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Abstract

This research is devoted to the study of financial market dynamics in a frame-

work which combines agent-based modelling and concepts from behavioural fi-

nance. The thesis explores, in an agent-based financial market model, the inter-

linkage between investor heterogeneity, bounded rationality, behavioural biases

and the aggregate market dynamics.

We develop a dynamic equilibrium model of a financial market in the pres-

ence of heterogeneous, boundedly rational investors. The model combines a

performance-driven strategy-switching mechanism of an adaptive belief system

(Brock and Hommes, 1998) and an evolutionary finance model (Evstigneev, Hens

and Schenk-Hoppé, 2011). A key feature of this new model is that it contains

a combination of passive and active learning dynamics. Passive learning refers

to the market force by which wealth accumulates on investment strategies which

have done relatively well. Active learning refers to the switching behaviour by

which investors actively move their wealth into strategies which have performed

well in the recent or distant past. This thesis extends the literature by examin-

ing the joint effect of passive and active learning in relation to the evolutionary

dynamics of financial markets.

By drawing in concepts from behavioural finance, we focus on the micro-level

modelling of various heuristics and behavioural biases which may affect investors’

active learning and financial forecasting, such as overconfidence, recency bias,

sentiment, etc. We quantify the macro-level market impact of these behavioural

elements and study the evolutionary prospects of market dynamics.

We show that the interaction between passive and active learning is crucial to

understanding the market selection of dominant strategy or the survival of dif-

ferent strategies. Investors’ bounded rationality and behavioural biases in active

learning and financial forecasting play an important role in shaping the market

dynamics. Our findings point to the causes of the persistence of market ineffi-

ciencies and a variety of stylised facts of financial market. The added value of

drawing together agent-based modelling and behavioural finance on the study of

financial markets dynamics is demonstrated.
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Chapter 1

Introduction

This thesis introduces a framework that combines agent-based modelling and con-

cepts from behavioural finance to study the dynamics of financial markets. We

develop an agent-based financial market model and use it to explore the inter-

linkage between investor heterogeneity, bounded rationality, behavioural biases

and the aggregate market dynamics. The focus is on quantifying the effects of a

number of important behavioural biases documented in behavioural finance. The

goal of this research is two-fold. First, to contribute to the behavioural finance lit-

erature by providing insights for the macro-level market impact and evolutionary

prospects of the presence of individual investors with various behavioural biases.

Second, to contribute to explanatory power of agent-based modelling of financial

markets by drawing in concepts from behavioural finance.

1.1 Background

The complexity of financial market presents a big challenge to the study of market

behaviour and dynamics. Existing financial market theories and main approaches

to coping with the analysis of financial markets diversify into several paradigms,

by and large, from the traditional finance approach based on a representative,

fully rational agent and market efficiency (e.g. Muth, 1961 and Fama, 1970, Lu-

cas, 1972) to the behavioural finance approach based on the two pillars of limits

to arbitrage and investor psychology (see Barberis and Thaler, 2003 and Shiller,

1



1.1 Background

2003), and the agent-based approach based on financial market models with inter-

acting groups of heterogeneous, boundedly rational agents (see LeBaron, 2006a

and Hommes, 2006).

Traditional finance rests on normative theories and models of the behaviour

of market participants and market dynamics. Traditional finance assumes that

the mass of market participants can be modelled by a representative economic

actor (agent) whose behaviour is narrowly defined as fully rational. Rational

behaviour have two related but different aspects: optimisation and rational ex-

pectations (Sargent, 1993). Optimisation refers to the behaviour that individuals’

financial decisions are derived from maximising their objectives (expected utility

or profit), given his or her preference and constraints, adheres to the Subjective

Expected Utility Theory (Savage, 1954). Rational expectations, as commented by

Sargent (1993), assume not only individual rationality but also consistent beliefs

according to which beliefs are perfectly consistent with realisations (i.e. a rational

agent’s expectation equals the true statistical expected value). It requires that

the rational agent is able to collect all information including others’ decisions, and

process new information correctly as described by Bayes’ law. Moreover, rational

agent approach also involves the assumption of homogeneity of expectations, for

instance, in the Capital Asset Pricing Model introduced in Sharpe (1964) and

Lintner (1965).

Economic and finance studies have long been dominated by rational agent

approaches despite the fact that the assumptions of homogeneity and rationality

of investors have been heavily attacked due to lack of realism. Supporters of

rational agent approaches often use the so-called “as if ” argument by Friedman

(1953) as a defense against this criticism. On the one hand, Milton Friedman

argues that it is not the case that actual investors are fully rational. Instead,

investors act “as if” rational. On the other hand, the market selection hypothesis

popularised in economics and finance by Alchian (1950) and Friedman (1953) ar-

gues that only rational traders can survive in the process of market selection and

determine asset prices. Markets punish irrational behaviour (e.g. traders who do

not optimise) and eventually eliminate their impact on asset prices. The market

2



1.1 Background

selection process leads to the same outcome as the case where agents act as if

they were rational. This point of view is one of the major arguments behind the

rational agent approach and efficient market hypothesis. Furthermore, Friedman

argues that whether a theory is realistic “enough” should be assessed by its pre-

dictions not assumptions.

However, in the past few decades, empirical and experimental studies have

documented a number of striking discrepancies between real markets and tradi-

tional models and their theories in terms of both model predictions and assump-

tions. For example, the existence of the so-called market anomalies (e.g. Keim,

1988) and stylised facts (e.g. Cont, 2001) which characterise the dynamics of fi-

nancial markets but are not reconcilable with the traditional finance paradigm.

A detailed review of the rational agent approach and corresponding issues and

debates will be provided in Chapter 2. Those issues and debates provided a ma-

jor motivation for the emergence and development of other approaches to study

financial markets.

In contrast to traditional finance, behavioural finance is built on descriptive

theories of financial markets and their participants. The main difference between

the two approaches is that the former focuses on the modelling of what investors

should do, while the latter emphasises what investors really do. According to

Barberis and Thaler (2003) and Shiller (2003), behavioural finance has two main

building blocks: limits to arbitrage and investor psychology. On the one hand,

limits to arbitrage argues that it can be difficult for rational investors to correct a

mispricing caused by less rational investors through a process known as arbitrage.

When a mispricing occurs, arbitrage can be too costly and risky, thereby allowing

the mispricing to persist for a longer period.

On the other hand, the study of investor psychology uses laboratory experi-

ments of human subject to discover and explain phenomena that are inconsistent

with the narrowly defined rational behaviour in traditional finance paradigm.

Over the past few decades, the behavioural finance literature has documented

well a range of heuristics and behavioural biases which have substantial impact

3



1.1 Background

on investors’ decision making but contradict to the assumption of rationality in

traditional finance (see Shefrin (2000) and Barberis and Thaler (2003) for lists

of known heuristics and biases that can arise in investors’ decision making). The

goal is not only to identify contradictive behaviour to economic rationality, but

also to characterise investor’s behaviour as accurately as possible.

The theory that investors’ behaviour can be described by simple heuristics

and biases which may potentially lead to market anomalies, has been proposed

in behavioural finance. However, an important issue is that those heuristics

and behavioural biases are found through laboratory experiments of individuals

at the micro level. As commented by Rubinstein (2001) and LeBaron (2006b),

how those behavioural quirks of economic actors affect the macro phenomena or

whether they will appear at the macro are difficult questions and they are often ig-

nored in the behavioural finance literature. Moreover, behavioural finance rarely

addresses the evolution prospects of the presence of investors with heuristics and

biases. Whether and how those commonly exhibited heuristics and biases impact

the long-run market dynamics including investor adaptation and the outcome of

market selection is still an open question in the behavioural finance literature.

The answer for this question points to the central debate between traditional

and behavioural finance approaches, and it is important for understanding the

dynamics of financial markets.

Lo (2004) proposed an adaptive markets hypothesis arguing that market effi-

ciency and behavioural alternatives may be reconcilable after applying the princi-

ples of evolution — competition, adaptation, and natural selection — to financial

interactions. The author argued that most counterexamples to economic ratio-

nality, such as loss aversion, overconfidence, overreaction, mental accounting, and

other behavioural biases, are consistent with an evolutionary model of individ-

uals adapting to a changing environment via simple heuristics. Lo (2004, p.24)

states that: “Even at this early stage, though, it seems clear that an evolution-

ary framework is able to reconcile many of the apparent contradictions between

efficient markets and behavioural exceptions. The former may be viewed as the

steady-state limit of a population with constant environmental conditions, and the

4



1.1 Background

latter involves specific adaptations of certain groups that may or may not persist,

depending on the particular evolutionary paths that the economy experiences.”

The framework of adaptive markets hypothesis is in its infancy, and it still

lacks prediction power. However, this framework theoretically highlighted the im-

portance of evolutionary dynamics on resolving conflict between traditional and

behavioural finance, and on understanding the behaviour of financial markets and

market participants.

During the past two decades, another influential approach emerged to tackle

the complexity of financial markets: agent-based modelling of financial markets.

This approach rests on the modelling of financial interactions of market partic-

ipants with a view to studying the emergent properties generated from these

interactions. In agent-based models, financial markets are viewed as complex

evolving systems with interacting groups of learning, boundedly rational, hetero-

geneous agents using rule of thumb strategies (LeBaron, 2006a). Agents learn the

mechanisms governing the economy over time rather than having acquired them

fully before joining the market. Dynamics and emergent properties of the market

are endogenously generated by the model itself as the result of interactions of

market participants.

The literature on agent-based financial market models explores the link be-

tween agents’ bounded rationality, heterogeneity, learning and market dynamics.

Bounded rationality, which is originally proposed by Simon (1957), refers to the

cognitive limitations of agents including limitations of both their knowledge of

market environment and computational capacity. Herbert Simon argued that,

because of these limitations, agents may seek a greater simplified but satisfactory

investment strategy rather than performing optimisation in marking investment

decisions.

In the literature on agent-based financial market models, as reviewed by
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LeBaron (2006a) and Hommes (2006)1, the heterogeneity of agents is commonly

studied in combination with bounded rationality, for example, via modelling dif-

ferent rule of thumb investment styles (e.g. fundamental analysis and technical

trading), different memory spans (observation horizons) in forming expectations,

and different risk attitudes. Learning is studied by modelling the process that

agents adaptively adjust their strategies or expectation rules. This usually in-

volves the modelling of strategy-switching behaviour of agents and software agents

using evolving strategies which are implemented by genetic algorithm or genetic

programming. Agent-based financial market models have the goals to study the

causes of instabilities of financial markets, market selection of investment strate-

gies, and to reproduce and explain stylised facts of financial time series.

1.2 Motivation

A main feature of agent-based modelling of financial markets is that this approach

offers the possibility to transparently model the link between the micro-level be-

haviour of investors and the aggregate market dynamics. In agent-based models,

the aggregate market phenomena can be studied and explained through analysing

agents’ behaviour which are modelled at the micro level. Such an approach is

especially suitable for studying and testing the macro-level impact of heuristics

and behavioural biases documented in the behavioural finance literature. As men-

tioned by LeBaron (2006b), agent-based frameworks can be used as a testbed for

drawing in behavioural results in both experimental and micro level financial mar-

kets. This helps to make sense of which aspects of individual psychology remain

relevant at the macro level.

Moreover, agent-based modelling approach is also suitable to study the long-

run prospects of the presence of individual investors who exhibit various heuristics

and biases. An essential feature of agent-based modelling approach is that it ad-

dresses the dynamics of financial markets via an evolutionary perspective where

1LeBaron (2006a) reviews computational based financial market models, while Hommes
(2006) surveys models which are constructed at least to be partially analytical tractable.
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the terms of competition, learning, adaptation and market selection apply. This

feature is consistent with the suggestion by Lo (2004) on using evolutionary dy-

namics to study financial markets.

According to LeBaron (2011), in the literature on agent-based financial mar-

ket models, there are two commonly used principles of methodology on the study

of evolutionary aspects of financial markets: the passive and active learning.

Passive learning is similar to the Friedman’s type of market selection, that is,

evolutionary forces operating through wealth dynamics. Wealth accumulates on

investment strategies which have done relatively well. The relative wealth of good

investment strategies grows faster than those weaker strategies. Therefore, good

strategies eventually dominate the market and wipe out weaker strategies. Active

learning refers to the learning dynamics by which agents actively choose or switch

among a set of fixed or evolving strategies, with some well defined objective func-

tions in mind.

In the literature on agent-based financial market models, these are two strands

of influential research, evolutionary finance and adaptive belief systems, which

may represent well these two types of learning mechanisms. We include here a

short introduction2 to these two strands of research to illustrate their ideas on

modelling financial markets and corresponding issues. These ideas and issues

provide motivations and inspirations for this research. In addition, these two

approaches form the basis of the financial market model presented in this thesis.

Evolutionary finance (see e.g. the survey by Evstigneev, Hens and Schenk-

Hoppé, 2009) views financial markets as a heterogeneous population of frequently

interacting portfolio strategies in competition for market capital. Market dynam-

ics are driven by mutual feedback between the evolution of asset prices and the

wealth managed by each investment strategy. Investment strategies which possess

more relative wealth have greater impact on the determination of asset prices.

2A more detailed review of evolutionary finance and adaptive belief systems is presented in
Chapter 2.
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Financial markets select good investment strategies in the sense that their rel-

ative wealth grows faster than other competitive strategies. Good investment

strategies eventually survive in market selection and weak strategies die out.

Evolutionary finance maintains a large degree of freedom on the modelling of

investment strategies. The emphasis of this approach is on descriptive modelling

of agents, which shuns any notion of utility maximisation. The main goal of

evolutionary finance is to provide insights for the market selection of successful

investment strategies, especially within a specific set of strategies. Its application

aims to contribute to the portfolio choice of investors and to the valuation of fi-

nancial assets. However, a limitation of evolutionary finance models is that they

do not allow investors to actively switch among different investment strategies.

The models exhibit pure passive learning dynamics.

Brock and Hommes (1997, 1998) proposed a notion of Adaptive Belief Sys-

tem (ABS, thereafter) to study the dynamics of financial markets. The main

idea behind the ABS is that agents exhibit “rational animal spirits” which can

be summarised as the following: i) agents can actively choose, at each date, from

a finite set of different beliefs (expectation rule) of the future price of a risky

asset; ii) belief selection is based on a performance measure such as past realised

profits; iii) the selection is bounded rational in the sense that not all of the agents,

but most of them, choose the belief which has the best past performance.

One key feature of ABS is that it captures adaptive-belief-updating of agents.

The market behaviour including the process of market selection is driven by this

adaptive-belief-updating based on the concept of rational animal spirits. How-

ever, a limitation of ABS is that it is unable to capture the mutual feedback

between the price and wealth. Agents in ABS are assumed to have constant

absolute risk aversion (CARA) utility which causes that the asset price evolves

independently from agents’ wealth. Therefore, ABS exhibits pure active learning

dynamics.
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LeBaron (2011) noted that, both passive and active learning have been exten-

sively studied in agent-based literature in relation to agent adaptation and market

selection (e.g. evolutionary finance and adaptive belief systems). However, stud-

ies of the combination of the two learning mechanisms have been sporadic. Since

the combined learning mechanism may be more relevant to what we may observe

in real markets, Blake LeBaron suggested that future research should take a com-

bined learning mechanism into account in order to build a more realistic model,

and more importantly, to study the interaction between the two different types

of learning mechanisms.

Passive learning can be viewed as the “natural selection” of financial markets,

while active learning involves the “subjective selection” of agents where heuristics

and behavioural biases may become more relevant. For this reason, the subjec-

tive selection of agents may be consistent with or against to the natural selection

of the market. Whether and how agents’ subjective selection affects the natural

selection of market is an important question since it points to the outcome of

the survival of investment strategies and the long-run market dynamics, espe-

cially when heuristics and behavioural biases are involved. However, the answer

for this question has rarely been explored in both agent-based and behavioural

finance literature.

LeBaron (2006a, p.1128) states that: “It is important to note that agent-based

technologies are well suited for testing behavioural theories. They can answer two

key questions that should be asked of any behavioural structure. First, how well

do behavioural biases hold up under aggregation, and second which types of biases

will survive in a coevolutionary struggle against others. Therefore, the connec-

tions between agent-based approaches and behavioural approaches will probably

become more intertwined as both fields progress.” Although agent-based mod-

elling can be used as a powerful tool to study concepts from behaviour finance

as mentioned by LeBaron, existing contributions rarely addressed the confluence

between heuristics-and-biases literature in behavioural finance and agent-based

modelling.
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So far, there are only very few previous contributions which explicitly stud-

ied the market impact of heuristics and behavioural biases. Examples of these

studies are Lux and Marchesi (1999, 2000), Takahashi and Terano (2003) and

Lovric et al. (2009). Lux and Marchesi (1999, 2000) studied social interaction

between investors and herding. Takahashi and Terano (2003) focused on in-

vestors’ overconfidence and loss aversion. Lovric et al. (2009) investigated the

effect of investors’ sentiment in expectation. However, none of these approaches

used both passive and active learning to study the long-run prospects of these

heuristics and biases.

1.3 Research Questions

Based on the issues and motivations mentioned above, this thesis aims to con-

tribute to the confluence between agent-based modelling of financial markets

and behavioural finance. We strive to develop an agent-based financial market

model which combines both passive and active learning to study concepts from

behavioural finance. This research has the objectives: i) to explore the inter-

linkage between investor heterogeneity, bounded rationality, behavioural biases

and the aggregate market dynamics; ii) to provide insights for understanding the

interaction of passive and active learning dynamics, especially when behavioural

biases are relevant; iii) to study the macro-level market impact and the long-run

prospects of some important heuristics and behavioural biases documented in be-

havioural finance.

In order to achieve these research objectives, we consider the following re-

search questions.

Research Question 1

What behavioural aspects of investors may potentially and substantially impact

their financial decisions and the dynamics of financial markets?
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1.3 Research Questions

The complexity of financial markets stems from the mutual dependence be-

tween trading activities of market participants and market reactions (such as

price dynamics) in response to market participants’ trading behaviour. Under-

standing behavioural factors which affect market participants’ trading activities

is important for studying the dynamics of financial markets. The answer for this

research question helps us to identify important behavioural factors of market

participants, through which we can take these behavioural factors into account

when constructing the financial market model.

In the past few decades, the behavioural finance literature has made a substan-

tial progress on studying and characterising investors’ behaviour. The literature

on agent-based financial market models has also identified a number of important

behavioural factors (regarding investor heterogeneity and bounded rationality)

which may have remarkable impact on the market dynamics. In order to find

the answer for research question 1, we conduct a literature survey (presented

in Chapter 2) on behavioural finance and agent-based financial market models.

We list a number of well-known heuristics and biases of investors documented in

behavioural finance literature. We also review and discuss some important be-

havioural phenomena that have been studied in agent-based literature. The goal

is to extract behavioural elements which have been identified to be important in

shaping market dynamics.

Research Question 2

How to develop an agent-based financial market model which combines pas-

sive and active learning and maintains a large degree of freedom on modelling

investors’ behaviour?

As discussed previously, the combination of passive and active learning is im-

portant for studying investor adaptation, market selection of investment strate-

gies, and the long-run market behaviour. Understanding the interaction between

passive and active learning is crucial for the study of evolutionary prospects of

the presence of investors with heuristics and biases. In order to study the effects
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of various heuristics and biases of investors, we need a framework which main-

tains a large degree of freedom on modelling investor behaviour so that different

heuristics and biases can be added and implemented.

In the literature on agent-based financial market models, evolutionary finance

models suit our needs for the degree of freedom on modelling of investors’ be-

haviour. However, evolutionary finance models are based on pure passive learning

dynamics. In contrast, ABS models have the advantage on characterising pure

active learning dynamics. Based on these considerations, we develop an agent-

based model which combines the strategy-switching mechanism of an ABS model

(Brock and Hommes, 1997) and an evolutionary finance model (Evstigneev, Hens

and Schenk-Hoppé, 2011).

This new model inherits the advantages of evolutionary finance approach: i) it

maintains a large degree of freedoms on modelling of agents’ behaviour — utility

maximisation is not necessary; ii) multiple risky assets are allowed and increas-

ing the number of risky assets is straightforward. The model also draws on the

strength of ABS model by allowing investors to actively move their wealth among

different investment strategies based on the past performance of each strategy.

Moreover, our approach allows the coexistence of switching investors and non-

switching investors. The main feature of this new model is that it captures the

interaction between passive and active learning.

Research Question 3

How does investors’ strategy-switching affect the price dynamics and the evo-

lution of distribution of wealth managed by each investment strategy, especially

when investor heterogeneity, bounded rationality and behaviour biases are associ-

ated with strategy-switching?

The research question points to the impact of the interaction between passive

and active learning on the price dynamics of financial market. It addresses the

role of investors’ subjective selection of investment strategies in affecting the nat-

ural selection of by the market. Depending on behavioural aspects of investors,
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their subjective selections may not always be consistent with the natural selection

of the market. This may affect the result of the survival of investment strategies

leading to different market dynamics in the long-run.

To answer this research question, our approach allows investors to actively

switch among different agent types such as the fundamentalist and trend fol-

lower. Investors bring (or take away) their wealth when they join (or leave)

each agent type. We model a variety of behavioural factors regarding investor

heterogeneity, bounded rationality, heuristics and behavioural biases which may

impact investors’ strategy-switching, such as differences of opinion of investors,

better-than-average overconfidence, recency bias in performance evaluation, con-

servatism bias and herding. We conduct a series of simulation experiments to

quantify the macro-level market impact of these behavioural phenomena associ-

ated with strategy-switching, and to study the long-run outcome for the survival

of investment strategies and market dynamics.

Research Question 4

How do behavioural factors such as observation horizons, sentiment (optimism

or pessimism), and recency bias affect investors’ forecasting and the aggregate

market dynamics?

This research question is related to the impact of investors’ forecasting (ex-

pectations) about the future asset returns on the aggregate market dynamics.

Previous contributions in the literature on agent-based financial market models

(see heterogeneous agent models surveyed by Hommes, 2006) have shown that

the mutual feedback between investors’ expectations and the price dynamics is

critical. Motivated by this finding, our research question 4 addresses the roles

of some important behavioural factors such as observation horizons, sentiment

(optimism or pessimism), and recency bias in affecting investors’ expectations of

asset returns and the price dynamics.

These behavioural factors are commonly studied in relation to the trend fol-

lowing behaviour, or equivalently, the positive feedback trading of investors. The
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trend following behaviour itself is often regarded as a manifestation of investor

sentiment and recency bias in forecasting (see, e.g. De Long et al., 1990; Bar-

beris, Shleifer, and Vishny, 1998). In both agent-based and behavioural finance

literature, the presence of trend followers have been identified as an important

source of instability and mispricing in financial markets. However, previous con-

tributions which explicitly studied the impact of sentiment and recency bias on

the trend following behaviour are rare.

In order to better understand the impact of observation horizons, sentiment

and recency bias on the trend following behaviour, we focus on explicit micro-

level modelling of these behavioural factors of trend followers and studying their

macro-level impact on the price dynamics.

1.4 Outline of the Thesis

Chapter 2

The next chapter presents a literature survey which covers traditional finance

with Market Selection Hypothesis and Efficient Market Hypothesis, behavioural

finance with a list of heuristics and biases, and agent-based financial market

models with an introduction to their market designs and a review of previous

contributions. However, it is not our intention to provide a comprehensive review

of each subject due to the vast body of the literature. The goal is to highlight

important issues and central debates in economics and finance, and to give refer-

ences to previous contributions which strive to tackle those issues and are closely

related to our research by providing motivations, techniques, or inspirations.

Chapter 3

In Chapter 3, we develop a dynamic equilibrium model of a financial market

in the presence of heterogeneous, boundedly rational agents. We explain how an

evolutionary finance model and a strategy-switching mechanism in an ABS model

are combined with focus on the modelling of various behavioural phenomena that

are associated with investors’ strategy-switching. We derive explicit solutions to
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the model in terms of asset prices and agents’ wealth. A basic analysis of the

existence and location(s) of steady state(s) is carried out. The aim is to investi-

gate in our model the impact of some key parameters such as the risk-free rate of

return and consumption rate on the aggregate economy. Since those parameters

govern the expansion and shrinkage of the economy, they consequently affect the

location(s) of the steady state(s) of the model. We present specifications for three

agent types: fundamentalist, trend follower, and noise trader. Model dynamics

will be explored by numerical simulations in the next two chapters.

Chapter 4

Based on the model presented in Chapter 3, this chapter explores numerically

the impact of investors’ strategy-switching behaviour and its related behavioural

biases and on the aggregate market dynamics. A variety of behavioural phenom-

ena in strategy-switching such as investor overconfidence, differences of opinion,

recency bias in performance evaluation, conservatism bias and rational herding

will be addressed. Our analysis focuses on investigating: i) the macro-level mar-

ket impact and evolutionary prospects of these behavioural phenomena; ii) the

interaction between passive and active learning and its outcome for the survival

of investment strategies and long-run market dynamics. Our results point to

new ideas on understanding the survival of investment strategies. Some persis-

tent market phenomena at the macro level such as excess volatility, high trading

volume and equity premium can be explained by investors’ strategy-switching be-

haviour through tracing down to the micro-level foundation of investors’ heuristic

and behavioural biases.

Chapter 5

This chapter extends the model and analysis presented in previous two chapters

to address the roles of observation horizons, sentiment (optimism and pessimism)

and recency bias in affecting the trend followers’ forecasting about future asset

returns. Heterogeneous observations horizons of trend followers and switching

among different observation horizons are allowed. We analyse numerically the

impact of these behavioural elements on the trend followers’ strategic behaviour

as well as on the aggregate market dynamics. We offer a new idea on allowing
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behaviour aggregation via introducing and modelling a collective behaviour of the

trend followers who have different observation horizons. This helps to understand

the aggregate market dynamics such as the price dynamics, especially when the

number of different observation horizons is large. The results documented in this

chapter point to the causes of a number of stylised facts such as the absence of

autocorrelation in asset returns, volatility clustering, negative skewness and ex-

cess kurtosis in return distribution.

Chapter 6

In the last chapter, we provide a summary and closing remarks of our approach

on studying the dynamics of financial markets and our results. We introduce and

discuss future research directions.
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Chapter 2

Literature Review

2.1 Financial Market Theory

Dynamics of financial markets are characterised by a strong mutual dependence

between the trading behaviours of market participants and the market environ-

ment in which trading behaviours are realised and evaluated. In order to under-

stand the market dynamics, economic and finance theories face the central issue

on how to model the behaviour of market participants.

The traditional approach in economics and finance rests on the assumption

that the mass of investors can be considered as a representative, perfectly rational

agent. Rational behaviour, by and large, can be summarised by two related but

different concepts. The first addresses agents’ decision making behaviour (e.g.

the expected utility theory in Von Neumann and Morgenstern, 1944). Given an

agent’s risk preferences and constraints, decision rule is derived from maximising

his or her expected utility, and adheres to the axioms of expected utility theory

or at least Savage’s notion of Subjective Expected Utility (Savage, 1954). The

second concept is related to agents’ expectations of future events (e.g. rational

expectation hypothesis in Muth, 1961 and Lucas, 1972). Agents are assumed

to be able to form rational expectations about future market outcomes, that is,

as summarised by Hommes (2006): “Beliefs are perfectly consistent with reali-

sations and a rational agent does not make systematic forecasting errors. In a

rational expectations equilibrium, forecasts of future variables coincide with the
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mathematical conditional expectations, given all relevant information.” Based on

the framework of a representative rational agent, seminal works including port-

folio optimisation rules by Markowitz (1952) and Merton (1971), the static and

intertemporal Capital Asset Pricing Model (CAPM) of Sharpe (1964), Lintner

(1965), Mossin (1966) and Merton (1974), and the Efficient Market Hypotheses

by Fama (1970) have long been a dominating paradigm in economics and finance.

Despite the dominance of this rational agent approach in the economic and

finance literature, there had always been disagreement with the extreme assump-

tion that economic agents behave rationally. Keynes (1936) argued that investors’

sentiment and market psychology play an important role in financial markets. It

is costly or impossible for investors to gather all relevant information to com-

pute an objective measure of market fundamentals. Furthermore, Simon (1957)

highlighted the fact of the limited capacity of human mind and computational

abilities in gathering and analysing all aspects of a decision-marking problem in a

complex environment. Due to these limitations, Simon argued that an “economic

man” seeks a greater simplified but satisfactory solution rather than arriving at

the optimal solution in decision-making process. Simon’s view gave the birth

to bounded rationality, and emphasised that modelling an economic man with

bounded rationality rather than perfect rationality with optimal decision rules

may be more accurate and realistic. This view was supported by studies of psy-

chology laboratory experiments. For example, experimental evidence provided by

Kahneman and Tversky (1973, 1979, 1986) had shown that human individuals

often do not behave fully rational, possibly biased, in making investment deci-

sions under uncertainty. Kahneman and Tversky documented that individual be-

haviour under uncertainty can best be described by simple heuristics and biases.

Likewise, De Bondt (1998) pointed out that, over the past decades, psychologists

and behavioural scientists have documented robust and systematic violations of

principles of Expected Utility Theory, Bayesian Learning, and Rational Expec-

tations - questioning their validity as a descriptive theory of decision making.

To clarify and and defend the assumption of agents’ rational behaviour, Lucas

(1978, p.1429) argued that “As Muth (1961) made clear, this hypothesis (rational
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expectation) like utility maximisation is not ‘behavioural’: it does not describe the

way of agents think about their environment, how they learn, process informa-

tion, and so forth. It is rather a property likely to be (approximately) possessed

by the outcome of this unspecified learning and adapting.”. Here, the “outcome”

is related to the two important hypotheses in the finance literature, that is, the

Market Selection Hypothesis of survival agent and the Efficient Market Hypothe-

sis. These two hypotheses have long been the central subjects of debate in finance.

Those ongoing debates played an important role in stimulating and motivating

other approaches which are beyond the rational agent framework on studying

financial markets, such as the behavioural finance and agent-based models of fi-

nancial markets. Our research addresses the two cental subjects of debate by

linking behavioural finance and agent-based financial market models.

2.1.1 Market Selection

The market selection hypothesis originated from the arguments documented by

Alchian (1950) and Friedman (1953). These authors argued that, by and large,

markets favour rational agents over irrational agents. Profit or utility maximis-

ing agents with correct beliefs will survive in the long run, while others who do

not optimise will be driven out of the market. The evolutionary competitions

would eventually lead to the same outcome as the case where agents act as if

they were rational. The so-called “as if” argument in Friedman (1953), as being

made clearly and prominently by Conlisk (1996) (“The question is not whether

people are unboundedly rational; of course they are not. The question is whether

they act approximately as if unboundedly rational; they do.(p.683)”), has long

been used in economics and finance to defend the use of unrealistic assumptions

of agents’ rationality.

Alchian and Friedman’s view of market selection highlighted the role of opti-

misation and evolutionary forces in wealth dynamics, and the consistency between

the outcome of market selection and the assumption of rational agents, which is

a central idea in support of the “as if” rationally. Based on this view, economists
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and financial experts can take a shortcut to the outcome by assuming rational

agents from the beginning. Therefore, the question whether Friedman’s hypoth-

esis is valid becomes a crucial issue in justifying the rational agent approach, and

more importantly in understanding the dynamics of financial markets.

Motivated by this issue, the process of market selection has been widely stud-

ied in the economics and finance literature, especially in models with heteroge-

neous agents. One direction of research on market selection in a heterogenous

world is similar to Alchian and Friedman’s idea, the process of market selection is

studied based on evolutionary forces operating through wealth dynamics. Previ-

ous contributions, e.g. Sandroni (2000), Blume and Easley (1992, 2006) and the

evolutionary finance literature surveyed in Evstigneev, Hens and Schenk-Hoppé

(2009), are in line with this direction of research. These authors showed that the

answer to Friedman’s hypothesis is subject to conditions such as the cost of ratio-

nal optimisation, completeness of the market, bounded or unbounded aggregate

endowment, and so on. For example, in the presence of deliberation cost, survival

logic may favour a cheap rule of thumb over a costly optimisation (Conlisk, 1996).

Traders with correct beliefs survive in the long run, in a complete market model

with bounded aggregate endowment (Blume and Easley, 2006).

In the finance literature, the market selection process and its effect have also

been extensively studied with focuses on asset pricing and the outcome of agents’

adaptive learning. Fama (1965) and Cootner (1964) argued that markets will

select for rational investors, by which assets will eventually be priced efficiently

(close to assets’ intrinsic value). Similar arguments are agents can learn how

to form rational expectations (e.g. Grossman and Stiglitz, 1976); forces of mar-

ket selection can lead to the convergence to rational expectations equilibria (e.g.

Bray, 1982 and Blume and Easley, 1998). These arguments point to another di-

rection of research on the process of market selection in a heterogenous world.

This direction focuses on the link between agents’ adaptation, learning and the

convergence to rational expectations equilibria.
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The seminal work Brock and Hommes (1997) is a good example of this direc-

tion of research in the literature on agent-based financial market models. One

novel idea of Brock and Hommes’ approach is that the process of market selec-

tion is studied via agents’ adaptive learning rather than evolutionary competition

in wealth dynamics. Agents are assumed to have unbounded budgets. Agents’

adaptation and learning are modelled via a belief updating process, that is, given

a fixed set of beliefs (expectation rules), agents switch between different beliefs

according to the past performance of each belief. The past performance of each

belief is measured by the realised profit from the previous period of trade. The

survival and extinction of each belief is measured by its population proportion.

The authors modelled a scenario that a costly rational expectation rule versus a

cheap naive expectation rule (which predicts tomorrow’s price equals yesterday’s

price). They showed that when the intensity of switching is high, the cheap naive

expectation rule will survive in market selection and chaotic price fluctuations

will ensue.

Summarising, the market selection hypothesis played an important role in the

emergence and development of heterogenous agent models. The two directions of

research on the process of market selection revealed that the outcome of market

selection is highly conditional.

2.1.2 Market Efficiency

The concept of market efficiency is another central issue of debate in the eco-

nomics and finance literature. According to Fama (1970), an efficient market,

known as efficient market hypothesis, is defined as a market in which prices fully

reflect all available information. There are three versions of the hypothesis, and

are labelled as “weak”, “semi-strong” and “strong”. The weak-form efficiency is

concerned with the full reflection of all past market information. The semi-strong-

form efficiency is concerned with the full reflection of all public information. The

strong-form efficiency claims that price fully reflect all information from public
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and private sources including hidden or inside information.

The concept of rational expectations is the theoretical underpinning of the ef-

ficient market hypothesis. Since rational expectations require that agents exploit

all relevant information to form their expectations about future market outcomes,

efficient market hypothesis predicts that, prices are perfectly random and hence

exhibit random walk behaviour. This view of market efficiency is interwind with

random walk models (e.g. Malkiel, 1973). In the weak-form efficiency, future

price changes cannot be predicted, and excess returns cannot be consistently

archived from analysing the past information such as past prices. Similarly, the

semi-strong-form efficiency implies that no one can consistently earn excess re-

turn based on public information. In the strong-form of efficiency, all prices in

financial markets are correct and reflect market fundamentals. In this case, no

one can consistently earn excess return.

However, a range of empirical studies led to the discussions of the so called

anomalies and stylised facts characterising the dynamics of financial markets but

are not reconcilable for the rational expectations and efficient market hypoth-

esis paradigm. Shiller (1981) found that the movements in stock prices are

much larger than movements in underlying economic fundamentals. Historical

evidence stressed by Frankel and Froot (1986) and econometric test by West

(1988) confirmed the existence of excess volatility in real financial market. Fur-

thermore, other important stylised facts such as fat tails, excess kurtosis and

negative/positive skewness in return distributions, volatility clustering, as well

as some market anomalies including large price excursions from fundamentals,

asset bubbles and equity premium are not well understood under the standard

paradigm with rational agent and market efficiency. These issues appeal alterna-

tive approaches on studying financial markets.
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2.1.3 Behavioural Finance

A possible reason behind the discrepancy between empirical findings and the

predictions of traditional finance models may be attributed to the unrealistic

assumption of rationality. Behavioural finance studies market anomalies by ad-

dressing the validity of the assumptions of rational decision-making and util-

ity maximisation through laboratory experiments of individuals. As defined by

Frankfurter and McGoun (2000, p.201): “Behavioural finance, as a part of be-

havioural economics, is that branch of finance that, with the help of theories from

other behavioural sciences, particularly psychology and sociology, tries to discover

and explain phenomena inconsistent with the paradigm of the expected utility of

wealth and narrowly defined rational behaviour. Behavioural economics is mostly

experimental, using research methods that are rarely applied in the traditional,

mainstream finance literature.”

According to Barberis and Thaler (2003), behavioural finance is built on two

pillars: i) limits to arbitrage and ii) market psychology. In contrast to the efficient

markets theory which believes that the mispricing of financial assets and its re-

lated arbitrage opportunities will be quickly exploited by rational traders leading

to market efficiency, the concept of “limits to arbitrage” argues that arbitrage can

be too costly, too risky, or simply impossible due to various constraints, so the

market inefficiencies may persist for a longer period (Barberis and Thaler, 2003).

Moreover, as reviewed by Rabin (1998) and Barberis and Thaler (2003), previous

studies of market psychology in behavioural finance have documented extensive

experimental evidence for departures from rational behaviour of investors. The

aim of these studies is not only to find boundedly rational or irrational behaviour

(of investors) which contradicts to the assumption of perfect rationality, but also

to describe investors’ behaviour as accurately as possible. The goal is to identify

and characterise heuristics and biases which are commonly carried by investors

in decision-making and study their effects.

In the past a few decades, the behavioural finance literature has documented

a variety of psychological heuristics and behavioural biases which my have sub-
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stantial impact on investors’ decision-making and trading activities. Here, we list

some important and well-known heuristics and biases. We describe and discuss

briefly their definitions and effects. It is not our intention to give in this chapter a

comprehensive review of all heuristics and biases studied in behavioural finance,

but to explain and highlight those which are closely related to this research.

Loss Aversion

Loss aversion describes the phenomenon that individuals are physiologically more

sensitive to potential losses than potential gains. Behavioural finance considers

that investors are not always risk averse as suggested in the mainstream finance

but loss averse. Tversky and Kahneman (1984) showed that individuals tend to

strongly prefer avoiding losses to acquiring gains. Moreover, Tversky and Kahne-

man (1984, p.341) stated that: “the psychophysics of value induce risk aversion

in the domain of gains and risk seeking in the domain of losses.” Loss aversion is

one of the central ideas behind the influential work of Prospect Theory proposed

by Tversky and Kahneman (1979).

Representativeness and Availability

Kahneman and Tversky (1974) show that people rely on a heuristic of repre-

sentativeness in forming subjective judgment. Representativeness refers to the

phenomenon that: “the subjective probability of an event, or a sample, is deter-

mined by the degree to which it: (i) is similar in essential characteristics to its

parent population; and (ii) reflects the salient features of the process by which it

is generated” (Kahneman and Tversky, 1974, p.25). In other words, representa-

tiveness describes the tendency for people to categorise some events as typical or

representative. This heuristic causes people to arrive at wrong judgements since

the more representative events does not necessarily imply that they are more

likely to happen. One example is that people judge the stock market changes

as “bullish” or “bearish” market without paying attention to the likelihood that

successive changes of price along one direction may rarely happen.

As shown in Kahneman and Tversky (1974), availability is another important

heuristic according to which people assess the frequency of class or the probabil-
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ity of an event by how easy they can be brought to mind (e.g. how easy to be

remembered or how easy it is to think of examples).

Overconfidence

In the literature of behavioural finance, there are two distinct manifestations of

investor’s overconfidence, miscalibration and better-than-average effect. Miscali-

bration refers to the tendency to overestimate the precision of one’s information.

For example, Shefrin (2000) states that when people are overconfident, they set

overly narrow confidence bands in their predictions. Therefore, they get sur-

prised more frequently than they anticipated. Similarly, Benos (1998), Caballé

and Sákovics (2003), and Odean (1998) regard the phenomenon that investors

underestimate the variance of a risky asset or overestimate its precision as a form

of overconfidence. This type of overconfidence is known as miscalibration.

Different to miscalibration, a more general definition of overconfidence is that

people overestimate their own capabilities, usually with respect to the average

capability of others. For example, in the papers of Shiller (1999), Barberis and

Thaler (2003), Hong and Stein (2003), and Glaser and Weber (2007), the phe-

nomenon that people tend to judge themselves as better than others with respect

to skills or information is regarded as a form of overconfidence. This is known

as better-than-average overconfidence. Previous studies show that both types

of overconfidence are able to cause high trading volume in financial markets.

