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1. Introduction 

 

 The first stage of the transformation of the airline industry appeared with the 

Airline Deregulation Act of 1978. Post-deregulation, new carriers have emerged and 

new routes have opened up which connected cities never previously linked by a direct 

flight. The performance of airline carriers is now a subject of central debate. With 

competition having increased in many airline markets across the world, and now being 

at an all-time high, demand for premium travel services (particularly first-class seating) 

has suffered a significant decline. In addition, the rapid expansion of low cost carriers 

(LCCs) has drastically altered the nature of competition within the traditional airline 

industry (Brueckner et al., 2013). This is particularly the case on shorter-haul routes 

and has caused regional airlines to react or (in some cases) to fail. Rising labour costs 

and fluctuating fuel prices impact all airlines. Fuel is now approximately 30-40% of 

airlines costs (Zou and Hansen, 2012), compared to 13% in 2001. The significant rise 

and ongoing volatility in jet fuel costs further complicates the situation where the 

strategic response can take many forms, but all involve improving cost efficiency. 

More than at any time in the past, this has made efficiency a top priority for airline 

management (Merkert and Hensher, 2011). While cost management has always been 

an important part of airline administration, in recent years it has become a crucial part 

of the airline survival strategy. In the decade following the September 11
th

 attacks in 

2001, U.S. airlines have shown considerable resilience (all of the legacy carriers have 

received government support and have undergone Chapter 11 restructuring); with 

most having recently been able to improve their financial position and return to 

profitability as a result of significant consolidation and capacity discipline (IATA, 

2014).  However, it remains too early to tell if more airlines have yet to face financial 



 

 

2 

difficulties or will be forced into further merger and acquisition activity. While 

initiatives to reduce costs are not unusual in the course of economic recessions, the 

efforts carried out by the airline industry have been considered extreme. These efforts 

have included scaling back workforces, changes to service and wage reductions from 

employee groups. Furthermore, these airlines have had to restructure themselves 

considerably, financially as well as operationally, regardless of whether they pursued 

bankruptcy protection or not.   

 It is therefore important to understand what operational measures airlines should 

adopt in order to remain competitive in the market and to perform well under turbulent 

market conditions. One strategy has been to adopt the low cost carrier (LCC) model, 

by either setting up a subsidiary low cost operation (such as American Airlines which 

is a subsidiary of the AMR Corporation – now part of the American Airlines Group 

Inc.) or by adopting the no-frills model, which most aviation markets have 

experienced in the recent past. Another strategy seen in the industry is that of 

increasing market power by way of forming alliances, as well as growth through 

mergers and acquisitions (such as United/Continental in 2011). However, it could be 

the case that airlines can become too large to operate cost efficiently (Merkert and 

Morrell, 2012). Previous literature (Merkert and Hensher, 2011), Merkert and 

Williams (2013) suggests that operational factors have significant impacts on costs 

and efficiency of airline operations. For example, passenger load factor, aircraft size 

and stage length have a huge impact on airline costs, with larger and fuller aircraft 

being able to spread unit costs over longer routes 

 The past decade has also seen a great increase in the demand for door-to-door 

shipment of products and packages, rather than just airport-to-airport service as in the 

early years of airfreight transportation. In addition to the door-to-door shipments, there 
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has been an increase in the demand for fast, overnight service. As a result, air cargo 

companies have developed (separately from passenger airlines) and expanded quickly 

while simultaneously strengthening their presence in the airline industry. In so doing, 

they have become very important to the airline industry (as it relates to airport 

operators and plane manufacturers). In a world where time pressures are increasing 

value, the share of air cargo is steadily increasing commensurately.  

 The four largest air freight integrators in the world today are FedEx, UPS, TNT 

Express NV, and DHL Express (DHL). Integrators carry the majority of the market 

share of U.S. freight, with DHL, FedEx and UPS holding around 62% of enplaned 

revenue-tons of freight (Bureau of Transportation Statistics 2010). FedEx is 

undeniably the largest cargo carrier in the world, with 2014 revenues at the 

corporation totalling $45.6 billion US$1.  

 Despite the high level of concentration, the integrated air freight industry is 

highly competitive in a number of aspects, such as delivery speed, service 

dependability and service convenience.  

  

1.1. Contribution of the thesis 

 

 Most of the literature related to the measurement of airline efficiency has based 

its analysis either on parametric or non-parametric frontier methods from a production 

function perspective. Both the SFA and DEA methods are estimating the same 

underlying efficiency values but they can give different efficiency estimates for the 

                                                 

1Bloomsburg weekly:  http://investing.businessweek.com/research/stocks/earnings/earnings.asp?ticker=FDX 



 

 

4 

units under analysis. This is due to the differences between the underlying 

assumptions. Although the two approaches are traditionally thought to be competing, 

there is no consensus as to which is the most appropriate technique; each has its own 

strengths and weaknesses (Coli et al, 2007). The main strength of DEA is that it is 

able to incorporate multiple inputs and outputs, and provides a scalar measure of 

relative efficiency by comparing the efficiency achieved by a decision-making unit 

(DMU) with the efficiency obtained by similar DMUs. The method therefore allows 

for a well-defined relation between inputs and outputs to be determined. In the case of 

multiple outputs this relation can be defined as an efficiency production possibility 

frontier. As this frontier is derived from an observed data set (empirical observations), 

it measures the relative efficiency of DMUs that can be obtained with the existing 

technology, fleet strategy or managerial strategy. The first drawback of DEA, is that it 

assumes all deviations from the efficient frontier are due to inefficiency (any statistical 

noise, measurement errors, omitted variables and other mis-specifications). Another 

critical drawback of DEA is the assumption of no random error in the data. As it is a 

nonparametric technique, statistical hypothesis tests are difficult. 

 The SFA technique in contrast, assumes that deviations from the efficient 

frontier can either be a result of inefficiency or a random shock. The main advantage 

of SFA is that there are a number of well-developed statistical tests to examine the 

validity of the model specification. Another benefit of SFA is that if an irrelevant 

variable is included, it will have a very small or possibly even a zero weighting in the 

calculation of the efficiency scores, allowing its impact to be insignificant. Finally, it 

allows for the decomposition of deviations from efficient levels between noise and 

pure inefficiency.  
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 There is a lack of information on cost efficiency over a longer, more recent time 

scale, and that it is required for a larger number of airlines. This thesis seeks to fill this 

gap in a number of ways. First, it extends the limited literature available on Stochastic 

Frontier Analysis of airline efficiency in more recent years. Second, it will be applying 

SFA to a much larger panel of passenger airlines over a longer time frame than has 

been previously studied. With a focus on a wider and more recent period, this provides 

a renewed efficiency valuation of the U.S. airline industry. In each analysis, the 

inclusion of environmental variables, which are not always included in previous 

frontier studies, is analysed. As noted by Lee and Worthington (2014), few studies of 

airline performance currently account for environmental variables. Therefore, findings 

should offer an updated and clear link between airline performance and industry 

characteristics during this time.  

 It is also important to understand what operational measures airlines should 

adopt in order to remain competitive in the market and to perform well under turbulent 

market conditions. The thesis further seeks to analyse the impact of fleet planning and 

strategic management decisions on airline efficiency comparing data envelopment 

analysis (DEA) and stochastic frontier analysis (SFA) results. In this way, both 

methods can be compared in terms of estimates and also robustness. 

Finally, to the current day, the literature on cost structure, efficiency and 

economies of density/returns to scale of the air cargo industry remain sparse. Most of 

the literature on cargo airlines has been developed following studies that relate to the 

passenger airline literature. Research dedicated to cost structure analysis of the air 

cargo industry is limited due to the lack of structured data on cargo carriers, and more 

specifically, about integrators.  
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The thesis therefore seeks to address these issues above by focusing on 

efficiency in the air cargo industry as well as from the passenger industry from a 

stochastic frontier perspective.  

 In sum, the thesis contributes to our understanding of airline cost efficiency from 

a stochastic frontier analysis perspective. It further examines and measures the effects 

of airline characteristics on airline efficiency from a technical, allocative and cost 

perspective while also adding to the literature on data envelopment analysis. 

Moreover, in view of the air cargo industry’s considerable growth in transported cargo 

and express services, the thesis investigates the efficiency and cost structure of the 

leading integrated carriers FedEx Corporation and United Parcel Service, Inc.  

1.2. Structure of the thesis 

 

The thesis is organised as follows: 

Chapter 2 deepens the research on airline efficiency by employing a stochastic 

cost frontier (SFA) analysis, while taking an innovative approach to environmental 

factors and the modelling of September 11
th

.  A panel of twenty-four U.S. airlines 

observed quarterly from 1991-2012 is analysed, which is much larger than previous 

U.S. studies on cost and production efficiency. Results for average and firm-specific 

efficiency levels in the airline industry reveal that airlines were operating at 92.12% 

efficiency, ranging between 92.88% and 88.29%. This suggests that to operate 

efficiently, airlines can reduce their input costs by an average of 7.88%, holding their 

output constant. Total factor productivity is shown to have deteriorated quite 

substantially over the period by 50.7%. Similar results have been found in earlier 

studies, which suggest that perhaps deregulation of the airline industry has delivered 
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productivity gains, which have since been lost. However, reasons for this still remain 

somewhat unclear. For the first time in SFA, effects of September 11
th

 and 

bankruptcies have been accounted for. Results on environmental variables are 

consistent with the previous literature, but results are quite distinctive in the effects of 

September 11
th

. The immediate impacts of the terrorist attacks had a small but 

significant increase on airline costs, whereas those in the long run resulted in a small 

but significant decrease on costs. 

Chapter 3 measures the effects of airline characteristics on airline efficiency 

from a technical, allocative and cost perspective. This is done by applying a two-stage 

Data Envelopment Analysis (DEA) approach, with partially bootstrapped random 

effects Tobit regressions in the second-stage to a sample of twenty-two U.S. airlines 

from 2006-2012. A Stochastic Frontier Analysis (SFA) is then performed in order to 

compare to results of the DEA analysis. Measures of cost efficiency are obtained, 

which have been adjusted to account for characteristic influences such as stage length, 

aircraft size, fleet age and fleet mix. Results suggest that the effects of route 

optimisation, in terms of average stage length, apply to all three aspects of efficiency. 

It is shown that DEA results for size and age are comparable to previous literature, 

while fleet mix (i.e. number of aircraft families) is found to be insignificant.  Results 

from the SFA analysis are similar to the results found in the DEA Tobit regressions, 

but it is observed that the SFA is more robust in terms of significance. 

Chapter 4 measures and compares the efficiency of U.S. air cargo integrators 

FedEx Corporation (FedEx) and United Parcel Service, Inc (UPS). A translog total 

cost model is estimated for the two carriers using quarterly data on costs from 

1993Q3-2014Q4. An analysis of the cost structure of the air cargo business is 
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undertaken. Efficiency scores are then measured by estimating a stochastic cost 

frontier model. This is the first study to offer a stochastic frontier perspective on cargo 

airlines and extends the knowledge on the currently minimal amount of information 

on the air cargo industry. Stochastic frontier analysis (SFA) reveals that UPS is most 

competitive in the U.S. market and has a slightly higher efficiency score, averaging 

over all years (97.8%) than FedEx (94.8%). The cost characteristics calculated at the 

sample means for both FedEx and UPS show that both integrators exhibit economies 

of density and economies of scale.  

Chapter 5 summarises the empirical findings and concludes with the original 

contribution of the thesis, as well as considerations for future research. 
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2. Chapter 2: Efficiency in the U.S. Airline Industry from 1991-2012: A 

Stochastic Frontier Approach 

 

2.1. Introduction 

 

 The U.S. air transport industry has undergone considerable change following the 

Airline Deregulation Act of 1978. Post-deregulation, new carriers have emerged and 

new routes have opened up which connected cities never before accessible from a 

direct flight. Fares dropped as competition and customer demand increased. The Gulf 

War, and the subsequent recession of the early 1990s saw a number of carriers’ 

disappear completely or file for Chapter 11 bankruptcy. Those that survived were able 

to return to profitability toward the end of the 1990s. The industry faced its second 

economic downturn in 2001, with an increase in labour and fuel costs and a decrease 

in business travel. Following the terrorist attacks on September 11
th

 2001, the airline 

industry saw an even more critical decline in travel demand and faced significantly 

higher operating costs. These losses continued until 2006, after which a relatively 

stable period developed. In the past few years however, the U.S. Department of 

Transportation has been concerned with the treatment of passengers in terms of 

service quality and flight delays. Furthermore, the concerns over greenhouse gas 

(GHG) emissions due to air travel continue to mount. For the United States, it has 

been ruled by the Supreme Court that the Environmental Protection Agency (EPA) 

has the right and the duty to regulate GHG emissions under the Clean Air Act2, which 

encompasses CO2 emissions arising from transportation sectors. This could have huge 

cost implications as airlines might be expected to pay for their emissions in the future. 

                                                 
2 Massachusetts et. al. v. Environmental Protection Agency, (Argued November 29, 2006—Decided April 2, 2007). 
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As other countries aim to reduce their carbon levels in numerous different industries 

and sectors, there will be increased pressure for the airline industry to follow suit. As 

the travel industry is one of the most important industries in the U.S., it is crucial that 

we develop a better understanding on the evaluation of airline operation efficiency.  

 The number of empirical studies estimating different aspects of efficiency is 

substantial. The majority of the applications within the airline industry focus on 

technical inefficiency around the time of deregulation, from a production function 

perspective using either parametric (stochastic frontier analysis; SFA) or non-

parametric (e.g. data envelopment analysis; DEA) approaches. Examples include 

Gillen and Lall (1997), Coelli et al. (1999), Alam and Sickles (2000), Chiou and Chen 

(2006), Sjögren and Söderberg (2011), Kutlu and Sickles (2012), Barros et al. (2013), 

among others. Some consider European airlines only in their analysis, such as those 

done by Assaf and Josiassen (2011) and Merkert and Williams (2013). Efficiency and 

productivity are fundamental to the success of the commercial aviation industry, and 

thus models that measure efficiency can be extremely valuable. 

 Both the SFA and DEA methods are estimating the same underlying efficiency 

measures but they can give different efficiency estimates for the units under analysis. 

This is due to the differences between the underlying assumptions. Although the two 

approaches are traditionally thought to be competing there is no consensus as to which 

is the most appropriate technique; each has its own strengths and weaknesses (Coli et 

al, 2007). However, Hu et al. (2010) note that SFA performs better than DEA in most 

cases. Data Envelopment Analysis (DEA) was first proposed by Charnes, Cooper and 

Rhodes (Charnes et al., 1978) and does not require the specification of the functional 

form relating inputs to outputs or the setting of weights for various factors. DEA 

methodology has frequently been applied in the air transport field, for example Good 
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et al. (1995), Gillen and Lall (1997), Alam and Sickles (1998) and Adler and Golany 

(2001). The advantage of DEA method is its ability to accommodate a multiplicity of 

inputs and outputs. As it is a nonparametric technique, statistical hypothesis tests are 

not possible. Despite the growing interest in traditional DEA models, its drawback is 

that it assumes all deviations from the efficient frontier are due to inefficiency (any 

statistical noise, measurement errors, omitted variables and other mis-specifications 

are therefore (wrongly) badged as inefficiency).  

 The SFA technique in contrast, assumes that deviations from the efficient 

frontier can either be a result of inefficiency or a random shock. The main advantage 

of SFA is that there are a number of well-developed statistical tests to examine the 

validity of the model specification. Another benefit of SFA is that if an irrelevant 

variable is included, it will have a very small or possibly even a zero weighting in the 

calculation of the efficiency scores, allowing its impact to be insignificant.  

 Although the area of allocative and overall economic efficiency is not new in the 

literature of firms’ performance, in terms of studies specific to the airline industry, 

these are not as prevalent (Abdullah et al., 2013). In addition, many do not adopt the 

use of a stochastic cost frontier function. The few exceptions include Inglada et al. 

(2006), who estimate two stochastic frontiers, one for a cost function and the other for 

a production function in order to compare the economic and technical efficiency of 

international airlines during the period 1996-2000. They find that the Asian airlines 

are economically the most efficient, with American carriers exhibiting scores which 

are quite low by comparison. Kumbhakar (1991) considers a translog cost function, 

which incorporates both technical and allocative inefficiencies using data on ten U.S. 

airlines observed over 1970-1980. Based on the results obtained, he argues that these 

airlines were allocatively efficient during the time period under observation. Atkinson 
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and Cornwell (1994) consider both technical and allocative efficiency for a panel of 

13 U.S. airlines over 1970-1981. They determine that allocative inefficiency is 

substantially more important than technical efficiency in raising costs and altering 

input usage. Good et al. (1995) apply both SFA and DEA in order to compare the 

efficiency differences of European and US airlines during the period 1976-1986. They 

conclude that European carriers were not as productively efficient (during the time of 

deregulation) as American carriers. Their work includes environmental variables for 

passenger load factor and stage length using a Cobb-Douglas function.  

 It thus becomes clear that there is a lack of information on cost efficiency over a 

longer and more recent time scale, and that it is required for a larger number of 

airlines. This chapter seeks to fill this gap in a number of ways. First, it considerably 

extends the limited literature available on Stochastic Frontier Analysis of airline 

efficiency to include more recent years (up to 2012). Second, it applies SFA to a panel 

of twenty-four U.S. airlines over the time period 1991Q1-2012Q3. With a focus on a 

wider and more recent period, this provides a more up to date and comprehensive 

efficiency valuation of the U.S. airline industry. The estimation of technical change or 

total factor productivity (TFP) is introduced by way of a cubic time trend. This cubic 

time trend is found to be an appropriate way to represent the business cycle. Finally, 

the inclusion of environmental variables, which are not always included in previous 

frontier studies is analysed as well as dummy variables for the effects of September 

11
th

 and Chapter 11. As noted by Lee and Worthington (2014), few studies of airline 

performance currently account for environmental variables. Therefore, the findings of 

this study should offer an updated and clear link between airline performance and 

industry characteristics during this time.  
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 The chapter is organised as follows: The methodology is discussed in Section 

2.2. In Section 2.4, the data are presented. In Section 3, the results are shown, with a 

discussion found in Section 3.1. Finally, in Section 3.3, the conclusions are given and 

the contributions and limitations of the present research are set out. 

 

2.2. Methodology: The Stochastic Cost Frontier Approach 

   

  The fundamental idea of efficiency goes back to Farrell (1957). He defined the 

different ways in which a productive unit can be inefficient, either (i) by failing to 

produce the maximum possible output available from a determined group of inputs 

(technically efficient), or (ii) by selecting sub-optimal input amounts, given the prices 

and marginal productivities (allocatively inefficient). Given the value of technical 

efficiency, the overall cost efficiency (CE) can be written as a product of technical and 

allocative efficiency values, assuming constant returns to scale (Coelli et al., 2005): 

𝐶𝐸 = 𝑇𝐸 × 𝐴𝐸                                                                                                        (2.1) 

  

 The concept of econometric estimation of efficiency however, is more recent 

and was developed simultaneously by Aigner et al. (1977), Meeusen and Broeck 

(1977) and Battese and Corra (1977). Their model not only incorporated the efficiency 

term into the analysis (as do the deterministic approaches) but was also able to capture 

the effects of exogenous shocks beyond the control of the productive units. It further 

incorporates errors in the observations and in the measurement of outputs.  

 For the Cobb-Douglas case, in logarithmic terms the stochastic frontier for a 

single output (𝑌𝑖), with 𝑛 inputs (𝑋𝑛𝑖) can be expressed as: 
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𝑙𝑛𝑌𝑖= 𝛽𝑜 + ∑ 𝛽𝑛𝑙𝑛𝑋𝑛𝑖 + 𝑣𝑖
𝑁
𝑛=1 − 𝑢𝑖                 (2.2) 

 

 The term 𝑣𝑖 − 𝑢𝑖 is a composite error term with 𝑣𝑖 representing statistical noise 

(or randomness) and 𝑢𝑖 expressing technical (cost) inefficiency. The error component 

for statistical noise is assumed to be independently and identically distributed, with 

zero mean and constant variance. The inefficiency component has similar properties 

except that it has a non-zero mean (because 𝑢𝑖 ≥ 0) . Here, 𝛽  represents a 

technological parameter vector to be estimated. 

 The cost frontier is defined by Forsund et al. (1980) as the minimum cost for a 

particular level of output, given the technology and the prices of the inputs used. 

Following the methodology developed by Schmidt and Sickles (1984) using panel 

data; this study sets out to calculate the overall economic efficiency. Schmidt and 

Sickles (1984) present a single equation production function which is easily changed 

into a cost function by reversing the sign of the one sided error. The stochastic cost 

frontier function for panel data, for the 𝑖𝑡ℎ airline (i=1,2,…,N) during the 𝑡𝑡ℎ period 

(t=1,2,..,T) can thus be defined as: 

 𝐶𝑖𝑡 = 𝛼 + 𝐶(𝑃𝑖𝑡, 𝑌𝑖𝑡, ; 𝛽) +  𝑣𝑖𝑡 + 𝑢𝑖             (2.3) 

  

 Here C is the observed cost; 𝛼 is the constant; P is the input price vector and Y 

is the output. The residual 𝑣𝑖𝑡  represents random noise with the same properties as 

described in (𝑖). The term 𝑢𝑖 in this case is the inefficiency of cost for the 𝑖th airline 

company with properties,𝑢𝑖 ≈ 𝑖𝑖𝑑𝑁+(0, 𝜎𝜇
2).  It then follows that 𝑢𝑖 ≥ 0 for all i, and 

that it is identically distributed with mean µ and variance 𝜎𝜇
2 and is independent of 𝑣𝑖𝑡. 
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The term 𝑢𝑖  has no time specification, which can be interpreted as economic 

efficiency varying between companies and not over time3. 

 When dealing with a cost frontier, firms which lie on the stochastic frontier are 

efficient, with firms above the frontier being inefficient. The most cost efficient firms 

will be directly on the frontier and so it is not possible to be below the frontier. When 

obtaining efficiency estimates from frontier models, values closest to 1 represents 

more efficient firm and values closer to zero represent those firms which are less 

efficient. Therefore, a value between 0 and 1, represents the degree to which an airline 

succeeds in minimizing cost given input and output prices. For the purpose of this 

chapter, cost efficiency (the ratio of minimum cost to observed cost) can be written as 

follows: 

𝐶𝐸𝑖𝑡 = exp (−𝑢𝑖𝑡)          (2.4) 

 

2.3. Model specification 

  

 In the econometric estimation of cost frontiers, a functional form must first be 

specified. A number of functional forms have been applied in empirical studies of 

airline costs. For examples of the classical cost model4 see those of Caves et al. (1984), 

Gillen et al. (1990) Good et al. (1995), Oum and Yu (1998), Hansen et al. (2001), Wei 

and Hansen (2003), Zou and Hansen (2012), and Martín et al. (2013). The two most 

commonly used are the Cobb-Douglas function, or the translog function. The translog 

                                                 

3 As Schmidt and Sickles (1984) point out, for T=1 (pure cross Section of N firms), the model in (1) is simply the stochastic 

frontier of Aigner et al. (1977). For T > 1, it is a simplification of that model which precisely fits the typical framework in the 

panel-data literature with a firm effect but no time effect. 

