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ABSTRACT

In systems modelling and control theory, the benefits of applying neural net-

works have been extensively studied. Particularly in manufacturing pro-

cesses, such as the prediction of mechanical properties of heat treated steels.

However, modern industrial processes usually involve large amounts of data

and a range of non-linear effects and interactions that might hinder their

model interpretation. For example, in steel manufacturing the understand-

ing of complex mechanisms that lead to the mechanical properties which

are generated by the heat treatment process is vital. This knowledge is not

available via numerical models, therefore an experienced metallurgist esti-

mates the model parameters to obtain the required properties. This human

knowledge and perception sometimes can be imprecise leading to a kind of

cognitive uncertainty such as vagueness and ambiguity when making de-

cisions. In system classification, this may be translated into a system defi-

ciency - for example, small input changes in system attributes may result in

a sudden and inappropriate change for class assignation.

In order to address this issue, practitioners and researches have devel-

oped systems that are functional equivalent to fuzzy systems and neural net-

works. Such systems provide a morphology that mimics the human ability

of reasoning via the qualitative aspects of fuzzy information rather by its

quantitative analysis. Furthermore, these models are able to learn from data

sets and to describe the associated interactions and non-linearities in the

data. However, in a like-manner to neural networks, a neural fuzzy system

may suffer from a lost of interpretability and transparency when making de-

cisions. This is mainly due to the application of adaptive approaches for its

parameter identification.

Since the RBF-NN can be treated as a fuzzy inference engine, this the-

sis presents several methodologies that quantify different types of uncer-

tainty and its influence on the model interpretability and transparency of the

RBF-NN during its parameter identification. Particularly, three kind of un-
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certainty sources in relation to the RBF-NN are studied, namely: entropy,

fuzziness and ambiguity.

First, a methodology based on Granular Computing (GrC), neutrosophic

sets and the RBF-NN is presented. The objective of this methodology is

to quantify the hesitation produced during the granular compression at the

low level of interpretability of the RBF-NN via the use of neutrosophic sets.

This study also aims to enhance the disitnguishability and hence the trans-

parency of the initial fuzzy partition. The effectiveness of the proposed method-

ology is tested against a real case study for the prediction of the properties

of heat-treated steels.

Secondly, a new Interval Type-2 Radial Basis Function Neural Network

(IT2-RBF-NN) is introduced as a new modelling framework. The IT2-

RBF-NN takes advantage of the functional equivalence between FLSs of

type-1 and the RBF-NN so as to construct an Interval Type-2 Fuzzy Logic

System (IT2-FLS) that is able to deal with linguistic uncertainty and per-

ceptions in the RBF-NN rule base. This gave raise to different combinations

when optimising the IT2-RBF-NN parameters.

Finally, a twofold study for uncertainty assessment at the high-level of

interpretability of the RBF-NN is provided. On the one hand, the first study

proposes a new methodology to quantify the a) fuzziness and the b) am-

biguity at each RU, and during the formation of the rule base via the use

of neutrosophic sets theory. The aim of this methodology is to calculate the

associated fuzziness of each rule and then the ambiguity related to each nor-

malised consequence of the fuzzy rules that result from the overlapping and

to the choice with one-to-many decisions respectively. On the other hand,

a second study proposes a new methodology to quantify the entropy and the

fuzziness that come out from the redundancy phenomenon during the pa-

rameter identification.

To conclude this work, the experimental results obtained through the

application of the proposed methodologies for modelling two well-known

benchmark data sets and for the prediction of mechanical properties of heat-

treated steels conducted to publication of three articles in two peer-reviewed

journals and one international conference.
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1INTRODUCTION

UNCERTAINTY is frequently found in real situations and it usually

represents a deficiency in the information [Klir and Wierman, 1999].

That means, uncertainty is part of the world and in systems is inevitable

as it appears in almost every measurement; either as a consequence of the

theoretical framework used for quantifying it or due to the combination of

measurement errors and resolution limits of the measuring instruments [Klir

and Wierman, 1999, Liu, 2004]. For this reason, the correct processing and

quantification of information becomes vital when its understanding involves

the knowledge of uncertain events.

For more than two hundred years, the study and understanding of uncer-

tainty has been a pivotal issue in order to make decisions and create models

that imitate the human reasoning when dealing with real complex systems.

Furthermore, there has been a controversy about which is the best mathe-

matical framework that is capable of capturing and then faithfully charac-

terising situations under uncertainty. It is generally believed that the very

first studies associated to uncertainty began in the seventeenth century with

Fermat and Pascal who laid the fundamental groundwork of probability the-

ory by deriving the exact probabilities for problem gambling. Subsequently,

in 1931 a significant contribution from Von Mises who proposed the concept

of sample space initialised the field of applied mathematics by unifying the

fields of probability and measure theory. Next, this idea was overtaken by

Kolmogorov’s axiomatisation which laid the foundations of modern proba-

bility theory. In addition to this, different points of view for capturing the

uncertainty were proposed in the twentieth century. On the one hand, L.

Zadeh [Zadeh, 1965, 1968] proposed the concept of fuzzy set denoted by a

class of objects where each element in the set is characterised by a degree of
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membership in the closed interval [0, 1]. This type of theory was proposed to

deal with uncertainty that comes out from approximate reasoning. On the

other hand, Dempster, 1967 and Shafer, 1976 [Shafer, 1976] introduced the

theory of evidence which allows to make decisions based on the available

evidence collected from different sources. As an extension to fuzzy set the-

ory, L. Zadeh introduced in 1978 the possibility theory [Negoita et al., 1978]

which is devoted to handling of incomplete information [Dubois and Prade,

1988] and it is considered within fuzzy set theory an alternative to probabil-

ity. In 2002, Liu developed a new branch of mathematics devoted to unify

the concept of uncertainty under a generic framework used in order to study

the behaviour of random, fuzzy and rough events [Liu, 2004]. The question

of which is the best theoretical framework to quantify and describe uncer-

tainty within these theories is highly difficult to answer. Because it is clear

that several types of uncertainties exist and hence it is also clear that un-

certainty is multidimensional. That means that usually the quantification of

uncertainty is problem-dependent and if this quantification is just conceived

in terms of only one theory, its multidimensional nature is obscured [Klir and

Wierman, 1999]. As it is pointed out by the theorem of Gödel, mathematics

is not immune to uncertainty.

In systems engineering especially in systems modelling and making de-

cision, the understanding about the nature of uncertainty has drawn a lot of

attention from some practitioners and researches in the last three decades.

This is mainly due to the increasing interest for understanding the influence

that each model component and the associated parameters have for con-

tributing with an uncertain and indeterminate system behaviour in the out-

put model. Usually, uncertainty can be catalogued into Aleatory uncertainty

and epistemic uncertainty. The former is originated by the system variability

which reflects the inherent randomness of the nature. This type of uncer-

tainty never disappears by collecting more information and sometimes can

be also referred as random uncertainty, stochastic uncertainty, real-world

uncertainty or natural variability. The latter arises as a lack of knowledge

of the physical of world and a lack of measuring and modelling the physical

world [Li et al., 2013]. Therefore, uncertainty in system engineering can be
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attributed to different sources, i.e.

• Parameter uncertainty. This type of deficiency comes from the model

parameters which sometimes are estimated in advanced representing

an input to the the mathematical model. For example when simulating

the dynamic of a car during a crash, an important parameter is the

initial car speed.

• Parametric variability. This type of uncertainty is produced by the vari-

ability of input variables of model. An example is when monitoring and

estimating the final flow acceleration of a liquid in a pipeline; this pre-

diction can be inaccurate since the stochastic behaviour of the liquid

contained the pipeline and the environmental conditions add some un-

certainty.

• Structural uncertainty. This source frequently comes out when we are

uncertain about the functional form of the model, and hence it pro-

duces a deficiency in order to reflect properly reality producing an un-

certainty about a adequate data processing.

• Algorithmic uncertainty. This is a numerical uncertainty that results

from numerical errors and numerical approximations by the imple-

mentation of a computer model.

In this context, two major quantification problems are usually found in

literature, i.e. 1) forward uncertainty propagation and 2) inverse uncertainty

propagation. The former aims to quantify the uncertainty propagated from

uncertain inputs in the system outputs. For example the evaluation of low-

order moments of the outputs such as mean and the standard deviation, the

evaluation of the output reliability based on the system performance, and the

assessment of the probability distribution of the output model. The latter

quantification basically aims to evaluate the discrepancy (called bias cor-

rection) between the results obtain from a mathematical model and experi-

mental results.
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As can be seen, the understanding of uncertainty in system engineering

can be accredited to several factors. For this reason transparency and in-

terpretability play an important role for a good system knowledge. In other

words, the more interpretable the information of a system under study, the

better its understanding. Particularly in system modelling, extracting in-

formation and converting it to ’easy to interpret’ knowledge is a crucial but

not a trivial task, especially in the case of modelling very complex systems

and non-linear processes [Zhou and Gan, 2006, 2008]. Conventional ap-

proaches that are usually based on differential equations to system mod-

elling offer a poor performance when modelling complex and uncertain sys-

tems.

In order to gain insights of the system being modelled (to a certain de-

gree), fuzzy modelling has shown to be an effective and a popular tool since

it can formulate the system behaviour by qualitatively expressing the sys-

tem knowledge with linguistic rules in a transparent and interpretable way

rather by a quantitative analysis [Kandola, 2001]. That means, a fuzzy model

is fully transparent if it is possible to identify, understand and analyse the

influence of each system parameter in the model output. Particularly, trans-

parency is a measure used to validate how reliable and accurate are the lin-

guistic rules and hence the associated fuzzy sets necessary to make a fuzzy

system an interpretable model. In this regard, in literature efforts for creat-

ing fuzzy systems with a good balance between interpretability and accuracy

have been proposed. As pointed out in [Casillas, 2003], one of the main ob-

jectives in fuzzy modelling is to construct models that have a good balance

between accuracy and interpretability. However, this is a contradictory pur-

pose as not always this balance can be achieved. Basically, the reasons of

having fuzzy models with a high degree of accuracy and low degree of inter-

pretability or viceversa depends mainly on what requirements are pursued.

In the specialized literature, some researchers have created and studied

systematic rule-based systems that are functionally equivalent to fuzzy logic

systems and neural networks citarrr. Particularly, the Radial Basis Function

Neural Network (RBF-NN) has shown to be a prominent architecture to

modelling complex systems in system identification and control. The mer-
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its of the RBF-NN is that inherits some significant properties from fuzzy

systems such as the ability to model systems via the use of linguistic rules

which can be generated based on some prior human expert knowledge or

heuristics. However, opposite to fuzzy systems, the RBF-NNs suffer from

some loss of interpretability and hence transparency as a consequence of

the learning process which is usually carried out through the use of gradient

descent-based approaches. The analysis of this deficiency in transparency

and hence in interpretability might aid to improve the RBF-NN performance

and then reduce its black-box properties.

Relevance contributions by using the RBF-NN as a fuzzy system can be

found in literature [Chen and Linkens, 2001b, Cho and Wang, 1996, Jang

and Sun, 1993, Nelles, 2001]. Specifically, in manufacturing processes the

reputation of RBF-NNs for system identification have been extensively ex-

ploited [Raviram et al., 2009, Wu et al., 2010]. For instance, in the aerospace

industry neural fuzzy systems have been applied to acquire a relationship be-

tween the mechanical properties of a titanium alloy and the processing pa-

rameters involved for its heat treatment [Yu et al., 2010]. These type of pro-

cesses represent in the manufacturing industry a highly difficult challenge

since expert knowledge is often of very high importance to fulfil the produc-

tion requirements dictated by the customers. Therefore, models constructed

from data such as the RBF-NN falls into the interpretability scrutiny of

experts in order to confirm the system’s validity [Panoutsos and Mahfouf,

2010a]. Furthermore, the black-box properties of the RBF-NN hinders its

interpretability due to a lack of transparency. For this reason, some authors

have developed methodologies whose main objective is to achieve a good

level of interpretability without losing accuracy . In literature, the existing

research work in improving the interpretability in neural fuzzy systems have

been focused on creating systematic data-driven structures that usually in-

cludes the initial model self-generation, input selection process, partition

validation, parameter optimisation and rule-base simplification . Compared

to neural networks and fuzzy systems, a neural fuzzy model (for example

the RBF-NN) posses the ability to approximate any real nonlinear function

by explicit knowledge representation in the form of if-then rules, the ability
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to mimic cognitive reasoning in human understandable terms, the facility

for processing linguistic information from humans and then combine it with

numerical data. Even so, neural fuzzy systems inherit the shortcoming of

being black-box models and therefore the criticism of not providing any in-

formation of how they work [Benítez et al., 1997].

Although in literature a large number of publications in relation to trans-

parency and interpretability in fuzzy systems can be found, an small number

of articles address the problem of transparency and hence the associated

uncertainty created by this lack of interpretability in neural structures, par-

ticularly in RBF networks. A significant amount of methodologies dealing

with approximate and uncertain reasoning can be listed in soft computing

theory. This means that neural fuzzy properties can be studied not only from

the existing theory in neural networks and fuzzy systems, but also from the

new developments in computational intelligence ranging from evolutionary

computing, fuzzy uncertainty, possibility theory, intuitionistic sets theory,

interval type-2 fuzzy sets, computing with perceptions, etc. For instance,

in [Pal and Bezdek, 1994] a review of the existing uncertainty measures is

provided. In that article, all the merits and drawbacks for applications are

discussed. Basically the type of uncertainty treated in fuzzy sets theory deals

with situations where the set boundaries are not sharply defined. Moreover,

in [Pal and Bezdek, 1994] probabilistic uncertainty is sometimes related to

fuzziness in the sense of the belongingness of elements or events to crisp

sets giving a higher dimensional meaning to probability theory in fuzzy sets

theory.

Among the latest and general proposals to deal with uncertainty in fuzzy

logic is intuitionistic sets logic [Atanassov, 1986]. This theory was proposed

by Atanassov as a new branch of fuzzy logic that represent the uncertainty

of rules and facts through the association of falsity and truth to two differ-

ent values. In other words, this type of analysis can be translated into a

problem for quantifying the uncertainty propagation through the inference

engine which is employed in fuzzy logic systems to make decisions.

Another good example, is neutrosophy which is a generalisation of fuzzy

logic that deals with the "origin and scope of neutralities as well as their
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interactions with other spectra" [Wang et al., 2005]. This new logic is

based on the infinitesimal calculus in order to use tuples that associate the

truth, indeterminacy/uncertainty and falsity to an event. Different success-

ful applications of neutrosophy can be found in literature. Particularly these

applications proposed the analysis and quantification of uncertainty in neu-

ral networks by the exploration and exploitation of soft computing tech-

niques. For instance, in [Kraipeerapun et al., 2007] P. Kraipeerapun intro-

duced a new framework based on ensemble neural networks and interval

neutrosophic sets for binary classification. The purpose of that study was

to quantify the associated error and vagueness (uncertainty) during the pro-

cess of classification. In [Kharal, 2014] the author introduced a new neutro-

sophic multicriteria decision making method (MCDM) in which the mathe-

matical foundations of neutrosophy sets theory was successfully applied for

classification purposes.

Quite recently, some researches have explored the advantages of neural

fuzzy systems of type-2 with the view of quantifying the linguistic uncer-

tainty that is not handled by the fuzzy sets of type-1. A good example was

provided in [Castro et al., 2011], where a novel integration of an interval

type-2 fuzzy inference system based the Takagi-Sugeno-Kang reasoning

and an adaptive network was introduced. In that work, the authors created

a hybrid methodology capable of dealing with uncertainty that resulted from

the imprecision during the parameter identification.

In system modelling, the understanding and then the quantification of

uncertainty can be carried out by the use of existing methodologies in soft

computing. Particularly the uncertainty that result from improper data, bad

modelling as a consequence of wrong interpretations or human mistakes,

imprecision originated by language granularity, vagueness and inconsis-

tency which result by redundant linguistic rules producing conflict and hence

contradictions.
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1.1 PROBLEM STATEMENT

In soft computing several theories have been proposed in order to deal with

various types of incomplete and uncertain information. Particularly, fuzzy

logic and probability theory might be seen as the main mathematical frame-

works dealing with uncertainty [Li et al., 2013]. Moreover, the unification

of two or more different methodologies to quantify uncertainty has become

a popular tool in soft computing literature. For instance, in [Kocadağlı and

Aşıkgil, 2014] a new evolutionary Monte Carlo algorithm was introduced in

order to train a Bayesian neural network for the time series forecasting of

weekly sales of a finance magazine.

In [Denoeux, 2000] a new classifier based on a multilayer neural network

and on the Dempster-Shafer theory of evidence was introduced. On the one

hand, the authors proposed an specific architecture based on an input layer,

two hidden layers and one output layer to evaluating the patterns as evi-

dence and then presenting them as Basic Belief Assignments (BBA) which

are pooled using the Dempster’s rule combination. On the other hand, the

methodology performance was compared to different statistical and neural

network techniques.

The authors in [Kraipeerapun et al., 2006] proposed a systematic proce-

dure based on two different frameworks to quantify the uncertainty in min-

eral prospectivity. The main purpose of that study is to construct a method-

ology based on three neural networks in order to estimate the associated

truth, uncertainty and falsity when predicting the degrees of favourability

for gold deposits. Furthermore, researches in the area of statistics have

paid a lot of attention in constructing simple and more transparent systems

from the perspective of complexity reduction. Particularly, in achieving a

trade-off between complexity reduction and how well the system prediction

is during the training process. Methodologies such as support vector ma-

chines [Smola and Schölkopf, 2004, Suykens and Vandewalle, 1999, Vap-

nik, 2000], orthogonal least squares [Chen et al., 1991] and input selection

[Zhang et al., 2004] have shown to be an excellent tool for complexity reduc-

tion while preserving transparency and interpretability in system modelling.
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More importantly, such methodologies have proved to enhance fuzzy inter-

pretability when applied in fuzzy modelling.

More examples can be found in literature, especially in the sense of im-

proving trade-off between accuracy and interpretability of fuzzy rule-based

systems by using adaptive learning methodologies from neural networks

theory and single and multi-objective evolutionary approaches [Ishibuchi

and Nojima, 2007, Ishibuchi and Yamamoto, 2004, Pulkkinen and Koivisto,

2008]. On the one hand, in the 1990s efforts were focused on improving the

accuracy more precisely in system modelling and control theory. Particu-

larly, an emphasis on accuracy maximisation [Wang, 1992] was placed by

the application of evolutionary techniques whose cost was a lack in trans-

parency and hence the complexity of such systems increased importantly

[Cordón et al., 2001]. On the other hand, in the last decade; various method-

ologies for designing interpretable fuzzy models which are constructed from

data were conducted. First, it was suggested to consider the structure of a

fuzzy model as a twofold taxonomy in order to discriminate the role of each

component associated to the fuzzy model interpretability.

In this context in [Zhou and Gan, 2008], a deep insight of the different

components involved in achieving an interpretable fuzzy model were classi-

fied into two different levels: a) low-level interpretability and b) high-level

interpretability. The former refers to the optimization of the membership

functions in terms of semantic criteria related to a fuzzy set level and the

latter involves the interpretability associated to coverage, completeness and

consistency of the rules in terms of the criteria on fuzzy rule level leading

the complexity reduction to a moderate number of rules and their associated

consistency.

In spite of the large number of research works that have been proposed

for evaluating the interpretability in fuzzy systems, this issue is still an open

field in neural fuzzy systems theory. Moreover, a reduced number of attempts

can be found in relation to the importance of evaluating the uncertainty and

its association with fuzzy interpretability in neural fuzzy systems. This limi-

tation can be translated into an appealing field to be explored because having

an interpretable model allows us to incorporate to it prior or expert knowl-
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edge.

Particularly, in RBF-NN modelling there is a lost of transparency and

hence of interpretability that results from the application of adaptive algo-

rithms used for the associated parameter identification. In this sense, this

deficiency may produce a grade of uncertainty that might be expressed into

several mathematical frameworks. Such an uncertainty can affect the inter-

pretability of the RBF-NN and therefore its transparency and performance.

Since an RBF-NN can be seen as a type of fuzzy system, this research

work addresses the issue of uncertainty quantification and its relationship

with system interpretability during the parameter identification of the RBF-

NN. Especially, the functional equivalence between the RBF-NN and fuzzy

systems allows us to explore and exploit a significant number of existing soft

computing tools for uncertainty quantification and the evaluation of system

interpretability. For this reason, a group of different soft computing tools will

be studied and then used for the uncertainty evaluation, including Neutro-

sophic sets theory, GrC, IT2-FSs and uncertainty theory. Due to the nature

of the system considered in this research work, the following types of cogni-

tive uncertainty are suggested to be studied:

• Linguistic uncertainty

• Fuzziness

• Entropy

• Ambiguity

• Uncertainty produced as a consequence of the redundancy among the

fuzzy sets.

Finally, such uncertainty studies are tried against a real case study and

well known benchmark data sets for manufacturing processes with partic-

ular application in the prediction of mechanical properties of heat-treated

steels.
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1.2 RESEARCH AIMS

The aim of this research work is to quantify the uncertainty produced during

the parameter identification of the RBF-NN for modelling purposes - and

to study the relationship between this uncertainty and the interpretability of

the RBF-NN. This research work also suggests to take advantage of the

functional equivalence between the RBF-NN and fuzzy systems of type-1

for exploiting and exploring alternative tools from soft computing in order to

quantify the network uncertainty and extract information from the associ-

ated interpretability.

Basically this study consists of the identification and analysis of differ-

ent sources of uncertainty in the RBF-NN at two different levels of inter-

pretability, i.e. a) at low-level of interpretability and b)at high-level of inter-

pretability. Therefore, the major aims of this research work can be listed as

follows:

• The first study aims to identify and quantify the uncertainty due to a

ravenous behaviour that results from a granular inclusion throughout

the granulation process which is employed for the initial parameter

identification of the RBF-NN. Hence, an index is suggested to handle

and minimise this type of uncertainty having an impact in the creation

of a more parsimonious fuzzy rule base.

• Secondly, an interval type-2 RBF neural network (IT2-RBF-NN) and

the corresponding parameter identification process are suggested in

order to deal with the linguistic uncertainty that is associated to the

interpretation of words and linguistic propositions contained in the

fuzzy rule base. The intention of this study is to execute a group of

simulations for evaluating the performance of the proposed IT2-RBF-

NN with two different types of clustering approaches, i.e. a) Fuzzy C-

Mean (FCM) and b) Granulation on the one hand. On the other hand,

the objective of this architecture is to explore the benefits of comput-

ing with words by dealing with the uncertainty that results from the

semantic framework.
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• Finally this research work aims to provide a twofold study that con-

sists in the interpretation of two types of fuzzy uncertainty measures

based on the fuzzy entropy and the ambiguity produced during the

parameter identification of the RBF-NN and the proposed IT2-RBF-

NN architecture. The first study evaluates the information contained

at each receptive unit and hence suggests the use of neutrosophic sets

theory to develop a methodology capable of enhance the RBF-NN in-

terpretability. The last study, suggests a similarity measure that quan-

tifies two types of fuzzy uncertainty in relation to the redundancy be-

tween the fuzzy rules; i.e. a) Fuzziness and b) ambiguity.

1.3 CONTRIBUTIONS

The main contribution of this research work is to provide a number of differ-

ent methodologies for uncertainty quantification based on the interpretabil-

ity of the RBF-NN during its associated parameter identification. Such

methodologies allow us to create a more transparent neural fuzzy model

based on the RBF-NN. Under these circumstances, it is possible to evalu-

ate the distinguishability and then the interpretability of the RBF-NN. Such

methodologies also allow us to investigate the RBF-NN performance based

on fuzzy uncertainty theory and its association to a good trade-off between

accuracy and interpretability during the parameter identification of the net-

work. Basically, a number of uncertainty studies will be presented according

to two main levels of interpretability i.e. a) high-level of interpretability and

b) low-level of interpretability. Therefore, the main contribution of this re-

search work can be listed as follows:

• In chapter 3, a systematic neural fuzzy modelling based on the Fuzzy

C-Means (FCM )and neural networks is used in manufacturing pro-

cesses with an special application for impact energy prediction on heat-

treated steels using a data set collected at six different labs.

• In Chapter 4 a twofold contribution is provided; firstly, it is proposed

the application of a systematic modelling framework based on the RBF-

NN and Granular Computing (GrC) for modelling a real case study in
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manufacturing processes. The modelling framework was initially de-

veloped in [Panoutsos and Mahfouf, 2010a] and then was successfully

applied in this research work to exploit the advantages of granulation

enhancing the transparency of the initial rule base at the low-level of

interpretability of the RBF-NN [Zhou and Gan, 2008]. Secondly, a

new clustering approach based on granulation and neutrosophic sets

was introduced. This study investigates the significance of each input

by evaluating the distinguishability of the fuzzy rules during the initial

clustering stage. Moreover, a new compatibility criteria is developed

in order to measure the uncertainty produced by a ravenous behaviour

that results from the overlapping between the fuzzy rules. Finally, ex-

perimental results were run in order to compared the performance of

the granulation with and without the application of neutrosophic sets.

• In chapter 5, an Interval Type-2 Radial Basis Function Neural Net-

work (IT2-RBF-NN) is proposed. Such a framework is functionally

equivalent to Interval Type-2 Fuzzy Systems and the RBF-NN. The

major contribution of this network is twofold - first the IT2-RBF-NN

not only provides a new methodology for dealing with linguistic un-

certainty and then with perceptions, but also in a like-manner to its

type-1 counterpart, the IT2-RBF-NN interpretability can be treated

at two different levels of linguistic information. Secondly, this chapter

also provides the corresponding parameter identification of the new

IT2-RBF-NN which is different to that used for training its type-1

counterpart.

A further experimentation was carried out in order to verify the model

performance of the IT2-RBF-NN and then compared to its counter-

part the RBF-NN or as it is called here the RBF-NN. Therefore, some

results for modelling some popular benchmark data sets and the real

case study employed in chapter 4 are provided respectively. With con-

clusive evidence, the simulation results showed the RBF-NN might

be a prominent tool to cope with linguistic uncertainties and then per-

ceptions.
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• Finally in Chapter 6, two studies about fuzzy uncertainty quantifica-

tion during the parameter identification of the RBF-NN and the pro-

posed IT2-RBF-NN are provided. Firstly, the proposed methodology

exploits and explores the functional equivalence between the RBF-

NN and a number fuzzy logic systems of type-1 [Hunt et al., 1996].

Thus, two new uncertainty measures based on neutrosophic sets and

used to evaluate the fuzziness and ambiguity in the rule base of the

RBF-NN are introduced. Such measures allows the RBF-NN to

evaluate on the one hand the distinguishability in the rule base, and

on the other hand the ambiguity that comes out from selecting one

choice among different options in the RBF-NN rule base. The second

part of this chapter contributes with an study about the relationship

between the similarity of fuzzy sets and the uncertainty associated to

the fuzzy rules redundancy in both the RBF-NN and the proposed

IT2-RBF-NN. That means, in the time this study estimates the sim-

ilarity between the shape and distance of the fuzzy sets involved in the

rule base, a similarity matrix is being constructed in order to evaluate

the uncertainty associated to the redundancy of each of those fuzzy

sets.

The work in this thesis has contributed in part or full to the following

publications and revisions:

• Rubio Solis, A. and Panoutsos, G. "Interval Type-2 Radial Basis Func-

tion Neural Network: A modelling framework". IEEE Transactions on

Fuzzy Systems, 11(99), 2014.

• AR Solis, G. Panoutsos, "Granular computing neural-fuzzy mod-

elling: A neutrosophic approach", Applied Soft Computing, Elsevier,

13(9), 4010-4021, 2013.

• Rubio Solis, Adrian, Panoutsos, G., "Fuzzy Uncertainty Assessment

in RBF Neural Networks using Neutrosophic Sets for Multiclass Clas-

sification", 2014 IEEE International Conference on Fuzzy Systsems,

Beijing China, 2014.
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Journal Papers in Preparation:

(To be submitted to Materials Science and Technology and Soft Computing

respectively.)

• Performance of the Interval Type-2 Radial Basis Function Neural Net-

work in Materials Science.

• Interpretability aspects when computing with words: An Especial Ap-

plication for the Prediction of Mechanical Properties of Heat-treated

Steels

Other activities

• Invited reviewer on the topic: Rough sets Theory for the International

Journal of Machine Learning and Cybernetics.

• Invited reviewer on the topic: Granular computing and Rough sets

Theory for the International Journal of Machine Learning and Cyber-

netics, Springer.

1.4 OUTLINE OF THE THESIS

The structure of this thesis is organised in 7 chapters and one appendix. In

this chapter the basic notions necessary to understand the contributions of

this research work are described. The next 6 chapters describe the current

contributions and the conclusion of this thesis. Therefore, the document is

organised as follows:

Chapter 2, covers the main soft computing techniques that may be use-

ful to deal with uncertainty in systems modelling. These include a general

review of Fuzzy Sets (FS) theory, including theory related to Fuzzy Systems

(FSs), Granular Computing and the modus ponens or inference mechanism

which is crucial to understand how a Fuzzy system handles the information.

Secondly, an uncertainty-based information theory for crisp and fuzzy sets

is reviewed as it may play an important role in the development of this re-

search. Finally, this chapter briefly reviews the theory of artificial neural net-

works, particularly that information related to RBF neural networks making

reference to its functional equivalence to fuzzy systems.
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Chapter 3 includes on the one hand a detailed description of heat treat-

ment process from a metallurgical point of view and manufacturing pro-

cesses. Details on the mechanical, physical and chemical properties of fer-

rous and non-ferrous materials were included. Consequently, an overview

of steel making and of mechanical testing for materials is reported. On the

other hand, a data-driven modelling framework based on the RBF-NN the-

ory and Fuzzy C-Means (FCM) was applied for the prediction of mechanical

properties of heat-treated steels in manufacturing processes. The realisa-

tion of a systematic model based on neural fuzzy systems aims to mimic the

human reasoning ability to express complex system with simple linguistic

rules. Finally, experimental results were accounted graphically and numeri-

cally.

Chapter 4 is concerned with enabling the RBF-NN for extracting in-

formation in a more distinguishable form by the use of granular comput-

ing (GrC) and the quantification of uncertainty through the application of

neutrosophic sets. An initial experimentation was carried out to investigate

the RBF-NN performance with the aid of granulation [Panoutsos and Mah-

fouf, 2010a]. The aim of this experimentation was to predict transparently

the initial rule base of the RBF-NN and for the prediction of the mechan-

ical properties of heat-treated steels. The associated parameter identifica-

tion process of the RBF-NN model was firstly estimated by the granulation

(GrC) of input raw data and consequently optimised by the application of a

gradient-descent based approach. The main role of the granulation process

was to generate the initial fuzzy rule base of the RBF-NN according to the

compability of the input data. A new compatibility criteria that quantifies

the uncertainty during the granulation process and that is a consequence of

an excessive overlapping between the fuzzy sets during the formation of the

rule base was proposed. Particularly, this new compatibility measure was

used as a granular constraint for evaluating the interpretability throughout

the granulation process.

In Chapter 5 concentrates in the development of a systematic data-driven

modelling based on the RBF-NN and Interval Type-2 Fuzzy Sets for sys-

tems modelling purposes; such a methodology was named: Interval Type-2
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Radial Basis Function Neural Network (IT2-RBF-NN). The aim of the pro-

posed network structure is for dealing with the linguistic uncertainty that is

not quantified by its type-1 counterpart the RBF-NN. More importantly,

this new structure was developed to inherit not only the properties of the

RBF-NN and fuzzy systems of type-2, but also to be susceptible to the pa-

rameter estimation employed in the RBF-NN. Therefore, the associated pa-

rameter identification process that is able to deal with interval fuzzy sets is

also developed. Experimental results by using the proposed IT2-RBF-NN

are conducted through the modelling of two well-known benchmark data

sets and the real case study for mechanical prediction of heat-treated steels

proposed in this thesis.

Chapter 6 considers on the one hand a fuzzy uncertainty assessment

methodology by using RBF neural networks and neutrosophic sets for multi-

class classification. The idea of this methodology is to create a more trans-

parent and interpretable training process that can explore and exploit the

information contained at each receptive unit (RU) of the RBF-NN. On the

one hand, a neutrosophic measure for quantifying the fuzziness among the

fuzzy sets (RUs) is proposed. On the other hand, an assessment of ambigu-

ity associated to the nonspecificity and representing a cognitive uncertainty

based on neutrosophic sets is conducted. On the other hand, is provided

an uncertainty assessment of ambiguity and entropy based on the similarity

among fuzzy rules in the rule base either a) the RBF-NN, or b) the proposed

IT2-RBF-NN architecture. And a comparison analysis of the uncertainty

assessment suggested for impact energy prediction is provided. The simi-

larity measure suggested in this chapter is based on the distance and shape

of the receptive units functions.

Finally, chapter 7 includes a detailed conclusion of this research project

and the future directions will also be discussed.





2A BACKGROUND TO SOFT COMPUTING

TECHNIQUES

THE main objective of this chapter is to provide an insight about the

existing techniques found in soft computing. A particular emphasis

will be put on Fuzzy Logic, Fuzzy modelling and Neural Networks. As far

as Fuzzy Logic is concerned, a review of the different types of uncertainty is

included. This is mainly due to the type of topic considered in this research

work.

2.1 INTRODUCTION

The term soft computing was coined by Zadeh, the inventor of fuzzy set

theory, to be an extension to fuzzy logic. Basically, soft computing is a

partnership of several problem-solving paradigms such as fuzzy logic (FL),

Probabilistic Reasoning (PR), Neural Networks (NNs) and Evolutionary

Computation (EC) [Bonissone, 1997]. Moreover, this collection of different

methodologies exploits the advantages of human tolerance for imprecision

and uncertainty to achieve tractability, robustness, and low solution cost.

In this partnership, fuzzy logic is mainly concerned with imprecision and

approximate reasoning; neural networks with learning and curve-fitting; and

probabilistic reasoning with uncertainty and belief propagation [Seising, 2010].

In this regard, uncertainty plays an important role behind fuzzy logic and

neural networks in dealing with information obtained from sources which

are non-linear behaviour, time-varying behaviour and the interaction with

uncertain/indeterminate environments.



20 A BACKGROUND TO SOFT COMPUTING TECHNIQUES

2.2 FUZZY SETS

The concept of fuzzy sets was introduced and formalised by [Zadeh, 1965]

as an extension of conventional set theory. The aim of fuzzy sets lies in mod-

elling the impreciseness of human reasoning by representing uncertainty for

the variables that are used by assignment of a set of values to the variable.

A crisp set usually represents a dichotomisation of individuals to be mem-

bers or not into two groups in a given universe of discourse (which it is

known as the domain of a function). However, many classification concepts

suffer from the lack of this property, for example the group of tall people,

sunny days or cheap cars. From a mathematical standpoint, the definition

of a classical set of objects X is called the universe where its generic el-

ements are denoted by x. Therefore a crisp set can be represented by the

notation X = {x1, x2, . . . xn} and defined by a property that is satisfied

by its members: X = {x|P (x)} where P (x) is a proposition of the form

"x has the property P". The membership in a classical subset A of X is

usually viewed as the characteristic function µA from x to {0, 1} Such that

µA(x) =

1, iff x ∈ A

0, iff x /∈ A
(2.1)

where {0, 1} is the valuation set and the characteristic function µA → {0, 1}.
A fuzzy set can be defined mathematically by assigning to each x over the

universe of discourse a value representing its grade of membership in the

fuzzy set. For example, a fuzzy set might represent the set of cloudy days

with the maximum and minimum value of 1 and 0 to those days that are

sunny and completely cloudy respectively. This means that values of 20%
can be designated to those days that are partially cloudy. If the valuation

set is allowed to be a real interval [0, 1], A is called a fuzzy set, and µA(x) is

the grade of membership of x in A. The closer the value of µA(x) to 1, the

more x belongs to A, and where A is a subset of X that clearly has no sharp

boundaries. From this notation, A is completely characterised by the set of



2.2 FUZZY SETS 21

pairs

A = {(x, µA(x)), x ∈ A} (2.2)

Zadeh proposed a convenient notation, where a fuzzy set of X is defined as

A =
n∑

i=1
µA(xi)/xi (2.3)

If X is not finite it is said to be:

A =
∫

x
µA(x)/x (2.4)

In fuzzy set theory, containment, union, intersection and complement are

defined in terms of their MFs. Therefore, such definitions lead to the follow-

ing expressions [Mendel, 1995].

Containment

A ⊆ B ⇐⇒ µA(x) ≤ µB(x),∀x ∈ X (2.5)

Union

µA∪B(x) = max[µA(x), µB(x))],∀x ∈ X (2.6)

Intersection

µA∩B(x) = min[µA(x), µB(x))],∀x ∈ X (2.7)

Complement

µB(x) = 1− µB(x),∀x ∈ X (2.8)

However, the "max" and "min" are not the only operators which can describe

union and intersection of fuzzy sets. Zadeh proposed two operators for union

and intersection [Zadeh, 1965], namely: union based on the maximum and

algebraic sum represented by µA∪B(x) = µ(A)(x) + µB(x) − µA(x)µB(x)
and intersection which is based on minimum and algebraic product and ex-

pressed by µA∩B = µAµB. Basically, the authors [Höhle, 1978] and [Alsina

et al., 1983] were the pioneers that introduced the t-norm and the t-conorm

into fuzzy set theory be the operations for the intersection and union of fuzzy
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sets. Since that, many other researches have proposed various types of t-

operators. Particularly, in [Gupta and Qi, 1991] a review of the most promi-

nent examples about t-norms is provided. Further contributions of t-norms

and t-conorms which have axiomatic basis [Mendel, 1995] have been pro-

posed and represented by the symbols ⋆ and ⊕ respectively. Examples of t-

conorms (also known as s-norm) are bounded sum:x⊕ y = min(1, x + y),

drastic sum x ⊕ y = x if y = 0, y if x = 0, 1 if x, y > 0. And examples for

the t-norm are bounded product: x ⋆ y = max[0, x + y − 1] and drastic

product: x ⋆ y = x if y = 1, y if x = 1, and 0 if x, y < 1.
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Fig. 2.1 Shapes for Membership Functions (MFs)

By using the extension principle it is possible to define some other ba-

sic operations from set theory into fuzzy set theory. A fuzzy set is com-
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pletely characterised by its membership function (MF). For this reason is

more convenient to express the MF through a mathematical formula. In

Fig. 2.1 the most popular MFs are depicted whose expressions are given

below.

Triangular MF

F∆(x; a, b, c) =



0, x ≤ a

x−a
b−a

, a ≤ x ≤ b

c−x
c−b

, b ≤ x ≤ c

0, x ≥ c

(2.9)

Trapezoidal MF

FT (x; a, b, c, d) =



0, x ≤ a

x−a
b−a

, a ≤ x ≤ b

1, b ≤ x ≤ c

d−x
d−c

, c ≤ x ≤ d

0, x ≥ d

(2.10)

Gaussian MF

f(x; c, σ) = exp

(
−
[
x− c

σ

]2
)

(2.11)

Generalised Bell MF

f(x; a, b, c) = 1
1 + |x−c

a
|2b

(2.12)

f(x; a) = m (2.13)

Where the trapezoidal MF is an special case of the triangular MF.
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2.2.1 FUZZY LOGIC SYSTEMS

A Fuzzy Logic System (FLS) is a nonlinear mapping of a crisp input vector

(feature) Xp into an scalar output yp where the pth output vector case can

be decomposed into a collection of multi-input/single-output systems.

As it is pointed out in [Mendel, 1995], an FLS is able to simultaneously

process numerical data and linguistic knowledge. Furthermore, it has been

proved Mendel [1995], Wang [1992] any FLS can be considered as a lin-

ear combination of fuzzy basis functions and hence as a nonlinear universal

aproximator. As it is described in [Mendel, 1995], an FLS contains four el-

ements, namely: a) fuzzifier, b) an inference engine, c) a fuzzy rule base and

a defuzzifier; in Fig. 2.2 the general structure of an FLS is illustrated.

Fuzzifier

Rules

Inference

Defuzzifier

  Crisp
Outputs

  Crisp
Inputs

  Input sets  
     u ϵ U

i

  Fuzzy Output sets  

       v ϵ V 

  y = f(x) ϵ V x ϵ X

 FLS

Fig. 2.2 Fuzzy Logic System (FLS) [Mendel, 1995].

• The fuzzifier plays a twofold role in an FLS; on the one hand the fuzzi-

fier maps crisp numbers into fuzzy sets, and on the other hand the

fuzzifier is needed to activate the fuzzy rules expressed through the

use of linguistic variables associated to fuzzy sets. Basically, the most

popular mathematical expressions used for converting the crisp input

numbers into the corresponding fuzzy sets defined in the linguistic rule

base are the equations (2.9)-(2.12).

• Rules (fuzzy rule base). A fuzzy rule base is a collection of prede-

fined linguistic IF-THEN rules set up either by expert knowledge or

by experts in the area. Since fuzzy rules are the vehicle of knowledge
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representation, the flexibility of the rule base structure is determined

by the form of the rules. Particularly in fuzzy modelling, the rules of a

multiple-antecedent and multiple-consequent FLS can be expressed

as follows [Mendel, 1995]. The basic form of a rule is

Ri : IF x1 is F i
1 and x2 is F i

2 and . . . xn is F i
n THEN v is Gi (2.14)

where i = 1, . . . , M , k = 1, . . . , n inputs, F i
k and Gi are fuzzy sets

in Ui ⊂ R and V ⊂ R respectively ( R denotes the real line), x⃗ =
(x1, x2, . . . , xn) ∈ X1 ×X2 . . .×Xn and v ∈ V . According to Mendel

[1995], different adaptations of the fuzzy rule based can be obtained if

the rules are:

1. Incomplete IF rules. A rule base may contain a set of rules

whose antecedents are only a subset of the n inputs, e.g.

IF x1 is F i
1 and x2 is F i

2 and . . . xm is F i
m THEN v is Gi

Such rules are incomplete IF rules, and apply regardless the

xm+1 . . . xn antecedents. However, these rules can be treated as

complete IF rules if the antecedents xm+1 . . . xn are considered

as elements of a fuzzy set called INCOMPLETE (IN for short),

where by definition µIN(xk) = 1,∀x ∈ R, i.e.

IF x1 is F i
1 and x2 is F i

2 and . . . xm is F i
m THEN v is Gi

If and only if:

IF x1 is F i
1 and x2 is F i

2 and . . . xm is F i
m and xm+1 is IN

. . . and xn is IN THEN v is Gi

2. Mixed rules. Suppose a rule uses two different connective oper-
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ators such as "and" and "or" in the following way:

IF x1 is F i
1 and x2 is F i

2 and . . . xm is F i
m or xm+1 is F i

m+1

. . . and xn is F i
n THEN v is Gi

Hence, such a rule can be expressed as the following two rules:

R1 : IF x1 is F i
1 and x2 is F i

2 and . . . xm is F i
m THEN v is Gi

and

R2 : IF xm+1 is F i
m+1 and . . . and xn is F i

n THEN v is Gi

Where both rules can be seen as two incomplete if rules (see

[Mendel, 1995]).

