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Submitted in accordance with the requirements

for the degree of Doctor of Philosophy

The University of Leeds

School of Mathematics

August 2014

The candidate confirms that the work submitted is his own and that appropri-

ate credit has been given where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright mate-

rial and that no quotation from the thesis may be published without proper

acknowledgement.

c©2014 The University of Leeds and Ahmet Çevik
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Abstract

In this thesis we study Turing degrees of members of Π0
1 classes. We give two

introductory chapters and then three main chapters which include new results.

In the first chapter we give some standard background for recursion theory,

and we give an introduction to Π0
1 classes in the second chapter.

The third chapter will be on the published work [1]. We show that for any

degree a ≥ 0′, if a Π0
1 class P contains members of every degree b such that

b′ = a, then P contains members of every degree. A local version of this result

is also given. That is, when a is also Σ0
2, it suffices in the hypothesis to have a

member of every ∆0
2 degree b such that b′ = a. This result extends the Low

Antibasis Theorem given in Kent and Lewis [2].

The fourth chapter has three subsections. The first subsection concerns an

observation, which may be seen as a cupping non-basis analogue of Jockusch

and Soare’s capping basis theorem: We show that there exists a non-empty

Π0
1 class with no recursive member, such that no join of two sets in the class

computes ∅′. The second one contains the principal result of the chapter,

which concerns the relationship between the join property and the members of

Π0
1 classes. We show that there exists a non-empty Π0

1 class with no recursive

member, for which it also holds that no member satisfies the join property.

Third subsection contains some future work where we give some open questions

about the relation between minimal covers and Π0
1 classes, and also about the

relation between minimal covers and PA degrees.

In the fifth chapter we study the degree spectrum properties of a special

kind of Π0
1 classes that we introduce, so called Π0

1 choice classes. A Π0
1 choice

class is a Π0
1 class such that no two members have the same Turing degree.

v
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Considering this restricted class leads us to some interesting antibasis theorems

and technically innovative constructions.
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Chapter 1

Background on Recursion

Theory

1.1 Introduction

The aim of this thesis is to add to our understanding of the Turing degrees

of members of Π0
1 classes. We shall be interested, in particular, in the degree

spectra of Π0
1 classes and their jump-inversion properties, in the relationship

between the join property of members of Π0
1 classes, minimal covers and degrees

of members of Π0
1 classes, and also in the degree spectra of a particular set of

Π0
1 classes which we shall refer to as choice classes.

The thesis contains five chapters in total. The first two chapters give the

necessary background and motivation for the main chapters. In this chap-

ter, without introducing Π0
1 classes, we give our notation and some standard

background for recursion theory. The material covered includes relative com-

putability, properties of the Turing degrees, the arithmetical hierarchy, some

examples of the construction methods which will be used in the later chapters,

the Turing jump and so forth. The second chapter is devoted to the study of Π0
1

classes in general. We introduce Π0
1 classes, investigate their relationship with

logic and describe some of the most important theorems from the literature.

We also take a look at the relationship between Π0
1 classes and PA degrees in

1



2 Chapter 1. Background on Recursion Theory

that chapter.

In the third chapter, we give an exposition of the results appearing in [1].

We prove two antibasis theorems concerning Π0
1 classes. These theorems extend

the low antibasis theorem given in [2]. We show that for any degree a ≥ 0′,

if a Π0
1 class P contains members of every degree b such that b′ = a, then P

contains members of every degree. A local version of this result is also given.

Namely that when a is also Σ0
2, it suffices in the hypothesis to have a member

of every ∆0
2 degree b such that b′ = a.

The fourth chapter has three subsections. The first subsection concerns

a cupping non-basis analogue of Jockusch and Soare’s capping basis theorem

which appears in [3]. More specifically, we observe that there exists a non-

empty Π0
1 class with no recursive member such that no join of two sets in the

class computes ∅′. The second subsection, which contains the main result for

the fourth chapter, is about the relationship between the join property and the

members of Π0
1 classes. We show that there exists a non-empty Π0

1 class with no

recursive member such that no member satisfies the join property. In the final

subsection we discuss some future work where we give some open questions

about the relation between minimal covers and Π0
1 classes, and also about the

relation between minimal covers and PA degrees.

In the fifth chapter, we study the degree spectrum properties of a special

kind of Π0
1 class, so called Π0

1 choice classes. A Π0
1 choice class is a Π0

1 class

such that no two members have the same Turing degree. This property gives

us some interesting results such as cardinality properties and proper antibasis

theorems.

No background is assumed. All the necessary definitions and facts will be

given here, and can also be found in any textbook on computability theory.

For a more detailed account of computability theory, we refer the reader to [5],

[6], [7], and [8].



1.2. Basics 3

1.2 Basics

Recursion theory is a branch of mathematical logic which originated from the

study of recursive functions.1 One of its main aims is to investigate the al-

gorithmic relationship between non-computable sets, functions, and relations.

The term computable refers to “algorithmically computable” mathematical ob-

jects.2 We then must define what is meant by algorithmically computable.