4 An average response function rather than a frontier. 
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is a flexible functional form in the sense of providing a second-order approximation to 

an unknown cost function. The Cobb-Douglas function can be considered to be a first-

order approximation. The most widely used flexible functional form in a cost 

minimizing framework is the translog cost function. 

 In order to calculate the economic efficiency of the individual airline companies 

in this study, it is first required that a cost frontier function is estimated. This analysis 

presents results for the translog specification. A Cobb-Douglas functional form was 

also tested but will not be presented in this chapter as the translog model performed 

better (higher log-likelihood). However, Table A1 in the appendix summarises the 

estimation results obtained for the Cobb-Douglas stochastic frontier approach. The 

translog total cost function is defined as follows: 

𝑙𝑛𝑇𝐶𝑖𝑡 = 𝛼 + 𝛼𝑇𝑡 + 𝛼𝑇𝑡2+ 𝛼𝑇𝑡3 + 𝛽𝑙𝑛(𝑌𝑖𝑡)  + ∑ 𝛾𝑗 ln(𝑃𝑗𝑖𝑡) +

𝑗

∑ 𝛿𝑗 ln(𝑍𝑗𝑖𝑡)

𝑗

 

+
1

2
𝜂𝑌𝑌[ln (𝑌𝑖𝑡)]2 +

1

2
∑ ∑ 𝜙𝑗𝑘 ln(𝑃𝑗𝑖𝑡) ln(𝑃𝑘𝑖𝑡)𝑘𝑗 + ∑ 𝜃𝑌𝑘 ln(𝑌𝑖𝑡) ln(𝑃𝑘𝑖𝑡) + 𝑣𝑖𝑡𝑘 + 𝑢𝑖𝑡            (2.5) 

 

 where 𝑙𝑛𝑇𝐶𝑖𝑡 is the total cost for airline 𝑖 in time period 𝑡. On the right hand side, 

the first line contains all first order terms; second-order terms appear in the remaining 

lines. A cubic time trend 𝑡, 𝑡2 , 𝑡3, is included; 𝑌𝑖𝑡  is the quantity of the output for 

airline 𝑖 in time period 𝑡; 𝑃𝑗𝑖𝑡 the 𝑗𝑡ℎ input price for airline 𝑖 in time period 𝑡;  𝑍𝑗𝑖𝑡 the 

value of the 𝑗𝑡ℎ environemental characteristic for airline 𝑖 in time period 𝑡.  

The estimated coefficients are 𝛼′𝑠, 𝛼𝑇 , 𝛽, 𝛾′𝑠, 𝛿′𝑠, 𝜂, 𝜙′𝑠, 𝜃′𝑠. 

 The symmetry of coefficients in the above function requires 𝜙𝑗𝑘 = 𝜙𝑘𝑗 for all 𝑗 

and 𝑘. In addition, Christensen et al. (1973) state that a translog cost function must 

satisfy certain regulatory conditions. These ensure that a cost function is consistent 



 

 

17 

with cost minimisation. A cost function must be linearly homogeneous in the input 

prices, requiring the following restrictions are imposed: 

            ∑ 𝛾𝑗 = 1𝑗             ∑ 𝜙𝑗𝑘 = 0(∀𝑘)𝑗      ∑ 𝜃𝑌𝑘 = 0𝑘            (2.6) 

   

where subscripts 𝑘 refers to, respectively, the 𝑘𝑡ℎ input in the translog equation (2.5). 

 Equations (2.6) ensure that a proportional increase in all input prices results in a 

proportionate increase in total costs. To illustrate, a 10% increase in all input prices 

leads to a 10% increase in total costs. The first of the three equations in (2.6) states 

that the first order coefficients for the input prices sum to one. Together with the 

following two equations in (2.6) that the second order coefficients involving input 

price must add to zero, scaling input prices by 𝑛 will lead to a proportional increase in 

total costs.  

 As panel data is available, the model can be completed with the time variable in 

order to account for technological change in the industry (Stevenson, 1980). Among 

the explanatory variables, the cubic time trend 𝑡, 𝑡2, 𝑡3 (1 for the first period, 2 for the 

second period and so on) is included in order to appropriately model the business 

cycle (Evans and Kessides, 1993).  

 Equation (2.5) specifies the stochastic cost frontier function. The data sources 

and characteristics of the variables in these models are described in sections 2.5 and 

2.6.  
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2.4. Data  

2.4.1. Data sources 

 

In order to estimate the cost frontier in (2.5), panel data from the U.S. 

Department of Transportation (DOT) Form 41 are sourced. Form 41 provides 

quarterly financial cost data and operating statistics per airline and per aircraft type. 

The individual panels for airline and aircraft types were combined in order to get 

quarterly fleet specific data for each airline. The dataset includes a large set of 

explanatory variables for the time period of 1991Q1-2012Q3. Data for twenty-four 

airlines during the study period were collected. The dependent and independent 

variables are presented in Table 2.1, and procedures for calculating these variables are 

discussed below. The inputs and outputs will be briefly outlined first, with further 

emphasis on the additional environmental and dummy variables. 

 All data has been constructed by the author following similar methods discussed 

in Tretheway and Windle (1983) and Sickles et al. (1986). The airlines included in this 

study are listed in Table A2 of the appendix. Several individual airline observations 

contain fewer quarters due to the fact that those airlines were not in existence over the 

whole sample period, or have not reported for the whole period. In addition, all 

nominal variables are transformed into real variables in 2012Q3 prices using the CPI 

index taken from the Bureau of Labour Statistics. 
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Table 2.1: Descriptive statistics of variables in cost model 

Variable 

(ln) 

Variable Description Mean Standard 

deviation 

Minimum Maximum 

TC Total cost (USD$; x10
7)

 0.426 0.475 0.031 5.710 

KM price Price of capital-materials 

measured in dividing the sum 

of both categories by the 

number of revenue 

departures performed. 

1562.825 1849.615 49.802 34943.700 

Labour 

price 

Price of labour calculated by 

dividing total labour 

expenses by the number of 

equivalent employees. 

4791.016 1101.249 202.376 16597.080 

Fuel 

price 

Price of fuel which is the 

ratio of the amount spent on 

fuel to the reported amount 

consumed in gallons. 

0.788 0.586 0.004 12.799 

PLF Passenger load factors taken 

as revenue passenger miles 

divided by available 

passenger miles. 

1562.825 1849.605 49.802 34943.700 

ASL Average stage length taken 

as revenue aircraft miles 

divided by revenue number 

of departures. 

822.822 452.019 140.388 3887.829 

RTM Revenue ton miles, measure 

of airline output which 

includes passenger and cargo 

of passengers (USD$; x 

10
10

). 

0.884 1.030 0.000 4.890 
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2.4.2. Variables 

 

  The cost frontier function used has three inputs and one output. The three 

inputs are labour, fuel and capital-materials. These variables are all present in the 

major literature on airline costs, as set out in Section 2.1. For simplicity, the capital 

and materials are combined into one single variable. Unfortunately, there is no 

conclusive study to guide the selection of inputs and outputs in airline applications of 

efficiency measurements (Nissi and Rapposelli, 2008). However, it should be noted 

that the nature of performance measurement is greatly influenced by the input/output 

set identified in the airline production/cost process (Oum and Yu, 1998).  The output 

is revenue ton kilometres. As this data set is a disaggregate account of a number of 

categories for each input, these must first be summed accordingly.  

 Labour is the sum of pilots, co-pilots and all related employee expenses.  

 Fuel is based on the total cost of aircraft fuel only (not including oil expenses).  

 Capital and Materials is arrived at by summing both categories (capital costs 

include insurance, maintenance, depreciation and amortization. Materials costs include 

costs of other services the cost of all other components not previously included).    

2.4.3. Environmental variables 

 

 In the airline cost literature, it has long been acknowledged that costs will be 

dependent upon the nature and quality of the airlines output as well as the quantity. As 

these vary over time and across carriers, the specification of the airline cost function in 

(2.8) needs to take these into account. Variables of this kind that typically often appear 

in the literature include a measure of the size of the airline’s network (the number of 
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points served), average aircraft capacity, passenger load factor and the average stage 

length. The introduction of number of points served was proposed by Caves et al. 

(1984) in order to identify economies of scale due to network characteristics. The use 

of number of points served is appropriate when making a distinction between returns 

to traffic density (the variation in unit costs as output increases in a fixed network size) 

and returns to scale or firm/network size (the variation in unit costs with respect to 

proportional changes in both network size and output; Gillen et al., 1990). The 

variables for passenger load factor and average stage length, measure how full the 

planes fly and how long the trips are on average, respectively. The omission of these 

two variables would cause an airline flying short distance markets to appear to be 

producing at a higher cost per ton-mile relative to those airlines serving longer-haul 

markets.  

 In this study, the use of average stage length and passenger load factor is 

employed for the reasons outlined above. While previous work on stochastic cost 

frontier analysis has not always included these variables5, some have attempted but 

have either been unsuccessful due to insignificance or have only been able to include 

one (exceptions being Kumbhakar (1991) and Good et al. (1995) for example, who 

find both to be significant).  

   Stage length, defined as the ratio of total revenue aircraft miles performed to 

the total number of revenue aircraft departures, is a measure of the network size. This 

variable is expected to have a negative effect on cost, for a given ton-mile, and on 

inefficiency for two main reasons. First, flying short distances suggests that the 

aircraft will be unproductive for longer time periods. Second, airlines are expected to 

                                                 

5 It should be noted that the literature on airline cost functions only (not including frontier analysis) does include the passenger 
load factor and average stage length variables in most cases.  
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see some economies of scale, as their fixed costs are spread over a larger output of 

revenue ton-miles.  

 Passenger load factor is defined as the ratio of revenue passenger miles to the 

available passenger miles, and is considered as a measure of market demand. As a 

higher number of passengers indicate better utilisation of aircraft, a negative 

relationship is expected between load factor and inefficiency. In terms of the cost 

relationship, as load factor increases costs should be expected to decrease, other things 

equal.  

 The variables considered here as environmental factors are at the same time 

potentially under the control of the firm. While this can be argued, for the purpose of 

the model estimation they will be considered as exogenously determined, as has been 

assumed in many previous studies (Caves et al. 1984; Coelli et al. 1999; Ryerson and 

Hansen 2013).    

 In addition to the environmental variables, dummies for seasonality, Chapter 11 

and September 11
th

 were included. It is well known that the nature of the commercial 

airline industry is both seasonal and cyclical. Therefore, it is important in the analysis 

to effectively control for these unique factors which are known to impact on airline 

costs. To account for seasonality, dummies for each quarter were constructed based on 

Q1; first quarter from January 1-March 3; Q2; Quarter 2: April 1-June 30; Q3; Quarter 

3: July 1-September 30 and Q4: Quarter 4: October 1-December 31. 

 The Chapter 11 dummy6 takes on a value of 1 if the airline is in bankruptcy and 

0 if they are not. During the reported time period of the panel, of the twenty-four 

                                                 

6 All information was taken from Airlines for America (A4A). The A4A is the premier trade group of the principal U.S. airlines. 

A4A represents the collective interests of the airlines though they are not a governmental organization, nor an airline. This 

information was then cross-checked with news articles that I have found when relevant, for each filing to be sure that the 
information reported is accurate.  
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airlines, 11 have declared a bankruptcy at least once. The remaining 13, which have 

not declared bankruptcy, are Air Wisconsin, AirTran, Alaska, Allegiant, American 

Eagle, Horizon, JetBlue, Midwest, SkyWest, Southwest, Tower Air, USA Jet and 

Virgin America7.    

 Two dummies for the terrorist attacks on September 11
th 

2001 were taken into 

consideration. The first dummy, (Dsep11) accounts for the initial and immediate 

effects of the attacks. Only the quarter during which the attack took place and the 

following quarter are included. Thus, it takes a value of 1 in the quarter of September 

11
th

 and the quarter subsequently following, or zero otherwise. The second dummy 

(DPsep11) is to investigate the permanent effect of September 11
th

 and takes a value 

of 0 prior to the quarter of September 11
th

 and a value of 1 in each time period on and 

after the attacks until the very end of the data time period. 

2.4.4. Input prices  

 

  The prices of these inputs are obtained by dividing the reported costs of each 

by the corresponding quantity. The input prices and the dependent variable, total cost 

(TC), are collected from U.S. DOT Data in Form 41 Schedule P-5.2. This figure only 

reflects operating costs and excludes ownership costs related to depreciation and 

rentals. 

 Aircraft operating statistics are then taken from Form 41 Schedule PO5B. These 

statistics, collected for scheduled and non-scheduled service, include gallons of fuel 

consumed; available seat miles; revenue aircraft miles; departures performed and 

revenue ton-miles. From these prices and statistics, the unit price of fuel, labour and 

                                                 

7 Both Tower and Allegiant Air have declared bankruptcy but this was outside of the time frame for which the panel data has 
been made available for from Form 41.  
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capital-materials as well as the average stage length and passenger load factor are 

derived.   

  Labour unit price is total expenditure on labour, divided by the total number of 

full-time employees taking part-time employees as full-time equivalents (FTE). The 

Bureau of Transport Statistics defines full-time equivalent employees as follows: FTE 

count two part-time employees as one full-time employee. While it would be more 

appropriate to assign a more precise definition to the number of part time employees, 

this was not possible due to lack of data. Fuel unit price, is total amount spent on fuel, 

divided by the total gallons of fuel consumed. This differs from other studies such as 

Inglada et al. (2006) who instead derive an “energy price” using energy cost divided 

by available capacity. The unit price of Capital-materials8 is measured as the sum of 

expenses in these two categories divided by the number of revenue departures. Finally, 

similarly to Kumbhakar (1991) and Atkinson and Cornwell (1994), average stage 

length is calculated by taking revenue aircraft miles divided by revenue number of 

departures, and passenger load factor was derived by taking the number of revenue 

passenger miles divided by the available passenger miles.  

 With regards to the output variable of the model, revenue ton-miles (RTMs) 

represent the main outputs for a typical passenger focused airline in this dataset. The 

airlines in the data set are limited to passenger carriers only and all charter companies 

have been excluded. Only a minor portion of their traffic will undertake cargo, mail 

and other types of business. The total reported revenue ton miles is thus the only 

output used here, which on passenger flights include the weight of revenue passengers 

and their luggage as well as any revenue freight or mail carried (Durso, 2007). This 

also follows previous work by Oum and Yu (1995) and Zou and Hansen (2012b). 

                                                 

8 The capital-materials was initially divided by the number of planes in the airline’s fleet but this produced insignificant results. 
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Other studies have used Available Ton Miles (ATMs), which reflects available aircraft 

capacity, as output. This is a measure of potential output rather than actual output and 

has thus not been considered appropriate. Finally, some carriers have been omitted 

due to very limited reported data and/or missing data.    

 

2.5. Results  

 

 Following the model specification, data and variable description, the results for 

the translog cost frontier estimation are reported in Table 2.2. A true fixed effects 

model was chosen (Greene 2005).  In the traditional fixed effects models of Schmidt 

and Sickles (1984), and the random effects model, both assume that cost efficiency is 

time invariant. These models are also unable to separate inefficiency and firm 

heterogeneity. For a changing airline industry over a long panel, such an assumption 

of time invariance would be unconvincing. Furthermore, in these other models, the 

treatment of the “effect” as the inefficiency does not consider the prospect of other 

unmeasured heterogeneity that is unrelated to inefficiency. Any such heterogeneity 

that exists will show up in (or as) the inefficiency that is to be measured. A more 

reasonable assumption made by the true fixed effects model is to allow inefficiency to 

change over time. As the objective is to estimate the cost frontier for the individual 

airlines across the US, the true fixed effects model is preferred as it can separate out 

heterogeneity from inefficiency and allows cost inefficiency to vary over time.  

 The total cost and the regressors have all been transformed into logarithms. The 

data has been demeaned such that the dependent and independent variables, except 

dummies, PLF and ASL, are estimated about the mean values in the dataset (divided 
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by their geometric mean). This allows for the first order coefficients to be interpreted 

as cost elasticities.  

 The coefficients of all first order terms are statistically significant at the 1% 

level and most of the remaining coefficients on second order terms are also significant 

at the 1% level. This indicates that the selection of inputs and outputs have been 

appropriate for the cost frontier estimation. In addition, both PLF and ASL were 

statistically significant. Further discussions of these results are presented in Section 

3.1. 

In addition to the true fixed effects model presented in this chapter, a number 

of other models were evaluated.  First, a likelihood-ratio test was performed on the 

inclusion or exclusion of the characteristic variables lnALS, lnALF, DCh11, Dsep11, 

and DPsep11 for the true fixed effects model. Results indicate a Chi squared value of 

837.51 with Probability > chi2 = 0.0000. This result confirms that the inclusion of 

characteristic variables together, results in a statistically significant improvement in 

model fit. A likelihood-ratio test was also performed comparing the true fixed effects 

model with the random effects model. The random effects model was dropped in 

favour of the true fixed effects with a likelihood-ratio of 189.18 and critical value of 

2.7069 (one degree of freedom). This indicated that a time-invariant model does not 

perform as well as the time-varying model presented here.  

Finally, both a true random effects and random effects model were also 

estimated.  These both failed to converge (iterations did not run), indicating they were 

not an appropriate model and were therefore dropped.  

 

                                                 

9 The random effects model had a lower log likelihood of 1126.0788 
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Table 2.2: Parameter estimates of the translog cost function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Log-likelihood: 1220.6680 

*Variables are significant at the 10% level. 

**Variables are significant at the 5% level. 

***Variables are significant at the 1% level. 

Variable Coefficient t-statistic 

lnRTM  0.956  68.60*** 

lnKM  0.306  20.25*** 

lnL  0.229  14.18*** 

lnF  0.464  41.65*** 

.5*lnRTM2 -0.014 -2.510** 

.5*lnKM2  0.107  12.39*** 

.5*lnL2  0.115  5.36*** 

.5*lnF2 -0.027 -1.55 

lnRTMlnKM -0.007 -1.66* 

lnRTMlnL -0.019 -3.00*** 

lnRTMlnF  0.040  8.00*** 

lnKMlnL -0.125 -11.86*** 

lnKMlnF  0.017  1.90* 

lnLlnF  0.010  0.55 

lnPLF -1.150 -20.82*** 

lnASL -0.610 -19.76*** 

Q1 -0.017 -2.08** 

Q2  0.018  2.12** 

Q3  0.024 -2.81*** 

DCh11 -0.028 -2.26*** 

Dsep11 0.094 4.48*** 

DPsep11 -0.091 -5.28** 

Productivity measure   

t  0.041  5.56*** 

t2 -0.001 -1.63* 

t3  0.000  2.01** 

𝜎𝑢
2 0.010 8.43*** 

𝜎𝑣
2 0.008  21.03*** 

𝜆 =
𝜎𝑢

2

𝜎𝑢
2 + 𝜎𝑣

2 
0.527 68.63*** 

Total number of observations 1518  
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Table 2.3: Parameter estimates of translog cost function literature 

Authors Variables Coefficient 

Bauer (1990) Output (Revenue passenger ton 

miles/revenue cargo ton miles) 

Average stage length 

Average Load factor 

Labour price 

Energy price 

Capital price 

Material price 

0.856/0.140*** 

 

-0.293*** 

-0.663*** 

0.469*** 

0.232*** 

0.100*** 

0.199*** 

Caves et al. (1984) Output (four summed categories: 

revenue passenger miles of scheduled 

service, revenue passenger miles of 

charter service, revenue ton miles of 

mail, revenue ton miles of all other 

freight) 

Average stage length 

Load factor 

Labour price 

Fuel price 

Material/capital price 

0.804 

 

 

 

 

-0.148 

-0.264 

0.356 

0.166 

0.478 

*All coefficients are 

highly significant 

Gillen et al. (1990) Output (scheduled revenue passenger 

kilometers; scheduled revenue freight 

kilometers; non-scheduled (charter) 

revenue ton kilometers 

passenger/freight) 

 

Average stage length 

Load factor 

Labour price 

Fuel price 

Material/capital price 

0.971 (sample mean) 

 

 

 

 

-0.181 

0.734 

0.322 

0.199 

0.478 

Oum and Zhang 

(1991) 

Returns to Scale (derived) 

Average stage length 

Labour price 

Fuel price 

0.906 

-0.241 

0.372 

0.254 
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Material price 

Capital price 

0.374 

0.162 

*All coefficients are 

highly significant 

Atkinson and 

Cornwell (1994) 

Output (capacity ton miles) 

Average stage length 

Labour  

Energy  

Materials 

0.227 

1.477** 

0.750** 

-0.433** 

0.521** 

Inglada et al. (2006) Output (available ton kilometers) 

Labour price 

Energy price 

Material/other services price 

Capital price 

0.679** 

0.106** 

0.231** 

0.373** 

0.291** 

Ryerson and Hansen 

(2013) 

Average stage length 

Labour  

Fuel  

Materials 

0.803*** 

0.296*** 

0.408*** 

0.302*** 

Zou and Hansen 

(2012) 

Output (revenue ton miles) 

Average stage length 

Materials 

Capital 

 

0.485*** 

-0.1873** 

0.413*** 

-0.0543*** 

*Variables are significant at the 10% level. 

**Variables are significant at the 5% level. 

***Variables are significant at the 1% level. 

 

 

2.9. Discussion 

  

 Table 2.2 contains estimation results for the translog cost frontier estimation. 

The first order coefficient with respect to the output variable, revenue ton-miles, 

0.956, is positive and statistically significant. Its value of effectively 1 indicates 

constant returns to scale. This confirms neither economies nor diseconomies of scale 
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exits, or in other words costs go up proportionally with a change in output. It is typical 

in the literature to find constant returns or mild increasing returns to scale (see for 

example Caves et al. (1984), Gillen et al. (1990), Oum and Zhang (1991), Bauer 

(2000) and additionally Jara-Díaz et al. (2013)). Some previous results are found in 

Table 2.3 for comparison purposes. One element that could explain the diversity of the 

results obtained by the literature is the different specification of the variables 

representing output. A number of different variables are used in these models but the 

majority chose a revenue ton kilometre or an available ton kilometre measure. The 

greatest disadvantage of the available kilometre measurement previously noted, is that 

it measures a potential output rather than an actual output, so was not appropriate for 

this analysis.  