3. Comparative rules. Some rules are comparative, e.g. "The

largest the u", "the smaller the v". However, according to [Mendel,

1995] this type of rules must be first formulated as IF-THEN

rules, for example: "IF u is L" THEN "v is S", where L is a fuzzy

set representing Large and S small.

4. Unless rules. This type of fuzzy rules employ the connective

"unless" and can be put into the format of 2.2.1 if the De Mor-

gan’s Law is used. For example, the rule

v is Gi unless x1 is F i
1 and x2 is F i

2 and . . . xn is F i
n

which can be first expressed as

IF (x1 is not F i
1 or x2 is not F i

2 or . . . xn is not F i
n) THEN

v is Gi, where not F i
k is a fuzzy set

5. Quantifier rules. The last case includes a quantifier "some" or

"all". The former quantifier is mostly applied by the operator

union to the number of antecedents which include "some" and
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the intersection to the elements that employ the latter quantifier.

By using De Morgan’s Law, A ∩B = Ā ∪ B̄, therefore the rule

can be expressed as

IF x1 is F i
1 and x2 is F i

2 and . . . xn is F i
n

• The inference engine of an FLS is used for mapping fuzzy sets into

fuzzy sets, that means that the inference engine handles the way the

rules are combined. There is a vast number of inference engines, how-

ever just an small number of them are used. The aim of an inference

engine is to mimic the way the human beings make decision based on

a linguistic representation.

• The defuzzifier maps output sets into crisp numbers. This conver-

sion is context dependent which means that for example whether the

problem is about control theory, the output is an action.

2.2.2 FUZZY MODUS PONENS

The modus ponens in crisp sets is a well known deduction rule in logic (as

described in 2.2.2). Basically, from the fact x is A and the rule IFx is A

THEN y is B, a new fact B can be deduced. However, if there is not cer-

tainty that x is A, hence it is difficult to make any deduction about y.

x is A

IFx is A THEN y is B

y is B

In this context, the extension of the classical modus ponens into fuzzy set

logic facilitates to reason with gradual truth, vague knowledge and impre-

cise information. That means, a generalised version of the modus ponens

can be written as:



28 A BACKGROUND TO SOFT COMPUTING TECHNIQUES

Premise 1(Fact) x is A∗

Premise 2(rule) IFx is A THEN y is B

Conclusion y is B∗

Where A∗ and A are usually fuzzy sets on the universe of discourse X and B∗

and B represented by fuzzy sets on the universe Y . The generalised modus

ponens holds that the higher the degree of the premise, the higher the de-

gree of truth in the conclusion. A system’s interpretation for the generalised

modus ponens in fuzzy systems is illustrated in Fig. 2.3 The diagram is a

fuzzy composition where the first relation is merely a fuzzy set A∗. Conse-

quently the term µB∗(y) is obtained from a sup-star composition.

µB∗ = sup [µA∗(x) ⋆ µA→B(x, y)] . (2.15)

Different implications have been proposed since fuzzy logic was applied into

the area of control theory and modelling. Below the three most popular in-

ference engines are listed.

• The Minimum implication was proposed by Mamdani [Mamdani, 1974]

for simplicity computation reasons and expressed as

µA→B(x, y) , min [µA(x), µB(x)] . (2.16)

• Larsen [Martin Larsen, 1980] proposed a product implication which

was again introduced for computation purposes rather than cause and

effect.

µA→B(x, y) , µA(x)µB(x). (2.17)

• The minimum and product inference engine is the most widely mech-

anism in engineering applications due to it preserves the cause and ef-

fect, i.e. µp→q(x, y) is fired only when the antecedent and consequent

part of the rules are true.

µA→B(x, y) , min [µA(x)µB(x)] (2.18)
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IF-THEN RULE

μ       (x,y)
A→B

u is A* v is B*

μ    (y)
B*

Fig. 2.3 System’s interpretation for generalised modus ponens.

FUZZY MODELLING

The application of fuzzy sets into modelling aims to express complex sys-

tems in the form of fuzzy implications. In fuzzy modelling of a process, a

fuzzy implication is particularly called a fuzzy process law. In general, any

data-driven fuzzy model is frequently constructed by employing the physi-

cal properties of the system, the observational data and empirical knowledge

[Sugeno and Kang, 1986].

The use of expert knowledge in fuzzy modelling aims to compile all this

information in linguistic (control and modelling) rules. From this view, a

fuzzy reasoning model is a set of rules in the IF-THEN form to describe

input-output relations of a system. Consider a collection of P data points

X1, X2, . . . , XP in an n dimensional space that combines input and output

dimensions that can give rise to any type of generic representation (MIMO,

MISO, etc). Thus, a single input-output data pair can be written as

Xp = {x1, x2, . . . , xn, yp}; Xp ∈ Rn+1, p = 1, . . . , P (2.19)

Hence, let x = (x1, x2, . . . , xn) ∈ Rn be inputs and y ∈ R the output. The

target of modelling is to identify the non-linear function y = f(x) : Rn → R

with P given input-output data pairs. A fuzzy model based on the Takagi-

Sugeno-Kang (TSK) implication can be represented as a partnership of
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fuzzy rules:

Ri : IF x1 is A1i and x2 is A2i . . . and xn is Ani THEN y = fi(x) (2.20)

Where x = (x1, x2, . . . , xn) ∈ U1 × U2 × Un and y ∈ V are the linguis-

tic variables, Aji are fuzzy sets of the universes of discourse Ui ∈ R(i =
1, 2, . . . , n), and Ri represents the ith rule, i = 1, 2, . . . , p and finally, fi(x)
can take three main values: (1) singleton, (2) fuzzy sets, and (3) linear func-

tion. Note that if fi = k(constant) the fuzzy model may be seen as a fuzzy

Mamdani model. A general architecture of a fuzzy model is illustrated in

Fig. 2.4 which is composed of three principal modules.

Processing
Module

Raw Data

Predicted Data

Fuzzy Encoder

Fuzzy Decoder

Fig. 2.4 General topology of a fuzzy model.

The essential role of the fuzzy encoder and fuzzy decoder is to encode/decode

information (the input vector x) coming from the environment in which the

modelling takes place. Such information might be heterogeneous in nature

involving numerical quantities, intervals as well as fuzzy sets. The transfor-

mation of the external information into a compatible set during the encoding

level with the one being used in the processing stage is carried out by distinct
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matching procedures. In fact, such methodologies are considered the pri-

mary mechanisms of the fuzzy encoding. Quite frequently these procedures

depend on the extensive usage of necessity and compatibility measures. For

instance, (a) fuzzy C-means in which an objective function leads the search

of the clustering process, and (b) The granular compression approach where

a certain number of granules are formed from raw data into fuzzy sets. Fuzzy

sets (linguistic labels) forming the interface to the computational part of the

architecture shown in figure 2.4 should satisfy a few general requirements to

assure a proper functionality and flexibility of the entire system:

• Interpretability . It refers to the capability of the fuzzy model to ex-

press the behaviour of the system in an understandable way. This is a

subjective property that depends on a number of several factors such

as: the input variables, fuzzy rules, linguistic terms, the shape of the

fuzzy sets and the most important the model structure. The term of

interpretability encloses different criteria such as compactness, com-

pleteness, consistency, or transparency.

• Accuracy this concept refers to the capability of the fuzzy model to

faithfully represent the modelled system. The closer the fuzzy model

to the system, the higher its accuracy. Due to the similarity between

the response of the real system and the fuzzy model is why the fuzzy

models are considered a function approximation model.

As Zadeh stated in its principle of Incompatibility [Zadeh, 1973], ’as the

complexity of a system increases, the ability to make precise and yet signifi-

cant statements about its behaviour diminishes until a threshold is reached

beyond which precision and significance (or relevance) become almost mu-

tually exclusive characteristics’. As a consequence, the fuzzy modelling can

be divided into two main groups:

• Linguistic fuzzy modelling. The goal is to obtained fuzzy models with

a good interpretability.
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• Precise fuzzy modelling. The main objective is to obtain fuzzy models

with a good accuracy.

1 2

3 4

Interpretability
Improvement

Accuracy
Improvement

Accuracy
Improvement

Interpretability
Improvement

Precise Fuzzy Modelling
(accuracy as main objective)

Linguistic Fuzzy Modelling
(interpretability as main objective) 1

2

3

4

Very good interpretability and acceptable 
accuracy.

Good interpretability and good accuracy.

Acceptable interpretability and very good 
accuracy.

Bad interpretability and extremely very good 
accuracy.

Fig. 2.5 Improvements of interpretability and accuracy [Casillas, 2003].

The computational module shown in Fig. 2.5 can vary significantly de-

pending upon the problem at hand. Moreover, this stage is the so called ’in-

ference engine’ in fuzzy systems. One out of the most popular approaches

is the neural networks in which the collection of rules is encapsulated. The

following list mentions the most commonly fuzzy models used in engineer-

ing:

1. Tabular representations

2. Fuzzy grammars

3. Fuzzy relational equations

4. Fuzzy neural networks

5. Rule- based models

6. Fuzzy regression models
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2.3 TYPE-2 FUZZY SETS AND SYSTEMS

Frequently, the main reason for using Type-2 Fuzzy Sets (T2-FS) among

the community of fuzzy practitioners is due to their ability to model and min-

imise the effects of linguistic uncertainty [Mendel and John, 2002]. More-

over, Zadeh presented a more powerful argument for the use of fuzzy sets

for manipulating perceptions [Zadeh, 2001a]. That is, the human cognition

for grouping and describing objects mostly is done by performing a variety

of physical and mental tasks without any underlying assumption, for exam-

ple the perception of what is the size, height, colour, volume, weight of an

object, where the object can be any physical or abstract entity. Indeed, the

idea of perceptions goes more at hand with the human ability to represent

objects by means words and propositions drawn from a natural language.
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Fig. 2.6 T2 Fuzzy Membership [Mendel and John, 2002]

In this regards, as it is mentioned in [John and Coupland, 2007], T2-

FS is a framework capable of computing with words since they do not have

crisp membership functions (or just Type-1 fuzzy membership functions).

In other words, computing with words leads to computing with percep-
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tions as a result of manipulating fuzzy quantities. The term type-1 fuzzy

sets has gained more popularity among practitioners since the introduction

of the concept of ’T2-FS’ which was proposed by Zadeh in 1975 [Zadeh,

1975]. The research area of T2-FS is now well established in academia

activity. A more detailed of an historical review about T2-FSs is given in

[John and Coupland, 2007]. Since the inception of T2-FS, the number of

research works and publications has grown importantly due to the vast ex-

isting theory that fully define type-1 fuzzy sets (T1 FS) on the one hand,

and the consolidation of the mathematical basis necessary for defining un-

certain rule-base fuzzy logic systems on the other hand. Particularly works

done by John and [John, 1996, 1998], Mendel [Mendel, 2001, 2003], John

and Mendel [Mendel and John, 2002], and Karnik and Mendel [Karnik and

Mendel, 1998a] opened this field to a wider audience that has used it into

areas such as robotics, medicine, complex systems modelling, etc.

TYPE-2 FUZZY SETS

Before going directly to the review of theory of interval type-2 fuzzy systems,

it would be worth to provide some foundations of type-2 fuzzy sets theory

(T2-FS). Therefore, as it was proposed in [Mendel, 2001, 2007b, Mendel

and John, 2002] type-2 fuzzy Ã is characterised by a type-2 membership

function T2-MF µÃ(x, u) and defined as

Ã = {(x, u), µÃ(x, u)|∀u ∈ Jx ⊆ [0, 1]} (2.21)

Where µÃ(u, x) is a type-2 membership function that characterizes Ã, x ∈
X and u ∈ Jx ⊆ [0, 1]. In which 0 ≤ µÃ(u, x) ≤ 1 and can also be stated as:

Ã =
∫

x∈X

∫
u∈Jx

µÃ(u, x)/(x, u) Jx ∈ [0, 1] (2.22)

According to Fig. 2.6 Ã = {µÃ(u, x)|∀x ∈ X} or defined as

Ã =
∫

x∈X
µ(Ã)(x)/x =

∫
x∈X

[∫
u∈Jx

fx(u)/u
]

(2.23)
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For discrete universes of discourse Ã can be defined as

Ã =
∑
x∈X

∑
u∈Jx

fx(u)/u

 /x (2.24)

The bounded triangular area represented in 2.6 was called by John and Mendel

[Mendel and John, 2002] the Footprint of Uncertainty which means is the

union of all the primary membership functions.

FOU(Ã) =
⋃

x∈X

Jx (2.25)
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Fig. 2.7 Vertical slice and embedded type-2 fuzzy sets theorem representations
[Mendel and John, 2002].

In [Mendel and John, 2002] two representation theorems for T2-FS are pro-

posed, namely: a) Vertical-slice representation and b) wavy-slice represen-

tation. While the former representation is based on the mathematical ex-
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pression for the slice of membership functions illustrated in Fig. 2.6, the

latter uses the concept of embedded type-2 fuzzy set Ãe which is defined as

follows, see e.g Fig. 2.7

Ãe =
N∑

i=1
[fxi

(ui)/ui]/xi ui ∈ Jxi
⊆ U = [0, 1] (2.26)

where a type-1 embedded set is

Ae =
N∑

i=1
ui/xi ui ∈ Jxi

⊆ U = [0, 1] (2.27)

And Ae has N elements, one each from Jx1 , . . . , JxN
namely u1, . . . , uN .

That means there is a total of ⨿N
i=1MiAe type-1 sets. Therefore, the rep-

resentation theorems for T2-FS are stated as [Mendel and John, 2002]:

• Vertical-slice representation

Ã =
⋃

∀x∈X

vertical slices(x) (2.28)

• Wavy-slice representation

Ã =
⋃
∀j

Embedded T2− FS(j) (2.29)

In Fig. 2.7 The representation theorems mentioned above are illustrated.

Such representation theorems are considered as covering theorems since

the union of all the vertical slices and the union of all the embedded type-1

fuzzy sets T1-FS cover the whole FOU.

TYPE-2 FUZZY LOGIC SYSTEMS

Basically a T2 Fuzzy Logic System (T2-FLS) consists of the same number

of components than its T1 counterpart, namely (a) a fuzzifier, (b) an Infer-

ence engine, and (c) a defuzzifier which uses a type-reducer component that
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combines in a similar way than T1 defuzzifier the fired-rule output sets from

the inference engine obtaining a type-reduced set.

Fuzzifier

Rules

Inference

Type reduced set
     (type-1)

 Crisp
Inputs

  Fuzzy output sets  
       

 

Type-2 FLS

 Crisp Outputs

Type-reducer

Defuzzifier

  Fuzzy input sets  
       

 Output processing

Fig. 2.8 T2 Fuzzy Logic System taxonomy

As illustrated in Fig. 2.8 the general taxonomy of a T2 Fuzzy Logic Sys-

tem (T2 FLS) can be seen as a system having k inputs x1 ∈ X1, . . . , xn ∈
Xn and one output yp where p = 1, . . . , P is the number of vector data pre-

sented at the input [Mendel, 2007a]. Therefore, one T2 fuzzy rule rule can

be stated as follows:

Ri : IF x1 is Ãi
1 and x2 is Ãi

2 and . . . xn is Ãi
n THEN yp is G̃i, i = 1, . . . , M

(2.30)

The Ri represents the input-output relationship where the input space is

X1 × . . . × Xn and the output space Y , and the T2 Fuzzy Set Ãi = Ãi
1 ×

. . .× Ãn
1 . Hence the ith rule can be rewritten as:

Ri : Ãi
1 × . . . Ãn

1 → Gi, i = 1, . . . , M (2.31)

Similar to type-1 fuzzy systems, the inference engine combines rules and

give a mapping from T2-FS to output T2-FS. Usually, the antecedents are

connected through the t−norm (intersection of fuzzy sets) and hence com-

bined by the sub-star composition. This means that the rules can be either
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combined by using a t− conorm (union of fuzzy sets) or during the defuzzi-

fication process.

As the centroid of T2-FS is concerned, usually is calculated into discrete

domains because if its practicality. In a similar way, the centroid of a type-2

fuzzy set can be calculated from the following equation:

CA =
∑n

k=1 xkµA(xi)∑n
k=1 µA(xi)

(2.32)

A discretized x−domain into n points, that is Ã = ∑n
i=1[

∫
u∈Jx

fxk
(u)/u]/xk

can be defined by using the Extension Principle as is described below:

CÃ=
∫

θ1∈Jx1
...
∫

θn∈Jxn

[fx1 ⋆ . . . ⋆ fxn ]
/∑n

k=1 xkθk∑n
k=1 θk

(2.33)

where CÃ is a type-1 fuzzy set. In this sense, the computation of CÃ in-

volves the computation of:

a(θ) ,
∑n

k=1 xkθk∑n
k=1 θk

(2.34)

b(θ) , [fx1 ⋆ . . . ⋆ fxn ] (2.35)

In order to compute the tuples (a, b), an intensive process of all the com-

binations θ = [θ1, . . . , θn] is perfomed in order to obtained α tuples (a1, aα),

where θ ∈ Jxk
.

Despite the attractive advantages of T2-FS for dealing with linguistic

uncertainties, its implementation results to be expensive in terms of compu-

tation as a consequence of the use of a type-reduction process which is quite

intensive. In this context, different types of representations have been pro-

posed in order to decrease such a computational burden. Particularly, this

load decreases significantly when the secondary membership function is de-

fined as an interval renaming the T2-FS as interval type-2 fuzzy sets (IT2-

FS) [liang2000interval, mendel2006interval]. New developments such as

zslices representation for type-2 fuzzy sets, α−plane representation [Mendel

et al., 2009], geometric type-2 [Coupland and John, 2007] and quasi-type-2
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Fuzzy Logic Systems [Mendel and Liu, 2008] have contributed to the com-

putational simplicity for the application of Type-2 Fuzzy Sets in real world

problems.

The use of IT2-FSs whose secondary membership function could be ei-

ther zero or one simplify importantly the number of computations required to

obtain the type-reduced set. For the sake of completeness appendix ?? pro-

vides a brief review of IT2-FS including meet and join operations for interval

sets.

INTERPRETABILITY IN FUZZY LOGIC SYSTEMS

Due to the properties of transparency and interpretability, fuzzy models have

led some researches to create generic models for the prediction of nonlinear

systems properties [Casillas et al., 2003, Chen and Mahfouf, 2010, Juang

and Chen, 2013, Paiva and Dourado, 2004, Setnes et al., 1998b]. The rich-

ness of fuzzy set theory has been exploited into different areas such as medicine,

robotics, control theory, systems modelling, and mathematics.

Particularly, one out of the major purposes of complex systems modelling

is to developing reliable and transparent models that provide an interpretable

insight into real-world systems. To cast system behaviour in historic per-

spective, several data-driven modelling techniques have been developed as

a fundamental mechanism to understand natural phenomena via the use of

linguistic terms.

Three main categories have been frequently used for system modelling,

namely: a) white-box models, in which the mathematical characterisation

has easy-to-interpret parameters and all the necessary information is avail-

able, b) black-box modelling, where there is not prior information about the

system establishing opaque relationships between the input and the output

based on observational data, and c) Gray-box modelling, which represents

a combination and exploitation of the capabilities of the two previous mod-

elling techniques.

In general, complexity modelling involves a trade-off between simplic-

ity and accuracy of the model. Particularly, data-driven models based on
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fuzzy systems offers an interesting expression of dynamic systems trough

fuzzy implications (inference engine) based on observational data and em-

pirical/expert knowledge.

Within this context, a number of fuzzy systems have been constructed

from data by using adaptive learning methodologies and evolutionary com-

putation in order to increase the interpretability and hence the transparency

(e.g. Chen model, [Chen and Linkens, 2001a], Leng model [Leng et al.,

2005] with an on-line extraction of fuzzy rules and Talamantes-Silva model,

[Zhu et al., 2003].

2.4 NEUTROSOPHIC LOGIC

Neutrosophy was born as a branch of philosophy employed to explain the

origin, nature and scope of neutralities as well their interaction with ideational

spectra [Smarandache, 1999]. Basically, neutrosophy studies a proposition,

event, theory, concept or entity as ′A′ in relation to its opposite denoted as

anti−A or not A and the neutralities neu−A which is not A, < not−A >

and that which is neither A nor Anti − A are referred as to non − A ideas.

This new type of logic was developed to mathematically model uncertainty,

vagueness, ambiguity, inconsistency, contradictions, paradoxes, incomplete

language/systems and This new logic can be fitted into the category of para-

consistent logics. However, this new framework needs to be specified from

a technical point of view. From a fuzzy perspective, this new logic not only

may consider the associated truth-membership ′T ′ and falsity-membership
′F ′ supported by evidence, but also the associated indeterminacy/uncertainty-

membership ′I ′.

According to Gershenson [Gershenson, 2001], neutrosophy is a logic

structure based on axioms that makes the study of any system incomplete,

in other words just believed. Moreover, Gershenson commented that neu-

trosophy is a concept that involves the study of many systems because it

contains them. That means that the study of a system does not finished and

it can always be improved. Smarandache proposed to define a set based on

the tuple < T, I, F >, where T, F, and I are the true, falsity and indeter-
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minacy associated to an event or a set respectively. Compared to fuzzy set

theory where a set is defined to measure the associated true in the closed

interval [0, 1], a neutrosophic set can be defined through the use of infinites-

imal numbers which means that a number T can be evaluated in the interval

]−0, 1+[. The mathematical framework of neutrosophy argues with the idea

of Gershenson that as less-incomplete the ideas of a sytem, the more are

useful, since the human being can not perceive the associated true, falsity

and indeterminacy of a system. Therefore, a neutrosophic set still needs to

be defined from a technical point of view.

Even though, the notion of fuzzy entropy (sometimes referred as un-

certainty) encloses various theories, such a measure just deals with disor-

der quantification among fuzzy sets. The concept of Neutrosophy was in-

troduced by Smarandache as an extension/combination of the fuzzy logic,

intuitionistic logics, paraconsistent logic and the three-valued logics that

uses an indeterminate value [Ashbacher, 2002]. Moreover, a neutrosophic

set employs the non-standard analysis, a formalization of analysis and a

branch of mathematical logic, which rigorously defines the infinitesimals

[Wang et al., 2005]. The informal idea behind an infinitesimal value is an

infinitively small number, i.e. x is said to be infinitesimal if and only if for

all positive integers n, the ratio |x| < 1/n. Furthermore, let · > 0, be a

such infinitesimal, and 1+ = 1 + · a non-standard number, where ′1′ it is the

standard part and ′·′ its non-standard part, and −0 = 0−· in which the same

logic works. Smarandache defines ]−a, b+[ a non-standard interval, where
−a and b+ can be viewed as the lower and upper boundary within a closed

interval.

(−a) = {a− x : x ∈ R+, x is infinitesimal} (2.36)

(b+) = {b + x : x ∈ R+, x is infinitesimal} (2.37)

In neutrosophic terms, the elements of a neutrosophic interval [Smaran-

dache, 2001] can be defined as −a = a − x and b+ = b + x. The definition
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of the neutrosophic components based on the previous concepts can be rep-

resented by T, F, and I within a standard or non-standard real subsets of

]−0, 1+[ [Smarandache, 2001]. Where T, F, and I are the truth, falsehood,

and the indeterminacy related to a mathematical event respectively. Follow-

ing the definition of T, F, and I, −0 and 1+ are numbers infinitively small but

less than 0 or infinitively small but greater than 1, and hence belong to the

non-standard unit interval. By extension the lowest value of ]−a, b+[ might

be introduced by the inf ]−a, b+[ = −a, and the highest sup ]−a, b+[ = b+.

These numbers can related to T, F, and I percentages as follows:

sup T = tsup, inf T = tinf

sup I = isup, Inf I = iinf

sup F = fsup, inf F = finf

A generalisation of T, F, and I are real standard and non-standard subsets,

included in the non-standard unit interval ]-0, 1+[ where:

−0 ≤ inf(T )+ inf(I)+ inf(F ) ≤ sup(T )+sup(I)+sup(F ) ≤ 3+ (2.38)

The superior (sup) and inferior (inf) sum is:

nsup = sup(T)+ sup(I) + sup(F)]−0, 3+[

May be as high as 3 or 3+, while inf(T)+inf(I)+inf(F)∈]−0, 3+[, may be as

low as 0 or −0. This non-restriction allows paraconsistent, and incomplete

information to be characterised in neutrosophic set logic, i.e. the sum of all

these three components if they are defined as intervals, single points, and

superior limits can be > 1 (for paraconsistent information coming from dif-

ferent sources) or < 1 (for incomplete information). According to [Smaran-

dache, 2001], this new representation is closer to the human mind reasoning

and characterises the imprecision of knowledge or linguistic inexactitude.

While intuitionistic fuzzy logic (IFL) can not describe this representation

because in IFL the components T (truth), I (Indeterminacy), F (falsehood)
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are restricted either to t+i+f=1 or t + f ≤ 1, if T, I, F are all reduced to the

points t, i, f respectively, or to sup T + sup I + sup F = 1 if T, I, F are sub-

sets of [0, 1]. Opposite to this, in neutrosophic logic (NL) the components

T, I, F can be represented by standard or non-standard subsets included

in the unitary non-standard interval ]0−, 1+[ [Smarandache, 2001]. Due to

this reasoning, a linguistic representation of the elements T, I, F can be in-

terpreted as intervals, standard or non-standard real sets, discrete, contin-

uous, single-finite sets, operations under intersection or union, fuzzy num-

bers, normal distribution, etc. For this reason the tuple <t, i, f> represents

the truth value, indeterminacy value and falsehood value. One can use all

this information in order to define a punctual view of neutrosophic sets from

a fuzzy perspective. The definition of fuzzy sets just deals with the truth of

an event, while IFL and NL cope with a broader scheme considering the

uncertainty-based information.

Truth-Membership Function TMF

Indeterminay/Uncertainty-
Membership Function IMF

Falsity-Membership Function 
FMF

Neutrosophic 
Inference

Neutrosophic 
Rule Base

Neutrosophic 
Type-Reduction

Crisp Input

Deneutrosopication

Crisp Output

Neutrosophic Fuzzy Logic System 
NFLS

Fig. 2.9 Neutrosophic Fuzzy Logic System Structure, [Wang et al., 2005]

Although the elements of a Neutrosophic Set (NS) have an associated

degree of truth, falsity and uncertainty/indeterminacy that lie in the non-

standard set ]0−, 1+[, in this research work such sets will be defined from

the point of view of standard analysis and hence each element of the tuple
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< T, I, F > is defined in the closed interval [0, 1]. Therefore, a Neutrosophic

Fuzzy Logic System (NFLS) may be seen as illustrated in Fig. 2.9.

In [Smarandache, 2010a] it was introduced a set of extensions of the

fuzzy T-norm and T-conorm. In that article the authors covered both the

N-norm and N-conorm for non-standard and standard sets. However, for

technical applications the domain of definition will be considered in the in-

terval [0, 1]. Therefore, the N-norm (Nn) and N-conorm Nc can stated as:

Nn : ([0, 1]× [0, 1]× [0, 1])2 → [0, 1]× [0, 1]× [0, 1] (2.39)

and

Nc : ([0, 1]× [0, 1]× [0, 1])2 → [0, 1]× [0, 1]× [0, 1] (2.40)

If any two given neutrosophic sets x and y, the corresponding N-norms are

Nn(x(T1, I1, F1), y(T1, I1, F1)) = (NnT (x, y), NnI(x, y), NnF (x, y)). Where

Nn must satisfy the following axioms:

1. Boundary conditions: Nn(x, 0) = 0, Nn(x, 1) = x

2. Commutativity: Nn(x, y) = Nn(y, x)

3. Monotonicity: If x ≤ y then Nn(x, z) ≤ Nn(y, z)

4. Associativity: Nn(Nn(x, y), z) = Nn(x, Nn(y, z))

According to [Smarandache, 2010a], there are cases where not all the ax-

ioms are satisfied. This is due to some type of operations, for example neu-

trosophic normalisation. In that case, such operation are called N-pseudo-

norms. In a like manner to Fuzzy Sets theory, the operator Nn may repre-

sent the and operator and the intersection operator in neutrosophic logic

and Neutrosophic Sets theory respectively. For instance the ” ∧ ” can be

the algebraic product if any two sets x(T1, I1, F1) and y(T2, I2, F2), hence

Nn = (T1 ∧ T2, I1 ∨ I2, F1 ∨ F2). Thus if any J ∈ {T, I, F}, the most known

N − norms as in fuzzy logic and fuzzy sets theory the T − norms are
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• The algebraic product N − norm: Nn−algebraicJ(x, y) = x · y

• The bounded N − norm: Nn−boundedJ(x, y) = max {0, x + y − 1}

• The default min N − norm: Nn−minJ(x, y) = min {x, y}

In relation to the N − conorms, Nc may represents the or operator and the

union operator in neutrosophic logic and neutrosophic sets theory respec-

tively. Therefore if any J ∈ {T, I, F}

• The algebraic product N − conorm: Nc−algebraicJ(x, y) = x + y − xy

• The bounded N − conorm: Nc−boundedJ(x, y) = max {1, x + y − 1}

• The default max N − conorm: Nc−maxJ(x, y) = max {x, y}

2.5 GRANULAR COMPUTING

Before going directly to the concept of Granular Computing (GrC), it would

be worth to mention the roots of granulation. The concept of granulation

was firstly proposed in [Zadeh, 1997] as a computational paradigm based

on the human cognition where three basic concepts underlie this ability,

namely: a) granulation, b) organisation and c) causation. The first con-

cept refers to the decomposition of a whole into parts; the second concept

involves the ability of humans for integrating parts into a whole; and causa-

tion involves the association between effects and causes.

the concept of granulation is inspired by the abstract way the human be-

ings granulate information and reason with it [Zadeh, 1997]. This mech-

anism represents the point of departure for information granulation (IG)

where the granules can be a) crisp (c-granules) or b) fuzzy (f-granules).

Although the former types of granules have been applied successfully in con-

junction with other methodologies such as Demspter-Shafer theory [Butenkov,

2004], probabilistic reasoning [Zadeh, 2002], decision trees [Pedrycz and

Sosnowski, 2001], etc. it suffers from the ability to reason with entities/objects

as can be done by using f-granules. For example, the anatomy of a human

is mostly represented by fuzzy granules rather than crisps. That is the size
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and features of the ears, eyes, legs, hair, etc. are not sharply defined. This

example is clearly related to the association of a clump of fuzzy granules in-

stead of a single fuzzy granule. In this environment of partial knowledge,

attributes such as similarity, compatibility, distance, functionality, etc. may

result from the association between two or more granules (intergranularity).

Formally speaking, the fuzziness of granules may represent the human abil-

ity to make decisions under an uncertain environment.

Furthermore, the concept of information granulation can be see as a gener-

alisation which may be applied to different concepts [Zadeh, 1997]. Zadeh

proposed five types of generalisation modes which can be defined as [Zadeh,

1997]:

• Fuzzification (f-generalisation). In this type, a fuzzy granule is replace

by a fuzzy granule (See Fig. ).

• Granulation (g-generalization). This type is about the partition of a

set into a group of granules.

• Randomization (r-generalization). In this type, a variable is replaced

by random variable.

• Usualization (u-generalization). In this type, a proposition expressed

as X is A is replaced with usually (X is A).

• Fuzzy granulation (f.g-generalisation). This process involves a pro-

gression from fuzzy sets to granulated fuzzy sets (see Fig. 2.11)

Some combinations between two or more of the cases mentioned above

can be done. In the context of information granulation, emerging frame-

works such as Granular Computing (GrC) are proposed as processing mech-

anisms of complex information entities [Bargiela and Pedrycz, 2003a]. In

other words, GrC aims to represent information in the form of some ag-

gregates and their corresponding processing. Granular Computing extracts

information from numerical data to mimic the ability of the human beings to

develop a granular view of the "world" and "objects" according to their sim-

ilarities such as proximity, functionality, size, orientation, shape, etc. This
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means that GrC serves a way of achieving data compression through the

use of words and information granulation for representation when the infor-

mation is so imprecise and the environment involves uncertainty an partial

truth. Perhaps some of the most practical reasons of its emerging popularity

are the necessity of information granulation and its simplicity derived from

granulation in solving problems. For instance, in performing some tasks like

driving in city traffic, where the human kind (driver) employs the perception

for estimating some variables such as distance, speed, direction, shape, in-

tent, likelihood, truth, and other attributes of physical and mental objects.

A1

A2

A3

A4

Fig. 2.10 f-granularity

More specifically, perceptions are, for the most part, fuzzy granules in the

sense that: (a) the boundaries of perceived classes are fuzzy, and (b) the

values of the perceived attributes have a granular structure. In Fig. 2.10,

a general granular structure (f-granule) is illustrated. where A = A1 +
A2 + A3 + A4 = ∑

j Aj; A ∈ Ui is the set of the fuzzy sets. Even though

the term of GrC is relatively recent, this concept has been already used in

different areas such as granularity in artificial intelligence, fuzzy and rough

set theory, cluster analysis, etc.
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Fig. 2.11 Granulation

2.6 UNCERTAINTY BASED-INFORMATION

Uncertainty usually emerges as a consequence of a type of deficiency when

dealing with information. Measurement errors and resolution limits are two

of the major reasons of uncertainty which is an inseparable companion of

almost any type of measurement. In Fig. 2.12 the different types of uncer-

tainty in fuzzy set theory are listed [Pal et al., 1992, 1993]. The informa-

tion obtained from a system is frequently not fully reliable because of the

incomplete, fragmented, vague and contradictory measurements [Klir and

Wierman, 1999]. In machine learning an effective way of dealing with un-

certain information is through the use of probabilistic inference mechanisms

and some other theories that have have been demonstrated to be capable of

characterising situations under uncertainty.
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Uncertainty

Fuzziness Ambiguity

Strife Non-specificity

Lack of definite or 
sharp distinction

-Vagueness
-Haziness
-Unclearness
-Indistinctness
-Sharpleness

Disagreement in choosing 
among several alternatives

-Dissonance
-Incongruency
-Discrepancy
-Conflict
-Discord
-Sharplessness

Two or more alternatives 
are unspecified

-Variety
-Generality
-Diversity
-Equivocation
-Imprecision

Fig. 2.12 Uncertainty measures

The most visible of such theories are fuzzy sets [Zadeh, 1965], evidence the-

ory [Shafer, 1976], possibility theory [Dubois, 2006, Zadeh, 1999b] and the

theory of fuzzy measures [Ishii and Sugeno, 1985].

The nature of uncertainty-based information depends on the mathemat-

ical theory within which uncertainty pertaining to various problem-solving

situations is formalised [Klir and Wierman, 1999]. To make this clear, dif-

ferent concepts have been suggested by various authors. In [Shafer, 1976]

an uncertainty measure based on the evidence was introduced. This type of

uncertainty usually emerges due to limitations of evidence gathering, inter-

pretation system, and as a difficulty for specifying the exact solution (non-

specificity) or just due to randomness in the system (probabilistic). Tu put

it more simply, these types of uncertainty are confined to describe situations

where there is no ambiguity about set- boundaries but rather to the belong-

ingness of events or elements to crisp sets [Pal et al., 1992]. For instance,

in [Yager, 1983], Yager introduced the concept of entropy and specificity in

the framework of Shafer’s theory. On the one hand, The concept of en-

tropy was generalised from the probabilistic framework and specificity on

the other hand was defined from a possibilistic point of view. Such uncer-
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tainty measurements proved to be complementary measures of quality of a

piece of evidence. Hohle proposed in [Hohle, 1981, Höhle, 1982] a mea-

sure to quantify the level of confusion present in a body of evidence. Smets

[Kaufmann and Swanson, 1975] developed a distinct type of measure for the

information content of an evidence.

In table 2.1, [Pal et al., 1992, 1993], a list of non-fuzzy uncertainty mea-

sures is presented. Particularly, the authors emphasized the uncertainty

of a system as a composite measure of two different types [LAMATA and

MORAL, 1988]. The point of departure lies in the fact to consider the non-

specific and probabilistic aspects of uncertainty in a system.

Even though in table 2.1 three different measures (G1, G2, T ) that quan-

tify the uncertainty in a system are provided, there is still an ignorance to ac-

count the complete uncertainty that results from randomness. Under these

circumstances the authors in [Pal et al., 1992, 1993] discussed the properties

of G1, G2 and T . The term probabilistic in the third column in table 2.1 rep-

resents more the uncertainty due to randomness or chance. Consequently,

according to [Yager, 1983] the first measure of uncertainty E(m) indicates

the degree of dissonance (conflict) in a body of evidence. where m(A) is the

degree of evidence or belief of an element x that belongs to the set A but

not to any B such that B ⊂ A. And (F, m) is the body of evidence with F

as the set of all the subsets of A. In fact, Yager suggested that specificity

is associated to a possibility distribution. Moreover, Yager generalised this

idea introducing the concept of non-specificity J(m). In this sense, Hohle in

[Hohle, 1981, Höhle, 1982] proposed a measure to represent conflict C(m)
when two evidential claims m(A) and m(B) conflict within the same body

of evidence. The term U(r) was introduced by Higashi and Klir in [Higashi

and Klir, 1982] in order to measure non-specificity which satisfies the ax-

ioms of the Shannon’s entropy. A different measure was proposed by Smet

[Smets, 1983], such an expression does not represent a generalisation of the

Shannon’s entropy which makes it interpretable in terms of randomness.
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In response to the uncertainty index E(m) proposed by Yager, Klir and

Ramer point out that the measure of dissonance in that expression is unsat-

isfactory, and m(A) and m(B) conflict. For this reason, the authors sug-

gested in [KLIR and Ramer, 1990] a measure of conflict that solves the

problem. In this context, the first seven rows of table 2.1 list a number of ba-

sic measures of uncertainty including probabilistic and non-specific events.

Therefore, the terms G1, G2 and T can be seen as the global G1,2 and T total

uncertainty in a system. The first two terms G1 and G2 are composite mea-

sures that exhibit a trade-off of the assessment of their factors. For example,

the global uncertainty G1 balances dissonance against non-specificity. This

means that G1 accounts for only one element of uncertainty, i.e. conflict.

As far the term G2 is concerned, Lamata & Moral pointed out that some

terms such as I(m) can not be extend to a generalised class of fuzzy mea-

sures because this measure is only expressed in terms of a Basic Prob-

abilistic Assigment (BPA). For this reason, in [LAMATA and MORAL,

1988] the authors proposed G2 to circumvent this problem, however ac-

cording to [Pal et al., 1993] no motivation is provided by Lamata & Moral

to define an expression that considers the imprecision W and V the de-

gree of surprise as a measure for global uncertainty. Similar to the un-

certainty G1, T was defined by Klir & Ramer to represent the total uncer-

tainty based on conflict [Pal et al., 1993]. Nevertheless, the term D(m) =∑
A∈F m(A)Log [∑B∈F m(B)|A−B|/B] is difficult to interpret because it

only captures the uncertainty due to randomness in a partial way.

Finally, the average total uncertainty T defined by [Pal et al., 1993] con-

sider the deficiencies mentioned above and introduces a new term for conflict

D(m) = ∑
A∈F m(A)Log [∑B∈F m(B)|A ∩B|/B] to overcome such prob-

lems and group of axioms that any measure of global and total uncertainty

must satisfy.

2.7 FUZZY UNCERTAINTY BASED-INFORMATION

The concept of information is too broad to be captured completely by a single

definition. According to Table 2.1, the entropy of a variable is defined in
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terms of its subjective probability distribution and can be a good measure

of randomness or uncertainty. In the areas of pattern recognition, machine

learning, image processing, speech recognition, etc., it is often required to

get some idea about the degree of ambiguity (fuzziness) present in a fuzzy

set.

A measure of fuzziness is a kind of cognitive uncertainty and it is ex-

pected to give the average amount of information caused by the uncertainty

area from one linguistic term to other [Wang et al., 2012]. This notion

has been extended to fuzzy set theory by the concept of Shannon’s entropy

sometimes referred as a measure of uncertainty. Zadeh defined the entropy

of a fuzzy subset A for a finite set x1, x2, . . . , xn with respect to the probabil-

ity distribution p1, p2, . . . , pn as:

HP = −
n∑

i=1
µA(xi)pilog(pi) (2.41)

p is defined on an event xi is a function p(xi), which can have values only in

the interval [0, 1]. A set of these functions assigns the degree of possessing

some property p by the event xi constitutes what is called a property set. In

other words, pi is the probability of occurrence of xi, and Hp can be viewed

as a weighted version of Shannon entropy measure where the memberships

µA are used as weights. Kaufman in [Kaufmann and Swanson, 1975] defined

the entropy of a fuzzy set as:

Hk = {−1/log(n)}
n∑

i=1
Φilog(Φi) (2.42)

Where Φi = µi/
∑

( i = 1)n∑
i, i = 1, 2, . . . , n. However, the drawback of

this measure is that it does not depend on the absolute values of µi, but on

their relative ones. Deluca and Termini [De Luca and Termini, 1972] used a

different expression, based on Shannon’s entropy to define the entropy of a
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fuzzy set as follows.

H = −k
n∑

i=1
µilog(µi) + (1− µi)log(1− µi) (2.43)

Where k is a normalising constant, and equation (2.43) is used to express

an average amount of fuzziness, ambiguity in a fuzzy set A. Pal and Pal in

[Pal and Pal, 1989] also defined a fuzziness measure based on exponential

entropy as:

H = −k
n∑

i=1
µie

(µi) + (1− µi)e(1−µi) (2.44)

Any measure of fuzziness including the entropy in a system should satisfy

the following properties:

(a) H is minimum iff µi = 0 or 1 ∀ i

(b) H is maximum iff µi = 0.5 ∀ i

(c) H ≥ H∗ is the entropy of a fuzzy set A∗, a sharpened version of A. (A∗

is a sharpened version of A if µ∗ ≤ µ for µ in [0, 0.5] and µ∗ ≥ for µ in

[0, 0.5]).

(d) H = H ′, where H ′ is the entropy of the complement set.

Referring back to equations (2.41)-(2.44), the definition of fuzziness is con-

ceptually different from the probabilistic information. Their arithmetic sum

may not yield any meaningful quantity. In other words, if pi = µi such de-

scription infers that the average fuzzy information yielded by a fuzzy set with

’n’ elements is ’equivalent’ to the average amount of Shannon information

yielded by n independent binary Shannon information sources. Based on

this, fuzzy information can be transferred to Shannon information and in-

versely [Pal and Pal, 1992].
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2.8 NEURAL NETWORKS

Artificial Neural Networks (ANN) are computational models inspired by the

structure and functions of biological neural networks. In a broad sense, an

ANN mimics a massively parallel distributed processor made up of simple

processing units or simply neurons; having a natural propensity for storing

experiential knowledge and making it available for use. An artificial neuron

is a mathematical model that executes the basic operation of an ANN, and

whose basic structure is composed of three main elements:

• Synapses or connecting links. A connecting link is characterised

by a weight or strength kj which multiples an input xj connected to a

neuron k where in a different manner to biological neurons, the artifi-

cial neuron range may lie between negative and positive values.

