), 6.07 (4H, t, J 5.7, 3 × NCH2CH=), 4.77 (6H, d, J 5.7, 3 × 

NCH2CH=), 3.76 (6H, br s, 3 × =CCH2N), 3.63 (6H, br s, 3 × pyridoindolyl 1-CH2), 

2.84 (6H, br s, 3 × pyridoindolyl-CH2), 2.68 (6H, br s, 3 × pyridoindolyl-CH2); δC 

(75 MHz, DMSO); 156.6 (J 231.6), 149.0, 148.1, 147.5, 136.5, 136.0, 134.9, 133.7, 

132.4, 128.1, 125.7 (J 9.9), 123.1, 111.4 (J 9.9), 107.8 (J 24.2), 107.5 (J 4.4), 101.9 

(J 24.2), 54.9, 49.5, 48.9, 40.8, 23.5; υmax/cm
-1

 (solid); 3183, 2923, 2385, 1688, 

1634, 1588, 1455, 1369, 1324, 1286, 1234; m/z (ESI
+
) 1087.5 (52%, MH

+
); (Found 

MH
+
, 1087.4675. C63H58F3N12O3 requires MH, 1087.4701).  

NOE data (DMSO) for 258a: 

 % Enhancement 

Irradiated proton 1-H 2-H 4-H Pyridyl-H pyridoindolyl-CH2 

1-H  -10.6 -5.8 - - 

2-H -11.2  - 
-3.0 (2-H, δ 8.71) 

-1.9 (4-H, δ 7.89) 
- 

4-H -4.7 -  - 

-4.2 (1-CH2, δ 3.63) 

4.8 (3-CH2, δ 2.84)   

3.1 (4-CH2, δ 2.68) 
 

1,3,5-Tris[(2Z)-4-(adamantan-1-ylamino)-3-(pyridin-3-yl)but-2-en-1-yl]-1,3,5-

triazinane-2,4,6-trione (258b). 

Prepared by general procedure K from trisallene 

257 (0.0713 g, 0.25 mmol), 3-iodopyridine (0.185 

g, 0.90 mmol), 1-aminoadamantane 180 (0.136 g, 

0.90 mmol), Pd2(dba)3 (0.0172 g, 7.5 mol%), TFP 

(0.0174 g, 30 mol%) and K2CO3 (0.31 g, 2.25 

mmol) in MeCN (5 mL) at 80 ºC for 2 h. Work up 
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by flash column chromatography gradient elution with EtOAc and then 10:3 v/v 

EtOAc/MeOH gave the product 258b (0.16 g, 66%) which crystallized from CHCl3 

as a colourless fine needles, mp 111-113 °C; δH (300 MHz, CDCl3); 8.75 (3H, d, J 

1.9, 3 × pyridyl-H), 8.49 (3H, dd, J 1.9 and 4.8, 3 × pyridyl-H), 7.85 (3H, td, J 1.9, 

8.1, pyridyl-H), 7.22 (3H, dd, J 4.8 and 8.1, 3 × pyridinyl-H), 5.85 (3H, t, J 7.2, 3 × 

NCH2CH=), 4.78 (6H, d, J 7.2, 3 × NCH2CH=), 3.76 (6H, s, 3 × =CCH2N), 2.08 

(9H, br s, 9 × adamantyl-CH), 1.71 (18H, br d, J 1.9, 9 × adamantyl-CH2), 1.65 

(18H, br q, J 10.5, 9 × adamantyl-CH2); δC (75 MHz, CDCl3); 148.7, 148.69, 147.7, 

140.8, 136.8, 133.7, 123.9, 123.1, 50.9, 42.6, 41.4, 39.3, 36.8, 29.6; υmax/cm
-1

 (film); 

3318, 2905, 2848, 1693, 1567, 1455, 1357, 1310, 1215; m/z (ESI
+
) 970.6 (33%, 

MH
+
); (Found MH

+
, 970.6069. C60H76N9O3 requires MH, 970.6066). 

 

1,3,5-Tris[(2Z)-4-[3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-

azabicyclo[3.2.1]oct-8-yl]-3-(pyridin-3-yl)but-2-en-1-yl]-1,3,5-triazinane-2,4,6-

trione (258c). 

Prepared by general procedure K 

from trisallene 257 (0.0713 g, 0.25 

mmol), 3-iodopyridine (0.185 g, 

0.90 mmol), 3-(3-isopropyl-5-

methyl-4H-1,2,4-triazol-4-yl)-8-

azabicyclo[3.2.1]octane 188 (0.211 

g, 0.90 mmol), Pd2(dba)3 (0.0172 g, 

7.5 mol%), TFP (0.0174 g, 30 

mol%) and K2CO3 (0.31 g, 2.25 

mmol) in MeCN (5 mL) at 80 ºC for 3 h. Flash column chromatography gradient 

eluting with 10:7 v/v EtOAc/MeOH and then 1:1 v/v EtOAc/MeOH gave an 

inseparable mixture of E/Z isomeric products 258c (0.21 g, 69%) as a colourless 

froth; δH (Major isomer from the isomeric mixture) (300 MHz, CDCl3); 8.86 (3H, d, 

J 2.4, 3 pyridyl-H), 8.51 (3H, dd, J 1.4 and 4.8, 3 × pyridyl-H), 7.78 (3H, td, J 1.4 

and 9.5, 3 × pyridyl-H), 7.26 (3H, dd, J 4.8 and 9.5, 3 × pyridyl-H), 5.91 (3H, t, J 

6.7, 3 × NCH2CH=), 4.82 (6H, d, J 6.7, 3 × NCH2CH=), 4.28-4.15 (3H, m, 3 × 

azabicyclooctyl-H), 3.64 (6H, s, 3 × =CCH2N), 3.36 (6H, br s, 6 × azabicyclooctyl-

H), 2.94-2.84 (3H, m, 3 × triazolyl 3-CH(CH3)2), 2.34 (9H, s, 3 × triazolyl 5-CH3), 
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2.23-2.13 (6H, m, 6 × azabicyclooctyl-H), 2.03-1.92 (6H, m, 6 × azbicyclooctyl-H), 

1.69-1.59 (12H, m, 12 × azabicyclooctyl-H), 1.32 (18H, d, J 7.2, 3 × triazolyl 3-

CH(CH3)2); υmax/cm
-1

 (film) (isomeric mixture); 3383, 2965, 2878, 1693, 1567, 

1514, 1462, 1417, 1345, 1315, 1286, 1251, 1215; m/z (ESI
+
) (isomeric mixture) 

1219.8 (50%, MH
+
); (Found MH

+
, 1219.7538. C69H91N18O3 requires MH, 

1219.7516). 

 

General Procedure L: Pd catalysed 9-component cascades. 

A mixture of substituted allene (0.40 mmol), 1,3,5,7-tetrakis-(4-

iodophenyl)adamantane 259 (0.10 mmol), nucleophile (0.48 mmol), Pd2(dba)3 (2.5 

mol%), TFP (tri-(2-furyl)phosphine) (10 mol%), and K2CO3 (0.6 mmol) in MeCN or 

DMF was stirred and heated at 80 °C (oil bath temperature) for 3-32 h. The mixture 

was filtered and the inorganic precipitate washed with MeCN. The solvent was 

removed under reduced pressure, the residue dissolved in CHCl3 and washed with 

H2O. The organic layer was dried over anhydrous MgSO4, filtered, and the filtrate 

evaporated under reduced pressure. The residue was purified by flash 

chromatography. 

 

1,1',1'',1'''-[Tricyclo[3.3.1.1
3,7

]decane-1,3,5,7-tetrayltetrakis(4,1-phenylene{ 

(2Z)-4-[3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]-oct-8-

yl]but-2-ene-3,1-diyl})]tetrakis(3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione) 

(262a). 

Prepared by general procedure L 

from N-allenylpurine 195 

(0.0928 g, 0.40 mmol), 1,3,5,7-

tetrakis-(4-

iodophenyl)adamantane 259 

(0.0944 g, 0.1 mmol), 3-(3-

isopropyl-5-methyl-4H-1,2,4-

triazol-4-yl)-8-

azabicyclo[3.2.1]octane 188 

(0.112 g, 0.48 mmol), Pd2(dba)3 

(0.003 g, 2.5 mol%), TFP 
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(0.003 g, 10 mol%) and K2CO3 (0.083 g, 0.60 mmol) in MeCN (3 mL) at 80 ºC for 

24 h. Flash column chromatography gradient eluting with EtOAC, MeOH and then 

DMF gave the product 262a (0.12 g, 52%) as a colourless froth, mp 199-201 °C; δH 

(300 MHz, CDCl3); 7.54 (4H, s, 4 × purine-H), 7.46 (8H, d, J 8.2, 8 × phenyl-H), 

7.37 (8H, d, J 8.2, 8 × phenyl-H), 5.88 (4H, t, J 6.2, 4 × NCH2CH=), 4.93 (8H, d, J 

6.2, 4 × NCH2CH=), 4.24 (4H, m, 4 × azabicyclooctyl-H), 3.99 (12H, s, 4 × purine-

NCH3), 3.68 (8H, s, 4 × =CCH2N), 3.58 (12H, s, 4 × purine-NCH3), 3.46 (8H, br s, 8 

× azabicyclooctyl-H), 2.96 (4H, m, 4 × triazolyl 3-CH(CH3)2), 2.37 (12H, s, 4 × 

triazolyl 5-CH3), 2.21 (8H, br dd, J 8.7 and 3.6, 8 × azabicyclooctyl-H), 2.1 (20H, br 

s, 8 × azbicyclooctyl-H + 6 × adamantyl-CH2), 1.66 (16H, br d, J 7.7,  16 × 

azabicyclooctyl-H), 1.32 (24H, d, J 6.7, 4 × triazolyl 3-CH(CH3)2); δC (75 MHz, 

CDCl3);157.6, 153.5, 149.9, 149.3, 147.4, 146.7, 140.2, 138.9, 138.5, 125.3, 124.8, 

123.0, 106.2, 57.2, 49.7, 45.8 (2 × C), 38.2, 37.5, 36.0, 32.2, 28.3, 25.2, 24.2, 20.2, 

11.4; υmax/cm
-1

 (film); 3384, 2935, 1704, 1661, 1603, 1549, 1513, 1455, 1415, 1357, 

1314, 1286, 1234; m/z (ESI
+
) 2321.3 (30%, [M+Na]

+
);  (Found [M+Na]

+
, 

2321.2911. C130H161NaN32O8 requires [M+Na]
+
, 2321.3018); 2298.3 (28%, 

[M+H]
+
);  (Found [M+H]

+
, 2298.3056. C130H161N32O8 requires [M+H]

+
, 

2298.3170); 1171.6 (34%, [M+2Na]
2+

); (Found [M+2Na]
2+

, 1171.6477. 

C130H160Na2N32O8 requires [M+2Na]
2+

, 1171.6441); 1160.7 (80%, [M+H+Na]
2+

);  

(Found [M+H+Na]
2+

, 1160.6560. C130H161NaN32O8 requires [M+H+Na]
2+

, 

1160.6531); 1149.7 (100%, [M+2H]
2+

);  (Found [M+2H]
2+

, 1149.6660. 

C130H162N32O8 requires [M+2H]
2+

, 1149.6621).
 

NOE data (CDCl3) for 262a.  

 % Enhancement 

Irradiated proton 1-H 2-H 4-H Ph-H Azabicyclooctyl-H 

1-H  -8.7 - - - 

2-H -6.3  - - - 

4-H -1.0 -  -2.2 (δ 7.46) -2.7 (δ 3.46)  
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1,1',1'',1'''-[Tricyclo[3.3.1.1
3,7

]decane-1,3,5,7-tetrayltetrakis(4,1-phenylene{ 

(2Z)-4-[3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]oct -8-

yl]but-2-ene-3,1-diyl})]tetrakis(3', 5'-di-O-acetylthymidine) (262b). 

Prepared by general procedure L 

from 3',5'-di-O-acetyl-3-buta-2,3-

dien-1-ylthymidine 207b (0.151 g, 

0.40 mmol), 1,3,5,7-tetrakis-(4-

iodophenyl)adamantane 259 

(0.0944 g, 0.1 mmol), 3-(3-

isopropyl-5-methyl-4H-1,2,4-

triazol-4-yl)-8-

azabicyclo[3.2.1]octane 188 (0.112 

g, 0.48 mmol), Pd2(dba)3 (0.003 g, 

2.5 mol%), TFP (0.003 g, 10 

mol%) and K2CO3 (0.083 g, 0.6 

mmol) in MeCN (3 mL) at 80 ºC for 4 h. Flash column chromatography gradient 

eluting with 4:1 v/v EtOAc/MeOH and then 1:1 v/v EtOAc/MeOH gave the product 

262b (0.20 g, 69%) as a colourless froth; [α]D
20

 + 2.6 (c, 11 mg/1 mL CHCl3); mp 

146-148 °C; δH (300 MHz, CDCl3); 7.46 (8H, d, J 8.6, 8 × phenyl-H), 7.37 (8H, d, J 

8.6, 8 × phenyl-H), 7.29 (4H, s, 4 × pyrimidinyl 6-H), 6.37 (4H, dd, J 5.6 and 8.4, 4 

× deoxyribosyl 1-H), 5.85 (4H, t, J 6.7, 4 × NCH2CH=), 5.22 (4H, dd, J 4.5and 2.1, 

4 × deoxyribosyl 3-H), 4.87 (8H, d, J 6.7, 4 × NCH2CH=), 4.37 (4H, dd, J 12.2 and 

3.6, 4 × deoxyribosyl 5-HA), 4.35 (4H, dd, J 12.2 and 3.6, 4 × deoxyribosyl 5-HB), 

4.27-4.24 (8H, m, 4 × azabicyclooctyl-H + 4 × deoxyribosyl 4-H), 3.67 (8H, s, 4 × 

=CCH2N), 3.44 (8H, br s, 8 × azabicyclooctyl-H), 2.98-2.93 (4H, m, 4 × triazolyl 3-

CH(CH3)2), 2.51 (4H, dd, J 5.6 and 1.5, 4 × deoxyribosyl 2-HA), 2.46 (4H, dd, J 5.6 

and 1.5, 4 × deoxyribosyl 2-HB),  2.37 (12H, s, 4 × triazolyl 5-CH3), 2.23-2.05 (28H, 

m, 16 × azabicyclooctyl-H + 6 × adamantyl-CH2), 2.14 (12H, s, 4 × deoxyribosyl 

OMe), 2.12 (12H, s, 4 × deoxyribosyl OMe), 1.96 (12H, s, 4 × pyrimidinyl 5-Me), 

1.66 (16H, br d, J 7.9,  16 × azabicyclooctyl-H), 1.32 (24H, d, J 6.9, 4 × triazolyl 3-

CH(CH3)2); δC (75 MHz, CDCl3); 170.8, 170.6, 163.4, 159.5, 151.1, 151.0, 148.6, 

141.2, 140.3, 133.2, 127.1, 125.9, 124.9, 111.2, 85.9, 82.5, 74.5, 64.3, 59.1, 51.6, 

47.7 (2 x C), 40.2, 39.4, 37.9, 37.8, 27.1, 26.1, 22.0, 21.3, 21.2, 13.9, 13.3 ; υmax/cm
-
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1
 (film); 3333, 2932, 1746, 1703, 1668, 1645, 1513, 1467, 1366, 1235; m/z (ESI

+
) 

2904.5 (8%, [M+Na]
+
); (Found [M+Na]

+
, 2904.4779. C158H200NaN24O28 requires 

MNa, 2904.4856); 2882.5 (15%, [M+H]
+
); (Found [M+H]

+
, 2882.4986. 

C158H201N24O28 requires MH, 2882.5037); 1493.7 (68%, [M+2Na]
2+

); (Found 

[M+2Na]
2+

, 1463.7397. C158H200NaN24O28 requires [M+2Na]
2+

, 1463.7374); 1441.8 

(100%, [M+2H]
2+

); (Found [M+2H]
2+

, 1441.7615. C158H202N24O28 requires 

[M+2H]
2+

, 1441.7555). 

NOE data (CDCl3) for 262b.  

 % Enhancement 

Irradiated proton 1-H 2-H 4-H Ph-H Azabicyclooctyl-H 

1-H  -9.5 -1.1 - - 

2-H -5.1  - - - 

4-H -2.1 -  -1.9 (δ 7.46) -4.3 (δ 3.44)  

 

1,1',1'',1'''-[Tricyclo[3.3.1.1
3,7

]decane-1,3,5,7-tetrayltetrakis(4,1-phenylene{ 

(2Z)-4-[3-(3-isopropyl-5-methyl-4H-1,2,4-triazol-4-yl)-8-azabicyclo[3.2.1]oct-8-

yl]but-2-ene-3,1-diyl})]tetrakis(2', 3', 5'-tri-O-acetyluridine) (262c). 

Prepared by general procedure 

L from 2',3',5'-tri-O-acetyl-3-

buta-2,3-dien-1-yluridine 207a 

(0.169 g, 0.40 mmol), 1,3,5,7-

tetrakis-(4-

iodophenyl)adamantane 259 

(0.0944 g, 0.1 mmol), 3-(3-

isopropyl-5-methyl-4H-1,2,4-

triazol-4-yl)-8-

azabicyclo[3.2.1]octane 188 

(0.112 g, 0.48 mmol), 

Pd2(dba)3 (0.003 g, 2.5 mol%), 

TFP (0.003 g, 10 mol%) and 

K2CO3 (0.083 g, 0.60 mmol) in MeCN (3 mL) at 80 ºC for 5 h. Flash column 

chromatography gradient eluting with EtOAc and then 2:1 v/v EtOAc/MeOH gave 

the product 262c (0.17 g, 56%) as a colourless froth; [α]D
20

 + 18.9 (c, 10 mg/1 mL 
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CHCl3); mp 134-136 °C; δH (300 MHz, CDCl3); 7.45 (8H, d, J 8.4, 8 × phenyl-H), 

7.40 (8H, d, J 8.4, 8 × phenyl-H), 7.38 (4H, s, 4 × pyrimidinyl 6-H), 6.00 (4H, d, J 

4.6, 4 × ribosyl 1-H), 5.83 (4H, s, 4 × pyrimidinyl 5-H), 5.82 (4H, t, J 7.0, 4 × 

NCH2CH=), 5.40-5.32 (8H, m, 4 × ribosyl 2-H + 4 × ribosyl 3-H), 4.86 (4H, dd, J 

14.8 and 7.0, 4 × NCHACH=), 4.82 (4H, dd, J 14.8 and 7.0, 4 × NCHBCH=),  4.35 

(12H, s, 4 × ribosyl 4-H + 4 × ribosyl 5-CH2), 4.26-4.21 (4H, m, 4 × 

azabicyclooctyl-H), 3.62 (8H, s, 4 × =CCH2N), 3.43 (8H, br s, 8 × azabicyclooctyl-

H), 2.98-2.90 (4H, m, 4 × triazolyl 3-CH(CH3)2), 2.37 (12H, s, 4 × triazolyl 5-CH3), 

2.18-2.02 (28H, m, 16 × azabicyclooctyl-H + 6 × adamantyl-CH2), 2.13 (12H, s, 4 × 

ribosyl OMe), 2.12 (12H, s, 4 × ribosyl OMe), 2.09 (12H, s, 4 × ribosyl OMe), 1.65 

(16H, br d, J 7.7,  16 × azabicyclooctyl-H), 1.32 (24H, d, J 6.7, 4 × triazolyl 3-

CH(CH3)2); δC (75 MHz, CDCl3); 170.1 (CO), 169.6 (2 × CO), 162.0, 159.1, 150.7, 

150.67, 148.2, 141.0, 139.9, 137.5, 126.8, 125.2, 124.5, 102.8, 88.8, 79.6, 72.9, 69.9, 

62.9, 58.7, 51.2, 47.3 (2 x C), 39.6, 39.0, 37.4, 26.6, 25.7, 21.6, 20.8, 20.5, 12.9 

(One aliphatic carbon could not be located due to peak overlaps); υmax/cm
-1

 (film); 

2934, 1750, 1711, 1669, 1512, 1455, 1386, 1228; m/z (ESI
+
) 3058.5 (2%, [M+H]

+
); 

(Found [M+H]
+
, 3058.4522. C162H201N24O36 requires MH, 3058.4630); 1551.7 

(100%, [M+2Na]
2+

); (Found [M+2Na]
2+

, 1551.7152. C162H200Na2N24O36 requires 

[M+2Na]
2+

, 1551.7171); 1529.7 (61%, [M+2H]
2+

); (Found [M+2H]
2+

, 1529.7358. 

C162H202N24O36 requires [M+2H]
2+

, 1529.7351). 

 

1,1',1'',1'''-(Tricyclo[3.3.1.1
3,7

]decane-1,3,5,7-tetrayltetrakis{4,1-phenylene[ 

(2Z)-4-(8-fluoro-1,3,4,5-tetrahydro-2H-pyrido[4,3-b]indol-2-yl)but-2-ene-3,1-

diyl]})tetrakis(3', 5'-di-O-acetylthymidine) (262d). 