However, Glaser and Weber (2007) suggest that, even though widely used, mis-

calibration may not be the best proxy for overconfidence. Through an empirical

study with combined psychometric measures of judgment biases (overconfidence

scores) and field data (trading records), they could not relate measures of mis-

calibration to measures of trading volume, whereas they could do so with the

better-than-average overconfidence.

Conservatism

Conservatism bias describes the phenomenon that people react conservatively

to new information, and therefore they are too slow to change an established

view. According to Ritter (2003, p.434): “Conservatism suggests that when things
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change, people tend to be slow to pick up on the changes. In other words, they

anchor on the ways things have normally been. When things change, people might

underreact because of the conservatism bias. But if there is a long enough pattern,

then they will adjust to it and possibly overreact, underweighting the long-term

average.”

Recency Bias

Recency bias refers to the tendency of investors to assign more importance to

more recent observations compared to those farther in the past. Kahneman and

Tversky (1973) find that people usually forecast future uncertain events by fo-

cusing on recent history and pay less attention to the possibility that such short

history could be generated by chance.

These evidence of heuristics and biases which are obtained from laboratory ex-

periments of individuals confirm the view of bounded rationality of Simon (1957).

Simon’s framework of bounded rationality and the heuristics and biases literature

may be able to offer possible explanations for some empirical puzzles or anomalies

which cannot be explained in traditional finance literature. However, as pointed

out by Lo (2004), the evolutionary perspectives of financial markets in terms of

competition, adaptation and natural selection are often ignored in Simon’s frame-

work and behavioural finance. The long-run prospects of the effects of investors’

heuristics and biases have been rarely explored in the behavioural finance liter-

ature. Lo (2004) suggests that applying the principles of evolution to financial

interaction may provide insights for understanding market dynamics as well as

the effects of heuristics and biases.

Moreover, in the behavioural finance literature, heuristics and biases are found

based on experiments of individuals at the micro level. How these behavioural

quirks affect the dynamics of financial markets at the macro level or whether they

will appear at the macro level are difficult questions. These important questions,

as criticised by Rubinstein (2001) and LeBaron (2006b), are often ignored by

many of behavioural finance literature. LeBaron (2006a, 2006b) pointed out that

using agent-based financial market models to study concepts from behavioural
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finance may help to provide insights for understanding the macro-level market

impact of heuristics and biases of individual investors.

2.2 Agent-Based Modelling of Financial Mar-

kets

The agent-based modelling approach serves itself as a bridge between disciplines of

mathematics, economics, computer science, physics, psychology and many others

(Axelrod, 1997). The field of agent-based modelling of financial markets brings

multidisciplinary researchers to enrich our understandings of dynamics of finan-

cial markets. This branch of research is rooted in a vast body of literature with

different taxonomies, for examples, agent-based computational economics (e.g.

Tesfatsion, 2001, 2002, 2006) and its sub-discipline agent-based computational

finance (e.g. LeBaron, 2006a), heterogenous agent models (e.g. Hommes, 2006),

microscopic simulation (e.g. Levy, Levy, and Solomon, 2000), econophysics (e.g.

Lux and Marchesi, 1999, 2000) and evolutionary finance (Evstigneev, Hens and

Schenk-Hoppé, 2009). For convenience, we refer to models in this broad research

area as agent-based financial market models.

The main idea behind this branch of research is that financial markets can

be studied via models of artificial financial markets. In these models, finan-

cial markets are viewed as complex evolving systems with interacting groups of

learning, boundedly rational, heterogeneous agents. Agents exhibit rule-governed

behaviours by means they follow some simple “rule of thumb” that have been

proven useful in the past to make their investment decisions (LeBaron, 2006a).

In such an approach, the macro dynamics of the economy can be understood by

analysing the micro interaction of agents, in which emergent properties arise en-

dogenously rather than being imposed exogenously. This novel approach has also

been known as “bottom-up” approach, and it has the intention to overcome the

limitations of traditional approach which is restricted to the extreme assumption

of rationality. As motivated in the previous section, issues of market selection of
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survival agents, efficient market and the interlinkage between agents’ behaviour

at the micro level and market phenomena at the macro level have been the central

topics in the studies of agent-based models in economics and finance. Replicating

and explaining a variety of stylised facts of financial markets is also an important

objective for these agent-based models.

The main advantage of the agent-based approach is that it maintains a large

degree of freedom on modelling financial markets and the behaviour of the market

participants. As mentioned in Chan et al. (1999, p.6): “Agent-based models can

easily accommodate complex learning behaviour, asymmetric information, hetero-

geneous preferences, and ad hoc heuristics.” However, the large degree of freedom

of agent-based approach causes existing models to differ significantly in many as-

pects, such as the main tools which are used in the development and analysis

of models, and market designs including the type and numbers of assets, agents’

investment strategies and learning, time (discrete or continuous), price formation

mechanisms, and so on. This in turn causes the existing contributions in the

literature vary in market phenomena they explained, and the number of stylised

facts they reproduced. In the remainder of this section, we sketch an overview of

agent-based models in finance and economics with focus on introducing the main

tools that are used to develop models, and different market designs.

2.2.1 Analytical and Computational Methods

In the vast body of contributions of the literature on agent-based financial mar-

ket models, one can roughly recognise two groups of approaches. The first group

consists of models which, at least to some extent, are analytical tractable. In

this group, mathematics is the main tool in deriving models. Mathematics in

combination of numerical tools are employed in analysing model dynamics. This

group of models is extensively surveyed by Hommes (2006). In the second group,

models are developed by using modern computer techniques. Analysis of the

model dynamics relies on numerical simulations. See LeBaron (2006a) for exten-

sive survey of those computational approaches.
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Analytical models or partially analytical tractable models have the advantage

that their dynamics can be at least partially studied by mathematics. Theo-

retical reasoning for the causes of the interesting model dynamics may be pro-

vided analytically. The basic idea of this type of modelling approach is that

financial markets with interacting agents can be treated as a nonlinear dynam-

ical system, in which dynamics can be studied by analysing the existence and

location(s) of steady state(s) and investigating the stability conditions for the

steady state(s). Bifurcation and chaos theories may be applied to help under-

stand the resulting model dynamics. See examples of these approaches in Day

and Huang (1990), Chiarella (1992), Lux (1995,1997,1998), Brock and Hommes

(1997,1998), Chiarella and He (2001, 2002), Chiarella, Dieci and Gardini (2002,

2006), Gaunersdorfer and Hommes (2007), Evolutionary Finance models see sur-

vey in Evstigneev, Hens and Schenk-Hoppé (2009), and many others to quote

only a few. However, a drawback of analytical models is that there are many

limitations on what can be modelled, solved, or proven analytically.

Unlike analytical models, computational models offer a much higher degree

of flexibility. The advantage of the computational models is attributed to the

absence of restrictions on the side of assumptions. Computational models can be

used to extend existing analytical models by inspecting the role of their assump-

tions, to develop new models that can capture more realistic elements. Dynamics

can be characterised and understood by numerical simulations. This may over-

come the limitations of analytical models which are restricted to mathematical

tractability.

For example, agents’ investment behaviour in analytical models is usually

modelled by a simple investment strategy and it is assumed that the strategy

stays fixed over time to ensure mathematical tractability. In contrast, compu-

tational models may use genetic algorithm and genetic programming to capture

more complex behaviour of agents such as allowing investment strategies evolving

over time. See seminal contributions e.g. Arthur, Holland, LeBaron, Palmer, and
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Tayler (1997), LeBaron, Arthur, and Palmer (1999), Chen and Yeh (2001). How-

ever, as noted by LeBaron (2006a), the research questions in these computational

approaches with genetic algorithms sometimes have more focus on developing and

testing the genetic algorithms rather than focusing on explaining financial issues.

Ghoulmie, Cont and Nadal (2005) also point out that although computational

models have the strength in producing stylised facts in finance such as fat tail,

excess volatility, and volatility clustering in return series, due to the complexity

of these models it is not always clear which part of the model is responsible for

generating those stylised facts.

2.2.2 Market Design

The design of the market is a central issue in agent-based modelling of financial

markets since it determines the emergent properties that can be observed and

studied. As surveyed by LeBaron (2006a), existing models in the agent-based

literature differ in many aspects of market design. These design issues can be

briefly categorised as assets, agents, learning, market mechanism, and time.

Asset

The assets which are traded by agents are one of the most important elements in

building an artificial financial market. Models of agent-based financial markets

have to deal with aspects of (i) type of assets, (ii) number of assets.

Regarding the type of assets, most of models assume that there are two types

of assets that are available for trading, namely, a risk-free asset and a risky asset.

The risk-free asset usually refers to cash in a bank account or a bond which pays

a rate of interest. The risky asset sometimes refers to stock, currency or other

forms of financial security. This kind of asset is risky in terms of their prices and

payoffs. In the case of stock shares, the risky assets may pay dividends. The

fundamental value of the risky asset can be modelled via an exogenous stochastic

process (e.g. Farmer and Joshi, 2002) or through a discounted stream of dividends
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(e.g. Brock and Hommes, 1998).

Regarding the number of assets, the most commonly seen approach is that

the market only consists of one risk-free and one risky asset. The single risky

asset usually represent a stock index (like S&P 500 index). This market setting

helps to simplify the market environment so that the aggregate dynamics such

as dynamics of stock index can be studied conveniently. Moreover, the two-asset

type of models are consistent with the so-called two-fund separation theorem (e.g.

Tobin, 1958). Another approach is to allow multiple risky assets to be traded by

agents. Studies of multi-asset models usually have the goal to explore agents’

asset allocation problem with focus on the effect of the correlation between risky

assets (Chiarella, Dieci and He, 2007), or the market selection of portfolio rules

(Evstigneev, Hens and Schenk-Hoppé, 2009).

Agents and Learning

The design of agents plays an important role in the development of agent-based

models in economics and finance since many important concepts such as het-

erogeneity, bounded rationality and learning are associated with the design of

agents. According to the literature survey by LeBaron (2006a) and the more

recent one Chen et al. (2012), the design of agents can be “labelled” as N-type

and autonomous.

In the N-type agent design, a typical example is the so-called fundamentalist-

chartist models, where agents are labelled as ”fundamentalist” and ”chartist”.

Fundamentalist refers to those investors whose trade are based on a perceived

fundamental value of a risky asset. If the asset is overvalued (the price is above

the fundamental value), a fundamentalist will take a short position. If the asset

is undervalued (the price is below the fundamental value), a fundamentalist will

take a long position. In contrast, the chartists are those investors whose trade

are based on the “pattern” exhibited in past prices. One type of chartist is that

investors try to extrapolate past movements of the price into the future, and they

trade by following the trend identified in the past prices. This type of traders has

also been known as trend followers. Another type of chartist is called contrarian
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traders who follow the opposite of the trend identified in the past prices. Besides

the fundamentalist and the chartist, there is another commonly seen agent type

which is called “noise trader” or “zero-intelligence trader”. This type of agent

basically trade randomly to provide liquidity and randomness to the markets.

The N-type agent design is usually concerned with static parameterised strate-

gies. Agents’ adaptive learning behaviour can be modelled at different levels.

There is no adaptation in models with only zero-intelligence traders since they

trade randomly, while a weak adaptation in models in which agents stick to those

static parameterised strategies. Adaptive learning in the N-type agent design can

be modelled by allowing agents to switch between a fixed set of static parame-

terised strategies. One good example along this line is the Adaptive Belief System

which is proposed by Brock and Hommes (1997,1998).

The autonomous agent design is based on computer models. In contrast to the

N-type agent design, the main idea of autonomous agent models is to allow agents

discover investment strategies on their own rather than choosing from a fixed set

of static strategies. Studies in this area use techniques of genetic algorithms and

genetic programming to model the coevolution of investment strategies and mar-

ket dynamics. These studies have an intention to model agents’ behaviour more

realistically. However, such an approach increases greatly the complexity of the

modelling.

It is natural that the complexity of models would increase along with the in-

crease in number of different agents, or from N-type agents to autonomous agents.

Chen et al. (2009) asked a sharp question on whether the increase in complexities

of models would help to gain additional explanatory powers. LeBaron (2006a)

suggested that the ability to reproduce stylised facts of finance could be poten-

tially served as a benchmark in assessing the validity and explanatory powers of

agent-based models in finance. For this reason, Chen et al. (2012) surveyed 50

agent-based financial market models on their ability in reproducing stylised facts.

Among the 50 models, there are 38 N-type models and 12 autonomous agent mod-

els. The constituents of the N-type models are 18 (47%) 2-type models, 9 (24%)
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3-type models, and 11 (29%) many-type models. The authors showed that, first,

the increase in the number of different types of agents does not significantly in-

crease both the number and types of different stylised facts that those models can

reproduce. Second, autonomous agent models do not have stronger ability than

N-type models in reproducing stylised facts in terms of the number of stylised

facts and different types of stylised facts.

In relation to the learning dynamics of agent-based financial market model,

LeBaron (2011) stressed two important but different types of learning: passive

and active learning. Passive learning refers to the phenomenon that wealth ac-

cumulates on investment strategies which have done relatively well. The relative

wealth of good investment strategies grows faster than those weaker strategies.

Therefore, good strategies eventually dominate the market and wipe out weaker

strategies. In the case of pure passive learning, investors do not change or switch

among different investment strategies. Passive learning is similar to Friedman’s

idea on market selection. In agent-based literature, evolutionary finance models

(Evstigneev, Hens and Schenk-Hoppé, 2009) serve a good example of pure passive

learning.

Active learning refers to the phenomenon that there exists an active attempt

for agents to switch among a set of fixed or evolving strategies, with some well

defined objective functions in mind. In the case of pure active learning, investors

have infinite budgets and the survival or distinction of investment strategies de-

pends only on the population size of each strategy (i.e. the number of investors

who choose each strategy). The model proposed by Brock and Hommes (1998)

may represent well a pure active learning model.

LeBaron (2011) emphasised that both passive and active learning are impor-

tant principles of methodology on modelling learning dynamics and they have

been extensively studied in the past. However, studies of the combination of the

two learning mechanisms have been rare. LeBaron suggested that it is important

for future research to take into consideration the interaction between passive and
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active learning, since real markets may consist of both types of learning dynamics.

Market Mechanism

The market mechanism refers to the mechanism that how asset price is determined

through demand and supply of market participants in agent-based models. In the

literature on agent-based financial market models, there are three commonly used

market mechanisms.

The first one is Walrasian market clearing mechanism. The market is viewed

as finding an equilibrium price via a Walriasion auctioneer who equates the to-

tal demand of agents and the total supply of the underlying asset. In dynamic

equilibrium model, such a market clearing mechanism often refers to Hicks’s Tem-

porary Equilibrium (Hicks, 1939) by which the price at each period of trade always

clears the market. The market is always in equilibrium. Depending on the com-

plexity of the model and model assumptions, the market clearing price can be

computed either analytically (e.g. Brock and Hommes, 1998) or numerically (e.g.

Levy, Levy and Solomon, 2000). This pricing mechanism can be computational

costly, especially in those models which implicitly deal with the demand of each

agent. A typical numerical procedure is that to compute the demand of each

agent by testing different hypothetical prices until the market clearing price is

found so that the aggregate demand of agents matches the total supply of the as-

set. A detailed discussion and illustration of this method is presented in Chapter

3.

The second commonly used market clearing mechanism is market maker clear-

ing mechanism. In this mechanism, agents’ aggregate demand is viewed as an

excess demand which can be either positive (long position) or negative (short

position); the market maker will take an offsetting position to cancel the excess

demand and then announces a new price that moves the price in the direction of

reducing the excess demand. For example, the price is computed by the following

price impact equation:
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St+1 = St + α
∑

i

Ai
t(St), (2.1)

where St and Ai
t(St) denote the asset price and excess demand of agent i at time

t.
∑

i A
i
t(St) represents the aggregate excess demand of all agents except the mar-

ket maker. The positive parameter α measures the speed that the market maker

adjusts the price. The intuition behind this mechanism is that a positive excess

demand raises the asset price, while a negative excess demand lowers the asset

price. However, the market is never in equilibrium. An early example of this

mechanism is Day and Huang (1990). Compared with Walrasian or temporary

equilibrium, this market mechanism is more computationally efficient and it is

easier to be tackled analytically.

The third commonly used market clearing mechanism is called order book or

double auction pricing mechanism. The idea behind this mechanism is that the

actual order book where agents post offers to buy and sell assets can be simulated.

Orders of agents are matched using some well-defined procedure. As stressed by

LeBaron (2006a), such a mechanism is more realistic since a detailed analysis of

trading mechanisms is allowed. The model in Chiarella and Iori (2002) is a good

example of this mechanism.

Time

Agent-based financial market models can be developed in either continuous- or

discrete-time setting. The majority of agent-based models are in discrete-time

with a fixed length of time step by which agents trade repeatedly at a conven-

tional fixed time unit. This conventional time unit may represent a day, a month

or a year. An important issue of discrete-time models is that comparison of mod-

els with different frequency of trade or planing horizon is difficult due to the lack

of consistency in time.
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2.3 Examples of Agent-Based Financial Market

Models

In this section we review some important approaches in the literature on agent-

based financial market models. However, it is not our intention to give a full

review of existing contributions due to the vast body of this literature and the

existence of good surveys such as LeBaron (2006a) for computational orientated

models, Hommes (2006) for analytical models and Chen et al. (2012) from an

econometrics viewpoint. We review those approaches which we believe are im-

portant, and are closely related to our research by providing the basic framework

and/or motivations, and techniques for studying agent behaviour. We emphasise

the market design issues and the behavioural aspects of these approaches, and

summarise their important findings. By reviewing these approaches, we identify

their advantages, potential weaknesses, and gaps on studying financial markets.

We also explain why some particular issues are important to be addressed in this

thesis.

2.3.1 Adaptive Belief Systems

Brock and Hommes (1997, 1998) introduced an adaptive belief system (ABS) to

study the dynamics of financial markets in a heterogeneous, boundely rational

agent world. This approach offers an example on how the heterogeneity, bounded

rationality, and evolution can be incorporated into a simple present discounted

value asset pricing model (e.g. the model presented in Lucas, 1978). The main

idea behind this approach is that financial markets can be regarded as a nonlin-

ear dynamical system where the techniques of nonlinear dynamics, bifurcations,

chaos theory, and complex system can be applied to study the market dynam-

ics. During the past decade, the rapidly growing contributions in the Brock and

Hommes type of framework played an important role in the development of the

literature on agent-based financial market models. The existing ABS models pro-

vided insights for different perspectives of financial markets, and offered a deeper

understanding of market behaviour. As a start, we use the model presented in
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Brock and Hommes (1998) as an example to illustrate the market design and

behavioural aspects of these ABS models.

Brock and Hommes (1998) consider a financial market which contains a risk-

free asset paying fixed rate of return and a risky asset paying independently

identically distributed (i.i.d.) dividend. The model is in discrete-time. Agents

are assumed to have one-period myopic preferences of future wealth with Con-

stant Absolute Risk Aversion (CARA) utility function. The demand of the risky

asset by each agent is derived from maximising his or her utility myopically. It is

assumed that agents have unbounded budgets (i.e. agents can borrow as much as

they need) by which their optimal demand (derived from utility maximisation)

can always be satisfied without a budget constraint. The net supply of the risky

asset is assumed to be zero. The price of the risky asset is determined through

Walrasian market clearing mechanism by equating the aggregate demand and

supply.

The heterogeneity of agents is introduced via a finite set of different predic-

tion strategies (expectation rules) of future price of the risky asset. The types of

prediction strategies considered in Brock and Hommes (1998) are fundamentalist,

trend follower, contrarian, and a rational expectation agent with perfect foresight

(who not only knows the information of past prices and dividends, but also the

market equilibrium equation and fractions of other types in the market). Agents

are assumed to adapt their beliefs over time by choosing from those different

strategies based upon their past performance as measured by the realised prof-

its. This belief updating or type-switching behaviour is modelled via a so-called

discrete choice model or logit probabilities.

A key parameter in this model is called the intensity of choice which mea-

sures how fast investors switch to the best performing strategy. If the intensity

of choice is infinite, the entire mass of investors will immediately switch to the

prediction strategy that has highest realised profit. If the intensity of choice is

zero, the mass of investors distributes itself evenly across the set of available
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prediction strategies. Because of the type-switching behaviour, the resulting dy-

namical system is highly nonlinear. In order to maintain analytical tractability,

those prediction strategies are specified in a simple and linear form. The authors

assume that agents (except rational expectation agent) use past information such

as past price and dividend in one period backward to formulate price forecasting.

Brock and Hommes emphasised that if agents are identical and they are all

rational expectation agents, the model will essentially reduce to Lucas (1978)

asset pricing model. In such a case, Brock and Hommes (1998, p.1237) pointed

out: “under homogeneous, rational expectations and the assumption that the div-

idend process of the risky asset is independently identically distributed (IID), the

asset price dynamics is extremely simple: one constant price over time.” The

authors then highlight the importance of agent heterogeneity and adaptation by

showing that the heterogeneity in terms of different expectation strategies, and

agent adaptation in terms of performance-driven type-switching, are two crucial

behavioural elements which lead to the emergence of rich and complicated dy-

namics of asset price, with bifurcation routes to strange attractors.

For example, the earlier work of Brock and Hommes (1997) showed that a

high intensity of choice to switch between a costly rational and a “free ride”

naive strategy, leads to market instability and chaotic price fluctuation. Brock

and Hommes (1998) showed that even there are no information cost for rational

expectation, the rational agents do not drive out strongly extrapolating trend

followers. In addition, Brock and Hommes (1998) provided numerical evidence

showing that, when the intensity of choice to switch between prediction strate-

gies is high, the evolutionary dynamics of a heterogeneous agent financial market

may lead to persistent deviations from the fundamental price, and highly irregu-

lar, chaotic asset price fluctuations.

The success of Brock and Hommes’s approach is built on offering a novel idea

of modelling agent heterogeneity and adaptation. A key aspect of the ABS model

is that it exhibit expectation feedback and adaptation of agents. The importance

of heterogeneous expectations and type-switching behaviour on generating and
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explaining various types of market dynamics has been illustrated and empha-

sised. Their approach has the advantage on providing a stylised model (i.e. close

to a traditional asset pricing model) to study agent heterogeneity and bounded

rationality. However, Brock and Hommes’s approach also has several limitations.

The most important one is caused by the assumption all agents have a CARA

utility function. The characteristic of CARA type of utility functions leads to the

phenomenon that agents’ demand of the risky asset (which is derived from solv-

ing CARA utility maximisation) is independent of agents’ wealth. This property

causes that the price dynamics evolves independently of agents’ wealth dynamics.

The model lacks mutual feedback between wealth dynamics and price realisation.

However, the interdependence nature between price and wealth has been em-

pirically and experimentally proven to be crucial in characterising the dynamics

of financial markets, see, for example, Levy, Levy, and Solomon (2000) and Camp-

bell and Viceira (2002). The survey presented in Levy, Levy, and Solomon (2000)

showed that the hypothesis of CARA utility of agents is commonly rejected in

both empirical and experimental studies. Instead, those evidence is in favour of

the hypothesis that agents have Decreasing Absolute Risk Aversion (DARA) and

Constant Relative Risk Aversion (CRRA) types of utility, by which the interde-

pendence between price and wealth is critical.

Moreover, because of the assumption of CARA risk preference in Brock and

Hommes’s model, the growth in agents’ wealth does not imply the increase in in-

vestments of the risky asset, while the wealth that agents allocate in the risk free

asset will keep increasing due to the fixed risk-free rate of return. Therefore, the

assumption CARA risk preference consequently leads to a limited contribution of

the risky asset to agents’ wealth. Furthermore, this property in conjunction with

the assumption of unbounded budgets cause that passive learning through wealth

dynamics cannot be captured by the model. The model only exhibits pure ac-

tive learning dynamics. The process of market selection of investment strategies

in such a model can only be studied by agents’ type-switching behaviour. For

example, the extinction of one prediction strategy is equivalent to the situation

that all investors would never choose that strategy. This may rarely happen when
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agents are bounded rational.

During the last decade, based on the framework proposed by Brock and

Hommes (1997,1998), many extensions of ABS have been made to study dif-

ferent perspectives of financial markets. Among those extensions, one goal is to

reproduce and explain a variety of stylised facts of financial markets. Along this

direction, Hommes (2002) and Gaunersdorfer and Hommes (2007) considered a

scenario in which investors switch between two agent types: fundamentalist and

trend follower. The authors assume that the type-switching is not only based

on the past performance of the two types of strategies but also depends on the

price deviations to the fundamental value. It is assumed that when the price

deviation to fundamental value is high, the trend followers are more willing to

switch to the strategy of fundamentalist. The authors showed that this “special”

type-switching behaviour may be able to explain some stylised empirical findings

such as the fat tail return distribution and volatility clustering. The models pre-

sented in Hommes (2002) and Gaunersdorfer and Hommes (2007) reproduced the

stylised fact of volatility clustering remarkably well in the sense that the autocor-

relation structures in the generated returns, absolute returns and squared returns

series are very similar to those observed from S&P 500 data for the time period

from 1960 to 2000.

In those models, price deviation to fundamental value is triggered and ampli-

fied by the trend followers. The trend followers become more and more profitable

than the fundamentalist during the increase in the price deviation to fundamen-

tal value. If the type-switching is only driven by agents’ past performances,

it will eventually lead to the dominance of trend followers, hence, unbounded

price dynamics (e.g. price goes to infinity). Therefore, technically speaking, their

assumption that type-switching depends on the price deviation to fundamental

value is to prevent the potential unbounded price dynamics. Such an assump-

tion lacks support from reality, and their results appear to be “artificial”. This

drawback is also caused by the lack of budget constraint and mutual feedback

between price and wealth.
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In order to capture the interdependence between agents’ demand, wealth and

price, Chiarella and He (2001) extended the ABS proposed by Brock and Hommes

(1998) to the case where agents have a CRRA type of utility function (logarithmic

utility function). The authors considered the scenarios of two agent types, funda-

mentalists and trend followers, and proved analytically the existence of multiple

equilibria and the convergence of the return and wealth proportions to the steady

state. The model also reproduced the stylised facts of fat tail return distribution

and volatility clustering. Nevertheless, the authors focused only on the case of

fixed population fractions of agents. Recent contributions such as Anufriev, Bot-

tazzi and Pancotto (2006) and Anufriev and Dindo (2010) are also in line with

this direction of CRRA utility agents.

However, as mentioned by Brianzoni, Mammana and Michetti (2010), most

heterogeneous agent models in the CRRA utility framework are based on the as-

sumptions of fixed fractions of agents or non-switching agents. Moreover, models

which allow agents to switch between different investment strategies, for instance

Chiarella and He (2002), makes the following assumption: “when agents switch

from an old strategy to a new strategy, they agree to accept the average wealth

level of agents using the new strategy. More precisely, the switching agent leaves

his wealth to the group of origin.”(Brianzoni, Mammana and Michetti, 2010, p.3).

Under this assumption, the effect of wealth “redistribution” which is caused by

the type-switching behaviour cannot be studied properly.

To overcome this issue, Brianzoni, Mammana and Michetti (2010) proposed a

model under the assumption that agents who change their group will bring their

wealth to the new group. As explained by the authors: “ As a consequence, the

wealth of each group is updated from period t to t + 1 not only as a consequence

of portfolio growth of agents adopting the relative strategy, but also due to the

flow of agents coming from the other group.”. However, the authors changed the

Walrasian market clearing mechanism to a market maker clearing mechanism for

the sake of analytical tractability. This is equivalent to assume that there exist

another agent, the market maker, who uses his/her own inventory to clear the

market. More importantly, Bottazzi, Dosi, and Rebesco (2005) and the recent
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contribution Anufriev and Panchenko (2009) showed that market clearing mecha-

nism plays a larger role in shaping the time series properties than the behavioural

aspects of the model. In models with the same behavioural aspects, the price dy-

namics which are generated from the Walrasian market clearing mechanism and

the market maker clearing mechanism can be significantly different. For this rea-

son, Brianzoni, Mammana and Michetti (2010) did not answer the question how

the wealth redistribution among different agents affects the market dynamics in

a Walrasian equilibrium. Motivated by such considerations, this question will be

addressed in this thesis.

Within the Brock and Hommes’s type of framework, the ABS model has been

extended to many other directions. For example, Westerhoff (2004) extended

the ABS model to a multi-asset market environment, and provided insights for

the high degree of comovements in stock prices observed empirically. Chiarella,

Dieci and He (2006) considered an ABS model of multi-asset market with market

maker clearing mechanism. The authors paid particular attentions to the effect

of correlation between the risky assets, and showed that investor’s anticipated

correlation and portfolio diversification do not always have a stabilising role, but

rather may act as a further source of complexity in the financial market. He

and Zheng (2010) extended the ABS model into continuous-time framework to

investigate dynamics of moving average rules.

2.3.2 Econophysics Approaches

The model of Lux (1995, 1998) and Lux and Marchesi (1999, 2000) represents

another important approach which is emerged from the field of the so-called

Econophysics with focuses on studying the effect of contagion and herding be-

haviour of investors. Their approach draws inspirations from behavioural finance,

whereas the design of the model is in spirit to models of multi-particle interaction

in physics than to traditional asset-pricing models in finance. The authors pro-

vided another novel conceptual idea on modelling the investors’ type-switching

behaviour. Different to many agent-based models in finance which are mainly
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based on discrete-time framework, their model is developed in continuous time

framework.

The model of Lux and Marchesi (1999, 2000) describes an asset market with

a fixed number of individual traders. These traders are divided into two groups,

named fundamentalists and chartists. The chartists are further divided into op-

timists (buyers) and pessimists (sellers). A chartist buys (sells) a fixed amount

of the asset per period when he is optimistic (pessimistic). The demand of the

asset by the fundamentalists is determined by the price deviation from the fun-

damental value and a constant parameter which measures the reaction speed of

the fundamentalists to price deviations. The asset price is determined by the

so-called market maker clearing mechanism.

In this model, the type-switching mechanism contains two elements: (i) the

chartists switch between the optimistic and pessimistic beliefs; (ii) traders switch

between a chartist and a fundamental trading strategy. The switching between

two types of chartists is based on both the current price trend and the average

opinion among chartists, where two constant parameters are introduced to mea-

sure the sensitivity of traders to price changes and their sensitivity to the average

opinion. The average opinion of the chartists is measured by an opinion index

which is determined by the difference between the proportions of optimists and

pessimists. Such a type-switching models the contagion and herding behaviour,

by which traders try to predict “what average opinion expects average opinion to

be” through an opinion index.

Different to the switching between the two types of chartists, the switching

between chartists and fundamentalists is based on the difference between each

strategy’s performance measures. The performance of the chartists is measured

by the realised profit, while the performance of the fundamentalists is measure by

expected arbitrage profit. The switching probabilities are formulated following

the synergetics literature, originally developed in physics for interacting parti-

cle systems (e.g. Haken, 1983). Lux and Marchesi (1999, 2000) showed that

the contagion and herding behaviour is important for generating unsystematic
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deviations of the market price from the fundamental price, heavy tails of return

distributions, absence of autocorrelation in returns, and volatility clustering. The

authors note that these results are fairly robust with respect to the choice of the

parameters.

Lux and Marchesi’s approach makes an important step towards bridging the

field of Econophysics, agent-based modelling and behavioural finance. Such an

approach offers behavioural explanations for some important market phenom-

ena with focuses on market psychology. By comparing the switching mechanism

proposed by Brock and Hommes with the one introduced by Lux and Marchesi,

the latter brings new ideas on modelling the crowd effect of chartists by taking

different types of chartists as a whole group and introducing an opinion index.

This conceptual idea is motivated by the ant recruiting model of Kirman (1993),

which has also been proposed as an analogy for herding behaviour of investors

in financial markets. Lux and Marchesi’s approach illustrates that not only the

type-switching of agents between different investment styles, but also the “inner”

switching within a same investment style between different opinions play an im-

portant role in determining the market dynamics.

Another novel idea of the Lux and Marchesi model is to assume that there

is an asymmetry in the performance measure for chartists and fundamentalists.

As pointed out by Goodhart (1988), this asymmetry may bias traders towards

chartist strategies since chartists’ switching is driven by realised profits, whereas

fundamentalists’ switching is driven by expected arbitrage profits which will not

be realised until the price has reached the fundamental value. The asymmetry

also reflects limits-to-arbitrage of fundamentalists, which is in line with the be-

havioural finance’s point of view. In contrast, Brock and Hommes assume that

the performance measure for every strategy is based on observable data such as

the realised profits, by which investors tend to switch to strategies with higher

past performance. This assumption coincides with some empirical evidence of the

so-called follow-the-leader-behaviour in the mutual funds literature. For example,

Friend et al. (1970) provided empirical evidence showing a significant tendency

for groups of mutual funds to follow the prior investment choices of their more
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successful counterparts. They call this phenomenon follow-the-leader behaviour.

The model of Lux and Marchesi (1999, 2000) has been extended to many

different contexts during the past decade. For example, Giardina and Bouchaud

(2003) proposed a model with a larger set of strategies. Lux and Schornstein

(2005) proposed a two-country general equilibrium model of the foreign exchange

market with agents choosing consumption and interest strategies via genetic al-

gorithms. Pape (2007) reformulate traders’ behaviour as position-based trading,

which is more realistic than the “fixed” demand of chartists in Lux and Marchesi

(1999, 2000). The author also adds both a second risky asset and a risk-free

bond into the market. Despite these models are in a very different framework,

the authors find that the dynamics of returns seems to be governed by a similar

mechanism like the one illustrated in Lux and Marchesi (2000). Their results

indicate that the type-switching is still the key in generating return series simi-

lar to those observed in real markets. However, an important limitation of these

models is that they cannot capture the interdependence between wealth and price

which has been proven crucial in characterising the dynamics of financial markets.

2.3.3 Microscopic Simulation Models

The microscopic model presented in presented in Levy, Levy, and Solomon (1994,

1995, 2000) and Levy, Persky, and Solomon (1996) is another influential mod-

elling approach of artificial financial market which is based on the Microscopic

Simulation. Microscopic simulation emerged from physics and is a part of the

Econophysics research. The idea behind microscopic simulation is that the un-

derlying system can be modelled as a set of microscopic elements. By defining the

microscopic interactions between those elements, this approach investigates how

observed macroscopic features emerge from the interaction of those microscopic

elements.

As a starting point, we use the model of Levy, Levy, and Solomon (1995) to

illustrate their “architectures” of artificial financial markets and main contribu-
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tions towards providing insights for the market dynamics. In Levy, Levy, and

Solomon (1995), the financial market consists two investment options: a risk-free

bond and a risky stock (or stock index). The model is in discrete-time. The

risk-free bond pays a fixed interest per period and it has infinite supply. The

risky stock pays a stochastic dividend with a constant average growth rate. The

supply of the stock is finite and fixed to a positive number.

Similar to the Brock and Hommes’s type of approaches, the model of Levy,

Levy, and Solomon (1995) is also based on the expected utility framework. More

realistically, the authors assume that agents have a CRRA type of utility by which

the nature of interdependence between price and wealth can be captured. The

optimal demand of the stock by each agent is derived numerically to maximise

his or her expected utility. Short selling is not allowed. To avoid short selling, it

is assumed that agents’ demands which are expressed in terms of budget shares

are bounded in an interval between 0 and 1 with superimposed boundaries 0.01

and 0.99. The stock price is numerically determined by the so-called temporary

market clearing mechanism as introduced in previous section.

The heterogeneity of agents is introduced via the following aspects. First, the

authors assume that agents can be heterogeneous with respect to an agent-specific

noise. In their approach, a normally distributed noise term εi is added to the op-

timal demand Xi of an agent i. The optimal demand Xi for every agent is the

same, but the actual demand X∗
i = Xi + εi is not since the noise of εi is drawn

separately for each agent. To this extent, the noise is an agent-specific noise,

which is the first factor introduced to induce agent heterogeneity. As explained

by the authors, the agent-specific noise is to model the phenomenon that an util-

ity maximiser may deviate from the optimal investment strategy for some reasons.

Second, the authors assume that agents can be heterogeneous in the expec-

tation of the future distribution of the stock market return. In their model, it is

assumed that agents keep track of the last L historical returns of the stock, and

agents believe that each of the last L historical returns has an equal probability

1/L to reoccur in the next period. The parameter L measures the memory span
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of an agent, and it can be heterogeneous across the entire mass of agents. Third,

it is assumed that agents can be heterogeneous with respect to the degree of risk

aversion. The degree of risk aversion is measured by the risk aversion parameter

in agents’ utility functions. Levy, Levy, and Solomon (1995) did not consider the

heterogeneous investment styles such as the fundamentalist and chartists.

The authors showed that, first, with homogeneous agents with no agent-

specific noises, the stock price increases as a constant rate and is fully predictable.

There is no trade taking place in the market (i.e. no shares exchanged between

agents). When agent-specific noises are introduced, periodic (and predictable)

booms and crashes in stock price are observed which contradict to market effi-

ciency. The periodic booms and crashes are caused by the homogeneity of agents’

memory span. Introduction of heterogeneous degrees of risk aversion does not

affect the periodic booms and crashes. Only when agents have heterogeneous

memory spans, those predictable booms and crashes disappear and more realistic

price movements are observed.

Based on this approach, Levy, Persky, and Solomon (1996) investigated the

price dynamics in relation to the wealth of those agents with different memory

spans. Due to the interdependence between the price and agents’ wealth, an agent

with higher relative wealth has a greater impact on the movements of price. The

authors show that the price dynamics are highly determined by the change of

levels of agents’ relative wealth. When the number of agents with different mem-

ory spans becomes large, agents’ wealth dynamics become complex in terms of

irregular shifts of levels of agents’ relative wealth. The complexity of the price dy-

namics stems naturally due to the complex wealth dynamics of agents. The price

dynamics can be understood by analysing the relative wealth of different agents

together with their demands. Furthermore, Levy, Levy, and Solomon (2000) ex-

tended this approach to allow a full spectrum of agents with different memory

spans. The authors assume that each agent j has a different memory span Lj ∈ I
and Lj is distributed in the entire population according to a truncated (Lj > 0

since Lj ≤ 0 are meaningless) normal distribution with average L̄ and standard

deviation σL. The authors show that under the presence of a full spectrum of
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agents the resulting price dynamics become more complex and are close to those

observed in real markets.

Zschischang and Lux (2001) further investigated the role of agents’ risk aver-

sion in a Levy, Levy, Solomon model. The authors show that agents’ degrees

of risk aversion play an important role in the determination of a dominating

agent, providing that agents’ memory spans are not too short. They find that an

agent with lower degree of risk aversion outperforms those with higher degrees

of risk aversion. In addition, agents with constant investment proportions and

low risk aversion are able to outperform other sophisticated agents. Recently,

Anufriev and Dindo (2010) provided an analytical explanation for the observa-

tions of Zschischang and Lux (2001). The authors show that the market selection

of dominating agents in Levy, Levy, Solomon model depends on the relation be-

tween the two parameters, the risk-free interest rate r, and the constant average

growth rate of the dividend g. The relation between these two parameters deter-

mines the existence and the location(s) of the steady-state(s) of the underlying

model, while the length of agents’ memory span affects the stability of the steady

state(s). Long memory spans of agents guarantee the stability of the steady

state(s), whereas g > r is an essential condition for the existence of a steady-state

as the one observed by Zschischang and Lux (2001). In other words, Zschischang

and Lux’s results may not hold for the case where g ≤ r. Anufriev and Dindo’s

explanation gives importance to the lengths of agents’ memory spans and the two

parameters r and g which govern the economy of the underlying model.

Summarising, previous contributions of the Levy, Levy, and Solomon type of

models highlighted the role of agents’ memory spans of past information (e.g.

historical stock returns) in shaping the dynamics of financial markets. The het-

erogeneity with respect to agents’ memory spans has been identified to be a

crucial element in explaining the complexity of the market dynamics. However,

this type of heterogeneity has been rarely addressed in the Brock and Hommes’s

type of ABS models. The reason is that most of ABS models are developed to be

analytical tractable. Increasing agents’ memory spans will increase the dimension

of the underlying dynamical system and thus imposing difficulties for analytical
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treatment. Therefore, most ABS models assume that agents use simple price

forecasting rules with short memory spans. In contrast to those ABS models,

Levy, Levy and Solomon’s approach emphasises that agent-based models should

not rely on analytical tractability, the focus should be given on modelling agent in

a more flexible and realistic way rather than being restricted to assumptions for

the sake of tractability. We will incorporate this point of view into our approach

in order to study more complex and realistic behaviour of agents.