• Adder. This element aims to sum all the input signals which are

weighted by the corresponding synapses. The operations at this stage

represent a linear combiner or model.

• Activation function. The role of this element is to limit the output of

a neuron or just simply squash the permissible neuron output to some

finite value.

• The Bias is used to increase or lower the network input of the acti-

vation functions depending whether it is positive or negative, respec-

tively.

The model for a neuron as represented in Fig. 2.13 can be expressed by the

following two equations:

uk =
m∑

j=1
wkjxj (2.45)

yk = ϕ(uk + bk) (2.46)
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wk1

wk2

wkm

Σ φ(·)

Activation 
Function
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Input 
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Output 
yk

x1

x2

xm

Synaptic
weights

Fig. 2.13 Artificial Neural Network model

where x1, x2, . . . , xm are the network inputs, wk1, wk2, . . . , wkm are the synap-

tic weights, bk the bias, and ϕ(·) the activation function. The role of the bias

bk is an affine transformation to the output uk of the linear combiner which

can be stated as:

vk = uk + bk (2.47)

Local induced 
field, v

Linear's Combiner 
Output, uk

0

Bias b   > 0k

 b  < 0k

b k

k

Fig. 2.14 Affine transformation as a consequence of vk = bk at uk = 0.
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The bias is an external signal which can be added to (1.1) and finally the

network output written as (See Fig. 2.14):

vk =
m∑

j=0
wkjxj (2.48)

yk = ϕ(vk) (2.49)

where the value of x0 is usually equal to +1 and its synaptic weight wk0 = bk.

The neural structure illustrated in Fig. 2.13 is considered a one-layer net-

work whose parameters can be calculated by using Least Square approxi-

mations if the input-output relationship is linear. However, if approximation

of non-linear functions is done by using linear neurons, no benefit in terms

of computational burden compared to other traditional algorithms such as

regression techniques is shown [Haykin and Network, 2004].

−2 −1 0 1 2

0

0.5

1

(a)
−2 −1 0 1 2

0

0.5

1

(b)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−0.25

0.5

1.25

(c)

a

Fig. 2.15 Activation functions: (a) Threshold function, (b) Piecewise linear
function and (c) Sigmoid function.

Although non-linear relationships can be approximated by using non-linear

activation functions, the accuracy depends mainly on the value of the weights

or synaptic values when a neural network is trained. The model presented

in Fig. 2.13 is known as the McCulloch-Pitts model (MCP) [McCulloch
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and Pitts, 1943], and various types of activation functions can be found fre-

quently ranging from 0 to 1, or if it is desirable from -1 to +1; in which case

the shape of the activation function is antisymmetric with respect to the ori-

gin. As it is illustrated in Fig. 2.15, the following expressions show the most

popular activation function used in neural networks

• Piecewise-linear Function is an activation function whose amplitude

is 1, and can be seen as an approximation to the model of a linear

amplifier.

ϕ(v) =


1, v ≥ 1

2

v, +1
2 > v > −1

2

0, v ≤ −1
2

(2.50)

– A linear combiner arises if the region of operation is maintained

with no saturation.

– The piecewise-linear function reduces to a threshold function if

the operation factor is made infinitely large.

• Threshold Function is usually known as Heaviside function, where the

mathematical expression of the output neuron is

ϕ(v) =

1, if v ≥ 0

0, if v ≤ 0
(2.51)

for the output yk the threshold function can be stated as

yk =

1, if vk ≥ 0

0, if vk ≤ 0
(2.52)

A multilayer network whose connections between the units do not form a

directed cycle are called feed-forward networks or just multilayer percep-

tron (MLP) whose functional architecture is different to that based recur-
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rent connections. From a mathematical view, any feed-forward network

with a single hidden layer can approximate almost any continuous func-

tion or compact subset in Rn under some minor constraints with respect to

the type of activation function employed. As mentioned in [Hornik, 1991],

multilayer feed-forward networks under general conditions are universal ap-

proximators emphasising that not all the available activation functions per-

form equally under the same conditions. Particularly when using sigmoid

functions [Cybenko, 1989], a multilayer network behaves as a universal ap-

proximator.

A Multilayer network can employ a variety of parameter identification

methodologies (learning technique), the most popular is the back propa-

gation technique which pretends to adjust the weight of each connection

in order to reduce the output error that is compared to the correct answer

(learning pattern) to compute the value of a predefined cost function. This

error is then fed back in order to estimate the negative gradient of the cost

function at the current learning step. This kind of learning methodology

or non-linear optimization technique is used for finding the local minimum

and usually is known as well as the steepest descent or the method of the

steepest descent. The gradient descent approach calculates the derivative

of the cost function with respect to each free parameter of the network and

then such variables are adjusted such that the neural error decreases after a

number of computational steps known as training, this means that the gra-

dient descent approach can be only applied on networks with differentiable

activation functions.

2.8.1 RBF NEURAL NETWORKS

Although the Radial Basis Function neural network (RBF-NN) and the

Multilayer Perceptron model (MLP) are non-linear feedforward networks,

some remarkable differences can be listed [Haykin and Network, 2004].

• The RBF network usually has only a single hidden layer in its basic

form while the MLP may have more than one.
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• Typically the computation of the neurons in the hidden and output lay-

ers of the MLP network share the same model, whereas the compu-

tation of the neurons in the hidden layer of the RBF network obeys a

different purpose to those in the output layer.

• Opposite to its counterpart, the model of the neuron in the hidden and

output layer of the RBF network are non-linear and linear respectively

(as a classifier). In other words, for classification purposes, the hidden

and output layers are nonlinear. This may be different when the MLP

is used for solving nonlinear regression problems and hence the output

layer should be linear.

• While in the RBF network, the argument of the activation function

in the hidden layer neurons compute the Euclidean norm (distance),

the activation function of each neuron in the hidden layer of the MLP

computes the inner product of the input vector and the synaptic weight

vector of that unit.

• RBF networks use exponential decaying nonlinearities to construct

local approximations to nonlinear input-output mappins. In contrast,

the MLP carries out a global approximation to nonlinear mappings.

In the most essential respects, the taxonomy of the RBF network is illus-

trated in Fig. 2.16. The input layer consists of n nodes where ′n′ represents

the dimensionality of the input vector. Usually the number of nodes in the

hidden layer is equal to the number of training data, however, problems of

over fitting may arise. The point of departure for the construction of the RBF

network lies on the basic methodology of radial basis functions which in-

volves the selection of a number of functions or Receptive fields Units (RUs)

[Broomhead and Lowe, 1988] with the following form:

F (x) =
M∑

i=1
wiΦ (∥ x− xi ∥) (2.53)

where {fi (∥ x− xi ∥) |i = i, 2, . . . M} is the number of functions generally

nonlinear which are also known as radial basis functions, and ∥ · ∥ is the
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Euclidean norm. The points xi are taken to be the centers of the of the radial

basis functions or receptive units (RUs).
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Fig. 2.16 Radial Basis Function Neural Network architecture-RBF-NN.

Each RU in the RBF-NN computes a radially symmetric function, where

usually the strongest firing strength or neuron output is obtained when the

current input data is at the centre of the that RU or the associated norm

is zero. As mentioned in [Bishop, 1995] the roots of the RBF-NNs derive

from exact interpolation of real multidimensional spaces, which means that

mutidimensional vectors are mapped onto the corresponding target vector.

As in MLP architectures, the addition of a bias in the linear sum of the out-

put layer includes a compensation for the difference between the value over

the data set of the RUs and the corresponding average value of the target

outputs.

According to the theory of multivariable interpolation in highdimensional

spaces, the interpolation problem can be stated as [Haykin and Network,

2004]:

F (xi) = di, i = 1, 2, . . . M (2.54)

Eq. 2.54 indicates that the interpolation surface is constrained to pass through

all the training points. In this sense, the following representation with un-

certain weights w′
is can be obtained:



62 A BACKGROUND TO SOFT COMPUTING TECHNIQUES


Φ11 Φ12 Φ13 . . . Φ1n

Φ21 Φ22 Φ23 . . . Φ2n

...
...

...
...

...

ΦM1 ΦM2 ΦM3 . . . ΦP M




w1

w2
...

wM

 =


d1

d2
...

dM


where the vector d = [d1, d2, . . . , dM ]T and w = [w1, w2, . . . , wM ]T and

MandP are the number of hidden neurons and the total amount of train-

ing points respectively.

A matrix representation including the term {Φ = fij|(i, j) = 1, 2, . . . M} can

be written as:

Φw = x (2.55)

According to the Michelli’s theorem, the ij − th element (Φij (∥ xi − xj ∥))

of the interpolation matriz Φ is nonsingular. That means, the vector w can

be represented as

w = Φ−1x (2.56)

Although there is a large number of radial basis functions that are covered by

the Midhelli’s theorem, the following functions are the most popular [Haykin

and Network, 2004]:

• Multiquadratics:

Φ(r) = (r2 + c2)1/2 for some c > 0 and r ∈ R (2.57)

• Inverse Multiquadratics:

Φ(r) = 1
(r2 + c2)(1/2) for some c > 0 and r ∈ R (2.58)

• Gaussian functions:

Φ(r) = exp

(
− r2

2σ2

)
for some σ > 0 and r ∈ R (2.59)
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The Gaussian function is of particular interest in practice because such a

function only depends on the Euclidean distance of the vectors x − xi. Es-

pecially the multivariate Gaussian function is a Green function G(x, ξ) in

which x and ξ are the paremeter and the argument respectively. A Green

function plays a role for a linear differential operator that is similar to that

for the inverse matrix for a matrix equation (for instance 2.56, for a deeper

explanation see [Haykin and Network, 2004]). The most popular function in

modelling and function approximation when using RBF Networks is usually

the multivariate Gaussian function.

G(x, xi) = exp
(
− 1

2σ2 ∥ x− xi ∥2
)

(2.60)

The activation functions of the hidden layer are now defined by the Green’s

functions that we call here fi which are connected to the output layer that

consists of a single linear unit, being fully connected to the hidden layer. The

output layer is a weighted sum of the output of each hidden unit. The RBF

network architecture presented in Fig. 2.16 assumes that the Green’s func-

tion G(x, xi), here asfi is positive definite for all i [Girosi et al., 1995].

It has been shown that significant benefits from neural networks are in-

herited to the RBF networks, particularly those benefits that derive from

their computational power that is based on their parallel distributed archi-

tecture and their ability for learning and generalising tasks. Therefore, some

important properties and capabilities of the RBF networks can be listed.

• Non-linearity. According to the type of activation functions, a neural

network can be defined as a linear or non-linear systems. That means

if the hidden layer contains non-linear nodes the network is non-linear

itself.

• No prior assumptions. A neural network is an input-output mapping

whose parameters can be estimated after a teaching process of a de-

sired data set. Therefore at each iteration, one target pattern is pre-
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sented to the neural network and the connection (weights) and activa-

tion function parameters are calculated in a predefined order. Thus the

neural network is learns from examples constructing a mapping for the

problem at hand. This ’non-parametric’ estimation is usually em-

ployed when no prior assumptions are made on a statistical model for

the input data [Haykin, 1994]. That means that a probabilistic distri-

bution model is not needed as an arbitrary decision boundary is found

for an pattern-classification task by using a set of patterns or exam-

ples. Frequently the term of non-parametric estimation is done into

the study of statistical inference in which is carried out a model-free

estimation.

• Adaptivity. Neural networks posse the capability for adaptation in

terms of its connection weights according to the environment. This

capability has brought to the study and application of adaptive con-

trol, adaptive signal processing and adaptive classification. Moreover,

the capability of adaptation makes the neural network more robust in

its performance when the network is working under a non-stationary

environment. Nevertheless, it does not mean that a more robust per-

formance leads to robustness, since there are example where con-

stants in the systems produce rapid and sudden responses of the neu-

ral network. In contrast, it is more beneficial to have values that allow

the system to ignore spurious disturbances and then just respond to

meaningful changes.

• Contextual information retrieval. The information contained at each

neuron is fully affected by all the other neurons in the network.

• Uniformity of analysis and design. The neural network has an enviable

position among classification techniques as the type of the different

available neurons can be used indistinctly at different neural models.

This makes it possible to share theories and learning approaches in a

wide spectrum of applications. And finally a neural networks mimics

closely the biological nervous systems which means that neural net-
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work performance degrades gracefully under adverse operation condi-

tions.

2.9 SUMMARY

In this chapter some background knowledge related to this research work

is provided. Particularly, relevant information to fuzzy sets theory and un-

certainty based information has been viewed in more detailed. In addition,

the basics of granular computing and neutrosophic sets theory are reviewed

since it is of great importance for the development of this research work. Fi-

nally some information related to Neural Networks with special emphasis in

Radial Basis Functions Neural networks is included.

Next chapter will provide on the one hand a background on manufac-

turing processes including the importance of the different types of tests that

are helpful for understanding the behaviour of some heat treated steels un-

der certain operation conditions. Consequently, on the other hand a neu-

ral fuzzy framework based on the Radial Basis Function Neural Networks

(RBF-NNs) and Fuzzy C-Means (FCM) is applied for modelling a data

set of 1661 Charpy test measurements and their associated test parame-

ters which were collected at 6 different labs and provided by the TATA Steel

Company, Yorkshire, UK.





3SOFT COMPUTING FOR COMPLEX

MANUFACTURING PROCESSES

A review of manufacturing processes for steel industry and some pre-

liminary results for the mechanical properties prediction of heat-

treated steels by using the RBF-NN and Fuzzy C-Means (FCM) are pro-

vided. Particularly, in this chapter an emphasis about the functional equiv-

alence between the RBF-NN and Fuzzy Systems of Type-1 is put on. This

equivalence is mainly employed for constructing a Fuzzy System of Type-1

based on the RBF-NN.

3.1 INTRODUCTION

In modern manufacturing systems, the processing and then the represen-

tation of the information has played a crucial factor for massive produc-

tion, mainly to respond effectively to the severe competitiveness and the in-

creasing demand of quality product in the market. Since manufacturing

facilities are more complex and highly sophisticated, modern manufacturing

systems represent a great opportunity to exploit ideas with great potential

which can enhance their performance and then make them more flexible.

That means flexibility may bring benefits such as increased production and

product customisation. However, if this new property is not properly con-

trolled, it may lead to ineffective decision-making, customer dissatisfaction

and higher costs.

Complexity in manufacturing systems are heavily accredited to the fol-

lowing components:

• Product structure, that is the amount of different end user products,

number and type of sub-assemblies, cycle times and type and se-

quence of resources required to produce such a variety of products.
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• the structure of the plant, the number of resources, layout, mainte-

nance tasks idle time and performance measures.

• the planing and scheduling functions, that is basically based on

three main elements

1. The planning and scheduling strategies.

2. The information processing for planning and scheduling.

3. The decision-making process.

• Information flow which on the one hand is largely based on internal

decision-making and team working, and on the other hand on exter-

nal information processing that includes interaction with other plants,

suppliers and customers.

• The dynamism, variability and uncertainty of the environment,

this includes customer changes, breakdowns, absenteeism, data in-

accuracy and unreliability.

• Other elements such as training, technology upgrade and political

information.

Particularly the understanding of manufacturing processes that trans-

form raw material from its raw form to the final product is vital to increase

competitiveness in industry and to achieve a good trade-off between flexibil-

ity and complexity. Furthermore, this understanding involves large amount

of data and non-linear effects and interactions throughout the entire pro-

cess. For instance, in steel making the heat treatment process is used to de-

velop the required mechanical properties in a range of alloy steels. Therefore,

an adequate estimation of the heat treatment regimens is crucial to obtain

the required steel grade accuracy at a reduced cost. Nevertheless, the pre-

diction of appropriate heat treatment regimens depends largely on the both

the chemical composition of the steels and the related process conditions of

the treatment. Thus, by predicting properly such optimal conditions is not

an easy task since it may involve a deep understanding of the influence that
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each component of the process has to contribute with uncertain predictions

or behaviours.

The nature of uncertainty and variability in manufacturing systems, spe-

cially those related to determine the most appropriate process conditions for

steel making may result due to the following reasons:

• Highly non-linear interaction and non-linear behaviour of the indi-

vidual processes such as casting, forming, machining, joining, heat

treatments and finishing.

• Measurement uncertainty that results from the parametric variability.

This type of uncertainty is usually produced by the variability of the

inputs of the process, that includes raw material, the chemical com-

position, manufacturing precision, planing and scheduling.

• Parameter uncertainty. This source of uncertainty is due to a wrong

estimation of the initial parameters that will be used in a process. For

example, machining speed, viscosity, initial temperature, cooling tem-

perature, etc.

For gaining a thorough description of manufacturing systems and aware-

ness of the extent of the problems that entails the associated complexity and

of the causes and effects of each action during the entire process, soft com-

puting has proved that is a promising research field that can help in the de-

velopment of new intelligent manufacturing systems which provide a deeper

understanding of each of its components. An intelligent manufacturing sys-

tems will be able to continuously improve the productivity through the effec-

tive use of all the resources, especially the insights and the gained experience

from the front-line operators and experts. In particular, there is a growing

concern in the manufacturing of materials such as heat treated steels and

iron alloys which are massively used in the construction of different products

such as aircraft, automobiles, appliances and medical equipment. For this

reason, knowledge and understanding of the uses, limitations and strengths

of the mechanical properties of heat treated steel in different types of man-

ufacturing is of primary concern to properly design, construct and maintain
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equipment and tools. Principally the prediction of mechanical properties of

materials such as ductility, toughness, elasticity, fusibility and hardness on

the basis of their composition and preceding treatment defines the final prod-

uct manufacture properties of a given size and form.

Since the importance of the understanding about the mechanisms and

limitations behind the different tests used to obtain the mechanical testing

results is crucial in manufacturing industry. Firstly this chapter provides a

background of manufacturing processes and its relationship to heat treated

steel and, secondly it describes the application of various concepts of differ-

ent disciplines from soft computing such as fuzzy logic and neural networks

to properly predict mechanical properties of heat treated steel. Thus, the

content of this chapter consists of:

• An overview of manufacturing processes and the mechanical tests used

to obtain the different mechanical properties of heat treated steels in

manufacturing including the limitations and sources of errors of such

tests.

• A description of the application of an RBF Neural Network (RBF-

NN) in a real case study for the prediction of impact test energy of heat

treated steel data set which was provided by TATA Steel Company,

Yorkshire, UK.

Particularly, impact testing becomes an interesting study case as it

produces complex results due to the multitude of standards that ex-

ist, the low repeatability of the experimental results under the same

input test conditions and the highly non-linear behaviour of the test

represent a good opportunity to using Neural Networks (NN) for im-

pact energy test prediction. By applying an RBF-NN, the proposed

modelling framework is capable of exploiting and exploring its func-

tional equivalence with fuzzy systems of type-1 and new advances of

fuzzy set theory in order to model in a transparent and interpretable

form the data set given in the case study which helps to understand

the importance of each element in the final chemical composition and
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the so-called steel purity as well the influence of the heat treatment

process.

3.2 MANUFACTURING PROCESSES

In modern manufacturing, productivity is related to important factors that

define the quality and cost of the production at any organisation. Because of

manufacturing entails a large number of independent activities of convert-

ing raw materials into a usable form of products or goods for human being

needs, the preservation of the physical and mechanical properties of the ma-

terial product is crucial. The different stages of a process of manufacturing

should be aimed at achieving certain well-accepted goals in terms of: a)

meeting the design specifications and b) service requirements of the prod-

uct including efforts of finding the most economical methods of manufac-

turing. Particularly, manufacturing processes used for transforming metals

into some usable products require to have specific properties such as fusibil-

ity (melting point), malleability, ductility and divisibility which is known as

the capability of materials to be machined. The properties of ferrous and

non-ferrous materials in manufacturing processes play an important role in

the fabrication of new products. This is mainly due to:

• Mechanical properties. include hardness, fatigue, creep, elasticity

and strength.

• Physical properties. include melting point, electric and magnetic

properties, density, specific heat and thermal conductivity.

• Chemical properties. This property represents an important factor

in the design of materials since it helps to define the material composi-

tion to be resistant in both normal and hostile environment conditions.

For instance, the most important factors are: toxicity, flammability,

general degradation of the material as a consequence of the environ-

ment including oxidation, corrosion which can lead the material under

fracture conditions.
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• Manufacturing properties or fabrication properties of materials

that determine the ease of their welding, shearing, machining, etc.

Furthermore, in steel manufacturing industry the selection of the correct

quality of steel for a particular application, and the optimum heat treatment

frequently involves all the operating conditions of the steel. Typically the

operating conditions which must be considered are summarised in the fol-

lowing list:

1. Service conditions

• The operating environment which can have either corrosive or

oxidising effects on steel.

• The final operating temperature, for example a temperature fluc-

tuating between low and high values.

2. Mechanical requirements.

• Magnitude of stress.

• Type of the possible shock loading.

• Degree of rigidity of flexibility required.

• Weight limitations.

• Type of stress, for example: tensile, bending, compressive, etc.

• The nature of the stress during the operating which can be con-

stant, periodically or alternating.

3. Ease of manufacture

• Weld-ability

• Forgeability

• Heat treatment response

• Machinability

Where the basic steel manufacturing processes encompass various cate-

gories which are:
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• Casting. is the process where a liquid material is poured into a mold

that has a hollow cavity of a specific desired shape and then allowed to

solidity.

• Molding. This process comprises two different stages in order to cast a

product. The first stage forces granular or powdered material (plastic)

into a heated mold cavity under using a great pressure which together

with the application of heat turns out in the fill of the mold cavity with

the raw material.

• Shearing or cutting. is the process of shaping materials using different

cutting operations such as: a) punching, b) piercing, c) shearing, c)

blanking, parting and trimming.

• Forming operations (hot forming). is the process of changing the

shape of hot metals by applying high pressure and then the metal is

brought to the viscous or plastic state by subjecting it to elevated tem-

peratures flowing without rupture by the effect of the high pressure.

The main hot-forming operations are: forging, rolling, extruding and

upsetting.

Another important group of manufacturing processes are the machining

processes which are used to remove excess metal from a work-piece to

bring the work-piece to the desired shape and size of a product. The ma-

jor machining categories are:

• Hole making operations are drilling, reaming, boring and taping.

Drilling is the process of making holes, reaming enlarges the drilled

hole to a precise size, boring enlarges the already made hole consid-

erably with a boring tool and tapping is used for thread cutting in the

drilled hole.

• Shape changing processes are turning, facing, shaping, planning,

milling, threading, parting and broaching.
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• Sawing process which is a process used for cutting pieces from raw

stock.

• Grinding is a finishing operation frequently carried out after milling,

turning.

• Unconventional methods of machining which include electric, dis-

charge machining, electrochemical machining, ultrasonic machining,

laser machining, etc.

Finishing processes are a type of processes used to improve characteris-

tics, appearance, or durability of a surface. Examples of finishing processes

cover deburring, cleaning, painting and coating. Assembly or jointing pro-

cesses are employed for connecting or attaching individual components to

finally assembly a product. For instance, bolts, nuts, screws, rivets and wire

stitches. Finally the heat-treatment process is used for modifying the me-

chanical properties of metals to prepare them for applications that require

properties different from those inherent in the base metal. Such processes

cover different categories of heat-treatment processes such as hardening

used for increasing the hardness of a work-piece, case-hardening used for

the surface hardness of a material, tempering to make the metal composi-

tion tougher and harder, and annealing employed to remove hidden stress

and improve grains.

Physical, chemical, mechanical and fabricating properties play an im-

portant role in the behaviour and performance of any material in manufac-

turing. During the past decades new manufacturing technologies have been

developed in order to enhance the material properties. Particularly such im-

provements have been focused on factors governing the mechanical proper-

ties of metals which are

• Crystal structure of metal defines the ease of formability of a metal

piece when loads are applied on. As a consequence of such loads,

deformations of the metal take place due to slipping of atomic struc-

ture along the slip planes of the metal piece. The formability depends

mainly on the available number and directions of the slip. Metals with
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face-centred cubic (fcc) metals crystal lattice like cooper, silver, etc

are easy to form.

• Alloying elements play a significance role in the determination of the

mechanical properties of metals. Common alloying elements are Nickel,

Chromium, Carbon, manganese, tungsten. Principally, the incorpo-

ration of carbon helps in increasing properties such as hardness, and

tensile strength, and impact strength, Chromium increases strength

to suit in high temperature applications, and nickel increases tough-

ness.

• Working temperatures affect significantly the properties of metals as

follows: a) the tensile strength, elastic limit falls when the tempera-

ture of the material increases, b) the modulus of elasticity decreases

steadily and the elongation falls with an increase in temperature.

• Effect of heat treatment involves heating and cooling of metals in spe-

cific ways to obtain certain desired properties. On the one hand, heat-

treatment relieves internal stress in a metal that got developed in the

course of passing through various manufacturing processes. On the

other hand, heat-treatment refines grains and their size ensuring im-

proved mechanical properties and heat-treatment helps altering the

microstructure of metals and changes the surface chemistry of the fi-

nal product by deleting or adding elements such as carbon, thus in-

creasing the hardness of the metals.

• Cold- and hot-working. While cold-working usually increases the

tensile strength and hardness but decreases the ductility, in the hot-

working treatment, the heated metal undergoes to a plastic deforma-

tion while temperature usually goes above 800◦ degrees.

• Geometry of product has an important role in increasing the strength

of a metal as a consequence of a unevenly distributed stress.

• Rate and type of loading is applied very slowly and not continuously

but with pauses during the treatment where the metal has opportunity
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to strain-harden. Finally, smaller average strains (deformations) are

observed in the metal piece if a load is applied quickly but continuously.

3.3 AN OVERVIEW OF STEEL PROPERTIES AND STEEL MAKING
PROCESSES

Due to its wide variety and range of application in industry, heat treated steel

has proved to be a popular material in manufacturing. Such variety depends

mainly on its carbon content being the most widely used those steels that

have a carbon content ranging between 0.1-0.25. The different types of steel

that are produced can be found into four main categories and according to

their chemical composition as follows:

• Carbon steels.

• Alloy steels.

• Stainless steels.

• Tool steels.

The popularity of steel use in manufacturing industry is mainly due to 1)

its abundance in the earth’s crust in the form of the element Fe2O
3 where a

not difficult process is required to convert it into Fe and 2) the great variety

of microstructures and thus a wide range of mechanical properties that can

exhibit after a heat treatment process. Moreover, the importance of its pop-

ularity often is a consequence of the type of mechanical properties that can

be obtained from steel such as ductility, brittleness, yield strength, tensile

strength, etc. For this reason before describing the heat treatment process,

it would be worth to briefly examine some basic properties of steel and the

main stages that comprise the steel production in manufacturing processes,

however a further and a detailed examination can be gained in [Tenner et al.,

2001] and some other books [Leslie, 1981, Thelning and Black, 1984]. Ba-

sically, steel is an alloy based on iron with carbon that contributes up to

2.1% out of the total weight of the metal piece. Even though steel and cast

iron are alloys made of carbon and iron, the main difference between steel
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and cast iron lies on the amount of carbon that both metals contain. While

steel contains less than 2.0% percent of carbon, the cast iron contains more

than 2.0% of carbon with or without other alloying elements. Steels are usu-

ally classified into two main groups (a) carbon steels and (b) alloys. While

the former type of steels are mainly made of carbon and iron that frequently

are known as straight or plain alloys, the later group of steels are those to

which one or more alloying elements that are added to modify certain prop-

erties. Even iron is the main component in different types and forms of steel,

other elements are commonly contained in its chemical composition, some

of them unwanted or even intentionally added. Carbon steels are by far the

most used and produced type of steels worldwide accounting for about 92%
out of the total production in the world. The different categories of carbon

steel are classified as

• High-carbon steel, with a carbon above 50%.

• medium-carbon steels, with a percentage (%) ranging from 0.2-0.49.

• low-carbon steels, with a percentage (%) ranging from 0.05-0.19.

• extra-low-carbon steels, with a percentage (%) ranging from 0.015-0.05.

• ultra-low-carbon steels, with a percentage (%) less than 0.015.

Where the most common alloying components are:

• Nickel (Ni): This element is usually added to steel alloys in order to

increase the resistance of the material to heat and corrosion as well

the ductility of steel working as refining action. The amount of nickel

in steels can be up to 5%.

• Manganese (Mn) is a brittle and metallic element that works as an

additive to protect the metal surface against corrosion.

• Phosphorus (P) is a non-metallic element that increases the protec-

tion of metals to corrosion.

• Chromium (Cr) is used in the steel production mainly to protect the

material to corrosion and oxidation.
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• Silicon (Si) is frequently used as a deoxidizer in steel production.

• Sulphur (S) is a non-metallic element that can cause steel to be porous

and and prone to cracking.

• Carbon (C) is the most popular element employed in the steel produc-

tion as the main strengthening component in carbon steels.

Iron ore

Coal

Pellets

Sinter

Limestone

Coke

Scrap

Blast furnace
Iron making

Converter
Steel making

Ladle
Refining a b c

a b cSlab, Billet and Bloom

Continuous casting

Fig. 3.1 Steel making process.

The basic procedure for steel making is composed of the following steps (see

Fig. 3.1):

• The initial stage of the steel-making process consists in mixing the

iron ore with limestone and coke in a blast furnace where are melted.

The purpose of the blast furnace is to chemically reduce and physically

transform the iron ore into liquid removing sulphur and other impuri-

ties by using limestone, and coke as an enriching agent in order to

obtain clinker usually called sinter.

• Once inside the furnace, the materials require some time to descend

to the bottom where a liquid iron and a liquid slag are obtained. How-

ever, the liquid produced at the bottom still contains a high percent-
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age of carbon which is removed by reprocessing the melted iron sev-

eral times up to a desired carbon grade is achieved. Finally this liquid

is continuously cast into ingots according to the specifications of the

product.

• Alternatively, the liquid iron can be obtained by using an Electric Arc

Furnace (EAF). This procedure involves the melting of the scrap charge

by electric arcs. Finally, after ingots a process of rolling, forging and

heat treatment are necessary to produce the final geometrical and me-

chanical properties of the product.

3.3.1 THE CRYSTAL STRUCTURE OF STEEL

Since steel is an alloy made of iron and carbon (including or not some other

alloying elements) it is a prerequisite to describe the structure of the iron

and thus of metals. The basic atomic structure in metals is arranged in a

regular three-dimensional pattern which is known as crystal structure. This

structure can be visualised as a series of cubes piled up side by side and one

on the top of another. The corners of the cube are atoms and each corner is

shared by eight or even more adjoining cubes or cells.

C Atoms
Fe Atoms

(b)(a)

(c)

Fig. 3.2 (a)BCC, (b) FCC and (c) FCC crystal structure of austenite.

As it is illustrated in Fig. 3.2 the configuration of the atomic arrangement

can be classified into a) one atom at the centre of the cell called as body-
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centred-cubic (BCC) and b) with atoms at the centre of each wall of the

cell called as faced centre cubic (FCC). The former structure is obtained at

low temperatures up to 911◦ termed as ALPHA-iron (α) structure or simply

ferrite, and the latter structure exists up to 1400◦ termed as GAMMA-iron

(γ) structure or austenite, at which temperature crystals turn back into the

BCC arrangement usually termed δ crystals (the iron is known as well as

Delta-ferrite).

3.3.2 HEAT TREATMENT PROCESS

Heat treatment is usually carried out to develop the required mechanical

properties such as ductility and toughness in a range of alloy steels [Ten-

ner et al., 2001]. Indeed, the main effect produced by the heat treatment on

most metals and iron-alloys is to increase their properties. Among alloys,

the most significant increase is produced on the metallurgical structure and

thus in the mechanical properties of steels. Basically the heat treatment can

be catalogued according two main needs: 1) as an intermediate process in

the manufacture of an specific product, e.g. annealing for cold forming in

order to improve machinability and 2) as an application dependent process

(usually as a finishing process) to cause specific properties such as harden-

ing. Even the study of heat treatment covers a large amount of phenom-

ena and properties, in this section only the essential information related to

steels, the processes involved throughout the heat treatment and the struc-

tural modifications suffer the carbon alloys as well as the effects of alloy-

ing elements on the heat treatment of the steel are examined. Changes in

the metallurgical structure of the steel and hence on its mechanical proper-

ties. Heat treatment has been used in most of the ferrous metals aand alloys

in order to modify their properties, however steels suffer the most dramatic

increase on its. In manufacturing the heat treatment process is usually a

group of different industrial and metalworking activities employed to alter

the chemical and physical composition of a material [Totten and Howes,

1997]. Frequently materials such as steels and including suffer the most

dramatic changes as a consequence of the application of a heat treatment.
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As soon as heat is applied

3.4 MECHANICAL TESTING

During manufacture and assembly of products, mechanical testing is crucial

to ensure that any ferrous or non-ferrous materials and particularly steels

complies the mechanical property requirements, applicable standards and

specifications of the final components. This process of routine testing is

usually carried out in-house for interpretation purposes of the final product

quality. Furthermore, this valuable testing knowledge is needed when in-

terpreting and assessing test results from other material suppliers. Usually

mechanical testing can be classified according the type of mechanical prop-

erty to be studied, namely: a) static or b) dynamic. This is due to mechanical

properties which can be classified according to two main properties, namely:

(a) static and (b) dynamic. While the former is a property independent of the

loading rate at which a force is applied to a test piece, the latter is a prop-

erty that depends on it. The main types of mechanical property tests that are

usually employed for heat-treated steel are:

• Tensile testing: This test results in the determination of values such as

Tensile Strength (TS), the Proof Stress (PS), the Yield Stress of the

material (YS), and the elongation and reduction of area of the speci-

men.

• Impact testing: This test is used to measure the resistance to failure

of a material to a suddenly applied force.

• Hardness testing. This is a test method dependent that measures the

resistance of a material to permanent indentation.

Not all the mechanical static (strength, elasticity, plasticity, ductility,

hardens and malleability) and dynamic(creep, fatigue, toughness and brit-

tleness) properties can be directly measure by using the above tests. How-

ever, such tests are important for designing engineering steels mainly in or-

der to inferred properties of the material.
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3.4.1 TENSILE TESTING

The tensile test is the most commonly procedure employed for determin-

ing mechanical properties such as strength, toughness, ductility and strain-

hardening. Particularly, the tensile strength is one of the most significant

mechanical properties in material engineering that mainly corresponds to

the maximum amount of stress that any material can resist before failure.

Typically there are three different types of definitions of tensile strength which

are:

• Ultimate strength or tensile strength. This type of mechanical

property refers to the maximum stress that any material can withstand

during a tensile test.

• Yield strength. Defines which is the maximum stress a material can

withstand without deformation. This measure is useful to determine

the maximum elongation of a material under the application of an spe-

cific load.

• Breaking strength. Is the ultimate stress where the material fails.

From the tensile test it is possible to obtain three direct measures which

are the ultimate tensile, reduction in area and maximum elongation. More-

over, some other values such as the Young’s modulus, Possion’s radio, yield

strength and the strain hardening can be estimated from the direct results

mentioned above. The tensile test basically consists in the preparation of a

test piece (specimen) which usually can be found in three different forms,

namely: a) solid and round, b) tubular or c) flat shape. The specimen usually

is stipulated to have the form as illustrated in Fig. 3.3 with a uniform central

gauge length and shape both affecting the final test results. The interna-

tional specifications for the test specimen dimensions are usually regulated

by the ASTM standards, however the British standards cover a wide range

of forms and dimensions [Tenner, Tenner et al., 2001]. In research’s Ten-

ner, a deeply summary related to the different British test standards can be
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found. In practice the tensile test consists in gripping in the jaws of a tensile

machine a predefined cross section specimen which is subjected to a tensile

force which is gradually increased by suitable increments of load. At each

load increase the length of the specimen is measured by a device up to the

test piece fails. Throughout the application of a tensile force, a strain-stress

diagram can be plotted (See Fig. 3.3). This diagram depicts the mechani-

cal behaviour of the test piece including the plastic and elastic zones. At first

(a) a uniform static deformation is exhibited by the test piece with no propor-

tion to the applied load. This means that after the application of a load the

specimen dimensions will return to its original size (elastic zone) obeying

the Hooke’s law which states that the strain produced is proportional to the

stress applied. At the slope 0-(a) the value stress/strain is constant which

is know as the Young’s Modulus of elasticity. If the specimen is stressed

beyond the point (a), the curve form deviates from its straight shape to a

NeckingUniform plastic extensionElastic extension

σ
, 

S
tr

es
s 

(P
a)

ε, Strain

(a)

(c)

(d)

Test piece

0

(b)

Fig. 3.3 Tensile strength Curve.

3.4.2 HARDENING TESTING

Basically, hardness is the material’s resistance to deformation - in materials

engineering, three different types of hardness measurements can be found,
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namely: scratch, indentation and rebound. The first type aims to measure

how resistant a material is to plastic deformation due to friction produced

by a sharp object. The second measurement refers to the resistance offered

by a material to material deformation when a compression load is applied

constantly by using a sharp object. The last type aims to indicate the dy-

namic hardness level in relation to elasticity. Since indentation hardness is

of an enormous importance in engineering a brief introduction to the hard-

ness test in order to measure indentation will be provided in this section. In

this sense, a variety of this type of hardness tests exist which include Brinell,

Knoop, Vickers and Rockwell. For example, the standard Rockwell basi-

cally consists in the application of a constant load over the surface area of

indentation in a piece where one is the penetrator and the other is the speci-

men to be tested. This test usually employs a single diamond cone penetra-

tor of a 120◦ with a rounded off peak of 0.2 mm. Such a penetrator can be

replaced by a ball made from a hard metal whose diameter is test dependent.

Usually the specimen must be 8 times as thick as the indentation made.

3.5 IMPACT ENERGY IN HEAT TREATED STEELS

Heat treatments are usually carried out to develop the required mechanical

properties such as ductility and toughness in a range of alloy steels [Tenner

et al., 2001]. In fact, many parts of a machine need to be designed to stand

impact loads and absorb the energy of the impact through an elastic action.

Materials that must resist an impact usually range from areas such medicine

and food packaging and storage up to areas such as industrial products and

aerospace and defence. Particularly aerospace and defence need materials

engineered for structural applications that must be highly capable of ab-

sorbing rapidly applied forces [Louden et al., 1988]. For example, during the

operation, military or commercial aircrafts can be hit by runway debris, hail

or maintenance tools producing an important internal damage to an struc-

tural component and lead to performance failure.

Impact energy test is frequently employed to ascertain the fracture char-

acteristics of materials; it basically estimates the impact energy of a standard
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size/shape bar of square cross section during its fracture by another stan-

dard type of cantilever equipment. As it is illustrated in Fig. 3.4, where a

typical impact energy procedure is depicted; a load is applied as an impact

blow from a weighted pendulum hammer, which is released from a specific

height. the specimen is placed on a base and suddenly hit by the pendulum

that fractures it.

The fracture often propagates from an initial fatigue crack which is pro-

duced artificially prior to the test. The energy produced due to the impact

of the pendulum is absorbed by the specimen during the fracture and then

measured by the angle of displacement of the pendulum. There are two main

types of impact energy procedures, namely: (a) Izod test and (b) and Charpy

test. While Charpy impact test usually uses a V-notch specimen that op-

poses to hammer (see Fig. 3.5 (a)), the Izod test is often used for non-

metallic materials and the test specimen may be either notch or unnotched.

The necessary energy to fracture the specimen usually is measured in

Joules and from a modelling point of view both types of impact energy pro-

cedures are not compatible as there is not conversion from one type to the

other. Moreover, according to what materials are being tested, specimen

of metals are usually squared, and polymers are usually rectangular being

struck perpendicular to long axis of the rectangle.

The standard Charpy impact test specimen consists of a bar of metal, or

other material whose dimensions are usually 55× 10× 10 having a notched

machined across one of the larger dimensions. The Izod test like the Charpy

test is also used to test materials at low temperature to emulate conditions

that may occur in real conditions of use of the material. Opposite to the Izod

test, Charpy is one of the most popular and standardised impact techniques

used as an economical quality control method to determine the notch sensi-

tivity and impact toughness of engineering materials.
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Fig. 3.4 Charpy impact test.

10°

28 mm
22 mm

20 mm

20 mm

(a) Cantilever specimen (b) beam specimen

Fig. 3.5 (a) Cantilever arrangement and (b) beam arrangement of the Izod and
Charpy specimen.

The Charpy test is frequently applied to composites, ceramics and polymers.

By applying the Charpy test to identical specimens at different tempera-

tures and then plotting the impact energy as a function of temperature, the

ductile-to-brittle transition becomes an important property, including some
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factors such as low temperatures, high strain rates and stress concentrators

(notch) that involve the toughness of the specimen and then the material.

The cantilever arrangement of the Izod specimen and the 3-point beam

arrangement of the Charpy impact test are illustrated in Fig. 3.5. Usually

the test conditions depends on the customer preferences and needs which

can include tests at sub zero temperatures or the chemical composition of

the specimen. The modelling of impact energy test is usually quite compli-

cated mainly due to the following reasons:

• The non-linear behaviour of the process.

• High-interaction between the multiple-variable input spaces.

• Measurement uncertainty of the industrial data.

• High-complexity of the optimisation space.

• Low repeatability in impact test results with similar statistical properties.

• Sparse data space.

3.5.1 NEURAL-FUZZY MODELLING ON IMPACT EN-

ERGY TEST

Neural-fuzzy modelling is a framework that uses on the one hand the ca-

pabilities of fuzzy systems such as fuzzification, linguistic rules, fuzzy sets

based-inference engine and defuzzification in order to create transparent

and interpretable models. On the other hand a neural fuzzy model preserves

the functional approximation and learning capabilities as well as generali-

sation properties of neural networks to approximate highly non-linear and

complex real systems.

Furthermore, a neural-fuzzy model is able to represent real systems by

the construction of linguistic rules and quantifying the uncertainty in a sim-

ple way which can be translated into fuzzy numbers or fuzzy sets associated

with linguistic labels.
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3.6 DATA-DRIVEN MODELLING OF IMPACT ENERGY TEST AP-
PLIED ON HEAT TREATED STEELS

Charpy test has been used for more than a hundred of years for the toughness

assessment of metallic materials including steels. Moreover, the Charpy test

has also been used for characterising the ductile-to-brittle transition tem-

perature (DBTT) of materials [Rossoll et al., 2002]. Basically the impact test

provides the information necessary to understand the behaviour of a material

under dynamic loads compared to the information provided by just analysing

the data obtained from tensile strength tests where the load is slowly applied

and sometimes known as static load. The knowledge and representation of

the impact test properties is of engineering importance as it can be estimated

the amount of energy absorbed by a material before fracturing. Therefore,

this information can be used to estimate which mechanical properties of the

material (steel) are the most appropriate in order to withstand a load without

fracturing.