Prepared by general procedure L 

from 3',5'-di-O-acetyl-3-buta-2,3-

dien-1-ylthymidine 207b (0.151 

g, 0.40 mmol), 1,3,5,7-tetrakis-

(4-iodophenyl)adamantane 259 

(0.0944 g, 0.1 mmol), 8-fluoro-

2,3,4,4a,5,9b-hexahydro-1H-

pyrido[4,3-b]indole 187 (0.0912 

g, 0.48 mmol), Pd2(dba)3 (0.003 
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g, 2.5 mol%), TFP (0.003 g, 10 mol%) and K2CO3 (0.083 g, 0.60 mmol) in MeCN 

(3 mL) at 80 ºC for 6 h. Flash column chromatography eluting with 20:1 v/v 

EtOAc/MeOH gave the product 262d (0.20 g, 74%) as a colourless froth; [α]D
20

 + 

6.2 (c, 11 mg/1 mL CHCl3); mp 155-157 °C; δH (300 MHz, CDCl3); 8.18 (4H, br s, 

4 × NH), 7.36 (8H, d, J 8.1, 8 × phenyl-H), 7.26 (4H, s, 4 × pyrimidinyl 6-H), 7.13 

(8H, d, J 8.1, 8 × phenyl-H), 7.02 (4H, dd, J 8.5 and 4.4, 4 × pyridoindolyl-H), 6.95 

(4H, dd, J 9.6 and 1.9, 4 × pyridoindolyl-H), 6.73 (4H, dt, J 9.2 and 2.4, 4 × 

pyridoindolyl-H), 6.36 (4H, dd, J 7.9 and 5.9, 4 × deoxyribosyl 1-H), 5.85 (4H, t, J 

6.5, 4 × NCH2CH=), 5.20 (4H, dd, J 4.4 and 1.8, 4 × deoxyribosyl 3-H), 4.82 (8H, d, 

J 6.5, 4 × NCH2CH=), 4.38 (4H, dd, J 12.2 and 3.7, 4 × deoxyribosyl 5-HA), 4.30 

(4H, dd, J 12.2 and 3.7, 4 × deoxyribosyl 5-HB), 4.23 (4H, dd, J 5.8 and 3.2, 4 × 

deoxyribosyl 4-H), 3.76 (8H, br s, 4 × =CCH2N), 3.61 (8H, br s, 4 × pyridoindolyl 1-

CH2), 2.77 (8H, br s, 4 × pyridoindolyl-CH2), 2.50-2.43 (16H, br m, 4 × 

pyridoindolyl-CH2 + 4 × deoxyribosyl 2-CH2), 2.12 (12H, s, 4 × deoxyribosyl OMe), 

2.10 (12H, s, 4 × deoxyribosyl OMe), 1.95 (12H, s, 4 × pyrimidinyl 5-Me), 1.77 

(12H, br s, 6 × adamantyl-CH2); δC (75 MHz, CDCl3); 169.3, 169.1, 161.8, 156.3 (J 

232.2), 149.5, 147.2, 138.9, 138.3, 133.2, 131.5, 131.2, 125.2 (J 9.2), 125.15, 124.7, 

123.6, 109.7 (J 9.2), 109.5, 107.4 (J 4.5), 107.3 (J 25.2), 101.4 (J 23.0), 84.3, 80.9, 

73.0, 62.7, 54.5, 48.6, 47.9, 45.7, 38.8, 37.5, 36.4, 22.3, 19.7, 19.66, 12.3; υmax/cm
-1

 

(film); 3346, 2927, 1744, 1702, 1643, 1465, 1366, 1325, 1232; m/z (ESI
+
) 2706.1 

(2%, [M+H]
+
); (Found [M+H]

+
, 2706.1237. C150H157F4N16O28 requires MH,

 

2705.1284); m/z (ESI
+
) 1353.6 (59%, [M+2H]

2+
); (Found [M+2H]

2+
, 1353.5679. 

C150H158F4N16O28 requires [M+2H]
2+

,
 

1353.5678); 902.7 (100%, [M+3H]
3+

); 

(Found [M+3H]
3+

, 902.7141. C150H159F4N16O28 requires [M+3H]
3+

,
 
902.7143). 

 

1,1',1'',1'''-(Tricyclo[3.3.1.1
3,7

]decane-1,3,5,7-tetrayltetrakis{4,1-phenylene[ 

(2Z)-4-(8-fluoro-1,3,4,5-tetrahydro-2H-pyrido[4,3-b]indol-2-yl)but-2-ene-3,1-

diyl]})tetrakis(2', 3', 5'-tri-O-acetyluridine) (262e). 

Prepared by general procedure L from 2',3',5'-tri-O-acetyl-3-buta-2,3-dien-1-

yluridine 207a (0.1794 g, 0.425 mmol), 1,3,5,7-tetrakis-(4-iodophenyl)adamantane 

259 (0.1003 g, 0.106 mmol), 8-fluoro-2,3,4,4a,5,9b-hexahydro-1H-pyrido[4,3-

b]indole 187 (0.0969 g, 0.51 mmol), Pd2(dba)3 (0.003 g, 2.5 mol%), TFP (0.003 g, 

10 mol%) and K2CO3 (0.09 g, 0.636 mmol) in MeCN (3 mL) at 80 ºC for 3 h. Flash 
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column chromatography eluting 

with 30:1 v/v EtOAc/MeOH gave 

the product 262e (0.19 g, 62%) as a 

colourless froth; [α]D
20

 + 24.7 (c, 12 

mg/1 mL CHCl3); mp 144-146 °C; 

δH (300 MHz, CDCl3); 8.02 (4H, br 

s, 4 × NH), 7.38 (8H, d, J 7.9, 8 × 

phenyl-H), 7.36 (4H, d, J 8.2, 4 × 

pyrimidinyl 6-H), 6.98 (8H, d, J 7.9, 

8 × phenyl-H), 7.07 (4H, dd, J 8.6 

and 4.5, 4 × pyridoindolyl-H), 6.98 (4H, dd, J 9.5 and 1.8, 4 × pyridoindolyl-H), 

6.76 (4H, dt, J 9.1 and 2.3, 4 × pyridoindolyl-H), 6.04 (4H, d, J 4.4, 4 × ribosyl 1-H), 

5.85 (4H, t, J 6.4, 4 × NCH2CH=), 5.82 (4H, d, J 8.2, 4 × pyrimidinyl 5-H), 5.34 

(8H, dd, J 8.7 and 6.1, 4 × ribosyl 2-H + 4 × ribosyl 3-H), 4.81 (8H, d, J 6.4, 4 × 

NCH2CH=), 4.33 (12H, s, 4 × ribosyl 4-H + 4 × ribosyl 5-CH2), 3.76 (8H, br s, 4 × 

=CCH2N), 3.64 (8H, br s, 4 × pyridoindolyl 1-CH2), 2.81 (8H, br s, 4 × 

pyridoindolyl-CH2), 2.60 (8H, br s, 4 × pyridoindolyl-CH2), 2.12 (12H, s, 4 × ribosyl 

OMe), 2.11 (12H, s, 4 × ribosyl OMe), 2.05 (12H, s, 4 × ribosyl OMe), 1.85 (12H, 

br s, 6 × adamantyl-CH2); δC (75 MHz, CDCl3); 170.4 (CO), 169.8 (2 x CO), 162.2, 

157.7 (J 232.2), 150.9, 148.6, 140.3, 139.6, 137.4, 134.6, 132.5, 126.6 (J 9.2), 

126.57, 125.9, 125.0, 111.2 (J 9.2), 109.0 (J 4.5), 108.8 (J 25.3), 103.8, 102.9 (J 

25.3), 88.5, 79.9, 73.1, 70.2, 63.2, 49.8, 49.3, 47.1, 40.0, 39.0, 29.9, 23.8, 21.0, 20.7, 

20.6; υmax/cm
-1

 (film); 3373, 3023, 2929, 1748, 1712, 1667, 1483, 1455, 1372, 1325, 

1229; m/z (ESI
+
) 2882.1 (10%, [M+H]

+
); (Found [M+H]

+
, 2882.0786. 

C154H157F4N16O36 requires MH, 2882.0877); 1441.5 (100%, [M+2H]
2+

); (Found 

[M+2H]
2+

, 1441.5480. C154H158F4N16O36 requires [M+2H]
2+

, 1441.5475); m/z 

(ESI
+
) 961.4 (100%, [M+3H]

3+
); (Found [M+3H]

3+
, 961.4. C154H159F4N16O36 

requires [M+3H]
3+

, 961.3674). NOE data (CDCl3) for 262e.  

 % Enhancement 

Irradiated proton 1-H 2-H 4-H Ph-H pyridoindolyl-H 

1-H  -11.4 -4.6 - -1.7 (δ 3.64) 

2-H -7.3  - -6.5 (δ 7.38) - 

4-H -7.0 -  -7.9 (δ 7.38) 

-4.9 (δ 3.64)  

-5.8 (δ 2.81) 

-2.1 (δ 2.60) 
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1,1',1'',1'''-(Tricyclo[3.3.1.1
3,7

]decane-1,3,5,7-tetrayltetrakis{4,1-phenylene[ 

(2Z)-4-(adamantan-1-ylamino)but-2-ene-3,1-diyl]})tetrakis(3,7-dimethyl-3,7-

dihydro-1H-purine-2,6-dione) (262f). 

Prepared by general procedure L from N-

allenylpurine 195 (0.0928 g, 0.40 mmol), 

1,3,5,7-tetrakis-(4-iodophenyl)adamantane 259 

(0.0944 g, 0.1 mmol), 1-aminoadamantane 180 

(0.0726 g, 0.48 mmol), Pd2(dba)3 (0.003 g, 2.5 

mol%), TFP (0.003 g, 10 mol%) and K2CO3 

(0.083 g, 0.60 mmol) in MeCN (3 mL) at 80 ºC 

for 3 h. The product precipitated from hot solution during the reaction. The reaction 

mixture was cooled, filtered and the precipitate washed with water to give the crude 

product. Flash column chromatography gradient eluting with MeOH and then DMF 

gave the product 262f (0.17 g, 87%) as a colourless froth, mp 217-219 °C; δH (300 

MHz, CDCl3); 7.50 (4H, s, 4 × purine-H), 7.49 (8 H, d, J 7.6, 8 × phenyl-H), 7.36 (8 

H, d, J 7.6, 8 × phenyl-H), 5.85 (4H, t, J 7.2, 4 × NCH2CH=), 4.87 (8H, d, J 7.2, 4 × 

NCH2CH=), 3.98 (12H, s, 4 × NMe), 3.85 (8H, s, 4 × =CCH2N), 3.57 (12H, s, 4 × 

NMe), 2.65 (4H, br s, 4 × NH), 2.08 (24H, br s, 12 × adamantyl-CH + 6 × 

adamantyl-CH2), 1.77 (24H, br s, 12 ×  adamantyl-CH2), 1.66 (24H, br s, 12 × 

adamantyl-CH2); δC (75 MHz, CDCl3); 155.1, 151.4, 148.8, 148.6, 141.5, 141.2, 

138.8, 126.3, 125.0, 124.1, 107.7, 51.3, 47.1, 42.2, 39.8, 39.0, 38.9, 36.8, 33.6, 29.8, 

29.6; υmax/cm
-1

 (film); 2903, 2847, 2366, 1704, 1660, 1604, 1549, 1486, 1454, 1413, 

1357, 13101286, 1233; m/z (ESI
+
) 1966.1097 (3%, [M+H]

+
); (Found [M+H]

+
, 

1966.1097. C118H141N20O8 requires [M+H]
+
, 1966.1236); 983.6 (93%, [M+2H]

2+
); 

(Found [M+2H]
2+

, 983.5666. C118H142N20O8 requires [M+2H]
2+

, 983.5654); 656.0 

(100%, [M+3H]
3+

); (Found [M+3H]
3+

, 656.0474. C118H143N20O8 requires 

[M+3H]
3+

, 656.0460). 

 

Tetramethyl (2S,2'S,2''S,2'''S)-2,2',2'',2'''-(tricyclo[3.3.1.1
3,7

]decane-1,3,5, 

7-tetrayltetrakis{4,1-phenylene[(2Z)-4-(3,7-dimethyl-2,6-dioxo-2,3,6,7-

tetrahydro-1H-purin-1-yl)but-2-ene-2,1-diyl]imino})tetrakis[3-(1H-indol-3-

yl)propanoate] (262g). 

Prepared by general procedure L from N-allenylpurine 195 (0.0928 g, 0.40 mmol), 

1,3,5,7-tetrakis-(4-iodophenyl)adamantane 259 (0.0944 g, 0.1 mmol), (S)-tryptophan 
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methyl ester hydrochloride 260 (0.122 

g, 0.48 mmol), Pd2(dba)3 (0.003 g, 2.5 

mol%), TFP (0.003 g, 10 mol%) and 

K2CO3 (0.083 g, 0.6 mmol) in MeCN (3 

mL) at 80 ºC for 24 h. Flash column 

chromatography eluting with 1:1 v/v 

EtOAc/MeOH gave the product 262g 

(0.10 g, 45%) as a colourless froth; 

[α]D
20 

+ 9.1 (c, 12 mg/1 mL CHCl3); mp 

129-131 °C; δH (300 MHz, CDCl3); 

7.54 (4H, d, J 7.6, 4 × indolyl-H), 7.44 

(4H, s, 4 × purine-H), 7.31 (8 H, d, J 8.6, 8 × phenyl-H), 7.24 (8 H, d, J 8.6, 8 × 

phenyl-H), 7.17 (4H, dd, J 8.6and 1.0, 4 × indolyl-H), 7.05 (8H, m, 8 × indolyl-H), 

6.89 (4H, d, J 1.9, 4 × indolyl-H), 5.82 (4H, t, J 6.8, 4 × NCH2CH=), 4.79 (8H, d, J 

6.8, 4 × NCH2CH=), 9.95-3.90 (4H, m, CHCO2Me), 3.90 (12H, s, 4 × NMe), 3.75 

(4H, d, J 6.7, 4 × =CCHAN), 3.72 (4H, d, J 6.7, 4 × =CCHBN), 3.65 (12H, s, 

CO2Me), 3.52 (12H, s, 4 × NMe), 3.16 (4H, dd, J 14.3 and 6.6, 4 × CHACHCO2Me), 

3.05 (4H, dd, J 14.3 and 6.6, 4 × CHBCHCO2Me), 2.00 (16H, br s, 6 × adamantyl-

CH2 + 4 × NH); δC (75 MHz, CDCl3); 175.4, 155.0, 151.4, 148.8, 148.4, 141.5, 

140.5, 138.6, 136.1, 127.4, 126.3, 124.8 (2 x C), 123.0, 121.8, 119.3, 118.8, 111.3, 

111.1, 107.6, 61.7, 51.8, 47.1, 46.6, 39.6, 38.9, 33.6, 32.0, 29.7; υmax/cm
-1

 (film); 

3330, 2926, 2853, 1701, 1659, 1549, 1456, 1355, 1233; m/z (ESI
+
) 2234.0 (10%, 

[M+H]
+
); (Found [M+H]

+
, 2234.0270. C126H129N24O16 requires [M+H]

+
, 

2234.0013); 1117.5 (100%, [M+2H]
2+

); (Found [M+2H]
2+

, 1117.5083. 

C126H130N24O16 requires [M+2H]
2+

, 1117.5043); 745.3 (40%, [M+3H]
3+

); (Found 

[M+3H]
3+

, 745.3410. C126H131N24O16 requires [M+3H]
3+

, 745.3386). 

 

Tetramethyl (2S,2'S,2''S,2'''S)-2,2',2'',2'''-(tricyclo[3.3.1.1
3,7

]decane-1,3,5, 

7-tetrayltetrakis{4,1-phenylene[(2Z)-4-(3,7-dimethyl-2,6-dioxo-2,3,6,7-

tetrahydro-1H-purin-1-yl)but-2-ene-2,1-diyl]imino})tetrakis(3-

hydroxypropanoate) (262h). 

Prepared by general procedure L from N-allenylpurine 195 (0.0928 g, 0.40 mmol), 

1,3,5,7-tetrakis-(4-iodophenyl)adamantane 259 (0.0944 g, 0.1 mmol), (S)-serine 
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methyl ester hydrochloride 210 (0.075 

g, 0.48 mmol), Pd2(dba)3 (0.003 g, 2.5 

mol%), TFP (0.003 g, 10 mol%) and 

K2CO3 (0.083 g, 0.60 mmol) in MeCN 

(3 mL) at 80 ºC for 32 h. Flash column 

chromatography eluting with 10:1 v/v 

CHCl3/MeOH gave the product 262h 

(0.09 g, 49%) as a colourless froth; 

[α]D
20

 + 1.3 (c, 11 mg/1 mL CHCl3); 

mp 136-138 °C; δH (300 MHz, CDCl3); 

7.50 (4H, s, 4 × purine-H), 7.44 (8H, d, J 8.5, 8 × phenyl-H), 7.38 (8H, d, J 8.5, 8 × 

phenyl-H), 5.91 (4H, t, J 7.1, 4 × NCH2CH=), 4.95 (4H, dd, J 14.3 and 7.1, 4 × 

NCHACH=), 4.87 (4H, dd, J 14.3 and 7.1, 4 × NCHBCH=), 3.98 (12H, s, 4 × NMe), 

3.97 (4H, d, J 12.1, 4 × =CCHAN), 3.87 (4H, dd, J 10.4 and 3.8, 4 × CHCHAOH), 

3.80 (4H, d, J 12.1, 4 × =CCHBN),  3.75 (12H, s, 3 × CO2Me), 3.63 (4H, dd, J 10.4 

and 3.8, 4 × CHCHBOH), 3.57 (12H, s, 4 × NMe), 3.58-3.51 (4H, m, 4 × 

NHCHCH2), 2.07 (12H, br s, 6 × adamantyl-CH2); δC (75 MHz, CDCl3); 173.2, 

155.1, 151.4, 148.9, 148.7, 141.6, 140.4, 138.4, 126.2, 125.1, 124.8, 107.7, 62.7, 

62.5, 52.1, 47.1, 46.3, 39.6, 39.0, 33.7, 29.8; υmax/cm
-1

 (film); 3457, 2949, 1733, 

1704, 1660, 1604, 1550, 1455, 1355, 1315, 1233; m/z (ESI
+
) 1837.8 (14%, [M+H]

+
); 

(Found [M+H]
+
, 1837.8143. C94H109N20O20 requires MH, 1837.8122); 919.4 (100%, 

[M+2H]
2+

); (Found [M+2H]
2+

, 919.4139. C94H110N20O20 requires [M+2H]
2+

, 

919.4097); 613 (23%, [M+3H]
3+

); (Found [M+3H]
3+

, 613.2781. C94H111N20O20 

requires [M+3H]
3+

, 613.2756). 

 

Tetramethyl (2S,2'S,2''S,2'''S)-2,2',2'',2'''-(tricyclo[3.3.1.1
3,7

]decane-1,3,5, 

7-tetrayltetrakis{4,1-phenylene[(2Z)-4-(3,7-dimethyl-2,6-dioxo-2,3,6,7-

tetrahydro-1H-purin-1-yl)but-2-ene-2,1-diyl]imino(1-oxoethane-2,1-

diyl)imino})tetrakis(4-methylpentanoate) (262i). 

Prepared by general procedure L from N-allenylpurine 195  (0.0928 g, 0.40 mmol), 

1,3,5,7-tetrakis-(4-iodophenyl)adamantane 259 (0.0944 g, 0.1 mmol), methyl glycyl-

(S)-leucinate hydrochloride 261 (0.114 g, 0.48 mmol), Pd2(dba)3 (0.003 g, 2.5 

mol%), TFP (0.003 g, 10 mol%) and K2CO3 (0.083 g, 0.083 mmol) in MeCN (3 mL) 
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at 80 ºC for 26 h. Flash column 

chromatography eluting with 20:1 

v/v CHCl3/MeOH gave the product 

262i (0.12 g, 55%) as a colourless 

froth; [α]D
20

 + 0.7 (c, 20 mg/1 mL 

CHCl3); mp 106-108 °C; δH (300 

MHz, CDCl3); 7.66 (4H, d, J 8.2, 4 

× CONH), 7.53 (4H, s, 4 × purine-

H), 7.41 (8H, d, J 8.5, 8 × phenyl-

H), 7.37 (8H, d, J  8.5, 8 × phenyl-

H), 5.85 (4H, t, J 7.1, 4 × 

NCH2CH=), 4.91 (4H, dd, J 14.3 and 7.1, 4 × NCHACH=), 4.83 (4H, dd, J 14.3 and 

7.1, 4 × NCHBCH=), 4.64 ( 4H, td, J 8.2 and 4.4, 4 × CONHCH), 3.99 (12H, s, 4 × 

purine 7-NMe), 3.93 (4H, d, J 12.9, 4 × =CCHAN), 3.82 (4H, d, J 12.9, 4 × 

=CCHBN),  3.68 (12H, s, 3 × CO2Me), 3.58 (12H, s, 4 × purine 3-NMe), 3.35 (8H, 

br s, 4 × NHCH2CO), 2.08 (12H, br s, 6 × adamantyl-CH2), 2.04 (4H, br s, 4 × NH), 

1.67-1.44 (12H, m, CH2CHMe2), 0.90 (12H, d, J 4.4, 4 × CHMeA), 0.88 (12H, d, J 

4.4, 4 × CHMeB); δC (75 MHz, CDCl3); 173.4, 171.9, 155.0, 151.4, 148.9, 148.6, 

141.6, 140.7, 138.7, 126.5, 125.1, 125.0, 107.7, 52.2 (2C, Me and CH2), 50.1, 47.9, 

47.2, 41.2, 39.5, 39.0, 33.7, 29.8, 24.9, 23.0, 21.8; υmax/cm
-1

 (film); 3334, 3008, 

2955, 1742, 1705, 1660, 1604, 1549, 1512, 1452, 1355, 1315, 1234; m/z (ESI
+
) 

2170.1 (6%, [M+H]
+
); (Found [M+H]

+
, 2170.1061. C114H145N24O20 requires MH, 

2170.0946); 1085.6 (100%, [M+2H]
2+

); (Found [M+2H]
2+

, 1085.5578. 