Both the Levy, Levy, and Solomon type of models and the ABS type of models

are based on the expected utility framework. The assumption that all agents are

risk averse expected utility maximisers is in line with the main stream finance’s

point of view. Modelling financial market in this way helps reduce the huge degree

of freedom caused by the nature of human’s heterogeneity and bounded rational-

ity, therefore a more stylised approach can be provided. These approaches are

especially good for investigating the convergence of market dynamics to rational

homogeneous expectation equilibrium. However, an important limitation is that

modelling agents’ portfolio rules as solutions to utility maximisation with risk

aversion and heterogeneous expectations might be too restrictive, as they may

ignore better performing portfolio rules and other forms of bounded rationality

such as those behavioural heuristics and biases reviewed in previous section (sec-

tion 2.1.3). Moreover, the experimental and empirical evidence of individuals’

decision making presented in the behavioural finance literature are in favour of

that individuals’ decisions are driven by heuristics and biases rather than utility

optimisations. Those evidence appeals a more open minded approach which is

beyond the expected utility framework and allows descriptive modelling of vari-

ous heuristics and behavioural biases.

2.3.4 Evolutionary Finance

Evolutionary finance models (see, e.g. the survey of Evstigneev, Hens and Schenk-

Hoppé, 2009) focus on descriptive modelling of agents which allows heterogeneous

decision rules on the formulation of agents’ portfolios, e.g. decision rules which are
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driven by heuristics and behavioural biases, different portfolio optimisation meth-

ods, and/or other forms of bounded rationality. This approach aims to maintain

the largest degree of freedom on the choice of portfolio rules without sacrificing

the applicability of random dynamical systems as a modelling framework. The

main goal of the evolutionary finance models is to provide insights for the mar-

ket selection of successful investment strategies, especially within a specific set of

strategies; its application aims to contribute to the portfolio choice of investors

and to the valuation of financial assets.

The approach presented in Evstigneev, Hens and Schenk-Hoppé (2006, 2008,

2009) and Hens and Schenk-Hoppé (2005) considers a financial market where mul-

tiple risky assets paying stochastic dividends are traded by agents at discrete point

in time. Agents’ portfolios are represented by a set which contains investment

proportions of agents’ wealth. The price of a risky asset is endogenously deter-

mined through short-run temporary equilibrium by equating agents’ aggregate

demand and the net supply of the asset at each point in time. Price fluctuations

and the dynamics of agents’ wealth are driven by the interactions of investment

strategies. The randomness stems from the stochastic dividend process. The

main idea behind this approach is that financial markets can be understood as a

heterogeneous population of frequently interacting portfolio strategies in compe-

tition for market capital.

In such a financial market model, the process of market selection and mutation

can be studied via the evolutionary force operating through wealth dynamics. In

evolutionary finance models, there exist a mutual feedback between price dynam-

ics and evolution of wealth. This is consistent to the characterisation of CRRA

type of utility, but the difference is that agents’ demands of the risky assets are

not necessarily derived from utility maximisation. The advantage of descriptive

modelling of agents shuns any notion of utility maximisation. As pointed out by

Evstigneev, Hens and Schenk-Hoppé (2009, p.510): “This approach lets actions

speak louder than intentions and money speak louder than happiness.”
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Following evolutionary finance approach, a number of important results are

found including: the investment recommendation obtained is closely related to

the Kelly rule, i.e. agent using Kelly rule will dominate the market asymptoti-

cally; the “irrational” trader who distributes his or her wealth equally across the

assets performs much better than those sophisticated mean-variance optimisation

strategies, which coincides with the empirical evidence documented in DeMiguel

et al. (2009). Such findings again motivate that the dynamics of financial mar-

kets should be studied in a more broader framework with focuses on descriptive

modelling of investors’ behaviour to incorporate various forms of heterogeneity

and bounded rationality rather than being restricted to expected utility world.

Recently, several extensions of the evolutionary finance model have been

made. Palczewski and Schenk-Hoppé (2010a) generalised the approach presented

Evstigneev, Hens and Schenk-Hoppé (2006, 2008, 2009) and extended the model

to a continuous-time framework. Palczewski and Schenk-Hoppé (2010b) studied

market selection in this continuous-time model and derived results on the asymp-

totic dynamics of the wealth distribution and asset prices for constant proportions

investment strategies. Evstigneev, Hens and Schenk-Hoppé (2011) extended the

model documented in Evstigneev, Hens and Schenk-Hoppé (2006) by adding a

risk-free asset into the financial market model, which brings the model more closer

to practical finance and to classical asset pricing models.

However, an important weakness of evolutionary finance models as well as

the Levy, Levy, and Solomon type of models is that agents in those models only

exhibit weak adaptation by means of sticking to static parameterised strategies.

Those model only consist of pure passive learning dynamics. Introducing active

learning, such as type-switching, into those models would be an important exten-

sion. This extension may help to provide insights for understanding the process

of market selection of investment strategies under the interaction between passive

and active learning.

Comparing those models reviewed previously in this section and the evolu-

tionary finance models, the latter has the advantage of maintaining a large degree
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of freedom of modelling agent bounded rationality and heterogeneity. Evolution-

ary finance models are also suitable for simulation studies (see e.g. Hens et al.,

2002 and Hens and Schenk-Hoppé, 2004). These desirable advantages make evo-

lutionary finance models especially suitable for studies which have the goal to

explore the dynamics of financial markets by linking agent-based models and be-

havioural finance. For this consideration, our study is based on an evolutionary

finance model. We make extensions to incorporate those important behavioural

elements regarding investor bounded rationality and heterogeneity, such as the

type-switching and “inner” switching of agents (identified by, e.g. Brock and

Hommes, 1997, 1998, and Lux and Marchesi, 1999, 2000) and heterogeneous

memory spans (identified by Levy, Levy, and Solomon, 1994, 1995, 2000). Our

research also addresses the macro-level market impact and evolutionary prospects

of the presence of investors with various heuristics and behavioural biases.

2.4 Summary

This chapter surveys the literature on traditional finance, behavioural finance

and agent-based modelling of financial markets. The central debates between

traditional and behavioural finance on the study of dynamics of financial mar-

kets are discussed. We list a number of important and well-known heuristics and

behavioural biases which may have substantial impact on investors’ financial de-

cisions. We also sketch an overview of agent-based financial market models by

discussions of modelling aspects and by reviews of some previous contributions.

A number of behavioural factors in relation to agent heterogeneity, bounded ra-

tionality and learning have been identified.

In the development of the literature on agent-based financial market models,

agent heterogeneity, bounded rationality and learning attracted the most atten-

tions of academics. The majority of studies in this field focuses on modelling

different types of investment strategies, adaptation and evolution. Previous con-

tributions which draw on behavioural finance to study the market impact of

heuristics and behavioural biases have been rare. As emphasised by LeBaron
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(2006a, 2006b), agent-based modelling of financial markets and behavioural fi-

nance can be complementary. Drawing together agent-based models and con-

cepts from behavioural finance may improve our understanding of the dynamics

of financial markets.
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Chapter 3

An Evolutionary Finance Model

with Strategy-Switching

3.1 Introduction

In this chapter, we construct a dynamic equilibrium model of a financial mar-

ket in the presence of heterogeneous, boundedly rational agents. Our financial

market model combines a performance-driven strategy-switching mechanism of

adaptive belief systems (Brock and Hommes, 1998) and an evolutionary finance

model (Evstigneev, Hens and Schenk-Hoppé, 2011). This new model inherits the

advantages of the evolutionary finance approach but draws on the strengths of

adaptive belief systems. The model has two main features. First, it captures the

interaction between passive and active learning dynamics. Second, it addresses

a variety of behavioural biases which may affect investors’ strategy-switching be-

haviour.

As highlighted by LeBaron (2011), passive and active learning are two im-

portant principles of methodology in the design and construction of agent-based

financial market models. Passive learning refers to the selection mechanism by

which wealth accumulates on investment strategies with relative high profitabil-

ity. Strategies with relative low profitability will eventually die out. In the case

of pure passive learning, investors do not change or switch among different invest-

ment strategies. In contrast, active learning refers to the selection mechanism by
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which investors actively choose or switch among a set of strategies, with some

well defined objective functions in mind. There is an active attempt by investors

to switch to strategies with relative high profitability. In the case of pure ac-

tive learning, investors have infinite budgets and the survival or extinction of

investment strategies depends only on the population size of each strategy (i.e.

the number of investors who choose each strategy). LeBaron (2011) pointed out

that both forms of learning are important to financial market dynamics and have

been extensively studied in the past, but the interaction between the two has

been rarely explored.

As reviewed in Chapter 2, adaptive belief system may represent the strand

of research on pure active learning dynamics, while evolutionary finance models

may serve as a typical approach to pure passive learning dynamics. Combining

the two allows the coexistence of active and passive learning in one model, the

interaction between the two different types of learning dynamics can therefore

be explored. In addition, active learning in our model is based on a realistic as-

sumption by which switching investors will bring (take away) their wealth when

they join (leave) investment strategies. This strategy-switching behaviour causes

flow of funds among different investment strategies. Our combined model is able

to characterise the coevolution between market prices and the redistribution of

wealth when investors switch among a set of investment strategies.

Moreover, our model also makes a step towards bridging behavioural finance

and agent-based modelling. We focus on the modelling of a variety of heuristics

and behavioural biases documented in the behavioural finance literature, such as

overconfidence, recency bias, conservatism, and herding. The goal is to study the

macro-level impact and long-run prospects of these heuristics and behavioural

biases using an agent-based model.
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3.2 Model Description

3.2 Model Description

Following Evstigneev, Hens and Schenk-Hoppé (2011), we consider a financial

market in which a risk-free and K ≥ 1 risky assets are traded at discrete points

in time t = 0, 1, .... The k = 1, ..., K assets are risky in terms of their prices

St,k and their payoffs (dividends) Dt,k. The total supply of each risky asset is

assumed to be fixed at 1. The risk-free asset (k = 0) is in perfect elastic supply

and its price is exogenously given at 1. The price of the risk-free asset is used

as a numeraire (cash) which expresses the market values of all the assets in the

market. We will refer to holdings of the risk-free asset as balances in a bank

account with a fixed net interest rate r > 0 per trading period.

The market participants are individual investors who are able to make a sin-

gle choice from a finite set of I > 1 different investment strategies (prediction

rules) available in the market. Each investment strategy i = 1, ..., I at time t is

characterised by a vector of investment proportions λi
t = (λi

t,0, ...λ
i
t,K) satisfying

λi
t,k ≥ 0 and

∑K
k=0 λi

t,k = 1. A short position (λi
t,k < 0) is not allowed for all assets

k = 0, ..., K. According to these investment proportions, each agent i distributes

wealth across the K + 1 available assets. Here, the agent i refers to the group of

individual investors who adopt investment strategy i. At the initial period, the

wealth managed by each agent i equals W i
0 > 0. It is assumed that, each agent

consumes (is taxed) a constant fraction, c ∈ (0, 1), of his wealth in every period

with the remainder being invested in assets. The constant c is the same for every

agent and represents the intensity of consumption.

3.2.1 Strategy-Switching and Flow of Funds

We assume that, at each point t > 0 in time, every individual investor can update

his or her choice from the fixed set of I investment strategies. Investors estimate

the relative benefits of each choice and decide whether they should change in-

vestment strategy or not. In a dynamic context, the strategy updating behaviour

may cause investors to switch among different investment strategies. Such an

assumption of strategy-switching is common in agent-based modelling literature
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and its purpose is to model adaptation and active learning of investors.

Non-Switching and Switching Investors

It is assumed that all individual investors can be characterised by belonging to

one of two possible types — non-switching investors and switching investors.

Non-switching investors refer to investors who stay with their investment strate-

gies between two successive points in time (e.g. the time interval [t, t + 1]) with a

probability of 1. The purpose of introducing such a type of investors is to capture

investor overconfidence which will be explained in detail in next subsection.

In contrast, switching investors refer to investors who have positive proba-

bilities to switch among investment strategies between two successive points in

time. Before the trade starts at each point in time t > 0, switching investors will

update their choices according to the past performance of each investment strat-

egy i ∈ {1, ..., I}. Formally speaking, each switching investor chooses investment

strategy i at time t with a probability qi
t > 0 (

∑I
i=1 qi

t = 1). The value of qi
t is

determined by the past performance of each investment strategy i.

Note that the terms of non-switching and switching are opposite properties

of an individual investor. An investor cannot have both properties at the same

time. Moreover, these two opposite properties are time-dependent. An individ-

ual investor can exhibit the property of non-switching or switching at different

time. For example, a investor who belongs to non-switching investors at time t

can become as a switching investor at time t+1. Such an assumption is to model

the change in investor psychology with respect to time.

Wealth Reallocation and Flow of Funds

It is assumed that switching investors will bring (take away) their wealth when

they join (leave) investment strategies. Under this assumption, the presence of

switching investors causes wealth reallocation for different investment strategies.

We call this wealth reallocation flow of funds.

57



3.2 Model Description

In order to characterise the coexistence of non-switching investors and switch-

ing investors, we assume that, the wealth managed by switching investors at time

t equals a β ∈ [0, 1] percent of the aggregate wealth in the market W̄t. The

remainder 1 − β percent of the aggregate wealth is managed by non-switching

investors. Based on this assumption, at each point in time t > 0, the wealth Ŵ i

reallocated to investment strategy i after strategy-switching is given by:

Ŵ i
t = (1− β)W i

t + βqi
tW̄t, (3.2.1)

where W i
t denotes the wealth managed by agent (investment strategy) i before

the strategy-switching of investors at time t; W̄t denotes the aggregate wealth in

the market at time t; The constant parameter β ∈ [0, 1] governs the proportion

between non-switching and switching investors. If β = 0, all individual investors

are non-switching investors. None of the investors switches among investment

strategies (i.e. Ŵ i
t = W i

t ). The model will then coincides with the original Evolu-

tionary Finance model. If β = 1, every individual investor switches with a certain

probability qi
t > 0 to each strategy i = 1, ..., I. If β ∈ (0, 1), equation (3.2.1) de-

scribes the coexistence of non-switching and switching investors. Higher value of

β represents higher proportion of switching investors (at wealth level) are present

in the market vice and versa. Assuming that the number of individual investors

in the market is sufficiently large, the term βqi
tW̄t in equation (3.2.1), therefore,

represents the average amount (the expected value) of wealth which is allocated

to agent i at time t by the switching investors. The term (1 − β)W i
t measures

the amount of wealth which has a probability of 1 to stay with agent i at time

t. The total of the two terms is the wealth managed by agent i at time t after

the strategy-switching of investors. It is also the available budget for agent i’s

investment in the period of [t,t+1).

Equation (3.2.1) embeds active learning into the evolutionary finance model.

It allows us to explore in the model the impact of flow of funds on market dynam-

ics. Moreover, the effect of the proportion between non-switching and switching

investors can be investigated.
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Switching Mechanism

Following Brock and Hommes (1998), the probability qi
t for each switching in-

vestor to choose investment strategy i at time t is modelled by the multinomial

logit probabilities of discrete choice:

qi
t =

exp(γf i
t−1)

I∑
i=1

exp(γf i
t−1)

, (3.2.2)

where f i
t−1 denotes the performance measure of investment strategy i at time

t − 1. The value of qi
t at time t depends on the past performance f i

t−1 (which is

measured at time t − 1). The intensity of choice parameter γ ≥ 0 measures the

sensitivity of switching investors to selecting more successful investment strate-

gies. If γ = ∞, the entire mass of switching investors will choose to the investment

strategy which has the highest performance. If γ = 0, switching investors will

have a equal probability to choose each strategy i in the set of I strategies. The

case of γ ∈ [0,∞) describes the failure of all switching investors to choose the

best-performed investment strategy. Brock and Hommes (1997, 1998) attribute

such a failure to investors’ bounded rationality. Their studies focus only on the

boundedly rational case (γ ∈ [0,∞)).

The performance of each agent i is assessed based on realised simple returns1:

φi
t =

W i
t − (1− c)Ŵ i

t−1

(1− c)Ŵ i
t−1

, (3.2.3)

where (1−c)Ŵ i
t−1 denotes the wealth managed by agent i = 1, ..., I after strategy-

switching and consumption at the point t− 1 in time. It is the available budget

for agent i at the time t− 1. W i
t denotes the payoff of agent i at time t.

1Because Brock and Hommes (1998) assume that agents have unlimited budgets, the per-
formance measure in their model is computed based on realised profits. When agents have finite
budgets, because of the existence of budget effect, using realised profits to measure performance
can be biased. Therefore, we use realised returns to measure performance.
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The performance measure for each agent i at the point t ≥ 1 in time is given by

the discounted realised returns:

f i
t = φi

t + ρf i
t−1, (3.2.4)

where ρ ∈ [0, 1] is a memory parameter or discounting factor measuring how

strongly the past performances of each investment strategy are discounted for

strategy selection. The case of ρ = 1 describes the phenomenon that the switch-

ing investors have infinite memory and they give equal weight to the realised re-

turns at each point in time. In contrast, ρ ∈ (0, 1) implies that the performance

measure of each investment strategy is computed as a geometrically declining

weighted average of past realised returns. In the case of ρ = 0, the performance

of each strategy is measured by the most recent realised return only.

Remark

Since γ ∈ [0,∞) in (3.2.2) implies heterogeneous choices of investment strategies,

an important question is that, for each strategy i, what is the condition which

triggers the increase or decrease in the probability qi between time t and t + 1?

Such a question is important in understanding the model dynamics but ignored

by Brock and Hommes (1997, 1998). We analyse here the condition which affects

the increase or decrease in qi between two successive points in time.

The increase or decrease in qi between time t and t + 1 can be represented by

the sign of qi
t+1 − qi

t via a sign function sgn(qi
t+1 − qi

t). The positive or negative

sign of qi
t+1 − qi

t refers to an increase or decrease.

Define the improvement of an investment strategy i = 1, ..., I during a time

interval [t− 1, t] as:

∆i
t = f i

t − f i
t−1,

and the average improvement of all investment strategies during the time interval

[t− 1, t] as:
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∆̄t =

∑I
i=1 ∆i

t

I
.

The condition which triggers the increase or decrease in qi can be characterised

by the following proposition.

Proposition 3.1. During the time interval [t, t+1], for each investment strategy

i = 1, ..., I, the sign of qi
t+1 − qi

t is determined by the sign of ∆i
t − ∆̄t:

sgn(qi
t+1 − qi

t) = sgn(∆i
t − ∆̄t).

Proof of Proposition 3.1. Rearranging equation (3.2.2) gives:

qi
t =

exp(γf i
t−1)

I∑
i=1

exp(γf i
t−1)

=
1

1 +
∑I

j 6=i exp[γ(f j
t−1 − f i

t−1)]
. (3.2.5)

Inserting (3.2.5) into sgn(qi
t+1 − qi

t) gives:

sgn(qi
t+1 − qi

t) = sgn

(
1

1 +
∑I

j 6=i exp[γ(f j
t − f i

t )]
− 1

1 +
∑I

j 6=i exp[γ(f j
t−1 − f i

t−1)]

)

= sgn
( I∑

j 6=i

exp[γ(f j
t−1 − f i

t−1)]−
I∑

j 6=i

exp[γ(f j
t − f i

t )]
)

= sgn
( I∑

j 6=i

[(f i
t − f i

t−1)− (f j
t − f j

t−1)]
)

= sgn
( I∑

j 6=i

(∆i
t −∆j

t)
)

= sgn
(
I∆i

t −
I∑

j=1

∆j
t

)
. (3.2.6)

Since dividing I > 0 on the right-hand side of (3.2.6) does not change its sign,

therefore

sgn(qi
t+1 − qi

t) = sgn

(
∆i

t −
∑I

j=1 ∆j
t

I

)
. (3.2.7)
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Using ∆̄t =
∑I

j=1 ∆j
t in (3.2.7) gives:

sgn(qi
t+1 − qi

t) = sgn(∆i
t − ∆̄t).

Proposition 3.1 indicates that, based on the switching mechanism (3.2.2), the

switching investors have a tendency to choose investment strategies which have

higher improvements than the average level. Note that, during the time interval

[t− 1, t], an investment strategy j which has the highest performance measure f j
t

at time t is not necessary to have higher improvement ∆j
t than the average level.

The “best performed” strategy j may lose investors at time t + 1 if its improve-

ment ∆j
t falls below the average. Such a property reveals that some switching

investors hold a different interpretation for the performance measure: the im-

provement of investment strategy. They are sensitive to the improvements and

may overreact to the improvements when making choices of strategies.

3.2.2 Behavioural Aspects

Investor psychology may play an important role in the choice of investment strate-

gies, especially when investors are boundedly rational. By linking to the be-

havioural finance literature, we now explain and discuss some psychological ele-

ments and behavioural phenomena which are covered by the strategy-switching

behaviour modelled in the previous subsection.

Investor Overconfidence

Overconfidence is an important psychological element which affects individuals’

decision making. As reviewed in Chapter 2, a key manifestation of overconfidence

is better-than-average effect. It refers to the tendency that people overestimate

their own capabilities, usually with respect to the average capability of others.

In the behavioural finance literature, see e.g. Shiller (1999), Barberis and

Thaler (2003) and Glaser and Weber (2007), the phenomenon that investors have

a tendency to rank themselves as above average with respect to investment skills
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or past portfolio performance is regarded as better-than-average overconfidence.

Investors who exhibit better-than-average overconfidence may tend to focus on

their own opinions in predictions and ignore those of other investors. As stated

by Glaser and Weber (2007, p.6): “an investor who regards himself as above av-

erage is more likely to maintain a specific opinion about the future performance

of an asset even though he knows that other investors or the market hold a differ-

ent opinion”. Better-than-average overconfidence leads to differences of opinion

among investors and reinforces these differences.

In the context of strategy-switching, better-than-average overconfident in-

vestors can be represented by those investors who are unwilling to change their

strategies (prediction rules) between two successive trading periods. In contrast,

investors who are not overconfident (or less confident) may intend to switch to

investment strategies which they believe to be more profitable. In our model,

overconfident investors are characterised the non-switching investors, while less

confident investors are represented by the switching investors. Since our model

allows the coexistence of the two types, the market impact of the proportion of

overconfident investors can be explored by varying the value of the parameter

β ∈ [0, 1] in (3.2.1). Our approach to the modelling of investor overconfidence

and the co-existence of non-switching and switching investors is similar to the

one proposed by Dieci et al. (2006)2.

Differences of Opinion

The foundation for the switching mechanism (3.2.2) is the randomized discrete

choice framework of Manski and McFadden (1981), whereas Brock and Hommes

(1997, 1998) utilized it in dynamic equilibrium models of financial markets to

study the adaptation of investors. In discrete choice studies, not all agents nec-

essarily choose the option (e.g. investment strategy) which is indicated (by the

2In Dieci et al. (2006), overconfidence and evolutionary adaption are characterised by fixed
and adaptive switching fraction among two agent types (fundamentalist and trend followers),
respectively. To our knowledge, this paper is the first one to explicitly model and examine the
joint impact of the presence of non-switching and switching investors.
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model) to have the highest performance measure. Such a phenomenon corre-

sponds to the case of γ ∈ [0,∞) in (3.2.2). The finite value of γ implies that

agents are heterogeneous in making choices of available options. The reason for

such heterogeneity of agents is explained by McFadden (1981) as unmodelled

idiosyncratic components in agents’ utility function or randomness in agents’

preferences, while Brock and Hommes (1997, 1998) attribute this heterogeneity

to agents’ bounded rationality. All these explanations point to the concept of

differences of opinion.

The concept of differences of opinion has been widely discussed in economics

and finance in relation to market anomalies. For example, as reviewed by Glaser

and Weber (2007), the observed high levels of trading volume in financial mar-

kets can be explained by a strand of differences-of-opinion literature. Theoretical

models of financial markets show that, differences of opinion among investors in

terms of differences in prior beliefs (Varian, 1985, 1989) or differences in the way

that investors interpret public information (Harris and Raviv, 1993; Kandel and

Person, 1995) are able to cause high trading volume. These findings are confirmed

by empirical studies such as Bamber, Barron, and Stober (1999), Antweiler and

Frank (2004) and Glaser and Weber (2007). Moreover, Glaser and Weber (2007)

argue that investors’ better-than-average overconfidence is able to reinforce dif-

ferences of opinion and lead to high trading volume.

Our model characterises various types of differences of opinion among in-

vestors. First, the differences in prior beliefs is modelled by the set of different

strategies. The presence of overconfident investors (non-switching investors) may

reinforce this type of differences of opinion. Second, the switching mechanism

(3.2.2) with γ ∈ [0,∞) is able to capture the differences of opinion in strategy

selection and the phenomenon that investors hold different interpretations of the

public performance measure (3.2.4) of each strategy. When γ ∈ [0,∞), each

switching investor can be thought as having a private measurement or interpre-

tation for the performance of each strategy. As revealed by Proposition 3.1, the

improvement of strategy (i.e. ∆i
t = f i

t − f i
t−1) can be regarded as an example of

this kind of private measurement or interpretation for the performance of each
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strategy. This may lead to the phenomenon that some switching investors choose

strategies according to the value of public performance measure (i.e. the value

of f i
t ), while some may make their choices based on the value of improvement of

each strategy (i.e. the value of ∆i
t).

In this switching mechanism, the distribution of investors among investment

strategies becomes more (or less) diversified when the value of γ becomes low

(or high). For this reason, the degree of differences of opinion among investors in

strategy selection can be measured by the value of γ ∈ [0,∞). A lower (or higher)

value of γ corresponds to a higher (or lower) degree of differences of opinion.

Conservatism Bias and Rational Herding

Different degrees of differences of opinion in strategy-switching may represent

different behavioural phenomena, such as conservatism bias and rational herding.

Edwards (1968) identified the phenomenon of conservatism which describes that

people react conservatively to new information, and they are slow to change an

established view. Such phenomenon can be captured when the value of γ is low

(i.e. investors are less sensitive to the value of performance measure (3.2.4)).

Rational herding refers to the tendency they investors to react to informa-

tion about the behaviour of other investors. According to Bruce (2010), rational

herding happens because some investors believe others can perform better than

themselves, therefore they follow or mimic others’ behaviour. Such a phenomenon

can be captured when the value of γ is high, since a high value of γ implies that

investors are less conservative and a large proportion of investors will switch fast

to the best performed investment strategy.

In our model, the market impact of the differences of opinion in strategy se-

lection and its related behavioural phenomena can be studied by exploring how

different values of γ in (3.2.2) affects the market dynamics.

Recency Bias

Recency bias is a cognitive bias which is related to the way that individuals order
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information. Recency bias refers to the tendency of individuals to assign more

importance to more recent information compared to those farther in the past.

In the behavioural finance literature, recency bias have been widely studied in

relation to asset valuation and evaluation of funds’ performance. For example, as

stated in Pompian (2006, p.216): “one of the most obvious and most pernicious

manifestation of recency bias among investors pertains to their misuse of invest-

ment performance records for mutual funds and other types of funds. Investors

track managers who produce temporary outsized returns during a one-,two-,or

three-year period and make investment decisions based on such recent experience”.

In our model, recency bias in performance evaluation is modelled by the case

of ρ ∈ [0, 1) in the performance measure (3.2.4). The decrease in the value of

ρ ∈ [0, 1) represents the increase in the degree of recency bias. In the extreme

case ρ = 0, the performance of each strategy is assessed by its most recent realised

return. In contrast, the case of ρ = 1 describes that investors have infinite mem-

ory of past performances of each strategy and they are unbiased in performance

evaluation. This setting allows us to explore how investors’ recency bias in per-

formance evaluation affects their selections of strategies as well as the resulting

market dynamics.

3.2.3 Pricing Mechanism

In our model, the market clearing prices of all risky assets are determined by the

equilibrium of asset supply (which is fixed to 1 for each risky asset) and demand.

The price for each risky asset is thus given by:

St,k = (1− c)〈λt,k, Ŵt〉, k = 1, ..., K, (3.2.8)

where 〈λt,k, Ŵt〉 =
∑I

i=1 λi
t,kŴ

i
t denotes the scalar product. The left-hand side of

(3.2.8) represents the total value of the asset k. The right-hand side of (3.2.8)

represents the total wealth invested in each risky asset k by all agents at the point

in time t. Since the net supply of each risky asset is fixed at 1 for all t, equilibrium

between the asset value and the amount invested implies the equality of (3.2.8).

66



3.2 Model Description

It is assumed that the market is always in equilibrium. As reviewed in Chapter

2, such a market clearing mechanism, is called temporary market equilibrium. An

important feature of (3.2.8) is that the market clearing price is affected by agents’

wealth and the flow of funds.

The portfolio (in number of units) of each risky asset k held by an agent

i = 1, ..., I at time t is given by:

θ̂i
t,k =

(1− c)λi
t,kŴ

i
t

St,k

, k = 1, ..., K. (3.2.9)

Inserting equation (3.2.8) into (3.2.9) yields:

θ̂i
t,k =

λi
t,kŴ

i
t

〈λt,k, Ŵt〉
, k = 1, ..., K. (3.2.10)

The amount invested in risk-free asset by agent i = 1, ..., I is given by:

θ̂i
t,0 = (1− c)λi

t,0Ŵ
i
t . (3.2.11)

3.2.4 Dividend Process

We assume an exogenous dividend process. Similar to Brock and Hommes (1998),

the dividend payout (in cash) of each asset k = 1, ..., K is assumed to be a

sequence of i.i.d variables:

Dt,k = D̄k + εt,k, (3.2.12)

where D̄k > 0 is a constant, εt,k ∼ N(0, σ2
k) is an i.i.d. variable with mean 0

and variance σ2
k. The assumption of exogenous dividend process is common in

agent-based literature, see e.g. Levy, Levy, and Solomon (1994, 1995, 2000), and

Anufriev and Dindo (2010).

In the literature on agent-based financial market models, an alternative way of

modelling dividend is to assume that dividend depends on an endogenous variable
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such as the asset price or the aggregate wealth. For instance, in the original evolu-

tionary finance model presented in Evstigneev, Hens and Schenk-Hoppé (2011),

the dividend process is assumed to depend on the aggregate wealth. Such an

assumption leads to a case in which any change in the level of prices causes an

immediate change in the level of dividends. However, as pointed out by Anufriev

and Dindo (2010), the dividend policy of firms in reality is hardly responsive so

fast to the performance of firms’ assets. For this reason, the dividend process in

our new model is assumed to be exogenous.

3.2.5 Dynamics of the Wealth Distribution

The wealth managed by each agent i evolves over time as:

W i
t+1 =

K∑
k=1

[St+1,k + Dt+1,k]θ̂
i
t,k + (1 + r)θ̂i

t,0, (3.2.13)

where θ̂i
t,k and θ̂i

t,0 are defined, respectively, by equation (3.2.10) and (3.2.11)

representing agent i’s portfolio holdings of each risky asset k = 1, ..., K and the

risk-free asset at time t. The first term on the right-hand side of equation (3.2.13)

is the payoff of the portfolio of risky assets at time t+1, which contains the mar-

ket value of the portfolio at time t + 1 and dividends received by holding this

portfolio between the time t and t + 1. The second term is the agent’s balance in

the bank account after receiving the net interest at time t + 1. The sum of the

two terms gives the total wealth W i
t+1 of agent i at time t + 1. Note that W i

t+1

is the wealth possessed by agent i immediately before the strategy-switching at

time t + 1.

Inserting equation (3.2.1), (3.2.8) and (3.2.11) into (3.2.13) yields:

W i
t+1 =

K∑
k=1

[
(1− c)

[
β〈λt+1,k, q

i
t+1〉W̄t+1 + (1− β)〈λt+1,k, Wt+1〉

]
+ Dt+1,k

]
θ̂i

t,k

+(1 + r)(1− c)λi
t,0Ŵ

i
t , (3.2.14)
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with i = 1, ..., I, or equivalently, in vector notation:

Wt+1 = Θ̂t

[
(1−c)

(
βΛt+1qt+11

T+(1−β)Λt+1

)
Wt+1+Dt+1

]
+(1+r)(1−c)∆λt,0Ŵt,

(3.2.15)

where (suppressing the time index) the matrix Λ ∈ RK×I is given by Λki = λi
k

(agent’s investment proportions for risky assets); Θ̂ ∈ RI×K is given by Θ̂ik =
ΛkiŴ

i

(ΛŴ )k
(agent’s portfolio of risky assets); 1T = (1, ..., 1) is a row vector with I

entries; W ∈ RI and Ŵ ∈ RI are a column vectors of agents’ wealth W i (before

strategy-switching) and Ŵ i (after strategy-switching) respectively; q ∈ RI is a

column vector of the probabilities of switching investors to choose each invest-

ment strategy i; Id is a RI×I identity matrix; ∆λ0 is a RI×I matrix with entries λi
0

(investment proportion for the risk-free asset) on its diagonal and zero otherwise.

Equation (3.2.15) is an implicit description of the wealth dynamics. Assuming

that, at each point t in time, the investment proportion Λt does not depend on

agents’ contemporaneous wealth Wt. It is then straightforward to rewrite the

wealth dynamics of (3.2.15) in semi-implicit form:[
Id− (1− c)Θ̂t

(
βΛt+1qt+11

T + (1− β)Λt+1

)]
Wt+1

= Θ̂tDt+1 + (1 + r)(1− c)∆λt,0Ŵt, (3.2.16)

Following (3.2.16), an explicit representation of the wealth dynamics can be ob-

tained only if the matrix on the far left of the equation is invertible.

Define the sets:

D =
{

Ŵ ∈ [0,∞)I :
I∑

i=1

Ŵ i > 0
}

and

F =
{

q ∈ [0, 1]I :
I∑

i=1

qi = 1
}
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Theorem 3.1. Assume that that all investment strategies are fully diversified,

that is, Λ ∈ (0, 1]K×I and λi
0 ∈ [0, 1) with

∑K
k=1 Λki + λi

0 = 1 for all i = 1, ..., I.

Then the following matrix

M =

[
Id− (1− c)Θ̂︸ ︷︷ ︸

I×K

(
βΛq1T︸ ︷︷ ︸

K×I

+ (1− β)Λ︸ ︷︷ ︸
K×I

)]
∈ RI×I

is inventible for every Ŵ ∈ D, q ∈ F, c ∈ (0, 1) and β ∈ [0, 1]. Furthermore, the

wealth dynamics (3.2.16) has an explicit form:

Wt+1 =
[
Id−(1−c)Θ̂t

(
βΛt+1qt+11

T +(1−β)Λt+1

)]−1[
Θ̂tDt+1+(1+r)(1−c)∆λt,0Ŵt

]
,

(3.2.17)

and it is well-defined.

To prove the Theorem 3.1, an auxiliary Lemma which is similar to the one

used in Palczewski and Schenk-Hoppé (2011) (see the lemma E.1(i), p.46) will

be needed. Before we prove the Theorem 3.1, we first introduce the auxiliary

Lemma and sketch its proof.

Lemma 3.1. Suppose that A ∈ RI×K and B ∈ RK×I are matrices with non-

negative entries, and I ≥ 1 and K ≥ 1. Assume that:

(i) all column sums of A are strictly less than 1, i.e.
∑I

i=1 Aik < 1 for all

k = 1, ..., K;

(ii) all column sums of B are less than or equal to 1, i.e.
∑K

k=1 Bkj ≤ 1 for all

j = 1, ..., I.

Then the matrix Id−AB is invertible and its inverse maps the non-negative

orthant into itself.

Proof of Lemma 3.1. The matrix C = Id − AB has a strict column-dominant

diagonal. In the matrix C, the magnitude of the diagonal entry in a row is
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strictly larger than the sum of the magnitudes of all the other (non-diagonal)

entries in that row:

Cii >

I∑
j=1,j 6=i

|Cji|, for all i = 1, ..., I. (3.2.18)

To see this, each entry in the matrix C is given by:

1{i=j} −
K∑

k=1

AikBkj.

All non-diagonal entries are less than or equal to 0, while all diagonal entries are

non-negative. Therefore, the condition (3.2.18) is equivalent to:

I∑
i=1

K∑
k=1

AikBkj < 1, for all j = 1, ..., I.

The following computation proves this strict inequality.

I∑
i=1

K∑
k=1

AikBkj =
K∑

k=1

( I∑
i=1

Aik

)
︸ ︷︷ ︸

<1

Bkj <
K∑

k=1

Bkj ≤ 1.

The property of strictly diagonal dominance (condition (3.2.18)) implies the

matrix is inventible and its inverse maps the non-negative orthant into itself (see

Corollary, p.22, and Theorem 23, p.24, in Murata, 1977).

Theorem 3.1 can be proved based on the above Lemma:

Proof of Thoerem 3.1. Let matrix A = (1 − c)Θ̂ ∈ RI×K and matrix B =

[βΛq1T + (1− β)Λ] ∈ RK×I . Then the objective matrix M = (Id−AB) ∈ RI×I .

Both A and B have non-negative entries. Since c > 0, the column sums of A are

strictly less than one:

I∑
i=1

Aik = 1− c < 1. (3.2.19)
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The column sums of B are less than or equal to 1:

K∑
k=1

Bki = β

K∑
k=1

I∑
i=1

λi
kq

i + (1− β)
K∑

k=1

λi
k

= β
I∑

i=1

(1− λi
0)q

i

︸ ︷︷ ︸
≤β

+ (1− β)
K∑

k=1

λi
k︸ ︷︷ ︸

≤(1−β)

≤ β + 1− β = 1. (3.2.20)

Lemma 3.1 implies that the matrix M = Id − AB is invertible. It follows im-

mediately the result of the invertibility of the matrix M , the wealth dynamics

(3.2.16) has the following explicit form:

Wt+1 =
[
Id−(1−c)Θ̂t

(
βΛt+1qt+11

T +(1−β)Λt+1

)]−1[
Θ̂tDt+1+(1+r)(1−c)∆λt,0Ŵt

]
.

Lemma 3.1 also implies that the inverse matrix in the above equation maps the

non-negative orthant [0,∞)I into itself. Since the term
[
Θ̂tDt+1 + (1 + r)(1 −

c)∆λt,0Ŵt

]
contains only non-negative coordinates, the wealth before strategy-

switching Wt+1 is non-negative, hence the wealth after strategy-switching Ŵt+1

is also non-negative.

To summarise, we have derived an explicit description of the wealth dynamics.

Theorem 3.1 ensures that the wealth dynamics of the model is well-defined, hence

the price dynamics (3.2.8). The explicit formulation of wealth dynamics (3.2.17)

will be used in building a C++ computer programme for numerical studies of the

model dynamics.

The model derived in this section is in its general form which has features: i)

it contains both cases in which the number of risky asset(s) K = 1 and K > 1; ii)

it maintains a large degree of freedom on the specification of agents’ behaviour

by means of investment strategies. Since the two cases K = 1 and K > 1 require

different agent behaviour, i.e. whether agents are required to deal with the asset

allocation across several risky assets, we will treat these two cases separately. A

detailed discussion of this point is presented in the next section.
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3.3 The Two-Asset Model

The two-asset model refers to a special case which is obtained by setting the

number of risky assets K = 1 in the general model presented in above section.

In this case, the market contains only two types of asset: a risk-free asset (e.g. a

bank account that pays a fixed rate of interest) and a risky asset which may serve

as a proxy for the market portfolio (e.g. Standard & Poor’s 500 index). This class

of models is common in the economics and finance literature. The majority of

agent-based financial market models are in line with this setup of market envi-

ronment.

One of the main motivations of the two-asset model comes from the mutual

fund theorem (also sometimes called the two-fund separation theorem). This the-

orem indicates that all investors should invest in two funds: the risk-free asset

and a mutual fund (or a market portfolio) which contains a combination of risky

assets available in the market (see, e.g. Tobin, 1958; Cass and Stiglitz, 1970).

Modelling financial markets with two investment alternatives, a risk-free asset

and a risky asset (which represents the market portfolio), is therefore consistent

with mutual fund theorem.

In agent-based modelling literature, two-asset models have the advantage for

studying the aggregate market behaviour because the single risky asset itself

serves as a proxy for the market portfolio. Two-asset models are convenient for

exploring the link between investors’ behaviour at the micro-level and the ag-

gregate market behaviour at the macro-level. In contrast, models with multiple

risky assets are more suitable for studying the interaction between price dynamics

of different risky assets (or different market indices) and/or the performance of

various portfolio rules. Since a main goal of the thesis is to study the impact of

investors’ heuristics and behavioural biases on the aggregate market dynamics,

our research in the remainder of the thesis will be based on the two-asset model.

The multiple risky assets model derived in the previous section serves as a

general form of the model, which completes our evolutionary finance behavioural

73



3.4 Dynamical System and Steady State Equilibria

approach to asset pricing. The multiple risky asset model and its applications

will be left for future researches. Our analysis of the single risky asset model pre-

sented in this thesis can be viewed as an important and crucial step towards the

understanding of market behaviour and evolutionary dynamics of the multiple

risky assets model.

