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Abstract

The work in this thesis focused on several problems relating to the growth and fouling of

crystal mass in industrial environments, due to leakage of salt solutions or process liquor.

The work has direct application to the nuclear industry, where the size and morphology of

material deposits heavily impact on their associated criticality risk. An absence of clear

methods and techniques to either predict or non-invasively monitor the growth of these

crystalline deposits proves problematic for industrial specialists. Therefore the main part

of the thesis focused on the development and implementation of models such that the

growth behaviour of crystalline formations could be evaluated and quantified for varying

physical parameters. This was accomplished through both the adaptation of previous

geological models, and the development of a coupled multi-physics model such that fluid

flow, heat transfer and crystallisation mechanisms could be considered.

The models were validated against an experimental dataset provided by the National

Nuclear Laboratory, and results were shown to be in good agreement. Through paramet-

ric studies it was determined that the characteristic shape of the formation was heavily

determined by the initial solution concentration, flow velocity, temperature and the rate

of evaporation.

A method for the non-invasive monitoring of the deposits was also investigated through

the solution of a geometric inverse problem governed by the transient two-dimensional

heat equation. A meshless numerical method, namely the method of fundamental solu-

tions was used as a direct solver in a complicated highly non-linear constrained minimi-

sation. The model was shown to perform well when reconstructing simple shapes with

highly contaminated input data. Additionally, complex shapes were also captured with a

reasonable degree of accuracy and stability.
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Chapter 1

Introduction and Background

The research presented in this thesis focuses on developing computational models which

simulate the growth of crystalline deposits for the case of leakages of industrial process

liquors. The work has direct applicability to the nuclear industry, where leakages of

highly active liquors can precipitate out to form crystalline deposits of solid fissile mate-

rial. These formations can potentially have harmful effects or pose a possible criticality

risk. The severity of the effects are dependent on the size and shape of the formation

and therefore these parameters are of key interest when modelling. Models developed in

this research will allow the prediction of crystalline formations through time for varying

process, environmental and material properties.

Whilst the aforementioned models will provide insight into potential formations for a

range of given plant conditions, which may allow the development of efficient safety pro-

tocols and possible future plant design, the radiation output from crystalline formations

prevents any standard monitoring equipment being placed in the plant. Due to this there

are difficulties detecting leakages, and once detected it is not always possible to assess the

severity of the incident. Therefore the second part of the research within this thesis will

also attempt to assess and develop numerical models which may aid in the monitoring

and assessment of formations from detected leakages, using non invasive measurable data.

The remainder of this chapter gives an overview of the current problems associated with

crystal growth and deposition in industry. Additionally, problems specific to the nuclear

industry are discussed in further detail, as they are to be the focus of the research here.
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Finally, the key research questions that this thesis aims to address are stated along with a

proposed methodology, which is summarised through several concise research objectives.

1.1 Overview

Development of models regarding crystal growth has received much focus from researchers

in chemical process related industries over the past few centuries, as crystal growth is the

primary mechanism in the manufacture of a wide range of industrial products. J. W.

Mullin, a pioneer of crystallisation research through recent decades stated,

“Today there are few sections of the chemical industry that do not, at some

stage, utilize crystallization as a method of production, purification or recov-

ery of solid material. Apart from being one of the best and cheapest methods

available for the production of pure solids from impure solutions, crystalliza-

tion has the additional advantage of giving an end product that has many

desirable properties.” J.W. Mullin, Crystallization, 1961 [134].

As stated, crystal growth technology is present in a diverse range of industries, some of

which include manufacture of food, electronic components, silicon production for semi-

conductors, and pharmaceutical products to name a few. In 1979 it was estimated that

5,000 tonnes of bulk crystal were produced worldwide [34]. As of 1999 this had increased

to 20,000 tonnes, with silicon production accounting for 60% of the bulk crystals produced

[165]. Due to emerging technology such as the ever increasing popularity of hand-held

devices and smart phones, it is no surprise that the demand for silicon is constantly on the

rise, and as of 2005 the worldwide production of silicon alone was 48,000 tonnes [19]. The

annual turnover in 2005 for bulk crystal production in western Europe alone was nearly

$1 Bn [19]. It is therefore no surprise that a large quantity of crystal growth research

focuses on the the optimisation of the chemical processes and design of equipment such

that the highest yield and finest quality of product is achieved.

Whilst much of the understanding behind the fundamental chemistry of crystallisation

and its behaviour under varying conditions is derived from this research, not all crystalli-

sation problems are related to the optimisation of crystal growth. Crystallisation often

occurs as an undesirable by-product of a chemical process or unexpected event, such as
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pipe or vessel leakage. Fouling in heat exchangers and heat transfer surfaces is a prime

example of this, and whilst fiscal motivation to carry out research may not be as im-

mediately obvious as research aimed at production and manufacture, the costs due to

fouling are still substantial. Due to this, research focused on crystallisation fouling has

received interest over the past 50 years. Whilst research has made some progress in the

mitigation of the fouling process, the prevention of fouling of heat exchanger and heat

transfer surfaces still remains a major unresolved problem in industry.

The research within this thesis focuses on the modelling of crystallisation of impinging

droplets of process liquor from pipe or vessel leakages. Whilst not strictly identical to

fouling on heat exchanger surfaces, there are significant similarities. Aqueous solution is

subject to a change in thermal or atmospheric conditions and a crystallisation reaction

occurs, leaving unwanted deposits. Unlike the majority of crystallisation fouling in indus-

try, the problem here is unique as we consider leakages occurring within a nuclear process

environment. Whilst fouling in heat exchangers can lead to loss of capital through process

downtime or maintenance costs, deposition of heavy metal solids can hold safety implica-

tions, as materials are often toxic and can have radiological properties. Thus, additional

considerations have to be made. The size, shape and location of the formations need to

be known such that leakages can be safely intervened, minimising risk to the operator.

Despite the aforementioned importance of understanding crystallisation of heavy metal

process liquors in events such as leakages, it currently poses a large gap in knowledge for

nuclear engineers. Furthermore, research relating to the general case of crystal deposition

or fouling from impinging droplets is scarce. Whilst the chemistry and criticality-shape

relationship of fissile materials is generally well understood, their crystallisation behaviour

and spatial deposition configuration when coupled to complex fluid flows is less under-

stood. Therefore work here will develop several multi-physics approaches which will allow

the coupling of both the fluid flow and the crystallisation kinetics.

In nuclear reprocessing environments when handling materials with hazardous, radioactive

properties it is not always straight forward to monitor process infrastructure in its entirety

using standard monitoring equipment. Whilst it is imperative that engineers have a strong

understanding of the behaviour of crystalline growth for various process conditions, it is
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also it is also vital that sufficient techniques are available in order to detect the leakage

and subsequently remotely assess its severity. Most nuclear facilities are designed such

that any potential leakage would be contained in large concrete cladded chambers. The

ability to remotely inspect these chambers would therefore impact on clean up procedure,

minimising risk to the operator. Therefore work here will attempt to develop models which

hold potential for future use in the non-invasive monitoring and detection of crystalline

formations.

1.2 Mass Deposition and Fouling in Industry

Fouling or ’undesired deposition of material on a surface’ is currently a major problem

across chemical related industries. It is anticipated that whilst this thesis pays particu-

lar attention to fouling in the nuclear industry, the techniques developed here will hold

relevance to fouling and mass deposit problems throughout the chemical process industry.

1.2.1 Underlying Mechanisms for Fouling

Whilst fouling is still a major unresolved problem in heat transfer, past research has

allowed an understanding behind the underlying mechanisms. Epstein [65] summarised

this such that the possible mechanisms of fouling and it’s physical processes could be

depicted in a 5x5 matrix. This work stated that the 5 possible underlying mechanisms

for fouling were as follows:

• Crystallisation Fouling usually occurs on heat transfer surfaces. When aqueous pro-

cess solutions are subject to a change in thermal conditions, and hence a change in

solubility, crystallisation occurs in order to bring the solution back to equilibrium.

Fouling of inverse soluble salts such as calcium carbonate, silica and calcium sul-

phate is common in the process industry, as these deposits generally form on heated

surfaces. Conversely, normal soluble salts, such as sodium nitrate, will crystallise

when a drop in temperature is experienced, e.g. on a cooled surface.

• Particulate Fouling occurs due to aggregation and flocculation of particles within the

flow. Particles suspended in the flow then deposit on a surface. Suspended particles
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can often be a by-product of an upstream crystallisation, chemical or corrosive

reaction.

• Biological Fouling generally occurs in water streams, where micro-organisms such

as algae, yeast or bacteria attach themselves to heat transfer surfaces. These micro

oganisms usually form films, or ’biofilms’.

• Corrosion Fouling occurs when a chemical reaction takes place between the fluid

and the heat transfer surface. Corrosion products can form layers on the heat

transfer surface which resist heat transfer. Additionally, corrosion products can

detach, forming particles which deposit downstream.

• Chemical Reaction Fouling is where various reactants within the solute undergo a

chemical reaction in which a solid product is formed. These can then deposit on the

heat transfer surface. Whilst the heat transfer surface is not a reactant in this type

of fouling, it can often act as a catalyst in the reaction. These reactions are common

in milk processing and industries containing hydrocarbons such as the petroleum

industry.

As fouling can be caused by many potential mechanisms, and often a fouling problem

will be due to a combination of several of these, it is often unknown how much of the

total fouling can be attributed to each physical process. However, the work in this thesis

mainly restricts the problem to that of crystallisation fouling.

1.2.2 Impact of Fouling in Industry

As previously mentioned, as there are many underlying mechanisms which cause fouling

it is no surprise that problems are experienced throughout a diverse range of industries.

Examples of which include the food engineering industry [52, 98], the oil processing in-

dustry [103, 21], biological fouling in the marine environment [108, 77] and a wide range

of other process related industries which use heat transfer surfaces or heat exchangers

[11, 197, 133]. Whilst the specific mechanism or cause of fouling is often different, the

implications of problems due to fouling are often shared throughout industry. These

implications are now categorised and discussed.
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Figure 1.1: Fouling on a heat transfer plate [17].

1.2.2.1 Fouling Impact: Thermal Resistance

Solid deposits on heat transfer surfaces (Figure 1.1) increase the thermal resistance or

lower the overall heat transfer coefficient. This means that more energy is required in

order to maintain a specific outlet temperature. Due to this, additional fuel or energy

costs are incurred such that the reduction in heat transfer is accounted for. This can

also be potentially harmful in certain industries, such as the milk process industry, where

failure of the fluid to reach a specific temperature allows bacteria to remain in the solution

[98].

1.2.2.2 Fouling Impact: Increased Pressure Drop

In addition to the thermal implications of fouling, deposits in pipes or channels can also

lead to a decrease in cross-sectional area and increase in surface roughness, hence leading

to an increase in pressure drop. An example of this can be seen in Figure 1.2. Due to this,

additional energy costs are incurred as a result of pumps requiring more energy. It is stated

in [49] that more heat exchangers are taken out of service due to the increased pressure
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Figure 1.2: Limescale deposition in a pipe [64].

drop than due to the increase in thermal resistance. These deposits, if not removed can

also lead to a full blockage, which can halt the production process completely.

1.2.2.3 Fouling Impact: Increased Equipment Costs

Previous research has allowed manufacturers to quantify the expected level of fouling by

the use of a ’fouling factor’. These factors are often predetermined or methods exist in

order to obtain them. For shell and tube heat exchangers a popular list of predetermined

factors for differing fluids is supplied by the Tubular Exchanger Manufacturers Associa-

tion (TEMA). Using these factors heat exchangers are designed such that their surface

area is enlarged or ’over-sized’ relative to the ’fouling factor’. The increased surface area

of the heat exchanger allows additional heat to pass into the fluid, therefore counter-

acting the thermal resistance due to fouling. It is estimated that heat exchangers and

heat transfer surfaces are over-sized on average by 15-50% [11]. This incurs additional

manufacture costs due to increased amount of materials required. Furthermore, process

plants require more space due to the enlarged equipment. Whilst this method can be

reasonably effective, there has been reports that an overestimate in fouling factor leads

to decreased fluid velocities, which can actually increase the rate of fouling.
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1.2.2.4 Fouling Impact: Maintenance and Cleaning

Finally, removal of the exchanger for cleaning purposes often requires plant to shut down.

Therefore losses will be experienced in production incurred during these periods. Whilst

most plants will factor in for this and have scheduled cleaning, such that the cleaning

process can be optimised, unscheduled or emergency shut-downs do occur. The losses

due to these unscheduled shut downs can be significant. Moreover, the cleaning chemi-

cals can be costly and they can also have negative environmental impact if not disposed

of correctly.

Clearly, fouling can negatively impact industry in a variety of ways. Despite this, it is

understandable that research in this area may not immediately appear as important or as

fiscally attractive as that relating to the research concerned with optimising the process

for growth of manufactured crystals, however, studies have estimated the loss of capital

due to fouling is approximately 0.25% of the national GDP (gross domestic product)

[150], in 1999 this was estimated to be $2.5 billion in the UK alone. Clearly, the economic

impact due to fouling across process industries is severe and it is therefore important

that attention is given to these problems such that models are developed, allowing the

mitigation or cessation of fouling.

1.3 Mass Deposition Problems Specific to the Nuclear In-

dustry

The nuclear industry is no exception when considering fouling problems. Due to hav-

ing several complex chemical processes, heat exchangers are generally used extensively in

both the power generation and reprocessing industry. These are therefore susceptible to

the same problems of heat exchanger and heat transfer fouling as experienced throughout

all process industries.

Whilst the same economic impact applies to the nuclear industry, additional considera-

tions also have to be made. Particular care has to be taken with mitigation of fouling, and

cleaning processes have to be optimised, as any manual intervention required by a plant

worker leads to a possible radiation dose, therefore reducing human intervention is critical.
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The systems in place are designed with precision such that scheduled clean up protocols

are implemented in order to minimise worker contact. However nuclear engineers, par-

ticularly within the reprocessing sector at Sellafield (Figure 1.3), are interested in the

fouling behaviour of process liquors which are removed out of the standard process cy-

cle. Whilst heat exchangers and heat transfer surfaces are designed with mitigation of

fouling effects in mind, such that safety and clean up protocols can be designed with the

informed knowledge of the surfaces expected behaviour, it is more difficult to predict and

make informed assessments regarding the behaviour of process liquors if removed from

the standard process equipment, such as fouling on the surrounding infrastructure due to

leakages of process liquors.

In order to fully understand the problem, knowledge of the reprocessing industry is needed.

The following sections will give an overview of the nuclear reprocessing industry, along

with details of previously experienced problems, such that key areas for research can be

targeted.

1.3.1 Nuclear Reprocessing and THORP

Nuclear reprocessing is the chemical extraction of reusable nuclear materials from spent

nuclear fuel. Reprocessing was originally developed in order to extract nuclear material

for weapons purposes, however later it was used for commercial power generation [7].

Fuels are generally dissolved in aqueous solution and various chemical processes are un-

dertaken to remove and purify the uranium and plutonium from the solution.

One site in the UK which carries out nuclear reprocessing on spent fuels is the Thermal

Oxide Reprocessing Plant (THORP) at Sellafield, UK (Figure 1.4). Nuclear engineers at

THORP have particular interest in models regarding the crystallisation of solid fissile ma-

terial from aqueous solutions. In order to understand the justification and need for such

models the remainder of this section will give background information into the THORP

facility and previous problems experienced.

The THORP facility at Sellafield is a $4 Billion plant owned by the Nuclear Decommis-

sioning Authority (NDA) and operated by Sellafield Ltd, first operational in 1994 [38].
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Figure 1.3: Sellafield Nuclear Power Plant, UK, [166].
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Figure 1.4: Thermal Oxide Reprocessing Plant, Sellafield. [38].

THORP takes spent nuclear fuel and extracts reusable fissile products using the PUREX

chemical cycle. Initially spent fuel is delivered from both domestic and international

sources via a rail network connected to Sellafield. The spent rods are then stored in

large ponds (Figure 1.5) until ready for reprocessing. At the start of the cycle, the fuel

is removed from the pond and is sheared into 5cm lengths [38], the fissile materials are

then dissolved in nitric acid to form highly active (HA) liquor. At this stage the liquor

is transferred to a series of large suspended vessels (accountancy tanks), such that the

quantity of liquor can be remotely observed and recorded.

This nitric acid solution is then treated with various organic solutions in order to separate

the plutonium and uranium, the remaining highly active waste is then transported away

to be vitrified and stored. Once separated the plutonium and uranium are reintroduced

into a nitric acid solution. Through various precipitation and calcination processes, solid

plutonium and uranium materials are then extracted from the nitric acid solutions. Ap-

proximately 97% of the spent fuel is recycled to produce reusable uranium (96%) and

plutonium (1%) solids, and 3% of the fuel is high level nuclear waste. An overview of the

PUREX cycle from [38] can be seen in Figure 1.6.
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Figure 1.5: Nuclear fuel storage tanks prior to the reprocessing process, courtesy of
Sellafield Ltd.

Figure 1.6: Flow map of THORP PUREX process, [38].



Chapter 1. Introduction and Background 13

Figure 1.7: Accountancy tank from THORP leakage 2005, [85].

The need for models which describe the growth of solid deposits from leakages of these

solutions was brought about by a problem in 2005 which caused the temporary shut down

of the THORP plant.

1.3.2 Process Liquor Leakage Incident at THORP, 2005

In 2005 it was discovered that 83,000 litres of HA solution had leaked undetected over

a period of approximately 7 months [85]. It was found that the leakage of liquor had

occurred due to breakage of one of the pipes connecting to the accountancy tanks at the

final stage of the head end process in Figure 1.6. A diagrammatical representation of the

tank can be seen in Figure 1.7. It is thought that the breakage was due to pipe fatigue

brought about due to the oscillatory motion of the suspended tanks.

The tanks in question were contained within a concrete cladded cell, which was designed
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such that there would be no need for routine entry during the lifetime of the process

plant. Safety measures which allowed the non-invasive monitoring of the cell were put

in place. The floors of the cell were inclined such that any leakage within the cell would

flow down to a sump. Sumps were partially filled with nitric acid and equipment was in

place to monitor the fluid level. In addition to this, hatches were built into the cell such

that cameras or remote maintenance equipment could be placed inside the cell if needed.

Due to the high levels of radiation no cameras could be permanently placed within the cell.

It was later discovered that the leak went undetected due a failure in the fluid level equip-

ment in the sump. Under normal conditions the monitoring equipment could display 5

different levels, low-low, low, normal, high, high-high. These levels would relate to the

current height of fluid in the sump. Plant operators should be alerted if levels reach ’high’

or a rapid change in readings occur. The ’high’ level alarm should have triggered at a

solution volume of 15 litres however, the equipment was faulty and continued to display

’low’ even though 83,000 litres had leaked from the tank. Plant operators were eventually

alerted to the problem when it was noted that the accountancy tank measurements for

the quantity of liquor was not agreeing with records for the delivered quantities [85].

It was later established that the cell was successful in containing all the process liquor.

Following this, the cell was cleaned and investigations were carried out regarding the cause

of the incident and it’s potential threat. Results from this investigation would impact on

the feasibility of THORP resuming processing. Whilst containment was proven successful

the nuclear criticality implications of the incident had to be assessed.

1.3.3 Nuclear Criticality Safety

“A criticality accident occurs when a nuclear chain reaction unintentionally

occurs in fissile material, such as enriched uranium or plutonium. This releases

neutron radiation, which poses a great hazard to personnel and equipment.

The purpose of nuclear criticality safety is to prevent a nuclear chain reaction

in operations with fissile material outside a nuclear reactor.” Health and Safety

Executive [85].

There have been 22 reported occurrences of criticality incidents outside of the reactor
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since the beginning of nuclear power generation. Of these incidents, 21 occurred with

fissile materials dissolved in a solution or slurry and 1 of the incidents involved solid

material. Out of these 22 incidents there has been reported 9 fatalities due to radiation

poisoning. There has been no record of any explosions or damage to equipment, however

this does not imply that it is not possible. It is therefore clear that every measure should

be taken such that criticality incidents do not occur.

The risk of criticality is measured by a ’effective neutron multiplication factor’, keff .

When keff = 1 criticality is reached and a chain reaction is sustained such that each

fission reaction causes a following fission reaction. Supercriticality is defined as keff > 1,

such that the number of fission reactions increases exponentially. For keff < 1, or a

subcritical reaction, a chain reaction cannot be sustained.

The ’critical mass’ of an object is the minimum mass for which keff = 1. It is known

that the critical mass of a fissile material is dependent on several key factors [121], which

are now discussed.

1.3.3.1 Criticality Factor: Geometry

A perfectly spherical shape will give the smallest critical mass for a material. Departure

from this shape allows a greater surface area through which the neutrons can escape,

which implies that a larger mass is needed for the material to become critical. Generally

speaking, criticality is an undesirable trait outside of the reactor, therefore fissile materials

are generally stored in shapes that decrease the chance of criticality. These tend to be

either slabs (cuboid of narrow thickness) or a cylinder with small radius. Critical masses

have long been established for these shapes [53, 141]. For more complex shapes, modern

numerical Monte Carlo codes, such as MONK [131], MCNP and KENO [35] can calculate

the value of keff .

1.3.3.2 Criticality Factor: Temperature

The higher the temperature, the faster the velocity of the neutrons. As the neutron’s

velocity increases, the chance of a successful fission reaction decreases. Therefore for

a critical material where keff = 1 at room temperature, when exposed to a increase
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in temperature the material would become subcritical, keff < 1. Also, an increase in

temperature decreases the density of the shape due to thermal expansion.

1.3.3.3 Criticality Factor: Density

The higher the density of material, the lower the critical mass. Therefore, a given mass

in a subcritical state could become critical if the density is increased through either a

change in pressure or temperature.

1.3.3.4 Criticality Factor: Reflectors and absorbers

The critical mass of fissile material can be altered by surrounding or submerging it in

another substance. Certain substances reflect the escaped neutrons back into the fissile

material, such as water and steel. This is an important consideration in the storage

and transport of nuclear materials. For example, the critical mass of a spherical, solid

metal piece of Pu209 (plutonium) is 10kg. When surrounded by water the critical mass is

reduced to 5.45kg and when encased in steel it is 4.49kg [113]. Therefore close attention to

the surroundings have to be paid when carrying out a criticality assessment. Moreover,

certain materials such as cadmium, boron, or gadolinium can absorb neutrons, hence

increasing the critical mass.

1.3.3.5 Criticality Factor: Interaction

Care has to be taken when considering multiple fissile materials in close proximity. Two

subcritical masses could become critical due to neutron interaction between them.

1.4 Experiments Regarding Impinging Droplets of a Surro-

gate Liquor

Whilst no criticality incidents occurred during the THORP leakage of 2005, in order for

THORP to resume operation a valid safety case had to be made such that under varying

conditions, critical masses would not be reached. The National Nuclear Laboratory (NNL,

previously Nexia Solutions) hypothesised that:

“Liquor from a sufficiently slow leak might experience evaporation of much

of its solvent thereby delaying or preventing it reaching the leak detection
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Figure 1.8: Precipitate formations fouling the cell surfaces, found in drained storage tanks
in Hanford, USA. Copyright of Washington State Department of Ecology.

system. In such a case liquor solutes would be expected to crystallise as solid

deposits, mostly on the cell floor. Accumulation of some types of material

could in time, possibly achieve a critical mass.” THORP Simulated Crystal

Accumulation Trials, Nexia Solutions, 2007 [175].

Similar occurrences have been observed where heavy metal solutions have precipitated

out. An example of this is at the nuclear waste storage facilities in Hanford, USA [59].

The majority of stored waste was previously removed from these tanks due to detected

leakages. Upon inspection it was found that the residual solutions had precipitated out

leaving white crystalline deposits on the surfaces of the cell, these can be observed in Fig-

ure 1.8. These deposits proved difficult to remove, with many resources being allocated

to assess safe methodologies in order to remove and dispose of the deposits [170, 154].

In addition to this, research has been carried out into the criticality and contamination

risk that these formations pose [61, 184]. Clearly an understanding of the deposition

behaviour of solutions could have aided in the prevented or clean up of this occurence.

As part of the safety investigation, regarding the THORP leakage, an experimental trial

was carried out by the NNL, such that surrogate salt solutions were dripped onto inclined

plates for varying parameters, in order to test the aforementioned hypothesis.

1.4.1 Experimental Setup

Plates of 1m2 were used such that they replicated those found in the THORP containment

cells. These were gradiented with a 1:125 incline towards a low corner, beneath which a
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sump was placed to collect the fluid. Plates were constructed out of polished steel with

1mm rivets places around the edge in order to mimic the weld joint in the THORP cells.

These surfaces were then placed in a temperature controlled chamber and surrounded

with a plastic sheet curtain, in order to minimise air flow and contain any solution splash

(Figure 1.9). A surrogate solution of sodium nitrate was used as it was thought to display

similar chemical and physical properties to that of the heavy metal solutions found in the

THORP plant. Solutions were dripped onto the centre of the plate through the use of

a suspended dripper unit, which had a temperature controlled thermostat such that the

solution could be kept to a constant 30◦C. This system allowed the easy modification of

both the drip height and flow rate. The growth of deposits was monitored qualitatively

through the use of regular photography, and quantitatively through measurements of key

features, such as the width and height, for periods of up to 70 days. The suspended

dripper and a typical deposition build up can be observed in Figure 1.10. Additional

information such as air velocity, temperature and humidity was also monitored. Dynamic

evaporation rates were obtained in a separate experiment where the net loss of pure water

was calculated when dripped onto the plate over a continual period.

Figure 1.9: Steel plates used in dripper experiments.



Chapter 1. Introduction and Background 19

Figure 1.10: Suspended dripper with crystalline deposition across an inclined plate.

1.4.2 Results

The following section discusses the key observations for the drip trial experiments. Results

in this section will focus on the qualitative behaviour of the crystallising solutions for

varying conditions.

1.4.2.1 Initial Concentration: 1 Molar solution

Trials with 1 Molar sodium nitrate solution were dripped from a height of 2m at a rate of

5 litre/day. After 1 day the solution precipitated to form the deposit observed in Figure

1.11. Deposition was sparse, with a large clear region. The clear region was roughly

elliptic with radii of approximately 1m, centred on the point of solution impact. The

radius parallel to the path to the sump was slightly elongated.

The deposits were observed to decrease in depth close to the clear region, quickly build to a

maximum height and then slowly decrease as distance from the point of impact increased.

From analysing concentrations of the solution at the run off, it was clear to see that

significant evaporation had taken place, with a 2% increase in concentration (mass of salt
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Figure 1.11: 1 Molar sodium nitrate precipitation after 1 day.

/ mass of water) occurring. It was noted that some solution was found to precipitate on

the curtains surrounding the plate due to the initial droplet splash, this was in the region

of 3.2-4.5% of the total crystalline solids recovered.

1.4.2.2 Initial Concentration: 5 Molar solution

The 5 Molar solution was thought to be of a concentration typical to the majority of

liquors found in the THORP plant. In this trial, the drip rate was decreased to 2.5

litre/day such that run off to the sump was reduced. An initial drip height of 2m was

used.

It was found that the 5 Molar case formed annular deposits similar to the previous 1

Molar case. However, the clear area below the dripper was now much smaller, as ob-

served in Figure 1.12 (approximately 0.3m) and the annular deposition was much more

pronounced. Initially a clear region ran directly down the plate, allowing the solution to

reach the sump. However, as the formations grew through time, the solids blocked the

path to the sump, restricting solution exit and eventually completely preventing solution

run-off, as observed in Figure 1.13. Red dyes were introduced to the solutions in order
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Figure 1.12: 5 Molar sodium nitrate precipitation after 14 day.

to observe the flow’s interaction with previous crystalline formations. It was observed

that the solutions continued traversing across the plates through the porous crystalline

material. It was also noted that in addition to travelling across the plate, solution was

also wicked vertically through the structures, causing localised increases in deposition

height across the plate.

After extensive growth it was found that the solution was blocked, or partially blocked,

from the sump, reducing run off. When this occured, the solution began to pool exten-

sively under the drip site. In this region it was found that continuous crystal growth and

dissolution was occurring, such that the clear central region was constantly contracting

and dilating.

In addition to this initial trial, experiments were undertaken to assess the effects of vary-

ing the drip height. Firstly, the drip was lowered to a height of 1m. From these trials

it was observed that the clear area below the drip was roughly the same size, but the

overall size of the crystalline annulus was now smaller. The outer edge of the bed was

also observed to be more sharply defined. Splatter effects on the outside curtain were
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Figure 1.13: 5 Molar sodium nitrate precipitation after 36 day.

now seen to be less. It was noted that the continual growth and dissolution behaviour

was now less well defined.

Next, the experiment was trialled at a lower height of 0.5m. At this height there was virtu-

ally no splashing, and the central clear region was now even smaller. Lateral development

of the surrounding crystal beds was much slower. Again, the oscillatory crystallisation

and dissolution behaviours in the clear region were less apparent.

1.4.2.3 Initial Concentration: 8 Molar solution

The 8 Molar trials were undertaken in order to represent the upper level of concentrations

of process liquor and in order to gauge the effects of the ’worse case scenario’. In these

trials it was hypothesised that under high concentrations, formations may begin to form

under the drip. In order to reduce the structural disurbance from the trial, only low drip

heights of 0.5m and 1m were tested. It was found that droplets began to quickly crys-

tallise around the impact point, forming a widening crystalline bed. Solution continued

to run off at the sump, however unlike the previous trials, no clear path was observed.

For this case, the kinetic energy of the drip kept a small pit at the point of impact, how-
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ever this was subsequently filled by crystalline deposits. Over time a small conic pillar

of crystalline solid began to form directly under the drip point, as observed in Figure

1.14. It was observed that this central formation reduced splashing of the solution. The

remainder of the crystalline bed was relatively flat, however continued to grow in height.

It was noted that the outer edge of the formation was clearly defined, much like the 1 m,

5 Molar case. Crystallisation favoured the downhill direction, and after 14 days there was

cessation of the solution flow to the sump. It was found that the central tower formation

continued to grow in height for approximately 37 days. The growth after 32 days can be

observed in Figure 1.15. At this point the tower collapsed under its own weight, after

which a new tower began to grow in place of the old one, as observed in Figure 1.16.

The 8 Molar trial was run again with a reduced drip height of 0.5m. Due to the re-

duced kinetic energy, a pit under the drip point was not observed. With reduced drip

height the formation radius appeared to be smaller, however the bed depth grew at an

increased rate. Cessation of solution flow to the sump due to blockage occurred at 32 days.

Samples of the crystalline material showed that the crystalline bed varied in porosity,

however the centralised tower formation was almost completely solid.

1.4.3 Discussion of Results

The results from the drip trials were not what the engineers at the NNL initially hypoth-

esised. Initial intuitions suggested that all the solids deposited from the solution would

be contained in piles of crystals under the drip site. Behaviour similar to this was only

experienced in the 8 Molar case, however, crystalline solids were also deposited in a cir-

cular pattern around this central pile. This behaviour was generally unreproducible for

solutions of lower concentration, where at 1 Molar the solution produced almost no depo-

sition, with the majority of solid material being recovered from the sump. Additionally,

the 5 Molar solution produced large annular crystalline formations. During the 5 Molar

experiments liquid films were observed to pool under the drip and close to the sump,

initially, no solid deposits were seen in these regions, however deposits eventually formed

in the film close to the sump, and solution was subsequently prevented from leaving the

plate. Despite this, solids never grew directly under the drip site for the 5 Molar case.
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Figure 1.14: 8 Molar sodium nitrate precipitation after 3 day.

Figure 1.15: 8 Molar sodium nitrate precipitation after 32 day.
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Figure 1.16: 8 Molar sodium nitrate precipitation after 70 day. New tower growth is
observed next to the previously collapsed formation

Whilst these results were different from the expected behaviour, it was not necessarily a

negative point with regards to criticality. The annular formations were most comparable

with the standard ’slab’ geometry, whilst the towers were most comparable to a cylindri-

cal geometry. As the criticality risk of slab is generally less than that of a cylinder, with

a slab usually having a higher critical mass, the annular formations are favourable over

towers. However, for the 8 Molar case it was found that the central tower formation was

surrounded by a circular crystalline bed, the criticality implications of these composite

shapes are unknown and therefore further investigation would be needed. Behaviour of

solutions with concentrations less than 8 Molar but greater than 5 Molar also need to be

determined, as it is expected there will be a limiting value such that no tower formations

are experienced, with concentrations higher than this value producing growth under the

drip. Moreover, the impact of these parameters on the size and shape of the formations

could hold important implications, for example if the characteristic shape of the tower

formations changed from roughly cylindrical to a more hemispherical shape.

Whilst the range of possible morphologies and geometries the crystalline material demon-
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strated in the experiments was larger than hypothesised, it was also found that the ma-

jority of solids produced were of a porous nature, leading to a variety of unexpected

behaviour and subsequent implications. An example of this being that the height of the

solid material generally decreased away from the drip point, however due to the afore-

mentioned porous solids, wicking or capillary flow in the crystalline bed caused localised

increases in material height across the plate, leading to a ’cobbled’ field effect. Addition-

ally, oscillatory crystallisation and dissolution occurred at the centre of the annulus for

the 5 Molar experiments, which caused the size of the clear region under the drip to vary

in size, through time. It was also found that for the case where multiple plates are joined,

such as in a cell environment, crystalline material can form a porous bridge over the weld

edges therefore allowing the spreading of leakage across multiple plates. In addition to

the unexpected behaviour of the crystalline growth due to the porous wicking effects, the

variable density and porosity of these materials would need to be considered in criticality

calculations, particularly the implications of a porous solid being filled with a heavy metal

solution.

It was found that scenarios exist for sufficiently slow leaks, such that an inadequate level

of liquid may reach the sump and hence fail to trigger the safety alarms. This was usually

due to either; the majority of fluids evaporating across the plate before reaching the sump,

the fluids being contained within previous porous solids across the plate, or full blockage

of the access to the sump. A fuller understanding of this behaviour would be needed in

order to ensure that safety measures within the cells were sufficient.

1.4.3.1 Identification of the Occurring Physics

In order to fully understand the behaviour of impinging droplets of crystallising salt

solution, it is important that all the individual physics are well understood. Once this

is achieved an understanding into the implications of these behaviours when coupled

together can be gained. Summarising, it is important that the following physical process

are understood:

• Droplets, Free Fall, Impact and Splashing. Solutions initially form into droplets

which free fall through the air. Droplets then impact onto the solid surface, or
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previously deposited liquid. Following impact droplets either splash across the sur-

face or deposit to form thin liquid films under the drip. An understanding of the

velocity of the falling liquid and how long it remains in free fall would be needed.

Velocity information is likely to have an effect on the splashing behaviour, allow-

ing the calculation of the quantity and location of splashed liquid. In addition to

this the length of free fall is likely to affect mechanisms such as heat transfer and

evaporation, these will influence the chemical behaviour post impact.

• Gravity Driven Film flow. A proportion of the droplets do not splash, but rather

coalesce to form thin liquid films under the drip site. Due to the incline of the

surface, gravity drives the film down to the sump. The velocity and thickness of

this film is likely to impact on the rate of crystalline deposition. Gravity driven

films often become unstable and rivulets are formed, the non-uniform nature of the

fluid flow could also lead to irregularities in the mass deposition.

• Crystallisation. Any solution has a given solubility limit. This is the saturation

point, such that no more solids can be dissolved into the solution. This solubility

limit is dependent on the temperature and quantity of liquid such that if a saturated

liquid undergoes a temperature change or volumetric change, the solubility limit

can drop. If this occurs the solution becomes supersaturated. Crystallisation is

the integration of solute molecules into a lattice formations, which occurs in order

to bring the solution back to an equilibrium state. Crystallisation is a complex

process, where the size, shape and rate at which the crystals are formed are all

heavily influenced by varying physical factors. An understanding of how these

factors couple together is required.

• Heat Transfer. As mentioned, the temperature of the solution directly impacts upon

its solubility. Not only this, it impacts on the rate of the crystallisation reaction. In

addition to this, the temperature of the fluid impacts on its rheological behaviour,

and hence how it acts during the droplet and film phase.

• Evaporation. The volume of liquid affects the solubility of solution. Evaporation

decreases the volume, therefore increasing the concentration. This can lead to a

state of supersaturation, such that crystallisation occurs. Evaporation is dependent

on the temperatures of the liquid and gaseous phase, air humidity and the air
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velocity field.

• Dissolution. Due to the dynamic nature of the temperature conditions, a change

in temperature can in fact increase the solubility limits of the solution. When this

occurs previously crystallised material can dissolve back into the solution. A strong

understanding of the localised temperature and concentration of solution is therefore

required.

• Flow through porous media. The crystalline material formed is of varying density

and porosity. Subsequent liquid interacts with this solid material such that it flows

around it, dissolves it or flows through it. Capillary effects due to surface tension

can have a strong effect on the solution flow, such as the solution wicking up against

gravity, through the crystalline material.

1.5 Research Aims, Objectives and Methodology

The primary aim of this work is to develop numerical models which describe the size

and shape of crystalline deposits from salt solutions for varying process, environmental

and material properties. These models will allow insight into the criticality and safety

implications that a leakage of nuclear process liquor could pose. Furthermore, the work

aims to investigate and develop methods for the non-invasive monitoring and detection

of formation growth through time. The research attempts to meet these aims through

the achievement of several key objectives, each of which is approached through a concise

research methodology, as follows;

1. Identify the physics occurring within the NNL’s sodium nitrate drip experiments

and highlight current numerical approaches for modelling these physics.

• Analyse reports from NNL experiments.

• Carry out a literature review on methods for crystallisation.

• Carry out a literature review on methods for other identified physics.

2. Target and demonstrate appropriate methods for coupling the previously identified

physics such that crystalline growth and deposition from solution can be described.
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• Carry out a literature review on the methods for coupling the previous models

such that a multi-physics model for crystal growth can be developed.

• Adapt previous models for the purpose of modelling the growth of deposits

from a typical salt solution.

• Identify the strengths and limitations with the adapted model.

• From this work, propose a new model which captures the most critical physics

and addresses the previously targeted limitations.

3. Develop a robust two-dimensional CFD moving boundary framework for generalised

mass deposit problems.

• Develop user defined functions for a moving boundary CFD problem.

• Advance to multiphase, capturing a liquid film.

• Optimise user defined functions, solver settings and initial meshing for robust-

ness and accuracy.

4. Develop a multi-physics CFD model using the previous moving boundary framework

such that it includes the targeted physics in order to demonstrate the growth of

crystalline formations from salt solutions. Validate this model with data from NNL

sodium nitrate drip trial experiments.

• Advance the previous framework to a pseudo three dimensional case.

• Add additional physics, i.e. evaporation and heat transfer.

• Collate and assess relevant data from the NNL drip trials.

• Obtain a set of input parameters for the model which relates to the experi-

mental drip trials.

• Compare key results and features from the model for different input conditions,

through time, against the experimental data.

5. Determine the model’s sensitivity to process, material and environmental parame-

ters.

• Run the previously validated model for varying environmental parameters,

such as: ambient air temperature, air humidity, air velocity, wall temperature.
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• Run the model for varying material parameters, such as: solution and solid

density, viscosity, kinetic crystallisation parameters,

• Run the model for varying process parameters such as: solution flow rate,

solution temperature.

6. Investigate and develop methods for the non-invasive monitoring and detection of

formation growth through time.

• Carry out a literature review for current non-invasive models.

• Develop a model for solving geometric inverse problems, using thermal data.

• Carry out an optimisation of the model.

• Test the robustness of the model for a variety of potential formation shapes.

• Assess the applicability and necessary considerations required when applying

the model to an industrial setting.

1.6 Thesis Outline

This section outlines the chapter layout of the thesis.

Chapter 1: Introduction and Background. A background into the problems asso-

ciated with fouling and mass deposition in industry is given in this chapter. Problems

specific to the nuclear industry are also discussed, with particular attention paid to the

additional considerations required due to the radioactive nature of materials. The re-

search in this thesis was motivated by a previous incident that occurred in 2005 at the

THORP nuclear reprocessing facility. Background information regarding this problem is

given along with experimental work carried out by the NNL. The key aims and objectives

of the research are given, along with the research methodology.

Chapter 2: Current Numerical Models and Techniques for Application in

Crystal Growth and Mass Deposition Problems. This chapter reviews the litera-

ture regarding numerical models currently used for capturing crystal growth in a manu-

facture setting or fouling related problems.
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Chapter 3: Adaptation and Implementation of Geological Models for Indus-

trial Crystallisation Problems. This chapter recreates a model previously used for

modelling geological stalagmite formations, often found in underground caves. The model

is then adapted for the time and length scales of the problems found in this thesis. A short

parametric study is completed. Advantages and limitations of the model are discussed.