C114H146N24O20 requires [M+2H]
2+

, 1085.5567); 724.0 (63%, [M+3H]
3+

); (Found 

[M+3H]
3+

, 724.0418. C114H147N24O20 requires [M+3H]
3+

, 724.0402). 

 

1,1',1'',1'''-[Tricyclo[3.3.1.1
3,7

]decane-1,3,5,7-tetrayltetrakis(4,1-phenylene{ 

(2Z)-4-[(1-naphthylmethyl)amino]but-2-ene-3,1-diyl})]tetrakis(3,7-dimethyl-3,7-

dihydro-1H-purine-2,6-dione) (262j). 

Prepared by general procedure L from N-allenylpurine 195  (0.0928 g, 0.40 mmol), 

1,3,5,7-tetrakis-(4-iodophenyl)adamantane 259 (0.0944 g, 0.1 mmol), 1-

aminomethylnaphthalene 212 (0.065 mL, 0.44 mmol), Pd2(dba)3 (0.003 g, 2.5 

mol%), TFP (0.003 g, 10 mol%) and K2CO3 (0.083 g, 0.083 mmol) in MeCN (3 mL) 
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at 80 ºC for 24 h. Flash column 

chromatography eluting with 5:3 v/v 

EtOAc/MeOH gave the product 262j 

(0.10 g, 51%) as a colourless froth, mp 

138-140 °C; δH (300 MHz, CDCl3); 8.05-

8.01 (4H, m, 4 × naphthyl-H), 7.80-7.75 

(4H, m, 4 × naphthyl-H), 7.71 (4H, d, J 

8.2, 4 × naphthyl-H), 7.48-7.31 (36H, m, 

16 × naphthyl-H, 16 × phenyl-H and 4 × 

purine-H), 5.93 (4H, t, J 7.1, 4 × NCH2CH=), 4.88 (8H, d, J 7.1, 4 × NCH2CH=), 

4.26 (8H, s, 4 × naphthyl-CH2NH), 4.01 (8H, s, 4 × =CCH2NH), 3.91 (12H, s, 4 × 

purine 7-Me), 3.55 (12H, s, 4 × purine 3-Me), 2.06 (12H, br s, 6 × adamantyl-CH2), 

1.86 (4H, br s, NH); δC (75 MHz, CDCl3); 155.0, 151.4, 148.8, 148.6, 141.42, 141.4, 

138.8, 136.0, 133.7, 131.9, 128.5, 127.6, 126.5, 126.2, 125.8, 125.4, 125.3, 125.0, 

124.5, 124.0, 107.6, 51.2, 47.7, 47.1, 39.6, 39.0, 33.6, 29.7; υmax/cm
-1

 (film); 3313, 

3009, 2937, 1701, 1655, 1603, 1550, 1453, 1412, 1355, 1314, 1286, 1233; m/z 

(ESI
+
) 1989.9 (11%, MH

+
); (Found MH

+
, 1989.9334. C122H117N20O8 requires MH, 

1989.9358); 995.5 (100%, [M+2H]
2+

); (Found [M+2H]
2+

, 995.4748. C122H118N20O8 

requires [M+2H]
2+

, 995.4715); 664.0 (19%, [M+3H]
3+

); (Found [M+3H]
3+

, 

663.9856. C122H119N20O8 requires [M+3H]
3+

, 663.9834). 

 

3,7-Dimethyl-1-[(2Z)-4-(tricyclo[3.3.1.1
3,7

]dec-1-ylamino)-3-{4-[3,5,7-tris(4-

iodophenyl)tricyclo[3.3.1.1
3,7

]dec-1-yl]phenyl}but-2-en-1-yl]-3,7-dihydro-1H-

purine-2,6-dione (263a) and 1,1'-([5,7-bis(4-

iodophenyl)tricyclo[3.3.1.1
3,7

]decane-1,3-diyl]bis{benzene-4,1-diyl[(2Z)-4-

(tricyclo[3.3.1.1
3,7

]dec-1-ylamino)but-2-ene-3,1-diyl]})bis(3,7-dimethyl-3,7-

dihydro-1H-purine-2,6-dione) (263b) 

Prepared by general procedure B from N-allenylpurine 195 (0.0123 g, 0.053 mmol), 

1,3,5,7-tetrakis-(4-iodophenyl)adamantane 259 (0.06 g, 0.064 mmol), 1-

aminoadamantane 180 (0.0096 g, 0.064 mmol), Pd2(dba)3 (0.0012 g, 2.5 mol%), 

TFP (0.0012 g, 10 mol%) and K2CO3 (0.022 g, 0.159 mmol) in DMF (2 mL) at 80 

ºC for 16 h. Flash column chromatography gradient eluting with AcOEt afforded 

263a then eluting with 20:1 CHCl3/MeOH gave 263b. 
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Compound 263a: colourless froth, (0.023 g, 36%), 

mp 220-222 °C; δH (300 MHz, CDCl3); 7.65 (6H, 

d, J 8.8, 7.49, 6 × phenyl-H), 7.52 (2H, d, J 8.2, 2 × 

phenyl-H), 7.50 (1H, s, purine-H), 7.35 (2H, d, J 

8.2, 2 × phenyl-H), 7.19 (6H, d, J 8.8, 6 × phenyl-

H), 5.86 (1H, t, J 7.1, NCH2CH=), 4.88 (2H, d, J 

7.1, NCH2CH=), 3.98 (3H, s, purine 7-Me), 3.84 (2H, s, =CCH2N), 3.57 (3H, s, 

purine 3-Me), 2.06 (15H, br d, J 7.1, 3 × adamantyl-CH + 6 × adamantyl-CH2), 1.76 

(6H, br s, 3 × adamantyl-CH2), 1.66 (6H, br s, 3 × adamantyl-CH2), 1.57 (1H, br s, 

NH); δC (75 MHz, CDCl3); 155.1, 151.4, 148.9, 148.7, 147.7, 141.5, 139.4, 137.5, 

127.2, 126.4, 124.8, 123.9, 107.7, 91.7, 50.9, 46.8, 42.6, 39.8, 39.1, 38.9, 36.9, 33.7, 

29.8, 29.7 (One aromatic carbon atom could not be located due to peak overlaps); 

υmax/cm
-1

 (film); 3307, 2902, 2848, 1703, 1659, 1604, 1550, 1486, 1452, 1413, 

1392, 1357, 1310, 1286, 1233; m/z (ESI
+
) 1200.2 (100%, [M+H]

+
); (Found [M+H]

+
, 

1200.1581. C55H57
127

I3N5O2 requires [M+H]
+
, 1200.1641). 

 

Compound 263b: colourless froth, 

(0.011 g, 29%), mp 212-214 °C; δH 

(300 MHz, CDCl3); 7.65 (4H, d, J 8.2, 

4 × phenyl-H), 7.51 (2H, s, 2 × purine-

H), 7.50 (4H, d, J 8.2, 4 × phenyl-H), 

7.36 (4H, d, J 8.2, 4 × phenyl-H), 7.19 

(4H, d, J 8.2, 4 × phenyl-H), 5.87 (2H, t, J 7.1, 2 × NCH2CH=), 4.87 (4H, d, J 7.1, 2 

× NCH2CH=), 3.99 (6H, s, 2 × purine 7-Me), 3.89 (4H, s, 2 × =CCH2N), 3.58 (6H, 

s, 2 × purine 3-Me), 2.08 (20H, br d, J 7.1, 6 × adamantyl-CH + 6 × adamantyl-CH2 

+ 2 × NH), 1.81 (12H, br s, 6 × adamantyl-CH2), 1.66 (12H, br s, 6 × adamantyl-

CH2); δC (75 MHz, CDCl3); 155.1, 151.4, 148.9, 148.2, 141.6, 139.0, 137.4, 127.3, 

126.4, 125.0, 107.7, 91.5, 46.9, 42.0, 39.9, 39.1, 38.9, 36.7, 33.7, 29.8, 29.6 (three 

aromatic  and one aliphatic carbon atoms could not be located due to peak overlaps); 

υmax/cm
-1

 (film); 3309, 2905, 2848, 1704, 1660, 1604, 1550, 1486, 1454, 1413, 

1392, 1357, 1310, 1286, 1233; m/z (ESI
+
) 1455.5 (9%, [M+H]

+
); (Found [M+H]

+
, 

1455.4814. C76H85I2N10O4 requires [M+H]
+
, 1455.4839); 728.2 (100%, [M+2H]

2+
); 

(Found [M+2H]
2+

, 728.2479. C76H86
127

I2N10O4 requires [M+2H]
2+

, 728.2456). 
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General procedure M: 1,3-Dipolar cycloaddition reactions. 

An equimolar mixture (1 mmol) of the aldehyde, amine hydrochloride, maleimide 

and Et3N in toluene (7 mL) was heated at 100 °C for 10 min-3 h with stirring. The 

cycloadducts precipitated out of the hot solution. The solution was filtered and the 

precipitate washed with water to dissolve the Et3NHCl salt. The resulting solid was 

crystallized. 

 

Methyl 3-(4,6-dimethylpyrimidin-2-yl)-1-methyl-4,6-

dioxooctahydropyrrolo[3,4-c]pyrrole-1-carboxylate (273a). 

Prepared by general procedure M from 4,6-dimethyl-2-

formylpyrimidine 269 (0.136 g, 1.00 mmol), (R)-alanine 

methyl ester hydrochloride (0.139 g, 1.00 mmol), maleimide 

(0.097 g, 1.00 mmol) and Et3N (0.13 mL, 1.00 mmol) in 

toluene (7 mL) at 100 °C for 1 h. The product 273a (0.21 g, 66%) crystallized from 

MeOH as colourless needles, mp 258-260 °C; (Found: C, 56.65; H, 5.75; N, 17.65; 

C15H18N4O4 requires C, 56.60; H, 5.70; N, 17.60%); δH (300 MHz, DMSO-d6); 

11.15 (1H, s, NH), 7.16 (1H, s, pyrimidinyl-H), 4.66 (1H, dd, J 12.9 and 9.2, 3-H), 

3.83 (1H, d, J 12.9, NH), 3.73 (3H, s, CO2CH3), 3.70 (1H, t, J 9.2, 3a-H), 3.36 (1H, 

d, J 9.2, 6a-H), 2.40 (6H, s, 2 x pyrimidinyl-CH3), 1.43 (3H, s, 1-CH3); δC (75 MHz, 

DMSO-d6); 177.3, 176.5, 172.4, 166, 164.8, 118.8, 68.1, 64.4, 58.6, 52.8, 52.3, 23.9, 

23.3; υmax/cm
-1

 (film); 3302, 3148, 2990, 2758, 1772, 1721, 1598, 1539, 1437, 1344, 

1270; m/z (ESI
+
) 341.1 (100%, MNa

+
); (Found MNa

+
, 341.1219. C15H18N4NaO4 

requires MNa, 341.1220.  

 

Methyl 1-benzyl-3-(4,6-dimethylpyrimidin-2-yl)-4,6-dioxooctahydropyrrolo[3,4-

c]pyrrole-1-carboxylate (273b). 

Prepared by general procedure M from 4,6-dimethyl-2-

formylpyrimidine 269 (0.136 g, 1.00 mmol), (S)-phenylalanine 

methyl ester hydrochloride (0.215 g, 1.00 mmol), maleimide 

(0.097 g, 1.00 mmol) and Et3N (0.13 mL, 1.00 mmol) in toluene (7 mL) at 100 °C 

for 1 h. The product 273b (0.32 g, 83%) crystallized from MeOH as colourless 

needles, mp 263-265 °C; (Found: C, 63.95; H, 5.60; N, 14.25; C21H22N4O4 requires 

C, 63.95; H, 5.62; N, 14.20%); δH (300 MHz, DMSO-d6); 11.16 (1H, s, NH), 7.13-

7.16 (6H, m, Ar-H), 4.84 (1H, dd, J 13.1 and 8.5, 3-H), 3.76 (1H, t, J 8.5, 3a-H), 
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3.71 (3H, s, CO2CH3), 3.68 (1H, d, J 13.1, NH), 3.54 (1H, d, J 8.5, 6a-H), 3.21 (1H, 

d, J 13.8, 1-CH2Ph), 3.10 (1H, d, J 13.8, 1-CH2Ph), 2.39 (6H, s, 2 x pyrimidinyl-

CH3); δC (75 MHz, DMSO-d6); 177.6, 177, 171.7, 166.5, 165.3, 137.2, 130.5, 128.0, 

126.7, 119.3, 73.3, 64.5, 58, 53.2, 52.4, 40.7, 23.8; υmax/cm
-1

 (film); 3300, 3248, 

2956, 2741,  1776, 1745, 1718, 1598, 1435, 1374, 1348, 1263, 1231; m/z (ESI
+
) 

417.2 (100%, MNa
+
); (Found MNa

+
, 417.1534. C21H22N4NaO4 requires MNa, 

417.1533. 

 

Methyl 3-(4,6-dimethylpyrimidin-2-yl)-1-(1H-indol-3-ylmethyl)-4,6-

dioxooctahydropyrrolo[3,4-c]pyrrole-1-carboxylate (273c). 

Prepared by general procedure M from 4,6-dimethyl-2-

formylpyrimidine 269 (0.136 g, 1.00 mmol), (S)-tryptophan 

methyl ester hydrochloride (0.254 g, 1.00 mmol), maleimide 

(0.097 g, 1.00 mmol) and Et3N (0.13 mL, 1.00 mmol) in 

toluene (7 mL) at 100 °C for 1 h. The product 273c (0.32 g, 74%) crystallized from 

EtOH as colourless needles, mp 257-259 °C; (Found: C, 63.70; H, 5.40; N, 16.20; 

C23H23N5O4 requires C, 63.73; H, 5.35; N, 16.16%); δH (300 MHz, DMSO-d6); 

11.14 (1H, s, NH), 10.80 (1H, d, J 2.05, NH), 7.53 (1H, d, J 7.5, indolyl-H), 

7.29(1H, d, J 7.8, indolyl-H),  7.15 (1H, s, pyrimidinyl-H), 7.07 (1H, d, J 2.1, 

indolyl-H), 7.00 (1H, t, J 7.5, indolyl-H), 6.92 (1H, t, J 7.4, indolyl-H), 4.86 (1H, dd, 

J 13.2 and 8.5, 3-H), 3.79 (1H, t, J 8.5, 3a-H), 3.74 (1H, d, J 13.2, 2-NH), 3.66 (3H, 

s, CO2CH3), 3.58 (1H, d, J 8.5, 6a-H), 3.35 (1H, d, J 14.9, 1-CH2-indolyl), 3.20 (1H, 

d, J 14.9, 1-CH2-indolyl), 2.39 (6H, s, 2 x pyrimidinyl-CH3); δC (75 MHz, DMSO-

d6); 177.3, 176.6, 171.8, 166, 164.9, 135.4, 128.0, 124.0, 120.4, 118.7, 118.5, 118.1, 

111.0, 109.4, 73.2, 64.3, 58.2, 52.8, 51.9, 31.1, 23.3; υmax/cm
-1

 (film); 3390, 3054, 

2890, 2763, 1772, 1716, 1594, 1544, 1434, 1348, 1205; m/z (ESI
+
) 434.2 (100%, 

MH
+
); (Found MH

+
,434.1827. C23H24N5O4 requires MH, 434.1823. 

 

Methyl 3-(4,6-dimethylpyrimidin-2-yl)-1-[2-(methylthio)ethyl]-4,6-

dioxooctahydropyrrolo[3,4-c]pyrrole-1-carboxylate (273d). 

Prepared by general procedure M from 4,6-dimethyl-2-

formylpyrimidine 269 (0.136 g, 1.00 mmol), rac-methionine 

methyl ester hydrochloride (0.199 g, 1.00 mmol), maleimide 

(0.097 g, 1.00 mmol) and Et3N (0.13 mL, 1.00 mmol) in 
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toluene (7 mL) at 100 °C for 2 h. The product 273d (0.24 g, 64%) crystallized from 

MeOH as colourless needles, mp 213-215 °C; (Found: C, 54.10; H, 5.90; N, 14.50; 

S, 8.35; C17H22N4O4S requires: C, 53.95; H, 5.86; N, 14.80; S, 8.47%); δH (300 

MHz, CDCl3); 8.29 (1H, s, 5-NH), 6.94 (1H, s, pyrimidinyl-H), 4.72 (1H, dd, J 12.9 

and 8.3, 3-H), 4.13 (1H, d, J 12.9, 2-NH), 3.89 (3H, s, CO2CH3), 3.73 (1H, t, J 8.3, 

3a-H), 3.35 (1H, d, J 8.3, 6a-H), 2.71-2.63 (1H, m, CH2CH2S), 2.50-2.36 (2H, m, 

CH2CH2S), 2.47 (6H, s, 2 x pyrimidinyl-CH3), 2.10 (3H, s, SCH3), 1.96-1.88 (1H, 

m, CH2CH2S); δC (75 MHz, CDCl3); 175.4, 174.9, 171.1, 166.9, 164.1, 119.4, 72.6, 

65.2, 58.7, 53, 52.7, 36.1, 28.8, 23.9, 15.6; υmax/cm
-1

 (film); 3296, 3159, 2954, 2763, 

1775, 1722, 1597, 1545, 1442, 1347, 1267, 1226; m/z (ESI
+
) 379.1 (100%, MH

+
); 

(Found MH
+
, 379.1446. C17H23N4O4

32
S requires MH, 279.1435).  

 

4-(4,6-Dimethylpyrimidin-2-yl)-6-(pyridin-2-yl)tetrahydropyrrolo[3,4-

c]pyrrole-1,3(2H,3aH)-dione (275a). 

Prepared by general procedure M from 4,6-dimethyl-2-

formylpyrimidine 269 (0.136 g, 1.00 mmol), 2-

aminomethylpyridine (0.102 mL, 1.00 mmol), maleimide (0.097 

g, 1.00 mmol) and Et3N (0.13 mL, 1.00 mmol) in toluene (7 mL) at 100 °C for 1.5 h. 

The solvent was removed under vacuum and the crude product was purified by flash 

chromatography with gradient elution from EtOAc to 1:1 v/v EtOAc/MeOH to 

afford the corresponding adduct 275a which crystallized from CHCl3 as colourless 

needles (0.27, 84%), mp 148-150 °C; (Found: C, 63.40; H, 5.25; N, 21.75; 

C17H17N5O2 requires C, 63.15; H, 5.30; N, 21.66%); δH (300 MHz, DMSO-d6); 

10.89 (1H, s, 2-NH), 8.53 (1H, d, J 4.6, pyridinyl-H), 7.77 (1H, dt, J 7.7 and 2.05, 

pyridinyl-H), 7.46 (1H, d, J 7.7, pyridinyl-H),  7.29 (1H, dd, J 7.7 and 4.6, pyridinyl-

H), 7.16 (1H, s, pyrimidinyl-H), 4.62 (1H, dd, J 12.9 and 8.1, 6-H), 4.54 (1H, dd, J 

12.9 and 8.1, 4-H), 4.03 (1H, t, J 12.9, 5-NH), 3.66 (1H, t, J 8.1, 3a-H), 3.56 (1H, t, 

J 8.1, 6a-H), 2.42 (6H, s, 2 x pyrimidinyl-CH3); δC (75 MHz, CDCl3); 175.8, 175.7, 

166.6, 164.6, 155.6, 149.3, 136.5, 123.1, 122.9, 119.1, 66.9, 66.3, 53.8, 53.7, 24; 

υmax/cm
-1

 (film); 3467, 3285, 3164, 3054, 2762, 1774, 1715, 1596, 1546, 1475, 

1442, 1350; m/z (ESI
+
) 324.1 (100%, MH

+
); (Found MH

+
, 324.1456. C17H18N5O2 

requires MH, 324.1455. 
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4-[3-Chloro-5-(trifluoromethyl)pyridin-2-yl]-6-(4,6-dimethylpyrimidin-2-

yl)tetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione (275b). 