 The first order coefficient of fuel price, 0.464, implies that at the sample mean, a 

10% increase in fuel price would increase the airlines total cost by 4.6%. Similarly, 

first order coefficient for capital-materials, 0.306, and labour, 0.229, implies that at the 

sample mean, a 10% increase in either input would increase the airlines total cost by 

3.0% and 2.3% respectively. All coefficients for capital-materials, fuel and labour 

show expected signs and are within acceptable ranges of previous literature. These 

elasticities can also all be interpreted as cost shares of labour, fuel and capital-

materials. For example, it can be concluded that the share of total cost attributed to 

fuel is 46.0%.  Furthermore, these results are thought to be reasonable as they are 

within close range to the cost shares in the actual data, with labour at 31%, fuel at 43% 

and capital-materials at 25% of total costs.  

 Beyond the output variable and these three key input variables, environmental 

variables PLF and ASL show expected signs and magnitudes and both are found to be 

statistically significant. While some previous studies using frontier analysis have 
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excluded either one of or both these variables, the model estimates show that the 

inclusion of these variables is justified by their significant effect. The coefficients on 

PLF and ASL imply a negative relationship between these variables and cost. It would 

be expected that a higher load factor would indicate better utilization of aircraft (i.e. 

one aircraft with high load factor vs. two aircraft with low load factor), thus an 

increase in load factor would be expected to decrease costs and indicate a more 

efficient airline. In particular, 10% increase in the passenger load factor will generate 

a decrease of 11.5% in costs. Similarly, a 10% increase in the variable representing 

average stage length of the airline decreases costs by 6.1%. As described in Caves et 

al. (1984), airlines unit costs decrease considerably as average stage length increase. 

They also note that costs vary inversely with average load factor. Similar results for 

PLF and ASL are found in Bauer (1990) for example. Further comparisons can be 

found in Table 2.3 

 The dummy for Chapter 11 shows a small but statistically significant negative 

effect (-0.03) of filing for bankruptcy on costs. This negative effect on costs was also 

found by Barla and Koo (1999) who empirically examine the effects of bankruptcy 

protection (Chapter 11) on an airline and its rivals’ pricing strategies. Their main 

results indicate that once Chapter 11 has been filed, the airline is able to reduce its 

operating costs by approximately 4.2%. This is partially reflected in lower prices after 

declaring bankruptcy (-2.3%). A reason they suggest for this is that Chapter 11 airlines 

may be able to cut costs in ways that the non-bankrupt firms cannot (see also Barla 

and Koo 1999; Borenstein and Rose 1995). A firm operating in Chapter 11 is given 

the right to postpone all repayments of capital and interest until reorganisation has 

been finalised10. It is also able to reject any contracts which they believe are not in the 

                                                 
10 Termed “automatic stay” (Bankruptcy Code section 362 a,b). 
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best interest of the firm, such as collective bargaining agreements11. Thus, a firm 

undergoing bankruptcy protection is given flexibility and bargaining power to 

renegotiate contracts, which could result in cost reductions and subsequently lower 

fares. Two examples of airlines, which have been able to do these types of 

renegotiations, are Continental Airlines and American West.   

 The dummy Dsept11, was 0.09 and significant at the 1% level. This indicates 

that the initial temporary effects of September 11
th

 increased airline costs. In addition 

to directly causing a temporary but complete shutdown of the commercial aviation 

system, the attacks of September 11
th

 had a negative impact on air travel demand in 

the short-run. This would have contributed to a rise in airlines costs at the time relative 

to output. Following the downturn in demand for domestic air travel as a result of 

September 11
th

, numerous airlines have experienced a financial crisis never before 

seen with many filing for bankruptcy. This seems counter intuitive to the results for 

the permanent effects of September 11
th

, which are discussed next.   

 The dummy DPsep11 is statistically significant at the 1% level, with a negative 

coefficient and value (-0.09). This suggests that a permanent, long run result of the 

attacks was a decrease in airline costs. One reason could be that with the increased 

number of bankruptcy filings after the attack many carriers have been engaging in 

dramatic cost-cutting programs (Ito and Lee, 2005). Another possibility is that the 

airlines were able to cut their security costs due to the implementation of the Aviation 

and Transportation Security Act12.  Furthermore, this variable could be picking up the 

Chapter 11 effects better than the Ch11 variable itself. This could indicate a possible 

collinearity issue.  

                                                 
11 Bankruptcy Code Section 1113.   
12 http://www.gpo.gov/fdsys/pkg/BILLS-107s1447enr/pdf/BILLS-107s1447enr.pdf 
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 Developed as a direct result of the events of September 11th, the Aviation and 

Transportation Security Act was introduced on September 21st, 2001 (107th Congress, 

2001-2002) and was enacted after being signed by President Bush on November 19th, 

2001. The Act introduced new security measures and formed the Transportation 

Security Administration (TSA). It holds authority over the security of those travelling 

within the U.S. and the main purpose was to make airport security the responsibility of 

the federal government. This improved the way Americans viewed travel safety. 

Previous to the Act, airport security was the responsibility and thus cost burden of the 

airlines and the airport authorities. It could be that this shift in security costs has 

impacted the airlines in a positive way in terms of reducing costs. 

 Using this estimated frontier, it is possible to generate indices for cost 

efficiency (CE), calculated in accordance with 2.4. The distributional assumption for 

the inefficiency term was half-normal.  These scores are presented in Table 2.4, which 

displays the average efficiency for each airline in each reporting year. The mean 

efficiency is 92.12%. This value indicates that, to operate efficiently, airlines could on 

average reduce their input costs by 7.88% without decreasing their outputs. The 

maximum score of airline efficiency was Trans World and Virgin America with 

92.88% and 92.87% respectively over the whole period. The highest score in any one 

year was Horizon with 97.4% efficiency in 2005. Southwest, Alaska, America West, 

Delta and United were all a very close second at around the 92.8% mark. The lowest 

score was USA Jet Airlines with 88.3% over the whole period. They also received the 

lowest score in any one year of 79.6% in 2007. The median efficiency is 92.6% and 

the standard deviation is 1.05%. Finally, Table 2.5 summarises the total average 

efficiency scores of all airlines, for all years combined. Due to the data set 
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incorporating a very large number of airlines, only a select few of these have been 

chosen for discussion based on stability. 

Both Southwest and Virgin have managed to achieve a large degree of stability 

in efficiency scores over their reporting periods, highlighting their effective cost 

control. Interestingly, Southwest was able to use its relatively strong position to limit 

the effects of September 11
th

. It has also never filed for bankruptcy. U.S. Airways, in 

contrast, displays slightly more volatility in their cost efficiency trend.  U.S. Airways 

emerged from bankruptcy protection in March 2003 and received $900 million in 

federal bailout money, with efficiency scores increasing slightly (from 94.3% in 2003 

to 95.0% in 2004). Only two years since its first filing, they were again forced to 

return to the protection of the bankruptcy courts with efficiency scores falling, and 

then quickly improving again. The cost efficiency trend for Southwest is illustrated in 

Figure 3.1 and U.S. Airways in Figure 3.2. Interestingly, there is a drop in efficiency 

in 2008 across most firms. It was during this time that airlines faced huge increases in 

fuel price due to the oil crisis. 
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Table 2.4: Average cost efficiency rankings of U.S. airlines 

Airline 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Northwest 0.939 0.942 0.946 0.944 0.926 0.929 0.932 0.919 0.929 0.937 0.933 0.911 0.930 0.942 0.927 0.918 0.926 0.865 0.934 
   

Southwest 0.941 0.939 0.938 0.936 0.929 0.921 0.921 0.937 0.929 0.933 0.938 0.920 0.923 0.933 0.935 0.930 0.931 0.918 0.940 0.938 0.909 0.883 

Horizon 0.822 0.830 0.849 0.846 0.854 0.856 0.872 0.916 0.910 0.908 0.900 0.919 0.930 0.967 0.974 0.960 0.958 0.940 0.966 0.969 

  
Hawaiian 0.820 0.869 0.936 0.941 0.958 0.953 0.954 0.961 0.835 0.937 0.935 0.934 0.921 0.921 0.919 0.905 0.903 0.882 0.944 0.940 0.911 0.913 

Continental 0.946 0.943 0.934 0.941 0.916 0.908 0.910 0.896 0.896 0.933 0.935 0.924 0.929 0.941 0.934 0.929 0.927 0.901 0.951 0.955 0.917 
 

Delta 0.934 0.932 0.934 0.927 0.937 0.927 0.942 0.936 0.931 0.927 0.935 0.908 0.912 0.938 0.943 0.936 0.929 0.906 0.944 0.939 0.892 0.906 

American 0.941 0.940 0.946 0.934 0.924 0.926 0.922 0.911 0.911 0.915 0.920 0.891 0.914 0.939 0.936 0.935 0.937 0.919 0.951 0.953 0.924 0.922 

Alaska 0.917 0.919 0.927 0.934 0.936 0.931 0.934 0.928 0.933 0.930 0.919 0.912 0.924 0.936 0.930 0.925 0.932 0.904 0.952 0.951 0.922 0.925 

United 0.933 0.932 0.935 0.922 0.926 0.930 0.936 0.935 0.932 0.934 0.924 0.894 0.939 0.936 0.927 0.930 0.936 0.909 0.952 0.947 0.909 0.896 

America 

West 0.940 0.941 0.936 0.931 0.938 0.939 0.943 0.939 0.938 0.936 0.929 0.913 0.920 0.925 0.915 0.903 0.892 

     Air 

Wisconsin 0.953 0.942 0.880 0.963 0.966 0.964 0.957 0.953 0.944 0.904 0.918 0.900 0.928 0.900 0.903 0.905 0.898 0.801 0.896 0.901 0.866 0.881 

Tower Air 0.822 0.922 0.921 0.936 0.918 0.937 0.951 0.934 0.936 

             
Trans World 0.941 0.946 0.926 0.936 0.929 0.935 0.925 0.899 0.909 0.938 0.931 

           
SkyWest 

            

0.894 0.896 0.885 0.868 0.924 0.943 0.954 0.940 0.941 0.949 

ATA 0.944 0.944 0.947 0.948 0.935 0.924 0.922 0.931 0.931 0.914 0.919 0.921 0.933 0.941 0.916 0.873 0.910 

     
Midwest 0.918 0.917 0.923 0.931 0.932 0.933 0.926 0.933 0.937 0.912 0.889 0.913 0.930 0.955 0.953 0.940 0.939 0.905 0.902 

   
US Airways 0.918 0.916 0.911 0.898 0.909 0.908 0.906 0.907 0.907 0.903 0.933 0.922 0.943 0.950 0.946 0.948 0.944 0.911 0.952 0.958 0.930 0.938 

Allegiant 

               

0.942 0.898 0.850 0.949 0.930 0.882 0.889 

Eagle 

   

0.965 0.958 0.902 0.908 0.912 0.899 0.924 0.926 0.891 0.918 0.934 0.924 0.927 0.924 0.876 0.939 0.939 0.942 

 
JetBlue 

         
0.933 0.962 0.947 0.945 0.939 0.915 0.909 0.915 0.873 0.937 0.933 0.881 0.893 

Comair 

           

0.971 0.961 0.966 0.926 0.888 0.864 0.829 0.912 

   
AirTran 

       

0.894 0.932 0.884 0.908 0.918 0.924 0.928 0.926 0.928 0.932 0.900 0.949 0.949 0.940 0.944 

USA Jet 

                

0.796 0.886 0.964 

 

0.889 0.880 

Virgin 

                  
0.940 0.931 0.909 0.934 

*Note that blank cells indicate the airline did not report in this year/quarter and thus data was not available for analysis. 
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Table 2.5: Total average efficiency scores per airline (all reported years) 

Airline Average Efficiency % 

Trans World 92.88 

 Virgin 92.87 

 Southwest 92.83 

 Alaska 92.83 

 America West 92.82 

 Delta 92.80 

 United 92.80 

 Northwest 92.79 

 American 92.78 

 Continental 92.69 

 ATA 92.67 

 Midwest 92.57 

 US Airways 92.54 

 AirTran 92.38 

 Eagle 92.27 

 JetBlue 92.17 

 Tower Air 91.95 

 SkyWest 91.93 

 Hawaiian 91.78 

 Air Wisconsin 91.47 

 Comair 91.46 

 Horizon 90.73 

 Allegiant 90.57 

 USA Jet 88.29 

 Average (all airlines) 92.12  
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Figure 2.1: Southwest Airlines cost efficiency trend 

 

Figure 2.2: U.S. Airways cost efficiency trend 
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Most airlines show relatively steady efficiency scores, which improve over the 

sample period. One exception in particular is Horizon, who shows a strong positive 

trend in efficiency improvements going from 82.2% efficiency in 1991 to 96.9% in 

2010. This can be seen in Figure 3.3. A likely contribution to this efficiency trend is 

Horizons fuel efficiency (Kwan et al., 2013). Horizon, and its partner Alaska Airlines, 

were announced the most fuel-efficient airlines operating in the U.S. in 2010. Horizon 

flies a lot of turboprops compared to other airlines in the sample, which are the more 

efficient engines at medium and low altitudes (where most of the fuel burn occurs). In 

2012, Horizon completely phased out its Bombardier CRJ-700 regional jets for the 

more efficient Bombardier Dash 8-Q400 turboprops. 

 

Figure 2.3: Horizon Air cost efficiency trend 
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2.6.1. TFP analysis: 

 

 Table 2.6 presents the technical change obtained by way of coefficients on the 

time trends variables, which were used to construct a technical change index. This 

method follows Cantos Sànchez (2000), who defines this rate as the derivative of costs 

with respect to the proxy variable of technical change (time trend). A negative sign on 

the coefficient is interpreted as the presence of technical progress and a positive sign 

as technical regress. It can be seen that in 𝑡  and 𝑡3 , the coefficients of technical 

progress presents a positive sign, thus indicating a deterioration in the level of 

productivity due to technical change. In the case of 𝑡2, the coefficient is negative. The 

fluctuations of the signs from positive, to negative to positive mimic the business 

cycle effect.  

 

Table 2.6: Time trend coefficients obtained from translog estimation 

 

  

 

 

 The annual growth rate of total factor productivity (TFP) is presented in Figure 

3.4. It is concluded that, averaging over all the airline companies, productivity growth 

has decreased over the sample period by a total of 50.77%. This represents the 

movement of the cost function due to technical change.  

Time trend variable Coefficient t-statistic 

t  0.04063  5.56*** 

t2 -0.00135 -1.63* 

t3  0.00048  2.01** 
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Figure 2.4: Average Technical progress of U.S. Carriers 

  

 The movements throughout the cost function due to changes in airlines cost 

efficiency are offered in Figure 3.5. These have been quite stable over the observed 

time scale with an overall (minor) increase of 0.2%. Finally, the overall total factor 

productivity (technical efficiency and cost efficiency together) are presented in Figure 

3.6. It is observed that, taking an average of all the companies, total factor 

productivity has decreased quite steadily over the years with an overall decrease of 

50.68%. This decrease was mostly due to technical change and to a much lesser 

degree due to cost efficiency levels.  

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

T
e

c
h
n

ic
a

l 
C

h
a
n

g
e

 I
n
d
e

x

1990 1995 2000 2005 2010
year



 

 

 

41 

 

Figure 2.5: Average cost efficiency index of U.S. Carriers 

 

 

Figure 2.6: Overall Total factor productivity index of all U.S. Carriers 
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 These results can be compared with these obtained by Oum and Yu (1995) and 

Vasigh and Fleming (2005). However, this presents some difficulties as to date there 

have been few studies, which present total factor productivity of airlines over a recent 

and long time scale such as the one presented here.  

 Oum and Yu (1995) measured and compared productivity of the world’s 23 

major airlines from 1986-1993. Their data set included 6 of the same airlines as in the 

data set here. They construct a TFP index which reflects the airlines observed 

productivity performance. This is referred to as a “gross” TFP index, as it is likely that 

it will not reflect the “true” productive efficiency. Many factors can impact TFP which 

are largely beyond the control of the airline, such as economic conditions. This should 

be kept in mind when considering results. Focusing only on the comparable years 

(1991-1992) they find that many of the airlines (including Asian and European) 

experienced a reduction of TFP and they suggest this is most likely due to the reduced 

demand caused by the Gulf war and economic recession. Continental airlines, was the 

only U.S. airline out of the six, to demonstrate an overall decrease in TFP over the 

whole sample period, with the average annual TFP change of -1.2 %. 

 Vasigh and Fleming (2005) analyse and asses TFP of the U.S. airline industry 

comparing national airlines to major airlines for the years 1996 through 2001. This 

study exposes the relatively stronger productivity achieved by the U.S. national 

airlines as compared to the U.S. major airlines. They observe a decline in productivity 

of the major airlines over the analysed period, while national airlines demonstrated a 

more consistent and higher trend in productivity. However, they do not examine the 

relatively poor performance of the major airline group with American, United and 
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Delta airlines having the lowest productivity. The average total factor productivity for 

their work is presented in Table 2.7. Those airlines, which are in italics, are also 

present in the data set used here. It is interesting that these airlines have some of the 

lowest productivity scores overall. This could be a contributing factor the lower 

(decreasing overall TFP) productivity results obtained in this analysis. It could also be 

possible that as the data set used for this analysis is a combination of major and 

national airlines, the average TFP scores are being skewed by the lower scores of the 

major airlines.   

Table 2.7: Average total factor productivity for U.S. airlines (1996-2001), (Vasigh 

and Fleming, 2005) 

Airline TFP Airline TFP 

Aloha 0.89 American Trans Air 0.71 

Horizon 0.87 American West 0.56 

Spirit 0.86 Southwest 0.49 

Midwest Express 0.83 Continental 0.38 

Frontier 0.81 U. Airways 0.33 

World 0.81 Northwest 0.28 

Airtran 0.73 Delta 0.22 

Hawaiian 0.73 United 0.13 

Alaska 0.60 American 0.10 

 

 Vasigh and Fleming (2005) have offered a number of potential contributing 

factors to this decreasing trend TFP observed in the airline industry. The most likely 

explanation could be due to the hub-and-spoke system, which emerged following the 

deregulation of the industry. While the hub-and-spoke structure has been recognised 

as allowing for the efficient provision of air transportation to smaller markets and 

routes, the relative productivity rankings of their analysis and the one presented here, 
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suggest that perhaps these hub-and spoke systems decrease TFP. For example, 

Southwest Airlines, a point-to-point carrier, has significantly outperformed the 

remaining major carriers. Southwest has been profitable by consistently keeping its 

costs lover than the industry average. The lower productivity of the major airlines may 

in fact arise from the inefficient use of assets and expenses associated with the 

operation of hub systems. A number of airlines have faced this issue with efforts of 

“de-hubbing” such as Continental, Delta, U.S. Airways and American Airlines to 

name a few. Overall, the results from this analysis of the TFP index are somewhat 

inconclusive, and future work could provide a more significant validation of the TFP 

index.  

 From 1979 until the end of 2009, U.S. airlines lost $59 billion (in 2009 dollars) 

on domestic operations Borenstein (2011). Fuel costs increases have undeniably been 

a significant component of losses in some years, most notably in 2008. Interestingly, 

the average tax as a percentage of the base ticket price has increased steadily 

throughout deregulation according to Borenstein (2011). He suggests that the 

industry’s problem appears to be not that the taxes have increased, but that base fares 

have fallen and stayed low. Finally, another potential main driver of the U.S. airlines 

losses, are the large cost differentials between major airlines and the low cost carriers, 

which has continued even as their price differentials have significantly declined.  
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2.7. Conclusions 

 

 This chapter uses stochastic frontier analysis to measure and compare estimates 

of cost inefficiencies for twenty-four U.S. carriers. The estimates are based on panel 

data observations during the time period 1991Q1 to 2012Q3.  

 An extensive effort was implemented in order to assemble a reliable panel of 

data. This was then used to compute a translog cost frontier function. In developing 

the translog cost frontier, a detailed representation is established of the relationship 

between aircraft costs and the variables that influence it. The efficiency scores were 

then calculated and examined in order to compare them across carriers. Relationships 

are found between costs and environmental variables and other dummy variables not 

previously documented in stochastic frontier literature. The primary results of this 

study are as follows. 

 Of the twenty-four airlines in the study it was found that they are, on average 

over all years, operating at 92.12% efficiency. In the final reporting year, 2012 the 

average efficiency score for all airlines was 90.91%. Thus to operate efficiently in 

2012, airlines could (on average) reduce their input costs by 9.09% without decreasing 

their outputs. For the purposes of this analysis, airline outputs were defined as revenue 

ton-miles, the revenue tons (of passengers and cargo) transported per miles flown. The 

coefficient on the output variable was significant at 0.956, suggesting nearly constant 

returns to scale. The average cost efficiency of air transportation carriers over time, 

ranged between 92.88% and 88.29% with a standard deviation of 1.05%. All first 

order terms were found to be statistically significant and are in line with previous 
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studies ( for example see: Caves et al. (1984), Gillen et al. (1990), Oum and Zhang 

(1991), Bauer (2000)). It was determined that the environmental variables for 

passenger load factor and for average stage length were statistically significant. This is 

not always seen in previous work using frontier analysis, and often they are dropped 

due to insignificant coefficients. Of further interest are the results on the September 

11
th

 indicator variables. This analysis separates the effects of September 11
th

 into its 

temporary effects and its lasting impacts. It is found that the initial temporary outcome 

was a small but positive (increase) to airline costs of approximately 9.4%, and a 

negative on-going effect of around 9% (decrease) in costs. Both are statistically 

significant. A possible explanation for the decline in costs over the long run could be 

that with the increased number of bankruptcy filings after the attack many carriers 

have been engaging in dramatic cost-cutting programs (Ito and Lee, 2005). Another 

possibility is that the airlines were able to cut their security costs due to the 

implementation of the Aviation and Transportation Security Act.  As far as the long 

term effects of September 11
th

, there is some controversy as to what the true impacts 

are. This is due to fact that weak economic conditions were present before September 

11
th

, and persisted well after. Future work will endeavour to assess the impacts of the 

September 11
th

 attacks and it’s after effects on U.S. airline costs in a more robust 

manner.  

 It was also observed that on average, taking account of all companies,  

productivity growth for the study period due to technical change had deteriorated 

overall by 50.8% over the twenty-two year period. Although results are somewhat 

inconclusive, one possible explanation for this decline in TFP could be due to the hub-

and-spoke configuration which developed following deregulation. It is thought that 
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this could have resulted in the inefficient use by airlines, of assets and expenses 

related with operating these hub systems. The total factor productivity of U.S. carriers 

over a more recent and longer time scale is an area which needs further attention and 

will be returned to in future work. Key future research in this field will include the 

analysis of total factor productivity through the industry recession. 
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3. Determinants of airline efficiency in the U.S.: A longitudinal DEA and SFA 

approach  

 

3.1. Introduction 

 

 With competition having increased in many airline markets across the world, and 

now being at an all-time high, demand for premium travel services (particularly first-

class seating) has suffered a significant decline. Given that premium fares are typically 

four times the price of economy fares, this translates to a substantial loss in revenue. 

