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Abstract

Anastomotic leak is a catastrophic surgical complication leading to high morbidity,

mortality and cancer recurrence. Currently detection is difficult, with a paucity of

available diagnostic tests that have variable sensitivity and specificity. The work

described in this thesis evaluated the use of local biomarkers within the

anastomotic environment coupled with a biosensor application to assess proof-of-

concept feasibility as a point-of-care diagnostic tool for anastomotic leak. Using a

small animal model of caecal ligation and puncture to replicate abdominal sepsis,

local abdominal biomarkers lactate, TNFα, and E. coli were all found to significantly

increase compared to sham control models at 24 and 36 hours.

Chronoamperometry and electrochemical impedance spectroscopy (EIS)

interrogation of biosensors were then used to detect and quantitate levels of these

respective biomarkers in real patient samples, and data compared to that obtained

by existing commercial assays to evaluate accuracy. Characterisation of each

biosensor utilised cyclic voltammetry, SEM, Midland blotting, SDS-PAGE and dot

blotting techniques to optimise the fabrication methodology. The lactate biosensor

consisted of a pre-impregnated Prussian Blue carbon electrode with lactate oxidase

enzyme immobilised onto the surface via polyethyleneimine. Using

chronoamperometry, the lactate biosensor gave significantly similar results to a

commercial enzyme-based lactate colorimetric assay in ten abdominal fluid patient

samples. E. coli immunosensors were constructed using a polytyramine matrix onto

which half polyclonal antibody fragments raised against multiple strains of E. coli

were immobilised. EIS was used to measure the charge transfer resistance of the

biosensors when incubated with a varying concentration of E. coli, with a limit of

detection found to be 104 cells ml-1. EIS of E. coli biosensors in the ten patient

samples showed statistically significant equivalent results to those from flow

cytometry.  Immunosensors to TNFα were constructed using a similar methodology 

to E. coli, with whole antibody to TNFα immobilised onto a polytyramine electrode 

surface. Initial EIS results in buffered solution showed good biosensor response to

varying concentrations of TNFα, but further studies are required for complete 

biosensor development.
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Chapter 1. Introduction

1.1 Overview

Septic complications from gastrointestinal (GI) surgery, such as anastomotic leak

(AL), are catastrophic, conferring high morbidity and mortality and severely

impacting on patient quality of life (Kube et al., 2010, Marra et al., 2009, Nesbakken

et al., 2001). The incidence of anastomotic leak is 1-30%, with the wide range

attributable to the lack of standardised definition, and a number of risk factors

identified (Kingham and Pachter, 2009, Boccola et al., 2011). The early detection of

anastomotic leak is crucial to allow remedial intervention. Evidence shows that

each hour in delay of antibiotic administration and any delay to reoperation are

associated with a measurable increase in mortality from sepsis and organ failure

(Dellinger et al., 2008, den Dulk et al., 2009). Unfortunately the diagnosis of

anastomotic leak is often difficult. The signs and symptoms that patients exhibit

are largely subjective, non-specific, or may not be present. Anastomotic leaks

present on a spectrum, ranging from an insidious onset, to the sudden

development of fulminant sepsis. Interpretation and the correct management are

therefore difficult.

Current diagnostic tests for anastomotic leak are largely limited to radiological tests

(Hyman, 2009). Intraoperative “preventative” modalities also exist, but with a

paucity of robust outcomes data. Literature on the available imaging modalities,

including computerised tomography (CT) and water-soluble contrast enema

(WSCE), demonstrate a wide range of sensitivity and specificity, and problems with

expense and the need for experienced radiologists. Recently, strategies involving

the measurement of pathophysiological biomarkers locally in the abdominal

environment have been put forward as potentially more sensitive and specific for
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anastomotic leak, although there is little data from human studies or animal

experiments to prove their validity (Komen et al., 2008). These available studies

provide early pilot data and have established proof of principle. The most common

methodology for measurement of biomarkers is enzyme-linked immunosorbent

assay (ELISA), with others including flow cytometry, electrophoresis and laser

emitting diode (LED) devices. All of these methodologies involve complex

protocols, additional reagents, specialist equipment, and user proficiency.

Crucially, they also take time, with electrophoresis described as taking a number of

days including an overnight soaking step, rendering them of limited usefulness for

routine clinical application.

Electrochemical biosensors, as in a glucose monitor, have the advantage of being

inexpensive, robust and negating the requirement for sophisticated high-tech

equipment and trained users (Rushworth et al., 2013). Most importantly they

provide rapid point-of-care results that can be frequently repeated to monitor

clinical change and allow early intervention as necessary; properties that are ideal

for time-sensitive anastomotic leak. Amperometric biosensors lend themselves to

measurement of ischaemic markers because enzymes to generate products from

glucose and lactate are readily available. Immunosensors using an antibody to

capture inflammatory and bacterial analytes are a relatively new field in biosensing,

but with rapidly expanding interest and huge potential. A sensitive and specific

biomarker coupled with an appropriate electrochemical biosensor device has the

potential to revolutionise postoperative detection of adverse events, such as

anastomotic leak and sepsis, greatly reducing morbidity and mortality.

1.2 Abdominal sepsis

Sepsis is defined as a systemic inflammatory response to infection, progressing to

severe sepsis if there is concurrent organ dysfunction, and septic shock classified as

the presence of hypotension refractory to fluid resuscitation (Bone et al., 1992,
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Dellinger et al., 2008). Extrapolated data suggest there may be up to 19 million

cases of sepsis worldwide per year, although these figures are thought to be an

underestimation (Adhikari et al., 2010). The pathophysiological features of sepsis

are discussed in detail in Section 1.6.3 but briefly there is a complex, as yet

incompletely understood, excessive host inflammatory response invoking both pro-

and anti-inflammatory cells and mediators. Intra-abdominal infection is the second

most common cause of sepsis after pneumonia (Angus and van der Poll, 2013). It is

a source of high morbidity and mortality, with intra-abdominal infections present in

up to 25% patients with multi-organ failure (Merrell and Latifi, 2001). Common

causes include infective pathologies such as appendicitis and diverticulitis,

inflammatory conditions with secondary infection including pancreatitis and

cholecystitis, ischaemic change, and iatrogenic complications such as anastomotic

leak. This thesis will focus on sepsis due to anastomotic leak, but has relevance to

the detection from any intra-abdominal septic complication.

1.3 Gastrointestinal surgery

1.3.1 Bowel anastomosis

“Anastomosis” is a term that broadly describes any connection of two luminal

structures. An intestinal anastomosis may be defined as “a surgical procedure to

establish communication between two formerly distant portions of the intestine”

(Kate, 2014). The formation of a bowel (intestinal) anastomosis serves to restore

intestinal continuity after removal of pathology affecting the bowel; commonly

cancer, but also including benign disease. Descriptions of different anastomotic

techniques date back to the 19th century (Senn, 1893). Subsequent improvements

in understanding of the importance of serosal (outer wall) apposition, aseptic

technique, and more recently in the 1980’s the introduction of the modern stapling

device, have rendered the anastomosis a routinely performed surgical procedure

(Chen, 2012). An anastomosis may be formed by a stapling device, or be hand-

sewn using sutures. Prospective, multicentre randomised studies have not shown
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any difference in outcomes between the two techniques, and it remains the

surgeon’s preference at operation (Docherty et al., 1995, Chandramohan et al.,

2013). Figure 1.1 shows the steps in forming an anastomosis. In A, the caecum and

ileum portions of the bowel are resected. B shows the free ends anastomosed

together to restore continuity.

Figure 1.1: Schematic of the formation of an intestinal anastomosis. (A) Bowel
resected, (B) The subsequent anastomosis formed from attachment of the free
ends. Adapted from (Johns Hopkins Medicine, 2014).

Resection of part of the gastrointestinal tract is frequently performed for cancer

treatment, either with curative intent or for disease management (Rahbari et al.,

2010). Bowel cancer is the 4th most common cancer in the UK, with 40,695 new

cases diagnosed in 2010 and a lifetime risk of 1 in 14 for men and 1 in 19 for women

(Office for National Statistics, 2012). Incidence rates have increased in the UK since

the mid-1970’s, with the introduction of the National Bowel Cancer Screening

Programme in 2006 and a shift to detection of earlier stage disease. These trends

are echoed globally, as worldwide bowel cancer is the 3rd most common cancer

with an estimated 1.2 million new cases diagnosed in 2008 (Ferlay et al., 2010).
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Approximately 80% of bowel cancers diagnosed will undergo an operative surgical

procedure with or without adjuvant treatment such as chemo or radiotherapy

(Cancer Research UK, 2009). Almost all bowel resection operations for bowel

cancer involve the formation of an anastomosis, notable exceptions being for rectal

cancers in which an abdominoperineal excision (APE) or Hartmann’s procedure may

be performed if the tumour is too low to restore gastrointestinal continuity, or in

emergency cases respectively. However, the most common operation for rectal

cancer is an anterior resection in which a colo-rectal/anal anastomosis is formed

(Morris et al., 2011). All resections elsewhere in the GI tract necessitate an

anastomosis. The rate of anastomoses performed annually is therefore vast. Table

1.1 shows the potential number of gastrointestinal anastomoses created per year in

the UK based on the number of new diagnoses, and the proportion of patients

whom undergo surgery. This includes inflammatory bowel disease (Crohn’s disease

and Ulcerative Colitis) and the corresponding percentage lifetime risk of surgical

resection. It can be seen that for colorectal cancer alone, up to 32,556 patients will

undergo bowel resection with an anastomosis annually (Cancer Research UK, 2009).

Anastomoses are also performed for a number of other pathologies not mentioned

e.g. diverticular disease, polyposis.
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Disease Location/Type

No. of new
diagnoses

per year UK
(2010)

% of
diagnoses
resected
surgically

Maximum
anastomoses

formed
annually

C
an

cer

Colorectal (bowel) 40,695 80% 32,556

Oesophageal 8,477 25% 2,119

Gastric (stomach) 7,300 48% 3,504

B
en

ign

Crohn’s disease 3,000-6,000
70-80%

(lifetime risk)
2,100-4,800

Ulcerative Colitis 6,000-12,000
20-30%

(lifetime risk)
1,200-3,600

Table 1.1: Summary of number of anastomoses formed annually. Table showing
the numbers of new diagnoses and GI resections by each disease type in the UK
annually, with maximum number of anastomoses formed (Cancer Research UK,
2009) and British Society of Gastroenterology guidelines (Mowat et al., 2010).

1.4 Anastomotic leak

Anastomotic leak is the breakdown of an anastomosis, and is one of the most

feared complications of gastrointestinal surgery. It causes considerable morbidity

and mortality, and contributes to local cancer recurrence (Kube et al., 2010, Marra

et al., 2009, Branagan and Finnis, 2005, Boccola et al., 2011). Quality of life is often

affected due to poor functional outcomes with high rates of permanent stoma

formation (Nesbakken et al., 2001).

The incidence of anastomotic leak varies widely, with reported rates of between 1%

and 30% (Kingham and Pachter, 2009). Risk factors include: i) patient-specific

factors, such as male gender, older age, poor nutritional status, and advanced

tumour stage, and ii) technical factors, including local ischaemia, anastomotic
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tension, local sepsis, and the presence of distal obstruction (Boccola et al., 2011,

Lipska et al., 2006, Matthiessen et al., 2004, Rullier et al., 1998). The risk also varies

with the site of the anastomosis with low rectal anastomoses, less than 5 cm from

the anal verge, being particularly vulnerable (Lipska et al., 2006, Rullier et al., 1998).

The definition of anastomotic leak has always been divisive and the primary reason

for the wide range in reported incidence. In 1991, the United Kingdom Surgical

Infection Study Group offered the definition: “a leak of luminal contents from a

surgical join between two hollow viscera” (Peel and Taylor, 1991), but this

definition has rarely been referenced since. A review of 97 studies from 1993 to

1999 demonstrated 56 different definitions of anastomotic leak after

gastrointestinal surgery (Bruce et al., 2001), illustrating the lack of uniformity and

difficulties interpreting outcomes from different studies. A more recent attempt to

standardise terminology after rectal resection offered the definition: “a

communication between the intra- and extraluminal compartments owing to a

defect of the integrity of the intestinal wall at the anastomosis between the colon

and rectum or the colon and anus” (Rahbari et al., 2010). The authors proceeded to

offer a clinical grading system based on severity of leakage, in order to further

standardise terms for valid comparison of studies. Difficulty in an agreed definition

leads to problems with interpreting reported rates, and in diagnosis and consensus

on correct clinical management.

Treatment options for anastomotic leak include conservative management with

intravenous antibiotics and local percutaneous drainage, or reoperation with

diversion (stoma) or takedown of the anastomosis (Murrell and Stamos, 2006).

Figure 1.2 shows the typical presentation at reoperation for anastomotic leak. The

bowel appears “stuck down” with inflammatory exudate secondary to the

peritoneal contamination. Treatment choice is largely dependent on localisation of

the leak and the clinical picture (Phitayakorn et al., 2008).
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Figure 1.2: Photograph of typical appearance inside the abdomen at reoperation

for anastomotic leak (intraoperative photograph courtesy of DG Jayne).

Early diagnosis and management of anastomotic leak are critical to a good

outcome, with any time delay correlating directly with increased morbidity and

mortality as a result of sepsis and multiorgan failure (Hyman, 2009, Murrell and

Stamos, 2006). In 2004, the “Surviving Sepsis” campaign, spearheaded by critical

care experts, published the first international guidance for the management of

sepsis and noted that each hour of delay in administration of antibiotics from the

onset of septic shock was associated with a decrease in survival of 7.6% (Dellinger

et al., 2008). Similarly, in one study a delay of 2.5 days to reoperation or definitive

intervention for anastomotic leak was associated with an increase in mortality from

24% to 39% (den Dulk et al., 2009).

Timely diagnosis of anastomotic leak is therefore of utmost importance, yet there is

still ongoing difficulty in early detection of AL, without a consensus on the current

best diagnostic test. Practice varies between hospitals and, because of the acute

nature of the condition, there is a paucity of data comparing the sensitivity and
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specificity of the various tests. Anastomotic leak may also present in varying guises,

ranging from the sudden onset of fulminant sepsis with multiorgan failure, to a

more insidious presentation with ileus (paralysis of gut motility) and general failure

to progress in the postoperative period, or may even be subclinical and only

detectable on radiological imaging (Hyman, 2009). Assessment and standardisation

of diagnostic approaches is therefore challenging, which impacts upon research into

the development of superior diagnostic tests (Hirst et al., 2014).

1.5 Current methods of diagnosis

1.5.1 Intraoperative prevention

Intraoperative assessment is used by some to confirm anastomotic integrity and

pre-empt postoperative problems. Strategies include direct endoscopic

visualisation, air leak testing, and assessment of completeness of anastomotic

doughnuts. Air leak testing is a well-established technique. Beard et al

demonstrated a reduction from 14% to 4% in postoperative clinical anastomotic

leak, and 29% to 11% in radiological leak, with the use of intraoperative air leak

testing and repair (Beard et al., 1990). Other studies show similar results (Ivanov et

al., 2011). Air leak testing is easy, quick and cheap and confers little or no risk,

therefore it is considered standard in some centres. Intraoperative endoscopy has

the benefits of real-time assessment of anastomotic integrity, bleeding

complications, vascular compromise, iatrogenic bowel wall injury, tumour margins

and missed distal pathology. It also provides a robust air leak test (Li et al., 2009).

Li et al compared outcomes in laparoscopic colorectal patients undergoing either

routine intraoperative endoscopy (RIOE) or selective intraoperative endoscopy

(SIOE) where there was doubt about anastomotic integrity (Li et al., 2009).

Abnormalities including staple line bleeding, distal polyps and positive air leaks

were observed in 10.3% of RIOE patients. 21.9% of patients underwent SIOE and

10% of these were found to have anastomotic abnormalities. The SIOE group had a

higher incidence of anastomotic leak, but this failed to reach significance due to the
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small sample size. Two further studies have corroborated the potential benefits of

intraoperative endoscopy, but again the sample sizes were too small to draw any

meaningful conclusions (Shamiyeh et al., 2012, Brugiotti et al., 2011). A sufficiently

powered, randomised control trial would be needed before any conclusive

recommendations could be made, although the proponents of intraoperative

endoscopy highlight the advantages of low cost and minimal time associated with

the additional procedure.

Other methods of intraoperative assessment include measurement of local tissue

oxygenation as a predictor of anastomotic complications. Disruption of

microcirculatory blood flow at the anastomosis leads to diminished tissue perfusion

with impaired healing (Thompson et al., 2006, Enestvedt et al., 2006). Karliczek et

al used visible light spectroscopy to measure saturated oxygen levels in 80 patients

before and after colorectal resection and found that decreased oxygen values

immediately after resection were predictive for later anastomotic leakage (Karliczek

et al., 2010). Specifically, a significant rise in tissue oxygen saturation (from 72.1 ±

9.0 % to 76.7 ± 8.0 %) was seen in the proximal part of the anastomosis in those

patients that did not leak, with no such rise observed in those who sustained an

anastomotic leak (73.9 ± 7.9 % to 73.1 ± 7.4 %). The levels of oxygenation were

found to be stable and reproducible, suggesting this technique may have merit as a

predictive test. Two animal studies support these findings, comparing tissue

oxygenation over a range of staple sizes, and using a novel wireless pulse oximeter

to assess colonic tissue perfusion (Myers et al., 2009, Servais et al., 2011). To date,

the level of tissue oxygenation that unavoidably leads to ischaemia has not been

clearly defined and further work to stratify the risk of anastomotic leak is required.

Near infrared (NIR) fluorescent imaging is an emerging method for tissue

assessment during surgery. Near infrared, rather than ultraviolet or narrow band

imaging, holds great potential for abdominal imaging, as it is capable of penetrating

relatively deeply into the bowel and mesenteric tissues without causing thermal
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damage (Cahill and Mortensen, 2010). Coupled with the contrast agent

indocyanine green (ICG), arteries, capillaries and veins can be mapped out, and

vascular flow used as a surrogate for tissue perfusion. The first uses of NIR-ICG

have been for assessment of skin flaps after plastic surgery (Krishnan et al., 2005),

and in breast cancer sentinel lymph node mapping (Troyan et al., 2009). To apply

the concept in gastrointestinal surgery, Matsui et al assessed the use of NIR-ICG in

predicting long-term viability of ischaemic bowel during surgery (Matsui et al.,

2011). The group showed increased prediction of survival (90%) and visible

necrosis at postoperative day 3 (92%), using the imaging modality compared to

clinical evaluation in ischaemic bowel animal models. Using NIR angiography to

assess intraoperative human bowel integrity, Kudszus et al performed a

retrospective matched-pairs analysis on 402 patients who underwent elective

colorectal surgery (Kudszus et al., 2010). Twenty two patients subsequently

developed anastomotic leak requiring revision, 7 (3.5%) in the imaging group and

15 (7.5%) in the control group. The use of imaging therefore effectively halved the

absolute revision rate, as well as reducing revision rates on subgroup analyses, and

significantly reducing the length of hospital stay. A current phase 1 multicentre

clinical trial (PILLAR II) is in progress evaluating NIR-ICG administration in

conjunction with a trans-anal endoscopic application (PINPOINT© system) to

evaluate the planned area of colonic division and subsequent colorectal

anastomosis during laparoscopic left sided bowel resection (Stamos, 2013). Initial

results in nine patients have demonstrated proof of principle of the technique. NIR-

ICG is a promising non-invasive intraoperative technique, but requires further study

with assessment of predictive capability. A summary of intraoperative strategies is

shown in Table 1.2.
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Table 1.2: Overview of intraoperative modalities used in prediction of colorectal anastomotic leak. AL, Anastomotic leak; NIR-ICG, Near
infrared–indocyanine green; RIOE, Routine intraoperative endoscopy; SIOE, Selective intraoperative endoscopy.

Reference Number of patients Procedures Modality Results

(Beard et al., 1990) 145 (143 in final analysis) Colo-rectal anastomosis Air leak testing
Air leak test group vs. non air leak test group:

Clinical AL: 4% vs. 14%
Radiological AL: 11% vs. 29%

(Ivanov et al., 2011) 60 Stapled colo-rectal anastomosis Air leak testing
AL: Air leak test group 10% vs. non air leak test group

20%

(Li et al., 2009) 144
Colo-rectal resection with distal

anastomosis

Routine intraoperative endoscopy
(RIOE) vs. selective intraoperative

endoscopy (SIOE)

Abnormalities e.g. staple line bleeding in 10.3% RIOE.
21.9% underwent SIOE, with 10% anastomotic

abnormalities
Overt AL: 0% RIOE, 1.5% SIOE

(Shamiyeh et al., 2012) 338 Colonic resection Routine endoscopy vs. non routine
Routine vs. non-routine: Anastomotic bleeding, 5.6% vs.

4.3%
AL: 1.2% vs. 1.6%

(Brugiotti et al., 2011) 67 Anterior resection Air leak testing and endoscopy
4 patients diagnosed AL by both modalities, 2 patients

only by endoscopy

(Karliczek et al., 2010) 77
Colo-rectal resection with

anastomosis
Oxygen saturation using visible

light spectroscopy

Non AL: Increase in proximal anastomosis tissue oxygen
saturation (72.1±9.0% to 76.7±8.0%)

AL: No increase (73.9±7.9% to 73.1±7.4%)

(Myers et al., 2009) Animal model
Stapling of small bowel and

colon

Oxygen saturation using tissue
haemoglobin oxygen saturation

probe

Reduced oxygen saturation small bowel and colonic
mucosa adjacent to staple lines (30±14.2%, 25±13%

respectively) compared to baseline (50±6.6%, 46±14.2%)
and 2 cm away (46±7.7%, 45±13.7%), with all stapler sizes

(figures given for green)

(Servais et al., 2011) Animal model
Clamping of stomach (and

kidney)
Oxygen saturation using wireless

pulse oximeter
Reduced oxygen saturation in devascularised stomach vs.

control: serosa 74 vs. 96%, mucosa 52 vs. 88%

(Matsui et al., 2011) Animal model
Strangulated small bowel vs.

control
NIR- ICG

Increased prediction of survival (90%), visible necrosis at
postoperative day 3 (92%), compared to clinical

evaluation

(Kudszus et al., 2010) 402 Colo-rectal cancer resection Laser fluorescence angiography
22 relaparotomy for AL: 3.5% angiography group vs. 7.5%

control group

(Stamos, 2013) 9
Laparoscopic left colectomy

with anastomosis
NIR-ICG with trans-anal endoscopic

imaging system
9 patients to establish proof of principle of technique
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1.5.2 Radiological techniques

The most commonly used imaging techniques for postoperative diagnosis of

anastomotic leak are CT scanning and water-soluble contrast studies/enemas

(WSCE) (Hyman, 2009). In upper gastrointestinal surgery, radiological imaging is in

routine use and its value is supported by large clinical datasets (Nicksa et al., 2007,

Leslie et al., 2012, Madan et al., 2007, Raman et al., 2007, Toppino et al., 2001,

Carucci et al., 2006), particularly in situations where there is diagnostic uncertainty

(Igor et al., 2010, Katasani et al., 2005, Schiesser et al., 2011, Doraiswamy et al.,

2007). One large series assessing 2,099 patients undergoing laparoscopic Roux-en-

Y gastric bypass surgery reported a diagnostic sensitivity of 88% and a specificity of

99% for routine contrast study performed on all patients on postoperative day 1

(Leslie et al., 2012). Suspicion of an anastomotic leak on contrast imaging

prompted an early return to theatre with a zero mortality rate. In comparison,

clinical predictors, including tachycardia, were not as reliable. There is a paucity of

studies assessing CT and WSCE for the detection of anastomotic leak after lower

gastrointestinal surgery. Available data suggest that the accuracy of CT and WSCE

varies widely, as a result of anastomosis location, study timing, and radiological

expertise (Essani and Bergamaschi, 2009).

1.5.2.1 Water-soluble contrast enema

Water-soluble contrast enema has been used in the evaluation of colorectal

anastomoses for over 30 years and has been shown to be safe, despite fears about

disruption of the anastomosis (Shorthouse et al., 1982). However, over 90% of

patients undergoing WSCE do not develop an anastomotic leak, making its routine

use controversial and as a result it is largely discouraged (Essani and Bergamaschi,

2009). A landmark study by Goligher in 1970 investigated a series of 73 anterior

resection patients in whom anastomotic leak was diagnosed by contrast enema on

postoperative day 14 (Goligher et al., 1970). The authors found the contrast study

superfluous to digital rectal examination (DRE) and/or sigmoidoscopy in making a

diagnosis of dehiscence, particularly for low resections, although commented on its
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value in providing a permanent record of the severity of the leak. Williams et al in

1991 assessed WSCE as a diagnostic test for anastomotic leak after rectal and

colorectal anastomoses and compared it to plain abdominal X-ray (AXR) (Williams

et al., 1991). Ten out of the 31 patients suffered an anastomotic leak, in whom 9

were found to have a visibly disrupted staple line on AXR. The authors concluded

that AXR is a useful supporting test for anastomotic leak, with WSCE only indicated

when an intact staple line was present on AXR yet clinical signs persisted. Further

studies assessing WSCE also found it to be a poor diagnostic test for anastomotic

leak. Akyol et al found a diagnostic sensitivity of 52.2% and a specificity of 86.7%

for WSCE after colorectal or left-sided colonic anastomoses, concluding the test

provides little useful impact on early postoperative morbidity (Akyol et al., 1992).

In a comparison to digital rectal examination to assess staple line integrity prior to

reversal of a defunctioning stoma, WSCE was found to be the inferior test with a

false positive rate of 6.4% as compared to 3.5% for DRE (Tang and Seow-Choen,

2005). The sensitivity of DRE was 98%, leading the authors to conclude that this

was the better test in the hands of an experienced surgeon, as well as being more

economical and easier to perform. However, there is conflicting evidence. Nicksa

et al compared WSCE with CT in a retrospective study of 36 colorectal patients with

an anastomotic leak (Nicksa et al., 2007). Of the patients who suffered an

anastomotic leak, 15/18 (83.3%) had a positive WSCE, compared to 4/27 (14.8%)

who had a positive CT scan. This difference was most pronounced in the patients

with a distal anastomotic leak, leading to the conclusion that WSCE may be most

useful in assessing distal anastomoses, presumably due to dilution of contrast

and/or inability to maintain pressure through a more proximal anastomosis.

Further review showed that 9/27 (33.3%) of the CT scans were “descriptive

positive”, with air or fluid in the peritoneal cavity but no extravasation of contrast,

highlighting the importance of an experienced radiologist together with

corroboration of the clinical data.
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1.5.2.2 Computerised tomography

CT assessment of anastomotic leak is the preferred imaging method in some

centres (Power et al., 2007, Khan et al., 2008), although there is inconsistent data

regarding its accuracy and the diagnostic criteria. Power et al evaluated CT

predictors for anastomotic leak and found that a peri-anastomotic collection

containing fluid and air was the only feature significantly more common in patients

with a clinically important leak (Power et al., 2007). The authors also found an

overlap in CT signs between patients with and without anastomotic leak, and

stressed the importance of clinical information in radiological interpretation. A

study by Nesbakken et al showed that the sensitivity and specificity of CT scanning

was 57% and 100% respectively for anastomotic leak after total mesorectal excision

for rectal cancer (Nesbakken et al., 2005). This compared to conventional rectal

contrast radiography, which gave a sensitivity of 60% and specificity of 100%.

Clinical assessment yielded 50% sensitivity and 89% specificity, demonstrating that

CT and contrast studies, whilst giving some false negative results, are equally good

diagnostic tests. One of the main reasons given for the false negatives was imaging

performed before an anastomotic dehiscence was radiologically apparent. This

highlights one of the major drawbacks of imaging; the timing of investigation and a

reluctance to perform repeated testing due to logistics, radiation exposure, and

costs. Other drawbacks include the inherent delay when imaging is performed

prior to definitive treatment (Komen et al., 2008). In a retrospective study, Khoury

et al showed that only 47% of CT scans performed within 72 hours of re-laparotomy

for anastomotic leak were positive (Khoury et al., 2009). CT in isolation cannot,

therefore, be relied on. Combining pelvic CT scanning with rectal contrast,

however, may be superior for low rectal anastomoses, requiring less radiological

expertise and being better tolerated in comparison to CT or WSCE alone. Using this

combination, Bertoni et al showed a 100% sensitivity and 96% specificity for

anastomotic leak prior to closure of stoma (Bertoni et al., 2009). However, this was

a small isolated study and use of CT in combination with rectal contrast has not yet

been prospectively evaluated in the acute post operative setting. Large scale

studies are required to evaluate its clinical use.



Chapter 1: Introduction

17

1.5.2.3 Other radiological techniques

Other radiological techniques have been assessed for the superior detection of

anastomotic leak. A case report by Eininkel showed that transvaginal ultrasound

scan helped to diagnose anastomotic leak in a colorectal anastomosis following

debulking surgery for ovarian cancer (Eininkel et al., 2011). Teeuwen et al

undertook a pilot study evaluating F-18-fluorodeoxyglucose positron emission

tomography (FDG-PET), and was able to show low uptake of FDG in patients with

normal, uncomplicated recovery after colorectal surgery, thus giving potential use

as a diagnostic test with high sensitivity for anastomotic leak (Teeuwen et al.,

2010). The sensitivity and specificity of the different radiological methods

discussed is shown in Table 1.3.

Ultimately, there remains no consensus on which imaging modality is best for the

early diagnosis of anastomotic leak. CT and WSCE are both shown to vary widely in

sensitivity and specificity, attributed to a variety of reasons including the wide

spectrum of radiological leak presentation and subsequent dependence on

radiologist experience, timing of the study, quality of radiological technique, and

fundamental differences in study design and definition of anastomotic leak. CT and

WSCE both have their relative advantages and limitations and a combination of the

two may have some additional benefit, dependent on the evolving clinical situation,

although as yet this is largely unproven.
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Table 1.3: Overview of imaging modalities used to evaluate colorectal anastomotic leak. AL, Anastomotic leak; AXR, Abdominal X-ray; DRE,
Digital rectal examination; CT, Computerised tomography; FDG-PET, F-18-fluorodeoxyglucose positron emission tomography; GI,
Gastrointestinal; USS, Ultrasound scan; WSCE, Water-soluble contrast enema.

Reference
Number of

patients
Procedures Imaging Sensitivity (%)

Specificity
(%)

Recommendations

(Goligher et al., 1970) 73 Anterior resection
Barium enema study

vs.
DRE/sigmoidoscopy

Barium study: 97 -
Contrast study superfluous to DRE

and sigmoidoscopy

(Williams et al., 1991) 31 Colo-rectal anastomosis Plain AXR vs. WSCE AXR: 90 AXR: 100 AXR superior to WSCE

(Akyol et al., 1992) 233 Colorectal/left sided anastomosis WSCE 52.2 86.7 Poor technique for diagnosis of AL

(Tang and Seow-Choen,
2005)

195
Colo-rectal, colo-anal or ileo-anal
pouch anastomosis with diversion

stoma
DRE vs. WSCE DRE: 98.4 DRE: 100 DRE superior test for AL

(Nicksa et al., 2007) 36 (all AL) Lower GI anastomosis CT vs. WSCE
CT: 14.8

WSCE: 83.3
- WSCE superior to CT

(Power et al., 2007) 99 GI anastomosis CT
Peri-anastomotic fluid and air
collection seen in 30.4% of AL

vs. 10% non-AL
- Overlap of CT signs in AL

(Nesbakken et al., 2005) 56 Anterior resection

CT vs.
Contrast radiography

vs. clinical
assessment

CT: 57
Contrast radiography: 60
Clinical assessment: 50

CT: 100
Contrast radiography:

100
Clinical assessment:

89

CT and contrast radiography are
equally good tests

(Khoury et al., 2009) 70 (all AL) Lower GI anastomosis CT 47% - CT alone is not reliable

(Bertoni et al., 2009) 28
Anterior resection with diversion

stoma
Pelvic CT with rectal

contrast
100 96

Recommended as first line study
for suspected AL

(Eininkel et al., 2011) 1 (case report)
Debulking ovarian ca surgery with

colorectal anastomosis
Transvaginal USS - -

Promising modality for low
anastomoses

(Teeuwen et al., 2010) 15 (all non-AL) Colo-rectal anastomosis FDG-PET - - Promising novel detection method
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1.6 Emerging methods of diagnosis

To attempt to overcome the problem of non-specific and insensitive diagnostic

modalities, various novel methodologies are under investigation. A new shift in

focus has been to observe local molecular changes at the anastomosis during

anastomotic failure and leak. The term biomarker has been used to describe such

molecules which may be measured locally at the anastomotic site and utilised as a

diagnostic tool by monitoring real time levels (Komen et al., 2008). Figure 1.3

shows several of these potential biomarkers (discussed in more detail later) that

increase over characteristic time points and may be diagnostic of anastomotic leak.

Biomarkers are readily measurable in patient abdominal drain fluid, although the

routine use of drains in surgery is declining due to enhanced recovery programmes

and a lack of support for their perceived benefit (Kehlet, 1997). A superior

diagnostic test based on biomarkers in the abdominal environment would

potentially initiate the resurgence of drain use, or spawn another improved

sampling method. Serum markers are also viable, although biomarkers from the

locality of the anastomosis would intuitively be more sensitive than those that have

then reached the systemic circulation.

Komen et al suggest the following criteria for an objective biomarker for

anastomotic leak in peritoneal drain fluid (Komen et al., 2008):

i) Significant change in biomarker concentration in anastomotic leak

ii) Stability of the biomarker in the peritoneal environment and drain fluid

iii) Biomarker level not influenced by the primary disease

iv) Biomarker with sufficient sensitivity and specificity for anastomotic leak

v) Biomarker allows for easy, fast, and cheap real-time testing
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Figure 1.3: Schematic of average time-sensitive peak concentrations of various
pathophysiological biomarkers in the abdominal environment implicated for use
in early detection of anastomotic leak.

1.6.1 Pathophysiology of GI healing

The cellular pathophysiology of both normal gastrointestinal healing and of failure

of an anastomosis must be understood in order to predict profiles of molecules

which may then act as biomarkers for an anastomotic leak. Wound healing in

general is a complex process, with a number of overlapping phases each involving a

variety of coordinated cellular, humoral and molecular responses (Li et al., 2007,

Robson et al., 2001). Four phases (in some papers considered as three stages) have

been studied extensively in skin and comprise: i) haemostasis, ii) inflammation, iii)

proliferation, and iv) remodelling and scar maturation (Enoch and Leaper, 2005,

Dubay and Franz, 2003).
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Haemostasis: Immediately after insult or injury, blood vessels are disrupted causing

bleeding. Haemostasis (the state at which bleeding is ceased) is achieved by two

main processes after initial blood vessel constriction: fibrin clot formation and

coagulation (Li et al., 2007). Platelets are recruited to the area and activated by the

vascular wall extracellular matrix causing adhesion and degranulation with release

of a host of mediators, adhesive proteins and growth factors. These include

serotonin and adenosine diphosphate, fibrinogen and fibronectin, and platelet

derived growth factor and epidermal growth factor respectively. These mediators

attract and activate fibroblasts, endothelial cells and macrophages, as well as

activate the compliment and kinin cascades with plasmin generation (Enoch and

Leaper, 2005). Fibrinogen is converted to fibrin by locally released thrombin which,

with the platelet aggregate, forms the fibrin clot. Both the intrinsic and extrinsic

coagulation cascades are activated by the action of platelet aggregation and tissue

factor release from damaged tissue respectively.

Inflammation: The inflammatory phase is chiefly characterised by the mass influx

of leukocytes, initially neutrophils and monocytes, up to 48 hours after the insult.

These cells are recruited by the release of chemotactic factors including kallikrein,

fibrinopeptides, growth factors, and mast cell products, such as tumour necrosis

factor alpha (TNFα), histamine, interleukins and leukotrienes (Li et al., 2007).  They 

act to kill and phagocytose bacteria and other foreign bodies to minimise bacterial

contamination, as well as any native damaged proteins.  TNFα is particularly 

chemotactic for other inflammatory cells (Robson et al., 2001). Macrophages

(tissue-derived monocytes) dominate later in the inflammatory stage at days 2-3.

They are recruited by complement and clotting components as well as some of the

same chemoattractants that draw neutrophils, and have a key role in regulating

tissue repair (Enoch and Leaper, 2005). Macrophages phagocytose pathogens,

dispose of residual neutrophils, and produce growth factors to initiate healing via

proliferation of fibroblasts, smooth muscle cells and endothelial cells for

angiogenesis (Dubay and Franz, 2003). They also release proteolytic enzymes, such

as collagenase, for wound debridement.
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Proliferation: The duration of the proliferation phase is approximately 2-4 weeks.

The principle functions are reinforcement of the damaged tissues and

reestablishment of a blood supply. Fibroblasts migrate to the area under the

influence of platelet-derived growth factor and transforming growth factor-β and 

proliferate, producing fibronectin and collagen to form new extracellular matrix for

structural support as well as acting as a reservoir for cytokines and growth factors

(Li et al., 2007, Robson et al., 2001). The initial extracellular matrix consists of

collagens (largely type III) and elastin with an interstitial component of

glycoproteins in proteoglycan and glycosaminoglycan gel, all produced by

fibroblasts. This matrix evolves to become highly organised around epithelial,

endothelial and smooth muscle cells, with a specialised basement membrane

(Enoch and Leaper, 2005). Angiogenesis occurs as this granulation tissue begins to

replace the extracellular matrix. A number of factors including vascular endothelial

growth factor, platelet-derived growth factor, basic fibroblast growth factor and

transforming growth factor-β induce angiogenesis (Enoch and Leaper, 2005).  

Capillary sprouts begin to infiltrate the matrix before organisation into a rich

microvascular network throughout the granulation tissue. The proliferation phase

is completed with the epithelialisation of the damaged tissue.

Remodelling and scar maturation: The final remodelling phase is characterised by

the replacement of granulation tissue with a predominantly type I collagenous scar,

and is present for several weeks (Li et al., 2007). The extracellular matrix undergoes

continuous remodelling with coordinaed lysis and synthesis of collagen (Enoch and

Leaper, 2005). Fibroblasts, neutrophils and macrophages produce

metalloproteinases (MMP’s), which cause collagen breakdown via a number of

degradation and cleavage actions. Collagen synthesis is controlled by growth

factors, such as transforming growth factor-β and fibroblast growth factor.  

Collagen degradation and synthesis is under tight control and as healing progresses

MMP’s decrease, leaving predominately type I collagen bundles. Cellular and

vascular activities diminish and collagen bundles increase in diameter as the scar
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matures, corresponding with the wound increasing in tensile strength. A summary

of the overlapping four phases of wound healing is shown in Figure 1.4.
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Figure 1.4: The four phases of wound healing and characteristic cell types present (Enoch and Leaper, 2005). Reproduced with permission.
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There are discrete differences between this classically described healing of the skin

and healing of the bowel, based on the differing structure and mechanics of

function. The anatomy of the intraperitoneal gastrointestinal tract comprises four

layers: the mucosa, submucosa, muscularis propria and serosa (Thompson et al.,

2006). These four layers are shown in the schematic in Figure 1.5. The mucosa is

the luminal (innermost) layer and has three components: an epithelial cell layer,

loose connective tissue with collagen named lamina propria, and smooth muscle

cells of the muscularis mucosa. If breached, the mucosa apposes by migration and

hyperplasia of epithelial cells to act as a barrier to prevent leakage of luminal

contents (Thompson et al., 2006). The submucosal layer contains the blood vessels,

lymphatics and nerve plexus of the bowel. It contains an abundance of collagen

(68% type I, 20% type III, 12% type V) and provides the gastrointestinal tract with

the majority of its tensile strength (Halsted, 1887). The muscularis propria is the

muscular portion of the bowel, containing smooth muscle cells in two distinct

orientations: longitudinal and circular. The outermost layer, the serosa, is

comprised of a thin layer of connective tissue covered mesothelium. During the

surgical formation of an anastomosis, apposition of the serosa has been shown to

be of great importance in minimising anastomotic leak (Thornton and Barbul,

1997).
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Figure 1.5: Cross section of the large intestine detailing the four principle layers
and blood and nerve supply (Lamb, 2013). Reproduced with permission.