3.4 Dynamical System and Steady State Equi-

libria

In the two-asset model, the expansion of the aggregate wealth and market value

is governed by two important parameters: the risk-free rate of return r and the

consumption rate c. Since the values of the two parameters are exogenously set,

it is important to understand how different values of the two parameters affect

the market dynamics. This section analyses in detail the macro-level impact of

the risk-free rate of return and consumption rate.

The two-asset model can be treated as a discrete-time dynamical system. The

effect of the parameter r and c can be studied by exploring how different values of

the two parameters affect the existence and location(s) of the steady state(s) of

the dynamical system. We first analyse the case when only one agent is present

in the market. We then generalise the results to the case in which many agents

are present in market.

3.4.1 Investment Function

In the two-asset model, the investment strategy of each agent i = 1, ..., I corre-

sponds to a vector of investment proportions λi
t = (λi

t,0, λ
i
t,1) with λi

t,k > 0 and∑1
k=0 λi

t,k = 1. Since the market impact of the parameter r and c does not de-

pend on detailed specifications of investment strategies (i.e. the way that λi
t,k is

computed by each agent i), in this section, we still maintain a high generality

of agent behaviour. We assume that, for each agent i = 1, ..., I, there exists
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an investment function gi which maps the information set It−1 into an agent’s

investment proportion for the risky asset λi
t,1:

λi
t,1 = gi(It−1), (3.4.1)

where the information set It−1 contains all public available information such as

historical prices, returns and dividend yields of the risky asset up to time t − 1.

The agent does not know or is able to compute the current price St,1 when he or

she makes investment decision for λi
t,1. The current price St,1 and wealth of the

agent W i
t are simultaneously realised at time t.

Equation (3.4.1) defines a general behaviour by which agents transform past

information into current investment decisions. Such a behaviour can be rational,

(i.e. agent’s investment function g is derived from utility or profit maximisation)

or driven by heuristics and behavioural biases. Agents’ behaviour (3.4.1) will be

used in defining the model in terms of discrete-time dynamical system.

3.4.2 The Single Agent Case

Our analysis focuses on the deterministic skeleton of the two-asset model. Deter-

ministic skeleton refers to the case where the dividend of the risky asset stays as

a constant, i.e. Dt,1 = D̄1 for all t = 0, 1, ... in equation (3.2.12).

When there is only one agent in the market, the single agent determines the

price of the risky asset which is proportional to the agent’s wealth. The wealth

of the single agent is identical to the aggregate wealth in the market. Since the

expansion of the aggregate wealth is governed by the values of parameters r and

c, the aggregate wealth hence the price of the risky asset in a steady state may

consist of either increasing or decreasing sequences, or sequences of constants.

In order to characterise the behaviour of the asset price at a steady state,

for convenience, we reformulate the model in terms of return of the risky asset

rs
t,1 = St,1−St−1,1

St−1,1
and dividend yield Yt,1 = Dt,1

St−1,1
. At a steady state, a positive or

75



3.4 Dynamical System and Steady State Equilibria

negative constant return corresponds to, respectively, an increasing or decreasing

price series. Zero return corresponds to the case in which the asset price con-

verges to a constant.

Dynamics of Asset Return and Dividend Yield

The dynamics of asset return and dividend yield can be described by the following

proposition:

Proposition 3.2. In the two-asset model with a single agent, i.e. K = 1 and

I = 1, omitting agent-specific index, the return of the risky asset evolves as:

rs
t+1,1 = r +

(1 + r)
[
(1− c)λt+1,1 − λt,1

]
+ (1− c)Yt+1,1λt+1,1λt,1

λt,1 − (1− c)λt+1,1λt,1

, (3.4.2)

and dividend yield evolves as:

Yt+1,1 =
Yt,1

1 + rs
t,1

, (3.4.3)

provided that, λt,1 ∈ (0, 1] and λt,0 ∈ [0, 1) with λt,1 + λt,0 = 1 for all t = 0, 1, ...,

Dt,1 = D̄1, and c ∈ (0, 1).

Proof of Proposition 3.2. Using notations of rs
t,1 = St,1−St−1,1

St−1,1
and Yt,1 = Dt,1

St−1,1
,

the wealth dynamics (3.2.13) under the conditions of K = 1 and I = 1 can be

written as:

Wt+1 = (1− c)Wt[(1 + r)λt,0 + λt,1(r
s
t,1 + Yt,1 + 1)]

= (1− c)Wt[1 + r + λt,1(r
s
t,1 + Yt,1 − r)]. (3.4.4)

The return of the risky asset can be rewritten as:

rs
t,1 =

St,1

St−1,1

− 1 =
λt+1,1Wt+1

λt,1Wt

− 1. (3.4.5)

Inserting (3.4.4) into (3.4.5) yields:

rs
t,1 =

λt+1,1

λt,1

(1− c)[1 + r + λt,1(r
s
t,1 + Yt,1 − r)]− 1. (3.4.6)

Solving (3.4.6) for rs
t,1 gives:

rs
t,1 =

(1 + r)(1− c)λt+1,1 + (1− c)(Yt+1,1 − r)λt+1,1λt,1 − λt,1

λt,1 − (1− c)λt+1,1λt,1

. (3.4.7)
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Here, the assumption c ∈ (0, 1), λt,1 ∈ (0, 1] and λt,0 ∈ [0, 1) with λt,1 + λt,0 = 1

for all t = 0, 1, ... ensures the above equation for returns is well-defined.

Adding both λt,1r and −λt,1r to the numerator of (3.4.7) and re-arranging the

equation gives:

rs
t+1,1 = r +

(1 + r)
[
(1− c)λt+1,1 − λt,1

]
+ (1− c)Yt+1,1λt+1,1λt,1

λt,1 − (1− c)λt+1,1λt,1

.

Under the assumption Dt,1 = D̄1 for all t = 0, 1, ..., the dividend yield can be

written as:

Yt+1,1 =
Dt+1,1

St,1

=
D̄1

St,1

and Yt,1 =
Dt,1

St−1,1

=
D̄1

St−1,1

,

which gives:

Yt+1,1 = Yt,1
St−1,1

St,1

=
Yt,1

1 + rs
t,1

.

Dynamical System

Equations (3.4.1), (3.4.2) and(3.4.3) form a deterministic dynamical system:
λt+1,1 = g(It),

rs
t+1 = r +

(1+r)
[
(1−c)λt+1,1−λt,1

]
+(1−c)Yt+1λt+1,1λt,1

λt,1−(1−c)λt+1,1λt,1
,

Yt+1 = Yt

1+rs
t,1

.

(3.4.8)

The dynamical system contains a vector of three time dependent variables

(λ1, r
s
1, Y1). A steady state of the system (3.4.8) corresponds to constant vector

(λ∗,1, r
s
∗,1, Y∗,1) solving (3.4.8). The constant dividend yield i.e. Y∗,1 = Y∗,1

1+rs
∗,1

im-

plies that the yield is either positive or zero in steady state(s). Positive yield

implies that the term of rs
∗,1 in the denominator has to be zero. Note that since

the dividend is strictly positive (D̄1 > 0), the steady state with zero dividend

yield can only be observed asymptotically, which corresponds to the case where

the asset return rs
∗,1 > 0 so that price eventually grows to infinity.

Different Types of Steady States

Our findings of the steady states of the dynamical system (3.4.8) are summarised
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by the following proposition:

Proposition 3.3. (i) When c < r
1+r

, the dynamics generated by the system

(3.4.8) has two different types of steady states. The first type of steady state is

characterised by:

Y∗,1 = 0, rs
∗,1 = r − c · (1 + r)

1− (1− c)λ∗,1
∈ (0, r), λ∗,1 ∈

(
0, 1− c

r(1− c)

]
.

The second type of steady state is characterised by:

0 < Y∗,1 <
c

1− c
< r, rs

∗,1 = 0, λ∗,1 =
r − c

1−c

r − Y∗,1
∈
(
1− c

r(1− c)
, 1
]
.

(ii) When c > r
1+r

, the dynamical system (3.4.8) has only one type of steady

state which is characterised by:

Y∗,1 ≥
c

1− c
> r, rs

∗,1 = 0, λ∗,1 =
r − c

1−c

r − Y∗,1
∈ (0, 1].

(iii) When c = r
1+r

, the dynamical system (3.4.8) has only one type of steady

state which is characterised by:

Y∗,1 = r, rs
∗,1 = 0, λ∗,1 ∈ (0, 1].

Proof of Proposition 3.3. The constant dividend yield Y∗,1 = Y∗,1

1+rs
∗,1

implies that

the yield is either positive or zero in steady state(s).

The case of zero dividend yield:

In a steady state, the asset return is given by:

rs
∗,1 = r − c · (1 + r)

1− (1− c)λ∗,1
. (3.4.9)

Positive asset return rs
∗,1 > 0 implies:

r >
c · (1 + r)

1− (1− c)λ∗,1
. (3.4.10)
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Since λ∗,1 ∈ (0, 1] and c ∈ (0, 1), rearranging 3.4.10 gives:

0 < λ∗,1 < 1− c

r(1− c)
. (3.4.11)

In equation (3.4.11) λ∗,1 exists only if 1 − c
r(1−c)

> 0 which implies c < r
1+r

.

Therefore, in the case of zero dividend yield, the steady states only exist when

both of the following conditions hold:

c <
r

1 + r
, and λ∗,1 < 1− c

r(1− c)
, (3.4.12)

and the steady states is characterised by:

Y∗,1 = 0, λ∗,1 ∈
(
0, 1− c

r(1− c)

)
, rs

∗,1 = r − c · (1 + r)

1− (1− c)λ∗,1
∈ (0, r).

The case of positive dividend yield:

If the constant dividend yield at steady-state is positive, the last equation of

system (3.4.8) implies that the constant price return must be zero:

Y∗,1 > 0 and Y∗,1 =
Y∗,1

rs
∗,1 + 1

⇒ rs
∗,1 + 1 = 1 ⇒ rs

∗,1 = 0,

which corresponds to the case that the price of the risky asset at a steady state is

a constant. Positive dividend yield and zero price return implies that at a steady

state:
(1− c)Y∗,1λ∗,1 − c · (1 + r)

1− (1− c)λ∗,1
= −r.

Rearranging the above equation gives:

(1− c)(r − Y∗,1)λ∗,1 = r(1− c)− c. (3.4.13)

Equation (3.4.13) indicates that the value of λ∗,1 depends on the value of r−Y∗,1.

Let us first consider the case when Y∗,1 6= r, this implies:

λ∗,1 =
r(1− c)− c

(1− c)(r − Y∗,1)
=

r − c
1−c

r − Y∗,1
. (3.4.14)

If Y∗,1 < r, the numerator on the right-hand side of 3.4.14 must be greater than

zero to ensure positive λ∗,1, i.e. r− c
1−c

> 0 which gives c < r
1+r

. This requirement
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is the same as the first part of condition (3.4.11) in the zero dividend yield case.

When 0 < λ∗,1 ≤ 1, equation (3.4.14) implies the positive dividend yield satisfies

0 < Y∗,1 ≤ c
1−c

< r. In addition, Y∗,1 < r also implies
r− c

1−c

r−Y∗,1
> 1− c

r(1−c)
, therefore

we can obtain that if:

c <
r

1 + r
and λ∗,1 =

r − c
1−c

r − Y∗,1
∈
(
1− c

r(1− c)
, 1
]
,

there exists another type of steady states which is characterised by:

0 < Y∗,1 <
c

1− c
< r, λ∗,1 =

r − c
1−c

r − Y∗,1
∈
(
1− c

r(1− c)
, 1
]
, rs

∗,1 = 0.

If Y∗,1 > r, the numerator in the right-hand side of equation (3.4.14) must be

smaller than zero to ensure positive λ∗,1, i.e. r − c
1−c

> 0 which implies c > r
1+r

.

Furthermore, 0 < λ∗,1 ≤ 1 in equation (3.4.14) implies that the positive dividend

yield satisfies Y∗,1 ≥ c
1−c

> r. Therefore, different to the case of c < r
1+r

, when

c > r
1+r

there is only one type of steady states which is characterised by:

Y∗,1 ≥
c

1− c
> r, λ∗,1 =

r − c
1−c

r − Y∗,1
∈ (0, 1], rs

∗,1 = 0.

Note that by equation (3.4.13) Y∗,1 = r ⇔ c = r
1+r

. When c = r
1+r

, equation

(3.4.11) in zero dividend yield case does not have solution satisfying the constraint

λ∗,1 ∈ (0, 1]. Therefore, when c = r
1+r

, there exist one type of steady state which

is characterised by:

Y∗,1 = r, λ∗,1 ∈ (0, 1], rs
∗,1 = 0

Arbitrage-Free Equilibrium

In a steady state, the risky asset is no longer “risky” because it has constant

price return and dividend yield. The asset can be treated like another “risk-free”

asset which pays a constant rate of return rs
∗,1 +Y∗,1. The arbitrage-free principle

implies that the aggregate rate of return from the risky asset rs
∗,1 +Y∗,1 should be

equal to the risk-free rate of return. Otherwise for example if rs
∗,1 + Y∗,1 < r the

demand of the risky asset will decrease as it appears less attractive in comparison

with the risk-free rate of return, which causes the decrease in price of the risky

80



3.4 Dynamical System and Steady State Equilibria

asset and therefore increase the dividend yield (as dividend is a constant). As a

result of the arbitrage-free equilibrium, rs
∗,1 will eventually converge to zero and

Y∗,1 converge to r. Similar situation holds if rs
∗,1 + Y∗,1 > r. Therefore, under the

arbitrage-free equilibrium, we can conclude that rs
∗,1 + Y∗,1 = r which happens

either rs
∗,1 = r (price grows to infinity and dividend yield Y∗,1 is zero) or rs

∗,1 = 0

and Y∗,1 = r (price converges to a constant and dividend yield equals risk-free

rate of return). We cannot have both positive constant price return and dividend

yield i.e. rs
∗,1 > 0 and Y∗,1 > 0 as the dividend is a constant.

The case of rs
∗,1 = 0 and Y∗,1 = r corresponds to the steady state where

c = r
1+r

, the price at this arbitrage-free equilibrium steady state is given by

S∗,1 = D̄1

r
. We will treat this price as a fundamental value of the risky asset. Note

that the fundamental price derived in this way is identical to the one computed

by using discounted dividend model from the finance literature i.e.:

S∗,1 =
∞∑

j=1

D̄1

(1 + r)j
=

D̄1

r

Our method in deriving the fundamental value of the risky asset is an alter-

native interpretation from the arbitrage-free equilibrium. Note that the dividend

in the above derivation is assumed to be a constant, in the case of i.i.d. dividend

process as in (3.2.12) with Et[Dt+j,1] = D̄1, j = 1, 2, 3...,, the above computation

of fundamental price still holds, i.e. S∗,1 =
∑∞

j=1
Et[Dt+j,1]

(1+r)j = D̄1

r
. The arbitrage-

free steady state in the i.i.d. dividend case refers to a stationary distribution of

the return the risky asset, in which the asset price fluctuates closely around the

constant fundamental price. The long run average total return of the risky asset

(price return plus dividend yield) equals the constat risk-free rate of return.

To briefly summarise the effect of the consumption rate and risk-free rate of

return: when c < r
1+r

, two different types of steady states (rs
∗,1 > 0 and rs

∗,1 = 0)

exist depending the value of λ∗,1, however, this case implies rs
∗,1 + Y∗,1 < r which

violates the arbitrage-free condition; when c > r
1+r

, only one type of steady state

(rs
∗,1 = 0, 0 < Y∗,1 < r) exist, which also violates the arbitrage-free condition;

when c = r
1+r

, there exist an unique type of steady state where rs
∗,1 = 0, Y∗,1 = r
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and λ∗,1 ∈ (0, 1]. This type of steady state satisfies the arbitrage-free condition.

3.4.3 The Multi-Agent Case

When there exists I > 1 different agents in the market, agents’ wealth dynamics

start to play an role in the dynamical system. The asset price and return are

affected by agents’ relative wealth and the flow of funds.

Let ωi
t =

W i
t

W̄ i
t

and ω̂i
t =

Ŵ i
t

W̄ i
t

denote, respectively, agent i’s relative wealth at

time t before strategy-switching and after strategy-switching. Since the wealth

of agent i evolves as:

W i
t+1 = (1− c)Ŵ i

t [(1 + r)λt,0 + λt,1(r
s
t,1 + Yt,1 + 1)]. (3.4.15)

A straightforward computation shows that the agent’s relative wealth before

strategy-switching evolves as:

ωi
t+1 = ω̂i

t

1 + r + (rs
t,1 + Yt,1 − r)λt,1

1 + r + (rs
t,1 + Yt,1 − r)

∑I
i=1 λt,1ω̂i

t

, (3.4.16)

where ω̂i
t = (1− β)ωi

t + βqi
t with β ∈ [0, 1].

Using the terms of relative wealth, the asset price at time t + 1 in the presence

of multiple agents can be reformulated as:

St+1,1 = (1− c)
I∑

i=1

λt+1,1[(1− β)W i
t+1 + βqi

tW̄t+1]

= (1− c)W̄t+1

I∑
i=1

λt+1,1[(1− β)ωi
t+1 + βqi

t]

= (1− c)W̄t+1

I∑
i=1

λt+1,1ω̂
i
t+1. (3.4.17)
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A steady state in the multi-agent case requires not only constant asset return

rs
∗,1 and dividend yield Y∗,1 but also constant investment proportion λi

∗,1, relative

wealth ωi
∗ and ω̂i

∗, and switching probability qi
∗ for all i = 1, ..., I.

In a steady state, the price dynamics (3.4.17) can be reformulated using the

constant investment proportion λi
∗,1 and relative wealth ω̂i

∗ as:

St+1,1 = (1− c)W̄t+1

I∑
i=1

λi
∗,1ω̂

i
∗. (3.4.18)

According to the above equation, the market can be viewed as having one rep-

resentative agent whose wealth equals the aggregate wealth W̄t+1 and invest-

ment proportion equals the constant λ̄∗,1 with λ̄∗,1 =
∑I

i=1 λi
∗,1ω̂

i
∗. Therefore, the

Proposition 3.3 in the single agent case holds for the multi-agent case in terms

of λ̄∗,1. This result indicate that the effect of the risk-free rate of return r and

consumption rate c does not depend on the number of different agents as well as

the flow of funds.

To summarise, we have shown in this section that different values of the pa-

rameter r and c affect the locations of steady states of the two-asset model. The

effect of the parameter r and c is independent of the number of different agents

presented in the market. An important finding is that the steady state under the

condition c = r
1+r

corresponds to the arbitrage-free equilibrium. For this reason,

we will set c = r
1+r

in our further analyses presented in this thesis.

3.5 Specification of Agent Behaviour

This section deals with the specification of agents’ investment strategies in our

two-asset model. In the finance literature, traditional finance approach assumes

that the representative agent is risk averse and his or her demand is derived to

maximise the expected utility of future wealth. Although agent-based modelling

is able to maintain a large degree of freedom on specifying agents’ behaviour,
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a commonly seen approach in agent-based models still replies on the assump-

tion of risk averse utility maximising agents. We first review utility maximising

approaches to specifying agent behaviour in agent-based literature. We discuss

shortcomings and drawbacks of using utility maximising approaches in agent-

based models. We then propose an alternative approach to specifying agents’

decisions of investment proportions.

3.5.1 Review of Utility Maximising Approaches

In our model, agents’ demands (number of shares) of the risky asset is charac-

terised by their investment proportions λi
t,1 with i = 1, ..., I. The investment

proportion λi
t,1 does not depend on the contemporaneous wealth of agent i. This

implies that the demand (i.e.
λi

t,1ŵi
t

St,1
) of agent i for the risky asset is linearly in-

creasing with the wealth ŵi
t for a given St. Such property is consistent with the

characterisation of constant relative risk aversion (CRRA).

We review, in this subsection, agent-based models with utility maximising

agents which are consistent with the CRRA framework. We show that using util-

ity maximising approach can be problematic in models with a Walrasian market

clearing mechanism (or temporary market equilibrium clearing mechanism) and

a fixed positive supply of the risky asset. Examples of those models are Chiarella

and He (2001, 2002), Levy, Levy, and Solomon (1994, 1995, 2000) and Anufriev

and Dindo (2010).

The Power Utility Case

One typical example of agents’ utility function is the power (CRRA) utility of

wealth in the form of:

U(W ) =

 1
1−A

(W 1−A − 1), for A 6= 1

ln(W ), for A = 1
(3.5.1)

where the wealth W > 0 and the parameter A represents the relative risk aversion

coefficient.
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Each agent i = 1, ..., I is assumed to seek an optimal value for the investment

proportion λi
t,1 which maximises his or her expected utility of wealth at time t+1,

as given by

max
λi

t,1

Ei
t [U(W i

t+1)]. (3.5.2)

The two strands of researches, Chiarella and He (2001, 2002) and Levy, Levy, and

Solomon (1994, 1995, 2000), represent two commonly used but different methods

toward solving the CRRA utility maximisation problem (3.5.2) in agent-based

models.

The model in the paper of Chiarella and He (2001) is based on a standard

Walrasian market clearing mechanism. Under this market clearing mechanism,

the asset price St,1 and the wealth W i
t of agent i are simultaneously realised after

the investment proportions λi
t,1 are computed by all agents i = 1, ..., I. In order

to ensure the price St,1 can be solved explicitly, a commonly used and important

assumption is that agents do not know or are not able to compute St,1 when

computing λi
t,1 at time t. In other words, agents do not take into account the

current price St,1 in their decisions of investment proportions at time t. Based on

such an assumption, a closed-form approximation to the solution of the CRRA

utility maximisation problem (3.5.2) is obtained by Chiarella and He (2001).

The authors show that, when the wealth W i
t is given by the continuous time

stochastic differential equation dW i = µ(W i)dt+σ(W i)dzt where dzt is a Wiener

process, the CRRA utility function in (3.5.1) can be rearranged as a stochastic

differential utility. A discrete time approximation of the stochastic differential

utility function can be obtained by Euler scheme, hence an approximate solu-

tion for the CRRA utility maximisation problem can be derived explicitly in the

following form:

λi
t,1 =

Ei
t [R

s
t+1,1 −R]

AiV i
t [Rs

t+1,1 −R]
, (3.5.3)

where R = 1 + r and Rs
t,1 = 1 + rs

t,1 + Yt,1 are the gross returns of the risk-free

and the risky asset respectively; Et and Vt denote, respectively, the operators of
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expectation and variance conditional on information available at time t.

The numerator of the optimal investment proportion (3.5.3) is the expected

return of the risky asset in excess of the risk-free rate of return, which is fore-

casted by agent i at time t. The denominator of (3.5.3) represents the adjusted

market risk which is estimated by agent i at time t. The intuition of (3.5.3) is

straightforward, where the optimal investment proportion can be interpreted as

a proportion of the expected excess return which is normalised by the risk under-

taken.

However, using (3.5.3) in agent-based models with a Walrasian market clear-

ing mechanism and a fixed positive supply of the risky asset may have several

drawbacks. First, the optimal investment proportion (3.5.3) is obtained based

on the assumption of a continuous time stochastic process of wealth which is an

exogenous process. Such an assumption may not be true in agent-based models

since the wealth dynamics in agent-based models are endogenously determined

rather than exogenously imposed. Second, the value of the investment propor-

tion in (3.5.3) can be outside the interval between 0 and 1. For instance, the

value of (3.5.3) can be negative when agent i expects a negative excess return.

A negative investment proportion represents short selling. Similarly, the value

of (3.5.3) can exceed 1 which represent that agent i intends to borrow money to

make the investment. As pointed out by Levy, Levy, and Solomon (2000) and

and Anufriev and Dindo (2010), in agent-based models with Walrasian market

clearing mechanism (or temporary market equilibrium clearing mechanism) and

a fixed positive supply of the risky asset, allowing short selling and/or borrowing

may cause negative wealth, bankruptcy, and negative prices.

To fix this problems, Chiarella and He assume that agents believe there is a

reasonable large risk premium built into the risky asset so that agents’ expected

excess returns (the numerator of (3.5.3)) are always positive, and their investment

proportions for the risky asset do not exceed 1. This is a highly hypothetical sce-

nario of financial markets and the beliefs of their participants. If investors believe

that the risky asset can always yield an positive excess return, there would be no
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incentive for investors to hold the risk-free asset which contradicts to the optimal

solution in (3.5.3).

Levy, Levy, and Solomon (1994, 1995, 2000) represent another common ap-

proach to the CRRA utility maximising agents. It is based on the so-called tem-

porary market equilibrium clearing mechanism. The main difference between the

approaches of Chiarella and He (2001) and Levy, Levy, and Solomon (1994, 1995,

2000) is that the latter assume that agents take into account the current price St,1

when solving the CRRA utility maximisation problem for λi
t,1 at time t. Under

this assumption, the optimal solution for λi
t,1 as well as the market clearing price

St,1 have implicit solutions which may only be solved numerically. This is imple-

mented by Levy, Levy, and Solomon via introducing a hypothetical price St,1(h).

Based on the hypothetical price St,1(h), a hypothetical investment proportion

λi
t,1(h) for each agent i = 1, ..., I is computed to solve the utility maximisation

problem. The market clearing price St,1 is then determined through searching

a St,1(h) by which the hypothetical aggregate demand Nt(h) =
PI

i=1 λi
t,1(h)Ŵ i

t (h)

St,1(h)

matches the fixed supply N > 0 of the risky asset. Agents’ hypothetical invest-

ment proportions which solve the utility maximisation problem and the market

clearing price are the optimal investment proportions. Such process is illustrated

in Figure 3.1.

The market clearing mechanism used by Levy, Levy, and Solomon is equiva-

lent to assume that every investor in the market knows other investors’ strategies

so that all investors are able to compute the current market clearing price. On

the one hand, this assumption requires an extremely high degree of informational

efficiency of the market so that every individual investors in the market is able to

collect information about others’ decision. On the other hand, this assumption

requires that all investors have learned well the Nash equilibrium so their in-

vestment proportions depend on all other investors’ strategies and are computed

accordingly. Such an assumption seems unrealistic. Moreover, this numerical

approach cannot guarantee the optimal investment portion lies in the interval

between 0 and 1. This may cause negative wealth and price. In order to avoid

such problems, an additional assumption is imposed by Levy, Levy and Solomon.
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Figure 3.1: Flowchart of the market clearing mechanism in microscopic simulation

models proposed by Levy, Levy, and Solomon (1994, 1995, 2000).

The authors assume that agents’ investment proportions are constrained to lie in

an interval [a, b] ⊂ (0, 1). The parameters a and b represent the minimum and

maximum level of the investment proportion respectively. Under this assumption,

if investors’ optimal solution for investment proportions exceed one of the two

boundaries, their investment proportion will be set to the nearest boundary.

The Mean-Variance Optimization Case

Another commonly used approach on specifying agents’ investment proportions is

to assume that agents are myopic mean-variance maximisers. Anufriev and Dindo

(2010) may serve as an example for this approach. In the paper of Anufriev and

Dindo (2010), each agent i = 1, ..., I is assumed to have a mean-variance utility

of the next period total return:

U i = Ei
t

[
(1− λi

t,1)R + λi
t,1R

s
t+1,1

]
− Ai

2
V i

t

[
(1− λi

t,1)R + λi
t,1R

s
t+1,1

]
. (3.5.4)

The first order condition of the maximisation problem (i.e. maxλi
t,1

U i) leads to a

solution which is exactly the same as the one in (3.5.3). This mean-variance utility
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maximising approach provides an alternative way to justify the optimal invest-

ment proportion in the form of (3.5.3). In addition, Anufriev and Dindo (2010)

assume that agents are homogeneous with respect to the conditional variance, and

the conditional variance stays as a constant σ2, i.e. V i
t = σ2 for all i = 1, ..., I.

This is another commonly seen assumption which has been widely used in agent-

based models, for example, Brock and Hommes (1997, 1998), Hommes (2002),

Chiarella and He (2002) and Gaunersdorfer and Hommes (2007). Under such

an assumption, the optimal solution in (3.5.3) can be simplified to the following

form:

λi
t,1 =

Ei
t [R

s
t+1,1 −R]

Aiσ2
. (3.5.5)

As discussed above, the solution in (3.5.3) as well as the simplified one in (3.5.5)

may cause negative wealth and price. To solve this issue, similar to Levy, Levy,

and Solomon (1994,1996,2000), Anufriev and Dindo assume that agents’ invest-

ment proportions in the form of (3.5.5) are bounded in the interval of [a, b] ⊂ (0, 1)

so that the investment proportion λi
t,1 of an agent i is given by:

λi
t,1 = min

{
b, max

{
a,

Ei
t [R

s
t+1,1 −R]

Aiσ2

}}
. (3.5.6)

An important drawback of the investment function (3.5.6) is that agents react

very differently over gains (positive expected excess returns) and losses (negative

expected excess return). As illustrated in Figure 3.2, when the expected excess

return is positive, the investment proportion (for the risky asset) increases lin-

early along with the increase in the expected excess return. However, when the

expected excess return is negative, even for a very small negative value, agents

will always hold the minimum level of investment proportion which is close to

zero. In other words, agents are indifferent with respect to different degrees of

negative expected returns. Investment function (3.5.6) implies that agents’ in-

vestment proportions are very sensitive to the sign of the expected excess return.

When agents’ expected excess returns shift between the positive and negative val-

ues, the asymmetry in agents’ reactions to expected gains and losses may cause
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unrealistic dynamics of sudden booms and crashes in agents’ investment propor-

tions as well as in the price. This is exactly what happens in the simulations of

Anufriev and Dindo (2010).

Figure 3.2: An example of the investment function used by Anufriev and Dindo

(2010).

To summarise, the commonly used investment function (3.5.3) which is derived

from expected utility maximisation may cause the value of the investment propor-

tion λi
t,1 to lie outside of the interval between 0 and 1. This may lead to negative

wealth and price in models with a Walrasian market clearing mechanism and a

fixed positive supply of the risky asset. In order to fix this problem, additional

assumptions are required, such as introducing a reasonable large risk premium

to rule out negative expected excess returns of agents (as used in Chiarella and

He, 2002) or imposing a constrained investment proportion λi
t,1 ∈ [a, b] ⊂ (0, 1)

(as adopted by Anufriev and Dindo, 2010). The former assumption seems highly

hypothetical which lacks empirical evidence, while the latter one may case un-

realistic price dynamics. Moreover, the assumption of constrained investment

proportions causes that all agents will hold a minimum investment proportion

when negative expected excess returns are encountered. The homogeneity in

agents’ behaviour in reaction to different degrees of negative expected excess re-

turns seems unrealistic.
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3.5.2 Endogenous Risk

We discuss here another shortcoming of using utility maximising approach in

agent-based models: the endogenous risk is often ignored by utility maximising

agents. The concept of endogenous risk, as defined by Danielsson and Shin (2003),

refers to the risk from shocks that are generated and amplified within the system.

It stands in contrast to exogenous risk, which refers to shocks that arrive from

outside the system. According to Danielsson and Shin (2003), endogenous risk

appears in a financial market if individuals react together to the market dynamics

or the individual actions affect the market dynamics. The authors pointed out

that financial markets in reality do exhibit endogenous risk 3.

In agent-based models, individual investors are commonly modelled by dif-

ferent agent types such as fundamentalist and chartist which characterise some

typical investment styles in real markets. Asset prices in agent-based models are

endogenously determined by agents’ demands and the supplies of assets. During

such a price discovery process, agents’ actions do affect the asset prices. Both

conditions mentioned by Danielsson and Shin (2003) for the appearance of en-

dogenous risk are main characteristics of agent-based models. The endogenous

risk is therefore an important sources of risk in agent-based models of financial

markets.

Moreover, the impact of agents’ actions on price dynamics may increase if

i) the model contains only a small number of different agent types, such as the

commonly discussed fundamentalist-chartist models; ii) the proportion (in terms

of population size and/or wealth) of a particular agent type is (or becomes) large.

On the one hand, a small number of different agent types implies that each agent

type in the model may play an important role in affecting price dynamics. On

the other hand, a substantial increase or decrease in a large agent’s demand of

an asset may trigger a significant increase or decrease in the asset price. For this

3Danielsson and Shin (2003) use examples of the 1987 stock market crash, the 1998 Long
Term Capital Management crisis, and the collapse of dollar/yen in October 1998 to illustrate
the existence and effect of endogenous risk in financial markets.
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reason, the endogenous risk turns out to be a crucial risk in agent-based model

with only a few agent types. Agents in those “few-type” models have to deal

with the endogenous price risk which is generated by their own activities.

It is well known that an important assumption behind the utility maximising

approach in the modern portfolio theory is that all investors are price takers and

their actions do not influence the price. Based on this assumption, the price

dynamics in traditional finance models with utility maximising agents are often

modelled by a stochastic process which is exogenously given. Investors in those

models only face to external (e.g. fundamental) sources of risk of asset prices.

This approach contradicts to the nature of agent-based models. Therefore, mod-

elling agents as utility maximisers who are not aware of the endogenous price risk

in agent-based models is inappropriate, and may cause unrealistic price dynamics

(such as the “booms and crashes” type of dynamics) and poor performance of

utility maximising agents. Such a problem is especially prominent in models with

a standard Walrasian equilibrium and a fixed positive supply of the risky asset.

The reason is discussed as follows.

In agent-based models with a standard Walrasian market clearing mechanism,

a widely used assumption is that agents do not know or are not able to compute

the current market clearing price St,1 when making decisions for investment pro-

portions λi
t at time t. Based on this assumption, for example, the current price

St,1 is excluded by utility maximising agents in the computation of the condi-

tional mean Ei
t [R

s
t+1,1−R] (the expected excess return) and conditional variance

V i
t [Rs

t+1,1 −R] (the risk estimated) in the investment function (3.5.3). Moreover,

it is common to assume that the conditional variance stays as a constant (as men-

tioned above) or depends on past information such as asset prices up to time t−1

(see, e.g. Chiarella and He, 2001). Therefore, the endogenous price risk of St,1

at time t is ignored by utility maximisation agents whose investment proportions

at the same time are computed to maximise their expected utility at time t + 1.

Such a behaviour may lead to an unexpected loss at time t for agents before their

expected utilities can be maximized at time t + 1. This phenomena is illustrated
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by the following example.

Suppose that agent i represents a large group of investors whose investment

proportion λi
t−1,1 ∈ [a, b] with [a, b] ⊂ (0, 1) at time t − 1 is large, say 70% of

wealth. The large investment proportion corresponds to a relatively high de-

mand of the risky asset of agent i at time t − 1. If this agent expects that the

excess return at time t+1 will be negative, the investment function (3.5.6) implies

that this agent will hold the minimum level of investment proportion λi
t,1 = a at

time t, say a = 1%, to minimise his or her expected loss for time t + 1. The min-

imum level of investment proportion corresponds to an extremely low demand of

agent i for the risky asset at time t. Such a low demand as well as the sharp

decrease in demand between time t − 1 and time t may have cause a significant

decrease (e.g. a crash) in price St,1 at time t (if the supply of the risky asset is

fixed and positive). The significant decrease in St,1 will lead to an unexpected

loss for agent i at time t since agent i did not take St,1 or his or her own im-

pact on St,1 (the endogenous price risk) into consideration when making decision

for λi
t,1. This behaviour is equivalent to sell the risky asset at a low price at time t.

In contrast, if the agent i in the above example invested a moderate level of

investment proportion at time t (e.g. 40% of wealth or higher) rather than hold-

ing the minimum level at 1%, such a behaviour may have a chance to mitigate

the potential loss caused by his or her own activity at time t, or it may even

lead to a potential gain at time t if the price St,1 is increased due to the value

of λi
t,1. For this reason, when a negative expected excess return is encountered

by agents at time t, if agents were aware of the endogenous price risk caused by

their own activities, they have to seek a tradeoff between the potential losses (or

gains) caused by their own activities at time t and their expected losses for time

t + 1 (i.e. the negative expected excess return). Such a tradeoff can be possibly

realised by holding a moderate (or high) level of investment proportion at time

t. The value of the investment proportion should somehow depend on the degree

of the negative expected excess return. For example, a large (or small) absolute

value of the negative expected excess return should correspond to a lower (or
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higher) investment proportions at time t.

Holding a positive and moderate level of investment proportion when the ex-

pected excess return is negative represents risk seeking behaviour of agents. Such

a behaviour contradicts to the risk averse utility maximisation approach but it

is consistent with the concept of loss aversion (as documented in Tversky and

Kahneman, 1984) especially the myopic loss aversion (as shown in Thaler et al.,

1997). According to Thaler et al. (1997), investors who exhibit both myopia and

loss aversion are more willing to accept risks in order to mitigate losses.

In the case where a positive expected excess return is encountered by agents,

the awareness of endogenous price risk may imply that agents would not invest as

much as possible but a reasonable value for the investment proportion at time t.

The value of the investment proportion should also be positively correlated to the

value of the expected excess return. This is because that a very large investment

proportion may significantly increase the price St,1, which is equivalent to buy

the risky asset at a relatively high price at time t. This may leave agents in a

position with a high risk of having losses at time t + 1 if the price drops at time

t + 1. Agents’ behaviour for gains under the awareness of endogenous price risk

can be therefore characterised by risk aversion.

To summarise, in agent-based models with a standard Walrasian equilibrium

and a fixed positive supply of the risky asset, since short-selling and borrowing

are not allowed, the awareness of endogenous risk may imply that agents tend to

be risk seeking for losses but risk averse for gains. This phenomenon is consis-

tent with the prospect theory in behavioural finance. Moreover, for each agent,

the endogenous risk may increase along with the increase in the absolute value

of agent’s expected excess return. This property should be reflected by agents’

investment functions of expected excess returns in order to prevent overreaction

and losses which are caused by their own activities.

In contrast, the utility maximisation approach which ignores the endogenous

risk may put agents into a situation with unexpected losses caused by their own
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activities. For this reason, the utility maximisation agents in models with a

Walrasian equilibrium and a fixed positive supply of the risky asset usually per-

form poorly. As shown in Zschischang and Lux (2001) and Anufriev and Dindo

(2010), even agents with constant investment proportions can possibly outper-

form utility maximising agents. Similar results are also obtained in Evstigneev,

Hens and Schenk-Hoppé (2009) with a model of multiple risky assets. The poor

performance of utility maximisation agents cast doubt on the validity of using

utility maximisation (without considering the endogenous price risk) to charac-

terise agents’ behaviour. For this consideration, it would be more reasonable to

assume that agents are aware of the endogenous price risk caused by their own

activities.

3.5.3 A Sigmoid Investment Function

In order to properly specify agents’ demand for the risky asset, we make the fol-

lowing two crucial assumptions for all agents i, = 1, ..., I:

A1: Agent i does not know or be able to compute the current market clearing

price St,1 when making decision for the investment proportion λi
t,1 at time t;

A2: Agent i is informed about the endogenous price risk in the sense that

agent i is aware of his or her investment proportion λi
t,1 may be positively corre-

lated to the market clearing price St,1 at time t.

As discussed above, based on the assumption A1 and A2, when a negative

expected excess return is encountered by agents at time t, they may not hold

the minimum investment proportion (for the risky asset) as suggested by (3.5.6)

but a positive investment proportion with its value depends on the degree of the

negative expected return at time t + 1. Similarly, when a positive expected ex-

cess return is encountered by agents at time t, the risk aversion as well as the

presence of endogenous price risk imply that the values of agents’ investment

proportions at time t also depends on the degree of the positive expected excess
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returns. In order to capture these properties, we assume that the investment

proportion λi
t,1 for all agents i =, 1, ..., I is determined through a bounded in-

vestment function of expected excess returns g
(
Ei

t [R
s
t+1,1−R]

)
∈ (0, 1) such that

λi
t,1 = g

(
Ei

t [R
s
t+1,1 − R]

)
increases monotonically along with the increase in the

expected excess return Ei
t [R

s
t+1,1−R] ∈ R. The investment function is a concave

for the positive expected excess returns, and a convex for negative expected excess

returns. The concavity and convexity represent the behaviour that agents expect

endogenous risk of the market price increases as the increase in the absolute value

of expected excess return.

A natural candidate for such a investment function is a “S-shaped” sigmoid

function which is bounded in the interval (0, 1). Since the point of Ei
t [R

s
t+1,1−R] =

0 in the investment function is a special point which connects the domains of

negative and positive expected excess returns as well as agents’ risk preferences

between risk seeking and risk averse, we assume that agents are risky neutral when

the expected excess return is zero. In this case, agents are indifferent between the

risk-free asset and the risky asset, so they equally distribute their wealth across

the two assets, i.e. λi
t,1 = λi

t,0 = 0.5. We use the following sigmoid function to

characterise agents’ behaviour:

λi
t,1 =

1

π
arctan

(
αiEi

t [R
s
t+1,1 −R]

)
+

1

2
, (3.5.7)

where αi is a scaling parameter for each agent i.

