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ABSTRACT

Mitigation of ecological impacts associated with stream regulation is now a legislative priority 

and Artificial Floods have been suggested as a potential tool to achieve this aim. However, 

understanding of the impacts of stream regulation and Artificial Floods on downstream ecology 

is currently limited. This thesis provides detailed reviews of both of these topics and identifies 

key contemporary research priorities. These priorities were subsequently addressed through 

assessment of the impact of stream regulation and Artificial Floods on downstream hydrology, 

physical chemistry, coarse sediment transport and benthic macroinvertebrates in an upland sub-

catchment of the River Humber, UK. Evidence that regulation was associated with significant 

impacts on hydrology (e.g. flood frequency, rate of change), physical chemistry (particularly 

flood pH and diurnal stream temperature range) and macroinvertebrates was identified, but 

impacts were found to vary spatially and temporally, indicating the importance of site specific 

and temporal factors. Control of hydrological characteristics was demonstrated during Artificial 

Floods which generally resulted in reductions of electrical conductivity, dissolved oxygen and 

pH and no change in stream temperature. Evidence for coarse sediment transport in line with 

overspill events prior to Artificial Floods was identified, but little evidence for change in 

macroinvertebrate assemblage was found. Evidence for the use of Artificial Floods as a 

management tool was greatest for coarse sediment transport and pH but overall, limited 

potential was demonstrated, bringing into question their validity as management techniques in 

some regulated streams and provoking requirement for further research. The findings of this 

thesis, methodological developments, conceptual advances and recommendations are therefore 

considered to have advanced the science and understanding of regulated stream management. 

Such progress is vital in this rapidly developing research field.
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1 INTRODUCTION

1.1 Research context

Humans hold intrinsic value for the environment that surrounds them for recreational, spiritual, 

scientific, economic, historical or philosophical reasons (Rolston, 1994). The environment 

provides important services which enable our survival, for example, provision of food and 

oxygen (Salzman, 2009). Yet, paradoxically, through our activities, we threaten the 

environment. For example, overfishing of marine ecosystems threatens species with extinction 

(Jackson et al., 2001). However, we are aware of the threats we place on our environment and 

aim to counteract them through measures such as conservation and restoration (Meffe & Carroll,

1994).

Freshwater streams are important to humans as they provide services such as provision of water 

for consumption and agriculture (Araya et al., 2003). They are also of economic importance as 

they attract tourists to undertake activities such as fishing (e.g. Dalrymple, 2006) and can also 

be seen as socially, culturally and aesthetically important (Wallace et al., 2003). Stream 

environments are sensitive to anthropogenic pressures (Schmidt et al., 2009) and are considered 

to be among the most impacted ecosystems on the planet due to factors such as pollution, over-

abstraction and dam construction (Malmqvist & Rundle, 2002). This has resulted in a growing 

drive to conserve and restore streams, reflected by the development of water focussed 

legislation such as the US Clean Water Act (USC, 2002) or the EU Water Framework Directive 

(EU WFD) (EC, 2000). 

Whilst the drivers for implementation of mitigation of anthropogenic pressures on stream 

ecosystems are growing, there is recognition that the science to inform how, practically, these 

measures should be implemented is limited (Petts et al., 2006; Ormerod et al., 2007). Stream 

managers have highlighted the requirement for further research to underpin their decisions. For 

example, in the UK, representatives from water supply and treatment companies have recently 

recommended research is undertaken to better understand hydroecological relationships to 

enable them to meet their legislative targets with regards to practices such as reservoir 

management (Bowles & Henderson, 2012).

In regulated streams, environmental flows have been suggested as a potential tool to mitigate 

impacts to ecosystems downstream of dams (Dyson et al., 2003). Environmental flows can be 

defined as provision of a flow regime that meets desired ecosystem objectives (Acreman & 

Dunbar, 2004) and can include practices such as Artificial Flood (AF) implementation (i.e. 
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where discharge is increased to emulate a natural flood). The science of environmental flows is 

currently at an early stage, but their use has the potential to meet legislative targets (Dyson et 

al., 2003; Acreman & Ferguson, 2010) and there is therefore an urgent requirement to further 

understand the impact of implementation of such techniques.

1.2 Research gaps, aims, objectives and hypotheses

1.2.1 Aims

This thesis is driven by a requirement to better understand regulated stream ecosystems. The 

primary aims are to:

1. Assess the impact of regulation on downstream ecosystems, including hydrological, 

physical-chemical, morphological and biotic elements;

2. Assess the impact of environmental flows (AFs specifically) on downstream 

ecosystems.

1.2.2 Research gaps, objectives and hypotheses

This thesis addresses the key themes identified in the reviews undertaken in Chapters 2 and 3 by

examining both the impact of regulation and Artificial Floods (AFs) on downstream ecosystems 

(Figure 1.1). Chapters 5 to  9 of this thesis detail the particular research gaps they address and 

these are summarised below. The final chapter of this thesis provides a general synopsis of the 

research detailed in Chapters 5 to  9.

Chapter 5 

Understanding of the impacts of stream regulation at various temporal (e.g. diurnal, seasonal) 

and event based (i.e. flood) scales on downstream hydrology and physical-chemical parameters 

such as electrical conductivity (EC), dissolved oxygen (DO) and pH is currently limited. The 

impact of AFs on these facets is also poorly understood. This chapter reports on a detailed study 

of hydrology, EC, DO and pH in a catchment in upland UK over a two year period. 

Objectives

1. Undertake an assessment of the impact of regulation on hydrology, EC, DO and pH 

through comparison with unregulated conditions;
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2. Conduct a series of AFs to assess the potential for use of AFs as mitigation for any 

impacts identified.

Hypotheses

1. Regulation would reduce flood frequency, magnitude and duration and the impact 

would vary temporally;

2. Regulation would impact downstream physical chemistry and these impacts would vary

temporally;

3. AFs would impact downstream physical chemistry thereby demonstrating control of 

downstream physical chemistry and potential for use as mitigation

Chapter 6

Identification of the complex drivers of stream temperature in regulated streams, variability of 

the impact of regulation on mean stream temperature and the limited number of studies 

examining the impact of multiple-reservoirs on downstream temperature has led to a 

requirement for a detailed assessment to address these topics. Further, the impacts of AFs on 

downstream temperature have varied globally and further studies are required to assess this 

impact. This chapter reports on a detailed study of stream temperature in a catchment in upland 

UK over one year. 

Objectives

1. Undertake a spatio-temporal assessment of the impact of regulation on stream 

temperature using contemporary analytical techniques through comparison of several 

regulated streams with unregulated conditions in a multi-reservoir catchment;

2. Conduct an assessment of the impact of a series of AFs on downstream temperature.

Hypotheses

1. Regulation would reduce downstream temperature range and impact mean stream 

temperature according to season;

2. Impact would vary spatially; 

3. Change in downstream temperature would be observed during AFs, thereby 

demonstrating the potential for use of AFs as mitigation.
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Chapter 7 

Process based understanding of sediment transport in streams has been cited as a key research 

priority (Petts & Lewin, 1979; Carling, 1988), yet few studies have addressed this need. Those 

that have (Gilvear, 1987; Lyons, 1992; Sear, 1993) have primarily focussed on transport of 

suspended sediment resulting in a dearth of process based understanding of coarse sediment 

transport in regulated streams. Additionally, the limited number of published observations 

concerning sediment transport during AFs is now driving the requirement for understanding at 

regional scales (Poff & Zimmerman, 2010; Gillespie et al., in review). 

Objectives

1. Undertake a detailed study of coarse sediment transport in a regulated upland UK 

stream to better understand the sediment transport-discharge relationship and threshold 

discharges;

2. Assess the impact of a series of AFs of varying characteristics on coarse sediment 

transport and potential for use of AFs as morphological management tools.

Hypotheses

1.  The sediment transport-discharge relationship and threshold discharge to invoke 

sediment transport would vary temporally reflecting antecedent flow conditions;

2. AFs would invoke sediment transport and therefore demonstrate potential for use as a 

morphological management tool.

Chapter 8 

A lack of consensus exists with regards to the response of macroinvertebrate communities to 

upstream impoundment leading to a call for focussed regional-scale assessments (Poff & 

Zimmerman, 2010; Gillespie et al., in review). Additionally, previous research may have failed 

to differentiate between subtle changes in the extent to which a site is affected by regulation, 

potentially limiting the inferences made. Furthermore, recently developed indices (e.g. LIFE 

(Extence et al., 1999); PSI (Extence et al., 2013)) may have potential for use in identification of 

impacts of regulation. 

Objectives

1. Identify relationships between the extent of stream regulation and macroinvertebrate 

communities using a multi-site, regional-scale approach;
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2. Examine the utility of new, continuous, index representing the extent of stream 

regulation; 

3. Evaluate two recently developed indices (LIFE and PSI) alongside established 

biomonitoring indices to consider their relative performance for assessment of the 

impacts of regulation.

Hypotheses

1. Macroinvertebrate indices and community composition would both be affected by 

upstream impoundment with some taxa increasing and others decreasing in abundance 

relative to their sensitivity to changes in flow; 

2. A continuous index representing extent of regulation would be more sensitive to 

differences in community composition than categorical classifications;

3. LIFE and PSI would decrease as the extent of stream regulation increases, and 

demonstrate superior sensitivity to alternative indices such as diversity, dominance, 

BMWP and ASPT in detecting any impacts.

Chapter 9 

In addition to the lack of consensus in response of macroinvertebrate communities to upstream 

regulation noted above, some of the assessments focussing on this topic have been of limited 

intensity (i.e. ≤ two samples per year (e.g. Englund & Malmqvist 1996; Maynard & Lane, 2012;

Gillespie et al., in press (a))) potentially resulting in failure to identify intra-annual variation of 

impacts. Furthermore, an assessment of the impact of AFs on benthic macroinvertebrates in the 

UK is yet to be published. 

Objectives

1. Conduct an assessment of intra-annual temporal dynamics of the impact of regulation 

on stream macroinvertebrates;

2. Examine the impact of AFs on downstream benthic macroinvertebrates in the UK.

Hypotheses

1. A difference in macroinvertebrate assemblages between regulated and unregulated sites 

could be observed in line with previous studies;
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2. The difference would vary intra-annually reflecting taxon life-cycle attributes and 

environmental preferences;

3. Macroinvertebrate abundance, richness and diversity would decrease as a result of AFs;

4. Taxa would respond to AFs based on their specific environmental preferences resulting 

in a more disturbance resilient assemblage.



Figure 1.1: Thesis schematic structure.
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2 THE IMPACT OF REGULATION ON DOWNSTREAM 

ECOSYSTEMS

2.1 Chapter overview

This chapter presents a global scale literature review of the impact of stream regulation on 

downstream ecosystems. First, to provide context, the history and spatial extent of regulation 

are presented. A section identifying and reviewing key research gaps in the literature regarding 

downstream impacts of stream regulation follows. For clarity, this section is split by topic: 

hydrology, physical chemistry, morphology and biota. This chapter is complementary to the 

following chapter which presents a strategic review of the global impacts of environmental 

flows on downstream ecosystems.

2.2 Introduction

Stream regulation has been defined as the alteration of natural fluvial dynamics (Ward et al., 

1999) or a reduction in naturally variable flow patterns (Giller, 2005) and is achieved through 

installation of flow control structures such as dams, weirs, abstractions and sluices (Olive & 

Olley, 1997). Stream regulation through dam construction is the focus of this chapter and the 

aims are to (i) provide an overview of the history and global extent of stream regulation, (ii) 

review the literature regarding the impact of regulation on downstream ecosystems and, (iii) 

identify key research priorities where understanding is currently lacking.

2.2.1 The history of stream regulation

Humans have always altered the environment, whether directly or indirectly (McMichael, 1995;

Leroux, 2005). Early examples of stream alteration date to the Neolithic period (c. 5800 – 2800 

BCE) where irrigation was practised in Mesopotamia and Egypt (Mays et al., 2007). The 

earliest record of a dam is the Prosperpina in Spain, built c. 130 by the Romans to supply water 

to the city of Emerita Augusta (Mays et al., 2007; ICOLD, 2014). Dam construction during this 

period was typically small scale and associated with water diversion (Mays et al., 2007). 

However, the invention of the arch dam in c. 1280 and subsequent development of stronger and 

larger buttress and rock-filled dam types in the 18th and 19th centuries, enabled a rapid increase 

in the number of dams constructed. Construction was driven by activities such as the American 

Gold Rush, the Industrial Revolution and the growing requirement for water for expanding 
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urban populations (Sheail, 1988; McConnell, 1999; Biswas & Tortajada, 2001). For example, in 

Britain, significant numbers of dams were completed in the late 18th and throughout the 19th and 

20th centuries (Figure 2.1) where regular and predictable water supply to industry and expanding

cities was required (Sheail, 1988).

Post-1950 saw a dichotomy in the rate of dam building emerge: a decline in 'developed' nations 

such as the United States, Canada, Britain (Figure 2.1) and others in Western Europe was 

observed, and conversely, a rapid increase in dam construction rate in the majority of 

'developing' nations driven by factors such as population growth, irrigation requirements and 

national pride (Bednarek, 2001; Biswas & Tortajada, 2001; Poff & Hart, 2002). This dichotomy,

although evolved, still exists today. The growing appreciation for protection of the environment 

dominates dam construction/ management across the globe and, in 'developed' nations, dam 

mitigation and removal projects are increasing in number (Olden et al., 2014). Conversely, basic

human needs remain unmet in 'developing' nations where large dams are currently being built 

(Biswas & Tortajada, 2001). Dam construction and management therefore remain contemporary

Figure 2.1: Number of dams (with a reservoir capacity > 1,000,000m3) constructed in Britain 
each 20 years (source: Tedd & Hoton, 1994).
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issues that need to adapt to challenges driven by complex societal, environmental, economic and

geographic issues, complicated by the 'developed-developing' nation dichotomy.

2.2.2 Contemporary extent of stream regulation

Stream regulation is now ubiquitous globally (Lehner et al., 2011). By country, the USA has the 

most dams (n = 9265), followed by China (n = 5191), India (n = 5101) and Japan (n = 3076) 

(ICOLD, 2014). There are few countries that have no recorded dams according to ICOLD (i.e. 

Alaska, Antarctica, Greenland and some within northern Africa) (Figure 2.2), but small dams 

are not recorded by this database and the true extent of global regulation is likely to be much 

larger (Lehner et al., 2011).

Within western Europe, Spain has the majority of dams (n = 987), followed by France (n = 622),

Italy (n = 542) and the UK (n = 519) (ICOLD, 2014; Figure 2.3). Of these countries, the UK has

the highest density of dams (2.13/ 1000 km2 cf. Spain: 1.95, France: 0.97 and Italy: 1.80). The 

spatial extent of dams within Britain is however, not equal (Figure 2.4), with the majority sited 

in areas of relatively high altitude; taking advantage of gravity to transport water (McCulloch, 

2004). Clusters of relatively large dams are present within both the Pennines (e.g. Scammonden 

Dam (73m)) and Welsh mountains (e.g. Llyn Brianne dam (91m)) (Tedd & Hoton, 1994; Figure

2.4).

Given the spatial extent of dams worldwide, there are few areas that have not felt their benefits: 

dams have provided cheap electricity, recreational opportunities, navigable channels and 

reduced severity of floods (Collier et al., 1996; Lehner et al., 2008). However, the environment 

downstream of dams has been cited as being profoundly impacted (Petts, 1984a). Indeed, 

Malmqvist & Rundle (2002) stated that dam construction was one of the key threats to stream 

ecosystems.



Figure 2.2: Number of dams by country (source: ICOLD, 2014).
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Figure 2.3: Number of dams by country in western Europe (source: ICOLD, 2014).
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Figure 2.4: Distribution and height of dams in Britain (source: Tedd & Hoton, 1994).

2.3 Impacts of regulation on downstream ecosystems

2.3.1 Hydrology

The flow regime is perhaps the most important controlling factor of stream ecological integrity. 

It can be considered a “master variable” that influences physical chemistry, energy sources, 

physical habitat and biotic interactions which in turn affect ecological integrity (Figure 2.5) 

(Poff et al., 1997; Saunders et al., 2002). The over-riding principal of the natural flow regime is 

that of dynamism and five key characteristics can be used to describe it: magnitude, duration, 

frequency, timing and rate of change (Poff et al., 1997; Petts, 2009). Variability in discharge 

over a multitude of time scales and the frequency of extreme high and low flow events, exert 

control over stream ecological integrity (Petts, 1984a). It is this dynamism that can be affected 

by dam construction and a vast literature is dedicated to describing the impacts.
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Lehner et al. (2011) estimated that 575,900 km or 7.6% of the world’s streams with average 

flows >1 cumec are affected by upstream regulation. Nilsson et al. (2005) estimated that 

impoundments are capable of holding back approximately 15% of the world's total annual 

runoff. This regulation modifies natural flow regimes primarily through redistributing discharge 

through time (Petts, 1984a; Higgs & Petts, 1988). However, exact effects of an impoundment on

the downstream flow regime are determined by factors such as inflow dynamics, reservoir 

characteristics (e.g. spillway shape) and reservoir function (e.g. hydropower, water supply) 

(Petts, 1984a). These factors combine to affect the occurrence and characteristics of flow-

specific facets such as pulse-releases, compensation flows and flood absorption resulting in 

spatially and temporally complex impacts as conceptualised by Petts (1984a) (Figure 2.6).

Typically regulation reduces annual flow variability due to the attenuating ability of a reservoir 

and subsequent reduction in high flows (Baxter, 1977; Petts, 1984a); indeed, Graf (2006) noted 

reductions in the magnitude of annual peak discharges by 90%. However, over shorter time 

scales, flow variability can be increased due to management of the reservoir (e.g. hydropower 

ramping (e.g. Andrews & Pizzi, 2000)). Regulation has also been observed to reduce mean 

annual discharge by up to 80%, alter the timing of annual extremes and, typically after 

hydropower dam installation, unnatural pulse discharge events have been introduced (Petts, 

1984a; Table 2.1).

In addition to reservoir specific factors (Figure 2.6), local climatic and weather conditions are 

also important in determining downstream impacts of flow regulation (Higgs & Petts, 1988). 

For example, rainfall intensity (which can be spatially variable (e.g. Abrahams & Parsons, 

1991)) affects the rate at which reservoirs fill and therefore the likelihood of overspill (Higgs & 

Petts, 1988). Given the number of factors which can potentially affect downstream flow regimes

in regulated catchments, a requirement for local scale, detailed assessments exists to inform 

future management plans (e.g. River Basin Management Plans) under contemporary freshwater 

legislation (e.g. the EU WFD).



15

Figure 2.6: Reservoir specific factors that can affect downstream flow regimes (modified from 
Petts, 1984a).

Figure 2.5: Links between five facets of the flow regime and ecological integrity (modified from 
Poff et al., 1997).
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Table 2.1: Examples of hydrological alteration attributed to upstream regulation.

Stream, Country Observed hydrological changes Source

Reduced average annual 
runoff

River Zambezi, Mozambique Saltwater incursion in the coastal floodplain and 
delta were induced by reduced freshwater 
discharges

Hall, 1977

Yangtze River, China Slightly reduced annual discharge due to 
diversion of water from reservoirs for 
agricultural use

Chen et al., 2001

Indus River, Pakistan Reduced by nearly 80% after headwater dam 
construction

Farnsworth & 
Milliman, 2003

Flow variability

River Ebro, Spain Reduced annual variability due to  reduced 
autumn and winter peaks and increased flows 
during summer to aid downstream agriculture

Batalla et al., 2004

Colorado River, USA Reduced annual, but increased daily flow 
variability due to hydropower installation

Andrews & Pizzi, 
2000

Altered timing of annual 
extremes

Salt River, USA Shift in annual period of high flows from March 
- May to March - September

Fenner et al., 1985

River Jordan, Israel High flow period has shifted from winter to 
summer due to irrigation and power demands on 
reservoirs

Ortal & Por, 1978

Reduced flood magnitudes

Salt River, USA Overall reduction in high flow events Fenner, et al., 1985

Murray-Darling basin, 
Australia

The magnitude of average annual floods (annual 
exceedance probability 50%) has been reduced 
by over 50%

Maheshwari et al., 
1995

McKenzie River, USA Since the construction of the two dams in the 
1960s, peak discharges have been reduced by 
more than 50%

Ligon et al., 1995

Imposition of unnatural 
pulses

Rio Tera, Spain In March, daily flow fluctuations of between 10 
and 210 m3/s are typical due to demand for 
hydroelectric power

Garcia De Jalon et al.,
1994

Colorado River, USA Daily fluctuations of water-depth by about 1.5 m Turner & Karpiscak, 
1980
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2.3.2 Physical-chemical impacts

Stream physical chemistry (also known as 'water quality') is a function of a variety of 

parameters such as water temperature, inorganic chemistry, metals and organic compounds 

(Binkley & Brown, 1993). Its combined characteristics are one of the primary controllers of 

stream biological integrity (Karr & Dudley, 1981) (Figure 2.7), for example, affecting 

reproductive success and competitive ability (Karr & Dudley, 1981). The characteristics of 

physical chemistry are therefore commonly measured to assess the 'health' or 'quality' of stream 

ecosystems (Norris & Thoms, 1999).

Stream regulation can significantly impact downstream physical chemistry and the type and 

magnitude of these impacts are primarily driven by a combination of (i) the physical chemistry 

of upstream reservoirs, and (ii) environmental factors independent of any reservoirs (e.g. stream

temperature may be affected by air temperature in addition to reservoir water temperature) 

(Friedl & Wüest, 2002). When a stream is dammed, it undergoes a transformation from lotic to 

lentic environment immediately upstream of the impoundment; this change can drastically 

impact both the physical environment and the prevailing processes (Baxter, 1977; Friedl & 

Wüest, 2002). The determinants of reservoir physical chemistry are complex, but Hannan 

(1979) identified six key factors : (i) the physical-chemical characteristics of reservoir inputs, 

(ii) thermal, biological and chemical processes, (iii) water residence time, (iv) waterbody size 

Figure 2.7: Primary variables affecting biological integrity of aquatic biota. Modified from 
Karr & Dudley (1981).
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and shape, (v) catchment characteristics (e.g. geology, vegetation and micro-climate) and (vi) 

reservoir operation and age.

One of the most important factors that can influence facets of reservoir physical chemistry is 

thermal stratification (Petts, 1984a; Cassidy, 1989). Perhaps the most important is de-

oxygenation of the hypolimnion through processes such as aerobic respiration. This has a direct 

impact of lowering the dissolved oxygen content of the water, but it can also indirectly cause the

production of hydrogen sulphide, the release of carbon dioxide, a reduction in pH and increased 

electrical conductivity, alkalinity and orthophosphate through anaerobic breakdown of organic 

matter (Petts, 1984a). These conditions can also lead to the dissolution of metals such as iron 

and manganese that were previously adsorbed to sediment (Petts, 1984a; Inverarity et al., 2003).

This factor, combined with others can directly influence downstream physical chemistry and 

some of the commonly observed impacts are discussed below.

Water temperature is considered a key characteristic of streams as it affects the metabolism of 

organisms both directly (Beschta et al., 1987) and indirectly (Macan, 1963), is an important 

influencer of other physical-chemical properties of water (e.g. dissolved oxygen) and has 

economic significance (Webb et al., 2008). Stream regulation has been documented to impact 

water temperature regimes at a variety of temporal and spatial scales but, prior to examining 

these impacts, it is important to appreciate the physics of stream temperature.

Caissie (2006) identified an abundance of factors which can affect stream water temperature 

(Figure 2.8), but the typical primary determinants are climate (e.g. solar radiation, air 

temperature), stream morphology, groundwater influences and riparian canopy cover (Sullivan 

& Adams, 1991). In natural streams, these determinants typically result in the following spatial 

and temporal patterns (Caissie, 2006): (i) mean daily temperature generally increases with 

distance from source; (ii) temperature varies on both a diurnal and annual scale. However, when

a stream is dammed, these characteristics can be interrupted and, in some cases, extirpated.

Stream regulation has been observed to have mixed impacts on mean stream temperature: Lavis 

& Smith (1972) found negligible downstream impact, Cowx et al. (1987) observed reduced 

mean temperatures during summer and Dickson et al. (2012) found increased mean 

temperatures during both winter and summer, suggesting local factors are important in 

determining impact. However, a general consensus that reservoirs reduce the annual and diel 

range of stream temperature (e.g. Lehmkhul, 1972; O' Keeffe et al., 1990 and Webb and 

Walling, 1993 respectively) is evident. This is primarily due to the relatively large heat capacity 

of a reservoir cf. a stream and tendency for water to be drawn from the relatively thermo-stable 

hypolimnion resulting in relatively little variation in temperature of water from the reservoir 
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outlet (Petts, 1984a; Cassidy, 1989). However, although general impacts on temperature range 

are understood, more recent studies have identified complex spatio-temporal impacts on 

downstream temperature regimes attributed to factors such as reservoir operation and 

groundwater influence (e.g. Webb & Walling, 1997).

Changes to the dissolved oxygen (DO) regime of streams post regulation have also been 

reported, but consistency in observations is lacking. A reduction in DO has been most 

commonly noted (Walker, 1985; Palmer & O'Keeffe, 1990; Bunn & Arthington, 2002), but no 

impact (Crisp, 1977) and increased DO due to gas supersaturation caused by aeration under 

pressure at the reservoir outlet (Petts, 1984a; Cassidy, 1989; Lutz, 1995) have also been 

observed indicating the potential importance of site specific factors.

Evidence of increased concentrations of metals (e.g. iron and manganese) (Petts, 1984a; 

Scullion et al., 1982), increased pH (Palmer & O'Keeffe, 1990) and reduced annual and seasonal

range of electrical conductivity (EC) (Soja & Wiejaczka (2013) and Palmer & O'Keeffe (1990) 

respectively) has also been reported. Furthermore, regulation has been noted to both increase 

and decrease nutrient concentrations downstream of separate reservoirs within the same region 

(O'Keeffe, 1990). It is important, however, to note that typically, these observations are based on

sampling strategies of short duration (i.e. sub-seasonal) (e.g. Scullion et al., 1982) or low 

frequency (i.e. daily/ monthly measurements) (e.g. Soja & Wiejaczka, 2013 and Palmer & 

O'Keeffe, 1990) resulting in a lack of understanding of these particular physical-chemical 

impacts over a variety of time scales (e.g. diurnal, weekly and seasonal) and during particular 

Figure 2.8: Determinants of stream temperature (Caissie, 2006).
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events (e.g. floods).

This review of publications reporting impacts of stream regulation on downstream physical 

chemistry has highlighted variation in impact on mean stream temperature, the importance of 

site specific factors in determining stream temperature and DO, the limited number of 

publications focussing on other physical-chemical facets such as pH and EC and potential 

methodological limitations. There is therefore a requirement for detailed, site specific studies to 

be undertaken (Poff & Zimmerman, 2010) to address these factors. The completion of such 

studies will enable informed management at a local level to be undertaken which is essential to 

the achievement of the aims of contemporary freshwater legislation (e.g. the EU WFD).

2.3.3 Morphological impacts

Fluvial geomorphology has been defined as:

“the study of sediment sources, fluxes and storage within the river catchment and channel 

over short, medium and longer time scales and of the resultant channel and floodplain 

morphology” (Newson & Sear, 1993).

It can be conceptually modelled through the interaction between channel form, flow, sediment 

transport and grain size (Figure 2.9) (Newson & Sear, 1993). Stream morphology is important 

as it influences biological integrity (Figure 2.7) through control of nutrient and energy flux and 

habitat for vegetation, periphyton, invertebrates and fish (Ligon et al., 1995). Anthropogenic 

factors such as stream restoration and regulation influence natural facets of fluvial 

geomorphology (Figure 2.9). Understanding these influences is therefore crucial to enable 

informed management of these systems to mitigate any adverse impacts and meet targets of 

contemporary legislation such as the EU WFD.

Understanding the morphological changes associated with stream regulation has been described 

as the key to comprehending long term ecological consequences (Ligon et al., 1995). Dams can 

influence downstream morphology in a number of ways, for example, they can act as a barrier 

to movement of fine and coarse sediment (Baxter, 1977; Simons, 1979; Petts, 1984a) and 

modify the flow regime which affects bed shear stress, bedload transport, erosion and deposition

and ultimately channel form (Figure 2.9) (Carling, 1988; Newson & Sear, 1993). Interaction of 

these factors can result in a number of key morphological changes which are discussed in the 

following text.
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Stream regulation has been associated with three key downstream morphological impacts. First, 

water released from a reservoir is often devoid of suspended sediment (Petts, 1984a). This can 

result in erosion in the downstream channel (e.g. downstream of the Three Gorges Dam, China 

(Xu et al., 2006)) as it has a high capacity to entrain and transport sediment (Petts, 1984a). This 

results in a coarsening of the streambed which is commonly termed bed 'armouring' (Carling, 

1988; Brandt, 2000). Second, transport of almost all coarse sediment to the downstream reach 

can be eliminated as the reservoir acts as a sink (Petts, 1984a). When this is combined with high

flow events, degradation (removal of all sediment clast sizes) of the downstream bed can occur 

as sediment is not replenished (Brandt, 2000). Last, dams typically reduce/ eliminate the 

number and magnitude of high flow events resulting in bed stabilisation as threshold discharges 

required to rework sediments are not met (Carling, 1988; Brandt, 2000; Wellmeyer et al., 2005).

Figure 2.9:  Factors that can influence fluvial geomorphology. Source: Newson & Sear (1993).
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The interaction between discharge and the capacity to transport sediment is therefore an 

important concept in determining the impacts of regulation. Brandt (2000) presented nine cross-

sectional morphological scenarios based on this relationship (Figure 2.10) and Table 2.2 

demonstrates the range of impacts that have been observed globally.

Downstream morphological impacts of regulation can change at both spatial and temporal 

scales. Longitudinally, morphological impacts reduce as regulated streamflow influence 

reduces. For example, Petts (1980) suggested that for the UK, where the impounded catchment 

area was less than 35–40% of the total drainage area, no significant impact could be identified. 

Temporally, significant downstream morphological impacts have been observed relatively soon 

after dam-closure (e.g. < two months (Williams & Wolmann, 1984)) but such changes are more 

typically observed within two years (Brandt, 2000). This period of change is termed the 

'relaxation period' (Petts, 1987). During the relaxation period, changes are dynamic and are 

driven by episodic events reflecting the frequency of major discharge events and periods of 

stability (Petts, 1987). These temporal changes have been conceptualised by Petts (1987) as the 

Transient System Model (Figure 2.11). After the relaxation period, a quasi-equilibrium period is 

reached where relatively small scale changes occur, but major change in system status is not 

observed (Petts, 1987).

Figure 2.10: Cross sectional morphological possibilities based on the interaction between 
discharge (Q) and sediment load and capacity of the stream water. Grey = pre-impoundment, 
black = post-impoundment. Source: Brandt, 2000.
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Table 2.2: Examples of stream morphological impacts of upstream impoundment and respective 
Brandt (2000) classification.

Reservoir, stream, country Observation(s) Source Brandt classification

Clathworthy, Tone, UK Reduced cross-sectional 
capacity, little evidence of 
scour

Gregory & Park, 
1974

Case 1

Catcleugh, Rede, UK Reduced channel width and
cross sectional area

Petts et al., 1993 Case 1

Kielder, North Tyne, UK Incision of riffles and bed 
armouring immediately 
downstream of dam

Sear, 1995 Case 1

River Dee, between Farndon and 
Bangor, UK

Reduced channel width and
increased sedimentation 
since the 1960s (the period 
of highest flow regulation)

Gurnell, 1997 Case 1

Nant-y-Moch, Rheidol, UK Transport only of fine 
gravels and a resultant 
coarsening of the bed 
material

Greenwood et al., 
1999

Case 1

Nant-y-Moch, Rheidol, UK Deposition at a tributary 
confluence

Petts, 1984b Case 2

Various, China Redistribution of sediment 
transport through time 
resulting in  deposition and 
bed aggradation

Chien, 1985 Case 3

Various, China Erosion downstream of 
reservoir due to increased 
transport capacity of 
sediment stripped water

Chien, 1985 Case 4

Various, USA Deepening of channel due 
to hydropower operation

Williams and 
Wolman, 1984

Case 5

Gebidem, Massa, Switzerland Deposition due to flushing 
of reservoir to remove 
sediment

Boillat et al., 1996 Case 6

Cachi, Reventazon, Costa Rica Deposition due to flushing 
of reservoir to remove 
sediment

Brandt & Sweening,
1999

Case 6

Leighs, Ter, UK Increase in channel 
capacity after a 10-fold 
increase in low-flow 
discharge

Petts & Pratts, 1983 Case 7

Various, Canada Increased cross-sectional 
area due to increased 
discharge and inter-basin 
diversion

Kellerhals et al., 
1979

Case 8
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Variation in observations of geomorphological change combined with the spatial-temporal 

complexities associated with morphological impacts of regulation on downstream systems have 

resulted in a clear requirement for detailed assessments of local scale or catchment based 

approaches to inform management and enable achievement of legislative targets (e.g. EU WFD 

(EC, 2000); Australian Water Act (2007)). Such assessments should not just focus on 

morphological impacts, but also aim to build a process (e.g. sediment transport) based 

understanding of how impacts manifest (Petts & Lewin, 1979; Carling, 1988). To date, limited 

research has focussed on understanding such processes and those that have (e.g. Gilvear, 1987; 

Lyons, 1992; Sear, 1993) have primarily focussed on transport of suspended sediment, most 

likely reflecting the limitations associated with monitoring the coarse component (Reid et al., 

2007; Turowski & Rickenmann, 2011). This has resulted in a dearth of process based 

understanding of coarse sediment transport in regulated streams. A detailed understanding of 

elements of the relationship between discharge and sediment transport, including an 

appreciation of temporal variability and controlling factors (e.g. antecedent conditions), is 

therefore required to inform and enable successful management of these systems. For example, 

implementation of sediment transport specific mitigation measures under the EU WFD 

(UKTAG, 2008).

Figure 2.11: Petts' Transient System Model of morphological changes after dam closure driven 
by episodic events (e1-3) (modified from Petts, 1987). 
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2.3.4 Biota

Stream biota are primarily affected by the flow regime, energy sources, physical chemistry and 

habitat structure of a stream (Figure 2.7; Karr & Dudley, 1981). They are therefore seen as an 

indicator of the 'health' of a system and are increasingly used over, or in combination with, 

alternative indicators such as physical chemistry (Norris & Thoms, 1999) and their monitoring 

has accelerated in recent years due to integration into worldwide legislation (e.g. EU WFD (EC, 

2000), Clean Water Act (USC, 2002)) (Norris & Thoms, 1999). Biota are also important from a 

conservation perspective as conserving biodiversity is seen as essential in maintaining 

ecosystem function (Srivastava & Vellend, 2005). Biota also provide ecosystem services which 

are valued by humans, for example, stream leaf litter breakdown by organisms provides 

resources for food webs which sustain fish that are consumed by humans (Meyer et al., 2005). 

Identification and assessment of anthropogenic impacts on stream biota (e.g. stream regulation) 

is therefore a key priority in terms of maintaining ecosystem health, meeting legislative targets, 

conserving biodiversity and preserving ecosystem function and services.

It is useful to consider a number of general biological concepts to understand how stream 

regulation may affect biota. In general terms, natural streams can be considered as continuums 

where organisms are spatially arranged in a relatively predictable order from headwater to 

stream mouth (Vannote et al., 1980). However, Ward & Stanford (1983; 1995) suggested 

streams rarely follow this paradigm and theorised that streams should be viewed as an 

alternating series of lotic and lentic reaches. This theory was then used to suggest how structures

such as dams could affect stream biota and was subsequently found to provide generally 

accurate predictions (Standford & Ward, 2001). Central to this concept was a recognition of the 

importance of disturbance (Resh et al., 1988). Disturbance can be defined as:

“any relatively discrete event in time that is characterized by a frequency, intensity, and 

severity outside a predictable range, and that disrupts ecosystem, community, or population 

structure and changes resources or the physical environment” (Resh et al., 1988)

When considered in terms of stream regulation, disturbance can be used to predict or explain 

biotic response. For example, biotic diversity has been theorised to be maximised at an 

intermediate disturbance intensity (Connell, 1978); stream regulation can modify the intensity 

of disturbance events such as floods, thereby causing a predictable biotic response (e.g. 

Townsend et al., 1997). Nonetheless, it is also important to note that such theories have received

criticism (e.g. Kondoh, 2001; Fox, 2013) and it should therefore be highlighted that whilst 

useful in some instances, such concepts are simplifications of complex interactions between 

mechanisms and processes that determine biotic assemblage (e.g. Cardinale et al., 2006).
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Biotic response to stream regulation has been intensively studied across a wide range of 

taxonomic groups (Table 2.3) and Baxter (1977) and Bunn & Arthington (2002) provide 

detailed reviews. One group that has received particular attention is macroinvertebrates 

(Metcalfe, 1989; Norris & Thoms, 1999). Stream macroinvertebrates are considered one of the 

best groups of organisms for study as they are differentially sensitive to environmental 

pressures, ubiquitous, abundant and easy to collect (Metcalfe, 1989). A vast literature also exists

regarding these organisms' ecology and phenology allowing for informed assessment of 

environmental conditions to be made (Metcalfe, 1989). Suitability of these organisms for this 

role is reflected in their integration into contemporary freshwater management legislation (e.g. 

the EU WFD (EC, 2000) and the Clean Water Act (USC, 2002)) where they are used as key 

indicators of environmental impact and change.

Table 2.3: Range of taxonomic groups assessed for impact of upstream impoundment and 
example respective publications. 

Taxonomic group Publications

Algae Jones & Barrington (1985)

Birds Gill (1973)

Fish Baran et al. (1995); Gehrke et al. (1995); Linnik et al. (1998); 
Agostinho et al. (2004); Korman et al. (2004)

Macroinvertebrates Armitage (1978);  Englund & Malmqvist (1996); Munn & Brusven 
(1991);  Nichols et al. (2006); Spence & Hynes (1971)

Macrophytes Garcia De Jalon et al. (1994); Bernez et al. (2004)

Mammals Ballard et al. (1998)

Riparian vegetation Nilsson et al. (1991); Johnson (1998); Jansson et al. (2000)

From a theoretical perspective, undisturbed stream macroinvertebrate communities are expected

to be characterised by relatively high numbers of shredders in headwaters, grazers in mid-order 

and collectors in high-order streams, largely reflecting food and energy source availability 

(Vannote et al., 1980). The introduction of a dam into headwaters has been predicted to 

dramatically reduce numbers of shredders due to alteration of the food supply (i.e. reduction in 

CPOM due to dam-trapping effect) but have little impact if constructed on higher order streams 

due to the reduced reliance on allochthonous food sources (Ward & Stanford, 1983). However, 

it has also been acknowledged that more complex impacts reflecting the interaction of several 

key factors (Figure 2.7) (Karr & Dudley, 1981) are likely to be observed.

The impact of stream regulation on macroinvertebrates downstream of impoundments has been 
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the focus of many studies worldwide, yet varied observations have been made leading to a lack 

of clarity in understanding. In response to regulation, total abundance has been recorded to 

increase at some sites (e.g. Armitage, 1978; Munn & Brusven, 1991) but decrease at others 

(Englund & Malmqvist, 1996). Additionally, responses of some taxonomic groups have been 

observed to vary, for example, no change or decrease in abundance of Coleoptera (Spence & 

Hynes, 1971 and Nichols et al., 2006, respectively). Furthermore, varied responses in diversity 

have also been observed (increased: Poole and Stewart, 1976; Penaz et al., 1968; Maynard and 

Lane, 2012; decreased: Pearson et al., 1968; Armitage 1978; Munn & Brusven, 1991). Further 

research is therefore required to both clarify and understand the mechanisms behind these 

differential responses.

Some assessments regarding the impact of regulation on stream macroinvertebrate assemblages 

have been of limited intensity (i.e. ≤ 2 samples per year (e.g. Englund & Malmqvist 1996; 

Maynard & Lane, 2012; Gillespie et al., in press (a))) potentially resulting in failure to identify 

intra-annual variation of impacts. This may explain variation in observations as impacts are 

likely to vary both intra- and inter-annually as identified by Armitage (1978). An assessment of 

the impact of regulation on macroinvertebrate community dynamics at a fine temporal scale 

(e.g. utilising a monthly sampling regime) may have the potential to reveal novel insights (e.g. 

temporal variation in magnitude of impact) into impacts of regulation.

2.4 Summary

Humans have regulated stream systems since neolithic times and the first known dam was built 

by the Romans to aid water supply. Dams are now ubiquitous across the world, bringing 

advantages such as reduced severity of floods and irrigation and recreational opportunities. 

However, dams can also have a detrimental effect on the environment. Humans now recognise 

this and in an attempt to mitigate these impacts, research is required to understand them and 

how they may be reduced.

There is a large literature on the impact of dams on downstream ecosystems and, whilst some 

consistency in impacts can be seen (e.g. dams typically reduce the transport of sediment 

downstream), there are many examples where consistency of impact is not evident (e.g. total 

abundance of macroinvertebrates has been observed to increase in some streams but decrease in 

others). A recognition of the importance of local scale factors (e.g. climate, geology, dam 

operation) has driven the requirement for detailed, site specific studies to be undertaken to 

inform stream managers and enable them to meet obligatory legislative targets under 

increasingly ecocentric water legislation (e.g. EU WFD).
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3 MITIGATION OF IMPACTS OF REGULATION USING 

ENVIRONMENTAL FLOWS

3.1 Chapter overview

This chapter presents a strategic review of the global impacts of environmental flows on 

downstream ecosystems in an attempt to establish whether consensus in response exists. First, 

the rationale for this review is presented including identification of the aims. This is then 

followed by a description of the methods used to undertake the strategic review. Subsequent 

sections present and discuss the results and include recommendations for future research. 

3.2 Introduction

A drive to mitigate impacts of stream regulation on hydrology, physical chemistry, 

geomorphology and biota through reservoir outflow modification has recently been stimulated. 

These interventions are commonly described as environmental flows and it has been suggested 

that their implementation will be vital to meet the aims of contemporary legislation (e.g. the 

Australian National Water Initiative (Connell & Grafton, 2008) and the EU WFD (Acreman & 

Ferguson, 2010)).

Environmental flows have been defined as:

“the quantity, timing, duration, frequency and quality of water flows required to sustain 

freshwater, estuarine and near-shore ecosystems and the human livelihoods and well-being 

that depend on them" (Acreman & Ferguson, 2010).

More specifically, Acreman et al. (2009) suggested that environmental flows should 

"be based on ecological requirements of different communities/ species/  life stages, which 

may vary within and between streams even for the same biological elements or 

communities".

