
Predictors of Treatment Benefit and Prognosis in Cutaneous

Malignant Melanoma

Rosalyn Jewell

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

The University of Leeds

School of Medicine

August 2012



- ii -

The candidate confirms that the work submitted is her own, except where work which

has formed part of jointly-authored publications has been included. The contribution of

the candidate and the other authors to this work has been explicitly indicated below.

The candidate confirms that appropriate credit has been given within the thesis where

reference has been made to the work of others.

Chapter 3 includes work from the publication: Conway, C.; Mitra, A.; Jewell, R.;

Randerson-Moor, J.; Lobo, S.; Nsengimana, J.; Edward, S.; Sanders, D. S.; Cook, M.;

Powell, B.; Boon, A.; Elliott, F.; de Kort, F.; Knowles, M. A.; Bishop, D. T.; Newton-

Bishop, J., Gene expression profiling of paraffin-embedded primary melanoma using

the DASL assay identifies increased osteopontin expression as predictive of reduced

relapse-free survival. Clin Cancer Res 2009, 15 (22), 6939-46. I performed the

statistical analysis presented in this publication, under the supervision of Jeremie

Nsengimana and Faye Elliott, and contributed to the preparation of the manuscript.

Tissue collection, sampling and RNA extraction were performed by Caroline Conway,

Angana Mitra and Samira Lobo. Caroline Conway undertook the quantitative Real-time

PCR (qRT-PCR) experiments to validate SPP1 (osteopontin) expression. Pathway

analysis was undertaken by Jeremie Nsengimana. Pathological review of samples was

undertaken by Sara Edward, Andy Boon and Martin Cook. Gene expression

microarrays were performed at Service XS, Leiden by Floor De Kort. Tissue samples

were provided by Scott Sanders, Martin Cook and Barry Powell. The project was

supervised by Tim Bishop and Julia Newton-Bishop, with additional advice provided by

Margaret Knowles, who contributed to manuscript preparation.

Chapters 4 and 8 include work from the publication: Jewell, R.; Conway, C.; Mitra, A.;

Randerson-Moor, J.; Lobo, S.; Nsengimana, J.; Harland, M.; Marples, M.; Edward, S.;

Cook, M.; Powell, B.; Boon, A.; de Kort, F.; Parker, K. A.; Cree, I. A.; Barrett, J. H.;

Knowles, M. A.; Bishop, D. T.; Newton-Bishop, J., Patterns of expression of DNA repair

genes and relapse from melanoma. Clin Cancer Res 2010, 16 (21), 5211-21. I

performed the statistical analysis used to identify prognostic and predictive genes from

cDNA-mediated annealing, selection, extension and ligation (DASL) data and the

analysis of qRT-PCR data provided by Katharine Parker and Ian Cree from the

Translational Oncology Research Centre, Queen Alexandra Hospital, Portsmouth. I

performed the qRT-PCR experiments, with the assistance of Mark Harland, used to

validate expression of RAD52, TOP2A and RAD54B and contributed significantly to the

preparation of the manuscript. Tissue collection, sampling and RNA extraction were

performed by Caroline Conway, Angana Mitra and Samira Lobo. Caroline Conway

undertook the qRT-PCR experiments to validate expression of RAD51. Pathway



- iii -

analysis was undertaken by Jeremie Nsengimana. Pathological review of samples was

undertaken by Sara Edward, Andy Boon and Martin Cook. Gene expression

microarrays were performed at Service XS, Leiden by Floor De Kort. The project was

supervised by Jenny Barrett, Tim Bishop and Julia Newton-Bishop, with additional

advice provided by Margaret Knowles, who contributed to manuscript preparation.

Chapter 5 is based on work in the publication: Jewell, R.; Mitra, A.; Conway, C.;

Iremonger, J.; Walker, C.; de Kort, F.; Cook, M.; Boon, A.; Speirs, V.; Newton-Bishop,

J., Identification of differentially expressed genes in matched formalin-fixed paraffin-

embedded primary and metastatic melanoma tumor pairs. Pigment Cell Melanoma Res

2012, 25 (2), 284-6. I performed the tissue sampling and RNA extraction of nodal

samples, the data analysis and prepared the manuscript for publication. Samples were

collected by Caroline Conway, Angana Mitra and Christy Walker. Sampling and RNA

extraction of primary tumour samples was performed by Caroline Conway and Angana

Mitra. Martin Cook provided a proportion of the tumours used for these analyses. Andy

Boon supervised tissue sampling of nodal specimens. James Iremonger and Val

Speirs assisted with tissue sampling. Gene expression microarrays were performed at

Service XS, Leiden by Floor De Kort. The project was supervised by Julia Newton-

Bishop who contributed to manuscript preparation.

This copy has been supplied on the understanding that it is copyright material and that

no quotation from the thesis may be published without proper acknowledgement.

© 2012 The University of Leeds and Rosalyn Jewell



- iv -

Acknowledgements

This research has been carried out by a team which has included Christy Walker,

Sandra Tovey, Caroline Conway, Angana Mitra, Samira Lobo, Filomena Esteves, Jon

Laye, Mark Harland, Juliette Randerson-Moor, Faye Elliott, Jeremie Nsengimana and

May Chan from the Section of Epidemiology and Biostatistics. From outside of the

Section, team members included Phil Chambers and Helen Snowden from the

Genomics Facility, Binbin Liu and Lee Hazelwood from the Bioinformatics Group and

James Iremonger and Val Speirs from the Section of Pathology and Tumour Biology all

based in the Cancer Research UK Centre, Leeds Institute of Molecular Medicine.

External collaborators were Katharine Parker and Ian Cree from the Translational

Oncology Research Centre, Queen Alexandra Hospital, Portsmouth, Sarah Storr,

Sabreena Safuan and Stewart Martin from the Academic Oncology group at the

University of Nottingham, Andy Boon from the Leeds Teaching Hospitals NHS Trust,

Martin Cook from the Royal Surrey County Hospital NHS Foundation Trust and

Division of Medicine University of Surrey, Guildford and finally the service providers

ServiceXS from Leiden, Netherlands and Gen-probe from Wythenshawe, Manchester.

My own contributions, fully and explicitly indicated in the thesis, have been:

 Sampling of tumour tissue from various studies and extraction of nucleic acids

for work described in chapters 2, 5, 6,and 8.

 Performing quantitative Real-time PCR (qRT-PCR) experiments described in

chapters 2, 4 and 8.

 Mutation screening of samples using the SNaPshot assay described in chapter

6.

 Planning and undertaking methodological studies to assess new technologies

described in chapters 2, 4 and 8.

 Performing statistical analyses of gene expression microarray data (chapters

3-7), qRT-PCR data (chapters 2, 4 and 8), mutation data (chapter 6),

immunohistochemical (chapter 7) and clinico-pathological data (chapters 3-8).

 Performing pathway analysis using DAVID (the database for annotation,

visualisation and integrated discovery) software in chapters 4 and 7.

 Development of the “Predicting Benefit from Interferon Treatment” and

“Predicting Response to Chemotherapy” studies described in chapters 2, 7 and

8.



- v -

The other members of the group and their contributions have been as follows:

 Christy Walker has project-managed the “Predicting Benefit from Interferon

Treatment” and “Predicting Response to Chemotherapy” studies. He has traced

tissue samples from patients recruited to these studies and the Retrospective

Sentinel Node Biopsy study.

 Sandra Tovey has traced tissue samples for the Leeds Melanoma Cohort study.

 Caroline Conway, Angana Mitra and Samira Lobo sampled tumour specimens

and extracted RNA used to generate gene expression microarray data

described in this thesis.

 Filomena Esteves and Jon Laye have sectioned and sampled tumour tissues.

 Mark Harland and Juliette Randerson-Moor have provided advice regarding

molecular biological methods. Mark also provided assistance with the DNA

repair gene qRT-PCR experiments.

 Faye Elliott and Jeremie Nsengimana have provided statistical advice for the

analyses presented in this thesis. Jeremie performed Ingenuity pathway

analysis.

 May Chan has provided advice regarding database management for studies

included in this thesis.

 Phil Chambers and Helen Snowden performed pyrosequencing analyses and

assisted with Fluidigm experiments.

 Binbin Liu and Lee Hazelwood performed gene ontology analysis.

 James Iremonger and Val Speirs provided advice regarding laser capture

microdissection techniques.

 Katharine Parker and Ian Cree undertook gene expression analysis of samples

using the CGEA-1 array from patients treated with chemotherapy.

 Sarah Storr, Sabreena Safuan and Stewart Martin performed

immunohistochemical experiments.

 Andy Boon and Martin Cook performed expert histological reviews of tumour

samples. Martin Cook provided nodal tumour tissue for analysis of matched

tumour pairs. Andy Boon supervised sampling of nodal samples.

 Floor de Kort from ServiceXS performed the gene expression microarray

experiments and the qRT-PCR quality control assessment prior to the array.

 Gen-probe extracted nucleic acids from tumour cores from patients recruited to

the “Predicting Response to Chemotherapy” study.



- vi -

Without the assistance of the team members described above, the work presented in

this thesis would not have been possible. I am hugely grateful for their hard work,

support and sound advice.

I would like to thank my supervisors Professor Julia Newton-Bishop, Professor Tim

Bishop and Professor Jenny Barrett for their support and guidance during my PhD and

the opportunities they have provided me with.

During my research period I have been funded by a Bramall Fellowship and a Medical

Research Training Fellowship (G0802123). Further support has been provided by

Cancer Research UK programme and project grants.



- vii -

Abstract

This thesis describes work designed to identify genomic prognostic and predictive

markers for melanoma using nucleic acids extracted from formalin-fixed (FFPE) tumour

samples and emerging technologies for gene expression profiling.

I report use of the cDNA-mediated annealing, selection, extension and ligation (DASL)

assay using a 502-gene Human Cancer panel to identify prognostic markers. The

study identified over-expression of SPP1 and DNA repair genes in primary tumours as

associated with reduced relapse-free survival time. These genes remained associated

with survival in analyses adjusted for current prognostic markers. I also report use of

the DASL assay to study gene expression of tiny metastatic specimens, allowing

assessment of gene expression in matched primary and metastatic tumours.

I report studies of driver mutations in BRAF and NRAS as prognostic markers in which

V600K BRAF mutations, were independently associated with survival in multivariate

analysis. Gene expression profiling using the DASL assay identified a number of genes

differentially expressed in BRAF and NRAS mutated tumours, for example ETV1 and

TYRO3, providing biological insight into these tumours.

Ulceration of a primary tumour is a poor prognostic sign, but paradoxically also predicts

response to interferon- adjuvant therapy. I report greater numbers of macrophages in

ulcerated tumours and both over-expression of interleukin-6 and deranged expression

of genes in the interferon Jak-STAT signalling pathway. These factors may contribute

to mechanisms of responsiveness to interferon- in ulcerated tumours.

I report an investigation of predictive markers for dacarbazine therapy. The Fluidigm

quantitative Real-time PCR system was used to identify over-expression of MGMT as

independently associated with chemotherapy resistance and shorter survival after

starting chemotherapy.

Following validation of these findings, prognostic and predictive markers were identified

which could potentially be used clinically to provide additional information to patients

with melanoma, allowing a more personalised approach to melanoma treatment.
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1 Introduction

Histological prognostic markers are used in malignant melanoma to provide information

regarding risk of relapse following diagnosis, the American Joint Committee on Cancer

(AJCC) staging system being most widely used. Current prognostic markers however

explain only a proportion of the variance in survival between patients and are therefore

inadequate for subsets of patients. This thesis describes work carried out to identify

new genetic predictors of outcome which I postulated would also increase knowledge

of the biology of melanoma.

There are some predictive biomarkers associated with treatment benefit currently used

in melanoma, for example codon 600 BRAF mutations predict benefit from BRAF

inhibitors (BRAFi). However, much better markers are required; as yet we have no

marker which predicts resistance to BRAFi and we have no markers predicting

response to older therapies such as dacarbazine (DTIC). In this thesis I also report

results of work to evaluate putative predictive biomarkers for benefit from DTIC.

Identification of prognostic and predictive markers provides more information for

patients and clinicians allowing a more personalised approach to treatment for

melanoma.

1.1 Major thesis aims

The major aims of this thesis are:

 To develop methods for use of formalin-fixed paraffin-embedded (FFPE) melanoma

tumour tissue for genomic analyses.

 To assess use of technologies for gene expression profiling in FFPE tissue.

 To identify novel prognostic factors in melanoma tumour tissue which provide

additional prognostic information to that provided by current staging algorithms.

 To identify tumour factors predictive of responses to treatment in melanoma.

 To gain biological insight into mechanisms of melanoma progression.
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1.2 Aims of this chapter

The aims of this chapter are:

 To describe what is known about malignant melanoma and common genetic

alterations in melanoma tumours.

 To provide an overview of current prognostic factors and their limitations.

 To review prognostic markers identified in melanoma tumour tissue.

 To review current options for therapies in more advanced melanoma and their

mechanism of action.

 To provide an overview of current predictive markers of treatment benefit and their

limitations.

 To introduce further chapters of this thesis.

1.3 Cutaneous malignant melanoma

The skin is the largest organ of the body arranged into three layers: the superficial

epidermis, dermis and hypodermis [1]. The epidermis is mostly made up of

keratinocytes, with five to ten percent of cells being of different cell types, mainly

melanocytes, Merkel cells and Langerhans cells [1]. Melanocytes migrate from the

neural crest to epidermis where they produce pigment called melanin [1]. Melanoma

arises from melanocytes in response to environmental and genetic factors [2].

1.3.1 Incidence

Malignant melanoma is the sixth most common cancer in the UK with an age-

standardised incidence rate of 16 new cases per 100,000 population in 2009 [3].

Incidence is rising faster than any other common cancer in the UK [3].

1.4 Melanoma development

1.4.1 Risk factors for melanoma development

There is clearly a genetic contribution to melanoma susceptibility with a strong risk

factor being family history [4-6]. Other risk factors associated with genetic

predisposition are having a sun-sensitive skin phenotype and presence of multiple

melanocytic naevi (moles) [4, 5, 7-9]. The importance of having sun-sensitive skin is
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highlighted by genome-wide association studies which have identified polymorphisms

in a number of genes associated with pigmentation, for example the gene encoding

melanocortin-1 receptor (MC1R), as being associated with increased melanoma risk [5,

10, 11]. Emergence of naevi is also genetically determined with sun-exposure having a

small effect on naevus number [12, 13]. Additional risk factors for melanoma

development are having a previous melanoma, exposure to ultraviolet radiation and

immunosuppression [4, 5, 7-9, 14, 15].The contribution of genetic factors to melanoma

development has been estimated to be 18-55% [16, 17]

1.4.2 Process of melanoma development

During melanoma development from a normal melanocyte, a series of genetic

alterations occur (Figure 1-1). This model is a useful for the purposes of discussion but

relates to only one developmental route where melanoma commonly develops from

naevi. Melanoma can also develop from otherwise phenotypically normal melanocytes

[18].

It is known that as tumours progress an increasing number of genetic changes develop

within the cells. However, genetic (mutations, amplifications, deletions or

translocations) and epigenetic changes (such as promoter hypermethylation) either

drive the development of a melanoma, so-called driver events, or are passenger events

that occur but have no effect on the cell [4, 18-22]. Some of the genetic changes

involved in these processes can be inherited through families and predispose an

individual to melanoma [2, 23, 24]. I will briefly describe some of the pathways

commonly altered in melanoma tumours during their development.

1.4.2.1 Mitogen-activated protein kinase (MAPK) pathway

Activation of the mitogen-activated protein kinase (MAPK) pathway appears to occur

early in melanoma development with oncogenic mutations driving this pathway

commonly found in benign and dysplastic naevi [2, 18, 25]. A dysplastic naevus is

clinically diagnosed and larger in diameter with irregular or variable shape and

pigmentation. Such naevi are associated with melanoma risk and are more common in

families with multiple melanoma cases [26, 27]. The MAPK pathway (Figure 1-2)

regulates a number of processes within a cell including cell survival, growth and cell

migration [28, 29]. BRAF is mutated in around 40% of melanoma tumours, with the

majority of mutations due to a single base substitution (V600E) [30-32]. In tumours

without BRAF mutations, there are usually mutations elsewhere in the MAPK pathway,
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such in NRAS in cutaneous melanomas (18%) [30, 31], KIT in acral or mucosal

melanomas [33] and GNAQ in uveal melanomas [34]. Identification of mutations in this

pathway are the subject of Chapter 6 and will be discussed in further detail in this

chapter.

Figure 1-1: Melanoma development – a hypothetical model.

Genetic changes drive melanoma progression. Cells can only progress to the

next step following changes in specific genes. See text for further details.

Adapted from [18, 22]. Abbreviations used: MAPK, mitogen-activated protein

kinase; G1, gap 1 phase of the cell cycle; PI3K, phosphatidylinositol-3-kinase.
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Figure 1-2: Deregulated pathways during melanoma progression.

A. The CDKN2A locus encodes p16INK4A and p14ARF, p16INK4A inhibits the cyclin-D-

dependent kinases CDK4 and CDK6. Loss of p16INK4A leads to CDK-mediated

phosphorylation of retinoblastoma protein (RB), leading to release of E2F

transcription factors which stimulate entry into the cell cycle. HDM2 is inactivated

by p14ARF which activates the tumour suppressor p53. Inactivation of p14ARF

leads to HDM2-mediated inactivation of p53 via activation of HDM2, which targets

p53 for degradation [18]. (Continued on following page)

A. CDKN2A locus

β-transcript α-transcript 

P14ARF P16INK4a

HDM2

CDK4

Cyclin
D1

P53 P53

U

U
RB RB

P

P
E2F

E2F

Proteosomal degradation

of p53

S-phase
entry

B.

Enhanced cell proliferation and

resistance to apoptosis

RAS

RAF

MEK

ERK

PI3K

Akt

PTEN



- 6 -

(Figure 1-2 cont.) B. The mitogen-activated protein kinase (MAPK) pathway and

phosphatidylinositol-3-kinase (PI3K) pathway. NRAS mutations activate both

pathways. The MAPK pathway can also be activated by mutations in BRAF. ERK

can also be constitutively active in absence of NRAS and BRAF mutations. The

PI3K pathway may be activated by loss of the inhibitory function of PTEN, or by

gene amplification of AKT3 [35]. Figure adapted from reference [18].

1.4.2.2 p16INK4a, cyclin dependent kinases 4/6 and retinoblastoma (RB)

protein

Melanocytes that develop BRAF mutations usually do not evolve into a tumour as the

cells enter senescence after a period of time as a result of induction of tumour

suppressor proteins such as p16INK4A or p15INK4b [19, 36, 37]. When the p16INK4a - cyclin

dependent kinases 4/6 - RB senescence barrier is inactivated, continued development

into a melanoma may occur [18, 19]. p16INK4A is encoded by the CDKN2A locus [18, 19]

and inhibits the cyclin-dependent kinases, CDK4 and CDK6, which maintains RB

protein in an inactivated, hypophosphorylated state so preventing entry into the S-

phase of the cell cycle (Figure 1-2) [18, 19]. p16INK4A is usually inactivated in

melanomas secondary to mutations, deletions or promoter hypermethylation of

CDKN2A [19, 21]. Less frequently, genetic changes can affect other parts of this

pathway, for example mutations in CDK4 are found in up to 10% of melanomas [19,

21]. CDK4 mutant proteins cannot bind p16INK4A and consequently RB protein remains

phosphorylated and active [38]. Inactivating mutations in the gene that encodes RB

protein (RB1) have been identified in melanoma cell lines, but have not been assessed

further in melanoma tumours [38].

1.4.2.3 p14ARF and p53

Melanocytic cells that lack p16INK4A eventually undergo growth arrest in many cases

[22] and up-regulate p53 [39] which is likely to be an alternative senescence barrier to

that of the p16INK4A - CDK4/6 - RB pathway. p14ARF is a positive regulator of p53,

therefore the p14ARF-p53 senescence barrier may also need to be inactivated to allow

melanoma development [18]. TP53 mutations are found in 5-25% of melanoma

tumours [19, 21]. However, p14ARF is also encoded by the CDKN2A locus using an

alternative reading frame to p16INK4a and so is also lost when CDKN2A is mutated with

p14ARF loss having the same effect as p53 loss [18] (Figure 1-2). There is also evidence

that inactivation of p14ARF is common in melanomas and occurs independently of

p16INK4A inactivation [40].
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1.4.2.4 PTEN and the phosphatidylinositol-3-kinase (PI3K) pathway

PTEN is a tumour suppressor which negatively regulates the PI3K signalling pathway;

inactivation of PTEN by deletion or mutation activates this pathway, which stimulates

cell growth and survival [18, 41] (Figure 1-2). The P13K pathway is usually hyperactive

in melanoma metastases, but PTEN inactivation accounts for less than 50% of cases,

in the remaining cases mutations in other genes can activate the pathway, such as

NRAS [30], KIT [33] and PIK3CA [42]. Inactivation of PTEN is usually associated with

BRAF mutations, so BRAF mutated tumours have up-regulation of both MAPK and

PI3K pathways [43, 44].

1.5 Melanoma tumour progression

1.5.1 Melanoma metastasis

A primary tumour is a heterogeneous mix of cells with a minority harbouring genetic

alterations that allow them to spread and colonize distant organs [45-47]. Metastasis is

the spread of primary tumour cells to distant organs that then grow and is the usual

cause of death from cancer [46, 47]. It is dependent on characteristics of tumour cells

as well as the response of the host [45-47]. Characteristics of primary tumour cells that

predispose to metastasis formation are loss of cellular adhesion, greater motility and

invasiveness, being able to enter and then survive in the circulation, leaving vessels

into a new tissue and then colonization of a new site [46-48].

To expand further on the model presented in Figure 1-1, there are a number of

histological changes that occur as normal melanocytes progress to a metastatic

melanoma, which were originally described by Clark [49]. The Clark model describes

five phases of progression from a melanocyte to melanoma, these being proliferation of

melanocytes to form benign naevi where nested melanocytes lie along the basement

membrane of the epidermis. Benign naevi transform into dysplastic naevi or dysplastic

naevi can develop independently in a new location, the cells of these lesions are

commonly more atypical. Melanoma cells then develop which progress through a radial

growth phase where cells grow horizontally within the epidermis or the upper papillary

dermis which then progress to a vertical growth phase where cells penetrate the

basement membrane and invade the dermis. This primary melanoma then makes the

transition into a metastatic melanoma, having sustained sufficient genetic aberrations

to allow tumour cell growth throughout the body [4, 49]. In order for an established

melanoma to progress through to the invasive vertical growth phases and then become

metastatic, it develops some of the important characteristics of a metastatic tumour
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described above. An example of this is that there is loss of adhesion between

keratinocytes and melanoma cells in the epidermis, by down-regulation of E-cadherin

expression, with up-regulation of N-cadherin allowing adhesion with dermal fibroblasts

and vascular endothelium [50-52]. Metastases develop when cells leave the primary

tumour, migrate into stroma and invade lymphatics and blood vessels to form tumour at

a distant site [4, 53]. Typically, the first site for melanoma metastasis is the regional

nodal basin, specifically a “sentinel-node”, which is the first tumour-draining node in the

lymphatic chain [54, 55]. Following this, the tumour disseminates systemically [55]. This

is the predominant pattern of metastasis in melanoma, but a minority develop systemic

disease early, sometimes to a single organ, such as the lungs or the brain, but in some

cases more widely to a number of visceral sites [56, 57]. The presence of nodal

metastases is an important clinical predictor of outcome, which will be discussed

further in section 1.7.1.2 [58, 59].

1.5.2 Melanoma interactions with host immunity

As discussed, melanoma spread is dependent on characteristics of tumour cells but it

is clear that the response of the host to those cells is also critical [45-47]. Host/tumour

interaction involves the immune system and the tumour microenvironment; these

interactions are active and complicated. The reported efficacy of immunotherapies in

melanoma in recent times however shows the potential for immunotherapies in the

future [60, 61].

Immune responses to the tumour are usually categorised as either innate or adaptive,

although both are intimately connected. Innate immune mechanisms are rapid

compared to adaptive responses and are usually associated with inflammation [62].

Cells associated with innate responses are plasmacytoid dendritic cells and phagocytic

neutrophils which are activated by pattern recognition receptors [62]. Natural killer cells

recognise major histocompatibility complex (MHC) class 1 antigens on cells, and are

regulated by balance in the function of activating and inhibitory receptors [63]. Myeloid

dendritic cells, monocytes and macrophages are phagocytic and can present antigen to

components of the adaptive immune response, such as T and B cells [62].

The immune system of the skin and lymphatics is essential for identifying and targeting

destruction of melanoma cells by adaptive immune systems. Langerhans cells are

dendritic cells present in the epidermis of skin, which migrate via dermal lymphatics to

draining lymph nodes and present antigen to T cells [64]. Activated tumour antigen-

specific T cells expressing the skin homing receptor cutaneous leucocyte antigen

(CLA), migrate out of dermal blood vessels into the skin and mediate cellular immunity
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[64]. Presence of cytokines either support or inhibit this process. Melanoma is a tumour

that interacts with the immune system and expresses antigens that T cells recognise. T

cells can destroy melanoma cells and regression of melanoma tumours indicating

immune destruction of melanoma cells is well described [64]. The presence of a brisk T

cell infiltrate in melanoma tumours is associated with longer survival [65, 66] as is the

development of vitiligo due to autoimmune destruction of melanocytes [67-69]

highlighting the prognostic importance of the immune response to tumour.

Although active immune responses to melanoma cells can be demonstrated, it is

usually not effective in destroying the tumour and there are data to suggest that tumour

cells inhibit these responses. Melanoma cells can inhibit antigen processing cell

maturation preventing expression of co-stimulatory molecules required for T cell

activation [70], tumour cells can also down-regulate MHC class 1 expression [71, 72]

so becoming invisible to class 1 restricted cytotoxic T cells [70]. Factors secreted by

the tumour microenvironment, such as immunosuppressive cytokines (IL10 and TGFβ), 

can also render cytotoxic T cells inactive or enhance function of regulatory T cells

which promote tolerance [73-75].

In summary, melanoma is an immunogenic tumour which interacts with the host

immune system and adapts to evade detection and destruction. These interactions are

relevant to both the prognosis of a patient with melanoma and to the response of the

tumour to therapy, but much more needs to be understood about these interactions in

order to optimise immunotherapies.

1.6 Patient assessment and melanoma tissue processing

I will briefly describe the assessment of a patient who presents with a suspicious skin

lesion and focus on processing of melanoma tumour tissue following surgical removal

because of the impact this has on tumour research. This process if summarized in

Figure 1-3.

If a melanoma is suspected, it is excised completely ideally with a margin of 2mm of

normal skin and a cuff of fat [76]. The specimen is then placed in 10% neutral buffered

formalin which fixes the tissue by generating cross-links between proteins and nucleic

acids [77]. The specimen is embedded in paraffin and sectioned. Sections are stained

with haematoxylin and eosin (H+E) and reviewed by a pathologist. The Royal College

of Pathologists has advised that a minimum dataset should be reported for all

specimens which are tumour thickness, mitotic rate, histological subtype, margins of

excision, growth phase, presence of ulceration, regression, tumour-infiltrating
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These sections are stained with H+E and immunohistochemical stains specific for

melanoma cells, such as S100 or Melan A [76]. The depth of metastases from the node

capsule is measured, as is the size of the largest deposit, and the site is categorized as

either subcapsular or parenchymal [82, 83]. If a patient has a positive sentinel lymph

node or palpable nodal disease at diagnosis, they will usually undergo a completion

lymphadenectomy to remove regional nodes. The pathologist will examine sections

stained with H+E and immunohistochemical stains from all the nodes from at least one

level and count the number with metastatic deposits [76]. If there is any extracapsular

spread or involvement of fat around the node this is also recorded [76]. If further

systemic spread of disease is suspected, computed tomography (CT) scanning of the

body is usually performed to identify sites of disease and lactate dehydrogenase (LDH)

level measured [76]. The factors assessed are of importance prognostically and will be

discussed further in section 1.7.1 below.

1.7 Prognosis in melanoma

Survival from melanoma has improved over the last 25 years in England and Wales

[84, 85]. Prognosis for those with thin tumours (≤1mm) following surgery is excellent, 

however for those with thicker primary tumours (≥2mm) or with nodal or more extensive 

metastatic spread, survival rates at 5 and 10 years are much lower (Table 1-1)[58, 86].

Outcome from melanoma can be influenced by factors specific to the patient and to the

tumour. Many of these factors have been identified by studying outcome in large

cohorts of patients and are currently used to provide general prognostic estimates for

patients with melanoma in the form of the American Joint Committee on Cancer

(AJCC) Staging Guidelines (Table 1-1) [58]. I will review the current factors used for

staging of melanoma tumours and then describe additional factors which influence

prognosis, but are not currently included in staging criteria.

1.7.1 Prognostic factors currently used in melanoma staging

1.7.1.1 Primary tumour features

1.7.1.1.1 Breslow thickness

Tumour thickness was identified as an important prognostic factor in melanoma in 1953

[87] and was further developed by Breslow in 1970, who suggested that measurement

of maximal tumour thickness can be used to calculate maximal cross-sectional area of
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tumour which is proportional to tumour volume [88], which further correlates with

prognosis [89, 90]. This was incorporated into the AJCC staging system and remains

the most important single prognostic factor in localised melanoma today [58, 91]. It is

now accepted that Breslow thickness is a more powerful prognostic factor than level of

invasion as described by Clark et al. [92, 93]. Breslow thickness is also predictive of

survival in patients with nodal metastases (stage III) disease [58, 59].

1.7.1.1.2 Tumour ulceration

Ulceration of a primary melanoma is defined as absence of intact epidermis, including

stratum corneum and basement membrane [94]. Primary tumour ulceration is a

powerful prognostic factor in both localised melanoma and stage III melanoma [58, 59].

Breslow thickness remains the strongest predictor of survival in localised disease,

however presence of ulceration influences survival from tumours strongly, modifying

survival to that of a non-ulcerated melanoma in the next thickness category [58].

Further discussion of the pathogenesis and prognostic influence of ulceration is

presented in Chapter 7.

1.7.1.1.3 Mitotic rate

The mitotic rate (number of mitoses seen per mm2 in the most mitotically active

component of viable tumour sample) reflects proliferation and is a strong independent

predictor of survival [58] A number of studies have demonstrated that the presence and

number of mitoses within a stage I or II tumour strongly correlates with prognosis

second only to tumour thickness [95-98]. The 7th edition of AJCC staging criteria has

replaced Clark level with mitotic rate ≥1 mitoses/mm2 as a primary criteria (with

ulceration) for defining a subcategory T1b [58].

1.7.1.2 Nodal metastatic disease (stage III)

Development of metastases is associated with poorer prognosis and is influenced by

interaction between tumour characteristics, such as high proliferative rate and host

factors, for example the immune system and physical barriers such as walls of

lymphatic vessels. Development of metastases represents the tumour breaching host

defences and biological features of the tumour indicating cellular ability to grow in

disparate tissues.
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The number of tumour bearing nodes and whether tumour deposits in involved nodes

are microscopic, being diagnosed after a sentinel lymph node biopsy, or macroscopic,

which are clinically detected, all determine prognosis with smaller burden associated

with better outcome [58, 59]. Location of deposits in sentinel nodes is also of

prognostic importance as deposits confined to the subcapsular sinus are less

frequently associated with more extensive nodal spread, than deposits within the

parenchyma of the node [99]. The size of sentinel node deposits also influences

outcome, with small (<0.1mm) deposits associated with similar prognosis to patients

with a negative sentinel node biopsy [100]. Location and size of sentinel nodal deposits

are not currently integrated into staging criteria, however with more sentinel node

biopsy procedures taking place and improved pathological reporting, this may change

[58]. Primary tumour thickness and ulceration remain prognostic in stage III disease

[58, 59]. In transit or satellite metastases are considered as intralymphatic metastases

and consequently associated with poorer prognosis equivalent to that of stage III

disease [101, 102].

1.7.1.3 Systemic metastatic disease (stage IV)

In stage IV disease, non-visceral metastases to skin, subcutaneous tissues and lymph

nodes are associated with better survival than metastases at visceral sites [58, 91].

Furthermore, lung metastases are associated with better prognosis than other visceral

sites [58, 103, 104]. These survival differences are likely related to biological

differences between tumours able to grow in different tissues, but the determinants are

as yet poorly understood.

Elevated serum levels of lactate dehydrogenase (LDH) correlate with poor prognosis in

stage IV disease [58, 105-108]. This enzyme is widely distributed in cells of many

lineages and levels are increased in the blood in the presence of cellular break down

[108]. Levels of LDH in some cancer patients reflect tumour burden and rate of

proliferation of cells [107, 108]. In the current AJCC guidelines, elevated LDH indicates

a poorer prognosis in stage IV disease irrespective of the metastatic site [58].



Stage TNM
Thickness

(mm)

Ulceration
and mitotic

rate (per mm2)
No. positive nodes

Nodal
size

Distant
metastasis

5-year
survival

%

10-year
survival

%

5 year UK
survival %

10 year UK
survival %

IA T1a ≤1 
No and

mitosis <1
0 - - 95.3 87.9 95 87-89

IB
T1b ≤1 

Yes or
mitosis ≥1 

0 - - 90.9 83.1
88-92 78-85

T2a 1.01-2.0 No 0 - - 89.0 79.2

IIA
T2b 1.01-2.0 Yes 0 - - 77.4 64.4

77-79 62-66
T3a 2.01-4.0 No 0 - - 78.7 63.8

IIB
T3b 2.01-4.0 Yes 0 - - 63.0 50.8

61-70 49-57
T4a >4.0 No 0 - - 67.4 53.9

IIC T4b >4.0 Yes 0 - - 45.1 32.3 43-47 31-34

IIIA
N1a Any No 1 Micro - 69.5 63.0

57-73 50-67
N2a Any No 2-3 Micro - 63.3 56.9

IIIB

N1a Any Yes 1 Micro - 52.8 37.8

41-57 29-53

N2a Any Yes 2-3 Micro - 49.6 35.9

N1b Any No 1 Macro - 59.0 47.7

N2b Any No 2-3 Macro - 46.3 39.2

N2c Any No

In transit
metastases/satellites

with no metastatic
nodes

- -

IIIC

N1b Any Yes 1 Macro - 29.0 24.4

20-34 11-29

N2b Any Yes 2-3 Macro - 24.0 15.0

N2c Any Yes

In transit
metastases/satellites

with no metastatic
nodes

- -

-
1
4

-



Stage TNM
Thickness

(mm)

Ulceration
and mitotic

rate (per mm2)
No. positive nodes

Nodal
size

Distant
metastasis

5-year
survival

%

10-year
survival

%

5 year UK
survival %

10 year UK
survival %

IIIC
cont.

N3 Any Any

4 or more nodes, or
matted nodes, or in

transit
metastases/satellites

with metastatic
nodes

Micro or
macro

- 26.7 18.4

IV

M1a Any Any Any Any
Distant skin,

subcutaneous or
nodal

18.8 15.7

5-22
M1b Any Any Any Any Lung 6.7 2.5

M1c Any Any Any Any

Other visceral
metastases or any
distant metastasis
with elevated LDH

level

9.5 6.0

Table 1-1: Survival rates for melanoma based on the American Joint Committee on Cancer staging system for cutaneous melanoma (7th

edition).

Adapted from [58, 102]. Survival rates for pathological stage are for the UK taken from [109], with survival rates for individual TNM staging

taken from [102] which used Clark (invasion) level to determine T1a and T1b stages and has now been replaced with mitotic rate.

Abbreviations used: TNM, tumour, node, metastasis; SEM, standard error mean; SC, subcutaneous; LDH, lactate dehydrogenase.

-
1
5

-
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1.7.2 Prognostic factors not part of current staging guidelines

1.7.2.1 Tumour factors

1.7.2.1.1 Vascular and lymphatic invasion

As metastasis occurs via lymphatic and blood vessels, it is unsurprising that high

tumour vascularity and presence of lymphovascular invasion in primary tumours has

been associated with poorer prognosis in a number of studies [110-112]. Lymphatic

invasion appears to predominate over vascular invasion in primary tumours [110, 113],

however identification of lymphatic invasion using slides routinely stained using H+E

alone can be difficult as invasion can be focal and it is difficult to distinguish vessel

walls from other stromal tissues without special stains [114]. It has been shown that

use of specific immunohistochemical staining for vessels can increase detection [110,

113]. These factors are not routinely reported on many primary melanoma histology

reports and so have not been assessed in large sample sets, such as the AJCC

staging database. Consequently, these factors do not form part of AJCC staging, but

may represent a primary tumour factor which reflects propensity to metastasis. Use of

immunohistochemical staining for these factors is discussed further in Chapter 7.

1.7.2.1.2 Perineural infiltration

Perineural invasion occurs when melanoma cells invade the nerve sheath and spread

along the protective layer, the perineurium, that surrounds fascicles of nerve fibres

[115]. This feature has been associated with increased incidence of local recurrences

in desmoplastic melanomas which have a tendency to neurotropism [116]. Again, this

feature is often not recorded on histology reports and so associations with prognosis in

large cohorts of melanoma have not been assessed.

1.7.2.1.3 Tumour regression

Regression represents the result of interaction between tumour cells and the host

immune system leading to replacement of tumour cells with non-malignant tissue [64,

117]. Regression can be focal or complete where no tumour cells are present [64].

Regression may lead to underestimation of Breslow thickness which may be related to

greater metastatic potential in thin tumours where regression is seen [118]. It would be

anticipated that an immune response leading to destruction of tumour cells would be

beneficial, but if this process is limited, it has been postulated that cells that survive

and escape immune recognition would be selected and progress [119]. The presence

of regression and influence on prognosis is controversial with some studies suggesting
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that presence of regression is a poor prognostic factor, especially in thin melanoma

tumours [118, 120, 121] and others suggesting it does not influence survival [65, 122,

123]. This may be a consequence of lack of consensus on exact definition and

measurement of regression [117, 118]. As the significance of the presence of

regression on prognosis is unclear, it is not part of current AJCC staging guidelines

[58].

1.7.2.1.4 Tumour infiltrating lymphocytes (TILs)

Tumour-infiltrating lymphocytes (TILs) are an important feature of the immune

response to melanoma [124]. The infiltrate can be brisk (diffuse or involves the entire

base of the tumour), non-brisk (focal infiltration) or absent (no lymphocytes mixed with

melanoma cells) [125], however the reporting of this is highly subjective [65, 114, 117].

Presence of TILs indicates that the host immune system is responsive and that the

melanoma cells can be recognised [126]. Generally presence of TILs has been

reported to be associated with better prognosis [65, 66, 124, 127, 128], however the

exact cellular composition of the infiltrate may have more prognostic and perhaps

predictive value and needs to be assessed in large studies [129]. Currently, TILs are

not part of AJCC staging [58], however presence of a brisk infiltrate appears to

influence prognosis.

1.7.2.1.5 Histological subtype

Melanomas can be grouped by the histopathologist into superficial spreading (70%),

nodular, lentigo maligna and acral lentiginous types, with various other rarer subtypes

[92, 114, 130]. Nodular melanomas quickly spread downwards in the vertical growth

phase, with superficial spreading tumours remaining in the radial growth phase for

variable amounts of time before invading vertically [114]. Lentigo maligna tumours

arise from a pigmented macule which may have been present for years prior to

invasion developing [114]. The biological characteristics of these tumours are therefore

very different and this is reflected in the poorer prognosis associated with nodular

tumours compared to superficial spreading tumours, which in turn have a poorer

prognosis than lentigo maligna tumours [114]. Acral tumours present on the palms,

soles or nail matrix (subungual) are also associated with poorer prognosis which has

been related to late diagnosis and the inherent aggressiveness of acral lentiginous

tumours. This may be related to differing mutational profiles in acral tumours, with

lower incidence of BRAF or NRAS mutations and higher incidence of KIT mutations



- 18 -

[33, 131, 132]. Again, histological subtype is not included in current AJCC staging

guidelines [58], but is regularly reported on histology reports.

1.7.2.2 Host factors

In 2001, the American Joint Committee on Cancer (AJCC) staging guidelines were

updated for the 6th edition and the committee reported the analysis of 17,600

melanoma patients from 13 cancer centres to identify prognostic factors in melanoma

[91]. This assessment, amongst others, found that increasing age, male sex and

tumours on the trunk, head, neck, palms, soles and under nails were associated with

poorer prognosis [91, 132-134]. In the AJCC study, site of tumour and the age of the

patient continued to influence survival for those with stage III disease [91]. This has

been confirmed more recently in analysis of 2313 patients with stage III disease in the

AJCC melanoma staging database, with age at diagnosis and site of tumour

independently predicting survival in patients with micrometastases, and patient age

remaining independently predictive when macrometastases are present [59].

The poorer prognosis associated with increasing age is especially evident for those

over 60 years of age [135-138]. Older patients are more likely to have thicker or

ulcerated tumours, both of which are important prognostic factors in melanoma,

however the association between age and outcome remains significant when adjusted

for these factors [135-138]. Delayed diagnosis or under-treatment of older patients may

contribute, but melanoma presentation, outcome and pathology appear to be

dependent on the age of the patient and it is unclear whether this is related to the

tumour or the host response [139]. For example, older patients are less likely to

develop regional metastases, but still have poorer survival [140, 141]. Immunological

responses of elderly patients are lower and age-related changes to the lymphatic

system, such as involution of lymph nodes or slower lymphatic flow, may also be

contributing factors [139, 142, 143], however there is likely to be a biological

explanation for this effect.

A recent pooled analysis of European Organisation for Research and Treatment of

Cancer (EORTC) trials in patients with stage I or II disease has confirmed the superior

prognosis for women with a relative survival advantage of 30% [144]. Tumours on the

leg are more commonly found in women, with truncal tumours in men, however women

have a survival advantage for tumours at both of these sites, indicating that primary

location does not explain the difference [144]. Differences in behaviour between the

sexes related to tumour detection and seeking treatment may contribute [145, 146], but

gender is associated with survival independently of factors which may be related to
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tumour detection, such as thickness or stage at diagnosis [146]. The more likely

explanation is biological differences between men and women, perhaps related to sex

hormones, immunological responses, oxidative stress or vitamin D metabolism [144,

147-150]. Understanding this gender effect may tell us something of fundamental

importance about the biology of host/tumour interaction.

As discussed above, the site of a tumour has prognostic significance and is also

related to the gender of the patient. The exception are tumours from the head and neck

which have poorer prognosis, but are not related to gender [144]. These tumours more

associated with chronic sun exposure and have lower rates of BRAF and NRAS

mutations, with greater incidence of KIT mutations [33, 151, 152]. This is a similar

genetic profile to that seen in the poorly prognostic tumours found on the palms, soles

and subungual sites, suggesting that these tumours are inherently more aggressive

[151]. It has been suggested that the poorer prognosis of truncal tumours may be

related to drainage to multiple lymphatic basins [153, 154], but the far more likely

explanation for differing prognosis in tumours according to site is related to biological

differences in the tumours. These factors are not currently integrated into AJCC

staging of melanoma [58], but remain as independent prognostic factors that need to

be taken into account when making assessments of new prognostic indicators.

1.7.3 Limitations of current melanoma staging

Despite the intensive efforts that have been placed into identifying prognostic factors

for patients with melanoma, within every stage of the disease there are still variations

in survival which cannot be explained using current prognostic models [134] and there

are a significant proportion of patients with ‘low-risk’ melanoma who go onto relapse

[121]. There is increasing interest in identification of new prognostic biomarkers to

further individualise risk of progression for patients with melanoma and enable early

therapeutic intervention for those classified at high risk of relapse.

1.7.4 New prognostic biomarkers for melanoma

1.7.4.1 Biomarkers

A biomarker is measurable factor that can be used to indicate a biological process

such as the presence of a disease [155, 156]. Prognostic biomarkers offer information

about outcome from a disease, irrespective of treatment [157], and a number of

prognostic biomarkers already exist for melanoma such as tumour Breslow thickness,
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ulceration or nodal involvement. Additional biomarkers may provide further information

to help further refine prognostic information.

This thesis focuses on identification of biomarkers in melanoma tumour tissue. A

number of biomarkers have been identified in serum, for example LDH as previously

discussed. There has also been interest in germline genetic variation that predicts

outcome in melanoma, for example improved survival in patients with melanocortin 1

receptor gene (MC1R) variants [158], so far investigated predominantly of interest as a

means of understanding host/tumour interaction better. The following section will

review current progress in identification of biomarkers in tumour tissue.

1.7.4.2 Prognostic tumour biomarkers

A number of studies have sought to identify tumour markers that indicate disease

progression or increased chance of recurrence. As discussed above, prognosis in

melanoma is strongly linked to the histological features of the tumour, such as Breslow

thickness, and the ability of the tumour to metastasise and spread. Consequently,

many studies have assessed the relationship between biomarkers and poor prognostic

histological features of the tumour.

1.7.4.2.1 Candidate biomarker studies

Techniques such as gene expression profiling, immunohistochemistry, mutation

screening and comparative genomic hybridization have been used to identify tumour

biomarkers that provide additional prognostic information to that already provided with

histological staging [159]. For this review I have concentrated on studies which have

sought to identify altered gene or protein expression. A number of studies have aimed

to do this using melanoma cell lines, but the vast majority have used tissue samples

and immunohistochemistry [155, 160, 161]. Many studies compared expression in

benign tissues with that in primary or metastatic melanoma samples, or compared

expression in primary melanomas with similar histological features from patients who

do not relapse versus those that go onto relapse. Many reports are of relatively poor

quality often because they were performed using small numbers of samples and were

not validated in other sample/data sets. This was largely a function of the small size of

melanomas and the consequent lack of cryopreserved tumour samples. The studies

also often lacked multivariate analyses which provide vital information as to whether

the biomarker identified adds anything additional to current staging [155, 160, 162].

Some of these markers however have been identified in more than one study, for

example osteopontin [163, 164], E-cadherin [165] [166] and MMP2 [167-169], with
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deranged expression of proteins involved in many biological processes, such as tissue

invasion, cell adhesion, DNA repair and apoptosis. To be considered as a useful

biomarker, these candidates require validation in large, prospective studies [155].

It has been suggested that the lack of consistency across studies is related to

methodological differences, therefore the “REporting Recommendations for Tumour

MARKer prognostic studies” (REMARK) guidelines were published, which recommend

standardised reporting of study design, hypotheses, patients, specimens, assays and

statistical analysis used in prognostic biomarker studies [162]. A recent systematic

review and meta-analysis identified biomarker studies in melanoma which conformed

to REMARK guidelines [161]. The authors specifically assessed reports which used

primary cutaneous melanoma samples, reported clear methodological information

regarding immunohistochemistry techniques used and statistical analysis using

multivariate proportional hazards modelling adjusted for known prognostic factors in

melanoma. They identified 51 eligible studies evaluating 80 proteins [160, 161]. Three

studies assessed the combined effect of three or more proteins in multivariate analysis

[170-172]. In meta-analysis, the use of multiple proteins most strongly predicted

survival, these combinations being p16INK4a, survivin and p53 [170], p16INK4a and

p21WAF1 [171] and RGS1, osteopontin (SPP1) and NCOA3 [172]. Individual proteins

associated with survival were RGS1, nucleolin, HER3, ING4 and β-catenin [161]. 

Overall, proteins involved in the cell cycle (regulation of G1-S transition) were most

associated with progression [161]. Other pathways identified were those involved in

immune responses, transcription, cell adhesion, cytoskeleton modelling, signal

transduction, DNA damage, development, apoptosis and DNA damage [161].

The authors of this study extended their analyses to gene expression data from

microarrays. Across the microarray studies assessed there was evidence at both the

protein and expression level that PCNA and survivin were associated with outcome

and so the authors highlighted these candidates for further assessment [161].

In view of the strength of multiple markers in predicting outcome, there have been high

hopes that the development of gene expression arrays, allowing assessment of

thousands of genes in a single sample, would identify single genes or profiles of genes

associated with outcome and I will review the results of these studies now.

1.7.4.2.2 Identification of gene expression signatures

A number of studies have now been published using gene expression microarray

technology to identify genes which are differentially expressed in melanoma tumours

associated with prognosis, tumour progression or differing histological features. The
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advantages of this technique are that novel genes can be identified which may serve to

provide essential biological insight into the disease. Profiling of thousands of genes

allows biological pathways to be assessed as a whole, again providing critical

information about gene expression derangement. Some of the studies have used cell

lines to identify genes differentially expressed in lines with differing characteristics

[173-175]. Other studies have used frozen melanoma samples to identify gene

signatures associated with relapse or progression and are summarised in Table 1-2.

The main deficiencies of these studies to date are the small number of samples

assessed and the limited number of studies using primary melanoma tissue. This is

because frozen tissue is required to extract enough high quality RNA from tissues for

use with traditional gene expression microarrays, and as melanoma tumours are small

and require extensive pathological assessment to accurate stage a tumour, availability

of frozen tissue is limited. I will discuss this further in Chapter 3 and section 1.9 as the

microarray assay used to produce results for this thesis is designed for use with

degraded RNA samples from well-annotated FFPE archival tissue with mature follow-

up data.

Microarray studies have demonstrated that up-regulation of DNA repair and genes

involved in the cell cycle or cell division are associated with progression of tumours and

poorer outcome [175-180]. They have also shown that genes involved in cell adhesion

and invasion are associated with progression [175, 176, 181-184], with over-

expression of genes associated with the immune system associated with a better

prognosis [179, 180, 183, 185]. A unpublished study of 79 frozen metastatic specimens

has also found an association between immune response gene expression profiles and

survival in stage III disease [186].

The meta-analysis of Schramm et al. (2011) identified only two microarray gene

expression studies assessing gene expression in primary tumours reported to

REMARK standards [161]. One of these studies is based on the data presented in

Chapter 3 [187], the other by Winnepenninckx and colleagues [178]. Bioinformatic

analysis of the Winnepenninckx microarray gene expression data in primary tumours

revealed that expression of genes involved in the cell-cycle metaphase checkpoint was

most deranged along with other cell cycle pathways [161]. Other pathways involved

were apoptosis, immune responses and DNA damage [161]. When this analysis was

extended to studies of metastatic tumour reported to REMARK standards, six studies

were assessed [188]. Genes associated with immune response processes and the

NRAS-regulation pathway were over-represented in these datasets [188]. Cross-

validation of signatures between datasets predicted outcomes with low levels of



Samples Number of samples Methods
Outcome
measure

Results Reference

Frozen naevi
and MM

6 naevi, 6 tumours
298 gene custom array, 9 genes

validated with qRT-PCR
Progression

THBD, FABP7, H2AFJ, RRAGD, MYADM,
HR, CKS2, NCK2 and GDF15 associated

with progression
[189]

Frozen naevi,
primary and

MM

9 naevi, 6 primary
tumours, 19 MM.

Independent 25 primary
melanoma validation

group

19,740 gene array, 2 genes
validated with IHC in validation

group
Progression

2602 gene signature that correlated with
sample class including MMP10 and

cadherin-3
[182]

Frozen skin,
benign and

atypical naevi,
early and MM

2 skin samples, 4 naevi,
6 early melanomas, 3

MM. Separate validation
set of 2-4 tumours per

stage of melanoma
progression

14,500 array, 2 genes validated in
separate samples. 1 gene validated

with immunoblot in cell lines
representing vertical growth phase

and MM

Progression
Gene were found to be over-expressed
(e.g. osteopontin) and under-expressed

(e.g. dermcidin) in MM
[190]

Frozen skin,
benign naevi
and primary
melanomas

7 skin samples, 18 naevi,
45 melanomas

14,500 array, 3 genes validated
with qRT-PCR in 14 melanoma

samples, 7 naevi and 5 skin
samples (from same sample set as

array data)

Progression
Genes differentially expressed between

benign and melanoma samples, including
L1CAM and PLAB

[184]

Frozen MM
and normal

melanocytes
10 tumours

1.2K human cancer array and
human apoptosis array, 1 gene

validated with qRT-PCR, 2 genes
validated with Western blots

Progression

Hepatocyte growth factor receptor, c-met,
growth-factor receptor bound protein 10,

BRAF and several mitogen activated
protein kinase genes were up-regulated

[191]

Frozen benign
naevi and MM

4 naevi, 4 tumours

14,000 array, 1 gene validated with
qRT-PCR in cell lines, 11 naevi and
4 MM tumours and with IHC in 35

naevi and 103 tumours

Progression

190 genes significantly over-expressed in
tumours compared to naevi including

osteopontin, which was validated using
qRT-PCR and IHC

[192]

-
2
3

-



Samples Number of samples Methods
Outcome
measure

Results Reference

Frozen primary
melanomas

83 primary melanomas,
58 patients with 4 years

follow-up.17 sample
independent validation

set. Further IHC
validation independent

set of 176 primary
tumours

Whole human genome 41,000
microarray, 23 proteins confirmed
with IHC. Gene signature validated

in independent sample set. Five
genes associated with survival in

larger validation set with IHC

DMFS (OS in
IHC validation

set)

254 gene signature associated with DMFS:
genes involved in activating DNA
replication, e.g. minichromsome

maintenance genes, geminin

[178]

Frozen MM
43 tumours samples from

38 patients

17,500 gene array, 2 genes
validated with IHC. Survival

prediction model cross-validated in
dataset

OS

70 genes associated with survival. Immune
cell genes in survival group, cell

proliferation and invasion genes in poor
survival group

[183]

Frozen primary
and MM

19 primary melanomas,
22 MM. Independent
validation set of 20
primary and 20 MM

14,500 gene array, 9 genes
validated with immunoblots in a cell

line. 4 genes validated in an
independent set using IHC.

Progression

308 genes differentially expressed
between primaries and MM. Associated

with cell cycle, mitosis, cell communication
and cell adhesion.

[176]

Frozen primary
melanomas

34 tumours, independent
validation set of 127

primary tumours

2,489 cancer gene cDNA array, 5
genes validated with IHC in

separate cohort

Metastatic
disease

(DMFS in
validation

group)

243 genes with differential expression in
tumour types. N-cadherin, SPP1 and

SPARC/osteonectin were associated with
metastasis development in validation group

[164]

Frozen primary
melanomas

Sample set as
Winnepenninckx et al.

(2006), 60 patients with 4
years follow-up

As above, then dataset analysed
using “Searching for a biological

interpretation of microarray
experiments (SBIME)” with Gene

Ontology annotations

DMFS
DNA repair and DNA replication pathways

most significantly associated with
metastasis

[177]

Frozen MM
29 patients, 2

independent validation
sets of 10 and 14 MM

30,888 probe array, 21 genes
validated with qRT-PCR. 2

predictive scores validated in
independent sample sets

Progression
to stage IV

2140 genes differentially expressed,
including immunological signalling

[185]

-
2
4

-



Samples Number of samples Methods
Outcome
measure

Results Reference

Frozen primary
cutaneous

cancers (and
primary

melanomas)
and MM

40 MM, 42 primary
cutaneous cancers (16

melanomas)

14,500 gene array, 6 genes
validated with qRT-PCR, 4 genes

validated with Western blots
Progression

Gene signature identified when transition in
expression from intermediate thickness

tumour to thick tumour. Several oncogenes
(Osteopontin, MITF etc.) and suppressor

genes (PITX-1, CST-6 etc.) change
expression

[193]

Frozen MM
44 tumours from 38

patients

>47,000 transcript array, gene
signature associated with survival

validated in data from [185]
OS

266 genes identified as associated with
survival. Good prognosis genes were

associated with immune responses and
poor prognosis with cell proliferation

[179]

Frozen MM

Tumours from 57
patients, independent

validation sample set of
20 tumours

>47,000 transcript array, signatures
validated in separate cohort and
gene expression data from [179]

OS

Four distinct subtypes of tumour based on
gene expression, with tumours of a

proliferative subtype associated with poor
prognosis and immune gene expression

associated with better prognosis

[180]

Frozen MM
32 tumours validated in
independent set of 89

MM

>47,000 transcript array, qRT-PCR
and IHC used to assess expression

of TYRP1 in validation cohort

DMFS and
OS

278 probes associated with survival with
TYRP1 most associated

[194]

Table 1-2: Studies using microarray technology to identify genes associated with prognosis or progression in melanoma tissue samples.

Abbreviations used: MM, metastatic melanoma; qRT-PCR, quantitative Real-time PCR; IHC, immunohistochemistry; DMFS, distant metastasis

free survival; OS, overall survival.

-
2
5

-
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misclassification, highlighting the importance of these pathways [188]. The authors of

this review suggested that all new gene signatures should be assessed in a

multivariate analysis with current prognostic clinico-pathological factors to identify

whether gene expression adds to current prognostic algorithms [188]. Discussion of

approaches for analysis of groups of genes using bioinformatics techniques is

discussed further in Chapter 4.

As technology develops, it is likely that RNA-sequencing (RNA-seq), where cDNA

synthesised from RNA is sequenced using next generation sequencing, will be

increasingly used to identify genes with altered expression levels associated with

melanoma prognosis [195, 196]. This method directly sequences the transcript which is

mapped back to a reference genome, reads are then counted to assess the level of

gene expression [197]. As the transcript is sequenced directly, this technology has

many advantages, including detection of alternative splice variants and detection of

transcripts from gene fusion events [198].

1.8 Treatment of melanoma

For patients with thin primary melanomas with no metastatic spread, treatment is

surgical removal of the primary lesion and prognosis is excellent [58]. However for

those with thick tumours or nodal spread (stages IIB-III) survival at 5 years is much less

at 20-70% (Table 1-1) [109]. This group of patients are classified as having disease at

high-risk of relapse and adjuvant treatments have been investigated in clinical trials to

try to prevent recurrences in this high-risk group. For patients with stage IV disease, 5-

year survival rates are 5-22% [109] and until relatively recently, chemotherapy and

radiotherapy regimens were used only as palliation with very few long term survivors.

More effective treatment options for stage IV disease are now found in the form of

BRAFi [199] and immunotherapies [60, 61].

I will briefly review adjuvant therapies for melanoma and treatment options for stage IV

disease and then concentrate on interferon- (IFN) and chemotherapy with

dacarbazine or temozolomide which are discussed further in this thesis. These are

older approaches to treatment. They are of relevance here as these were the only

options when I started my work and because they are likely to retain some value for the

foreseeable future in patients without targetable oncogenic mutations. Furthermore

both DTIC and IFN have a demonstrable therapeutic effect albeit in a small proportion

of patients with melanoma and understanding the biological determinants of those

effects is important.
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1.8.1 Adjuvant therapies

Adjuvant treatments are used after tumour has been surgically removed to help reduce

risk of recurrence. A range of adjuvant regimens have been tested in melanoma

including chemotherapy, immunotherapy, radiotherapy, anti-angiogenic therapies and

combination chemo-immunotherapy [200, 201]. Overall, studies assessing these

agents have not demonstrated any survival benefit. The only promising results have

come from use of IFN [200, 202-205] and ipilimumab [206].

Ipilimumab, is a monoclonal antibody that blocks the cytotoxic T-lymphocyte-

associated antigen 4 (CTLA4). Expression of the CTLA4 protein causes inhibition of T

cell activation and proliferation [207, 208]. In the adjuvant setting, a phase II trial of

patients with high-risk resected stage IIIC or IV melanoma, was associated with

improved survival outcome [209] and a phase III EORTC trial is on-going to assess this

further in patients with stage III (with metastases >1mm) disease [206].

Part of this thesis focuses on identification of factors associated with benefit from IFN

therapy, therefore I will discuss the evidence for use of IFN in further detail.

1.8.1.1 Interferon- (IFN)

1.8.1.1.1 Action of endogenous type 1 interferons

Interferons are cytokines which have direct antiviral and anti-proliferative effects, but

also enhance immune recognition of viruses and tumour cells [210]. IFN- is a type 1

interferon as is IFN- [211]. The major producers of type 1 interferons are plasmocytoid

dendritic cells, which present antigen from tumour cells or viruses to T lymphocytes

[212]. Type 1 interferons are also produced by T cells, monocytes, macrophages and

natural killer cells [213]. Effects of type 1 interferons are predominantly mediated

through the IFN receptor [214] which activates the JAK-STAT pathway (Figure 1-4).

This signalling cascade induces expression of hundreds of IFN stimulated genes

(ISGs) associated with a number of biological processes [211, 213, 214] (Figure 1-5).

IFN can have direct anti-proliferative effects on tumour cells by decreasing activity of

cyclin dependent kinases (CDK) in the cell cycle via influences on function and

expression of CDK2, cyclins, the transcription factor, E2F, retinoblastoma protein and

CDK inhibitors, such as p15INK4b [215-217]. The effects of IFN on host immunity have

been reported to play a more central role in tumour response than direct

antiproliferative effects [218]. These include increased anti-tumour responses by

cytotoxic T cells and natural killer cells and reduction of regulatory T cells [219-221]. In

view of the numerous actions of interferon, additional exogenous interferon therapy
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would be expected to have a direct anti-proliferative effect on the tumour and aid the

immune system in halting progression of any residual tumour that may be present

following surgery or in-transit melanoma cells. However, clinical trials which have

aimed to identify clear overall survival benefit with IFN therapy have yielded conflicting

results. This may reflect tumour-induced immune suppression, for example defects in

IFN signalling in lymphocytes, and tumour evasion of anti-tumour immune responses

[70, 222-224].

1.8.1.1.2 Clinical trials of interferon- in melanoma

There have been 14 randomised controlled trials to date comparing use of adjuvant

IFN versus observation in patients with high risk melanoma with dosing regimens

varying between trials [205, 225]. Results from these studies are conflicting. Some

showed benefit in terms of prolonging relapse free survival (RFS) with little influence on

overall survival (OS) [226-228] whereas others showed no benefit [229, 230]. However,

in meta-analysis, it was clear that IFN does provide benefit in terms of RFS (hazard

ratio from most recent analysis 0.82 (95% CI 0.77-0.87), p<0.001), with a less clear

benefit in terms of OS time (HR 0.89 (95% CI 0.83-0.96), p=0.002) [203-205]. Dose

and duration of IFN therapy did not appear to influence these effects [203-205]. In the

most recent trial comparing pegylated IFN therapy (pegylation prolongs action of IFN

so less injections are required) with observation, particular benefit was seen in RFS

and OS for patients with microscopic nodal involvement compared with palpable nodal

involvement and ulcerated primary tumours were more sensitive to IFN than non-

ulcerated tumours [227]. The association between primary tumour ulceration and IFN

benefit has been confirmed in recent meta-analysis of IFN trials [204, 227, 231]. This

association will be explored in further detail in Chapter 7.

IFN therapy is associated with significant side effects, including most commonly

fatigue, but also myalgia, arthralgia, anorexia, depression and liver toxicity [69, 229,

230]. The frequency of side effects is related to the dose of IFN received, with 15% of

patients terminating treatment due to toxicity in lower dose regimens [230], increasing

to 31% of patients in higher dose regimens [227]. For those patients who persevere

with IFN therapy, treatment has been demonstrated to have a detrimental effect on

their quality of life [232]. IFN causes release of a cascade of cytokines including tumour

necrosis factor- (TNF-), interleukin-1 (IL1), IL2, IL6, IFN- and IFN inducible protein

10. These cytokines initiate cellular processes that produce many of the observed

toxicities associated with IFN therapy [233]. The mechanism of hepatotoxicity

associated with IFN is poorly understood [234, 235].
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Figure 1-4: Activation of the classical JAK-STAT pathway by type 1 IFN.

The IFN receptor subunit, IFNAR1 is associated with TYK2 and IFNAR2 is

associated with JAK1. Phosphorylation and activation of TYK2 and JAK1 result in

tyrosine phosphorylation of STAT2 and STAT1, which leads to formation of

STAT1-STAT2-IRF9 complexes, also known as ISGF3 complexes [236]. These

complexes move to the nucleus and bind to ISREs in DNA and initiate

transcription of ISGs. Figure adapted from [211, 214]. Abbreviations used:

IFNAR1 and IFNAR2, IFN receptor subunits; TYK2, tyrosine kinase 2; JAK1,

Janus activated kinase 1; STAT, signal transducer and activator of transcription;

IRF9, IFN-regulatory factor 9; ISGF3, IFN-stimulated gene (ISG) factor 3; ISRE,

IFN-stimulated response element; ISG, IFN stimulated genes.
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Figure 1-5: Production and action of endogenous type 1 interferons.

Reviewed by [211, 214, 220]. Abbreviations used: MHC, major histocompatibility

complex.
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melanoma, but this benefit is limited by the toxicity associated with use of the drug.

Currently clinicians cannot identify those patients who will obtain an overall benefit from

IFN therapy so there is no standard systematic adjuvant therapy recommended in

Europe for those with resected high risk melanoma [76, 200, 237].

1.8.2 Treatment of stage IV disease

Metastatic melanoma has a dismal prognosis and until recently, treatment was limited

to chemotherapy with dacarbazine (DTIC) or temozolomide (TMZ). Recent advances

have seen the development of immunotherapies and targeted therapies which are

effective in stage IV disease. In phase III trials, the anti-CTLA4 antibody, ipilimumab,

improves survival in unresectable stage III and stage IV disease compared to peptide
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immunoregulatory monoclonal antibodies with less toxicity continues. For example,

antibodies against another molecules that regulate T-cell activation, such as the

programmed death-1 protein (PD-1) and its ligand PD-L1 have shown promising

results [238-241].

The BRAFi, vemurafenib, has been shown to prolong survival in a phase III trial with a

relative reduction of 74% in risk of either death or disease progression and a 48%

response rate in patients with metastatic melanoma with a BRAF V600E mutation

compared to DTIC [199]. Despite the initial responses seen with vemurafenib,

treatment is associated with side effects, such as development of cutaneous squamous

cell carcinomas and keratoacanthomas [199, 206]. Of greater concern, is that

resistance to vemurafenib invariably develops and understanding the mechanism by

which a BRAF mutation modifies gene expression will greatly assist the intensive

efforts underway investigating mechanisms of resistance [199, 206, 242].

Despite these significant advances in treatment of advanced disease, use of

ipilimumab is limited by side-effects [60, 61, 206] and use of vemurafenib is limited to

the approximately 40% of patients with tumours with mutated BRAF and resistance is

an issue [31, 199, 206, 242]. Therefore, chemotherapy with DTIC and TMZ still has a

role in treatment and is discussed in further detail.

1.8.2.1 Chemotherapy for stage IV disease

First line chemotherapy for advanced melanoma is DTIC, which achieves response

rates of 7-13%, with a further 15-28% having stable disease, but few of these

responses are long-lasting [243, 244]. Despite numerous trials to assess combination

chemotherapies and chemotherapy in combination with IFN or interleukin-2 (IL2), none

of these regimens prolong survival and any survival benefit is negated by toxicity and

expense of the agents [245, 246]. Therefore, DTIC monotherapy is regularly used for

patients with stage IV disease. DTIC is an alkylating agent which methylates DNA at

the O6-position of guanine. During cell replication this causes mutations and following

mismatch repair, double-stranded breaks in DNA which eventually lead to cell death by

apoptosis [247]. Temozolomide (TMZ) is also an alkylating agent used in melanoma

which undergoes spontaneous conversion to the active alkylating agent 5-(3-

methyltriazen-1-yl)imidazole-4-carboximide (MTIC) which has similar actions to DTIC

[248]. TMZ has the advantage that it is can be administered orally and it crosses the

blood-brain barrier making it suitable for treatment of brain metastases. TMZ has

similar efficacy to DTIC [243, 249], and so is frequently used in melanoma.
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In common with adjuvant IFN therapy, response to DTIC treatment cannot currently be

predicted and predictive biomarkers of response would assist clinicians and patients in

being able to decide whether DTIC treatment is worthwhile.

1.8.3 Personalized therapies for melanoma

Predictive biomarkers provide information about likely responses to treatment [157].

Host and tumour factors may influence how a patient and a tumour respond to

treatments such as IFN or chemotherapy. Patient characteristics may influence toxicity

derived from a therapy or efficacy by modifying metabolism of a drug. Tumour

characteristics such as the presence of mutations or altered gene expression may

influence how effective a treatment is if the therapy targets the pathway affected by the

genetic alteration, for example BRAF mutations predict response to BRAFi [199].

As the focus of this thesis is on identification of biomarkers in tumour tissue, in the next

section, I will review the tumour factors that have been associated with treatment

benefit from IFN and DTIC chemotherapy.

1.8.4 Tumour factors that predict benefit from IFN therapy

As mentioned previously, patients with ulcerated tumours or those with microscopic

nodal involvement appear to receive greater survival benefit with IFN therapy [204,

227, 231]. An EORTC trial is underway comparing adjuvant therapy with pegylated IFN

or observation in patients with ulcerated melanoma and/or low lymph node burden to

investigate this further. The biological significance of melanoma ulceration is

furthermore unclear; because it is such a strong prognostic indicator and predictive

factor, there is a need for better understanding of the biological processes in an

ulcerated tumour and I will report an investigation of this in Chapter 7.

In melanoma cell lines, expression of a number of genes and proteins have been

associated with IFN resistance or sensitivity. These genes have been identified using

techniques such as gene expression microarrays and proteomic approaches. Many are

associated with the classical IFN signalling pathway such as IFN-regulated

transcription factors and genes with IFN responsive promoter regions [250-254]. Other

markers identified include HLA antigens along with novel genes not previously known

to be regulated by IFN [255]. Functional studies in cell lines have demonstrated that

epigenetic mechanisms may also influence responses to IFN therapy [256-258]. These

findings provide insight into the mechanisms of IFN resistance in cell lines, but require
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confirmation in tumour samples before being considered as potential predictive

biomarkers.

In a small study using 26 primary melanoma tumours which were methylthioadenosine

phosphorylase (MTAP) positive using immunohistochemistry, patients who received

IFN received significant benefit in terms of OS than those who did not receive IFN

therapy. This observation was not seen in MTAP negative tumours [259]. MTAP

catalyses phosphorylation of methylthioadenosine (MTA). MTA inhibits

methyltransferase which reduces the level of methylated STAT1 in cells, methylated

STAT1 is required for growth inhibition of cells by IFN so when MTAP is present in cells

there are higher levels of methylated STAT1 which would correlate with the

observation of better IFN response in MTAP positive tumours [260-262]. The

association between STAT1 and STAT3, which down-regulates response to IFN, was

further investigated in a small study of nodal tumour tissue from 21 patients.

Phosphorylated STAT1 and STAT3 were identified using IHC and higher

pSTAT1/pSTAT3 ratios before treatment were associated with longer OS after IFN

therapy [263].

Again, studies using tumours to identify predictive markers of IFN benefit have been

few and small. A well powered study to identify gene expression in tumours which

correlates with IFN benefit would be likely to identify candidates which would provide

insight into mechanisms of IFN resistance in melanoma cells and perhaps identify

predictive markers of survival benefit or toxicity which could be used clinically.

Currently tumour ulceration represents a predictive marker and further investigation

into the biological processes of ulceration may provide insight into mechanisms of IFN

responsiveness and is the subject of Chapter 7.

1.8.5 Tumour factors that predict response from chemotherapy

In view of the DNA damage caused by DTIC/TMZ therapy, over-expression of genes

related to DNA repair in melanoma tumours has been postulated to be linked to the

chemoresistance of melanoma [264]. The association between expression of candidate

DNA repair genes and chemotherapy responses has been explored by a number of

previous authors. Examples of genes and pathways investigated are O6-

methylguanine-DNA-methyltransferase (MGMT), which removes alkyl groups from

DNA [265-273], the mismatch repair pathway [248, 265, 274, 275] and the base

excision repair pathway [265, 276-278]. The association between DNA repair gene

expression and chemotherapy response is this subject of Chapter 8 and will explored

further in this chapter.
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Bcl-2 is a antagonist of apoptosis and over-expression is common in melanoma,

particularly in melanoma metastases that do not respond to chemotherapy [279, 280].

Studies have shown that use of BCL2 antisense therapy and small-interfering RNAs

sensitizes melanoma to apoptosis inducing therapies such as DTIC [279, 281],

highlighting the importance of this protein in chemoresistance.

Isolated limb perfusion of chemotherapeutic drugs is occasionally used for treatment of

metastatic melanoma. Melphalan is the chemotherapy typically used for these

procedures and is also classified as an alkylating agent [282]. In a study of 30 patients

treated with isolated limb perfusion with melphalan, high expression of the tumour

suppressor p16INK4a and absence of an activating BRAF mutation independently predict

response to therapy [283].