Chapter 4: Development of a Coupled CFD and Moving Boundary Frame-

work. Here a framework is developed which couples computational fluid dynamics (CFD)

with moving boundary techniques, such that the moving boundaries allow the capture

of mass deposition. This chapter focuses on the implementation of the framework, such

that user defined codes are developed and solvers are optimised. Meshes are optimised

for accurate and robust solutions.

Chapter 5: Simulating the Crystalline Formation Growth from a Thin Film

of Surrogate Liquor. In this chapter, a moving boundary axisymmetric CFD model

is extended from the previous two-dimensional one. Furthermore, additional physics is

incorporated. The model is then validated against the NNL drip trials. Once successfully

validated parametric studies are carried out to see how the solution changes with varying

process, environmental and material parameters.

Chapter 6: A Meshless Moving Boundary Model for the Non-Invasive Cap-

ture of Growing Crystalline Structures. In this chapter, a non-invasive numerical

method is developed, such that a two-dimensional inverse geometric problem is solved

using the method of fundamental solutions for the time-dependent heat equation. The

model is then numerically tested for a variety of different geometries and boundary con-

ditions.

Chapter 7: Conclusions, Implications of the Research and Further Work. Here

the main findings of the research will be concluded. Additionally, the implications of the

research will be highlighted and potential areas for further work will be addressed.
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Chapter 2

Current Numerical Models and

Techniques for Application in

Crystal Growth and Mass

Deposition Problems

2.1 Overview

This chapter attempts to address the current theories regarding crystal growth. In ad-

dition to this, previous studies are reviewed, in which models are developed and utilised

such that crystal growth or mass transfer processes can be described. Fouling on indus-

trial equipment due to crystallisation or other mass transfer process is a major problem

in many industries. Moreover, crystal growth occurs in many different natural environ-

ments, such as the deposition of calcite in caves which leads to large formations such as

stalagmite and stalactites.

This chapter will discuss the various techniques and approaches used throughout crystal

growth research and assess their appropriateness for the problem addressed in this thesis.

The problems investigated in this thesis involve several fluid flow phenomena. As the

fluid flow acts as a transport mechanism for the dissolved solute, such that this later
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crystallises, it is important that the fluid flow is captured accurately. Therefore in addition

to research regarding crystal growth, various models for capturing the types of fluid flow

will be discussed.

2.2 Crystallisation Theory

Crystallisation from solution consists of two stages; nucleation and growth. The initial

nucleation stage consists of the clustering or grouping of atoms or molecules in solution.

Once these formations reach a stable size, crystal growth can occur. The rate at which

these processes occur is determined by the current environmental conditions, material

properties and the mass of solute dissolved within the solvent. In order to model com-

plex crystal growth systems it is vital that these concepts are considered, therefore the

remainder of this section will address these concepts in order to have the fundamental

understanding of supersaturation, nucleation and crystal growth kinetics required.

2.2.1 The Driving Force for Crystal Growth Mechanisms: Solubility

and Supersaturation

For a given volume of solvent, a specific mass of solute can be dissolved, this is know as the

solubility of solution and is measured in units of concentration (molarity), or mass. The

solubility level of a solution is dependent on the temperature, pressure, mass of solvent,

or pH. For the majority of materials the solubility rises with increasing temperature, how-

ever there are some exceptions, such as calcium and barium sulphate. These are known

as inverse soluble salts. In addition to this, the solubility’s dependence on temperature is

often complex, non-linear relationships are not uncommon and often the behaviour can

differ for varying temperature intervals (such as a change from an inverse to a non-inverse

solubility relation).

It is typical that the solubility of a solution is displayed in the form of a solubility curve,

such that the solution concentration at the solubility limit is plotted against the tempera-

ture. An example of which can be observed in Figure 2.1. From this figure it is clear to see

that calcium sulfate behaves as a non-inverse soluble salt for solutions at temperatures

0 − 40◦C. Once the solution exceeds these temperatures it then behaves as an inverse

soluble salt, with the solubility decreasing with increasing temperature.
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Undersaturated region - 

Crystallisation will not occur

Supersaturated region - 

Crystallisation is likely to occur

Saturation curve

Figure 2.1: The solubility - temperature relationship for gypsum (calcium sulfate dihy-
drate) adapted from [12].

Generally speaking, the rate of crystal growth is proportional to the level of supersatu-

ration, the reader should however be aware that this concept is only appropriate when

considering crystallisation from solution. Crystallisation can also occur in pure materi-

als during the transition from a liquid to a solid when the temperature drops below the

melting point (also known as undercooling). Examples of which include the freezing of

water to ice and the solidification of molten metals. Whilst the techniques used to model

these processes will be assessed, they are not the main focus of the work here.

Whilst it is generally accepted that a solution has to be in supersaturated state for

crystallisation to occur, this does not guarantee that crystals will begin to form. As

previously mentioned, before crystallisation can begin a nucleation process has to occur.
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It is not uncommon that low levels of supersaturation do not provide a strong enough

driving force for stable nuclei to form and therefore no crystal growth is experienced.

This is known as the metastable region. The following subsection will further discuss the

nucleation process and its fundamental kinetic theories.

2.2.2 Nucleation

Nucleation is the process by which ions or molecules within solution aggregate or cluster to

form a solid body known as a nucleus or seed. There are a number of different mechanisms

by which this can occur, these can be classified into two main categories, namely, primary

nucleation and secondary nucleation.

2.2.2.1 Primary Nucleation

Primary nucleation occurs in systems where crystalline matter does not currently exist,

it is often considered the ’classical’ form of nucleation and typically requires high levels of

supersaturation to occur [95]. The primary nucleation mechanism can occur both homo-

geneously and heterogeneously, such that a homogeneous reaction is where spontaneous

nucleation occurs in the bulk of a clear fluid, whilst a heterogeneous reaction is where the

nucleation occurs on a foreign particle or surface.

Nucleation can be can be thought of as the formation of a new phase from an existing

phase, whereby an interface at the boundary of a new phase is formed. During this

process a change in free energy occurs. Gibbs first considered this change in free energy

such that,

∆G = ∆Gs +∆Gv, (2.1)

where ∆G is the total free energy change, ∆Gs > 0 is the free energy cost to create a

interface at the boundary of the new phase, and ∆Gv < 0 is the energy gain due to a new

volume being created.

When considering the classical case of a spherical nucleus being formed from a homoge-

neous reaction, it was found that the rate of nucleation could be given by [134] ,

J = Ahom exp−16πγ3V 2
molecule

3K3T 3(lnS)2
, (2.2)
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where Ahom is the coefficient of homogeneous integration, S is the supersaturation, γ is

the interfacial tension, T is the temperature, K is the Boltzmann constant (1.3805×10−23

J K−1) and Vmolecule is the molecular volume.

Heterogeneous nucleation is when the process occurs either on a surface or foreign mate-

rial. This particular nucleation mechanism becomes significant at lower supersaturations

as the overall free energy required is less than that for homogeneous nucleation. This is

because the surface area is less than the classical spherical case of homogeneous nucle-

ation, and therefore less energy is required to form the interface. Shnel and Garside [147]

determined that the rate of heterogeneous nucleation could be described by,

J = Ahet exp−
16πγ3V 2

moleculef(θcontact)

3KT 3(lnS)2
, (2.3)

where Ahet is the coefficient of heterogeneous nucleation and f(θcontact) < 1 is the scaling

factor, which is dependent on the contact angle. The contact angle is determined by the

surface tensions between the phases.

Whilst kinetic theories for nucleation have been established, both are dependent on nu-

cleation coefficients. It is widely accepted that there are currently no methods for deter-

mining these parameters by theoretical means [95], and as such they have to be obtained

empirically. This can often lead to difficulties as parameters can change when considering

different systems. Despite this, the kinetic models described do offer insight into the

impact of physical factors on the rate of nucleation, and also present a suitable means

with which to correlate experimental data.

2.2.2.2 Secondary Nucleation

Secondary nucleation is a process that occurs due to the presence of existing crystals in

the solution and the interactions between themselves or local environment. An exam-

ple of a secondary nucleation mechanism is fluid shearing. The shear stresses across the

crystal face due to the fluid can sweep weakly bonded molecules away from the crystal,

these molecules then go on to form nuclei of their own. Various other mechanisms for

secondary nucleation have been identified and details of each mechanism can be found in

[72]. Summarising, the main mechanisms are:
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• contact

• shear

• fracture

• attrition

• needle

Secondary nucleation is a complicated process. These complex systems can often have

several of the aforementioned processes occurring at any given time and therefore it is

typically difficult to determine which of the mechanisms are dominant on nucleation rates.

This can lead to difficulties when attempting to model or correlate experimental data in

systems where secondary nucleation is significant [27].

As mentioned, once the nuclei reach a critical radius, crystal growth can occur. This sec-

tion has discussed classical theories for nucleation, which are summarised in Figure 2.2.

However, once stable nuclei are formed, mechanisms unrelated to these govern the pro-

ceeding crystal growth process. The following subsection will discuss the kinetic theories

for crystal growth.

2.2.3 Crystallisation Kinetic Models

Unlike the previous kinetic theories for nucleation, throughout the years there have been

many different theories on the underlying mechanisms for crystal growth. The earliest

theories considered the surface energy of a growing crystal [75]. These suggested that

crystals grew in a way such that their surface free energy was minimised. In liquids,

where molecules can move freely, the state with minimum free surface energy and hence

minimum surface area, is spherical. Clearly, as the crystal is solid, growth has to follow

the characteristic shapes of the faces. It was later proposed that crystal faces with a high

lattice density (quantity of molecules in that particular lattice plane) are generally more

stable and therefore have a low surface energy, and that these these faces would have the

minimum growth velocity [33].



Chapter 2. Current Numerical Models and Techniques for Application in Crystal
Growth and Mass Deposition Problems 38

Figure 2.2: Schematic of the nucleation process.

Whilst these theories are attractive from a thermodynamic perspective there is little quan-

titative evidence to support them. It is generally accepted and easily observable that the

crystal growth rate depends on both the supersaturation and solution properties, and

these theories include neither of these. Authors have also disputed the validity of these

theories [33], showing that experimental behaviour can differ greatly from the theoretical

results [97]. Therefore in order to correlate growth rate to these variables, alternative

theories have to be considered.

The first crystallisation models which attempted to correlate the rates of crystallisation

with the level of supersaturation suggested that crystal growth was purely a diffusional

process [139]. This theory suggested that during crystallisation, the depletion of solute
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close to the crystal face would cause a localised drop in solution concentration, also known

as a mass transfer boundary layer. It was then assumed that due to the concentration

gradient, solute would diffuse from the bulk of the solution to the crystal face. It was

stated that the crystal growth rate was dependent both on the size of the boundary layer

and the rate of diffusion, such that,

1

A

dm

dt
=

D

δ
Ms(c− c∗), (2.4)

where m is the mass of crystal deposited, Ms is the molecular mass, A is the area of the

growth surface, D is the diffusivity, δ is the mass transfer boundary layer thickness, c is the

concentration and c∗ = c∗(T ) is the saturation concentration, where T is the temperature.

Much like the boundary layer theory for heat transfer, it is known that when increasing

the flow velocity parallel to the crystal face the size of the mass boundary layer also

decreases [24]. This would suggest that in highly agitated systems the diffusion path-

way could potentially decrease to nearly zero, and would imply an almost infinite rate of

crystallisation. As this is intuitively not physically possible, this diffusion theory for crys-

tallisation does not hold. Furthermore, if crystal growth was purely a diffusional process,

the rate of dissolution would be the same as the rate of crystallisation. Experiments have

shown that this is not the case, as can be seen in [135].

Clearly, as crystallisation is not purely diffusional, then some addition process must occur.

This process is often referred to as the surface integration step and describes the process

in which diffused solute molecules are integrated into the crystalline lattice. There are a

number of classical theories behind the mechanisms governing the integration of solute

into the crystalline lattice. The majority of these theories can be generally categorised as

adsorption layer theories.

The first theory of surface adsorption was proposed by Kossel in 1934. This theory stated

that crystals are adsorbed into a layer of size 1nm to 10nm adjacent to the crystal surface.

In this layer molecules are free to diffuse across the surface of the crystal where they can

then attach to one of 3 types of sites. These sites are named the terrace, step or kink

and a visual representation of them can be seen in Figure 2.3. Kossel postulated that the
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most energetically favourable site for the molecule to integrate, would be the kink site,

due to it having the most bonds with the existing lattice. Due to this, the crystal face

would eventually fill until a flat surface is formed.

Step

Kink

Terrace

Crystal Face

Figure 2.3: Model of the crystal face, adapted from [95].

Once a surface is complete, a mechanism for beginning a new layer must occur. Initial

theories suggested that this new layer was formed by nucleation on top of the previous

layer, known as 2D Nucleation. Equations which describe 2D nucleation rates can be de-

rived much like the rate equation for 3D spherical nucleation, however these suggest that

growth should not occur at low supersaturations. Experimental work [180] has shown

that crystals do in fact grow at low supersaturation, much lower than those needed to

induce nucleation [116]. This disagrees with the previous theory and would suggest that

crystal growth does not occur by the 2D nucleation mechanism for low supersaturated

solutions. Whilst this is observed to be the case at low supersaturation, theories have

been developed such as the birth and spread model [142], which assumes that the main

mechanism for layer growth at high supersaturations is two-dimensional nucleation.

For solutions at low supersaturations, Burton-Cabrera-Frank (BCF) [39] suggested that,

instead of 2D nucleation, layers are grown through a spiral dislocation. An example of a
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spiral dislocation on a crystal face can be seen in Figure 2.4.

Figure 2.4: Example of a crystal face growing from a spiral dislocation, [134].

Due to the continuous nature of the spiral formation, the need to start a new layer is

removed as in two-dimensional nucleation. The BCF model states that the growth rate

of the crystal face is given by,

A
(c− c∗

c∗

)2
tanh

( Bc∗

c− c∗

)

, (2.5)

where A and B are empirical coefficients, which are specific to the system. These con-

stants are often complicated and can depend on the temperature and crystal morphology.

Due to this, A and B can be difficult to determine experimentally [134]. Despite this,

the model does offer some insight into crystallisation behaviour, with growth rates fol-

lowing a parabolic relationship with supersaturation at low supersaturation, but a linear

relationship at higher level supersaturation. These different behaviours can be attributed

to the change in mechanism for the particular solution supersaturation, such that at low

supersaturation, spiral growth is the dominant process. At higher saturations 2D nucle-

ation mechanisms take place, and at very high saturations molecules attract to the lattice

in a sporadic fashion, leading to spherulitic, fractal, and dendritic patterns [56]. The

mechanisms for growth and behaviour predicted by the BCF model can be observed in

Figure 2.5.

The BCF model was derived for crystal growth from vapours, whoever, the diffusion of

the solution through the liquid medium can have a strong influence on the crystal growth

behaviour [50]. Thus, additional models have to be considered which can take into account
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Figure 2.5: The Burton-Cabrera-Frank (BCF) and the mechanisms for crystal growth,
[56].

the effects of the solution flow. Gilmer et al. [76] derived a model which incorporates

the BCF with bulk volume diffusion, however it requires multiple coefficients which are

difficult to determine experimentally. Alternative models for incorporating bulk diffusion

with crystal growth have also been developed [51]. However, whilst these new models can

offer some insight into crystallisation behaviour, their complexity makes them challenging

for industrial application.

Due to the aforementioned problems with implementing the previous models for indus-

trial purposes, a simple model which focuses on coupling the diffusion of solute through

the liquid volume and the integration of solute into the crystalline lattice is often used.

This model is commonly referred to as the reaction-diffusion or two-step mass transfer

model (TSM).
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The reaction-diffusion model assumes that as solute attaches to the lattice, it is depleted

from the solution local to the crystal face. This results in a region of lower concentration

solution close to the crystal. Due to this, solute diffuses from the bulk of the solution to the

crystal face. As previously mentioned, models have been developed which assume crys-

tallisation is a purely diffusional occurrence. These theories were however easily proved

incorrect by experimental evidence. The model now expands on these previous purely

diffusional models by adding an additional relationship such that the surface integration

step is considered. Therefore the reaction diffusion model is described by,

1

A

dm

dt
= kdMs(cbulk − cinterface), (2.6)

where kd = D
δ
is the coefficient of mass transfer, m is the mass of crystal deposited, cbulk

is the concentration in the bulk of the solution and cinterface is the concentration at the

crystal surface. The growth rate with regards to the surface integration can be described

by

1

A

dm

dt
= krMs(cinterface − c∗)η, (2.7)

where kr is the coefficient of surface integration, c∗ is the concentration at saturation and

η is the order of the reaction [134].

The coefficients kd and kr are often dependent on the conditions of the system, such as the

temperature and fluid velocity, however for a particular system they are often considered

constant. The behaviour of the system is heavily determined by the relative dominance

of the diffusion or integration step, and can often give insight into the impact of varying

the system parameters. Garside attempted to quantify this by an ’effectiveness factor’

[71] which determines the relative importance of diffusion or surface integration on the

system (an effectiveness factor of 0 signifies a purely diffusional process).

There is currently no known method to determine the parameters kd and kr analytically

and therefore they have to be determined experimentally. However, due to the difficulties

measuring the concentration at the interface (cinterface), experimentalists tend to correlate

crystal growth data to,
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1

A

dm

dt
= KMs(cbulk − c∗)ǫ, (2.8)

where K is the coefficient of crystal growth, and ǫ is the overall order of the crystal growth

system. Generally speaking, it is difficult to separate the values of kd and kr from the

measured value of K. Some studies attempted to estimate a value for kd through mea-

suring crystal dissolution rates, which is classically thought to be a diffusional process.

However it is thought that, for certain materials, crystal dissolution contains an additional

disintegration step and therefore these methods may not be valid [28]. Additionally, re-

searchers attempted to estimate kd through empirical mass transfer correlations such as

the Frossling equation [134, 171], however this method is often reliant on approximations

of the system properties. Despite these aforementioned complications researchers have

made efforts to develop alternative methods such that these parameters can be isolated

from growth data without the use of mass transfer correlations [110]. However it is noted

that these methods are invalid for η = 1.

Clearly, the reaction-diffusion model does have limitations and in some circumstances

complications can be experienced when attempting to determine coefficients for the mod-

els. Although due to its simplicity it cannot explain complex behaviours such as the layer

growth of crystals or the faceting of crystal faces, this model continues to be the most

common approach for industrial chemical engineers (both when correlating experimental

data and modelling crystal growth phenomena).

2.2.3.1 Summary

This section has discussed the development of crystal kinetic theories throughout the past

century, including the current prevailing models used today. Whilst significant progress

has been made regarding these theories, there are often difficulties and limitations when

implementing these models to describe crystal growth. Current theories for crystallisation

kinetics advanced the previous methods of crystal growth, such that the solute diffusion

effects are considered, however, in complex systems other physics which are not considered

can impact greatly on the rate of crystal growth. Examples of which include; industrial

crystallisation reactors, where non-homogeneous distributions of varying sized crystals
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can be found, or systems which consider complex fluid regimes, such as the problem

considered in this research work. Hence, additional techniques which further couple fluid

flow or other physics to the previously discussed crystallisation kinetics models will be

considered.

2.3 Fluid Flow and Computational Fluid Dynamics

In this section various methods and models which describe the fluid dynamics are eval-

uated. At this stage the coupling of the crystallisation kinetics is not considered as this

section will focus on the fluid dynamics exclusively.

The majority of models assessed in this section when discussing fluid flow phenomena

will be some application or variation of numerical solutions to the Navier Stokes (NVS)

equations. The NVS equations describe the transportation of momentum throughout a

fluid system and are the fundamental basis for most computational fluid flow problems.

This equation can be written as,

∂

∂t
(ρu) +∇ · (ρuu) = −∇p+∇ · T+B, (2.9)

where p is the pressure, u = (u1, u2, u3) is the fluid velocity, ρ is the density, T =

µ
(

∇u + (∇u)tr − 2
3(∇ · u)I

)

is the deviatoric stress tensor, I is the identity matrix, uu

and ∇u are second rank tensors, µ is the dynamic viscosity and B is the body force

(i.e. when considering the gravitational force B = ρg, where g is the acceleration due to

gravity).

For most practical applications, the NVS equations are highly non-linear, and therefore

solutions cannot be obtained through analytical means, except for very specific circum-

stances. Due to this, highly evolved numerical methods are used to solve them. These

techniques as a collective are usually referred to as computational fluid dynamics, or CFD.

This involves the mapping of a numerical grid over the geometry of interest, such that

the equations can be discretised and solved over the grid using numerical methods, such

as the finite volume method (FVM) or the finite element method (FEM) [66, 115, 155].

It is very common in fluid flow problems that an incompressibility condition can be given

such that ∇ · u = 0 [6], assuming constant viscosity (2.9) then simplifies to,
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ρ
(∂u

∂t
+ (u · ∇)u

)

= −∇p+ µ∇2u+B, (2.10)

The FVM allows (3.5) to be discretised such that the following set of equations are

obtained,

ρ
∂ui

∂t
V +

Nfaces
∑

f

(ρuiujnjA)f = −
Nfaces
∑

f

(pniA)f +

Nfaces
∑

f

(µ
∂ui

∂xj
njA)f +BiV. (2.11)

These equations are then solved over every cell in the computational grid, such that Nfaces

denotes the number of faces in a cell, subscript f denotes the index of the cell face, A

is the area of the face, x = (x1, x2, x3) is the directional vector, u = (u1, u2, u3) is the

velocity vector, Bi is the body force in the ith direction, V is the cell volume and the face

normal vector is given by n = (n1, n2, n3). Where summations are enclosed by subscript

f the values inside are taken at the cell face, f .

Clearly the discretised NVS equations are much more approachable than their continuous

counterpart. However, the precise approach in which the discretised NVS equations can

be solved is often complex and involves the use of sophisticated techniques in order to

successfully couple the fluid momentum to the pressure. Furthermore, flow variables are

stored at the cell centre, therefore numerical techniques are required such that the face

values can be interpreted from the cell centres. There are a number of different numerical

methods in which the face values can be calculated, each having its own strengths and

weaknesses. A variety of solution methods also exist in order to step the solution through

time. A summary of the various solution methods for CFD can be found in [6].

Whilst the aforementioned methods outline the most common CFD techniques, there are

other methods which are less commonly used in CFD, some of which include the use of

’meshless’ numerical methods such that a numerical grid need not be implemented. Other

methods solve the Boltzmann equation instead of the NVS [47]. The following subsections

will discuss how CFD techniques can be implemented in order to describe the main fluid

dynamics features experienced in the crystallisation of impinging droplets, namely, droplet

impact and thin film flow. The aforementioned systems are physically complex and often

the governing physics are not well understood. In addition to this, solutions of the full
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NVS equations are often computationally expensive and therefore simpler, alternative

methods can be attractive. Due to these difficulties, a broad range of research will be

considered here, including; experimental work, analytical techniques, models based on

simplifications of the NVS equations, and also the previously discussed CFD methods.

This will allow the reader to gain an informed appreciation of the governing physics, the

challenges when modelling them, and the currently available techniques for doing so.

2.3.1 Droplet Impact

The problem of interest (before flowing down the surface and crystallising) consists of

falling droplets of liquid impacting on a inclined surface. This section will focus on previ-

ous works which have attempted to capture this behaviour. Problems of this nature are

often challenging to solve, as they involve multiple fluids, are transient in nature and can

exhibit various different behaviours depending on the system properties. Also multiple

physics such as surface tension effects, the geometry and properties of the surface, and

any existing liquid on the surface can all play an important role.

Research on droplet impact is usually separated into studies regarding impact onto liquid

films and studies regarding the impact onto solid surfaces. This is because the govern-

ing physics, and hence modelling considerations, between the two are markedly different.

Generally speaking, the impact of droplets onto an existing liquid film, where the film

thickness is a lot greater in magnitude than the surface roughness, is well understood. Im-

pact phenomena are usually separated into either splashing or spreading, where a splash

is defined as an event where liquid is ejected from the crater formed by impact, either

from the crown or centre (see Figure 2.6). Ejection from the centre, also know as a Wor-

thington jet, is less common and [193] states these only occur when the film height is

greater than the droplet diameter. The behaviour of the droplet impact is a result of the

competing forces of inertia and surface tension. Whilst gravity will affect the acceleration

of the droplet as it free falls, its effect is considered negligible during the impact. Also,

the viscosity is considered to have minimal effect on the impact behaviour. Inertia forces

attempt to drive the impacted droplet upwards whilst the surface tension attempts to

arrest this motion. The relative magnitude of the forces determines whether the droplet

splashes or spreads.
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Figure 2.6: Diagram of the characteristic behaviour of a droplet splash on an existing
liquid film, taken from [193]. Where 1 is the residual top of impacting the drop, 2 is the
wall, 3 is a section of crown-like sheet propagating outward, 4 is a cross-section of the free
rim, 5 are secondary droplets formed from cusps of the free rim and 6 is a liquid layer on
the wall.

The splashing of droplets on liquid films is considered a complex process and usually

advanced numerical methods would be required to describe the process in full. However,

several semi empirical correlations have been developed which can offer some basic insight

into the behaviour of an impacting droplet. One of the main results of this nature was

posed in [194], where it was determined experimentally that the minimum velocity for a

splash from a continuous drip to occur was,

V0 ≥ 18(
σ

ρ

1
4
υ

1
8 f

3
8 ) (2.12)

where V0 is the impact velocity, σ is the surface tension, ρ is the fluid density, υ is the

dynamic viscosity and f is the impact frequency. This threshold has also been shown to

hold true in CFD studies such as [158]. The authors in [158] use a multiphase CFD model,

namely the volume of fluid (VOF), which through the advection of a scalar property, the

volume fraction (denoting the fraction of a given fluid phase within a cell) captures the

interface between both the liquid and gaseous phases. Details regarding the mathematics

and computational implementation of the VOF will be omitted at this stage, as they will

be discussed in detail in Chapter 4. The splashing criteria in (2.12) was also shown to
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be appropriate for droplets impacting obliquely [161] and for droplets impacting on an

inclined surface [174]. However, in these cases V0 is replaced by the the velocity normal

to the surface when considering inclined surfaces.

Other studies have been carried out which implement the VOF model for modelling

droplet dynamics, [79] uses the VOF combined with the level-set method to model the

droplet impact behaviour on liquid films. The VOF model is classified as a diffusive inter-

face method, such that due to the numerical implementation of the model, the boundary

between phases is not defined by a sharp interface, but rather by a graduated transition

from one phase to the next. This behaviour can often lead to problems when considering

additional physics that occur at the interface. A classic example of this is the imple-

mentation of a surface tension model where the surface force generated due to surface

tension is dependent on the curvature of the interface. As the interface is not sharply de-

fined, it is often difficult to accurately calculate the surface curvature and this can lead to

non-physical results being produced by the model. Unlike the VOF, the level-set method

is a sharp interface model [146] and therefore does not suffer from the same limitations

when calculating the curvature of the interface. However, the model in [146] performs

poorly when preserving volume conservation, making it unsuitable to accurately model

fluid flows. Due to this, the study in [79] couples the VOF with the level-set method,

such that the VOF model describes the transport of the volume fraction, whilst the level-

set method is used for geometric calculations where surface normals and curvatures are

required. This method was shown to greatly reduce complications when using the contin-

uum surface force (CSF) surface tension model [30]. The study reports that the complete

droplet impact behaviour can be captured over a time frame of 5 × 10−3s. Results are

also in agreement the with the splashing criteria.

For situations where the velocity was shown to be below this threshold, spreading was

seen to occur. The droplet impact propagates waves through the film, where expressions

for the wave frequency and magnitude were also determined in [158]. This may also be an

important point for consideration as studies have shown that unsteady waves may have

a impact on mass deposition rates [187].

Whilst the impact of droplets on liquid films is well understood, the impact of droplets
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on solid surfaces is less so. In these situations, the properties of the solid surface play

a major role in the behaviour proceeding impact. Researchers have made some progress

modelling this phenomenon computationally, however problems are seen to occur when

attempting to implement physically correct boundary conditions at the moving contact

line. The moving contact line defines the contact between the solid surface, liquid droplet

and gaseous phase, as shown in Figure 2.7.

ϴ

Contact Line

Contact Angle

Gaseous Phase

Liquid Droplet

Solid Surface

Figure 2.7: Diagrammatical representation for the moving contact line when considering
a droplet on a solid surface.

Often CFD simulations impose no-slip boundary conditions for the wall surface. This im-

plies that that at this point, the velocity component parallel to the boundary is stationary.

This however can often lead to complications when modelling impacting droplets, as this

method tends to lead to a singularity at the contact line [167]. Researchers have experi-

mented with different boundary conditions, however it is usual for either experimentally

obtained results to be superimposed or a fixed angle to be specified at the contact line.

An example of a numerical implementation which attempts to address these problems

through the imposition of varying contact angles can be found in [109]. Here authors use

the VOF model to model the impact of non Newtonian droplets onto a dry surface. The

authors initially impose an empirically calculated, constant contact angle on the droplet

at the point of impact. Once the droplet impacts and advances along the surface, it even-
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tually reaches a point of rest. After this point the droplet begins to recede and a different

contact angle is imposed for this motion. As the impact behaviour is heavily determined

by the surface tension effects, much like the previous study, the authors implement the

CSF surface tension model [30]. Results from this study suggest that the variable contact

angle technique performs well, with computational results being in good agreement with

experimental data.

Surface tension effects are important when considering the impact of droplets and there-

fore it is often critical that these effects are captured accurately. The previously discussed

CSF model is known to suffer from several limitations, such as the dependence on the

surface curvature, however as the majority of commercial CFD packages have utilised this

for a considerable period of time, it remains to be the most popular surface tension model.

Despite this, there are a number of alternative models in which the surface tension can

be captured, a critical assessment of several current surface tension models can be found

in [16].

In addition to these aforementioned studies which attempt to address droplet impact from

a fundamental perspective, many researchers have carried out studies for droplet impact

in industrial scenarios. Droplet impact and spreading (typically with no splash) has been

studied in [13], where experimental work was carried out on molten metal droplets for

impact velocities of 1.0 to 4.0 ms−1 and substrate temperatures from 25 to 240◦C. The

authors determined from the experiments that the spread radius of droplets could be

described by,

Dmax = D0

√

We+ 12

3(1− cos θcontact) + 4( We√
Re

)
, (2.13)

where Dmax is the maximum droplet spreading distance, D0 was the initial droplet diam-

eter, We is the Weber number, given by We =
ρD0V

2
0

σ
, θcontact is the liquid-solid contact

angle, and Re = ρD0V0

µ
is the Reynolds number.

It was found that this expression was less accurate for situations where the droplet so-

lidified on impact. An analytical study on this was carried out in [22] where similar

expressions were formulated.
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2.3.1.1 Summary

Much research has been carried out in order to understand the impact dynamics of falling

droplets. Both analytical and experimental studies have been carried out in order to

establish the threshold for splashing and spreading of droplets. In addition to this mod-

ern studies are using advanced numerical techniques to capture the splash of a droplet.

Despite the large amount of research in this area, there are still difficulties with the imple-

mentation of correct boundary conditions in many approaches. Furthermore, the impact

of droplets on dry surfaces is still not well understood. The problem assessed in this thesis

takes place over periods of up to 30 days, whilst research has shown that CFD simula-

tions capture impact dynamics over a period of 5ms. It is therefore likely that a full CFD

simulation of droplet dynamics over this full time-frame would be challenging. It is envi-

sioned that due to this the semi empirical correlations will be more useful. Additionally,

as the problem considered is observed to show that leakages occur over long time-scales,

the short term behaviour is likely not to have a major impact on the overall problem.

Experimental data from the NNL has suggested that after relatively short periods of time,

liquid films begin to form across the impact surface, therefore in addition to the droplet

behaviour it is also critical that the of the behaviour of liquid films is well understood.

The next section will assess previous experimental and computational studies regarding

the modelling of fluid films.

2.3.2 Liquid Films

Due to their common occurrence in industry, the ability to explain and model the be-

haviour of liquid films has been a popular subject of investigation for researchers over

the past century. In 1916 Nusselt developed analytical solutions to describe the height

of smooth, laminar, gravity driven films [140]. This theory was developed in conjunc-

tion with heat transfer theories in falling thin films. This work determined that the film

thickness, h, could be given by the expression,

h = δNusselt =
3

√

3µ Q

ρ2gB sin θ
, (2.14)

where µ is the dynamic viscosity, δNusselt is the Nusselt solution, B is the width of the

film, θ is the angle of the plane and Q is the mass flow rate of liquid.
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This theory however only held for smooth laminar flows, and even though remaining lam-

inar, films were found to oscillate and become ’wavy’ at relatively low Reynolds numbers.

Experimental results have shown that the minimum Reynolds number for a film to remain

sufficiently smooth is approximately Re = 30 [24].

In order to account for the wavy nature of the films, [99] reported that the average

film height would in fact be lower than that predicted from the Nusselt solution (2.14).

Through analytical methods, the authors determined that the film height could be de-

scribed by h = 0.92δNusselt. Despite this, experimental work has not always agreed with

this theory, and has shown the average film height to fall both above and below the Nus-

selt solution [132, 198, 4].

Whilst the Nusselt solution has shown to be inaccurate when considering the transient,

wavy nature of film flows, and is only valid under specific conditions, this approach is

still used extensively in computational models today. Often it is unnecessary to capture a

high resolution solution describing the exact motion of a film, and therefore models which

require a simple description of the fluid flow implement the Nusselt solution in order to

establish a basic geometric approximation. Once the flow properties have been calcu-

lated, this solution can then act as a platform in which additional physics can be solved.

Examples of models where this methodology has been used can be found in [117, 162, 129].

Whilst simplified theories are still used extensively and can offer insight into the behaviour

of the film, for a more accurate description (including waves or films over complex geome-

tries) more complex numerical models are required. For example, [181] studied the flow

of a thin film flowing down an inclined plane. The authors in this work carried out both

experimental work, in order to gain an appreciation for the physics of the problem, and

then later carried out transient two-dimensional CFD calculations in CFX-4, a commer-

cial software package, using the homogeneous multiphase model [199] (CFX’s equivalent

of the VOF model). In some cases surface tension effects are also known to be impor-

tant when considering the motion of liquid films and therefore, the CSF surface tension

model is employed. Furthermore, for transient calculations the same complications are

experienced at the film leading edge, or contact line, much like the models concerned with
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capturing droplet impact considered in Section 2.3.1.

Three-dimensional studies have also been carried out on the flow of liquid films down

inclined planes, e.g. shear flow down a duct was studied in [111]. Whilst the driving force

for the film motion is different to that of gravity driven films, the techniques used here

to capture the film are still applicable. In [111], the VOF model, together with the CSF

surface tension model was used. The authors employed a simple model at the contact

line, such that a constant angle was imposed. Unlike the previous studies, a steady state

fluid solver was used, and the transient terms in the governing equations are no longer

considered. Results from this study were shown to be in good agreement with experimen-

tal data and surface tension effects were shown to have a strong impact on the width of

the film, however they had relatively little impact on the height of the film. A review of

surface tension models when coupled to the VOF for the modelling of liquid films can be

found in [16, 2].

In [1], the authors studied wavy falling films using a combination of a transient in-house

DNS (Direct Numerical Simulation) CFD code [157] and the VOF model. The CSF

model was implemented to capture the effects of the surface tension. Additionally, the

heat transport and species transport equation were solved. The latter equation allows

description of matter which is transported by both the advective motion of the fluid, and

the diffusion of solute through the film, therefore allowing the calculation of the species

concentration, spatially and temporally, throughout the film. Results from this study

showed that the inner structure of the film, particularly the downward velocities due to

its wavy nature had a large influence on both the species transport and heat transfer

throughout the film. In a laminar, smooth film species can only travel adjacent to the

flow via the diffusive mechanism, however these waves cause the advective motion of the

species both towards the liquid - solid interface and away from the liquid-gas interface.

Furthermore, wavy films possess a larger surface area on the liquid-gas interface than an

equivalent flat interface and therefore a larger heat transfer coefficient is observed.

Whilst several of the computational studies observing liquid films have been discussed, it

should be noted that these numerical techniques allow for the addition of complex phys-

ical effects, which otherwise would not possible through analytic approximations such as
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the Nusselt solution. Additional physics were included into the VOF model for thin films

down inclined planes in [80], where authors used OpenFOAM [144], an open source CFD

package, to solve the three-dimensional transient NVS equations coupled with the VOF

model for non-Newtonian fluids. The authors also implement the CSF model to account

for surface tension effects. This study was shown to be in good agreement with experi-

mental data. Similar studies have been carried out using OpenFOAM for thin films, such

as in [55]. The authors in [55] used a similar implementation of the VOF model with

the CSF surface tension model, however they implemented an adaptive meshing routine.

This alleviates some of the aforementioned problems with the diffusive interface, such that

the mesh at the interface is refined and the diffusion across the interface is minimised.

This study also assesses the stability limits of the film, as the experimental data had also

shown that under certain circumstances fingering patterns or rivulets can occur. Figure

2.8 demonstrates a typical unstable film where rivulets are present.

Figure 2.8: Example of an unstable film, where rivulets are formed [145].

Clearly, the VOF model is used extensively in a range of applications which require the
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capture of interfaces between multiple immiscible fluids, and can reveal a number of phys-

ical phenomena. A summary of these different applications can be found in [93]. Whilst

solution of the full NVS equations with the VOF can capture a range of physical effects,

it is not without its drawbacks, e.g. it can be extremely computationally demanding. For

an accurate transient solution, very small time-steps have to be used. This implies that

phenomena over large time-scales are generally infeasible to solve transiently. Moreover,

the VOF is a diffusive interface method, and whilst this can offer some advantages, such

as making the system less numerically stiff, it can also offer some major drawbacks. A

primary complication when using the VOF model is that the mesh in the region of the

interface has to be highly refined in order to minimise numerical diffusion, which can

often be difficult to implement if the interfacial position is not known a priori. Fur-

thermore, these highly refined meshes, when coupled with the need for small timesteps,

can be extremely computationally demanding and therefore place limitations on the time

and length-scales which can feasibly be considered. The diffusive nature of the interface

can also cause problems when implementing interfacial physics, such as surface tension,

evaporation and heat transfer due to latent heats. Due to these drawbacks, authors have

attempted to simplify the problem of thin films down inclined planes. Under various situ-

ations, such as when the flow is either very slow, or the characteristic stream-wise length

is a lot greater than the film thickness, inertia effects can be ignored, an example of this

being the Nusselt theory. Using these assumptions the full, transient NVS equations can

to be simplified, such that an equation which governs the evolution of the film height

can be formulated. This method is also know as the lubrication approximation [145].

The advantages of such a method is that the problem loses one degree of freedom, for

example a two-dimensional problem for flow velocity u(x, y) reduces to a one-dimensional

problem for film height h(x). An extensive study which assesses the applicability of this

method for modelling thin films down inclined planes can be found in [74]. The authors in

[74] show derivations of the lubrication approximation for thin films over surfaces which

contain small topological changes such as bumps and troughs. In addition to the math-

ematical derivations, the authors present numerical finite difference and finite volume

formulations for the problem. The system is still complex to solve due to the need for

a segregated pressure-film height solver (much like the pressure-momentum coupling in

traditional CFD). Results from this study are shown to be in excellent agreement with

the experimental results in [58]. Whilst this type of modelling reduces the complexity of
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the NVS equations, additional physics can still be coupled to the lubrication equations.

For example the same authors as in [74] later develop their model to include evaporative

effects, which can be found in [73]. Authors in [145] also include additional physics into

the lubrication approximation, such as evaporation, heat transfer and films over complex

geometries. Additionally, [89, 3] use the lubrication approximation to assess the effects

of surface tension in liquid films of both Newtonian and non-Newtonian fluids.

As the evolution equations for the lubrication approximation are simpler than the NVS,

this allows additional mathematical analysis to be carried out on the equations, which

otherwise would not have been possible. The authors in [62] carry out analysis on the

lubrication approximations to determine the stability limits of the film. Once the film

becomes unstable, it splits into a fingering pattern.