It is clear that to define environmental flows for regulated streams, identification of cause-

response relationships between flow modification and ecosystem variables must be achieved. A 

synthesis of the global literature has the potential to identify and quantify reservoir outflow 

modification-downstream ecosystem response relationships and assess current research methods

and topics to clarify and prioritise future research agendas. However, to date no such study has 

been undertaken. Thus, this review aims to (i) develop and employ an objective methodology to 

search the literature for relevant studies; (ii) synthesise data on qualitative and quantitative 
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relationships between reservoir flow modification and downstream ecosystem responses, and 

the sampling methods and analytical approaches used; (iii) critically evaluate the existing 

knowledge base and propose recommendations for future research to advance the science of 

regulated stream management.

3.3 Methods

3.3.1 Literature search

Relevant published literature was located through computerised searches of ISI Web of 

Knowledge which includes the following databases: Web of Science (1990-present), BIOSYS 

Citation Index (1969-present), BIOSYS Previews (1969-present), Data Citation Index (1900-

present), MEDLINE (1950-present) and Journal Citation Reports. Table 3.1 lists the search 

terms used and number of results returned. A total of 3,981 records were assessed for suitability 

through attainment of the following criteria: (i) reported primary data; (ii) assessed the impact 

of modification of the outflow regime of a reservoir; (iii) focused on impacts to instream 

ecosystems (biotic and abiotic elements) downstream of the reservoir; (iv) were published in 

academic journals and had thus undergone peer review.

3.3.2 Data extraction and quality assessment

First, the study location(s) (reservoir where flow modification was made) reported in each study

was recorded and plotted to assess any spatial patterns or biases in the literature. Next, 

ecosystem responses to flow modification highlighted in each study were recorded and 

categorised as either biotic or abiotic. Biotic changes were assigned to either reduced, no 

change or increased response categories to allow for comparison of general trends (see Poff & 

Zimmerman, 2010). For example, increased macroinvertebrate diversity in response to flow 

modification was classified as an increased response. Conversely, a reduction in fish movement 

in response to flow modification was classified as a reduced response. Additionally, biotic 

responses were split into native or non-native/ invasive groups where detail was given as each 

group may respond differently to flow modification (e.g. Cross et al., 2011). Abiotic responses 

were assigned to either change or no change categories as reductions or increases in abiotic 

parameters may be less comparable than for biotic responses (e.g. increased temperature and 

electrical conductivity (EC) are less likely to both be either ecologically 'good' or 'bad' than 

increased fish and macroinvertebrate abundance). Ecosystem responses were assigned to either: 

(i) fish; (ii) macroinvertebrates; (iii) macrophytes; (iv) primary producers (benthic); (v) 
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morphology; (vi) physical chemistry (including suspended sediment transport) and (vii) other 

categories to enable further insight to be made regarding the types of ecosystem components 

assessed.

Flow modification can often be classified as more than one type of response; for example, a 

change in flow from a reservoir may result in both an increase in flow magnitude and duration 

(Poff et al., 1997). Thus, to classify the type of flow modification each ecosystem response was 

associated with, the element of flow modification that was most emphasised by each study was 

recorded (Poff & Zimmerman, 2010). Ecosystem responses have been observed to vary whether

they are as a result of a single, or a series of flow modifications (e.g. Uehlinger et al., 2003). 

Thus, to allow for separate analysis of these two modification types, responses were further 

classified by whether they were reported as a result of a single or series of cumulative flow 

modifications. Ecosystem responses within each category were then synthesised and commonly 

reported responses were tabulated. To allow for clear tabulation of results, a frequency of 

observation of at least four was selected to represent a 'common' observation.
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Table 3.1: Search terms used in literature search and respective number of results.

Search term No. results

"reservoir operation" 825
effects AND hydropower 749
"selective withdrawal" 202
"reservoir release*" 200
"varying flows" 182
"pulse release*" 154
"controlled flood*" 129
"artificial flood*" 124
"dam operation" 124
"environmental flow*" AND dam 112
"experimental drought*" 110
"artificial flow*" NOT flower* 97
"flushing flow*" 93
"experimental flood*" 89
"hydropeaking" 83
"environmental flow*" AND reservoir 67
"dam release*" 65
"managed flood*" 56
"e-flows" 50
"artificial release*" 42
"flow alteration*" AND dam 42
"artificial drought" 40
"hydrop* flow*" 34
"planned flood*" 22
"altered flow* regime" 21
"flow alteration*" AND reservoir 21
"reservoir flushing" 20
"peaking flow*" 20
"scour* flow*" 18
"flood program" 18
"hydro-peaking" 17
"test flood*" 16
"hydropower peaking" 15
"environmental flow*" AND impoundment 14
"altered flow*" AND reservoir 11
"spate flow*" NOT flower* 10
"environmental release*" AND reservoir 10
"fluctuating flow*" AND dam 10
"peaking discharge*" 10
"flow alteration*" AND impoundment 9
"scour* flood" 8
"regulated flood" 8
"modified flow* regime" 7
"experimental low flow*" 7
"fluctuating flow*" AND reservoir 6
"dam reoperation" 3
"fluctuating flow*" AND impoundment 3
"spate flood*" 2
"dam re-operation*" 2
"environmental release*" AND dam 2
"reservoir reoperation" 1
"artificial low flow*" 1
"spate release*" 0
"scour* release*" 0
"reservoir re-operation" 0
"impoundment reoperation" 0
"impoundment re-operation" 0
"modified flow* AND reservoir" 0
"environmental release*" AND impoundment 0
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In an attempt to produce quantitative relationships between reservoir outflow modification and 

ecosystem responses, first, studies where a single flow modification and associated ecosystem 

response could be represented as percent change were identified. This was possible for 20 

studies located in the literature search, but some studies reported on more than one flow 

modification or ecosystem response resulting in extraction of a total of 119 data points relating 

flow modification to ecosystem response. From initial analysis of data points, all observed 

ecosystem responses were a result of modification of flow magnitude. Thus, percent change for 

each flow modification was defined using Equation 3.1 where x1 was pre flow modification 

discharge magnitude and x2 was maximum (or minimum in the case of a reduction in 

magnitude) discharge magnitude of the flow modification. Equation 3.1 was also used for 

calculation of percent change in ecosystem response where, x1 was pre flow modification 

condition and x2 was either condition of maximum change from x1 (if sampling was undertaken

during flow modification) or condition immediately after the flow modification (if sampling 

was undertaken after flow modification). If possible, data were extracted from the text/ tables 

and alternatively from figures. For response variables, where sampling was replicated, mean 

values were used and where non-significant responses were noted, percent change was recorded

as zero.

Percent change=(
x2− x1

x1
) X 100                                  (Equation 3.1)

To visualise flow-ecosystem response relationships, data points were organised by response type

using the seven categories employed in qualitative data extraction and, where more than five 

data points reported on the same ecosystem response, plots of flow (percentage change) versus 

ecosystem response (percentage change) were created. For some ecosystem response types, 

visualisation revealed broadly linear relationships; the significance of these relationships was 

assessed using Generalized Linear Models (GLM) with appropriate error distribution and link 

functions specified. Statistical analysis on fewer than 10 data points has been regarded as 

invalid (Roscoe, 1975) and therefore modelling was only carried out where at least 10 data 

points had been extracted. Model validation was carried out to ensure approximate normal 

distribution, independence and homogeneity of residuals. Significance of relationships was 

assessed through consideration of t-statistics and associated p-values (e.g. Zuur et al., 2009). All

visualisations and statistical analyses were undertaken in R v2.15.3 (2013) and relationships 

were considered significant where p < 0.05.

To allow assessment of current research standards and aid recommendation for future research 

strategies, the following were recorded: (i) the type(s) of sampling strategy used to detect 

ecosystem responses (quantitative, semi-quantitative or qualitative); (ii) whether randomisation 
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or replication was stated as used in sampling; (iii) type(s) of control sites used (if any) (e.g. 

upstream of reservoir; nearby unregulated stream); and (iv) analytical approaches used for each 

study.

3.4 Results

Most studies were located within North America and western Europe and there was a dearth 

within equatorial regions, South America, north Africa, Asia and eastern Europe (Figure 3.1A). 

Two study locations had notably high densities of work: Lake Powell (Glen Canyon Dam), USA

and Lago di Livigno (Punt dal Gall Dam), Switzerland/ Italy (Figure 3.1B).

Figure 3.1: Location (A) and density (B) of the 76 studies considered within this review.
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3.4.1 Qualitative analysis of assembled datasets

The majority of studies (n = 69) focussed on modified flow magnitude, with very few studies 

reporting on changed reservoir draw-off valve (n = 1), modified flow duration (n = 2), range (n 

= 2) and rate of change (n = 2) (Figure 3.2). Studies reporting fish response were the most 

frequent (n = 28) and a relatively high number of studies reported physical-chemical and 

macroinvertebrate responses (n = 27 and 19 respectively). In contrast, few studies reported on 

macrophytes and primary producers (n = 3 and 12 respectively) (Figure 3.3). A total of 55 and 

21 studies reported ecosystem responses as a result of single or cumulative modifications in 

flow magnitude, respectively. However, only seven studies reported ecosystem responses 

associated with either rate of flow change, duration, range and draw-off depth from the reservoir

(Table 3.2).

Figure 3.2: Number of studies (from a total of 76) that reported on each flow modification type.

Numerous studies detailing ecosystem responses to flow magnitude modification reported 

increased biotic responses (n = 35), although a similar number of studies reported decreased or 



35

no change in biotic response (n = 30 and 25 respectively). This trend was mirrored in ecosystem

responses as a result of single flow magnitude modifications, but for cumulative modifications 

in flow magnitude, the majority of studies reported decreased biotic responses (Table 3.2). 

Single modifications of flow magnitude were commonly reported to result in: (i) both increased 

and no change in fish movement (during flow modification); (ii) no change in fish abundance 

(after flow modification), and (iii) increased macroinvertebrate drift (during flow modification) 

and reduced macroinvertebrate density (after flow modification). Similarly, cumulative 

modifications of flow magnitude were associated with reduced macroinvertebrate density and, 

additionally, reduced periphyton mass (after flow modification). 

Figure 3.3: Number of studies (from a total of 76) that reported on each ecological response 
type. N.B. some studies reported on more than one category.



Table 3.2: Number of studies that reported on each flow modification, decreases, no changes or increases in biotic and abiotic flow modifications and the most common ecological 
responses reported from a literature review of 76 studies. Where possible, reports are split between impacts of single (S) and cumulative (C) flow modifications. Study reference 
numbers are shown in parentheses (see Appendix A for study details).

Biotic responses Abiotic responses

Flow 

modification

Total 

no. 

studies

No. 

studies 

reporting 

reduced 

ecological

responses

No. 

studies 

reporting

no 

changes

No. 

studies 

reporting

increased

ecological

responses Common ecological responses

No. 

studies 

reporting

change

No. 

studies 

reporting

no 

change Common ecological responses

Magnitude S 55 12 14 21 No change in fish movement (10,18,31,35,37,60,75) 32 9 Increased turbidity (6,7,34,49)

Increased fish movement (15,18,27,35,37,57) Increased suspended solid concentration (14,25,32,34,56,63,68,73)
No change in fish abundance (13,65,72,75) Reduced electrical conductivity (19,34,56,73)
Increased macroinvertebrate drift (17,20,42,43,48,62) Increased bedload transport (12,24,36,55,59,66,68)
Reduced macroinvertebrate density (34,48,61,63,54) No change in temperature (34,37,45,63)

Increased temperature (18,22,37,42,51)

C 21 14 9 10 Reduced macroinvertebrate density (20,29,43,45,63,64) 4 0 n/a
Reduced periphyton mass (21,26,30,45,74)

Rate of 

change S 2 1 1 1 n/a 0 0 n/a

Duration S 2 1 0 1 n/a 1 0

Draw off 

depth S 1 0 0 0 n/a 1 0 n/a

Range C 2 1 1 2 n/a 0 0 n/a
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The majority of studies reported changes in abiotic condition as a result of both single and 

cumulative modifications in flow magnitude. Common responses were identified as: (i) 

increased turbidity, suspended solid concentration and bedload transport (during flow 

modification); (ii) reduced EC (during flow modification); and (iii) both no change and an 

increase in stream temperature (during flow modification) (Table 3.2). Due to the limited 

number of studies reporting ecosystem changes as a result of other flow modification types, 

generalisations of ecosystem response associated with these flow modification types could not 

be made.

3.4.2 Quantitative analysis of assembled datasets

Periphyton AFDM and chlorophyll–a, benthic macroinvertebrate density and seston AFDM and 

chlorophyll-a either reduced or showed no change after increased flow magnitude (Figure 3.4A 

and C). Macroinvertebrate drift and concentrations of Escherichia coli either increased or did 

not change during increased flow magnitude (Figure 3.4B and D). No clear trends in response 

direction or flow thresholds could be identified for any biotic response.

Stream EC generally reduced during increased flow magnitude and a general negative linear 

relationship was observed (Figure 3.4E). Conversely, suspended solid concentration (SSC) 

increased with flow magnitude, but this trend was not significant (t = -1.50, p = 0.16). No clear 

trend was observed for turbidity (Figure 3.4F).
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3.4.3 Quality assessment

Seventy-one, 14 and three studies used fully-, semi-quantitative, or qualitative methods 

respectively to assess ecosystem response to flow modification. Forty-seven studies described 

replication in sampling, whilst only 19 stated use of randomisation. Fully-quantitative methods 

of fish and macrophyte assessment were used in fewer than 60% of cases, whereas over 85% of 

assessments were fully-quantitative for all other ecosystem response types. Qualitative methods 

were only used for assessment of fish and macrophytes (six and 33% respectively). Whilst over 

90% of assessments of physical-chemical response were fully-quantitative, fewer than five 

Figure 3.4: Biotic (A-D) and abiotic (E-F) ecological responses to flow magnitude 
percent change. N.B. Ecological responses are after- and during-flow modification for 
plots A-B and C-F respectively.
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percent were stated as either replicated or randomised. Randomised sampling was stated in 50%

of primary production assessments, whereas fewer than 25% of sampling for all other 

ecosystem responses was described as randomised. Over 50% of assessments of fish, 

macroinvertebrate and primary production response were defined as replicated, compared to 

fewer than 5% of assessments of physical chemistry (Figure 3.5).

Only 14 studies stated use of control sites, and of these 10 used nearby unregulated streams, five

used sites upstream of the reservoir and one used a regulated (with unmodified flow) control 

(N.B. some studies used more than one control type). Thirty-four studies used descriptive or 

graphical methods to present results (i.e. no statistical testing) and 10 studies used correlation or

regression between a metric of flow and ecosystem response. Twenty-eight studies assessed the 

impact of flow modification through comparison of ecosystem conditions either through time or

between impact/ control sites using 1- or 2-way testing (e.g. Student's t-test; Mann-Whitney U; 

ANOVA; Kruskall-Wallis). Six studies used alternative methods: least linear squares/ 

polynomial regression, general linear/ additive/ generalised linear mixed modelling. Only three 

studies tested site:period interaction terms as part of Before-After-Control-Impact (BACI) (or 

derivations of) (Smith, 2002) designs and only eight studies used analytical methods that took 

account of temporal autocorrelation.
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Figure 3.5: Barplot of quality assessment indices for each ecosystem response. Note: 
percentages were calculated based on the total number of reported ecosystem 
responses, therefore, the sum of quantitative and qualitative percentages is less than 
100 where quality assessment indices could not be extracted from a study.

3.5 Discussion

3.5.1 Spatial distribution of studies

This assessment revealed that most research had been carried out within North America and 

western Europe and a dearth of studies was observed within equatorial regions, South America, 

north Africa, Asia and eastern Europe in agreement with a recent assessment by Olden et al. 

(2014). To assess whether this could be the result of spatial variation in reservoir densities, 

comparison with the Global Reservoir and Dam (GRanD) database (Lehner et al., 2008) was 

made. GRanD identifies the four most dense areas of reservoirs in the world as North America, 
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western and eastern Europe and Asia, suggesting that that there is a genuine research bias within

the aforementioned locations. Furthermore, central-eastern South America and areas of central 

and south Africa also have high densities of reservoirs (Lehner et al., 2008) but scant published 

research from these areas was found. This observed research bias should be taken into account 

when considering the global applicability and relevance of the findings of this review and it is 

suggested that the areas where reservoir density is high and published research is currently 

limited should be prioritised for future work.

3.5.2 Flow and ecosystem response types

The majority of studies reported flow modification as an expression of change in magnitude and

only seven studies (< 10%) reported ecosystem responses associated with alternative flow 

modification types. This bias towards magnitude as the primary modified flow variable is 

reflected in previous reviews where similar methods of flow classification were used (e.g. Poff 

& Zimmerman, 2010). Future research should prioritise assessment of alternative flow 

modification types (e.g. rate of change, timing, frequency). Low flows are critical in 

determining ecosystem integrity in natural streams (Poff et al., 1997), but analysis of the dataset 

revealed that only one study (Saltveit et al., 2001) reported on a reduction in flow magnitude 

whilst all other studies concerning changes in magnitude reported on increased flow. 

Assessment of the impact of reduced flow magnitude in regulated streams is therefore a key 

priority for future research and this need is supported by the identification that typical 

compensation flows in the UK were set, on average, over 22% higher than pre-impoundment 

natural low flows and that an ecological benefit could be made with the introduction of lower 

flows in these systems (Gustard, 1989). This is of particular concern to water utilities in the UK 

in achieving supply/ demand balance, and may also be a concern elsewhere globally.

It was found that, in general, there was variation in ecosystem response types noted in the 

literature. However, fish and physical chemistry were most frequently researched and few 

studies examined impacts of flow modification on macrophytes. Additionally, no studies noted 

impacts on biotic groups such as aquatic fungi or Archaea, which both play important roles in 

lotic ecosystem processes (e.g. Manerkar et al., 2008). Furthermore, few studies examined 

impacts on ecosystem processes such as production and respiration or biotic community 

interactions (i.e. food webs). The lack of research of the aforementioned demonstrates a bias 

towards traditionally monitored taxa. The development and application of contemporary 

techniques in freshwater environments such as quantitative real-time polymerase chain reaction 

(Q-RT-PCR) based methods for measuring relative DNA contribution of taxa such as Archea, 

bacteria and fungi within ecosystems (e.g. Manerkar et al., 2008), has opened up new 
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monitoring opportunities. There is a clear research gap for work of this nature and 

diversification of monitoring strategies to cover less traditionally monitored taxa and undertake 

more novel assessments of traditionally monitored taxa (which can provide unique insights into 

their responses) in future studies is recommend. It is also important to note that this research 

concentrated only on instream ecosystem impacts but, to enhance ecosystem understanding, 

streams should be viewed as elements within the surrounding environment. Further research 

should therefore assess the impact of flow modification upon both riparian zones and the wider 

terrestrial and aquatic environment and the processes and biotic interactions that link these 

systems.

3.5.3 Qualitative and quantitative flow-ecosystem response 

relationships

The main objective of this review was to extract, synthesise and evaluate ecosystem responses 

to reservoir outflow modification. It was expected that this would reveal general flow-

ecosystem response relationships for regulated streams and highlight future research priorities, 

ultimately aiding the advancement of the science of regulated stream management.

Qualitative

The majority of flow magnitude modifications resulted in either increased or decreased 

ecosystem responses demonstrating that reservoir flow magnitude modification is a potentially 

useful option for regulated stream conservation or restoration. However, no clear trend in biotic 

response to all, single and cumulative flow magnitude modifications was identified, suggesting 

that site specific factors are important. For example, it was found that in response to single 

increased flow magnitude events, seven studies reported no change in, and six studies reported 

increased fish movement. These contradictory observations may be explained by a combination 

of factors, for example: the characteristics of the flow modification (e.g. the percentage 

increase, the rate of change etc.); the fish monitored (e.g. species, size, flow preference etc.); 

and additional abiotic factors such as season, antecedent flow conditions, instream habitat type, 

time since dam construction etc. To enable a more robust analysis of these relationships, detail 

on these potentially confounding factors must be considered in each study. Extraction of these 

data in this review was not possible due to limited availability and thus future publications 

should consider including detailed information on all potentially relevant factors.

Qualitative analysis revealed some general trends in macroinvertebrate response: increased drift 

(during flow modification) and reduced benthic densities were results of both single and 
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cumulative increases in flow magnitude. Benthic macroinvertebrate density commonly 

increases post-impoundment (Petts, 1984a), suggesting that increased flow magnitude events 

have potential to mitigate for this impact. However, some studies have noted a quick recovery 

from single flow magnitude modifications (e.g. Jakob et al., 2003) suggesting that one-off flow 

modification events may not be viable long term mitigation methods. Understanding of long 

term responses of macroinvertebrates to reservoir flow modification is spatially limited (e.g. 

Robinson et al., 2004a; Mannes et al., 2008; Robinson & Uehlinger 2008) and is a topic that 

requires further research globally.

The vast majority of flow magnitude modifications resulted in abiotic changes, specifically, 

increased turbidity, suspended solid concentration and bedload transport. This suggests that flow

magnitude modification has potential for use in mitigation of the effects of impoundment such 

as reduced sediment transport, which is commonly observed post-impoundment as sediment is 

trapped in the reservoir and resultant bed armouring occurs (Petts, 1984a). No studies were 

found that highlighted the long term impact of flow magnitude modification on sediment 

transport as all sampling was undertaken during each event. It is therefore recommend that 

future research aims to assess how stream sediment transport responds both during and after 

single and cumulative flow magnitude modifications.

Qualitative analysis of physical-chemical factors revealed that increased flow magnitude 

commonly resulted in reduced EC. Heterogeneity in concentrations of dissolved ions are typical

in natural lotic systems (e.g. Glover & Johnson, 1974), thus, increased flow magnitude events 

have the potential to mitigate the reduction in temporal variability in EC observed post-

impoundment (e.g. Palmer & O'Keeffe, 1990) where such an impact is deemed negative. It was 

also found that water temperature was commonly observed to decrease or not change as a result 

of increased flow magnitude. This is most likely due to the climatic and reservoir characteristics

at each site and the vertical position of the draw-off valve used during flow modification. One 

study (Macdonald et al., 2012) found that draw-off level from the reservoir was a significant 

factor in determining downstream temperature. The potential for temperature modification 

through reservoir flow operation is evident and may be important given the crucial influence of 

temperature on biota in lotic ecosystems (Cummins, 1974) and the significant impact of 

reservoirs on downstream temperature regimes (Petts, 1984a; Dickson et al, 2012). Further 

research should be directed towards assessment of the relative importance of different flow 

modification types in controlling downstream temperature, especially the impact of reservoir 

draw-off level which, to date, has received little attention.
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Quantitative

It was possible to extract 199 data points for quantitative analysis, but only 10 ecosystem 

response (seven biotic and three abiotic) types were reported on more than five times and were 

subsequently plotted. No clear trends were observed between flow magnitude modification and 

biotic responses, most likely reflecting the lack of data points and the importance of site specific

factors. Approximately linear relationships were found between flow magnitude modification 

percent change and EC (negative relationship) and suspended solid concentration (SSC) 

(positive relationship) percent change. Statistical analysis was only viable for SSC and revealed 

that the relationship was not significant. No threshold flow changes (where abrupt changes in 

ecological response could be identified) were observed for these parameters. With the addition 

of further data points, a future review may be able to model ecological response and take into 

account confounding factors such as geology, local climate, antecedent flow conditions etc. 

allowing for robust statistical testing of relationships which is not currently possible.

This assessment used a similar method to Poff & Zimmerman (2010). These authors concluded 

that their focus on all stream types and all types of modification (e.g. dam construction, 

irrigation and urbanisation leading to increased run-off) may have limited their ability to find 

general flow-ecosystem response relationships. This review differed in that it focussed 

specifically on reservoir outflow modification post-impoundment in an attempt to reduce the 

impact of this limitation. Similarly to Poff & Zimmerman (2010), analysis is this review was 

restricted by both the small number of data points and the limited availability of information 

relating to potential confounders. As development of flow-ecosystem response relationships in 

reservoir regulated streams increases, it is suggested that future research would benefit by 

analysing these relationships collectively between areas of similar climatological and geological

characteristics, as these factors are expected to influence ecosystem response to flow 

modification (Arthington et al., 2006; Poff et al., 2010). This would further the development of 

smaller scale, regional, or environment 'type' based relationships which are required for 

environmental flow setting frameworks such as ELOHA (Ecological Limits of Hydrological 

Alteration) (Poff et al., 2010) or the Building Block Methodology (BBM) (King & Louw, 1998).

3.5.4 Quality assessment

The majority of studies (> 90%) used fully-quantitative methods to assess at least one 

ecosystem response to flow modification, although method types used to assess each ecosystem 

response type varied. For example, fewer than 60% of methods were fully-quantitative for 

assessment of fish and macrophytes. A propensity for semi-quantitative electric fishing 

techniques (32% of all fish response assessments) and the limited number of assessments of 
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macrophytes (n = 3) explain this observation. Research has suggested that semi-quantitative 

methods of fish sampling can be up to 95% accurate (Klein-Breteler et al., 1990), thus the high 

proportion of semi-quantitative methods for assessment of fish response is unlikely to be of 

concern.

Johnson (2002) describes replication and randomisation as two cornerstones of experimentation 

and states that they are integral to successful ecological research, yet ecologists often commit 

replication errors (Hurlbert, 1984) and rarely select study areas or sampling locations randomly 

(Johnson, 2002). This review identified similar trends as 47 studies (62%) stated that replication

was used in sampling, whilst only 19 (25%) stated randomisation was applied. Further analysis 

revealed the distribution of use of these techniques was unequal among ecosystem response 

types. In particular, fewer than five percent of assessments of physical-chemical responses were 

stated as either replicated or randomised, whereas all other ecosystem elements were stated as 

being assessed using either replicated or randomised methods in at least 30% of cases. No 

reasons could be extracted from the studies to explain why replication or randomisation had not 

been carried out for physical-chemical assessment. However, the approaches used may reflect 

the consensus among literature outlining sampling protocols where replication (Hauer & Hill, 

1996; USEPA, 2004) and randomisation (Hauer & Hill, 1996) are not highlighted as important. 

This assessment has identified a lack of use of these cornerstones and it is suggested that future 

research incorporates both facets. Furthermore, Johnson (2002) suggests that at a more holistic 

scale, the replication of studies (metareplication) is more important than carrying out individual 

studies and has the power to yield greater confidence that any identified relationships are 

general, and not specific to the prevailing conditions within a particular study. It is therefore 

recommend that if possible, research into the impact of flow manipulation on downstream 

ecology is replicated at different times, at different sites, and by different researchers (see 

Johnson (2002) for discussion of metareplication).

The majority of studies used one-way comparisons of sample periods (e.g. before/ after flow 

modification) or between control/ impact sites over sample periods. One of the limitations of 

these approaches is that they fail to take account of temporal autocorrelation (only eight studies 

(11%) took temporal autocorrelation into account) and can result in less robust analysis (Zuur et

al., 2009). BACI designs have been suggested as useful methodological frameworks for use in 

impact assessment of anthropologically driven disturbance events (Underwood, 1991) such as 

flow modifications from reservoirs. BACI designed experiments allow for significance testing 

of site:period interaction terms (see Underwood, 1991) which takes variation that is assumed to 

have occurred if the impact (e.g. flow modification) had not been undertaken into account. 

Nevertheless, only three studies used this approach and it is suggested that future researchers 
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consider this approach when planning assessment of reservoir flow modification. Selection of a 

control site is necessary when applying BACI approaches but this assessment revealed that only

14 studies (< 20%) used control sites. Within these approaches, considerable variability in the 

type of control was identified. Currently, research is lacking as to which type provides the most 

robust method, but given that ideal control sites should be both independent of and as similar as 

possible in abiotic and biotic characteristics to an impacted site (McMahon, 2000), it is probable

that an independent, regulated control site has the potential to act as the most effective control. 

Further research is required to test this hypothesis.

3.6 Summary

This chapter synthesised the global literature concerning reservoir flow modification and 

associated downstream ecosystem response. Biases within both the location of studies and 

research topics were identified and flow-ecosystem response relationships were quantified. For 

example, as a result of increased flow magnitude, macroinvertebrate density and drift was 

commonly identified to decrease and increase respectively and periphyton mass was commonly 

observed to decrease. Further, during increased flow magnitude, reduced electrical conductivity 

and increased suspended solid concentration, turbidity and bedload transport was commonly 

observed. However, clear relationships between the majority of ecosystem response types and 

reservoir flow manipulation were unclear, potentially due to the importance of site specifc 

factors. Therefore, detailed studies of the impact of reservoir flow modification on downstream 

ecosystems are now required. The strategic review also identified methodological and analytical

improvements that could be made in future assessments of the impact of environmental flows 

(e.g. using control sites and performing assessments of interaction terms under a BACI 

framework) and their implementation is recommended for future research. Overall, the findings 

of this literature review should redirect and focus regulated stream research in a concerted 

manner.
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4 STUDY AREA

4.1 Chapter overview

This chapter firstly details the method used to select a study area. It then describes the area as a 

whole and each site in terms of surface geology, land cover and aspects such as catchment area 

and altitude. Some background physical-chemical information is also provided for sites where 

biological monitoring was undertaken. Finally, reservoirs within the study area, including their 

operation, are described.

4.2 Study area selection method

The majority of chapters within this thesis use the study area described in the following text to 

meet their aims, but Chapter 7 takes a wider (regional) approach and the sites used are described

in that chapter rather than here.

This study had two broad aims: (i) to assess the impact of regulation and (ii) to assess the 

impact of Artificial Floods on downstream ecosystem characteristics in an upland area. A focus 

on an upland area was chosen as approximately 80% of large UK dams are situated in upland 

areas (Petts, 1988). Aim (i) could potentially be met through comparison of regulated and 

unregulated streams and aim (ii) could potentially be met through comparison of impact and 

control streams (e.g. Chester & Norris, 2006; Brooks et al., 2011). The optimum study area 

would therefore include all of these stream types. In addition, at least one of the reservoirs was 

required to be able to make releases of water and, to reduce the potential impact of confounding 

factors, all reservoirs and streams needed to be as similar as possible in aspects independent of 

regulation. Furthermore, safe access and permission were required to both visit and undertake 

all proposed monitoring.

Initial map based searches (sources: OS, 2012; USGS, 1998) combined with discussion with 

reservoir operators and landowners (YW) identified the chosen study area as potentially 

meeting all necessary criteria. Desk-based assessment of hydrological, climatological, physical, 

chemical and biological factors (sources: BGS, 2012; CORINE, 2010; EA, 2009; EA, 2013) and

a subsequent site visit in August 2011 confirmed the suitability of the study area. Permission 

was then obtained from landowners and heath and safety methodological statements were 

prepared and authorised prior to commencement of monitoring.
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4.3 Study area characteristics

For reasons of commercial sensitivity, the exact location of study area and sites have been 

anonymised throughout this thesis. The study area was located within the south Pennies of 

central-northern England, UK (Figure 4.1). Surface geology was 59% mud-/silt-/sand-stone and 

~39% peat with minor areas of diamicton (Table 4.1). The majority of the study area was 

classed as wetland (e.g. peat bog), but large areas of forest/ semi-natural (~36%) and 

agricultural (~22%) land were also present. None of the study area land cover was classed as 

artificial (Table 4.1). Average annual rainfall for the south Pennies is approximately 1,200mm 

(Evans et al., 2006).

4.4 Site-scale characteristics

4.4.1 Locations

Eighteen sites were monitored during the duration of this project (Figure 4.2). Sites 1, 3, 5 and 

8-10 were located on unregulated stream segments. Sites 6, 11 and 14 were located within 100m

downstream of reservoirs and sites 2, 4, 7, 12, 13, 15, 16, 17 and 18 were all influenced by 

upstream regulated streamflow. Sites 2, 3 and 4 were located between 100 and 199m aod and 

sites 6, 8, 9 and 10 were located above 300m aod. All other sites were located between 200 and 

299m aod. Most sites were between 4 and 7km from source (based on OS, 2012), but sites 1, 5-

10 and 14 were located within 4km, and sites 2 and 4 were more than 10km from source (Table

4.1).

4.4.2 Geology

Surface geology of the drainage basins of most sites was dominated by peat. Conversely, the 

drainage basins of sites 4 and 7 were dominated by mud-/silt-/sand-stone, but both had >44% 

peat cover (Table 4.1). Sites 8, 9 and 10 drainage basin surface geology was exclusively peat 

and site 5's drainage basin had a high (>30%) proportion of diamicton (BGS, 2012).

4.4.3 Land cover

Most of the drainage basins within the study area were dominated by wetland or forest/ semi 

natural land cover. These classifications include areas of peat bog and shrub/ herbacious 

vegetation. Site 3 was the only site with a drainage basin dominated by agricultural land. 

Drainage basins of sites 1-4, 11-13 and 15-18 also had areas of agricultural land (Table 4.1). 
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Percentage waterbody land cover for each drainage basin are reflective of reservoir distribution 

within the study area (CORINE, 2010).

Figure 4.1: Study area location within Europe. Sources: USGS, 1998; NE, 2012.
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Figure 4.2: Site locations within the study area (derived from OS, 2012).



Table 4.1: Percentage surface geology and land cover composition of site and study area drainage basins (sources: BGS, 2012 & CORINE, 2010 respectively); 
altitude, catchment size and longest (instream) distance to source of each site and study area (source: OS, 2012).

Surface geology Land cover Site specific factors

Site %  Mud-/silt-/sand-
stone

%  
Peat

%  
Diamicton

% Agricultural % Forests and semi-natural % Wetlands % Waterbodies Altitude (m aod) Catchment size (km2) Longest distance to source 
(km)

1 43.90 56.10 0.00 17.80 1.40 80.80 0.00 294 3.03 2.6

2 42.90 57.10 0.00 16.10 41.20 40.70 2.00 156 40.66 10.9

3 31.70 68.30 0.00 48.90 13.30 37.80 0.00 160 11.89 6.0

4 58.60 41.30 0.20 23.70 35.00 39.70 1.60 137 52.10 11.6

5 0.70 65.10 34.10 0.00 55.00 45.00 0.00 283 3.62 3.4

6 48.00 52.00 0.00 0.00 62.30 25.90 11.80 307 3.09 3.0

7 56.00 44.00 0.00 0.00 66.10 23.80 10.10 292 3.63 3.7

8 0.00 100.00 0.00 0.00 13.20 86.80 0.00 346 3.10 2.4

9 0.00 100.00 0.00 0.00 14.40 85.60 0.00 368 2.04 1.9

10 0.00 100.00 0.00 0.00 25.60 74.40 0.00 401 1.13 1.3

11 20.20 79.80 0.00 1.80 26.00 67.30 4.90 289 9.05 4.7

12 27.80 72.20 0.00 8.20 27.90 59.50 4.30 264 10.32 5.6

13 34.90 65.10 0.00 4.40 40.50 51.70 3.50 271 10.50 5.0

14 8.50 91.40 0.10 0.00 47.50 52.50 0.00 274 7.14 3.8

15 23.70 76.30 0.00 2.20 43.10 52.70 2.00 266 18.48 5.4

16 31.20 68.80 0.00 11.60 28.30 56.10 4.00 253 11.09 6.2

17 31.40 68.60 0.00 4.60 45.40 48.10 1.80 245 20.18 6.4

18 31.70 68.30 0.00 7.00 40.10 50.20 2.60 236 30.73 6.7

Study 
area

59.00 38.60 2.40 22.20 36.30 40.10 1.50 n/a 55.72 n/a
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4.4.4 Background physical chemistry

Monthly grab water samples were taken throughout the study period (Jan 2012 to August 2013) 

from sites where biological sampling was undertaken (7, 9 and 12) to provide an appreciation of

background levels of dissolved nutrients and selected metal ions. Samples were collected using 

125ml aseptic polypropylene containers, immediately refrigerated, filtered (0.45µm) within 

48hrs of collection and refrigerated prior to analysis by ICP (metals) and autoanalyser 

(nutrients). The ICP (Perkin Elmer 5300DV ICP-OES) was calibrated with commercially 

prepared 1000ppm standards and checked by analysing Certified Reference Material (ERM 

CA011a) from the Laboratory of the Government Chemist prior to analysis and used a sample 

and nebuliser flow rate of 1.5 and 750ml/ minute respectively at 1400W. Autoanalyser (Skalar 

SAN++ continuous flow) analysis was undertaken according to Kamphake et al. (1967); USEPA

(1974); Krom (1980); Searle (1984); Kempers & Luft (1988) and APHA (1989) and calibrated 

with commercially prepared standards. Mean, standard deviation, minimum and maximum 

concentrations are shown in Table 4.2 and demonstrate that there were no exceptionally extreme

concentrations at any site throughout the study period.

Table 4.2: Dissolved nutrient and metal concentrations (µg/ l) calculated from monthly samples
at sites where biological sampling occurred.

Nutrients Metals

Site NH4 Σ(NO2 + NO3) NO3 NO2 PO4 Al Ca Fe K Mg Mn Na Si Zn

7 Mean 0.03 0.34 0.33 0.01 0.00 0.17 1.90 0.67 0.35 1.14 0.04 4.93 2.06 0.01

St.dev. 0.02 0.10 0.10 0.00 0.00 0.06 0.41 0.29 0.07 0.24 0.01 0.96 0.36 0.00

Max 0.06 0.54 0.53 0.01 0.01 0.26 2.84 1.19 0.50 1.63 0.05 6.21 2.74 0.01

Min 0.00 0.18 0.17 0.00 0.00 0.07 1.30 0.29 0.25 0.81 0.02 3.35 1.50 0.00

9 Mean 0.04 0.30 0.29 0.01 0.01 0.17 1.20 0.80 0.28 0.86 0.06 4.15 2.24 0.01

St.dev. 0.05 0.15 0.15 0.00 0.01 0.09 0.47 0.54 0.11 0.33 0.02 1.35 1.42 0.00

Max 0.15 0.57 0.57 0.01 0.02 0.33 1.98 1.84 0.43 1.36 0.10 5.59 4.58 0.02

Min 0.00 0.03 0.01 0.00 0.00 0.05 0.56 0.20 0.08 0.39 0.03 1.90 0.57 0.00

12 Mean 0.05 0.40 0.40 0.01 0.00 0.13 3.36 0.55 0.37 1.53 0.05 4.38 2.30 0.00

St.dev. 0.09 0.11 0.11 0.00 0.00 0.07 0.88 0.22 0.10 0.42 0.03 0.83 0.54 0.00

Max 0.39 0.61 0.61 0.01 0.01 0.26 4.59 0.93 0.57 2.11 0.17 5.45 3.05 0.01

Min 0.00 0.22 0.22 0.00 0.00 0.03 2.02 0.26 0.24 0.93 0.01 2.78 1.57 0.00



53

4.5 Reservoir characteristics

Six reservoirs were within the study area (Figure 4.3 A-F). Reservoir C was constructed in the 

late 19th century and construction of D, E and F was finalised in 1907, followed by completion 

of reservoirs A and B in 1934 (Tedd & Hoton, 1994). The dam of reservoir B was the tallest at 

30m, and reservoir C had the smallest dam height of 22m. Reservoir C had the largest maximum

capacity (c. 2.9 million m3) and the smallest was at reservoir D (c. 0.7 million m3) (Tedd & 

Hoton, 1994). Reservoirs C and D had seasonally altering minimum compensation flow 

agreements set in place, whereas reservoir B had a constant annual minimum compensation 

flow (Table 4.3). The compensation flow from reservoir B was typically drawn from the bottom 

of the water column cf. middle of the water column from reservoir D throughout the duration of 

the study. However, compensation flow from reservoir C was typically drawn from the bottom 

of the water column, apart from between 02.05.2013 to 02.07.2013 where water was drawn 

from the middle of the water column for operational reasons  (S. Firth (YW) pers. comm. 3rd 

March 2013 and 8th October 2013). Each reservoir was primarily used for water supply and no 

recreational or hydropower activities were undertaken.

Figure 4.3: Reservoir locations within study area (derived from OS, 2012).
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Table 4.3: Characteristics of reservoirs B-D. 1 – January 1st to October 31st. 2 – November 1st to 
December 31st. Sources: Tedd & Hoton, 1994; S. Firth (YW) pers. comm. 3rd March 2013.

Reservoir Dam construction 

date

Dam height 

(m)

Maximum 

capacity (m3)

Minimum compensation flow 

(m3/s)

A 1934 26 1,731,000 n/a

B 1934 30 1,261,000 0.03

C 1878 22 2,912,000 0.04 1, 0.15 2

D 1907 24 727,000 0.04 1, 0.17 2

E 1907 24 1,111,000 n/a

F 1907 24 932,000 n/a
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5 IMPACT OF REGULATION AND ARTIFICIAL FLOODS 

ON STREAM DISCHARGE AND SELECTED 

PHYSICAL-CHEMICAL PARAMETERS

5.1 Chapter overview

This chapter presents an assessment of the impact of stream regulation and Artificial Floods on 

downstream hydrology and selected physical-chemical parameters. First, the importance of 

understanding these issues is presented followed by an identification of current gaps in research 

and identification of aims of the study. Next, the methods and analytical techniques used to 

undertake the assessment are detailed. This is followed by sections presenting and discussing 

the results, including recommendations for further research.

5.2 Introduction

The flow regime of a stream is fundamental in determining its ecological characteristics (Allan 

& Castillo, 2007). Over a wide range of temporal scales, ecosystems are shaped both directly 

and indirectly by stream flow (Poff et al., 1997) which has been described as a “master variable”

(Power et al., 1995) that limits both the abundance and distribution of lotic species (Allan & 

Castillo, 2007). Electrical conductivity (EC), dissolved oxygen (DO) and pH are important 

stream physical-chemical parameters. Dissolved ions have a direct influence on stream ecology 

(e.g. aluminium can be toxic to fish (Driscoll et al., 1980)). EC reflects general ionic content  

and measures the capacity of ions to carry electrical current in water (Hach Company, 1997) 

demonstrating the potential importance of recording EC in stream systems. DO is a key driver 

of respiration in aquatic ecosystems and is essential for aquatic life (Hach Company, 1997). 

Extreme levels of DO are known to have deleterious effects on aquatic ecology (Edwards, 1964;

Franklin, 2013), justifying its measurement in aquatic ecosystems. pH is a measure of hydrogen 

ion activity in a solution (Hach Company, 1997) and is commonly measured in aquatic 

ecosystems as it has an indirect influence on aquatic ecology by affecting the availability of ions

for uptake by aquatic organisms. For example, aluminium becomes available for fish uptake in 

water with low pH (Driscoll et al., 1980), thus pH is a crucial parameter for measurement in 

aquatic systems.

Anthropogenic activity can have a profound effect on hydrology, EC, DO and pH in stream 

ecosystems (hydrology: see Poff & Zimmerman (2010); EC and DO: e.g. sewerage effluent: 
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Daniel et al. (2002); Gammons et al. (2011); pH: e.g. deforestation: Ågren et al. (2010) and acid

mine drainage: Equeenuddin et al. (2013)) and it is therefore important to understand the impact

of such activity to enable successful management to reduce its impact. Seventy-seven percent of

total stream discharge in the northern hemisphere is either strongly or moderately affected by 

fragmentation of stream channels resulting from reservoir operation, inter basin diversion and 

irrigation (Dynesius and Nilsson, 1994). An understanding of any impact that these activities 

have on downstream hydrology, EC, DO and pH is therefore vital.