The qualitative behaviour 4 of the investment function (3.5.7) is illustrated in

Figure 3.3. Compared with the investment function (3.5.6) which is derived from

utility maximisation, the revised one in (3.5.7) characterises agents’ risk prefer-

ences as risk seeking for losses and risk averse for gains. This property of agents’

4We choose the S shaped arctangent function, re-scaled to (0,1), to represent agents’ invest-
ment functions. Other re-scaled sigmoid functions with different curvatures are also consistent
with our assumptions of the awareness of the endogenous price risk, therefore do not affect
the generality of the simulation results (presented in Chapter 4 and 5.). Similar results can be
obtained by using other sigmoid functions e.g. 1

2 (tanh(x) + 1).
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risk preferences coincides with the experimental evidence documented in the be-

havioural finance literature. The concept of the awareness of the endogenous price

risk was used to explain in an agent-based model: 1)the risk seeking behaviour

of agents for losses; 2) the concavity/convexity of agents’ investment functions

for positive/negarive expected excess returns. Similar sigmoid investment func-

tions were used in Chiarella, Dieci and Gardini (2002, 2006)5 but in models with

a zero net supply 6 of the risk asset and/or a different market clearing mechanism.

Figure 3.3: An example of the investment function defined in equation (3.5.7).

3.5.4 Different Types of Agents

It is assumed that agents are heterogeneous about the conditional expectation of

the excess return. Following the classic approach in the literature on agent-based

financial market models, we consider three types of agents: fundamentalists, trend

followers and noise traders.

5These papers are based on utility maximisation approaches with a zero net supply of the
risky asset. Sigmoid investment functions are introduced to model chartists’ state-dependent
beliefs about risk.

6Short selling is allowed in models with a zero net supply. Therefore, these models with
utility maximising agents do not have the shortcomings and drawbacks discussed in Section
3.5.1 of this thesis.
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3.5 Specification of Agent Behaviour

Fundamentalists:

At time t, the fundamentalists believe that the price of the risky asset at time

t + 1 will move towards the fundamental value S∗1 = D̄1

r
. The fundamentalist’s

forecasting rule is given by

EF
t [Rs

t+1 −R] =
S∗1 + D̄1

St−1,1

−R, (3.5.8)

where EF
t [Rs

t+1,1 − R] denotes the fundamentalists’ expectation of the excess re-

turn at time t + 1.

The fundamentalists’ investment proportion for the risky asset is given by:

λF
t,1 =

1

π
arctan

(
αF EF

t [Rs
t+1,1 −R]

)
+

1

2
, αF ≥ 0, (3.5.9)

where the scaling parameter αF measures the degree of reaction of the fundamen-

talists towards a speculative opportunity. The investment in the risk-free asset is

proportional to 1− λF
t,1.

Equations (3.5.8) and (3.5.9) describe that the fundamentalists use the funda-

mental value of the risky asset as a benchmark in their investment decisions. For

example, if the risky asset is fair valued at time t (i.e. St,1 = S∗1), the fundamental-

ists believe that there is no arbitrage opportunity in the market. The risky asset

yields the same rate of return as the risk-free asset. Risk neutral at this special

point implies that the fundamentalists are indifferent between the risky asset and

the risk-free asset. Therefore, they equally distribute their wealth between the

risky asset and the risk-free asset. If the risky asset is undervalued/overvalued

at time t (i.e. St,1 < S∗1 or St,1 > S∗1), the fundamentalists will invest more/less

than one half of their wealth into the risky asset. The fundamentalists stabilise

the market by pushing the price of the risky asset to the fundamental value, i.e.

their investment proportion for the risky asset decreases/increases from 0.5 when

the risky asset is overvalued/undervalued.

Trend Followers:

It is assumed that the trend followers use a rolling window which contains L ≥ 1
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past returns of the risky asset {Rs
t−L,1, R

s
t−L+1,1, ..., R

s
t−1,1} to estimate the future

return Rs
t+1 of the risky asset. The parameter L measures the observation horizon

(or the memory span) of the trend followers. It is assumed that, at time t, the

trend followers believe that each past return in the rolling window will have an

equal probability to repeat at the next point in time t + 1, that is, P(Rs
t+1,1 =

Rs
t−j,1) = 1

L
for j = 1, ..., L. The trend followers’ expectation of next period’s

excess return is therefore given by:

ET
t [Rs

t+1,1 −R] =
1

L

L∑
j=1

Rs
t−j,1 −R. (3.5.10)

This way of modelling the trend followers’ return forecasting is in line with the

probabilistic decision theory, i.e. trend followers’ forecasting is implemented by

using a probability weighting function of a set of possible outcomes (past returns

observed). Based on such a specification of trend followers, behavioural biases

can be easily modelled through the way they assign probabilities to each past

return in the rolling window when computing the expected excess return. Here,

equation (3.5.10) represents only the simplest or unbiased case in which the trend

followers assign identical probability mass to each return observed. Extensions

of a more complicated case e.g. trend followers with sentiment (pessimistic or

optimistic), and/or recency bias will be discussed and studied in Chapter 5.

The trend followers’ investment proportion for the risky asset is given by:

λT
t,1 =

1

π
arctan

(
αT ET

t [Rs
t+1,1 −R]

)
+

1

2
, αT = L, (3.5.11)

where the scaling parameter αT = L is to ensure that trend follower’s investment

proportion for the risky asset is properly scaled with respect to their observation

horizon L.

Noise Traders:

In our model, the noise trading strategy represents a group of individual investors

whose investment behaviour deviate from both the fundamentalists and the trend
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followers. The noise traders’ expectation of excess return is computed randomly,

and it follows a wide sense stationary AR(1) process:

Bt = bBt−1 + σεεt, εt ∼ N(0, 1), (3.5.12)

where b ∈ (0, 1) and σε are constant.

The noise traders’ investment proportion for the risky asset is given by

λN
t,1 =

1

π
arctan

(
Bt

)
+

1

2
. (3.5.13)

The random investment proportion computed by (3.5.12) and (3.5.13) rep-

resent an “aggregate behaviour” of many individual investors whose investment

behaviour are heterogenous and random. For this reason, we assume that the

probability qN
t ∈ [0, 1] of a switching investor who becomes a noise trade is fixed

as a constant rather than depending on the past performance of the noise trading

strategy, i.e. qN
t = qN ∈ [0, 1]. The noise trading strategy does not participate the

performance-driven strategy-switching. Instead, there is a constant fraction qNβ

of the aggregate wealth which will be allocated into the noise traders’ strategy

at each point t > 0 in time, and the (1 − qN)β fraction of the aggregate wealth

will flow between the fundamentalists’ strategy and the trend followers’ strategy

depending on their past performances.

3.5.5 Illustration of Agents’ Behaviour

This subsection uses numerical simulations to illustrate the investment behaviour

of those different types of agents modelled above and the resulting price dynam-

ics. As shown in Figure 3.4, the fundamentalists invest more (less) than 50% of

wealth into the risky asset (than into the risk-free asset) when the risky asset is

undervalued (overvalued). This behaviour of the fundamentalists helps to sta-

bilise the market. In contrast, the trend followers’ investment proportion for the

risky asset follows the general trend of the price series.
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3.5 Specification of Agent Behaviour

Figure 3.4: Illustration of agent behaviour and market dynamics: price dynamics

(top), agents’ investment proportions for the risky asset (middle), probabilities for

an individual investor to choose each agent type (bottom). Parameters: r = 0.01,

c = r
1+r

, D̄1 = 10, β = 1, γ = 5, ρ = 0.99, αF = 0.75, αT = L = 20, b = 0.97,

σε = 0.2. The fundamental value of the risky asset is S∗1 = D̄1

r
= 1000.
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The trend in the price maybe triggered by the noise traders but amplified

by the trend followers. The noise traders’ investment proportion for the risky

asset fluctuates wildly and randomly. The resulting price dynamic reflects the

interaction among the three different types of agents. These results indicate that

our investment function (3.5.7) in conjunction with the specifications of agents’

expectations (equations (3.5.8), (3.5.10) and (3.5.12)) are able to capture prop-

erly the nature of the three typical types of traders.

In Figure 3.4, the probability of a switching investor who becomes a noise

trader is fixed at 0.15, while the probability of a switching investor who becomes

a fundamentalist or a trend follower varies over time depending on the past per-

formance of those two investment strategies. This strategy-switching behaviour

causes flow of funds and affects agents’ wealth dynamics. The market price is de-

termined by agents’ investment behaviour and wealth shares. The realised market

price evaluates agents’ performance in terms of profit or loss which affects the

strategy-switching as well as agents’ investment behaviour in a new round.

The key features of our model is that it captures: i) the mutual feedback be-

tween wealth and price dynamics; ii) the interaction between active and passive

learning dynamics; iii) a variate of behavioural biases which are associated with

active learning of agents. A detailed analysis of the impact of investors’ strategy-

switching behaviour and its related behavioural biases on the aggregate market

dynamics will be presented in the next chapter.

3.6 Summary

In this chapter, we presented a model which combines the strategy-switching

mechanism introduced by Brock and Hommes (1997) and the evolutionary fi-

nance model documented in Evstigneev, Hens and Schenk-Hoppé (2011). This

new model is able to capture the interaction of active and passive learning dynam-

ics and a number of behavioural phenomena which are associated with investors’

strategy-switching. The general form of the model allows a risk-free asset and
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3.6 Summary

multiple risky assets are traded in a financial market. The special case in which

the market consists of a risk-free asset and a single risky asset is studied sepa-

rately. The study of the two-asset model has the goal to explore the impact of

various behavioural biases on the aggregate market dynamics.

We analysed the effect of the risk-free rate of return r and the consumption

rate c in the two-asset model. We showed that different values of these two im-

portant parameter can affect the locations of steady states of the two asset model.

A proper relation between the parameters has been identified (i.e. c = r
1+r

) by

which the unique type of steady state of the two-asset model corresponds to an

arbitrage-free equilibrium. Such a condition ensures that the equity premium

(the return of the risky asset in excess of the risk-free rate) in the unique type of

steady state is not created exogenously by the values of those two parameters.

We discussed the shortcomings and drawbacks of using utility maximisation

agents in models with a Walrasian market clearing mechanism and a fixed posi-

tive supply of the risky asset. We then proposed a sigmoid investment function

to characterise agents’ behaviour as risk averse for gains and risk seeking for

losses. This behaviour is consistent with the prospect theory in behavioural fi-

nance. Three different types of agents named fundamentalists, trend followers

and noise traders have been specified to capture some typical investment styles

in real markets.

The two-asset model with heterogenous agents and various heuristics and be-

havioural biases is no longer analytical tractable. We will use numerical tools

to study the model dynamics. The model is programmed in C++ programming

language for simulation studies7. In the next two chapters, we will explore nu-

merically the impact of various behaviour of investors on the aggregate market

dynamics.

.

7For readers’ interest, the C++ source code is available upon request. The two-asset model
is programmed with compatibility to the multi-asset framework. Increasing the number of risky
assets in the computer programme is straightforward.
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Chapter 4

Behavioural Biases in

Strategy-Switching

4.1 Introduction

Based on the model proposed in Chapter 3, this chapter explores numerically

the impact of investors’ strategy-switching behaviour and its related behavioural

biases on the aggregate market dynamics. A variety of behavioural phenom-

ena including investor overconfidence, differences of opinion, recency bias in per-

formance evaluation, conservatism bias and rational herding will be addressed.

Moreover, the interaction between passive and active learning dynamics will be

investigated. Our analysis focuses on both the short-term dynamics and long-run

prospects of the model. The findings are expected to contribute to new ideas and

concepts on understanding the process of market selection and the causes of some

persistent market phenomena such as asset bubbles, high trading volume, equity

premium and excess volatility.

In the behavioural finance literature, a key manifestation of investor overcon-

fidence refers to the tendency that investors judge themselves as above average

in terms of investment skills or past performances. This type of overconfidence is

known as better-than-average overconfidence. For instance, Shiller (1999), Bar-

beris and Thaler (2003), Hong and Stein (2003) and Glaser and Weber (2007)

regard investors’ psychology of “better than others” as a form of overconfidence.
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4.1 Introduction

These authors point out that investors who exhibit better-than-average overcon-

fidence are more likely to maintain their own opinions in predictions even though

they know that other investors may hold a different opinion. These papers show

that better-than-average overconfidence may lead to differences of opinion among

investors and high levels of trading volume in financial markets.

The concept of differences of opinion has long been proposed as an explanation

for the high trading volume in financial markets. The strand of differences-of-

opinion literature is motivated by Varian (1985, 1989) due to the mere plausibil-

ity that differences of opinion are present in every day life. Varian (1989) finds

that, in a theoretical model of financial markets, the trading volume is entirely

driven by differences of opinion in terms of differences in prior beliefs among in-

vestors. Moreover, Harris and Raviv (1993) and Kandel and Person (1995) show

that differences of opinion in terms of differences in the way investors interpret

public information may also cause high trading volume. These findings are em-

pirically confirmed by Bamber, Barron, and Stober (1999), Antweiler and Frank

(2004) and Glaser and Weber (2007). Furthermore, among others, Glaser and

Weber (2007) highlight that better-than-average overconfidence psychologically

reinforces theses differences of opinion and thereby leads to high trading volume.

Although the market impact of better-than-average overconfidence and dif-

ferences of opinion has been extensively studied, previous contributions in these

areas rarely address the evolutionary perspectives of financial markets such as

competition, adaptation and market selection. The long-term prospects of the

presences of overconfident investors and differences of opinion in an evolutionary

context have not been well explored. Theoretical models and empirical studies

mentioned above are usually silent about the role of adaptation and market selec-

tion in affecting the presences of overconfidence and differences of opinion. Our

analysis aims to provide insights for this point. We address investors’ better-

than-average overconfidence and differences of opinion through an evolutionary

approach based on an agent-based model. The long-run market impact of these

behavioural phenomena is explored by simulation experiments.
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As explained in Chapter 3, we model investors’ better-than-average overcon-

fidence through their propensity to switch among different investment strategies.

Investors who are more (less) confident about their skills or information are less

(more) likely to switch to or mimic other investors’ strategies. Overconfident

investors in our model are represented by the non-switching investors who stay

with their investment strategies between two successive points in time with a

probability of 1. The less confident investors are represented by the switching

investors who have positive probabilities to switch among investment strategies.

The proportion between overconfident and switching investors is governed by a

parameter β ∈ [0, 1]. This parameter measures the percentage of the aggregate

wealth that is managed by the switching investors at each point in time. The

remainder 1− β percentage of the aggregate wealth belongs to the overconfident

investors. If β = 0, all investors are overconfident investors who consistently

stay with their strategies. In this case, the model exhibits pure passive learning

dynamics. In contrast, the case β ∈ (0, 1] describes the presence of switching

investors. The model then exhibits both passive and active learning dynamics.

The market impact of the presence of overconfidence investors as well as the in-

teraction between passive and active learning will be explored through simulation

experiments of different values of the parameter β ∈ [0, 1].

Moreover, our model characterises various types of differences of opinion.

First, differences in prior beliefs are modelled by a set of different and fixed in-

vestment strategies. The presence of overconfident investors maintains this type

of differences of opinion. Second, our model addresses differences of opinion in

strategy selection. A key feature of our strategy-switching mechanism (as the one

used by Brock and Hommes, 1997, 1998) is that, if the value of the intensity of

choice parameter γ is finite, not all investors necessarily choose the strategy which

is indicated (by the model) to have the highest performance measure. Investors

may hold different opinions in selecting investment strategies. Furthermore, in-

vestors under this switching mechanism may have different interpretations of the

public performance measure of each strategy (see Proposition 3.1 in Chapter 3).

The degree of differences of opinion in strategy-switching is measured by the value
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of parameter γ. As discussed in Chapter 3, investors’ conservatism bias and herd-

ing type of behaviour are associated with the degree of differences of opinion in

strategy-switching. Investors’ conservative or herding type of behaviour can be

observed when the value of γ is relatively low or high. This chapter studies the

effect of different types of differences of opinion in relation to market selection

and adaptation as well as how different values of γ impact the market dynamics.

Our analysis also addresses investors’ recency bias in performance evaluation

which is regarded by pernicious Pompian (2006) as one of the most obvious and

most pernicious manifestation of recency bias among investors. In our model,

recency bias in performance evaluation is modelled by setting the value of the

discounting (or memory) parameter ρ in performance measure (equation 3.2.4)

to an interval of [0, 1). In this case, investors assess the performance of each strat-

egy by assigning more weight to more recent realised returns of each strategy. In

the extreme case ρ = 0, the performance measure of each strategy equals its most

recent realised return. In contrast, the case ρ = 1 describes the phenomenon that

investors have infinite memory and are unbiased in performance evaluation. We

analyse the market impact of investors’ recency bias in performance evaluation

by varying the value of parameter ρ ∈ [0, 1].

This chapter is organised as follows. In section 4.2, we analyse the classic

fundamentalist-trend follower scenario with focus on the case where the risky

asset pays a constant dividend. In this case, the model generates deterministic

dynamics. We then, in section 4.3, include noise traders to study how the addi-

tional source of (exogenous) randomness affects the market dynamics. Under the

presence of noise traders, the model generate stochastic dynamics. Section 4.4

summaries and remarks our findings.

4.2 Analysis of Deterministic Dynamics

We analyse the classic scenario in which only two agent types, fundamentalists

and trend followers, are present in the market. In this two-type model, the unique
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source of randomness is the dividend process. We refer to the two-type model

with a constant dividend process (i.e. Dt,1 = D̄1 for all t = 0, 1, 2, ...) as the

deterministic skeleton. Our analysis presented in this section focuses on the de-

terministic dynamics of the model. We will show that the impact of an i.i.d.

dividend process on market dynamics is limited and even negligible if time rep-

resented by each period of the model is small (e.g. a week or a day).

In our simulations, each time period represents one week. Those behavioural

phenomena mentioned in introduction section will be analysed through experi-

ments of different values of parameters β ∈ [0, 1], γ ∈ [0,∞) and ρ ∈ [0, 1]. Other

model parameter values are summarised in Table 4.1. At the initial time t = 0,

the wealth of the two agent types is set equally to 1000; the value of performance

measure of each agent type is set to 0. This ensures that the competition of the

two agent types starts with the same advantages. Unless stated otherwise the

initial conditions and parameter values in Table 4.1 are fixed in all numerical

analyses presented in this section.

Table 4.1: Parameters and their Default Values for the Two-Type Model

Parameters Value Explanation

r 0.001 Interest rate per week (yielding 5.3% per annual)

c 0.000999 Consumption rate (its value is given by c = r
1+r

)

D̄1 1 Mean of the i.i.d. dividend process

σ1 0.2 Standard deviation of the i.i.d. dividend process

αF 0.25 Scaling parameter for fundamentalists

L 30 Observation horizon of trend followers

4.2.1 The Non-Switching Case and Overconfidence

We start with the case where all individual investors are overconfident (i.e. β = 0

in equation (3.2.1)). In this case, all investors stick to their own investment

strategies for all t ≥ 0. The model exhibits pure passive learning dynamics, i.e.

wealth accumulates on investment strategies with relative high profitability and
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none of investors switches among different investment strategies.

According to the specification for fundamentalists (equation (3.5.8)), the fun-

damentalists in our model can be regarded as “informed” investors who are en-

dowed with superior information of the fundamentals (dividend process and in-

trinsic value) of the risky asset. They believe that the price of the risky asset

is determined by its fundamentals. In contrast, the trend followers (equation

(3.5.10)) extrapolate the “trend” of the price series from realised prices in the

past and form their expectation accordingly. Similar specifications for funda-

mentalists and trend followers are used by Levy, Levy, and Solomon (2000) who

regard these two agent types as rational informed investors and efficient market

believers. In our model, the rationality of both agent types is bounded as they

do not take other’s investment behaviour into account when forming their expec-

tations or investment strategies.

The dynamics of the deterministic skeleton of the two-type model when β = 0

are illustrated in Figure 4.1. The price dynamics and agents’ investment propor-

tions for the risky asset show that the trend followers destabilise the market by

pushing the price away from the fundamental value (S∗,1 = D̄1

r
= 1000), while

the fundamentalists stabilise the market by trading oppositely to the trend fol-

lowers. The scaling parameter for the fundamentalists is set to αF = 0.25 which

describes the phenomenon that the fundamentalists do not react strongly when

the price deviates from the fundamental value. The purpose of modelling such a

phenomenon is to capture the concept of limits to arbitrage. In the behavioural

finance literature, limits to arbitrage argues that the arbitrage can be too costly

or too risky, or simply impossible due to various constraints, so the market inef-

ficiencies may persist for a longer period (Barberis and Thaler, 2003). As shown

in Figure 4.1, the interaction between the destabilising and the stabilising forces

causes the oscillatory price dynamics in excess to the dividend (constant).

In Figure 4.1, the initial wealth of both agent types is set to 1000. The dy-

namics of agents’ wealth shares show that the fundamentalists outperform the

trend followers. The long-term behaviour of the price indicates that the level of
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Figure 4.1: Market dynamics generated under a constant dividend Dt = D̄ = 1

with β = 0 (the non-switching case): time series of price (top left), wealth shares

(top right), agents’ investment proportions for the risky asset (bottom left), and

the long-term price behaviour (bottom right).

price oscillation, in general, diminishes along with the increase in the fundamen-

talists’ wealth share. The price eventually converges to the fundamental value.

The survival of the trend followers is due to that the convergence of the price

happened before the extinction of the trend followers. When the price converged

to the fundamental value, the risky asset yields the same rate of return as the

risk-free asset. Both agent types hold the same and a constant investment pro-

portion (50% of their wealth) for the risky asset. For this reason, agents’ wealth

shares stay unchanged. However, as long as there exist persistent and significant

shocks to the price, the trend followers will adapt themselves to the price changes

quickly and vary their investment proportions. In such a case, the trend followers

may keep losing money to the fundamentalists. This phenomenon will be illus-

trated in the in the next section under the presence of noise traders.
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Our simulation results of the non-switching case (β = 0) indicate that, if all

investors are overconfident (non-switching) investors, the process of market se-

lection will play a main role in affecting the long-term market dynamics. The

informed investors (the fundamentalist) outperform other investors (the trend

followers) and tend to dominate the market. This observation is consistent with

the famous Market Selection Hypothesis (MSH) in Alchian (1950) and Friedman

(1953). Moreover, the price swing in excess to the fundamental (dividend), in

the non-switching case, is only a temporary market phenomenon which happens

when the trend followers have sufficiently large wealth share to destabilise the

price. Along with the process of market selection, the Efficient Market Hypoth-

esis (EMH) holds asymptotically in this non-switching case with pure passive

learning dynamics. These results also reveal that, in the context of pure passive

learning, the market impact of differences of opinion in terms of different strate-

gies (or prior beliefs) may be eliminated by the market selection force. Although

investors’ better-than-average overconfidence in terms of non-switching helps to

maintain differences of opinion, it cannot prevent the process of market selection.

Figure 4.2 illustrates the long-term price dynamics under an i.i.d. dividend

process. It shows that the stochastic dividend process does not change the long-

term qualitative behaviour of the price. The price fluctuates closely around the

fundamental value in the long run. Those small changes of the price around the

fundamental value in the long run (e.g. periods 4,000 - 10,000) are caused by the

i.i.d. dividend process. Since the time period in our simulations represents one

week, the dividend to price ratio is very small (0.001 on average), the effect of

randomness contributed by the i.i.d. dividend process is therefore very weak and

even negligible (in the sense of affecting agents’ forecasts and the price dynamics).

For this reason, the random dividend does not affect the qualitative behaviour of

the model dynamics. Our analysis of the fundamentalist-trend follower scenario

will then focus on the deterministic skeleton only. The analysis of the determinis-

tic skeleton is able to provide basic intuitions which help to understand the more

complex scenario, for instance, the scenario with the presence of the noise traders.
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Figure 4.2: The long term price behaviour under i.i.d. dividend process with

β = 0 (the non-switching case): price (top), i.i.d. dividend process (bottom) with

mean D̄1 = 1 and standard deviation σ1 = 0.2.

4.2.2 Strategy-Switching and Behavioural Biases

One interesting phenomenon in the non-switching case (Figure 4.1) is that the

fundamentalists’s investment strategy is not consistently more profitable than

that of the trend followers. The increase in the fundamentalists’ wealth share is

not monotonic, the trend followers can gain higher profit at some periods than

the fundamentalists. These varying performances of investment strategies may

provide incentives to individual investors who are less confident about their own

investment strategies to switch to or mimic others’ investment strategies which

they believe to be more profitable at some moments.
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In order to explore the market impact of investors’ strategy-switching be-

haviour and its related behavioural biases, we first analyse the case in which all

investors are switching investors by setting the value of parameter β to 1 (in equa-

tion (3.2.1)). We then analyse, in the next subsection, the case of coexistence of

non-switching and switching investors by varying the value of the parameter β in

the interval (0, 1).

In the case of β = 1, the presence of the switching investors causes that the

model exhibits both passive and active learning dynamics. Wealth still accumu-

lates on investment strategies which have relative high profitability, but there is

an active attempt by investors to move their wealth into strategies which they

believe to be more profitable. We analyse the impact of the interaction between

passive and active learning on the aggregate market dynamics.

Unbiased Performance Evaluation

We start with the case in which the switching investors are unbiased in the evalu-

ation of strategies’ performances. The term of unbiased refers to the phenomenon

in which investors have infinite memory of past returns of each strategy and weigh

equally these past returns when evaluating the performance of each strategy. This

phenomenon corresponds to the case when the discounting parameter ρ = 1 in

the performance measure (3.2.4).

Figure 4.3 depicts the dynamics of asset price and agents’ wealth shares for the

case of ρ = 1 under different values of the parameter γ (the intensity of choice).

Since the strategy-switching is involved, agents’ wealth shares at each point in

time in Figure 4.3 are computed as the proportions of the aggregate wealth which

are allocated to each agent type after strategy-switching (i.e.
Ŵ i

t

W̄t
). As shown in

Figure 4.3, if investors are unbiased in performance evaluation, the fundamen-

talists will dominate the market and the price will converge to the fundamental

value. The convergence of the market price and dominance of the fundamental-

ists are consistent with the result of the non-switching case in which the model

exhibits pure passive learning dynamics. Compared with pure passive learning
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Figure 4.3: Dynamics of asset price and agents’ wealth shares (after strategy-

switching) under different values of the parameter γ with β = 1 and ρ = 1. Price

dynamics (top), wealth shares of the fundamentalists
Ŵ F

t

W̄t
(bottom left), wealth

shares of the trend followers
Ŵ T

t

W̄t
(bottom right).
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dynamics in Figure 4.1, the results in Figure 4.3 shows that active learning may

change the speed of convergence of the asset price. The speed of convergence un-

der active learning is affected by the value of the intensity of choice γ. Increasing

the value of γ will increase the speed of convergence.

The value of γ can be interpreted by the degree of differences of opinion

among investors on selecting strategies. Higher (lower) value of γ represents

lower (higher) degree of differences of opinion. As discussed in Chapter 3, in-

vestors’ conservatism bias or rational herding type of behaviour can be observed

when the degree of differences of opinion is high or low.

The negative correlation between the degree of differences of opinion and the

speed of convergence in Figure 4.3 indicates that conservatism bias may delay the

process of market selection and the convergence of the price (market efficiency),

while rational herding has the opposite market impact. The intuition is as fol-

lows. A lower value of γ implies a higher degree of differences of opinion among

investors in selecting investment strategies. In this case, investors exhibit con-

servatism bias and therefore are slower in picking the strategy which is indicated

by the model to have the highest performance measure. In contrast, investors’

rational herding type of behaviour when the value of γ is high implies that they

are more quickly to move to the best strategy.

However, provided that investors are unbiased in performance evaluation,

conservatism bias and rational herding affect neither the long-run market effi-

ciency nor the outcome of market selection. The market behaviour in the case of

strategy-switching with unbiased performance evaluation is consistent with the

one observed from the non-switching case. For this reason, one can easily check

that the case of coexistence of non-switching and switching investors under ρ = 1

will lead to similar results as those shown in Figure 4.3.

Recency Bias in Performance Evaluation

We investigate the case when the switching investors exhibit recency bias in per-

formance evaluation (i.e. ρ < 1 in (3.2.4)). Surprisingly, our results indicate that,
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if all investors are switching investors and exhibit recency bias in performance

evaluation (β = 1, and ρ < 1), the price may not converge to the fundamental

value, as illustrated in Figure 4.4.

Figure 4.4: Dynamics of asset price and agents’ wealth shares (after strategy-

switching) when ρ = 0.99, β = 1 and γ = 5: short-term price (top left) and

agents’ wealth shares
Ŵ i

t

W̄t
(top right); the long-term price behaviour (bottom left)

and agents’ wealth shares (bottom right).

In Figure 4.4, the value of parameter ρ is set to 0.99, which leads to the

case that investors assign slightly more weight to more recent observed realised

returns of investment strategies when evaluating the performances of these in-

vestment strategies. The performance measure of each investment strategy is

computed as a geometrically declining weighted average of realised returns. This

setting describes the phenomenon that the old performance of each investment

strategy vanishes gradually (the weight approaches to 0) in the investors’ memory.
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Figure 4.4 shows that when investors exhibit a weak degree of recency bias

(ρ = 0.99), the fundamental steady state in which the price converges to the

fundamental value becomes unstable. The price converges to a stable limit cy-

cle rather than a fixed point at the fundamental value. The excess price swing

and excess volatility becomes a persistent market phenomenon as a result of the

strategy-switching behaviour with recency bias. As shown in Figure 4.4, the re-

cency bias in performance evaluation causes that agents’ wealth shares exhibit

oscillatory dynamics and also converge to stable limit cycles. Both agent types

survive in the long run. On average, the fundamentalists possess more wealth

than the trend followers.

Figure 4.5 plots the bifurcation diagram of the asset price with respect to

different values of ρ ∈ [0, 1]. This bifurcation diagram indicates that the case of

ρ ∈ [0, 1) (recency bias) destabilises the fundamental steady state and leads to

complicated price behaviour rather than the convergence.

Figure 4.5: The bifurcations of the price with respect to ρ. Other parameters:

β = 1 and γ = 5.

To analyse the market impact of differences of opinion when the switching

investors exhibit recency bias in performance evaluation, Figure 4.6 plots the bi-

furcations of the price with respect to different values of γ between 0 and 10.
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Figure 4.6: The bifurcations of the price with respect to γ between 0 and 10.

Other parameters: β = 1 and ρ = 0.99.

As shown in Figure 4.6, the range of price variations decreases along with the

increase in the value of parameter γ. Since a lower value of γ corresponds to a

higher degree of differences of opinion, the result in Figure 4.6 indicates that the

range of price variations is positively correlated with the degree of differences of

opinion. A larger degree of differences of opinion among the switching investors

is able to cause a larger range of price variations. Different values of γ ∈ [0, 10]

cannot lead to the convergence of the asset price.

To further illustrate the impact of the parameter γ on the market dynamics,

Figure 4.7 depicts the long-term price dynamics and agents’ wealth shares in the

cases of γ = 10, 15 and 20 respectively. The result in Figure 4.7 indicates that

recency bias in conjunction with rational herding type of behaviour (high value

of γ, e.g. γ = 20) may destabilise the limit cycles of the asset price. As illus-

trated in the case of γ = 20 in Figure 4.7, the strategy-switching between the

fundamentalists and the trend followers becomes very strong which causes large

booms and crashes in the asset price.

Compared with the case of unbiased performance evaluation, investors’ re-

cency bias in the performance-driven strategy-switching turns out to be a crucial

behavioural element which causes the persistence of market inefficiency. The
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Figure 4.7: Long-term dynamics of asset price and agents’ wealth shares (after

strategy-switching) under different values of the parameter γ with β = 1 and

ρ = 0.99: γ = 10 (top), γ = 15 (middle), γ = 20 (bottom).

recency bias in performance evaluation helps to maintain and reinforces the dif-

ferences of opinion in strategy-switching. This result also reveals that a sufficient

condition for the EMH and MSH to be valid in the model with strategy-switching

is that investors have infinite memory of past performances of each strategy and

are unbiased in performance evaluation (ρ = 1 or very near 1)1.

1Due to the complexity of our model, analytical proof of this matter is difficult. Our
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This finding shows that the result of active learning may not always agree

with the one of pure passive learning but subject to conditions such as the unbi-

ased performance evaluation. Active learning is sensitive to behavioural biases.

The interaction between passive and active learning under the presence of recency

bias in performance evaluation may change the outcome of market selection and

cause the long-term market inefficiency.

4.2.3 Coexistence of Non-Switching and Switching Investors

We now study the case in which non-switching and switching investors coexist

in the market. We analyse how different proportions between the overconfident

investors and switching investors (the value of parameter β) affect the market

dynamics. Because different values of β ∈ (0, 1) do not change the convergence

of the market price if the value parameter ρ equals 1, our analysis focuses on the

case in which investors exhibit recency bias in performance evaluation (ρ < 1).

We set the parameter ρ = 0.99 and γ = 5 in following numerical analyses.

Figure 4.8 compares the price dynamics when β = 1, β = 0.1 and β = 0.001. It

shows that larger proportion of overconfident investors (at wealth level) decreases

the level of price oscillation in the long-run. The intuition is straightforward. The

price oscillation is caused by the interaction between different investment strate-

gies. As explained above, it is not the overconfident investors but the switching

investors with recency bias who help to maintain and reinforce the wealth of dif-

ferent investment strategies. When the proportion of the overconfident investors

increases, the amount of money (β percent of the aggregate wealth) that flows

among different investment strategies becomes small. The market impact of the

presence of switching investors with recency bias becomes weak, which leads to

a lower wealth level of the trend followers hence a lower level of price oscillation.

This result casts a doubt on what will happen to the long-run price behaviour if

numerical analysis shows that the price will not converge to the fundamental value in long run
(100,000 periods) if ρ ∈ [0, 0.99995]. However, the convergence may happen if ρ ≥ 0.99996.
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the proportion of the overconfident investors is very large. We are particularly

interested in the question whether the price will converge to the fundamental

value if there is only a very small fraction of the aggregate wealth flowing among

investment strategies at each period of time.

Figure 4.8: Comparison of the price behaviour under different values of the pa-

rameter β with γ = 5 and ρ = 0.99.

Figure 4.9 illustrates the long-run dynamics of the deterministic model when

β = 0.0001. Surprisingly, even though there is only 0.01% of the aggregate wealth

flowing among investment strategies at each period of time, the price does not

converge to the fundamental value in long-run. The price exhibits clustered os-

cillatory dynamics in the first 10,000 weeks and it then converges to a limit cycle.

This clustered price oscillation can be understood by analysing the probabilities

of investors to choose each investment strategy and agents’ wealth shares. Strong

oscillation in the price is triggered when trend followers have larger wealth shares,

but trend followers perform poorly during the phase of strong price oscillation.

Investors therefore tend to switch to the fundamentalists during the periods of

strong price oscillation. This capital outflow accelerates the decrease in trend fol-

lowers’ wealth share, which in turn decreases the level of price oscillation leading

to a phase of weak price oscillation.
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Figure 4.9: Long-term market dynamics when β = 0.0001, γ = 5 and ρ =

0.99: price (top), agents’ wealth shares (after strategy-switching)
Ŵ i

t

W̄t
(middle),

probabilities for individual investors to choose each investment strategy (bottom).

In the phase of weak price oscillation, trend followers’ performance is im-

proved. Due to investors’ recency bias, more and more investors start to switch
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to trend followers. The capital inflow increases trend followers’ wealth share which

eventually triggers another phase of strong price oscillations. The excess market

price swings and excess volatility under the flow of funds with recency bias be-

comes a persistent market phenomenon. The result of the case with β = 0.0001

and ρ = 0.99 reveals that even a very small proportion of the mobile capital with

recency bias is able to cause the persistence of market inefficiency.

We emphasise that the i.i.d. dividend process does not change the general

qualitative behaviour of the model dynamics. Under i.i.d. dividend process, the

parameter β = 0 implies that the price converges to a stationary distribution

in which the price fluctuates closely to the fundamental value. In contrast, if

β > 0 and ρ < 1, the price exhibits predictable cycles and these price cycles are

persistent in the long run2.

From a modeler’s perspective, introducing randomness only from the dividend

process to the discrete time model has important limitations. As each time pe-

riod in discrete time model can only represent a fixed length of time which can

be a day, a week or a year etc., but the dividend to price ratio naturally decreases

from longer time period (e.g. a year) to shorter time period (e.g. a day). The

effect of the randomness contributed by the dividend becomes weaker when the

length of time represented by each time period is shorter. In order to investigate

how stronger randomness affects the interaction between agents as well as the

resulting model dynamics, other sources of randomness are needed. For example,

the randomness contributed by the noise traders.

4.3 Analysis of Stochastic Dynamics

In order to study the market impact of investors’ overconfidence and strategy-

switching behaviour when the dynamical system is affected by exogenous ran-

2Given the complexity of our model, using analytical method to analyse the asymptotic
behaviour of the model is difficult. The long-term price dynamics is characterised by numerical
simulations, the time simulated (20,000 weeks) is sufficient long for a real market.
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domness, we add noise traders into our simulations. Parameter values for the

noise traders are specified as: b = 0.97 and σε = 0.2. Other model parameter

values are the same as those presented in Table 4.1. The initial wealth for the fun-

damentalists, trend followers and noise traders are equally set. We first analyse

the non-switching case when every individual investor is overconfident (β = 0).

We then investigate the case of β ∈ (0, 1] and each switching investor has a fixed

probability qN > 0 to become a noise trader.

4.3.1 Noise Traders in the Non-Switching Case

Figure 4.10 illustrates the short-term dynamics of asset price and agents’ invest-

ment proportions generated by the three-type model when all investors exhibit

better-than-average overconfidence. As shown in Figure 4.10, the price dynamics

under the presence of noise traders become more complicated. The frequency

and the size of the price cycles (price bubbles) are less predictable than those

in the fundamentalist-trend follower scenario. The trend followers’ investment

proportion for the risky asset is strongly affected by the presence of noise traders

resulting that the trend followers tend to chase and amplify the “trend” caused

by the noise traders.

The long-term dynamics of asset price and agents’ wealth shares of this non-

switching case are illustrated in Figure 4.11. The long-term price dynamics indi-

cate that the random fluctuations of the price in the non-switching case are only a

temporary market phenomenon. The price tends to converge to the fundamental

value in the long run, which is consistent with the prediction of EMH for real

markets. The long-term wealth shares of agents in Figure 4.11 reveal that the

noise traders will be driven out of the market, while the fundamentalists tend to

dominate the market.

Similar to the fundamentalist-trend follower scenario, the survival of the trend

follower is due to that the price converged before the trend followers vanish from

the market. In our model, the noise traders represent the aggregate behaviour
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Figure 4.10: Short-term dynamics of asset price (top) and agents’ investment

proportions for the risky asset (bottom). β = 0.

of a group of “irrational” individual investors whose investment proportions for

the risky asset are computed randomly. Our results in the non-switching case

indicate that irrational traders (noise traders) will be driven out of the market,

which agrees with the MSH. We can now summarise that, the EMH and MSH hold

asymptotically in our model of overconfident investors and pure passive learning

dynamics. The excess price fluctuations which are caused by investor overconfi-

dence (in terms of non-switching) in conjunction with differences of opinion (in

terms of different strategies) under the pure passive learning are only a tempo-

rary market phenomenon. Although investor overconfidence may psychologically

reinforce differences of opinion through investors’ minds (as argued by Glaser and

Weber, 2007), the effect of differences of opinion and the resulting excess fluctu-
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Figure 4.11: Long-term dynamics of asset price (top) and agents’ wealth shares

(bottom). β = 0.

ations of the price will be eventually destroyed by the process of market selection.

4.3.2 Market Dynamics under Strategy-Switching

Behavioural finance argues that humans often depart from rationality in a con-

sistent manner. Individuals’ investment decisions are easily influenced by indi-

viduals’ prejudices and perceptions which do not meet the criteria of rationality.

In order to better model this behaviour, we assume that each switching investor

will have a fixed probability qN to become a noise trader at each time t > 0. This

assumption implies that, in the case of β ∈ (0, 1], the wealth possessed by the
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noise traders at time t > 0 equals βqN percent of the aggregate wealth at that

time.