Prepared by general procedure M from 4,6-dimethyl-2-

formylpyrimidine 269 (0.136 g, 1.00 mmol), 2-aminomethyl-

3-chloro-5-(trifluoromethyl)pyridine hydrochloride (0.246 g, 

1.00 mmol), maleimide (0.097 g, 1.00 mmol) and Et3N (0.26 

mL, 2.00 mmol) in toluene (7 mL) at 100 °C for 10 min. The product 275b (0.34 g, 

80%) crystallized from MeOH as colourless needles, mp 262-264 °C; (Found: C, 

50.55; H, 3.50; Cl, 8.35; N, 16.45; C18H15ClF3N5O2 requires C, 50.77; H, 3.55;Cl, 

8.33; N, 16.45%); δH (300 MHz, CDCl3/MeOH-d4); 8.77 (1H, d, J 1.3, pyridinyl-H), 

8.00 (1H, d, J 1.5, pyridinyl-H), 6.99 (1H, s, pyrimidinyl-H), 5.07 (1H, d, J 8.0, 4-

H), 4.77 (1H, d, J 8.0, 6-H), 3.93 (1H, t, J 8.0, 6a-H), 3.84 (1H, t, J 8.0, 3a-H), 2.82 

(2H, br s, 2-NH and 5-NH), 2.51 (6H, s, 2 x pyrimidinyl-CH3); δC (75 MHz, 

CDCl3/MeOH-d4); 176.3, 176.1, 166.9, 164.2, 157.0, 143.7 (q, J 3.8), 133.9 (q, J 

3.5), 131.3, 126.9 (q, J 33.7), 120.4 (q, J 273.6), 119.4, 66.1, 62.6, 53.7, 51.7, 23.8; 

υmax/cm
-1

 (film); 3407, 3054, 2758, 1776, 1714, 1595, 1544, 1410, 1344, 1321; m/z 

(ESI
+
) 426.1 (100%, MH

+
); (Found MH

+
, 426.0947. C18H16

35
ClF3N5O2 requires MH, 

426.0939. 

 

4-(1H-Benzimidazol-2-yl)-6-(4,6-dimethylpyrimidin-2-yl)tetrahydropyrrolo[3,4-

c]pyrrole-1,3(2H,3aH)-dione (275c). 

Prepared by general procedure M from 4,6-dimethyl-2-

formylpyrimidine 269 (0.136 g, 1.00 mmol), 2-

aminomethylbenzimidazole dihydrochloride (0.22 g, 1.00 

mmol), maleimide (0.097 g, 1.00 mmol) and Et3N (0.39 mL, 3.00 mmol) in toluene 

(7 mL) at 100 °C for 3 h. The product 275c (0.21 g, 58%) was obtained as an 

amorphous off white powder from MeOH, mp 210-212 °C; δH (300 MHz, DMSO-

d6); 11.00 (1H, s, NH), 7.58 (1H, d, J 7.2 , benzimidazolyl-H), 7.51 (1H, d, J 7.5, 

benzimidazolyl-H), 7.20-7.13 (3H, m, 2 x benzimidazolyl-H and pyrimidinyl-H), 

4.73 (1H, dd, J 12.3 and 8.0, 4-H), 4.60 (1H, dd, J 12.3 and 8.0, 6-H), 4.02 (1H, t, J 

12.3, 5-NH), 3.71 (1H, t, J 8.0, 6a-H), 3.63 (1H, t, J 8.0, 3a-H), 2.44 (6H, s, 2 x 

pyrimidinyl-CH3); δC (75 MHz, DMSO-d6); 177.4, 177.0, 166.2, 165.4, 151.8, 121.7 

(brs), 119.1, 66.3, 59.3, 53.8, 53.3, 23.9, (Two symmetrical benzimidazolyl carbon 
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atoms could not be located due to peak overlaps); υmax/cm
-1

 (film); 3478, 3297, 

2950, 1868, 1761, 1713, 1599, 1542, 1485, 1437, 1360, 1276; m/z (ESI
+
)  363.2 

(53%, MH
+
); (Found MH

+
, 363.1563. C19H19N6O2 requires MH, 363.1564. 

 

4-(4,6-Dimethylpyrimidin-2-yl)-1,3-dioxo-2-phenyloctahydropyrrolo[3,4-

a]pyrrolizine-8a(6H)-carboxamide (278). 

 Prepared by general procedure M from 4,6-dimethyl-2-

formylpyrimidine 269 (0.136 g, 1.00 mmol), (S)-prolinamide 

(0.114 g, 1.00 mmol), N-phenylmaleimide (0.173 g, 1.00 

mmol) and Et3N (0.13 mL, 1.00 mmol) in toluene (5 mL) at 100 °C for 1 h. The 

solvent was removed under vacuum and the crude product was purified by gradient 

elution flash chromatography with EtOAc changing to 10:2 v/v EtOAc/EtOH to 

afford adduct 278. Crystallization from CH2Cl2 gave colourless needles (0.36, 89%), 

mp 219-220 °C; (Found: C, 64.90; H, 5.70; N, 17.35; C22H23N5O3 requires C, 65.17; 

H, 5.72; N, 17.27%); δH (300 MHz, DMSO-d6); 7.63 (1H, d, J 2.3, CONH2), 7.47 

(2H, t, J 7.5, phenyl-H), 7.38 (1H, t, J 7.5, phenyl-H), 7.32 (1H, d, J 2.3, CONH2), 

7.16 (1H, s, pyrimidinyl-H), 7.09  (2H, d, J 7.7, phenyl-H), 4.81 (1H, d, J 9.1, 4-H), 

4.06 (1H, t, J 9.1, 3a-H), 3.97 (1H, d, J 9.1, 8b-H), 3.08-3.01 (1H, m, 6-HA), 2.64-

2.55 (2H, m, 6-HB| and 8-HA), 2.34 (6H, s, 2 x pyrimidinyl-CH3), 2.13-2.03 (1H, m, 

8-HB), 1.78-1.67 (2H, m, 7-CH2); δC (75 MHz, DMSO-d6); 176.9, 175.9, 174.9, 

165.8, 165.5, 132.2, 128.7, 128, 126.2, 118.5, 80.1, 68.3, 51.9, 50, 48, 30.2, 25.4, 

23.3; υmax/cm
-1

 (film); 3425, 3060, 2964, 2873, 1775, 1712, 1679, 1594, 1543, 1499, 

1440, 1379; m/z (ESI
+
)  406.2 (100%, MH

+
); (Found MH

+
,406.1864. C22H24N5O3 

requires MH, 406.1874. 

 

4,6-Dimethyl-2-[4-(phenylsulfonyl)-5-(pyridin-2-yl)pyrrolidin-2-yl]pyrimidine 

(280).  

Prepared by general procedure M from 4,6-dimethyl-2-

formylpyrimidine 269 (0.136 g, 1.00 mmol), 2-

aminomethylpyridine (0.103 mL, 1.00 mmol), phenyl vinylsulfone (0.168 g, 1.00 

mmol) and Et3N (0.13 mL, 1.00 mmol) in toluene (7 mL) at 100 °C for 30 min. The 

solvent was removed under reduced pressure, the residue dissolved in CHCl3, 

washed with water (3 x 20 mL), dried (MgSO4) and the solvent removed under 

reduced pressure. The residue was purified by column chromatography eluting with 
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AcOEt to give the product 280 which crystallized from CHCl3 as colourless needles 

(0.25 g, 64%), mp 132-134 °C; δH (300 MHz, CDCl3); 8.50 (1H, d, J 4.1, pyridinyl-

H), 7.83 (2H, d, J 7.4, phenyl-H), 7.54 ( 2H, dt, J 2.1 and 7.7, pyridinyl-H), 7.43 

(2H, t, J 7.6, phenyl-H), 7.22 (1H, d, J 7.7, pyridinyl-H), 7.15 ( 1H, dd, J 5.1 and 7.2, 

phenyl-H), 6.90 (1H, s, pyrimidinyl-H), 4.79 (1H, d, J 7.2, 5-H), 4.62 (1H, dd, J 7.4 

and 9.2, 2-H), 4.25 (1H, ddd, J 4.6, 7.2 and 11.1, 4-H), 3.61 (1H, brs, NH), 2.93 (1H, 

ddd, J 4.6, 7.4 and 12.9, 3-Ha), 2.44 (6H, s, pyrimidinyl-CH3), 2.34 (1H, ddd, J 9.2, 

11.1 and 12.9, 3-Hb); δC (75 MHz, CDCl3); 167.8, 166.8, 157.9, 149.4, 138.8, 136.6, 

133.5, 129.1, 128.3, 123.9, 122.6, 118.6, 69.1, 65.4, 64.6, 36.2, 23.9; υmax/cm
-1

 

(film); 3276, 3061, 2925, 1593, 1544, 1474, 1446, 1384, 1348, 1304; m/z (ESI
+
)  

395.2 (100%, MH
+
); (Found MH

+
, 395.1553. C21H23N4O2

32
S requires MH, 

395.1536. 

 

Methyl 5-(4,6-dimethylpyrimidin-2-yl)-2-methyl-4-(phenylsulfonyl)-

pyrrolidine-2-carboxylate (281a,b) and methyl 5-(4,6-dimethylpyrimidin-2-yl)-

2-methyl-3-(phenylsulfonyl)pyrrolidine-2-carboxylate (281c). 

Prepared by general procedure M from 4,6-dimethyl-2-

formylpyrimidine 269 (0.136 g, 1.00 mmol), (R)-alanine 

methyl ester hydrochloride  (0.139 mL, 1.00 mmol), phenyl 

vinylsulfone (0.168 g, 1.00 mmol) and Et3N (0.26 mL, 2.00 

mmol) in toluene (7 mL) at 100 °C for 15 minutes. The solvent was removed under 

vacuum, the residue dissolved in CHCl3 and washed with water (3 x 10 mL), dried 

(MgSO4) and the solvent was removed under vacuum. The 
1
H-NMR of the residue 

showed it to comprise a 2.5:1.3:1 mixture of 281a-c. The residue was purified by 

column chromatography eluting with AcOEt which separated cycloadduct 281a and 

then with EtOAc/MeOH (10:1) to separate first cycloadducts 281c and then 281b.  

Compound 281a crystallized from CHCl3 as colourless needles (0.11 g, 28%), mp 

121-123 °C; δH (300 MHz, CDCl3); 7.86 (2H, d, J 7.7, phenyl-H), 7.51 (1H, t, J 7.4, 

phenyl-H), 7.42 (2H, t, J 7.4, phenyl-H), 6.73 (1H, s, pyrimidinyl-H), 4.72 (1H, d, J 

6.4, 5-H), 4.61 (1H, dt, J 6.4 and 8.9, 4-H), 3.55 (3H, s, CO2CH3), 3.19 (1H, brs, 

NH), 2.86 (1H, dd, J 8.9 and 13.6, 3-Ha), 2.44 (1H, dd, J 8.9 and 13.6, 3-Hb), 2.31 

(6H, s, pyrimidinyl-CH3), 1.51 (3H, s, 2-CH3); δC (75 MHz, CDCl3); 175.6, 166.8, 

166.6, 138.4, 133.4, 128.8 (2 x C), 118.4, 67.3, 66.0, 64.9, 52.3, 37.4, 25.6, 23.8; 
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υmax/cm
-1

 (film); 3332, 2953, 1732, 1593, 1542, 1447, 1372, 1304, 1266; m/z (ESI
+
)  

390.2 (100%, MH
+
); (Found MH

+
, 390.1483. C19H24N3O4

32
S requires MH, 

390.1482. NOE data (CDCl3) for 281a: 

 % Enhancement 

Irradiated proton 5-H 4-H 3-Ha 3-Hb Ph-H Me 

5-H  - - - 3.9 - 

4-H -  6.4 - 4.6 - 

3-Ha - 11.6  25.5 - - 

3-Hb 3.8 - 27.4  2.8 3.8 

 

Compound 281b: obtained as a yellow gum (0.06 g, 16%), δH 

(300 MHz, CDCl3); 7.58 (2H, d, J 7.7, phenyl-H), 7.53 (1H, t, 

J 7.4, phenyl-H), 7.38 (2H, t, J 7.7, phenyl-H), 6.78 (1H, s, 

pyrimidinyl-H), 4.69 (1H, d, J 5.6, 5-H), 4.17 (1H, dt, J 5.6 

and 7.8, 4-H), 3.86 (3H, s, CO2CH3), 3.38 (1H, dd, J 5.6 and 

14.5, 3-Ha), 2.35 (6H, s, pyrimidinyl-CH3), 2.25 (1H, dd, J 7.8 and 14.5, 3-Hb), 1.51 

(3H, s, 2-CH3); δC (75 MHz, CDCl3); 176.3, 166.6, 165.0, 139.6, 133.5, 129.1, 

128.5, 119.3, 67.5, 66.1, 65.5, 53.0, 38.3, 29.7, 24.1; υmax/cm
-1

 (film); 3330, 2927, 

1736, 1593, 1543, 1446, 1371, 1305. NOE data (CDCl3) for 218b:  

 % Enhancement 

Irradiated proton 5-H 4-H 3-Ha 3-Hb Ph-H 

5-H  10.4 - - - 

4-H 9.5  - - 8.3 

3-Ha - -  21.5 - 

3-Hb - 17.2 25.4  - 

 

Compound 281c: obtained as a yellow gum (0.04 g, 10%), δH 

(300 MHz, CDCl3); 7.86 (2H, d, J 7.2, phenyl-H), 7.63 (1H, 

t, J 7.3, phenyl-H), 7.53 (2H, t, J 7.4, phenyl-H), 6.90 (1H, s, 

pyrimidinyl-H), 4.38 (1H, dd, J 7.2 and 9.7, 5-H), 3.82 (3H, 

s, CO2CH3), 3.70 (1H, dd, J 7.2 and 9.7, 3-H), 2.46-2.39 (2H, m, 4-CH2), 2.45 (6H, 

s, pyrimidinyl-CH3), 1.25 (3H, s, 2-CH3); δC (75 MHz, CDCl3); 173.4, 167.9, 167.2, 

140.4, 134.2, 129.6, 128.6, 118.9, 74.7, 67.7, 61.8, 53.4, 37.4, 27.8, 24.3; υmax/cm
-1

 

(film); 3296, 2952, 1737, 1593, 1545, 1447, 1373, 1308. 

NOE data (CDCl3) for 281c:  

 % Enhancement 

Irradiated proton 5-H 4-CH2 3-H Ph-H Me 

5-H  7.8 4.1 - - 

3-H - 5.6  5.9 4.1 
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Appendices 

Appendix 1: NOE data (CDCl3) for 242a. 
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Appendix 2: NOE data (CDCl3) for 242b. 
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Appendix 3: X-ray crystallographic data for 245d. 

 

Ortep view of 245d. 

Table 1.  Crystal data and structure refinement for EE77. 

Archive code 10_11_06 

Identification code EE77                                             

Formula C48H50Cl18N12O4 

Formula weight 1497.1 

Size 0.31 x 0.12 x 0.03 mm 

Crystal morphology Colourless fragment 

Temperature 150(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Triclinic 

Space group P1 

Unit cell dimensions a = 10.4541(10) Å  = 107.624(5)° 

 b = 12.9417(13) Å  = 97.272(6)° 

 c = 13.2135(14) Å  = 90.484(6)° 

Volume 1688.0(3) Å
3
 

Z 1 

Density (calculated) 1.473 Mg/m
3
 

Absorption coefficient 0.779 mm
-1

 

F(000) 760 

Data collection range 1.93  26° 

Index ranges -12  h 12,  -15  k  15,  -16  l  16 

Reflections collected 56054 
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Independent reflections 6530 [R(int) = 0.0634] 

Observed reflections 4501 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.977 and 0.5868 

Refinement method Full 

Data / restraints / parameters 6530 / 36 / 453 

Goodness of fit 1.048 

Final R indices  [I >2(I)] R1 = 0.0597, wR2 = 0.1569 

R indices (all data) R1 = 0.0902, wR2 = 0.1844 

Largest diff. peak and hole 1.187 and -0.386e.Å
-3

 

 

Table 2. Atomic co-ordinates (x 10
4
) and equivalent isotropic displacement 

parameters (Å
2
 x 10

4
) with standard uncertainties (s.u.s) in parentheses. Ueq is 

defined as 
1
/3 of the trace of the orthogonalized Uij tensor. 

____________________________________________________________ 

  x y z Ueq 

____________________________________________________________________ 

 C(1) 9443(3) -365(3) 3897(3) 31.3(7) 

 Cl(1a)
pd

 -2396(3) -960(2) 105(3) 80.4(7) 

 Cl(1b)
pd

 -2583(6) 1083(5) 1808(7) 80.0(13) 

 Cl(1c)
pd

 -88(2) 164.6(19) 1451.1(19) 49.6(5) 

 Cl(1d)
pd

 -3129(13) -464(10) 247(6) 209(7) 

 Cl(1e)
pd

 -452(12) -225(9) 1265(9) 185(7) 

 Cl(1f)
pd

 -2280(14) 1352(12) 2047(15) 88(4) 

 C(1s)
d
 -1679(5) 361(4) 844(4) 63.4(12) 

 C(2) 10115(3) -819(3) 5514(3) 32.2(7) 

 Cl(2a)
pd

 5366(8) 2741(7) 165(6) 107(3) 

 Cl(2b)
pd

 6043(7) 4658(6) 2031(7) 108(2) 

 Cl(2c)
pd

 4571(4) 2860(3) 2206(3) 59.7(8) 

 Cl(2d)
pd

 4674(13) 2965(10) 2262(9) 173(5) 

 Cl(2e)
pd

 5336(7) 2739(5) 126(4) 48.8(16) 

 Cl(2f)
pd

 6012(7) 4736(5) 1874(8) 90(3) 

 C(2s)
d
 4863(4) 3628(4) 1325(4) 61.9(12) 

 N(3) 9023(3) -894(2) 4654(2) 29.5(6) 

 Cl(3a)
pd

 7419(10) 3265(6) 4640(7) 177(4) 

 Cl(3b)
pd

 8570(6) 5139(5) 4307(5) 95.6(19) 

 Cl(3c)
pd

 6774(5) 5406(7) 5799(4) 169(3) 

 Cl(3d)
pd

 7974(4) 3203(3) 4223(4) 91.6(13) 

 Cl(3e)
pd

 8141(7) 5525(4) 4726(5) 130(2) 

 Cl(3f)
pd

 6323(3) 4470(4) 5617(3) 102.4(11) 

 C(3s)
d
 7913(5) 4509(4) 5215(4) 65.4(13) 

 C(4) 8625(3) -2069(2) 4111(3) 33.3(7) 
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 C(5) 7566(3) -2239(2) 3153(3) 32.3(7) 

 C(6) 7750(3) -2761(3) 2126(3) 34.8(8) 

 C(7) 8995(3) -3148(3) 1708(3) 37.4(8) 

 N(8) 8961(3) -4355(2) 1216(2) 34.5(6) 

 O(9) 10246(3) -4485(2) 2727(2) 50.3(7) 

 C(9) 9628(3) -4954(3) 1841(3) 38.6(8) 

 N(10) 9579(3) -6074(2) 1406(2) 41.5(7) 

 C(10) 10362(5) -6715(3) 1985(4) 58.5(11) 

 C(11) 8899(3) -6554(3) 391(3) 37.7(8) 

 N(12) 8761(3) -7651(2) -140(3) 44.1(8) 

 C(13) 8049(4) -7690(3) -1076(3) 44.9(9) 

 N(14) 7744(3) -6706(2) -1174(2) 40.8(7) 

C(14) 6942(4) -6487(3) -2079(3) 55.4(11) 

 C(15) 8291(3) -5949(3) -205(3) 34.8(8) 

 O(16) 7796(2) -4177.4(19) -324.8(19) 42.7(6) 

 C(16) 8290(3) -4785(3) 165(3) 34.6(8) 

 C(51) 6303(3) -1732(2) 3364(3) 31.9(7) 

 C(52) 5800(3) -1088(3) 2751(3) 34.5(8) 

 C(53) 4631(3) -558(3) 2957(3) 36.4(8) 

 C(54) 3912(4) 202(3) 2523(3) 44.2(9) 

 C(55) 2892(4) 473(3) 3104(3) 45.9(9) 

 N(56) 2903(3) -78(2) 3841(2) 41.8(7) 

 C(57) 3987(3) -707(3) 3792(3) 35.7(8) 

 C(58) 4472(3) -1365(3) 4408(3) 38.4(8) 

 C(59) 5626(3) -1868(3) 4198(3) 35.8(8) 

____________________________________________________________________ 

 Key to superscripts on atoms with refinement constraints/restraints: 

   d - distance or angle restraint on site 

   p - partial occupancy constraint 

 

 

Table 3. Anisotropic displacement parameters (Å
2
 x 10

3
). The anisotropic 

displacement factor exponent takes the form: 

 

-2
2
[h

2
a*

2
U11 + ... + 2 h k a* b* U12] 

____________________________________________________________________ 

  U11 U22 U33 U23 U13 U12 

_________________________________________________________________ 

 C(1) 28.6(17) 30.1(16) 27.6(15) 0.4(13) -3.4(13) -3.9(13) 

 Cl(1a) 92.9(16) 65.6(12) 70.5(15) 12.1(10) -9.3(12) -30.2(11) 