Large-scale screens of cell lines from cancers which are either sensitive or resistant to

chemotherapeutic regimens, other than DTIC or TMZ, have used genomic and gene

expression analysis to identify biomarkers which predict chemotherapy sensitivity in

validation datasets [284-287]. In vitro drug sensitivity assays of melanoma cells have

been assessed as a means of identifying those patients with melanoma who will

respond to non-standard chemotherapeutic regimens with some success [288]. These

assays have also been used in other cancers [289]. Results from these approaches

are promising and could be extended to DTIC or TMZ in melanoma treatment in the

future.

In summary, there are a number of tumour biomarkers which have been linked with

chemotherapy response. To assess these further, a well-powered study is required

with robust response data, ideally to Response Evaluation Criteria in Solid Tumours

(RECIST) standards [290]. I have developed such a study during my PhD, which is

described in further detail in Chapter 8.

1.9 Formalin-fixed paraffin embedded tissue (FFPE) for

identification of prognostic and predictive biomarkers

Identification of prognostic and predictive biomarkers in melanoma would be greatly

enhanced by being able to use stocks of FFPE tissue from patients with long-term

follow-up and information about current prognostic markers. Use of FFPE tissue has

been limited in the past because of the severely degraded nature of RNA and DNA

extracted from such tumour blocks, which has been unusable in many assays [291].

This thesis describes the analysis of FFPE melanoma tissue with new technologies,

specifically designed for use with degraded nucleic acids, and more established
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techniques, to identify prognostic and predictive biomarkers. I will briefly discuss some

of the methodological issues faced when working with small melanoma tumours to

identify genetic markers of prognosis and responses to therapy.

As previously discussed, histological examination of melanoma tumours is essential to

accurately assess features that have prognostic value such as Breslow thickness or

mitotic rate. Histological specimens are routinely fixed for histological diagnosis using

formalin and then embedded in paraffin to allow sections to be taken for staining and

histological review. Formalin is a cross-linking fixative which preserves tissue and

cellular structure by cross-linking proteins and nucleic acids [77]. When nucleic acids

are extracted, cross-links cause degradation. Furthermore addition of monomethylol

groups to bases can interfere with down-stream reverse transcription and amplification

reactions [292]. Despite modifications to RNA extraction protocols, RNA can be

severely degraded being less than 300 base pairs in length, limiting the ability to

examine variation in RNA [291]. Therefore, use of microarray technology has been

limited with RNA extracted from FFPE tissue, restricting the use of this valuable tissue

resource. This thesis describes use of the cDNA-mediated annealing, selection,

extension and ligation (DASL) assay (Illumina, San Diego, CA) to assess gene

expression in FFPE melanoma samples. DASL was specifically designed for use with

degraded RNA, such as that extracted from FFPE tissue [293] and produces

reproducible gene expression results from degraded RNA [293-297].

1.10Outline of thesis chapters

To address the major aims of the thesis outlined in section 1.1, I will briefly outline the

contents of the chapters of this thesis.

Chapter 2 describes the patients, samples and methods used throughout the thesis. It

also presents methodological work assessing use of new technologies and discusses

techniques for tumour sampling.

Chapter 3 presents results using the DASL assay to identify prognostic markers in

FFPE primary melanoma tumours. It includes an assessment of quality control

measures to predict assay performance and validates findings in an independent

sample set.

Chapter 4 describes use of the DASL assay to identify a group of genes with

prognostic significance in primary melanoma tumours. This chapter includes an

assessment of gene ontology and pathway analyses with gene expression microarray
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data. Development of methods for validation of DASL results using quantitative Real-

time PCR with FFPE melanoma tissue are also presented.

Chapter 5 describes a pilot study to assess the performance of the DASL assay using

very small sentinel node biopsy samples. Results from nodal specimens are compared

with matched primary tumours to identify genes associated with metastatic

progression. This chapter also includes an assessment of quality control methods for

the DASL assay in different tissue types.

Chapter 6 reports identification of BRAF and NRAS mutations in primary melanoma

tumours and identifies associations between mutation status, clinico-pathological

factors and outcome. This chapter also presents gene expression profiles associated

with mutation status.

Chapter 7 describes analyses to identify factors associated with primary tumour

ulceration to gain insight into the prognostic and predictive significance of this tumour

factor. Clinico-pathological factors independently associated with ulceration are

identified in a large cohort of patients, with tumour gene expression profiles and

immunohistochemical features assessed for a subset of patients.

Chapter 8 presents results of analyses using medium-throughput gene expression

platforms assessing associations between DNA repair gene expression and response

to DTIC or TMZ chemotherapy. This chapter includes a methodological assessment of

the Fluidigm gene expression profiling system with FFPE melanoma tissue. It also

describes the study design for the “Predicting Response to Chemotherapy” study,

which I started during my PhD.

Finally, Chapter 9 will summarise the main findings of my thesis, discuss limitations

and describe future work that will be required.
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2 Methods

2.1 Aims

The aims of this chapter are:

 To describe the studies from which patient samples and clinical data have been

derived for work presented in this thesis.

 To describe methodology used throughout the thesis.

 To justify use of tissue microarray needles to sample melanoma tumour tissue.

 To describe an assessment of the Illumina Whole-Genome cDNA-mediated

annealing, selection, extension and ligation (DASL) HT assay with RNA

extracted from formalin-fixed paraffin-embedded (FFPE) melanoma tissue.

2.2 Patients and samples

2.2.1 Samples from patients recruited to studies

Samples from patients recruited to the following studies have been used repeatedly in

the work I will present in my thesis. Studies have received ethical approval for use of

tissue samples. The Leeds Melanoma Cohort Study and Retrospective Sentinel Node

Biopsy Study were underway when I started my PhD.

2.2.1.1 Leeds Melanoma Cohort Study

Patients diagnosed with melanoma in the Yorkshire and Northern region of the UK

have been recruited to a population-based case-control/ cohort study since 2000. The

aims of this study are to identify histological and molecular predictors of survival in

primary melanomas, to investigate how hereditary variation in melanoma patients

influences how a patient interacts with their tumour, how somatic changes in tumour

may influence hereditary effects and to assess how environmental factors influence

survival. A total of 2135 patients have been recruited and recruitment of patients

ceased on 31st December 2011, except for those with melanomas of rare (sun-

protected) sites. For each case, lifestyle indicators and lifetime environmental exposure

data have been collected using questionnaires, and blood samples have been taken for

DNA, lymphocytes, serum and plasma extraction. Patients have been followed-up
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using annual questionnaires to identify melanoma relapses, and their general

practitioners have been asked to complete updated surveys on their health/relapse

status every two years. Further information relating to tumour relapse and overall

survival has been obtained from hospital notes and the Office for National Statistics.

Primary melanoma tumour samples are being been traced for each case.

Between September 2000 and December 2001 and from July 2003 until December,

patients with tumours of Breslow thickness less than 0.75mm were not recruited in

order to increase the power of the study to identify predictors of relapse as tumours

thinner than 0.75mm are usually cured by excision. Between January 2002 and June

2003 all patients diagnosed with invasive melanoma were recruited to the study for the

purpose of the case-control component of the study. For this thesis, I will present data

derived from the first 254 FFPE primary melanoma tissue blocks identified from

patients with tumours greater that 0.75mm with the longest follow-up period. Approvals

for the study have been granted by the Multicentre Research Ethics Committee

(MREC) (1/3/057) and the Patient Information Advisory Group (PIAG) (3-09(d)/2003).

2.2.1.2 Retrospective Sentinel Node Biopsy Study

This study was carried out in order to identify the clinico-pathological predictors of

positive sentinel node biopsy (micrometastases). Patients with tumours equal to, or

greater than 0.75mm in thickness who underwent sentinel node biopsy to identify nodal

metastatic spread of tumour between 1994 and 2006, were recruited from five centres

to this retrospective study. Cases were patients who had had a positive sentinel node

and controls were those with a negative sentinel node biopsy. Controls were randomly

selected to be frequency matched with cases by year of sentinel node biopsy and

centre where the biopsy was performed. Clinical and survival data relating to patients

was obtained from hospital notes and the Office for National Statistics. The first 218

FFPE primary tumour blocks from participants with longest follow-up were used for

work I will present. Ethical approval for the study was granted by Leeds (East)

Research Ethics Committee (06/Q1206/149) and PIAG (3-06(b)/2006).

2.2.1.3 Predicting Benefit from Interferon Treatment: Personalised

Therapy for Melanoma

Melanoma tumour samples are currently being collected for this study, which I

developed and started during my PhD, and aims to identify genetic factors predictive of

benefit from interferon-. Although I set up the study the recruitment to it will continue

beyond my PhD period, and in fact the direction of work that I pursued meant that I did
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not need to use samples from this study as a major component of my work. A number

of samples have been used for methodological work described in this chapter but I will

not report any results from the study in this thesis. Ethical approval for this study has

been granted by the North West Research Ethics Committee (08/H1010/61) and PIAG

(3-06(d)/2008).

2.2.1.4 Predicting Response to Chemotherapy in Malignant Melanoma:

The role of DNA repair genes

This is the second study I developed and ran, with management help from Mr Christy

Walker, a Research Nurse within the research group, during my PhD and the study

design and aims are described in detail in Chapter 8. Melanoma tumour samples are

still being collected for this study to increase the statistical power to determine whether

expression of DNA repair genes is associated with response to chemotherapy in

advanced melanoma, but I have analysed sufficient to report in Chapter 8. A number of

samples have been used for methodological work described in this current chapter.

Ethical approval for this study has been granted by the Yorkshire and Humber Central

Research Ethics Committee (10/H1313/72) and the National Information Governance

Board for Health and Social Care (formerly PIAG) (ECC 8-02 (FT2)/2010).

2.2.2 Central review of tumour histology

For specimens from the Leeds Melanoma Cohort Study and the Retrospective Sentinel

Node Biopsy Study used in gene expression work detailed in Chapters 3, 4, 6, 7 and 8

and immunohistochemical staining described in Chapter 7, diagnostic haematoxylin

and eosin (H+E) slides of tumours were centrally reviewed by Dr Andrew Boon (Leeds

Melanoma Cohort Study) or Professor Martin Cook (Retrospective Sentinel Node

Biopsy Study). Both pathologists were blinded to the contents of the original histology

report. There can be much variability in reporting of melanomas between pathologists

[298, 299], therefore central review of the specimens was undertaken to ensure

consistent reporting of histological features across tumours within each study. This

process also allowed us to obtain a more complete dataset, for example by providing

mitotic rate data which has only recently been added to the American Joint Committee

on Cancer (AJCC) staging guidelines and has not been reported on histology reports

for many of the older specimens used in this study [58]. For tumours from patients

recruited to the Leeds Melanoma Cohort Study, the pathology review was limited to

Breslow thickness, presence of ulceration, mitotic rate and histological subtype of

tumour, whereas review of tumours from patients recruited to the Retrospective
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Sentinel Node Biopsy Study was more detailed including assessment of vascular or

perineural infiltration, presence of tumour infiltrating lymphocytes, regression,

microsatellites and sentinel node biopsy status. For analyses described in Chapter 7,

centrally reviewed data was used where available, if this was not available details from

histology reports were used.

2.2.3 Patient samples used in pilot work

In view of the small size of melanoma primary tumours, pilot work has been undertaken

using metastatic melanoma FFPE nodal samples which are much larger than primary

tumours allowing multiple sampling without exhausting tissue blocks of tumour

material. A total of 14 tissue blocks, from 10 patients were traced from the Pathology

Department from Leeds Teaching Hospitals Trust which were archived between 2000-

2005. Informed consent for use of these tissue samples has been obtained from all

patients and tissue collection was approved by the Leeds Ethics Committee.

2.3 Sampling of FFPE primary melanoma tumour blocks

2.3.1 Justification for sampling using a tissue microarray (TMA)

needle

In this work, sampling of tumour was carried out using a TMA needle inserted

horizontally through the deepest part of the primary tumour containing the lowest

proportion of stromal or inflammatory cells. The projects described here were intended

to allow analysis of unselected, “population-ascertained” primary tumours thicker than

0.75mm. Therefore, this sample set is less biased than are normally available,

especially when frozen samples were used. However most primaries are small and

when selecting sampling procedure the priorities were to sample representative areas

of the tumour without destroying the tissue block.

Loss of the block must be avoided in case it is needed by the patient again either for

review of the histology if the diagnosis is contested, or if the tumour tissue is required

for clinical genetic testing. Thus the need was to balance the clinical needs of the

patient, which are paramount, with the scientific needs of the study. When the Leeds

Melanoma Cohort study was instigated, the clinical need for mutation testing was a

theoretical issue for the future, but became a clinical reality surprisingly quickly during

the study.
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The sampling options were using a TMA needle or taking tissue sections and using

laser capture microdissection (LCM). The decision to use a TMA needle was made by

the group after considering the following:

 Use of a TMA needle leaves the block physically intact so that the site of

sampling can be reviewed subsequently. A section taken after sampling,

compared with a clinical slide leaves a permanent image of the histological

appearances of the tumour sampled.

 The shape of the melanocytic tumour and its relationship with the stroma is not

then prejudiced if clinical re-review of the block is required.

 Sectioning wastes tissue as sections are discarded.

 LCM is too time consuming for large-scale studies.

 LCM is more likely to avoid stromal and inflammatory cells. However, work

done by Dr Caroline Conway, as a previous PhD student, showed that when

cores were horizontally sectioned, a minimum of tumour cells were present

which is widely accepted as being required for accurate results when LCM

cannot be performed [187] with percentages as low at 50% used for

identification of prognostic gene expression profiles in breast cancer [300].

 Much of the work done by the group is directed towards the identification of

biomarkers. Work done in breast cancer research has shown that signatures of

good prognosis are often a result of the presence of inflammatory cells within

the tumour [301, 302]. We judged that clinical tests are more likely to be

feasible using TMA needles than using LCM, although evolving technology may

prove this assumption to be wrong. The group therefore argues that TMA

samples would be appropriate for biomarker work. Incidentally we have been

consistent in sampling to chose the least inflamed component of the tumour but

have not sampled tumours where the inflammatory component appeared to be

dominant. For biomarker work there is an argument that all tumours should

have been sampled but where sampling would have resulted in less than 70%

of tumour cells this was avoided. There is some recognisable bias therefore in

this approach.

To accurately sample an area of confluent tumour from a tissue block a section of

tissue was taken for staining with H+E. Sectioning and staining of tissue was

undertaken by Dr Filomena Esteves and Dr Jon Laye.
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2.3.2 Sectioning of tumour blocks

Blocks were mounted onto a microtome and trimmed until a clean face was achieved.

One five micron tissue section was taken from each primary tumour block and floated

onto the surface of a microtome water bath at 45oC and then mounted onto a

Superfrost glass slide (Solmedia, Romford, UK) labelled with study number. Sections

were dried overnight in an oven at 36oC and then fixed to the slide by placing the slide

tissue side up on a heating block at 60oC for 20 minutes.

2.3.3 Haematoxylin and eosin (H+E) staining

Slides were placed into a plastic slide rack with up to 24 slides being processed at

once. Sections were dewaxed by immersing the slide in xylene for 5 minutes which

was repeated 3 times using fresh xylene each time. The slides were drained on tissue

paper and rehydrated by immersing in 100% ethanol for 2 minutes repeating 3 times

using fresh ethanol each time followed by 90% ethanol for 2 minutes and 75% ethanol

for 2 minutes. Slides were then placed under a fast flowing tap for 1 minute. Slides

were stained in Mayer’s haematoxylin for 2 minutes and then placed under a fast

flowing tap for 1 minute before being immersed in Scott’s Tap Water for 1 minute and

then rinsed again in water for 1 minute. Slides were then placed in eosin stain for 3

minutes followed by rinsing in water for 1 minute. The slides were drained and then

dehydrated by being immersed in 100% ethanol for 1 minute repeated twice using

fresh ethanol each time. Slides were dried in air and immersed in xylene for 1 minute

and then fresh xylene for another minute. Cover slips were mounted to the slides using

one drop of Depex mounting medium (Solmedia, Romford, UK) and dried in a fume

hood overnight.

2.3.4 Slide review

The stained slides were reviewed by Professor Newton Bishop to identify an area of

tumour suitable for sampling. The optimum area was not necrotic and the deepest part

of the tumour with the highest percentage of tumour cells and minimal stromal or

lymphocyte contamination. This area was marked on the H+E slide using a fine-tipped

permanent marker (Figure 2-1). If the tumour was large, and it was judged that more

TMA cores could be taken without prejudicing the clinical sample, a maximum of two

areas were marked for sampling on primary samples and a maximum of four areas on

metastatic specimens. The number of cores which could be taken was stipulated in the

protocol for each study.
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As melanin interferes with polymerases [303], the function of which is essential for

many of the molecular techniques described in this thesis, the least pigmented

component of the dermal tumour was selected for sampling. Pigmentation of tumours

reflects the biological nature of the cells [304, 305] and therefore avoiding these areas

may limit our analyses. Furthermore, there are tumours which show marked

heterogeneity having pigmented and non-pigmented areas. The group has planned

studies to compare these areas in the future. For the studies described in this thesis,

consistency of sampling was judged to be the priority.

Figure 2-1: A haematoxylin and eosin slide marked for tumour sampling.

2.3.5 Sampling using a tissue microarray (TMA) needle

The marked slide was used to guide sampling from the tumour block. Tumour sampling

was undertaken by a number of members of the Section of Epidemiology and

Biostatistics, including myself. The tissue block was placed under the TMA needle, the

H+E was placed on top of the block and the needle lined up above the mark on the

slide. The slide was removed and the needle manually guided into the tissue block

(Figure 2-2).

Figure 2-2: Using a tissue microarray needle to take a tissue core from a tumour

block.
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A 0.6mm x 2mm tissue core was taken from the block and placed into a labelled 1.5ml

micro-centrifuge tube. The core was stored at 4oC prior to nucleic acid extraction. As

the TMA needle is not disposable and cannot be cleaned using standard techniques,

the TMA needle was effectively cleared of any residual tumour cells by two cores being

taken from a blank, paraffin-only block.

Dr Caroline Conway has previously assessed the tumour content of tissue cores

sampled using this technique. To do this, Dr Conway embedded representative cores

horizontally in wax blocks and blocks were sectioned to obtain 5 micron sections

throughout the tissue core. H+E sections were prepared from these sections and

reviewed visually using light microscopy to determine the percentage tumour content of

each core. The tumour content was estimated to be at least 70% tumour cells [187].

2.4 Melanin score

Melanin in melanoma tumours can lead to unreliable spectrophotometric quantification

of nucleic acids [306] and can inhibit DNA polymerases [303]. To assess the

association between dark, and therefore tumours with high melanin concentrations and

performance in the cDNA-mediated annealing, selection, extension and ligation (DASL)

assay, each tumour that was given a melanin score based on the visual melanin

content of the TMA cores (0, no melanin to 3, black tumour).

2.5 Tumour sampling from small sentinel node biopsy samples

2.5.1 Laser capture microdissection (LCM)

In Chapter 5, tissue for RNA extraction was sampled from small sentinel node biopsy

samples using LCM. There are two general types of microdissection; infrared laser

capture systems and ultraviolet (UV) laser-cutting systems such as that used in this

work [307, 308]. Laser-cutting systems use a narrow-beam UV-A laser to draw around

and sample cells of interest. These cells are then catapulted using the laser into a

collection tube or through contact with the collection cap [307]. Tissue sections for

dissection using the PALM MicroBeam LCM microscope (Carl Zeiss, Jena, Germany)

used in this work can be mounted onto polyethylene naphthalate (PEN) or polyethylene

terephthalate (PET) coated slides which act to stabilise larger pieces of tissue so an

entire piece of tissue can be drawn around and catapulted into the collection tube

[309]. From normal glass slides sample material can be captured directly using the
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“AutoLPC” function where pieces of tissue are catapulted into the collection tube using

multiple laser pulses [309]. There are concerns that the UV laser can damage cells

directly hit by the laser [310], however using the PALM MicroBeam system, dissection

and catapulting of single live cells and subsequent culture appears to have no effect on

proliferation rate suggests that any laser damage to cells is minimal [311].

In the study described in Chapter 5, tissue was sampled using LCM from either new

tissue sections, unstained archival sections or diagnostic H+E slides with the coverslip

removed. Coverslips were removed by soaking the slide in xylene until the coverslip

floated off the specimen. Following coverslip removal, sections were dried and stored

at -80oC prior to LCM. New and archival unstained sections were stained with H+E

using diethylpyrocarbonate (DEPC) treated water as described in section 2.3.3 and

dehydrated in ethanol before being stored at -80oC prior to sampling. LCM was

performed using the PALM MicroBeam LCM microscope. As archival sections were

stored on Superfrost slides, new sections were mounted onto Superfrost slides to allow

a comparison between archival and new sections. Tissue was microdissected in

“AutoLPC” mode under the supervision of a Consultant Histopathologist with expertise

in melanoma (Dr Andrew Boon). Number of cells or area of tissue dissected, as

calculated by microscope software, was recorded. Sample pieces were catapulted into

20μl 10% sodium dodecyl sulphate solution aliquoted into the cap of a 0.5μl micro-

centrifuge tube. Tubes were immediately placed on dry ice prior to RNA extraction.

2.6 Extraction of nucleic acids from FFPE tissue cores

2.6.1 Extraction of RNA using the Roche High Pure RNA Paraffin Kit

RNA was extracted from cores of tissue using the High Pure RNA Paraffin Kit (Roche

Diagnostics, Burgess Hill, UK) for the studies described in Chapters 3, 4, 6, 7 and 8.

This kit uses a column containing two layers of glass fibre fleece in a filter. Nucleic

acids are structurally altered and denatured when diluted in guanidine thiocyanate and

in the presence of this high salt solution, they bind to glass fibres [312]. A series of

washing steps removes cellular components. The column is optimized for RNA

extraction, however a DNase I digestion step removes any contaminating DNA.

Purified RNA is eluted from the filter in the presence of very low salt concentrations

[313].
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2.6.1.1 De-paraffinisation of the tissue core and tissue homogenisation

A single tissue core was de-paraffinised in a 1.5ml micro-centrifuge tube by adding

500μl xylene and mixing. Samples were heated to 45oC for 15 minutes on a heating

block and then pulse vortexed for 10 seconds. The xylene was removed carefully using

a pipette. Residual xylene was removed by adding 400μl of 100% ethanol to the tube, 

vortexing and careful removal using a pipette. This ethanol wash step was repeated

and excess ethanol was evaporated by placing the open micro-centrifuge tube on a

heating block at 55oC for 5 minutes.

The tissue was homogenised by adding 100μl tissue lysis buffer, 16μl 10% sodium 

dodecyl sulphate (SDS) solution and 40μl Proteinase K to the dried tissue pellet. This 

mixture was vortexed and incubated at 55oC until the tissue was fully digested (48-84

hours) with regular vortexing throughout the incubation period.

2.6.1.2 Nucleic acid binding and washing

Following complete tissue digestion, 325μl binding buffer, containing guanidine 

thiocyanate, and 325μl absolute ethanol was added to the lysate and mixed by gentle 

pipetting. This mixture was added to the upper reservoir of a High Filter tube inserted

into a collection tube. The filter and collection tube were centrifuged at 8000g for 30

seconds. The flow-through liquid was discarded and the filter tube centrifuged again at

12,000g for 30 seconds to ensure the filter was dry.

The filter containing the bound nucleic acids was then washed. 500μl wash buffer 1 

was added to the upper reservoir of the filter tube and centrifuged at 8000g for 15

seconds. The flow-through liquid was discarded and 500μl wash buffer 2 was added to 

the upper reservoir of the filter tube and centrifuged through the filter at 8000g for 15

seconds. The flow-through liquid was again discarded and a further 300μl wash buffer 

2 was added to the upper reservoir and centrifuged through the filter at 8000g for 15

seconds. Following disposal of the flow-through liquid the filter was centrifuged at

12,000g for 2 minutes to ensure all residual wash buffer was removed.

2.6.1.3 Elution of RNA

The filter column was transferred into a sterile 1.5ml micro-centrifuge tube and 90μl 

elution buffer was added to the upper reservoir of the column. The column was

centrifuged at 8000g for 1 minute and the filter column was discarded. Contaminating

DNA was removed from the eluate by the addition of 10μl DNase incubation buffer and 

1μl DNase I. The tube was mixed gently by inversion and incubated for 45 minutes at 
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37oC. A second incubation step with Proteinase K increases the purity of eluted RNA,

so 20μl tissue lysis buffer, 18μl 10% SDS and 40μl Proteinase K was added to the 

eluate and the solution was incubated at 55oC for 1 hour. The binding and washing

steps were then repeated as described in section 2.6.1.2. Following the final wash, the

filter column was placed into a sterile 1.5ml microcentrifuge tube. The RNA was eluted

by adding 26μl RNase-free deionized water to the upper reservoir of the filter column 

which was centrifuged through the filter at 8000g for 1 minute. The column was then

discarded. In order to remove any contaminating residual glass fibres from the eluate, it

was centrifuged at 12,000g for 2 minutes to pellet the fibres and the supernatant was

carefully removed into a 0.2ml PCR tube. Extracted RNA was stored at -80oC.

2.6.2 Extraction of DNA using the Qiagen QIAamp DNA FFPE kit

DNA was extracted from tissue cores using the Qiagen QIAamp DNA FFPE kit

(Qiagen, Crawley, UK) for the work described in Chapter 6. This kit uses a column

containing a silica-gel membrane. Samples are de-paraffinised and lysed, DNA then

binds to the membrane in a high salt, chaotropic environment, bound DNA is washed

and finally eluted from the membrane in a low salt solution [314]. Following sample

lysis, there is an incubation period at 90oC to partially remove formalin crosslinks [315,

316], which improves yield and performance of DNA in downstream reactions.

2.6.2.1 De-paraffinisation and tissue digestion

One tissue core was de-paraffinised in a 1.5ml micro-centrifuge tube by incubation at

37oC for 30 minutes in 1ml xylene with regular vortexing during the incubation period.

The xylene was then carefully removed using a pipette and 1ml of absolute ethanol

was added to the sample to remove residual xylene. The tube was then pulse vortexed

and the ethanol carefully removed using a pipette, before 1ml of 70% ethanol was

added. Again the tube was vortexed and ethanol removed using a pipette. The tubes

were left open on a heat block at 37oC to allow any residual ethanol to evaporate.

The dry tissue core was resuspended in 180μl buffer ATL and 20μl Proteinase K was 

added. The tube was vortexed and incubated at 56oC, with agitation and regular

vortexing, until the tissue pellet was fully digested (48-84 hours). The lysed sample was

incubated at 90oC for 1 hour to partially reverse formalin cross-links then briefly

centrifuged and incubated for 2 minutes at room temperature with 2μl RNase A 

(100mg/ml) to remove RNA.
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2.6.2.2 DNA binding, washing and elution

Following this, 200μl buffer AL, which contains guanidine hydrochloride, was added to 

the sample. The tube was vortexed and 200μl of absolute ethanol was added followed 

by further mixing. The tube was briefly centrifuged and the entire lysate transferred to a

QIAamp MinElute column, placed into a 2ml collection tube. The lid was closed and the

column centrifuged at 6000g for 1 minute. The column was placed into a clean

collection tube and the tube containing the flow-through liquid was discarded. Bound

DNA was then washed by adding 500μl of wash buffer AW1 to the column and 

centrifuging at 6000g for 1 minute. The column was placed into a clean collection tube

and a second wash was performed by adding 500μl of wash buffer AW2 to the column 

followed by centrifugation at 6000g for 1 minute. Again the column was transferred to a

clean collection tube and centrifuged at 20,000g for 3 minutes to dry the silica-gel

membrane. Finally, the column was placed into a labelled 1.5ml micro-centrifuge tube

and 30μl of elution buffer ATE was applied to the centre of the membrane and 

incubated at room temperature for 5 minutes to maximise DNA yield. The column and

micro-centrifuge tube were centrifuged at 16,000g for 1 minute to elute the DNA. Eluted

DNA was stored at -20oC.

2.6.3 Extraction of RNA and DNA using the Qiagen AllPrep®

RNA/DNA FFPE kit

Extraction of both RNA and DNA from one tissue core was achieved using the Qiagen

AllPrep® RNA/DNA FFPE kit (Qiagen, Crawley, UK) for studies described in Chapters

6 and 8. This kit became available during my PhD. Methodological work, not presented

here, has demonstrated that the yield and quality of DNA extracted using this kit is

comparable to that from the Qiagen QIAamp DNA FFPE kit. However, the yield and

quality of RNA is significantly better using the Qiagen AllPrep® RNA/DNA FFPE kit

than when using the Roche High Pure RNA Paraffin Kit making it suitable for use in our

studies, with the advantage that RNA and DNA can be derived from the same core,

maximising the use of these precious tissue resources. The AllPrep® kit is designed to

sequentially release RNA and DNA from the same sample. It integrates the QIAamp

technology described in section 2.6.2 with well-established technology for RNA

extraction. Optimized lysis conditions using different buffers allow differential release of

DNA and RNA. Following de-paraffinisation, FFPE tissue is initially incubated in lysis

buffer and Proteinase K optimised to allow RNA release into solution, while genomic

DNA and other insoluble material is precipitated. The sample is then centrifuged to give

a supernatant containing RNA and a DNA containing pellet. The supernatant is
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incubated at 80oC to partially reverse formalin cross-links. Following mixing with

ethanol and buffer containing guanidine thiocyanate, the sample is applied to an

RNeasy MinElute spin column where RNA binds to the silica membrane. Bound RNA is

treated with DNase to remove any residual DNA and washed to remove any further

contaminants. Finally RNA is eluted into RNase-free water. The DNA containing pellet

is lysed further using Proteinase K and incubated at 90oC to reverse formalin

crosslinking. The sample is then mixed with buffer containing guanidine hydrochloride

and ethanol to provide optimal DNA binding conditions and applied to a QIAamp

MinElute spin column. Bound DNA is washed and finally eluted into a low salt buffer

[317].

2.6.3.1 Tissue de-paraffinisation and digestion

Tissue cores were initially de-paraffinised using the methods described in section 2.6.2.

The resulting pellet was resuspended in 150μl tissue lysis buffer PKD and 10μl 

Proteinase K was added, the mixture was then vortexed and incubated on a shaking

heat block at 56oC overnight. Following this, the tube was placed on ice for 3 minutes

and centrifuged for 15 minutes at 20,000g. The supernatant was carefully removed into

a new 1.5ml micro-centrifuge tube, taking care not to disturb the DNA-containing pellet.

2.6.3.2 Extraction of RNA

The supernatant was incubated at 80oC for 15 minutes and following a brief

centrifugation step, 320μl of buffer RLT, containing guanidine thiocyanate, was added. 

Following vortexing, 720μl absolute ethanol was added, the sample was thoroughly 

mixed and transferred to the RNeasy MinElute spin column in aliquots of up to 700μl. 

Following addition of each aliquot the lid of the spin column was closed gently and the

column centrifuged at 8000g for 15 seconds. After each centrifugation step, the flow-

through liquid was discarded and the bound RNA washed using 350μl buffer FRN, 

followed by centrifugation at 8000g for 15 seconds. To remove any contaminating

DNA, 10μl of DNase I stock solution (1500 Kunitz units in 550μl RNase-free water) was 

mixed gently with 70μl buffer RDD, applied directly to the spin column membrane, and 

incubated at room temperature for 15 minutes. Once DNA digestion was complete,

500μl buffer FRN was added to the column which was centrifuged at 8000g for 15

seconds. As the flow-through contains RNA following the DNase I treatment, the

column was placed into a new 2ml collection tube and the flow-through was applied to

the column, followed by a further centrifugation step for 15 seconds at 8000g. The RNA

on the column was washed twice using 500μl of buffer RPE, followed by centrifugation 
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for 15 seconds at 8000g. The flow-through liquid was discarded following each wash.

The spin column was then placed into a new 2ml collection tube, the lid was opened

and the column centrifuged at full speed (16,000g) for 5 minutes. This process dried

the column membrane, as residual ethanol may interfere with downstream reactions.

The column was finally placed into a 1.5ml micro-centrifuge tube and 26μl RNase-free 

water was applied to the membrane. Following incubation at room temperature for 1

minute, the column as centrifuged at 16,000g for 1 minute to elute RNA. The resulting

RNA was stored at -80oC.

2.6.3.3 Extraction of DNA

The DNA containing pellet was resuspended in 180μl tissue lysis buffer ATL and 40μl 

Proteinase K was added. The mixture was vortexed and incubated on a shaking heat

block at 56oC overnight. The lysate was then incubated at 90oC for two hours without

agitation, briefly centrifuged and allowed to cool before 2μl of RNase A (100mg/ml) was 

added and incubated at room temperature for 2 minutes to remove any contaminating

RNA. The tube was briefly centrifuged and 200μl buffer AL, which contains guanidine 

hydrochloride, was added and the sample vortexed. Once mixed, 200μl absolute 

ethanol was added and again the sample was thoroughly vortexed. The entire sample

was transferred to a QIAamp MinElute spin column, the lid was closed gently and the

column centrifuged for 1 minute at 8000g. The collection tube containing the flow-

through liquid was discarded and the column was placed into a new 2ml collection

tube. The bound DNA was then washed by addition of 700μl buffer AW1, followed by 

centrifugation at 8000g for 15 seconds, and 700μl buffer AW2, followed by further 

centrifugation for 15 seconds at 8000g. Following each centrifugation step, the flow-

through liquid was discarded from the collection tube. As a final wash step, 700μl 

absolute ethanol was added to the column, which was centrifuged for 15 seconds at

8000g. To remove any residual ethanol, the column was then placed into a new

collection tube, the lid of the column was opened and the column centrifuged at

16,000g for 5 minutes. Finally the column was placed into a 1.5ml micro-centrifuge

tube, 30μl of elution buffer ATE was applied directly to the spin column, the lid was 

closed and the column was incubated at room temperature for 5 minutes to maximise

DNA yield. The tube was centrifuged at 16,000g for 1 minute to elute DNA. DNA was

stored at -20oC prior to use.
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2.7 Extraction of RNA from microdissected sentinel node

biopsy samples

For the gene expression study described in Chapter 5, RNA was extracted from small

sentinel node biopsy samples sampled using LCM. Following tumour sampling, the

micro-centrifuge tube cap contained tumour specimens in 10% sodium dodecyl

sulphate solution. Tubes were briefly centrifuged and 100μl tissue lysis buffer and 40μl 

Proteinase K were added and then the contents digested at 55oC overnight. RNA was

extracted using the High Pure Paraffin RNA kit (Roche Diagnostics Ltd, Burgess Hill,

UK) as described in section 2.6.1 and eluted in 26μl nuclease free water. Extracted 

RNA was stored at -80oC prior to analysis.

2.8 cDNA synthesis from extracted RNA

2.8.1 cDNA generation using the Invitrogen Superscript™ First-

strand synthesis system

The Invitrogen Superscript™ First-strand Synthesis System (Invitrogen, Paisley, UK)

was used to generate cDNA from extracted tumour RNA from patients recruited to the

Leeds Melanoma Cohort Study as described in Chapters 3 and 4. The standard

protocol uses a mixture of oligo(dT)’s, to bind to mRNA 3`poly(A) tails, and random

hexamers for priming to maximise the amount of cDNA generated from degraded RNA.

First-strand cDNA synthesis is catalysed by Superscript™ II reverse transcriptase which

has been engineered to reduce RNase H activity, which can degrade mRNA, and is not

inhibited by ribosomal or transfer RNA so increasing the yield of cDNA from total RNA.

RNase H is added at the end of the reaction to remove the RNA template and increase

sensitivity of the following PCR reactions [318].

2.8.1.1 cDNA synthesis for osteopontin qRT-PCR

For work described in Chapter 3, 5μl of RNA of variable concentrations was used to 

generate cDNA using the manufacturers protocol.

An RNA and primer mix was prepared by combining 5μl RNA with 1μl of 10mM 

deoxyribonucleotide triphosphate (dNTP) mix (containing 10mM of deoxyadenosine

triphosphate (dATP), deoxycytidine triphosphate (dCTP), deoxyguanosine triphosphate

(cGTP) and deoxythymidine triphosphate (dTTP)), 100ng of random hexamers, 500ng

of oligodeoxythymidylic acid residues (oligo(dT)12-18) and diethylpyrocarbonate (DEPC)
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treated water to a final volume of 10μl. The mixture was incubated at 65oC for 5

minutes and then placed on ice. In a separate micro-centrifuge tube a mix was

prepared containing 2μl of 10x reverse transcriptase (RT) buffer (200mM Tris-HCl (pH 

8.4), 500mM KCl), 4μl of 25mM magnesium chloride, 2μl 0.1M dithiothreitol (DTT) and 

40 units of RNase OUT recombinant ribonuclease inhibitor in a final volume of 9μl. This 

mixture was added to the RNA and primer mix on ice, vortexed briefly and then

incubated at 25oC for 10 minutes. 50 units of Superscript™ II reverse transcriptase

were added to the mix and incubated at 25oC for 10 minutes, followed by 42oC for 50

minutes and finally 70oC for 15 minutes. Following first strand synthesis, the tube was

placed on ice and 2 units of E. Coli RNase H were added. The mixture was incubated

at 37oC for 20 minutes and cDNA was stored at 4oC until required.

2.8.1.2 cDNA synthesis for DNA repair gene qRT-PCR

For work described in Chapter 4, 200ng of input RNA measured using spectro-

photometry was used in each reaction. This RNA quantity was selected as it did not

exhaust stock of eluted RNA from precious samples and in qRT-PCR experiments,

cDNA samples with 200ng of input RNA had lower cycle threshold (Ct) values with

greater reproducibility between replicate samples, than cDNA samples generated using

smaller amounts of RNA. In order to maximise the amount of cDNA generated in each

reaction, the volume of reagents was increased from those stated in the manufacturers

protocol. Methodological work, not presented here, has demonstrated that these

modifications do not significantly alter gene expression results derived from samples.

In detail, reagents were used as described above. The RNA and primer mix was

prepared in a 20μl final volume by combining 200ng of RNA with 3μl of 10mM 

deoxyribonucleotide triphosphate (dNTP) mix, 300ng random hexamers, 1.5μg of 

oligo(dT)12-18 and DEPC treated water to a total volume of 20μl. The mixture was 

incubated at 65oC for 5 minutes and then placed on ice. In a separate micro-centrifuge

tube, 6μl of 10x RT buffer, 12μl of 25mM magnesium chloride, 6μl 0.1M DTT and 120 

units of RNase OUT recombinant ribonuclease inhibitor were mixed in a final volume of

27μl. This mixture was added to the RNA and primer mix on ice, vortexed briefly and 

then incubated at 25oC for 10 minutes. 150 units of Superscript™ II reverse

transcriptase were added to the mix and incubated at 25oC for 10 minutes, followed by

42oC for 50 minutes and finally 70oC for 15 minutes. Following first strand synthesis,

the tube was placed on ice and 6 units of E. Coli RNase H were added. The mixture

was incubated at 37oC for 20 minutes and cDNA was stored at 4oC until required.
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2.8.2 cDNA generation using Applied Biosystems High Capacity

cDNA Reverse Transcription kit

For the Chemotherapy study (Chapter 8), cDNA was generated using the Applied

Biosystems High Capacity cDNA Reverse Transcription kit (Warrington, UK) [319]. This

kit became available during my PhD and uses a simplified protocol compared to the

Invitrogen system. The kit uses random priming and MultiScribe™ reverse

transcriptase to catalyse first strand synthesis [319]. Two further cDNA kits are

marketed by Applied Biosystems, the High Capacity RNA-to-cDNA kit and the High

Capacity RNA-to-cDNA master mix. These offer even simpler work-flows using a blend

of random primers and oligo(dT)’s for priming [320]. When tested, the results of which

are not presented here, the High Capacity cDNA Reverse Transcription kit using

random priming produced superior cDNA from degraded melanoma RNA samples and

so was used for cDNA generation for the Chemotherapy Study (Chapter 8).

For each sample a 2x RT master mix was prepared by mixing 2μl of 10x RT buffer with 

0.8μl 25x dNTP mix (100mM), 2μl of 10x RT random primers, 50 units of MultiScribe™ 

reverse transcriptase, 1μl of RNase inhibitor and 3.2μl of nuclease-free water in a final 

volume of 10μl. This solution was mixed gently and pipetted into a well of a 96-well 

plate. 10μl of RNA (up to 1 microgram) was then added to the mixture, and pipetted 

gently to mix. The plate was sealed, briefly centrifuged and loaded into a thermal cycler

for incubation at 25oC for 10 minutes, followed by 37oC for 2 hours, then 85oC for 5

minutes and finally cooled to 4oC. cDNA was stored at -20oC prior to use.

In all cDNA synthesis reactions, a positive control using supplied control RNA (50

ng/μl) and a reverse transcriptase negative control was included in each experiment. 

cDNA concentrations were measured using spectrophotometry as described in section

2.10.

2.9 Cell line samples

2.9.1 Culture conditions

To optimise assays used in this thesis described in Chapters 6 and 8, RNA and DNA

were extracted from melanoma cell line samples to provide high quality RNA and DNA.

MeWo, SkMel28, Mel Juso, Mel 624 and SkMel5 cell lines were routinely grown in

Dulbecco’s Modification of Eagles high glucose Medium (DMEM, Sigma-Aldrich, UK)

supplemented with 10% foetal calf serum (FCS) and 2mM L-glutamine at 37oC in 5%

carbon dioxide. Cells were harvested at 80-90% confluency, excess serum was
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removed by rinsing cells in 10ml of phosphate-buffered saline (PBS) and then trypsin

was added and incubated at 37oC to detach cells from the culture flask. Supplemented

DMEM was added to the flask to neutralize the trypsin, the suspension was centrifuged

at 400g for 5 minutes to pellet the cells and the pellet resuspended in fresh DMEM.

Cells were counted using trypan blue exclusion and a haemocytometer. For MeWo and

SkMel28 cells, the solution was split into two and centrifuged at 400g for 5 minutes to

pellet the cells. One cell pellet was frozen at -80oC for RNA extraction, the other used

immediately for DNA extraction. For other cells, the entire cell pellet was used for RNA

extraction.

2.9.2 RNA extraction from cell line samples using the Qiagen

RNeasy® Mini kit

The RNeasy® Mini kit (Qiagen, Crawley, UK) was used for RNA extraction from cell

line samples according to the manufacturer’s protocol for ‘Purification of total RNA from

animal cells using spin technology’. This kit uses technology similar to that described in

section 2.6.3. Cells are homogenized and suspended in buffers containing guanidine

thiocyanate, therefore when the lysate is centrifuged through the spin column, RNA

binds to the membrane. Following DNase I treatment and wash steps, RNA is eluted

into RNase-free water [321]. Depending on the cell line, varying numbers of cells were

used for extraction but the number did not exceed 1x107 cells as recommended by the

manufacturer.

Cell pellets were thawed and dislodged from the microcentrifuge tube. Cells were

disrupted and homogenized by adding 600μl Buffer RLT, vortexing the suspension and 

transferring to a QIAshredder spin column. The column was centrifuged for 2 minutes

at 16,000g and then 600μl 70% ethanol was added to the homogenized lysate. The 

sample was transferred in 700μl aliquots into an RNeasy spin column. Each aliquot 

was centrifuged for 15 seconds at 8000g and the flow through liquid was discarded.

Once all the homogenized lysate had passed through the RNeasy column, 350μl of 

Buffer RW1 was added and centrifuged for 15 seconds at 8000g to wash the column

membrane. Flow-through liquid was discarded and 10μl of DNase I stock solution 

(1500 Kunitz units dissolved in 550μl RNase-free water) was gently mixed with 70μl 

buffer RDD. The DNase I solution was applied directly to the spin column membrane

and incubated at room temperature for 15 minutes to remove any DNA. A further 350μl 

Buffer RW1 was added to the column and centrifuged for 15 seconds at 8000g. Flow-

through liquid was discarded and 500μl Buffer RPE was added to the column and 

centrifuged for 15 seconds at 8000g. Flow-through liquid was again discarded and a
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further 500μl Buffer RPE was added followed by centrifugation for 2 minutes at 8000g

to wash the spin membrane. The column was then placed into a new 2ml collection

tube and centrifuged at 16,000g for 1 minute. Finally, the spin column was placed into

a 1.5ml microcentrifuge tube, 30μl of RNase-free water was applied directly to the 

membrane and the column centrifuged at 8000g for 1 minute to elute RNA. RNA was

stored at -80oC prior to use.

2.9.3 DNA extraction from cell line samples using the Qiagen

QIAamp DNA Mini kit

DNA was extracted from cultured cells using the QIAamp DNA Mini kit (Qiagen,

Crawley, UK) according to the manufacturer’s ‘Protocol for cultured cells’. Different

numbers of cells were used for extraction depending on the cell line, but this did not

exceed 5x106 as recommended in the protocol. The kit uses Proteinase K to digest

cells, followed by use of a spin column to bind DNA in optimal conditions. The protocol

also contains an RNase A treatment step to remove any contaminating RNA [322].

Cell pellets were resuspended in 200μl PBS in a microcentrifuge tube and 20μl of 

Proteinase K was added. 4μl of RNase A (100mg/ml) (Qiagen) was then added and the 

mixture incubated for 2 minutes at room temperature. After removal of RNA 200μl 

Buffer AL was added, the sample was mixed and then incubated at 56oC for 10

minutes. Following digestion and brief centrifugation, 200μl 100% ethanol was added 

and the sample was vortexed again. The tube was briefly centrifuged and the mixture

applied to the QIAamp Mini spin column. The column was centrifuged at 6000g for 1

minute and placed into a clean collection tube. To wash bound DNA, 500μl of Buffer 

AW1 was added, the column was centrifuged at 6000g for 1 minute and then placed

into a new collection tube. The bound DNA was washed again by the application of

500μl Buffer AW2 followed by centrifugation at 16,000g for 3 minutes. The column was

transferred into a fresh collection tube and centrifuged again at 16,000g to eliminate

any wash buffer carryover. The column was then placed into a 1.5ml microcentrifuge

tube and 200μl distilled water applied to the membrane. The column was incubated at 

room temperature for 5 minutes and centrifuged at 6000g for 1 minute to elute DNA.

DNA samples were was stored at -20oC prior to use.
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2.9.4 cDNA generation from RNA extracted from cell line samples

cDNA was generated from extracted RNA using the standard method described in

section 2.8.1 with the Invitrogen Superscript™ First-strand synthesis system. One

microgram of RNA was used in each reaction and cDNA was stored at 4oC prior to use.

2.10Quantification of nucleic acid concentrations using

spectrophotometry

Concentration and quality of RNA and DNA extracted from FFPE melanomas was

determined using the ND-8000 spectrophotometer (Nanodrop, Wilmington, DE, USA).

Prior to nucleic acid quantification, the spectrophotometer pedestals were cleaned and

the instrument was blanked using 1.5μl of molecular grade water. The sample (1.5μl) 

was placed on the pedestal for measurement. Between samples the pedestals were

wiped dry using a clean tissue. Using UV spectrophotometry, nucleic acid

concentration is measured. RNA, single stranded DNA and double stranded DNA

absorb UV light at 260nm and the spectrophotometer also provides A260/A280 and

A260/A230nm ratios which give an indication of any contaminants in the sample that

absorb UV light at 230nm (organic compounds) or 280nm (protein). An A260/A280 ratio of

around 1.8 is accepted to indicate pure DNA and 2.0 for pure RNA [312].

This method was also used to measure concentrations of cDNA generated from RNA

samples.

2.11cDNA-mediated annealing, selection, extension and

ligation (DASL) assay

The DASL assay is a gene expression profiling platform which uses highly multiplexed

Real-time PCR to allow analysis of thousands of genes at once [293]. This assay has

been used to derive gene expression data from primary FFPE melanoma tumours

described in Chapter 3 with gene expression data being used in Chapters 3 to 8. The

assay is reported to have a dynamic range of 2.5-3 logs and can detect 1x104

molecules [323, 324]. It is specifically designed for use with degraded RNA typically

extracted from FFPE tissue as it uses random priming in cDNA synthesis and a target

sequence of only 50 nucleotides is required for probe groups to anneal [293]. Probe

groups are composed of two oligonucleotides; the first oligonucleotide consists of a

gene specific sequence and a universal PCR sequence at the 5’ end, the second



- 57 -

consists of the gene specific sequence, a universal PCR sequence at the 3’ end and,

for the Human Cancer panel described in section 2.11.3, a short (approximately 22

nucleotides) unique address sequence and for the WG-DASL HT assay described in

2.11.4, 50 nucleotide sequences which allow hybridization to a universal array [293,

323, 324] (Figure 2-3).

For the work described in this thesis, the DASL assay was performed by Floor de Kort

at the service provider, ServiceXS (Leiden, Netherlands). To start the assay, 200ng

total RNA was converted into cDNA using biotinylated random nonamers, biotinylated

oligo d(T)18 and Illumina-supplied reagents. Pooled probe groups were annealed to

sequence-specific targets [325]. Biotinylated cDNA was immobilized on streptavidin-

conjugated paramagnetic beads and washed to remove unhybridized oligonucleotides

[293]. Correctly annealed oligos were extended and ligated using Illumina supplied

reagents and conditions to generate templates which were amplified using PCR.

During PCR, templates were labelled with Cy3 or Cy5 fluorescent primers for the

Human Cancer panel or Cy3-labelled primers only for the WG-DASL HT assay

described in section 2.11.4 [326]. PCR products were denatured and then hybridized to

a universal array [325] which was scanned using an automated BeadArray™ reader

(Illumina Inc., San Diego, CA, USA) to generate fluorescence intensity data.

2.11.1 The Sentrix Array Matrix (SAM) universal array

There are two formats of universal array used with the DASL assay, the Sentrix Array

Matrix (SAM) and the Beadchip platform. The SAM was used with the 502-gene

Human Cancer panel described in 2.11.3 and uses nearly 50,000 individual light

conducting fibre strands that are chemically etched to create a 3μm well at the end of 

each strand. Glass beads derivatised with one of 1536 address sequences are loaded

into the bundles. These array bundles are approximately 1.4mm in diameter and are

grouped together into a 96-array configuration allowing assessment of 96 samples at

once [325]. For both SAM and the Beadchip platforms, each probe is represented by

an average of 30 beads for each sample [324, 327]. Beads are positioned randomly, so

require decoding to determine the position and identity of each bead on the array [293,

328, 329]. Isolated PCR products are hybridised at 45oC for 18 hours to the SAM array.

After hybridization and scanning, fluorescence intensity data is analysed using

BeadStudio software (Illumina, USA). BeadStudio summarizes the pixel intensities for

each bead across the array and then averages across beads for each probe to

generate intensity data which is used in downstream analysis [327].
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2.11.3 The Illumina Human Cancer panel

Gene expression profiling results presented in Chapters 3 to 8 were performed using

the Illumina Human Cancer panel gene set (Illumina Inc.). The Cancer Panel includes

1536 unique sequence-specific probes which target 502 genes. Each gene is targeted

in different locations by three probe pairs designed using a proprietary algorithm [293].

The genes on the Cancer Panel were derived from 10 publically available cancer gene

lists and include oncogenes, tumour suppressor genes, cell cycle control genes and

DNA repair genes among others (see Appendix I for full list).

2.11.4 The Illumina Whole-Genome DASL HT (WG-DASL HT)

assay

The WG-DASL HT assay targets over 29,000 annotated transcripts and has been

developed from the Human WG-DASL assay which previously targeted more than

24,000 transcripts and used the HumanRef-8 v3 Beadchip for hybridization. Targeted

regions on the WG-DASL HT assay are 3’ biased in common with HumanHT-12 v4

Expression Beadchip sequences unlike the Human Cancer panel where targeted

regions are not restricted in position [323, 326]. In contrast to the Human Cancer panel,

the WG-DASL HT assay has between one and eight probes representing each gene

[324]. The original WG-DASL assay was found to provide reproducible results and has

been used in a number of studies [332-335]. Illumina report that the WG-DASL HT

assay provides highly reproducible gene expression profiles for replicate samples and

that relative gene expression relationships are maintained in samples analysed using

both the WG-DASL assay and the newer WG-DASL HT platform [326, 330]. An

assessment of the performance of the WG-DASL HT assay with FFPE melanoma

tissue is included below in section 2.13.

2.11.5 Quality control measures before the DASL assay

RNA sent for analysis using the DASL assay went through a number of quality control

measures as recommended by Illumina and previous authors. A commonly used

quality control measure is quantitative Real-time PCR (qRT-PCR) of the housekeeping

gene, RPL13a. Cycle threshold (Ct) values of 29 cycles [296, 297] or 28 cycles [293,

294, 296] have been used to indicate adequate quality of RNA samples in previous

studies. Others have used spectrophotometry to measure RNA concentration and

A260/A280 ratios. RNA concentrations of <20ng/L, <25ng/L or total RNA input <50ng

and A260/A280 ratios <1.5 or <1.8 have been reported to indicate an inadequate sample
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[293, 294, 296]. The Agilent 2100 Bioanalyzer has also been used to assess sample

quality and generates an RNA integrity number (RIN) for each RNA sample derived

from the electropherogram [336]. To generate a RIN, a number of features are

assessed including total RNA ratio, measured as the fraction of the area in the region

of the 18S and 28S peaks compared to the total area under the electropherogram

curve, and the height of the 28S peak [336]. A score of 1 indicates totally degraded

RNA and a score of 10 represents intact RNA [336]. It has been suggested that

samples with an RIN number >2.0 or 2.0 with a RNA fragment size >200 nucleotides

are suitable for use in the assay [294], however others have reported that RIN values

do not correlate with performance of RNA samples in the DASL assay [296].

For samples sent for DASL analysis for my analyses, concentrations of extracted RNA

were determined using the ND-1000 spectrophotometer (NanoDrop, Wilmington, DE,

USA) as described in section 2.10. A selection of samples, detailed in Chapter 3, were

analysed on the Agilent 2100 Bioanalyser using an RNA 6000 nano-chip and standard

manufacturer’s protocols to determine the average fragment length of the RNA. The

RNA fragment length traces were visually evaluated by Dr Caroline Conway and a

fragment analysis trace score of 1-3 was created where 1 = peak visible and labelled

with fragment size marker, 2 = peak visible but not labelled with fragment size marker

and 3 = little or no peak visible.

The final quality control measure performed on extracted RNA samples was a

quantitative Real-time PCR (qRT-PCR) experiment to assess amplification of a 90bp

fragment of the control gene RPL13a. The service provider, ServiceXS, performed

these experiments. Samples were assessed in duplicate using SYBR Green and the

ABI 7500 Real-time PCR System (Applied Biosystems) with standard protocols and

PCR conditions. Primer sequences were, forward: GTACGCTGTGAAGGCATCAA and

reverse: GTTGGTGTTCATCCGCTTG. Mean cycle threshold values were determined

for all samples and those samples with a Ct values 29 cycles were used in the assay.

An assessment of the usefulness of these quality control measures in FFPE melanoma

samples is included in Chapter 3.

2.11.6 Control and replicate samples

To monitor intra-assay variation, each DASL assay experiment plate included 6-12

technical replicates (RNA samples from the same extraction) and biological replicates

(RNA samples from different tissue cores removed from the same tumour) within and

across plates. An assessment of equality and correlation across these replicate

samples is included in Chapter 3.
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To further monitor variation across plates and runs of the DASL assay, replicate

Stratagene Universal Human Reference RNAs (Agilent Technologies, Edinburgh, UK)

were assessed across DASL plates. Analysis of results from these reference RNAs is

described in detail in Chapter 5.

2.12Normalisation of gene expression data

The fluorescence intensity file generated following scanning of the array was sent to us

by our service provider. This data was uploaded into Illumina BeadStudio software

(Illumina Inc., CA, USA) for analysis of the 502-gene Human Cancer panel data and

GenomeStudio (Illumina Inc.) for the WG-DASL HT data. The number of genes

detected in each sample represents the genes for which target sequence signal is

distinguishable from negative controls on the array with p<0.05. Data were normalized

within BeadStudio Gene Expression Module v3.4 (Illumina Inc.) for the Human Cancer

Panel data and GenomeStudio v2010.3 Gene Expression Module 1.8.0 for the WG-

DASL HT data. Normalization of gene expression data is required to remove any non-

biological variation that may be present. This may be due to red-green bias due to

differences in labelling efficiencies of the Cy5 and Cy3 dyes, differences in dye

scanning properties with position on the array, artefacts on the array, variations in

scanning across the array or because of non-uniform hybridization [337].

Fluorescence intensities from Cy3 and Cy5 dyes were averaged for each probe and

the expression level for each gene was calculated as the mean of the average

intensities from the three probes on the Human Cancer panel. PCR products from the

WG-DASL HT assay were labelled with Cy3 only, the mean fluorescent intensities for

the available probes for each gene were calculated as the gene expression level [326].

Background correction and cubic B-spline smoothing methods were used to normalise

data. For samples assessed using SAM, sample scaling across plates removed

variation between arrays assessing 96 samples from a 96-well plate.

Background correction removes gene expression from non-specific hybridization, the

level of which is identified by the average expression for negative control genes, which

is present on the array. The cubic spline method is a non-linear method of

normalization in which a reference sample is generated using the average gene

expression of all samples. This is then split into 15 quantiles which are used to fit

smoothing B-splines. The splines are then used to normalize the signals of the sample

in a given quantile by scaling signals to match intensities in the reference sample [338].

This method assumes that all transcripts have the same abundance and it is well suited
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to remove the effects that might cause non-linear transformation such as saturation

[337, 338]. Sample scaling is based on the presence of technical replicates across

plates which are used to calculate a scaling factor that is applied to other samples to

create equal average intensity for each probe across all plates. The quality of the

normalisation was assessed by testing the equality and the correlation between gene

expression levels across sample replicates.

2.13Assessment of the WG-DASL HT assay with FFPE

melanoma samples

2.13.1 Background and methods

The ability to perform unbiased whole-genome expression profiling using FFPE tissue

would greatly enhance our ability to detect alterations in gene expression associated

with prognosis and responses to treatment in malignant melanoma.

To assess the WG-DASL HT assay, 5 FFPE melanoma samples from patients

recruited to the “Predicting Response to Chemotherapy in Malignant Melanoma” study,

were sampled as described in section 2.3.5 and RNA was extracted using the Qiagen

AllPrep® RNA/DNA FFPE kit as described in section 2.6.3. RNA samples were sent in

duplicate for analysis using the WG-DASL HT assay at ServiceXS (Leiden,

Netherlands) by Floor de Kort. All samples passed quality control procedures as

described in section 2.11.5.

2.13.2 Results and discussion

Previous authors have used the number of genes detected in each sample using the

DASL assay, defined as a probe signal significantly greater than average signal from

negative controls with p<0.05, as a measure of the quality of results [294]. An

argument for not using this measure to determine result quality is presented in Chapter

5, however for the purposes of this assessment, number of detected genes was

assessed. Generally the samples performed well with the mean number of genes

detected (p<0.01) being 11943 (range 6346-14287). One of the five samples

performed less well with the number of detected genes being 6346 and 8050 in the

replicate samples. For the samples with a high number of detected genes,

reproducibility between replicate samples was good with probe signal intensity

Pearson’s correlation coefficients ranging from 0.96-1.00 (Figure 2-4). For the sample

with lower numbers of detected genes, the Pearson’s correlation coefficient was 0.89.
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The assay appears to generate reproducible gene expression results in FFPE

melanoma samples, therefore further assessment of the WG-DASL HT assay is

underway using larger sample sets. In this pilot study, I was unable to identify the

poorly performing sample using quality control measures described in section 2.11.5.,

therefore efforts will be directed to identifying further quality control measures to

determine sample performance.

Figure 2-4: Scatter plot demonstrating correlation between probe signal

intensities for replicate FFPE melanoma samples on the WG-DASL HT

assay.

The Pearson’s correlation coefficient is reported.

These results are the final in a number of test experiments using the WG-DASL HT

assay. Previous assessments showed poor reproducibility between sample replicates

and an analysis problem where a grid, which is superimposed onto the array to identify

the position of beads, could not be placed by the scanning software. On enquiry, issues

with sample reproducibility were also noted by other groups world-wide, however the

grid registration problem was identified by our group and brought to the attention of

Illumina. These issues were discussed in detail with Illumina and following investigation

were attributed to the short shelf-life of the reagent used for cDNA synthesis. This led

to withdrawal of the assay from the market and development of a new reagent. The

new product was released in May 2012 and the results presented above indicate that
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the assay now produces reproducible results, although some problems with grid

placement remain and further investigation into this issue is on-going. Once these

issues are resolved, a further test set of samples will be analysed and then a larger set

of RNA samples extracted from primary melanoma tumours which will be published but

which will not be available in sufficient time for this thesis.

2.14Quantitative Real-time PCR (qRT-PCR) using Taqman®

Gene Expression Assays

qRT-PCR experiments using Taqman® Gene Expression Assays have been used in

Chapters 3 and 4 to validate gene expression findings from the DASL array. Taqman®

Gene Expression Assays consist of a target specific oligonucleotide which has a

reporter dye, such as 6-fluorescein amidite (FAM™), linked to the 5’ end of the probe

and a non-fluorescent quencher at the 3’ end of the probe which suppresses the

reporter fluorescence. During PCR the probe specifically anneals to the target of

interest and the 5’ nuclease activity of DNA polymerase then cleaves the probe. This

separates the reporter and quencher dyes, resulting in fluorescence of the reporter.

Polymerization of the strand continues and increasing amounts of PCR products are

detected by directly monitoring the increase in fluorescence of reporter dye (Figure 2-5)

[339].

Fluorescent intensity of the reporter dye is normalised to the fluorescence of a passive

ROX dye which corrects for differences in fluorescent intensity due to different

concentrations or volumes in the sample mix. The threshold of a PCR reaction is set

when there is a significant increase in fluorescence for the reporter dye which occurs

during the exponential phase of the PCR reaction. From this threshold, for each sample

a cycle threshold (Ct) value is derived which is the number of PCR cycles at which the

fluorescence of a sample crosses the threshold [339].

For qRT-PCR experiments reported in this thesis, the following section describes the

standard protocol. Any deviation from this is described in the relevant chapter.



Figure 2-5: Action of Taqman® Gene Exp

During PCR, the Taqman® probe is cleaved by the 5’ nuclease activity of

AmpliTaq Gold® DNA Polymerase Ultra Pure. Diagram adapted from reference

[339].

2.14.1 Standard TaqMan® gene expression protocol

Assays were performed in triplicate using 1 microgram of cDNA in each reaction. PCRs

were performed using Gene Expression Master Mix (Applied Biosystems, Warrington,

UK) which contains AmpliTaq Gold® DNA Polymerase Ultra Pure, Uracil

Glycosylase (UDG), deoxyribonucleotide triphosphates (dNTPs), ROX

Reference and buffer components

volume made up using 5μl Master Mix, 0.5μl Taqman® Assay, 3.5μl DNase

and 1μl cDNA sample. PCRs were performed using the ABI 7500 Fast Real

System (Applied Biosystems

50oC for 2 minutes, AmpliTaq Gold® DNA Polymerase activation at 95

minutes, then 50 cycles of 95

cycles was increased to 50 to ensure

Automatic settings were used for baseline and threshold determination, Ct values were
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: Action of Taqman® Gene Expression Assays.

During PCR, the Taqman® probe is cleaved by the 5’ nuclease activity of

AmpliTaq Gold® DNA Polymerase Ultra Pure. Diagram adapted from reference

Standard TaqMan® gene expression protocol

Assays were performed in triplicate using 1 microgram of cDNA in each reaction. PCRs

were performed using Gene Expression Master Mix (Applied Biosystems, Warrington,

AmpliTaq Gold® DNA Polymerase Ultra Pure, Uracil

Glycosylase (UDG), deoxyribonucleotide triphosphates (dNTPs), ROX

Reference and buffer components [339]. Reactions were performed in a 10μl final 

volume made up using 5μl Master Mix, 0.5μl Taqman® Assay, 3.5μl DNase

and 1μl cDNA sample. PCRs were performed using the ABI 7500 Fast Real

System (Applied Biosystems) using the following cycling conditions: UDG activation at

C for 2 minutes, AmpliTaq Gold® DNA Polymerase activation at 95

minutes, then 50 cycles of 95oC for 15 seconds and 60oC for 1 minute. The number of

cycles was increased to 50 to ensure that amplification of every sample was identified.

Automatic settings were used for baseline and threshold determination, Ct values were

During PCR, the Taqman® probe is cleaved by the 5’ nuclease activity of

AmpliTaq Gold® DNA Polymerase Ultra Pure. Diagram adapted from reference

Standard TaqMan® gene expression protocol

Assays were performed in triplicate using 1 microgram of cDNA in each reaction. PCRs

were performed using Gene Expression Master Mix (Applied Biosystems, Warrington,

AmpliTaq Gold® DNA Polymerase Ultra Pure, Uracil-DNA

Glycosylase (UDG), deoxyribonucleotide triphosphates (dNTPs), ROX™ Passive

. Reactions were performed in a 10μl final 

volume made up using 5μl Master Mix, 0.5μl Taqman® Assay, 3.5μl DNase-free water

and 1μl cDNA sample. PCRs were performed using the ABI 7500 Fast Real-time PCR

) using the following cycling conditions: UDG activation at

C for 2 minutes, AmpliTaq Gold® DNA Polymerase activation at 95oC for 10

C for 1 minute. The number of

that amplification of every sample was identified.

Automatic settings were used for baseline and threshold determination, Ct values were
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exported to Excel for further analysis. Mean Ct values for each probe for each sample

were generated from replicate samples.

2.14.2 Analysis of qRT-PCR data

qRT-PCR can be used for absolute quantitation of gene products, or relative

quantitation [340]. In this thesis, relative quantitation has been used to assess

differences in gene expression between samples, reported as a fold-change, or relative

quantity, in expression relative to a calibrator or reference sample [341]. Two methods

for relative quantitation exist, the relative standard curve method and the comparative

Ct method [342]. A detailed assessment of methods for relative quantitation using

Taqman® Gene Expression Assays and methods for qRT-PCR is included in Chapter

4 and will not be discussed in further detail here.

I will briefly describe a method commonly used for analysis of comparative Ct studies,

which has been used in Chapters 3 and 4. The comparative Ct method quantifies gene

transcript levels relative to those of a single control gene [342]. To use this method, it is

essential that the PCR efficiencies of probes for test genes and control genes are

similar [340, 342]. If this is the case, ΔΔCt values can be calculated where ΔCt = Ct 

value for gene of interest – Ct value for endogenous control and ΔΔCt = ΔCt sample – 

ΔCt calibrator sample. Relative quantity (RQ) levels are then calculated using 

(1+efficiency of target amplification)–ΔΔCt . Therefore when amplification efficiency is

100%, with doubling of PCR product during every PCR cycle, RQ = 2-ΔΔCt [340, 342].

This method will be described as the 2-ΔΔCt method in this thesis.

To improve accuracy of qRT-PCR normalisation, multiple control genes have been

used for data normalisation in this thesis (discussed further in Chapter 4) according to

the methods described by Vandesompele et al. [343]. For this method, ΔCt values are 

calculated, where ΔCt = mean Ct gene of interest in sample – mean Ct gene of interest 

in calibrator sample [340]. ΔCt values are converted to 2-ΔCt to provide a non-

normalized value for each gene of interest for each sample. For each sample, the

geometric mean of the 2-ΔCt value for the normalisation genes is calculated as a

normalisation factor. The 2-ΔCt value for the unknown genes is divided by the

normalisation factor to provide a normalised quantity [343].
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2.15Chemo-sensitivity Gene Expression Assay (CGEA-1)

Chapter 8 describes use of a customized Taqman® Array microfluidic qRT-PCR card

(Chemo-sensitivity Gene Expression Assay, CGEA-1, CanTech Ltd, Portsmouth, UK)

for validation of DASL gene expression results. For this study, I collaborated with the

Translational Oncology Research Centre, Queen Alexandra Hospital, Portsmouth

where the experimental work was performed by Dr Katharine Parker. The CGEA-1

assay contained 92 genes known or hypothesized to be involved in cytotoxic resistance

or sensitivity based on the current literature [289] which are listed in Chapter 8.

Taqman® array cards (Applied Biosystems, Warrington, UK) are 384-well microfluidic

cards which allow 384 simultaneous PCR reactions using Taqman® gene expression

assays which are described in more detail in section 2.14.1 [344]. The gene expression

assays are preloaded into each well, so samples and master mix are simply added to

the card, the array is centrifuged and then sealed prior to PCR [344].

Each sample was made up with Taqman Gene Expression Master Mix and mixed with

an equal volume of cDNA to give a final concentration ranging from 240-300ng/μl 

suitable for the small volume dry PCR Taqman array wells. Samples were then each

pipetted into two ports (100μl per port) of the 384 well card, for the 96 genes assessed. 

The loaded array was then placed into a balanced centrifuge and spun at 380g to fill

the card and then re-spun to remove any air bubbles. The card was sealed using a

Taqman array slide sealer and loading ports cut from the card before loading into an

ABI 7900HT thermal cycler (Applied Biosystems). PCR was performed using the

following conditions: 50oC for 2 minutes, 94.5oC for 10 minutes, then 40 cycles of 30

seconds at 97oC and 1 minute at 59.7oC. Automatic settings were used for baseline

and threshold determination and Cycle threshold (Ct) values for each target were

exported to Excel and sent to myself further analysis. Details of data analysis are

included in Chapter 8.

2.16Fluidigm Biomark HD qRT-PCR system

To identify differential gene expression of DNA repair genes in samples from patients

recruited to the “Predicting Response to Chemotherapy in Malignant Melanoma” study

described in Chapter 8, the Fluidigm Biomark HD qRT-PCR system (Fluidigm, San

Francisco, CA) was used. The Fluidigm Biomark HD quantitative PCR chip uses

microfluidic technology to allow assessment of up to 96 genes in 96 samples in a total

of 9216 PCR reactions in a single experiment. Fluidigm microfluidic technology uses

integrated fluidic circuits (IFC) containing valves and channels which allows assembly
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of individual PCR reactions in a volume of 10nl [345-347]. The ability to use small

amounts of RNA to assess expression in up to 96 genes simultaneously is clearly

useful for validation of microarray results or assessment of a group of biologically

related genes. A detailed assessment of the performance of this system with FFPE

melanoma tissue is included in Chapter 8.

2.16.1 Integrated fluidic circuits (IFC)

The IFC is a network of fluid lines, NanoFlex™ valves, which flex under pressure, and

chambers [347] (Figure 2-6). Valves are used to regulate flow of liquid in the IFC.

Before samples are loaded into the IFC, the chip is primed by pressurizing control lines

which close interface valves. Gene expression assays are pipetted into the detector

inlets and samples into sample inlets. The IFC is then loaded by pressure being

applied to sample and detector inlets, samples are pushed into individual wells, but as

the interface valves are shut assays cannot enter the wells. Containment valves are

then closed, interface valves are opened which allows assays to enter the wells and

mixing of sample and assay. Once mixed, the interface valves are shut and the IFC is

ready for cycling [347]. In common with other qRT-PCR platforms, the chip is imaged

following each PCR cycle to generate amplification curves for each gene for each

sample [347]. Specific target amplification (STA) of cDNA samples for genes of interest

increases the sensitivity of the technique [348].

2.16.2 DELTAgene™ assays

The Fluidigm systems can be used with Taqman® assays, but for the purposes of this

study, we have used gene specific primers (DELTAgene™ assays, Fluidigm) in

conjunction with the DNA-binding dye, EvaGreen. EvaGreen is a flurophore, which

when bound to double-stranded DNA emits a strong fluorescent signal, the intensity of

which is directly proportional to the increase in the amount of double-stranded DNA

during a PCR reaction [349, 350]. Use of EvaGreen significantly reduces the cost of the

experiment, however the specificity of the reaction is reduced as only a primer pair are

used for PCR, the additional probe present in Taqman® based assays being absent

[349]. Primers were designed to target DNA repair genes in the study detailed in

Chapter 8. A detailed assessment of the performance of DELTAgene™ assays in RNA

extracted from FFPE melanoma tissues is included in Chapter 8.
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Figure 2-6: The Fluidigm 96:96 Dynamic Array™ integrated fluidic circuit (IFC).