In an industry with such slim margins, this is a significant reduction and only adds to 

the current downward pressure on profits. In addition, the rapid expansion of low cost 

carriers (LCCs) has drastically altered the nature of competition within the traditional 

airline industry (Brueckner et al., 2013). This is particularly the case on shorter-haul 

routes and has caused regional airlines to react or to fail. Rising labour costs and 

fluctuating fuel prices impact all airlines. Fuel is now approximately 30-40% of 

airlines costs, compared to 13% in 2001 (Zou and Hansen, 2012). The significant rise 

and high volatility in jet fuel costs further complicates the situation where the strategic 

response can take many forms, but all involve improving cost efficiency. More than at 

any time in the past, this has made efficiency a top priority for airline management 

(Merkert and Hensher, 2011).  

 While cost management has always been an important part of airline 

administration, in recent years it has become a crucial part of the airline survival 

strategy. In the decade following the September 11
th

 attacks in 2001, U.S. airlines 
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have shown considerable resilience (all of the legacy carriers have received 

government support and have undergone Chapter 11 restructuring), with most having 

been able to recently improve their financial position and return to profitability as a 

result of significant consolidation and capacity discipline (IATA, 2014).  However, it 

remains too early to tell if more airlines have yet to face financial difficulties or will 

be forced into further merger and acquisition activities. While initiatives to reduce 

costs are not unusual in the course of economic recessions, the efforts carried out by 

the airline industry have been considered extreme. These efforts have included scaling 

back workforces, changes to service and wage reductions from employee groups. 

Furthermore, these airlines have had to restructure themselves considerably, 

financially as well as operationally, regardless of whether they pursued bankruptcy 

protection or not.   

 It is therefore important to understand what operational measures airlines should 

adopt in order to remain competitive in the market and to perform well under turbulent 

market conditions. One strategy has been to adopt the low cost carrier (LCC) model, 

by either setting up a subsidiary low cost operation (such as American Airlines who is 

a subsidiary of the AMR corporation) or by adopting the no-frills model, which most 

aviation markets have experienced in the past. Another strategy seen in the industry is 

that of increasing market power by way of forming alliances, as well as growth 

through mergers and acquisitions (such as United/Continental in 2011). However, it 

could be the case that airlines can become too large to operate cost efficiently 

(Merkert and Morrell, 2012). Previous literature (Merkert and Hensher, 2011; Merkert 

and Williams, 2013) suggests that operational factors have significant impacts on 



 

 

 

50 

costs and efficiency of airline operations. For example, passenger load factor, aircraft 

size and stage length have a huge impact on airline costs, with larger and fuller aircraft 

being able to spread unit costs over longer routes.   

 The intent of this study is to build on Merkert and Hensher (2011) and to analyse 

the impact of fleet planning and strategic management decisions on airline efficiency, 

comparing data envelopment analysis (DEA) and stochastic frontier analysis (SFA) 

results. While this study follows the approach they used for airlines around the world, 

it applies it to U.S. airlines only. The sample here however, includes 9 of the 10 U.S. 

airlines found in Merkert and Hensher (2011). In this way, both methods can be 

compared in terms of estimates and also robustness. As in Merkert and Hensher 

(2011), a two-stage DEA approach will be undertaken, with partially bootstrapped 

random effects Tobit regressions in the second stage. These results will then be 

compared to SFA results.  

 This chapter further contributes to the literature on airline efficiency by 

undertaking a much larger comparison of airline performance in the United States 

(twenty-two in total) as compared to Merkert and Hensher (2011). As well as 

significantly increasing the number of U.S. airlines in the sample set, this chapter will 

extend the number of years in the sample period, applying data from 2006-2012 for 

the twenty-one U.S. airlines. Such panel data makes the use of SFA approaches 

appealing. Pitt and Lee (1981) and Schmidt and Sickles (1984) both noted the 

advantages of using panel data to estimate frontiers, such as consistent cost/technical 

inefficiency estimates and richer analysis of the behaviour of firms over time provided 

by panel data. The time period 2006-2012 was chose for two reasons. The first was 
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that this included the time period covered in Merkert and Hensher (2011).  The second 

was that this was the largest time period available for which data on characteristic 

variables, such as number of manufacturers and aircraft families, was offered.   

 The remainder of this study is organised as follows: Section 3.2 presents a brief 

review of previous literature; Section 3.3 to 3.3.3 describes research design, including 

a two-stage DEA methodology, truncated regression, SFA model specifications, 

collection of the sample data and the criteria for variables to evaluate performance; 

Section 3.4 and 3.5 presents empirical data and an analyses of the results. The second-

stage Tobit regressions confirm results found in Merkert and Hensher (2011) and are 

consistent with the SFA estimates. Section 3.6 presents the conclusion and offers 

some discussion regarding possible directions for future work.  

3.2. Literature review 

 

 Airline efficiency has been previously examined adopting either the index 

numbers approaches, such as the Tornquist total factor productivity index (Barbot et 

al. (2008), Coelli (2003), stochastic frontier models (Coelli et al. (1999), Kumbhakar 

(1990), Inglada et al. (2006), Sjogren and Soderberg (2011)) or DEA models (Adler 

and Golany (2001), Merkert and Hensher (2011).  

 Almost all previous analyses use the International Civil Aviation Organization 

(ICAO) data sets and compare U.S., Asian and European airlines against each other 

with the main focus of study being the comparison of efficiency among these airlines. 

Recent studies using DEA to evaluate the performance of airlines, which adopt the use 
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a second stage bootstrapped truncated regression include Lee and Worthington (2014), 

who, looking at a sample of international and domestic U.S. airlines for the year 2006, 

find that private ownership, status as a low-cost carrier, and improvements in load 

factor contributed to better organizational efficiency. Barros and Peypoch (2009), 

contribute some valuable insight to the literature by their use of the Simar and Wilson 

(2007) bootstrapped truncated regression approach, which assessed the impact that 

environmental variables had on efficiency. From a sample of twenty-seven European 

airlines over the period 2000-2005, Barros and Peypoch (2009) find that the 

demographic aspect of the airlines home country (representing economies of scale) 

and membership in an alliance network, impacts significantly on airline efficiency. 

Economies of scale are also confirmed in Barbot et al. (2008). Using data for 49 

airlines from different parts of the world, the study found that low cost carriers 

typically perform more technically efficient than full service carriers, and that larger 

airlines are more efficient than smaller ones.  

 Methodologically, an obvious pattern is detected from the above literature; 

namely that they have confined their analysis to the estimation of technical efficiency 

and do not include all three aspects of efficiency into their analysis. There are two 

ways that this can limit their findings (Merkert and Hensher 2011). The first is that 

most of the previous literature uses both physical and cost data as input factors to 

estimate technical efficiency. A producer is technically efficient if an increase 

(decrease) in any output (input) requires a reduction (increase) in at least one other 

output (input) or an increase in at least one input (Koopmans, 1951). It can therefore 

be argued that technical efficiency is concerned with measurement of output to input 
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ratios and should as a result, consist of physical measures. Secondly, cost efficiency is 

considered to be more relevant to decision-making in airline management and is 

central to an airlines competitiveness and success (IATA, 2006). Cost efficiency, has 

technical and allocative components. The concept of allocative efficiency is concerned 

with combinations of correct inputs proportions at the least cost in a production 

process to achieve a desired level of output using current technological constraint 

(Coelli et al., 2005). Given the value of technical efficiency, the overall cost efficiency 

(CE) can be written as a product of technical and allocative efficiency values (Coelli 

et al., 2005): 

𝐶𝐸 = 𝑇𝐸 × 𝐴𝐸   (3.1) 

 

 It can be maintained that only an analysis of the values of all three types of 

efficiency will lead to a more meaningful and complete picture of the efficiency of the 

airlines concerned. The positive impacts of airline size and business model (implying 

the different cost structures adopted by airline companies in their operations such as 

low cost or full service) on technical efficiency is well documented in existing 

literature. What is lacking prior to Merkert and Hensher (2011) however, is an in-

depth study on allocative and cost efficiency, which is not fully understood at present.  

 Merkert and Hensher (2011) add to this literature by looking at the potential 

impact of fleet mix on the cost efficiency of airlines.  They show that airline size and 

key fleet mix characteristics have significant impact on all three types of airline 

efficiency and are consequently more relevant to successful cost management of 

airlines than other effects of route optimisation. Average stage length for example, is 
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found to be limited to airline technical efficiency only. Their analysis includes fifty-

eight international passenger airlines over the two fiscal years of 2007/2008 to 

2008/2009, ten of which are U.S. airlines. Importantly, they note that none of the 

previous studies on airline efficiency recognise the potentially significant impacts of 

fleet mix and stage length on all three areas of efficiency. It is therefore clear that 

there is a gap in the literature regarding these kinds of questions. Therefore, the 

motivation for this chapter stems from the evolving trend in studies looking at airline 

efficiency while further developing the very limited literature on impacts of fleet mix 

and stage length. Particular focus is on U.S. airlines and a more recent and longer time 

period.  

 Stochastic frontier analysis has also been used in the airline literature mostly 

from a production function perspective with a focus on technical efficiency only. In 

addition, few have adjusted their functions to account for environmental/characteristic 

influences such as those presented here. Coelli et al. (1999) obtain results for technical 

efficiency of thirty-two international airlines from 1977 to 1990 using a stochastic 

frontier production function, comparing two approaches. The first assumes that 

characteristic (also referred to as “environmental”) factors influence the shape of the 

technology while the other assumes that they directly influence the degree of technical 

inefficiency. Characteristic variables considered include stage length, aircraft size and 

load factor, which they note are unlikely to capture all characteristic influences. Both 

sets of results provide similar rankings of airlines but lead to differing degrees of 

technical inefficiency. They observe that this study is the first empirical analysis to 
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apply these two approaches and that future work is needed in order to shed some light 

on the generality of the results found in their study.   

 Several authors have studied cost elasticities on the basis of an econometric 

study of airline cost functions, typically using the translog functional form. These 

studies include, but are not limited to Caves et al. (1984), Gillen et al. (1990), 

Atkinson and Cornwell (1994), Inglada et al. (2006), Ryerson and Hansen (2013) and 

Zou and Hansen (2012). In Table 3.1 some of these studies are summarised and the 

inclusion of characteristics variables are highlighted. As it can be seen, these 

characteristic variables were included as regressors in the cost functions themselves. 

Typically, stage length and load factor were the variables most often included. Only 

those input variables which match those in the study here are reported in order to 

make a comparison for the SFA results in Section 3.5.  

 Finally, despite the mounting literature investigating technical efficiency in 

airlines, there is none (with the exception of Merkert and Hensher 2011) examining 

the potentially significant impacts of fleet mix characteristics and stage length on 

technical, allocative and cost efficiency. There are also no studies which address those 

characteristics while accounting for the panel structure of that data, which is best done 

using SFA models. This study gives emphasis to U.S. airlines only, including a larger 

number of carriers and a longer more up to date time period than in Merkert and 

Hensher (2011). However, this study aligns with the two fiscal years of 2007/2008 and 

2008/2009 of Merkert and Hensher (2011) and keeps the time period from 2006-2012 

in order to avoid complex modelling issues when considering data availability on 

characteristic variables.  
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Table 3.1: Studies on Airlines Cost function and their reported coefficients 

Authors Variables (Output-Input) Sample 

Caves et al. 

(1984) 

Output:  

- TKA (0.804) 

Inputs:   

- Labour price (0.356) 

- Fuel price (0.166) 

- Material/capital price (0.478) 

Characteristic:  

- Average stage length (-0.148) 

- Load factor (-0.264) 

- Aircraft size (0.153)  

U.S. (15) 

1970-1980 

 

Gillen et al. 

(1990) 

Output:  

- RPK+RTK  (0.971)  

Inputs:   

- Labour price (0.322) 

- Fuel price (0.199) 

- Material/capital price (0.478) 

Characteristic:  

- Average stage length (-0.181) 

- Load factor (0.734) 

Canadian (7) 

1964-1981 

Atkinson 

and 

Cornwell 

(1994) 

Output:  

- ATM  (-0.940)  

Inputs:   

- Labour price (0.750) 

- Materials (0.521) 

Characteristic:  

- Average stage length (1.477) 

*All significant at the 10% level  

U.S. (13) 

1970Q1-

1981Q4 

Inglada et al. 

(2006) 

Output:  

- ATK  (0.679)  

Inputs:   

- Labour price (0.106) 

- Material/capital price(0.373/0.291) 

Characteristic:  

- Average stage length* 

- Average load factor* 

*Characteristics variables dropped due to insignificance 

Internationals 

(20) 1996–

2000 

Ryerson and 

Hansen 

(2013) 

Inputs:   

- Labour price (0.296) 

- Fuel Price (0.408) 

- Materials price (0.302)* 

Characteristic:  

- Average stage length (0.803) 

- Average Age (0.037) 

- Seats (0.400) 

*Insignificant  

U.S. (26) 

1996-2006 

Zou and 

Hansen 

(2012) 

Output:  

- RTM  (0.4875)  

Inputs:   

- Labour price (0.3858) 

- Fuel Price (0.2016) 

- Materials/capital price (0.4126/-0.0547) 

Characteristic:  

- Average stage length (-0.2172) 

U.S. (9) 

1995-2007  
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3.3. Methodology and model specification  

 

 Methods of measuring efficiency can be broadly classified into two methods: 

non-parametric, and parametric. Non-parametric approaches include indices of partial 

and total factor productivity, and data envelopment analysis (DEA). DEA is 

essentially a linear programming based technique.  Parametric methods involve the 

estimation of stochastic cost and production functions, for example stochastic frontier 

analysis.   

 This chapter follows Merkert and Hensher (2011) and applies a two-stage DEA 

efficiency approach to determine impact factors on airline efficiency. For the first 

stage bootstrapped and non-bootstrapped DEA approaches are used to measure the 

efficiency of the airlines in the sample (for details on bootstrapping see (Simar and 

Wilson (1998) Simar and Wilson (2007)). This is followed by a second stage random 

effects Tobit regression models. The intent here is to analyse and evaluate the impact 

that strategic management and fleet planning have on the three areas of efficiency 

(technical, allocative and cost). Measures of cost efficiency from a stochastic frontier 

cost function which has been adjusted to account for characteristic variables are then 

compared to results in the DEA analysis.  

 The measurement of efficiency began with Farrell (1957), who defined a simple 

measure of firm efficiency that took into account multiple inputs. DEA was first 

proposed by Charnes, Cooper and Rhodes (Charnes et al., 1978), who built on the 

frontier concept initiated by Farrell (1957). The model they specified was the first to 

be widely applied, having an input orientation and assuming constant returns to scale 
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(CRS). DEA is based on a linear programming technique to measures the relative 

efficiencies of Decision Making Units. It constructs a non-parametric frontier over the 

observed data, and efficiency measures are constructed relative to this frontier.  

Therefore, DEA optimises at each observation for constructing an efficient frontier, 

the maximum output empirically obtainable for any decision-making unit (in this case 

airlines) in the data, given its level of inputs.   

  The cost frontier is defined by Forsund et al. (1980) as the minimum cost for a 

particular level of output, given the technology and the prices of the inputs used. 

Following the methodology developed by Schmidt and Sickles (1984) using panel 

data, presented below is a single equation cost function. The stochastic cost frontier 

function for panel data, for the 𝑖𝑡ℎ airline (i=1,2,…,N) during the 𝑡𝑡ℎ  period 

(t=1,2,..,T) is defined as: 

 𝐶𝑖𝑡 = 𝛼 + 𝐶(𝑃𝑖𝑡, 𝑌𝑖𝑡, ; 𝛽) +  𝑣𝑖𝑡 + 𝑢𝑖          (3.2) 

 

 Here C is the observed cost; 𝛼 is the constant; P is the input price vector; Y is 

the output and 𝛽  represents parameters to be estimated. The term 𝑣𝑖𝑡 + 𝑢𝑖  is a 

composite error term with 𝑣𝑖𝑡 representing statistical noise (or randomness). The error 

component for statistical noise is assumed to be independently and identically 

distributed, with zero mean and constant variance. The term 𝑢𝑖 in this case is the cost 

inefficiency of cost for the 𝑖𝑡ℎ airline company with properties,𝑢𝑖𝑡 ≈ 𝑖𝑖𝑑𝑁+(0, 𝜎𝜇
2).  It 

then follows that 𝑢𝑖𝑡 ≥ 0 for all𝑖, and that it is identically distributed with mean µ and 

variance 𝜎𝜇
2 and is independent of 𝑣𝑖𝑡.  
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 When dealing with a cost frontier, firms that lie on the frontier are efficient, with 

firms above the frontier being inefficient. The most cost efficient firms will be directly 

on the frontier and so it is undesirable to be above the frontier. When obtaining 

efficiency estimates from frontier models, values closest to 1 represents a more 

efficient firm and values closer to zero represent firms that are less efficient. 

Therefore, a value between 0 and 1 denotes the degree to which an airline succeeds in 

minimizing cost given input and output prices. For the purpose of this chapter, cost 

efficiency can be written as follows: 

𝐶𝐸𝑖𝑡 = exp (−𝑢𝑖𝑡)     (3.3) 

 

3.3.1. Data Envelopment Analysis  

 

 A DEA production frontier can be operationalised non-parametrically either with 

an input or output orientation, under the alternate assumptions of constant returns to 

scale (CRS) or variable returns to scale (VRS). An input oriented function fits more 

naturally in this case, as it assumes that the airlines have a greater influence on the 

inputs rather than their outputs. Output volumes are heavily influenced by macro-

economic factors and are often determined well in advance by long-term slot 

contracts.  

 The input-oriented CRS model and efficiency score for firm 𝑖 in a sample of 𝐼 

firms is estimated through the following equation (Coelli et al., 2005): 
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minθ,λ θ,  

s.t – qi + Qλ ≥ 0 

 θxi − Xλ ≥ 0 

 λ ≥ 0 (3.4) 

  

 where λ represents the weights for the inputs and outputs which is a 𝐼 × 1 vector 

of constants. 𝑋 and 𝑄 are input and output matrices, and  θ measures the observed 

distance between the observations  xi  and qi  and the frontier (where the frontier 

represents efficient operation). More simply, the distance of θ  obtained is the 

efficiency score for the 𝑖𝑡ℎ firm. It satisfiesθ ≤ 1, with a value of 1 indicating a point 

on the frontier and therefore representing an efficient firm located on the deterministic 

frontier, according to the Farrell (1957) definition. The linear programming problem 

must be solved I times, once for each firm (airline company) in the sample and a value 

of θ is then calculated for each firm.  

 The main drawback to the CRS model is that this assumption is only appropriate 

when firms are operating at their optimal scale, which is unlikely in the airline 

industry with considerable evidence of on-going structural change (Lee and 

Worthington, 2014). Imperfect competition and financial/regulatory constraints are 

factors, which contribute to firms not operating at their optimal scale. This was 

demonstrated in the U.S. airline industry of the early 2000s with many airlines 

operating under Chapter 11 bankruptcy protection and facing borrowing constraints. 

In addition to these reasons, the data set includes airlines of a range of sizes. 
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Therefore, as well as the CRS, an estimation of the efficiency scores for the 

assumption of VRS is undertaken. In order to ensure that inefficient firms are only 

benchmarked against firms of a similar size, the VRS evaluation must adopt an 

additional convexity constraint (𝐼1′λ = 1). For technical efficiency, by calculating and 

comparing CRS and VRS scores, any observed differences would indicate scale 

inefficiency. While CRS and VRS models are calculated, VRS is likely to be the 

relevant model for analysis as it is difficult for airlines to change their scale of 

operation in the short run (Coelli and Rao, 2005). Therefore, as the evidence would 

suggest that the VRS scores are a more likely context than the CRS, allocative and 

cost efficiency scores focus on the VRS scores and the second-stage regressions are 

based on VRS scores only. Following Coelli et al. (2005), allocative and cost 

efficiency is estimated using: 

minλ,𝑥𝑖
∗𝑤𝑖

′𝑥𝑖
∗ 

 s.t – qi + Qλ ≥ 0 

𝜉∗ − Xλ ≥ 0 

𝐼1′λ = 1 

 λ ≥ 0  (3.5) 

 

where 𝑤𝑖
′ represents a N×1 vector of input prices and 𝑥𝑖

∗ denotes the cost-minimising 

vector of input quantities for the i-th firm. The former requires pre-assigning and the 

latter is estimated by the linear programming technique.  All other notions are as 

define for technical efficiency. Cost efficiency is therefore calculated as:  
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𝐶𝐸 =
𝑤𝑖

′𝑥𝑖
∗

𝑤𝑖
′𝑥𝑖

 (3.6) 

 

And allocative efficiency is defined as the ratio of cost efficiency to technical 

efficiency: 

𝐴𝐸 =
𝐶𝐸

𝑇𝐸
 (3.7) 

  

 The second stage of the analysis follows previous work by Merkert and Hensher 

(2011). This applies a two-stage model, which regresses the first-stage DEA efficiency 

scores (dependent variable) against explanatory variables in the second stage.  

 The bootstrapped technical efficiency results are tested in addition to the 

conventional non-biased corrected efficiency scores in the second stage regression 

models. The reason for this is that unless the DEA efficiency scores are corrected by a 

bootstrapping procedure, a two stage approach will lead to inconsistent and biased 

parameter estimates (for example as a result of the dependence of the DEA efficiency 

scores on each other) (Simar and Wilson, 2007, Simar and Wilson, 2008). In addition, 

the SFA cost efficiency results are also tested.  In the DEA literature, Tobit regression 

has been used to investigate whether performance would be affected by observation-

specific variables. Following Merkert and Hensher (2011) the random effects Tobit 

regression model below is used, controlling for both cross-firm and time errors in the 

censored panel data set: 

𝐸𝑆𝑖𝑡 =  𝛽1𝐴𝐼𝑅𝐿𝐼𝑁𝐸𝑆𝐼𝑍𝐸𝑖𝑡 + 𝛽2𝐴𝐼𝑅𝐶𝑅𝐴𝐹𝑇𝑆𝐼𝑍𝐸𝑖𝑡 + 𝛽3𝑆𝑇𝐴𝐺𝐸𝐿𝐸𝑁𝐺𝑇𝐻𝑖𝑡 + 𝛽4𝐹𝐿𝐸𝐸𝑇𝐴𝐺𝐸𝑖𝑡 +

𝛽5𝐴𝐼𝑅𝐶𝑅𝐴𝐹𝑇𝐹𝐴𝑀𝐼𝐿𝐼𝐸𝑆𝑖𝑡 + 𝛽6𝐴𝐼𝑅𝐶𝑅𝐴𝐹𝑀𝐴𝑁𝑈𝐹𝐴𝐶𝑇𝑈𝑅𝐸𝑅𝑆𝑖𝑡 + 𝑡𝑖𝑚𝑒 + 𝑣𝑖𝑡 + 𝑢𝑖     (3.8) 
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where 𝐸𝑆it is the VRS efficiency score of the individual airlines i in the relevant year t. 