However, the notion of an algorithm or effective computation, carried out by

the human mind, is not mathematically well defined. There have been differ-

ent models of computation proposed which are believed to capture the class

of intuitively computable functions. Kurt Gödel was the first logician who

formally introduced general recursive functions in 1934 although he used prim-

itive recursive functions in his well known paper on incompleteness [9]. On the

other hand, Alonzo Church [10] introduced his lambda calculus as a model of

computation. Alan Turing was perhaps the first to describe a really natural

and universally accepted model of computation, the so called Turing machine,

which is believed to capture the notion of algorithmic computability. Briefly,

a Turing machine consists of an infinite tape divided into cells on which we

write symbols from a finite set Σ of symbols, called the alphabet, a tape head

which can read/write symbols and move left (L), right (R) or stay stationary

(S), a finite set Q of states, and a set of instructions in the form of transition

function δ : Q × Σ → Q × Σ × {L,R, S}. The computation starts by reading

the leftmost symbol of the input written on the tape of the machine. Then,

depending on the state of the machine, if necessary we write a symbol on the

tape cell, change our state, and move the tape head accordingly. The compu-

tation halts when the machine reaches a halting state qf ∈ Q and the output

is whatever is written on the tape.

If we call the class of functions computable by Turing machines as Tur-

ing computable functions, it is a philosophical statement to claim that the

class of Turing computable functions are exactly the class of algorithmically

computable functions. This is called the Church-Turing thesis. The reason

1Recursion theory is contemporarily called computability theory by many mathematical
logicians. We will adopt both and use them interchangeably.

2The term algorithmically computable is also known as effectively computable.
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why this is not a mathematical statement but a philosophical statement is be-

cause there is no formal definition of algorithmic computation. On the other

hand, a Turing machine is a well defined mathematical object. When studying

computability theory, we generally work according to the assumption that the

Church-Turing thesis is true.3 Therefore, from now on, when we say a func-

tion is Turing computable (or just computable/recursive) we mean that it is

actually algorithmically computable and vice versa.

Let ω denote the set {0, 1, 2, . . .} of natural numbers. We let ℵ0 denote

the cardinality of ω. Lower case Latin letters such as i, j, k, l,m, n, . . . , x, y, z

denote integers. We let 2<ω denote the set of all finite sequences of 0’s and

1’s. We denote sets of natural numbers with A,B,C,D and for a set A, A

denotes the complement of A, i.e. ω − A. We use standard set theoretic

operators ∈,−,∩,∪,⊂,⊃ for element of, difference, intersection, union, subset

and superset (not necessarily proper), respectively. We form predicates with

the usual notation of logic where ∧,∨,¬,=⇒,⇐⇒, ∃, ∀, µx denote respectively:

and, or, not, implies, if and only if (iff), there exists, for all, and the least x.

In addition, ∃∞ denotes that “there exists infinitely many x such that”. We

denote (possibly) partial functions on ω by lowercase Greek letters φ, ϕ, ψ and

Turing functionals by uppercase Greek letters Φ,Θ,Ψ. We also use f, g, h for

functions. For a function f , we let domf denote the domain of f . We use ~x

to abbreviate (x1, x2, . . . , xn). We use a similar abbreviation for quantifiers,

i.e. ∃~x means ∃x1∃x2 · · · ∃xn. For a binary relation <, we use x, y, z < w to

abbreviate x < w, y < w, and z < w.

We let 〈., .〉 be a computable bijection ω × ω → ω. Let ωω denote the set

of all functions from ω to ω and let 2ω be the power set of ω, i.e. the set

of all subsets of ω. A string is a sequence of 0’s and 1’s. We denote strings

∈ 2<ω by σ, τ, ρ, υ, η. We let ∅ denote the empty set and also the empty string,

i.e. the string of length 0, depending on the context. We let σ ∗ τ denote the

concatenation of σ followed by τ . We let σ ⊂ τ denote that σ is an initial

segment of τ . We say a string σ is incompatible4 with τ if neither σ ⊂ τ nor

3In fact, by referring to the field as computability theory we are already believing that
the Church-Turing thesis is true.

4We sometimes use the word incomparable for this.
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τ ⊂ σ. Otherwise we say that σ is compatible with τ . We say that σ extends τ

if τ ⊂ σ. If τ ⊂ σ we also say that σ is a successor of τ and τ is a predecessor

of σ. If there is no σ′ such that τ ⊂ σ′ ⊂ σ then σ is an immediate successor

of τ and τ is an immediate predecessor of σ. A set T of strings is downward

closed if whenever σ ∈ T and τ ⊂ σ then τ ∈ T . For a set A, A(i) denotes the

(i+1)st bit of A and similarly for a string σ, σ(i) denotes the (i+1)st bit of σ.

Let A ↾ z denote the restriction of A(x) to those x < z. We define the latter

similarly for functions and strings. For any set A, let |A| denote the cardinality

of A. When we use this for strings σ ∈ 2<ω, let |σ| denote the length of σ.

Given a stage by stage enumeration of A, we let As denote the elements of A

enumerated by the end of stage s.

Note that algorithms only yield partial functions, i.e. functions that may be

undefined on some arguments, because we may not be able to give an output for

an arbitrarily given argument. For example let ψ(x) = µy [p(x, y) = 0], where

p(x, y) is some polynomial with integer coefficients and where µxP (x) denotes

“the least x such that P (x)”. Then, ψ may be undefined for some values of x.