(A) A photograph of the array showing assay and sample inlets. The IFC in the

centre of the chip and is a network of fluid lines, Nanoflex™ valves and reaction

chambers. (B) shows a close-up of the IFC with one of the reaction chambers

(RC) and associated containment valves (CV) and interface valve (IV). Samples

(S) and assays (A) are directed through the IFC using pressure and valves.

Initially samples enter the RC as CVs are open. Assay is prevented from mixing

with the sample by a closed IV. CVs are then closed and the IV opened to allow

mixing of sample and assay prior to PCR. Figure adapted from [347, 351].

2.16.3 Standard Fluidigm qRT-PCR protocol

For experiments using the Fluidigm qRT-PCR system reported in Chapter 8, the

following section describes the standard protocol. Any deviation from this is described

in the relevant section in Chapter 8.

2.16.3.1 Specific target amplification (STA) of samples

Amplification of specific target assays is performed using pooled primers to increase

the number of specific cDNA targets without introducing bias [348]. Each DELTAgene

primer pair (100μM) was combined in equal volume and diluted in 1x DNA suspension 

buffer (10nM Tris, pH 8.0, 0.1mM EDTA) (TEKnova, Hollister, CA) so each primer is at

a final concentration of 500nM. The primer mixture was vortexed and 0.5μl was 

combined with 2.5μl Taqman® Preamplification master mix (Applied Biosystems, 

Warrington, UK), 0.75μl of DNA suspension buffer and 1.25μl of cDNA in a 96-well 

plate. The plate was sealed and placed on a thermal cycler, cycling conditions were

95oC for 10 minutes, followed by 22 cycles of 95oC for 15 seconds and 60oC for 4
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minutes, then finally the mixture was cooled to 4oC. Exonuclease I (New England

Biolabs, Hitchen, UK ) was used to remove unincorporated primers, 8 units were added

to each STA reaction and heated to 37oC for 30 minutes, followed by 80oC for 15

minutes before being cooled to 4oC. The products were diluted 1:5 using DNA

suspension buffer and stored at -20oC for use in the qRT-PCR reaction.

2.16.3.2 qRT-PCR reaction

To prepare the sample pre-mix solution for each sample, 3μl of 2x Taqman® gene 

expression master mix (Applied Biosystems) was mixed with 0.3μl 20x DNA binding 

dye sample loading reagent (Fluidigm, Amsterdam, Netherlands), 0.3μl EvaGreen DNA 

binding dye (Biotium, Cambridge, UK) and 2.4μl of the STA sample. The pre-mix 

solution was thoroughly vortexed and centrifuged. The assay mix was prepared by

combining 3μl of 2x assay loading reagent (Fluidigm), with 2.46μl DNA suspension 

buffer and 0.54μl of each 100μM primer pair. This mix was thoroughly vortexed and 

centrifuged.

Control line fluid (Fluidigm) was injected into the two accumulators on the 96:96

Dynamic Array IFC (Fluidigm) (Figure 2-6). The chip was placed into the IFC Controller

HX (Fluidigm) and primed with control line fluid. Five microliters of the samples and

assays were loaded into the respective inlets on the chip (Figure 2-6), the chip was

again placed into the IFC Controller HX and the chip was loaded with samples and

assays. The chip was removed from the Controller and dust particles were removed

from the chip surface using Scotch tape. The chip was placed into the Biomark HD

Reader (Fluidigm) for the qRT-PCR reaction. Cycling conditions consisted of a thermal

mix stage, consisting of 50oC for 2 minutes, followed by 70oC for 30 minutes and then

25oC for 10 minutes, uracil-N-glycosylase (UNG) was then activated at 50oC for 2

minutes followed by activation of polymerase at 95oC for 10 minutes and then 40 cycles

of 95oC for 15 seconds, followed by 60oC for 1 minute. Finally a melt curve was

generated by increasing the temperature from 60-90oC. Data from the Biomark Reader

was imported into Fluidigm Real-time PCR Analysis software, the image view was

assessed to confirm presence of ROX passive reference dye in each well of the IFC, if

this was not present these wells were excluded from further analysis. The auto(global)

method was used to determine thresholds for calculation of cycle threshold (Ct) values,

linear baseline correction was used for baseline determination. Ct values were

exported to Stata version 10 (StataCorp 2007, College Station, TX) for further analysis.
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2.17Identification of mutations in FFPE primary melanoma

tumours

2.17.1 BRAF and NRAS mutation screening using

pyrosequencing

Pyrosequencing was used to identify mutations in codon 600 of BRAF and codons 12,

13 and 61 of NRAS in FFPE melanoma tumour sample sets described in Chapter 6.

Pyrosequencing is a DNA sequencing technique which uses primers to direct a

polymerase extension reaction and then nucleotides are added sequentially to the

reaction [352]. When a base is incorporated, pyrophosphate is released which is

converted to ATP by ATP sulfurylase, which provides energy to luciferase to oxidise

luciferin and generate light. The amount of light that is released is proportional to the

number of nucleotides incorporated so allowing the DNA sequence to be determined.

In liquid-phase pyrosequencing, the enzyme apyrase degrades the unbound

nucleotides before the next nucleotide is added [352-355]. Previous authors have

compared mutation detection results from codons 600 and 601 of BRAF in cell lines,

fresh tissue and FFPE tissue using pyrosequencing and traditional sequencing. There

was good concordance in mutation results between the methods and a mutant peak

can be detected using pyrosequencing when 15-20% of mutated BRAF (V600E)

melanoma cell line derived DNA is present [356]. Using traditional Sanger sequencing,

at least 40% of DNA needs to be mutant to detect the mutation, suggesting that

pyrosequencing is more sensitive than Sanger sequencing for detecting this mutation

[356]. This study also compared pyrograms generated from paired frozen and FFPE

tumours with V600E and V600K mutations; these pyrograms showed similar patterns

and the authors concluded that pyrosequencing generated accurate results with FFPE

tissue [356]. Another study compared mutation results generated using

pyrosequencing, single-strand conformation polymorphism (SSCP) analysis and

sequencing for NRAS codons 12, 13 and 61 in frozen melanoma tissue [353]. All

mutation results were concordant across assays and the sensitivity of pyrosequencing

was reported to be comparable to that of sequencing (15-30%), but less than SSCP

analysis (10%) [353]. Therefore pyrosequencing produces accurate results for BRAF

and NRAS mutation screening from FFPE tissue, it also requires small amounts of

DNA and using automated systems, large numbers of samples can be processed

quickly making it particularly suitable for mutation screening in my samples.

Pyrosequencing of cDNA and DNA samples was undertaken by Dr Philip Chambers in

the Genomics Facility, Cancer Research UK Centre, Leeds Institute of Molecular

Medicine with mutation detection based on NCBI RefSeq accession number
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NM_004333 for BRAF and NM_002524 for NRAS [331]. Primers for amplification and

pyrosequencing analysis of NRAS codons 12 and 13, NRAS codon 61 and BRAF

codon 600 were designed using proprietary Pyrosequencing assay design software

version 2.0.1.15 (Qiagen, Crawley, UK). NRAS codons 12 and 13 were amplified in

one PCR reaction; NRAS codon 61 and BRAF codon 600 were amplified in separate

PCR reactions (Table 2-1).

Region of
interest

PCR primers (5’ → 3’) 
Pyrosequencing
primer (5’ → 3’) 

Amplicon
length
(bp)

NRAS
codons

12 and 13

Fwd: CTTGCTGGTGTGAAATGACTGAG
Rev: biotin-TGGATTGTCAGTGCGCTTTTC

CTGGTGGTGGTTG
GA

79

NRAS
codon 61

Fwd: biotin-
GAAACCTGTTTGTTGGACATACTG
Rev: TCGCCTGTCCTCATGTATTG

CTCTCATGGCACT
GTACT

83

BRAF
codon 600

Fwd: TGAAGACCTCACAGTAAAAATAGG
Rev: biotin-

TCCAGACAACTGTTCAAACTGAT

TGATTTTGGTCTAG
CTACA

91

Table 2-1: PCR and pyrosequencing primer sequences for amplification and

analysis of NRAS codons 12 and 13, NRAS codon 61 and BRAF codon 600.

PCR reactions contained 12.5µl of Qiagen HotStarTaq Master Mix (Qiagen, Crawley,

UK), additional magnesium chloride to a final concentration of 2mM, 200nM each of

forward and reverse primers, 20ng of genomic DNA or 2μl of undiluted cDNA and 

sufficient water to make a final volume of 25l. Thermal cycling conditions were 94°C

for 12 minutes followed by 40 cycles of 94°C for 10 seconds, 55°C for 20 seconds and

72°C for 20 seconds. Streptavidin-coated magnetic beads were used to capture

biotinylated PCR product which were sequenced on a PyroMark ID system (Qiagen,

Crawley, UK) following the manufacturer’s protocols. Data were analysed by visual

inspection of pyrograms and by analysis of peak height data. Examples of pyrograms

from BRAF codon 600 are shown in Figure 2-7. Percentage mutation levels were

calculated using peak height data. For example, for V600E A allele percentage levels,

the calculation is (peak height of the A allele x 0.85)/(peak height of the A allele x 0.85)

+ peak height of the T allele [357]. Based on previous experience with the BRAF assay

using other tumour types and other experimental data, Dr Phil Chambers has advised

that the assay sensitivity is 5% with good quality data, where a peak can be
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Figure 2-7: Pyrograms for BRAF codon 600.

A shows a pyrogram from a wild-type sample, B shows a pyrogram from a specimen with a V600E (c.1799T>A) mutation.
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distinguished from background, and therefore samples with >5% A allele percentage

were classified as having mutations. With poorer quality data, the sensitivity is less and

for these runs, samples with >10% mutation levels for the BRAF assay were classified

as mutated. As discussed further in Chapter 6, the term “mutation percentage” reflects

the number of mutated alleles in cells assessed, but as tumours are heterogeneous it

will also reflect the number of non-mutated tumour cells along with contaminating

normal stromal cells. Pyrosequencing can detect low levels of mutation in FFPE

melanoma samples and is more sensitive than Sanger sequencing based on the

published literature described above. In some cases mutation results were confirmed

using traditional sequencing using methods described in 2.17.3 by Dr Phil Chambers.

2.17.2 BRAF and NRAS mutation screening using Applied

Biosystems PRISM® SNaPshotTM Multiplex system

The Applied Biosystems PRISM® SNaPshotTM Multiplex system (Applied Biosystems,

Warrington, UK) was used to confirm mutations in BRAF and NRAS in FFPE tumour

DNA or cDNA identified using pyrosequencing as described in Chapter 6. As discussed

in Chapter 6, a limited spectrum of mutations has been found at specific hot-spots in

BRAF and NRAS in melanoma tissues [30]. Most of these mutations involve either a

single (e.g. V600E) or dinucleotide change (e.g. V600K), therefore the SNaPshot

assay can be used to identify these mutations. The primer extension (SNaPshot) assay

uses a reaction mix of four fluorescently labelled dideoxynucleoside triphosphates

(ddNTPs) [358, 359]. Template DNA is amplified using PCR and a primer anneals to

the sequence adjacent to the site of the altered base. Single-base extension occurs by

the addition of the complementary dye-labelled ddNTP to the primer. The result is

marker fragments for mutant and wild-type alleles that are the same length, but vary in

colour. After electrophoresis and fluorescence detection, the alleles appear as different

coloured peaks of roughly the same size in the electropherogram plot. The size of the

different allele peaks will vary slightly due to differences in molecular weight of the

fluorescent dyes [359]. Peaks are colour-coded by Genemapper® software (Applied

Biosystems) according to the dye labelling of the incorporated ddNTP. The

identification of a genotype is based on the peak colour and position of the peak

relative to a size standard [358]. SNaPshot can be used to investigate up to ten sites

simultaneously by using primers of different length [359].

In a previous study using the SNaPshot assay to detect BRAF V600E and various

NRAS mutations in DNA extracted from FFPE tissues, assay sensitivity was

determined using serially diluted positive control samples. Sensitivity to detect BRAF
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mutations was 4.9% and for NRAS mutations 3.2-7.2% depending on the mutation

[360]. These sensitivity levels were comparable to that of Sanger sequencing in this

study [360] suggesting that this method is sensitive, but pyrosequencing is more

sensitive for the V600E BRAF mutation as previously discussed [356].

To assess the mutation status of BRAF and NRAS, methods were optimised using

cDNA and DNA from melanoma cell line material and metastases samples. PCR

primers were selected as described in Table 2-2 to generate small exonic PCR

fragments (70-80bp) suitable for use with DNA extracted from FFPE material and

cDNA synthesized from degraded RNA. SNaPshot probes for detection of mutations in

NRAS and BRAF as described in Table 2-3 were designed to anneal adjacent to the

mutation site. Each probe was synthesised with a different length poly(dT) tail to allow

separation of SNaPshot products during electrophoresis on the basis of size.

Gene
Exon

(codons
covered)

Forward sequence
(5’3’)

Reverse sequence
(5’3’)

Conc. in
primer mix –
cDNA (μM) 

Conc. in
primer mix –

DNA (μM) 

NRAS 2 (12/13)
GGTGTGAAATGAC

TGAGTAC
GATTGTCAGTGCG

CTTTTCC
0.4 0.4

NRAS 3 (61)
TGGTGAAACCTGT

TTGTTGG
TTGGTCTCTCATGG

CACTGT
0.5 0.5

BRAF
15

(600/601)
TCTTCATGAAGAC

CTCACAGT
CCAGACAACTGTT

CAAACTGA
0.7 0.7

Table 2-2: Primers used for PCR amplification of template cDNA and DNA prior to

the SNaPshot assay.

Primer concentrations in the final PCR mix for use with cDNA and DNA are also

presented.

Two assays were performed separately on PCR products to assess the mutation status

of the BRAF gene. The first assay used the V600E probe on the sense strand and

K601E probe on the anti-sense strand, the second assay used the V600E/K probe on

the anti-sense strand and the V600K probe on the sense strand to identify V600K

mutations. This design was chosen because the V600K mutation is a dinucleotide

change at c.1798_1799delinsAA , whereas the V600E mutation is a single base

change at c.1799T>A [361]. Therefore, the V600E probe used in the first assay would

not anneal in the presence of a V600K mutation, however the combination of the

V600E/K probe on the antisense strand and V600K probe on the sense strand in the
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second assay would allow identification of both V600E and V600K mutations (Figure

2-8). The K601E mutation is a single nucleotide change at c.1801A>G [361].

Probe
(gene)

Sequence (5’3’) Strand
Product
Length

(bp)

Conc. in
SNaPshot
probe mix

(μM) 

Position 182
(NRAS exon 3)

T33GACATACTGGATACAGCTGGAC Sense 55 0.6

Position 181
(NRAS exon 3)

T18CTCATGGCACTGTACTCTTCTT Anti-sense 40 0.1

Position 37
(NRAS exon 2)

T26GGTGGTGGTTGGAGCAGGT Sense 45 0.1

Position 35
(NRAS exon 2)

T71CTGGTGGTGGTTGGAGCAG Sense 90 0.3

V600E (BRAF) T14GGTGATTTTGGTCTAGCTACAG Sense 36 0.2

V600E/K (BRAF) T50ACCCACTCCATCGAGATTTC Anti-sense 70 0.2

V600K (BRAF) T40GGTGATTTTGGTCTAGCTACA Sense 62 0.1

K601E (BRAF) T30GGACCCACTCCATCGAGATT Anti-sense 50 0.2

Table 2-3: Probes used in the SNaPshot assay.

The final working concentration of these probes in the SNaPshot reaction is also

presented.

5’ATATATTTCTTCATGAAGACCTCACAGTAAAAATAGGTGATTTTGGTCTAGC

TACAGTGAAATCTCGATGGAGTGGGTCCCATCAGTTTGAACAGTTGTCTGGATC

CATTTTGTGGATG 3’

Figure 2-8: A section of exon 15 of the BRAF gene to demonstrate the position of

SNaPshot probes in relation to common BRAF mutations.

The site of the V600K mutation is underlined and highlighted in bold. The position

of the PCR primers are shown in blue, the site of the V600K probe is shown in

yellow and the V600E/K probe on the anti-sense strand is shown in green.

Separate PCR mixes for BRAF, NRAS exon 3 and NRAS exon 2 contained 0.9x

GeneAmp PCR Gold Buffer (Applied Biosystems), 0.5 units AmpliTaq Gold DNA

polymerase (Applied Biosystems), 1.25 mM magnesium chloride solution, 0.2mM

dNTPs (Applied Biosystems), 0.4-0.7 μM of each primer mix (listed in Table 2-2), 5% 

glycerol, 2 micrograms of cDNA or 20ng of DNA and nuclease-free water to a final
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volume of 10μl. Thermal cycler conditions were 95oC for 5 minutes, 35 cycles of 95oC

for 45 seconds, 55oC for 45 seconds and 72oC for 45 seconds followed by 72oC for 10

minutes. PCR products were treated with 2 units of shrimp alkaline phosphatase (USB,

Affymetrix, High Wycombe, UK ) and 1.3 units of exonuclease I (New England Biolabs,

Hitchen, UK) and incubated at 37oC for 1 hour, followed by 72oC for 15 minutes, to

remove excess dNTPs and primers, respectively.

SNaPshot analysis was performed using the Applied Biosystems PRISM® SNaPshotTM

Multiplex kit. Two reaction mixes were prepared for analysis of BRAF as described

above, and two reaction mixes were prepared for NRAS analysis, one containing the

NRAS probes on exon 2, the other with probes for exon 3. Reactions contained 2.5μl 

SNaPshot Ready Multiplex Ready Reaction Mix, 1x BigDye sequencing buffer (Applied

Biosystems), 0.1-0.6 μM probe mix (Table 2-3), 1μl of the relevant PCR product and 

nuclease-free water to a final volume of 9μl. A control reaction without template was 

performed for each assay using the same reaction mix and 1μl nuclease-free water. 

Extension reactions were performed by incubating the mixture for 35 cycles at 96oC for

10 seconds to denature followed by 58.5oC for 40 seconds to anneal and extend.

Products were treated with 1 unit of shrimp alkaline phosphatase, followed by

incubation at 37oC for 60 minutes and then 72oC for 15 minutes. Products were diluted

1 in 5 using nuclease-free water. 1μl of the diluted extension product was mixed with 

9.8μl HiDi™ formamide (Applied Biosystems) and 0.2μl of Genescan-120LIZ size 

standard (Applied Biosystems). Products were denatured at 100oC for 5 minutes and

then separated using an Applied Biosystems PRISM 3130xl Genetic Analyzer with a

36cm length capillary and POP-7™ polymer. Analysis was performed using

GeneMapper® 3.7 software. Some examples of the results obtained are presented in

Figure 2-9. Significant peaks were not identified in traces from no template control

reactions. Percentage mutation results were calculated based on peak heights using

similar methods as for pyrosequencing data.



Figure 2-9: Examples of mutations detected using SNaPshot in cDNA and DNA.

Graph A demonstrates a V600K mutation in BRAF, the A>T change alone using the probe on the anti-sense strand would represent a V600E

mutation. Graph B shows a c.181C>A mutation in exon 3 of NRAS. Graph C shows a c.182A>G mutation in exon 3 of NRAS. Orange peaks

represent the internal Genescan-120LIZ size standards. Bases are represented by the following colours: A=green, C=black, G=blue and T=red.

Small non-specific peaks are noted in graph A, which were seen in all BRAF assays.

A B C

A>T (anti-sense) G>T (anti-sense)

A (sense)

G (anti-sense)

G>A (sense)

A>G
(sense)

-
7
8

-
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2.17.3 Sequencing methods

To confirm mutations identified in BRAF and NRAS using pyrosequencing, traditional

Sanger sequencing was performed on a selection of samples by Dr Phil Chambers.

Pyrosequencing primers as described in Table 2-1 were used as sequencing primers in

this analysis. Sequencing of both forward and reverse strands was performed.

To remove any unincorporated dNTPs and primers, 1μl of ExoSAP-IT (USB, 

Affymetrix, High Wycombe, UK) was added to 2.5μl of the PCR product, mixed and 

incubated at 37oC for 15 minutes, followed by 80oC for 15 minutes and finally cooled to

15oC. The sequencing reaction comprised of 1μl of 1.6μM primer, 1μl of purified PCR 

product, 4.25μl of distilled water, 3.5μl of ABI 5x Sequencing Buffer (Applied 

Biosystems, Warrington, UK) and 0.25μl of Ready Reaction Mix v1.1 (from Applied 

Biosystems BigDye® Terminator Cycle Sequencing kit v1.1). The mixture was

incubated at 96oC for 1 minute, followed by 25 cycles of 96oC for 10 seconds, 50oC for

5 seconds and 60oC for 4 minutes, finally the mixture was cooled to 15oC.

Products were concentrated and purified using ethanol precipitation. To the

sequencing product, 1μl of 3M sodium acetate and 25μl of 95% ethanol were added 

and the mixture incubated at room temperature for 15-30 minutes to precipitate the

sequencing product. The samples were centrifuged at 2250g for 30 minutes to pellet

the product, the 96-well plate was then inverted onto absorbent paper and centrifuged

again at 180g for 1 minute. To the pelleted product, 70μl of 70% ethanol was added to 

wash away residual sodium acetate and the mixture centrifuged at 1650g at 4oC for 15

minutes. Again, the 96-well plate was inverted onto absorbent paper and centrifuged at

180g for 1 minute. The pellet of sequencing product was dried by heating to 95oC for 1

minute. Sequencing products were suspended in 20μl of Hi-Di™ formamide (Applied 

Biosystems) and heated to 95oC for 1 minute before being snap cooled on ice water

immediately prior to electrophoresis. Products were separated using the Applied

Biosystems PRISM 3130xl Genetic Analyzer with a 36cm length 16-capillary array and

POP-7™ polymer. Sequence analysis was carried out using Sequencing Analysis 5.2

(Applied Biosystems) and Mutation Surveyor 3.2 (Soft Genetics, State College, PA).

2.18Gene ontology and pathway analysis

Gene ontology and pathway analysis have been used in this thesis to further

investigate lists of genes identified as differentially expressed in groups of interest. The

function of these systems and an assessment of their usefulness is included in Chapter

4. I will briefly described the algorithms used by these analysis methods below.
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2.18.1 Gene ontology analysis

Gene ontology analysis described in Chapter 4 was performed by Dr Binbin Liu and Dr

Lee Hazelwood of the Bioinformatics Group in the Leeds Institute of Molecular

Medicine. Cytoscape v2.8.1 [362, 363] and its plug-in, BiNGO v2.44 [364, 365] were

used to search a custom built GO database with gene lists. Cytoscape provides a

graphic interface for visualizing GO networks. BiNGO assesses the enrichment of a

GO term in the test gene set using a hypergeometric approach and controls the false-

positive rate by performing a multiple testing correction with either a Bonferroni [366] or

Benjamini and Hochberg correction. The latter technique controls for the false

discovery rate (FDR) which is the expected proportion of false positives among the

positively identified tests [367]. For the analysis described in Chapter 4 a customized

gene reference and annotation databank were built, as gene expression data were

based on the 502-gene Human Cancer panel rather than a genome-wide platform.

Therefore, the databank used contained GO terms associated with the 502 genes only.

2.18.2 DAVID (the database for annotation, visualisation and

integrated discovery)

DAVID [368], maps a gene list to the associated biological annotation (e.g. GO terms)

and then highlights the most overrepresented annotation [369-371]. This publically

available software was used in Chapters 4 and 7, by myself, to identify pathways

containing genes identified as differentially expressed in my analyses. The DAVID

functional annotation tool uses a list of genes inputted by the user and iteratively tests

the enrichment of each annotation term [369, 371, 372]. The individual annotation

terms passing the enrichment P-value threshold are reported. In DAVID, these tests

are performed using a Fisher’s exact test (modified as EASE score using Expression

Analysis Systematic Explorer (EASE) software) [371, 373]. Annotation terms can be

combined into clusters which have an overall enrichment score which is the geometric

mean of all the enrichment EASE scores [369]. EASE can calculate a number of

probability corrections, including Bonferroni corrections and methods which correct for

the FDR [373]. DAVID incorporates further network discovery algorithms by assessing

relationships between enriched terms using a wide range of resources including

pathway databases (KEGG (Kyoto Encylopedia of Genes and Genomes), Biological

Biochemical Image Database (BBID), Reactome Pathway, EC number, Biocarter and

Panther Pathway) [371].
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For the purposes of enrichment analysis described in this thesis, a background

population of genes from the Human Cancer panel has been used for comparison with

the annotation composition of the inputted gene lists [368].

2.18.3 Ingenuity Pathway Analysis

Ingenuity Pathway Analysis (IPA) (Ingenuity Systems, Redwood City, California,

www.ingenuity.com) was used in Chapter 4 by Dr Jeremie Nsengimana and transforms

gene lists into networks using the Ingenuity Pathways Knowledge Base (IPKB) [374,

375]. The IPKB contains annotations based on biological interactions and function

created by modelling relationships based on literature between proteins, genes,

isoforms, complexes, cells, tissues, drugs and diseases [376]. IPA users can specify

cut-offs based on gene expression data, which select a subset of important focus

genes. The IPA application maps each gene identifier to its corresponding gene object

in the IPKB. Focus genes are then overlaid onto a global molecular network developed

from information in the IPKB. Focus genes are sorted in order of interconnectedness.

Genes connected with the largest number of other genes are ranked highest and this

gene is labelled the seed gene. The next focus gene most connected to the seed gene

is added to the growing network. This gene is identified by calculating the ‘specific

connectivity’ metric which is a measure of how much a new gene’s neighbourhood

(new gene plus all genes related to the new gene) overlaps the current network.

Connected genes are added until the maximum network size of 35 genes is reached.

Smaller gene networks are combined to make larger networks where possible and for

networks which still have less than 35 genes, additional genes are added to the

periphery of the network to provide additional biological context to the focus genes.

Each IPA network is assigned a significance score (p-score) derived from p-values

representing the likelihood that the focus genes in the network are found by random

chance. The p-value is the probability of finding one or more focus genes in a set of

genes randomly selected from the global molecular network calculated using Fisher’s

exact test. The p-score is equal to the negative exponent of the respective significance

value (p-score = -log10(p-value)) [375-378].

2.19Immunohistochemistry

Immunohistochemical staining of tissue sections was performed by Sarah Storr and

Sabreena Safuan at the Department of Academic Oncology at the University of

Nottingham on a subset of tumours described in Chapter 7. This collaboration was
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designed to study associations between ulceration and tumour vascularity, blood and

lymphatic vascular invasion, vessel density and presence of tumour-associated

macrophages [113].

Sections of tumour were stained with the lymphatic-specific antibody D2-40, the

endothelial marker, CD34, and a CD68 antibody to detect macrophages [113].

Immunohistochemistry (IHC) allows direct visualisation of specific antigens within a

tissue using monoclonal antibodies [379, 380]. Following specific binding of an

unlabelled primary antibody, the indirect method use a biotinylated IgG antibody

against the species that the primary antibody was generated from and binds to the

constant fragment (Fc) of the primary antibody. Streptavidin conjugated enzymes then

bind to biotin on the secondary antibody which generate an insoluble substrate product

which can be visualised [379-381].

Use of specific antibodies for lymphatic vessels increases detection rates versus H+E

slides alone [382-385]. D2-40 is a monoclonal antibody against the 40-kD

sialoglycoprotein, M2A, and is a specific marker for lymphatic endothelial cells [386-

389]. CD34 is an endothelial marker in both lymphatic and blood vessels, but is more

weakly expressed in lymphatic vessels [110, 389, 390]. It is not specific to endothelium

in skin however, as CD34 is also expressed on dermal dendritic cells and perifollicular

cells as well as endothelial cells in normal skin [391]. CD68 is widely used to stain for

macrophages, but does have cross-reactivity with organelles in other cell types, so is

not entirely macrophage specific [392-394]. Despite this, it has been used either alone

or in combination with other antibodies to identify macrophages in melanoma tumours

[393, 395-397].

2.19.1 Immunohistochemistry (IHC) methods

Samples used for IHC staining are described in Chapter 7. IHC staining and

measurement of vessels and macrophages in consecutive tissue sections was

performed at the University of Nottingham. To visualise vessels and macrophages,

three consecutive tumour slides were stained with antibodies as described in Table

2-4.

Staining methods have been previously described [113, 398, 399]. Briefly, sections

were deparaffinised in histolene and then rehydrated in a series of ethanol baths

(100%, 90%, 70%, 50% and 30%) and finally immersed in water. For CD34 and CD68

antibodies, antigen retrieval was performed by immersing slides in 0.01mol/l sodium

citrate buffer (pH6) which was heated in a microwave at 750W for 10 minutes, followed
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by 400W for 10 minutes. Endogenous peroxidase activity was blocked by incubating

tissue with 0.01% hydrogen peroxide in methanol for 10 minutes.

Antibody target Target location Manufacturer Dilution

CD34
Endothelial cells (predominantly

blood vessels)
AbD Serotec,
Kidlington, UK

1:500

D2-40
Endothelial cells (lymphatic

vessels)
Covance SIGNET,

NJ, USA
1:100

CD68 Macrophages
Abcam, Cambridge,

UK
1:100

Table 2-4: Primary antibodies used for IHC staining.

Antibody targets are presented with manufacturers details and dilutions used for

IHC staining. All antibodies were diluted in blocking buffer.

To reduce non-specific binding, potential reactive sites were blocked by incubating

sections with normal swine serum (Dako, Glostrup, Denmark) diluted 1:5 using Tris-

buffered saline (TBS) for 10 minutes. Diluted primary antibodies (Table 2-4) were

incubated with tissue for 1 hour and then a biotinylated secondary antibody (1:100

dilution in blocking buffer) was added for 30 minutes, followed by streptavidin-coupled

horseradish peroxidase (1:100 dilution in blocking buffer) for 1 hour according to the

manufacturer’s instructions (StreptABComplex/HRP Duet, Dako, Ely, UK). In the case

of CD34 and D2-40 reactions, coupled streptavidin-horseradish peroxidase reacted

with 3,3’ diaminobenzidine (DAB) to generate brown staining. For CD68 a permanent

red substrate (Dako) was used to help distinguish macrophages from brown

melanocytes. Sections were counterstained with Gill’s formula haematoxylin (Vector

Laboratories, Peterborough, UK), dehydrated and fixed in histolene. CD34 and D2-40

sections were mounted with Depex mounting medium (Solmedia, Romford, UK ),

Glycergel mounting medium (Dako) was used for CD68 stained sections. Sections of

tonsil and placental tissue were used as controls, primary antibody was omitted for

negative controls. The final tumour section was stained with H+E as described in

section 2.3.3.

Examples of stained sections are presented in Figure 2-10.



- 84 -

Figure 2-10: Consecutive stains of melanoma sections with haematoxylin and

eosin (H+E) (A), anti-D2-40 (B), anti-CD34 (C) and anti-CD68 (D) (20x

magnification).

A vessel is visible on the H+E slide (arrow) showing invasion by melanoma

tumour cells. Invasion can also be seen in anti-D2-40 stained lymphatic vessels

and anti-CD34-stained blood vessels. Anti-CD68 stained macrophages can be

seen around the vessel invasion. Figure courtesy of Sarah Storr, University of

Nottingham [113].
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C D



- 85 -

2.19.2 Assessment of microvessel density and macrophage

count

Microvessel density and the number of macrophages were measured using the

‘hotspot’ Chalkley 25-point method in three areas on each section as previously

described [398, 399]. To identify ‘hotspots’ of high blood vessel density or

macrophages, sections were reviewed at 10x magnification. Areas with high vascular

concentration or macrophage infiltration were viewed at 20x magnification and a 25-

point Chalkley eyepiece graticule was applied and adjusted so there was maximum

overlap between vessels or macrophages and the graticule points. A Chalkley count for

each tumour was taken as the average of three counts. Twenty percent of the slides

were reviewed by two independent assessors who were blinded to each other’s scores

and clinico-pathological data.

2.19.3 Assessment of lymphatic density

Lymphatic vessel density was determined by counting all positively stained lymphatic

vessels across a whole tissue section as previously described [400]. Sections were

divided into the intratumoural, inner two thirds of a tumour, and peritumoural areas

which represents all normal tissue surrounding the tumour [400]. Stained vessels were

counted across the two areas at 10x magnification, the size of each area was

determined in mm2 by counting the number of fields of view with each field of view

having a surface area of 154mm2. Lymphatic vessel density (vessels/mm2) was

calculated by dividing the number of lymphatic vessels identified in an area by the total

surface area. Total LVD for each section was the sum of intratumoural and

peritumoural lymphatic vessel densities. In these cases, 30% of slides were examined

by two independent assessors.

2.19.4 Assessment of lymphatic vessel invasion and blood

vessel invasion

H+E sections were initially reviewed to determine whether a tumour was vascular

invasion positive, possible or negative. Using IHC stained sections, lymphatic and

blood vessel invasion was determined as presence of tumour cells within a D2-40

stained vessel or a CD34 stained vessel that was negative for D2-40, respectively.

These sections were defined as vascular invasion positive. Lymphatic vessel invasion

was assessed within intratumoural and peritumoural areas. Total vascular invasion was

classified as positive if sections were either lymphatic or blood vessel invasion positive.
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All slides were assessed by two independent assessors. In addition, any positive or

probable cases were reviewed by pathologists, Professor Martin Cook or Professor Ian

Ellis to confirm or refute. Following review, any ‘possible’ invasions, were grouped with

positive cases for analysis.

2.20Summary

This chapter presents methodology used in this thesis. It also reports an assessment of

the WG-DASL HT assay with FFPE melanoma specimens. During my PhD new nucleic

acid extraction and cDNA synthesis kits have been developed and assessed. Results

from these newer products have been good, highlighting the importance of assessing

new technologies to maximise use of precious tissue resources and improve results.
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3 Gene expression profiling of formalin-fixed paraffin-

embedded primary melanoma using the cDNA-mediated

annealing, selection, extension and ligation assay

3.1 Aims

The main aim of this work was to identify genes which are differentially expressed in

primary melanoma tumours in association with relapse or mortality and then validate

these findings in an independent sample set.

Further aims were:

 To assess the utility of the cDNA-mediated annealing, selection, extension and

ligation (DASL) assay to identify gene expression signatures in formalin-fixed

paraffin-embedded (FFPE) primary melanoma tumours.

 To identify factors that influence performance of melanoma samples with the

DASL assay.

3.2 Background

The established predictors of outcome for melanoma patients relate to the histological

characteristics of the primary tumour (Breslow thickness, the presence of ulceration,

mitotic rate), tumour site, sex and age [58, 91]. Histological characteristics are used to

estimate prognosis as part of the AJCC staging system [58] and in various algorithms,

to give a more personalized estimate [133, 401], but much of the variance in survival

remains unexplained. In order to identify prognostic and predictive biomarkers, and

increase the understanding of key biological pathways, molecular studies of primary

melanomas are necessary.

Primary melanomas are small and as the histological characteristics conveying

prognostic information are often focal within the primary tumour, pathologists are

reluctant to cryopreserve tissue. Therefore, until recently genomic expression studies

in primary melanoma tumours have been relatively few in number, limited in size and

focusing on single genes [402, 403]. An increasing body of work has now been

published using gene expression microarrays with cryopreserved melanoma tumours

as presented in Chapter 1, including a number of studies conducted to REporting

recommendations for tumour MARKer prognostic studies (REMARK) standards [161,
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162]. In primary tumours, the only study of reasonable size was undertaken by

Winnepenninckx et al. who used tumours from 58 patients to identify a 254-gene

signature predictive of survival which included mini-chromosome maintenance genes.

This signature was tested in an independent sample set in which 11 out of 17 cases

were correctly classified [178]. Kauffman et al. used bioinformatics analysis of gene

expression data from 60 samples, 58 from the Winnepenninckx study, and found that

DNA repair genes were overrepresented [177]. As reviewed in the Chapter 1, a larger

number of studies have been performed in metastatic tumours specimens [179, 180,

185, 186, 194], which have highlighted the importance of immune response processes

and NRAS-regulation pathways for prognosis [188].

Whilst these studies represent major developments in the field, analysis of FFPE

tumours would enable studies using large numbers of samples, including primary

melanomas, with mature follow-up data. Potentially, studies of this kind would be less

biased as tumours would not be selected based on whether they are deemed suitable

for cryopreservation. Formalin is a fixative which preserves tissue and cellular structure

by cross-linking proteins and nucleic acids [77]. Cross-links cause nucleic acid

degradation during extraction procedures and addition of monomethyol groups to

bases can interfere with downstream reverse transcription and amplification reactions

[292]. Increasing amounts of degradation of nucleic acids have been associated with

longer formalin fixation [404] and higher temperatures during paraffin embedding of

samples [405]. In addition, RNA continues to degrade over time especially when stored

at room temperature, compromising the quality of nucleic acids from older tissue blocks

[291, 316]. Methodological studies have demonstrated that use of an overnight

Proteinase K digestion step to degrade proteins cross-linked with RNA, a high

temperature incubation step (50-55oC [292] or 60-70oC [315, 316]) to remove part of

methylol groups and an on-column DNase digestion step to remove DNA, improves the

quantity and quality of RNA extracted from FFPE tissues and performance in

downstream assays [315, 316, 406]. Despite these modifications to RNA extraction

protocols, RNA can be severely degraded being less than 300 base pairs in length

[291]. Therefore, use of microarray technology has been limited using RNA extracted

from FFPE tissue, restricting the use of this valuable tissue resource.

Illumina’s DASL (cDNA mediated annealing, selection, extension and ligation) assay is

specifically designed for use with degraded RNA, such as that extracted from FFPE

tissue as it uses random priming in cDNA synthesis and a target sequence of only 50

nucleotides is required for probe groups to anneal [293]. Further details of the assay

are included in Chapter 2. Previous studies have demonstrated that the DASL assay

produces reproducible gene expression results from degraded RNA such as that
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extracted from FFPE tissues [293-297]. Gene expression profiles generated from the

assay correlate well with profiles derived for intact RNA extracted from frozen tissue or

cell lines [293-295] and biologically useful results have been obtained from use of this

technology [295, 297].

This chapter describes use of the DASL assay to investigate prognostic biomarkers in

stored primary melanomas. Performance of the assay is highly dependent on the

quality of RNA used and so samples go through a number of quality control procedures

to assess suitability for use in the assay as described in Chapter 2. An assessment of

these investigations as predictive of assay performance is included in this chapter.

A further issue with primary melanomas is melanin, which co-purifies with DNA and

RNA. Melanin absorbs UV light which can lead to unreliable spectrophotometric

quantification of nucleic acids [306] and more importantly, it can inhibit DNA

polymerases leading to failure of downstream PCR reactions [303]. Therefore, assay

performance has also been correlated with melanin content of melanoma tumours.

This chapter reports an evaluation of the DASL assay and confirmation of the

significance of increased SPP1 expression in a large study of FFPE primary melanoma

tumours.

3.3 Detailed methodology

3.3.1 Patient samples and gene expression analysis

As described in Chapter 2, FFPE primary melanoma tumour blocks were identified

from two study sets; the Leeds Melanoma Cohort Study henceforth referred to as the

Cohort study and the Retrospective Sentinel Node Biopsy Study referred to as the SNB

study. In the Cohort study, the first 254 blocks identified from participants within the

cohort with tumours thicker than 0.75mm having the longest follow-up comprised the

test set. In the SNB study (the validation set), the first 218 blocks identified from

participants with the longest follow-up in a study designed to identify predictors of

sentinel node positivity and relapse were sampled. To allow evaluation of the effect of

melanin on gene expression analysis of melanoma samples, cores were graded using

the melanin score. RNA was extracted using the Roche High Pure RNA Paraffin Kit

and quantity and quality of RNA was determined using spectrophotometry. Further

methodological details are in Chapter 2. Sample selection, melanin scoring, tissue

sampling and RNA extraction were performed by Dr Caroline Conway (Cohort study),

Dr Angana Mitra (SNB study) and Samira Lobo.
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The Illumina DASL Human Cancer panel was used for gene expression profiling by

Floor de Kort at the service provider, ServiceXS (Leiden, Netherlands) as described in

Chapter 2.

3.3.2 Target validation using quantitative Real-time PCR (qRT-PCR)

SPP1 expression was identified as significantly associated with relapse and overall

survival (section 3.4.4), and was therefore further investigated by qRT-PCR on

samples from the Cohort study by Dr Caroline Conway. Small fragments of SPP1 and

the endogenous control gene, GAPDH, were amplified using Taqman® Gene

Expression Assay probes (Applied Biosystems, Warrington, UK) as presented in Table

3-1.

Gene
Exons

targeted
Amplicon

length

NCBI
Reference
Sequence

Assay Reference

Gene for
relative

quantification
SPP1

1/2 63bp NM_000582.2 Hs00960942_m1

5/6 84bp NM_000582.2 Hs00959010_m1

Endogenous
control gene

GAPDH 3 122bp NM_002046.3 Hs99999905_m1

Table 3-1: Taqman® Gene Expression Assay probes used for qRT-PCR of SPP1.

Abbreviations used: NCBI, National Center for Biotechnology Information.

PCRs were performed in duplicate using cDNA previously synthesised from RNA

samples sent for DASL analysis. cDNA was generated using the Invitrogen

Superscript™ First-strand Synthesis System according to the manufacturers protocol as

detailed in Chapter 2. cDNA was diluted 1:1 with nuclease free water and 1l was used

for each qRT-PCR assay. PCRs were performed with Gene Expression Master Mix

(Applied Biosystems) in a 20l final volume on the ABI 7900 Real-time PCR system

(Applied Biosystems). Cycling conditions used were 50oC for 2 minutes, 95oC for 10

minutes and 40 cycles of 95oC for 15 seconds and 60oC for 1 minute. Automatic

settings were used for baseline and threshold determination and cycle threshold (Ct)

values for each target were exported to Excel for further analysis. Mean Ct values from

replicate samples were calculated and ΔCt values were determined using the 

comparative Ct (or ΔCt) method [342], where ΔCt = Ct gene of interest - Ct 

endogenous control. ΔCt values were then converted to 2-ΔCt for the calculation of fold
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change between relapsers and non-relapsers where fold change = 2-ΔCt relapsers ÷ 2-

ΔCt non-relapsers. A more detailed assessment of qRT-PCR methods in FFPE

melanoma tumours has been undertaken in Chapter 4.

3.3.3 Statistical methodology

3.3.3.1 Quality control analysis of gene expression data

I performed the statistical analysis reported in this chapter. As reliability of the array

data is critical and there are reasons to expect poorer quality data when generated

from FFPE tissues I looked at age of the tumour block, degree of pigmentation of the

paraffin-embedded tumour and RNA quality as determinants of the array data quality. I

also report consistency between technical and biological replicates.

Previous authors have used the number of genes detected in each sample using the

DASL assay (probe signal significantly greater than average signal from negative

controls with p<0.05) as a measure of the quality of results [294]. Use of number of

detected genes may not be the best measure of result quality as discussed in Chapter

5. However, for the purposes of this assessment, the influence of age of tissue block

and melanin level of the tumour on number of genes detected was investigated using

Spearman’s rank correlation and Kruskal-Wallis tests respectively.

Methods used to measure the quality and quantity of RNA prior to use in the DASL

assay were assessed by correlating the number of genes detected in samples with the

quality measures data using either Spearman’s rank correlation or the Kruskal-Wallis

test. Samples with less than 250 detected genes were classified as ‘failed’ as

suggested by previous authors [294] and excluded from further analysis.

A number of RNA samples from the same extraction were analysed twice using the

DASL assay (technical replicates). Biological replicates were also included which were

RNA samples extracted from tissue cores sampled from adjacent parts of the same

tumour. Equality and correlation between gene expression levels in replicates was

assessed using paired t-tests and Pearson’s correlation coefficients. Mean gene

expression was used for replicate samples in further analysis.

To further monitor variation across plates and runs of the DASL assay, replicate

Stratagene Universal Human Reference RNAs (Agilent Technologies, Edinburgh, UK)

were assessed across DASL plates. Analysis of results from these reference RNAs is

described in detail in Chapter 5.
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3.3.3.2 Descriptive characteristics of the sample set

Patient factors and histological characteristics of the primary tumour were compared

between the two studies using two-sample t-tests, Pearson’s chi squared tests and

Mann-Whitney U tests.

3.3.3.3 Identification of differentially expressed genes

Differential gene expression and survival analyses were performed using data which

had been log-transformed (log2). As some of the raw gene expression levels were

negative values, 1000 was added to all values prior to log-transformation. Survival

analysis was performed using the Cox proportional hazards model to calculate hazard

ratios and 95% confidence intervals for each gene. Significance values were ranked to

identify genes most differentially expressed. Relapse-free survival (RFS) was defined

as the period between diagnosis and date of first relapse at any site. The analysis was

performed on the 11th February 2010 and survival data were censored on this date.

Analyses were performed unadjusted and adjusted for demographic (patient gender,

site of tumour and age of patient at diagnosis) and histological factors of prognostic

importance in melanoma (Breslow thickness, mitotic rate of tumour and ulceration

status). Analyses were also adjusted for whether the patient had undergone a sentinel

node biopsy and the effect of the biopsy result (SNB status) as the use of SNB results

in delay of the date of first relapse in melanoma patients as the usual site of first

recurrence (nodal) is removed.

Correlations between gene expression patterns were identified using linear regression,

adjusting for the study from which patients were recruited to, using the merged dataset

from both studies which was generated as described in Chapter 4.

3.3.3.4 Multiple testing and adjustment of analyses

In view of the number of statistical tests in this analysis (502), a number of significant

findings would be expected to occur by chance. Therefore, to correct for this issue of

multiple testing, the Bonferroni method was used [366] and the significance level was

set at 0.0001 for analyses identifying genes associated with survival. For survival

analyses adjusted for known prognostic factors assessing the expression of a single

gene in each test, the significance level for highlighting results of interest was set as

0.05. All statistical analyses were undertaken using Stata version 10 (StataCorp 2007,

College Station, TX).
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3.3.4 Generation of gene networks using Ingenuity software

Ingenuity Pathway Analysis was performed by Dr Jeremie Nsengimana in the Section

of Epidemiology and Biostatistics. Using the combined data from the studies, fold

changes and significance levels of genes differentially expressed in tumours from

patients with reduced relapse-free survival time were analysed using Ingenuity

Pathway Analysis software (Ingenuity Systems, Redwood City, California,

www.ingenuity.com). The algorithms used by Ingenuity Pathway Analysis software are

described in more detail in Chapter 2. Genes >1.2 times over- or under-expressed with

significance levels <0.05 were interrogated by Ingenuity to find genes most related to

each other and a network of these relationships was generated.

3.4 Results

3.4.1 RNA yields, quality control measures and performance of the

DASL assay

Of the 472 tumours blocks identified from the two studies, 378 (80%) were sampled.

Blocks were not sampled if there was too little residual tumour after sectioning carried

out for diagnostic purposes or other research projects, or if the tumour was necrotic or

too admixed with a large number of lymphocytes or stromal cells. In 17/378 (4.5%) a

tissue core was taken and RNA extracted, but inadequate quantities were extracted

(<20ng/μl) as measured by spectrophotometry. Overall, “adequate” amounts of RNA 

were therefore obtained from 361 (76%) tissue blocks.

A total of 423 RNA samples including replicate samples was sent to the service

provider (ServiceXS) for DASL analysis (359 unique samples and 64 replicate

samples). Six (1.4%) samples failed the assay, defined as less than 250 genes being

detected. The failure rate was 2.1% in the Cohort Study and 0.9% in the SNB study. As

discussed previously, age of tissue block and melanin content of tumours can have an

influence on quality of RNA extracted and performance in PCR reactions. Table 3-2

summarizes the association between quality control measures, age of tissue block and

melanin content of tumour and the number of genes detected in the DASL assay.

Increased block age was negatively correlated with number of genes detected in the

SNB study (p=0.0002), but not the Cohort study, which may be because the range of

block age was much greater in the SNB study (SNB study: 2.23-15.16 years, Cohort

study: 1.48-7.84 years). Melanin score was assessed for all tumours sampled in the

SNB study, but only 102 samples in the Cohort study as the score was not recorded for
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a proportion of samples. Higher melanin score was associated with fewer genes

detected in the Cohort study (p=0.04) but not in the SNB study (p=0.26).

Samples were assessed with quality control measures as described in Chapter 2. RNA

concentrations for all samples were measured using the ND-8000 spectrophotometer

(Nanodrop, Wilmington, DE, USA) before being sent to the service provider. Samples

in the Cohort study were also assessed using the Agilent 2100 Bioanalyzer using a

RNA 6000 nano-chip and standard manufacturer’s protocols by the service provider,

however no data from this analysis was made available to us apart from

electropherogram traces which when assessed subjectively as described in Chapter 2

did not correlate with number of genes detected in the DASL assay (Spearman’s rho -

0.07, p=0.37). Twenty-seven samples from the SNB study were assessed with the

Bioanalyzer. For these cases RNA concentration as determined by the Bioanalyzer

and RNA integrity number (RIN) score [336] was provided for 21 samples. RIN scores

are described in further detail in Chapter 2. qRT-PCR of the housekeeping gene

RPL13a, described in further detail in Chapter 2, was undertaken for all samples but

unfortunately failed for samples from the Cohort study. The quality control procedures

that best predicted number of genes detected in the SNB study were RNA

concentration as determined by spectrophotometry and the Bioanalyser, RIN number

and Ct values determined using qRT-PCR of RPL13a.

Table 3-2 (following page): Associations between quality control procedures,

tumour characteristics and performance with the DASL assay.

Performance with the assay was determined by the number of detected genes.

Columns that present statistical association present the test performed, the test

statistic and the significance value. Significant results are highlighted in bold.

Abbreviations used: n, number; Ct, cycle threshold value; RIN, RNA integrity

number.



Cohort Study
(188 samples)

Association between
measure and number

of detected genes

SNB study
(235 samples)

Association between
measure and number

of detected genes

Number failed samples, n (%) (<250 genes) 4 (2.1) 2 (0.9)

Number detected genes overall, mean (range) 434 (33-472) 457 (180-493)

Age of block, years, mean (range)
Number genes detected, mean (range):

Block <5 years old
Block 5-10 years old
Block >10 years old

4.63 (1.48-7.84)

436 (33-468)
442 (317-472)

None

Spearman’s rho
0.11, p=0.13

6.26 (2.23-15.16)

466 (371-491)
456 (180-493)
441 (376-477)

Spearman’s rho
-0.24, p=0.0002

Melanin score, n (%):
0
1
2
3

In 102 samples:
5 (4.9)

30 (29.4)
42 (41.2)
25 (24.5)

Kruskal-Wallis χ2 8.44,
p=0.04

4 (1.7)
58 (24.9)
63 (27.0)
108 (46.4)

Kruskal-Wallis χ2 4.02,
p=0.26

Nanodrop RNA concentration, ng/L, mean (range) 44.6 (0-87)
Spearman’s rho

0.09, p=0.23
53.7 (0.4-209.9)

Spearman’s rho
0.13, p=0.05

Bioanalyser RNA concentration, ng/L, mean (range) Not assessed
In 27 samples:

24.6 (0-56)
Spearman’s rho

0.59, p=0.001

Bioanalyser RIN number, median (range) Not assessed
In 21 samples:
1.5 (1.0 -2.3)

Kruskal-Wallis χ2

6.90, p=0.03

Ct values, mean (range) Failed 24.3 (19.9-27.3)
Spearman’s rho -

0.20, p=0.003

-
9
5

-
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3.4.2 Sample replicates

Table 3-3 summarises results from replicate samples in each study. Correlation

coefficients across technical replicates are good, however the mean correlation

coefficient for biological replicates from the SNB study is lower. I have interpreted this

as representing biological variation across tumours which has been well described and

would explain differences in gene expression profiles in different tissue cores resulting

from true tumour heterogeneity or variation in admixture of inflammatory or stromal

cells [407].

Study

No. of
replicate
samples

(biological
replicates)

No. pairs
with failed
samples

Mean of
correlation
coefficients

across
technical
replicates

(range)

Mean of
correlation
coefficients

across
biological
replicates

(range)

Pairs with
significantly

different mean
gene

expression
(t-test - p <0.05)

Cohort
study

27 (2) 3
0.96

(0.59 - 0.99)

0.96 (only one
pair without

failed samples)
0

SNB
study

37 (12) 1
0.95

(0.68 - 0.99)
0.88

(0.41 - 0.97)
0

Table 3-3: Comparison of technical and biological replicate samples assessed in

each study.

Failed samples were classified as samples in which <250 genes were detected

using the DASL assay. Pearson’s correlation coefficients were calculated for

each pair of replicates (failed samples were removed from this analysis) and

mean gene expression was compared between the replicates using paired t-

tests.

3.4.3 Descriptive statistics of samples sets

Table 3-4 presents a summary of the characteristics of the two sample sets. They are

similar, the differences being that participants in the SNB study were slightly younger,

had a significantly higher mitotic rate (p=0.001) and unsurprisingly had been more

likely to have a sentinel node biopsy (p<0.0001) as this was the key recruitment

characteristic. Patients recruited to the Cohort study had a significantly longer period of

follow up than patients recruited to the SNB study (median 60.7 months and 38.4

months respectively, p<0.00001).
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Variable Cohort study SNB study
Test statistic and
significance value

Number of patients 156 198

Age at diagnosis or at SNB,
years, mean (range)

54.9 (19.9-78.5) 52.0 (14.4-88.0)
t value 1.87

p=0.06

Sex – female, n (%) 81 (51.9) 95 (48.0) χ2 0.54,
p=0.46Sex – male, n (%) 75 (48.1) 103 (52.0)

Site of tumour, n (%)
Arm

Head-neck
Leg

Trunk
Not recorded

31 (19.9)
24 (15.4)
50 (32.0)
49 (31.4)
2 (1.3)

44 (22.2)
17 (8.6)
69 (34.9)
68 (34.3)
0 (0.0)

χ2 4.13,
p=0.25

Breslow thickness, mm,
median (range)

1.9 (0.9-12.0) 2.1 (0.4-19.0)
Mann-Whitney Z

-0.58
p=0.56

Mitotic rate, per mm2, n (%)
<1
1-6
>6

Not recorded

27 (17.3)
76 (48.7)
34 (21.8)
19 (12.2)

21 (10.6)
91 (46.0)
85 (42.9)
1 (0.5)

χ2 13.62
p=0.001

Ulcerated tumours,
n (%)

40 (25.6) 52 (26.3)
χ2 0.02
p=0.90

Sentinel node biopsy status,
n (%)

No SNB performed
Had SNB – negative
Had SNB – positive

Not recorded

106 (67.9)
17 (10.9)
5 (3.2)

28 (17.9)

0 (0)
68 (34.3)

130 (65.7)
0 (0)

χ2 248.78
p<0.0001

Relapsers, n (%) 50 (32.1) 63 (31.8)
χ2 0.02
p=0.88

Deaths, n (%) 40 (25.6) 47 (23.7)
χ2 0.13
p=0.72

Follow-up time, months,
median (range)

60.7 (5.1-105.9)
38.4 (0.03-

111.7)
Mann-Whitney Z 7.38

p<0.00001

Table 3-4: Descriptive statistics of the two samples sets.

Significant results are highlighted in bold. Abbreviations used: n, number; SNB,

sentinel node biopsy.

3.4.4 Genes most predictive of survival

Genes with expression levels most strongly related to RFS in the Cohort study are

presented in Table 3-5. The gene most predictive of RFS was SPP1 which codes for

osteopontin, with increased expression being associated with shorter relapse-free

survival time. In the Cohort study, the hazard ratio (HR) for RFS associated with

doubling of SPP1 expression was 2.64 (p=2.74 x 10-6). This association persisted when
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the analysis was repeated adjusted for host variables known to predict relapse (age,

sex, tumour site and SNB status p=0.001), and when adjusted additionally for Breslow

thickness, mitotic rate and the presence of tumour ulceration (p=0.003) (Table 3-6).

Fold change of expression signal was 1.55 between relapsers and non-relapsers in

unadjusted analysis. Increased SPP1 expression was also predictive of overall survival

(HR 2.74 (95% CI 1.71-4.37), p=9.57 x 10-6) with a fold change of 1.52 between

tumours from patients who had died versus tumours from alive patients. This

association remained significant after adjusting for age, sex and tumour site (HR 2.73

(95% CI 1.68-4.42), p=0.00005) and further for Breslow thickness, mitotic rate and

presence of tumour ulceration (HR 2.23 (95% CI 1.24-4.02), p=0.008). Expression

signals from all three SPP1 probes on the array were comparably predictive of reduced

RFS (HR range 1.95-2.40, significance value range 0.00001-0.0008).

In the SNB study, increased SPP1 expression was also associated with reduced RFS

at the p=0.006 level in unadjusted analyses, with a similar fold change of 1.32 (Table

3-6). When corrected for age, sex, tumour site and SNB status, the significance of the

association was p=0.07, but when the analysis was adjusted further for histological

factors the influence on relapse-free survival was lost. Increased SPP1 expression

furthermore was associated with poorer OS in the SNB study (HR 1.64 (95% CI 1.08-

2.50), p= 0.02) in unadjusted analysis. The fold change between survivors and non-

survivors was 1.26. SPP1 remained associated with OS after adjusting for age, sex

and tumour site (HR 1.72 (95% CI 1.11-2.67), p=0.02), but is no longer associated with

overall survival once the analysis is adjusted for the tumour Breslow thickness, mitotic

rate or ulceration status (HR 1.26 (95% CI 0.79-1.99), p=0.33).

3.4.5 Validation of SPP1 expression using qRT-PCR

qRT-PCR with probes to exons 1/2 and 5/6 showed increased expression of SPP1 with

fold changes of 1.74 and 1.67 respectively in patients who relapsed versus those that

did not relapse in the Cohort study (compared with a fold change of 1.55 in the DASL

analysis).
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Gene

Expression fold
difference between
relapsers and non-

relapsers

Hazard
ratio

95%
confidence

interval

Significance
value

SPP1 1.55 2.64 1.72-4.03 2.74 x 10-6

DSP 0.63 0.59 0.47-0.74 0.00002

RAD54B 1.33 5.89 2.48-13.97 0.00003

GRB7 0.64 0.51 0.38-0.70 0.00004

ITGB4 0.74 0.36 0.22-0.58 0.00005

ING1 1.14 11.34 3.30-38.95 0.00006

HLF 0.72 0.27 0.13-0.54 0.0001

PTPRF 0.76 0.41 0.27-0.64 0.0002

FGFR2 0.67 0.42 0.25-0.71 0.0005

EGFR 0.74 0.39 0.23-0.66 0.0005

RECQL 1.17 5.87 2.13-16.15 0.0005

PML 0.94 0.04 0.005-0.27 0.0009

FGFR3 0.73 0.53 0.36-0.76 0.0009

CDKN2B 0.79 0.43 0.27-0.69 0.0009

HMMR 1.31 2.79 1.50-5.19 0.001

EPHA1 0.74 0.35 0.19-0.67 0.001

FHIT 1.23 3.06 1.53-6.14 0.001

DAB2 1.08 11.88 2.55-55.42 0.001

AR 0.68 0.35 0.18-0.68 0.001

TGFB1 0.76 0.29 0.13-0.65 0.002

Table 3-5: Top 20 genes with expression associated with relapse-free survival

from the Cohort study (unadjusted analysis).

Hazard ratios for reduced RFS are calculated for doubling of gene expression

value. P-values are from the proportional hazards model.



Cohort study
unadjusted

Cohort study
adjusted for age,

sex, site of tumour
and SNB status

Cohort study
adjusted additionally

for histological
measures

SNB study
unadjusted

SNB study
adjusted for age,

sex, site of tumour
and SNB status

SNB study adjusted
additionally for

histological
measures

Mean signal (SD)
relapsers

5172 (2587) 4980 (2567) 4946 (2280) 5812 (2752) 4240 (2623) 3982 (2415)

Mean signal (SD)
non-relapsers

3346 (2156) 3516 (2184) 3845 (1999) 4411 (2818) 3334 (2642) 3480 (2439)

Fold change 1.55 1.42 1.29 1.32 1.27 1.14

Hazard ratio
(95% CI)

2.64
(1.72-4.03)

2.19
(1.40-3.41)

2.49
(1.37-4.54)

1.60
(1.13-2.27)

1.40
(0.97-2.03)

1.11
(0.75-1.70)

Significance value 2.74 x 10-6 0.001 0.003 0.006 0.07 0.55

Table 3-6: The association of SPP1 expression with relapse-free survival in the Cohort and SNB studies.

The unadjusted analysis for the Cohort study is presented in column 1. The association was adjusted for sex, patient age, tumour site and SNB

status in column 2 (mean signal values are presented for a 45 year old female with a tumour on her leg who has not had a sentinel node

biopsy). In column 3, further adjustment is made for known histological predictors of outcome: Breslow thickness, mitotic rate and ulceration

(mean signal values are presented for a 45 year old female patient with a non-ulcerated tumour on her leg which has a Breslow thickness of

2.5mm, a mitotic rate of 1-6/mm2 and has not had a sentinel node biopsy). SNB study analyses are similarly presented, however mean signal

values are presented for a patient who did receive a sentinel node biopsy with a negative result (as all patients in this study had received a

sentinel node biopsy). Abbreviations used: SD, standard deviation; CI, confidence interval; SNB, sentinel node biopsy.

-
1
0
0

-
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3.4.6 Co-expression of genes with SPP1

The following analyses were performed by Dr Jeremie Nsengimana in the Section of

Epidemiology and Biostatistics. The expression of genes most closely correlated with

SPP1 expression was studied in the pooled data set for both studies (analysis adjusted

for study) in order to better understand the biological pathways involved. Results are

presented in Table 3-7. Thirty-two genes are listed with expression significantly

correlated (either positively or negatively) with that of SPP1 at the 1.0 x 10-5

significance level or less. These results are further related to relapse status. Genes up-

regulated with SPP1 and associated with reduced RFS were BIRC5, IL-8, TK1, HMMR,

TOP2A, CCNA2, CDC2, RAD51, NQO1, PTPRH and MAPK10. I also present a gene

network for SPP1 derived using Ingenuity Pathway Analysis (Table 3-8 and Figure

3-1). The literature-derived Ingenuity knowledge base identified SPP1 as involved in

cell adhesion, cell proliferation and cell migration. The network demonstrates that

SPP1 is the terminal component of many pathways and therefore over-expression of

SPP1 may reflect combined activity in many of these pathways.
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Gene
Correlation and p
value for pooled

data set

Fold
change

P-value
for RFS

Correlation and p
value for the
Cohort study

Correlation and
p value for the

SNB study

PBX1 -0.34 (3.1 x 10-11) 0.88 0.02 -0.36 (2.9 x 10-6) -0.32 (5.5 x 10-6)

BIRC5 0.33 (2.0 x 10-10) 1.21 0.008 0.40 (2.7 x 10-7) 0.25 (0.0004)

HLF -0.32 (5.5 x 10-10) 0.72 0.0001 -0.35 (7.3 x 10-6) -0.28 (0.00007)

IL8 0.31 (1.4 x 10-9) 1.34 0.03 0.41 (9.7 x 10-8) 0.22 (0.003)

HMMR 0.30 (5.8 x 10-9) 1.31 0.001 0.33 (0.00003) 0.27 (0.00009)

TOP2A 0.29 (1.7 x 10-8) 1.13 0.007 0.30 (0.0001) 0.28 (0.00007)

TK1 0.29 (2.0 x 10-8 1.13 0.01 0.28 (0.0004) 0.30 (0.00002)

CTSL 0.29 (2.8 x 10-8) 1.08 0.004 0.34 (0.00001) 0.24 (0.0006)

CCNA2 0.28 (5.6 x 10-8) 1.19 0.01 0.33 (0.00003) 0.24 (0.0006)

BCL6 -0.28 (8.3 x 10-8) 0.93 0.02 -0.33 (0.00003) -0.24 (0.0007)

CDC2 0.27 (2.2 x 10-7) 1.17 0.03 0.31 (0.00008) 0.24 (0.0008)

RAD51 0.27 (3.3 x 10-7) 1.25 0.004 0.29 (0.0002) 0.23 (0.001)

ERCC5 -0.26 (5.1 x 10-7) 0.97 0.13 -0.17 (0.03) -0.31 (9.2 x 10-6)

NQO1 0.26 (5.8 x 10-7) 1.12 0.09 0.28 (0.0005) 0.26 (0.0002)

CBFA2T1 -0.26 (7.6 x 10-7) 0.95 0.53 -0.28 (0.0003) -0.24 (0.0007)

MMP1 0.26 (1.1 x 10-6) 1.07 0.45 0.44 (1.2 x 10-8) 0.13 (0.06)

PTPRH 0.26 (1.1 x 10-6) 1.15 0.21 0.27 (0.0006) 0.24 (0.0006)

FGFR2 -0.25 (1.2 x 10-6) 0.67 0.0005 -0.33 (0.00002) -0.17 (0.02)

EGFR -0.25 (1.2 x 10-6) 0.74 0.0005 -0.27 (0.0007) -0.23 (0.0009)

TIMP1 0.25 (1.5 x 10-6) 1.03 0.24 0.18 (0.02) 0.29 (0.00003)

GAS1 -0.25 (1.6 x 10-6) 0.93 0.03 -0.27 (0.0006) -0.23 (0.001)

FLT3 -0.25 (1.8 x 10-6) 0.97 0.57 -0.24 (0.003) -0.26 (0.0002)

RBL2 -0.25 (2.1 x 10-6) 1.00 0.59 -0.27 (0.0007) -0.25 (0.0004)

ETS2 -0.25 (2.5 x 10-6) 0.87 0.003 -0.27 (0.0006) -0.20 (0.005)

NUMA1 -0.25 (2.9 x 10-6) 0.97 0.17 -0.31 (0.00009) -0.18 (0.01)

EPHA1 -0.24 (4.3 x 10-6) 0.74 0.001 -0.23 (0.003) -0.21 (0.002)

MAP3K8 -0.24 (4.7 x 10-6) 0.95 0.23 -0.30 (0.0002) -0.20 (0.005)

VEGF 0.24 (5.0 x 10-6) 1.02 0.73 0.31 (0.0001) 0.20 (0.004)

CCND3 -0.24 (7.5 x 10-6) 0.96 0.29 -0.27 (0.0006) -0.21 (0.003)

AR -0.23 (9.4 x 10-6) 0.68 0.001 -0.43 (2.7 x 10-8) -0.15 (0.04)

FGFR3 -0.23 (0.00001) 0.73 0.0009 -0.24 (0.003) -0.20 (0.006)

MAPK10 0.23 (0.00001) 1.48 0.005 0.19 (0.02) 0.29 (0.00003)

Table 3-7: Gene expression correlations for SPP1.

Analysis was undertaken in merged dataset from the two studies and adjusted for

study. Fold differences in gene expression between relapsers and non-relapsers

and significance values (from the proportional hazards model) for association with

RFS are also presented. Abbreviations used: RFS, relapse-free survival.



Gene
Correlation and p

value for pooled data
set

Fold difference gene
expression between
relapsers and non-

relapsers

Significance
level for RFS

Correlation and p value
for the Cohort study

Correlation and p
value for the SNB

study

IL8 0.31 (1.4 x 10-9) 1.26 0.04 0.41 (9.7 x 10-8) 0.22 (0.003)

CDC25C 0.21 (0.00009) 1.28 0.005 0.18 (0.03) 0.17 (0.02)

TERT 0.13 (0.02) 1.40 0.0005 0.19 (0.02) 0.09 (0.23)

RARB 0.11 (0.04) 1.12 0.80 0.07 (0.35) 0.09 (0.20)

IL3 0.06 (0.25) 1.39 0.009 -0.06 (0.42) 0.15 (0.04)

IL6 0.05 (0.37) 1.27 0.46 0.09 (0.26) -0.01 (0.84)

E2F5 0.06 (0.25) 1.26 0.004 0.05 (0.50) 0.02 (0.77)

MCF2 0.02 (0.70) 1.45 0.03 -0.01 (0.86) -0.02 (0.79)

CDKN2B -0.00 (0.93) 0.86 0.004 -0.10 (0.21) 0.05 (0.52)

Table 3-8: Correlations and differences in gene expression for genes identified in the Ingenuity network as being linked to SPP1.

Fold differences in gene expression between relapsers and non-relapsers and significance values (from the proportional hazards model) for

association with RFS are also presented. Abbreviations used: RFS, relapse-free survival.
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Figure 3-1: Gene network involving SPP1 from Ingenuity Pathway Analysis in

pooled data (showing only direct interactions except those involving SPP1).

Molecules are represented as nodes and the biological relationship between

nodes is represented as a line (edge). Each edge is supported by at least one

reference from the literature, from a textbook, or from canonical information

stored in the Ingenuity Knowledge Base. The intensity of the node colour

indicates the degree of up- (red) or down- (green) regulation.
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3.5 Discussion

3.5.1 Use of the Illumina DASL assay with FFPE melanoma tissue

Gene expression studies in melanoma have hitherto been few in number and small in

size. This is largely because platforms required good quality RNA which is rarely

available for melanoma where primaries are very small and therefore pathologists are

reluctant to cryopreserve tumours. This chapter describes my methodological

assessments of a platform designed to allow gene expression from FFPE tissue

thereby potentially giving access to large-scale sample sets with mature follow up data.

I have also described the key findings of the study which identified up regulation of

SPP1 as poor prognostic biomarker.

As presented in Chapter 1 there have been a number of publications using cDNA

microarray technology in cryopreserved tumours [177-180, 185, 194]. Many of these

studies have been performed in metastatic samples from patients with advanced

disease because of limited banks of cryopreserved primary tumours, therefore gene

expression data has only been generated from a highly selected proportion of

melanoma samples. There has been limited work identifying gene expression profiles

with independent prognostic value in primary tumours [177, 178]. This study was

designed to fill that gap and was started before many of the more recent studies using

cDNA microarrays with cryopreserved tissues were published [187].

Concerns about the use of fixed tumours derive from the degradation of RNA.

Increasingly however it has been suggested that technical modification of platforms,

such as the Illumina DASL assay, can allow profiling of gene expression and micro-

RNAs [408-411]. In this chapter, I report the generation of expression data from 74% of

consecutive formalin-fixed melanomas, suggesting that future studies designed to

identify predictive or prognostic biomarkers for melanoma would generate results from

approximately 75% of samples depending on the age of the blocks, and the proportion

that were deeply pigmented.

The Illumina DASL assay was originally described in 2004 [323]. The original assay

permitted 1536 oligonucleotide pairs to be multiplexed in a single reaction, using a

significantly smaller amount of template RNA than required for older cDNA microarray

assays. An additional advantage was that the assay was suitable for use with

degraded RNA because of short target gene sequences and random priming during

cDNA generation [293, 323, 412]. This platform was developed into a 502-gene Human

Cancer Panel targeting genes using three probes, using the Sentrix Array Matrix to

allow processing of 96 arrays in one experiment [296, 413]. The assay has been

further developed to combine the PCR and labelling steps from the DASL assay with
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the whole-genome probe set of Illumina’s Direct Hybridization Assay to allow profiling

of over 29,000 transcripts using the HumanHT-12 Expression Beadchip (whole-

genome DASL HT assay, further described in Chapter 2) [326, 414]. This chapter

describes use of the 502-gene Human Cancer Panel, in work carried out to assess

factors that may influence performance with the assay, such as age of tissue samples

and melanin content of samples.