The impact of regulation on discharge is generally well understood. Typically, minimum flow 

magnitude is increased (Higgs & Petts, 1988; Gustard, 1989), median flow magnitude is 

reduced (Higgs & Petts, 1988) and high flows are reduced in magnitude and frequency (Higgs 

& Petts, 1988; Gustard, 1989) resulting in an overall reduction in flow variation (Baxter, 1977). 

However, the majority of assessments of the impact of regulation on discharge have been 

conducted using daily values (e.g. daily mean (Gustard, 1989)), resulting in a lack of 

understanding of event based impacts (e.g. during floods). Additionally, impacts have typically 

been reported at long term (e.g. annual (Higgs & Petts, 1988)) time scales, resulting in a lack of 

understanding of seasonal variation of impacts. The impact of regulation on EC, DO and pH is 

less well understood. A reduction in annual and seasonal range (Soja & Wiejaczka (2013) and 

Palmer & O'Keeffe (1990) respectively) and reduction in monthly mean EC (Soja & Wiejaczka, 

2013) has been identified. DO has been studied most comprehensively, but both a reduction 

(Walker, 1985; Palmer & O'Keeffe, 1990; Bunn & Arthington, 2002) and no impact (Crisp, 

1977) due to regulation have been observed. Similarly, variation in the impact of regulation on 

pH has been identified: Soja & Wiejaczka (2013) identified no impact and Palmer & O'Keeffe 

(1990) identified no impact downstream of headwater reservoirs but observed an increase in pH 

downstream of a mid-catchment reservoir. These inferences have typically been based on 

sampling strategies of short duration (i.e. sub-seasonal) (e.g. Crisp, 1977) or low frequency (i.e. 

daily measurements) (e.g. Soja & Wiejaczka, 2013) resulting in a lack of understanding of 

physical-chemical impacts over a variety of time scales (e.g. diurnal, weekly and seasonal) and 

during particular events (e.g. floods).

Contemporary environmental legislation such as the EU Water Framework Directive (EU WFD)

(EC, 2000) requires that regulated streams meet an ecological standard (Good Ecological 

Potential (GEP)) based on abiotic and biotic aspects of stream ecology. Artificial Floods (AFs) 

have been suggested as a potential tool to enable the achievement of GEP through mitigation of 

impacts associated with regulation (Acreman & Ferguson, 2010). Thus, it is important that the 

relationships between AFs and stream EC, DO and pH are understood to allow for an appraisal 

of whether AFs can be used successfully as mitigation.
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Globally, 74 publications have reported ecosystem responses to reservoir outflow modification 

such as AFs; of these, physical-chemical responses have regularly been assessed (Gillespie et 

al., in press (b)). EC has been reported on in seven publications with increases (Foulger & Petts,

1984a; Shannon et al., 2001; Bruno et al., 2010), decreases (Petts et al., 1985; Jakob et al., 2003;

Cánovas et al., 2012) and no change (Cambray et al., 1997) reported as a result of AFs resulting 

in a lack of consensus. DO response to AFs has also varied between publications (increased: 

Shannon et al., 2001; Bednarek & Hart, 2005, Naliato et al., 2009 and decreased: Chung et al., 

2008; Naliato et al., 2009) and pH response to AFs has not been published resulting in a 

requirement for research. In addition to a global perspective of physical-chemical response to 

AFs, a regional, or stream 'type' (i.e. of similar geological, climatological and land cover 

characteristics) based understanding of hydrology-ecosystem response has been recommended 

(Poff & Zimmerman, 2010; Gillespie et al., in press (b)). It is therefore crucial that the 

establishment of understanding in responses of EC, DO and pH to AFs occurs at the site scale to

enable larger regional or 'type' based inferences to be made. The development of general 

relationships between hydrological parameters (e.g. magnitude) and ecosystem response 

variables has been used to identify quantitative relationships and potential threshold levels of 

hydrological parameters that invoke an ecosystem response (e.g. Poff & Zimmerman, 2010; 

Gillespie et al., in press (b)). The assessment of these relationships during AFs with respect to 

any impacts of regulation per se has the potential to reveal whether AFs could be used to 

mitigate against these impacts. To date, this has not been conducted for any regulated stream 

globally.

This chapter reports on a detailed study of hydrology, EC, DO and pH in a catchment in upland 

UK over a two year period. An assessment of the impact of regulation on each of these 

parameters is made through comparison with unregulated conditions and a series of AFs were 

also conducted. Given the gaps in understanding identified above, the aims of the study were to:

(i) identify any impacts of regulation on hydrology at seasonal and event based (i.e. flood) 

scales; (ii) identify any impacts of regulation on EC, DO and pH at diurnal, weekly, seasonal 

and event based (i.e. flood) scales; (iii) identify any impacts of AFs on EC, DO and pH and (iv) 

assess the potential for the use of AFs as a mitigation technique. It was hypothesised that (H1) 

regulation would reduce flood frequency, magnitude and duration and the impact would vary 

temporally, (H2) regulation would impact downstream physical chemistry and these impacts 

would vary temporally, and (H3) AFs would impact downstream physical chemistry thereby 

demonstrating control of downstream physical chemistry and potential for use as mitigation.
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5.3 Methods

5.3.1 Discharge measurement

Discharge was measured at six sites (regulated sites: 6 and 11, unregulated: 1, 5, 8 and 10) using

three methods: (i) discharge data (recording frequency: 15 minutes) were provided by the 

reservoir operator (YW) for site 6 (YW recorded discharge calibrated water level data at a weir 

approximately 20m upstream of site 6, directly downstream of reservoir C). (ii) SEBA 

Hydrometrie MDS Dipper-3(T3) vented water level data loggers (accuracy ±1mm) were 

installed at sites 1, 5, 8, 10 and 11. Data loggers at sites 1, 5, 8 and 10 were mounted in 

perforated high-density polyethylene piping (diameter: 3cm) and secured in stream locations 

where flow was typically well mixed and non-turbulent (Figure 5.1). (iii) A further SEBA 

Hydrometrie MDS Dipper-3(T3) vented water level data logger was installed in a stilling basin 

that had previously been used by YW to record discharge via a float operated 'Palatine' recorder.

The basin was fed via a pipe located ~5m upstream of a weir located ~20m upstream of site 11. 

Data loggers were calibrated prior to installation and set to record at 15 minute intervals. Once 

deployed, loggers were inspected for problems and data downloaded approximately monthly. 

Logger internal clocks were reset at each download interval to ensure between-logger temporal 

consistency.

To calculate discharge at sites 1, 5, 8 and 10, water level-discharge rating curves were 

constructed. The 'dry-salt' (Hudson & Fraser, 2005) method was used to gauge discharge as the 

velocity-area method (Gore, 1996) was unsuitable due to high bed roughness and the 'slug-

injection' method (Moore, 2005) required more equipment to be transported to site (which was 

typically over rough terrain). Discharge measurements were made at each site at a range of 

flows. Time series discharge estimates were then calculated from the water level time series 

using coefficients obtained by regression analysis of water level-discharge rating curves. Water 

level-discharge rating curves and water levels recorded during the period of study for sites 1, 5, 

8 and 10 are detailed in Appendix B. Coefficients were obtained from a water level-discharge 

rating curve constructed from a rating table for water level and discharge at site 11 (source: YW,

n.d.). These coefficients were then used to calculate discharge from logged water level. The 

water level-discharge rating curve and regression coefficients calculated for site 11 are detailed 

in Appendix B.
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5.3.2 Precipitation monitoring

A tipping bucket rain gauge (Global Water RG200 20cm) was positioned approximately 50m 

north of site 11 on relatively flat, exposed ground, free from overhead obstructions. During 

installation, the gauge was bolted to a secure platform and the top of the gauge made horizontal 

with a spirit level. The gauge was fitted with a Hobo event datalogger which logged each 

tipping event. Prior to installation, laboratory calibration revealed that each tip was triggered at 

4.9ml. Data were downloaded at approximately monthly intervals, converted to ml/cm2 and 

internal logger clock reset to reduce drift.

5.3.3 Sondes

EC (specific conductivity at 25oC), pH and DO (% saturation) were recorded at 15 minute 

intervals using a 6560 conductivity probe (accuracy: ±0.5% of reading + 1µS/cm (YSI, 2005)), 

a 6-series pH probe (accuracy: ±0.2 units (YSI, 2011)) and a 6150 ROX ® Optical Dissolved 

Oxygen 6-series probe (accuracy: ±1% of reading or 1% air saturation (whichever is greatest) 

(YSI, 2008)) respectively. Probes were installed on a YSI 6600 V2-2 extended deployment 

Figure 5.1: Water level data logger secured to bank at site 8.
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sonde fitted with a protective shield and automated wiping brush to reduce fouling at sites 6, 10 

and 11. Each sonde was located in a well-mixed location of the stream to enable comparison 

between sites. Data were transmitted using GRPS systems to a dedicated website maintained by 

Meteor Communications (Europe) Limited.

Two sondes were rotated at each site at approximately monthly intervals. Due to the extended 

deployment of each sonde, quality control of data was important to ensure comparability 

between sites. Prior to each deployment, each probe was calibrated by the EA against known 

standards. Once deployed, data were checked to ensure sound functioning. In the event that a 

probe had failed, a replacement sonde was deployed and installed by the EA typically within 1-

week. To estimate instrument drift during deployment, prior to removal of each sonde, 

measurement of each parameter was made using a Hach HQ40d portable multi-parameter meter.

Each probe installed on the HQ40d was calibrated prior to use against known standards using 

manufacturer protocols (Hach company, 2013a, b & c (EC, DO and pH respectively)). Once 

complete, sondes were swapped and consistency of position ensured.

5.3.4 Sites

To assess whether differences between unregulated and regulated discharge regimes could be 

identified, data from unregulated sites 1, 5 and 8 and regulated sites 6 and 11 were selected for 

analysis as selection of these sites maximised the number of datapoints available. To assess 

whether differences in unregulated and regulated physical-chemical regimes could be identified,

sonde datasets from sites 10 (unregulated), 6 and 11 (regulated) were analysed.

5.3.5 Time scales

Hydrology

Discharge data were selected for analysis for the period 30 th July 2012 to 19th August 2013 

inclusive. These data were prior to the introduction of planned AFs and were therefore 

representative of unaltered, regulated conditions (for sites 6 and 11). Due to datalogger 

malfunction, precipitation data were only available for the period 1st December 2012 to 3rd July 

2013. However, precipitation events during this period were frequent and of varying magnitude 

and duration, thus data were deemed suitable for testing for differences between regulated and 

unregulated discharge response to precipitation.
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Physical chemistry

To assess the impact of regulation on downstream physical chemistry, EC and pH data were 

selected for analysis for the period 5th April 2012 to 19th August 2013 inclusive and DO data 

were selected for the period 29th November 2012 to 19th August 2013 inclusive (DO data prior to

the 29th November 2012 had been recorded using an alternative probe type to that described 

above and instrument drift was high and data quality was deemed too poor for use). These data 

were prior to the introduction of planned AFs and are therefore representative of unaltered, 

regulated conditions (for sites 6 and 11). These sonde data were combined with discharge data 

from 30th July 2012 to 19th August 2013 inclusive for assessment of physical-chemical dynamics

during floods.

Artificial Floods

AFs were carried out by YW on the 20th August, 19th September , 3rd October and 5th November 

2013 (AFs 1-4 respectively) from reservoir C. The characteristics of each AF represented a 

balance between the practical restrictions placed on YW by the EA, local stakeholders, water 

resource availability and the capability of reservoir infrastructure to implement a flood. For 

these reasons, each AF differed in characteristics. However, during all AFs, water was drawn 

from the bottom of the reservoir water column.

To assess the impact of AFs on stream hydrology and physical chemistry, discharge and sonde 

data were collected at 15 minute intervals on each AF day from sites 6 and 11. Site 6 was 

chosen to represent the impacted hydrological and physical-chemical regime as it was directly 

downstream of reservoir C. Site 11 was designated a control site.

5.4 Data analysis

5.4.1 Quality control procedures

Hydrology

First, data were removed where problems had been identified in the field (e.g. logger lifted out 

of  protective piping by animal). Data were then removed where suspected of being unreliable 

due to probe failure; these periods were typically characterised either by a sharp change in 

discharge over short periods of time (i.e. doubled or halved in 15 minutes) or by stochastic 

records that were assumed not to be realistic (see Appendix C for details of removed data). To 
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ensure comparability of datasets between each site, where data were removed during quality 

control from one site, data for the corresponding time period at all other sites were also 

removed. This process was repeated prior to analysis of discharge-rainfall relationships.

Electrical conductivity, dissolved oxygen and pH

Sonde data were combined into a single spreadsheet containing all data at 15 minute intervals. 

Data quality was first ensured using a similar approach to Jones & Graziano (2013) whereby 

removal of data occurred if any of the following standards were met (which were assumed to 

indicate probe malfunction): EC: < 10 or > 300 µS/cm; doubled or halved in a 15 minute period;

pH: < 3 or > 8; doubled or halved in a 15 minute period ; DO: < 20 or > 150 % saturation; 

doubled or halved in a 15 minute period. In addition, data were both visually assessed and 

cross-checked against calibration readings for drift and probe failure/ malfunction and removed 

if detected; during this process a conservative approach was taken so that if there was any doubt

in the quality of data, they were removed (see Appendix C for details of all removed data). 

Some data were lost due to telemetry failure and a detailed record of these can also be found in 

Appendix C. To ensure comparability of datasets between each site, where data were removed 

during quality control from one site, data for the corresponding time period at all other sites 

were also removed.

5.4.2 Impact of regulation

Calculation of indices

To assess whether differences in hydrological regimes between unregulated and regulated site 

types could be identified, the following hydrological indices were extracted from each dataset: 

(i) flood frequency (number of floods per 28 day period); (ii) flood duration; (iii) flood 

magnitude (percentage increase from minimum to maximum flood discharge (Equation 5.1a  x 

and y respectively)); (iv) rate of change (rising limb); (v) rate of change (falling limb). Rate of 

change (ROC) was calculated according to Equation 5.1b where Mmax and Mmin were maximum 

and minimum flood magnitude respectively and ty and tx were time at flood maximum discharge 

and flood start time (rising limb ROC) and flood end time and time at flood maximum discharge

(falling limb ROC) respectively. This calculation ensured that ROC was comparable between 

floods and sites. These indices were chosen in accordance with Poff et al. (1997), where flood 

frequency, duration, magnitude and rate of change were identified as crucial elements of floods 

for stream ecological integrity.
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Equation 5.1a

 Equation 5.1b

Floods were defined as periods of at least 1 hour where Q25 discharge was exceeded. Floods 

were deemed to have ended when discharge fell below Q25. Q25 was chosen to represent floods 

as it appeared to encapsulate flood events in hydrographs for all sites (Figure 5.2 black/ grey 

lines) and could thus be used to characterise the general nature of floods at each site.

To assess whether unregulated and regulated hydrological regimes differed temporally, indices 

as described above were calculated for autumn (1st September 2012 00:00:00 to 30th November 

2012 23:59:59), winter (1st December 2012 00:00:00 to 28th February 2013 23:59:59), spring (1st

March 2013 00:00:00 to 31st May 2013 23:59:59) and summer (1st June 2013 00:00:00 to 19th 

August 2013 23:59:59). In addition, a priori visualisation of discharge data revealed a period of 

relatively high flood frequency (Figure 5.6), Fh, (1st September 2012 00:00:00 to 28th February 

2013 23:59:59) and a period of relatively low flood frequency, Fl, (1st March 2013 00:00:00 to 

19th August 2013 23:59:59). Hydrological indices were also calculated for these periods.

Electrical conductivity, dissolved oxygen and pH

To assess whether differences in physical-chemical regimes between unregulated and regulated 

sites over varying time scales and during flood events could be identified, mean and range 

indices were extracted from each dataset for 1- and 7-day periods and for each flood as 

identified using the method detailed previously. Sufficient data to undertake a full seasonal 

assessment of physical-chemical dynamics were not available due to data removal during 

quality control resulting in several periods of missing data (Figures 5.3-5.5) However, data were

available to compare periods Fh and Fl and thus 1- and 7-day indices were calculated for these 

periods.

Statistical testing

Hydrology and electrical conductivity, dissolved oxygen and pH

Hydrological and physical-chemical indices were pooled by site type (unregulated or regulated) 

and mean and standard deviation calculated. Indices were then modelled as response variables 

ROC=
M max−M min

t y−t x

Percent change=
y− x

x
X 100
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using either GLMM or GAMM (Wood, 2011) (depending on whether a linear or non-linear 

temporal response in indices was evident (assessed through the significance of temporal 

smoother terms)) as a function of site type. Where models were improved (based on Akaike 

Information Criterion (AIC)), either time of peak discharge during flood (for hydrology 

(excluding flood frequency) and physical chemistry during hydrological indices) or day or week

number (1:n where n is total number of days/ weeks) (for 1- and 7-day physical-chemical 

indices) were also included as explanatory variables. Since indices were extracted from time 

series, data from each site were classed as repeated measures and thus mixed modelling was 

appropriate (Zuur et al., 2009). Sites were nested within site type and appropriate error 

distribution, link functions and correlation structures were specified to ensure approximate 

normal distribution, homogeneity and independence of residuals. Finally, significance of site 

type was assessed using t-statistics and associated p-values.

Discharge-precipitation relationship

Correlation (Spearman's rank) between precipitation and discharge at each site was carried out 

to assess whether differences in precipitation-discharge relationships could be identified 

between unregulated and regulated site types. The strength of the correlation was then assessed 

through interpretation of Spearman's rank rho and associated p-values. Prior to analysis, 

precipitation data were binned to 15 minute periods to ensure synchronicity with discharge.

5.4.3 Impact of Artificial Floods

Hydrology

To assess the impact of each AF on stream hydrology, hydrographs from sites 6 and 11 during 

each AF were plotted. Further, magnitude, duration, and ROC indices for each AF were 

extracted according to the method stated above. Additionally, the maximum discharge of each 

AF was calculated.

Electrical conductivity, dissolved oxygen and pH

To assess the impact of each AF on EC, DO and pH, a modified paired Before-After-Control-

Impact (BACIP) (Stewart-Oaten et al., 1986; Smith, 2002) analysis was undertaken which 

replaced 'After' with 'During' (e.g. Dinger & Marks, 2007) to allow the during-flood impact to 

be statistically assessed through interrogation of a modelled interaction term (Smith, 2002). For 

each flood, response variables (raw sonde physical chemistry data) were modelled using either 
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GLMM or GAMM (Wood, 2011) as a function of time (fitted as a smoother where non-linear 

response in parameters were observed through time), site (two levels: site 6 (impact); site 11 

(control)) and period (two levels: before; during) and the interaction between these two factors 

(site:period). Period: before was defined as all data from 00:00:00 until the start of each flood 

and period: during was defined by the start and end times of each flood. As data were collected 

through time at each site, site was treated as a random effect (Zuur et al., 2009). Appropriate 

error distributions, link functions and correlation structures were specified to ensure 

approximate normal distribution, homogeneity and independence of residuals. Finally, 

significance of the site:period term was assessed using t-statistics and associated p-values.

5.4.4 Correlation between hydrological and physical-chemical 

indices

To gain an understanding of general correlation between hydrological and physical-chemical 

indices for unregulated and regulated site types during a period of normal reservoir operation 

(i.e. prior to the implementation of AFs), first, plots of hydrological and physical-chemical 

indices were created for unregulated and regulated site types. Second, an analysis of covariance 

(ANCOVA) between site types was undertaken to assess whether statistically significant 

differences in correlations could be identified. ANCOVA was undertaken for each relationship 

using Generalized Linear Modelling (GLM) with physical-chemical indices as response 

variables and hydrological indices and site type as fixed effects (Rutherford, 2012). Appropriate 

error distributions, link functions and correlation structures were specified to ensure 

approximate normal distribution, homogeneity and independence of residuals. Finally 

significance of the site type term was assessed using t-values and associated p-values.

Hydrology-physical chemistry response relationships were then compared between pre-AF 

flood and AF periods through plotting. Due to the low number of AFs carried out, statistical 

analysis between the two periods was not possible.

Statistical tests were deemed significant at p < 0.05 and all plotting and analysis was undertaken

using R v 2.15.3 (2013).
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5.5 Results

5.5.1 Impact of regulation

Discharge regime

Discharge at all sites was generally highest from late August 2012 to late February 2013. From 

March to August 2013, frequent flooding was observed at sites 1,5 and 8. Site 6 also 

experienced several high discharge events, whereas site 11 experienced little variation in 

discharge (Figure 5.2).

For all discharge data, mean flood frequency and flood magnitude was highest for unregulated 

sites, whereas mean flood duration and rising and falling limb ROC was highest for regulated 

sites. Statistical testing revealed significantly lower flood frequency, and higher ROC (rising 

and falling limbs) in regulated cf. unregulated sites (Table 5.1). Differences between seasons 

were apparent: no statistically significant differences between site types were identified during 

autumn and winter, but significantly lower flood frequency, and ROC (rising and falling limbs) 

in regulated sites during spring and summer was observed. Additionally, during summer, 

regulated sites had significantly lower flood duration (Tables 5.1). Assessment of periods Fh and

Fl revealed significantly higher ROC (falling limb) and significantly lower flood frequency and 

higher ROC (rising and falling limbs) in regulated sites respectively (Table 5.1).

Graphically, precipitation and discharge appeared generally aligned for all sites apart from site 

11 (Figure 5.2). Significant positive correlations were observed between precipitation and 

discharge for all sites, but relationships were stronger for unregulated sites (Spearman's rho > 

0.2) compared to regulated sites 6 and 11 (Spearman's rho 0.16 and 0.13 respectively) (Table

5.2).
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Figure 5.2: Discharge (left hand y-axis) for sites 1, 5, 6, 8 and 11 (A-E respectively) from 20th 
July 2012 to 19th August 2013. Discharge > Q25 is shaded in grey (unregulated) and black 
(regulated). Precipitation is shown in light red from December 2012 to June 2013 (right hand y-
axis).



Table 5.1: Mean, standard deviation and test statistics for hydrological indices for unregulated and regulated sites calculated for various time periods. Model type is also delineated.

Flood frequency Flood duration (days) Flood magnitude (% increase) ROC (rising limb) (m3/s/day) ROC (falling limb) (m3/s/day)

Mean (St. dev.) T-value

Model type

Mean (St. dev.) T-value

Model type

Mean (St. dev.) T-value

Model type

Mean (St. dev.) T-value

Model type

Mean (St. dev.) T-value

Model type

ALL DATA

Unregulated 4.55 (2.66) -2.29 * 1.45 (1.48) 1.56 531.00 (862.93) -0.47 3.00 (5.98) -5.24 ** 0.68 (1.33) 2.34 *

Regulated 3.18 (3.99) GLMM 2.31 (5.78) GAMM 299.00 (438.86) GAMM 7.13 (19.50) GAMM 3.95 (14.96) GLMM

AUTUMN

Unregulated 5.92 (1.72) -1.86 1.51 (1.31) 0.69 505.03 (751.78) 1.51 2.18 (3.91) -3.09 0.48 (0.45) 1.57

Regulated 4.13 (2.58) GLMM 1.91 (2.51) GAMM 323.67 (466.53) GAMM 2.55 (4.64) GLMM 0.79 (0.96) GAMM

WINTER

Unregulated 3.17 (1.70) 1.49 2.72 (2.19) -0.10 610.48 (748.98) -1.36 2.02 (2.38) 0.68 0.37 (0.31) -0.63

Regulated 5.13 (4.45) GLMM 2.59 (7.45) GLMM 125.78 (279.55) GAMM 4.06 (18.53) GLMM 1.68 (8.41) GAMM

SPRING

Unregulated 3.42 (2.15) -3.35 ** 0.78 (0.53) 1.59 175.82 (368.10) 0.45 0.90 (1.57) -6.21 ** 0.34 (0.33) -9.32 **

Regulated 0.25 (0.46) GLMM 0.17 (0.20) GLMM 332.61 (152.40) GAMM 52.83 (64.55) GAMM 25.71 (33.27) GAMM

SUMMER

Unregulated 2.22 (1.39) -2.23 ** 0.84 (1.32) 2.33 * 586.43 (1161.05) -0.32 4.30 (8.27) 4.56 ** 1.68 (3.38) 3.66 **

Regulated 0.50 (0.84) GLMM 0.17 (0.12) GAMM 351.96 (25.83) GAMM 43.06 (36.67) GAMM 16.87 (22.32) GLMM

Fh

Unregulated 3.17 (3.49) 0.18 2.03 (2.77) -0.28 639.80 (907.02) -0.60 3.32 (5.96) -1.77 0.59 (0.61) 2.13 *

Regulated 3.00 (4.10) GLMM 2.25 (5.56) GLMM 306.35 (502.08) GLMM 3.84 (12.40) GLMM 2.65 (12.78) GLMM

Fl

Unregulated 1.45 (1.99) -3.08 ** 0.80 (0.90) -1.94 331.35 (788.29) -0.32 2.21 (5.47) -2.23 * 0.82 (2.12) 7.29 **

Regulated 0.18 (0.48) GLMM 0.17 (0.13) GAMM 344.22 (79.07) GAMM 46.97 (41.75) GLMM 20.41 (23.44) GLMM

*p < 0.05, **p < 0.01.
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Table 5.2: Spearman's rank rho and significance for precipitation and discharge correlations at 
sites 1, 2, 6, 8 and 11.

Site Type Rho

1 Unregulated 0.20 *

2 Unregulated 0.21 *

6 Regulated 0.16 *

8 Unregulated 0.22 *

11 Regulated 0.13 *

*p < 0.05, **p < 0.01.

Electrical Conductivity

Mean EC was similar at all sites throughout the study period, whereas diurnal EC range was 

similar at all sites during August – December 2012 but more variable during 2013, particularly 

at site 6 (Figure 5.3). For the entire study and Fh and Fl periods, mean EC was highest for 

regulated sites at both 1- and 7-day time scales and EC range was lowest for regulated sites at 

both 1- and 7-day time scales, but these differences were not statistically significant (Table 5.3). 

EC range during floods was highest for regulated sites and mean flood EC was lower in 

regulated sites; the latter being statistically significant (Table 5.4).

Dissolved oxygen

Daily mean DO was similar at all sites and generally between 90 and 100% throughout the 

study period. Daily DO range at all sites was also similar, but generally increased from January 

to August 2013 (Figure 5.4). Mean DO was highest for regulated sites at both 1- and 7-day time 

scales for the entire study, Fh and Fl periods, but these differences were not statistically 

significant. Conversely, DO range was lowest for regulated sites at both 1- and 7-day time 

scales and for all periods. These differences were statistically significant for all periods and time

scales, apart from during Fh at the 7-day time scale (Table 5.3). During flooding, DO was 

significantly higher at regulated sites, but there was no significant difference in range between 

site types (Table 5.4).

pH

The temporal trend of daily mean pH at regulated sites was similar, but pH at site 10 

(unregulated) appeared more variable. This variability was also reflected in daily pH range 
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which was generally higher at site 10 (Figure 5.5). Mean pH was highest and range was lowest 

in regulated sites at both 1- and 7-day time scales for all periods, but the difference in mean pH 

was not significant. The difference in 1-day pH range was statistically significant for the entire 

study and Fl periods, and at a 7-day time scale only during Fh (Table 5.3). During floods, mean 

pH was significantly higher at regulated sites and range was lower (but not significantly) for 

regulated sites (Table 5.4).



Figure 5.3: Electrical conductivity daily mean and range (panels A and B respectively) at sites 6, 10 and 11 (red, black
and blue respectively) for the study period.



Figure 5.4: Dissolved oxygen daily mean and range (panels A and B respectively) at sites 6, 10 and 11 (red, black and 
blue respectively) for the study period.



Figure 5.5: pH daily mean and range (panels A and B respectively) at sites 6, 10 and 11 (red, black and blue respectively)
for the study period.



Table 5.3: Mean, standard deviation and test statistics for 1- and 7-day EC (µS/cm), DO (%) and pH indices for unregulated and regulated site types for entire study, Fh and Fl periods. Model type is 
also delineated.

Entire study Fh Fl

Mean Range Mean Range Mean Range

Mean (St. dev.) T-value

Model type

Mean (St. dev.) T-value

Model type

Mean (St. dev.) T-value

Model type

Mean (St. dev.) T-value

Model type

Mean (St. dev.) T-value

Model type

Mean (St. dev.) T-value

Model type

1-day

EC

Unregulated 43.75 (14.01) 1.64 5.06 (4.31) -0.44 35.93 (11.78) 0.93 4.50 (4.21) -0.63 54.69 (8.46) 0.76 5.84 (4.34) -0.53

Regulated 47.68 (13.21) GAMM 4.14 (7.10) GAMM 39.18 (7.96) GAMM 3.63 (6.77) GAMM 59.57 (9.34) GAMM 4.86 (7.49) GAMM

DO

Unregulated 95.59 (2.03) 0.90 7.03 (5.15) -2.09 ** 96.62 (0.92) 0.19 2.60 (1.09) -6.06 ** 95.10 (2.22) 0.61 9.13 (4.99) -2.36 *

Regulated 96.45 (1.74) GAMM 4.94 (3.02) GAMM 97.09 (1.73) GAMM 1.46 (0.85) GAMM 96.14 (1.66) GAMM 6.59 (2.14) GAMM

pH

Unregulated 5.53 (1.03) -0.63 0.55 (0.49) -3.29 ** 5.14 (0.88) 1.11 0.51 (0.47) -1.43 6.18 (0.93) 0.09 0.59 (0.51) -3.11 **

Regulated 5.79 (0.67) GAMM 0.27 (0.26) GAMM 5.56 (0.43) GAMM 0.30 (0.32) GAMM 6.26 (0.61) 0.61 0.22 (0.16) GLMM

7-day

EC

Unregulated 43.57 (13.90) 1.41 14.50 (7.90) -0.20 36.31 (12.31) -0.02 14.09 (8.09) -0.43 53.55 (9.00) 0.80 15.06 (7.86) -0.12

Regulated 47.31 (13.02) GAMM 13.07 (15.18) GAMM 38.63 (6.98) GAMM 12.32 (15.55) GAMM 59.24 (9.44) GAMM 14.09 (14.84) GAMM

DO

Unregulated 95.86 (1.92) 0.55 10.42 (5.29) -3.05 ** 96.56 (0.61) -1.85 5.36 (1.02) 1.78 95.63 (2.15) 0.36 12.11 (5.05) 2.36 *

Regulated 96.38 (1.57) GAMM 7.28 (3.29) GAMM 97.11 (1.69) GAMM 4.05 (1.35) GLMM 96.15 (1.47) GAMM 8.35 (3.04) GAMM

pH

Unregulated 5.52 (0.92) 0.61 1.67 (0.82) 1.86 5.07 (0.74) 1.35 1.66 (0.63) -2.21 * 6.16 (0.82) 0.11 1.59 (0.99) 1.89

Regulated 5.80 (0.65) GAMM 0.67 (0.42) GAMM 5.52 (0.41) GLMM 0.80 (0.47) GLMM 6.26 (0.62) GLMM 0.47 (0.27) GLMM

*p < 0.05, **p < 0.01.
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Table 5.4: Mean, standard deviation and test statistics for EC (µS/cm), DO (%) and pH indices for 
unregulated and regulated site types during floods. Model type is also delineated.

Flood mean Flood Range

Mean (St. dev.) T-value

Model type

Mean (St. dev.) T-value

Model type

EC

Unregulated 41.17 (16.29) 2.85 * 6.38 (5.94) 1.36

Regulated 38.26 (7.68) GAMM 8.92 (15.61) GLMM

DO

Unregulated 95.83 (1.09) 2.57 * 2.74 (1.95) -0.16

Regulated 97.16 (1.32) GAMM 2.92 (2.35) GAMM

pH

Unregulated 4.59 (0.64) 9.08 * 0.81 (0.80) -0.76

Regulated 5.36 (0.34) GAMM 0.56 (0.48) GAMM

*p < 0.05, **p < 0.01.

5.5.2 Impact of Artificial Floods

Hydrology

The magnitudes of AFs 1 and 2 were below the threshold required to produce flood statistics 

using the method described in section 5.3. The following statistics are therefore provided from 

graphical analysis of each AF and are not comparable with pre-AF flood statistics. AF 1 was the

longest AF (0.2 days) – AFs 2-4 were all approximately 0.1 days in length. Each AF was 

progressively larger in maximum discharge, but due to the increased compensation flow 

released from reservoir C between AFs 2 and 3, AF 2 had the largest % increase in magnitude. 

Each flood had a progressively larger rising and falling ROC (Table 5.5; Figure 5.6).

Physical chemistry

The largest range in EC was observed during AFs 3 and 4 (6 µS/cm), whereas EC range was 

only 1 µS/cm during AF 1 (Table 5.6). Mean EC decreased at site 6 during all AFs, but 

significant impacts were only observed for AFs 1, 2 and 4 (Table 5.7; Figure 5.7). The largest 

range in DO was observed during AF 1 (6.8 % saturation), whereas the lowest DO range was 

seen during AF 3 (1.5 % saturation) (Table 5.6). Mean DO response to each AF varied: 

significant impacts were only observed during AFs 1 and 2 (Table 5.7) where clear reductions in

DO occurred at site 6 when compared to site 11 (Figure 5.8). An apparent reduction in DO 
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during AFs 3 and 4 was not significant likely due to variance in DO at site 11 and pre AF at site 

6 being observed (Figure 5.8). The largest range in pH was observed during AF 2 (0.41), 

whereas the smallest range was observed during AF 3 (0.06) (Table 5.6). pH was significantly 

impacted by each AF, reflected by the reduction in pH during each flood at site 6 (Table 5.7; 

Figure 5.9).

Table 5.5: hydrological indices for Artificial Floods (AFs) – note, these statistics were extracted
from graphical analysis of each AF.

AF Date Duration 

(days)

Magnitude (% 

increase)

ROC (rising 

limb) 

(m3/s/day)

ROC (falling

limb) 

(m3/s/day)

Max. 

discharge 

(m3/s)

1 20/08/13 0.2 287.1 1.61 1.07 0.17

2 19/09/13 0.11 424.39 8.39 3.15 0.31

3 03/10/13 0.12 294.02 9.95 7.13 0.67

4 05/11/13 0.13 423.85 11.39 13.24 0.99

Table 5.6: EC, DO and pH range during each Artificial Flood (AF) – note, these statistics were 
extracted from graphical analysis of each AF.

AF EC range (µS/cm) DO range

(% saturation)

pH range

(pH units)

1 1 6.8 0.18

2 4 3.1 0.41

3 6 1.5 0.06

4 6 2.5 0.31



Figure 5.6: Hydrographs at site 6 during Artificial Floods (AFs) 1-4 (panels A-D respectively) (full lines). Dashed lines are synchronous hydrographs at site 11. 
Note: an overspill event occurred after AF 3.



Figure 5.7: Electrical conductivity at sites 6 and 11 (red and blue lines respectively) on the day of Artificial Floods (AFs) 1-4 (panels A-D respectively). Black lines 
are hydrographs at site 6.



Figure 5.8: Dissolved oxygen at sites 6 and 11 (red and blue lines respectively) on the day of Artificial Floods (AFs) 1-4 (panels A-D respectively). Black lines are 
hydrographs at site 6.



Figure 5.9: pH at sites 6 and 11 (red and blue lines respectively) on the day of Artificial Floods (AFs) 1-4 (panels A-D respectively). Black lines are hydrographs at 
site 6.



Table 5.7: Mean (& St. dev.) and test statistics for electrical conductivity (EC) (µS/cm), dissolved oxygen (DO) (%) and pH indices for impact (site 6) and control 
(site 11) sites before and during AFs 1-4. Model type is also delineated.

AF 1 AF 2 AF 3 AF 4

Before During Before During Before During Before During

EC

Impact 53.90 (0.32) 52.63 (0.50) 57.90 (0.74) 52.91 (1.30) 57.90 (2.18) 57.30 (1.83) 59.76 (0.99) 58.00 (1.63)

Control 74.50 (0.53) 75.00 (0.00) 72.00 (0.00) 72.00 (0.00) 71.00 (0.00) 71.00 (0.00) 56.29 (0.46) 56.00 (0.00)

Test statistic 13.53 ** GAMM 15.91 ** GAMM 0.85 GLMM 3.59 ** GLMM

DO

Impact 103.45 (1.39) 103.93 (1.80) 97.30 (0.30) 96.97 (0.94) 96.25 (0.18) 97.23 (0.46) 95.83 (0.13) 96.09 (0.89)

Control 93.92 (1.02) 98.65 (0.66) 91.99 (0.24) 94.07 (0.33) 93.80 (0.12) 94.71 (0.22) 92.19 (0.18) 92.44 (0.13)

Test statistic 13.83 ** GAMM 2.41 ** GAMM -1.02 GAMM -0.06 GAMM

pH

Impact 5.75 (0.01) 5.62 (0.05) 6.06 (0.04) 5.76 (0.15) 5.61 (0.02) 5.58 (0.02) 4.99 (0.02) 4.87 (0.13)

Control 6.91 (0.02) 7.02 (0.02) 6.91 (0.01) 6.97 (0.01) 6.65 (0.02) 6.72 (0.01) 5.67 (0.01) 5.69 (0.01)

Test statistic 25.74 ** GAMM 12.42 ** GAMM 10.73 ** GAMM 6.58 ** GLMM

*p < 0.05, **p < 0.01.
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5.5.3 General correlation between hydrological and physical-

chemical indices

The general correlation between all hydrological indices and mean DO and pH and pH range 

prior to AFs significantly differed between unregulated and regulated site types. No significant 

differences in correlations between hydrological indices and mean EC and range of EC and DO 

were identified (Table 5.8). Graphical representation of correlations (Figures 5.10 - 5.13) 

revealed that mean DO was generally higher for regulated sites for all hydrological indices, 

apart from at high rates of change in the falling limb of floods. Mean pH was typically higher 

for regulated sites at all levels of all hydrological indices. Conversely, pH range was generally 

lower for regulated sites for all hydrological indices apart from magnitude, where at high flood 

magnitudes (> ~ 2000 % increase), this relationship reversed.

Statistical comparison of the correlation between hydrological and physical-chemical indices 

between normal reservoir operation and AF periods was not possible due to the small number of

AFs implemented. The magnitudes of AFs 1 and 2 were below the threshold required to produce

flood statistics using the method described in section 5.3, but indices for AFs 3 and 4 were 

produced and these datapoints were plotted on Figures 5.10 - 5.13. Visual assessment revealed 

that mean and range physical-chemical indices were within the range of indices extracted for 

pre-AF floods, but whilst both magnitude and duration indices of AFs were comparable with 

pre-AF floods, both AF3 and 4 had relatively large ROC (rising and falling limb) indices 

compared to pre-AF hydrological indices.
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Table 5.8: ANCOVA test results (t-values and significance) for correlation between hydrological
and physical-chemical indices between regulated and unregulated stream types.

EC DO pH

Mean Range Mean Range Mean Range

Magnitude -0.75 -1.05 2.95 ** -0.27 9.14 ** -2.02 *

Duration -1.08 -1.22 2.86 ** 1.31 8.92 ** 4.1 **

ROC rising -0.41 -0.43 3.11 ** -0.20 2.07 * 3.19 **

ROC falling 0.21 -0.09 2.91 ** -0.41 2.05 * 2.61 *

*p < 0.05, **p < 0.01.



Figure 5.10: Correlation between flood magnitude and physical-chemical mean and range indices (left and right panels respectively) for unregulated site 10 (blue) 
and regulated sites 6 and 11 (red) during floods prior to Artificial Floods (AFs) and site 6 during AFs (black crosses). Linear regression trend lines for each 
correlation are displayed where possible.



Figure 5.11: Correlation between flood duration and physical-chemical mean and range indices (left and right panels respectively) for unregulated site 10 (blue) and
regulated sites 6 and 11 (red) during floods prior to Artificial Floods (AFs) and site 6 during AFs (black crosses). Linear regression trend lines for each correlation 
are displayed where possible.



Figure 5.12: Correlation between flood ROC rising and physical-chemical mean and range indices (left and right panels respectively) for unregulated site 10 (blue)
and regulated sites 6 and 11 (red) during floods prior to Artificial Floods (AFs) and site 6 during AFs (black crosses). Linear regression trend lines for each 
correlation are displayed where possible.



Figure 5.13: Correlation between flood ROC falling and physical-chemical mean and range indices (left and right panels respectively) for unregulated site 10 
(blue) and regulated sites 6 and 11 (red) during floods prior to Artificial Floods (AFs) and site 6 during AFs (black crosses). Linear regression trend lines for each 
correlation are displayed where possible.
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5.6 Discussion

This chapter reported on a detailed study of hydrology, EC, DO and pH in a catchment in 

upland UK over a two year period. An assessment of the impact of regulation on each of these 

parameters was undertaken through comparison with unregulated conditions at a variety of 

scales. A series of AFs were conducted which revealed significant impacts to EC, DO and pH. 

Finally, a comparison of the correlation between hydrological indices and physical-chemical 

responses during AFs was carried out. The following is a discussion of each of these themes in 

turn.

5.6.1 Impact of regulation

Hydrology

Marked differences in regulated and unregulated flow regimes have been reported globally. 

Typically, magnitude of minimum flows is increased (Higgs & Petts, 1988; Gustard, 1989), 

median flow magnitude is reduced (Higgs & Petts, 1988) and high flows are reduced in 

magnitude and frequency (Higgs & Petts, 1988; Gustard, 1989) resulting in an overall reduction

in flow variation (Baxter, 1977). In agreement with these findings, this study identified 

significant differences between regulated and unregulated flow regimes. This impact was further

evidenced by identification of significant positive correlations between precipitation and 

discharge for all sites, but a stronger correlation between precipitation and discharge for 

unregulated sites was identified. This reduction in the strength of correlation between 

precipitation rate and discharge in regulated streams is likely to be due to the attenuation of 

water within the reservoir if storage space is available (Petts, 1990) prior to overspilling.

It was hypothesised that temporal (seasonal and event based) differences in impacts of 

regulation on downstream hydrology would be identified (H1), and this hypothesis was upheld. 

