
New Strategies for

Automated Random Testing

Mian Asbat Ahmad

PhD

University of York

Computer Science

September 2014

Abstract

The ever increasing reliance on software-intensive systems is driving research to discover
software faults more effectively and more efficiently. Despite intensive research, very few
approaches have studied and used knowledge about fault domains to improve the testing
or the feedback given to developers. The present thesis addresses this shortcoming: it
leverages fault co-localization in a new random testing strategy called Dirt Spot Sweep-
ing Random (DSSR), and it presents two new strategies: Automated Discovery of Failure
Domain (ADFD) and Automated Discovery of Failure Domain+ (ADFD+). These improve
the feedback given to developers by deducing more information about the failure domain
(i.e. point, block, strip) in an automated way. The DSSR strategy adds the value caus-
ing the failure and its neighbouring values to the list of interesting values for exploring the
underlying failure domain. The comparative evaluation showed significantly better perfor-
mance of DSSR over Random and Random+ strategies. The ADFD strategy finds failures
and failure domains and presents the pass and fail domains in graphical form. The re-
sults obtained by evaluating error-seeded numerical programs indicated highly effective
performance of the ADFD strategy. The ADFD+ strategy is an extended version of ADFD
strategy with respect to algorithm and graphical presentation of failure domains. In compar-
ison with Randoop, ADFD+ strategy successfully detected all failures and failure domains
while Randoop identified individual failures but could not detect failure domains. The ADFD
and ADFD+ techniques were enhanced by integration of the automatic invariant detector
Daikon, and the precision of identifying failure domains was determined through extensive
experimental evaluation of real world Java projects contained in a database, namely Qual-
itas Corpus. The analyses of results, cross-checked by manual testing indicated that the
ADFD and ADFD+ techniques are highly effective in providing assistance but are not an
alternative to manual testing.

i

Contents

Abstract i

List of Figures ix

List of Tables xiii

Dedication xv

Acknowledgements xvii

Declaration xix

1 Introduction 1

1.0 Preliminaries . 1

1.1 Software Testing . 2

1.2 Random Testing . 3

1.3 The Problems . 4

1.3.1 Limitation of RT to Discover Contiguous Unique Failures 4

1.3.2 Inability of RT to Identify Failure Domains 4

1.3.3 Lack of Techniques to Present RT Results in Graphical Form 4

1.4 Research Goals . 5

1.5 Contributions . 5

1.6 Thesis Structure . 6

2 Literature Review 9

2.1 Software Testing . 9

2.1.1 Input Domain . 10

2.1.2 Test Case . 11

2.1.3 Test Oracle . 11

2.2 Software Testing from Various Viewpoints 12

2.3 Software Testing Levels . 13

iii

2.4 Software Testing Purpose . 13

2.5 Software Testing Perspective . 13

2.5.1 White-box Testing . 13

2.5.2 Black-box Testing . 15

2.6 Software Testing Types . 17

2.6.1 Manual Software Testing . 18

2.6.2 Automated Software Testing . 18

2.7 Test Data Generation . 19

2.7.1 Path-wise Test Data Generator . 20

2.7.2 Goal-oriented Test Data Generator 20

2.7.3 Intelligent Test Data Generator . 21

2.7.4 Search-based Test Data Generator 22

2.7.5 Random Test Data Generator . 23

2.8 Random Testing . 23

2.9 Pass and Fail domains . 25

2.10 Versions of Random testing . 26

2.10.1 Random+ Testing . 27

2.10.2 Adaptive Random Testing . 27

2.10.3 Mirror Adaptive Random Testing . 28

2.10.4 Restricted Random Testing . 29

2.10.5 Directed Automated Random Testing 30

2.10.6 Feedback-directed Random Testing 30

2.10.7 The ARTOO Testing . 30

2.11 Automatic Random Testing Tools . 32

2.11.1 JCrasher . 32

2.11.2 Jartege . 33

2.11.3 Eclat . 34

2.11.4 Randoop . 35

2.11.5 QuickCheck . 35

2.11.6 AutoTest . 36

iv

2.11.7 TestEra . 37

2.11.8 Korat . 38

2.11.9 YETI . 38

2.12 Summary . 40

2.13 The Proposed Area of Research . 41

3 York Extensible Testing Infrastructure 43

3.1 Overview . 43

3.2 Design . 44

3.2.1 Core Infrastructure of YETI . 44

3.2.2 Strategy . 45

3.2.3 Language-specific Binding . 46

3.2.4 Construction of Test Cases . 46

3.2.5 Call sequence of YETI . 47

3.2.6 Command-line Options . 48

3.2.7 Execution . 50

3.2.8 Test Oracle . 51

3.2.9 Report . 51

3.2.10 Graphical User Interface . 52

3.3 Summary . 54

4 Dirt Spot Sweeping Random Strategy 55

4.1 Dirt Spot Sweeping Random Strategy . 55

4.1.1 Random Strategy . 56

4.1.2 Random+ Strategy . 56

4.1.3 Dirt Spot Sweeping . 56

4.1.4 Working of DSSR Strategy . 58

4.1.5 Explanation of DSSR Strategy by Example 60

4.2 Implementation of DSSR Strategy . 62

4.3 Evaluation . 63

4.3.1 Research Questions . 63

4.3.2 Experiments . 63

v

4.3.3 Performance Measurement Criteria 65

4.4 Results . 65

4.4.1 Absolute Best in R, R+ and DSSR Strategies 67

4.4.2 Classes For Which any of the Three Strategies Performs Better . . . 68

4.4.3 The Best Default Strategy in R, R+ and DSSR 68

4.5 Discussion . 68

4.6 Related Work . 71

4.7 Summary . 72

5 Automated Discovery of Failure Domain 73

5.1 Introduction . 73

5.2 Automated Discovery of Failure Domain . 74

5.2.1 GUI Front-end for Providing Input . 74

5.2.2 Automated Finding of Failure . 75

5.2.3 Automated Generation of Modules 75

5.2.4 Automated Compilation and Execution of Modules 76

5.2.5 Automated Generation of Graph . 76

5.2.6 Implementation of ADFD Strategy 77

5.2.7 Explanation of ADFD Strategy by Example 78

5.3 Experimental Results . 79

5.4 Discussion . 83

5.5 Threats to Validity . 84

5.6 Related Work . 84

5.7 Summary . 85

6 Automated Discovery of Failure Domain+ 87

6.1 Introduction . 87

6.2 Automated Discovery of Failure Domain+ 87

6.2.1 Implementation of ADFD+ . 88

6.2.2 Workflow of ADFD+ . 89

6.2.3 Example to Illustrate Working of ADFD+ 90

6.3 Evaluation . 91

vi

6.3.1 Research Questions . 92

6.3.2 Randoop . 92

6.3.3 Experimental Setup . 92

6.4 Experimental Results . 93

6.4.1 Efficiency . 94

6.4.2 Effectiveness . 95

6.4.3 Presentation of Failure Domains . 95

6.5 Discussion . 98

6.6 Threats to Validity . 99

6.7 Related Work . 99

6.8 Summary . 100

7 Evaluation of ADFD and ADFD+ techniques 101

7.1 Enhancement of the Techniques . 101

7.2 Daikon . 104

7.2.1 Types of Invariants Detected by Daikon 104

7.3 Difference in Working Mechanism of the Two Techniques 106

7.4 Research Questions . 108

7.5 Evaluation . 108

7.5.1 Experiments . 108

7.5.2 Results . 109

7.6 Threats to Validity . 115

7.7 Related Work . 116

7.8 Summary . 117

8 Conclusions 119

8.1 Lessons Learned . 120

9 Future Work 125

Appendix 127

Glossary 133

Bibliography 135

vii

List of Figures

1.1 Three main phases of random testing . 3

1.2 Structure of the thesis outline . 8

2.1 A simplified version of software testing process 10

2.2 Software testing from various viewpoints . 12

2.3 White-box testing . 14

2.4 Black-box testing . 15

2.5 Types of test data generator . 19

2.6 Working mechanism of random testing . 24

2.7 Failure domains across input domain [1] . 25

2.8 Various versions of random testing . 26

2.9 Mirror functions for mapping of test cases 28

2.10 Input domain showing exclusion zones around selected test cases 29

2.11 How a class T can be checked for robustness with JCrasher. First, the

JCrasher application generates a range of test cases for T and writes them

to TTest.java. Second, the test cases can be executed with JUnit, and third,

the JCrasher runtime filters exceptions according to the robustness heuris-

tic [2] . 32

2.12 The input selection technique. Implicit in the diagram is the program under

test. Rectangles with rounded corners represent steps in the technique, and

rectangles with square corners represent artifacts [3] 34

2.13 AutoTest architecture [4] . 36

2.14 TestEra framework [5] . 37

ix

2.15 Main features of automatic testing tools using random testing 39

2.16 Types of software testing . 40

3.1 Working process of YETI . 43

3.2 Main packages of YETI with dependencies 44

3.3 Call sequence of YETI with Java binding . 47

3.4 Command to launch YETI from CLI . 50

3.5 GUI launcher of YETI . 50

3.6 Successful method calls of YETI . 51

3.7 Sample of YETI bug report . 51

3.8 GUI front-end of YETI . 53

4.1 Exploration of failures by DSS in block and strip domain 57

4.2 Working mechanism of DSSR strategy . 58

4.3 Test result of random strategy for the example code 61

4.4 Test result of DSSR strategy for the example code 61

4.5 Class Hierarchy of DSSR strategy in YETI 62

4.6 Performance of DSSR in comparison with R and R+ strategies. 67

4.7 Results of DSSR strategy in comparison with R and R+ 72

5.1 Work-flow of ADFD strategy . 75

5.2 Front-end of ADFD strategy . 76

5.3 Class Hierarchy of ADFD strategy in YETI 77

5.4 ADFD strategy plotting pass and fail domain of a given class 78

5.5 Chart generated by ADFD strategy presenting point failure domains 80

5.6 Chart generated by ADFD strategy presenting block failure domain 81

5.7 Chart generated by ADFD strategy presenting Strip failure domain 82

6.1 The output of ADFD+ for the above code 90

6.2 Time taken to find failure domains . 93

6.3 Number of test cases taken to find failure domains 93

6.4 Time taken to find failure domains . 94

x

6.5 Test cases taken to find failure domains . 95

6.6 Pass and fail values plotted by ADFD+ in three different cases of one-

dimension programs . 96

6.7 Pass and fail values plotted by ADFD+ in three different cases of two-dimension

programs . 97

7.1 GUI front end of upgraded ADFD and ADFD+ 103

7.2 Architecture of Daikon [6] . 104

7.3 Graph, Invariants and test case generated by ADFD for the given code . . . 107

7.4 Graph, Invariants and Test case generated by ADFD+ for the given code . . 107

xi

List of Tables

3.1 YETI command line options . 49

4.1 Data types and corresponding values to be added 59

4.2 Specifications of projects randomly selected from Qualitas Corpus 64

4.3 Comparative performance of R, R+ and DSSR strategies 66

4.4 Results of t-test applied on experimental data 69

5.1 Experimental results of programs tested with ADFD strategy 79

6.1 Table depicting values of x and y arguments forming point, block and strip

failure domain in Figure 6.6(a), 6.6(b), 6.6(c) and Figure 6.7(a), 6.7(b), 6.7(c)

respectively . 91

7.1 Classification of failure domains . 109

7.2 Table depicting results of ADFD and ADFD+ 110

7.3 Class with block failure domain . 112

7.4 Classes with point failure domains . 112

7.5 Classes with mix failure domains . 112

7.6 Classes with strip failure domains. The value of radius is 10 and 505 for

ADFD and ADFD+ respectively. 113

7.6 Classes with strip failure domains. The value of radius is 10 and 505 for

ADFD and ADFD+ respectively. 114

7.7 Simplicity and complexity of Failure Domains (FD) as found by three tech-

niques . 115

xiii

Dedication

I feel it a great honour to dedicate my PhD thesis to my beloved parents and wife for their
significant contribution in achieving the goal of academic excellence.

xv

Acknowledgements

The duration at the University of York for my PhD has been the most joyful and rewarding
experience in my academic career. The institution provided me with everything I needed
to thrive: challenging research problems, excellent company and supportive environment.
I am deeply grateful to all those who shared this experience with me.

Several people have contributed to the completion of my PhD dissertation. The most
prominent personality deserving due recognition is my worthy advisor, Dr. Manuel Oriol.
Thank you Manuel for your endless help, valuable guidance, constant encouragement,
precious advice, and sincere and affectionate attitude.

I thank my assessor Prof. Dr. John Clark for his constructive feedback on various reports
and presentations. I am highly indebted to Prof. Dr. Richard Paige for his generous help,
cooperation and guidance throughout my research.

Thanks to my father Prof. Dr. Mushtaq A. Mian who provided a conducive environment,
valuable guidance and crucial support at all levels of my educational career and to my
beloved mother whose love, affection and prayers have been my most precious assets.
I am also thankful to my brothers Dr. Ashfaq, Dr. Aftab, Dr. Ishaq, Dr. Afaq, and Dr.
Ilyas who have been the source of inspiration for me to pursue higher studies. Last but
not the least I am thankful to my dear wife Dr. Munazza Asbat for her company, help and
cooperation throughout my stay at York.

I obtained a Departmental Overseas Research Scholarship which is awarded on academic
merit and research potential to overseas students for higher studies. I am truly grateful
to the Department of Computer Science, University of York for extending all needed re-
sources.

xvii

Declaration

I declare that the contents of this thesis derive from my own original research between
January 2010 and November 2014, the period during which I was registered for the degree
of Doctor of Philosophy at University of York.

Contributions from this thesis have been published in the following papers:

• M. Ahmad and M. Oriol. Dirt Spot Sweeping Random strategy. Poster presentation
in fourth York Doctoral Symposium (YDS 2011), York, UK. October 2011.

• M. Ahmad and M. Oriol. Dirt Spot Sweeping Random strategy. In Proceedings of
the International Conference on Software and Information Engineering (ICSIE), Sin-
gapore. Lecture Notes on Software Engineering, Volume 2(4), pp. 294-299, 2014.

Based on research described in Chapter 4 of the thesis.

• M. Ahmad and M. Oriol. Automated Discovery of Failure Domain. In Proceedings of
the International Conference on Software and Computer Applications (ICSCA), Paris,
France. Lecture Notes on Software Engineering, Volume 1(3), pp. 289-294, 2014.

Based on research described in Chapter 5 of the thesis.

• M. Ahmad and M. Oriol. ADFD+: An Automatic Testing Technique for Finding and
Presenting Failure domains. In Proceedings of the International Conference on Soft-
ware and Information Engineering (ICSIE), Singapore. Lecture Notes on Software
Engineering, Volume 2(4), pp. 331-336, 2014.

Based on research described in Chapter 6 of the thesis.

• M. Ahmad and M. Oriol. Evaluation of ADFD and ADFD+ techniques. In Proceedings
of Seventh York Doctoral Symposium (YDS 2014), York, UK. October 2014.

Based on research described in Chapter 7 of the thesis.

xix

Chapter 1

Introduction

Software is a set of clearly defined instructions for computer hardware to perform a par-
ticular task. Some software are developed for use in simple day to day operations while
others are for highly complex processes in specialised fields like education, business, fi-
nance, health, science and technology, etc. The ever-increasing dependency on software
means that software products must be reliable, robust, safe and secure. However, like
other man-made items, software products are also prone to errors. Maurice Wilkes [7], a
British computer pioneer stated that,

“As soon as we started programming, we found to our surprise that it was not as
easy to get programs right as we had thought. Debugging had to be discovered.
I can remember the exact instant when I realized that a large part of my life from
then on was going to be spent in finding mistakes in my own programs.”

The margin of error in mission-critical and safety-critical systems is so small that a minor
fault can lead to large economic losses [8]. According to the National Institute of Standards
and Technology, US companies alone bear $59.5 billion loss every year due to software
failures, and improvements in software testing infrastructure might save one-third of this
cost [9]. Software testing is the most recognized and widely used technique to verify the
correctness and ensure quality of the software [10]. Therefore, software companies make
considerable efforts to ensure the reliability and accuracy of the software prior to its de-
ployment. According to Myers et al. some software companies spend up to 50% of the
elapsed time and more than 50% of the total development and maintenance cost on soft-
ware testing [11]. The success of a software testing technique mainly depends on the
number of faults discovered in the Software Under Test (SUT). An efficient testing process
discovers the maximum number of faults in the minimum possible time. There is there-
fore a strong motivation for improving existing strategies and developing new efficient test
strategies. This research study is a contribution to the literature on the subject with the

1

aim to improve software testing by devising new and improved automated software testing
techniques based on random strategies.

Ideally, exhaustive testing, where software is tested against all possible inputs, may look
more attractive, but it is commonly not feasible because of the large size of the input do-
main, limited resources and strict time constraints. The usual practice is therefore to use
a test strategy for the selection of test data set from a large/infinite domain. Careful se-
lection of the test data set, as a subset of the whole input domain, is a crucial factor in
any testing technique because it represents the whole domain for evaluating the structural
and/or functional properties of the SUT [12, 13]. Miller and Maloney were the first who
comprehensively described a systematic approach of test data set selection known as
path coverage. They proposed that testers should select the test data set so that all paths
of the SUT are executed at least once [14]. The approach resulted in the higher standard
of test quality.

Test data set can either be generated manually or automatically. Generating test data set
manually is a time-consuming and laborious exercise [15] as compared to the more prefer-
able automated test data set generation. Test data generators can be of different types
i.e. Path-wise (Section 2.7.1), Goal-oriented (Section 2.7.2), Intelligent (Section 2.7.3),
Search-based (Section 2.7.4) and Random (Section 2.7.5).

Based on the critical importance of relevant test data set, the testers should always use
the most efficient test strategy during software testing. However, using such a test strategy
involves higher cost to generate test data sets that satisfy complex constraints. The opti-
mum approach maintains a balance between the resources required and the generation
of relevant test data set to make the software testing cost effective. Random test data set
generation is simple, widely applicable, easy to implement, faster in computation, free from
bias and incurs minimum overhead [16].

1.1 Software Testing

Software testing is a Verification and Validation (V&V) technique used to ensure that the
software adheres to the desired specifications. According to Edsger Dijkstra, “software
testing can be used to show the presence of bugs but never to show the absence of
bugs” [17]. It means that the SUT that passes all the tests without giving any error is
not guaranteed to contain no error. However, the testing process increases reliability and
confidence of users in the tested product. Software testing is discussed in more detail in
Section 2.1.

2

1.2 Random Testing

Random testing is a testing technique in which the test data set is randomly generated in
accordance with the requirements, specifications or other test adequacy criteria. The given
SUT is executed against the test data set, and results obtained are evaluated to determine
whether the output produced satisfies the expected results. According to Godefroid et
al. [18], “Random testing is a simple and well-known technique which can be remarkably
effective in discovering software bugs”. The three main phases of random testing include
data generation, execution and evaluation as shown in Figure 1.1. Random testing is
discussed in more detail in Section 2.8.

Figure 1.1: Three main phases of random testing

Test Data Generation: It consists of generation/selection of test data for use as input to
the SUT. In this phase, the tester is free to generate the test data set arbitrarily from the
input domain without any test adequacy criteria. Nevertheless, the two most commonly
used methods are uniform distribution and operational profile. With a uniform distribution,
all inputs are equally probable for selection. With an operational profile, the test data are
selected to reflect the input distribution occurring in the operational environment.

Test Data Execution: It refers to application of generated test data to the SUT. The pro-
cess consists of three steps: supplying test data as input to the software, executing the
software and logging the output obtained. These steps can be achieved manually or auto-
matically by using a script or tool.

Test Data Evaluation: It consists of analysis of the test logs to know whether the test fails
or passes. The decision of fail/pass is made by comparing the obtained results with the
correct results contained in the test oracle. The data evaluation can be performed either
manually or automatically.

3

1.3 The Problems

Despite the benefits of random testing, its simplistic and non-systematic nature exposes
it to high criticism [11, 19]. This research study focuses on the following problems in
automated Random Testing (RT):

1. Limitation of RT to discover contiguous unique failures.

2. Inability of RT to identify failure domains.

3. Lack of techniques to present RT results in graphical form.

1.3.1 Limitation of RT to Discover Contiguous Unique Failures

Chan et al. [1] observed that failure-inducing inputs are contiguous and form certain geo-
metrical patterns in the whole input domain. They divided them into point, block and strip
domains on the basis of their shape (see Section 2.9 for details). The failure-finding ability
of random testing is quite low in detecting the contiguous block and strip failure domains
within the input domain. Attempts are needed to overcome this limitation of RT.

1.3.2 Inability of RT to Identify Failure Domains

A majority of failures reside in contiguous locations and form certain failure domains across
the input domain [1]. The existing random strategies of software testing try to discover fail-
ures individually from the domains and lack the capability to discover the failure domains.
There is a need for appropriate random strategies with the potential to identify the failures,
as well as failure domains.

1.3.3 Lack of Techniques to Present RT Results in Graphical Form

Random testing is no exception when it comes to the complexity of understanding and
evaluating test results. Modern testing techniques simplify results by truncating the lengthy
log files and displaying only the fault-revealing test cases in the form of unit tests. No
random strategy seems to be used in conjunction with a graphical representation of the
failures and failure domains. Efforts are therefore required to get the test results of random
testing in user-friendly graphical form in addition to the textual form.

4

1.4 Research Goals

Research goals of the current study are: to understand the nature of failures, to leverage
failure domains for finding more bugs, and to develop new improved automated random
strategies.

1.5 Contributions

The main contributions of the thesis research are as follows:

Dirt Spot Sweeping Random Strategy: The failure-finding ability of random testing tech-
niques decreases when the unique failures lie in contiguous locations across the in-
put domain. Dirt Spot Sweeping Random (DSSR) strategy was developed as a new
automated technique to overcome the problem. It is based on the assumption that
unique failures reside in contiguous blocks and strips. When a failure is identified, the
DSSR strategy selects neighbouring values for the subsequent tests. The selected
values sweep around the failure, leading to the discovery of new failures in the vicin-
ity. Results presented in Chapter 4 indicate that the failure-finding ability of DSSR is
greater than that of Random and Random+ strategies.

Automated Discovery of Failure Domain: The existing random strategies of software
testing discover the failures in the SUT but lack the capability of identifying and pre-
senting the failure domains. In the present study, Automated Discovery of Failure
Domain (ADFD) is developed as a fully automated testing strategy with the ability to
find failures as well as failure domains in a given SUT. It also provides visualisation of
the identified pass and fail domains in a graphical form. The strategy implemented in
York Extensible Testing Infrastructure (YETI) is described and practically illustrated
in Chapter 5 by executing several programs of one and two-dimensions. The exper-
imental results provide evidence that the newly developed ADFD strategy performs
identification of failures as well as failure domains and provides the results in graphi-
cal form.

Automated Discovery of Failure Domain+: The Automated Discovery of Failure Domain+

(ADFD+) is developed as an upgraded version of ADFD with respect to the algorithm
and graphical representation of failure domains. The new algorithm searches for
the failure domain around the failure in a given radius as against ADFD, which lim-
its the search between lower and upper bounds in particular directions. In addition,

5

ADFD output is improved to provide labelled graphs that make the output easily un-
derstandable and user-friendly. The performance of ADFD+ is compared with that of
an automated testing tool Randoop on similar programs. The experimental results
are presented in Chapter 6.

Evaluation of ADFD and ADFD+ using Qualitas Corpus: Extensive experimental anal-
ysis was carried out on Java projects contained in the Qualitas Corpus [20] to find
the effectiveness of the two automated techniques (ADFD and ADFD+) in compari-
son with manual technique. The impact of nature, location, size, type and complexity
of failure domains on the testing techniques was also studied. The results obtained
are presented in Chapter 7.

1.6 Thesis Structure

The rest of the thesis is organized as follows:

Chapter 2 provides a literature review on software testing. Various types of software test-
ing followed by major stages of testing including test data generation, execution, oracle
and report production are reviewed with particular focus on literature relevant to random
testing. Different versions of random testing and the most commonly used automated test-
ing tools based on random algorithms are reviewed.

Chapter 3 presents the York Extensible Testing Infrastructure (YETI) used as a tool in our
experiments. Aspects of YETI are thoroughly reviewed including design, core infrastruc-
ture, strategy, language-specific binding, construction of test cases, command line options,
execution, test oracle, report generation and graphical user interface.

Chapter 4 describes the Dirt Spot Sweeping Random (DSSR) strategy. The proposed new
testing technique is implemented in YETI. Experimental evidence is presented in support
of the effectiveness of DSSR strategy in finding failures and failure domains as compared
with random and random+ strategies.

6

Chapter 5 presents the Automated Discovery of Failure Domain (ADFD) strategy. The pro-
posed new testing technique, implemented in YETI, finds failures and failure domains in a
specified limit and plots them on a chart. Experimental evidence is presented in support of
the ADFD strategy applied to several one and two-dimensional programs.

Chapter 6 presents the Automated Discovery of Failure Domain+ (ADFD+) strategy. It is
an upgraded version of the ADFD technique with respect to the algorithm and graphical
representation of failure domains. To find the effectiveness of ADFD+, we compared it with
the automated random testing tool Randoop using error seeded programs. The experi-
mental results are presented.

Chapter 7 presents evaluation of the precision of identifying failure domains by ADFD and
ADFD+. For the purpose of comparative analysis, Daikon has been integrated in the two
techniques and extensive experimental analyses are performed of real world Java projects
contained in Qualitas Corpus. The results obtained are analysed and cross-checked with
the results of manual testing. The impact of nature, location, size, type and complexity of
failure domains on the testing techniques are considered.

Chapter 8 presents conclusions of the study including contributions and the lessons learned.

Chapter 9 highlights the opportunities for future work, challenges that may be faced and
possible approaches to overcome the challenges.

7

Figure 1.2: Structure of the thesis outline

8

Chapter 2

Literature Review

The famous quote of Paul Ehrlich, “to err is human, but to really foul things up you need
a computer”, is quite relevant to the software programmers. Programmers being humans
are prone to errors. In spite of best efforts, some errors may remain in the software after it
is finalised. In some systems a single error may lead to a catastrophe. The destruction of
the Mariner 1 rocket (1962) costing $18.5 million, the Hartford Coliseum Collapse (1978)
costing $70 million, the Wall Street crash (1987) costing $500 billion, the failure of long
division by the PentiumTM chip (1993) costing $475 million, the Ariane 5 Rocket disaster
(1996) costing $500 million, and many more were caused by minor errors in the software
[21]. According to the National Institute of Standards and Technology, US companies
alone bear $59.5 billion loss every year due to software faults, one-third of which can be
eliminated by improving the testing infrastructure [9]. Software has to undergo rigorous
stages of testing to achieve high quality. The more complex the software, the higher the
requirements for software testing because of the consequent larger damage involved if a
fault remains in the software.

2.1 Software Testing

According to the ANSI/IEEE standard glossary of software engineering [22], testing is de-
fined as, “the process of exercising or evaluating a system or system component by manual
or automated means to verify that it satisfies specified requirements or to identify differ-
ences between expected and actual results”. The testing process is an integral part of
the Software Development Life Cycle, which starts from requirement phase and contin-
ues throughout the life of the software. The Test Plan document defines the goal, scope,
method, resources and time schedule of testing [23]. It includes the testable deliverables
and the associated risk assessment. The test plan explains who, when, why and how

to perform a specific activity in the testing process.

9

In traditional testing, when a fault is found by the testers, the software is returned to the
developers for rectification and the updated version is given back to the testers for retest-
ing [24]. It is important to note that a successful test is the one that fails a software or
identifies a fault in the software [11], where fault denotes an error made by programmers
during software development [22]. The faulty code on execution can lead to software fail-
ures. Software that passes all tests is not guaranteed to be free from errors. However, the
testing process increases confidence of users and reliability of the tested product [17].

Figure 2.1: A simplified version of software testing process

The process of software testing in its simplest form is shown in Figure 2.1. In the process,
test input data selected from the input domain is used to form test cases. The test cases
are executed against the SUT and the output obtained is declared as pass or fail according
to the expected result defined by the oracle. The input domain, test case and test oracle
are briefly described below.

2.1.1 Input Domain

The input domain comprises all possible inputs for a software, including all global variables,
method arguments and externally assigned variables. For a given program P with input
vector P = {x1, x2, ..., xn}, having {D1, D2, ..., Dn} as the domain of each input so that
x1 ∈ D1, x2 ∈ D2 and so on, the domain D of a function is the cross product of the
domains of each input: D = D1 × D2 × ... × Dn.