2.3.2.1 Summary

The ability to model and understand the behaviour of liquid films has been a key subject

of interest for researchers over the past century. Early research saw the development of

analytical approximations for film flow, which are still used today. These models are

often implemented into modern studies where a simple approximation of the fluid flow is

sufficient. In comparison to numerical CFD methods, such as the FVM and FEM, these

analytic approximations are relatively easy to implement and additionally the compu-

tational cost for calculations is low. In situations where a more complex description of

the fluid flow is required, such as when a transient solution, or when additional physics

or complex geometries need to be considered, research has shown that multiphase CFD

models, such as the VOF model, can provide accurate solutions. Whilst these models

are robust, due to their computational costs they do have limitations when considering

the length and time-scales of a problem. This chapter has also discussed an intermediate

step between the analytic approximations and full NVS equations, in the form of the

lubrication approximation. This modelling approach allows the simplification of the NVS

equations. These methods reduce the number of variables considered in the problem,

hence reducing computational cost. Also due to their simplicity, relative to the NVS

equations, mathematical analysis can be carried out on the equations, such that infor-

mation about the system can be obtained e.g. stability limits. However, these models
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have limitations, such as they can only be applied under specific conditions and numerical

methods are still needed to solve the problem.

2.4 Computational Crystal Growth Models

This section will assess computational methods for implementing the previously discussed

crystallisation kinetic models. The previous kinetic models describe the rate of crystalli-

sation with respect to the levels of supersaturation in the solution, whilst these model

hold true, the level of supersaturation at the crystal face in a real system can often be

attributed to a number of physical factors, such as heat transfer, evaporation and the dy-

namics of the fluid flow. Due to this, kinetic models have to be coupled to computational

models which can describe the individual phenomena, and their interaction between each

other.

Due to the large occurrence of crystallisation in a multitude of processes, it is no surprise

that a large amount of research has been carried out for a variety of applications. This

section will separate the various applications into the following subsections and assess

work from each in order to gain a broad appreciation for the various possible approaches:

• Fundamental crystal growth studies

Research here relates to growth of a crystal from a single seed or nucleus. It tends

to focus on the techniques used to model crystallisation, often implementing non-

physical, non-dimensional parameters, rather than using parameters relating to real

life crystallisation problems.

• Crystal growth optimisation in industry

Studies in this section focus on modelling the optimisation of industrial crystal

growth processes. One major application in this field is crystal growth in large scale

reactors. In addition, studies which focus on the growth of single, large crystals are

considered.

• Crystallisation and precipitation fouling in industrial equipment and in-

frastructure

As discussed in Chapter 1, fouling in industry is a major problem. Due to the

major cost implications associated with industrial fouling, there is a large volume
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of research carried out in order to understand and minimise this problem. This

subsection will discuss pertinent aspects of this research.

• Models for describing geological formations

Models describing the growth of crystalline formations that occur in nature are con-

sidered such as stalagmite and stalactite growth, icicle formations and the deposition

of calcite in rivers and streams.

2.4.1 Fundamental Crystal Growth Studies

Fundamental crystal growth studies tend to focus on framing crystal growth problems as

a moving boundary problem, where the moving boundary describes the crystal interface

as it grows through time. The vast majority of studies tend to focus more on assessing

the applicability and accuracy of numerical methods, than describing growth for practical

industrial usage.

The moving boundary methods for crystal growth can be separated into two classes;

sharp interface models and diffusive interface models. Sharp interface models generally

model the solid-liquid interface explicitly, such that there is an exact divide between the

phases. In the majority of commercial CFD software this is accomplished via moving

mesh techniques. Whilst this method offers clarity between the interfaces, it is often con-

sidered difficult as moving the mesh in a robust manner is often challenging to implement.

Furthermore, singularities can often occur due to the sharp interface, and the system of

equations can be considered ’stiff’ and therefore difficult to solve. Classically, moving

boundary methods were posed as sharp interface models, with the mathematical formu-

lation classed as a ’Stefan problem’ [128]. Stefan problems have been a major subject of

interest over the past century, and are not limited to crystallisation problems. They can

generally be used to describe most problems involving a moving interface, such that a

kinetic expression can be imposed upon it.

The most popular methods for solving a moving boundary problem using CFD techniques,

are diffusive interface models. These models are often referred to as ’fixed grid’ methods,

such that the separation of the phases can be described without alterations to the mesh.

This offers many advantages as it alleviates the difficulties experienced when implement-
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ing sharp interface models. As mentioned, the governing system of equations for sharp

interface models are stiff, and therefore it can often be difficult for numerical solvers to

obtain accurate or even correct solutions. Fixed grid diffusive methods contain numerical

diffusion across the interface, meaning that there is a graduated transition from one phase

to the next, as seen in Figure 2.9. This approach can often make it easier for numerical

solvers to obtain a solution to the moving boundary problem. Despite this, these methods

can pose their own problems due to the diffusive nature of the interface, particularly when

applying physics which occur on the phase boundaries. The most common methods for

fixed grid, moving boundary methods include; phase field, volume of fluid and level set

methods. This section will assess studies carried out using these methods.

Figure 2.9: Diagrammatical representation of a (a) diffusive interface solution and (b)
sharp interface solution, for a one-dimensional problem [130].

2.4.1.1 Phase Field Methods

The phase-field method is a diffusive interface method, where a phase parameter, φ is

introduced which describes different phases of a system, i.e. for a liquid-gas system, in

the liquid region φ = −1 and in the gaseous phase φ = 1, these phases are then separated

by a diffuse interface of a certain thickness, where the phase field parameter transitions

from -1 to 1. The exact mathematics of phase field method can change depending on the

application, however generally speaking differential equations which describe the evolution
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of the phase variable, φ are solved. The phase field equation takes the general form [163],

∂φ

∂t
= M∇2f(φ) + g(φ) (2.15)

where φ is the phase field variable, M denotes the interface width, f and g are functions of

the phase field, however their exact form depends on the physical application being con-

sidered. For example when using the phase field method to model the advected interface

between two fluids, g = −u · ∇φ and f(φ) is a function relating to the chemical potential

of the system [70]. The ability to control the interface width, offers great advantages

when using numerical methods to solve the phase field equation (2.15), as it can both

decrease the stiffness of the system of equations and increase solver stability. Whilst this

is the case, the phase field method does have limitations, such as the governing equations

are a phenomenological description of the system and only take on a physical meaning at

the sharp interface limit [130].

As the studies in this section tend to focus on the application of the method, systems

are often simplified such that either heat transfer or the solute concentration is captured.

Often the liquid is considered stationary, such that the NVS does not require solving.

The authors in [45] derive the phase field equations for both the solidification and crys-

tallisation where the driving force for phase change are the temperature and solution

concentration, respectively. Systems are formulated in one-dimension such that numer-

ical calculations are kept simple. Results from the phase field system are compared to

the solution of the sharp interface model which is solved analytically. Results were shown

to be in reasonable agreement. Similar work was carried out in [163] where phase field

equations were developed in two-dimensions for both temperature dependent solidifica-

tion and solution dependant phase change. No advective effects due to a fluid phase were

considered, however a new adaptive mesh method was developed such to increase the

numerical stability and accuracy of the system. The adaptive meshing functioned such

that regions across the interface were refined.

Whilst the aforementioned studies do not include fluid flow, the phase field method is

more than capable of describing not only fluid systems but also a number of systems

with moving phase boundaries. Examples of phase field formulations for capturing the
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interface between multiphase fluid flows can be found in [14, 5], however, no phase change

is experienced in these systems.

Phase field methods for phase change problems have also been carried out where fluid

flow effects are considered. The authors in [192] formulated the phase field equations in

order to model dendritic formations, grown from a single crystal seed. The equations are

formulated both in two dimensions and three dimensions, and solved alongside the energy

equation and the NVS equation. The authors in this study implemented similar adaptive

meshing techniques to those of [163]. Results from the two-dimensional study agreed well

with classical results, however it was found that the system was highly three-dimensional

in nature and therefore, only three-dimensional calculations agreed with the experimental

data.

The phase field method is used extensively in phase change problems, however it is not

without its downsides. Namely, the phase field equations only make physical sense at

the sharp interface limits. There is need for adaptive meshing at the phase separation

interface, such that an accurate, stable solution can be found. Additionally, no studies

have been found which implement a liquid-solid phase change when considering a system

with multiple fluids.

2.4.1.2 Other Diffusive Interface Methods

Another fixed grid method of interest is the VOF method. Whilst this was discussed

previously for the modelling of multiple fluid phase problems, such as droplet impact

and thin film modelling (Section 2.3), it also has applications in phase change and crys-

tallisation problems. The previously discussed VOF models considered the advection of

a volume fraction throughout the system, this volume fraction allowed the distinction

between the multiple fluid phases and the interface between them. These equations can

now be modified such that, instead of a volume fraction denoting the volume of fluid in

a given cell, the volume fraction can represent the volume of solid. Moreover, instead of

the volume fraction being advected relative to the fluid motion, this can now be advected

due to a kinetic term representing a solidification or crystallisation process.

A recent study [112] solved the VOF equation in order to describe the growth of dendritic
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formations from a single seed. The phase change was a temperature driven reaction from

a melt, and therefore the energy equation was also solved. In this study the convective

effects of the fluid were not considered.

The VOF model has also been used to solve crystal growth from solution. The authors

in [112] solved the VOF equation in order to describe the growth of crystals from organic

solutions. The authors solved the NVS equations for a single phase fluid, and a sink term

dependent on the volume fraction was imposed such that the fluid did not flow in the

crystalline regions. Furthermore, the solute transport equations were solved such that

solution concentration in the fluid could be obtained. The surface integration step from

(2.7) was imposed on the crystal interface, such that the growth was proportional to the

local supersaturation.

2.4.1.3 Sharp Interface Model

Li et al. posed the growth of a single crystal as a Stefan-type problem solving a scalar

diffusion equation for the solution concentration [118]. Crystal kinetics were applied on

the crystal surface, such that the growth was proportional to the solution’s supersatura-

tion at the surface. This work allowed the modelling of dendritic formations suspended

within a stagnant fluid through a front tracking technique.

Clearly, fixed grid methods do offer many advantages and therefore, are used extensively

in crystallisation and phase change problems. They are not without their draw backs and

therefore deforming grid methods or sharp interface models do offer some advantages.

2.4.2 Crystal Growth Optimisation in Industry

2.4.2.1 Growth of Crystal Populations in Large Scale Reactors

Problems of this type are often complex as not only do they consider the crystallisation

kinetics, they also consider the temperature, solution concentration and flow field. Whilst

these properties are also considered in the studies discussed in Section 2.4.1.1, the prob-

lems here also need to consider the size distribution of the solid crystals in the reactor.

Crystals for industrial purposes generally have to be grown to a specific size, therefore

models can help determine the optimal conditions for a particular process. One com-
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mon method for modelling systems of multiple crystals is the population balance model

[86, 67, 48, 23]. The population balance allows the modelling of crystal growth over mul-

tiple crystals and the consideration of nucleation and birth of new crystals within the

reactor is also possible. The authors in [48] use population balance modelling for captur-

ing the growth of barium sulphate in a stirred tank reactor, as seen in Figure 2.10. The

model assumes that crystal birth due to secondary nucleation is negligible, however they

do consider both primary homogeneous and heterogeneous nucleation and crystal growth.

Nucleation is given by the kinetic rates given in Section 2.2.2, and the integration step

equation in (2.7) is used for the crystal growth. Momentum, heat and solute transport

are also solved. The local population of crystals is assumed not to influence the fluid flow.

The final crystal size distribution was shown to be in good agreement with experimental

results.

Figure 2.10: Geometry of a stirred tank crystallisation reactor from [48].

The authors in [23] considered a two-dimensional model for the growth of needle shaped

crystals and specifically consider secondary nucleation. Results from the study demon-

strated how the final crystal size distribution can change with varying conditions. Addi-
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tionally, it can be observed that as the conditions change, the dominant mechanism for

growth varies between secondary nucleation, where many small crystals can be seen, and

crystal growth, where a fewer number of crystals can be seen but of a larger size.

The growth of ice crystals in large scrapped exchangers, can be considered as crystal

growth from a melt, and has also been modelled in [9]. Numerous studies have also been

used to capture this phenomena in the food industry, relating to the mass production of

sorbet. Whilst an unusual application, the ice crystals within the product have to fall

within a specific size range. In addition to the population balance equations, these studies

solved for both nucleation and growth kinetics. Like the other studies, the crystals were

assumed to have no impact on the fluid flow.

Further studies that use population balance models coupled the crystal kinetic models to

crystal growth in non-stirred reactors [86, 67, 48]. Also, the population balance has been

applied to other types of growth equipment, such as the mixed jet pipe [188].

These models not only play an important role in crystal growth reactors, but are also

used in other applications such as the growth of biological agents in stirred tank reactors

[123, 63]. The main disadvantage with these models is that they very rarely have an

impact back on the flow, and the crystals are generally considered freely suspended within

a fluid. Whilst these crystal populations are advected by the fluid, they are not considered

as particles and therefore, no deposition behaviour is observed.

2.4.2.2 Growth of Large Singular Crystals

In addition to large scale reactors in which populations of crystals are grown, a large

portion of crystal growth technology relates to the growth of large single crystals, such

as synthetically manufactured sapphire crystals which are used in various different ap-

plications, such as the manufacture of shatter or scratch resistant glass, electronics and

optics. Another crystal of interest is KDP, which has multiple uses in the optics industry.

Crystals for these applications generally have to be grown to specific size and shapes

and therefore modelling these processes are often challenging as temperature, solution

concentration and fluid flow all have a major impact, and the growth conditions at each

crystalline face can vary dramatically. Due to the size of the crystal, these flow variables
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can change significantly through time as the crystal grows in size and shape.

The authors in [160] modelled the growth of a large single crystal of KDP in an 800 litre

tank. The authors solved the NVS equations to describe the motion of the fluid. Due to

the high Reynolds numbers experienced in the tank, the authors applied the k− ǫ turbu-

lence model [96] to capture any turbulent phenomena close to the crystal. Additionally,

surface stresses generated by the fluid flow were also measured on the crystal face, as these

are known to influence to quality of the grown crystal on a microscopic scale. For the

short time interval that this assessment was carried out, it was assumed that relatively

little crystal growth occurred and the crystal was considered as a stationary object, with

no slip boundary conditions at the face. The same authors then advanced the model in

[159] where in addition to the NVS, species transport equations were solved in order to

determine the concentration distribution close to the crystal, and how varying the flow

parameters alters this distribution. Additional physics was included into the model such

that the rheological properties of the fluid, e.g. density and viscosity, were dependent on

the local concentration. Observing the concentrations is particularly important as it has

been shown to vary greatly depending on the face, if the crystal is to be grown to specific

shape then these concentrations need to be closely controlled.

The authors in [119] also carry out CFD calculations in order to describe the conditions

inside a tank for KDP crystal growth. Again, for the timeframe under investigation the

crystal is assumed to be stationary. In the study the authors make extensive use of the

reaction-diffusion model (as described in Section 2.2.3) in order to correlate experimental

data. kd is then estimated using mass transfer correlations, i.e. the Sherwood number

[24]. Using non linear optimisation techniques, the value of kr and the order of reaction

is obtained. These values are then applied to the CFD model in the form of the crystal

kinetic reaction term in (2.7). Applying the reaction term as a boundary condition then

allows the authors to model the concentration boundary layer close to the crystal. The

authors in [186, 185] also use the reaction terms determined in this study to assess the

conditions in other equipment for the growth of KDP crystals. Particular attention to

how the concentration field changes with varying stirrer speeds was given in [185] .

As mentioned, similar techniques are often used for models which optimise artificial sap-
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phire crystals. One such study was conducted in [46] where authors model the develop-

ment of crystals from a melt. Instead of solving for the solution concentration, the energy

equation is solved. Again, these authors assume that, over the time frame that the system

is being assessed, no motion occurs of the crystal frame, so these techniques are purely

to assess the temperature and flow close to the crystal face.

2.4.2.3 Summary

Crystal growth in industry usually relates to either the growth of multiple crystals in large

tanks, or the growth of large singular crystals. The brief review in this section has covered

the two main methods used when attempting to model these widely different scenarios.

As discussed, the population balance model allows the capture of varying crystal sizes

in a non-homogeneous reactor, moreover, the model can consider: the birth of crystals

(due to either primary or secondary nucleation), the breakage of crystals (under certain

flow conditions) and the aggregation of multiple crystals. The models, however, are not

without limitations, the population balance does not model each individual crystal but

rather an average crystal size in compartmentalised regions across the computational grid.

Furthermore, this model has been shown only where a single fluid phase is considered.

Also, the model has limitations for two way coupling with the fluid flow, meaning that

whilst the flow impacts directly on the crystal size distribution, it is considered to have

relatively little impact on the flow. There has been mention in previous studies that the

solution density can relate to the CSD and crystal density, however there has been no

application where crystals can deposit and act as solid boundaries or particles within the

flow.

The modelling techniques presented for the growth of single crystals allow the inves-

tigation into how parameters such as flow speed, temperature and concentration may

affect the growth of crystals. The models show how crystal kinetic models maybe ap-

plied to CFD through the use of the solute transport equation and boundary conditions

on the crystal face. In these models diffusion is usually modelled explicitly through the

transport equations, therefore only the surface integration step in the reaction-diffusion

equations discussed in Section 2.2.3 is applied. Additionally, the studies identified only

consider crystal growth from single fluid phase. A thorough summary of research carried

out over the past decade on the growth of large singular crystals can be found in [60, 195].
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2.4.3 Crystallisation and Precipitation Fouling in Industrial Equipment

and Infrastructure

A significant portion of this research relates to capturing fouling phenomena within indus-

trial equipment [152, 98]. In these situations mass transfer occurs and deposits are formed

in pipes or on equipment walls. These deposits can affect both the local fluid properties,

such as the pressure and velocity, and the heat transfer to and from the equipment walls,

as shown by [126] when investigating deposition in pipe flows.

A single fluid phase CFD model with heat transfer effects was developed in [98]. The

model was used to capture rates of deposition across a heated plate when considering

the pasteurisation of diary products. However, as it was assumed that over the time of

interest the deposition would have no impact on the fluid flow, only the instantaneous

rates of mass transfer were calculated. As such there was no physical depiction of the

deposited mass considered.

A single continuum fluid phase moving boundary model with discrete particles trans-

ported in the bulk of the fluid was developed [122]. Particles settle and deposit on a

surface, the boundary then moves such that the displacement accounts for the the vol-

ume of mass deposited. This technique ensured that deposited mass would change the

fluid flow. Here, this model was developed for the purpose of describing ash deposition,

however it would be applicable in flows where crystal growth from homogeneous nucle-

ation in the bulk of the fluid was a dominant physics.

A model was developed in [32] for computationally simulating the deposition of an in-

verse soluble salt on heat transfer surfaces, such that crystals deposit when the solution is

heated, as shown in Figure 2.11. This approach uses a modified reaction-diffusion which

accounts for both crystal deposition on the walls and the removal of crystal mass due

to shear stresses from the flow. The removal term in this model is dependent on the

local geometry (deposition height), fluid velocity, temperature stresses and an empirical

parameter relating to the crystal adhesion. A temperature dependent Arrhenius reaction

term for kr is given and a velocity dependent relationship for kd is obtained from a mass
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transfer correlation using a previously calculated Sherwood number. It is unknown why

the authors do not model diffusion through solution of the transport equations. This

model does not account for the change in flow due to build ups of solid by changing the

computational geometry, but rather makes a crude adjustment to the inlet velocity (i.e.

as the fluid volume in the domain decreases the velocity increases relative to this due to

conservation of mass). It is thought that this method may be sufficient for a uniform sur-

face / deposition pattern, however localised changes in geometry may not be accounted

for. The results for the mass deposition are displayed in terms of an overall fouling resis-

tance, which is the average deposited mass height divided by the thermal conductivity,

this term can be thought of as the increase of resistance to the flow of heat (mK/W).

The fouling resistance is also the reciprocal of the heat transfer coefficient, which can be

obtained experimentally from measurement of the heat fluxes and temperatures. As the

fouling layer is not passed to the computational domain, the heat flux into the fluid is

calculated using a simple model based on the average height of the fouling layer where

in this case fluid is being heated. The study uses a non-homogeneous density profile for

the solid, such that the density of the fouling layer is dependent on both the deposition

height and the local position in the film.

Figure 2.11: Diagrammatical representation of the fouling process, [32].

The authors of [148] applied the same numerical model over a variety of different shaped

heat transfer surfaces, which are later validated with experimental data. The concept be-

ing that structured heat transfer surfaces will reduce fouling in certain areas, and therefore
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improve the level of heat transfer. Initial results from the paper observe that that chang-

ing the surface shape does have significant effects on the level of fouling.

Whilst the aforementioned studies focus on the computational simulation of crystallisa-

tion fouling phenomena, the majority of other related studies appear to be experimental.

The reaction-diffusion model was used in [14] to correlate different deposit removal terms

to experimental data and hence calculate the empirical constants within the models. How-

ever, the parameters were not used in any further modelling simulation.

A study was carried out in [31] on the deposition of CaCO3, also an inverse soluble salt,

on a heat transfer surface. The study calculates fouling resistances experimentally. The

main purpose of this study was to use the obtained data to estimate parameters for the

value of kr (in (2.7)) for CaCO3. However, diffusion and removal terms were ignored

when considering experimental results. This paper was purely for parametric estimation,

and no computational experiments were carried out.

It was observed in [125] how varying heat exchanger designs also impact on the rate of

fouling, specifically in micro heat exchangers. The study focuses on experimental results

and uses a bulk heat balance (heat in / heat out) to calculate the reduction in the rate of

heat transferred to the solution due to fouling. The larger the rate of fouling, the slower

the rate of heat transfer. This study calculates an overall value for the fouling resistance

across the whole heat exchanger surface, but neglects information regarding localised de-

position values. It was found that increasing the number of channels in a micro exchanger

reduces the level of fouling.

Fouling during the milk pasteurisation process was observed in [29], particularly the ef-

fects of when pulsed flow conditions are used. Again, the study was purely experimental,

however it was shown that pulsating the flow leads to improved removal of the solute.

A similar study was carried out by [68] when considering CaSO4. These studies also

concluded that using pulsed flow conditions can reduce the overall amount of fouling.

Again these studies were experimental and only measured the overall fouling resistance.

Therefore no localised information regarding the deposition positions was given.
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The authors in [54] develop a two-dimensional moving boundary model to describe the

fouling of crude oil on a shell and tube heat exchanger. For the purposes here, this can be

considered as flow through a pipe where the fouling occurs only on one side (the heated

side). The authors state that the majority of models relating to fouling do not take into

account the local variation in fouling height, and consider a constant heat transfer coef-

ficient across the heat transfer surface and fluid, therefore they can be inaccurate when

considering large heat exchangers. In order to rectify this, authors present a moving

boundary model such that a sharp interface separates the fouling layer from the fluid

flow. Simplified fluid models are used, such that the velocity is assumed constant in the

direction perpendicular to the transfer surface, and is calculated by the mass flow rate and

available cross sectional area. Heat transfer is solved throughout the system by solving

the energy equation, where differing heat transfer coefficients are considered in the heat

transfer surface, fouling layer and fluid. The heat transfer equations are solved using the

commercial modelling package, gPROMS, which harnesses the FVM.

Clearly much research has been carried out in the area of fouling, particularly on heat

transfer surfaces. The majority of authors employ a bulk calculation such that they can

calculate the overall heat transfer coefficient or pressure drop due to fouling. They do

not however take into account the local fouling and flow conditions. Some authors have

tried to consider the problem further by developing models which can predict the local

deposition of the fouling phenomena. Despite this, flow conditions are approximated and

therefore the effects on the fluid due to the small-scale variations in fouling structure may

not be captured. Much like the previously discussed crystal growth models in Section

2.4.2.2, studies regarding fouling generally only consider a single fluid phase.

2.4.4 Models for Describing Geological Formations

The observations in the experimental work carried out by the NNL have suggested that

the crystalline formations were found to have similarities to geological formations, par-

ticularly stalagmite formations, which can be observed in Figure 2.12 and 2.13 [162, 15,

168, 169, 104, 105]. Many formations and structures found within nature are often the

result of mass being deposited from a liquid, these processes usually occur over long pe-

riods of time, and often lead to large formations. Therefore, models have to account for

the unusually large length and time scales, and thus alternative modelling approaches to
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those previously discussed for crystal growth have to be considered. Whilst the length

and time scales considered in the problem here are smaller than those in a geological

setting, they are still considerably larger than those observed in the majority of crystalli-

sation problems. Due to this, studies regarding the deposition of solid matter or phase

change in nature are reviewed in this section. It should be noted that as the fiscal impact

of crystallisation modelling is much greater when considering models for the purpose of

minimisation of fouling or the optimisation of industrial crystal growth, there is consid-

erably more research relating to these topics than those regarding geological phenomena.

The authors in [82] study the behaviour of a 2D channel flow, as calcite from the solu-

tion is deposited on the channel bottom. This work was carried out in order to further

understand the deposition behaviour in rivers and streams. The authors solve the NVS

equations using NaSt2D code [137] in order to obtain the flow within a 2D channel. The

solution is then coupled to a growth kinetic model which is determined by the local su-

persaturation. In these systems the level of supersaturation is not only dependent on the

temperature of the solution, but also the level of carbon dioxide present. Multiple solute

transport equations are solved in order to calculate the level of supersaturation based on

the local CO2 levels. The study also demonstrates how obstructions in the flow can in

fact enhance the rate of calcite growth. Much like previous crystallisation studies, the

work here only assesses the instantaneous crystal growth rates through solution of the

solute transport equations and does not include any mass deposition in the model.

Another area of particular focus is stalagmite growth, authors in [162] develop a coupled

fluid flow, crystallisation model in order to model the growth of stalagmites through time.

The model assumes that the stalagmite is axisymmetric, and that it can be described by

a series of linear segments. As the rate of crystallisation is assumed slow relative to the

fluid flow for a given point in time a steady solution to the fluid flow can be assumed.

As this is the case, the steady state Nusselt solution (2.14) is taken over each of the

linear segments in order to approximate the fluid flow over the entire formation. The

reaction-diffusion equation is then coupled to the fluid flow in order to calculate the de-

position rate. Following this, the boundary describing the flow is moved through time,

for a discrete timestep, to describe the growth. After this, a new steady state solution to

the fluid flow is calculated over the moved geometry. This process continues iteratively
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Figure 2.12: Example of stalagmite growths in underground caves at an early stage of
growth. Courtesy of UMass Amherst.

through time until a desired solution time is reached. Coefficients from this study were

obtained from previous experimental results [37]. Results from this model agree well with

previous models and geological data, as seen in Figure 2.14. As mentioned, one of the

main difficulties with geological modelling is the timescales in which the problems occur

over, this pseudo-steady state approach is then particularly useful, as the solution can

progress through time with relatively large timesteps (1 year). Time steps of this mag-

nitude would be infeasible for a fully transient CFD simulation. It should be noted that

other models have been developed for stalagmite growth, however these models do not
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Figure 2.13: Example of developed stalagmite growths in underground caves [189].

consider the fluid flow and simply impose that the stalagmite’s growth is relative to a

given exponential or Gaussian function [104, 105].

A thorough review of other geological studies can be found in [127].

2.5 Summary of the Published Research

The fluid dynamics observed in the problem under consideration is relatively well-understood,

and much research being carried out on droplet impact and thin film flow. However, these

different phenomena occur over largely differing timescales, e.g. the behaviour of droplet

impact is described over a 5ms timeframe, whilst the problem of interest occurs within

periods up to 30 days. The film flows become roughly steady state after several hours.

Due to the relatively slow rate of crystal growth these flows can be considered at steady

state over given periods of time. Therefore, when considering the full timeframe of the
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Figure 2.14: Predicted stalagmite formations from [162] when compared to geological
data measured in [69] and [18]. The results from the model in [162] are given by the grey
shaded area.

problem it is unlikely that a full transient CFD simulation is feasible. However, there are

many semi-empirical calculations which may be of use.

When describing multiple system of crystals, such that crystals are grown in large reac-

tors, much research has been carried out on the population balance models. However,

whilst these models are useful for describing large heterogeneous populations of crystals

suspended in a flow, the models do not allow the crystals to influence the flow behaviour.

Moreover, no studies have been found which allow for the deposition of these crystals

onto a solid surface.

Crystal growth and deposition is common in the fouling of industrial process equipment.

The majority of research in this field implements bulk crystal growth models, such that

the overall effects of fouling can be quantified. These models however do not predict

the localised effects due to fouling or give a geometric interpretation of the fouling layer.

Some research has been carried out on describing the localised deposition patterns, how-

ever these models tend to implement simple approximations to the fluid flow. As this is

the case, phenomena due to the fluids interaction with the localised fouling layer micro

structure can often be neglected.
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Models describing the growth of crystalline deposits that occur naturally in geology have

also being examined. These models are particularly attractive, as the problems encoun-

tered generally occur over large length and timescales. Due to this, methods appropriate

for describing coupled fluid and crystal growth phenomena have been developed. Further-

more, models consider problems involving multiple fluid phases. From assessing studies

in other areas of crystal growth research, it has been noted that this is particularly un-

common. Despite the advantages of these models, they are not without their limitations.

Studies in this field have been shown to use simple approximations to describe the in-

dividual physics, e.g. fluid flow, diffusion and crystal growth. Additionally, due to the

specific nature of the environment in which these geological formations are developed,

physical effects such as heat transfer and evaporation are not experienced. These effects

are therefore not included in the models presented in the geological studies.

Clearly, there is a large volume of research focused on crystal growth. As the problem

being studied here is particularly unique, no one study has been seen to be completely ap-

propriate for modelling the growth of industrial salt formations from impinging droplets.

However, this review has highlighted several approaches and techniques which may be

developed and coupled for the problem under investigation.



Chapter 3. Geological Models for Industrial Crystallisation Problems 77

Chapter 3

Adaptation and Implementation

of Geological Models for Industrial

Crystallisation Problems

3.1 Introduction

This chapter reports the development of a moving boundary method for describing the

growth of crystalline formations from impinging droplets of salt solution through time.

The model uses previous techniques describing the growth of stalagmites presented in

[162]. As discussed in Chapter 2, crystallisation research and modelling techniques are

often concerned with growth over small lengths (relative to those considered in the NNL

drip trials). In addition to this, the timescales in which these crystallisation problems are

considered are often relatively short. Whilst these studies do offer insight into the possi-

ble behaviour of systems involving crystallisation, it is difficult to make a direct mapping

between these studies and the problem here. Though this is the case for the majority of

crystallisation studies, geological formations form over hundreds, if not thousands of years

and therefore models which consider this phenomena do not suffer from the same time

and length scale restrictions as the aforementioned studies. Due to the slow growth of the

crystal formations relative to the fluid flow, it is assumed that a separation of time-scales

can be imposed, such that over a given time-frame a steady state solution for the fluid

flow can be considered. These pseudo-transient methods which are common in geological

modelling [162, 169] will allow the description of formations over timescales that would
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not have been possible with the more traditional crystal growth methods. In addition

to this, from observing experimental results carried out by the NNL, the characteristic

shape of the growths from saturated solutions is similar to that of geological stalagmites

(as seen in Figure 3.1). This study will therefore evaluated these models further in order

to test their appropriateness when considering the problem here.

Despite the previously mentioned similarities, there are some differences between the

systems, such as the chemistry and driving force for crystallisation. In the geological

model CO2 is absorbed from the atmosphere and surrounding soil. The dissolved CO2

changes the pH of the solution, and consequently increases the solubility of the water.

This in turn allows the water to dissolve calcium carbonate, obtained from predominantly

limestone within the soil, forming calcium bicarbonate, namely the forward reaction:

CaCO3(s) +H2O(l) +CO2(aq) ⇔ Ca(HCO3)2(aq), (3.1)

where s, l and aq represent the molecules in their solid, liquid and aqueous forms, respec-

tively. The calcium carbonate solution then flows down into underground caves, where

the CO2 concentrations are much lower. The change in concentration causes CO2 to leave

the solution, which in turn makes the solubility decrease within the solute and crystallisa-

tion able to occur (backward reaction in (3.1)). This process is known as CO2 degassing,

and it is the driving mechanism for crystallisation in the case of stalagmite and various

other speleothem formations.

When considering the problem addressed within the NNL experiments, sodium nitrate is

dissolved within a solvent (water), as shown by the forward reaction:

NaNO3(s) ⇔ Na+(aq) +NO−3
(aq). (3.2)

Due to a change in environmental conditions, the solution experiences a drop in tem-

perature, and a loss of volume due to evaporation. These processes cause the solution

to become supersaturated, allowing a crystallisation mechanism to occur. While these

differences are present, they should not affect the models applicability when modelling

salt solutions.
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(a)

(b)

Figure 3.1: (a) The ’Witch’s Finger’ stalagmite in the Carlsbad Caverns, New Mexico
(Courtesy of the American National Park Service) and (b) 8 Molar sodium nitrate pre-
cipitation after 32 day from the NNL drip trials.
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This chapter will discuss how the different parameters affect the final formations, and

in turn make assessments as to how this could potentially affect criticality in a possible

nuclear reprocessing environment. Specifically, this section will focus on the second ob-

jective of the thesis, such that an appropriate method for coupling fluid flow and crystal

growth is developed and evaluated fully (see Section 1.5).

3.2 Methodology

The section will outline the mathematics employed by the model, namely the formulation

for the fluid flow, crystal growth and the coupling between the two. In addition to this,

the computational implementation is discussed, along with a mesh independency study.

3.2.1 Governing Equations

3.2.1.1 Fluid Flow

The model here (which is similar to that described in [162]) assumes that the crystal

growth formation can be described by a series of moving linear elements. The simplifica-

tion to the geometry allows both the fluid flow and crystallisation to be considered over

each individual element. A diagrammatical representation of an element is provided in

Figure 3.2. This section describes the fluid dynamics when considering a slow, thin fluid

film, flowing across an element.

Assuming that the liquid film, is a laminar, incompressible fluid and that the timescales

for the fluid flow are much shorter than those of the crystal growth, we can assume that

for a given interval of time, ∆t, the temporal changes within the fluid flow are negligible.

The liquid film can then be described by the steady state, two-dimensional, incompress-

ible Navier-Stokes equations,

1

ρ
∇p+ (u · ∇)u = ν∇2u+ g, (3.3)

∇ · u = 0, (3.4)
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where p is the pressure, u = (u, v) is the fluid velocity, ρ is the density, ν is the kinematic

viscosity, g is the acceleration due to gravity, x = (x, y), and θ is the angle of the surface

incline, see Figure 3.2.

θ

Figure 3.2: Flow down an inclined plane.

If the flow is sufficiently thin or sufficiently slow (dimensional analysis gives the require-

ment that the Reynolds number Re = U0h
ν

<< L2

h2 , where U0 is the characteristic speed,

L and h are the length in the stream-wise direction and the film thickness, respectively

[173]) the inertia term, (u · ∇)u, can be neglected and then (3.3) can be simplified to,

∇p = µ∇2u+ ρg, (3.5)

where µ = ρν is the dynamic viscosity.

For mathematical simplicity in this derivation we now redefine the coordinate system such

that x′ is the distance down the plane and y′ is the height above the plane. The velocity

vector is redefined such that u′ is the streamwise velocity down the plane and v′ is the

velocity perpendicular to the plane. As the flow can be considered unidirectional as fluid

only flows parallel to the plate, the x′ and y′ components of (3.5), can be simplified to,

∂p

∂x′
= µ

∂2u′

∂y′2
+ ρg sin θ,

∂p

∂y′
= −ρg cos θ, (3.6)

From the y′-component of ∇p in (3.6), imposing the constraint that the pressure is con-
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stant along the free-surface, p = patm, it can be seen that,

p(y′) = patm + ρg(h− y′) cos θ,

and therefore ∂p
∂x′ = 0. Imposing the no-slip boundary condition, u′ = 0 on y′ = 0 and no

shear at the free surface, ∂u′

∂x′ = 0 on y′ = h, an expression for the streamwise velocity is

given by,

u(y′) =
ρg sin θ

µ

(

hy′ − 1

2
y′2
)

. (3.7)

Considering a plate of width B, with no cross-stream variation (direction perpendicular

to the x− y plane) in the flow, the mass flow rate, Q, can be written as,

Q =

∫ B

0

∫ h

0
ρu dy′ dz′ =

ρ2gBh3 sin θ

3µ
. (3.8)

This can then be rearranged to give the Nusselt film height [24],

h = 3

√

3µ Q

ρ2gB sin θ
. (3.9)

For a given mass flow rate Q, the average velocity across a perpendicular cross-section of

the flow is given by,

u =
Q

ρh
= 3

√

gBQ2sinθ

3µρ
. (3.10)

It should be noted that even though this is shown to be mathematically true from dimen-

sional analysis, experiments have suggested that the flow can become wavy for Re ≈ 30

[24]. In these cases the flows are inherently transient in nature and therefore this flow

model may not be appropriate.

3.2.1.2 Crystal Growth

Now that a model has been given to describe the fluid flow, a model that accounts for

the transportation of solute within the flow and the following crystallisation mechanism

needs to be considered. The crystallisation model being used within this work is based

on the reaction diffusion model, as discussed in Section 2.2. Here crystal growth is sep-

arated into two key processes, namely, diffusional transport and surface integration, a

pictorial representation of which can be found within Figure 3.3. As previously discussed
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in Section 2.2, this theory assumes that close to the crystal surface, there is a localised de-

pletion of solute due to the ongoing crystallisation process that generates a mass transfer

boundary layer (Region B in Figure 3.3). Immediately above the crystal interface, also

known as the surface integration layer (Region C in Figure 3.3), complex molecular inter-

actions take place such that the free ions within solution are integrated into the crystal

lattice. The basic formulation for the reaction-diffusion model was given in Section 2.2
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Figure 3.3: Two-step crystallisation model.

in terms of rate of mass deposition. The reaction-diffusion model will now be re-framed

for use when considering a geometric growth rate, with parameters and a coordinate sys-

tem appropriate to the physical problem considered in the NNL sodium nitrate drip trials.

As it is assumed that solute ions do not cluster close to the crystal surface (no local

increase in concentration), the volume diffusion and surface integration step occur at

equal rates. Where the growth rate, G (m s−1), can be described by the rate of diffusion

of solute through the film,

G(x, t) = kd
Ms

ρs
(c(x+ δbulkn, t)− c(x+ δinterfacen, t)). (3.11)

Here, kd is the coefficient of mass transfer, c is the concentration of solution [molm−3],

x = (x, y) is the position on the crystal surface. The normal to the crystal surface is

given by n = n(x). The normal distance between the crystal surface and the termination



Chapter 3. Geological Models for Industrial Crystallisation Problems 84

of the surface integration layer is denoted by, δinterface. Also, δbulk is the normal distance

between the crystal surface and the bulk of the fluid (see Figure 3.3). The molecular mass

of the solid crystal material in question is denoted by Ms and the density is denoted by

ρs. The growth rate can also be expressed in terms of the surface reaction step by,

G(x, t) = kr
Ms

ρs
(c(x+ δinterfacen, t)− c∗)η, (3.12)

where kr is a coefficient of surface integration, c∗ = c∗(T ) is the concentration at solution

saturation for temperature, T , and η is the order of the reaction. The surface reaction

step is not assumed to be linear, and generally takes the order 0 < η ≤ 2.

Whilst most literature refers to kd and kr as constants, this can often be incorrect. The

coefficient of surface integration is generally dependent on the temperature of the solu-

tion, i.e. kr = kr(T ), and is often framed as an Arrhenius type expression [183]. The

coefficient of mass transfer by diffusion is determined by both the width of the mass

transfer boundary layer, δbulk, which is dependent on the solution velocity, u and the

solute diffusivity, D = D(T ), i.e. kd = (u, T ). For a particular problem these are often

considered to be constant, however they may change significantly with varying conditions.

The author currently knows of no way to mechanistically determine the individual values

of kr and kd. Some authors have been successful in determining empirical correlations for

common industrial materials [119]. Despite this, it is often difficult to use crystal growth

data to inversely determine the parameters kr and kd. This is due to the inability to

accurately measure the concentration of solute in the surface integration layer, δinterface.

Consequently, experimental crystal growth data are generally correlated to,

Ge(x, t) = K
Ms

ρs
(c(x+ δbulkn, t)− c∗)ǫ, (3.13)

where K is the overall growth coefficient, ǫ is the overall order of growth and Ge is

the observed crystal growth rate. This expression allows observed growth rates to be

correlated to easily observable parameters such as the concentration in the bulk of the

solution. It should be noted that only for specific values of η can an analytical expression

for K in terms of kr and kd be derived such that G = Ge. For example, the growth

rates of sodium nitrate and calcium carbonate are known to be linearly dependent on the
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concentration gradient at the surface integration interface, η = 1 and therefore, for this

linear order system it can be shown that,

K =
krkd

kr + kd
, (3.14)

and ǫ = 1. In a similar way analytical expressions can be obtained for the non-linear

example with ǫ = 2. For more complex system, additional techniques such as regression

analysis or non-linear optimisation are often required [110, 119].