Mid-late 2012 was characterised by relatively large volumes of precipitation in the study area, 

indeed, on the 22nd June 2012, the highest ever stream level was recorded by the EA at a weir 

located approximately 0.5km downstream of site 18 (EA, 2013). During this period, reservoir 

water levels were atypically high for this time of year, resulting in regular overspill events 

reflected by no significant differences between unregulated and regulated flow regime indices 

for autumn 2012 or winter 2012/13. Analysis of these two seasons combined (period: Fh) also 

failed to identify differences between regulated and unregulated flow regimes, apart from 

significantly higher ROC (falling limb) for regulated regimes. 
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Spring and summer 2013 were characterised by relatively low precipitation, resulting in lower 

reservoir water levels and fewer overspill events. This change in overspill frequency resulted in 

significant differences between unregulated and regulated flow regime indices and for this 

period (Fl); flood frequency was significantly lower and ROC (rising and falling limb) 

significantly higher in regulated streams. Seasonal analysis also identified these significant 

differences in spring and summer, and in summer, flood duration was significantly shorter in 

regulated streams. High ROC has been identified in streams affected by hydro-electric power 

generation (e.g. Cushman, 1985) but not downstream of water supply reservoirs. The reason for 

these differences is unclear, but it may be due to the relatively large step-change in discharge 

caused by the start/ stop nature of overspill events, especially if the width of an overspill crest is

large relative to the compensation discharge. Reduction in flood duration has previously been 

identified in regulated streams (e.g. Andrews, 1986), and is likely to be as a result of the 

attenuating ability of a reservoir (Petts, 1990). No significant differences in flood magnitude 

were observed between stream types for any season and this may be a result of the method used 

which meant that all floods rather than just large floods (which are typically reported to have 

reduced in magnitude post-impoundment (Higgs & Petts, 1988)) were selected for analysis 

resulting a large variance in mean flood magnitude.

The evidence for modification of the discharge regime identified for the headwater streams in 

this study could be viewed as contrary to a proven model of hydrological response to regulation 

in headwaters (the Serial Discontinuity Concept (SDC) (Ward & Stanford, 1983; 1995; Stanford

& Ward, 2001). The SDC postulated that regulation of headwater streams would result in no 

change to annual discharge fluctuation (Ward & Stanford, 1983). Conversely, this study, in 

agreement with other studies (e.g. Crisp, 1977; Higgs & Petts, 1988), has identified evidence of 

reduced discharge fluctuation in the form of reduced flood frequency in an regulated headwater 

stream. The SDC was developed on streams with high groundwater contribution, and therefore 

relatively low annual discharge variation (Ward & Stanford, 1983). This may therefore explain 

the disparity in our conclusions, but serves to stress that generalisations across regulated stream 

'types' (e.g. headwaters), should be made with care.

EC, DO and pH

Typically, a reduction in EC downstream of reservoirs has been observed (e.g. Soja & 

Wiejaczka, 2013; Palmer & O'Keeffe, 1990). This study found no significant differences in EC 

mean or range at either 1- or 7-day time scales for the entire study period or Fh or Fl. However, 

in support of H2 (that regulation would impact downstream physical chemistry), during flood 

events, mean regulated EC was significantly lower than during floods at the unregulated site. 



90

These differences are potentially a result of water with low EC transferring into the downstream

watercourse during overspill events, contrasting with relatively high EC water released 

throughout the year as compensation flow. Limnetic reservoir water with low EC may develop 

due to ionic uptake by phytoplankton (e.g. Atkins & Harris, 1925) and water with relatively 

high EC has been observed at the lower levels of reservoirs (e.g. Soares et al., 2008) potentially 

explaining both the lack of statistical difference between unregulated and regulated site types 

for mean EC at 1- and 7-day time scales and the significantly lower EC in regulated sites during

floods.

In support of H2, this study found 1- and 7-day ranges in DO were significantly lower in 

regulated sites for the entire study period and during Fl. No significant difference in mean DO 

was found between site types at these time scales. Previous research has identified a reduction 

in mean DO (Walker, 1985; Palmer & O'Keeffe, 1990; Bunn & Arthington, 2002), but a 

reduction in range had not previously been identified. These differences may potentially be 

explained by a reduction in variability in water temperature downstream of the reservoir (e.g. 

Lehmkhul, 1972; Tuch & Gasith, 1989; Webb & Walling, 1988; Webb & Walling, 1993) as the 

ability of water to dissolve oxygen varies with temperature (Imtiyaz et al., 2012). Alternatively, 

there may be less photosynthetic activity (a driver of DO concentration (Wang & Veizer, 2000)) 

in regulated streams due to hypolimnetic water supply, resulting in a dampening in diurnal DO 

variation. Significantly higher DO at regulated sites during floods was identified; this is likely to

be due to oxygenation of water during overspill events. The spillways are typically 'stepped' and

during overspill events, water cascades down the channel (Figure 5.14) likely resulting in 

oxygenation.

The impact of regulation on pH has received little attention and no consensus on impact has 

been reached (e.g. Soja & Wiejaczka, 2013; Palmer & O'Keeffe, 1990). In agreement with H2, 

this study identified that diurnal pH range was significantly lower in regulated streams for the 

entire study and Fl periods. This inference may be linked to a reduction in DO variability in that

photosynthetic activity can also drive changes in pH (Morrison et al., 2001). Compensation 

water is typically drawn from the bottom/ middle levels of reservoirs C and D respectively, 

which is likely to be relatively devoid of photosynthetically active organisms (e.g. 

phytoplankton, algae), thereby leading to a reduction in photosynthesis (and thus diurnal pH 

variation) immediately downstream of each reservoir. This study also identified significantly 

higher pH during flood events at regulated sites. Mean pH during flood events at regulated sites 

was similar to 1- and 7- day mean values, but at the unregulated site, mean pH at 1- and 7-day 

time scales was 5.52/ 5.53 whereas it was 4.59 during floods. This relatively substantial 

difference is likely to be due to the direct link between unregulated streams and their acidic peat
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catchments which readily supply acidic water during rainfall events (Åström, 2001). In 

regulated streams, it is likely that reservoir water acts as a buffer to incoming acid rich 

streamwater during flood events; this may then lead to minimal change in pH in reservoir 

tailwaters as identified in this study.

The research undertaken in this study concentrated on only three sites in total and only one 

unregulated control site was used. This raises two key priorities for future research: firstly, more

control sites should be used in future studies to increase confidence in results, and second, the 

longitudinal aspect of impacts associated with regulation should be assessed. Both sondes in 

regulated sites were located within approximately 50m of the reservoir dam wall. As distance 

from the reservoir increases, it is likely that physical-chemical impacts will be reduced (e.g. 

Webb & Walling, 1993). It is also important to note that the statistically significant differences 

observed in physical-chemical parameters between stream types were small (EC: <5 µS/cm; 

DO: <5 % saturation and pH: <1 units). Given the low number of sites compared and the 

accuracy of probes used in the study, further studies are required to assess whether, firstly, the 

differences observed are accurate, and secondly, whether, if they are accurate, they are 

ecologically significant.

Figure 5.14: Water cascading down spillway at reservoir C.
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5.6.2 Impact of Artificial Floods

EC, DO and pH

Previous studies have observed complex, spatially and temporally variable impacts of AFs on 

EC. For example, Petts et al. (1985) observed an initial reduction (prior to peak discharge) 

followed by a rise in EC after peak discharge. This relationship was found to vary longitudinally

from the reservoir and was thought to depend on in-channel sources. Indeed, Foulger & Petts 

(1984) also highlighted the potential importance of in-channel sources in determining EC 

response to AFs. Site 6 in this study was relatively close to the outlet of reservoir C and was 

such that in-channel sources were unlikely to be a major influence on EC during AFs. In 

disagreement with H3 (that the impact of AFs would be dependent on reservoir physical 

chemistry or hydrological characteristics of the AFs), this potentially explains the apparent 

simple dilution effect observed in the majority of AFs. Under normal compensation flow 

conditions, after water enters the stilling basin, EC is likely to increase due to factors such as 

exposure to mineral substrate (Ramchunder et al., 2011). It is hypothesised that during AFs the 

influence of such processes was reduced due to decreased water travel time between the 

reservoir outflow and site 6 resulting in lower EC measurements. Future work should look to 

examine this hypothesis or determine whether alternative biogeochemical processes (e.g. 

groundwater interaction; photosynthesis/ respiration) are important.

Evidence that DO was impacted by AFs was found for AFs 1 and 2 but not for AFs 3 or 4. 

During AFs 1 and 2 a clear reduction in DO was observed. A reduction or no change in DO 

during AFs is in contrast to the findings of most other studies (e.g. Shannon et al., 2001; 

Bednarek & Hart, 2005, Naliato et al., 2009) which have all noted increased DO. Naliato et al. 

(2009) also observed reductions in DO during AFs and linked these instances to reservoir 

stratification. Stratification of a reservoir can result in the development of a hypolimnetic layer 

of water of relatively low DO (Petts, 1984a). If water is drawn from this layer during an AF but 

from higher in the water column before, DO may decline. Water prior to and during each AF 

reported on in this study was drawn from the same valve (which was located at the bottom of 

the dam wall of reservoir C) and therefore a modification in valves during reservoir 

stratification cannot explain the observations noted herein.

Reduced DO during AFs 1 and 2 may have been due to suspension of organic matter from the 

stream substrate as hypothesised by Chung et al. (2008) who also observed reduced DO. 

Alternatively, contrary to as hypothesised (H3), AFs 1 and 2 may have disrupted photosynthesis 

in the stilling basin of reservoir C resulting in a reduction in DO (Odum, 1956). This may have 

occurred through increased turbidity which was observed visually during each AF resulting in 
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less light entering the stream water column to drive photosynthesis. Background photosynthesis 

at the time of AFs 3 and 4 (autumn) appeared to be much reduced cf. AFs 1 and 2 (summer). A 

disruption in photosynthesis during the former period therefore has less potential to cause an 

impact and may explain why no evidence for an impact of AFs 3 and 4 on DO was found. 

According to the published literature, the impact of AFs on pH had not previously been assessed

and therefore the observation of reduced pH in each AF make this study important. Higher 

levels of dissolved carbon dioxide in water can result in lower pH due to formation of carbonic 

acid (Harrison et al., 2000). Thus the reduction in pH during AFs may potentially be explained 

by dissolution of atmospheric carbon dioxide during the turbulent release of water during each 

AF (Figure 5.15). Buffering of carbonic acid would be likely in streams of high ionic content, 

but is less likely in upland streams of low EC such as those in this study indicating that the 

decreases in pH observed in this study may not be observed in higher order regulated streams. 

Further research is required to assess this hypotheses and consider the potential role of, and 

interactions between, alternative factors such as groundwater influence and photosynthesis/ 

respiration which can affect stream pH (Glaser et al., 1990; Morrison et al., 2001).

Figure 5.15: Artificial Flood in progress at reservoir C.
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5.6.3 General hydrological-physical chemistry response correlation

The final aim of the study was to consider any observed impacts of AFs on EC, DO and pH with

respect to any impacts identified as a result of regulation per se in an attempt to assess the 

potential for the use of AFs as a mitigation technique. First, the general correlation between 

hydrological and physical-chemical indices in unregulated and regulated sites were considered. 

These correlations were then considered with respect to the general correlations identified 

during AFs. A similar approach to Poff  & Zimmerman (2010) and Gillespie et al. (in press (b)) 

was undertaken whereby plots of hydrological parameters and physical-chemical response were 

created. This approach had the potential to reveal any broad differences in trends between 

periods of normal reservoir operation and AFs and thus an assessment to be made on whether 

AFs had the potential to be used as mitigation for any impacts identified as a result of regulation

per se.

Pre-Artificial Flood floods

A significant difference was identified between unregulated and regulated site types for the 

relationships between all hydrological indices and mean DO and pH and pH range. These 

observations are in support of the identification that during floods, mean DO and pH were 

significantly different between site types. However, a significant difference between site types 

for pH range was not originally identified, indicating that analysis of covariance should be used 

as a complimentary analytical method for identifying potential impacts of regulation. Of these 

significant differences, mean DO was generally higher for regulated sites for all hydrological 

indices, apart from at high rates of change in the falling limb of a flood. Mean pH was typically 

higher for regulated sites at all levels of all hydrological indices. Conversely, pH range was 

generally lower for regulated sites for all hydrological indices apart from magnitude, where, at 

high flood magnitudes (> ~ 2000 % increase), this correlation reversed. However, this finding 

may be a result of relatively few datapoints for large floods. Again, these insights are 

complementary to the outcomes of alternative modelling techniques detailed above.

5.6.4 Potential for Artificial Floods as mitigation technique

Reservoir flow modification is accepted as a potential tool for the mitigation of impacts 

associated with stream regulation per se (Acreman et al., 2009; Acreman & Ferguson, 2010). 

Understanding of relationships between reservoir flow modification and ecosystem response are

limited and typically, the definition of flow requirements of a system are based on distinct 

elements of a flow regime which are known to be important for the survival of particular 
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biological elements within that system e.g. the Building Block Methodology (BBM) (Tharme &

King, 1998). To improve such methods, detailed understanding of the relationships between 

flow modification and ecosystem response is required (Acreman et al., 2009). An assessment of 

the ability of flow modification to successfully mitigate any impact associated with regulation is

also required to assess the feasibility of any proposed mitigation. It was hypothesised that AFs 

would demonstrate potential for use as mitigation (H3) and this is discussed here.

Comparison of impacts of regulation with impacts of AFs identified in this study revealed 

potential for mitigation of impacts by AFs (Table 5.9). However, the extent of the potential for 

mitigation of each impact varies; this is evident in comparison of the hydrological 

characteristics of pre-AF floods and AFs. The duration of each AF was relatively short in 

comparison with the mean duration of pre-AF floods and was particularly constrained by 

reservoir water availability. This constraint is likely to be highest during summer which was 

when an impact on flood duration was identified. It is thus unlikely that AFs could act as 

mitigation unless this constraint can be overcome. However, the range of rising and falling limb 

ROC of AFs was lower than ROCs identified as significantly higher at regulated sites during 

spring and Fl for pre-AF floods indicating that AFs have the ability to more closely replicate 

unregulated flood ROC during periods such as these.

This study identified that during pre-AF floods at regulated sites, mean EC was significantly 

lower than floods at unregulated sites. Assessment of the correlation between mean EC and 

hydrological indices during AFs revealed a negative correlation between AF magnitude and 

ROC (rising and falling limbs) and mean EC indicating that the potential for use of AFs as 

mitigation for this impact may be enhanced for AFs of low magnitude and ROC.

A reduction in 1- and 7-day range in DO was identified at regulated sites. Whilst DO range 

during one AF was higher than the mean 1-day range in DO at regulated sites prior to AFs 

(Table 5.9), analysis of each AF revealed that DO during each flood was not outside that of the 

diurnal range in DO that could have been expected if the AF was not implemented. This 

indicates that the introduction of AFs in an attempt to raise DO diurnal range is unlikely to be 

successful. Higher mean DO during pre-AF floods at regulated sites was also identified by this 

study, but, as ranges of DO during AFs was within expected ranges for each day, the success of 

AFs used to mitigate this impact are also likely to be low.

This study observed that diurnal pH range was significantly lower for regulated cf. unregulated 

sites. pH range during AFs 2 and 4 was higher than mean diurnal pH range prior to AFs and 

interpretation of the response in pH during AFs revealed that during AFs 1, 2 and 4, minimum 

pH values were lower than would have been expected if the AF had not occurred. Higher mean 
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pH during pre-AF floods at regulated sites was also identified and mean pH during AF 4 was 

reduced to below mean pre-AF flood pH indicating, in agreement with H3, potential for AFs to 

mitigate both low diurnal pH range and high mean pH during flood events. Assessment of the 

relationship between pH range and hydrological indices during AFs revealed a positive and a 

negative relationship between flood magnitude, ROC (falling and rising limbs) and pH range 

and mean respectively, indicating that the potential for mitigation may be increased at higher AF

magnitudes and ROC.

It is important to stress that assessments of potential for AFs to act as mitigation measures are 

based on a very limited number of AFs. Additionally, analysis of hydrological indices and 

ecosystem response was undertaken to act as a general indication of relationships only. 

Confidence in relationships is dependent upon the number of datapoints used to generate 

relationships and thus, with further future studies, the effectiveness of this technique can be 

enhanced. Nevertheless, the approach used in this study can a useful tool to enable prioritisation

of future research direction.
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Table 5.9: Summary of significant impacts of regulation identified and associated impacts 
during AFs 3 and 4 (where comparable hydrological and physical-chemical indices could be 
calculated).

Impact of regulation Associated AF impact Potential for use of 
AFs as mitigation?

Hydrology

Reduced flood frequency Not tested n/a

Reduced duration (summer mean: 0.17 days) Durations of  <0.1 days* Not demonstrated

Increased ROC (rising) (means: 46.97, 52.83 and 
43.06 (m3/s/day) during Fl, spring and summer 
respectively)

Range of 20.76-24.02 
(AF3 and 4 
respectively)*

Yes - high

Increased ROC (falling) (means: 2.65, 20.41, 25.71 
and 16.87 (cm3/s /day) during Fh, Fl, spring and 
summer respectively)

Range of 8.30 – 18.02 
(AF3 and 4 
respectively)*

Yes - moderate

EC

Lower mean during floods (38.26 µS/ cm) Mean EC reduced during
AF 1 and 2, however, 
negative correlation 
between EC and AF 
magnitude and ROC 
(rising and falling limb)

Yes - low

DO

Lower 1- and 7-day range (means: 4.94 and 7.28 (%
saturation) respectively) for entire study period

Ranges of 1.5 – 6.8 (% 
saturation) during AFs 1-
4*

Yes - low

Higher mean during floods (97.16 % saturation) No impact Not demonstrated

pH

Lower 1-day range (mean: 0.27)  for entire study 
period

Ranges of 0.06 – 0.41 
during AFs 1-4*

Yes - moderate

Higher mean during floods (5.36) Reduced during AFs 
(means: 5.58 and 4.78 
during AF3 and 4 
respectively)*

Yes - moderate

*calculated using the method described in section 5.3 to ensure comparability with pre-AF indices.

5.7 Summary

This chapter has identified significant impacts on the frequency, duration and rate of change 

(ROC) of floods in regulated streams in an upland catchment in the UK. Additionally, 
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significant reductions in DO and pH range were associated with regulation. Furthermore, during

floods, mean EC was significantly lower and mean DO and pH were significantly higher in 

regulated sites. Assessment of physical-chemical impacts was limited to only one site per stream

and thus expansion of the monitoring network both to other streams and longitudinally on each 

stream will both enhance the certainty of impacts observed and provide useful information 

regarding the persistence of impacts downstream. Furthermore, impacts were generally small in 

magnitude and further research would be required to assess their ecological significance.

The hydrological and physical-chemical impacts of a series of Artificial Floods (AFs) were 

assessed. It was found that EC was significantly affected by AFs 1, 3 and 4, DO by AFs 1 and 2 

and pH by all AFs. In all cases, reductions in each parameter were observed. AFs were found to 

have some potential for use as mitigation for the impacts to hydrology and physical chemistry, 

in particular, the ROC of AFs was more similar to floods at unregulated sites cf. regulated sites. 

Additionally, AFs were identified as potential mitigation for impacts to EC and pH. 

Consideration of the general relationships between hydrological indices and physical-chemical 

responses both for pre-AF floods and AFs was undertaken. Assessment of these relationships for

pre-AF floods revealed further insight into the effects of regulation and provided context for 

assessment of relationships during AFs which revealed that the effectiveness of mitigation may 

be enhanced under certain flow conditions. The assessment of relationships between 

hydrological indices and physical-chemical response is useful, but more research on the impact 

of AFs is required to increase confidence in the assessment and to enable informed management

decisions regarding the implementation of mitigation measures which are central to achieving 

legislative targets under legislation such as the EU Water Framework Directive.
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6 IMPACT OF REGULATION AND ARTIFICIAL FLOODS 

ON STREAM TEMPERATURE

6.1 Chapter overview

This chapter presents an assessment of the impact of regulation and Artificial Floods on stream 

temperature. First, the importance of understanding this topic is presented followed by an 

identification of current gaps in research and aims of the study. Next, the methods and analytical

techniques used to undertake the study are detailed. This is followed by sections presenting and 

discussing the results, including recommendations for further research.

6.2 Introduction

Water temperature affects the metabolism of aquatic organisms both directly (Beschta et al., 

1987) and indirectly (Macan, 1963) (e.g. by influencing other physical-chemical parameters 

such as dissolved oxygen concentration (e.g. Hamor and Garside, 1976)). In aquatic ecosystems,

water temperature can also control species distribution (Dickson et al., 2012) and influence life-

cycle phases such as insect emergence timing (e.g. Harper and Peckarsky, 2006), drift (Brittain 

and Eikeland, 1988) and mortality (e.g. Sweeney et al., 1986) and fish spawning (Van Der 

Kraak and Pankhurst, 1997) and egg hatch timing (Mann, 1996). Identification and 

understanding of any potential impacts on stream water temperature is therefore crucial given 

the importance for aquatic biota.

Anthropogenic activity can have a profound effect on stream temperature including 

deforestation (Brown & Krygier, 1970), afforestation (Brown et al., 2010), urbanisation (Krause

et al., 2004) and waste water treatment (Kinouchi et al., 2007). It is therefore important to 

understand the impact of such activity to enable successful implementation of mitigation 

measures. In the northern hemisphere 77% of total stream discharge is either strongly or 

moderately affected by fragmentation resulting from reservoir operation, inter basin diversion 

and irrigation (Dynesius and Nilsson, 1994). An understanding of any impact that these 

activities have on downstream temperature is therefore vital because of the large proportion of 

affected streams. Furthermore, contemporary legislation such as the EU Water Framework 

Directive (EU WFD) (EC, 2000) requires that regulated streams meet an ecological standard 

(Good Ecological Potential (GEP)) based on abiotic and biotic aspects of stream ecology.

Globally, the general downstream impacts of regulation on temperature have been identified. A  
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reducuction in annual and diel range of stream temperature (e.g. Lehmkhul, 1972; O' Keeffe et 

al., 1990 and Webb and Walling, 1993 respectively) is typically observed. However, more recent

studies have identified complex spatio-temporal impacts (e.g. Webb & Walling, 1997) attributed

to factors such as reservoir operation and groundwater influence. A recent resurgence in the 

assessment of the impact of anthropogenic activity on stream temperature has been driven by 

the development of relatively inexpensive, standalone data-loggers capable of recording at 

relatively high frequencies (e.g. minute intervals) (Webb et al., 2008). This has enabled spatially

and temporally intensive assessment of stream temperature which previous work on regulated 

streams has been limited by (e.g. Lavis & Smith, 1971; Lehmkhul, 1972; Crisp, 1977; Cowx et 

al., 1987; Tuch & Gasith, 1989; O'Keeffe et al., 1990). For example, whole catchments can now 

be instrumented with relative ease allowing for assessment of the relative impact of regulation 

from multiple reservoirs. Such an approach has the potential to significantly improve 

understanding of catchment-scale thermal effects of regulation as it is yet to be undertaken 

anywhere globally.

Advanced understanding of the key environmental factors that control stream temperature (see 

Chapter 2) combined with the use of new analytical techniques (Webb et al., 2008) has led to 

increases in assessments of stream temperature dynamics using empirical models that take 

account of potential confounding factors and correct for autocorrelated errors (e.g. Gomi et al., 

2006). To date, this approach has only been undertaken on one regulated stream (Dickson et al., 

2012) and all assessments of the impact of regulation in temperate environments have been 

limited in the account of potential confounding factors (e.g. Lavis & Smith, 1971; Lehmkhul, 

1972; Crisp, 1977; Cowx et al., 1987; Webb & Walling, 1988, 1993, 1996 and 1997).

Artificial floods (AFs) have been suggested as a potential tool to enable the achievement of GEP

through mitigation of impacts associated with regulation (Acreman & Ferguson, 2010). It is 

therefore important that relationships between AFs and stream temperature are understood to 

allow for appraisal of whether AFs can be used successfully as mitigation. To date few studies 

have reported on impacts of AFs on stream temperature (n=9) and have typically reported 

increases (Cambray et al., 1997; King et al., 1998; Ashby et al., 1999; Lagarrigue et al., 2002; 

Chung et al., 2008; Naliato et al 2009). However, no change (King et al., 1998; Robinson et al., 

2004a) and decreases (Foulger & Petts, 1984; Lagarrigue et al., 2002; Bruno et al., 2010) have 

also been reported resulting in a lack of consensus. This is likely due to the importance of local 

factors (Gillespie et al., in press (b)) which has driven the requirement for understanding at 

regional, or stream 'type' (i.e. of similar characteristics (e.g. geology)) scales (Poff & 

Zimmerman, 2010; Gillespie et al., in press (b)).

It is therefore crucial that the establishment of understanding in responses of stream temperature
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to AFs occurs at nested spatial scales to enable upscaling from site specific to more general 

regional predictions. The development of general relationships between hydrological parameters

(e.g. flood magnitude) and ecosystem response variables has been used to identify quantitative 

relationships and potential threshold levels of hydrological parameters that invoke ecosystem 

response (e.g. Poff & Zimmerman, 2010; Gillespie et al., in press (b)). The assessment of these 

relationships with respect to any impacts of regulation per se has the potential to reveal whether 

AFs could successfully be used as mitigation. To date, this has not been conducted for any 

regulated stream globally.

This chapter reports on a detailed study of stream temperature in an upland UK catchment over 

one year. A spatio-temporal assessment of the impact of regulation on stream temperature using 

contemporary analytical techniques is made through comparison of several regulated streams 

with unregulated conditions in a multi-reservoir catchment. A series of AFs were also conducted

allowing for a spatial assessment of the impact of AFs on stream temperature. Specifically, the 

aims of the study were to: (i) identify any impacts of regulation on stream temperature at 

seasonal and event based (i.e. flood) scales in a multi-reservoir catchment; (ii) undertake a 

longitudinal assessment of the impacts of AFs on stream temperature and (iii) consider the 

utility of AFs for mitigation of any impacts identified as a result of regulation per se. It was 

hypothesised that (H1) regulation would reduce downstream temperature range and impact 

mean stream temperature according to season, (H2) impact would vary spatially, (H3) Change 

in downstream temperature would be observed during AFs, thereby demonstrating the potential 

for use of AFs as mitigation.

6.3 Methods

6.3.1 Data loggers

Temperature

Stream temperature was recorded at 15 minute intervals using a combination of Gemini Tinytag 

Aquatic 2 data loggers, SEBA Hydrometrie MDS Dipper-3(T3) and YSI 6560 temperature 

probes (manufacturer stated accuracies ± 0.5 (between 0 and 50ºC), 0.1 and 0.15ºC 

respectively). During deployment, calibration of the latter 2 probes to Gemini Tinytag Aquatic 2

data loggers was undertaken at a range of temperatures (see Appendix B for calibration curves 

and regression coefficients) to ensure comparable temperatures. Air temperature was recorded at

15 minute intervals using Gemini Tinytag Plus 2 data loggers (manufacturer stated accuracy: ± 

0.4 - 0.6ºC between -10 and 50ºC). Each sensor was shielded from direct sunlight and internal 
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clocks synchronised prior to deployment. Stream temperature sensors were secured in a well 

mixed location within the stream and air temperature sensors were secured at c. 1.5m above 

ground level adjacent to the stream. Once deployed, data were downloaded at approximately 

monthly intervals and internal clocks reset to reduce drift.

Discharge and water level

Water level was recorded at 15 minute intervals according to the method described in Chapter 5.

Where possible, water level was calibrated to discharge according to the same method.

6.3.2 Sites

Spatio-temporal dynamics

To assess whether there were differences between unregulated and regulated stream temperature

regimes, data from unregulated sites 1, 3, 5 and 8 - 10 and regulated sites 2, 4, 6, 7 and 11-18 

were selected for analysis. To aid analysis of stream temperature, air temperature was recorded 

at sites 1, 5, 10 and 16.

Flood dynamics

To assess whether differences in unregulated and regulated stream temperature regimes during 

floods could be identified, stream temperature and paired discharge data were selected from 

sites 6, 10 and 11 for analysis. To aid assessment of the impact of AFs, water level data were 

selected from sites 7 and 13.

6.3.3 Time scale

Impact of regulation

To assess the impact of regulation on stream temperature, data were selected for analysis from 

the 1st September 2012 to 19th August 2013 inclusive. These temperature data were combined 

with discharge data for the same period for assessment of stream temperature dynamics during 

floods. This period was prior to the introduction of AFs and can therefore be considered 

representative of typical regulated conditions.



103

Artificial Floods

AFs were carried out by YW on the 20th August, 19th September, 3rd October and 5th November 

2013 (AFs 1-4 respectively) from reservoir C. The characteristics of each AF represented a 

balance between the practical restrictions placed on YW by the EA, local stakeholders, water 

resource availability and the capability of reservoir infrastructure to implement an AF. For these 

reasons, each AF differed in characteristics. However, during all AFs, water was drawn from the

lowest vertical valve within the water column.

To assess the impact of AFs on stream temperature, temperature data were collected at 15 

minute intervals on each AF day from sites 6, 7, 11, 12, 13 and 16. Sites 6, 7 and 13 were 

selected as impact sites as they were downstream of reservoir C. Sites 11, 12 and 16 were 

chosen as respective control sites.

6.4 Data analysis

6.4.1 Quality control procedure

Temperature

Data quality was first evaluated using a similar approach to Jones & Graziano (2013) whereby 

removal of data occurred if the following standards (outside of which data were assumed to be 

incorrect) were met: stream temperature: < -1 or > 35 ºC; air temperature: < -10 or > 35ºC. In 

addition, data were visually assessed for drift and probe failure/ malfunction and removed if 

detected; during this process a conservative approach was taken so that if there was any doubt in

the quality of data, they were removed (see Appendix C for details of all removed data). Some 

data were lost due to telemetry failure and a detailed record of these can also be found in 

Appendix C. To ensure comparability of datasets between each site, data were removed from all 

datasets for the same time period where data had been removed from one site.

Discharge and water level

The quality control procedure for discharge and water level data was as described in Chapter 5.

6.4.2 Impact of regulation

To assess whether differences in stream temperature regimes between unregulated and regulated

sites could be identified, first, stream temperature data at each site were paired with air 
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temperature data from the closest site. Next, diurnal mean and range indices were extracted 

from each stream (Tm and Tr respectively) and air temperature dataset for each site. Mean and 

standard deviation of each stream temperature index for each site was then calculated. 

Predictive models (multiple linear regression and multiple logistic regression (for Tm and Tr 

respectively)) using indices only from unregulated sites were then produced using a similar 

method to Gomi et al. (2006) and Dickson et al. (2012). Explanatory variables were initially 

included in each model based on a priori understanding of the key drivers of stream temperature

(see Chapter 2 for discussion) and followed approaches similar to Dickson et al. (2012) and 

Moore et al. (2013). Final models were selected using AIC and took the form: 

(i) Tm=α+β ya+βalt+β j+β sin(2π j /d )+β cos(2π j /d )+ε

(ii) Tr=α+β ya+β yb+β ya: yb+βalt+β j+βsin(2π j /d )+βcos (2π j /d )+ε

where ya = mean air temperature and yb = air temperature range on day j , alt = altitude of each 

site, d = 365.25 (mean number of days in a year), α = intercept, β = coefficients estimated by 

regression and ε = error term. Sine and cosine variables were included to account for residual 

seasonality (e.g. Gomi et al., 2006) and “:” represents an interaction term between two 

variables. Site 3 was not included in the predictive model of Tr as inclusion of this site resulted 

in a poor model fit; this prevented the statistical testing of regulated sites 2 and 4 as site 3 was a 

control for these sites.

Models were then used to predict stream temperature for each regulated site. Random 

disturbances (RD) were calculated according to Gomi et al. (2006). This method removed 

autocorrelation from the residuals resulting in independence between RD:

where yt and ŷt are the observed and predicted temperature indices on day t respectively and ṕi  is

an estimate of the lag i autocorrelation coefficient from the model fit (obtained through 

calculation of partial autocorrelation factor). 95% prediction limits can then be estimated as 

±1.96σût (Gomi et al., 2006). If regulation had no effect on stream temperature, the distribution 

of unregulated and regulated RD should be equal. Therefore, two-sample Kolmogorov-Smirnov 

tests were used to statistically test for differences in distribution of RD between all unregulated 

sites combined and each regulated site separately. 

To assess whether any impact of regulation on stream temperature indices varied temporally, 

RD were split into the following periods and tested separately using 2-sample Kolmogorov-

Smirnov tests as described above: autumn (1st September 2012 00:00:00 to 30th November 2012 

RD=( y t− ŷ t)− ṕ1( y t-1− ŷ t-1) ...− ṕk ( y t-k− ŷ t-k)
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23:59:59), winter (1st December 2012 00:00:00 to 28th February 2013 23:59:59), spring (1st 

March 2013 00:00:00 to 31st May 2013 23:59:59) and summer (1st June 2013 00:00:00 to 19th 

August 2013 23:59:59).

To assess whether differences in stream temperature regimes occurred between unregulated and 

regulated sites during floods (i.e. natural floods and reservoir overspill/ operational release 

events respectively), first, stream temperature and discharge data were paired to ensure 

comparability. Next, floods were defined using the method described in Chapter 5. Mean (Fm) 

and range (Fr) indices were then calculated for stream temperature during each flood. Indices 

were modelled as dependent variables using GAMM as non-linear temporal trends in indices 

were apparent. Explanatory variables were: site (random effect due to repeated measures (Zuur 

et al., 2009)), type (unregulated or regulated) (fixed effect) and time of peak discharge of each 

flood (fixed effect). Sites were nested within site type and appropriate error distributions, link 

functions and correlation structures were specified to ensure approximate normal distribution, 

homogeneity and independence of residuals. Finally, significance of site type was assessed 

using t-statistics and associated p-values.

To assess whether associations between hydrological (magnitude, duration and rate of change 

(rising and falling limb)) and stream temperature indices (Fm and Fr) were different between 

unregulated and regulated site types, ANCOVA was performed using Generalized Linear 

Modelling (GLM) with stream temperature indices as response variables and hydrological 

indices and site type as fixed effects (Rutherford, 2012). Appropriate error distributions, link 

functions and correlation structures were specified to ensure approximate normal distribution, 

homogeneity and independence of residuals. Finally significance of site type was assessed using

t-statistics and associated p-values.

6.4.3 Impact of Artificial Floods

To assess the impact of each AF on stream temperature, a modified paired Before-After-

Control-Impact (BACIP) (Stewart-Oaten et al., 1986; Smith, 2002) analysis was undertaken 

which replaced 'After' with 'During' (e.g. Dinger & Marks, 2007) to allow the during-AF impact

to be statistically assessed through interrogation of a modelled interaction term (Smith, 2002). 

For each AF, response variables (15 minute stream water temperature) were modelled as a 

function of site (2 levels: site 6 (impact); site 11 (control)) and period (2 levels: before; during) 

and the interaction between these two factors (site:period). Period: before was defined as all 

data from 00:00:00 until the start of each AF and period: during was defined by the start and 

end times of each AF. As data were collected through time at each site, site was treated as a 
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random effect (Zuur et al., 2009). Either GLMM or GAMM (Wood, 2011) (depending on 

whether linear (GLMM) or non-linear (GAMM) temporal variation was evident in data 

(assessed through assessment of significance of temporal smoother terms)) models were used. 

Appropriate error distributions, link functions and correlation structures were specified to 

ensure approximate normal distribution, homogeneity and independence of residuals. Finally, 

significance of site:period terms were assessed using t-statistics and associated p-values. 

Statistical tests were deemed significant at p < 0.05 and all plot creation and statistical analyses 

were undertaken using R v 2.15.3 (2013).

6.5 Results

6.5.1 Impact of regulation

For the period of assessment, sites 7-10 and 14 were typically coolest (mean stream temperature

< 7.16oC), and sites 2, 11, 12, 16 and 18 were typically warmest (mean stream temperature > 

7.68oC). Stream temperature range was smallest at site 14 and largest at sites 1, 5 and 10 and the

coolest and warmest temperatures were recorded at sites 2 and 10 respectively (Table 6.1; 

Figure 6.1).

6.5.2 Diurnal mean stream temperature

For the entire assessment period, Tm appeared to generally be higher in fully-regulated sites cf. 

unregulated sites (Figure 6.2a), but mean Tm was only higher for three fully-regulated cf. 

unregulated sites (Table 6.1). A clear difference between Tm for semi-regulated sites and 

unregulated sites was not visually apparent (Figure 6.2b), but mean Tm was higher for all semi-

regulated cf. unregulated sites (Table 6.1). All explanatory factors included in the predictive 

model of Tm were significant (p < 0.01) and model r-squared was 0.96, RMSE was 1.00 and 

MAE was 0.78 indicating adequate predictive power (Table 6.2).

Tm RD for unregulated sites displayed approximately constant temporal variance throughout the

assessment period. Regulated sites generally displayed more temporal variance than unregulated

sites, particularly at sites 6 and 11 where many RD were outside the 95% confidence intervals 

between September 2012 and March 2013 which was not observed at other sites (Figure 6.3).



Table 6.1: Summary statistics for 15 minute and diurnal mean and range data for each site for the study period (prior to Artificial Floods (AFs)). U = unregulated, 
FR = fully-regulated (no tributary influence 1:50K OS map (OS, 2012)).

15 – minute data Diurnal mean (Tm) Diurnal range (Tr)

Site Mean (°C) Minimum (°C) Maximum (°C) St. dev. (°C) Range (°C) Mean (°C) St. dev. (°C) Mean (°C) St. dev. (°C)

U 1 7.16 -0.12 24.42 5.24 24.54 7.34 4.95 3.31 2.53

2 7.77 0.10 18.63 4.38 18.53 7.97 4.27 1.53 0.87

U 3 7.36 -0.07 17.04 4.22 17.11 7.55 4.11 1.45 0.77

4 7.55 0.20 17.04 4.12 16.84 7.75 4.04 1.29 0.68

U 5 7.28 -0.30 23.12 5.31 23.42 7.46 5.06 2.96 2.12

FR 6 7.25 0.41 17.65 4.82 17.24 7.55 4.80 0.89 0.68

FR 7 7.09 -0.16 18.64 4.82 18.80 7.38 4.72 2.07 1.73

U 8 6.96 -0.11 24.13 5.20 24.24 7.14 4.86 3.67 2.78

U 9 6.80 -0.11 24.54 5.58 24.65 6.99 5.29 3.28 2.60

U 10 6.64 -0.11 24.77 5.70 24.88 6.83 5.39 3.42 2.91

FR 11 7.70 0.17 19.32 4.93 19.16 7.95 4.85 1.04 0.77

FR 12 7.76 0.27 21.44 4.80 21.17 7.99 4.63 2.24 1.79

13 7.50 -0.23 22.29 5.01 22.52 7.74 4.75 3.18 2.63

FR 14 7.16 0.26 15.86 4.39 15.60 7.46 4.38 1.15 0.74

15 7.47 0.06 20.78 4.82 20.72 7.73 4.65 2.55 2.07

FR 16 7.72 0.62 19.92 4.61 19.30 7.94 4.49 1.54 1.21

17 7.66 -0.06 21.57 4.84 21.63 7.90 4.62 2.88 2.34

18 7.69 -0.90 21.69 4.93 22.59 7.93 4.71 2.78 2.18
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Two-sample Kolmogorov–Smirnov tests indicated significant differences between RD for all 

unregulated sites combined and RD for regulated sites 6, 11, 12, 14 and 16 for the entire study 

period (Table 6.3). Seasonal analysis identified significant differences in RD between all 

unregulated sites combined and regulated sites 6 and 14 during autumn, 6, 11, 12, 14 and 16 

during winter, no sites during spring and sites 6 and 18 during summer (Table 6.3). Examination

of season and regulated site combinations identified as significantly different from unregulated 

sites revealed that observed Tm was approximately 2°C higher than predicted at sites 6 and 14 

during the first half of autumn, but similar during the latter half. During winter, observed Tm at 

sites 6, 11, 12, 14 and 16 was broadly similar to predicted, but during mid to late January 2013, 

observed Tm was approximately 1-2°C warmer than predicted. At site 18 during summer, 

observed Tm was generally warmer than predicted, but differences were typically <1°C. At site 

6 during early June 2013, observed Tm was up to ~3.5°C warmer than predicted for c. five days,

but for c. 15 days between July and August 2013, observed Tm was up to ~3.5°C cooler than 

predicted (Figure 6.4).

Figure 6.1: Stream temperature range and mean for the entire study period from 15 minute data
at sites 1-18. Note: Map not to scale. Reservoirs are shown in grey and site numbers are 
displayed next to each point. Site 5 is in a different catchment to all other sites.



Figure 6.2: Mean diurnal stream temperature (Tm) for fully-regulated (no tributary influence 1:50K OS map (OS, 2012)) and semi-regulated sites (panels A and B 
respectively) (red lines) and unregulated sites (blue lines). Mean mean diurnal air temperature for all sites is shown in black..
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Table 6.2: Summary statistics for explanatory variables included in models of mean and range 
diurnal stream temperature using unregulated site data for prediction of regulated site indices 
and 'goodness of fit' statistics: Root mean squared error (RMSE) and maximum absolute error 
(MAE). Significant factors are displayed in bold. Note: Adjusted R-squared value not available 
for logistic regression. 

Mean

Estimate t

Intercept -211.7000 -12.88 **

Mean diurnal air temperature (ya) 0.5696 72.36 **

Altitude -0.0014 -4.78 **

Day of the year (j) 0.0052 13.11 **

sin(2πj/d) -1.3910 -22.39 **

cos(2πj/d) -1.6360 -30.99 **

Adjusted R-squared 0.96

RMSE 1.00

MAE 0.78

Range

Intercept 23.0260 5.30 **

Mean diurnal air temperature (ya) 0.0896 19.25 **

Diurnal air temperature range (yb) 0.0892 33.73 **

Mean diurnal air temperature : diurnal air temperature range interaction (ya:yb) -0.0029 -14.62 **

Altitude 0.0003 2.52 *

Day of the year (j) -0.0006 -5.40 **

sin(2πj/d) 0.3105 20.95 **

cos(2πj/d) -0.2427 -9.30 **

Adjusted R-squared n/a

RMSE 0.38

MAE 0.29

*p < 0.05, **p < 0.01.
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Figure 6.3: Diurnal mean stream temperature (Tm) random disturbances (RD) for sites 1-18  
respectively. Red and blue points are used to distinguish between regulated and unregulated 
sites respectively. Dashed lines represent 95% confidence intervals (based on all unregulated 
sites combined). Mean (St. dev.) RD is shown in the top right of each plot.



Table 6.3: Mean diurnal (& St.dev.) stream temperature mean (Tm) (°C) and 2-sample Kolmogorov–Smirnov test statistic (D) for unregulated random disturbances 
(RD) vs RD for each regulated site.