10

2.1.2 Test Case

Test case is an artifact which delineates the input, action and expected output correspond-
ing to the input [25]. The test case is declared a pass if the output obtained after executing
the test case agrees with the expected output. Alternatively the test case is declared a
fail if the output obtained after executing the test case does not agree with the expected
output. A test suite comprising a series of test cases is commonly executed to establish
the desired level of quality.

2.1.3 Test Oracle

A test oracle is defined as, “a source containing expected results for comparison with the
actual result of the SUT” [25]. For a program P, an oracle is a function, which verifies that
the output from P is the same as the output from a correct version of P [12]. A test oracle
sets the acceptable behaviour for test execution [26]. Software testing techniques depend
on the availability of a test oracle [27]. Designing a test oracle for ordinary software may be
simple and straightforward. However, for relatively complex software, designing an oracle
is quite cumbersome and requires special expertise. Some common issues related to the
design of test oracles are as follows:

1. It is assumed that the test results are observable and comparable with the oracle [28].

2. Ideally, a test oracle would satisfy desirable properties of program specifications [26].

3. “Truly general test oracles are often unobtainable” [28].

Postconditions are commonly used test oracles in automated software testing. Postcon-
ditions are conditions that must be true after a method is successfully executed. In such
an oracle a fault is signalled when a postcondition is violated [29]. Some other common
artefacts used as oracles are as follows:

1. Specification and documentation of software.

2. Products similar to the SUT but with different algorithms on implementation.

3. Heuristic algorithms to provide exact results for a set of test cases.

4. Comparison of the result of one test with another for consistency.

5. Generation of a model for verification of SUT behaviour.

6. Manual analysis by human experts to verify the test results.

11

2.2 Software Testing from Various Viewpoints

Software testing from various viewpoints is presented in Figure 2.2 and each one is de-
scribed in the following sections.

Figure 2.2: Software testing from various viewpoints

12

2.3 Software Testing Levels

The three main levels of software testing reported in the literature include Unit testing, In-
tegration testing and System testing [30]. Unit testing deals with the evaluation of code
piece-by-piece and each piece is considered as an independent unit. Integration testing is
performed to make sure that the integration in the components formed by the combination
of units is working properly. System testing ensures that the system formed by the combi-
nation of components proceeds properly to give the required output.

2.4 Software Testing Purpose

The purpose of software testing is to achieve high quality by identifying and eliminating
faults in the given SUT. All faults can be identified if software is tested exhaustively. How-
ever, exhaustive testing is not always possible because of limited resources and the infinite
number of input values that the software can take. Therefore, the purpose of testing is
usually directed to achieve confidence in the system involved from a specific point of view.
For example, functionality testing is performed to check that functional aspects of software
are correct. Structural testing involves analyses of code structure for generating test cases
in order to evaluate paths of execution and identification of unreachable or dead code.
Robustness testing includes observation of the software behaviour when it receives input
outside the expected range. Stress and performance testing aims at testing the response
of software under high load [31]. Compatibility testing is performed to check and find any
fault in the interaction of software with the underlying application or system software.

2.5 Software Testing Perspective

Based on the perspective taken, software testing is divided into white-box and black-box
testing as described below.

2.5.1 White-box Testing

White-box testing also known as structural testing is a technique that takes into considera-
tion the structure of the software. Test cases are derived from the code structure and a test
passes if the results are correct and the proper code is followed during test execution [32].

13

A simplified version of white-box testing is shown in Figure 2.3. Some commonly used
white-box testing techniques are described below:

Figure 2.3: White-box testing

2.5.1.1 Data Flow Analysis

Data Flow Analysis (DFA) is a technique that focuses on the behaviour of variables during
execution of the SUT [33]. In this technique a Control Flow Graph (CFG) representing all
possible states of a program is drawn to determine the paths that are traversed by the pro-
gram during test execution. Test cases are generated and executed to verify conformance
with CFG on the basis of data flow.

The data flow analysis observes the program execution as data flow from input to output.
The data may transform into several intermediary steps before reaching a final state. The
transformation process is prone to several errors e.g. references made to nonexisting
variables, values assigned to undeclared variables and change of variables in undesired
manner. Ordered use of data is crucial to ensure that the aforementioned errors do not
occur [34].

2.5.1.2 Control Flow Analysis

Control Flow Analysis (CFA) is a technique that takes into consideration the control struc-
ture of a given SUT [35]. Control structure is the order in which the statements, instruc-
tions and function-calls are executed. Like DFA, this technique also involves creating a
CFG to determine the traversable paths by a program during the execution. Test cases are
generated until all identified elements of control flow identified from the CFG have been
executed. For example, it may be a requirement that the selected test cases execute all
possible control choices at least once when two or more control choices are available to
reach a particular state in the given SUT.

14

2.5.1.3 Fault Injection Testing

Fault injection testing is a validation technique to investigate the error handling behaviour
of software, examine the capability of test procedure, and measure the code coverage
achieved by the testing process [36]. The fault injection is usually software-based or
hardware-based as stated below:

Software-based fault injection: In this technique faulty code is injected into the SUT at
one or more locations to analyse the software behaviour in response to the faults [37]. For
example, changing the value of a variable or return type of a method. The process of code
addition (instrumentation) is performed before compilation and execution of software.

Hardware-based fault injection: In this technique faults are injected by disturbing physi-
cal environment of the system to analyse the system behaviour in response to the changed
condition [38]. For example, injecting different voltage sags, introducing electromagnetic
interference, and changes in temperature.

2.5.2 Black-box Testing

Black-box testing also known as functional testing is a technique that takes into consid-
eration the function of the software. The testers may not know about the structure of the
software. Test cases are derived from the software specifications and a test passes if the
result agrees with the expected output irrespective of the internal code followed during test
execution [39]. A simplified version of black-box testing is shown in Figure 2.4. Some
commonly used black-box testing techniques are as follows.

Figure 2.4: Black-box testing

15

2.5.2.1 Use-case Based Testing

This is a testing technique which utilizes use-cases of the system to generate test cases.
A use-case defines the functional requirement at a particular point in the system from the
actor’s perspective. It consists of a sequence of actions to represent a particular behaviour
of the system. A use-case format includes brief description, flow of events, preconditions,
postconditions, extension points, context and activity diagrams. The use-case contains all
the relevant information required for the test case. Therefore, it can be easily transformed
into a test case [40]. Use-case testing is effective in terms of cheap generation of test
cases, avoidance of test duplication, increased test coverage, easier regression testing
and early identification of missing requirements.

2.5.2.2 Partition Testing

This is a testing technique in which the input domain of a given SUT is divided into sub-
domains which are tested individually. The division is based on software specifications,
code structure and the process involved in software development [41]. The performance
of partition testing is directly proportional to the quality of the sub-domains [42]. Division
of the input domain into equal partitions is often difficult. To overcome the problem, a new
version of partition testing called proportional partition testing is devised [1]. In this version,
the sub-domains vary in size, and the number of test cases selected from each partition
is directly proportional to the size of the partition. Ntafos [43] have provided experimental
evidence in support of better performance of proportional partition testing than partition
testing.

2.5.2.3 Boundary Value Analysis

Boundary Value Analysis (BVA) is a testing technique based on the assumption that errors
often reside along the boundaries of the input variables [44]. Thus, border values are
taken as the test data set in BVA. According to IEEE standards [45], boundary values
contain minimum, maximum, internal and external values specified for the system. The
following code illustrates the ability of BVA to find a failure.

public void test (int arg) {

arg = arg + 1;

int [] intArray = new intArray[arg];

...

}

16

On passing the interesting value Integer.MAX_VALUE as argument to the test method,
the code in the method increments it by 1 making it a negative value and thus a failure is
generated when the SUT tries to set the array size to a negative value.

BVA and partition testing may be used in combination by choosing test values from the
whole input domain and also from the borders of each sub-domain. Reid [46] has provided
evidence in support of better performance of BVA in combination with partition testing
as compared to each individually. They have attributed better performance to accurate
identification of partitions and selection of boundary values.

2.5.2.4 Formal Specification Testing

This is a testing technique based on the mathematical model that provides the opportunity
to handle the specifications mathematically. The mathematical notations express the for-
mal specifications with precisely defined vocabulary, syntax and semantics. This feature
facilitates isolation, transformation, assembly and repackaging of the information available
in the specifications for use as test cases [47].

The formal specification testing is more productive because of the creation of test cases
independent from the code of the SUT [27]. The effort of generating test oracle is avoided
by using available specification model for verifying the test results [48]. The technique is
highly effective in identifying errors, incompleteness and inconsistencies in software re-
quirements [49].

2.6 Software Testing Types

There are two types of software testing: static and dynamic.

Static testing: This involves the analysis of the SUT statically for checking errors without
executing the test cases. Static analysis is applicable to evaluate the quality of software
code and supporting documents including requirements, design, user manual, technical
notes and marketing information. Reviews, walkthroughs and inspections are the most
commonly used techniques for static testing [50].

Dynamic testing: This involves execution of test cases against the SUT. The results ob-
tained are analysed against expected outputs to find errors in the software. Unit testing,
integration testing, system testing and acceptance testing are the most commonly used
methods for dynamic testing [50].

17

2.6.1 Manual Software Testing

In manual testing the testers themselves write code for test input generation and ora-
cles [51]. Its advantage is that the test cases are usually generated to target those parts
of the SUT, that are assumed to be more error-prone. It is highly useful to capture special
cases which automated testing might miss. Manual unit testing is particularly popular be-
cause of the availability of the xUnit family of tools, e.g. jUnit for Java, sUnit for Smalltalk
and pyUnit for Python. The tools automate the execution process of the hand written test
cases providing significant practical benefits [4]. According to a survey, 79% of the Mi-
crosoft developers write unit tests for software testing [52].

The limitations of manual testing are that the testers should have appropriate skills, ex-
perience and knowledge of the SUT for its evaluation from different perspectives. Manual
testing may be effective at smaller scale but at a larger scale it is generally laborious, time-
consuming and error-prone [53]. Manual testing usually produces low coverage because
large numbers of test cases are required for high coverage.

2.6.2 Automated Software Testing

Automated software testing refers to the technique in which an automated tool is used to
perform the testing process automatically [4]. There are some tools available for automat-
ing a part of testing process like the generation of test cases, execution of test cases, or
evaluation of results. Other tools are available for automating the whole testing process.

A fully automated testing system is capable of testing software without any user inter-
vention. This is usually achieved by utilizing the contracts (preconditions, postconditions
and invariants) embedded in the program code. Preconditions are used to filter out in-
valid inputs and postconditions are used as the oracle [4]. Eiffel [54] and Spec# [55] lan-
guages have built-in contracts whereas Java can use add-ons like JML [56], iContract [57]
or OCL [58]. Automated software testing may involve higher initial cost but brings the key
benefits of lower cost of production, higher productivity, maximum availability, greater re-
liability, better performance and ultimately proves highly beneficial for any organisation.
Automated testing is particularly effective when the nature of the job is repetitive, and it is
performed on a routine basis, like unit testing and regression testing where the tests are
re-executed after each modification [59]. The use of automated software testing makes it
possible to test large volumes of code, which may be impossible otherwise [60].

18

2.7 Test Data Generation

Test data generation in software testing is the process of identifying and selecting input
data that satisfies the given criterion. A test data generator is used to assist testers in the
generation of data while the selection criterion defines the properties of test cases to be
generated based on the test plan, and perspective taken [15]. Various artefacts of the SUT
can be considered to generate test data like requirements, model, code, etc. The choice
of artefacts selected limits the kind of test selection criteria that can be applied in guiding
the test case generation.

A typical test data generator consists of three parts: Program analyser, Strategy handler
and Generator [61]. A program analyser performs the initial assessment of software prior to
testing and may alter the code if so required. For example, it performs code instrumentation
or construction of the CFG to measure the code coverage during testing. The strategy
handler defines the test case selection criteria. This may include the formalisation of test
coverage criterion, the selection of paths and normalisation of constraints. It may also get
input from the program analyser or user before or during test execution.

Figure 2.5: Types of test data generator

The generator generates test cases according to the selection criteria identified by the
strategy handler. Test data generators are classified into path-wise, goal-oriented, in-
telligent, search-based and random on the basis of the approach followed, as shown in
Figure 2.5. Each type is briefly described in the following section.

19

2.7.1 Path-wise Test Data Generator

A path-wise test data generator selects a set of test data from the input domain in order
to target path, branch and statement coverage in a given SUT. The process is typically
accomplished in three stages: CFG construction, path selection and test data generation.
In the process, a particular path is selected either manually or by automatic means. The
generator identifies and generates relevant test data required for execution of the interme-
diary statements along the selected path. A complete path contains multiple sub-domains,
each consisting of test inputs required to traverse the path. The boundary of sub-domains
is obtained by the predicates in the path condition.

2.7.2 Goal-oriented Test Data Generator

A goal-oriented test data generator generates data to target a specific program point [62].
The tester can select any path among a set of existing paths as long as it reaches the
specified program point. This technique utilizes runtime information for computing accurate
test data [63]. Among various methods used in goal-oriented test data generation the
following two commonly adopted approaches are briefly described.

2.7.2.1 Chaining Approach

The chaining approach uses the data-dependent analysis to guide the test data generation.
In the process, all the related statements affected by execution of the statement under test
are selected automatically. The dependent statements are executed before the selected
statement to generate the required data for the execution of the statement under test [63].
The chaining approach analyses the program according to the edges and nodes. For each
test coverage criterion different initial event sequence and goal nodes are determined. For
example, consider the branch (p, q), where p is the starting node of the branch and q is
the last node in the branch. The initial event sequence E for the branch (p, q) is defined
as E = < (s, ∅), (p, ∅), (q, ∅) >, provided that s is the starting node of the program
and ∅ is the set of variables referred to as constraint. The Branch classification process
identifies critical, semi-critical and non-critical nodes for each branch. During execution,
the classification guides the search process to select specific branches to reach the goal
node.

20

2.7.2.2 Assertion-oriented Approach

The assertion-oriented approach adds assertions to the program code with the goal to
identify program input on which an assertion is violated indicating a fault in the SUT [64].
An assertion is a constraint applicable to a state of computation which can be either true
or false. For example, consider a given assertion A, now find program input x on which as-
sertion A is false, i.e. when the program is executed on input x and the execution reaches
assertion A, it is evaluated as false indicating a fault in the SUT. It is not always possi-
ble to generate test cases that violate assertions. However, experiments have shown that
assertion-oriented test data generation may frequently detect errors in the program related
to assertion violation. The major advantage of this approach is that each generated test
data uncovers an error in the program with violation of an assertion. An assertion is vio-
lated due to fault in program code, in pre or postcondition or a fault in the assertion itself.

2.7.3 Intelligent Test Data Generator

Intelligent test data generator is used to overcome the problems like generation of mean-
ingless data, duplicated data and complex data associated with traditional data generators.
The approach increases user confidence in the generated test data and the testing pro-
cess [60]. It helps in finding the appropriate test data by performing sophisticated analysis
to anticipate different situations that may arise at any point in the SUT such as genetic algo-
rithm. The approach produces test data that satisfy the SUT requirements but consumes
more time and resources.

2.7.3.1 Genetic Algorithm

Genetic algorithm is a heuristic that mimics the evolution of natural species for search-
ing optimal solution of the problem. It is guided by control dependencies in the program to
search for data that satisfy test requirements. The algorithm evaluates the existing test data
and guides the direction of search by using the program control-dependence graph [65].
The approach emphasises on the execution of a given statement, branch, path and condi-
tion in the given SUT. The benefit of the genetic approach is quick generation of test cases
with proper focus and direction. The new test cases are generated by applying simple
operations on the appropriate existing test cases having good potential of satisfying the
test requirements. The success of the approach depends heavily on the way in which the
existing test data are measured [65].

21

2.7.4 Search-based Test Data Generator

Search-based test data generation is mentioned in the literature for the first time by Webb
Miller and David Spooner in 1976 [66]. It uses meta-heuristic algorithms to generate test
data. The technique relies on the problem-specific fitness function for the optimization
process. Fitness function guides the search process to find an appropriate solution from a
large or infinite search space in a given time [67]. Hill-climbing, simulated annealing, and
genetic algorithms are the most common optimization algorithms used in search-based
test data generation. Search-based test data generation technique can reduce time and
effort by automatically generating relevant test cases. It has been successfully applied,
especially in structural testing [67, 68].

In search-based test data generation technique, each input vector arg1 is associated with
a measure cost(arg1) which represents the difference between the input value arg1

and a set goal. Input value closer to the goal has low-cost value as against the input value
away from the goal. Let us consider the following program.

public void test(int arg1, int arg2) {

if (arg1 >= 20) {

arg2 = arg3;

}

else {

arg2 = 2 * arg3;

}

}

Suppose in the if/else branch statement, we want the true condition to be executed. An
input value of arg1 == 25 clearly satisfies the predicate, and a value of arg1 == 15

is closer to satisfy the predicate than a value of arg1 == 5. We evaluate a cost func-
tion probe of the form cost(arg1) = max {0, 20 - arg1}. Thus arg1 == 25 has
cost 0, arg1 == 15 has cost 5 and arg1 = 5 has cost 15. It is apparent that finding data
to satisfy the branch predicate is essentially a search over the input domain of arg1 to
find a value such that cost(arg1) == 0. The data that satisfy each of the predicates at
different points may be selected to follow a particular path in the code. This leads to a cost
function which combines cost at each of the relevant branching point. The cost function
plays the role of oracle for each targeted test requirement. Consequently, the cost function
must change as per requirement. Frequent re-instrumentation of program is needed to find
test data that fully satisfy common coverage criteria.

22

2.7.5 Random Test Data Generator

Random test data generator is used as the simplest approach for generation of test data.
In this technique test data set is generated randomly from the input domain for testing soft-
ware. The test data set is in accordance with the software requirements, software speci-
fications or any other test adequacy criteria. Its advantage is the adaptability to generate
input data for any type of program. However, random test data generation is based solely
on probability and cannot accomplish high coverage as its chances of finding semantically
small faults are quite low [18]. If a fault is only revealed by a small percentage of the pro-
gram input, it is said to be a semantically small fault. As an example of a semantically small
fault, consider the following code:

public void test(int arg1, int arg2) {

if (arg1 == arg2)

System.out.println(arg1 + " = " + arg2);

else

System.out.println(arg1 + " != " + arg2);

}

It is clear that the probability of execution of the first statement is significantly lower than
that of the second statement. As the structure gets more and more complex, the probability
of execution decreases accordingly. Thus, semantically small faults are hardly detectable
by using a random test data generator.

2.8 Random Testing

Random testing is mentioned in the literature for the first time by Hanford in 1970 who re-
ported syntax machine, a tool that randomly generated data for testing PL/I compilers [69].
Later in 1983, Bird and Munoz described a technique to produce randomly generated self-
checking test cases [70]. Random testing is a dynamic black-box testing technique in which
the software is tested with non-correlated unpredictable test data from the specified input
domain [71]. As stated by Richard [72], the test data are randomly selected from the iden-
tified input domain by means of a random generator. The program under test is executed
on the test data and the results obtained are compared with the program specifications.
The test case fails if the results are not according to the specifications reflecting a fault in
the given SUT and vice versa. Generating test data by random generator is economical
and requires less intellectual and computational efforts [73]. Moreover, no human interven-
tion is involved in data generation that ensures an unbiased testing process. The working
mechanism of random testing is shown in Figure 2.6.

23

Figure 2.6: Working mechanism of random testing

The generation of test data without using any background information makes random test-
ing susceptible to criticism. Random testing is criticized for generating many of the test
cases that falls at the same state of software. It is also stated that random testing generates
test inputs that violate preconditions of the given SUT, which makes it less effective [74, 75].
Myers mentioned random testing as one of the least effective testing technique [11]. How-
ever, Ciupa et al. [16] stated that Myers statement is not based on any experimental ev-
idence. Later experiments performed by several researchers [51, 72, 76] confirmed that
random testing is as effective as any other testing technique. It is reported [77] that random
testing can also discover subtle faults in a given SUT when subjected to a large number
of test cases. It is pointed out that the simplicity and cost effectiveness of random testing
makes it more feasible to run large number of test cases as opposed to systematic testing
techniques which require considerable time and resources for test case generation and
execution. The empirical comparison shows that random testing and partition testing are
equally effective [41]. Ntafos [43] conducted a comparative study and concluded that ran-
dom testing is more effective than proportional partition testing. Miller et al. [78] generated
random ASCII character streams and used the Unix utilities for abnormal terminating and
non-terminating behaviours. Subsequently, the technique was extended to discover errors
in the software running on X Windows, Windows NT and Mac OS X [79, 80]. Other famous

24

studies using random testing includes low-level system calls [81] and file systems used in
missions at NASA [82]. The literature surveyed so far demonstrates that random testing is
a well-established technique in both academia and the commercial domain.

2.9 Pass and Fail domains

The sequence of test data across the input domain for which the software behaves correctly
is called the pass-domain, and that for which the software behave incorrectly is called the
failure domain. Chan et al. [1] observed that input inducing failures are contiguous and
form certain geometrical shapes in the whole input domain. They divided these into point,
block and strip failure domains as described below.

1. Point domain: In the point failure domain, input inducing failures are scattered across
the input domain in the form of stand-alone points. Example of point failure domain
is the failure caused by the statement: total = num1/num2. Here a single value of
num2 = 0 can cause failure, when num1, num2 and total are variables of type int.

2. Block domain: In the block failure domain, input inducing failures lie in close vicinity
to form a block in the input domain. Example of block failure domain is failure caused
by the statement: i f ((num > 10) && (num < 20)). Here the values of num from 11 to
19 form a block failure domain.

3. Strip domain: In the strip failure domain, input inducing failures form a strip across
the input domain. Example of strip failure domain is failure caused by the statement:
int[] myIntArray = new int[num1]. Here multiple values of num1 can lead to failure, i.e.
when the value of num1 is negative.

(a) Point domain (b) Block domain (c) Strip domain

Figure 2.7: Failure domains across input domain [1]

The Figure 2.7 shows failure domains across the input domains. The squares in the figure
indicate the whole input domain. The white space in each square shows legitimate and
faultless values while the black colour in the form of points, block and strip indicate failures
in the form of point, block and strip failure domains.

25

2.10 Versions of Random testing

Researchers have tried various approaches to develop new versions of random testing
for better performance. The prominent improved versions of random testing are shown in
Figure 2.8.

Figure 2.8: Various versions of random testing

26

2.10.1 Random+ Testing

The random+ testing strategy [16, 51] is an extension of the random testing. It uses some
special predefined values which can be simple boundary values or values that have high
tendency of finding faults in the SUT. Boundary values [83] are the values at the start
and end of a particular data type. For instance, such values for int could be -3, -2, -1,
0, 1, 2, 3, Integer.MAX_VALUE, Integer.MAX_VALUE-1, Integer.MAX_VALUE-2,
Integer.MIN_VALUE, Integer.MIN_VALUE+1, Integer.MIN_VALUE+2. These spe-
cial values can add a significant improvement to a testing method.
Let us consider the following piece of code:

public void test (int arg) {

arg = arg + 1;

int [] intArray = new intArray[arg];

...

}

In the given code, on passing the interesting value MAX_INT as argument, the code incre-
ments by 1 making it a negative value and thus the error is generated when the system
tries to build an array of negative size. Similarly, the tester may add some other special
values that are considered effective for finding faults in the SUT. For example, if a program
under test has a loop from -50 to 50 then, the tester can add -55 to -45, -5 to 5 and 45 to
55 to the pre-defined list of special values. This static list of interesting values is manually
updated before the start of the test. Interesting values included in the list are given higher
priority than random values because of their relevance and better chances of finding faults
in the given SUT. As reported in the literature, interesting values have high impact on the
results, particularly for detecting problems in specifications [51].

2.10.2 Adaptive Random Testing

Adaptive random testing (ART) proposed by Chen et al. [24] is based on the previous
work of Chan et al. [1] regarding the existence of failure domains across the input domain
(Section 2.9). Chen et al. [24] argued that ordinary random testing might generate test
inputs lurking too close or too far from the input inducing failure and thus fail to discover the
fault. To generate more fault-targeted test inputs, they proposed ART as a modified version
of random testing where test values are selected at random as usual but are evenly spread
across the input domain. The technique uses the candidate set as well as the executed set
both of which are initially empty and as soon as the testing begins ART fills the candidate

27

set with randomly selected test cases from the input domain. The first test case selected
at random from the candidate set is executed and stored in the executed set. The second
test case is the one selected from the candidate set which is located far away from the
previously executed test case. The process continues till test completion and provides
greater chances of finding failures from failure domains as indicated in [24].

In their experiment with ART Chen et al. [24] use the number of test cases required to find
the first fault (F-measure) as a performance metric instead of the traditional probability of
detecting at least one failure (P-measure) and expected number of failures detected (E-
measure). The results showed up to 50% increase in performance compared to random
testing. However, the authors raised concerns regarding the spreading of test cases across
the input domain, the efficiency of selecting test cases, and the high overhead cost of
generating tests.

2.10.3 Mirror Adaptive Random Testing

Mirror Adaptive Random Testing (MART) is an improvement on ART by using mirror-
partitioning technique to reduce the overhead and decrease the extra computation involved
in ART [84].

Figure 2.9: Mirror functions for mapping of test cases

In this technique, the input domain of the program under test is divided into n number of
disjoint sub-domains of equal size and shape. One of the sub-domains is called the source
sub-domain while all others are termed as mirror sub-domains. ART is then applied only
to the source sub-domain while test cases are selected from all sub-domains by using a
mirror function. In MART (0,0),(u,v) are used to represent the whole input domain where
(0,0) is the leftmost and (u,v) is the rightmost top corner of the two-dimensional rectan-

28

gle. On splitting it into two sub-domains we get (0,0),(u/2,v) as source sub-domain and
(u/2,0),(u,v) as mirror sub-domain. Suppose we get x and y test cases by applying ART
to source sub-domain, so we can linearly translate these test cases to achieve the mirror
effect, i.e. (x+(u/2),y) as shown in Figure 2.9. The experimental results by comparing
MART with ART provides evidence of equally good performance of the two techniques
with the added advantage of lower overhead in MART by using only one quarter of the
calculation as compared with ART [84].

2.10.4 Restricted Random Testing

Restricted Random Testing (RRT) is another approach [85] to overcome the problem of
extra overhead in ART. The RRT achieves this by creating a circular exclusion zone around
the executed test case. A candidate is randomly selected from the input domain as a next
test case. Before execution the candidate is checked and discarded if it lies inside the
exclusion zone. This process repeats until a candidate present outside the exclusion zone
is selected. It ensures that the test case to be executed is well apart from the last executed
test case. The radius of exclusion zone is constant in each test case, and the area of the
input domain decreases progressively with successive execution of test cases.

Figure 2.10: Input domain showing exclusion zones around selected test cases

The authors compared RRT with ART to find the comparative performance and reported
that the performance of both techniques is similar with the added advantage of lower over-
head in case of RRT, which uses only one-quarter of the calculations as compared with
ART. They further found that RRT is up to 55% more effective than RT in terms of F-
measure.

29

2.10.5 Directed Automated Random Testing

Godefroid et al. [18] proposed Directed Automated Random Testing (DART). In DART pro-
cess, the given SUT is instrumented to track the dynamic behaviour of the SUT at run time.
It also identifies external interfaces of a given SUT. These interfaces include external vari-
ables, external methods and the user-specified main method responsible for program exe-
cution. After that it automatically generates test drivers for running the randomly generated
test cases. Finally, the results obtained are analysed in real time to systematically direct
the test case execution along alternative path for maximum code coverage. The DART
algorithm is implemented in the tool that is completely automatic and accepts only the test
program as input. After the external interfaces are extracted it uses the preconditions and
postconditions of the program under test to validate the test inputs. For languages that
do not support contracts inside the code (like C), public methods or interfaces are used to
mimic the scenario. DART attempts to cover different paths of the program code to trigger
errors. Its oracle consists of checking for crashes, failed assertions and non-termination.