In similarity to skin, bowel healing begins with a haemostatic response before

inflammatory cell migration and phagocytic activity. During the proliferation and

remodelling phases, however, collagen is produced by both fibroblasts and smooth

muscle cells in the muscularis mucosa and muscularis propria (Thornton and Barbul,

1997). This allows a more rapid increase in tensile strength than in skin to

accommodate the shear stresses associated with peristalsis. The regulation of

collagen lysis and synthesis also differs; in the bowel this is largely under the control

of collagenase. There are three types of collagen produced in the bowel in contrast

to cutaneous tissue; types I and III common to both with type V being specific to

bowel. In clinical terms this translates as low anastomotic strength in the first few

postoperative days as collagen degradation via collagenase dominates, with

anastomotic strength completely dependent on the suture or staple holding

capacity of the existing collagen (Thompson et al., 2006). The anastomosis is
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therefore weakest and most vulnerable to leakage at this time. The final phase of

bowel healing is again comparable to cutaneous tissue, with decrease in cellular

activity and reorganisation of collagen bundles into contractile units.

A number of factors are implicated in the failure of gastrointestinal healing. Local

factors include inadequate blood supply, anastomotic tension, local infection, and

distal bowel obstruction. Systemic factors include hypovolaemia/shock, poor

nutrition, and various metabolic disorders (uraemia, diabetes etc.) (Thornton and

Barbul, 1997). During anastomotic failure the molecular environment of the

anastomosis changes from that of normal healing. The presence of infection, for

example, impairs wound healing by prolonging the inflammatory phase, leading to

increased levels of inflammatory cells (Thompson et al., 2006). Figure 1.6 shows a

schematic of how some of these pathological processes may then become targets

for measurement of adverse events. Sequential time points in the failure of

anastomotic healing are considered below, with assessment of the current

literature on the correspondingly increased (or decreased) molecules which may be

exploited as diagnostic biomarkers for anastomotic leak.
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Figure 1.6: Schematic overview of some of the pathological processes seen during
failure of gastrointestinal wound healing which may be exploited in diagnostic
testing.

1.6.2 Biomarkers of ischaemia

Ischaemia is one of the earliest events in anastomotic leak, and its negative effect

on the anastomosis is well documented. Disruption of microcirculatory blood flow

at the anastomosis leads to diminished tissue perfusion and an inability to

synthesise collagen (Thompson et al., 2006, Enestvedt et al., 2006). Decreased

tissue perfusion may begin as early as intraoperatively, and over a period of hours

leads to tissue breakdown with infarction of the epithelium and villi destruction

progressing to full thickness necrosis, perforation, and inevitable failure of the

anastomosis with peritonitis (Corke, 2001). Biomarkers for ischaemia therefore

have the potential to detect anastomotic complications early in their evolution.

General biomarkers of ischaemia that are detectable in the blood have been in

clinical use for some time, and include phosphate, liver function tests and

creatinine kinase. However, they have generally been shown to be non-specific for
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intestinal ischaemia (Corke, 2001). Faecal examination for biomarkers has likewise

found little success.

A number of studies have focused on local changes in metabolites that correlate

with ischaemia and can be repeatedly measured in the postoperative period. These

include glucose, lactic acid/lactate, and pyruvate, which are related through cellular

glucose metabolism. Under aerobic conditions, cells covert glucose into pyruvate, a

process known as glycolysis (Phypers and Pierce, 2006). Pyruvate is then oxidised in

Krebs cycle to ultimately generate ATP for cellular energy. Under anaerobic

conditions, pyruvate cannot be oxidised and undergoes fermentation catalysed by

lactate dehydrogenase to form lactic acid (Robergs et al., 2004). This is a less

efficient energy cycle although it still produces ATP. Under anaerobic conditions,

whether physiological, as in exercise, or pathological, anaerobic metabolism

dominates leading to increased lactic acid. Lactate is the ion of lactic acid, formed

in solution after loss of a proton and thus the terms are used interchangeably.

Using tonometry via an intraluminal catheter at the anastomosis, Millan et al

demonstrated a significant local decrease in pH at 24 hours in patients who went on

to develop a colorectal anastomotic leak, indicative of increasingly acidic ischaemic

conditions (Millan et al., 2006). Pedersen et al used a locally implanted

microdialysis catheter in 45 patients following low anterior resection to obtain 4

hourly fluid samples, and found significant increases in lactate and lactate/pyruvate

ratio in 4 patients who developed anastomotic leak (Pedersen et al., 2009b).

Crucially, in 3 patients who had a delayed leak (after 10 days), the lactate and

lactate/pyruvate ratio increases were observed several days prior to the leak being

clinically apparent. Similar findings were recorded following oesophageal cancer

resection (Pedersen et al., 2009a). The microdialysis method allowed for rapid

analysis at multiple time-points, although it was invasive. Deeba et al also used a

microdialysis catheter technique to obtain local fluid samples immediately before

and after colonic resection and showed a significant decrease in glucose and
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increase in lactate after resection (Deeba et al., 2008). There therefore appears to

be merit in further exploring the role of ischaemic biomarkers as predictors of early

anastomotic leak.

1.6.3 Biomarkers of inflammation

Abdominal surgery induces a complex inflammatory cascade with the release of

cytokines and other inflammatory markers into the peritoneal cavity and

bloodstream (Badia et al., 1996). After 24 hours these cytokine levels usually begin

to decline (Guillou, 1993). However, if the normal postoperative course is not

followed or in the presence of any insult, there is an inflammatory host response,

considered to be a self-defence mechanism. This response is termed the systemic

inflammatory response syndrome (SIRS), specifically defined as sepsis in the

presence of documented or presumed infection (Bone et al., 1992). The

pathophysiology of SIRS has been described in three stages (Bone, 1996). In stage I

and II following an insult, normal wound repair is commenced as described in

Section 1.6.1, with cytokines produced and recruitment of phagocytic cells to

restore homeostasis. If homeostasis is not achieved, stage III (SIRS) develops. Stage

III comprises a significant inflammatory reaction with mass cytokine release,

becoming destructive instead of protective. There is a flood of inflammatory

mediators triggering the sustained, inappropriate action of monocytes and leading

to end organ dysfunction.  TNFα, interleukin-1 (Il-1) and Il-6 are considered the 

primary pro-inflammatory mediators in SIRS/sepsis (Davies and Hagen, 1997).

These pro-inflammatory cytokines act to initiate production of other pro-

inflammatory cytokines (Il-8, γ-interferon), activate the coagulation and 

complement cascades, and lead to the release of nitric oxide, platelet activating

factor, leukotrienes and prostaglandins, and culminating in a sustained,

uncontrolled response causing widespread tissue injury and organ dysfunction

(MacFie, 2013, Davies and Hagen, 1997). The counteraction of the host to this

imbalance is an anti-inflammatory response, termed the compensatory anti-

inflammatory response syndrome (CARS) (Ward et al., 2008). Anti-inflammatory
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cytokines, such as Il-4 and Il-13, act to decrease production of pro-inflammatory

cytokines via direct inhibition and indirect mechanisms (Collighan et al., 2004). The

balance of SIRS and CARS largely determines the clinical outcome, with domination

of SIRS conferring uncontrolled inflammation, or CARS becoming harmful in

allowing secondary infections to overwhelm the patient if unchecked (Ward et al.,

2008). Although as yet incompletely understood, SIRS and CARS have been the

focus of therapeutic strategies for sepsis (Dinarello et al., 1993, Ward et al., 2008).

The characteristic increase in specific cytokines also gives potential to exploit these

molecules as biomarkers for diagnosis of progressing septic complications.

Serum C-reactive protein (CRP) has long been considered a primary clinical

inflammatory indicator of postoperative complications despite poor specificity

(Matthiessen, 2007). CRP is a plasma protein synthesised in the liver. When

activated by macrophages, CRP binds to dying cells to activate the compliment

system, amongst other complex functions (Black et al., 2004). Studies have shown

that serum CRP is significantly elevated in the preceding days before anastomotic

leak after colorectal surgery, as compared to a normal postoperative course

(Matthiessen, 2007, Woeste et al., 2010, Almeida et al., 2012). However, in all

these studies only an overt clinical presentation was defined as anastomotic leak,

with radiological leaks expressly excluded in one study (Matthiessen, 2007). Garcia-

Granero et al recently demonstrated that CRP was not reliable in the early

detection of minor anastomotic leak, only reaching significance preceding a major

presentation of leak (Garcia-Granero et al., 2013). Thus, CRP may not be as

sensitive as previously considered, potentially as a result of measuring a local

complication using a systemic marker.

Crucially, inflammatory cytokines and growth factors released at the site of tissue

injury are present in much greater concentration in peritoneal fluid than the

systemic circulation (Chuang et al., 2006).  Increased local levels of interleukin-1β 

(Il-1β), Il-6, epidermal growth factor, and platelet derived growth factor have been 
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measured in drain fluid from patients who developed anastomotic leak and sepsis

following colorectal surgery, as compared to those with an uneventful

postoperative course (Baker et al., 2003). The levels of inflammatory and growth

mediators also show a positive correlation with increasing severity of the

complication. Fouda et al studied cytokine levels sampled via peritoneal drain fluid

in 56 patients undergoing elective low anterior resection (Fouda et al., 2011).

Cytokines Il-6, Il-10 and TNFα were measured by ELISA and were all significantly 

higher, particularly on postoperative day 3, in the 8 patients who developed

anastomotic leak, as compared to those with no leak (Il-6 76% higher, Il-10 33%

higher, TNFα 72% higher).  A number of other studies support these findings, 

demonstrating an early increase in one or all of Il-6, Il-10 and TNFα in patients who 

develop anastomotic leak (Ugras et al., 2008, Matthiessen et al., 2007, Herwig et

al., 2002). All of the studies used ELISA assays, which provide a relatively rapid

result but require specialist laboratory facilities, user expertise, and are labour

intensive (Shinde et al., 2012).

Lysozyme is a component of the host inflammatory response to trauma and sepsis.

It is formed in macrophages and acts to destroy the cell wall of Gram-negative

bacteria. Using an electrophoretic technique, Miller et al demonstrated that

lysozyme levels in drain fluid after low anterior resection were significantly raised in

patients with clinical and radiological evidence of anastomotic leak (Miller et al.,

1996). Importantly, lysozyme levels were significantly increased as early as

postoperative day 1. However, the methodology had major practical limitations, as

the electrophorectic gel required overnight soaking, negating its usefulness as a

rapid diagnostic test.

Matrix metalloproteinases are involved in remodelling of the extracellular matrix by

collagen degradation during healing (Stumpf et al., 2005). Tissue inhibitors of

metalloproteinase (TIMP’s) are the natural inhibitors of MMP’s, and wound repair is

dependent on the balance between these mediators. In animal models,
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anastomotic healing may be enhanced by administration of an MMP inhibitor, as

evidenced by higher anastomotic burst pressures (Kiyama et al., 2001). The levels

of MMP’s and TIMP’s might therefore prove a time sensitive test for anastomotic

healing. Using human peritoneal fluid taken 4 hours after low anterior resection,

Pasternak et al analysed levels of MMP-1, 2, 3, 7, 8, 9, and 13 by multiplex flow-

cytometry. MMP-8 and 9 were significantly increased in the 10 patients who

developed anastomotic leak, as compared to the 19 patients who had an

uneventful postoperative course (Pasternak et al., 2010). Flow cytometry is a highly

sensitive methodology but, similar to ELISA, requires specialist operators and costly

equipment (Maher and Fletcher, 2005).

1.6.4 Bacterial biomarkers

Anastomotic integrity is initially dependent on apposition of the serosa and mucosal

hyperplasia to create a barrier to luminal bacteria (Thompson et al., 2006). Failure

of anastomotic healing, from whatever cause, leads to spillage of bowel contents

into the peritoneal cavity. The human gastrointestinal tract contains a vast

indigenous flora of microorganisms of which the majority, thought to be

approximately 1013 in number, reside in the colon (Rakoff-Nahoum et al., 2004).

The function of this flora is incompletely understood and is recently thought to be

more mutualistic than inertly commensal, but includes metabolism of

carbohydrates and fatty acids, regulation of epithelial and vasculature integrity, and

provision of colonisation resistance to pathogenic strains (Hooper and Gordon,

2001).

In a 5-year prospective study, de Ruiter et al demonstrated that a number of micro-

organisms could be cultured from abdominal fluid taken from patients with a

perforated digestive tract (De Ruiter et al., 2009). Over half of the cultures, taken

intraoperatively after colorectal perforation, contained aerobic Gram-negative

bacteria, the majority of which were E. coli. Gram-positive bacteria, predominantly
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Enterococci, were found in 42.5% of abdominal fluid cultures. Over the following 4

weeks as antibiotic treatment was administered, aerobic Gram-negative bacterial

counts dropped, as interestingly, Gram-positive bacterial counts increased. Other

studies have found a similar distribution of bacteria cultured in peritoneal fluid

after intestinal perforation (Brook and Frazier, 2000). Although bacterial culture is

not rapid enough to be of diagnostic use, the measurement of specific bacteria or

bacterial components/products may have a role as biomarkers of anastomotic leak.

Komen et al utilised real-time polymerase chain reaction (PCR) as a rapid and

sensitive method for detecting E. coli and E. faecalis in drain fluid (Komen et al.,

2009). Testing on 10 known culture positive and 7 culture negative fluid samples,

the PCR results were concordant with culture results except for 4 false positives,

indicating that the method is too sensitive and susceptible to over-diagnosis. On-

line infrared absorption and near-infrared LED devices are two other techniques

that have been studied as potential diagnostic tools for bacteria (Pakula et al., 2005,

Chaeron et al., 2007). Both these methods use optical sensor systems to

spectroscopically detect bacteria in drain fluid. Using solutions with known

concentrations of E. coli, the LED system was shown to rapidly distinguish between

the different samples, although not quantitatively. The on-line infrared absorption

technique also generally distinguished between differently contaminated drain fluid

samples. The authors conceded that more detail would be required to use optical

systems as a diagnostic tool for anastomotic leak, although the methodology was

promising.

Endotoxin, or lipopolysaccharide (LPS), forms the outer wall of Gram-negative

bacteria, including commmensals of the GI tract, and may serve as a biomarker for

anastomotic leak. Junger et al measured LPS in peritoneal drain fluid from 22

patients after colonic resection and showed significantly increased LPS levels at day

1 and day 3 in the 3 patients who developed anastomotic leak (Junger et al., 1996).

The day 3 levels, in particular, gave threshold results with high sensitivity.
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Currently, LPS is not routinely measured in clinical laboratories, and improvements

in the assay are required before there can be any clinical application.

1.6.5 Other biomarker approaches

A recent novel method for detection of anastomotic leak using electrical resistance

changes has been studied in animal models. DeArmond et al compared negative

controls to rats that were given gastrotomies to simulate anastomotic leak

(DeArmond et al., 2010). Electrolyte contrast solution was introduced into the

stomach and resistance measurements were taken via electrodes sutured around

the gastrotomy. The authors were able to demonstrate a significant drop in

electrical resistance following the extravasation of electrolyte contrast in animals

with gastrotomies compared to negative controls. The application has the

advantage of providing rapid results, which may be obtained at the bedside, and

was shown to be sensitive and specific in these preliminary animal model tests.

Table 1.4 outlines the range of biomarkers and their respective research

methodologies as early detection strategies for anastomotic leak.
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Reference
Number of

patients
Procedures Biomarker(s) measured Time interval Methodology

Significant results (means unless
stated)

Ischaemia

(Millan et al., 2006) 90 Anterior resection pH 24 and 48 hours
Intraluminal
tonometry

pH < 7.28 in AL

(Pedersen et al., 2009b) 50
Low anterior

resection

Glucose, lactate, pyruvate,
glycerol, lactate/pyruvate ratio

(L/P ratio)

4 hourly for
maximum of 10

days

Microdialysis
catheter

Lactate: 7.0 mmol/L AL, 3.0 mmol/L
non AL. L/P ratio: 44.7 AL, 18.3 non AL

(Deeba et al., 2008) 7 Left colectomy
Glucose, lactate, lactate/glucose

ratio (L/G ratio)
Operatively – over

60 mins
Microdialysis

catheter

Glucose decrease to 1.89 mM. Lactate
increase to 1.47 mM. L/G ratio

increase to 8.1

Inflammation

(Baker et al., 2003) 52
Colorectal
resection

IL-6, IL-1β, TNFα epidermal
growth factor, platelet-derived

growth factor, vascular
endothelial derived growth

factor, basic fibroblast growth
factor, transforming growth

factor-β1 

Daily, post
operative day 1

until drain removal

ELISA on peritoneal
drain fluid

IL-1β (days 1,3,6), EGF (day 5), PDGF 
(day 3), IL-6 (day 6) increased in

complication with severity

(Fouda et al., 2011) 56
Low anterior

resection
Bacterial cultures, IL-6, IL-10,

TNFα 
Daily, post

operative day 1,3,5
Bacterial culture,

ELISA

Day 3 (all pg/ml) IL-6: 115,450 AL,
28,159 non AL, IL-10: 33,355 AL,

22,209 non AL, TNFα: 511 AL, 141 non 
AL

(Ugras et al., 2008) 34
Colorectal

anastomosis
IL-6, IL-10, TNFα 

Daily, post
operative day

1,2,3,4,5

ELISA on peritoneal
drain fluid

Day 1 (all pg/ml) IL-6: ~140,000 AL,
~30,000 non AL, IL-10: ~125,000 AL,
~20,000 non AL, TNFα: ~120,000 AL, 

~40,000 non AL

(Matthiessen et al., 2007) 23 Anterior resection
Lactate, pyruvate, glucose

IL-6, IL-10, TNFα 
Until post operative

day 2

Lactate, pyruvate,
glucose

microdialysis
IL-6, IL-10, TNFα 

ELISA on peritoneal
drain fluid

Day 5 L/P ratio: ~18 AL, ~12 non AL
Day 1 (all µg/L) IL-6: ~150 AL, ~80 non
AL, IL-10: ~500 AL, ~100 non AL, TNFα: 

~260 AL, ~100 non AL

(Herwig et al., 2002) 24
Colorectal
resection

IL-6, IL-1β, TNFα 
Daily, until post
operative day 4

ELISA on peritoneal
drain fluid

Day 1 (all pg/ml) IL-6: 162,500 AL,
27,940 non AL, TNFα: ~500 AL, ~200 
non AL. Day 3 IL-1β: ~1500 AL,  ~100 

non AL
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Table 1.4: Summary of the biomarkers evaluated for detection of anastomotic leak. AL, Anastomotic leak; EGF, Epidermal growth

factor; LPS, Lipopolysaccharide; MMP, Matrix metalloproteinase; PDGF, Platelet-derived growth factor; TIMP, Tissue inhibitors of

metalloproteinase; TNFα, Tumour necrosis factor alpha.  

(Miller et al., 1996) 42
Low anterior

resection
Lysozyme

Daily, until post
operative day 4

Laurel’s
electroimmunodiffu
sion on peritoneal

drain fluid

Day 1 (mg/dl) ~16 AL, ~6 non AL

(Pasternak et al., 2010) 29
Low anterior

resection
MMP-1,2,3,7,8,9,13

TIMP-1,2
4 hours

postoperatively

MMP by multiplex
flow-cytometry,

TIMP by ELISA, on
peritoneal drain

fluid

(All ng/ml) MMP-8: 704 AL, 445 non
AL, MMP-9: 5300 AL, 4120 non AL

Reference
Number of

patients
Procedures Biomarker(s) measured Time interval Methodology

Significant results (means unless
stated)

Bacterial contamination

(Komen et al., 2009)
9 (17 samples,

all non AL)
Colorectal
resection

E. coli, E. faecalis
Daily, post

operative day 1
until drain removal

PCR on peritoneal
drain fluid

Entirely concordant results with PCR
except 4 false positive PCR

(Pakula et al., 2005) 2 Lower GI surgery Bacterial contamination Post operatively
On-line infrared

absorption on drain
fluid

Differences in transmission of
differently mixed “% contaminated”

samples

(Chaeron et al., 2007) N/A N/A Bacterial contamination N/A

Near infrared LED
on samples taken

from a hospital
laboratory

Differences in transmission of “0%”
and “10%” contaminated samples

(Junger et al., 1996) 22
Colorectal
resection

LPS, leukocyte count,
thrombocyte count, urea,
creatinine, temperature

Daily, until
postoperative day 8

Chromogenic
limulus

amoebocyte lysate
test on peritoneal

drain fluid

LPS (all pg/ml) Day 1: 3165 AL, 904
non AL. Day 3: 6257 AL, 419 non AL

Other approaches

(DeArmond et al., 2010) Animal model N/A Electrical resistance N/A
Electrical resistance
across gastrotomy

Mean max rate of change in
resistance gastrotomy:

-310 ohms, control: -15 ohms
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There is therefore a wealth of potential targets for a sensitive pathophysiological

biomarker measured in the abdominal environment for early diagnosis of

anastomotic leak. Although a number of these biomarkers appear to hold

potential, few have been formally assessed under controlled conditions, with none

clinically validated in randomised controlled trials. The ideal biomarker for

anastomotic leak should express concentration changes early in the anastomotic

leak process, remain stable, and confer high sensitivity and specificity. The

biomarker measurement methodology should be user-friendly, inexpensive and

give rapid, at the bedside, results. Currently, no detection method in the literature

fulfils these criteria, with the majority requiring costly laboratory equipment and a

lengthy time period.

1.7 Animal model of biomarkers

1.7.1 Caecal ligation and puncture

Despite extensive research, the pathophysiology of sepsis in humans from

anastomotic leak and other causes is still not fully understood. Caecal ligation and

puncture (CLP) is considered the gold-standard animal model in sepsis research,

deemed by many investigators to be the crucial pre-clinical test for any new

treatment of human sepsis (Rittirsch et al., 2009, Dejager et al., 2011). It is the

most widely used model for experimental sepsis since being developed more than

30 years ago (Dejager et al., 2011). There is still no viable alternative for modelling

sepsis other than to use in vivo models. Sepsis is a dynamic process, with biological

markers changing in concentration at different time points as sepsis evolves in a

living host. Therefore a live model is irreplaceable for this purpose, as cells or

organs in isolation in vitro would not produce the same whole system complex

immune response, allowing meaningful comparison to that of humans.
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The CLP procedure consists of a midline laparotomy to gain access to the abdominal

cavity, after which the caecum is ligated to provide an inflammatory source of

necrotic tissue. Caecal perforation then allows faecal material to leak into the

usually sterile peritoneal cavity resulting in bacterial peritonitis, triggering the

systemic inflammatory response, inevitably leading to septic shock, organ

dysfunction, and death (Rittirsch et al., 2009). As the pathogens (such as E. coli)

originate from the host enteric system, there is a high degree of similarity to human

sepsis. The haemodynamic and metabolic phases of sepsis as well as the pro- and

anti-inflammatory stages have been shown to be comparable to those of humans

(Dejager et al., 2011). Another advantage of the CLP model is its relative simplicity.

To date, CLP has been used to measure a wealth of mediators implicated in sepsis,

to further our understanding of its pathophysiology, and to increase our knowledge

of potential diagnostic markers and novel therapeutic targets (Dejager et al., 2011).

However, very few studies have measured levels of these potential markers in fluid

from the abdominal cavity, with most focusing on serum markers (Ebong et al.,

1999, Brooks et al., 2007, Dragica et al., 2004). This is despite the logical premise

that peritoneal fluid markers will be the earliest and most sensitive for detection as

they are in the direct locality of the abdominal corruption. The therapeutic

strategies for sepsis in humans arising from knowledge gained from the CLP animal

model have so far largely been ineffective, which may in part be due to the

overreliance on systemic features.

The few studies with a focus on measurement of peritoneal markers in caecal

ligation and puncture and other animal models have revealed interesting results.

Haji-Michael et al measured the glycolytic metabolism of rat leukocytes from the

peritoneum in CLP versus sham laparotomy (Haji-Michael et al., 1999). At 24 hours,

basal and glucose stimulated lactate output was significantly increased in CLP

animals.  To examine prediction of survival, cytokine levels Il-6, Il-10 and TNFα were 

measured in the peritoneal fluid of 48 rats following intraperitoneal injection of a
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faecal/bacterial mixture (Hendriks et al., 2010). Measurements were taken at 24

and 72 hours. The authors found that cytokine levels at 24 hours discriminated

between animals who subsequently survived and those who died within the next 24

hours. The levels of each marker that strongly correlated with mortality were

determined. Levels of all three cytokines were also significantly higher at 72 hours

in animals that were ultimately non-survivors compared to survivors. Using a

mouse CLP model, Ebong et al measured Il-1β, TNFα, Il-6 and Il-10 in both plasma 

and peritoneal fluid between 2 and 24 hours versus sham controls (Ebong et al.,

1999). Crucially, whilst raised levels of cytokines correlated with increased sepsis in

most cases, the levels were consistently higher in the peritoneal fluid than

systemically in the plasma.  TNFα in particular was below limit of detection in 

plasma at all time points in the study. Thus, biomarkers for sepsis were more

reliable in peritoneal fluid than in plasma. Two other studies corroborate these

findings (Walley et al., 1996, Figueiredo et al., 2012). Figueiredo et al also showed

an increase in the number of bacteria locally at the infective focus of the caecal

ligation in a CLP rat model.

CLP and peritoneal sampling therefore confers many benefits in understanding the

pathophysiology of intra-abdominal sepsis with relative simplicity and allowing

sufficient numbers of animals to attain significant results. There is the additional

benefit of strictly controlled experimental conditions. CLP serves as a proxy method

for analysing potential biomarkers in postoperative patient drain fluid, providing

information about the local biochemical and cellular profile directly at the site of

abdominal sepsis. This has specific implications for abdominal sepsis

pathophysiology and the elucidation of optimum biomarkers of sepsis, but also

more generic implications for research into inflammation and healing.
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1.8 Biosensors: Basic concepts

In recent times there have been great developments in biosensing technology

research, for a wide variety of applications including environmental monitoring,

food and water quality control and medical diagnostics and treatment. The

advantages of adaptability, immediate point-of-care testing, speed, portable

sampling, low cost and ease of use have rendered biosensing an important

alternative to conventional bioanalytical systems such as ELISA (Cosnier, 2005,

Rushworth et al., 2013). Applications are numerous, and areas of growth are

particularly seen in the clinical setting, one example being DNA biosensors for

detection of genetic diseases (Minunni et al., 2003). The detection of antigenic

proteins including those identifying bacteria, viruses and parasites may be achieved

at low concentration by antibody-based biosensors with high specificity. Currently,

the blood glucose sensor is still the most widespread example of a biosensor, used

by the estimated 347 million diabetics worldwide and now accounting for

approximately 85% of the biosensor market globally at an estimated US$8.8 billion

(Newman and Turner, 2005, Hughes, 2009). Biosensor development for a range of

biomarkers, including those implicated in sepsis, is readily achievable with current

knowledge and technologies.

1.8.1 Brief history of biosensor development

A biosensor in its most simple form may be described as a device comprising three

parts: a biological recognition system, a transducer, and a signal processing display

(Conroy et al., 2009). Interaction of the analyte of interest with the biorecognition

element is converted to a measurable signal by the transducer, before conversion

to the readout or display (Vo-Dinh and Cullum, 2000). The basic structure of a

biosensor is illustrated in Figure 1.7.
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Figure 1.7: Schematic of a biosensor depicting the three main components.

Biosensors were first developed in the 1960’s, with the first biosensor described by

Clark and Lyons in 1962 at the Cincinnati Children’s Hospital for monitoring during

cardiovascular surgery. Their original method utilised an oxygen electrode with

glucose oxidase entrapped between semi-permeable dialysis membranes. The

electrode measured the oxygen consumption during the enzyme reaction, to

consequently give a glucose concentration (Clark and Lyons, 1962). Errors caused

by variation in O2 levels in the solution however, led to the reaction product

hydrogen peroxide becoming the product of interest to be measured. These so

called “first generation” of amperometric sensors directly measured the

electroactive species enzymically produced or consumed. Second generation

biosensors were developed in the 1980’s to overcome the requirement for a high

potential in order to measure the electroactive species, which decreased specificity

(Wang, 2001). The use of electron mediators such as ferrocene, to shuttle electrons
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to the electrode from the enzyme, allowed a lower working potential to be used

and thus decreased interference from other redox species present. Mediators may

be free in the electrolyte, or immobilised on to the working electrode with the

enzyme. The development of third generation biosensors in the 1990’s progressed

biosensing technology further by allowing direct, unmediated electron transfer

between the enzyme’s redox centre and the working electrode surface, using an

enzyme capable of direct electron transfer such as horseradish peroxidise or

cytochrome c. Clearly this may only be achieved with very small enzymes that have

redox centres close to their surface, or those whose structure is appropriate.

In recent times biosensors have progressed from being predominantly enzymatic to

encompass a wide variety of bioreceptors such as DNA, antibodies and aptamers,

and using a range of transduction methodologies including electrochemical, optical

and piezoelectric (Song et al., 2006). Within electrochemical approaches, an

increased emphasis on impedimetric sensor interrogation is evident, with

antibodies the predominant bioreceptors seen (immunosensors). However, other

binding proteins have been used and recently evolved affinity proteins have

emerged as useful alternative bioreceptors (Conroy et al., 2010, Rodgers et al.,

2010). Each approach can be tailored to solving a specific challenge, for example

the use of impedance sensors to measure non-electroactive species, to which

amperometric biosensors are confined. Generic areas of ongoing biosensing

research include design of integrated systems to allow multiplexed sensing,

miniaturisation, and methods for continually improving sensitivity, selectivity and

stability (Turner, 1996). Work to date has also focussed on the development of

electrode surfaces that not only facilitate electron transfer but also provide a

structural matrix to immobilise biorecognition molecules (Millner et al., 2009).
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1.8.2 Biosensor architecture

Biosensors may be classified either by their biological recognition element e.g.

antibody, enzyme, DNA, or by their type of transducer (Vo-Dinh and Cullum, 2000).

Electrochemical transducers are the most commonly used type in biosensing

(Conroy et al., 2009). They utilise a biological event from analyte interaction with a

bioreceptor to generate or to modulate an electrical signal which is related to the

analyte concentration (Ronkainen et al., 2010). Typically a three electrode system

is used, in which current flows between the working and counter electrodes, with

respect to the reference electrode. Working electrodes are commonly noble

metals such as gold, or other conducting substances such as carbon. The complete

electrochemical cell must contain an electrolytic medium, capable of carrying the

ionic charges (Korotcenkov, 2010). In a clinical setting, this is usually the fluid in

which the analytes are found e.g. blood, urine, peritoneal fluid etc.

There are many different transducer surfaces used in biosensing to which the

bioreceptors can be tethered. Generally, these may be divided into two categories:

insulating films, and polymer matrices (Millner et al., 2009). Insulating film based

surfaces are mainly self-assembled monolayers (SAMs). SAMs consist of an ordered

layer of molecules with a functional head group with affinity for the surface

substrate, and a tail group facing into the solution. SAMs may then be modified as

mSAMs – mixed self assembled monolayers - by addition of functionalised lipids or

cross-linkers, in order to construct a platform for immobilisation. The biotin-avidin

system is one way by which this can be achieved, where tetravalent avidin is able to

link the biotinylated bioreceptor to the biotin-tagged surface. This method has

been previously been used in biosensors for detection of haemoglobin (Hays et al.,

2006).

Conducting polymer matrix surfaces are typically formed on the working electrode

surface by electro-polymerisation using cyclic voltammetry (Millner et al., 2009),
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which allows for fine control of the surface thickness. The formed polymer layer

can then be used to immobilise electrochemical mediators and/or enzymes and

other biological recognition elements by electrostatic absorption, covalent bonding,

biotin-avidin coupling, or other methods (Gerard et al., 2002). Alternatively,

proteins may be entrapped within the polymer matrix itself, although this can

reduce activity due to decreased diffusion of analyte through the polymer layer to

the redox site. Common polymers used are formed from monomers such as

pyrrole, aniline and their derivatives, as they are easily electro-polymerised at

relatively low redox potentials and have a high stability.

1.9 Biological recognition elements

The biorecognition element of a biosensor consists of a bioreceptor that is attached

to a matrix support on a transducer surface. The bioreceptor is chosen to

specifically interact with an analyte or material of interest, which leads to

transduction and signal generation (Katz and Willner, 2003). Bioreceptors are

commonly proteins such as enzymes, antibodies, cellular receptor proteins, non-

antibody binding proteins and antigens, or nucleic acids such as oligonucleotides

and DNA or RNA aptamers. The properties of the bioreceptor are of great

importance, as they essentially confer the sensitivity and specificity of the overall

biosensor (Hock et al., 2002, Conroy et al., 2009). Other important considerations

are the method of immobilisation of the bioreceptors onto the supportive matrix,

and their correct orientation, homogeneity and stability (Cosnier, 2005, Rushworth

et al., 2013).

1.9.1 Enzymes

Enzymes as bioreceptors are arguably the most common type, doubtless due to

their use in the vast market of glucose monitoring (Luong et al., 2008), although

measurement of other analytes such as cholesterol and lactate are emergent

systems, using the relevant oxidase enzymes. They are relatively easy to use and to
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attach onto transducer surfaces, confer efficient biocatalytic activity, and are very

selective, rendering them a popular option (Miscoria et al., 2006, Higson, 2012). A

native enzyme may be used in which the concentration of analyte is equal to the

enzyme substrate, or the analyte may function as an enzyme inhibitor (Pohanka

and Skladai, 2008). Affinity based sensors may also be constructed using enzymes

as labels bound to antibodies, antigens and oligonucleotides with a specific

sequence. The oxidoreductases are the most widely used family of enzymes for

electrochemical application (Ricci and Palleschi, 2005, Pohanka and Skladai, 2008)

with glucose oxidase the most common, for glucose monitoring (Wilson and Turner,

1992). Other examples of oxidase enzymes in use are glucose dehydrogenase,

lactate oxidase and dehydrogenase for lactate detection and alcohol oxidase for

ethanol. Lactate oxidase (LOx) (EC 1.13.12.4) is an FAD-dependant enzyme, readily

available from Pediococcus species (Perez and Fabregas, 2012). The FAD redox

cofactor required for the enzyme to function as a catalyst is inherent within its

structure, rendering the enzyme suitable for biosensor application as enzymes

which require external additions of cofactors typically show rate limitation. LOx is

negatively charged at neutral pH. LOx catalyses the conversion of lactate and

oxygen to pyruvate and hydrogen peroxide (H2O2), of which the hydrogen peroxide

may be detected amperometrically via an oxidative or reductive current signal

(Romero et al., 2008). The cofactor FAD is correspondingly reduced or oxidised

before regeneration (re-oxidation/reduction) for further reactions. The more

common oxidative reaction steps are shown:

Lactate + LOxox pyruvate + LOxred (1)

LOxred + O2 LOxox + H2O2 (2)

H2O2 O2 + 2e- (3)
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Fundamental problems with this direct method include interference from

electroactive substances, such as ascorbic acid (vitamin C), which undergo redox

reactions at relatively low working potentials and thus reduce the selectivity of the

biosensor. The use of mediators such as ferrocene and Prussian Blue to allow low

potential, selective detection of hydrogen peroxide and other reaction products has

since found wide use to overcome this difficulty (Wilson and Turner, 1992, Karyakin

et al., 1995). Another key limitation of enzymes as bioreceptors is the necessity for

the analyte of interest to be a substrate for an enzymatic reaction, of which the

products can then be measured at the transducer. This restricts the range of

enzyme biosensors that can be constructed.

1.9.2 Antibodies

Antibodies, or immunoglobulins, (IgG, IgM, IgA, IgE) are produced as part of the

host immune response to pathogenic organisms and toxins (Holliger and Hudson,

2005). IgG is known as the main serum antibody in mammals and is the

immunoglobulin that is almost exclusively used in clinical therapeutics. The IgG

molecule is a 150 kDa hetero-tetramer which comprises four polypeptide chains -

two light (25 kDa) and two heavy (50 kDa). These chains are linked by disulphide

bonds and non-covalent interactions. The four chains are grouped into different

domains, with two Fab and one Fc segment forming the characteristic Y shaped

configuration (Giacomelli et al., 1999). The antigen binding sites are located at the

distal arms of the Y at the variable regions, the constant region forming the rest of

the molecule. A schematic of this structure is seen in Figure 1.8. It is thus clear

that the antibody must be orientated with the Fc portion to the biosensor surface

and the Fab segments facing into the analyte in solution, to function optimally as a

biosensor.
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Figure 1.8: Schematic of IgG structure and domains.

Antibodies have been recognised for potential use as biosensor bioreceptors since

the late 1980’s (Conroy et al., 2009). These “immunosensors”, using antibody

based biorecognition, have since been developed on a multitude of transducer

surfaces to measure a wide range of analytes. A main advantage is the potential for

highly selective biosensing, as the antibody undergoes very specific high affinity

binding to the analyte of interest (Conroy et al., 2009). High selectivity is

particularly the case with monoclonal antibodies, which are derived from one B

lymphocyte cell line and so have a single epitope specificity, although these present

much higher production costs. Polyclonal antibodies originate from multiple B

lymphocyte cell lines and are more commonly used as production involves simple

immunisation of the host species, typically sheep or rabbit. Despite broader

specificity, or multiple epitope recognition, they are more tolerant to variability in

antigen structure, often display higher avidity, and are less expensive (Zourob et al.,

2008). Recombinant antibodies, genetically engineered for purpose, are finding
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increased use in immunosensor development, as they can be modified to allow

better selectivity, size, stability and easier immobilisation onto the transducer

surface (Holliger and Hudson, 2005). Strategies for ensuring correct orientation of

Fab regions for antigen binding are key to optimising immunosensor performance,

with different tethering methods and use of reduced antibody fragments (half

antibodies) being evaluated.

1.9.3 Non-antibody binding proteins

Antibody based biosensors exploit the specificity of the immunological reaction

between analyte and antibody. However, there is a potential drawback in the

clinical setting, where there may be cross reactivity with non-specific antibodies if

patients suffer or have been exposed to a similar disease, leading to false positive

results (Soledad Belluzo et al., 2011). Improved results have been shown with

recombinant antibodies, but also with the use of recombinant proteins. The fusion

of DNA sequences encoding antigenic proteins has been used to design new

epitopes for superior sensing, as well as the ability to group several of these

peptides into one molecule as a highly sensitive bioreceptor. These proteins can be

used to construct biosensors to detect antibodies themselves, target proteins,

bacteria, viruses and parasitic organisms. They are particularly advantageous in the

capacity to engineer particular functional groups onto them such as targeted

cysteines, which can facilitate orientation of the bioreceptor via thiol targeted

linkage to increase sensitivity. Non-antibody binding proteins may also reduce

costs, as they are produced by fermentation, with no requirement for an animal

host. Bacteriophages, viruses that specifically attach and infect bacteria, may also

form the biorecognition element of biosensors, with the recent advent of phage

libraries facilitating their use (Meyer and Ghosh, 2010).
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1.9.4 Nucleic acids

Genetic analysis is an area of increasing importance since the completion of the

human genome project, and has huge implications in the diagnosis and monitoring

of genetic disease as well as in detection of DNA damage and interactions. DNA

biosensors are consequently gaining considerable interest as a rapid, simple,

inexpensive method of gaining sequence-specific genetic information as compared

to standard DNA analyses (Wang, 2000). These DNA biosensors are typically based

on the use of a single stranded DNA probe immobilised onto a transducer surface,

to hybridise specifically to respective base pairs (Katz and Willner, 2003). So called

“gene chips” or DNA microarrays allow the multiplex analysis of numerous DNA

samples with efficiency and precision by immobilising multiple DNA probes for

analysis. The introduction of peptide nucleic acid, synthetic DNA in which the sugar

phosphate backbone is replaced with pseudopeptide, imparts DNA biosensors with

a high specificity up to single base mismatches, and allows greater freedom of

experimental conditions (Wang, 2000). DNA dendrimer nucleic acids as

biorecognition elements are also gaining interest, as their branching allows for

greater hybridisation to multiple complimentary strands, giving higher signal and

greater sensitivity. Advantages of nucleic acid biosensors also include relatively

simple construction and the possibility of regeneration for multiple use due to the

chemically robust nature of DNA (Millan and Mikkelsen, 1993).