As the model here employs a steady state approximation for the fluid system (assumed

to remain valid over time frames of ∆t), the continuous growth model described above

must be discretised and coupled to the simplified fluid flow given in (3.10).

3.2.1.3 Coupled System: Fluid Fluid with Crystal Growth

The profile of the formation is approximated by a series of linear elements. Initially the

surface of length L is divided into N − 1 elements and a general linear element bounded

by nodes xj
i and x

j
i+1, where x

j
i = x(xji , y

j
i , tj) is considered. The initial inclined surface

is discretised by,

x0
i =

(

L

N − 1
(i− 1) cos θ, L sin θ

(

1− i− 1

N − 1

)

, 0

)

, i = 1, ..., N. (3.15)

The time taken for a parcel of fluid to travel from x
j
i to x

j
i+1 is denoted by τ . Due to

the conservation of mass, the amount of solute precipitated into this local area during

time τ must equal the amount of solute lost from the volume of solution. Therefore, for a

plate of uniform width B (direction perpendicular to the (x, y) plane) the following mass

balance equation is obtained,

B||xj
i+1 − x

j
i ||F

j
i τ = Bh

j
i ||x

j
i+1 − x

j
i ||(c

j
i − c

j
i+1), (3.16)

where h
j
i = h(xj

i+1) (m), cji = c(xj
i ) (mol m−3) is the concentration of solute within the

solution, and F
j
i = F (cji ) (mol m−2s−1) is the local deposition rate. A diagrammatical

representation of this can be seen in Figure 3.4.
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Figure 3.4: Crystal growth and mass conservation over a linear element.

Given that the deposition rate F
j
i can be written as,

F
j
i = G

j
i

ρs

Ms
, (3.17)

where G
j
i is the growth rate at xj

i , if ǫ = 1 and η = 1, equation (3.13) implies

F
j
i = K(cji − c∗). (3.18)

Then, from the mass balance equation (3.16), we can obtain the relation,

F
j
i+1 = F

j
i

(

1− Kτ

h
j
i

)

. (3.19)

However, as we want an expression which omits the local film height hji , we use the fact

that ρhjiv
j
i =

Q
B
and v

j
i =

∆l
j
i

τ
, where vji is the average velocity across the element bounded

by x
j
i and x

j
i+1, and ∆l

j
i is the length of this element, to obtain the final recurrence

relation,

F
j
i+1 = F

j
i

(

1− ρKB∆l
j
i

Q

)

, i = 1, ..., N − 1 (3.20)

and F
j
1 = K(cj1 − c∗).
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The nodes are then moved to describe the crystalline growth after a period of ∆t by,

x
j+1
i = x(xji +G

j
i∆t cos θji , y

j
i +G

j
i∆t sin θji , tj +∆t), i = 1, ..., N, j = 0, ...,M,

(3.21)

where M∆t is the final simulated crystal growth time, Gj
i is determined at each time, tj ,

by equations (3.17) and (3.20), θji+1 = tan−1
( y

j
i−y

j
i+1

x
j
i+1−x

j
i

)

and θ
j
1 =

π
2 .

3.2.2 Computational Implementation

The model described by (3.20) and (3.21) was implemented using MATLAB [124] such

that the width of the surface is defined as Bi(xi) = 2πRi, where Ri := R(xi) denotes the

local distance perpendicular to the axis of rotational symmetry. This is because the work

assumes the crystalline formation forms an axisymmetric configuration in which the fluid

flows down, as shown in Figure 3.5. The computational domain was discretised such that

a one-dimensional grid was placed along the initial surface, with constant initial spacing

∆l0i . In addition to this, a timestep ∆t was imposed, the size of these parameters are

determined in the following section.

3.2.2.1 Preliminary Mesh and Timestep Independence Study

A suitable initial mesh spacing and timestep has to be selected for the model to be robust

such that it remains valid for any possible perturbation of the boundary and that the

solution is not dependant on the discretisation. The presentation of the model given in

[162] does not include a discussion of the mesh size, and the timestep used in this work

is ∆t = 1 year. Clearly this is not suitable for the work here, as the formations are gen-

erated over an approximate timeframe of 30 days. When choosing a timestep parameter,

it is important that the timestep is large enough that the computational expense of the

model is kept to a minimum, while being small enough that the solution remains accurate.

With these considerations in mind, the first set of numerical experiments assessed the

spatial discretisation of the model. A timestep ∆t = 1 minute was used, as it was as-

sumed that, whilst this is computationally demanding, this parameter is small enough

that the temporal discretisation will not influence the solution obtained, therefore allow-

ing an independent assessment of the spatial resolution.
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It can be observed that the deposition rate at the apex, F0 is dependent on K, c and

c∗, therefore for a constant solution concentration and solution temperature, the overall

height of the formation is solely determined by the crystal growth coefficient. Due to this,

a value of K is selected such that a maximum height exceeds those observed in the NNL

experimental data, this should ensure that the meshing is robust for any likely outcome.

In addition to the parameters specified in Table 3.1, the test material used here has a

crystal growth coefficient of K = 6×10−6 m s−1. It is known from (3.21) that the solution

is dependent on the flow rate. For the purposes of testing the robustness of the mesh, the

flow rate, Q, was varied such that a range of mesh displacements could be observed. It

should be noted that at this stage, the parameters selected are not related to any partic-

ular physical phenomena or specific material properties. The initial geometry is defined

as a 0.5m plate at an angle of θ0i = 8 × 10−3rad, with rotational symmetry assumed, as

shown in Figure 3.5. The discretisation parameters that were tested are ∆l0i = 5×10−3m,

5× 10−4m and 5× 10−5m (N = 101, 1001, 10001).

Axis of rotational symmetry

Length 0.5m

θ
0

i

Figure 3.5: The initial geometry used in the mesh independency study for the adapted
stalagmite model, with rotational symmetry about the axis.

The first computational experiment considered Q = 1 × 10−3kg s−1, for various mesh

sizes, after a simulated time of 30 days. Results are presented in Figure 3.6. From this

figure it can be seen that for large deformations across the plate, all mesh sizes capture the
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Crystal growth coefficient, K (m s−1) 6× 10−6

Mass flow rate, Q (kg s−1) 1× 10−4 5× 10−4, 1× 10−3

Initial node spacing, ∆l0i (m) 5× 10−3, 5× 10−4, 5× 10−5

Node Count, N 101, 1001, 10001

Initial concentration, cj1 (mol m−3) 8000

Saturation concentration, c∗ (mol m−3) 7500

Initial angle, θ0i (rad) 8× 10−3

Solid Density, ρs (kg m−3) 2000

Solution Density, ρ (kg m−3) 1000

Molecular Mass, Ms (kg mol−1) 0.01

Timestep, ∆t (s) 60

Total Timesteps, M 43200

Table 3.1: Parameters for the computational simulations for the mesh independency tests.

Node count, N Computational time (s)

101 1.3

1001 11.1

10001 112.5

Table 3.2: Computational times for the adapted stalagmite model, for parameters in
Table 3.1, when Q = 1× 10−3 kg s−1, for crystalline growth after 30 days.

formation, however there is a noticeable difference between the N = 101 and N = 1001

result. The difference between the N = 1001 and N = 10001 results however is negligible.

The model was run on a stand-alone machine with a Intel Quad Core i7-4770k and 16gb

ram, and whilst CPU intensive, it was not memory intensive. The computational times

from the model are presented in Table 3.2, and it can be seen that the cost increases

linearly with the discretisation size.

The mass flow rate was then decreased and Figure 3.7 shows the mesh displacement for

Q = 5× 10−4kg s−1, for various mesh sizes, after a simulated time of 30 days. From this

figure it can be seen that the width of the formation is now reduced. It is thought that

as the width of the formation reduces, less nodal points are available in order to describe

the growth, and therefore these formations are more difficult to capture. It can be seen

that the result that for N = 101 is significantly different to the results for N = 1001

and N = 10001, while the results for N = 1001 and N = 10001 are relatively similar.
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Figure 3.6: Plot of the growth when using the adapted stalagmite model, for parameters
in Table 3.1, when Q = 1× 10−3 kg s−1, for crystalline growth after 30 days.

The discrepancies between the N = 101 and N = 10001 results appear to be larger than

in the previous case. In addition to this, for the case of N = 101, the profile no longer

appears to transition in a smooth fashion, suggesting that the number of nodal points in

this region is too low.

To test this hypothesis further, a smaller mass flow rate was trialled. Figure 3.8 shows

the mesh displacement for Q = 1× 10−4 kg s−1, for various mesh sizes, after a simulated

time of 30 days. From observing the results in this figure, it can be clearly seen that the

model now fails for the cases of N = 101 and N = 1001, with the formation appearing

to spike rapidly up to the x-axis. The case for N = 10001 does not show this behaviour,

however, much like the previous run for Q = 5× 10−4 kg s−1, the result near the apex is

no longer smooth.

The work in [162] generally focused on results when implementing the model, rather than
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Figure 3.7: Plot of the growth when using the adapted stalagmite model, for parameters
in Table 3.1, when Q = 5× 10−4 kg s−1, for crystalline growth after 30 days.

discussing the discretisation and computational implementation of the model. Therefore

it is not known if the authors also experienced similar problems. Having identified these

issues a thorough investigation into the models behaviour in these particular cases was

undertaken.

The preliminary investigation regarding mesh independency for the spatial discretisation,

highlighted some key issues. This study imposed a timestep such that it could be reason-

ably assumed that the solution was not influenced by the temporal discretisation. Before

further studies were investigated further, the effects of the temporal discretisation were

considered, such that the validity of this initial assumption could be evaluated.

In order to test the temporal discretisation, the timestep ∆t will be gradually increased.

The formations produced when using these parameters will be directly compared to the

previous case for Q = 1 × 10−3 kg s−1 and N = 10001, as results for this parameter set
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Figure 3.8: Plot of the growth when using the adapted stalagmite model, for parameters
in Table 3.1, when Q = 1× 10−4 kg s−1, for crystalline growth after 30 days.

are assumed to be accurate.

From the results in Figure 3.9, it can be seen that the differences when changing the

timestep, ∆t, are relatively minor. The effects of varying the timestep are dominant in

regions close to the apex. It should be noted that this is the case under constant model

conditions, and for varying conditions a suitable timestep should be selected such that

these changes are captured accurately.

3.2.2.2 Adaptive Meshing

The previous mesh independency study highlighted some key weaknesses with the cur-

rent implementation of the model. Whilst the model may function under specific cir-

cumstances, as no a priori information regarding the growth of the formation should be

known, it is essential that the model remains stable for a wide range of parameters. In

order to address this problem, this section will assess the behaviour of spatial discretisa-
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Figure 3.9: Plot of the absolute error, when comparing the formation for varying timestep
∆t with the formation for ∆t = 1 minute, for 30 days growth. Parameters correspond to
those in Table 3.1, additionally N = 10001 and Q = 1× 10−3 kg s−1.

tion as the mesh deforms through time.

From Figure 3.8 it can be seen that when the number of nodal point is low, the model

fails. With higher numbers of elements, the linear elements of the model can be clearly

observed, suggesting a lack of nodal points in this region. As a preliminary assessment

of this behaviour, the result for N = 10001 in Figure 3.8 is assessed again, however now

the positions of the nodes are marked and further detail regarding the models transient

behaviour is provided. These results can be seen in Figure 3.10. From this figure, it can

be observed that the nodes close to the apex quickly diverge as the solution is stepped

through time. In addition to this, after 60 days growth, the model exhibits the same

behaviour as the previous results when using a lower quantity of nodal points. On com-

paring the results at 30 days and at 60 days it would appear that whilst the node at the

apex continues to grow vertically, the subsequent node experiences a negative growth.



Chapter 3. Geological Models for Industrial Crystallisation Problems 94

Clearly for a supersaturated solution this is not physically correct and from observing

(3.20) it can be seen that if the element length, ∆l
j
i >

Q
ρKB

, F j
i+1, becomes negative and

the model breaks down.
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Figure 3.10: Plot of the nodal points when using the adapted stalagmite model, for
parameters in Table 3.1, when Q = 1 × 10−4 kg s−1 and N = 10001, for crystalline
growth through time.

In order to quantify this behaviour further, the element lengths for the result in Figure

3.10 after 30 days growth are shown in Figure 3.11. From this figure it can be seen that the

element length increases rapidly for the first 900 nodes. A small contraction in element

length is observed immediately after this, which is assumed to be at the base of the tower

formation. Nearly 75% of the total element length remains unchanged, suggesting no

growth occurs in these regions. This behaviour is further confirmed in Figure 3.12 where

a cumulative count of the nodes relative to the model solution is provided. From this

figure it can be observed that a very low portion of the initial nodes are contained within

the main deformation. The node count increases super-linearly in the concave region at
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the base of the growth, and afterwards increases in a linear fashion. This is less than

desirable for multiple reasons. Firstly, in regions where large deformations or growth

occurs, it would be advantageous to have more nodes in these regions such that these

regions of interest can be captured with clarity. In addition to this, the majority of the

nodes here do not undergo any deformation and therefore the additional computational

cost is unnecessary.
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Figure 3.11: Plot of the element length when using the adapted stalagmite model, for
parameters in Table 3.1, when Q = 1×10−4 kg s−1 and N = 10001, for crystalline growth
of 30 days.

Given these observations it was decided to improve the previous implementation in the

work of Romanov et al. [162], by developing and implementing an adaptive meshing

routine. This routine imposed that after every time-step and hence displacement of the

mesh, if ∆l
j
i > 2∆l01 then a new node was placed at the bisection of the element,

x
j
i+x

j

(i+1)

2 .

This check is carried out across the mesh and the nodes are reordered appropriately. Due

to this the total node count N becomes a dynamic variable, and is now specified by N j ,
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Figure 3.12: Plot of nodal distribution when using the adapted stalagmite model, for
parameters in Table 3.1, when Q = 1 × 10−4 kg s−1 and N = 10001, for crystalline
growth of 30 days.

which is the node count after the mesh has been displaced and the mesh adaptation has

occurred.

Initial tests with the updated model showed that computational costs of the model al-

most doubled compared using the equivalent initial mesh size with no adaptation. When

assessing the behaviour of the original model, it was clear that due to the node at the

apex moving vertically and the following node being displaced at an angle, divergence

of the nodes at this point occurred more rapidly than other nodes in the domain. This

can be observed from the change in element lengths through time close to the apex, as

seen in Figure 3.13. Therefore, in an effort to reduce computational cost, mesh adaption

routines, excluding the initial element, are carried out after every 200 timesteps. The

initial element connected to the apex is checked every time step. The full solver routine
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is summarised in Figure 3.14.

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Node Number, i

E
le

m
en

t L
en

gt
h 

(m
)

 

 

t = 0
t = 10 days
t = 20 days
t = 30 days

Figure 3.13: Plot of the element lengths, close to the apex of the formation, as they
change through time. For Q = 1 × 10−4 kg s−1, N = 10001 and parameters found in
Table 3.1.

Tests with the new routine presented in Figure 3.14 were promising. An example case,

corresponding to the case presented in Figure 3.8, using the parameters from Table 3.1

where Q = 1× 10−4 kg s−1 and N = 100, is shown in Figure 3.15. Observing this figure,

it can be seen that even though the same parameters were used, the inclusion of the mesh

adaption routine alleviates the previous problems experienced. In addition to this the

mesh size was reduced to N0 = 101, therefore the reduction in computational time was

highly significant.

To check that the mesh adaption was working correctly, the aforementioned case was run

again, but this time using a mesh size of N0 = 10001. Whilst this has been shown to be
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Figure 3.14: Flow chart for the solver procedure when considering the mesh adaption
routine.

computationally unnecessary, this parameter was selected to be identical to the case pre-

sented in Figure 3.12 and therefore, a direct comparison could be made. The cumulative

distribution of the nodal points is shown against the formation in Figure 3.16, such that

the distribution of the nodes can be described.

Comparing Figure 3.16 with Figure 3.12, it can be seen that a larger number of nodes are

contained within the regions of high deformation when using the mesh adaption routine.

In addition to this, the element lengths were also calculated and can be seen in Figure

3.17. On comparing Figure 3.17 and Figure 3.11, it is clear that the adaption routine is

functioning correctly. In the cases without adaption, the element size increased rapidly

as you approached the apex. Clearly this behaviour is eliminated in the model that uses

mesh adaption, with all element lengths remaining of a similar order of magnitude.
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Figure 3.15: An example case for the adapted stalagmite model when using the adaptive
meshing routine. For Q = 1× 10−4 kg s−1, N = 101 and parameters found in Table 3.1.

3.2.2.3 Mesh Independence with Adaptive Mesh Subroutines

Having established that the mesh adaption routine was functioning correctly, a new mesh

independency study was carried out. The study used parameters presented in Table 3.3

and simulated the solution after 30 days. Results from this mesh independency test are

presented in Figure 3.18. From this figure it can be seen that none of the results when

using various mesh sizes suffered from the previous complications, which resulted in a low

number of nodal points close to the apex. Whilst functioning, the case for N = 101 differs

from the rest of the results. In previous computational experiments it was found that

the majority of issues, due to a low node count, were found close to the apex, therefore

Figure 3.19 shows a close up of the results in this region. In addition to this, the values

for N0 and N43200 can be found in Table 3.4. From Figure 3.19, the previous conclusion

that N0 = 101 differs significantly from the other mesh sizes is confirmed. In addition

to this, there appears to be convergence of the solution, as N0 is increased. This can

be concluded, as there is no significant change in the solution when increasing the mesh
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Figure 3.16: Plot of nodal distribution when using the adapted stalagmite model, for
parameters in Table 3.1, when Q = 1 × 10−4 kg s−1 and N0 = 10001, for crystalline
growth of 30 days, with mesh adaption.

size from N0 = 1001 to N0 = 10001. Due to this, an initial mesh size of N0 = 1001 was

employed for all subsequent calculations. Additionally, a timestep of ∆t = 60s was used.

Summarising, the adaptive meshing presented here solves the previously encountered dif-

ficulties with the model. The model is now robust and can describe a variety of formations

with varying degrees of mesh deformation, with no a priori knowledge of the final forma-

tion shape. Additionally, the adaptive meshing routine allows the optimisation of nodal

placement such that smaller mesh sizes can be used. This greatly reduces the computa-

tional costs of the model. The computational time for these numerical experiments can

be found in Table 3.5.
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Crystal growth coefficient, K (m s−1) 6× 10−6

Mass flow rate, Q (kg s−1) 1× 10−4

Initial node spacing, ∆l0i (m) 5× 10−3, 1× 10−3, 5× 10−4, 5× 10−5

Initial Node Count, N0 101, 501, 1001, 10001

Initial concentration, cj1 (mol m−3) 8000 (8 Molar)

Saturation concentration, c∗ (mol m−3) 7500 (7.5 Molar)

Initial angle, θ0i (rad) 8× 10−3

Solid Density, ρs (kg m−3) 2000

Solution Density, ρ (kg m−3) 1000

Molecular Mass, Ms (kg mol−1) 0.01

Timestep, ∆t (s) 60

Total Timesteps, M 43200

Table 3.3: Parameters for the computational simulations for the mesh independency tests,
when using adaptive meshing routines.

Initial Node count, N0 Final Node Count N43200 Percentage increase (%)

101 152 50.5

501 746 48.9

1001 1496 49.5

10001 14876 48.7

Table 3.4: Initial and final mesh sizes for the computational results presented in Figure
3.18.

Initial Node count, N0 Computational time (s)

101 3.3

501 10.8

1001 23.0

10001 213.0

Table 3.5: Computational time for results presented in Figure 3.18
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Figure 3.17: Plot of the element length when using the adapted stalagmite model, for
parameters in Table 3.1, when Q = 1×10−4 kg s−1 and N = 10001, for crystalline growth
of 30 days, with adaption.

3.3 Results and Discussion

This section focuses on the model when considering environmental and industrial crystal

growth systems where model parameters are imposed that relate to published values for

the specific materials in question. Initially, results from the geological case are recon-

structed and compared with published results such that the model is confirmed to be

working correctly. The model parameters are adapted such that the crystal growth of

sodium nitrate under the conditions experienced in the NNL drip trials are considered.

The model parameters are varied such that the impact of the various parameters on the

growth behaviour, and hence the final growth formation are determined.
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Figure 3.18: Plot of the growth when using the adapted stalagmite model for growth of 30
days when using adaptive meshing routines, for varying initial mesh size N0. Parameters
are given in Table 3.3.

3.3.1 Case 1: Reconstruction of the Geological Model

To check that the model had been correctly implemented, results were generated for the

case of calcium carbonate to match those reported by Romanov et al. [162]. The param-

eters for this case can be found in Table 3.6. For ease of comparison with work presented

in [162], flow rates in this section are given in terms of the volumetric flow rate, Qv = Q
ρ
.

Plots showing the time evolution of the boundary of the stalagmite formation from the

model are provided in Figure 3.20. The profiles shown in Figure 3.20 are axisymmetric

about x = 0. From this figure it can be seen that the geological model is functioning

correctly, with the results from the MATLAB implementation of the model being virtually

identical to the results presented in Romanov et al. Data from [162] was obtained through

digitisation of the graphs using GetData Graph Digitizer V2.26. It is assumed that the
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Figure 3.19: Plot of the growth close to the apex, when using the adapted stalagmite
model for growth of 30 days when using adaptive meshing routines, for varying initial
mesh size N0. Parameters are given in Table 3.3.

slight discrepancies between the results are due to the difficulties involved in digitising

the data.

3.3.2 Case 2: Modelling the Growth of Sodium Nitrate under Condi-

tions Experienced in the NNL Drip Trial

Once the model was verified as described in Section 3.3.1, the parameters in the model

were adapted such that the model could be used to obtain results for the case of impinging

droplets of sodium nitrate salt solution. Parameters for the modified Sodium Nitrate case

are given in Table 3.7.

The solubility, c∗ [mol m−3], for this material can be expressed as,
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Crystal growth coefficient, K (m s−1) 1.3× 10−7

Volumetric flow rate, Qv (m3 s−1) 5× 10−8

Initial node spacing, ∆l0i (m) 5× 10−4

Initial node Count, N0 1001

Initial angle, θ0i (rad) 1× 10−5

Solid Density, ρs (kg m−3) 2700

Solution Density, ρ (kg m−3) 1000

Molecular Mass, Ms (kg mol−1) 0.01

Timestep, ∆t year 1

Total Timesteps, M 5000

Table 3.6: Parameters for the adapted stalagmite model for calcium carbonate, as found
in [162].
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Figure 3.20: Axisymmetric plots of the stalagmite through time. Comparison of the
MATLAB implementation of the model against results presented in Romanov et al.,
[162].
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Crystal growth coefficient, K (m s−1) 8× 10−6

Initial node spacing, ∆l0i (m) 5× 10−4

Initial Node Count, N0 1001

Initial concentration, cj1 (mol m−3) 8000

Saturation concentration, c∗ (mol m−3) 7500

Initial angle, θ0i (rad) 8× 10−3

Solid Density, ρs (kg m−3) 2260

Solution Density, ρ (kg m−3) 1000

Molecular Mass, Ms (kg mol−1) 0.084

Timestep, ∆t (s) 60

Table 3.7: Parameters for the adapted geological stalagmite model for sodium nitrate
solution.

c∗(T ) = 5055.95 + 98.452T, (3.22)

where T is the solution temperature (◦C). It should be noted that the equations in this

work assume that concentration is given in mol m−3, however for ease of comparison with

both the literature and NNL experimental data these will often be given in term of molar-

ity (Molar). Also in this work we assume that the temperature of the liquid film is equal

to the ambient room temperature, and remains constant throughout. Prior to entry into

the system the solid matter is dissolved in a solvent at a higher temperature than this

ambient room temperature. Upon entry into the domain the liquid solution experiences

a drop in temperature. In order to simplify the model, we assume that this temperature

drop is instantaneous, and therefore at any given point in time, an isothermal system can

be considered.

As mentioned in Section 2.2.3, the rate of crystal growth depends partially on, K, the

growth constant. Although this quantity depends on the temperature and velocity of the

liquid, it is usually assumed constant when looking at a specific crystal growth scenario.

Various values for K are reported in the literature [78, 143, 190]. The value of K when

considering sodium nitrate was generated using an average value of K taken from these

papers.
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Now that the relevant physical and computational parameters have been prescribed, the

model was run in order to calculate profiles of an axisymmetric growth. In Figure 3.21

the growth of these sodium nitrate solutions for an initial concentration, cin, of 8 Molar

can be seen through time. From this figure it can be seen that the tower formations

are now much thinner and grow at a much faster rate to that of the calcium carbonate

shown in Figure 3.20. Results found in the NNL sodium nitrate drip trials, reached an

approximate height of 0.27m after 30 days, and widths of approximately 0.09m, therefore

the results here appear to be of the same order of those experienced within the sodium

nitrate drip trials. It should be noted that the results here are later validated against

a later model, in Chapter 5. A more thorough quantitative analysis of the results when

compared to experimental data is given here. The remainder of this section will generally

give a more qualitative appreciation of the models behaviour for varying parameters. As

previously mentioned, the results presented in Figures 3.20 and 3.21 are axisymmetric

approximations of the crystalline structures as they growth through time. Figure 3.22

shows the three-dimensional representation of the results in Figure 3.21.

3.3.3 Case 3: Sodium Nitrate and the Impact of the Kinetic Growth

Coefficients

The crystal growth coefficient used in Section 3.3.2 was an average value taken from

[78, 143, 190]. As there is currently limited industrial interest concerning the optimisa-

tion of sodium nitrate crystals, information regarding its crystallisation kinetics is scarce

and as such no empirical expressions relating the kinetic parameters to either the flow

velocity or the temperature are present in the literature. In response to this, numerical

experiments have been carried out, taking both the minimum and maximum kinetic val-

ues calculated from sodium nitrate crystal growth data and the average value previously

used in order to assess the effects of K on the final formation growth, and give an ap-

proximate range of possible solutions.

Results for the crystal growth after 30 days, when implementing the various values of K

can be observed in Figure 3.23. From this figure it can be seen that the crystal growth

coefficient has a large impact on the size and shape of the final formation. Larger values

of K lead to tall, narrow formations, isolated within a small region. For smaller values of

K, the vertical growth of the formation is greatly reduced, however wider formations are



Chapter 3. Geological Models for Industrial Crystallisation Problems 108

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.05

0.1

0.15

0.2

0.25

x (m)

y 
(m

)

 

 

t = 10 days
t = 20 days
t = 30 days
Floor

Figure 3.21: Axisymmetric plots of the Sodium Nitrate formation through time, when
Q = 2.89 × 10−5 kg s−1, K = 8 × 10−6 m s−1, cin = 8 Molar, T = 27◦C. Additional
parameters are given in Table 3.7.

now produced. These factors will therefore need to be carefully considered when making

deductions about the parameters impact on the criticality of the formations, as changes

in the characteristic shape can have a large effect.

3.3.4 Case 4: Sodium Nitrate with Parameters and the Impact of En-

vironmental and Process Parameters

Following consideration of the impact of the coefficient of crystal growth, the impact of

varying the process conditions, such as the flow rates, i.e. the rate or severity of a leakage,

or the environmental conditions, such as the ambient temperature, were assessed.
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Figure 3.22: Three-dimensional plots of the stalagmite through time, after (a) t = 10
days, (b) t = 20 days, and (c) t = 30 days , when Q = 2.89× 10−5 kg s−1, K = 8× 10−6

m s−1, cin = 8 Molar, T = 27◦C. Additional parameters are given in Table 3.7.
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Figure 3.23: Axisymmetric plots of the Sodium Nitrate formation after 30 days growth,
for varying crystal growth coefficient K, when Q = 2.89 × 10−5 kg s−1, cin = 8 Molar,
T = 27◦C. Additional parameters are given in Table 3.7.

3.3.4.1 Impact of temperature variation through time

The dataset of temperature data from the NNL experimental trials was small, with only

30 readings taken at irregular time intervals over a 30 day period. It was found that

the experiment readings had a mean temperature of 27◦C with a standard deviation of

2.3◦C. As the readings were taken irregularly and infrequently it was unknown if this was

a true representative measure of the conditions within the system environment. In order

to assess the potential impact of the temperature, the model here was used to calculate

the growth after 30 days when considering the mean temperature, and for the cases when

temperature is one standard deviation variation from the mean. The results from these

simulations can be seen in Figure 3.24. From this figure it is clear the model here predicts

that the overall width of the formation does not change with variations in temperature,

however the overall height can change significantly. It should be noted that these results
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are based on the fact that the temperature remains at these extreme constant values for

the duration of the 30 day period.
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Figure 3.24: Axisymmetric plots of the Sodium Nitrate formation through time for varying
temperature T , when Q = 2.89 × 10−5 kg s−1, K = 8 × 10−6 m s−1, cin = 8 Molar.
Additional parameters are given in Table 3.7.

Given these assumptions the model was run again, under the assumption that the tem-

perature can vary on a day by day basis, such that the saturation value is given by,

c∗ = 5055.95 + 98.452(normrnd(µ, σ)), (3.23)

where normrnd(µ, σ) generates a random number from a normal distribution with a mean

µ and standard deviation σ. In this case µ = 27 and σ = 2.3 were considered. The value

of c∗ was then updated when j mod 1440 ≡ 1. This study was carried out in order to

provide a more realistic understanding of the behaviour under time varying environmental

conditions.
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The model was run, allowing the ambient temperature to vary temporally (still isother-

mal when considering the spatial variation), such that the temperature was calculated

by normrnd(27, 2.3) for each new day. The model was run 50 times in order to give an

approximate range of feasible outcomes under this assumption. Results for this can be

found in Figure 3.25. From this figure it can be seen that the range of heights at the apex

is now much smaller than the range predicted when assuming a constant temperature at

the previous temperature values. In addition to this, the observed apex height measured

in the NNL experiments after approximately 30 days is marked on the figure, clearly this

value falls within the feasible range predicted by the model.

As previously mentioned the value of K is dependent on the temperature. Therefore, it

is expected from the results in Figure 3.23 and 3.24 that due to the variations in the tem-

perature, the width of the formation and rate of vertical growth would also vary through

time. As no empirical relations are available in the literature for the growth kinetics de-

pendence on temperature, it is not possible to quantify this behaviour in the study here.

Now that the effects of the temperature on the growth of the formations have been

considered, the effects of the mass flow rates will also be discussed. The NNL stated

in their report of the experimental work that typical leakages experienced vary between

Q = 1.17 × 10−5kg s−1 and Q = 5.78 × 10−5kg s−1 (assuming ρ = 1000 kg m−3). Due

to this, the effects of varying the mass flow was considered. In these computational

experiments the other parameters were assumed constant and are given in Table 3.7.

Results for this numerical experiment can be seen in Figure 3.26.

From Figure 3.26, it can be seen that as the mass flow rate increases, the formation width

also increases. This parameter therefore needs careful consideration when predicting the

potential criticality of heavy metal formations, as at low mass flow rates an almost cylin-

drical characteristic shape is observed, whilst at higher rates, the characteristic shape

tends towards a hemi-spherical shape.

Romanov et al. used their implementation of the model for predicting the formations

of stalagmite growth when considering variable mass flow rates, as seen in Figure 3.27.
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Figure 3.25: Axisymmetric plots of the Sodium Nitrate formation through time when
considering random changes in temperature, using a the saturation value, c∗, given by
(3.23) and Q = 2.89 × 10−5 kg s−1, K = 8 × 10−6 m s−1, cin = 8 Molar. The coloured
lines indicate a single computational experiment for 30 days growth. The (•) marker
indicates the experimental apex height after 30 days. Additional parameters are given in
Table 3.7.

The model predicts, and agrees with known facts about stalagmites, that the growth be-

haviour at the top of the formation is purely dependent on the current model parameters.

The behaviour of the growth as you travel down the formation is determined by past

conditions, and the base of the stalagmite is determined by the initial growth conditions.

It is questionable as to whether the model would remain physically valid in regions where

gravity acts away from the wall, as the the fluid remaining attached to the surface would

depend on capillary forces. However, due to the growth of the formation away from the

apex of the formation remaining stagnant, there is an argument that the model’s be-

haviour in these regions is irrelevant. Due to these points the study here assumes that

the model remains valid for these cases and will be used to describe the growth of the
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Figure 3.26: Plot of the growth after 30 days when varying the mass flow rate, Q, when
K = 8× 10−6 m s−1, cin = 8 Molar, T = 27◦C. Additional parameters are given in Table
3.7.

formations when considering a variable mass flow rate.

The following computational experiment assumes that the process conditions experienced

within the plant undergo a cyclic rotation, such that if a pipe or vessel leakage occurred,

the flow rate would vary depending on the current fluid pressure within the pipe or

vessel. As the NNL stated that leakages usually vary between Q = 1.17 × 10−5kg s−1

and Q = 5.78 × 10−5kg s−1, the experiment here will assume that due to a fortnightly

rotation of plant conditions, the leakage can be described by the variable mass flow rate,

Qj = Q(tj) = 2.89× 105 + 1.732× 10−5 sin
( 2πtj

20160

)

, for j = 0, ...,M. (3.24)

The results for this experiment can be observed in Figure 3.28. From this figure it can
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Figure 3.27: Plots of stalagmite growth given by the ’FLOW model’ developed by Ro-
manov et al. for mass flow rate Q = V

τ
, where V is the droplet volume and τ is the drip

interval, given by τ = 30+ 13 sin(2π
P
t) for (a) P = 500 years, (b) P = 5000 years, and (c)

P = 15000 years, [162].

be seen that when imposing a cyclic mass flow rate, the formation takes a wavy profile.

It should be noted that due to the formation taking a small portion of the domain,

each axis has a different scale, therefore changes in the profile may appear to be slightly

exaggerated.

In addition to cyclic conditions, if leakage occurs from a storage vessel, which is filled

or emptied over given periods of time, it is likely that a constant decrease or increase of

mass flow rates will be experienced. Therefore, Figure 3.29 shows the results for the linear

increase from Q = 1.17 × 10−5kg s−1 to Q = 5.78 × 10−5kg s−1 and the reverse of this,

such that the mass flow Q = 5.78× 10−5kg s−1 decreases to Q = 1.17× 10−5kg s−1 over

a 30 day period. From this figure it can be seen that for an increase in mass flow rate,

the width gradually increases as you move up the formations, conversely for a decrease
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Figure 3.28: Plot of the growth after 30 days for a variable mass flow rate, given by
(3.24) compared with Q = 2.78× 10−5 kg s−1. Here K = 8× 10−6 m s−1, cin = 8 Molar,
T = 27◦C. Additional parameters are given in Table 3.7.

in mass flow rate the formation decreases with increasing height. From these numerical

experiments it can be deduced that the growth behaviour at the top of the formation is

governed by the current model conditions. As you move down the formation the growth

behaviour catalogues the previous conditions through time. This agrees with the geolog-

ical work, as researchers in this field consider the inverse problem such that atmospheric

conditions can be deduced travelling back in time as you move down the stalagmite for-

mations.
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Figure 3.29: Plots of the growth after 30 days for both linearly increasing and linearly
decreasing mass flow rates, when K = 8 × 10−6 m s−1, cin = 8 Molar, T = 27◦C.
Additional parameters are given in Table 3.7.
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3.4 Summary and Conclusions

In this chapter a geological model taken from the literature for describing the growth of

stalagmites has been adapted such that the crystalline growth of industrial salt solutions

can be considered. Initial tests highlighted some weaknesses with the model’s numerical

discretisation when considering parameters similar to industrial salts. Due to this, addi-

tional adaptive meshing routines have been developed and an extensive study has shown

that these alleviate the previously experienced problems.

Once mesh independency studies were carried out the adapted model was validated

against the previously published results in [162]. Following this, the model was used

to consider the growth of sodium nitrate over the time-scales considered in the NNL drip

trials. Results were promising and formations were of a similar size and shape to the

experimental trials.

Parametric trials investigated the effects of temperature on the system. It was observed

that the formation height was shown to be particularly sensitive to variation in tem-

perature. Due to the lack of experimental data regarding the variations in temperature

through time, randomly generated, time variable, data which was designed to consider

possible temperature fluctuations (based on the limited experimental data) was used.

Through this a range of possible formations were obtained. From comparing the exper-

imental data to these results, it was clear that the model was capable of predicting the

formations obtained in the experiments. However, due to the sensitivity to changes in

temperature, the model highlighted the need for regular, accurate, input temperature

data, if uncertainty is to be reduced and an accurate solution obtained.

The effects of the crystal growth coefficient, K, were also investigated. The results suggest

that the width and height of the final formation is highly dependent on this empirically

calculated, material specific parameter. As mentioned in Chapter 2, this coefficient is a

function of two simultaneous processes, namely the diffusion, and the surface integration

or reaction step. Clearly the model has limitations as both these processes are dependent

on the fluid flow properties and temperature. Due to this, and the models sensitivity to

K, it is questionable whether a constant value for this is appropriate and results suggest
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that for K = K(T ) the width would also change with varying temperature. However,

as parameters relating to the quantification of these processes are limited in the litera-

ture (particularly for sodium nitrate), the approach here serves as a useful approximation.

Additionally, the effects of the mass flow rates were considered. Here it was shown that

the width of the formation was sensitive to changes in the mass flow rate. In order to ad-

dress the likely problem of a non constant mass flow rate, studies were carried out which

imposed a time variable mass flow rate. These studies show that the formation reaches

an equilibrium width for the conditions at a given point in time, as the formations grow

taller the width of the deposited mass in this time-frame changes depending on current

mass flow conditions. This agrees with the results in the geological literature, as a key

area of interest is the formulation of inverse problems which consider the shape of stalag-

mite formations. These models suggest that the stalagmite shape at various heights can

give information regarding the climate conditions at different points in time (i.e. the top

most point gives information regarding the most recent conditions, and the base of the

formation relates to the initial growth conditions).

Summarising, the work in this chapter has addressed the second objective of the research,

posed in Chapter 1. Results from the model have offered insight into how the temperature,

mass flow rate and crystal growth coefficient can affect the overall size and shape of the

formation. Results have been shown to be highly sensitive to input parameters and

therefore careful consideration needs to be taken with these if accurate solutions are to

be obtained.
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Chapter 4

Development of a Coupled CFD

and Moving Boundary Framework

for Crystallisation Problems

4.1 Introduction

The chapter reports the development of a computational framework which has the poten-

tial to describe crystalline growths from salt solutions as they form through time. The

underlying principles of the model here are similar in nature to those of the adapted sta-

lagmite model developed in Chapter 3. The previously described model assumes that the

growth of crystalline mass can be described by a moving boundary, which is coupled to

several other physical models which provide simple approximations to the fluid and solute

transport. A similar approach is developed in this chapter with methods implemented to

overcome some of the previous models limitations. The model in Chapter 3 uses analytic

expressions to approximate the flow field of a thin liquid film. These models are only

appropriate for a limited parameter set, i.e. slow or thin fluid films. In addition to this,

diffusion of the solute through the film is accounted for by a constant parameter in the

reaction-diffusion crystallisation model. As the effects due to diffusion are not modelled

explicitly, its effect on the crystal growth does not vary with changing flow conditions.

This is known not to be true, as the size of the mass transfer boundary layer (see Section

2.2.3), and hence relative impact of the diffusion changes depending on the flow veloc-

ity. In addition to the fluid flow and the diffusivity, the model neglects other physical
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processes, e.g. the evaporation of solvent, the material’s rheological dependence on en-

vironmental and flow parameters, and temperature effects. In some situations this can

have a significant impact on the model predictions.

From Chapter 3, it can be seen that the previous model provides insight into the formation

of crystalline deposits. Results when focusing on the central tower formation generally

appear to be of similar sizes and shapes to those of the experimental work. However

as mentioned, there are important physical processes that the model does not consider.

The effects of neglecting these processes are clearly apparent when comparing experimen-

tal data to the model results, as some key features of the formations are not captured

(e.g. growth away from the central tower formation). Therefore, in order to carry out

a thorough study into the effects of parameters and their relative impact on the system,

this chapter develops and evaluates an initial finite volume framework for coupling fluid

flow with crystallisation. This framework then forms the fundamental basis for a model,

which is developed in Chapter 5, allowing the modelling of crystalline formations and the

relative impact of additional physics to be investigated.