2.10.6 Feedback-directed Random Testing

Feedback-directed Random Testing (FDRT) is a technique that generates a unit tests at
random for object-oriented programs [86]. As the name implies, FDRT uses the feedback
received from the execution of first batch of randomly selected unit tests to generate next
batch of directed unit tests. In this way, redundant and wrong unit tests are eliminated
incrementally from the test suite with the help of filtering and application of contracts. For
example a unit test that produces IllegalArgumentException on execution is discarded be-
cause the arguments used in the unit test are not according to the required type. Pacheco
et al. performed a case study in which a team of testers applied FDRT to a critical compo-
nent of .NET architecture. Results showed that the faults discovered by FDRT in 15 hours
of manual processing and 150 hours of CPU processing are more than a test engineer
finds in one year by manual and other automated techniques. As a result, FDRT has been
added to the tool list used at Microsoft for the betterment of the software [87].

2.10.7 The ARTOO Testing

The Adaptive Random Testing for Object-Oriented (ARTOO) programs technique is based
on object distance. Ciupa et al. [88] defined the parameters that can be used to calculate
the distance between the objects. Two objects have more distance between them if they
have more dissimilar properties. The parameters specifying the distance between the
objects are: dynamic types, values of primitive fields and values of reference fields. Strings

30

are treated in terms of directly usable values, and the Levenshtein formula [89] is used as
a distance criterion between the two strings.

In the ARTOO testing, two sets are taken, the candidate-set containing the objects ready to
be run by the system and the used-set, which is initially empty. The first object is selected
randomly from the candidate-set that is moved to used-set after execution. The second
object selected from the candidate-set for execution is the one with the largest distance
from the last executed object in the used-set. The process continues till the fault is found
or the objects in the candidate-set are finished [88].

The ARTOO technique, implemented in AutoTest [73], was evaluated in comparison with
DART [18] by selecting classes from EiffelBase library [90]. The experimental results in-
dicated that some faults found by the ARTOO technique were not identified by the DART
technique. Moreover, the ARTOO technique found first faults with a small number of test
cases than the DART technique. However, more computation was required to select a test
case in the ARTOO technique and the process required more time and cost to generate
test cases as compared to DART.

31

2.11 Automatic Random Testing Tools

A number of automatic random testing tools used in research and reported in the literature
are briefly described in the following section.

2.11.1 JCrasher

Java Crasher (JCrasher) is an automatic robustness testing tool developed by Csallner and
Smaragadakis [2]. JCrasher tests the Java program with random input. The exceptions
thrown during the testing process are recorded and compared with the list of acceptable
standards defined as heuristics. The undefined runtime exceptions are considered as
failures. JCrasher randomly tests only the public methods of SUT based on the fact that
users interact with programs through public methods.

The working mechanism of JCrasher is illustrated by testing a . java program as shown
in Figure 2.11. The source file is first compiled using javac to get the byte code. The
byte code obtained is passed as input to JCrasher, which uses Java reflection library [91]
to analyse all the methods declared by class T . The JCrasher uses method’s transitive
parameter types P to generate the most appropriate test data set which is written to a file
T Test. java. The file is compiled and executed by JUnit. All exceptions produced during
test case executions are collected and compared with robustness heuristic and resulted
violations are reported as errors.

Figure 2.11: How a class T can be checked for robustness with JCrasher. First, the
JCrasher application generates a range of test cases for T and writes them to TTest.java.
Second, the test cases can be executed with JUnit, and third, the JCrasher runtime filters
exceptions according to the robustness heuristic [2]

32

JCrasher is a pioneering tool with the capability to perform fully automatic testing, including
test case generation, execution, filtration and report generation. Its novel feature is the
generation of test cases as JUnit files that can be easily read and used for regression
testing. Another important feature of JCrasher is independent execution of each new test
on a clean-slate. This ensures that the changes made by the previous tests do not affect
the new test.

2.11.2 Jartege

The Java random test generator (Jartege) is a testing tool [92] that randomly generates
unit tests for Java classes with contracts specified in JML. The contracts include class
invariants and the precondition and postconditions of methods. Initially, Jartege uses the
contracts to eliminate irrelevant (pre-condition violating) test cases and later on the same
contracts serve as test oracles (post-conditions). Jartege uses uniform random testing to
test classes and generate test cases. Additionally, testing of a specific part of the class
can be prioritized by changing the parameters to get interesting sequences of calls if so
desired by the tester. The parameters include the following:

• Operational profile of the classes i.e. the likely use of the class under test by other
classes.

• Weight of the class and method under test. Higher weight prioritizes the class or
method over lower weight during the test process.

• Probability of creating new objects during the test process. Low probability means
creation of fewer objects and more re-usability for different operations while high
probability means numerous new objects with less re-usability.

The Jartege technique evaluates a class by entry preconditions and internal precondi-
tions. Entry preconditions are the contracts to be met by the generated test data for testing
the method while internal preconditions are the contracts which are inside the methods
and their violations are considered as faults either in the methods or in the specifications.
Jartege checks for faults in program code as well as in specifications and the JUnit tests
produced by Jartege can be used later for regression testing. Its limitation is the prior
requirement of Java Modelling Language (JML) specifications of the program.

33

2.11.3 Eclat

Eclat [3] is an automated testing tool which generates and classifies unit tests for Java
classes. The tool takes a piece of software and a set of test cases for which the software
runs properly. Based on the correct software operations an operational model is created to
test the selected data. If the operational pattern of the test data differs from the model, the
following three outcomes may be possible: (a) a fault in the given SUT (b) model violation
despite normal operation (c) illegal input that the program is unable to handle.

The testing process is accomplished by Eclat in three stages as shown in Figure 2.12. In
the first stage, a small subset of test inputs is selected, which may likely reveal faults in the
given SUT. In the second stage, reducer function is used to discard any redundant input,
leaving only a single input per operational pattern. In the third stage, the acquired test
inputs are converted into test cases, and oracles are created to determine the success or
failure of the test.

Figure 2.12: The input selection technique. Implicit in the diagram is the program under
test. Rectangles with rounded corners represent steps in the technique, and rectangles
with square corners represent artifacts [3]

To evaluate, they compared Eclat with JCrasher [2] by executing nine programs on both
tools. They reported that Eclat performed better than JCrasher. On the average, Eclat
selected 5.0 inputs per run out of which 30% revealed faults while JCrasher selected 1.13
inputs per run out of which 0.92% revealed faults. The limitation of Eclat is its dependence

34

on the initial pool of correct test cases. Any error in the pool may lead to the creation of
wrong operational model which will adversely affect the testing process.

2.11.4 Randoop

Random tester for object-oriented programs (Randoop) is a tool used for implementing the
FDRT technique [86]. Randoop is a fully automatic tool, capable of testing Java classes
and .NET binaries. It takes a set of classes, contracts, filters and time limit as input and
gives a suite of JUnit for Java and NUnit for .Net program as output. Each unit test in a
test suite is a sequence of method calls (hereafter referred as sequence). Randoop builds
the sequence incrementally by randomly selecting a public method from the class under
test. Arguments for these methods are selected from a predefined pool in case of primitive
type and as a sequence of null values in case of reference type. Randoop maintains two
sets called ErrorSeqs and NonErrorSeqs to record the feedback. It extends ErrorSeqs set in
case of contract or filter violation and NonErrorSeqs set when no violation is recorded in the
feedback. The use of this dynamic feedback evaluation at runtime brings an object to an
interesting state. On test completion, ErrorSeqs and NonErrorSeqs are produced as JUnit
or NUnit test suite. The following command runs Randoop to test OneDimPointFailDomain
for 100 seconds in CLI mode. Values is a text file containing interesting values which is
maintained manually by the tester.

$ java randoop.main.Main gentests \

--testclass=OneDimPointFailDomain \

--testclass=Values --timelimit=100

In terms of coverage and number of faults discovered, Randoop using the FDRT technique
was compared with JCrasher and JavaPathFinder on 14 libraries of both Java and .Net
programs [93]. The results showed that Randoop achieved more branch coverage and
better fault detection than JCrasher.

2.11.5 QuickCheck

QuickCheck [94] is a lightweight random testing tool used for testing of Haskell programs [95].
Haskell is a functional programming language where programs are evaluated by using ex-
pressions rather than statements. Most of the functions in Haskell are pure except the IO
functions, therefore QuickCheck mainly focuses on testing pure functions. QuickCheck is
designed to have a simple domain-specific language of testable specifications embedded
in Haskell. This language is used to define expected properties of the functions under test.

QuickCheck takes as inputs the function to be tested and properties of the program (Haskell

35

functions). The tool uses a built-in random generator to generate test data, but it is also ca-
pable to use a custom built data generator. The tester-defined properties must hold while
executing the function on the generated test data. Any violation of the defined properties
will indicate an error in the function.

2.11.6 AutoTest

AutoTest is used to test Eiffel language programs [96]. The Eiffel language uses the con-
cept of contracts that is effectively utilized by AutoTest. For example, the auto generated
inputs are filtered using preconditions and non-complying test inputs are discarded. The
postconditions are used as test oracles to determine whether the test passes or fails. Be-
sides automated testing, the AutoTest also allows the tester to write the test cases manually
to target a specific section of the code. The AutoTest takes one or more methods or classes
as inputs and automatically generates test input data according to the requirements of the
methods or classes. As shown in Figure 2.13, the architecture of AutoTest can be split into
the following four parts:

Figure 2.13: AutoTest architecture [4]

1. Strategy: This is a pluggable component where testers can fit any strategy according
to the testing requirement. The strategy contains the directions for testing.The default
strategy creates random data to evaluate the methods/classes under test.

2. Proxy: This handles inter-process communication. The proxy receives execution
requests from the strategy and forwards these to the interpreter. It also sends the
execution results to the oracle part.

3. Interpreter: It executes operations on the SUT. The most common operations in-

36

clude: create object, invoke routine and assign result. The interpreter is kept sepa-
rate to increase robustness.

4. Oracle: It is based on contract-based testing. It evaluates the results to see if the
contracts are satisfied. The outcome of the tests are formatted in HTML and stored
on disk.

2.11.7 TestEra

TestEra [5] is a novel framework of auto-generation and evaluation of test inputs for a Java
program. Input of the tool includes specifications, numerical value and method to be tested.
It uses preconditions of the method to generate all non-isomorphic valid test inputs within
the specified limit. The test inputs are executed, and the results obtained are compared
against postconditions of the method serving as oracles. A test case that fails to satisfy
postconditions is considered as a fault. TestEra uses the Alloy modelling language [97] to

Figure 2.14: TestEra framework [5]

express constraints of test inputs from program specifications. The constraints are solved
by the Alloy Analyser [98] which performs the following three functions: (a) it translates
Alloy predicates into propositional formulas (b) it evaluates the propositional formulas to

37

find the outcome (c) it translates each outcome from propositional domain into the relational
domain.

TestEra uses program specifications to guide the auto-generation of test inputs as against
Jartege (Section 2.11.2) and AutoTest (Section 2.11.6) that use program specifications for
filtering the irrelevant random generated test data. However, all the three tools use program
specifications in a similar way for test oracle.

2.11.8 Korat

Korat [99] is a framework for automated testing of Java programs based on formal spec-
ifications [100]. Korat uses Java Modelling Language (JML) for specifications. It uses
bounded-exhaustive testing in which the code is tested against all possible inputs within
the specified bounds [101]. Input to the tool includes imperative predicates and finitization
value. Korat systematically explores the input space of the predicates and generates all
non-isomorphic inputs for which the predicates return true. The core part of Korat moni-
tors execution of the predicates on candidate inputs to filter out the fields accessed during
executions. These inputs are taken as test cases.

Korat uses repOK() and checkRep() methods. The repOK() is used to check the class
invariants for validating test inputs while checkRep() is used to verify the postconditions
for validating the test case. Korat does not require an existing set of operations to create
input values. Therefore, it has the advantage of generating input values that may be difficult
or impossible with a given set of operations. However, it requires significant manual effort
[74].

2.11.9 YETI

York Extensible Testing Infrastructure (YETI) is an open-source automated random testing
tool. YETI, coded in Java, is capable of testing systems developed in procedural, functional
and object-oriented languages. Its language agnostic meta-model enables it to test pro-
grams written in multiple languages including Java, C#, JML and .NET. The core features of
YETI include easy extensibility for future growth, capability to test programs using multiple
strategies, high-speed tests execution, real-time logging, GUI support and auto-generation
of test report at the end of test session. Detailed information about YETI is presented in
Chapter 3.

38

Fi
gu

re
2.

15
:

M
ai

n
fe

at
ur

es
of

au
to

m
at

ic
te

st
in

g
to

ol
s

us
in

g
ra

nd
om

te
st

in
g

39

2.12 Summary

The software testing is summarized graphically in Figure 2.16.

Figure 2.16: Types of software testing

The chapter gives an overview of software testing, including the definition, common types,
need, purpose and uses. It differentiates manual and automated software testing and
describes various ways of software test data generation. The later part describes random
testing and the various ways of improving the performance of random testing. Finally,
information is presented on how the automated testing tools implement random techniques
for software testing. The main features of automatic testing tools used in random testing
are summarized in Figure 2.15.

40

2.13 The Proposed Area of Research

The wide-ranging review of software testing and randomised software testing in particu-
lar has revealed significant scope for improving both the effectiveness and efficiency of
randomised test data generation. In addition, there is significant scope to provide failure
related information to developers that will allow them to fix identified problems with greater
confidence and accuracy. In particular, identifying and communicating the nature of failure
domains to developers should improve the overall quality of the testing process.

In this theses I aim to marry randomised testing with new approaches for discovering and
presenting failure domains. My work is carried out using the YETI tool discussed fully in
the next Chapter.

41

Chapter 3

York Extensible Testing Infrastructure

3.1 Overview

The York Extensible Testing Infrastructure (YETI) is an automated random testing tool de-
veloped by Manuel Oriol [102]. It is capable of testing programs written in Java, JML and
.NET languages [103]. YETI takes the program byte-code as input and executes it with
randomly generated syntactically-correct inputs to find a failure. It runs at a high level
of performance with 106 calls on simple and efficient methods (i.e. methods from String
etc) per minute on Java code. One of its prominent features is the Graphical User Inter-
face (GUI), which makes YETI user-friendly and provides an option to change the testing
parameters in real time. It can also distribute large testing tasks in the cloud for parallel ex-
ecution [104]. The main motivation for developing YETI is provision of a testing workbench
to testers and developers for research. YETI by design is easily extendable to facilitate in-
clusion of new languages and testing strategies. Several researchers [103, 104, 105, 106]
have contributed various features and strategies to the YETI project. The current study
extends YETI with three more test strategies i.e. DSSR [107], ADFD [108] and ADFD+

[109] for software testing and with a graphical front-end to enable its execution from any
GUI which supports Java. The latest version of YETI can be downloaded freely from
www.yetitest.org. Figure 3.1 briefly presents the working process of YETI.

Figure 3.1: Working process of YETI

43

www.yetitest.org

3.2 Design

YETI is a lightweight platform with around 10000 lines of code. It has been designed with
the provision of extensibility for future growth. YETI enforces strong decoupling between
test strategies and the actual language constructs, which adds new binding, without any
modification in the available test strategies. YETI can be divided into three main parts on
the basis of functionality: the core infrastructure, the strategy, and the language-specific
binding. Each part is briefly described below.

3.2.1 Core Infrastructure of YETI

The core infrastructure of YETI provides extendibility through specialization. The ab-
stract classes included in this section can be extended to create new strategies and lan-
guage bindings. It is responsible for test data generation, test process management
and test report production. The core infrastructure of YETI is split into four packages,
i.e. yeti, yeti.environments, yeti.monitoring and yeti.strategies. The
package yeti uses classes from yeti.monitoring and yeti.strategies packages
and calls classes in the yeti.environment package as shown in the Figure 3.2.

Figure 3.2: Main packages of YETI with dependencies

44

The most essential classes included in the YETI core infrastructure are:

1. Yeti is the entry point to the tool YETI and contains the main method. It parses the
arguments, sets up the environment, initializes the testing and delivers the reports of
the test results.

2. YetiLog prints debugging and testing logs.

3. YetiLogProcessor is an interface for processing testing logs.

4. YetiEngine binds YetiStrategy and YetiTestManager together and carries-out
the actual testing process.

5. YetiTestManager makes the actual calls based on the YetiEngine configuration,
and activates the YetiStrategy to generate test data and select the routines.

6. YetiProgrammingLanguageProperties is a place-holder for all language-related in-
stances.

7. YetiInitializer is an abstract class for test initialization.

3.2.2 Strategy

The strategy defines a specific way to generate test inputs. The strategy section consist of
seven essential strategies stated below:

1. YetiStrategy is an abstract class which provides an interface for every strategy in
YETI.

2. YetiRandomStrategy implements the random strategy and generates random val-
ues for testing. In this strategy the user can change the null values probability and
the percentage of creating new objects for the test session.

3. YetiRandomPlusStrategy extends the random strategy by adding values to the list
of interesting values. It allows the user to adjust the percentage of using interesting
values in the test session.

4. YetiDSSRStrategy extends YetiRandomPlusStrategy by adding values surrounding
the failure finding value. The strategy is described in detail in Chapter 4.

5. YetiADFDStrategy extends YetiRandomPlusStrategy by adding the feature of graph-
ical representation of failures and their domains within the specified lower and upper
bounds. The strategy is described in detail in Chapter 5.

6. YetiADFDPlusStrategy extends ADFD strategy by adding the feature of graphical
representation of failures and failure domains in a given radius in simplified form.
The strategy is described in detail in Chapter 6.

45

7. YetiRandomDecreasingStrategy extends the YetiRandomPlusStrategy in which all
three probability values (null values, new objects, interesting values) are 100% at the
beginning and decrease to 0 at the end of the test.

8. YetiRandomPeriodicStrategy extends the YetiRandomPlusStrategy in which all three
probability values (null values, new objects, interesting values) decrease and in-
crease at random within the given range.

3.2.3 Language-specific Binding

The language-specific binding facilitates modelling of programming languages. It is ex-
tended to provide support for a new language in YETI. The language-specific binding in-
cludes the following classes:

1. YetiVariable is a sub-class of YetiCard representing a variable in YETI.

2. YetiType represents the type of data in YETI, e.g. integer, float, double, long, boolean
and char.

3. YetiRoutine represents constructor, method and function in YETI.

4. YetiModule represents a module in YETI and stores one or more routines of the
module.

5. YetiName represents a unique name assigned to each instance of YetiRoutine.

6. YetiCard represents a wild-card or a variable in YETI.

7. YetiIdentifier represents an identifier for an instance of a YetiCard.

3.2.4 Construction of Test Cases

YETI constructs test cases by creating objects of the classes under test and randomly
calls methods with random inputs according to the parameter’s-space. YETI splits input
values into two types i.e. primitive data types and user-defined classes. For primitive data
types as methods parameters, YETI in random strategy calls Math.random() method to
generate arithmetic values, which are converted to the required type using Java cast oper-
ation. In the case of user-defined classes as methods parameters YETI calls constructor
or method to generate object of the class at run time. In the case, when the constructor
requires another object, YETI recursively calls the constructor or method of that object.
This process is continued until an object with an empty constructor or a constructor with
only primitive types or the set level of recursion is reached.

46

3.2.5 Call sequence of YETI

The sequence diagram given in Figure 3.3 depicts the interactions of processes and their
order when a Java program in byte-code is tested by YETI for n number of times using the
default random strategy. The steps involved are as follows:

Figure 3.3: Call sequence of YETI with Java binding

1. When the test starts, the test engine (YetiEngine) instructs the test manager
(YetiJavaTestManager) to initiate the testing of given class (YetiJavaModule)
for n number of times (testModuleForNumberofTimes) using the test strategy
(YetiRandomStrategy).

2. The test manager creates (makeNextCall) a thread (CallerThread) which han-
dles the testing of a given program. Threading is introduced for two reasons: (1)
To enable the test manager to block/terminate a thread that is stuck because of an
infinite loop inside the method or taking too long because of recursive calls. (2) To
increase the speed of the testing process when multiple classes are under test.

47

3. The thread on instantiation, requests the test strategy (YetiRandomStrategy) to
fetch a routine (constructor/method) from the given SUT (getNextRoutine).

4. The test strategy random strategy selects (getRoutineAtRandom) a routine from
the class (YetiJavaModule).

5. The thread requests the test strategy to generate the arguments (cards) for the
selected routine (getAllCards).

6. The test strategy (YetiRandomStrategy) generates the required arguments and
sends them to the requesting thread.

7. The thread tests the selected routine (YetiJavaMethod) of the module with the
generated arguments (makeCall).

8. The routine (YetiJavaRoutine) is mapped to an instance of the class method
(YetiJavaMethod) with the help of class inheritance and dynamic binding. The
(YetiJavaMethod) executes the method under test with the supplied arguments
using Java Reflection API (makeEffectiveCall).

9. The output obtained from (makeEffectiveCall) is evaluated against the Java or-
acle that resides in the (makeCall) method of (YetiJavaMethod).

3.2.6 Command-line Options

YETI is originally developed as a command line program, which can be initiated from the
Command Line Interface (CLI) as shown in Figure 3.4. During this study a yeti.jar

package is created which allows the setting of the main parameters and the initiation of
YETI from the GUI by double clicking the icon as shown in Figure 3.5. YETI is provided
with several command line options which a tester can enable or disable according to the
test requirement. These options are case insensitive and can be provided in any order as
input to YETI from the command line interface. As an example, a tester can use command
line option −nologs to bypass real-time logging and save processing power by reducing
overheads. Table 3.1 includes some of the common command line options available in
YETI.

48

Table 3.1: YETI command line options

Options Purpose

-java, -Java To test Java programs

-jml , -JML To test JML programs

-dotnet, -DOTNET To test .NET programs

-ea To check code assertions

-nTests To specify number of tests

-time To specify test time

-initClass To use user-defined class for initialization

-msCalltimeout To set a time out for a method call

-testModules To specify one or more modules to test

-rawlogs To print real-time test logs

-nologs To omit real time logs

-yetiPath To specify the path to the test modules

-gui To show the test session in the GUI

-help, -h To print the help about using YETI

-DSSR To specify Dirt Spot Sweeping Random strategy

-ADFD To specify ADFD strategy

-ADFDPlus To specify ADFD+ strategy

-noInstanceCap To remove the cap on no. of specific type instances

-branchCoverage To measure the branch coverage

-tracesOutputFile To specify the file to store output traces

-tracesInputFile To specify the file for reading input traces

-random To specify the Random test strategy

-printNumberOfCallsPerMethod To print the number of calls per method

-randomPlus To specify the Random plus test strategy

-probabilityToUseNullValue To specify the probability of inserting null values

-randomPlusPeriodic To specify the Random plus periodic test strategy

-newInstanceInjectionProability To specify the probability of inserting new objects

49

3.2.7 Execution

YETI, developed in Java, is highly portable and can easily run on any operating system
with a Java Virtual Machine (JVM) installed. It can be executed from both the CLI and GUI.
To execute YETI, it is necessary to specify the project and the relevant jar library files,
particularly javassist.jar in the CLASSPATH. The typical command to execute YETI
from CLI is given in Figure 3.4.

Figure 3.4: Command to launch YETI from CLI

In this command YETI tests java.lang.String and yeti.test.YetiTest modules
for 10 minutes using the default random strategy. Other CLI options are already indicated
in Table 3.1. To execute YETI from the GUI, YetiLauncher presented in Figure 3.5 has
been created for use in the present study.

Figure 3.5: GUI launcher of YETI

50

3.2.8 Test Oracle

Oracles in YETI are language-dependent. In the presence of program specifications, it
checks for inconsistencies between the code and the specifications. In the absence of
specifications, it checks for assertion violations, which are considered as failures. If speci-
fications or assertions are absent, YETI performs robustness testing, which considers any
undeclared runtime exceptions as failures.

3.2.9 Report

YETI gives a complete test report at the end of each test session. The report contains
all the successful calls with the name of the routines and the unique identifiers for the
parameters in each execution. These identifiers are recorded with the assigned values to
help in debugging the identified fault as shown in Figure 3.6.

Figure 3.6: Successful method calls of YETI

YETI separates the found bugs from successful executions to simplify the test report. This
helps debuggers to easily track the origin of the problem. When a bug is identified during
testing, YETI saves the details and presents it in the bug report as shown in Figure 3.7.
The information includes all identifiers of the parameters the method call had along with
the time at which the exception occurs.

Figure 3.7: Sample of YETI bug report

51

3.2.10 Graphical User Interface

YETI supports a GUI that allows testers to monitor the test session and modify the char-
acteristics in real time during test execution. It is useful to have the option of modifying
the test parameters at run time and observing the test behaviour in response. Figure 3.8
presents the YETI GUI comprising of thirteen labelled components.

1. Menu bar: contains two menu items i.e. Yeti and File.

(a) Yeti menu: provides details of YETI contributors and option to quit the GUI.

(b) File menu: provides an option to rerun the previously executed scripts.

2. Slider of % null values: displays the set probability of choosing a null value ex-
pressed as percentage for each variable. The default value of the probability is 10%.

3. Slider of % new variables: displays the set probability of creating new instances at
each call. The default value of the probability is 10%.

4. Text-box of Max variables per type: displays the number of variables created for a
given type. The default value is 1000.

5. Progress bar of testing session: displays the test progress as a percentage.

6. Slider of strategy: displays the set random strategy for the test session. Each
strategy has its control to change its various parameters.

7. Module Name: shows the list of modules under test.

8. Graph window 1: displays the total number of unique failures over time in the module
under test.

9. Graph window 2: displays the total number of calls over time to the module under
test.

10. Routine’s progress: displays test progress of each routine in the module repre-
sented by four colours. Mostly green and red colour appears indicating successful
and unsuccessful calls respectively. Occasionally black and yellow colours appear
indicating no calls and incomplete calls respectively.

11. Graph window 3: displays the total number of failures over time in the module under
test.

12. Graph window 4: displays the total number of variables over time generated by YETI
in the test session.

13. Report section: displays the number of unique failures by date and time, location
and type detected in the module under test.

52

Fi
gu

re
3.

8:
G

U
If

ro
nt

-e
nd

of
Y

E
TI

53

3.3 Summary

The chapter explains in detail the automated random testing tool YETI which is being
used in this study. YETI has been thoroughly reviewed including an overview, and ad-
dressing aspects such as design, core infrastructure, strategy, language-specific bindings,
construction of test cases, command line options, execution, test oracle, report generation
and graphical user interface.

54

Chapter 4

Dirt Spot Sweeping Random Strategy

There is a strong evidence that Adaptive Random Testing (ART) detects the first failure
in a given SUT more efficiently than Random Testing (RT) [24]. This is mainly attributed
to the better distribution of test data set which focus on the failure domains within the
input domain. On the assumption of the existence of different types of failure domains
(see Section 2.9 for details), we developed a new test strategy called Dirt Spot Sweeping
Random (DSSR) strategy. It has two main advantages. Firstly, it is based on the Random
(R) strategy which makes it highly cost effective. Secondly, it discovers more failures than
R and Random+ (R+) strategies in applications under identical conditions, which makes it
highly efficient.

In this chapter, we present the DSSR strategy and describe its various parts. We then
explain the working mechanism of the new strategy and illustrate its function with the help
of an example. In the later part, experimental evidence is presented in support of the
effectiveness of the DSSR strategy in finding failures and failure domains as compared
with R and R+ strategies.

4.1 Dirt Spot Sweeping Random Strategy

The new DSSR strategy extends the R+ strategy with the feature of dirt spot sweeping
functionality. It is based on two intuitions. First, boundaries have interesting values and
using these values in isolation can produce a high impact on test results. Second, unique
failures reside more frequently in contiguous blocks and strip domains. The feature of
dirt spot sweeping used in the DSSR strategy increases the performance of finding faults.
Before presenting the details of the DSSR strategy, a brief review of the R and R+ strategy
is stated below.

55

4.1.1 Random Strategy

The Random strategy is a test data generation technique in which random data set is gen-
erated from the input domain of the software. The randomly generated data set is in accor-
dance with the requirements, specifications or any other test adequacy criteria. The SUT
is executed on the test data and the results obtained are compared to the defined oracle,
using SUT specifications in the form of contracts or assertions. Because of its black-box
nature, this strategy is particularly effective in testing software where the developers want
to keep the source code secret [110]. The generation of random test data is comparatively
cheap and does not require too much intellectual and computational effort [51, 111]. It
is mainly for this reason that various researchers have recommended the R strategy for
automated testing tools [73]. YETI [104, 112], AutoTest [4, 16], QuickCheck [94], Ran-
doop [86, 113] and Jartege [92] are some of the most common automated testing tools
based on the R strategy. See Section 1.2, 2.7.5 and 2.8 for more details on random strat-
egy, generator and testing.