All data Autumn Winter Spring Summer

Site Mean (St.dev.) D Mean (St.dev.) D Mean (St.dev.) D Mean (St.dev.) D Mean (St.dev.) D

2 7.97 (4.27) 0.07 9.03 (2.36) 0.13 3.93 (1.34) 0.14 6.19 (3.08) 0.08 13.87 (1.69) 0.07

4 7.75 (4.04) 0.07 8.95 (2.33) 0.09 3.97 (1.42) 0.11 6.04 (3.03) 0.10 13.10 (1.65) 0.10

6 7.55 (4.80) 0.13 ** 9.41 (3.03) 0.18 * 2.99 (1.20) 0.16 * 5.15 (3.27) 0.10 13.96 (1.39) 0.20 *

7 7.38 (4.72) 0.06 9.18 (2.93) 0.16 2.83 (1.27) 0.13 5.11 (3.21) 0.08 13.72 (1.27) 0.10

11 7.95 (4.85) 0.11 ** 9.34 (2.81) 0.16 3.25 (1.20) 0.16 * 5.86 (3.33) 0.12 14.66 (1.71) 0.13

12 7.99 (4.63) 0.08 * 9.24 (2.60) 0.13 3.50 (1.17) 0.16 * 6.00 (3.11) 0.10 14.48 (1.70) 0.12

13 7.74 (4.75) 0.04 9.13 (2.77) 0.13 3.18 (1.34) 0.10 5.64 (3.29) 0.09 14.33 (1.41) 0.10

14 7.46 (4.38) 0.11 ** 9.39 (3.07) 0.16 * 3.14 (1.20) 0.16 * 5.35 (2.64) 0.09 13.18 (1.25) 0.12

15 7.73 (4.65) 0.05 9.25 (2.87) 0.15 3.23 (1.26) 0.13 5.66 (3.18) 0.07 14.07 (1.34) 0.14

16 7.94 (4.49) 0.11 ** 9.19 (2.47) 0.12 3.62 (1.15) 0.17 * 5.94 (2.98) 0.09 14.24 (1.70) 0.12

17 7.90 (4.62) 0.05 9.21 (2.76) 0.14 3.40 (1.92) 0.12 5.96 (3.18) 0.07 14.26 (1.52) 0.15

18 7.93 (4.71) 0.06 9.22 (2.73) 0.12 3.42 (1.26) 0.12 5.89 (3.28) 0.10 14.47 (1.61) 0.18 *

*p < 0.05, **p < 0.01.



113

Figure 6.4: Observed diurnal stream temperature mean (Tm) (blue lines) and range (Tr) (red 
lines) with predicted values (black lines) for seasons where Kolmogorov–Smirnov tests 
indicated significant differences in random disturbances. Site numbers are displayed above 
each plot and season is delineated by surrounding box colour: pink – autumn, orange – winter, 
blue – spring & green – summer.
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Diurnal stream temperature range (Tr)

For the entire assessment period, Tr was generally lower in fully-regulated sites cf. unregulated 

sites (Figure 6.5a); these differences appeared to be smaller for semi-regulated sites (Figure

6.5b). Mean Tr was lower at for three fully-regulated sites cf. all unregulated sites (Table 6.1); 

these three sites were directly downstream of reservoirs (Figure 6.1).  All explanatory factors 

included in the final predictive model were significant at either p < 0.01 or 0.05. RMSE of the 

model was 0.38 and MAE was 0.29 indicating adequate predictive power (Table 6.2).

RD for all unregulated sites displayed similar temporal variance throughout the study period, 

whereas regulated sites displayed different patterns. In particular, all regulated sites displayed 

relatively little variance during winter and site 6 displayed relatively high RD between June and 

September 2013 (Figure 6.6).

Two-sample Kolmogorov–Smirnov tests indicated significant differences in RD between all 

unregulated sites combined and all tested regulated sites apart from sites 13 and 17 for the entire

dataset. During autumn and summer, RD at regulated sites 6, 7, 11, 12, 14 and 16 were 

significantly different from those for all unregulated sites combined and during winter, RD for 

all tested sites were significantly different from those for all unregulated sites combined. During

spring, RD at sites 6, 7, 11, 14 and 16 was significantly different from all unregulated sites 

combined (Table 6.4).

Of note, observed Tr was approximately 1-2°C lower throughout the majority of autumn at sites

6, 11 and 14 and was generally lower than predicted at all of the aforementioned sites during 

winter, but these differences were typically less than 1°C. During spring, observed Tr was 

generally lower than predicted at all of these sites where significant differences in RD were 

identified. However, differences at site 7 and 16 were small (<0.5°C and <1°C respectively). 

Notably, during May 2013, observed Tr was up to approximately 5°C lower than observed at 

sites 6 and 11. Observed Tr during summer was generally lower than predicted at all 

aforementioned sites, but differences at sites 7, 12 and 16 were typically <1°C. Notably, during 

July, observed Tr was up to approximately 7°C (site 6) and 4°C (sites 11 and 14) lower than 

predicted (Figure 6.4).



Figure 6.5: Diurnal stream temperature range (Tr) for fully-regulated (no tributary influence 1:50K OS map (OS, 2012)) and semi-regulated sites (panels A and B 
respectively) (red lines) and unregulated sites (blue lines). Mean diurnal air temperature range for all sites is shown in black.



116

Figure 6.6: Diurnal stream temperature range (Tr) random disturbances (RD) for sites 1 and 5-
18. Red and blue points are used to distinguish between regulated and unregulated sites 
respectively. Dashed lines represent 95% confidence intervals (based on all unregulated sites 
combined). Mean (St. dev.) RD is shown at the bottom of each plot.



Table 6.4: Mean (& St. dev.) diurnal stream temperature range (Tr) (°C) and 2-sample Kolmogorov–Smirnov test statistic (D) (where applicable) for unregulated 
random disturbances (RD) vs RD for each regulated site.

All data Autumn Winter Spring Summer

Site Mean (St.dev.) D Mean (St.dev.) D Mean (St.dev.) D Mean (St.dev.) D Mean (St.dev.) D

2 1.53 (0.87) n/a 1.22 (0.54) n/a 0.91 (0.50) n/a 2.11 (0.97) n/a 1.90 (0.74) n/a

4 1.29 (0.68) n/a 1.21 (0.53) n/a 0.86 (0.48) n/a 1.74 (0.81) n/a 1.32 (0.51) n/a

6 0.89 (0.68) 0.32 ** 0.71 (0.58) 0.37 ** 0.54 (0.30) 0.34  ** 1.10 (0.73) 0.30 ** 1.23 (0.78) 0.49 **

7 2.07 (1.73) 0.23 ** 1.16 (1.09) 0.19 * 0.89 (0.65) 0.29 ** 2.71 (1.83) 0.23 ** 3.69 (1.36) 0.27 **

11 1.04 (0.77) 0.36 ** 0.68 (0.56) 0.31 ** 0.36 (0.26) 0.37 ** 1.34 (0.54) 0.35 ** 1.88 (0.62) 0.51 **

12 2.24 (1.79) 0.21 ** 1.27 (0.89) 0.23 ** 0.65 (0.53) 0.32 ** 3.08 (1.39) 0.13 4.14 (1.51) 0.27 **

13 3.18 (2.63) 0.06 1.67 (1.34) 0.12 1.18 (0.81) 0.18 * 4.16 (2.38) 0.09 5.99 (2.31) 0.16

14 1.15 (0.74) 0.27 ** 1.13 (0.60) 0.20 ** 0.70 (0.41) 0.22 ** 1.48 (0.96) 0.26 ** 1.28 (0.59) 0.53 **

15 2.55 (2.07) 0.14 ** 1.52 (1.08) 0.14 0.89 (0.52) 0.23 ** 3.22 (1.83) 0.15 4.82 (1.85) 0.15

16 1.54 (1.21) 0.32 ** 1.03 (0.68) 0.26 ** 0.48 (0.32) 0.32 ** 1.99 (0.94) 0.30 ** 2.81 (1.22) 0.44 **

17 2.88 (2.34) 0.08 1.69 (1.21) 0.12 0.97 (0.54) 0.18 * 3.70 (2.03) 0.12 5.45 (2.08) 0.13

18 2.78 (2.18) 0.09 * 1.64 (1.13) 0.16 0.97 (0.63) 0.20 ** 3.72 (1.95) 0.11 5.00 (1.90) 0.12

*p < 0.05, **p < 0.01.
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Stream temperature mean (Fm) and range (Fr) during flood events

During pre-AF floods, Fm was significantly warmer (estimate: 1.57°C), and Fr significantly 

lower (estimate: - 0.47°C) for regulated cf. unregulated site types (Table 6.5). Statistical 

assessment of the difference in relationships between hydrological and stream temperature 

indices for unregulated and regulated stream types revealed significant differences between site 

types for Fm and all hydrological indices, but for Fr, the relationships were only significantly 

different between site types for flood duration (Table 6.6). Plots of the relationships revealed 

weak positive associations between Fm and flood magnitude and ROC (rising and falling limb) 

for both unregulated and regulated site types, but conversely, a weak negative association 

between Fm and flood duration was observed (Figure 6.7). A weak negative association between

all hydrological indices and Fr for the unregulated site type was observed; this association was 

similar for ROC indices for regulated site types, but conversely, weak positive associations 

between flood magnitude and duration and Fr for regulated site types were observed (Figure

6.7).

Table 6.5: Mean (St. dev.) stream temperature indices for unregulated and regulated site types 
and test statistics during floods.

Mean (Fm) (°C) Range (Fr) (°C)

Unregulated 5.59 (3.81) 1.58 (1.52)

Regulated 8.41 (4.09) 1.06 (1.03)

Est. 1.57 -0.47

t 3.81 ** -2.79 **

*p < 0.05, **p < 0.01.

Table 6.6: ANCOVA test statistics for relationship between flood and stream temperature 
indices between unregulated and regulated stream types.

Magnitude Duration ROC rising ROC falling

Mean (Fm) 2.21 * 4.55 ** -2.11 * -2.64 **

Range (Fr) 1.91 2.51 * 0.78 0.88

*p < 0.05, **p < 0.01.
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6.5.3 Impact of Artificial Floods

Mean stream temperature before and during each AF was highest for AF1 and lowest for AF4  

for all sites (Table 6.7). A general diurnal trend in stream temperature was observed on each AF 

day at all sites, although this trend appeared to be suppressed at sites 6 and 11 (immediately 

downstream of reservoirs C and D respectively) (Figure 6.8). Visually, there was no clear 

indication of any impact of any AF on stream temperature and, in support of this observation, 

statistical testing failed to reveal any significant impact of any AF (Figure 6.8; Table 6.7). Due 

to the absence of significant impacts of AFs on stream temperature, further analysis of the 

Figure 6.7: Association between flood and stream temperature indices for unregulated (blue) 
and regulated (red) site types.
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relationship between hydrological indices and stream temperature response during AFs was not 

undertaken.



Table 6.7: Mean (& St.dev.) and test statistics for stream temperature indices (°C) for impact and control sites before and during Artificial Floods (AFs) 1-4. All 
models were undertaken using GAMM.

AF 1 AF 2 AF 3 AF 4

Before During Before During Before During Before During

Sites 6 & 11

Impact 15.86 (0.04) 16.13 (0.05) 10.41 (0.07) 10.95 (0.18) 11.80 (0.02) 11.85 (0.02) 7.36 (0.02) 7.47 (0.05)

Control 15.34 (0.09) 15.77 (0.10) 10.35 (0.03) 10.54 (0.07) 12.11 (0.02) 12.29 (0.07) 7.26 (0.01) 7.33 (0.02)

Test statistic -0.29 1.57 1.4 1.62

Sites 7 & 12

Impact 14.34 (0.35) 16.03 (0.38) 9.91 (0.05) 10.74 (0.24) 11.80 (0.03) 11.99 (0.05) 7.13 (0.04) 7.36 (0.05)

Control 14.23 (0.50) 15.95 (0.54) 10.00 (0.07) 10.50 (0.17) 12.16 (0.05) 12.58 (0.09) 7.28 (0.08) 7.63 (0.04)

Test statistic 1.22 1.96 -1.63 0.69

Sites 13 & 16

Impact 13.22 (0.49) 15.93 (0.91) 9.70 (0.05) 10.46 (0.38) 11.83 (0.06) 12.23 (0.10) 6.97 (0.15) 7.52 (0.07)

Control 13.76 (0.13) 14.56 (0.30) 10.06 (0.04) 10.12 (0.07) 12.06 (0.01) 12.23 (0.09) 7.37 (0.06) 7.61 (0.01)

Test statistic 1.41 1.37 0.91 1.38

*p < 0.05, **p < 0.01.
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Figure 6.8: Stream temperature during Artificial Floods (AFs) 1 – 4 at sites 6 & 11 (top row), 7 
& 12 (middle row) and 13 & 16 (bottom row) (impact and control sites are displayed in red and
blue lines respectively). Black lines are discharge/ water level as labelled.
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6.6 Discussion

This chapter reported on a spatial-temporal study of stream temperature in a catchment in 

upland UK over a two year period. An assessment of the impact of regulation on diurnal stream 

temperature mean (Tm) and range (Tr) was undertaken through comparison with regulated 

conditions revealing novel insights at a variety of scales. Additionally, a flood-focussed analysis

of stream temperature mean (Fm) and range (Fr) was undertaken. A series of AFs were also 

conducted which revealed no significant impacts on stream temperature. The following is a 

discussion of each of these themes in turn.

6.6.1 Impact of regulation

In agreement with H1, this study found evidence that diurnal mean temperature was impacted 

by regulation for the entire study period at sites closest to the reservoirs (6, 11 and 14). 

However, for this period, no evidence of impact at sites further than approximately 1.5km 

downstream of either reservoir was observed suggesting mean stream temperature quickly 

equilibrated to unimpacted levels as distance from the reservoirs increased. This is in contrast to

other findings globally where mean stream temperature has been modified to distances of up to 

260km (Zhong & Power, 1996), indicating the importance of site specific factors such as stream

discharge, reservoir operation and local climatic conditions.

The nature of the impacts was temporally and spatially complex: in broad agreement with other 

studies worldwide (e.g. Dickson et al., 2012), during winter, when rapid reduction in mean 

stream temperature was predicted, a lag in response in stream temperature was observed 

resulting in higher than predicted temperature (up to 2°C) at sites immediately downstream of 

reservoirs. Conversely, in broad agreement with Cowx et al (1987), during summer, cooler 

stream temperatures than predicted (up to ~3.5°C) were observed downstream of one reservoir, 

but no significant impacts were apparent at other sites. The identification of inconsistent impacts

of regulation from reservoirs within the same catchment is novel for the UK and suggests that 

reservoir or reach specific factors (e.g. reservoir operation, design, stratification, riparian 

vegetation etc), rather than catchment-wide factors (e.g. weather) are important. This suggestion

is similar to that of Webb & Walling (1997) who concluded that reservoir operation was an 

important factor in determining stream temperature in a multi-year study in the UK.

Previous publications have reported reductions in stream temperature range as a result of 

regulation (e.g. Lavis & Smith, 1972; Lehmkhul, 1972; Crisp, 1977; O'Keeffe et al., 1990). In 

agreement with these observations and H1, this study also identified significant reductions in 
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diurnal range for the entire study period at most sites tested. But, in agreement with other 

literature and H2 (e.g. Webb & Walling, 1988; O'Keeffe et al., 1990) considerable spatial-

temporal variability in impacts was also identified. In particular, during autumn and summer, 

taking logger accuracy into account, clear impacts were confined to within 1.5 and 0.2km 

downstream of reservoirs respectively. These observations are in contrast to Webb & Walling 

(1988) who identified impacts on stream temperature range up to 40km downstream of an 

upland UK reservoir, thus highlighting the importance of site specific factors.

The evidence for modification of stream temperature range identified for the headwater streams 

in this study could be viewed as contrary to a proven model of physical-chemical response to 

regulation in headwaters (the Serial Discontinuity Concept (SDC) (Ward & Stanford, 1983; 

1995; 2001). Ward and Stanford explicitly argued that regulation of headwater streams would 

result in little or no change to diel stream temperature range (Ward & Stanford, 1983; 1995). 

Conversely, this study has identified evidence of significantly reduced diurnal stream 

temperature range in a regulated headwater stream. The SDC was developed on streams with 

high groundwater contribution, and therefore relatively low stream temperature variation (Ward 

& Stanford, 1983). This may therefore explain the disparity in our conclusions, but serves to 

stress that generalisations across regulated stream 'types' (e.g. headwaters), should be made with

caution.

In agreement with other literature (e.g. Webb & Walling, 1993), this study identified temporal 

variation in the magnitude of impact on stream temperature range. Taking logger accuracy into 

account, minimal (i.e. < 0.5°C) reduction of diurnal range was typically observed during winter,

but during spring and summer, large reductions were recorded (up to 5 and 7°C  respectively) at

sites immediately downstream of reservoirs. This is also in contrast to the findings of Webb & 

Walling (1993) who reported that effects were greatest during winter and gives weight to the 

argument that seasonal effects can be driven by site specific factors such as reservoir 

characteristics (Crisp, 1977).

In agreement with Webb & Walling (1993), it is proposed that the relatively large thermal 

capacity of the supplying reservoir water is the primary driver of the observed impacts on 

stream temperature identified in this study. It is not thought that thermal stratification occurred 

to any great extent during the period of study (as observed by Crisp, 1977) as typically, mean 

stream temperatures were followed a lagged response to rapid changes in air temperature rather 

than a temperature deviation independent of the predicted pattern. However, such a deviation 

occurred immediately downstream of reservoir C during summer and was assumed to be driven 

by stratification. Further research should be undertaken to examine this theory as, if confirmed, 

future management decisions would need to be based on sound knowledge of factors such as 
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reservoir stratification.

Solar radiation and air temperature are key drivers of diurnal cycles in stream temperature in 

unimpacted streams (Sullivan & Adams, 1991; Caissie, 2006). It is proposed that these drivers 

were unable to operate on the hypolimnetic reservoir outflow water due to the relatively high 

thermal capacity of the reservoirs resulting in the observed reductions in stream temperature 

range downstream of reservoirs in this study. During summer, diurnal range in solar radiation 

and air temperature are typically greater than during winter (Caissie, 2006). During summer, 

there is therefore greater potential for impact of regulation on stream temperature range; this 

phenomena likely explains the peak in impact observed on stream temperature range during 

summer.

Vegetation cover is a key driver of stream temperature (Sullivan & Adams, 1991; Caissie, 

2006). Riparian tree cover within the study area is minimal (pers. obs.) and this, combined with 

the relatively small reservoir outflow discharges (see Chapter 5) (and therefore small thermal 

capacity), is therefore likely to be a factor in explaining why the impacts to stream temperature 

mean and range identified within this study were negligible after relatively short distances 

downstream of the reservoirs. Further research to examine these hypotheses is recommended.

Further research is required to ascertain, firstly, whether the impacts identified in this study are  

significant within an ecological context and secondly, if ecologically significant, the magnitude 

of their significance. Other studies have attributed significant ecological impacts to stream 

temperature modification due to regulation (e.g. Zhong & Power (1996) stated that fish 

spawning was delayed by 20-60 days and Webb & Walling (1993) suggested that fish fry 

emergence would be advanced by up to 57 days due to stream temperature modification) and 

thus this should be a research priority.

Event based assessment

This study is the first to report on impacts of regulation on stream temperature during floods. It 

was found that mean stream temperature was estimated to be 1.57°C higher during pre-AF 

floods in regulated cf. unregulated stream types. This likely explained the significant difference 

observed between mean stream temperature and hydrological indices during floods between the 

two site types. Higher mean stream temperature during pre-AF floods downstream of reservoirs 

could potentially be explained by relatively warm surface epilimnial reservoir water 

overspilling, but temperature-depth profiles of the reservoirs in the study area are unknown and 

thus further research is required to test this theory. 
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The relatively minor difference in stream temperature range during pre-AF floods in regulated 

cf. unregulated sites and the limited differences in associations between stream temperature 

range and hydrological indices between the two site types, combined with the accuracies of the 

loggers used in this study, suggests that stream temperature range is little effected by regulation 

during floods. If further research was undertaken to assess this, use of loggers with higher 

accuracies would be recommended.

Impact of Artificial Floods

In contrast with the majority of published literature and H3, this study found no impact of AFs 

on stream temperature at any of three sites within 2km downstream of reservoir C, suggesting, 

in disagreement with H3, limited potential of AFs for use as mitigation. However, in agreement 

with the findings of this study, King et al. (1998) and Robinson et al. (2004) both reported no 

change in stream temperature during AFs. Both authors suggested that this was due to pre-AF 

and AF water being hypolimnetic in origin and this likely explains the observations in this 

study. It is therefore plausible that, for AFs to have an impact on stream water temperature in the

study area, the draw off level of water from the water column must be modified from pre-AF 

conditions and further research is required to test this. Further research may enable comparison 

of pre-AF and AF relationships between stream temperature response and hydrological indices 

which was not possible in the current study. A full appraisal of the potential for AFs to mitigate 

impacts on downstream temperature was therefore not possible in this study; this is a future 

research priority.

6.7 Summary

This study is the first to report impacts of regulation from multiple reservoirs in a catchment. 

Mean diurnal stream temperature was identified to be up to 2°C warmer than predicted, but 

impacts were generally less than 2°C in magnitude, short lasting (<5days) and confined to sites 

within 1.5km downstream of reservoirs. Observed diurnal stream temperature range was 

identified as generally being lower than predicted throughout the study period at all sites tested 

and up to approximately 7°C lower than predicted at one site immediately downstream of one 

reservoir. Impacts were enhanced during spring and summer, but clear impacts during these 

periods were limited to within 200m downstream of reservoirs. For both stream temperature 

indices, substantial differences between sites immediately downstream of reservoirs were 

identified, indicating the potential importance of reservoir/ reach specific (e.g. reservoir 

operation, design, stratification, riparian vegetation) rather than catchment-wide factors (e.g. 
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weather). It was proposed that the key driver of these impacts was the relatively large thermal 

capacities of the reservoirs cf. streams and that cessation of impacts within short distances 

downstream of reservoirs was likely due to the combined effect of streams with relatively small 

discharge and lack of riparian tree cover. During pre-AF floods, mean stream temperature was 

identified as being significantly higher in regulated cf. unregulated site types, potentially due to 

overspill of relatively warm epilimnial reservoir water. AFs were found to have no significant 

impact on downstream temperature in line with other published studies where the draw-off level

during AFs was unchanged from pre-AFs. Further research is required to ascertain whether the 

impacts identified in this study are likely to be significant in an ecological context and whether 

modification of water draw-off level during AFs invokes a change in downstream temperature.
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7 COARSE SEDIMENT TRANSPORT DYNAMICS IN A 

REGULATED STREAM

7.1 Chapter overview

This chapter presents a temporal assessment of coarse sediment transport dynamics in a 

regulated stream, including during Artificial Floods (AFs). First, the importance of 

understanding this topic is presented followed by an appraisal of current gaps in research and 

identification of aims of the study. Next, the methods and analytical techniques used to 

undertake the study are detailed. This is followed by sections presenting and discussing the 

results, including recommendations for further research.

7.2 Introduction

Sediment transport in streams can be viewed as a key process in the control of channel form at a

variety of scales, for example, interstices between clasts and patches such as riffles or pools 

(Bridge, 1993; Church, 1995; Pitlick & Wilcock, 2013). Channel form is intrinsically linked to 

biological processes (ASCE, 1992) (e.g. throughflow of water in gravel interstices is required 

for the successful gestation of some fish eggs (Sear, 1993)). Given these relationships, 

understanding the influence of anthropogenic pressures on sediment transport is important, 

especially given the biocentricism of contemporary freshwater legislation e.g. the EU Water 

Framework Directive (EU WFD) (EC, 2000) and the Clean Water Act (USC, 2002).

In the northern hemisphere 77% of total stream discharge is affected by fragmentation of stream

channels resulting from reservoir operation, inter basin diversion and irrigation (Dynesius and 

Nilsson, 1994). An understanding of any impact that these activities have on sediment transport 

is therefore vital. Furthermore, contemporary legislation such as the EU WFD (EC, 2000) 

requires that regulated streams meet an ecological standard (Good Ecological Potential (GEP)) 

based on abiotic and biotic aspects of stream ecology. AFs have been suggested as a potential 

tool to enable the achievement of GEP through mitigation of impacts associated with regulation 

(Acreman & Ferguson, 2010). Thus, it is also important that the relationships between AFs and 

sediment transport are understood to allow for an appraisal of whether AFs could successfully 

be used as mitigation.

Numerous studies have assessed the impact of regulation on downstream geomorphology (see 

Chapter 2 for discussion). Reservoir outflows typically lack suspended and coarse sediment 
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(e.g. Dendy & Cooper, 1984; Verstraeten & Poesen, 2000; Kummu, 2010) resulting in 

downstream bed armouring (coarsening) (Carling, 1988; Brandt, 2000) and/ or bed degradation 

(removal of all sediment clast sizes) (Brandt, 2000) respectively. Due to the reduction of 

extreme high flow events which would typically re-work gravels and erode banks, bed 

stabilisation has also been observed (Carling, 1988; Brandt, 2000). The extent to which these 

effects occur are highly variable and depend upon factors such as trapping efficiency of the 

reservoir, flow regime, and downstream geology (Carling, 1988). Nevertheless, it is likely that 

where these effects occur, downstream sediment transport regimes will be affected, potentially 

resulting in a reduction of overall transport (due to reduced supply) and a higher threshold 

discharge required to initiate transport (due to bed stabilisation). To assess these hypotheses, a 

process based approach is required.

Process based understanding of sediment transport in streams has been cited as a key research 

priority (Petts & Lewin, 1979; Carling, 1988), yet few studies have addressed this need and 

those that have (Gilvear, 1987; Lyons, 1992; Sear, 1993), have primarily focussed on transport 

of suspended sediment, most likely reflecting the limitations associated with monitoring the 

coarse component (Reid et al., 2007; Turowski & Rickenmann, 2011). This has resulted in a 

dearth of process based understanding of coarse sediment transport in regulated streams. A 

detailed understanding of elements of the relationship between discharge and sediment 

transport, including an appreciation of temporal variability and controlling factors (e.g. 

antecedent conditions), is therefore required to inform and enable successful management of 

these systems. For example, implementation of sediment transport specific mitigation measures 

under the EU WFD (UKTAG, 2008).

A recent global review found that only three publications have examined coarse sediment 

transport response to AFs (Gillespie et al., in press (b)). All of these studies employed pre- and 

post- flood (i.e. not during) assessments to infer whether coarse sediment transport occurred 

(Scullion & Sinton, 1983; Petts et al., 1985; Murle et al., 2003). The limited number of 

published observations concerning sediment transport during AFs is now driving the 

requirement for understanding at regional scales (Poff & Zimmerman, 2010; Gillespie et al., in 

press (b)). It is therefore crucial that the establishment of understanding in responses of coarse 

sediment transport to AFs occurs at the site scale to enable larger regional based inferences to be

made. 

The development of general relationships between hydrological parameters (e.g. flood 

magnitude) and ecosystem response variables has been used to identify quantitative 

relationships and potential threshold levels of hydrological parameters that invoke an ecosystem

response (e.g. Poff & Zimmerman, 2010; Gillespie et al., in press (b)). The assessment of these 



130

relationships during AFs with respect to conditions prior to the implementation of AFs could be 

used to examine the potential for use AFs in management of regulated streams. To date, this has 

not been conducted for any regulated stream globally for coarse sediment transport.

The development of sediment impact sensors has enabled the monitoring of coarse sediment 

transport in streams (e.g. Carling, 2002; Reid et al., 2007; Turowski et al., 2011). Sediment 

impacts sensors are formed of impact-sensitive loggers attached to steel plates which are 

installed flush with the streambed. Any impact on the plate (of a clast of diameter > c.12mm (P. 

Downs (Plymouth University) pers. comm. 14th December 2013)) is logged and thus relative 

numbers of impacts per unit time can be used as a proxy for sediment transport. These sensors 

have been shown to negate some of the limitations associated with traditional techniques and 

provide results in line with contemporary theory (Carling et al., 2002). However, there are two 

key limitations of the devices as outlined by Reid et al., 2007: first, the response of the sensor is 

non-linear (Carling et al., 2002) resulting in a conservative estimate at high impact rates and 

second, representative data for whole channel width impact rates are hard to obtain as sediment 

is often routed along defined pathways (Reid et al., 2007). Nevertheless, the sensors have 

proved useful for the identification of the timing of sediment transport events and relative 

transport intensities through time (Reid et al., 2007). To date, these instruments have not been 

deployed in a regulated stream and therefore have the potential to reveal novel insights into 

coarse sediment transport in these systems.

This chapter reports on a detailed one year study of coarse sediment transport in a regulated 

upland UK stream using sediment impact sensors. A series of AFs were also conducted allowing

for an assessment of the impact of AFs on coarse sediment transport. Finally, a comparison of 

the relationship between hydrological parameters and ecosystem responses during AFs is made 

with respect to conditions prior to implementation of AFs. Specifically, the aims of the study 

were to: (i) quantify the relationship between discharge and coarse sediment transport in a 

regulated stream, including the identification of threshold discharges required to invoke 

transport; (ii) carry out an appraisal of this relationship through time and assess the importance 

of flood characteristics and antecedent conditions on transport; (iii) identify any impacts of AFs 

on coarse sediment transport, and, (iv) consider the potential for use of AFs to manage 

downstream morphology. It was hypothesised that (H1) the sediment transport-discharge 

relationship and threshold discharge to invoke sediment transport would vary temporally 

reflecting antecedent flow conditions and (H2) AFs would invoke sediment transport and 

therefore demonstrate potential for use as a morphological management tool.
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7.3 Methods

7.3.1 Sensor description and installation

Sediment impact sensors were custom built using a piezioelectric bimorph vibration element 

and a Tinytag TGPR-1201 count logger (set to not record more than one count per 0.2s) and 

were similar to those used in previous studies (e.g. Reid et al., 2007; Rickenmann & McArdell, 

2007; Turowski & Rickenmann, 2010; Turowski et al., 2011) The impact plate of each sensor 

was 150 x 130 x 6mm and formed of 304 grade stainless steel (Figure 7.1). Three impact 

sensors were mounted in a row on a custom built steel frame at c. 300mm intervals (Figure 7.2).

The frame was then installed flush with the streambed, perpendicular to the bank, in riffle 

habitat typical of site 7. The position of the sensors was determined so that data could be 

obtained at the channel centre and laterally towards the right hand bank (looking downstream) 

to provide a representation of sediment transport over a variety of morphological conditions. 

Dataloggers were set to record the total number of impacts in each two-minute period and were 

downloaded (and internal clocks reset to reduce drift) approximately every eight weeks.

7.3.2 Discharge

To inform the assessment of coarse sediment transport within the stream, water level at site 7 

was recorded at 15 minute intervals and converted to discharge according to the method 

described in Chapter 5. Water level-discharge rating curves and water levels recorded during the

period of study for site 7 are detailed in Appendix B.

7.3.3 Time scale

To assess the relationship between discharge and coarse sediment transport prior to the 

introduction of AFs, data were selected for analysis for the period 19th August 2012 to 19th 

August 2013 inclusive. This was after the first major flood event post-installation to allow for 

sediment in the vicinity of the sensors to settle after disruption during installation.

To assess the impact of AFs on coarse sediment transport, data were selected for analysis for 

each AF day. AFs were carried out by YW on the 20th August, 19th September , 3rd October and 

5th November 2013 (AFs 1-4 respectively) from reservoir C. The characteristics of each AF 

represented a balance between the practical restrictions placed on YW by the EA, local 

stakeholders, water resource availability and the capability of reservoir infrastructure to 

implement a flood. For these reasons, each AF differed in characteristics. However, during all 
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AFs, water was drawn from the lowest vertical valve within the water column.



Figure 7.1: Sediment impact sensor: below, side and above (L-R).
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Figure 7.2: Impact sensors mounted on frame (top) and installed in stream (bottom).
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7.4 Data analysis

7.4.1 Quality control procedure

To ensure quality of impact sensor data, first, as sensors had to be disturbed during download, 

data were removed for these periods. Data were then scanned by eye for irregular or stochastic 

records that were assumed not to be realistic (see Appendix C for details of removed data). This 

resulted in removal of data from one logger between 19:12 and 21:36 on the 26th April 2013 

where impacts were logged and presumed to be caused by human/ animal disturbance as 

discharge was relatively low and no impacts were recorded for either other sensor. Quality 

control of discharge data was carried out as detailed in Chapter 5. Prior to pairing of impact 

sensor and discharge data, impact sensor data were binned to 15 minute periods, then the mean 

number of impacts per m2 per 15 minute period (I) was calculated across all three sensors. To 

ensure comparability of sensor and discharge datasets, where data were removed during quality 

control from one sensor, data for the corresponding time period for all other sensors were also 

removed.

7.4.2 Coarse sediment transport dynamics

To assess temporal variation in the relationship between discharge and number of impacts, 

datasets was split based on a priori identification of frequently and infrequently flooded periods

(prior to and post- March 2013 respectively). Plots of instantaneous discharge and I were then 

produced. To test the hypothesis that during frequently and infrequently flooded periods, the 

relationship would differ (H1), ANCOVA between the two time periods using Generalized 

Additive Modelling (GAM) (Wood, 2011) was performed according to the model:

I =α+βT+s (Q)+ε  where T = time period,  s(Q) = instantaneous discharge (Q) fitted as a

smooth term, α = regression intercept, β = regression coefficient and ε = error term. GAM was 

used as it provided a better fit (according to AIC) than a Generalised Linear Model (GLM). 

Approximate normal distribution, independence and homogeneity of residuals was ensured prior

to assessment of significance of T using t-statistics and associated p-values. Next, identification 

of threshold discharge required to mobilise sediment transport was undertaken through 

graphical analysis of discharge categories and mean I (Ī) that occurred at each category. Datasets

were split by March 2013 to test the hypothesis that mobilisation threshold discharge would 

differ in frequently and infrequently flooded periods (H1).

To identify the relationship between coarse sediment transport and discharge indices during pre-

AF floods, first, discharge indices were calculated for each flood as described in Chapter 5. 
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Next, total mean number of impacts per m2 per 15 minutes (∑I) that occurred during each flood 

were calculated and summary statistics presented and plots of each relationship drawn. 

To identify the relative importance of both hydrological indices and antecedent conditions a 

similar method to Angert et al. (2011) was followed: GLMs provided the best fit (cf. GAMs) 

and were therefore used to model ∑I during each flood using the indices listed in Table 7.1 as 

explanatory variables. Explanatory variables were chosen based on a priori understanding of 

potential influencing factors on sediment transport and were similar to those used by Sidle 

(1988). Inter-variable correlations were all between -0.7 and 0.7 (e.g. Angert et al., 2011). A 

gamma error distribution with log link function was specified in each model to ensure 

approximate normal distribution, independence and homogeneity of residuals. The best subset 

of models was identified using AICc (AIC adjusted for small sample sizes as n/K < 40 where n= 

number of observations and K = number of explanatory factors (Burnham & Anderson, 2002)) 

and all models with AICc differences (Δi = AICi - AICmin) ≤ 2 were reported. To account for 

model uncertainty, model averaging was then performed for all coefficients of explanatory 

factors included in reported models. All statistical analyses were performed in RStudio (version 

0.97.551) using packages MuMin (Barton, 2013) and glmulti (Calcagno, 2013).

Table 7.1: Descriptions of explanatory variables included in GLMs.

Explanatory variable Description

Magnitude (Fi) Magnitude of flood i

ROC falling (Fi) Rate of change (falling limb) of flood i

Magnitude (Fi-1) Magnitude of previous flood

ROC falling (Fi-1) Rate of change (falling limb) of previous flood

Duration (Fi-1) Duration of previous flood

ROC rising (Fi) Rate of change (rising limb) of flood i

ROC rising (Fi-1) Rate of change (rising limb) of previous flood

Duration (Fi) Duration of flood i

Time between peak discharge (Fi - Fi-1) Time between peak discharge of flood i and previous flood

Time between start of Fi and end of  Fi-1. Time between end of previous flood and start of flood i 

Impact of Artificial Floods

Discharge indices and ∑I were calculated for each AF using the methods described above. 

Graphical representation was then used to assess the relationship between AF indices and ∑I 
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with respect to the relationship defined for pre-AF floods. This would allow for assessment of 

the hypothesis that AFs would demonstrate potential for use as a morphological management 

tool (H2).

7.5 Results

7.5.1 Sediment transport dynamics

Ī for the assessment period was 129 (st. dev. 815) and the maximum was 26,820. A duration 

frequency curve of I displayed relatively few impacts for c. 30% of the study duration and an 

approximate logarithmic increase in I occurring below this exceedance frequency (Figure 7.3). 

Visually, I appeared to be broadly correlated to discharge and the majority of impacts occurred 

prior to March 2013 (Figure 7.4). For the entire assessment period, a general power relationship 

between instantaneous discharge and I was apparent, but relatively large numbers of impacts at 

low discharges were observed resulting in a poor model fit (R2 : 0.64) (Figure 7.5). This 

relationship post-March 2013 was not significantly different from pre-March 2013 (GAM 

model: R2 : 0.71, t : -1.53, p = 0.13). For the entire assessment period, a relatively large increase

in Ī was observed at discharges between 0.5 and 0.8 m3/s; pre-March 2013 also displayed this 

trend, but this large increase was not seen post-March 2013 evident in a difference of c. 0.2 m3/s

associated with an Ī of c. 200 for pre- and post-March 2013 (Figure 7.6).
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Figure 7.3: Exceedance curve for mean number of impacts (I).



Figure 7.4: Temporal dynamics of mean number of impacts (I) (blue) in relation to discharge (orange (>Q25) / pink (<Q25)).



140

Figure 7.5: Mean number of impacts (I) against instantaneous discharge <March 2013 (blue) 
and >March 2013 (red).
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7.5.2 Event based analysis

Mean ∑I  was 88,897 (st. dev. 255,521) and a maximum ∑I  of 1,542,667 was recorded (Table

7.2). Mean hydrological indices were 233.27, 1.81, 3.13, 1.29 for magnitude (% increase), 

duration (days) and ROC rising and falling (m3/s/ day) respectively (Table 7.2).

During floods of up to a 400% increase in magnitude, relatively few impacts occurred. 

However, a broadly positive association between flood magnitude and ∑I was observed for 

floods of magnitude > 400% increase. A broadly positive association between flood duration 

and ∑I  was observed, but no clear association between flood ROC for either falling or rising 

limbs and ∑I  was observed (Figure 7.7).

Figure 7.6: Plot displaying mean mean number of impacts (Ī ) at discharge <1 cumec for entire 
study period (full black line), <March 2013 (blue dashed) and > March 2013 (red dashed).
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Table 7.2: Hydrological indices and total mean number of impacts per m2 per flood (∑I ) for 
pre-Artificial Flood floods.

∑I Magnitude (% increase) Duration (days) ROC rising 

(m3/s/day)

ROC falling 

(m3/s/day)

Mean 88892 233.27 1.81 3.13 1.29

St. dev. 255521 336.66 3.59 7.74 4.03

Min. 0 1.69 0.03 0.05 0.06

Max. 1542667 1,421.45 22.02 51.08 28.11

Figure 7.7: Plots of total mean number of impacts per m2 per flood (∑I) against hydrological 
indices for pre-Artificial Flood (AF) floods (red) and AFs (blue).
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A clear trend in I throughout all floods was not evident, but four distinct types of response could

be identified: (i) a general positive relationship between discharge and I was identified for nine 

floods (21st, 25th, 29th & 30th September 2012, 12th & 18th October 2012, 26th November 2012, 

14th February 2013 & 15th May 2013). (ii) a clear peak in I prior to maximum discharge was 

Figure 7.8: Hysteresis curves of mean number of impacts/m2/15 minutes (I) against discharge 
for each flood during the study period. Lines are coloured to follow progression from the start 
to end of each flood (red  blue  gold  black respectively).
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evident in floods on two occasions (3rd October 2012 & 31st December 2012), whereas the 

opposite (iii) was observed in four floods (21st August 2012, 16th September 2012, 3rd November

2012 & 29th January 2013). The relationship between discharge and I in remaining floods was 

either complex (e.g. 29th October 2012) or unclear due to short flood duration (e.g. 2nd July 

2013) (iv) (Figure 7.8).

Assessment of association of explanatory variables with ∑I  identified nine models with Δi ≤ 2. 

Of these models, none contained variables: duration (Fi), time between peak discharge (Fi – Fi-1)

or time between start of Fi and end of  Fi-1. All models contained variables magnitude and ROC 

falling (Fi) significant at p < 0.05. Model averaging revealed that these latter two variables 

shared equal Akaike weights of 1.00. However, of these two variables, only coefficients for 

magnitude (Fi) had 95% CI that did not encompass 0 (1.37 to 2.53, estimate: 1.95) (Table 7.3).



Table 7.3: Results of model selection and averaging for models relating flood (Fi) and antecedent condition indices to ∑I. Variables included within each model are 
delineated with the symbol ● and models are ranked in order of increasing AICc differences (Δi). Akaike weights (wi) indicate the relative likelihood of each model, 
given the set of models considered (Burnham & Anderson, 2002) (models were considered if Δi ≤ 2). Model-averaged regression coefficients (β) are averages of βi 
of all considered models weighted by each model's wi and β = 0 where a variable was not selected for inclusion within a model. Model average β 95% CI that do not
encompass 0 are delineated in bold. Relative variable importance (wip) is the sum of all wi across all models including that variable (Burnham & Anderson, 2002).

Model rank Model average

Variable 1 2 3 4 5 6 7 8 9 β 95% CI wip

Magnitude (Fi) ● ** ● ** ● ** ● ** ● ** ● ** ● ** ● ** ● ** 1.95 1.37 to 2.53 1.00

ROC falling (Fi) ● ** ● * ● * ● ** ● ** ● * ● ** ● ** ● * -0.59 -1.19 to 0.01 1.00

Magnitude (Fi-1) ● * ● * ● * ● ● -0.87 -1.56 to -0.17 0.57

ROC falling (Fi-1) ● ● ● ● 0.47 -0.20 to 1.14 0.47

Duration (Fi-1) ● ● ● -0.40 -1.00 to 0.20 0.29

ROC rising (Fi) ● 0.48 -0.25 to 1.21 0.08

ROC rising (Fi-1) ● -0.34 -0.92 to 0.24 0.07

Duration (Fi) - - -

Time between peak discharge (Fi - Fi-1) - - -

Time between start of Fi and end of  Fi-1. - - -

Δi 0.0 0.4 0.8 1.0 1.3 1.3 1.6 1.9 2.0

wi 0.19 0.16 0.12 0.11 0.10 0.10 0.08 0.07 0.07

*p < 0.05, **p < 0.01.
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7.5.3 Artificial Flood analysis

Peak magnitude of AF1 was < Q25 discharge and therefore hydrological indices could not be 

calculated for this AF according to the method described in section 5.3. The highest ∑I  

occurred during AF4 (649.57). Peak I during this AF was 290.60 which occurred prior to peak 

discharge. ∑I  during AFs 2 and 3 was 34.19 and 136.75 respectively, but values of I observed 

during AFs were not dissimilar to those prior to each AF (Figure 7.9).