Unbiased Performance Evaluation

We analyse here the case where individual investors are unbiased in performance

evaluation (ρ = 1). In this case, investors give weight equally to all realised re-

turns of each investment strategy. The performance measure for each strategy

(equation (3.2.4)) is given by the accumulated return without discounting. In

order to better understand the market impact of investors’ strategy-switching

behaviour, we focus on the case in which all investors are switching investors

(β = 1). This is to ensure that the effect of the presence of the overconfident

investors is eliminated.

Figure 4.12 illustrates the case when all investors are switching investors. It

shows that if there is a fixed fraction of the noise traders (qN = 0.15) and the

value of the parameter ρ is set to 1, the trend followers will be driven out of the

market. The size of price bubbles decreases along with the decrease in the trend

followers’ wealth share. This result reveals that the survival of the trend followers

in the non-switching case (as illustrated in Figure 4.1 and 4.11) is only caused

by the convergence of the price to the fundamental value. As soon as there exist

significant and persistent shocks to the price, for instance the random shocks im-

posed by the noise traders (as illustrated in Figure 4.12), the trend followers will

be driven out of the market. For this reason, we can summarise that in our model

the MSH holds for the both cases, one with β = 0 (the non-switching case) and

the other one with β = 1 and ρ = 1 (the case of strategy-switching with unbiased

performance evaluation). The excess price fluctuations after the extinction of the

trend followers are caused by the interaction between the fixed fraction of noise

traders and the fundamentalists.

The bottom panel of Figure 4.12 shows that the value of the intensity of choice

γ is positively correlated with the speed of the market selection. A lower (higher)

value of γ is able to delay (accelerate) the process of market selection. This

observation confirms our finding in the fundamentalist-trend follower scenario.
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Figure 4.12: Price dynamics (top), agents’ wealth shares after strategy-switching

(middle), comparison of the trend followers’ wealth shares (after strategy-

switching) under different values of γ (bottom). Parameters: β = 1, ρ = 1

and γ = 5 (for top and middle panels).
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Switching investors’ conservative or herding type of behaviour when the value of

γ is low or high may change the speed of the process of market selection. Pro-

vided that investors are unbiased in performance evaluation (ρ = 1), all investors

will eventually move to the best strategy (except the noise traders). Investors’

differences of opinion in strategy-switching (i.e. γ ∈ [0,∞)) will be eventually de-

stroyed by market selection in conjunction with adaptation. We can summarise

that, in our model, the simulation results in the non-switching case and the case

of strategy-switching with unbiased performance evaluation agree with the pre-

diction of MSH. Moreover, the differences of opinion in terms of differences in

investment strategies (or prior beliefs) or differences in strategy selections cannot

lead to the long-term excess fluctuations of the price in the case of pure passive

learning or active learning with unbiased performance evaluation.

Recency Bias in Performance Evaluation

If investors exhibit recency bias (e.g. ρ = 0.99) in performance evaluation, as

illustrated in Figure 4.13, the MSH is no longer valid. The three agent types co-

exist in the long-run. The survival of the trend followers causes large fluctuations

of the price. The price dynamics are more complex than in the case of unbiased

performance evaluation illustrated above.

Compared with the fundamentalist-trend follower scenario, the presence of

noise traders causes irregular shifts in agents’ wealth shares rather than those

stable and predictable cycles as illustrated in Figure 4.4. In the case without

noise traders, Figure 4.4 shows that the trend followers’ wealth shares exhibit

stable cycles but are consistently lower than the wealth shares of the fundamen-

talists. In contrast, the result in Figure 4.13 indicates that the presence of noise

traders may enhance the performance of the trend followers. Trend followers can

have higher wealth shares than the fundamentalists at some moments especially

when large price bubbles occur (e.g. the large bubbles between periods 10,000

and 15,000 in Figure 4.13).

However, compared with the results in the non-switching case and the unbi-

ased performance evaluation case, the new results in Figure 4.13 indicate that
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Figure 4.13: Long-term price dynamics (top) and agents’ wealth shares after

strategy-switching (bottom) when β = 1, γ = 5 and ρ = 0.99.

it is not the presence of additional exogenous randomness (the randomness con-

tributed by the noise traders) but investors’ recency bias in performance eval-

uation which changes the outcome of adaptation and market selection. This

observation confirms our previous finding that recency bias in performance eval-

uation plays an important role in affecting the long-run result of adaptation and

market selection. This finding again reveals that the outcome of active learning

is not necessarily consistent with the one of passive learning due to the sensitivity

of active learning to behavioural biases. Active learning in conjunction with re-

cency bias in performance evaluation may cause persistence of market inefficiency.

To analyse the role of the intensity of choice parameter γ in affecting the
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market dynamics, Table 4.2 shows, under different values of the parameter γ, the

long-run average values of agents’ wealth shares (after strategy-switching), price

volatility, trading volume and return of the risky asset (including dividend yield,

i.e. St,1+Dt,1

St−1,1
− 1). Based on this table, the market impact of the parameter γ is

illustrated in Figure 4.14. These results are obtained through 100 independent

runs of 30,000-period numerical simulations with the same parameters but differ-

ent (random) paths of the noise traders’ investment proportions. The parameter

β is set to 1 (all investors are switching investors), the discounting factor in per-

formance measure ρ is set to 0.99 (recency bias). We compute the average values

of periods 25,001-30,000 over the 100 simulations. The price volatility is mea-

sured by the standard deviation of the price time series. The trading volume is

the average trading volume per period in percentage of outstanding shares. The

trading volume at each period of time is computed as the absolute value of the

number of shares that change hands during each period:

Volt =

∑I
i=1 |θ̂i

t − θ̂i
t−1|

2
,

where θ̂i
t is given by equation (3.2.9) measuring the number units of the risky

asset held by each agent i = 1, ..., I at time t.

Table 4.2: Long-Term Average Values of Wealth Shares, Price Volatility, Trading

Volume and Return of the Risky Asset under Different Values of γ

Value of γ
Agents’ Wealth Shares

Price Volatility Trading volume Return
Noise Trader Fundamentalist Trend Follower

γ = 1 15% 43.6477% 41.3523% 193.2590 1.3582% 0.1822%

γ = 2 15% 44.6561% 40.3439% 188.2102 1.3382% 0.1776%

γ = 3 15% 45.5267% 39.4733% 182.1131 1.3268% 0.1750%

γ = 4 15% 46.3862% 38.6138% 174.3130 1.3215% 0.1737%

γ = 5 15% 47.1491% 37.8509% 173.1808 1.3197% 0.1711%

γ = 6 15% 47.8385% 37.1615% 170.1561 1.3152% 0.1689%

γ = 7 15% 48.4815% 36.5185% 166.4110 1.3221% 0.1669%

γ = 8 15% 49.2264% 35.7736% 167.8360 1.3382% 0.1677%

γ = 9 15% 49.8564% 35.1436% 171.0581 1.3453% 0.1676%

γ = 10 15% 50.5956% 34.4044% 174.8700 1.3577% 0.1696%

The results in Table 4.2 and Figure 4.14 show that the value of the parameter

γ is positively correlated with the average wealth share of the fundamentalists
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Figure 4.14: Illustration of the impact of different values of γ on: average wealth

shares of agents (top left), average price volatility (top right), average trading

volume (bottom left) and average asset return (bottom right). The results are

based on Table 4.2.

but negatively correlated with the one of the trend followers. The average price

volatility, trading volume and asset return exhibit a “U” shape with respect to

different values of γ in the interval [1, 10]. Both a lower and higher values of γ can

lead to higher levels of price volatility and trading volume. However, the causes

for these observed high price volatility and trading volume are quite different.

When the value of γ is relatively low (e.g. γ = 1), investors are conserva-

tive in strategy-switching leading to a more diversified wealth distribution among

investment strategies, or equivalently, a higher degree of differences of opinion.

As illustrated by Figure 4.15, when γ = 1, the wealth shares (after strategy-

switching) for both fundamentalists and trend followers are stabilized roughly at

42.5% indicating a high degree of differences of opinion among the entire popu-
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lation of individual investors. In this case, the high price volatility and trading

volume arise due to the presence of a higher degree of differences of opinion. This

finding is in general consistent with the view of the differences-of-opinion litera-

ture (see, e.g. Varian, 1985, 1989; Harris and Raviv, 1993; Kandel and Person,

1995; Antweiler and Frank , 2004; Glaser and Weber, 2007) that higher degree of

differences of opinion leads to a higher degree of trading volume.

Figure 4.15: Illustration of the dynamics of asset price and agents’ wealth shares

(after strategy-switching) for periods 25,000-30,000 under different values of γ:

γ = 1 (top), γ = 10 (bottom). Other parameters: β = 1 and ρ = 0.99.

When the value of γ is relatively high (e.g. γ = 10), as illustrated by Fig-

ure 4.15, investors’ herding type of behaviour leads to a less diversified wealth

distribution among investment strategies or a lower degree of differences of opin-

ion. Investors’ herding behaviour in strategy-switching causes wild fluctuations

of agents’ wealth shares and thereby booms and crashes of the price leading to

high price volatility and trading volume. These findings reveal that not only a
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higher degree of differences of opinion but also the herding type of behaviour with

a lower degree of differences of opinion can cause high price volatility and trading

volume. This finding points to an alternative explanation to the differences-of-

opinion literature on explaining the high trading volume observed in real markets.

Moreover, the differences-of-opinion literature usually ignores the evolution-

ary perspectives of financial markets such as adaptation and market selection.

We have shown that, in a evolutionary context, excess fluctuations of the price

which are caused solely by differences of opinion (in terms of different investment

strategies or prior beliefs, different views in strategy selections and different in-

terpretations of the public performance measure) are only a temporary market

phenomenon. These differences of opinion are not sufficient to explain the per-

sistence of high trading volume, whereas additional insights can be obtained by

analysing investors’ heuristics and biases in strategy-switching. Our simulation

results show that the high trading volume is triggered by differences of opinion

and amplified by conservatism bias or herding behaviour, while it is investors’

recency bias in performance evaluation which maintains the persistence of differ-

ences of opinion and high trading volume.

4.3.3 Market Impact of Flow of Funds

We analyse the case in which both the overconfident investors and the switching

investors are present in the market by varying the value of the parameter β be-

tween 0 and 1. In this case, only β percent of the aggregate wealth flows among

different investment strategies at each point in time. We are particularly inter-

ested in how the proportion of the mobile capital affects the market dynamics.

We set the parameter ρ = 0.99 and γ = 5 in following numerical analyses.

The top panel in Figure 4.16 illustrates the price dynamics under different

values of β, the probability that a switching investor becomes a noise trader is

set to 0.15. Similar to the fundamentalist-trend follower scenario, the result in-

dicates that larger proportion of the overconfident investors decreases the level
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Figure 4.16: Comparison of short-term price dynamics when β = 1, β = 0.001,

β = 0.0001 (top), long-term price behaviour when β = 0.0001 (middle), long-term

dynamics of agents’ wealth shares after strategy-switching (bottom).
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of price oscillations. For β = 0.0001, the long-term price behaviour and agents’

wealth shares in Figure 4.16 show that even though there is only 0.01% of the

aggregate wealth flowing among investment strategies, the trend followers survive

in long run. The price does not converge to the fundamental value. The excess

price fluctuations to the fundamental become a persistent phenomenon rather

than a temporary phenomenon as the one in the non-switching case. The case

of β = 0.0001 confirms that the flow of funds under recency bias can cause the

survival of trend followers and noise traders and the persistence of market ineffi-

ciency.

Table 4.3 illustrates the impact of different proportions of the mobile capital

on agents’ wealth shares, price volatility, trading volume and return of the risky

asset (including dividend yield). These results are the average values which are

computed over periods 25,001-30,000 based on 100 independent runs. The case

β = 0 in Table 4.3 is considered as a benchmark because the price asymptotically

equals the fundamental value. The EMH and MSH hold in this case.

Table 4.3: Long-Term Average Values of Wealth Shares, Price Volatility, Trading

Volume and Return of the Risky Asset under Different Values of β

Value of β
Agents’ Wealth Shares

Price Volatility Trading volume Return
Noise Trader Fundamentalist Trend Follower

β = 0 0.7458% 72.0832% 27.1710% 4.8756 0.0564% 0.1002%

β = 0.0001 4.9212% 59.1249% 35.9539% 50.0466 0.4571% 0.1070%

β = 0.001 10.7858% 52.1970% 37.0172% 117.0211 0.9643% 0.1392%

β = 0.01 14.3314% 48.0738% 37.5948% 160.9642 1.2715% 0.1660%

β = 1 15.0000% 47.1502% 37.8498% 172.9907 1.3182% 0.1710%

Table 4.3 shows that, for β = 0, the fundamentalists tend to dominate the

market, while the noise traders are near extinction (average wealth share of

0.75%). The long-term average price volatility and trading volume are very small,

which means the price fluctuates closely to the fundamental value. There is al-

most no trade between agents. The return of the risky asset (0.1002%) is almost

identical to the risk-free rate of return (0.1%). In contrast, for β = 0.0001, the dy-

namics change dramatically. The average wealth shares of both the noise traders
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and the trend followers increase significantly. The average wealth shares of the

noise traders and the trend followers stabilise at 4.92% and 35.95% respectively.

The time series of the wealth shares of the two types of agents under different β

are illustrated in Figure 4.17, which shows that their wealth shares when β > 0

stabilise in long run.

Figure 4.17: Dynamics of the wealth shares (after strategy-switching) of the noise

traders (top) and the trend followers (bottom) under different values of β.

Since the probability qN of a switching investor who becomes a noise trader

in our simulation is set to 0.15, for β = 0.0001 the percentage of the aggre-

gate wealth flowing to the noise trading strategy per period is βqN = 0.000015.

This small amount of mobile capital has a dramatic impact on noise traders’
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wealth share. Because of the small amount of flowing capital, noise traders’ aver-

age wealth share increased from 0.75% to 4.92%. Moreover, the trend followers’

wealth share increased from 27.1710% to 35.95%. Along with the increase in the

wealth shares of the noise traders and the trend followers, the long-run average

price volatility and trading volume are also significantly increased. For β = 1, the

price volatility and trading volume become much larger than those in the β = 0

case. The average return of the risky asset (0.171%) in the β = 1 case yields

0.071% excess return per week.

The results in Table 4.3 indicate that the increase in the parameter β increases

the (average) proportion of wealth managed by the noise traders and the trend

followers, but it decreases the proportion of wealth managed by the fundamental-

ists. The increase in β also significantly increases price volatility, trading volume

and excess return. This effect is highly nonlinear. The wealth shares of the noise

traders and trend followers, the price volatility, trading volume and excess return

all increase rapidly with the increase in β when β is small. The price volatility,

trading volume and return of the risky asset are negatively correlated with the

average wealth share of the fundamentalists but positively correlated with the

wealth shares of the noise traders and the trend followers. This result indicates

that the fundamentalists stabilise, while noise traders and trend followers desta-

bilise the market.

The excess volatilities, high trading volume and the excess returns in Table

4.3 can be explained by analysing agents’ wealth shares. Comparing the results

between the cases β = 0.0001 and β = 0.001, the noise traders’ wealth share in-

creases by 5.86%, while the trend followers’ wealth share only increases by 1.06%.

However, the price volatility, trading volume and return of the risky asset all in-

crease dramatically.

This result indicates that the noise traders might be blamed rather than the

trend followers for the excess volatility, high trading volume and excess return of

the risky asset. In order to investigate how the wealth shares of the noise traders

and the trend followers can affect the market dynamics, the following experiment
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is carried out. For β = 1, the proportion of the aggregate wealth which is allo-

cated to the noise traders at each period equals the qN . By varying the value

of qN in the case of β = 1, we replicate the average wealth shares of the noise

traders in the cases of β = 0.0001 and β = 0.001. We compute, for β = 1, the

price volatility, trading volume, asset return and agents’ average wealth shares

by setting qN = 4.9212% and qN = 10.7858% respectively. We then compare

the results with those documented in Table 4.3. The comparison of the results is

summarised in Table 4.4.

Table 4.4: The Impact of Agents’ Wealth Shares on the Price Volatility, Trading

Volume and Return

Cases
Agents’ Wealth Shares

Price volatility Trading volume Return
Noise Trader Fundamentalist Trend Follower

A1: β = 0.0001, qN = 15% 4.9212% 59.1249% 35.9539% 50.0466 0.4571% 0.1070%

A2: β = 1, qN = 5.2130% 4.9212% 49.5489% 45.5299% 121.3550 0.6632% 0.1206%

B1: β = 0.001, qN = 15% 10.7858% 52.1970% 37.0172% 117.0211 0.9643% 0.1392%

B2: β = 1, qN = 10.6172% 10.7858% 48.1162% 41.098% 145.3331 1.0605% 0.1457%

As can be seen from Table 4.4, the cases A2 and B2 replicate the noise traders’

average wealth shares in the cases A1 and B1 respectively. Comparing the re-

sults between the cases A1 and A2 shows that the trend followers’ wealth shares

increases from 35.9539% to 45.5299%. Along with the increase in the trend fol-

lowers’ wealth share, the price volatility, trading volume and return of the risky

asset also increase dramatically. A similar situation also happens in the cases B1

and B2. This result indicates that not only the noise traders, but also the trend

followers play an important role in producing excess volatilities, high trading vol-

ume and excess returns of the risky asset. The underlying intuition is that the

impact of the noise traders on the price dynamics can be captured and amplified

by the trend followers due to their trend-chasing behaviour.

Summarising, the presences of noise traders and trend followers, or equiv-

alently, the differences of opinion in terms of different investment strategies (or

prior beliefs) are able to explain the observed high price volatility, trading volume

and excess return. These differences of opinion are maintained and reinforced by
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investors’ strategy-switching behaviour with recency bias in performance evalua-

tion rather than investors’ better-than-average overconfidence.

This finding points to a conjecture of Glaser and Weber (2007) which states

that better-than-average overconfidence psychologically causes and maintains dif-

ferences of opinion among investors leading to high trading volume. Based on

evolutionary perspectives of financial markets, we agree with that overconfidence

reinforces differences of opinion through investors’ minds. However, we argue

that the market selection force in wealth dynamics and/or investors’ adaptive

behaviour in terms of performance-driven strategy selection may weaken or even

eliminate the effect of better-than-average overconfidence in maintaining and re-

inforcing the differences of opinion. The high trading volume originated from

better-than-average overconfidence is only a temporary rather than a persistent

phenomenon of financial markets. Instead, the flow of funds among different in-

vestment strategies in conjunction with recency bias in performance evaluation

may explain various persistent phenomena of financial markets such as the per-

sistence of asset bubbles, excess price volatility, high trading volume and excess

return of the risky asset.

4.3.4 Agents’ Performance under Flow of Funds

We now analyse the performance of each agent type in the presence of flow of

funds with recency bias. Table 4.5 shows the long-term average values of simple

returns (as defined in equation 3.2.3) of different agent types corresponding to

experiments documented in Table 4.3.

As shown in Table 4.3, for β = 0, all three agents have similar long-term

average returns which are close to the risk-free rate of return (0.1%). This is due

to the convergence of the price at the fundamental value. The risky asset then

yields the same rate of return as the risk-free asset. For β > 0, the fundamental-

ists always have the highest long-term average return than the other two agent

types. The noise traders’ long-term average returns are less than the risk-free
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Table 4.5: Average Returns of Different Agents

Case Noise Trader Fundamentalist Trend Follower

β = 0 0.0966% 0.1002% 0.1001%

β = 0.0001 0.0815% 0.1043% 0.1001%

β = 0.001 0.0722% 0.1229% 0.1003%

β = 0.01 0.0693% 0.1438% 0.1013%

β = 1 0.0703% 0.1456% 0.1015%

rate indicating that they make losses. Along with the increase in β, the funda-

mentalists’ long-term average return increases, while the noise traders’ long-term

average return decreases. The change in the trend follower’s long-term average

return is not significant with respect to the change in the value of parameter β.

Comparing the results in Table 4.5 and 4.3, we observe that the noise traders’

long-term average return is negatively correlated with the price volatility, which

indicates that noise traders do not make profit from the volatility they create.

The more volatility the noise traders create the less average return they can get.

In contrast, the fundamentalists’ long-term average return is positively correlated

with the price volatility. This indicates that their investment strategy is success-

ful (in terms of long-term average return) to against high volatility and the flow of

funds. The long-term average return of the trend followers is almost independent

of the price volatility.

To further investigate the profitability of these agent types, we compute M-

periods simple moving average returns of each agent type i:

SMAi
t =

1

M

M−1∑
j=0

φi
t−j,

where φi
t (given by equation (3.2.3)) denotes the simple return of agent i at each

time period t.

141



4.3 Analysis of Stochastic Dynamics

Figure 4.18 illustrates the 10-, 30-, and 90-week moving average returns of

different agent types for the case of recency bias in performance evaluation (β = 1,

γ = 5 and ρ = 0.99). The results are based on periods 29,800-30,000. Figure 4.18

shows that in terms of 10- and 30-week moving average returns, both the noise

traders and the trend followers are able to outperform the fundamentalists at some

periods especially when price bubbles happen. In the short term, noise traders

and trend followers can generate quick and large profits during price bubbles, but

they also suffer large losses immediately after the burst of a price bubble.

Figure 4.18: Time series of 10-week (top left), 30-week (top right) and 90-week

(bottom right) moving average returns of different agents in the case with β = 1,

γ = 5 and ρ = 0.99. The underlying price dynamics (bottom right).

In contrast, the fundamentalists make profits or losses smoothly and steadily

along with fluctuations of the price. Therefore, the advantage of the fundamen-

talists’ strategy lies in its long-term profitability. As shown in Figure 4.18, the

fundamentalists almost always outperform the other two agents in 90-week mov-
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ing average return. This findings also suggest that if an investor who intend to

make profits using the fundamentalists’ strategy, he or she must stay with the

strategy for a reasonable long period. The fundamentalists’ strategy may not

be suitable for short-term speculation, but it has advantage in the long-term on

against high price volatility and the effect of flow of funds.

4.4 Concluding Remarks

This chapter studied numerically the dynamics of the behavioural model pro-

posed in Chapter 3. Our analysis addressed the market impact of a variety of

behavioural phenomena including investor overconfidence, differences of opinion,

recency bias in performance evaluation, conservatism bias and rational herding.

The focus was given to evolutionary perspectives of financial markets where adap-

tation, market selection and both passive and active learning dynamics apply.

Our results point to the famous MSH and EMH as well as the causes for some

persistent market phenomena such as asset bubbles, excess volatility, high trad-

ing volume and equity premium.

We studied the case where all investors are better-than-average overconfident

investors and none of them switches among investment strategies. In this case,

the model exhibits pure passive learning dynamics. Our simulation results of

this non-switching case indicate that the process of market selection plays an

important role in shaping the long-term market dynamics. The fundamental-

ists (informed trader) dominate the market in long run, which is consistent with

MSH. The price converges to the fundamental value, which agrees the EMH. The

excess volatility or high trading volume originated from better-than-average over-

confidence together with differences of opinion in terms of different prior beliefs is

only a temporary market phenomenon. The market selection force will eventually

eliminate the market impact of overconfidence and differences of opinion.

We also analysed the case where all investors are switching investors. In this

case, the model exhibits both passive and active learning dynamics. We showed
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that, if investors have infinite memory of past performances and are unbiased

in performance evaluation, the long-run market behaviour is consistent with the

one observed in the non-switching case. Investors’ conservative or herding type

of behaviour in strategy-switching is able to delay or accelerate the process of

market selection and the convergence of market price. The differences of opinion

in terms of differences in strategy selection and different interpretations for the

public performance measure will be destroyed by investors’ adaptive behaviour

in conjunction with the market selection force. All switching investors will even-

tually move to the best performed strategy leading to “homogeneous behaviour”

of investors.

In contrast, if the switching investors exhibited recency bias in performance

evaluation, we showed that both the fundamentalists and trend followers will sur-

vive in long run. The survival of trend followers causes the persistence of market

inefficiencies such as asset bubbles and excess volatility. Moreover, our results

indicate that investors’ conservatism bias in strategy-switching is able to cause

a more diversified wealth distribution among different strategies therefore rein-

force the differences of opinion leading to high trading volume. Furthermore, we

showed that investors’ herding type of behaviour in strategy-switching may also

cause high trading volume even booms and crashes in the price. This observation

provides an alternative explanation for the high trading volume in addition to

the concept of differences of opinion.

Such a finding is not entirely new. A similar result was obtained by Brock and

Hommes (1998) showing that larger values of the intensity of choice parameter

destabilise the market. However, in their model, the wealth dynamics do not

affect the price dynamics. The model therefore exhibits only pure active learn-

ing dynamics. We provided supportive evidence in a model which captures both

passive and active learning. More importantly, we showed that the destabilising

effect of the intensity of choice may highly depend on how the performance of

each strategy is evaluated by investors as well as the interaction between passive

and active learning dynamics. If investors have infinite memory of past perfor-

mances are unbiased in performance evaluation, the presence of active learning
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does not affect the outcome of pure passive learning. The price converges to the

fundamental value asymptotically and the destabilising effect of the intensity of

choice does not exist. If investors exhibit recency bias in performance evaluation,

the outcome of active learning disagrees the one of pure passive learning leading

to the persistence of market inefficiency. The destabilising effect of the intensity

of choice arises in this case. This result indicates that active learning is sensi-

tive to behavioural biases. Investors’ behavioural biases such as the recency bias

in performance evaluation may play an important role in affecting the process of

market selection of survival strategies as well as the long-term market dynamistic.

Previous studies on the process of market selection are mainly based on the

approach in which evolutionary forces operate through wealth dynamics. Finan-

cial market models which are in line with this approach often exhibit pure pas-

sive learning dynamics only, see for example, Sandroni (2000), Blume and Easley

(2006) and the evolutionary finance literature surveyed in Evstigneev, Hens and

Schenk-Hoppé (2009). In contrast with this approach, our analysis highlighted

the importance of using models with both passive and active learning to study

the process of market selection. We have shown that investors’ heuristics and

biases such as conservatism bias, herding and recency bias in performance evalu-

ation may become more relevant under the presence of active learning. We have

also demonstrated that analysing the effect of these heuristics and biases and

the interaction between passive and active learning dynamics is able to provide

additional insights for understanding the process of market selection as well as

the long-term market behaviour. Moreover, according to LeBaron (2011), one

may expect both passive and active learning are present in real markets.

To check the robustness of our results, we carried out experiments in which

both overconfident and switching investors are present in the market. The results

in these experiments were obtained based on 100 independent runs. We showed

that even a very small amount mobile capital (e.g. 0.01% of the aggregate wealth)

with recency bias has a substantial impact on the market dynamics leading to

the survival of different agent types and the persistence of market inefficiencies.

Moreover, the presence of overconfident investors cannot explain the persistence
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of excess volatility and high trading volume, whereas the flow of funds with re-

cency bias can provide insights for these observed market phenomena.

Although the concepts of better-than-average overconfidence and differences

of opinion have long been proposed as explanations for the observed high trading

volume in financial markets (see the review by Glaser and Weber, 2007), previous

studies in these areas are usually silent about the long-run prospects and evolu-

tionary perspectives of financial markets. Based on our simulation results, none of

these two concepts is sufficient to explain the persistence of high trading volume

in a evolutionary context. We agree with the view of Glaser and Weber (2007)

that better-than-average overconfidence psychologically maintains differences of

opinion among investors. However, we argue that the effect of the presence of

overconfident investors as well as differences of opinion may be eliminated by

evolutionary forces such as adaptive behaviour of investors and/or the process of

market selection.

Summarising, our results presented in this chapter highlighted the role of

evolutionary forces in affecting the market dynamics. We demonstrated the added

values for using an agent-based model with both passive and active learning to

study concepts from behavioural finance and the process of market selection.

Our findings may contribute to new ideas on understanding the market selection

of survival strategies and the causes of the persistence of asset bubbles, excess

volatility, high trading volume and equity premium.
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Chapter 5

Observation Horizons and

Behavioural Biases in Forecasting

5.1 Introduction

This chapter is devoted to studying behavioural elements which may impact trend

followers’ forecasting about future returns of the risky asset. We extend the

model and analysis presented in previous two chapters to address the roles of

observation horizon, sentiment (optimism and pessimism) and recency bias in

affecting the trend followers’ forecasting. Heterogeneous observation horizons of

trend followers and switching among different observation horizons are allowed.

We analyse numerically the impact of these behavioural elements on the trend

followers’ strategic behaviour as well as on the aggregate market dynamics. Our

findings point to the causes of a variety of stylised facts such as the absence of

autocorrelation in asset returns, volatility clustering, negative skewness and ex-

cess kurtosis in asset return distribution.

During the past a few decades, investors’ trend following behaviour, or equiv-

alently, the positive feedback trading, has been extensively studied. In the be-

havioural finance literature, the trend following behaviour is commonly studied

in relation to the concept of limits to arbitrage. The existence of trend followers

and various limits of arbitrage have been proposed to explain the occurrences

of mispricing in financial markets (see overviews by Barberis and Thaler, 2003).
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Similarly, in the literature on agent-based financial market models, the presence

of trend followers has been identified as an important source of instability in finan-

cial markets (see LeBaron, 2006a and Hommes, 2006). However, in behavioural

finance studies and agent-based models, investor psychology and biases such as

sentiment and recency bias are usually left implicitly in the trend following be-

haviour itself. This causes difficulties in distinguishing and quantifying the roles

of different behavioural biases in affecting the trend following behaviour as well

as the market dynamics. Previous contributions which explicitly studied different

behavioural biases of trend followers are rare. Our research on trend followers’

sentiment and recency bias presented in this chapter aims to contribute to this

area.

In the finance literature, investor sentiment have been widely discussed in re-

lation to limits of arbitrage and mispricing (De Long et al., 1990), underreaction

and overreaction of stock prices (Barberis, Shleifer, and Vishny, 1998), market

crashes (Hong and Stein, 2003), explanation and predication of stock returns

(Baker and Wurgler, 2007) and many other aspects. However, a commonly seen

issue is that studies on investor sentiment differ from one another in terms of the

definition and measurement for sentiment, and no consensus has been reached.

As stated by Baker and Wurgler (2007, p.130): “Now, the question is no longer,

as it was a few decades ago, whether investor sentiment affects stock prices, but

rather how to measure investor sentiment and quantify its effects.”

Our study addresses investor sentiment through its phycology underpinnings.

Sentiment is defined in terms of optimism and pessimism. We refer optimism (or

pessimism) to the tendency that investors give importance to positive (or nega-

tive) events in their information set when forming return forecasts. In our model,

trend followers’ forecasting is formulated by a probability weighting function of

historical returns of the risky asset, where the observation horizon governs the

sample size. We regard optimism (or pessimism) as the phenomenon that trend

followers assign larger decision weights to larger positive (or negative) historical

returns. This approach to sentiment has a key feature that investors’ decision

weights for each possible outcome are not necessary equal to its probability but
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subject to heuristics and behavioural biases. Modelling sentiment in this way is

in line with the probabilistic decision theory, such as the Prospect Theory (Kah-

neman and Tversky, 1979).

As reviewed in Chapter 2, Kahneman and Tversky (1974) have identified two

important heuristics: representativeness and availability. The representativeness

heuristic refers to the tendency for people to categorise some events as typical

or representative and ignore the laws of probability. The availability heuristic

describes the phenomenon that people assess the frequency of class or the proba-

bility of an event by how easy they can be brought to mind. Consistent with these

two heuristics, our model extension of optimism (or pessimism) characterises the

phenomena: i) optimistic (or pessimistic) trend followers categorise large positive

(or negative) historical returns as typical performances of the risky asset; ii) they

assigned larger decision weights to these typical performances due to these typical

performances are more easy to be recalled.

This conceptual model of sentiment mentioned above is implemented via

an optimism-pessimism index which is originally proposed by Kaymak and van

Nauta Lemke (1998) in the fuzzy decision making literature. Using this index to

study investor sentiment in the literature on agent-based financial market models

was firstly advocated by Lovric et al. (2009). One important advantage of this

approach is that the degree of investors’ optimism or pessimism can be intuitively

measured by a single parameter: the optimism-pessimism index. Based on this

approach, we will explore the market impact of different degrees of optimism and

pessimism by varying the value of the optimism-pessimism index.

In addition to sentiment, we also study the impact of recency bias on trend

followers’ forecasting. Recency bias is modelled by the phenomenon that trend

followers assign larger decision weights to more recent observations of historical

returns of the risky asset. We expect that recency bias in forecasting may rein-

force the trend following behaviour and affect sentiment leading to frequent shifts

between optimism or pessimism. As pointed out by Offerman and Sonnemans

(2004), when traders exhibit recency bias in asset valuation, traders who are not

149



5.1 Introduction

sure of the intrinsic value of a stock will be too optimistic about its value when the

firm is winning and too pessimistic when it is losing. We analyse how the com-

bined effect of sentiment and recency bias impact the aggregate market dynamics.

Our analysis will start from a simple case where the trend followers have ho-

mogeneous observation horizons. The purpose is to provide a basic understanding

of the roles of trend followers’ observation horizon, sentiment and recency bias

in affecting the aggregate market dynamics. We then propose another extension

of the model to study a more complicated but realistic case in which the trend

followers have heterogeneous observation horizons. In this case, the whole pop-

ulation of trend followers are divided into subgroups which are characterised by

different observation horizons.

In the literature on agent-based financial market models, the heterogeneity

with respect to investors’ observation horizons has been previously studied by

Levy, Persky, Solomon (1996) and Levy, Levy, and Solomon (2000). Compared

with their approaches, our approach to heterogenous observation horizons has

features: i) switching among different observation horizons is allowed; ii) the col-

lective behaviour of the trend followers who have different observation horizons

can be modelled and observed. This helps to understand the resulting price dy-

namics when the number of different subgroups of trend followers is large. Our

analysis aims to explore the market impact of the heterogeneity in trend follow-

ers’ observation horizons, especially when behavioural biases such as sentiment

and recency bias are relevant.

This chapter is organised as follows. We employ a so-called incremental ap-

proach according to which extensions of new behaviour are introduced gradually

to the original model. The market impact of newly added behaviour is explored

by comparing the results of model extensions with the results of the original

model. In Section 5.2, we introduce and analyse model extensions of sentiment

and recency bias in a homogeneous observation horizons case. Section 5.3 extends

the model and analysis to a heterogeneous observation horizons case. Section 5.4

150



5.2 Homogenous Observation Horizons

summarises our findings.

5.2 Homogenous Observation Horizons

This section focuses on the case where the trend followers have homogeneous

observation horizons L ≥ 1. The model with original specification for the trend

followers’ forecasting rule (equation (3.5.10) in Chapter 3) is referred to as a

benchmark model. We first analyse the benchmark model with focus on the role

of the trend followers’ observation horizon in affecting the market dynamics. We

then modify the benchmark model gradually to incorporate sentiment and re-

cency bias in the trend followers’ forecasting. The market impact of sentiment

and recency bias will be explored by comparing the results of modified model

with those of the benchmark model.

Consistent with the previous chapter, each time period in our simulation ex-

periments represents one week. Model parameters values are the same as those

documented in Table 4.1. Previous analysis has identified that, in our model,

the existence of switching investors (i.e. β ∈ (0, 1]) and recency bias in perfor-

mance evaluation (i.e. ρ ∈ [0, 1)) are prior conditions for the survival of the trend

followers in the long run. To ensure the survival of the trend followers and the

persistence of their market impact, our analysis presented in this chapter is based

on the assumption that every individual investors are switching investor and they

exhibit recency bias in strategy-switching. The parameter values of β and ρ are

set to 1 and 0.99 respectively. The value of the intensity of choice parameter γ

is set to 5. The set of model parameter values is fixed for all numerical analyses

presented in this Chapter. Moreover, all market phenomena (including short-

term dynamics) illustrated in this chapter are persistent phenomena due to the

survival of the trend followers in the long run, unless stated otherwise.
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5.2.1 The Basic Forecasting Rule of Trend Followers

In our model, it is assumed that the group of trend followers uses a rolling window

which contains L ≥ 1 historical returns of the risky asset {Rs
t−L, Rs

t−L+1, ..., R
s
t−1}

to forecast the future return Rs
t+1 of the risky asset. The value of L measures the

length of the observation horizon of the trend followers.

We refer to the original specification (3.5.10) as the basic forecasting rule of

the trend followers. The basic forecasting rule characterises the phenomenon

that the group of trend followers follows a simple heuristic according to which

they assign identical probability mass to each observed historical return i.e.

P(Rs
t+1,1 = Rs

t−j,1) = 1
L

for j = 1, ..., L. The trend followers’ expectation (fore-

casting rule) of the future return at time t is given by ET
t [Rs

t+1,1] = 1
L

∑L
j=1 Rs

t−j,1.

We explore here the role of trend followers’ observation horizon L in affecting the

market dynamics.

We first analyse the deterministic model in which the fundamentalists and

trend followers are present in the market and the dividend is assumed to be a

constant. Figure 5.1 illustrates market dynamics generated by the deterministic

model with different values of observation horizon L. These results are sampled

in the long run when the price converges to a stable limit cycle (as illustrated by

Figure 4.4 in the previous chapter). As shown in Figure 5.1, the price exhibits

predictable cycles due to the interaction between the fundamentalists and the

trend followers who use basic forecasting rule. The size and duration of each

price cycle (bubble) are positively correlated with the length of trend followers’

observation horizon. Longer observation horizons are able to cause the larger and

longer price bubbles.

We now analyse the case in which the fundamentalists, the trend followers

and the noise traders are present in the market. Due to the presence of the noise

traders, the model generates stochastic dynamics. Figure 5.2 illustrates the mar-

ket dynamics generated by the stochastic model for the cases L = 10 and L = 20

respectively. In this figure, the proportion of noise traders is set to 15% (i.e.
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Figure 5.1: Comparison of short-term dynamics under different values of the

parameter L when the fundamentalists and the trend followers are present in

the market: price dynamics (top), the trend followers’ investment proportion for

the risky asset (middle), the fundamentalists’ investment proportion for the risky

asset (bottom).
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qN = 0.15). In order to compare agents’ behaviour between the case L = 10 and

L = 20, the path of the noise traders’ random investment proportion is fixed in

the two independent simulations (i.e. the value of the seed of the random number

generator is fixed).

Figure 5.2: Illustration of price dynamics and agents’ investment proportions

for the risky asset when L = 10 (left column) and L = 20 (right column). The

bottom panels are autocorrelation coefficients of log returns and absolute returns.

As shown in Figure 5.2, under the presence of the noise traders, the size
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and duration of the price bubbles are less predictable than those in the scenario

without the noise traders. In the case where the trend followers have a shorter

observation horizon (L = 10), their investment proportions are strongly affected

by the noise traders’ behaviour resulting that the trend followers tend to chase

the trend caused by the noise traders. In the case where the trend followers have

a longer observation horizon (L = 20), their investment proportions are less sen-

sitive to the noise traders’ behaviour resulting smoother price dynamics than in

the shorter observation horizon case.

The autocorrelation coefficients of log returns (bottom panels of Figure 5.2)

reveal that the return dynamics is characterised by the length of trend followers’

observation horizon: in the case L = 10, large autocorrelation coefficients (either

in positive or negative) appear in every 10 lags; in the case L = 20, large auto-

correlation coefficients appear in every 20 lags. Here, an important issue is that

these autocorrelation coefficients of weekly returns are too large to be realistic.

Figure 5.3: Autocorrelation coefficients of returns when the fundamentalists ex-

hibit different degrees of reaction αF = 0.25, αF = 0.5 and αF = 0.75. The

proportion of the noise traders: qN = 0.15.

To understand the impact of the fundamentalists on return dynamics, the top
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panel of Figure 5.3 compares the autocorrelation coefficients of returns generated

in four different cases where the fundamentalists have different degrees of reac-

tion (when price deviates from the fundamental value): αF = 0.25, αF = 0.5,

αF = 0.75 and αF = 1. The result shows that the stabilising force of the fun-

damentalists has a significant impact on the first two lags of the autocorrelation

coefficients of returns. The presence of the fundamentalists with stronger reaction

implies that returns are less autocorrelated in the first two lags. However, the

impact on the remainder lags are insignificant indicating that the fundamental-

ists with different degrees of reaction do not affect the property that the return

dynamics is characterised by the length of observation horizon L of the trend

followers.

Figure 5.4: Autocorrelation coefficients of returns generated under different pro-

portions of the noise traders. Degree of reaction of the fundamentalist: αF = 0.25.