Programs tested at random typically fail a large number of times (there are a large number
of calls), therefore, it is necessary to cluster failures that likely represent the same fault.
The traditional way of doing it is to compare the full stack traces and error types and use
this as an equivalence class [16, 112] called a unique failure. This way of grouping failures
is also used for the R+ and DSSR techniques.

4.1.2 Random+ Strategy

The random+ strategy [16, 51] is an extension of the R strategy. It uses some special
pre-defined values, which can be boundary values or values that have a high tendency
of finding failures in the SUT. Boundary values [83] are the values on the start and end
of a particular type. For instance, such values for int could be MAX_INT, MAX_INT-1,
MAX_INT-2; MIN_INT, MIN_INT+1, MIN_INT+2. These special values can add a sig-
nificant improvement to any testing method. See Section 2.10.1 for more details on R+

strategy and testing.

4.1.3 Dirt Spot Sweeping

Chan et al. [1] found that there are domains of failure-causing inputs across the input
domain. Section 2.9 shows the failure domains for a two-dimensional input program. They
divided these domains into three types called point, block and strip domains. It is argued
that a strategy has more chances of hitting the failure domains if test cases far away from
each other are selected. Other researchers [71, 84, 114] tried to generate test cases far

56

away from each other targeting failure domains and achieved better performance, which
indicates that failures more often occur contiguously across the input domain. However, if
the contiguous failures are unique then the above mentioned strategies will not be able to
identify them. Therefore, we proposed that when a test value reveals a failure in a program
then the DSS may not look farthest away for the selection of next test value but picks the
closest test values for the next several tests to find another unique failure from the same
region.

Dirt spot sweeping is the feature of DSSR strategy that comes into action when a failure is
found in the system. On finding a failure, it immediately adds the value causing the failure
and its neighbouring values to the existing list of interesting values. For example, in a
program when the int type value of 50 causes a failure in the system than spot sweeping
will add values from 47 to 53 to the list of interesting values. If the failure lies in a block
or strip domain, then adding its neighbouring values to the prioritized list will explore other
failures present in the block or strip. In the DSSR strategy, the list of interesting values is
dynamic and changes during the test execution of each program. While in the R+ strategy,
the list of interesting values remains static and are manually changed before the start of
each test, if so required.

Figure 4.1: Exploration of failures by DSS in block and strip domain

Figure 4.1 shows how DSS explores the failures residing in the block and strip domains
of the program. The coverage of block and strip domain is shown in spiral form because
first failure leads to second, second to third and so on till the end. In case the failure is
positioned on the point domain, then the added values may not be effective because a
point domain is only an arbitrary failure point in the whole input domain.

57

4.1.4 Working of DSSR Strategy

The DSSR strategy continuously tracks the number of failures during the execution of the
test. This tracking is done in a very effective way with zero or minimum overhead [115].
The test execution is started by the R+ strategy and continues until a failure is found in
the SUT after which the program copies the values leading to the failure as well as the
surrounding values to the dynamic list of interesting values.

Figure 4.2: Working mechanism of DSSR strategy

The flowchart presented in Figure 4.2 depicts that, when the failure finding value is of a
primitive type, the DSSR strategy identifies its type and add values only of that particular
type to the list of interesting values. The resultant list of interesting values provides relevant
test data for the remaining test session, and the generated test cases are more targeted
towards finding new failures around the existing failures in the given SUT.

Boundary and other special values having a high tendency of finding failures in the SUT
are added to the list of interesting values by the R+ strategy prior to the start of test session
whereas in the DSSR strategy the failure-finding and its surrounding values are added at
runtime when a failure is found.

58

1. oldFailures← 0
2. n ← 5 / / This is the radius value to search around the failure set by the
tester.
3. if currentFailures > oldFailures
4. oldFailures← currentFailures
5. if type.isPrimitiveType == true
6. value← value(type)
7. value← value + 3
8. for n 6= 0
9. list← value - n / / list is the list of interesting values
10. n = n - 1
11. end for
12. end if
13. end if

Algorithm of failure spot sweeping due to primitive type in DSSR strategy

When a failure is detected, the strategy analyses the methods argument list to find the
values and types which caused a failure. The strategy adds the neighbouring values of that
particular type to the list of interesting values. Table 4.1 presents the values added to the
list of interesting values when a failure is found. The specific choices of extra interesting
values are motivated by the literature [44, 46]. They also correspond to faults intuitive
values for exploration about the initial value. In the table the test value is represented by X
where X can be a primitive type, string or user-defined objects. All values are converted to
their respective types before adding them to the list of interesting values.

Table 4.1: Data types and corresponding values to be added

Data Type Values to be added
X is int, double, float, X, X + 1, X + 2, X + 3,
long, byte, short & char X - 1, X - 2, X - 3

X is String

X
X + “ ”
“ ” + X
X.toUpperCase()
X.toLowerCase()
X.trim()
X.substring(2)
X.substring(1, X.length() - 1)

X is object of user Call its constructor recursively
defined class until empty or primitive values

59

4.1.5 Explanation of DSSR Strategy by Example

The DSSR strategy is explained through a simple program seeded with at least three
faults. The first and second fault is called by failing assertions, denoted by (1) and (2)
while the third fault is a division by zero error denoted by (3). The program uses only
one primitive variable of type int. Therefore, the input domain for DSSR strategy is
from -2,147,483,648 to 2,147,483,647. The DSSR strategy further selects values
(0, Integer.MIN_VALUE & Integer.MAX_VALUE) as interesting values which are pri-
oritised for selection as inputs.

/**

* Calculate square of given number

* and verify result.

* The code contain 3 faults.

* @author (Mian and Manuel)

*/

public class Math1 {

public void calc (int num1) {

// Square num1 and store result.

int result1 = num1 * num1;

assert result1 >= num1; --------------------------(1)

assert Math.sqrt(result1) == num1; ---------------(2)

assert num1 == result1 / num1; --------------------(3)

}

}

As the test starts, three failures are quickly discovered by the DSSR strategy in the follow-
ing order.

Failure 1: The strategy selects value 0 for variable num1 in the first test case because
0 is available in the list of interesting values and therefore its priority is higher than other
values. This will cause violation of the last statement denoted by (3), which will generate
division by zero exception.

Failure 2: After discovering the first failure, the strategy adds it and its surrounding values
to the list of interesting values i.e. 0, 1, 2, 3 and -1, -2, -3 in this case. In the
second test case the strategy may pick -3 as a test value which may lead to the failure
where assertion (2) fails because the square root of 9 is 3 instead of the input value -3.

Failure 3: After a few tests the strategy may select Integer.MAX_VALUE for variable
num1 from the list of interesting values leading to the discovery of another failure because

60

int variable result1 will not be able to store the square of Integer.MAX_VALUE. Instead
of the actual square value Java assigns a positive value 1 (Java language rule) to variable
result1 that will lead to the failure where assertion (1) fails.

Figure 4.3: Test result of random strategy for the example code

Figure 4.4: Test result of DSSR strategy for the example code

Figures 4.3 and 4.4 present the graphs generated by YETI for the Random and DSSR
strategies respectively. The difference is clearly visible i.e. the DSSR strategy immediately
detects the second and third failures after the first failure. The Random strategy is not
practically capable of detecting these.

61

The above process explains that including the border, failure-finding and surrounding val-
ues to the list of interesting values in the DSSR strategy leads to the available failures
quickly and in fewer tests as compared to R and R+ strategies. R and R+ take more tests
and time to discover the second and third failures because in these strategies the search
for new unique failures starts again randomly in spite of the fact that the remaining failures
lie in close proximity to the first one.

4.2 Implementation of DSSR Strategy

The DSSR strategy is implemented in the YETI open-source automated random testing
tool. YETI, coded in Java language, is capable of testing systems developed in procedu-
ral, functional and object-oriented languages. YETI can be divided into three decoupled
main parts: the core infrastructure, language-specific bindings and strategies. See Chap-
ter 3 for more details on YETI. The strategies part define the procedure of selecting the
modules (classes), the routines (methods) and generation of values for instances involved
in the routines. It contains all the test strategies for generation of test data. On top of
the hierarchy in strategies part is an abstract class YetiStrategy, which is extended to form
the R strategy (YetiRandomStrategy). The R strategy is extended to form the R+ strategy
(YetiRandomPlusStrategy). Finally, the DSSR strategy (YetiDSSRStrategy) is an extension of
the R+ strategy. The class hierarchy is shown in Figure 4.5.

Figure 4.5: Class Hierarchy of DSSR strategy in YETI

62

4.3 Evaluation

The DSSR strategy is experimentally evaluated by comparing its performance with that of
the R and R+ strategies [16, 51]. General factors such as system software and hardware,
YETI specific factors like percentage of null values, percentage of newly created objects
and the interesting value injection probability have been kept constant in the experiments.

4.3.1 Research Questions

For evaluating the DSSR strategy, the following research questions have been addressed
in this study:

1. Is there empirical evidence in support of declaring the most efficient strategy among
the R, R+ and DSSR strategies?

2. Are there classes for which any of the three strategies provide better results?

3. Can we pick the best default strategy amongst R, R+ and DSSR?

4.3.2 Experiments

We performed extensive testing of programs from the Qualitas Corpus [20]. The Qualitas
Corpus is a curated collection of open source Java projects built with the aim of helping
empirical research in the field of software engineering. These projects have been collected
in an organised form containing the source and binary forms. The Qualitas Corpus [ver-
sion 20101126] containing 106 open source Java projects was used in the current eval-
uation. In our experiments, we randomly selected 60 classes from 32 projects taken at
random. All the selected classes produced at least one failure and did not time out with
maximum testing session of 10 minutes. Every class was tested thirty times by each strat-
egy (R, R+, DSSR). Name, version and size of the projects to which the classes belong
are given in Table 4.2 while test details of the classes are presented in Table 4.3. Lines of
Code (LOC) tested per class and the total LOC’s tested are shown in column 3 of Table 4.3.

Every class is evaluated through 105 calls in each test session. An approach similar to
that used in previous studies when the contracts and assertions in the code under test are
absent was followed in the study [2, 112, 116]. The undeclared exceptions were treated as
failures.

All tests are performed with a 64-bit Mac OS X Lion [version 10.7.4] running on 2 x 2.66
GHz 6-Core Intel Xeon processor with 6 GB (1333 MHz DDR3) of RAM. YETI runs on top

63

Table 4.2: Specifications of projects randomly selected from Qualitas Corpus

S. No Project Name Version Size (MB)
1 apache-ant 1.8.1 59
2 antlr 3.2 13
3 aoi 2.8.1 35
4 argouml 0.30.2 112
5 artofillusion 281 5.4
6 aspectj 1.6.9 109.6
7 axion 1.0-M2 13.3
8 azureus 1 99.3
9 castor 1.3.1 63.2

10 cayenne 3.0.1 4.1
11 cobertura 1.9.4.1 26.5
12 colt 1.2.0 40
13 emma 2.0.5312 7.4
14 freecs 1.3.20100406 11.4
15 hibernate 3.6.0 733
16 hsqldb 2.0.0 53.9
17 itext 5.0.3 16.2
18 jasml 0.10 7.5
19 jmoney 0.4.4 5.3
20 jruby 1.5.2 140.7
21 jsXe 04 beta 19.9
22 quartz 1.8.3 20.4
23 sandmark 3.4 18.8
24 squirrel-sql 3.1.2 61.5
25 tapestry 5.1.0.5 69.2
26 tomcat 7.0.2 24.1
27 trove 2.1.0 18.2
28 velocity 1.6.4 27.1
29 weka 3.7.2 107
30 xalan 2.7.1 85.4
31 xerces 2.10.0 43.4
32 xmojo 5.0.0 15

64

of the JavaTMSE Runtime Environment [version 1.6.0 35]. The machine took approximately
100 hours to process the experiments.

4.3.3 Performance Measurement Criteria

Various measures including the E-measure, P-measure and F-measure (see Section 2.10.2
for more details on measurements criteria) have been reported in the literature for find-
ing the effectiveness of the R strategy. The E-measure and P-measure have been crit-
icised [24] and are not considered effective measuring techniques while the F-measure
has been often used by various researchers [117, 118]. In our initial experiments, the F-
measure was used to evaluate the efficiency of the test strategy. However, it was later
realised that this was not the right choice. In some experiments, a strategy found the first
failure more quickly than the others but on completion of test session that very strategy
found a lower number of total failures than the rival strategy. The preference given to a
strategy by F-measure because it finds the first failure quickly without giving due consider-
ation to the total number of failures is not fair [119].

The literature review revealed that the F-measure is used where testing stops after identifi-
cation of the first failure and the system is given back to the developers to remove the fault.
Currently automated testing tools test the whole system and print all discovered failures
in one go and therefore the F-measure is not a favourable choice. In our experiments,
performance of the strategy was measured by the maximum number of failures detected
in the SUT by a particular number of test calls [16, 113, 120]. This measurement was
effective because it considers the performance of the strategy when all other factors are
kept constant.

4.4 Results

Results of the experiments including class name, Lines of Code (LOC), mean value, max-
imum and minimum number of unique failures, and relative standard deviation for each of
the 60 classes tested using the R, R+ and DSSR strategies are presented in Table 4.3.
Each strategy found an equal number of failures in 31 classes while in the remaining 29
classes the three strategies performed differently from one another. The total of mean
values of unique failures was higher in DSSR (1075) as compared to R (1040) and R+

(1061) strategies. DSSR found the higher number of maximum unique failures (1118) than
R (1075) and R+ (1106). DSSR found 43 and 12 more unique failures compared to R and
R+ strategies respectively. The minimum number of unique failures found by DSSR (1032)

65

Table 4.3: Comparative performance of R, R+ and DSSR strategies

No Class Name LOC R R+ DSSR
Mean Max Min R-STD Mean Max Min R-STD Mean Max Min R-STD

1 ActionTranslator 709 96 96 96 0 96 96 96 0 96 96 96 0
2 AjTypeImpl 1180 80 83 79 0.02 80 83 79 0.02 80 83 79 0.01
3 Apriori 292 3 4 3 0.10 3 4 3 0.13 3 4 3 0.14
4 BitSet 575 9 9 9 0 9 9 9 0 9 9 9 0
5 CatalogManager 538 7 7 7 0 7 7 7 0 7 7 7 0
6 CheckAssociator 351 7 8 2 0.16 6 9 2 0.18 7 9 6 0.73
7 Debug 836 4 6 4 0.13 5 6 4 0.12 5 8 4 0.19
8 DirectoryScanner 1714 33 39 20 0.10 35 38 31 0.05 36 39 32 0.04
9 DiskIO 220 4 4 4 0 4 4 4 0 4 4 4 0

10 DOMParser 92 7 7 3 0.19 7 7 3 0.11 7 7 7 0
11 Entities 328 3 3 3 0 3 3 3 0 3 3 3 0
12 EntryDecoder 675 8 9 7 0.10 8 9 7 0.10 8 9 7 0.08
13 EntryComparator 163 13 13 13 0 13 13 13 0 13 13 13 0
14 Entry 37 6 6 6 0 6 6 6 0 6 6 6 0
15 Facade 3301 3 3 3 0 3 3 3 0 3 3 3 0
16 FileUtil 83 1 1 1 0 1 1 1 0 1 1 1 0
17 Font 184 12 12 11 0.03 12 12 11 0.03 12 12 11 0.02
18 FPGrowth 435 5 5 5 0 5 5 5 0 5 5 5 0
19 Generator 218 17 17 17 0 17 17 17 0 17 17 17 0
20 Group 88 11 11 10 0.02 10 4 11 0.15 11 11 11 0
21 HttpAuth 221 2 2 2 0 2 2 2 0 2 2 2 0
22 Image 2146 13 17 7 0.15 12 14 4 0.15 14 16 11 0.07
23 InstrumentTask 71 2 2 1 0.13 2 2 1 0.09 2 2 2 0
24 IntStack 313 4 4 4 0 4 4 4 0 4 4 4 0
25 ItemSet 234 4 4 4 0 4 4 4 0 4 4 4 0
26 Itextpdf 245 8 8 8 0 8 8 8 0 8 8 8 0
27 JavaWrapper 513 3 2 2 0.23 4 4 3 0.06 4 4 3 0.05
28 JmxUtilities 645 8 8 6 0.07 8 8 7 0.04 8 8 7 0.04
29 List 1718 5 6 4 0.11 6 6 4 0.10 6 6 5 0.09
30 NameEntry 172 4 4 4 0 4 4 4 0 4 4 4 0
31 NodeSequence 68 38 46 30 0.10 36 45 30 0.12 38 45 30 0.08
32 NodeSet 208 28 29 26 0.03 28 29 26 0.04 28 29 26 0.03
33 PersistentBag 571 68 68 68 0 68 68 68 0 68 68 68 0
34 PersistentList 602 65 65 65 0 65 65 65 0 65 65 65 0
35 PersistentSet 162 36 36 36 0 36 36 36 0 36 36 36 0
36 Project 470 65 71 60 0.04 66 78 62 0.04 69 78 64 0.05
37 Repository 63 31 31 31 0 40 40 40 0 40 40 40 0
38 Routine 1069 7 7 7 0 7 7 7 0 7 7 7 0
39 RubyBigDecimal 1564 4 4 4 0 4 4 4 0 4 4 4 0
40 Scanner 94 3 5 2 0.20 3 5 2 0.27 3 5 2 0.25
41 Scene 1603 26 27 26 0.02 26 27 26 0.02 27 27 26 0.01
42 SelectionManager 431 3 3 3 0 3 3 3 0 3 3 3 0
43 Server 279 15 21 11 0.20 17 21 12 0.16 17 21 12 0.14
44 Sorter 47 2 2 1 0.09 3 3 2 0.06 3 3 3 0
45 Sorting 762 3 3 3 0 3 3 3 0 3 3 3 0
46 Statistics 491 16 17 12 0.08 23 25 22 0.03 24 25 22 0.04
47 Status 32 53 53 53 0 53 53 53 0 53 53 53 0
48 Stopwords 332 7 8 7 0.03 7 8 6 0.08 8 8 7 0.06
49 StringHelper 178 43 45 40 0.02 44 46 42 0.02 44 45 42 0.02
50 StringUtils 119 19 19 19 0 19 19 19 0 19 19 19 0
51 TouchCollector 222 3 3 3 0 3 3 3 0 3 3 3 0
52 Trie 460 21 22 21 0.02 21 22 21 0.01 21 22 21 0.01
53 URI 3970 5 5 5 0 5 5 5 0 5 5 5 0
54 WebMacro 311 5 5 5 0 5 6 5 0.14 5 7 5 0.28
55 XMLAttributesImpl 277 8 8 8 0 8 8 8 0 8 8 8 0
56 XMLChar 1031 13 13 13 0 13 13 13 0 13 13 13 0
57 XMLEntityManger 763 17 18 17 0.01 17 17 16 0.01 17 17 17 0
58 XMLEntityScanner 445 12 12 12 0 12 12 12 0 12 12 12 0
59 XObject 318 19 19 19 0 19 19 19 0 19 19 19 0
60 XString 546 23 24 21 0.04 23 24 23 0.02 24 24 23 0.02

Total 35,785 1040 1075 973 2.42 1061 1106 1009 2.35 1075 1118 1032 1.82

66

Figure 4.6: Performance of DSSR in comparison with R and R+ strategies.

is also higher than for R (973) and R+ (1009) which indicates the higher efficiency of the
DSSR strategy over R and R+ strategies.

4.4.1 Absolute Best in R, R+ and DSSR Strategies

Based on our findings DSSR is at least as good as R and R+ in almost all cases. It is
significantly better than both R and R+ in 12% (5/29) of the classes. Figure 4.6 presents
the performance of DSSR in comparison with R and R+ strategies in 16 classes showing
significant difference. The blue line with a diamond symbol shows performance of DSSR
over R and the red line with square symbols depicts the improvement of DSSR over the
R+ strategy.

The improvement of DSSR over R and R+ strategy is calculated by applying the formula
(4.1) and (4.2) respectively. This is in accordance with the previous work of Chan et
al. [121].

67

Average f ailures(DSSR)−Average f ailures(R)
Average f ailures(R)

∗100 (4.1)

Average f ailures(DSSR)−Average f ailures(R+)

Average f ailures(R+)
∗100 (4.2)

The DSSR strategy performed up to 33% better than R and up to 17% better than the R+

strategy. In some cases DSSR performed equally well with R and R+ but in no case DSSR
performed lower than R and R+ strategies. Based on the results it can be stated that on
the overall basis DSSR strategy performed better than R and R+ strategies.

4.4.2 Classes For Which any of the Three Strategies Performs Better

The t-test is used to identify which of the strategies performed significant better because it
compares the actual difference between two means in relation to the variation in the data
(expressed as the standard deviation of the difference between the means). Result of the
t-test analysis, given in Table 4.4, indicated significantly better performance of DSSR in 5
classes from both R and R+ strategies, in 8 classes from R strategy and in 3 classes from
R+ strategy. In no class R and R+ strategies performed significantly better than DSSR
strategy. 73% (44/60) of the classes showed statistically no significant difference whereas
in 27% (16/60) of the classes, the DSSR strategy performed significantly better than either
R or R+. The better performance of DSSR may be attributed to the additional feature of
spot sweeping over and above the desirable characteristics present in the R+ strategy.

4.4.3 The Best Default Strategy in R, R+ and DSSR

Analysis of the experimental data revealed that the DSSR strategy had an edge over R and
R+. This is due to the additional feature of spot sweeping in the DSSR strategy. In spite of
the better performance of DSSR as compared to R and R+ strategies, the present study
does not provide ample evidence to pick it as the best default strategy. This is primarily due
to the overhead induced by the DSSR strategy, discussed in Section 4.5. Further study
might provide some conclusive findings.

4.5 Discussion

In this section we discuss various factors affecting the results of DSSR, R and R+ strategies
including time taken, test duration, number of tests, number of failures, identification of first
failure, level of coverage and threats to validity.

68

Table 4.4: Results of t-test applied on experimental data

S. No Class Name
t-test Results

Interpretation
DSSR - R DSSR - R+ R - R+

1 AjTypeImpl 1 1 1 Difference not significant

2 Apriori 0.03 0.49 0.16 Difference not significant

3 CheckAssociator 0.04 0.05 0.44 DSSR > R & R+

4 Debug 0.03 0.14 0.56 Difference not significant

5 DirectoryScanner 0.04 0.01 0.43 DSSR > R & R+

6 DomParser 0.05 0.23 0.13 Difference not significant

7 EntityDecoder 0.04 0.28 0.3 Difference not significant

8 Font 0.18 0.18 1 Difference not significant

9 Group 0.33 0.03 0.04 DSSR = R > R+

10 Image 0.03 0.01 0.61 DSSR > R & R+

11 InstrumentTask 0.16 0.33 0.57 Difference not significant

12 JavaWrapper 0.001 0.57 0.004 DSSR = R+ > R

13 JmxUtilities 0.13 0.71 0.08 Difference not significant

14 List 0.01 0.25 0 DSSR = R+ > R

15 NodeSequence 0.97 0.04 0.06 DSSR = R > R+

16 NodeSet 0.03 0.42 0.26 Difference not significant

17 Project 0.001 0.01 0.65 DSSR > R & R+

18 Repository 0 1 0 DSSR = R+ > R

19 Scanner 1 0.03 0.01 DSSR = R > R+

20 Scene 0 0 1 DSSR > R & R+

21 Server 0.03 0.88 0.03 DSSR = R+ > R

22 Sorter 0 0.33 0 DSSR = R+ > R

23 Statistics 0 0.43 0 DSSR = R+ > R

24 Stopwords 0 0.23 0 DSSR = R+ > R

25 StringHelper 0.03 0.44 0.01 DSSR = R+ > R

26 Trie 0.1 0.33 0.47 Difference not significant

27 WebMacro 0.33 1 0.16 Difference not significant

28 XMLEntityManager 0.33 0.33 0.16 Difference not significant

29 XString 0.14 0.03 0.86 Difference not significant

69

Time taken by the strategies to execute equal number of test cases: The DSSR strat-
egy took slightly more time (up to 5%) than both R and R+ strategies which might be due
to the feature of maintaining sets of interesting values during the execution.

Effect of test duration and number of tests on the results: If testing is continued for
a long duration and sufficiently large number of tests are executed, in that case all three
strategies might find the same number of unique failures. However for the same number of
test cases, DSSR performed significantly better than the R and R+ strategies. Further ex-
periments are desirable to determine the comparative performance of the three strategies
with respect to test duration and number of tests.

Effect of number of failures on the results: The DSSR strategy performed better when
the number of failures was higher in the code. The reason might be that in case of more
failures, the failure domains are more connected thus the DSSR strategy might work better.

Effect of identification of first failure on the results: During the experiments, It was
noticed that quick identification of first failure was highly desirable in achieving better results
from DSSR strategy. This was due to the feature of DSS which added the failure finding
and surrounding values to the list of interesting values. However, when identification of first
failure was delayed, no values were added to the list of interesting values and the DSSR
performed equivalently to R+ strategy. This indicated that better ways of populating failure-
inducing values were needed for sufficient leverage to DSSR strategy. As an example, the
following piece of code would be unlikely to fail under the current setting:

public void test(float value){

if(value == 34.4445) {

abort(); /* error */

}

}

In this case, we could add constant literals from the SUT to the list of interesting values in
a dynamic fashion [18]. These literals can be obtained from the constant pool in the class
files of the SUT. In the example above, the value 34.4445 and its surrounding values would
be added to the list of interesting values before the test starts and the DSSR strategy would
find the failure right away.

Level of coverage: Random strategies typically achieve a low level of coverage [122], and
DSSR might be no exception. However, it might be interesting to compare DSSR with R
and R+ with respect to the achieved coverage.

Threats to validity: As usual with empirical studies, the present work might also suffer
from a non-representative selection of classes. However, selection in the study was made
through a random process and objective criteria to make it more representative.

70

4.6 Related Work

Random testing is a popular technique with a simple algorithm but proven to find sub-
tle faults in complex programs and Java libraries [2, 3, 94]. It is simplicity, ease of im-
plementation and efficiency in generating test cases make it the best choice for test au-
tomation [72]. Some of the well known automated tools based on R strategy includes
JCrasher [2], Eclat [3], AutoTest [16, 73], Jartege [92] and YETI [104, 112].

In the pursuit of better test results and lower overhead, many variations of R strategy have
been proposed [84, 85, 114, 110, 123]. ART, Quasi-random testing (QRT) and Restricted
Random testing (RRT) achieved better results by selecting test inputs randomly but evenly
spread across the input domain. ART through dynamic partitioning and MART are the two
strategies developed to improve the performance of ART by reducing the overhead. This
was achieved mainly by the even spread of test input to increase the chance of explor-
ing the failure domains present in the input domain. A more recent research study [124]
stresses on the effectiveness of data regeneration in close vicinity of the existing test data.
Their findings showed up to two orders of magnitude more efficient test data generation
compared to existing techniques. Two major limitations of their study are the requirement
of existing test cases to regenerate new test cases, and increased overhead due to “meta-
heuristic search” based on hill climbing algorithm to regenerate new data. In DSSR, no
pre-existing test cases are required because it utilises the border values from R+ and re-
generates the data very cheaply in a dynamic fashion without any prior test data and with
comparatively lower overhead.

The R+ strategy is an extension of the R strategy in which interesting values, beside pure
random values, are added to the list of test inputs [16, 51]. These interesting values include
border values, which have a high tendency of finding failures in the given SUT [83]. Results
obtained with the R+ strategy showed significant improvement over the R strategy [4]. The
DSSR strategy is an extension of R+ that starts testing as R+ until a failure is found and
then switches to dirt spot sweeping.

A common practice to evaluate the performance of an extended strategy is to compare the
results obtained by applying a new and existing strategy to identical programs [41, 125,
126]. Arcuri et al. [127], stress the use of random testing as a baseline for comparison with
other test strategies. We followed the procedure and evaluated the DSSR strategy against
R and R+ strategies under identical conditions.

In our experiments, we selected projects from the Qualitas Corpus [20] which is a collec-
tion of open source Java programs maintained for independent empirical research. The
projects in Qualitas Corpus are carefully selected and span the whole set of Java applica-
tions [112, 128, 129].