RNA is known to degrade over time especially when paraffin blocks are stored at room

temperature [291, 316]. Melanin can lead to unreliable spectrophotometric

quantification of nucleic acids [306] and can inhibit DNA polymerases in downstream

PCR reactions [303]. In this study, gene expression data were derived from 98.6% of

RNA samples extracted from FFPE melanoma tissue. Using the number of detected

genes with the DASL assay as a quality control measure, increased block age (SNB

study) and higher melanin score (Cohort study) were indeed negatively correlated with

number of genes detected. Overall however the DASL platform performed well and age

of block was not an issue, probably as ‘failed’ samples in this sample set (<250 genes

detected) were less than 10 years old age. This is consistent with previous findings that

RNA becomes increasingly degraded with storage time of tumour blocks as

demonstrated by higher Ct values generated using qRT-PCR [293], but this does not

appear to severely compromise the performance with the assay as one study has

reported successful gene expression profiling using tumour blocks stored for over 24

years [295]. A number of ‘failed’ samples had high melanin scores in this analysis. To

avoid melanin contamination, we could avoid sampling heavily pigmented tumours. In

this study however, 24.5% of tumours from the Cohort study and 46.4% of tumours

from the SNB study had a melanin score of 3, so being densely pigmented tumour.

Exclusion of these samples would greatly reduce the number of tumours assessed and

would seriously bias tumour sampling for the study. There are increasing data

suggesting that pigmented tumours behave differently in terms of progression and

even response to chemotherapy [304, 305, 415], therefore exclusion of these samples

would compromise the quality of results. Melanin and DNA polymerase preferentially

form a complex with decreased DNA polymerase activity [303]. Inhibition can be

reduced by diluting these complexes or adding other proteins, such as bovine serum

albumin which scavenge and inactivate inhibitors of polymerase [303, 416, 417]. As

concentrations of eluted RNA are low from tissue cores, dilution is not an option,

however addition of bovine serum albumin to eluted RNA may improve performance

with the DASL assay and this will be tested in future experiments.

Prior to commencement of gene expression studies using DASL, in order to avoid use

of RNA of insufficient quality, a number of quality control procedures were assessed to
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identify measures that would predict sample performance with the assay. The

measures that best predicted performance of the SNB study samples were RNA

concentration as determined by the ND-8000 spectrophotometer, data generated using

the Bioanalyser, (the Bioanalyser RIN number and RNA concentration) and Ct values

generated by qRT-PCR of RPL13a. Unfortunately, spectrophotometry RNA

concentration did not predict sample performance in the Cohort study and limited

quality control assessment did not allow confirmation of Bioanalyser findings in the

Cohort sample set. Many authors have suggested criteria that predict assay

performance based on spectrophotometry, Bioanalyser results and qRT-PCR of

RPL13a as discussed further in Chapter 2 [293, 294, 296, 297]. Illumina recommend

these quality control measures are performed prior to using an RNA sample in the

assay, however in this analysis the majority of samples with an RNA concentration

over 20ng/μl as determined by spectrophotometry performed successfully with the 

assay irrespective of other quality control results. My conclusion was therefore that use

of precious sample for quality control measures other than RNA concentration did not

appear worthwhile based on these analyses.

A number of technical and biological replicate samples were assessed using the assay.

Generally there was good correlation between gene expression for sample replicates

as has been previously reported, with higher correlation coefficients for technical

replicates than biological replicates. This was expected as biological replicate samples

were derived from two extractions from different tissue cores from different parts of the

tumour and so heterogeneity of the tumour would account for gene expression

differences [407]. Good correlation between technical replicate samples demonstrates

that the DASL assay provides reproducible results in FFPE melanoma tissue as

previously demonstrated for other tumour types [293-297]. This chapter does not

describe extensive comparisons between results from frozen or fresh and formalin

fixed tumours as previous studies have addressed this in many tissues including

melanoma [187, 293-295]. Both of these observations demonstrate that the DASL

assay can be used to generate reproducible gene expression data from FFPE

melanoma tissue.

The technical limitations of this study are related to the presence of a limited number of

genes on the DASL Cancer Panel, and to sampling of tumours using tissue microarray

(TMA) cores. Using a TMA core does not allow confirmation of the tumour content

throughout the core and therefore there is potentially greater contamination with normal

cells than in laser microdissected samples. Furthermore, by using this technique we

were unable to sample very small tumours and so there is a bias towards sampling of

larger tumours. The use of this method however, has allowed a far greater range of
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tumours to be examined than in previous research based upon cryopreserved tumours.

Using a TMA core results in extraction of both DNA and RNA yet preserves the

architecture of the block for the clinical service which we viewed as crucial in this

research programme. The use of microdissection would address some of these

concerns but would be very much more time consuming for large-scale studies.

The work described in this chapter remains the largest assessment of gene expression

in primary melanomas where a marker with independent prognostic value has been

validated in an independent sample set of FFPE cutaneous primary melanoma

tumours. It has demonstrated that gene expression studies using FFPE tumours are

possible and a recent study has expanded on this work assessing expression in 223

FFPE primary melanoma tumours using the whole-genome DASL assay to assess

whether expression signatures associated with outcome in metastatic tumours are also

associated with survival in primary tumours [335]. The authors found that this was the

case, with “high-grade” tumours, associated with poorer survival, expressing a

proliferative/pigmentation signature and “low-grade” tumours with a high-

immune/normal-like gene expression profile [335]. These findings were validated in two

publically available gene expression datasets [178, 179, 335].

3.5.2 Identification of SPP1 as a prognostic biomarker in primary

melanomas

Fortunately, melanoma has a good prognosis in the majority of patients, but a

proportion of patients with low risk disease go onto relapse with advanced disease

being extremely difficult to treat. Therefore, identification of new prognostic biomarkers

would assist in identification of patients likely to benefit from more aggressive treatment

and allow clinicians to provide better prognostic information.

SPP1 was identified as the gene with increased expression most strongly associated

with reduced RFS and overall survival. The validity of this finding was tested by

comparison of test and validation sample sets. qRT-PCR detected similar fold changes

associated with relapse in the test set. SPP1 expression continued to be an

independent predictor of relapse in the test set when analysis was adjusted for patient

factors and histological factors of known prognostic value in melanoma. In the

validation set, SPP1 was less significantly associated with RFS and overall survival in

unadjusted analyses (p=0.006 and p=0.02, respectively), however over-expression

was associated with increased risk of relapse and death as in the test set. We did not

go on to confirm the findings using immunohistochemistry because a large study
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recently reported that osteopontin staining predicts sentinel node positivity and relapse

in melanoma [163].

Osteopontin is a glycophosphoprotein cytokine with pleiotropic effects. There are two

forms, secreted and intracellular, and post-translational modifications explain the large

number of actions associated with this protein [418]. In normal tissues, osteopontin

plays a role in inflammation, immune regulation, vascular and bone remodelling and

wound repair [418]. In tumour cells, it has a role in cell adhesion, chemotaxis,

prevention of apoptosis, invasion, migration and anchorage-independent growth [419,

420]. Osteopontin has a key role in the regulation of cell signalling which controls

neoplastic and malignant transformation and has been identified as a possible drug

target [421]. It is known to modulate several signalling pathways such as growth factor

and receptor pathways via interactions with cell surface receptors such as CD44 and

integrins [422, 423]. Osteopontin regulates v3 integrin mediated P13K/Akt/NFk

dependent urokinase plasminogen activator and metalloproteinase expression, which

is associated with tumour cell invasiveness [422, 424, 425]. This relationship between

osteopontin and the NF complex is pictured on the Ingenuity network (Figure 3-1).

There is in vitro evidence that melanoma cells that secrete osteopontin are more

aggressive [419, 426]. Transfection of KZ-28 melanoma cells with osteopontin siRNA

leads to reduced cell proliferation, whereas stimulation of B16 melanoma cells with

osteopontin from human milk enhances growth [424].

Osteopontin also increases epidermal growth factor receptor activation [427] and is

thought to provide the molecular link between degradation of the extra-cellular matrix,

tumour progression and vascularization [427]. In the data analysed in this chapter,

there was commensurate increased expression of genes involved in the interaction

between tumour cells, the extra-cellular matrix and angioneogenesis such as MMP1,

IL8 and VEGF. In relation to the role of osteopontin in inhibition of apoptosis, increased

expression of SPP1 correlated with increased expression of BIRC5 (survivin, p=2.0x10-

10), which was also over-expressed in tumours from patients with poorer RFS. Survivin

is recognized as a mediator of resistance to apoptosis, increased cell proliferation and

invasiveness in melanoma [428, 429].

As presented in Figure 3-1, osteopontin is downstream of a number of pathways and

therefore expression is influenced by a number of signalling cascades [430].

Osteopontin expression is regulated by the protein tyrosine kinase, Src, Wnt and T-cell

factor 4 signalling, steroid hormones and receptors, such as oestrogen receptors and

the vitamin D receptor, growth factors, for example platelet-derived growth factor and

epidermal growth factor, p53, BRCA1, Ets and activator protein-1 (AP-1) transcription
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factors [430-435]. A proportion of melanomas have NRAS mutations [436] and in

these, SPP1 transcription may be increased by a RAS-activated enhancer [437].

In the current analysis, increased SPP1 expression was associated with increased

expression of genes involved in cell cycling (CCNA2, CDC2); DNA replication and

repair (TOP2A, RAD51); cell signalling (PTPRH, MAPK10); cell division and

proliferation (BIRC5, TK1), observations that would be consistent with the known

biological functions of osteopontin. HMMR expression was also positively correlated

and is associated with cell motility and the cell cycle and expression levels have been

shown to increase with melanoma progression [438]. Increased SPP1 expression was

associated with reduced expression of the tumour suppressor gene GAS1, which was

also under-expressed in tumours from patients who relapsed. GAS1 has been

identified as a possible melanoma metastasis suppressor gene using a genome wide

‘short hairpin’ RNAi (shRNAi) screen, a finding which supports the observations in this

dataset [439, 440].

Increased expression of osteopontin has been demonstrated in a number of different

cancers and in some, secreted blood levels have prognostic value [422, 441, 442].

Osteopontin expression in plasma may also have prognostic utility in melanoma as

osteopontin has been proposed as a marker of metastatic disease [443, 444].

The association between SPP1 expression in human tumours and melanoma

progression at both the transcriptomic and proteomic level has been observed

previously. In a study using microarray analysis to assess 19,740 loci, SPP1 was one

of the most over-expressed genes in 6 cryopreserved primary melanomas in

comparison with 9 benign naevi [182]. In a further study assessing expression of

14,000 genes, SPP1 expression was found to be significantly higher in 4

cryopreserved metastatic melanomas versus 4 naevi [192]. This over-expression was

confirmed in a further sample set using immunohistochemistry, where osteopontin

expression was greater in primary and metastatic melanomas versus normal naevi,

dysplastic naevi or melanoma in situ [192]. However, in this study there was no

correlation between protein expression and Breslow thickness or patient survival, and

there were also no significant differences in staining between primary or metastatic

lesions [192]. A more recent study using 22,215 probe sets, found significantly higher

levels of SPP1 expression in 22 cryopreserved metastatic specimens in comparison

with 19 primary tumours [176]. This was quickly followed by a large

immunohistochemical study of 345 patients, in which increased osteopontin expression

was associated with reduced relapse-free and overall survival and increased

probability of sentinel node positivity [163]. Increased expression was also associated

with greater tumour thickness, higher invasive (Clark) level and higher mitotic rate
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[163]. Osteopontin protein expression has been incorporated into a multimarker assay

including two further markers not present on the DASL Cancer panel (NCOA3 and

RGS1), this assay was the most significant factor predicting disease specific survival in

this study and this finding was validated in an independent cohort [161, 172].

The relationship between SPP1 gene expression levels and sentinel node biopsy

positivity has been further investigated in data from the SNB study described in this

chapter. In this dataset, SPP1 expression was the best predictor of SNB positivity,

remaining significant in multivariate analyses adjusting for prognostic clinico-

pathological characteristics [445]. Given the role of osteopontin in degradation of

extracellular matrix, cellular adhesion, invasion and tumour growth [419] increased

expression of SPP1 is likely to enhance propensity to lymphatic metastases, for

example to sentinel lymph nodes, as has been noted in animal models of breast cancer

and breast cancer tumours [446].

In summary, the work I have reported in this chapter provides strong corroborative

evidence for SPP1 expression as a prognostic biomarker in melanoma. The utility of

pathway analysis in relation to SPP1 expression has been limited, however it has

provided a list of genes in the dataset with altered expression with evidence of

association to SPP1 based on the literature. It has also produced a network diagram

which assists in understanding the relationship between SPP1 and other genes. Use of

pathway analysis is explored further for groups of genes in Chapter 4. This study is the

largest in primary melanomas to date which identifies a biologically relevant biomarker

validated in an independent test set. It also demonstrates that FFPE tissue can be

used to identify prognostic markers in melanoma enabling further use of this invaluable

tissue resource.
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4 Patterns of DNA repair gene expression in primary

melanoma tumours

4.1 Aims

The main aim of this work was to identify genes which are differentially expressed in

primary melanoma tumours in relation to relapse in a large sample set generated by

merging data from two smaller studies.

Additional aims were to:

 Assess use of gene ontology (GO) and pathway analysis with microarray gene

expression data.

 Assess whether genes associated with survival were also differentially expressed

in tumours with different histological features associated with a poor prognosis

(increased Breslow thickness and higher mitotic rate).

 Develop a technique for validating cDNA-mediated annealing, selection,

extension and ligation (DASL) assay findings using quantitative Real-time PCR

(qRT-PCR) in formalin-fixed paraffin-embedded (FFPE) melanoma tumour

tissue.

4.2 Background

A biomarker is a measurable factor that can be used to indicate a biological process

such as the presence of a disease [155]. Prognostic biomarkers offer information about

outcome from a disease, and a number of prognostic biomarkers already exist for

melanoma, such as tumour Breslow thickness, mitotic rate, ulceration or nodal

involvement [58]. Additional biomarkers may help further refine prognostic information.

As reviewed in the introduction, a number of candidate prognostic biomarkers have

been assessed in melanoma tumours using approaches such as

immunohistochemistry and qRT-PCR. Use of microarray technology has greatly

increased the number of genes assessed as potential prognostic biomarkers, and this

chapter presents gene expression results from microarray analysis for a large number

of FFPE primary melanoma tumours in relation to survival and prognostic tumour

histological features. Generating gene expression data of this sort has led me to

investigate methods for analysis of this data, for example, use of pathway software. I
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also sought to confirm our findings using a different gene expression platform (qRT-

PCR), which has led to an assessment of the use of this technology in FFPE

melanoma samples as presented in this chapter.

Researchers have previously used cDNA microarray platforms to identify single genes

and groups of genes with expression patterns associated with relapse and survival

[161, 178, 180, 185]. Identification of differentially expressed genes can be performed

in a ‘supervised’ fashion where characteristics of a sample or patient are known.

Differences in gene expression can be based on simple identification of fold changes

between two distinct groups, for example relapsers and non-relapsers or by using

statistical tests, such as t-tests or modified tests, such as significance analysis of

microarrays (SAMic) [447-450]. In Chapter 3 we have used survival analysis to

generate a list of genes associated with relapse and so identified SPP1 expression as

an independent predictor of survival [187]. However, these techniques merely generate

lists of genes, which require interrogation to identify the biological implications of genes

differentially expressed. Identification of groups of genes with related biological

functions can be more useful, especially in cases where hundreds to thousands of

genes are differentially expressed [451]. Comparison of a gene list with Gene Ontology

(GO) terms can be used to understand the function of genes that are over-represented

[451]. GO terms were developed to describe the roles of genes in terms of associated

biological processes, cellular components and molecular functions [451, 452].

Biological process terms refer to a series of events using one or more combinations of

molecular functions; molecular function terms describe activities of genes, such as

catalytic or binding activities, and cellular component terms describe the location of a

gene product or a subcomponent of a larger cellular assembly [452]. To extend deeper

into the biology of gene lists, options are to analyse at the molecular level using

promoter and regulatory network analysis or use knowledge from the literature to

perform pathway analysis [451]. Pathway analysis assesses interactions between

genes, whereas GO terms represent gene function [453]. Pathway analysis also allows

mapping of gene lists onto existing pathways, usually using databases of pathways

generated from literature analysis [451].

In relation to cDNA microarray experiments with melanoma, many authors have utilised

GO terms and pathway analysis to identify groups of genes with expression levels

related to survival. Kauffmann et al. applied “searching for a biological interpretation of

microarray experiments” (SBIME) with Gene Ontology (GO) annotations to a

microarray dataset generated in an experiment to identify genes that differentiated

between primary tumours that would or would not metastasise within 4 years [177,

178]. SBIME performs analysis of variance (ANOVA) on logarithmic gene expression
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by metastasis status at 4 years. For each GO category, SBIME then compares the

proportion of genes with an ANOVA P-value lower than 1.0 x 10-2 within that category

with what would be expected if there was no relationship between the category and the

genes [177]. Using this analysis, Kauffmann and colleagues showed that genes

involved in DNA repair and genomic stability were over-represented among genes

differentially expressed in primary melanomas that would metastasise and that over-

expression of these genes was associated with metastasis [177]. In a study using

lymph node metastases, gene expression profiles were compared between tumours

from patients with “poor-prognosis” disease, progressing within 24 months of lymph

node dissection, and patients with “good-prognosis” disease who did not progress

within 24 months [185]. In this study, differentially expressed genes were grouped

according to GO terms, and Mann-Whitney tests were performed to compare

differentially expressed genes with existing GO-based gene lists to identify significant

over-representation of GO terms [185]. Using this method, of the 2140 differentially

expressed genes, genes involved in apoptosis, pathways associated with nuclear

factor-κB, Wnt/Frizzled signalling, immunologic signalling and developmental 

processes were over-represented [185].

An alternative approach to analysis of microarray data is ‘unsupervised’, where genes

or samples are clustered based on expression patterns [449]. Jonsson and colleagues

performed unsupervised hierarchical clustering of gene expression data from stage IV

melanoma and identified four subgroups of tumours [180]. They then used SAMic to

identify genes differentially expressed in each tumour subgroup and used DAVID (the

database for annotation, visualisation and integrated discovery) to determine gene

function [180, 369, 372]. DAVID, in common with many other publicly available tools,

maps a gene list to the associated biological annotation (e.g. GO terms) and then

highlights the most over-represented annotation [369-371]. In terms of the pathway

analysis, DAVID provides links for searching a number of pathway databases [369]. A

review of recent microarray studies used MetaCore (from GeneGo, St Joseph, MI) to

compare gene lists from six studies to identify common subsets of genes followed by

GO enrichment analysis [188, 454]. This highlighted immune response genes and the

NRAS-pathway as significant biological processes across microarray studies in

melanoma [188].

This chapter describes identification of a group of genes whose expression levels are

associated with survival and adverse prognostic factors. In Chapter 3 we have

described identification of a single gene (SPP1) with expression associated with

survival and have used Ingenuity Pathway Analysis (IPA, Ingenuity Systems, Redwood

City, California) to generate a network of genes associated with SPP1, based on the
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expression dataset. In this chapter, DNA repair genes and genes associated with these

processes, were easily identified as being associated with survival by simple review of

the gene list; however GO and pathway analysis has been used to confirm these

observations. Furthermore, IPA has been used in association with principal

components analysis to identify a network of genes with expression correlated with

DNA repair gene expression.

This chapter also describes an assessment of methods used for qRT-PCR with small

FFPE melanoma specimens. This has been undertaken to ensure accuracy of results

using precious samples, and I present experiments designed to identify the most

suitable experimental design and endogenous control genes for use in this work. The

two experimental designs for relative quantification of gene expression using qRT-PCR

are the relative standard curve method and the comparative Ct method [342]. The

relative standard curve method involves having a set of relative standards from which

the unknown samples are quantified. This quantity is then reported as relative to a

selected sample, which acts as a calibrator. Serial dilutions of cDNA, RNA or genomic

DNA can be used to generate standard curves, which need to be accurately diluted,

but do not need to be quantified. A standard curve is generated on each PCR plate for

each probe (including endogenous controls), therefore more reagents and space are

needed. However, this method is very accurate and requires the least amount of

validation as the PCR efficiencies of probes for the endogenous controls and test

genes do not need to be equal [341]. The comparative Ct (2-ΔΔCt) method is described

in Chapter 2 and does not require use of standard curves, so fewer reagents are used.

However, it is essential that PCR efficiencies of probes for test genes and endogenous

control genes are similar in order to use comparative Ct (2-ΔΔCt) method [340, 455].

Taqman® Gene Expression assays used in the qRT-PCR work presented in this

chapter have amplification efficiencies of 100% (+/-10%) when used in high quality

RNA [456]; specifically there is doubling of PCR product during every PCR cycle [340,

457], although this is likely to be less in degraded RNA from melanoma FFPE tissue.

Therefore, before deciding on an experimental design to use, an assessment of the

amplification efficiencies of the assays was made.

The comparative Ct method requires quantification of an endogenous control gene,

which will be used to normalise gene expression levels of unknown genes for the

amount of mRNA used in each reaction. When choosing which gene to use as a

control it is essential that the expression of this gene does not vary in response to an

intervention or in certain biological states, that the amplification efficiency is similar to

genes of interest and that the abundance of the reference gene is similar to that of the

gene of interest [458]. A “housekeeping” gene is often used as an endogenous control,
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however expression of these genes can vary considerably between different cell types

and between identical cell types from different individuals [459-461]. Also, some genes

used as endogenous control genes, for example GAPDH and beta-actin, have a

number of pseudogenes (genomic sequences which often lack introns similar to

transcribed mRNA sequences) which can amplify even when trace amounts of

genomic DNA are present in a PCR mixture [462-464]. This has prompted authors to

suggest that for experiments where internal control genes are used, these genes need

to be assessed to ensure there is minimum variability of gene expression [465].

Extensive studies have suggested that for more reliable and accurate normalisation of

data, multiple control genes are required from which a normalisation factor can be

calculated [343, 466]. Software has been developed to select genes with most stable

expression within the tissue of interest, such as geNorm [343] or Normfinder [467].

GeNorm calculates a gene stability measure based on the principle that the expression

ratio of two ideal control genes is the same in all samples. For each control gene, the

software determines the average pairwise variation with all other control genes as the

standard deviation of the log-transformed expression ratios and defines an internal

control gene-stability measure, M. Genes with the lowest M value have the most stable

expression. GeNorm then excludes genes with the highest M value and recalculates

new M values for the remaining genes, resulting in identification of the two endogenous

control genes with the most stable expression in tested samples [343]. Vandesompele

and colleagues suggested use of the geometric mean of control gene expression levels

as a normalisation factor [343]. Most authors recommend that at least three genes are

required for normalisation of data [343, 466], however a balance must be struck

between practical considerations of analysing control genes and accuracy of data

normalisation [343]. GeNorm can assist in identification of the number of genes

required for normalisation. When additional genes are added to calculate the

normalisation factor, GeNorm can calculate the pairwise variation between the original

normalisation factor and the new normalisation factor (pairwise variation =

normalisation factor using n genes ÷ normalisation using n+1 genes) to identify

whether addition of another gene significantly contributes to the normalisation factor

[343]. If there is large difference between the normalisation factor calculated using the

additional gene and the original normalisation factor, this suggests that the additional

gene has a significant effect on the factor and should be included to calculate the most

accurate normalisation factor [343]. Further genes can be added until there is little

difference between normalisation factors indicating that additional genes do no

contribute to calculation of an accurate normalisation factor. Vandesompele and

colleagues suggest that a pairwise variation of <0.15 with addition of a further gene

indicates that this control gene is not required for accurate normalisation [343]. In this
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chapter, this software has been used to identify genes with the most stable expression

in FFPE melanoma samples for use as endogenous control genes and the number of

genes needed for accurate normalisation of qRT-PCR data.

In summary, this chapter describes use of the DASL assay to identify DNA repair

genes and genes related to this process associated with relapse-free survival (RFS)

and adverse histopathological tumour features. Pathway analysis was used to further

investigate the data and DASL results were validated using qRT-PCR.

4.3 Identification of genes associated with prognosis and

histological features

4.3.1 Detailed methodology

4.3.1.1 Samples and generation of data set

As described in Chapter 3, FFPE primary melanoma tumour blocks were identified

from two study sets; the Leeds Melanoma Cohort Study (Cohort Study) and the

Retrospective Sentinel Node Biopsy Study (SNB Study). Tissue blocks were sampled

as described previously and RNA was extracted. Sample selection, tissue sampling

and RNA extraction were performed by Dr Caroline Conway (Cohort study), Dr Angana

Mitra (SNB study) and Samira Lobo. The Illumina DASL Human Cancer panel was

used for gene expression profiling by Floor de Kort at the service provider, ServiceXS

(Leiden, Netherlands). Data generated from the DASL array from the two sample sets

were normalised separately as described in Chapter 2 before the two data sets were

merged for analysis to identify differentially expressed genes. Gene expression data

from 354 primary melanoma samples was used for analysis.

4.3.1.2 Statistical methodology

4.3.1.2.1 Identification of differentially expressed genes

Gene expression analyses were performed by myself using data which had been log-

transformed (log2). As some of the normalised gene expression levels were negative,

1000 was added to all values prior to log-transformation. Within the sample sets, mean

expression of each gene was compared between samples with differing Breslow

thicknesses and mitotic rates using linear regression. For survival analysis, relapse-

free survival (RFS) was defined as the period between diagnosis and date of first

relapse at any site. Death from any cause was used for overall survival analyses.
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Analysis was performed on the 11th February 2010, and survival data was censored at

this date. Survival analysis was performed using the Cox proportional hazards model to

calculate hazard ratios and 95% confidence intervals for each gene. Significance

values were ranked to identify genes most differentially expressed between groups of

interest.

Survival analysis identified a number of genes significantly associated with survival that

were either DNA repair genes or genes linked to these processes. To identify which of

the DNA repair genes independently predicted survival, a multivariate Cox proportional

hazards model was generated using all DNA repair genes significantly (p<0.0001)

associated with Breslow thickness, mitotic rate or survival in the previous analyses.

Fold changes for gene expression between groups of interest were calculated using

normalised gene expression data which had not been log transformed. The

associations between expression of different DNA repair genes were identified using

Spearman’s rank correlation.

4.3.1.2.2 Multiple testing and adjustment of analyses

To correct for multiple testing, the Bonferroni method was used [366] and the

significance level was set at 0.0001. For survival analyses assessing the expression of

single genes in each test, the significance level for highlighting results of interest was

set as 0.05.

In view of non-biological variation that was present between the two DASL studies, all

gene expression analyses were adjusted for the study from which the patients were

recruited. Survival analyses were also adjusted for whether the patient had undergone

a sentinel node biopsy and the effect of the biopsy result (SNB status), as the use of

SNB results in delay of the date of first relapse in melanoma patients since the usual

site of first recurrence (nodal) is removed. Analyses were further adjusted for

demographic and histological factors of prognostic importance in melanoma. All

statistical analyses were undertaken using Stata version 10 (StataCorp 2007, College

Station, TX).

4.3.1.2.3 Gene ontology (GO) and pathway analysis of genes associated with survival

To further investigate differentially expressed genes, GO analysis was performed by

Binbin Liu and Lee Hazelwood of the Bioinformatics Group in the Cancer Research UK

Centre, Leeds Institute of Molecular Medicine. Cytoscape v2.8.1 [362, 363] and its

plug-in, BiNGO v2.44 [364, 365] were used to search a custom built GO database with
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gene lists generated from analyses described above. Further details of this software

are included in Chapter 2. For this study a customized gene reference and annotation

databank were built, as gene expression data was based on the 502-gene Human

Cancer panel rather than a genome-wide platform. Therefore, the databank used

contained GO terms associated with the 502 genes only.

DAVID [368] [369, 371, 372], was also used to identify over-represented gene

functions and pathways in our gene lists. I performed this analysis myself. Further

details of the algorithms used by DAVID are described in Chapter 2. For the purposes

of enrichment analysis, a background population of genes from the Human Cancer

panel has been inputted for comparison with the annotation composition of the inputted

gene list [368].

Genes associated with survival in analyses described in section 4.3.1.2.1 were ranked

in three ways according to hazard ratio, significance level and fold change in

expression between relapsers and non-relapsers for input into the analysis software.

4.3.1.2.4 Principal components analysis and Ingenuity Pathway analysis

Principal components analysis and Ingenuity Pathway Analysis was performed by

Jeremie Nsengimana in the Section of Epidemiology and Biostatistics. Ingenuity

Pathway Analysis (IPA, Ingenuity Systems, Redwood City, California

(www.ingenuity.com)) was used to identify the pathways and networks of genes co-

regulated with the most significant DNA repair genes [468]. Principal components

analysis was first applied to the dataset to summarize into one variable the expression

of the DNA repair genes most strongly associated with RFS [468]. A Pearson’s

product-moment correlation coefficient was then calculated between the first principal

component (summary variable) and each of the genes on the cancer panel. Finally IPA

was interrogated using algorithms described in Chapter 2 to find pathways and

networks involving genes significantly correlated with the principal component at a level

of p<1x10-10.

4.3.2 Results

4.3.2.1 Genes predictive of survival

Genes with expression levels most strongly related to RFS in the merged dataset from

354 primary melanoma samples are presented in Table 4-1 when analysis is adjusted

for study type and SNB status only.
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Gene

Mean fold
difference

between relapsers
and non-relapsers

Hazard
ratio

95%
confidence

interval

Significance
value

RAD51 1.22 2.99 1.84-4.85 8.34 x 10-6

TK1 1.12 4.70 2.30-9.61 0.00002

ING1 1.11 5.86 2.58-13.31 0.00002

RAD52 1.16 4.49 2.23-9.01 0.00002

TFAP2C 0.83 0.49 0.35-0.69 0.00004

CCNA2 1.16 2.66 1.67-4.23 0.00004

BIRC5 1.19 2.75 1.67-4.52 0.00007

TOP2A 1.12 3.85 1.97-7.55 0.00008

CDH13 0.80 0.48 0.33-0.70 0.0002

HLF 0.78 0.45 0.30-0.69 0.0002

SPP1 1.41 1.67 1.26-2.21 0.0003

ITGB4 0.79 0.58 0.43-0.79 0.0004

MLF1 1.15 2.74 1.55-4.83 0.0005

FLI1 0.83 0.51 0.35-0.75 0.0005

EPHB4 0.89 0.41 0.25-0.69 0.0008

VEGFB 1.04 9.83 2.57-37.64 0.0009

ELK3 0.95 0.20 0.07-0.53 0.001

RAD54B 1.18 2.08 1.33-3.25 0.001

E2F1 1.10 2.79 1.47-5.27 0.002

TERT 1.29 1.80 1.25-2.59 0.002

CDC2 1.22 1.85 1.26-2.70 0.002

CCNH 1.08 3.39 1.58-7.26 0.002

WNT2 1.34 2.49 1.41-4.41 0.002

IFNGR1 0.89 0.47 0.29-0.76 0.002

PML 0.96 0.21 0.07-0.58 0.003

Table 4-1: Top 25 genes associated with relapse-free survival (analysis adjusted

for study and SNB status).

Fold difference in gene expression between relapsers and non-relapsers is

presented. Hazard ratios for reduced RFS are calculated for doubling of gene

expression value, for example doubling of tumour RAD51 levels is associated

with a three times greater hazard of relapse. P-values are from the proportional

hazards model. The significance level following a Bonferroni correction is

indicated by a dashed line. DNA repair genes or those associated with this

process are highlighted in dark green and genes involved in the cell cycle or cell

proliferation are highlighted in light green.
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A number of the genes which were differentially expressed in association with relapse

in univariate analysis are DNA repair genes or involved in this process. Within this

group, over-expression of RAD51, RAD52 and TOP2A were most predictive of poor

RFS (Table 4-2) with hazard ratios of 2.99 (p=8.34x10-6), 4.49 (p=0.00002) and 3.85

(p=0.00008) respectively for a doubling of expression levels. These genes continued to

be predictive of RFS when the analysis was repeated and adjusted for factors of

prognostic importance in melanoma (age of patient at diagnosis, sex of the patient and

body site of tumour) and when adjusted further for tumour characteristics of prognostic

importance (Breslow thickness, mitotic rate (number/mm2) and presence of tumour

ulceration), confirming that these genes are independent predictors of relapse (Table

4-2, part (i)). Expression of RAD51 was 1.22 times greater in tumours from patients

who relapsed versus those that did not; the fold changes between tumours from

relapsers and non-relapsers for RAD52 and TOP2A were 1.16 and 1.12 respectively

(Table 4-1). RAD54B, RAD52, TOP2A and RAD51 were also over-expressed in

tumours from patients who died versus surviving patients (fold changes of 1.15, 1.11,

1.09 and 1.10, respectively).

4.3.2.1.1 Multivariate models including DNA repair genes associated with relapse,

Breslow thickness and mitotic rate

RAD52 and TOP2A continued to significantly influence survival in a Cox proportional

hazards model when considered with all the other DNA repair genes identified as being

significantly associated with Breslow thickness, mitotic rate or RFS (listed in Table 4-3)

(multivariate model Table 4-2, part (ii) and Figure 4-1). In the multivariate model

adjusted for study and SNB status only, hazard ratios (HR) for RAD52 and TOP2A

were 4.72 (p=0.0004) and 3.07 (p=0.009), respectively, for a doubling of levels. When

analysed by quartiles of RAD52 and TOP2A gene expression adjusted for study type

and SNB status only, HRs generally increased for each quartile of gene expression

(Figure 4-1). Both RAD52 and TOP2A continued to have a significant independent

predictive influence on RFS when analyses were adjusted for host variables (age, sex

and tumour site) and histological factors (Breslow thickness, mitotic rate and

ulceration) of prognostic importance (Table 4-2 part (ii)).



Gene

(i) Association between single gene expression and relapse free survival (ii) Multivariable model with expression of all DNA repair genes
predictive of RFS, Breslow thickness or mitotic rate

1.
Analysis adjusted for study

and SNB status only
(n=326)

2.
Analysis further

adjusted for age and
sex of patient and

site of tumour
(n=325)

3.
Analysis further

adjusted for Breslow
thickness, ulceration

and mitotic rate of
tumour (n=305)

1.
Analysis adjusted for
study and SNB status

only (n=326)

2.
Analysis further

adjusted for age and
sex of patient and site

of tumour (n=325)

3.
Analysis further

adjusted for Breslow
thickness, ulceration

and mitotic rate of
tumour (n=305)

Fold
HR

(95% CI) P-value
HR

(95% CI) P-value
HR

(95% CI) P-value
HR

(95% CI) P-value
HR

(95% CI) P-value
HR

(95% CI) P-value

RAD51 1.22
2.99

(1.84-4.85)
8.34x10

-6 3.23
(1.96-5.33)

4.45x10
-6 2.45

(1.41-4.24)
0.001

1.91
(0.98-3.72)

0.06
2.13

(1.09-4.19)
0.03

1.79
(0.88-3.67)

0.11

RAD52 1.16
4.49

(2.23-9.01)
0.00002

4.32
(2.12-8.80)

0.00006
2.50

(1.15-5.46)
0.02

4.72
(1.99-11.23)

0.0004
4.19

(1.77-9.92)
0.001

2.67
(1.08-6.61)

0.03

TOP2A 1.12
3.85

(1.97-7.55)
0.00008

3.87
(1.97-7.63)

0.00009
3.29

(1.58-6.85)
0.001

3.07
(1.33-7.08)

0.009
2.79

(1.20-6.47)
0.02

2.86
(1.16-7.06)

0.02

Table 4-2: The association of genes involved in DNA repair with relapse free survival in multivariate models.

Part (i) of the table shows the association between single gene expression and survival. Data adjusted for study and SNB status only are

presented in column 1. The association was adjusted for sex, patient age and tumour site (as known predictors of outcome) in column 2. In

column 3, further adjustment is made for known histological predictors of outcome: Breslow thickness, mitotic rate and ulceration. Part (ii) of

the table presents results of a multivariate Cox proportional hazards model with expression of DNA repair genes identified as being predictive

of RFS, Breslow thickness or mitotic rate (listed in Table 4-3). Significance values for genes that are independent predictors of survival within

this model are highlighted in bold. Abbreviations used: RFS, relapse-free survival; HR, hazard ratio; CI, confidence interval; SNB, sentinel node

biopsy.
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Expression
level

HR 95% CI P-value HR 95% CI P-value

<25%

25-50%

50-75%

>75%

1

1.58

1.79

2.90

0.80-3.10

0.95-3.37

1.57-5.36

0.19

0.07

0.001

1

2.82

2.67

3.59

1.45-5.47

1.34-5.29

1.78-7.25

0.002

0.005

<0.0001

Figure 4-1: Kaplan Meier survival function estimates for RAD52 and TOP2A gene expression.

Survivor functions have been estimated for each quartile of gene expression. Hazard ratios compared with the lowest quartile increase for

each successive quartile. Analysis is adjusted for study and SNB status. Abbreviations used: HR, hazard ratio; CI, confidence interval.
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4.3.2.2 Gene expression in tumours with poor prognostic

histopathological features

Genes involved in DNA repair were also over-expressed in tumours with greater

Breslow thickness and mitotic rate, which are associated with a poorer prognosis in

melanoma (Table 4-3). Generally, expression increased with each category of

increasing Breslow thickness and mitotic rate. This association remains significant

when the analysis was repeated and adjusted for host factors of prognostic importance

(age of patient at diagnosis, sex of patient and site of tumour).

4.3.2.3 Correlations in expression levels between DNA repair genes

Expression of the majority of DNA repair genes identified as being associated with

reduced survival or poor prognostic histological features correlated well with each other

(Table 4-4). An exception was RAD52, with expression levels that did not correlate with

the levels of RAD54L, BRCA2 and TOP2A.

4.3.2.4 GO analysis and pathway analysis using DAVID

When the gene list was ranked in order of hazard ratio for association with RFS, 33

genes had significance values ≤0.01 and were used for GO analysis. Ten GO terms 

were significantly associated with expression of these genes (Table 4-5). Many of

these terms describe cellular components, however eight genes are involved in the

biological process of M-phase (mitosis) in the cell cycle (CDC2, RAD54B, BIRC5,

RAD52, CDC25C, CCNA2, CDK2 and RAD51).

Analysis based on ranking genes in order of fold change allowed input of 280 genes

with fold changes greater than 1. In this analysis, genes were associated with four GO

terms which described biological processes: DNA recombination (corrected p-value

0.005) and DNA replication (corrected p-value 0.007) which are subsets of DNA

metabolic processes (corrected p-value 0.005), genes were also associated with M-

phase (corrected p-value 0.02) (Figure 4-2). Sixty-two (22%) of the genes were

associated with the term “DNA metabolic process”. The limitation of these analyses is

that only genes which increased risk of relapse or that were over-expressed in

relapsers were assessed. Reduced relapse risk and under-expression of genes may

also be of interest however as DNA repair genes were over-expressed, this analysis

was most relevant. Analysis based on ranking of genes according to significance levels

did not yield any significant results associations in GO analysis.



Gene

Breslow thickness Mitotic rate

Fold difference in gene
expression between

indicated group and tumours
≤1mm thick (n=24) 

Significance
level

(adjusted for
study only)

Significance
level – adjusted
for age and sex
of patient and
site of tumour

Fold difference in gene
expression between
indicated group and

tumours with mitotic rate
<1/mm2 (n=48)

Significance
level

(adjusted for
study only)

Significance
level – adjusted
for age and sex
of patient and
site of tumour

>1-2mm
(n=163)

>2-4 mm
(n=118)

>4 mm
(n=46)

1-6/mm2

(n=167)
>6/mm2

(n=119)

RAD52 1.05 1.16 1.30 1.88 x 10-8 9.53 x 10-8 1.10 1.16 0.02 0.03

MSH2 1.03 1.20 1.36 2.18 x 10-8 2.24 x 10-7 1.20 1.29 0.0009 0.002

RAD51 1.06 1.30 1.48 5.53 x 10-8 2.16 x 10-7 1.26 1.59 4.61 x 10-10 3.67 x 10-9

RAD54B 1.20 1.45 1.66 6.30 x 10-8 7.61 x 10-7 1.19 1.50 5.94 x 10-6 0.00006

CHEK1 1.04 1.35 1.44 9.44 x 10-6 0.0001 1.17 1.38 0.0005 0.005

BRCA1 1.19 1.42 1.54 0.00002 0.00007 1.12 1.45 1.23 x 10-6 3.19 x 10-6

TOP2A 1.00 1.10 1.22 0.00003 0.00008 1.20 1.38 5.43 x 10-9 1.36 x 10-8

RAD54L 0.94 1.18 1.28 0.00005 0.0004 1.11 1.34 0.0007 0.004

BRCA2 1.13 1.27 1.41 0.00006 0.0004 1.06 1.24 0.0006 0.002

MSH6 0.94 1.01 1.03 0.001 0.002 1.08 1.16 0.00003 0.00003

Table 4-3: DNA repair genes differentially expressed in relation to Breslow thickness and mitotic rate.

Genes listed were identified as significantly differentially expressed (p<0.0001) in tumours with either greater Breslow thickness or mitotic rate

using linear regression. Fold changes in gene expression are presented for each tumour thickness and mitotic rate group compared to

baseline groups. Analyses are adjusted for study only and further adjusted for age of patient at diagnosis, site of tumour and sex of patient.
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RAD51 RAD52 RAD54B RAD54L BRCA1 BRCA2 MSH2 MSH6 CHEK1

RAD52
0.22

<0.0001

RAD54B
0.39

<0.0001
0.25

<0.0001

RAD54L
0.29

<0.0001
0.05
0.39

0.24
<0.0001

BRCA1
0.40

<0.0001
0.29

<0.0001
0.46

<0.0001
0.25

<0.0001

BRCA2
0.34

<0.0001
0.06
0.28

0.25
<0.0001

0.25
<0.0001

0.39
<0.0001

MSH2
0.23

<0.0001
0.21

0.0001
0.43

<0.0001
0.27

<0.0001
0.41

<0.0001
0.36

<0.0001

MSH6
0.33

<0.0001
0.26

<0.0001
0.31

<0.0001
0.21

0.0001
0.32

<0.0001
0.16

0.0029
0.33

<0.0001

CHEK1
0.46

<0.0001
0.19

0.0005
0.29

<0.0001
0.32

<0.0001
0.39

<0.0001
0.29

<0.0001
0.37

<0.0001
0.27

<0.0001

TOP2A
0.61

<0.0001
0.05
0.40

0.36
<0.0001

0.31
<0.0001

0.37
<0.0001

0.34
<0.0001

0.20
0.0002

0.25
<0.0001

0.30
<0.0001

Table 4-4: Gene expression correlations for DNA repair genes adjusted for study and relapse status.

Spearman’s rho and significance value are presented.
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GO-ID
Corrected

significance
value

Description

44428 0.013 nuclear part

5654 0.013 nucleoplasm

31981 0.013 nuclear lumen

43233 0.015 organelle lumen

31974 0.015 membrane-enclosed lumen

70013 0.015 intracellular organelle lumen

44446 0.016 intracellular organelle part

44422 0.017 organelle part

279 0.028 M phase

5634 0.031 nucleus

Table 4-5: Gene ontology terms associated with genes that influence relapse-free

survival.

Many of these terms describe cellular components, terms which describe a

biological process are highlighted in green. The P-value has been corrected using

the Benjamini and Hochberg correction [367].

A list of 109 genes significantly associated with RFS (p<0.05) were entered into DAVID

software, 102 genes were recognised by the software and compared with a

background of 479 recognised genes from the Human Cancer panel to identify

enriched gene ontology terms or pathways in this dataset. Forty-six Kyoto Encylopedia

of Genes and Genomes (KEGG) pathways [469, 470] were identified which contained

66 of the input genes, the top 10 pathways are presented in Table 4-6.

Unsurprisingly, as a cancer panel was used for gene expression measurement, the

majority of genes were involved in the cancer pathway. Genes were also significantly

enriched in the cell cycle pathway (Table 4-6) and the homologous recombination

pathway (17th most significant pathway) following adjustment of significance values

using either the Bonferroni correction [366] or the Benjamini and Hochberg correction

[367]. Genes were also present in the non-homologous end-joining pathway when the

less stringent Benjamini and Hochberg correction was used (25th most significant

pathway). The melanoma pathway contained four genes, but these genes were not

significantly represented. This analysis suggests that genes involved in focal adhesion

and cytokine-cytokine receptor interactions are also over-represented in this gene list.

This result is useful as it may not have been appreciated on simple review of the gene

list.
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Figure 4-2: Hierarchical display of biological process GO terms associated with

genes with expression fold change >1 between relapsers and non-

relapsers.

GO terms associated with the gene list are highlighted in yellow.



Pathway
Number of
genes in
pathway

% of genes
inputted

P-Value
Bonferroni

corrected P-
value

Benjamini
corrected P-

value

False
discovery

rate

hsa05200:Pathways in cancer 26 25.5 1.29x10-18 1.03x10-16 1.03x10-16 1.37x10-15

hsa04510:Focal adhesion 14 13.7 5.87x10-12 4.70x10-10 2.35x10-10 6.24x10-09

hsa04110:Cell cycle 12 11.8 8.71x10-11 6.96x10-09 2.32x10-09 9.26x10-08

hsa04060:Cytokine-cytokine receptor interaction 13 12.8 9.07x10-11 7.25x10-09 1.81x10-09 9.64x10-08

hsa05212:Pancreatic cancer 9 8.8 2.40x10-07 1.92x10-05 3.84x10-06 2.55x10-04

hsa05210:Colorectal cancer 8 7.8 4.63x10-06 3.70x10-04 6.17x10-05 0.005

hsa04144:Endocytosis 7 6.9 8.14x10-06 6.51x10-04 9.30x10-05 0.009

hsa05215:Prostate cancer 8 7.8 1.36x10-05 0.001 1.36x10-04 0.019

hsa04520:Adherens junction 6 5.9 1.84x10-05 0.002 1.64x10-04 0.02

hsa04810:Regulation of actin cytoskeleton 7 6.9 8.09x10-05 0.007 6.47x10-04 0.09

Table 4-6: KEGG (Kyoto Encylopedia of Genes and Genomes) pathways associated with genes that influence relapse-free survival.

Significance values for representation of genes in the pathway without correction for multiple testing are presented, along with corrected

significance values using the Bonferroni correction [366] and the Benjamini and Hochberg correction [367]. The false discovery rate is also

presented.
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4.3.2.5 Principal components and Ingenuity Pathway Analysis (IPA)

Principal components analysis of the top 10 significant DNA repair genes (listed in

Table 4-3) identified one component which explained 40% of total variance in DNA

repair gene expression whilst each of the other components explained 10% or less

(analysis adjusted for study). Principal component 1 was also the only one that

correlated with each of the 10 genes from which it was generated (Pearson’s

correlation coefficient ranging from 0.40 to 0.74). Table 4-7 presents the remaining

genes from the cancer panel with expression that correlated with the first principal

component at a level of p<1x10-10. A large number of these genes are associated with

cell cycle control or DNA repair (Table 4-7).

The 37 genes presented in Table 4-7 were used in IPA to infer cellular and molecular

functions and to build gene networks. IPA built a gene network which contains 35

genes (Figure 4-3), among which 22 were correlated with the principal component of

DNA repair genes at a significance level of p<1x10-10. The major cellular and molecular

functions making up this network were cell cycle and cell death, confirming the strong

association between these processes and DNA repair.

4.3.3 Summary of gene expression associated with prognosis and

histological features of tumours

Over-expression of DNA repair and related genes in 354 primary melanomas was

prognostic and associated with shorter relapse-free survival time and poor

histopathological features of the tumour. RAD51, RAD52 and TOP2A are independent

predictors of RFS in analyses adjusted for patient and tumour factors of prognostic

importance. RAD52 and TOP2A remained predictive of survival in multivariate analysis

with other DNA repair genes. Expression of the majority of DNA repair genes was

correlated and was also associated with expression of genes associated with cell cycle

control and cell death.

Table 4-7 (following page): Remaining genes from the Human Cancer panel most

correlated with principal component 1.

Correlation coefficients are adjusted for study. The National Center for

Biotechnology Information Entrez Gene database was interrogated to identify

gene function [471]. DNA repair genes or those associated with this process are

highlighted in dark green and genes involved in the cell cycle or cell proliferation

are highlighted in light green.
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Gene Correlation P value Role

CDC2 0.54 1.3x10-27 Cell cycle

TYMS 0.51 8.4x10-25 DNA repair and replication

BIRC5 0.50 1.2x10-23 Inhibitor of apoptosis

HMMR 0.49 1.8x10-22 Cell motility

CCNA2 0.48 9.0x10-22 Cell cycle

CDC25A 0.48 1.1x10-21 Cell cycle

TK1 0.48 1.7x10-21 Cell cycle

PCNA 0.45 2.8x10-19 DNA repair and replication

CDC25C 0.45 5.6x10-19 Cell cycle

DEK 0.45 8.6x10-19 Chromatin organisation

DCN -0.44 5.0x10-18 Role in connective tissue

CDK4 0.42 7.1x10-17 Cell cycle

WEE1 0.42 9.9x10-17 DNA replication and cell cycle

ETS2 -0.41 4.9x10-16 Transcription factor

PDGFRA -0.41 8.9x10-16 Tyrosine kinase receptor

BLM 0.40 7.2x10-15 DNA repair and replication

ITGB4 -0.39 2.4x10-14 Cell adhesion

CDKN2C 0.39 2.4x10-14 Cell cycle

E2F1 0.38 1.5x10-13 DNA replication and cell cycle

XRCC2 0.38 2.4x10-13 DNA repair

MYBL2 0.37 3.8x10-13 Cell cycle

FYN -0.37 5.7x10-13 Cell growth

XRCC4 0.37 1.2x10-12 DNA repair

PDGFRB -0.37 1.3x10-12 Tyrosine kinase receptor

BCL6 -0.36 2.8x10-12 Transcriptional repressor

CDH11 -0.36 4.0x10-12 Cell adhesion

FOSL2 -0.36 4.4x10-12 Cell proliferation

MAF -0.36 5.5x10-12 Transcriptional repressor/activator

MLF1 0.36 5.9x10-12 Haemopoietic cell development

COL18A1 -0.36 6.3x10-12 Collagen component

PBX1 -0.35 6.8x10-12 Osteogenesis and steroidogenesis

JUNB -0.35 1.1x10-11 Response to growth factors

IFNGR1 -0.35 2.2x10-11 Interferon γ receptor 

AXL -0.34 3.5x10-11 Tyrosine kinase receptor

E2F3 0.34 4.2x10-11 DNA replication and cell cycle

MCF2 0.34 7.7x10-11 Guanine nucleotide exchange factor

RECQL 0.34 9.0x10-11 DNA repair
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Figure 4-3: Gene network significantly correlated with principal component 1

from Ingenuity Pathway Analysis: cancer, cell cycle and cell death.

Molecules are represented as nodes and the biological relationship between

nodes is represented as a line (edge). Each edge is supported by at least one

reference from the literature, from a textbook or from canonical information stored

in the Ingenuity Knowledge Base. The intensity of the node colour indicates the

degree of positive (red) or negative (green) correlation with the principal

component.
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4.4 Validation of DASL results

Results generated from microarray analysis require validation to ensure that results are

reproducible (and not platform specific) and warrant further investigation. To check the

results using a different gene expression assay, a qRT-PCR experiment was

performed to confirm expression levels of RAD52, RAD54B and TOP2A using samples

from patients recruited to the Cohort Study.

To ensure that accurate results were being obtained from these precious samples,

methodological work was undertaken to identify the best methods for qRT-PCR

experiments with FFPE melanoma samples.

4.4.1 Study to optimise methods for qRT-PCR using FFPE

melanoma samples

4.4.1.1 Assessment of amplification efficiencies of Taqman® Gene

Expression assays and choice of experimental design

4.4.1.1.1 Methods

An assessment of the amplification efficiencies of Taqman® Gene Expression assays

for unknown genes and endogenous control genes was performed to decide whether

the comparative Ct method could be used with FFPE melanoma samples and

Taqman® Gene Expression assays. cDNA was generated using the Invitrogen

Superscript™ First-strand Synthesis System with a modified protocol, as described in

Chapter 2, from RNA extracted from a FFPE metastatic melanoma sample as

described in Chapter 2. cDNA concentration was measured using spectrophotometry

and standard samples were prepared using a 1:2 dilution to generate standard curves

for each assay assessed. Applied Biosystems (Warrington, UK) recommend that

amplification efficiencies are assessed over a broad dilution (5-6 logs) [456], however

previous experiments suggested that cDNA produced from RNA extracted from FFPE

melanomas is too dilute to amplify in a concentration less than 100ng/μl so a 1:2 

dilution was used to ensure enough results would be obtained to assess amplification

efficiency.

Fragments of genes were amplified using Taqman® Gene Expression assays as

detailed in Table 4-8.
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Gene
Exons

targeted
Amplicon

length
NCBI Reference

Sequence
Assay Reference

Genes for
relative

quantification

RAD52 2/3 65bp NM_134424.2 Hs00172536_m1

RAD54B 1/2 64bp NM_012415.2 Hs00610716_m1

TOP2A 23/24 72bp NM_001067.2 Hs03063307_m1

Endogenous
control genes

GAPDH 3 122bp NM_002046.3 Hs99999905_m1

IPO8 20/21 71bp NM_006390.2 Hs00183533_m1

Table 4-8: Details of Taqman® Gene Expression assays for DNA repair gene

qRT-PCR experiments.

Abbreviations used: NCBI, National Center of Biotechnology.

PCRs were performed using standard methods described in Chapter 2. Automatic

baseline and threshold levels were used to generate cycle threshold (Ct) values, and

amplification efficiencies for each probe were calculated by the ABI 7500 Fast Real-

time PCR System software (Applied Biosystems).

4.4.1.1.2 Results and conclusions

Ct values for replicate samples were plotted against sample cDNA amount. A line of

best fit through the data points for each probe is applied by the software to generate

standard curves from which probe efficiency can be calculated using the formula:

efficiency = 10(-1/slope) -1 [456]. Probe efficiencies as calculated by the software are

presented in Table 4-9.

Assay
Slope of
standard

curve
Efficiency (%)

Genes for
relative

quantification

RAD54B -4.92 59.7

RAD52 -5.44 52.7

TOP2A -5.33 54.1

Endogenous
control genes

IPO8 -5.60 50.9

GAPDH -4.68 63.5

Table 4-9: Taqman® Gene Expression assay probe efficiencies in cDNA

generated from RNA extracted from an FFPE metastatic melanoma sample.
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Applied Biosystems report that Taqman® Gene Expression assays are 100% (+/-

10%) in high quality RNA. This experiment showed that the assays were less efficient

with degraded RNA extracted from FFPE tissue, but were comparable in efficiency with

each test probe being within 10% of the efficiency of one of the endogenous control

probes. Therefore I concluded that use of a comparative Ct method to assess the

relative quantities of RAD54B, RAD52 and TOP2A when using GAPDH and IPO8 as

endogenous control genes would be appropriate and this was used as the

experimental design for validation of DASL results.

4.4.1.2 Identification of suitable endogenous controls

4.4.1.2.1 Methods

To identify endogenous control genes for use in qRT-PCR experiments using FFPE

melanoma tissue, cDNA was generated using the Invitrogen Superscript™ First-strand

Synthesis System using a modified protocol from RNA extracted from four FFPE

melanoma metastases samples as described in Chapter 2. For a comparative

experiment, a calibrator sample is also required to generate relative quantity values,

and assessment of endogenous control gene expression in this sample was also

made. For this work, a sample from an intradermal naevus was identified as a

calibrator sample, RNA was extracted from 12 cores of tissue using the Roche High

Pure RNA Paraffin Kit as described in Chapter 2 and cDNA was generated from

calibrator RNA as described previously. Taqman® Express Endogenous Controls

plates (Applied Biosystems, Warrington, UK) are 96-well MicroAmp® optical reaction

plates with Taqman® Gene Expression Assays for 32 endogenous control genes dried

into wells in triplicate (full list in Figure 4-4). One plate was used to assess each of the

5 samples. Each well was reconstituted to a final volume of 20μl with 10μl of Gene 

Expression Master Mix, 8μl DNase-free water and 2μl cDNA sample (total 1 

microgram). PCRs were performed using the ABI 7500 Real-time PCR system (Applied

Biosystems) using standard cycling conditions described in Chapter 2. Data from each

of the 5 plates was imported into a single study and automatic settings were used for

baseline and threshold determination across the samples. Ct values were exported to

Excel for further analysis. Mean Ct values from replicate samples were used, and

standard deviations were calculated for each gene across all samples. Data was

uploaded into geNorm software (J. Vandesompele, Center for Medical Genetics,

Ghent, Belgium) following conversion into non-normalised quantities. These quantities

were calculated as follows: ΔCt values were calculated for each gene where ΔCt = 
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mean Ct value melanoma sample – mean value Ct calibrator sample, non-normalised

values were calculated using 2-ΔCt [340].

4.4.1.2.2 Results and conclusions

A number of gene expression assays failed to amplify with some of the samples, those

being HMBS, HPRT1 and TBP. Figure 4-4 shows the spread and mean Ct values for

each gene across the five samples assessed. The genes with the lowest standard

deviations were HMBS (for which a number of samples failed), PPIA1, POP4, IPO8

and CDKN1B.

Figure 4-5 shows the average gene-stability measure (M values) of remaining control

genes during stepwise exclusion of the least stable control gene using geNorm

software [343]. The two genes with the lowest M value and hence the least average

pairwise variation, have the most stable gene expression.

Based on these analyses PPIA1, POP4, IPO8, CDKN1B, CASC3 and PES1 would be

candidates for endogenous control genes. In view of the limited amounts of RNA

available to perform qRT-PCR validation work the lowest number of genes to allow

accurate normalisation were identified. The calculated pairwise variation between a

normalisation factor using 2 genes and 3 genes was only 0.097 (and therefore <0.15

[343]), indicating that normalisation using two genes would be adequate. GAPDH is

commonly used as an endogenous control gene for normalisation. GAPDH had the 6th

lowest standard deviation between samples of 0.61 and was the 6th most stably

expressed gene as identified by geNorm, so was used as the first control gene. As

discussed previously, an ideal control gene should be of similar abundance to the

unknown genes. Figure 4-4 demonstrates that GAPDH is more abundant than many of

our unknown genes with a lower Ct value, therefore it would be sensible to choose a

gene of lower abundance as the second gene for normalisation. IPO8 was identified as

being the 3rd most stably expressed gene by geNorm and had low standard deviation

between samples of 0.40. In this experiment, IPO8 had a Ct value of 36.5 and GAPDH

had a Ct value of 35.1, therefore IPO8 was chosen as the second control gene for

further qRT-PCR work to validate DASL results. As discussed previously, ideally three

or more control genes are used and this represents a limitation of this work. However,

in view of the small amounts of RNA available it cannot be justified to use more than

two control genes to assess expression of three unknown genes.
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Figure 4-4: Dot-plot of cycle threshold values for cDNA samples generated from RNA extracted from four metastatic melanoma samples

and one intradermal naevus (calibrator sample).

The mean is indicated by the plus sign. Abbreviation used: Ct, cycle threshold.
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Figure 4-5: Average gene stability values (M values) of control genes during stepwise exclusion of least stable control genes.

CASC3 and PES1 have the lowest M value and therefore have the most stable gene expression in four melanoma samples and one

intradermal naevus sample .
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4.4.2 Expression of RAD52, RAD54B and TOP2A in tumours from

patients recruited to the Leeds Melanoma Cohort Study

4.4.2.1 Detailed methodology

cDNA was generated using the Invitrogen Superscript™ First-strand Synthesis System

using a modified protocol as described in Chapter 2 from RNA extracted from 156

primary melanoma tumours from patients recruited to the Cohort Study and sent for

DASL analysis. Thirteen samples from patients treated with chemotherapy were not

included in the analysis as these samples were required for another study (Chapter 8).

RNA was not available for two samples, one of which was from a patient treated with

chemotherapy, leaving a total of 142 samples for analysis. Chemotherapy treated

patients had all relapsed, leaving a total of 24 patients who had relapsed in the sample

set assessed. cDNA was generated in two 96-well plates for all samples in the same

reaction. cDNA generated from RNA extracted from an intradermal naevus sample, as

described in section 4.4.1.2.1, was used as a calibrator sample.

Small fragments of RAD52, RAD54B, TOP2A and the endogenous control genes,

GAPDH and IPO8 were amplified using Taqman® Gene Expression Assay probes

(Applied Biosystems, Warrington, UK) as listed in Table 4-8. PCRs were performed

using standard conditions described in Chapter 2.

A total of 25 96-well plates were used for this experiment. The calibrator sample was

amplified for all probes on 4 plates across the experiment to allow assessment of

variability across the plate runs. Each 96-well plate was set up using the Corbett CAS4

robot (Qiagen Ltd, Crawley, UK) with the assistance of Dr Mark Harland, to minimise

pipetting variation. Template negative controls for each assay and reverse

transcriptase negative cDNA controls were rotated across the plates.

Following each run, results were assessed and any failed samples were omitted from

the analysis. Groups of replicates with standard deviations greater than 0.5 cycles

were reviewed to identify outliers. If a sample result was clearly erroneous when

compared to other replicates (sample with Ct value >0.5 cycles different to other two

samples), this sample was omitted from the analysis. When it was unclear which

sample was the outlier (all Ct values within 0.5 cycles of each other) all samples were

retained to generate a mean Ct value for replicates. All plates were imported into a

single study, and automatic settings were used for baseline and threshold

determination across all samples. Ct values were exported to Excel for further analysis.

Reproducibility between sample replicates was calculated using intraclass correlation

coefficients, which describe how strongly replicate samples within each group

resemble each other. A value of 1 indicates perfect correlation, with lower values
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representing more variation between samples within a group [472]. Mean Ct values

were calculated for each sample for each gene from replicates and data were

normalised using expression of GAPDH and IPO8 according to the method of

Vandesompele et al. [343], which is described in Chapter 2. Normalised gene

expression quantities were used to calculate a fold change in expression between

samples from patients that had relapsed and non-relapsers. The statistical significance

of gene expression differences between the groups was assessed using the Mann-

Whitney U test with the significance level being set at 0.05.

Non-normalised values for gene expression are given by the formula (1+efficiency of

amplification)-ΔCt [340]. For probes with 100% efficiency this equates to the formula 2-

ΔCt, however as the efficiency of the assays in FFPE melanoma tissue was shown in

Table 4-9 to be a mean value of 56%, the calculation was repeated using the formula

1.56-ΔCt prior to normalisation. To compare gene expression results generated using

different normalisation approaches, data was also normalised to GAPDH and IPO8

separately using the 2-ΔΔCt method as previously described in Chapter 2. Gene

expression data from qRT-PCR was compared with that from the DASL assay using

Spearman’s rank correlation.

4.4.2.2 Results

4.4.2.2.1 Validation of DASL results

Nine samples failed to amplify with the probes for all genes assessed. Two further

samples failed to amplify with the RAD52 probe and three samples for the RAD54B

probe. Negative controls failed to amplify as expected. Table 4-10 presents summary

information about the assays used in this experiment. Mean Ct values for RAD52 and

RAD54B probes were higher than those for other genes and the intraclass correlation

coefficients for replicate samples were lower. Mean Ct values were calculated from all

calibrator samples for each probe for further analysis.

Table 4-11 presents the fold changes in mean gene expression between tumours from

patients who relapsed (n=24) versus those that do not relapse (n=118). Table 4-11

also shows the different values obtained when analysis was normalised using the

geometric mean of two control genes and each control gene separately, and the

difference in values obtained when the lower efficiency of probes was taken into

account when calculating relative quantities. The samples used for this analysis were

from the Leeds Cohort study only, therefore Table 4-11 also presents the DASL results

for the 142 samples used in this qRT-PCR validation for comparison with the merged

dataset results in Table 4-1.
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Gene

Mean Ct
value for
calibrator
samples

(n=4)
(outliers
removed)

Mean Ct
value for

test samples
(n=133)
(outliers
removed)

Intraclass
correlation
coefficient

for samples
(outliers
present)

Intraclass
correlation
coefficient

for samples
(outliers

removed)

GAPDH 32.83 32.21 0.99 0.99

IPO8 35.36 35.26 0.94 0.97

RAD52 36.83 36.57 0.49 0.91

RAD54B 38.80 37.57 0.45 0.87

TOP2A 37.91 35.58 0.93 0.97

Table 4-10: Mean cycle threshold values and intraclass correlation coefficients

for sample replicates for each qRT-PCR assay.

Mean Ct values for calibrator samples and test samples are presented following

removal of outliers (156 values were classified as outliers from 2043 original Ct

values). Intraclass correlation coefficients for replicate samples have been

calculated before and after outliers have been removed.



Gene

Geometric mean
normalisation,

mean fold change
(significance

level)

Geometric mean
normalisation -
efficiency 0.56,

mean fold change
(significance

level)

Normalised to
GAPDH only
2-ΔΔCT, mean
fold change
(significance

level)

Normalised
to IPO8 only
2-ΔΔCT, mean
fold change
(significance

level)

No. in DASL
Cohort list

of
differentially
expressed

genes

Fold
change in

DASL
cohort

samples

Significance
level in DASL
cohort data

RAD52 0.72 (0.006) 0.81 (0.006) 0.56 (0.005) 0.80 (0.07) 125 1.09 0.08

RAD54B 1.08 (0.42) 1.07 (0.42) 0.80 (1.00) 1.38 (0.07) 4 1.35 0.00008

TOP2A 1.37 (0.01) 1.27 (0.009) 0.94 (0.26) 1.82 (0.0003) 29 1.16 0.004

Table 4-11: Fold changes in mean gene expression of RAD52, RAD54B and TOP2A in tumours of patients who relapse compared to non-

relapsers as determined using qRT-PCR.

Column 1 presents results when normalised to the geometric mean of GAPDH and IPO8 assuming the efficiency of the assays is 100%.

Column 2 presents results when probe efficiency of 56% is used (as determined in FFPE melanoma tissues in section 4.4.1.1.2). Column 3

present results when normalised to the endogenous control gene, GAPDH, only using the 2-ΔΔCt method. Column 4 presents results for data

normalised to IPO8 only (both columns assume probe efficiency of 100%). The Mann Whitney U test has been used to identify statistically

significant differences between expression results between relapsers and non-relapsers and the significance value is presented. The final

three columns show results from DASL analysis of 142 samples used in the qRT-PCR experiment, the first column shows the position of the

gene on the list of most differentially expressed genes in relapsers versus non-relapsers, the second column show the fold change between

relapsers and non-relapsers and the final column show the significance value from survival analysis using the proportional hazards model.

-
1
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Expression of RAD54B and TOP2A was greater in tumours from relapsers versus non-

relapsers using geometric mean normalisation and normalisation to IPO8. TOP2A was

statistically significantly over-expressed, which is consistent with the DASL results,

although over-expression of RAD54B did not reach statistical significance. RAD52 was

significantly under-expressed in tumours from relapsers versus non-relapsers, a result

which therefore does not correlate with DASL results. Use of lower probe efficiencies to

calculate relative quantities does not alter these results. To investigate the different

results obtained for RAD52 using these two methods, I looked at data from each of the

three probes used in the DASL assay for RAD52. As presented in Table 4-12,

expression results for RAD52 from the DASL assay using the mean expression values

from three probes do not correlate significantly with qRT-PCR results using Taqman

assays (Spearman’s rho 0.15, p=0.08). Two of the DASL probes are located on exon

12 of the RAD52 gene and results from these probes correlated poorly with the qRT-

PCR data (Spearman’s rho -0.05 and 0.08, p=0.59 and 0.37, respectively). When a fold

change in gene expression between relapsers and non-relapsers is calculated for

these DASL probes, RAD52 is over-expressed (fold change 1.05 and 1.08,

respectively). The other RAD52 probe is located on exon 4, closer to the Taqman

assay which targets exons 2/3. DASL expression results correlate better with qRT-PCR

results for this probe (Spearman’s rho 0.26, p=0.003); however the fold change in gene

expression for relapsers and non-relapsers for this DASL probe is smaller at 1.01.

There may be a number of factors contributing to the lack of consistency across DASL

results and qRT-PCR results. Results from the DASL or the qRT-PCR assay may be

erroneous, which is supported by the lack of correlation between DASL expression

results and qRT-PCR data for two of the three DASL assay probes. In addition, the fold

change in gene expression between relapsers and non-relapsers was very small (1.01)

for the probe which correlated with qRT-PCR results, decreasing the likelihood that this

fold change would have been detected in the qRT-PCR experiment. Another factor that

may also contribute to these results is the samples selected for qRT-PCR validation.

As presented in Table 4-11, when DASL data for the 142 samples used in the qRT-

PCR experiment is analysed, RAD52 is the 125th gene most associated with RFS and

expression is not significantly associated with RFS (p=0.08, fold change between

relapsers and non-relapsers 1.09). In contrast, RAD52 is the 4th gene most significantly

associated with RFS in the merged dataset analysis (p=0.00002, fold change 1.16)

(Table 4-1). Therefore, I could not validate DASL results for RAD52 using qRT-PCR,

likely due to lack of correlation between qRT-PCR results and DASL probes and lack of

power within the dataset to identify gene expression differences between relapsers and

non-relapsers.



GAPDH and IPO8 geometric
mean normalisation -

efficiency 100%,
Spearman’s rho (p)

GAPDH and IPO8 geometric
mean normalisation -

efficiency 56%,
Spearman’s rho (p)

GAPDH only normalisation
2-ΔΔCT, Spearman’s rho (p)

IPO8 only normalisation
2-ΔΔCT, Spearman’s rho (p)

RAD52 RAD54B TOP2A RAD52 RAD54B TOP2A RAD52 RAD54B TOP2A RAD52 RAD54B TOP2A

RAD52
0.15

(0.08)
0.15

(0.08)
0.06

(0.48)
0.16

(0.07)

RAD54B
0.13

(0.13)
0.13

(0.13)
0.009
(0.92)

0.26
(0.003)

TOP2A
0.55

(<0.0001)
0.52

(<0.0001)
0.34

(<0.0001)
0.72

(<0.0001)

Table 4-12: Correlations between DNA repair gene expression data derived from qRT-PCR and DASL.

Spearman’s rho values and significance levels are presented for each gene. The first column compares gene expression results from qRT-

PCR using the geometric mean of GAPDH and IPO8 expression and assuming assay efficiency of 100%. The second column presents

correlations between data when efficiency of assays is set at 56%. The third and fourth columns present correlations when qRT-PCR data has

been normalised to GAPDH or IPO8 respectively, using the 2-ΔΔCtmethod and assuming a probe efficiency of 100%.

-
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4.4.2.2.2 Comparison of normalisation methods

Table 4-12 presents the correlations between relative gene expression quantities

calculated using qRT-PCR and gene expression values from DASL data. Irrespective

of normalisation method or efficiency used to calculate relative quantities, expression of

TOP2A using qRT-PCR correlated significantly with expression levels from DASL. Only

when normalised to IPO8 alone did expression of RAD54B correlate significantly

between qRT-PCR and DASL. As discussed previously, expression of RAD52 as

determined by qRT-PCR is positively correlated with DASL expression data based on

three probes, but not significantly. This is not altered by normalisation method and may

contribute to the lack of correlation between fold changes in gene expression in

relapsers and non-relapsers between the two methods. There are clearly differences in

results depending on which normalisation method is used. Normalisation to GAPDH

only decreases the differences between relapsers and non-relapsers with regards to

RAD54B and TOP2A expression (Table 4-11), and decreases the correlation between

qRT-PCR results and DASL results (Table 4-12). Normalisation to IPO8 only increases

the differences in gene expression of RAD54B and TOP2A and improves the

correlation between DASL results and qRT-PCR results. This highlights the importance

of correct normalisation. In view of these results it would be sensible to use genes

which we have identified as being most stably expressed in melanoma samples in

4.4.1.2.2 (CASC3 or PES1) instead of GAPDH in future work and undertake a similar

assessment to compare results obtained with different normalisation techniques.

4.4.3 Summary of qRT-PCR methodological work

The work I have presented demonstrates that although the efficiencies of Taqman®

Gene Expression assays are lower in RNA extracted from FFPE melanoma tissue, use

of the comparative Ct method for gene quantification is valid. The importance of correct

normalisation has been demonstrated and a number of suitable endogenous control

genes (PPIA1, POP4, IPO8, CDKN1B, CASC3 and PES1) for normalisation have been

identified. DASL results for two genes have been validated using qRT-PCR (TOP2A

and RAD54B), however results for RAD52 could not be replicated.
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4.5 Discussion

4.5.1 Development of methodology for qRT-PCR with FFPE

melanoma tissue

The potential for reporting an erroneous result as a consequence of using a single

gene expression platform, such as the DASL assay, is always a concern in gene

expression work, thus it is important to confirm findings using another approach. I

therefore attempted corroboration using qRT-PCR. This technique requires

optimisation for use in different tissue types as amounts of starting material may vary,

enzymatic efficiencies may differ and transcriptional activity can be highly variable

[343]. “Housekeeping” genes, commonly used for normalisation, have expression

which can vary considerably [459-461], leading authors to recommend that control

genes are assessed for suitability in each experimental protocol [465]. In the case of

FFPE melanoma tissue, optimisation is even more essential in view of the degraded

RNA extracted from FFPE materials [291] and the presence of melanin which can

interfere with PCR reactions [303].