 Cl(1b) 67(3) 66(2) 118(4) 32.5(18) 40(3) 18.9(19) 

 Cl(1c) 56.8(9) 51.8(10) 36.6(8) 10.2(7) 1.2(7) 12.4(8) 

 Cl(1d) 333(18) 216(12) 57(4) 42(6) -33(8) -195(12) 

 Cl(1e) 315(16) 170(10) 154(9) 114(8) 167(10) 180(11) 

 Cl(1f) 75(7) 94(9) 108(8) 43(6) 26(6) 21(5) 

 C(1s) 77(3) 59(3) 54(3) 24(2) -7(2) -13(2) 

 C(2) 30.0(17) 30.7(16) 30.5(16) 3.5(13) -0.7(14) -3.8(14) 

 Cl(2a) 76(5) 123(6) 101(5) 2(4) 12(4) -5(4) 

 Cl(2b) 70(4) 123(5) 101(3) 3(3) -24(2) -29(3) 

 Cl(2c) 64.4(17) 56.2(15) 58.8(19) 16.5(14) 12.2(14) 6.8(13) 



- 255 - 

 Cl(2d) 210(11) 175(10) 128(8) 41(7) 14(7) 27(8) 

 Cl(2e) 36(3) 59(4) 41(3) 3(3) -1(3) -13(3) 

 Cl(2f) 43(4) 48(2) 146(7) -27(3) 31(4) -13(2) 

 C(2s) 42(2) 59(3) 73(3) 9(2) -7(2) -4(2) 

 N(3) 29.0(14) 24.7(13) 27.5(13) 0.4(10) -3.8(11) -6.8(11) 

 Cl(3a) 252(11) 99(5) 174(8) 73(5) -68(6) -93(6) 

 Cl(3b) 87(3) 117(5) 95(4) 62(3) -14(3) -28(3) 

 Cl(3c) 98(4) 291(9) 92(3) 16(5) 16(3) 99(5) 

 Cl(3d) 94(2) 52.5(17) 108(3) 2.3(16) -7.5(19) 17.0(17) 

 Cl(3e) 183(6) 76(3) 136(5) 69(3) -50(4) -43(3) 

 Cl(3f) 74(2) 143(3) 83(2) 27(2) 5.2(15) 19(2) 

 C(3s) 70(3) 71(3) 50(2) 18(2) -11(2) 10(2) 

 C(4) 37.3(19) 22.8(15) 30.9(16) -2.2(13) -1.5(14) -3.3(13) 

 C(5) 31.5(18) 23.9(15) 34.0(17) 0.2(13) -1.5(14) -7.3(13) 

 C(6) 29.5(18) 29.9(16) 34.3(17) -2.3(14) -4.7(14) -5.5(14) 

 C(7) 32.7(19) 30.1(17) 37.3(18) -3.7(14) -4.2(15) -5.0(14) 

 N(8) 30.6(15) 31.4(14) 31.3(14) -2.5(11) -2.8(12) -2.2(12) 

 O(9) 52.9(17) 49.0(15) 35.3(13) -0.8(12) -10.3(12) -0.4(13) 

 C(9) 30.9(18) 41.6(19) 35.3(18) 1.4(15) 1.9(15) -0.3(15) 

 N(10) 39.7(17) 37.2(16) 40.2(16) 4.6(13) -3.9(14) 0.9(13) 

 C(10) 65(3) 47(2) 58(3) 14(2) -11(2) 8(2) 

 C(11) 31.8(19) 34.1(18) 38.5(18) -1.2(15) 3.5(15) -0.3(14) 

 N(12) 41.5(18) 31.8(15) 50.1(18) 0.5(13) 3.4(15) 0.8(13) 

 C(13) 41(2) 34.6(19) 48(2) -3.2(16) 2.2(17) -2.1(16) 

 N(14) 38.3(17) 34.0(16) 36.6(16) -5.9(12) -2.6(13) -4.1(13) 

 C(14) 58(3) 46(2) 44(2) -4.3(17) -17.2(19) -6.0(19) 

 C(15) 27.4(17) 32.3(17) 34.2(17) -2.5(14) -2.4(14) -3.9(14) 

 O(16) 45.0(15) 36.0(13) 38.0(13) 3.2(11) -7.8(11) -0.4(11) 

 C(16) 27.4(17) 35.3(18) 32.2(17) -1.5(14) 0.6(14) -1.4(14) 

 C(51) 27.1(17) 26.2(16) 31.5(16) -4.9(13) -1.0(14) -6.7(13) 

 C(52) 31.4(18) 31.9(17) 32.3(17) -2.0(14) 4.8(14) -4.3(14) 

 C(53) 32.2(19) 31.7(17) 36.2(18) -1.4(14) 0.9(15) -5.5(14) 

 C(54) 38(2) 41(2) 46(2) 5.3(17) 0.4(17) 0.8(16) 

 C(55) 36(2) 39(2) 51(2) 0.6(17) -5.1(18) 1.8(16) 

 N(56) 28.3(16) 43.3(17) 41.0(17) -5.9(14) 4.2(13) -3.8(13) 

 C(57) 27.9(18) 31.6(17) 35.2(17) -7.0(14) 1.5(14) -6.1(14) 

 C(58) 32.9(19) 41.6(19) 29.9(17) -4.2(15) 2.8(15) -11.0(15) 

 C(59) 34.9(19) 32.9(17) 30.3(16) -0.7(14) -3.4(14) -8.0(15) 

____________________________________________________________________ 

 

Table 4. Hydrogen atom co-ordinates (x 10
3
) and isotropic displacement parameters 

(Å
2
 x 10

2
) with s.u.s in parentheses. 

____________________________________________________________________ 

  x y z Ueq 

____________________________________________________________________ 

 H(1a) 8719. -395. 3327. 38. 

 H(1b) 10162. -757. 3556. 38. 

 H(1s) -1587. 781. 332. 76. 

 H(2a) 10845. -1217. 5196. 39. 

 H(2b) 9844. -1166. 6031. 39. 
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 H(2s) 4049. 3963. 1125. 74. 

 H(3s) 8628. 4517. 5797. 78. 

 H(4a) 8309. -2381. 4637. 40. 

 H(4b) 9388. -2466. 3862. 40. 

 H(6) 7001. -2900. 1607. 42. 

 H(7a) 9162. -2797. 1165. 45. 

 H(7b) 9715. -2924. 2305. 45. 

 H(10a) 10242. -7487. 1575. 88. 

 H(10b) 10087. -6599. 2691. 88. 

 H(10c) 11275. -6484. 2072. 88. 

 H(13) 7784. -8352. -1622. 54. 

 H(14a) 6786. -7157. -2681. 83. 

 H(14b) 7390. -5939. -2298. 83. 

 H(14c) 6115. -6218. -1858. 83. 

 H(52) 6240. -1001. 2194. 41. 

 H(54) 4104. 461. 1956. 53. 

 H(55) 2266. 974. 3007. 55. 

 H(56) 2321. -41. 4276. 50. 

 H(58) 4024. -1467. 4956. 46. 

 H(59) 5971. -2309. 4615. 43. 

 

 

 

Table 5.   Interatomic distances (Å) with s.u.s in parentheses. 

____________________________________________________________________ 

 C(1)-N(3) 1.478(4) C(1)-C(2)
(a)

 1.531(4) 

 Cl(1a)-C(1s) 1.795(5) Cl(1b)-C(1s) 1.729(8) 

 Cl(1c)-C(1s) 1.807(5) Cl(1d)-C(1s) 1.795(9) 

 Cl(1e)-C(1s) 1.620(10) Cl(1f)-C(1s) 1.896(13) 

 C(2)-N(3) 1.485(4) C(2)-C(1)
(a)

 1.531(4) 

 Cl(2a)-C(2s) 1.759(9) Cl(2b)-C(2s) 1.759(7) 

 Cl(2c)-C(2s) 1.796(6) Cl(2d)-C(2s) 1.736(10) 

 Cl(2e)-C(2s) 1.785(8) Cl(2f)-C(2s) 1.774(7) 

 N(3)-C(4) 1.501(4) Cl(3a)-C(3s) 1.607(8) 

 Cl(3b)-C(3s) 1.836(7) Cl(3c)-C(3s) 1.753(7) 

 Cl(3d)-C(3s) 1.805(6) Cl(3e)-C(3s) 1.660(6) 

 Cl(3f)-C(3s) 1.812(6) C(4)-C(5) 1.532(4) 

 C(5)-C(6) 1.359(5) C(5)-C(51) 1.499(5) 

 C(6)-C(7) 1.508(5) C(7)-N(8) 1.497(4) 

 N(8)-C(16) 1.417(4) N(8)-C(9) 1.422(5) 

 O(9)-C(9) 1.236(4) C(9)-N(10) 1.386(5) 

 N(10)-C(11) 1.391(4) N(10)-C(10) 1.476(5) 

 C(11)-C(15) 1.376(5) C(11)-N(12) 1.377(4) 

 N(12)-C(13) 1.347(5) C(13)-N(14) 1.355(5) 

 N(14)-C(15) 1.405(4) N(14)-C(14) 1.473(5) 

 C(15)-C(16) 1.436(5) O(16)-C(16) 1.238(4) 

 C(51)-C(52) 1.391(5) C(51)-C(59) 1.435(5) 

 C(52)-C(53) 1.422(5) C(53)-C(57) 1.423(5) 

 C(53)-C(54) 1.451(5) C(54)-C(55) 1.378(6) 

 C(55)-N(56) 1.369(5) N(56)-C(57) 1.398(5) 
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 C(57)-C(58) 1.403(5) C(58)-C(59) 1.394(5) 

____________________________________________________________________ 

Key giving operations for symmetry related atoms:  

  (a) 2-x, -y, 1-z             

 

 

Table 6.   Angles between interatomic vectors (°) with s.u.s in parentheses. 

____________________________________________________________________ 

 N(3)-C(1)-C(2)
(a)

 110.3(3) Cl(1e)-C(1s)-Cl(1b) 116.1(6) 

 Cl(1e)-C(1s)-Cl(1d) 117.4(7) Cl(1b)-C(1s)-Cl(1d) 86.0(8) 

 Cl(1e)-C(1s)-Cl(1a) 88.5(9) Cl(1b)-C(1s)-Cl(1a) 112.8(3) 

 Cl(1b)-C(1s)-Cl(1c) 110.7(4) Cl(1d)-C(1s)-Cl(1c) 136.4(9) 

 Cl(1a)-C(1s)-Cl(1c) 107.0(3) Cl(1e)-C(1s)-Cl(1f) 108.6(8) 

 Cl(1d)-C(1s)-Cl(1f) 100.1(7) Cl(1a)-C(1s)-Cl(1f) 126.0(6) 

 Cl(1c)-C(1s)-Cl(1f) 99.7(6) N(3)-C(2)-C(1)
(a)

 111.0(3) 

 Cl(2d)-C(2s)-Cl(2a) 111.2(7) Cl(2d)-C(2s)-Cl(2b) 102.3(7) 

 Cl(2a)-C(2s)-Cl(2b) 112.5(5) Cl(2d)-C(2s)-Cl(2f) 110.5(6) 

 Cl(2a)-C(2s)-Cl(2f) 109.1(5) Cl(2d)-C(2s)-Cl(2e) 112.1(6) 

 Cl(2b)-C(2s)-Cl(2e) 113.3(4) Cl(2f)-C(2s)-Cl(2e) 109.6(4) 

 Cl(2a)-C(2s)-Cl(2c) 108.4(4) Cl(2b)-C(2s)-Cl(2c) 107.2(4) 

 Cl(2f)-C(2s)-Cl(2c) 115.5(6) Cl(2e)-C(2s)-Cl(2c) 109.2(3) 

 C(1)-N(3)-C(2) 108.6(2) C(1)-N(3)-C(4) 111.8(2) 

 C(2)-N(3)-C(4) 108.7(2) Cl(3a)-C(3s)-Cl(3e) 131.6(5) 

 Cl(3a)-C(3s)-Cl(3c) 116.9(5) Cl(3e)-C(3s)-Cl(3c) 79.0(4) 

 Cl(3e)-C(3s)-Cl(3d) 112.0(4) Cl(3c)-C(3s)-Cl(3d) 139.7(5) 

 Cl(3a)-C(3s)-Cl(3f) 77.4(6) Cl(3e)-C(3s)-Cl(3f) 112.7(4) 

 Cl(3d)-C(3s)-Cl(3f) 103.6(3) Cl(3a)-C(3s)-Cl(3b) 113.0(5) 

 Cl(3c)-C(3s)-Cl(3b) 104.6(5) Cl(3d)-C(3s)-Cl(3b) 88.6(3) 

 Cl(3f)-C(3s)-Cl(3b) 132.7(4) N(3)-C(4)-C(5) 112.8(3) 

 C(6)-C(5)-C(51) 119.1(3) C(6)-C(5)-C(4) 123.2(3) 

 C(51)-C(5)-C(4) 117.6(3) C(5)-C(6)-C(7) 128.1(3) 

 N(8)-C(7)-C(6) 112.3(3) C(16)-N(8)-C(9) 126.4(3) 

 C(16)-N(8)-C(7) 116.8(3) C(9)-N(8)-C(7) 116.7(3) 

 O(9)-C(9)-N(10) 121.9(3) O(9)-C(9)-N(8) 120.8(3) 

 N(10)-C(9)-N(8) 117.3(3) C(9)-N(10)-C(11) 119.3(3) 

 C(9)-N(10)-C(10) 118.8(3) C(11)-N(10)-C(10) 121.6(3) 

 C(15)-C(11)-N(12) 112.3(3) C(15)-C(11)-N(10) 121.9(3) 

 N(12)-C(11)-N(10) 125.8(3) C(13)-N(12)-C(11) 102.7(3) 

 N(12)-C(13)-N(14) 114.4(3) C(13)-N(14)-C(15) 105.3(3) 

 C(13)-N(14)-C(14) 127.1(3) C(15)-N(14)-C(14) 127.5(3) 

 C(11)-C(15)-N(14) 105.4(3) C(11)-C(15)-C(16) 123.4(3) 

 N(14)-C(15)-C(16) 131.3(3) O(16)-C(16)-N(8) 120.8(3) 

 O(16)-C(16)-C(15) 127.6(3) N(8)-C(16)-C(15) 111.6(3) 

 C(52)-C(51)-C(59) 119.5(3) C(52)-C(51)-C(5) 118.7(3) 

 C(59)-C(51)-C(5) 121.8(3) C(51)-C(52)-C(53) 120.3(3) 

 C(52)-C(53)-C(57) 118.7(3) C(52)-C(53)-C(54) 133.8(3) 

 C(57)-C(53)-C(54) 107.4(3) C(55)-C(54)-C(53) 105.8(3) 

 N(56)-C(55)-C(54) 110.9(3) C(55)-N(56)-C(57) 109.0(3) 

 N(56)-C(57)-C(58) 131.5(3) N(56)-C(57)-C(53) 106.8(3) 

 C(58)-C(57)-C(53) 121.6(3) C(59)-C(58)-C(57) 118.5(3) 
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 C(58)-C(59)-C(51) 121.3(3) 

____________________________________________________________________ 

Key giving operations for symmetry related atoms:  

  (a) 2-x, -y, 1-z             

 

 

Table 7.   Torsion angles (°) with s.u.s in parentheses. 

____________________________________________________________________ 

 C(2)-C(1)-N(3)-C(2) -58.1(4) C(2)-C(1)-N(3)-C(4) -178.1(3) 

 C(1)-C(2)-N(3)-C(1) 58.6(4) C(1)-C(2)-N(3)-C(4) -179.6(3) 

 C(1)-N(3)-C(4)-C(5) -55.8(4) C(2)-N(3)-C(4)-C(5) -175.7(3) 

 N(3)-C(4)-C(5)-C(6) 114.9(3) N(3)-C(4)-C(5)-C(51) -60.7(4) 

 C(51)-C(5)-C(6)-C(7) 168.0(3) C(4)-C(5)-C(6)-C(7) -7.6(5) 

 C(5)-C(6)-C(7)-N(8) 117.8(4) C(6)-C(7)-N(8)-C(16) 78.4(4) 

 C(6)-C(7)-N(8)-C(9) -102.8(3) C(16)-N(8)-C(9)-O(9) 175.7(3) 

 C(7)-N(8)-C(9)-O(9) -2.9(5) C(16)-N(8)-C(9)-N(10) -2.9(5) 

 C(7)-N(8)-C(9)-N(10) 178.5(3) O(9)-C(9)-N(10)-C(11) -178.1(3) 

 N(8)-C(9)-N(10)-C(11) 0.5(5) O(9)-C(9)-N(10)-C(10) -4.4(6) 

 N(8)-C(9)-N(10)-C(10) 174.2(3) C(9)-N(10)-C(11)-C(15) 1.2(5) 

 C(10)-N(10)-C(11)-C(15) -172.3(4) C(9)-N(10)-C(11)-N(12) -179.7(3) 

 C(10)-N(10)-C(11)-N(12) 6.8(6) C(15)-C(11)-N(12)-C(13) 0.0(4) 

 N(10)-C(11)-N(12)-C(13) -179.2(4) C(11)-N(12)-C(13)-N(14) 0.6(4) 

 N(12)-C(13)-N(14)-C(15) -0.9(4) N(12)-C(13)-N(14)-C(14) -177.5(4) 

 N(12)-C(11)-C(15)-N(14) -0.5(4) N(10)-C(11)-C(15)-N(14) 178.8(3) 

 N(12)-C(11)-C(15)-C(16) -179.9(3) N(10)-C(11)-C(15)-C(16) -0.7(6) 

 C(13)-N(14)-C(15)-C(11) 0.8(4) C(14)-N(14)-C(15)-C(11) 177.4(4) 

 C(13)-N(14)-C(15)-C(16) -179.8(4) C(14)-N(14)-C(15)-C(16) -3.2(6) 

 C(9)-N(8)-C(16)-O(16) -176.3(3) C(7)-N(8)-C(16)-O(16) 2.3(5) 

 C(9)-N(8)-C(16)-C(15) 3.2(5) C(7)-N(8)-C(16)-C(15) -178.2(3) 

 C(11)-C(15)-C(16)-O(16) 178.1(4) N(14)-C(15)-C(16)-O(16) -1.2(6) 

 C(11)-C(15)-C(16)-N(8) -1.4(5) N(14)-C(15)-C(16)-N(8) 179.3(3) 

 C(6)-C(5)-C(51)-C(52) -47.7(4) C(4)-C(5)-C(51)-C(52) 128.2(3) 

 C(6)-C(5)-C(51)-C(59) 134.3(3) C(4)-C(5)-C(51)-C(59) -49.9(4) 

 C(59)-C(51)-C(52)-C(53) 0.6(4) C(5)-C(51)-C(52)-C(53) -177.5(3) 

 C(51)-C(52)-C(53)-C(57) -0.4(4) C(51)-C(52)-C(53)-C(54) 175.5(3) 

 C(52)-C(53)-C(54)-C(55) -176.1(3) C(57)-C(53)-C(54)-C(55) 0.1(4) 

 C(53)-C(54)-C(55)-N(56) -1.6(4) C(54)-C(55)-N(56)-C(57) 2.4(4) 

 C(55)-N(56)-C(57)-C(58) 176.1(3) C(55)-N(56)-C(57)-C(53) -2.2(3) 

 C(52)-C(53)-C(57)-N(56) 178.2(3) C(54)-C(53)-C(57)-N(56) 1.3(3) 

 C(52)-C(53)-C(57)-C(58) -0.4(5) C(54)-C(53)-C(57)-C(58) -177.3(3) 

 N(56)-C(57)-C(58)-C(59) -177.2(3) C(53)-C(57)-C(58)-C(59) 1.0(5) 

 C(57)-C(58)-C(59)-C(51) -0.8(4) C(52)-C(51)-C(59)-C(58) 0.0(4) 

 C(5)-C(51)-C(59)-C(58) 178.0(3) 

____________________________________________________________________ 
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Appendix 4: X-ray crystallographic data for 278. 

 

Ortep view of 278. 

Table 1.  Crystal data and structure refinement of ELG28. 

Archive code 10_07_06 

Identification code ELG28                                            

Formula C22H23N5O3 

Formula weight 405.45 

Size 0.36 x 0.20 x 0.05 mm 

Crystal morphology Colourless plate 

Temperature 150(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Monoclinic 

Space group C2/c 

Unit cell dimensions a = 25.8995(12) Å  = 90° 

 b = 7.0188(3) Å  = 111.498(2)° 

 c = 23.8259(11) Å  = 90° 

Volume 4029.8(3) Å
3
 

Z 8 

Density (calculated) 1.337 Mg/m
3
 

Absorption coefficient 0.092 mm
-1
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F(000) 1712 

Data collection range 1.84  28.37° 

Index ranges -34  h 34,  -8  k  9,  -31  l  31 

Reflections collected 50253 

Independent reflections 5038 [R(int) = 0.0581] 

Observed reflections 3700 [I >2(I)] 

Absorption correction none  

Refinement method Full 

Data / restraints / parameters 5038 / 0 / 273 

Goodness of fit 1.088 

Final R indices  [I >2(I)] R1 = 0.0484, wR2 = 0.1059 

R indices (all data) R1 = 0.0773, wR2 = 0.1279 

Largest diff. peak and hole 0.312 and -0.252e.Å
-3

 

 

Table 2. Atomic co-ordinates (x 10
4
) and equivalent isotropic displacement 

parameters (Å
2
 x 10

4
) with standard uncertainties (s.u.s) in parentheses. Ueq is 

defined as 
1
/3 of the trace of the orthogonalized Uij tensor. 