Laboratory experiments usually are performed in order to replicate as

nearly as possible the service conditions to which the materials undergo.

Hence the impact test conditions must be correctly chosen in order to rep-

resent the most severe conditions to which the material fractures, for ex-

ample a) the deformation of the material at relatively low temperatures, b)

the triaxial stress state which is caused by the presence of a notch (a notch

reproduces the same effect of a crack in the presence of a blow), and c) a

high strain rate (i.e. the rate of deformation). The last decade, a larger com-

munity of researches have embraced the construction of data-driven models

through the application of soft computing techniques for predicting the me-

chanical steel properties.

Indeed, there is much evidence of successful applications, for example

at the university of Sheffield, Professor D. A. linkens was a pioneer in the

construction of dynamical system identification with the help of soft com-

puting techniques, specifically neural fuzzy systems. Linkens proposed dif-

ferent types of models for mechanical property prediction of hot rolled steels

and C-Mn steels [Chen and Linkens, 2001a,b]. The main purpose of such
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models were to construct from numerical data a linguistic representation of

mechanical tests that includes an initial fuzzy model self-generation based

on neural neural networks, partition validation, parameter optimization and

rule-base simplification.

Due to the functional equivalence established in [Jang and Sun, 1993]

between a type of fuzzy systems and neural networks, some researches have

exploited and explored the theory and new advances found in fuzzy logic to

create models that have a good balance between accuracy(precision) and

transparency(interpretability). For instance, in [Zhang and Mahfouf, 2011]

a new methodology to accurately represent in an interpretable form com-

plex high-dimensional datasets concerned to the prediction of mechanical

properties of alloy steels by correlating them to the conditions of the heat

treatment and the associated chemical composition of the steel.

The new methodology consists of an initial Mamdani fuzzy model based

on a hierarchical clustering approach and its corresponding improvement by

using a high-performance particle optimisation (PSO) based multi-objective

optimisation mechanism.

Based on the experiments presented in [Panoutsos and Mahfouf, 2010a]

this section describes the application of a neural fuzzy model that is func-

tionally equivalent to a type of fuzzy systems (deeply examined in Chapter 6

as functionally equivalent to a group of type-1 fuzzy systems) for modelling

the Charpy impact test. The data-driven modelling of the impact energy test

usually includes the combination of two or more techniques from soft com-

puting, for example: fuzzy logic, neural networks, genetic algorithms and

evolutionary strategies.

The real case study proposed in this research work is a collection of

different experiments carried out at six different test sites (provided by the

TATA Steel Company, Yorkshire UK). where the data set consists of 1661

measurements on heat-treated steel. In order to be familiar with the process

and its data, it would be worth to provide an insight of the collected data.
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Table 3.1 Statistics of Impact Energy Test dataset

Variable Type Min. Max. Mean SD

Test depth, mm Input 5.5 146.0 20.8 14.5032

Specimen size, mm Input 11.0 381.0 172.488 80.8380

Test site Input 1 6 3 0.4984

C (wt-%) Input 0.13 0.52 0.3942 0.0575

Si (wt-%) Input 0.11 0.38 0.2548 0.0318

Mn (wt-%) Input 0.41 1.75 0.8409 0.2172

S (wt-%) Input 0.0008 0.052 0.0167 0.0089

Cr (wt-%) Input 0.11 3.25 1.0752 0.2447

Mo (wt-%) Input 0.02 0.98 0.2394 0.0860

Ni (wt-%) Input 0.03 4.21 0.3683 0.5190

Al (wt-%) Input 0.003 0.047 0.0270 0.0048

V (wt-%) Input 0.0010 0.26 0.0077 0.0223

Hardening temperature ◦C Input 810.0 980.0 864.0157 15.4689

Cooling temperature ◦C Input 1 3 1.5 0.3830

Tempering temperature ◦C Input 190.0 730.0 647.1927 49.9249

Test temperature ◦C Input -59.0 23.0 -5.7869 26.4486

Impact Energy Output 3.4667 245.33 89.6419 32.9701

The Charpy data set consists of 1661 measurements on heat-treated

steel represented in a matrix format whose rows represent a different heat

treatment batch and where each column of data is describing the variables

process (inputs) and its corresponding results (output). A basic initial pro-

cessing stage is done by providing some information related to the max-

min variable values and the associated correlation measures as illustrated in

Table 3.1. Since the input variable values (See Table 3.1) are defined over

different ranges, a normalisation process is necessary to produce a data set

whose importance among the variables is similar. Due to the reasons men-

tioned above and the complexity of the data space and its sparsity, there are

areas of high density (popular steel grades). Fig. 3.6 illustrates such areas,

in which a number of various samples of Carbon(%), Mn (%), test depth
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(mm), and the size of the specimen are shown. In Fig. 3.8, the basic neural

fuzzy modelling framework used throughout this research work is described.

Fig. 3.6 Data density example

Neural-fuzzy modelling is a framework that uses on the one hand the ca-

pabilities of fuzzy systems such as fuzzification, linguistic rules, fuzzy sets

based-inference engine and defuzzification in order to create transparent

and interpretable models. On the other hand a neural fuzzy model preserves

the functional approximation and learning capabilities as well as generali-

sation properties of neural networks to approximate highly non-linear and

complex real systems. Furthermore, a neural fuzzy model is able to repre-

sent real systems through linguistic rules and quantify the uncertainty in a

simple way which can be translated into fuzzy numbers or fuzzy sets associ-

ated with linguistic labels. Considering the functional equivalence between

the RBF-NN and the Tagaki Sugeno type-0 FS (or type-1 Mamdani in-

ference engine), an RBF-NN combines the input-output n+1 dimensional

space (x1, . . . , xk, . . . , xn, yn+1) where xk represents the input partition and

the corresponding output yn+1 as is illustrated in Fig. 3.7.
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Fig. 3.7 RBF-NN structure.

According to the flow diagram illustrated in Fig. 3.8, an initial information

extraction is done by normalising the Charpy data set (Raw Data) and com-

puting some correlation measures. In addition to this information process-

ing, some other researches such as [Tenner et al., 2001] suggests an addi-

tional processing stage for data cleaning that aims to remove faulty outlying

points. Tenner proposed several sources for outlier points due to the follow-

ing reasons:

(i) Data handling errors (faulty data)

(ii) Measurements/process faults (faulty data)

(iii) Typographical errors

(iv) Incorrect treatment prescription (valid data)

four different methodologies can be used in order to find the sources for faulty

points:

• basic (max-min and correlation)

• structured (analysis of similar input vectors)

• multivariate (principal component analysis PCA)

• learn detection (model based analysis)
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Fig. 3.8 Data-driven model based on RBF Neural Networks and Fuzzy
Clustering.

The process of normalisation for the input raw data can be done in dif-

ferent ways and it is mainly problem-dependent, however some of the most

popular methodologies scale the input data into the closed interval [−1, 1] or

between [0, 1].
The purpose of the application of a normalisation process is to scale

data from a problem and reducing it into an specific range while preserving

the data integrity and eliminating the redundancy in the data. That means

that all the data (input data) are consistent and hence satisfy all the con-

straints (limits) of a predefined range. Moreover, the normalisation process

must ensure that even properties such as direct redundancy which means

that the data set is found in two different locations or if the data can be

expressed/calculated from other data items (indirect redundancy) are pre-
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served.

Usually a normalisation process for scaling the input data xi between the

limits [0, 1] is recommended when training a neural network whose activa-

tion function is a sigmoid. Therefore, the following expression can be used:

xnor = xi

max(xk)k=1,...,N

, xi ∈ Rn (3.1)

where N is the number of inputs and xk is the kth element of the original data

set. A better normalisation equation can be used to normalise the minimum

value from the data set to zero, and to adjust its maximum value to one stated

as:

xnor = xi −min(xk)k=1,...,N

max(xk)k=1,...,N −min(xk)k=1,...,N

(3.2)

A process for normalising the input data between [−1, 1] is usually employed

when a tangent activation function is used in the hidden layer of a neural

network. Hence, the following equation can be computed:

xnor = 2 ∗ xi −min(xk)k=1,...,N

max(xk)k=1,...,N −min(xk)k=1,...,N

− 1 (3.3)

In Table 3.2, the max-min values and some correlation measures of the nor-

malised Charpy data used during the training stage and obtained by using

3.3 are illustrated. For cross validation purposes, the data set was split into

training, checking and testing sets in order to avoid over-fitting which en-

ables the model to improve its generalisation properties. The data set used

to train the RBF Neural Network (RBF-NN) consists of 1084(65%), which

are composed of just normalised raw data. The checking and testing data

are 277 (17%) and 300 (18%) respectively. Following the flow from Fig.

3.8, the clustering procedure employed for the initial parameter identifica-

tion process is the Fuzzy C-Means which allows each data point to belong

to one or several clusters to a degree specified by a membership grade.
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Table 3.2 Statistics of the normalised Impact Energy Test dataset

Variable Type Min. Max. Mean SD

Test depth, mm Input -1 0.9851 0.1918 0.1322

Specimen size, mm Input -1 1 0.4389 0.3705

Test site Input -1 1 0.5721 0.4685

C (wt-%) Input -1 1 0.3077 0.2306

Si (wt-%) Input -1 0.7778 0.2386 0.1811

Mn (wt-%) Input -1 1 0.3304 0.2422

S (wt-%) Input -1 1 0.3485 0.2941

Cr (wt-%) Input -1 0.9745 0.1534 0.0715

Mo (wt-%) Input -1 1 0.1959 0.1045

Ni (wt-%) Input -1 1 0.2485 0.1455

Al (wt-%) Input -1 1 0.2130 0.1681

V (wt-%) Input -1 1 0.1959 0.0557

Hardening temperature ◦C Input -1 1 0.1920 0.1154

Cooling temperature ◦C Input -1 1 0.4150 0.2402

Tempering temperature ◦C Input -1 1 0.1846 0.1431

Test temperature ◦C Input -1 1 0.6375 0.6198

Impact Energy Output 3.4667 245.33 89.6419 32.9701

The mechanism behind the Fuzzy C-Means algorithm (FCM) is to par-

tition n-dimensional P data points into M fuzzy clusters. By minimising

an objective function Jm based on each cluster centre location vi the FCM

algorithm creates a fuzzy partition space where each data point xp can be-

long to several clusters with a membership grade upi. The FCM algorithm

constructs a matrix Û whose elements have a range defined in the interval

[0, 1]. The objective function is defined as follows:

Jm(Û , v) =
P∑

p=1

M∑
i=1

um
pid

2
pi (3.4)

where upi is the membership between 0 and 1 of the element xp, m the
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fuzziness exponent, the variable dpi =∥ xp − vi ∥A is the Euclidean distance

between the element xp and ith cluster center, and vi is the vector of centers

vi = (v1, v2, . . . , vM). The computation of upi and vi can be stated as:

vi =
∑P

p=1 um
pixp∑P

p=1 um
pi

(3.5)

and

upi = 1∑M
i=1(

dpi

dpk
)2/(m−1)

(3.6)

Where the input vector xp = [x1, . . . , xn] and k is the kth iteration used

for the clustering process. Basically, the FCM algorithm is an iterative pro-

cess that in a batch mode operation the clustering procedure determines the

cluster center vi and the corresponding matrix Û as follows [Cannon et al.,

1986]

Step 1 fix the number of clusters M , 2 ≤ M ≤ P . Fix m between

1 < m ≤ ∞. Choose any inner product induced norm metric

∥ · ∥, e.g.

∥ x− v ∥2=∥ x− v ∥T A ∥ x− v ∥ (3.7)

Step 2 Initialise Û matrix, Û (0).

Step 3 at pth step calculate the centers vectors vi = {v1, v2, . . . , vM} by

using 3.5.

Step 4 update Ûp, Ûp+1 by using 3.6.

Step 5 If ∥ Ûk+1 − Ûk ∥< ϵ then stop, otherwise go to step 3.

The output-space density obtained from the application of the FCM is

then used for establishing the initial parameters for the hidden units of the

RBF-NN. The width of the Gaussian function in the RBF-layer is calcu-

lated via the following expression [Pedrycz, 1998]

σi = 1
r

(
r∑

l=1
∥vj − vi∥

)1/2

(3.8)
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in which vl is the nearest neighbour to the centroid vi and r ≥ 1, usually

the value of r is 2, however it may be depend on the type of problem. Once

the initial parameter values are estimated, the information extraction can be

obtained through the exploitation and exploration of an initial fuzzy rule-

base which can be created by M fuzzy rules that corresponds to the final

number of receptive units (hidden layer neurons) at the RBF-NN, thus one

fuzzy rule can be stated as:

Ri : IF x1 is Ai
1 AND x2 is Ai

2 AND xN is Ai
M THEN y is Yp (3.9)

where i = 1, . . . , M , M is the total number of rules or receptive units, Ai
1

is the fuzzy antecedent at the ith fuzzy rule, y is the output linguistic variable

and Yp is the consequent fuzzy set.
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Fig. 3.9 Final distribution in the Universe of discourse of the C(%) and Mn(%)
after Fuzzy C-Means (FCM).
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To enable a discussion about the results obtained from the FCM pro-

cess and hence in relation to the initial fuzzy rule base, it would be worth

to provide an illustrative example of the final shape of the MFs after FCM.

Therefore, in Fig. 3.9 the initial universe of discourse after the application of

FCM for the dimension that linguistically describes the Carbon (C-%) and

Manganese (Mn-%) is presented. One fuzzy rule that linguistically repre-

sents one neuron of the proposed case study can be stated as:

R̃1: IF Testdepth is A1
1 and Test site is A1

2 and C is 31 and Si is A1
4 and

Mn is Ã1
5 and S is A1

6 and Cr is A1
7 and Mo is A1

8 and Ni is A1
9 . . .

. . .THEN the Impact Energy is B̃1 (3.10)

Where the multidimensional ith fuzzy set is Ai = [Ai
1, . . . Ai

P ], and P is the

total number of inputs. After Fuzzy C-Means, the final rule base is not yet fi-

nally constructed. As can be seen from Fig. 3.9(a,b), a high degree of redun-

dancy and a lack of distinguishability in terms of overlapping is still exhibited

by the membership functions (MFs). In this context, according to [Zhou and

Gan, 2008], in interpretability-oriented fuzzy modelling, each MF of a vari-

able is expected to represent a linguistic label with a clear semantic meaning

and thus at least one point in the universe of discourse should have a value

equal to one, it means a MF should be normal. Moreover, the normality

in fuzzy sets seems to be self-evident and hence the traditional term sets

in the universe of discourse should contain not only the intermediate sets,

but also left and right-shoulders sets [Zhou and Gan, 2008]. For example,

the linguistic variable age whose term sets are young, adult and old. It

seems that the terms old and young may reach normality, however, when it

comes to the term adult, it is difficult to achieve a conclusion. In this sense,

the universe of discourse presented in Fig. 3.9 does not employ subnormal

MFs which may be debatable due to the type of problem. Particularly, the

generation of fuzzy models for mechanical property prediction has demon-

strated a satisfactory performance without the use of left and right shoulders
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and subnormal MFs. In order to better discriminate the role of each mul-

tidimensional fuzzy set in the universe of discourse, a supervised parameter

identification process is used. In other words, a parameter learning based on

a gradient descent methodology is employed.

An example of the initial fuzzy rule-base extracted from the FCM re-

sults and that contains only 3 out of the 16 inputs featured by 5 fuzzy sets

that compose the input data space can be depicted as illustrated in Fig. 3.10.
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Fig. 3.10 Fuzzy rule-base example

To verify the physical interpretation of the initial model obtained after FCM,

in Fig. 3.11 is illustrated the 3-D surface responses and the data density

along the surface of 2 out of the 16 input variables versus the measured im-

pact energy (Joules).
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Fig. 3.11 Response surface for six out of 16 parameters of the Charpy test.

As can be seen from Fig. 3.11, two different types of data are shown,

namely: (a) the measured impact energy (blue points) and (b) the predicted

impact energy (3-D surface). Both data, the measured and the predicted

impact energy are represented in terms of four different variables, i.e. 1) test

site and the size of the specimen and 2) Carbon and Mn (%) respectively.

Such results are obtained just after the application of the Fuzzy C-Mean

algorithm in order to cluster the raw data. It is evident from the figures that

the surface created by the fuzzy model/initial rule base (RBF network) is not

able to cover most of the data. However, the initial location of the centers

offers a good approximation of the rule base parameters which will be further

optimised by the application of a learning approach based on the gradient

descent.
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3.6.1 FUZZY RULE OPTIMISATION

Over-training represents that a neural fuzzy system learns to represent noise

in data instead of the true underlying process. The cross-validation process

consists of randomly choosing data for training and then periodically the

prediction accuracy of the model is investigated. The process of validation

(checking) on network accuracy for the prediction of impact test results in-

dicates that the process of training must be finalised when the error of the

validation increases meaning that the generalisation properties of the model

have begun to deteriorate. The fuzzy rule-base optimisation consists in

the application of an adaptive Back Error Propagation approach (adaptive-

BEP) which has been proven in the past to be very efficient in the proposed

type of system [Chen and Linkens, 2001b]. This is due that a conventional

BEP usually leads the objective function to a good local minimum by using

a small learning rate, but often it does not represent the optimal performance

of the system due to the algorithm ’getting stuck’ in local minima. In order

to overcome this issue a momentum and a continuously adaptive version of

BEP is used. Hence, a performance index can be defined as:

Pp = 1
P

P∑
p=1

e2
p (3.11)

in which P is the number of training points. The update rule for the output

weight is:

wi(p + 1) = γwi(p)− βepgi (3.12)

where gi = Ai∑
i

Ai
, Ai = exp(− ∥ x − ci ∥2 /σ2

i ), and the update rule for the

width is:

σi(p + 1) = γσi(p)− βepgi(wi(p)− yp)(xk(p)− Cik)2

σ3
i

(3.13)

And the update rule for the ith centre is:

Cik(p + 1) = γCik(p)− βepgi(wi(p)− yp)(xk(p)− Cik)
σ2

i

(3.14)
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Where:

β learning rate;

γ momentum;

t iteration number;

dp pth output from the data;

yp pth output from the model and ep = (yp − dp) ;

The energy index is used to update the adaptation algorithm as follows:

• if Pip(t + 1) ≥ Pip(t) then

α(t + 1) = hdα(t), γ(t + 1) = 0

• if Pip(t + 1) < Pip(t) and

∣∣∣∣∣∣ ∆Pi

P i(t)

∣∣∣∣∣∣ < δ then

α(t + 1) = hiα(t), γ(t + 1) = γ0 (3.15)

• if Pip(t + 1) < Pip(t) and

∣∣∣∣∣∣ ∆Pi

P i(t)

∣∣∣∣∣∣ ≥ δ then

α(t + 1) = α(t), γ(t + 1) = γ(t)

Where hd and hi are the decreasing and increasing factors, respectively. And

δ is the threshold for the rate of the relative index. That means the perfor-

mance index follows the behaviour of the RMSE whose constrains are:

0 < hd < 1 (3.16)

hi > 1

Once the parameter optimisation process have been completed, the final

fuzzy model is obtained. Therefore, the modelling results will be discussed

in the next section.
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3.6.2 PRELIMINARY MODELLING RESULTS

Due to the variability produced by the FCM, several trials were performed

with a different number of clusters and hence through cross-validation ex-

perimentation it was found that the optimum number of fuzzy rules (hidden

layer neurons) is 9 for the prediction of the Charpy Impact test. Fig. 3.12

and table 3.3 show the effects of hidden layers on mean squared prediction

accuracy for impact energy prediction. That means prediction accuracy of

the RBF network was compared by evaluating the Root Mean Square Error

(RMSE), where Eq. 3.17 the terms yp and dp are the current model output

and the desired pattern respectively. In Table 3.3, it can be seen the re-

sults obtained from different trials ranging between 6 and 100 clusters. The

various experimental results shown in Table 3.3 do not represent all the in-

formation that can be extracted from the neural fuzzy modelling framework

used in this section. However, it contains the information required to decide

which model could have a good balance between accuracy and interpretabil-

ity. Moreover, for future comparisons in Fig. 3.12 the results were obtained

by rearranging the data for training, checking and testing are provided.

ERMS =
 1

P

p∑
p=1

(yp − dp)2

1/2

(3.17)

Table 3.3 RMSE of the neural fuzzy framework

Number of clusters Training Checking Testing

6 20.10 20.95 22.78
9 18.78 19.48 21.78

15 15.46 19.65 21.90
30 14.8 19.85 20.80
50 13.74 22.01 22.45

100 15.30 22.20 24.12

According to [Gacto et al., 2010, 2011, Zhou and Gan, 2008], the num-

ber of MFs should not be arbitrary, but it should be according to the number
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of individual entities the human beings can handle and store efficiently at

the short-term memory [Pedrycz et al., 1998, Valente de Oliveira, 1995].

From this idea and according to the cross-validation experimentation re-

sults obtained by using a different number of rules, in this research work it is

more convenient to select a model that contains only 9 rules. Furthermore, a

model with a moderate number of rules is easier to be interpreted and hence

studied enhancing the consistency of the fuzzy rule base. From table 3.3, it

is evident that a fuzzy model with only 9 rules shows a better performance in

terms of generalisation (checking and testing) than models with a smaller or

larger number of rules. This can be confirmed with those results obtainedin

Fig. 3.12. In fact, a model that contains more rules not necessarily behaves

more accurately than models with a moderate number of MFs. This also

implies a lack of interpretability and hence of distinguishability. Fig. 3.12

illustrates the data fit by using 9 rules for the prediction of impact energy for

two different simulations of 1300 epochs each one. It is important to note

that the final clusters used for testing the model are those obtained when the

checking performance trend has stopped growing as illustrated below.
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Fig. 3.12 Data fit, Charpy Impact Test Prediction by using Fuzzy C-Means as
the clustering approach for the construction of the initial fuzzy rule base.
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Fig. 3.13 Response surface of the RBF NN after the training process.

To provide more information about the RBF NN performance, in Fig.

3.13, 3.14 and 3.15 are shown the response surfaces after the process of

cross-validation. Particularly, Fig. 3.13 and 3.14 show 4 out of the 16 vari-

ables from the input space. As can be seen from the results, the impact

energy values are defined in the interval [0, 250] whose units are Joules. It

is also evident from Fig. 3.13, Fig. 3.14 and Fig. 3.15 the response sur-

faces covers the majority of the measured impact energy (pattern). This re-

flects good generalisation properties (testing) whose response surface keeps

a similar shape to that one obtained after training. Moreover, more informa-

tion may be extracted from Fig. 3.14 and 3.15. For example, in Fig. 3.14, the

size of the specimen appears to affect slightly the predicted impact energy in

relation to the test depth which are measured in millimetres.
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Fig. 3.14 Response surface of the RBF NN after the checking process.

In this sense, in Fig. 3.15, it can be observed that there are areas where a

small increase/reduction in the amount of Carbon and Mn affects impor-

tantly the prediction of the impact energy. Indeed, the analysis of the re-

sponse surface may help to understand the sensitivity of the RBF network

which can be calculated by summing the effects of small changes to each in-

put variable across the given data set [Tenner et al., 2001]. As it is mentioned

in [Zhang and Mahfouf, 2011], while a fuzzy model can provide information

from the surface response based on limited inferences mechanisms for the

unseen part of the data due to the process of fuzzification, a neural network

is purely a fitting function. In this regards, the RBF NN according to [Hunt

et al., 1996, Jin and Sendhoff, 2003] can be interpreted as a type of fuzzy

systems of type-1 inheriting properties such as transparency (information

extraction), interpretability (rule-base creation) and distinguishability.
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Fig. 3.15 Response surface of the RBF NN after the testing process.

The rest of this Thesis work will be focused in exploiting and exploring

various concepts developed into fuzzy set theory and neural networks for

function approximation purposes. Finally, in Appendix ?? is illustrated the

final shape of response surfaces after the process of clustering by applying

1) granulations and 2) the well-known FCM approach.

3.7 SUMMARY

In this chapter a background on mechanical tests of heat treated steels and

its importance for manufacturing process as well as a modelling of a real case

study for impact energy prediction were provided. The presented modelling

framework combines the ability of fuzzy sets and RBF neural networks for

function approximation through the exploration and exploration of informa-

tion extraction.

A detailed hybrid methodology for the parameter identification of the
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RBF neural network was described, including the initial FCM-based clus-

tering approach and the application of an adaptive gradient descent ap-

proach. Finally some results were discussed including the creation of a mul-

tidimensional rule-base.

In the next chapter, a modelling framework based on RBF neural net-

works, Granular Computing (GrC) with an application of Neutrosophic Sets

(NS) for the analysis and evaluation of uncertainty will be introduced.



4LOW-LEVEL INTERPRETABILITY IN THE

RBF-NN USING GRANULAR COMPUTING AND

NEUTROSOPHIC SETS.

THIS chapter provides a new methodology based on Granular Com-

puting (GrC) and neutrosophic sets in order to evaluate the associ-

ated uncertainty that results from a ravenous behaviour during the merging

operation at the granulation stage. First, the construction of neutrosophic

sets is based on a Shannon criterion in order to extract information in re-

lation to the distinguishability at the granulation process. Secondly, such

an information is used to quantify the uncertainty/fuzziness when forming

new granules and finally such an information is used in conjunction with

the compatibility criterion employed at the granulation process for making

decisions and creating a more transparent fuzzy rule base.

The main motivation for creating a framework that is able to quantify

the uncertainty during the granulation process lies on the idea that when

applying an adaptive learning algorithm, a lost of interpretability is produced

during the parameter identification of the RBF-NN. For this reason, a more

transparent and distinguishable initial fuzzy rule base might aid to create

a more parsimonious inference engine. In order to compare the proposed

methodology, some preliminary simulation results based only on granulation

and the RBF-NN are provided.

4.1 INTRODUCTION

The objective of fuzzy modelling in system engineering is the development

of reliable and understandable models which can describe the system be-

haviour through the construction of a linguistic rule base. That means, in

order to gain a deeper insight into the system being modelled, fuzzy systems
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formulate the system knowledge based on transparent and interpretable lin-

guistic rules. Accordingly it is possible to associate a semantic meaning

to each term of the linguistic rules in order to characterise the system be-

haviour.

In spite of an RBF-NN is a black-box methodology, it can be seen as a

fuzzy inference model of type-1 [Hunt et al., 1996]. That means, a parameter

identification procedure in the RBF-NN can be employed in a similar way to

that used in fuzzy systems [Chen and Linkens, 2001a]. In other words, the

RBF-NN parameters can be estimated systematically from observational

data, i.e a procedure that includes an initial fuzzy model self-generation

methodology, the corresponding parameter optimisation and the rule-base

simplification. Usually in fuzzy systems theory, a parsimony model is as-

sociated to its interpretability as a consequence of a good distinguishable

rule base that defines the level of transparency in the fuzzy inference en-

gine. Compared to fuzzy systems, the RBF-NN frequently suffers from a

loss of interpretability during the optimisation parameter which is usually

carried out by the application of a gradient descent-based approach [Chen

and Linkens, 2001b]. In fuzzy logic systems, transparency plays an impor-

tant role as it evaluates the level of interpretability in the rule base. In this

regard, a collection of different constraints must be considered when con-

structing interpretable fuzzy systems [Hefny, 2007, Mencar et al., 2007a].

For instance, distinguishability is a metric usually employed for evaluat-

ing how much is affected the interpretability of a fuzzy system as a con-

sequence of the overlapping between two or more fuzzy sets. In [Zhou and

Gan, 2008] it was categorised the role of each component and each proce-

dure employed during the parameter identification of systematic fuzzy logic

systems. In a deeper context, the authors described a fuzzy model based

on two different levels of interpretability, namely: a) low-level interpretabil-

ity and b) high-level interpretability. While the low-level of interpretability

consists in the optimisation of the MF’s based on a fuzzy semantic criteria,

the high-level of interpretability refers to the evaluation of a criteria that con-

templates the coverage, completeness and consistency of the rules in order

to achieve a good model interpretability. The criteria that can be employed
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to evaluate the degree of transparency at the low-level of interpretability is

the evaluation of the distinguishability among the fuzzy sets (overlapping in

the MF’s), a moderate number of MF’s, the coverage and completeness of

the input space and the type of normalisation used in the input space. And

the criteria that can be considered at the high-level of interpretability are

the transparency, consistency and readability of the rule structure as well as

a criterion that evaluates the parsimony and simplicity of the rule base. A

common procedure to train the RBF-NN is to first choose the centres in

the hidden layer by using an unsupervised methodology to reflect in some-

how the initial distribution of the input training data [Girosi et al., 1995]. In

particular, clustering algorithms have been widely used to partition the in-

put space - for instance the k-means algorithm [Huang, 1998], the Fuzzy

C-means (FCM) method Bezdek [1981] and recently Granular Computing

(GrC) [Panoutsos and Mahfouf, 2010a].

Particularly computational paradigms such as Granular Computing (GrC)

have been exploited for processing information in a transparent and inter-

pretable way in order to estimate the initial RBF-NN parameters at the low-

level interpretability. Unlike popular clustering approaches such as Fuzzy

C-Means (FCM) - granulation is a technique in the field of GrC that

mimics the human cognition in terms of grouping information together ac-

cording to predefined similarity measures [Panoutsos and Mahfouf, 2010a].

Compatibility operators such as cardinality, orientation, density and multi-

dimensional length represent an important element into granulation acting

on both in raw data and information granules formed from raw data that

finally provide a framework for human-like information processing where

information granulation is intrinsic. Therefore, such individual entities are

merged into dense information granules whose similarity [Panoutsos and

Mahfouf, 2010a] can be evaluated in a variety of different ways depending

mainly on the application at hand. Transparency plays an important role

as a measure of interpretability and distinguishability, i.e. the more inter-

pretable the information of a system under study, the better its understand-

ing. Even though granulation as an explanatory data analysis represents a

useful clustering approach, and has demonstrated its powerful as a tool for
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estimating the initial parameters of the RBF-NN, there is not a measure

which leads how much a granule must grow. This phenomenon produces a

grade of inclusion uncertainty among the new granules as a consequence of

a ravenous behaviour. And a loss of transparency and then of interpretabil-

ity might be loss. This lack of interpretability raises an important question

concerning the use of new logics that posses the fuzzy capabilities of an ex-

pert system able for making decisions based on uncertainty. To exemplify a

case study of this phenomenon, in this chapter the use of a new logics that is

able to handling the uncertainty is proposed. In this context, Neutrosophy

[Neutrosophy, 2002] is a three-valued logic that is the generalisation of fuzzy

logic, intuitionistic logic [Atanassov, 1986], paraconsistent logic [Priest and

Tanaka, 2009] and paradoxic logic [Elkan et al., 1994]. Neutrosophic sets

theory is devoted to the description of events that are true and false at the

same time. Moreover, it studies the scope of neutralities of events based on

the idea of a tripartition (true, falsehood, indeterminacy/uncertainty) which

was initially proposed by J. H. Lambert as a new logic capable of investi-

gating the credibility of one witness by the contrary testimony of another

[Smarandache, 2010b]. The application of neutrosophic provides an ex-

tra dimension which makes the compatibility criterion able to measure the

overlapping behaviour through the evaluation of the fuzzy entropy (uncer-

tainty) produced during the granulation. This measure persuades the com-

patibility search in eliminating potential granules that increase the granular

overlapping producing a reduction in model transparency and affecting the

consistency of the rules. In other words, as it is pointed out in [Pal and

Bezdek, 1994] fuzzy uncertainty arises when boundaries are not sharply de-

fined resulting in vagueness or linguistic imprecision. In this sense, several

measures have been proposed to evaluate the fuzzy uncertainties [Pal and

Bezdek, 1994, Wang et al., 2012]. Particularly in this work is used that pre-

sented in [De Luca and Termini, 1972] in order to evaluate the overlapping

as a cognitive uncertainty (fuzziness) that can be interpreted as the impre-

cision in the transition area from one linguistic term to another. Therefore,

in this chapter, a twofold study is presented - on the one hand, a process

of granulation is carried out at the low-level interpretability in order to esti-
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mate the initial location of the centres in the hidden layer of the RBF-NN.

On the other hand, it is proposed a new methodology based on the granula-

tion process developed in [Panoutsos and Mahfouf, 2010a] and neutrosophic

sets (Gr-NS) in order to quantify the uncertainty/fuzziness associated to

the overlapping among the granules during the clustering stage. Hence, the

main contributions in this chapter can be listed as follows:

• A description of the RBF-NN components in terms of low-level inter-

pretability and high-level interpretability.

• A low-level interpretability process of granulation for an initial RBF-

NN parameter identification.

• A methodology based on GrC and neutrosophic sets for quantifying

the uncertainty that comes out from the overlapping phenomenon pro-

duced during the granulation process is presented. Such a method-

ology evaluates the distinguishability of the granules that are being

formed at each iteration of the granulation process with the objective to

construct a more transparent and interpretable initial fuzzy rule base.

Such an uncertainty evaluation is carried out by the use of a proposed

index that is based on a Shannon criterion. This study also suggests

that the final optimisation of the RBF-NN depends heavily on the ini-

tial cluster positions which are used to define the initial fuzzy rules.

4.2 INTERPRETABILITY IN THE RBF-NN STRUCTURE

According to [Jang and Sun, 1993], RBF-NNs and Fuzzy Logic Systems

(FLSs) of type-1 are functionally equivalent under some mild conditions.

Thereby, properties from neural networks and fuzzy logic systems can be

exploited and explored from a unified framework. That implies the RBF-NN

may be interpreted in the language of Fuzzy Logic and viceversa.

However, a major criticism arises when the associated parameter iden-

tification is carried out by adaptive learning techniques that overshadow the

interpretability and hence the transparency of the unified methodology [Jin

and Sendhoff, 2003]. In [Jin and Sendhoff, 2003], the authors proposed a
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number of interpretability conditions for neural networks based on the RBF-

NN structure and fuzzy systems of type-1. Such conditions can be listed

into three headings, which are:

• The fuzzy partitioning of all the variables in the fuzzy system should be

complete and distinguishable. That means the physical meaning of the

fuzzy partitioning is clear and easy-to-interpret leading to a reduced

universe of discourse with and only the necessary rules to describe a

system.

• The fuzy rules must be consistent. For example, if two any antecedents

in a fuzzy rule are the same but produce a completely different conse-

quent, therefore, there is an inconsistency.

• The number of rules in the premise part should be as small as possible

avoiding over-fitting. Because a large number of training rules may

come out in learning perfectly the training data.

Interpretability on fuzzy systems

Low-level interpretability 
on fuzzy set level

Low-level interpretability 
on fuzzy rule level

Criteria

✔ Distinguishability

✔ Moderate number of Mfs

✔ Coverage or completeness 

of partition of input variable.

✔ Normalisation. 

✔ Complimentary.

Criteria

✔ Rule base parsimony and simplicity

✔ Consistency of rules.

✔ Completeness of rules.

✔ Transparency of rule structure. 

Fig. 4.1 Interpretability levels for Fuzzy Logic Systems.

For instance in [Zhou and Gan, 2008] a categorisation of interpretability for

fuzzy modelling is proposed - Fig. 4.1 shows such a categorisation which
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is mainly divided into two levels of interpretability, i.e. a) low level of inter-

pretability and b) high level of interpretability. On the one hand, the authors

in [Zhou and Gan, 2008] suggested several criteria to achieve a low-level

of interpretability by optimising the MFs on fuzzy set level. Basically the

improvement lies on the modification of the MFs by defining some seman-

tic constraints which are based on the distinguishability of the universe of

discourse, a moderate number of MFs, the coverage and completeness of

the partition of the input space, normalisation and the complimentary. On

the other hand, operations on the fuzzy rule base are performed to achieve

a high-level of interpretability whose main purpose is to create a compact

and consistent fuzzy rule base. Such operations may cover the creation of

a parsimony rule base and its associated level of simplicity, consistency of

rules, completeness of rules and transparency of rules structure. However,

in fuzzy modelling the categorisation presented in Fig. 4.1 may only be ap-

plied on linguistic fuzzy modelling. According to [Gacto et al., 2011], when

dealing with the trade-off of accuracy-interpretability two fields of study may

be considered:

1. Luinguistic Fuzzy Modelling. This field is mainly devoted to construct

interpretable models through the use of linguistic Fuzzy rule-based sys-

tems (FRBSs). Such systems are heavily based on linguistic rules (or

Mamdani) whose interpretability is associated to the preservation of the

semantic of the MFs.

2. Precise Fuzzy modelling (PFM). This field is focused on the construction

of accurate fuzzy models by means Takagi-Sugeno FRBSs. In contrast

to Mamdani-based FRBSs, these models employ fuzzy systems without

an associated meaning.

Since the RBF-NN can be regarded as a FRBS of type-1 - the inter-

pretability taxonomy of the network can also be categorised at two different

levels. This classification must be defined in relation to the parameter iden-

tification process of the RBF-NN. This means, the interpretability categori-

sation in the RBF-NN consists on identifying the elements for a low-level
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and high-level of interpretability at two different stages, i.e a) during the

clustering of the initial raw data, which is used to identify the initial fuzzy

rule-base, and b) the optimisation of the MFs location by using an adaptive

procedure that is usually based on gradient descent approaches. In Fig. 4.2,

a proposed structure for categorising the interpretability at the RBF-NN is

presented.

y
f
   

Input Data

Dedifuzzification

Raw Data

Granulation

From Granules
 to MF's

Optimisation by the 
Gradient Descent

Algorithm 

Final Model 

High-level of Interpretability

Low-level of InterpretabilityA

B

A

A,B

A,B

Fig. 4.2 Interpretability levels at the RBF-NN taxonomy

According to [Zhou and Gan, 2008], the elements that may be involved
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at the low-level of interpretability of the RBF-NN includes:

(a) The distinguishability of the MFs and the associated semantic - this in-

cludes the process of granulation (during the construction of the ini-

tial rule base), and the optimisation of the MFs parameters (location).

As it is pointed out in [Park and Sandberg, 1993], an initial clustering

approach is required to position the centres of the radial basis function

which are eventually moved toward the majority of the data by the ap-

plication of a gradient descent approach. For this reason, the initial lo-

cation and therefore the associated distinguishability play an important

role for the final construction of the fuzzy rule.

(b) A moderate number of MFs. In other words, the number of fuzzy rules

should be as small as possible while preserving a satisfactory system’s

performance. An smaller number of rules allows us to better understand

the associated meaning of a MF. However, the evolution in computa-

tion makes possible the analysis of high-dimensional problems and the

extraction of features which allow the readability of the associated fuzzy

sets.

(c) Coverage and completeness of the partition space at two different stages,

i.e. at the end of the granulation process, and at the end of the optimi-

sation process of the location of the MFs. This implies that every data

should be represented linguistically by a fuzzy set over its universe of

discourse. Incompleteness can be interpreted as the over-fitting phe-

nomenon in the RBF-NN and hence in the proposed model. In [Zhou

and Gan, 2008] the authors described incompleteness as a deficiency in

the correct partition of the fuzzy space during the parameter optimiza-

tion process.

(d) Normalisation. In the RBF-NN, the highest value is determined by dis-

tance between the centre of a Radial Basis Function and every input

vector.

(e) Complimentary. For each element in the universe of discourse, the sum
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of all its associated MFs should be close to one. This assures a uniform

distribution of the meanings in all the elements.

According to [Zhou and Gan, 2008], several techniques have been used to

achieve a low-level of interpretability for fuzzy modelling, such techniques

include:

1. Regularization approaches for parameter estimation.

2. Multi-objective optimization for antecedent parameter estimation.

3. Fuzzy set merging techniques.

4. User-oriented interactive technique.

In a like-manner, the high-level of interpretability at the RBF-NN and the

proposed IT2-RBF-NN should be mainly defined in relation to the inter-

pretability of the fuzzy rule base of both modes. Therefore, the elements that

may be taken into account to achieve a high-level of interpretability are:

(a) Rule base parsimony and simplicity. According to [Zhou and Gan, 2008],

The best model is the simplest one that fittest the system behaviours

well - this includes a fuzzy rule base with the smallest number of rules

that preserves a satisfied level of performance leading to a better global

understanding of the system.

(b) Transparency of rule structure. The proposed IT2-RBF-NN and the

RBF-NN can be seen as a generalised framework for fuzzy modelling

- this implies that both fuzzy rule structures are either Mamdani type

or Takagi-Sugeno (TS) type. The former is the most widely used struc-

ture, this is because the consequent part of a Mamdani rule structure are

fuzzy sets and therefore transparency is supposed to be a default prop-

erty. However, the transparency and properties such as distinguishabil-

ity and interpretability are enormously affected by the learning process.

(c) Consistency. The degree of consistency for the proposed IT2-RBF-NN

is fully determined by the absence of contradictory fuzzy rules, i.e. two

similar rules with a similar premise should have a similar consequent.
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(d) Completeness. For any input vector to the RBF-NN models, at least

one fuzzy rule must be fired, however, due to the nature of the network,

usually one or more rules in the fuzzy rule base are activated.

(e) Readability of fuzzy rules. According to [de Oliveira, 1999], a good de-

gree of readability may be achieved if the number of different conditions

for each premise part should not exceed 7 ± 2. The main reason comes

out from a study in Cognitive Psychology that states that the maxi-

mum number of different entities that a human can handle efficiently

should not exceed such an amount. This ability may be translated into

the structure of a fuzzy system as the number

A fuzzy set usually associates the meaning of a linguistic variable to a

semantic rule, i.e. every value of the linguistic variable over the uni-

verse of discourse may be represented by a linguistic term with a clear

semantic meaning.

Therefore, the interpretability levels in the RBF-NN are considered in order

to study the benefits of the application and advances in fuzzy set theory.

4.3 GRANULATION OF DATA

Before going directly with the details of the granulation technique employed

in this chapter, it would be worth to review the underlying principle of gran-

ulation and how this methodology into the emerging paradigm of Granular

Computing (GrC) concentrates to extract information from numeric data.

The point of departure lies on the existing clustering algorithms that are

usually divided into two main categories, namely; a) hierarchical clustering

[Johnson, 1967] and b) partitioning clustering [Linhui, 2001]. The former

algorithms are frequently used for partitioning objects into optimally homo-

geneous groups on the basis of empirical measures or similarity measures

classifying objects to different groups according to their similarity. The latter

groups data in predefined clusters or finding areas with higher data density.

In this context, the granulation process aims to cluster data with similar

features. To achieve the information grouping, granulation usually employs



120
LOW-LEVEL INTERPRETABILITY IN THE RBF-NN USING

GRANULAR COMPUTING AND NEUTROSOPHIC SETS.

a compatibility measure that calculates a ’compatibility index’ based on the

granular similarity.