1.9.5 Others

In principle, any molecule capable of recognising a target analyte may be exploited

as a bioreceptor in biosensing. Nucleic acid aptamers are DNA or RNA sequences

with three-dimensional structures first discovered in 1990, which can specifically

bind to target molecules and have immense potential for biosensor medical

diagnostics as well as applications including environmental monitoring (Song et al.,

2008). Twenty years after discovery, aptamers have been shown to bind with high

specificity to a wide range of molecules including proteins, peptides, whole cells,

drugs and amino acids. They may also be fabricated readily, are small in size and
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cost effective with superior stability (Xiao et al., 2005). Their high affinity is derived

from their ability to fold upon binding with their analyte. They are isolated in vitro

by the Systematic Evolution of Ligands by Exponential Enrichment (SELEX)

procedure, and have been dubbed “chemical antibodies” (Xu et al., 2005).

However, aptamer technology is still in evolution, with challenges to be overcome

including the limited availability of aptamer types and, as yet, poor knowledge of

optimal immobilisation techniques onto transducer surfaces.

1.10 Transducer element

The transducer element is used to convert the biological event resulting from the

interaction of the bioreceptor with analyte into a measurable signal that may then

be read at the signal display (Katz and Willner, 2003). As previously mentioned,

biosensors may be classified by their biological recognition element or by the type

of transducer used. Types of transducer include optical, electrochemical, mass-

based, thermal and piezoelectric. Electrochemical transducers are the oldest and

most commonly used.

1.10.1 Optical biosensors

Optical biosensors are advantageous due to their immunity to electromagnetic

interference, ability to sense remotely and use of multiple detection in one device

(Fan et al., 2008). There are two main types: chromophore-based detection, with

the use of fluorescent or absorbent tags, and label-free detection, with the target

analyte detected in its natural form. Label-free detection is considered superior, as

it negates the costly and time consuming tagging step which can also negatively

affect molecular interactions (Cooper, 2002). Within label free optical biosensing,

there are a number of detection methods including refractive index (RI) detection,

optical absorption and Raman spectroscopy. All of these types of optical biosensors

work on the same principle, that of measurement of analyte-bioreceptor
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interaction; for example the interaction may change the RI at the sensor surface

(Fan et al., 2008). Surface plasmon resonance (SPR) is a type of RI detection optical

biosensor that has been extensively investigated for DNA and protein bioreceptors.

Surface plasmon resonance is a means of real time detection and is sensitive, but

limited penetration confers difficulty in measurement of large molecules such as

bacteria, and currently they are not suitable for multiplexed platforms as they can

only detect one analyte. SPR equipment is also complex and costly (Homola et al.,

1999).

1.10.2 Piezoelectric biosensors

Piezoelectric, or electro-mechanical, transducers act by transforming the physical

mass of an analyte into an electrical signal (Janshoff et al., 2000). Examples include

quartz crystal microbalances (QCM), surface acoustic wave devices, and atomic

force microscopy (AFM). Quartz crystal microbalances consist of an oscillating

crystal, in which the frequency decreases in response to a change in mass at its

surface due to analyte binding (Muramatsu et al., 1987). These devices have

traditionally been used in vacuum deposition and other industrial systems, but are

gaining interest for clinical analysis with the use of biorecognition layers coated

onto the crystal. QCM-D (dispersion QCM) is a further technique used if the binding

analyte is particularly flexible or compressible. Acoustic wave sensor devices have

been used for the detection of biological and chemical entities within gas and liquid

states. The sensor surface selectively absorbs molecules of interest from within the

medium, which changes the amplitude, velocity and surface resonance of the

device, all of which may be correlated with analyte concentration (Korotcenkov,

2010). They have been shown to be highly sensitive, and are small and inexpensive

to produce. Atomic force microscopy utilises an oscillating cantilever running over

the surface of the sample which changes the characteristics of the cantilever when

in contact (Ziegler, 2004). The cantilever surface may be modified with a

bioreceptor layer as with QCM, to improve selectivity. AFM is highly sensitive, and
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has shown promise for the determination of pathogen detection, DNA analysis and

tumour marker detection (Lavrik et al., 2004).

1.11 Electrochemical biosensors

Electrochemical sensors are the largest and most developed group of biosensors,

with consequently the greatest commercial success in clinical, industrial and

environmental fields (Korotcenkov, 2010). General advantages are rapid response

times, user friendly application, low cost, and small size with the ability to be easily

miniaturised (Zelada-Guillen et al., 2013). Further classification of electrochemical

transduction may be divided into amperometric, potentiometric and impedimetric

biosensing.

1.11.1 Amperometric sensors

Amperometric biosensors function by the direct measurement of the current

produced when a constant potential is applied between two electrodes

(Korotcenkov, 2010). The current itself is usually generated by the oxidation or

reduction of electroactive species produced by the bioreceptor, commonly an

enzyme, in response to the analyte. Alternatively, the inhibition of an enzyme may

be exploited in fabrication of an amperometric biosensor (Vakurov et al., 2005).

Oxidoreductase and dehydrogenase enzymes often generate electroactive products

such as hydrogen peroxide during their catalytic cycle, and are commonly used in

amperometric sensing. An example reaction equation for lactate oxidase has

already been shown in Section 1.9.1. Glucose oxidase is the most frequently used

enzyme in amperometry, and forms the biorecognition element of any medical

glucose sensor (Wang, 2001). Advantages of amperometric biosensors are a rapid

response time for point-of-care diagnostics and excellent sensitivity. However, they

can suffer low specificity depending on the potential applied, which if high allows

other redox species, particularly in biological fluids, to contribute to the signal



Chapter 1: Introduction

produced and thus give an erroneous reading (Korotcenkov, 2010, Higson, 2012).

Amperometric biosensors are also limited in the range of analytes that may be

measured as these must be substrates for, or inhibitors of, an enzymatic reaction.

1.11.1.1 Principles of amperometry

The principles of amperometry may be considered in two parts: the mass transfer

of analyte to the electrode surface through the bulk solution electrolyte, and

electron exchange between the electroactive species and the electrode.

Manipulating each part as the rate limiting step allows different information to be

obtained e.g. using an applied potential which ensures high electron exchange so

mass transfer limits the current is useful for characterisation of complex electrode

surfaces (Bard and Faulkner, 2000). The relationship between current and time is

described using the Cottrell equation (4):

௢
஽

గ�௧

Where I = current in amps, n = number of electrons, F = Faraday constant (95,
mol-1), A = area of the electrode in cm2, C0 = initial concentration of analyte
bulk solution, D = diffusion coefficient of species, t = time in seconds

If the solution is stirred thereby removing the rate-limiting step of mass tra

and no other redox species are present, the current generated is proportio

the analyte concentration and therefore may be determined in unknown sam

The use of a rotating disc electrode for this purpose allows determination o

electron transfer rates. The measurement of current as a function of ti

termed chronoamperometry.
(4)
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The selected enzymes that commonly form part of the bioreceptor of an

amperometric biosensor confer their own individual characteristics, but share

common principles. Reactions of an enzyme with a single analyte (substrate) and

product can be expressed as equation (5) (Wang, 2006):

Where E = enzyme, S = substrate, ES = intermediate complex, P = product

The rate of a reaction catalysed by an enzyme at a known fixed concentration

given by the Michaelis-Menten equation (6):

௏೘ ��[ௌ]

௄೘ ା[ௌ]

Where Km = Michaelis-Menten constant, Vm = maximum rate of reaction
substrate concentration

Km is the substrate concentration at which the rate of the reaction is equal t

Vm. Figure 1.9 shows the relationship between these parameters. The initia

of reaction increases with substrate, until saturation (an excess of substra

which the rate can no longer increase. The plot therefore approaches its asym

(Vm) as [S] increases. For the purposes of enzyme based biosensors, the highe

and lowest Km are desirable, with low Km conferring high sensitivity (Wang, 200
(5)
(V) is
(6)
55

, S =

o half

l rate

te) at

ptote

st Vm

6).



Chapter 1: Introduction

56

Figure 1.9: Michaelis-Menten enzyme kinetics graph depicting Vm and Km.

1.11.2 Potentiometric sensors

In potentiometric biosensors the voltage produced is measured when a constant

(zero) current flows through the electrochemical cell. Ion selective electrodes are

used to measure the potential, by the use of an ion-selective membrane on the

electrode which defines the target ion measured (Korotcenkov, 2010). In a manner

similar to amperometric sensing, the turnover of analyte by enzymes immobilised

on the sensor surface gives rise to a change in concentration of a measurable ion

(typically H+ or NH4
+). Potentiometry therefore has been used for many decades for

the detection of various analytes, or ions directly, and is the basis of the modern pH

meter (Zelada-Guillen et al., 2013). Potentiometric biosensors confer excellent

selectivity, have broad dynamic ranges and are not destructive (Gerard et al., 2002).

They are inexpensive, and readily portable. Potentiometric biosensors have been

shown to be useful from a pharmaceutical perspective, to measure penicillin and

lysine (Parsajoo et al., 2012). However, they are slow acting, and suffer low

sensitivity. They may also be affected by change in pH.
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1.11.3 Impedimetric sensors

Electrochemical impedance biosensors detect changes in the electrical field due to

a change in capacitance and electron transfer resistance at the working electrode

surface arising from analyte-bioreceptor interaction. Simply put, as the

concentration of analyte increases, analyte binding to the bioreceptor increases,

and subsequently impedance across the electrode surface changes, which is

detected at the transducer. Impedance can increase or decrease depending upon

the analyte (Daniels and Pourmand, 2007). Impedance biosensors were first

described in the 1980’s, and lend themselves to the measurement of a wide range

of analytes, from small molecules to proteins and up to whole bacteria and viruses

(Berggren et al., 2001, Katz and Willner, 2003, Higson, 2012). This is one of the key

advantages of impedance sensing over other types of electrochemical transduction;

as there is no requirement for electroactive species, there are virtually no

limitations on analyte type. They have promising importance in clinical diagnostics,

pathogen detection, food quality control and environmental monitoring. Currently,

no impedance biosensor has demonstrated widespread commercial success. There

are still challenges with reproducibility, non-specific binding, and high limits of

detection in many cases (Daniels and Pourmand, 2007, Berggren et al., 2001).

However, the growing number of publications within this field shows clear

prospects for resolution of these issues, with ongoing improvements in the

technology of this rapidly developing technique.

1.11.3.1 Principles of impedance

As described, impedimetric biosensors convert the response from analyte-

bioreceptor (typically antibody) binding into a measurable impedance signal, which

is proportional to analyte concentration. Impedance is defined as the measure of

opposition that a circuit presents to the passage of current when a potential is

applied (Chang and Park, 2010). Impedance comprises elements of capacitance and

resistance. Capacitance is the ability to store charge after a potential is applied,

resistance being the opposition of the material to the flow of current. Electrodes
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can act as capacitors, with the capacitance a result of the separation of electrode

and electrolyte solution by the immobilised bioreceptor layer. This is known as the

dielectric. The dielectric may actually comprise both capacitive and resistive

components, which change upon analyte binding, giving the measurable impedance

signal. As a sinusoidal potential is applied to the system, charging of the surface

dielectric (capacitance) causes a phase shift in the signal wave of current from that

of voltage. This is shown in Figure 1.10. The ratio of the change in applied voltage

and the change in the current of an electrochemical cell is calculated as the

impedance (Daniels and Pourmand, 2007).

Figure 1.10: The phase shift of impedance. The current ( ) shifts from the
voltage ( ) due to the delay caused by charging of the surface dielectric. The
measure of this shift is the phase angle, θ. 
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The impedance may be calculated using the following equations:

௠ �

Where V = the voltage at a given time, Vm = amplitude in volts, ω = the a
frequency in rad.s-1, t = time in sec

The current, I resulting is given by:

௠ �

Where I = the current at a given time, Im = maximum current, ω = the a
frequency in rad.s-1, t = time in sec, θ = phase angle 

The measurements of impedance are complex, consisting of a real, fa

component relating to the in-phase resistance of the dielectric, Z’, a

imaginary, non-faradaic component relating to the out-of-phase capacitan

These values may be presented as a function of frequency using a Nyquis

seen in Figure 1.11. A number of important parameters can be extracted

Nyquist plots including the resistance of the solution (Rs), the charge tr

resistance (Rct), the Warburg impedance (W) and the maximum double

capacitance (Cdl) (Bard and Faulkner, 2000). Rs is the resistance of the so

arising from conductance of ions in the bulk electrolyte solution

electrochemical cell. It occurs at high frequency (to the left side of the N

plot), when the oscillation is too fast for electron transfer. This param

unaffected by analyte binding due to the use of buffered mediators. Rct

resistance at the electrode surface to electron movement across the biore

layer which occurs at low frequencies, and is changed by analyte binding. W

impedance is the frequency dependant diffusion of ions through the

electrolyte solution to the electrode interface which retards current flow. It

controlled or at least minimised by the use of an electroactive mediator s

Fe(CN6)3-/4- (ferricyanide/ferrocyanide) redox couple, which facilitates el
(7)
ngular 
(8)
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transfer (Bard and Faulkner, 2000). The double layer capacitance refers to the

capacitance of the dielectric. This phenomenon occurs when ions accumulate at a

charged electrode surface in solution, before oppositely charged ions are attracted

to form a second layer. It is also affected by analyte binding, with non-uniform

bioreceptor layers giving the Nyquist plot its distinctive semi-circular shape and

allowing Cdl prediction alongside resistive components.

Figure 1.11: Schematic of a Nyquist plot. Nyquist plot showing the real (Z’) and
imaginary (Z’’) elements of impedance. Rs (the solution resistance) and Rct (charge
transfer resistance) can be calculated from the Z’ axis interception. Cdl can be
calculated at Z’’ max. Warburg impedance is shown as custom by a 45° angle of
data at low frequencies.

The most common electrical circuit model used for fitting extracted impedance

data is Randles equivalent circuit (Randles, 1947) (Figure 1.12). This model arises

from faradaic or non-faradaic measurements. In a faradaic process, charge or

electrons are transferred across the electrode interface. Non-faradaic processes

occur when there is current flow without charge transfer, thus resulting in charge

accumulation on a capacitor. Different impedimetric biosensors will show greater
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change in the capacitative or resistance aspects of impedance. Capacititive

biosensors must comprise a complete covering of the bioreceptor layer over the

electrode to prevent electron flow through any gaps, reducing sensitivity (Gebbert

et al., 1992). Biosensors not amenable to this due to defects in, or excessive

thickness of, the insulating bioreceptor layer can be interrogated as faradaic

impedance sensors. The principal response is change in Rct, which varies depending

on thickness and polarity of the sensor surface (Malamou and Prodromidis, 2008).

Faradaic impedimetric biosensors are excellent choices for immunosensors as large

changes in analyte binding give clear shifts in the resistive component of

impedance. The use of mediators also reduces the frequency dependence of the

response.

Figure 1.12: Schematic of Randles equivalent circuit. Rs is the resistance of the
solution, Rct is the charge transfer resistance, Cdl is the charged double layer and W
is Warburg impedance.

1.11.4 Voltammetry

Voltammetric techniques involve the application of a potential (E) to an electrode

and measurement of the resulting current (I) (Kounaves, 1997). The potential may

be varied and the current measured over a period of time, thus voltammetry is

usually described as a function of these three parameters: potential, current and

time. Voltammetry is considered an active process as the application of potential
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forces electrochemical reduction or oxidation of surrounding electroactive species

at the electrode surface, changing their local concentration. Its use is extensive,

including quantitative determination of inorganic and organic substances, and

fundamental studies of redox processes, adsorption processes on surfaces, kinetics

of electron transfer and chemical reaction mechanisms (Kounaves, 1997).

Advantages include a large linear concentration range, excellent sensitivity and

simultaneous determination of multiple analytes.

Cyclic voltammetry (CV) is a widely used voltammetric method, predominantly for

the study of oxidation and reduction processes and reaction intermediates. In this

technique potential is applied at a working electrode in both forward and reverse

directions whilst current is measured. The potential can be cycled in this way

several times if required. A CV trace for a bare gold electrode in Fe(CN)6
3-/4-

showing the typical redox changes is shown in Figure 1.13.
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Figure 1.13: A single cyclic voltammetry waveform for a bare gold electrode in the
presence of Fe(CN)6

3-/4-. Scan rate is 0.1 V.s-1.

The forward scan as potential is increased produces a peak current relating to the

oxidation potential of the electrochemical species, in this case ferrocyanide. The

current degrades as the species concentration depletes at the electrode surface.

For this reversible redox couple, reversal of the applied potential then allows re-

reduction of species to give another oxidation/reduction peak potential at the

reverse polarity. The peaks are usually of a similar shape depending on the

complexity of the species. Information regarding redox processes and sensor

surface characteristics such as surface roughness can thus be obtained with CV.
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1.12 Biosensor translation to clinical practice

Since the first biosensors were described over 40 years ago, there has been

tremendous activity towards the development of biosensing devices for

applications ranging from food quality control, environmental monitoring and

clinical diagnostics and therapeutics. Biosensors particularly lend themselves to

clinical use, with 80% of all commercial biosensor devices for medical applications

as they are able to provide point-of-care measurements with no requirement for

user expertise, additional reagents or specialist equipment (Fracchiolla et al., 2013).

This is demonstrated by millions of diabetics worldwide who are able to measure

their blood glucose by themselves at home with a glucose biosensor. Biosensors

thus potentially have a role in clinics, GP surgeries, ambulances or any decentralised

setting. Within the hospital, multiple measurements are possible due to the low

cost of biosensors and ease of use, and thus a disease process may be monitored

before or after intervention (Higson, 2012).

The use of biosensors for clinical biomarkers is in its infancy, but a rapidly

expanding area of interest with huge potential. To date, biosensor technology has

been used to detect a number of biomarkers implicated in a variety of disease

processes including cancer and infectious diseases (Tothill, 2009). These may be

present in blood, urine, cerebrospinal fluid or any other biological fluid of local

relevance such as drain fluid. Protein biomarkers are the most extensively

developed group, which allow for multiple array sensors with high specificity and

sensitivity. Examples of biosensors for medical applications are therefore wide-

ranging, and include diagnostic analytes such as hormones, cardiac markers,

oncological markers, microorganisms; therapeutic analytes; and those for

monitoring and surveillance of disease; all measured by a range of biosensor

transducers (Holford et al., 2012, Wang et al., 2013, Kausaite-Minkstimiene et al.,

2009, Aboul-Enein et al., 2002, Stringer et al., 2008, O'Regan et al., 2003, Fracchiolla

et al., 2013, May et al., 2005, Yuan et al., 2012, Healy et al., 2007, Mohan et al.,

2011, Skretas and Wood, 2005, Lenigk et al., 2000). Examples of interest
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particularly relating to bowel ischaemia and abdominal sepsis are shown in Table

1.5. However despite major progress, commercial electrochemical biosensors are

currently only available for glucose, uric acid and cholesterol, with the vast majority

of sensors still at an experimental laboratory stage (Higson, 2012). Key limitations

to widespread commercial use are requirement for validation of the chosen

biomarkers; and ways to improve electrode stability, selectivity, sensitivity,

reproducibility and speed of response of the biosensor device are ongoing.
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Reference Analyte Electrode and bioreceptor Transducer Mediator
Biological
medium

Limit of detection

(Corcoles et al., 2011) Lactate, glucose

Carbon electrode
Lactate/glucose oxidase and

HRP in cellulose ester
membrane

Flow cell
amperometry

Ferrocene
Real time

animal colon
Glucose: 15 mM
Lactate: 10 mM

(Krawczyk et al., 1996) Lactate
Platinum disk electrodes

Lactate oxidase-
phenylenediamine polymer

Flow injection
amperometry

-
Human
serum

2 µM

(Yashina et al., 2010) Lactate
Carbon electrode

Lactate oxidase-sol gel
Flow injection
amperometry

Prussian
Blue

Human
venous blood

5 x 10
-7

M to 1 x 10
-3

M

(Montrose et al.,
2013)

Pro-
inflammatory

monocytes

Gold electrode
Antibody-mixed SAM

Impedance Ferrocene PBS 1000 to 30,000 cells

(Bergstrand et al.,
2008)

Isopeptides (of
fibrin)

Antibody-dextran surface
Surface plasmon

resonance
-

Human
plasma

23 nM to 186 nM

(Liu et al., 2012)
Interferon-γ, 

TNFα 
Gold electrode

Aptamer-PEG hydrogel
Voltammetry

Methylene
blue

Human
venous blood

INF-γ: 0.06 nM 
TNFα: 0.58 nM 

(Pui et al., 2013) TNFα 
Gold electrode

Antibody-mixed SAM
Impedance Ferrocene

Culture
media

1 pg.ml
-1

to 100 pg.ml
-1

(Qureshi et al., 2010) CRP, TNFα, Il-6 
Gold electrode
Antibody-SAM

Capacitative
impedance

- PBS 25 pg.ml
-1

to 25 ng.ml
-1

(Ibupoto et al., 2012) CRP
Gold coated glass

Antibody-ZnO nanotubes
Potentiometry - PBS

1 x 10
-5

mg.ml
-1

to 1 x 100
mg.ml

-1

(Bini et al., 2008) CRP
Gold electrode

RNA aptamer-biotin/Avidin
Optical - PBS 0.005 ppm

(Huang et al., 2013) TNFα, MMP-3 
Gold nanoparticles

Antibody-mixed SAM
Fibre-optic particle
plasmon resonance

-
Human

synovial fluid

TNFα: 8.22 pg.ml
-1

MMP-3: 34.3 pg.ml
-1

(PBS)
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(Carrigan et al., 2005) Il-1
Gold crystal

Antibody capture ligands-
polymer matrix

Quartz crystal
microbalance

- PBS 25 ng.ml
-1

(Shao et al., 2001) LPS
Protein A conjugate-
polymyxin B ligand

Quartz crystal
microbalance

-
Human
plasma

0.05 EU to 0.5 EU

(McCamley et al.,
2007)

LPS Glass substrate-polyimide
Quartz crystal
microbalance

- Saline 1 pg.ml
-1

to 5 mg.ml
-1

(James et al., 1996) LPS Polymyxin B ligand
Evanescent wave

fibre-optic
-

Human
plasma

10 ng.ml
-1

(Iijima et al., 2011) LPS

Carbon electrode
Ferrocene attached

polymyxin B and glucose
oxidase in BSA membrane

Amperometry Ferrocene PBS 50 ng.ml
-1

Table 1.5: Summary of sepsis biomarkers measured by biosensors to date. A literature search was performed using Science
Direct, Web of Knowledge and PubMed databases. The search terms ‘Inflammation’ and/or ‘sepsis’ and/or ‘bowel ischaemia’ and
‘biosensor’ were used as well as individual analyte names. Articles with emphasis on sepsis biomarker detection using biosensors
with an explicitly stated limit of detection were included. BSA, Bovine serum albumin; CRP, C-reactive protein; HRP, Horseradish
peroxidase; LPS, Lipopolysaccharide; MMP, Matrix metalloproteinase; PEG, Polyethylene glycol; PBS, Phosphate buffered saline;
SAM, Self assembled monolayer; TNFα, Tumour necrosis factor alpha. 
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Biosensors may be used not only “off-line”, i.e. as disposable sensors using an

external sample as in a glucose monitor, but in vivo, via an implanted sensor in situ

allowing continuous monitoring, or “on-line” with flow through an incorporated

sampling device. These present an added element for development of integrated

monitoring (Higson, 2012). Biosensor measurement of biomarkers implicated in

anastomotic leak and sepsis has the potential for more sensitive and specific

diagnosis, leading to earlier intervention and reducing patient morbidity and

mortality postoperatively.

1.13 Project aims

The overall aims of this project were twofold:

i) To identify biomarkers in abdominal fluid which correlate with

anastomotic leak and intra-abdominal sepsis.

ii) To develop amperometric and impedimetric biosensors for measurement

of the chosen biomarkers for point-of-care diagnostics.
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Chapter 2. Materials and methods

2.1 Materials

2.1.1 Inorganic materials

K3Fe(CN)6, K4Fe(CN)6·3H2O, H2O2 (35 % v/v), Na2HPO4, NaCl, KH2PO4, KOH, KCl and

FeSO4·7H2O were all purchased from BDH laboratory supplies (Poole, Dorset, UK).

H2SO4 was supplied by Merck Inc. (Hoddesdon, Hertfordshire, UK).

2-mercaptoethylamine hydrochloride was purchased from Alfa Aesar (Heysham,

Lancashire, UK). LiClO4 was obtained from Sigma-Aldrich (Poole, Dorset, UK).

2.1.2 Organic materials

Polyethyleneimine (molecular weight 750,000 Da, 50 % w/v solution), cobalt

phthalocyanine (CoPc), lactate, uric acid, acetaminophen, ascorbic acid, newborn

calf serum, dimethyl sulfoxide (DMSO), sulfosuccinimidyl 4-[N-maleimidomethyl]

cyclohexane-1-carboxylate (sulfo-SMCC) and 2-aminobenzylamine (2-ABA) were all

purchased from Sigma-Aldrich (Poole, Dorset, UK). Biotin-N-hydroxysuccimide

(biotin-NHS) was purchased from Fluka. NeutrAvidin was supplied by Pierce

Biotechnology (Rockford, USA). Ethylenediamine tetraacetic acid (EDTA),

tris(hydroxymethyl) aminomethane (Tris) and D-glucose were purchased from BDH

(Poole, Dorset, UK).

2.1.3 Enzymes

Glucose oxidase from Aspergillus niger Type X-S (GOx), and lactate oxidase from

Pediococcus sp (LOx) were bought from Sigma Aldrich (Poole, Dorset, UK) as

lyophilized powders.
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2.1.4 Antibodies

Human TNFα recombinant protein and IgG mouse anti-human TNFα antibody were 

purchased from eBioscience (Hatfield, UK). Anti-myoglobin IgG antibody was

supplied by Micropharm Ltd (Newcastle, UK). Polyclonal antibodies were raised in

rabbits against a mixture of E. coli strains (E. coli 35218, HB101, NCTC10418, DH5a,

BL21) and a single strain of Streptococcus pyogenes (S. pyogenes) using a custom

service offered by GenScript Corp. (Piscataway, New Jersey, USA).

2.1.5 Solvents and buffers

Ethanol and acetonitrile were bought from Thermo Fisher Scientific Inc. (Rockford,

USA). Other organic solvents were obtained from Sigma Aldrich (Poole, Dorset,

UK), unless otherwise stated. PBS (phosphate buffered saline) tablets were

obtained from Oxiod (Hampshire, UK). Standard PBS solution comprised 137 mM

NaCl, 2.7 mM KCl, 10 mM Na2HPO4 and 2 mM KH2PO4. Deionised water produced

by a Milli-Q reagent water system was used for all experiments.

2.1.6 Electrodes

Screen printed carbon electrodes for preliminary experiments were kindly donated

from Dr Nikolay Pchelintsev, fabricated as part of his PhD work (Pchelintsev and

Millner, 2008). Carbon DRP-150 and DRP-710 electrodes pre-impregnated with

Prussian Blue, and gold dual working electrode DRP-CX2223AT-CM electrodes were

supplied by DropSens (Llanera, Spain).

2.1.7 Commercial kits

L-lactate assay kits (colorimetric) were purchased from Abcam (Cambridge, UK).

TNFα ELISA kits (Human and Rat) were purchased from eBioscience (Hatfield, UK).  

LAL chromogenic endotoxin (LPS) quantification kits were obtained from Thermo
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Fisher Scientific Inc. (Rockford, USA). All were used as per the manufacturer’s

instructions.

2.2 Methods

2.2.1 Animal model of sepsis

2.2.1.1 Ethical approval

The project licence for the caecal ligation and puncture sepsis animal model was

granted by the Home Office on 20th August 2012 (Ref: PPL 40/3631). My personal

animal licence (Ref: PIL 40/10556) was granted on 28th June 2012, after the

required course, examination, and application were completed.

2.2.1.2 Procedure

Male Wistar rats weighing 250 g were used for all experiments, with all animals

being maintained under standard laboratory conditions. Animals were acclimatised

to the laboratory environment for at least seven days before the start of the

experiments. All animals were housed in standard temperature and humidity

controlled rooms under a 12:12 light:dark cycle, with free access to food and water

throughout the entire experimental period.

All surgical procedures were performed under the use of isofluorane general

anaesthesia and using aseptic techniques. The steps outlined are shown in Figure

2.1. With the animal in a supine position, the abdomen was shaved and cleaned

with ethanol (a). A midline laparotomy incision was made using a no. 15 scalpel

blade and then extended with scissors to 3-4 cm to gain entry into the peritoneal

cavity (b). The caecum was identified and exteriorised, and the mesentery carefully

dissected away (c). The caecum was then ligated at half the distance between the

distal pole and the base of the caecum with a 3-0 vicryl tie (d). For caecal puncture,
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a 21 gauge needle was used to perform a single through and through puncture

midway between the ligation and the tip of the caecum in a mesenteric-to-

antimesenteric direction (e). The caecum was then gently compressed to allow

extrusion of a small amount of stool, before being placed back in its normal position

within the abdomen. The peritoneum, fasciae and abdominal musculature were

closed using a mass closure technique with a continuous 4-0 vicryl suture before

clips to the skin (f). Sham (control) animals underwent the same procedure, with

the caecal ligation and puncture steps omitted (Rittirsch et al., 2009).

Figure 2.1: Illustration of the caecal ligation and puncture surgical procedure
performed. (a) Shaved and disinfected area. (b) Midline laparotomy incision. (c)
Exteriorisation of the caecum. (d) Ligation of the caecum (green line) at half the
distance between the distal pole and the base of the caecum (yellow line). (e)
Mesenteric to antimesenteric needle puncture. (f) Wound closure clips to skin.
Adapted from (Rittirsch et al., 2009)

Immediately after surgery each animal received 2.5 ml of subcutaneous warmed

normal saline for resuscitation with buprenorphine (0.05 mg.kg-1) for postoperative

analgesia, and was monitored closely in the recovery environment. Animals were
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then transferred back to separate home cages with continued monitoring until the

specified time point for sacrifice and sample collection.

2.2.1.3 Collection and storage of samples

At the specified time points the animals were sacrificed as per a Schedule 1 method

(CO2 asphyxiation before dislocation of the neck to confirm death). Re-laparotomy

was performed immediately and peritoneal lavage carried out. This consisted of

syringing 5 ml of sterile saline solution into the abdominal cavity, gently agitating

the fluid around the cavity, then redrawing the fluid back into the syringe. The fluid

was then centrifuged at 750 x g for 10 min, aliquoted, and frozen at -80 oC until use

(Hendriks et al., 2010).

2.2.2 Patient abdominal drain fluid

2.2.2.1 Ethical approval

Ethical approval from National Research Ethics Service (NRES) committee Yorkshire

and the Humber - LeedsEast (Ref: 11/H1306/5) was granted in February 2011, and

Research and Development (R&D) permission from the Leeds Teaching Hospitals

NHS Trust (Ref: GS10/9674) was granted in April 2011 for patient drain fluid sample

collection. Inclusion criteria for selection were: NHS patients undergoing elective

surgical bowel resection with anastomosis for benign or malignant disease at Leeds

Teaching Hospitals NHS Trust, aged over 18 years, capable of giving consent, and

requirement for a surgical drain at operation. Exclusion criteria were: aged < 18

years, patients who did not have a surgical drain as part of their operation,

emergency cases, and patients undergoing bowel resection for septic conditions.

Informed consent was taken from all participants after the opportunity to read a

Patient Information Sheet (Appendix 8.1). All patients were asked to sign a consent

form (Appendix 8.2) of which a copy was placed in their clinical notes and the study

records. Patient samples were collected between April 2011 and October 2012 for

a total of 69 patients.
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2.2.2.2 Collection and storage of samples

Drain fluid samples were collected intraoperatively directly after access into the

abdominal cavity. Samples were subsequently collected from the patient’s

abdominal drain bag daily at 6.00 am from post-operative day 1 until the routine

removal of the drain (as directed by the patient’s clinical team, usually 4-5 days

post-operation). A unique study number was allocated to each patient and fluid

sample, and held securely on a dedicated database. The samples were transported

to the laboratory and centrifuged at 3,000 x g for 10 min, with the supernatant

aliquoted and stored at -20 °C until use (Fouda et al., 2011). Corresponding clinical

data were collated including basic patient demographics (age and gender), adjuvant

chemo-radiotherapy, type of operation, and adverse outcomes including

anastomotic leak.

2.2.3 Electrochemical procedures

All electrochemistry experiments were performed using a three electrode system.

Screen printed carbon electrodes (SPCE) that were initially used in preliminary

experiments were a gift from Dr Nikolay Pchelintsev, fabricated as part of his PhD

work (Pchelintsev and Millner, 2008). When using these electrodes, an external

platinum rod counter electrode and a silver/silver chloride (Ag/AgCl) reference

electrode were used. The electrodes used primarily in this work were purchased

from DropSens (Llanera, Spain) and all consisted of the three electrode system

integrated into one sensing chip: DRP-710 and CX2223AT as shown in Figure 2.2,

and DRP-150. DRP-150 electrodes comprised one carbon working electrode, a

carbon counter electrode and a Ag/AgCl reference electrode. DRP-710 electrodes

comprised one carbon/Prussian Blue working electrode, a carbon counter electrode

and a Ag/AgCl reference electrode. CX2223AT electrodes consisted of dual gold

working electrodes, a gold counter electrode and a Ag/AgCl reference electrode.

For cyclic voltammetry and chronoamperometric experiments an Eco Chemie B.V

Autolab (Utrecht, Netherlands) with GPES4 software control was used, with the

current between the working and counter electrodes with respect to the reference
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electrode measured. An Eco Chemie B.V. Autolab Type III frequency response

analyser (FRA-2) was used for impedance measurements. The basic rig construction

showing the three electrode connector configuration with an integrated DropSens

electrode and supporting electrolyte is shown in Figure 2.3. All electrochemistry

work was performed at room temperature under an air atmosphere in a Faraday

cage. Where stated, mixing of the electrolyte solution was performed using a

magnetic stirrer.

Figure 2.2: DRP-710 and CX2223AT DropSens electrode designs shown with a £1
coin for scale.
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Figure 2.3: Electrochemical rig basic configuration (shown out of Faraday cage).
The three electrode connectors can be seen (red, W.E; black, C.E; blue, R.E; N.B
green, earth), with the integrated DropSens electrode immersed in electrolyte
solution.

2.2.4 Fabrication of lactate biosensors

2.2.4.1 Cobalt phthalocyanine

2.2.4.1.1 Adsorption of cobalt phthalocyanine (CoPc)

Screen printed carbon electrodes courtesy of Dr Nikolay Pchelintsev were

incubated in a saturated suspension of CoPc in a 50 °C preheated solution of 10

mg.ml-1 PEI (MW 750 kDa) in dH2O for 1 h. They were then washed in diethylene

glycol butyl ether for 3 min, before further washing in 100% ethanol for 3 min

(Pchelintsev and Millner, 2008).

2.2.4.1.2 Surface derivation with PEI

Electrodes were incubated in a diethylene glycol butyl ether solution containing 10

mg.ml-1 PEI (MW 750 kDa) in dH2O for 5 min. To allow surface derivation with PEI,

the electrodes were mounted to an electrochemical cell also containing 100 mM
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LiClO4 electrolyte, and three cyclic voltammetry scans from 0.1 V to 0.9 V at scan

rate 100 mV.s-1 were run. The modified electrodes were then rinsed in ethanol,

before incubation for 3 min in ethanol and 3 min in dH2O.

2.2.4.1.3 Immobilisation of enzyme

The electrodes were incubated in a 1 mg.ml-1 solution of lactate oxidase (LOx) in

PBS, pH 7, for 1 h. They were next rinsed briefly with water and immersed in PBS,

pH 7.0. The electrodes were incubated a further four times in PBS, pH 7.0, for

5 min duration each time.

2.2.4.1.4 Electrochemical measurements

Chrono-amperometry was performed at +0.6 V potential with respect to the

Ag/AgCl reference electrode. Sequential amounts of lactate and/or H2O2 were

spiked into PBS supporting electrolyte to test for amperometric response. Intensive

stirring was applied throughout using a magnetic stirrer.

2.2.4.2 Biotin/avidin

2.2.4.2.1 Biotinylation of enzyme

The LOx enzyme was biotinylated by adding 100 µl of 100 U.ml-1 LOx to 18 µL of

10 mg.ml-1 biotin-NHS in DMSO, and incubating at room temperature for 30 min

with agitation. The solution was added to a 30 kDa cut-off Amicon Ultra centrifugal

filter and topped up with PBS. The 30 kDa spin filter was then centrifuged at 11,000

x g for 2 min. This was repeated a minimum of three times, each with supernatant

discarded. The contents of the filter were then aliquoted and stored at -20 °C until

use.
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2.2.4.2.2 Polymerisation of electrode surface

The screen printed carbon electrodes and gold CX2223AT DropSens electrodes

were mounted to an electrochemical cell containing 10 ml of 100 mM aniline and

100 mM 2-ABA in 1 M HCl. Twenty cyclic voltammetry scans were run from 1.0 V to

0.0 V at a scan rate of 50 mV.s-1 to achieve electropolymerisation of the copolymer

P(ANI/2-ABA) upon the electrode surface.

2.2.4.2.3 Biotinylation of electrodes and addition of NeutrAvidin

Polymer-coated electrodes were incubated in a 10 mg.ml-1 biotin-NHS solution

containing 1 mg biotin, 100 µl DMSO and 400 µl PBS for 1 h at room temperature,

before rinsing with dH2O. Electrodes were then incubated with 5 µM NeutrAvidin

in PBS for 40 min at room temperature before further rinsing with dH2O.

Incubation with the biotinylated enzyme for 1 h at room temperature was then

carried out.

2.2.4.2.4 Electrochemical measurements

Chrono-amperometry was performed at +0.6 V potential. Sequential amounts of

lactate were added to PBS to assess amperometric response. Intensive stirring was

applied throughout using a magnetic stirrer.

2.2.4.3 Prussian Blue

2.2.4.3.1 Adsorption of PEI

All steps were carried out at 50 °C in closed Eppendorf tubes. The screen printed

carbon electrodes, and subsequently DRP-150 electrodes, were first washed in

100% ethanol for 3 min then rinsed with dH2O for 3 min for surface cleaning. The

electrodes were incubated in a 10 mg.ml-1 PEI (MW 750 kDa) aqueous solution for

30 min to adsorb PEI. Washing for 3 min in dH2O was then carried out in order to

wash off any weakly bound polymer, before a final rinse with dH2O. Electrodes
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were then incubated in dH2O for 5 min at room temperature (Pchelintsev et al.,

2009).