This chapter therefore presents methodological work to investigate and optimise

methods for qRT-PCR in FFPE melanoma tumours. The data described above show

that there is not doubling of PCR product with every PCR cycle (100% efficiency) [340,

457] using Taqman® Gene Expression Assays in our degraded samples. However the

efficiency of endogenous control genes is similar to those of test genes, and therefore

a comparative Ct method is appropriate [340, 455]. This work has demonstrated that

different normalisation strategies alter gene expression results. Using DASL gene

expression data to compare qRT-PCR results using different normalisation strategies,

use of GAPDH as a control gene decreases correlation between DASL and qRT-PCR

results and fold changes in gene expression between relapsers and non-relapsers.

This assessment is limited, as DASL results may themselves be subject to error;

however in our assessment of candidate control genes, GAPDH was not as uniformly

expressed as other genes, for example CASC3 or PES1, making these genes more

sensible choices for future gene expression work. Use of more than one control gene

with uniform expression is more likely to yield accurate gene expression results so that

many authors recommend use of at least three genes [343, 466]. This work represents

a compromise using two genes, considering lack of available RNA and the number of

genes quantified.

Despite efforts to optimise methods, validation of DASL results was only possible for

two of the three genes assessed. This may be because of erroneous results from the

DASL assay or the qRT-PCR assay; however it may also be because of a lack of
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power to detect differences in gene expression level as a limited number of samples

were used. This has not be assessed further as limited samples are available, but

highlights the importance of a large sample set when attempting to identify small

differences in gene expression levels.

4.5.2 Over-expression of DNA repair genes in melanoma tumours as

a prognostic marker

Using the Illumina DASL assay, a group of genes has been identified with prognostic

significance in melanoma. This technology has been used in a number of previous

studies to identify prognostic markers using FFPE tissue using the Human Cancer

panel [297, 473] and on a genome-wide scale [180, 474]. Genes of prognostic

significance have been identified in uveal [475] and cutaneous melanoma (SPP1)

(Chapter 3) [187].

The work described in this chapter represents the largest study to date using gene

expression profiling to identify prognostic markers in melanoma, made possible by

utilising FFPE primary melanoma tumours. A number of bioinformatics resources have

been used to interrogate the data presented in this chapter. These systems are

inherently biased as they are based on information currently available in the literature,

however DNA repair genes and genes related to these processes were easily identified

as a group of important genes by simple review of the list of genes significantly

associated with survival. GO analysis confirmed the importance of these genes in DNA

recombination, DNA replication and the M-phase of the cell cycle. Pathway analysis

using DAVID highlighted that the data was derived from a cancer related gene panel,

but also confirmed enrichment of genes involved in the cell cycle and DNA repair. Use

of Ingenuity pathway analysis has identified correlations between genes associated

with cell cycle control or DNA repair and the DNA repair genes identified in this

analysis and has allowed generation of a network to visualise associations within the

dataset. In summary, pathway analysis has helped to categorise and visualise the

biological functions of genes within this dataset. The advantages of this are limited for

gene expression data derived from a 502-gene cancer panel, but DAVID pathway

analysis has highlighted the importance of focal adhesion and cytokines in our list of

differentially expressed genes which may not have been identified by review of the list.

Use of bioinformatics resources would be invaluable when using large, unbiased

genome-wide data.

For this analysis we have assessed the data in a ‘supervised’ fashion to identify genes

differentially expressed in tumours or patients with well documented characteristics,
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such as relapse or Breslow thickness [448, 449]. This is the approach used in most

previous microarray studies in melanoma tumours addressing gene expression

associated with survival [177, 185], the exception being the recent report by Jonsson

and colleagues which used unsupervised hierarchical clustering to identify groups of

samples with similar gene expression profiles and then assessed prognosis between

these groups [180]. With the detailed histological and survival data available in

association with the samples analysed in this study, a supervised approach appears

most sensible. Unsupervised analysis would also have been likely to identify groups of

tumours within this dataset, however previous work indicates that most clustering

performed in microarray datasets is not reproducible or reflective of patterns in a larger

population [449, 476]. Identification of genes associated with survival can only be

confirmed by validation in an independent sample set, an approach described in

Chapter 3. Lack of validation of findings presented in this chapter represents a

significant limitation of this work. We have been unable to identify a sample set of

sufficient size to replicate these findings to date, however the development of

microarray analysis in FFPE tissues will facilitate this in time.

There has been interest in the role of over-expression of DNA repair genes which has

been associated with poorer prognosis in melanoma and metastasis in candidate gene

[477, 478] and microarray studies [175, 177, 178]. These results are in agreement with

those of Kauffman et al. who identified that over-expression of genes involved in

recovery of stalled replication forks, especially genes involved in repair of double-

stranded DNA breaks, were associated with melanoma metastasis in a study of 60

frozen melanoma tumours [177]. It has been suggested that in order for a melanoma

cell to continue to divide and give rise to metastases, cells up-regulate genes

associated with DNA repair processes to maintain genomic integrity [264]. This has

been noted in other cancers such as bladder [479] and breast cancer [480, 481],

however the proportion of DNA repair genes that are over-expressed in melanoma

tumours that will metastasise is particularly high (90%) compared with bladder cancers

(82%) and breast cancers (58-80%) [264]. Over-expression of DNA repair genes may

help to explain why melanoma tumours are so especially resistant to chemotherapy

and radiotherapy [264], a hypothesis which will be further investigated in Chapter 8.

The majority of genes identified in this work are involved in double-strand break (DSB)

repair by homologous recombination (RAD51, RAD52, RAD54B, RAD54L, BRCA1 and

BRCA2) [264, 482]. (Figure 4-6). To repair DSBs, DNA is resected to expose single-

stranded DNA (ssDNA) to which RAD51 binds, a process enhanced by direct

interaction of RAD51, RAD52 [483-485] and the ssDNA binding protein replication

protein A (RPA) [482]. RAD51 wraps around DNA to form a nucleoprotein filament in



Figure 4-6: DNA repair mechanisms.

Adapted from reference [486]. DNA damage leads to a number of responses and repair mechanisms within a cell. The genes identified in this

work are mostly related to double-stranded break repair and mismatch repair.
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which DSB repair takes place [487], RAD52 is also involved in single strand annealing

independently of RAD51 [488]. During DSB repair, ssDNA invades into double-

stranded DNA (dsDNA) within the nucleoprotein filament, a process that requires

binding of a cofactor such as ATP [489, 490]. Studies with yeast proteins have

revealed that the efficiency of this binding is dependent on RAD54 [491]. The RAD54

gene has significant homology with the human RAD54B gene [492]: RAD54L is also

known as human RAD54 and has similar functions to those of RAD54 in yeast [493].

Once ssDNA has paired with dsDNA, strand exchange can occur. RAD51 and RAD52

promote capture of the other ssDNA tail, and DNA is synthesized using the two ssDNA

ends as primers. Once DNA synthesis is complete, crossovers between DNA duplexes

are resolved to allow repaired chromosomes to separate [482]. BRCA2 interacts with

both RAD51 [494] and BRCA1. BRCA1 and BRCA2 are required for DSB repair by

homologous recombination in cell lines, probably via RAD51-mediated DNA repair

[482, 495, 496]. CHEK1 is part of the cell-cycle checkpoint pathway; it is a protein

kinase activated by DNA damage such as DSBs and stalled DNA replication forks,

which prevent progress from the G2 to M phase of the cell cycle [177, 497]. MSH2 and

MSH6 are not involved in DSB repair, but are mismatch repair genes that produce

proteins which repair errors made in base-pairing by DNA polymerases during

replication [177, 498]. TOP2A is another gene not involved in repair of DSBs, but

induces transient DNA breaks to allow changes in DNA topology during DNA

replication [499]. Expression of TOP2A closely reflects the proliferative activity of cells

[499].

Formation of DSBs and DNA damage occurs during replication of cells, so it is

unsurprising that DNA repair genes are over-expressed in more aggressive tumours

with greater mitotic rate and Breslow thickness. As discussed above, it has been

suggested that more aggressive tumours up-regulate DNA repair genes to allow more

error-free cell division [264]. However an actively dividing tumour may well have higher

levels of DNA repair gene expression secondary to DNA replication, an observation

supported by the fact that TOP2A expression reflects the proliferative activity of non-

malignant cells [499]. It is likely that a combination of these factors contributes to

higher DNA repair gene expression. Using principal component analysis of genes

associated with RFS, Breslow thickness and mitotic rate, we have shown that many of

the genes with expression levels that correlate with the first principal component are

involved in DNA repair processes and the cell cycle, indicating that over-expression of

genes involved in these pathways is common in tumours with poorer prognosis,

perhaps reflecting increased proliferation in these cells. RAD52 is an exception, as

expression levels were not correlated with expression of other genes involved in DSB
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repair such as RAD54L and BRCA2. This may reflect the additional function of RAD52

in repair by single strand DNA damage [488]. The correlation between genes involved

in cell cycle control and genes identified in this analysis associated with prognosis is

expected, given the importance of tumour mitotic rate as a prognostic marker [58].

RAD51 is the central protein involved in the DSB process and is over-expressed in

many tumours [500]. Previous reports have identified the association between TOP2A

expression and aggressive tumour features in prostate [501], hepatocellular carcinoma

[502] and colorectal cancer [503]. More recent work has confirmed that high TOP2A

gene expression is associated with shorter metastasis-free interval in breast cancer

[504]. A recent study, published following the work described in this chapter [505], in

223 FFPE primary melanoma tumours has confirmed the association between poorer

survival, prognostic tumour factors (Breslow thickness, ulceration and mitotic rate) and

over-expression of BRCA1 and DNA damage signalling genes [335].

In summary, in this large study of FFPE primary melanoma tumours, over-expression

of DNA repair genes is associated with poorer survival and adverse histopathological

features. The fact that over-expression of a number of the genes identified has already

been published in the literature using gene expression profiles from frozen melanoma

tumours [177] provides evidence that this finding is biologically relevant in melanoma

and that the DASL assay is yielding results from FFPE tissue which corroborate with

results using other microarray platforms with intact RNA. Expression of RAD52 and

TOP2A have independent prognostic value, even when analysis is adjusted for host

factors known to be of prognostic importance in melanoma. A limited sample set was

used to validate the over-expression of a number of genes in tumours from patients

who relapse versus non-relapsers using qRT-PCR. RAD52 was under-expressed in

relapsers from qRT-PCR data, in contradiction with DASL data. However, over-

expression of TOP2A was confirmed, and in view of the independent prognostic value

of over-expression of TOP2A, this could be a candidate for a prognostic biomarker in

melanoma requiring validation in an independent sample set.

Using FFPE tissue for gene expression analysis is challenging, however these efforts

enable analysis of large numbers of samples with mature survival data and well-

annotated tumour and patient characteristics. Studies of this kind will undoubtedly

improve our understanding of the biological processes associated with melanoma

progression and allow identification of prognostic biomarkers.
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5 Identification of differentially expressed genes in matched

formalin-fixed paraffin-embedded primary and metastatic

melanoma tumour pairs

5.1 Aims

The main aim of this study was to assess the performance of the cDNA-mediated

annealing, selection, extension and ligation (DASL) assay using very small formalin-

fixed paraffin-embedded (FFPE) sentinel node biopsy (SNB) samples. Additional aims

were:

 To identify tissue factors of small SNB samples which determine performance

with the DASL assay.

 To clarify which quality control measures and sample characteristics determine

performance on the array using small/ SNB samples.

 To assess use of number of detected genes as a quality control measure of

sample performance with the DASL assay.

 To compare gene expression profiles between matched primary and SNB

samples to identify differentially expressed genes.

These data have been published in part [506].

5.2 Introduction

Current predictors of outcome for melanoma fail to identify a proportion of patients with

“low-risk” melanoma who go on to relapse [58, 121]. Therefore, there is a need to

investigate the somatic genetic changes in the primary tumour which determine

metastatic capacity. A number of studies have used naevi, primary melanomas and

metastatic melanomas to assess alterations in gene expression profiles during

melanoma progression [176, 182, 190, 193, 507, 508]. However, many of these studies

have used limited numbers of samples because of lack of cryopreserved tissue for

genomic work, and have often assessed gene expression in primary and metastatic

tumours from different patients for the same reason [176, 190, 507]. Heterogeneity of

primary melanoma tumours, germline genetic variation and epigenetic influences are

postulated to modify gene expression profiles in melanoma tumours [509], therefore
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assessment of gene expression profiles in matched primary and metastatic tumours

from the same patient may yield more insight into the mechanisms of melanoma

progression.

The sentinel lymph node is the usual site of initial metastasis in melanoma, with

sentinel lymph node status being the single most important prognostic factor for

patients without any other evidence of metastatic spread [58, 80]. The identification of

gene expression differences between primary and nodal metastases is desirable in

order to identify key pathways involved in this pattern of metastasis. Koh and

colleagues compared whole-genome expression profiles in four matched FFPE primary

and sentinel node biopsy samples, which were either macrodissected or sampled using

laser capture microdissection, along with 11 unpaired specimens [510]. This study

identified differential expression of 576 genes in unpaired samples, with most

differences reflecting lower gene expression in metastatic samples compared to

primary samples. This pattern was replicated in the matched specimens. Genes

differentially expressed were typically associated with processes relevant to tumour

metastasis, such as apoptosis, cell adhesion and the cell cycle [510].

This chapter reports a pilot study designed to assess the utility of the DASL assay to

identify differentially expressed genes in extremely small FFPE SNB samples. In

contrast to our sampling method for primary melanoma samples using a tissue

microarray needle, laser capture microdissection (LCM) was used to sample these very

small tissues. This technique has the advantage that single melanoma cells can be

identified and sampled [511], although it is time consuming for large numbers of

samples. LCM is discussed in further detail in Chapter 2.

Data from SNB samples have been compared with gene expression data from

matched primary melanoma tumours where possible to explore the feasibility of using

the DASL assay to identify genes differentially expressed between primary and early

metastatic tumours which has the potential to give insight into early metastatic

processes. In our previous work using primary melanomas, we have used the number

of genes detected in each sample using the DASL assay (probe signal significantly

greater than average signal from negative controls with p<0.05) as a measure of the

quality of results [294], indeed we have deemed a sample as “failed” with less than 250

(50%) genes expressed. This was a somewhat arbitrary cut off derived from previous

reported studies [294]. My work with nodal biopsies has highlighted significant

differences in the number of genes detected across different tissues and control RNA

samples along with different patterns of “failed” probes, leading to a reappraisal of use

of number of detected genes as a quality control measure.
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5.3 Further methodological details

5.3.1 Sampling of nodal and primary tumours

FFPE SNB samples and primary tumours were identified from The Leeds Melanoma

Cohort Study (Cohort study) and the Retrospective Sentinel Node Biopsy Study (SNB

study) which are fully described in Chapter 2. From the Cohort study eight positive

SNB samples were identified and from the SNB study, seventeen positive SNB

samples were identified, from patients whose primary tumours had already been

sampled for DASL studies as described in Chapters 3 and 4.

There was much variation in tissue availability between samples ranging from 8 cells

(as detailed in the histopathology report) to large parenchymal deposits and we elected

to test the sensitivity of DASL by attempting to extract RNA from all. For eight nodal

samples, tumour was sampled using LCM from two new 5 micron sections cut from the

nodal tumour block. For three samples no tumour remained on the nodal tumour block

so a diagnostic haematoxylin and eosin (H+E) slide was used for tumour sampling

following removal of the coverslip. For the remainder of the samples, archival

unstained sections were available from Professor Martin Cook at the Royal Surrey

County Hospitals NHS Foundation Trust. Details of coverslip removal, sectioning,

section staining, LCM and RNA extraction are included in Chapter 2 and were

undertaken by myself. LCM was performed under the supervision of Dr Andy Boon

who is a dermatopathologist.

Primary tumour blocks were sampled using a tissue microarray (TMA) needle. Tissue

cores were de-waxed and RNA extracted using the High Pure Paraffin RNA kit

according to the manufacturer’s protocol. Further methodological details are included in

Chapter 2. Tissue sampling and RNA extraction of primary samples were performed by

Dr Caroline Conway (Cohort study), Dr Angana Mitra (SNB study) and Samira Lobo.

RNA concentration for nodal and primary samples was assessed using the ND-8000

spectrophotometer (NanoDrop, Wilmington, DE, USA).

5.3.2 Gene expression profiling using the DASL assay

The Illumina DASL Human Cancer panel was used for gene expression profiling as

previously described in Chapter 2 by Floor de Kort at ServiceXS (Leiden, Netherlands).

As a final quality control measure, quantitative Real-time PCR (qRT-PCR) of the

housekeeping gene, RPL13a, was performed for each sample as described in Chapter

2 by Floor de Kort.
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RNA samples derived from nodal specimens were sent for DASL analysis with RNA

from primary specimens from the SNB study. Primary samples from the Cohort study

were analysed in a separate DASL experiment. Data from the Cohort study and SNB

study were normalised separately and merged for analysis as described in Chapter 4.

Gene expression data from nodal samples were normalized with primary samples.

To monitor variation across plates and runs of the DASL assay, technical replicates

were placed across plates within each run as described in Chapter 2 and a total of 10

replicate Stratagene Universal Human Reference RNAs (Agilent Technologies,

Edinburgh, UK) were assessed across the two DASL experiments. These reference

RNAs are composed of RNA from 10 human cell lines, including a melanoma cell line

[512].

5.3.3 Statistical methodology

Associations between the area of tissue microdissected, reported size of tumour

deposit and concentration of extracted RNA were investigated using Spearman’s rank

correlation.

In the DASL assay, the number of genes detected in each sample (probe signal

significantly greater than average signal from negative controls with p<0.05) was used

as a measure of the quality of the results for our initial analysis. The influence of area

of tissue microdissected, reported metastasis size, age of tissue block and age of the

tissue slide on the number of genes detected was assessed using Spearman’s rank

correlation. The association between type of tissue section used for microdissection

(new sections, diagnostic H+E slides or archival unstained sections) was assessed

using the Kruskal-Wallis test. Quality control methods used to measure quality and

quantity of RNA prior to use in the DASL assay were assessed by correlating the

number of genes detected in samples with the quality measure data using Spearman’s

rank correlation. To assess reproducibility across the DASL runs, Spearman’s rank

correlation was used to assess gene expression across reference RNA samples.

The number of genes detected using the DASL assay in each sample has been

traditionally used as a measure of the quality of the results with authors excluding

samples with <50% genes detected [294]. To assess use of this measure in further

detail in different tissue types, the mean number of genes detected in each tissue type

(primary, nodal and reference RNA) was calculated and based on the cumulative

distribution of number of detected genes, nodal samples with <166 genes detected and

primary samples with <400 genes were excluded from further analyses. Genes which
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failed across all samples of a particular tissue type (primary, nodal and reference RNA)

were also identified.

Negative expression values for genes were removed for further analysis. Mean gene

expression was used for any replicate samples. Correlation between gene expression

levels in matched nodal and primary samples was assessed using Spearman’s rank

correlation. For each matched primary and nodal pair, the fold change in gene

expression between nodal and primary sample was calculated for each gene. Genes

were ranked in order of mean fold change in gene expression between primary and

nodal samples across the matched pairs. Primary tumour details were derived from

central pathology review as described in Chapter 2, SNB histology details were derived

from histopathology reports. Patient details were available from study databases with

survival variables assessed on 19th December 2011.

5.4 Results

5.4.1 Areas of nodal tumour sampled and RNA yields

Twenty-five nodal samples were selected for sampling (Figure 5-1). The size of

deposits ranged from 8 cells seen within a section to 14mm in diameter. The majority

of samples had both parenchymal and subcapsular deposits (55%), with smaller

numbers having parenchymal (32%) or subcapsular deposits (9%) only (site of

metastases was not recorded on the histopathology report for one sample). The area

of tumour microdissected varied from 157 μm2 to over 6x106 μm2 which correlated well

with the reported size of tumour deposit (Spearman’s rho 0.76, p=0.0001). The mean

concentration of RNA extracted was 32.5ng/μl (range 0.4-73.1ng/μl) but this measure 

did not correlate with area of tissue microdissected (Spearman’s rho 0.08, p=0.70) or

metastasis size as reported by the histopathologist (Spearman’s rho 0.25, p=0.31).
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Figure 5-1: Representative nodal sample before laser capture microdissection

(A) and following laser capture microdissection (B).

A.

B.
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5.4.2 Quality control measures, tissue characteristics and

performance of samples with the DASL assay

One nodal RNA sample, microdissected from a diagnostic H+E slide, was not sent for

DASL analysis because of low RNA concentration (0.37 ng/μl), therefore a total of 26 

nodal samples (including 2 replicate samples) were supplied to ServiceXS who

performed the DASL assay. The mean number of genes detected from nodal samples

(mean 242 (range 36-369)) was significantly less than number of genes detected from

primary tumours (mean 434 and 457 from the Cohort and SNB studies, respectively),

as reported in Chapter 3.

The characteristics of nodal samples and results of quality control measures are

summarized in Table 5-1. Neither the area of tissue microdissected, RNA

concentration as measured using spectrophotometry or cycle threshold (Ct) values

generated from qRT-PCR of RPL13a correlated with number of genes detected in the

DASL assay. However, the age of the FFPE tumour block (Spearman’s rho -0.50,

p=0.01) and the age of the tissue section prior to RNA extraction (Spearman’s rho -

0.51, p=0.01) both negatively correlated with number of genes detected (Table 5-1).

The mean number of genes detected from the oldest tumours (>4.47 years) was 72

less than from the newer specimens (<2.29 years) (Table 5-1)

The type of section used for tumour sampling also influenced the number of genes

detected (Table 5-2), with a lower proportion of samples failing the assay and a higher

mean number of genes detected in newly cut sections (280 genes) or diagnostic H+E

sections (301 genes) than from archival unstained sections (219 genes). The stored

unstained sections were stored without a cover slip at room temperature.
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Nodal samples

Associations between
sample factors and
number of genes

detected. Test statistic
and significance value.

Area of tissue microdissected,
median (range), μm2

Number of genes detected for
each quartile of area dissected,

mean (range):
<25%

25-50%
50-75%
>75%

223124 (157-6051771)

262 (182-365)
229 (167-275)
260 (209-314)
237 (166-369)

Spearman’s rho -0.18,
p=0.41

RNA concentrations, median
(range), ng/μl 

30.3 (0.4-73.1)
Spearman’s rho 0.18,

p=0.39

Ct value, median (range) 24.1 (20.8-25.2)
Spearman’s rho -0.05,

p=0.83

Age of tissue block, median
(range), years

Number of genes detected for
each quartile of block age,

mean (range):
<2.29 years

2.29-3.76 years
3.77-4.36 years

>4.47 years

3.8 (1.1-6.9)

299 (249-365)
253 (193-369)
217 (166-290)
227 (182-325)

Spearman’s rho -0.50,
p=0.01

Age of tissue slide (before RNA
extraction), median (range),

months
41.5 (0.3-75.5)

Spearman’s rho -0.51,
p=0.01

Slide type, number (mean
number of genes detected):

New section
Old unstained section
Diagnostic H+E slide

8 (280)
14 (219)
3 (301)

Kruskal-Wallis χ2 8.79,
p=0.01

Number of genes detected,
mean (range)

242 (36-369)

Table 5-1: Characteristics of nodal samples and extracted RNA.

Associations between these factors and the number of genes detected in the

DASL assay are presented. Significant results are highlighted in bold.

Abbreviations used: Ct, cycle threshold; H+E, haematoxylin and eosin.
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Table 5-2: Characteristics of sections used for tissue sampling.

The numbers of samples that yielded sufficient RNA for DASL analysis and were

successful with the assay are presented in addition to the mean number of genes

detected and area of tissue microdissected. Abbreviations used: H+E,

haematoxylin and eosin.

5.4.3 Exclusion of samples

As discussed previously, in the DASL assay, the number of genes detected in each

sample has been traditionally used as a measure of result quality with authors

excluding samples with <50% genes detected [294]. The number of genes detected in

nodal samples is much less than in primary samples (Figure 5-2) which from the

literature was expected in a biological sense, but might also reflect poorer quality of

gene expression data related to the smaller tissue sample. Based on the cumulative

distribution of the number of genes detected (Figure 5-2), nodal samples with <166

genes detected and primary samples with <400 genes detected were excluded from

further analyses. One nodal sample was excluded, however as this sample was a

replicate, data from the other specimen could be used for analysis. No primary

samples were excluded.

Slide type
Number of
samples

Number RNA
successfully
extracted and

sent for
analysis (%)

Number of
genes

detected,
mean (range)

Number
successful with

DASL (≥240 
genes detected)
(% of samples

assayed)

Area
microdissected
median (range),

μm2

Diagnostic
H+E slide

3 2 (67) 301 (236-365) 1 (50)
138253 (13529-

654932)

Archival
unstained

section
14 14 (100) 219 (166-325) 4 (29)

277555 (157-
6051771)

New section 8 8 (100) 280 (227-369) 6 (75)
302413 (65346-

2007508)
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Figure 5-2: Cumulative distribution of number of detected genes in nodal and

primary samples.

The cumulative distribution for primary samples is based on the larger sample

sets previously assessed with the DASL assay as described in Chapter 3.

To assess whether our approach of excluding nodal samples with <166 genes detected

was valid, we performed further analyses to identify genes differentially expressed

between matched samples when the threshold for detection was higher. Samples were

excluded when less than 240 genes were detected allowing assessment of 10 matched

pairs and less than 200 genes allowing assessment of 18 matched pairs. Reassuringly,

12 of the most differentially expressed genes (presented in Figure 5-4) identified in

these analyses matched those from the current analysis with MMP2 remaining the

gene most over-expressed in primary samples and CSF3 the gene most over-

expressed in nodal samples in all tumour pairs. This suggests that our results are

representative of a larger sample set and that exclusion of nodal samples with <250

genes detected as suggested by previous authors [294] is an over-conservative

approach to this particular analysis.
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5.4.4 Reproducibility and detected genes across reference RNA

samples

Across the two DASL runs, for the Cohort samples and the SNB primary and nodal

samples, gene expression profiles across the ten reference RNAs were reproducible

(Spearman’s rho 0.90-0.99 (p<0.00001)) and the mean number of genes detected in

reference RNA samples was 479 (Cohort study) and 472 (SNB study).

5.4.5 Genes detected across tissue types

Eight genes were not detected across all 10 reference RNA samples including genes

identified as being over-expressed in nodal samples in this analysis (CSF3, FGF3,

FGF6, FGF8 and MOS). I would argue this is because those genes were simply not

expressed in the reference RNA samples chosen rather than because of a

methodological issue. Only one gene (MYCL2) was not detected across all nodal

samples assessed and there were no genes that were not detected across the primary

samples assessed. The 502 genes on the Human Cancer panel were selected

because of their importance in the cancer literature and therefore it is not perhaps

surprising that some genes were not detected in the control RNAs but were seen in

nodal and primary samples from a particular cancer type.

5.4.6 Correlations between matched primary and nodal samples

Of the samples successfully yielding gene expression data, 22 had matched primary

samples for which gene expression data were available. Gene expression from 21 of

the matched pairs was correlated to varying degrees (Spearman’s rho 0.15-0.80, all

significance values ≤0.001) (Figure 5-3). 
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Figure 5-3: Association between gene expression levels for 502 genes from the

Human Cancer panel for a matched primary and nodal sample from the

same patient.

5.4.7 Genes differentially expressed in matched primary and nodal

pairs

Table 5-3 and Figure 5-4 present genes most differentially expressed between nodal

tumours and their matched primary tumours. For genes most over-expressed in nodal

tumours, 9 out of 10 genes were over-expressed in all nodal samples from all matched

pairs assessed (fold changes presented in Table 5-3). Gene expression data from

nodal samples were normalized with primary samples. As the number of genes

detected and pattern of gene expression differs between these tissue types,

normalization procedures will have altered the magnitude of expression differences

and absolute fold changes should be interpreted with caution.

A number of genes were differentially expressed in nodal metastases across all

matched pairs including genes involved cellular proliferation and survival (FGF3, FGF5,

FGF6 and FGF8).

Spearman’s rho 0.80

p<0.00001
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Higher gene
expression

Gene
Mean fold difference

(nodes/primaries)

Min fold
change
across

matched
pairs

Max fold
change across
matched pairs

Primaries

MMP2 0.40 0.12 1.04

ETV6 0.41 0.17 1.17

PDGFRB 0.44 0.15 1.28

KIT 0.46 0.13 1.20

FYN 0.47 0.18 1.02

EMS1 0.47 0.10 1.42

PRCC 0.47 0.16 1.19

CREBBP 0.48 0.24 1.20

MXI1 0.48 0.02 1.10

GAS7 0.48 0.22 1.34

Nodes

CSF3 34.67 2.53 269.72

ERBB4 29.53 1.99 169.66

FGF3 26.22 2.96 160.62

PLG 25.63 4.33 162.57

PLA2G2A 15.90 1.65 196.99

MOS 15.27 0.92 32.04

FGF8 15.01 1.41 77.26

TFF1 14.09 2.41 45.97

FGF6 13.74 5.26 38.00

FGF5 13.34 2.30 84.54

Table 5-3: Genes most differentially expressed across matched primary and

sentinel node biopsy samples.

The mean fold difference in gene expression between nodal and primary samples

and range of fold differences across 22 matched pairs is presented.
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Figure 5-4: Genes most differentially expressed across matched primary and

sentinel node biopsy samples.

Box-plots are presented for genes most over-expressed in primary (A) and nodal

(B) samples. Outside values are excluded for clarity from graph B.
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5.4.8 Patient and primary tumour characteristics

To provide some information regarding the final sample set analysed for this study,

details of patients and key tumour characteristics are presented in Table 5-4.

Characteristic

Breslow thickness, mm, median (range) 2.6 (0.9-6.0)

Mitotic rate, mm2, median (range) 9 (1-39)

Ulceration, number (%):
Absent
Present

Not recorded

14 (63.6)
7 (31.8)
1 (4.6)

Histological subtype, number (%):
Superficial spreading

Nodular
Other

Not recorded

15 (68.2)
2 (9.1)

3 (13.6)
2 (9.1)

Tumour site, number (%):
Trunk
Leg
Arm

Head or neck
Sun-protected site

9 (40.9)
8 (36.4)
1 (4.6)

3 (13.6)
1 (4.6)

Age at diagnosis, years, median (range): 56.8 (23.2-77.7)

Patient gender, number (%):
Female

Male
10 (45.5)
12 (54.5)

Relapse status, number (%):
Not relapsed

Relapsed
13 (59.1)
9 (40.9)

Relapse-free survival time, years, median (range) 2.7 (0.2-6.0)

Survival status, number (%):
Alive
Died

12 (54.6)
10 (45.5)

Overall survival time, years, median (range) 3.4 (0.7-6.0)

Table 5-4: Clinical characteristics of patients and key primary tumour

histological features of the samples assessed in analysis of matched

primary and sentinel node biopsy specimens.

In primary samples used in this analysis, the median Breslow thickness (2.6mm),

mitotic rate (9/mm2) and proportion of ulcerated tumours (32%) were greater than in the

larger sample sets used for gene expression analysis in Chapter 3, reflecting the fact

that these patients had higher risk disease associated with a positive sentinel node
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biopsy. This is also reflected by the high proportion of patients who subsequently

relapsed (41%) and died (46%). Most tumours were of the commonest superficial

spreading subtype (68%) and from the trunk (41%) or leg (36%) in common with the

larger gene expression sample set. There were more men than women in this sample

set (55% and 45%, respectively).

5.5 Discussion

5.5.1 Use of the DASL assay with small sentinel node biopsy

samples

This pilot study had a number of aims, the first of which was to identify the lower limits

of volume of small tumour samples which can be used to generate gene expression

data from the DASL assay. A deposit reported as being only 8 cells in size provided

data, suggesting that very small FFPE tumour samples can be used to assess gene

expression.

Quality control measures have been used to assess the relative performance in

primary versus smaller nodal tumours. The traditional measure of performance is the

total number of genes detected and in this respect, the assay did not perform as well

with these samples as with RNA extracted from larger primary tissue cores. Other

studies however provide some evidence to support the view that the number of genes

expressed in metastases is smaller than in primaries, consistent perhaps with Fidler’s

hypothesis that metastases occur from sub clones of the primary [513, 514]. Previous

gene expression studies in melanoma furthermore have demonstrated that the

predominant change in advanced malignancy is decreased gene expression [176,

193]. Decreased expression has also been found in less advanced SNB metastases in

comparison with primary tumours [510]. Therefore, number of genes detected may not

be the best measure of assay performance and consequently we have included all

nodal samples with a reasonable number of detected genes in this analysis.

Despite the problems using number of detected genes as a quality control measure,

there are no other options for assessing the performance of a sample with the DASL

assay. It is likely that a smaller number of genes would be detected in a poorly

performing sample relative to other samples of the same tissue type, therefore we have

used this measure to assess current RNA quality control measures. I found no

relationship between the number of detected genes and RNA concentration by

spectrophotometry or Ct values generated using qRT-PCR of RPL13a. We did find that
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the age of the tissue sample and the age of tissue section used for sampling influenced

the number of detected genes, suggesting that newer tissue blocks with freshly cut

sections would be most likely to yield gene expression data. Previous published

studies using the DASL assay have used a number of tissue sections with or without

macrodissection or tissue cores for RNA extraction [296, 297, 474, 475], therefore it is

likely that use of a larger number of freshly cut tissue sections for microdissection may

have yielded better results. Previous evidence suggests that measures such as storing

sections at 4oC or coating with paraffin preserves tissue antigenicity for use in

immunohistochemistry [515, 516]. This work supports the hypothesis that similar

measures may also preserve utility of stored cut sections for genomic work.

5.5.2 Genes differentially expressed in matched primary and SNB

samples

Gene expression data derived from SNB samples were compared with those from

matched primary tumour from the same patient. There was good correlation overall

between gene expression profiles from matched primary and nodal samples as has

been reported previously in a number of tumour types including melanoma [507, 508,

514, 517], which is reassuring methodologically. However, there were some interesting

differences. Significant differences in gene expression profiles between primary

tumours and matched metastases have been identified in melanoma [510], breast

[518, 519] and colorectal cancer [520, 521] previously and in this current study a

number of genes were differentially expressed in nodal metastases across all 10

matched pairs assessed. Genes coding for fibroblast growth factors were amongst

these genes.

Fibroblast growth factors (FGFs) signal through FGF receptors (FGFRs) and regulate

developmental pathways as well as wound repair and angiogenesis [522]. With broad

mitogenic and angiogenic activities [523], FGFs are frequently overexpressed in a

number of tumour types [524-526]. Furthermore, increased expression of FGF3 and

FGF8 has been associated with higher grades of prostate cancer [527] and recurrence

of hepatocellular carcinoma [528]. In melanoma, there has been interest in FGF2 as

there is over-expression of FGF2 protein and FGF2 transcripts in melanoma cell lines

compared to melanocytes [529, 530] and in melanoma tumours [531]. Over-expression

of FGF2 leads to transformation of melanocytes [532], with inhibition leading to

regression of tumours in mice due to lack of angiogenesis in the tumour [533]. It has

also been shown that FGF5 transcripts and FGF5 protein are also over-expressed in

cell lines compared to normal melanocytes [530]. There is little in the literature



- 169 -

investigating the function or expression levels of FGF3, FGF6 and FGF8 in melanoma

cells, however this group of molecules is closely related to tumourigenesis and

progression suggesting that over-expression of this family of genes may represent an

important step in the early metastatic processes of malignant melanoma, which

warrants further investigation in a larger sample set.

This study also identified lower expression of matrix metalloproteinase-2 (MMP2) in the

majority of nodal samples compared to their matched primaries. Interestingly, Koh and

colleagues also identified under-expression of another matrix metalloproteinase

(MMP1) in SNB samples in their study of matched primary and SNB samples [510].

Matrix metalloproteinases degrade extracellular matrix causing release of growth

factors and cytokines. Consequently, they are important in invasion and metastasis

and regulate cell growth, survival, angiogenesis and inflammation [534, 535]. MMP2 is

a gelatinase, along with MMP9 which can lyse numerous components of extracellular

matrix [534]. A meta-analysis of studies aiming to identify protein markers of melanoma

progression, found that over-expression of MMP2 in primary tumours was associated

with poorer prognosis [160, 169]. There is also evidence that MMP2 expression

increases as melanocytic tumours become more atypical [536]. There have been

suggestions however that the predominant source of MMP2 is not tumour, but stromal

cells [537, 538]. In a syngenic in vivo mouse model which spontaneously develops

metastases, MMP2 was predominantly expressed by stromal cells at the border

between tumour and stroma of subcutaneous tumours, however in spontaneous lymph

node or lung metastases, tumour and stromal cells were largely negative for MMP2

[538]. Therefore, the data reported in the literature suggest that increased expression

detected in the primary tumours in my study relative to that in nodal metastases might

in fact reflect overexpression by stromal cells in primaries destined to metastasise to

nodes.

The gene most over-expressed in nodal tumours compared to primary tumours was

CSF3 which codes for granulocyte colony stimulating factor (GCSF). GCSF is

predominantly produced by immune cells, but also endothelium, and stimulates bone

marrow to produce granulocytes, such as neutrophils, and release them into the blood

[539, 540]. This finding may reveal a potential problem when trying to sample tiny

melanoma deposits from lymphoid tissue full of lymphocytes. The range of fold change

in gene expression across the sample set in nodal samples compared to primary

samples is very wide for CSF3 (2.5-269.7) and the box-plot in Figure 5-4 shows the

great range of fold changes. Very high levels of CSF3 in some nodal samples may be

related to sampling of immune cells from nodal tissue as well as tumour cells. It could

be hypothesized that lymphocytes would up-regulate CSF3 expression markedly in
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response to tumour invading the lymph node. Sampling was carried out under the

supervision of a expert dermatopathologist, however single tumour cells can reside

amongst numerous lymphocytes making sampling difficult even when using fresh

tissue sections on slides specifically designed for LCM. In this study, the majority of

sections were archival sections on normal glass slides, therefore multiple laser pulses

were used to remove tissue piece by piece reducing the accuracy of sampling further.

Use of fresh tissue samples on slides designed to allow accurate sampling of intact

tumour deposits would improve accuracy in future studies. In summary, greater

expression of CSF3 in the nodal samples may simply reflect contamination by

inflammatory cells even in these laser microdissected samples.

It is important to acknowledge that the patient and primary tumour characteristics of

this sample set were not representative of our larger cohort, reflecting the small

numbers of samples assessed and the fact that all these patients had a positive SNB

associated with poor prognostic factors. Therefore the applicability of these gene

expression results to better prognosis tumours is limited.

This study is clearly also limited by the small number of samples assessed and the

number of additional factors present in the study design that influence performance

with the assay, such as age of tissue block, differences in tissue age between matched

samples and sample availability for microdissection. Factors such as age of tissue

blocks will continue to be a challenge for studies using FFPE tissue, but this work

indicates that use of new sections yields superior results over archival unstained

sections, and that storage of sections may be critical, storage under paraffin or a cover

slip at 4oC would appear sensible.

In summary, this study demonstrates that very small, laser dissected, FFPE SNB

samples can be used for RNA extraction for gene expression analysis, although with a

higher fail rate than with larger samples, as defined by number of genes detected

overall. The study produced interesting data on a possible role for FGFs in metastasis

which should be explored in larger studies. The work also reflects the observation

made by others that gene expression profiles may reflect expression by non-tumour

cells [301, 302]. Further work will help clarify which sample characteristics will predict

performance with the DASL assay and enable more extensive studies to assess

alterations in gene expression profiles between primary and early metastatic tumours

from the same patient.
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6 Identification of associations between somatic mutations in

BRAF and NRAS in formalin-fixed melanoma tumours,

clinico-pathological factors and gene expression profiles

6.1 Aims

The aims of this chapter are:

 To identify mutations in BRAF and NRAS in a large number of formalin-fixed

paraffin-embedded (FFPE) primary melanoma tumours.

 To identify tumour or patient characteristics associated with these mutations.

 To identify gene expression profiles associated with BRAF or NRAS mutation

status.

The secondary aims were:

 To assess use of cDNA, generated in the course of gene expression studies in

primary melanoma, rather than DNA as a substrate for mutation screening to

maximise use of precious tumour material.

6.2 Background

The mitogen-activated protein kinase (MAPK) pathway (Figure 6-1) is a key signalling

pathway activated in melanoma, which regulates a number of processes within cancer

cells including cell survival, growth and migration [28, 29].

RAS is membrane bound and is activated by cytokines, growth factors and hormones

[29]. RAS activates three closely related RAF proteins, ARAF, BRAF and CRAF, which

when activated phosphorylate the MAP-kinases, Mek1 and Mek2, which then

phosphorylate and activate Erk1 and Erk2 [30, 541] (Figure 6-1). Erk protein kinase

activation regulates cellular proliferation, survival, invasion, differentiation and

apoptosis [30, 541].
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Figure 6-1: The mitogen-activated protein kinase (MAPK) and

phosphatidylinositol-3-kinase (PI3K) pathways.

NRAS mutations activate both pathways. The MAPK pathway can also be

activated by mutations in BRAF. In addition, ERK can be constitutively active in

absence of NRAS and BRAF mutations. The PI3K-Akt pathway may be activated

by loss of the inhibitory function of PTEN, or by gene amplification of AKT3 [35].

Figure adapted from [541].

Mutations in genes within this pathway are frequently found in melanoma tumours and

in this chapter, I will present my work identifying BRAF and NRAS mutations in FFPE

tumours and an investigation of the clinico-pathological features and gene expression

profiles associated with these mutations.

The reported frequency of BRAF mutations in melanoma tumours is variable ranging

from 20-80%, however a recent meta-analysis of studies published between 1989 and
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2010 found BRAF mutations in 41% of melanomas [30, 31]. A large proportion of

mutations are due to a single substitution where adenine (A) replaces thymine (T) in

codon 600 of exon 15 (V600E, c.1799T>A) leading to substitution of glutamic acid for

valine [30, 32].

It is unclear why this site is so frequently mutated. BRAF mutations have been

demonstrated in acquired melanocytic naevi (incidence of 21-82% in larger series) [25,

542] and naevus number is strongly associated with sunny holidays [15] so induction

by sun exposure seems logical. However the T>A substitution is not characteristic of

the cytosine (C)>T and CC>>TT pyrimidine dimer mutations more commonly found

following UVB-damage [541, 543]. There have been suggestions that mutations may

occur secondary to UVB-induced DNA photoproducts and subsequent errors in DNA

synthesis which develop near to the V600 site [544]. There has also been some

evidence that UVA, which is the predominant portion of sunlight, can trigger

photosensitization reactions causing oxidative DNA damage, typical UV-induced DNA

lesions and DNA cross-links [545, 546]. These lesions can lead to mutations, such as

BRAF V600 mutations, in experimental systems [545]. Further support for the role of

UVA is that V600E mutations are also common in colonic cancers in which oxidative

stress is thought to play an aetiological role [32, 547, 548]. Despite these findings, the

relationship between sunlight and development of BRAF mutations is still unclear.

Until relatively recently, V600E mutations were thought to account for over 90% of

BRAF mutations, however studies have found that the V600K mutation

(c.1798_1799delinsAA) can account for up to 30% of mutations in melanoma tumours

[549-551]. The majority of BRAF mutations destabilize the structure of inactive BRAF

kinase domains leading to activation and higher protein kinase activity causing

activation of the MAPK pathway [32, 35, 552-555], along with insensitivity to negative

feedback mechanisms [556]. V600E mutations can transform immortalized

melanocytes [557] and cause growth and improved survival in melanoma cells in vitro,

with inhibition of mutant BRAF in vivo leading to delay in tumour growth [558, 559].

Mutant BRAF also appears to have a role in angiogenesis, as blockade of mutant

BRAF activity prevents further vascular development in established tumours via

decreased secretion of vascular endothelial growth factor [560]. In mice, expression of

BRAFV600E in melanocytes at physiological levels, cause naevus development, which

after a period of latency can develop into melanoma tumours [561]. However, when

PTEN is lost in addition to BRAFV600E expression, metastatic tumours develop quickly in

all cases [562].

In humans, the fact that V600E BRAF mutations are commonly found in naevi is

consistent with the view that those mutations drive proliferation. The majority of
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melanocytes however subsequently senesce and there is evidence that in the normal

cell, BRAFV600E induces tumour suppressor proteins such as p16INK4a which mediate

the senescence of those melanocytes [36, 37]. Therefore, it appears that additional

factors are required to act alongside mutated BRAF to cause progression to melanoma

[563]. Animal data described above suggest that loss of PTEN is a potent means of

inducing progression.

With regards to the morphological features of tumours, primary BRAF mutated tumours

have been reported to have distinct appearances with larger, rounder and more

pigmented tumour cells with increased upward scatter and nest formation of

intraepithelial melanocytes [564]. The tumours are also associated with thickened

epidermis and are more clearly circumscribed [564]. These features suggest that BRAF

mutated tumours are biologically distinct which may prove to be reflected in gene

expression profiles that differ to those of wild-type tumours.

Recently, the BRAF kinase inhibitor (BRAFi), vemurafenib, has been developed which

has been shown to prolong progression-free and overall survival with a relative

reduction of 74% in risk of either death or disease progression and a 48% response

rate in patients with metastatic melanoma with a BRAF V600E mutation versus

standard care with dacarbazine [199]. Vemurafenib also appears to produce clinical

responses in patients with tumours harbouring the rarer V600K mutation [565].

Although relapse rapidly occurs in the majority of treated patients, this represents a

major development in the treatment of advanced melanoma, where previous treatment

achieved poor responses rates [243, 244] and highlights the importance of this

pathway in melanoma development and progression. In tumours without BRAF

mutations, there are usually mutations elsewhere in the MAPK pathway, such as NRAS

in cutaneous melanomas (18%) [30, 31], KIT in acral or mucosal melanomas [33] and

GNAQ in uveal melanomas [34].

The NRAS protein is encoded by one of the three RAS genes which encode four RAS

proteins, HRAS, KRAS4A, KRAS4B and NRAS [566]. The NRAS gene is also

frequently mutated in melanoma tumours with mutations most commonly occurring in

codon 61 of exon 3 [30]. Again these mutations are not characteristic of UV-induced

changes, but codon 61 preferentially forms pyrimidine dimer mutations following

exposure to UV radiation and following transfection into a non-tumourigenic rat

fibroblast cell line, Q61R and Q61R mutations develop, similar to those found in

melanoma samples [567, 568]. Other sites which rarely form these dimers are codons

12 and 13, where again NRAS mutations are found [568]. NRAS mutations cause

constitutive activation of the MAPK pathway [31] and in addition to signalling via RAF

proteins, mutant NRAS can increase signalling via the phosphatidylinositol-3-kinase
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(PI3K) pathway, the Ral guanine exchange factors (RalGEFs) and other signal

transduction pathways [569-571]. Mutant RAS has transforming ability in a variety of

cell types [572]. Many studies of RAS in melanoma models have used transgenic

expression of HRAS, but have shown that RAS mutations alone are insufficient to

cause melanomas in mice [573, 574] . However in a melanoma mouse model null for

the tumour suppressor, p16INK4a, expression of mutant HRAS in melanocytes leads to

melanoma development [574]. In this model, subsequent loss of activated HRAS in

established tumours leads to tumour shrinkage, suggesting that HRAS is required for

tumour maintenance [575].

That BRAF mutations are commonly found in benign or dysplastic naevi and NRAS or

BRAF mutations are generally maintained in paired primary and metastatic samples [2,

25, 576] has led to the suggestion that these mutations occur early in melanoma

development [18]. Despite the early appearance of mutations, there is evidence

however to suggest that the proportion of mutated cells increases as a melanoma

becomes increasing invasive, for example in tumours moving from the radial to vertical

growth phase or when they metastasise [577-579].

Generally, BRAF and NRAS mutations are not found in the same tumour [32, 541].

However, infrequent double mutations have been identified in naevi [25], melanoma

cell lines [580, 581], melanomas from patients with germline CDKN2A mutations [582]

and in small numbers of primary and metastatic melanomas [550, 577, 583]. Recent

studies have demonstrated that primary melanomas, naevi and circulating tumour cells

display heterogeneity, with some cells harbouring mutant BRAF and others wild-type

BRAF [357, 579, 584-586]. Therefore, as the presence of both an NRAS and BRAF

mutation does not confer any advantage in a single cell and has not been identified

[580], detection of double mutations within a tumour may represent heterogeneity, with

some cell clones containing mutant NRAS and others mutant BRAF [25].

A numbers of studies have attempted to identify relationships between tumour features,

patient characteristics and mutation status. These findings are summarised in Table

6-1. It is clear in a large meta-analysis of studies involving tumours from 4493 patients

that tumours with BRAF mutations are more commonly of the superficial spreading

subtype in sun-protected sites, with NRAS mutations being more commonly found in

tumours of the nodular subtype in sun-exposed sites [30, 31]. There is also strong

evidence that patients with BRAF mutated tumours are diagnosed at a younger age

than patients with wild-type tumours [549, 587, 588].



Tumour or
patient

characteristic

Association with BRAF
mutations

Association with NRAS
mutations

Strength of evidence References

Histological
subtype

Commoner in superficial
spreading melanomas

Commoner in nodular
melanomas

Meta-analysis of data from primary melanomas from
4493 patients (studies from 1989-2010)

[31]

Tumour site
Commoner on intermittently
sun-exposed skin, e.g. trunk

Commoner on sun-
exposed sites e.g. head or

neck, extremities

Meta-analysis of data from primary melanomas from
4493 patients (studies from 1989-2010)

[31]

Patient age at
diagnosis

Younger age at diagnosis
than patients with wild-type

tumours
No associations identified

BRAF mutations identified in FFPE metastatic tumours
from 197 patients with unresectable stage IIIC or IV

melanoma

BRAF mutations identified in primary melanoma
tumours from 544 patients

NRAS and BRAF mutations identified in 365 primary
melanoma tumours

[549]

[587]

[588]

Primary tumour
mitoses

More common in primary
tumour when BRAF

mutation found in metastatic
tumour

Higher mitotic rate
compared to BRAF
mutated or wild-type

tumours

BRAF mutations identified in FFPE metastatic tumours
from 197 patients with unresectable stage IIIC or IV

melanoma

NRAS and BRAF mutations identified in primary
melanoma tumours from 249 patients

[549]

[589]

-
1
7
6
-



Tumour or
patient

characteristic

Association with BRAF
mutations

Association with NRAS
mutations

Strength of evidence References

Primary tumour
Breslow thickness

Greater than in wild-type
tumours

Greater than in BRAF
mutated or wild-type

tumours

NRAS and BRAF mutations identified in primary
melanoma tumours from 249 patients

NRAS and BRAF mutations identified in 223 primary
melanoma tumours

[589]

[583]

Primary tumour
ulceration

Increased incidence
compared to NRAS mutated

or wild-type tumours
No associations identified

NRAS and BRAF mutations identified in 223 primary
melanoma tumours

[583]

Stage at diagnosis

More likely to present with
stage III (nodal metastases)

disease than wild-type
tumours

More likely to present with
stage III disease (nodal

metastases) than wild-type
tumours

NRAS and BRAF mutations identified in 223 primary
melanoma tumours

[583]

Table 6-1: Patient and tumour characteristics associated with BRAF or NRAS mutations in melanoma tumours.

Associations between mutation status and tumour or patient characteristics are presented with details of the studies describing these

relationships. Where data from meta-analyses is available, this has been referenced in preference to single studies.

-
1
7
7

-
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It is generally accepted that there is no relationship between BRAF or NRAS mutation

status in primary tumours and either relapse-free survival or overall survival in

melanoma patients [436, 555, 576, 583, 588, 590, 591]. An exception to this is in

metastatic melanoma (stage III and IV), where there does appear to be some

association with mutation status and survival. This was initially noted by Houben and

colleagues where mutations were identified in 86 metastatic lesions and the presence

of a BRAF or NRAS mutation was associated with shorter survival, whereas mutations

in 114 primary melanoma tumours did not impact on progression-free or overall

survival [555]. This has been subsequently confirmed in other studies [186, 549, 550,

592].

In summary, there is evidence that presence of a BRAF or NRAS mutation is

associated with tumour histological subtype, tumour site and age at diagnosis.

Presence of mutations in metastatic tumour negatively impacts survival, with no

association between survival when a mutation is identified in the primary tumour.

There has been increasing interest in the biological relevance of non-V600E BRAF

mutations. Menzies and colleagues obtained BRAF mutation status preferentially from

FFPE metastatic melanoma tissue for 308 patients [593]. Mutations were identified in

tumours from 46% of patients, with 73% being V600E mutations and 10% V600K

mutations. The authors determined the prevalence of BRAF mutations according to

each decade of diagnosis. In common with findings in primary melanoma, presence of

a BRAF mutation was associated with a significantly younger age at diagnosis of

metastatic disease, however the proportion of mutations which were not V600E,

including V600K mutations, increased with each age-decade of diagnosis. There was

no difference in the age of diagnosis between patients with wild-type tumours or V600K

mutated tumours. The study also found increased evidence of cumulative sun damage,

as determined by degree of solar elastosis, in skin from patients with V600K mutated

tumours, but not V600E mutations which correlated with their finding that V600K

mutant tumours were found more commonly on the head and neck, typically a sun-

exposed site, with V600E tumours on the limbs. The distant metastasis disease-free

period from diagnosis of the primary tumour was shorter for patients with a V600K

mutation versus a V600E mutation, but there was no difference in overall survival. The

number of V600K mutations identified in this study was 27, therefore these analyses

were based on limited numbers, however these findings suggest that V600K mutations

may have a different aetiology and behaviour to V600E mutations [593]. In a study

where 229 tumour specimens were genotyped from patients with advanced cancer,

168 of which had melanoma, 13 V600K mutations were detected, one in a patient with

colorectal cancer and the rest in melanoma tumours. Presence of a V600K mutation
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was associated with more brain and lung metastases, earlier metastasis and shorter

overall survival following diagnosis [594]. These data albeit in relatively small studies

suggest that the V600K mutant may be biologically more deleterious than the V600E

mutation. In common with V600E mutations, V600K mutations cause elevated kinase

activity and ERK activation, but there is evidence that the kinase activity associated

with V600K mutations is lower than that of V600E mutations [554]. Reduced survival

associated with V600K mutations maybe related to modified kinase activity along with

other, as yet unidentified, factors.

It is important to consider both the pathogenesis of melanomas driven by different

oncogenes and the impact on biological pathways. The importance of fully

understanding how BRAF and NRAS mutations alter downstream biological pathways

is particularly important with the development of BRAFi which offer the first major

targeted treatment option for advanced melanoma. Despite the initial responses seen

with vemurafenib, treatment is associated with side effects, such as development of

cutaneous squamous cell carcinomas and keratoacanthomas [199, 206]. Of greater

concern, is that resistance to vemurafenib almost invariably develops and

understanding the mechanism by which a BRAF mutation modifies gene expression

will greatly assist the intensive efforts currently underway investigating mechanisms of

resistance [199, 206, 242].

A number of studies have attempted to identify gene expression signatures related to

mutation status using melanoma cell lines and frozen tumour specimens as

summarised in Table 6-2. Another approach has been to study gene expression in

melanocytes where activated BRAFV600E has been introduced, this work has identified

over-expression of genes involved in cell growth and motility, inflammation and

apoptosis including matrix metalloproteinase-1 (MMP1) [595]. As technologies have

developed, cDNA sequencing (RNA-seq) has been used to compare gene expression

in normal human melanocytes with and without BRAFV600E expression and two V600E

BRAF mutated tumours to identify genes more specifically altered in cancer tissues

[196]. BRAFV600E was associated with differential expression of 1027 protein-coding

transcripts along with other unannotated transcripts, which were thought to represent

new unidentified long non-coding RNAs (lncRNA) and specifically highlighted BANCR

as a lncRNA which potentially regulated melanoma cell migration [196].



Study design and
sample type

Number and
type of

samples

Comparisons
made

Analysis method Significant results References

Cell lines genotyped for
BRAF and NRAS and

gene expression
assessed with 18,107

microarray.

61 cell lines. BRAF mutant
versus wild-type

and NRAS mutant
versus wild-type

cell lines.

Mann-Whitney U test to
compare groups and support
vector machines to develop a

classifier to predict presence of
BRAF mutations.

135 differentially expressed clones in BRAF mutant
samples, 48 in NRAS mutant samples with 19

clones overlapping.
Differential expression of genes encoding enzymes
which regulate signal transduction pathways, e.g.

protein tyrosine phosphatase receptor type A
(PTPRA).

[596]

Cell lines genotyped for
BRAF and NRAS and

gene expression
assessed with

microarray targeting
22,277 transcripts

(Affymetrix HG-U133A
2.0).

10 cell lines. BRAF mutant
versus NRAS
mutant versus
wild-type cell

lines.

Pairwise comparisons, SAMic
and marker analysis to identify

genes correlated with a
genotype.

61 differentially expressed genes in BRAF mutated
samples and 109 in NRAS mutant samples with 56

overlapping.
Genes which encode regulators of the MAPK
pathway and genes involved in metastasis or

invasion were differentially expressed.

[597]

Cells genotyped for
BRAF and NRAS and

gene expression
assessed with Affymetrix
microarrays (various HG-

U133 arrays).

86 melanoma
cell lines.

BRAF mutant
versus NRAS
mutant versus
wild-type cell

lines.

ANOVA with correction for
multiple testing, hierarchical

clustering.

No differentially expressed genes.
Data from study of Pavey and colleagues was

reanalysed using correction for multiple testing and
only one gene differentially expressed (identity not

reported).

[598]

Mutations in BRAF
identified and whole-
genome Affymetrix

microarray (HG-U133
plus 2.0).

63 melanoma
cell lines.

BRAF mutant
versus wild-type.

Support vector machines to
develop a classifier to identify
BRAF mutations and SAMic.

Classifier identified in two thirds of samples and
validated in the other third. Classifier predicted

BRAF mutation status in a subset of the dataset
from Hoek and colleagues.

Overexpressed genes included T box 3 (TBX3),
SPRY domain containing 5 (SPRYD5) and v-erb-b2
erythroblastic leukaemia viral oncogene homolog 3

(ERBB3).

[599]

-
1
8
0

-



Study design and
sample type

Number and
type of

samples

Comparisons
made

Analysis method Significant results References

BRAF and NRAS
mutations identified and
whole-genome Agilent

array was used for gene
expression profiling.

69 frozen
primary

melanomas.

BRAF mutant
versus wild-type.

Two-sample t-test with control
of the false discovery rate.

34 genes overexpressed in BRAF mutated tumours,
including genes involved in immune responses and

cell motility. These genes were not differentially
expressed in NRAS mutated tumours.

[591]

BRAF and NRAS
mutations identified and

expression profiling
using the Affymetrix HG-

U133 plus 2.0 (main
study aim to determine if
a single metastatic lesion
has a similar expression
profile to other lesions to

allow use of a single
lesion to determine
responsiveness to
chemotherapy).

55 frozen in-
transit

metastatic
melanomas

from 29
patients.

BRAF mutant
versus NRAS
mutant versus

wild-type tumours.

Unsupervised hierarchical
clustering, ANOVA and

regression.

Unsupervised hierarchical clustering revealed two
groups with one group containing BRAF mutated
tumours and the other NRAS mutated tumours or

wild type BRAF genes. 2168 genes correlated with
mutation status including under-expression of
micropthalmia-associated transcription factor

(MITF) and a member of the transient receptor
potential cation channel family (TRPM1) in mutant

tumours.
Top 200 differentially expressed genes similarly
expressed in BRAF mutant and NRAS mutant

tumours.

[508]

Table 6-2: Summary of studies assessing gene expression profiles in tumours with BRAF or NRAS mutations.

Abbreviations used: SAMic, significance analysis of microarrays; MAPK, mitogen-activated protein kinase; ANOVA, analysis of variance.

-
1
8
1

-
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To summarise gene expression studies, there has been much variation in reported

gene profiles in mutant tumours which is likely to reflect tumour heterogeneity in

association with different analysis methods and small numbers of samples assessed.

The identification of gene expression profiles associated with NRAS mutated tumours

has been particularly limited because of the lower frequency of mutations in melanoma

cell lines and tumours. Where differentially expressed genes have been identified in

mutant tumours, genes fall into common themes such as those involved in cell growth

and motility [196, 591, 595, 597, 599] and regulators of the MAPK pathway [597, 599].

There has been some overlap in differentially expressed genes in BRAF and NRAS

mutated tumours, perhaps reflecting similar alterations in biological pathways [508,

596, 597]. The exception to this statement is the study by Kannengiesser and

colleagues which found no overlap in gene expression profiles of BRAF and NRAS

mutated genes in the largest study of primary melanomas to date [591]. Use of FFPE

tissue, as in the current study, will allow assessment of a larger number of tumours to

identify gene expression signatures associated with BRAF and NRAS mutation status.

This chapter presents BRAF and NRAS mutation results from FFPE primary melanoma

sample sets previously used for gene expression work in Chapters 3 and 4. I report the

identification of BRAF and NRAS mutation status of primary melanomas and

subsequent studies performed in order to identify patient and tumour factors which are

associated with these mutations. Furthermore, mutation associated gene expression

profiles were identified in the largest study of primary melanoma tumours to date and

the only study using FFPE tissue.

The main method used for BRAF and NRAS mutation testing described in this chapter

was pyrosequencing. This method is described in detail in Chapter 2, but briefly the

technique uses primers to direct a polymerase extension reaction where nucleotides

are added sequentially to the reaction and incorporation of a nucleotide causes light to

be released which is detected to determine the DNA sequence [352-355]. This

technique has been shown to be more sensitive than Sanger sequencing for detecting

the V600E BRAF mutation [356] and has been previously used by a number of groups

to identify BRAF and NRAS mutations in FFPE and frozen melanoma tissues [353,

356, 436, 600]. In order to preserve precious stocks of tumour DNA, mutation

screening of NRAS and BRAF has been attempted using cDNA produced as part of

concurrent gene expression studies and these results are also presented.
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6.3 Identification of BRAF and NRAS mutations in FFPE

primary melanoma tumours

6.3.1 Detailed methodology

6.3.1.1 Patients and samples

FFPE melanoma metastases and cell line samples were used for initial methodological

testing; these sample sets are described further in Chapter 2. From metastatic

samples, RNA was extracted from a single tissue core using the Roche High Pure RNA

Paraffin Kit, cDNA was generated using 200ng of RNA using the Invitrogen

Superscript™ First-strand synthesis system using a modified protocol. DNA was

extracted from a single tissue core from the same tumour block used for RNA

extraction using the Qiagen QIAamp DNA FFPE kit. RNA was extracted from pelleted

cells of SkMel28 and MeWo melanoma cell lines using the Qiagen RNeasy® Mini kit.

cDNA was generated using the standard protocol and one microgram of RNA using the

Invitrogen Superscript™ First-strand synthesis system. DNA was extracted from

pelleted cells of cell lines from the same flask used for RNA extraction using the

Qiagen QIAamp DNA Mini kit. Details of extraction and cDNA synthesis methods used

are included in Chapter 2.

Samples for the larger study were from patient study sets described in Chapter 3.

cDNA had been synthesised from tumour RNA for use in gene expression studies from

patients recruited to the Leeds Melanoma Cohort Study (Cohort Study) and a small

number of samples from patients recruited to the Retrospective Sentinel Node Biopsy

Study (SNB study) using the Invitrogen Superscript™ First-strand cDNA system using

a modified protocol as described in Chapter 2. This stored cDNA was used to test the

feasibility of using cDNA for mutation screening. DNA was extracted from available

tumour tissue cores from patients recruited to both the Cohort and SNB study using

either the Qiagen QIAamp DNA FFPE kit or the Qiagen AllPrep® RNA/DNA FFPE kit

using methods described in Chapter 2 for mutation testing using DNA.

6.3.1.2 BRAF and NRAS mutation detection

Using methods described in Chapter 2, pyrosequencing was initially used to identify

common BRAF and NRAS mutations in cDNA from melanoma metastases, cell line

samples and the larger cohort of primary tumour samples. All pyrosequencing analyses

were performed by Dr Phil Chambers in the Genomics Facility, Cancer Research UK

Centre, Leeds Institute of Molecular Medicine. The “mutation percentage” calculated

from pyrosequencing data reflects the number of mutated alleles in cells assessed, but
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as tumour is heterogeneous it will also reflect the number of non-mutated tumour cells

along with contaminating normal stromal cells. Pyrosequencing analysis was repeated

using DNA from metastases samples and cell lines. For the larger study, cDNA and

DNA from a proportion of samples were screened for BRAF and NRAS mutations using

the Applied Biosystems PRISM® SNaPshotTM Multiplex system using methods

described in Chapter 2 to confirm results from pyrosequencing. SNaPshot analysis was

performed by myself. Finally, the BRAF and NRAS mutation status of DNA from

samples in the larger cohort were assessed using pyrosequencing.

Correlations between percentage mutation results between cDNA and matched DNA

samples were assessed using Spearman’s rank correlation.

6.3.1.3 Identification of patient and tumour factors associated with

mutation status

Patient factors and histological characteristics of the primary tumour were compared

between samples with differing mutation status using Pearson’s Chi squared (χ2) tests

or Fisher’s exact test (where the frequency of observations in a subgroup was less than

5) for categorical variables and Kruskal-Wallis tests for continuous variables. For

survival analysis, relapse-free survival (RFS) was defined as the period between

diagnosis and date of first relapse at any site. Death from any cause was used for

overall survival analyses with death from melanoma only used for melanoma-specific

survival. Analysis was performed on the 19th December 2011 and survival data were

censored at this date. Associations between mutation status and survival were

assessed using plots of Kaplan-Meier estimates of survival function. Furthermore,

survival analysis was performed using the Cox proportional hazards model to calculate

hazard ratios and 95% confidence intervals for each group of patients with tumours of a

particular genotype. Analysis was performed unadjusted and adjusted for factors of

prognostic importance in melanoma. A significance level of 0.05 was set for these

analyses.

6.3.1.4 Identification of gene expression profiles associated with mutation

status

Gene expression data were generated using the Illumina DASL Human Cancer panel

and the merged dataset from the Cohort and SNB studies as described in Chapter 4.

Differential gene expression analysis was performed using data which had been log-

transformed (log2). As some of the raw gene expression levels were negative values,
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1000 was added to all values prior to log-transformation. Within the sample sets, mean

expression of each gene was compared between samples with differing mutation

status using linear regression. Significance values were ranked to identify genes most

differentially expressed between groups of interest. In view of non-biological variation

that was judged to be present between the two DASL studies, all gene expression

analyses were adjusted for study from which the patients were recruited. To correct for

multiple testing, the Bonferroni method was used [366] and the significance level was

set at 0.0001. Fold changes in mean gene expression between tumours with different

genotype were calculated using data that had not been log-transformed. Statistical

analyses were undertaken using Stata version 10 (StataCorp 2007, College Station,

TX).

To allow comparison of gene lists generated using different analysis methods for gene

expression data, analysis was also performed using two-group significance of

microarray analyses (SAMic) [450] (Stanford University, Stanford, CA) using a Δ 

threshold to keep the false discovery rate at zero. Data used from this analysis had

been log2 transformed without addition of the constant value and then residuals from a

linear regression model adjusting for study from which the patients were recruited were

used for further analysis. Any missing values following log-transformation were imputed

by SAMic using a K-Nearest Neighbor algorithm [601]. SAMic identifies statistically

differentially expressed genes using a set of gene-specific t-tests, where a small

constant is added to the denominator during calculation of the T-statistic to reduce the

influence of genes with a small variance [450, 599]. Each gene is given a score based

on its change in gene expression relative to the standard deviation of repeated

measurements for that gene. Genes with a score greater than a particular threshold

(Δ), set by the user, are significantly differentially expressed. The false discovery rate is 

estimated by analysing permutations of the measurements, in this case 5000, which

will identify false positive results [450]. This analysis generates a q-value, which is the

lowest false-discovery rate at which a gene is significant [602].

6.3.2 Results

6.3.2.1 Use of cDNA for mutation detection

When this work began, extraction of either DNA or RNA from tumour samples required

use of a tissue core. A single tissue core can represent all, or a large proportion, of the

tumour available for research. To avoid having to extract DNA from precious stored

tumour material, experiments were performed to assess whether stored cDNA

produced in the course of gene expression studies could be used for BRAF and NRAS
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mutation screening. Initial experiments assessed use of high-quality nucleic acids from

cell lines followed by assessment of nucleic acids from FFPE melanoma samples.

6.3.2.1.1 Pyrosequencing of cell line DNA and cDNA

To compare results generated using pyrosequencing with cDNA and DNA to screen for

BRAF and NRAS mutations in high quality nucleic acids, pyrosequencing was used to

screen DNA and cDNA from SkMel28 cells, which have a homozygous V600E BRAF

mutation, and MeWo cells which do not have a BRAF or NRAS mutation as recorded

by the Catalogue of Somatic Mutations in Cancer (COSMIC) [361]. Results were

similar from DNA and cDNA, however an unexpected V600E BRAF mutation was

identified in the MeWo cells in both cDNA and DNA. The A allele (mutant allele)

percentage was higher when cDNA was analysed. For MeWo cells the A allele

percentage was 72% for DNA and 76% for cDNA, and for SkMel28 cells, 95% for DNA

and 98% for cDNA. No NRAS mutations were identified in these samples. DNA and

cDNA from the cell line samples was also sequenced by Dr Phil Chambers using

methods described in Chapter 2 and these results were confirmed.

6.3.2.1.2 Pyrosequencing of FFPE melanoma metastasis DNA and cDNA

To compare results from cDNA and DNA in degraded nucleic acids using

pyrosequencing, a panel of five melanoma metastases samples were selected and

results for BRAF and NRAS mutation screening using DNA and cDNA were compared.

Two samples had V600E BRAF mutations identified in both cDNA and DNA. For

samples with a mutation, the percentage A allele was higher when assessed with

cDNA than DNA. One sample had an NRAS mutation (c.182A>G (p.Q61R)) which was

found using both cDNA and DNA. DNA samples were sequenced by Dr Phil Chambers

using methods described in Chapter 2 and these results were confirmed, however

confirmatory sequencing of the cDNA samples failed.

6.3.2.1.3 Pyrosequencing of cDNA from tumour samples

As these initial results from cDNA and DNA were comparable, a larger number of

cDNA samples were screened for mutations using pyrosequencing. cDNA samples had

previously been generated from RNA extracted from FFPE primary tumours of patients

recruited to the Cohort Study for use in quantitative Real-Time PCR (qRT-PCR)

analysis as described in Chapter 4. A total of 154 cDNA specimens were available,
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cDNA was also generated from 20 tumour RNA samples from patients recruited to the

SNB study who were treated with chemotherapy (see Chapter 8), 6 of these samples

were also sent for pyrosequencing with samples from the Cohort study. Therefore a

total of 160 cDNA samples were screened for BRAF and NRAS mutations using

pyrosequencing. A summary of results is presented in Table 6-3.

Sample status
Number of samples

(%)

BRAF
V600E

Total with BRAF mutation (A allele ≥10%) 

0% A allele
>0% and <5% A allele
≥5% and <10% A allele 
≥10% and <20% A allele 

≥20% A allele 
No data

105 (65.6)

28 (17.5)
12 (7.5)
8 (5.0)

19 (11.9)
86 (53.8)
7 (4.4)

NRAS Total with NRAS mutation 47 (29.4)

NRAS
Codon 61

Mutation
No data

44 (93.6)
11 (6.9)

NRAS
Codon
12/13

Mutation
No data

3 (6.4)
7 (4.4)

Double mutations (BRAF A allele ≥10%) 25 (15.6)

Table 6-3: Summary of BRAF and NRAS mutation screening results from cDNA

synthesised from RNA extracted from 160 primary melanoma samples.