Definition 1. A function f : ω → ω is called partial recursive if it is effectively

computable. If f is defined on every argument then f is total. In this case f is

total recursive (or simply recursive).

Definition 2. Let S be any set. The characteristic function of S is given by

χS(x) =

{

1 if x ∈ S

0 if x 6∈ S.

We say that S is recursive if χS is recursive. Recursive relations are defined

similarly.

Now every algorithm, hence Turing machine description, is of finite length.

Therefore, we can enumerate partial recursive functions by Gödel numbering.

We let the sequence {ϕi}i∈ω be an effective enumeration of the partial recursive

functions. We use the following notation:

ϕe is defined on x⇐⇒ ϕe(x) ↓.
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If ϕe is not defined on x, then we write ϕe(x) ↑. The following theorem,

sometimes called the fixed point theorem, is one of the earliest and most im-

portant results in recursion theory and was proved by Kleene [12]. We simply

state the theorem without proof here, but a proof can be found in any logic

book covering the theory of recursive functions.

Theorem 1 (Recursion theorem). For every recursive function f there exists

some n ∈ ω (called a fixed point of f) such that ϕn = ϕf(n).

We know that not every set is computable. Some sets which are not

computable, however, may be recursively enumerable. For example, the set

{i : i is a prime number} is computable because there is an algorithm for de-

ciding whether or not a number is prime. However, the polynomial example

that we gave earlier is not necessarily computable (depending on the particular

polynomial).5 In that example, we can only decide one way. That is, we can

answer positively when there is a solution, but we may not be always able to

answer negatively otherwise.

Definition 3. A set A is called recursively enumerable (r.e.) if there is an

algorithm that enumerates the members of A. More precisely, A is r.e. if A is

the domain of some partial recursive function. Let the e-th r.e. set be denoted

by

We = domϕe = {x : ϕe(x) ↓}.

Now every recursive set is recursively enumerable since we can effectively

enumerate the members of A by asking whether or not n ∈ A, for each n ∈ ω

in turn. If n ∈ A then we enumerate x into our enumeration set. The following

theorem is a standard result about recursively enumerable sets saying that

a set is recursive if and only if there is an enumeration for itself and for its

complement.

Theorem 2 (Complementation Theorem). A set A is recursive iff both A and

A are recursively enumerable.

5Note that Hilbert’s tenth problem is, given a Diophantine equation with any number
of unknown quantities and with rational integral numerical coefficients, devising a process
according to which it can be determined in a finite number of operations whether the equation
is solvable in rational integers. This problem was shown to be unsolvable by a collection of
works by Davis, Matiyasevich, Putnam and Robinson [11].
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Proof. If A, hence A, is recursive then both A and A are recursively enumer-

able. Now suppose that we have enumerations for A and A. Then, for any

given n ∈ ω, n is going to appear in the enumeration list of A if it is not going

to appear in the enumeration list of A. Similarly, if n is not going to appear

in the enumeration list of A then it must appear in the enumeration list of

A at some point. Hence, we can decide for any given n ∈ ω whether or not

n ∈ A. �

We now describe the canonical example of a set which is recursively enu-

merable but not recursive. The corresponding decision problem is to decide

whether or not a partial recursive function will ever be defined on a given ar-

gument. This is known as the halting problem, and its unsolvability may be

seen as the main reason we have the Gödelian incompleteness.

Definition 4. Let K = {x : ϕx(x) ↓} be the halting set.

Theorem 3. K is recursively enumerable.

Proof. K is the domain of the partial recursive function

ψ(x) =

{

x if ϕx(x) ↓

undefined otherwise.

Now ψ is partial recursive by Church-Turing thesis since ψ(x) can be com-

puted by applying the x-th partial recursive function to input x and giving

output x only if ϕx(x) converges. �

Theorem 4. K is not recursive.

Proof. If K had a recursive characteristic function χK , the following would

be recursive.

f(x) =

{

ϕx(x) + 1 if x ∈ K

0 if x 6∈ K.

But f cannot be recursive since f 6= ϕx for every x. �
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Combining the fact that K is r.e. but not recursive with the complementa-

tion theorem, we have the following.

Corollary 1. K is not recursively enumerable.

1.3 Turing degrees

We now want to relativize the idea of computability. The basic idea is that while

a set may not be computable, it may become computable if we work relative

to another non-computable set, i.e. if we are given access to the characteristic

function of another non-computable set. The intuition is to use information

concerning the membership of one set to help compute another. Let A and B

be two sets. We want B to be computable from A if we can answer “Is n ∈ B?”

using an algorithm whose computation given input n uses finitely many pieces

of information about membership in A. In this case, A is called the oracle. For

this relativized form of computation, we use oracle Turing machines. An oracle

Turing machine is like a standard Turing machine with an extra tape, called

the oracle tape, on which the characteristic function of the oracle is written.