2.2.4.3.2 Synthesis of surface-confined Prussian Blue

To achieve surface PB synthesis, electrodes were first incubated in 5 mM K3Fe(CN)6,

pH 1, 100 mM KCl, for 5 min to saturate the surface bound PEI-film. Electrodes

were then quickly rinsed with 100 mM KCl, pH 1, before immersion into 5 mM

FeSO4, pH 1, 100 mM KCl, for 2 h in the dark. The electrodes were next thoroughly

washed with copious amounts of dH2O, dried under a N2 stream, and left in the

dark for 1 h.

2.2.4.3.3 Enzyme immobilisation

The modified electrodes were incubated with 1 U.µl-1 LOx in PBS, pH 7, 100 mM KCl,

for 10 min. They were then carefully rinsed with dH2O.

2.2.4.3.4 Electrochemical measurements

Chrono-amperometry was performed at 0 V. Lactate was sequentially spiked into

PBS, pH 7, 100 mM KCl to assess amperometric response. Intensive stirring was

achieved using a magnetic stirrer. The current generated after each lactate addition

was taken and used to construct calibration curves.

2.2.4.4 Prussian Blue: modified protocol

2.2.4.4.1 Adsorption of PEI

DRP-710 DropSens electrodes underwent surface cleaning in dH2O at 50 °C for 3

min. Adsorption of PEI onto the electrode surface was achieved as described in

Section 2.2.4.3.1 by incubating for 30 min in 10 mg.ml-1 PEI (MW 750 kDa) aqueous

solution at 50 °C. Electrodes were rinsed with dH2O for 3 min at 50 °C, then further
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rinsed with dH2O, and incubated in dH2O for 5 min at room temperature.

Considerable care was taken to apply reagents exclusively to the working electrode

area with no spillage onto the other integrated electrode components.

2.2.4.4.2 LOx immobilisation

The PEI modified electrodes were incubated with LOx in PBS, pH 7, 100 mM KCl at a

variety of concentrations (0.31 – 5 U) and incubation times (5 – 40 min) during

optimisation. The electrodes were immediately examined electrochemically after

being rinsed in dH2O and dried under an Ar stream.

2.2.4.4.3 Electrochemical measurements

At stages of biosensor assembly, the electrodes were characterised by cyclic

voltammetry. This was performed on electrodes in a stirred solution of 10 ml PBS,

pH 7, 100 mM KCl between -0.4 and +0.8 V at a scan rate of 100 mV.s-1.

Chronoamperometry was used to assess response to lactate. Experiments were

performed at 0 V in an electrolyte solution of 10 ml PBS, pH 7, 100 mM KCl which

was vigorously stirred throughout. Background current was allowed to stabilise

before sequential spiked injections of lactate. The current after each lactate

addition was measured and used to construct calibration curves. During

interference testing, a single addition of each potential interferent was used.

Subsequent lactate spiked experiments were performed in newborn calf serum

electrolyte at a range of dilutions in 10 ml PBS, pH 7, 100 mM KCl before drain fluid

was used.
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2.2.4.5 Drain fluid testing

An autocalibration technique was utilised, in which the current was allowed to

reach a steady state (thus generated by the lactate present in the drain fluid

sample), before sequential spiked injections of lactate. The concentration of lactate

within the original drain fluid was estimated using a kinetic model fitted to

calibration curves obtained using the buffer and newborn calf serum experiments.

2.2.4.6 Estimation of kinetic parameters and initial lactate concentration

Chronoamperometric measurements were first scaled so that minimum and

maximum values ranged from 0 to 1 using the formula (I-Imin)/(Imax-Imin) in the case

of buffer measurements. Data for each biosensor were then fitted separately using

the method of least squares to the Michaelis-Menten kinetic function, Rate= Vm

(S+S0)/[1-Km(S+S0)], where S represented the concentration and S0 was the initial

lactate concentration (set to zero in buffer case). Fitted parameters extracted

included Vm, representing the maximum rate achieved by the system and Km, the

Michaelis constant which represents the substrate concentration at which the

reaction rate is half of Vm.

To estimate the initial concentration of lactate, S0 in patient drain fluid samples,

chronoamperometric measurements were first scaled so that the maximum values

ranged up to 1. Data for each biosensor were again fitted separately using the

method of least squares to the Michaelis-Menten kinetic function, but with Vm fixed

to 1.2 to agree with the best fitted buffer biosensor. Fitted parameters therefore

included the initial lactate concentration S0, and the Michaelis constant Km adjusted

itself to account for differences in the initial current. The first six data points

provided the best estimate of initial concentration.
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2.2.5 Fabrication of E. coli biosensor

2.2.5.1 Gold electrode cleaning

To ensure a reproducible, stable sensor, the gold working electrodes on CX2223AT

electrodes were cleaned by being placed in 100% ethanol and sonicated in a water

bath for 5 min. They were then rinsed with 100% ethanol, rinsed with dH2O, and

dried under an Ar stream.

2.2.5.2 Polymerisation of electrode surface

A 25 mM solution of tyramine in methanol containing 300 mM NaOH (unless

specified) was electro-deposited onto cleaned gold electrodes by cyclic

voltammetry. This was achieved using two scans from 0 V to +1.6 V at a scan rate

of 100 mV.s-1 unless specified. The modified electrodes were then rinsed with

dH2O, before drying under an Ar stream. To equilibrate, the electrodes were

incubated in PBS for 30 min, before rinsing with dH2O and drying under an Ar

stream.

2.2.5.3 Reductive antibody cleavage

Twelve millilitres of 2-mercaptoethylamine·HCl (2-MEA) were added to 1 ml of

Ar-degassed PBS containing 10 mM EDTA, pH 7.4. Equal volumes of IgG stock (at

8.5 mg.ml-1) were added to the 2-MEA/PBS-EDTA and incubated at 37 °C for 90 min

(Hermanson, 2008). The reduced IgG was then added to an Amicon Ultra

centrifugal filter with a 100 kDa molecular weight cut-off and centrifuged at 11,000

x g for 2.5 min to filter off any remaining whole antibody present. The supernatant

(half and fragmented IgG) was then added to a 50 kDa cut-off Amicon Ultra

centrifugal filter and topped up with Ar-degassed PBS containing 10 mM EDTA, pH

7.4. The 50 kDa spin filter was then centrifuged at 11,000 x g for 2.5 min. This was

repeated a minimum of three times, each with supernatant discarded (containing

IgG fragments) and topped up with PBS-EDTA. The resulting content of the filter

was the reduced half IgG antibody which was used immediately. The presence of
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half antibody after centrifugation was confirmed by spectrophotometry and SDS-

PAGE.

2.2.5.4 Attachment of IgG onto modified electrode surface

One milligram of sulfo-SMCC was added to 50 µl DMSO to dissolve, before addition

of 450 µl of Ar-degassed PBS containing 10 mM EDTA, pH 7.4, for a 5 mM solution

of sulfo-SMCC. The electrodes were incubated with sulfo-SMCC solution for 1 h at

room temperature. The electrodes were then rinsed with dH2O and dried under an

Ar stream. The reduced IgG (as prepared in Section 2.2.5.3) was applied to the

modified electrode surface and incubated for 1 h at room temperature. The

electrodes were then again rinsed with dH2O and dried under an Ar stream. To

equilibrate, the electrodes were incubated in a plentiful volume of PBS for 10 min,

before rinsing with dH2O and drying under an Ar stream.

2.2.5.5 Electrochemical measurements

Electrodes underwent electrochemical interrogation using cyclic voltammetry and

electrochemical impedance spectroscopy (EIS) measurements. Electrodes were

characterised at construction stages by cyclic voltammetry in the redox mediator

Fe(CN6)3-/4- in PBS at pH 7.0 between -0.3 and +0.6 V at a scan rate of 50 mV.s-1. EIS

was carried out using an Eco Chemie B.V Autolab Type III frequency response

analyser (FRA-2) over a range of frequencies from 25 kHz to 0.25 Hz. The

electrolyte Fe(CN6)3-/4- in PBS at pH 7.0 was used in all EIS experiments (unless

stated). The potential was fixed at 0 V relative to the Ag/AgCl reference electrode,

with 0.01 mV amplitude. Experiments were initially performed by the addition of

increasing concentrations of analyte in PBS, incubated on the completed biosensor

surfaces for 30 min before rinsing in dH2O and drying under an Ar stream before EIS

interrogation. Subsequent testing was carried out with analyte spiked into

newborn calf serum and drain fluid, before EIS interrogation of neat drain fluid

samples. Data were plotted as Nyquist and Bode plots for analysis.
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2.2.6 Fabrication of TNFα biosensor  

2.2.6.1 Biotinylation of TNFα antibody 

To remove the sodium azide present, TNFα IgG (at 0.5 mg.ml-1) was first added to

an Amicon Ultra centrifugal filter with a 30 kDa molecular weight cut-off and

centrifuged at 11,000 x g for 2.5 min. This was repeated three times, each time

topping up with PBS. PBS was added to ensure the final volume in the filter was the

same as the starting volume i.e. 1 ml. Five hundred micrograms of biotin-NHS was

added to 100 µl DMSO to dissolve, before addition of 400 µl PBS for a 1 mg.ml-1

solution. To the antibody, 19 µl of this stock solution was then added (5:1 molar

ratio, as described in Sigma-aldrich Immunoprobe biotinylation kit) and incubated

for 1 hr at room temperature with agitation. The solution was then added to a 30

kDa cut-off Amicon Ultra centrifugal filter and centrifuged at 11,000 x g for 2.5 min.

This was repeated three times, each with the supernatant discarded and topped up

with PBS. The resulting content of the filter was the biotinylated IgG antibody

which was aliquoted and stored at 4 °C until use.

2.2.6.2 Modification of electrode surface and electrochemical measurement

Gold CX2223AT electrodes were cleaned and polymer was deposited by

electropolymerisation as described in Sections 2.2.5.1 and 2.2.5.2 respectively.

Twenty microlitres of DMSO was added to 0.1 mg of biotin-NHS to dissolve, before

addition of 80 µl of PBS for a 1 mg.ml-1 solution. The polymerised electrodes were

incubated with biotin-NHS solution for 30 min at room temperature. The

electrodes were then rinsed with dH2O and dried under an Ar stream. A stock of

NeutrAvidin was prepared at 1 mg.ml-1 in dH2O and 6 µl of this was added to 994 µl

PBS before incubation with the biotinylated electrodes for 45 min. The electrodes

were then again rinsed with dH2O and dried under an Ar stream. Specific coupling

of NeutrAvidin to biotinylated IgG was achieved with the electrodes incubated with

biotin-IgG (as prepared in Section 2.2.6.1) for 1 h. After coupling, they were rinsed

with dH2O and dried under an Ar stream. To equilibrate, the electrodes were

incubated in a plentiful volume of PBS for 10 min, before again rinsing with dH2O
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and drying under an Ar stream. Electrochemical measurements as described in

Section 2.2.5.5 were carried out.

2.2.7 Colorimetric assay

The methodology for the colorimetric assay was kindly given by Dr Timothy Gibson

of ELISHA systems Ltd. (personal communication) based on methods described in

the literature (Vojinović et al., 2004).  A working reagent of 100 mM phosphate 

buffer containing 2 U.ml-1 horseradish peroxidase (HRP), 0.4 mM 4-aminoantipyrine

(4-AAP), and 25 mM phenol-4-sulphonic acid (PSA) was mixed with 100 U.ml-1 of

lactate oxidase. The assay was performed in a 96 well plate in which 275 µl of the

working reagent was added to 25 µl serial dilutions of lactate analyte. The plate

was incubated at 25 °C for 15 mins before absorbances were read at 485 nm with a

FLUOstar OPTIMA microplate reader (BMG LABTECH, Germany).

2.2.8 Midland blotting

This technique is a novel methodology described by our group (Rushworth et al.,

2014). Polymerised electrodes were incubated with 4 mg.ml-1 biotin-NHS in PBS,

pH 7.0 for 30 min at room temperature in a moist chamber. The electrodes were

rinsed three times with dH2O. StreptAvidin-HRP was diluted to 1:1000 in PBS, pH

7.0 and applied to the modified electrodes for 30 min in the moist chamber.

Electrodes were again rinsed with dH2O. Working solutions of ECL substrate and

reagent were prepared as per the manufacturer’s instructions and added to the

electrode surface. Electrodes were then imaged using a Syngene imager. The

electrodes were rinsed with dH2O and 0.1 % (v/v) Tween-20 was applied for 5 min

to remove any non-specific binding. The electrodes were rinsed again with dH2O.

ECL was reapplied and the electrodes reimaged.
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2.2.9 Dot blotting

Analyte was applied to a nitrocellulose membrane alongside appropriate controls.

After 15 min air drying the membrane was placed into 5 % (w/v) non-fat milk

blocking buffer in 10 mM PBS containing 0.1 % (v/v) Tween-20 (PBS-Tween) and

incubated for 1 hr at room temperature with agitation. The membrane was then

washed in PBS-Tween before incubation with primary antibody in blocking buffer

overnight at 4 °C with agitation. The membrane was washed thoroughly in PBS-

Tween before three 5 min washes in PBS-Tween. HRP secondary antibody in

blocking buffer was then applied for 1 h at room temperature. The membrane was

again thoroughly washed in PBS-Tween with three subsequent 5 min washes in

PBS-Tween. A final wash in PBS without Tween was performed to remove any

traces of the detergent. ECL substrate and reagent were prepared as per the

manufacturer’s instructions and applied to the membrane, before sandwiching

between acetate slides to develop for imaging. A Syngene imager was used for

imaging.

2.2.10 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

(SDS-PAGE)

IgG antibody was reduced as described in Section 2.2.5.3 and samples at different

stages of cleavage were added to 5 x non-reducing loading dye consisting of 250

mM Tris, pH 7.6, 10 % (w/v) SDS, 50 % (v/v) glycerol, with a pinch of bromophenol

blue. The samples were loaded onto a pre-cast BioRad gel and subjected to

electrophoresis in 1 x tris-glycine running buffer at 300 V for approximately 60 min.

The gel was then stained with “Instant Blue” for 6 h with agitation, before washing

and incubating in dH2O overnight also under agitation to destain. The gel was

imaged using a Syngene imager.
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2.2.11 Scanning electron microscopy

Scanning electron microscopy (SEM) was used at different stages of biosensor

construction to observe the characteristics of each layer in order to optimise

biosensor performance. Electrodes were cut to size using a diamond knife and

placed onto an SEM stub. Carbon cement was applied to the exposed edges to

allow conduction. The electrodes were observed using a Carl Zeiss EVO© MA 15

SEM machine at the School of Process, Environmental and Materials Engineering

(University of Leeds) and a Quanta 200F (FEI) machine at the School of Biomedical

Sciences (University of Leeds).

2.2.12 Flow cytometry

Samples were added to equal amounts of 6% BSA in PBS for 30 min. After this time,

primary antibody (1:1000) and FITC-secondary antibody (1:1000) were both added

simultaneously to each sample. An alternative method was the addition of 1

mg.ml-1 propidium iodide (PI) (1:500) added to samples for 15 min. Cells were

sorted using a BD-LSRFortessaTM flow cytometer (BD biosciences) and data were

analysed using BD FACSDiva software v 3.1 (BD biosciences) available at the School

of Biomedical Sciences (University of Leeds). The population of interest was gated,

before the addition of counting beads (Invitrogen/Caltag laboratories, Life

technologies, UK) for calculation of absolute cell count.
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Chapter 3. Biomarker animal model

3.1 Introduction

As discussed in Chapter 1, a recent shift in focus for diagnosis of abdominal sepsis

has been to measure changes in molecules locally at the site of corruption, as

biomarkers of septic disease processes that are potentially more sensitive and

specific. There is a wealth of potential biomarker targets available, although few

which have been formally assessed under controlled conditions and none

translated into clinical use for this purpose. From the literature, three potential

biomarkers were chosen as representing three different time points in the

pathological time course of anastomotic leak that were feasible to be measured by

biosensors: lactate, TNFα and E. coli. This chapter describes the development and

use of a caecal ligation and puncture animal model in assessing each biomarker’s

suitability in an early diagnostic test for anastomotic leak and abdominal sepsis.

3.1.1 Lactate

Lactic acid (chemical formula CH3CH(OH)COOH) was discovered in 1780 by Swedish

chemist Carl Wilhelm Scheele who isolated it from sour milk (Holten et al., 1971). It

has two optical forms, L(+) and D(-), of which L(+) is the biological isomer present in

the human body. Its molecular weight is 90.08. The three dimensional structure of

lactic acid and its chemical formula are shown in Figure 3.1. Lactic acid is a weak

acid which partially dissociates in water to give the lactate ion (CH3CH(OH)COO-)

and H+. Under physiological conditions, the pH is higher than the threshold for

dissociation (pKa = 3.86) and therefore the majority of lactic acid in the body is

present as lactate. This charged form is unable to pass through lipid membranes,

unlike the undissociated form. The physiological level of lactate in human plasma is

typically 0.3-1.3 mM (Phypers and Pierce, 2006). The terms lactic acid and lactate
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are used somewhat interchangeably in the literature. In this work the term lactate

is used to mean L(+) lactate.

Figure 3.1: Three dimensional structure of lactic acid. Atom colours as CPK
standard (black = carbon, red = oxygen, white = hydrogen). Inset: Lactic acid shown
as chemical formula. With the loss of H+ lactic acid becomes lactate.

As discussed in Section 1.6.2, under anaerobic conditions, pyruvate cannot be

oxidised in the Krebs cycle to generate ATP for cellular energy. Instead, it

undergoes fermentation catalysed by lactate dehydrogenase to form lactic acid

(Robergs et al., 2004). This allows ATP to continue to be produced, although is a

less efficient energy cycle than oxidation of pyruvate under aerobic conditions.

Under ischaemic conditions, whether physiological and transitory as in exercise or

pathological, anaerobic metabolism dominates leading to increased lactic acid.

Raised lactate thus commonly occurs in a wide variety of clinical conditions

including multi-organ failure, cancer, drug toxicity, and sepsis which is defined as

severe sepsis at lactate levels greater than 4 mM (Nguyen et al., 2004). Sepsis may

be caused by anastomotic bowel leak, respiratory infection, pancreatitis and many

more disease processes. Lactate can therefore act as a biomarker of ischaemia for

a number of disease states.
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3.1.2 Tumour Necrosis Factor α 

Tumour necrosis factor-alpha (TNFα) is a potent pro-inflammatory cytokine 

involved in the inflammatory response of the body.  TNFα is generated as the 

precursor transmembrane-TNFα, before processing by TNFα-converting enzyme 

(TACE) to become the soluble form of TNFα (Horiuchi et al., 2010).  Soluble TNFα 

consists of 157 amino acid residues and is a homotrimer of 17 kDa cleaved

monomers arranged in a bell like shape (Locksley et al., 2001). It has a

predominantly negative charge at neutral pH as shown in Figure 3.2. The activities

of TNFα are mediated through its binding to type 1 and 2 TNFα receptors (TNF-R1 

and TNF-R2) present on the majority of nucleated cells, to stimulate apoptosis, cell

recruitment and proliferation and further cytokine production amongst others via

phosphorylation of protein kinases and activation of transcription factors

(Chowdhury and Bhat, 2009). As discussed in more detail in Sections 1.6.1 and

1.6.3, TNFα is a key pro-inflammatory mediator involved in both the physiological 

response to healing and the pathological states of SIRS and sepsis and autoimmune

inflammatory disorders such as Crohn’s disease. It is released predominantly by

macrophages, at a peak of 2 hours after challenge to LPS administration in one

study by Oliver et al (Oliver et al., 1993).  TNFα has a relatively short half life of 15-

18 min (Davies and Hagen, 1997), although in anastomotic leak has been shown to

be present in increasing concentrations for a number of days (Fouda et al., 2011,

Ugras et al., 2008, Matthiessen et al., 2007, Herwig et al., 2002). Its role in

inflammation and sepsis therefore renders TNFα a good candidate for an early 

biomarker for this application, particularly when in the local abdominal

environment to potentially augment specificity.
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Figure 3.2: Schematic structure of TNFα at pH 7.4.  Red is the inherent negative
charge and blue is positive charge. PDB ref: 3L9J (Rushworth, 2013)

3.1.3 E. coli

Escherichia coli colonise the human gastrointestinal tract shortly after birth and

remain coexistent with their host throughout life (Kaper et al., 2004). The human

GI tract contains more than 500 types of bacteria, accounting for the average 1010-

1011 cells per gram that are present in the large intestine alone. E. coli is the

predominant aerobic organism in this flora and is particularly concentrated in the

caecum and large bowel, residing in the mucus covering of the epithelial luminal

cells and being shed into the lumen to be excreted in the faeces (Tenaillon et al.,

2010). The flora of the GI tract including E. coli remains incompletely understood.

Traditionally it was considered entirely commensal, but is recently thought to be

more mutualistic, particularly with a role in inducing colonisation resistance in the

human host (Hooper and Gordon, 2001, Tenaillon et al., 2010). E. coli has a number

of serotypes, with a total population size estimated to be in the region of 1020 in the

wild. As well as commensal strains there are several highly adapted E. coli clones

with specific virulence attributes inciting a broad spectrum of disease to the host

depending on the pathotype including enteric/diarrhoeal disease, urinary tract

infection and sepsis/meningitis (Kaper et al., 2004). E. coli is therefore both a

commensal and a pathogen, dependant on the genetic serotype.
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E. coli is a rod shaped bacterium approximately 2 µm long and 0.5 µm in diameter

with a cell volume of 0.6-0.7 µm3. Some strains are motile, possessing flagella. In

common with all other types of bacteria, E. coli have a peptidoglycan cell wall which

conveys the cell’s rigidity. E. coli is a Gram-negative bacterium, characterised by

the absence of uptake of ethanol-acetic acid violet stain by the cell wall on Gram

staining due to the cell wall being thinner than that of Gram positive cells and its

presence in between inner and outer membranes. The outer membrane, consisting

of lipopolysaccarides (LPS) and phospholipids, confers to the cell an overall negative

charge. The structure of E. coli in cross section is shown in Figure 3.3.

Figure 3.3: Schematic of structure of Gram-negative E. coli showing peptidoglycan
cell wall between inner and outer membranes. Adapted from (Ahmed et al., 2014)

The peritoneal cavity, in contrast to the lumen of the gastrointestinal tract, is

entirely sterile. A breach in the bowel wall caused by perforation of an ulcer or a

cancer, or failure of healing of an anastomosis allows spillage of bowel contents

including commensal bacteria into this sterile intra-abdominal environment where

they may be measured. If unchecked, they progress to infiltration of the vascular

system leading to widespread septicaemia and systemic sepsis. Presence in the

peritoneal cavity is therefore an early sensitive finding and is a promising biomarker

of bacterial sepsis.



Chapter 3: Biomarker animal model

95

3.2 Biomarker measurement

3.2.1 Colorimetric lactate assay

To measure lactate levels in the animal samples, a colorimetric L-lactate assay kit

was sourced from Abcam (Cambridge, UK). The assay, which takes a number of

hours to perform and requires specialist equipment including a plate reader and

operator skill, briefly acts by the lactate present undergoing oxidation by lactate

dehydrogenase to generate NAD which then allows reduction of a synthetic

substrate to produce coloured formazan crystals. The colour intensity is directly

proportional to the initial lactate concentration, which is detected by

spectrophotometry at 450 nm. The sensitivity and range are cited as 0.02 mM, and

0.02 mM to 10 mM, respectively. A calibration curve for the kit using the provided

lactate standards was performed and is shown in Figure 3.4. The coefficient of

determination was 0.9905, and the coefficient of variation was 4.515%, showing the

excellent concordance of the standards to generate the linear fit with which to

calculate lactate in unknown samples.

Figure 3.4: Calibration curve with linear fitting from lactate standards in
commercial lactate colorimetric assay. Data points given as the mean values, n =
3.
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3.2.2 TNFα ELISA 

A rat specific TNF alpha ELISA Ready-SET-Go!® was sourced from eBioscience

(Hatfield, UK) for TNFα measurement in animal samples.  The ELISA acts as a 

standard antibody ELISA, by the sequential addition into a 96-well plate of an anti-

rat TNFα capture antibody, sample (containing TNFα), an anti-rat TNFα biotin 

detection antibody, Avidin-HRP and a tetramethylbenzidine (TMB) substrate, with

meticulous washing in-between each addition to prevent non-specific binding. The

intensities of the coloured product are directly proportional to the TNFα 

concentration in the samples, detected by spectrophotometry at 450nm. The kit is

readily available but is very costly, requires a number of reagents and operator skill,

and is performed over a period of three days. The sensitivity of the assay is given

by the manufacturers as 16 pg.ml-1 and the standard curve range from 16 to 2000

pg.ml-1.  A calibration curve for the kit performed using the included rat TNFα 

recombinant protein standards in triplicate is shown in Figure 3.5. The linear fit had

a coefficient of determination of 0.9993, and a coefficient of variation of 2.92%,

showing the excellent concordance of the standards and robustness of the assay.

Figure 3.5: Calibration curve with linear fitting from rat TNFα recombinant protein 
standards in commercial rat TNFα ELISA kit.  Data points given as the mean values,
n = 3.
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3.2.3 Colorimetric E. coli LPS assay

After an extensive literature search no commercial assays for measurement of E.

coli in biological samples were found suitable for purpose, particularly highlighting

the importance of development of new bacterial tests as in this work. A

colorimetric lipopolysaccaride (LPS, also known as endotoxin) assay kit was

therefore sourced and utilised, with LPS being a component of the Gram-negative

bacterial cell wall as discussed in Section 3.1.3 and therefore a surrogate marker for

E. coli. An LAL chromogenic endotoxin quantitation kit for measurement of LPS was

obtained from Thermo Fisher Scientific Inc. (Rockford, USA). The kit acts by the

presence of LPS/endotoxin catalysing the activation of a proenzyme, factor C, in

modified Limulus Amebocyte Lysate (LAL). This activated proenzyme then catalyses

the lysis of yellow coloured p-nitroaniline from the colourless synthetic peptide

substrate Ac-Ile-Glu-Ala-Arg-pNA, with the activation rate directly proportional to

the sample LPS concentration. The colour intensity is detected by

spectrophotometry at 405-410 nm. The sensitivity of the assay is given as 0.1

EU.ml-1 (approx. 0.01 ng.ml-1). A calibration curve for the assay using the included

E. coli LPS standards is shown in Figure 3.6. The linear fit had a coefficient of

determination of 0.9927, and a coefficient of variation of 6.506%, demonstrating

the good concordance of the standards to the linear standard curve for use.
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Figure 3.6: Calibration curve with linear fitting from E. coli LPS standards in
commercial LPS colorimetric assay kit. Data points given as the mean values, n = 3.

3.3 Animal model protocol

3.3.1 Refinement of protocol

3.3.1.1 Refinement part A: Sham vs. caecal ligation and puncture vs. caecal

ligation

The use of caecal ligation and puncture (CLP) as the gold-standard animal model in

sepsis research has been discussed in Chapter 1. However, its use for

measurement of sepsis biomarkers in the peritoneal cavity has so far been limited

and no definitive procedure or sampling time intervals in this context have been

determined. The initial protocol for identifying biomarkers in the abdominal

environment correlating with abdominal sepsis as a translation to humans was

therefore first optimised. Type of procedure was initially varied. Sham vs. caecal

ligation and puncture (CLP) or caecal ligation alone (CL), were examined, as

although CLP is described as the gold standard, it was considered that for peritoneal

measurement of biomarkers it may be over sensitive compared to systemic serum

measurement. Caecal ligation alone was tested as potentially representing a more

sensitive change in biomarker at the sampling times. Sampling times of 6 hours and
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24 hours were initially chosen based on the limited previous studies available and

expected peak biomarker increases, with the expectation that lactate would

increase in sepsis induced animals first at 6 hours, followed by TNFα, with E. coli

predominantly raised at 24 hours. The initial protocol tested, refinement of

protocol part A, is shown as a flow diagram in Figure 3.7. Three animals (male

Wistar rats) were used in each of the three arms of the study of sham vs. CLP vs. CL

at each of the two time points, totalling 18 animals. Three animals in each group

were considered acceptable at this refinement stage to give adequate results to

optimise the procedure without unnecessary sacrifice as discussed with the

veterinary officer overseeing the work. The protocol used throughout is given in

detail in the Methods Section 2.2.1.2.

Figure 3.7: Flow diagram of refinement of protocol part A of animal biomarker
sepsis model.

The results for lactate are shown in Figure 3.8. Figure 3.8A shows no significance

between sham and CLP or sham and CL at 6 hours sampling after procedure using a

Kruskal-Wallis statistical test with Dunn’s post test. Data are shown as lactate in

µmol calculated from the dilution of 5 ml saline peritoneal lavage used during

Refinement of
protocol part A

Sham

6 hours x3

24 hours x3

CLP

6 hours x3

24 hours x3

CL

6 hours x3

24 hours x3
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sampling. This 5 ml lavage dilution was subsequently factored into each biomarker

measurement throughout the work. Figure 3.8B shows significance between sham

and CLP at 24 hours, p = 0.0036. CL showed no significance compared to sham.

The results were unexpected as we had anticipated that lactate would be highest in

CLP or CL with most significance compared to sham animals at the earlier time

point of 6 hours compared to 24 hours. It was observed that lactate levels were

higher in all groups at 24 hours compared to 6 hours, but proportionally higher in

CLP at 24 hours than sham or CL. Lactate biomarker rise from the ischaemic insult

therefore is shown at a later time than expected, although this was still in

agreement with the scant literature on animal models measuring lactate and the

human data discussed in Chapter 1.
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at both time points however, and would be expected to reach significance

compared to sham when powered appropriately.  Interestingly TNFα levels of CLP 

animals were highest at 6 hours compared to 24 hours although this was increased

by one very large value in the CLP group at 6 hours on inspection of the raw data, as

evidenced by the large standard deviation seen. This does correlate with the

known pathophysiology of TNFα as an early released cytokine with peak rise at 2 

hours post insult in one study (Oliver et al., 1993) and with a short half life.

However studies in the literature have measured abdominal TNFα in animal models 

at varying time intervals between 2 - 72 hours with significance, and human studies

show significance of TNFα abdominal measurement from 24 hours.  Later sampling 

time points are likely to be more useful in translation to clinical practice where an

anastomotic leak is commonly diagnosed on day five and clinically useful early

measurement would demonstrate high biomarker levels on days 1-4. A trend of

increasing biomarker over this period of time would also be more clinically relevant

than a very early measurement in which biomarkers may be globally raised after an

operative insult or very variable patient to patient, not necessarily progressing to a

complication.
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Figure 3.9: TNFα results from refinement of protocol part A.  (A) TNFα at 6 hours. 
No significance between sham and CLP or CL. (B) TNFα at 24 hours.  No significance 
between sham and CLP or CL. Data are mean ± S.D for n = 3. Kruskal-Wallis with
Dunn’s post test.

E. coli was not measured at either refinement stage A or B due to the difficulty in

timely sourcing of an accurate commercial test outlined in Section 3.2.3. Based on

lactate and TNFα results, sham vs. CLP was chosen for the final protocol as CL

results for both biomarkers were only marginally higher than sham, particularly for
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TNFα.  From the provisional results the sampling time points were extended to 

greater than 24 hours as it appeared that lactate particularly may have peak

concentrations later than first expected. With the use of drains explored in

refinement of the protocol part B, multiple sampling time points would be feasible

without increasing animal numbers and this was subsequently investigated.

3.3.1.2 Refinement part B: Use of drains

The second refinement of the animal sepsis model protocol, part B, explored the

use of drains in the animals. This would allow an increased number of time points

to be sampled without the requirement for increased animal numbers to be

sacrificed and potentially give more meaningful comparison with the human drain

fluid data. A flow diagram for the refinement part B is shown in Figure 3.10.

Sampling time points were initially kept at 6 and 24 hours so direct comparison

could be made with the samples from part A, ensuring the use of drains did not

affect the results in any way. Three animals were again assigned to each group,

totalling six animals as sampling would be performed at 6 and 24 hours on the same

animals via their drains.

Figure 3.10: Flow diagram of refinement of protocol part B of animal biomarker
sepsis model.
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protocol part B
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The procedure was carried out again as described in the Methods Section 2.2.1.2,

with the addition before closure of the abdomen of a sterile Robinson’s drain

inserted through the abdominal wall into the abdominal cavity as used in humans.

The drains were tunnelled through the subcuticular tissues to exit through the

scruff of the rats to minimise biting/scratching of the drain and potential harm to

the animal. They were then sutured in place and sterile tape was placed over the

end of the drain to seal it. Initially two rats underwent drain insertion to assess

feasibility, one after CLP and one after sham. The rats tolerated the drains well,

with neither being able to access the drain position to chew or scratch it and

appearing comfortable when observed in their home cages. The drain fluid

sampling at relevant time points consisted of attaching a syringe to the drain,

lavaging the abdominal cavity with up to 5 ml sterile saline and withdrawing back

on the syringe to obtain the sample. Unfortunately both animals tolerated this

poorly and were under undue distress, even before lavage could be carried out.

The animals also appeared in pain during the attempted sampling despite the

standard analgesia being given. Logistically the drain sampling was also very

difficult and less than 0.5 ml of fluid could be obtained. For these reasons the use

of drains was abandoned with no further animals undergoing this process.

3.4 Final animal model protocol

The final optimised animal model protocol used is shown as a flow diagram in

Figure 3.11. As elucidated from the refinement in part A, sham vs. CLP was used.

Unfortunately the use of drains was abandoned from assessment in part B,

therefore the interval and number of sampling times was carefully considered to

give the relevant data required without the unnecessary sacrifice of animals. Two

sampling times were consequently chosen as 24 and 36 hours based on the

previous animal and human literature and the results from the optimisation studies

in part A. The subsequent comparison to human samples at which collection was

daily from 24 hours was also considered. To again ensure use of the minimum

number of animals required for statistically significant results, a power calculation
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was performed by the named animal facility statistician, with 20 animals calculated

as being required for each group for significance of biomarker results. Thus 80

animals in total were required for the final protocol. It should be noted that some

groups include 21 animals due to the inclusion of data from the optimisation

studies where stated.

Figure 3.11: Flow diagram of optimised final animal biomarker sepsis model.

3.4.1 Lactate biomarker

Lactate levels in the abdominal fluid of sham and CLP animals were measured using

the lactate colorimetric kit as before. Results at 24 and 36 hours are shown in

Figure 3.12. Animals are shown as individual data points, with median values

illustrated using the black line. The interrupted red line represents the cut off

values for best combined sensitivity and specificity which is discussed later in

Section 3.4.5. A Mann Whitney U non-parametric statistical test was used to

compare groups in all cases unless stated. At both 24 hours (Figure 3.12A) and 36

hours (Figure 3.12B), CLP lactate levels were significantly higher compared to sham,

with maximum significance reached for each, therefore validating lactate as a

useful biomarker in abdominal sepsis. In contrast to levels at 6 hours seen during

Final protocol
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the refinement stages, the lactate levels at 24 and 36 hours were both higher and

also relatively static, suggesting a lactate peak which continues for some time after

an ischaemic insult and sepsis, presumably as a result of the ongoing pathological

process. The difference between the sham and CLP medians at each time point is

greater at 36 hours suggesting that lactate in sepsis does increase later than

originally anticipated. The lactate level in a septic process may thus continue over

time to diverge from sham levels that are marginally raised as a result of the normal

operative insult, although as different animals were used at each time point, trends

in individuals could not be evaluated. Using the animal model, lactate is therefore

shown to be an excellent biomarker of sepsis.
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3.4.2 TNF biomarker

TNFα levels of sham and CLP animals were measured using the rat specific ELISA kit

at 24 and 36 hours. Figure 3.13 shows the results, with again median (black line)

and cut off values (interrupted red line) included. TNFα levels were significantly

higher in CLP animals compared to sham at 24 hours (Figure 3.13A) and 36 hours

(Figure 3.13B), demonstrating that TNFα as well as lactate is a good biomarker of

abdominal sepsis shown by the model. TNFα at 36 hours was of greater significance

than at 24 hours, despite the previously noted 6 hourly levels being higher. It was

noted however that the 6 hour group included one very high result from the 3

animals which increased the mean and gave a large standard deviation, and so was

unreliable to draw conclusions from. Using the powered data, TNFα appeared

more significantly raised in CLP at 36 hours than 24 hours as was previously

anticipated. There were a large number of very low TNFα values seen in both sham

and CLP groups and at both time points which again raised the hypothesis of

repeated measurements over time in an individual being more clinically meaningful

than arbitrarily at one time point, as a trend in values may then be seen to increase

from baseline.
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3.4.3 E. coli biomarker

As there was no readily available or suitable commercial kit to measure E. coli, an

LPS colorimetric kit was used with LPS a surrogate marker of E. coli, it being a

component of the Gram-negative bacterial cell wall, as discussed in Section 3.2.3.

The results of abdominal LPS measurement in sham vs. CLP animals at 24 and 36

hours are shown in Figure 3.14. Statistical tests used and data presented are as

used for lactate and TNFα. In similarity to the other biomarkers, LPS was

significantly higher in CLP compared to sham at both time points, validating its use

as a biomarker for abdominal sepsis with potential clinical translation to humans.

Greater significance was seen at 24 hours compared to 36 which was unexpected,

although only marginally greater, and the CLP median at 36 hours was higher than

that at 24 hours. Due to the difficulty in sourcing a suitable bacterial test, LPS was

not measured at 6 hours during the optimisation stages and so was not available for

comparison although based on knowledge of the pathological sepsis process,

detectable E. coli/LPS would be a late event after frank perforation enabling luminal

contents into the abdominal cavity. The time points measured are therefore likely

to be representative and are in any case both significant.
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3.4.4 Photographs of sham and CLP animal models at re-laparotomy

The biomarker results have been shown, with all three tested biomarkers showing

significance at both time points in CLP vs. sham and therefore all demonstrating

suitability as biomarkers of abdominal sepsis. Representative photographs of the

gross pathophysiological processes induced in the model are shown in Figure 3.15.

In Figure 3.15A the caecum appears healthy and normal at re-laparotomy after 36

hours in a sham model where the bowel was removed from the peritoneal cavity

and immediately replaced during operation. Figure 3.15B shows a picture of the

abdominal contents after 24 hours in a CLP animal. The caecum is clearly abnormal

and necrotic, both in the abnormal purple colour seen and a gross increase in size.