The term granule was initially defined by Zadeh [Zadeh, 1996a] into the

field of fuzzy logic as a set of points having the form of a clump of elements

drawn together by similarity. Moreover, in that work Zadeh denotes a word

as a label of a granule which is seen as a fuzzy set playing the role of a fuzzy

constraint on a variable. Zadeh highlighted the importance of granulation

as a process that mimics the human cognition with the ability of information

compression. Thereafter, the term Granular Computing (GrC) was first in-

troduced by T. Y. Lin as a new multidisciplinary study [Lin, 1997]. This con-

ceptual paradigm of GrC is related to the processing of complex information

entities - information granules that are formed by abstracting numeric data

and of the derivation of knowledge from information [Bargiela and Pedrycz,

2003a]. The rationale behind information granulation in this research work

lies on the representation of information granules as hyperboxes positioned

in a highly dimensional data space [Pedrycz and Bargiela, 2002, Yao et al.,

2013]. The mathematical formalism is based on interval analysis that ac-

cording to [Pedrycz and Bargiela, 2002] provides a more roust framework for

the analysis of information density of the granular structures that arise as a

consequence of a process of granulation. Pedrycz proposed the first cluster-

ing approach that granulate the information from raw data that are usually in

the form of numeric [Pedrycz and Bargiela, 2002]. The aim of that method-

ology is to capture the information through the process of data organisa-

tion in the form of granules which are finally compressed based on some

similarities. According to Pedrycz [Pedrycz and Bargiela, 2002], a cluster-

ing methodology based on granulation obeys a level of abstraction which is

achieved through a process of condensation of the original data (which may

be numeric or granules) into granules. Furthermore, Pedrycz pointed out

that the more condensation, the larger the sizes of the information gran-

ules that realises this aggregation. However, under ravenous situations this

is always not happening, since the nature of data does not follow an order

all the time. Therefore, the basic idea of the clustering approach proposed in

[Pedrycz and Bargiela, 2002] is carried out by the following iterative process:
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• Find the two closest information granules according to some prede-

fined compatibility criteria, and on this basis build a new granule em-

bracing them. The purpose behind this idea is to reduce the size of the

data set while the clustering process condenses data.

• Repeat the first step until enough data condensation has been accom-

plished or a predefined criterion is met.

Where a granule A is a hyperbox (or box) in Rn that is fully described by

its lower (l) and upper corner (u). Therefore, a granule can be expressed

as A(l, u) ∈ Rn, if l = u the granule reduces to a single point. Moreover,

the box may be defined over a family of relations defined in Rn such that

A ∈ ℘(Rn), where ℘(·) is a class of sets. As stated in [Pedrycz and Bargiela,

2002], the volume of V (A) can be used to calculate the compatibility of two

similar granules A and B and it is advantageous to consider the expression

exp(−V ) (4.1)

Note that similarity is usually a measure used to quantify the compati-

bility of two or more individual entities and it is frequently calculated from

the distance ∥ · ∥ between such objects, where (·) may be any metric. In line

with the compatibility measure, it attains its maximum value 1 when the

volume hyperbox reduces and 0 otherwise. Therefore, the granulation pro-

cess can make sure only dense and compact granules are being obtained.

In Fig. 4.3 some geometric properties of a resulting granule ′C ′ by merging

two compatible granules ′A′ and ′B′ is illustrated. In order to finally calculate

the compatibility between two granules A and B, the volume of a resulting

granule D can be calculated as follows [Pedrycz and Bargiela, 2002].

V (D) =
n∏

i=1
lengthi (D) (4.2)

where

lengthi (D) = max (uB (i) , uA (i))−min (lB (i) , lA (i)) (4.3)
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Fig. 4.3 Resulting information granule ′C ′ by merging granules A and B [Pedrycz
and Bargiela, 2002].

Therefore, the compatibility can be calculating in the form

compat (A, B) = 1− d (A, B) e−αV (D) (4.4)

where

d (A, B) = (∥ lA, lB ∥ + ∥ uA, uB ∥) (4.5)

In agreement with the research work in [Pedrycz and Bargiela, 2002],

Panoutsos extended this idea where the compatibility measure includes the

volume of granules, the associated density, cardinality and the length of

the resulting granule and of the entire data space [Panoutsos and Mahfouf,

2010a]. In essence, the extended version of the granulation approach main-

tains the iterative procedure divided into two main steps as follows:

• Find the two most compatible information granules by using the Eq.

4.6 and then merge them together as a new information granule con-

taining both original granules.

• Repeat the process of finding the two most compatible granules until

a satisfactory data abstraction level is achieved.
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In Fig. 4.4, a flow chart of the granulation process used in this chapter is

described. Even in this work the input raw data is normalised between [-1,

1], usually this option is problem-dependent. The granular process basically

is divided into three main steps: (a) raw data; at this stage each datum is

viewed as a granule in the input space and hence compressed into compact

and dense granules, (b) input-space data granulation; during this iterative

process the initial number of granules is reduced according to their com-

patibility in which various similarity measures can be considered, such as:

the size of the granules, the cardinality, overlapping among granules, ori-

entation, etc. And finally (c) output space-density function represents the

linguistic interpretation of the final group of dense granules that preserve the

original features of the raw data.

Raw Data

Input Space-
Data Gran-

ulation

a

Output Space-
Density

Function

b

c

Fig. 4.4 Data granulation process.

For agreement reasons with [Pedrycz and Bargiela, 2002], in this chap-

ter some of the terms employed in [Panoutsos and Mahfouf, 2010a] will be

written exactly with the same notation used in [Pedrycz and Bargiela, 2002].

Therefore, in a similar way compat(A, B) defines the merging operation of

two different granules A and B. However, the compatibility measure ex-

tended in [Panoutsos and Mahfouf, 2010a] is not based on the volume of the

resulting granule, but it uses the multidimensional length and the cardinal-

ity of each granule including a weighting term wk which is viewed as a di-

mensional importance factor. The compatibility defines the most important
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concept during the granulation process.

compat(A, B) = DMAX − dA,Be(−αR) (4.6)

Where:

R = cardA,B/CardinalityMAX

LA,B/LengthMAX

(4.7)

And DMAX is the maximum possible distance in the data set, and dA,B is the

weighted multidimensional average distance between two granules A and B.

dA,B =
∑n

k=1 wk(max(uAk, uBk)−min(lAk, lBk))
n

(4.8)

with wk playing the importance weight for the dimension k, and n the total

number of dimensions. In Eq. 4.6, α weights the requirements between dis-

tance and cardinality/length, the term CardinalityMAX is the total number

of granules in the data set. LengthMAX is the maximum possible length of a

granule in the data set which may sometimes be as large as the dimensions

of the data set boundaries. In Eq. 4.8, lAk and uAk are the lower and up-

per limits (corners) of the granule ‘A′ respectively and in Eq. 4.9 LAB is the

multidimensional length of the resulting granule.

LA,B =
n∑

k=1
(maxxk −minxk) (4.9)

To illustrate the meaning of the terms in Eq. 4.9, in Fig. 4.5 is provided a

graphic representation of the terms maxxk and minxk. Moreover, to exem-

plify the compatibility calculation, in Fig. 4.6 is depicted a 2-dimensional

granular space where the granules A and B are merged (Figure taken from

[Solis and Panoutsos, 2013]).
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granule A

granule B

maxxkminxk

cardA= 8 

x
k

Fig. 4.5 Terms associated to Eq. 4.9.

The term α is employed as a threshold in the interval [0, 1] in order to bal-

ance the terms of ’distance’ and ’density’ (Cardinality/size) and wi weights

each dimension according to the problem at hand [Bargiela and Pedrycz,

2003a]. According to the dimensions provided in Fig. 4.6, granules A and

B produce the following values if the values of wk = 1 for n = 2:

DMAX =
n=2∑
k=1

(1− (1)) = 4 (4.10)

dA,B = (max (0.9, 0.55)−min (0.4,−0.1))
2 +

(max (0.2,−0.1)−min (−0.8,−0.2))
2 (4.11)

Unlike set theory, here the union of two granules is obtained as the merg-

ing operation of two granules A and B. Fig. 4.7 shows the union of employed

in granulation which is the resulting granule C.

cardA,B = cardA + cardB = 15granules (4.12)

where cardA is the associated cardinality of the granule A. As can be seen
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from Fig. 4.7, the number of granules in A is eight.

CardinalityMAX = cardA + cardB + · · ·+ cardH

= 8 + 7 + 10 + 2 + 11 + 3 + 2 = 43

where LA,B = 2, Length = 3.93 and the proposed value of α = 0.35. There-

fore, the compatibility between the granules A and B is:

compat(A, B) = 4− e(−0.35×0.682) = 3.123 (4.13)

G

Data set

2

1 1

Resulting granule C

granule B

granule A
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0.2

-0.1 0.55
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granule D
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0.1 x
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Fig. 4.6 Compuation of the resulting granule ’C’

As it is pointed out in [Bargiela and Pedrycz, 2003a], the exponential

form of the compatibility is associated with the normalisation of all the val-

ues in the interval [0, 1]. In particular, the extended version of the compat-

ibility criterion proposed by Panoutsos in [Panoutsos and Mahfouf, 2010a]

favours the formation of compact granules with a high cardinality. More-
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over, Eq. 4.6 does not need to normalise the original data set, since the

reference distance (DMAX) to measure the compatibility may be the size of

the data set boundaries. The compatibility criterion now includes those en-

tities/granules with a high density and indirectly it preserves the properties

shown by the volume V term used in Eq. 4.4.

A B

Set Theory

Granulation

B

A
A υ B

A υ B

Fig. 4.7 Union of two granules ’A’ and ’B’.

As it is suggested in chapter 3, the geometrical boundaries of each final

information granule are used to estimate the initial values of the RBF pa-

rameters Ci and σi which are illustrated in Figure 4.8. The average hyper-

box boundaries of each granule are utilised to calculate the initial Ci as fol-

lows:

Ci = [Ci=1,k=1, . . . , CMn] (4.14)

where M is the number of centers and n the total number of input data

points.

Cik = 1
2(maxxk −minxk) (4.15)
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k 
+
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dimension k 

Fig. 4.8 (a) Raw data, (b) 60 information granules, (c) 20 information granules,

and (d) the final granules.

Here, the width of the Gaussian function in the RBF-layer is calculated via

the following expression

σi = 1
r

 r∑
j=1
∥Cj − Ci∥

1/2

(4.16)

in which Cj is the nearest neighbour to the centroid Ci and r is usually 2.

4.3.1 MODELLING RESULTS BY USING GRANULATION

This section describes those results obtained by using a process of granula-

tion for the initial clustering of the input raw data in order to create the ini-

tial fuzzy rule base which is then optimised by applying a self-adaptive Back

Error Propagation approach that is described in section 3. As mentioned

above, granulation is an iterative process that finds the two most compatible

data at each iteration (iter); merging them geometrically into a new granule

up to a predefined number of granules are formed/achieved. According to
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Fig. 4.9 such final granules are used to create the initial multidimensional

fuzzy rule base that represents a clump of abstract objects drawn together

through the extraction of information about their distinguishability, similar-

ity, proximity or functionality [Zadeh, 1997].

Granulation

Input Raw Data

Find the two most compatible granules ’A’ and ’B’

Merge Granules ’A’ and ’B’ forming ’C’

iter ≥ F NG

Information extraction of the final Granules

Creation of the Initial fuzzy rule base

Density Function Estimation

Fuzzy rule optimisation

Final Neural Fuzzy Model

No

Yes

Fig. 4.9 Data-driven model based on RBF Neural Networks and Fuzzy
Clustering.
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For comparison reasons and hence for cross-validation purposes, the input

raw data set used in this chapter was identically divided to that presented

in chapter 3 into three main data sets, namely: training data 1084 (65%),

validation data 277 (17%) and test data 300 (18%). Similar to those results

obtained by using FCM as the initial clustering approach in chapter 3, in this

section a group of experiments with a different number of granules (Fuzzy

sets) is proposed. Therefore, it was found that a simulation with less than

6 or more than 18 granules is not considered in order to avoid over-fitting

or under-representation of the raw data that may occurs during the training

stage. The geometrical properties of the final granules are used to construct

the initial multidimensional fuzzy rule base, for example the rule 1 is con-

structed from the geometrical properties of the granule 1 as follows:

R̃1: IF x1 is A1
1 and x2 is A1

2 and x3 is A1
3 and x4 is A1

4 and x5 is Ã1
5 and x6 is

A1
6 and x7 is A1

7 and x8 is A1
8 and x9 is A1

9 . . . and x16 is A1
16

. . .THEN the Impact Energy is B̃1 (4.17)

where x⃗p = [xk=1, . . . xn] is the normalised input raw data whose limits

are defined in the ith fuzzy granule Ai
k = [maxAk, minAk] at dimension k

which is employed for identifying the initial values of σi and centres Cik.

Different trials were performed in order to investigate at which value of

α the final granules offer a good level of compactness and distiguishabil-

ity. In Fig. 4.10, the final compatibility index behaviour is presented using

a weighting factor ’α = 0.35’. Such a figure also depicts a typical evolu-

tion of the compatibility measure, as expected the index reduces dramati-

cally (falls-off) which represents less compatible (dissimilar information) is

merged towards the end of the granulation process. This may be also used as

a criterion to terminate the iterative process - the optimal number of gran-

ules can be estimated from graphically finding the point of intersection of the

two tangent lines to the curve of compatibility as is illustrated in Fig. 4.10.

Due to the variability of neural network training, 3 different trials were car-
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ried out in order to determine the optimal model. This includes to rearrange

randomly the original data for training, checking and testing. That means

the data used per each run will be different, but the proportion in data for

training, checking and testing will be kept, i.e. 65 % (1084 data points) for

training, 17 % for checking (277 data points) and 18 % for testing (300 data

points).
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Fig. 4.10 Compatibility behaviour throughout the training stage.

A comparison of the RMSE from 3 runs and with a different number

of fuzzy rules (granules/centers) using the RBF-NN with granulation and

the well-known Fuzzy C-Means (FCM) clustering approach are shown in

Table 4.1. An Index based on the Root-Mean-Square Error (RMSE) in or-

der to measure the training, checking and testing performance and an initial

partition space of 9 granules is suggested. In Fig. 4.11, a plot of experimen-

tal results by using granulation and the adaptive-BEP are illustrated. This

is mainly due that impact energy is a highly non-linear property in relation to

the steel composition, and then the impact energy dataset comes out difficult

to be modelled as a consequence of the multitude of standards that exists,

and the variety of results. It is as well evident from Fig. 4.11 that some

scatter data represent the lack of ability of the RBF-NN by using granu-

lation to correctly classify all the points, particularly those at the checking

and testing stage. Since the compatibility criterion (4.6) is based on the

multidimensional length of each granule and its cardinality, the granular in-

dex decreases while the numbers of iterations increases as less compatible
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granules are merged.

Statistically speaking, the fuzzy model that employed a granulation ap-

proach to create the initial fuzzy rule base outperformed the model that em-

ployed FCM (See table 4.1). Furthermore, the application of granulation to

construct the initial fuzzy rule of the RBF model results more transparent

than just using FCM. This is because, the readability of a single fuzzy rule

is through the analysis of the elements of the compatibility criterion.

Similarly to those results illustrated in Fig. 4.11, the experimental re-

sults obtained when using FCM (See Fig. 4.12) still preserve the misclas-

sification of some points which clearly confirm that the scatter data are sta-

tistically similar but represent a different point. In other words, some train-

ing data fed into the T1-RBF-NN will describe a similar input space but a

scatter output space. Unlike the FCM clustering algorithm, the process of

granulation encompasses a transparent and distinguishable process at the

low level of interpretability.

Table 4.1 RMSE using Granulation and FCM

No. of rules 6 9 15 20 25 6 9 15 20 25

RMSE Granulation FCM

First arrangement

Training 20.16 18.71 16.01 15.79 15.50 21.05 18.95 16.23 16.12 15.91

Checking 20.56 19.75 19.27 19.87 21.15 22.17 20.45 19.12 20.31 21.62

Testing 21.23 21.32 21.68 21.94 22.13 22.78 21.78 21.90 21.92 23.88

Second arrangement

Training 19.70 16.91 15.83 15.75 15.33 20.50 19.18 15.86 15.79 15.55

Checking 19.82 19.65 21.30 21.42 22.40 21.36 20.01 20.15 19.42 21.02

Testing 20.26 21.38 22.41 22.14 22.22 22.97 22.30 22.19 22.60 22.47

Third arrangement

Training 19.47 16.76 15.69 15.42 15.10 20.10 18.78 15.46 15.35 15.05

Checking 19.45 19.20 20.80 20.90 22.10 20.95 19.48 19.65 19.42 21.02

Testing 19.83 20.91 21.75 21.77 21.74 22.78 21.78 21.90 21.92 21.85
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Fig. 4.11 Data fit-impact energy by using granulation
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4.4 MODELLING OF CHARPY IMPACT TEST BY USING NEUTRO-
SOPHIC SETS

The granulation process as described above, aims to compress the initial

data into compact and dense granules based in the resulting cardinality and

the multidimensional length of any two merged granules. Furthermore, this

methodology exploits as much as possible the density (′richness′ of infor-

mation) of the granules. To exemplify the evolution of the granulation pro-

cess, in Fig. 4.13 a typical granular compression over five hierarchical levels

is illustrated. The "level (1)" 80 data points taken from the Charpy data set

used in Chapter 3 are used as the initial set to be compressed into 32 gran-

ules. These granules are presented as input data to "level (2)" of granulation

where are compressed into 24 and 14 granules to be used as the input data

to "level (3)" and "level (4)" respectively. Finally, at "level (5)" the predefined

granules map conveniently onto the linguistic entities (MFs) that are used

as the initial parameters of for the rule base of the RBF Network. It is self

evident from Fig. 4.13 that the different hierarchical levels of granulation

preserve the essential features of the raw data. However, it is also evident

from Fig. 4.13, no assumption about the maximum size of the granules

is made. This means that the granules keep increasing and then overlap-

ping other granules. Although it is supposed that the formation of closely

separated granules is avoided by the very nature of maximisation informa-

tion density [Pedrycz and Bargiela, 2002], a grade of inclusion uncertainty

may be produced. This ravenous behaviour can be translated as a lack of

distinguishability due to the overlapping which is not considered into the

compatibility measure expressed in Eq. 4.6.

In Fig. 4.14, the evolution of an iterative process of granulation per di-

mension is depicted in detailed. As shown in Fig. 4.14, the phase (1) of

granulation results in a mixture of granules in "level (4)". The output space-

density per dimension is employed to construct the initial MFs as it is il-

lustrated in Fig. 4.14(b). Consequently, a multidimensional fuzzy rule is

obtained as follows:

R̃1: IF Test depth is A1
1 and Specimen size is A1

2 and Test site is A1
3 and
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C is A1
4 and Si is Ã1

5 and Mn is A1
6 and S is A1

7 and Cr is A1
8 and Mo is

A1
9 . . . and Test temperature is A1

16

. . .THEN the Impact Energy is B̃1 (4.18)
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Fig. 4.13 Granulation evolution for 80 data input points extracted from the
Charpy Impact test data set
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Fig. 4.14 Dimenisonal granulation evolution and final density function extraction

To illustrate the final shape of the MFs after granulating the 80 data

points extracted from the Charpy data set, in Fig. 4.15, the discourse of

universe of two out of the sixteen dimensions is presented. It is instructive

to point out the high degree of overlapping created after granulation. It is

believed in this research work that the overlapping caused by the merging

stage is significant and this may produce a lack of sharpness in the distinc-

tion of the rules.
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As illustrated in Fig. 4.15, a high degree of overlapping may lead to the

creation of fuzzy rules whose MFs are not distinct enough from each other

so as to represent a linguistic term with a clear semantic meaning [Zhou and

Gan, 2008]. This behaviour may result on the one hand in the creation of in-

consistent rules that contribute to make uncertain/indeterminate decisions.

This inconsistency may be translated in the construction of a fuzzy rule base

with contradictory rules. In other words, the presence of rules with a sim-

ilar premise should have a similar consequence (See Fig. 4.16). And on

the on other hand, this level of overlapping hinders the creation of a trans-

parent and hence interpretable fuzzy rule. For this reason, in this chapter

a methodology based on granulation and neutrosophic sets that is capable

to quantify the overlapping as a source of uncertainty when making deci-

sions is proposed. The aim is to attenuate such a behaviour and enhance the

transparency and hence the interpretability of the final granular space (ini-

tial fuzzy rule base for the RBF model). The point of departure lies on the

hypothesis that if the granulation compatibility index in Eq. 4.6 favours the

merging of two granules that will lead to less accumulated uncertainty when

forming new granules. Therefore, the resulting multidimensional granules,

and hence the "fuzzy rules" will be more distinguishable and interpretable.
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Fig. 4.16 Consistency of fuzzy rules after granulation
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In order to quantify and then attenuate an excessive level of overlapping,

the idea behind the proposed methodology is to applied the concept of neu-

trosophy. This new field aims to study the origin, nature and scope of neu-

tralities as well as their interaction with different ideational spectra [Maji,

2013]. Neutrosophy considers every proposition, event or entity < A >

in relation to its opposite Anti − A and the neutralities neu − A which is

not A, < not − A > and that which is neither A nor Anti − A are re-

ferred as to non − A ideas. To put it more simply, this new type of logic

deals with contradictions, paradoxes, incomplete language/systems and it

can be fitted into the category of para-consistent logics. However, this new

framework needs to be specified from a technical point of view. From a

fuzzy perspective, this new logic not only may consider the associated truth-

membership and falsity-membership supported by evidence, but also the as-

sociated indeterminacy/uncertainty-membership.

Under these circumstances, the proposed methodology aims to define

a neutrosophic set in order to measure how much two granules ”A” and

"B" overlap each other (Truth-membership whose short name is "T"), and

then use the associated falsity-membership ("F") and an exponential version

of the Shannon’s entropy (uncertainty/indeterminacy-membership, "I") to

quantify the level of distinguishability between two or more granules. There-

fore, the pseudo-code of the proposed methodology which will be called here

as granulation with neutrosophic sets (Gr-NS) can be stated as illustrated

in Algorithm 1:

In what follows, a deeper explanation of each line of the pseudo-code

will be provided. The input ejnor represents the normalised input data in

the interval [0, 1] for training the RBF-N and the corresponding Output of

the methodology is the desired number of granules M whose geometrical

properties are used to calculate the initial fuzzy rule base of the RBF model.

Each linguistic variable is represented by a crisp granule as

gi = ([li1, ui1] , . . . , [lik, uik] , . . . , [lin, uin]) (4.19)

where i = 1, . . . , M fuzzy rules.
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At line #2, a lower triangular matrix compat is initialise to zero. In or-

der to discriminate correctly the compatibility between two different gran-

ules, the elements in the diagonal of the matrix compat will be kept to zero

throughout the granulation. At line #3, the variable granule is used to up-

date the size of the matrix compat since at each iteration two different gran-

ules are merged. The compatibility between two any different granules i and

j is calculated through the lines #8− 13.

Algorithm 1 Granulation with Neutrosophic Sets (Gr-NS)

Input: ejnor

Output: gi, i = 1, . . . , M
1: iter ← 1
2: compat← 0
3: granule← 0
4: iterMAX ← (cardinalityejnor −M)
5: while iter ≤ iterMAX do
6: j ← 1
7: m← iterMAX − 1
8: while j ≤ (iterMAX − 1)− granule do
9: i← j + 1

10: while i ≤ iterMAX − granule do
11: compat(i, j) = DMAX −

{
ii∪j − di,je

(−αR)
}

, compat ∈ Rm×m.
12: end while
13: end while
14: Find the two most compatible elements i and j of the matrix compat.
15: Merge the two most compatible granules i and j.
16: iterMAX ← iterMAX − 1
17: m← iterMAX

18: granule← granule + 1
19: end while
20: Calculate Ci = [Ci=1,k=1, . . . , CMn], where Cik = 1

2 (maxxk −maxxk)
21: Calculate σi = 1

r

(∑r
j=1 ∥ Cj − Ci ∥

)1/2

The equation proposed in [Panoutsos and Mahfouf, 2010a] is used to

compute the compatibility, however a new term ii∪j is introduced. Such a

term quantifies the uncertainty that results from a lack of distinguishability

during the process of granulation. As pointed out above, a lack of distin-
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guishability when merging two granules may arise due to a high level of

overlapping. For example, in Fig. 4.17 is illustrated the resulting overlap-

ping over other granules after merging the granules i and j.

In fuzzy set theory, fuzziness is a type cognitive uncertainty that is caused

by the uncertainty transition area from one linguistic term to another [Wang

et al., 2012]. In other words, fuzziness measures the distinction between one

set and its complement. Since the granules are crisp sets, the overlapping

level may be used as the degree of fuzziness between two or more granules.

Therefore the uncertainty ii∪j based on fuzziness can be through the follow-

ing function

Granule “i”

Granule “j”

Resulting granule “iUj”

Fig. 4.17 Resulting overlapping when merging two granules i and j.

ii∪j = 1
n2

n∑
k=1

ik (4.20)

where n is the number of dimensions of the input data, and ik is calculated as

the dimensional fuzziness when merging two granules [Pal and Pal, 1993].

ik = C + 1
sk

M∑
i,j=1,i ̸=j

(
µije

(1−µij) + (1− µij)eµij

)
, C ∈ [0, 1] (4.21)

where M is the maximum number of intervals [lik, uik] (See Eq. 4.4) at the

dimension ”k” and sk = 1/
∑n

j=1,i ̸=j µji.
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Note that M is continuously updated throughout the granulation process.

That means at iteration 1, M is equal to the cardinality of the original data

set, and at the end of the compression process M is equal to the number of

final granules. Eq. 4.21 is an exponential version of the Shannon’s entropy

whose functional form to measure Fuzzy Uncertainty (FU) without refer-

ence to probabilities was firstly defined by Deluca and Termini in [De Luca

and Termini, 1972]. Such a measure can be stated as:

H(A) = −K
∑

k

µklogµk + (1− µk) log (1− µk) (4.22)

where K is a normalising constant, A is a fuzzy set in the universe of dis-

course X . The term µij which is usually denoted as pj , in Eq. 4.21 such a

term usually represents the probability of an event j and where 0 ≤ pj ≤ 1
and

∑
k pj = 1. Here µij is computed as the membership that indicates the

degree of overlapping of the interval [lik, uik] upon the interval [ljk, ujk].

µij = [lik, uik] ∩ [ljk, ujk]
Lj

, Li = |uik − lik|, i ̸= j (4.23)

Granule “j”

Granule “i”

Lj

x1

x1

x1

μji = 1

j

i

i

i

j

j j

i

μji = 1

μji < 1 μji = 0

x1

Fig. 4.18 Overlapping membership representation using intervals.
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To get a better insight of Eq. 4.23, in Fig. 4.18 the interpretation of a

granular membership µji function is depicted, where the granule gj overlaps

the granule gi. According to [De Luca and Termini, 1972], the maximum

value of the fuzziness is when the term µij = 0.5 as illustrated in Fig. 4.4.
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Fig. 4.19 Uncertainty/fuzziness evaluation

The construction of neutrosophic set can be defined as:

ti = µi; ii = ii∪j; fi = 1− µi (4.24)

where µi is the degree of overlapping of the granule i upon the granule j.

The compatibility criterion is a minimisation cost function; hence the gran-

ulation will follow the ’path’ of the minimum uncertainty. The disorder ’pro-

duced’ during the granulation process in terms of uncertainty/indeterminacy

could be evaluated by using the tuple < t, i, f > as a histogram of such com-

ponents as follows:

Ni(iter) = 1
n× cardi,j

e−f(iter) × i(iter) (4.25)

where n is the number of dimensions, cardi,j the cardinality of the new

merged granule and iter represents the current iteration. Finally, the flow

diagram in Fig. 4.20 illustrates the sequence for clustering those granules

whose overlapping is that diminishes as much as possible the entropy-based

uncertainty.
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Granulation

Input Raw Data

Find the two most compatible granules ’A’ and ’B’

Entropy-based Uncertanty Evaluation

Neutrosophic sets definition

Neutrosophic sets-based granulation

Merge Granules ’A’ and ’B’ forming ’C’

iter ≥ iterMAX

Information extraction of the final Granules

Density Function Estimation

Creation of the initial fuzzy rule base

Fuzzy rule optimisation

Final Neural Fuzzy Model

Yes

No

Fig. 4.20 Data-driven model based on RBF-NNs and Gr-NS.
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4.4.1 MODELLING RESULTS BY ESTIMATING THE UN-

CERTAINTY IN THE LINGUISTIC SCENARIO AND

GRANULATION INFORMATION ’COVERAGE’

Taken in its broad sense, granulation iterative methodology described by

[Panoutsos and Mahfouf, 2010a] considers the proximity between any two

entities and its cardinality and length as a compatibility measure. However,

as it was described above there are some situations in which distance mea-

sures do not produce the best orientation and distribution of the new merged

granules. More specifically, this can represent a loss of transparency in the

final linguistic rules, and their characterisation. For example, in Fig. 4.16(a)

the two final granules produce a misinterpretation of the consequence of the

linguistic scenario, and hence this composition bears a lack of parsimonious

modelling.
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Fig. 4.21 Data fit-Impact energy by using Gr-NS.
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The i ∪ j resulting granule in Fig. 4.16(a) covers an area (lower left of

the granule) where raw data - information - simply does not exist despite

following the compatibility objective. As a further example of the applica-

tion of neutrosophic sets, Fig. 4.21 illustrates the final modelling experi-

ments by using granulation and neutrosophic sets. One of the major moti-

vations to include the uncertainty under this merging process is to eliminate

as much as possible this undesirable granulation behaviour, and promote

a better granular coverage under a neutrosophic scheme, where the gran-

ules are strongly linked with the raw data/information. Furthermore, the

term i∪ j is introduced to estimate the indeterminacy produced by the over-

lapping created in each dimension considering just intervals or simply the

corresponding face of a granule. Once the final compression is obtained this

information is captured by the proposed neutrosophic scheme based on the

T1-RBF-NN. As a comparison study, the simulations were carried out us-

ing the same initial parameters were identical to those used by just using

granular computing (Section 4.3). In table 4.2, it is shown a comparison

of two previously obtained results via FCM, granulation and those obtained

by means of the use of neutrosophic sets. Therefore, the second and third

arrangement presented in table 4.1 and used for running two different ex-

periments by using Gr-NS.

Table 4.2 RMSE performance by using FCM, GrC and Gr-NS.

9 rules Training Checking Testing

GrC [Panoutsos and Mahfouf, 2010a] 14.66 21.24 20.42

Second arrangement

FCM 18.78 19.48 21.78

Granulation 16.91 19.65 20.91

Gr-NS 16.48 19.10 19.73

Third arrangement

FCM 19.18 20.01 22.30

Granulation 16.76 19.20 20.91

Gr-NS 16.10 18.37 19.34
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Even though, in [Panoutsos and Mahfouf, 2010a] the training perfor-

mance is better, the proposed neutrosophic scheme proved to be efficient

and more robust bearing an enhanced generalisation (testing) reducing the

errors of the predicted results which is very significant to this type of in-

dustrial data. The final granular scenario after granulation can be seen as a

fuzzy model representation due to its own characteristics and hence it may

be assumed that the interpretability of the final granular discourse is auto-

matically given due to the formation of the granules and their corresponding

interpretation as linguistic fuzzy rules. However, from the experimental re-

sults obtained by just using granulation and shown in Fig. 4.22 in the ’C’

and ’test depth’ dimensions demonstrate that the compatibility index suffers

from a lack of distinguishability among the granules.

In addition, Fig. 4.22 confirms that the process of granulation tends to

group data according to similar properties, but it never takes into account

the orientation and overlapping during the granule formation. Particularly

overlapping affects negatively the transparency and then the distinguisabil-

ity of the final granules. Fig. 4.23 shows the final shape of the MFs after the

application of the proposed neutrosophic scheme based on granulation.
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Fig. 4.22 Final shape of the MFs after granulation.
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Fig. 4.23 Final shape of the MFs after granulation and neutrosophic sets.
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Fig. 4.24 Neutrosophic index behaviour throughout granulation.

As can also be observed from Fig. 4.23, the compatibility criterion now

guides the process of granulation to form granules whose overlapping is

more moderate. This means that even the beauty of fuzzy models is the

construction of more transparent models, when non-separable data are un-

der study, some overlapping is necessary. Therefore, the creation of an hy-

perplane that completely separates the input vectors is not always possible.

From Fig. 4.24, the proposed neutrosophic algorithm pretends to efficiently
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diminish this overlapping without affecting the powerful of granulation in

grouping data according to similar features. Such an index reflects the be-

haviour of the compatibility expression in terms of the tuple < t, i, f > and

the final distribution of the resulting granules.

4.5 SUMMARY

In this chapter a systematic modelling framework based on Granular Com-

puting (GrC), the RBF-NN and neutrosophic sets is proposed. The sug-

gested approach uses a neutrosophic logic concept to estimate inherent in-

formation uncertainty/indeterminacy due to the merging operation during

the information granulation process. The uncertainty index, calculated via

a Shanon entropy criterion, is iteratively calculated throughout granulation

and this results in a final GrC-T1-RBF-NN inference system with a more

robust rule-base with better representation of the given raw data informa-

tion. This approach was applied to a real industry data set, based on the

measurement of Charpy toughness of heat treated steel, a process that is

particularly know for the production of sparse and uncertain data. The pro-

posed methodology is successfully applied to the industrial dataset and the

results show an improved generalisation and model interpretability perfor-

mance compared with similar modelling attempts. Moreover, such results

obtained by the proposed methodology led to the publication of an article in

the peer reviewed journal "Soft Computing" with the title: Granular Com-

puting neural-fuzzy modelling: A neutrosophic approach.

In the next chapter, an uncertainty assessment methodology is proposed

in order to explore and exploit the information contained and processed dur-

ing the training process.



5IT2-RBF-NN: INTERVAL TYPE-2 RADIAL BASIS

FUNCTION NEURAL NETWORK

AN Interval Type-2 Radial Basis Function Neural Network (IT2-RBF-

NN) that is functionally equivalent to Interval Type-2 Fuzzy Sys-

tems and the well-known RBF-NN is introduced in this chapter.

The main contribution of this chapter is twofold, on the one hand the

creation of a new network that is able to deal with linguistic uncertainty

is introduced. And on the other hand, an adaptive parameter identification

procedure based on the gradient-descent approach is provided.

The motivation for the development of an IT2-RBF-NN is to deal with

linguistic uncertainty at two different levels of interpretability. This opens up

a new area of research study for systems modelling by means , perceptions

and the creation of clustering approaches based on words.

5.1 INTRODUCTION

As it was pointed out in [Mendel, 1995], fuzzy logic systems are able to

handle numerical data and linguistic information. That means that fuzzy

logic systems tend to perform an inference procedure based on two types

of information knowledge. One the one hand, numerical knowledge refers

to objective knowledge frequently found in engineering problems. On the

other hand, the linguistic representation of information through subjective

knowledge that is usually abstract and it is impossible to quantify in math-

ematics [Mendel, 1995]. In this regard, the application of fuzzy sets in data-

driven models both types of knowledge can be coordinated. For instance,

in literature a large number of fuzzy logic systems of type-1 applied on real

and complex systems can be found [Coza and Macnab, 2006, Feng, 2006,

Kosko, 1992, Lee, 1990, Mamdani, 1977, Tong, 1977].
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The fuzzy inference engine plays an important role in fuzzy logic systems

since it represents the mechanism to combine the IF-THEN rules from the

rule base into a mapping from the input data to fuzzy output sets. Each rule

is seen as an individual inference activated by an antecedent (input data, MF,

singleton, etc) and then mapped into another output space (consequence)

that usually is fuzzy, crisp or interval sets. Although, fuzzy logic systems

are able to represent real problems by using linguistic rules, there is a prob-

lem when it comes to process/compute with words. This type of problems

arise when the MFs in the rule base are difficult to be determined as a conse-

quence of a controversy between two or more experts [Mendel, 2001, 2007b].

For example, when a group of people are asked to specify which length di-

mensions should be to classify a car like an small vehicle. Therefore, it would

be worth using an interval that capture the opinion of people with similar an-

swers. In other words, the use of crisp MFs to inference the opinion of the

people would not be enough. Moreover, the type of MFs, i.e. triangular,

Gaussian, trapezoidal, etc, is crucial as it is problem-dependent. This raises

questions about uncertain linguistic information when processing data with

fuzzy systems, especially neural fuzzy systems either in control theory or

systems modelling.

Zadeh not only introduced the concept of Fuzzy sets (FSs) [Zadeh, 1965],

but also proposed the idea of Fuzzy Sets of Type-2 (T2-FSs, 1975). There-

fore, it became common to call FSs of Type-1 as T1-FSs - and T2-FSs to

those FSs that have a MF of type-2, which mean that a T2-FS is a fuzzy-

fuzzy-set. However, it was not until 1998 that Mendel and Karnik [Karnik

and Mendel, 1998a] defined the basis for type-2 fuzzy systems. In that ar-

ticle, Mendel and Karnik introduced all the components that a fuzzy system

of type-2 should have, i.e. a) a fuzzifier, b) a rule base, c) type-reducer and

a defuzzifier. In a like-manner to fuzzy systems of type-1, the input data

is fuzzify into a MF of type-2 and then processed by an inference engine

for T2-FSs. Consequently, in order to get a crisp number, a type-reducer

was proposed in order to obtain fuzzy sets of type-1 from T2-FSs. Finally,

the defuzzifier produces a crisp number from the FSs that is the output of the

type-reducer. Type-2 Fuzzy Set theory is a growing research field [John and
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Coupland, 2007]. The reason behind is its ability to deal with uncertainty in

four different ways: 1) The words that are used in the antecedent and the

consequent part could mean different to different people, 2) The information

obtained from a group of experts in relation to one rule can have a differ-

ent meaning, 3) noisy training data and 4) the noisy measurements that can

activate the inference engine. However, the application of type-2 fuzzy set

theory in engineering can result expensive in computational terms. Princi-

pally, this computational load results from the large number of calculations

required to obtain the MFs of grade 2 of each input, and the number of it-

erations that are needed to execute the type-reducer [Karnik and Mendel,

1998b, 2001, Wu and Mendel, 2009]. In this sense, interval type-2 fuzzy

sets have become a popular tool among researchers and practitioners due

to its easy understanding and low computational burden compared to fuzzy

systems of type-2 [Liang and Mendel, 2000]. Furthermore, the concept of

interval offers a great chance to understand real complex systems from a

linguistic perspective handling better with knowledge and rule uncertainty.

Such properties are still described by the classical elements through the use

of a fuzzifier, rule-base and defuzzifier that constitutes the basic taxonomy

in fuzzy systems of type-1.

This Chapter details the development of an Interval type-2 Radial Basis

Function Fuzzy Neural Network (T2-RBF-FNN) and the corresponding

learning methodology for its parameter identification. The advantage of the

functional equivalence of radial basis function neural networks (RBF-NN)

to a class of type-1 fuzzy logic systems (T1-FLS) is exploited in order to

propose a new interval type-2 equivalent system; it is systematically shown

that the type equivalence (between RBF and FLS) of the new modelling

structure is maintained in the case of the IT2 system. The new IT2-RBF-

NN incorporates interval type-2 fuzzy sets within the radial basis function

layer of the neural network in order to account for linguistic uncertainty in

the system’s variables. The antecedent and consequent part in each rule in

the IT2-RBF-NN is an interval type-2 fuzzy set and the consequent part

is of Mamdani type with interval weights, which are used for the Karnik-

Mendel type-reduction process in the output layer of the network.
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The structural and parametric optimisation of the IT2-RBF-NN param-

eters is carried out by a hybrid approach that is based on estimating the ini-

tial rule base and footprint of uncertainty (FOU) directly via the granulation

approach used in chapter 4, and an adaptive Back Error Propagation ap-

proach (adaptive-BEP) proposed in this chapter. The effectiveness of the

new modelling framework is assessed in two parts. Firstly the IT2-RBF-

NN is tested against a number of popular benchmark datasets, and sec-

ondly it is demonstrated the good performance and the very good computa-

tional efficiency of the proposed framework in modelling the Charpy impact

dataset.

5.2 T1-RBF-NN STRUCTURE AND FUZZY LOGIC SYSTEMS OF
TYPE-1

As it is deeply described in appendix A, and fully explained in [Jang and Sun,

1993], an RBF-NN can be seen as a Fuzzy System of type-1 if the following

conditions are met:

• The number of receptive fields in the hidden layer (see Fig. 5.1) is equal

to the number of fuzzy rules.

• The MF’s within each rule are chosen as Gaussian functions.

• The T-norm operator used to compute each rule’s firing strength is

multiplication.

• Both the T1-RBF-NN and the FIS under consideration use the same

defuzzification method, that is: either the centre of gravity or weighted

sum to estimate their overall outputs.

Generally stated, the Jang-Sung result showed that the standard RBF-NN

is functionally equivalent to a type of Takagi-Sugeno fuzzy systems if the

value of the output weights wi (Fig. 5.1) are used as linear functions of the

input vector x⃗p. That means that the canonical form of each local inference
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Fig. 5.1 RBF Neural Network Structure

engine (Receptive Units, RUs) in the RBF-NN can be expressed as:

Ri : if x1 is F i
1 ∧ x2 is F i

2 ∧. . .∧ xn is F i
n then wi(x⃗p) = a1x1+. . .+anxn+b1

(5.1)

where each fuzzy rule is premised on its own input vector x⃗p, i.e. x⃗p ∈ Rn,

F i
n are the linguistic labels of the fuzzy sets describing the qualitative state of

the input vector, and the conjunction operator ∧ is the T-norm in the RBF-

NN. In [Hunt et al., 1996], the authors generalised the result obtained by

Jang-Sung, by using ellipsoidal basis functions which means no restriction

on the width of the basis functions, the output of each rule is given by a

linear combination (removing the restriction of just using a constant) and

the removal of Gaussian functions as the only type of MFs to be used.

In terms of fuzzy logic applications, this type of networks are now func-

tionally equivalent to a wider number of fuzzy sets of type-1. Particularly, the

work of Hunt, Hant & Smith creates a framework where the basis functions

are more independent.
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5.3 IT2-RBF-NN STRUCTURE

Before delving into the description of the constituents of the proposed IT2-

RBF-NN, it would be worth mentioning some important features that make

this network a generalised fuzzy framework for modelling purposes. This

implies that according to the appendix A.1, the proposed IT2-RBF-NN can

not only be seen as fuzzy model based on the Mamdani inference but also as

a:

1. Takagi-Sugeno Fuzzy model (TS-FM) [Hunt et al., 1996]. In contrast

to the Mamdani FM, a TS-FM defines (A.7) as follows:

yf =
∑M

i=1 µBi(y)wi∑M
i=1 µBi(y)

(5.2)

where wi = a1x1 + . . . + anxn + bi, such that i = 1, . . . , M represents M

linear local models as the consequent part of each IF-THEN rule.