Unlike the work tape of the machine, we do not write anything on the oracle

tape, but only read from it. Then, we can define the transition function as

δ : Q × Σ1 × Σ2 → Q × Σ2 × {L,R, S}2, where Σ1 denotes the oracle tape

alphabet and Σ2 denotes the work tape alphabet. When computing, we read

the characteristic function of A written on the oracle tape and we perform

the given instructions in the usual manner. Since we use an oracle in our

computation, whatever we compute is only computable relative to the oracle

set.

We said that Turing machine procedures or descriptions, hence partial com-

putable functions can be effectively listed. Recall that we denoted the e-th

partial computable function by ψe. In that case, there was no use of an oracle.

We now include oracles in the definition.

Definition 5. (i) A partial recursive function with an oracle for a set S is

a function which is always able to answer whether x ∈ S or not for any

x.
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(ii) We say that a function ψ is recursive in A (or A-recursive) if ψ is com-

putable by a partial recursive function with oracle an A.

(iii) A set B is said to be A-recursive, written as B ≤T A, if χB is A-recursive.

(iv) We let Ψe(A) denote the e-th Turing functional with an oracle A.

(v) We write We(A) to denote domΨe(A). If B = We(A) for some e ∈ ω,

then we say that B is recursively enumerable in A.

Now every set is identified by its characteristic function or its characteristic

sequence of 0’s and 1’s. So we consider binary sequences of 0’s and 1’s to be

initial segments of the characteristic sequences of sets or functions. It is worth

noting that infinite binary strings can also code real numbers. So infinite strings

can be considered as reals.

It makes sense then to say that A ≤T B if and only if there exists some

e ∈ ω such that A = Ψe(B).

Definition 6. Let Ψe(A;x) ↓= y denote that Ψe(A) on argument x is defined

and equal to y. We let Ψe(A;x) [s] ↓= y denote that Ψe(A;x) converges in at

most s stages and outputs the value y. For any A ⊂ ω and n ∈ ω, Ψe(A;n) ↑

means it is not the case that Ψe(A;n) ↓. We also write Ψe(x) in order to denote

Ψe(∅;x).

Let y + 1 be the number of scanned non-empty cells in the oracle tape

during the computation. In this case, y is the maximum number used in the

membership test of A. Hence, this means we used the elements z ≤ y in our

computation. We shall now define the use function more precisely.

Definition 7. For a given e, x, s ∈ ω and A ⊂ ω, the use function u(A; e, x, s)

is 1+“the maximum number used in the computation” if Ψe(A;x) [s] ↓. Oth-

erwise, u(A; e, x, s) = 0.

Theorem 5. (Use Principle)

(i) Ψe(A;x) = y =⇒ ∃s ∃σ ⊂ A [Ψe(σ;x) [s] = y],

(ii) Ψe(σ;x) [s] = y =⇒ ∀t ≥ s ∀τ ⊃ σ [Ψe(τ ;x) [t] = y],
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(iii) Ψe(σ;x) = y =⇒ ∀A ⊃ σ [Ψe(A;x) = y].

This principle is important for later use. It implies that Ψe is continuous.

The first item actually says that when a computation halts it does so in a

finite number of stages and hence only a finite number of bits of the oracle

tape can be scanned. The second item says that if a computation Ψe(σ;x) is

defined by the stage s, it will also be defined and give the same value for stages

t ≥ s and for all extensions of σ. The third item says that if Ψe(σ;x) ↓= y for

some σ ∈ 2<ω then the computation is also defined for all extensions of σ. For

convenience, we assume that for any string σ ∈ 2<ω and any e, n ∈ ω, Ψe(σ;n)

is not defined when |σ| < n. Hence if this computation converges, it does so in

at most |σ| steps and Ψe(σ;n
′) is defined for all n′ < n.

It is also worth noting that there exists a universal Turing machine. That is,

there exists some i ∈ ω such that for all A, j, n we have Ψi(A; 〈j, n〉) = Ψj(A;n)

if they are both defined, otherwise they are both undefined. The following is

another known fact which easily follows from the relativization of previously

given facts.

Theorem 6. The following are equivalent:

(i) B is r.e. in A.

(ii) B = ∅ or B is the range of some A-recursive total function.

Now we define the Turing degrees and the jump operator, both of which

play a central role in computability theory.

Definition 8. (i) Let A and B be two sets. If A ≤T B and B ≤T A, then we

say that A and B are Turing equivalent, and this is denoted by A ≡T B.

(ii) We define the Turing degree (or degree of unsolvability) of a set A ⊂ ω

to be

a = deg(A) = {X ⊂ ω : X ≡T A}.

(iii) We write D for the collection of all such degrees, and define a partial

ordering induced by ≤T on D by
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deg(B) ≤ deg(A) ⇐⇒ B ≤T A.

We write deg(A) < deg(B) if A <T B, i.e. if A ≤T B and B 6≤T A.

(iv) We denote Turing degrees by lowercase boldface Latin letters a,b, c,d.

Definition 9. (i) A degree a is called recursively enumerable if it contains

a recursively enumerable set. We let R denote the set of all recursively

enumerable degrees with the same ordering as for D.

(ii) We say that a degree a is recursively enumerable in b if a contains some

set A r.e. in some set B ∈ b.

Intuitively, if two sets are of the same degree then they can be thought of

as equally difficult to compute. If a < b, this means that sets of degree b are

more difficult to compute than those of degree a.