The corruption is still relatively localised however, with small bowel appearing

normal (superior to the caecum in the photograph) and no overt peritoneal cavity

pus or faecal matter. Figure 3.15C is of a CLP animal after 36 hours at re-

laparotomy. There is now evidence of gross generalised sepsis, with necrosis of the

caecum as before as well as involvement and contamination of the small bowel

with the caecum adherent to it. The images are not dissimilar to those of patients

with gross abdominal corruption (see anastomotic leak, Figure 1.2) and thus the

animal model chosen does appear to accurately represent human abdominal sepsis

in order to translate to patient data as the literature suggests.
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Figure 3.15: Photographs at re-laparotomy in animal model. (A) Sham at 36 hours,
the bowel looks normal and healthy. (B) CLP at 24 hours, the necrotic focus at the
caecum is well visualised. The small bowel appears unaffected. (C) CLP at 36 hours.
The necrotic ligated caecum is again present, which has now adhered to the small
bowel (shown detached). There is evidence of gross septic insult involving the
whole bowel.
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3.4.5 Receiver operating characteristic analysis

Receiver operating characteristic (ROC) analysis was developed in the 1950’s for

signal detection analysis in technical sciences and has since found increasing use in

the development of clinical laboratory tests (Greiner et al., 2000). ROC curves are

used as a measure of diagnostic accuracy of markers or tests either independently

or in combination, and are presented as a plot of sensitivity as the y-coordinate

versus 1-specificity or false positive rate as the x-coordinate, for each of the

possible cut off values (Zweig and Campbell, 1993). The cut off value used depends

upon the individual requirements of the test as higher cut off values lead to

decreased sensitivity but increased specificity and vice versa. The area under the

curve (AUC) is a combined measure of sensitivity and specificity. AUC is a measure

of the overall performance of a diagnostic test and is interpreted as the average

value of sensitivity for all possible values of specificity. A value of 0.5 (50%) shows

no predictive ability, with a value of 1.0 (100%) indicating perfect accuracy. There is

evidence to suggest human and non-human i.e. animal subject ROC curves are very

similar, although this is largely based on psychological studies such as memory

research (Alsop, 1998). For the purposes of this work, comparison of actual

biomarker levels in the animal model are unlikely to directly translate to human

patients, meaning data such as cut off points are not strictly useful. However, as a

comparative indicator between each biomarker and combination of biomarkers

ROC analysis has a role in demonstrating how accurate and valid each biomarker

has the potential to be in the clinical setting.

ROC curves for all three biomarkers evaluated at each of the two time points are

shown in Figure 3.16. The respective AUC values are shown for each. All the AUC

values are relatively high, showing that each biomarker at the sampling times

measured has the potential for high diagnostic accuracy in a test for sepsis. The

highest AUC value was 0.9229, shown in Figure 3.16A for lactate at 24 hours

suggesting this biomarker and time point would give the optimum discriminatory

power. Lactate at 36 hours showed the second highest AUC at 0.8975 (Figure
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3.16B), thus lactate is shown to be the most accurate biomarker overall as expected

from the previous data in Section 3.4.1. The lowest AUC was 0.7653 in TNFα at 24

hours (Figure 3.16C). This was however still moderately high and potentially useful

in clinical translation.
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Table 3.1 shows the paired optimal sensitivity and specificity (%) for each

biomarker at each time point, as well as the respective cut off values, standard

error and 95% confidence interval. Analysis of combinations of biomarkers in pairs

and as a combination of all three was also derived. Lactate alone gave the highest

specificity at both time points, 95.24% at 24 hours and 100% at 36 hours. In a

clinical application, the specificity of a diagnostic test for anastomotic leak and

sepsis would be considered more important than sensitivity as the ability to

correctly exclude patients without anastomotic leak and sepsis, and therefore not

subject them to a reoperation or intervention needlessly, is of principle concern. A

relatively low sensitivity would be acceptable as patients with initially false negative

results would be subsequently picked up on repeated testing and treated. The

highest specificity with any biomarker combination was 95% seen with lactate and

LPS at 36 hours, with moderately high sensitivity at 85%. The advancing technology

of biosensors in multi-array sensing, i.e. the ability to measure a number of

biomarkers simultaneously on one chip, lends itself to use for this type of

application.
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Table 3.1: Combined ROC curve data analysis for individual and combined
biomarkers at 24 and 36 hours. Included values are cut off values, sensitivity,
specificity, standard error and 95% confidence interval (CI).

Time

Interval
Biomarker Cut off value

Sensiti

vity (%)

Specificity

(%)
Std Error 95% CI

24 hours

Lactate >14.2 76.19 95.24 0.0929 0.580 to 0.944

TNF >4.953 76.19 76.19 0.0929 0.580 to 0.944

LPS >10.79 80.95 90.48 0.0857 0.642 to 0.978

Lactate/TNF >14.2 and >4.953 90.48 71.43 0.0641 0.779 to 1.030

Lactate/LPS >14.2 and >10.79 95.24 85.71 0.0465 0.861 to 1.043

TNF/LPS >4.953 and >10.79 90.48 66.67 0.0641 0.799 to 1.030

Lactate/TNF/LPS
>14.2, >4.953,

>14.69
95.24 61.90 0.0465 0.861 to 1.043

36 hours

Lactate >16.85 85 100 0.0779 0.697 to 1.003

TNF >27.47 75 85 0.0945 0.565 to 0.935

LPS >14.69 70 95 0.102 0.499 to 0.901

Lactate/TNF >16.85 and >27.47 85 85 0.0798 0.694 to 1.007

Lactate/LPS >16.85 and >14.69 85 95 0.0798 0.694 to 1.007

TNF/LPS >27.47 and >14.69 85 80 0.0798 0.694 to 1.007

Lactate/TNF/LPS
>16.85, >27.47,

>10.79
85 80 0.0798 0.694 to 1.007
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3.5 Discussion

The data presented in this chapter show the optimisation of an animal model of

sepsis in order to validate potential biomarkers of anastomotic leak and sepsis.

Three biomarkers were chosen from the available literature as having potential to

be raised in an anastomotic leak and sepsis pathological course at three different

time points, and with feasibility to be the target of a biosensor application; lactate,

TNFα and E. coli.

Initially, existing commercial assays to measure each of the biomarkers were

sourced. There was no suitable available assay for E. coli and therefore a kit for LPS

used as a surrogate marker to E. coli was utilised. The animal protocol used was

first optimised as there was little available data on the measurement of biomarkers

in abdominal cavity fluid in existing animal models of sepsis. The model was

therefore first optimised to sham (control) animals vs. caecal ligation and puncture

(CLP) or caecal ligation (CL) alone. Caecal ligation and puncture showed significance

in biomarkers compared to sham and so was used in the final animal model

protocol, with CL discounted. The use of drain insertion was explored in order to

increase the sampling time points without increasing animal number.

Unfortunately this was not tolerated by the animals and did not yield enough

abdominal fluid sample to be feasible. The final animal model therefore comprised

sham vs. CLP at two sampling times of 24 and 36 hours based on the previous

animal and human literature and results from the optimisation studies. Twenty

animals were required in each group as given by a power calculation. There was a

statistically significant difference between sham and CLP at each of the two time

points sampled for all of the biomarkers tested (p < 0.05). Lactate showed the most

significant differences at both 24 and 36 hours (p < 0.0001).

Receiver operating characteristic analysis was performed to assess potential

diagnostic accuracy of each biomarker, although caution in drawing conclusions in
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relation to translation to human clinical data was exercised. Area under the curve

(AUC) values were relatively high for all biomarkers (AUC > 0.7653) proving their

suitability in a diagnostic application. Lactate at 24 hours demonstrated the

greatest discriminatory power with the highest AUC value of 0.9229. Using

combined sensitivity and specificity values lactate again demonstrated the highest

specificity of 95.24% at 24 hours and 100% at 36 hours. When in combination

lactate together with LPS showed the highest specificity of 95% at 36 hours

sampling time, with retained moderately high sensitivity at 85%. All three

biomarkers tested therefore were shown using an animal model to be suitable

candidates for an early diagnostic test for anastomotic leak and sepsis.



Chapter 4: Amperometric biosensors

121

Chapter 4:

Amperometric

biosensors for the

detection of lactate



Chapter 4: Amperometric biosensors

122

Chapter 4. Amperometric biosensors for the detection of lactate

4.1 Introduction

Lactate biosensors are commonly enzymatic, and utilise immobilised lactate

dehydrogenase or lactate oxidase (LOx) (Romero et al., 2008). The oxidases are the

most widely used family of enzymes for electrochemical applications, imparting

high selectivity (Boccola et al., 2011). As previously discussed in Section 1.9.1

lactate oxidase catalyses the conversion of lactate to pyruvate and hydrogen

peroxide, of which the hydrogen peroxide product can be detected

amperometrically via an oxidative or reductive current signal (Lipska et al., 2006).

The use of amperometry is ideal for a lactate biosensor as the enzymes catalysing

the lactate reaction to form hydrogen peroxide are readily available.

The amperometric lactate biosensors fabricated in this chapter all utilised lactate

oxidase immobilised onto a polymer surface. Two distinct methods of construction

were evaluated using techniques developed for the fabrication of glucose

biosensors. The first comprised polyethyleneimine (PEI) polymer immobilised onto

a carbon electrode, before lactate oxidase was added directly via electrostatic

binding (Pchelintsev and Millner, 2008, Pchelintsev et al., 2009). Redox mediators

were added or electrodes with commercially pre-impregnated mediators were

used. This scheme is shown in Figure 4.1. The second surface was constructed

using an electro-deposited co-polymer of aniline and 2-aminobenzylamine

(P(ANI/2-ABA)) onto gold and carbon electrodes before immobilisation of

biotinylated lactate oxidase via NeutrAvidin onto biotin-functionalised pendant

amine groups of the copolymer (Figure 4.2). This chapter describes the work and

resulting data from investigations into the most favourable sensing surface for

lactate biosensors, and subsequent optimisation and validation of the chosen
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sensor in real patient drain fluid samples compared to a commercial enzyme-based

assay. Methods used for characterisation and interrogation of the biosensor

include cyclic voltammetry, chronoamperometry and colorimetric testing.
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Figure 4.1: Schematic showing immobilisation of lactate oxidase onto a PEI
polymer surface on a carbon electrode with presence of mediator. The reaction
mechanism is also shown.

Figure 4.2: Schematic showing immobilisation of biotinylated lactate oxidase onto
a biotinylated P(ANI/2-ABA) polymer surface via NeutrAvidin with a gold or
carbon electrode. The reaction mechanism is shown.
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4.2 Cobalt phthalocyanine mediated biosensors

The initial methodology used for fabrication of the lactate biosensor utilised cobalt

phthalocyanine (CoPc) mediator with immobilised PEI polymer and lactate oxidase

onto screen printed carbon electrodes. CoPc is a common mediator for the

oxidation of thiols and hydrogen peroxide, the product of interest, which acts to

reduce the working potential required by shuttling electrons to the electrode

surface, thus reducing or eliminating interfering redoxing compounds. The method

described, of surface doping of CoPc by simple adsorption rather than the standard

blending into the electrode surface layers during screen printing, has been shown

to result in lower amounts required, reducing cost and manufacturing time whilst

maintaining electrode sensitivity for measurement of glucose and acetylcholine

(Pchelintsev and Millner, 2008).

The polymer PEI was used as it has numerous secondary amine groups for binding

to the electrode surface and for enzyme immobilisation which may be covalent or

electrostatic. In this case PEI was ideal due to its strong positive charge in aqueous

solution enabling subsequent electrostatic binding of the negatively charged

(neutral pH) lactate oxidase with high avidity. Optimisation of PEI molecular weight

and adsorption time has previously been evaluated (Pchelintsev et al., 2009), as

well as a new approach described for PEI immobilisation. This used a one-step

electro-oxidative covalent coupling to the carbon electrode surface based on its

random coil structure anchoring the molecule but also leaving free amine groups

distal to the surface for further binding (Pchelintsev and Millner, 2008). Moreover,

PEI is inexpensive and readily commercially available, and screen printed carbon

electrodes also confer low cost and potential for mass production. The

methodology used describes CoPc doping of the electrode surface through simple

hydrophobic adsorption during incubation at 50 °C, before electro-polymerisation

of PEI using cyclic voltammetry and electrostatic binding of lactate oxidase to

construct the complete lactate biosensor.
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4.2.1 Cyclic voltammetry mediated electro-deposition of polymer onto the

screen printed carbon electrode

After CoPc doping, screen printed carbon electrodes were first incubated in a

diethylene glycol butyl ether solution containing 10 mg.ml-1 PEI (MW 750 kDa) in

dH2O for 5 min to allow equilibration of the PEI between the electrode surface and

the bulk solution. PEI was then covalently bound to the screen printed carbon

electrode surface using cyclic voltammetry (CV). The electrodes were mounted to

an electrochemical cell also containing 10 ml of 100 mM LiClO4 as supporting

electrolyte, and three CV scans were run from 0.1 V to 0.9 V at scan rate 100 mV.s-1.

The modified electrodes were then rinsed in ethanol, before incubation for 3 min in

ethanol and 3 min in dH2O to remove any weakly bound PEI. Figure 4.3 shows a

typical cyclic voltammogram of electro-polymerisation of PEI onto a screen printed

carbon electrode vs. an external Ag/AgCl reference electrode. The three successive

scans (Figure 4.3 a-c) show each scan cycle decreasing in current as each layer of

PEI formed on the surface sequentially reduced the charge transfer across the

electrode with surface passivation.
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Figure 4.3: Successive cyclic voltammograms showing electro-polymerisation of
PEI onto a CoPc modified screen printed carbon electrode. Scans were performed
from 0.1 V to 0.9 V at a scan rate of 100 mV.s-1 with the potential applied vs. a
Ag/AgCl reference electrode. Scans (a), (b), and (c) show the sequential decrease in
current as polymer is formed on the surface.

4.2.2 Chronoamperometric interrogation of CoPc/PEI modified biosensors

For the immobilisation of lactate oxidase, the CoPc/PEI modified electrodes were

incubated in a 1 mg.ml-1 solution in PBS, pH 7, for 1 h. They were next rinsed briefly

with dH2O and immersed in PBS, pH 7.0, before incubation a further four times in

PBS, pH 7.0, for 5 min to remove weakly bound enzyme. Once the sensors were

fully constructed, they were interrogated using chronoamperometry driven by GPES

Autolab software. A three electrode configuration was used as described in Section

2.2.3, with screen printed carbon working electrodes, and an external platinum

counter electrode and Ag/AgCl reference electrode, in a PBS electrolyte medium.

The electrodes were first interrogated with spiked additions of hydrogen peroxide

into the electrolyte in order to observe electron transfer in isolation from the

enzymatic mechanism (Figure 4.4). Lactate was then spiked into solution, to test

the system in entirety (Figure 4.5).
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Figure 4.4: Time-current plot for one CoPc/PEI modified electrode after
immobilisation of 1 mg.ml-1 LOx upon successive additions of 0.1 mM H2O2 (shown
by arrows) in PBS, pH 7. Current was measured at +0.6 V with constant stirring.
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Figure 4.5: Characteristic time-current plot for one CoPc/PEI modified electrode
after immobilisation of 1 mg.ml-1 LOx upon successive additions of 0.1 mM lactate
(red arrows) and 0.3 mM lactate (black arrows) in PBS, pH 7. Current was
measured at +0.6 V with constant stirring.

Interrogation with hydrogen peroxide additions did give appropriate corresponding

increases in current showing that electron transfer across the electrode was

occurring. However, this was generally seen to be an inconsistent, erratic response,

and was very poorly reproducible between electrodes. This is reflected in the data

shown as only single electrode measurements. Spiked additions of lactate during

interrogation did not show any amperometric response in any electrode tested.

The variability between the traces generated was also again very high and

inconsistent. To attempt to increase enzyme sensitivity, CoPc/PEI modified

electrodes were incubated with a range of lactate oxidase concentrations (1 mg.ml-

1 to 10 mg.ml-1), and interrogated with a range of lactate additions (0.1 mM to 5

mM). Figure 4.6 shows a time-current plot for an electrode incubated with 5

mg.ml-1 lactate oxidase and interrogated with spiked additions of 1 mM lactate.

There was some amperometric response as lactate was added, but not uniformly in
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order to generate a calibration curve, and not reproducibly using other electrodes.

Other electrodes tested for the ranges given gave no response (data not shown).
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Figure 4.6: Time-current plot for one CoPc/PEI modified electrode after
immobilisation of 5 mg.ml-1 LOx upon successive additions of 1 mM lactate
(shown by arrows) in PBS, pH 7. Current was measured at +0.6 V with constant
stirring.

As there had been a degree of direct amperometric response to hydrogen peroxide

it appeared that the enzyme component of the biosensor was not functioning, thus

accounting for the inconsistent and poor results with lactate interrogation. Two

hypotheses were considered. First, that the enzyme may not have bound to the

electrode during its incubation, potentially as a result of the methodology being

reliant on relatively weak electrostatic binding. Second, that the enzyme itself may

have suboptimal activity. The activity of the enzyme was believed to be the

fundamental issue to first be addressed before considering other biosensor

construction strategies using LOx as the same problems would occur. Therefore, to

first determine viability of the lactate oxidase enzyme, a colorimetric assay was

performed in order to test LOx function in isolation from the electrical components

of the system.
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4.3 Colorimetric assay to test activity of lactate oxidase

The colorimetric assay methodology used to test functionality of lactate oxidase

was kindly provided by Dr Timothy Gibson of ELISHA systems Ltd. (personal

communication) based on methods described in the literature (Vojinović et al., 

2004). The protocol was followed as described in the Methods section. Hydrogen

peroxide generated by oxidation of lactate catalysed by lactate oxidase was

reduced by horseradish peroxidase (HRP) which subsequently co-oxidised 4-

aminoantipyrine (4-AAP) and phenol-4-sulphonic acid (PSA) producing strongly

coloured quinone-imine dye. The colour intensity was directly proportional to the

initial lactate concentration, which was detected by spectrophotometry at 485 nm.

Using this application the viability and activity of the lactate oxidase enzyme in

isolation was assessed.

Figure 4.7 shows the lactate calibration curve for the colorimetric assay using

lactate oxidase. The data showed excellent linear fit and reproducibility between

tests. From these results it was concluded that there was adequate activity of the

lactate oxidase enzyme, at least when in isolation from the biosensor system. The

poor success of the CoPc/PEI/LOx lactate biosensor in response to lactate was thus

potentially due to weak binding of the enzyme to the working electrode.

Therefore, other methodologies for immobilisation of the enzyme that featured

stronger binding techniques were next considered.
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Figure 4.7: Calibration curve from the colorimetric assay for detection of lactate
using lactate oxidase in the presence of HRP, 4-AAP, and PSA. Linear fitting of
mean ± S.D (n = 10) with ( ) linear regression line of best fit.

4.4 Biotin-Avidin constructed biosensors

Avidin is a glycoprotein found in its native form in egg white. It is tetrameric, with

four identical subunits with which to bind biotin with high affinity and specificity.

The dissociation constant (Kd) is in the order of 10-15 M, and thus is one of the

strongest protein-ligand non-covalent bonds known to date (Wilchek et al., 2006).

Synthetic avidin is available as modified forms of native avidin, such as NeutrAvidin

which is a deglycosylated version and shows reduced non-specific binding. Since its

discovery in the 1970’s, the biotin-avidin complex has been exploited in many

biological applications (Kresge et al., 2004, Guesdon et al., 1979). Developments

including the ability to biotinylate antibodies and other surfaces has consequently

rendered it an important method of immobilisation for biotechnological

applications (Wilchek et al., 1986).
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A biotin-avidin system was therefore employed to improve the enzyme

immobilisation step in sensor construction, as enzyme immobilisation to the

electrode surface would be more definitive. As shown in Figure 4.2, both the

enzyme and the electrode surface were biotinylated before NeutrAvidin was

applied to the sensor surface to bind both biotin molecules, thus forming a robust

organised layer. The electrode surface was first coated with a conducting co-

polymer of aniline and 2-aminobenzylamine (P(ANI/2-ABA)) using CV, to permit

subsequent binding of NHS-biotin to the free pendant amine groups. This

technique has previously been used in the Millner laboratory for construction of

impedance immunosensors and reviewed for use with amperometric biosensors

(Millner et al., 2009).

4.4.1 Cyclic voltammetry mediated electro-deposition of copolymer onto

gold and screen printed carbon electrodes

A 1:1 monomer mix of aniline and 2-ABA was made to a concentration of 100 mM

each in 1 M HCl. This was electro-polymerised onto screen printed carbon

electrodes and custom-made gold CX2223AT DropSens electrodes using CV in which

20 scans were run from 1.0 V to 0.0 V at a scan rate of 50 mV.s-1. Both gold and

carbon electrodes were tested for comparison using this method. Gold DropSens

electrodes were employed additionally as these had previously been used to

generate sensors successfully using biotin-NeutrAvidin tethering methodology

(Caygill, 2012). The screen printed carbon electrodes were again used in

combination with external platinum counter and Ag/AgCl reference electrodes. The

DropSens electrodes contain integrated gold counter and Ag/AgCl reference

electrodes.

Figure 4.8 presents cyclic voltammograms for electro-polymerisation of polyaniline

onto gold (Figure 4.8A), and carbon (Figure 4.8B), showing electrodes over 20

cycles (overlaid). The distinctive patterns reflected the different working electrode
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materials onto which the polymer was layered, although common to both was the

clear increase in conductivity of the surface as each cycle of potential was applied

and the polymer layer increased. This is characteristic of polyaniline, a so called

‘conducting’ polymer, as these polymers are able to form electroactive species by

the presence of partially filled molecular orbitals overlapping to allow free electron

movement through their matrix (Gerard et al., 2002). In Figure 4.8A, the gold

electrode shows the monomers deposit in three oxidative states (at approx 0.25,

0.5, 0.8 V) and one reduced state (approx 0.55 V). In Figure 4.8B, the screen

printed carbon electrode is more complex with three oxidative states at

approximately 0.3, 0.6, 0.9 V and two reduction states at approx 0 and 0.4 V. Due

to carbon being a comparably poorer conductor than gold the peaks were seen to

be wider and achieved much lower currents overall.



Chapter 4: Amperometric biosensors

135

0.0 0.2 0.4 0.6 0.8 1.0

-1500

-1000

-500

0

500

1000

I
/

A

E / V

A

10 scans

20 scans

0.0 0.2 0.4 0.6 0.8 1.0

-200

-100

0

100

200

300

20 scans

I
/

A

E / V

B

10 scans

Figure 4.8: Cyclic voltammograms showing electro-polymerisation of P(ANI/2-
ABA) copolymer onto (A) bare gold electrode (B) screen printed carbon electrode.
Scans were performed from 1.0 V to 0.0 V at a scan rate of 50 mV.s-1 with the
potential applied vs. a Ag/AgCl reference electrode. Scans 10 and 20 are indicated
to demonstrate the increased conductivity as the polymer is formed on the surface.
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4.4.2 Chronoamperometric interrogation of biotin-avidin modified

biosensors

The modified electrodes were biotinylated by incubation in a 10 mg.ml-1 biotin-NHS

solution for 1 h. Electrodes were then incubated with 5 µM NeutrAvidin in PBS for

40 min ready for enzyme immobilisation. Lactate oxidase was first biotinylated

with 10 mg.ml-1 biotin-NHS for 30 min, before unbound biotin was removed by the

use of 30 KDa cut-off Amicon Ultra centrifugal filtration as described in the

Methods section. Incubation with the biotinylated enzyme onto the electrode

surface for 1 h at room temperature was then carried out for complete sensor

construction. Chronoamperometry was used to interrogate electrodes with

sequential spiked additions of lactate into PBS electrolyte at +0.6 V. Figure 4.9

shows amperometric responses on modified gold (A) and screen printed carbon

electrodes (B) respectively.
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Figure 4.9: Time-current plots of P(ANI/2-ABA)/biotin-avidin modified electrodes
for (A) gold electrode (B) carbon electrode. 0.1 mM lactate was added sequentially
(shown by arrows). The current was measured at +0.6 V and pH 7 with constant
stirring.
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There was some response of both gold and carbon electrodes to lactate additions,

more so seen with gold, but not of a uniform, consistent nature in order to produce

calibration curves. Neither gold nor carbon electrodes gave any reproducibility,

with repeats of each (not shown) showing lesser or no response at all to lactate.

Hypotheses for inability to produce an appropriate response to lactate were loss of

enzyme during the biotinylation process, denaturation or deactivation of enzyme

during biotinylation or when immobilised on the electrode surface, enzyme not

bound to the sensor surface, or poor electron transfer across the electrode due to

the polymer layer although this copolymer surface has been successful with other

bioreceptors as discussed (Caygill, 2012). To attempt to elucidate a potential cause,

the modified electrodes were incubated with reagents from the colorimetric assay

and lactate (Section 4.3). This did not show a colour change; therefore the enzyme

initially appeared to be inactive on the electrode surface. However, biotinylated

enzyme in solution was then added to the colorimetric reagents and lactate and

also did not demonstrate a colour change, suggesting that the enzyme was

deactivated by the biotinylation methodology, or lost during filtration removal of

unbound biotin. To test the conducting system in isolation, modified electrodes

were interrogated with spiked additions of hydrogen peroxide (Figure 4.10).
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Figure 4.10: Time-current plot of one P(ANI/2-ABA)/biotin-avidin modified gold
electrode upon successive additions of 0.1 mM H2O2 (red arrows) and 0.2 mM
H2O2 (black arrows) in PBS, pH 7. Current was measured at +0.6 V with constant
stirring.

There was virtually no response seen with repeated testing and when using

modified screen printed carbon electrodes. It was therefore clear that there was

also a direct problem with electrical conduction using this fabrication method as

well as an issue with enzyme inactivation during biotinylation. An alternative

method of immobilisation of enzyme and biosensor construction was therefore

sought.

4.5 Prussian Blue mediated biosensors

The use of Prussian Blue (PB) as a mediator to allow low potential, selective

detection of hydrogen peroxide has found wide use in the biosensor field since it

was first described by Karyakin in 1995 (Rullier et al., 1998). A dense redox active

layer is usually prepared by electrochemically depositing Prussian Blue on an

electrode surface. Crucially it is the reduction of hydrogen peroxide, rather than its
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more common oxidation, as with CoPc mediator, that is measured at the PB sensor.

The reduction of hydrogen peroxide can be detected at potentials below 0 V,

therefore allowing the high specificity and sensitivity to be retained, as interfering

redox reactions are avoided (Nesbakken et al., 2001, Ricci and Palleschi, 2005).

Electrochemical synthesis of PB on electrode surfaces is now well established (Vo-

Dinh and Cullum, 2000, Conroy et al., 2009, Rullier et al., 1998), but this strategy

suffers from several disadvantages including high expense due to complex

fabrication methods, and difficulty in further layer formation for deposition of

enzymes. Recent interest has been in development of PB chemical synthesis

without the costly requirement for an electrochemical step, and to provide an

activated surface for facilitation of subsequent enzyme immobilisation. Methods

include carbon ink doping (O'Halloran et al., 2001), adsorption of PB polymer (Zhao

et al., 2005) and dendrimer supported PB synthesis (Bustos et al., 2005). A novel

methodology for the non-electrochemical synthesis of PB on the surface of screen

printed carbon electrodes which can be followed by electrostatic immobilisation of

enzymes was recently described by our group (Pchelintsev et al., 2009). In this

work the anion-exchange properties of the PEI polymerised surface were exploited

in simultaneous Prussian Blue and glucose oxidase deposition for glucose

measurement.

To construct lactate biosensors using PEI and PB as a mediator, PEI polymer was

first immobilised on the surface of screen printed carbon electrodes by simple

absorption during incubation in a 10 mg.ml-1 PEI (MW 750,000 Da) aqueous

solution for 30 min. After incubation the electrodes were washed in dH2O to

remove any weakly bound polymer. Prussian Blue was then formed by incubation

with 5 mM K3Fe(CN)6, pH 1, 100 mM KCl to bind ferrocyanide anions within the film,

before further condensation with Fe (III) cations from FeSO4, pH 1, 100 mM KCl to

form PB crystals on the sensor surface. Importantly this methodology allowed the

PEI positive charge to become partially restored during PB synthesis, allowing
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electrostatic binding of lactate oxidase in a further incubation step for complete

fabrication of the sensor before amperometric interrogation.

4.5.1 Chronoamperometric response of PEI/PB modified biosensors to

H2O2

To first test the conducting system independently of the enzyme, the biosensors

were interrogated with spiked additions of hydrogen peroxide into a 10 ml PBS, pH

7, 100 mM KCl supporting electrolyte medium. A typical plot is seen in Figure

4.11A. It can be seen that there was a uniform response of increase in current upon

each successive addition of H2O2, showing that the electrical components of the

biosensor were functioning. Of note, the current is shown as becoming increasingly

more negative as the hydrogen peroxide is reduced, not oxidised, as facilitated by

the Prussian Blue mediator. Figure 4.11B shows a respective calibration curve

generated from calculating the average of each current step. The results show

good linear correlation, and are entirely consistent with work shown previously

(Pchelintsev et al., 2009).
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Figure 4.11: Plots from PEI/PB modified SPCE after immobilisation of 1 U.ml-1 LOx.
(A) Time-current plot of successive additions of 0.02 mM H2O2 (shown by arrows) in
PBS, 100 mM KCl. The current was measured at 0 V with constant stirring. (B)
Respective lactate calibration curve for H2O2 additions with linear fitting, n = 1.



Chapter 4: Amperometric biosensors

143

4.5.2 Chronoamperometric interrogation of PEI/PB modified biosensors

As there was initial success with a uniform response seen to H2O2, PEI/PB modified

screen printed carbon electrodes were then interrogated with additions of lactate

spiked into 10 ml PBS, pH 7, 100 mM KCl. As shown in Figure 4.12A, the PEI/PB

modified biosensors were successfully able to show a response to lactate by

measurement of the reduction of H2O2. Repeated SPCE were then interrogated,

and a calibration curve for a series of four electrodes was produced, seen in Figure

4.12B. However, the SPCE’s proved to be very variable, with only approximately

40% of electrodes tested yielding a response to lactate. Despite normalisation of

data, the electrodes included in the calibration curve also showed large variation in

standard deviation; therefore if a modified electrode was able to show a response

to lactate, it was not in a uniform, reproducible way and so would not be suitable

for the anticipated diagnostic use in a commercial application.
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Figure 4.12: Plots from PEI/PB modified SPCE after immobilisation of 1 U.µl-1 LOx.
(A) Time-current plot of successive additions of 0.2 mM lactate as shown by the
arrows. The current was measured at 0 V with constant stirring. (B) Respective
lactate calibration curve for PEI/PB modified electrodes. Points are mean ± S.D. for
n = 4
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4.5.3 Optimisation of enzyme immobilisation onto PEI/PB modified

biosensors

Despite the observed sensor-to-sensor variability, attempts were made to optimise

the biosensor fabrication methodology specifically for lactate oxidase enzyme to try

to improve sensitivity, by testing at different enzyme concentrations, and for

different incubation times on the electrode surface. Calibration curves for each of

these parameters tested respectively are shown in Figure 4.13. A 1 U.µl-1 enzyme

concentration appeared to give the most linear calibration curve, as did the

shortest incubation time of 10 minutes. However these results were irreproducible

between electrodes with only n = 1 thus produced for each parameter tested, and

therefore the results could not be considered meaningful. A fundamental issue

with the biosensor construction to yield such lack of response (in the majority of

biosensors interrogated) or at best show poor reproducibility between electrodes

was considered. Since the same methodology using glucose oxidase to measure

glucose had previously been successful, the electrodes themselves were examined

in more detail. The screen printed carbon electrodes that had been donated were

unfortunately in suboptimal condition, with the majority scratched including over

the working electrode surface as they had been stored poorly. This was felt to be a

principal reason for the variability seen when interrogating the sensors, and for the

inability to construct biosensors that showed a response to lactate in all cases.

Alternative carbon electrodes were therefore sourced. Commercial gold electrodes

from DropSens had previously been used by our group (Caygill et al., 2012).

DropSens DRP-150 carbon electrodes were subsequently purchased for further

work.
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Figure 4.13: Lactate calibration curves for PEI/PB modified SPCEs in response to
spiked additions of 0.2 mM lactate after immobilisation at a range of (A), LOx
concentrations and (B), LOx incubation times. In (A), LOx concentrations were: (a)
1 U.µl-1, (b) 0.5 U.µl-1, (c) 0.1 U.µl-1. In (B), LOx incubation durations were: (a) 10
min, (b) 20 min, (c) 30 min, (d) 60 min.
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4.5.4 Chronoamperometric interrogation of DropSens carbon electrodes

DRP-150 carbon electrodes purchased from DropSens were tested using the same

fabrication methodology as in Section 4.5 onto the new electrode surface. These

commercial electrodes consist of carbon working and counter electrodes and a

Ag/AgCl reference electrode. Gold working electrode variants of these electrodes

had been successfully used by our group in the construction of impedimetric viral

detection biosensors (Caygill et al., 2012). In particular the electrodes were found

to improve reproducibility in the previous studies, as the integrated three electrode

system onto one transducer base negated the variation found in positioning of the

working and external counter and reference electrodes. Figure 4.14 shows a typical

time-current plot for a PEI/PB modified DRP-150 DropSens electrode with spiked

additions of lactate.
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Figure 4.14: Time-current plot for one PEI/PB modified DRP-150 electrode upon
successive additions of 0.1 mM lactate (shown by arrows) in PBS, pH 7, 100 mM
KCl. Current was measured at 0 V with constant stirring.

The increase in current in response to spiked lactate additions was clearly seen and

this was reproducible in 100% of the electrodes tested, confirming that the poor
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quality of the screen printed carbon electrodes was almost certainly the reason for

the variability in their function seen previously. However, the response with

DropSens electrodes, although reproducible, gave the characteristic appearance of

current decreasing after the initial rise that can be seen after each lactate addition.

There also appeared a general saturation effect after approximately four additions

of 0.1 mM lactate in which there was still a modest increase in current, but in which

it persistently drifted towards the baseline. This appearance was seen in all of the

electrodes interrogated, and was also seen when biosensors fabricated with

glucose oxidase were tested with additions of glucose, and therefore was not

specific to lactate oxidase (data not shown). It was hypothesised that the DropSens

electrode surface may have conferred different characteristics to that of the SCPE’s

and have lead to incomplete formation of Prussian Blue during fabrication. The

absence or minimal amount of PB mediator would account for the initial increase in

current seen in response to lactate, which was then unable to be sustained as

electron transfer was reduced and therefore the rate limiting step. To investigate

this further, SEM was performed on DRP-150 electrodes to characterise the

electrode surface at different stages of sensor construction.

4.5.5 SEM to characterise the surface of DropSens carbon electrodes at

stages of PEI/PB biosensor construction

Scanning electron microscopy was performed using a Zeiss EVO© MA 15 SEM at the

School of Process, Environmental and Materials Engineering, University of Leeds, to

assess the sensor surface at stages of construction. Figure 4.15 shows the

roughness of the bare DropSens electrode surface (A), which continued to be very

irregular after polymer deposition (B). It was therefore unlikely that Prussian Blue

crystals would have been able to form evenly on this surface to act as a mediator,

accounting for the decrease in current seen after each initial response to lactate

additions in Figure 4.14. In view of this, DropSens carbon electrodes with pre-

impregnated Prussian Blue (DRP-710) were purchased and were used throughout
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the rest of the work in this chapter, since reproducibility was more likely to be

found resulting from DropSens’ own quality control.

Figure 4.15: Scanning electron microscopy images. (A) bare DRP-150 carbon
electrode, (B) after incubation with 10 mg.ml-1 PEI (MW 750,000 Da) for 30 min.
Scale bars are 1µm (A) and 20µm (B).

4.6 Adapted Prussian Blue mediated sensor construction

4.6.1 Cyclic voltammetry of DRP-710 biosensor construction and analyte

detection

First, bare DRP-710 DropSens electrodes were interrogated with cyclic voltammetry

in 10 ml PBS, pH 7, 100 mM KCl at a range of scan speeds, the results of which are

shown in Figure 4.16. Similar characteristic peaks were seen with each scan speed

trace, with a cathodic, or positive, current observed at approximately 0.4-0.2 V due

to the reduction of species leading to increase in current and electron transfer rate.

As the redox species was reduced at the electrode surface, its concentration

reduced to zero. According to Fick’s first law of diffusion, this leads to a diffusion

gradient from the electrode surface extending into the bulk electrolyte solution and

the mass transfer of species becomes the rate limiting step, with subsequent

cathodic current peak decrease. The current thus approaches a new equilibrium

plateau until the voltage is reversed. On reversal of voltage there is a second peak
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as species are re-oxidised, yielding an anodic current. Again, the redox species

depletes in concentration at the electrode surface, limiting peak negative current

on return to the original potential. The peak currents are seen to be higher on

increasing the scan rate, as at faster voltage scan rates the charge passed per unit

time is greater, hence an increase in current, whilst the total amount of charge

remains the same. This effect is described by the Randles-Sevcik equation.
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Figure 4.16: Cyclic voltammetry of bare DRP-710 PB carbon electrodes in in 10 ml
PBS, pH 7, 100 mM KCl at a range of scan rates. (a) 100 mV.s-1, (b) 50 mV.s-1, (c) 20
mV.s-1, (d) 10 mV.s-1.

Cyclic voltammetry was then performed on bare DRP-710 DropSens carbon

electrodes, after modification with PEI, and after further modification with lactate

oxidase as described in the methodology Section 2.2.4.4 to show changes in surface

characteristics. The resulting cyclic voltammograms are shown in Figure 4.17.

Characteristic differences in oxidation and reduction peaks demonstrated the

altered electrochemical properties of the electrode as layers were added to the

biosensor surface. Small redox peaks at 0.18 V and 0.07 V observed at the bare

carbon electrode (a) were almost certainly attributable to the oxidation and

reduction of printing ink contaminants within the carbon electrode surface from
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the commercial fabrication process. After the PEI polymer layer was deposited on

the electrode, two larger (477% and 620% compared to those in trace (a)) redox

peaks were seen, showing the increased conductivity attributable to the polymer

(b). When LOx was added, the redox peaks were then decreased by 26% and 28%

respectively, in (c). This was likely to be due to the insulating effect of the enzyme.

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-200

-150

-100

-50

0

50

100

150

200

I
/

A

E / V

(a)

(b)

(c)

Figure 4.17: Cyclic voltammograms of PEI/LOx modified DRP-710 PB electrodes at
stages of construction. Overlay data are: (a) bare DRP-710 electrode, (b) modified
with PEI electrode, (c) modified with PEI and LOx electrode. All interrogations were
performed in PBS, pH 7, 100 mM KCl, at 100 mV.s-1

Figure 4.18 shows the cyclic voltammograms recorded for the fully constructed

biosensor in PBS, pH 7, 100 mM KCl, without lactate (1), and with 10 successive

additions of 0.1 mM lactate at each cycle (2-11). The oxidation peak current (at

approx 0.3 V) was sequentially increased with each addition, pertaining to the

production of hydrogen peroxide from the enzymatic reaction as outlined

previously. The reduction peaks (at approx 0.16 V) also increased each time lactate

was added; indicating the hydrogen peroxide product then underwent

electrocatalytic reduction as mediated by Prussian Blue. Thus biosensors fabricated

onto pre-impregnated PB DropSens DRP-710 electrodes were shown to respond to
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lactate additions in a reproducible uniform manner using cyclic voltammetry before

chronoamperometric interrogation.
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Figure 4.18: Cyclic voltammograms of one PEI/LOx modified DRP-710 PB electrode
in response to sequential additions of 0.1 mM lactate in PBS, pH 7, 100 mM KCl, at
100 mV.s-1. Data show: 1) without lactate, and 2) - 11) upon lactate additions.

4.6.2 Chronoamperometry of DRP-710 pre-impregnated Prussian Blue

carbon electrodes

Chronoamperometry was used to interrogate modified PEI/LOx DRP-710

electrodes. In these experiments, a constant potential of 0 V was applied before

sequential additions of 0.2 mM lactate were added to 10 ml PBS, pH 7, 100 mM KCl

supporting electrolyte. Figure 4.19 shows the typical chronoamperometric

response of a modified electrode in which lactate was added at regular intervals.