Figure 5.4 depicts the impact of different proportions of the noise traders on

return dynamics. The autocorrelation coefficients show that the return dynamics

is still characterised by the length of trend followers’ observation horizon unless

the group of noise traders owns a very large proportion of the aggregate wealth

(e.g. above 80%). These results reveal that the length of the trend followers’ obser-

vation horizon plays an important role in shaping the price and return dynamics.
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The predictable and unrealistic autocorrelation structure (which is caused by the

presence of trend followers with homogeneous observation horizons) cannot be

removed by the fundamentalists with different degrees of reaction or a reasonable

proportion of the noise traders.

5.2.2 Forecasting with Sentiment: Optimism and Pessimism

In this subsection, we extend the basic forecasting rule of the trend followers to

incorporate sentiment. Sentiment is defined and modelled in terms of optimism

and pessimism via an optimism-pessimism index which is originally proposed by

Kaymak and van Nauta Lemke (1998) in the fuzzy decision making literature.

This approach is utilised by Lovric et al. (2009) in agent-based modelling liter-

ature to study the market impact of different degrees of optimism or pessimism.

The trend followers’ forecasting rule of excess return with sentiment is given by:

ET
t [Rs

t+1 −R] =
( 1

L

L∑
j=1

(Rs
t−j,1)

τ
) 1

τ −R, (5.2.1)

where τ ∈ R is the optimism-pessimism index measuring how close the value of

the forecasted excess return ET
t [Rs

t+1−R] to the maximum or minimum value of

historical return in sample. The higher (lower) the value of the parameter τ is,

the closer the forecasted excess return is to the maximum (or minimum) value of

historical return in sample. This is equivalent to assign larger probability masses

to larger positive (or negative) historical returns in sample. In the extreme case,

τ →∞ (or τ → −∞) implies that the forecasted return equals the maximum (or

minimum) value in sample.

The value of the parameter τ can be used to describe the trend followers’

degree of optimism and pessimism. If τ = 1, the forecasting rule is identical

to the basic forecasting rule, i.e. the trend followers assign identical probability

mass to each observation of excess return in the rolling window (the forecasted

excess return is the arithmetic mean). In this case, trend followers exhibit neither

optimism nor pessimism. If τ > 1, the forecasting rule corresponds to optimistic
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trend follower, because trend followers assign larger probabilities to observations

of larger excess returns in the rolling window. In contrast, if τ < −1, the forecast-

ing rule corresponds to pessimistic trend follower, because trend followers assign

larger probabilities to observations of smaller excess returns in the rolling win-

dow. As mentioned in introduction, this approach to sentiment is consistent with

the heuristics of representativeness and availability documented by Kahneman

and Tversky (1974). Based on this approach, we explore how different values of

the optimism-pessimism index τ affects market dynamics.

We first analyse the deterministic case in which the noise traders are absent

and the dividend is a constant. Figure 5.5 compares the market dynamics gener-

ated under different values of τ : τ = 1 (without sentiment), τ = 30 (optimism)

and τ = −30 (pessimism). The trend followers’ observation horizon in these sim-

ulations is set to 10 weeks (L = 10). Simulation results are sampled in the long

run when the price exhibits stable cycles.

As shown in Figure 5.5, the price dynamics under τ = 1 is similar to those

under τ = 30 or τ = −30. This observation indicates that, in the deterministic

model, the price dynamics is not very sensitive to the trend followers’ sentiment.

The trend followers’ investment proportions (Figure 5.5, middle) show that, on

average, the optimistic (or pessimistic) trend followers tend to invest larger (or

smaller) fraction of wealth into the risky asset than the trend followers without

sentiment. The optimistic trend followers cause the price to be clustered around

the “top” (maximum value) of the price cycle, while the pessimistic trend fol-

lowers cause the price to be clustered at the “bottom” (minimum value) of the

price cycle. The trend followers’ wealth shares (Figure 5.5, bottom) show that

the trend followers have a slightly better performance in the case without sen-

timent. The variations of wealth shares in the three different cases are not strong.

We now add the noise traders into our simulation experiments. The goal is

to explore how different values of τ affect the price dynamics under the presence

of the noise traders. Figure 5.6 compares the market dynamics generated under
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Figure 5.5: Illustration of the impact of the trend followers’ sentiment when the

fundamentalists and the trend followers are present in the market: price dynamics

(top), the trend followers’ investment proportion for the risky asset (middle), the

trend followers’ wealth shares after strategy-switching (bottom). L = 10.

different degrees of optimism of the trend followers. The results are sampled af-

ter 29,000 periods in order to illustrate the long-run dynamics. Figure 5.6 shows
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Figure 5.6: Illustration of the impact of the trend followers’ optimism when the

fundamentalists, trend followers and noise traders are present in the market: price

dynamics (top), the trend followers’ investment proportion for the risky asset

(middle), the trend followers’ wealth shares after strategy-switching (bottom).

Parameters: L = 10, qN = 0.15.
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that, under the presence of the noise traders, the price becomes sensitive to the

trend followers’ sentiment. The size of booms and crashes in the price is posi-

tively correlated with the degree of the trend followers’ optimism.

The reason for this phenomenon is as follows. The presence of the noise traders

may randomly trigger large returns in the price. When these large returns are

observed by the optimistic trend followers, according to the degree of optimism,

the trend followers may sharply increase their investment proportions for the

risky asset leading to a market boom. The size of this market boom is linked

to the degree of the trend followers’ optimism. Those large returns generated in

the boom will also be observed by the optimistic trend followers. Therefore, the

optimistic trend followers will continue to invest large proportions of wealth into

the risky asset, which helps to maintain the price bubble for some periods (as

illustrated in periods 45-55 in Figure 5.6).

However, these large returns in the boom will be gradually pushed out of

the trend followers’ observation horizon with length L = 10. For this reason, 10

periods after a market boom, the optimistic trend followers face a set of smaller

returns. This may cause a sharp decrease in the trend followers’ investment pro-

portion for the risky asset leading to a dramatic market crash. The size of a

market crash after a boom is also linked to the degree of the trend followers’ op-

timism. Compared with the case τ = 1, the trend followers in the optimism cases

(i.e. τ > 1) are able to gain higher wealth shares when market booms appear.

However, the optimistic trend followers have lower wealth shares when market

crashes happen. On average, the trend followers in the case τ = 1 have higher

wealth shares than in the optimism cases.

Figure 5.7 illustrates the market impact of the trend followers’ pessimism un-

der the presence of the noise traders. In contrast with the optimism case, the

pessimistic trend followers may sharply decrease their investment proportion for

the risky asset when large negative historical returns are observed. This behaviour

causes crashes in the price. A market crash is usually followed by a market boom

after L (the length of observation horizon) periods. The degree of pessimism is
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positively correlated with the size of market crashes and booms. Compared with

the case τ = 1, the trend followers in the pessimism cases (i.e. τ < 1) have lower

wealth shares on average. However, those pessimistic trend followers are able to

gain higher wealth shares when market crashes happen.

The simulation results illustrated in Figure 5.6 and Figure 5.7 indicate that

the trend followers’ sentiment in forecasting is able to significantly affect the size

of price bubbles (i.e. the range of the price deviation from the fundamental value).

However, sentiment has a minor impact on the duration (with respect to time) of

the price bubbles. The same as the results of the case without sentiment, the du-

ration of price bubbles in the optimism or pessimism cases is mainly determined

by the length of the trend followers’ observation horizon.

Figure 5.8 depicts the long-term return dynamics generated in three different

cases: τ = 1, τ = 30 and τ = −30. It shows that log returns of the risky asset in

the case τ = 1 are mainly clustered around their mean value. Large movements

in the price rarely happen. However, in the cases τ = 30 and τ = −30, large

returns happened frequently indicating that sentiment (optimism and pessimism)

destabilises the market and cause large movements in the price.

The autocorrelation coefficients of log returns (Figure 5.8, bottom right) re-

veal that the trend followers’ sentiment causes the returns to be slightly less

autocorrelated than in the case where trend followers use basic forecasting rule

without sentiment. However, optimism or pessimism cannot destroy the unreal-

istic autocorrelation structure which is imposed by the homogeneous observation

horizons of the trend followers. The length of trend followers’ observation horizon

still plays an important role in shaping the price and return dynamics.

Figure 5.9 shows the histograms and statistics corresponding to the log returns

illustrated in Figure 5.8 under different values of τ . When the trend followers use

basic forecasting rule without sentiment (τ = 1), log returns exhibit a bell shaped

distribution which is similar to the normal distribution in its shape. However, the

Jarque−Bera test shows that the skewness and kurtosis do not match the normal
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Figure 5.7: Illustration of the impact of the trend followers’ pessimism when the

fundamentalists, trend followers and noise traders are present in the market: price

dynamics (top), the trend followers’ investment proportion for the risky asset

(middle), the trend followers’ wealth shares after strategy-switching (bottom).

Parameters: L = 10, qN = 0.15.
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Figure 5.8: Illustration of return dynamics under different values of τ : τ = 1 (top

left), τ = 30 (top right), τ = −30 (bottom left); autocorrelation coefficients of

log returns (bottom right). Parameters: L = 10, qN = 0.15.

distribution. When the trend followers are optimistic (τ = 30), the distribution of

log returns exhibits large excess kurtosis, fat tails and negative skewness. When

the trend followers are pessimistic (τ = −30), the distribution of log returns also

exhibit excess kurtosis, fat tails but positive skewness.

In both optimism and pessimism cases, the volatilities (standard deviations)

of log returns are larger than in the case without sentiment. Moreover, the ex-

cess kurtosis and fat tails in return distributions are qualitatively consistent with

the stylised facts of real-world financial time series as those illustrated by Cont

(2001). These results indicate that the price and return dynamics generated un-

der the presence of sentiment are closer to those in real markets. However, the

autocorrelation coefficients of returns are still too large to be realistic.
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Figure 5.9: Histogram and statistics of log returns under different values of τ :

τ = 1 (top), τ = 30 (middle), τ = −30 (bottom). Parameters: L = 10, qN = 0.15.

Compared with the results of Lovric et al. (2009) who modelled sentiment

in a similar fashion, our results in general agree with their finding that investor

optimism is related to market booms and crashes. However, Lovric et al. (2009)
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showed that investor pessimism has little impact on the price, which is in contrast

with our results. The reason is that, in their model, the trend followers (called

efficient market believers in their paper) who exhibit pessimism tend to be driven

out of the market in the competition with a group of rational informed investors

(i.e. the fundamentalists who are informed about the dividend process). In the

optimism case in their paper, the trend followers who exhibit optimism may out-

perform the rational informed investors and dominate the market. The long-run

average wealth share of the optimistic trend followers is positively correlated with

the degree of optimism.

The paper of Lovric et al. (2009) is based on an microscopic simulation model

proposed by Levy, Levy and Solomon (2000). As reviewed in Chapter 2, this

model does not allow investors to switching between different agent types. The

results on the survival of different agent types in the Levy, Levy and Solomon

model (LLS model) have been critically evaluated by Zschischang and Lux (2001)

and Anufriev and Dindo (2010). These authors revealed that an important prop-

erty of the LLS model is that the rational informed investors do not necessarily

dominate the market. Investors who are more aggressive (i.e. less risk averse) to

invest in the risky asset may dominate the market. This special property of the

LLS model explains the survival of the optimistic investors and the extinction of

the pessimistic investors documented in Lovric et al. (2009).

According to Anufriev and Dindo (2010), the property of the LLS model re-

garding the survival of aggressive investors depends on the relation between the

values of the interest rate r of the risk-free asset and the growing rate g of the

dividend of the risky asset. The property comes from the assumption of r < g.

Under this assumption, at a steady state where returns of the risk-free asset and

the risky asset are constant, the risky asset yields a higher return than the risk-

free asset. However, this is not in case in our model. As explained in Chapter 3,

such a steady state in our model corresponds to an arbitrage-free equilibrium in

which the risky asset pays the same return as the risk-free asset. The survival of

the trend follower type in our model is due to the strategy-switching of investors.
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5.2.3 Forecasting with Recency Bias and Sentiment

We now model the phenomenon that the trend followers exhibit recency bias in

forecasting. Recency bias is modelled through a set of exponentially decaying

probability masses, by which the trend followers assign larger probability mass to

the more recent observations of returns in the rolling window of size L. At time

t > 0, the most recent return observation Rs
t−1,1 is initially assigned a decision

weight of µ:

ω(Rs
t−1,1) = µ, µ ∈ R and µ ∈ [0, 1], (5.2.2)

the decision weights of older observations are iteratively reduced by a factor 1−µ,

ω(Rs
t−j,1) = ω(Rs

t−j+1,1)(1− µ), j = 2, ..., L, (5.2.3)

these weights are then normalised to give the probability mass function:

pmf(Rs
t−j,1) = P(Rs

t+1,1 = Rs
t−j,1) =

ω(Rs
t−j,1)∑L

j=1 ω(Rs
t−j,1)

. (5.2.4)

Therefore, trend followers’ forecast rule with recency bias is given by:

ET
t [Rs

t+1 −R] =
L∑

j=1

pmf(Rs
t−j,1)(R

s
t−j,1)−R. (5.2.5)

When recency bias is coupled with sentiment, trend followers’ forecast rule be-

comes:

ET
t [Rs

t+1 −R] =
( L∑

j=1

pmf(Rs
t−j,1)(R

s
t−j,1)

τ
) 1

τ −R. (5.2.6)

In this specification of recency bias, the discounting factor 1 − µ measures

the speed of the exponential decay of the probability mass. Therefore, the ini-

tial weight µ governs the degree of the recency bias of the trend followers. To

illustrate how it works, Figure 5.10 illustrates the probability mass functions un-

der different initial weights, µ = 0.1 and µ = 0.3, respectively. The observation

horizon is set to 10. The higher the parameter µ is, the higher degree of recency

bias the trend followers exhibit in their return forecast. In the case µ = 0, the

167



5.2 Homogenous Observation Horizons

forecasting rule is identical to the basic forecast rule (i.e. P(Rs
t+1,1 = Rs

t−j,1) = 1
L
)

in which the trend followers do not exhibit recency bias.

Figure 5.10: Illustration of probability mass function when L = 10. The initial

weight: µ = 0.1 (left), µ = 0.3 (right).

To explore the market impact of recency bias in trend followers’ forecasting,

Figure 5.11 compares the price dynamics generated in different cases where the

trend followers exhibit different degrees of recency bias in forecasting: µ = 0.1

and µ = 0.3. The top panel shows the price dynamics generated in the determin-

istic case with absence of the noise traders. The middle panel depicts the price

dynamics generated in the stochastic case in which the noise traders possess 15%

aggregate wealth. The bottom panel shows the autocorrelation coefficients of

5,000-period log returns in the stochastic case. The price and return dynamics

are sampled in the long run (i.e. after 29,000 periods).

As can be seen in Figure 5.11, unlike the effect of sentiment which mainly

affects the size but not the duration of price bubbles, the presence of recency bias

in the trend followers’ forecasting is able to affect both the size and duration of

price bubbles. The most significant impact of the recency bias is that it makes

the duration of bubbles shorter and therefore increases the frequency of bubbles.

This property can be found in both the deterministic case and the stochastic case.

These observations indicate that the recency bias in trend followers’ forecasting

is able to reinforce the trend following behaviour causing the trend followers to
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Figure 5.11: Comparison of price dynamics generated under different degrees

of recency bias of the trend followers: price dynamics in the deterministic case

(top), price dynamics under the presence of the noise traders (middle), autocorre-

lation coefficients of log returns under the presence of the noise traders (bottom).

Parameters: L = 10, qN = 0.15.

169



5.2 Homogenous Observation Horizons

become optimistic (or pessimistic) when the price is increasing (or decreasing).

Figure 5.12 compares the price dynamics generated when the trend followers

exhibit recency bias (µ = 0.3) and different sentiment: τ = 1 (no sentiment),

τ = 30 (optimism) and τ = −30 (pessimism). The results show that when the

recency bias is coupled with sentiment, these two behavioural biases are able to

significantly affect both the size and duration of price bubbles leading to more

complicated price dynamics with large booms and crashes. The autocorrelation

coefficients of returns reveal that, when trend followers exhibit both the recency

bias and sentiment in forecasting, returns are less autocorrelated. However, these

autocorrelation coefficients are still too large compared with those observed in

real markets under weekly frequency.

Figure 5.13 shows the histograms and statistics of returns corresponding to

the case illustrated in Figure 5.12. The results indicate that, without sentiment,

the recency bias itself cannot cause high excess kurtosis in return distribution.

Recency bias with optimism (or pessimism) leads to high excess kurtosis and

positive (or negative) skewness in return distribution. These observations are

opposite to those when the trend followers only exhibit sentiment. In the case

where the trend followers only exhibit sentiment but not recency bias, optimism

(or pessimism) may imply negative (or positive) skewness.

To summarise, our analysis presented in this section showed that the trend fol-

lowers’ observation horizon, sentiment and recency bias in forecasting are impor-

tant behavioural factors which may strongly affect the price and return dynamics

on the macro level. The case where the trend followers use basic forecasting rule

without sentiment and recency bias showed that the size and duration of the price

bubbles as well as the autocorrelation structure of returns are characterised by

the length trend followers’ homogeneous observation horizons. This observation

is consistent with those obtained by Levy and Levy (1996) and Levy, Levy, and

Solomon (2000) in models which have a similar specification for the forecasting

rule of the trend followers.
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Figure 5.12: Comparison of price dynamics (top) and autocorrelation structures

(bottom) generated under trend followers with recency bias and different senti-

ments. Three types of agents, the fundamentalist, trend follower and noise trader

(qN=0.10) are present in the market. L = 10.

After adding sentiment into the trend followers’ forecasting, our results showed

that sentiment in terms of optimism or pessimism is able to affect the size of price

bubbles. Moreover, sentiment plays a main role in producing large volatility in

the price and return dynamics and the excess kurtosis in return distributions.

However, sentiment has little impact on the duration of the price bubbles. In

contrast with the effect of sentiment, recency bias mainly affects the duration of

the price bubbles. The presence of recency bias in forecasting reinforces the trend

following behaviour, which increases the frequency of the price bubbles.
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Figure 5.13: Histogram and statistics of asset returns when µ = 0.3 and different

values of the parameter τ : τ = 1 (top), τ = 30 (middle), τ = −30 (bottom).

L = 10.

When sentiment is coupled with recency bias, both the size and duration of

the price bubbles are strongly affected resulting less predictable price and return

dynamics than in the case without sentiment and recency bias. Statistical fea-
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tures of the return distribution in the case with sentiment and recency bias are

more closer to those observed from real markets. These results indicate that be-

havioural biases such as sentiment and recency bias in forecasting help to make

the price and return dynamics become more realistic.

However, our model cannot reproduce the stylised fact of absence of auto-

correlations in returns. The reason is that the homogeneity with respect to the

observation horizon of the trend followers imposed too much regularities in the

price and return dynamics. We showed that these strong regularities cannot be

destroyed by the fundamentalists with different degrees of reaction, a moderate

proportion of the noise traders, or the trend followers’ sentiment and recency bias

in forecasting.

Levy, Levy, and Solomon (2000) pointed out that the assumption of homoge-

neous observation horizons of investors may share the same spirit as the represen-

tative agent approach in economic modelling. As mentioned by many previous

contributions in the economics and finance literature, Levy, Levy, and Solomon

(2000, p.167) state that: “One justification for using a representative agent in

economic modelling is that although investors are heterogeneous in reality, one can

model their collective behaviour with one representative or “average” investor.”

Following this justification, the homogeneous observation horizons of investors

can be regarded as the collective behaviour of investors who have heterogeneous

observation horizons. Levy, Levy, and Solomon (2000) carried a simulation exper-

iment to test the validity of the assumption of homogeneous observation horizons

in representing the collective behaviour of heterogeneous observation horizons. In

their experiment, the authors simulated two subpopulations of efficient market

believers (EMBs, i.e. trend followers in our model) with different sizes of observa-

tion horizons L = 5 and L = 15. They showed that the resulting market dynamics

is completely different to the dynamics generated under one “average” investor

who has observation horizon L = 10. This phenomenon was explained by the au-

thors as “the nonlinear interaction between the different subpopulation” and “it

can be partly understood by looking at the wealth of each subpopulation”. Such
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a finding made the authors question the validity of using representative agent in

economic modelling.

Indeed, modelling the collective behaviour of the two subpopulation of EMBs

one with L = 5 and the other one L = 15 as one representative investor with

L = 10 is not appropriate, especially in models with features of nonlinear interac-

tion between different investor types and mutual dependence between wealth and

price. The nonlinearity which is originated from investors’ strategies and wealth

dynamics makes the modelling of the collective behaviour of heterogeneous in-

vestors become difficult. The assumption of homogeneous observation horizons

can help to simplify the model, thereby an initial and basic understanding of the

model dynamics can be obtained. However, such an assumption is not appropri-

ate for modelling a representative agent or the collective behaviour of agents who

have different observation horizons.

In order to tackle this issue, the following section will address the heterogene-

ity with respect to the trend followers’ observation horizons. Our approach to

heterogeneous observation horizons provides an example on how the aggregation

of heterogeneous behaviour or a representative agent can be achieved in an agent-

based model.

5.3 Heterogeneous Observation Horizons

This section extends the model and analysis to study the case where the trend fol-

lowers have heterogeneous observation horizons. Before we introduce our model

extension regarding the heterogeneous observation horizons, we first briefly review

an existing approach by Levy, Levy, and Solomon (2000) to the heterogeneous

observation horizons of investors. The purpose is to illustrate some important

issues on modelling heterogeneous observation horizons.

To relax the assumption of homogeneous observation horizons, Levy, Levy,

and Solomon (2000) assume that each investor j in the EMBs type has a differ-
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ent observation horizon Lj > 0 and Lj is distributed in the population according

to a truncated normal distribution with average L̄ and standard deviation σL

(since Lj ≤ 0 is meaningless). The population of the EMBs type is defined in

terms of the number of investors. Their model does not allow investors to change

their observation horizons or switch between different observation horizons.

An advantage of this approach is that it allows a full spectrum of EMBs with

different observation horizons. The price and return dynamics generated become

more realistic than in the homogeneous observation horizons case. However, a

side effect is that, as noted by Levy, Levy, and Solomon (2000), the price and

return dynamics in this heterogeneous observation horizons case also become dif-

ficult to be understood. In order to understand the price dynamics, because of

the mutual dependence between wealth and price in their model, one has to anal-

yse the wealth dynamics of each EMB investor who has a different observation

horizon Lj together with his or her demand of the asset. A large number of EMB

investors with different observation horizons makes such analysis very difficult.

Here, the distribution of Lj does not help to understand the price dynamics. This

is because that the distribution of Lj does not necessarily match the distribution

of wealth fractions of each different Lj.

Moreover, to understand the long-term price behaviour, one has to take into

consideration the evolution of wealth fraction of each EMB investor who has a

different observation horizon. It is important to examine whether some EMB in-

vestors will be driven out of the market in the long run. If only one EMB investor

who has a particular length of observation horizon survives, the market impact

of heterogeneous observation horizons will disappear in the long run. However,

the long-term wealth dynamics of each EMB investors was not reported by Levy,

Levy, and Solomon (2000). Therefore, whether their findings in the heterogeneous

observation horizons case are only temporary phenomena or persistent phenom-

ena is an open question.

Different to the approach proposed by Levy, Levy, and Solomon (2000), our

approach focuses on measuring and monitoring the wealth dynamics of each sub-
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group of the trend followers who use a different observation horizon. The popu-

lation size of each subgroup of the trend followers is measured in terms of wealth

proportions rather than the number of investors. This is because that it is not

the number of investors but investors’ wealth which affects the price. Switching

among different observation horizons is allowed. In addition, the collective be-

haviour of the trend followers who have different observation horizons is properly

modelled. This helps to understand the aggregate market dynamics.

5.3.1 Modelling Heterogeneous Observation Horizons

Our model extension regarding heterogeneous observation horizons of the trend

followers is based on the following three main assumptions:

Assumption 1: Heterogenous Observation Horizons.

The trend followers are divided into a finite number J > 1 of subgroups, each

subgroup j = 1, ..., J uses a different size of rolling window Lj > 0 to forecast

future returns.

Assumption 2: Inner-Switching of the Trend Followers.

Individual investors firstly choose their investment styles between the two gen-

eral styles: fundamentalist and trend follower. Then the individual investors who

have chosen the trend follower style continue to choose their forecasting rules

which are characterised by Lj. In another words, the strategy-switching firstly

happens between the two general styles of fundamentalist and trend follower. Af-

ter that, the strategy-switching happens between the subgroups of trend followers.

This assumption is similar to the one used by Lux and Marchesi (1999,2000).

The authors assume that strategy-switching happens not only between funda-

mentalist and chartist, but also between two subgroups of chartist namely bullish

investors and bearish investors.
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Assumption 3: A Performance-Driven Mechanism for Inner-Switching.

The same as the mechanism for the switching between fundamentalist and trend

follower, the group of trend followers switch among subgroups with different ob-

servation horizons according to the past performance of each subgroup. At time

t, the population nj
t ≥ 0 of each subgroup j = 1, ..., J of the trend followers is

measured by the fraction of the total wealth of the trend followers, satisfying∑J
j=1 nj

t = 1. The population nj
t from time t to t + 1 is updated according to the

past performance of each subgroup:

nj
t =

exp(γT f
Tj

t−1)∑J
j=1 exp(γT f

Tj

t−1)
, (5.3.1)

where γT is the intensity of choice of the trend followers; f
Tj

t−1 is the performance

measure of each subgroup j of the trend followers at time t−1. The performance

measure is given by the discounted realised returns:

f
Tj

t = r + λ
Tj

t−1(r
s
t,1 − r) + ρT f

Tj

t−1, (5.3.2)

where λ
Tj

t−1 is the investment proportion for the risky asset computed by the trend

follower subgroup j who use observation horizon Lj; ρT is a discounting parame-

ter which measures how fast the past performance is discounted. When ρT = 0,

the performance measure f
Tj

t is the portfolio return of each subgroup j at time t.

Consensus Investment Proportions

Based on the above three assumptions, it is possible to define the consen-

sus investment proportions for the entire population of trend followers. At each

point in time t, the amount of money invested into the risky asset by the entire

population of trend followers is:

J∑
j=1

(1− c)Ŵ T
t nj

tλ
Tj

t,1 = (1− c)Ŵ T
t

J∑
j=1

nj
tλ

Tj

t,1, (5.3.3)

where Ŵ T
t = qT

t W̄t is total wealth managed by the entire population of trend

followers after the strategy-switching between fundamentalist and trend follower.

The term (1 − c)Ŵ T
t nj

t describes the available budget of each subgroup of the
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trend followers at time t after the inner-switching.

Following equation (5.3.3), one can define the consensus investment pro-

portions across all the subgroups of trend followers: λ̄T
t,1 =

∑J
j=1 nj

tλ
Tj

t,1 and

λ̄T
t,0 = 1− λ̄T

t,1, so that

(1− c)Ŵ T
t

J∑
j=1

nj
tλ

Tj

t,1 = (1− c)Ŵ T
t λ̄T

t,1. (5.3.4)

Equation (5.3.4) implies that these subgroups of trend followers can be treated

as one representative agent with investment proportions λ̄T
t,0 and λ̄T

t,1. Individual

investors can thereby update their choices between the two general investment

styles, fundamentalist and trend follower, according the past performance of the

strategies of the fundamentalists and the “representative” trend follower, as de-

fined before by equations (3.2.2) to (3.2.4) in Chapter 3.

Introducing the consensus investment proportions for the entire population

of the trend followers helps us to understand the resulting dynamics through

monitoring the aggregate behaviour of the representative trend follower. The

aggregate behaviour is able to correctly and accurately reflect the result of the

interaction of the heterogeneous trend followers. Our model provides an exam-

ple on how the aggregation and a “representative agent” can be implemented in

an agent-based model, through which our model contributes to the literature on

enhancing the explanatory power of the agent-based modelling approach.

In the remainder of this section, we use numerical simulations to explore

the impact of trend followers’ heterogeneous observation horizons and the inner-

switching on the aggregate market dynamics. In Section 5.3.2, we start with

the case where the trend followers with heterogeneous observation horizons use

the basic forecasting rule without sentiment and recency bias. We then study,

in Section 5.3.3 and 5.3.4, the effects of sentiment and recency bias in forecasting.
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5.3.2 Numerical Results under the Basic Forecasting Rule

This section studies the effect of heterogeneous observation horizons of the trend

followers in the case where the trend followers use the basic forecasting rule with-

out sentiment and recency bias. we first examine the role of the market selection

in the inner-switching of the trend followers. We investigate whether the process

of market selection reduces or even destroy the effect of the heterogeneity with

respect to the observation horizons of the trend followers.

Our analyses presented in Chapter 4 have shown that, when strategy-switching

is allowed, the market selection hypothesis holds in our model if investors had

infinite memory and they did not exhibit recency bias in performance evaluation

(ρ = 1). In the case with inner-switching, it is equivalent to set the value of the

parameter ρT to 1. Figure 5.14 illustrates the long-term dynamics when the fun-

damentalists, three subgroups of trend followers with L = 5, L = 25 and L = 45

and the noise traders are present in the market. The population dynamics (wealth

fractions) of the three subgroups with ρT = 1 (Figure 5.14, top left) reveals that

those subgroups with longer observation horizons (L = 25 and L = 45) tend to

be driven out of the market. Only the subgroup L = 5 survives in the long run.

The autocorrelation coefficients of returns of the risky asset (Figure 5.14, bottom

left) show that the return dynamics is characterised by the shortest observation

horizon L = 5. The longer observation horizons, L = 25 and L = 45, have little

impact on the return dynamics.

In contrast, when trend followers exhibit weak recency bias (ρT = 0.99) in per-

formance evaluation, the population dynamics (Figure 5.14, top right) show that

all the three subgroups survive. This result indicates that the inner-switching in

conjunction with the recency bias in performance evaluation is a key behavioural

element which helps to maintain the heterogeneity in the trend followers’ obser-

vation horizons. The autocorrelation coefficients of returns (Figure 5.14, bottom

right) reveal that the return dynamics is characterised by the lengthes of all

the three different observation horizons of the trend followers. Large negative

autocorrelation coefficients appear at 6th, 26th and 46th lag. However, these
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Figure 5.14: Long-term dynamics when the fundamentalists, three subgroups of

trend followers with L = 5, L = 25 and L = 45 and the noise traders are present in

the market. Population (wealth fraction) of each subgroup of the trend followers:

ρT = 1 (top left), ρT = 0.99 (top right). Autocorrelation coefficients of returns

and absolute return: ρT = 1 (bottom left), ρT = 0.99 (bottom right). Other

parameter: γT = 5, αF = 0.90, qN = 0.1.

autocorrelation coefficients are too large to be realistic.

Figure 5.15 depicts the short-term dynamics corresponding to the scenario

with ρT = 0.99 in Figure 5.14. The price dynamics (Figure 5.15, top left) can be

understood by looking at the consensus investment proportion of the trend follow-

ers together with investment proportions of other agent types (Figure 5.15, top

right). The consensus investment proportion reflects the aggregate behaviour of

the three subgroups of trend followers, which can be further analysed by looking

at the population fraction (Figure 5.15, bottom left) and the investment propor-

tion (Figure 5.15, bottom right) of each subgroup of trend followers.
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Figure 5.15: Short-term dynamics when the fundamentalists, three subgroups of

trend followers with L = 5, L = 25 and L = 45 and the noise traders are present

in the market, γT = 5 and ρT = 0.99: price dynamics (top left); agents’ invest-

ment proportions for the risky asset (top right); population (wealth fraction) of

each subgroup of the trend followers (bottom left); each subgroup’s investment

proportion for the risky asset (bottom right).

The bottom right panel of Figure 5.15 reveals that the trend followers with

different observation horizons may hold different views of the short-term price

trend. For example, between periods 50 and 60, the subgroup of trend followers

with L = 45 believe that the price is decreasing and they therefore decrease their

ivestment proportions for the risky asset, while the other two subgroups believe

that the price is increasing and they increase their investment proportions for

the risky asset. When the behaviour of these subgroups of trend followers is

aggregated, those subgroups with larger wealth fractions have stronger impact

on the consensus investment proportion, and there exist a “cancellation” effect
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among the different behaviour of these subgroups of trend followers. Due to this

cancellation effect, the consensus investment proportion, on average, appears less

volatile than those of each subgroup. An obvious market impact of this cancella-

tion effect is that it helps to reduce the volatility of the price of the risky asset.

To examine how the number of different subgroups of trend followers can af-

fect the market dynamics, we conduct an experiment with 50 subgroups of trend

followers whose observation horizons start from L1 = 1, L2 = 2 to L50 = 50. The

parameter ρT is set to 0.99. Figure 5.16 depicts the dynamics of the 50 subgroups

case. In this case, the large number of subgroups of trend followers would make

the model become complicated in understanding the aggregate dynamics such as

the price dynamics. In order to illustrate the long-run market behaviour, results

illustrated in Figure 5.16 are sampled after 25,000 periods.

As shown in the top right panel of Figure 5.16, investment proportions of

each subgroup of trend followers may differ from one another significantly. It is

difficult to analyse the price dynamics by looking at the investment proportions

and wealth fractions of all the 50 subgroups of trend followers at one time. In

this case, our model starts to exhibit its advantage on allowing the collective be-

haviour (consensus investment proportions) of the trend followers to be observed.

The price dynamics can be understood by looking at the consensus investment

proportions of each agent type (Figure 5.16, middle left).

Our results show that the return dynamics (Figure 5.16, middle right) exhibits

volatility clustering which is a well-known stylised fact of real-world financial time

series. A quantitative manifestation of this fact is that, as documented by Cont

(2001), while returns themselves are uncorrelated, absolute returns display a pos-

itive, significant and slowly decaying autocorrelation coefficient function ranging

from a few minutes to a several weeks. This property is illustrated in the bottom

row of Figure 5.16. The bottom row compares the autocorrelation structures of

returns from our simulation and those from the S&P 500 index (in the period of

1950 to 2010 at weekly frequency). Compared with the three subgroups case, the

result of the 50 subgroups case turns out that “more is different”. When there
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Figure 5.16: The fundamentalists, 50 subgroups of trend followers with L1 = 1

to L50 = 50 and the noise trader are present in the market: price dynamics (top

left); investment proportions of selected subgroups of trend followers (top right);

consensus investment proportions for the risky asset (middle left); long-term dy-

namics of the returns of the risky asset (middle right); autocorrelation coefficients

of returns and absolute returns (bottom left); autocorrelation coefficients of S&P

500 index returns and absolute returns (bottom right). Parameter: γT = 5,

ρT = 0.99, αF = 0.90, qN = 0.1.
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are 50 subgroups of trend followers, the return dynamics become more realistic.

The autocorrelation coefficients of returns are insignificant at 5% level for almost

all of the lags, which is close to those from the S&P 500 index.

In order to explore the effect the parameters γT (intensity of choice) and ρT

(discounting parameter in performance measure) in the process of inner-switching,

we conduct experiments with different values of these two parameters. Three dif-

ferent scenarios denoted by S1, S2 and S3 are considered. In scenario S1, the

values of the parameters γT and ρT are set to 5 and 0.99 respectively. This sce-

nario describes the phenomenon that the trend followers exhibit a lower intensity

of choice and weak recency bias in the inner-switching. Scenario S2 corresponds

to the case where parameter values are: γT = 50 and ρT = 0.99. It represents

the phenomenon that the trend followers exhibit weak recency bias but a high

intensity of choice in the inner-switching. Scenario S3 describes the phenomenon

that the trend followers exhibit a high intensity of choice γT = 50 and a high

degree of recency bias ρT = 0 in the inner-switching.

Figure 5.17 illustrates the population dynamics of some selected subgroups

(out of the total 50 subgroups) and the trend followers’ consensus investment

proportions in three different scenarios. The results show that, the population

dynamics of the selected subgroups in the three different scenarios exhibit signif-

icant differences. However, the impact on the trend followers’ consensus invest-

ment proportion is minor. The trend followers’ consensus investment proportions

in the three different scenarios do not exhibit significant differences. This obser-

vation indicates that, the aggregate dynamics such as the consensus investment

proportions and the price dynamics is not sensitive to the trend followers’ in-

tensity of choice(γT ) and different degrees of recency bias (ρT ∈ [0, 1)) in the

inner-switching.

The most significant impact of the inner-switching of the trend followers is

that, as illustrated in Figure 5.14, it leads to the survival of subgroups with

different observation horizons. Without inner-switching or without recency bias

in performance evaluation, the market impact of the heterogeneous observation
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Figure 5.17: Population (wealth fractions) dynamics of selected subgroups of

trend followers in three different scenarios. S1: γT = 5 and ρT = 0.99 (top left).

S2: γT = 50 and ρT = 0.99 (top right). S3: γT = 50 and ρT = 0 (bottom left).

Comparison of trend followers’ consensus investment proportions (bottom right).

horizons of the trend followers may be eliminated by the process of market selec-

tion. The inner-switching with recency bias helps to maintain the heterogeneity

of the trend followers with respect to the observation horizon. The observed

statistical properties of return series such as the absence of autocorrelation in re-

turns and volatility clustering are caused by the heterogeneity which stems from

a large number of subgroups of trend followers with different observation horizons.
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5.3.3 Numerical Results under the Forecasting Rule with

Sentiment

Our previous analysis of the trend followers’ sentiments (optimism and pessimism)

focused only on the case in which the observation horizons of the trend followers

are homogeneous (Section 5.2.2). When the trend followers have heterogenous

observation horizons, sentiment may have different impact on these heterogenous

trend followers. One may expect that sentiment may have stronger impact on

those trend followers with longer observation horizons because they use larger

sample sizes in forecasting. This subsection addresses the effect of sentiment

when the trend followers have heterogeneous observation horizons.

The forecasting rule of each subgroup of trend followers is defined exactly

as in equation (5.2.1), but the homogeneous observation horizon L in (5.2.1)

is replaced by Lj (the observation horizon of subgroup j). The values of the

optimism-pessimism index τ j for each subgroup j of trend followers is identically

set, i.e. τ j = τ for j = 1, ..., J . This value of τ represents the general sentiment

of the whole population of trend followers.

Figure 5.18 illustrates the case where the fundamentalists, the noise traders

and 50 subgroups of optimistic (τ = 25) trend followers are present in the mar-

ket. Trend followers’ observation horizons are uniformly distributed in [1, 50] (e.g.

L1 = 1, L2 = 2,..., L50 = 50). The price dynamics (Figure 5.18, top left) shows

that optimism is able to affect the size of the price bubbles, but it has a minor

impact on the duration of the price bubbles. The trend followers’ investment pro-

portions (Figure 5.18, top right) indicate that the sentiment has stronger impact

on those trend followers with longer observation horizons. The trend followers

with longer observation horizons are more optimistic than those with shorter ob-

servation horizons.

As shown in Figure 5.18, when a price bubble starts to emerge, the trend

followers’ optimism implies sharp increases in the price. However, when a price

bubble starts to burst, the downswing in the price is not as sharp as the upswing

186



5.3 Heterogeneous Observation Horizons

Figure 5.18: The case where the fundamentalists, 50 subgroups of optimistic (τ =

25) trend followers with L1 = 1 to L50 = 50 and the noise trader are present in the

market: price dynamics (top left); investment proportions of selected subgroups

of trend followers (top right); consensus investment proportions for the risky asset

(bottom left); long-term returns of the risky asset (bottom right). Parameters:

γT = 5, ρT = 0.99, αF = 0.90, qN = 0.1.

during the phase of the growth of the price bubble. The consensus investment

proportions of the trend followers reveal that, during the phase of the burst of

price bubbles, there exists a significant cancellation between the investment pro-

portions of each subgroup which leads to slower and smaller successive decreases

in the price. This phenomenon can also be observed from the long-term asset

returns (Figure 5.18, bottom right). The magnitudes of positive returns are on

average larger than the magnitudes of negative returns. In addition, large posi-

tive returns happened more frequently than large negative returns.

This observation is in contrast to the those in the homogeneous observation
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horizons case where optimism of the trend followers also causes large negative re-

turns frequently, usually a few periods after large positive returns. This property

can also be observed from the investment proportions of each selected subgroup,

where a large boom is usually followed by a large crash after a “cooling off” phase.

The length of the cooling off phase for each subgroup of trend followers is char-

acterised by the length of their observation horizon. Because these subgroups of

trend followers have different lengths of cooling off phase, when their investment

proportions are aggregated, the cancellation effect among investment proportions

of these subgroups causes that the decrease part in the consensus investment

proportion is in general not as sharp as the increase part. This property leads to

asymmetric volatility in the price.

Figure 5.19 depicts the case with 50 subgroups of pessimistic (τ = −25) trend

followers. Similar to the optimistic case, the trend followers with longer observa-

tion horizons are more pessimistic than those with shorter observation horizons.