This initial framework will focus on the three most fundamental processes observed in

the problem, namely, fluid flow, solute transport and the deposition of solid mass. Each

section within the chapter will specifically focus on and assess the modelling and imple-

mentation of techniques, such that each individual process is captured in an accurate

and robust manner. A final section will focus on the coupling of these models, hence

completing the framework for describing problems that involve mass deposition from a

liquid solution.

The work in this chapter therefore directly addresses the 3rd objective of this research, as

discussed in Section 1.5, by developing and assessing potential techniques for describing

problems involving the crystallisation from liquid solution. It will provide a finite volume

implementation specifically for the coupling of systems involving fluid flow when consid-

ering a moving boundary such that additional physics can be conveniently included at a

later stage. It is expected that the inclusion additional physics will allow an improved

model to be created, based on this initial framework such that the formations observed

in the NNL drip trials can be considered.
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4.2 Fluid Flow

Similarly to the model in Chapter 3, here we assume that the droplets impact on the

surface of an inclined plate. After impact, droplets flow down the incline of the plate,

forming a thin liquid film. Droplet splashing is neglected within this work as it is assumed

the majority of the liquid lands close to the point of impact. As such, only the resultant

liquid film will be considered. The mass flow rate of the droplets is averaged through time

and it is assumed that entry of liquid into the system can be described by a constant flow

rate perpendicular to the plate.

4.2.1 Introduction to the Numerical Methods

Here the Navier Stokes equation is solved in order to describe the transport of momentum.

Unlike Chapter 3 which considered an incompressible flow, with constant density and

viscosity, the work here will impose no such assumption. Due to this the conservation of

momentum is given by,

∂

∂t
(ρu) +∇ · (ρuu) = −∇p+∇ ·

(

µ(∇u+ (∇u)tr)
)

+ ρg (4.1)

Alongside this the conservation of mass is given by,

∂ρ

∂t
+∇ · (ρu) = Sm, (4.2)

where Sm are the mass source/sink terms.

As the model is considered to be at a steady state, the time dependent terms in these

equations can be ignored. Similarly to the approach presented in Section 2.3, these equa-

tions can then be discretised and solved over a numerical grid, which is mapped over

the geometry of interest. In order to demonstrate how this is implemented the initial

numerical discretisation presented in Section 2.3 is progressed. For continuity with the

previous workings, the remainder of this section will further consider the discretisation of

the incompressible equations in (3.3), however it should be noted that similar methods

are used when considering (4.1).
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A typical computational cell, along with its surrounding cells, can be seen in Figure 4.1.

As in this work a cell-centred finite volume method is considered, variables stored within

the finite volume solver relate to the value at the cell centre, however from observing the

previously discretised form of (3.3), in (2.11), it can be seen that the discretised equations

require the values at the cell face (see Figure 4.1). In addition to this, gradient values

at the cell face are also required to be calculated. The equations in (2.11) can now be

reformulated in terms of the steady state problem and the example finite volume grid

in Figure 4.1. For simplicity the horizontal component, u(x, y), of the velocity u(x, y) is

considered by,

∑

(x,y)∈F

(ρuAu · n) = −
∑

(x,y)∈F

pA(n · î) +
∑

(x,y)∈F

(µA∇u · n), (4.3)

where (x, y) ∈ F = {i− 1
2 , i+

1
2}× {j − 1

2 , j +
1
2} is the discrete set of coordinates for the

cell face centre, n = n(x, y) is the outward normal to the cell face, î is the unit vector

in the x-direction, A = A(x, y) is the area of the cell face, µ is the dynamic viscosity

and p = p(x, y) is the pressure. It should be noted that when considering the vertical

components of the velocity, the corresponding body forces due to gravity have to be

considered.

As a cell-centred finite volume method is used here, the face values are unknown and

therefore (4.3) needs to be reformulated in terms of the cell centre values. This can be

accomplished through a variety of different finite difference methods, all of which have

their own individual strengths and weaknesses. As the steady state case is considered in

this work, only the methods for spatial discretisation are discussed. In addition to this,

there are various numerical methods for calculating the gradient vector. Both of these

considerations will be discussed in Section 4.2.1.1.

Once the face values are calculated using an appropriate discretisation scheme, a linear

system can be obtained. For example, when considering the horizontal component of the

velocity, u(x, y) = ux,y, at point (i, j), the following equation can be obtained,
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Figure 4.1: Plot of a simplified numerical grid when considering the finite volume method.
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ai,jui,j =
∑

(x,y)∈C

ax,yux,y +
∑

(x,y)∈F

pA(n · î) (4.4)

where C = {i − 1, i + 1} × {j − 1, j + 1} is the discrete set of coordinates for the neigh-

bouring cell centres, F = {i− 1
2 , i+

1
2} × {j − 1

2 , j +
1
2} is the discrete set of coordinates

for the cell face centres on (i, j). The linearised momentum coefficients are given by ax,y,

these are dependent on the choice of discretisation scheme used.

Due to complex coupling between pressure and velocity, there are a variety of approaches

in which to solve the above linear system of equations. These can be generally classified

into either segregated or coupled methods. Segregated methods take an iterative solution

approach, such that an initial pressure field is assumed. Using this pressure field corre-

sponding velocities can be calculated from (4.4). Following this, face mass flux values are

calculated in each cell, such that, based on the continuity equation (3.4) (conservation

of mass), the sum of the mass fluxes across a cell must be equal to zero. As the initial

pressure field is approximated, this initial solution will not satisfy the continuity equa-

tion. A pressure correction term is then calculated such that the flow field satisfies mass

conservation. Using this pressure correction term, the pressure field can then be updated.

It should be noted that the pressure is corrected in an iterative fashion, such that only a

fraction of the pressure correction term is applied at each iteration. This is for stability

reasons, and is known as under-relaxation. This process is carried out iteratively until a

suitable level of convergence is obtained.

There are a number of different methods for segregated velocity-pressure coupling, whose

differences usually relate to the calculation and implementation of the pressure correction

term. The primary available segregated solvers are, SIMPLE [149], SIMPLEC [178] and

PISO [92].

As an alternative to segregated methods, the pressure-velocity equations can be solved

in a coupled manner. Here the conservation of mass is directly enforced through modifi-

cation of the linear system in (4.4) such that the pressure can be written in terms of the

momentum coefficients. This overall system of equations is then solved to obtain both

velocity and pressure fields. Generally speaking, the coupled solver takes fewer iterations
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to converge, however more memory is required due to the larger number of unknowns

in the governing system of equations [8]. The choice of method should be based on the

specific problem being considered.

It should be noted that the linear systems being solved in both the segregated and coupled

solvers here are often challenging, and therefore a variety of methods exist in order to

solve them. Here the Gauss-Seidal method is used [81], along with the algebraic multigrid

method (AMG) [90], which is used to increase the rate of convergence.

4.2.1.1 Spatial Discretisation

As discussed in Section 4.2.1, before the linear systems can be solved values for the flow

variables and their respective gradients have to be calculated on the cell faces. The re-

mainder of this section will focus on the discretisation of the velocity, such that face values

and gradients can be obtained. The face values for the pressure are often calculated using

complicated expressions. Details of a the most commonly used pressure interpolation

schemes can be found in [156].

The most simple method for calculating the velocity values at the cell face, namely the

first order upwind scheme, simply assumes that for a given face, the velocity at this point

is equal to the cell centred velocity in the upwind cell, therefore for the x component of

u,

ui+ 1
2
,j =

{ ui,j when ṁe > 0

ui+1,j when ṁe < 0,

(4.5)

where ṁe is the mass flow rate from cell (i, j) to cell (i+ 1, j) (a negative value signifies

fluid is flowing from (i+ 1, j) to (i, j)).

As the title suggests, this scheme is first-order accurate and therefore, is often not as

accurate as higher-order schemes. In addition to this, this scheme has a tendency to

introduce numerical diffusion into the solution. However, due to its simplicity is often
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used for challenging problems, where obtaining a converged solution through use of higher

order scheme may not be possible.

A second-order scheme [20] can also be used such that,

ui+ 1
2
,j =

{ ui,j +∇ui,j · r̃ when ṁe > 0,

ui+1,j +∇ui+1,j · r̃ when ṁe < 0,

(4.6)

where r̃ is the displacement vector from the upwind cell centre to the connecting face of

cell (i, j). Despite the increased accuracy this method is often known to produce oscil-

lations in the solution, particularly when describing flows with variations in density or

pressure.

Higher order methods are also available such as the Quadratic Upstream Interpolation for

Convective Kinematics scheme (QUICK) [114], these methods increase the accuracy by

taking additional values from further upwind computational cells. Again, these methods

are known to suffer from instabilities. Often a blending between the low-order schemes

and the high order schemes is employed, such that a high level of accuracy can be ob-

tained, whilst still remaining stable.

In addition to the face values, the gradients also need to be calculated. There are several

methods in which this can be achieved. The “Green-Gauss Cell-Based Gradient Evalua-

tion” is one available method used [8]. Again, when considering the horizontal component

of velocity, this model states that the gradient at the cell centre can be calculated via

∇ui,j =
1

Vi,j

∑

(x,y)∈F

ux,yAx,yn, (4.7)

where ux,y is calculated from (4.6), Vi,j is the volume of cell (i, j) and Ax,y = A(x, y) is

the face area. Gradient values at the face can then be calculated from (4.6), by using

∇ui,j in place of ui,j .

Alternatively a ’least-squares approximation’ can be used. This method assumes that the



Chapter 4. Development of a Coupled CFD and Moving Boundary Framework for
Crystallisation Problems 128

gradient can be calculated from the average values between adjacent cell centres. The

relative weighting of each average (four for quadrilateral meshes) is varied when calculat-

ing the gradient. Details of this method can be found in [8].

An overview of the underlying numerical methods for the fluid flow equations have been

provided. These for the basis of the models development in this work. The following

section will discuss the implementation of a model which allows the consideration of

multiple fluids within a system, such that thin liquid films can be described.

4.2.2 Volume of Fluid Method

There are currently many numerical models designed for capturing the flow of multiple

fluids. In this work the volume of fluid (VOF) method which is specifically designed for

the modelling of immiscible fluids and capturing the interface between them is used. An

initial review of the literature has shown that the VOF model has been used extensively

in the modelling of thin film flows [57, 84, 87]. These studies suggest that the model is

appropriate for the work here. The following sections will discuss the mathematics of the

VOF model, along with a number of studies that are undertaken to assess the effects of

varying the numerical and computational implementation. This is necessary to establish

an appropriate implementation for the model.

4.2.2.1 Mathematical Model

In addition to the solution of the equations outlined in (4.1) and (4.2), an equation which

models the advection of a “volume fraction” is solved. This volume fraction equation is

given by,

∂

∂t
(αqρq) +∇ · (αqρqu) = Sαq , 0 ≤ αq ≤ 1, for q = 2, ..., n, (4.8)

where αq, denotes the fraction of fluid within a computational cell with respect to the

qth phase, ρq is the density of the qth phase, Sαq is a the source/sink term relating to the

qth phase and n represents the number of phases. Equation (4.8) is not solved for q = 1

and is calculated by,
n
∑

q=1

αq = 1, (4.9)



Chapter 4. Development of a Coupled CFD and Moving Boundary Framework for
Crystallisation Problems 129

in each computational cell. The velocity u satisfies equations (4.1) and (4.2). This shared

field approach is dependent on the volume fractions of the phases through the properties

of ρ and µ, where,

ρ =
n
∑

q=1

αqρq, (4.10)

and,

µ =
n
∑

q=1

αqµq, (4.11)

where µq is the viscosity with respect to the qth phase.

Equation (4.8) is then discretised using the methods similar to those outlined in Section

4.2.1. The solution of these allows the transport of a scalar denoting the volume fraction.

While this is the case, a scalar value located at the cell centre does not provide enough

information in order to determine the position and orientation of the interface within that

particular cell. The following section will discuss the various methods available such that

these interface values can be determined.

4.2.2.2 Interface Reconstruction

The computational cells in which 0 < α2 < 1 denote the region in which the interface

between the fluid phases lie. Through techniques presented in this section, the position

and orientation of the interface can be constructed (see Figure 4.2).

The original methods which solved the VOF attempted to develop the orientation of the

interface using information provided by the finite volume scheme. Equation (4.8) was

solved using a first order upwind scheme, and it was shown in [30] that the normal to the

interface between the phases is described by,

ninterface =
∇α2

|∇α2|
. (4.12)

Much like when calculating the advection of a single fluid, these methods were shown

to be highly diffusive, with the interface often being smeared across several cells [151].

As these diffusive phenomena are often alleviated by using higher-order schemes, when

considering the Navier Stokes equations, it might seem intuitive that increasing the order
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Liquid

Gas

α2 = 0 α2 = 0 α2 = 0

α2 = 1 α2 = 1 α2 = 1

Interface

α2 = 0.51 α2 = 0.48 α2 = 0.45

Figure 4.2: An example of a numerical grid showing the transport of the volume fraction
along with the reconstructed interface between an immiscible gas and liquid.
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would also reduce the smearing of the interface. Unfortunately, studies which considered

solution of the VOF equation when implementing these schemes were also shown to be

highly diffusive at the interface.

Due to such problems, researchers developed new methods in which the orientation and

position of the interface could be described by a single linear element in each computa-

tional cell. This being the case, the interface is no longer diffusive and is able to be sharply

defined. Studies regarding these methods, namely geometric reconstructive methods, can

be found in [120, 138]. While these methods are shown to give highly accurate solutions

to the VOF equation, they are not without their limitations. Geometric reconstruction of

the interface is seen to be highly computationally demanding, and moreover, the method

can only be implemented when considering the fully transient VOF model. These limita-

tions suggest that the method is not appropriate for a range of situations, such as when

the system is particularly complex and the computational demands are already high, or

when a steady state solver is to be used. Due to this, researchers have developed other

advanced finite volume discretisation schemes specifically for use with the VOF model,

such that unwanted numerical diffusion is kept to a minimum.

Examples of these methods include the High Resolution Interface Capture (HRIC) method

[136] and, the Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM)

[177]. As mentioned, upwind discretisation schemes often lead to numerical diffusion at

the interface. It was found that downwind schemes (similar to upwind schemes in Section

4.2.1, but with face values that are calculated from the adjoining downwind cell) lead to

a sharp interface, however the results produced are often non-physical [176]. Therefore,

these schemes use a blending between both upwind and downwind discretisation in order

to reduce numerical diffusion. Furthermore, a correction term is considered in the dis-

cretisation scheme, such that the initial calculated orientation of the interface influences

the relative weighting of the upwind and downwind schemes. Studies regarding both the

HRIC and CICSAM schemes, along with comparisons between the two, can be found in

[93, 136, 176, 182]. It should be noted that whilst the CICSAM scheme is less computa-

tionally demanding than the interface geometric reconstruction methods, it still requires

that a transient solver to be used. Therefore in situations where a steady state solver is

used, the HRIC method should be implemented.
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4.2.3 Mesh Implementation

While the numerical discretisation scheme is important in terms of the accuracy and res-

olution of the final results, the size, quality and type of numerical grid is also equally

important. For practical applications of numerical methods where the geometry and do-

mains in question are often highly complex, numerical grids can consist of a variety of

different shapes. In three dimensions these mesh shapes include tetrahedrons, pyramids,

hexahedrons and wedges. However in two dimensions, shapes are limited to quadrilat-

eral or triangular elements. As the work here focuses on the implementation of a two-

dimensional model, only the latter mesh types are considered.

In order to visualise numerical grids of either triangular or quadrilateral elements, a sim-

ple quadrilateral domain is meshed as observed in Figures 4.3(a) and 4.3(b). Generally

speaking, quadrilateral meshes offer better accuracy and convergence in comparison to

triangular meshes of the same number of elements, and therefore can have a significant

impact on the computational solution times. However, triangular elements offer more

flexibility when meshing complex geometries. The meshes shown in Figures 4.3(a) and

4.3(b) have a low number of elements, this is for visualisation purposes such that each

element type can be clearly seen. In order to assess the effects of both meshes when

using the VOF method, the meshes in Figures 4.3(a) and 4.3(b) were upscaled such that

each contained 10,000 elements, uniformly across the domain (approximately 5 times the

number of elements as those presented in Figures 4.3(a) and 4.3(b)) . The VOF model

was then run for the domain in Figure 4.4 when using both triangular and quadrilateral

meshes. Boundary conditions were specified such that a mass flow boundary condition is

placed on the inlet, given by,

u · n =
Q

ρA
, on Ωinlet (4.13)

where u is the fluid velocity, n is the inward normal to the surface, Q is the mass flow

rate of liquid, Ωinlet is the boundary defining the fluid inlet and A is the area of the inlet.

The floor boundary, Ωfloor, has a no-slip boundary condition implemented, where u = 0.

The outlet and top of the domain, Ωoutlet and Ωtop, are classed as a pressure outlets where
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Figure 4.3: Example of (a) a simple triangular mesh and (b) a simple quadrilateral mesh.
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Fluid in
Mass flow 
boundary
condition

Fluid out
Pressure outlet 
(zero pressure 
condition)

Pressure outlet 
(zero pressure condition)

Figure 4.4: Schematic of the domain used in the VOF mesh trial, along with the specified
boundary conditions.

a gauge pressure, p′ = p − patm = 0 is specified, where p is the absolute pressure and

patm is the atmospheric pressure. As this study was to test the effects of the meshing,

the exact solver and flow parameters at this stage are arbitrary. The results from this

simulation are presented in Figure 4.5. From this figure it can be clearly seen that when

using the quadrilateral mesh, the model produces a much sharper interface. For the tri-

angular mesh, the diffusion at the interface is severe, with the interface being smeared

throughout the majority of the fluid film.

If some a priori estimate of the film height can be made, such that there is confidence

that the film height will never exceed this value, a non-uniform mesh can be mapped onto

the domain. Then the mesh in the region in which the interface is expected will contain

a highly refined region of cells. An example of which can be seen in Figure 4.6. In order

to clearly see the individual elements, only a portion of the domain has been shown.

4.2.3.1 Considerations for the Choice of Numerical Discretisation

Now that the basic principles for meshing of the VOF method have been discussed, trials

of the various schemes are considered, such that the optimal discretisation scheme when

solving the VOF can be chosen. This optimisation will allow a clear interface to be de-
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Figure 4.5: Results from the VOF, when using both (a) triangular and (b) quadrilateral
meshes.
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Figure 4.6: Plot of a section of the domain when using a non-uniform mesh.

fined, such that the mesh size can be kept to a minimum.

The VOF model was run using the boundary conditions used in Figure 4.4 and a non-

uniform mesh of 10,000 elements, such as in Figure 4.6. As initial results confirmed that

a quadrilateral mesh type was optimal for the VOF model, these studies also implement

this mesh type. Results from this trial can be found in Figure 4.7. From this figure it can

be seen that increasing the order to the discretisation scheme increases the clarity of the

interface. These results also confirm that the HRIC scheme is the optimal scheme when

using a steady state VOF solver.

4.2.4 Results

The initial investigations suggest that the VOF model is appropriate when modelling thin

liquid films, however in order to give further confidence in the solution, the results here

will be compared against the Nusselt solution, as shown in (2.14). Also, the size of the

mesh used will also be varied, such that the solutions dependence on the mesh can be

considered. The models will be run using a domain and boundary conditions similar to

those presented in Figure 4.4. As the model in Chapter 3 is only appropriate for films that

are either very thin or very slow, the dimensions and flow rates considered here will now

be reduced. Parameters for the models are presented in Table 4.1 and the results for this

computational trial can be seen in Figures 4.8(a) and 4.8(b). From these figures it can
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Figure 4.7: Results from the VOF, when using the (a) first-order upwind, (b) second-order
upwind, and (c) HRIC discretisation scheme.
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Mass flow rate, Q (kg s−1) 5× 10−5

Angle, θ (rad) 8× 10−3

Solution Density, ρ (kg m−3) 1000

Solution Viscosity, µ (Pa s−1) 0.001

Width, B (m) 1

Table 4.1: Parameters for the computational simulations when comparing the VOF model
to the Nusselt solution (2.14).

be seen that as the mesh size increases the interface predicted by the model convergences

to a steady solution. Furthermore, the VOF model appears to produce results similar to

these of the Nusselt solution. When comparing these results it can be observed that the

Nusselt solution gives a slightly thinner interface to that of the VOF model, however as

discussed in Chapter 2, the Nusselt solution is often known to underpredict the height

of the free surface. As this is the case the results obtained in this study offer reasonable

confidence that the VOF is implemented and functioning correctly.

4.2.5 Summary

This section has assessed the various discretisation schemes that can be implemented when

solving the VOF model. Several problems have been highlighted with numerical diffu-

sion at the interface between the fluids when using the standard discretisation schemes

typically used for solving the Navier Stokes equations. Results demonstrated that the

interface accuracy and resolution greatly increases when using the HRIC scheme. This

section has also highlighted the need for a high quality (preferably quadrilateral) mesh

in the region of the interface. The position and orientation of the interface is shown

to converge to a steady solution, as the mesh size is increased. Results were compared

against the analytical Nusselt solution for thin liquid flows and are shown to be in good

agreement. This trial therefore provides a reasonable level of confidence that the VOF

method is both accurate and appropriate when considering the flow of liquid films similar

to those observed in the NNL studies.
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Figure 4.8: Plots of the interface, for (a) the full domain and (b) a small section of the
film, obtained by the VOF model for varying mesh size when compared to the Nusselt
solution, using the parameters given in Table 4.1.
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4.3 Solute Transport

4.3.1 Governing Equations

Transportation of solute within a solution has been described by solving a scalar advection-

diffusion equation in several studies (as discussed in Chapter 2.4). Examples of which

can be seen in [118, 191, 183, 197]. This equation, namely the solute transport equation

is given by,

∂c

∂t
+ u · ∇c = ∇ · (D∇c), (4.14)

where c is the concentration of solute in solution and D is the diffusion coefficient or

diffusivity of solute within the solution.

When coupled to the fluid flow, (4.1) and (4.2) are initially solved in order to obtain the

momentum field. Once complete, the solute transport equation can then be discretised

using the standard methods outlined in Section 4.2.1.

4.3.2 Domain and Boundary Conditions

In Chapter 2 it is stated that when a crystallisation process occurs, a low concentration

region is observed close to the crystal face. This is because solute is absorbed from the

solution into the crystal lattice. Solute from the bulk of the fluid then travels towards the

crystal face due to the concentration gradient via diffusion. This effect was not observed

in the model presented in Chapter 3, as it did not model the diffusion of solute explicitly.

As the solute transfer equation now accounts for diffusive effects explicitly via a Fickien

law, we can modify the previous reaction diffusion equation such that only the reaction,

or surface integration step, is imposed. In order to test this the geometry in Figure 4.9

is considered. Boundary conditions for the fluid flow outlined in Section 4.2.3 are again

used, however the additional boundary condition,

c(x, t) = cin for x ∈ Ωinlet, (4.15)

is imposed, where the parameter cin is the solution concentration upon entry into the

domain.
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On the crystal face Ωcrystal the conditions described in (3.12) are considered. As the

surface integration layer is of the order 1-10nm above the crystal face, here it is assumed

that the crystal face and surface integration layer are both identical and therefore the

following flux condition can be imposed,

−D
∂c

∂n
= kr(c(x, t)− c∗)η, for x ∈ Ωcrystal (4.16)

where Ωcrystal is the boundary denoting the crystal surface, kr is a coefficient of surface

integration, c∗ = c∗(T ) is the concentration at solution saturation for temperature, T ,

and η is the order of the reaction.

It should be noted that the energy equation can also be solved such that spatial and

temporal variations in the temperature can be considered, and hence different saturation

values obtained. Due to the uncertainty in the experimental temperature data highlighted

in Chapter 3, the CFD studies in this work assume that the system is isothermal in both

space and time. Therefore the work in this chapter will not solve the energy equation

at this stage. Details of the energy equation and how it is implemented can be found in

Chapter 5.

4.3.3 Results

An example of the results for the model with an arbitrary parameter set can be found in

Figure 4.10. From this figure the low concentration region close to the crystal face can

be seen.

Previous theory discussed in Chapter 2 stated that the width of the mass transfer bound-

ary layer, and hence the effects of diffusion on the crystal growth, are dependent on the

diffusivity and the flow velocity. In order to test this theory when using the solute trans-

port equation, a short study was carried out such that the velocity and diffusivity were

varied independently, and the height of the mass transfer boundary was observed. The

parameters for these runs are given in Table 4.2.

Figure 4.11 shows the heights of the mass transfer boundary layer along the floor surface



Chapter 4. Development of a Coupled CFD and Moving Boundary Framework for
Crystallisation Problems 142

Solution in

No slip wall

Pressure out
(zero pressure 
condition)

Crystal surface

Figure 4.9: The domain and boundary conditions used when testing the solute transport
model.

x (m)

y 
(m

)

0 0.002 0.004 0.006 0.008 0.01
0

0.002

0.004

0.006

0.008

0.01

Concentration: 7.62 7.64 7.66 7.68 7.7 7.72 7.74 7.76 7.78 7.8 7.82 7.84 7.86 7.88 7.9 7.92 7.94 7.96 7.98 8

Figure 4.10: Plot of the solute concentration throughout the domain.

Coefficient of surface integration, kr (m s−1) 8.9× 10−6

Initial concentration, cin (Molar) 8

Solution density, ρ (kg m−3) 1000

Solution viscosity, µ (Pa s−1) 0.001

Table 4.2: Parameters for the computational simulations when testing the solute transport
model.
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Figure 4.11: Plot of the mass transfer boundary layer for varying fluid velocity. The
horizontal fluid velocity at the inlet is given by u.

when varying the flow velocity. The mass boundary layer is assumed to end when the

concentration gradient perpendicular to the crystal face reaches zero. From observing the

results in Figure 4.11 it can be clearly seen that as the velocity increases, the size of the

mass transfer boundary layer decreases. It should also be noted that the concentration on

the crystal face increases with the decreasing boundary layer width. These results agree

with the theory presented in the original reaction-diffusion model, as discussed in Section

2.2.3.

Having considered the effects of the velocity on the mass transfer boundary layer. Com-

putational experiments were carried out such that the effects of varying the diffusivity of

solute within the solution can be considered. The mass transfer boundary layer thickness

obtained from these computational runs are presented in Figure 4.12. From this figure,

it can be observed that increasing the diffusivity consequently increases the thickness of

the mass transfer boundary layer. Conversely, for low diffusivities a small region of very

low concentration is found close to the crystal surface, this then sharply transitions to the

bulk concentration value, which is reflected as a decrease in boundary layer height. The

decrease in boundary layer height is due to the solutes inability to diffuse from the bulk

of the solution and therefore lower concentrations are experienced on the crystal surface.
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Figure 4.12: Plot of the mass transfer boundary layer for varying solute diffusivity, D.

4.3.4 Summary

The solution of the solute transport model is relatively simple to solve in comparison to

the NVS equations or the VOF model. The aforementioned equations are challenging due

to the pressure-velocity coupling and the unwanted inclusion of numerical diffusion at the

interface. As neither of these have to be considered in the solute transport model, solution

of the model is straight forward. Initial tests on the model suggested that the solution

to the solute transport model has little variation when changing the numerical scheme,

and accurate solutions were obtained when using computational grids with a relatively

low number of elements (in comparison to the VOF model).

Studies in this section have confirmed that modelling the diffusion explicitly through the

solution of the solute transport equations does in fact produce mass transfer boundary

layers as discussed in the theory. Moreover, the results are consistent with previous

experimental observations regarding the boundary layer thickness in relation to the flow

velocity and solute diffusivity. As expected, this approach is an advancement on the

previous reaction-diffusion model as the effects of the flow now alter the relative impact

of the diffusion process.
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4.4 Moving Boundary Methods

4.4.1 Introduction and Modelling Methodology

The description of mass deposition in CFD calculations can often be considered through

a number of different numerical approaches. An overview of these different methods can

be found in Section 2.4. These methods are generally separated into sharp and diffusive,

moving boundary methods. A review of the literature in Chapter 2 highlighted that diffu-

sive methods were used extensively when describing the crystal interface and its evolution

through time. Whilst this is the case, there appear to be no studies which use diffusive

methods when considering a multiphase fluid system (such as film flow). It is assumed

that due to the thickness of the film and the impact of the gravitational forces on the

behaviour, the fluid film is highly sensitive to the local geometry of the crystal surface.

Therefore, it is expected that any numerical diffusion present at the crystal surface could

therefore have a large impact on the accuracy and stability of the solution to the VOF

equations. It is thus anticipated that these diffusive boundary tracking techniques are

not appropriate when using the VOF model. As it is the intention to later couple the

VOF model with a crystal growth model, a sharp interface model will be considered, such

that the deposited solid is described by a non-diffusive moving boundary. As the system

is assumed to be isothermal, there is no requirement to model heat transfer or any other

physical effects within the crystalline solid itself (assuming a non-porous material), there-

fore no numerical grid is required for this region. As this is the case, the numerical domain

used will be deformed such that the boundary describing the crystal-liquid interface (or

floor surface at t = 0) will be moved. The displacement of this boundary will describe

the volume of solid matter deposited.

For the type of sharp interface model discussed, once the boundary is displaced the

computational grid representing the domain needs to deform such that it fits the domain

at each new boundary position. The movement of the mesh can be described by a number

of different approaches. In this case, for a given displacement of a boundary, the movement

of the mesh is considered as a displacement force, the faces of the mesh elements are

then assumed to be a network of springs, such that any force imposed by the displaced

boundary is damped, this is described by Hooke’s law,
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Fdamped = −kspringxdis (4.17)

where Fdamped is the force, kspring is the spring constant factor and xdis is the displace-

ment.

In the system imposed here, the spring constant factor is normalised, such that when

kspring = 0 the connections between the nodes are rigid, and therefore no damping is

enforced. In this case, the displacement is propagated throughout the entire system. For

kspring = 1 the damping is severe and therefore the displacement is contained to regions

close to the boundary.

4.4.2 Effects of the Moving Mesh Parameters

In order to test a simple moving boundary case, such that the relevant importance of

the spring constant factor can be observed, a simple rectangular geometry is considered,

where a triangular mesh is mapped onto the domain. Figure 4.13(a) shows a small region

of this domain such that the individual mesh elements can be seen.

A small displacement is then applied to the bottom boundary surface, and the mesh is

moved to fit this new domain. Results from this can be seen in Figure 4.13(b) for when

kspring = 1. It should be noted that the remaining boundaries in the domain can move

freely (in this study), therefore any propagation carried throughout the system can also

affect these boundary nodes. From observing the results in Figure 4.13(b) it can be seen

that whilst the mesh has been displaced to fit the new geometry, the quality of the mesh

close to the deformation has deteriorated. As the spring constant is set to unity, the force

due to the boundary motion is heavily damped, and therefore only the nodes close to the

boundary are affected. This therefore leads to a reduction in volume of the cells close to

the boundary and consequently they become skewed.

An additional run is then carried out for kspring = 0 and the results are shown in Fig-

ure 4.13(c). From this figure it can now be seen that as the boundary displacement is

propagated throughout the entire mesh, the cell volume and quality remains constant
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Figure 4.13: Plot of the (a) initial mesh, (b) mesh after successive boundary motions
when kspring = 1, and (c) mesh after successive boundary motions when kspring = 0.
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throughout.

Moreover, for triangular elements in regions in which the deterioration of the mesh quality

and volume is unavoidable, an option to automatically remesh these elements is available.

When remeshing is enabled, cells of poor quality are removed from the domain and

new cells of acceptable quality are then incorporated, such that they connect to the

remaining original mesh. Despite this, the method is not always able to remesh the cells

and therefore, for the most robust approach, a combination of suitable spring constant

parameters and remeshing should be implemented.

4.5 Coupled Fluid Flow Model - Crystallisation Model with

Moving Boundary Techniques

Now that the individual components have been assessed and developed, this section con-

siders the coupling of the models such that a complete framework for describing mass

deposition from thin liquid films can be obtained. Whilst the techniques here can be used

for a wide range of mass transfer problems, only deposition due to crystallisation will

be considered in this case. The crystallisation mechanism considered will be due to het-

erogeneous nucleation, and therefore the crystallisation only occurs at the boundary (see

Chapter 2). It is assumed that the nucleation timescales are small in relation to the time-

frame considered and therefore the nucleation mechanism will not be modelled. Whilst

the individual models have been discussed in depth, additional considerations often have

to be made when coupling them, therefore this section highlights these considerations and

tests the completed framework.

In this section, two methods are proposed. The first, whilst implementing finite volume

models and solving the NVS, will only consider a single phase fluid. The position of

the upper boundary in the domain is modified using moving boundary techniques, such

that it represents the gas liquid interface. The height between the crystal surface and

this upper boundary is given by the Nusselt approximation in (2.14). This approach will

also aid in keeping computational cost to a minimum for the study when compared to

the VOF, which is highly computationally expensive, and as the problem requires the

modelling of crystallisation over large time-scales, the computational cost is already sig-
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nificant. Furthermore, studies on moving boundaries and dynamic meshing have shown

that quadrilateral meshes do not function well, whilst the VOF model has shown the need

for highly refined quadrilateral mesh at the liquid-gas interface, suggesting that the two

models are incompatible.

The second method proposed addresses the aforementioned challenges by coupling the

VOF model with moving boundary techniques. Whilst the computational cost of using

the VOF is more expensive than a single phase approach, it allows a wider range of model

parameters to be considered. Furthermore, the VOF model allows greater flexibility in

the final framework, such that there are less limitations when coupling additional physics

in further work.

4.5.1 Coupled CFD - Crystallisation Model when using a Single Phase

Fluid Model

4.5.1.1 Governing Equations

In the proposed framework developed here the fluid flow is described by the two-dimensional,

steady state Navier Stokes equations, given by (4.1) and (4.2). After a solution to the

fluid flow is obtained the solute transport equation in (4.14) is solved.

As this approach now models diffusion explicitly, the loss of solute in solution due to

the crystallisation mechanism can be given by (4.16). The growth of crystalline mass

is described by a moving boundary such that for a given timestep ∆t the boundary

displacement is given by,

∆S = −(∆t)kr
Ms

ρs
(c(x, t)− c∗)ηn, for x ∈ Ωcrystal, (4.18)

where |∆S| is the magnitude of the crystal growth at x in time ∆t, n is the outward

facing normal and Ωcrystal is the boundary describing the crystalline surface.

As the rate of crystallisation is slow relative to the fluid flow, it is assumed that over the

time-frame, ∆t, the fluid flow can assumed to be at a steady state.
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Figure 4.14: Plot of the initial domain used in the coupled CFD - crystallisation, single
phase model.

4.5.1.2 Domain and Boundary Conditions

The initial domain used can be observed in Figure 4.14, where a mass flow boundary

condition is placed on the inlet, given by,

u · n =
Q

A
, on Ωinlet, (4.19)

where u is the fluid velocity, n is the inward normal to the surface, Q is the mass flow

rate of liquid and A is the area of the inlet.

The crystal surface, Ωcrystal, (or floor at the initial boundary condition) has a no-slip

boundary condition implemented, where u = 0.

The outlet, Ωoutlet, is classed as a pressure outlet where a gauge pressure, p′ = 0 is speci-

fied.

A no-shear condition is in place on the liquid-air interface, Ωair−liquid such that, ∂u
∂n

= 0.

The height of the film is calculated by (2.14) and the nodes on Ωair−liquid are displaced

at each pseudo time-step such that the height of the domain satisfies this criteria.
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Boundary Boundary condition type

Liquid Inlet Ωinlet Mass Flow Inlet

Outlet, Ωoutlet Zero Gradient Pressure Outlet

Floor / Crystal Liquid Interface, Ωcrystal No Slip Condition

Air-liquid interface Ωair−liquid No Shear Condition

Table 4.3: Boundary condition types for the fluid model when using the coupled CFD -
crystallisation, single phase model.

Boundary Boundary condition type

Liquid Inlet Ωinlet Constant concentration

Outlet, Ωoutlet Zero Flux

Floor / Crystal Liquid Interface, Ωcrystal Flux condition (4.16)

Air-liquid interface Ωair−liquid Zero flux

Table 4.4: Boundary condition types for the solute transport model when using the
coupled CFD - crystallisation, single phase model.

The boundary condition (4.15) is imposed at the inlet, Ωinlet, and the flux condition

(4.16) is implemented at Ωcrystal. The boundary conditions for the fluid flow and solute

transport are summarised in Tables 4.3 and 4.4.

4.5.1.3 Moving Boundary Specifications

In order for the moving boundary model to function correctly, the behaviour of each

boundary has to be specified. The FLUENT CFD package allows various specifications

for the moving boundary model, however the boundary conditions of interest in the work

here, are the ’deforming boundary condition’ and ’user defined boundary condition’. The

deforming boundary condition states that if a boundary is moved somewhere in the do-

main, this propagation throughout the mesh due to this movement can also affect these

boundary nodes. For example, in the case here, if the crystal surface Ωcrystal is moved,

this motion is propagated throughout the mesh. If the propagation is not completely

damped before it reaches the adjacent boundary, Ωair−liquid, the nodes of Ωair−liquid

would also experience some level of movement (provided deforming boundary is speci-

fied). In many cases, this boundary condition is preferable to stationary or user specified

boundary placements, as these restrict the freedom in which the domain can adapt to the

boundary motion, therefore reducing the robustness of the dynamic meshing. Moreover,

a bounded deforming boundary condition can also be defined such that these boundary
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Boundary Boundary condition type

Inlet Ωinlet Deforming (bounded to the line x = 0)

Outlet, Ωoutlet Deforming

Floor / Crystal Liquid Interface, Ωcrystal User defined condition

Air-liquid interface Ωair−liquid User defined condition

Table 4.5: Boundary condition types for the moving boundary model when using the
coupled CFD - crystallisation, single phase model.

nodes can move, however their movement is restricted to a given plane, or path.

The user defined boundary condition allows the implementation of a user defined function

(UDF) on to the boundary. These functions are written in C programming language and

either define the displacement of each boundary node relative to its current position, or

an exact coordinate in which the node’s new position should lie. It should be noted that

for the moving boundary model to be successful, displacements of the boundary nodes

should be kept small for any given pseudo timestep ∆t.

A summary of the imposed boundary types for the model can be found in Table 4.5.

4.5.1.4 Computational Implementation

Various solvers were used in order to solve the different equations described in the pre-

vious section. Steady state, discretised versions of equations (4.1) and (4.2) were solved

within FLUENT using the Pressure Implicit with Split Operator (PISO) algorithm [92]

for the pressure-velocity coupling. The PRESTO scheme is used in order to calculate the

pressures at the computational cell faces and a least-squares scheme is used to evaluate the

gradient terms. A first-order upwind scheme is used to solve the momentum and solute

transport equations (4.14). Higher order schemes were trialled, however it was found that

increasing the order of the scheme had very little impact on the results for the problem

here. Therefore in order to maximise the robustness, and minimise the computational

cost, first order schemes were used throughout the work. A summary of the solvers is

given in Table 4.6.

The solver process was fully automated using the scheme programming environment

within FLUENT. This code allows the automatic iteration of the boundary displacement
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Figure 4.15: Flow diagram of the solution procedure for the single phase, coupled CFD -
crystallisation model.

(4.18) and adjustment of the domain height h(x) (2.14), for each steady-state solution of

equations (4.1), (4.2) and (4.14), along with the boundary conditions described in this

section. Using a combination of FLUENT scheme code and a UDF, a custom convergence

criterion is set. As such, the convergence criterion can be changed such that it is based

on surface monitors (such as mass flow rates and surface integrals). Convergence of these

monitors identified that equations (4.1), (4.2) and (4.14) were solved, and the boundary

displacement (4.18) could be carried out. The pseudo timestep was set to ∆t ≤ 15 min-

utes such that the boundary displacements at each timestep were small.

In addition to these procedures, remeshing is also enabled in an effort to improve the

robustness of the moving mesh. Hence, a purely triangular mesh is used in this study.

The full solver procedure can be seen within Figure 4.15.

4.5.1.5 Results

The work in this section considers the coupled implementation of the model to describe

the growth of a two-dimensional crystal formation through time. The model is run with
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Physics Solver

Pressure Velocity Coupling PISO

Gradient Least-Squares

Pressure PRESTO

Momentum First-Order Upwind

Solute transport First-Order Upwind

Table 4.6: Solvers used for the single phase, coupled CFD - crystallisation.