AIRLINESIZEit represents the available ton miles for that airline (used as a proxy for 

its size), AIRCRAFTSIZEit designates the average number of seats on the aircraft in 

service under the relevant airline in the relevant year, STAGELENGTHit indicates the 

average stage length that has been flown by the aircraft of the airline, FLEETAGEit 

reflects the age of the airline’s fleet, and AIRCRAFTFAMILIESit describes the number 

of different aircraft families13 (i.e. B747 or A380) of which the relevant airline fleet 

consisted of at that time. Finally, AIRCRAFTMANUFACTURERSit represent the 

number of different manufacturers in the airline fleet (e.g. Airbus or Embraer). As in 

Merkert and Hensher (2011), this analysis groups the aircraft at the aircraft family 

level (e.g. aircraft that the same pilots can fly) rather than the unique aircraft type 

level. Required assumptions of the random effects Tobit model are that the vit is 

uncorrelated across periods, that the random effect ui is the same in each period, and 

that all effects are uncorrelated across firms (see StataCorp, 2013). 

 

 

 

 

                                                 
13 To illustrate, the A318, A319, A320, and A321 aircraft types are all part of the A320 family (with the A380 being the largest 

aircraft family) whilst at Boeing the aircraft types from B737-200 to B737-900 are, for example, all members of the B737 family 

(including ER (extra range) types). These criteria were sourced from the airline manufacturers’ websites directly as well as U.S. 
DoT Form 41.  
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3.3.2 Stochastic Frontier Analysis  

 

 In the econometric estimation of cost frontiers, a functional form must first be 

specified. The cost efficiency results that are obtained depend critically on the model 

assumed. Therefore, specification and estimation of model parameters, which may not 

be of primary interest here, are nevertheless a major first step in the model 

construction process. A number of functional forms have been applied in empirical 

studies of airline costs. Among all the empirical implementations, the majority of 

analyses using SFA have employed the translog or Cobb-Douglas forms of production 

and cost. The most widely used flexible functional form in a cost minimizing 

framework is the translog cost function and therefore, this analysis presents results for 

the translog specification. Equation (3.9) describes the translog total cost stochastic 

frontier function. The deviation from the frontier occurs because of the random shocks 

and statistical noise (𝑣𝑖𝑡) as well as technical inefficiency (𝑢𝑖𝑡).  

𝑙𝑛𝑇𝐶𝑖𝑡 = 𝛼 + 𝛼𝑇𝑡 + 𝛽𝑙𝑛(𝑌𝑖𝑡)  + ∑ 𝛾𝑗 ln(𝑃𝑗𝑖𝑡)

𝑗

 

+ 
1

2
𝜂𝑌𝑌[ln (𝑌𝑖𝑡)]2 +

1

2
∑ ∑ 𝜙𝑗𝑘 ln(𝑃𝑗𝑖𝑡) ln(𝑃𝑘𝑖𝑡)

𝑘𝑗

 

 + ∑ 𝜃𝑌𝑘 ln(𝑌𝑖𝑡) ln(𝑃𝑘𝑖𝑡) + 𝑣𝑖𝑡𝑘 + 𝑢𝑖𝑡                                         (3.9) 

and 

𝑢𝑖𝑡 =  𝛿1𝐴𝐼𝑅𝐿𝐼𝑁𝐸𝑆𝐼𝑍𝐸𝑖𝑡 + 𝛿2𝐴𝐼𝑅𝐶𝑅𝐴𝐹𝑇𝑆𝐼𝑍𝐸𝑖𝑡 + 𝛿3𝑆𝑇𝐴𝐺𝐸𝐿𝐸𝑁𝐺𝑇𝐻𝑖𝑡 +                       𝛿4𝐹𝐿𝐸𝐸𝑇𝐴𝐺𝐸𝑖𝑡 +

𝛿5𝐴𝐼𝑅𝐶𝑅𝐴𝐹𝑇𝐹𝐴𝑀𝐼𝐿𝐼𝐸𝑆𝑖𝑡+ 𝛿6𝐴𝐼𝑅𝐶𝑅𝐴𝐹𝑇𝑀𝐴𝑁𝑈𝐹𝐴𝐶𝑇𝑈𝑅𝐸𝑅𝑆𝑖𝑡 +𝜃𝑖𝑡                (3.10) 
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where lnTCit is the total cost for airline a in time period t. On the right hand side, the 

first line contains all first order terms; second-order terms appear in the remaining 

lines. A time trend t is included; Yit is the quantity of the output for airline 𝑖 in time 

period t; Pjit the j
th

 input price for airline 𝑖 in time period t.  

 In addition, Christensen et al. (1973) state that a translog cost function must 

satisfy certain regulatory conditions. These ensure that a cost function is consistent 

with cost minimisation. A cost function must be linearly homogeneous in the input 

prices, requiring the following restrictions to be imposed: 

              ∑ 𝛾𝑗 = 1𝑗         ∑ 𝜙𝑗𝑘 = 0(∀𝑘)𝑗     ∑ 𝜃𝑌𝑘 = 0𝑘                       (3.11) 

where subscripts k refers to, respectively, the k
th 

input in the second and third sub-

equations.   

 Equations (3.11) ensure that a proportional increase in all input prices results in a 

similar increase in total costs. These equations state that the first order coefficients for 

the input prices must sum to one, and that the second order coefficients involving 

input price must add to zero. The total cost and the regressors have all been 

transformed into natural logarithms. The data has also been demeaned such that the 

dependent and independent variables, including environmental characteristic 

variables, are estimated about the mean values in the dataset. This allows for the first 

order coefficients to be interpreted as cost elasticities evaluated at the sample mean.  

 In order to take into account the environmental characteristics variables, these 

factors are introduced as explanatory variables of economic inefficiency. Equation 

(3.3) is a one-sided term reflecting cost inefficiency. There are a number of 

assumptions with respect to the distributional assumptions of the inefficiency term and 
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how airline characteristics and environments are modelled with regards to the 

stochastic frontier. Following the Battese and Coelli (1995) model for panel data, 

airline characteristics or environment factors enter as a set of covariates in the 

determination of the inefficiency term. The model assumes that the inefficiency 

effects are stochastic and directly impact on the mean of the inefficiency distribution. 

It also allows for the measurement of both technical (cost) changes in the stochastic 

frontier and time-varying technical (cost) inefficiencies. The distributional assumption 

on the inefficiency effects is truncated normal with non-zero mean and constant 

variance.   

 

3.3.3. Strengths and weaknesses of SFA and DEA 

 

 Both the SFA and DEA methods are estimating the same underlying efficiency 

values but they can give different efficiency estimates for the units under analysis. 

This is due to differences in the underlying assumptions. Although the two approaches 

are traditionally thought to be competing there is no consensus as to which is the most 

appropriate technique; each has its own strengths and weaknesses (Coli et al, (2007). 

The main strength of DEA is that it is able (even for relatively small samples) to 

incorporate multiple inputs and outputs, and provides a scalar measure of relative 

efficiency by comparing the efficiency achieved by a decision-making unit (DMU) 

with the efficiency obtained by similar DMUs. As the implied frontier is derived from 

an observed data set (empirical observations), it measures the relative efficiency of 

DMUs that can be obtained with the existing technology, fleet strategy or managerial 
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strategy. The first drawback of DEA, is that it assumes all deviations from the 

efficient frontier are due to inefficiency (including any statistical noise, measurement 

errors, omitted variables and other mis-specifications). As it is a nonparametric 

technique, statistical hypothesis tests are not possible. 

 The SFA technique in contrast, assumes that deviations from the efficient 

frontier can either be a result of inefficiency or random error. The main advantage of 

SFA is that there are a number of well-developed statistical tests to examine the 

validity of the model specification. Another benefit of SFA is that if an irrelevant 

variable is included, it will have a very small or possibly even a zero weighting in the 

calculation of the efficiency scores, allowing its impact to be insignificant.  

 

3.4. Data and variables 

 

 The data set is composed of information obtained from U.S. Department of 

Transport (DoT) Form 41 for twenty- two airlines in the United States for the period 

2006-2012. There are a total of 124 observations in the panel. This is due to some 

airlines having merged and dropped out over the time frame. The data used in the 

DEA calculations represents a panel of U.S. airlines, which have differing financial 

and operational characteristics. In line with previous studies and with Merkert and 

Hensher (2011) the major trade-off in airline management is assumed to be between 

capital and labour. Following Merkert and Hensher (2011), as both need to be 

operationalised available ton miles (ATM) is used as a proxy for capital and full-time 

equivalent (FTE) staff as the measure of labour. These are useful for the evaluation of 
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technical efficiency as they are both physical measures. As the focus here is on all 

three aspects of efficiency, in order to account for the allocative and cost efficiencies, 

included are variables for the price of a unit of capital, proxied by capital price (found 

by dividing the sum of all operating costs14, not including staff costs, by ATM) and 

average staff costs as the unit price of labour.  

  The first part of the analysis involves deriving a scalar measure of relative 

efficiency for 21 DMUs following Merkert and Hensher (2011). To do this, airlines 

are defined in all DEA models as producing two separate outputs; revenue passenger 

miles (RPM) and revenue ton miles (RTM).  

 Variables included as explaining inefficiency, which seek to capture fleet 

optimization, are number of different families of aircraft, number of different 

manufacturers in the fleet and fleet age. As mentioned previously, a more 

homogeneous fleet seems to allow airlines to keep costs lower for things such as crew, 

maintenance and safety etc. Therefore it is expected that as the variables for the 

number of manufacturers and number of aircraft families increase, total costs will also 

increase. This could be one reason why LCCs such as Southwest have only one type 

of aircraft (Boeing 737) in service. In contrast, airlines such as American Airlines and 

United Airlines have a substantial range of different families of aircraft in their fleet (7 

and 8 respectively). It is therefore interesting to study whether the fleet mix has an 

impact on the airlines overall efficiency. Fleet age would be assumed to be correlated 

with fuel efficiency and is expected to increase costs as the age increases. There are 

differences among airlines in terms of seat configuration (number of seats in different 

                                                 
14 Operating costs include rent/leasing charges and depreciation but do not include taxes and interest expenses.  
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classes, number of seats in each aisle, etc.). Merkert and Hensher (2011) find that 

number of seats has a positive effect on all three types of efficiency. They suggest that 

this is expected due to aircraft regulations. To illustrate, employees on staff (1 crew 

member per 50 seats is required) add to aircraft costs, regardless of whether these 

seats are filled or not. Stage length was chosen to evaluate the impact of route/network 

optimisation on airline efficiency whilst aircraft size was chosen to assess whether the 

earlier discussed productivity measures of individual aircraft would have an impact on 

overall airline efficiency.  Both are typically found to be inversely related to costs in 

the airline literature. A description of these variables is found in Table 3.2 and 

descriptive statistics in Table 3.3. 
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Table 3.2: Variables for first and second stage DEA analysis 

Variable Name Variable Description 

First stage DEA models  

Output  

RPM  Revenue passenger miles- One revenue passenger 

transported one km in revenue service. Revenue 

passenger miles are computed by summation of the 

products of the revenue aircraft miles on each inter-

airport segment multiplied by the number of revenue 

passengers carried on that segment 

RTM Revenue ton miles - One revenue km transported one 

km 

Inputs  

Labor (FTE) Number of full time equivalent staff  

ATM Available ton miles (proxy for capital)- 

FTE_Price Price of a unit of labor (total costs spent on labor 

divided by FTE) 

ATM_Price Price of a unit of capital (determined by dividing 

the total capital costs by ATM) 

Second-stage explanatory variables 

Airline Size (ASM) Available seat miles- The aircraft miles flown in each 

inter-airport segment multiplied by the number of seats 

available for revenue passenger use on that segment 

Stage length (km) Average stage length- Revenue aircraft miles 

divided by revenue number of departures 

Aircraft size (seats) Average seats per aircraft across the operated fleet 

Fleet age (years) Age of the fleet 

Aircraft families (#) Number of different families of aircraft (example: 

A320 vs A380) 

Aircraft manufacturers (#) Number of different manufacturers (example: 

Airbus or Embraer) 
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Table 3.3: Descriptive statistics for first and second stage analysis 

  N Mean Std. Dev. Min Max 

First-Stage DEA models         

Output 2006-2012         

RPM (x 10
10

) 124 8.14 9.38  0.00297 35.9  

RTM (x 10
10

) 124 0.904 1.08  0.00134 4.08 

            

Input 2006-2012         

LABOUR (FTE) 124 236285.5 264196.8 2507.0 986301.0 

ATM (x 10
10

) 124 1.47 1.76  0.00443 6.51 

FTE_Price (USD/FTE) 124 1.698408 0.396194 0.784603 2.893865 

ATM_Price (USD/ATM) 124 0.000561 0.000402 0.000137 0.003229 

          

Second-stage explanatory variables 2006-

2012 

        

AIRLINE_SIZE (ASM) (x 10
10

) 124 10.0 11.4 0.00646 43.3  

STAGE_LENGTH (miles) 124 173944.3 239780.3 2566.929 1102827 

AIRCRAFT_SIZE (seats) 124 125.9747 55.83600 8.330 289.75 

FLEET_AGE (years) 124 8.232177 3.877793 1.640 23.57 

AIRCRAFT_FAMILIES (#) 124 3.104839 2.155796 1 10 

AIRCRAFT_MANUFACTURERS (#) 124 1.887097 0.921378 1 6 

 

3.5. Results 

 

 The results for the first-stage DEA results are presented in Table 3.4. Following 

Merkert and Hensher (2011) the scores were estimated separately for each year in the 

data set. The results suggest that the airlines’ average technical, allocative and cost 

efficiency deteriorated between 2007 and 2009, with another decrease in 2011. Similar 

results for the years 2008-2009 were found in Merkert and Hensher (2011) who 

covered the two fiscal years 2007/2008 and 2008/2009. They suggest that this 

decrease in efficiency can be explained by the fact that airlines faced a more difficult 

business environment in 2008/2009 compared to 2007. The year 2008 saw the 
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beginning of the global financial crisis with high and very volatile fuel prices and a 

number of airline failures. During this time for example, Continental and Southwest 

Airlines, who were two of the most reputable U.S. airlines, announced that fuel costs 

had led to lower than expected quarterly earnings and they responded by lowering 

their growth plans. 

 As in Merkert and Hensher (2011), and following Simar and Wilson (1998) a 

bootstrap approach to generate a set of bias-corrected estimates of our first-stage DEA 

efficiency scores is performed. The bias-corrected efficiency scores are preferred over 

the original DEA scores since bias-corrected efficiency scores improve the robustness 

of the second-stage regression results. Values for the uncorrected average technical 

efficiency scores (𝑇𝐸𝑉𝑅𝑆) are as expected and are higher than those for the bias-

corrected scores (𝑇𝐸𝐶𝑂𝑅𝑅
𝑉𝑅𝑆 ).  

 This confirms that a traditional DEA model, without the bootstrapping approach, 

will generally overestimate technical efficiency for the sample. All DEA estimates are 

computed using the software package DEAP 2.1 (Coelli et al., 2005) except the 

bootstrapped scores, which were calculated using the FEAR 2.0 (Wilson, 2013) 

package. While DEAP 2.1 can provide calculations for cost, allocative and technical 

efficiency, it is not able to apply any bootstrapping procedures. The benefit of FEAR 

2.0 is that it is able to provide bootstrapped results. These packages were chosen in 

order to stay consistent with the methodology in Merkert and Hensher (2011). 
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Table 3.4: First stage DEA results 

 Computed with DEAP 2.1   Computed with FEAR 

Year 𝑇𝐸𝑉𝑅𝑆  𝐴𝐸 𝐶𝐸  𝑇𝐸𝑉𝑅𝑆 𝑇𝐸𝐶𝑂𝑅𝑅
𝑉𝑅𝑆  

2006 0.9015 0.9525 0.8589  0.9015 0.8494 

2007 0.9049 0.9518 0.8606  0.9049 0.8483 

2008 0.8995 0.9525 0.8565  0.8996 0.8367 

2009 0.9056 0.9716 0.8810  0.9057 0.8385 

2010 0.9425 0.9521 0.8986  0.9425 0.8964 

2011 0.9117 0.9642 0.8801  0.9116 0.8512 

2012 0.9286 0.9811 0.9128  0.9286 0.8718 

Average 2006-2012 0.9120 0.9600 0.8760  0.9119 0.8543 

       

Av. 2006-2012 

Results by Airline 

      

Northwest 1 0.9020 0.902  1 0.9089 

Southwest 0.9453 0.9327 0.8843  0.9453 0.8898 

Horizon 0.8425 0.9553 0.806  0.8425 0.8042 

Hawaiian 0.8627 0.8757 0.7516  0.8628 0.8158 

Continental 1 1 1  1 0.9181 

Delta 0.9894 0.9690 0.9593  0.9893 0.9176 

American 0.9791 0.9986 0.9777  0.9791 0.9018 

Alaska 0.8723 0.9952 0.8675  0.8723 0.8344 

United 1 0.9659 0.9659  1 0.9177 

American West 0.849 0.9940 0.8440  0.8493 0.8110 

Air Wisconsin 0.7046 0.9396 0.6566  0.7044 0.6649 

SkyWest 0.8350 0.9560 0.7983  0.8351 0.8056 

ATA 0.7960 0.9460 0.7520  0.7955 0.7562 

Midwest 0.8053 0.9917 0.7983  0.8052 0.7599 

US Airways 0.8906 0.9853 0.8781  0.8905 0.8471 

Allegiant 1 1 1  1 0.9082 

Eagle 0.8257 0.9324 0.77  0.8257 0.7963 

Jet Blue 0.9999 0.9729 0.9726  0.9998 0.9424 

Comair 0.8082 0.9365 0.7568  0.8084 0.7766 

Air Tran 0.9711 0.9969 0.9683  0.9713 0.9184 

USA Jet 1 1 1  1 0.8931 

Virgin 0.9510 0.8625 0.8135  0.9509 0.8721 
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 In terms of 𝑇𝐸𝐶𝑂𝑅𝑅
𝑉𝑅𝑆 , the most efficient airline in our sample is Jet Blue followed 

by Continental/Delta/United and Air Tran 15 . A number of airlines, including 

American, Alaska and Air Tran were among the highest ranking in terms of AE, with 

Continental, Allegiant and USA Jet scoring most efficient at AE = 1. Comair and 

Northwest demonstrate efficiency scores which were quite poor relative to the rest of 

the airlines. In terms of CE, Continental, Allegiant and USA Jet also all come out 

most efficient with a score of 1, with Comair Hawaiian and ATA lowest around the 

0.75 mark.  

 The stochastic frontier analysis results are presented in Table 3.5 and Table 3.6. 

Table 3.5 presents the estimation results obtained for the translog stochastic frontier 

regression. The second-stage regression results for the DEA model are summarised 

together with the SFA model results, which can be found in Table 3.8. The variable 

for number of aircraft manufacturers had to be dropped due to its strong correlation 

with the variable for number of families. The variable available seat miles (ASM) was 

also dropped due to strong correlation. Based on the partial correlation coefficients 

between the remaining explanatory variables, no other multi-collinearity issues were 

found. A further discussion of the results is found following these Tables.  

 

 

 

 

                                                 

15 Now Southwest Airlines.  
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Table 3.5: Stochastic frontier analysis results 

Variable Coefficient Standard error 

lnRPM  0.1335 0.2210 

lnRTM  0.8586 0.2133*** 

lnATMprice  0.8709 0.0406*** 

½(lnRPM)
2
 -2.9296 0.7035*** 

½(lnRTM)
2 -4.3825 0.9554*** 

½(lnATMprice)
2
  0.0392 0.0569 

lnRPMlnRTM  3.6632 0.8289*** 

lnRPMlnATMprice  1.2835 0.3371*** 

lnRTMlnATMprice -1.2583 0.3300*** 

Time -0.0096 0.0043** 

Constant in the equation of cost 

inefficiency 

-0.5392 0.1085*** 

Usigma   

lnSTAGE_LENGTH -0.3079 0.0403*** 

lnAIRCRAFT_SIZE -0.1499 0.0787* 

lnFLEET_AGE  0.5934 0.1039*** 

lnAIRCRAFT_FAMILIES  0.0838 0.0624 

𝝈𝒖
𝟐   0.0039 0.0212*** 

𝝈𝒗
𝟐  0.0063 0.0061*** 

𝝀 =
𝝈𝒖

𝟐

𝝈𝒖
𝟐 + 𝝈𝒗

𝟐
 

 0.3854 0.0241*** 

Log (Likelihood) 130.1359 

*Variables are significant at the 10% level. 

**Variables are significant at the 5% level. 

***Variables are significant at the 1% level. 

 

 The individual coefficients reflect the sensitivity of airline total costs to various 

regressors at the sample mean. The first-order coefficient for the input price indicates 

that at the sample mean, capital inputs account for 87.09% of the airlines total costs. 

As the capital input price variable takes into account all operating costs, other than 
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staff costs, this is similar (though slightly higher) to results found in previous literature 

that report capital and materials combined, to be around 50-70% of costs. The higher 

value on our capital input is likely due to the fact that we do not include fuel costs into 

the analysis. As the model was divided through by labour input price, this leaves the 

labour input to account for 12.91% of the total costs, and follows previous literature 

where it is reported as anywhere between 10-40% of costs.  

 The estimated coefficients of the characteristics variables cannot be interpreted 

the same way in terms of magnitude as those of the input prices. As discussed in 

Battese and Coelli (1995) the focus in on the sign of the coefficient of a characteristic 

variable, which illustrates the impact on inefficiency. Therefore, in order to interpret 

the impact on efficiency the signs must be reversed. With this specification, the 

coefficients on stage length and aircraft size indicate a positive impact on the cost 

efficiency of airline companies, which is consistent with expectations and confirms 

results found in our DEA analysis and in Merkert and Hensher (2011). Fleet age is 

found to have a negative impact on efficiency, or in other words older fleets are less 

cost efficient than younger ones. These are consistent with the predictions made in 

Merkert and Hensher (2011) but do not follow their results, which suggest (counter-

intuitively) that average fleet age has a significant positive impact on cost efficiency. 

Finally, though aircraft families was found to be insignificant, it displayed a positive 

sign consistent with previous findings.  