Definition 10. We define the join a ∪ b of degrees a = deg(A), b = deg(B)

by

a ∪ b = deg(A⊕B) = deg({2i : i ∈ A} ∪ {2i+ 1 : i ∈ B}).

Definition 11. (i) A partially ordered set (poset) L = (L;≤,∨,∧) is called

a lattice if any two elements have a least upper bound (also known as

supremum, join, or union) and greatest lower bound (also known as infi-

mum, meet, or intersection). If a and b are elements of L, a ∨ b denotes

the least upper bound (l.u.b.) of a and b, and a ∧ b denotes the greatest

lower bound (g.l.b.). If L contains a least element and greatest element,

these are called the zero element 0 and unit element 1, respectively. In

such a lattice, a is the complement of b if a ∨ b = 1 and a ∧ b = 0.

(ii) A poset closed under union but not necessarily under intersection is called

an upper semi-lattice. A poset closed under intersection but not neces-

sarily under union is called a lower semi-lattice.

The basic properties of the structure (D,≤) can be given as follows.

Theorem 7. (i) D has 2ℵ0 elements.
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(ii) There is a least degree 0 which is the set of all recursive sets.

(iii) Each degree a has ℵ0 elements.

(iv) The set of degrees ≤ a, for a given degree a, is countable, i.e. |{b :

b ≤ a}| ≤ ℵ0.

(v) For any a and b in D, the least upper bound is their join. Therefore,

the degree structure forms an upper semi-lattice. However, the greatest

lower bound may not always exist for D or R. Hence, neither D nor R

forms a lattice.

We can relativize the halting set to any set A ∈ ω. This gives us the Turing

jump and it gives us a chance to study the higher degrees in the Turing universe.

Definition 12. We define the jump A′ of a set A to be

A′ = KA = {x : Ψx(A;x) ↓}.

The (n+1)th jump of A is defined to be A(n+1) = (A(n))′, where A(1) = A′.

We can summarize some of the important properties of the jump operator

as follows.

Theorem 8 (Jump Theorem). Let A,B ⊂ ω. Then,

(i) A′ is recursively enumerable in A.

(ii) A′ 6≤T A.

(iii) If A ≡T B then A′ ≡T B′.

(iv) If A is r.e. in B and B ≤T C then A is r.e. in C.

(v) A is r.e. in B iff A is r.e. in B.

Let a′ = deg(A′) for A ∈ a. Note that a′ > a and a′ is r.e. in a. Let

0(n) = deg(∅(n)). Then, we have an infinite hierarchy of degrees

0 < 0′ < 0′′ < · · · < 0
(n)

< · · · .

From the fact that the jump is strictly increasing, it follows that D has a

least element but no maximal element. Note that 0′ is the degree of K which

is Turing equivalent to ∅′.
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1.4 Arithmetical hierarchy

In this section we describe another hierarchy, in which sets are classified ac-

cording to the quantifier complexity of their definitions. We define the classes

Σ0
n, Π

0
n (also denoted Σn, Πn in the literature). The superscript denotes that

we are working in first order logic. For the second order logic case, i.e. the

analytical hierarchy, we refer the reader to [13]

Definition 13. (i) Σ0
0 = Π0

0 = ∆0
0 = all recursive predicates.

For n ≥ 0:

(ii) Σ0
n+1 is the set of all relations of the form (∃~yl)R( ~xk, ~yl), where R ∈ Π0

n.

(iii) Π0
n+1 is the set all relations of the form (∀~yl)R( ~xk, ~yl), where R ∈ Σ0

n.

(iv) ∆0
n+1 = Σ0

n+1 ∩Π0
n+1.

R is arithmetical if R ∈
⋃

n∈ω(Σ
0
n ∪Π0

n).

Let us give an example about determining the quantifier complexity of sets.

For example, let Tot = {i : ϕi is a total function} be a set. We can argue that

Tot is in Π0
2 since

i ∈ Tot ⇐⇒ (∀n)ϕi(n) ↓

⇐⇒ (∀n)(∃s)ϕi(n) [s] ↓.

It is easy to see that Tot is in fact a ∆0
3 set. Since

i ∈ Tot ⇐⇒ (∃m)(∀n)ϕi(n) ↓

⇐⇒ (∀n)(∃s)(∀m)ϕi(n) [s] ↓,

we have that Tot ∈ Σ0
3∩Π

0
3. Since we can arbitrarily add dummy quantifiers

such as (∃m) and (∀m), we have the relation that

Σ0
n,Π

0
n ⊂ ∆0

n+1 ⊂ Σ0
n+1,Π

0
n+1 · · · .

Note that A ∈ Σ0
n ⇐⇒ A ∈ Π0

n, so Σn and Πn are complementary. Before

we give some important properties about the arithmetical hierarchy let us give

the following definition first.
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Definition 14. (i) A set A is many-one reducible to B, written A ≤m B,

if there is a recursive function f such that f(A) ⊂ B and f(A) ⊂ B, i.e.

x ∈ A iff f(x) ∈ B.

(ii) A set A is Σ0
n-complete if A ∈ Σ0

n and B ≤m A for every B ∈ Σ0
n.