_________________________________________________________________ 

  x y z Ueq 

____________________________________________________________________ 

O(91) 2381.4(5) 8864.8(18) 573.2(5) 296(3) 

 N(1) 1772.4(5) 7500(2) 2398.4(5) 237(3) 

 N(42) 593.0(6) 8407(2) 1442.0(6) 313(3) 

 C(9) 1600.5(6) 8009(3) 845.3(7) 258(3) 

 O(2) 1281.8(6) 4787.6(19) 2422.8(5) 388(3) 

 N(91) 1858.0(6) 6375(2) 78.5(6) 305(3) 

 C(91) 1984.5(6) 7781(3) 480.4(6) 248(3) 

 C(41) 507.2(7) 6640(3) 1224.5(7) 278(4) 

 C(13) 2017.8(7) 7228(3) 3485.3(7) 275(3) 

 N(5) 1090.3(5) 6870(2) 569.7(6) 299(3) 

 N(46) 72.5(6) 5519(2) 1165.5(6) 331(3) 

 C(12) 1807.7(6) 8318(2) 2964.4(6) 242(3) 

 C(11) 1997.9(7) 8387(3) 2016.1(7) 336(4) 

 C(4) 950.3(7) 5756(3) 1020.6(7) 278(4) 

 C(2) 1502.8(7) 5803(2) 2169.4(7) 266(3) 

 C(17) 1635.0(7) 10180(3) 2977.0(8) 308(4) 

 C(3) 1523.8(7) 5502(3) 1544.6(7) 271(3) 

 C(43) 196.8(7) 9157(3) 1620.8(8) 337(4) 

 O(11) 2244.3(7) 9876(3) 2124.7(6) 637(5) 

 C(10) 1898.6(6) 7099(3) 1474.5(7) 283(4) 

 C(44) -260.6(7) 8085(3) 1592.2(8) 372(4) 
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 C(14) 2041.1(8) 8046(3) 4028.2(7) 351(4) 

 C(8) 1410.4(8) 10087(3) 793.7(9) 381(4) 

 C(16) 1664.3(7) 10962(3) 3524.4(9) 371(4) 

 C(15) 1861.3(8) 9886(3) 4045.7(8) 378(4) 

 C(45) -312.8(7) 6257(3) 1364.4(8) 359(4) 

 C(6) 658.4(7) 8115(3) 145.1(8) 428(5) 

 C(48) -792.1(8) 5000(4) 1328.6(11) 516(6) 

 C(7) 931.4(9) 10074(4) 178.6(10) 510(6) 

 C(47) 275.6(9) 11167(3) 1840.9(12) 527(6) 

____________________________________________________________________ 

 

Table 3. Anisotropic displacement parameters (Å
2
 x 10

3
). The anisotropic 

displacement factor exponent takes the form: 

 

-2
2
[h

2
a*

2
U11 + ... + 2 h k a* b* U12] 

____________________________________________________________________ 

  U11 U22 U33 U23 U13 U12 

____________________________________________________________________ 

O(91) 316(6) 395(7) 239(5) -30(5) 173(5) -44(5) 

 N(1) 277(6) 300(8) 172(6) -3(5) 126(5) -7(5) 

 N(42) 312(7) 382(9) 298(7) -18(6) 173(6) -1(6) 

 C(9) 243(7) 379(10) 198(7) -22(6) 135(6) 1(7) 

 O(2) 609(8) 338(8) 289(6) -22(5) 251(6) -134(6) 

 N(91) 315(7) 419(9) 255(7) -66(6) 189(6) -50(6) 

 C(91) 244(7) 368(10) 158(6) 29(6) 105(6) 36(7) 

 C(41) 268(8) 385(10) 218(7) -11(7) 132(6) -21(7) 

 C(13) 331(8) 307(9) 224(7) -14(6) 145(6) -15(7) 

 N(5) 238(6) 500(10) 189(6) -14(6) 114(5) -21(6) 

 N(46) 304(7) 421(9) 315(7) -43(6) 169(6) -39(6) 

 C(12) 260(7) 313(9) 199(7) -34(6) 138(6) -30(6) 

 C(11) 337(9) 510(12) 201(7) -29(7) 146(7) -128(8) 

 C(4) 289(8) 363(10) 230(7) -71(7) 153(6) -42(7) 

 C(2) 347(8) 273(9) 213(7) 1(6) 146(6) 19(7) 

 C(17) 307(8) 319(10) 317(8) -11(7) 139(7) 15(7) 

 C(3) 309(8) 328(9) 217(7) -33(6) 144(6) 23(7) 

 C(43) 344(9) 401(11) 304(8) 14(7) 165(7) 65(8) 

 O(11) 873(12) 822(13) 325(7) -206(7) 349(8) -595(10) 

 C(10) 234(7) 469(11) 183(7) -18(7) 120(6) -8(7) 

 C(44) 318(9) 498(12) 370(9) 11(8) 207(8) 73(8) 

 C(14) 410(10) 478(12) 200(7) -41(7) 155(7) -79(8) 

 C(8) 390(10) 406(12) 439(10) 2(8) 260(8) 57(8) 

 C(16) 358(9) 340(11) 456(10) -132(8) 195(8) -8(8) 

 C(15) 392(9) 501(12) 312(9) -189(8) 215(8) -101(8) 

 C(45) 288(8) 492(12) 344(9) 12(8) 169(7) 1(8) 

 C(6) 292(9) 776(16) 220(8) 60(9) 100(7) 88(9) 

 C(48) 354(10) 613(15) 682(14) -114(11) 308(10) -98(10) 

 C(7) 423(11) 627(16) 517(12) 193(11) 214(10) 186(10) 

 C(47) 509(12) 421(13) 740(15) -91(11) 334(12) 40(10) 

____________________________________________________________________ 
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Table 4. Hydrogen atom co-ordinates (x 10
3
) and isotropic displacement parameters 

(Å
2
 x 10

2
) with s.u.s in parentheses. 

____________________________________________________________________ 

  x y z Ueq 

____________________________________________________________________ 

H(91a) 2063. 6177. -140. 37. 

 H(91b) 1569. 5643. 31. 37. 

 H(13) 2142. 5962. 3473. 33. 

 H(4) 817. 4472. 846. 33. 

 H(17) 1499. 10913. 2617. 37. 

 H(3) 1686. 4228. 1519. 33. 

 H(10) 2260. 6543. 1493. 34. 

 H(44) -534. 8599. 1727. 45. 

 H(14) 2183. 7325. 4390. 42. 

 H(8a) 1710. 10969. 796. 46. 

 H(8b) 1281. 10440. 1122. 46. 

 H(16) 1549. 12238. 3540. 45. 

 H(15) 1873. 10416. 4417. 45. 

 H(6a) 332. 8210. 266. 51. 

 H(6b) 536. 7601. -270. 51. 

 H(48a) -772. 3813. 1121. 77. 

 H(48b) -1141. 5656. 1105. 77. 

 H(48c) -776. 4709. 1737. 77. 

 H(7a) 664. 11109. 153. 61. 

 H(7b) 1072. 10231. -153. 61. 

 H(47a) 559. 11210. 2249. 79. 

 H(47b) -76. 11663. 1848. 79. 

 H(47c) 396. 11949. 1570. 79. 

____________________________________________________________________ 

 

 

Table 5.   Interatomic distances (Å) with s.u.s in parentheses. 

____________________________________________________________________ 

O(91)-C(91) 1.232(2) N(1)-C(2) 1.387(2) 

 N(1)-C(11) 1.396(2) N(1)-C(12) 1.4376(18) 

 N(42)-C(41) 1.331(2) N(42)-C(43) 1.354(2) 

 C(9)-N(5) 1.477(2) C(9)-C(8) 1.530(3) 

 C(9)-C(10) 1.550(2) C(9)-C(91) 1.5506(19) 

 O(2)-C(2) 1.206(2) N(91)-C(91) 1.330(2) 

 C(41)-N(46) 1.338(2) C(41)-C(4) 1.532(2) 

 C(13)-C(12) 1.388(2) C(13)-C(14) 1.396(2) 

 N(5)-C(4) 1.477(2) N(5)-C(6) 1.487(2) 

 N(46)-C(45) 1.355(2) C(12)-C(17) 1.385(2) 

 C(11)-O(11) 1.203(2) C(11)-C(10) 1.518(2) 

 C(4)-C(3) 1.561(2) C(2)-C(3) 1.524(2) 

 C(17)-C(16) 1.391(2) C(3)-C(10) 1.531(2) 

 C(43)-C(44) 1.384(3) C(43)-C(47) 1.493(3) 

 C(44)-C(45) 1.381(3) C(14)-C(15) 1.379(3) 

 C(8)-C(7) 1.534(3) C(16)-C(15) 1.382(3) 

 C(45)-C(48) 1.499(3) C(6)-C(7) 1.534(3) 
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 Table 6.   Angles between interatomic vectors (°) with s.u.s in parentheses. 

____________________________________________________________________ 

 C(2)-N(1)-C(11) 113.38(13) C(2)-N(1)-C(12) 124.18(13) 

 C(11)-N(1)-C(12) 122.42(14) C(41)-N(42)-C(43) 116.58(15) 

 N(5)-C(9)-C(8) 105.74(14) N(5)-C(9)-C(10) 104.73(13) 

 C(8)-C(9)-C(10) 120.14(14) N(5)-C(9)-C(91) 110.37(12) 

 C(8)-C(9)-C(91) 107.88(14) C(10)-C(9)-C(91) 107.77(12) 

 O(91)-C(91)-N(91) 123.83(14) O(91)-C(91)-C(9) 120.00(14) 

 N(91)-C(91)-C(9) 116.17(14) N(42)-C(41)-N(46) 127.08(15) 

 N(42)-C(41)-C(4) 117.60(14) N(46)-C(41)-C(4) 115.32(16) 

 C(12)-C(13)-C(14) 118.14(17) C(9)-N(5)-C(4) 112.42(12) 

 C(9)-N(5)-C(6) 108.16(15) C(4)-N(5)-C(6) 118.82(13) 

 C(41)-N(46)-C(45) 115.95(17) C(17)-C(12)-C(13) 121.64(15) 

 C(17)-C(12)-N(1) 119.16(14) C(13)-C(12)-N(1) 119.20(15) 

 O(11)-C(11)-N(1) 124.27(15) O(11)-C(11)-C(10) 127.72(15) 

 N(1)-C(11)-C(10) 107.95(15) N(5)-C(4)-C(41) 115.36(15) 

 N(5)-C(4)-C(3) 103.09(12) C(41)-C(4)-C(3) 113.35(12) 

 O(2)-C(2)-N(1) 125.00(14) O(2)-C(2)-C(3) 126.93(16) 

 N(1)-C(2)-C(3) 108.05(13) C(12)-C(17)-C(16) 119.03(17) 

 C(2)-C(3)-C(10) 104.85(13) C(2)-C(3)-C(4) 113.66(12) 

 C(10)-C(3)-C(4) 106.55(13) N(42)-C(43)-C(44) 120.46(18) 

 N(42)-C(43)-C(47) 117.16(17) C(44)-C(43)-C(47) 122.38(17) 

 C(11)-C(10)-C(3) 105.05(12) C(11)-C(10)-C(9) 116.48(16) 

 C(3)-C(10)-C(9) 107.23(13) C(45)-C(44)-C(43) 118.92(16) 

 C(15)-C(14)-C(13) 120.83(17) C(9)-C(8)-C(7) 101.22(16) 

 C(15)-C(16)-C(17) 120.19(18) C(14)-C(15)-C(16) 120.14(16) 

 N(46)-C(45)-C(44) 120.95(17) N(46)-C(45)-C(48) 117.11(19) 

 C(44)-C(45)-C(48) 121.94(17) N(5)-C(6)-C(7) 105.90(15) 

 C(6)-C(7)-C(8) 104.55(16) 

____________________________________________________________________ 

 

 Table 7.   Torsion angles (°) with s.u.s in parentheses. 

____________________________________________________________________ 

N(5)-C(9)-C(91)-O(91) 167.28(15) C(8)-C(9)-C(91)-O(91) 52.20(19) 

 C(10)-C(9)-C(91)-O(91) -78.90(19) N(5)-C(9)-C(91)-N(91) -13.0(2) 

 C(8)-C(9)-C(91)-N(91) -128.10(16) C(10)-C(9)-C(91)-N(91) 100.79(16) 

 C(43)-N(42)-C(41)-N(46) -0.3(3) C(43)-N(42)-C(41)-C(4) -179.84(15) 

 C(8)-C(9)-N(5)-C(4) -109.85(15) C(10)-C(9)-N(5)-C(4) 18.00(18) 

 C(91)-C(9)-N(5)-C(4) 133.74(14) C(8)-C(9)-N(5)-C(6) 23.33(16) 

 C(10)-C(9)-N(5)-C(6) 151.17(13) C(91)-C(9)-N(5)-C(6) -93.09(16) 

 N(42)-C(41)-N(46)-C(45) -1.8(3) C(4)-C(41)-N(46)-C(45) 177.68(15) 

 C(14)-C(13)-C(12)-C(17) 1.3(2) C(14)-C(13)-C(12)-N(1) -179.16(14) 

 C(2)-N(1)-C(12)-C(17) -126.03(17) C(11)-N(1)-C(12)-C(17) 52.2(2) 

 C(2)-N(1)-C(12)-C(13) 54.4(2) C(11)-N(1)-C(12)-C(13) -127.34(18) 

 C(2)-N(1)-C(11)-O(11) 179.4(2) C(12)-N(1)-C(11)-O(11) 1.0(3) 

 C(2)-N(1)-C(11)-C(10) -3.3(2) C(12)-N(1)-C(11)-C(10) 178.32(14) 

 C(9)-N(5)-C(4)-C(41) 98.86(16) C(6)-N(5)-C(4)-C(41) -28.9(2) 

 C(9)-N(5)-C(4)-C(3) -25.24(17) C(6)-N(5)-C(4)-C(3) -152.97(15) 

 N(42)-C(41)-C(4)-N(5) -55.04(19) N(46)-C(41)-C(4)-N(5) 125.38(16) 
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 N(42)-C(41)-C(4)-C(3) 63.5(2) N(46)-C(41)-C(4)-C(3) -116.09(16) 

 C(11)-N(1)-C(2)-O(2) 179.32(18) C(12)-N(1)-C(2)-O(2) -2.3(3) 

 C(11)-N(1)-C(2)-C(3) -2.29(19) C(12)-N(1)-C(2)-C(3) 176.06(14) 

 C(13)-C(12)-C(17)-C(16) -1.2(2) N(1)-C(12)-C(17)-C(16) 179.34(15) 

 O(2)-C(2)-C(3)-C(10) -174.89(17) N(1)-C(2)-C(3)-C(10) 6.76(17) 

 O(2)-C(2)-C(3)-C(4) 69.1(2) N(1)-C(2)-C(3)-C(4) -109.21(16) 

 N(5)-C(4)-C(3)-C(2) 136.99(15) C(41)-C(4)-C(3)-C(2) 11.6(2) 

 N(5)-C(4)-C(3)-C(10) 22.02(16) C(41)-C(4)-C(3)-C(10) -103.39(16) 

 C(41)-N(42)-C(43)-C(44) 2.1(2) C(41)-N(42)-C(43)-C(47)-177.43(17) 

 O(11)-C(11)-C(10)-C(3) -175.4(2) N(1)-C(11)-C(10)-C(3) 7.34(19) 

 O(11)-C(11)-C(10)-C(9) -57.0(3) N(1)-C(11)-C(10)-C(9) 125.80(15) 

 C(2)-C(3)-C(10)-C(11) -8.36(17) C(4)-C(3)-C(10)-C(11) 112.43(14) 

 C(2)-C(3)-C(10)-C(9) -132.89(13) C(4)-C(3)-C(10)-C(9) -12.10(16) 

 N(5)-C(9)-C(10)-C(11) -119.95(15) C(8)-C(9)-C(10)-C(11) -1.5(2) 

 C(91)-C(9)-C(10)-C(11) 122.52(15) N(5)-C(9)-C(10)-C(3) -2.69(16) 

 C(8)-C(9)-C(10)-C(3) 115.81(16) C(91)-C(9)-C(10)-C(3) -120.21(14) 

 N(42)-C(43)-C(44)-C(45) -1.6(3) C(47)-C(43)-C(44)-C(45) 177.87(19) 

 C(12)-C(13)-C(14)-C(15) -0.1(3) N(5)-C(9)-C(8)-C(7) -36.44(16) 

 C(10)-C(9)-C(8)-C(7) -154.42(15) C(91)-C(9)-C(8)-C(7) 81.65(16) 

 C(12)-C(17)-C(16)-C(15) -0.2(3) C(13)-C(14)-C(15)-C(16) -1.2(3) 

 C(17)-C(16)-C(15)-C(14) 1.4(3) C(41)-N(46)-C(45)-C(44) 2.3(3) 

 C(41)-N(46)-C(45)-C(48) -177.42(17) C(43)-C(44)-C(45)-N(46) -0.7(3) 

 C(43)-C(44)-C(45)-C(48) 179.00(18) C(9)-N(5)-C(6)-C(7) -0.24(17) 

 C(4)-N(5)-C(6)-C(7) 129.46(16) N(5)-C(6)-C(7)-C(8) -22.74(19) 

 C(9)-C(8)-C(7)-C(6) 35.79(18) 
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Appendix 5: X-ray crystallographic data for 280. 

 

Ortep view of 280. 

Table 1.  Crystal data and structure refinement for EE78. 

Archive code 10_09_01 

Identification code EE78                                             

Formula C21H22N4O2S 

Formula weight 394.49 

Size 0.23 x 0.21 x 0.18 mm 

Crystal morphology Colourless fragment 

Temperature 150(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Monoclinic 

Space group P21/c 

Unit cell dimensions a = 15.1200(9) Å  = 90° 

 b = 14.2859(8) Å  = 96.051(2)° 

 c = 18.2254(9) Å  = 90° 

Volume 3914.8(4) Å
3
 

Z 8 

Density (calculated) 1.339 Mg/m
3
 

Absorption coefficient 0.19 mm
-1

 

F(000) 1664 

Data collection range 1.35  29.69° 

Index ranges -21  h 17,  -19  k  19,  -25  l  25 

Reflections collected 140682 
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Independent reflections 11014 [R(int) = 0.0491] 

Observed reflections 8377 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.9666 and 0.8831 

Refinement method Full 

Data / restraints / parameters 11014 / 0 / 510 

Goodness of fit 1.082 

Final R indices  [I >2(I)] R1 = 0.0480, wR2 = 0.1171 

R indices (all data) R1 = 0.0706, wR2 = 0.1334 

Largest diff. peak and hole 0.618 and -0.309e.Å
-3

 

 

Table 2. Atomic co-ordinates (x 10
4
) and equivalent isotropic displacement 

parameters (Å
2
 x 10

4
) with standard uncertainties (s.u.s) in parentheses. Ueq is 

defined as 
1
/3 of the trace of the orthogonalized Uij tensor. 