 Results presented here have incorporated the characteristic variables as 

transformed de-meaned logs. Alternative models for the specification of the 

inefficiency term were estimated for a total of five variations, but all were rejected due 



 

 

 

77 

to a higher log-likelihood on the preferred model presented here. The tested models 

are as follows: Model 1 which includes characteristic variables as de-meaned logs in 

the inefficiency term, model 2 has characteristics as logs in the inefficiency term, 

model 3 including logged stage length in the frontier and all other characteristics as 

logs in the inefficiency term, model 4 with all characteristics variables untransformed 

in the inefficiency term and model 5 which includes the characteristic variables as de-

meaned logs in the frontier. In model 4 without any transformation, the variable 

average stage length was dropped due to the estimation running only without the 

inclusion of this variable. On the basis of these results, a correlation analysis is 

presented among the five measures obtained. The results appear in Table 3.6. In this 

table a high correlation is observed between all five models (with the exception of 

model 2), suggesting that the exact specification of the characteristic variables is not 

significant enough to impact results. Perhaps unexpectedly, model 2 produced 

unreasonable and insignificant coefficients on all variables. The lowest correlations 

are those associated with the scores obtained from this model, which includes 

characteristics as logged de-meaned variables in the inefficiency term.  The key point 

to make is that the selection of method does not have a significant impact upon the 

size of the efficiency scores obtained, apart from the model logging characteristic 

variables. Therefore, model 1 is presented as it provides the most sensible and 

statistically significant estimates of the characteristics variables and has the highest 

log-likelihood. 
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Table 3.6: Correlation among alternative SFA efficiency measures 

 Model 1 Model 2  Model 3 Model 4 Model 5 

Model 1 1.0000     

Model 2 0.4108 1.0000    

Model 3 0.9125 0.3659 1.0000   

Model 4 0.9132 0.3664 0.9999 1.0000  

Model 5 0.6578 0.3487 0.6154 0.6191 1.0000 

 

 The significant estimate on the parameter, lambda, indicates the relative 

contribution of the variance in the inefficiency term compared to the variance in 

random noise, and indicates that inefficiency is in fact present in the model.  

Generalised likelihood-ratio tests16 of the null hypothesis, that the inefficiency effects 

are absent or that they have simpler distributions, are presented in Table 3.7. These 

tests follow the methodology in Battese and Coelli (1995). The first null hypothesis, 

which specifies that the inefficiency effects are not present in the model, is strongly 

rejected. The second null hypothesis, which specifies that the inefficiency effects are 

not stochastic, is also strongly rejected. The third null hypothesis specifies that the 

inefficiency effects are not a linear function of the average stage length, aircraft size, 

the aircraft’s average age and aircraft families. This null hypothesis is rejected at the 

5% level of significance. This indicates that the joint effect of these four characteristic 

variables on the inefficiency of cost is significant, although the individual effects of 

one or more of these variables may not be statistically significant. The inefficiency 

                                                 
16 The likelihood ratio test statistic, LR = -2ln(L(m1)/L(m2))=2(ll(m2)-ll(m1)), where L(m*) denotes the likelihood of the 

respective model, and ll(m*) the natural log of the models’ likelihood. This statistic is distributed chi-squared with degrees of 

freedom equal to the difference in the number of degrees of freedom between the two models (i.e. the number of variables added 

to the model).  
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effects in the stochastic frontier are clearly stochastic and are not unrelated to the stage 

length, size, age and number of families of the airlines. It can therefore be shown that 

the presented inefficiency stochastic frontier cost function is the preferred model in 

terms of the results (i.e. it is an improvement over the stochastic frontier which does 

not involve a model for the inefficiency effects and other tested models).  

 

Table 3.7: Tests of hypothesis for parameters of the inefficiency frontier model17 

Null Hypothesis Test statistic* 𝝌
𝟎.𝟗𝟓−𝒗𝒂𝒍𝒖𝒆
𝟐  Decision 

𝑯𝟎: 𝜸 = 𝜹𝟎 = ⋯ = 𝜹𝟒 = 𝟎 131.435 12.592               Reject 𝑯𝟎 

𝑯𝟎: 𝜸 = 𝟎 81.576  5.991                Reject 𝑯𝟎 

𝑯𝟎: 𝜹𝟏 = 𝜹𝟐 = 𝜹𝟑 = 𝜹𝟒 = 𝟎  32.260  9.488                Reject 𝑯𝟎 

 

 Table 3.8 summarises the annual SF cost efficiency scores obtained from 2006 

to 2012 for each individual airline. The cost efficiency scores indicate stable growth 

for some but not others. To be able to face a more competitive environment, most 

airlines were forced to restructure their aircraft fleet and their network flight 

destinations during the financial crisis that began in 2008. Delta, Continental, 

Hawaiian and Horizon demonstrate the best improvement in cost efficiency over the 

                                                 

17 The log-likelihood values are as follows: OLS = 64.42, OLS with inefficiency terms = 89.35, a pooled model with no 

inefficiency effects = 114.01. These were all tested against the BC95 full model presented here with LL= 130.14. The 

calculations for the test statistics are as follows: The first null hypothesis, which specifies that the inefficiency effects are 
not present in the model (df=6); -2*((64.418397)-(130.1359)) = 131.435. The second null hypothesis which specifies that 

the inefficiency effects are not stochastic (df=2); -2*((89.348054 )-(130.1359)) = 81.576. The third null hypothesis 

specifies that the inefficiency effects are not a linear function of the average stage length, aircraft size, the aircraft’s 
average age and aircraft families (df=4); -2*((114.00614)-(130.1359)) = 32.260.  
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period. Conversely, JetBlue, Comair and Eagle present some reductions in CE over 

the period.  

 A comparison of the average efficiency scores obtained from SFA with those 

found in DEA demonstrates a relatively low correlation with a value of 0.46. This 

could be due to the fact that some airlines (America West and ATA) report for only 

one year each.
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Table 3.8: Cost efficiency results from stochastic frontier analysis18 

 

2006 2007 2008 2009 2010 2011 2012 

Airline SFA DEA SFA DEA SFA DEA SFA DEA SFA DEA SFA DEA SFA DEA 

Northwest 0.994 0.896 0.993 0.912 0.990 1.000 0.656 0.959 

      Southwest 0.994 0.865 0.996 0.873 0.991 0.995 0.618 0.962 

  

0.869 0.949 0.991 0.983 

Horizon 0.994 0.866 0.996 0.990 0.991 0.995 0.484 0.977 0.992 0.999 0.745 0.941 

  Hawaiian 0.995 0.981 0.996 1.000 0.991 1.000 0.443 0.753 0.992 0.993 0.700 0.854 0.988 1.000 

Continental 0.974 0.857 0.996 1.000 0.991 0.998 0.422 0.981 0.992 0.995 0.994 0.969 

  Delta 0.951 0.863 0.996 1.000 0.992 1.000 0.414 1.000 0.992 0.996 0.993 0.930 0.991 1.000 

American 0.943 0.878 0.996 1.000 0.993 0.999 0.938 0.958 0.992 0.996 0.994 0.934 0.980 1.000 

Alaska 0.936 0.998 0.996 1.000 0.994 0.997 0.927 0.963 0.995 1.000 0.993 0.987 

  United 0.934 1.000 0.996 1.000 0.994 0.999 0.883 0.960 0.994 1.000 0.993 0.992 0.970 1.000 

America West 0.972 1.000 

            Air Wisconsin 0.790 0.941 0.993 0.911 0.993 0.978 0.865 0.962 0.994 1.000 0.991 1.000 0.622 1.000 

SkyWest 0.820 0.950 0.993 0.926 0.995 0.983 0.836 0.968 0.991 1.000 0.989 0.998 0.680 1.000 

ATA 0.801 0.952 

            Midwest 0.800 0.951 0.993 0.946 0.993 0.968 

        US Airways 0.832 1.000 0.993 1.000 0.994 0.945 0.883 0.962 0.991 1.000 0.843 0.944 0.622 1.000 

Allegiant 0.855 0.938 0.995 1.000 0.993 0.975 0.864 0.919 0.992 1.000 0.822 0.939 0.457 1.000 

Eagle 0.995 0.849 0.995 1.000 0.994 0.941 0.995 0.946 0.992 1.000 0.813 0.950 0.996 0.827 

Jet Blue 0.994 0.796 0.995 1.000 0.992 0.949 0.987 0.992 0.929 0.944 0.765 0.940 0.994 0.795 

Comair 0.994 0.781 0.991 1.000 0.995 1.000 0.982 0.991 0.956 0.945 0.767 0.934 

  Air Tran 0.992 0.929 0.991 1.000 0.983 0.994 0.937 0.992 0.956 0.951 0.730 0.912 0.996 0.831 

USA Jet 

  

0.989 1.000 0.784 0.945 0.992 0.926 

  

0.994 0.997 

  Virgin 

      

0.991 0.992 0.909 0.943 0.992 0.998 0.995 0.997 

Average 0.928 0.915 0.994 0.975 0.992 0.984 0.773 0.956 0.983 0.988 0.875 0.948 0.857 0.953 

 

 

                                                 

18 Note that all scores are “gross” scores  
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 As Table 3.9 shows, the second-stage regression models based on the DEA 

efficiency scores produced varied statistically significant results. The coefficients, 

based on the SFA cost efficiency scores, have been discussed in detail in the previous 

Section. From the DEA results, Time having a significant positive impact on cost 

efficiency is found and is expected, mainly as a result of the rising fuel cost over the 

analysed period. This is not found in the SFA results which report a negative and 

significant value of -0.0096. Stage length has a positive and significant impact on both 

cost and allocative efficiency. This result is also found in the SFA cost efficiency 

results as well as in Merkert and Hensher (2011), although their findings were not 

significant. These results confirm the prediction that longer sectors result in lower unit 

costs due to increases in fuel efficiency. The size of the airline displays a relatively 

small positive impact on technical efficiency, but is not significant. Merkert and 

Hensher (2011) find a positive and significant result on size and note that this positive 

sign seems counterintuitive at first. However, if this result is considered from an entire 

fleet perspective, it is apparent that new fuel-efficient aircraft are expensive in terms 

of depreciation. As most US airline fleets consist of earlier generation planes (the first 

Boeing 737 entered service in 1968), they are probably fully depreciated and therefore 

represent no further capital cost). Turning now to the results on the age variable, it is 

only found significant in the SFA case and is positive, which indicates it has a 

negative effect on cost efficiency. This is expected as typically younger aircraft tend 

to be more fuel-efficient and older fleet are less cost efficient in comparison. For 

example, the youngest aircraft in the sample (Virgin Airlines with an average age of 

eighteen months) are seen to be comparatively efficient. As noted in Merkert and 

Hensher (2011), in 2008 North American Airlines retired a large number of their older 

aircraft from service (primarily the least fuel efficient ones). Those airlines with 
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relatively older fleets subsequently became more allocatively and cost efficient. 

Aircraft families has a significant negative impact on cost efficiency, though is not 

found to be significant in our DEA results. This negative coefficient would suggest 

that more homogeneous fleets, or airlines with fewer families, tend to be more cost 

efficient.  

 

Table 3.9: Second-stage truncated regression based on DEA scores and SFA 

scores 

 𝑻𝑬𝑪𝑶𝑹𝑹
𝑽𝑹𝑺  𝑻𝑬𝑽𝑹𝑺 𝑪𝑬 𝑨𝑬 SFAce 

Constant  0.77077***  0.81559***  0.95637***  0.78767*** -0.53918*** 

TIME  0.001339 -0.00001  0.00539**  0.00560 -0.00959** 

STAGE LENGTH  5.08e-08  7.26e-08  6.82e-08*  1.29e-07* -0.30789*** 

AIRCRAFT_SIZE  0.00053***  0.00055** -0.00014  0.00035 -0.14990* 

FLEET_AGE  0.00115  0.00281 -0.00194  0.00026  0.59338*** 

AIRCRAFT_FAMI

LIES 

-0.00263 -0.00332  0.00159 -0.00136  0.08377 

Sigma (u)  0.04793***  0.06245***  0.03696***  0.80520*** -5.53118*** 

Sigma (v)  0.06685***  0.07260***  0.03840***  0.07096*** -5.06481*** 

 

Both SFA and DEA have produced similar coefficient results on environmental 

variables from the data as seen in Table 3.9. Both techniques provide the same 

magnitude effects for stage length, fleet age and aircraft families. This concordance is 

reassuring. However, this study finds that the results for cost efficiency from applying 

SFA and DEA lack some consistency in the cost efficiency scores (as seen by the low 

correlation between the output), despite the use of exactly the same variables and data. 

Despite this, both models demonstrate a similar pattern in the direction of the trend for 

the efficiency scores as seen in Table 3.8. There are two main reasons for 

discrepancies in the efficiency estimates derived from the two broad analytical 

approaches. The first are differences in how the techniques establish and shape the 
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efficiency frontier, while the second is due to differences in how the techniques 

determine how far individual observations lie from the frontier (Coelli et al., 2005). 

Considering the strengths and weaknesses of the two techniques, the following 

observations are specific to the objective of measurement of cost efficiency. Both SFA 

and DEA can estimate cost efficiency scores, and while the scores themselves may not 

be highly correlated; the movement (increase or decrease) from year to year of these 

scores are comparable. As far as coefficient results, SFA and DEA magnitudes are 

quite similar, although SFA produces more significant values.  

 

3.6. Conclusion 

 

 This study applies multiple efficiency measurement methods to analysing the 

impact of aircraft characteristics on airline efficiency from a technical, allocative and 

cost perspective. In the first stage, a DEA analysis is used in order to derive efficiency 

scores for the three aspects of efficiency. Bootstrapped technical efficiency scores are 

then calculated in order to form a comparison with non-bootstrapped scores. A second 

stage Tobit regression model is then presented. As in Merkert and Hensher (2011), our 

findings establish that bootstrapping of the first-stage efficiency scores does not 

greatly improve the second-stage random effects Tobit regression results. This re-

iterates that regression results based on non-bias corrective technical efficiency are as 

dependable as the regression results of the bias-corrected scores.    
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 Previous studies of airline efficiency largely focused only on the technical 

efficiency side in a DEA context from either a single or a small number of years. By 

studying a larger number of years and further including a stochastic frontier approach, 

this study simultaneously estimates the cost efficiencies and the factors that determine 

it.  

 Measures for cost efficiency are obtained from a stochastic frontier cost function 

which has been adjusted to account for the characteristic influences presented in the 

DEA and Tobit analysis. In comparing the results from the SFA analysis with the 

DEA Tobit regressions, we observe that the SFA produces similar estimates but is 

found to be more robust in terms of significance. Results are also comparable and 

consistent with those found in Merkert and Hensher (2011). A comparison of the 

efficiency scores obtained from SFA with those found in DEA demonstrates a very 

low correlation. This could be due to the fact that some airlines (America West and 

ATA) report for only one year each.  

 The findings for the impact of the age of the airlines’ fleets are somewhat 

inconsistent. The Tobit results confirm those found in Merkert and Hensher (2011) 

and suggest that a younger fleet does not necessarily result in higher efficiency. SFA 

results on the other hand, find a highly significant negative relationship between 

efficiency and age with older aircraft being less efficient than younger ones. Aircraft 

size shows that the impact of aircraft size on cost and technical efficiency is positive. 

Stage length was found to have a positive impact on cost and allocative efficiency and 

is consistent with much of the previous literature. This should be interpreted as the 

effect on the cost efficiency of flying fewer passengers over a longer stage length 
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(route distance) each to achieve the same level of output. Conversely, and rather 

surprisingly, the number of aircraft families has no significant impact on any of the 

three efficiency measures.  

 It is important to note that the observations in this study are not a perfect 

empirical analysis. One point worth noting is that the four environmental variables 

used here may not fully capture all characteristic influences. For example, the 

inclusion of a network size variable, such as number of points served is often included 

in previous studies. This analysis, however, is the first attempt to investigate DEA, 

Tobit analysis in the airline efficiency literature alongside SFA. Therefore future work 

is needed in order to further validate the detected determinants in this study.  
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4. Chapter 3: An efficiency analysis of the integrated air cargo industry in the 

United States: A Stochastic Frontier Approach for FedEx Express and UPS 

Airlines 

 

4.1. Introduction 

 

 The past decade has seen a great increase in the demand for door-to-door 

shipment of products and packages, rather than just airport-to-airport service as in the 

early years of airfreight transportation. In addition to the door-to-door shipments, there 

has been an increase in the demand for fast, overnight service. As a result, air cargo 

companies have developed (separately from passenger airlines) and expanded quickly 

while simultaneously strengthening their presence in the airline industry. In so doing, 

they have become significant to the airline industry (as it relates to airport operators 

and plane manufacturers). Within the integrated19 express air cargo sector, the industry 

has become highly concentrated. The air cargo express market in the U.S. is estimated 

to generate $70 billion US$ each year. It transports goods worth in excess of $6.4 

trillion US$ annually20 and the market is expected to continue its fast growth in the 

near and medium term (IATA, 2014). According to the Organisations for Economic 

Cooperation and Development (OECD), the value of air cargo accounts for more than 

33% of the world trade merchandise, while the weight of this airfreight is only 2% of 

all the total cargo moved worldwide. In a world where time pressures are increasing 

value, the share of air cargo is steadily increasing commensurately. It is therefore 

                                                 

19 “Airlines typically market their freight transportation - the airport-to-airport link- to freight forwarders. Integrators, in contrast, 

market their logistics solutions directly to shippers, offering an integrated transport chain with door-to-door service. Integrators 
thus act both as forwarders and carriers. They often have their own trucking and aircraft fleet and provide all the handling 

services themselves.” Source: © 2010 Eno Transportation Foundation. www.enotrans.com | 209 Reprinted from Intermodal 

Transportation: Moving Freight in a Global Economy. Accessed: 05/09/2014. 

20 http://www.iata.org/whatwedo/cargo/Pages/index.aspx 
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important to examine elements associated with the costs of air cargo services in order 

to determine the implications for U.S. operators and policy makers in terms of 

international trade,  as well as (by extension) for global companies.  

 The four largest airfreight integrators in the world today are FedEx, UPS, TNT 

Express NV, and DHL Express (DHL). Integrators carry the majority of the market 

share of U.S. air freight, with DHL, FedEx and UPS holding around 62% of air 

revenue-tons of freight (Bureau of Transportation Statistics 2010). FedEx is 

undeniably the largest cargo carrier in the world, with 2014 revenues at the 

corporation totalling $45.6 billion US$21.  

 Despite the high level of concentration, the integrated air freight industry is 

highly competitive in a number of aspects, such as delivery speed, service 

dependability and service convenience. This chapter will focus on the FedEx and UPS 

airlines, which together hold the majority of the market share in North America and 

represent a dominant position in the air cargo industry. FedEx and UPS have obtained 

a large share of the smaller cargo shipments by responding to the consumer’s need for 

guaranteed service with late pick up or early delivery, and with direct shipments all 

over the world to support the model of “just-in-time” manufacturing logistics and 

supply chain management.  

 The purpose of this study is threefold. The first is to investigate the cost structure 

of the leading integrated carriers, FedEx and UPS airlines. Cost structures are 

important for firms considering growth strategies (alliances, adding new types of 

services etc.). Cost information plays a crucial role in decisions on pricing, investment 

                                                 

21Bloomsburg weekly:  http://investing.businessweek.com/research/stocks/earnings/earnings.asp?ticker=FDX 
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levels, frequencies, size of vehicles and network structure. Airport slots are extremely 

competitive and can be very costly depending on the location and times of the day. 

International trade made possible by the air cargo industry has huge implications for 

economic growth in the U.S. Information about their cost structure is therefore 

extremely valuable for shareholders and government. The second is to compute the 

efficiency of FedEx and UPS and to explore the relative importance of factors that 

influence the cost and efficiency of these air cargo delivery services by way of 

stochastic frontier analysis (SFA). Finally, an evaluation of the economies of scale and 

density of these two air cargo carriers in the U.S. market is performed. In the airline 

literature, much attention has been focused on passenger airlines around the time of 

the Airline Deregulation Act (November 9, 1977). While the air cargo industry was 

deregulated a year prior to this, it did not result in nearly as much research interest in 

the ensuing years. To date, no study has taken a stochastic frontier approach to the 

analysis of air cargo efficiency. It thus becomes clear that there is a lack of 

information on cost efficiency for the air cargo industry. This chapter seeks to fill this 

gap in a number of ways. To date, there has been no formal investigation in the cargo 

airline literature in terms of efficiency scores derived specifically from a stochastic 

cost frontier analysis22. Therefore, contributions can be made not only to the SFA 

literature, but also to the literature on cargo airline efficiency using this methodology. 

The efficiency scores derived from the SFA can then be evaluated in order to compare 

efficiency between UPS and FedEx, as well as highlighting how they have 

individually progressed over the time period analysed. Conclusions are then drawn on 

                                                 

22 While there has been published work (Lakew, 2014) which makes inferences about cargo airlines efficiency it does not do so 

using SFA. 
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which airline is most cost efficient in the industry. Finally, the inclusion of variables 

such as number of points served, average stage length and average load factor is 

analysed. This model of airline costs follows methodology in Caves et al. (1984), in 

that it includes two dimensions of airline size; the size of the carriers service network 

and the magnitude of cargo transportation servcies provided. It is in this sense that a 

distinction can be made between returns to density (the variation in unit costs caused 

by increasing cargo services within a fixed network) and returns to scale (the variation 

in unit costs with respoect to proportional changes in both network size and the 

provision of cargo services). As noted by Lakew (2014), despite the limited amount of 

air cargo research and the sparse knowledge of the industry due to lack of data, more 

interest in the economics of the industry has been emerging in the past decade. This 

interest stems mainly from the growth and expansion of air cargo companies during 

this time. Therefore, these findings should offer the first stochastic frontier efficiency 

results and a clear link between cargo airline performance and industry characteristics 

during this time period.  

 This chapter is organised as follows; a brief review of the literature dedicated to 

the cost structure and efficiency of cargo airlines is presented in Section 5.2. In 

Section 5.3, the model specification and methodology is presented. The data used to 

estimate the cost structure of cargo airlines are described in Section 5.5. Parameter 

estimates and conclusions are presented in Section 5.7, and robustness of the 

conclusions with respect to model form and type are explored in Section 5.8. 

Efficiency scores are also presented and discussed. In Section 5.9 the conclusions are 

given and the contributions and limitations of the present research are offered.  
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4.2. Literature review 

   

 The literature on cost structure, efficiency and economies of density/returns to 

scale of the air cargo industry is rather sparse. Most of the literature on cargo airlines 

has been developed following studies that relate to the passenger airline literature. For 

example, it is typical that the cargo airline literature follows the same rational as 

passenger airlines when it comes to constructing cost functions. The cargo airlines 

share many of the same inputs and outputs concepts as passenger airlines such as stage 

length, load factors, capital, labour, and material input prices. Research dedicated to 

cost structure analysis of the air cargo industry is limited due to the lack of structured 

data on cargo carriers, and more specifically, integrators. Large interest was gained in 

the passenger airline literature around the time of de-regulation. This has prompted a 

large number of subsequent studies. Findings in the passenger literature consistently 

suggest that costs per passenger-mile decrease with traffic density on individual airline 

routes and that carriers exhibit constant returns to scale (Caves et al. (1984), Gillen et 

al. (1990), Jara-Díaz et al. (2013)). Recognising the need for similar empirical analysis 

of the air cargo industry, Kiesling and Hansen (1993) characterised the cost structure 

of FedEx, the largest integrated air cargo carrier at that time.  