Mass flow rate, Q (kg s−1) 5× 10−5

Coefficient of surface integration, kr (m s−1) 4.5× 10−6

Initial Concentration, cin (Molar) 8

Saturation Concentration c∗ (Molar) 7.75

Solution Density, ρ (kg m−3) 1000

Solution Viscosity, µ (kg m−3) 0.001

Pseudo-timestep, ∆t (minutes) 15

Table 4.7: Parameters used in the single phase, moving boundary model.

parameters given in Table 4.7 and the initial geometry presented in Figure 4.14.

A plot of the domain after a simulated crystal growth time, t = 2 hours can be seen in

Figure 4.16. From this figure it can be observed that the user defined moving boundary

routines appear to be functioning correctly. It can be seen that the crystal surface begins

to grow upwards close to the inlet. In response to this, the height of the domain begins

to decrease in the regions in which the angle of inclination increases.

As the model was run for longer simulated growth times, it was noted that the internal

meshing of the system starts to deteriorate. Whilst the remeshing facility implemented

works to an extent, it appears to be unable to handle the high levels of deformation in the

domain volume. Frequently the mesh quality deteriorates to a point where the numerical

solver could no longer obtain a converged solution. Moreover, due to the sensitivity of

the film height on the inclination angle of the surface, small changes in inclination would

often lead to sharp changes in the film height. In extreme circumstances the dynamic

meshing would produce an invalid mesh, such as cells with ’negative’ volume, when the

cell faces cross or overlap (Figure 4.17) or cases in which nodes or faces were placed out

of the domain (Figure 4.18).
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Figure 4.16: Plot of the displaced domain, after a simulated crystal growth time of t = 2
hours when using the single phase, coupled CFD - crystallisation model with parameters
given in Table 4.7.

It is thought that these problems are experienced due to too many restrictions placed

on the dynamic meshing. As the co-ordinates of the liquid-air surface were specified at

each time-step, the mesh propagation through the domain due to motion of the crystal

boundary did not propagate to the liquid-air boundary nodes, and over time the volume

of the domain would decrease. As this is the case, the dynamic meshing facility begins to

break down and eventually the solver fails. As the purpose here was to develop a robust

moving boundary model, it was clear that this approach was not sufficient. Due to this

an alternative approach was implemented, as described in the following subsection.

4.5.2 Coupled CFD - Crystallisation Model when using the VOF Model

While the concept of the first proposed model offered several advantages over the model

in Chapter 3, whilst still keeping computational costs low, it is clear that limitations are

present with regards to the robustness of the dynamic meshing. As the aim in the work

is to produce a framework which can describe crystalline growths of a wide range of size

and shapes, it is vital that the model continues to work for a large range of boundary

deformations.
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Figure 4.17: Example of a ’negative cell’ volume experienced when using the single phase,
using the single phase, coupled CFD - crystallisation model.

Figure 4.18: Example of a dynamic meshing failure when using the using the single phase,
coupled CFD - crystallisation model, such that cell elements leave the domain.
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4.5.2.1 Governing Equations

In this model, the steady state VOF equation is solved, such that time dependent terms

in (4.8) can be ignored. In addition to this, the NVS equations (4.1) and (4.2), are solved

such that a solution for the steady state fluid flow can be given.

Much like the model in Section 4.5.1, once a solution to the fluid flow has been obtained,

the transportation of solute needs to be considered. The previous solute transport model

considered the advection and diffusion of solute throughout the entire domain. As multiple

fluids are now considered, the VOF model in (4.14) has to be modified such that solute

is only considered in the liquid phase. Therefore (4.14) now becomes,

u · ∇(α2c) = ∇ · (α2D∇c), (4.20)

where c is the concentration of sodium nitrate in solution and D is the diffusion coeffi-

cient. In this work, q = 1 corresponds to the gaseous phase and q = 2 corresponds to the

liquid solution. Consequently, α2 is the volume fraction of the liquid phase.

4.5.2.2 Domain and Boundary Conditions

The domain used can be seen in Figure 4.19 and is similar to that implemented in Section

4.5.1, however there are notable changes to the boundary conditions.

The previous boundary which represented the fluid inlet in the model in Section 4.5.1, is

now split into two separate, but connected, boundaries. On these boundaries, ΩLiqInlet

and ΩAirInlet, mass flow boundary conditions are specified as,

u · n =
Q

Al
, on ΩLiqInlet, (4.21)

where u is the fluid velocity, n is the inward normal to the surface, Q is the mass flow

rate of liquid and Al is the area of the liquid inlet. A mass flow rate of,

u · n =
Qa

Aa
, on ΩAirInlet, (4.22)
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Figure 4.19: The initial domain and the boundary condition types used in the VOF,
moving boundary model present in Chapter 4.5.2.

is imposed at the air inlet, where Qa is the mass flow rate of the air phase and Aa is the

area of the gaseous inlet.

The crystal surface, Ωcrystal, has a no-slip boundary condition implemented, where u = 0.

The outlet and atmosphere boundaries are defined as a pressure outlets, where a gauge

pressure, p′ = p− patm specified (where p is the absolute pressure and patm is the atmo-

spheric pressure). Within this work we specify p′ = 0. This differs from the model in

Section 4.5.1, where a no-shear condition was placed on the top boundary.

The concentration c = α2cin is imposed at the inlets and the flux condition (4.16) is

implemented at the floor / crystal-liquid interface using UDF’s. A summary of the fluid

and solute transport boundary conditions imposed in this model can be found in Tables

4.8 and 4.9, respectively.

4.5.2.3 Moving Boundary Specifications

Much like the previous implementation of the moving boundary model, the moving bound-

ary conditions on each boundary of the domain need to be specified. The moving boundary

conditions for the model here are the same as those presented in Section 4.5.1.3, with the
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Boundary Boundary condition type

Liquid Inlet Ωliqinlet Mass Flow Inlet

Air Inlet Ωairinlet Mass Flow Inlet

Outlet, Ωoutlet Zero Gradient Pressure Outlet

Floor / Crystal Liquid Interface, Ωcrystal No Slip Boundary Condition

Top, Ωatmosphere Zero Gradient Pressure Outlet

Table 4.8: Boundary condition types for the fluid model when using the VOF, coupled
CFD - crystallisation model.

Boundary Boundary condition type

Liquid Inlet Ωinlet Concentration

Air Inlet Ωairinlet Concentration

Outlet, Ωoutlet Zero flux

Floor / Crystal Liquid Interface, Ωcrystal Flux condition (4.16)

Top, Ωatmosphere Zero flux

Table 4.9: Boundary condition types for the solute transport model when using the VOF,
coupled CFD - crystallisation model.

exception that Ωair−liquid is now defined as Ωatmosphere and is specified as a ’deforming

boundary’. A summary of the moving boundary conditions can be found in Table 4.10.

4.5.2.4 Computational Implementation

In order for the system of equations to be solved using the finite volume method, a nu-

merical grid or mesh has to be mapped onto the domain. This domain can be seen in

Figure 4.19. When constructing a mesh several things need to be considered. Firstly,

it is desirable to keep the number of cells at a minimum whilst retaining an acceptable

solution accuracy. This allows the computational costs to be kept low, such that increases

in cell count have a negligible effect on the solution, known as mesh independence.

Boundary Boundary condition type

Liquid Inlet, Ωinlet Deforming (bounded to the line x = 0)

Air Inlet, Ωairinlet Deforming (bounded to the line x = 0)

Outlet, Ωoutlet Deforming

Floor / Crystal Liquid Interface, Ωcrystal User defined condition

Top, Ωatmosphere Zero flux

Table 4.10: Boundary condition types for the moving boundary model when using the
VOF, coupled CFD - crystallisation model.
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The multiphase VOF model being used to capture the fluid flow is a diffusive interface

model and therefore there exists a numerical blending between the two regions. Due to

this, a refined region of highly refined quadrilateral cells is required such that the interface

lies within this region. This is in order to minimise the diffusive flux across the interface.

The last consideration needed when constructing the computational grid, which is specific

to the moving boundary approach implemented here, is the robustness of the mesh when

deformed using the dynamic meshing. The dynamic meshing facility has inbuilt remesh-

ing, whereby if a given cell either exceeds a maximum volume or falls beneath a minimum

volume, or if it becomes too distorted, the model attempts to remesh the region local

to this cell. For this facility to work, the mesh must however consist of triangular ele-

ments (in two dimensions). This facility is required if the dynamic meshing is to be robust.

As the height of the liquid-gas interface is unknown prior to solving the steady state

system of equations (4.1), (4.2), (4.8), an inefficient way of satisfying the first criterion

would be to have a highly refined mesh throughout the entire domain. This however

would violate the second criterion of keeping the mesh count to a minimum. Therefore,

within this work a variable mesh size was used, with the height of the highly refined region

being approximated by the Nusselt solution (2.14).

As the velocities of the gas phase are specified such that they are very small in comparison

to the film flow, they have little impact on the solution and therefore a coarser mesh can

be used throughout this region. In order to satisfy the last criterion when constructing

the mesh, a coarse triangular mesh was placed in the region not covered by the refined

region. The final mesh that was seen to satisfy all the required criteria is shown in Figure

4.20. Due to the previous study regarding the mesh independence of the VOF model, and

that this model is considered to have the largest requirements with respect to the mesh

size, an initial mesh of 40, 000 cells was used, such that the resultant formation shape was

unchanged for increases in initial cell count.

The volume fraction equation (4.8) was solved using the HRIC scheme [136]. As pre-

viously mentioned, as a steady state solution to the model is considered for any given

boundary position, the time dependant terms within the model can be neglected.
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Figure 4.20: Example of the combined structured and unstructured mesh. Optimised for
use with the VOF and moving boundary model.

Physics Solver

Pressure Velocity Coupling PISO

Gradient Least-Squares

Pressure PRESTO

Volume Fraction HRIC

Momentum First-Order Upwind

Solute transport First-Order Upwind

Table 4.11: Solvers used for the VOF, coupled CFD - crystallisation model.

In a similar fashion to the previous implementation (Section 4.5.1.4), the governing system

of equations (4.1), (4.2), (4.8) and (4.14) is solved to steady state. Once convergence is

reached, the boundary denoting the crystal surface is then displaced by (4.18). The

automation of the system is implemented by used of UDFs and FLUENT scheme code,

as described in Section 4.5.1.4. A summary of the solver settings used can be found in

4.11. A full summary of the solver procedure can be seen in Figure 4.21.
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Figure 4.21: Plots of the initial domain used in the VOF, coupled CFD - crystallisation
model.
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Mass flow rate, Q (kg s−1) 5× 10−5

Coefficient of surface integration, kr (m s−1) 4.5× 10−6

Initial Concentration, cin (Molar) 8

Saturation Concentration c∗ (Molar) 7.75

Solution Density, ρ (kg m−3) 1000

Solution Viscosity, µ (Pa s−1) 0.001

Pseudo-timestep, ∆t (minutes) 15

Table 4.12: Parameters used in the VOF, coupled CFD - crystallisation model.

4.5.2.5 Results

In order to assess the framework outlined in this section, initial tests are carried out in

order to test that the system of coupled models is functioning correctly. It is not the

aim within this chapter to obtain physically meaningful results, but rather focus on the

implementation and optimisation of the numerical framework. However, it is beneficial

to compare the model here with the adapted stalagmite model in Chapter 3. This test

case will provide confidence that the system is robust enough such that it can handle the

size and shape of deformations typically found when considering the industrial salt solu-

tions. It will also allow the model to be verified such that each component is functioning

correctly, such that accurate and meaningful results are obtained.

Initial tests on the model were carried out on the domain and mesh described previously

in this section. The parameters used are summarised in Table 4.12. Initial results from

the model showed similar behaviour to the adapted stalagmite model developed in Chap-

ter 3, such that nodes close to the inlet would diverge and eventually the solver would

fail. This can be observed in Figure 4.22(a).

The adapted stalagmite model in Chapter 3 solved this problem by inserting additional

nodes into the computational grid, such that if an element exceeded a given length a new

node would bisect this element. However, as the quadrilateral elements of the grid cannot

be remeshed, no additional nodes can be added during the solution process, therefore this

approach cannot be taken. Due to this, a new mesh adaptive technique had to be devel-

oped. This scheme assumed that once a solution at a given timestep was obtained for the

boundary position, if the spacing between successive nodes exceeded a given length or
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Figure 4.22: Plot of the nodes close to the inlet for the VOF, coupled CFD - crystallisation
mode, after t = 79 minutes, with (a) no mesh adaption and (b) mesh adaption.
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was smaller than a given length, the nodes could be repositioned on the current piecewise

linear solution to the boundary. This method required that sufficient initial nodes were

placed on the moving boundary, such that when large deformations were experienced, the

resultant nodal spacing was still sufficiently small.

The model was run again using the same parameters as the previous study, however now

the aforementioned adaptive meshing routine was implemented. The results from this

run can be seen in Figure 4.22(b). These results only show a close up on a region of

the domain, corresponding to the same position as the results in Figure 4.22(a). From

comparing the results in Figures 4.22(a) and 4.22(b) it can be clearly observed that the

results when using the mesh adaption no longer suffer from the divergence of the mesh

points close to the inlet.

Following the framework being modified with the mesh adaption algorithms such that

they functioned robustly, the model was run for a longer period of time such that the

results obtained from this model can be compared to the results in Chapter 3. Whilst

there are some key differences between the adapted stalagmite model and the model pre-

sented in this chapter, if the model here is seen to be functioning correctly the results

obtained should be of a similar order of magnitude. Figure 4.23 shows the results for the

model after 24 hours growth. From this figure it can be seen that whilst there are some

differences between the results, as anticipated, they are similar enough to suggest that

the model is functioning correctly.

A plot of the mesh close to the inlet boundary can be observed in Figure 4.24. From

this figure it can be seen that the node spacing along the bottom boundary remains of

an acceptable size, and the cells in the triangular region of the mesh remain a reasonable

size and quality.

To offer further confidence, the models are compared again for a different parameter set,

as shown in Table 4.13. The results from these trials can be found in Figure 4.25. From

this figure it can be seen that again the results between the two models are compara-

ble, therefore from these initial trials it can be assumed that the coupling between the

individual models and and moving mesh is working correctly.
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Figure 4.23: Plot of growths when comparing the adapted stalagmite model (Chapter 3)
to the VOF, coupled CFD - crystallisation model, after t = 24 hours, using the parameters
in Table 4.12.
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Figure 4.24: Plot of the mesh, close to the inlet, for the VOF, coupled CFD - crystallisation
model after t = 24 hours, using the parameters in Table 4.12.
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Figure 4.25: Plot of growths when comparing the adapted stalagmite model (Chapter 3)
to the VOF, coupled CFD - crystallisation model, after t = 36 hours, using the parameters
in Table 4.13.

Mass flow rate, Q (kg s−1) 2.89× 10−5

Coefficient of surface integration, kr (m s−1) 4.5× 10−6

Initial Concentration, cin (Molar) 8

Saturation Concentration c∗ (Molar) 7.75

Solution Density, ρ (kg m−3) 1000

Solution Viscosity, µ (Pa s−1) 0.001

Pseudo-timestep, ∆t (minutes) 15

Table 4.13: Parameters used in the VOF, coupled CFD - crystallisation model.
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4.6 Summary and Conclusions

This chapter has developed a moving boundary method for use in modelling crystalli-

sation problems from liquid films. The work assessed each individual model such that

optimal numerical routines and mesh parameters are used. In addition to this, short

parametric studies were carried out such that the models’ behaviour with changing pa-

rameters could be observed. Once each model was assessed on an individual basis, a

framework was developed which coupled these various models such that a complete mov-

ing boundary model describing the fundamental physics, i.e. fluid flow crystallisation

and mass transfer, was obtained. The work assessed two possible approaches for the

framework, however, it was found that the initial approach did not function in a robust

manner when implemented computationally. The second approach used the VOF model

such that a multiphase fluid system could be captured accurately. Initial investigations

regarding each model suggested that the individual requirements of the models appeared

to be in direct conflict. A proposed solution to this was developed such that a hybrid

meshing approach was used. Once the framework was implemented it was tested against

the previous model in Chapter 3, and the similarities in results offered confidence that the

implementation was successful and working as intended. Moreover, the dynamic meshing

facility remained robust throughout these calculations.

Simplified physics were considered in the adapted stalagmite model presented in Chap-

ter 3. As such the model was restricted to thin fluid flows travelling at low velocities

and also did not consider the explicit modelling of diffusion. Therefore, the fundamental

framework developed here offers a new modelling approach such that these limitations

are addressed. Despite this, there are further physical effects which should be considered

in the problem meaning the model can be used in order to obtain meaningful results

regarding the crystallisation of industrial salt solutions. The work here provides a nu-

merical, FVM which currently captures the fundamental physics. Whilst this is useful in

its current form, the main advantage of this approach is that the numerical framework

provides a convenient and powerful tool for modelling coupled mass transfer - fluid flow

systems, such that physics specific to the individual problem can be readily implemented.

Using this framework as an initial starting point, the following chapter will develop a

model which specifically describes the formations observed in the NNL drip trials.
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Chapter 5

Simulating the Crystalline

Formation Growth from a Thin

Film of Surrogate Liquor

5.1 Introduction

The work in this chapter attempts to develop a model such that the growth of crystalline

formations from liquid films can be considered. Parameters and physics considered in

this model were chosen such that they related directly to those observed (or hypothe-

sised) in the the NNL drip trials. Results from the model will be compared with the

experimental data, such that the model can be validated. Validation of the data when

using the simulant material, sodium nitrate, will offer confidence in the model such that

it could be later used to predict potential heavy metal formations (provided that addi-

tion experiments are carried out in order to determine model parameters and input data).

In Chapter 4 a two-dimensional finite volume method (FVM) was developed such that a

multiphase fluid flow system including a mass transfer or crystallisation process could be

described by a moving boundary.

The following section highlights the various required physics and implements them into

the existing framework such that a model can be developed for describing the crystalline

formations. Following this, the accuracy and functionality of the additional models were
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tested. Once the models were seen to function independently, the fully coupled model

was used. The remainder of this chapter will assess the functionality of the new model

against the previous adapted stalagmite model. Following this, the model is validated

against experimental data. Once validated, we carry out a sensitivity study on the model

parameters.

5.2 Methodology

5.2.1 Introduction

The framework developed in Chapter 4 is used here, such that a multiphase VOF model

is used to describe the fluid flow and the concentration of solute within the solution is

described by solving the solute transport equation. In addition to this, the deposited crys-

talline solid is described by a moving boundary, consequently, the fluid - solid interaction

is captured. Whilst these three fundamental physics are considered, this framework was

developed in two-dimensions, and as such, quantitative comparisons to the experimental

data could not be made. Therefore, the first stage in the development of the model here

was to advance this framework such that three-dimensional problems could be considered.

In order to reduce the computational complexity and cost, an axisymmetric model was

considered here, such that rotational symmetry can be considered about a given axis. It

is expected that the transition to a three-dimensional model would be a simple matter,

however the associated increase in computational cost and time required to perform a sin-

gle computational experiment would likely restrict the thoroughness in which the model

could be validated and tested.

It is know in the problem here that the driving force for crystallisation is governed by a

change in temperature (i.e. changing the solubility) or a loss of solvent from the solution

(i.e. driving the concentration up). The initial framework assumed that a temperature

drop occurred during the falling liquid droplet, such that it was assumed that it had

equilibrated to the current ambient temperature by the time the droplet entered the liq-

uid film (and therefore was in a state of supersaturation - see Chapter 2). Whilst it is

assumed that the temperature is the dominant mechanism for growth close to the point

of impact (at the start of the film), it is hypothesised that growth away from this central

feature is governed by an evaporative mechanism. Therefore, in addition to advancing
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the dimensionality of the model, a evaporation model was also developed.

Finally, as it is known that the solubility is dependent on the temperature, a temperature

model was implemented.

5.2.2 Advancement of the Framework for Axisymmetric Conditions

In Chapter 4, the robustness and capabilities of the moving boundary framework were

tested by the capture of a crystallising thin liquid film as it flowed down an inclined sur-

face. An initial geometry of 0.5m was assumed such that the floor surface and a small

region above this were considered,see Figure 4.19. However, the solution will now be con-

sidered to have rotational symmetry about a given axis. As no rotation or swirl within

the flow is considered, the two-dimensional equations outlined in Section 4.5.2 are still

solved, however as the domain is assumed to be rotated 2π radians about the axis of sym-

metry, the cell volumes considered in the solver are also adjusted in relation to this change.

It should be noted that whilst only the cell volumes change, and no change is experienced

in the governing equations, the computational implementation of the model when con-

sidering the axisymmetric model is not so trivial. When using the ANSYS Fluent CFD

package, it is enforced that rotational system should occur about the x-axis (i.e. y = 0).

As such, the initial domain has to be altered and the gravity vector changed such that

the gravitational force acts in the x-direction. For ease of comparison, all subsequent

results will be rotated such that they can be directly compared to the previous model

and experimental data.

In addition to the rotation of the domain, the boundaries previously denoted as Ωliqinlet

and Ωairinlet now have to be specified as axis of rotation. As these previous boundaries

lie on the axis of rotation symmetry, they cannot be specified as inlet boundaries. This

makes physical sense as rotation about this line would create a face of zero area. In cases

such as this the boundary has to be specified as an axis condition. Due to this, new loca-

tions have to be imposed for the intake of liquid and air into the system. The most logical

place to put these inlets, now the initial boundary is not possible, is in the boundary re-

gion adjacent to this new axis condition. The liquid inlet will replace a region of the floor

boundary adjacent to the axis of rotational system, in order to keep the results as physical
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Figure 5.1: Plot of the domain before and after successive boundary motions.

as possible, the size of this boundary will be made such that it is roughly the same width

as a droplet. The inlet for the gaseous phase will be placed in the corresponding posi-

tion, now on the Ωatmosphere boundary. The new boundaries can be observed in Figure 5.1.

When using these new boundary positions in the two-dimensional model, they can be

directly compared to the flow when using the old boundary conditions. Here we used

a simple test case of water flowing into a domain filled with air. Flow of air into the

domain is negligible. Varying mass flow rates are trialled in order to see how the varying

boundary conditions impacts on the interfacial location. From observing the results in

Figure 5.2 it can be seen that at low mass flow rates the change in solution is minor.

It should be noted the FLUENT CFD package does not allow a mass flux of solute out

of the domain at this point (i.e. Robin boundary condition) therefore here it is assumed

that the previous boundary condition is maintained, such that the concentration at the

inlet boundary is constant (Dirichlet condition). Due to this the minor differences in the
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Figure 5.2: Plots of the liquid-air interface when considering the two-dimensional VOF
model for varying inlet positions.

flow close to the inlet should have negligible impact on the overall result, additionally as

the inlet boundary will be displaced at a constant rate, relative to the inlet concentration,

the change in flow field in these regions will not influence the local solution. Due to the

small size of the inlet it is assumed that these methodology will have negligible impact

on the overall boundary position. Additional, the result after the inlet boundary could

just be considered, such that the behaviour close to the inlet is not factored into the final

solution.

5.2.3 The Development and Inclusion of Additional Physics; Evapora-

tion and Heat Transfer

The framework in Chapter 3 implemented a solute transport and crystallisation model.

However, it was noted that several of the key physics were not considered for application

when modelling the NNL drip trial problem. Therefore, this section will focus on the

addition of further physics such that solutions obtained should be more accurate.
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From the experimental data it is clear that the formations found under certain situations

cannot be solely attributed to a decline in temperature and therefore this suggests that

there is a significant amount of evaporation occurring within the system. The NNL car-

ried out some simple experiments as part of the drip trials in order to quantify the level

of evaporation. It was found that the evaporative flux (evaporation rate per unit surface

area) ranges between E = 1.7 × 10−6 kg m−2s−1 and E = 3 × 10−5 kg m−2s−1, with an

average value of E = 1× 10−5 kg m−2s−1. Evaporation is an important process and can

often have a major impact on many industrial process, e.g. liquid films, see [172, 10, 153],

or sessile droplets, see [164].

In addition to the evaporation, changes in temperature are also the main driving force

of crystallisation. The solubility of solution has a direct relation to its temperature.

Therefore, a solubility - temperature relation is allowed. Whilst not completely necessary

at this stage, this inclusion will make the model more versatile such that complex systems

(i.e. temperature gradients, etc.) can be considered when the required temperature data

is available.

5.2.4 Evaporation Model: Model Approach 1

Previous works on modelling evaporative effects when coupled to the VOF model often

account for both the loss of mass from the liquid phase, and increase in mass into the

gaseous phase. Here, a constant evaporative flux is considered, where flux values will be

based on measurements from the NNL drip trial experiments. When considering evapo-

ration in the VOF model, the mass loss due to evaporation is described by source/sink

terms in (4.8). Only the loss of mass from the liquid phase is considered here, and there-

fore the increase in mass to the gaseous phase is ignored, that is, Sα1 = 0 is not included

in (4.8).

As the source/sink term in (4.8) is a volumetric flux (kg m−3 s), whilst evaporation is

a surface reaction (kg m−2 s), this term must be given such that the amount of water

extracted is not dependent on the volume of the cells located at the interface. When

considering an evaporative flux, E > 0 over a surface area Af , we can state that the rate
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of mass leaving the volume containing that surface must equal,

Sα2Vcell = −EAf , (5.1)

where Vcell is the volume of the cell located at the interface. Clearly, this allows one to

express the volumetric source, Sα2 in terms on the current cell volume and area, to ensure

the correct mass of liquid is extracted from the system. From analysis in [30] it is known

that
∫

Ω
|∇α2|dΩ =

∫

A

dA, (5.2)

where Ω is a volume containing the liquid-gas interface, |∇α2| is the magnitude of the

gradient vector of the volume fraction of water, and A is the interfacial surface area within

the volume Ω. Therefore, for an individual cell, the following holds,

|∇α2|Vcell = Af , (5.3)

where Vcell is the volume of the cell located at the interface and Af is the interfacial area

of the free surface, within the cell.

The source term in (5.1) can then be written as

Sα2 = −E|∇α2|. (5.4)

This term is then included in (4.8), which accounts for the loss of mass due to evaporation.

In this work, E is assumed to take a constant value. Despite this, the model can be easily

advanced such that E is dependent on water vapour concentrations, temperatures and

velocities.

5.2.5 Evaporation Model: Model Approach 2

Hardt and Wondra [83] have previously reported that the evaporation model presented

in Section 5.2.4 can show signs of being unstable due to the large amount of fluid being

withdrawn from the system over a very small interface. Therefore, in their work they

proposed a modification to this model such that these instabilities are damped.
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This work assumes that the rate of evaporation, φ0 can be written as

φ0 = −EAf = Nφ0Eα2|∇α2|, (5.5)

where the normalisation factor Nφ0 is given by,

Nφ0 =

∫

Ω |∇α2|dΩ
∫

Ω α2|∇α2|dΩ
(5.6)

This model assumes that the evaporation rate can be written in terms of an additional

scalar, φ such that it is described by the inhomogeneous modified Helmholtz equation

∇2φ =
1

Dφ
(φ− φ0), (5.7)

where Dφ is the Helmholtz diffusivity coefficient.

The final rate of evaporation in each computational cell can then be given by

Sα2Vcell = −φα2Nφ, (5.8)

where

Nφ =

∫

Ω φdΩ
∫

Ω α2φdΩ
(5.9)

5.2.6 Temperature-Solubility Modelling

Here the temperature is modelled by solution of the energy equation [8],

∂ρẼ

∂t
+∇(u(ρẼ)) = ∇ · (keff∇T ) + Sh, (5.10)

where keff is the conductivity due to both laminar and turbulent thermal conductivity,

T is the temperature, Sh is a source/sink and Ẽ is the energy given by,

Ẽ = hE +
|u|2
2

(5.11)
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where hE is the enthalpy defined as ,

hE =
∑

j

YjhEj , (5.12)

such that Yj is the mass fraction of phase j and hEj is enthalpy of phase j given by,

hEj =

∫ T

Tref

(cp)jdt (5.13)

where Tref is the reference temperature which is set to Tref = 296.15K and cp is the

specific heat capacity.

For the coupling of the temperature to the solubility, the solubility is expressed as a

function of temperature i.e. c∗ = c∗(T ). For the work here, the temperature boundary

conditions are set such that the system is an isothermal state of temperature T .

5.2.7 Solution Density and Viscosity Modelling

Here the rheological properties of the fluid such as the density and viscosity were coupled

to the concentration and temperature. Generally, as solute is dissolved in the solution, the

density also increases. The fluid rheology relations were defined such that ρ2 = ρ2(c, T )

and µ2 = µ2(c, T ).

5.3 Governing Equation and Boundary Conditions

The fluid field is described by the NVS equations given in (4.1) and (4.2). Also, the

VOF model is solved in order to describe the interface between the liquid and gaseous

phases, this is given by (4.8). The transport of solute is described by equation (4.14).

The evaporation is described by either (5.4) or (5.8), depending on the choice of model.

The temperature throughout the system can be obtained through solution of the energy

equation (5.10).

The flux of solute out of the crystal boundary is given by (4.16), such that c∗ = c∗(T ).

The boundary conditions for the fluid flow are outlined in Section 4.5.2.2.
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Figure 5.3: Flow diagram for the fully coupled model.

Once the aforementioned systems of equations are solved to steady state the boundary is

then displaced by a pseudo timestep of ∆t, given by (4.18).

5.4 Coupled Solver Process

The model here uses the framework outlined in Chapter 4, and therefore the solvers for

the fluid flow, solute transport and moving boundary model are described in Section

4.5.2.4. The evaporative models are implemented through a UDF, and in the second

evaporative model an additional scalar transport equation is solved (considering purely

diffusion) such that the inhomogeneous modified Helmholtz equation in (5.7) is solved.

The coupling between the temperature and solubility of solution is also implemented

through a UDF, as is the coupling between the denisty and viscosity with the solution

concentration. A diagram of the full solver process can be found in Figure 5.3.
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5.5 Results

This section will implement the model to describe the growth of sodium nitrate formations,

as seen in the NNL drip trials. Initial studies focused on testing the model with the

newly included additional physics. Once the models were seen to be functioning both

in an accurate and robust manner, the fully coupled CFD moving boundary model was

validated against experimental data. Once validated, the remainder of the work carried

out parametric studies.

5.5.1 Testing of the Additions to the Framework

5.5.1.1 Framework when Advanced to an Axisymmetric Model

In Chapter 4, results from the framework were tested against those of the adapted sta-

lagmite model, developed in Chapter 3. In this chapter a similar approach is taken. The

final boundary position or crystal surface obtained from the model when using parameters

relating to run 1 in Table 5.1, and the results when using the corresponding parameters in

the adapted stalagmite model, can be observed in Figure 5.4. From this figure it can be

seen that close to the apex the coupled CFD moving boundary model predicted a lower

formation height when comparing both models at the same width. When considering the

results away from the apex of the formation, the coupled CFD moving boundary model

predicted a thicker structure. The maximum heights of the formations were equal due to

the constant concentration boundary condition imposed at the inlet. It is clear that both

models, unlike the experimental results, predict no growth away from the central tower

formation.

These initial tests highlighted the minor differences between the models. Due to the

different modelling approaches, it was expected that some differences in results would be

observed. Therefore, regardless of these minor differences these results offer assurance

that the initial axisymmetric implementation of the model is working as intended.

In should be noted that in this chapter, unless explicitly stated otherwise, parameters

Tin = 30◦C, T = 27◦C and cin = 8 Molar were imposed.
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Figure 5.4: Axisymmetric formations through time comparing the axisymmetric coupled
CFD - moving boundary model against the adapted stalagmite model, when Q = 2.89×
10−5kg s−1, kr = 8× 10−6 m s−1, K = 8× 10−6 m s−1, cin = 8 Molar, E = 0.

Run ρ2 (kg/m
3) µ2 (Pa s) kr (m/s) Q (kg3/s) T (◦C) E (kg/(m2 s)) D (m2/s)

1 998.2 0.001 8× 10−6 2.89× 10−5 27 0 1.586× 10−9

2 eqn. (5.14) eqn. (5.15) 8× 10−6 2.89× 10−5 27 10−5 1.586× 10−9

3 eqn. (5.14) eqn. (5.15) 8× 10−6 Varies 27 10−5 1.586× 10−9

4 eqn. (5.14) eqn. (5.15) 8× 10−6 2.89× 10−5 27 Varies 1.586× 10−9

5 eqn. (5.14) eqn. (5.15) 8× 10−6 2.89× 10−5 27 10−5 Varies

Table 5.1: Parameters for the computational crystal growth simulations carried out in
this study. Parameters cin = 8 Molar, ρ1 = 1.225kg/m3, Tin = 30◦C, ρs = 2260kg/m3

and Ms = 0.084kg/mol remain fixed for all simulations.
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5.5.1.2 Evaporation Model: Model Approach 1

The next stage was the incorporation of an evaporation model into the coupled CFD

moving boundary model. For evaluation, this was applied to a thin liquid film of water in

two dimensions, such that no crystallisation or solute transport was considered. Varying

constant evaporative fluxes, E were trialled and results can be observed in Figure 5.5.
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)
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0
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0.0008
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E=0.01 kg m -2s -1

Floor

Figure 5.5: Two-dimensional plots of a water film for various evaporative fluxes, E.

From Figure 5.5 it can seen be that cessation of the liquid flow occurs at different points

for different evaporative fluxes. As expected, for a larger evaporative flux, the film is

completely evaporated quicker and therefore, a smaller interfacial area is observed. For

known mass flow into the domain and a given evaporative flux, the expected interfacial

area of the film can be calculated (at steady-state). The results for the expected and

the calculated interfacial areas can be seen in Table 5.2. From this table it is clear that

the evaporation model was working appropriately, however there were small discrepancies

between the expected interfacial and computed areas. It is hypothesised that this is due

to the inaccuracies involved in calculating the gradient of the volume fraction (from equa-
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Figure 5.6: Plot of deposition rates at t = 0 for various evaporative fluxes, E, when
K = 8× 10−6 m s−1, cin = 8 Molar, Tin = 30◦C, T = 27◦C.

tion (5.4)). Similar inaccuracies are often found when coupling surface tension effects to

the VOF model, as seen in [25].

The next stage in the modelling process was to check that the evaporation model functions

correctly when coupled to the axisymmetric coupled CFD - moving boundary CFD model.

Figure 5.8 shows the initial instantaneous rate of crystal growth for varying evaporative

fluxes, E, given that the film had fully spread across the plate. From this figure it can

be seen that as the rate of evaporation increased, the crystallisation rate also increased.

This behaviour is expected as the volume of solvent decreases, the relative concentration

of the solution is increased. This effect becomes more pronounced in regions away from
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E (kg m−2 s−1) Expected Interfacial Area (m2) Calculated Interfacial Area (m2)

1× 10−3 0.05 0.063

5× 10−3 0.01 0.012

1× 10−2 0.005 0.0061

Table 5.2: Data for the evaporation of a water film for varying evaporative flux, E.

the apex of the formation. For large evaporative fluxes an unstable oscillatory solution is

observed.

5.5.1.3 Evaporation Model: Model Approach 2

Hardt and Wondra [83] reported similar instabilities when using the model presented in

Section 5.2.4. The work in this paper developed an alternative model, such the observed

instabilities were damped. Therefore, the second suggested model here attempted to im-

plement the model developed in [83]. The formulation of the model can be seen in Section

5.5.1.2.

Initial results from the model can be seen in Figure 5.7. From this figure it would suggest

that the model had been implemented correctly, such that the solution of the inhomoge-

neous Helmholtz equation solved for the evaporation term, φ, can be seen in Figure 5.7(b)

when considering the liquid film shown in Figure 5.7(a). Also, the diffusivity parameter

Dφ was varied. As expected, Figure 5.8 shows that as Dφ increased, so did the magnitude

of the interfacial smearing.

From the initial evaporation model it could be observed that at higher evaporative

rates, instabilities were experienced. In order to assess the alternative model’s behaviour

and its ability to damp these oscillatory solutions, a series of number trials were car-

ried out using a similar methodology to the previous model. Here a liquid film of

mass flow Q = 2.89 × 10−5kg s−1 was considered, such that an evaporative flux of

E = 7.5 × 10−5kg m−2 s−1 was imposed across the film. These values were used here

as the oscillations of the deposition rates in the previous model were significant for these

values. From assessing the results in Figure 5.9 it can be seen that for all values of Dφ

the oscillations in the solution are damped. The results when using Dφ = 1×10−4m2 s−1

showed the closest solution to the previous evaporation model, such that for small x when
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oscillations were not experienced, the solutions were identical. As Dφ increased, the high

level of smearing introduced inaccuracies in the results, such that they diverged away

from the results of the original evaporation model. It should also be noted that in all

cases, a change in velocity was experienced close to the outlet. It is thought that this is

due to the sharp change in the liquid-gas interface height at the outlet. This phenomenon

was experienced due to the zero pressure condition imposed at the outlet. In reality the

pressure across the outlet would vary depending on the interfacial height, however as no

apriori knowledge of the film is assumed, these pressure conditions cannot be calculated.

It should be noted that due to the requirement that an additional equation is solved,

the computational cost associated with the second model is larger than that of the first.

Therefore, when considering a constant evaporative flux E, if this value is small it may be

advantageous to use the first model. However, for maximum robustness in cases where E

is unknown (i.e. determined from localised conditions), or in cases where E is sufficiently

large such that instabilities are experienced, the second model should be implemented.

5.5.1.4 Solubility-Temperature Coupling

In order to test the solubility-temperature coupling, a film of sodium nitrate solution

was considered. A temperature gradient was placed on the floor surface, such that the

temperature of the film varied across the plate. The temperature solubility relationship

used is given in (3.22). From observing the results in Figure 5.10 it can be seen that as

the temperature changes, so does the solubility c∗. Temperature gradients will not be

imposed in the remainder of the chapter, however this methodology allows the convenient

change in isothermal temperature in later studies, and also allows scope for complex

non-isothermal systems for further implementation in an industrial setting.

5.5.1.5 Density and Viscosity Coupling

In order to test the coupling between density and viscosity to the local liquid rheologi-

cal properties, a thin solution flow was modelled over an axisymmetric domain of length

0.1m. For simplicity the temperature was assumed constant and only the density was

assumed to change, such that ρ2 = ρ2(c, T ) = ρ2(c). A concentration gradient was im-

posed in the flow, which can be observed in Figure 5.11. The functions governing the
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Figure 5.7: (a) The liquid-gas interface for a film of mass flow Q = 2.89 × 10−5kg s−1.
(b) The non-normalised evaporation rates, φ, from solution of (5.7), for E = 7.5 ×
10−5kg m−2 s−1 and Dφ = 1× 10−4m2 s−1.

relationship, ρ2(c) = 400c − 1700 was also imposed on the system. It should be noted

that the functions here do not related to any specific material properties, but were used

such that rate of density change was significant for small changes in concentration. This

exaggerated change in density allows the testing of the robustness of the system, such

that it is assured that the system would remain stable when considering the smaller (or

more gradual) variations in the density of a real material.

It can be observed in Figure 5.11 that as the solution concentration decreases, the density

decreases. The density declined approximately 100 kg m−3 over a 0.1m distance, from
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Figure 5.8: The non-normalised evaporation rates, φ, from solution of (5.7), for Q =
2.89× 10−5kg s−1, E = 7.5× 10−5kg m−2 s−1, (a) Dφ = 1× 10−4, (b) Dφ = 1× 10−3 and
(c) Dφ = 1× 10−2

ρ2 = 1500kg m−3 to ρ2 = 1400kg m−3.

As a preliminary investigation into the effects of the density on the crystal growth, the rate

of crystal growth was calculated when considering kr = 8×10−6m s−1 for ρ2 = 400c−1700.

These results were compared against a constant density solution of ρ2 = 1500kg m−3.

Comparisons between the results showed that the change in crystal growth due to the

density variation were negligible and are therefore not shown here. It should be noted

that the difference in density between the two solutions reached a maximum value of 100

kg m−3. For larger variations in density the effects may be more significant.
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Figure 5.9: The crystal growth rates when considering Q = 2.89 × 10−5kg s−1, E =
7.5× 10−5kg m−2 s−1 and varying Dφ.