____________________________________________________________________ 

  x y z Ueq 

____________________________________________________________________ 

 S(1a) -141(3) -397(3) 34445(2) 232.7(10) 

 O(1a) 3699(9) -3082(10) 27794(8) 351(3) 

 C(1a) -11926(11) -1394(12) 32682(10) 228(3) 

 O(2a) 2821(9) -5308(9) 41177(8) 324(3) 

 C(2a) -14937(12) -11741(13) 32607(11) 292(4) 

 C(3a) -20285(11) -12346(12) 39371(10) 241(3) 

 N(4a) -23989(10) -3011(10) 40380(8) 255(3) 

 C(5a) -16743(11) 3371(11) 38899(9) 224(3) 

 C(11a) 1583(11) 11719(11) 35881(9) 210(3) 

 C(12a) -849(13) 17886(13) 30103(10) 284(4) 

 C(13a) 549(14) 27429(14) 31288(13) 367(5) 

 C(14a) 4428(13) 30628(13) 38007(14) 387(5) 

 C(15a) 6828(14) 24445(14) 43719(13) 387(5) 

 C(16a) 5275(13) 14854(13) 42699(11) 303(4) 

 C(31a) -27094(12) -20090(12) 38817(9) 241(3) 

 N(32a) -23629(10) -28735(10) 39312(9) 262(3) 

 C(33a) -29500(12) -35837(12) 39195(10) 259(3) 

 C(34a) -38613(12) -34118(13) 38846(10) 273(4) 

 C(35a) -41559(12) -24912(13) 38178(10) 255(3) 

 N(36a) -35692(10) -17757(10) 38021(8) 252(3) 

 C(37a) -25721(14) -45529(13) 39557(12) 333(4) 

 C(38a) -51181(13) -22255(15) 37759(12) 344(4) 

 C(51a) -20156(11) 13067(12) 36749(10) 243(3) 

 N(52a) -25296(10) 13587(11) 30347(9) 292(3) 

 C(53a) -28281(13) 22078(14) 28145(12) 342(4) 

 C(54a) -26239(14) 30214(14) 32170(13) 374(5) 
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 C(55a) -20935(14) 29522(14) 38763(13) 371(5) 

 C(56a) -17843(13) 20783(13) 41168(11) 300(4) 

 S(1b) 50523(3) 38015(3) 35772(2) 231.1(10) 

 O(1b) 54121(9) 42152(9) 42664(8) 344(3) 

 C(1b) 38729(11) 39547(12) 34543(10) 232(3) 

 O(2b) 53999(9) 41255(10) 29115(8) 348(3) 

 C(2b) 36158(12) 50008(12) 35102(11) 292(4) 

 C(3b) 30589(12) 50235(12) 41794(10) 252(3) 

 N(4b) 26963(10) 40773(10) 42523(8) 247(3) 

 C(5b) 34058(11) 34423(11) 40665(10) 223(3) 

 C(11b) 51902(11) 25743(11) 36435(10) 220(3) 

C(12b) 48164(12) 20135(13) 30643(10) 274(4) 

 C(13b) 49257(14) 10489(14) 31069(12) 343(4) 

 C(14b) 54007(14) 6540(14) 37186(14) 391(5) 

 C(15b) 57728(14) 12152(14) 42918(13) 378(5) 

 C(16b) 56657(12) 21864(13) 42625(11) 289(4) 

 C(31b) 23420(12) 57654(12) 41055(10) 245(3) 

 N(32b) 26455(10) 66498(10) 40848(9) 276(3) 

 C(33b) 20221(12) 73231(12) 40111(10) 262(4) 

 C(34b) 11199(12) 71100(13) 39774(10) 270(4) 

 C(35b) 8721(12) 61776(12) 40022(10) 253(3) 

 N(36b) 14932(10) 54932(10) 40567(9) 268(3) 

 C(37b) 23418(14) 83168(13) 39794(14) 382(5) 

 C(38b) -821(12) 58760(14) 39710(12) 345(4) 

 C(51b) 30409(11) 24935(11) 38260(10) 215(3) 

 N(52b) 25660(10) 24614(11) 31660(9) 264(3) 

 C(53b) 22356(12) 16334(13) 29295(11) 291(4) 

 C(54b) 23666(13) 8157(13) 33333(12) 323(4) 

 C(55b) 28411(14) 8524(13) 40210(12) 337(4) 

 C(56b) 31911(12) 17098(13) 42761(10) 271(4) 

 

 

Table 3. Anisotropic displacement parameters (Å
2
 x 10

3
). The anisotropic 

displacement factor exponent takes the form: 

-2
2
[h

2
a*

2
U11 + ... + 2 h k a* b* U12] 

____________________________________________________________________ 

  U11 U22 U33 U23 U13 U12 

____________________________________________________________________ 

 S(1a) 201.3(19) 145.5(18) 350(2) -24.6(15) 24.1(15) -8.5(14) 

 O(1a) 318(7) 287(7) 463(8) -143(6) 114(6) -38(6) 

 C(1a) 208(7) 199(8) 275(8) -52(6) 16(6) -20(6) 

 O(2a) 298(7) 194(6) 469(8) 69(6) -13(6) 31(5) 

 C(2a) 256(8) 222(8) 405(10) -101(7) 69(7) -62(7) 

 C(3a) 246(8) 174(7) 293(9) -26(6) -9(6) -16(6) 

 N(4a) 287(7) 182(7) 303(8) -18(6) 65(6) -26(6) 

 C(5a) 238(8) 182(7) 251(8) -25(6) 22(6) -15(6) 

 C(11a) 191(7) 150(7) 291(8) -7(6) 32(6) -13(6) 

 C(12a) 313(9) 253(9) 295(9) 43(7) 80(7) 11(7) 

 C(13a) 396(11) 214(9) 520(13) 129(8) 176(9) 32(8) 

 C(14a) 314(10) 155(8) 711(15) -35(9) 139(10) -35(7) 
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 C(15a) 369(11) 239(9) 532(13) -127(9) -44(9) -50(8) 

 C(16a) 316(9) 211(8) 363(10) -12(7) -55(7) -19(7) 

 C(31a) 279(8) 201(8) 243(8) -7(6) 25(6) -34(6) 

 N(32a) 279(7) 192(7) 318(8) -4(6) 46(6) -39(6) 

 C(33a) 323(9) 193(8) 264(8) -10(6) 51(7) -32(7) 

 C(34a) 286(9) 235(8) 299(9) -9(7) 40(7) -80(7) 

 C(35a) 266(8) 265(8) 234(8) -12(6) 23(6) -53(7) 

 N(36a) 256(7) 219(7) 276(7) 1(6) 11(6) -23(6) 

 C(37a) 394(10) 180(8) 438(11) -5(7) 105(8) -42(7) 

 C(38a) 259(9) 367(10) 407(11) -10(8) 43(8) -32(8) 

 C(51a) 219(8) 192(7) 328(9) -19(6) 74(7) -9(6) 

 N(52a) 286(8) 246(8) 343(8) -13(6) 28(6) 11(6) 

 C(53a) 313(9) 322(10) 392(11) 58(8) 40(8) 49(8) 

 C(54a) 332(10) 210(9) 601(14) 70(9) 140(9) 72(7) 

 C(55a) 349(10) 208(9) 572(13) -101(8) 123(9) -2(8) 

 C(56a) 286(9) 258(9) 361(10) -72(7) 62(7) 4(7) 

 S(1b) 197.3(19) 154.1(18) 344(2) 5.8(15) 38.7(15) -6.0(14) 

 O(1b) 325(7) 237(7) 451(8) -83(6) -43(6) -21(5) 

 C(1b) 200(7) 195(7) 302(9) 18(6) 33(6) 6(6) 

 O(2b) 327(7) 263(7) 473(8) 121(6) 133(6) 26(5) 

 C(2b) 267(9) 171(8) 448(11) 56(7) 82(7) 31(6) 

 C(3b) 254(8) 166(7) 330(9) 2(6) 9(7) 10(6) 

 N(4b) 263(7) 166(6) 320(8) -4(6) 61(6) 23(5) 

C(5b) 229(8) 173(7) 267(8) 14(6) 24(6) 3(6) 

 C(11b) 214(7) 155(7) 301(9) 2(6) 68(6) 10(6) 

 C(12b) 301(9) 234(8) 297(9) -21(7) 77(7) -5(7) 

 C(13b) 346(10) 237(9) 468(12) -91(8) 144(8) -12(7) 

 C(14b) 365(11) 174(8) 657(15) 23(9) 162(10) 56(7) 

 C(15b) 349(10) 288(10) 493(12) 116(9) 30(9) 71(8) 

 C(16b) 274(9) 252(9) 339(10) 22(7) 23(7) 24(7) 

 C(31b) 257(8) 178(7) 300(9) -19(6) 35(7) 10(6) 

 N(32b) 272(7) 171(7) 390(9) -16(6) 52(6) 5(6) 

 C(33b) 290(9) 170(7) 328(9) -10(6) 45(7) 23(6) 

 C(34b) 280(9) 220(8) 308(9) -16(7) 16(7) 55(7) 

 C(35b) 247(8) 240(8) 267(8) -27(6) 9(6) 27(7) 

 N(36b) 248(7) 194(7) 361(8) -21(6) 23(6) 13(6) 

 C(37b) 363(10) 173(8) 619(14) 4(8) 105(10) 12(7) 

 C(38b) 239(9) 310(10) 482(12) -19(8) 13(8) 9(7) 

 C(51b) 201(7) 156(7) 292(8) 6(6) 45(6) 12(6) 

 N(52b) 246(7) 231(7) 311(8) 15(6) 17(6) -12(6) 

 C(53b) 283(9) 277(9) 311(9) -22(7) 26(7) -33(7) 

 C(54b) 311(9) 217(8) 448(11) -43(8) 71(8) -47(7) 

 C(55b) 379(10) 196(8) 441(11) 86(8) 71(8) -4(7) 

 C(56b) 288(9) 253(8) 272(9) 34(7) 37(7) 16(7) 

____________________________________________________________________ 
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Table 4. Hydrogen atom co-ordinates (x 10
3
) and isotropic displacement parameters 

(Å
2
 x 10

2
) with s.u.s in parentheses. 

____________________________________________________________________ 

  x y z Ueq 

____________________________________________________________________ 

H(1a) -1396. 157. 2782. 27. 

 H(2a1) -976. -1602. 3314. 35. 

 H(2a2) -1872. -1327. 2799. 35. 

 H(3a) -1596. -1368. 4378. 29. 

 H(4a) -2836. -206. 3613. 38.(6) 

 H(5a) -1246. 387. 4345. 27. 

 H(12a) -341. 1563. 2545. 34. 

 H(13a) -118. 3176. 2744. 44. 

 H(14a) 546. 3714. 3872. 46. 

 H(15a) 952. 2671. 4832. 46. 

 H(16a) 673. 1057. 4663. 36. 

 H(34a) -4271. -3912. 3906. 33. 

 H(37a) -2263. -4669. 3518. 50. 

 H(37b) -3055. -5008. 3972. 50. 

 H(37c) -2152. -4616. 4400. 50. 

 H(38a) -5219. -1842. 4205. 52. 

 H(38b) -5483. -2793. 3772. 52. 

 H(38c) -5282. -1868. 3323. 52. 

 H(53a) -3197. 2256. 2361. 41. 

 H(54a) -2846. 3611. 3041. 45. 

 H(55a) -1941. 3495. 4163. 45. 

 H(56a) -1423. 2010. 4573. 36. 

 H(1b) 3634. 3707. 2959. 28. 

 H(2b1) 3259. 5214. 3054. 35. 

 H(2b2) 4151. 5400. 3600. 35. 

 H(3b) 3470. 5162. 4633. 30. 

 H(4b) 2214. 4024. 3896. 33.(6) 

 H(5b) 3845. 3361. 4512. 27. 

 H(12b) 4490. 2289. 2645. 33. 

 H(13b) 4674. 661. 2716. 41. 

 H(14b) 5473. -6. 3747. 47. 

 H(15b) 6103. 937. 4708. 45. 

 H(16b) 5912. 2572. 4657. 35. 

 H(34b) 685. 7592. 3938. 32. 

 H(37d) 2993. 8324. 4008. 57. 

 H(37e) 2148. 8670. 4395. 57. 

 H(37f) 2093. 8604. 3515. 57. 

H(37g) 1830. 8741. 3937. 57. 

 H(37h) 2674. 8396. 3550. 57. 

 H(37j) 2730. 8461. 4430. 57. 

 H(38d) -217. 5438. 3560. 52. 

 H(38e) -469. 6425. 3897. 52. 

 H(38f) -183. 5567. 4435. 52. 

 H(53b) 1894. 1605. 2461. 35. 

 H(54b) 2133. 239. 3140. 39. 
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 H(55b) 2928. 305. 4315. 40. 

 H(56b) 3525. 1758. 4746. 32. 

____________________________________________________________________ 

Table 5.   Interatomic distances (Å) with s.u.s in parentheses. 

____________________________________________________________________ 

S(1a)-O(2a) 1.4430(14) S(1a)-O(1a) 1.4498(14) 

 S(1a)-C(11a) 1.7658(16) S(1a)-C(1a) 1.7827(17) 

 C(1a)-C(2a) 1.546(2) C(1a)-C(5a) 1.566(2) 

 C(2a)-C(3a) 1.546(3) C(3a)-N(4a) 1.466(2) 

 C(3a)-C(31a) 1.507(2) N(4a)-C(5a) 1.472(2) 

 C(5a)-C(51a) 1.515(2) C(11a)-C(16a) 1.382(2) 

 C(11a)-C(12a) 1.392(2) C(12a)-C(13a) 1.393(3) 

 C(13a)-C(14a) 1.379(3) C(14a)-C(15a) 1.384(3) 

 C(15a)-C(16a) 1.399(3) C(31a)-N(36a) 1.335(2) 

 C(31a)-N(32a) 1.341(2) N(32a)-C(33a) 1.347(2) 

 C(33a)-C(34a) 1.394(3) C(33a)-C(37a) 1.497(3) 

 C(34a)-C(35a) 1.390(3) C(35a)-N(36a) 1.356(2) 

 C(35a)-C(38a) 1.498(3) C(51a)-N(52a) 1.334(2) 

 C(51a)-C(56a) 1.388(2) N(52a)-C(53a) 1.341(2) 

 C(53a)-C(54a) 1.392(3) C(54a)-C(55a) 1.376(3) 

 C(55a)-C(56a) 1.388(3) S(1b)-O(1b) 1.4418(14) 

 S(1b)-O(2b) 1.4482(14) S(1b)-C(11b) 1.7682(17) 

 S(1b)-C(1b) 1.7871(17) C(1b)-C(2b) 1.550(2) 

 C(1b)-C(5b) 1.564(2) C(2b)-C(3b) 1.554(3) 

 C(3b)-N(4b) 1.470(2) C(3b)-C(31b) 1.512(2) 

 N(4b)-C(5b) 1.471(2) C(5b)-C(51b) 1.511(2) 

 C(11b)-C(16b) 1.388(3) C(11b)-C(12b) 1.396(2) 

 C(12b)-C(13b) 1.389(3) C(13b)-C(14b) 1.381(3) 

 C(14b)-C(15b) 1.388(3) C(15b)-C(16b) 1.397(3) 

 C(31b)-N(36b) 1.335(2) C(31b)-N(32b) 1.346(2) 

 N(32b)-C(33b) 1.344(2) C(33b)-C(34b) 1.393(3) 

 C(33b)-C(37b) 1.503(3) C(34b)-C(35b) 1.386(3) 

 C(35b)-N(36b) 1.352(2) C(35b)-C(38b) 1.501(3) 

 C(51b)-N(52b) 1.335(2) C(51b)-C(56b) 1.392(2) 

 N(52b)-C(53b) 1.338(2) C(53b)-C(54b) 1.384(3) 

 C(54b)-C(55b) 1.378(3) C(55b)-C(56b) 1.395(3) 

___________________________________________________________________ 

 

Table 6.   Angles between interatomic vectors (°) with s.u.s in parentheses. 

____________________________________________________________________ 

O(2a)-S(1a)-O(1a) 117.81(9) O(2a)-S(1a)-C(11a) 108.84(8) 

 O(1a)-S(1a)-C(11a) 108.50(8) O(2a)-S(1a)-C(1a) 109.21(8) 

 O(1a)-S(1a)-C(1a) 108.00(8) C(11a)-S(1a)-C(1a) 103.54(8) 

 C(2a)-C(1a)-C(5a) 105.25(14) C(2a)-C(1a)-S(1a) 111.45(12) 

 C(5a)-C(1a)-S(1a) 111.54(11) C(1a)-C(2a)-C(3a) 102.98(13) 

 N(4a)-C(3a)-C(31a) 114.14(14) N(4a)-C(3a)-C(2a) 106.74(14) 

 C(31a)-C(3a)-C(2a) 113.48(14) C(3a)-N(4a)-C(5a) 103.82(13) 

 N(4a)-C(5a)-C(51a) 111.95(14) N(4a)-C(5a)-C(1a) 105.98(13) 

 C(51a)-C(5a)-C(1a) 112.45(14) C(16a)-C(11a)-C(12a) 121.62(16) 

 C(16a)-C(11a)-S(1a) 119.36(13) C(12a)-C(11a)-S(1a) 119.02(14) 
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 C(11a)-C(12a)-C(13a) 118.58(18) C(14a)-C(13a)-C(12a) 120.37(19) 

 C(13a)-C(14a)-C(15a) 120.64(18) C(14a)-C(15a)-C(16a) 119.9(2) 

 C(11a)-C(16a)-C(15a) 118.89(18) N(36a)-C(31a)-N(32a) 127.32(16) 

 N(36a)-C(31a)-C(3a) 118.32(15) N(32a)-C(31a)-C(3a) 114.35(15) 

 C(31a)-N(32a)-C(33a) 116.15(15) N(32a)-C(33a)-C(34a) 120.97(16) 

 N(32a)-C(33a)-C(37a) 116.64(16) C(34a)-C(33a)-C(37a) 122.39(16) 

 C(35a)-C(34a)-C(33a) 118.46(16) N(36a)-C(35a)-C(34a) 120.72(16) 

 N(36a)-C(35a)-C(38a) 116.24(16) C(34a)-C(35a)-C(38a) 123.02(16) 

 C(31a)-N(36a)-C(35a) 116.19(15) N(52a)-C(51a)-C(56a) 123.45(17) 

 N(52a)-C(51a)-C(5a) 115.36(15) C(56a)-C(51a)-C(5a) 121.19(17) 

 C(51a)-N(52a)-C(53a) 117.32(17) N(52a)-C(53a)-C(54a) 123.3(2) 

 C(55a)-C(54a)-C(53a) 118.47(18) C(54a)-C(55a)-C(56a) 119.11(19) 

 C(55a)-C(56a)-C(51a) 118.37(19) O(1b)-S(1b)-O(2b) 117.52(9) 

 O(1b)-S(1b)-C(11b) 108.41(8) O(2b)-S(1b)-C(11b) 108.88(8) 

 O(1b)-S(1b)-C(1b) 109.81(8) O(2b)-S(1b)-C(1b) 107.54(8) 

 C(11b)-S(1b)-C(1b) 103.82(8) C(2b)-C(1b)-C(5b) 105.61(14) 

 C(2b)-C(1b)-S(1b) 111.32(12) C(5b)-C(1b)-S(1b) 111.90(12) 

 C(1b)-C(2b)-C(3b) 103.42(14) N(4b)-C(3b)-C(31b) 112.46(14) 

 N(4b)-C(3b)-C(2b) 106.85(14) C(31b)-C(3b)-C(2b) 112.80(15) 

 C(3b)-N(4b)-C(5b) 104.97(13) N(4b)-C(5b)-C(51b) 111.54(14) 

 N(4b)-C(5b)-C(1b) 105.70(13) C(51b)-C(5b)-C(1b) 113.05(14) 

 C(16b)-C(11b)-C(12b) 121.28(16) C(16b)-C(11b)-S(1b) 119.92(14) 

 C(12b)-C(11b)-S(1b) 118.80(14) C(13b)-C(12b)-C(11b) 119.38(18) 

 C(14b)-C(13b)-C(12b) 119.93(19) C(13b)-C(14b)-C(15b) 120.43(18) 

 C(14b)-C(15b)-C(16b) 120.57(19) C(11b)-C(16b)-C(15b) 118.40(18) 

 N(36b)-C(31b)-N(32b) 126.85(16) N(36b)-C(31b)-C(3b) 118.48(15) 

 N(32b)-C(31b)-C(3b) 114.66(15) C(33b)-N(32b)-C(31b) 115.92(15) 

 N(32b)-C(33b)-C(34b) 121.43(16) N(32b)-C(33b)-C(37b) 117.07(16) 

 C(34b)-C(33b)-C(37b) 121.49(16) C(35b)-C(34b)-C(33b) 118.40(16) 

 N(36b)-C(35b)-C(34b) 120.63(16) N(36b)-C(35b)-C(38b) 116.91(16) 

 C(34b)-C(35b)-C(38b) 122.46(16) C(31b)-N(36b)-C(35b) 116.72(15) 

 N(52b)-C(51b)-C(56b) 122.82(16) N(52b)-C(51b)-C(5b) 115.94(15) 

 C(56b)-C(51b)-C(5b) 121.24(16) C(51b)-N(52b)-C(53b) 117.90(16) 

N(52b)-C(53b)-C(54b) 123.20(18) C(55b)-C(54b)-C(53b) 118.90(18) 

 C(54b)-C(55b)-C(56b) 118.66(17) C(51b)-C(56b)-C(55b) 118.51(17) 

____________________________________________________________________ 

 

 Table 7.   Torsion angles (°) with s.u.s in parentheses. 