2. Local model network. Since the proposed IT2-RBF-NN represents a

type of extension of fuzzy logic systems and inherits some properties from

neural networks such as universal approximation, adaptation and gen-

eralisation properties, practical advantages from one paradigm may be

used to the other under appropriate interpretations. This includes, learn-

ing algorithms, the use of a priori expert knowledge to pre-construct a

fuzzy model, and the ability of the IT2-RBF-NN to express a system by

the use of local models. To put it more simply, an IT2-RBF-NN may be

seen as a non-linear system that is decomposed into sub-models which

are integrated by smooth interpolation functions over an operating space

[Foss and Johansen, 1993].

Besides, each interval Gaussian function that is premised by the input

vector x⃗p may have a different width (spheroidal) or not (ellipsoidal). In the

former case, each MF can be expressed as

µBi = exp[−(x⃗p − c⃗i)′∆i(x⃗p − c⃗i)] (5.3)
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with

∆i =


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0 · · · 0

0 1
σ2

i2
· · · 0

... . . .

0 1
σ2
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
Therefore, the components of the IT2-RBF-NN can be listed as follows:

the fuzzifier is that of singleton type whose T-norm is the multiplication and

the type-reducer is that proposed by Karnik and Mendel [Liang and Mendel,

2000, Liu et al., 2012]. The IT2-RBF-NN configuration is illustrated in Fig.

5.2 - from a structural point of view the IT2-RBF-NN has a total of 4 layers

which are described below.
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Fig. 5.2 Structure of the proposed IT2-RBF-NN

Input Layer. The input data are multidimensional crisp data represented

by x⃗p = [x1, ..., xn] ∈ Rn. Only the current states are fed into the layer as

the input data x⃗p and then forwarded to the next layer.

Hidden RBF Layer. This Layer is a twofold layer that performs the fuzzifi-
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cation process of the input data x⃗p and produces the upper and lower interval

MF [f i, f i] as it is illustrated in Fig. 5.3. Similar to T1-RBF-NN, a process

of clustering based on data granulation [Panoutsos and Mahfouf, 2010a] is

used in order to estimate the initial parameters of the RBF receptive units.

In agreement with the existing terminology used in IT2-FS theory [Liang

and Mendel, 2000, Mendel, 2004, Wu and Mendel, 2007], here five different

types of MFs are proposed.

1. First, an n-dimensional Gaussian MF having a fixed standard deviation

σi and an uncertain mean mi
k is considered as follows

fi(x⃗p) = exp

[
−∥x⃗p −mi

k∥2

(σi)2

]
, mi

k ∈ [mi
k1, mi

k2] (5.4)

in which x⃗P = (x1, . . . , xn)T , and where

M : number of rules;

i : 1, . . . , M ;

n : number of antecedents at iteration p, and k : 1, . . . , n.

For example, the n-dimensional upper MF f i can be stated as:

exp

[
−
∑n

k=1 φk(xk)
(σi)2

]
, f i(φkl(xk), σi) (5.5)

in which

φk(xk)


(xk −mi

k1)2, xk ≤ mi
k1

0, mi
k1 ≤ xk ≤ mi

k2

(xk −mi
k2)2, xk > mi

k2

(5.6)

and the n-dimensional lower MF f i is

exp

[
−
∑n

k=1 φk(xk)
(σi)2

]
, f i(φk(xk), σi) (5.7)
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where

φk(xk)


(xk −mi

k2)2, xk ≤
mi

k1 + mi
k2

2
(xk −mi

k1)2, xk >
mi

k1 + mi
k2

2

(5.8)

Note that from Eq. 5.5 the value of f i(x⃗p) ≈ 1 when
∑n

k=1 φk(xk) ≈ 0, either

if (xk −mkl)2 → 0 or xk ∈ [mi
k1, mi

k2].

2. In like manner for an n-dimensional Gaussian primary MF having a fixed

mean mi
k and an uncertain standard deviation σi

fi(x⃗p) = exp

[
−∥x⃗p −mi

k∥2

(σi)2

]
, σi ∈ [σ1

i , σ2
i ] (5.9)

in which x⃗P = (x1, . . . , xn)T , mi
k = (mi

1, . . . , mi
n)T and where M : number

of rules, i : 1, . . . , M , n : number of antecedents at iteration p, and

k : 1, . . . , n.

Correspondingly, the n-dimensional upper MF f i is

exp

−∑n
k=1 (xk −mi

k)2

(σ1
i )2

 , f i(mi
k, σ1

i ; x⃗p) (5.10)

and the n-dimensional lower MF f i is

exp

−∑n
k=1 (xk −mi

k)2

(σ2
i )2

 , f i(mi
k, σ2

i ; x⃗p) (5.11)

3. For an n-dimensional Gaussian primary MF having a fixed mean mi
k, a

fixed standard deviation σi, and an uncertain height hi defined as

fi(x⃗p) = hi ∗ exp

[
−∥x⃗p −mi

k∥2

(σi)2

]
, hi ∈ [h1

i , h2
i ] (5.12)

where the n-dimensional upper MF f i is (See Fig. 5.3)
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Fig. 5.3 Interval type-2 Membership Functions for the receptive units in the
IT2-RBF-NN
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h1
i ∗ exp

−∑n
k=1 (xk −mi

k)2

(σi)2

 , f i(mi
k, σi, h1

i ; x⃗p) (5.13)

and the n-dimensional lower MF f i is

h2
i ∗ exp

−∑n
k=1 (xk −mi

k)2

(σi)2

 , f i(mi
k, σi, h2

i ; x⃗p) (5.14)

4. An n-dimensional Gaussian primary MF having a fixed mean mi
k, an

uncertain standard deviation σi, and an uncertain height hi that can be

stated as

fi(x⃗p) = hi ∗ exp

[
−∥x⃗p −mi

k∥2

(σi)2

]
, hi ∈ [h1

i , h2
i ], σi ∈ [σ1

i , σ2
i ]

(5.15)

hence the n-dimensional upper MF f i is (see Fig. 5.3(d))

h1
i ∗ exp

−∑n
k=1 (xk −mi

k)2

(σ1
i )2

 , f i(mi
k, σ1

i , h1
i ; x⃗p) (5.16)

and the n-dimensional lower MF f i is

h2
i ∗ exp

−∑n
k=1 (xk −mi

k)2

(σ2
i )2

 , f i(mi
k, σ2

i , h2
i ; x⃗p) (5.17)

5. Finally, in order to calculate an n-dimensional Gaussian primary MF

having an uncertain mean mi
k, a fixed standard deviation σi, and an un-

certain height hi; a combination of those equations used for the case 2, 3

and 4 can be used. Fig. 5.3(e) and 5.3(f) particularly illustrate two cases

that reflects the properties of adjusting the the heigh and the mean of the

MF. For example, when the difference |m1
k − m2

k| → 0, the shape of the

MF is almost identical to that MF obtained by just adjusting the height

as illustrated in Fig. 5.3(e).
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In particular, 5.4 and 5.9 expressed in one dimension leads to a piecewise-

linear interpolating function which represents the simplest form of exact in-

terpolation [Mendoza et al., 2009]. Thus, the generalisation to several di-

mensions is straightforward insomuch as basis functions represent a map-

ping from n-dimensional input space x⃗p to one-dimensional target space.

Moreover, the RBF approach introduces a set of M basis functions, one

for each data point which takes the values ∥x⃗p−m⃗∥ to be Euclidean, between

x⃗p and m⃗. For illustrative purposes, in Fig. 5.4 the shape of the MF in two

dimensions with uncertain standard deviation is illustrated.

Type-Reduction Layer (TRL) . Regardless of singleton or non sin-

gleton fuzzification and the type of minimum or product t-norm, the firing

strength in the hidden layer is an interval type-1 set that can be calculated by

its left-most and right-most points f i and f i. The TRL is the type-reduction

method proposed by Karnik and Mendel [Wu and Mendel, 2009] which is

the extension of the type-1 defuzzification process, and hence the functional

equivalence of the weighted average sum in the T1-RBF-NN. We propose

a type-reduction layer based upon the Karnik-Mendel center of sets type-
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reducer in order to combine the output consequent set which is shown in

5.18 and 5.19.

yl =

L∑
i=1

f iw
i
l +

M∑
i=L+1

f iw
i
l

L∑
i=1

f i +
M∑

i=L+1
f i

(5.18)

yr =

R∑
i=1

f iw
i
r +

M∑
i=R+1

f iw
i
r

R∑
i=1

f i +
M∑

i=R+1
f i

(5.19)

Where [wi
l , wi

r] represent the centroid interval set of the consequent type-2

fuzzy set of the ith rule.

4) Output Layer. The output layer finally computes the average of yl

and yr.

yf = yl + yr

2 (5.20)

5.4 PARAMETER IDENTIFICATION OF THE IT2-RBF-NN

In this section the proposed IT2-RBF-NN is a system having a center-

of-sets type reduction, product inference rule and a singleton fuzzy output

space. Since the proposed model is a type of network that falls within the

general class of non-linear layer feed-forward networks, the adaptive-BEP

approach can be applied on the estimation of the antecedent parameters σi
k

and mi
k, and the consequent parameters [wi

l , wi
r] of the MFs. The derivatives

that are needed to implement the steepest-descendent parameter-tuning al-

gorithm are derived in [Mendel, 2004]; it is explained in detail what are the

challenges in the calculation of the IT2-FS derivatives as compared to the

simpler type-1 FS ones. This section, provides a hybrid algorithm based on

granular computing (data granulation) for identifying the initial parameters

of the hidden RBF layer and a learning method that uses a momentum term

γ with an adaptive learning rate α for the optimisation of the IT2-RBF-NN
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parameters. In a like manner to those experimental results carried out in

chapter 4, the aim of the granulation stage is to group similar data (given

raw data) whose effectiveness lies on a compatibility-best designed mea-

sure mentioned in chapter 4. The proposed adaptive learning algorithm is

used to optimise the RBF parameters and the output weights; these are

now intervals and represent interval fuzzy sets in the premise and conse-

quent part of the fuzzy rules. The IT2-RBF-NN structure includes a type-

reducer stage based on the Karnik-Mendel approach that is an ascending

sort process. This iterative procedure results in a number of permutations

which must be considered when training the IT2-RBF network [Hagras,

2006]. In this research work it is used the same assignation when naming

the active branch that was employed in [Hagras, 2006] in order to calculate

the switching points L and R.

Raw Data

Granular Compression

From Granules to MF's 

   Define IT2-RBFNN

   Optimisation

Final Model

Knowledge extraction in the form of 
granules, whose attributes can be:

Size, Cardinality, orientation, etc

Convert granules to MF's, 1 to 1 ratio.
Define the centre and standard 
deviation of the MF's from  granules.  

Convert each p-dimensional granule to 
an interval fuzzy rule, and establish the 
the rule-base of the RBFNN.  

Use the Back Propagation learning 
algorithm to optimise the IT2-RBF 
parameters.  

Fig. 5.5 Overview of the GrC-based IT2-RBF-NN framework

An overview of the overall framework is depicted in Fig. 5.5 which com-

prises the rule base formation, and parametric optimisation of the IT2-RBF-
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NN system. Starting from the raw data, a GrC-based algorithm is used to

extract the information granules that subsequently will form the rule base

of the system. Each n-dimensional granule corresponds to one fuzzy rule.

In this step the FOU for each MF is also estimated. Finally, following the

definition of the IT2-RBF-NN system (as in Section 5.3) a parametric opti-

misation is performed via the adaptive BEP algorithm. The data granulation

procedure fully described in chapter 4, where a compatibility measure was

employed for grouping data according to pre-defined similarities, and the

parametric optimisation of the system is deeply described in the following

section.

FROM GRANULES TO MEMBERSHIP FUNCTIONS

The final geometrical boundaries of each information granule after compres-

sion are used to estimate the initial value of mk and σi. The average hyper-

box boundaries of each granule are utilised to calculate the initial mk no

matter if it is a fixed mean or not. Indeed, it is initially let free mi
k1 and mi

k2

by using mi
k2 = |∆mi

k| + mi
k1 and σ2

i = |∆σi| + σ1
i when the IT2-RBF pa-

rameters are optimised.

mi
k1 = [mi

11, mi
21, ..., mi

p1] (5.21)

in which

mi
k1 = maxXk

−minXk

2 (5.22)

And for the estimation of σ2
i [34].

σ2
i = 1

r

 r∑
j=1
∥mj

k1 −mi
k1∥

1/2

(5.23)

where j ̸= i, j is the nearest neighbour to the neuron i, and r ≥ 2. Once, the

initial IT2-RBF parameters are estimated we obtain the very first interval
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MFs with uncertain mean and uncertain standard deviation.

5.4.1 LEARNING METHODOLOGY

The goal of the proposed adaptive-BEP approach is the estimation of the

parameters σi
k and mi

k and [wi
l , wi

r] that characterise the antecedent and

consequent of the MFs respectively. Our start point is the derivation of the

equations necessary for the cases when a) the standard deviation is fixed

and the mean (M) is uncertain and when b) the mean is fixed and the uncer-

tain deviation (SD) is uncertain. Therefore, the adaptive learning method-

ology is used to overcome the drawback in leading the objective function

(performance index) to a local minimum by just using the gradient descent.

The adaptive-BEP approach for training the IT2-RBF-NN [Hagras, 2006,

Panoutsos and Mahfouf, 2010a] must track the corresponding parameters

σi
k and mi

k in the corresponding antecedent active branch which may be dif-

ferent at each iteration t as a consequence of the different values of L and R

during the type-reduction process that sorts the consequent weights wi’s in

increasing order, and hence the dependency of yL and yR on the output layer

parameters may also be changed. By using a learning methodology based

on a BEP algorithm for P input-output training data (x⃗p : dp); p = 1, ..., P ,

the following cost error function should be minimised:

ep = 1
2(y(x⃗p)− dp)2 (5.24)

The performance index utilised during the optimisation stage is as follows:

Piter = 1
P

P∑
p=1

e2
p (5.25)

where p is the total number of training points. Since the proposed IT2-

RBF-NN model falls within the family of feed-forward networks, the pro-

posed learning methodology first processes the information in only one di-

rection from the input layer through the hidden neurons and finally compute
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the network output. Consequently, an adaptive Back Error Propagation ap-

proach (adaptive-BEP) based on an the gradient descent is applied to up-

date the IT2-RBF-NN parameters. This is done by firstly comparing the

current output network with the desired pattern through the computation

of the Root-Mean-Square-Error (RMSE). Therefore, the error is then fed

back through the IT2-RBF-NN by computing the associated derivatives. In

Appendix B a complete procedure for the computation of the corresponding

derivatives is provided. The final adaptive-BEP equations for the IT2-RBF-

NN optimisation in the corresponding active branch areas follows:

1. For uncertain mean

The update rule for the centre of each MF:

∆mi
k1(t + 1) = −α

∂ep

∂mi
k1

+ γ∆mi
k1(t) (5.26)

∆mi
k2(t + 1) = −α

∂ep

∂mi
k2

+ γ∆mi
k2(t) (5.27)

The update rule for the width of each MF:

∆σi(t + 1) = −α
∂ep

∂σi

+ γ∆σi(t) (5.28)

The update rule for the output weight:

∆wi
l(t + 1) = −α

∂ep

∂wi
l

+ γ∆wi
l(t) (5.29)

∆wi
r(t + 1) = −α

∂ep

∂wi
r

+ γ∆wi
r(t) (5.30)

2. For uncertain standard deviation

The update rule for the centre of each MF:

∆mi
k(t + 1) = −α

∂ep

∂mi
k

+ γ∆mi
k(t) (5.31)
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The update rule for the width of each MF:

∆σ1
i (t + 1) = −α

∂ep

∂σ1
i

+ γ∆σ1
i (t) (5.32)

∆σ2
i (t + 1) = −α

∂ep

∂σ2
i

+ γ∆σ2
i (t) (5.33)

3. For uncertain height

The update rule for the centre of each MF:

∆mi
k(t + 1) = −α

∂ep

∂mi
k

+ γ∆mi
k(t) (5.34)

The update rule for the width of each MF:

∆σi(t + 1) = −α
∂ep

∂σi

+ γ∆σ1
i (t) (5.35)

The update rule for the height of each MF:

∆h1
i (t + 1) = −α

∂ep

∂h1
i

+ γ∆h1
i (t) (5.36)

∆h2
i (t + 1) = −α

∂ep

∂h2
i

+ γ∆h2
i (t) (5.37)

4. For uncertain height and uncertain standard deviation. In order to

tune a variable term hi and σi, it is only necessary to include in the adaptive-

BEP Eq. (5.79) and (5.80) for the height and Eq. (5.75) and (5.76) for the

standard deviation.

5. For uncertain height and uncertain mean. In a like manner to the

arrangement established in the case 4, the equations that can be used for

parameter identification are (5.69) and (5.70) for mi
k, (5.71) for σi and (5.79)

and (5.80) for hi. Where ’t’ is the iteration number and the performance in-

dex ’Pi’ is monitored by the adaptation algorithm which is defined as follows:
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• if Pi(t + 1) ≥ Pi(t) Then

α(t + 1) = hdα(t), γ(t + 1) = 0

• if Pi(t + 1) < Pi(t) and

∣∣∣∣∣∣ ∆Pi

P i(t)

∣∣∣∣∣∣ < δ Then

α(t + 1) = hiα(t), γ(t + 1) = γ0 (5.38)

• if Pi(t + 1) < Pi(t) and

∣∣∣∣∣∣ ∆Pi

P i(t)

∣∣∣∣∣∣ ≥ δ Then

α(t + 1) = α(t), γ(t + 1) = γ(t)

where hd and hi are the decreasing and increasing factor, respectively, and

δ is the threshold for the rate of the relative index based on the Root-Mean-

Square Error (RMSE). Hence, the following conditions must be involved:

0 < hd < 1, hi > 1 (5.39)

5.5 SIMULATION RESULTS

To illustrate the benefits of Type-2 FS in processing linguistic uncertainty,

this section is devoted to compare the performance of the proposed IT2-

RBF-FNN and the T1-RBF-NN for three different example simulations.

The first data set is the Iris plant database [Fisher, 1936], which is perhaps

one of the most popular benchmarking datasets in pattern recognition. The

second simulation uses the E.coli data set, which has been used with ex-

pert systems for the prediction of Cellular Localisation sites [Horton and

Nakai, 1996, Nakai and Kanehisa, 1991]. And finally, the last case study un-

der simulation is the predictive modelling of the Charpy Toughness of heat-

treated steel; a manufacturing process that exhibits very high uncertainty in

the measurements due to the thermomechanical complexity of the Charpy

test itself [Panoutsos and Mahfouf, 2010b, Solis and Panoutsos, 2013]. The

way the IT2-RBF-FNN is implemented in this chapter will be established
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according to the problem. The rest of this section is divided depending on

the variable to be tuned, that is 1) the first two experimental simulations for

classifying the Iris data set and for the cellular localisation sites prediction,

the variables proposed to be tuned are the uncertain mean and the uncertain

standard deviation, while the last study case; the five possible configurations

proposed in this work will be test and whose acronyms for representing them

are:

• Uncertain mean, IT2-RBF-FNN-(M).

• Uncertain standard deviation, IT2-RBFNN-(SD).

• Uncertain height, IT2-RBF-FNN-(H).

• Uncertain height and uncertain standard deviation, IT2-RBF-FNN-

(H-SD).

• Uncertain height and uncertain, mean IT2-RBF-FNN-(H-M).

5.5.1 EXAMPLE 1: IRIS PLANT CLASSIFICATION

This example employs the proposed IT2-RBF-FNN and its type-1 coun-

terpart in order to model the Iris plant database which was created by R.A.

Fisher [Fisher, 1936]. The data set contains three main categories, namely;

a) Iris Setosa, b) Iris Versicolour and c) Iris Virginica of 50 instances each,

where each category refers to a type of an iris plant and whose main classi-

fication feature is that one category is linearly separable from the two others

and the latter are non linearly separable each other. The parameter identi-

fication of the IT2-RBF-FNN-(M), IT2-RBF-FNN-(SD) and T1-RBF-

NN comprised a training process by means the proposed adaptive-BEP

described in the appendix and its corresponding validation by means of a

testing stage. Five different simulations were carried out whose initial data

used for training both models consist of 105 (70%) and 45 (30%) for testing

which were selected randomly. In training the IT2-RBF-FNN and its type-

1 counterpart, 1300 epochs were used each of which has 105 time steps
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where there is no repetition in these 105 training data. It was also consid-

ered using the same number of parameters and rules for all the models in

order to fairly evaluate their performance under the same simulation condi-

tions.
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Fig. 5.6 Interval fuzzy rule example (Iris Classification with
IT2-RBF-FNN-(M))

An example of the fuzzy rule base is illustrated in Fig. 5.6 by using an

IT2-RBF-NN with an uncertain mean. Hence one rule for the IT2-RBF-

FNN with uncertain mean (M) and uncertain standard deviation (SD) can

be stated as:

R̃i : IF x1 is Ãi
1 and x2 is Ãi

2 . . . and xn is Ãi
nTHEN y is B̃i (5.40)
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R̃1 : IF Sepal length is Ã1
1 and Sepal width is Ã1

2 and Petal length is Ã1
3...

...and Petal width is Ã1
4 THEN the Iris Plant is B̃1 (5.41)

In Fig. 5.7(a), the initial distribution of the universe of discourse for neuron

1 (from top to bottom, See IT2-RBF-FNN structure in Fig. 5.2, section

5.3) is shown, as obtained via the data granulation algorithm.
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Fig. 5.7 (a) Initial and final distribution of the (b) T1-RBF-NN, (c)
IT2-RBF-FNN-(SD) and (d) IT2-RBF-FNN-(M) for the simulation 1.
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This distribution is used as the starting point for training the T1-RBF-

NN and both the IT2-RBF-FNN-(M) and (SD) modelling structures. Even

though, in Fig. 5.7(b), (c) and (d) the final shape of the distributions for

the T1-RBF-NN and IT2-RBF-FNN are similar, the ability of T2-FS for

dealing with linguistic uncertainty improved the performance of the neu-

ral network as shown in Fig. 5.8. Each result shown in table 5.1 (RMSE

performance) for the IT2-RBF-FNN-(M) and IT2-RBF-FNN-(SD) is the

average value of 5 different runs. The results show that the RMSE perfor-

mance of the IT2-RBF-FNN is better than that of the T1-RBF-NN. The

results are presented on different size models, two different cases have been

considered, one with just three rules, and one with five rules.
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5.5.2 EXAMPLE 2: ECOLI DATA SET CLASSIFICATION

The objective of this simulation is the prediction of the cellular localisation

sites of the E.coli proteins [Nakai and Kanehisa, 1991]. Proteins from E.coli

data set are classified into 8 classes with 8 attributes each. The attribute in-

formation of the cellular sites are signal sequence recognition methods (par-

ticularly those of McGeoch and von Heijne) [Nakai and Kanehisa, 1991],

the presence of charge of N-terminus of predicted lipoproteins and 3 dif-

ferent scoring functions on the amino acid contents used for predicting if

such information is inner or outer membrane, cleavable or uncleavable and

sequence signal. According to [Nakai and Kanehisa, 1991] and for statis-

tical purposes, 336 observations were obtained of which we carried out 5

different simulations (different data arrangements) with 202 (70%) data for

training and 134 (30%) for testing which were selected randomly for each

simulation. This example compares the performance of the proposed hy-

brid learning methodology by using the FCM and GrC with the same fixed

learning rate and without the adaptive momentum term. For comparison

purposes, table 5.2 provides the average RMSE of five different runs of the

data set for IT2-RBF-FNN-(SD), (M) and the T1-RBF-NN with 5 rules

for training and testing. Fig. 5.9 shows the actual predicted output of the

IT2-RBF-FNN-(M) and the IT2-RBF-FNN-(SD) of the first simulation

for class identification of the localisation site of the proteins.
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rules for the simulation number 1.
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It can be concluded from the results shown in Table 5.2 that in general

the IT2-RBF-FNN outperforms its type-I equivalent system, while the data

granulation algorithm provides better quality granules/rules that are easier

to optimise as compared to the FCM algorithm for setting the initial rule

base of the system.

5.5.3 EXAMPLE 3: MECHANICAL PROPERTY PREDIC-

TION OF HEAT TREATED STEEL

This example is used to verify the effectiveness of the proposed IT2-RBF-

FNN over a real industrial case study. The example consists of a data set re-

lated to the Impact Energy Test of Heat treated grade steel described deeply

in chapter 4. Particularly, impact energy is a highly non-linear property in

relation to the steel composition, and difficult to be modelled. The Charpy

toughness data set used in this section in a like manner to those exper-

imental results presented throughout this research work consists of 1661

measurements on heat-treated steel (TATA Steel, Yorkshire, UK). The data

set has 16 input dimensions, and 1 output (Impact Energy, Joules) and the

chemical composition, test parameters and heat treatment conditions are

described in table 4.1, chapter 4. For cross-validation, the data have been

split into training, checking and testing data sets, in order to avoid over-

fitting and hence enhancing the generalisation properties when modelling

the Charpy test. The data used to train the IT2-RBF model consists of 1084

(65%), which are composed of just raw data. The checking and testing data

are 277 (17%) and 300 (18%) respectively. The selection of Data was set

to identically match the data set used in [Solis and Panoutsos, 2013] and

[Panoutsos and Mahfouf, 2010b] for comparison purposes. However, the

granular approach employed in this chapter does not consider the uncer-

tainty used for improving the distinguishability of the universe of discourse.

The proposed architecture is capable of extracting knowledge from data and

providing an interval linguistic representation which can lead to a comput-

ing with words (CWW) framework.
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Fig. 5.10 Interval fuzzy rule example (Impact Energy modelling-IT2-RBF-FNN).
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The proposed network also offers a good level of interpretability and trans-

parency by using expert knowledge of the physical process while the preser-

vation of a good level of generalisation is assured. Furthermore, the learning

technique used here shows a faster convergence to a better solution as a

consequence of an enhanced construction of the interval fuzzy rules in com-

parison to its type-1 counterpart. The application of the IT2-RBF-NN let

us to model uncertainties that are not possible in type-1 fuzzy systems. Part

of the linguistic rule base is shown as an example in Eq. 5.43 and Fig. 5.10

which illustrates 8 out of the 16 input variables with a 2-rules comparison

and an uncertain mean after the optimisation. It is also worth noting that

the rule base is represented not only by type-2 fuzzy sets but also by type-1

sets which are classified as f = f . An interval type-2 singleton rule can be

stated as:

R̃i : IF x1 is Ãi
1 and x2 is Ãi

2 . . . and xn is Ãi
n

THEN y is B̃i (5.42)

Where a rule for the IT2-RBF-NN just taking into account 8 out of the 16

input variables can be stated as:

R̃1: IF Testdepth is Ã1
1 and Test site is Ã1

2 and C is Ã1
3 and Si is Ã1

4 and

Mn is Ã1
5 and S is Ã1

6 and Cr is Ã1
7 and Mo is Ã1

8 and Ni is Ã1
9 . . .

. . .THEN the Impact Energy is B̃1 (5.43)

5.5.4 SIMULATION RESULTS BY USING UNCERTAIN

MEAN, IT2-RBF-FNN-M

This sections presents the simulation results obtained by using the IT2-

RBF-NN whose MFs are with a) uncertain mean [mi
k1, mi

k2] and a fixed

standard deviation σi. On the one hand, as illustrated in the Fig. 5.11(a)

the initial difference ∆mi
k = |mi

k2 − mi
k1| was set to be constant for all the
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interval MFs whose location is obtained from the data granulation.
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Fig. 5.11 (a) Initial and (b) final distribution of MFs with ’uncertain mean’
- for simplicity showing 5 out of 9 IT2 fuzzy MFs

On the other hand, Fig. 5.11 shows the optimised shape (after optimisation)

of the MFs along ’C’ dimension. Particularly, the experimental results illus-

trated in Fig. 5.12 and obtained by using the IT2-RBF-FNN-(M) show

the benefits of the application of IT2-FSs since the linguistic representation

leads to a faster parameter identification of the proposed architecture reduc-

ing the number of training steps (See RMSE). It is evident as well that the

modelling performance was enhanced. However, the IT2-RBF-FNN-(M)

model is not able to predict correctly some scatter data due to the nature of

the data (statistically similar), certain degree of redundancy among the fuzzy

rules and the low repeatability of the Charpy test. Such results confirm that

the proposed IT2-RBF-FNN-(M) provides more degrees of freedom result-

ing in a more robust classifier both in training and generalisation properties.
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Fig. 5.12 Data fit-Impact Energy by using uncertain mean.

5.5.5 SIMULATION RESULTS BY USING UNCERTAIN

STANDARD DEVIATION, IT2-RBF-FNN-(SD)

In a like manner to those experimental results obtained with the IT2-RBF-

NN-(M), in this section the results obtained by using the configuration of

the IT2-RBF-NN with a variable SD are displayed in Fig. 5.13. From Fig.

5.11(a) and Fig. 5.13(a) it is possible to observe that the initial MFs share

an identical distribution with different parameters. This is because the initial

MFs parameters are similarly obtained by using the data granulation, how-

ever the posterior optimisation of the a) variable standard deviation [σi
1, σi

1],
b) the mean mi

k and c) the output weights defined in the interval [wi
l , wi

r] by

using an uncertain standard deviation leads the MFs to a more parsimonious

universe of discourse as illustrated in Fig. 5.13(b).
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Fig. 5.13 (a) Initial and (b) final distribution of MFs with ’uncertain
standard deviation’ - for simplicity showing 5 out of 9 IT2 fuzzy MFs
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From Fig. 5.13(b), it can be also noticed that the newly optimised rules are

more distinguishable than those initially provided by the data granulation

process illustrated in Fig. 5.13(a), and it is clear from Fig. 5.14 that the re-

sults obtained by the proposed IT2-RBF-FNN-(SD) outperformed the T1-

RBF-NN and IT2-RBF-FNN-(M). Nevertheless, as it is also illustrated in

Fig. 5.14 the proposed model suffers from the same lack of ability to predict

scatter data.

5.5.6 SIMULATION RESULTS BY USING UNCERTAIN

HEIGHT, IT2-RBF-FNN-(H)

This section is devoted to examine those experimental results obtained by

using the IT2-RBF-NN model with an uncertain height hi ∈ [h1
i , h2

i ], a

fixed mean mi and a fixed standard deviation σi. The initial parameters of

the IT2-RBF-NN structure were the final geometrical properties of the final

granules with a coefficient α = 0.35. Some constraints are necessary for

the optimization of the IT2-RBFNN parameters in order to avoid σi and hi

having negative values.

0.4 < h1
i , h2

i < 5.0 (5.44)

Firstly, in Fig. 5.15 (a) and 5.15(b) the initial and final shape of 5 out

of 9 fuzzy rules at dimension ’Mn’ is illustrated, where the initial difference

h1
i − h2

i = 0.05 and the initial values of the free parameters hi, mi
k and σi

are obtained from the granulation process. Secondly, Fig. 5.16 shows the

experimental results obtained for nonlinear identification of the given im-

pact energy data set. Even the process of training is performed for 1400

iterations, the final parameters used for testing the proposed architecture

are those found when the checking evaluation stops decreasing. Especially

those results shown in Fig. 5.16 also demonstrate the ability of the pro-

posed IT2-RBF-NN-(H) for quickly defining the fuzzy linguistic rules - as

it is depicted by the RMSE plot.
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Fig. 5.15 (a) Initial and (b) final distribution of MFs with ’uncertain height’ - for
simplicity showing 5 out of 9 IT2 fuzzy MFs
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5.5.7 SIMULATION RESULTS BY USING UNCERTAIN

HEIGHT AND UNCERTAIN STANDARD DEVIATION,

IT2-RBF-FNN-(H-SD)

This section presents those results obtained by varying the height and the

deviation of the MFs. The initial parameters were identically set up to those

initial values used in the sections 5.5.5 and 5.5.6. For example, Fig. 5.17(a)

illustrates the initial shape of the MFs which are quite similar to those initial

MFs over the dimension ’Mn’ described in 5.5.6, and here the ’linguistic di-

mension’ Mn is used as well as an illustrative example. It is clear from Fig.

5.17, the results in somehow are similar to the final distribution described by

the results obtained in Fig. 5.11 and Fig. 5.15. However, the difference be-

tween the lower and the higher MF is bigger and this combination of having

an uncertain height and an uncertain standard deviatios has enhanced the

performance of the proposed IT2-RBF-FNN-(H-SD) architecture. From

Fig. 5.18 it is depicted the performance of the proposed IT2-RBF-FNN-(H)

which outperformed the results obtained by using the T1-RBF-NN.
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Fig. 5.17 (a) Initial and (b) final distribution of MFs with uncertain hi and uncertain σi -
for simplicity showing 5 out of 9 IT2 fuzzy MFs
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Fig. 5.18 Data fit-Impact Energy by using uncertain height hi and
uncertain mean σi.

Particularly a significant improvement in generalisation properties and a

faster identification of the linguistic rule base parameters was achieved. In

other words, the procedure of non-linear identification carried out by means

the IT2-RBF-FNN-(H-SD) structure favours a better classification of most

of the outlier points produced when using the IT2-RBF-FNN-(M) and IT2-

RBF-FNN-(SD) as is illustrated in Fig. 5.18. Following the order for train-

ing, checking and testing figures, the three outlier points at the testing stage

in Fig. 5.18 are supposed to be classified with an impact energy value 4.07,

5.07 and 112.10 Joules, but their corresponding statistical properties are

more similar to those points categorised within the impact energy range be-

tween 30-50 Joules. In general, this network is able of achieving a good

balance between training and checking while preserving a good level of gen-

eralisation. However, it would be worth proposing as a further study for the

development of a clustering approach which can provide interval fuzzy sets

as the initial parameters for the cross-validation procedure.
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5.5.8 SIMULATION RESULTS BY USING UNCERTAIN

HEIGHT AND UNCERTAIN MEAN, IT2-RBF-FNN-

(H-M)

This chapter has been concerned on the development of transparent models

by the use of interval type-2 fuzzy sets. Moreover, the associated param-

eter identification procedure for the IT2-RBF model including the different

configurations was developed. The main idea behind the use of neural-fuzzy

modelling lies on the concept for the quest of more accurate, user-friendly

and intelligent models. Such models must be designed under the idea of

transparency as a consequence of elements that are meaningful to the user.

In other words, a well-defined semantic of the information is essential when

designing computing with words systems and user-centric models. For ex-

ample, in Fig. 5.19 is offered a representation of two out of the sixteen inputs,

namely: test depth and Mn (%Mn) dimensions where interestingly varying

the height and the value of the interval centre of the Gaussian MFs, the

IT2-RBFNN captures the capacity of the fuzzy systems to characterise the

domain of knowledge and the relationship among fuzzy rules in terms of the

language of logic dependencies. This means it is possible to reflect the abil-

ity of fuzzy systems to create rule-based systems that imply a certain level

of accuracy and rules of higher generality when modelling high-dimensional

systems (e.g. manufacturing systems).

It is clear form Fig. 5.19 (c) and (d) that when |m1
k −m2

k| → 0 the MF

behaves as a word expressed just in terms of its associated height and hence

the properties contained in a MF defined by using an uncertain mean disap-

pear. The purpose of the IT2-RBF-NN model is achieved since the informa-

tion contained in the receptive units reveals associations between fuzzy sets

that defined the linguistic input-output space. In Fig. 5.20, the experimental

simulations by using the proposed IT2-RBF-FNN-(H=M) for predicting

the impact energy in terms of words are illustrated. Even the training per-

formance is not as good as that obtained by just using the T1-RBF-NN and

the previous configurations of the IT2-RBF-FNN, the checking and testing
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results are comparable to such models, even better than some of them.
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(b) Initial shape of the MFs with uncertain height (hi) and uncertain mean (mi
k).
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(c) Optimised MFs with uncertain height (hi) and uncertain mean (mi
k).
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Fig. 5.19 (a) Initial and (b) final distribution of MFs with ’uncertain height hi and
uncertain mean mi

k’ - for simplicity showing 5 out of 9 IT2 fuzzy MFs
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Fig. 5.20 Data fit-Impact Energy by using uncertain height (hi) and
uncertain mean (mi

k).

5.5.9 COMPARISON ANALYSIS FOR IMPACT ENERGY

MODELLING RESULTS

From the experimental results presented in the previous sections, it is clear

that the proposed methodology outperformed its type-1 counterpart mainly

in generalisation terms. Also the IT2-RBF-NN proved its efficiency and

high accuracy for fitting data particularly by adapting the value of σi and the

corresponding hi.

In practical terms, the results obtained by using an uncertain height

demonstrated that fuzzy logic can be evaluated over an interval [0, 1+[. A

further study in this direction can be done within the theory of neutrosophic

sets. Table 5.3 shows 5 different types of modelling results obtained by using

the proposed structure and the type-1 RBF-NN.
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Table 5.3 Modelling performance

Model Number of parameters training checking testing

T1-RBF-NN 162 16.76 19.25 20.91

IT2-RBF-FNN-(M) 162 16.44 19.30 20.15

IT2-RBF-FNN-(SD) 162 16.27 18.20 19.87

IT2-RBF-FNN-(H) 162 16.75 18.08 19.65

IT2-RBF-FNN-(H-SD) 162 16.53 17.95 19.43

IT2-RBF-FNN-(H-M) 162 17.62 18.78 19.47

All the experimental simulation were carried out by employing an adap-

tive BEP approach and its corresponding version developed for identifying

the IT2-RBF-FNN parameters. Even such results depicted similar be-

haviours, the initial value of the learning rate α and the output layer weights

[wi
l , wi

r] per experiment was different.

5.6 SUMMARY

In this chapter a new data-driven IT2 Fuzzy Logic modelling framework,

which is based for the first time on a Radial Basis Function - Neural Net-

work is presented. The good performance of IT2-FLS as opposed to their

T1 equivalent is known, as well as the vast array of T1-RBF-NN-based

implementations, which offer functional equivalence to T1-FLS, universal

approximation capability and a plethora of clustering and parametric opti-

misation methodologies that help optimise the linguistic rule base. The pre-

sented IT2-RBF-FNN outperforms its T1 equivalent T1-RBF-NN coun-

terpart and also maintains its functional equivalence to a T2-FLS. Further-

more, a systematic approach for capturing knowledge out of raw data sets

via a GrC-based framework and use this information to define an equivalent

footprint of uncertainty is used, and then it is optimised as a whole IT2-FLS

via an adaptive-BP approach.
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The proposed methodology is tested against three case studies, which

include two benchmark problems and one real industrial case study that

poses particular challenges in terms of uncertainty and data scarcity. In each

case study we demonstrate the results of the proposed IT2-RBF-FNN with

two different implementations, one with a variable mean and one with a vari-

able standard deviation. In all three cases the IT2-FLS outperforms its T1

equivalent, which is in line with previous results from other authors in non-

T1-RBF-NN fuzzy logic structures. Furthermore, the uncertain standard

deviation implementation seems to outperform the uncertain mean in ev-

ery case. Absolute raw performance however, on this occasion, was not the

main goal of the proposed structure; it is expected that the use of alternative

optimisation techniques (parametric and/or structural) may provide an even

better overall result. The main contribution of this work is the creation of the

RBF-NN-based implementation of an IT2-FLS, and its direct comparison

with a T1-FLS equivalent structure. This new implementation also opens

up the potential for other researchers in the field, who already work with the

popular RBF implementations of T1-FLS to try the proposed IT2 structure.

As a further conclusion to the presented methodology, the granular com-

puting framework provides an almost intuitive way of automatically setting

the footprint of uncertainty of IT2-FLS. Therefore a systematic and auto-

matic methodology that can be used (even beyond T1-RBF-NN) to capture

knowledge from raw data and use this knowledge to establish the FOU of

IT2-FLS was created.



6STUDIES FOR UNCERTAINTY ASSESSMENT IN

THE RBF-NN AND THE IT2-RBF-NN.

A twofold study at the low level of interpretability and high-level of

interpretability of the RBF-NN in order to quantify fuzzy uncer-

tainty is provided. The first part of this study consists in the development of

a methodology based on neutrosophic sets for the evaluation of vagueness

among the fuzzy rules by using an overlapping coefficient throughout the

parameter optimisation stage. Consequently, an index is proposed to eval-

uate the ambiguity associated with one-many-relations when making deci-

sions during the parameter identification process. Secondly, the last part of

the study provides a methodology for quantifying ambiguity, fuzziness and

entropy that is produced due to the resulting redundancy in the fuzzy rule

base at each iteration of the parameter identification process of the RBF-

NN and the IT2-RBFNN. This information analysis might be employed for

enhancing both the low and high-level of interpretability of the RBF-NN

and the IT2-RBF-NN.

6.1 INTRODUCTION

In fuzzy rule-based systems, interpretability is assumed to be a natural prop-

erty [Alcalá et al., 2006, Casillas, 2003, Jin, 2000, Johansen and Babuska,

2003, Mencar et al., 2007b, Mikut et al., 2005]- interpretable intelligent sys-

tems are always desired for applications in a wide range of areas such as

medicine, robotics, control, economics, etc. Moreover the readability and

comprehensibility are crucial for the construction of fuzzy systems capable

of explaining humanistic systems (i.e. systems whose behaviour is strongly

influenced by human judgement, perception or emotions[Zadeh, 1975]).

A vast number of different efforts have been made for the development
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of linguistically interpretable neural fuzzy models from data, i.e. neural sys-

tems capable of representing fuzzy systems that preserve meaningful fea-

tures such as interpretability, transparency and then distinguishability [Al-

calá et al., 2007, Cpałka et al., 2014, Łapa et al., 2014, Lughofer, 2013, Men-

car et al., 2011]. That means the extraction of information in a transparent

way is a cornerstone for parameter identification of neural fuzzy systems for

representing input-output data samples.

As mentioned by [Paiva and Dourado, 2004], transparency is a measure

of linguistic interpretability of the rules issued from the training of a neural-

fuzzy system. A lack of knowledge representation and interpretability is

a common issue among neural-fuzzy systems mainly as a consequence of

the training process utilised for parameter identification. Indeed, the inter-

pretability is born as a natural property in the birth of fuzzy systems. An

adequate balance between accuracy and interpretability is not an easy task

as both abilities are affected when the complexity of the system increases.

Zadeh pointed out in its principle of incompatibility [Zadeh, 1975], "As the

complexity of a system increases, our ability to make precise and yet signif-

icant statements about its behaviour diminishes until a threshold is reached

beyond which precision and significance (or relevance) become almost mu-

tually exclusive characteristics".