71

4.7 Summary

The main goal of the present study was to develop a new random strategy which could find
more failures in a lower number of test cases. We developed the “DSSR strategy” as an
extension of R+, based on the assumption that in a significant number of classes, failure
domains are contiguous. The DSS feature of DSSR strategy adds neighbouring values of
the failure finding value to the list of interesting values. The strategy was implemented in
the random testing tool YETI to test 60 classes from Qualitas Corpus, 30 times each with
each of the three strategies i.e. R, R+ and DSSR. The newly developed DSSR strategy
uncovered more unique failures than both R and R+ strategies with a 5% overhead. We
found out that for 5/29 (8%) classes DSSR was significantly better than both R and R+, for
8/29 (13%) classes DSSR performed significantly better than R, while in 3/29 (5%) classes
DSSR performed significantly better than R+. In all other cases, performance of DSSR, R
and R+ showed no significant difference. Overall, DSSR produced encouraging results.

Figure 4.7: Results of DSSR strategy in comparison with R and R+

72

Chapter 5

Automated Discovery of Failure Domain

5.1 Introduction

Most of the modern black-box testing techniques execute the Software Under Test (SUT)
with specific input and results obtained are compared against the test oracle. A report is
generated at the end of each test session depicting any discovered faults and the input
values which triggers the failures. Developers fix the discovered faults in the SUT with the
help of these reports. The revised version of the system is given back to the testers to find
more faults and this process continues till the desired level of quality already set in the test
plan is achieved or the provided resources are exhausted [130].

The Adaptive Random Testing (ART) [24], Restricted Random Testing (RRT) [85], Mir-
ror Adaptive Random Testing (MART) [84], Adaptive random testing for object oriented
software (ARTOO) [73], Directed Automated Random Testing (DART) [18], Lattice-based
Adaptive Random Testing (LART) [131] and Feedback-directed Random Testing (FDRT) [86,
113] are a few of the improved versions of random testing based on the existence of con-
tiguous failure domains within the input domain (see Section 2.9 for more details on failure
domains). All these techniques try to detect a single instance of failure ignoring the under-
lying failure domain. To the best of our knowledge, no specific strategy has been developed
to evaluate the failure domains. This chapter describes a new test strategy called Auto-
mated Discovery of Failure Domain (ADFD), which not only finds the failure and failure
domains but also presents the pass and fail domains graphically. Such graphic represen-
tations may provide insight into the nature of failures in the SUT and enable developers
to make more effective diagnoses of causes, leading to more appropriate fixes. Some
important aspects of ADFD strategy presented in the chapter include:

73

• Description and implementation of the new ADFD strategy in YETI.

• Evaluation to assess ADFD strategy by testing classes with different failure domains.

• Reduction in test duration by identification of all failure domains instead of a single
instance of failure.

• Improvement in test efficiency by helping debugger to consider all failure occurrences
during debugging.

5.2 Automated Discovery of Failure Domain

The Automated Discovery of Failure Domain (ADFD) strategy is proposed as the improve-
ment on R+ strategy with capability of finding failure domains as well as the failures. The
output produced at the end of test session is a chart showing the passing value or range of
values in blue and failing value or range of values in red. The complete work-flow of ADFD
strategy is given in Figure 5.1.

The process is divided into five major steps given below, and each step is briefly explained
in the following paragraphs.

1. GUI front-end for providing input

2. Automated finding of failure

3. Automated generation of modules

4. Automated compilation and execution of modules to discover domains

5. Automated generation of graph showing domains

5.2.1 GUI Front-end for Providing Input

The ADFD strategy is provided with an easy to use GUI front-end to get input from the
user. It takes YETI specific input, including program language, strategy, duration, options
to enable or disable YETI GUI, logs and program in byte code. In addition, it also takes
minimum and maximum values to search for failures in the specified range. The default
range for minimum and maximum is taken as Integer.MIN VALUE and Integer.MAX VALUE
respectively. The GUI front-end of ADFD technique is given in Figure 5.2.

74

Figure 5.1: Work-flow of ADFD strategy

5.2.2 Automated Finding of Failure

ADFD, being extended form of R+ strategy, relies on the R+ strategy to find the first fail-
ure. The Random+ strategy is an improvement on random strategy with preference for
the boundary values and other special pre-defined values to provide better failure finding
ability.

5.2.3 Automated Generation of Modules

After a failure is found in the SUT, ADFD strategy generates a complete new Java program
to search for failure domains in the given SUT. These programs with “.java” extensions are
generated through dynamic compiler API included in Java 6 under javax.tools package.
The number of programs generated can be one or more, depending on the number of ar-
guments in the test module i.e. for a module with one argument one program is generated,
for a module with two arguments two programs, and so on. To track the failure domain, the
program keeps only one argument as variable and the remaining arguments as constant
in the program generated at run time.

75

Figure 5.2: Front-end of ADFD strategy

5.2.4 Automated Compilation and Execution of Modules

The java modules generated in the previous step are compiled using javac ∗ command
to get their binary .class files. The java ∗ command is applied to execute the compiled
programs. During execution, the constant arguments of the module remain the same but
the variable argument receives all the values ranging from minimum to maximum, specified
at the beginning of the test. After execution is completed we get two text files of Pass.txt

and Fail.txt. The pass file contains all the values for which the modules behave correctly
while the fail file contains all the values for which the modules fail.

5.2.5 Automated Generation of Graph

The values from the pass and fail files are used to plot (x, y) chart using JFreeChart [132].
JFreeChart is a free open-source Java library that helps developers to display complex
charts and graphs. Among several types of available chart, Line chart is selected because

76

it can represent the available data in the most effective way. The Lines and circles with blue
colour represent pass values while lines and squares with red colour represents fail values.
The resultant graph clearly depicts both the pass and fail domain across the specified input
domain. The graph shows red points when the program fails for only one value, blocks
when the program fails for multiple values and strips when the program fails for a long
range of values.

5.2.6 Implementation of ADFD Strategy

The ADFD strategy is implemented as a strategy of YETI (see Chapter 3 for more de-
tails on YETI). This section contains various strategies including Random, Random+ and
DSSR to be selected for testing according to the specific needs. The default strategy for
testing YETI is Random. On top of the hierarchy in strategies section, is an abstract class
YetiStrategy, which is extended by YetiRandomStrategy and it is further extended to get
YetiRandomPlusStrategy. YetiADFDStrategy is developed by extending the YetiRandom-
PlusStrategy.

Figure 5.3: Class Hierarchy of ADFD strategy in YETI

77

5.2.7 Explanation of ADFD Strategy by Example

For a concrete example to show how ADFD strategy in YETI proceeds, we suppose YETI
tests the following class with ADFD strategy selected for testing. Note that for more clear
visibility of the output graph generated by ADFD strategy at the end of test session, we
set the values of lower and upper range by -70 and 70 from Integer.MIN VALUE and Inte-
ger.MAX VALUE respectively.

/**

* Point Fault Domain example for one argument program

* @author (Mian and Manuel)

*/

public class PointDomainOneArgument{

public static void pointErrors (int x){

if (x == -66)

abort(); /* error */

if (x == -2)

abort(); /* error */

if (x == 51)

abort(); /* error */

if (x == 23)

abort(); /* error */

}

}

Figure 5.4: ADFD strategy plotting pass and fail domain of a given class

78

As soon as any one of the above four failures are discovered the ADFD strategy generates
a dynamic program given in Appendix 1 (7). This program is automatically compiled to
get the binary file and then executed to find the pass and fail domains inside the specified
range. The identified domains are plotted on a two-dimensional graph. It is evident from
the output presented in Figure 5.4 that ADFD strategy not only finds all the failures but also
plots the pass and fail domains.

5.3 Experimental Results

This section includes the experimental set-up and results obtained by using ADFD strategy.
Six numerical programs with one or two input parameters were selected. These programs
were error-seeded in such a way to get all the three forms of point, block and strip failure
domains. Each selected program contained various combinations of one or more failure
domains.

All experiments were performed on a 64-bit Mac OS X Lion Version 10.7.5 running on 2 x
2.66 GHz 6-Core Intel Xeon with 6.00 GB (1333 MHz DDR3) of RAM. YETI runs on top of
the JavaTMSE Runtime Environment [version 1.6.0 35].

To elucidate the results, six programs were developed so as to have separate programs for
one and two-dimensional point, block and strip failure domains. The code of the selected
program is given in Appendix 1 (1-6). The experimental results are presented in Table 5.1
followed by description under three headings.

Table 5.1: Experimental results of programs tested with ADFD strategy

S.No Fault Module Specific Fault Pass Domain Fail Domain
Domain Dimension

1 Point

One PFDOneA(i)
-100 to -67, -65 to -3, -66, -2, 23, 51
-1 to 50, 2 to 22,
24 to 50, 52 to 100

Two
PFDTwoA(2, i)

(2, 100) to (2, 1), (2, 0)
(2, -1) to (2, -100)

PFDTwoA(i, 0) Nil (-100, 0) to (100, 0)

2 Block

One BFDOneA(i)
-100 to -30, -25 to -2, -1 to 1, -29 to -26,
2 to 50, 55 to 100 51 to 54,

Two
BFDTwoA(-2, i)

(-2, 100) to (-2, 20), (-2 , 19) to (-2, 0),
(-2, -1) to (-2, -100)

BFDTwoA(i, 0) Nil (-100, 0) to (100, 0)

3 Strip

One SFDOneA(i) -100 to -5, 35 to 100 -4 to 34

Two
SFDTwoA(-5, i)

(-5, 100) to (-5, 40), (-5, 39) to (-5, 0),
(-5, -1) to (-5, -100)

SFDTwoA(i, 0) Nil (-100, 0) to (100, 0)

79

Point Failure Domain: Two separate Java programs Program1 and Program2, given
in Appendix 1 (1, 2), were tested with the ADFD strategy in YETI to get the findings for
point failure domains in one and two-dimensional programs. Figure 5.5(a) presents range
of pass and fail values for the point failure domain in one-dimension whereas Figure 5.5(b)
presents range of pass and fail values for the point failure domain in a two-dimensional
program. The range of pass and fail values for each program in point failure domains is
given in Table 5.1.

(a) One dimension module

(b) Two dimension module

Figure 5.5: Chart generated by ADFD strategy presenting point failure domains

80

Block Failure Domain: Two separate Java programs Program3 and Program4 given in
Appendix 1 (3, 4) were tested with the ADFD strategy in YETI to get the findings for block
failure domains in one and two-dimension program. Figure 5.6(a) presents a range of pass
and fail values for block failure domains in one-dimension whereas Figure 5.6(b) presents
a range of pass and fail values for block failure domains in a two-dimensional program. The
range of pass and fail values for each program in block failure domains is given in Table
5.1.

(a) One dimension module

(b) Two dimension module

Figure 5.6: Chart generated by ADFD strategy presenting block failure domain

81

Strip Failure Domain: Two separate Java programs Program5 and Program6 given in
Appendix 1 (5, 6) were tested with the ADFD strategy in YETI to get the findings for strip
failure domains in one and two-dimension programs. Figure 5.7(a) presents range of pass
and fail values for strip failure domain in one-dimension whereas Figure 5.7(b) presents a
range of pass and fail values for strip failure domain in two-dimension program. The range
of pass and fail values for each program in strip failure domain is given in Table 5.1.

(a) One dimension module

(b) Two dimension module

Figure 5.7: Chart generated by ADFD strategy presenting Strip failure domain

82

5.4 Discussion

The ADFD, with a simple graphical user interface, is a fully automated testing strategy
which identifies failures, failure domains and visually presents the pass and fail domains
in the form of a chart. Since all the default settings are set to the optimum level, the user
needs only to specify the module to be tested and click the “Draw fault domain” button
to start test execution. All the steps including identification of fault, generation of dynamic
Java program to find the domain of the identified failure, saving the program to a permanent
media, compiling the program to get its binary, execution of binaries to get pass and fail
domain and plotting these values on the graph are done completely automatically without
any human intervention.

As evident from the results, the ADFD strategy effectively identified failures and failure
domains in selected programs. Identification of the failure domain is simple for one and two-
dimensional numerical programs but as the dimension increases the process gets more
and more complicated. Moreover, no clear boundaries are defined for non-numerical data,
therefore, it is not possible to plot domains for non-numerical data unless some boundary
criteria are defined.

The ADFD strategy initiates testing with R+ to find the failure and later switches to an
exhaustive strategy to apply all the values between upper and lower bounds for finding pass
and failure domains. It was found that failures at boundary of the input domain usually pass
unnoticed through random test strategy [46] but not through the ADFD strategy because it
scans all the values between lower and upper bounds.

The overhead in terms of execution time associated with ADFD strategy is dependent
mainly on the lower and upper bounds. If the lower and upper bounds are set to the maxi-
mum range (i.e. minimum for int is Integer.MIN VALUE and maximum Integer.MAX VALUE)
then the test duration is also maximum. It is rightly so because for identification of the
failure domain the program is executed for every input available in the specified range.
Similarly increasing the range also shrinks the produced graph making it difficult to identify
clearly point, block and strip domains unless they are of considerable size. Test duration is
also influenced by identification of the first failure and the complexity of the module under
test.

The ADFD strategy can help the developers in two ways. First, it reduces the ‘to’ and ‘from’
movement of the program between the testers and debuggers as it identifies all the failures
in one go. Second, it identifies locations of all failure domains across the input domain in a
user-friendly way helping the debugger to fix the fault keeping in view its all occurrences.

83

5.5 Threats to Validity

The major external threat to the use of ADFD strategy on a commercial scale is the selec-
tion of a small set of error-seeded programs of only primitive types such as integer used in
the experiments. However, the present study will serve as the foundation for future work
to expand it to general-purpose real world production application containing scalar and
non-scalar data types.

Another issue is the plotting of the objects in the form of distinctive units, because it is
difficult to split the composite objects containing many fields into units for plotting. Some
work has been done to quantify composite objects into units on the basis of multiple fea-
tures [88], to facilitate easy plotting. Plotting composite objects is beyond the scope of the
present study. However, further studies are required to look into the matter in depth.

Another threat to validity includes evaluating programs with complex and more than two
input arguments. In the current study, ADFD strategy has only considered scalar data of
one and two-dimensions. Plotting domain of programs with complex non-scalar and more
than two dimension argument is much more complicated and needs to be taken up in future
studies.

Finally, plotting the range of pass or fail values for a large input domain (Integer.MIN VALUE
to Integer.MAX VALUE) is difficult to adjust and does not give a clear view on the chart. To
solve this problem, a zoom feature was incorporated into the GUI to magnify the areas of
interest on the chart.

5.6 Related Work

Traditional random testing is quick, easy to implement and free from any bias. In spite
of these benefits, the lower fault finding ability of traditional random testing is often criti-
cised [11, 122]. To overcome the performance issues without compromising on its bene-
fits, various researchers have altered its algorithm as explained in Section 2.10. Most of
the alterations are based on the existence of faults and failure domains across the input
domain [1].

The ADFD is an automated technique which can also be used with other techniques, e.g.
structural coverage approaches, because it is mainly concerned with traversing fault do-
mains and does not depend on how a starting fault within a fault domain is found.

Identification, classification of pass and fail domains and visualisation of domains have not
received due attention by researchers. Podgurski et al. [133] proposed a semi-automated
procedure to classify faults and plot them by using a Hierarchical Multi Dimension Scaling

84

(HMDS) algorithm. A tool named Xslice [134] visually differentiates the execution slices of
passing and failing parts of the test. Another tool called Tarantula uses colour coding to
track the statements of a program during and after the execution of the test suite [135]. A
serious limitation of the above-mentioned tools is that they are not fully automated and
require human intervention during execution. Moreover, these tools are based on the
availability of existing test cases whereas the ADFD strategy generates new test cases,
discovers faults, identifies pass and fail domains and visualises them in graphical form in a
fully automated manner.

5.7 Summary

The newly developed ADFD technique identifies failure, failure domains and graphically
represents the test results using XY line chart. Experimental results obtained by applying
the ADFD strategy to error-seeded numerical programs provide evidence that the strategy
is highly effective in identifying the failures and plotting pass and fail domains of a given
SUT. The ADFD strategy can find boundary failures quickly compared with traditional ran-
dom testing, which is either unable or takes a longer time to discover the failures.

Experimental results reveal that the use of ADFD strategy is highly effective in identify-
ing and presenting failures and failure domains. It provides an easy to understand test
report visualising pass and fail domains. It reduces the number of switches of SUT be-
tween testers and debuggers because all the faults are identified. It improves debugging
efficiency as the debuggers keep all the instances of a fault under consideration during de-
bugging. The strategy has the potential to be used at large scale. However, future studies
are required to use it with programs of more than two-dimensions and different non-scalar
argument types.

85

Chapter 6

Automated Discovery of Failure Domain+

6.1 Introduction

Software testing is most widely used for verification and validation. Efforts have been
continuously made by researchers to make the testing process more effective and efficient.
Testing is efficient when maximum number of test cases are executed in minimum possible
time and it is effective when it finds the maximum number of faults in minimum number
of test cases [136]. During up-grading and development of testing techniques, the focus
is always on increasing the efficiency by introducing partial or complete automation of the
testing process and the effectiveness by improving the algorithm.

To target failures and evaluate the failure domains we developed earlier ADFD technique
[108]. The ADFD+, an improved version of ADFD, is a fully automatic technique which finds
failures and failure domains within a specified radius and presents the results on a graph-
ical chart [109]. The efficiency and effectiveness of the ADFD+ technique is evaluated by
comparing its performance with that of a mature random testing tool for object-oriented
programs (Randoop) [86]. The results generated by ADFD+ and Randoop for the error-
seeded programs shows better performance of ADFD+ with respect to time and number
of test cases to find failure domains. Additionally ADFD+ presents the results graphically
showing identified point, block and strip domains visually as against Randoop, which lacks
a graphical user interface.

6.2 Automated Discovery of Failure Domain+

ADFD+ is an improved version of ADFD, a technique developed earlier by Ahmad and
Oriol [108]. The technique automatically finds failures, failure domains and present the
results in graphical form. In this technique, the test execution is initiated by random+ and

87

continues till the first failure is found in the SUT. The technique then copies the values lead-
ing to the failure and the surrounding values to the dynamic list of interesting values. The
resultant list provides relevant test data for the remaining test session and the generated
test cases are effectively targeted towards finding new failures around the existing failures
in the given SUT.
The improvements made in ADFD+ over ADFD technique are stated as follows.

• ADFD+ generates a single Java file dynamically at run time to plot the failure domains
as compared to one Java file per failure in ADFD. This saves time and makes the
execution process quicker.

• ADFD+ uses (x, y) vector-series to represent failure domains as opposed to the (x, y)
line-series in ADFD. The vector-series allows more flexibility and clarity to represent
failure and failure domains.

• ADFD+ takes a single value for the radius within which the strategy searches for a
failure domain whereas ADFD takes two values as lower and upper bounds repre-
senting x and y-axis respectively. This results in consumption of fewer test cases for
detecting failure domain.

• In ADFD+, the algorithm of dynamically generating a Java file at run-time is simpler
and more efficient compared to ADFD, resulting in reduced overhead.

• In ADFD+, the point, block and strip failure domains generated in the output graph
present a clear view of pass and fail domains with individually labelled points of fail-
ures as against a less clear view of the pass and fail domains and lack of individually
labelled points in ADFD.

6.2.1 Implementation of ADFD+

The ADFD+ technique is also implemented in the automated random testing tool YETI.
As stated earlier YETI consists of three main parts including core infrastructure for ex-
tendibility, strategies section for adjustment of multiple strategies and languages section
for supporting multiple languages. Both strategies and languages sections have pluggable
architecture for easily incorporating new strategies and languages. At the moment, there
are seven different random strategies including our previously developed DSSR and ADFD
strategies. The ADFD+ strategy is also added to the strategies section of YETI by extend-
ing the YetiADFDStrategy. Please see Chapter 3 and Chapter 5 for more details about
YETI and ADFD respectively.

88

6.2.2 Workflow of ADFD+

ADFD+ is a fully automatic technique requiring the user to select radius value (Domain
Range) and feed the program under test followed by clicking the “Draw Fault Domain” but-
ton for test execution. The work-flow of ADFD+ is given in the following pseudocode. The
default values are set to optimum, however the user can change it according to the re-
quirements. As soon as the ”Draw Fault Domain” button is clicked, YETI comes into play
with the ADFD+ strategy to search for failures in the program under test. If a failure is
found, the strategy creates a Java file which contains calls to the program on the failing
and surrounding values within the specified range. The Java file is executed after compi-
lation and the results obtained are analysed to separate pass and fail values, which are
accordingly stored in the text files. The integrated tool Daikon also observes the execu-
tion and generates the likely invariants. The generated invariants are later displayed in the
GUI. All the values are plotted on a graph with pass values in blue and fail values in red
as shown in Figure 6.1. Presenting the identified failure domains by two means (graphical
and generated invariants) provides clearer and verifiable results.

01. Initiate the GUI of ADFD+

02. Specify YETI specific parameters
03. Specify the value of range
04. Specify method for testing
05. Click the Draw Fault Domain button to start test
06. YETI executes the method to find failure
07. On finding failure, a file C.java is dynamically created
08. The file is compiled using javac C.java to get C.class file
09. The C.class file is executed on inputs specified in range
10. Daikon observes execution and generates invariants
11. The execution also write values to Pass.txt and Fail.txt
12. The values are passed to JFreeChart
13. The JFreeChart evaluates the values to draw the graphs
14. Invariants and Graph are displayed on the GUI.
15. The process finishes

Workflow of the ADFD+ process from start to finish

89

6.2.3 Example to Illustrate Working of ADFD+

Suppose we have the following error-seeded class under test. It is evident from the pro-
gram code that a failure is generated when the value of variable x ranges between 5 to 8
and the value of variable y between 2 to 4.

public class Error {

public static void errorProgram (int x, int y){

if (((x>=5)&&(x<=8))&&((y>=2)&&(y<=4)))

abort(); /* error */

}

}

At the beginning of the test, the ADFD+ strategy evaluates the given class with the help
of YETI and finds the first failure at x = 6 and y = 3. Once a failure is identified ADFD+

uses the surrounding values around it to find a failure domain. The radius of surrounding
values is limited to the value set by the user in the Domain Range variable. When the value
of Domain Range is set to 5, ADFD+ evaluates a total of 83 values of x and y around the
found failure. All evaluated (x,y) values are plotted on a two-dimensional graph with red
filled squares indicating fail values and blue filled circles indicating pass values. Figure 6.1
shows that the failure domain forms a block pattern and the boundaries of the failures are
(5,2),(5,3),(5,4),(6,2),(6,4),(7,2),(7,4),(8,2),(8,3),(8,4).

Figure 6.1: The output of ADFD+ for the above code

90

6.3 Evaluation

For evaluating the efficiency and effectiveness, we compared ADFD+ with Randoop, fol-
lowing the common practice of comparison of the new tool with a mature random testing
tool [3, 92, 137]. Testing of several error-seeded one and two dimensional numerical pro-
grams was carried out. The programs were divided in to set A and B containing one and
two-dimensional programs respectively. Each program was injected with at least one fail-
ure domain of point, block or strip nature. The failure causing values are given in Table
6.1. Every program was tested independently for 30 times by both ADFD+ and Randoop.
Time taken and the number of tests executed to find all failure domains were used as
criteria for efficiency and effectiveness respectively. The external parameters were kept
constant in each test. Due to the absence of contracts and assertions in the code un-
der test, undeclared exceptions were taken as failures in accordance with the previous
studies [2, 112, 116].

Table 6.1: Table depicting values of x and y arguments forming point, block and strip failure
domain in Figure 6.6(a), 6.6(b), 6.6(c) and Figure 6.7(a), 6.7(b), 6.7(c) respectively

Dim Point failure Block failure Strip failure
One x = -66 x = -1, 0, 1 x = -4 – 34

x = -2 x =-26 – -29
x= 51 x = 51 – 54
x= 23

Two x=2, y=2 x = 5, y = 2 x = 7, y = 0
x=4, y=2 x = 6, y = 2 x = 8, y = 0
x=7, y=2 x = 7, y = 2 x = 8, y = 1
x=9, y=2 x = 8, y = 2 x = 9, y = 1
x=2, y=6 x = 5, y = 3 x = 9, y = 2
x=4, y=6 x = 6, y = 3 x = 10, y = 2
x=7, y=6 x = 7, y = 3 x = 10, y = 3
x=9, y=6 x = 8, y = 3 x = 11, y = 3
x=2, y=10 x = 5, y = 4 x = 11, y = 4
x=4, y=10 x = 6, y = 4 x = 12, y = 4
x=7, y=10 x = 7, y = 4 x = 12, y = 5
x=9, y=10 x = 8, y = 4 x = 13, y = 5

x = 13, y = 6
x = 14, y = 6
x = 14, y = 7

91

6.3.1 Research Questions

The following research questions have been addressed in the study for evaluating ADFD+

technique with respect to efficiency, effectiveness and presentation of failure domains:

1. How efficient is ADFD+ as compared to Randoop?

2. How effective is ADFD+ as compared to Randoop?

3. How failure domains are presented by ADFD+ as compared to Randoop?

6.3.2 Randoop

The random tester for object-oriented programs (Randoop) is a fully automatic tool, capa-
ble of testing Java classes and .NET binaries. It takes as input a set of classes, time limit
or number of tests and optionally a set of configuration files to assist testing. Randoop
checks for assertion violations, access violations and unexpected program termination in
a given class. Its output is a suite of JUnit programs for Java and NUnit programs for .NET
program. Each unit test in a test suite is a sequence of method calls (hereafter referred
as sequences). Randoop builds the sequence incrementally by randomly selecting public
methods from the class under test. Arguments for these methods are selected from the
pre-defined pool in case of primitive types and as a sequence of null values in case of
reference types. Randoop uses the feedback mechanism to filter out duplicate test cases.
For more details about Randoop, please see Section 2.11.4.

6.3.3 Experimental Setup

All experiments were conducted with a 64-bit Mac OS X Mountain lion version 10.8.5 run-
ning on 2.7 GHz Intel Core i7 quad core with 16 GB (1600 MHz DDR3) of RAM. YETI runs
on top of the JavaTMSE Runtime Environment [version 1.6.0 35]. The ADFD+ Jar file
is available at https://code.google.com/p/yeti-test/downloads/list/ and
Randoop at https://randoop.googlecode.com/files/randoop.1.3.3.zip.

The following two commands were used to run the ADFD+ and Randoop respectively.
Both tools were executed with default settings, however, Randoop was provided with a
seed value as well.

$ java -jar adfd_yeti.jar -------------(1)

$ java randoop.main.Main gentests \

--testclass=OneDimPointFailDomain \

--testclass=Values --timelimit=100 ----(2)

92

https://code.google.com/p/yeti-test/downloads/list/
https://randoop.googlecode.com/files/randoop.1.3.3.zip

6.4 Experimental Results

Figure 6.2: Time taken to find failure domains

Figure 6.3: Number of test cases taken to find failure domains

93

6.4.1 Efficiency

Figure 6.4 shows the comparative efficiency of ADFD+ and Randoop. The x− axis repre-
sents one and two-dimensional programs with point, block and strip failure domains while
the y− axis represents the average time taken by the tools to detect the failure domains.
As shown in the figure, ADFD+ showed extraordinary efficiency by taking two orders of
magnitude less time to discover failure domains as compared to Randoop.

Figure 6.4: Time taken to find failure domains

This may be partially attributed to the very fast processing of YETI, integrated with ADFD+.
YETI is capable of executing 106 test calls per minute on Java code. To counter the contri-
bution of YETI and assess the performance of ADFD+ by itself, the effectiveness of ADFD+

was compared with Randoop in terms of the number of test cases required to identify the
failure domains without giving any consideration to the time consumed for completing the
test session. The results are presented in the following section.

94

6.4.2 Effectiveness

Figure 6.5 shows the comparative effectiveness of ADFD+ and Randoop. The x−axis rep-
resents one and two-dimensional programs with point, block and strip failure domains while
the y−axis represents average number of test cases used by the tools to detect the failure
domains. The figure shows higher effectiveness in the case of ADFD+, amounting to 100%
or more. The higher effectiveness of ADFD+ may be attributed to its working mechanism
in comparison with Randoop for identifying failures. ADFD+ dynamically changes its al-
gorithm to exhaustive testing in a specified radius around the failure as against Randoop,
which uses the same random algorithm for searching failures.