Π0
n-complete and ∆0

n-complete are defined similarly.

The following is known as Post’s Theorem in the literature, and gives us

some useful facts about the arithmetical hierarchy.

Theorem 9 (Post’s Theorem). Let A ⊂ ω and n ≥ 0. Then:

(i) ∅(n+1) is Σ0
n+1-complete

(ii) A ∈ Σ0
n+1 ⇐⇒ A is r.e. in ∅(n)

(iii) A ∈ ∆0
n+1 ⇐⇒ A ≤T ∅(n).

When n = 1, (iii) in Post’s Theorem gives us the fact that A ∈ ∆0
2 ⇐⇒

A ≤T ∅′. Sets computable in ∅′ can also be characterized as approximating

sequences:

Definition 15. We say that a recursive sequence {As}s∈ω of finite sets is a

∆0
2-approximating sequence for A if A(x) = lims→∞As(x) for all x ∈ ω. We

call As the approximation to A at stage s.

The following result, called limit lemma [14], is an important one and it will

be used in the later sections.

Theorem 10 (Limit lemma, Shoenfield 1959). A ∈ ∆0
2 ⇐⇒ there exists some

recursive function g for which χA(x) = lims→∞g(x, s).

Proof. Let g be given. Then,

x ∈ A ⇐⇒ (∀s)(∃t)(t ≥ s ∧ g(x, t) = 1)

⇐⇒ (∃s)(∀t)(t ≥ s→ g(x, t) = 1).

Therefore A ∈ ∆0
2. Now suppose that A ∈ ∆0

2. Then A ≤T K. Let e be an

index satisfying χA(x) = Ψe(K) and let g be such that g(x, s) = Ψe(Ks;x)[s]

if it is defined, otherwise g(x, s) = 0. Then χA(x) is the limit of the function

g. �
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1.5 Construction methods

In this section we give some known results, each using a different method of

construction. We begin with showing that D is not linearly ordered. This was

shown in [16].

Finite extension method

Definition 16. Two degrees a,b are called incomparable if neither a ≤ b nor

b ≤ a.

We then have to show that there exist incomparable degrees. The main

idea is that instead of considering a single complicated condition like A 6≤T B,

we shall consider an infinite sequence {Re}e∈ω of simpler conditions. We call

these conditions requirements. Here, each Re will be A 6= Ψe(B). At each stage

of the construction we build more of the characteristic sequence of the sets we

want to construct. We define strings σs and τs at stage s, so that ultimately

we can define A =
⋃

s∈ω σs and B =
⋃

s∈ω τs. We use an oracle, specifically ∅′,

at each stage of the construction when choosing σs and τs, and we choose these

values so as to ensure that the next in our list of requirements is satisfied. We

also ensure that σs ⊂ σs+1 for each s ∈ ω. We call this method, ensuring that

σs+1 is a finite extension of σs for each s, the finite extension method.

Theorem 11 (Kleene and Post, 1954). There exist incomparable degrees below

∅′.

Proof. We construct two sets A and B such that A 6≤T B and B 6≤T A. We

break these two conditions into infinite sequences of much simpler conditions

and at each stage of the construction we aim to satisfy one. The requirements

are as follows.

R2e : A 6= Ψe(B)

R2e+1 : B 6= Ψe(A)

We use the finite extension method to construct A and B. Let A =
⋃

s∈ω σs

and B =
⋃

s∈ω τs. We satisfy a single requirement at each stage and once it is

satisfied it will remain satisfied forever. Let σ0 = τ0 = ∅. Suppose that σs and

τs are given at stage s+ 1.
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If s = 2e, then we satisfy Re. Let x ∈ ω be the first element such that σs(x)

is not defined yet. This means that we have not yet decided whether or not x

should be in A. We decide this now and we use x to witness A 6= Ψe(B). In

other words, we satisfy A(x) 6= Ψe(B;x). We should use diagonalization, i.e.

make A on argument x different than Ψe(B). Since we have not constructed

B yet, we do not know if Ψe(B;x) converges, i.e. is defined. However, we do

know that if it converges then there exists some τ ⊂ B such that Ψe(τ ;x) is

defined as well, by the Use Principle. If there exists such τ we know that, by

construction, since τs ⊂ B, the string τ will be compatible with τs because B

extends both. We may also suppose that τ is an extension of τs. In this case,

we see if there exists a string τ ⊃ τs such that Ψe(τ ;x) converges.

If there is no such τ then Ψe(B;x) will be undefined and since A(x) will

be defined because of being a total function, it does not matter what we do.

In this case the requirement will be satisfied automatically and we let σs+1 be

the smallest extension of σs defined on x. Since nothing has to be done on B,

we let τs+1 = τs.

If such τ do exist, then Ψe(B;x) will be defined. Then we must define τs+1

in a way that B extends τ so that Ψe(B;x) = Ψe(τ ;x). It suffices if we let

τs+1 = τ , where τ is the first such we found. However, there is one more point

to be careful about A. Since Ψe(B;x) is now defined, we need to make sure

that it is different from A(x). So, we let σs+1 be the smallest extension of σs

such that σs+1(x) = 1−Ψe(B;x).