Even transparency and interpretability are two properties closely related,

it does not mean that both concepts match. In other words, the transparency

of a fuzzy system can be considered as a measure to validate how inter-

pretable is the fuzzy rule base [Riid and Rüstern, 2003]. Moreover, an im-

provement in the readability of fuzzy systems through the use of a moderate

number of system variables, fuzzy sets, and the avoidance of constructing

an inconsistent rule base has not a lot of in common with transparency.

Particularly, efforts on fuzzy modelling have been focused on increasing

the interpretanbility and distinguishability of the rule base while maintaining

a good modelling performance in systems design [Zhou and Gan, 2008]. For

instance, in [Juang and Chen, 2012] a data-driven interval-type-2 neural

fuzzy system with high learning accuracy and improved model interpretabil-

ity is proposed. Juang and Chen built a type-2 fuzzy model whose design
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is twofold, i.e. (1) an initial clustering approach was used to generate ac-

curate fuzzy rules with good accuracy and (2) a gradient descent and ruled-

ordered recursive least square algorithms for learning the antecedent and

consequent parameters of the proposed network. In [Rhee and Choi, 2007],

Rhee and Choi proposed an off-line methodology based on interval type-2

fuzzy set theory for estimating the initial parameters of the RBF-NN. This

work is shown to improve the classification performance and to control the

linguistic uncertainty produced throughout the construction of the inference

mechanism.

As it is described above, interpretability and accuracy is a pivotal element

that must be considered when designing data-driven fuzzy models [Nauck

et al., 1997, Paiva and Dourado, 2004]. The smallest number of aspects

that must be considered throughout the construction of fuzzy models and

especially neural fuzzy systems are [Guillaume, 2001]:

• The amount of fuzzy rules might be small enough to be understandable

- according to [Bodenhofer and Bauer, 2003], it is advisable to exclude

any rule weight or degrees of plausibility.

• Each rule represents an input-output model relationship (locally) and

therefore the rules are consistent. That means, two or more similar

rules lead to similar conclusions.

• The structural representation of the rule base is easy-to-interpret con-

taining an small number of features (model inputs).

• The shape, parameters and mathematical expression of the MFs should

be intuitively comprehensible.

• The inference engine should produced mathematically and linguisti-

cally correct consequences (model outputs).

In order to enhance the trade-off between interpretability and accuracy, some

researchers have employed fuzzy uncertainty theory to quantify the behaviour

of each component in a fuzzy model. For example, in [Wang et al., 2012], it
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was introduced a mechanism to quantify ambiguity associated to the con-

struction of a fuzzy tree for modelling purposes. Such a methodology was

able to measuring the fuzzy decision as the averaged classification ambi-

guity of the tree’s root. Usually in fuzzy trees this kind of uncertainty is

evaluated recursively from the leaf nodes to its root which means a higher

consuming time. Alternatively, the authors proposed a novel mechanism

based on ambiguity quantification to select from a large data set a reduced

number of representative samples so as to minimise the adjustment of the

fuzzy decision when adding samples to the training set. Because of this, the

construction of the fuzzy tree was faster on the one hand, and it was just

needed an small number of rules on the other hand.

However much of the work related to the RBF-NN concerns with func-

tion approximation [González et al., 2003, Oh et al., 2011, Park and Sand-

berg, 1991], fuzzy rule extraction [Sarimveis et al., 2002], and granular com-

puting [Panoutsos and Mahfouf, 2010c] and so as not to achieved a good

level of transparency and accuracy. The RBF-NN posses the characteris-

tic of fuzzy sets that the RUs values can be defined in the interval [0, 1] as

the correlated truth of an event. In a like manner, the learning capabili-

ties of the RBF-NN has some parametric flexibility that can be studied into

other fields of fuzzy logic. In that case, for parameter identification purposes

recent theories such as intuitionistic sets logic, interval type-2 fuzzy sets

and neutrosophy might aid not only to quantify the associated uncertainty

to the RBF-NN, but also to enhance its interpretability while preserving

a good level of accuracy. Particularly, neutrosophy is a generalisation of

fuzzy logic based on the fact that a proposition can be true (T), indeter-

minate (I) and false (F) - a tuple < T, F, I > can be defined over the real

domain with no restrictions. Besides, Neutrosophy is a branch of philoso-

phy capable of dealing with prepositions which are true and false at the same

time. This implies that during the parameter identification process (cross-

validation) of the RBF-NN and the proposed IT2-RBF-NN, the associated

uncertainty may be studied from different fuzzy perspectives. Under these

circumstances, three major uncertainty frameworks can be exploited and

hence applied to improve the understanding of the network. On the one
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hand, entropy and fuzziness (cognitive uncertainty) quantify the impurity of

a crisp (real) set and the uncertainty transition area from one linguistic rule

to another respectively [Wang et al., 2012]. On the other hand, ambiguity is

another type of cognitive uncertainty that is produced as a result of choosing

one from two or more alternatives [Hartley, 1928].

The scope of uncertainty theory in fuzzy logic is not limited just to en-

tropy, fuzziness and ambiguity [Pal and Bezdek, 1994, Xiaoshu and Fanlun,

2000, Yager, 2002], but also to fuzzy relations [Yu et al., 2007] and approxi-

mate reasoning [Dubois and Prade, 1991] have been proposed. In the design

of fuzzy systems, uncertainty appears due to the lack of information, and it

mainly comes into three different disguises that covers the Probabilistic Un-

certainty (PU), Resolutional uncertainty (Ru) and Fuzzy Uncertainty (FU)

[Pal and Bezdek, 1994]. The first two types of uncertainty are closely related

to belongingness of elements or events to crisp sets and the ambiguity of

specifying the exact solution respectively.

In this chapter, the development of several experimental studies which

are divided in two main sections is proposed, i.e. (1) the first section exploits

and explores the functional equivalence established between the RBF-NN

and Fuzzy Logic Systems of type-1 (FLS) so as to quantify the uncertainty.

(2) the second section proposes the calculation of three measures of uncer-

tainty based on their relationship to the redundancy in the fuzzy rule base.

To begin, the first study is mainly concerned to the development of a neu-

trosophic mechanism which is firstly used to measure the fuzziness Ik pro-

duced as a consequence of the dimensional overlapping area among RUs via

defining the neutrosophic set < T, F, Ik >. T and F are used to measure the

overlapping area between two RUs and its complement respectively. Sec-

ondly, an index Ik
ji is suggested in order to measure the non-specificity (am-

biguity) by the RUs throughout the training stage of the RBF-NN. The

performance of the uncertainty evaluation carried out by the application of

neutrosophic sets will be compared to the experimental results provided in

the second section of this chapter.

To conclude this chapter, It follows the same idea of estimating the am-

biguity and the fuzziness in relation to entropy, but the proposed evaluation



194
STUDIES FOR UNCERTAINTY ASSESSMENT IN THE RBF-NN

AND THE IT2-RBF-NN.

quantifies the uncertainty that results from the redundancy created during

the cross-validation process in the RBF-NN and in the IT2-RBF-NN ar-

chitecture. The redundancy is measured by applying a similarity measure

that compares the shape and proximity of two fuzzy sets. For this, experi-

mental results show that under some considerations, a similarity matrix can

be constructed from the hidden layer neurons in the RBF-NN in order to

evaluate the redundancy and hence the similarity during the construction of

the RBF-NN rule base.

6.2 UNCERTAINTY ASSESSMENT IN THE RBF NEURAL NETWORK
USING NEUTROSOPHIC SETS

As it was mentioned in chapter 5 and deeply explained in appendix A, a func-

tional equivalence between type-1 fuzzy systems and the RBF-NN can be

established under some restrictions. Besides, in chapter 5 it was possible to

demonstrate as well that the RBF-NN can be extended to a specific type of

IT2-FSs based on distance (kernel functions). Under these circumstances,

the existing tools developed so far so as to measure fuzzy uncertainty may

be applied on the RBF network under some restrictions. For that reason,

in this section is introduced a new methodology that includes two types

of uncertainty assessment based on neutrosophic sets, namely: on the one

hand, the vagueness among fuzzy rules which is estimated calculating the

fuzziness [Xiaoshu and Fanlun, 2000] between two fuzzy sets Ãi
k and Ãl

k

with respect to the kth input using an overlapping coefficient [Inman and

Bradley Jr, 1989]. And on the other hand, the ambiguity during the fuzzy

rule construction is estimated - such an uncertainty is associated with one-

to-many relations, i.e. situations with two or more alternatives influence in

making decisions during the learning process of the RBF-NN.

The first step of the proposed methodology is to define the tuple < Ti, Fi, Ii >

in the RBF-NN taxonomy and then use this information to calculate the as-

sociated type of uncertainty. Secondly, a process of identification must be

carried out in order to calculate the RBF parameters. In Fig. 6.1 the pro-

posed structure with neutrosophic RUs is illustrated indicating the role of

the tuple < T, F, I >.
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Fig. 6.1 RBF-NN structure based on NS

The hidden layer of the RBF-NN can be treated as a fuzzy inference

engine that maps an input observed universe of discourse U ⊂ Rn, k =
1, ..., n characterized by a MF µA(x) : U → [0, 1] into a nonfuzzy Y ∈ R set.

From this layer a rule based system can be described as follows:

R̃i : IF x1 is Ãi
1 and x2 is Ãi

2 . . . and xn is Ãi
n

THEN wi = a1x1 + . . . anxn + bi (6.1)

If wi is c, hence the RBF model may be seen as a Mamdani inference model

where the output of each RU is

µAi(x⃗p) = fi

(
exp

[
−∥x⃗p − x⃗∥2

σ2
i

])
(6.2)

In other words, the network output which is computed by Eq. 6.3 may be

seen as the weighted sum of each normalised truth µAi = Ti of the event p,

where each event is the pth input vector during the parameter identification

stage.

yf =
∑M

i=1 wiµAi∑M
i=1 µAi

(6.3)
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From this perspective each neutrosophic RBF unit can be represented by

the tuple < Ti, Fi, Ii > where Ti can be defined as the firing strength or

its normalised value. Usually, Fi and Ii are defined as the complement of a

given fuzzy set Ãi
k and its associated uncertainty respectively. Therefore, the

proposed elements Ti, Fi and Ii of the neutrosophic tuples are calculated in

this paper according to fuzziness and ambiguity.

6.2.1 FUZZINESS

Fuzziness or vagueness [Pal and Pal, 1989, Wang et al., 2012] has been a

measure widely used in the development of fuzzy set theory and as an alter-

native measure of randomness for describing uncertainty. As mentioned in

[Kosko, 1990] there are some theoretical differences between fuzziness and

uncertainty which can be explained with examples and with theorems. To

put it more simply, while fuzziness is conceived by the treatment of fuzzy

sets, uncertainty theory gets more information by considering both aspects

of possibility of truth (belief in) and the possibility of falsehood. The latter is

mainly studied into the field of possibility theory. Furthermore, the seman-

tic difference between both theories concerns by the fuzzy side on express-

ing "blurry" situations and by the "uncertainty" side on the expression of

not-exactly-known reality. However, there are similarities that make both

measures share a common point of view. For example, both theories han-

dle with such similarities in terms of their individual capabilities to represent

uncertainty numerically in the unit interval [0, 1] and that both measures -

fuzziness and randomness (uncertainty) can combine sets and propositions

associatively, commutatively and distributively. Fuzziness is mainly asso-

ciated with respect to the linguistic uncertainty of fuzzy terms. In [Pal and

Bezdek, 1994] a review of a number of well known measures of fuzziness for

discrete fuzzy sets is presented. The proposed fuzziness measure to be used

in this work and defined in [Xiaoshu and Fanlun, 2000, Yager, 2002] can be

written as follows:
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fei
k(µOv) =


(1− µOv)αeµOv + µα

Ove(1−µOv), i ̸= j

0, i = j.

(6.4)

Where α ∈ [0, 1] and µOv represents the area that the fuzzy set Ãl
k overlaps

the fuzzy set Ãi
k (i = 1, . . . , M) and can be obtained as:

µOv =
Ov

Ãi
k

Ãl
k

Ãi
k

, µOv ∈ [0, 1] (6.5)

Note that the value of fei
k is zero if i = j, that means the overlapping area

is just computed for two different MFs. In the case of i ̸= j, an exponential

version of the Shannon’s entropy is used. the value of fei
k is 1 if the MF ′i′

is fully overlapping the MF ′j′. In Fig. 6.2, the proposed fuzziness measure

is depicted for different values of α. Such measure is related to the truth or

MF in each N-RBF unit. Nevertheless, measures based on a combination

between the truth and falsity of an event can be calculated as well. The

overlapping coefficient Ov
Ãi

k
Ãl

k
is used to calculate the area under the smaller

of the fuzzy distributions Ãi
k and Ãl

k as is illustrated in Fig. 6.3. Therefore,

Ov
Ãi

k
Ãl

k
can be calculated as follows [Inman and Bradley Jr, 1989]:
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Ov
Ãi

k
Ãl

k
=
∫ b

a
min

[
Ãi

k(x),Ãl
k(x)

]
dx (6.6)

The expression(5.4) represents the fuzziness per dimension in the ith

rule between the fuzzy sets Ãi
k and Ãl

k. However, the fuzziness must be an

average dimensional measure per neuron at pattern p which can be obtained

as follows:

Ep
i (fei

k) = 1
M × n

n∑
k=1

M∑
i=1,i ̸=j

fei
k(µOv)) (6.7)

Where M and n are the number of rules and dimensions respectively. In order

to define the neutrosophic sets based on the evaluation of the fuzziness in the

fuzzy rules construction, the value of the local uncertainty/indeterminacy Ik

between two fuzzy sets Ãi
k and Ãi

k is obtained as follows:

Ûp
ik =



1
(1+e

g×fei
k )

, µOv < t̂;

(eg×fe
j
k )−e

g×fei
k )

(eg×fei
k )+e

g×fei
k )

, µOv > t̂.

(6.8)

When i = j the value of Ûp
ik is zero. Where t̂ ∈ [0, 1] and g ∈ R.

Therefore the local uncertainty per RU can be defined as

Ii = 1
M × n

n∑
k=1

M∑
i=1,i ̸=j

Ûp
ik (6.9)

And the overall network uncertainty at pattern p is defined as:

Ip = 1
M × n

P∑
p=1

n∑
k=1

M∑
i=1,i ̸=j

Ûp
ik (6.10)

Where P is the number of training patterns, Ti is defined as the truth µ
Ãi

k

associated to a N-RBF unit, and Fi = 1− µOv is the falsity.
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6.2.2 AMBIGUITY

Usually in fuzzy set theory ambiguity [Wang et al., 2012] includes three main

types of uncertainty measures, namely: a) nonspecificity, b) dissonance and

c) confusion.

The proposed measure of ambiguity is associated with nonspecificity

based on neutrosophic sets which represents a cognitive uncertainty. In

the RBF-NN, the ambiguity is caused by the uncertainty of choosing one

from all the normalized outputs (normalized firing strengths) in the hidden

layer when classifying the input data. Therefore, the larger the number of

alternatives, the higher the ambiguity is [Pal and Pal, 1989].

In this paper, the ambiguity is defined as the indeterminacy in choosing

which fuzzy rule (receptive field unit) defines correctly the input data ac-

cording to its normalized output. Thus, the tuple < Ti, Fi, Ip
ik > is defined

as follows:

The truth is calculated by:

Ti = µAi(x⃗p)∑M
i=1 µAi(x⃗p)

(6.11)
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The falsity is calculated by:

Fi = max [Ti]i ̸=j (6.12)

The ambiguity/indeterminacy is obtained by using the equation defined in

[Wang et al., 2012] and is depicted in Fig. 6.2.2;

Ip
ik = Ambiguityi = 1− |Ti − Fi| (6.13)

Therefore, the total neural ambiguity can be calculated by the following ex-

pression

IA = 1
M × n

P∑
p=1

n∑
k=1

M∑
i=1

Ip
ik (6.14)
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6.2.3 PARAMETER IDENTIFICATION METHODOLOGY

The parameter identification consists of two main stages: a) a process of

granulation [Panoutsos and Mahfouf, 2010c] where are calculated the ini-

tial parameters of the RBF-NN and b) their corresponding optimization by

using an adaptive gradient descent approach including the uncertainty from

two different perspectives based on fuzziness and ambiguity. The flow di-
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agram of the fuzzy uncertainty assessment by using RBF-NN’s and NS for

classification is depicted in Fig. 6.5.

The energy expression and the objective function is obtained respectively as

follows:

Pi =
P∑

p=1

M∑
i=1

Ep
i e2

p (6.15)

where Ep
i e2

p represents the neutrosophic inference mechanism throughout

the learning process. And the fuzzy inference can be established as the

weighted normalised average expressed in (11). Therefore, the update rule

for the output weight is:

wi(p + 1) = γwi(p)− fei
kβepgi; (6.16)

Where gi = µAi (x⃗p)∑
j

µAi (x⃗p) and the update rule for the width is:

σi(p + 1) = γσi(p)− fei
kβepgi(wi(p)− yp)(xi(k)−mi

k)2

σ3
i

; (6.17)

And the update rule for the ith centre is:

mi
k(p + 1) = γmi

k(p)− fei
kβepgi(wi(p)− yk)(xi(k)−mi

k)
σ2

i

; (6.18)

Where β is the learning rate and γ is the momentum. The energy index

is used to update the adaptation algorithm as follows:

• if Pi(t + 1) ≥ Pi(t) Then

α(t + 1) = hdα(t), γ(t + 1) = 0

• if Pi(t + 1) < Pi(t) and

∣∣∣∣∣∣ ∆Pi

P i(t)

∣∣∣∣∣∣ < δ Then

α(t + 1) = hiα(t), γ(t + 1) = γ0 (6.19)
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• if Pi(t + 1) < Pi(t) and

∣∣∣∣∣∣ ∆Pi

P i(t)

∣∣∣∣∣∣ ≥ δ Then

α(t + 1) = α(t), γ(t + 1) = γ(t)

Where hd and hi are the decreasing and increasing factors, respectively. As it

is mentioned in [Panoutsos and Mahfouf, 2010c], the value of the constrains

are:

0 < hd < 1 (6.20)

hi > 1

Raw data

Granulation

Optimisation by the 
Adaptive Gradient 
Descent Algorithm

Uncertainty estimation
Fuzziness & Ambiguity 

Final Model

Until specified termination
point or convergence

is achieved 

From Granules 
to MF's

Knowledge discovery 
and explotation

Fig. 6.5 Neutrosophic parameter identification process

6.3 EXPERIMENTS AND ANALYSIS

To investigate fully the effectiveness and efficiency of the proposed method-

ology, two different problems of 4 and 16 dimensional space are reported in



6.3 EXPERIMENTS AND ANALYSIS 203

this part. Firstly an assessment of uncertainty due to the fuzziness by using

the Iris plant database is modelled. As it is mentioned in [Tenner et al., 2001],

when a linear model is developed, the determination of the importance for the

model inputs is directly related to the coefficients of the model. Nevertheless,

in neural fuzzy systems the interpretation and then the estimation process of

the weights of the network (which can be regarded as the linear model coef-

ficients) is much more complicated to some extent. For this reason, Iris data

set has represented a popular benchmark data set which combines three dif-

ferent classes, two linearly related each other and both non-linearly with the

third one. Secondly, the real case study presented in chapter 5 for the pre-

dictive modelling of the Charpy Toughness of the Heat treated steel is used.

Because of impact energy test exhibits very high uncertainty in the measure-

ments as a consequence of its thermomechanical complexity, the developed

methodology is intended to reflect such uncertainty through the assessment

of the local and global fuzziness and ambiguity of the RBF-NN. It is worth

mentioning that the two different study cases carried out in this chapter use

the same training methodology and its corresponding cross-validation pro-

cess. However such methodology is viewed from a neutrosophic point of

view, this means that the proposed structure can be treated as an RBF-NN

architecture capable of evaluating the tuple < Ti, Fi, Ii > where its elements

T, F, I ∈ [0, 1]. For example if the value of F = I = 0; the usual RBF-NN

is being employed, otherwise an RBF-NN is taking into account the asso-

ciated falsity and indeterminancy/uncertainty produced by the network.

6.3.1 EXAMPLE 1: IRIS PLANT CLASSIFICATION

In this part, the application of the developed structure based on the RBF

network is intended to carry out the prediction of the iris dataset. Two differ-

ent experimental studies were carried out, to be specific: 1) an experimental

study for modelling the Iris data set by using the tuple < Ti, 0, 0 >, and

2) an experimental study for evaluating the tuple < Ti, Fi, Ii >. The for-

mer model used the cross validation methodology employed in chapters 4

and 5, meanwhile the latter model, a cross-validation process with the pro-
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posed training methodology was used. Since the previous results in chapter

5 demonstrated that less than 3 or no more than 5 N-RBF units are needed

to accurately classify the data, in this section only 3 units are proposed to

be used. In table 6.1 the statistics properties and attribute information of

the a) Iris Setosa, b) Iris Versicolour and c) Iris Virginica and the correct

percentage (%) of the average classification accuracy for the class 1, 2, and

3 by using the tuple < Ti, Fi, Ii > are shown. This experiment also inves-

tigates the performance of the proposed neutrosophic frameworks. Such

methodologies demonstrated the ability for creating a more distinguishable

discourse of universe where the RBF-NN when classifying the IRIS data

set. The training process employs 100% of the data set and estimates at the

same time the network uncertainty caused by the overall and individual RU

fuzziness.

Fig. 6.6 illustrates respectively the final distribution of the universe of

discourse in the dimension 4 of the Iris data set by using the tuple < Ti, 0, 0 >

and < Ti, Fi, Ii >, the local uncertainty Ep
i and the overall network uncer-

tainty Ip behaviours due to the fuzziness. Specially, in Fig. 6.6(c), the as-

sessment of uncertainty clearly indicates the relationship of the fuzziness

and the classification of the different Iris categories. While the term RUa

represents a neutrosophic RBF unit by using the tuple < Ti, 0, 0 >, the

term Rb is used for representing the corresponding neutrosophic RBF unit

by using the tuple < Ti, Fi, Ii >.

Table 6.1 Iris Database statistics, attributes and average classification accuracy

Summary Statistics Min Max Mean SD

Sepal Length (cm) 4.3 7.9 0.83 5.84

Sepal Width (cm) 2.0 4.4 0.43 5.84

Sepal Length (cm) 1.0 6.9 1.76 5.84

Sepal Width (cm) 0.1 2.5 0.76 5.84

Name class 1 % class 2 % class 3 %

Iris 100 97.66 99
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Fig. 6.6 (a) Final distribution using the tuple < T, 0, 0 >, (b) Final distribution
using the tuple < T, F, Ik >, (c) local uncertainty Ek

j performance and (d) the
overall uncertainty Ik produced by the overlapping among the RUs throughout the

training process.

From Fig. 6.6, it is also obvious that for this case in particular, the

neural network uncertainty Ip diminished importantly when using the tuple

< Ti, Fi, Ii > during the training. This means that it is possible to exploit

the information contained in the RUs, and then manipulate the transparency

and interpretability of the information per RU. The inclusion of fei
k in this

study aims to unify the concept of uncertainty and the evaluation of truth

under a neutrosophic framework.

6.3.2 EXAMPLE 2: IMPACT ENERGY TEST

In this example, the experiments are established into three different simula-

tions, namely:
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1. An experimental simulation applying the cross-validation methodol-

ogy by using the truth associated to each N-RBF unit.

2. An experimental simulation by using the proposed fuzziness measure

for uncertainty assessment.

3. An experimental simulation by using the proposed ambiguity measure

for uncertainty assessment.
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Fig. 6.7 Performance of (a) Training, (b) Checking and (c) Testing using the tuple
< T, F, Ik >

Basically, the two experiments performed in this example assess the un-

certainty caused by the fuzziness and ambiguity during the training process

of the RBF-NN for the prediction of the impact energy. The example con-

sists of a data set related to the Impact Energy Test of Heat treated grade

steel. For comparison reasons, The selection of Data was set to identically
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match the data set used in chapter 5. The chemical composition, test pa-

rameters and heat treatment conditions are shown in table 6.3.1. The in-

put space is defined by 16 input dimensions, and 1 output (Impact Energy,

Joules), and the data set employed to train the RBF network consists of

1084 (65%), which are composed of just raw data. The checking and testing

data are 277 (17%) and 300 (18%) respectively.

In Fig. 6.7, a plot of the modelling results evaluating the fuzziness are

illustrated. Such results are obtained by using the proposed gradient de-

scent algorithm and the tuple < Ti, Fi, Ii > where the term Ip is the overall

fuzziness which is computed using the Eq. (6.9). In Fig. 6.8, the final dis-

tribution by assessing the fuzziness of the fuzzy sets at dimension 3 (Test

site test parameter) and the local uncertainty Ep
i are illustrated. Fig. 6.8(b)

illustrates the behaviour of the overlapping of the entire RBF-NN through-

out the training process.

As it is illustrated in Fig. 6.8(a), the higher the overlapping per dimension,

the larger the local uncertainty per receptive unit (see Fig. 6.8(b)). In this

sense an RBF network shares the capability of fuzzy systems for dealing

with situations where set-boundaries are not sharply defined [Smarandache,

2005] and the proposed fuzziness measure of the final distribution per RU

contributes to the interpretability of the RBF-NN. To investigate the RBF-

NN performance based on the ambiguity assessment, the proposed adaptive

gradient descent algorithm [Panoutsos and Mahfouf, 2010c] using the term

Ip
ik in the energy equation (13) instead of the term fei

k is employed. In Fig.

6.7, a plot of the simulation results is presented, the results are comparable

to those obtained by evaluating the overall fuzziness and to the RBF-NN

of Mamdani type presented in chapter 4 in and [Panoutsos and Mahfouf,

2010c].

The overall ambiguity index IA is the average ambiguity of the M nor-

malised output of the RUs. Even though, Fig. 6.7(d) shows that the overall

ambiguity behaviour over the span of the training process posses a decreas-

ing trend, and the use of a measure based on ambiguity enhanced the train-

ing performance as presented in table 6.2, the final ambiguity value is never
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zero. This is mainly due to high non-linear property of the steel composition

and heat treatment regime. Moreover, some outliers points are equally mis-

classified in either by evaluating the overall fuzziness or by evaluating the

overall ambiguity.
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Fig. 6.9 (a) Ambiguity behaviour of the N-RBF unit number 7 at dimension C(%)

Fig. 6.9 illustrates a typical behaviour of the ambiguity generated by the

RU unit number 7 during the process of training of the RBF-NN. It is ev-

ident from Fig. 6.9 the ambiguity is accordance the variability of data. In

other words, such ambiguity evaluation demonstrates that the ambiguity is

high when the neuron is not capable of representing the information con-

tained in he fuzzy rule, otherwise the value is low.
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Table 6.2 Performance of the optimised RBF-NN for modelling the Charpy test.

Model Number of rules Training Checking Testing

< T, 0, 0 > 9 16.76 19.25 20.91

< T, F, Ik > 9 16.93 20.38 21.60

< T, F, At > 9 16.66 20.25 21.39

Finally, in order to compare the RBF-NN performance by evaluating

the ambiguity, fuzziness and the associated truth-membership at each RU,

in Table 6.2 shows a comparison between three different types of uncer-

tainty assessment, namely: using a) the tuple < Ti, 0, 0 >, b) the tuple

< Ti, Fi, Ii > and c) the tuple < Ti, Fi, Ip
ik > which is the RBF-NN of Mam-

dani type.
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Fig. 6.10 Performance of (a) Training, (b) Checking and (c) Testing using the
tuple < T, F, IA > and (d) the behaviour of the overall ambiguity IA,
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As it is described in [Panoutsos and Mahfouf, 2010c], in certain cases

where some data were wrongly predicted mainly at checking and testing

stages; it can be concluded that such misclassification is a consequence of

process repeatability of the data set (Charpy test experiments) which turns

out in noisy data (or wrong data and outliers).

Particularly, the nature of the Charpy test produces very high data scat-

ter and due to its low repeatability in obtaining the same results under the

same input conditions, the performance of the RBF-NN is affected. In the

view of the former results, the use of neutrosophic sets is not only the gener-

alisation of fuzzy sets but also such sets can be exploited in order to increase

the transparency and interpretability of systems functionally equivalence to

fuzzy and then neutrosophic frameworks.

6.4 SIMILARITY-BASED UNCERTAINTY MEASURES IN THE RBF-
NN AND THE IT2-RBF-NN

The easiest way of introducing interpretability into a learning algorithm is

to employ a parameter identification procedure that includes parameters and

the associated hypermarameters that have a clear interpretation of their mean-

ing [Gibbs and MacKay, 1997]. Furthermore, a clear understanding of the

effects from each model input, how their interact and the importance of

each input can aid in helping to enhance the model distinguishability, trans-

parency and hence model validation and selection and indirectly model per-

formance.

This section includes the study of various similarity-based uncertainty

measures for the RBF-NN (type-1 RBF-NN) and the proposed IT2-RBF-

NN architecture. Such similarity is used for understanding the importance

of each hidden neuron and hence the associated uncertainty due to fuzzy rule

base redundancy. In [Wu and Mendel, 2008] is mentioned the relationship

between compatibility, similarity and proximity. Basically such a relation-

ship is based on the properties shared by a mapping s : X × X → where

two fuzzy sets Ai and Aj are defined on the domain X . Such properties are

the 1. Symmetry s(A, B) = s(B, A), 2. reflexivity s(A, 1) = 1, and 3)
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transitivity s(A, B) ≥ s(A, C) ∧ s(C, B) where C is any another fuzzy set.

The evaluation of compatibility usually encompasses similarity and prox-

imity but not the opposite, since most of similarity measures are based on

distance and hence compatibility measures how similar two entities are in

relation to attributes such as proximity, geometrical shape, density, etc.

Uncertainty measures such as the Shannon entropy has been exten-

sively studied [Pal and Bezdek, 1994] and used for constructing fuzzy mod-

els as entropy represents a measure that expresses conflict among eviden-

tial claims within a probabilistic body of evidence. This type of uncertainty

quantifies the outcome attributed to randomness or in other words uncer-

tainty that results from probabilistic events. In [Pal et al., 1992], Yager stated

that another type of uncertainty is produced as a consequence of deficiencies

from the system that is quantifying it. This second uncertainty measure ex-

hibits the lack of ability to accurately specify the solution. However, both

types of uncertainty do not deal with the linguistic imprecision or vagueness

in fuzzy systems. For example, a die is thrown and you are asked to guess

the outcome, frequently this kind of assumption is based on the evaluation

of probabilistic events, and moreover if it is required that a machine quan-

tifies the outcomes from a group of experiments (throws), probably the re-

sults vary in each try producing a deficiency during the information process-

ing (ambiguity). The computation of the experiments by using words can

be carried out by means a fuzzy machine which labels the outcome of each

throw as high, low, small, etc, building a perceptual computer that deals

with linguistic assumptions. Nevertheless, the fuzzy machine will proba-

bly produce uncertain predictions as a consequence of several factors such

as 1. a poor definition of the vocabulary used for describing each throw,

since "words mean different to different people" [Mendel, 2003] and 2.

an incorrect election of the elements that must be used by the fuzzy ma-

chine, for instance: a) the type of fuzzy set employed in the fuzzy machine,

b) the associated T-norm used in the inference engine, and c) the defuzzi-

fier. Furthermore, the similarity, proximity and compatibility employed for

discriminating the importance of each input when modelling real problems

is crucial, and it is directly related to the uncertainty produced during the
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construction of fuzzy machines that have a good balance of interpretability

and accuracy. Usually this misinterpretation is due to the redundancy in the

fuzzy rule base when two or more fuzzy sets are mathematically processing

the same input. Some authors have extended the concept of some uncer-

tainty measures developed for type-1 fuzzy sets into interval type-2 fuzzy

systems [Wu and Mendel, 2007], interval valued fuzzy sets [Türkşen, 1996],

and intuitionistic fuzzy sets [Szmidt and Kacprzyk, 2001].

This section provides a group of experimental simulations that shows

how a similarity measure that is often used to measure redundancy when

constructing fuzzy models can be employed for enhancing the transparency

of the RBF-NN and the proposed IT2-RBF-NN. Moreover, two entropy

measures and one ambiguity measure will be defined based on its relation-

ship to redundancy during the fuzzy rule construction. In this context, a

methodology is suggested to first calculate the similarity in the rule base and

then construct a matrix which meet the three properties that any similarity

possesses , i.e. a) symmetry, b) reflectivity and c) transitivity.

In [Wu and Mendel, 2008] is suggested that IT2-FSs can be employed

for computing with words (CWW) and hence for making judgements. In

that article, Wu and Mendel consider three different ideas that can be trans-

lated into any type of fuzzy system either a fuzzy model for automatic control

or hybrid/neural fuzzy systems for modelling under the corresponding as-

sumptions. Zadeh coined the phrase "Computing with words"-CWW that

states that the objects can be treated as abstract words and proposi-

tions drawn from natural language. Secondly, in [Nikravesh, 2005] was

pointed out CWW is fundamentally different from the traditional ex-

pert systems which are simply tools to ’realise’ an intelligent system

but are not able to process natural language which is imprecise, uncer-

tain and partially true.

Finally, Wu and Mendel [Wu and Mendel, 2008] stated that words mean

different to different people. In this work, it is suggested that all these

statements can not only be defined by any fuzzy model but also captured by

the RBF-NN and the IT2-RBF-NN that might be considered as an special

case of a general type-2 RBF-NN.
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Fig. 6.11 Representation of the elements considered to estimate the similarity
between two interval type-2 MFs based on their shape their distance.

For this reason, the knowledge extraction due to the information contained

at each receptive units (RU) in both the RBF-NN and the IT2-RBF-NN

can be studied from a fuzzy set theory perspective on the one hand. On the

other hand, a deeper understanding in the construction of the RBF-NN rule

base can be achieved by enhancing the transparency and interpretability of
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the fuzzy rules.In addition, the RBF-NN can be seen not only as a neural

fuzzy system but also as an engine for computing with perceptions, thus

an fuzzy inference engine capable of processing words drawn from a natu-

ral language and an expert intelligent system can be established by using

the RBF-NN. In Fig. 6.11 (a) a typical perceptual computer and (b) an

inference engine for CWW and hence with perceptions based on the IT2-

RBF-NN are depicted respectively.

The main target of the study provided in this section is to understand

better how the fuzzy sets (RUs) interact throughout the cross-validation

process. In a similar way to the perceptual computer the lack of a parsimo-

nious fuzzy model represents the redundancy created by a high level of over-

lapping between two or more fuzzy sets firing the same input data space. It

is crucial to interpret and hence distinguish clearly the role of each fuzzy set

during the training and checking process. A further study about perceptual

computers can be found in [Zadeh, 1999a, 2001b, 2002].

6.5 SIMILARITY-BASED UNCERTAINTY MEASURES IN THE RBF-
NN and IT2-RBF-NN.

Since Zadeh introduced the concept of fuzzy sets, researches have devel-

oped similarity measures for type-1 fuzzy sets. In [Bustince et al., 2007,

Lee-Kwang et al., 1994, Wu and Mendel, 2008] is presented a summary

of more than 50 existing similarity measures for type-1 fuzzy sets includ-

ing some measures for IT2-FSs. In [Wu and Mendel, 2008] an overview of

the number considerations that must be meet any similarity measure is pro-

vided. Basically, a similarity measure sij between two fuzzy sets Ai and Aj

has the following properties:

• Reflexivity: S(Ai, Aj) = 1, when i = j.

• Symmetry: S(Ai, A) = S(Aj, Ai).

• Transitivity: S(A, A) ≥ s(A, C) ∧ S(C, B) where C is any another

fuzzy set.
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In this section the similarity measure sij described and used for estimating

the uncertainty uij produced throughout the optimisation process of the in-

ference engine for a) the RBF-NN and b) the IT2-RBF-NN is based on that

presented in [Jaccard, 1908] and generalised for interval type-2 fuzzy sets in

[Wu and Mendel, 2008].

6.5.1 SIMILARITY FOR THE RBF-NN AND THE IT2-RBF-

NN

Basically, in [Wu and Mendel, 2008] sij is calculated by using two different

measures of similarity; i.e. a measure based on the shape of the IT2-MFs

comparing the upper and the lower MFs of two IT2-FSs Ã and B̃, and a

similarity measure based on the distance between them, thus a twofold ex-

pression was suggested as follows:

sij(Ã, B̃) = (s1(Ã, B̃), s2(Ã, B̃)) (6.21)
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Fig. 6.12 Representation of the elements considered to estimate the similarity
between two interval type-2 MFs based on their shape their distance.
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The distance metric used to obtain the term s2 may be problem-dependent,

it means that the geometrical properties may be used to estimate the dis-

tance between two different fuzzy sets according to the nature of the problem

and the user needs. In [Johanyák and Kovács, 2005], a summary of exist-

ing distance-based similarity measures between two fuzzy sets is presented

comparing their performance and geometrical properties. Fig. 6.12 illus-

trates the elements employed for calculating the similarity measure s1 by

using the centre of each fuzzy set Ã and B̃ and the distance between them.

Fig. 6.12(a) shows that both fuzzy sets Ã and B̃ must be moved in order to

make coincide their centroids as illustrated in Fig. 6.12(b).

Therefore, the embedded T1 FSs Ae and B′
e of Ã and B̃ respectively rep-

resent the shape of the IT2-FSs as illustrated in Fig. 6.12 where two mea-

sures can be obtained:

s1,l ≡ min∀Ae,B′
e

card(Ae ∩B′
e)

card(Ae ∪B′
e)

(6.22)

s1,r ≡ max∀Ae,B′
e

card(Ae ∩B′
e)

card(Ae ∪B′
e)

(6.23)

The cardinality used in 6.22 is obtained by the expression defined in [De Luca

and Termini, 1972] as the power set. Moreover, the measure s1 can be seen

as mentioned in [Wu and Mendel, 2008]:

s1,interval(Ã, B̃) =
⋃

∀Ae,B′
e

card(Ae ∩B′
e)

card(Ae ∪B′
e)

= [si,l, si,r] (6.24)

Since there are not closed-form equations for calculating the centroid of

[s1,l, s1,r], similar to [Wu and Mendel, 2008], here s1 is defined for interval

type-2 FSs as the ratio of the average cardinalities of the FOU(Ae ∩ B′
e)
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and FOU(Ae ∪B′
e), i.e.

s1 = AC[FOU(Ã ∪ B̃)]
AC[FOU(Ã ∪ B̃)]

(6.25)

=
card(µÃ(x) ∩ µB̃′(x)) + card(µÃ(x) ∩ µB̃′(x))
card(µÃ(x) ∪ µB̃′(x)) + card(µÃ(x) ∪ µB̃′(x))

=
∫

X min(µÃ(x), µB̃′(x)) +
∫

X min(µÃ(x), µB̃′(x))∫
X max(µÃ(x), µB̃′(x)) +

∫
X max(µÃ(x), µB̃′(x))

CÃ and CB̃ denote the centroids of Ã and B̃ which are computed by using

the closed-form equations CÃ = [cl(Ã), cr(Ã)] and CB̃ = [cl(B̃), cr(B̃)] and

their corresponding centres can be obtain as:

c(Ã) = [cl(Ã), cr(Ã)]
2 (6.26)

c(B̃) = [cl(B̃), cr(B̃)]
2 (6.27)

When all the uncertainties disappear the sets s1,l and s1,r become T1-

FSs, and hence the following expression is use [Jaccard, 1908].

s1(A, B) = card(A ∩B′)
card(A ∪B) =

∫
X min(µA(x), µB′(x))dx∫
X max(µA(x), µB′(x))dx

(6.28)

In order to estimate the similarity between two fuzzy sets Ai and Aj either

IT2-FS or T1-FSs at the hidden layer of the RBF-NN (IT2-RBF-NN) dur-

ing the cross-validation process and considering their shape and distance,

this research work proposes a process that consists of the following steps:

• Train the IT2-RBF-NN by applying either the self-adaptive learning

process suggested . During the training process, instead of using an

embedded T1-FS Ae use the output of each receptive unit per input

datum, and then use the following expression if it is an IT2-RBFNN:

sij =
∑P

p=1 min(Ai ∩ Aj) +∑P
p=1 min(Ai ∩ Aj)∑P

p=1 max(Ai ∪ Aj) +∑P
p=1 max(Ai ∪ Aj)

(6.29)
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Otherwise, use the expression given below:

sij =
∑P

p=1 min(Ai ∩ Aj)∑P
p=1 max(Ai ∪ Aj)

(6.30)

where sij represents the similarity between the fuzzy set Ai and Aj ,

p = 1, . . . , P is the whole training data, i = 1, . . . , M is the number of

rules, and Ai is the MF at each receptive unit obtained for IT2-FSs as

described in Chapter 5.

• In a like manner calculate the similarity at checking and testing stage.

Note that the calculation of s2 is not necessary as the MF for both the RBF-

NN and the IT2-RBF-NN is based on the distance between the centre of the

MF and the corresponding p input. Thus, it means the larger the number of

input data closest to two fuzzy sets Ai and Aj , the more similar such fuzzy

sets are.

In other words, the behaviour of two fuzzy sets Ai and Aj will be too

similar such that their firing strengths will hold similar values throughout

the training process due to the proximity to the input data. Therefore, only

the value of the firing strength of each receptive unit/hidden neuron/interval

neuron/fuzzy set is needed. Moreover, no mathematical proof is necessary

since 6.25 and 6.22 calculate the similarity between two fuzzy sets Ai and

Aj based on distance through their shape similarity.

6.5.2 UNCERTAINTY MEASURES ASSESSMENT

As described above, the more similar two fuzzy sets, the higher their over-

lapping. Therefore, an uncertainty measure that results from redundancy

among the fuzzy sets in the hidden layer of the RBF-NN can be proposed.

Several authors [Chen and Linkens, 2001b, Jin, 2000] have employed distance-
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based measures for assessing how redundant two fuzzy sets are, i.e. similar

fuzzy rules that result in unnecessary structure leading to the construction

of a low-interpretable model.

For example in [Chen and Linkens, 2001a], for the prediction of hot-

rolled steels properties a fuzzy model was constructed by using a similar-

ity index that was employed to increase the interpretability while preserving

accuracy modelling. Such a similarity index aids to remove redundant fuzzy

rules merging similar fuzzy sets in order to create a common fuzzy set during

the process of rule base simplification.