Figure 7.9: Temporal dynamics of mean number of impacts (I) (red lines) during Artificial 
Floods 1-4 (panels A-D respectively). Discharge during each AF is shown in black.

Comparison of the relationship between hydrological indices and ∑I  between pre-AF floods 

and AFs revealed that relationships were similar for flood magnitude and duration. ROC (rising 

limb) of two AFs were larger than observed for any of the pre-AF floods, but the relationships 

were not dissimilar to those observed for pre-AF floods. The relationships observed for ROC 

(falling limb) during AFs were also not visually dissimilar to those observed for pre-AF floods 

(Figure 7.7). 
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7.6 Discussion

A process based understanding of coarse sediment transport in regulated streams is currently 

lacking. This chapter has reported on a detailed study of coarse sediment transport dynamics in 

an upland UK regulated stream over a year of contrasting flows. A holistic and event focussed, 

process based assessment of coarse sediment transport dynamics was undertaken revealing 

novel results. Finally, a comparison of the relationship between hydrological indices and coarse 

sediment transport during AFs was carried out with respect to these relationships identified 

during pre-AF floods. The following is a discussion of each of these themes in turn.

7.6.1 Sediment transport dynamics

Mean number of impacts was generally positively associated with discharge as observed by 

other authors for unregulated streams (e.g. Reid et al., 2007; Turowski & Rickenmann, 2011). 

However, the relationship did not follow a clear trend due to 'noise' at low discharges where 

relatively high numbers of impacts were recorded. It is proposed that these records are 

potentially due to bank collapse or bed destabilisation due to preceding high flow (e.g. 

Klingeman & Emmett, 1982). Alternatively, the relative lack of datapoints at higher discharges 

may be due to saturation of the sensors (Reid et al., 2007) or it may be that clast saltation length 

at high discharges is larger than the impact plate dimensions of each sensor resulting in an 

underestimate of sediment transport at these discharges. Further research is therefore required to

test these hypotheses. Nevertheless, this is the first study to demonstrate that coarse sediment 

transport in a regulated stream is broadly positively correlated with discharge as observed in 

unregulated streams.

Discharge during the assessment period of this study was classified into frequently and 

infrequently flooded periods (prior to and post-March 2013 respectively). It was hypothesised 

that the relationship between discharge and number of impacts would differ between these 

periods (H1), but this study found no statistical evidence for a difference suggesting that the 

holistic relationship did not differ between relatively dynamic and banal discharge regimes. 

However, examination of threshold discharges required to stimulate sediment transport revealed

that higher discharges (c. 0.2 m3/s) were required to elicit c. 200 impacts/ m2/ 15 minutes during 

the infrequently flooded period cf. the frequently flooded period. This was in agreement with 

the hypothesis that different threshold discharges would be observed between periods (H1) and 

was potentially due to changes in sediment supply or differences in the characteristics of floods 

between periods. Bed armouring during periods of infrequent flooding is commonly observed in

gravel-bed regulated streams (e.g. Sear, 1993; Vericat et al., 2006) and it may be that the 
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development of an armoured, more stable bed contributed to this change in threshold. Further 

assessment would be required to confirm the drivers of this change.

7.6.2 Event based analysis

Flood based analysis of sediment transport revealed that relatively low gross sediment transport 

occurred in small floods (< 400% increase from the Q25), but during larger floods, a positive 

relationship between flood magnitude and gross sediment transport was observed suggesting 

that c. 400% flood magnitude increase over Q25 acts as a threshold for sediment transport, 

potentially relating to physical change, for example, bank collapse or mobilisation of a 

relatively abundant clast size. The sensors utilised by this study do not allow for assessment of 

clast sizes involved in transport and this is a key priority for future research. Flood duration 

appeared to be generally positively associated with gross sediment transport, but several 

extreme outliers reduced the validity of the general relationship. No clear association between 

either ROC rising or falling could be identified, suggesting that the key driver of gross sediment

transport is flood magnitude.

Considerable variation in discharge-number of impacts hysteresis curves was evident indicating 

a temporally complex relationship as observed in other gravel bed streams (e.g. Moog & 

Whiting, 1998; Ryan et al., 2005). In the majority of floods, no clear pattern was evident, but a 

general positive relationship between number of impacts and discharge was observed in nine 

floods, while peaks in impacts were observed post-peak discharge (anticlockwise hysteresis) on 

four occasions and the opposite (clockwise hysteresis) in two floods. Asynchronous peaks in 

discharge and number of impacts in some, but not all floods suggests that these observations are

driven by factors specific to each flood, rather than associated with sensor capability. This gives 

weight to the earlier hypothesis that bank collapse or bed destabilisation due to preceding high 

flow (e.g. Klingeman & Emmett, 1982) may have driven relatively high numbers of impacts at 

low discharges. Alternatively, in the case of clockwise hysteresis, exhaustion of sediment supply

prior to peak discharge is likely (Dunne & Leopold, 1978; Moog & Whiting, 1998). Further 

research is therefore required to assess these hypotheses.

An assessment of the relative importance of flood and antecedent indices revealed that flood 

magnitude was the most important factor in prediction of gross sediment transport in agreement 

with other studies (e.g. Bogen et al., 2003). A β of 1.95 represented the positive association 

between the two variables. ROC falling also had a high importance, but 95% CI for the 

coefficient encompassed zero and therefore the effect of this factor is uncertain. Magnitude of 

the previous flood was the third most important factor in prediction of gross sediment transport 
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(β: - 0.87) and 95% CI for this factor did not encompass zero, suggesting a negative relationship

between these two variables. This gives support to the argument that previous floods of high 

magnitude can reduce gross sediment transport of a following flood, potentially through 

reduction of sediment available for transport (e.g. Sidle, 1988). Of the antecedent indices tested,

time between peak discharges of a flood and the previous flood and time between the end of the 

previous and the start of the current flood were not included in any of the best models and it is 

therefore suggested that these factors are not significantly related to gross coarse sediment 

transport. Remaining antecedent factors were identified as important to some extent, but 

uncertainty due to the coefficient 95% CI for all of these factors encompassing zero suggests 

that the importance of these factors should be treated with caution. This is the first study to 

identify the importance of antecedent flow conditions in predicting coarse sediment transport in 

a regulated stream and this observation is likely to be an important consideration in the 

management of such streams.

7.6.3 Artificial Flood analysis

Prior to this study, few publications had reported on coarse sediment transport response to AFs. 

Scullion & Sinton (1983) inspected the stream bed pre- and post-AF and stated that coarse 

sediment transport did not occur and Petts et al. (1985) noted the transport of small diameter (< 

35mm) gravel. More recently, Murle et al. (2003) described channel morphological changes 

after a series of AFs and suggested that coarse sediment transport had occurred. This study 

observed that coarse sediment transport (above that of background transport) occurred only 

during one (the largest in magnitude) out of four successively larger magnitude AFs (peak 

magnitudes of 0.18, 0.35, 0.60 and 0.91 m3/s respectively representing c. Q33, Q19, Q6 and Q4 

flows prior to AFs) suggesting that the threshold discharge for coarse sediment transport during 

these AFs was between 0.60 and 0.91 m3/s. This was consistent with observations made in pre-

AF floods post March 2013. Notably, peak coarse sediment transport in AF4 occurred prior to 

peak discharge indicating limitation of sediment supply. Further research is required to assess 

whether this is a consistent observation for AFs, as this may have important implications for 

management of regulated streams.

Comparison of the relationship between hydrological indices and gross sediment transport 

between pre-AFs and AFs highlighted that apart from ROC rising, relationships were 

comparable for both flood types. AF rising limb ROC were higher than those observed in pre-

AF floods and responses were therefore not comparable. It is important to note however, that 

gross sediment transport during each AF was relatively small compared to observed during pre-

AFs (likely due to the relatively small magnitudes of each AF) and there is therefore a need to 
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assess coarse sediment transport during AFs of larger magnitude in order to better understand 

the relationships between hydrological indices and coarse sediment transport. Although limited 

data were available for comparison between AFs and pre-AF floods, in agreement with findings 

elsewhere (e.g. Petts et al., 1985; Murle et al., 2003), the data suggest that, in agreement with 

H2, AFs could potentially be used as a tool for the management of the coarse sediment regimes 

in regulated streams. There is however a clear need for a detailed understanding of the 

relationship between AF characteristics and coarse sediment transport to enable informed 

management decisions to be taken.

7.7 Summary

This study is the first to take a process-based approach to examination of coarse sediment 

transport in a regulated stream. The ability to relate discharge to coarse sediment transport and 

identify threshold discharges and relative transport rates during distinct flood events has been 

demonstrated. Sediment transport was generally positively correlated with discharge. It was 

proposed that deviances from this association were due to discrete events (e.g. bank collapse) 

rather than an artefact of the sensors used. This assumption was further evidenced through 

assessment of hysteresis curves which demonstrated considerable variability of sediment 

transport dynamics during each flood. Threshold discharges required to stimulate sediment 

transport appeared to be temporally variable, demonstrating the importance of antecedent 

conditions.

Flood based analysis of coarse sediment transport revealed that a discharge increase of ~400% 

above Q25 appeared to act as a general threshold for significant sediment transport, potentially 

linked to physical change (e.g. mobilisation of a particularly abundant clast size). Total sediment

transport during floods was most associated with flood magnitude (positive relationship), but 

interestingly, magnitude of the previous flood was negatively associated with total sediment 

transport indicating that sediment supply after large floods may be limited for transport in 

subsequent floods.

Significant coarse sediment transport only occurred in the final, largest magnitude, AF. This 

finding was consistent with the relationship between discharge and sediment transport prior to 

AFs and gives weight to the argument for the use of AFs as a morphological management tool.

Whilst this study has improved the basic understanding of coarse sediment transport dynamics 

in a regulated upland stream, the following remain key research priorities: (i) a spatio-temporal 

assessment of the impact of stream regulation on coarse sediment transport dynamics, and (ii) a 

spatio-temporal assessment of the impact of AFs on coarse sediment transport under a range of 
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flow and antecedent conditions. It is suggested that the impact sensors utilised in this study 

could be used to, in part, successfully achieve these aims. It is suggested that without the 

achievement of these aims, the management of regulated upland stream sediment regimes is 

likely to be unsuccessful due to the complex interaction of factors which can determine 

sediment transport.
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8 MACRO-SPATIAL IMPACTS OF REGULATION ON 

MACROINVERTEBRATE ASSEMBLAGES

8.1 Chapter overview

This chapter presents a macro-scale (regional) assessment of the impact of regulation on 

downstream benthic macroinvertebrate assemblages. First, the importance of understanding this 

topic is presented followed by an appraisal of current gaps in research and identification of aims

and hypotheses of the study. Next, the methods and analytical techniques used to undertake the 

study are detailed. This is followed by sections presenting and discussing the results, including 

recommendations for further research.

8.2 Introduction

Approximately 15% of the world’s stream flow can be impounded by dams (Nilsson et al., 

2005). In the northern hemisphere 77% of total stream discharge is either strongly or moderately

affected by fragmentation of stream channels resulting from reservoir operation, inter-basin 

diversion and irrigation (Dynesius and Nilsson, 1994). In the UK, compensation flows from 

many reservoirs have historically been set in excess of pre-reservoir Q95 resulting in elimination 

of extreme low flows (Higgs & Petts, 1988; Gustard, 1989). This effect is particularly prevalent 

at sites within the Humber catchment; for example, discharge downstream of Scout Dike 

reservoir was estimated to have increased from 6 to 21% of the pre-regulation mean discharge 

(Gustard et al., 1987). Additionally, across the UK, average post-impoundment peak discharges 

have been reduced to 74% of the maximum level observed prior to regulation (Gustard, 1989). 

For example, in the Humber catchment, 67% of large floods were recorded to be retained by 

Ladybower reservoir. These changes in flow are likely to have resulted in modification of 

downstream macroinvertebrate assemblages, and the understanding of such impacts is crucial 

for effective management of these systems under contemporary ecocentric legislation (e.g. the 

Water Framework Directive (EU WFD) (EC, 2000)).

The EU WFD requires member states to ensure that water bodies classed as heavily modified 

meet Good Ecological Potential (GEP) unless derogation is appropriate (UKTAG, 2008). Water 

bodies are classed as heavily modified when they are likely to fail to meet Good Ecological 

Status (GES) (see Acreman and Ferguson, 2010) due to physical alteration, leading to 

modification of the flow regime (Acreman et al., 2009). Environmental flows (Acreman and 
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Ferguson, 2010) have been suggested as a potential tool to enable the achievement of GEP. 

However, without sound understanding of the impact of reservoirs on macroinvertebrates, the 

necessity of introducing environmental flows may be questioned.

The impact of stream regulation on benthic macroinvertebrates downstream of impoundments 

has been the focus of many studies worldwide, yet varied observations have been made leading 

to a lack of clarity in understanding. In response to regulation, total abundance has been 

recorded to increase at some sites (e.g. Armitage, 1978; Munn & Brusven, 1991) but decrease at

others (Englund & Malmqvist, 1996). Additionally, responses of some taxonomic groups have 

been observed to vary, for example, no change or decrease in abundance of Coleoptera (Spence 

& Hynes, 1971 and Nichols et al., 2006, respectively). Furthermore, varied responses in 

diversity have also been observed (increased: Poole and Stewart, 1976; Penaz et al., 1968; 

Maynard and Lane, 2012; decreased: Pearson et al., 1968; Armitage 1978; Munn & Brusven, 

1991). Further research is required to both clarify and understand the mechanisms behind these 

differential responses.

Research into the impact of regulation on downstream macroinvertebrates has typically taken a 

two-tier ‘binary’ approach to classify streams (i.e. regulated or unregulated) (e.g. Armitage, 

1989) rather than more detailed ‘continuous’ descriptors of the extent of regulation. The scale at 

which research has been undertaken may also be important: research conducted on single 

streams (Petts et al., 1993; Maynard and Lane, 2012) has identified clear impacts but has the 

shortcoming of failing to identify patterns over larger scales. Regional-scale studies (e.g. 

Growns and Growns, 2001) have the potential to yield a better understanding of how regulation 

drives changes in biotic pattern and process. Moreover, this approach has the additional benefit 

of being aligned with current water legislation (e.g. EU WFD (EC, 2000)) which utilises 

regional management plans (i.e. River Basin Management Plans).

Recently developed indices such as the Lotic Invertebrate index for Flow Evaluation (LIFE)  

(Extence et al., 1999) and Proportion of Sediment-sensitive Invertebrates (PSI) (Extence et al., 

2013) may be useful in identification of impacts of stream regulation on macroinvertebrate 

assemblages. LIFE has been developed to link macroinvertebrate community composition to 

hydrological dynamics and thus may be particularly useful in regulated stream research as 

hydrology can be significantly modified by impoundment as discussed above. PSI scores have 

been shown to reflect the extent to which stream surface sediment is either composed of, or 

covered by, fine sediment (Extence et al., 2013) and, due to geomorphological modifications 

associated with stream regulation such as bed armouring (reduction of fine sediment) (Carling, 

1988; Brandt, 2000), the use of PSI in these systems is potentially appropriate. Both LIFE and 

PSI are abundance-weighted and are calculated based on taxon-specific flow (Extence et al., 
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1999) and habitat (Extence et al., 2013) associations, respectively. Higher LIFE scores indicate 

higher prevailing antecedal flows (Extence et al., 1999) whereas higher PSI scores indicate 

minimally/ unsedimented substrate (Extence et al., 2013). While these relationships have been 

quantified and substantiated (Extence et al., 1999; Monk et al., 2008; Dunbar et al., 2010(a & 

b); Extence et al., 2013; Worrall et al., 2013; Glendell et al., 2014) for streams in England and 

Wales, neither index has been used to assess the impacts of upstream impoundment per se.

In light of the identified research gaps this chapter aimed to identify relationships between the 

extent of stream regulation and macroinvertebrate communities. It takes a multi-site, regional-

scale approach and advances a new index representing the extent of stream regulation. It also 

evaluates two recently developed indices (LIFE and PSI) alongside established biomonitoring 

indices to consider their relative performance for assessment of the impacts of regulation. It was

hypothesised that: (H1) macroinvertebrate indices and community composition would both be 

affected by upstream impoundment with some taxa increasing and others decreasing in 

abundance relative to their sensitivity to changes in flow; (H2) A continuous index representing 

extent of regulation would be more sensitive to differences in community composition than 

categorical classifications and, (H3) LIFE and PSI would decrease as the extent of stream 

regulation increases, and demonstrate superior sensitivity to alternative indices such as diversity,

dominance, BMWP and ASPT in detecting any impacts.

8.3 Methods

8.3.1 Macroinvertebrate data

Data for 19 fully-regulated, 28 semi-regulated and 17 unregulated sites (see definitions below) 

were obtained from Yorkshire Water (YW; n=47), the Environment Agency (EA; n=15), and 

Severn Trent Water (STW; n=2). All samples were taken using a standardised 3-minute kick 

method, supplemented with a 1-minute hand search following EA (1997) procedures during the 

period March to May 2011. Samples were then sorted, macroinvertebrates counted and 

identified to species level where possible and subsequently subjected to an Analytical Quality 

Control procedure (EA, 1997) to ensure correct identification. Only upland sites (>150m aod) 

were sampled because, in the UK, 80% of large dams are in upland areas (Petts, 1988) and 

macroinvertebrate response to regulation has been found to vary between the uplands and 

lowlands (e.g. Armitage, 1978). Prior to data analyses, macroinvertebrate communities from 

each site were summarised using the indices listed in Table 8.1.
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8.3.2 Study sites

All sites were within the drainage basin of the River Humber in north-east England at altitudes 

of between 150 and 600 m above ordnance datum (aod) (Figure 8.1). The sites had drainage 

areas ranging from 0.8 to 221.7 km2 and were, on average, predominantly covered by forest/ 

semi-natural vegetation (CORINE, 2010) and had sand/ silt/ mud-stone surface geology (BGS, 

2012) (Table 8.2). Under EU WFD classification, none of the water bodies in which sites were 

located were classed as bad or poor for either macroinvertebrates or overall physical chemistry 

and the percentage of high, good and moderate classifications were similar between fully-, 

semi- and un-regulated site types (Table 8.3) (EA, 2014).

Table 8.1: Macroinvertebrate indices calculated for each site.

Index Notes

Taxonomic richness Total number of taxa per sample

1/ Simpson's diversity index

1/S=1/
∑ ni (ni−1)

N (N −1)
 where n is the number of individuals of taxon i 

and N is total number of individuals in a sample (e.g. Ramchunder et al., 2012)

Taxonomic dominance Berger-Parker index (D): D=N max / N  where Nmax is the number of 

individuals and N is total abundance in each sample (e.g. Ramchunder et al., 
2012)

LIFE Species level – calculated using ASTERICS (v 3.3.1) (AQEM, 2011)

PSI Species level according to Extence et al. (2013)

BMWP Calculated using ASTERICS (v 3.3.1) (AQEM, 2011)

ASPT Calculated using ASTERICS (v 3.3.1) (AQEM, 2011)

% relative abundance of 
Coleoptera; Diptera; 
Ephemeroptera; Plecoptera; 
Trichoptera and other

Selected to be comparable with previous research (e.g. Armitage, 1978)
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Table 8.2: Mean % land cover and geology types for drainage basins of all sites. Sources: 
CORINE (2010) and BGS (2012).

Mean % for drainage basins of all sites (St. dev.)

Land cover type

Artificial surfaces 1.2 (3.7)

Agriculture 35.9 (31.5)

Forests and semi-natural 45.3 (27.5)

Wetlands 15.9 (19.0)

Water bodies 1.8 (3.0)

Geology type

Sand/ silt/ mud-stone 64.6 (28.9)

Limestone 5.5 (17.7)

Clay 0.3 (1.0)

Peat 29.2 (27.7)

Igneous 0.1 (0.5)

Unknown 0.4 (1.5)

Table 8.3: Percent of EU WFD macroinvertebrate and physical chemistry (PC) classifications 
for water bodies of sites within this study (source: EA, 2014). Note: where data were not 
available (n=9 sites), data from the adjacent downstream water body were used.

% High % Good % Moderate

Macroinvertebrates PC Macroinvertebrates PC Macroinvertebrates PC

Fully-regulated 21.05 47.37 52.63 36.84 26.32 15.79

Semi-regulated 32.14 35.71 46.43 57.14 21.43 7.14

Unregulated 29.41 47.06 58.82 35.29 11.76 17.65
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8.3.3 Descriptive data

To aid explanation of any differences observed in macroinvertebrate communities, the following

information was collated for each site:

(1) Quantification of the extent of regulation (ER) was undertaken using three methods of 

varying resolution (low, medium and high): (a) ERLOW: differentiation between regulated (at 

least one reservoir upstream of site) and unregulated (no upstream reservoirs) – i.e. a binary 

approach; (b) ERMED: three categorical groups: (i) fully-regulated (reservoir upstream of site; no 

tributary influence), (ii) semi-regulated (reservoir upstream of site; unregulated tributary 

influence) or (iii) unregulated (no reservoir upstream of site); (c) ERHIGH: continuous score, 

Index of Regulation (IR) from 0 (fully-unregulated) to 1 (fully-regulated) based on both the 

number and size (Strahler, 1957) of tributaries. If a stream on which a site was located was 

neither fully-unregulated or fully-regulated (IR of 0 or 1, respectively), IR was calculated 

according to Equation 7.1 where k is the stream segment downstream of a confluence, SO is the 

stream order of each segment, i is the segment originating from a reservoir and j is the adjoining

Figure 8.1: Location of study sites used within this chapter. Sources: (USGS, 1998; EA, 2011; 
NE, 2012).
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tributary. Calculation of IR was repeated for each confluence between a site and the nearest 

upstream reservoir and the final IRk used to classify each site (see Figure 8.2 for worked 

example of IR calculation).

IRk =
SOi

SOi+ j

× IRi +
SO j

SO i+ j

×IR j                                    (Equation 7.1)

Tributary influence was defined as any tributary joining the stream segment between any 

reservoir and the site location on a 1:50,000 Ordnance Survey map (OS, 2012) and a reservoir 

was defined as a body of water held back by a dam listed in the British Register of Dams (Tedd 

and Hoton, 1994).

(2) Percentage land cover, surface geology and catchment size for each site were determined 

using a Geographic Information System (GIS) (CORINE, 2010; BGS, 2012; OS, 2012). Prior to

calculation of percentage cover, surface geology classification types were grouped into six 

categories (see Table 8.2).

(3) Altitude was calculated from a Digital Elevation Model (DEM) (USGS, 1998).

8.4 Data analysis

Prior to analyses, due to a high degree of colinearity between environmental data (points (2) and

(3) above), Principal Component Analysis (PCA) was conducted to condense the variables 

based on their correlative structure (e.g. Malmqvist & Hoffsten, 1999). In addition to the 

environmental factors detailed, survey date and data source were both included in the PCA to 

mitigate for these potential confounding effects. Principal components (PCs) were retained 

which together explained at least 80 % of the cumulative variance.

Univariate analyses

First, to assess the potential impact of regulation on macroinvertebrate indices and the relative 

sensitivity of each ER resolution, least squares regression (Pinheiro et al., 2013) was undertaken

with indices as response variables and ER and PCs as explanatory variables:

I =α+β ER+βPC +ε  where I = univariate biotic index, ER = extent of regulation, PC = 

principal component (the number included in each model was determined as described above), 

α = regression intercept, β = regression coefficient and ε = model error. For each index and ER 

resolution combination, Ordinary Least Squares (OLS) models were compared against  

Generalized Least Squares (GLS) models with spatial correlation structures using Akaike
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Information Criterion (AIC) and variograms (Zuur et al., 2009). Next, optimal models were 

checked to ensure approximate normality, independence and homogeneity of residuals (Zuur et 

al., 2009) prior to implementation of ANOVA F-tests to assess the significance of ER.

Multivariate analyses

To further assess how macroinvertebrate community composition varied with regulation, 

multivariate analyses were undertaken as follows: First, to test for differences in taxonomic 

composition between the classification categories at both ERLOW and ERMED resolutions, 

ANOSIM was conducted on a Bray-Curtis dissimilarity matrix of arcsin square-root 

Figure 8.2: Worked example for calculation of IR for site marked by filled circle. Reservoirs are
represented by filled polygons and stream reaches are marked by lines. IR = Index of 
Regulation; SO = stream order (only shown if SO>1).
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transformed relative abundance data (Oksanen et al., 2013). ANOSIM requires categorical 

grouping of variables and therefore could not be undertaken for ERHIGH. Second, to test for 

associations between ER resolutions and specific taxa, Redundancy Analysis (RDA) on arcsin 

square-root transformed relative abundance data was undertaken. RDA was appropriate as 

initial Detrended Correspondence Analysis (DCA) revealed that community variation was 

within 3.5 standard deviations and thus a linear ordination method (e.g. RDA) should be used 

(Lepš and Šmilauer, 2003; Borcard et al., 2011). Initially, PCs that explained at least 80% of 

cumulative variance in environmental variables were included in each model and final selection 

of explanatory variables was undertaken using a stepwise algorithm based on AIC (Zuur et al., 

2009). All statistical analyses were undertaken in R (v 2.15.3) (R, 2012) and results deemed 

significant where p < 0.05.

8.5 Results

Three PCs explained >80 % of cumulative variance in environmental factors and were retained 

for use in subsequent models. PC1, 2 and 3 accounted for 46, 21 and 13 % of total variance 

respectively (Table 8.4). PC1 was associated most strongly with altitude and reflected the 

transition from sand/ silt/ mud-stone geology to peat/ wetland. PC2 and PC3 were most strongly

associated with catchment size and forest/ semi-natural land cover respectively.

Univariate analyses

LIFE scores and % Coleoptera both had significant negative relationships with ERLOW, MED & HIGH 

(Table 8.5). Percent Ephemeroptera was observed to have a significant negative relationship 

with ERLOW & HIGH. Conversely, % others and % Trichoptera had significant positive relationships

with ERLOW, MED & HIGH and ERHIGH, respectively. Mean taxonomic richness, Simpson's Diversity 

Index (1/S), PSI, BMWP and ASPT scores were highest at unregulated sites and mean 

taxonomic dominance was highest at fully-regulated sites, but none of these differences were 

statistically significant.

Multivariate analyses

ANOSIM revealed significant differences in macroinvertebrate community composition 

between ER categories using both ERLOW (R=0.32 , p<0.01) and ERMED (R=0.17, p<0.01) 

resolutions. ERLOW, MED & HIGH were significant factors within the RDA models but explained only 

3.39, 3.62 and 4.07 % of total variance, respectively (Table 8.6). RDA axis 2 was negatively 

associated with ERHIGH (Figure 8.3) which had a positive association with Hydropsyche siltalai, 
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Chironomidae, Amphinemura sulcicollis, Oligochaeta and Potamopyrgus antipodarum and a 

negative association with Rhithrogena semicolorata, Brachyptera risi, Limnius volckmari and 

Elmis aenea (Figure 8.4).
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Table 8.4: Loading scores for each environmental variable explaining >80% of total variance 
in PCA.

PC1 PC2 PC3

Variable

Altitude -0.56 0.52 -0.20

Catchment size 0.08 -0.56 0.23

Geology:

Sand/ silt/ mud-stone 0.40 0.25 -0.41

Limestone 0.01 -0.23 0.02

Clay 0.01 -0.01 0.01

Peat -0.42 -0.01 0.38

Igneous 0.00 0.00 0.00

Unknown 0.00 -0.01 0.00

Land cover:

Artificial surfaces 0.02 0.01 0.02

Agriculture 0.47 0.35 0.28

Forests and semi-natural -0.23 -0.39 -0.63

Wetlands -0.26 0.03 0.33

Water bodies 0.00 0.00 0.00

Data source -0.01 0.01 -0.01

Date -0.08 0.16 -0.05

Standard deviation 55.43 37.77 30.07

Eigenvalues 3072.92 1426.25 904.44

Proportion of variance explained 0.46 0.21 0.13

Cumulative % variance explained 45.82 67.08 80.57



Table 8.5: Summary statistics for macroinvertebrate indices and test results. Where significant results were found, the direction of the relationship between each 
index and extent of regulation (ER) is indicated in parentheses.

Total 

abundance (N)

Taxonomic 

richness

1/Simpson's 

diversity index (1/S)

Taxonomic 

dominance  (D)

LIFE PSI BMWP ASPT % 

Coleoptera 

% Diptera % 

Ephemeroptera

% Plecoptera % 

Trichoptera

% other

All sites

Mean (St. dev.) 1200 (862) 42 (11) 6.70 (3.30) 0.34 (0.14) 7.70 (0.35) 79.71 (10.39) 148 (32) 6.39 (0.50) 5.60 (6.25) 29.17 (17.66) 24.07 (18.32) 15.78 (16.93) 10.45 (8.47) 14.94

Min 146 20 1.40 0.13 6.95 51.06 81 4.50 0.11 1.97 0.38 0.00 0.46 0.92

Max 4001 80 18.10 0.86 8.40 92.41 212 7.38 26.75 86.03 79.27 88.06 45.68 63.18

Fully-regulated

Mean (St. dev.) 1209 (842) 40 (14) 5.90 (2.40) 0.36 (0.16) 7.54 (0.36) 77.87 (8.99) 141 (33) 6.27 (0.46) 2.79 (3.62) 31.73 (20.02) 17.61 (17.24) 20.18 (19.87) 12.59 (11.95) 15.09 (13.78)

Min 152 21 1.40 0.21 7.00 59.52 85 5.62 0.11 6.58 0.38 0.43 0.46 1.06

Max 3465 80 11.50 0.86 8.33 88.89 205 7.38 14.47 86.03 57.28 57.89 45.68 53.51

Semi-regulated

Mean (St. dev.) 1024 (620) 42 (8) 7.00 (2.70) 0.31 (0.10) 7.71 (0.30) 79.75 (11.27) 150 (30) 6.40 (0.56) 5.52 (5.23) 29.92 (15.16) 24.33 (14.82) 11.66 (9.98) 10.88 (6.13) 17.69 (14.16)

Min 226 30 3.30 0.17 6.95 51.06 81 4.50 0.16 6.21 0.44 0.00 3.19 2.11

Max 2960 56 13.80 0.52 8.11 92.41 207 7.08 19.44 57.79 56.18 35.86 29.02 48.77

Unregulated

Mean (St. dev.) 1480 (1157) 43 (13) 7.20 (4.80) 0.35 (0.17) 7.83 (0.36) 81.69 (10.57) 151 (36) 6.51 (0.44) 8.84 (8.52) 25.05 (19.05) 30.87 (22.75) 17.63 (21.44) 7.36 (6.53) 10.24 (14.96)

Min 146 20 2.50 0.13 7.00 58.82 98 5.23 0.50 1.97 3.98 1.05 1.74 0.92

Max 4001 61 18.10 0.62 8.40 91.55 212 6.94 26.75 64.78 79.27 88.06 23.63 63.18

ERLOW 0.65 0.80 0.55 1.16 6.63 * (-) 3.28 0.05 1.51 4.92 * (-) 1.04 12.05 ** (-) 0.00 3.19 48.74 ** (+)

ERMED 2.00 0.58 0.54 0.35 9.05 ** (-) 2.67 0.49 2.44 7.79 ** (-) 0.05 2.95 1.08 3.52 30.52 ** (+)

ERHIGH 0.40 0.54 1.11 0.83 8.22 ** (-) 2.15 0.15 2.42 7.70 ** (-) 0.26 4.05 * (-) 0.83 5.42 * (+) 19.62 ** (+)

*p < 0.05, **p < 0.01.
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Table 8.6: Summary of RDA results for all ER resolutions.

ER Total model 

variance

Total constrained

variance

ER explained 

variance

% of total % of 

constrained

F

LOW 0.50 0.05 0.02 3.39 33.23 2.38 **

MED 0.50 0.05 0.02 3.62 35.08 2.46 **

HIGH 0.50 0.05 0.02 4.07 37.72 2.79 **

*p < 0.05, **p < 0.01.

Figure 8.3: RDA biplot of taxa and significant factors (pc1 (principal component 1) and ERHIGH). Selected
taxa are labelled as follows: (i) Gammarus pulex (ii) Baetis rhodani (iii) Potamopyrgus antipodarum (iv) 
Oligochaeta (v) Chironomidae (vi) Hydropsyche siltalai (vii) Chloroperla torrentium (viii) Isoperla 
grammatica (ix) Leuctra inermis (x) Amphinemura sulcicollis (xi) Rhithrogena semicolorata (xii) Limnius
volckmari (xiii) Pisidium sp. (xiv) Polycentropus flavomaculatus (xv) Polycelis felina (xvi) Elmis aenea 
(xvii) Brachyptera risi (xviii) Baetis scambus/fuscatus group (xix) Simuliidae.
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Figure 8.4: Taxa RDA scores highlighting association with ERHIGH. Only scores > ±1 St. dev. 
from the mean are displayed for clarity.

8.6 Discussion

This chapter has identified a significant negative relationship between LIFE scores and 

regulation, whereas no significant relationships were found between diversity, dominance, PSI, 

BMWP or ASPT indices and regulation. ERHIGH was identified as superior to both ERLOW and MED

in detecting that regulation was significantly associated with reduced relative abundance of 

Coleoptera and Ephemeroptera and enhanced relative abundance of Trichoptera, Chironomidae 

and Oligochaeta. The following discussion further explores these observations and is structured 

according to the three hypotheses.

It was hypothesised that macroinvertebrate indices and community composition would be 
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affected by upstream impoundment and that responses would vary by taxon (H1). The findings 

of this study were in agreement with this hypothesis and are supported by those of Boon (1988),

with both Coleoptera and Ephemeroptera negatively associated with regulation. Although Boon 

(1988) and Armitage (1989) found that responses of Trichoptera to regulation were highly 

variable, this study found a consistent significant increase in their relative abundance at 

regulated sites. This study also found that traditional macroinvertebrate indices (i.e. BMWP; 

ASPT) and other measures of community structure were not sensitive to the effects of regulation

which is supported by Armitage (1989). These findings suggest that the use of traditional 

biomonitoring approaches may be unsuitable for studying the impacts of stream regulation and 

that a targeted flow sensitive focus on community composition is potentially a more effective 

method of assessment.

Both ANOSIM and RDA revealed significant differences in taxonomic composition between 

sites of differing ER designations and elucidated taxa which were positively or negatively 

associated with extent of regulation. This study found that two Coleoptera (E. aenea and L. 

volckmari) were negatively associated with regulation; an observation that has been made 

elsewhere in the UK (e.g. Inverarity et al., 1983). The drivers of this relationship remain 

unverified although it has been suggested that elevated concentrations of iron and manganese, 

often observed downstream of reservoirs (Petts, 1984a), may result in fewer Coleoptera 

(Inverarity et al., 1983). Alternatively, a reduction of high velocities associated with stream 

regulation (Petts, 1984a) may explain the observed reduction of rheophilic species such as E. 

aenea and L. volckmari (Schmedtje & Colling, 1996). The mayfly R. semicolorata was also 

identified as being negatively associated with extent of regulation; previous research has also 

identified this impact and linked it to both regulation-driven changes to flow and temperature 

(Brittain and Saltveit, 1989) and siltation (Boon, 1988).

This assessment identified a strong positive association between the net-spinning caddis, 

Hydropsyche siltalai and extent of regulation. Filter-feeding caddis such as H. siltalai have 

previously been found to proliferate downstream of reservoirs and have been associated with 

regulation-driven changes in flow regime and substrate stability (Boon, 1987). Conversely, 

reduced numbers of Hydropsychidae have been observed downstream of reservoirs (e.g. 

Inverarity et al., 1983), suggesting that site specific factors are key. The depth at which water is 

drawn from the reservoir may also be important for filter feeders through modification of 

plankton availability (Boon, 1988). In agreement with Boon (1988) and Armitage (1989) this 

study found a positive association between extent of regulation and both Chironomidae and 

Oligochaeta, potentially due to enhanced siltation (Armitage et al., 1987).

This study identified a positive association between extent of regulation and the invasive snail 
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Potamopyrgus antipodarum. Upstream impoundment has been cited as a key factor in allowing 

for the establishment of invasive and non-native species globally (e.g. Stromberg et al., 2007), 

including P. antipodarum (e.g. Cross et al., 2010). However, association between P. 

antipodarum and upstream impoundment in the UK has not previously been documented. P. 

antipodarum are associated with “slow/ sluggish” prevailing flow conditions (Extence et al., 

1999) thus, the observations made in this assessment may be explained by a reduction in high 

flow events associated with upstream impoundment (Petts, 1984a).

Negative impacts to Perlodidae and Chloroperlodidae have previously been highlighted by 

Boon (1988) but not identified by Armitage (1989). In agreement with Armitage (1989), no 

evidence of these impacts was found in this assessment. However, in agreement with Boon 

(1988) a negative association between extent of regulation and Brachyptera risi was found and 

a positive association between extent of regulation and Amphinemura sulcicollis was also 

identified, but this has not previously been observed across sites in the UK. A. sulcicollis had a 

strong negative association with PC1 (which was negatively correlated with altitude) suggesting

that the impact of reservoirs on A. sulcicollis is associated with sites of higher altitude. This may

potentially be due to regulation driven reduction in temperature variation (Petts, 1984a), thus 

allowing for range expansion of stenothermic species such as A. sulcicollis (Graf et al., 2009). 

A. sulcicollis is also associated with algae presence (Clifford et al., 1992) which may also 

explain this observation as increased algae as a result of regulation in some UK streams has 

been observed (Bass & Armitage, 1987). However, further research would be required to 

confirm this theory for the study area.

In the absence of discharge data to directly quantify the impact of regulation, assumptions must 

be made to estimate this effect. This assessment compared three site classification approaches of

varying resolution of regulation: two categorical classifications (ERLOW and MED) and a novel 

continuous index (ERHIGH). It was hypothesised that the continuous index would be more 

sensitive to detecting impacts of regulation compared to the categorical classifications (H2). 

ERLOW and HIGH revealed significant impacts to % Ephemeroptera, whereas ERMED failed to 

identify this impact. In addition, ERHIGH was the only resolution to reveal significant impacts to 

% Trichoptera suggesting it was the most effective approach for identification of impacts. This 

was further evidenced through multivariate modelling of community composition where all 

resolution types were significant but ERHIGH marginally explained the most variance cf. ERLOW & 

MED. Thus ERHIGH, or, Index of Regulation (IR), in agreement with the hypothesis, appears to be 

more sensitive to detecting impacts of regulation and thus an improvement on classifications 

used in previous research. However, it is important to note that only 4% of variance in 

community composition was explained by ERHIGH highlighting the limited magnitude of impact 
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associated with this measure of extent of regulation. This may reflect minimal impact of 

regulation, or insensitivity of IR; thus, development of IR (such as catchment area or discharge 

weighting of scores) should be a priority for similar research to ensure optimal sensitivity.

IR used the Strahler (1957) system to define the relative size of the extent to which a regulated 

or unregulated stream influenced a site downstream (hereinafter termed IRS). Strahler 

classification was calculated using a 1:50,000 Ordnance Survey map (OS, 2012) and an obvious

potential improvement would be to use a finer scale map (e.g. 1:10,000). Additionally, relative 

size of influence of a tributary could also be defined by drainage area so that:

                                                        IRD(k) =
DAi

DAi+ j

where IRD is the Index of Regulation calculated by drainage area for site k, DA = sum of 

upstream regulated (i) and unregulated (j) drainage areas. See Figure 8.5 and Table 8.7 for 

examples of calculations for different sites within a catchment.

Figure 8.5: Example calculation of IRD. Sites are marked in circles, reservoirs as polygons, 
streams as black lines and drainage areas (DA) in red. The size of each DA is also noted. Note:
drawing not to scale.
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Table 8.7: Calculation of IRD based on example sites delineated in Figure 8.5.

Site Calculation IRD

a 2
2+8

0.20

b 2
2+8+3

0.15

c 2
2+5

0.29

d 2+2
2+2+5+2

0.36

e 2+2+2
2+2+2+2+8+3+5+2+2

0.21

IRD has the benefit of being simple to calculate and does not require detailed information 

regarding tributaries. Additionally, as it is calculated from drainage areas rather than tributary 

influence, it can potentially reflect accretion between a site and a reservoir, even if no tributary 

is delineated on a map. In this sense it may be more ecologically relevant than IRS, but further 

research is required to test this approach.

In the event that discharge data for a regulated stream network are available, it may be possible 

to calculate an IR score to more accurately reflect the extent to which a site is affected by 

regulation. This method is hereinafter termed IRQ. This method first involves calculation of an 

unaffected, or 'natural' stream discharge for the site, of which there are many potential methods 

to choose (e.g. Mattikalli et al., 1996; Nijssen et al., 2001; Coe & Burkett, 2004). Second, an 

index is calculated comparing unaffected and regulated stream discharge data which is then used

as the IRQ for that site.

Figure 8.6 shows example hydrographs for four scenarios of differing extent of regulation at one

site. In panel A, both unaffected and regulated discharge are equal; panel B: peak discharges 

have been reduced throughout the year, particularly during summer; panel C: peak discharges 

have been reduced throughout the year and floods have been eliminated during spring and 

summer and, panel D: floods have been eliminated throughout the year. Essentially, the extent 

of regulation can be regarded to increase from panels A-D and IRQ should therefore reflect this 
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gradient.

Table 8.8 lists four potential indices that could be used to calculate IRQ. Each index results in 

values between zero (no difference between unaffected and regulated hydrological regimes) and

one (maximum difference between unaffected and regulated hydrological regimes). Prior to use 

of these indices, their utility and ecological relevance will need to be tested. In particular, how 

the indices respond to specific changes in hydrological regime of ecological significance, such 

as flood magnitude, duration, rate of change and timing (Poff et al., 1997). It is also important to

note that IRQ can only be calculated retrospectively and that it does not take factors such as 

height at which water is drawn from the reservoir (which is known to be ecologically significant

(e.g. Macdonald et al., 2012)) into account. 

However, IRQ has three key attributes of note: firstly, IRQ could be built into either IRS or IRD to 

potentially improve accuracy of gradation, and secondly, IRQ could be used by stream managers 

to prioritise resources. For example, a high IRQ represents a large deviation from an unaffected 

regime, it may therefore be prudent to prioritise such sites for future management. Finally, IRQ 

has the potential for temporal dynamism (i.e. it can be updated as new discharge data become 

available). This attribute will enable informed adaptive management through periods of change, 

for example, under scenarios of future climate change where stream flows are likely to change 

(Arnell & Reynard, 1996) or prescribed regulated stream flow management. It is recommended 

that the application and utility of the IR methods described above are tested in future research 

and considered for use in applied, management situations.