The percentage values for BRAF and NRAS mutations overall, percentage A

allele, missing data and double mutations were calculated as a percentage of the

total number of samples assessed. For mutations in separate NRAS codons, the

percentage value was calculated as a proportion of the number of samples with

an NRAS mutation.

Overall, 65.6% of samples had a V600E BRAF mutation with a percentage A allele

level over 10%. All BRAF mutations identified were V600E. A total of 29.4% of samples

had a mutation in NRAS, with the majority of mutations being p.Q61R (40.4%) and

pQ61K (40.4%). Both of these results are consistent with published results, however

15.6% of samples had mutations both in BRAF and in NRAS which is uncommon and

inconsistent with previous reports [30].

On review of the data in more detail, samples with double mutations appeared to have

lower A allele percentage levels than samples without an NRAS mutation (Figure 6-2).
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Figure 6-2: Distribution of A allele levels for V600E BRAF mutations in cDNA

samples with and without NRAS mutation.

A single dot represents each sample. % BRAF mutation refers to A allele

percentage levels. An orange line of pluses represents the median for the two

groups; dashed lines indicate the upper and lower quartiles.

In order to confirm whether the results identified in cDNA samples were correct,

pyrosequencing was repeated and similar results were obtained. A selection of

samples were selected with different percentage A allele mutation results for

sequencing to confirm the presence of these mutations, however the samples failed in

this analysis. Therefore in order to confirm or refute these results, an Applied

Biosystems PRISM® SNaPshotTM Multiplex system assay was developed to screen for

BRAF and NRAS mutations in cDNA samples using methods described in Chapter 2.

6.3.2.1.4 Mutation screening of cDNA and DNA samples using the Applied

Biosystems PRISM® SNaPshotTM Multiplex system for samples identified as

having both BRAF and NRAS mutations in cDNA using pyrosequencing

cDNA samples identified as having double mutations using pyrosequencing were

reassessed using the SNaPshot system. A further six samples with low levels of BRAF

A allele levels (<10%) along with NRAS mutations were also assessed, therefore a

total of 31 samples were analysed. Where there were further tissue cores available,

DNA was extracted using the Qiagen QIAamp DNA FFPE kit from a matched core for
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comparison of results using the SNaPshot system and pyrosequencing. A total of 25

samples had matched DNA samples available.

When cDNA was assessed using the SNaPshot system, four samples failed the BRAF

assay. In the remainder, V600E BRAF mutations were detected in samples where the

percentage A allele level using pyrosequencing was greater than 23%. Generally, in

samples with lower percentage mutations, mutations were not detected, although for

one sample, a V600E mutation was detected using the SNaPshot system when the

mutation percentage was only 19% in the pyrosequencing assay. No V600K or K601

mutations were identified in these samples. No samples failed the NRAS assay and

there was better concordance across the SNaPshot system and pyrosequencing for

NRAS mutation results using cDNA, with mutation results being the same across the

two assays for the majority of samples. The exception was that a c.182A>G mutation

(Q61R) in codon 61 was identified in one sample using the SNaPshot system, whereas

a c.181C>A mutation (Q61K) had been detected using pyrosequencing. Therefore,

pyrosequencing appeared to be detecting low levels of V600E BRAF mutations in

cDNA samples which could not generally be replicated using a different method of

mutation detection, albeit a less sensitive detection method.

In order to investigate further, DNA was available for 25 samples for which we had

previously tested the cDNA and this was assessed using both pyrosequencing and the

SNaPshot system. Only one sample failed the BRAF and NRAS assay in

pyrosequencing. There was excellent concordance between results across the two

assays when DNA was used with all mutation results matching. Only one sample had a

V600E BRAF mutation, which was the same sample identified as having a mutation in

cDNA using the SNaPshot system and pyrosequencing where the A allele level was

19%. This sample was wild-type for NRAS when DNA was used for analysis, whereas

a mutation was found in cDNA. No V600K or K601 mutations were identified in these

samples. NRAS mutations were detected in all the samples assessed, except for the

sample discussed previously, and the mutation spectrum was the same as results from

cDNA. The sample with a different mutation identified using the SNaPshot system and

pyrosequencing using cDNA was found to have a c.182A>G mutation (Q61R) in DNA

using the SNaPshot system, however it failed in the pyrosequencing assay.

To summarise, using DNA from FFPE tumour specimens, samples previously identified

as harbouring both NRAS and BRAF mutations when cDNA was assessed using

pyrosequencing, were found to have only one mutation which is much more consistent

with the published literature. Results for NRAS mutation screening were more

concordant across cDNA and DNA, however using cDNA for BRAF mutation screening

yielded inaccurate results, specifically low levels of mutation are identified in samples
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where no mutation can be detected in matched DNA samples. Therefore to ensure

accuracy of results, DNA was used for subsequent mutation screening.

6.3.2.2 BRAF and NRAS mutation results from FFPE primary melanoma

specimens using DNA

6.3.2.2.1 Samples

Following completion of work using cDNA samples, the Qiagen AllPrep® RNA/DNA

FFPE kit became available for use allowing us to extract DNA and RNA from a single

core, thereby removing the necessity to consider mutation screening in cDNA. DNA

was subsequently extracted using this kit by myself from 88 available primary tissue

cores from patients recruited to the Cohort Study and 166 cores from patients recruited

to the SNB study. DNA was used to identify BRAF and NRAS mutations using

pyrosequencing as described previously. Results from this analysis were added to

results for 25 tumours assessed in previous methodological work, therefore a total of

279 tumours were genotyped.

6.3.2.2.2 Mutations identified

Table 6-4 summarises the results of the pyrosequencing analysis. A total of 50.5% of

the samples assessed had a BRAF mutation, the majority (83.7%) V600E mutations,

which is consistent with levels quoted in the literature. A total of 27.2% of tumours had

an NRAS mutation, most of which were in codon 61 as previously described. We were

unable to obtain results for 3.2% of the samples assessed because of repeated PCR

failure. No samples had both a NRAS and BRAF mutation.

The percentage mutation levels for V600E and NRAS mutations remained high in DNA

samples analysed with pyrosequencing. Forty-one (15%) of tumours with V600E

mutation had a percentage mutation levels over 50% and in the 75 tumours with NRAS

mutations where mutation percentage could be calculated (p.G12N due to

c.34_35delinsAA excluded), 38 (51%) of tumours had mutation percentage levels over

50%.
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Gene Mutation Number of samples (%)

BRAF

All

V600E

V600K

V600D

K601E

141 (50.5)

118 (83.7)

18 (12.8)

4 (2.8)

1 (0.7)

NRAS

All

p.Q61R

p.Q61K

p.Q61L

p.Q61H

p.G13R

p.G12V

p.G12N

76 (27.2)

37 (48.7)

22 (29.0)

8 (10.5)

2 (2.6)

5 (6.6)

1 (1.3)

1 (1.3)

Samples with double mutations 0

No mutation 53 (19.0)

Data not available 9 (3.2)

Table 6-4: Summary of BRAF and NRAS pyrosequencing results for DNA

extracted from 279 primary melanoma tumours.

For each gene, the percentage number of samples is calculated for the whole

sample set tested. For each separate mutation, the percentage number of

samples is calculated as a proportion of samples with a mutation in the gene.

6.3.2.2.3 Correlations between results derived from pyrosequencing of matched cDNA

and DNA samples

As discussed previously, there were discordant mutation results obtained from cDNA

and matched DNA samples using pyrosequencing in the small sample set assessed in

section 6.3.2.1.4. Whilst this discordance was thought likely to result from erroneous

results from pyrosequencing, I investigated the relationship between cDNA and DNA

results further to assess whether pyrosequencing was detecting small numbers of

mutant BRAF cells in NRAS mutant tumours. Therefore, a comparison was made

between results derived using pyrosequencing from matched cDNA and DNA samples

in the larger sample set. All BRAF mutations detected in cDNA were V600E, however

V600K mutations were detected in six DNA samples where V600E mutations have

been previously identified in cDNA. In addition, a V600K mutation was identified in

DNA where no mutation had been detected in the matched cDNA sample previously.

Generally there was good concordance in the mutation spectrum detected in matched

cDNA and DNA samples for NRAS, but mutations were detected in DNA, but not cDNA
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for 4 samples, with mutations detected in cDNA and not DNA for 2 samples.

Percentage mutation levels for V600E BRAF mutations and NRAS mutations were also

compared between matched cDNA and DNA samples in the larger sample set. Results

are presented in Figure 6-3.

There were significant correlations between the level of mutation detected in matched

cDNA and DNA samples for V600E BRAF (Spearman’s rho 0.50) and NRAS

(Spearman’s rho 0.71) mutations, however it is clear from Figure 6-3 that for BRAF,

high levels of mutant allele were detected in cDNA samples which are not replicated in

DNA samples. The association between NRAS mutation levels was better between

matched cDNA and DNA samples. Discordant results between cDNA and DNA

samples demonstrate that cDNA cannot be used for accurate detection of mutations in

BRAF and NRAS and this analysis confirms that DNA should be used for mutation

screening in melanoma samples. I was unable to generate any data which explained

this discordance.

6.3.2.2.4 Associations with clinico-pathological features

Table 6-5 presents results of analyses carried out to identify associations between

mutation status and tumour histological features or patient characteristics.

There were a greater proportion of tumours with BRAF mutations in the SNB study,

and NRAS mutations in the Cohort study. A higher proportion of superficial spreading

melanomas were BRAF mutated, with a marginally greater proportion of nodular

tumours being NRAS mutated. A higher proportion of truncal tumours had BRAF

mutations, with NRAS mutations being more predominantly found in head and neck

tumours or tumours on the limbs. A higher proportion of tumours on sun-protected sites

were wild-type, however mutations were identified in four acral tumours (three BRAF

and one NRAS mutation). The median age at diagnosis of patients with NRAS mutated

tumours was significantly higher (61 years) than for patients with wild-type tumours (53

years) which was greater than for patients BRAF mutated tumours (51 years). This

analysis found that patients with a positive SNB were more likely to have a BRAF

mutated primary tumour, but these data are difficult to interpret given the observation

that BRAF mutations were more common in people who elected to have a SNB rather

than to decline it.
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A.

B.

Figure 6-3: Scatter plots showing percentage mutation levels for V600E BRAF (A)

and NRAS (B) levels from matched cDNA and DNA samples using

pyrosequencing.

BRAF mutations are detected in cDNA samples, where none were found in DNA

samples.
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Factor
No mutation

(n=53)
BRAF mutation

(n=141)
NRAS mutation

(n=76)
Test statistic and significance value

Study type, n (%):
Cohort study
SNB study

23 (21.7)
30 (18.3)

45 (42.5)
96 (58.5)

38 (35.9)
38 (23.2)

χ2 (2) 7.3, p=0.03

Breslow thickness, mm, median (range) 2.1 (0.7-11.0) 2.0 (0.8-13.0) 2.5 (0.8-19.0) Kruskal-Wallis χ2 (2) 2.9, p=0.24

Mitotic rate per mm2, median (range) 4 (0-37) 5 (0-40) 4 (0-32) Kruskal-Wallis χ2 (2) 0.8, p=0.67

Ulceration, n (%):
None

Present
38 (73.1)
14 (26.9)

103 (73.6)
37 (26.4)

50 (67.6)
24 (32.4)

χ2 (2) 0.9, p=0.63

Tumour infiltrating lymphocytes, n (%):
None

Present
15 (29.4)
36 (70.6)

20 (15.5)
109 (84.5)

17 (25.0)
51 (75.0)

χ2 (2) 5.2, p=0.08

Vascular or lymphatic invasion, n (%):
None

Present
44 (89.8)
5 (10.2)

121 (90.3)
13 (9.7)

67 (90.5)
7 (9.5)

χ2 (2) 0.02, p=0.99

Perineural infiltration, n (%):
None

Present
28 (90.3)
3 (9.7)

93 (98.9)
1 (1.1)

41 (97.6)
1 (2.4)

Fisher’s exact p=0.05

Regression, n (%):
No
Yes

38 (80.9)
9 (19.2)

105 (84.0)
20 (16.0)

64 (91.4)
6 (8.6)

χ2 (2) 3.0, p=0.22

Microsatellites, n (%)
None

Present
40 (83.3)
8 (16.7)

110 (90.2)
12 (9.8)

60 (90.9)
6 (9.1)

χ2 (2) 2.0, p=0.37

Histological subtype, n (%):
SSM
NM

Other

28 (53.9)
17 (32.7)
7 (13.5)

104 (76.5)
25 (18.4)
7 (5.2)

40 (54.1)
27 (36.5)
7 (9.5)

χ2 (4) 15.5, p=0.004

-
1
9
4

-



Factor
No mutation

(n=53)
BRAF mutation

(n=141)
NRAS mutation

(n=76)
Test statistic and significance value

Age at diagnosis or SNB, median (range) 52.6 (19.9-79.0) 51.2 (14.4-80.2) 60.8 (26.7-88.0) Kruskal-Wallis χ2 (2) 17.6, p=0.0002

Patient gender, n (%)
Female

Male
31 (58.5)
22 (41.5)

68 (48.2)
73 (51.8)

36 (47.4)
40 (52.6)

χ2 (2) 1.9, p=0.38

Site of tumour, n (%):
Trunk
Limbs

Head/neck
Sun protected

12 (22.6)
28 (52.8)
5 (9.4)

8 (15.1)

61 (43.3)
65 (46.1)
12 (8.5)
3 (2.1)

18 (23.7)
48 (63.2)
9 (11.8)
1 (1.3)

Fisher’s exact, p<0.0001

SNB status, n (%)
No SNB

SNB performed – negative
SNB performed – positive

19 (37.3)
15 (29.4)
17 (33.3)

36 (25.5)
31 (22.0)
74 (52.5)

29 (38.7)
21 (28.0)
25 (33.3)

χ2 (4) 10.2, p=0.04

Relapse status, n (%)
Not relapse
Relapsed

34 (64.2)
19 (35.9)

88 (64.2)
49 (35.8)

49 (64.5)
27 (35.5)

χ2 (2) 0.002, p=1.00

Overall survival, n (%)
Alive
Died

36 (67.9)
17 (32.1)

88 (62.4)
53 (37.6)

49 (64.5)
27 (35.5)

χ2 (2) 0.52, p=0.77

Table 6-5: Associations between tumour BRAF and NRAS mutation status and clinico-pathological features.

Significance values quoted for Fisher’s exact tests are 2-sided. Percentage values for study type are reported as the proportion within each

study, with other percentage levels being the proportion of tumours with each mutation. Significant results are highlighted in bold.

Abbreviations used: SNB, sentinel node biopsy; n, number.
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In view of the increasing interest in the biological significance of V600K BRAF

mutations, in Table 6-6 I compared the clinico-pathological features associated with

V600E mutated tumours and V600K mutated tumours.

V600K mutations were more commonly found in tumours from older and male patients.

There were also a higher proportion of patients with V600K mutated tumours who had

died, which was investigated further using survival analysis in section 6.3.2.2.5.

A comparison was also made between clinico-pathological features of tumours with the

two commonest NRAS mutations (p.Q61R and p.Q61K), but there were no significant

differences in features between these two groups.

6.3.2.2.5 Associations with survival

The influence of mutation status on survival was investigated further using survival

analysis. Figure 6-4 presents Kaplan-Meier plots for relapse-free survival (RFS), overall

survival (OS) and melanoma-specific survival (MSS) for patients with tumours of

differing mutational status. Hazard ratios and 95% confidence intervals generated

using the Cox proportional hazards model are also presented. Use of sentinel node

biopsy results in delay of the date of first relapse in melanoma patients since the usual

site of first recurrence (nodal) is removed, therefore analysis of RFS was adjusted for

whether the patient had undergone a sentinel node biopsy and the effect of the biopsy

result (SNB status). This analysis shows that mutation status did not modify RFS, OS

or MSS in this sample set.

Survival analysis was also performed to identify associations between type of BRAF

mutation (V600E or V600K) and RFS, OS or MSS. Patients with rare BRAF mutations

(V600D in 4 patients and K601E in 1 patient) were excluded from this analysis. Figure

6-5 presents Kaplan-Meier plots for these analyses and results of survival analyses

using the Cox proportional hazards model.

This analysis demonstrated that patients with a V600K positive tumour had a shorter

RFS than patients with a wild-type tumour (HR 2.64, p=0.02, median RFS V600E 3.3

years, V600K 2.4 years) when the analysis was adjusted for sentinel node biopsy

status. There was also some evidence that V600K mutations shorten OS (HR 2.03,

p=0.07) and MSS (HR 1.97, p=0.09).

To investigate the association between mutation status and RFS further, the Cox

proportional hazards model was adjusted in multivariate analysis for demographic and

histological factors of prognostic value in melanoma, the results of which are presented

in Table 6-7.



Factor
V600E mutation

(n=118)
V600K mutation

(n=18)
Test statistic and significance value

Study type, n (%):
Cohort study
SNB study

36 (81.8)
82 (89.1)

8 (18.2)
10 (10.9)

χ2 (1) 1.4, p=0.24

Breslow thickness, mm, median (range) 2.0 (0.8-12.0) 2.2 (0.9-5.2) Mann-Whitney z -0.87, p=0.38

Mitotic rate per mm2, median (range) 4 (0-40) 6.5 (1-28) Mann-Whitney z -1.79, p=0.07

Ulceration, n (%):
None

Present
86 (72.9)
32 (27.1)

13 (76.5)
4 (23.5)

Fisher’s exact, p=1.00

Tumour infiltrating lymphocytes, n (%):
None

Present
17 (15.7)
91 (84.3)

2 (12.5)
14 (87.5)

Fisher’s exact, p=1.00

Vascular or lymphatic invasion, n (%):
None

Present
101 (89.4)
12 (10.6)

15 (93.8)
1 (6.3)

Fisher’s exact, p=1.00

Perineural infiltration, n (%):
None

Present
80 (98.8)
1 (1.2)

9 (100.0)
0

Fisher’s exact, p=1.00

Regression, n (%):
No
Yes

87 (83.7)
17 (16.4)

14 (82.4)
3 (17.7)

Fisher’s exact, p=1.00

Microsatellites, n (%)
None

Present
93 (90.3)
10 (9.7)

13 (92.7)
1 (7.1)

Fisher’s exact, p=1.00

Histological subtype, n (%):
SSM
NM

Other

88 (77.2)
19 (16.7)
7 (6.1)

13 (76.5)
4 (23.5)

0

Fisher’s exact, p=0.54

-
1
9
7

-



Factor
V600E mutation

(n=118)
V600K mutation

(n=18)
Test statistic and significance value

Age at diagnosis or SNB, median (range) 50.5 (14.4-80.2) 60.7 (32.8-79.1) Mann-Whitney z -2.8, p=0.005

Patient gender, n (%)
Female

Male
63 (53.4)
55 (46.6)

4 (22.2)
14 (77.8)

Fisher’s exact, p=0.02

Site of tumour, n (%):
Trunk
Limbs

Head/neck
Sun protected

48 (40.7)
56 (47.5)
11 (9.3)
3 (2.5)

11 (61.1)
6 (33.3)
1 (5.6)

0

Fisher’s exact, p=0.47

SNB status, n (%)
No SNB

SNB performed – negative
SNB performed – positive

31 (26.3)
23 (19.5)
64 (54.2)

4 (22.2)
8 (44.4)
6 (33.3)

Fisher’s exact, p=0.08

Relapse status, n (%)
Not relapse
Relapsed

77 (67.5)
37 (32.5)

8 (44.4)
10 (55.6)

χ2 (1) 3.6, p=0.06

Overall survival, n (%)
Alive
Died

78 (66.1)
40 (33.9)

7 (38.9)
11 (61.1)

χ2 (1) 4.9, p=0.03

Table 6-6: Associations between tumour V600E and V600K BRAF mutations and clinico-pathological features.

Significance values quoted for Fisher’s exact tests are 2-sided. Percentage values for study type are reported as the proportion within each

study, with other percentage levels being the proportion of tumours with each mutation. Significant results are highlighted in bold.

Abbreviations used: SNB, sentinel node biopsy; n, number.
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A.

Genotype (analysis
adjusted for SNB status)

HR 95% CI P-value

No mutation

BRAF mutation

NRAS mutation

1

0.94

0.89

0.54-1.62

0.49-1.62

0.81

0.70

B.

Genotype HR 95% CI P-value

No mutation

BRAF mutation

NRAS mutation

1

1.29

1.01

0.74-2.23

0.55-1.86

0.37

0.97
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C.

Genotype HR 95% CI P-value

No mutation

BRAF mutation

NRAS mutation

1

1.27

0.96

0.72-2.23

0.51-1.81

0.42

0.89

Figure 6-4: Kaplan-Meier plots and results of survival analyses used to identify

associations between relapse-free (A), overall (B) and melanoma-specific

survival (C) and tumour genotype.

Hazard ratios and 95% confidence intervals generated using a Cox proportional

hazards model are presented. For relapse-free survival, the analysis is adjusted

for influence of sentinel-node biopsy status. Abbreviations used: HR, hazard ratio;

CI, confidence interval; SNB, sentinel node biopsy.
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A.

Genotype (analysis
adjusted for SNB status)

HR 95% CI P-value

No mutation

V600E mutation

V600K mutation

NRAS mutation

1

0.80

2.64

0.89

0.45-1.42

1.20-5.80

0.49-1.62

0.45

0.02

0.69

B.

Genotype HR 95% CI P-value

No mutation

V600E mutation

V600K mutation

NRAS mutation

1

1.17

2.03

1.02

0.66-2.06

0.95-4.33
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C.

Genotype HR 95% CI P-value

No mutation

V600E mutation

V600K mutation

NRAS mutation

1

1.15

1.97

0.96

0.64-2.06

0.89-4.34

0.51-1.81

0.65

0.09

0.90

Figure 6-5: Kaplan-Meier plots and results of survival analyses used to identify

associations between relapse-free (A), overall (B) and melanoma-specific

survival (C) and tumour genotype where V600E and V600K BRAF mutations

were analysed separately.

Hazard ratios and 95% confidence intervals generated using a Cox proportional

hazards model are presented. For relapse-free survival, the analysis is adjusted

for influence of sentinel-node biopsy status. Significant results are highlighted in

bold. Abbreviations used: HR, hazard ratio; CI, confidence interval; SNB, sentinel

node biopsy.



Mutation status

Analysis adjusted SNB
status only

(n=258)

Analysis further adjusted for
age and sex of patient and site

of tumour
(n=258)

Analysis further adjusted for
Breslow thickness, ulceration

and mitotic rate of tumour
(n=245)

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

No mutation 1.00 1.00 1.00

V600E BRAF mutation 0.80 (0.45-1.42) 0.45 0.89 (0.49-1.63) 0.71 1.04 (0.54-2.01) 0.90

V600K BRAF mutation 2.64 (1.20-5.80) 0.02 2.25 (0.97-5.19) 0.06 2.58 (1.03-6.48) 0.04

NRAS mutation 0.89 (0.49-1.62) 0.69 0.80 (0.42-1.52) 0.50 0.82 (0.41-1.65) 0.58

Table 6-7: Associations between tumour mutation status and relapse-free survival in multivariate analysis.

The first model is adjusted for sentinel node biopsy status only; the second further adjusted for demographic variables of prognostic

importance (patient gender, age at diagnosis and site of tumour) in melanoma and finally the model is further adjusted for histological

prognostic factors (Breslow thickness, mitotic rate and ulceration status). Presence of a V600K mutation was significantly associated with

reduced relapse free survival time in the first model and the model fully adjusted for other prognostic factors. Significant results are highlighted

in bold. Abbreviations used: HR, hazard ratio; CI, confidence interval; SNB, sentinel node biopsy.
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In the multivariable analysis presented, the presence of a V600K mutation was

significantly associated with reduced RFS time even when adjusted for prognostic

factors in melanoma, indicating that presence of a V600K mutation was independently

associated with RFS. As only 18 tumours had a V600K mutation, this study is limited in

power to identify relationships with survival, however I have identified an association

with RFS suggesting that this effect is significant and warrants further investigation in a

larger sample set. Presence of a V600E mutation did not influence RFS, suggesting

that V600K mutations may induce different biological properties in a tumour.

6.3.2.2.6 Gene expression patterns associated with mutation status

Genes differentially expressed between groups of tumours based on genotype were

identified using linear regression adjusted for the study from which patients were

recruited. This analysis was also performed using significance analysis of microarrays

(SAMic) analysis, to allow comparison of gene lists, but the results were very similar,

therefore the results of analysis based on linear regression are presented in Table 6-8.

6.4 Discussion

6.4.1 Use of cDNA specimens for mutation detection

In this chapter I have described experiments to assess whether cDNA could be used

as an alternative to DNA for mutation screening from small volume FFPE melanoma

specimens. This investigation was initiated to try and limit the amount of precious

tumour material required for mutation screening by using available cDNA that had been

previously generated for use in gene expression experiments. Despite promising initial

results, further investigation demonstrated that different results are generated when

cDNA and DNA are used for mutation detection of BRAF and NRAS using

pyrosequencing. The spectrum of BRAF mutations identified and the percentage

mutation levels differed in cDNA and DNA. There was better concordance for NRAS,

however differences do exist and without accurate BRAF mutation screening, further

analysis is limited.



BRAF mutated tumours compared
to tumours with no mutation (fold
difference in gene expression for
BRAF mutated tumours/wild-type

tumours)

NRAS mutated tumours compared
to tumours with no mutation (fold
difference in gene expression for
NRAS mutated tumours/wild-type

tumours)

NRAS mutated tumours compared
to BRAF mutated tumours (fold

difference in gene expression for
NRAS mutated tumours/BRAF

mutated tumours)

V600K BRAF mutated tumours
compared to V600E BRAF

mutated tumours (fold change in
gene expression for V600K

mutations/V600E mutations)

Gene
Mean fold
difference

P-value Gene
Mean fold
difference

P-value Gene
Mean fold
difference

P-value Gene
Mean fold
difference

P-value

ETV1 1.34 9.75x10-7 TYRO3 1.44 1.90x10-7 NRAS 1.16 1.04x10-7 TFAP2C 0.54 0.00001

ERBB3 1.20 1.63x10-6 CTNNB1 1.08 3.27x10-7 THBS2 0.69 1.50x10-7 BRAF 1.11 0.0001

CDK6 1.22 2.29x10-6 NRAS 1.17 6.10x10-6 VHL 1.09 2.15x10-7 CDK2 1.21 0.0002

PTPRG 1.30 2.60x10-6 PTPRG 1.30 7.58x10-6 WNT5A 0.67 2.08x10-6 DVL3 1.12 0.002

TYRO3 1.33 5.90x10-6 CDK6 1.23 7.70x10-6 RAP2A 1.09 0.00001 TRAF3 1.25 0.002

CD59 1.13 0.00003 ETV1 1.37 0.00001 PTEN 1.06 0.00003 EVI2A 0.77 0.002

CEACAM1 1.54 0.00004 TGFBR1 1.13 0.00002 CTNNB1 1.03 0.00003 JUN 1.10 0.003

MAP3K8 1.54 0.00004 ERBB3 1.23 0.00003 QARS 1.08 0.00004 EXT1 1.07 0.003

CAV1 1.12 0.0001 TRAF4 1.19 0.00004 BIRC2 1.08 0.00007 PDGFA 0.80 0.004

NFKB2 0.83 0.0001 TNFRSF5 0.80 0.00005 ERCC6 1.13 0.0001 MSF 1.12 0.004

Table 6-8: The top 10 most differentially expressed genes between wild-type tumours, tumours with BRAF mutations and NRAS

mutations.

The top ten most differentially expressed genes are listed for each comparison. Significance values are from linear regression analyses

adjusting for study from which patients were recruited to. Genes highlighted in bold appear on more than one list. Cells highlighted in green

shading contain genes which are part of the mitogen-activated protein kinase (MAPK) or phosphatidylinositol-3-kinase (PI3K) signalling

pathway.
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cDNA has been previously used for mutation screening in frozen tumour samples to

allow detection of small numbers of mutant BRAF and NRAS alleles in heterogeneous

tissues where both wild-type and mutant genes are present [603, 604]. The methods

used cDNA amplified using PCR primers designed to introduce new site-directed

restriction sites into the PCR amplicon when a mutation is present. Restriction

enzymes then cut the cDNA and fragments are identified [603, 604]. These analyses

identified mutations at a comparable frequency to other methods, with no double

mutations identified [603, 604]. This technique has been used to screen for mutations

in DNA extracted from small numbers of FFPE melanoma specimens, but not cDNA

synthesised from mRNA extracted from FFPE materials [604]. A similar method which

utilises a series of PCR amplifications and the presence of a restriction site to

preferentially digest wild-type BRAF sequences in cDNA has been used for mutation

detection in circulating tumour cells from peripheral blood, frozen and FFPE tumour

specimens [605, 606]. Seventy melanoma tumour biopsies from frozen and FFPE

tissue have been assessed previously with varying degrees of V600E BRAF mutation

positivity identified. The authors report that this method using mRNA as template in

association with PCR amplification, increases sensitivity compared to DNA based

assays, especially in melanoma cells with high levels of V600E BRAF mRNA

expression, however NRAS mutation status was not determined in this study to allow

further comparison with our results [605].

cDNA synthesized from mRNA reflects the transcribed genes within the cell. RNA

extracted from FFPE materials is degraded, leading to short cDNA sequences. This, in

combination with the PCR amplification step used in pyrosequencing, has the potential

to introduce errors, which may be detected as mutations in the highly sensitive

pyrosequencing assay. The other possibility is that there is increased expression of

BRAF transcripts in melanoma cells harbouring BRAF mutations. If these mutations

are present in a small proportion of cells, this may not be detected using DNA based

analysis, however if expression is increased in mutant cells, mutant transcripts may be

detected in cDNA. There is evidence that there is copy number gain in association with

BRAF activating mutations in short-term melanoma cultures, established cell lines and

tumour samples with both gain across the entirety of chromosome 7 and in the specific

7q34 region which harbours the BRAF locus [44, 356, 607-611]. There also appears to

be preferential amplification of mutant BRAF alleles [356, 609, 612]. As

pyrosequencing is quantitative, the higher levels of mutation detected in cDNA samples

may reflect greater transcription of mutant alleles, with detection of both NRAS and

BRAF mutations in cDNA from a single tumour resulting from tumour heterogeneity. A

number of factors argue against this hypothesis: low level BRAF mutations identified
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using pyrosequencing in cDNA were not detected using the SNaPshot system,

although this method is less sensitive that pyrosequencing [360]; we did not see

differential expression of BRAF transcripts in BRAF mutated tumours compared with

NRAS mutated or wild-type tumours and in NRAS mutated tumours with high levels of

mutation detected in DNA and over-expression of NRAS (discussed in section 6.4.3),

results from cDNA and DNA were more comparable. Therefore, it is likely that poor

quality cDNA used in a highly sensitive assay has produced erroneous results.

6.4.2 Associations between mutation status and clinico-

pathological features and survival

In this study, 50.5% of tumours had a BRAF mutation and 27.2% had an NRAS

mutation. These frequencies are higher than those quoted in a recent meta-analysis of

studies using various mutation detection methods (BRAF 41% and NRAS 18%) [31],

but are comparable to studies that have used more sensitive pyrosequencing for

mutation detection (BRAF 53%, NRAS 29%) [436] (NRAS 32%) [353].

This study has identified associations between mutation status and a number of clinico-

pathological features, the majority of which have been previously described in the

literature [30, 31, 549, 587, 588]. BRAF mutations were found more frequently in

tumours of the superficial spreading subtype, with NRAS mutations more commonly in

nodular tumours. Truncal tumours, on intermittently sun-exposed skin, were most likely

to have a BRAF mutation, with NRAS mutations found more commonly on head and

neck tumours or tumours of the limbs of chronically sun-exposed skin. These data are

consistent with other studies and Whiteman’s two route theory of carcinogenesis where

intermittent excessive sun exposure is postulated to be associated with melanoma risk

on the trunk in individuals with a tendency to develop naevi [152]. Tumours on sun-

protected sites were less likely to harbour a BRAF or NRAS mutation, although

mutations were identified in four acral tumours. In this study, BRAF mutations were

more likely to be found in patients who were younger at diagnosis, with NRAS

mutations in older patients.

I did not find any associations between tumour Breslow thickness, mitotic rate or

ulceration and mutation status as has been described in other studies [549, 583, 589]. I

report some evidence that patients with a positive SNB were more likely to have a

BRAF mutated primary tumour. A recent study found that patients with a NRAS or

BRAF mutated tumour were more likely to present with stage III disease, the

association being strongest for palpable nodal disease [583]. My study indicates there

may also be an association between presence of a BRAF mutation and



- 208 -

micrometastases identified using sentinel node biopsy, although a smaller proportion of

patients with BRAF positive tumours appeared to have elected not to have a SNB

(26% compared with 37% for patients with wild-type tumours and 39% for patients with

NRAS mutated tumours) so these data are difficult to interpret.

There appeared to be differences in the clinical characteristics of patients with V600K

BRAF positive tumours. Albeit, in a small sample, I found that V600K mutations are

more commonly found in primary tumours from patients diagnosed at a later age

(median 60.7 years versus 50.5 years with V600E mutations, p=0.005) and in male

patients (77.8% tumours with V600K mutation were in male patients). As discussed in

the background to this chapter, the association between age at diagnosis of metastatic

disease and mutation status has been previously identified in a study of metastatic

melanoma [593]. This study also found an association between V600K mutations and

sun-induced damage, as determined by degree of solar elastosis, and V600K tumours

were more commonly found in tumours on the head or neck, a sun-exposed site, with

V600E tumours more commonly on the limbs [593]. In the current study, a higher

proportion of V600K mutations were found in tumours on the trunk with V600E

mutations more commonly on the limbs. This was a non-significant finding and I was

unable to investigate the association between sun-damage and presence of V600K

mutation based on the data available currently (pending central pathology review). The

relationship between sun exposure and development of V600E mutations is not clear,

however the evidence presented by Menzies and colleagues suggests that chronic sun

exposure may be related to the pathogenesis of V600K mutations [593]. This is further

supported by the higher incidence of V600K mutations in geographical locations with

higher UV exposure [436, 550, 593]. Again, the V600K mutation is not characteristic of

UVB DNA damage [541, 543], however there are suggestions that UVA and UVB

radiation may cause mutations at the BRAF V600 site [544, 545]. Menzies and

colleagues suggested that a number of factors are likely to contribute to V600K

mutations, including sun-exposure on the background of genetic alterations related to

the age of the patient [593]. Also, V600E mutations are predominantly found in young

patients, suggesting that these mutations may be more likely have a specific aetiology,

whether that is environmental or genetic, compared to V600K mutations [593]. My

findings that V600K mutations are commoner in primary melanoma in older patients

supports the hypothesis that chronic sun exposure may be important, however I found

no further evidence to support this in my data. Menzies and colleagues did not report a

difference in prevalence of V600K mutations in males and females [593]. My study

suggests that V600K mutated tumours are commoner in male patients, however this

requires confirmation in a larger sample set. This may be related to the higher
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proportion of truncal tumours with V600K mutations in this dataset, with tumours on the

trunk more commonly diagnosed in men [3]. However, the presence of these mutations

may be contributing to the poor prognosis in male patients [85, 91, 613], which despite

intensive investigation is thought to be due to biological differences between men and

women, remains largely unexplained [144].

With regards to survival, consistent with previous reports, this study found no

association between presence of a BRAF or NRAS mutation and RFS, OS or MSS

[436, 555, 576, 583, 588, 590, 591]. However, there was a significant reduction in RFS

for patients with a V600K positive tumour (HR 2.64 (95% CI 1.20-5.80), p=0.02), which

remains significantly associated in multivariable analysis adjusted for prognostic factors

in melanoma (HR 2.58 (95% CI 1.03-6.48), p=0.04). In metastatic melanoma, presence

of a V600K mutation has been associated with shorter distant metastasis-free survival

time and OS [593, 594]. My study is the first to assess this relationship in primary

melanoma specimens, and therefore the identification of an independent association

with RFS is clearly a significant finding. Differences in patient characteristics and RFS

in patients with V600K mutated primary tumours supports the hypothesis that there

may be different aetiology and biological behaviour of V600K mutated tumours

compared with commoner V600E mutated tumours [593].

6.4.3 Gene expression patterns associated with mutation status

As discussed in the introduction to this chapter, identification of expression signatures

in tumours associated with NRAS mutations has been particularly limited with more

focus on the identification of signatures associated with BRAF mutated tumours [508,

591, 596-599]. The strength of this study is that we have been able to look at

expression profiles in a large number of primary melanoma samples with differing

mutations.

My study has shown that a number of genes are over-expressed in tumours with either

a BRAF or NRAS mutation compared with wild-type tumours. Differentially expressed

genes are ets variant 1 (ETV1), TYRO3 protein tyrosine kinase (TYRO3), v-erb-b2

erythroblastic leukaemia viral oncogene homolog 3 (ERBB3 or HER3), cyclin-

dependent kinase 6 (CDK6) and protein tyrosine phosphatase, receptor type G

(PTPRG). As discussed in previous chapters, in order to confirm these results,

validation of gene expression results is required within this sample set and in an

independent validation study. However, a number of the genes are biologically

interesting and I shall discuss them in further detail.
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ETV1 and TYRO3 are the most differentially expressed genes in BRAF and NRAS

mutated tumours, respectively. ETV1 is an ETS transcription factor and has been

recently identified as an oncogene in melanoma [614]. ETV1 is situated on 7p21 and is

frequently amplified in primary and metastatic tumours [614]. In immortalized

melanocytes and mouse models, over-expression of ETV1 in combination with over-

expression of NRASG12D or BRAFV600E oncoproteins stimulated cell growth and

tumourigenesis, an effect which was not seen when ETV1, NRASG12D or BRAFV600E

were over-expressed alone [614, 615]. Therefore, on the background of MAPK

pathway activation by BRAF or NRAS mutations, ETV1 over-expression can transform

immortalized melanocytes [614]. The authors of the study also found that over-

expression of ETV1 in melanocytes over-expressing NRASG12D increased expression of

the microphthalmia-associated transcription factor gene (MITF) and MITF protein and

this increased level of MITF was required for cell growth [614]. MITF is a transcription

factor required for melanocyte development which activates multiple downstream

factors important for normal melanocyte physiology and survival, cell cycle regulation,

and cellular growth [616]. Germline MITF mutations have been associated with

melanoma development [617, 618] and MITF is amplified in around 20% of

melanomas, where it can act as an oncogene [615]. MITF can also contribute to

melanoma progression when not highly expressed by having tumour promoting

actions, stimulating cell cycle progression but also inhibitory actions, by pushing the

cell towards terminal differentiation or apoptosis, depending on protein levels within the

cell [619, 620]. Multiple signalling pathways regulate MITF expression, for example the

MAPK pathway, melanocyte-stimulating hormone acting via the melanocortin 1

receptor (MC1R) and KIT [616, 621]. Ectopic MITF expression in melanocytes

expressing BRAFV600E causes transformation [615], however in melanoma cells MITF

expression is carefully controlled by mutated BRAF to allow survival and proliferation,

as low MITF levels lead to apoptosis and high levels to terminal differentiation [622].

Previous studies suggest that ETS factors are activated by MAPK pathway mediated

phosphorylation [623] and ETV1 is a target of ERK signalling via MAPK activation

[556]. Inhibition of MEK, which is downstream of NRAS and BRAF or inhibition of

mutant BRAF, in V600E-mutated melanoma cell lines leads to down-regulation of gene

expression in members of the ETS family, including ETV1 [556, 563]. In cells where the

MAPK pathway is driven by receptor tyrosine kinases without mutant BRAF, MEK

inhibition does not cause altered gene expression [556]. These observations suggest

that over-expression of ETV1 enhances an oncogenic signal which functions, and is

also enhanced, by MAPK activation [614]. It also appears that MITF activation

participates in this pathway [614]. I have identified significant over-expression of ETV1

in NRAS or BRAF mutated tumours compared with wild-type tumours which supports



- 211 -

the hypothesis that mutated tumours drive expression of ETV1 which enhances the

oncogenic effect of NRAS or BRAF mutations. MITF was not present on the Human

Cancer panel used for gene expression profiling, so this association could not be

assessed in my sample set. This study would suggest that ETV1 is a strong driving

force for oncogenesis in mutated tumours, indicating that this may be a candidate for

therapeutic targeting.

TYRO3 was significantly over-expressed in BRAF and NRAS mutated tumours

compared with wild-type tumours. TYRO3 is a member of the TAM (TYRO3, AXL and

MER) receptor tyrosine kinase family which have been shown to have effects on

cellular migration and invasion, angiogenesis, cell survival and tumour growth in cancer

[624]. In melanoma cell lines, TYRO3 has been shown to be a positive regulator of the

MITF-M isoform [625] and is over-expressed in primary tumour samples compared to

normal tissues [625]. Over-expression of TYRO3 in primary melanocytes overcomes

BRAFV600E induced senescence and knockdown in melanoma cells inhibits proliferation

in vitro and reduces tumorigenic potential in mice [625]. Therefore, my study has

identified another gene which is differentially expressed in NRAS and BRAF mutated

tumours which has been shown to have a role in oncogenesis of BRAF mutated

tumours and is also a regulator of MITF expression. Direct therapeutic targeting of

MITF or ETV1 may be difficult as they are transcription factors and difficult to target

using small molecules [626], however TYRO3 may represent a molecule more

amenable to targeted therapies [616, 625].

ERBB3 is a transmembrane receptor which binds to molecules, such as transforming

growth factor- and epidermal growth factors leading to intracellular signalling causing

cellular proliferation, organ development and repair [627, 628]. It lacks innate kinase

function, but can dimerise with other ERBB receptors and is important in activation of

the MAPK pathway [628, 629] and the PI3K-Akt pathway [627]. In melanoma, ERBB3

signalling can inhibit expression of differentiation genes and increase expression of

proliferation genes in melanocytes and melanoma cells, leading to proliferation and

invasion [630]. I did not identify any differential expression of other members of the

ERBB family, specifically ERBB2, which is the usual binding partner for ERBB3 [627,

629]. As dimerisation of receptors is required for action this is perhaps surprising,

however over-expression of ERBB3 in mutated tumours, which is closely related to

activation of MAPK and PI3K-Akt signalling is clearly of interest.

When our results are compared against other gene expression profiles identified in

previous gene expression studies, it is reassuring to see that there is overlap between

genes identified. I have confirmed the finding of Johansson and colleagues in tumour

samples, that ERBB3 was over-expressed in BRAF mutated cell lines versus wild-type
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cell lines [599]. ETV1 was found to be highly differentially expressed in BRAF mutated

tumours in the EORTC study using frozen primary melanoma tumours. This has been

confirmed in this dataset and I have also found that ETV1 is differentially expressed in

NRAS mutated tumours [591].

There is significant overlap between genes differentially expressed in BRAF and NRAS

mutated tumours compared to wild-type tumours which is not unexpected, indicating

that similar genes are dysregulated in cells harbouring a NRAS or a BRAF mutation.

Studies identifying gene expression profiles in tumour tissue have been performed in

small numbers of samples, with some studies showing overlap in gene expression

profiles [508] and others no concordance in gene expression between NRAS and

BRAF mutated tumours [591]. My study represents the largest study to date using

primary melanoma tumours and indicates significant overlap in cancer-related genes

differentially expressed in NRAS or BRAF mutated tumours compared to wild-type

tumours. I have then gone on to compare gene expression between NRAS and BRAF

mutated tumours, the results of which I will discuss now.

As this comparison in gene expression in NRAS mutated tumours with wild-type and

BRAF mutated tumours has been limited to small numbers of tumour and cell lines, the

results I present here are novel and will require extensive validation. One of the most

interesting findings is that NRAS expression was significantly greater in NRAS mutated

tumours compared with BRAF mutated tumours. NRAS is also highly expressed in

NRAS mutated tumours when compared with wild-type tumours. NRAS mutations in

melanoma are activating and these results indicate that expression is also increased.

Changes in gene expression can be due to mutation, alteration in genomic

organisation such a translocations, changes in DNA copy number or epigenetic

alterations [631]. In common with BRAF mutations there is evidence of copy number

gain at the NRAS locus associated with activating mutations in short-term melanoma

cultures, but this is less well documented than in BRAF mutated tumours [607, 608,

610]. Therefore mutation in combination with copy number alteration may cause

altered expression in NRAS mutated tumours. The pyrosequencing assay used for

mutation screening in my study was quantitative with mutation levels in NRAS mutated

tumours being greater than 50% in over half of the tumours. These results indicate an

abundance of the mutated gene in these tumours, which could be due to a number of

mechanisms such as homozygosity, preferential copy gain of the chromosome with the

mutant gene or because of amplification of the mutant allele [609]. This hypothesis

makes many assumptions about the accuracy of mutation levels detected using

pyrosequencing and DASL gene expression results making it highly speculative;
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further intensive investigation is needed to clarify the number of NRAS alleles in the

samples and the expression levels.

PTEN was also over-expressed in NRAS mutated tumours compared with BRAF

mutated tumours. PTEN is inhibitory to the PI3K pathway and resides in a commonly

deleted area in melanoma on chromosome 10q [151]. PTEN is inactivated by mutation

in approximately 10% of melanoma tumours [21, 632, 633]. NRAS and PTEN

mutations rarely occur in the same tumour, but PTEN mutations are commonly found

associated with BRAF mutations as are lower PTEN copy numbers [43, 44, 151].

Therefore, the over-expression of PTEN in NRAS mutated tumours may reflect normal

levels when compared to lower levels of PTEN that may be found in BRAF mutated

tumours. We have not assessed the copy number or mutation status of PTEN in these

tumours, but this knowledge would help confirm or refute this hypothesis. It is also

likely that PTEN expression would be elevated in an NRAS mutated tumour in an

attempt to reduce signalling via the PI3K pathway.

The final comparison I have made is between gene expression in V600K BRAF

mutated tumours versus V600E tumours. As the numbers involved in this analysis are

small, there is limited power to detect differential gene expression but I will briefly

discuss some observations. Once a correction had been made for multiple testing, only

two genes were differentially expressed, TFAP2C was significantly under-expressed in

V600K tumours and BRAF significantly over-expressed. Both V600K and V600E

mutations cause high BRAF kinase activity, but this is greater in association with the

V600E mutation [554]. In view of the differences in the prognostic influence of these

mutation types, age-distribution and association with sun-damaged skin, there appear

to be biological differences in tumours with these differing mutations [593]. The

similarity in gene expression profile may suggest otherwise, but this analysis is limited

by the small numbers of tumours with V600K mutations. In a previous study which

assessed gene expression profiles in melanoma cell lines with a V600E mutation

following inhibition with BRAFV600E or MEK inhibitors, TFAP2C was down-regulated

after treatment indicating that this is a direct transcriptional target of the activated

pathway [563]. TFAP2C encodes AP2γ, which is a member of the activating protein 

family 2 (AP2) family of transcription factors. Loss of AP2 transcription factors,

specifically AP2 is associated with transition from radial growth phase melanomas to

vertical growth phase, with re-expression in highly metastatic melanoma cells leading

to tumour growth inhibition and reduction in metastatic potential [634-637]. TFAP2C is

the only AP2 factor on the Human Cancer Panel, so we could not assess expression in

other AP2 factors. BRAF expression was also greater in V600K mutated tumours,

suggesting that the level of pathway activation would be greater than in V600E mutated
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tumours. As TFAP2C is a direct transcriptional target of the activated pathway [563],

levels of TFAP2C would be expected to be greater if activation of the pathway was

increased by higher BRAF levels. This suggests that over-expressed BRAF in V600K

cells may not act to increase signalling through the pathway or that the relationship

between signalling and TFAP2C expression may be more complicated than previously

thought. In view of the relationship between AP2 loss and progression in melanoma

tumours, under-expression of TFAP2C in V600K mutated tumours compared with

V600E may contribute to the biological properties of the V600K mutated tumour.

I have already alluded to some of the limitations of this work, such as poor power to

assess relationships between tumour features, patient characteristics, gene expression

profiles and the rarer V600K BRAF mutation. Gene expression data in this study was

also limited to 502 cancer-related genes; assessment of gene expression on a

genome-wide scale would yield further biological information, and with successful trial

runs using the WG-DASL HT assay (described in Chapter 2) the hope is that this will

be possible using FFPE melanoma tissue in the near future. A final limitation is related

to the issue of tumour heterogeneity as tumours can contain a population of wild-type

and mutant cells [357, 579, 584, 585]. Separate tissue cores, usually taken in close

proximity to each other, from the same tumour were used to generate gene expression

data and screen for mutations in a proportion of samples. Therefore it is possible that

gene expression may be related to a wild-type part of the tumour which was found to

be BRAF mutated in a separate tissue core. To reduce these errors, ideally RNA and

DNA would be extracted from the same tissue core, extraction kits allowing extraction

of both nucleic acids from a single FFPE specimen have recently been developed and

will be used for future work of this type (as discussed in Chapter 2).

6.4.4 Summary and conclusions

This work has shown that cDNA is not suitable for mutation screening.

Results using DNA samples confirmed the associations between mutation status and

clinico-pathological features previously identified in the literature and identified an

independent association between the presence of V600K BRAF mutations in primary

tumours and shorter RFS.

A large number of genes were found to be differentially expressed in BRAF and NRAS

mutated tumours compared to wild-type tumours, some of which have been identified

in previous gene expression studies, with overlap between the two lists suggesting

similar biological processes are active in the tumours with BRAF or NRAS mutations.
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The two most differentially expressed (ETV1 and TYRO3) both have roles in

oncogenesis in association with MAPK pathway activation in and MITF expression.

Presence of an NRAS mutation was associated with significantly greater NRAS and

PTEN expression, a finding that requires validation. There were also small differences

in the gene expression profile of V600K and V600E mutated tumours. This analysis

has been performed in small numbers of tumours requiring extensive further

investigation, but there is a suggestion of higher BRAF expression in V600K tumours

with lower expression of a direct transcriptional target of the MAPK pathway, TFAP2C.

This, in association with differing clinical features and modified prognosis in patients

with a V600K mutated tumour supports the suggestion that these tumours may be

aetiologically and biologically distinct from V600E mutated tumours [593]. If this

hypothesis is proven, this may have relevance to use of BRAFi.
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7 Primary melanoma tumour ulceration: relationship with

gene expression profiles, tumour features and patient

characteristics

7.1 Aims

The aims of this chapter are to:

 Identify tumour histological features and patient characteristics associated with

primary melanoma ulceration in a large patient cohort.

 To identify whether lymphovascular invasion, microvessel density or

macrophage infiltration assessed using immunohistochemistry (IHC) are

associated with ulceration in a subset of tumours.

 To identify tumour gene expression profiles associated with ulceration.

Results of these analyses will be related to both the prognostic and predictive influence

of tumour ulceration status in melanoma.

7.2 Background

Ulceration of a primary melanoma is defined as absence of intact epidermis, including

stratum corneum and basement membrane [94]. Traumatic loss of epidermis can

occur, but this can be distinguished because of a number of additional features which

can be seen in spontaneous cases of ulceration, namely thinning, reactive hyperplasia

or effacement of surrounding epidermis and evidence of a host response, such as

neutrophil infiltration [94, 638]. As discussed in Chapter 1, ulceration of a primary

melanoma tumour is a poor prognostic factor and is integral to the American Joint

Committee on Cancer (AJCC) staging guidelines [58]. The prognostic influence of

ulceration is apparent even in stage III disease, highlighting its strong influence on

patient outcome [58, 59].

More recently, somewhat paradoxically, primary tumour ulceration has been associated

with improved benefit in terms of longer relapse-free survival (RFS), distant metastasis-

free survival (DMFS) and overall survival (OS) following treatment with adjuvant

interferon- (IFN) [204, 231, 639]. The meta-analysis of interferon trials demonstrates

that IFN does provide benefit in terms of RFS, with less clear benefit in terms of OS
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[203, 204]. When individual patient data from IFN randomised controlled trials, not

including the European Organisation for Research and Treatment of Cancer (EORTC)

18991 trial of pegylated IFN, are analysed separately for patients with ulcerated

tumours and non-ulcerated tumours in meta-analysis the positive effect on RFS and

OS is lost for patients with non-ulcerated tumours but is greater for those with ulcerated

tumours (RFS, odds ratio (OR) 0.76; OS, OR 0.77) with evidence of interaction

between IFN effect and ulceration status (p=0.03) [204]. A further meta-analysis of the

two largest IFN adjuvant trials, EORTC 18952 and 18991, showed similar results with

evidence of interaction between IFN therapy and ulceration status for RFS (p=0.02),

DMFS (p<0.001) and OS (p<0.001) [231]. In this study, greatest survival benefit was

seen in patients with ulcerated tumours and stage IIb or III disease with microscopic

nodal metastases [231]. The overall HR for OS in ulcerated patients was 0.77 [204,

231, 638]. Therefore, ulceration is a poor prognostic factor, but appears to be a

beneficial predictive factor for IFN therapy. To assess efficacy of IFN therapy in

patients with ulcerated tumours, a randomized phase III trial is planned in patients with

stage II ulcerated primaries (EORTC 18081) [638]. As discussed in the introduction,

there are currently no other confirmed predictive biomarkers for IFN therapy, therefore

the association between ulceration and IFN benefit is unique and warrants further

investigation to unravel the association [638].

Despite the profound prognostic influence of ulceration, very little is known about how

or why a tumour ulcerates and the biological explanation for its impact on prognosis

[155, 640]. Ulceration may be a feature that represents some characteristic of the

tumour such as greater proliferative activity or superior metastatic capacity [155, 640].

Other hypotheses are that ulceration is associated with adverse host/tumour interaction

which might be determined by innate characteristics of the host or tumour [155, 640]. I

will explore the evidence for these hypotheses below.

Ulceration may simply result from increased proliferative activity which erodes the

epidermis during tumour expansion and makes the tumour more likely to metastasise.

However mitotic rate and ulceration are independently associated with prognosis in

stage I/II melanoma, suggesting that a distinct biological process, in addition to cell

proliferation, is occurring in ulcerated tumours, which contributes to poorer prognosis

[58, 96, 98, 155, 640, 641].

The presence of ulceration may indicate differences in the way that tumour cells modify

the local tumour environment, thereby contributing to spread of the tumour [155, 640,

642]. Once melanoma cells pass across the epidermal-dermal junction in skin, their

ability to metastasise is greatly increased [643]. Normal melanocytes are linked by cell-

cell adhesion molecules, such as E-cadherin and desmoglein, and gap junctions to
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keratinocytes in the epidermis which control melanocyte cell growth and dendricity via

paracrine growth factors, intracellular and intercellular mechanisms [53, 643-646].

When uncoupled from keratinocytes and their control mechanisms, melanoma cells

communicate with each other and fibroblasts via N-cadherin, cell adhesion molecules

from the immunoglobulin gene superfamily, integrins and connexins [53, 642].

Melanoma cells thus down-regulate receptors which mediate interaction with

keratinocytes, such as E-cadherin and desmoglein, and up-regulate molecules that

mediate melanoma cell communication or interactions between melanoma cells and

fibroblasts, such as N-cadherin [53, 644]. Deranged expression of integrins which bind

to extracellular matrix can also contribute to loss of keratinocyte communication by

allowing separation from the basement membrane [53]. Lack of intact epidermis in

ulcerated tumours may represent a mechanism by which a tumour directly modifies the

microenvironment to further evade keratinocyte control [642]. In addition, there is

evidence that deranged expression of proteins which influence tumour and extracellular

matrix interaction are associated with tumour progression such as osteopontin (as

discussed in Chapter 3) and CCN3 (nephroblastoma overexpressed or NOV) [640,

647]. Invasion of melanoma tumours with deranged expression of matrix proteins is

likely to be enhanced by the lack of keratinocyte control within an ulcerated tumour

[642], however there is little evidence currently to support this theory.

It has been hypothesised that the presence of tumour ulceration may modify immune

responses, as suggested in a study of 537 sentinel lymph nodes containing micro-

metastatic deposits of tumour [648]. Nodes were stained for mature dendritic cells

(DCs); lower DC densities were found in nodes in association with an ulcerated primary

tumour [648]. DCs are vital for antigen presentation to T-cells thereby initiating specific

adaptive immune responses, and immature plasmacytoid DCs are the largest

producers of type I interferons, such as IFN [212, 649]. Therefore, it was suggested

that ulceration might be associated with a defect in stimulation of adaptive immunity,

which is likely to contribute to its prognostic and perhaps predictive influence [155,

640]. Whether the biology of an ulcerated tumour causes less mature DCs in sentinel

nodes or whether host factors modify this response requires investigation [155, 640]. A

further observation related to immune responses is provided by gene expression

profiling of primary melanoma tumours from 58 patients [178]. A very different gene

expression pattern was found in ulcerated tumours versus non-ulcerated tumours, and

the authors specifically highlighted that the gene encoding the pro-inflammatory

cytokine interleukin-6 (IL6) was differentially expressed [178]. The relationship between

inflammation and cancer development and metastasis is known to be important [650,

651]. These data suggest that ulceration may contribute to this inflammatory process in
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primary melanoma tumours. In addition, higher serum levels of pro-inflammatory

cytokines, such as IL6, IL1 and IL1, detected prior to IFN treatment have been

associated with longer RFS following therapy [652], with higher serum levels of IL6

being associated with poorer prognosis in advanced disease [653-655]. The prognostic

and predictive influence of serum IL6 levels requires confirmation; however levels of

this cytokine appear to have very similar prognostic and predictive associations to

tumour ulceration.

A number of poor prognostic primary tumour histological features have been

associated with ulceration. Greater Breslow thickness was associated with higher

incidence of ulceration in the large study of 17,600 patients used to validate the 6th

edition of AJCC staging [91], and from the same database, higher mitotic rate,

recorded for 13,296 patients, was also associated with ulceration status [98]. Kashani-

Sabet and colleagues studied 417 primary tumours and found increased tumour

vascularity in ulcerated tumours [111]. Recently, lymphovascular invasion has also

been associated with ulceration in a study of 2183 patients, 171 of whom had evidence

of tumour lymphovascular invasion [656]. These studies have used routine

haematoxylin and eosin (H+E) staining to assess lymphovascular invasion and

vascular density; however use of specific antibodies for vessels increases detection

rates versus H+E slides alone [110, 382-384]. Studies using immunohistochemical

staining of D2-40 or LYVE-1, for lymphatic vessels, and CD34, to assess all vessels, in

primary melanoma tumours have also found that lymphovascular invasion and

lymphatic density is associated with ulceration [110, 657]. The association between

lymphovascular invasion and ulceration suggests that there may be common biological

processes, perhaps related to tissue hypoxia and host/tumour interaction, causing both

ulceration and vascular invasion [110]. What is unclear is whether vascular invasion or

ulceration contributes most to tumour invasion [110]. As discussed previously,

ulceration remains prognostic in stage III disease, therefore it is unsurprising that in a

study of 1526 patients primary tumour ulceration is independently associated with

positive sentinel node biopsy in multivariate analyses with primary tumour histology

[658]. In summary, ulceration is associated with poor prognostic features in the primary

tumour and tumour deposits in sentinel lymph nodes.

In order to gain some further insight into the biological processes within ulcerated

tumours and how this relates to prognosis and IFN action, this chapter presents results

of analyses designed to identify primary tumour and patient characteristics associated

with tumour ulceration in a large cohort of patients. Gene expression data were

generated for 502 cancer-related genes from a subset of the primary tumours, allowing

identification of genes differentially expressed in ulcerated tumours. Furthermore,
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immunohistochemical staining was performed at the University of Nottingham on a

further subset of tumours to identify blood and lymphatic vascular invasion (D2-40 and

CD34), vessel density and presence of tumour-associated macrophages (CD68), to

allow examination of associations between these factors and ulceration [113]. Analysis

of patient information, tumour histology, immunohistochemical staining and tumour

gene expression data has allowed an extensive and integrated investigation of factors

associated with ulceration. It has allowed identification of factors independently

associated with ulceration in multivariate analyses and has revealed insight into

biological processes within ulcerated tumours that are directly related to the influence

of ulceration on prognosis and treatment response.

7.3 Methods

7.3.1 Patients and primary melanoma samples

Samples and data from patients recruited to the Leeds Melanoma Cohort Study

(Cohort study) and Retrospective Sentinel Node Biopsy Study (SNB study) were used

for this work. These studies are described in further detail in Chapter 2. Histology data

for the majority of cases were derived from histology reports. For a subset of tumours

diagnostic H+E slides were reviewed by Dr Andy Boon (Cohort study) or Professor

Martin Cook (SNB study), described in further detail in Chapter 2, to standardize

reporting across the specimens. Gene expression data were derived from formalin-

fixed paraffin-embedded (FFPE) primary melanoma tumours from a subset of patients

recruited to each of the two studies.

From the SNB study, H+E slides from FFPE primary tumours blocks were reviewed by

Dr Angana Mitra to assess whether they would be suitable for IHC staining, based

upon the need to sample representative areas of the tumour without excessive damage

to the clinical block. Where two tumour blocks were available with similar tumour

features from the same patient, one block was used for tumour sampling for gene

expression analysis as described in Chapter 2 and the other was used for IHC. If only

one block was available, the block was cored first for gene expression analysis and

then sections were taken for IHC staining. Some blocks were not sampled because of

size. Tumour blocks containing only punch or curettage specimens were not used for

IHC staining as these specimens were not representative of the larger tumour. From

the selected specimens, four consecutive 4μm sections were cut from each tumour 

block by Filomena Esteves, using a microtome. This process is summarised in Figure
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contiguous tumour.

Figure 7-1: Assessment of tumour samples for tissue sampling for gene

expression and immunohistochemical studies.

The process is described in further detail in the text.

haematoxylin and eosin; IHC, immunohistochemistry.

7.3.2 Immunohistochemistry (I

IHC staining and measurement of vessels and macrophages was performed by Sarah

Storr and Sabreena Safuan at University of Nottingham by a Academic Oncology

research group who perform studies primarily addressed to understanding the role of

tumour vasculature in breast cancer progression. Sections were stained with D2

CD34, and a CD68 antibodies and microvessel density, macrophage count, lymphatic

density and vascular invasion were assessed using methods described in Chapter 2.
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. Adjacent sections were carefully retained so that the IHC staining was of

sessment of tumour samples for tissue sampling for gene

expression and immunohistochemical studies.

The process is described in further detail in the text. Abbreviations used: H+E,

haematoxylin and eosin; IHC, immunohistochemistry.

Immunohistochemistry (IHC) methods

IHC staining and measurement of vessels and macrophages was performed by Sarah

Storr and Sabreena Safuan at University of Nottingham by a Academic Oncology

research group who perform studies primarily addressed to understanding the role of

tumour vasculature in breast cancer progression. Sections were stained with D2

CD34, and a CD68 antibodies and microvessel density, macrophage count, lymphatic

density and vascular invasion were assessed using methods described in Chapter 2.
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density and vascular invasion were assessed using methods described in Chapter 2.

associated macrophages because of

Adequate tissue
for sectioning

1 tissue block
only

Tissue core for
gene

expression first

4 sections for
IHC



- 222 -

7.3.3 Gene expression data

Gene expression data were generated for 502 cancer-related genes using the Human

Cancer panel and the cDNA-mediated, annealing, selection, extension and ligation

(DASL) assay as described in Chapter 2. The samples selected for gene expression

analysis are described in Chapter 3 and processing of gene expression data to

generate a merged dataset from the two studies is described in detail in Chapter 4.

7.3.4 Statistical analysis

To identify associations with ulceration status and histological (including IHC) or patient

factors, Pearson’s Chi-squared (χ2) tests or Fisher’s exact tests (where the frequency

of observations in a subgroup was less than 5) were performed for categorical

variables and Mann-Whitney U tests for continuous variables. For the subset of

samples with H+E sections centrally reviewed by expert pathologists, analyses were

repeated to confirm results found in the larger datasets. For IHC data, vessel density

and macrophage counts were categorised into high and low groups around the median

value. To identify factors independently associated with ulceration status, multiple

logistic regression was performed using factors significantly associated with ulceration

in univariate analysis. For these analyses, Breslow thickness and mitotic rate were

analysed as categorical variables based on AJCC staging criteria, and results of a test

for trend across the groups is presented. For Breslow thickness, categories were

≤1mm, >1 to ≤2mm, >2 to ≤4mm and >4mm. For mitotic rate, categories were <1 

mitosis/mm2, 1-6 mitoses/mm2 and >6 mitoses/mm2. To maximise the number of

observations assessed in each analysis, multiple logistic regression was performed

separately for clinico-pathological data and IHC data provided by the University of

Nottingham. The significance level for these analyses was set at 0.05.

Gene expression analysis was performed using the dataset generated as described in

Chapter 4. Differential gene expression analysis was performed using log-transformed

(log2) data. As some of the raw gene expression levels were negative values, 1000 was

added to all values prior to log-transformation. Associations between gene expression

and ulceration status were identified using linear regression adjusting for the study type

to which the patient was recruited. Fold changes in mean gene expression between

ulcerated and non-ulcerated tumours were calculated using data that had not been log-

transformed. A Bonferroni correction was used to adjust for multiple testing as

described in Chapter 4, with significance level being set at 0.0001. All statistical

analyses were undertaken using Stata version 10 (StataCorp 2007, College Station,

TX).
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7.3.5 Pathway analysis

Pathway analysis of gene expression data was performed using DAVID (the database

for annotation, visualisation and integrated discovery) [368] to identify overrepresented

pathways in the list of differentially expressed genes [369, 371, 372]. Further detail of

algorithms used by DAVID software are described in Chapter 2. For this analysis, the

502-gene Human Cancer panel of genes was inputted as the background population of

genes for comparison with the list of genes differentially expressed in ulcerated

tumours. From the 502-gene background list, 479 genes were recognised by DAVID. A

list of 109 differentially expressed genes (significance values <0.05) were inputted into

DAVID, with 103 genes being recognised by the software for analysis. Enrichment

analysis was performed to identify KEGG (Kyoto Encylopedia of Genes and Genomes)

[469, 470] pathways enriched in the gene list.

7.4 Results

7.4.1 Patients and tumour samples

A total of 1804 patients recruited to the Cohort study and SNB study had the ulceration

status of primary tumour recorded, and these data were used for analysis of clinico-

pathological features associated with ulceration status. Of these patients, 368 (20%)

had centrally reviewed primary tumour histopathological data. Gene expression data

was available for 348 primary tumours from this patient group, 339 (97%) of which had

had central pathology review.

Out of the 218 tumour blocks received for the SNB study, 202 were suitable for

sectioning for IHC staining. Of these 130 (64%) tumour blocks had also been cored for

use in gene expression work described in Chapters 3 and 4. Of the 202 tumours

stained, lymphovascular and macrophage measurements were successfully taken for

the majority of samples, and 195 tumours had ulceration status recorded for use in the

analyses described in this chapter. One hundred and eighty six (95%) of these tumours

had had diagnostic H+E slides centrally reviewed.

7.4.2 Effect of central histology review on ulceration status

Figure 7-2 describes changes that were made to ulceration status following central

histology review. This analysis demonstrates that a significant proportion of ulceration

status in histopathology reports generated in clinical practice are changed following



review, highlighting the importance of central review and the variability that can be

found in reporting between pathologists

the number of cases for which ulceration status is reported, increasing the power of the

following analyses. Following this review, a total of 25% of tumours from the larger

dataset were ulcerated.

Figure 7-2: Changes in reported ulceration status of melanoma primary tumours

following central histological review.
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Table 7-1 presents results of univariate analyses for the large dataset and the smaller

centrally reviewed sample set.
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the number of cases for which ulceration status is reported, increasing the power of the

Following this review, a total of 25% of tumours from the larger

dataset were ulcerated.

: Changes in reported ulceration status of melanoma primary tumours

following central histological review.

Univariate analyses of clinico-pathological factors and

presents results of univariate analyses for the large dataset and the smaller

centrally reviewed sample set. In the large dataset, greater Breslow thickness and

mitotic rate were associated with ulceration (p<0.00001). In addition, other prognostic

tumour factors were associated with ulceration such as presence of vascular invasion

(p<0.0001), perineural infiltration (p=0.003) and microsatellites (p<0.0001). Nodular

tumours and tumours on sun-protected sites are more likely to be ulcerated (p<0.0001)

and patients were more likely to be older (p<0.00001) and male (p=0.001) if the tumour

was ulcerated. In view of the prognostic influence of ulceration, it is unsurprising that

ted tumours were more likely to have positive sentinel node

biopsies (p<0.0001) and were more likely to relapse and die (p<0.0001). The majority

of these factors were also associated with ulceration in the smaller centrally reviewed

dataset. Presence of perineural infiltration (p=0.61), microsatellitosis (p=0.05), patient

gender (p=0.21) and sentinel node biopsy status (p=0.20) were no longer statistically

significant in the smaller dataset, which likely reflects lower power, however the trends

to those in the larger dataset.