This redundancy representation might results in a lack of transparency

and interpretability during the optimization of the rule base in the RBF-

NN/IT2-RBF-NN. This deficiency can be translated into a source of un-

certainty due to areas in the rule base where the redundancy or simply an

overlapping between two or more fuzzy rules is very high affecting the trade-

off between simplicity, interpretability and accuracy. For this reason, in this

section an uncertainty measure based on fuzzy similarity is proposed, first a

matrix representation can be constructed for the RBF-NN as follows:

Ŝ =



1 s12 · · · s1j · · · s1M

s21 1 · · · · · · s2M

...
... . . . ...

si1 si2 sij · · · siM

...
... · · · · · · . . . ...

sM1 s2M · · · sij · · · 1


(6.31)

Here it is used sij in order to denote the similarity between the fuzzy set i

and j. Therefore, the uncertainty produced per RU might be calculated by

means two different ways:

• Firstly, the ambiguity associated to each RU is related to one-to-many

relations and can be estimated as follows:

âi = 1
M − 1

M∑
j=1

sAi,Aj
, i ̸= j (6.32)
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• Secondly, the network entropy produced by all the input data due to

their similarity can be calculated as [Pal and Bezdek, 1994]:

up = 1
P ∗ (M − 1)

P∑
p=1

M∑
i=1

sp
ij ∗ (1− sp

ij) (6.33)

ûp = 1
P ∗ (M − 1)

P∑
p=1

M∑
i=1

sp
ij ∗ log(sp

ij) (6.34)

6.6 EXPERIMENTAL SIMULATIONS

Experimental simulations are carried out in this part in order to test the sug-

gested methodology used for evaluating the ambiguity and uncertainty gen-

erated throughout the cross-validation process. In this section just those

results that involve the RBF-NN and the IT2-RBF-NN-(SD) that here is

being called IT2-RBF-NN are considered. In this sense, the experimen-

tal studies for evaluating the similarity among the receptive units (RUs)

in the RBF-NN and the proposed IT2-RBF-NN are illustrated and hence

analysed. Therefore, this section presents the experimental results in the

following order:

• First a summary of the matrix representation of the proposed similar-

ity measure for the training and checking process in the RBF-NN is

provided.

• Secondly, results related to the similarity evaluation in the IT2-RBF-

NN architecture are illustrated.

• Finally, a comparison of the uncertainty behaviour based on that sim-

ilarity used for evaluating the redundancy in the fuzzy rule base of the

RBF-NN and IT2-RBF-NN are illustrated.
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6.6.1 EXPERIMENTAL RESULTS FOR EVALUATING THE

SIMILARITY IN THE RBF-NN RULE BASE

This section provides those results obtained by using the proposed similar-

ity measure for the RBF-NN at three different stages of the cross-validation

process, i.e. training, checking and testing. In table 6.3 the matrix represen-

tation of the similarity among the fuzzy sets throughout the training process

and contained in the RBF-NN are presented. As can be seen, it is not dif-

ficult to realise that the elements in the main diagonal must be one. Such

elements, are not considered when calculating the RU uncertainty and the

overall uncertainty at each epoch of the training.

Table 6.4 and 6.5 shows the similarity matrix for the checking and test-

ing. It is difficult to know exactly what to do with so many values, in [Wu

and Mendel, 2008] it was suggested to measure the correlation between any

two out of all the measures included there. Here, it is suggested to aver-

age the uncertainty produced by this similarity either per RU and the overall

network uncertainty.

Table 6.3 Similarity matrix representation during the training process for the
RBF-NN.

FS 1 2 3 4 5 6 7 8 9

1 1.0000 0.0000 0.5883 0.0911 0.2853 0.0103 0.1179 0.2798 0.2618

2 0.0000 1.0000 0.0000 0.0001 0.0000 0.0002 0.0001 0.0000 0.0000

3 0.5883 0.0000 1.0000 0.1043 0.2332 0.0070 0.1455 0.3038 0.2929

4 0.0911 0.0001 0.1043 1.0000 0.0511 0.0200 0.2971 0.0731 0.1377

5 0.2853 0.0000 0.2332 0.0511 1.0000 0.0137 0.1287 0.2467 0.1826

6 0.0103 0.0002 0.0070 0.0200 0.0137 1.0000 0.0246 0.0040 0.0065

7 0.1179 0.0001 0.1455 0.2971 0.1287 0.0246 1.0000 0.1562 0.2226

8 0.2798 0.0000 0.3038 0.0731 0.2467 0.0040 0.1562 1.0000 0.4442

9 0.2618 0.0000 0.2929 0.1377 0.1826 0.0065 0.2226 0.4442 1.0000
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Table 6.4 Similarity matrix representation during the checking process for the
RBF-NN.

FS 1 2 3 4 5 6 7 8 9

1 1.0000 0.0000 0.6044 0.0915 0.3475 0.0323 0.1109 0.2811 0.2479

2 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 0.6044 0.0000 1.0000 0.1148 0.2567 0.0152 0.1484 0.2956 0.2942

4 0.0915 0.0000 0.1148 1.0000 0.0541 0.0274 0.3715 0.0673 0.1482

5 0.3475 0.0000 0.2567 0.0541 1.0000 0.0262 0.1177 0.2518 0.1805

6 0.0323 0.0000 0.0152 0.0274 0.0262 1.0000 0.0646 0.0082 0.0144

7 0.1109 0.0000 0.1484 0.3715 0.1177 0.0646 1.0000 0.1594 0.2574

8 0.2811 0.0000 0.2956 0.0673 0.2518 0.0082 0.1594 1.0000 0.4511

9 0.2479 0.0000 0.2942 0.1482 0.1805 0.0144 0.2574 0.4511 1.0000

As can be seen from table 6.3 and 6.4, there are areas where the uncer-

tainty evaluation is zero - this can be induced due to the non-existent over-

lapping when defining the location of the RUs. Particularly, the redundancy

in the column and row number two is zero. However, the values provided in

the tables 6.3 and 6.4 represent the last iteration of the training and tcheck-

ing process. This means, the uncertainty evaluation can be completely dif-

ferent indicating the behaviour of the croos-validation process.

Table 6.5 Similarity matrix representation during the testing process for the
RBF-NN.

FS 1 2 3 4 5 6 7 8 9

1 1.0000 0.0000 0.5767 0.0729 0.3541 0.0102 0.1174 0.3082 0.2803

2 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3 0.5767 0.0000 1.0000 0.0933 0.2670 0.0091 0.1569 0.3001 0.2766

4 0.0729 0.0000 0.0933 1.0000 0.0433 0.0207 0.2830 0.0656 0.1148

5 0.3541 0.0000 0.2670 0.0433 1.0000 0.0180 0.1315 0.2503 0.1748

6 0.0102 0.0000 0.0091 0.0207 0.0180 1.0000 0.0241 0.0083 0.0089

7 0.1174 0.0000 0.1569 0.2830 0.1315 0.0241 1.0000 0.1489 0.1986

8 0.3082 0.0000 0.3001 0.0656 0.2503 0.0083 0.1489 1.0000 0.3896

9 0.2803 0.0000 0.2766 0.1148 0.1748 0.0089 0.1986 0.3896 1.0000
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Table 6.6 Similarity matrix representation during the training process for the
IT2-RBF-NN.

FS 1 2 3 4 5 6 7 8 9

1 1.0000 0.1069 0.1174 0.0815 0.5004 0.5171 0.4421 0.0076 0.0001

2 0.1069 1.0000 0.1273 0.2602 0.0629 0.1552 0.1009 0.0218 0.0002

3 0.1174 0.1273 1.0000 0.1751 0.0831 0.1507 0.0753 0.0138 0.0000

4 0.0815 0.2602 0.1751 1.0000 0.0553 0.0981 0.0629 0.0255 0.0000

5 0.5004 0.0629 0.0831 0.0553 1.0000 0.3616 0.2906 0.0050 0.0000

6 0.5171 0.1552 0.1507 0.0981 0.3616 1.0000 0.3992 0.0063 0.0000

7 0.4421 0.1009 0.0753 0.0629 0.2906 0.3992 1.0000 0.0092 0.0000

8 0.0076 0.0218 0.0138 0.0255 0.0050 0.0063 0.0092 1.0000 0.0001

9 0.0001 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 1.0000

In other words, the parameter identification process is based on gradient-

descent approaches which heavily depends on the initial search point. Fi-

nally, in table 6.5, the similarity behaviour of each RU is very much alike to

that presented in table 6.3 and 6.4. This behaviour is depicted by the RUs in

the proposed IT2-RBF-NN and shown in table 6.6 and 6.7. This is due to

both models employed the same initial output weights.

Table 6.7 Similarity matrix representation during the checking process for the
IT2-RBF-NN.

FS 1 2 3 4 5 6 7 8 9

1 1.0000 0.0643 0.1447 0.0907 0.5150 0.4584 0.5213 0.0109 0.0000

2 0.0643 1.0000 0.0863 0.2971 0.0397 0.1163 0.0419 0.0143 0.0000

3 0.1447 0.0863 1.0000 0.1970 0.1174 0.2167 0.0739 0.0075 0.0000

4 0.0907 0.2971 0.1970 1.0000 0.0679 0.1475 0.0616 0.0156 0.0000

5 0.5150 0.0397 0.1174 0.0679 1.0000 0.3387 0.3222 0.0071 0.0000

6 0.4584 0.1163 0.2167 0.1475 0.3387 1.0000 0.3603 0.0039 0.0000

7 0.5213 0.0419 0.0739 0.0616 0.3222 0.3603 1.0000 0.0052 0.0000

8 0.0109 0.0143 0.0075 0.0156 0.0071 0.0039 0.0052 1.0000 0.0000

9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
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6.6.2 UNCERTAINTY BEHAVIOUR

The uncertainty behaviour produced as a result of the redundancy in the

fuzzy rule base and in relation to those results obtained during the training

and checking process for modelling the charpy data set are presented in Fig.

6.13 and Fig. 6.14 respectively. The data set employed for estimating the

redundancy-based uncertainty is the same to that used in chapters 3 and 4.
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Fig. 6.13 Uncertainty behaviour for the RBF-NN.
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Fig. 6.14 Uncertainty behaviour for the IT2-RBF-NN.

Particularly Fig. 6.14 illustrates the ambiguity and entropy evaluated by

the equations 6.33 and 6.34 with respect to the training stage.The uncer-

tainty behaviour related to the checking stage is shown in Fig. 6.14. As can

be seen, the uncertainty behaviour of both cross-validation stages describe
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similar trends either on modelling by using the RBF-NN or the IT2-RBF-

NN leveling off approximately after 1000 epochs of training. In this context,

those results shown in Fig. 6.14, the ability of the proposed IT2 network

architecture for dealing with linguistic uncertainty aids for creating a more

parsimonious universe of discourse. This can be translated in a lower level

of ambiguity and entropy as is depicted in Fig. 6.14.
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Fig. 6.15 Interval type-2 Fuzzy sets 3 and 4 used for graphically exemplify the
similarity measure for the training process.
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As the entropy calculation is concerned, such evaluation was made at all

stages of the croos-validation procedure - i.e. the training, checking and

testing. Where entropy 1 and entropy 2 are defined by the right terms of

(6.33) and (6.34) respectively.
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Fig. 6.16 Interval type-2 Fuzzy sets 3 and 4 used for graphically exemplify the
similarity measure for the training process.
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Where entropy1 and entropy2 is the entropy obtained by using the expres-

sions 6.33 and 6.34 respectively. In order to show the effectiveness of the

proposed uncertainty assessment due to fuzzy rule redundancy, on the one

hand in Fig. 6.14 illustrates the similarity between the fuzzy sets 3 and 4 (s34

or s43 = 0.1970) in 5 out of 16 dimensions that compose the input space.

On the other hand, Fig. 6.16 shows the similarity between the fuzzy sets

1 and 7 (or s16−s61 = 0.5171). From Fig. 6.15 and 6.16 it can be concluded,

the more similar two fuzzy sets, the higher their firing strength throughout

the cross-validation process.

Nevertheless, it is also clear according to the results presented above

that no similarity value is higher than 0.6. This is because the similarity

value is being weighted more on shape than on distance (Euclidean dis-

tance). No proof is provided in this section, since it would required a further

study how to weight individually both elements, i.e. the distance and the

shape which are intrinsic in the Gaussian function employed in the RBF

model. A further example can be seen in Fig. 6.16 - there the value of sim-

ilarity is about 0.5271. This means that even the MFs are so close, the role

of the form of the MFs play a crucial role when evaluating the similarity.

6.7 SUMMARY

The study included in this chapter is twofold, on the one hand a methodol-

ogy for exploiting the functional equivalence between RBF-NNs and fuzzy

systems of type-1, and the application of neutrosophic sets theory was pre-

sented. On the other hand, an study for uncertainty assessment based on

the relationship between similarity and the redundancy in the fuzzy rule base

was provided. The first methodology could managed to exploit and explore

the information contained in each receptive unit of the RBF-NN. Notwith-

standing, the black-box properties of the RBF-NN, two measures were ob-

tained, namely: a) fuzziness and b) ambiguity. Firstly, a fuzziness measure

to examine the agreement between two fuzzy rules (Gaussian fuzzy rules)

by using an overlapping coefficient was defined. Secondly, an ambiguity in-

dex was constructed based on the associated true and falsity of each fuzzy
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rule which is contained in each N-RBF unit (neuron). An adaptive Back

Error Propagation approach by using the neutrosophic sets based on fuzzi-

ness and ambiguity was employed for parameter identification. Hence, such

methodology was tested against a benchmark data set and real industrial

data of high dimensionality and complex nature. The resulting models pro-

duced comparable performance to that obtained by just using fuzzy sets of

(RBF-NN), and due to the transparency of the process, expert knowledge

can be used for improving the the interpretability and distinguishability dur-

ing the fuzzy modelling.

The second methodology explores and uses the information obtained by

measuring the redundancy created in the fuzzy rule base during the cross-

validation process of the RBF-NN and the IT2-RBF-NN. A representation

matrix for the similarity between fuzzy sets was proposed and then a rela-

tionship between similarity and entropy/ambiguity was established. Exper-

imental results show that the uncertainty behaviour is quite similar to that

behaviour exhibited by the ambiguity and fuzziness obtained by the applica-

tion of neutrosophic sets.

The results obtained in the first part of this chapter led to the writing of an

article that was presented at the IEEE International Conference on Fuzzy

Systems (FUZZ-IEEE) in Beijing, China.

Next chapter will draw the conclusions of the presented thesis, and the

future work related to this project will be discussed as well.
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IN this research work, we have elaborated a number of fuzzy method-

ologies for quantification uncertainty based on two different levels of

interpretability of the RBF Neural Network (RBF-NN). The development

of these methodologies aims to improve the interpretability of the RBF-NN.

We believe this improvement may aid to better understand the influence that

each model component and the associated parameters have for contribut-

ing with an uncertain and indeterminate system behaviour in the RBF-NN

model. Therefore, the RBF-NN is used as the core mechanism to construct

neural-fuzzy inference models with a special application for modelling man-

ufacturing systems. Such methodologies follow two main directions:

1 At the low level of interpretability of the RBF-NN. In order to achieve

this level of interpretability some criteria such as distinguishability and

consistency during the granulation compression and throughout the op-

timisation of the initial fuzzy rule were used.

2 At the high-level of interpretability of the RBF-NN. At this level the

criteria such as consistency, readibility and transparency of the final fuzzy

rule were employed.

It was also considered the development of an Interval Type-2 RBF net-

work which is able not only to deal with knowledge representation but also

to deal with uncertainty. In this sense, the categorisation of the RBF-NN

interpretability allows us to discrimate the role of each of its components as

well as their contribution to produce uncertain behaviours in the RBF-NN

output.

In what follows, conclusions of this thesis and suggestions about future

work directions are presented.
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7.1 CONCLUSIONS

The design of logic-driven and interpretable neural-fuzzy models has been

an ongoing challenge in the area of data analysis and systems modelling. For

this reason, this research work takes advantage from the functional equiv-

alence between the RBF-NN and fuzzy sets of type-1 in order to describe

the RBF-NN as a neural fuzzy system with adaptation capabilities to ex-

tract IF-THEN fuzzy rules from input and output sample benchmark data

sets and from real experimental results obtained from steel-making industry.

In chapter 4, it was discussed the methodological and algorithmic issues

of the granulation compression (low-level of interpretability of the RBF-

NN) which was initially proposed in [Pedrycz and Bargiela, 2002] and finally

extended in [Panoutsos and Mahfouf, 2010a]. Consequently a systematic

modelling framework based on the RBF-NN, Granular Computing (GrC)

and Neutrosophic Sets (NSs) was proposed. The aim of such a method-

ology is to mimic the ability of human cognition in order to group similar

information (granules) together based on a number of similarity measures

- In the computational case: proximity, cardinality and length. Moreover,

the proposed methodology employs the Neutrosophic Logic concept (NL)

to estimate the inherent information uncertainty/indeterminacy due to the

merging operation during the information granulation process. The un-

certainty/indeterminacy is calculated via a Shannon’s entropy measure and

then used to enhance the distinguishability at the low-level of interpretabil-

ity of the RBF-NN. A Neutrosophic index was proposed to measure the

disorder during the process of granulation in terms of the uncertainty that

resulted from a high level of overlapping. It was observed that the final posi-

tion and the level of distinguishability among the granules have a significant

influence in the final interpretability and hence transparency of the initial

fuzzy rule base.

As mentioned in [Pedrycz, 2005], information granulation in the fuzzy

rules implies a certain level of accuracy and transparency or user friendli-

ness. However, sometimes having fewer number of granules (more general
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rules) implies a reduced accuracy by the readability and the associated de-

gree of transparency of the resulting granular universe. In other words, the

higher the granularity, the better the specificity of the fuzzy rules obtained

from the final granules. Compared to traditional clustering approaches such

as FCM, granulation is more transparent since its components are more

meaningful to the user. This means there is a well-defined semantic of the

information granules. The simplified rule base after granulation is then more

efficient in computational terms and linguistically tractable. From our per-

spective a useful qualitative and linguistic description of the low-level of in-

terpretability in the RBF-NN may contribute importantly to establish more

solid basis for the final construction of the fuzzy model. From the experi-

mental results it was proven that the compatibility criterion not only favours

a transparent and distinguishable fuzzy rule but also to contribute to elimi-

nate redundant rules and hence to improve their consistency.

The second modelling framework proposed in chapter 5 consists in the

functional extension of the RBF-NN (viewed as a fuzzy Logic System of

type-1) into a generalised Interval Type-2 Logic System. Such a new frame-

work is called "Interval Type-2 Radial Basis Function Neural Network (IT2-

RBF-NN). In a like manner to interval FLSs and its counterpart the RBF-

NN, the suggested structure includes a fuzzifier, rule base, fuzzy inference

engine, type-reducer and defuzzifier. On the on hand, the hidden layer plays

the role of fuzzifier and inference engine, and on the other hand, the type

reducer and the defuzzifier are performed by the output layer of the IT2-

RBF-NN. The IT2-RBF-NN may be seen as a generalised inference engine

since under some mild conditions the consequent part can be used either as

a) Mamdani inference or b) TSK inference [Hunt et al., 1996]. The struc-

tural and parametric optimisation of the IT2-RBF-NN is carried out by a

hybrid approach that is based on estimating the initial rule base and foot-

print of uncertainty (FOU) directly via the granulation algorithm employed

in chapter 4. Consequently, an adaptive Back Error Propagation approach

(adaptive-BEP) was developed in order to optimise the rule base parame-

ters. The reduced set in the output layer is obtained by a Karnik and Mendel

type-reduction process which is considered during the application of the
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adaptive-BEP. Although important advances and closed-form equations for

computing the type-reduced set have been proposed, in this research work

the point of departure is based on the Karnik-Mendel algorithm. This is due

to the weighted average approach used by the RBF-NN. Finally, the effec-

tiveness of the proposed framework is tested against a number of popular

benchmark data sets, and used to model a real manufacturing process. A

further number of advantages offered by the proposed IT2-RBF-NN can be

listed as follows:

• A good computational performance compared to its type-1 counter-

part, the RBF-NN.

• The ability to deal with linguistic uncertainty.

• Advances in type-2 and interval type-2 fuzzy sets theory may be ap-

plied under the corresponding conditions.

• Similarly to the RBF-NN and FLSs of type-1, the interpretability in

the IT2-RBF-NN can be categorised into two different levels.

• Since the proposed framework uses GrC as the initial process for ex-

tracting information (encoder), the IT2-RBF-NN may be seen as a

Computing With Words (CWW) Engine whose output are crisp data.

• The IT2-RBF-NN may be used not only for modelling purposes, but

also into control theory.

Finally, in chapter 6 a twofold study demonstrated that various types of

uncertainty can be evaluated from the linguistic information obtained during

the cross-validation process for the RBF-NN and the proposed IT2-RBF-

NN architecture. The first study was focused on the application of neu-

trosophy in order to exploit the information contained in each receptive unit

(neuron/fuzzy rule) at the two levels of interpretability of the RBF-NN. Two

measures on fuzzy uncertainty were calculated, i.e. a) fuzziness and b) am-

biguity. Due to the proposed uncertainty evaluation it was possible on the



7.2 FUTURE WORK 233

one hand to measure the agreement between fuzzy rules by using an over-

lapping index (fuzziness) and to evaluate the ambiguity created as a result of

the associated truth and falsity of each fuzzy rule on the other hand. The two

proposed methodologies based on the associated fuzziness and ambiguity

showed a comparable performance to that obtained by just using fuzzy sets

of type-1. Moreover, the simplicity of the proposed methodology in this first

study also added to the computational efficiency of the model which resulted

in a more interpretable structure. In respect to the second uncertainty study,

a methodology for measuring the uncertainty produced as a consequence of

a redundancy phenomenon in the rule base of the RBF-NN and the IT2-

RBF-NN was suggested. Similar to fuzzy rule reduction, this second study

took advantage of existing similarity indices to measure the uncertainty pro-

duced during the cross validation process for both neural models. In other

words, the shape of the MFs, their proximity and the overall cardinality were

used to estimate among the fuzzy sets and hence the related uncertainty in

the hidden layer of both a) the RBF-NN and b) the IT2-RBF-NN. From

this study, a symmetric matrix was constructed in order to prove that it is

possible to evaluate the rule base of both models as is done in fuzzy logic

systems.

7.2 FUTURE WORK

As part of the future work, we are interested in designing a highly transpar-

ent and interpretable mechanism based on the RBF-NN and fuzzy logic for

making multi-objective decisions with a good trade-off between accuracy

and generalisation, e.g. [Alcalá et al., 2007, Obajemu et al., 2014, Wang and

Mahfouf, 2012]. This also includes the granulation process at the low-level

of interpretbility which should be extended to deal with IT2-FSs. At the

high-level of interpretability, the vast number of similarity and uncertainty

measures available in literature may aid to understand the role of each com-

ponent at the RBF-NN. The application of new techniques such as Multi-

objective Evolutionary Algorithms (MOEAs), has demonstrated its power

in a wide range of engineering problems. A hybridisation strategy between
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the RBF-NN and MOEAs could be a powerful combination opening a host

of opportunities for solving complex and combinatorial problems. Partic-

ularly, the nature of MOEAs allows an optimisation search based on the

decomposition of a Multiple Objective Problem (MOP) into several single-

objective optimisation problems.

Furthermore, we believe the development of the IT2-RBF-NN may open

up a new field of action from the point of view of kernel methods to compute

with perceptions. This can be translated into a number of research works

that involve interpretable models with kernels and fuzzy logic of type-2. The

necessity to solve problems under an uncertainty environment is a corner

stone in decision making theory. This means that the IT2-RBF-NN could

be combined with existing frameworks from machine learning, e.g. Gaus-

sian processes and Bayesian theory in order to account different types of un-

certainty when making decisions. This also consider real time applications

for extracting information and hence modelling real complex manufacturing

systems.

Even though, the computational burden to identify the parameters of the

IT2-RBF-NN was low, compared to its type-1 counterpart was higher. This

is mainly due to the kind of type-reducer employed for combining the conse-

quences in the fuzzy rule base. In this context, in the specialised literature a

wide range of type-reducers [Wu, 2012] can be explored into the IT2-RBF-

NN structure with the premise of reducing the computation load.

Finally, the application scope of the proposed methodologies can not only

be used for pattern classification, but also for other areas such as control

theory and evolutionary robotics.
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AFUZZY LOGIC SYSTEMS OF TYPE-1 AND

TYPE-2

In this appendix, on the one hand a detailed description about the functional

equivalence between the well-known RBF-NN and FLSs of Type-1 is pro-

vided. And on the other hand a review about theory of Fuzzy Sets of Type-2

is provided.

A.1 FUNCTIONAL EQUIVALENCE BETWEEN THE RBF-NN AND
FUZZY LOGIC SYSTEMS OF TYPE-1

In [Jang and Sun, 1993], Jan and Sun established a functional equivalence

between the RBF-NN and Fuzzy Logic Systems of type-1 under some mild

conditions. Consequently, in [Hunt et al., 1996], the authors extended such

an equivalence which was finally revised in [Andersen et al., 1998]. Partic-

ularly, this functional equivalence demonstrates that the RBF-NN can be

considered as a Fuzzy Inference System (FIS) sharing properties such as

function approximation, IF-THEN rules classification, low and high level

interpretability, etc. Therefore advances in fuzzy set theory may be applied

on RBF-NNs under some restrictions [Andersen et al., 1998]. Of this the

RBF-NN can be seen as a FLS if [Hunt et al., 1996, Jang and Sun, 1993]

1. The number of receptive fields in the hidden layer (see Fig. A.1) is

equal to the number of fuzzy rules.

2. The MF’s within each rule are chosen as Gaussian functions.

3. The T-norm operator used to compute each rule’s firing strength is

multiplication.

4. Both the T1-RBF-NN and the FIS under consideration use the same
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defuzzification method, that is: either the centre of gravity or weighted

sum to estimate their overall outputs.

In general, an FLS can be treated as an inference engine (see Fig. A.2) that

maps an input observed universe of discourse (U ⊂ Rn, where k = 1, . . . , n)

characterized by an MF µA(x) : U → [0, 1] into the nonfuzzy Y ∈ R set.

In this research work, a multi-input-single-output (MISO) fuzzy system

f : U ⊂ Rn → R is considered having n inputs xk ∈ [x1, ..., xn]T ∈ U1 ×
U2 × ..× Uk..× Un , U where the ith rule has the form [Wu and Er, 2000]:

Ri : IF x1 is F i
1 and . . . xk is F i

k and . . .

and xn is F i
n THEN y is Gi; i = 1, . . . , M (A.1)
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Fig. A.1 RBF Neural Network Structure

And F i
1 × ...× F i

n = Ai, hence Eq. A.1 can be expressed as:

R+ : F i
1 × ...× F i

n → Gi = Ai → Gi; i = 1, ..., M (A.2)

A rule Ri is described by the MF µRi(x⃗p, y) = µRi [x1, ..., xn, y], where x⃗p =
[x1, ..., xn] ∈ X1, ..., Xp = Rp and the following implication (Mamdani) can
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be used:

µRi(x⃗p, y) = µAi→Gi(x⃗p, y) =
[
T n

k=1µF i
k
(xk) ⋆ µGi(y)

]
(A.3)

Consequently, the functional equivalence established in [Jang and Sun, 1993]

can be expressed from a fuzzy perspective if each firing strength fi of each

hidden receptive unit of the RBF-NN is defined as

µRi(x⃗p, y) = µAi→Gi(x⃗p, y) = fi

(
exp

[
−∥x⃗p − x⃗∥2

σ2
i

])
(A.4)

where the vector x⃗ = [x1, ..., xn] ∈ X1, ..., Xp constitutes the centre of the

Gaussian MFs, while σi is a parameter defining the width of the MFs. In

other words, for k = 1, ..., n input, the Cartesian product of the fuzzy sets

F i
1, ..., F i

n in the universe of discourse X1, ..., Xp defined in Rn is a fuzzy set

with the following membership function [Rutkowska, 2002]

µF i
1×...×F i

n→Gi =
n∏

k=1
µF i

k
(xk)

= exp

−(∑n
k=1(xk − xk)

σi

)2


= exp

[
−(x− x)T (x− x)

σ2
i

]
(A.5)

Hence the combination of M firing strengths of the RBF-NN can be repre-

sented through the rule combiner shown in Fig. A.2 and mathematically as

B = Ai ◦
[
R1, R2, ..., RM

]
(A.6)

Under these conditions, the adaptive filter layer in Fig. A.2 can represent

the weighting layer in the T1-RBF-NN shown in Fig. A.1 as:

yf =
∑M

i=1 µBi(y)wi∑M
i=1 µBi(y)

; µBi = µAi→Gi(x⃗p, yf ) (A.7)
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Fig. A.2 Fuzzy Inference Engine used by an FLS

A.2 TYPE-2 FUZZY SETS

This section provides a review of some of the most important definitions nec-

essary to understand in more detailed the model proposed in chapter 5, and

those studies provided in chapter 6.

A further description of IT2-FS theory can be found in [Liang and Mendel,

2000, Mendel et al., 2006]. Without loss of generality, when all the sec-

ondary MFs of a T2-FS are defined as intervals, such that µÃ(x, u) = 1 they

are called interval type-2 fuzzy sets IT2-FSs [Mendel et al., 2006]. Hence

an IT2-FS can be defined as:

Ã =
∫

x∈X

∫
u∈Jx

1/(u, x), Jx ⊆ [0, 1]. (A.8)

As is illustrated in the Fig. A.3, a vertical slice or a T2-MF, for example at

x = x1 can be expressed by the following equation.

µÃ(x = x1) = µÃ(x1) =
∫

u∈Jx1

1/u, Jx1 ⊆ [0, 1]. (A.9)

Therefore, Ã can be re-express in a vertical slice manner as

Ã = {(x, µÃ(x))|∀x ∈ X}. (A.10)
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Fig. A.3 Interval Type-2 Membership Function for discrete universe of discourse

If an IT2-FS Ã is discrete, hence it can be expressed as:

Ã =
n∑

k=1

 ∑
u∈Jxi

1/u

/xk =
M1∑

l=1
1/u1l

/x1 + . . . +
[

Mn∑
l=1

1/unl

]/
xn.

(A.11)

Where + denotes union, the discourse of universe U ∈ X is defined by the

vector xp = [x1, . . . , xn] and if the discretization of each ukl contains the

same number of elements, hence M1 = M2 = . . . = Mn ≡ M . Similarly to

T2-FS, the FOU for IT2-FSs is defined as mentioned in chapter 2, thus the

upper and lower bound of the FOU can be expressed as:

µÃ ≡ FOU(Ã) ∀x ∈ X (A.12)

µÃ ≡ FOU(Ã) ∀x ∈ X (A.13)

From the the equations A.12 and A.13, Ã can be expressed as:

Ã = 1/FOU(Ã) (A.14)

Note that Jx = [µÃ(x), µÃ(x)]. Therefore, an embedded IT2-FS Ãe has
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n-elements containing one element from Jx1, Jx2, . . . , Jxn and one from

u1, u2, . . . , un, each element with a secondary MF equal to 1. i.e.

Ãe =
n∑

k=1
[1/uk]

/
xk uk ∈ Jxk

⊆ U = [0, 1] (A.15)

Hence, from the equation represented above Ã can be represented through

the union of all its embedded whose total number is ⨿n
k=1 = MkAe and

whose representation can be as follows:

Ã =
nA∑
j=1

Ãj
e (A.16)

where (j = 1, . . . , nA), and

Ãj
e =

n∑
k=1

[
1/uj

k uj
k ∈ Jxk

⊆ U = [0, 1]
]

(A.17)

and

nA = ⨿n
k=1Mk (A.18)

where Mk is the discretization levels of secondary variable uj
k at each of the

n xk.



BDERIVATIVES FOR THE LEARNING

PROCEDURE

For simplicity, the IT2-RBF-NN under consideration has ’n’ inputs and one

output. Hence, according to the description provided in section 5.3, the first

three optimisation cases that must be considered are: a) having a fixed stan-

dard deviation σi with a variable mean mi
k defined on the values [mi

k1, mi
k2],

b) having a fixed mean mi
k with a variable standard deviation σi defined on

the values [σ1
i , σ2

i ] and that case with a fixed deviation σi, fixed mean mi
k and

variable height hi.

a) Fixed Standard deviation with a variable mean. To tune the mean

mi
k of Gaussian MF with a fixed standard deviation σi in the ith rule [Ha-

gras, 2006] and for the k input, we have the following equations

mi
k1(p + 1) = mi

k1(p)− α
∂ep

∂mi
k1

∣∣∣∣∣∣
p

(B.1)

mi
k2(p + 1) = mi

k2(p)− α
∂ep

∂mi
k2

∣∣∣∣∣∣
p

(B.2)

where:

∂ep

∂mi
k1

=
 ∂ep

∂y(x⃗p)
∂y(x⃗p)

∂yl

∂yl

∂mi
k1

+ ∂ep

∂y(x⃗p)
∂y(x⃗p)

∂yr

∂yr

∂mi
k1


∂ep

∂mi
k2

=
 ∂ep

∂y(x⃗p)
∂y(x⃗p)

∂yl

∂yl

∂mi
k2

+ ∂ep

∂y(x⃗p)
∂y(x⃗p)

∂yr

∂yr

∂mi
k2



for the standard deviation σi
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σi(p + 1) = σi(p)− 1
2α(y(x⃗p)− dp)

∂yl

∂σi

+ ∂yr

∂σi

 (B.3)

and for the interval consequence weight [wi
l , wi

r] we have two expressions.

wi
l(p + 1) = wi

l(p)− 1
2α(y(x⃗p)− dp)

 ∂yl

∂wi
l

+ ∂yr

∂wi
l

 (B.4)

wi
r(p + 1) = wi

r(p)− 1
2α(y(x⃗p)− dp)

 ∂yl

∂wi
r

+ ∂yr

∂wi
r

 (B.5)

Hence, by using the chain rule the corresponding derivatives are:

∂ep

y(x⃗p)

∣∣∣∣∣∣
p

= y(x⃗p)− dp (B.6)

∂y(x⃗p)
∂yl

∣∣∣∣∣∣
p

= ∂y(x⃗p)
∂yr

∣∣∣∣∣∣
p

= 1
2 (B.7)

∂yl

∂mi
k1

∣∣∣∣∣∣
p

=
 ∂yl

∂f i

∂f i

∂mi
k1

+ ∂yl

∂f i

∂f i

∂mi
k1

 (B.8)

∂yr

∂mi
k1

∣∣∣∣∣∣
p

=
∂yr

∂f i

∂f i

∂mi
k1

+ ∂yr

∂f i

∂f i

∂mi
k1

 (B.9)

For σi, the partial derivatives are

∂yl

∂σi

∣∣∣∣∣∣
p

=
 ∂yl

∂f i

∂f i

∂σi

+ ∂yl

∂f i

∂f i

∂σi

 (B.10)

∂yr

∂σi

∣∣∣∣∣∣
p

=
∂yr

∂f i

∂f i

∂σi

+ ∂yr

∂f i

∂f i

∂σi

 (B.11)
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where the partial derivatives of the upper and lower MFs with respect to mi
k1

and mi
k2 are:

∂f i

∂mi
k1

=


2(xk −mi

k1)f i(φk(xk), σi)
(σi)2 , xk ≤ mi

k1

0, mi
k1 ≤ xk ≤ mi

k2

0, xk > mi
k2

(B.12)

∂f i

∂mi
k1

=


0, xk ≤

mi
k1+mi

k2
2

2
(xk −mi

k1)f i(φk(xk), σi)
(σi)2 , xk >

mi
k1+mi

k2
2

(B.13)

∂f i

∂mi
k2

=



0, xk ≤ mi
k1

0, mi
k1 ≤ xk ≤ mi

k2

2(xk −mi
k2)f i(φk(xk), σi)

(σi)2 , xk > mi
k2

(B.14)

∂f i

∂mi
k2

=


2

(xk −mi
k2)f i(φk(xk), σi)

(σi)2 , xk ≤
mi

k1+mi
k2

2

0, xk >
mi

k1+mi
k2

2

(B.15)

In order to compute the related derivatives to yr and yl expressed in

(B.12), (B.13), (B.14) and (B.15) with respect to the MF parameters [Panout-

sos and Mahfouf, 2010a], hence it is necessary to know where exactly the

antecedent and consequent parameters are located. This means that the

different possible permutations produced during the type-reduction process

must be considered. In other words, the computational burden increases

as the number of iterations increase at each type reduction of the interval

type-2 fuzzy sets. In section 5.3 the procedure required to process the per-
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mutations is described in detail. Therefore, the corresponding derivatives

can be categorised into four different expressions as follows:

∂yl

∂f i

=



(wi
l − yl) L∑

i=1
f i +

M∑
i=L+1

f i

 , i ≤ L

0, i > L

(B.16)

∂yl

∂f i

=



(wi
l − yl) L∑

i=1
f i +

M∑
i=L+1

f i

 , i > L

0, i ≤ L

(B.17)

∂yr

∂f i

=



(wi
r − yr) R∑

i=1
f i +

M∑
i=R+1

f i

 , i > R

0, i ≤ R

(B.18)

∂yr

∂f i

=



(wi
r − yr) R∑

i=1
f i +

M∑
i=R+1

f i

 , i ≤ R

0, i > R

(B.19)

and with respect to the standard deviation σi.
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∂f i

∂σi

= 2

n∑
k=1

φk(xk)f i(φk(xk), σi)

(σi)3 (B.20)

∂f i

∂σi

= 2

n∑
k=1

φk(xk)f i(φk(xk), σi)

(σi)3 (B.21)

Following the same procedure given above, the derivatives of ∂yl/∂wi
l and

∂yr/∂wi
r are as follows:

∂yl

∂wi
l

=



f i L∑
i=1

f i +
M∑

i=L+1
f i

 , i ≤ L

f i L∑
i=1

f i +
M∑

i=L+1
f i

 , i > L
(B.22)

∂yr

∂wi
r

=



f i R∑
i=1

f i +
M∑

i=R+1
f i

 , i ≤ R

f i R∑
i=1

f i +
M∑

i=R+1
f i

 , i > R
(B.23)

According to the analysis given above, a number of different permutations

are produced in the antecedent and consequence rules respectively - for ex-

ample if i ≤ L, i ≤ R and xk >
mi

k1+mi
k2

2 (also mi
k1 ≤ xk ≤ mi

k2) and then

substituting the corresponding equations into (B.1) and (B.3) we have the

expressions in (B.24) and (B.25) for σi and mi
k1. A similar procedure can be

followed to compute the different permutations of mi
k2.
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mi
k1(p+1) = mi

k1(p)−α(y(x⃗p)−dp)
(xk −mi

k1)f i(φk(xk), σi)
(σi)2


wi

r − yr

R∑
i=1

f i +
M∑

i=R+1
f i


(B.24)

σi(p + 1) = σi(p)− α(y(x⃗p)− dp)
(σi)3 ×

×


n∑

k=1
φk(xk)f i(φk(xk), σi)(wi

l − yl)

L∑
i=1

f i +
M∑

i=L+1
f i

+

n∑
k=1

φk(xk)f i(φk(xk), σi)(wi
r − yr)

M∑
i=L+1

f i +
M∑

i=R+1
f i


(B.25)

From (B.4) and (B.5), we now define the two possible permutations for the

consequence weights [wi
l , wi

r] respectively in the output layer of the IT2-

RBF-NN by substituting the related derivatives from (B.22) and (B.23). For

example if i ≤ L and renaming the denominator from (B.19) and (B.17) as

follows:

ylden =
L∑

i=1
f i +

M∑
i=L+1

f i (B.26)

And

yrden =
R∑

i=1
f i +

M∑
i=R+1

f i (B.27)

Therefore if i ≤ L

wi
l(p + 1) = wi

l(p)− 1
2α(y(x⃗p)− dp) f i

ylden

(B.28)

Otherwise
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wi
l(p + 1) = wi

l(p)− 1
2α(y(x⃗p)− dp)

f i

ylden

(B.29)

For i ≤ R

wi
r(p + 1) = wi

r(p)− 1
2α(y(x⃗p)− dp) f i

yrden

(B.30)

and i > R

wi
r(p + 1) = wi

r(p)− 1
2α(y(x⃗p)− dp)

f i

yrden

(B.31)

b) Fixed mean with a variable standard deviation. As described pre-

viously, a similar procedure can be used to optimise the standard deviation

σi ∈ [σ1
i , σ2

i ] with a fixed mean mi
k. The methodology is then carried out by

using the adaptive-BEP approach for learning the premise parameters as

σ1
i (p + 1) = σ1

i (p)− 1
2α(y(x⃗p)− dp)

 ∂yl

∂σ1
i

+ ∂yr

∂σ1
i

 (B.32)

σ2
i (p + 1) = σ2

i (p)− 1
2α(y(x⃗p)− dp)

 ∂yl

∂σ2
i

+ ∂yr

∂σ2
i

 (B.33)

Where

∂f i

∂σ1
i

= 2

n∑
k=1

(xk −mi
k)2f i(mi

k, σ1
i ; x⃗P )

(σ1
i )3 (B.34)

∂f i

∂σ2
i

= 2

n∑
k=1

(xk −mi
k)2f i(mi

k, σ2
i ; x⃗P )

(σ2
i )3 (B.35)
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And in order to compute mi
k

mi
k(p + 1) = mi

k(p)− 1
2α(y(x⃗p)− dp)

 ∂yl

∂mi
k

+ ∂yr

∂mi
k

 (B.36)

c) Fixed mean with variable height. The procedure to optimise the height

hi ∈ [h1
i , h2

i ] with a fixed mean mi
k and a fixed standard deviation σi. The

adaptive learning methodology is

h1
i (p + 1) = h1

i (p)− 1
2α(y(x⃗p)− dp)

 ∂yl

∂h1
i

+ ∂yr

∂h1
i

 (B.37)

h2
i (p + 1) = h2

i (p)− 1
2α(y(x⃗p)− dp)

 ∂yl

∂h2
i

+ ∂yr

∂h2
i

 (B.38)

Where

∂f i

∂h1
i

= 0 (B.39)

∂f i

∂h2
i

= 0 (B.40)

∂f i

∂h1
i

= f i(mi
k, σ1

i , h1
i ; x⃗p) (B.41)

∂f i

∂h2
i

= f i(mi
k, σ2

i , h2
i ; x⃗p) (B.42)

And in order to compute mi
k

mi
k(p + 1) = mi

k(p)− 1
2α(y(x⃗p)− dp)

 ∂yl

∂mi
k

+ ∂yr

∂mi
k

 (B.43)
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d) Finally the last two configurations proposed in this chapter is

a procedure to optimise the height hi ∈ [h1
i , h2

i ] with a fixed mean mi
k and

a uncertain standard deviation σi and a procedure to optimise the height

hi ∈ [h1
i , h2

i ] with an uncertain mean mi
k and a fixed standard deviation σi.

These two configurations can be conducted by combining the equations de-

fined in the sections (a), (b) and (c). For example, to identify the partial

derivatives of the former configuration, the expressions (B.32), (B.33) for

computing σi, B.37, B.38 for a variable hi and B.43 for mi
k must be used re-

spectively. Therefore, the parameter identification for the latter configuration

can be done by utilising the equations B.37, B.38 for the height hi, B.1 and

B.2 for tuning an uncertain mean mi
k and B.3 for optimising a fixed devia-

tion. That means, the number of combinations for tuning the IT2-RBF-NN

is 23, however in this research work it is only presented six out of the total.
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