 Kiesling and Hansen (1993) estimated a total Cobb-Douglas cost model for 

FedEx based on quarterly time series data from 1986 to 1992. While they indicated 

that they would have preferred to estimate a translog cost model, they were not able to 

do so due to a limited number of observations. They found that over the time period 

analysed, FedEx had a cost structure characterized by increasing returns to traffic 
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density and decreasing returns to scale. They introduce a third concept, economies of 

size. They argue that the degree of returns to size determines if FedEx can maintain its 

efficiency (keeping costs per unit of output constant) as it grows. Their findings also 

suggested that cargo airlines had cost structures with properties qualitatively similar, 

but noticeably stronger, than those of passenger airlines. They further concluded that 

FedEx fell just short of monopolising the air cargo industry. This current study should 

shed some light on how out-dated this characterisation is. 

 Bowen (2012) noted a gap in the literature in the sense that there was relatively 

little which had been published on the operational geography of FedEx and UPS. His 

study evaluates the development of the two carriers’ network structures. FedEx and 

UPS are found to operate networks with a high concentration of activity at their 

principal hubs (Memphis and Louisville, respectively), despite the increase and spread 

of hub and spoke systems which have emerged over the years. Focusing on some of 

the factors which have guided this Hub choice, Bowen (2012) reveals how the 

network structures adopted by FedEx and UPS take into account the right trade-off 

between sorting costs and transportation. This study also shows the importance of time 

and how it is a key factor in not only moving goods from point a to point b but also in 

affording the integrators customers a chance to receive their items the shortest time.  

 The most recent work that addresses air cargo cost structures and returns to 

density and scale are by Lakew (2014) and Onghena et al. (2014). 

 Lakew (2014) examines the cost structure of FedEx and UPS using data from 

2003-2011 and adopts the Cobb-Douglas functional form. Increasing returns to traffic 

density and constant returns to scale are found. They also include a measure for 
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economies of size, similar to Kiesling and Hansen (1993) in order to make inferences 

about efficiency. They explain that if for example, strong economies of density occur 

along with diseconomies of scale efficiency can be sustained if the network expands 

less than in proportion to output, so that density rises. Controlling for network size-

differences between the two carriers, FedEx is found to be more cost efficient than 

UPS. However, UPS emerges as the most cost efficient when allowing for network 

size differences. Therefore, individual cost structures of the carriers were examined 

and it is revealed that (1) FedEx operates under weak economies of density and 

diseconomies of scale and (2) UPS also operates under diseconomies of scale but 

demonstrates strong economies of density. Economies of size, is used to capture the 

combined effects of returns to density and returns to scale on the cost structure of 

cargo airlines. Both exhibit economies of size, denoting that carriers in the industry 

can become more cost efficient by suitably adjusting their network size as their output 

increases.  

 Onghena et al. (2014) analyse the cost structure of air freight business by way of 

a translog cost function, rather than the simpler Cobb-Douglas found in Lakew (2014). 

Using quarterly data for FedEx and UPS from 1990 to 2010, a total and variable cost 

model is estimated in addition to adopting a static as well as dynamic approach. They 

introduce a variable for number of points served into their models, in order to make a 

distinction between economies of density and scale. Their results show that both 

FedEx and UPS have strong economies of density and of scale, suggesting their 

growth and business strategies are closely related to their cost structures. Finally, their 

results indicate that concentration in the air cargo industry is likely to continue as it is 
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expected that both airlines will continue to develop strategies which will allow them to 

fully exploit the available EOD and EOS.  

 This study will apply SFA in order to examine the cost structures and efficiency 

of these integrators. The major contribution of this paper is therefore to calculate 

efficiency scores derived from the SFA results in order to shed some light on how the 

two airlines are performing (in terms of cost efficiency). The analysis will also add 

new evidence to the discussion of FedEx and UPS airlines cost structure, their returns 

to density and returns to scale.  

 

4.3. Model specification and methodology 

 

 The translog is a flexible functional form in the sense of providing a second-

order approximation to an unknown cost function. A translog cost functional form is 

chosen for the purpose of this chapter and is the most common form in the analysis of 

cost structures in the airline industry and is therefore most applicable to the air cargo 

industry as well. 

 The translog stochastic total cost function used for FedEx and UPS in this 

analysis, is defined as follows: 

𝑙𝑛𝑇𝐶𝑖𝑡 = 𝛼 + 𝛼𝑇𝑡 +  𝛼𝑇𝑡2+ 𝛼𝑇𝑡3 + 𝛽𝑙𝑛(𝑌𝑖𝑡)  + ∑ 𝛾𝑗 ln(𝑃𝑗𝑖𝑡) +𝑗 ∑ 𝛿𝑗 ln(𝑍𝑗𝑖𝑡)𝑗   

+
1

2
𝜂𝑌𝑌[ln (𝑌𝑖𝑡)]2 +

1

2
∑ ∑ 𝜙𝑗𝑘 ln(𝑃𝑗𝑖𝑡) ln(𝑃𝑘𝑖𝑡)𝑘𝑗 + ∑ 𝜃𝑌𝑘 ln(𝑌𝑖𝑡) ln(𝑃𝑘𝑖𝑡) + 𝑣𝑖𝑡𝑘 + 𝑢𝑖𝑡  (4.1)                         

 

where 𝑙𝑛𝑇𝐶𝑖𝑡 is the total cost for cargo airline 𝑖 in time period 𝑡. On the right hand 

side, the first line contains all first order terms; second-order terms appear in the 
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remaining lines. A time trend 𝑡, is included; 𝑌𝑖𝑡 is the quantity of the output for cargo 

airline 𝑖 in time period 𝑡; 𝑃𝑗𝑖𝑡  the 𝑗𝑡ℎ  input price for cargo airline 𝑖 in time period 𝑡; 

 𝑍𝑗𝑖𝑡 the value of the 𝑗𝑡ℎ environmental characteristic for cargo airline 𝑖 in time period 

𝑡. In addition to the characteristic variables, dummies for seasonality were included. 

The estimated coefficients are 𝛼′𝑠, 𝛼𝑇 , 𝛽, 𝛾′𝑠, 𝛿′𝑠, 𝜂, 𝜙′𝑠, 𝜃′𝑠. The data sources and 

characteristics of the variables in these models are described in Section 5.5. 

 The symmetry of coefficients in the above function requires 𝜙𝑗𝑘 = 𝜙𝑘𝑗 for all 𝑗 

and 𝑘. In addition, Christensen et al. (1973) state that a translog cost function must 

satisfy certain regulatory conditions. These ensure that a cost function is consistent 

with cost minimisation. A cost function must be linearly homogeneous in the input 

prices, requiring the following restrictions are imposed: 

            ∑ 𝛾𝑗 = 1𝑗 ,    ∑ 𝜙𝑗𝑘 = 0(∀𝑘)𝑗 ,    ∑ 𝜃𝑌𝑘 = 0𝑘            (4.2) 

 

where subscripts 𝑘 refers to, respectively, the 𝑘𝑡ℎ input in the second and third sub-

equations. 

 The term 𝑣𝑖 + 𝑢𝑖 is a composite error term with 𝑣𝑖 representing statistical noise 

(or randomness) and 𝑢𝑖  expressing cost inefficiency. The error component for 

statistical noise is assumed to be independently and identically distributed, with zero 

mean and constant variance. The inefficiency component has similar properties except 

that it has a non-zero mean (because 𝑢𝑖 ≥ 0) . Here, 𝛽  represents a technological 

parameter vector to be estimated. 

 Any deviation from the frontier (4.1) occurs as a result of random shocks and 

statistical noise (𝑣𝑖𝑡) in addition to cost inefficiency (𝑢𝑖).  
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 In this research, a number of models were analysed. The final model selection in 

this chapter presents the Battese and Coelli (1992) (hereafter BC92) stochastic cost 

frontier model. A basic stochastic frontier model can be written with the error term 

broken into two components; 𝑣𝑖𝑡 and 𝑢𝑖 as described above. The subscript on 𝑢𝑖 has 

no time dimension but has a subscript 𝑖, so that it is firm (cargo airline) specific but 

not time specific, in other words it is time-invariant. In BC92, the above is generalised 

by allowing the error component which represents inefficiency to be time varying, 

while making some assumptions about its structure. They propose for the 𝑢𝑖  to be 

replaced with the following term: 

 𝑢𝑖 = exp[−𝜂(𝑡 − 𝑇)] 𝑢𝑖;      𝑡 𝜖 𝛷 (𝑖)(𝑖 = 1,2, … , 𝑁)    (4.3) 

 

where 𝜂 is a scale parameter to be estimated and 𝛷 (𝑖) represents the set of 𝑇𝑖 time 

periods among the 𝑇  periods involved for which observations for the 𝑖𝑡ℎ  firm are 

obtained. The parameterisation above implies that although each cargo airline has its 

own level of technical (cost) efficiency in the last period, exp (−𝑢𝑖), the direction of 

change of technical (cost) efficiency is common to all airlines. This model is such that 

the non-negative effects, 𝑢𝑖𝑡 , decrease, remain constant or increase as 𝑡 increases if 

𝜂 > 0, 𝜂 = 0 𝑜𝑟 𝜂 < 0. In this sense, the time path is monotonous and common to all 

firms in terms of direction but catch-up (or divergence) is permitted.  

 It will be assumed that the cost inefficiency term (𝑢𝑖) is distributed half-normal. For 

the purpose of this chapter, cost efficiency can be written as follows: 

𝐶𝐸𝑖𝑡 = exp (−𝑢𝑖𝑡)   (4.4) 
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4.3.1. Economies of scale and economies of density 

 

 The introduction of number of points served (NPS) was proposed by Caves et al. 

(1984) in order to identify economies of scale (EOS) due to network characteristics. 

The use of number of points served is appropriate when making a distinction between 

returns to traffic density (the variation in unit costs as output increases on a fixed 

network) and returns to scale or firm/network size (the variation in unit costs with 

respect to proportional changes in both network size and output; Gillen et al., 1990). 

Caves et al. (1984) define economies of density (EOD) as “the proportional increase 

in output made possible by a proportional increase in all inputs, with points served, 

average stage length, average load factor and input prices held constant” (p.474). 

Therefore, EOD are present in the case of a decrease in unit costs made possible by an 

increase in output over a fixed network (such as by way of larger aircraft, heavier load 

factors or more aircraft and increased frequency). EOS are defined as “the 

proportional increase in output and points served made possible by a proportional 

increase in all inputs, with average stage length, average load factor, and input prices 

held fixed” (p.474). EOS are present if unit costs decrease when a cargo airline adds 

flights or connections to airports that it had not previously served, and this additon has 

no effect on load factor, stage length or output per point served (density). This chapter 

therefore follows the classical methodology of returns to density (RTD/EOD) and 

returns to scale (RTS/EOS) as found in Caves et al. (1984) as is defined as follows: 
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𝑅𝑇𝐷 =
1

𝜖𝑦
, (4.5) 

 

where 𝜖𝑦  is the total cost with respect to output. Returns to density are said to be 

increasing, constant, or decreasing, when RTD are greater than unity, equal to unity, 

or less than unity, respectively.  

𝑅𝑇𝑆 =
1

𝜖𝑦+𝜖𝑃 
, (4.6) 

 

where 𝜖𝑃 is the elasticity of total cost with respect to points served. Returns to scale 

are said to be increasing, constant, or decreasing, when RTS are greater than unity, 

equal to unity, or less than unity, respectively.  

 Drawing from this and previous literature results, it would be expected that 

FedEx and UPS would exhibit strong economies of density since, for a given network, 

additional output should have little impact on the airlines costs. This is likely to be 

especially true in the case of cargo airlines for two reasons. The first is that additional 

cargo is typically accommodated on existing flights rather than through adding 

additional flights, and secondly, since unit ground distribution costs decrease with 

traffic density.  It will be particularly interesting to see whether decreasing returns to 

scale, such as those found in Kiesling and Hansen (1993) are in fact outdated.   
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4.4. Data Sources 

 

 This chapter uses SFA to measure and compare estimates of cost inefficiencies. 

The data is a panel dataset covering the time period 1993Q3 to 2013Q4.  Data for 

FedEx and UPS were obtained from the U.S. Department of Transportation Bureau of 

Transportation Statistics (BTS). This database collects complete financial and 

operating statistics on both air cargo carriers. All cost statistics have been transformed 

into real constant prices (2005=100). The dependent and independent variables are 

presented in Table 4.1, and procedures for calculating these variables are discussed in 

section 4.4.1.  
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Table 4.1: Descriptive statistics of variables in cost model 

Variable 

(ln) 
Variable Description Mean 

Standard 

deviation 
Minimum Maximum 

TC 
Total cost (USD$; x 

10
11

). 
1.66 1103007.00 268229.30 4285211.00 

Material 

price 

A proxy of the 

producer price index 

(PPI) 

178.88 68.51 110.41 325.88 

Labour price 

Price of labour 

calculated by dividing 

total labour expenses 

by the number of FTE 

employees. 

160852.20 203807.10 1909.24 634927.60 

Fuel price 

Price of fuel which is 

the ratio of the amount 

spent on fuel to the 

reported amount 

consumed in gallons. 

6.36 4.97 1.15 17.57 

Capital price 

Total cost of 

depreciation, 

amortization and 

rentals divided by 

available ton miles 

(ATM). 

60568.43 39668.80 10703.83 153763.60 

ALF 

Average load factor is 

calculated as the ratio 

of payload ton-miles 

used to available ton-

miles. 

0.60 0.04 0.46 0.66 

ASL 

Average stage length 

taken as total distance 

flown divided by the 

total number of 

departures performed.  

21022.96 24442.64 2451.01 89714.12 

NPS 

Number of points 

served is taken as 

number of airports 

served 

60.76 17.56 31.00 96.00 
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4.4.1. Variables 

 

 Total costs are calculated as the sum of the operating expenses (aircraft fuel, 

salaries and related benefits and depreciation, amortization and rentals). Revenue ton 

miles (RTM) represents the single output measure for the cargo airlines in this data 

set. This is done by aggregating the freight and mail tons flown on a carriers network 

to the quarterly level.  

 The input price of labour is calculated as the carriers total cost of labour, divided 

by the total number of full time equivalent employees (FTEs). Input fuel price is the 

total fuel cost divided by the total consumption (in gallons). Materials price is 

accounted for by way of a proxy of the producer price index (PPI) following Zou and 

Hansen (2010). This index varies by quarter but not by cargo airline and is collected 

from the U.S. Bureau of Labour Statistics. The final input for capital price, is taken as 

the total cost of depreciation, amortization and rentals divided by available ton miles 

(ATM) following similar methodology in Onghena et al. (2014)23. Since the cost of 

flying one ton of cargo decreases as aircraft size increased (since fixed costs are 

spread across greater tonnage), larger freighters are quickly replacing smaller cargo 

aircraft.  

 In addition to the input price variables outlined above, there are three 

characteristics variables. The first, NPS, is used as a proxy for size and also included 

in order to distinguish between EOD and EOS in air cargo operations as outlined in 

                                                 

23 The option to work with a capital price as defined in Lakew (2014) as 15% of the following property and equipment categories 

from balance sheets: flight equipment, ground property and equipment (less depreciation), land, construction, and capital lease 

property (less amortization) was also considered. However, the results were worse than when capital price as define in this 
analysis was used.  
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Section 4.3.1.. This variable is calculated as the number of airports served. Finally, 

variables for average load factor (ALF) and average stage length (ASL) are accounted 

for. ASL is calculated as the total distance flown divided by the total number of 

departures performed. ALF is calculated as the ratio of payload ton-miles used to 

available ton-miles.  

 

4.5. Results of the estimation 

 

 Table 4.2 reports the estimation results and cost characteristics for the total 

translog cost function of both FedEx and UPS. The total cost variable and the 

regressors have all been transformed into logarithms. The data has been demeaned 

such that the dependent and independent variables, except dummies and the time 

trend, are estimated about the mean values in the dataset (divided by their geometric 

mean). This allows for the first order coefficients to be interpreted as cost elasticities 

evaluated at the sample mean. Finally, a cubic time trend was tested but was dropped 

in favour of a single time trend, due to insignificant results on t.  
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Table 4.2: Stochastic total translog cost function results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         

Log likelihood: 358.098 

 Model: BC92    

 Coefficient Std.err. Prob. 

Output (RTM)  0.221 0.037 0.000 

Capital Price  0.757 0.062 0.000 

Labour Price -0.056 0.035 0.109 

Fuel Price  0.167 0.028 0.000 

0.5*K^2  0.297 0.070 0.000 

0.5*L^2 -0.043 0.170 0.011 

0.5*F^2  0.206 0.040 0.000 

0.5*RTM^2  0.022 0.004 0.000 

lnK1LnL -0.024 0.020 0.222 

lnK1LnF -0.148 0.031 0.000 

lnK1D1nRTM  0.017 0.005 0.000 

lnLLnF -0.005 0.014 0.747 

lnLDlnRTM -0.003 0.003 0.173 

lnLFtlnRTM -0.019 0.004 0.000 

Time (t)  0.012 0.004 0.000 

Q1 -0.017 0.008 0.035 

Q2 -0.018 0.007 0.009 

Q3 -0.010 0.006 0.088 

lnNPS  0.104 0.023 0.000 

lnASL  0.071 0.030 0.017 

lnALF -0.112 0.053 0.037 

constant -1.776 0.339 0.000 

𝝈𝒖
𝟐 0.062 0.913  

𝝈𝒗
𝟐 (x 10

1
) 0.005 0.000  

𝝀 =
𝝈𝒖

𝟐

𝝈𝒖
𝟐 + 𝝈𝒗

𝟐
 

0.992   

EOS at sample mean 3.077   

EOD at sample mean 4.525   
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4.6. Discussion 

  

 Table 4.2 contains estimation results for the translog cost frontier estimation. As 

expected, there is a strong positive relationship between total cost and output when all 

other factors are fixed. The positive cost elasticity of output indicates that total costs 

increase as output increases. The size of the coefficient indicates that when output 

(RTM) increases by 1%, total cost will increase by 0.22%. The EOS calculated at the 

sample mean for the model, indicate that FedEx and UPS airlines exhibit strong scale 

economies (3.077). The inverse of the cost elasticities on output and number of points 

served, 0.221 and 0.104 respectively, with standard error of 0.037 and 0.023, is returns 

to density at the sample mean (4.525). This confirms similar results which are also 

found in Onghena et al. (2014) for EOS and EOD, who suggest that the EOS explains 

the expansion and cooperation strategies followed in the past of both these integrators. 

Importantly, these findings show that some of Kiesling and Hansen (1993) results no 

longer apply to the air cargo industry. Kiesling and Hansen (1993) found decreasing 

returns to scale for FedEx (ranging from 0.54 to 0.62). This would imply that the cost 

structure of FedEx has clearly changed in the decade after their study. The values of 

estimated EOS and EOD for the air cargo operations in this analysis are larger than the 

estimates found in passenger airline literature. Caves et al. (1984) for example, report 

EOD of 1.24 and constant EOS for passenger airlines in the U.S. These larger scale 

and density estimates for air cargo integrators compared to those found in the 

passenger industry could be explained in part by the higher share of fixed costs 

associated with running freight only air cargo services. The cargo airlines are required 

to invest much more in infrastructure compared to passenger services, such as sorting 
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equipment in their own hubs (Onghena et al., 2014). For simplicity, Table 4.3 

compares previous literature results to those found here. 

 

Table 4.3: Studies on cargo airline cost structures. Economies of density and 

scale 

Study  
Cargo 

Airline(s) 
EOD EOS 

Results of this 

analysis 

FedEx and 

UPS 

Significant economies 

of density  

FedEx and UPS: 

4.525 

Significant economies 

of scale 

FedEx and UPS: 

3.077 

Onghena et al. 

(2014) 
FedEx and UPS 

Significant economies 

of density  

FedEx: 1.749 

UPS: 2.059 

Significant economies 

of scale 

FedEx: 1.445 

UPS: 2.043 

Lakew (2014) FedEx and UPS 

Significant economies 

of density  

FedEx: 1.60 

UPS: 3.02 

Decreasing economies 

of scale24  

FedEx: 0.87 

UPS: 0.81 

Kiesling and 

Hansen (1993) FedEx 25 

Significant economies 

of density  

Model 1 FedEx and 

UPS: 2.36 

Model 2 FedEx and 

UPS: 4.07 

Decreasing economies 

of scale               

Model 1 FedEx and 

UPS: 0.62  

Model 2 FedEx and 

UPS: 0.54 

 

 

 The coefficients of all first terms are statistically significant at the 1% level and 

have the expected signs, apart from the labour input price, which was small and 

                                                 

24 However, constant returns to scale cannot be rejected at the 5% level for FedEx (0.20 standard error).  

25 Kiesling and Hansen (1993) estimated two Cobb-Douglas models. Model 1 which was a total cost model including quarterly 
dummy variables and Model 2 which was a simplified version of total cost Model 1.  
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insignificant. The coefficients for input prices show that, at the sample mean, capital, 

fuel and materials account for respectively 75.7%, 16.7% and 13.21%, of total cost. 

These results are similar to those found in Lakew (2014) when considering the output 

variable and Onghena et al. (2014) for input price variables. 

 All characteristic variables were significant at the 5% level, and show the 

expected signs apart from average stage length, which is positive. Results suggest that 

the average load factor of the aircraft in an air cargos fleet has a significant and 

negative effect on the total costs (-0.112). It is typical in the passenger airline 

literature to also see a negative relationship between load factor (number of 

passengers) and total costs. A higher load factor is also desirable as it increases 

revenue and profitability.  

 As anticipated, the coefficient on number of points served, around 0.104, 

suggests that an increase in network size, holding constant the level of output and all 

other variables, will lead to an increase in total costs. Finally, ASL is found to be 

positive and significant, meaning that as the average stage length increases, costs 

increase. This variable is typically found to be negative in cargo/passenger airline 

studies and can be interpreted as the cost saving effect of flying less cargo (fewer 

passengers) over a longer segment to obtain the same level of output. 