The corresponding change in current at each lactate addition is clearly seen as a

uniform, stepwise increase. In contrast to the SPCE’s this was again entirely

reproducible in every electrode tested, but unlike the DropSens DRP-150 electrodes

the current was maintained until the following spiked lactate addition without
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drifting towards the baseline. The PB mediator component of the biosensor was

thus functioning, facilitating electron transfer across the electrode from reduction

of H2O2, and avoiding the rate limitation and current drift previously seen with the

DRP-150 electrodes.
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Figure 4.19: Characteristic time-current plot for one PEI/LOx modified DRP-710 PB
electrode upon successive additions of 0.2 mM lactate (shown by arrows) in PBS,
pH 7, 100 mM KCl. Current measured at 0 V with constant stirring.

Figure 4.20 shows the consequent calibration curve for a series of 5 electrodes

(mean ± standard deviation). The initial linear range demonstrated good

reproducibility and obeyed Michaelis-Menten enzymatic kinetics as shown in Figure

4.20 (inset). However, as electrodes reached saturation, there was greater

variability between electrodes, and the enzyme kinetic model was less well adhered

to. It has been suggested that the apparent Km value of immobilised LOx may be

increased by the formation of multiple layers of enzyme with polymer or chitosan

onto electrodes (Pchelintsev et al., 2009). Overall, an 85% reproducibility over the

linear range was achieved for biosensors manually fabricated in the laboratory.

Ultimately for a commercial clinical application, automated manufacturing methods

such as the use of a biomolecule compatible printer e.g. Biodot, will be utilised for
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biosensor construction to greatly decrease variability between electrodes and

adhere to the European requirements for POC medical devices (Caygill et al., 2012).
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Figure 4.20: Lactate calibration curve for PEI/LOx modified DRP-710 PB electrodes
(mean ± S.D. for n = 5). Inset: Derived Lineweaver-Burk plot of lactate calibration
data.

4.6.3 Optimisation of enzyme immobilisation

The use of Prussian Blue to catalyse hydrogen peroxide reduction for oxidase

enzyme based sensors, as well as the use of a PEI scaffold, has largely been

evaluated using glucose oxidase as this is a common model enzyme for any

amperometric biosensor development due to its high stability and importance of

natural substrate (Ricci and Palleschi, 2005, Pchelintsev et al., 2009). To ensure

optimal activity of the working biosensor with immobilised lactate oxidase, the
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chronoamperometric response after varying the concentrations of enzyme used

and enzyme incubation times was assessed. In Figure 4.21, the effect of varying the

concentration of LOx (0.31 – 5 U) during preparation is shown. At the highest (5 U)

and lowest (0.31 U) concentrations, the chronoamperometric response was

distinctly inferior to that with mid range concentrations (2.5 U, 1.25 U, 0.63 U). It

was hypothesised that at high concentrations, a dense enzyme layer was formed

which impeded electron transfer to the electrode. Low concentrations, in contrast,

may be insufficient to drive the reaction to full capacity with optimal Km. The three

mid range concentrations were comparable in response, therefore the middle value

was considered optimal and used in all subsequent experiments.
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Figure 4.21: Lactate calibration curves for PEI/LOx modified DRP-710 PB
electrodes after immobilisation at a range of LOx concentrations. Data show
concentrations at: (a) 5 U, (b) 2.5 U, (c) 1.25 U, (d) 0.63 U, (e) 0.31 U. Sequential
additions of 0.2 mM lactate into PBS, pH 7, 100 mM KCl were used throughout,
current measured at 0 V with constant stirring.

The length of time LOx was incubated on the working electrode surface before

rinsing and interrogation was also evaluated and the results are shown in Figure

4.22. An increasing length of time appeared to enhance the chronoamperometric
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response, until 40 min when the response began to decline. At 5 min duration this

was particularly apparent, with the poor response seen potentially as a result of too

little enzyme available for immobilisation. The optimal LOx parameters for the

biosensor methodology were therefore determined to be 1.25 U per electrode for

20 min immobilisation, and were used in all successive experiments.
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Figure 4.22: Lactate calibration curves for PEI/LOx modified DRP-710 PB
electrodes after immobilisation at a range of LOx incubation times. Data show
incubation times of: (a) 5 min, (b) 10 min, (c) 20 min, (d) 40 min. Sequential
additions of 0.2 mM lactate into PBS, pH 7, 100 mM KCl were used throughout,
current measured at 0 V with constant stirring.

4.6.4 Interference testing

The ability of Prussian Blue mediator to allow detection of hydrogen peroxide by its

reduction at 0 V is fundamental, as it may avoid, or at least greatly reduce, the

common problem of electrochemical interferences in which at higher potentials

other compounds undergo redox reactions and add to current signal. The

chronoamperometric response of the biosensor to successive additions of 0.2 mM

lactate and potential interferents into a stirred solution of 10 ml PBS, pH 7, 100 mM

KCl is shown in Figure 4.23. Lactate response was lesser at (f) than (a) due to the
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approaching lactate substrate saturation of the LOx enzyme as seen in Figure 4.19.

Ascorbic acid, a common interferent present in blood, produced some response (b),

which was 9.6% of the response seen with an equivalent lactate concentration. The

physiological level of ascorbic acid in blood is 50-200 μM, therefore only the upper 

threshold meeting the concentration tested (Halliwell and Gutteridge, 1990). Uric

acid, acetaminophen (paracetamol) and glucose, which may also be found within

human blood samples, showed no observable change in current at points (c), (d)

and (e) respectively. The biosensor therefore showed high selectivity, which is of

great importance for translation into use with clinical samples such as blood.
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Figure 4.23: Effect from possible interferents in lactate biosensors. A time-current
plot obtained at a PEI/LOx modified DRP-710 PB electrode after additions of 0.2
mM of each analyte: (a) and (f) lactate, (b) ascorbic acid, (c) uric acid, (d)
acetaminophen, (e) glucose; as shown. Current measured at 0 V with constant
stirring.

4.6.5 Testing in newborn calf serum

Newborn calf serum was used as an intermediary to testing on patient drain fluid in

order to ascertain dilutions yielding measurable signal, since it was likely that large

proteins or other components of drain fluid may interfere with the enzyme or
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overall biosensor performance. Chronoamperometric interrogation of different

dilutions (10, 20, 30, 40%) of newborn calf serum in PBS, pH 7, 100 mM KCl was

conducted at PEI/LOx modified DropSens DRP-710 PB electrodes by applying a

potential of 0 V and spiking with sequential additions of lactate as before. All

solutions were vigorously stirred in all experiments. Overlay results of the

calibration curves generated are shown in Figure 4.24. All of the newborn calf

serum dilutions generated currents that were at least 83% smaller that those

obtained at electrodes placed in 100% PBS, pH 7, 100 mM KCl. This was

hypothesised to have been due to the increased viscosity of the serum impeding

mass transport and electron transfer or non-specific binding of serum proteins to

the electrode masking access to the enzyme active sites. It can be seen that at 10%

(v/v) serum the signal was greatest, with a large decrease in current at a higher

concentration of 20% (v/v) serum. Dilutions of 30% (v/v) and 40% (v/v) sera gave

very low signals, indistinguishable from background. Therefore all patient drain

fluid samples were diluted to 10% with PBS, pH 7, 100 mM KCl before being tested

and analysed.
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Figure 4.24: Lactate calibration curves for PEI/LOx modified DRP-710 PB
electrodes in a range of dilutions of newborn calf serum in PBS, pH 7, 100 mM KCl.
Data show newborn calf serum concentrations at: a) 10%, b) 20%, c) 30%, d) 40%.
Sequential additions of 0.2 mM and 1 mM lactate were used throughout, current
measured at 0 V with constant stirring.

4.6.6 Testing in patient drain fluid samples

A ten patient cohort was chosen from the drain fluid samples collected as described

in Section 2.2.2, of which five patients underwent an uneventful post operative

course and five patients suffered an anastomotic leak (AL). Groups were matched

for basic patient demographics e.g. age, gender, type of operation, chemo-

radiotherapy etc. As discussed in the Methods section the samples were collected

intraoperatively, and from the patient’s abdominal drain bag daily at 6.00 am from

post-operative day one until the routine removal of the drain. Samples were then

transported to the laboratory and centrifuged at 3,000 x g for 10 min, with the

supernatant aliquoted and stored at -20 °C until use.
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4.6.6.1 Commercial lactate kit results

To validate the fabricated lactate biosensor results on patient drain fluid samples,

the samples were first tested using the commercial kit used for the animal samples

(Section 3.2.1). The drain fluid samples of all ten patients for each post-operative

day (POD) were tested in triplicate with the commercial colorimetric kit. The mean

value of each triplicate was then used to calculate the lactate level for that sample

using the standard calibration curve (also shown in Chapter 3). It should be noted

that all patients had a post-operative day one sample, but on subsequent days this

was not the case as drains were removed on differing days. The sample range for

the patient cohort was day zero to day seven. The mean ± standard deviation

lactate level results for each post-operative day in AL and non-AL patients are

shown in Figure 4.25.
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Figure 4.25: Commercial colorimetric lactate kit tested on patient samples. Data
are mean ± S.D. of the five AL patients’ (red) and the five non-AL patients’ (blue)
drain fluid samples on each post-operative day (POD).

It can be seen that the lactate levels were very variable between the AL and non-AL

groups in all post-operative days. There was no statistical difference between

groups in any post-operative day using a non-parametric statistical test (Mann
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Whitney U). Reasons that the patient results did not show a clear statistically

significant increase in lactate in AL compared to non-AL as in the animal model

work (see Chapter 3) were thought in part to be attributable to the small sample

sizes tested. The leak rate for AL is approximately 10%, therefore only a small

number of anastomotic leak samples were able to be collected in the given time

frame and tested, a total of five AL patients out of 69. The standard deviation of

the results is also shown to be very large, showing the wide variation in lactate

between individual patients. This is highlighted further in Figure 4.26. This raises

the hypothesis that measurement of an individual patients’ lactate trend over time

may be more important than an arbitrary cut off value, although it is not possible to

show here with the small dataset used. Future work with larger multicentre data

sets is required. Biosensors lend themselves to serial testing due to low cost and

simple POC use.

It was also hypothesised that the collection methodology of taking room

temperature drain fluid from the sampling bag at 24 hour intervals was suboptimal,

and samples were not therefore representative of lactate levels in the abdomen.

Studies have shown that in as little as 30 minutes lactate levels in blood at room

temperature vary due to ongoing glycolytic pathways (Seymour et al., 2011). This

has future implications for the commercial development of sampling devices to the

biosensors such as the use of microdialysis catheters to deliver “fresh” samples to

an external biosensing component at the bedside and immediate refrigeration to

reduce sample degradation.
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Figure 4.26: Plots of individual patients’ drain fluid lactate levels as measured by
the commercial colorimetric kit. Again AL patients are represented in red, non-AL
in blue.

4.6.6.2 Osmolarity testing

As the drain fluid samples were so variable in viscosity and colour despite

centrifugation, attempts to standardise them included measurement of osmolarity

which was carried out by the pathology laboratory at the Leeds Teaching Hospitals

NHS Trust. A table of osmolarity results for each post-operative day one sample is

shown in Table 4.1. The osmolarity values differed little between samples and so

further standardisation tests were not pursued. For proof of concept for validation

of the constructed biosensors however, the drain fluid samples were still of use.
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Table 4.1: Table showing the osmolarity of each patient drain fluid sample.
Patients 1-5 are AL, patients 6-10 non-AL

Patient sample
Osmolarity

(Osmol.kg-1)

1 291

2 294

3 283

4 277

5 290

6 290

7 242

8 288

9 285

10 278

4.6.7 Drain fluid testing using biosensors

Drain fluid samples from post-operative day one were tested using the fabricated

lactate biosensors, as each patient had a sample from this day, and the literature

suggests ischaemic biomarker changes are present this early in the anastomotic

leak pathophysiological process (Pedersen et al., 2009b). An auto calibration

technique was used, in which each stirred 10% diluted patient sample was

interrogated by chronoamperometry at 0 V with spiked additions of lactate added

as previously. However, the current was allowed to reach a steady state for longer

than with buffer and serum samples before spiked lactate additions, this being the

current generated by the lactate inherently present in the sample. Figure 4.27

shows a typical data set. Each patient sample was interrogated in triplicate as

shown by the overlaid data in Figure 4.27A. The data were then normalised in

order to construct calibration curves as shown in Figure 4.27B. The calibration

curves show the excellent reproducibility between the electrodes tested in

triplicate for each sample but were not otherwise useful, as normalising the data in

this case deducts the current generated by the lactate within the sample, not a

baseline to zero the background noise. Mathematical modelling was used to derive

the lactate level in each patient sample, as described below.
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Figure 4.27: Plots from PEI/LOx modified DRP-710 PB electrodes in patient drain
fluid samples. (A) Overlay of triplicate time-current plots for upon successive
additions of 0.2 mM lactate in 10% drain fluid in PBS, pH 7, 100 mM KCl. Current
measured at 0 V with constant stirring. (B) Respective normalised lactate calibration
curve. Points are mean ± S.D. for n = 3.



Chapter 4: Amperometric biosensors

165

4.6.8 Mathematical modelling of biosensor results in drain fluid

As outlined in Section 2.2.4.6 recorded drain fluid sample currents were fitted by

the method of least squares to Michaelis-Menten enzyme kinetics, where the initial

amount of lactate was a free parameter. Vmax was fixed to agree with the results of

buffer and serum experiments (Vmax = 1.2). The resulting values of Km and S0 (initial

lactate concentration) are shown in Table 4.2. Data were adjusted for the 10 fold

dilution to give the true value of lactate in each sample.

Table 4.2: Resulting Km and S0 of each patient drain fluid sample tested with
lactate biosensors. Data fitting was by the method of least squares to Michaelis-
Menten enzyme kinetics, with Vmax fixed to agree with buffer and serum
experimental results.

Patient sample Km S0 (mM)

1 4.79 6.83

2 4.40 8.17

3 4.49 7.14

4 3.98 6.78

5 4.86 11.85

6 5.44 18.24

7 4.89 13.96

8 3.99 8.32

9 3.06 2.86

10 4.86 6.77

4.6.9 Comparison of constructed lactate biosensor results to results of

commercial colorimetric kit

Figure 4.28 shows the biosensor results vs. the commercial colorimetric kit results

for the cohort of ten samples, with intercept set to 0. The biosensor standard

deviations were larger than those of the kit, illustrating the greater variability

between manually constructed biosensors compared to a commercially produced

kit. Biosensor results were on average 49% higher than kit results, thought to be

due to the possibility of interference. A Spearman's rank order statistical test was
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performed to determine the relationship between the patient samples as measured

by the biosensor and commercial kit. There was a strong, positive correlation

between the biosensor and commercial kit results for each patient, which was

statistically significant (rs = 0.891, p = 0.001). The constructed biosensor therefore

was shown to be validated and working in real time clinical samples. In the

literature as discussed in Section 1.6.2, Pedersen et al found statistically significant

increases in lactate in patients who developed anastomotic leak (7 mM), compared

to those with an uneventful post operative course (3 mM) (Pedersen et al., 2009b).

The fabricated lactate biosensor is capable of showing this difference. A Bland-

Altman plot was also created using the same data to show the differences between

measurements from each of the biosensor and commercial kit, as a function of the

average of the two measurements of each sample. The resulting plot is shown in

Figure 4.28 (inset). The bias was relatively high at 3.089, showing some

discrepancies between the two methods. However the 95% limits of agreement

were narrow, and show the biosensor results were consistently higher than those

of the commercial kit as already discussed, accounting in some part for the degree

of bias seen. The differences observed between results from each method were

lowest at the middle range lactate values. The lactate biosensor is therefore

already potentially clinically applicable, as a non-invasive, promising method for

early detection of anastomotic leak.
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Figure 4.28: Biosensor results vs. commercial kit results (mean ± S.D., n = 3) of all
ten patient drain fluid samples. Linear fitting with intercept = 0. Inset: Bland-
Altman plot of the same data. Average bias was 3.089, with 95% limits of
agreement shown by the red dotted lines (-3.379 to 9.557).

The biosensor vs. commercial kit patient lactate results were divided into those

from the AL group and those from the non-AL group, shown in Figure 4.29.

Interestingly, the AL group (A) consisted of the samples yielding the middle range

lactate results, and showed excellent linear concordance. The non-AL group (B)

results consisted of outliers at extremes of high and low lactate levels and showed

much poorer concordance between the biosensor and the kit. The error bars were
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significantly larger for this group. Despite the small sample size and therefore

difficulty in drawing conclusions from comparing the groups, it was thought that

patients without anastomotic leak may have very variable amounts of lactate

compared to those who suffer an anastomotic leak, which in the samples tested

consistently showed raised levels of lactate. As previously mentioned, this may

indicate that the trend in an individual patient’s lactate levels is more important

than a single arbitrary value. The immediate collection of samples from the locality

of the anastomosis, as opposed to collection from drain bags containing up to 24 hr

old fluid is also paramount, via a flow cell sampling device delivery to external

biosensors at the bedside or other methods which would yield more accurate real-

time results as a continuation of this work.
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: Biosensor results vs. colorimetric kit results (mean ± SD, n = 3) of
in fluid samples. Shown separately as AL group (A) and non-AL group

y = 1.797x
R² = 0.5911
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4.7 Discussion

In this chapter, initial methodologies applied to lactate biosensor testing were

largely unsuccessful, or inconsistent and unable to generate calibration curves. The

first methodology tested utilised CoPc as a mediator, with PEI polymer allowing

electrostatic binding of lactate oxidase to the screen printed carbon working

electrode surface. The methodology had previously been reported successfully

using glucose oxidase by our group. Poor results, however, were obtained during

chronoamperometric interrogation of the sensor, despite attempts to optimise the

methodology by varying enzyme and lactate concentrations. The time-current plots

generated using hydrogen peroxide spiked into buffer were marginally superior to

those using lactate, suggesting a problem with enzyme activity, and/or with binding

of the enzyme to the electrode surface. A colorimetric assay was therefore used to

assess activity of the lactate oxidase enzyme in isolation. This data demonstrated

excellent linear response of the enzyme in the range 0 to 25 mM lactate.

Consequently, a methodology incorporating a biotin/avidin system was next chosen

for testing, in order to ensure adequate tethering of the enzyme to the electrode.

This methodology however proved again largely unsuccessful on gold and carbon

electrodes. Biotinylated enzyme in solution and on the constructed sensor surface

was subjected to the same colorimetric assay reagents used previously, to assess

whether the enzyme was still viable and active. No colour change response in

either case indicated that the enzyme had been denatured or deactivated during

biotinylation, accounting for the lack of response during chronoamperometric

interrogation. A poor electrochemical response was also noted with hydrogen

peroxide spiked additions, therefore the methodology failed from both enzymic and

electrical system components.

A simple adsorption methodology for biosensor construction previously developed

by our group was then evaluated, utilising Prussian Blue mediator formed onto a

PEI polymer surface on screen printed carbon electrodes. An excellent response to

chronoamperometric interrogation with spiked H2O2 was initially seen, with a
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calibration curve generated entirely consistent with the published work from

predecessors. Response to lactate additions likewise proved successful, although

with only approximately 40% of the screen printed carbon electrodes yielding a

response and with large variation seen between electrodes, despite attempts to

optimise LOx concentration and incubation duration. Due to the poor quality of the

stored SPCE’s a commercial electrode alternative was sourced. The DropSens

electrodes purchased incorporated a three electrode system onto one transducer

base which was thought to also omit the variation seen when positioning the

external counter and reference electrodes in proximity to the working electrode,

and the positioning of the working electrode itself. The initial DropSens electrodes

interrogated, DRP-150, showed excellent, reproducible response to lactate.

However the current was subsequently seen to fall quickly after each lactate

addition, hypothesised to be due to incomplete formation of Prussian Blue during

fabrication. SEM was performed on bare DRP-150 electrodes and after PEI

deposition to characterise the surface. Both surfaces were shown to be very rough,

and it was unlikely that the Prussian Blue mediator was being formed correctly.

DRP-710 electrodes with pre-impregnated Prussian Blue were subsequently used in

experimental work. Cyclic voltammetry was initially utilised to characterise the

biosensor at different stages of construction. Modified DRP-710 electrodes

subsequently showed excellent, reproducible response to lactate in a uniform

stepwise fashion in accordance with Michaelis-Menten enzyme kinetics, allowing

calibration curves to be generated. Optimisation using a variety of enzyme

concentrations and incubation times was achieved and testing with common

interferents present in biological samples demonstrated the high selectivity of the

constructed sensor in buffer. Chronoamperometric interrogation in newborn calf

serum was subsequently used as an intermediary to determine required dilutions,

before testing on patient abdominal drain fluid samples. Compared to buffer, NCS

was found to yield much lower signal overall. This was likely to be due to the

presence of large proteins inhibiting mass diffusion to the surface and blocking

enzyme active sites. A 10% dilution was found to yield greatest signal, which by

fortuitous advantage was the dilution at which the samples were within the linear

range of the biosensor.
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Ten patient drain fluid samples were selected for testing from the cohort collected;

five patients whom had a normal uncomplicated post-operative course and five

patients who suffered an anastomotic leak. Samples were first tested using a

commercial colorimetric kit, in order to then validate the biosensor results. The

lactate levels measured by the kit between AL and non-AL groups in all post-

operative days were very variable, with no statistical difference between groups in

any post-operative day using a Mann Whitney U non-parametric statistical test, in

contrast to results seen in Chapter 3 in the animal model. This was felt to be

predominantly due to the small sample size as well as variability in samples

although attempts to standardise the samples including measurement of osmolarity

were not useful. Use of the drain fluid results was still however valid as a proof of

principle for the constructed lactate biosensor.

Biosensors were constructed and tested on post-operative day one drain fluid

samples using an autocalibration technique, with mathematical modelling of results

based on parameters elicited during initial buffer and NCS experiments. Results

were generated using the method of least squares to give biosensor results for each

patient sample. Biosensor results were compared with those of the commercial kit,

and were found to be significantly similar using a Spearman’s rank correlation, rs =

0.891, P = 0.001. Interestingly the five AL results were shown to have consistently

high lactate levels and showed excellent concordance between the biosensor and

kit. The non-AL results consisted of high and low outliers and showed poor

correlation, raising the hypothesis that in practice an individual patient’s lactate

trend may be more useful than one arbitrary value. The fabricated biosensor is

however shown to work in real patient samples, as an initial proof of concept

diagnostic test. Lactate biosensors in the literature are well described, but there

appear to be none with evidence of authentication using real-life patient samples.

The work in this chapter has produced a robust lactate biosensor validated on real

patient drain fluid samples as a potentially valuable clinical test for monitoring
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ischaemia for sensitive, early detection of anastomotic leak and sepsis (Hirst et al.,

2013). Future work involves the testing of larger patient data sets to determine

sampling accuracy and unequivocally show statistically higher lactate levels in AL

patients vs. non-AL as shown in the animal model. Attainment of superior

reproducibility with commercial fabrication methods such as via Biodot robotic

printing should also be investigated in order to decrease electrode to electrode

variability for POC testing. Stability testing is first paramount before proceeding to

any commercial clinical application.
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Chapter 5. Impedimetric biosensors

5.1 Introduction

5.1.1 E. coli biosensor design

Strategies for the measurement of bacteria by biosensors have previously included

targeting a variety of surface antigens on the membrane of whole bacteria such as

LPS, peptidoglycan and glycoprotein to act as biorecognition elements (Ahmed et

al., 2014). Measurement of whole bacteria is most commonly accomplished in

biosensing by using polyclonal antibodies as bioreceptors; this has the advantage of

higher sensitivity as false negatives are lower due to the greater range of antigen

recognition and a positive result. Monoclonal antibodies increase specificity, but

this is less relevant for the detection of anastomotic leak, where any bacterial type

or E. coli strain present in the peritoneal cavity should yield a positive result to

prompt further investigation and management.

Impedimetric immunosensors were fabricated for whole E. coli using custom-made

IgG antibodies (Genscript, USA). A mixture of common GI commensals was kindly

donated by Mr John Wright, Senior Biomedical Scientist, School of Molecular and

Cell Biology, University of Leeds for use as analyte and for antibody manufacture.

These comprised E. coli strains 35218, HB101, NCTC10418, DH5a, and BL21 which

were used in a mixed solution. The protocols chosen were based on methods

previously developed to successfully construct impedance biosensors using IgG

bioreceptors to detect virus and protein (Caygill et al., 2012, Billah et al., 2010).

After optimisation, the E. coli biosensors were all constructed as seen in the

schematic in Figure 5.1. Reduced half antibody was bound to polytyramine

polymer coated gold electrodes using sulfo-SMCC cross linker as shown. The

functional amine groups on polytyramine allowed cross-linking to available -SH
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groups of reduced antibody after heavy chain cleavage at the hinge region by the

mild reductant 2-MEA for optimal analyte recognition.

Figure 5.1: Schematic showing immobilisation of reduced E. coli IgG onto a
polytyramine polymer surface via a sulfo-SMCC crosslinker. Schematic is not to
scale, and IgG may be orientated other than shown.

5.1.2 TNFα biosensor design 

Human TNFα recombinant protein and IgG mouse anti-human TNFα antibody were 

both purchased from eBioscience (Hatfield, UK). The necessity for collection in live

animal models renders the availability of TNFα and its antibody difficult and only in 

small concentrations and volumes. It was anticipated that the methodology of

reductive antibody cleavage with 2-MEA and subsequent removal of remaining 2-

MEA by centrifugal filtration used with E. coli immunosensor construction would

decrease the concentration of TNFα antibody to below a feasible working level on 

the sensor surface. The concentration of E. coli antibody using this method
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decreased by approximately 400 fold. The use of biotinylated whole antibody

bound via NeutrAvidin to a biotin-tagged amine group of polytyramine on gold

electrodes had previously been used with some success to detect viruses (Caygill,

2012), and negates the requirement for filtration and subsequent dilution. The

smaller size of TNFα analyte compared to whole bacteria and virus also lends itself 

to binding to whole antibody without encountering problems with spacing and

orientation.  A schematic of the methodology used for construction of TNFα 

immunosensors is shown in Figure 5.2.

Figure 5.2: Schematic showing immobilisation of TNFα IgG onto a polytyramine 
polymer surface via biotin-NeutrAvidin. Schematic is not to scale, and IgG may be
orientated other than shown.

This chapter describes polymer optimisation and subsequent construction of

immunosensors for E. coli and TNFα detection using half and whole antibodies 
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respectively. Optimisation of each sensor was achieved in buffered solutions

before validation in patient drain fluid samples as used in Chapter 4 in comparison

to commercial methodologies. Cyclic voltammetry, electrochemical impedance

spectroscopy (EIS), Midland blotting, SDS-PAGE, SEM, dotblotting and flow

cytometry were used to characterise the individual sensors and their components.

5.2 Optimisation of polymer deposition onto gold DropSens

electrodes

5.2.1 Cyclic voltammetry mediated electro-polymerisation of an array of

polymers

Traditionally polymers are well known for their insulating properties. Recently, a

range of conducting polymers has emerged and gained popularity in biosensing due

to properties of rapid electron transfer and ability to immobilise biomolecules as

bioreceptors for specific analyte detection. Conducting polymers are so named as

they allow free movement of electrons through their lattice structure due to the

formation of electroactive species from the overlap of partially filled molecular

orbitals. These polymers include polyaniline, used in preliminary experiments to

develop amperometric lactate biosensors in Chapter 4. Cyclic voltammetry is

commonly used for synthesis of conducting polymers on surfaces due to its

simplicity, reproducibility and ability to take place at room temperature (Gerard et

al., 2002, Ates, 2013). Formation of a polymer layer occurs by oxidative coupling,

with monomers of the polymer becoming oxidised to form a cation radical followed

by coupling to form di-cations. The cyclic repetition of this process forms a polymer

layer on the electrode surface, the thickness of which is then finely controlled by

variation of current with time or potential.

The choice of polymer for immunosensor construction was first considered, before

testing the chosen range of polymers in different supporting media and varying the
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potential at CV. Polyaniline was previously not successful in preliminary

experiments developing amperometric lactate sensors and was used with variable

success in other projects (personal communication). Tyramine however, has been

found to be an ideal monomer as it can be electro-polymerised onto an electrode

surface, to which bioreceptor can then be immobilised via a crosslinker through

free amino groups on the polymer surface. Although a poorly conducting polymer,

its assembly occurs in a similar way to that of conducting polymers, with monomer

oxidation and formation of a cation radical and dimerisation to form a smooth

oligomeric polytyramine film. Importantly, the layer formed is self-limiting and

typically only 10-100 nm thick, therefore allowing efficient diffusion (Ismail and

Adeloju, 2010). Advantages also cited for non or poorly conducting polymers are

reduced interference and reduced fouling at the electrode surface. Tyramine has

been used in amperometric sensing (Situmorang et al., 1998) and has been shown

to successfully immobilise IgG in immunosensor construction for glucose detection

(Tsuji et al., 1990). It has recently been shown to be a promising scaffold for

immunosensing projects and so was used for initial experimental testing (Ahmed et

al., 2013). The dissolving solution with each of two forms of tyramine (tyramine

and tyramine hydrochloride) was varied as this was inconsistent in the literature,

with tyramine showing poor solubility into aqueous solutions. A 3:1 mix of

tyramine:phloretic acid was also tested. Phloretic acid (3-(4-

hydroxyphenyl)propanoic acid) possesses no amino groups for subsequent

bioreceptor attachment but was included in the mixture with tyramine to

potentially reduce non-specific binding. Polytyramine has a positive charge in

solution, and as mentioned both E. coli and TNFα are negatively charged.  

Therefore, non-specific binding may be of particular concern with immunosensors

for these analytes. Phloretic acid conveys a negative charge which would

potentially negate this effect. The range of potential scanned was also a varying

parameter. Figure 5.3 shows the overlaid cyclic voltammograms for each polymer

electro-deposition after cleaning of DropSens gold CX2223AT electrodes in ethanol

in a water bath using sonication. The scan rate was consistent at 100 mV.s-1 and

two scans were performed as per previous work (Ahmed et al., 2013). Other

parameters were as shown in the legend. The modified electrodes were then
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rinsed with dH2O, before drying under an Ar stream. To equilibrate, the electrodes

were incubated in PBS for 30 min, before rinsing with dH2O and drying under an Ar

stream.
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Figure 5.3: Cyclic voltammograms of electrochemical deposition of polymers onto
gold DropSens electrodes varying range of potential and polymer type. In all
cases, scan one is shown in black, scan two is shown in red. Scan rates were all 100
mV.s-1. A, electro-deposition with 0.025 M tyramine in methanol/0.3 M NaOH 0-1.6
V; B, 0.025 M tyramine in methanol/0.3 M NaOH 0-1.8 V; C, 0.025 M tyramine.HCl
in methanol/0.3 M NaOH 0-1.6 V; D, 0.025 M tyramine.HCl in methanol/0.3 M
NaOH 0-1.8 V; E, 0.025 M tyramine.HCl in PBS 0-1.6 V; F, 0.025 M tyramine.HCl in
PBS 0-1.8 V; G, 0.025 M tyramine and phloretic acid (3:1) in methanol/0.3 M NaOH
0-1.6 V; H, 0.025 M tyramine and phloretic acid (3:1) in methanol/0.3 M NaOH 0-1.8
V; I, 0.025 M tyramine and phloretic acid (3:1) in PBS 0-1.6 V; J, 0.025 M tyramine
and phloretic acid (3:1) in PBS 0-1.8 V. N.B. Figures not scaled to display differences
in characteristics of each trace.

It can be seen that for each set of parameters tested there are varying

characteristic traces, although in the majority of cases as expected there is a
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reduction in current from the first cycle to the second due to the increasing

passivation of the electrode from the poorly conducting polytyramine film formed.

Cyclic voltammograms from polymers dissolved in PBS (E, F, I, and J) were found to

be quite markedly different from their direct counterparts in methanol/NaOH, with

tyramine.HCl in PBS at each potential range (E and F) showing polymer deposition

in two distinct oxidative states during the second scan. Tyramine and phloretic acid

mix in PBS (I and J) showed particularly low oxidation and reduction of polymer,

with very ‘flat’ traces. Tyramine (A and B) and tyramine.HCl (C and D) in

methanol/NaOH showed equivalent traces. Therefore the presence of

hydrochloride did not appear to affect the deposition of polytyramine onto the

electrode surface. Tyramine and phloretic acid mixture in methanol/NaOH (G and

H) also gave similar cyclic voltammograms, demonstrating that the dissolving

medium caused a major effect on electro-deposition of polymer regardless of the

polymer concentration and variant used. The range of potential from 0-1.6 V or 0-

1.8 V did not appear to have any great effect on CV deposition.

5.2.2 Electrochemical impedance spectroscopy of an array of polymer

surfaces

The electrochemical impedance spectroscopy (EIS) of each electro-polymerised

electrode was then carried out using an Eco Chemie B.V Autolab Type III frequency

response analyser (FRA-2) over a range of frequencies from 25 kHz to 0.25 Hz with

potential fixed at 0 V and 0.01 mV amplitude. The supporting electrolyte Fe(CN6)3-

/4- in PBS at pH 7.0 was used in all cases. Cleaned bare gold and un-cleaned bare

gold electrodes were included for comparison. Data are shown in Figure 5.4

overlaid as a Nyquist plot, with a further magnification panel for clarity. As

discussed in Section 1.11.3, Nyquist plots show impedance data comprised of the

imaginary (-Z”) vs. real impedance (Z’) of a circuit taken from the respective

capacitance and resistance of the cell. In Figure 5.4, the bare cleaned and

uncleaned gold electrodes showed very small semicircles as expected, implying very

low electron transfer resistance to the redox species in the electrolyte.
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Interestingly, the spectra for tyramine.HCl in PBS (E and F) were comparable to the

bare gold and so were not deemed suitable for further investigation. In each

polymer interrogated except tyramine in methanol/NaOH (A and B), the

capacitance and resistance was higher in the 0-1.6 V than the 0-1.8 V group.

Tyramine in methanol/NaOH for both range of potentials (A and B) showed the

greatest electron transfer resistance of any of the parameters tested.
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Figure 5.4: Nyquist plots showing impedance of a range of polymers and potentials. Data were obtained in a redox mediator of Fe(CN6)3-/4- in
PBS at pH 7.0 across a frequency range of 0.1 Hz to 25 kHz at an applied sinusoidal voltage of 0 V. Sequential profiles are: (a) 0.025 M tyramine
in methanol/0.3 M NaOH 0-1.6 V; (b), 0.025 M tyramine in methanol/0.3 M NaOH 0-1.8 V; (c), 0.025 M tyramine.HCl in methanol/0.3 M NaOH
0-1.6 V; (d), 0.025 M tyramine.HCl in methanol/0.3 M NaOH 0-1.8 V; (e), 0.025 M tyramine.HCl in PBS 0-1.6 V; (f), 0.025 M tyramine.HCl in PBS
0-1.8 V; (g), , 0.025 M tyramine and phloretic acid (3:1) in methanol/0.3 M NaOH 0-1.6 V; (h), 0.025 M tyramine and phloretic acid (3:1) in
methanol/0.3 M NaOH 0-1.8 V; (i), 0.025 M tyramine and phloretic acid (3:1) in PBS 0-1.6 V; (j), 0.025 M tyramine and phloretic acid (3:1) in
PBS 0-1.8 V; (k), Cleaned bare gold; (l) Uncleaned bare gold
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5.2.3 Cyclic voltammetry of an array of polymer surfaces

To characterise the behaviour of the range of polymers further, cyclic voltammetry

was performed using the redox mediator Fe(CN6)3-/4- in PBS at pH 7.0 between -0.3

and +0.6 V at a scan rate of 50 mV.s-1. The voltammogram for bare cleaned gold

Figure 5.5i is presented for comparison, with the trace shown characteristic of the

oxidation and reduction of Fe(CN6)3-/4- on the bare gold surface through which

current was free to flow.
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Figure 5.5: Cyclic voltammograms of a range of polymers and potentials. (a) 0.025
M tyramine in methanol/0.3 M NaOH 0-1.6 V; (b), 0.025 M tyramine in
methanol/0.3 M NaOH 0-1.8 V; (c), 0.025 M tyramine.HCl in methanol/0.3 M NaOH
0-1.6 V; (d), 0.025 M tyramine.HCl in methanol/0.3 M NaOH 0-1.8 V; (e), , 0.025 M
tyramine and phloretic acid (3:1) in methanol/0.3 M NaOH 0-1.6 V; (f), 0.025 M
tyramine and phloretic acid (3:1) in methanol/0.3 M NaOH 0-1.8 V; (g), 0.025 M
tyramine and phloretic acid (3:1) in PBS 0-1.6 V; (h), 0.025 M tyramine and phloretic
acid (3:1) in PBS 0-1.8 V; (i) Cleaned bare gold.

After electro-polymerisation of polytyramine onto the electrodes with all

parameters tested, the charge peaks seen with cyclic voltammetry in Figure 5.5

decreased for both the anodic and cathodic current as compared to bare gold. This

is consistent with the polymers causing a surface passivation, preventing the flow of



Chapter 5: Impedimetric biosensors

185

electrons between the working and counter electrodes and limiting the redox

reaction of the redox mediator. Again, tyramine in methanol/NaOH Figure 5.5 (a)

and (b) traces were distinctly separate from the other conditions tested and were

found to be especially insulating. The other polymers and respective dissolving

solutions and potentials gave equivalent cyclic voltammetric traces.

5.2.4 Midland blots of an array of polymer surfaces as a technique for

availability of amine groups on the sensor surface

To demonstrate the availability of amine groups on the polymers for bioreceptor

tethering in order to construct full biosensors, the Midland blot technique was

used. Midland blotting is a novel methodology described by our group (Rushworth

et al., 2014) in which biotin-NHS, then streptavidin-HRP is applied to the modified

electro-polymerised electrodes before addition of enhanced chemiluminescence

substrate (ECL) and subsequent imaging. HRP catalyses the oxidation of luminol

and causes chemiluminescent light emission. Thus a light signal is seen in the

presence of amine groups bound to biotin-NHS, which may be quantified. Figure

5.6 shows the data for Midland blot analysis of the full range of polymers and

conditions tested. Images are of superimposed electrodes and false coloured as

captured, and include panels imaged after the application of Tween-20 to remove

any non-specific binding. Appearances were largely unchanged after Tween-20

washing. Bare cleaned and uncleaned gold electrodes were included for

comparative controls. Tyramine and tyramine.HCl in methanol/NaOH showed a

strong presence of available amine groups, with tyramine.HCl in PBS not showing

any amines above that of the bare gold controls. Interestingly, a tyramine and

phloretic acid mixture in PBS indicated the presence of amine groups much more

definitively than that of the polymer mix in methanol/NaOH. This was however still

less than shown with single agent tyramine as expected, as it is known that the

phloretic acid does not contribute available amine groups on its surface.



Chapter 5: Impedimetric biosensors

186

The optimal polymer and polymerisation conditions to provisionally take forward in

construction of E. coli and TNFα immunosensors were found to be 0.025 M 

tyramine in methanol/0.3 M NaOH 0-1.6 V, due to excellent electron transfer

resistance on EIS and passivation of the surface demonstrated via cyclic

voltammetry indicating a good deposition layer of polymer, and the clear

availability of amine groups shown on Midland blot analysis.

Figure 5.6: Midland blot analysis to characterise range of polymers and potentials
for the presence of surface amine. The polymer types in dissolving buffers and
potentials are shown. The top panels are superimposed images with the
electrodes, bottom panels are as imager captured, pre and post-Tween-20 washing
(to remove non-specific bound antibody) as shown.

5.2.5 Scanning electron microscopy of polymer surfaces

Modified electrodes with the chosen polymer (0.025 M tyramine in methanol/0.3

M NaOH) were observed by scanning electron microscopy (SEM) using a Quanta
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200F (FEI) machine within the Faculty of Biological Sciences (University of Leeds).