Cohort study: 175
samples

5 had ulceration status
changed (3%)

4 samples from
ulcerated to not

ulcerated

32 samples with
ulceration status not
recorded (18%): all
reclassified as not

ulcerated

SNB study: 193
samples

18 had ulceration status
changed (9%)

14 samples from
ulcerated to not

ulcerated

54 samples with
ulceration not recorded
(28%): 4 classified as
ulcerated, 50 as not

ulcerated

review, highlighting the importance of central review and the variability that can be

. This process has also increased

the number of cases for which ulceration status is reported, increasing the power of the

Following this review, a total of 25% of tumours from the larger

: Changes in reported ulceration status of melanoma primary tumours

pathological factors and

presents results of univariate analyses for the large dataset and the smaller

In the large dataset, greater Breslow thickness and

ith ulceration (p<0.00001). In addition, other prognostic

tumour factors were associated with ulceration such as presence of vascular invasion

(p<0.0001), perineural infiltration (p=0.003) and microsatellites (p<0.0001). Nodular

protected sites are more likely to be ulcerated (p<0.0001)

and patients were more likely to be older (p<0.00001) and male (p=0.001) if the tumour

was ulcerated. In view of the prognostic influence of ulceration, it is unsurprising that

ted tumours were more likely to have positive sentinel node

biopsies (p<0.0001) and were more likely to relapse and die (p<0.0001). The majority

of these factors were also associated with ulceration in the smaller centrally reviewed

rineural infiltration (p=0.61), microsatellitosis (p=0.05), patient

gender (p=0.21) and sentinel node biopsy status (p=0.20) were no longer statistically

significant in the smaller dataset, which likely reflects lower power, however the trends

SNB study: 193

18 had ulceration status
changed (9%)

14 samples from
ulcerated to not

ulcerated

54 samples with
ulceration not recorded
(28%): 4 classified as
ulcerated, 50 as not

ulcerated



Whole dataset Centrally reviewed dataset

Factor
Non-

ulcerated
(n=1357)

Ulcerated
(n=447)

Test statistic
and P-value

Non-ulcerated
(n=276)

Ulcerated
(n=92)

Test statistic
and P-value

Study type, n (%):
Cohort study
SNB study

1008 (74.3)
349 (25.7)

311 (69.6)
136 (30.4)

131 (47.5)
145 (52.5)

44 (47.8)
48 (52.2)

Breslow thickness, mm
median (range)

1.4 (0.2-24.0) 3.0 (0.5-19.0)
Mann-Whitney

z -19.1, p<0.00001
1.7 (0.4-12.0) 3.2 (1.0-19.0)

Mann-Whitney
z -8.1, p<0.00001

Mitotic rate per mm2

median (range)
2 (0-52) 6 (0-84)

Mann-Whitney
z -11.3, p<0.00001

3.0 (0-39) 7 (0-40)
Mann-Whitney

z -5.1, p<0.00001

Tumour infiltrating lymphocytes, n (%):
None

Present
177 (15.7)
951 (84.3)

59 (15.6)
319 (84.4)

χ2 (1) 0.002, p=0.97 54 (21.9)
193 (78.1)

14 (16.1)
73 (83.9)

χ2 (1) 1.3, p=0.25

Vascular or lymphatic invasion, n (%):
None

Present
839 (95.5)
40 (4.6)

250 (82.8)
52 (17.2)

χ2 (1) 50.2, p<0.0001 253 (93.0)
19 (7.0)

75 (85.2)
13 (14.8)

χ2 (1) 5.0, p=0.03

Perineural infiltration, n (%):
None

Present
345 (98.0)

7 (2.0)
121 (92.4)
10 (7.6)

χ2 (1) 9.0, p=0.003 154 (97.5)
4 (2.5)

49 (96.1)
2 (3.9)

χ2 (1) 0.3, p=0.61

Regression, n (%):
No
Yes

980 (83.3)
197 (16.7)

286 (82.2)
62 (17.8)

χ2 (1) 0.2, p=0.64 211 (86.8)
32 (13.2)

68 (80.0)
17 (20.0)

χ2 (1) 2.3, p=0.13

-
2
2
5

-



Whole dataset Centrally reviewed dataset

Factor
Non-

ulcerated
(n=1357)

Ulcerated
(n=447)

Test statistic
and P-value

Non-ulcerated
(n=276)

Ulcerated
(n=92)

Test statistic
and P-value

Microsatellites, n (%)
None

Present
791 (96.6)
28 (3.4)

273 (90.7)
28 (9.3)

χ2 (1) 16.0, p<0.0001 219 (92.4)
18 (7.6)

75 (85.2)
13 (14.8)

χ2 (1) 3.8, p=0.05

Histological subtype, n (%):
SSM
NM

Other

887 (68.3)
234 (18.0)
177 (13.6)

177 (41.8)
175 (41.3)
72 (17.0)

χ2 (2) 111.8,
p<0.0001

198 (72.8)
52 (19.1)
22 (8.1)

46 (50.0)
35 (38.0)
11 (12.0)

χ2 (2) 16.8, p<0.0001

Age at diagnosis, median (range)
53.3

(14.4-87.0)
58.8

(18.1-88.5)
Mann-Whitney

z -6.7, p<0.00001
52.6

(14.4-87.0)
57.2

(22.7-88.0)
Mann-Whitney
z -2.5, p=0.01

Patient gender, n (%)
Female

Male
778 (57.3)
579 (42.7)

217 (48.6)
230 (51.5)

χ2 (1) 10.5, p=0.001 144 (52.2)
132 (47.8)

41 (44.6)
51 (55.4)

χ2 (1) 1.6, p=0.21

Site of tumour, n (%):
Trunk
Leg
Arm

Head/neck
Sun protected

Unknown

484 (35.7)
440 (32.4)
268 (19.8)
133 (9.8)
31 (2.3)
1 (0.07)

170 (38.0)
112 (25.1)
67 (15.0)
46 (10.3)
52 (11.6)

0

χ2 (5) 74.9, p<0.0001

91 (33.0)
94 (34.1)
58 (21.0)
26 (9.4)
7 (2.5)

0

34 (37.0)
21 (22.8)
16 (17.4)
14 (15.2)
7 (7.6)

0

χ2 (4) 10.4, p=0.04

-
2
2
6

-



Whole dataset Centrally reviewed dataset

Factor
Non-

ulcerated
(n=1357)

Ulcerated
(n=447)

Test statistic
and P-value

Non-ulcerated
(n=276)

Ulcerated
(n=92)

Test statistic
and P-value

SNB status, n (%)
No SNB

SNB performed – negative
SNB performed – positive

725 (54.5)
386 (29.0)
219 (16.5)

203 (47.1)
108 (25.1)
120 (27.8)

χ2 (2) 27.1, p<0.0001
98 (35.8)
78 (28.5)
98 (35.8)

34 (38.2)
17 (19.1)
38 (42.7)

χ2 (2) 3.2, p=0.20

Relapse status, n (%)
Not relapse
Relapsed

1138 (84.3)
212 (15.7)

263 (59.0)
183 (41.0)

χ2 (1) 125.4,
p<0.0001

204 (75.3)
67 (24.7)

42 (45.7)
50 (54.4)

χ2 (1) 27.6, p<0.0001

Overall survival, n (%)
Alive
Died

1147 (84.5)
210 (15.5)

275 (61.5)
172 (38.5)

χ2 (1) 106.6,
p<0.0001

200 (72.5)
76 (27.5)

47 (51.1)
45 (48.9)

χ2 (1) 14.3, p<0.0001

Table 7-1: Associations between clinico-pathological features and ulceration in univariate analysis.

Results are presented for the larger dataset and the smaller centrally reviewed dataset. Statistical tests (degrees of freedom) and significance

values are presented for association between the factor and ulceration status. Generally speaking analyses in the large and the much smaller

centrally reviewed data sets produced similar results. Statistically significant results are highlighted in bold. Abbreviations used: SNB, sentinel

node biopsy; n, number.

-
2
2
7

-
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7.4.4 Factors independently associated with ulceration

Factors found to be associated with ulceration in the larger dataset in univariate

analysis were analysed using multiple logistic regression to identify factors

independently associated with ulceration. Perineural infiltration was omitted from the

model because of small numbers of observations. The results for the larger dataset are

presented in Table 7-2 with results for the smaller centrally reviewed dataset in Table

7-3.

Univariate logistic regression of the larger dataset confirmed that factors identified in

Table 7-1 were associated with ulceration status. In multivariate analysis, greater

Breslow thickness (test for trend across a categorical variable based on AJCC staging

criteria, odds ratio (OR) 2.62 (95% CI 2.07-3.32) p<0.0001), mitotic rate (test for trend,

OR 1.53 (95% CI 1.12-2.09) p=0.008) and tumours of sun-protected sites (OR 4.70

(95% CI 2.05-10.80) p<0.0001) were independently associated with ulceration status.

Overall, 63% of tumours from sun-protected sites were ulcerated, with the majority of

tumours being from acral skin of the palms or soles of feet (60%) or subungual (21%).

In the smaller centrally reviewed dataset, the only factor independently associated with

ulceration status in multivariate analysis was greater Breslow thickness (test for trend,

OR 2.93 (95% CI 1.94-4.45) p<0.0001).

.



Univariate analysis Multivariate analysis (n=892)

Factor
No. in non-
ulcerated

group

No. in
ulcerated

group
OR (95% CI) P-value OR (95% CI) P-value

Breslow thickness, mm 1354 442 3.26 (2.84-3.74) p<0.0001 2.62 (2.07-3.32) p<0.0001

Mitotic rate per mm2 831 291 3.01 (2.39-3.79) p<0.0001 1.53 (1.12-2.09) p=0.008

Tumour infiltrating lymphocytes:
None

Present
177
951

59
319

1.0
1.01 (0.73-1.39)

p=0.97

Vascular or lymphatic invasion:
None

Present
839
40

250
52

1.0
4.36 (2.82-6.75)

p<0.0001 1.0
1.60 (0.89-2.88)

p=0.12

Perineural infiltration:
None

Present
345
7

121
10

1.0
4.07 (1.52-10.94)

p=0.005

Not included
because of low

numbers of
observations

Regression:
No
Yes

980
197

286
62

1.0
1.08 (0.79-1.48)

p=0.64

Microsatellites:
None

Present
791
28

273
28

1.0
2.90 (1.69-4.98)

p<0.0001 1.0
1.20 (0.57-2.54)

p=0.63

Histological subtype:
SSM
NM

Other

887
234
177

177
175
72

1.0
3.75 (2.91-4.83)
2.04 (1.48-2.80)

p<0.0001
p<0.0001

1.0
1.14 (0.75-1.75)
1.06 (0.60-1.88)

p=0.54
p=0.84

Age at diagnosis, years 1357 447 1.03 (1.02-1.04) p<0.0001 1.01 (1.00-1.02) p=0.13

-
2
2
9

-



Univariate analysis Multivariate analysis (n=892)

Factor
No. in non-
ulcerated

group

No. in
ulcerated

group
OR (95% CI) P-value OR (95% CI) P-value

Patient gender
Female

Male
778
579

217
230

1.0
1.42 (1.15-1.77)

p=0.001 1.0
1.28 (0.88-1.86)

p=0.19

Site of tumour:
Trunk
Leg
Arm

Head/neck
Sun protected

484
440
268
133
31

170
112
67
46
52

1.0
0.73 (0.55-0.95)
0.71 (0.52-0.98)
0.99 (0.68-1.44)
4.78 (2.96-7.70)

p=0.02
p=0.04
p=0.94

p<0.0001

1.0
1.13 (0.71-1.81)
1.02 (0.61-1.70)
0.90 (0.49-1.65)

4.70 (2.05-10.80)

p=0.60
p=0.96
p=0.73

p<0.0001
SNB status:

No SNB
SNB performed – negative
SNB performed – positive

725
386
219

203
108
120

1.0
1.00 (0.77-1.30)
1.96 (1.49-2.57)

p=1.00
p<0.0001

1.0
1.14 (0.72-1.81)
0.78 (0.50-1.21)

p=0.57
p=0.27

Table 7-2: Results of univariate and multivariate logistic regression analyses in the larger dataset identifying clinico-pathological factors

associated with ulceration status.

Breslow thickness, mitotic rate and origin in a sun-protected site were all independently associated with ulceration status. Odds ratios, 95%

confidence intervals and significance values are presented for the associations between each factor and ulceration in the univariate setting and

then significant factors were included in a multiple logistic regression model. Results for Breslow thickness and mitotic rate are from a test for

trend across categorical variables based on American Joint Committee on Cancer staging criteria as described in 7.3.4. Statistically significant

results are highlighted in bold. Abbreviations used: OR, odds ratio; CI, confidence interval; SNB, sentinel node biopsy.

-
2
3
0

-



Univariate analysis Multivariate analysis (n=343)

Factor
No. in non-
ulcerated

group

No. in
ulcerated

group
OR (95% CI) P-value OR (95% CI) P-value

Breslow thickness, mm 276 91 3.36 (2.39-4.73) p<0.0001 2.93 (1.94-4.45) p<0.0001

Mitotic rate per mm2 268 87 2.17 (1.48-3.20) p<0.0001 1.32 (0.85-2.07) p=0.22

Tumour infiltrating lymphocytes:
None

Present
54

193
14
73

1.0
1.46 (0.76-2.79)

p=0.25

Vascular or lymphatic invasion:
None

Present
253
19

75
13

1.0
2.31 (1.09-4.89)

p=0.03 1.0
1.03 (0.43-2.47)

p=0.96

Perineural infiltration:
None

Present
154
4

49
2

1.0
1.57 (0.28-8.84)

p=0.61

Regression:
No
Yes

211
32

68
17

1.0
1.65 (0.86-3.15)

p=0.13

Microsatellites:
None

Present
219
18

75
13

1.0
2.11 (0.99-4.51)

p=0.05

Histological subtype:
SSM
NM

Other

198
52
22

46
35
11

1.0
2.90 (1.70-4.95)
2.15 (0.98-4.75)

p<0.0001
p=0.06

1.0
1.37 (0.72-2.62)
2.12 (0.82-5.46)

p=0.34
p=0.12

Age at diagnosis, years 276 92 1.02 (1.01-1.04) p=0.01 1.02 (1.00-1.04) p=0.09

Patient gender
Female

Male
144
132

41
51

1.0
1.35 (0.85-2.18)

p=0.21

-
2
3
1

-



Univariate analysis Multivariate analysis (n=343)

Factor
No. in non-
ulcerated

group

No. in
ulcerated

group
OR (95% CI) P-value OR (95% CI) P-value

Site of tumour:
Trunk
Leg
Arm

Head/neck
Sun protected

91
94
58
26
7

34
21
16
14
7

1.0
0.60 (0.32-1.11)
0.74 (0.37-1.46)
1.44 (0.67-3.08)
2.68 (0.87-8.20)

p=0.10
p=0.38
p=0.35
p=0.09

SNB status:
No SNB

SNB performed – neg
SNB performed – pos

98
78
98

34
17
38

1.0
0.63 (0.33-1.21)
1.12 (0.65-1.92)

p=0.16
p=0.69

Table 7-3: Results of univariate and multivariate logistic regression analyses with the significantly smaller data set subjected to central

review of histology: clinico-pathological factors associated with ulceration status.

The results were similar to those in the larger data set but were statistically less robust probably related to sample size. Odds ratios, 95%

confidence intervals and significance values are present for the associations between each factor and ulceration in the univariate setting and

then significant factors were included in a multiple logistic regression model. Results for Breslow thickness and mitotic rate are from a test for

trend across categorical variables based on American Joint Committee on Cancer staging criteria as described in 7.3.4. Statistically significant

results are highlighted in bold. Abbreviations used: OR, odds ratio; CI, confidence interval; SNB, sentinel node biopsy.

-
2
3
2

-
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7.4.5 Associations between IHC data and ulceration status

A comparison between IHC and H+E staining methodologies and the relationship

between vascular invasion and clinico-pathological data, including ulceration, using the

data presented in this chapter has been previously published [113] and will not be

described in further detail. Results presented here concentrate in more detail on the

relationship between ulceration and tumour factors identified using IHC.

Results of univariate and multivariate analyses to identify associations between

tumours factors determined by IHC and ulceration status are presented in Table 7-4.

The variable “any vessel invasion” was not included in the multivariate model as it was

generated from the “blood vessel invasion” and “lymphatic vessel invasion” variables.

In addition, the variable “lymphatic invasion” was used in preference to “intratumoural

lymphatic invasion” and “peritumoural lymphatic invasion” in the multivariate model as

these variables were highly correlated with “lymphatic invasion” which was most

associated with ulceration in univariate pairwise analysis. Univariate analyses showed

that lymphatic invasion, both intratumourally (inner two thirds of the tumour) and

peritumourally (all normal tissue surrounding tumour) was associated with tumour

ulceration (p <0.0001). Higher microvessel density and macrophage count were also

associated with tumour ulceration (p<0.0001). In the multivariate model, presence of

lymphatic invasion (OR 3.59, 95% CI 1.64-7.87, p=0.001), greater microvessel density

(OR 2.59, 95% CI 1.16-5.80, p=0.02) and macrophage count (OR 2.42, 95% CI 1.07-

5.50, p=0.03) remain independently associated with ulceration status.



Univariate logistic regression
Multivariate logistic
regression (n=169)

Factor
Not

ulcerated
(n=145)

Ulcerated
(n=50)

Test statistic
and P-value

OR (95% CI) P-value OR (95% CI) P-value

Invasion on H+E slide, n (%):
No

Present/possible
129 (90.9)
13 (9.2)

48 (96.0)
2 (4.0)

Fisher’s exact
p=0.36

1.0
0.41 (0.09-1.90) p=0.26

Blood vessel invasion (CD34), n (%):
Negative
Positive

130 (97.0)
4 (3.0)

46 (93.9)
3 (6.1)

Fisher’s exact
p=0.39

1.0
2.12 (0.46-9.83) p=0.34

Lymphatic invasion (D2-40), n (%):
Negative

Positive/possible
109 (82.6)
23 (17.4)

22 (46.8)
25 (53.2)

χ2 (1) 22.6,
p<0.0001

1.0
5.39 (2.60-11.16) p<0.0001

1.0
3.59 (1.64-7.87) p=0.001

Any vessel invasion using IHC, n (%):
Both negative

Either positive/possible
103 (79.8)
26 (20.2)

22 (45.8)
26 (54.2)

χ2 (1) 19.5,
p<0.0001

1.0
4.68 (2.30-9.55) p<0.0001

Intratumoural lymphatic invasion, n (%):
Negative

Positive/possible
121 (89.0)
15 (11.0)

31 (64.6)
17 (35.4)

χ2 (1) 14.7,
p<0.0001

1.0
4.42 (1.99-9.83) p<0.0001

Peritumoural lymphatic invasion, n (%):
Negative

Positive/possible
119 (91.5)
11 (8.5)

29 (65.9)
15 (34.1)

χ2 (1) 17.0,
p<0.0001

1.0
5.60 (2.33-13.46)

p<0.0001

Lymphatic density, n (%):
Low
High

69 (50.7)
67 (49.3)

23 (47.9)
25 (52.1)

χ2 (1) 0.1,
p=0.74

1.0
1.12 (0.58-2.16)

p=0.74

Intratumoral lymphatic density, n (%):
Low
High

69 (50.7)
67 (49.3)

21 (43.8)
27 (56.3)

χ2 (1) 0.7,
p=0.41

1.0
1.32 (0.68-2.57)

p=0.41

-
2
3
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-



Univariate logistic regression
Multivariate logistic
regression (n=169)

Factor
Not

ulcerated
(n=145)

Ulcerated
(n=50)

Test statistic
and P-value

OR (95% CI) P-value OR (95% CI) P-value

Peritumoural lymphatic density, n (%):
Low
High

66 (50.8)
64 (49.2)

21 (47.7)
23 (52.3)

χ2 (1) 0.1,
p=0.73

1.0
1.13 (0.57-2.24)

p=0.73

Microvessel density, n (%):
Low
High

80 (59.7)
54 (40.3)

12 (24.5)
37 (75.5)

χ2 (1) 17.8,
p<0.0001

1.0
4.57 (2.19-9.55)

p<0.0001 1.0
2.59 (1.16-5.80)

p=0.02

Macrophage count, n (%):
Low
High

79 (56.8)
60 (43.2)

14 (28.0)
36 (72.0)

χ2 (1) 12.2,
p<0.0001

1.0
3.39 (1.68-6.84)

p=0.001 1.0
2.42 (1.07-5.50)

p=0.03

Table 7-4: Results of univariate and multivariate analyses identifying associations between lymphovascular parameters and macrophage

count (determined using immunohistochemistry), and ulceration status in primary melanoma tumours.

Statistical tests (degrees of freedom) and significance values are presented for association between the factor and ulceration status in pairwise

tests. For logistic regression analyses, odds ratios, 95% confidence intervals and significance values are presented for the associations

between each factor and ulceration in the univariate analysis and then significant factors were included in a multiple logistic regression model.

Additional details of variables included in the multivariate model are included in the text. Vessel density and macrophage counts were

categorised into high and low groups around the median value. Significance values quoted for Fisher’s exact tests are 2-sided. Statistically

significant results are highlighted in bold. Abbreviations used: H+E, haematoxylin and eosin; n, number.

.
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7.4.6 Gene expression profiles associated with tumour ulceration

The top 20 genes differentially expressed in ulcerated tumours for the 348 tumours for

which gene expression data were available are listed in Table 7-5.

Gene
Mean fold difference in

gene expression
(ulcerated/non-ulcerated)

Significance value

HLF 0.67 1.73x10-08

FGFR3 0.73 3.96x10-08

DSP 0.68 5.26x10-08

GRB7 0.67 2.21x10-07

FGFR2 0.59 4.17x10-07

MAF 0.92 3.69x10-06

ITGB4 0.78 6.39x10-06

IL6 1.73 0.00001

RAD52 1.15 0.00001

EPHA1 0.74 0.00001

FGF7 1.35 0.00002

SPP1 1.34 0.00002

CEBPA 0.77 0.00002

CDH1 0.83 0.00003

OSM 1.80 0.00004

MMP1 1.52 0.00005

EGFR 0.74 0.0001

PTGS1 0.80 0.0001

EPO 0.81 0.0001

Table 7-5: Top 20 genes differentially expressed in ulcerated tumours.

Significance value is derived from linear regression adjusting for the study to

which patients were recruited. Genes involved in cell adhesion are highlighted in

dark green, fibroblast growth factors and their receptors are highlighted in

medium green and the pro-inflammatory cytokine interleukin-6 is highlighted in

light green.

This list shows that a number of genes involved in cell adhesion (DSP, ITGB4 and

CDH1) were down-regulated in ulcerated tumours. Fibroblast growth factor 7 (FGF7),

otherwise known as keratinocyte growth factor, was up-regulated in ulcerated tumours,

with fibroblast growth factors receptors (FGFR2 and FGFR3) being down-regulated.
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The pro-inflammatory cytokine gene interleukin-6 (IL6) was over-expressed in

ulcerated tumours.

Pathway analysis was performed using DAVID software to identify enriched pathways

in this dataset. Table 7-6 presents the top five most enriched KEGG (Kyoto

Encylopedia of Genes and Genomes) pathways out of a total of 52 pathways identified

containing 70 of the inputted genes [469, 470]. The top five enriched KEGG pathways

included ‘Pathways in cancer’, which is unsurprising as a cancer panel of genes was

used for gene expression profiling, but also the ‘Cytokine-cytokine receptor interaction’

pathway, the ‘Jak-STAT signalling pathway’ and the ‘Focal adhesion’ pathway. Type 1

interferons act via Jak-STAT signalling [213, 220], therefore identification of deranged

gene expression for components of this pathway in ulcerated tumours is of great

interest. Genes involved with focal adhesion were identified by review of the gene list

with pathway analysis confirming their importance. Figure 7-3 presents visually which

genes are under- and over-expressed in ulcerated tumours in the Jak-STAT KEGG

pathway.

7.5 Discussion

7.5.1 Relationship between ulceration and clinico-pathological

factors

Tumour ulceration has a profound influence on the likelihood of survival for melanoma

patients [58] and is reported to have a predictive influence on benefit received from IFN

therapy [204, 231]. It is therefore important to understand the biology of this

phenomenon.

In this study, analysis of clinico-pathological features associated with ulceration in a

large sample set and the smaller centrally reviewed set has shown that a number of

poor prognostic tumour features, such as Breslow thickness, mitotic rate and presence

of lymphovascular invasion, were associated with the presence of ulceration. Ulcerated

tumours were more likely to be of the nodular subtype, arising in a sun-protected site

and found in older patients. The association with age was not independently significant,

but the statistical power to detect a small effect was limited. As I discuss below chronic

.



KEGG Pathway
Number
of genes

% of
genes

P-Value
Bonferroni

corrected P-
value

Benjamini
corrected
P-value

False
discovery

rate

hsa05200: Pathways in cancer 31 30.10 5.78x10-24 4.97x10-22 4.97x10-22 6.23x10-21

hsa05219: Bladder cancer 11 10.68 4.04x10-11 3.47x10-09 1.74x10-09 4.36x10-08

hsa04060: Cytokine-cytokine receptor interaction 13 12.62 2.14x10-10 1.84x10-08 6.15x10-09 2.31x10-07

hsa04630: Jak-STAT signalling pathway 11 10.68 1.20x10-09 1.03x10-07 2.58x10-08 1.29x10-06

hsa04510: Focal adhesion 12 11.65 4.46x10-09 3.84x10-07 7.67x10-08 4.81x10-06

Table 7-6: Top 5 KEGG (Kyoto Encylopedia of Genes and Genomes) pathways containing differentially expressed genes in ulcerated

tumours.

The number and percentage of genes in the gene list associated with each term is presented. Significance values for representation of genes

in the pathway without correction for multiple testing are presented with corrected significance values using the Bonferroni correction [366] and

the Benjamini and Hochberg correction [367]. The false discovery rate (FDR) is also presented.
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Figure 7-3: The KEGG (Kyoto Encylopedia of Genes and Genomes) ‘Jak-STAT signalling pathway’ adapted to demonstrate fold changes in

gene expression between ulcerated and non-ulcerated tumours.

Blue arrows indicate under-expression of genes in ulcerated tumours, with over-expression indicated by red arrows. The diagram has been

adapted from the KEGG hsa04630: Jak-STAT signalling pathway diagram [469, 470, 659].
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inflammation is postulated to be a mechanism involved in determining ulceration which

is more frequent with age, which is perhaps of some interest [660, 661].

The factors which remained independently associated with ulceration in multivariate

analysis of the large sample set were Breslow thickness, mitotic rate and tumour site,

with ulceration being more frequently present in tumours arising in a sun-protected site,

with only Breslow thickness remaining significant in the smaller centrally reviewed set.

Breslow thickness and mitotic rate are the other two primary tumour features which

contribute to current AJCC staging in stage I and II disease [58]. Therefore, it is

perhaps unsurprising that these prognostic tumour features, representing an

aggressive, proliferative tumour, are associated with the poorly prognostic tumour

feature of ulceration. The association between thicker primary melanoma tumours and

greater mitotic rate and presence of ulceration has been previously identified in large

sample sets [91, 98]. However, no previous studies have attempted to identify tumour

or patient features independently associated with ulceration. In this study, the

independent association of ulceration with Breslow thickness and mitotic rate may

contribute to the prognostic influence of ulceration status. Mitotic rate was not

significantly associated in the smaller centrally-reviewed dataset, probably due to there

being less power to detect this association.

I have found that tumours of sun-protected sites, such as acral, subungual and

mucosal tumours were more likely to be ulcerated. In this study, 4.6% of tumours were

from sun-protected sites and of these 63% were ulcerated compared with a proportion

of 25% of ulcerated tumours overall. The majority of tumours (81%) in this group were

subungual and from acral skin of the palms or soles of feet. In studies of acral and

subungual tumours in Caucasian populations, the proportion of ulcerated tumours is

greater at 30-33% [662, 663] than in cohorts including tumours from all sites, such as

the AJCC staging dataset where approximately 27% of tumours were ulcerated [58].

Therefore, the literature provides support for my observation that the proportion of

ulcerated tumours was higher in tumours from sun-protected sites. Further, my work

demonstrates that the association with site is independent of Breslow thickness and

mitotic rate, indicating that aggressiveness of the tumour or delay in diagnosis, which

have been suggested as contributing factors to the poorer prognosis of acral tumours,

does not fully explain the association with ulceration [131, 132].

It is possible that trauma to tumours on the sole of the foot or under the nail may have

led to separation of the epidermis from the dermis and a failure of pathologists to

distinguish this from true ulceration. To support this hypothesis the comparison I made

between histopathology reports from routine clinical practice and review by expert

dermatopathologists (Figure 7-2) showed that of the 23 tumours which had ulceration
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status changed in review, 18 (78%) were reclassified as not being ulcerated. In the

analysis of centrally reviewed data, the association of sun-protected tumour site and

ulceration was less significant in pairwise analysis (p=0.04) and not significant in

univariate logistic regression (p=0.09) suggesting that perhaps trauma-induced loss of

epidermis being reported as ulceration may be a factor contributing to the association

in the larger dataset. However, the more likely scenario is that the smaller dataset does

not have the power to detect associations between tumour site and ulceration status.

My conclusions therefore are that:-

 Ulceration of melanoma primaries is associated with other poor prognostic

factors.

 Ulceration was more common in older patients in the larger data set although

this was not an independent predictor.

 Breslow thickness and mitotic rate were independent predictors of ulceration.

 Tumours in sun-protected sites were more frequently ulcerated than in other

sites and there was support for this observation in the literature. It was not

possible to exclude erroneous categorisation of traumatic damage, but I

conclude that this is likely a real observation.

7.5.2 Ulceration status and immunohistochemical pathological

factors

Analysis of IHC data identified associations between ulceration and presence of

lymphatic invasion, greater microvessel density and macrophage infiltration in

univariate and multivariate analyses. It must be acknowledged that multiple

comparisons have been assessed in these analyses, which increases the chance of

detecting false-positive results [367]. A significance level of 0.05 was chosen to

highlight interesting findings and associations identified with clinico-pathological

features in the large dataset were strongly significant, however the statistical

significance of results from the smaller immunohistochemical dataset were less strong

and would require validation in another sample set.

This study has found that presence of lymphatic invasion, when assessed using IHC, is

independently associated with ulceration. Lymphatic invasion appears to predominate

over vascular invasion in primary tumours [110, 113], and there was no evidence of an

association between blood vessel invasion, assessed using IHC, and ulceration status

in this sample set. There was also no association found between lymphatic vessel

density and ulceration. Presence of lymphovascular invasion in primary tumours has

been associated with poorer prognosis in a number of studies [110, 112], therefore this
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association is likely to contribute to increased propensity to metastasis associated with

ulcerated tumours. It has been suggested that there is likely to be a common biological

process causing lymphovascular invasion and ulceration, which may be related to

hypoxia [110]. The study also found that greater microvessel density was

independently associated with tumour ulceration. This is a marker of tumour

angiogenesis and may again be related to a hypoxic tumour environment. Normal skin

is mildly hypoxic [664], and as a melanoma tumour grows, hypoxic regions appear

which can promote tumour progression by supporting cell survival, enhancing

metastatic spread as well as stimulating new blood vessel formation [665-667]. Under

hypoxic conditions, there is induction of hypoxia-inducible factor 1 (HIF-1) and HIF-2

heterodimers [667]. HIF-1 is the predominant hypoxic factor produced in the majority of

tissues and binds to hypoxia-response elements in the promoters of genes, such as

vascular endothelial growth factor (VEGF), the expression of which is up-regulated in

hypoxic conditions enhancing angiogenesis [667-669]. There are data in other cancers

to support the hypothesis that hypoxic tumour microenvironments contribute to tumour

invasiveness, by causing down-regulation of E-cadherin and disordered expression of

genes involved in cell motility and invasion, such as metalloproteinase-2 (MMP2) and

keratins [668-670]. To support this, expression of the  subunit of HIF-2 (HIF-2)

assessed with IHC in melanoma tumours is a poor prognostic marker in association

with high levels of VEGF and greater vascular density [671].

My study has shown that microvessel density is greater in ulcerated tumours. Higher

microvessel density has been noted focally in breast tumours, where in some areas

necrosis has occurred secondary to ischaemia, but in other areas there are regions of

greater vascular density [672]. There is likely to be a similar process occurring in

ulcerated tumours, where there is cell death as the tumour out-grows its blood supply,

but there are focal areas with greater vascular density associated with less profound

hypoxic conditions. In gene expression data analysed in this chapter, expression of

HIF1A, which encodes the HIF-1 subunit, was greater in ulcerated tumours, although

not significantly following correction for multiple testing (fold change 1.06, p=0.004).

This result supports the hypothesis that ulcerated tumours are more hypoxic than non-

ulcerated tumours, which is likely to stimulate angiogenesis in areas where necrosis

has not taken place. In breast tumours, tumour macrophage infiltration has been

associated with greater microvessel density in necrotic tumours [672], and this

association in melanoma will be further discussed below.

Microvessel density determined by review of H+E sections, has been identified as an

independent predictor of overall survival [111]. There is controversy in the literature

regarding the association between microvessel density and prognosis in melanoma



- 243 -

when IHC staining is used [396], with some authors reporting an association between

higher microvessel density and poor prognosis or tumour progression [673-678],

whereas others show no relationship or an association with better prognosis [679-681].

With regards to the association with ulceration status, studies using factor-VIII related

antigen and anti-CD31 have found associations between higher microvessel density

and tumour ulceration [673, 678]. A smaller study using anti-CD34 did not show any

difference in microvessel density between ulcerated and non-ulcerated tumours [396].

My analyses are the first to identify microvessel density as a factor independently

associated with ulceration in a multivariate model with other detailed tumour IHC data.

Macrophage count was independently associated with ulceration status. Macrophages

are phagocytic cells which form part of the innate, non-specific, inflammatory immune

response [651, 682]. They present antigen to components of the adaptive immune

system and produce cytokines, such as interleukin-1, interleukin-6 and tumour-necrosis

factor- [682, 683]. There are two distinct macrophage phenotypes. Bacterial

components and interferon-γ cause macrophages to become M1 macrophages which 

are associated with normoxic tissues, are antiangiogenic and are associated with

tissue destruction, tumour cell killing and amplification of T helper type 1 (TH1) immune

responses [684-686]. M2 macrophages are polarized by tumour and T-cell derived

cytokines and are usually found in association with tissue remodelling and hypoxic

environments [684, 686, 687]. M2 macrophages are the subtype usually found in

tumours [687-689] and release proangiogenic growth factors, support tumour growth,

improve attachment of melanoma cells to extracellular matrix, suppress anti-tumour T-

cell dependent adaptive immune responses and modify inflammatory responses,

leading to chronic inflammation [651, 682, 684, 690-693]. The association between

inflammatory processes and cancer has been well documented [651, 693]. Acute

inflammation is rapid and usually self-limiting with later phases characterised by tissue

remodelling and repair [693]. It is apparent that chronic inflammation contributes to the

pathogenesis of many diseases associated with older age, including cancer, and M2

macrophages are key in development of chronic inflammation [651, 693]. M2

macrophages suppress adaptive immune responses via production of

immunosuppressive indoleamine dioxygenase (IDO) metabolites [694], inhibition of

dendritic cell maturation and stimulation of T regulatory cell infiltration into the tumour,

which subsequently suppress effector T-cell activity and other inflammatory cells [695-

697]. The presence of tumour-associated macrophages or a greater proportion of

macrophages within tumour-infiltrating immune cells has been associated with poorer

prognosis in a number of cancers, including uveal and metastatic cutaneous melanoma

[684, 698-701]. In primary melanoma, these associations have been identified using
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CD68 staining and when the more M2 macrophage specific CD163 antigen has been

used [393, 394, 702-704]. With regards to ulceration, an earlier smaller study failed to

find any association between CD68 stained macrophage levels in primary tumours and

ulceration status [396]. In uveal melanoma, an association has also been identified

between the presence of CD68-positive macrophages and greater microvessel density

in tumours which is relevant to my findings [700].

In summary, ulcerated tumours, associated with tissue remodelling and hypoxia, were

infiltrated by more macrophages, as detected using IHC in this current study. Although

this could not be confirmed using the limited IHC performed, I postulate that these were

M2 macrophages and that the pro-angiogenic effect of these macrophages may have

contributed to the higher microvessel density in ulcerated tumours. The presence of M2

macrophages is likely to have profound effects on the tumour environment, enhancing

tumour growth, angiogenesis, leading to a chronic inflammatory state and suppressing

the adaptive immune system [393, 682, 684, 690-692]. Evidence exists that both

higher microvessel density and macrophage count in melanoma tumours are

associated with poorer prognosis; therefore the presence of these factors may

contribute to prognostic significance of ulceration. Suppression of adaptive immune

responses by M2 macrophages may also contribute to why ulcerated tumours are

more amenable to the effects of exogenous IFN therapy (Figure 7-4).

In summary:

 Presence of lymphatic invasion and higher microvessel density, but not greater

lymphatic density or blood vessel tumour invasion, are independently

associated with ulceration. These factors may be secondary to the hypoxic

tumour environment and macrophage infiltration. Higher microvessel density

and presence of lymphatic invasion is associated with poor prognosis in

melanoma, so contributing to the prognostic significance of ulceration.

 Higher macrophage count was independently associated with ulceration.

Infiltration of M2 macrophages increases angiogenesis and leads to a chronic

inflammatory state that suppresses adaptive immune mechanisms and is

associated with poorer prognosis. I postulate that the presence of M2

macrophages may contribute to the prognostic and also predictive influence of

ulceration on benefit from IFN therapy.
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Figure 7-4: The prognostic and predictive implications of greater macrophage

infiltration and microvessel density in ulcerated tumours.

I postulate that macrophages are polarized to the M2 phenotype in ulcerated

tumours by release of cytokines and chemokines from immune cells (TH2 cells,

Treg cells and B cells), fibroblasts and tumour cells. M2 macrophages can

enhance tumour growth and produce pro-angiogenic factors which may stimulate

higher microvessel density in ulcerated tumours. They also suppress adaptive

immune responses. Both tumour macrophage infiltration and microvessel density

are associated with poorer prognosis in melanoma which may contribute to the

prognostic influence of ulceration. Suppression of adaptive immunity may be

modified by exogenous IFN therapy, explaining some of the predictive influence

of ulceration. Figure adapted from [684, 705]. Abbreviations used: TH2, T helper

type 2 cells; Treg, T regulatory cells; ECM, extracellular matrix; VEGF, vascular

endothelial growth factor; EGF, epidermal growth factor; MVD, microvessel

density; IFN, interferon-α.  

7.5.3 Gene expression and ulceration status

A number of genes shown in this study to be down-regulated in ulcerated tumours are

known to be involved in cell adhesion, such as genes encoding desmoplakin (DSP),

the integrin β4 subunit (ITGB4) and E-cadherin (CDH1). DSP is part of intercellular
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junctions called desmosomes, which are important in cellular adhesion, especially in

the epidermis [706, 707]. In the skin, altered expression of parts of the desmosome can

alter keratinocyte structure and function via modification of signalling pathways [708].

Another component of the desmosome, desmoglein 1, is down-regulated during

melanoma progression, allowing melanoma cells to un-couple from keratinocyte

mediated growth control [53, 709]. A study of gene expression of skin at the wound

edge of venous ulcers found under-expression of DSP at the edge of non-healing

ulcers versus healing ulcers [710]. However, there are no previous published reports

which have identified under-expression of desmosome components in association with

melanoma tumour ulceration. Down-regulation of DSP may cause breakdown of

cellular adhesion and subsequent ulceration of the tumour. Melanoma cells are then

released from keratinocyte control, enabling them to invade and progress.

It has been well established that the adherens junction protein, E-cadherin, is down-

regulated in melanoma cells as the tumour progresses [53, 644]. Cadherin based

junctions arrange microfilaments to maintain cell adhesion and integrate signalling

within the cell and between cells [711, 712]. This study demonstrates that E-cadherin

down-regulation occurs to a greater extent in ulcerated tumours. Ulceration of normal

skin is believed to be due to cycles of hypoxia and then re-oxygenation leading to

breakdown of skin integrity [713]. Previous studies assessing alterations in expression

of cell adhesion molecules in models of skin ulceration have found that E-cadherin

protein expression is dramatically down-regulated in response to hypoxia [713].

Interestingly, DSP expression is unaltered by exposure to hypoxic conditions [713].

Again, down-regulation of CDH1 in ulcerated melanoma tumours has not been

reported in the literature. However, cancer cells subjected to hypoxic conditions,

especially those which up-regulate HIF-1 expression, have lower E-cadherin levels

[714, 715], indicating that a more profoundly hypoxic, ulcerated tumour would have

lower levels of E-cadherin expression than a more normoxic, non-ulcerated tumour.

Lower levels of E-cadherin provide a further mechanism by which cells of ulcerated

tumours evade keratinocyte control, contributing to tumour aggressiveness.

ITGB4 encodes the integrin β4 subunit, which usually associates with the 6 subunit to

mediate binding between keratinocytes and laminins in hemidesmosomes situated

between the epidermal cells and dermis of normal skin [716, 717]. In mice models,

where 64 integrin is knocked-out, the epidermis separates from dermis, in a similar

fashion to ulceration in primary melanoma tumours [716, 718]. Lack of the β4 subunit 

also alters cell motility of keratinocytes, via modification of laminin organisation in

extracellular matrix [719]. It has also been noted that 64 integrin, along with other

integrin subunits, is usually up-regulated during wound healing [716]. There is little in
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the literature investigating the role of the integrin β4 subunit or the ITGB4 gene in

melanoma; however my study indicates that under-expression is associated with

ulceration, a finding which correlates well with the known biological function of this

integrin subunit in keratinocytes. We were unable to assess expression of the ITGA6

gene as this gene was not on the 502-gene Human Cancer panel used for gene

expression work. However it is likely that this would also be under-expressed in

ulcerated tumours.

Figure 7-5 summarizes my hypothesis as to how down-regulation of genes involved in

cell adhesion could lead to ulceration of primary melanoma tumours. Loss of cell

adhesion and keratinocyte control mechanisms in ulcerated tumours is associated with

increased motility of melanoma cells [53], which may be directly related to greater

invasion of lymphatic vessels by tumour cells as detected using IHC.

DSP and the integrin β4 subunit have roles in wound healing [716, 720, 721], and 

another gene involved in wound healing which is over-expressed in ulcerated tumours

in my study is fibroblast growth factor 7 (FGF7), otherwise known as keratinocyte

growth factor [722]. FGF7 expression is up-regulated after tissue damage, and this

growth factor acts through fibroblast growth factor 2b (FGFR2b), which is a splice

variant of FGFR2 found on epithelial cells [722, 723]. FGFs and FGFRs are

proangiogenic and can stimulate cell proliferation and survival; they are often over-

expressed or overactive in many cancers, secondary to a number of mechanisms,

including gene amplification and mutations [522, 724, 725]. FGF7 promotes

proliferation of epidermal cells in association with improved survival and motility

Figure 7-5 (following page): Loss of molecules involved in cell adhesion leading

to epidermal loss and ulceration of primary melanoma tumours.

(A) Keratinocytes and melanocytes are normally held together in the epidermis by

desmosomes and E-cadherin (CDH-1). Adhesion of epidermal cells to the

basement membrane is facilitated by hemidesmosomes which contain integrin

subunits. As melanoma cells develop, E-cadherin is down-regulated along with

components of the desmosome, such as desmoglein. Melanoma cells bind to

each other by up-regulating N-cadherin and integrins, connexins and cell

adhesion molecules (CAM). These molecules also allow binding to fibroblasts

and endothelial cells. (B) In this study, there is down-regulation of DSP, which is

a component of the desmosome, CDH1 and the integrin subunit, ITGB4 in

ulcerated tumours. (C) Loss of these molecules would decrease cell adhesion in

the epidermis leading to ulceration. Figure adapted from [53].
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[726, 727] and is normally produced by mesenchymal cells, for example fibroblasts

[728, 729]. There is evidence that normal and malignant melanocytes express FGF7

transcripts; however it is unclear whether this has a role in epidermal cell proliferation

and may be related to normal melanocyte development [730]. The current study has

identified under-expression of FGFR2, which codes for the FGF7 receptor, in ulcerated

tumours. In contrast to many other gain of function FGFR mutations identified in

cancer, loss of function mutations have been reported in FGFR2 in melanoma cell

lines, primary and metastatic tumours [731-733]. Decreased expression of FGFR2 has

been associated with progression of astrocytomas, prostate and bladder cancers,

indicating that FGFR2 can act as a tumour suppressor gene [734-736]. Over-

expression of FGF7 by ulcerated tumours in association with tissue damage may be

expected to initiate wound healing. We have not assessed levels of FGFR2 in

keratinocytes, however in ulcerated tumours, FGFR2 is markedly down-regulated, and

FGF7 would be unable to act via the FGFR2b receptor on melanoma cells in an

ulcerated tumour. The role of FGF7 in melanocytes and melanoma cells has not been

elucidated [730], so further significance of these findings is unclear. In addition to

higher FGF7 expression secondary to tissue damage, pro-inflammatory cytokines,

such as interleukin 6 (IL6), can stimulate FGF7 production in dermal fibroblasts [737],

therefore over-expression of IL6 in ulcerated tumours may be contributing to the

overexpression of FGF7. The current study has identified under-expression of FGFR3

in ulcerated tumours. FGFR3 binds to both basic and acidic fibroblast growth factors

and is important in bone development [738]. FGFR3 may be a tumour suppressor gene

in melanoma [738, 739], so lower expression in ulcerated tumours would contribute to

the prognostic significance of this tumour feature.

IL6 was over-expressed in ulcerated tumours in this study. A previous gene expression

study using frozen tumour specimens has also reported differential expression of IL6

[178]. IL6 is a pro-inflammatory cytokine which can stimulate growth and survival of

tumour cells and polarize immune cells, including macrophages, to aid tumour

progression [740-742]. Melanoma tumours appear to produce IL6 [652, 743-745] and

as discussed previously, higher serum levels of IL6 are related to poor survival and

predictive of benefit from IFN therapy, which closely parallels the effects of tumour

ulceration [652-655, 746]. This association indicates that production of this pro-

inflammatory cytokine by ulcerated tumours may be an important factor determining

disease progression and IFN action. Other proinflammatory cytokine genes, such as

interleukin-1 and interleukin-1, were also over-expressed in my analyses in

ulcerated tumours (fold change ulcerated/non-ulcerated tumours 1.32 (p=0.03) and
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1.74 (p=0.0006), respectively), although not significantly following a Bonferonni

correction for multiple testing.

Pathway analysis has highlighted pathways containing genes differentially expressed

in ulcerated tumours. Genes involved in focal adhesion and cytokine-cytokine receptor

interaction pathways are clearly over-represented, as already discussed. However the

over-representation of genes involved in Jak-STAT signalling is of great interest, as the

anti-proliferative, immune, cytotoxic and anti-angiogenic effects of type 1 interferons

are predominantly mediated by this pathway [213, 220]. Components of this pathway

have been assessed in melanoma tumours in relation to benefit obtained from

interferon therapy. As discussed in the introduction, binding of type 1 IFNs to receptors

causes activation of STATs which then move to the nucleus activating gene expression

[263]. STAT1 is thought to play a key role in promoting antiproliferative, proapopotic

and antiangiogenic effects on tumours by IFN therapy, and protein expression of

phosphorylated STAT1 (pSTAT1) is increased by IFN therapy [747-749]. Defects within

the Jak-STAT pathway are associated with resistance to IFN in melanoma cell lines

[748, 750]. In this study, STAT1 was not differentially expressed, but STAT5B, the

gene which encodes one of the two highly related STAT5 proteins, was over-

expressed in ulcerated tumours (fold change 1.08, p=0.005), although not significantly

following a Bonferroni correction. Despite this non-significant result, the biological

action of STAT5 is of interest and so will be further discussed. Studies investigating the

role of STAT5 in melanoma cell lines have yielded conflicting results. STAT5 protein

expression has been shown to be greater in IFN resistant melanoma cell lines with

over-expression of STAT5 reducing the anti-proliferative ability of IFN in a normally

IFN-sensitive cell line and depletion of STAT5 in resistant lines improving interferon

responsiveness [751]. The authors of this study concluded that STAT5 inhibits STAT1

activation, with some inhibition occurring via involvement of suppressor of cytokine

signalling (SOCS/CIS) factors [751]. A more recent study, again in melanoma cell lines,

failed to find a relationship between phosphorylation of STAT1 following IFN treatment

and the expression of STAT5 or levels of phosphorylated STAT5 [747]. The authors

suggested that there are likely to be additional factors involved in regulation of STAT1

activation along with STAT5, following IFN exposure [747]. In the current study, non-

statistically significant over-expression of STAT5B has been identified in the relatively

IFN-sensitive group of ulcerated tumours, accompanied by down-regulation of factors

downstream of STAT1 (Figure 7-3), such as PIM1 (fold change 0.88, p=0.02), MYC

(fold change 0.95, p=0.008) and CCND3 (or cyclin D3, fold change 0.92, p=0.01).

These findings indicate that STAT1 signalling is being suppressed in ulcerated

tumours, and that STAT5 over-expression may be contributing to this; however other
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factors are likely to be involved which may explain why these results appear

contradictory to previous cell line data [751]. There is evidence that patients with

melanoma have defects in IFN signalling in blood lymphocytes due to reduced

phosphorylation of STAT1 following IFN stimulation [222, 223]. This defect can be

improved by high-dose IFN therapy and the level of STAT1 activation in T-cells with

IFN therapy correlates with the clinical outcome [223, 224]. A similar defect may be

found in ulcerated tumours with deranged expression of components of the Jak-STAT

signalling pathway, perhaps explaining the predictive nature of ulceration with IFN

therapy. Exogenous IFN may enhance normal signalling through the pathway, leading

to anti-tumour and immunomodulatory effects. Non-ulcerated tumours may have less

deranged signalling via this pathway, which is not modified by IFN therapy, and hence

little benefit is derived from the therapy. This hypothesis is speculative and may

represent over-interpretation of my results. However it seems clear that deranged

expression of components of this IFN signalling pathway must bear some relationship

to why ulcerated tumours show greater benefit from IFN therapy and warrants further

investigation.

To summarise, in ulcerated tumours:

 There is under-expression of genes involved in cell adhesion, which may be a

primary event or secondary to other biological processes.

 Expression of fibroblast growth factors and receptors are deranged.

 Pro-inflammatory cytokine genes are over-expressed, which may contribute to

the prognostic and predictive influence of tumour ulceration.

 There is evidence of deranged signalling via the Jak-STAT pathway, which is

likely to modify responses to exogenous IFN therapy.

7.5.4 Summary

A number of poorly prognostic tumour features were shown to be independently

associated with ulceration status, as was lymphatic invasion, higher microvessel

density and macrophage count. I postulate therefore that tumour ulceration is

associated with new blood vessel formation in the tumour, lymphatic invasion by

tumour cells and polarization of macrophages to the M2 phenotype. I have been

unable to confirm that the increased numbers of macrophages seen in ulcerated

tumours were M2 rather than M1 and I would like to prove this in further experiments if

I were able.

My study demonstrated under-expression of genes involved in cell adhesion in

ulcerated tumours, which is an unsurprising finding; however we cannot prove whether
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this is a primary process within the tumour, associated with a release from keratinocyte

mediated growth control, or secondary to another biological characteristic of the tumour

which predisposes it both to ulceration and subsequently improved metastatic capacity.

Lack of cell adhesion and keratinocyte control will contribute to increased cell motility,

explaining greater evidence of lymphatic invasion in ulcerated tumours.

My study revealed deranged expression of FGF and FGFR genes in ulcerated tumours

and independent associations with macrophage infiltration, presence of lymphatic

invasion, greater microvessel density, Breslow thickness and mitotic rate. These

associations may explain some of the prognostic effects of tumour ulceration.

There is evidence in these analyses of altered immune mechanisms in ulcerated

tumours. Macrophage infiltration was seen, and the literature would suggest that these

are likely to be M2 cells capable of suppressing adaptive immunity. I also showed

novel findings indicative of deranged expression of components of the Jak-STAT

pathway and confirmed previously reported over-expression of pro-inflammatory genes

such as IL6 in melanomas.

Effects of the IFN used therapeutically are mediated by Jak-STAT signalling. Down-

regulation of genes downstream to STAT1 suggests that signalling via this pathway is

supressed in ulcerated tumours, perhaps by increased STAT5 in association with other

factors. I postulate that deranged signalling via this pathway may be modified by

exogenous IFN therapy, enhancing antitumour effects of IFN and leading to prolonged

survival following IFN therapy.
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8 DNA repair gene expression and response to chemotherapy

in stage IV melanoma

8.1 Aims

In a pilot study, gene expression data generated using the cDNA-mediated annealing,

selection, extension and ligation (DASL) assay and the Human Cancer panel provided

evidence that increased expression of a number of DNA repair genes was associated

with resistance to treatment with alkylating agents, dacarbazine (DTIC) and

temozolomide (TMZ) [505]. These findings were confirmed and the association

between DNA repair gene expression and chemotherapy response was further

explored using the Chemo-sensitivity Gene Expression Array (CGEA-1) [505]. These

results were consistent with the published data related to this issue.

The primary aims of the of the work described in this chapter were:

 To explore the pilot data in a larger sample set in order to identify whether

expression of DNA repair genes might prove to be a useful predictive biomarker

of DTIC or TMZ response.

 To investigate the use of the Fluidigm quantitative Real-time PCR (qRT-PCR)

system for the first time using formalin-fixed paraffin-embedded (FFPE)

melanoma tumour to carry out multiple PCR reactions to measure gene

expression.

To achieve these primary aims, this chapter also describes the:

 Concept, set-up and development of the “Predicting Response to

Chemotherapy in Malignant Melanoma” study. These data (clinical and

genomic) are nearing completion in July 2012 and here I report those data to

which I currently have access.

8.2 Background

A number of effective treatments have been recently developed for advanced

melanoma, however use of vemurafenib against mutant BRAF is limited to patients

with a BRAF mutated tumours (40%) and resistance can develop [199]. Use of the

second “revolutionary” agent, ipilimumab is also associated with improved survival but
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only in a small number of patients and with considerable toxicity [60, 61]. Therefore, a

proportion of patients still receive DTIC or TMZ chemotherapy for stage IV disease and

are likely to be so treated in the future, especially if a predictive biomarker can be

identified. Response rates are low at 7-13%, with a further 15-28% having stable

disease during treatment, but few of these responses are long-lasting [243, 244]. DTIC

is an alkylating agent which methylates DNA at the O6-position of guanine. O6-

methylguanine often mispairs with thymine instead of cytosine during replication and

this is recognised by the mismatch repair system which removes a section of DNA with

the thymine molecule. Replication of this gapped structure leads to double-stranded

breaks in DNA which eventually lead to cell death via apoptosis [247] (Figure 8-1).

TMZ is also an alkylating agent used in melanoma with similar efficacy to DTIC [243,

249]. TMZ undergoes spontaneous conversion to the active alkylating agent 5-(3-

methyltriazen-1-yl)imidazole-4-carboximide (MTIC) which has similar actions to DTIC

[248]. TMZ can be administered orally and has been used for the treatment of brain

metastases as it crosses the blood-brain barrier [243, 249].

It has been suggested that over-expression of genes related to DNA repair is linked to

the chemoresistance of melanoma [264, 752]. Increased activity of the DNA repair

gene O6-methylguanine-DNA-methyltransferase (MGMT), which removes alkyl groups

from DNA, is associated with resistance to alkylating agents in glioblastoma tumours

[753, 754] and in melanoma cell lines [265, 755]. An inverse relationship between

MGMT protein expression and gene expression with DTIC response in melanoma

tumours has also been identified [267, 756] which supports the view that MGMT

expression might be a predictive biomarker. Gene silencing by promoter methylation

has also been associated with improved responses to TMZ therapy in metastatic

tumours [757]. The relationship between melanoma response to alkylating agents and

MGMT is not entirely clear however, as other studies have failed to show that MGMT

activity [268, 269], protein expression [270], promoter methylation [271, 758] or MGMT

polymorphisms [267] are associated with response to TMZ or DTIC. Disappointingly,

clinical trials using extended dose TMZ to deplete MGMT levels and use of MGMT

inactivators or pseudosubstrates did not enhance activity of TMZ in melanoma [271-

273, 759].

The mismatch repair pathway is also important for the toxicity of alkylating agents. A

deficiency in this pathway results in failure of cells to recognise and repair O6-

methylguanine adducts produced by TMZ or DTIC and so double stranded breaks do

not occur and DNA replication continues without apoptosis occurring [248, 274].
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Figure 8-1: Mechanism of action of dacarbazine.

Further detail is provided in the text. Adapted from [247]. Abbreviations used:

DTIC, dacarbazine; O6-meG, O6-methylguanine; T, thymine; MMR, mismatch

repair; ds, doubled-stranded.

Studies using melanoma cell lines have demonstrated that the mismatch repair system

in melanoma appears to be largely intact, so contributing little to TMZ resistance [265,

275].

The base excision repair (BER) pathway has also been reported to be related to

resistance to TMZ and DTIC, as the DTIC-induced adducts, 3-methyladenine and N7-

methylguanine can be processed and repaired by the BER pathway [760]. Inhibition of

poly(ADP-ribose) polymerase (PARP) in cell lines has been reported to improve

cytotoxicity of alkylating agents [276, 277, 761], but again this pathway appears to

have minimal effect on TMZ resistance in melanoma cell lines [265]. A phase I study in

advanced solid tumours, including melanoma, demonstrated that use of a PARP

inhibitor (AG014699) with TMZ caused PARP inhibition with increased single-strand

breaks and minimal toxicity suggesting that these agents could be used therapeutically

alone or in combination with chemotherapy [278]. However, in another phase I trial

using the PARP inhibitor Olaparib (AZD2281, KU0059436), the authors concluded
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there was no clinical advantage over use of DTIC alone [762]. Haemotoxicity appeared

to be an issue in phase II trials and further results are awaited [762]. Inhibitors of other

DNA repair genes in the BER pathway, such as APE1 (or APEX-1), enhance alkylating

agent toxicity in melanoma and glioma cell lines, again highlighting the potential

importance of this pathway [763].

Development of in vitro assays that assess chemosensitivity will help isolate further

candidates of chemotherapy resistance. When chemosensitivity of cutaneous

melanomas has been assessed and correlated with quantitative gene expression of

putative chemotherapy resistance genes, gene expression signatures associated with

resistance to DTIC, treosulphan and cisplatin revealed that genes involved in DNA

repair (ERCC1, XPA, XRCC1, XRCC6) were over-expressed [764].

In summary, DNA repair genes have been reported to be associated with poor

response to alkylating agents in a number of studies, but the relationships are not clear

and a more comprehensive assessment is required. Identification of biomarkers of

treatment response will provide insight into tumour biology and in the long-term, may

assist clinicians and patients in making informed decisions about treatment options.

This chapter describes the process by which I have explored the significance of

expression of DNA repair genes as being associated with DTIC or TMZ chemotherapy

response. Results from the DASL assay were validated using a different gene

expression platform and then further explored in a larger separate sample set.

For the validation of DASL data, this chapter describes use of a customized Taqman®

Array microfluidic qRT-PCR card (Chemo-sensitivity Gene Expression Array, CGEA-1,

CanTech Ltd, Portsmouth, UK). This array contains 92 genes known or hypothesized

to be involved in cytotoxic resistance or sensitivity based on the current literature [289]

(Table 8-1). Mechanisms of resistance to chemotherapy include under-expression of

target genes, altered drug metabolism, presence of membrane drug pumps, altered

apoptotic sensitivity, deranged DNA repair and altered cellular growth or differentiation

[289]. The CGEA-1 has been designed to assess gene expression of candidates within

these pathways and was used in this chapter to validate microarray gene expression

data. Taqman® array cards (Applied Biosystems, Warrington, UK) are 384-well

microfluidic cards which allows 384 simultaneous PCR reactions using Taqman® gene

expression assays which are described in more detail in Chapter 2 [344]. The ability to

perform multiple reactions using one array reduces variability across plates so

improving the reliability of results [344]. It also allows assessment of either multiple

genes for a limited number of samples or assessment of a smaller number of genes for

multiple samples [344].
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Apoptosis Pumps/Detox DNA repair Proliferation
Normalisation

genes

AKT

APAF1

BAD

BAX

BCL2

BCL-x(L)

BID

c-FLIP

FAS

FASL

HSP60

HSP70

HSP90

IAP2

IGF1

IGF1R

IGF2

IGR2R

IGFBP1

IGFBP2

MCJ

MCL1

mTOR

NFκB 

PIK3CA

PTEN

STAT3

SURVIVIN

XIAP

ATP7B

BCRP

CES1

CES2

cN II

DPD

FPGS

γH2AX 

GCLC

GCLM

GSTπ 

hENT1

hENT2

MDR1

MRP1

MRP2

MRP3

MRP4

MRP5

MRP6

MRP8

MTII

MVP

OPRT

RRM1

SOD1

TAP1

TAP2

TAP4

ATM

BRCA1

ERCC1

ERCC2

GTF2H2

MGMT

MLH1

MSH2

MSH6

RAD51

TOPO I

TOPO IIa

TOPO IIb

TS

XPA

XRCC1

XRCC5

XRCC6

APC C-term

APC N-term

β-TUBULIN III 

COX2

EGFR

HER2

HER3

HER4

HIF1A

KI67

P16

P21

P27

P53

VEGF

18S

HPRT

PBGD

SDHA

TBP

Table 8-1: Genes on the Chemo-sensitivity Gene Expression Array (CGEA-1).

Genes are listed according to biological function. Table adapted from [289].

On a larger scale, the Fluidigm Biomark HD quantitative PCR chip (Fluidigm, San

Francisco, CA) allows assessment of up to 96 genes in 96 samples in a total of 9216

PCR reactions in a single experiment. I used this technology to assess expression of

43 DNA repair genes (and 5 control genes) in a larger sample set from patients

recruited to the “Predicting Response to Chemotherapy in Malignant Melanoma” study.

This study will be further described in section 8.5. Fluidigm microfluidic technology

uses integrated fluidic circuits (IFC) containing valves and channels which

automatically assemble individual PCR reactions, enabling the simultaneous

performance of PCR reactions in nanolitre volumes. Fluidigm technology is further
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described in Chapter 2 [345, 346]. Each PCR reaction takes place in a volume of only

10nl versus the 10μl volume used for routine qRT-PCR reactions described elsewhere 

in this thesis [345-347]. Previous work has demonstrated that the Fluidigm system

provides reproducible results for gene and micro-RNA expression when compared to

traditional qRT-PCR experiments using Taqman® gene expression assays [346, 347]

and results from micro-RNA analysis correlate well when fresh-frozen tissues or FFPE

tissues are used for RNA extractions [346].

The Fluidigm systems can be used with Taqman® assays, but for the purposes of this

study, we have used gene specific primers (DELTAgene™ assays, Fluidigm) in

conjunction with the DNA-binding dye, EvaGreen. EvaGreen is a flurophore, which

when bound to double-stranded DNA emits a strong fluorescent signal, the intensity of

which is directly proportional to the increase in the amount of double-stranded DNA

during a PCR reaction [349, 350]. Use of EvaGreen significantly reduces the cost of

the experiment, however the specificity of the reaction is reduced as only a primer pair

are used for PCR, the additional probe present in Taqman® based assays (described

in Chapter 2) being absent [349]. To our knowledge, this is the first experiment using

cDNA derived from FFPE material for gene expression using the Fluidigm qRT-PCR

system and so a thorough assessment of the quality of the assays has been made in

FFPE melanoma tumour material. I have specifically assessed the efficiencies of the

primers in a similar fashion to that described in Chapter 4 for Taqman® gene

expression assays and the specificity of the amplicon using melt curve analysis.

8.3 Identification of genes associated with response to

chemotherapy using the DASL assay

8.3.1 Further methodological details

8.3.1.1 Statistical methodology

Chemotherapy analysis was performed using the merged dataset generated from two

sample sets (the Leeds Melanoma Cohort Study (Cohort study) and the Retrospective

Sentinel Node Biopsy Study (SNB study)) described in further detail in Chapter 4. Log-

transformed normalised data (log2) were used for analysis, expression of genes of

interest was compared between responders and non-responders to chemotherapy

using linear regression. Response to chemotherapy was defined as those with stable

disease, a mixed response, partial response or regression of disease determined using

computed tomography (CT) scanning following 2 or 3 cycles of chemotherapy. In some
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instances, response data was recorded according to Response Evaluation Criteria in

Solid Tumours (RECIST) version 1.1 criteria by the reporting radiologist [290], in others

response data was provided by review of the radiology assessed formally at the

melanoma multidisciplinary team meeting. As expression of single genes were

assessed, the significance level for highlighting results of interest was set at 0.05. In

view of non-biological variations that were present between the Cohort and SNB

studies, analyses were adjusted for the study to which patients were recruited. All

analyses were undertaken using Stata version 10 (StataCorp 2007, College Station,

TX).

8.3.2 Results

Forty-three patients, 23 from the SNB study and 20 from the Cohort study had received

chemotherapy (11.9%). Of these patients, tumour response following chemotherapy

had been recorded for 36 patients. The majority of patients received DTIC with three

patients receiving treosulphan as first line chemotherapy. Six patients (17%)

responded to DTIC chemotherapy as defined above. RAD51 and TOP2A were

significantly over-expressed in tumours from non-responders compared to responders

(RAD51 fold change 1.66, p=0.01; TOP2A fold change 1.43, p=0.03). BRCA1 was also

over-expressed in tumours from non-responders (fold change 1.36), but this difference

was of borderline significance (p=0.05). In order to validate these findings and explore

expression of other genes associated with chemotherapy response using a different

platform, the CGEA-1 array was used as described below.

8.4 Validation of DASL results and further assessment of

genes associated with chemotherapy response

8.4.1 Rationale

In order to validate DASL results and assess gene expression of other genes

postulated to be associated with response to chemotherapy, a sample of tumour RNAs

from patients treated with chemotherapy were also analysed using the CGEA-1 array

in collaboration with the Translational Oncology Research Centre, Queen Alexandra

Hospital, Portsmouth. The experimental work was performed by Dr Katharine Parker.
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8.4.2 Further methodological details

8.4.2.1 The Chemo-sensitivity Gene Expression Assay (CGEA-1)

Table 8-1 lists the genes present on the array. Of the 36 patients from whom

chemotherapy response data were available, 33 received DTIC and samples from

these patients were selected for assessment with the CGEA-1 array. cDNA was

generated from RNA using the Invitrogen Superscript™ First-strand Synthesis System

with increased reagent volumes as described in Chapter 2. Two cDNA samples were

unavailable as they were used in other studies. Therefore a total of 31 samples from

patients treated with chemotherapy (5 from responders) were sent for qRT-PCR

analysis using the CGEA-1 array in Portsmouth. The CGEA-1 was run according to

manufacturer’s instructions as previously reported [289] and described in further detail

in Chapter 2. Cycle threshold (Ct) values from the experiment were sent to myself for

further analysis. A calibrator sample was chosen with the lowest Ct value for a highly

expressed gene, 18s, to allow relative quantification of gene expression. This sample

was selected to reduce the number of missing values for analysis. Five endogenous

control genes were present on the array for normalisation of data. Expression levels of

18s were much higher than unknown genes and as the abundance of a reference gene

should be similar to that of the gene of interest [458], 18s was not used for

normalisation. A large number of samples did not amplify using the HPRT assay and

so PBGD, SDHA and TBP were used as reference genes for normalisation according

to the method described by Vandesompele et al. [343] and described in further detail in

Chapter 2. The normalised gene quantities were used to calculate a fold difference in

mean gene expression between chemotherapy non-responders and responders.

Statistical significance was determined using a Mann-Whitney U test, with a

significance level of 0.05. Statistical analysis was undertaken using Stata version 10

(StataCorp 2007, College Station, TX).

8.4.3 Results

Genes from which there were less than 10 results overall were deemed to have failed

and were removed from further analyses (n=13). To allow a meaningful comparison

between gene expression in responders and non-responders, genes for which there

were less than 2 results for responders were also excluded from further analyses

(n=2). All of the 17 genes involved in DNA repair on the array were over-expressed in

tumours from patients who did not respond to chemotherapy (Table 8-2). These genes
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Gene

Number of
non-

responders/
number of
responders

Mean fold
difference in

expression between
non-responders and

responders

Test statistic
and significance

value

DNA repair
genes

MSH6 17/4 4.61 Z 1.4, p=0.15

TOPO1 21/4 3.15 Z 0.2, p=0.82

MSH2 16/4 3.06 Z 1.9, p=0.06

XRCC1 13/4 2.95 Z 1.4, p=0.17

XRCC5 22/5 2.87 Z 0.0, p=1.00

TOP2A 17/3 2.53 Z 0.9, p=0.37

XRCC6 22/5 2.47 Z 1.4, p=0.17

MGMT 9/2 2.21 Z 0.9, p=0.35

RAD51 17/3 2.13 Z 0.6, p=0.56

ERCC1 22/5 2.07 Z 1.1, p=0.29

TOP2B 22/4 1.96 Z 0.0, p=1.00

XPA 20/5 1.87 Z 0.9, p=0.34

ATM 18/3 1.81 Z 0.1, p=0.92

BRCA1 17/3 1.77 Z -0.3, p=0.79

ERCC2 18/4 1.73 Z -0.1, p=0.93

GTF2H2 21/4 1.51 Z -0.9, p=0.37

MLH1 16/2 1.21 Z 0.1, p=0.89

Genes most
over-

expressed in
non-

responding
tumours

TAP4 15/2 24.63 Z 1.3, p=0.18

TS 21/3 24.53 Z 1.6, p=0.11

KI67 9/2 12.06 Z -0.2, p=0.81

MTII 22/5 8.06 Z 1.5, p=0.13

mTOR 21/4 7.33 Z 0.9, p=0.37

cN II 19/5 6.62 Z -0.04, p=0.97

PIK3CA 21/4 5.02 Z 1.2, p=0.24

MSH6 17/4 4.61 Z 1.4, p=0.15

HSP90 22/5 4.51 Z 1.4, p=0.17

SOD 1 22/5 4.40 Z 1.7, p=0.09

Genes most
under-

expressed in
non-

responding
tumours

MCL1 21/4 0.38 Z -0.07, p=0.94

FAS 16/4 0.45 Z 0.4, p=0.71

FPGS 12/2 0.71 Z -0.6, p=0.58

BAX 21/5 0.86 Z -0.9, p=0.35

p53 19/5 0.92 Z -0.1, p=0.92

Table 8-2: Genes differentially expressed in tumours unresponsive to

chemotherapy using the Chemo-sensitivity Gene Expression Array (CGEA-

1).

DNA repair genes on the array are listed followed by genes most over-expressed

and under-expressed in unresponsive tumours. The number of samples from

non-responders and responders is presented with fold difference in gene

expression between non-responders and responders. Significance values are

derived from the Mann-Whitney U test.
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included RAD51 (fold change 2.13), TOP2A (fold change 2.53) and BRCA1 (fold

change 1.77) as well as genes involved in nucleotide excision repair (e.g. ERCC1,

XPA), base excision repair (e.g. XRCC1), removal of damaged DNA bases (MGMT),

mismatch repair (e.g. MLH1, MSH2) and DNA non-homologous end joining (e.g.

XRCC5, XRCC6) [289, 497]. Within the groups of genes encoding proteins associated

with apoptosis, cellular proliferation and membrane transport molecules, some genes

were under- and others over-expressed in tumours which did not respond to

chemotherapy [289, 765]. As a result of the small numbers of samples included in

these analyses, the power was too low to achieve statistical significance but this was

essentially a validation step using different technology and was deemed confirmatory.

8.5 The “Predicting Response to Chemotherapy in Malignant

Melanoma: The role of DNA repair genes” study

In view of the small number of samples available from patients treated with DTIC or

TMZ in the previous analyses described, a larger sample set was required to confirm

the association between DNA repair gene expression and chemotherapy response. A

sample set of sufficient size was not available in the Section of Epidemiology and

Biostatistics, so the “Predicting Response to Chemotherapy in Malignant Melanoma”

study (Chemotherapy study), was developed. The study was started by myself with

assistance from my supervisors and members of the Section, specifically Mr Christy

Walker, who has project-managed the study and coordinated sample collection and Dr

Jon Laye, who has processed and sampled tumours for the study. This study has

permitted collection of a large number of tumours from patients with response and

survival data allowing confirmation of previous findings.

8.5.1 Study design and aims

This retrospective study utilises FFPE primary and metastatic melanoma tumour

samples from patients previously treated with DTIC or TMZ chemotherapy recruited to

clinical trials, well annotated epidemiological studies or as part of routine clinical care in

the UK. RNA has been extracted from tumour samples to assess expression of DNA

repair genes. These data have been linked with chemotherapy response and survival

data to determine gene expression profiles associated with chemotherapy response

and survival after starting chemotherapy. This chapter describes use of tissue for gene

expression analysis for DNA repair genes, however the intention will be to use tissue
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for other techniques, such as whole-genome expression profiling, mutation screening,

immunohistochemistry, micro-RNA expression, methylation analysis and assessment

of copy number variation in the future in order to understand genetic associations with

patterns of metastasis and response to treatment. Given the low response rate to DTIC

and therefore the limited power within any one centre, to maximise the number of

samples for analysis, this is a collaborative study with the European Organisation for

Research and Treatment of Cancer (EORTC) Melanoma group and a European Union-

funded consortium called Chemores. These groups have provided additional tumour

samples and clinical data for analysis with samples collected in the UK. The study is

managed in Leeds. It was hoped that a successful output from this study might

encourage further similar biomarker studies for other cancers using archived FFPE

tumour samples which had previously been supposed to be unsuitable for genomic

studies.

8.5.2 Participants and samples

Patients that were eligible for inclusion in this study were:

 Patients recruited to the “EORTC 18032: Extended schedule, escalated dose TMZ

versus DTIC in stage IV metastatic melanoma: a randomised phase III study” [249].

This study randomised 859 patients to receive oral TMZ or intravenous DTIC. The

study concluded that use of TMZ did not improve overall survival or progression-

free survival when compared to DTIC [249]. Potential participants were identified

from European centres and the Nottingham University Hospitals NHS Trust.

Samples and follow-up data were sent to Leeds for analysis. The use of material

from patients recruited to clinical trials will help to ensure a more accurate

assessment of response to treatment.

 From the Chemores group (www.chemores.org), which is collecting tissue samples

from melanoma patients treated with DTIC and TMZ for identification of biomarkers

of response to chemotherapy. Samples and follow-up data collected by this group

have been sent to us in Leeds for analysis and pooled with other data.

 Patients recruited to cohort studies or case-control studies of melanoma such as

the Leeds Melanoma Cohort Study were also eligible if treated with chemotherapy.

 Patients treated with DTIC or TMZ as part of routine clinical care in Leeds.

A number of patients were excluded following review where tissue was not available for

tumour sampling or where the patient had not received chemotherapy treatment with

DTIC or TMZ. Table 8-3 summarises the number of recruited patients in May 2012.
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Primary and metastatic FFPE melanoma tumour blocks have been traced for eligible

participants. Tumour tissue has been sampled and RNA and DNA extracted from

tumour tissue cores using the Qiagen AllPrep® RNA/DNA FFPE kit as described in

Chapter 2. Gene expression analysis of DNA repair genes has been undertaken using

the Fluidigm qRT-PCR system which will be described in further detail below.