If s = 2e + 1 then we just need to interchange the roles of A and B, the

construction is the same.

Now A and B are computable in ∅′. The only non-recursive step in the

construction is where we ask, given x and σ, if there exists some σ′ extending

σ such that Ψe(σ
′;x) is defined. It is easy to see that this is recursively enu-

merable. We consider all such σ′ extending σ and we compute Ψe(σ
′;x) one

step at a time in a dovetailing fashion. Hence, the construction is recursive in

∅′. �

Corollary 2. D is not linearly ordered.

Coinfinite extension method
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We now introduce another method different than finite extension. We said

that (D,≤) is not a lattice. In order to show this we need to consider countable

ideals of degrees.

Definition 17. Let P be an upper semi-lattice. Then I ⊂ P is an ideal if

(i) Whenever x, y ∈ I, x ∨ y is in I;

(ii) Whenever x ∈ I and y ≤ x, y is in I.

Definition 18. A set E of Turing degrees is said to be definable with param-

eters if there is a finite set of degrees a1, . . . ,ak and a formula in the language

of partial orders F(x0, . . . , xk) such that a ∈ E ⇐⇒ F(a,a1, . . . ,ak) is true in

the Turing degrees for all a ∈ E.

The next theorem, originally given in [17], shows that every countable ideal

in the Turing degrees is definable with parameters. We need to give one more

definition however.

Definition 19. Let P be a partial order and let I ⊂ P. We say that (x, y) is

an exact pair for I if, for all z ∈ P, z ∈ I ⇐⇒ (z ≤ x and x ≤ y).

Theorem 12 (Spector, 1956). Every countable ideal in the Turing degrees has

an exact pair.

Corollary 3. The Turing degrees are not a lattice.

Proof. Let {xi}i∈ω be a strictly increasing sequence of degrees (we can let

xi + 1 = x′
i for example). Let I be the ideal generated by this sequence, i.e.

c ∈ I ⇐⇒ ∃xi ≥ c. Let (a,b) be an exact pair for I. If c ≤ a and c ≤ b then

c ∈ I and there exists xi ≥ c. Then, xi + 1 is also below both a and b and is

strictly above c. Therefore, a and b have no greatest lower bound. �

We now prove the theorem.

Proof. Suppose that we are given an enumeration {Xs}s∈ω of all sets which

are of degree in I. We construct A and B to satisfy the following requirements.

Ps : Xs ≤T A and Xs ≤T B;

Qs : Let s = 〈i, j〉 . Ψi(A) = Ψj(B) = C =⇒ (∃k)(C = Xk).
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The Ps requirements ensure that every degree is in the ideal is below both

a = deg(A) and b = deg(B). Then the Qs requirements ensure that anything

computable in both A and B is of degree in the ideal.

A finite extension argument will not be sufficient here – we will need what

is called a coinfinite extension argument. In a coinfinite extension argument, at

each stage of the construction we define A and B on infinitely many arguments

but at the end of each stage we also leave them undefined on an infinite number

of arguments. The basic idea is to divide A and B into columns in order to

ensure that each Xs is computable in these sets. The i-th column consists of

all numbers of the form 〈i, j〉. If A(〈i, j〉) = Xi(j) for all but finitely many j,

then this suffices to show that A will compute Xi. Similarly for B. Then, at

each stage s + 1 we shall ensure that Xs ≤T A and Xs ≤T B. To satisfy this

we code Xs into the s-th columns of A and B in the following way:

We try to satisfy Qs at stage s+ 1.

Suppose that at the end of stage s we have already coded Xk into the k-th

column of A and B for each k < s, and suppose that

(*) Outside the finite set of columns we have already used for coding we have

decided only finitely many arguments of A and B.

Let αs be the partial function specifying A on the arguments we have al-

ready decided. Let βs be the similar partial function for B. Note that for all

s > 0, αs and βs will be defined on infinitely many arguments and also unde-

fined on infinitely many arguments. We see if there are any extensions α ⊃ αs

and β ⊃ βs for which Ψi(α) and Ψj(β) are incompatible, where s = 〈i, j〉 as

we noted above.

If so, then there are finite extensions which satisfy this property. We can

take these finite extensions, code Xs into what remains of the s-th columns of

A and B, and maintain (*).

If there are no extensions which make Ψi(α) and Ψj(β) incompatible, then

we will be able to show that if Ψi(A) = Ψj(B) and is total, then it is computable

in the columns of A and B which we have already determined. This finite set

of columns is basically the join of a finite number of sets of degree in the ideal,

and so is of degree in the ideal. The following is the formal construction.
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Stage 0. Let α0 = β0 = ∅.

Stage s+1. Let s = 〈i, j〉. We see if there exist α ⊃ αs and β ⊃ βs such that

Ψi(α) and Ψj(β) are incompatible. If so, then let α and β be finite extensions

of αs and βs respectively, satisfying that Ψi(α) and Ψj(β) are incompatible. If

not, then let α = αs and β = βs.

Now let αs+1 be the least extension of α which is defined and equal to

Xs(j) on all arguments of the form 〈s, j〉 for which α is undefined. Let βs+1

be defined similarly in terms of β.