This was to ensure the polymer gave an even, smooth layer after electro-deposition

in contrast to the known rough bare gold electrodes. It can be seen in Figure 5.7

that this appears to be the case, with the polymerised modified electrode, Figure

5.7(A), appearing much smoother than that of Figure 5.7(B), the bare gold

electrode. This is of importance in order to present a relatively flat surface to

facilitate further binding of crosslinkers and orientated antibody in the fully

constructed biosensors and therefore is ideal.

Figure 5.7: Scanning electron microscopy images. A is after deposition of tyramine
in methanol/NaOH 0-1.6 V, compared to B, bare gold electrode. The scale bars are
2 µm.

5.3 E. coli biosensor

5.3.1 Dot blotting as a technique to show specific E. coli analyte to anti-E.

coli binding

Before any biosensor construction, the specificity of E. coli to its antibody was

examined in isolation using dot-blotting. As described in Section 2.2.9, E. coli and S.

pyogenes, a Gram-positive bacteria which causes throat and skin infections, as a

control, were spotted onto nitrocellulose membrane and then probed with anti-E.

coli antibody. Spots with no primary antibody were also tested as controls. HRP-



Chapter 5: Impedimetric biosensors

188

secondary antibody (donkey anti-rabbit) was then applied before ECL reagent

addition and imaging in a Syngene imager to capture any chemiluminescence,

indicating specific analyte-antibody binding. Data are shown in Figure 5.8. There

was almost no response in spots without primary antibody, showing that non-

specific binding of secondary antibody was not present. Likewise, there was very

little response in the spot containing S. pyogenes, demonstrating specificity, with

lack of binding of the anti-E. coli antibody to other bacteria. E. coli probed with

anti-E. coli antibody showed a strongly positive dot-blot response, therefore the

analyte-antibody binding is shown to be excellent, as well as specific.

Figure 5.8: Dotblot to show anti-E. coli to E. coli analyte specific binding. S.
pyogenes was used as a negative control. Primary antibody was native E. coli
antibody at 1:1000 dilution, secondary antibody was 1:5000 donkey anti-rabbit
HRP.

5.3.2 Reductive cleavage of E. coli antibody

The anti-E. coli IgG antibody and that of controls (anti-S. pyogenes) were reduced to

half antibodies by cleavage of the disulphide groups in the hinge region by 2-MEA

as described by Hermanson (Hermanson, 2008). This leaves free sulphydryl groups

for binding to crosslinkers and other molecules. The antibody solutions were then

exchanged into PBS buffer to remove 2-MEA, remaining whole antibody and

smaller antibody fragments with the use of Amicon Ultra spin columns as described

in Section 2.2.5.3. The resulting half antibody was used immediately to prevent the
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re-formation of whole antibody. This relatively gentle method of reduction to

generate half antibody is important for orientation, as antibody randomly

immobilised on the sensor surface via other reactive groups on fragments from a

variety of reductive processes may be inaccessible to analyte due to steric

hindrance. The free –SH generated by hinge region reduction in this methodology

can be used to bind the half antibody in a more orientated fashion, with the

antibody recognition site freely available to improve accessibility for analyte and

therefore improved analyte recognition and a superior biosensor (Billah et al.,

2010).

5.3.2.1 SDS-PAGE gel

To demonstrate the reduction of antibody and subsequent filtration to leave half

antibody, the protein composition at each stage of antibody processing was

analysed using non-reducing SDS-PAGE. The data are shown in Figure 5.9. It can be

seen that the native antibody sample in lane 1 (and 1b) contained proteins at 150

kDa, and therefore comprised whole IgG as expected. Samples in lanes 2 and 2b

show the protein composition to be predominantly at 75 kDa, indicating the 2-MEA

had reduced the sample to predominantly half antibody. There was still some

presence of protein at 150 kDa however, illustrating the gentle reductive nature of

2-MEA which did not reduce all the antibody present, and protein at 50 kDa and 25

kDa indicative of reduction to heavy and light chain fragments. Lanes 3 and 4 show

protein content after centrifugal filtration at 100k and 50k respectively. The

filtration process should replace 2-MEA with PBS buffer and remove any non-

reduced whole and fragmented antibody. Lanes 3b and 4b show the identical

process, but at higher relative concentrations to those in lanes 1, 1b, 2 and 2b. In

these lanes (3b and 4b) the remaining presence of half antibody at 75kDa is seen,

showing that the reduction and filtration process worked successfully. Using

spectroscopy the half antibody after this process was found to be at a

concentration of 0.0214 mg.ml-1, which has been shown to be in the range of the

optimum concentration for use on bacterial immunosensors (Ahmed et al., 2013).
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This optimum concentration is much lower than anticipated, but thought be due to

higher concentrations of antibody decreasing sensitivity of the biosensor, likely as a

result of steric hindrance on the surface. The half antibody used on the completed

biosensor surface was therefore maintained at this concentration.

Figure 5.9: Non-reducing SDS-PAGE gel of reduced E. coli IgG samples. Lane 1
contains native E. coli antibody (8.468 mg.ml-1), lane 2 is antibody after incubation
with 2-MEA, lane 3 after 100k filtration, and lane 4 after 50k filtration. Lanes 1-4
show comparable concentrations of antibody at different stages of reduction and
filtration, with lanes 1b-4b showing higher comparable concentrations of filtered
contents compared to native and post 2-MEA, and at enhanced contrast.

5.3.3 Cyclic voltammetry mediated electro-deposition of polytyramine

onto gold working electrode

Once polymer and antibody were optimised, the biosensor construction was

commenced. As described in Section 5.2, the chosen polymer comprised a 25 mM

solution of tyramine in methanol containing 300 mM NaOH. The polymer was

applied onto cleaned gold electrodes using cyclic voltammetry with two scans from

0 V to +1.6 V at 100 mV.s-1. The modified electrodes were then rinsed with dH2O,

before drying under an Ar stream and equilibrated by incubation in PBS for 30 min
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before again rinsing with dH2O and drying under an Ar stream. The resulting cyclic

voltammograms of the two scans are shown overlaid in Figure 5.10. As previously

seen, the second cycle achieves a lower current than the first indicating the

passivation of the surface due to the layer formation of the non-conducting

polymer. The voltammograms generated were consistent throughout all

experiments.
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Figure 5.10: Cyclic voltammograms of electrochemical deposition of 0.025 M
tyramine in methanol containing 0.3 M NaOH. Scan rate was 100 mV.s-1. (a) is the
first scan, (b) is the second scan, showing the increased insulation as polymer layers
were added.

5.3.4 Cyclic voltammetry of E. coli biosensor construction steps

The different stages of E. coli immunosensor construction were evaluated using

cyclic voltammetry in the redox mediator Fe(CN6)3-/4- to show the changes in

profiles as layers were added to the surface and thus altered the electrochemical

properties. The CV data is shown in Figure 5.11. The overlaid scans show the bare

cleaned gold electrode in trace (a) which is characteristic of the oxidation and

reduction of Fe(CN6)3-/4- with free diffusion of electrons generating current. Trace

(b) shows the comparably smaller redox peaks generated after electro-deposition
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of polytyramine on the electrode surface. This increased insulation is attributable

to the layer of non-conducting polymer formed on the surface. After addition of

sulfo-SMCC cross-linker and anti-E. coli IgG (c), the anodic and cathodic current

peaks were shown to marginally increase indicating less passivation than that seen

with polymer.
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Figure 5.11: Cyclic voltammograms at different biosensor construction steps. (a)
cleaned bare gold electrode, (b) after electro-polymerisation of polytyramine, (c)
after sulfo-SMCC crosslinker and anti-E. coli IgG immobilisation. Scan rate 50 mV.s-1

in redox mediator Fe(CN6)3-/4-.

5.3.5 Electrochemical impedance spectroscopy of E. coli biosensor in

buffer

5.3.5.1 Interrogation of E. coli biosensor

After construction of functional E. coli immunosensors, electrochemical impedance

spectroscopy (EIS) was carried out using an Eco Chemie B.V Autolab Type III

frequency response analyser (FRA-2) over a range of frequencies from 0.25 Hz to 25

kHz in Fe(CN)6
3-/4- at a voltage of 0 V for interrogation. Experiments were

performed by the incubation of increasing concentrations of E. coli analyte in PBS
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on the electrode surface for 30 min, rinsing in dH2O and drying under an Ar stream

before interrogation using EIS between each addition. The concentration of E. coli

applied was 0 and 104 - 108 cells ml-1, as previous systems were shown to have

limits of detection of 106 particles ml-1 (Yang et al., 2004). Data were analysed as a

Nyquist plot as shown in Figure 5.12. The data clearly show the increase in

impedance as greater concentrations of E. coli were incubated on the constructed

immunosensor surface, as demonstrated by the increasing gradients of the partial

semi-circles. The constructed E. coli biosensors were therefore successful at

detecting E. coli in buffered solution.
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Figure 5.12: Nyquist plots showing impedance of E. coli biosensors after E. coli
addition. Data were obtained in a redox mediator of Fe(CN)6

3-/4- in PBS at pH 7.0
across a frequency range of 0.25 Hz to 25 kHz at an applied sinusoidal voltage of 0
V. Sequential profiles are: (a) cleaned bare gold electrode with electro-polymerised
tyramine in methanol/NaOH, (b) fully constructed anti-E. coli biosensor with no
analyte, (c)-(g) 104 to 108 E. coli cells ml-1 respectively.

To demonstrate specificity, a negative control immunosensor was conducted in

parallel using antibodies against S. pyogenes. Analyte incubation, concentrations

and EIS parameters were identical to those of the E. coli onto anti-E. coli
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immunosensor experiments. Nyquist plot data are shown in Figure 5.13. In both

Figure 5.12 (a) and Figure 5.13 (a) the bare cleaned gold electrodes with

immobilised polymer show equivalent impedance semi-circles demonstrating the

comparable starting points for both biosensors. As analyte was added, there was

some increase in impedance seen in Figure 5.13, but this was minimal,

demonstrating the selectivity of the fabricated immunosensor to E. coli.
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Figure 5.13: Nyquist plots of impedance spectra recorded with S. pyogenes
biosensor as control. Redox mediator and parameters as in Figure 1.12 were used.
Sequential profiles are: (a) cleaned bare gold electrode with electro-polymerised
tyramine in methanol/NaOH, (b) fully constructed anti-S. pyogenes biosensor with
no analyte, (c)-(g) 104 to 108 E. coli cells ml-1 respectively.

5.3.6 E. coli biosensor calibration curves in buffer

For each Nyquist plot data for each electrode, the charge transfer resistance (Rct)

was determined, as modelled to Randles equivalent circuit detailed in Section

1.11.3.1. Randles equivalent circuit modelling has been used in previous work and

was found to fit the data generated in this study well (Caygill et al., 2012). It is a

useful method for facilitating the comparison of two sets of data, as it only uses one
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parameter of impedance i.e. the capacitance or the resistance. As in previous work

Randles equivalent circuit was modified to simplify Cdl to a constant phase element,

CPE, with assumption of full passivation of the electrode indicating CPE was

capacitive, and the removal of Warburg impedance due to the lack of diffusion of

the redox mediator Fe(CN)6
3-/4- because of inhibition of electron flow across the

modified electrodes. Upon analyte binding, the double layer increased in thickness,

thus decreasing capacitance and blocking the flow of redox species across the

double layer, omitting Warburg impedance (Caygill, 2012).

Data shown in Figure 5.14 are thus derived from the Nyquist plots modelled to a

modified Randles equivalent circuit. The experiments demonstrate that the

fabricated E. coli immunosensors successfully detected E. coli, as the Rct increased

across the electrode-solution interface upon increasing concentrations of E. coli due

to the binding of the E. coli cells to the sensor surface (Figure 5.14a). The negative

control of E. coli to anti-S. pyogenes conducted in parallel (Figure 5.14b) shows

minimal binding to the sensor surface, with no real increase in Rct on increasing

analyte concentration seen, thus confirming high specificity. The limit of detection

was shown to be 104 cells ml-1 when data were corrected for non-specific binding.

The standard deviations seen in Figure 5.14 for n = 5 were relatively small,

particularly for the control data, showing high concordance between sensors and

robustness in buffered solution.
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Figure 5.14: Rct of biosensors after additions of E. coli a
biosensors were exposed to increasing concentrations of
impedance read and the Rct determined. Data shows binding
coli IgG, and negative control of (b) E. coli to anti-S. pyogenes
mean ± S.D has been calculated for n = 5. LOD is 104 cells m
GraphPad Prism v.5 was used.
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B in particular in the region of 30x higher. Specific anti-E. coli biosensors (a)

compared to anti-S. pyogenes controls (b) for each given NCS dilution were also

seen to behave unpredictably, with 10% dilutions showing higher Rct in controls

than with specific antibody. Data were repeated which served to show entirely

different Rct plots on each occasion, therefore representative data for each

antibody and NCS dilution are shown. These appearances were thought to be

attributable to a high level of non-specific binding of serum proteins and other

substances, although this was not observed in a proportional way from dilution to

dilution, nor still higher as expected in specific compared to controls. Newborn calf

serum was thus discounted for use in an equivalent media calibration curve to the

patient drain fluid samples for calculation of E. coli using EIS.
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5.3.7.2 Rct of E. coli biosensors with E. coli spiked into a range of dilutions of

patient drain fluid diluents

To overcome the issues seen with non-specific binding in newborn calf serum, a

novel approach recently described for EIS measurement of prostate specific antigen

(PSA) in human plasma was experimentally tested. Chornokur et al used a real

patient sample with known low concentration of PSA diluted 1000x with PBS as a

“diluent” for all other experiments (Chornokur et al., 2011). This was found to

reduce non-specific binding and thus maintain sensitivity and specificity. To

evaluate this, a selected patient drain fluid sample containing comparably low

levels of bacterial cells (14,205 cells ml-1 measured by flow cytometry, see Section

5.3.11) was diluted 1000x with PBS and used as a diluent. Two concentrations of E.

coli analyte (103 and 106 cells ml-1) were spiked into 10, 50, and 90% patient

“diluents” before interrogation with EIS under previous parameters. Data are

shown in Figure 5.16. In contrast to the experiments in NCS, the Rct values were

consistently comparable to those of buffer, allowing a consistent graphical scale to

be used to show results. Specific anti-E. coli biosensors showed higher Rct values

compared to anti-S. pyogenes controls in 10% diluent, but were found to be

equivalent at higher dilutions in agreement with previous work shown in Section

4.6.5 where 10% drain fluid samples were ultimately used.



Chapter 5: Impedimetric biosensors

Figure 5.16
Each set of
in a range
binding in 1
IgG, and neg

A

(a)

(b)
:
b
o
0
a

B

(a)

(b)
Rct of biosensors after additions of E
iosensors were exposed to increasing
f dilutions of patient drain fluid actin
%; B, 50%; C, 90%. In all cases, data
tive control of (b) E. coli to anti-S. pyo

C

(b)
200

. coli analyte in patient diluent.
concentrations of E. coli analyte
g as diluent. Data in A shows

shown is (a) E. coli to anti-E. coli
genes IgG.

(a)



Chapter 5: Impedimetric biosensors

201

Despite only being demonstrated at two E. coli concentrations, the Rct results in

10% diluents showed the same trend as those previously seen in buffered solutions.

This is demonstrated more clearly with a bar chart shown in Figure 5.17. The

proportional Rct increase from 103 to 106 cells ml-1 in buffer and 10% diluent shows

a clearly similar trend, as compared to higher diluents. A 10% diluent was therefore

used for further experiments in development of E. coli calibration curves.

Figure 5.17: Bar chart showing overall ΔRct at two E. coli concentrations in buffer
and 10%, 50% and 90% patient drain fluid “diluents”.

5.3.8 E. coli biosensor calibration curves in patient diluent

Once the dilution of patient drain fluid sample “diluent” was established as 10%, EIS

was repeated using spiked E. coli analyte at a larger range of concentrations (103 –

107 cells ml-1) into 10% diluent for n = 5. Again, specific anti-E. coli biosensors were

compared to anti-S. pyogenes controls and EIS parameters were as previously. The

corresponding Rct data is shown in Figure 5.18. It can be seen that Rct values were

higher in both specific and controls compared to results in buffer, which was

hypothesised as being due to a degree of non-specific binding which was not
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unexpected in these biological samples. The lower level of detection remained 104

cells ml-1. The data were corrected for this non-specific binding by specific (a)

minus control (b) at each E. coli concentration to generate calibration curve (c).

This calibration curve was ultimately used to calculate E. coli concentration in the

ten patient drain fluid samples subsequently measured by the constructed

immunosensors for validation of their operational capacity.

Figure 5.18: Rct of biosensors after additions of E.
patient drain fluid diluent. Each set of biosensors
concentrations of E. coli analyte in 10% patient drain
read and the Rct determined. Data shows binding fo
and negative control of (b) E. coli to anti-S. pyogenes
S.E has been calculated for n = 5. LOD is 104 cells.ml-1

Prism v.5 was used. Calibration curve (c) is specific (a
coli concentration.
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5.3.9 Testing in patient drain fluid samples

The same post-operative day (POD) one drain fluid samples from ten patients

described and used in Section 4.6.6 for validation of the amperometric lactate

biosensors were used to validate the E. coli biosensors. As outlined in Sections

2.2.2 and 4.6.6, five of these patients underwent an uneventful post operative

course and five patients suffered an anastomotic leak (AL), with groups matched for

basic demographics and operation type etc. Samples were collected daily from

patient’s abdominal drain bags at 6.00 am and supernatant stored at -20 °C until

use after centrifugation at 3,000 x g for 10 min. Each drain fluid sample was diluted

to 10% (v/v) as optimised, before testing in triplicate with EIS interrogation in

Fe(CN)6
3-/4- with parameters as previously, using an applied potential of 0 V and

frequency range 0.25 Hz to 25 kHz. Each drain fluid sample was also interrogated

with a control using anti-S. pyogenes biosensors. The Rct data for all ten patient

samples is shown in Figure 5.19. As before, patients 1-5 are AL and 6-10 are non-

AL. The dotted red line corresponds to the mean average of the control results for

all patients, as this was found to be inconsistent when plotted individually and

therefore not reliant. Interestingly, patient four had three negative Rct results when

the data were normalised. Standard deviation error was low except in this patient

and patient nine, demonstrating good concordance between electrodes for each

patient sample.
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Figure 5.19: Rct of biosensors tested on 10% patient drain fluid samples. Each
biosensor was exposed to patient samples at 10% dilution as optimised. Data are
shown as mean ± S.D calculated for n=3. An average control of each drain fluid
sample on an anti-S. pyogenes biosensor is shown by the red dotted line.

Using the Rct values for each patient in triplicate, results were then inputted into

the equation given by the calibration curve in Figure 5.18 to give mean and

standard deviation values of E. coli concentration in each sample. Data are shown

after results from commercial methods used to validate the biosensor results.

5.3.10 Commercial bacterial assay results

5.3.10.1 Commercial lipopolysaccaride assay

To validate the E. coli impedance biosensor results on patient drain fluid samples,

the LPS commercial kit used for the animal samples was again utilised (Section

3.2.3), with LPS being a component of the Gram-negative bacterial cell wall and

therefore a surrogate marker of E. coli. A limitation of this method for validation

purposes was the possibility of other Gram-negative bacteria being present in the

samples tested leading to higher LPS levels being measured than those of E. coli
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measured by the biosensors. However, it was considered that the increase would

be proportional and so although not ideal, would still be a suitable test for

validation of the biosensors. Firstly the “in-house” E. coli analyte dilutions used

during interrogation of the constructed E. coli biosensors were tested in triplicate

with the commercial LPS assay. This was in order to provide a further calibration

curve for the assay result conversion of LPS in EU.ml-1 to E. coli (and other Gram-

negative bacteria) in cells.ml-1 for a more direct comparison with the E. coli

biosensor results. Although it was not strictly necessary for the validation assay to

use the same units as the biosensors as they would be plotted on opposite graph

axes, it was considered a useful adjunct. The results are shown in Figure 5.20. The

calibration curve is of sigmoid form, with the linear range steepest between 104 and

106 E. coli cells ml-1, which correlates with the range shown by the E. coli

biosensors. The assay results were also shown to be concordant between

triplicates, with the kit giving consistent results.

Figure 5.20: Calibration curve generated by E. coli analyte at concentrations 102 –
108 cells ml-1 as measured by the commercial LPS colorimetric assay kit. Data
points are mean ± S.D for n = 3.
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The commercial LPS assay kit was then performed on the drain fluid samples of all

ten patients on post-operative day one samples in triplicate. However, the LPS

assay was found to be unsuitable for purpose on the patient drain fluid samples.

This was due to the drain fluid samples retaining a high degree of colour upon kit

application and therefore interfering with the absorbance readings. This was not

an issue with the colourless E. coli standards and in-house samples, with the

colorimetric lactate kit due to the high sample dilutions used, or with the animal

samples.  The TNFα commercial kit used was also an ELISA in which sample colour is 

irrelevant.

Figure 5.21 shows photographs of the 96-well plates during the LPS commercial kit

assay application immediately after addition of samples including kit standards and

patient drain fluid samples. In A, drain fluid samples were added undiluted. A wide

variability in colour in wells can be seen, which clearly would affect the

corresponding absorbance readings. Many of the well samples were measured as

the maximum absorbance reading by the spectrophotometer, and therefore were

clearly affected. This was corroborated with the method recommended by the kit

for determination of whether the sample inherent colour was affecting the results,

which was strongly positive. To attempt to negate this problem the drain fluid

samples were diluted to 1:10 and 1:50 with endotoxin free water as per the kit

instructions for dilution. The 96-well plates containing the diluted samples are

shown in B. It can be seen that the 1:10 samples remain affected by colour, but the

1:50 dilutions, at least by eye, appear to be colourless.
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parametric Mann Whitney U test (p = 0.9444). The potential reasons for the

variability in patient samples and lack of statistical significance between AL and

non-AL groups compared to the animal model have previously been discussed in

Section 4.6.6.1, although the issue of colour interference could not be discounted

as an important factor leading to error in the samples. The commercial LPS kit was

therefore abandoned as a validation to the E. coli immunosensors due to the lack of

reliability and alternative comparison validation methods were sought.

Figure 5.22: Post operative day one patient samples as measured by the kit in 5
non-AL vs. 5 AL patients with median shown. There was no significant difference
between the two groups (Mann Whitney U, p = 0.9444).

5.3.11 Flow cytometry as an alternate validation technique

Flow cytometry was chosen as an alternative validation technique for measurement

of E. coli in drain fluid samples as the inherent colour of the samples would not

cause interference, and the technique was readily available, although requiring

sample preparation and use of equipment. As detailed in the Methods, the ten

chosen drain fluid samples were each added to equal amounts of 6% (v/v) BSA in

PBS for 30 min before addition of rabbit anti-E. coli primary antibody and FITC-
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secondary antibody (donkey anti-rabbit). Cells were sorted using a BD-

LSRFortessaTM flow cytometer (BD biosciences) and data were analysed using BD

FACSDiva software. Initial optimisation included gating of the population of

interest using unlabelled samples (Figure 5.23A), primary and FITC-secondary

antibody (Figure 5.23B), and FITC-secondary antibody only (Figure 5.23C).

Unfortunately the population was unable to be gated for E. coli as there was a high

degree of non-specific staining with the FITC-secondary antibody, as seen in Figure

5.23C compared to A and B in the area seen as pink coloured staining.
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Figure 5.23: Flow cytometry dotplots showing optimised gate of population of interest E. coli bacteria. A shows results from
unlabelled samples, B is E. coli primary antibody with FITC-secondary antibody, C is secondary antibody only.
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Alternative methods therefore to characterise bacterial cell count using flow

cytometry were with the addition of 1 mg.ml-1 propidium iodide (PI) to samples. PI

acts by staining all the DNA present in a sample, therefore again a limitation of this

technique was the lack of specificity to E. coli from other bacteria and any other

DNA containing material in the samples. However, the concentration of “total

bacteria” (all DNA containing material), i.e. degree of PI staining should be

proportional to that of E. coli concentration, as the levels of bacteria in samples

should be either high or low both as a total and individually by the nature of the

sample. Measurement of the total cell number may therefore still act as a

validation technique for E. coli measured by the constructed biosensors when

graphically represented on opposite axes, with each individual sample being plotted

as high or low by both techniques in a linear trend.

After PI addition, counting beads were added to the samples according to the

manufacturer’s instructions. A representative dotplot is shown in Figure 5.24 for

patient one. Numbers of events were measured in the gated area of interest after

optimisation of gating using unlabelled samples containing beads (data not shown).

Calculations were then made using the beads as reference for absolute cell count in

each sample.
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Figure 5.24: Example flow cytometry dotplot for patient one after PI staining. The
gated area containing the population of interest is shown in pink. The counting
beads are shown by the two blue areas.

5.3.12 Comparison of constructed E. coli biosensor results to results of flow

cytometry

The results of each of the ten chosen patient drain fluid samples measured by the

fabricated E. coli biosensor vs. total cell number by flow cytometry are shown in

Figure 5.25. The data show two clear outliers at the high and low limits of

measurement which were omitted in Figure 5.25B to show the good concordance

between the two tests for the remaining eight samples. Interestingly, the cell

numbers of E. coli measured by the biosensor were magnitudes higher than those

measuring total cell numbers by flow cytometry. This was an unexpected finding

and was not fully understood but a tentative explanation may be simply the

disparity in type of methodologies used. To characterise statistically, a Spearman’s

rank order test was performed which showed significant correlation between the

biosensor and flow cytometry results for each sample (rs = 0.9273, p = 0.0003).

Therefore as hypothesised despite a mismatch in units measured, proportionally
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the results are concordant. Despite the limitations in finding a suitable validating

commercial test, the results therefore show the constructed E. coli immunosensors

to be working in real patient samples. As mentioned, the problems encountered in

finding a robust validation methodology serves to highlight the need for a rapid,

inexpensive, point-of-care E. coli test such as a biosensor and this work

provisionally shows this as a promising early diagnostic method for anastomotic

leak.
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sensor results (mean ± SD, n = 3) vs. flow cytometry results of ten
uid samples. B shows data of 8 patient samples with two outliers
.
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5.4 TNFα biosensor 

5.4.1 Dot blot as a technique to show specific TNFα analyte to anti-TNFα 

binding and biotinylation of anti-TNFα 

As with E. coli biosensor fabrication, initial experiments used dot blotting to

examine the specificity of TNFα analyte to anti-TNFα binding.  The successful 

biotinylation of anti-TNFα was also shown using this technique. TNFα and

myoglobin as a control were spotted onto nitrocellulose membrane before the

addition of primary antibody anti-TNFα, HRP-secondary antibody and ECL with

imaging in a Syngene imager. Figure 5.26(a) shows no response with either analyte

when primary antibody was absent to confirm the lack of non-specific secondary

antibody binding as a control. In Figure 5.26(b), there was a strongly positive

response of TNFα to anti-TNFα compared to myoglobin control confirming selective

binding. Figure 5.26(c) shows no response of analyte with native anti-TNFα and

StreptAvidin-HRP, a positive response is only seen of TNFα and biotinylated anti-

TNFα with StreptAvidin-HRP (Figure 5.26(d)) confirming the successful biotinylation

of anti-TNFα and specificity of analyte to biotinylated antibody binding.
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Figure 5.26: Dot blot to show native anti-TNFα to TNFα analyte specific binding, 
and presence of successfully biotinylation of anti-TNFα to analyte binding. 
Myoglobin was used as a negative control. In (a) there is no primary antibody, to
demonstrate specificity of binding. (b) shows appropriate staining with 1:1000
native anti-TNFα primary antibody and 1:5000 anti-mouse HRP secondary antibody.  
(c) is a negative control of native anti-TNFα primary antibody with 1:1000 
StreptAvidin HRP. (d) shows appropriately staining 1:1000 biotinylated anti-TNFα 
primary antibody with 1:1000 StreptAvidin HRP, thus showing specific biotinylation
of antibody.

5.4.2 Cyclic voltammetry of TNFα biosensor construction steps 

Cyclic voltammetry was performed on cleaned bare CX2223AT gold electrodes,

after modification with 25 mM tyramine in methanol containing 300 mM NaOH,

biotin-NeutrAvidin addition, and then biotinylated IgG anti-TNFα antibody to

characterise the changes in surface layers electrochemically. Parameters were a

scan rate of 50 mV.s-1 between -0.3 and +0.6 V in the redox mediator Fe(CN6)3-/4- in

PBS at pH 7.0. The overlaid results of the cyclic voltammograms are shown in

Figure 5.27. Traces in (a) and (b) are equivalent to those shown with E. coli

biosensors in Section 5.3.4 as the sensor construction was identical to this level.

Traces (c) and (d) demonstrate further reduction in redox peaks respectively, as the

added constructed biosensor layers increased the insulating properties of the

electrode surface, with prevention of flow of electrons from the working to counter

electrodes and limitation of the redox reaction of the electrolytic solution.
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Figure 5.27: Cyclic voltammograms at different TNFα biosensor construction 
steps. (a) cleaned bare gold electrode, (b) after electro-polymerisation of
polytyramine, (c) after biotin-NeutrAvidin addition, (d) after 100% anti-TNFα IgG 
immobilisation. Scan rate 50 mV.s-1 in redox mediator Fe(CN6)-3/-4.

5.4.3 Optimisation of constructed TNFα sensor 

Electrochemical impedance spectroscopy (EIS) was performed on the fully

constructed TNFα biosensors. As before, an Eco Chemie B.V Autolab Type III

frequency response analyser (FRA-2) was used over a range of frequencies from

0.25 Hz to 25 kHz at a voltage of 0 V in redox mediator Fe(CN)6
3-/4-. Increasing

concentrations of TNFα analyte in PBS (range of 1 pg.ml-1 to 1 µg.ml-1) were

incubated on the completed electrode surface for 30 min before rinsing and drying

and performing EIS between each analyte addition. Data are shown as a Nyquist

plot in Figure 5.28. Data in (a), (b) and (c) are EIS for cleaned bare gold electrode

with polytyramine, with biotin-NeutrAvidin, and with biotinylated IgG anti-TNFα

antibody respectively. The increase in impedance at each of these stages of

biosensor construction is evident and corroborates the CV findings of increased

passivity as electrode surface layers are formed. The impedance shown after TNFα 

incubation however, did not increase upon increasing concentrations of the analyte
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as expected (Figure 5.28c-g). The Nyquist plots show very high impedance at each

TNFα concentration as well as for the fully constructed sensor with no analyte, with

a high gradient of partial semi-circle shown. It was hypothesised that the

impedance may already be at a maximum or capacity level at sensor fabrication

which was unable to be increased further by additional analyte binding. Strategies

for exploring this further included testing with a different polymer solution, and

varying the scan rate of the electro-polymerisation process, IgG antibody

concentration and widening the TNFα concentration range.

0 50 100 150 200 250

0

100

200

300

400

500

600

700

-Z
"/

k
O

h
m

Z'/kOhm

(a)

(b)

(c)-(g)

Figure 5.28: Nyquist plots showing impedance of TNFα biosensors after TNFα 
addition. Data were obtained in a redox mediator of Fe(CN6)3-/4- in PBS at pH 7.0
across a frequency range of 0.25 Hz to 25 kHz at an applied sinusoidal voltage of 0
V. Sequential profiles are: (a) cleaned bare gold electrode with electro-polymerised
tyramine in methanol/NaOH at scan rate 100 mV.s-1, (b) after biotin and
NeutrAvidin immobilisation, (c) fully constructed biosensor after addition of
biotinylated anti-TNFα with no analyte, successive TNFα analyte incubations at: (d) 
1 pg.ml-1, (e) 100 pg.ml-1, (f) 10 ng.ml-1, (g) 1 µg.ml-1.
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Phloretic acid was evaluated in Section 5.2 during polymer optimisation. Although

not able to contribute amino groups for attachment and therefore tested in

combination with tyramine, phloretic acid conveys a negative charge which was

considered potentially useful in the presence of non-specific binding of the

negatively charged TNFα to positively charged tyramine in solution. The polymer

mix in PBS was shown to demonstrate good impedance with more available amine

groups shown by Midland blot than in methanol/NaOH. Experiments were

therefore performed with electro-deposition of 0.025 M tyramine and phloretic

acid (3:1) polymer mix in PBS using two scans from 0 V to +1.6 V at a rate of 100

mV.s-1 before full TNFα sensor construction using previous parameters. Nyquist

plots at sensor construction and after TNFα analyte incubation are shown in Figure

5.29. The overall impedance was seen to be much lower than that of using

tyramine alone, with a more pronounced semi-circular plot shape for each

measurement. However, the same pattern was seen whereby impedance

increased over sensor construction but was static on addition of increasing

concentrations of TNFα. Appearances were thought to be due to lower levels of

biotin-NeutrAvidin-IgG binding due to decreased availability of amino groups on the

polymer sensor surface.
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Figure 5.29: Nyquist plots showing impedance of TNFα biosensors after TNFα 
addition using tyramine/phloretic acid polymer. Data were obtained in a redox
mediator of Fe(CN6)3-/4- in PBS at pH 7.0 across a frequency range of 0.25 Hz to 25
kHz at an applied sinusoidal voltage of 0 V. Sequential profiles are: (a) cleaned bare
gold electrode with electro-polymerised tyramine/phloretic acid in methanol/NaOH
at scan rate 100 mV.s-1, (b) after biotin and NeutrAvidin immobilisation, (c) fully
constructed biosensor after addition of biotinylated 100% anti-TNFα with no 
analyte, successive TNFα analyte incubations at: (d) 1 pg.ml-1, (e) 100 pg.ml-1, (f) 10
ng.ml-1, (g) 1 µg.ml-1.

Coverage of polymer upon a sensor surface is known to be controlled by either the

concentration of the monomer in the forming solution, by the number of scans

and/or by the scan rate (Pournaras et al., 2008). The concentration of tyramine and

its supporting media was already optimised (Ismail and Adeloju, 2010, Ahmed et al.,

2013), and was shown to demonstrate good impedance and amino group

availability on polymer testing in Section 5.2. Scan number has also been evaluated

in bacterial impedance biosensors, with two scans leading to polymer coverage on

the surface without increasing capacitance as more than two scans has been shown

to do (Ahmed et al., 2013). Increasing the scan rate from 100 mV.s-1 to 200 mV.s-1

was also shown by authors to reduce the thickness of the polymer layer and

decrease the resulting impedance (Ahmed et al., 2013). 0.025 M tyramine in
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methanol containing 0.3 M NaOH was therefore electro-deposited onto cleaned

gold electrodes using two scans from 0 V to +1.6 V at a rate of 200 mV.s-1. The

resulting CV traces are seen overlaid in Figure 5.30. Compared to a scan rate of 100

mV.s-1 (Figure 5.10) the currents generated in both cycles were much higher,

indicating the lesser insulation of the surface as a consequence of a thinner

polymer layer formed. The passivity from scan one to scan two was also

correspondingly less than that seen with the slower scan rate.
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Figure 5.30: Cyclic voltammograms of electrochemical deposition of 0.025 M
tyramine in methanol containing 0.3 M NaOH. Scan rate was 200 mV.s-1. (a) is the
first scan, (b) is the second scan, showing increased insulation.

After electro-polymerisation of tyramine at an increased scan rate of 200 mV.s-1,

TNFα biosensors were constructed identically to previously described. EIS was then

performed after each biosensor construction step and after each TNFα addition as

before. The corresponding Nyquist plots can be seen in Figure 5.31. The overall

impedance is approximately half of that seen with the lower polymerisation scan

rate, indicating that altering this parameter did decrease the polymer layer size and

the subsequent impedance, particularly apparent in the plots from the biosensor
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construction steps. The Nyquist plots after TNFα addition were more distinct than

when previously seen overlapping, although still in close proximity and with the

highest concentration of TNFα (g) not in increasing order of impedance as the other

concentrations demonstrate. As this was an improvement, the increased scan rate

was used in all successive experiments.
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Figure 5.31: Nyquist plots showing impedance of TNFα biosensors after TNFα 
addition with increased scan rate of 200 mV.s-1. Data were obtained in a redox
mediator of Fe(CN6)3-/4- in PBS at pH 7.0 across a frequency range of 0.25 Hz to 25
kHz at an applied voltage of 0 V. Sequential profiles are: (a) cleaned bare gold
electrode with electro-polymerised tyramine in methanol/NaOH at scan rate 200
mV.s-1, (b) after biotin and NeutrAvidin immobilisation, (c) fully constructed
biosensor after addition of biotinylated anti-TNFα with no analyte, successive TNFα 
analyte incubations at: (d) 1 pg.ml-1, (e) 100 pg.ml-1, (f) 10 ng.ml-1, (g) 1 µg.ml-1.

The concentration of anti-TNFα was previously discussed in Section 5.1.2, as the

commercial availability of the antibody from live animal models was at low

concentration and volume. A whole antibody methodology was therefore used for

TNFα biosensor fabrication to reduce antibody processing with the aim of

maintaining concentration. Antibody processing involved the removal of sodium
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azide by centrifugal filter replacement into PBS with an unknown loss of antibody,

and biotinylation which bound unknown quantities of antibody onto the sensor

surface. It was anticipated that the concentration of anti-TNFα from the purchased

0.5 mg.ml-1 was therefore considerably lower on the constructed biosensor surface,

although this was too low to be measured by conventional means such as

spectrophotometry. Despite this, the logical premise that a higher antibody

concentration on the sensor surface would improve sensitivity has been shown to

be inaccurate as lower concentrations may reduce steric hindrance to improve

analyte binding (see Section 5.3.2.1). The concentration of anti-TNFα was

therefore varied to explore whether sensor sensitivity could be improved. Anti-

TNFα antibody was immobilised onto sensor surfaces at 10% and 1% of the total

(unknown) concentration. Electro-polymerisation of tyramine was performed at

200 mV.s-1 as optimised in the previous section, with all other parameters

remaining as previously. EIS was performed on fully constructed sensors and after

addition of two TNFα concentrations (Figure 5.32). The impedance was shown to

be proportionally lower, but with no discrimination between the biosensors and

after analyte incubation. Therefore antibody concentration was used at the highest

concentration, i.e. “neat” after biotinylation, in all further experiments.
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Figure 5.32: Nyquist plots showing impedance of TNFα biosensors after TNFα 
additions at A, constructed with 10% anti-TNFα and B, with 1% anti-TNFα.  Data
were obtained in a redox mediator of Fe(CN6)3-/4- in PBS at pH 7.0 across a
frequency range of 0.25 Hz to 25 kHz at an applied sinusoidal voltage of 0 V.
Sequential profiles are: (a) cleaned bare gold electrode with electro-polymerised
tyramine in methanol/NaOH at scan rate 200 mV.s-1, biotin and NeutrAvidin
immobilisation, and biotinylated anti-TNFα with no analyte; and successive TNFα 
analyte incubations at: (b) 1 pg.ml-1, (c) 10 ng.ml-1.
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Lastly, the range of concentrations of TNFα was increased in the optimisation

experiments. The range initially tested was consistent with given concentrations in

the literature potentially useful for clinical assessment (Pui et al., 2013). However

the Nyquist plots seen with this range were very close together suggesting poorer

biosensor sensitivity than anticipated. A wider range of TNFα concentrations was

therefore tested to determine if the impedance data seen would be more distinct

from one another. This would indicate a potentially less sensitive biosensor, but

would confirm the biosensor functionality. The data in Figure 5.33 shows Nyquist

plots for constructed biosensor steps (a), (b), and (c), and at two TNFα

concentrations of 10 ng.ml-1 (d), and 0.5 mg.ml-1 (e). The 10 ng.ml-1 TNFα plot is

consistent with that shown previously (where it was one of the higher

concentrations tested). It is clear that the impedance increased greatly when

sensors were incubated with the very high concentration of 0.5 mg.ml-1 TNFα. The

biosensors were thus working, but at lower sensitivities than initially examined.
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Figure 5.33: Nyquist plots showing impedance of TNFα biosensors after range of 
TNFα additions.  Data were obtained in a redox mediator of Fe(CN6)3-/4- in PBS at pH
7.0 across a frequency range of 0.25 Hz to 25 kHz at an applied sinusoidal voltage of
0 V. Sequential profiles are: (a) cleaned bare gold electrode with electro-
polymerised tyramine in methanol/NaOH at scan rate 200 mV.s-1, (b) after biotin
and NeutrAvidin immobilisation, (c) fully constructed biosensor after addition of
biotinylated 100% anti-TNFα with no analyte; successive TNFα analyte incubations 
at: (d) 10 ng.ml-1, (e) 0.5 mg.ml-1.