Recruiting centre
Total number of patients

from each centre
Number recruited to

the EORTC 18032 trial

Leeds 260 6

Nottingham 12 12

Leuvan (EORTC/Chemores) 87 0

Essen (EORTC/Chemores) 135 21

Excluded cases (22) (2)

Total 472 37

Table 8-3: Number of patients recruited to the Chemotherapy study.

The total number of cases is reported with the number recruited to the EORTC

18032 trial. Twenty-two cases were excluded as no tumour tissue was available

or they did not received DTIC or TMZ chemotherapy. Abbreviation used: EORTC,

European Organisation for Research and Treatment of Cancer.

8.5.3 Clinical data

Clinical data have been provided from treating clinicians, with negotiations currently

underway to access trial databases for patients treated as part of clinical trials. For

patients recruited to epidemiological studies in Leeds, data have been extracted from

current study databases. The clinical data recorded include patient demographic

details (age, gender, date and cause of death or last follow-up date), details of the

primary melanoma (date of diagnosis, site of tumour, stage at diagnosis, tumour

histological features), information regarding stage IV diagnosis (date of diagnosis, sites

of disease), details of chemotherapy received (chemotherapy used and regimen, dates

of chemotherapy, dose reductions, severe haemotoxicities) and lactate dehydrogenase

(LDH) levels before, during and after treatment.

For the current study, chemotherapy response data are of paramount importance. For

patients recruited to the EORTC 18032 trial, I hope to access objective response data

based on the original version of RECIST criteria [766] determined using a CT scan

after 3 cycles of treatment and then after 6 cycles if chemotherapy is continued. Overall

response has been defined as complete response, partial response, stable disease or
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progressive disease [766]. As this trial data is currently not available, response data for

patients treated as part of the 18032 trial, other clinical trials or routine clinical care,

have been provided by treating clinicians based on clinical and radiological tumour

response. For example, for patients recruited in Leeds, where possible objective

response has been determined using CT scan after 3 or 6 cycles of therapy. Where

target lesions have been measured, updated RECIST version 1.1 criteria have been

used to determine response to chemotherapy [290]. Where target lesions have not

been measured, response has been determined by the reporting radiologist on CT

scan, the treating clinician if a clinical determination has been made or the

multidisciplinary team based on review of imaging and clinical factors. Where a

response has been recorded by the multidisciplinary team, this has been deemed the

most accurate data and used for analysis. When trial data are available, the source of

response data is recorded to allow separate assessment of the subset of patients

recruited to trials with RECIST criteria response data. In all cases, the best response

whilst on treatment or the scan after the final chemotherapy cycle was recorded as the

response to chemotherapy treatment and used for further analysis.

8.5.4 Power calculations

Power calculations are based on a range of DNA repair genes with varying mean gene

expression levels and standard deviations identified as differentially expressed in

tumours from non-responders to chemotherapy from the DASL gene expression data.

Assumptions made were that 15% of patients respond (complete response, partial

response or stable disease) to chemotherapy. With 450 eligible patients we have 99-

100% power, depending on the differential expression of the gene, to detect a

difference in gene expression level at a 0.001 significance level.

8.5.5 Regulatory approvals

Ethical approval for the study was granted by Yorkshire and Humber Central Research

Ethics Committee on the 23rd August 2010 (10/H1313/72) and support under section

251 of the NHS Act 2006 was granted by the Ethics and Confidentiality Committee by

the National Information Governance Board for Health and Social Care on the 4th

October 2010 (ECC 8-02 (FT2)/2010).
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8.6 Assessment of DNA repair gene expression in FFPE

melanoma tumours using the Fluidigm qRT-PCR platform

Expression of DNA repair genes was assessed in primary and metastatic FFPE

melanoma samples from patients recruited to the Chemotherapy study. Before the

larger sample set was analysed a pilot study was performed to assess the Fluidigm

system and DELTAgene assays when using FFPE melanoma tissue.

8.6.1 Selection of genes for assessment

The aim of this study was to assess gene expression of a larger panel of DNA repair

genes. The Fluidigm IFC arrays allow assessment of 96 genes for 96 samples in a

single reaction, therefore I decided to assess expression of 48 genes (43 test genes

and 5 control genes) in duplicate on each array. DELTAgene assays were used for this

work which were produced by Fluidigm based on RefSeq IDs using standard design

procedures [331]. Table 8-4 lists the genes assessed and details of the DELTAgene

assays. These genes were selected either because they were previously identified as

associated with response to treatment using the DASL assay, were present on the

CGEA-1 array or there was evidence in the literature that these genes were associated

with chemotherapy response in melanoma or other cancers as referred to in Table 8-4.

Five control genes (Table 8-4) were selected based on previous work using Taqman®

gene expression assays as described in Chapter 4, however following the results of

these analyses, GAPDH was not used for normalisation of data.

As these assays had not been used before in an experiment using FFPE melanoma

tissue, a pilot Fluidigm plate was assessed using RNA extracted from melanoma cell

line samples and FFPE metastases samples. This allowed assessment of performance

of the assays, assay specificity and sample reproducibility. As discussed in Chapter 4,

PCR efficiency of endogenous control gene and test genes needs to be comparable to

allow use of the comparative Ct method for relative quantification [340, 455]. To assess

PCR efficiencies of DELTAgene assays in FFPE melanoma samples, standard curves

were generated using serially diluted samples.
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8.6.2 Pilot study

8.6.2.1 Samples

The following experimental work was performed by myself. As a source of high-quality

template RNA, RNA was extracted from 3 melanoma cell lines (SkMel5, Mel Juso and

Mel 624) using the Qiagen RNeasy® Mini kit. RNA was extracted using a single tissue

core from five FFPE melanoma metastasis samples using the Qiagen AllPrep®

RNA/DNA FFPE kit. RNA was also extracted from an FFPE intradermal naevus

sample, which was selected to act as a calibrator sample. The Roche High Pure RNA

Paraffin Kit was used for RNA extraction from this sample. From cell line and FFPE

samples, 400ng and 200ng of RNA, respectively, was used for cDNA synthesis using

the Applied Biosystems High Capacity cDNA reverse transcription kit. Further

methodological details are described in Chapter 2.

8.6.2.2 Methodological details

8.6.2.2.1 Specific target amplification (STA) of samples

Amplification of specific target assays was performed using 18 cycles of pre-

amplification and the standard Fluidigm qRT-PCR protocol as described in Chapter 2.

As GAPDH is already highly expressed, this assay was not included in the primer mix,

therefore the remaining 47 primer pairs were pooled and used for pre-amplification.

Table 8-4 (following 3 pages): Details of genes assessed using the Fluidigm qRT-

PCR platform with DELTAgene assays in samples from the Chemotherapy

study.

Genes are grouped according to biological function [482, 497, 499, 767, 768]. RefSeq

ID used for primer design [331], exons targeted, length of amplicon and primer

sequence of the DELTAgene assays are also presented. The references column

indicates the sources that associate the gene with chemotherapy responses or reasons

why the gene has been included in the panel. Abbreviation used: bp, base pair.



Biological
function

Gene
RefSeq ID used

for primer design
Targeted

exons

Amplicon
length
(bp)

Forward primer Reverse primer References

Endogenous
control genes

GAPDH NM_002046.3 2-3 61 ACACCATGGGGAAGGTGAAG GTGACCAGGCGCCCAATA

IPO8 NM_001190995.1 16-17 79 TTCAGTGCAAAGGAAGGGGAA ACCCCTCGAGTTAATCTCTCCA

PES1 NM_014303.2 10-11 81 GCCTGAAGTTCTTCCTGAACC AGGACACTTCCCCACCAAAA

CASC3 NM_007359.4 9-10 75 CCCCTCCAGTGCATATCAGTA GGGTATAGATTGGTCCCTGGAA

SDHA NM_004168.2 11-12 81 ACATCGGAACTGCGACTCA TTCTTGCAACACGCTTCCC

Nucleotide
excision repair

XPA NM_000380.3 4-5 76 ACATCATTCACAATGGGGTGATA ACCCCAAACTTCAAGAGACC [289]

ERCC1 NM_202001.2 5-6 89 GCCGACTGCACATTGATCC TCCGCTGGTTTCTGCTCATA [289, 486]

ERCC2
(XPD)

NM_000400.3 2-3 82 TACCCCGAGCAGTTCTCCTA TCCGCTGGTTTCTGCTCATA [289, 486]

ERCC4
(XPF)

NM_005236.2 5-6 77 CTTCTGGAATCTCTGAGAGCAA GAGGTGCTGGAGTCAAGAAA [289, 486]

GTF2H2 NM_001515.3 13-14 81 CACAGTGTCGGGCAAAGTAC CCAAGTGGGGAGCAGACA [289]

LIG1 NM_000234.1 19-20 81 TGGGAAGTACCCGGACATCA GCTTCGGTGTCCAGGATGAA [265]

RPA1 NM_002945.3 16-17 80 AGTCAGGGTCAAAGTGGAGAC TGTAGTCCACGGGCTTCAC [769]

Base excision
repair

XRCC1 NM_006297.2 14-15 83 GAGAACACGGACAGTGAGGAA AAGTGCTTGCCCTGGAAGAA [289, 486, 770]

PARP1
(ADPRT)

NM_001618.3 12-13 77 TTCTGGAGGACGACAAGGAA GTTGCTACCGATCACCGTAC
[265, 278, 486,

771]
APEX1
(APE1)

NM_080649.1 3-4 67 GGGCTTCGAGCCTGGATTA ACAGTATATCTGGGGCTTCTTCC [265, 486, 770]

-
2
6
8

-



Biological
function

Gene
RefSeq ID used

for primer design
Targeted

exons

Amplicon
length
(bp)

Forward primer Reverse primer References

Base excision
repair (cont.)

MPG NM_001015054.1 2-3 124 GCCCAAAGGGCCACCTTA CCTCGGAGTTCTGTGCCATTA [265, 772]

OGG1 NM_016829.2 2-3 113 CGTGGACTCCCACTTCCAA CGATGTTGTTGTTGGAGGAACA [486, 773]

Homologous
recombination

BRCA1 NR_027676.1 11-12 74 AAGACTGCTCAGGGCTATCC CAGGTTATGTTGCATGGTATCCC
Previous DASL

study, [289]

BRCA2 NM_000059.3 21-22 130 ATGCAGCAGACCCAGCTTA TCCATGGCCTTCCTAATTTCCA [486]

RAD50 NM_005732.3 2-3 82 TCCCTCCTGGAACCAAAGGAA AGACGAATCTGGGCTCTCACA [264]

RAD51 NM_002875.4 5-6 86 GGGAAGACCCAGATCTGTCA ATGTACATGGCCTTTCCTTCAC
Previous DASL

study, [289, 482]

RAD52 NM_134424.2 11-12 85 GGATCTTGGGACCTCCAAACTTA TCTTCATGTCCTGGCTCTTCC
Previous DASL

study [482]

RAD54B NM_012415.2 12-13 108 GTGGTGTAGGACTTAACCTCA GACCATCTCTCCATACTCTAGAC
Previous DASL

study

RAD54L NM_001142548.1 16-17 73 AAGAAGCGAGCCAAGGTTGTA TGCTGCTCAGCATGAAGACA
Previous DASL

study

MRE11A NM_005590.3 8-9 83 AACCTGGAAGCTCAGTGGTTA CCTCCCTTTAATACGCAGCAAA [774]

NBN
(NBS1)

NM_002485.4 8-9 78 GTGATCCTCAGGGCCATCC CAACTGACACGCCTTGTGAAA [769]

Non-homologous
end joining

XRCC5
(Ku80)

NM_021141.3 3-4 75 GCTGGAGGACATTGAAAGCA ATGCTCACGATTAGTGCATCC [289, 486]

XRCC6
(Ku70)

NM_001469.3 11-12 80 GATTTGATGGAGCCGGAACAA ACCAAGGAGCCCAGTCTTTTA [289, 486]

PRKDC NM_006904.6 23-24 83 GCTTGGATCTCTAGGAGGACAA AGGCCACATAGCTCTTCATCA
[486, 769, 775,

776]

Mismatch
excision repair

MLH1 NM_000249.3 12-13 68 AGAGGACCTACTTCCAGCAA TCTTCCACCATTTCCACATCA [289, 486, 777]

MSH2 NM_000251.1 15-16 77 CCAGCAGCAAAGAAGTGCTA TCTTCCACCATTTCCACATCA [289, 486, 777]

MSH6 NM_000179.2 1-2 97 CCAAGGCGAAGAACCTCAAC TTGGCCCAAACCAAATCTCC
[264, 289, 486,

777]

-
2
6
9

-



Biological
function

Gene
RefSeq ID used

for primer design
Targeted

exons

Amplicon
length
(bp)

Forward primer Reverse primer References

PMS2 NM_000535.5 6-7 81 GCTCTGTGTTTGGGCAGAA ACTCTTCACACACGGAGTCA [265, 777]

Genes defective
in diseases with

sensitivity to
DNA damaging

agents

ATM NM_000051.3 43-44 83 TACCAAGCAGCATGGAGGAA
GATTCATGGTAACTGGTTCCTTC

TAC
[289, 486]

BLM NM_000057.2 6-7 91 TGTGGGAACGAACTGCTTCA AGCCAAGAAGACTGGCATCA [264, 769]

DNA
polymerases

POLB NM_002690.1 9-10 63 CTACAGTCTGTGGCAGTTTCA TCAGGAGAACATCCATGTCAC [265, 772]

POLH NM_006502.2 7-8 73 GTTCACTGAATCCCAGCTCCA CCCTCGGCACATGGCATATA [177]

PCNA NM_182649.1 1-2 94 TCTGAGGGCTTCGACACCTA CATTGCCGGCGCATTTTAGTA [769]

Direct reversal of
DNA damage

MGMT NM_002412.3 3-4 100 CGAGGCTATCGAAGAGTTCCC CACAACCTTCAGCAGCTTCC [289, 486]

DNA helicases RECQL NM_032941.2 5-6 82 TATGCCTACAGGAGGTGGAA TGGGCAAATGACGAGTGTAA [769]

Endonucleases MUS81 NM_025128.4 4-5 76 AGTGATACTGCTGGTGCTCTAC CAGCAGCTCCTCCTTGGTTA [482, 497]

Induction of
transient DNA

breaks

TOP1 NM_003286.2 17-18 87 ACGCTACAGCAGCAGCTAA AGCTCGATTGGCACGGTTA [289]

TOP2A NM_001067.3 21-22 81 GGCGTTTGATGGATGGAGAA GAGCCAGTTCTTCAATAGTACCC
Previous DASL

study, [289]

TOP2B NM_001068.2 20-21 79 GATGCTGCAAGCCCTCGTTA GGTTGTCATCCACAGCAGGAA [289]

Conserved DNA
damage

response genes

CHEK1 NM_001274.4 8-9 76 TGGTACAACAAACCCCTCAA CACTGGGAGACTCTGACAC [778]

CHEK2
(CHK2)

NM_007194.3 5-6 102
TGACTGTAGATGATCAGTCAGTT

TA
AAGCCAGCTTTACCTCTCC [778]

ATR NM_001184.3 46-47 80 CATTCCAAAGCGCCACTGAA CGCTGCTCAATGTCAAGAACA [486, 779]

Histone H2AFX NM_002105.2 1 83 TGCGGAAGGGCCACTAC CTCAGCGGTGAGGTACTCC [177, 769]

.

2
7
0

-
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8.6.2.2.2 Standard curve analysis

Following amplification, one of the FFPE melanoma metastases samples was serially

diluted to allow assessment of standard curves, and therefore amplification efficiency,

for each assay. Two standard curves were produced using six standards generated by

a 1:2 and 1:10 serial dilution of the sample. The curve based on 1:10 dilution allowed

assessment of PCR efficiency over a large range, however as many of these samples

were very dilute, the 1:2 standards would allow some assessment of efficiency if 1:10

samples failed to amplify.

8.6.2.2.3 qRT-PCR reaction

Sample and assay pre-mix solutions were prepared using the standard Fluidigm qRT-

PCR protocol as described in Chapter 2. Each sample was assessed in triplicate and a

no template control (water used instead of STA sample) was included. Each assay was

assessed in duplicate. The 96:96 Dynamic Array IFC was loaded and the qRT-PCR

reaction and melt curve analysis was performed as described in the standard protocol

with initial data processing described in Chapter 2. Ct values were exported to Stata

version 10 (StataCorp 2007) for further analysis.

8.6.2.2.4 Analysis of qRT-PCR data

The Fluidigm Real-time PCR Analysis software generated standard curves for diluted

samples based on the mean Ct values across replicate samples and calculated assay

efficiencies using the formula: efficiency = 10(-1/slope) -1 [456]. Melt curves were

assessed for each assay to identify evidence of primer-dimer formation or production of

non-specific PCR products. Reproducibility was assessed between sample replicates

by calculation of the intraclass correlation coefficients (ICC) described further in

Chapter 4.

8.6.2.3 Results

8.6.2.3.1 Amplification efficiencies of DELTAgene assays

No template control samples were assessed and no amplification was seen for any

assay. A number of wells in the IFC had not loaded properly as indicated by absent

ROX passive reference dye in the wells and were excluded from further analysis. Many

of the 1:2 dilution standards had not loaded well meaning there were less data points

for analysis, however the 1:10 diluted samples were more successful, with the first four
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most concentrated standard samples performing well and allowing generation of a

standard curve and calculation of amplification efficiency. GAPDH failed to amplify for

the majority of standard samples, probably because it was not included in the STA

primer mix, therefore a standard curve could not be generated for assessment of assay

efficiency.

Amplification efficiencies for the four control genes assessed (CASC3, PES1, IPO8

and SDHA) ranged from 0.88-1.12. For use of a comparative Ct method for relative

quantification of gene expression, the efficiencies of the test genes needs to be

comparable to that of the control genes. Assuming that +/-10% of the efficiency of

control genes is acceptable, three test assays had efficiencies greater than those of the

control genes (MLH1, OGG1 and RECQL), of these only RECQL was much greater.

Therefore expression of the majority of genes can be assessed using the comparative

Ct method using the endogenous control genes assessed in this panel.

Melt curve analysis demonstrated that the majority of assays generated a specific PCR

product. In some melt curves there was evidence of primer/dimer formation (ERCC1,

MPG and MSH6) and the curve for XRCC6 showed multiple products. We were unable

to redesign primers before starting the larger experiment, however being aware of

these factors will allow a more correct interpretation of results.

Reproducibility across sample replicates was assessed using ICCs. ICC values were

variable across the assays, however there appeared to be a clear inverse relationship

between ICC value and the mean Ct value for the assay across the samples assessed

(Figure 8-2). Following discussion with technical support at Fluidigm, it was decided to

increase the number of pre-amplification cycles to 22 to reduce the mean Ct value for

each probe and improve reproducibility between replicate samples. We also planned to

remove samples with Ct values over 28 from further analysis as there was a lack of

reproducibility between replicate samples, and therefore questionable data accuracy,

at these Ct values. This approach was used in a second pilot plate where the calibrator

sample, a cell line sample and four metastases samples were re-assessed for a limited

panel of assays following 22 cycles of pre-amplification. Table 8-5 summarises the

results of this experiment for the FFPE samples, which confirmed that increasing the

number of pre-amplification cycles, reduced the mean Ct value for the assays and

improved reproducibility across replicate samples.

Following this pilot work, I concluded that the system and assays were working well, so

the larger sample set from the Chemotherapy study was assessed using the Fluidigm

system.
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Figure 8-2: Scatter plot demonstrating the association between sample

reproducibility and mean cycle threshold (Ct) value for the assay.

Reproducibility across replicate samples is reduced as the mean Ct value for the

assay increases.

Probe
Mean Ct value

18 cycles
Mean Ct value

22 cycles
ICC

18 cycles
ICC

22 cycles

APEX1 13.53 8.86 0.92 1

BRCA1 17.01 13.24 0.99 1

ERCC1 15.48 10.77 0.73 1

MGMT 19.77 13.48 0.45 1

MUS81 18.61 13.09 0.85 1

PARP1 17.79 9.59 0.48 1

POLB 14.74 9.54 0.98 1

RAD51 19.15 14.50 0.71 1

TOP2B 13.42 8.99 0.86 1

Table 8-5: Intraclass correlation coefficients with eighteen and twenty-two pre-

amplification cycles.

Mean Ct values and ICCs are listed for genes following 18 and 22 cycles of pre-

amplification for a limited panel of genes. ICC values are greater with 22 cycles of

pre-amplification indicating improved reproducibility between replicate samples.

Abbreviations used: Ct, cycle threshold; ICC, intraclass correlation coefficients.
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8.7 Assessment of DNA repair gene expression in tumours

from patients recruited to the Chemotherapy study

8.7.1 Further methodological details

8.7.1.1 Samples

From the 450 patients eligible for the Chemotherapy study, samples from 222 patients

were sent to us from European groups and other tissue samples were traced, focusing

on patients who had responded to chemotherapy and completing sets of matched

samples where more than one tumour sample was available. DNA repair gene

expression from 416 tumour samples were assessed in this analysis.

8.7.1.2 Fluidigm qRT-PCR

Tissue cores were sent to us from European groups or tumour blocks were sampled

using a tissue microarray needle and RNA extracted using the Qiagen AllPrep®

RNA/DNA FFPE kit by a service provider, Gen-probe Life Sciences Ltd.

(Wythenshawe, UK) using methods described in Chapter 2. Gen-probe normalised the

RNA samples prior to cDNA synthesis. All RNA samples were used irrespective of

RNA concentration measured using spectrophotometry. Tissue cores from Europe

were much larger than the 0.6mm diameter tissue microarray cores sampled from

tumours in Leeds. Therefore the RNA yield was much greater from European samples

and 1 microgram of RNA was used in each cDNA reaction. For tissue cores sampled in

Leeds with lower RNA yields, 200ng of RNA was used to make cDNA. If RNA yields

were less than 100ng/μl for European samples, or less than 20ng/μl for Leeds tumour 

cores, 10μl of RNA was used to make cDNA. The rationale behind this approach was 

to use as much template RNA as possible, whilst maintaining consistency across the

sample set. For European samples with greater RNA yields, excessive dilution of RNA

to match samples from Leeds was impractical and use of larger amounts of RNA from

Leeds samples would have exhausted RNA stocks from these cores. Accurate

normalisation of gene expression data will correct for differences in template RNA

concentration, therefore this approach was deemed acceptable for this large-scale

study. cDNA was synthesised using the Applied Biosystems High Capacity cDNA

Reverse Transcription kit in 96-well plates and STA of samples was performed using

the standard protocol. Each sample and assay was assessed in duplicate on a 96:96

Dynamic Array IFC using the standard protocol. Further details of methods used are

described in Chapter 2. The intradermal naevus sample used in the pilot study was to

be used as a calibrator sample on each Fluidigm array, however a number of assays
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failed for this sample on the first Fluidigm array so a well performing melanoma sample

was used as calibrator sample on subsequent arrays. For each STA plate, a new

aliquot of cDNA from the calibrator sample was amplified along with the samples for

assessment and then used on the Fluidigm arrays. A number of negative control

samples were rotated across the Fluidigm arrays, these being:

 cDNA control samples generated without reverse transcriptase (RT) and so no

cDNA should be present (RT negative cDNA controls).

 Water used in the STA reaction instead of cDNA (no template samples that

had undergone STA).

 Water used instead of STA product in the qRT-PCR reaction (no template

controls).

A total of nine Fluidigm arrays were used for this experiment. Data were assessed

using the methods described in Chapter 2, with baseline and threshold levels being

calculated by Biomark HD Reader software (Fluidigm, San Francisco, CA) for each

array. Ct values were exported to Stata version 10 (StataCorp 2007, College Station,

TX) for further analysis.

8.7.1.3 Data analysis

Reproducibility between sample replicates was assessed using ICCs and any samples

with Ct values over 28 were excluded from further analysis. Mean Ct values from

sample replicates were calculated and data normalised to the expression of CASC3,

PES1, SDHA and IPO8 according to the method described by Vandesompele [343] as

described in Chapter 2. Data from each Fluidigm array were normalised separately

using the calibrator sample run on the array. Samples failing eight or more assays

were removed from further analysis. Normalised data from the nine arrays were then

merged for further analysis.

8.7.1.4 Statistical analysis

Reproducibility of Ct values generated from the calibrator samples across the arrays

were compared using Spearman’s rank correlation. For the primary analysis, gene

expression data from the first available tumour sample was used. Fold differences in

gene expression were calculated between progressing tumours and tumours showing

any response to chemotherapy (stable disease, partial or complete response). The

Cuzick test for trend [780] was used to identify genes differentially expressed in

tumours from patients in each of the four response groups using un-transformed gene
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expression data. Genes identified as being differentially expressed were assessed

further in linear regression using gene expression data which was log-transformed

(log2).

Survival analysis was performed to identify gene expression patterns associated with

survival after starting chemotherapy. Survival analysis was performed on 25th April

2012 and data was censored on this date. The Cox proportional hazards model was

used to calculate hazard ratios and 95% confidence intervals for each gene using log-

transformed data (log2). Despite transformation, the distribution of data was not normal,

therefore analysis was repeated using expression levels split into eight groups and

survival analysis was repeated using this categorical variable. Significance values were

ranked to identify genes most associated with survival.

Analyses were performed unadjusted and adjusted for prognostic factors in stage IV

disease according to the AJCC staging guidelines [58]. Patients were classified based

on sites of disease and LDH level at start of chemotherapy into M1a (distant skin,

subcutaneous or nodal metastases), M1b (lung metastases) or M1c (all other visceral

metastases or any distant metastasis with elevated LDH level) groups. Regression and

survival analyses were adjusted by this variable (sub-stage) to identify genes

independently associated with chemotherapy response or survival after starting

chemotherapy. Furthermore, survival analysis was adjusted for chemotherapy

response for genes of interest in multivariate analyses.

For these analyses, gene expression from the first available tumour sample was used,

in some cases this was a primary tumour in others a metastatic specimen. As gene

expression profiles are likely to differ between primary and metastatic tumours,

analyses were repeated for primary tumours and metastatic tumours separately. A

minority of patients received combination chemotherapy with an additional agent being

given alongside DTIC or TMZ. Analysis was repeated for patients receiving DTIC or

TMZ monotherapy only to assess differences in gene expression profiles specific to

monotherapy. In view of the multiple testing involved in this study, a stringent

significance value of 0.001 was set for the described analyses.

8.7.2 Results

8.7.2.1 Performance of the Fluidigm system

8.7.2.1.1 Reproducibility of replicate samples

As described above, the calibrator sample was RNA extracted from a melanoma

sample. cDNA was synthesised from this sample and an aliquot of cDNA was used in
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the STA reaction with test samples that were assessed with the calibrator sample on

each Fluidigm array. The calibrator sample was used on all nine Fluidigm arrays and

the Ct values for the 48 genes correlated very well across the arrays (Spearman’s rho

0.97-1.00, all significance values <0.00001) (Figure 8-3).

These results show that reproducibility was excellent across the arrays even when

samples were amplified separately.

Figure 8-3: Scatter plot showing correlation between two replicate samples

assessed on two separate Fluidigm qRT-PCR arrays.

Mean cycle threshold values from replicate samples are plotted for expression of

each gene for the calibrator sample. Abbreviation used: Ct, cycle threshold.

8.7.2.1.2 Control samples

All the control samples where water was used instead of STA product in the qRT-PCR

reaction failed to amplify for any assays as expected. However, some RT negative

controls used in the STA reaction and no template samples that had undergone STA

amplified for some of the genes assessed. These control samples were assessed

across a number of arrays, and amplification was seen in a different spectrum of genes

on each array with no amplification seen for many genes assessed. Across the arrays,

the only two genes where amplification was repeatedly seen were for GAPDH and

TOP1. For all genes, the Ct values generated for the control samples were much

higher than those for the test samples: no template control mean Ct values were 12.9
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cycles higher (range 2.7-22.1) and RT negative control mean Ct values were 5.3 cycles

higher than test samples (range 2.8-12.9). Review of the melt curves from these

control samples showed a product melting at a lower temperature than the test

samples indicating the formation of primer-dimers. For test samples, no primer-dimer

peaks were noted. The formation of primer-dimers only appeared to occur when control

samples had been through the STA process and did not appear consistently for the

majority of genes across the arrays, the exceptions being GAPDH and TOP1. This

phenomenon may be reducing the accuracy of the qRT-PCR data and needs to be

acknowledged. GAPDH was not used in further analysis, however TOP1 is a gene of

interest and therefore, results from this assay should be interpreted with caution.

8.7.2.2 Gene expression analysis

8.7.2.2.1 Samples

From the 416 tumour samples assessed using the Fluidigm system, 41 samples were

not used in the analysis as they failed eight or more of the gene expression assays

assessed. Therefore, 375 (90%) tumour samples yielded gene expression data . Three

samples were removed from further analysis as they either represented a replicate

sample or were samples from a metastasis removed on the same day as another

metastasis. A further seven patients did not have stage IV disease when they received

chemotherapy and two patients proved not to have received DTIC or TMZ. Thus gene

expression data from a total of 363 tumours was analysed (summarised in Table 8-6).

Sample type

Single sample per patient, number (% per total no. patients) 204 (76)

Patients with multiple samples, number (% per total no. patients):

2 samples, number (% of multiple samples)

3 samples, number (% of multiple samples)

4 samples, number (% of multiple samples)

5 samples, number (% of multiple samples)

8 samples, number (% of multiple samples)

66 (24)

50 (76)

10 (15)

4 (6)

1 (1.5)

1 (1.5)

Total number patients 270

Total number of samples 363

Table 8-6: Summary of samples from the Chemotherapy study assessed using

qRT-PCR of DNA repair genes.

The number of patients from whom tumour samples were assessed is presented

along with the number of samples. Multiple samples were from single patients as

indicated in the table.
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For the identification of genes associated with chemotherapy response and survival

following start of chemotherapy, the first sample available from each patient was

analysed so that some were primary tumours and others metastases (Table 8-7). A

total of 270 patients were involved in this analysis.

Tumour or patient characteristic Number or median (% or range)

Type of tumour used for primary analysis:

Primary

Metastasis

89 (33.0)

181 (67.0)

Treatment received:

Dacarbazine

Dacarbazine with other chemotherapy

Temozolomide

133 (49.3)

61 (22.6)

76 (28.1)

Response to chemotherapy:

Progressive disease

Stable disease

Partial response

Complete response

No data available

143 (53.0)

46 (17.0)

25 (9.3)

11 (4.1)

45 (16.7)

AJCC staging IV subgroup:

M1a

M1b

M1c

Missing data

11 (4.1)

22 (8.2)

222 (82.2)

15 (5.6)

Survival status:

Alive

Died

48 (17.8)

222 (82.2)

Survival from start of chemotherapy, years 0.6 (0.003-7.1)

Table 8-7: Summary tumour and patient characteristics for samples used in the

primary analysis for the Chemotherapy study.

See text for further description of AJCC subgroups for stage IV disease.

Abbreviation used: AJCC, American Joint Committee on Cancer.

8.7.2.2.2 Summary characteristics of patients and tumours assessed

Table 8-7 summarises the characteristics of the samples and patients in the primary

analysis for this study. The majority of samples used for the primary analysis were

metastatic samples (67%). The largest proportion of patients received DTIC alone

(49%), however 23% of patients treated in Europe received DTIC in combination with

other chemotherapies, these being the platinum containing agents, cisplatin or

carboplatin. Response data were available for 83% of patients, with the majority
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progressing despite chemotherapy treatment (53%). Response data were missing for

17% of patients, usually because the patients deteriorated clinically or died before an

assessment of response was made. The majority of patients had stage M1c disease

(82%) and 82% of patients had died at the time of analysis.

Gene expression profiles are likely to be different in primary and metastatic tumour

specimens from the same patient (see Chapter 5)[510]. Therefore, assessment of gene

expression in a mixture of primary and metastatic specimens reduces the power of the

study to identify expression patterns specific to either primary or metastatic tumours

alone. Based on the power calculations and assumptions described in section 8.5.4, for

the 270 patients currently involved in this study, we have 93-100% power at a 0.001

significance level to detect a difference in gene expression level across a range of DNA

repair genes. Calculations have been repeated assessing primary and metastatic

tumours separately; for 89 primary samples there is only 28-80% power and for 181

metastatic specimens, this increases to 72-100%. As recruitment to this study

continues, numbers of primary and metastatic samples available for analysis will

increase, so increasing the power of these subgroup analyses.

8.7.2.2.3 Genes associated with response to chemotherapy

Table 8-8 presents the 10 genes most associated with response to chemotherapy in

the whole dataset, primary tumours, metastatic tumours and patients treated with DTIC

or TMZ monotherapy only. Of the 43 DNA repair genes assessed, the gene with

expression most significantly associated with failure to respond in the whole dataset,

metastatic samples and patients treated with DTIC/TMZ monotherapy only was MGMT

(Cuzick test for trend in the whole dataset z=-4.2, p=0.00003). Figure 8-4 shows gene

expression levels for MGMT across the response groups. Expression was greatest in

tumours from patients who did not respond to therapy compared to those with stable

disease, partial or complete responses. MGMT expression remained significantly

associated with response to chemotherapy when analysis was adjusted for sub-stage

at start of chemotherapy treatment in linear regression analysis (regression coefficient -

0.75 (95% CI -1.08 - -0.42), p=0.00001).

When primary tumours were analysed alone, MGMT was less associated with

response (Cuzick test for trend z=-2.5, p=0.01) with a smaller fold change between

tumours from patients with progressive disease compared with patients who responded

(fold change 1.16, compared to 1.46 for the whole dataset and 1.66 for metastases

only). In this group, expression of MLH1 was most associated with chemotherapy



All samples (n=225) Primaries only (n=73) Metastases only (n=152) Monotherapy only (n=165)

Gene
Fold

difference
P-value Gene

Fold
difference

P-value Gene
Fold

difference
P-value Gene

Fold
difference

P-value

MGMT 1.46 0.00003 MLH1 1.25 0.002 MGMT 1.66 0.0008 MGMT 1.44 0.0003

XPA 1.32 0.02 ERCC4 1.36 0.003 PCNA 1.72 0.02 XPA 1.36 0.002

PCNA 1.39 0.07 MGMT 1.16 0.01 BLM 1.45 0.04 ERCC4 1.19 0.009

XRCC5 1.06 0.07 LIG1 0.82 0.02 PARP1 1.18 0.12 MSH6 0.78 0.05

PRKDC 1.02 0.08 TOP1 0.81 0.02 PRKDC 0.97 0.16 MLH1 1.19 0.05

LIG1 0.92 0.09 XPA 1.46 0.02 NBN 1.31 0.21 POLB 0.97 0.06

PARP1 1.13 0.14 POLB 0.81 0.06 MUS81 0.86 0.23 PRKDC 1.01 0.07

NBN 1.20 0.16 BLM 0.90 0.09 XRCC5 1.10 0.24 CHEK1 1.42 0.10

POLB 0.93 0.16 RPA1 1.21 0.09 TOP2A 1.45 0.25 APEX1 1.11 0.11

CHEK1 1.36 0.23 TOP2B 1.10 0.10 XPA 1.26 0.26 XRCC5 1.07 0.11

Table 8-8: Top 10 genes associated with chemotherapy response in the whole dataset and then primary tumours, metastases and patients

treated with dacarbazine or temozolomide monotherapy only.

Significance values are from the Cuzick test for trend across four response groups (progressive disease, stable disease, partial and complete

response). Fold differences are for gene expression in tumours from patients with progressive disease compared with those in which any

response was reported. Abbreviations used: n, number.
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Figure 8-4: Box-plots showing MGMT gene expression in tumours responding

differently to chemotherapy.

response (Cuzick test for trend z=-3.1, p=0.002) followed by ERCC4 (Cuzick test for

trend z=-3.0, p=0.003). The pilot study showed that the amplification efficiency of the

MLH1 assay was not comparable with the endogenous control genes assessed on the

array, therefore it must be acknowledged that the accuracy of the results for this assay

are questionable. There was no association between expression of MLH1 and ERCC4

with response in metastases (MLH1 p=0.68, ERCC4 p=0.77). In metastatic tumours,

PCNA was differentially expressed in tumours from non-responders (Cuzick test for

trend z=-2.4, p=0.02), but not in primary tumours (p=0.85). These findings suggest that

patterns of gene expression associated with treatment response are different in

primary and metastatic samples. This is not surprising but suggests that the value of

predictive biomarkers will be stage specific.

Overall, the majority of the DNA repair genes assessed were over-expressed in

tumours from patients who progressed compared to those who responded (Table 8-8).

There are exceptions to this, for example LIG1 was under-expressed in primary

tumours from patients who progressed with chemotherapy treatment.

8.7.2.2.4 Genes with expression associated with survival after starting chemotherapy

Figure 8-5 presents a Kaplan-Meier plot for survival after starting chemotherapy for

patients in the study, showing the association between response to chemotherapy and
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survival time. As expected, patients with a complete response to chemotherapy

survived longer (median survival time 2.2 years (range 0.6-4.0)) than those with a

partial response (1.1 years (range 0.3-5.4)), stable disease (0.8 years (range 0.2-3.2))

or progressive disease (0.5 years (range 0.003-5.4)) (log-rank test χ2(3) 31.7,

p<0.00001).

Figure 8-5: Overall survival following start of chemotherapy according to

response to chemotherapy treatment.

Table 8-9 lists the genes with expression most associated with survival in analysis

adjusted for the sub-stage of disease at start of chemotherapy treatment, being the

strongest prognostic factor in stage IV disease. Results of survival analysis were

compared using log2 transformed gene expression and data split into a categorical

variable. The gene lists were similar and the results presented are from the analysis of

log2 transformed gene expression data.

In view of the association between MGMT expression and chemotherapy response and

survival, the gene was assessed in further detail. Multivariate survival analysis was

performed further adjusting for the effect of chemotherapy response as this factor

significantly influences survival as shown in Figure 8-5. Results of these analyses are

presented in Table 8-10.
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In the larger dataset, increased expression of ATM (hazard ratio (HR) for doubling of

gene expression 1.30 (95% CI 1.10-1.52), p=0.002), MGMT (Table 8-10), PRKDC (HR

1.34 (95% CI 1.08-1.65), p=0.007) and PARP1 (HR 1.33 (95% 1.08-1.64), p=0.008)

were most associated with reduced overall survival time after starting chemotherapy.

However, these genes were not significantly associated with survival (p<0.001) when

correction is made for multiple testing. In multivariate analysis, MGMT expression

remained associated with shorter survival when analysis was adjusted for prognostic

factors relevant in stage IV disease (stage subset) and when adjusted further, for the

influence of chemotherapy response (Table 8-10).

Again, there appeared to be a difference in the pattern of gene expression associated

with survival in primary tumours compared to metastatic specimens, with MGMT over-

expression associated with larger hazard ratios (HRs) in primary samples compared to

metastatic specimens. Expression in primary tumours is more significantly associated

with survival when adjusted for stage and response to chemotherapy (Table 8-10).

MSH2 and PARP1 over-expression were associated with reduced survival in

metastatic specimens (MSH2 HR 1.44 (95% CI 1.18-1.77), p=0.0004; PARP1 HR 1.37

(95% CI 1.08-1.75), p=0.01). However, there were no associations found between

these genes and survival in primary tumours (MSH2 HR 0.66 (95% CI 0.43-1.03),

p=0.07; PARP1 HR 1.16 (95% CI 0.77-1.76), p=0.48).

Over-expression of ATM appeared to influence survival in both primary (HR 1.40 (95%

CI 1.02-1.91), p=0.04) and metastatic tumours (HR 1.25 (95% CI 1.03-1.51), p=0.02).

Analysis of patients receiving DTIC or TMZ monotherapy showed associations

between expression of PRKDC (HR 1.35 (95% CI 1.09-1.67), p=0.007) and survival,

with MGMT (Table 8-10) and ATM (HR 1.15 (95% CI 0.95-1.39), p=0.15) not

associated with survival in this sample set.

The majority of DNA repair genes were over-expressed in tumours from patients who

had died compared to those who remain alive. Exceptions to this are POLH and POLB

which were under-expressed in tumours from patients who had died and greater

expression of these genes was associated with longer overall survival time (all data

POLB HR 0.81 (95% CI 0.69-0.96), p=0.01; primaries only POLB HR 0.67 (95% CI

0.48-0.95), p=0.02, POLH HR 0.72 (95% CI 0.54-0.95), p=0.02).



All samples (n=270) Primaries only (n=89) Metastases only (n=181) Monotherapy only (n=209)

Gene
Fold

difference
P-value Gene

Fold
difference

P-value Gene
Fold

difference
P-value Gene

Fold
difference

P-value

ATM 1.40 0.002 MGMT 2.31 0.01 MSH2 1.34 0.0004 PRKDC 1.24 0.007

MGMT 1.51 0.006 POLH 0.79 0.02 PARP1 1.36 0.01 ATR 1.08 0.04

PRKDC 1.06 0.007 POLB 0.83 0.02 PRKDC 1.16 0.01 PARP1 1.24 0.05

PARP1 1.30 0.008 ATM 1.50 0.04 RAD54L 0.96 0.02 PMS2 1.01 0.07

POLB 0.81 0.01 OGG1 0.86 0.06 ATM 1.33 0.02 TOP1 0.83 0.08

MSH2 1.19 0.02 ERCC4 1.14 0.06 ATR 1.36 0.02 BRCA2 0.84 0.09

RAD54L 0.89 0.04 MSH2 0.94 0.07 ERCC2 0.97 0.06 MGMT 1.35 0.09

ATR 1.11 0.04 TOP1 0.74 0.09 CHEK2 1.55 0.07 ERCC4 1.13 0.09

MLH1 1.06 0.05 ERCC1 1.02 0.17 POLB 0.79 0.09 MSH2 1.17 0.10

ERCC2 0.89 0.08 XRCC6 1.37 0.19 TOP2A 1.19 0.09 RAD54L 1.30 0.12

Table 8-9: Top 10 genes associated with survival after starting chemotherapy in the whole dataset and then primary tumours, metastases

and patients treated with dacarbazine or temozolomide monotherapy only.

Significance values were from a Cox proportional hazards model adjusting for sub-stage at start of therapy. Fold differences in expression are

for tumours from patients who had died/alive patients. Abbreviations used: n, number.
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Unadjusted analysis
Adjusted for sub-stage at start of

chemotherapy
Further adjusted for response to

chemotherapy

Hazard ratio
(95% CI)

Significance value
Hazard ratio

(95% CI)
Significance value

Hazard ratio
(95% CI)

Significance value

Whole dataset 1.10 (1.03-1.18) 0.007 1.12 (1.03-1.21) 0.006 1.10 (1.01-1.20) 0.03

Primaries only 1.13 (0.98-1.31) 0.08 1.24 (1.05-1.46) 0.01 1.27 (1.05-1.53) 0.01

Metastases only 1.09 (1.01-1.18) 0.03 1.07 (0.98-1.17) 0.11 1.06 (0.96-1.16) 0.25

Monotherapy only 1.05 (0.97-1.14) 0.24 1.08 (0.99-1.19) 0.09 1.05 (0.94-1.17) 0.42

Table 8-10: Results of multivariate survival analysis assessing the relationship between MGMT gene expression and survival after starting

chemotherapy in the whole dataset and then primary tumours, metastases and tumours from patients who received DTIC/TMZ

monotherapy only.

Hazard ratios and 95% confidence intervals are from the proportional hazards model and represent risk of death for doubling of MGMT gene

expression. Analysis is presented without adjustment, adjusted for sub-stage at start of chemotherapy and further adjusted for response to

chemotherapy. Significant results are highlighted in bold. Abbreviations used: CI, confidence interval.
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8.8 Discussion

8.8.1 Gene expression profiling in FFPE primary melanoma

tumours

This chapter has described use of a number of gene expression profiling platforms,

namely the DASL assay, a customized Taqman Array microfluidic qRT-PCR card

(the Chemo-sensitivity Gene Expression Array, CGEA-1) and the Fluidigm qRT-

PCR system. The DASL assay is discussed in detail in Chapter 3, I will concentrate

on the other gene expression profiling systems for this discussion.

The analysis of samples using the CGEA-1 array was performed at the

Translational Oncology Research Centre, Queen Alexandra Hospital in Portsmouth.

Therefore, my assessment of sample performance was limited, however Table 8-2

lists the variable and limited number of useable results from the total of 31 samples

sent for analysis, indicating that FFPE melanoma samples did not perform well with

this assay. For the Fluidigm platform, stringent criteria (failing 8 or more assays)

were used to exclude samples from further analysis. This system, using a pre-

amplification step, yielded useable gene expression data from 90% of tumours.

There was also excellent reproducibility between gene expression results from

replicate samples on each array and across arrays. Therefore, the Fluidigm system

performed well, however it is possible that the CGEA-1 array would also have

performed better if pre-amplification of samples had been performed [348].

Despite the good performance of the Fluidigm assay, there was amplification of

control samples in which no cDNA was present and RT negative cDNA control

samples that had been pre-amplified. The spectrum of genes where amplification

was seen differed across the arrays with Ct values in control samples being greater

than test samples. Review of control sample melt curves indicated the formation of

primer-dimers which melt at a lower temperature compared to the specific gene

product. Pre-amplification increases copies of target cDNA using pooled primers for

use in the qRT-PCR experiment. It has been shown that this process does not

introduce bias and decreases Ct values, so improving data quality [316, 348]. To

improve reproducibility between sample replicates for this work, the number of pre-

amplification cycles was increased to 22. This, in combination with a lack of

template cDNA in control samples has led to formation of primer-dimers. As

EvaGreen binds non-specifically to double-stranded DNA [350], it will not

distinguish primer-dimers from the specific PCR product. However, formation of
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primer-dimers is dependent on the cDNA concentration, so when no template is

present, as in control samples, primer-dimers are formed, but when template is

present at higher concentration, the specific product predominates [781, 782]. This

is supported by there being no primer-dimer peaks in test samples. Formation of

primer-dimers will reduce the accuracy of the PCR reaction as fluorescence from

these products will be detected by data collection software and there will be

competition for reaction components between the two products [781, 783, 784].

Amplification was repeatedly seen for GAPDH and TOP1, and ideally these assays

need to be redesigned to remove this problem. Use of Taqman® based assays with

the additional gene specific probe would also reduce amplification detected in

association with primer-dimers [349, 783, 784]. The accuracy of this experiment

does not appear to be severely compromised by this issue as the reproducibility in

the Ct values from the calibrator sample, which was amplified in separate pre-

amplification reactions, was excellent when assessed across different arrays

(Spearman’s rho 0.97-1.00, all significance values <0.00001).

Overall, the Fluidigm platform has worked well in an experiment where gene

expression for a limited number of genes has been assessed in a large number of

samples. The main advantage of this system is the speed with which samples can

be processed, a total of 416 RNA samples have been assessed in a total of 82,944

PCR reactions. Over 850 96-well plates and significant amounts of time would be

needed to perform this study using qRT-PCR methods described in Chapter 4,

therefore we plan to use this system for further gene expression studies within our

group, but refining the technique to reduce apparent amplification of control wells.

8.8.2 DNA repair gene expression and response to chemotherapy

Results from chemotherapy response data suggest that identification of predictive

gene expression profiles is possible using FFPE primary melanoma tumours. In the

small sample set assessed using the DASL assay, over-expression of RAD51 and

TOP2A were associated with poor response to chemotherapy. Using the CGEA-1

array, there was increased expression of genes involved in removal of direct DNA

damage (MGMT), base-excision repair, nucleotide excision repair and DNA non-

homologous end joining [497] in tumours unresponsive to chemotherapy,

suggesting that DNA repair genes involved in other pathways are also relevant. In

contrast, genes encoding proteins involved in apoptosis, cellular proliferation and

membrane drug pumps exhibited both increased and decreased expression in non-

responding tumours. Gene expression studies assessing multiple genes in
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melanoma tumours have previously been small, and not designed to identify

predictive markers, therefore the Chemotherapy study was designed to address

this hypothesis in a larger sample set and allow more detailed analyses of the

relationship between DNA repair genes and response.

In the larger study, over-expression of MGMT was most significantly associated

with progression following chemotherapy treatment and associated with shorter

survival after start of chemotherapy. The association between MGMT expression

appeared however to be more complex than has been previously reported and this

dataset has allowed some assessment of the relationship between expression in

primary and metastatic tumour specimens and treatment response. Expression of

MGMT appeared to be more closely related to chemotherapy response in

metastatic specimens compared to primary tumours. This would be expected as

DTIC is used to target metastatic disease which is likely to have undergone

profound genetic alterations compared to the primary tumour in the path to

metastasis and expression patterns in primary tumours are less likely to directly

influence chemotherapy response in metastatic disease. In survival analysis from

start of chemotherapy, the association between MGMT expression and shorter

survival in the larger dataset appears to be driven more by expression in primary

tumours. However, greater expression in metastatic tumours is associated with

shorter survival and HRs for survival in the larger dataset, primary and metastatic

tumours remain similar in multivariate analysis adjusting for sub-stage and

chemotherapy response.

This study has used sensitive qRT-PCR gene expression analysis. Activity of

MGMT can be measured to determine the number of active molecules and this

level correlates with protein and mRNA levels [785]. However, MGMT activity

assays have been reported by others to be inaccurate due to contamination by

MGMT positive leucocytes or endothelial cells and immunohistochemistry can be

highly subjective [786, 787]. Use of qRT-PCR to assess gene expression is more

accurate, however it has been shown that there is variation in MGMT expression

within melanoma tumours due to heterogeneity, with some areas expressing high

levels and others none [788]. Therefore, using a tissue microarray needle, as in this

study, to sample a specific area of tumour may not accurately reflect the overall

expression.

MGMT expression is determined by activity of transcription factors, but also the

methylation status of the MGMT promoter, with methylation decreasing expression,

and methylation within the gene, leading to greater expression [756, 785, 789]. The
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positive association between MGMT expression and TMZ treatment response has

been previously noted in melanoma cell lines and the authors of this study found

that this relationship is stronger than a gene expression signature generated using

microarray analysis [265]. A study of frozen metastatic tumour specimens from 75

patients showed that lower expression of MGMT was associated with better

response to DTIC and longer survival [756]. The authors also noted a association

between metastatic tumour MGMT expression and the Breslow thickness of the

primary tumour [756]. Similar results have been found with regards to protein

expression, with lower expression of MGMT in metastatic specimens correlating

with response to DTIC [270].

As reviewed in the introduction, there have been many studies showing no

association between MGMT activity [268, 269], protein expression [270], gene

silencing by promoter methylation [271, 758] and MGMT polymorphisms [267] and

response to TMZ or DTIC in melanoma. It has been suggested that this lack of

association is due to silenced apoptotic pathways, so despite formation of O6-

methylguanine, which lead to double-stranded breaks in DNA, apoptosis does not

occur [785, 790, 791]. The current study confirms that there is a significant

association between MGMT expression levels and chemotherapy response in

melanoma tumours.

In the current analysis, examples of other genes associated with chemotherapy

response in primary tumours were MLH1 and ERCC4. PCNA and XPA were

differentially expressed in association with chemotherapy response in metastatic

specimens, the larger dataset and those who received monotherapy with DTIC or

TMZ only. What is notable is that over-expression of all of these genes are

associated with poorer response to chemotherapy and that these genes are

involved in many DNA repair pathways and processes, namely mismatch repair

(MLH1), nucleotide excision repair (ERCC4 and XPA) and PCNA is a DNA

polymerase related gene [482, 497, 499, 767, 768]. This suggests that resistance to

DTIC or TMZ reflects a general over-expression of DNA repair genes, which would

be consistent with the data from the CGEA-1 array and the hypothesis that over-

expression of DNA repair genes related to maintaining genomic integrity also

causes resistance to chemotherapy [177, 264]. The situation is similar for genes

with expression associated with survival. Examples of genes other than MGMT in

the larger dataset are ATM, a gene defective in ataxia telangiectasia where DNA is

sensitive to DNA damaging agents, PRKDC which is involved in non-homologous

end joining and PARP1 which is active in base excision repair [482, 497, 499, 767,

768]. ATM is particularly interesting as single nucleotide polymorphisms in this
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gene have been associated with susceptibility to melanoma in genome-wide

association studies [792]. Again, over-expression is associated with shorter survival

and many pathways are involved, suggesting a generalised response of DNA repair

mechanisms associated with resistance.

The differences between the genes identified as involved in chemotherapy

response and those associated with survival suggests that survival is modified by

other factors, not associated with chemotherapy response. The survival analysis

presented adjusts for prognostic factors in stage IV disease (stage subset),

however there are clearly other factors which will modify survival in this very poor

prognosis group, including chemotherapy toxicity, co-morbidities, but also the

prognostic influence of gene expression. The survival analysis presented includes

all patients treated with chemotherapy, however the response analysis did not

include 17% of patients for whom response data was not available. For the majority

of patients this was because they deteriorated clinically or died before a formal

assessment of response could be made, therefore survival analysis is reflecting

expression of genes associated with early deaths which will not be associated with

chemotherapy response. Twenty-three percent of patients involved in this analysis

received DTIC or TMZ along with another chemotherapy, these being platinum-

containing chemotherapies. In response analysis, the two genes associated with

response in the larger dataset and the smaller set of patients treated with DTIC or

TMZ monotherapy only were MGMT and XPA. This suggests that results in the

larger dataset reflect genes associated with DTIC or TMZ response. Different genes

were associated with survival compared to response data in the monotherapy

group, again reflecting the different patients and end-points used in these analyses

as discussed above.

This study represents the most comprehensive assessment of DNA repair gene

expression in association with chemotherapy response for melanoma, the

preliminary results of which are described in this chapter. Currently, there are a

number of limitations to this study. I have assessed genes associated with

response and also those associated with survival after starting chemotherapy. The

different results from these analyses reflect that survival is also assessing the role

of DNA repair genes as prognostic biomarkers, for which there is large amounts of

evidence as described in Chapter 4 [177, 264, 335, 505]. Further analysis is

required to unravel the prognostic and predictive nature of DNA repair gene

expression and this will be explored. Other limitations are the use of both primary

and metastatic specimens and patients who have received other chemotherapies in

addition to DTIC or TMZ to identify chemotherapy response genes. This reduces
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the power of the study to identify genes associated with chemotherapy response in

these subgroups. Recruitment to the study continues and analysis will be repeated

when further samples are available. A further significant limitation is the quality of

response data available for this study. A small proportion of patients recruited were

involved in clinical trials and trial data will be accessed to obtain response data

according to RECIST criteria and analysis repeated for this subset of patients.

However, for other patients, response data have come from a number of sources,

across the UK and Europe. Where possible, response from imaging has been

recorded to RECIST standards, however there is likely to be much variability in

reporting across centres. Central radiological review of imaging would ensure

consistency and this will be explored. Finally, there are likely to be biological

determinants of DNA repair gene expression that have not been explored in

melanoma. It will be important to fully characterise the tumours used in this study,

for example by assessing BRAF and NRAS mutation status, to allow further

assessment of DNA repair genes associated with chemotherapy response in

different biological subgroups. The ability to perform these subgroup analyses is

dependent on number of tumour samples available, therefore recruitment

continues.

The results presented in this chapter are preliminary, however this chapter

demonstrates the potential of this study to identify determinants of chemotherapy

response. The collection of matched primary and metastatic tumour samples will

allow further assessment of how gene expression changes as a tumour progresses.

Despite these study limitations, it is clear that MGMT expression is important in

chemotherapy response and survival. Clinical trials aiming to deplete or inactivate

MGMT have not shown positive results [271-273, 759], however further

investigation into use of MGMT expression levels as a biomarker are warranted

based on my data. In particular further investigation into the different effects in

primary and metastatic tumours would be of interest.

In summary, in this large scale assessment of gene expression profiles in FFPE

primary melanomas I have identified over-expression of DNA repair genes in a

variety of pathways as being associated with poorer responses to chemotherapy. In

particular, over-expression of MGMT is associated with poorer responses to DTIC

and TMZ and shorter survival after starting chemotherapy treatment. Although new

therapeutic agents are effective for the treatment of melanoma, it is very likely that

a role for DTIC will remain and the identification of predictive biomarkers will remain

of crucial importance.
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9 Final discussion

Current prognostic markers in the form of the American Joint Committee on Cancer

(AJCC) staging criteria [58] are inadequate for a subset of patients with malignant

melanoma [121, 134]. The work summarised in this thesis was designed to identify new

prognostic markers in nucleic acids extracted from formalin-fixed paraffin-embedded

(FFPE) melanoma tissue. An important aim of the work was to show that stored

samples from mature studies might be used in a similar way in other cancer studies in

the future.

The presence of BRAF mutations is predictive of response to the newer targeted

therapies, inhibitors of mutant BRAF (BRAFi) but these need to be improved to predict

resistance. There is also a need for predictive biomarkers in melanoma for older

treatments such as chemotherapy with dacarbazine (DTIC) and identification of

biomarkers and genes involved in treatment responses to these drugs has also been

assessed in this thesis. To identify biomarkers and gain insight into tumour biology, I

have used novel technologies to assess genetic alterations in FFPE tissues. This

thesis presents an overview of my experience with these assays and detailed

methodological assessments.

9.1 Prognostic biomarkers

Previous studies using microarray technology to assess gene expression have been

limited by the small number of samples assessed [161]. This thesis reports the

successful use of the cDNA-mediated annealing, selection, extension and ligation

(DASL) assay to identify prognostic markers in a large number of primary FFPE

melanoma tumours. This assay was developed especially for use on degraded RNA

from FFPE tumours. Chapter 3 describes the identification and validation of SPP1

using this technology as a gene whose expression was shown to be independently

associated with relapse-free survival. SPP1 codes for osteopontin. In multivariate

analysis adjusting for current prognostic factors, doubling of SPP1 gene expression

was associated with a 2.5 times increased risk of relapse. Identification of this

candidate has been previously reported to be associated with melanoma prognosis

using immunohistochemistry [163, 176, 793], which increased confidence that the

DASL assay was generating biologically relevant results and these data have been

published [187].
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I combined the test and validation datasets used this in work to produce more power

and this lead to the identification of over-expression of DNA repair genes, specifically

those involved in repairing double-stranded DNA breaks, as being associated with

shorter relapse-free survival time (Chapter 4). Expression of RAD52 and TOP2A were

independently prognostic in multivariate analysis. These data were consistent with

those produced previously by others using frozen samples [177, 178], providing further

support to the assay. Following publication of this work [505], a large study of primary

tumours using the whole-genome DASL assay was reported which confirmed the

prognostic importance of DNA repair gene expression [335]. I also assessed DNA

repair gene expression associated with poor histological features, namely tumour

thickness and mitotic rate in this chapter. This was further expanded in Chapter 7,

where differentially expressed genes were identified in ulcerated tumours and

discussed in reference to the prognostic and predictive influence of this tumour feature.

Factors shown to be associated with ulceration included down-regulation of genes

associated with cell adhesion, hypothesised to allow melanoma cells to dissociate from

keratinocyte mediated growth control. Deranged expression of fibroblast growth factors

and receptors, presence of lymphatic invasion, greater microvessel density and

macrophages were also associated with ulceration, all factors which may contribute to

the prognostic influence of this tumour feature.

I hypothesised that greater insight into the biological processes which determine nodal

metastases would be achieved by analysis of gene expression profiles in matched

primary and nodal specimens from the same patient. I report a pilot study designed to

assess the utility of the DASL assay to perform such an experiment using small FFPE

sentinel node biopsy samples was described in Chapter 5. In this limited analysis,

again deranged expression of fibroblast growth factors was identified in nodal

specimens compared to primary tumours, a finding that requires confirmation in a

larger sample set.

A final prognostic marker was identified in Chapter 6, as the presence of a V600K

BRAF mutation was shown to be associated with shorter relapse-free survival

compared with the V600E BRAF mutated tumours, NRAS mutated tumours and wild-

type specimens. This association in primary tumours remained independently

associated with relapse-free survival in multivariate analysis adjusted for current

prognostic factors, increasing risk of relapse 2.6 times. The importance of this finding

has been highlighted by a recent publication of similar results in a cohort of metastatic

tumour specimens [593].

To summarise, this thesis describes identification of statistically independent prognostic

tumour markers which add additional prognostic information to current staging criteria.
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Validation of these findings is at different stages, but previous reports associating

SPP1 and DNA repair gene expression to prognosis suggest that these are true

findings. Osteopontin protein expression has already been reported to be associated

with survival [163], and similarly investigation of protein expression of DNA repair

genes would be useful to support my gene expression findings. Validation of factors

association with ulceration and the prognostic effect of V600K BRAF mutations in

independent sample sets is required. This will be achieved by collaborations with other

groups and increasing the number of samples screened for mutations with

transcriptomic analysis from patients recruited to studies running in Leeds.

9.2 Predictive biomarkers

The topic of predictive markers has been addressed in Chapter 8, in which I described

studies in which over-expression of DNA repair genes, most significantly MGMT, was

associated with response to DTIC or TMZ therapy and survival after starting

chemotherapy. MGMT was confirmed to be associated with response and survival

when adjusted for current prognostic markers in stage IV disease. This analysis is

limited by the heterogeneous nature of the sample set and requires further

investigation when more samples are available.

In Chapter 7, I report work done to understand the biological associations with

ulceration status of the primary tumour as a predictive marker of response to interferon-

 (IFN) therapy. A number of factors were identified as being associated with ulceration

which may modify the response of a tumour to IFN therapy. Suppression of adaptive

immune responses by infiltration of macrophages, likely from the M2 phenotype, over-

expression of the pro-inflammatory gene, IL6, and deranged expression of genes

involved in the type 1 IFN Jak-STAT signalling pathway were demonstrated which may

all contribute to improved responses of ulcerated tumours to IFN.

Chapter 6 reports identified gene expression profiles associated with BRAF and NRAS

mutations in primary tumours. Results from this analysis provide some further insight

into the biological processes within mutated tumours, for example over-expression of

ETV1 was seen in BRAF mutated tumours. With regards to treatment with BRAFi,

these results may offer insight into mechanisms of resistance and further targets for

therapeutic intervention.

As discussed previously, validation of gene expression results associated with

ulceration and mutation status is being sought in collaboration with other groups and

samples in Leeds, which I hope will confirm the significance of these findings.
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9.3 Methodological assessments

This thesis includes extensive methodological assessments of technologies for gene

expression profiling and mutation detection in FFPE melanoma tumour samples

(Chapters 2-6 and 8). Results from gene expression profiling using the DASL assay

and the 502-gene Human Cancer panel have been used repeatedly in this thesis.

Results are reproducible and appear to be biologically relevant and use of this

technology has significantly enhanced progress in identification of prognostic gene

expression markers in melanoma in our group and another at the University of Lund

[187, 335, 445, 505]. Preliminary experiments with the whole-genome DASL HT assay

when that became available suggested that this assay was not sufficiently robust. I

identified a lack of reproducibility, highlighted the problem with the company and more

recently have studied a revised product and these studies now suggest that the assay

is reproducible (Chapter 2). The new product will be used for further gene expression

studies in the near future. Use of Taqman® gene expression assays and the Fluidigm

quantitative Real-time PCR (qRT-PCR) system have been assessed in detail using

FFPE melanoma tissue (Chapters 4 and 8). Both systems generate reliable results,

however I have shown that correct normalisation procedures are required to ensure the

accuracy of qRT-PCR data (Chapter 4) and when using a DNA binding dye, such a

EvaGreen, thorough assessment of melt curves and no template control samples will

allow accurate interpretation of data.

9.4 Limitations and future study

The greatest limitation of the work presented in this thesis is that gene expression

studies used a 502-gene Human Cancer panel for gene expression profiling rather than

a whole genome array. The genes on this panel were derived from 10 publically

available cancer gene lists. The limited number of genes assessed is biased which

limits use of further bioinformatics analysis as discussed in Chapter 4. Whole-genome

expression profiling allows a more agnostic approach, however it is likely that RNA-seq

technology will supersede microarray gene expression profiling in the near future as it

has many advantages, including detection of alternative splice variants and detection of

transcripts from gene fusion events [197, 198]. Further limitations are the current lack

of validation for many of my findings in independent sample sets. Other groups, for

example, Goran Jonsson at Lund University, Sweden, have now generated gene

expression data from large cohorts of well-annotated metastatic and primary melanoma

tumour specimens [180, 335] allowing validation of our findings and have agreed to test
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my findings in their data sets, this analysis is currently underway. In addition, a number

of publically available gene expression datasets with accompanying clinico-pathological

data are available, for example from Winnepenninckx and colleagues [178], which will

allow further validation of gene expression profiles, for example those associated with

ulceration. The samples assessed in this thesis are from a small proportion of patients

recruited to the Leeds Melanoma Cohort study described in Chapter 2. Gene

expression profiling and mutation screening will continue in samples from patients in

this study, allowing assessment of gene expression profiles identified in this thesis in

larger sample sets and validation in a further sample set.

The “Predicting Response to Chemotherapy in Malignant Melanoma” study continues

to recruit patients, which will increase numbers of samples available for further

evaluation of the use of expression changes in DNA repair genes as predictive

biomarkers, These samples will also allow analysis of subgroups within this

heterogeneous sample set. More extensive genomic characterisation, for example

BRAF and NRAS mutation screening, will define biological subgroups further.

Standardisation of reporting for imaging to assess chemotherapy response will also

improve the data quality for this study and this will be addressed.

The focus of this thesis has very much been on gene expression, however to further

explore biological function of alterations in gene expression, protein expression will

also need to be assessed. This is also relevant to the clinical use of biomarkers, as

currently use of qRT-PCR in a routine clinical setting with tissue samples is limited, with

immunohistochemistry (IHC) techniques being more frequently available. Tissue

sections are available from the samples in the Chemotherapy study and will be used

for IHC studies once candidate genes have been confirmed. For other studies, further

collaboration will be required to access tissue for IHC analyses.

This thesis has been successful in identifying prognostic tumour markers, which add

more to current staging algorithms in melanoma. I have also identified potential

predictive markers of response to DTIC or TMZ chemotherapy, with further data

helping to define biological processes in melanoma tumours. Use of these prognostic

and predictive markers could potentially assist clinicians and patients in making

informed choices about their melanoma treatment.
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10 Appendix I: Genes on the Human Cancer panel

Alphabetical Gene List

ABCB1 BTK CTSD ERCC1 FOSL2 IL13

ABCC2 CASP10 CTSL ERCC2 FRAP1 IL1A

ABCG2 CASP2 CUL2 ERCC3 FRZB IL1B

ABL1 CASP3 CXCL9 ERCC4 FVT1 IL1RN

ADPRT CASP8 CYP1A1 ERCC5 FYN IL2

AHR CAV1 CYP1B1 ERCC6 FZD7 IL3

AIM2 CBFA2T1 DAB2 ERG G22P1 IL4

AKT1 CBL DAP3 ESR1 GADD45A IL6

AKT2 CBLB DAPK1 ETS1 GAS1 IL8

ALK CCNA2 DCC ETS2 GAS7 ILK

ALOX12 CCNC DCN ETV1 GFI1 ING1

APAF1 CCND1 DDB2 ETV6 GLI INHA

APC CCND2 DDIT3 EVI1 GLI2 IRF1

AR CCND3 DDX6 EVI2A GLI3 ITGB1

ARAF1 CCNE1 DEK EXT1 GML ITGB4

AREG CCNH DKC1 EXT2 GRB2 JAK2

ARHA CD34 DLC1 FANCA GRB7 JUN

ARHGDIB CD44 DLEU1 FANCG GRPR JUNB

ARHH CD59 DLG3 FAT GSTP1 JUND

ARHI CD9 DMBT1 FER HCK KAI1

ARNT CDC2 DSP FES HDAC1 KDR

ATF1 CDC25A DTR FGF1 HDGF KIT

ATM CDC25B DVL3 FGF12 HIF1A KRAS2

AXL CDC25C E2F1 FGF2 HLF L1CAM

BAD CEBPA E2F2 FGF3 HMMR LAF4

BAG1 CHEK1 E2F3 FGF5 HOXA9 LAMB1

BAK1 COL18A1 E2F5 FGF6 HRAS LCK

BARD1 COL1A1 EGF FGF7 ICAM1 LCN2

BCL2 COL4A3 EGFR FGF8 IFNG LIF

BCL2A1 COMT EGR1 FGF9 IFNGR1 LIG1

BCL2L1 COPEB ELK1 FGFR1 IFNGR2 LIG3

BCL3 CREBBP ELK3 FGFR2 IGF1 LIG4

BCL6 CRK ELL FGFR3 IGF1R LMO1

BCR CRKL EMS1 FGFR4 IGF2 LMO2

BIRC2 CSF1R ENC1 FGR IGF2R LTA

BIRC3 CSF2 EPHA1 FHIT IGFBP1 LYN

BIRC5 CSF3 EPHB4 FLI1 IGFBP2 MAD

BLM CSF3R EPO FLT1 IGFBP3 MADH2

BMI1 CSK EPS15 FLT3 IGFBP5 MADH4

BMP4 CSPG2 EPS8 FLT4 IGFBP6 MAF

BRAF CTGF ERBB2 FOLR1 IL11 MALT1

BRCA1 CTNNA1 ERBB3 FOS IL12A MAP3K8

BRCA2 CTNNB1 ERBB4 FOSB IL12B MAPK10
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Alphabetical Gene List continued

MAPK14 MXI1 PLA2G2A RAP1GDS1 SYK TOP1

MAS1 MYB PLAG1 RAP2A TAL1 TOP2A

MATK MYBL2 PLAT RARA TCF7L2 TP53

MBD2 MYC PLAUR RARB TDGF1 TP73

MCAM MYCL1 PLG RASA1 TEK TPR

MCC MYCL2 PML RB1 TERT TRAF3

MCF2 MYCN PMS1 RBBP1 TFAP2C TRAF4

MCL1 NAT2 PNUTL1 RBBP2 TFDP1 TSC1

MDM4 NBS1 PPARD RBBP5 TFE3 TSC2

MDS1 NEO1 PPARG RBBP6 TFF1 TSG101

MEL NF1 PPP2R1B RBL2 TFG TYMS

MEN1 NFKB1 PRCC RECQL TFRC TYRO3

MET NFKB2 PRKAR1A REL TGFA VAV1

MLF1 NFKBIA PRKR RELA TGFB1 VAV2

MLF2 NGFR PTCH RET TGFB2 VBP1

MLH1 NOS3 PTCH2 RIPK1 TGFB3 VEGF

MLL NOTCH1 PTEN RLF TGFBI VEGFB

MLLT3 NOTCH2 PTGS1 ROS1 TGFBR1 VHL

MLLT4 NOTCH4 PTGS2 RRAS TGFBR2 VIL2

MLLT6 NQO1 PTHLH S100A4 TGFBR3 WEE1

MMP1 NRAS PTK2 SEMA3F THBS2 WNT1

MMP10 NTRK1 PTK7 SERPINE1 THPO WNT10B

MMP14 NTRK2 PTPRF SH3BP2 TIAM1 WNT2

MMP2 NTRK3 PTPRG SHH TIMP1 WNT2B

MMP3 NUMA1 PTPRH SIAH1 TIMP2 WNT5A

MMP7 OGG1 PURA SKI TIMP3 WNT8B

MMP9 OSM PXN SKIL TK1 WRN

MOS PBX1 QARS SMARCA4 TNF WT1

MPL PCNA RAD23A SMARCB1 TNFAIP1 XPA

MRE11A PCTK1 RAD50 SOD1 TNFRSF10A XPC

MSF PDGFA RAD51 SPARC TNFRSF10B XRCC1

MSH2 PDGFB RAD52 SPI1 TNFRSF1A XRCC2

MSH3 PDGFRA RAD54B SPP1 TNFRSF1B XRCC4

MSH6 PDGFRB RAD54L SRC TNFRSF5 XRCC5

MST1R PGF RAF1 STAT1 TNFRSF6 YES1

MTA1 PGR RALB STAT3 TNFSF10 YY1

MTHFR PIK3CA RAN STAT5B TNFSF6 ZNF146

MUC1 PIM1 RAP1A STK11 TNFSF8 ZNFN1A1
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