We find that the trend followers’ pessimism is able to cause sharp downswings

of the price. In contrast with the optimistic case, the cancellation effect in the

investment proportions of the trend followers exhibits in the upswing parts of the

price. The cancellation effect causes that the upswings in the price are in general

less steep than the downswings in the price. The return dynamics in Figure 5.19

reveals that the magnitudes of large negative returns are larger than those of

large positive returns. Moreover, large negative returns happen more frequently

than large positive returns.

Figure 5.20 shows the autocorrelation coefficients of returns and absolute re-

turns for three different cases: τ = 1 (without sentiment), τ = 25 (optimism) and

τ = −25 (pessimism). We find that the trend followers’ sentiment, in general,

does not affect the statistical property of absence of autocorrelation in returns.

Compared with the τ = 1 case, optimism or pessimism causes only a slightly

higher autocorrelation coefficient for the first lag of the returns. The remainder

lags are insignificant at 5% level. Absolute returns in both the optimism and pes-

simism cases exhibit a positive, significant and slowly decaying autocorrelation
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Figure 5.19: The case where the fundamentalists, 50 subgroups of pessimistic

trend followers (τ = −25) with L1 = 1 to L50 = 50 and the noise trader are

present in the market: price dynamics (top left); investment proportions of se-

lected subgroups of trend followers (top right); consensus investment proportions

for the risky asset (bottom left); long-term returns of the risky asset (bottom

right). Parameters: γT = 5, ρT = 0.99, αF = 0.90, qN = 0.1.

coefficient function which is similar to the one in the τ = 1 case. This result indi-

cates that the trend followers’ sentiment does not affect the property of volatility

clustering in return series.

To examine the impact of the trend followers’ sentiments on the distribution

of the aggregate market returns, Table 5.1 compares the summary statistics of

weekly returns generated in three different cases (τ = 1, τ = 25 and τ = −25)

with those of the S&P 500 index at weekly frequency. The generated returns

correspond to those illustrated in Figures 5.16, 5.18 and 5.19, which are sampled

from the periods 25,001−30,000 in each independent run. The S&P 500 index
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Figure 5.20: Autocorrelation coefficients of returns (left) and absolute returns

(right) for the cases with τ = 1 (unbiased), τ = 25 (optimism) and τ = −25

(pessimism); the fundamentalists, 50 subgroups of pessimistic trend followers

(τ = −25) with L1 = 1 to L50 = 50 and the noise trader are present in the

market. Parameters: γT = 5, ρT = 0.99, αF = 0.90, qN = 0.1.

data are sampled from the period of 1950 to 2010 at weekly frequency.

It is well known that the aggregate stock market returns are not normally

distributed at relatively high frequencies (less than one month). The finance

literature (e.g. Fama, 1965; French et al., 1987; Cont, 2001; Hong and Stein, 2003)

has documented that the distribution of aggregate stock returns exhibits excess

kurtosis, negative skewness or a closely related property asymmetric volatility, as

illustrated by the S&P 500 index data in Table 5.1.

Table 5.1: Summary Statistics of Returns - The Effect of Sentiment

Case Mean Maximum Minimum Std Skewness Kurtosis

Unbiased: τ = 1 0.1302% 11.0732% -10.0727% 1.9589% 0.1319 3.8616
Optimism: τ = 25 0.1487% 19.2997% -10.6868% 2.2856% 0.3565 6.1442

Pessimism: τ = −25 0.1417% 11.0479% -19.6947% 2.2352% -0.2907 6.2576
S&P 500 (1950-2010) 0.1547% 14.1161% -18.1955% 2.0689% -0.3537 8.2353

We find that the trend followers’ sentiment is able to cause excess kurtosis in

return distribution. As shown in Table 5.1, the kurtosis value 3.86 in the case

without sentiment is close to the one of the normal distribution, while the kurtosis
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values in the optimism and pessimism cases are closer to the one obtained from

S&P 500 index data. Moreover, in the pessimism case, the return distribution

exhibits negative skewness which is consistent with the stylised fact. The nega-

tive skewness of the generated returns stems from the trend followers’ pessimism

in conjunction with the cancellation effect which was found in the investment

proportions of the trend followers.

The intuition is as follows. Pessimism in forecasting implies that the trend

followers tend to decrease sharply their investment proportions for the risky asset

when large negative returns are observed. Such behaviour causes that the asset

price decreases significantly. When the price starts to increase, the consensus

investment proportions of the trend followers reveals that there exists a cancel-

lation between the investment proportions of each subgroup of trend followers

due to they have different lengths of cooling off phase. This cancellation effect

causes that the magnitudes of the increases of the price are in general smaller

than the magnitudes of the decreases of the price. Pessimism in conjunction with

the cancellation effect may serve as a new idea or mechanism which explains the

asymmetric volatility.

5.3.4 Numerical Results under the Forecasting Rule with

Recency Bias and Sentiment

In this subsection, we analyse the effect of recency bias in the trend followers’

forecasting. The forecasting rule of each subgroup j of the trend followers is de-

fined by equation 5.2.5 with the homogeneous L replaced by Lj. We assume that

the value of parameter µj (which measures the degree of recency bias) for each

subgroup j are the same, i.e. µj = µ for j = 1, ..., J .

Figure 5.21 illustrates the market dynamics when the trend followers exhibit

recency bias in forecasting. The market participants are the fundamentalists, 50

subgroups of the trend followers whose observation horizons start from L1 = 1

to L50 = 50, and the noise traders. The top left panel of Figure 5.21 compares
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the price dynamics in the case with µ = 0.02 and those in the case with unbiased

trend followers (µ = 0). The result indicates that the trend followers’ recency bias

is able to affect both the size and duration of the price bubbles. Compared with

the unbiased case, the price in the case with µ = 0.02 increases (or decreases)

more sharply when the bubble grows (or bursts).

Figure 5.21: Market dynamics when the trend followers exhibit recency bias in

forecasting. The fundamentalists, 50 subgroups of trend followers with L1 = 1 to

L50 = 50 and the noise trader are present in the market: comparison of the price

dynamics (top left); comparison of the consensus investment proportions of the

trend followers (top right); investment proportions of selected subgroups of trend

followers (bottom left); long-term return dynamics (bottom right). Parameters:

µ = 0.02, γT = 5, ρT = 0.99, αF = 0.90, qN = 0.1.

This phenomenon can be explained by analysing the trend followers’ consensus

investment proportions (Figure 5.21, top right). The trend followers’ consensus

investment proportions reveal that recency bias causes the trend followers become
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optimistic (or pessimistic) when the bubble grows (or bursts), which accelerates

the increase (or decrease) in the price. The long-term return dynamics (Fig-

ure 5.21, bottom right) shows that the trend followers’ recency bias is able to

cause larger returns (the maximum return is 14.81% and the minimum return

is −12.70%) than those from the unbiased case (illustrated in Figure 5.16, the

maximum return is 11.07% and the minimum return is −10.072%).

Figure 5.22 depicts the market dynamics when the trend followers exhibit

both recency bias and sentiment in forecasting. The left (right) column of Figure

5.22 shows the case where the trend followers exhibit recency bias and optimism

(pessimism). We find that recency bias in conjunction with the optimism cause

the price increases dramatically when the price bubble grows (Figure 5.22, top

left). When the price bubble bursts, due to the cancellation effect in the invest-

ment proportions of each subgroup of the trend followers (Figure 5.22, middle

left), the decreases in the price are smaller (in magnitudes) than those in the

periods when the bubble grows.

Compared with the unbiased case, the price in the case with µ = 0.02 and

τ = 25 exhibits larger crashes. These larger crashes are partly caused by recency

bias rather than optimism itself. This property is also observable in the long-

term return dynamics (Figure 5.22, bottom left). When recency bias is coupled

to optimism, the trend followers are able to cause not only large positive returns

but also large negative returns (the minimum return is −14.60%). This observa-

tion of large negative returns is in contrast with the one in the case where the

trend followers exhibit only optimism. Without recency bias in forecasting, the

optimistic trend followers cannot cause large negative returns (as shown in Table

5.1, the minimum return is −10.69% which is close to the one in the unbiased

case).

When the trend followers exhibit recency bias and pessimism in forecasting,

Figure 5.22 shows that the trend followers are able to cause dramatic decreases

in the price when the price bubble bursts. When the price bubble grows, the

increases in the price (in magnitudes) are smaller than those decreases in the
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Figure 5.22: Market dynamics when the trend followers exhibit recency bias and

different sentiments in forecasting. The fundamentalists, 50 subgroups trend

followers with L1 = 1 to L50 = 50 and the noise trader are present in the market.

Optimistic trend follower case (left column); pessimistic trend follower case (right

column). Comparison of the price dynamics (top row); investment proportions

of selected subgroups of trend followers (middle row); long-term return dynamics

(bottom row). Parameters: µ = 0.02, γT = 5, ρT = 0.99, αF = 0.90, qN = 0.1.

periods of the burst of the bubble. In addition, the recency bias helps to generate

large positive returns which are missing from the case where the pessimistic trend
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followers do not exhibit recency bias in forecasting. These results indicate that

recency bias in conjunction with sentiment causes the return dynamics become

more realistic.

Figure 5.23 shows the autocorrelation coefficients of returns and absolute re-

turns corresponding to those illustrated in Figure 5.21 and Figure 5.22. The

autocorrelation coefficients of returns show that the recency bias causes returns

in the first lag are slightly positive correlated, while the autocorrelation at the

remainder lags are insignificant at 5% level. When recency bias is coupled to

sentiment, the presence of sentiment does not impose extra autocorrelations in

returns. The autocorrelation coefficient function of absolute returns indicate that

recency bias and sentiment in forecasting do not affect the property of volatility

clustering in return series.

Figure 5.23: Autocorrelation coefficients of returns (left) and absolute returns

(right) for the cases with µ = 0.02 (recency bias only), µ = 0.02 and τ = 25

(recency bias with optimism) and µ = 0.02 and τ = −25 (recency bias with

pessimism). Parameters: µ = 0.02, γT = 5, ρT = 0.99, αF = 0.90, qN = 0.1.

Table 5.2 compares the summary statistics of weekly returns generated in

three different cases (recency bias only, recency bias with optimism and recency

bias with pessimism) with those of the S&P 500 index at weekly frequency. The

generated weekly returns correspond to those in Figure 5.21 and 5.22, which are
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sampled from periods 25,001−30,000.

Table 5.2: Summary Statistics of Returns - The Effect of Recency Bias with

Sentiment
Case Mean Maximum Minimum Std Skewness Kurtosis

Recency Bias Only: µ = 0.02, τ = 1 0.1398% 14.8091% -12.7021% 2.3054% 0.1581 4.2574

Recency Bias with Optimism: µ = 0.02, τ = 25 0.1531% 23.8011% -14.6001% 2.5082% 0.5623 7.9593

Recency Bias with Pessimism: µ = 0.02, τ = −25 0.1528% 14.7202% -20.4694% 2.4107% -0.3852 8.0785

S&P 500 (1950-2010) 0.1547% 14.1161% -18.1955% 2.0689% -0.3537 8.2353

The results in Table 5.2 indicate that the trend followers’ recency bias in

forecasting is also able to cause excess kurtosis. However, the excess kurtosis

caused by recency bias is too small compared with the one of S&P 500 index.

When recency bias is coupled to sentiment, optimism implies high excess kurtosis

and positive skewness, while the pessimism causes also high excess kurtosis but

negative skewness. The results in the case of recency bias with pessimism are

in general closer to the those from S&P 500 data. These results indicate that

recency bias and pessimism in the trend followers’ forecasting may be a potential

candidate which is able to explain the stylised facts of negative skewness and

excess kurtosis in return distributions.

5.4 Conclusion

The previous chapter has shown that, in our model, the presence of strategy-

switching and recency bias in performance evaluation may lead to the survival

of the trend followers’ strategy. Based on this result, this chapter explored the

market impact of the survival of the trend followers with focus on the interlinkage

between the trend followers’ forecasting and the aggregate market dynamics. The

original model presented in Chapter 3 has been extended to study the roles of

observation horizons, sentiment and recency bias in affecting the trend followers’

forecasting. A series of numerical experiments has been conducted to quantify

the market impact of these behavioural elements which are associated with the
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trend followers’ forecasting.

Our analysis started from the case where the trend followers have homoge-

neous observation horizons. We showed that the homogeneity of the trend follow-

ers with respect to the observation horizon leads to unrealistic and predictable

bubble dynamics in the price of the risky asset. In the case where the trend

followers use basic forecasting rule without sentiment and recency bias, the size

and duration of price bubbles as well as the autocorrelation structure of return

series are characterised by the length of the homogeneous observation horizons of

the trend followers.

In the homogeneous observation horizons case, we studied the market impact

of the trend followers’ sentiment and recency bias in forecasting. Different to the

commonly used approach which regards the trend following behaviour itself as

a manifestation of investor sentiment and recency bias in forecasting (see, e.g.

De Long et al., 1990; Barberis, Shleifer, and Vishny, 1998), our approach helps

to distinguish the effects of sentiment and recency bias in the trend following

behaviour. We showed that, sentiment in the trend followers’ forecasting has

a primary impact on changing the size of price bubbles but not the duration.

The degree of optimism or pessimism of the trend followers is positively corre-

lated with the size of market booms or crashes. The presence of optimism or

pessimism in the trend followers’ forecasting is able to cause excess kurtosis in

return distribution.

Different to the effect of sentiment, recency bias in the trend followers’ fore-

casting mainly affects the duration of price bubbles. Recency bias in forecasting is

able to reinforce the trend following behaviour causing optimism (or pessimism)

when the price is increasing (or decreasing). For this reason, recency bias in fore-

casting also has impact on the size of price bubbles. When the trend followers

exhibit sentiment and recency bias at the same time, both the size and duration of

price bubbles can be strongly affected leading to less predictable price dynamics.

Moreover, we showed that optimism (or pessimism) in conjunction with recency
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bias leads to excess kurtosis and positive (or negative) skewness in return distri-

bution. These statistical properties of generated returns are qualitatively close

to those from real-world financial time series.

However, our results of the homogeneous observation horizons case indicate

that the homogeneity in the trend followers’ observation horizons imposed too

much regularities in the price and return dynamics. These regularities cannot be

removed by the presence of the fundamentalists with different degrees of reac-

tion, a reasonable proportion of the noise traders, or behavioural biases such as

sentiment and recency bias in the trend followers’ forecasting. Without adding

a very large proportion of the noise traders (e.g. assuming that the noise traders

possess above 80% aggregate wealth at each period), our model with homoge-

neous observation horizons cannot reproduce the stylised fact: the absence of

autocorrelations in returns.

Previous contributions with the assumption of homogeneous observation hori-

zons often rely on exogenous noises (usually very strong) to destroy the strong

regularities imposed by the homogeneity. We illustrated that this issue can be

solved naturally once investors have heterogenous observation horizons. To model

heterogeneous observation horizons of the trend followers, the whole group of

trend followers are divided into subgroups which are characterised by different

observation horizons. In order to capture active learning, the inner-switching

of the trend followers among different subgroups are allowed. Moreover, a con-

sensus investment proportion is defined to represent the aggregate behaviour of

the trend followers with different observation horizons. The entire population of

trend followers can be regarded as one representative agent who makes invest-

ment according to the consensus investment proportion. This setting helps us to

understand the generated price dynamics, especially when the number of different

subgroups of the trend followers is large.

Our analysis showed that the heterogeneity of the trend followers with respect

to the observation horizon plays an important role in shaping the aggregate mar-

ket dynamics. A large number of subgroups of the trend followers with different
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observation horizons helps to reproduce the stylised facts of absence of auto-

correlations and volatility clustering in return series. However, our results also

highlighted the role of market selection in models with heterogeneous observation

horizons. We showed that those subgroups with longer observation horizons may

be driven out of the market if the trend followers were unbiased in performance

evaluation in the inner-switching (i.e. ρT = 1). In this case, the market impact

of heterogeneous observation horizons may be eliminated by the force of market

selection. In contrast, recency bias (i.e. ρT < 1) in the inner-switching leads to

the survival of subgroups with different observation horizons.

In the heterogeneous observation horizons case, our analysis of the trend fol-

lowers’ sentiment revealed that sentiment have stronger impact on those trend

followers who have longer observation horizons. This property leads to a sig-

nificant difference among investment proportions of different subgroups of the

trend followers. When these investment proportions are aggregated, there ex-

ist a significant cancellation effect among the investment proportions of different

subgroups. This cancellation effect in conjunction with pessimism cause that

the price movements in market downswings are larger than in market upswings.

This observation is consistent with the so-called asymmetric volatility which is

observed in real markets. When recency bias in forecasting is taken into account,

the trend followers’ pessimism in conjunction with recency bias lead to excess

kurtosis and negative skewness in return distribution, which are similar to those

from the S&P 500 index.

Summarising, the model and analyses presented in this chapter helped to

quantify the effects of some important behavioural elements such as the observa-

tion horizons, sentiment and recency bias which may affect the trend following

behaviour of investors. We showed that these micro-level behavioural elements

play an important role in shaping the market dynamics at the macro-level. Our

results demonstrated the ability of our model on reproducing a number of impor-

tant stylised facts. Those behavioural elements considered in this chapter helped

to explain the causes of these stylised facts.

199



Chapter 6

Conclusion

6.1 Summary of the Research

This PhD thesis introduces a framework that combines agent-based modelling and

concepts from behavioural finance to study the dynamics of financial markets. A

number of important heuristics and behavioural biases documented in the be-

havioural finance literature are studied in an agent-based financial market model

which consists of a combination of passive and active learning dynamics. The

focus is on micro-level modelling of investors’ heterogeneity, bounded rationality,

heuristics and biases which may affect investors’ active learning and forecasting

with a view to assessing their impact on the aggregate market dynamics and the

survival of investment strategies. The goal is to explore the roles of these be-

havioural factors in affecting the interaction between passive and active learning;

to contribute insights for the macro-level impact and evolutionary prospects of

the presence of boundedly rational, heterogeneous investors with various heuris-

tics and biases.

In Chapter 2 of this thesis, we conduct a literature survey which covers areas

of traditional finance, behavioural finance, and agent-based models of financial

markets. It is not our intention to provide a comprehensive review of each sub-

ject due to the vast body of the literature. Our review of the traditional and

behaviour finance literature aims to highlight major issues and debates between

the two different approaches on studying the behaviour of market participants
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and dynamics of financial markets. These issues and debates point to the mo-

tivation of our research on using agent-based modelling together with concepts

from behavioural finance to study the dynamics of financial markets.

By reviewing the behavioural finance literature, we list a number of important

heuristics and behavioural biases which may impact investors’ financial decisions

at the micro level. These behavioural elements are identified from laboratory

experiments based on real-world individuals. Incorporating these behavioural el-

ements into agent-based financial market model helps to build realistically the

micro-level modelling of investors’ behaviour. Our review of the agent-based lit-

erature aims to provide an overview of agent-based financial market models with

focus on their market designs and behavioural aspects. The purpose is to iden-

tify issues, gaps, and lessons learned in this rapidly growing body of literature.

Overall, the survey presented in Chapter 2 provides motivations, techniques and

inspirations for our research. It also answers our research question 1 by identify-

ing important behavioural aspects of investors.

Chapter 3 addresses our research question 2 by developing an agent-based

financial market model which combines a performance-driven strategy-switching

mechanism of adaptive belief systems (Brock and Hommes, 1998) and an evo-

lutionary finance model (Evstigneev, Hens and Schenk-Hoppé, 2011). This new

model inherits the advantages of the evolutionary finance approach on maintain-

ing a large degree of freedom on modelling investors’ behaviour. It also draws

on the strengths of adaptive belief systems on allowing active learning of investors.

The financial market model contains three commonly studied agent types:

fundamentalist, trend follower, and noise trader. It is assumed that investors can

switch between fundamentalist and trend follower according to the past perfor-

mances of the two agent types. The coexistence of switching investors and non-

switching investors are allowed. Switching investors will bring (or take away) their

wealth when they join (or leave) each investment strategies. A main property

of the model is that investors’ performance-driven strategy-switching behaviour

causes wealth reallocation among different investment strategies (agent types).
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We call this property “flow of funds”. Since the wealth managed by each agent

type affects the price dynamics which in turn affects agents’ performance and the

flow of funds, there exist a feedback loop between the wealth dynamics of each

agent type, the price dynamics and the flow of funds. The model characterises the

coevolution of asset prices and the redistribution of wealth when investors switch

among different investment strategies. The survival of investment strategies and

long-run market dynamics are determined by both passive and active learning

dynamics.

By incorporating concepts from behavioural finance, we focus on the modelling

of behavioural fundamentals which underpins and affects investors’ strategy-

switching behaviour, such as better-than-average overconfidence, differences of

opinion, recency bias in performance evaluation, conservatism bias and ratio-

nal herding. The whole financial market model therefore has key features: i)

it captures the interaction between passive and active learning dynamics. ii),

it addresses a variety of behavioural biases which may affect investors strategy-

switching behaviour.

An explicit solution to the wealth dynamics is derived in Chapter 3. This

explicit formulation of wealth dynamics is for building a computer programme of

the model and increasing its computational efficiency. A basic analytical study

of the existence and location(s) of steady state(s) of the model is carried out.

This analysis reveals the impact of the values of the risk-free rate of return r and

consumption rate c on the aggregate economy of the model. A proper relation

between the values of the two parameters has been identified (i.e. c = r
1+r

) by

which the unique type of steady state of the model corresponds to an arbitrage-

free equilibrium.

Based on the model developed in Chapter 3, Chapter 4 uses numerical simu-

lations to explore the interaction between passive and active learning dynamics,

and the macro-level market impact and long-run prospects of behavioural biases

associated with strategy-switching, such as better-than-average overconfidence,

differences of opinion, recency bias in performance evaluation, conservatism bias
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and rational herding. The results documented in this chapter answers our re-

search question 3. We summarise and list here the main findings in relation to

answers of research question 3.

• We analysed the pure passive learning case where all investors are better-

than-average overconfident investors and none of them switches among in-

vestment strategies. Our results show that the process of market selection

plays an important role in shaping the long-term market dynamics. Only

the fundamentalists survive in the long-run. The asset price converges to

the fundamental value. These results agree with the prediction of Market

Selection Hypothesis (MSH) and Efficient Market Hypothesis (EMH) for

real markets. Moreover, we found that the excess volatility and high trad-

ing volume originated from investors’ better-than-average overconfidence

together with differences of opinion (in terms of different prior beliefs) are

only temporary market phenomena under pure passive learning. The evolu-

tionary forces operating through wealth dynamics will eventually eliminate

the market impact of overconfidence and differences of opinion.

• We analysed the case where all investors are switching investors. In this case

the model exhibits both passive and active learning dynamics. We found

that, if the parameter ρ = 1 meaning that investors have infinite memory of

past performances and are unbiased in performance evaluation, the long-run

outcome of active learning agrees with the passive learning: all investors

will eventually move to the fundamentalists and the price converges to the

fundamental value. This results is consistent with the one obtained in

the pure passive learning case. In addition, we found that under ρ = 1

the process of market selection and the convergence of market price can

be delayed (or accelerated) by investors’ conservative (or herding) type of

behaviour in strategy-switching.

• If the switching investors exhibit recency bias in performance evaluation

(i.e. ρ ∈ [0, 1)), our results show that both the fundamentalists and trend

followers survive in long run. The survival of trend followers leads to the
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persistence of market inefficiencies such as asset bubbles and excess volatil-

ity. Investors’ conservatism bias in strategy-switching reinforces the effect

of difference of opinions leading to diversified wealth distribution among

different agent types and high trading volume. Moreover, investors’ herd-

ing type of behaviour when the intensity of choice is high may also cause

high trading volume even large booms and crashes in the price. These re-

sults turn out that investor active learning is sensitive to heuristics and

behavioural biases. Under the presence of various heuristics and biases,

the outcome of active learning may not be consistent with the outcome of

passive learning leading to different behaviour of the market in the long-run.

• We studied the case where better-than-average investors (i.e. non-switching

investors) and switching investors coexist in the market. In this case,

the proportion of these two types of investors is governed by a parame-

ter β ∈ [0, 1] which measures the percentage of aggregate wealth managed

by the switching investors at each period. We conducted simulation exper-

iments to explore how the values of β impact the market dynamics. We

showed that, if ρ ∈ [0, 1), even a very small amount mobile capital (e.g.

0.01% of the aggregate wealth) with recency bias has a substantial impact

on the market dynamics leading to the survival of different agent types and

the persistence of market inefficiencies. The persistence of high trading

volume and excess volatility is caused by the flow of funds with recency

bias in performance evaluation rather than the presence of overconfidence

investors. The robustness of these results is checked based on 100 indepen-

dent simulations with different seeds in random number generators.

• According to the literature review by Glaser and Weber (2007), the con-

cepts of better-than-average overconfidence and differences of opinion have

long been proposed as explanations for the observed high trading volume

in financial markets. However, previous contributions in these areas usu-

ally ignore the long-run prospects of the effect of better-than-average over-

confidence and differences of opinion. Our approach addressed these two
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concepts in an agent-based model with focus on the evolutionary perspec-

tive of the financial market. We showed these two concepts may be related

to the short-term high trading volume. However, none of them is suffi-

cient to explain the persistence of high trading volume in a evolutionary

context. Based on our findings, we agree with the view of Glaser and We-

ber (2007) that better-than-average overconfidence psychologically main-

tains differences of opinion among investors. Nevertheless, we argue that

the market impact of better-than-average overconfidence and differences

of opinion may be eventually eliminated by evolutionary forces operating

through both passive and active learning. In contrast, the flow of funds

and recency bias in performance evaluation maybe potential candidates on

explaining the survival of different investment strategies and the persistence

of market inefficiencies.

The Chapter 5 of this thesis addresses the answer for our last research ques-

tion. Based on a previous finding that the presence of strategy-switching and

recency bias in performance evaluation may lead to the survival of the trend fol-

lowers’ strategy, Chapter 5 extends the model and analysis presented in previous

two chapters to study the market impact of the survival of the trend followers.

The focus is on exploring some important behavioural factors such as observation

horizons, sentiment (optimism and pessimism) and recency bias on affecting the

trend followers’ forecasting about future asset returns.

In the trend followers’ forecasting, the length of observation horizon affects

their sample size. Optimism (pessimism) is modelled as the tendency that trend

followers give more importance to the positive (negative) events (e.g. realised

past returns of the risky asset within their observation horizons) when forming

return forecasting. Recency bias is modelled by the tendency that the trend fol-

lowers assign more importance to more recent observations of asset returns in

forecasting. Heterogeneous observation horizons of the trend followers and the

inner-switching among different observation horizons are allowed.
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Moreover, our approach allows the behaviour of the trend followers with dif-

ferent observation horizons to be aggregated via introducing and modelling a con-

sensus investment proportion of the trend followers. This tool helps us analyse

and understand the complex market dynamics emerged in our model, especially

when the number of subgroups of the trend followers with different observation

horizons is large. We conducted a series of numerical experiments to quantify

the macro-level market impact of observation horizons, sentiment and recency

bias on the trend following behaviour and the aggregate market dynamics. We

summarise here our main findings related to these extensions.

• We studied the case where the trend followers have homogeneous observa-

tion horizons. Our analysis showed that, if the trend followers adopted the

basic forecasting rule without sentiment and recency bias, the size and dura-

tion of asset bubbles as well as the autocorrelation structure of return series

are characterised by the length of the trend followers’ homogeneous obser-

vation horizons. The homogeneous observation horizons lead to unrealistic

and predictable bubble dynamics in the price. These findings agree with

those documented by Levy and Levy (1996) and Levy, Levy, and Solomon

(2000) in models which have a similar specification for the forecasting rule

of the trend followers.

• In the homogeneous observation horizons case, we explored the effect of

the trend followers’ sentiment and recency bias in forecasting. Our results

show that sentiment in the trend followers’ forecasting has a primary impact

on changing the size of price bubbles but not the duration. The degree

of optimism of the trend followers is positively correlated with the size

of market booms or crashes, which supports the observations documented

in Lovric et al. (2009). We found that the degree of pessimism of the

trend followers is also positively correlated to the size of booms and crashes,

which is in contrast to the finding of Lovric et al. (2009). The reason for

this contradiction has been discussed and explained. Moreover, our results

indicate that both optimism and pessimism may lead to excess kurtosis in

return distributions.
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• Different to the effect of sentiment, we found that recency bias in the trend

followers’ forecasting mainly affects the duration of price bubbles. Our re-

sults show that recency bias in forecasting is able to reinforce the trend

following behaviour causing optimism (or pessimism) when the price is in-

creasing (or decreasing). Therefore, recency bias in forecasting may also

impact on the size of price bubbles. In addition, we showed that if the trend

followers exhibited sentiment and recency bias at the same time, both the

size and duration of price bubbles can be significantly affected resulting less

predictable dynamics of the price and return. However, our analysis showed

that the homogeneous observation horizons of the trend followers imposed

strong regularities (e.g. autocorrelations) in the price and return dynamics.

These strong regularities cannot be removed by the presence of the fun-

damentalists with different degrees of reaction (i.e. different values of αF ),

a reasonable proportion of the noise traders (e.g. less than 80% aggregate

wealth is managed by the noise traders), or behavioural biases such as sen-

timent and recency bias in the trend followers’ forecasting. The model with

homogeneous observation horizons failed to reproduce the stylised fact: the

absence of autocorrelations in return series.

• We studied the case where the trend followers have heterogenous observa-

tion horizons and they switch among subgroups with different observation

horizons according the past performance of each subgroup. Our results re-

vealed that, the heterogeneity with respect to observation horizons and the

inner-switching play an important role in shaping the price and return dy-

namics. The inner-switching with recency bias in performance evaluation

leads to the survival of subgroups with different observation horizons. The

heterogenous observations in conjunction with the inner-switching help to

reproduce the stylised facts of absence of autocorrelations in returns and

volatility clustering. Compared with an existing approach to heterogeneous

observation horizons by Levy, Levy, and Solomon (2000) which does not

allow investors to change observation horizons, our approach and results

highlighted the importance of the switching among different observation

horizons. We argue that without considering investors’ active learning (e.g.
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the inner-switching), evolutionary force and the process of market selection

may reduce or eventually eliminate the market impact of the heterogeneous

observation horizons.

• Levy, Levy, and Solomon (2000) pointed out that allowing investors to have

heterogeneous observation horizons present difficulties on understanding the

resulting dynamics due to the complexity imposed by the large number of

investors with heterogeneous observation horizons. Our approach tackles

this issue by modelling a consensus behaviour of the trend followers with

different observation horizons. This tool helps us to analyse the aggregate

dynamics through monitoring the aggregate behaviour of the entire popu-

lation of the trend followers. By using this tool, we found that, in the case

where the trend followers exhibit sentiment, when the investment propor-

tions of each subgroup of the trend followers are aggregated, there exist a

significant cancellation effect among the investment proportions of different

subgroups. This cancellation effect in conjunction with pessimism cause

that the price movements in market downswings are larger than in mar-

ket upswings, which is consistent with the so-called asymmetric volatility

observed in real markets. Moreover, our results indicate that the trend

followers’ pessimism in conjunction with recency bias may lead to excess

kurtosis and negative skewness in return distribution, which are consistent

with the statistical properties of real-world financial time series such as

those of S&P 500 index.

6.2 Closing Remarks and Outlook

This thesis has the intention to bring closer agent-based modelling of financial

markets and behavioural finance. One of the main contributions of this research

is that it explores the added value of drawing together agent-based modelling and

concepts from behavioural finance on the study the dynamics of financial markets.
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Compared with those autonomous agent models which are based on genetic

algorithm or genetic programming, our financial market model is relatively simple

in the sense that agents use static parameterised investment strategies. However,

it is our intention to keep agent behaviour as simple as possible at this stage. The

main motivation comes from the common criticism that in agent-based models

with complex behaviour of agents it is not always clear which aspect of agents’

behaviour is responsible for the generation of some certain market phenomena

such as the stylised facts. Moreover, the survey of Chen et al. (2012) shows that

autonomous agent models do not have stronger ability than N-type (static agent)

models in reproducing and explaining stylised facts (in terms of the number and

different types of stylised facts reproduced and explained).

The goal of using autonomous agent with genetic algorithm or genetic pro-

gramming in agent-based models is to model agents’ behaviour more realistically.

For this purpose, instead of using autonomous agent, we draw on the strength of

behavioural finance to incorporate investor psychology into the micro-level mod-

elling of agents. We strive to make the interlinkages between individual investors’

psychology and the aggregate market dynamics as transparent as possible. Such

an approach helps to explain those endogenous market phenomena through track-

ing down to individual investors’ psychological elements which underpin, affect

and govern their trading activities.

Our simulation results documented in the Chapter 4 and 5 have demonstrated

the added value of bringing together agent-based models and behavioural finance.

On the one hand, we showed that agent-based modelling can be used to pro-

vide insights for the macro-level market impacts and evolutionary prospects of

a number of important heuristics and behavioural biases documented in the be-

havioural finance literature. On the other hand, we found that many important

endogenous market phenomena such as market inefficiencies and stylised facts

can be explained not only by investors’ behaviour (e.g. trend following, strategy-

switching etc.) but also their psychological elements and cognitive biases such

as overconfidence, recency bias, conservatism, sentiment and so on. This finding

illustrated that drawing in concepts from the behavioural finance literature helps
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to increase the explanatory power of agent-based modelling of financial markets.

Another important contribution of this research is that it explores the in-

teraction between passive and active learning, especially when heuristics and be-

havioural biases are involved in active learning. Our approach brings together two

research areas: adaptive belief systems and evolutionary finance. By combining

the strategy-switching mechanism of adaptive belief system and an evolutionary

finance model, we propose a new concept: the flow of funds. In the combined

financial market model, the feedback loop between wealth dynamics of each agent

type, the flow of funds, and the price dynamics links together the passive and

active learning. The flow of funds represents investors’ active learning where

heuristics and biases may apply. Therefore, the effect of investors heuristics and

biases may enter into the feedback loop and affect the interaction between passive

and active learning as well as the market dynamics.

Our results presented in this thesis indicate that both passive and active

learning play important roles in affecting the survival of investment strategies

and in shaping the long-run market dynamics. We showed that, in economies

with properties of self-financing and bounded endowments, the passive learning

which represents the market selection force in wealth dynamics may have the

power to reduce or eliminate the market impact of the heterogeneity of invest-

ment strategies leading to a dominant behaviour. In the case of pure passive

learning, because of the process of market selection, as predicted by MSH and

EMH, investor heterogeneity, bounded rationality, heuristics and behavioural bi-

ases may not impact the long-run outcome of the financial markets.

In contrast to passive learning, active learning which represents investors’

adaptive belief updating process is sensitive to investor bounded rationality,

heuristics and behavioural biases. We showed that, because of investors’ bounded

rationality and various behavioural biases, active learning investors may not al-

ways choose the best profitable investment strategy. The interaction between

passive and active learning with bounded rationality and behavioural biases may
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lead to the survival of different investment strategies and the persistence of mar-

ket inefficiencies. Investors’ recency bias in performance evaluation has been

identified to be a crucial behavioural element which may impact the outcome of

active learning. These results highlighted the importance of passive learning and

behavioural aspects of active learning on understanding the dynamics of financial

markets. Our findings therefore suggest that future research on agent-based fi-

nancial market models should take both passive and active learning into account.

The interaction between passive and active learning is critical on studying the

dynamics of financial markets.

We believe that our research should be extended and developed to several

directions in the future, by and large, can be summarised by the studies of agent

behaviour and extensions of market mechanism. Our research in this thesis only

makes a first step towards bridging agent-based models and behavioural finance.

Future research of agent-based models should work closely with behaviour fi-

nance. One way of doing this is to incorporate more behavioural elements into

the modelling of agent behaviour. The goal is to enrich the explanatory power of

the modelling approach and to offer more insights for the impact of micro-level

behavioural elements on the macro-level market dynamics. The other way is to

equip laboratory experiments of human subjects to test and validate the para-

metric values used in the modelling of agent behaviour and the hypothesis and

conjectures obtained from studying the model. Hommes (2011) serves a good

example of this direction of research.

Another direction of future research is to move onto the study of the multi-

asset model documented in the Chapter 3 which is proposed as a general form

of the evolutionary finance model with flow of funds. Our analysis presented in

this thesis primarily focused on the two-asset model. The aim is to explore the

link between agents’ behavioural elements at the micro-level and the aggregate

market behaviour. Compared with the study of the two-asset model, the study

of the multi-asset model involves a different research objective which addresses

the combined effect of the interaction of heterogeneous agents and diversification

among multiple risky assets. This direction of research will have focuses on, for
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example, the spillover of instabilities among the risky assets through the wealth

effect and the flow of funds, and the impact of the flow of funds on the performance

of portfolio rules with asset allocations. Our study of the two-asset model in this

thesis is able to provide crucial understandings of the origin of the instabilities

for the future research of the multi-asset model.
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Caballé, J., Sákovics, J., 2003. Speculating against an overconfident market. Jour-

nal of Financial Markets 6, 199–225.

Campbell, J. Y., Viceira, L. M., 2002. Strategic Asset Allocation: Portfolio Choice

for Long-Term Investors. Oxford University Press.

Cass, D., Stiglitz, J. E., 1970. The structure of investor preferences and asset

returns, and separability in portfolio allocation: a contribution to the pure

theory of mutual funds. Journal of Economic Theory 2, 122–160.

Chan, N. T., LeBaron, B., Lo, A. W., Poggio, T., 1999. Agent-based models of

financial markets: a comparison with experimental markets. Working paper,

MIT Artificial Markets Project.

Chen, S., Chang, C., Du, Y., 2012. Agent-based economic models and economet-

rics. Knowledge Engineering Review 27, 187–219.

Chen, S. H., Yeh, C. H., 2001. Evolving traders and the business school with

genetic programming: a new architecture of the agent-based artificial stock

market. Journal of Economic Dynamics and Control 25, 363–393.

Chiarella, C., 1992. The dynamics of speculative behaviour. Annals of Operations

Research 37, 101–123.

Chiarella, C., Dieci, R., Gardini, L., 2002. Speculative behaviour and complex

asset price dynamics: a global analysis. Journal of Economic Behavior & Or-

ganization 49, 173–197.

215



BIBLIOGRAPHY

Chiarella, C., Dieci, R., Gardini, L., 2006. Asset price and wealth dynamics in

a financial market with heterogeneous agents. Journal of Economic Dynamics

and Control 30, 1755–1786.

Chiarella, C., Dieci, R., He, X. Z., 2007. Heterogeneous expectations and spec-

ulative behavior in a dynamic multi-asset framework. Journal of Economic

Behavior and Organization 62, 408–427.

Chiarella, C., He, X. Z., 2001. Asset price and wealth dynamics under heteroge-

neous expectations. Quantitative Finance 1, 509–526.

Chiarella, C., He, X. Z., 2002. An adaptive model on asset pricing and wealth

dynamics with heterogeneous trading strategies. Working paper, School of Fi-

nance and Economics, University of Techonology Sydney.

Chiarella, C., Iori, G., 2002. A simulation analysis of the microstructure of double

auction markets. Quantitative Finance 2, 346–353.

Conlisk, J., 1996. Why bounded rationality? Journal of Economic Literature 34,

669–700.

Cont, R., 2001. Empirical properties of asset returns: stylized facts and statistical

issues. Quantitative Finance 1, 223–236.

Cootner, P. H., 1964. The Random Character of Stock Market Prices. MIT Press.

Danielsson, J., Shin, H. S., 2003. Endogenous risk. In: Field, P. (Ed.), Modern

Risk Management: A History. Risk Books.

Day, R. H., Huang, W., 1990. Bulls, bears and market sheep. Journal of Economic

Behavior & Organization 14, 299–329.

De Bondt, W. F., 1998. A portrait of the individual investor. European Economic

Review 42, 831–844.

De Long, J. B., Shleifer, A., Summers, L. H., Waldmann, R. J., 1990. Noise trader

risk in financial markets. Journal of Political Economy 98, 703–738.

216



BIBLIOGRAPHY

DeMiguel, V., Garlappi, L., Uppal, R., 2009. Optimal versus naive diversification:

how inefficient is the 1/N portfolio strategy? Review of Financial Studies 22,

1915–1953.

Dieci, R., Foroni, I., Gardini, L., He, X. Z., 2006. Market mood, adaptive beliefs

and asset price dynamics. Chaos, Solitons and Fractals 29, 520–534.

Edwards, W., 1986. Conservatism in human information processing. In: Klein-

muntz, B. (Ed.), Formal Representation of Human Judgement. John Wiley and

Sons, pp. 17–52.

Evstigneev, I. V., Hens, T., Schenk-Hoppé, K. R., 2006. Evolutionary stable stock
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