5.5.2 Validation of the Results with Experimental Data using a Surro-

gate Solution

5.5.2.1 Identification of Parameters

Following the verification that the advancements to the previous framework were func-

tioning correctly, the newly coupled CFD - moving boundary model was next validated

against the experimental data available from the NNL drip trials. The density - temper-

ature and viscosity - temperature relations such that ρ2 and µ2 are defined by equation
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Figure 5.10: Example of the solubility-temperature coupling for an imposed temperature
gradient. Values for c∗ were calculated at the crystal surface.

in (4.8) for sodium nitrate are given by [190],

ρ2 = ρ2(c) = a− bT, (5.14)

and,

µ2 = µ2(c) = 10−9A
√
T + 273.15e

B
T+273.15−T0 , (5.15)

where a = 421.37X2 + 629.7X + 1012.6, b = −168.16X5 + 206.79X4 − 89.845X3 +

17.308X2−0.6854X+0.4789, X = cMs

cMs+1 is the mass fraction, A = 4219.6X2+2995.2X+

991.72, B = 300834X6+525458X5−348368X4+106051X3+14531X2−967.34X+644.92,

T0 = 29.088X2 + 15.881X + 134.68 and T represents the temperature (in ◦C).
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Figure 5.11: Example of the density-concentration coupling for an imposed concentration
gradient.

For an initial c = 8 Molar solution of sodium nitrate at T = 27◦C, expressions (5.14) and

(5.15) obtained ρ2 = 1300kg m−3 and µ2 = 0.002Pa s. The values ρ1 = 1.225kg m−3 and

µ1 = 1.79× 10−5Pa s are imposed for the gaseous phase.

The diffusivity of sodium nitrate in solution was set at a constant value of D = 1.586 ×
10−9m2 s−1, see [196]. This study showed the diffusivity to vary slightly with tempera-

ture and concentration, however these effects were considered negligible for the range of

parameters considered here.
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It should be noted that in the previous adapted stalagmite model, presented in Chapter

3, the full reaction-diffusion equations were solved such that an overall crystal growth

coefficient was used. Here, only the reaction term from the model was considered, as dif-

fusion was now modelled explicitly. The surface integration coefficient, kr, was required.

As the value of the coefficient of surface integration for sodium nitrate was not available,

kr << kd was considered. Hence, from (3.14), it was assumed that kr ≈ K. It is assumed

that this assumption is physically valid, as for the liquid films considered here, the size

of the mass transfer boundary layer was generally larger than that of the film height,

therefore the diffusion pathway was small. Due to this, the surface integration step in

(3.12) was considered to be the limiting step in the crystallisation process. As such, a

value of kr = 8 × 10−6m s−1 was used here. In addition to this, the air flow during the

NNL experiments was intentionally restricted, as such the gas phase was considered to

have negligible impact on the liquid film and therefore, Qa << Q was imposed.

The experimental temperatures varied through time, such that the mean temperature was

T = 27◦C with a standard deviation of 2.4◦C. The solubility of the solution is defined in

(3.22). The evaporative flux was assumed constant, with a value of E = 10−5 kg m−2 s−1,

as observed in the experiments. The parameters for the validation case are summarised

in Table 5.1 (run 2).

5.5.2.2 Results

The data obtained from the NNL drip trial experiments consisted of a number of pho-

tographs of the formations at various stages of growth. Furthermore, the height and width

of the formations were measured quantitatively at various times in the experimental pro-

cedure. The model was run using the parameters outlined in Section 5.5.2.1. This was

carried out three times with parameters relating to the mean temperature, and temper-

atures plus and minus one standard deviation from the mean. The formation heights at

the apex are presented and compared against experimental results in Figure 5.12. From

this figure it can be seen that the model closely resembles the experimental data, when

using model parameters close to the mean temperature. The small deviations from the

experimental are assumed to be due to the temporal fluctuations in the observed temper-

ature.
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Figure 5.12: Height of the formation at its apex through time, when E = 10−5kg m−2 s−1,
Q = 2.89× 10−5kg s−1, kr = 8× 10−6 m s−1, cin = 8 Molar, Tin = 30◦C.
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Following the comparison of the experimental heights with the model, the widths of the

formations obtained were compared against the experimental data. It was noticed that

both in the CFD moving boundary model and experimental results the width of the tower

formation would change when considering its value at various heights. The geological sta-

lagmite model in [162] obtained results which predicted constant width for the formation

after the convex region at the base of the tower, referred to as an ’equilibrium radius’.

It is unknown at which height the width of the formations were measured in the exper-

iments. Due to the uncertainty in the experimental data, both the ’equilibrium radius’

and the width close to the base of the formation were compared. In order to visually clar-

ify the position of these two measurements, they have been highlighted in Figure 5.13.

The figure shows a crystalline growth after 3 days, when E = 0 and T = 27◦C. From

looking at Figure 5.13, the expansion of the formation close to the surface can be observed.

Figure 5.14 (run 2) shows the experimental widths when compared against the equilib-

rium radius and formation width at height H = 0.01m, obtained by the axisymmetric

moving boundary CFD model. From this figure it can be seen that the experimental

widths measured by the NNL are between the equilibrium radius and formation width

obtained from the model when run with E = 10−5kg m−2 s−1. It was noted that unlike

the adapted stalagmite model, the equilibrium radius does not remain fixed in time, but

rather continued to grow in magnitude. It is hypothesised that this behaviour was due to

the now considered evaporative effect. In order to test this hypothesis, the model was run

again for E = 0. The results from this were plotted on the same figure and from these it

is clear to see that much like the earlier adapted stalagmite model the formation widths

approach a constant limiting value.

As mentioned, in addition to the measurements of the height and width, the set of exper-

imental data contained several photographs of the formations through time. Due to lack

of data regarding the orientation and position of the camera in respect to the experiment

equipment, it was difficult to make direct quantitative comparisons with any degree of

certainty between the experimental and model results. Despite this, attempts were made

to digitise the photographs, such that a preliminary assessment the formation shape could

be compared to the model results.
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Figure 5.13: Plot of tower width measurement locations.

Firstly, the model was compared against the formation after 17 days. The results can be

observed in Figure 5.15 (run 2) where it can be seen that the the width of the formation

is under predicted by the model at the top of the formation, whilst slightly over predicted

when considering lower heights. It can also be seen that the height of the formation was

slightly over predicted by the model.

The model results were then compared against the experimental data relating to 30 days

growth. The results for this can be seen in Figure 5.16 (run 2), where it can be observed

that the computational model overpredicted the height at the apex of the formation.

Much like the result for 17 days, the width of the formation was under predicted close to

the center of the formation, however results further away from the apex were moderately
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Figure 5.14: Plot of the experimental widths through time compared with the axisymmet-
ric coupled CFD - moving boundary model, when Q = 2.89× 10−5kg s−1, K = 8× 10−6

m s−1, cin = 8 Molar, Tin = 30◦C, T = 27◦C.

overpredicted.

When considering the aforementioned uncertainty in the quantification of the photo-

graphic results, and that no a priori knowledge on the formations size and shape was

assumed, it can be concluded that the model provides a good estimate for the size and

shape of these formations. It should also be noted that the temperature varied both

spatially and temporally during the experimental procedures, however in the work here

an isothermal system was considered. Due to this, slight variations between the model

and experimental results were expected. Further experiments could be conducted such

that additional temperature data is recorded, allowing the aforementioned hypothesis to

be investigated further.
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Figure 5.15: Comparison of the experimental data and the axisymmetric moving boundary
CFD model for the profile of the crystal formation after 17 days growth when Q =
2.89 × 10−5kg s−1, K = 8 × 10−6 m s−1, cin = 8 Molar, Tin = 30◦C, T = 27◦C, E =
10−5kg m−2 s−1.

5.5.3 Effects of Varying the Process and Environmental Parameters

Once the model was shown to give reasonable predictions for the crystalline formations

experienced in the experimental work, the model was used to assess how varying parame-

ters affect the build up of material through time. In this section, the parameters denoting

the process and environmental conditions, namely the mass flow and evaporation rates,

will be considered. The temperature of the system were considered to remain at a con-

stant temperature of T = 27◦C.
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Figure 5.16: Comparison of the experimental data and the axisymmetric moving boundary
CFD model for the profile of the crystal formation after 30 days growth when Q =
2.89 × 10−5kg s−1, K = 8 × 10−6 m s−1, cin = 8 Molar, Tin = 30◦C, T = 27◦C, E =
10−5kg m−2 s−1.

5.5.3.1 Mass Flow Rate

In order to assess the effects of altering the mass flow rate, the axisymmetric, moving

boundary CFD model was run for varying mass flow rates, Q. Figure 5.17 shows these

results for parameters given in Table 5.1 (run 3). From this figure it can be seen that as

the mass flow rate increases, so does the width of the formation.
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Figure 5.17: Axisymmetric plots of the stalagmite through time after 11 days for varying
mass flow rates, Q, when K = 8 × 10−6 m s−1, cin = 8 Molar, Tin = 30◦C, T = 27◦C,
E = 0.

5.5.3.2 Evaporative Rates

In order to assess how the formation shape would vary if the overall rate of evaporation

changed (i.e. due to a change in humidity or temperature) the model was run using a

range of evaporative fluxes. Results for 9 days growth when simulated with parameters

in Table 5.1 (run 4), can be seen in Figure 5.18. From this figure it can be seen that

increasing the evaporative flux causes a thickening of the formation away from the apex.

These results suggest that in conditions that favour evaporation, the centralised tower

formation will not experience much change in overall shape, however there will be a

noticeable thickening of the surrounding crystalline bed. This behaviour agrees with
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the previous hypothesis which suggests that growth away from the central formation is

dominated by an evaporative mechanism. Furthermore, for higher room temperatures or

lower solution concentrations, the solution is not found to be supersaturated at the point

of entry into the system, thus growth in these regions may not be experienced. However,

due to the evaporation, growth may still be seen to occur away from this point. It is

hypothesised that this behaviour is the reason for the annular formations experienced in

the NNL experiments when considering undersaturate solutions (see 5 Molar results in

Chapter 1). Clearly, both the evaporation and temperature changes experienced within

the system influence the spatial deposition pattern, and therefore the overall characteristic

shape of the formation.
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Figure 5.18: Axisymmetric plots of the stalagmite through time after 9 days growth for
varying evaporative fluxes, E, when Q = 2.89 × 10−5kg s−1, T = 27◦C, K = 8 × 10−6

m s−1, cin = 8 Molar, Tin = 30◦C.
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5.5.4 Implications of the Model when Considering Alternate Materials

5.5.4.1 Diffusivity Effects

In order for the model to be used when predicting the crystallisation of different materials,

it should be run over a range of parameters relating to the material properties, such that

the robustness of the model can be tested. Moreover, varying the diffusivity parameter,

D, will give insight into how the diffusion of solute within the solution affects the size and

shape of the crystalline formations. The results, when simulated with parameters given

in Table 5.1 (run 5), can be observed in Figure 5.19 where it can be seen that as the

diffusivity decreases, the amount of solute deposited close to the apex is reduced. This is

due to the solute’s ability to flow from the bulk of the solution to the crystal growth site.

Due to this, more solute remains within the solution further away from the apex, and

as such decreasing D leads to thicker formations being formed away from the apex. For

purposes of comparison, the crystal growth from the previous adapted stalagmite model

is also plotted on the Figure 5.19. This comparison shows that our result has the thickest

formation close to the apex, and also the narrowest formation further away from the apex.

5.6 Summary and Conclusions

Results presented in this chapter directly addressed the fourth objective of the thesis (see

Chapter 1), by developing a multi-physics CFD model from the coupled CFD moving

boundary framework developed in Chapter 4, such that it now considers the physics re-

quired in order to describe the growth of crystalline formations from salt solutions. The

coupled model allows essential physical behaviour associated with the problem to be re-

liably accounted for (i.e. liquid film flow, evaporation, diffusion, temperature dependent

solubility and concentration dependent fluid rheology).

Prior to coupling the individual models such that the complete system was considered,

each individual model was assessed independently. This modelling methodology gave

confidence that when considered as a whole, this coupled system would be robust over a

wide range of parameters.
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Figure 5.19: Axisymmetric plots of the crystalline growth after 22.2 days for varying
material diffusivities, D, when Q = 2.89 × 10−5kg s−1, K = 8 × 10−6 m s−1, cin = 8
Molar, Tin = 30◦C, T = 27◦C, E = 10−5kg m−2 s−1.
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Once the individual models were shown to be robust, the fully coupled model was vali-

dated using the experimental dataset provided by the NNL, which monitored developing

crystalline growths from a sodium nitrate solution. The results from the model were

shown to be in good agreement for both the width and height of the crystalline forma-

tions through time. Having demonstrated that the model can simulate some of the key

morphological aspects of the experimentally observed formations, when considering the

8 Molar sodium nitrate solution, the model was then used to assess the morphology of

formations likely to occur under different process and environment conditions. Further-

more, the effects on varying material properties have been observed.

Results presented in this chapter suggest that both severity of the leakage (mass flow

rate) and environmental parameters, such as room temperature and evaporative rates

(temperature, humidity and air velocity), significantly influence the final formation shape.

Additionally, results have also shown that the solution has relatively little impact for sig-

nificant changes in the diffusivity. This suggests that the rate of crystal growth here is not

limited by the diffusion of solute, implying the limiting factor in this crystallisation prob-

lem is the surface reaction step. This agrees with the previous assumption that kr << kd

and therefore suggests that the modelling assumption used here, kr ≈ K, is reasonable.

Additionally, the work in Chapter 3 concluded that the final formation was highly sensi-

tive to the material specific crystal growth kinetics. Based on this, the diffusivity trials in

this chapter imply that the system is in fact highly sensitive to the surface reaction step kr.

When considering the simulation of crystalline deposition of heavy metal salts the work

here highlights several key areas which need to be considered. Therefore, it is recom-

mended that input data for temperatures, liquor flow rates and environmental factors

affecting the rate of evaporation should be given close consideration if using the model

for criticality safety assessments. It should also be noted that systems dependence on

both the diffusion and surface reaction step depends on the specific system in question,

therefore diffusion could play a more significant role when considering alternate materi-

als or flow regimes. It is therefore proposed that further studies are needed to reduce

uncertainty in crystalline growth parameters for particular heavy metal solutions.
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Chapter 6

Inverse Problem Methods for the

Detection and Monitoring of

Growing Crystalline Formations

6.1 Background and Introduction

Previous chapters in this thesis have developed models which highlight key behaviour

for crystallisation behaviour experienced for a surrogate solution used in the problem

described by the NNL drip trials. This previous work focused on the direct, forward

modelling of the problem, such that a coupled, governing system of equations was es-

tablished in order to describe the physical problem. Through implementation of varying

solution methodologies, these models could be solved such that for a given set of input

parameters the growing crystalline formations could be described. Results from the mod-

els determined the possible range of physical formations when considering this surrogate

solution. Using this preliminary analysis and additional results when considering experi-

mentally determined model parameters, it is expected that this work will be of use when

developing an industrial safety case, such that a risk assessment factoring these potential

formations can be formulated prior to the implementation of an industrial process. As

discussed in Chapter 1, due to the nature of the materials in question (i.e. heavy metals),

industrial process equipment is generally isolated in large concrete cells, such that in the

event of a malfunction plant personnel are protected. Due to this, combined with the fact

that it is not possible to implement standard monitoring equipment (due to radiation
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levels), it is often difficult to obtain the required (transient) set of input data, such that

the forward modelling approach can be used to accurately map the internal contents of a

cell. Therefore, whilst offering information regarding the potential behaviour of a system,

it may not be appropriate for non-invasively determining the size and shape of forma-

tions in an ongoing leakage. Thus, this chapter will focus on developing the mathematical

groundwork for an non-invasive method such that the crystalline structures within a con-

tained unit can be mapped through time, using assessable input data. The work in this

chapter therefore addresses the fifth objective of this thesis.

6.1.1 Inverse problems

For an observable system it is often possible to formulation a model in which for a given

parameter set, some physical or observable result can be determined. This is often called

the forward or direct problem. Therefore, in this case an operator O can be defined such

that for set of model parameters P̃ there exists a mapping such that O : P̃ 7→ M where

M is the set of measurable outputs. The form of this operator varies, however generally

speaking, this is the physical or mathematical theory which links P̃ and M .

The inverse problem is then defined such that using the measurable data, the model

parameters can be determined, such that O−1 : M 7→ P̃ . It should be noted that the

exact form of O and P̃ can change depending on the availability of the measurable data,

and the model parameters of interest. These problems can often be difficult to solve

due to a number of factors. One problem experienced in inverse problems is that often

the problem is underdetermined. For problems in which non-invasive or non-destructive

methods are used, it is often the case that the required set of measurable parameters

may not be available. This lack of observed data can often lead to non-uniqueness, such

that for given set of observed data, differing sets of model parameters can be obtained.

Problems of this nature are often considered to be ’ill-posed’. Hadamard stated that for

a problem to be well-posed three conditions must hold, namely,

1. The solution exists

2. The solution must be unique

3. The solution’s behaviour changes continuously with the initial conditions
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Inverse problems have a wide range of application in many industries. Example of which

include medical imaging techniques, e.g. x-ray and CT scanning, computational imagining

for the reconstruction of photographic data, locating oil and gas deposits in the Earth’s

interior, industrial process monitoring, computational finance and shape optimising the

aerodynamic configuration in the aerospace industry, etc. It is therefore no surprise that

a great deal of research has been carried out in this area. Research in the field of inverse

problems can usually be classified into one of the following areas:

Geometric inverse problems or shape determination: These problems involve the

determination of an unknown geometric shape and can be used to consider a variety of

different phenomena, such as internal cavities or inclusions, unobservable boundaries, as

in corrosion engineering.

Initial or boundary value inverse problems: These problems are concerned with

the identification of boundary or initial conditions. Applications of which could include

the determination of temperatures, or pressures on an inaccessible boundary. Also, initial

values of a system can be determined such as the initial chemical composition in a reactive

system.

Source determination problems: The determination of sources in the governing equa-

tions can relate to a number of physical phenomena, such as sources of heat or radiation.

In structural dynamics, the force or stresses acting on a system could also be considered.

Material properties identification: Here observed data from the system is used to

calculate model parameters relating to the materials in question. Examples of which could

include the determination of the thermal conductivity in heat transfer, the fluid density

in fluid flow, or the electric conductivity in electrostatics.

6.1.2 A Geometric Inverse Problem and the Method of Fundamental

Solutions

The problem here can be considered as a geometric inverse problem such that the crys-

talline contents of an isolated cell can be described by a geometric shape or boundary.
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Using measurable data these boundaries or shapes can be determined through solution of

the inverse problem. Due to the nature of inverse geometric problems, considerations have

to be made regarding the implication of the numerical discretisation when factoring the

dynamic moving boundary. Clearly, from Chapters 4 and 5 there are several challenges

involved in the discretisation (meshing) of domains when considering moving boundaries.

In addition to the boundaries movement through time, iterative solvers generally attempt

several perturbations of the boundary position for any given timestep, such that criteria

imposed by the system are satisfied. This behaviour is non trivial to solve numerically

when using traditional mesh based numerical methods, e.g. FVM, due to the difficulty of

remeshing the numerical grid for each attempted solver iteration. Due to this, the work in

this chapter considers a meshless numerical method, namely, the Method of Fundamen-

tal Solutions (MFS). The MFS is a relatively new, powerful meshless numerical method

which can be used to obtain accurate solutions to linear partial differential equations.

It has many advantages over other conventional discretisation methods, e.g. the finite

element method (FEM), the finite-difference method (FDM), and the boundary element

method (BEM), one of the primary reasons being that unlike the aforementioned meth-

ods the MFS requires neither domain nor boundary meshing (An example of a traditional

method compared with a meshless method can be seen in Figure 6.1). Hence, it is able to

solve problems involving both irregular domains and moving boundaries when governed

by equations such as the Laplace and Helmholtz equation, see [26, 100, 101]. It should

be noted that the MFS also presents advantages over methods such as the BEM as the

formulation of complicated integral expressions is not necessary. A thorough review of

the MFS and its application to inverse problems can be found in [102].

The measurable data in the nuclear case is likely to be limited due to the hostile en-

vironment present. When considering the measurable data that may be available when

non-invasively monitoring from outside the cell, it is thought that the heat flux would be

obtainable. In addition to this, it is expected that the solid crystalline body will obey

the physical laws for the diffusion of heat, such that it can be described by the transient

(two-dimensional) heat equation. Due to the aforementioned advantages of using meshless

methods for boundary determination problems, the work in this chapter develops a model

for the two-dimensional heat equation such that the inverse geometric problem of locating

a boundary describing the crystal formation can be solved through time. Previous studies
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Figure 6.1: Comparison of an arbitrary domain when discretised with a meshless method
and a traditional meshed method.

generally focused on a steady state problem, such that the boundary of interest remained

stationary, therefore the work presented in this chapter presents a novel approach for

solving an inverse geometric moving boundary problem governed by the transient heat

equation.

6.2 Mathematical Model

The mathematical formulation of the inverse geometric problem under investigation re-

quires finding the temperature, now denoted by ũ, and a moving internal defect Γ(t)

satisfying the heat equation,

∂ũ

∂t
(x, t)−∆ũ(x, t) = 0, (x, t) ∈ (Ω \ Γ(t))× (0, T̃ ], (6.1)

subject to the initial condition,

ũ(x, 0) = ũ0(x), x ∈ Ω \ Γ(0), (6.2)
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the Cauchy (Dirichlet + Neumann) boundary conditions on the fixed outer boundary ∂Ω,

ũ(x, t) = f̃(x, t), (x, t) ∈ ∂Ω× [0, T̃ ], (6.3)

∂ũ

∂n
(x, t) = g̃(x, t), (x, t) ∈ ∂Ω× [0, T̃ ], (6.4)

and the Dirichlet or Neumann boundary condition on ∂Γ(t), namely,

ũ(x, t) = h̃(x, t), (x, t) ∈ ∂Γ(t)× [0, T̃ ], (6.5)

or,
∂ũ

∂n
(x, t) = h̃(x, t), (x, t) ∈ ∂Γ(t)× [0, T̃ ]. (6.6)

Here Ω and Γ(t) are simply connected bounded smooth domains such that Γ(t) ⊂ Ω and

Ω \ Γ(t) is connected, T̃ > 0 is an arbitrary time of interest and n is the outward unit

normal to the boundary. It is assumed that the functions ũ0(x), f̃(x, t), g̃(x, t) and h̃(x, t)

are known. In (6.5) or (6.6) the function h̃ is usually taken to be uniform, e.g. zero, such

that Γ(t) represents a rigid inclusion for the homogeneous Dirichlet boundary condition

(6.5) and a cavity for the homogeneous Neumann boundary condition (6.6). These type

of inverse problems are common in studies relating to various industries, for example,

the related inverse boundary determination problem which arises in corrosion engineering

and in which ∂Γ(t) consists of an unknown portion of ∂Ω has been investigated with the

MFS in [88].

Also the Neumann boundary condition (6.4) may be partially limited to a portion Σ ×
[T0, T1] of ∂Ω × (0, T̃ ]. When the domain Γ is independent of time t, the solution of the

inverse problem (6.1)-(6.5), or (6.1)-(6.4), (6.6) is unique, see [43, 44], respectively, and

for numerical reconstructions, see [41, 42]. However, these problems are still ill-posed

since small errors in the input data (6.2)-(6.4) cause large deviations in the solution.

For more comprehensive investigations on the determination of unknown steady-state or

time-varying boundaries for the heat equation, see [36, 106, 179, 91]. It should be noted

that these studies are not restricted to use of the MFS.

The MFS assumes that the solution of the heat equation (6.1) can be approximated by a
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linear combination of fundamental solutions of the form, see [94],

UM,N (x, t) =
2M
∑

m=1

2N
∑

j=1

cmj F̃ (x, t;ym
j , τm), (x, t) ∈ (Ω \ Γ(t))× [0, T̃ ], (6.7)

where (ym
j )m=1,2M

j=1,2N
are space ’singularities’ (sources) located outside the space domain

Ω \ Γ(t), τm are times located in the interval (−T̃ , T̃ ) and F̃ is the fundamental solution

for the two-dimensional heat equation given by,

F̃ (x, t;y, τ) =
H(t− τ)

4π(t− τ)
exp

(

− |x− y|2
4(t− τ)

)

, (6.8)

where H is the Heaviside function which is included in order to emphasize that the fun-

damental solution is zero for t ≤ τ .

Without loss of generality, based on the conformal mapping theorem, it can be assumed

that the smooth, bounded and simply-connected domain Ω is the unit disk. Furthermore,

for simplicity, it is assumed that the smooth, simply-connected domain Γ(t) ⊂ Ω is

star-shaped with respect to the origin, hence its boundary, ∂Γ(t) can be represented in

parametric polar form by a 2π - periodic smooth function r : [0, 2π)× [0, T̃ ] → (0, 1) as,

∂Γ(t) =
{(

r(θ, t) cos(θ), r(θ, t) sin(θ)
)

| θ ∈ [0, 2π)
}

, t ∈ [0, T̃ ]. (6.9)

In three-dimensions one can use spherical coordinates. Whilst the geometry considered

in this problem relates to a quadrilateral surface, the primary work here is to address

the numerical stability and accuracy of the model. The domain here allows for simple

parameterisation of the boundaries and provides the simplest possible framework in which

the model can be evaulated.

In the direct problem, when the domain Γ(t) is known, the unknown coefficients (cmj )m=1,2M

j=1,2N

in the MFS expansion (6.7) are determined by collocating the initial condition (6.2) and

either of the boundary conditions (6.3) or (6.4), and (6.5) or (6.6). In the inverse problem,

the unknown coefficients (cmj )m=1,2M

j=1,2N
and also some time-dependent radii (rmj )m=0,M

j=1,N
are

to be determined by collocating equations (6.2)-(6.4), and (6.5) or (6.6).
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6.2.1 Distribution of Source and Collocation Points

In this section, we describe how the source and boundary collocation points are dis-

tributed for problems in which the outer boundary ∂Ω is a circle of radius 1 and the inner

boundary ∂Γ(t) is that of a star-shaped domain.

The outer source points are located outside Ω = B(0, 1) on a circle ∂B(0, R) of radius

R > 1, namely

ym
j = (R cos(θj), R sin(θj)), θj =

2πj

N
, j = 1, N, m = 1, 2M. (6.10)

We also take

τm =















(2m−1)T̃
2M , m = 1,M

− [2(m−M)−1]T̃
2M , m = M + 1, 2M

(6.11)

The inner source points are located inside Γ(t), namely,

ym
j+N =

1

2
(rmj cos(θj), r

m
j sin(θj)), j = 1, N, m = 1, 2M, (6.12)

where the radii r(θj , τm) =: rmj ∈ (0, 1) constitute a radial parameterisation of the star

shaped domain Γ(t) whose boundary at time t is approximated by, (see (6.9)),

∂Γ(t) =
{(

r(θj , t) cos(θj), r(θj , t) sin(θj)
)

| j = 1, N
}

, t ∈ (−T̃ , T̃ ), (6.13)

and the symmetry condition ∂Γ(−t) = ∂Γ(t) for t ∈ (0, T̃ ) is imposed. From (6.10) and

(6.12) one can see that a total of 4MN source points have been specified. The collocation

points on the boundaries and initial domain are now collocated.

On the outer boundary ∂Ω the boundary collocation points are given by,

(xi, τj) = (cos(θi), sin(θi), τj), i = 1, N, j = 0,M, (6.14)

where τ0 = 0. On the inner boundary ∂Γ(t) the boundary collocation points are given by,



Chapter 6. Inverse Problem Methods for the Detection and Monitoring of Growing
Crystalline Formations 210

(xj
i , τj) = (rji cos(θi), r

j
i sin(θi), τj), i = 1, N, j = 0,M. (6.15)

Collocating the boundary conditions (6.3), (6.4) and (6.6) results in 3(M+1)N equations.

Another (K̃ − 1)N equations are obtained by imposing the initial condition (6.2). We

collocate the initial condition (6.2) in the domain Ω \ Γ(0) at time t = 0 at the points

xi,j =

((

r0j +
(1− r0j )i

K̃

)

cos(θj),

(

r0j +
(1− r0j )i

K̃

)

sin(θj)

)

, i = 1, (K̃ − 1), j = 1, N,

(6.16)

where r0j = r(θj , 0) for j = 1, N .

The full time-dependent inverse geometric problem amounts to 4MN + N(M + 1) =

N(5M + 1) unknowns represented by the 4MN coefficients c = (cmj )m=1,2M

j=1,2N
in the MFS

expression (6.7), and the N(M + 1) radii r = (rmj )m=0,M

j=1,N
, for the parametrisation of

the boundary, Γ(t). On the other hand, the collocation of the conditions (6.2)-(6.4)

and (6.6) amounts to N(3M + K̃ + 2) equations, namely, (K̃ − 1)N equations for the

initial condition (6.2) imposed at the points (6.16), 2(M +1)N equations for the Cauchy

boundary condition (6.3) and (6.4) imposed at the points (6.14), and (M+1)N equations

for the boundary condition (6.5) or (6.6) imposed at the points (6.15). From summing

the above, it follows that a necessary solution for a non underdetermined system, and

hence a unique solution, is K̃ ≥ 2M − 1.

6.2.2 Least-Squares Minimisation Problem

When considering the Dirichlet boundary condition on the inclusion, since boundary con-

ditions (6.3)-(6.5) and the initial condition (6.2) are known, we can fit the approximated

data of the MFS to these values using a non-linear least-squares formulation to find the

unknown values of c and r. Then, the following functional is minimised,

S(c, r) = ||UM,N − f̃ ||2 + ||UM,N − h̃||2 +
∣

∣

∣

∣

∣

∣

∣

∣

∂UM,N

∂n
− g̃

∣

∣

∣

∣

∣

∣

∣

∣

2

+ ||UM,N − ũ0||2. (6.17)
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In discretised form, expression (6.17) to be minimized can be written as:

S(c, r) =
∑N

i=1

∑M
j=0

[

(UM,N (xi, τj)− f̃(xi, τj))
2 +

(∂UM,N

∂n
(xi, τj)− g̃(xi, τj)

)2

]

+
∑N

i=1

∑M
j=1

(

UM,N (xj
i , τj)− h̃(xj

i , τj)

)2

+
∑K̃−1

i=1

∑N
l=1

(

UM,N (xi,l, 0)− ũ0(xi,l)

)2

.

(6.18)

For the case where the Neumann condition is imposed, boundary conditions (6.3),(6.4),

(6.6) and the initial condition (6.2) are known, and therefore the following objective

functional is minimised,

S(c, r) = ||UM,N − f̃ ||2 +
∣

∣

∣

∣

∣

∣

∣

∣

∂UM,N

∂n
− h̃

∣

∣

∣

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∣

∣

∣

∂UM,N

∂n
− g̃

∣

∣

∣

∣

∣

∣

∣

∣

2

+ ||UM,N − ũ0||2. (6.19)

In discretised form, expression (6.19) to be minimized can be written as:

S(c, r) =
∑N

i=1

∑M
j=0

[

(UM,N (xi, τj)− f̃(xi, τj))
2 +

(∂UM,N

∂n
(xi, τj)− g̃(xi, τj)

)2

]

+
∑N

i=1

∑M
j=0

(

∂UM,N

∂n
(xi, τj)− h̃(xj

i , τj)

)2

+
∑K̃−1

i=1

∑N
l=1

(

UM,N (xi,l, 0)− ũ0(xi,l)

)2

.

(6.20)

In expressing the third term in (6.17) or the second and third term in (6.19), the normal

derivative of the fundamental solution (6.7) is needed, namely

∂F̃

∂n
(x, t;y, τ) = −(x− y) · n

8π(t− τ)2
exp

(

− |x− y|2
4(t− τ)

)

H(t− τ), (6.21)

where,

n =







































cosθi+ sinθj, if (x, t) ∈ ∂Ω× [0, T̃ ]

1√
r2(θ)+r′2(θ)

[

(−r′(θ) sin θ + r(θ) cos θ)i

+(r′(θ) cos θ − r(θ) sin θ)j

]

if (x, t) ∈ ∂Γ(t)× [0, T̃ ]

(6.22)
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When calculating this value within the minimisation of (6.19) such that the normal deriva-

tive is required on ∂Γ(t) a central finite difference approximation is taken for the value of

r′, given by,

r
′j
i =

∂r
j
i

∂θ
= N

(

r
j
i+1 − r

j
i−1

4π

)

(6.23)

where r
j
0 = r

j
N and r

j
N+1 = r

j
1,

6.2.3 Regularisation Method

The geometric problem under investigation is ill-posed, and therefore some form of regu-

larisation is often required when solving it. Here the Tikhonov regularisation technique

is used. This technique often employed when solving inverse and ill-posed problems in

order to obtain a stable solution. This technique is imposed by the addition of an extra

term to (6.17) and (6.19), namely,

Sλ(c, r) = S(c, r) + λ||c||2, (6.24)

where λ > 0 is a regularisation parameter.

The Tikonhov regularisation technique also states that regularisation can be placed on

the other unknown sets of variables. In this problem the terms λ||r|| and λ||r′|| could be

included. However, preliminary numerical trials have shown this deemed unnecessary for

the problem here. Therefore only regularisation on the ||c||2 term, is imposed.

It should also be noted that when solving for the direct problem, which is linear, the

above technique can yield an explicit solution of the form,

c = (AtrA+ λI)−1Atrb, (6.25)

for the original ill-conditioned MFS system of linear equations, generically written as

Ac = b.
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6.2.4 Introduction of Noise to the Boundary Flux Data

In industrial practice, the heat flux values (6.4) on the outer boundary ∂Ω would be

measured using experimental techniques and equipment. Generally, no measurement

device is completely accurate and there is a level of uncertainty in the data is expected.

Due to this, a numerical noise factor is numerically simulated to mimic the inherent

errors in the experimental data that would be used. Noisy data was achieved by using

the MATLAB function normrand(0, σ), which generates a random number from a given

normal distribution space, namely,

g̃η(xj
i , tj) = g̃(xj

i , tj) + ǫi,j , i = 1, N, j = 0,M, (6.26)

where ǫi,j are normal random variables with mean zero and standard deviation σ=max|g̃(xj
i , tj)|p,

where p represents the percentage of noise.

6.3 Computational Implementation

There are several choices of routines which can solve the non-linear optimisation prob-

lems as defined in (6.17) and (6.19), each method has its own inherent advantages and

disadvantages and as such the choice of solver is often non-trivial. In this study, the

minimisation of (6.17) or (6.19) is performed using the optimisation toolbox function

‘FMINCON’ in MATLAB. The FMINCON function employs an ‘interior point’ algo-

rithm, which is suited to solving non-linear convex optimisation problems, [40]. This

algorithm was used for several reasons. Firstly, it allows bound constraints to be imposed

on resultant solution, this allowed the minimisation of (6.18) and (6.20) subject to the

physical constraints 0 < r < 1 such that the defect Γ(t) in contained within the fixed do-

main Ω. Restricting the solution domain can often increase the likelihood of obtaining a

unique solution in many non-linear problem, additionally, restricting the possible choices

for the unknowns can speed up the solution process.

The second reason for choosing the FMINCON routine was that many algorithms require

the user to input an analytical expression for the gradient vector. These can often be

complicated and time consuming to code, however, the routine used here calculates this
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gradient vector by use of an internal finite differencing procedure, removing the need for

these challenging expressions.

Lastly, one of the main advantages when using the FMINCON routine is its ability to

operate in parallel over multiple CPU cores. The number of unknowns within the op-

timisation problem here is of size, 5N(M + 1), this therefore amounts to a much larger

optimisation problem than solved in previous steady state inverse geometric problems

using the MFS [26, 100, 101]. Due to the large size of the time-dependent optimisation

problem, the ability to run in parallel using multiple cores is almost a necessity in order

to obtain a solution within a feasible time. This facility was utilised on the University of

Leeds ‘ARC1’ high performance computer, running the process in parallel over 8 cores.

To demonstrate the computational benefits of the parallel approach, the times required

to solve the problem outlined in Case 1 (see results), have been compared for a range of

discretisation sizes (MFS parameters). Figure 6.2 presents the computational times for

N(5M +1) points when K̃ = 2M − 1 for increasing values of M and N . It can be clearly

seen from this figure that the parallel toolbox speeds up the solver process significantly.
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Figure 6.2: Comparison of computational times for runs in parallel and serial for Case 1.
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6.4 Results

In order to test the stability and accuracy of the method, several examples were evaluated.

These example both varied the shape of the defect Γ(t), and the boundary condition

imposed upon it.

6.4.1 Case 1: Circular Inclusion with Imposed Dirichlet Boundary Con-

dition (6.5)

Here a stationary star-shaped inclusion given by the circle, B(0, 0.5) centred at the origin

with radius 0.5 within the unit circle domain Ω = B(0, 1) was located. This case consid-

ered the Dirichlet condition imposed on the boundary ∂Γ(t). The initial and boundary

conditions (6.2), (6.3) and (6.5) were given by

ũ(x, 0) = ũ0(x) = |x|2, x ∈ Ω \ Γ(0), (6.27)

ũ(x, t) = f̃(x, t) = 4t+ 1, (x, t) ∈ ∂Ω× [0, T̃ ], (6.28)

ũ(x, t) = h̃(x, t) = 4t+ 0.25, (x, t) ∈ ∂Γ(t)× [0, T̃ ]. (6.29)

As described previously, the inverse problem here is non-linear and ill-posed where the

internal boundary ∂Γ(t) is unknown, therefore it is necessary that extra information is

supplied in order to determine the additional unknowns relating to the discrete radial

parametrisation of the internal boundary, such that the system is not underdetermined.

This then allows the reconstruction of the moving boundary, ∂Γ(t), within the domain

Ω. This additional information is in the form of the heat flux on ∂Ω, as described by

equation (6.4), namely

∂ũ

∂n
(x, t) = g̃(x, t) = 2, (x, t) ∈ ∂Ω× [0, T̃ ]. (6.30)

The accuracy of the solution was analysed using the RMS value of the error between the

analytical and estimated internal boundary defined as,

RMS =

√

∑N
j=1

∑M
m=0

(

rmj − 0.5
)2

N(M + 1)
. (6.31)

As such, if the boundary is located exactly the RMS value would be zero.
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6.4.1.1 Results: Inverse Problem

The results for Case 1 are presented for a range of discretisation parameters (MFS param-

eters M and N). In each of these cases it was found that no regularisation was necessary

(i.e. in (6.24), λ = 0). The minimisation process was stopped when a suitable level of

convergence was obtained.

Firstly in the case of no noise, i.e. p = 0, Figures 6.3(a) and 6.3(b) display the objective

function (6.18) and the RMS (6.31), for each iteration. Results shown were obtained

taking MFS parameters M = N = 6 and 12, with K̃ = 2M − 1 = 11 and 23, respectively.

In these cases, the objective functional (6.18) contained N(5M + 1) = 186 and 732

conditions, respectively. Results are summarised in Table 6.1.

From Figure 6.3, when considering the case M = N = 6, it can be seen that even though

the objective function continued to decrease though out the solver process, the RMS value

was seen to diverge at a given iteration (iteration 30). In an attempt to increase the sta-

bility, larger values for the MFS parameters were trialled. Analysis of the problem with

parameters M = N = 12, K̃ = 2M − 1 = 23 was carried out. Results for these parame-

ters show that the RMS value no longer increased as the objective function is minimised.

In Figure 6.3(a), when considering MFS parameters M = N = 12, after 118 iterations

the objective function (6.18) appeared to reach a stationary value. This suggested that

the method remained stable for larger parameter sizes, additionally the accuracy of the

solution was improved, which can be shown from the RMS values in Figure 6.3(b).

In order to visually demonstrate the minimisation process, the radial parametrisation

of the internal boundary is shown for various iterations. These results consider MFS

parameters M = N = 12 and are presented in Figure 6.4. From this figure it can be seen

that a convergent and stable reconstruction of the moving inclusion is realised after 118

iterations. This corresponds to the objective function reaching a stable value.

The parameter set of M = N = 12, K̃ = 23 was deemed sufficiently large for the purposes

of achieving an accurate result when balanced with the high computational time required

for larger MFS parameter sizes. It can be clearly seen from the results presented in Table
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Figure 6.3: (a) The objective function (6.18) and (b) the RMS values (6.31) for MFS
parameters M = N = 6 and 12, K̃ = 11 and 23, respectively. For Case 1, p = 0.

6.1 that as the parameter size increases, the overall accuracy of the estimated solution also

increases. One can also deduce from Table 6.1 that larger parameter sets require more

iterations in order to reach a stable solution. Additionally, the time for each iteration

also increases with increasing parameter size.
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(a)
(b)

(c) (d)

Figure 6.4: Plots of the inclusion at iterations: (a) 42, (b) 90, and (c) 118 (final), when
trying to locate a circular inclusion of radius 0.5. d) Shows the initial guess (grey) and
the final solution (white). For Case 1, p = 0.