Figure 6.5: Test cases taken to find failure domains

6.4.3 Presentation of Failure Domains

The comparative results of the two tools with respect to presentation of the identified failure
domains reveal better performance of ADFD+ by providing the benefit of presenting the
failure domains in graphical form as shown in Figure 6.6 and 6.7. The user can also
enable or disable the option of showing the failing values on the graph. In comparison,
Randoop lacks the ability of graphical presentation and the option of showing the failure
domains separately. It provides the results scattered across textual files.

95

(a) Point failure domain in one-dimension

(b) Block failure domain in one-dimension

(c) Strip failure domain in one dimension

Figure 6.6: Pass and fail values plotted by ADFD+ in three different cases of one-dimension
programs

96

(a) Point failure domain in two-dimension

(b) Block failure domain in two-dimension

(c) Strip failure domain in two-dimension

Figure 6.7: Pass and fail values plotted by ADFD+ in three different cases of two-dimension
programs

97

6.5 Discussion

The results indicate that ADFD+ is a promising technique for finding failures and failure
domains efficiently and effectively. It has the advantage of showing the results in graphical
form. The pictorial representation of failure domains can serve to provide insight into the
failure logic of the SUT.

In the initial set of experiments Randoop was executed for several minutes with default
settings. This did not discover any faults. On analysis of the generated unit tests and
Randoop’s manual, it was found that the pool of values stored in Randoop database for int

primitive type contains only 5 values including -1, 0, 1, 10 and 100. To enable Randoop to
select different values, we supplied a configuration file with the option to generate random
values between -500 and 500 for the test cases as all the seeded errors were in this range.

As revealed in the results, ADFD+ outperformed Randoop by taking two orders of magni-
tude less time to discover the failure domains. This was partially attributed to the very fast
processing of YETI integrated with ADFD+. To counter the effect of YETI the compara-
tive performance of ADFD+ and Randoop was determined in terms of the number of test
cases required to identify the failure domains giving no consideration to the time taken for
completing the test session. As shown in the results ADFD+ identified all failure domains
in 50% or less number of test cases.

The ADFD+ was found quite efficient and effective in the case of block and strip domains
but not so in the case of point domains where the failures lied away from each other as
shown in the following code. This limitation of ADFD+ may be due to the search in vain
for new failures in the neighbourhood of failures found requiring the additional test cases
resulting in increased overhead.

public class ErrorClass {

public static void errorMethod (int arg1, int arg2){

if (arg1 == 10000) {

abort(); /* error */

}

if (arg2 == -20000) {

abort(); /* error */

}

}

}

The number of test cases to be undertaken in search of failures around the previous failure

98

found is set in the range value by the user. The time taken by the test session is directly
proportional to the range value. Higher range value leads to larger graphical output re-
quiring a zoom feature, which has been incorporated in ADFD+ for use when the need
arises.

6.6 Threats to Validity

The study faces threats to external and internal validity. The external threats are common
to most of the empirical evaluations. It includes the extent to which the programs under test,
the generation tools and the nature of seeded errors are representative of the true practice.
The present findings will serve as the foundation for future research studies needed to be
undertaken with several types of classes, test generation tools and diversified nature of
seeded errors in order to overcome the threats to external validity. The internal threats to
validity include error-seeded and limited number of classes used in the study. These may
be avoided by taking real and higher number of classes in future studies.

6.7 Related Work

The increase in complexity of programs poses new challenges to researchers for finding
more efficient and effective ways of software testing with user-friendly easy to understand
test results. Adaptive Random Testing [24], Proportional random testing [1] and feedback-
directed random testing [86] are some of the prominent upgraded versions of random test-
ing with better performance. Automated random testing is simple to implement and capable
of finding hitherto bugs in complex programs [2, 3]. ADFD+ is a promising technique for
finding failures and failure domains efficiently and effectively with the added advantage of
presenting the output in graphical form showing point, block and strip failure domains.

Some previous research studies have reported work on identification, classification and
visualisation of pass and fail domains [133, 134, 135]. This includes Xslice [134] is used
to differentiate the execution slices of passing and failing part of the test in a visual form.
Another tool called Tarantula uses colour coding to track the statements of a program
during and after the execution of the test suite [135]. Hierarchical Multi Dimension Scaling
(HMDS) describes a semi-automated procedure of classifying and plotting the faults [133].
A serious limitation of the above-mentioned tools is that they are not fully automated and
require human intervention during execution. Moreover, these tools need the requirement
of existing test cases to work on whereas ADFD+ strategy generates test cases, discovers
failures, identifies pass and fail domains and visualises the results in a graphical form
operating in fully automated manner.

99

6.8 Summary

The newly developed ADFD+ technique is distinct from other random testing techniques
because it not only identifies failures but also discovers failure domains and presents them
in an easily understandable graphical form. The chapter highlights the improved features
of ADFD+ in comparison with the ADFD technique presented in Chapter 5. The chapter
then analyses and compares the experimental results of ADFD+ and Randoop for point,
block and strip failure domains. The ADFD+ strongly discovered two orders of magnitude
faster than Random. It also surpassed Randoop in terms of effectiveness by identifying the
failure domains in 50% or less number of test cases. The better performance of ADFD+

may be attributed mainly to its ability to dynamically change algorithm to exhaustive testing
in a specified radius around the first identified failure as against Randoop which uses the
same random algorithm continuously for searching failures.

100

Chapter 7

Evaluation of ADFD and ADFD+ techniques

The newly developed ADFD and ADFD+ techniques have been described in detail in the
preceding chapters (5 and 6). Experimental evaluation of the two techniques through pur-
pose built error-seeded numerical programs presented in the two chapters revealed that
both techniques were capable of identifying the planted faults effectively. In this chapter,
we have evaluated the precision of identifying the failure domains under the two tech-
niques. For this purpose, we have incorporated Daikon in ADFD and ADFD+. Daikon
was selected on the basis of its capability to automatically generate invariants of failure
domains, precisely point out the boundaries of failure domains and present the failure do-
mains generated in more than two dimensional programs. We have performed extensive
experimental analysis of real world Java projects contained in Qualitas Corpus. The results
obtained were analysed and cross-checked using manual testing. The impact of nature,
location, size, type and complexity of failure domains on the testing techniques were also
studied [138].

7.1 Enhancement of the Techniques

Prior to experimental evaluation, new features were incorporated in ADFD and ADFD+

techniques to: increase the code coverage, provide information about the identified failure
and generate invariants of the detected failure domains as stated below:

1. The GUI is enabled to launch all the strategies defined in YETI from a single interface.
For example: if the ADFD strategy is selected for testing the system automatically
hides the field associated with ADFD+ (range value) and displays two fields of lower
and upper bounds. On the other hand if the ADFD+ strategy is selected for testing,
the system automatically hides the two fields associated with the ADFD technique
(lower and upper bounds) and displays a single field of range value.

101

2. Code coverage was increased by extending the techniques to support the testing of
methods with byte, short, long, double and float type arguments while it
was restricted to int type arguments only in the original techniques.

3. Invariants of the detected failure domains were automatically generated by integrat-
ing the tool Daikon into the two techniques. Daikon is an automated invariant detector
that detects likely invariants in the program [139]. The generated invariants are dis-
played in GUI at the end of test execution.

4. Additional information was facilitated by adding the YETI generated failure finding
test case to the GUI of the two techniques. The test case included type of failure,
name of the failing class, name of the failing method, values causing the failure and
line number of the code causing the failure.

5. The feature of screen capture is added to the new GUI. The user can click the screen
capture button to capture the current screen during the testing process. It allows
the user to capture multiple screen-shots at different intervals of testing for future
reference.

Four of the above enhancements are visible from the front-end. As shown in Figure 7.1,
the drop down menu for strategy field enables the tester to choose the appropriate strategy
in the list for the test session. Secondly, the block failure domain is shown in graphical
form and with the help of the automatic tool Daikon the failure domain is also shown by
invariants (i one of {-1, 0, 1}, j == 0). Thirdly, the addition of YETI generated test case
shows type of failure (RUNTIME EXCEPTION, java.lang.ArithmaticException: / by zero),
name of the failing class (OneDimensionalBlockFailureDomain), name of the failing method
(blockErrors), value causing the failure (1) and line number of the code causing failure (11).
Fourthly, the provision of screen capture button allows the tester to store the record of each
test.

102

Fi
gu

re
7.

1:
G

U
If

ro
nt

en
d

of
up

gr
ad

ed
A

D
FD

an
d

A
D

FD
+

103

7.2 Daikon

Daikon is an automated tool that detects likely invariants at specific points in the program
from its execution trace file [139]. The trace file records the effect of inputs to the program
under observation during execution of the test cases. Daikon is capable of generating in-
variants for programs written in Java, C, C++, Perl and Eiffel. The tool helps programmers
by identifying program properties, which must be preserved during modification of the pro-
gram code. Daikon’s output can also provide assistance on understanding, modifying and
testing of programs that contain no explicit invariants.

Figure 7.2 presents the architecture of Daikon. To generate invariants for the original
program, Daikon instruments the source code by inserting checks at various points in
the program. The checks inserted do not change the original behaviour of the program
in any way. On executing the instrumented program the check points collect values of
variables accessible at that point and store them in the trace file. Then Daikon’s inference
engine analyses the trace file for any pattern which is true in all samples and reports it
as a potential invariant. To avoid reporting false positive invariants, Daikon calculates the
confidence it has that particular assertions really are invariants, and reports only those
executing a set level of confidence.

Figure 7.2: Architecture of Daikon [6]

7.2.1 Types of Invariants Detected by Daikon

Daikon is usually used to detect common types of likely invariants. However, it can be used
to search for more specific invariants if it is tuned for the purpose by the user. The most

104

common types of invariants detected by Daikon are quoted below [6].

1. Invariants over any variable:

(a) Constant value: x = a indicates the variable is a constant.

(b) Uninitialized: x = uninit indicates the variable is never set.

(c) Small value set: x ∈ {a,b,c} indicates the variable takes only a small number of
different values.

2. Invariants over a single numeric variable:

(a) Range limits: x ≥ a; x ≤ b; and a ≤ x ≤ b (printed as x in [a..b]) indicate the
minimum and/or maximum value.

(b) Nonzero: x 6= 0 indicates the variable is never set to 0.

(c) Modulus: x ≡ a mod b indicates that x mod b ≡ a always holds.

(d) Nonmodulus: x 6= a mod b is reported only if x mod b takes on every value
beside a.

3. Invariants over two numeric variables:

(a) Linear relationship: y = ax + b.

(b) Ordering comparison: x ≥ y; x ≤ y

(c) Invariants over x + y: any invariant from the list of invariants over a single nu-
meric variable.

(d) Invariants over x - y: as for x + y

4. Invariants over a single sequence variable (arrays):

(a) Range: minimum and maximum sequence values, ordered lexicographically.

(b) Element ordering: whether the elements of each sequence are non-decreasing,
non-increasing or equal.

(c) Invariants over all sequence elements (treated as a single large collection): for
example, all elements of an array are at least 100.

5. Invariants over two sequence variables:

(a) Linear relationship: y = ax + b, elementwise.

(b) Comparison: lexicographic comparison of elements.

(c) Subsequence relationship.

105

7.3 Difference in Working Mechanism of the Two Techniques

The differences between the approaches of ADFD and ADFD+ for identification of failure
domains is illustrated by testing a simple Java program (given below) with the two tech-
niques.

/**

* A program with block failure domain.

* @author (Mian and Manuel)

*/

public class BlockErrorPlotTwoShort {

public static void blockErrorPlot (int x, int y) {

if ((x >= 4) && (x <= 8) && (y == 2)) {

abort(); /* error */

}

if ((x >= 5) && (x <= 8) && (y == 3)) {

abort(); /* error */

}

if ((x >= 6) && (x <= 8) && (y == 4)) {

abort(); /* error */

}

}

}

As is evident from the program code, a failure is generated when the value of variable x =
{4, 5, 6, 7 or 8} and the corresponding value of variable y = {2, 3 or 4}. The total number
of 12 failing instances form a block failure domain in the input domain.

The test output generated by the ADFD technique is presented in Figure 7.3. The labelled
graph shows only 4 out of 12 failing values in red whereas the passing values are shown
in blue. The generated invariants identify all but one failing value (x = 4). This is due to the
fact that ADFD scans the values in one-dimension around the failure. The test case shows
the type of failure, name of the failing class, name of the failing method, values causing the
failure and line number of the code causing failure.

The test output generated by ADFD+ technique is presented in Figure 7.4. The labelled
graph correctly shows all the 12 out of 12 available failing values in red whereas the passing
values are shown in blue. The invariants correctly represent the failure domain. The test
case shows the type of failure, name of the failing class, name of the failing method, values
causing the failure and line number of the code causing failure.

106

Figure 7.3: Graph, Invariants and test case generated by ADFD for the given code

Figure 7.4: Graph, Invariants and Test case generated by ADFD+ for the given code

The comparative results derived from execution of the two techniques on the developed
program indicate that, ADFD+ is more efficient than ADFD in identification of failures in two-
dimensional programs. The ADFD and ADFD+ performs equally well in one-dimensional

107

program, but ADFD covers a wider range around the first failure than ADFD+ and is com-
paratively economical because it uses fewer resources (memory and CPU processing
time) than ADFD+.

7.4 Research Questions

The following research questions have been addressed in the study:

1. What is the relevance of ADFD and ADFD+ techniques in identification and presen-
tation of failure domains in production software?

2. What types and frequencies of failure domains exist in production software?

3. What is the nature of identified failure domains and how does this affect the auto-
mated testing techniques?

7.5 Evaluation

Experimental evaluation of ADFD and ADFD+ techniques was carried out to determine:
the effectiveness of the techniques in identifying and presenting the failure domains, the
types and frequencies of failure domains, the nature of error causing a failure domain and
the external validity of the results obtained.

7.5.1 Experiments

In the present experiments, we tested all 106 packages with no state of the Qualitas Cor-
pus containing a total of 4000 classes. Qualitas Corpus was selected because it is a
database of Java programs specially built for empirical research which takes into account
a large number of developmental models and programming styles. All packages included
in Qualitas Corpus are open source with an easy access to the source code.

For experimental purpose, the main “.jar” file of each package was extracted to get the
“.class” files as appropriate input for YETI. All 4000 classes were individually tested. The
classes containing one and two-dimensional methods with arguments (int, long, float, byte,
double and short) were selected for experimental analysis. Non-numerical arguments and
more than two-dimensional methods were ignored because the two proposed techniques
support the testing of one and two dimensional methods with numerical arguments. Each
test took 40 seconds on average to complete execution. The initial 5 seconds were used
by YETI to find the first failure while the remaining 35 seconds were jointly consumed
by ADFD/ADFD+ technique, JFreeChart and Daikon to identify, draw graph and generate

108

invariants of the failure domains respectively. The machine took approximately 500 hours
to perform the experiments completely. Due to the absence of contracts and assertions in
the code under test, undeclared exceptions were taken as failures in accordance with the
previous studies [112, 108]. The source code of the programs containing failure domains
were also evaluated manually to compare with the experimental results.

In accordance with Chan et al. [1], classification of failure domains into various types was
based on the number of contiguous failures detected in the input-domain as shown in
Table 7.1. If the contiguous failures detected range from 1 to 5, 6 to 49 or 50 and above
the failure domain is classified as point, block or strip type respectively. If more than one
type of domain is detected in a program, it is termed a mix type.

The ADFD and ADFD+ executable files are available at https://code.google.com/
p/yeti-test/downloads/list/. Daikon and JFreeChart can be seperately obtained
from http://plse.cs.washington.edu/daikon/ and http://www.jfree.org/

jfreechart/download.html respectively.

Table 7.1: Classification of failure domains

S. No Type of failure domain No of contiguous failures

1 Point 01 to 05

2 Block 06 to 49

3 Strip 50 & above

point & block

4 Mix point & strip

point, block & strip

7.5.2 Results

The testing of 106 Java packages including 4000 classes, resulted in 25 packages contain-
ing 57 classes to have various types of failure domains. The details pertaining to project,
class, method, dimension, line of code (LOC) and type of detected failure domains for
each class are given in Table 7.2. Out of the total of 57 methods indicated in the table, 10
methods are two-dimensional while the remaining 47 methods are one-dimensional. The
chosen subset of classes had a total number of 17262 lines of code spread across 57
classes in various proportions as shown in the table. The results obtained show that out
of 57 classes 3 contain point failure domains, 1 contains a block failure domain, 50 contain
strip failure domains and 3 contain mix failure domains. A mix failure domain includes the
combination of two or more types of failure domains including point & block, point & strip
and point, block & strip.

109

https://code.google.com/p/yeti-test/downloads/list/
https://code.google.com/p/yeti-test/downloads/list/
http://plse.cs.washington.edu/daikon/
http://www.jfree.org/jfreechart/download.html
http://www.jfree.org/jfreechart/download.html

Table 7.2: Table depicting results of ADFD and ADFD+

S# Project Class Method Dim. LOC Failure
domain

1 ant LeadPipeInputStream LeadPipeInputStream(i) 1 159 Strip
2 antlr BitSet BitSet.of(i,j) 2 324 Strip
3 artofillusion ToolPallete ToolPalette(i,j) 2 293 Strip
4 aspectj AnnotationValue whatKindIsThis(i) 1 68 Mix

IntMap idMap(i) 1 144 Strip
5 cayenne ExpressionFactory expressionOfType(i) 1 146 Strip
6 collections ArrayStack ArrayStack(i) 1 192 Strip

BinaryHeap BinaryHeap(i) 1 63 Strip
BondedFifoBuffer BoundedFifoBuffer(i) 1 55 Strip
FastArrayList FastArrayList(i) 1 831 Strip
StaticBucketMap StaticBucketMap(i) 1 103 Strip
PriorityBuffer PriorityBuffer(i) 1 542 Strip

7 colt GenericPermuting permutation(i,j) 2 64 Strip
LongArrayList LongArrayList(i) 1 153 Strip
OpenIntDoubleHashMap OpenIntDoubleHashMap(i) 1 47 Strip

8 drjava Assert assertEquals(i,j) 2 780 Point
ByteVector ByteVector(i) 1 40 Strip

9 emma ClassLoaderResolver getCallerClass(i) 1 225 Strip
ElementFactory newConstantCollection(i) 1 43 Strip
IntIntMap IntIntMap(i) 1 256 Strip
ObjectIntMap ObjectIntMap(i) 1 252 Strip
IntObjectMap IntObjectMap(i) 1 214 Strip

10 heritrix ArchiveUtils padTo(i,j) 2 772 Strip
BloomFilter32bit BloomFilter32bit(i,j) 2 223 Strip

11 hsqld IntKeyLongValueHashMap IntKeyLongValueHashMap(i) 1 52 Strip
ObjectCacheHashMap ObjectCacheHashMap(i) 1 76 Strip

12 htmlunit ObjToIntMap ObjToIntMap(i) 1 466 Strip
Token typeToName(i) 1 462 Mix

13 itext PRTokeniser isDelimiterWhitespace(i) 1 593 Strip
PdfAction PdfAction(i) 1 585 Strip
PdfLiteral PdfLiteral(i) 1 101 Strip

14 jung PhysicalEnvironment PhysicalEnvironment(i) 1 503 Strip
15 jedit IntegerArray IntegerArray(i) 1 82 Strip
16 jgraph AttributeMap AttributeMap(i) 1 105 Strip
17 jruby ByteList ByteList(i) 1 1321 Strip

WeakIdentityHashMap WeakIdentityHashMap(i) 1 50 Strip
18 junit Assert assertEquals(i,j) 2 780 Point
19 megamek AmmoType getMunitionsFor(i) 1 268 Strip

Board getTypeName(i, j) 1 1359 Mix
20 nekohtml HTMLEntities get(i) 1 63 Strip
21 poi Variant getVariantLength(i) 1 476 Block

IntList IntList(i,j) 2 643 Point
22 sunflow QMC halton(i,j) 2 32 Strip

BenchmarkFramework BenchmarkFramework(i,j) 2 24 Strip
IntArray IntArray(i) 1 47 Strip

23 trove TDoubleStack TDoubleStack(i) 1 120 Strip
TIntStack TIntStack(i) 1 120 Strip
TLongArrayList TLongArrayList(i) 1 927 Strip

24 weka AlgVector AlgVector(i) 1 424 Strip
BinarySparseInstance BinarySparseInstance(i) 1 614 Strip

25 xerces SoftReferenceSymbolTable SoftReferenceSymbolTable(i) 1 71 Strip
SymbolHash SymbolHash(i) 1 82 Strip
SynchronizedSymbolTable SynchronizedSymbolTable(i) 1 57 Strip
XMLChar isSpace(i) 1 169 Strip
XMLGrammarPoolImpl XMLGrammarPoolImpl(i) 1 96 Strip
XML11Char isXML11NCNameStart(i) 1 184 Strip
AttributeList AttributeList(i) 1 321 Strip

110

7.5.2.1 Effectiveness of ADFD and ADFD+ techniques

The experimental results confirmed the effectiveness of the techniques by discovering all
three types of failure domains (point, block and strip) across the input domain. The results
obtained by applying the two automated techniques were verified: by manual analysis of
the source code of all 57 classes; by cross checking the test case, the graph and the gen-
erated invariants of each class; and by comparing the invariants generated by automatic
and manual techniques.

The identification of a failure domain by both ADFD and ADFD+ is dependant upon the
detection of failure by the random+ strategy in YETI. It is due to the fact that neighbouring
values of the failure are generated only after the first failure is detected by the random+
strategy.

The generation of graph and invariants and the time of test execution directly depends
on the range value, if the range value of a technique is greater, the presentation of a
failure domain is better and the execution time required is higher. This is due to the testing
and handling of greater numbers of test cases when the range is set to a higher level.
Comparatively, ADFD requires fewer resources than ADFD+, therefore it is less influenced
by the range value.

7.5.2.2 Type and Frequency of Failure domains

As evident from the results given in Table 7.3 - 7.6, all the three techniques (ADFD, ADFD+

and Manual) detected the presence of strip, point and block types of failure domains in
different frequencies. The results obtained show that out of 57 classes 3 contain point
failure domains, 1 contains block failure domains, 50 contain strip failure domains and 3
contain mix failure domains. A mix failure domain includes the combination of two or more
types of failure domains including point & block, point & strip and point, block & strip.

The discovery of higher number of strip failure domains may be attributed to the fact that
a limited time of 5 seconds were set in YETI testing tool for searching the first failure. The
ADFD and ADFD+ strategies set in YETI for testing the classes are based on the random+

strategy which gives high priority to boundary values, therefore, the search by YETI was
prioritised to the boundary area where there were greater chances of occurrence of failures
constituting strip failure domain.

111

Table 7.3: Class with block failure domain

S# Class Invariants by ADFD+ Invariants by ADFD Manually generated Invariants

1 Variant I ≥0, I ≤ 12 I ≥ 0, I ≤ 14, I ≥ 16 I ≥ 0, I ≤ 14, I ≥ 16

I ≤ 31, I ≥ 64, I ≤ 72 I ≤ 31, I ≥ 64, I ≤ 72

Table 7.4: Classes with point failure domains

S# Class Invariants by ADFD+ Invariants by ADFD Manually generated Invariants

1 Assert I == J I == J I == J

2 Assert I ≤ 0, I ≥ 20 I ≤ -2147483142, I ≥ min int I any value

J = 0 J = 0 J = 0

3 IntList I ≤ -1, I ≥ -15 I ≤ -1, I ≥ -509 I ≤ -1, I ≥ min int

J = 0 J =0 J = 0

Table 7.5: Classes with mix failure domains

S# Class Invariants by ADFD+ Invariants by ADFD Manually generated Invariants Failure Domains

1 Board I ≤ -1 I ≥ -504, I ≤ -405, I ≤ -910, I ≥ -908, I ≤ -809, Strip & Point

I ≥ -18 I ≥ -403, I ≤ -304, I ≥ -807, I ≤ -708, I ≥ -706,

J = 0 I ≥ -302, I ≤ -203, I ≤ -607, I ≥ -605, I ≤ -506,

I ≥ -201, I ≤ -102, I ≥ -504, I ≤ -405, I ≥ -403,

I ≥ -100, I ≤ -1 I ≤ -304, I ≥ -302, I ≤ -203,

J = 0 I ≥ -201, I ≤ -102, I ≥ -100

I ≤ -1,

J = 0

2 Token I ≤ -2147483641 I ≤ -2, I ≥ -510 I ≤ -2, I >min int Point & Strip

I ≥ min int I = {73, 156} I = {73, 156}

I ≥ 162, I ≤ 500 I ≥ 162, I ≤ max int

3 AnnotationValue I ≤ 85, I ≥ 92, I ≤ 63, I = {65, 69, 71, 72} I ≤ 63, I = {65, 69, 71, 72} Point & block

I ≥ 98, I ≤ 100, I ≥ 75, I ≤ 82, I ≥ 84 I ≥ 75, I ≤ 82, I ≥ 84

I ≥ 102, I ≤ 104 I ≤ 89, I ≥ 92, I ≤ 98 I ≤ 89, I ≥ 92, I ≤ 98

I = 100, I ≥ 102, I ≤ 114 I = 100, I ≥ 102, I ≤ 114

I ≥ 116 I ≥ 116 and so on

112

Table 7.6: Classes with strip failure domains. The value of radius is 10 and 505 for ADFD
and ADFD+ respectively.