5.4.4 Interrogation of TNFα biosensor with optimised fabrication 

parameters in buffer

After optimisation steps, TNFα immunosensors were constructed using the elicited 

parameters, namely with electro-deposition of 0.025 M tyramine in methanol

containing 0.3 M NaOH at scan rate 200 mV.s-1, with 100% antibody after removal

of sodium azide and biotinylation. Electrochemical impedance spectroscopy (EIS)

was performed on the fully constructed TNFα biosensors with, as before, an Eco

Chemie B.V Autolab Type III frequency response analyser (FRA-2) over a range of

frequencies from 0.25 Hz to 25 kHz at a voltage of 0 V in redox mediator Fe(CN)6
3-/4.

Increasing concentrations of TNFα analyte in PBS with a wider range of 1 pg.ml-1 to



Chapter 5: Impedimetric biosensors

227

100 µg.ml-1 were incubated on the completed electrode surface for 30 min before

rinsing and drying and impedance read between each analyte addition.
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Figure 5.34: Nyquist plots showing impedance of TNFα biosensors after range of 
TNFα additions.  Data were obtained in a redox mediator of Fe(CN6)3-/4- in PBS at pH
7.0 across a frequency range of 0.25 Hz to 25 kHz at an applied sinusoidal voltage of
0 V. Sequential profiles are: (a) cleaned bare gold electrode with electro-
polymerised tyramine in methanol/NaOH at scan rate 200 mV.s-1, (b) after biotin
and NeutrAvidin immobilisation, (c) fully constructed biosensor after addition of
biotinylated 100% anti-TNFα with no analyte; successive TNFα analyte incubations 
at: (d) 1 pg.ml-1, (e) 100 pg.ml-1, (f) 10 ng.ml-1, (g) 1 µg.ml-1, (h) 100 µg.ml-1.

Nyquist plot data for the experiments are shown in Figure 5.34. The plots show

clearly increasing impedance at sensor construction stages (a), (b), and (c), and at

sequentially greater concentrations of TNFα, with the exception of the two lowest

concentrations, (d) 1 pg.ml-1 and (e) 100 pg.ml-1, which are seen to overlay. The

specificity was examined using a negative control constructed immunosensor with

anti-myoglobin IgG antibody. Experiments were conducted in parallel, with 0.53

mg.ml-1 anti-myoglobin biotinylated under the same conditions as anti-TNFα, and

subjected to EIS after identical preparation and TNFα additions. Figure 5.35 shows

the corresponding Nyquist plot data. The impedance shown for the bare cleaned
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gold electrodes with electro-polymerised tyramine in methanol/NaOH and after

biotin and NeutrAvidin immobilisation were comparable in both the specific (Figure

5.34a and b) and control (Figure 5.35a and b) experiments. At greater

concentrations of TNFα analyte the Nyquist plots demonstrated correspondingly

higher impedances with the control antibody (Figure 5.35), indicating poor

specificity and a high degree of non-specific binding.
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Figure 5.35: Nyquist plots showing impedance of anti-myoglobin biosensors after
range of TNFα additions.  Data were obtained in a redox mediator of Fe(CN6)3-/4- in
PBS at pH 7.0 across a frequency range of 0.25 Hz to 25 kHz at an applied sinusoidal
voltage of 0 V. Sequential profiles are: (a) cleaned bare gold electrode with electro-
polymerised tyramine in methanol/NaOH at scan rate 200 mV.s-1, (b) after biotin
and NeutrAvidin immobilisation, (c) fully constructed biosensor after addition of
biotinylated anti-myoglobin with no analyte; successive TNFα analyte incubations 
at: (d) 1 pg.ml-1, (e) 100 pg.ml-1, (f) 10 ng.ml-1, (g) 1 µg.ml-1, (h) 100 µg.ml-1.

The charge transfer resistance (Rct) values of the specific and control TNFα

biosensor impedance data were derived, as modelled to Randles equivalent circuit

which was used previously in Section 5.3.6 for E. coli immunosensor data analysis.

The Rct data are shown in Figure 5.36. The results show that there was increasing
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in binding to the sensor surface, expected to be binding of analyte (Figure 5.36a).

However, an almost equivalent increase in Rct was also seen with the control anti-

myoglobin sensors (Figure 5.36b). Thus the TNFα biosensors demonstrated a high

degree of non-specific binding to the sensor surfaces. Interestingly the highest

concentration of TNFα tested (100 µg.ml-1) did show a difference between specific

and controls, and this raised the question of whether the tested TNFα

concentrations were still too low for the relatively insensitive biosensor, with 100

µg.ml-1 as the limit of detection. Higher concentrations of TNFα measured by

constructed TNFα to anti-TNFα sensors are thus potentially able to show higher

change in impedance vs. controls and this may still translate to clinical application.

Figure 5.36: Rct of biosensors after additions of TN
biosensors were exposed to increasing concentratio
impedance read and the Rct determined.  Data shows b
TNFα IgG, and negative control of (b) TNFα to anti-myog
mean ± S.D has been calculated for n = 3.
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results using a commercial assay. However, for ongoing work and to investigate

any significant differences between TNFα levels in anastomotic leak (AL) and non-AL

groups at each post-operative day (POD), a human TNF alpha ELISA Ready-SET-Go!®

was purchased from eBioscience (Hatfield, UK). The kit was identical to that used

for the animal samples in Section 3.2.2, but with antibody and substrate specific to

human, not the previously used rat equivalents. The sensitivity of the human assay

is given by the manufacturers as 4 pg.ml-1, with standard curve range 4–500 pg.ml-1.

All ten patients’ drain fluid samples at each post-operative day were tested in

triplicate with the commercial kit. The mean value of each triplicate was then used

to calculate the TNFα level for that sample using the standard calibration curve (not

shown). As with the commercial lactate kit, but not with the LPS kit due to its

limitations as discussed, all the available drain fluid samples for the ten patient

cohort were measured, although as previously noted each patient did not have all

subsequent daily samples after POD one. This was due to variable drainage

amounts, and the drains being removed on differing days. The mean ± standard

deviation TNFα level results for each post-operative day in AL and non-AL patients

are shown in Figure 5.37. The TNFα levels for each group were very variable, with

high standard deviations seen at each POD. Using a Mann Whitney U statistical

test, there were no significant differences in TNFα levels between AL and non-AL

groups at any post-operative day although there was a trend towards increased AL

TNFα levels particularly at days 3 and 4.  This could infer that TNFα is an informative 

biomarker at a later time interval, as also suggested by the corresponding animal

model in which there was greater significance between groups at 36 hours than 24

(Section 3.4.2). The patient results were not unexpected however given the lack of

significance already seen with the other biomarkers using these samples. Reasons

for this have previously been discussed, with hypotheses considered including the

small sample cohort, and wide variation between individual patients i.e. high S.D;

meaning an individual’s biomarker levels as a trend over time may be more relevant

clinically than an imposed cut off value. The results are useful as a validation test
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when the TNFα biosensors are completed and able to be performed on all the

patient samples in future work.

Figure 5.37: Commercial TNFα ELISA kit tested on patient samples. Data are mean
± S.D. of the five AL patients’ (red) and the five non-AL patients’ (blue) drain fluid
samples on each post-operative day (POD).

5.5 Discussion

This chapter describes the work undertaken in development and optimisation of

two impedimetric biosensors to E. coli and TNFα, with ultimate validation of E. coli

biosensors shown to be working in patient drain fluid samples.

Studies began on optimisation of the polymer surface which would attach the

respective antibodies for sensor recognition via crosslinkers and biotin/NeutrAvidin

for both biosensors. A range of polymers chosen based on recent group success

with tyramine (Ahmed et al., 2013) were tested including a tyramine/phloretic acid

mixture in a variety of supporting media. The range of potential scanned was also a
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varying parameter. Data were examined using cyclic voltammetry, electrochemical

impedance spectroscopy, Midland blot and SEM. The polymer 0.025 M tyramine in

methanol/0.3 M NaOH 0-1.6 V was chosen as being most suitable for biosensor

construction as it demonstrated excellent electron transfer resistance on EIS,

passivation of the surface as shown by cyclic voltammetry indicating a good

deposition layer of polymer, and clear availability of amine groups shown on

Midland blot analysis. SEM confirmed an even, relatively smooth electrode surface

after electro-deposition of the polymer to facilitate further binding of crosslinkers

and orientated antibody in the fully constructed biosensors. This polymer was

therefore taken forward in all further experiments except where stated.

Impedimetric E. coli biosensor construction was the first to be addressed. To

initially confirm specific E. coli to anti-E. coli binding a dot blot was performed

which showed excellent specific binding compared to an alternate Gram-positive

bacterial control. The methodology for E. coli sensor construction utilised cleaved

half antibody attached to the polymerised gold electrode surface via a sulfo-SMCC

crosslinker. SDS-PAGE was able to show the antibody reductive technique using 2-

MEA was successful, before biosensors were fully constructed with the half

antibody elicited from the method. Cyclic voltammetry was performed on the

biosensors during construction and characteristic changes in redox peaks were

seen, illustrating the changes in surface morphology altering the electrochemical

properties upon addition of each biosensor layer. With these promising results, EIS

was performed on E. coli biosensors vs. S. pyogenes biosensors as controls. The

immunosensors were successfully able to show specific detection of E. coli to a limit

of detection of 104 cells ml-1 in buffered solutions. However to fully demonstrate

specificity, E. coli biosensors should also be interrogated with S. pyogenes analyte.

The promising results in buffer did not translate to good performance when moving

into newborn calf serum, previously used in lactate sensor experimentation as an

intermediary to determine required dilutions before testing on the ten patient

drain fluid sample cohort used previously. It was hypothesised that this was due to

a high level of non-specific binding of serum proteins and other substances, and
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NCS was not considered suitable for this application. From the literature, an

alternative physiological media using diluted own samples as a “diluent” were

assessed with which the issues with non-specific binding were greatly reduced. A

dilution factor of 10% was found to be optimum for the drain fluid samples from EIS

experiments in this medium and a calibration curve constructed for subsequent

patient sample use. One of the key issues faced with the E. coli biosensor work was

the lack of suitable commercial test with which to validate the biosensor results.

This highlights the importance of this work in the development of new bacterial

tests. The colorimetric LPS kit, used previously as a surrogate marker of E. coli in

the animal samples, was found to be unsuitable in the patient samples as it gave

erroneous results due to the colour inherent in the patient samples, despite

attempts at dilution. The kit was therefore abandoned and an alternative

validation with flow cytometry was used which was successful. Biosensor results

for each of the post-operative day one patient drain fluid samples were compared

to those from flow cytometry and found to be statistically significant using a

Spearman’s rank correlation, rs = 0.9273, p = 0.0003. Therefore, despite the

limitations in finding a suitable validating commercial test, the results showed the

constructed E. coli immunosensors to be working in real patient samples as an

initial proof of concept diagnostic test.

The TNFα impedimetric biosensors had many more limitations. Initially, as with the

E. coli sensor experiments, dot blots were performed which demonstrated specific

binding compared to controls and also successful biotinylation of anti-TNFα

antibody. The construction stages of the TNFα biosensor which involved electro-

deposition of tyramine polymer before biotin/NeutrAvidin attachment of whole

antibody to form the biological recognition element of the impedimetric sensors

were again investigated using cyclic voltammetry. The redox peaks shown by CV at

the stages of sensor construction were sequentially reduced, as each layer added

onto the electrode increased the insulation of the surface demonstrating the

change in surface characteristics. Initial impedance of the fully constructed TNFα

biosensors was seen to be very high, with consequent additions of TNFα analyte 
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seemingly not able to increase the impedance further. Strategies for reducing the

initial impedance of the sensors were therefore explored, with increased scan rate

to 200 mV.s-1 from 100 mV.s-1 during electro-deposition of tyramine polymer onto

the electrode surface proving to be the most successful, in creating a thinner

polymer layer on the surface to reduce impedance by approximately half.

Optimisation of type of polymer, anti-TNFα concentration, and TNFα analyte 

concentration were also examined with little improvement in sensitivity. Using the

optimised parameters EIS was performed on TNFα biosensors vs. biotinylated anti-

myoglobin controls in buffered solutions. The constructed immunosensors were

successfully able to show increasing impedance over sensor construction stages and

with sequentially increased concentrations of TNFα, with the exception of the two 

lowest TNFα concentrations which overlaid.  Unfortunately the data were 

equivalent using a negative control, therefore demonstrating non-specific binding

and poor specificity. The corresponding Rct data showed this more clearly. At the

highest concentration of TNFα tested (100 µg.ml-1) with the biosensors there was

however a difference between specific and controls raising the hypothesis that the

sensor may be relatively insensitive to the levels of TNFα predicted and this highest 

level tested may be the limit of detection. Further work aims to first perform

experiments using TNFα biosensors with higher concentrations of TNFα analyte vs.

controls to examine the sensitivity and specificity for proof of principle before

strategies to improve both.

Despite not achieving TNFα biosensor testing in patient samples, the ten patient 

drain fluid samples used for validation in the lactate and E. coli work were tested

using a commercial TNFα ELISA kit, a human version of that used on the animal 

samples as a future validation TNFα test.  In similarity to the other biomarkers in 

the patient samples there were no significant differences in TNFα levels between AL 

and non-AL groups at any post-operative day. Again, there was seen a wide

variation between individual patients in the small cohort tested.  The TNFα levels in 

the AL groups were generally higher than those of the non-AL groups, although in

the order of 1 000 000 times lower than the TNFα concentration at which the 
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biosensors were able to show a difference between specific and controls (100

µg.ml-1).  The sensitivity of the TNFα biosensors is therefore paramount for any 

clinical application and will be the focus of future work.
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Chapter 6. General discussion

6.1 General discussion

Anastomotic leak is a catastrophic surgical complication, leading to high morbidity

and mortality. Diagnosis is currently difficult due to the insidious presentation, and

current diagnostic tests lack sensitivity and specificity. The aims of this work were

to show proof-of-principle for an early diagnostic test of anastomotic leak and intra-

abdominal sepsis with two objectives. Firstly, to identify local biomarkers

correlating with anastomotic leak and intra-abdominal sepsis using an animal

model, and secondly, to construct and optimise biosensors to the chosen

biomarkers, with ultimate validation in real clinical samples compared to

commercially available assays.

One of the fundamental aspects of this work was the measurement of biomarkers

locally at the anastomotic site as opposed to systemically. As discussed in Chapter

1, during anastomotic leak and the development of abdominal sepsis there are

early local molecular changes, with increase and decrease of a number of

ischaemic, inflammatory and bacterial biomarkers (Komen et al., 2008). These

biomarkers can be utilised as a diagnostic tool by monitoring their real time levels,

which show greater sensitivity and specificity due to the locality of measurement

(Komen et al., 2008). The available literature on local biomarkers of anastomotic

leak and abdominal sepsis was assessed, and three potential biomarkers chosen as

representing three time points in the pathophysiological course of anastomotic

leak, namely lactate, TNFα and E. coli. To evaluate these biomarkers, a small animal

model of intra-abdominal sepsis using caecal ligation and puncture (CLP) vs. sham

controls was developed. CLP is considered the gold standard animal model in

sepsis research and has been in use for a number of years (Rittirsch et al., 2009,
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Dejager et al., 2011), but crucially, few studies have measured biomarkers directly

in peritoneal fluid.

Available methodologies such as ELISA for the detection of sepsis biomarkers

require specialist equipment, user proficiency and are time consuming and

expensive. The use of biosensors for measurement of clinical biomarkers is in its

infancy, but is a rapidly expanding area of interest with great potential. There are

currently no commercially available biosensors for anastomotic leak or septic

complications although a small number have been assessed at the laboratory stage,

predominantly measuring markers in plasma, blood and buffered solutions, as

summarised in Table 1.5. The key advantages of biosensors for this purpose

include point-of-care testing, low cost, no requirement for specialist equipment and

ease of use, which allow for repeated testing and monitoring of biomarker trends

over time – a particular advantage for anastomotic leak which presents on an

evolving spectrum for which a single value is less useful.

Using the small animal model, all three biomarkers were found to be significantly

raised in septic animals compared to sham controls at 24 and 36 hours. The time

intervals chosen were based on the available literature and initial optimisation

studies at which 6 hours appeared too early for even lactate to increase. However,

sepsis is an evolving pathology in which anticipated peaks for each biomarker were

at different, overlapping time intervals, thus it was unfortunate that for practical

reasons, measurement of a greater number of time points in the animal model was

not achievable. As there were no available commercial assays for E. coli, LPS

(lipopolysaccharide) was used as a surrogate marker, as an LPS kit was available.

LPS was thought to be clinically valid for this purpose as the presence of any gram

negative bacteria in the sterile peritoneal cavity would be indicative of a leak. The

inadequacy of E. coli assays was also an issue when comparing the E. coli biosensor

results with a commercial validation, and flow cytometry had to be requisitioned.

Comparison of the data from the animal model with that of the literature is
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challenging due to the paucity of studies using biomarkers measured in the

abdomen, and the dissimilarity in technique and animal type in the studies

available. However, from the limited evidence in the literature it appears that my

findings are consistent. For example, in a similar study using CLP vs. sham, the

mean peritoneal levels of TNFα in mice was 35 pg.ml-1 at 24 hours (Ebong et al.,

1999), comparable to my experimental data in which the median was 39 pg.ml-1 at

the same time interval; both of which were significantly higher than sham controls.

Ebong’s group reported no detectable TNFα in the systemic circulation at any time 

point. Such data, when taken with logical extrapolation from other sepsis models,

supports the use of my three chosen biomarkers as being representative of

anastomotic leak.

After validation of the biomarkers using the animal model, three biosensors were

constructed to lactate, TNFα and E. coli. Amperometric lactate biosensors were

ultimately constructed using lactate oxidase on a screen printed carbon electrode

with pre-impregnated Prussian Blue mediator via a PEI polymer surface. Preceding

this, a number of methodologies were unsuccessful in generating a robust

amperometric signal and were discounted, with a switch to commercial electrodes

and isolated enzyme testing required during optimisation in buffer. In newborn calf

serum (NCS), used as an intermediary to patient drain fluid, a range of dilutions

spiked with lactate were assessed to evaluate that yielding greatest signal.

Fortuitously, a 10% (v/v) dilution was found to both produce optimal signal, and

bring the lactate levels into the linear range of the biosensor when testing in the

patient abdominal samples. The biosensor and commercial assay results of the

patient abdominal samples were significantly concordant, demonstrating proof-of-

principle for use as a clinical diagnostic test. The biosensor results were all higher

than those of the commercial kit, with a range of 3-18 mM for the biosensors

compared to 2-9 mM with the kit. Despite interference testing showing good

selectivity, this was likely to be due to non-specific binding of proteins in the

samples increasing the amperometric signal. Non-specific binding is a significant

issue with biosensors in biological media and a common obstacle in translation
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from laboratory work in buffered solutions to measurement in clinical samples.

Levels of lactate in patient abdominal fluid from other clinical studies in the

literature show lower lactate levels, although not incomparable, with one study

showing a lactate of 7 mM after anastomotic leak, and 3 mM in non-AL patients,

using an alternative methodology (Pedersen et al., 2009b). The developed

biosensor is therefore comparable to other studies, although non-specific binding

needs to be further investigated with comparison to controls. A drawback of the

lactate biosensor methodology is the requirement for a dilution step, as a

fundamental advantage of biosensors is their instantaneous, “in-field” use with no

requirement of additional reagents. As a commercial application, ways to facilitate

this could include the addition of a pre-filled tube of diluent solution with each

biosensor kit, which is added to the sample before measurement. The complex

mathematical modelling used would also require automation with data fitting

algorithms, as adopted in commercial glucose sensors. The biosensor preparation

time, although greatly simplified by the use of pre-impregnated Prussian Blue

mediator, is an aspect which would require consideration when up scaling to a

commercial level. The lactate oxidase enzyme is relatively expensive, and an

alternative source or in-house production would need to be investigated to bring

the lactate biosensors to market with a feasible per unit cost.

E. coli and TNFα immunosensors were constructed using half antibodies and whole 

antibodies respectively, with immobilisation onto polytyramine coated gold

electrode surfaces via chemical cross linkers. Initially a range of polymers were

evaluated to optimise for type, as well as potential and scan rate during electro-

deposition onto the electrode surface. Polytyramine was found to yield greatest

electron transfer resistance and availability of amine groups after characterisation

by CV, EIS, SEM and Midland blotting (Rushworth et al., 2014), in keeping with

other biosensor work of this nature (Ahmed et al., 2013). During optimisation,

isolated analyte and antibody binding was successfully confirmed using dot blotting,

and later construction was verified using CV and EIS. Reductive cleavage of IgG to
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half antibodies using 2-MEA for E. coli sensor fabrication was verified with SDS-

PAGE analysis.

The E. coli immunosensors showed excellent detection of E. coli compared to an S.

pyogenes control with a limit of detection of 104 cells ml-1 in buffer. The

methodology for construction was based on previous immunosensor work where

successful detection of virus and bacteria were shown (Ahmed et al., 2013, Caygill

et al., 2012). Therefore significant optimisation had already been accomplished,

and the E. coli sensors required little initial optimisation. However, upon

progression to testing in NCS, the E. coli sensors showed variability and inconsistent

data compared to controls at a range of NCS dilutions. This was thought to be

attributable to a high level of non-specific binding of serum proteins and other

substances within the NCS. For the E. coli sensors this stage was of great

importance, in order to generate calibration curves to calculate E. coli

concentrations in patient samples using a comparable media to the samples

themselves. A recent novel approach described for an immunosensor detecting

prostate specific antigen (PSA) in human plasma using a “diluent” of real sample

with known low concentrations of analyte diluted 1000x with PBS was found to

negate this effect, to allow generation of meaningful calibration curves (Chornokur

et al., 2011). Application of this strategy using spiked E. coli into a patient drain

fluid sample with low bacterial count (as measured by flow cytometry) as a

“diluent” at a range of dilutions was successful in yielding data comparable to

experiments in buffer. A dilution of 10% (v/v) was again optimal, in agreement with

the previous lactate experiments. This was not however surprising, as the diluent

at 1000x PBS, then at 10% (v/v) was likely to have been similar to buffer in any case.

Strategies for future work to assess the immunosensors in NCS include experiments

blocking the tethered, unreacted sulfo-SMCC maleimide groups, to reduce non-

specific binding. The inability to use the LPS assay as a commercial validation to the

E. coli biosensors due to colour absorbance issues was another technical limitation

which had to be overcome. Flow cytometry was used in lieu of any other suitable

assay, with which all DNA containing material was stained and included, as there
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was a high degree of non-specific FITC-secondary antibody staining upon initial

runs. Despite this, the flow cytometry and biosensor data were significantly

concordant, illustrating proof-of-principle of the sensor working in patient samples.

Surprisingly, the total cell numbers measured by flow cytometry were consistently

lower than those of E. coli alone measured by the biosensor. As with the lactate

work, this was likely to be due to non-specific binding of serum proteins in the

samples, increasing the impedance of the biosensors. Unfortunately there are no

comparable studies in the literature that give a quantitative measurement of E. coli

- either clinical studies with measurement after anastomotic leak, or other groups

fabricating biosensors to E. coli. This highlights the importance of the development

of the E. coli biosensor for clinical diagnostics. Alternate validation methods in

future work are expected to include live plating techniques for quantitative

microbiology in comparison to live E. coli measured by the biosensors for greater

likeness to “fresh”, point-of-care clinical samples.

Development of the TNFα immunosensor raised a number of issues.  The 

methodology used whole antibody attached to a sensor surface via biotin/Avidin

linkage, as anti-TNFα was only commercially available in small concentrations.  This 

rendered half antibody cleavage unsuitable due to the low concentration yield seen

after anti-E. coli reduction (approximately 400 fold lower concentration). The

constructed TNFα biosensors initially showed very high impedance levels upon 

addition of spiked TNFα in buffer.  Optimisation included evaluation of an 

alternative polymer on the electrode surface, increasing the scan rate during

electro-deposition of the polymer to reduce the thickness of the surface layer, and

testing a range of lower antibody concentrations.  The optimised TNFα 

immunosensor was able to show increasing impedance upon increasing

concentrations of analyte. However, data were equivalent using a myoglobin

sensor control at all except the highest concentration of TNFα (100 µg.ml-1),

showing a high degree of non-specific binding and insensitivity of the biosensor.

The levels of TNFα in patient abdominal samples measured by the commercial 

ELISA assay were in the order of 106 times lower than this concentration. Levels
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shown in the literature were consistent with the assay, and therefore also much

lower than the LOD of the biosensor. In clinical studies using an alternative

methodology to measure TNFα in patient abdominal fluid after anastomotic leak, 

levels of 511 pg.ml-1 compared to non-leak levels of 141 pg.ml-1 were shown at post-

operative day three (Fouda et al., 2011). An LOD of 1 pg.ml-1 to 100 pg.ml-1 was

demonstrated in culture media using an antibody mixed self assembled monolayer

TNFα biosensor by a biosensor group (Pui et al., 2013).  Strategies for enhancing 

sensitivity of the TNFα biosensor in future experiments to develop a clinically useful 

test will consist of investigation into blocking agents on the sensor surface to

reduce non-specific binding, and alternative construction strategies such as self

assembled monolayers as the bioreceptor tethering layer.

For further commercial development of the E. coli and TNFα impedance biosensors, 

a number of technical issues would need to be addressed. The principle limiting

factor in the ongoing development is the time taken to collect and analyse the data

using EIS. The FRA system software used was out of date, with data analysis of

Nyquist plot curve fitting performed manually. This required a number of hours for

multiple immunosensors each at a range of analyte concentrations. To become a

commercial application, the impedance reading of each sample would need to be

available instantaneously. In addition to automatic curve fitting which is available

with newer software, data fitting algorithms would need to be applied to achieve

this, which have been shown successfully with glucose monitors. The experiments

performed also utilised a single constructed immunosensor for the detection of

increasing concentrations of analyte in buffer and diluent media for calibration

curves, repeated for n = 5. Therefore there may have been an insulating effect

caused by cumulative analyte binding, rendering the data not directly comparable

to the single interrogation of patient samples. Work by Ahmed et al, investigated

the size of this effect with bacterial immunosensors, which showed that the linear

range of response was smaller with “single-shot” incubation (104 – 106 cells ml-1)

compared to “cumulative” incubation (104 – 107 cells ml-1) (Ahmed et al., 2013). At

higher concentrations of bacteria in single-shot incubation, the antibody binding
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site access was hypothesised to be limited due to steric collisions. Calibration

curves in diluent media should therefore be constructed using data from single

immunosensors to compare most meaningfully to clinical samples. In the

laboratory this would have required great expense and time beyond the scope of

this study, but to proceed with any commercial application would need to be

achieved. Lastly, the low yield of reduced antibody from native samples using 2-

MEA in the fabrication of E. coli sensors (approximate 400 fold concentration

reduction), whilst fortuitously being in the range of the optimum concentration for

use shown by other bacterial immunosensors (Ahmed et al., 2013) should be

addressed. For cost reduction, alternate reductants such as tris(2-

carboxyethly)phosphine (TCEP) should be investigated, to improve antibody

productivity on a commercial scale.

Ten patient drain fluid samples were used to show the biosensors gave comparable

results to those of corresponding commercial assays. Five samples were from

patients who suffered an anastomotic leak post-operatively, and five were from

patients with an uncomplicated post-operative course. The small number reflects

the number of anastomotic leaks in the cohort of drain fluid that was available to

be collected. There were a total of 69 patients’ samples collected over an 18 month

period, with five patients who suffered an anastomotic leak, a leak rate of 7% which

is consistent with national averages. Samples taken at 24 hours (post-operative day

one) were used due to the availability of fluid at this time interval which was not

the case on subsequent days for all patients, as well as evidence from the literature

that biomarker levels are elevated this early in patients who then suffer

anastomotic leak. Unfortunately, when measured by either the constructed

biosensors or the commercial assays, none of the three biomarkers showed a

significant difference between anastomotic leak and non-anastomotic leak groups,

with large standard deviations seen in all cases. Potential reasons for this, despite

evidence to the contrary in the available literature and as shown in the animal

model, were considered. These were thought to be primarily the small sample size

tested and variability of data seen, meaning that an individual’s biomarker trend
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over time may be more useful than single values with imposed arbitrary cut off

points. This would need to be investigated with larger data sets, but a key

advantage for this would be in using a biosensor application due to their low cost

and point-of-care use. Another reason for the lack of statistical difference between

groups was thought to be issues with the sample collection itself. Samples were

collected from drainage bags, which were at room temperature, at 24 hour

intervals. This is suboptimal, as levels of biomarkers such as lactate have been

shown to vary in as little as 30 minutes in blood at room temperature due to

ongoing glycolytic pathways (Seymour et al., 2011). The commercial development

of the biosensor application is therefore expected to incorporate a delivery system

of “fresh” fluid from the abdominal environment with immediate refrigeration to

an external biosensing device. This could be in the form of a microdialysis catheter

as shown by one group (Pedersen et al., 2009b), or using a biosensor flow cell

device which has been successfully used to measure lactate in human sera and

blood (Krawczyk et al., 1996, Yashina et al., 2010), coupled with miniaturisation of

the sensor device itself. This also obviates the need for a surgical drain from which

to collect samples, which are becoming less commonly used in the elective surgical

setting. Measurement of the animal model samples using the biosensors would

provide greater proof-of-principle that the biosensors are able to show a statistical

difference between AL and non-AL, and should be performed in future work after

the biosensors are fully optimised.

Current benchmarks for point-of-care diagnostics are sensors used for pregnancy

tests and glucose monitors. The glucose sensor is currently the only successful

electrochemical device available commercially over the counter for use in any field,

and has taken a number of generations to be developed to its worldwide

commercial success. Glucose monitoring by glucose biosensors currently accounts

for 85% of the global market, at an estimated US$8.8 billion (Hughes, 2009).

Despite the plethora of available literature on biosensors for detection of a diverse

range of biomarkers at a laboratory level, none have yet come close to competing

with glucose sensors in the commercial market, an “elephant in the room” for the
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major biosensor companies. Key issues thought to be accountable for this, and

which need to be addressed for translation of any biosensor from bench to bedside,

are safe manufacture, production in large quantities under controlled conditions at

minimal costs, and with adherence to regulatory standards. More specifically to

the biosensors presented in this work is continued development with testing of

stability and lifespan - particularly of the lactate biosensor – and testing at a range

of parameters of temperature, and pH etc. The potential wider application of this

work however is enormous, as the biosensors could be used to detect the

immediate presence and/or progression of sepsis in not just the abdomen but in

patient central venous access, urinary catheters, and for isolated ischaemic bowel

complications as well as inflammatory disorders such as pancreatitis. Therefore the

demand for this type of diagnostic tool strongly justifies the cost and drives

development. Building on the work presented, biosensors for early detection of

septic surgical complications and other clinical pathology is a promising technology

that has the potential to greatly reduce morbidity and mortality from these adverse

events.
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Chapter 8. Appendices

8.1 Patient information sheet

PATIENT INFORMATION SHEET

An invitation to take part in a research study called: Development of a biosensor

for early detection of anastomotic leak after bowel resection

You have been given this information sheet to invite you to participate in a research

study looking at ways to improve bowel surgery in the future. The study is being

undertaken by the Leeds Teaching Hospitals Trust Hospitals – Leeds General

Infirmary and St James’s University Hospital. Before you decide we would like you

to understand why the research is being done and what it would involve for you.

We will go through the information sheet with you and answer any questions you

have. We are inviting you to take part, but you do not have to and if you decide not

to no-one will think badly of you and this will not affect the quality of your care.

This information sheet is designed to explain:

 The purpose of this study and what will happen to you if you take part

 Information about the conduct of the study
Please take your time to think about whether you want to take part in the study,

talk to others about the study if you wish and ask us if there is anything that is not

clear, or if you would like more information.

What is an anastomotic leak?

An anastomotic leak is a breakdown of the join where bowel has been stitched back

together after part of it is removed in a bowel operation. It is a rare but serious

complication of bowel surgery. At the moment, it can sometimes be difficult to tell

when a leak occurs until a patient becomes very ill.

What is the purpose of our study?

The aim of our study is to see if it is possible to develop a new diagnostic test which

would enable surgeons to detect an anastomotic leak as early as possible.
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Our study involves developing a special type of test called a “biosensor” which can

measure some of the cells and cellular processes from around the anastomosis/join

which increase in levels when a leak begins. One of the cellular processes we will

measure will be a substance called lactate which is normally produced in many cells

of the body, particularly in muscle cells during exercise. Other substances we will

measure are E.coli bacteria which is normally found inside the bowel, and

“cytokines” which are cells which increase when body tissue starts to heal. All

these substances have been shown by other studies to increase in levels locally at

an anastomosis when there is an anastomotic leak.

In order to test our biosensor works, we require an abdominal fluid sample taken

during bowel surgery, and fluid samples from drains from patients after surgery.

We will test our biosensor in the laboratory on these fluid samples to see if it can

detect levels of lactate and the other cellular substances mentioned above. There

is normally a small amount of fluid in the abdomen which is suctioned out during

surgery and usually discarded. Drains which we would take fluid samples from are

routinely inserted into the abdomen during surgery so that any excess fluid over the

next few days can drain away. They are removed a few days later on the ward.

We will also record on a computer database patient details such as name and date

of birth, any other medical problems, operation details, and if an anastomotic leak

develops or not. This is so we can compare the drain fluid from patients who

leaked to those who did not. All the drain fluid samples and personal data will be

stored securely for a period of 3 years unless stated otherwise. This is so they may

be used for other research studies in the future.

Why have I been invited to take part in the study?

You have been approached to be part of this study as you are undergoing bowel
surgery at Leeds Teaching Hospitals Trust. We anticipate that approximately 150
people will take part in the study.

Do I have to take part in the study?

Taking part in research is always voluntary. If you decide to take part you will be
given this information sheet to keep, and will be asked to sign a consent form which
will go into your medical notes, but you are still free to withdraw at any time and
without giving a reason. If you decide not to take part, then you don't have to give
a reason why and no-one will think badly of you for not wishing to take part. If you
do not wish to participate then this will not affect your care or treatment in any
way.
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What will happen to me if I decide to take part in the study?

If you do choose to participate, a small amount of fluid which is usually present in

the abdomen will be collected during your operation. It is usual to place a drain

into the abdomen as part of your operation. This drain is connected to a small

collecting bag. Small amounts of fluid will be taken out of the drainage bag once a

day for as long as the drain is in place. This takes approximately 2 minutes.

Emptying your drainage bag will routinely be carried out on the ward by nursing

staff to empty the bag when full, and therefore is not something new for our study.

It is entirely pain and discomfort free.

What are the risks and benefits of taking part in the study?

Because taking fluid from your abdomen and out of your drainage bag is not

something new for our study there are no disadvantages or risks from taking part,

but there is also no direct benefit to your care. The aim of the study is to try to

improve bowel surgery for others in the future.

Will my taking part in the study be kept confidential?

If you decide to take part in the study, all information collected about you during

the course of the study will be kept strictly confidential in the same way as all of

your other medical records.

What will happen to my data and samples?

Your fluid samples will be transported to, stored and tested at the laboratory at the

University of Leeds. The samples will be stored securely and used in anonymous

form, ie none of your personal data will be used in the laboratory. Some of your

personal data such as name, date of birth, operation details, leak or no leak, will be

taken, linked to your samples and stored on a secure computer database, ensuring

your confidentiality. After the study has been completed, the database containing

your personal data and your anonymised fluid samples will be kept in storage for 3

years and may be used in other research studies in the future, unless you request

otherwise.

What will happen if I don’t carry on with the study?

If you decide to discontinue your participation in the study, this would be
honoured, with no impact on your care or treatment. You can decide not to
continue with the study at any point in time, but if you do we would like to keep
already collected samples and data so that it may be included in the final study
analysis, unless you request that it should not be.
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What will happen to the results of the study?

At the end of the study, the results will form part of a degree thesis (a document

submitted for a professional qualification e.g. PhD). We will also publish the results

in a medical journal so that others can benefit. No individual patient information

will be identified in any publications or documents.

What if there is a problem?

Whether or not you take part in the study, if you wish to complain, or have any

concerns about any aspect of the way you have been approached or treated during

the course of this study, the normal National Health Service complaints

mechanisms would be available to you. Taking part in the study would not affect

your legal rights.

Who has reviewed the study?

All research in the NHS is looked at by an independent group of people, called a

Research Ethics Committee to protect your safety, rights, wellbeing and dignity.

This study has been reviewed and given favourable opinion by the Leeds East

Research Ethics Committee.

Who is organising and funding the research?

The research is funded by educational grants and the University of Leeds. There is

no involvement of any private companies and no conflicts of interest. The surgeons

involved in the study are not paid to include you in the study.

Further information

Once you have read this sheet, you will have opportunity to ask any questions to

your surgeon or the research team.

If you choose to participate in the study you will be asked to sign a separate

consent form which will be filed in your clinical notes.

Thank you for your time in considering being involved this study.

Contact details for researcher (Natalie Hirst): xxxxx xxxxxx

Patient information sheet for ethical approval of patient drain fluid sample
collection from Leeds Teaching Hospitals Trust. National Research Ethics Service
reference: 11/H1306/5, R&D approval reference: GS10/9674.
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8.2 Patient consent form

Centre Number:
Study Number:
Patient Identification Number for this trial:

CONSENT FORM FOR RESEARCH STUDY

Title of Project: Development of a biosensor for early detection of anastomotic
leak after bowel resection

Name of Researcher: Miss Natalie Hirst

Research Supervisor: Mr D Jayne

Please initial
to confirm

I confirm that I have read and understand the information sheet
dated 11th February 2011 (version 3.0) for the above study. ____

I have had the opportunity to consider the information, ask questions
and have had these answered satisfactorily. ____

I understand that my participation is voluntary and that I am free to
withdraw at any time, without giving any reason, without my
medical care or legal rights being affected.

____

I understand that relevant sections of any of my medical notes and
data collected during the study may be looked at by responsible
individuals employed by the NHS, from regulatory authorities or
from the NHS Trust, where it is relevant to my taking part in this
research. I give permission for these individuals to have access to
my records.

____

I understand that all the fluid samples taken from me, and my
personal data, will be stored for a period of 3 years and may be used
for other research studies in the future

____

I agree to take part in the above research study. ____

__________________________
Name of Patient

______________
Date

__________________________
Signature

__________________________
Name of Person taking consent
(if different from researcher)

______________
Date

__________________________
Signature

__________________________
Researcher

______________
Date

__________________________
Signature

When complete one copy for patient, one to be kept in medical notes.
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Patient consent form for ethical approval of patient drain fluid sample collection
from Leeds Teaching Hospitals Trust. National Research Ethics Service reference:
11/H1306/5, R&D approval reference: GS10/9674.