Next, the measured flux (6.26) on the outer boundary was contaminated with numerical

noise. Figures 6.5(a) and 6.5(b) display the minimisation of the objective function (6.18),

and the corresponding RMS (6.31) when both p = 10% and 25% noise was added to

the flux data (6.30), where the noise was given by (6.26). From these figures it can be

observed that introducing noise decreased the accuracy and stability of the solution. In

order to further confirm this statement, a graphical representation of the solution is given
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Size Obj. Func. RMS CPU Time (s) Iterations

M = N = 6, K̃ = 11 0.92969 0.15021 16.587 65

M = N = 8, K̃ = 15 0.08784 0.03370 72.736 68

M = N = 10, K̃ = 19 0.04311 0.01897 336.55 105

M = N = 12, K̃ = 23 0.02151 0.00852 1116.8 118

Table 6.1: Numerical results in Case 1 for the objective function (6.18), the RMS (6.31),
the CPU time and the number of iterations required for convergence, obtained with
various MFS parameter sizes.

in Figure 6.6. Results are summarised in Table 6.2.

From Figure 6.5 it can be observed that the numerical results become less accurate and

stable as the amount of noise increases from for p = 10% to 25% noise. However, the nu-

merical solution for p = 25% noise is still in reasonable agreement with the exact solution

when considering the magnitude of the noise in which the input flux data was contam-

inated. The relatively high robustness with these large amounts of noise is potentially

related to the simple geometry of the inclusion being reconstructed. It is not anticipated

that this would be the case with more challenging geometries, as investigated in later

examples.

By taking a plot of the final solution at the final time, t = T̃ = 1, the effects of increasing

the noise can be seen from Figure 6.7 and Table 6.2. It can be observed that as the

amount of noise decreases, the numerical solution becomes closer to the exact boundary

location.

Overall, the numerical results obtained for Case 1 demonstrate that the MFS provides a

powerful method for solving inverse geometric problems concerned with the reconstruction

of simple smooth internal boundaries, such as a circle. It has been shown that high levels

of accuracy and resolution can be obtained and in this case, the method was shown to be

particularly resilient to large amounts of noise in the input data.
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Figure 6.5: (a) The objective function in Case 1 (6.18), and (b) the RMS values (6.31)
for MFS parameters M = N = 12, K̃ = 23, for p = 0, 10% and 25% noise.

6.4.2 Case 2: Stationary, Bean Shaped Rigid Inclusion

In this case a bean shaped stationary star-shaped inclusion that is parametrised by,

r(θ) =
0.55 + 0.4 cos(θ) + 0.15 sin(2θ)

1 + 0.7 cos(θ)
, (6.32)
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(a) (b)

Figure 6.6: Final plot of the inclusion for Case 1 after the final 107 iterations. M = N =
12, K̃ = 23, for (a) p = 10%, and (b) p = 25% noise.

Figure 6.7: Reconstructed inclusion for Case 1 at t = T = 1, with M = N = 12, K̃ = 23,
for various levels of noise.
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Noise (%) Obj. Func. RMS Iterations

0 0.02151 0.00852 118

5 0.10689 0.02030 109

10 0.27019 0.03119 118

25 1.40198 0.06796 122

Table 6.2: Numerical results for the objective function in Case 1 (6.18), the RMS (6.31)
and the number of iterations required for convergence, obtained with M = N = 12,
K̃ = 23 and various levels of noise.

within the domain Ω = B(0, 1), is attempted to be located. This is a typical validation

shape when considering geometric inverse problems. The initial and boundary conditions

(6.2), (6.3) and (6.5) are given by,

ũ(x, 0) = ũ0(x) = 0, x ∈ Ω \ Γ(0), (6.33)

ũ(x, t) = f̃(x, t) = xt, (x, t) ∈ ∂Ω× [0, T̃ ], (6.34)

ũ(x, t) = h̃(x, t) = 0, (x, t) ∈ ∂Γ(t)× [0, T̃ ], (6.35)

where x = (x, y).

In an initial study, it was assumed that the inclusion does not move in time, and that this

is known a priori. Note that in the previous example the source and collocation points

were placed in relation to the current location of the inclusion Γ(t), namely the polar

radius r(θ, t) was dependent on both space and time, however the inclusion is now fixed

throughout time, and therefore the parametrisation of Γ(t), as a stationary defect Γ, can

be simplified. Due to this simplification, the locations of source and collocation points

need to be modified, as described below.

Equation (6.12) can now be expressed as,

ym
j+N =

1

2
(rj cos(θj), rj sin(θj)), j = 1, N, m = 1, 2M, (6.36)

where the radii r(θj) =: rj ∈ (0, 1) constitute a radial parameterisation of the stationary
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star-shaped domain Γ whose boundary at any time t ∈ (−T̃ , T̃ ) is approximated by,

∂Γ =
{(

r(θj) cos(θj), r(θj) sin(θj)
)

| j = 1, N
}

. (6.37)

By comparing this with equations (6.9) and (6.13), one can now observe that the radial

parametrisation is no longer dependent on time, but only on its position in space. Modi-

fications to the position of the inclusion dependent collocation points will now be stated.

Equations (6.15) and (6.16) now become

(xj
i , τj) = (ri cos(θi), ri sin(θi), τj), i = 1, N, j = 0,M, (6.38)

xi,j =

((

rj +
(1− rj)i

K̃

)

cos(θj),

(

rj +
(1− rj)i

K̃

)

sin(θj)

)

, i = 1, (K̃ − 1), j = 1, N,

(6.39)

The final problem entails to 4MN +N = N(4M +1) unknowns represented by the 4MN

coefficients c = (cmj )m=1,2M

j=1,2N
in the MFS expression (6.7), and the N radii r = (rj)j=1,N .

6.4.2.1 Results: Direct Problem

Since for the irregular bean shape (6.32) an analytical solution for the direct problem

(6.1), (6.33)-(6.35) is not available, the direct problem is solved numerically using the

MFS and the resultant MFS constants, c, are obtained. These are then used to calculate

the heat fluxes, (6.4) on the fixed outer boundary, ∂Γ. These heat flux values input

into the inverse problem, assuming ∂Γ(t) is unknown. Figure 6.8 shows the heat flux

values (6.4) at times t ∈ { 1
18 , 1}, obtained by solving the direct problem (6.1), (6.33)-

(6.35), with various MFS parameter sizes M = N ∈ {30, 45, 60} and the regularisation

parameter λ = 10−7. It can be deduced from Figure 6.8 that the numerical solutions did

not change significantly when the MFS parameter sizes were in excess of M = N = 60.

Next, the heat flux values (6.4) at times t ∈ { 1
18 , 1}, obtained by solving the forward

problem with the MFS parameter size M = N = 60 are plotted in Figure 6.9, for various

regularisation parameters. The fluxes are output at 18 points across the boundary ∂Ω

which was used as input data for the inverse problem of Case 2 (for M = 18, N = 18).
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Figure 6.8: The heat flux values (6.4) across ∂Ω at times (a) t = 1
18 , and (b) t = 1, for

various MFS parameters sizes.

This way, the inverse problem will be run with the MFS parameter sizeM = N = 18. This

also avoids committing an inverse crime as the direct and inverse solvers have different

MFS parameter sizes.
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Figure 6.9: The flux values (6.4) across ∂Ω at times (a) t = 1
18 , and (b) t = 1, for various

regularisation parameters, in Case 2.

When selecting a suitable regularisation parameter in equation (6.25) for solving the for-

ward problem, a compromise value is taken, which should be large enough to remove

the effects of ill-conditioning of the MFS system of equations, and small enough to have

minimal effect on the accuracy of the solution. From Figure 6.9(a), when λ = 10−9 the
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ill-conditioning of the system is still visible, however the solution appears to to be stable

for λ = 10−7. As such this value shall be used when solving the forward problem for the

MFS parameter size M = N = 60.

6.4.2.2 Results: Inverse Problem

Analysis of the results for Case 2 follow a similar format to that of Example 1. Results

for both the objective function (6.18) and the RMS value,

RMS =

√

∑N
j=1

(

rj − r∗j
)2

N
, (6.40)

where

r∗j = r∗(θj) =
0.55 + 0.4 cos(θj) + 0.15 sin(2θj)

1 + 0.7 cos(θj)
, θj =

2πj

N
, j = 1, N. (6.41)

for various parameter sizes M = N are shown in Figure 6.10. From this figure it can be

seen that as the MFS parameter size increases, the accuracy of the solution also increases.

To evaluate the optimisation process, an ’inverse crime’ was also committed (i.e. the heat

flux data is generated using the same forward mesh size in the inverse problem). From

these results it can be observed that the error is very small in relation to the other pa-

rameter sizes, hence providing further confirmation that the solver is functioning correctly.

Unlike the majority of previous works where the MFS is used to solve steady state in-

verse problems, the time-dependent case produces a much larger system of unknowns

and as such, the objective function is more costly to evaluate. Consequently, parameter

sizes typically have to be smaller than those used in aforementioned works otherwise,

the computational time required to solve becomes infeasibly large. A parameter size of

M = 26, N = 16 has been found to be the largest parameter size when drawing a com-

promise between accuracy and computational expense. A two-dimensional plot of the

results obtained is displayed in Figure 6.11. As the solution remains stationary in time,

it is unnecessary to provide a full space-time plot of the inclusion.

As one can observe from Figures 6.10(b) and 6.11, as the parameter size increases, the
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Figure 6.10: The objective function (6.18) and the RMS value (6.40) for various MFS
parameters, in Case 2.

accuracy of the numerical solution also increases. In order to further highlight this, a

plot of the absolute errors squared versus the polar angle θ, is given in Figure 6.11.

From observing this figure it can be seen that as the mesh size increases the accuracy

generally increases. One can also observe that the level of error from performing the

inverse crime is very small, providing reassurance that the computational implementation
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and methodology are correct.
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Figure 6.11: Plot of the inclusion in Case 2 for various MFS parameter sizes.

Following the successful implementation of the method when considering p = 0, trials

were then carried out using noisy data for a variety of regularisation parameters λ. The

residual (6.18) and RMS values (6.40) for these trials are presented in Figure 6.13. It

should be noted that the residual in Figure 6.13 takes the form of (6.18), however (6.24)

is the regularised objective function being minimised. The residual (6.18) was plotted in

Figure 6.13(a), as this is necessary in order to use a discrepancy principle. As the solu-

tion is unknown a prior criteria must be set such that the regularisation parameter and

stopping criteria can be determined. In addition to this, in physical applications where

the input data is likely to be contaminated with noise, it is necessary to have a stopping

criterion to prevent the solution becoming unstable.

For trials where no regularisation is imposed, i.e. the objective function (6.18) is min-
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Figure 6.12: The absolute error squared versus θ for various MFS parameter sizes, in
Case 2.

imised, the discrepancy principle can be used in order to select the stopping criteria. In

this case the solver was stopped at the iteration number for which the residual (6.18)

attains approximately the noise level,

ǫ2 =
N
∑

i=1

M
∑

j=0

(g̃η(xj
i , tj)− g̃(xj

i , tj))
2. (6.42)

This is graphically illustrated in Figure 6.13(a) where the value of ǫ2 is shown as the

horizontal line.

In cases where regularisation is imposed, the discrepancy principle can also be used in or-

der to select the regularisation parameter. In this case, various regularisation parameters

were initially trialled such that the solution process is stopped after a fixed number of

iterations (300 in Case 2), and the residuals after 300 iterations are presented in Figure

6.14. The choice of λ was then made based on which residual was closest to ǫ2 (= 3.9 for

1% noise in Case 2), this technique is also termed as the discrepancy principle. Figure

6.14 shows that this value is between λ = 10−3 and 10−2.

RMS values for trials with 1% noise and Tikhonov regularisation in conjunction with the
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Figure 6.13: (a) The residual (6.18), and (b) the RMS values (6.40) in Case 2 for various
regularisation parameters when the heat flux data (6.4) is contaminated with 1% noise.

two discrepancy principles described above are shown in Table 6.3. The corresponding

numerical reconstructions of the inclusion are shown in Figure 6.15. It can be seen in

Figure 6.15(a) that the method proposed is stable when small amounts of noise are in-

cluded in the input data. Results presented in this figure show that when exact data

is considered, the optimal solution (assuming a prior knowledge of the boundary as a

stopping criteria) obtainable by the method is close to the prescribed boundary. By
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Figure 6.14: Residuals (6.18) after 300 iterations for various values of λ. For Case 2.

Noise (%) RMS Regularisation (λ) Iteration (Final Result)

0 0.043 0 220

1 0.069 0 131

1 0.0616 0.001 300

1 0.1151 0.01 300

Table 6.3: Numerical results in Case 2 for the RMS (6.40) obtained with M = 28, N = 16
and K̃ = 55.

employing the first discrepancy principle, such that the optimal solution would not be

known (as in a real life case), with no regularisation, the formation shape was also shown

to predict the prescribed boundary. Both when using the p = 0 and p = 0.1 input data

generated a good likeness to the target solution, with the largest error occurring near the

cusp region. The numerical results presented in Figure 6.15(b), obtained using the reg-

ularisation parameter λ chosen according to the second discrepancy principle (based on

Figure 6.14), do not show much improvement over the results presented in Figure 6.15(a).
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Figure 6.15: (a) Plot of the inclusion for 0 and 1% noise in Case 2. The iteration process is
stopped according to the first discrepancy principle. (b) Plot of the inclusion for 1% noise
in Case 2. The regularisation parameter is chosen according to the second discrepancy
principle.
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6.4.3 Case 3: Bean Shaped Rigid Inclusion

Similarly to Case 2, a stationary star-shaped inclusion is parametrised by (6.32) is at-

tempted to be located. However, this time there is no assumption that the boundary

∂Γ(t) is stationary throughout time t ∈ (0, T̃ = 1). The initial and boundary conditions

are given by equations (6.33)-(6.35). In order to ensure a unique solution it is imposed

that Γ(0) is known, see [107], and therefore a non-linear system of 5MN unknowns is

solved.

6.4.3.1 Results: Inverse Problem

Analysis of the results for Case 3 follow a similar format to that of the previous examples.

The RMS now takes the form,

RMS =

√

∑N
j=1

∑M
m=0

(

rmj − r∗j
)2

N(M + 1)
, (6.43)

where r∗j are given by equation (6.32). Initial results presented correspond to MFS pa-

rameters of varying sizes. The minimisation of the objective function can be observed

in Figure 6.16(a). From this figure it can be seen that there only appears to be a small

correlation between increasing the MFS parameters size and RMS values. It was shown

that minimum achievable RMS value, appears to be approximately 0.1, as presented in

Figure 6.16(b). In order to further understand the reasoning for these relatively low ac-

curacies, Figure 6.17 plots the errors in both time and space. From Figure 6.17 it can be

observed that the errors were large close to the initial time (t = 0) and also close to the

concave region of the cusp. Accuracy in other regions was found to be of a good standard.

In order to evaluate whether this behaviour is apparent for other MFS parameter sizes,

Figure 6.18 shows the absolute errors, averaged over θ, as a function of time. From this

figure it can be seen that for all MFS parameters attempted in Case 3, the error was

largest at times close to t = 0, and slowly decreased through time.

Finally a full plot of the inclusion, as a function of x and t can be found in Figure 6.19.

From this figure it can be seen that the accuracy of the solution increases away from the

initial time t = 0.
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Figure 6.16: (a) The objective function (6.18), and (b) the RMS values (6.43) for various
MFS parameter sizes.

Summarising, when applying the method for Case 3, there were noticeable errors observed

close to the initial solution time. However, when considering the solution away from the

initial time, the solver’s ability to reconstruct the internal structure appeared to function

well. An example the solution at the final time t = T = 1 is shown in Figure 6.20.
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Figure 6.17: The absolute error between the target and obtained solution forM = N = 18
at iteration 171.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time

M
ea

n 
ab

so
lu

te
 e

rr
or

 a
t g

iv
en

 ti
m

e

 

 

28x16
18x18
16x16

Figure 6.18: The mean absolute error between the target and obtained solution over time
for a variety of MFS parameters at optimal stopping iterations.

6.4.4 Case 4: Transient Rigid Inclusion

In this example, an internal moving boundary star-shaped rigid inclusion Γ(t) parametrised

by

r(t) = 0.9− t

2
, t ∈ [0, T̃ ], (6.44)
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Figure 6.19: Plot of the inclusion in Case 3 for M = N = 18 after 171 iterations.

within the domain Ω = B(0, 1), is attempted to be reconstructed. The initial and bound-

ary conditions (6.2) and (6.5) are given by (6.33) and (6.35), and the Dirichlet boundary

condition (6.3) is taken as,

ũ(x, t) = f̃(x, t) = t, (x, t) ∈ ∂Ω× [0, T̃ ]. (6.45)

In order to ensure a unique solution to the inverse problem, it is assumed the circular

shape r(0) = 0.9 of the inclusion Γ(0) at the initial time t = 0 is known.

In this example the added complexity of the bean shaped formation was removed to

see if the method has the ability to reconstruct a simple moving circular formation, as

parametrised by equation (6.44). Due to the simplicity of the shape, MFS parameter

sizes similar to those in Case 1 were used. Input flux data was obtained by solving the

forward problem, as described in Case 2.
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Figure 6.20: Plot of the inclusion for Case 3, at the final time t = T = 1, for various MFS
parameter sizes.

6.4.4.1 Inverse Problem: Results

The minimisation of the objective function (6.18) is presented in Figure 6.21. Further-

more, the RMS values are presented and take given by equation (6.43). From Figure

6.21, it can be shown that the numerical results with lower MFS parameter sizes appear

to obtain the most accurate, stable solutions. This behaviour is contradictory to of that

observed in the previous cases. In order to further evaluate the source of the inaccu-

racies Figure 6.22 presents the absolute error across the interior reconstruction for the

MFS parameter sizes M = N = 8 and 12. From this figure it can be seen that as the

MFS parameter size increases, the effects of the ill-conditioning start to become apparent.

These effects appear to be dominant close to t = 0, similarly to results in Case 3. The

small MFS parameter sizes appear to reduce this error, however the errors remain large

at times away from t = 0. In order to illustrate more clearly this point, Figure 6.23 shows

the mean absolute errors, between the target and obtained solution at the various times.

From this figure it can be observed that for low MFS parameter sizes the solution is more
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Figure 6.21: (a) The objective function (6.17), and (b) the RMS values (6.31) for various
MFS parameters. For Case 4

accurate close to t = 0, however at later times the larger MFS parameters are closer to

the target solution.

Finally, Figure 6.24 shows the full space-time solution for parameters M = N = 8 and

12. From this figure, the previously determined behaviour is clearly visible.
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Figure 6.22: The absolute error between the target and obtained solution in Case 4 for
(a) M = N = 8, and (b) M = N = 12 at optimal stopping iterations.
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Figure 6.23: The mean absolute error between the target and obtained solutions in Case
4, over time for a variety of MFS parameters at optimal stopping iterations.

6.4.5 Case 5: Circular Cavity

Here a stationary star-shaped cavity given by the circle, B(0, 0.4) centred at the origin

with radius 0.4 within the unit circle domain Ω = B(0, 1) is attempted to be located.

This case now considers the problem of finding an internal cavity, such that a zero flux

Neumann condition is imposed on ∂Γ. The initial and boundary conditions (6.2), (6.3)
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(a)
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Figure 6.24: The moving inclusion for: (a) M = N = 8, and (b) M = N = 12 at the
optimal stopping iterations.

and (6.6) are given by ,

ũ(x, 0) = ũ0(x) = 0, x ∈ Ω \ Γ(0), (6.46)

ũ(x, t) = f̃(x, t) = 4t, (x, t) ∈ ∂Γ× [0, T̃ ], (6.47)

∂ũ

∂n
= h̃(x, t) = 0, (x, t) ∈ ∂Γ(t)× [0, T̃ ]. (6.48)

As no analytic solutions are available, the direct problem was solved in order to generate

input data (6.4) on ∂Ω.

6.4.5.1 Results: Direct Problem

The direct problem given by (6.1), (6.46)-(6.48) was solved in order to generate input data

for the heat flux on ∂Ω. Figure 6.25 shows the relative heat flux on ∂Ω for 18 uniform

points for various MFS parameters, M and N at t = 13
18 .

From solving the direct problem, it was determined that increasing the spatial MFS pa-

rameter, N , had little effect on the solution if N ≥ 20. The resultant system of equations,

of size 4MN×4MN , could solved within reasonable computational time for MN ≤ 4900,
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Figure 6.25: The heat fluxes at 18 uniform points across ∂Ω for various MFS parameters,
M and N , at time t = 13

18 , for Case 5.

once this value was exceeded, solution times increased rapidly. Due to this, the spatial

resolution was fixed to N = 20, this allowed for increased temporal resolution, without

excessive computational expense. Figure 6.25 shows a constant increase in magnitude for

the heat fluxes, with increasing parameter M , until a temporal parameter of M = 200 is

given. Increasing the parameter further has little effect on the solution, therefore, when

obtaining heat flux data for the inverse problem in Case 5, MFS parameters of M = 200,

N = 20 were used.

Once a suitable MFS parameter size was selected. An appropriate regularisation param-

eter was chosen. Figure 6.26 shows the heat fluxes across the outer boundary, at time 8
18 .

It should be noted that a different time was used here from that in Figure 6.25, as it was

found that the effects of changing the regularisation parameter were more promienent here

than when t = 13
18 . From this figure it can be seen for values of λ = 10−5, 10−7, 10−9 there

was very little variation in the solution. However, it can be observed that for small values

of λ the solution starts to becoming unstable, and oscillate. Hence for the remainder of

Case 5, λ = 10−7 was used when solving the forward problem.
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Figure 6.26: The heat fluxes at 18 uniform points across ∂Ω for various regularisation
parameters, λ, at time t = 8

18 , for Case 5.

6.4.5.2 Results: Inverse Problem

The initial guess for the cavity was the circleB(0, 0.8) with MFS coefficients c = (cmj )m=1,2M

j=1,2N
=

0.1.

The accuracy of the solution was analysed using the RMS value of the error between the

analytical and estimated internal boundary defined as,

RMS =

√

∑N
j=1

∑M
m=0

(

rmj − 0.5
)2

N(M + 1)
. (6.49)

Figures 6.27 and 6.28 show the objective function and corresponding RMS value during

the minimisation process for various regularisation parameters, λ. From these figures it

can be seen that as the objective function decreases, so does the RMS value, suggesting

that the solution steadily moves towards the target solution , B(0, 0.4). Figure 6.29 shows

the resultant cavity for λ = 1 × 10−8 at various times. The solution was taken at the

final iteration, 953. From observing this figure it can be seen that whilst the overall

accuracy of the solution does vary at different times, the resultant solution gives a good

approximation to the target cavity.



Chapter 6. Inverse Problem Methods for the Detection and Monitoring of Growing
Crystalline Formations 243

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Iteration

O
bj

ec
tiv

e 
F

un
ct

io
n

 

 

λ = 1e−08
λ = 2e−04

Figure 6.27: The objective function (6.20) for different regularisation parameters, λ. MFS
parameters M = N = 18, K̃ = 35.
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Figure 6.28: The RMS (6.49) for different regularisation parameters λ. MFS parameters
M = N = 18, K̃ = 35.

In order to investigate the effects of contaminating the input heat flux, 5% noise was

added to the outer boundary flux.

Figures 6.30 and 6.31 show the minimisation of the objective function and corresponding

RMS values for 5% noisy data. From this figure it can be observed that the RMS decreases
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Figure 6.29: Plot of the resultant cavity at various time for MFS parameters, M = N =
18, K̃ = 35.

much slower than that of the noiseless case. The final RMS value is also much higher

than the noiseless case, suggesting that the noise has impacted on the solution accuracy.

In order to visualise this, Figure 6.32 shows the resultant cavity at various times when

using 5% noise. It can be seen from this figure that the solution accuracy has deteriorated

when compared to the noiseless case, but the retrieval remains stable.

6.5 Conclusions

The work in this chapter has used a variety of examples to test both the accuracy and sta-

bility of the MFS for solving a geometric inverse problem, governed by the two-dimensional

time-dependent heat equation in order to locate an unknown internal boundary. The ini-

tial work focused on locating an internal rigid inclusion, such that the boundary condition
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Figure 6.30: The objective function (6.20) in Case 5 at various time for MFS parameters,
M = N = 18, K̃ = 35, p = 5% noise
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Figure 6.31: The RMS (6.49) in Case 5 at various time for MFS parameters, M = N = 18,
K̃ = 35, p = 5% noise

on this could be described by a constant or zero temperature (Dirichlet problem). It was

demonstrated that the method can reconstruct simple circular boundaries to a high degree

of accuracy. The solution remained stable, even when considering large amounts of noise.

Additionally, for more complex stationary geometries such as the considered bean-shape,

the model also obtains stable solutions to a high level of accuracy. For complex shapes
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Figure 6.32: The resultant cavity in Case 5 at various time for MFS parameters, M =
N = 18, K̃ = 35, p = 5% noise

which were not fixed in time, it was shown that the difficulties in obtaining an accurate

solution at early times. However, results further in time were of a reasonable accuracy.

Finally, when considering the Dirichlet problem, the work has shown that the method

presented here can successfully locate simple moving boundaries.

Later work in this chapter focused on the location of an internal cavity, such that a zero

flux condition was placed on its boundary. A simple circular case was tested. The results

showed that the solution was both accurate and stable when the input data is noise free.

In cases where 5% noise was applied to the measured boundary flux, the resultant cavity

gives a less accurate estimation to the true solution, but the numerical solution remains

stable.
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Chapter 7

Conclusions, Implications of the

Research and Further Work

The work in this thesis focused on several problems relating to the growth and fouling of

crystal mass in industrial environments, due to leakage of salt solutions or process liquor.

The main part of the thesis focused on the development and implementation of models

such that the growth behaviour of crystalline formations could be evaluated and quantified

for varying physical parameters. This was accomplished through the both the adaptation

of previous geological models, and the development of a coupled multi-physics model such

that fluid flow, heat transfer and crystallisation mechanisms could be considered. The

second part of the thesis focused on the development of a model such that a geometric

inverse problem was solved, and a potential non-invasive method was evaluated for the

monitoring and detection of growing crystalline formations. This allowed the internal

mapping of a moving boundary system through external heat flux data. The four main

elements of the research and their key findings are summarised in the following section.

Following this several areas are suggested for future research. Finally, the implications of

the research presented in this thesis are summarised.

7.1 Key Findings from the Research

In this section the key findings of each Chapter are summarised.
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7.1.1 Adaptation of a Geological Stalagmite Model for Use in Industry

Due to the differences in time scales between fluid flow and crystallisation phenomena,

models which related to the long term crystallisation behaviour of industrial materials

were limited. Industrial crystal growth systems tended to focus on the growth of crystals

from highly controlled or simple fluid flows. In addition to this they generally described

either the early onset of growth of a singular crystal or the evolution behaviour of pop-

ulations of crystalline system. Despite this, crystals were generally only described by a

scalar function and therefore had no effect on the localised topography. When exploring

alternate areas of research, removed from the traditional process background, it was found

that a particular area of interest in which these problems were commonly experienced was

in geological modelling. Due to the long time-scales in which geological formations are

grown, it is often found that the differences between the timescales for fluid flow and

crystallisation are large, and as such specifically developed models consider this. The

work in Chapter 3 adapted a previous geological model [162] for describing the growth of

stalagmite formations.

The numerical implementation of the model in [162] was modified such that it was robust

for the modelling of formations over smaller time and length scales. Following a simple

qualitative verification study to show that the results were agreeable with the experimen-

tal data, a set of numerical studies was carried out such that the effects of the model

parameters on the final formation could be found. The key findings of this study were:

• From comparing model results to the experimentally observed formation heights

and widths, it was clear that the model was capable of predicting the formations

obtained in the experiments. The model highlighted that if accurate solutions were

to be obtained, due to the sensitivity to changes in temperature and crystal growth

coefficient, regular, accurate temperature data and detailed knowledge of the ma-

terial properties are required.

• The width of the formation was sensitive to changes in the mass flow rate. In the

case of a non-constant mass flow rate, the formation widths varied through time,

such that in the case of the 8 Molar solution, the widths of the material deposited in

the central tower formation over a given timeframe were governed by the solution’s
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flow rate at that particular point in time. Due to this, clear changes in formation

width could be seen when considering different points in the formation height.

• The final crystalline formation’s height was shown to be particularly sensitive to

variations in the liquid solution’s temperature. Studies involved the generation of

varying sets of input temperatures, interpolated from a small dataset of experimen-

tal temperatures provided by the NNL.

• The results suggest that the width and height of the final formation is highly de-

pendent on the empirically calculated, material specific crystal growth coefficient,

K.

For all parameter sets it was noted that limited growth occurred away from the centralised

tower formation. This study therefore concluded that in order for the full system to be

considered, the final formation across the plate was dependent on physical effects currently

not considered in the model. In addition to this the model was based on simplified physics

for the fluid flow, such that a limited range of parameters could be considered.

7.1.2 Development of a Moving Boundary Framework for Crystallisa-

tion Problems

The work in Chapter 4 developed a generalised two-dimensional numerical framework

which could potentially form the modelling basis for many crystallisation or other mass

transfer problems. The work in this chapter considered various models, such as a mul-

tiphase fluid model, solute transport model and moving boundary model for capturing

the fundamental governing physics in crystallisation problems. The work here was not

applied to any particular physical problem, but rather was concerned with the numerical

and computational implementation of the framework. The key findings of this Chapter

were:

• Through validation of the work using a test case from the adapted stalagmite model

in Chapter 3, the framework developed in Chapter 4 was shown to be capable of

modelling crystalline formations, when assuming similar physics to the previous

model.

• The VOF for capturing the multiphase fluid flow model is highly dependent on

the computational mesh. It was found that a refined quadrilateral mesh performed
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best, and that the model performed poorly over triangular mesh types. Different

discretisation methods and solver parameters were considered and assessed for the

robustness of the model. It was determined that the HRIC scheme was most ap-

propriate when using the VOF model. Finally, the model was shown to be accurate

and appropriate for describing steady state liquid films.

• The solute transport model was shown to capture the mass transfer boundary layers

experienced in crystallisation. Additionally, the model demonstrated the correct

boundary layer behaviour when considering different flow parameters. This agreed

with the crystallisation literature [134], suggesting that the solute transport model

was appropriate in this case.

• User defined functions could be implemented in order to describe the required

physics and boundary conditions for crystallisation processes.

• A moving boundary method was developed in order to describe the growth of crys-

talline mass. The model was shown to function well when using a triangular mesh,

however this criteria was not ideal when considering the the VOF. Through the de-

velopment of hybrid meshing techniques, the VOF method was successfully coupled

to a moving boundary, dynamic meshing model in a robust manner.

• The moving boundary model could be optimised in order to improve the robustness

when considering quadrilateral meshes, through the use of user defined code or

functions.

Simplified physics were considered in the adapted stalagmite model presented in Chap-

ter 3. As such the model was restricted to thin fluid flows travelling at low velocities.

In addition to this the model also did not consider the explicit modelling of diffusion.

Therefore, the fundamental framework developed in Chapter 5 offers a new modelling

approach such that these limitations are addressed. In addition to this the numerical

framework provides a convenient and powerful tool for modelling coupled mass transfer

- fluid flow systems, such that any additional physics specific to the individual problem

can be readily implemented.
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7.1.3 Modelling the Growth of Sodium Nitrate from Thin Liquid Films

The work in Chapter 5 developed a multi-physics CFD model from the coupled CFD

moving boundary framework developed in Chapter 4. Additional physics were coupled

to the model such that the growth of crystalline formations from salt solutions could be

considered. In addition to this, the model here extends the previous framework such that

an axisymmetric solution is obtained. This allowed the direct comparison of the model’s

results to experimental data. Summarising, the main conclusions of the work were:

• Through validating the model against the experimental dataset provided by the

NNL, the developed model was shown to be able to successfully model the growth

of crystalline formations of a surrogate liquor.

• User defined codes could be included such that additional physics could be incor-

porated into the CFD framework model, i.e. evaporation and variable material

properties. The implementation of these was shown to function correctly.

• The solute diffusivity has a small impact on the shape of the tower formation and

the solution density has negligible impact for the considered range of parameters

investigated.

• The severity of the leakage (mass flow rate) heavily influences the final formation

width, confirming the results from Chapter 3,

• Environmental parameters significantly influence the final formation shape away

from the centralised tower.

The coupled model allows essential physical behaviour associated with the problem to be

reliably accounted for, i.e. liquid film flow, evaporation, diffusion, temperature depen-

dent solubility and concentration dependent fluid rheology. Through validation studies

the model was shown successful when considering the case for supersaturated solutions,

however it should be noted that due to the implementation of the addition physics, a

full parameter set can be considered such that the torus formations observed when using

under-saturate solution (5 Molar case in NNL trials) could be described.
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7.1.4 Inverse Problem Methods for the Detection and Monitoring of

Growing Crystalline Formations

The work in Chapter 6 solved an inverse geometric problem for the two-dimensional heat

equation in order to locate an internal moving defect, described by a smooth connected

boundary. This work was carried out in order to test both the accuracy and stability of

the MFS, and hence its feasibility to be applied in an industrial environment. The key

findings of the research were:

• In these cases the work has shown that the modelling approach is capable for recon-

structing simple circular boundaries to a high degree of accuracy (when assumed a

Diriclet condition on the internal boundary). Results remained accurate and stable

even when large amounts of noise were imposed on the input data.

• For stationary complex shapes the method obtained stable solutions to a high level

of accuracy (when assumed a Diriclet condition on the internal boundary).

• For dynamically changing complex shapes which were not fixed in time, the model

had difficulty in obtaining accurate solutions for times close to the initial configu-

ration. Results away from t = 0 were of a reasonable accuracy (when assumed a

Dirichlet condition on the internal boundary).

• When considering the Neumann problem on the internal boundary, it was shown

that for simple circular shapes the method was accurate and stable when the input

data remained uncontaminated. Solutions close to t = 0 were shown to be inac-

curate, unless large MFS parameters sizes were chosen. For noisy input data the

accuracy of the model decreased rapidly.

The work here showed that the MFS method has potential for being applied in an

industrial setting, such that information regarding the internal structure of an en-

closed unit could be obtained. For an accurate and robust model to be implemented

it was shown that careful consideration is needed when selecting the regularisation

parameters in the model.
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7.2 Future Research

The work presented in this thesis is novel and up-to-date with current research and as

such it was published in several peer review journals. However, certain work may benefit

from additional studies. Furthermore, whilst this work is appropriate for the problem

here, the applicability of alternative approaches could be explored.

Expanding the parameter set to consider varying solution concentrations It

should also be noted that work here generally focused on the simulation of the tower

formations, as experienced in the 8 Molar sodium nitrate drip trials. For lower concen-

tration solutions, different characteristic shapes were found. Due to the robustness of the

model here and the inclusion of the relevant physics, there is no reason why it could not

also capture these formations. In order to future understand the system such that the

knowledge can be applied to the modelling of heavy metal solution, studies relating to

this parameter set could be carried out

Experimental determination of model parameters The work presented in Chapters

3 and 5 implemented crystallisation models which depend on experimentally determined

coefficients. Whilst the crystal growth coefficient K (used in Chapter 3) has been de-

termined in several studies, it is known to vary depending on the system conditions. In

addition to this, the parameter kr was estimated in this work due to lack of empirical

data. As there is no way to deterministically or mechanistically obtain these parameters,

it is thought that additional experimental would be beneficial. Further studies regarding

sodium nitrate could be carried out in order to obtain a temperature related expression

for kr. Furthermore, the experimental dataset provided by the NNL was limited when

considering the measured spatial and temporal temperatures. Due to this, work relied on

techniques to interpolate the data in order to generate several possible datasets. With

these additional factors the model could be validated further to increase confidence.

Expanding the model to capture the crystallisation of heavy metal solutions

Experiments in order to determine the model parameters for sodium nitrate would be

relatively trivial. Obtaining the parameters for heavy metal solutions would be more dif-

ficult due to the cost implications and the safety aspects. If experimental determination
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of parameters is deemed infeasible it is thought that experiments could be carried out on

a range of simulant materials, such that a wider parameter set is available. Through this,

and by comparing the chemical composition of the materials, it is thought that a closer

approximation to heavy metal behaviour could be obtained.

Fully three dimensional modelling The model in chapter 5 was implemented and

tested such that two-dimensional axisymmetric results were obtained. Whilst this initial

modelling work was a good approximation to the formations found, the formations were

not perfectly axisymmetric. Also, due to the incline of the plate, this axisymmetric as-

sumption only held strictly true in the path directly to the outlet. As such, in order to

obtain further accuracy in describing the size and shape of the formation, and to fully ac-

count for the incline of the plate, a three-dimensional modelling approach could be taken.

It should be noted that the user defined routines developed in this work here could be

easily adapted such that they can be applied to a three-dimensional model. It is thought

that the implementation of three-dimensional model would be relatively trivial, however

due to the computational cost of running the model, a full parametric study would be

time consuming.

Furthermore, the initial stalagmite model also assumes an axisymmetric result. Further

work has been found in geological literature such that terrace formations have been mod-

elled. These models employ a fully three-dimensional, cellular model such that for a given

cell, a region on the terrace is described. Following this, the elevation of the cell relative

to its neighbours determines the distribution of flow from this cell into its neighbouring

cells. Simplified flow models are assumed within this work, which hold similar limitations

to those of the adapted stalagmite model. Despite this, it is thought that a similar tech-

nique could be applied to the work in Chapter 3, such that quick approximations to the

three-dimensional configuration of the formations could be found.

Development and further testing of the inverse problem model for implemen-

tation in an industrial setting. The work in Chapter 6 carried out a study such

that a novel approach for solving an geometric inverse problem for the transient two-

dimensional heat equation could be solved. It is thought that through additional testing

of the regularisation parameters the accuracy and robustness of the models could be im-
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proved. In addition to this further optimisation methods could be explored, such that

parallel computing could be developed further. At the time of writing this thesis, modern

GPU technology was beginning to receive a great deal of interest from researchers. It is

thought with the development of a non-linear optimisation which harnesses this emerging

technology, it would be possible to consider much larger MFS parameter sets.

Application of the framework for alternative applications The framework devel-

oped in Chapter 4 was developed such that it could be applied to other crystallisation

problems of interest. A key example of this would be in the fouling of industrial heat

exchangers. Current studies regarding this problem often do not allow the calculation of

the local deposition rate, but rather an overall rate of fouling such that localised effects

are ignored. In addition to this, the few studies that do observe local deposition rates do

not then account for the changes on the flow and temperature fields due to the deposited

mass.

7.3 Implications of the Research and Conclusions

The work here has focused on the problem regarding the deposition of crystallisation mass

in nuclear processing environments. This problem has not received much attention in the

past, despite it being a major concern for industries involved in the nuclear process cycle.

As such, several key issues and gaps in the knowledge were previously highlighted. This

proved problematic for the nuclear industry where it is a governmental requirement that

safety standards remain at a high level, and all elements of the process cycle must be

shown to satisfy given safety criteria. As such, potential problems need to be understood

fully, such that informed safety and risk assessments can be made regarding the potential

impact of possible incidents.

The first key issue addressed by the thesis was that for known process parameters, indus-

trial specialists currently possess no methods for predicting the size or morphology of a

resultant crystalline formation. These properties are of key important when considering

the potential criticality risk. Therefore the work here has addressed this problem through

the development and implementation of several mathematical models. The implications

of these models is that now industry researchers have a potential method such that safety
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and risk assessments can be made in order to assess the impact of a potential leakage of

process liquor. In addition to this, results from the research have shown the formation’s

sensitivity to various process and environmental parameters. This will allow physical pa-

rameters to be controlled and optimised such that in an event of a leakage, the criticality

of formations can be minimised.

The second key issue regarding the problem here was that due to the safety protocols

in place, plant operators have no means in which they can externally assess the build

up of material when a leakage is known to have occurred within a contained vessel.

As such, the work in this thesis has also attempted a preliminary study, such that a

mathematical geometric inverse problem is solved, and internal mappings of the geometric

configuration can be made, based on available external data. The implications of the

work here suggest that whilst the availability of observational data is low in a typical

nuclear process environment, there is scope to find useful information using measured

heat flux values. The implications of this are of particular importance as these values are

readily obtainable, even when considering the current infrastructure of safety measures

implemented in a nuclear process facility.
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