S# Class First failure Invariants by ADFD+ First failure Invariants by ADFD Manually generated Invariants
1 LeadPipe- 2147483640 I ≥ 2147483630 2147483645 I ≥ 2147483140 I > 698000000

InputStrea I ≤ max int I ≤ max int I ≤ max int
2 BitSet -8 I ≤ -1, I ≥ -18, -7 I ≤ -1, I ≥ -513 I ≤ -1, I ≥ min int

-2 J ≤ 7, J ≥ -12 2 J ≥ -503, J ≤ 507 J any value
3 ToolPallete -8 I ≤ -1, I ≥ -18 -10 I ≤ -1, I ≥ -515 I ≤ -1, I ≥ min int

-5 J ≤ 3, J ≥ -15 -4 J ≥ -509, J ≤ 501 J any value
4 IntMap -8 I ≤ -1, I ≥ -18 -7 I ≤ -1, I ≥ -512 I ≤ -1, I ≥ min int
5 Expression- 3 I ≤ 13, I ≥ -7 8 I ≥ -497, I ≤ 513 I ≥ min int

Factory I ≤ max int
6 ArrayStack 2147483646 I ≥ 2147483636 2147483647 I ≥ 2147483142 I > 698000000

I ≤ max int I ≤ max int I ≤ max int
7 BinaryHeap -2147483647 I ≤ -2147483637 -2147483647 I ≤ -2147483142 I ≤ 0

I ≥ min int I ≥ min int I ≥ min int
8 Bonded- -2147483648 I ≤ -2147483638 0 I ≥ -505, I ≤ 0 I ≤ 0

FifoBuffer I ≥ min int I ≥ min int
9 FastArrayList -2147483641 I ≤ -2147483631 -2147483644 I ≤ -2147483139 I ≤ -1

I ≥ min int I ≥ min int I ≥ min int
10 Static- 2147483645 I ≥ 2147483635 2147483645 I ≥ 2147483140 I > 698000000

BucketMap I ≤ max int I ≤ max int I ≤ max int
11 PriorityBuffer -4 I ≤ -1, I ≥ -14 -2147483647 I ≤ -2147483142 I ≤ 0

I ≥ -2147483648 I ≥ min int
12 Generic- -8 I ≤ 0, I ≥ -18 7 I ≥ -498, I ≤ 0 I ≤ 0, I ≥ min int

Permuting I ≥ 2, I ≤ 512 I ≥ 2, I ≤ max int
13 LongArrayList -2147483641 I ≤ -2147483631 -5 I ≤ -1, I ≥ -510 I ≤ -1

I ≥ min int I ≥ min int
14 OpenIntDouble- -7 I ≤ -1, I ≥ -17 -9 I ≤ -1, I ≥ -514 I ≤ -1, I ≥ min int

HashMap
15 ByteVector -2147483648 I ≤ -2147483638 -2147483646 I ≤ -2147483141 I ≤ -1

I ≥ min int I ≥ min int I ≥ min int
16 ElementFactory 2147483646 I ≥ 2147483636 2147483646 I ≥ 2147483141 I > 698000000

I ≤ max int I ≤ max int I ≤ max int
17 IntIntMap -2147483648 I ≤ -2147483638 -2147483644 I ≤ -2147483139 I ≤ -1

I ≥ min int I ≥ min int I ≥ min int
18 ObjectIntMap 2147483647 I ≥ 2147483637 2147484096 I ≥ 2147483591 I > 698000000

I ≤ max int I ≤ max int I ≤ max int
19 IntObjectMap -7 I ≤ -1, I ≥ -17 -14 I ≤ -1, I ≥ -518 I ≤ -1, I ≥ min int
20 ArchiveUtils 2147483641 I ≥ 2147483631 8 I ≥ -497 I any value

I ≤ max int I ≤ 513
2147483646 J ≥ 2147483636 J ≥ 2147483591 J > 698000000

J ≤ max int J ≤ max int
21 Bloom- -10 I ≤ -1, I ≥ -18 -10 I ≤ -1, I ≥ -515 I <-1

Filter32bit J may be any value J may be any value J <-1
22 IntKeyLong- 2147483645 I ≥ 2147483635 2147484095 I ≥ 2147483590 I > 698000000

ValueHashMap I ≤ max int I ≤ max int I ≤ max int
23 ObjectCache- -2147483647 I ≤ -2147483637 -7 I ≥ -512, I ≤ 0 I ≤ 0

HashMap I ≥ min int I ≥ min int
24 ObjToIntMap -2147483646 I ≤ -2147483636 -2147484151 I ≤ -2147483646 I ≤ -1

I ≥ min int I ≥ min int I ≥ min int
25 PRTokeniser -10 I ≤ -2, I ≥ -18 -4 I ≤ -2, I ≥ -509 I ≤ -2 , I ≥ min int

I ≥ 256, I ≤ 501 I ≥ 256 , I ≤ max int
26 PdfAction -2147483645 I ≤ -2147483635 -9 I ≤ 0, I ≥ -514 I ≤ 0, I ≥ min int

I ≥ min int I ≥ 6, I ≤ 496 I ≥ 6, I ≤ max int
27 PdfLiteral -4 I ≤ -1, I ≥ -14 I ≤ -1, I ≥ -511 I ≤ -1, I ≥ min int

28 Physical- -1 I ≤ -1, I ≥ -11 -2147484151 I ≤ -2147483646 I ≤ -1,
Environment I ≥ min int I ≥ min int

29 IntegerArray 2147483646 I ≥ 2147483636 2147484092 I ≥ 2147483587 I > 698000000
I ≤ max int I ≤ max int I ≤ max int

30 AttributeMap -2147483648 I ≤ -2147483638 -9 I ≤ 0, I ≥ -514 I ≤ 0
I ≥ min int I ≥ min int

31 ByteList -4 I ≤ -1, I ≥ -14 -8 I ≤ -1, I ≥ -513 I ≤ -1, I ≥ min int
32 WeakIdentity- 2147483646 I ≥ 2147483636 2147483645 I ≥ 2147483140 I >698000000

HashMap I ≤ max int I ≤ max int I ≤ max int
33 AmmoType -7 I ≤ -1, I ≥ -17 -9 I ≤ -1, I ≥ -514 I ≤ -1, I ≥ min int

I ≥ 93, I ≤ 496 I ≥ 93, I ≤ max int
34 QMC -2 I ≤ -1, I ≥ -12 -3 I ≤ -1, I ≥ -508 I ≤ -1, I ≥ min int

-5 J ≤ -1, J ≥ -15 -6 J ≤ 499, J ≥ -511 J any value
35 Benchmark- -3 I ≤ -1, I ≥ -13 -3 I ≤ -1, I ≥ -508 I ≤ -1, I ≥ min int

Framework

113

Table 7.6: Classes with strip failure domains. The value of radius is 10 and 505 for ADFD
and ADFD+ respectively.

S# Class First failure Invariants by ADFD+ First failure Invariants by ADFD Manually generated Invariants

36 IntArray -6 I ≤ -1, I ≥ -16 -2147484157 I ≤ -2147483652 I ≤ -1
I ≥ min int I ≥ min int

37 TDoubleStack -3 I ≤ -1, I ≥ -13 -6 I ≤ -1, I ≥ -511 I ≤ -1, I ≥ min int
38 TIntStack -2 I ≤ -1, I ≥ -12 -2147483648 I ≥ -2147483143 I ≤ -1

I ≤ min int I ≥ min int
39 TLongArrayList -6 I ≤ -1, I ≥ -16 -2147483646 I ≥ -2147483141 I ≤ -1,

I ≤ min int I ≥ min int
40 AlgVector -5 I ≤ -1, I ≥ -15 -6 I ≤ -1, I ≥ -511 I ≤ -1, I ≥ min int
41 BinarySparse- -5 I ≤ -1, I ≥ -15 -1 I ≤ -1, I ≥ -506 I ≤ -1, I ≥ min int

Instance
42 SoftReference- 2147483645 I ≥ 2147483635 2147483645 I ≥ 2147483140 I > 698000000

SymbolTable I ≤ max int I ≤ max int I ≤ max int
43 HTMLEntities -7 I ≤- 1, I ≥ -17 -1 I ≥ -504, I ≤ -405, I ≤ -809, I ≤ -607, I ≥ -605,

I ≥ -403, I ≤ -304, I ≤ -506, I ≥ -504, I ≤ -405,
I ≥ -302, I ≤ -203, I ≥ -403, I ≤ -304, I ≥ -302,
I ≥ -201, I ≤ -102, I ≤ -203, I ≥ -201, I ≤ -102,
I ≥ -100, I ≤ -1 I ≥ -100, I ≤ -1

44 SymbolHash -6 I ≤ -1, I ≥ -16 -2147483640 I ≤ -2147483135 I ≤ -1,
I ≥ min int I ≥ min int

45 Synchronized- -2147483134 I ≤ -2147483144 -2147483642 I ≤ -2147483137, I ≤ -1, I ≥ min int
SymbolTable I ≥ min int I ≥ min int

46 XMLChar -2 I ≤ -1, I ≥ -12 -5 I ≤ -1, I ≥ -510 I ≤ -1, I ≥ min int
47 XMLGrammar- -3 I ≤ -1, I ≥ -13 -2147483642 I ≤ -2147483137 I ≤ -1,

PoolImpl I ≥ min int I ≥ min int
48 XML11Char -6 I ≤ -1, I ≥ -16 -7 I ≤ -1, I ≥ -512 I ≤ -1, I ≥ min int
49 AttributeList 2147483645 I ≥ 2147483635 2147483647 I ≥ 2147483142 I > 698000000

I ≤ max int I ≤ max int I ≤ max int
50 ClassLoader- 8 I ≥ 2, I ≤ 18 -5 I ≥ 500, I ≤ -2 I ≤ -2, I >min int

Resolver I ≥ 2, I ≤ 505 I ≥ 2, I ≤ max int

7.5.2.3 Nature of failure domain

The nature of failure domain identified by two automatic techniques (ADFD and ADFD+)
and the manual technique was examined in terms of simplicity and complexity by compar-
ing the invariants generated by automatic techniques with those of the manual technique.
The results were split into six categories (2 categories per technique) on the basis of sim-
plicity and complexity of failure domains identified by each of the three techniques. The
comparative results show that ADFD, ADFD+ and Manual testing can easily detect 56, 48
and 53 and difficultly detect 1, 9 and 4 failure domains respectively as shown in Table 7.7.

The analysis of generated invariants indicates that the failure domains which are simple
in nature are easily detectable by both automated and manual techniques while the fail-
ure domains which are complex in nature are not easily detected by either automated or
manual techniques.

The failure domain formed by class BitSet as shown in Table 7.6 is an example of a simple
failure domain. The negativeArray failure is detected due to the input of negative value to
the method bitSet.of(i). The invariants generated by ADFD are {i ≤ -1, i ≥ -18}, by ADFD+

114

Table 7.7: Simplicity and complexity of Failure Domains (FD) as found by three techniques

Ty
pe

of
fa

ilu
re

do
m

ai
n

N
o.

of
cl

as
se

s

N
o.

of
FD

E
as

y
to

fin
d

FD
by

A
D

FD

E
as

y
to

fin
d

FD
by

A
D

FD
+

E
as

y
to

fin
d

FD
by

M
T

H
ar

d
to

fin
d

FD
by

A
D

FD

H
ar

d
to

fin
d

FD
by

A
D

FD
+

H
ar

d
to

fin
d

FD
by

M
T

Point 3 3 3 3 3 0 0 0

Block 1 1 0 1 1 1 0 0

Strip 50 50 50 45 48 0 5 2

Mix 3 6 5 4 4 1 2 2

Total 57 60 58 53 56 2 7 4

are {i ≤ -1, i ≥ -512} and by Manual Analysis are {i ≤ -1, i ≥ Integer.MIN INT}. These
results indicate maximum degree of representation of failure domain by Manual Analysis
followed by ADFD and ADFD+ respectively. This is mainly due to the bigger range value
in manual analysis followed by ADFD and ADFD+ respectively.

The complexity of failure domain is illustrated by taking an example of ADFD, ADFD+ and
Manual Analysis in Table 7.6 for class ArrayStack. The OutOfMemoryError failure is
detected due to the input of value to the method ArrayStack(i). The invariants generated
by ADFD are { i ≥ 698000000, i ≤ 698000300}, by ADFD+ are { i ≥ 2147483636, I ≤
MAX INT}, by Manual analysis { i ≥ 698000000 }. All the three strategies indicate the
same failure but at different intervals. The ADFD+ is unable to show the starting point of
failure due to its small range value. The ADFD easily discovers the breaking point due to
its bigger range value while manual testing requires over 50 attempts to find the breaking
point.

7.6 Threats to Validity

All packages in Qualitas Corpus were tested by ADFD, ADFD+ and manually in order
to minimize the threats to external validity. The Qualitas Corpus contains packages of
different functionality, size, maturity and modification histories. Another limitation of the
evaluation is that all the experiments were carried on software with no state.

YETI using an ADFD/ADFD+ strategy was executed only for 5 seconds to find the first
failure in the given SUT. Since both ADFD and ADFD+ are based on the random+ strategy

115

having high preference for boundary values, therefore, most of the failures detected are
from the boundaries of the input domain. It is quite possible that increasing the test duration
of YETI may lead to the discovery of new failures with different failure domains.

A threat to validity is related to the hardware and software resources. For example, the
OutOfMemoryError occurs at the value of 6980000 on the machine used for executing
the test. On another machine with different specification the failure revealing value can
increase or decrease depending on the hardware and software resources.

Non-numerical and methods with more than two parameters were not considered in the
experiments. The failures caught due to error of non-primitive types were also ignored
because of the inability of the techniques to present them graphically.

7.7 Related Work

In previous studies, researchers have done work to analyse the shape and location of
failure domain in the input domain. Similar to our findings, White et al. [140] reported that
the boundary values located at the edge of input domains have more chances of forming
strip failure domain. Finally [141] and Bishop [142] found that failure causing inputs form a
continuous region inside the input domain. Chan et al. revealed that failure causing values
form certain geometrical shapes in the input domain, they classified the failure domains
into point, block and strip failure domains [1].

Random testing is quick in execution and experimentally proven to detect errors in pro-
grams of various platforms including Windows [79], Unix [78], Java Libraries [3], Hes-
kell [94] and Mac OS [80]. Its potential to become fully automated makes it one of the best
choice for developing automated testing tools [2, 3]. AutoTest [120], Jcrasher [2], Eclat [3],
Jartege [92], Randoop [86] and YETI [112, 108, 109] are a few of the most common au-
tomated random testing tools used by the research community. YETI is loosely coupled,
highly flexible and is easily extendible [103].

In Chapters 5 and 6, we have described the fully automated techniques ADFD [108] and
ADFD+ [109] for the discovery of failure domains and have experimentally evaluated the
performance with one and two-dimensional error-seeded numerical programs. The cur-
rent study is a continuation of the previous work. It is aimed at the enhancement of the
two techniques for evaluation of the precision of identifying failure domains by integrating
Daikon with ADFD and ADFD+.

Our current approach of evaluation is inspired by several studies in which random test-
ing has been compared with other testing techniques to find the failure finding ability
[41, 42, 126]. The automated techniques have been compared with manual techniques
in the previous research studies [4, 51]. This study is of special significance because we

116

compared the effectiveness of the techniques by identifying failure domains rather than
individual failures considered in the previous studies.

7.8 Summary

The chapter evaluates the precision of identifying failure domains by the enhanced ADFD
and ADFD+ techniques integrated with the automatic tool Daikon. Extensive experimental
analysis of real world Java projects contained in Qualitas Corpus were performed. The
results obtained were analysed and cross-checked with the results of manual testing. The
results reveal that the two techniques can effectively identify and present all types of fail-
ure domains (graphically by JFreeChart and as invariants by Daikon) to a certain level of
precision. It is also evident that the level of precision of identifying failure domains can
be further increased graphically and invariantly by increasing the range value in the two
techniques. The analysis revealed that the strip failure domain having large size and low
complexity are quickly identified by the automated techniques whereas the point and block
failure domains having small size and higher complexity are difficult to identify by the auto-
mated and manual techniques. Based on the results, it can also be stated that automated
techniques (ADFD and ADFD+) can be highly effective in providing assistance to manual
testing but are not an alternative to the manual testing.

117

Chapter 8

Conclusions

The present research study aims at understanding the nature of failures in software, ma-
nipulating failure domains for finding more bugs and developing new improved automated
random test strategies. The existing random test strategies find individual failures and do
not focus on failure domains. Knowledge of failures as well as failure domains is highly
beneficial to developers for quick and effective removal of underlying flaws in the code.

We developed three new techniques to find failures and failure domains: Dirt Spot Sweep-
ing Random (DSSR), Automated Discovery of Failure Domain (ADFD) and Automated
Discovery of Failure Domain+ (ADFD+) techniques. We evaluated each technique inde-
pendently. ADFD and ADFD+ have the potential to present a developer with the failure
domain graphically and as an invariant by using JFreeChart and Daikon respectively. We
also evaluated the two automated techniques independently against manual inspection of
the code.

The study revealed that the input inducing failures reside in contiguous locations forming
certain geometrical shapes in the input domain. These shapes can be divided into point,
block and strip domains. A set of techniques has been developed for improving the effec-
tiveness of automated random testing to find failures and failure domains.

The first technique, Dirt Spot Sweeping Random (DSSR) strategy starts by testing the
program at random+. When a failure is identified, the strategy selects the neighbouring
input values for the subsequent tests. The selected values sweep around the identified
failure leading to the discovery of new failures in the vicinity. This results in a quick and
efficient identification of failures in the software under test. The results stated in Chapter 4
showed that DSSR performs significantly better than random and random+ strategies.

The second technique, Automated Discovery of Failure Domain (ADFD) finds failure and
failure domains in a given piece of software and provides visualization of the identified pass
and fail domains within a specified range in the form of a chart. The technique starts with a

119

random+ strategy to find the first failure. When a failure is identified, a new Java program is
dynamically created at run-time, compiled and executed to search for failure domains along
the projections on various axis. The output of the program shows pass and fail domains in
the graphical form. The results stated in Chapter 5 show that the ADFD technique correctly
identifies the failure domains. The technique is highly effective in testing and debugging by
providing an easy to understand test report in the visualized form.

The third technique, Automated Discovery of Failure Domain+ (ADFD+) is an upgraded
version of the ADFD technique with respect to the algorithm and graphical representation
of the failure domain. The new algorithm searches for the failure domain around the fail-
ure in a given radius as against ADFD which limits the search between lower and upper
bounds. The graphical output of ADFD+ is further improved to provide labelled graphs for
making it easily understandable and user-friendly. To find the effectiveness of ADFD+, it
is compared with Randoop using error seeded programs. The results in Chapter 6 reveal
that ADFD+ correctly points out all the seeded failure domains while Randoop identifies
individual failures but is unable to discover the failure domains.

Finally, on the basis of comparative analysis of automated techniques (ADFD, ADFD+)
and manual technique, it is revealed that both the techniques can effectively identify and
present types of failure domains to a certain degree of accuracy. However, the manual
technique is more effective in identifying the simple (long strip) failure domain but is tedious
and labour intensive. The two automated techniques are more effective in identifying and
presenting complex (point and block) failure domains with minimal labour. The precision
of identifying the failure domains by automated techniques can be increased by increasing
the range values, provided that more resources are dedicated. Based on the results in
Chapter 7, we can state that automated techniques (ADFD and ADFD+) can be highly
effective in providing assistance to manual testing but are not an alternative to manual
testing

8.1 Lessons Learned

Research in the field of software testing has been in progress for more than three decades
but only a handful of free and open source fully automated testing techniques are avail-
able for software testing. The current study is a continuation of the research efforts to
find improved testing techniques capable of identifying failures and failure domains quickly,
effectively and efficiently. In this section, the lessons learned during the study are pre-
sented in the summarized form which may be of interest to the researchers pursuing future
research.

120

Number of failures detected per unit test as performance measurement criteria for
random testing

Among the three measuring criteria usually used for finding the effectiveness of random
testing, the E-measure and P-measure have been criticised [24, 85, 114] whereas the
F-measure has been often used by researchers [117, 118]. In our experiments, the F-
measure was initially used but its weakness was soon realised as stated in Section 4.3.3.
The F-measure is effective in traditional testing and counts the number of test cases used
to find the first failure. The system is then handed over to developers for fixing the identified
failure. Automated testing tools test the whole system and report all discovered failures in
one go, thus the F-measure is not a favourable choice. We addressed the issue by mea-
suring the number of failures detected in a particular number of test calls as the criterion
for finding the effectiveness of the testing technique.

Test results in random testing are stochastic

In random testing, due to the random generation of test inputs, the results keep on chang-
ing even if all the test parameters and the program under test remain the same. Therefore,
the measurement of efficiency of one technique in comparison with the other becomes dif-
ficult. We addressed the issue by taking five steps. 1) Each experiment was repeated 30
times and the average was taken for comparison. 2) In each experiment 10000 test cases
were executed to minimize random effects. 3) Sufficiently large number of representative
test samples (60) were taken for evaluation. 4) Error seeded programs with known loca-
tions of faults were used to verify the results. 5) The experimental results were statistically
analysed to assess the difference on statistical basis.

Testing of neighbouring values around the failure value decreases computation

Developing new versions of random testing with higher fault finding ability usually results
in increased computation, higher overhead and lower performance. We addressed the is-
sue by developing new strategies which use neighbouring values around the failure finding
value for the subsequent tests. This approach saves the computation involved in generat-
ing suitable test values from the whole input domain.

Random testing coupled with exhaustive testing

Random testing generates test values at random as against exhaustive testing where the
whole input domain is tested. Although exhaustive testing is quite effective it is not usually
feasible for a larger domain because of infinite test values. The issue is addressed by cou-
pling random testing with exhaustive testing. In our newly developed strategies, random

121

testing is used until a failure is identified; it then switches to exhaustive testing to select the
values around the failure finding value in the sub-domain set by the tester. This provides
the partial benefit of exhaustive testing in random testing and results in quick identification
of the neighbouring failures which may be difficult to find by random testing alone.

Easy to understand user-friendly test output

Random testing is no exception when it comes to the complexity of understanding and
evaluating test results. No random strategy seems to provide the graphical representation
of the failures and failure domains. The issue of getting an easy to understand user-friendly
format has been addressed in the present study. The ADFD strategy has been developed
with the feature of giving the result output in the visualized graphical form. This feature has
been further improved in the ADFD+ strategy which clarifies and labels individual failures
and failure domains in a two-dimensional graph. The presentation of failures and failure
domains in graphical form helps developers to follow the test reports easily while fixing the
faults.

Auto-generation of primitive and user-defined data types

We noticed that auto-generation of user-defined data types is more complex as compared
to the primitive data types. We addressed the issue by creating objects of the classes
under test and randomly calling the methods with random inputs in accordance with the
parameter’s space. The inputs are divided into primitive type and user-defined data type.
For primitive data generation, Math.random() method is used and for generation of user-
defined data, an object of the class is created at run time as stated in Section 3.2.4. The
approach adopted helps in achieving a fully automated testing system.

Integration of Daikon in ADFD and ADFD+ techniques

Daikon is integrated in the two automated techniques for generating invariants of failure
domains to add the feature of presenting the results in textual form besides the existing
available graphical form of presentation. Plotting multi-dimensional methods graphically is
very hard, therefore, Daikon was introduced, which automatically detects and generates
likely program invariants in multi-dimensional programs. Besides providing information
about the failure domain, integration of Daikon gives two additional benefits: (1) It helps
in cross checking the results with the graphical form; (2) It works as a backup method to
generate invariants of failure domains in the situation when graphical presentation of the
failure domain is not possible.

122

Effectiveness of ADFD and ADFD+ techniques in production programs

The experimental analysis of production applications from Qualitas Corpus show that the
automated techniques (ADFD and ADFD+) are highly effective in identifying failure do-
mains. The effectiveness of automated techniques can be enhanced by increasing the
range value provided that more resources are dedicated.

Nature of failure domain

The experimental evaluation performed on Qualitas Corpus indicates that strip failure do-
mains exist more frequently than point and block failure domains in production software.
This is attributed to large size of the strip failure domains which provides more chances
of choosing a value from strip failure domains when random values are generated during
testing. The results also indicate that point and block failure domains are hard to discover
by manual testing as compared with automated testing. This is due to the scattered nature
of point and block failure domains which require large number of test cases for detection.

123

Chapter 9

Future Work

The chapter presents the scope and potential of future work related to the present study.
The following areas are suggested:

Introducing object distance in the DSSR strategy to enhance its testing ability

The DSSR strategy has a limitation of not adding the neighbouring values when the failure
is found by an object e.g. String. Future research is desirable for extending the strategy
by incorporating a suitable technique like ARTOO to find the neighbouring objects of the
failure finding object and add these to the list of interesting values.

Reducing the overhead of the DSSR strategy for better performances

The DSSR strategy adds neighbouring values of the failure finding value to the list of
interesting values. This adds up to 5% overhead to the strategy. The algorithm needs
up-grading to achieve better performance by reducing the overhead.

Extension of the ADFD and ADFD+ strategies for testing non-numerical and more
than two-dimensional programs

The two strategies need to be extended to facilitate testing and graphical presentation of
results for non-numerical and programs with more then two inputs.

Deterministic nature of the ADFD and ADFD+ strategies

Both the techniques ADFD and ADFD+ are deterministic in nature. They describe how a
domain is traversed once a failure is discovered in it. This also suggests that a variety of
seeding techniques other than random generation can also be used.

125

Research on the prevalence of point, block and strip failure domains

The present study has revealed the abundance of strip failure domains as compared to
point and block types within the input domain. It is worthwhile to further explore and de-
termine the prevalence and proportionate distribution of the failure domains in the input
domain of all available data types instead of only primitive data types.

Exemption of detected failure from second test execution

The ADFD and ADFD+ techniques stop searching for new failures after detection of the
first failure and start working on exploring the related failure domain. In the next test ex-
ecution, the strategy may pick an identical failure lying on the same or different location
making it a futile exercise. Efforts are required to incorporate the feature of exempting
identified failures from the next test execution so that new failures and failure domains are
discovered each time.

126

Appendix

Error-seeded code to evaluate ADFD and ADFD+

Program 1 Point domain with One argument

/**

* Point Fault Domain example for one argument

* @author (Mian and Manuel)

*/

public class PointDomainOneArgument{

public static void pointErrors (int x){

if (x == -66)

x = 5/0;

if (x == -2)

x = 5/0;

if (x == 51)

x = 5/0;

if (x == 23)

x = 5/0;

}

}

Program 2 Point domain with two argument

/**

* Point Fault Domain example for two arguments

* @author (Mian and Manuel)

*/

public class PointDomainTwoArgument{

public static void pointErrors (int x, int y){

int z = x/y;

}

}

127

Program 3 Block domain with one argument

/**

* Block Fault Domain example for one arguments

* @author (Mian and Manuel)

*/

public class BlockDomainOneArgument{

public static void blockErrors (int x){

if((x > -2) && (x < 2))

x = 5/0;

if((x > -30) && (x < -25))

x = 5/0;

if((x > 50) && (x < 55))

x = 5/0;

}

}

Program 4 Block domain with two argument

/**

* Block Fault Domain example for two arguments

* @author (Mian and Manuel)

*/

public class BlockDomainTwoArgument{

public static void blockErrors (int x, int y){

if(((x > 0)&&(x < 20)) || ((y > 0) && (y < 20))){

x = 5/0;

}

}

}

128

Program 5 Strip domain with One argument

/**

* Strip Fault Domain example for one argument

* @author (Mian and Manuel)

*/

public class StripDomainOneArgument{

public static void stripErrors (int x){

if((x > -5) && (x < 35))

x = 5/0;

}

}

Program 6 Strip domain with two argument

/**

* Strip Fault Domain example for two arguments

* @author (Mian and Manuel)

*/

public class StripDomainTwoArgument{

public static void stripErrors (int x, int y){

if(((x > 0)&&(x < 40)) || ((y > 0) && (y < 40))){

x = 5/0;

}

}

}

129

Program generated by ADFD on finding fault in SUT

/**

* Dynamically generated code by ADFD strategy

* after a fault is found in the SUT.

* @author (Mian and Manuel)

*/

import java.io.*;

import java.util.*;

public class C0

{

public static ArrayList<Integer> pass = new ArrayList<Integer>();

public static ArrayList<Integer> fail = new ArrayList<Integer>();

public static boolean startedByFailing = false;

public static boolean isCurrentlyFailing = false;

public static int start = -80;

public static int stop = 80;

public static void main(String []argv){

checkStartAndStopValue(start);

for (int i=start+1;i<stop;i++){

try{

PointDomainOneArgument.pointErrors(i);

if (isCurrentlyFailing)

{

fail.add(i-1);

fail.add(0);

pass.add(i);

pass.add(0);

isCurrentlyFailing=false;

}

}

catch(Throwable t) {

if (!isCurrentlyFailing)

{

pass.add(i-1);

pass.add(0);

fail.add(i);

fail.add(0);

isCurrentlyFailing = true;

}

}

}

checkStartAndStopValue(stop);

printRangeFail();

printRangePass();

}

public static void printRangeFail() {

try {

File fw = new File("Fail.txt");

if (fw.exists() == false) {

fw.createNewFile();

}

PrintWriter pw = new PrintWriter(new FileWriter (fw, true));

for (Integer i1 : fail) {

130

pw.append(i1+"\n");

}

pw.close();

}

catch(Exception e) {

System.err.println(" Error : e.getMessage() ");

}

}

public static void printRangePass() {

try {

File fw1 = new File("Pass.txt");

if (fw1.exists() == false) {

fw1.createNewFile();

}

PrintWriter pw1 = new PrintWriter(new FileWriter (fw1, true));

for (Integer i2 : pass) {

pw1.append(i2+"\n");

}

pw1.close();

}

catch(Exception e) {

System.err.println(" Error : e.getMessage() ");

}

}

public static void checkStartAndStopValue(int i) {

try {

PointDomainOneArgument.pointErrors(i);

pass.add(i);

pass.add(0);

}

catch (Throwable t) {

startedByFailing = true;

isCurrentlyFailing = true;

fail.add(i);

fail.add(0);

}

}

}

131

Glossary

Branch: Conditional transfer of control from one statement to another in the code.

Correctness: Ability of software to perform according to the given specifications.

Dead code Unreachable code in program that cannot be executed.

Defect: Generic term referring to fault or failure.

Detection: Difference between observed and expected behaviour of program.

Effectiveness: Number of defects discovered in the program by a testing technique.

Efficiency: Number of defects discovered per unit time by a testing technique.

Error: Mistake or omission in the software.

Failure: Malfunction of a software.

Fault: Any flaw in the software resulting in lack of capability or failure.

Instrumentation: Insertion of additional code in the program for analysis.

Invariant: A condition which must hold true during program execution.

Isolation: Identification of the basic cause of failure in software.

Path: A sequence of executable statements from entry to exit point in software.

Postcondition: A condition which must be true after execution.

Precondition: A condition which must be true before execution.

Robustness: The degree to which a system can function correctly with invalid inputs.

Test case: An artefact that delineates the input, action and expected output.

Test coverage: Number of instructions exercised divided by total number of instructions expressed in percentage.