It was hypothesised there would be a negative relationship between LIFE and extent of stream 

regulation (H3) and this was upheld. LIFE scores are primarily based on a taxon's flow 

association and have been shown to correlate with a number of flow regime descriptors, the 

strength of which depends on many site specific factors such as geology and altitude (Extence et

al., 1999). Thus, without knowledge of these site specific factors, it is not possible to accurately 

infer the specific facets of a discharge regime with which LIFE scores are associated. Therefore,

further research is required to enable elucidation of the key flow drivers of the observed 

association between LIFE and extent of regulation in this research. As hypothesised, LIFE was 

sensitive to observed associations between taxonomic composition and extent of regulation, 

whereas traditional biomonitoring indices (e.g. BMWP and ASPT) were not. BMWP and ASPT 

are primarily associated with organic chemical pollution of streams (Armitage et al., 1983) 

potentially explaining their apparent insensitivity to macroinvertebrate community changes 

associated with upland stream regulation. Physical-chemical changes are key responses to 

stream regulation, that can be both driven by, and independent of, changes to the flow regime 

(Petts, 1984a). Thus, the use of alternative indices (e.g. Walley Hawes Paisley and Trigg 



Figure 8.6: Simulated unaffected ('natural') (red) and regulated (blue) stream discharges for four scenarios (A-D) for Jan 2012 to Jan 
2013 (panels A-D respectively) of increasing extent of regulation.



Table 8.8: Potential indices for calculation of IRQ with respective formulas and results when tested on scenarios A-D.

Index Formula Results

A B C D

1 - Ratio of Standard deviations (1 - rSD)
rSD=

σu

σ r

0.00 0.60 0.66 1.00

1- sample Pearson product-moment correlation coefficient (1 - r)

r=
∑
i=1

n

(ui−ū)(ri− r̄ )

√∑
i=1

n

(u i−ū )
2√∑

i=1

n

(r i−r̄ )2

0.00 0.06 0.33 1.00

1- sample Pearson product-moment correlation coefficient squared (1 - r2) r 2 0.00 0.12 0.55 1.00

1 – weighted r2 (Krause et al., 2005) (1 - br2) br 2
=∣b∣. r 2 for b≤1 or ∣b∣−1. r 2 for b>1 0.00 0.67 0.88 1.00

u = unaffected & r = regulated discharge data; b = gradient coefficient from linear regression model of u~r.
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(WHPT); Davy-Bowker et al. (2008)) and potentially the development of a water-quality 

sensitive index for use specifically in regulated streams may be complimentary to the use of 

LIFE scores for future monitoring and management of these environments.

It was hypothesised that there would be a negative relationship between PSI and extent of 

stream regulation (H3), yet no evidence for this was found suggesting no clear effect of 

regulation on downstream fine bed sediment within the study area. This hypothesis is supported 

by Carling (1988) who noted inconsistent morphological effects of upstream regulation in UK 

streams due to site specific factors (e.g. sediment supply, geology). It is therefore suggest that 

the primary application of PSI may be in long term monitoring of regulated streams where a 

change in bed fine sediment over time may be detected, rather than assessing the impact of 

regulation per se. The relationship between PSI and fine sediment in regulated streams has been 

confirmed elsewhere (e.g. Extence et al., 2013), but evaluation of PSI performance in upland 

streams (where fine sediment abundance is typically low (Carling & Reader, 1982)) is lacking. 

Further evaluation of the sensitivity of PSI in upland streams is therefore recommended.

Macroinvertebrates respond quickly to environmental change, justifying their choice as 

environmental indicators (Metcalfe, 1989). However, this characteristic limits the temporal 

extrapolation of observations made over short time periods. Indeed, evidence of temporally 

dynamic response of macroinvertebrates to regulation has been found (Armitage, 2006). Whilst 

this research has identified impacts of regulation on macroinvertebrate communities, the 

analyses were conducted on data that were collected over a few months and thus extrapolation 

to longer time scales is likely to be confounded by temporal variation in environmental drivers 

and biota phenology. Future research should be carried out over longer time scales to address 

this limitation. 

8.7 Summary

This study has identified key impacts of regulation on macroinvertebrate community 

composition in upland sites within a large British catchment, specifically: reduced relative 

abundance of Coleoptera (primarily driven by changes in relative abundance of Elmis aenea and

Limnius volckmari) and Ephemeroptera (particularly Rhithrogena semicolorata) and enhanced 

relative numbers of Trichoptera (including Hydropsyche siltalai), Chironomidae and 

Oligochaeta. Positive associations between regulation and Potamopyrgus antipodarum and 

Amphinemura sulcicollis were identified which is a novel finding for the UK. These 

observations can be integrated into regional management plans concerned with management of 

regulated streams (e.g. the introduction of environmental flows) and should also direct future 
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research towards further understanding the mechanisms behind the associations identified.

A continuous method of defining extent of regulation (IR), as opposed to categorical 

classifications, was most sensitive to identification of changes in community composition and 

thus appeared to be superior. IR is a useful approach for assessment of the impact of upstream 

impoundment on macroinvertebrates and its value should be tested in additional regions, both 

within the UK and globally, both in its current form and with additional catchment area (IRD) 

and/or discharge weighting (IRQ). Additionally, the potential for the application of IR in 

understanding the effect of regulation on stream physical chemistry could be explored. Finally, 

several established biomonitoring indices failed to detect differences in community 

composition, whereas a significant negative relationship between LIFE scores (Extence et al., 

1999) and extent of regulation was identified. LIFE therefore appears to have potential for use 

in future regulated stream research and management.
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9 TEMPORAL IMPACTS OF REGULATION AND 

ARTIFICIAL FLOODS ON MACROINVERTEBRATE 

ASSEMBLAGES

9.1 Chapter overview

This chapter presents a temporal (13 month) assessment of the impact of stream regulation on 

macroinvertebrate assemblages at a sub-catchment scale. An assessment of the impact of 

Artificial Floods on macroinvertebrate assemblage is also undertaken. First, the importance of 

understanding these issues is presented followed by an identification of current gaps in research 

and outline of the study aims. Next, the methods and analytical techniques used to undertake the

study are detailed. This is followed by sections presenting and discussing the results, including 

recommendations for further research.

9.2 Introduction

Organisms have long been used to monitor environmental quality (Cairns & Pratt, 1993) and a 

preference for monitoring macroinvertebrates to achieve this aim in streams has long been 

established (Metcalfe, 1989). Macroinvertebrates are differentially sensitive to environmental 

pressures, ubiquitous, abundant and easy to collect and identify (Metcalfe, 1989) resulting in 

incorporation of their monitoring into contemporary freshwater legislation (e.g. the EU WFD 

(EC, 2000) and the US Clean Water Act (USC, 2002)). The monitoring of stream 

macroinvertebrates thus has the potential to assess impacts of anthropogenic pressures (e.g. 

Blasius & Merritt, 2002; Fritz et al., 2011; Mercer et al., 2013) and management interventions 

(e.g. Friberg et al., 1998; Nakano & Nakamura, 2006). 

One such potential pressure is stream regulation, and because approximately 15% of the world’s

stream flow can be impounded by dams (Nilsson et al., 2005), the monitoring of 

macroinvertebrates in regulated streams is particularly important. The impact of regulation on 

downstream macroinvertebrates has been the focus of many studies worldwide, yet varied 

observations have been made leading to a lack of clarity in understanding. Total abundance has 

been recorded to increase at some sites (e.g. Armitage, 1978; Munn & Brusven, 1991; Benítez-

Mora & Carmargo, 2014) but decrease at others (Englund & Malmqvist, 1996). Additionally, 

responses of some taxonomic groups have been observed to vary; for example, no change or 

decrease in abundance of Coleoptera (Spence & Hynes, 1971 and Nichols et al., 2006, 
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respectively). Furthermore, varied responses in measures of α-diversity (Whittaker, 1972) have 

also been observed (Table 9.1). However, some of these studies have been of limited sampling 

intensity (i.e. ≤ 2 samples per year (e.g. Englund & Malmqvist (1996); Maynard & Lane (2012);

Gillespie et al., in press (a))) potentially resulting in failure to identify fine-scale temporal 

variability of impacts. This may partly explain the wide variation in observations because 

impacts are likely to vary both intra- and inter-annually (Armitage, 1978). An assessment of the 

impact of regulation on intra-annual macroinvertebrate community dynamics at a sub-seasonal 

scale is yet to be undertaken globally; such a study may therefore have the potential to reveal 

novel insights into impacts of regulation on downstream macroinvertebrate assemblages.

Table 9.1: Varied response in α-diversity of stream macroinvertebrates to upstream regulation.

Response type Publications

Increase Poole and Stewart, 1976; Penaz et al., 1968; Maynard and Lane, 2012

No change Gillespie et al., in press (a)

Decrease Pearson et al., 1968; Armitage 1978; Munn & Brusven, 1991; Benítez-Mora & 

Carmargo, 2014

Artificial Floods (AFs) have been suggested as a tool to mitigate impacts associated with 

regulation (Acreman & Ferguson, 2010). To date, 18 publications have reported on 

macroinvertebrate responses to AFs (Gillespie et al., in press (b)) and this literature has revealed

a general consensus in response: macroinvertebrate abundance, richness and diversity typically 

decrease post-flood (e.g. Pardo et al., 1998; Harby et al., 2001; Cereghino et al., 2004; Robinson

et al., 2004a; Mannes et al., 2008) with reductions in certain taxonomic groups such as 

Ephemeroptera (Harby et al., 2001; Mannes et al., 2008). Furthermore, Mannes et al. (2008) 

stated that multiple AFs resulted in a more disturbance resistant assemblage. An assessment of 

the impact of AFs on stream macroinvertebrates in the UK is yet to be published despite the 

potential for AFs to contribute towards attainment of EU WFD targets in the EU (Acreman & 

Ferguson, 2010).

This study aimed to (i) conduct an assessment of intra-annual temporal dynamics (monthly 

sampling) of the impact of regulation and, (ii) examine the impact of AFs on downstream 

benthic macroinvertebrates in the UK. It was hypothesised that (H1) a difference in 

macroinvertebrate assemblages between regulated and unregulated sites could be observed in 

line with previous studies, (H2) the difference would vary intra-annually reflecting taxon life-

cycle attributes and environmental preferences, (H3) macroinvertebrate abundance, richness and
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diversity would decrease as a result of AFs and (H4) taxa would respond to AFs based on their 

specific environmental preferences resulting in a more disturbance resilient assemblage.

9.3 Methods

9.3.1 Impact of regulation

To assess the impact of regulation on intra-annual dynamics of benthic macroinvertebrate 

populations, five replicate 0.05m2 Surber samples (mesh size: 250µm) were collected monthly 

from January 2012 to January 2013 inclusive from one unregulated reference site (U) and two 

regulated sites (R1 & R2) (sites 9, 7 and 12 respectively). Samples were taken randomly from 

riffle/ run habitat to ensure inter-site comparability. All samples were immediately preserved in 

70% methanol. Samples were sieved (mesh size: 250µm) to remove fine particles to aid sorting 

which was undertaken using Protocol P3 without subsampling as described by Stark et al. 

(2001). Next, where possible, individuals were identified to species level using a light 

microscope (x50 magnification). However, the following taxa were identified to the following 

levels: Chironomidae: family; Oligochaeta: sub-class and Sphaeriidae: genus which enabled 

comparability with the majority of relevant literature. As a means of quality control, taxa 

identification was confirmed by UKAS accredited staff at APEM Ltd aquatic science 

consultancy. A list of keys used and taxa identified during this study can be found in Appendix 

D.

To provide hydrological context for the study period, discharge at sites 6, 9 and 11 (recorded 

and calculated according to the methods described in Chapter 5) was used to represent discharge

dynamics at sites R1, U and R2 respectively.

9.3.2 Impact of Artificial Floods

To assess the impact of AFs on benthic macroinvertebrate populations, five replicate 0.05m2 

Surber samples (mesh size: 250µm) were taken within 48 hours before and after each AF 

(described in Chapter 5). The first AF was carried out on the 20th August 2013 and thus these 

AFs did not confound the temporal assessment described in section 9.3.1. Samples were 

collected randomly within riffle/ run habitat at sites R1 and R2. All samples were subsequently 

analysed using the same method as described in section 9.3.1. This sampling methodology 

followed a Paired Before-After-Control-Impact (BACIP) framework (Smith, 2002). AFs were 

conducted from reservoir C, thus, site R1 was classed as 'Impact' and site R2 used as 'Control'.
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9.4 Data analysis

Prior to data analysis, macroinvertebrate taxonomic richness and dominance, 1/Simpson's 

diversity index, BMWP, ASPT and LIFE were calculated as described in Chapter 8 for each 

Surber sample. In addition, 'global' β-diversity (Whittaker, 1972) was calculated according to 

Brown et al. (2007): average taxonomic richness calculated from replicate samples divided by 

pooled sample taxonomic richness; lower values represent higher β-diversity. Furthermore, total

number of individuals, Coleoptera, Diptera, Ephemeroptera, Plecoptera and Trichoptera were 

estimated per m2.

To test hypothesis (a), community indices were pooled by site type: regulated and unregulated. 

GLMM or GAMM (Wood, 2011) (selection based on AIC) was then used to test for statistical 

differences in indices between site types. GLMMs and GAMMs were formulated according to 

equations 8.1 and 8.2 respectively where I = macroinvertebrate community index, type = site 

type (regulated or unregulated), s(day) = sample date fitted as a smoother, α = regression 

intercept, β = regression coefficient and ε = error term.

I =α+βtype+ε                                         Equation 8.1

I =α+βtype+s (day )+ε                                         Equation 8.2

Samples were taken repeatedly from sites and replicates were taken from within each site on 

each sampling occasion. To avoid problems associated with lack of independence between 

replicates and sampling dates, both site and replicate were included within each model as 

random factors. replicate was nested within site and site was nested within type to reflect the 

experimental design (after Crawley, 2002 and Zuur et al., 2009). Appropriate error distribution, 

link functions and correlation structures were specified to ensure approximate normal 

distribution, homogeneity and independence of residuals. Finally, significance of type was 

assessed using t-statistics and associated p-values. To test for differences in macroinvertebrate 

community structure at each site, one-way analysis of similarity (ANOSIM) was conducted on a

taxon abundance matrix constructed from means of Surber replicates taken each month at each 

site. Sites were grouped by site type and ANOSIM was undertaken using Bray-Curtis 

dissimilarities with 999 permutations (Oksansen et al., 2013).

To test hypothesis (b), plots of each index against sample date were produced to enable 

visualisation of temporal dynamics. Non-metric Multi-Dimensional Scaling (NMDS) was then 

undertaken on means of replicates taken each month at each site using Bray-Curtis 

dissimilarities of log(n+1) taxa abundance (Oksansen et al., 2013) to allow visualisation of the 
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relative importance of taxa in defining populations throughout the study period at each site. 

Additionally, ANOSIM between site types for each month was undertaken on taxa abundance 

matrices of replicates as described above.

To test hypotheses (c) and (d), macroinvertebrate community indices for Surber samples 

collected at sites R1 and R2 for each sampling date before and after each AF were modelled 

using GLMM (Wood, 2013) according to the following formula: I =α+β site : period+ε  

where I , α , β and ε were as described above and site:period was the interaction term between 

factors site (R1 or R2) and period (before or after). As described previously, both site and 

replicate were included within each model as random factors with replicate nested within site. 

Appropriate error distribution, link functions and correlation structures were specified to ensure 

approximate normal distribution, homogeneity and independence of residuals. Finally, 

significance of the site:period interaction term was examined using t-statistics and p-values to 

provide an indication of whether an impact had occurred. To further assess the validity of 

hypotheses (c) and (d), composition of macroinvertebrate assemblages before and after each AF 

were visualised using the results of NMDS undertaken as described above. Moreover, to 

objectively test similarity of macroinvertebrate community composition before and after each 

AF under a BACI framework, site:period interaction terms were tested using multivariate 

analysis of variance (MANOVA) on taxon abundance matrices of replicates from each site using

999 permutations and Bray-Curtis dissimilarities (Oksansen et al., 2013).

9.5 Results

9.5.1 Impact of regulation

Discharge throughout the study period was generally similar in magnitude at sites representing 

R1 and U, but higher for R2. Floods at site U generally appeared to be of shorter duration and 

more 'flashy' that at R1 and 2. During the latter part of the study period in particular, floods that 

occurred at sites R1 and U did not occur at R2 (Figure 9.1).

Mean total, Coleoptera, Ephemeroptera and Trichoptera densities were highest for the regulated 

site type, and apart from total density, these differences were statistically significant. Mean total 

Diptera and Plecoptera densities were higher at the unregulated site, but these differences were 

not statistically significant. Similarly, non-significant differences between site types for mean β-

diversity and ASPT were also observed. Mean values for taxonomic richness, 1/Simpson's 

diversity index and BMWP for the regulated site type were almost double (p<0.05) those 

observed for the unregulated site type. Mean taxonomic dominance and LIFE scores were 
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significantly higher and lower respectively, for the unregulated cf. regulated site type (Table

9.2).

Mean Chironomidae density was the highest of any taxon at all sites for the study duration. The 

second and third most abundant taxa for sites R1 and U were Leuctridae spp. and Baetidae spp. 

for site R2. Notably, high mean densities of Polycentropus flavomaculatus and Oulimnius sp. 

were present at site R1, whereas none of these taxa were in the top ten most abundant taxa of 

sites U or R2. Site U had high mean densities of Protonemura meyeri which was not in the top 

ten most abundant taxa at either regulated site and, similarly, R2 had high numbers of Isoperla 

grammatica which was not present in the top ten most abundant taxa of the other two sites 

(Table 9.3).

Temporally, all sites displayed similar reductions in taxonomic dominance during winter and 

Plecoptera density and ASPT during mid-summer (Figures 9.2 & 9.3). During spring/ summer, 

LIFE scores and total Diptera and Ephemeroptera density peaked at all sites, but variation was 

observed between sites as, for example, total density at sites R1 and U peaked during April but 

not until June at site R2. β-diversity remained relatively constant throughout the study period at 

all sites. Conversely, dissimilarities in temporal trends between regulated and unregulated sites 

for taxonomic richness, 1/Simpson's diversity index and BMWP were observed. For regulated 

sites, clear reductions in these indices during summer occurred that were not evident at site U 

and these changes were reflected by non-significant community differences between site types 

during July and August (Table 9.4). Coleoptera and Trichoptera densities at site U were too low 

throughout the study period to compare to trends observed at sites R1 and R2 (Figures 9.2 &

9.3).

Axis 1 of the NMDS broadly revealed dissimilarity between each site: site U samples generally 

scored the lowest (range: -1 – 0.2), site R2 the highest (range: 0 – 0.75) and site R1 samples 

were generally between sites U and R2 (Figure 9.5). In January 2012, all sites had relatively low

axis 1 scores, suggesting populations dominated by Leuctridae (site R1), Nemouridae (site U) 

and taxa such as Amphinemura sulcicollis and Ecdyonurus sp. (site R2). The highest axis 1 

score for sites R1 and U was observed in July, but was highest at R2 two months later in 

September. Notably, at these times of the year, Ephemeroptera such as Rhithrogena 

semicolorata appeared to be an important descriptor of macroinvertebrate assemblage at site R2 

and Simulidae and Psychodidae at sites U and R1 respectively. For each site, NMDS scores 

were approximately similar during January 2012 and 2013 (Figure 9.5). Holistically, no overlap 

of site U pathways (lines drawn between consecutive sample dates to interpolate temporal 

change in community composition) between sampling dates was observed, but overlap was 
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observed between pathways of sites R1 and R2 (Figure 9.5), indeed, ANOSIM revealed a 

significant difference between taxonomic composition of the two site types (r statistic: 0.36, p < 

0.01).



Figure 9.1: Discharge at sites R1, U and R2 (red, black and blue lines respectively) for the study period prior to Artificial Floods.
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Table 9.2: Mean macroinvertebrate indices for unregulated and regulated site types for the study period. Model type 
and statistics are also delineated.

Mean St. dev. Est. t

Total density (ind. / m2)

Unregulated 796 558 0.91 0.91

Regulated 949 630 GLMM

Taxonomic richness

Unregulated 6 1 2.00 530 **

Regulated 10 3 GAMM

1/Simpson's diversity index (1/S)

Unregulated 2.83 0.78 2.59 5.87 **

Regulated 5.39 1.73 GAMM

β -diversity

Unregulated 0.46 0.07 0.04 1.68

Regulated 0.49 0.07 GLMM

Taxonomic dominance (D)

Unregulated 0.55 0.12 -0.62 -5.53 **

Regulated 0.35 0.13 GAMM

BMWP

Unregulated 26 4 23 4.61 **

Regulated 48 16 GAMM

ASPT

Unregulated 5.91 0.51 0.35 1.72

Regulated 6.18 0.75 GAMM

LIFE

Unregulated 7.54 0.25 0.42 3.39 **

Regulated 7.95 0.26 GLMM

Coleoptera (ind. / m2)

Unregulated 1 3 25 2.68 **

Regulated 56 84 GLMM

Diptera (ind. / m2)

Unregulated 370 524 -1 -1.16

Regulated 212 251 GLMM

Ephemeroptera (ind. / m2)

Unregulated 5 9 19 2.56 *

Regulated 201 319 GLMM

Plecoptera (ind. / m2)

Unregulated 392 238 1 -1.14

Regulated 332 263 GAMM

Trichoptera (ind. / m2)

Unregulated 13 11 8 4.57 **

Regulated 122 123 GLMM

*p < 0.05, **p < 0.01.
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Table 9.3: Mean density of the ten most abundant taxa ('top ten') at each site for the study duration.

Site R1 Site U Site R2

Taxa Mean density 

(ind. / m2)

Taxa Mean density 

(ind. / m2)

Taxa Mean density 

(ind. / m2)

Chironomidae 163 Chironomidae 320 Chironomidae 194

Leuctra inermis 131 Leuctra hippopus 146 Baetis rhodani 155

Leuctra hippopus 90 Leuctra inermis 123 Baetis sp. 135

Polycentropus 
flavomaculatus

82 Protonemura 
meyeri

66 Isoperla 
grammatica

82

Oulimnius sp. 69 Simuliidae 18 Amphinemura 
sulcicollis

69

Amphinemura 
sulcicollis

65 Amphinemura 
sulcicollis

16 Leuctra inermis 52

Hydropsyche 
siltalai

62 Nemoura cinerea 16 Siphonoperla 
torrentium

37

Baetis rhodani 41 Oligochaeta 14 Rhyacophila 
dorsalis

32

Elmis aenea 29 Dicranota sp. 12 Simuliidae 32

Baetis sp. 27 Clinocerinae 10 Leuctra hippopus 31

Table 9.4: ANOSIM test result (R) and significance for similarity of macroinvertebrate communities at 
regulated and unregulated site types by month.

Month R

January 2012 0.53 *

February 0.53 **

March 0.44 *

April 0.36 *

May 0.34 *

June 0.55 **

July 0.24

August 0.23

September 0.67 **

October 0.28 *

November 0.34 *

December 0.80 **

January 2013 0.30 *

*p < 0.05, **p < 0.01.



Figure 9.2: Temporal variation of macroinvertebrate diversity and biomonitoring indices at sites R1, U and R2 (red, black and blue respectively). Error bars 
represent ±1 standard deviation.



Figure 9.3: Temporal variation of macroinvertebrate density indices at sites R1, U and R2 (red, black and blue respectively). Error bars represent ±1 
standard deviation.
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Figure 9.4: NMDS plot of mean monthly macroinvertebrate samples and temporal transition 
(panel A) for sites R1, U and R2 (red, black and blue respectively). Enlarged points indicate 
Jan 2012 and lines darken throughout the study period. Panel B: species NMDS scores. Note: 
taxa labels are abbreviated; full names can be found in Appendix D.
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9.5.2 Impact of Artificial Floods

Non-significant site:period interaction terms were identified for models testing 

macroinvertebrate density, taxonomic richness, β-diversity, BMWP, ASPT, LIFE indices and 

densities of Coleoptera, Diptera and Trichoptera for all AFs. Conversely, the interaction term 

testing Plecoptera density was significant for AF1, 1/Simpson's diversity index was significant 

for AF2, dominance was significant for AF2 and Ephemeroptera density was significant for AF2

and 4 (Table 9.5). A reduction in mean Plecoptera density (-108 individuals/m2) was observed 

after AF1 at site R1 but an increase (+232 individuals/m2) was identified at site R2 for the same 

period. A similar pattern was seen for mean 1/Simpson's diversity index after AF2 (reduction (-

1.56) at R1 and increase (+2.21) at R2). Conversely, mean taxonomic dominance increased 

(+0.09) at R1 and decreased (-0.14) at R2 after AF2. This pattern was repeated for mean 

Ephemeroptera density (+16 individuals/m2 at R1 and -108 individuals/m2 at R2). After AF4, 

mean taxonomic dominance was observed to decrease at both sites (-0.04 (R1), -0.02 (R2)) 

(Figures 9.5 & 9.6).

Throughout the period of AF implementation, NMDS axis 1 and 2 scores for site R1 were 

generally lower and higher respectively than for site R2 (Figure 9.7). Temporally, NMDS scores

at both sites were characterised by generally increasing axis 1 scores throughout the series of 

AFs, but this increase was delayed at site R1 until after AF3. Magnitude of changes in 

composition after each AF were similar at both sites (Figure 9.7). Changes in NMDS scores at 

site R1 represented shifts from populations characterised by taxa such as Rhyacophila dorsalis 

and Amphinemura sulcicollis to Isoperla grammatica to Plectrocnemia conspersa. At site R2 

macroinvertebrate assemblage was initially characterised by taxa such as Simuliidae and 

Leuctra sp.. Subsequently, species such as Elmis aenea and Leuctra inermis became 

increasingly prevalent (Figure 9.7). However, for all AFs, non-significant MANOVA site:period 

interaction terms were observed (Table 9.5).
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Table 9.5: GLMM and MANOVA test statistics for impact of Artificial Flood (AF) 1-4 on 
macroinvertebrate indices and community composition respectively.

AF1 AF2 AF3 AF4

GLMMs

Total density (ind. / m2) -0.78 -1.77 -0.81 -0.29

Taxonomic richness -0.79 -0.57 -0.46 1.17

1/Simpson's diversity index (1/S) 0.88 -3.72 ** 1.25 1.68

β -diversity 0.63 0.31 0.07 -0.11

Taxonomic dominance (D) 1.14 -3.40 ** 1.21 0.45

BMWP -0.41 -0.45 -1.95 1.21

ASPT -0.57 0.68 -1.90 1.20

LIFE 1.07 -1.18 -1.52 -1.59

Coleoptera (ind. / m2) 0.32 0.30 1.51 -1.65

Diptera (ind. / m2) -1.03 -1.35 -0.96 -0.27

Ephemeroptera (ind. / m2) 1.53 -3.71 ** -0.27 -2.52 *

Plecoptera (ind. / m2) -2.32 * 0.22 0.22 -0.76

Trichoptera (ind. / m2) 1.67 0.59 -0.62 -0.99

MANOVA F 0.07 0.07 0.06 0.03

*p < 0.05, **p < 0.01.



Figure 9.5: Boxplots of macroinvertebrate diversity and biomonitoring indices at sites R1 (impact, red) and R2 (control, blue) before (coloured) and after (white) 
each Artificial Flood (AF).



Figure 9.6: Boxplots of macroinvertebrate density indices at sites R1 (impact, red) and R2 (control, blue) before (coloured) and after (white) each Artificial Flood 
(AF).
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Figure 9.7: NMDS plot for mean macroinvertebrate samples and temporal transition (panel A)
for sites R1 and R2 (red and blue respectively) before and after each Artificial Flood. Note: 
samples taken before each AF are labelled, for example, AF1 = NMDS score for sample prior 
to Artificial Flood 1. Panel B: species NMDS scores. Note: taxa labels are abbreviated; full 
names can be found in Appendix D.
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9.6 Discussion

A sub-seasonal understanding of the impact of regulation on macroinvertebrate populations and 

their response to Artificial Floods (AFs) is currently lacking. This chapter has reported on an 

intensive survey of macroinvertebrate populations in one unregulated and two regulated streams

in an upland UK catchment over the course of a year. Subsequently, the impact of four AFs on a 

benthic macroinvertebrate community in the same catchment was examined. The following is a 

discussion of each of these two themes in turn.

9.6.1 Impact of regulation

Significantly higher taxonomic richness and 1/Simpson's diversity index and lower taxonomic 

dominance for the regulated site type was both in agreement (e.g. Penaz et al., 1968; Pool & 

Stewart, 1976; Maynard & Lane, 2012) and disagreement (e.g. Armitage, 1978; Munn & 

Brusven, 1991; Gillespie et al., in press (a)) with H1. Maximum diversity has been theorised to 

occur when disturbance occurs at an intermediate intensity (Connell, 1978); this theory can be 

applied to streams in that extreme hydrological episodes (e.g. droughts; floods) can be perceived

as disturbance events (Poff et al., 1997). Regulation, through reduction of extreme hydrological 

episodes, has been theorised to shift disturbance intensity towards an intermediate level 

(Maynard & Lane, 2012) and may explain the higher diversity indices observed at regulated 

sites in this study.

The evidence for higher diversity as a result of regulation identified for the headwater streams in

this study could be viewed as contrary to a proven model of biotic response to regulation in 

headwaters (the Serial Discontinuity Concept (SDC) (Ward & Stanford, 1983; 1995; Stanford &

Ward, 2001). The SDC postulated that regulation of headwater streams would result in a 

reduction in biodiversity, driven primarily by changes to nutrient and organic matter supply 

(Ward & Stanford, 1983; 1995). The SDC was developed on streams characterised by high 

groundwater contribution and dense canopy cover and dominated by heterotrophy (Ward & 

Stanford, 1983; 1995) which were in contract to the surface water dominated streams with little 

riparian vegetation canopy cover assessed in this study. This may therefore explain the disparity 

in our conclusions, but serves to stress that generalisations across regulated stream 'types' (e.g. 

headwaters), should be made with care.

BMWP and ASPT were primarily developed to reflect gradients of organic stream pollution 

(Armitage et al., 1983). Significantly higher BMWP scores were observed for regulated sites, 

likely reflecting higher richness observed in both regulated streams. This is further evidenced as

non-significant differences between site types for ASPT (which is an average rather than 
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additive index) were found. This indicated, in agreement with Gillespie et al. (in press (a)), that 

regulation was not affiliated with effects typically associated with organic pollution. This is 

therefore further evidence that use of these indices for identification of impacts associated with 

upland regulation in the UK may be inappropriate.

In contrast to Gillespie et al. (in press (a)), who found that LIFE was significantly lower in 

upland UK regulated (cf. unregulated) streams, LIFE was significantly higher for the regulated 

site type in this study suggesting higher richness and/ or abundance of taxa in association with 

high flows. In the UK, and particularly within the Pennine region, compensation flows from 

many reservoirs have historically been set in excess of pre-reservoir Q95 resulting in elimination 

of extreme low flows (Higgs & Petts, 1988; Gustard, 1989). Low flows have been observed to 

modify upland macroinvertebrate assemblages, favouring taxa adapted to such events (e.g. 

Cowx et al., 1984; Wood & Petts, 1994). It is possible that similar processes operated at the 

unregulated site within this study, reducing density of rheophilic taxa resulting in lower LIFE 

scores. In support of this hypothesis, taxa assigned the LIFE flow group (see Extence et al., 

1999) 'flowing/ sluggish' or 'standing' were present in the 'top ten' taxa (mean most abundant 

throughout the study period) for site U, but not at either R1 or 2. Whereas, only 'moderate/ fast' 

or 'rapid' LIFE flow group taxa were present in the 'top ten' found at either sites R1 or 2 but not 

at site U (Table 9.6). The elimination of extreme low flow events through the introduction of 

compensation flows at the regulated sites may have therefore favoured rheophilic taxa resulting 

in higher LIFE scores. However, the number of sites assessed by Gillespie et al. (in press (a)) 

was far greater than in this study and further research into the generality of the findings detailed 

here is therefore required.

Assessment of the effect of stream regulation on β-diversity (i.e. patchiness) is novel, but this 

study found no evidence for any impact, indicating that patch-scale diversity is unaffected by 

regulation at the study sites. The reasons behind this remain unclear, but it suggests that 

variation in factors which affect patch diversity (e.g. bed morphology, erosion and deposition 

(Pringle et al., 1988)) is similar between site types. Further patch-scale studies to assess this 

suggestion are therefore recommended. Similarly, no evidence for differences between site 

types was observed for total density. This observation is in contrast to much of the published 

literature (e.g. Armitage, 1978; Munn & Brusven, 1991; Englund & Malmqvist, 1996) where, 

typically, higher total densities were observed and explained by increased availability of food 

for macroinvertebrates (e.g. Armitage, 1978; Munn & Brusven, 1991; Hoffsten, 1999). This 

suggests that food availability was not significantly modified by reservoir presence in this study.

Further insight into this unusual finding could be gained from assessment of ecosystem biomass

and production which have been hypothesised to change in response to modified food supply 
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Table 9.6: LIFE flow group classification (Extence et al., 1999) for 'top ten' taxa found at each 
site type but not at the other.

Taxa LIFE flow group (Extence et al., 1999)

Found at site U, but neither R1 or 2

Protonemura meyeri Rapid

Nemoura cinerea Flowing/ sluggish

Oligochaeta Standing

Dicranota sp. Moderate/ fast

Clinocerinae *

Found at either sites R1 or 2, but not U

Polycentropus flavomaculatus Moderate/ fast

Oulimnius sp. *

Hydropsyche siltalai Moderate/ fast

Baetis rhodani Moderate/ fast

Elmis aenea Moderate/ fast

Baetis sp. *

Isoperla grammatica Rapid

Siphonoperla torrentium Rapid

Rhyacophila dorsalis Rapid

* - flow group not assigned (Extence et al., 1999)

downstream of reservoirs (e.g. Armitage, 1978).

In agreement with H1, significant dissimilarities in community composition were identified 

(e.g. higher Coleoptera and Ephemeroptera densities in both regulated sites). Higher Coleoptera 

density is a surprising finding as, typically, reduced numbers are found in regulated streams 

(e.g. Nichols et al., 2006; Armitage et al., 1987, Gillespie et al., in press (a)). Reduced 

macrophyte/ moss cover or high levels of metals such as iron and manganese have been cited as 

reasons for reductions in Coleoptera in regulated streams (Boon et al., 1988), but clear 

difference in macrophyte cover between sites in this study was not visually apparent (pers. obs.)

and levels of dissolved iron and manganese were similar (see Chapter 4). Elmis aenea and 

Limnius volckmari were both associated with regulated sites but not with the unregulated site 

and both taxa are sensitive to low pH (Eyre et al., 1993). During floods, significantly lower pH 

was observed for the unregulated stream (see Chapter 5) and is therefore suggested as a 

potential reason for this disparity. This difference in pH regime may also explain the reduced 

numbers of Ephemeroptera which are, in general, very sensitive to low pH (Elliot et al., 2010).
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Significantly higher numbers of Trichoptera, particularly the net-spinning Polycentropus 

flavomaculatus and Hydropsyche siltalai, were observed for the regulated stream type. 

Enhanced numbers of net-spinning Trichoptera have previously been observed downstream of 

other UK reservoirs (e.g. Spence & Hynes, 1971; Boon, 1987) and reduced incidence of 

droughts and spate flows has been cited as a key driver (Boon, 1987). These reasons are 

therefore likely to explain the relatively high abundance of Trichoptera found in this study given

the hydrological impacts association with the reservoirs in the study area identified in Chapter 5.

Coleoptera, Ephemeroptera and Trichoptera reduced in density throughout the study period, 

resulting in reductions in taxonomic richness, 1/Simpson's diversity index and BMWP at both 

regulated sites during summer, but not at the unregulated site. In support of H2, it is 

hypothesised that these changes were in part due to the high frequency and magnitude of 

discharge events (e.g. Scullion & Sinton, 1983; Molles, 1985; Jakob et al., 2003; Robinson et 

al., 2004a) during this period. From a theoretical perspective, disturbance intensity could be 

seen to have shifted to a higher level resulting in lower diversity in accordance with the 

Intermediate Disturbance Hypothesis (Connell, 1978). Alternatively, reductions in 

Ephemeroptera and Trichoptera density could potentially be explained by adult emergence (e.g. 

Edington et al., 1995), but further data on specific emergence timing of such taxa in the streams 

assessed would be required to evaluate this suggestion. Future research should look to 

incorporate such strategies into data collection programmes.

An important point to note is that upland stream systems, such as those studied herein, can 

display significant spatial variation in physical-chemical variables (Ramchunder et al., 2011). 

For example, pH is influenced by exposure of water to underlying bedrock and an increase in 

mean pH has been observed to positively correlate with stream order where first-order streams 

are peat dominated (Ramchunder et al., 2011). Such gradients are likely to affect biological 

communities (Eyre et al., 1993; Ramchunder et al., 2011) and it is therefore prudent to bear this 

in mind when interpreting the results of this study which may be confounded by such variables 

as only one unregulated stream was used as a reference. However, the general approach used is 

consistent with that of previous studies (e.g. Englund & Malmqvist, 1996; Cortes et al., 2002) 

and is therefore arguably valid where no pre-regulation data exist. However, future studies 

should either seek to increase the number of sites (both unregulated and regulated) to increase 

confidence and statistical power, or compare biotic communities affected by regulation both 

with unregulated reference sites and predicted assemblages, although the latter may be limited 

to semi-quantitative comparisons (e.g. Armitage, 1989).
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9.6.2 Impact of Artificial Floods

AFs have been suggested as a potential tool to mitigate the impacts of upstream regulation 

(Acreman & Ferguson, 2010) and have been shown to affect downstream biotic assemblages in 

some streams worldwide (e.g. Agostinho et al., 2004; Mannes et al., 2008). This study is the 

first to assess the impact of AFs on macroinvertebrate assemblage in an upland regulated UK 

stream. AFs were hypothesised to reduce macroinvertebrate abundance, richness and diversity 

in alignment with published studies (e.g. Pardo et al., 1998; Harby et al., 2001; Cereghino et al., 

2004; Robinson et al., 2004a; Mannes et al., 2008; Benítez-Mora & Carmargo, 2014) (H3). 

However, this research did not reveal any significant changes for AF1, 3 or 4. The method of 

statistical testing used in this study (examination of significance of site:period interaction term 

under a BACI design) is commonly used to indicate whether a change has occurred at an 

'impact' site (e.g. Zimmer et al., 2001; Solazzi et al., 2011; Fraser & Lemphere, 2013). However,

interpretation is limited as the approach can be confounded (Underwood, 1994) if changes 

unrelated to the impact under assessment occur between 'before' and 'after' samples (Hurlbert, 

1984). Samples were taken within 48 hours before and after each AF to reduce the potential for 

this and no obvious confounding events were noted during the study period. Nevertheless, in 

addition to examination of significance of the interaction term, careful assessment of the data is 

required (Conquest, 2000).

Statistically significant interaction terms were identified only for total Plecoptera and 

Ephemeroptera densities and Simpson's diversity index. A significant interaction term was also 

observed for taxonomic dominance after AF4, but only very minor reductions were observed at 

both impact and control sites (0.04 and 0.02 respectively). Contrary to these findings, 

MANOVA did not present any evidence of significant change in taxonomic composition due to 

either AF. It is therefore prudent to remain sceptical as to whether an impact due to an AF 

occurred and use of more control sites to improve statistical power (Underwood, 1994) is 

recommended for future research of macroinvertebrate response to AFs in upland UK streams. 

Both control and impact sites displayed similar magnitude in change in taxonomic composition 

over the whole period of AFs. Comparison of pre- and post- assemblages at the impact site 

revealed little change in comparison with the control site indicating no clear impact of AFs on 

taxonomic composition which was supported by MANOVA test results contrary to hypothesis 

(H4). These findings conflict sharply with assessments of macroinvertebrate response to AFs 

globally, which to date have all revealed clear shifts in taxonomic composition post-AF. For 

example, reductions in Ephemeroptera (Lauters et al., 1996; Harby et al., 2001; Mannes et al., 

2008) and Chironomidae (Robinson et al., 2004b) have been observed resulting in the 

development of a more disturbance-resilient assemblage (Mannes et al., 2008).
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The lack of clear macroinvertebrate response in this study is potentially due to the hydrological 

characteristics of each AF. Percentage increase in discharge of the AFs in this study (up to c. 

435%) were comparable with AFs assessed globally where change in macroinvertebrate 

assemblage has been observed (e.g. Robinson et al., 2004a (c. 300%); Cross et al., 2010 (c. 

400%)), but durations of AFs in this study (up to c. 4hours) were lower (e.g. Robinson et al., 

2004a (7 to 8 hours); Cross et al., 2010 (60 hours)) suggesting that the relatively short AFs 

implemented in this study may be restricting change in macroinvertebrate response. It is 

therefore recommended that AFs of longer periods are implemented to explore this hypothesis. 

Whilst magnitude of percentage change is commonly used as an ecologically relevant flood 

descriptor (e.g. Poff & Zimmerman, 2010; Gillespie et al., in press (b)), it is limited, as for 

example, flow velocity (which has been linked to macroinvertebrate response (e.g. Brooks et al.,

2005)) change is not taken into account. Future research should therefore aim to develop 

methods to adequately compare floods between studies and sites. 

Alternatively, lack of clear evidence of change may be a reflection of the characteristics (e.g. 

behaviour) of the macroinvertebrate assemblage within this stream cf. others where change has 

been observed. Hydrologically, the stream assessed in this study could be classed as 'dynamic' 

due to repeated overspill events causing disturbances in addition to AFs in the months prior to 

experimental manipulations cf. other regulated streams globally where antecedent hydrological 

conditions were more 'stable' (e.g. Robinson et al., 2004a). The prevailing hydrology may have 

resulted in a disturbance resilient assemblage (i.e. taxa that can resist high flows) in the stream 

assessed (cf. others worldwide) which can potentially explain the observations of this study. 

Further research to compare assemblages from differing hydrological regimes and their 

responses to AFs is therefore required to test this assumption. To formalise this model, the 

Regulated Stream Disturbance Hypothesis (RSDH) has been developed.

The RSDH builds on the relationship between diversity and disturbance conceptualised as the 

Intermediate Disturbance Hypothesis (IDH) by Connell (1978). Connell (1978) theorised biotic 

diversity would be maximised at an intermediate disturbance intensity. This was based on 

observations of tropical rainforests and coral reefs and since this time, evidence in support of 

this relationship in streams has been identified (Townsend et al., 1997). Nonetheless, it is also 

important to note that such theories have received criticism (e.g. Kondoh, 2001; Fox, 2013) 

based on identification of complex relationships between diversity and productivity and 

empirical evidence. However, current literature also supports the IDH and suggests that such a 

concept can be useful under some circumstances taking into account its underlying assumptions 

(Huston, in press).

The RSDH has four scenarios (a-d) where diversity is driven by various levels of hydrological 
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disturbance intensity. Scenario a is the hypothesised unaffected or reference condition: flood 

frequency and magnitude (hydrological disturbance intensity) is relatively high (cf. regulated 

conditions) resulting in a relatively narrow temporal range in biotic diversity (Figure 9.8). 