____________________________________________________________________ 

O(2a)-S(1a)-C(1a)-C(2a) -54.29(14) O(1a)-S(1a)-C(1a)-C(2a) 74.95(14) 

 C(11a)-S(1a)-C(1a)-C(2a) -170.12(12) O(2a)-S(1a)-C(1a)-C(5a) 63.02(14) 

 O(1a)-S(1a)-C(1a)-C(5a) -167.73(12) C(11a)-S(1a)-C(1a)-C(5a) -52.80(14) 

 C(5a)-C(1a)-C(2a)-C(3a) -6.61(18) S(1a)-C(1a)-C(2a)-C(3a) 114.45(13) 

 C(1a)-C(2a)-C(3a)-N(4a) 28.55(18) C(1a)-C(2a)-C(3a)-C(31a)155.16(14) 

 C(31a)-C(3a)-N(4a)-C(5a) -166.30(14) C(2a)-C(3a)-N(4a)-C(5a) -40.08(17) 

 C(3a)-N(4a)-C(5a)-C(51a) 157.88(14) C(3a)-N(4a)-C(5a)-C(1a) 34.94(17) 

 C(2a)-C(1a)-C(5a)-N(4a) -17.00(18) S(1a)-C(1a)-C(5a)-N(4a) -138.00(12) 

 C(2a)-C(1a)-C(5a)-C(51a) -139.62(15) S(1a)-C(1a)-C(5a)-C(51a) 99.38(15) 

 O(2a)-S(1a)-C(11a)-C(16a) 0.13(17) O(1a)-S(1a)-C(11a)-C(16a)-129.21(15) 

 C(1a)-S(1a)-C(11a)-C(16a) 116.22(15) O(2a)-S(1a)-C(11a)-C(12a)-179.65(14) 
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 O(1a)-S(1a)-C(11a)-C(12a) 51.01(16) C(1a)-S(1a)-C(11a)-C(12a)-63.55(15) 

 C(16a)-C(11a)-C(12a)-C(13a) 0.3(3) S(1a)-C(11a)-C(12a)-C(13a)-179.92(14) 

 C(11a)-C(12a)-C(13a)-C(14a) 1.3(3) C(12a)-C(13a)-C(14a)-C(15a)-1.3(3) 

 C(13a)-C(14a)-C(15a)-C(16a) -0.3(3) C(12a)-C(11a)-C(16a)-C(15a)-1.9(3) 

 S(1a)-C(11a)-C(16a)-C(15a) 178.34(16) C(14a)-C(15a)-C(16a)-C(11a) 1.9(3) 

 N(4a)-C(3a)-C(31a)-N(36a) 11.1(2) C(2a)-C(3a)-C(31a)-N(36a)-111.47(18) 

 N(4a)-C(3a)-C(31a)-N(32a) -167.89(15) C(2a)-C(3a)-C(31a)-N(32a) 69.5(2) 

 N(36a)-C(31a)-N(32a)-C(33a) -2.0(3) C(3a)-C(31a)-N(32a)-C(33a)176.95(15) 

 C(31a)-N(32a)-C(33a)-C(34a) -2.2(3) C(31a)-N(32a)-C(33a)-C(37a)178.54(16) 

 N(32a)-C(33a)-C(34a)-C(35a) 3.8(3) C(37a)-C(33a)-C(34a)-C(35a)-177.04(17) 

 C(33a)-C(34a)-C(35a)-N(36a) -1.3(3) C(33a)-C(34a)-C(35a)-C(38a)-179.97(17) 

 N(32a)-C(31a)-N(36a)-C(35a) 4.3(3) C(3a)-C(31a)-N(36a)-C(35a)-174.58(15) 

 C(34a)-C(35a)-N(36a)-C(31a) -2.4(2) C(38a)-C(35a)-N(36a)-C(31a)176.33(16) 

 N(4a)-C(5a)-C(51a)-N(52a) -66.0(2) C(1a)-C(5a)-C(51a)-N(52a) 53.2(2) 

 N(4a)-C(5a)-C(51a)-C(56a) 115.28(18) C(1a)-C(5a)-C(51a)-C(56a)-125.53(18) 

 C(56a)-C(51a)-N(52a)-C(53a) 0.3(3) C(5a)-C(51a)-N(52a)-C(53a)-178.39(16) 

 C(51a)-N(52a)-C(53a)-C(54a) 0.3(3) N(52a)-C(53a)-C(54a)-C(55a)-0.4(3) 

 C(53a)-C(54a)-C(55a)-C(56a) -0.2(3) C(54a)-C(55a)-C(56a)-C(51a) 0.8(3) 

 N(52a)-C(51a)-C(56a)-C(55a) -0.9(3) C(5a)-C(51a)-C(56a)-C(55a)177.77(17) 

 O(1b)-S(1b)-C(1b)-C(2b) 55.11(15) O(2b)-S(1b)-C(1b)-C(2b) -73.86(14) 

 C(11b)-S(1b)-C(1b)-C(2b) 170.85(13) O(1b)-S(1b)-C(1b)-C(5b) -62.82(14) 

 O(2b)-S(1b)-C(1b)-C(5b) 168.22(12) C(11b)-S(1b)-C(1b)-C(5b) 52.92(14) 

 C(5b)-C(1b)-C(2b)-C(3b) 2.90(18) S(1b)-C(1b)-C(2b)-C(3b)-118.76(13) 

 C(1b)-C(2b)-C(3b)-N(4b) -24.17(18) C(1b)-C(2b)-C(3b)-C(31b)-148.24(14) 

 C(31b)-C(3b)-N(4b)-C(5b) 161.43(15) C(2b)-C(3b)-N(4b)-C(5b) 37.15(18) 

 C(3b)-N(4b)-C(5b)-C(51b) -157.84(14) C(3b)-N(4b)-C(5b)-C(1b) -34.59(17) 

 C(2b)-C(1b)-C(5b)-N(4b) 19.07(18) S(1b)-C(1b)-C(5b)-N(4b) 140.35(12) 

 C(2b)-C(1b)-C(5b)-C(51b) 141.35(15) S(1b)-C(1b)-C(5b)-C(51b)-97.36(15) 

 O(1b)-S(1b)-C(11b)-C(16b) -6.10(17) O(2b)-S(1b)-C(11b)-C(16b)122.84(15) 

 C(1b)-S(1b)-C(11b)-C(16b) -122.83(15) O(1b)-S(1b)-C(11b)-C(12b)174.11(14) 

 O(2b)-S(1b)-C(11b)-C(12b) -56.95(16) C(1b)-S(1b)-C(11b)-C(12b)57.39(16) 

 C(16b)-C(11b)-C(12b)-C(13b) -0.3(3) S(1b)-C(11b)-C(12b)-C(13b)179.50(14) 

C(11b)-C(12b)-C(13b)-C(14b) 0.0(3) C(12b)-C(13b)-C(14b)-C(15b)-0.2(3) 

 C(13b)-C(14b)-C(15b)-C(16b) 0.6(3) C(12b)-C(11b)-C(16b)-C(15b) 0.7(3) 

 S(1b)-C(11b)-C(16b)-C(15b) -179.07(15) C(14b)-C(15b)-C(16b)-C(11b)-0.9(3) 

 N(4b)-C(3b)-C(31b)-N(36b) -5.1(2) C(2b)-C(3b)-C(31b)-N(36b)115.87(18) 

 N(4b)-C(3b)-C(31b)-N(32b) 175.93(15) C(2b)-C(3b)-C(31b)-N(32b) -63.1(2) 

 N(36b)-C(31b)-N(32b)-C(33b) 0.4(3) C(3b)-C(31b)-N(32b)-C(33b)179.29(16) 

 C(31b)-N(32b)-C(33b)-C(34b) 1.5(3) C(31b)-N(32b)-C(33b)-C(37b)-179.45(18) 

 N(32b)-C(33b)-C(34b)-C(35b) -1.7(3) C(37b)-C(33b)-C(34b)-C(35b)179.36(18) 

 C(33b)-C(34b)-C(35b)-N(36b) -0.1(3) C(33b)-C(34b)-C(35b)-C(38b)179.87(18) 

 N(32b)-C(31b)-N(36b)-C(35b) -2.1(3) C(3b)-C(31b)-N(36b)-C(35b)179.06(16) 

 C(34b)-C(35b)-N(36b)-C(31b) 1.8(3) C(38b)-C(35b)-N(36b)-C(31b)-178.14(17) 

 N(4b)-C(5b)-C(51b)-N(52b) 71.31(19) C(1b)-C(5b)-C(51b)-N(52b) -47.7(2) 

 N(4b)-C(5b)-C(51b)-C(56b) -108.12(18) C(1b)-C(5b)-C(51b)-C(56b)132.92(17) 

 C(56b)-C(51b)-N(52b)-C(53b) -1.0(3) C(5b)-C(51b)-N(52b)-C(53b)179.55(15) 

 C(51b)-N(52b)-C(53b)-C(54b) -0.3(3) N(52b)-C(53b)-C(54b)-C(55b)1.6(3) 

 C(53b)-C(54b)-C(55b)-C(56b) -1.6(3) N(52b)-C(51b)-C(56b)-C(55b)1.0(3) 

 C(5b)-C(51b)-C(56b)-C(55b) -179.63(16) C(54b)-C(55b)-C(56b)-C(51b) 0.4(3) 

____________________________________________________________________ 
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Appendix 6: X-ray crystallographic data for 281a. 

 

Ortep view of 281a. 

Table 1.  Crystal data and structure refinement for EE81_6_9 

Archive code 10_11_13 

Identification code EE81_6_9                                         

Formula C19H23N3O4S 

Formula weight 389.46 

Size 0.33 x 0.19 x 0.09 mm 

Crystal morphology Colourless fragment 

Temperature 150(2) K 

Wavelength 0.71073 Å  [Mo-K] 

Crystal system Monoclinic 

Space group P21/c 

Unit cell dimensions a = 11.0526(8) Å  = 90° 

 b = 8.2214(6) Å  = 91.281(4)° 

 c = 22.0941(16) Å  = 90° 

Volume 2007.1(3) Å
3
 

Z 4 

Density (calculated) 1.289 Mg/m
3
 

Absorption coefficient 0.19 mm
-1
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F(000) 824 

Data collection range 1.84  30.63° 

Index ranges -15  h 15,  -10  k  11,  -31  l  31 

Reflections collected 34993 

Independent reflections 6182 [R(int) = 0.0639] 

Observed reflections 4954 [I >2(I)] 

Absorption correction multi-scan 

Max. and min. transmission 0.9831 and 0.7039 

Refinement method Full 

Data / restraints / parameters 6182 / 1 / 251 

Goodness of fit 1.028 

Final R indices  [I >2(I)] R1 = 0.0414, wR2 = 0.1059 

R indices (all data) R1 = 0.0556, wR2 = 0.1167 

Largest diff. peak and hole 0.387 and -0.426e.Å
-3

 

 

Table 2. Atomic co-ordinates (x 10
4
) and equivalent isotropic displacement 

parameters (Å
2
 x 10

4
) with standard uncertainties (s.u.s) in parentheses. Ueq is 

defined as 
1
/3 of the trace of the orthogonalized Uij tensor. 

____________________________________________________________________ 

  x y z Ueq 

____________________________________________________________________ 

S(1) 6973.9(3) 3005.4(4) 2432.61(13) 200.3(8) 

 O(1) 5672.5(9) 3002.8(14) 2288.5(4) 320(2) 

 C(1) 7200.8(11) 3371.7(15) 3238.4(5) 191(2) 

 O(2) 7748.6(10) 4171.1(12) 2122.9(4) 309(2) 

 C(2) 6337.9(11) 2383.3(15) 3657.6(5) 194(2) 

 N(3)
d
 5606.3(10) 3654.3(14) 3962.1(5) 220(2) 

 C(4) 6348.9(12) 5168.5(16) 4006.1(5) 215(2) 

 C(5) 6931.5(12) 5196.9(16) 3371.6(5) 226(2) 

 C(11) 7558.1(11) 1030.2(15) 2287.1(5) 181(2) 

 C(12) 8808.7(12) 866.8(17) 2179.2(6) 250(3) 

 C(13) 9273.0(13) -675.9(19) 2046.5(7) 334(3) 

 C(14) 8495.2(14) -2027.7(18) 2021.5(7) 315(3) 

 C(15) 7254.6(13) -1854.3(17) 2128.7(6) 278(3) 

 C(16) 6775.7(12) -312.5(16) 2264.9(6) 234(2) 

 C(21) 7052.3(11) 1236.8(15) 4090.8(5) 208(2) 

 N(22) 8021.2(10) 470.1(14) 3856.2(5) 255(2) 

 C(23) 8629.7(12) -576.3(17) 4232.5(6) 275(3) 

 C(24) 8249.4(13) -832.1(18) 4831.7(6) 288(3) 

 C(25) 7212.0(13) -8.4(17) 5030.3(6) 252(3) 

 N(26) 6607.3(10) 1053.3(14) 4655.1(5) 226(2) 
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 C(27) 9715.3(15) -1450(2) 3972.4(8) 404(4) 

 C(28) 6703.4(15) -260(2) 5659.0(6) 348(3) 

 C(41) 5542.6(13) 6663.4(18) 4123.3(6) 285(3) 

 C(42) 7360.2(13) 4964.9(16) 4505.9(6) 248(3) 

 O(43) 8416.8(10) 4604.6(16) 4413.0(5) 386(3) 

 O(44) 6904.1(10) 5157.6(14) 5069.1(4) 323(2) 

 C(45) 7736.6(17) 4769(2) 5577.9(7) 425(4) 

____________________________________________________________________ 

 Key to superscripts on atoms with refinement constraints/restraints: 

 

   d - distance or angle restraint on site 

 

 

Table 3. Anisotropic displacement parameters (Å
2
 x 10

3
). The anisotropic 

displacement factor exponent takes the form: 

 

-2
2
[h

2
a*

2
U11 + ... + 2 h k a* b* U12] 

____________________________________________________________________ 

  U11 U22 U33 U23 U13 U12 

____________________________________________________________________ 

 S(1) 251.0(15) 208.7(16) 141.4(13) -8.7(10) 8.7(10) 45.4(11) 

 O(1) 281(5) 428(6) 249(5) -99(4) -67(4) 146(4) 

 C(1) 212(5) 220(6) 142(5) -8(4) 6(4) -8(4) 

 O(2) 516(6) 201(5) 214(4) 29(4) 104(4) 3(4) 

 C(2) 207(5) 218(6) 158(5) -9(4) 13(4) -5(4) 

 N(3) 228(5) 250(6) 183(5) 4(4) 34(4) 10(4) 

 C(4) 264(6) 226(6) 156(5) -15(4) 3(4) 17(5) 

 C(5) 300(6) 213(6) 166(5) -17(4) 21(4) -27(5) 

 C(11) 210(5) 188(6) 146(5) 0(4) 16(4) 13(4) 

 C(12) 201(6) 240(6) 310(6) -17(5) 25(5) -22(5) 

 C(13) 236(6) 319(8) 448(8) -32(6) 32(6) 78(5) 

 C(14) 408(8) 208(7) 329(7) -9(5) -11(6) 77(6) 

 C(15) 365(7) 205(6) 262(6) 21(5) -11(5) -59(5) 

 C(16) 231(6) 249(6) 223(6) 11(5) 32(4) -31(5) 

 C(21) 234(6) 201(6) 189(5) -4(4) 5(4) -15(4) 

 N(22) 272(5) 258(6) 237(5) 3(4) 39(4) 30(4) 

 C(23) 269(6) 248(7) 308(7) -6(5) 14(5) 27(5) 

 C(24) 303(7) 278(7) 282(6) 41(5) -21(5) 39(5) 

 C(25) 307(7) 242(7) 207(6) 15(5) -11(5) -17(5) 

 N(26) 261(5) 230(5) 188(5) 17(4) 21(4) -4(4) 

 C(27) 361(8) 392(9) 462(9) 15(7) 86(7) 130(7) 

 C(28) 431(8) 387(8) 226(6) 80(6) 36(6) 29(7) 

 C(41) 363(7) 276(7) 216(6) -25(5) -2(5) 89(6) 

 C(42) 312(7) 235(6) 194(5) -34(4) -25(5) 0(5) 

 O(43) 288(5) 553(7) 313(5) -73(5) -54(4) 44(5) 

 O(44) 418(6) 385(6) 164(4) -18(4) -41(4) 70(5) 

 C(45) 592(11) 463(10) 214(7) 0(6) -134(7) 58(8) 

____________________________________________________________________ 
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Table 4. Hydrogen atom co-ordinates (x 10
3
) and isotropic displacement parameters 

(Å
2
 x 10

2
) with s.u.s in parentheses. 

____________________________________________________________________ 

  x y z Ueq 

____________________________________________________________________ 

H(1) 806.1 312.7 335.5 23. 

 H(2) 578.4 171. 339.6 23. 

 H(3) 537.2(14) 333.(2) 431.1(6) 26. 

 H(5a) 768.6 584.6 337.9 27. 

 H(5b) 636.5 565.7 306.3 27. 

 H(12) 932.6 178.9 219.6 30. 

 H(13) 1011.1 -80.7 197.4 40. 

 H(14) 881.3 -307.1 193.1 38. 

 H(15) 673.8 -277.7 210.9 33. 

 H(16) 593.8 -18.5 234. 28. 

 H(24) 868.4 -154.5 509.6 35. 

 H(27a) 977.5 -118.7 354.1 61. 

 H(27b) 961.5 -262.7 402. 61. 

 H(27c) 1045.5 -109.9 418.8 61. 

 H(28a) 695.8 64. 592.3 52. 

 H(28b) 700.8 -128.8 582.8 52. 

 H(28c) 581.8 -29.5 563. 52. 

 H(41a) 493.1 676.2 379.7 43. 

 H(41b) 604.4 764.6 413.6 43. 

 H(41c) 514. 653.1 451.1 43. 

 H(45a) 787.6 359.2 559.2 64. 

 H(45b) 738. 512.4 595.8 64. 

 H(45c) 850.8 533.2 552.3 64. 

____________________________________________________________________ 

 

 

Table 5.   Interatomic distances (Å) with s.u.s in parentheses. 

____________________________________________________________________ 

S(1)-O(2) 1.4650(10) S(1)-O(1) 1.4662(10) 

 S(1)-C(11) 1.7795(12) S(1)-C(1) 1.8174(12) 

 C(1)-C(5) 1.5592(18) C(1)-C(2) 1.5708(16) 

 C(2)-N(3) 1.4909(16) C(2)-C(21) 1.5473(17) 

 N(3)-C(4) 1.4931(17) N(3)-H(3) 0.861(13) 

 C(4)-C(41) 1.5435(18) C(4)-C(5) 1.5557(17) 

 C(4)-C(42) 1.5625(18) C(11)-C(16) 1.4024(17) 

 C(11)-C(12) 1.4143(17) C(12)-C(13) 1.402(2) 

 C(13)-C(14) 1.405(2) C(14)-C(15) 1.404(2) 

 C(15)-C(16) 1.409(2) C(21)-N(22) 1.3556(16) 

 C(21)-N(26) 1.3590(15) N(22)-C(23) 1.3632(18) 

 C(23)-C(24) 1.4137(19) C(23)-C(27) 1.522(2) 

 C(24)-C(25) 1.410(2) C(25)-N(26) 1.3678(17) 

 C(25)-C(28) 1.5243(19) C(42)-O(43) 1.2265(17) 

 C(42)-O(44) 1.3623(16) O(44)-C(45) 1.4718(18) 

____________________________________________________________________ 
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 Table 6.   Angles between interatomic vectors (°) with s.u.s in parentheses. 

____________________________________________________________________ 

 O(2)-S(1)-O(1) 118.70(7) O(2)-S(1)-C(11) 107.12(6) 

 O(1)-S(1)-C(11) 108.52(6) O(2)-S(1)-C(1) 106.25(6) 

 O(1)-S(1)-C(1) 109.04(6) C(11)-S(1)-C(1) 106.59(6) 

 C(5)-C(1)-C(2) 105.40(9) C(5)-C(1)-S(1) 108.77(8) 

 C(2)-C(1)-S(1) 114.81(8) N(3)-C(2)-C(21) 114.97(10) 

 N(3)-C(2)-C(1) 104.25(10) C(21)-C(2)-C(1) 111.82(10) 

 C(2)-N(3)-C(4) 108.11(9) C(2)-N(3)-H(3) 111.4(11) 

 C(4)-N(3)-H(3) 112.0(11) N(3)-C(4)-C(41) 110.86(11) 

 N(3)-C(4)-C(5) 101.06(9) C(41)-C(4)-C(5) 113.04(10) 

 N(3)-C(4)-C(42) 109.89(10) C(41)-C(4)-C(42) 111.92(10) 

 C(5)-C(4)-C(42) 109.54(10) C(4)-C(5)-C(1) 103.90(10) 

 C(16)-C(11)-C(12) 121.57(11) C(16)-C(11)-S(1) 119.91(9) 

 C(12)-C(11)-S(1) 118.49(9) C(13)-C(12)-C(11) 119.01(12) 

 C(12)-C(13)-C(14) 119.83(13) C(15)-C(14)-C(13) 120.79(13) 

 C(14)-C(15)-C(16) 120.03(12) C(11)-C(16)-C(15) 118.78(12) 

 N(22)-C(21)-N(26) 127.18(12) N(22)-C(21)-C(2) 116.32(10) 

 N(26)-C(21)-C(2) 116.43(11) C(21)-N(22)-C(23) 116.33(11) 

 N(22)-C(23)-C(24) 120.80(12) N(22)-C(23)-C(27) 116.74(12) 

 C(24)-C(23)-C(27) 122.46(13) C(25)-C(24)-C(23) 118.74(12) 

 N(26)-C(25)-C(24) 120.50(12) N(26)-C(25)-C(28) 116.98(12) 

 C(24)-C(25)-C(28) 122.51(12) C(21)-N(26)-C(25) 116.42(11) 

 O(43)-C(42)-O(44) 123.65(12) O(43)-C(42)-C(4) 125.20(12) 

 O(44)-C(42)-C(4) 111.07(11) C(42)-O(44)-C(45) 115.76(12) 
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