Test execution: The process of executing test case.

Test oracle: A mechanism used to determine whether a test has passed or failed.

Test Plan: A document which defines the goal, scope, method, resources and time schedule of testing.

Test specification: The requirements which should be satisfied by test cases.

Test strategy: The method which defines the procedure of testing of a program.

Test suite: A set of one or more test cases.

Validation: Assessment of software to ensure satisfaction of customer requirements.

Verification: Checking of software for verification of working properly.

133

References

[1] F. T. Chan, T. Y. Chen, I. K. Mak, and Y. T. Yu. Proportional sampling strategy: guidelines for software testing
practitioners. Information and Software Technology, 38(12):775–782, 1996.

[2] Christoph Csallner and Yannis Smaragdakis. JCrasher: an automatic robustness tester for Java. Software: Practice
and Experience, 34(11):1025–1050, 2004.

[3] Carlos Pacheco and Michael D. Ernst. Eclat: Automatic generation and classification of test inputs. Springer, 2005.

[4] Andreas Leitner and Ilinca Ciupa. Reconciling manual and automated testing: the [a]uto[t]est experience. In Pro-
ceedings of the 40th Hawaii International Conference on System Sciences - 2007, Software Technology, pages 3–6.
Technology, 2007.

[5] Darko Marinov and Sarfraz Khurshid. TestEra: A novel framework for automated testing of Java programs. In
Proceedings of the 16th Annual International Conference on Automated Software Engineering, pages 22–31. IEEE,
2001.

[6] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE Transactions on Software Engineering, 27(2):99–123, 2001.

[7] Maurice Wilkes. Memoirs of a computer pioneer. Massachusetts Institute of Technology, 1985.

[8] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee, and Sy-Yen Kuo. Securing web appli-
cation code by static analysis and runtime protection. In Proceedings of the 13th international conference on World
Wide Web, pages 40–52. ACM, 2004.

[9] Gregory Tassey. The economic impacts of inadequate infrastructure for software testing. National Institute of Stan-
dards and Technology, RTI Project, 7007(011), 2002.

[10] Ron Patton. Software testing, volume 2. Sams Indianapolis, 2001.

[11] Glenford J. Myers, Corey Sandler, and Tom Badgett. The art of software testing. John Wiley & Sons, 2011.

[12] William E. Howden. A functional approach to program testing and analysis. IEEE Transactions on Software Engi-
neering, (10):997–1005, 1986.

[13] Thomas J. McCabe. Structured testing, volume 500. IEEE Computer Society Press, 1983.

[14] Joan C. Miller and Clifford J. Maloney. Systematic mistake analysis of digital computer programs. Communications
of the ACM, 6(2):58–63, 1963.

[15] Bogdan Korel. Automated software test data generation. IEEE Transactions on Software Engineering, 16(8):870–879,
1990.

[16] Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer. Experimental assessment of random testing for
object-oriented software. In Proceedings of the 2007 international symposium on Software testing and analysis,
pages 84–94. ACM, 2007.

[17] Edsger Wybe Dijkstra. Notes on structured programming. Technological University Eindhoven Netherlands, 1970.

135

[18] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed automated random testing. In ACM Sigplan
Notices, volume 40, pages 213–223. ACM, 2005.

[19] Lee J. White. Software testing and verification. Advances in Computers, 26(1):335–390, 1987.

[20] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus Lumpe, Hayden Melton, and James Noble.
The Qualitas Corpus: A curated collection of Java code for empirical studies. In Software Engineering Conference
(APSEC), 2010 17th Asia Pacific, pages 336–345. IEEE, 2010.

[21] Simson Garfinkel. History’s worst software bugs. Wired News, Nov, 2005.

[22] NY. American National Standards Institute. New York, Institute of Electrical, and Electronics Engineers. Software
Engineering Standards: ANSI/IEEE Std 729-1983, Glossary of Software Engineering Terminology. Inst. of Electrical
and Electronics Engineers, 1984.

[23] Robert T. Futrell, Linda I. Shafer, and Donald F. Shafer. Quality software project management. Prentice Hall PTR,
2001.

[24] Tsong Yueh Chen, Hing Leung, and IK Mak. Adaptive random testing. In Advances in Computer Science-ASIAN
2004. Higher-Level Decision Making, pages 320–329. Springer, 2005.

[25] Ashfaque Ahmed. Software testing as a service. CRC Press, 2010.

[26] Luciano Baresi and Michal Young. Test oracles. Techn. Report CISTR-01, 2:9, 2001.

[27] Marie-Claude Gaudel. Software testing based on formal specification. In Testing Techniques in Software Engineering,
pages 215–242. Springer, 2010.

[28] Elaine J. Weyuker. On testing non-testable programs. The Computer Journal, 25(4):465–470, 1982.

[29] Bertrand Meyer, Arno Fiva, Ilinca Ciupa, Andreas Leitner, Yi Wei, and Emmanuel Stapf. Programs that test them-
selves. Computer, IEEE, 42(9):46–55, 2009.

[30] John Joseph Chilenski and Steven P. Miller. Applicability of modified condition/decision coverage to software testing.
Software Engineering Journal, 9(5):193–200, 1994.

[31] Julie Cohen, Daniel Plakosh, and Kristi L. Keeler. Robustness testing of software-intensive systems: Explanation and
guide. 2005.

[32] Thomas Ostrand. White-box testing. Encyclopedia of Software Engineering, 2002.

[33] Lori A. Clarke, Andy Podgurski, Debra J. Richardson, and Steven J. Zeil. A formal evaluation of data flow path
selection criteria. IEEE Transactions on Software Engineering, 15(11):1318–1332, 1989.

[34] Lloyd D. Fosdick and Leon J. Osterweil. Data flow analysis in software reliability. ACM Computing Surveys (CSUR),
8(3):305–330, 1976.

[35] Frances E Allen. Control flow analysis. In ACM Sigplan Notices, volume 5, pages 1–19. ACM, 1970.

[36] Jean Arlat. Validation de la sûreté de fonctionnement par injection de fautes, méthode- mise en oeuvre- application.
PhD thesis, 1990.

[37] Jeffrey M. Voas and Gary McGraw. Software fault injection: inoculating programs against errors. John Wiley & Sons,
Inc., 1997.

[38] Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K. Iyer. Fault injection techniques and tools. Computer, IEEE,
30(4):75–82, 1997.

[39] Boris Beizer. Black-box testing: techniques for functional testing of software and systems. John Wiley & Sons, Inc.,
1995.

[40] Frank Armour and Granville Miller. Advanced use case modeling: software systems. Pearson Education, 2000.

[41] Dick Hamlet and Ross Taylor. Partition testing does not inspire confidence (program testing). IEEE Transactions on
Software Engineering, 16(12):1402–1411, 1990.

136

[42] Elaine J. Weyuker and Bingchiang Jeng. Analyzing partition testing strategies. IEEE Transactions on Software
Engineering, 17(7):703–711, 1991.

[43] Simeon Ntafos. On random and partition testing. In ACM SIGSOFT Software Engineering Notes, volume 23, pages
42–48. ACM, 1998.

[44] Muthu Ramachandran. Testing software components using boundary value analysis. In Proceedings of 29th Euromi-
cro Conference, pages 94–98. IEEE, 2003.

[45] Jane Radatz, Anne Geraci, and Freny Katki. IEEE standard glossary of software engineering terminology. IEEE Std,
610121990:121990, 1990.

[46] Stuart C. Reid. An empirical analysis of equivalence partitioning, boundary value analysis and random testing. In
Proceedings of the fourth International Software Metrics Symposium, pages 64–73. IEEE, 1997.

[47] Michael R Donat. Automating formal specification-based testing. In TAPSOFT’97: Theory and Practice of Software
Development, pages 833–847. Springer, 1997.

[48] Antonia Bertolino. Software testing research: Achievements, challenges, dreams. In Future of Software Engineering,
2007. FOSE’07, pages 85–103. IEEE, 2007.

[49] Ian Sommerville. Software Engineering: Pearson New International Edition. Pearson Education Limited, 2013.

[50] Richard E. Fairley. Tutorial: Static analysis and dynamic testing of computer software. Computer, 11(4):14–23, 1978.

[51] Ilinca Ciupa, Bertrand Meyer, Manuel Oriol, and Alexander Pretschner. Finding faults: Manual testing vs. random+
testing vs. user reports. In 19th International Symposium on Software Reliability Engineering, pages 157–166. IEEE,
2008.

[52] G. Venolia, Robert DeLine, and Thomas LaToza. Software development at microsoft observed. Microsoft Research,
TR, 2005.

[53] Jan Tretmans and Axel Belinfante. Automatic testing with formal methods. 2000.

[54] ECMA. Eiffel analysis, design and programming language. ECMA (European Association for Standardizing Informa-
tion and Communication Systems), pub-ECMA: adr, 2005.

[55] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The spec# programming system: An overview. In Construc-
tion and analysis of safe, secure, and interoperable smart devices, pages 49–69. Springer, 2005.

[56] GT Leavens, E Poll, C Clifton, Y Cheon, C Ruby, D Cok, and J Kiniry. Jml reference manual (draft), 2005.

[57] Reto Kramer. iContract-the Java design by contract tool. In Proceedings of Tools 26 - USA 98, IEEE Computer
Society, pages 295–307. IEEE, 1998.

[58] Mark Richters and Martin Gogolla. On formalizing the UML object constraint language OCL. In Conceptual Modeling–
ER98, pages 449–464. Springer, 1998.

[59] Zhenyu Huang. Automated solutions: Improving the efficiency of software testing, 2003.

[60] CV Ramamoorthy and Sill-bun F. Ho. Testing large software with automated software evaluation systems. In ACM
SIGPLAN Notices, volume 10, pages 382–394. ACM, 1975.

[61] Jon Edvardsson. A survey on automatic test data generation. In Proceedings of the 2nd Conference on Computer
Science and Engineering, pages 21–28, 1999.

[62] Insang Chung and James M. Bieman. Automated test data generation using a relational approach.

[63] Roger Ferguson and Bogdan Korel. The chaining approach for software test data generation. ACM Transactions on
Software Engineering and Methodology (TOSEM), 5(1):63–86, 1996.

[64] Bogdan Korel and Ali M. Al-Yami. Assertion-oriented automated test data generation. In Proceedings of the 18th
international conference on Software engineering, pages 71–80. IEEE Computer Society, 1996.

137

[65] Roy P. Pargas, Mary Jean Harrold, and Robert R. Peck. Test-data generation using genetic algorithms. Software
Testing Verification and Reliability, 9(4):263–282, 1999.

[66] Webb Miller and David L. Spooner. Automatic generation of floating-point test data. IEEE Transactions on Software
Engineering, 2(3):223–226, 1976.

[67] Phil McMinn. Search-based software testing: Past, present and future. In International Workshop on Search-Based
Software Testing (SBST 2011), pages 153–163. IEEE, 2011.

[68] Bryan F. Jones, H-H Sthamer, and David E. Eyres. Automatic structural testing using genetic algorithms. Software
Engineering Journal, 11(5):299–306, 1996.

[69] Kenneth V. Hanford. Automatic generation of test cases. IBM Systems Journal, 9(4):242–257, 1970.

[70] David L. Bird and Carlos Urias Munoz. Automatic generation of random self-checking test cases. IBM systems
journal, 22(3):229–245, 1983.

[71] Kwok Ping Chan, Tsong Yueh Chen, and Dave Towey. Normalized restricted random testing. In Reliable Software
Technologies Ada-Europe 2003, pages 368–381. Springer, 2003.

[72] Richard Hamlet. Random testing. Encyclopedia of software Engineering, 1994.

[73] Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer. ARTOO: Adaptive random testing for object-oriented
software. In Software Engineering, 2008. ICSE’08. ACM/IEEE 30th International Conference on, pages 71–80. IEEE,
2008.

[74] Carlos Pacheco. Directed random testing. PhD thesis, Massachusetts Institute of Technology, 2009.

[75] Koushik Sen. Effective random testing of concurrent programs. In Proceedings of the twenty-second IEEE/ACM
international conference on Automated software engineering, pages 323–332. ACM, 2007.

[76] Andreas Leitner, Manuel Oriol, Andreas Zeller, Ilinca Ciupa, and Bertrand Meyer. Efficient unit test case minimization.
In Proceedings of the twenty-second IEEE/ACM international conference on Automated software engineering, pages
417–420. ACM, 2007.

[77] Joe W. Duran and Simeon Ntafos. A report on random testing. In Proceedings of the 5th international conference on
Software engineering, pages 179–183. IEEE Press, 1981.

[78] Barton P. Miller, Louis Fredriksen, and Bryan So. An empirical study of the reliability of UNIX utilities. Communications
of the ACM, 33(12):32–44, 1990.

[79] Justin E. Forrester and Barton P. Miller. An empirical study of the robustness of Windows NT applications using
random testing. In Proceedings of the 4th USENIX Windows System Symposium, pages 59–68, 2000.

[80] Barton P. Miller, Gregory Cooksey, and Fredrick Moore. An empirical study of the robustness of macos applications
using random testing. In Proceedings of the 1st international workshop on Random testing, pages 46–54. ACM,
2006.

[81] Nathan P. Kropp, Philip J. Koopman, and Daniel P. Siewiorek. Automated robustness testing of off-the-shelf software
components. In Twenty-Eighth Annual International Symposium on Fault-Tolerant Computing, 1998. Digest of Papers,
pages 230–239. IEEE, 1998.

[82] Alex Groce, Gerard Holzmann, and Rajeev Joshi. Randomized differential testing as a prelude to formal verification.
In 29th International Conference on Software Engineering, 2007. ICSE 2007, pages 621–631. IEEE, 2007.

[83] Boris Beizer. Software testing techniques. Dreamtech Press, 2003.

[84] Tsong Yueh Chen, F-C Kuo, Robert G Merkel, and Sebastian P Ng. Mirror adaptive random testing. Information and
Software Technology, 46(15):1001–1010, 2004.

[85] Kwok Ping Chan, Tsong Yueh Chen, and Dave Towey. Restricted random testing. In Software Quality ECSQ 2002,
pages 321–330. Springer, 2006.

138

[86] Carlos Pacheco and Michael D. Ernst. Randoop: feedback-directed random testing for Java. In Companion to
the 22nd ACM SIGPLAN conference on Object-oriented programming systems and applications companion, pages
815–816. ACM, 2007.

[87] Carlos Pacheco, Shuvendu K. Lahiri, and Thomas Ball. Finding errors in .NET with feedback-directed random testing.
In Proceedings of the 2008 international symposium on Software testing and analysis, pages 87–96. ACM, 2008.

[88] Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer. Object distance and its application to adaptive
random testing of object-oriented programs. In Proceedings of the 1st international workshop on Random testing,
pages 55–63. ACM, 2006.

[89] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. In Soviet physics
doklady, volume 10, page 707, 1966.

[90] Bertrand Meyer, Jean-Marc Nerson, and Masanobu Matsuo. Eiffel: object-oriented design for software engineering.
In ESEC’87, pages 221–229. Springer, 1987.

[91] Patrick Chan, Rosanna Lee, and Douglas Kramer. The Java Class Libraries, Volume 1: Supplement for the Java 2
Platform, Standard Edition, V 1.2, volume 1. Addison-Wesley Professional, 1999.

[92] Catherine Oriat. Jartege: a tool for random generation of unit tests for java classes. In Quality of Software Architec-
tures and Software Quality, pages 242–256. Springer, 2005.

[93] Willem Visser, Corina S. Pasareanu, and Sarfraz Khurshid. Test input generation with Java Path Finder. ACM
SIGSOFT Software Engineering Notes, 29(4):97–107, 2004.

[94] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random testing of Haskell programs. ACM
sigplan notices, 46(4):53–64, 2011.

[95] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. A history of Haskell: being lazy with class. In
Proceedings of the third ACM SIGPLAN conference on History of programming languages, pages 12–1. ACM, 2007.

[96] Ilinca Ciupa, Andreas Leitner, et al. Automatic testing of object-oriented software. In In Proceedings of SOFSEM
2007 (Current Trends in Theory and Practice of Computer Science). Citeseer, 2007.

[97] Daniel Jackson, Ilya Shlyakhter, and Manu Sridharan. A micromodularity mechanism. ACM SIGSOFT Software
Engineering Notes, 26(5):62–73, 2001.

[98] Daniel Jackson, Ian Schechter, and Ilya Shlyakhter. ALCOA: The alloy constraint analyzer. In Proceedings of the
2000 International Conference on Software Engineering, pages 730–733. IEEE, 2000.

[99] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: Automated testing based on Java predicates.
In ACM SIGSOFT Software Engineering Notes, volume 27, pages 123–133. ACM, 2002.

[100] Juei Chang and Debra J. Richardson. Structural specification-based testing: Automated support and experimental
evaluation. In Software Engineering ESEC/FSE 99, pages 285–302. Springer, 1999.

[101] Sarfraz Khurshid and Darko Marinov. Checking Java implementation of a naming architecture using TestEra. Elec-
tronic Notes in Theoretical Computer Science, 55(3):322–342, 2001.

[102] Manuel Oriol. YETI: York Extensible Testing Infrastructure. 2011.

[103] Manuel Oriol and Sotirios Tassis. Testing .NET code with YETI. In 15th IEEE International Conference on Engineering
of Complex Computer Systems (ICECCS), pages 264–265. IEEE, 2010.

[104] Manuel Oriol and Faheem Ullah. YETI on the cloud. In Third International Conference on Software Testing, Verifica-
tion, and Validation Workshops (ICSTW), 2010, pages 434–437. IEEE, 2010.

[105] Vasileios Dimitraiadis. Testing JML code with YETI. Master’s thesis, Department of Computer Science, The University
of York, September 2009.

[106] Muneeb Waseem Khawaja. YETI: increase branch coverage. Master’s thesis, Department of Computer Science, The
University of York, September 2010.

139

[107] Mian Asbat Ahmad and Manuel Oriol. Dirt Spot Sweeping Random Strategy. Lecture Notes on Software Engineering,
2(4), 2014.

[108] Mian A. Ahmad and Manuel Oriol. Automated discovery of failure domain. Lecture Notes on Software Engineering,
03(1):289–294, 2013.

[109] Mian A. Ahmad and Manuel Oriol. ADFD+: An automatic testing technique for finding and presenting failure domains.
Lecture Notes on Software Engineering, 02(4):331–336, 2014.

[110] Tsong Yueh Chen, Fei-Ching Kuo, Robert G Merkel, and TH Tse. Adaptive random testing: The art of test case
diversity. Journal of Systems and Software, 83(1):60–66, 2010.

[111] Ilinca Ciupa, Alexander Pretschner, Manuel Oriol, Andreas Leitner, and Bertrand Meyer. On the number and nature
of faults found by random testing. Software Testing, Verification and Reliability, 21(1):3–28, 2011.

[112] Manuel Oriol. Random testing: Evaluation of a law describing the number of faults found. In IEEE Fifth International
Conference on Software Testing, Verification and Validation (ICST), pages 201–210. IEEE, 2012.

[113] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball. Feedback-directed random test generation.
In 29th International Conference on Software Engineering, 2007. ICSE 2007, pages 75–84. IEEE, 2007.

[114] Tsong Yueh Chen and Robert Merkel. Quasi-random testing. IEEE Transactions on Reliability, 56(3):562–568, 2007.

[115] Andreas Leitner, Alexander Pretschner, Stefan Mori, Bertrand Meyer, and Manuel Oriol. On the effectiveness of
test extraction without overhead. In International Conference on Software Testing Verification and Validation, 2009.
ICST’09, pages 416–425. IEEE, 2009.

[116] Stéphane Ducasse, Manuel Oriol, and Alexandre Bergel. Challenges to support automated random testing for dy-
namically typed languages. In Proceedings of the International Workshop on Smalltalk Technologies, page 9. ACM,
2011.

[117] Tsong Yueh Chen, Fei-Ching Kuo, and Robert Merkel. On the statistical properties of the f-measure. In Proceedings
of the Fourth International Conference on Quality Software, pages 146–153. IEEE, 2004.

[118] Tsong Yueh Chen and Yuen Tak Yu. On the expected number of failures detected by subdomain testing and random
testing. IEEE Transactions on Software Engineering, 22(2):109–119, 1996.

[119] Huai Liu, Fei-Ching Kuo, and Tsong Yueh Chen. Comparison of adaptive random testing and random testing under
various testing and debugging scenarios. Software: Practice and Experience, 42(8):1055–1074, 2012.

[120] Ilinca Ciupa, Alexander Pretschner, Andreas Leitner, Manuel Oriol, and Bertrand Meyer. On the predictability of
random tests for object-oriented software. In 1st International Conference on Software Testing, Verification, and
Validation, pages 72–81. IEEE, 2008.

[121] Kwok Ping Chan, Tsong Yueh Chen, and Dave Towey. Good random testing. In Reliable Software Technologies-Ada-
Europe 2004, pages 200–212. Springer, 2004.

[122] A. Jefferson Offutt and J. Huffman Hayes. A semantic model of program faults. In ACM SIGSOFT Software Engi-
neering Notes, volume 21, pages 195–200. ACM, 1996.

[123] Tsong Yueh Chen, Robert G. Merkel, G. Eddy, and PK Wong. Adaptive random testing through dynamic partitioning.
In QSIC, pages 79–86, 2004.

[124] Shin Yoo and Mark Harman. Test data regeneration: generating new test data from existing test data. Software
Testing, Verification and Reliability, 22(3):171–201, 2012.

[125] Joe W Duran and Simeon C. Ntafos. An evaluation of random testing. IEEE Transactions on Software Engineering,
(4):438–444, 1984.

[126] Walter J. Gutjahr. Partition testing vs. random testing: The influence of uncertainty. IEEE Transactions on Software
Engineering, 25(5):661–674, 1999.

[127] Andrea Arcuri, Muhammad Zohaib Iqbal, and Lionel Briand. Random testing: Theoretical results and practical impli-
cations. IEEE Transactions on Software Engineering, 38(2):258–277, 2012.

140

[128] Ewan Tempero, Steve Counsell, and James Noble. An empirical study of overriding in open source java. In Proceed-
ings of the Thirty-Third Australasian Conferenc on Computer Science-Volume 102, pages 3–12. Australian Computer
Society, Inc., 2010.

[129] Ewan Tempero. An empirical study of unused design decisions in open source Java software. In Software Engineering
Conference, 2008. APSEC’08. 15th Asia-Pacific, pages 33–40. IEEE, 2008.

[130] Chris Parnin and Alessandro Orso. Are automated debugging techniques actually helping programmers? In Pro-
ceedings of the 2011 international symposium on software testing and analysis, pages 199–209. ACM, 2011.

[131] Johannes Mayer. Lattice-based adaptive random testing. In Proceedings of the 20th IEEE/ACM international Confer-
ence on Automated software engineering, pages 333–336. ACM, 2005.

[132] D. Gilbert. The JFreeChart class library version 1.0. 9: Developers guide. Refinery Limited, Hertfordshire, 48, 2008.

[133] Andy Podgurski, David Leon, Patrick Francis, Wes Masri, Melinda Minch, Jiayang Sun, and Bin Wang. Automated
support for classifying software failure reports. In Proceedings of the 25th International Conference on Software
Engineering (ICSE-03), pages 465–475. IEEE, 2003.

[134] Hiraral Agrawal, Joseph R. Horgan, Saul London, and W. Eric Wong. Fault localization using execution slices and
dataflow tests. In Proceedings of IEEE Software Reliability Engineering, pages 143–151. IEEE, 1995.

[135] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test information to assist fault localization. In
Proceedings of the 24th international conference on Software engineering, pages 467–477. ACM, 2002.

[136] Per Runeson, Carina Andersson, Thomas Thelin, Anneliese Andrews, and Tomas Berling. What do we know about
defect detection methods?[software testing]. Software, IEEE, 23(3):82–90, 2006.

[137] Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin. Symstra: A framework for generating object-oriented
unit tests using symbolic execution. In Tools and Algorithms for the Construction and Analysis of Systems, pages
365–381. Springer, 2005.

[138] Mian A. Ahmad and Manuel Oriol. Evaluation of ADFD and ADFD+ techniques. In Seventh York Doctoral Symposium
on Computer Science & Electronics, page 47, 2014.

[139] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S. Tschantz, and Chen
Xiao. The daikon system for dynamic detection of likely invariants. Science of Computer Programming, 69(1):35–45,
2007.

[140] Lee J. White and Edward I. Cohen. A domain strategy for computer program testing. IEEE Transactions on Software
Engineering, (3):247–257, 1980.

[141] George B Finelli. NASA software failure characterization experiments. Reliability Engineering & System Safety,
32(1):155–169, 1991.

[142] Peter G Bishop. The Variation of Software Survival Time for Different Operational Input Profiles (or why you can wait a
long time for a big bug to fail). In 23rd International Symposium on Fault-Tolerant Computing, 1993. FTCS-23, pages
98–107. IEEE, 1993.

141

	Abstract
	List of Figures
	List of Tables
	Dedication
	Acknowledgements
	Declaration
	Introduction
	Preliminaries
	Software Testing
	Random Testing
	The Problems
	Limitation of RT to Discover Contiguous Unique Failures
	Inability of RT to Identify Failure Domains
	Lack of Techniques to Present RT Results in Graphical Form

	Research Goals
	Contributions
	Thesis Structure

	Literature Review
	Software Testing
	Input Domain
	Test Case
	Test Oracle

	Software Testing from Various Viewpoints
	Software Testing Levels
	Software Testing Purpose
	Software Testing Perspective
	White-box Testing
	Black-box Testing

	Software Testing Types
	Manual Software Testing
	Automated Software Testing

	Test Data Generation
	Path-wise Test Data Generator
	Goal-oriented Test Data Generator
	Intelligent Test Data Generator
	Search-based Test Data Generator
	Random Test Data Generator

	Random Testing
	Pass and Fail domains
	Versions of Random testing
	Random+ Testing
	Adaptive Random Testing
	Mirror Adaptive Random Testing
	Restricted Random Testing
	Directed Automated Random Testing
	Feedback-directed Random Testing
	The ARTOO Testing

	Automatic Random Testing Tools
	JCrasher
	Jartege
	Eclat
	Randoop
	QuickCheck
	AutoTest
	TestEra
	Korat
	YETI

	Summary
	The Proposed Area of Research

	York Extensible Testing Infrastructure
	Overview
	Design
	Core Infrastructure of YETI
	Strategy
	Language-specific Binding
	Construction of Test Cases
	Call sequence of YETI
	Command-line Options
	Execution
	Test Oracle
	Report
	Graphical User Interface

	Summary

	Dirt Spot Sweeping Random Strategy
	Dirt Spot Sweeping Random Strategy
	Random Strategy
	Random+ Strategy
	Dirt Spot Sweeping
	Working of DSSR Strategy
	Explanation of DSSR Strategy by Example

	Implementation of DSSR Strategy
	Evaluation
	Research Questions
	Experiments
	Performance Measurement Criteria

	Results
	Absolute Best in R, R+ and DSSR Strategies
	Classes For Which any of the Three Strategies Performs Better
	The Best Default Strategy in R, R+ and DSSR

	Discussion
	Related Work
	Summary

	Automated Discovery of Failure Domain
	Introduction
	Automated Discovery of Failure Domain
	GUI Front-end for Providing Input
	Automated Finding of Failure
	Automated Generation of Modules
	Automated Compilation and Execution of Modules
	Automated Generation of Graph
	Implementation of ADFD Strategy
	Explanation of ADFD Strategy by Example

	Experimental Results
	Discussion
	Threats to Validity
	Related Work
	Summary

	Automated Discovery of Failure Domain+
	Introduction
	Automated Discovery of Failure Domain+
	Implementation of ADFD+
	Workflow of ADFD+
	Example to Illustrate Working of ADFD+

	Evaluation
	Research Questions
	Randoop
	Experimental Setup

	Experimental Results
	Efficiency
	Effectiveness
	Presentation of Failure Domains

	Discussion
	Threats to Validity
	Related Work
	Summary

	Evaluation of ADFD and ADFD+ techniques
	Enhancement of the Techniques
	Daikon
	Types of Invariants Detected by Daikon

	Difference in Working Mechanism of the Two Techniques
	Research Questions
	Evaluation
	Experiments
	Results

	Threats to Validity
	Related Work
	Summary

	Conclusions
	Lessons Learned

	Future Work
	Appendix
	Glossary
	Bibliography