Scenario b can be described as the 'dynamic' regulated condition and is characterised by a wide 

range in hydrological disturbance intensity driven by periods of reservoir overspill (where 

disturbance is similar to experienced in scenario a) and where regulation reduces flood 

frequency as observed for the sites in this thesis (Chapter 5). This results in a wide temporal 

range in diversity (that overlaps with that seen in scenario a), but has a higher overall mean 

diversity than all other scenarios (Figure 9.8) as observed in this thesis (Chapter 9) (Table 9.7).

Scenario c can be described as the 'stable' regulated condition and is characterised by the lowest 

hydrological disturbance intensity of all scenarios. In this scenario, the upstream reservoir(s) 

exert a strong regulating effect on the hydrological regime allowing few floods to occur 

downstream (e.g. Robinson & Uehlinger, 2008). This results in a small temporal range in and 

lower mean biotic diversity than unaffected conditions (Figure 9.8; Table 9.7) (e.g. Armitage, 

1978; Munn & Brusven, 1991). Scenario d applies at a macro-scale (e.g. regional) for regulated 

streams where a large range in hydrological disturbance intensity occurs (due to site specific 

factors such as rainfall intensity and reservoir operation). This results in large variation in 

impacts of regulation on biotic diversity but, on average, there is no difference in diversity to 

unaltered conditions (Figure 9.8) as observed in this thesis (Chapter 8) (Table 9.7). However, it 

is important to note that although diversity is equal, biotic community dissimilarity between the 

two scenarios (a and d) is evident (see Chapter 8).

While the RSDH is based on observations of benthic macroinvertebrate response to stream 

regulation, it may apply to alternative biotic groups, as for example, there is evidence that 

hydrological driven disturbance plays an important role in determining stream bryophyte (e.g. 

Downes et al., 2003) and fish (e.g. Kinsolving & Bain, 1993; Gehrke et al., 1995) diversity. 

Further research is therefore recommended to test this hypothesis and it is hoped that the RSDH 

can be critically applied to results from future biotic surveys of the impact of regulation and its 

underlying assumptions tested.
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Figure 9.8: Graphical representation of the four scenarios (a-d) of the Regulated Stream 
Disturbance Hypothesis: interaction between hydrological disturbance intensity and biotic 
diversity. Temporal variation is denoted by arrows and mean disturbance/ diversity levels are 
shows by coloured lines. Scenarios: a - 'natural reference condition', mean biotic diversity level 
2; b – 'dynamic' regulated condition, mean biotic diversity level 1; c – 'stable' regulated 
condition, mean biotic diversity level 3; d – macro-scale regulated condition, mean biotic 
diversity level 2.
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Table 9.7: Evidence in support of the Regulated Stream Disturbance Hypothesis. Diversity indices for 
scenarios b-d and respective reference condition (scenario a) are shown. Indication of the direction of 
difference (regulated cf. reference) between indices is also shown where possible.

Scenario Source Index type Index (st. dev.) Reference condition index
(st. dev.) (scenario a)

Direction of 
difference

b Chapter 9 Taxonomic 
richness

10 (3) 6 (1) +

b Chapter 9 1/ Simpson's 
Diversity Index

5.39 (1.73) 2.83 (0.78) +

c Armitage 
(1978)

Shannon & 
Weaver 
diversity

1.7 (*) 3.4 (*) - 

c Munn & 
Brusven 
(1991)

Taxonomic 
richness

2 (*) (summer),
5 (*) (autumn) 

30 (*) (summer), 38 (*) 
(autumn)

- (ǂ)

d Chapter 8 Taxonomic 
richness

40 (14) 43 (13) None

d Chapter 8 1/ Simpson's 
Diversity Index

5.9 (2.4) 7.20 (4.80) None

* - not given, ǂ – not tested statistically

9.7 Summary

This study has identified significantly higher macroinvertebrate diversity and LIFE scores in 

regulated sites when compared to a nearby unregulated site. These differences were driven by 

significantly higher abundances of Coleoptera, Ephemeroptera and Trichoptera potentially 

reflecting a combination of a shift towards a more intermediate intensity in hydrological 

disturbance events, elimination of extreme low flows and suppression of natural variation in pH 

downstream of the reservoirs within the study area.

A novel aspect of this study was to assess impacts of regulation over a sub-seasonal temporal 

scale. This assessment revealed summer reductions in Coleoptera, Ephemeroptera and 

Trichoptera resulting in reduced diversity at both regulated sites but not the unregulated site. It 

was hypothesised that these observations could be explained by unusually high rainfall during 

June 2012 resulting in frequent reservoir overspill events shifting the hydrological disturbance 

regime towards a higher (more similar to experienced at the unregulated site) intensity. This 

concept was formalised as the Regulated Stream Disturbance Hypothesis which can aid holistic 

thinking around the role of disturbance in controlling regulated stream biota and direct future 

research. Further research is required to test this hypothesis.
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The impact of a series of AFs on a downstream macroinvertebrate assemblage were assessed. In

contrast to published literature and the hypotheses, no clear impacts were observed. It was 

theorised that, although percentage change in discharge during AFs were similar to those 

undertaken in other studies where shifts in assemblage were observed, AF duration was lower 

and potentially explained the lack of observed impact. Alternatively, lack of clear impact could 

have been explained by characteristics (e.g. resilience) of the macroinvertebrate assemblage at 

the study site. Further research is required to test these theories. It was also proposed that future 

research undertaking similar assessments could be improved by incorporating methodological 

changes such as using more than one control site.



203

10 RESEARCH SYNOPSIS

10.1  Chapter overview

This chapter presents a synopsis of the key findings of this chapters 5 to 9 of this thesis. It 

relates these findings to the initial aims and objectives of the study and details whether 

hypotheses made were accepted or rejected. To direct future research, key research needs 

identified in each chapter are also presented.

10.2  Research synopsis

This thesis has achieved the following aims as set out in Chapter 1:

1. Assess the impact of regulation on downstream ecosystems, including hydrological, 

physical-chemical, morphological and biotic elements;

2. Assess the impact of environmental flows (Artificial Floods (AFs) specifically) on 

downstream ecosystems.

10.2.1 Aims

This thesis is driven by a requirement to better understand regulated stream ecosystems. The 

primary aims are to:

3. Assess the impact of regulation on downstream ecosystems, including hydrological, 

physical-chemical, morphological and biotic elements;

4. Assess the impact of environmental flows (AFs specifically) on downstream 

ecosystems.

10.2.2 Hydrology

Table 10.1 details the objective and hypothesis associated with this element. It also details 

whether the hypothesis was accepted or rejected and the following text further details the 

conclusions made regarding this element.
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Table 10.1: Objectives and hypotheses associated with Chapter 5. An indication of whether 
hypotheses were either accepted (A) or rejected (R) is made.

Objective Respective hypothesis A/R

1 Undertake an 

assessment of 

the impact of 

regulation on 

hydrology, EC, 

DO and pH 

through 

comparison with

unregulated 

conditions

1 Regulation would reduce flood frequency, magnitude and duration and

the impact would vary temporally

A

2 Regulation would impact downstream physical chemistry and these 

impacts would vary temporally

A

2 Conduct a series

of AFs to assess 

the potential for 

use of AFs as 

mitigation for 

any impacts 

identified

3 AFs would impact downstream physical chemistry thereby 

demonstrating control of downstream physical chemistry and potential

for use as mitigation

A

In agreement with other research from across the globe (e.g. Baxter, 1977; Higgs & Petts, 1988; 

Gustard, 1989), stream regulation was associated with reduced flood frequency and duration. A 

novel observation was that regulation (from a non-hydropower reservoir) was associated with 

increased flood rate of change (both rising and falling limbs) cf. floods on a nearby unregulated 

stream. These observations are salient as flood frequency, duration and rate of change have all 

been noted as key drivers of stream ecological integrity (Poff et al., 1997).

It is important to note that these associations were not temporally consistent: impacts were 

generally confined to within spring and summer where rainfall was relatively low, resulting in 

periods where reservoirs had capacity to store runoff rather than overspill. The impact of 

regulation on discharge rate of change during floods was thought to reflect the relatively large 

overspill channel crest width cf. the small downstream receiving channel capacity. It is thought 

that such observations have not previously been made in combination before and are driven by 

the relatively small capacity (from a global perspective) of the reservoirs within the study area 
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(Lehner et al., 2011). This point should be taken into account when assessing the global 

applicability of the impacts identified by this study.

Previous research (e.g. Higgs & Petts, 1988) has identified an association between regulation 

and reduced flood magnitude, but evidence for this was not identified in this study. It was 

theorised that this may have been due to the method used to define flood magnitude which was 

based on a percentage increase from Q25 flows. Q25 was selected for use prior to analysis as it 

appeared to adequately distinguish floods from the hydrographs at all sites, but alternative Q 

values may have yielded different results. Further research is therefore required to address this 

potential methodological limitation by using alternative approaches that either test alternative Q 

values for defining floods, or alternatively, compare actual with predicted discharge rather than 

with an unregulated reference.

It was concluded that the use of AFs as mitigation for reduced flood frequency and duration 

identified as associated with regulation is unlikely to be successful given that impacts were only

identified during periods of low rainfall. Such periods are likely to coincide with increased 

demand for water from humans (Bond et al., 2008) resulting in a drive to store as much water in

reservoirs as possible and therefore reducing the likelihood of AF implementation. The rate of 

change of AFs was demonstrated to be controllable and there is therefore potential to use such 

methods to mitigate the relatively high rates of change during floods identified to be associated 

with regulation.

Research highlights:

• Evidence for association between regulation and reduced flood frequency and 

duration;

• Evidence for association between regulation and increased discharge rate of 

change during floods;

• No evidence for impact of regulation on flood magnitude;

• Limited potential demonstrated for use of AFs as mitigation of flood frequency 

and duration impacts; better potential for rate of change impacts.



206

10.2.3 Physical-chemical variables

Tables 10.1 and 10.2 detail the objectives and hypotheses associated with this element. They 

also detail whether the hypotheses were accepted or rejected and the following text further 

details the conclusions made regarding this element.

Table 10.2: Objectives and hypotheses associated with Chapter 6. An indication of whether 
hypotheses were either accepted (A) or rejected (R) is made.

Objective Respective hypothesis A/R

1 Undertake a spatio-temporal assessment of the 

impact of regulation on stream temperature using 

contemporary analytical techniques through 

comparison of several regulated streams with 

unregulated conditions in a multi-reservoir 

catchment

1 Regulation would reduce 

downstream temperature range and

impact mean stream temperature 

according to season

A

2 Impact would vary spatially A

2 Conduct an assessment of the impact of a series of 

AFs on downstream temperature

3 Change in downstream 

temperature would be observed 

during AFs, thereby demonstrating

the potential for use of AFs as 

mitigation.

R

No evidence for impact of reservoirs on downstream electrical conductivity (EC) during the 

routine release of compensation water was found, but during overspill events, EC was found to 

be significantly lower downstream of reservoirs (cf. during floods in an unregulated stream) 

potentially reflecting ionic uptake by phytoplankton in the reservoir epilimnion (e.g. Atkins & 

Harris, 1925). Regulation was found to be associated with reduced 1- and 7-day range in 

dissolved oxygen (DO). Temperature can influence the amount of oxygen water can hold 

(cooler water can hold more oxygen (USGS, 2014)) and this observation may therefore reflect 

reduced temperature range which was identified to be associated with regulation (see below).  

Alternatively, reduced photosynthetic activity (which drives dissolved oxygen levels (USGS, 

2014)) of the receiving waters may have occurred, resulting in reduced DO range.

Another novel finding of this study was that during overspills, significantly higher DO was 

found in reservoir tailwaters cf. during flood events in a nearby unregulated reference stream, 

likely reflecting oxygenation of water cascading down overspill channels. Such an effect may  
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be important in other locations where reservoirs are of relatively small capacity cf. precipitation 

levels and overspill events are common.

The impact of stream regulation on downstream pH has received little attention and this thesis 

has developed understanding in this area. Evidence for an association between regulation and 

reduced pH diurnal range was identified. Photosynthesis and respiration can drive diurnal pH 

range in water through consumption and production of carbon dioxide (Morrison et al., 2001; 

Soares et al., 2008). It was hypothesised that such processes would be reduced due to 

hypolimnetic supply of compensation flow which was likely devoid of photosynthetically active

organisms (e.g. phytoplankton) resulting in reduced pH range. 

During overspill events, pH was significantly higher downstream of reservoirs cf. during floods 

in an unregulated reference stream, potentially reflecting the ability of reservoirs to increase pH 

through buffering due to prolonged interaction between water and reservoir substrates and 

photosynthetic activity (Soares et al., 2008). Alternatively, differences in land cover/ geology 

may explain this observation, but no evidence for differences in mean pH between sites was 

identified and this latter theory is therefore unlikely.

Globally, the impact of regulation on stream temperature has been well studied. Site specific 

complexities in impact have been identified and this thesis has advanced understanding of some 

of these complexities. Changes in diurnal mean stream temperature were identified to be 

associated with regulation in broad agreement with previous research (e.g. Cowx et al., 1987; 

Dickson et al., 2012). During winter, diurnal mean stream temperature was up to 2°C warmer 

than predicted although during summer, negligible impact on mean stream temperature was 

apparent downstream of most reservoirs. Two key points emerged: (i) impacts were generally 

confined to within ~1.5km downstream of reservoirs indicating rapid equilibration with 

atmospheric conditions and, (ii) impacts were spatially diverse, as for example, during summer, 

diurnal mean stream temperature directly downstream of one reservoir was up to ~3.5°C lower 

than predicted.

This thesis found, in agreement with previous research (e.g. Lavis & Smith, 1972; Lehmkhul, 

1972; Crisp, 1977; O'Keeffe et al., 1990), that regulation was association with reduced diurnal 

stream temperature range. However, considerable spatio-temporal complexities were identified. 

For example, during autumn and summer, clear impacts were confined to within 1.5 and 0.2km 

downstream of reservoirs respectively. Additionally, during winter, reductions in diurnal stream 

temperature range were typically < 0.5°C, but during summer, reductions were up to ~ 7°C. It 

was proposed that the range in spatial-temporal impacts identified in this study were due to a 

number of interacting factors including: (i) the relatively large thermal capacity of the reservoirs
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cf. the small size (and therefore thermal capacity) of receiving waters; (ii) reservoir specific 

factors such as volume, operation and stratification status and, (iii) general lack of riparian 

vegetative cover of receiving streams.

AFs appeared to drive reductions in EC, DO and pH, but such responses were not observed in 

all AFs. Changes in EC were hypothesised to be a result of reduced water residence time in the 

reservoir stilling basin where, under normal compensation flows, EC would likely increase due 

to contact with mineral substrate. Additionally, alternative processes (e.g. photosynthesis/ 

respiration) were also noted to potentially have played a role and further research is required to 

assess these hypotheses. Reduced DO was only observed during AFs 1 & 2; it was hypothesised

that such changes may have occurred due to disruption to photosynthetic activity. The impact of 

AFs on pH had not been assessed prior to this study and the driver behind the reductions is 

unknown and it was proposed that it may have been due to dissolution of atmospheric carbon 

dioxide during the turbulent release (Raymond & Cole, 2001). Conversely, stream temperature 

was not affected by any AF; this finding was consistent with other studies where the AF supply 

valves were not changed from pre-flood water supply.

It was concluded that the potential for mitigation of the physical-chemical impacts of regulation 

identified above was greatest for pH and may be enhanced in AFs of higher magnitude and rates

of change. Assessment of AFs supplied by valves at different (or mixed) vertical heights within 

the dam may yield alternative observations, particularly with regards to stream temperature (e.g.

Macdonald et al., 2012) and should therefore be carried out in future research.
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Research highlights:

• Evidence for reduced electrical conductivity and increased dissolved oxygen and

pH cf. unregulated conditions during floods due to stream regulation;

• Evidence for lower dissolved oxygen (1- and 7-day) and pH (1-day) range due to 

regulation;

• Evidence for warming effect downstream of reservoir during winter and cooling 

during summer under some circumstances;

• Evidence for reduction in diurnal stream temperature range due to reservoirs; 

impacts greatest during summer but limited to within short distances 

downstream;

• Some Artificial Floods resulted in reductions in electrical conductivity, pH and 

DO, but no change in temperature during any Artificial Flood;

• Potential for use of Artificial Floods to mitigate impacts of regulation greatest 

for pH.
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10.2.4 Coarse sediment transport

Table 10.3 details the objectives and hypotheses associated with this element. It also details 

whether the hypotheses were accepted or rejected and the following text further details the 

conclusions made in this study.

Table 10.3: Objectives and hypotheses associated with Chapter 7. An indication of whether 
hypotheses were either accepted (A) or rejected (R) is made.

Objective Respective hypothesis A/R

1 Undertake a detailed study of coarse sediment 

transport in a regulated upland UK stream to better

understand the sediment transport-discharge 

relationship and threshold discharges

1 The sediment transport-discharge 

relationship and threshold 

discharge to invoke sediment 

transport would vary temporally 

reflecting antecedent flow 

conditions

A

2 Assess the impact of a series of AFs of varying 

characteristics on coarse sediment transport and 

potential for use of AFs as morphological 

management tools

2 AFs would invoke sediment 

transport and therefore 

demonstrate potential for use as a 

morphological management tool

A

This thesis reported on the first process-based assessment of coarse sediment transport 

dynamics in a regulated stream. Similar to unregulated streams (e.g. Reid et al., 2007; Turowski 

& Rickenmann, 2011), sediment transport was generally positively correlated with discharge. It 

was proposed that deviances from this association were due to discrete events (e.g. bank 

collapse) rather than an artefact of the sensors used. This assumption was further evidenced 

through assessment of hysteresis curves which demonstrated considerable variability of 

sediment transport dynamics during each flood in agreement with other studies (e.g. Moog & 

Whiting, 1998; Ryan et al., 2005). Whilst this general association did not significantly differ 

between periods characterised by relatively high and low discharges, threshold discharges 

required to stimulate sediment transport appeared to be higher during the latter, demonstrating 

the importance of antecedent conditions (e.g. Sear, 1993; Vericat et al., 2006).

Flood based analysis of coarse sediment transport revealed that a discharge increase of ~400% 

above Q25 appeared to act as a general threshold for significant sediment transport, potentially 

linked to physical change (e.g. mobilisation of a particular clast size). Total sediment transport 
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during floods was most associated with flood magnitude (positive relationship) in agreement 

with other studies in unregulated streams (e,g. Bogen et al., 2003) but interestingly, magnitude 

of the previous flood was negatively associated with total sediment transport indicating that 

sediment supply after large floods may be limited for transport in subsequent floods.

Significant coarse sediment transport only occurred in the final, largest magnitude, AF. This 

finding was consistent with the relationship between discharge and sediment transport prior to 

AFs and gives weight to the argument for the use of high magnitude AFs as a morphological 

management tool. However, the requirement for such mitigation should be carefully assessed, 

especially in regulated streams where overspill events occur, given the ability of such events to 

transport coarse sediment.

Research highlights:

• General positive relationship between coarse sediment transport and discharge 

identified for a regulated stream;

• Threshold discharges required to invoke sediment transport differed between 

periods of relatively high and low overspills;

• Flood magnitude appeared to be the greatest driver of total sediment 

transported during each flood, however, a negative correlation with magnitude 

of the previous flood was also identified indicating the importance of 

antecedent conditions;

• Use of Artificial Floods to manage sediment transport was demonstrated.
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10.2.5 Macroinvertebrates

Tables 10.4 and 10.5 detail the objectives and hypotheses associated with this element. They 

also detail whether the hypotheses were accepted or rejected and the following text further 

details the conclusions made in this study.

Table 10.4: Objectives and hypotheses associated with Chapter 8. An indication of whether 
hypotheses were either accepted (A) or rejected (R) is made.

Objective Respective hypothesis A/R

1 Identify relationships between the extent of stream 

regulation and macroinvertebrate communities 

using a multi-site, regional-scale approach

1 Macroinvertebrate indices and 

community composition would 

both be affected by upstream 

impoundment with some taxa 

increasing and others decreasing in

abundance relative to their 

sensitivity to changes in flow

A

2 Examine the utility of new, continuous, index 

representing the extent of stream regulation

2 A continuous index representing 

extent of regulation would be more

sensitive to differences in 

community composition than 

categorical classifications

A

3 Evaluate two recently developed indices (LIFE and

PSI) alongside established biomonitoring indices 

to consider their relative performance for 

assessment of the impacts of regulation

3 LIFE and PSI would decrease as 

the extent of stream regulation 

increases, and demonstrate 

superior sensitivity to alternative 

indices such as diversity, 

dominance, BMWP and ASPT in 

detecting any impacts

A & R 

respect

ively
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Table 10.5: Objectives and hypotheses associated with Chapter 9. An indication of whether 
hypotheses were either accepted (A) or rejected (R) is made.

Objective Respective hypothesis A/R

1 Conduct an assessment of intra-

annual temporal dynamics of the 

impact of regulation on stream 

macroinvertebrates

1 A difference in macroinvertebrate assemblages 

between regulated and unregulated sites could be 

observed in line with previous studies

A

2 The difference would vary intra-annually reflecting 

taxon life-cycle attributes and environmental 

preferences

A

2 Examine the impact of AFs on 

downstream benthic 

macroinvertebrates in the UK

3 Macroinvertebrate abundance, richness and 

diversity would decrease as a result of AFs

R

4 Taxa would respond to AFs based on their specific 

environmental preferences resulting in a more 

disturbance resilient assemblage

R

This thesis enhanced understanding of the impact of regulation on downstream 

macroinvertebrate assemblages in upland UK systems. At a regional scale, Coleoptera and 

Ephemeroptera were found to be negatively affected and Trichoptera positively so. At a sub-

catchment scale, Coleoptera and Ephemeroptera were found in greater densities downstream of 

reservoirs (cf. an unregulated stream) indicating the importance of spatial scale in assessments 

(Wiens, 1989).

The regional scale study reported in this thesis found associations between upstream regulation 

and the invasive snail Potamopyrgus antipodarum and the stonefly Amphinemura sulcicollis. 

These associations were hypothesised to be a result of changes in flow and temperature regimes 

associated with regulation and had not previously been identified for the UK. The importance of

P. antipodarum as an ecosystem engineer has recently been highlighted (Moore et al., 2012) and

further monitoring of this apparent association between this species and regulation in the UK is 

recommended.

Both spatial studies concluded that traditional biomonitoring indices (i.e. BMWP and ASPT) 

appeared to be ineffective at detecting community scale changes associated with regulation. 

Conversely, the recently developed flow-specific LIFE index (Extence et al., 1999) did appear 

to detect these changes. BMWP and ASPT are sensitive to pollution not typically associated 
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with regulation, but LIFE has been developed to detect flow specific pressures and is therefore 

more suited to use in scenarios where flows are impacted (e.g. regulated streams). The 

continued use and development of LIFE is recommended as it has potential to identify where 

regulation-specific pressures are evident and could potentially be used to assess long term 

dynamics in such pressures and therefore the effectiveness of mitigation measures such as AFs.

The regional scale study tested three methods of describing the extent to which a site is affected 

by regulation in the absence of detailed hydrological and water quality information. It was 

found that a continuous score, Index of Regulation, rather than two categorical classifications, 

appeared to be the more effective at allowing for changes associated with regulation to be 

detected. Further testing and development of this method and proposed extensions (IRD and IRQ)

is therefore recommended.

The sub-catchment scale study found that higher levels of macroinvertebrate diversity 

(taxonomic richness and 1/Simpson's Diversity Index) were associated with regulated sites both 

in agreement (e.g. Penaz et al., 1968; Pool & Stewart, 1976; Maynard & Lane 2012) and 

disagreement (e.g. Armitage, 1978; Munn & Brusven; 1991; Gillespie et al., in press (a)) with 

other studies. It was hypothesised that a reduction in intensity/ occurrence of extreme high and 

low flow events may have shifted disturbance intensity towards an intermediate level, resulting 

in higher diversity in accordance with Intermediate Disturbance theories (Connell, 1978; 

Townsend et al., 1997; Huston, in press). The sub-catchment scale study revealed novel intra-

annual changes in macroinvertebrate assemblages affected by regulation. The primary changes 

of note were a reduction in diversity indices (driven by reduced densities of Ephemeroptera, 

Trichoptera and Coleoptera) and asynchronous removal of significant differences in community 

assemblages between regulated and unregulated sites. These changes were theorised to have 

occurred due to a series of large floods which shifted the balance of disturbance towards a 

higher level, resulting in lower diversity (Connell, 1978). The Regulated Stream Disturbance 

Hypothesis was developed to formalise these concepts and stimulate and direct future research.

The impact of four successively larger magnitude AFs on a downstream benthic 

macroinvertebrate community assemblage was assessed although, in contrast to other studies 

(e.g. Pardo et al., 1998; Harby et al., 2001; Cereghino et al.,2004; Robinson et al., 2004a; 

Mannes et al., 2008; Benitez-Mora & Carmargo, 2014), little evidence of change was identified.

The AFs were of similar magnitude change to other studies where impacts were observed (e.g. 

Robinson et al., 2004a; Cross et al., 2010), but of considerably shorter duration and it is 

hypothesised that this may be the reason for little evidence of change, although flood 

characteristics between studies may not be directly comparable. Additionally, factors specific to 

the macroinvertebrate assemblage studied (e.g. resilience to floods) may also have been 
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important. Further research is therefore required to test these theories.

10.3  Summary

This chapter has detailed the findings of this thesis on the impact of (i) stream regulation and (ii)

Artificial Floods on downstream hydrology, physical chemistry, coarse sediment transport and 

benthic macroinvertebrate assemblages. 

Stream regulation was found to impact elements of discharge, electrical conductivity, dissolved 

Research highlights:

• At a regional scale, Coleoptera and Ephemeroptera were found to be negatively 

affected and Trichoptera positively so. Conversely, at a sub-catchment scale, 

Coleoptera and Ephemeroptera were positively associated with regulation;

• Evidence that the invasive snail Potamopyrgus antipodarum and the stonefly 

Amphinemura sulcicollis were associated with regulation was found;

• Traditional biomonitoring indices (BMWP and ASPT) appeared ineffective in 

detecting impacts associated with regulation, but LIFE appeared sensitive to 

such community differences;

• A continuous score, Index of Regulation, rather than two categorical 

classifications, appeared to be the most effective at allowing for changes 

associated with regulation to be detected;

• Evidence for higher levels of diversity associated with regulation was identified 

at a sub-catchment scale. Temporal variation in community assemblage was 

identified and hypothesised to be a reflection of hydrological disturbance 

events;

• Artificial Floods demonstrated little evidence for use as management tools of 

downstream macroinvertebrate assemblages.
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oxygen, pH and temperature regimes. Additionally, regulation was found to be associated with 

impacts on downstream macroinvertebrate communities.

Control of hydrological characteristics was demonstrated during Artificial Floods which 

generally resulted in reductions of electrical conductivity, dissolved oxygen and pH and no 

change in stream temperature, although variability in response was observed. Evidence for 

coarse sediment transport in line with overspill events prior to Artificial Floods was identified, 

but little evidence for change in macroinvertebrate assemblage as a result of Artificial Floods 

was found. Evidence for the use of Artificial Floods as management tools was greatest for 

coarse sediment transport and pH, but overall, limited potential was demonstrated.

It is hoped that through conceptual developments such as the Index of Regulation and the 

Regulated Stream Disturbance Hypothesis, a theoretical baseline for future studies assessing the

impact of regulation on downstream biota has been established thereby presenting key research 

themes and hypotheses for testing. Such ideas are important for driving forward the science of 

regulated streams in an novel, and potentially scientifically rewarding, directions.

The findings of this thesis and conceptual advances are likely to prove useful in a world where 

(i) reservoir construction is continuing at a fast pace in some countries (Olden et al., 2014) and, 

(ii) contemporary legislation increasingly requires understanding of such systems to enable 

attainment of their targets.
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13 APPENDIX B: CALIBRATIONS

13.1Water level - discharge

Water level – discharge rating curves developed from salt discharge gauging for sites 1, 5, 7, 8 

and 10 are shown in Figure 13.1. Figure 13.2 is the discharge - water level rating curve and 

coefficients developed from a weir rating table provided by YW for site 11. Figure 13.3 shows 

the water levels recorded at sites 1, 5, 7, 8 and 10 for the periods that analyses were undertaken.
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Figure 13.1: Water level – discharge rating curves for sites 1, 5, 7, 8 and 10 
(panels A – E respectively) developed from salt – discharge gauging.



245

Figure 13.2: Water level – discharge rating curve for site 11 developed from YW (n.d.). 

Figure 13.3: Boxplots of water levels recorded at sites 1, 5, 7, 8 and 10 during the assessment 
periods.
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13.2Stream temperature

Figure 13.4: Stream temperature calibration curves and coefficients for Tinytag 
and YSI and Seba dataloggers (panels A and B respectively).



247

14 APPENDIX C: REMOVED DATA

14.1Discharge

Table 14.1: Discharge data removed during quality control.

Site Start End Reason

1 22/05/2012 13:15:00 04/06/2012 07:45:00 Probe out of position

1 10/07/2012 00:00:00 30/07/2012 08:30:00 Probe out of position

5 09/12/2011 20:00:00 02/07/2012 10:45:00 Probe out of position

5 10/09/2013 05:00:00 25/09/2013 07:30:00 Probe malfunction

6 25/11/2012 09:30:00 25/11/2012 14:00:00 Probe malfunction

6 05/03/2013 16:15:00 08/03/2013 02:00:00 Probe malfunction

7 14/12/2011 11:45:00 05/01/2012 11:30:00 Probe out of position

7 22/06/2012 17:15:00 02/07/2012 15:30:00 Probe out of position

7 17/01/2013 14:30:00 17/01/2013 14:30:00 Probe malfunction

8 08/12/2011 20:00:00 15/12/2011 23:45:00 Probe out of position

8 03/04/2012 00:00:00 05/04/2012 23:45:00 Probe malfunction

8 30/07/2013 00:00:00 02/08/2013 23:45:00 Probe malfunction

10 05/06/2012 12:15:00 06/07/2012 23:45:00 Probe out of position

10 17/12/2012 08:45:00 04/01/2013 10:15:00 Probe out of position

14.2Physical-chemical variables

The following detail physical-chemical data manually removed during quality control. A record 

of missing data due to telemetry failure can be found in the supplementary documents folder on 

the accompanying CD.
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Table 14.2: Electrical conductivity data removed during quality control.

Site Start End Reason

6 22/01/2012 00:00:00 28/01/2012 00:00:00 Probe malfunction

6 02/06/2012 00:00:00 30/07/2012 00:00:00 Probe malfunction

6 24/09/2012 12:00:00 26/09/2012 04:48:00 Probe malfunction

6 15/10/2012 00:00:00 21/10/2012 00:00:00 Probe malfunction

6 29/12/2012 00:00:00 06/01/2013 00:00:00 Probe malfunction

6 24/04/2013 00:00:00 25/04/2013 00:00:00 Probe malfunction

6 27/07/2013 00:00:00 02/08/2013 00:00:00 Probe malfunction

6 19/08/2013 12:00:00 20/08/2013 00:00:00 Probe malfunction

10 18/10/2012 00:00:00 07/11/2012 00:00:00 Probe malfunction

10 05/03/2013 00:00:00 06/03/2013 00:00:00 Probe malfunction

10 15/06/2013 00:00:00 04/08/2013 00:00:00 Probe malfunction

10 20/08/2013 00:00:00 21/08/2013 00:00:00 Probe malfunction

11 23/12/2011 16:48:00 24/12/2011 00:00:00 Probe malfunction

11 25/12/2011 00:00:00 10/01/2012 00:00:00 Probe malfunction

11 16/05/2012 00:00:00 25/05/2012 00:00:00 Probe malfunction

11 23/06/2012 00:00:00 24/06/2012 00:00:00 Probe malfunction

11 04/07/2012 00:00:00 31/07/2012 00:00:00 Probe malfunction

11 03/01/2013 00:00:00 31/01/2013 00:00:00 Probe malfunction

11 13/06/2013 00:00:00 21/06/2013 00:00:00 Probe malfunction

11 19/08/2013 12:00:00 20/08/2013 00:00:00 Probe malfunction

11 11/09/2013 00:00:00 20/09/2013 00:00:00 Probe malfunction
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Table 14.3: Dissolved oxygen data removed during quality control.

Site Start End Reason

6 01/01/2013 00:00:00 22/01/2013 00:00:00 Probe malfunction

6 04/03/2013 00:00:00 27/03/2013 00:00:00 Probe faulty when received

6 19/06/2013 00:00:00 24/06/2013 00:00:00 Probe malfunction

6 27/07/2013 12:00:00 02/08/2013 00:00:00 Probe malfunction

6 30/07/2013 00:00:00 13/09/2013 00:00:00 Probe faulty when received

6 31/08/2013 00:00:00 20/09/2013 00:00:00 Probe malfunction

11 01/01/2013 00:00:00 11/01/2013 00:00:00 Probe malfunction

11 05/03/2013 14:24:00 05/03/2013 14:52:48 Probe malfunction

11 02/06/2013 00:00:00 04/06/2013 00:00:00 Probe malfunction

11 17/06/2013 00:00:00 28/06/2013 00:00:00 Probe malfunction

11 17/07/2013 00:00:00 30/07/2013 00:00:00 Probe malfunction

Table 14.4: pH data removed during quality control.

Site Start End Reason

6 02/11/2012 00:00:00 02/12/2012 00:00:00 Probe malfunction

6 05/03/2013 10:33:36 05/03/2013 11:02:24 Probe malfunction

6 24/04/2013 00:00:00 05/06/2013 00:00:00 Probe malfunction

10 02/10/2012 09:36:00 02/10/2012 14:24:00 Probe malfunction

10 05/03/2013 12:00:00 06/03/2013 00:00:00 Probe malfunction

10 03/04/2013 12:00:00 03/04/2013 14:24:00 Probe malfunction

11 23/12/2011 00:00:00 12/01/2012 00:00:00 Probe malfunction

11 03/10/2012 12:00:00 04/10/2012 12:00:00 Probe malfunction

11 05/03/2013 14:24:00 05/03/2013 14:52:48 Probe in air while swapping

11 02/04/2013 12:57:36 02/04/2013 13:26:24 Probe malfunction

11 16/05/2013 00:00:00 05/06/2013 00:00:00 Probe malfunction
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Table 14.5: Stream temperature data removed during quality control.

Site Start End Reason

2 03/06/2013 11:30:00 03/06/2013 11:30:00 Logger in air while swapping

3 03/06/2013 11:15:00 03/06/2013 11:15:00 Logger in air while swapping

9 30/01/2013 13:30:00 30/01/2013 14:15:00 Logger in air while swapping

9 04/06/2013 09:45:00 04/06/2013 09:45:00 Logger in air while swapping

9 28/07/2013 00:00:00 02/08/2013 00:00:00 Logger in air while swapping

14.3  Impact sensors

Table 14.6: Impact sensor data removed during quality control

Sensor Start End Reason

Furthest from bank 26/04/2013 19:12:00 26/04/2013 21:36:00 Presumed human/ animal interference

Furthest from bank 29/08/2012 10:13:00 29/08/2012 11:47:00 Data download

Furthest from bank 19/10/2012 08:19:00 19/10/2012 11:47:00 Data download

Furthest from bank 28/10/2012 01:59:00 28/10/2012 01:31:00 Data download

Furthest from bank 04/01/2013 12:43:00 04/01/2013 13:47:00 Data download

Furthest from bank 02/04/2013 10:33:00 03/04/2013 17:47:00 Data download

Furthest from bank 02/07/2013 14:29:00 03/07/2013 17:47:00 Data download

Furthest from bank 02/10/2013 09:01:00 02/10/2013 16:47:00 Data download

Middle 29/08/2012 09:15:00 29/08/2012 10:47:00 Data download

Middle 19/10/2012 07:25:00 19/10/2012 10:47:00 Data download

Middle 28/10/2012 01:59:00 28/10/2012 01:31:00 Data download

Middle 04/01/2013 11:47:00 04/01/2013 13:47:00 Data download

Middle 02/04/2013 10:45:00 03/04/2013 16:47:00 Data download

Middle 02/07/2013 14:03:00 03/07/2013 16:47:00 Data download

Middle 02/10/2013 08:01:00 02/10/2013 16:47:00 Data download

Closest to bank 29/08/2012 09:15:00 29/08/2012 10:47:00 Data download

Closest to bank 19/10/2012 07:25:00 19/10/2012 10:47:00 Data download

Closest to bank 28/10/2012 01:59:00 28/10/2012 01:31:00 Data download

Closest to bank 04/01/2013 11:45:00 04/01/2013 13:47:00 Data download

Closest to bank 02/04/2013 10:43:00 03/04/2013 16:47:00 Data download

Closest to bank 02/07/2013 14:03:00 03/07/2013 16:47:00 Data download

Closest to bank 02/10/2013 08:01:00 02/10/2013 16:47:00 Data download
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15 APPENDIX D: MACROINVERTEBRATES

15.1 Identification literature

Table 15.1: Literature used to identify macroinvertebrates.

Taxonomic group Literature used

Coleoptera Foster et al., 2011; Friday, 1988

Diptera Smith, 1989

Ephemeroptera Macan, 1979; Elliot et al., 2010

Megaloptera Elliot, 1996

Plecoptera Hynes, 1993

Sphaeriidae Fitter & Manuel, 1994

Trichoptera Edington et al., 1995; Wallace et al., 2003
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15.2Taxa list

Table 15.2a: Taxa identified in the study described in Chapter 9 – note: taxa are sorted 
by order.

Full taxa name Abbreviated taxa name Taxa ID

Gammaridae Gammaridae 1

Gammarus sp. Gammarus sp. 2

Gammarus pulex G. pulex 3

Dytiscidae Dytiscidae 4

Agabus sp. Agabus sp. 5

Elmidae Elmidae 6

Elmis sp. Elmis sp. 7

Elmis aenea E. aenea 8

Limnius sp. Limnius sp. 9

Limnius volckmari L. volckmari 10

Oulimnius sp. Oulimnius sp. 11

Hydraenidae Hydraenidae 12

Hydraena sp. Hydraena sp. 13

Hydrophilidae Hydrophilidae 14

Anacaena sp. Anacaena sp. 15

Anacaena globulus A. globulus 16

Hydroporinae Hydroporinae 17

Ceratopogonidae Ceratopogonidae 18

Chironomidae Chironomidae 19

Clinocerinae Clinocerinae 20

Dixidae Dixidae 21

Hexatoma sp. Hexatoma sp. 22

Limoniidae Limoniidae 23

Pediciidae Pediciidae 24

Dicranota sp. Dicranota sp. 25

Psychodidae Psychodidae 26

Simuliidae Simuliidae 27

Ameletidae Ameletidae 28

Ameletus sp. Ameletus sp. 29

Ameletus inopinatu A. inopinatus 30

Baetidae Baetidae 31

Baetis sp. Baetis sp. 32

Baetis rhodani B. rhodani 33

Caenidae Caenidae 34

Caenis sp. Caenis sp. 35

Caenis rivulorum C. rivulorum 36
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Table 15.2b: Taxa identified in the study described in Chapter 9 – note: taxa are 
ordered by order.

Full taxa name Abbreviated taxa name Taxa ID

Ephemerellidae Ephemerellidae 37

Serratella sp. Serratella sp. 38

Serratella ignita S. ignita 39

Heptageniidae Heptageniidae 40

Ecdyonurus sp. Ecdyonurus sp. 41

Rhithrogena sp. Rhithrogena sp. 42

Rhithrogena semicolorata R. semicolorata 43

Rhithrogena/ Heptagenia sp. Rhithro/ Heptagen sp. 44

Leptophlebiidae Leptophlebiidae 45

Leptophlebia sp. Leptophlebia sp. 46

Leptophlebia marginata L. marginata 47

Paraleptophlebia sp. Paraleptophlebia sp. 48

Paraleptophlebia submarginata P. submarginata 49

Sialidae Sialidae 50

Sialis sp. Sialis sp. 51

Sialis fuliginosa S. fuliginosa 52

Leuctridae Leuctridae 53

Leuctra sp. Leuctra sp. 54

Leuctra inermis L. inermis 55

Leuctra hippopus L. hippopus 56

Leuctra nigra L. nigra 57

Nemouridae Nemouridae 58

Amphinemura sp. Amphinemura sp. 59

Amphinemura sulcicollis A. sulcicollis 60

Nemoura sp. Nemoura sp. 61

Nemoura cinerea N. cinerea 62

Protonemura sp. Protonemura sp. 63

Protonemura meyeri P. meyeri 64

Chloroperlidae Chloroperlidae 65

Siphonoperla sp. Siphonoperla sp. 66

Siphonoperla torrentium S. torrentium 67

Perlodidae Perlodidae 68

Isoperla sp. Isoperla sp. 69

Isoperla grammatica I. grammatica 70

Perlodes sp. Perlodes sp. 71

Perlodes microcephalus P. microcephalus 72

Taeniopterygidae Taeniopterygidae 73

Rhabdiopteryx sp. Rhabdiopteryx sp. 74

Rhabdiopteryx acuminata R. acuminata 75

Hydropsychidae Hydropsychidae 76

Diplectrona sp. Diplectrona sp. 77

Diplectrona felix D. felix 78
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Table 15.2c: Taxa identified in the study described in Chapter 9 – note: taxa are 
ordered by order.

Full taxa name Abbreviated taxa name Taxa ID

Hydropsyche sp. Hydropsyche sp. 79

Hydropsyche siltalai H. siltalai 80

Hydroptilidae Hydroptilidae 81

Hydroptila sp. Hydroptila sp. 82

Leptoceridae Leptoceridae 83

Limnephilidae Limnephilidae 84

Chaetopteryx sp. Chaetopteryx sp. 85

Chaetopteryx villosa C. villosa 86

Drusus sp. Drusus sp. 87

Drusus annulatus D. annulatus 88

Polycentropodidae Polycentropodidae 89

Plectrocnemia sp. Plectrocnemia sp. 90

Plectrocnemia conspersa P. conspersa 91

Polycentropus Polycentropus 92

Polycentropus flavomaculatus P. flavomaculatus 93

Polycentropus kingi P. kingi 94

Polycentropus flavomaculatus/ kingi P. flavo/ kingi 95

Psychomyiidae Psychomyiidae 96

Tinodes Tinodes 97

Tinodes waeneri T. waeneri 98

Rhyacophilidae Rhyacophilidae 99

Rhyacophila Rhyacophila 100

Rhyacophila dorsalis R. dorsalis 101

Sericostomatidae Sericostomatidae 102

Sericostoma sp. Sericostoma sp. 103

Sericostoma personatum S. personatum 104

Oligochaeta Oligochaeta 105

Sphaeriidae Sphaeriidae 106

Pisidium sp. Pisidium sp. 107
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