 

 A likelihood-ratio test was performed on the inclusion or exclusion of the 

characteristic variables NPS, ALS, ALF for the BC92 model. Results indicate a Chi 

squared value of 28.11 with Probability > chi2 = 0.0000. This result confirms that the 

inclusion of characteristic variables together, results in a statistically significant 

improvement in model fit. In addition to the BC92 model outlined in Section 4.3, a 
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number of other models were evaluated. Both a true fixed effects model and a pooled 

model were first estimated, which resulted in very similar to each other (almost 

identical) results in terms of values on the coefficients and efficiency scores. The 

pooled model was observed to perform no better than a simple OLS model, and so this 

was rejected. The cost efficiency scores for the true fixed effects model were 

compared to those of the pooled model revealing an extremely high correlation 

coefficient (0.99) and therefore also rejected. Next, a Battese and Coelli (1995) model 

was estimated and performed well in terms of significance and reasonable values on 

coefficients. The Battese and Coelli (1995) model included characteristic variables for 

number of points served, average stage length and average load factor into the mean of 

the inefficiency term. However, this model had a lower log likelihood compared to the 

BC92 and reported an insignificant value on the number of points served variable, and 

so this model was not reported. It should be noted however, that the Battese and Coelli 

(1985) model had a very similar pattern to the cost efficiency score as the BC92 model. 

A Pitt and Lee (1981) model was also estimated. A likelihood ratio test could not 

reject the OLS restriction, with a Chi squared value of -0.036 a critical value at 95% 

of 2.706, and therefore the Pitt and Lee was dropped. This is expected as time 

invariance is not a realistic assumption for such a data set.  A likelihood-ratio test was 

also performed comparing the BC92 model with the Pitt and Lee (1981) model. The 

Pitt and Lee (1981) model was dropped in favour of BC92 with a likelihood-ratio of 

40 and critical value of 2.706 (one degree of freedom). Finally, a Cuesta (2000) model 

was tested and while it produced similar coefficient estimates as the BC92 model, the 

cost efficiency scores produced an error message due to model misspecification. It is 

for this reason that the BC92 model was chosen over the Cuesta (2000) model. 



 

 

 

108 

 Using the estimated frontier, it is possible to generate indices for cost efficiency 

(CE), calculated in accordance with equation 4.4. These scores are presented in Table 

4.4, which displays the average efficiency scores for FedEx and UPS in each reporting 

year. Efficiency scores come out comparable between both airlines up until the year 

2002. After this time, UPS appears to remain very stable in terms of cost efficiency, 

while FedEx decreases in efficiency. Averaging over all years, the mean efficiency is 

99.85% and 97.17% for UPS and FedEx respectively. This value indicates that 

averaging over all years, to operate efficiently FedEx could reduce their input costs by 

2.83%, and UPS by 0.15% without decreasing their outputs. Interestingly, both 

carriers start out in 1993 with nearly complete efficiency but UPS reports 99.35% 

efficiency in the final reporting year while FedEx reports 88.43%. This demonstrates 

the power of the exponential term in the BC92 formula. Essentially in the final 

reporting year UPS is efficient, whereas FedEx falls away from the frontier with a 

total decrease of 11.46% in efficiency. Overall, UPS is found to have higher cost 

efficiency than FedEx and their larger degree of stability in efficiency scores over the 

reporting periods, highlights their effective cost control. Findings in Lakew (2014) 

suggest that if network size differences between carriers are controlled for, such as 

here, FedEx is found to be more cost efficient than UPS. However, they determine that 

allowing for network differences between the two carriers; UPS emerges as the more 

cost efficient carrier. The positive time trend (0.012) is statistically significant at the 1% 

and can be interpreted as a proxy for technological progress, which means that total 

costs increase despite the technological progress made over the considered time period. 
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Table 4.4: Average efficiency scores for FedEx and UPS (all years) 

Year UPS FedEx 

1993 0.9999 0.9989 

1994 0.9999 0.9987 

1995 0.9999 0.9983 

1996 0.9999 0.9979 

1997 0.9999 0.9973 

1998 0.9998 - 

1999 0.9998 0.9956 

2000 0.9997 0.9945 

2001 0.9996 0.9930 

2002 0.9995 0.9911 

2003 0.9994 0.9887 

2004 0.9992 0.9857 

2005 0.9990 0.9819 

2006 0.9988 0.9771 

2007 0.9984 0.9710 

2008 0.9980 0.9634 

2009 0.9975 0.9537 

2010 0.9968 0.9416 

2011 0.9959 0.9265 

2012 0.9948 0.9077 

2013 0.9935 0.8843 

Total 

Average 
0.9985 0.9717 

Note: - represents no reporting information for this year 

 

 

4.7. Conclusions 

 

 The air express delivery service is gaining an increasingly large portion of 

airfreight distribution. This research has explored the relative importance of factors 

that influence the adoption of the express delivery service. The SFA, which is based 

on financial data shows that coefficients of all first terms are statistically significant at 
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the 1% level and have the expected signs apart from the labour input price, which is 

small and insignificant. A possible explanation for the insignificance on labour input 

price could be that the model is struggling to disentangle the time trend from the 

inefficiency change.  The coefficients for input prices show that, at the sample mean, 

capital, fuel and materials account for respectively 75.7%, 16.7% and 13.21% of total 

cost. Concerning the input costs, it is apparent that capital costs have the biggest 

impact on the airlines total costs, followed by fuel. This can be explained in part by 

the high costs associated with capital equipment (air planes, engine maintenance etc.) 

as well as the steady rise in kerosene prices during the last 10 years. Similar results are 

found in the literature on passenger airlines. All characteristic variables were 

significant at the 5% level, and show the expected signs apart from average stage 

length, which is positive. Results suggest that the average load factor of the aircraft in 

an air cargos fleet has a significant and negative effect on the total costs (-0.112). A 

higher load factor is desirable as it increases revenue and profitability. Number of 

points served (0.104), suggests that an increase in network size, holding constant the 

level of output and all other variables, will lead to an increase in total costs. 

 To better understand the cost efficiency differences between carriers, efficiency 

scores were derived from the stochastic cost frontier. These revealed that UPS is more 

cost efficient on average than FedEx with a score close to 100% versus 88% 

respectively. Both carriers begin with nearly complete efficiency in the first reporting 

year 1993. However, it is revealed that UPS ends up with 99.35% efficiency, while 

FedEx has 88.43% efficiency in the final reporting year 2012. Overall, UPS is found 

to be efficient, whereas FedEx falls away from the frontier with a total decrease of 

11.46% in efficiency. 
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 By introducing the number of points served variable into the model, a distinction 

was made between EOD and EOS. Results confirm that both FedEx and UPS exhibit 

strong EOS and EOD and are in line with previous literature results (Onghena et al. 

(2014). Importantly, these findings show that some of Kiesling and Hansen (1993) 

results no longer apply to the air cargo industry. Kiesling and Hansen (1993) found 

decreasing returns to scale for FedEx (ranging from 0.54 to 0.62). This would imply 

that the cost structure of FedEx has clearly changed in the decade after their study. 

The values of estimated EOS and EOD for the air cargo operations in this analysis are 

larger than the estimates found in passenger airline literature. Caves et al. (1984) for 

example, report EOD of 1.24 and constant EOS for passenger airlines in the U.S. 

These larger scale and density estimates for air cargo integrators compared to those 

found in the passenger industry could be explained in part by the higher share of fixed 

costs associated with running freight only air cargo services. 

 As this study is the first of its kind in the stochastic cost frontier literature on the 

efficiency of cargo airlines, the chapter has also raised several avenues for future 

research. First, uncovering the potential sources behind the inefficiency remains an 

interesting area of future research in terms of a more in-depth approach. Second, it 

will be worthwhile to study the inefficiency differences between UPS and FedEx with 

other cargo airlines around the world, such as those in the Korean market. Finally, it 

would be interesting to incorporate a larger number of cargo airlines into a stochastic 

frontier efficiency analysis if such a data set became available.  
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5. Overall conclusions 

5.1. Motivations and aims of the thesis 

  

 As highlighted throughout the thesis, there remains very little information on 

airline efficiency in the U.S. passenger industry over an extended time period for a 

large number of firms, certainly from a stochastic cost frontier perspective. As well as 

significantly increasing the number of U.S. airlines in the passenger sample set, this 

thesis has extended the number of years in the sample period as well as having 

extended the number of airlines observed. Most of the literature related to the 

measurement of airline efficiency has based its analysis either on parametric or non-

parametric frontier methods from a production function perspective. This lack of 

efficiency information is even more true for the air cargo market, which to date has 

seem no studies which incorporate stochastic frontier analysis into their research.   

 Methodologically, an obvious pattern is detected from Chapter 3. Most studies 

have confined their analysis to the estimation of technical efficiency and do not 

include all three aspects of efficiency into their analysis. There are two ways that this 

can limit any findings (Merkert and Hensher, 2011). The first is that most of the 

previous literature uses both physical and cost data as input factors to estimate 

technical efficiency. A producer is technically efficient if an increase (decrease) in any 

output (input) requires a reduction (increase) in at least one other output (input) or an 

increase in at least one input (Koopmans, 1951). It can therefore be argued that 

technical efficiency is concerned with measurement of output to input ratios and 

should as a result, consist of physical measures. Secondly, cost efficiency is 
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considered to be more relevant to decision-making in airline management and is 

central to an airlines competitiveness and success (IATA, 2006). Cost efficiency, has 

technical and allocative components. The concept of allocative efficiency is concerned 

with combinations of correct inputs proportions at the least cost in a production 

process to achieve a desired level of output using current technological constraint 

(Coelli et al., 2005). 

It can therefore be maintained that only an analysis of the values of all three 

types of efficiency will lead to a more meaningful and complete picture of the 

efficiency of the airlines concerned. The positive impacts of airline size and business 

model (implying the different cost structures adopted by airline companies in their 

operations such as low cost or full service) on technical efficiency is well documented 

in existing literature. What is lacking however an in-depth study on allocative and cost 

efficiency. This thesis has now sought to bridge that gap, by looking all three aspects 

of efficiency on airline costs. Chapter 3 therefore takes an innovative approach to 

analysing the impact of aircraft characteristics on airline efficiency from a technical, 

allocative and cost perspective. In the first stage, a DEA analysis is used in order to 

derive efficiency scores for the three. Bootstrapped technical efficiency scores are 

then calculated in order to form a comparison with non-bootstrapped scores. As in 

Merkert and Hensher (2011), findings establish that bootstrapping of the first-stage 

efficiency scores does not greatly improve the second-stage random effects Tobit 

regression results. This re-iterates that regression results based on non-bias corrective 

technical efficiency are as dependable as the regression results of the bias-corrected 

scores.    
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 A second stage Tobit regression model is then presented. Previous studies 

largely focused only on the technical efficiency side in a DEA context from either a 

single or a small number of years. By studying a larger number of years and further 

including a stochastic frontier approach and applying the approach proposed by 

Battese and Coelli (1995), this study simultaneously estimates the cost efficiencies 

and factors of inefficiency from the sample.  

 In relation to the air cargo industry, the literature on cost structure, efficiency 

and economies of density/returns to scale of the air cargo industry remain sparse. Most 

of the literature on cargo airlines has been developed following studies that relate to 

the passenger airline literature. Research dedicated to cost structure analysis of the air 

cargo industry is limited due to the lack of structured data on cargo carriers, and more 

specifically, about integrators. To date, no previous study has taken a stochastic 

frontier approach to the analysis of air cargo efficiency. Therefore, the findings in this 

thesis offer the first stochastic frontier efficiency results and a clear link between 

cargo airline performance and industry characteristics during the analysed time period. 

5.2. Summary of findings 

5.2.1. Efficiency in the U.S. Airline Industry from 1991-2012: A Stochastic 

Frontier Approach 

 

 Chapter 2 uses stochastic frontier analysis to measure and compare estimates of 

cost inefficiencies for twenty-four U.S. carriers. The estimates are based on panel data 

observations during the time period 1991Q1 to 2012Q3. It provides robust estimates 

for a translog cost frontier function using this data. In developing the translog cost 
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frontier, a detailed representation is established of the relationship between aircraft 

costs and the variables that influence it. The efficiency scores were then calculated 

and examined in order to compare them across carriers. Relationships are found 

between environmental variables and other dummy variables not previously 

documented in stochastic frontier literature. The primary results of this study are as 

follows: 

 Of the twenty-four airlines in the study it was found that they are on average, 

operating at 92.12% efficiency. Thus to operate efficiently, airlines could (on average) 

reduce their input costs by 7.88% without decreasing their outputs. For the purposes of 

this analysis, airline outputs were defined as revenue ton miles, the revenue tons (of 

passengers and cargo) transported per miles flown. The coefficient on the output variable 

was significant at 0.97, suggesting nearly constant returns to scale. The cost efficiency 

of air transportation carriers ranged between 92.88% and 88.29% with a standard 

deviation of 1.05%. The significant and expected values on all of the first order terms 

are in line with previous work in the literature. It was determined that the 

environmental variables for passenger load factor and for average stage length were 

significant and thus fit the model well. This is not always seen in previous work using 

frontier analysis, and often they are dropped due to insignificant coefficients. Of 

further interest are the results on the September 11
th

 indicator variables. This analysis 

separates the effects of September 11
th

 into its temporary effects and its lasting 

impacts. It is found that the initial temporary outcome was a small but positive 

(increase) to airline costs of approximately 9.4%, and a negative on-going effect of 

around 9% (decrease) in costs. As far as the long term effects of September 11
th

, there 
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is some controversy as to what the true impacts are. This is due to fact that weak 

economic conditions were present before September 11
th

, and persisted well after. 

Future work will endeavour to assess the impacts of the September 11
th

 attacks and 

it’s after effects on U.S. airline costs in a more robust manner.  

 It was also observed that on average, taking account of all companies,  

productivity growth for the study period due to technical change had deteriorated 

overall by 50.8% over the twenty-two year period. 

 

5.2.2. Determinants of airline efficiency in the U.S.: A longitudinal DEA 

and SFA approach  

 

 Chapter 3 obtains measures for cost efficiency which from a stochastic frontier 

cost function which has been adjusted to account for the characteristic influences 

presented in the DEA and Tobit analysis. In comparing the results from the SFA 

analysis with the DEA Tobit regressions, we observe that the SFA produces similar 

estimates but is found to be more robust in terms of significance. Results are also 

comparable and consistent with those found in Merkert and Hensher (2011).  

 The findings for the impact of the age of the airlines’ fleets are somewhat 

inconsistent. The Tobit results confirm those found in Merkert and Hensher (2011) 

and suggest that a younger fleet does not necessarily result in higher efficiency. SFA 

results on the other hand, find a highly significant negative relationship between 

efficiency and age with older aircraft being less efficient than younger ones. Aircraft 

size shows that the impact of aircraft size on cost and technical efficiency is positive. 



 

 

 

117 

Stage length was found to have a positive impact on cost and allocative efficiency and 

is consistent with much of the previous literature. This should be interpreted as the 

effect on the cost efficiency of flying fewer passengers over a longer stage length 

(route distance) each to achieve the same level of output. Conversely, and rather 

surprisingly, the number of aircraft families has no significant impact on any of the 

three efficiency measures.  

5.3. An efficiency analysis of the integrated air cargo industry in the United 

States: A Stochastic Frontier Approach for FedEx Express and UPS Airlines. 

 

 Chapter 4 has explored the relative importance of factors that influence the 

adoption of the express delivery service. The SFA, which is based on financial data 

shows that coefficients of all first terms are statistically significant at the 1% level and 

have the expected signs, apart from the labour input price. The coefficients for input 

prices show that, at the sample mean, capital, fuel and materials account for 

respectively 75.7%, 16.7% and 13.21% of total cost. Concerning the input costs, it is 

apparent that capital costs have the biggest impact on the airlines total costs, followed 

by fuel. This can be explained in part by the high costs associated with capital 

equipment (air planes, engine maintenance facilities, etc.) as well as the steady rise in 

kerosene prices during the last 10 years. Similar results are found in passenger 

airlines. To better understand the cost efficiency differences between carriers, scores 

were derived from the stochastic cost frontier. These revealed that UPS is more cost 

efficient on average than FedEx with a score of and 99.85% and 97.17% respectively. 

Both carriers have displayed an overall decrease in cost efficiency over the years.   
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 By introducing the number of points served variable into the model, a distinction 

was made between EOD and EOS. Results confirm that both FedEx and UPS exhibit 

strong EOS and EOD and are in line with previous literature results (Onghena et al. 

(2014).  

5.4. Opportunities for future research 

 

The thesis has revealed new information on airline efficiency in the U.S. 

passenger industry over an extended time period for a large number of firms. It has 

further contributed to the stochastic cost frontier literature as it applies to the airline 

industry. By analysing the impact of fleet planning and strategic management 

decisions on airline efficiency a comparison was drawn between DEA and SFA 

results. In this way, both methods were compared in terms of estimates and also 

robustness. It has also made a first attempt at looking at the air cargo industry and its 

cost efficiency by applying SFA. This therefore generates opportunities for 

investigation of the various areas of cost efficiency in the passenger and cargo airline 

literature. 

In Chapter 2, although results are somewhat inconclusive for TFP, one possible 

explanation for this decline (in TFP) could be due to the hub-and-spoke configuration 

which developed following deregulation. It is thought that this could have resulted in 

the inefficient use by airlines, of assets and expenses related with operating these hub 

systems. The total factor productivity of U.S. carriers over a more recent and longer 

time scale is an area which needs further attention and will be returned to in future 
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work. Key future research in this field will include the analysis of total factor 

productivity through the industry recession. 

 The analysis in Chapter 3 is the first attempt to investigate DEA, Tobit analysis 

in the airline efficiency literature alongside SFA. Therefore future work is needed in 

order to further validate the detected determinants in this study.  

Finally, Chapter 4 has also raised several avenues for future research in the air 

cargo literature. First, uncovering the potential sources behind the inefficiency 

remains an interesting area of future research in terms of a more in-depth approach. 

Second, it will be worthwhile to study the inefficiency differences between UPS and 

FedEx with other cargo airlines around the world, such as those in the Korean market. 

Finally, it would be interesting to incorporate a larger number of cargo airlines into a 

stochastic frontier efficiency analysis if such a data set became available. 
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7. Appendix 

 

Table A 1: Parameter estimates of the Cobb-Douglas cost frontier function. 

Variable Coefficient t-statistic 

lnRTM  0.951  83.75***    

lnKM  0.195  16.87***    

lnL  0.162  8.55***    

lnF  0.367  27.03***    

lnPLF -1.178 -20.23***    

lnASL -0.427 -13.39***    

Q1 -0.012 -1.26    

Q2  0.018  2.10 

Q3  0.018  1.98**  

T  -0.004  -0.39 

T2  0.001   1.62 

T3 -0.000 -0.76 

DCh11 -0.026 -1.98**    

Dsep11 0.109 4.92***    

DPsep11 -0.079 -4.44***    

constant 3.341 12.69*** 

Total number of observations 1516  

σu -2.571 -9.20***    

σv 1.592 4.69***    

Log-likelihood: 1075.9392 

*Variables are significant at the 10% level. 

**Variables are significant at the 5% level. 

***Variables are significant at the 1% level. 
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7.1. U.S. Department of Transport Form 41 Airline Data 

 

 It is required by law in the United States for each U.S. certified airline carrier, 

whether publicly traded or privately owned, to submit operating and financial 

information pertaining to their operations26 . This must be reported on a monthly, 

quarterly, semi-annually or annual basis. Individual airlines data are submitted to the 

U.S. Department of Transportation (DOT) on a Form 41. The form is a total collection 

of 16 “schedules” each with a specific layout that carriers must adhere to. The Form 

includes balance sheets, income statements, other financials as well as operating and 

traffic statistics. This information is available in raw data form to the public after the 

DoT has made the non-confidential aspects published a few months after the reports 

were submitted.  

 The number of schedules an airline submits depends on their grouping, which 

then depends on total operating revenue per 12-month calendar year. The DOT 

includes Group I; carriers with yearly revenues below $100 million; Group II; carriers 

with revenues ranging from $100 million and $1 billion and Group III; carriers with 

revenues greater than $1 billion. Further, each form is reported for each entity the 

airline operates. By DoT definition, an entity is the component of the airline, which 

serves either a Domestic, Atlantic, Pacific or Latin American market segment. 

Therefore, for an airline which serves half of the market segments would report 2 

entities to the data base but would still count as 1 at the airline level. Data at the 

                                                 

26 U.S. Code Title 49 (Transportation) governs the requirement to report, Title 14 (Aeronautics and Space) of the Code of 

Federal Regulations spells out the reporting details, and the DoT’s Bureau of Transportation Statistics (BTS) Office of Airline 
Information provides further guidance in the form of Accounting and Reporting Directives.  
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individual aircraft model level within an entity can be accessed via Schedules T-2 

Traffic and Schedules P-5.1 and P-5.2. The former two have typically been referred to 

as “direct operating costs” data but DOT has labelled them “Total aircraft operating 

expenses” (TAOE). Data which would be referred to as “indirect operating costs” 

would be obtained from Schedule P-7, but these are not available at the individual 

aircraft type level. Rather, these are aggregated to the entity (air carrier) level. The 

DoT would hold these indirect costs under “All other operating expenses” (AOOE).  

For my purposes I will be using Schedules T-2 and P-5.2.  

 Number of schedules each airline submits depends on the airlines grouping, 

which then depends on its total operating revenue for a 12-month period. In 1999, the 

DoT placed airlines with yearly revenues greater than $1 billion in Group III; those 

with revenues in the range of $100 million and $1 billion in Group II; and those with 

revenues below $100 million in Group I.  

 Further, Form 41s are submitted for each entity the airlines has. This is defined 

by the DoT as the airlines component that serves either a Domestic, Atlantic, Latin 

America or Pacific market segment27. Note: the DoT refers to aircraft (i.e. aircraft 

models) as flight equipment. 

  

                                                 

27 For example; American Airlines serves all four market segments and so contributes 4 entities to the data base but is counted as 
only 1 at the airline level. Southwest Airlines operates only domestic and is therefore counted as 1 entity and 1 airline.  
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Table A 2: U.S. Airline Carriers 

Carrier Name 

Air Wisconsin Airlines Corp: ZW 

AirTran Airways Corporation: FL 

Alaska Airlines Inc.: AS 

Allegiant Air: G4 

America West Airlines Inc.: HP (Merged with U.S. Airways 9/05.Stopped reporting 10/07.) 

American Airlines Inc.: AA 

American Eagle Airlines Inc.: MQ 

ATA Airlines d/b/a ATA: TZ 

Comair Inc.: OH 

Continental Air Lines Inc.: CO 

Delta Air Lines Inc.: DL 

Hawaiian Airlines Inc.: HA 

Horizon Air: QX 

JetBlue Airways: B6 

Midwest Airline, Inc.: YX (1) 

Northwest Airlines Inc.: NW 

SkyWest Airlines Inc.: OO 

Southwest Airlines Co.: WN 

Tower Air Inc.: FF 

Trans World Airways LLC: TW 

U.S. Airways Inc.: U.S. (Merged with America West 9/05. Reporting for both starting 

10/07.) 

United Air Lines Inc.: UA 

USA Jet Airlines Inc.: U7 

Virgin America: VX 

 