The construction satisfies the requirements. For verification, it suffices to

consider what we do at stage s + 1 when there are no α and β extending

αs and βs satisfying that Ψi(α) and Ψj(β) are incompatible. In this case we

claim that if Ψi(A) and Ψj(B) are both total and equal, then this value is

computable in D = ⊕s−1
k=0Xk, and so is of degree in the ideal. Now D can

decide which arguments αs βs are defined on, and compute their values on all

such arguments. If Ψi(A) and Ψj(B) are both total and equal, then we use an

oracle for D to compute the value of Ψi(A;n) as follows. We find any extension

α of αs such that Ψi(α;n) ↓. Now such an extension must exist since A extends

αs and Ψi(A;n) ↓. Then it must be the case that Ψi(α;n) = Ψi(A;n). In order

to see this, suppose otherwise. Then let β be a finite extension of βs which is

compatible with B and such that Ψj(β;n) ↓. Since Ψi(A) = Ψj(B) it must be

the case that Ψi(α;n) 6= Ψj(β;n). This contradicts our hypothesis. �

Minimal degrees

A natural question is to ask whether or not (D,≤) is dense, i.e. whether for

any two distinct degrees there is another degree strictly between them. Spector

[17] answers this question negatively in a stronger form. We now give a few

definitions and the theorem. The simplified proof we follow is due to [15]. The

non-density of (D,≤) follows from the existence of minimal degrees:

Definition 20. A degree a is minimal if a > 0 and there does not exist b such

that 0 < b < a, i.e., (∀c)(c ≤ a ⇒ c = 0 ∨ c = a).

However, the existence of minimal degrees seem to require a bit more than

finite extension where the idea there was to build an increasing sequence of
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strings σs, and then take their union
⋃

s∈ω σs. This can be thought of as

building a decreasing sequence of open sets Ts = {X : X ⊃ σs}, and then

taking their intersection
⋂

s∈ω Ts. This gives us a chance to work on more

general sets like Ts.

Definition 21. A tree T is a function from 2<ω to 2<ω with the following

properties:

(i) If T (σ) is defined and τ ⊂ σ, then T (τ) is defined and T (τ) ⊂ T (σ).

(ii) If one of T (σ ∗ 0) or T (σ ∗ 1) is defined, then both are defined and incom-

patible.

b

b

b

b

T (σ)

T (σ ∗ 0)

T (σ ∗ 1)

Figure 1.1: A segment of a tree.

The following terminology is standard.

Definition 22. Let T be a tree.

(i) A string σ is in T if it is in the range of T .

(ii) We say that a set A ⊂ ω lies on T if there exist infinitely many σ ⊂ A in

T .

(iii) A set A is a branch on T if A lies on T .

(iv) A leaf of T is a string σ ∈ T such that τ ∈ T for no τ properly extending

σ.

(v) T ∗ is called a subtree of T if every σ ∈ T ∗ is also in T .
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(vi) We say that T ∗ is the full subtree of T above σ if it consists of all strings

on T extending σ.

We say that a tree T is total if it is total as a function from strings to

strings. Otherwise we say that T is partial. We can think of subtrees for

trees as extensions for finite strings. The tree method consists of building a

decreasing sequence of {Tn}n∈ω trees, where T0 is the identity tree, i.e. a

tree simply consisting of all strings, and such that Tn+1 is a subtree of Tn.

This method is more general because we are allowed to choose Tn+1 to be any

subtree of Tn. The following application of trees uses recursive trees, i.e. trees

that are recursive as total recursive functions from strings to strings. We are

interested in the range of a tree as in the standard terminology. We give two

lemmas which are necessary for showing the existence of minimal degrees.

Lemma 1 (Diagonalization Lemma). For any e ∈ ω and a recursive tree

T ⊂ 2<ω, there is a recursive tree Q ⊂ T such that for every A on Q, A 6= Ψe.

Proof. It is easy to see that since T (0) and T (1) are incompatible, at least one

of them must disagree with Ψe(x) for some x ∈ ω. Let T (i) be the one. Then

we let Q be the full subtree of T above T (i). �

If we want to construct a minimal degree we need to construct a set A such

that

C ≤T A⇒ C is recursive or A ≤T C.

Definition 23. Let σ and τ be two strings. We say that σ and τ are e-splitting

if, for some x ∈ ω, Ψe(σ;x) ↓6= Ψe(τ ;x) ↓. In this case, we say that σ and τ

e-split on x.

Definition 24. A tree T : 2<ω → 2<ω is an e-splitting tree if any two strings

in T which are incompatible are also e-splitting.

Definition 25. A tree T : 2<ω → 2<ω is an e-nonsplitting tree if no pair of

strings in T are e-splitting.

Note that a tree which is not e-splitting does not necessarily have to be

e-nonsplitting.
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Lemma 2 (Spector, 1956). For any e ∈ ω, recursive tree T and A on T , if

Ψe(A) is total then:

(i) If T is an e-nonsplitting tree then Ψe(A) is recursive.

(ii) If T is e-splitting then A ≤T Ψe(A).

Proof. We first prove (i). Suppose that A lies on T and that Ψe(A) is total.

Then for any given x ∈ ω we know that Ψe(A;x) is defined and there must be

some σ ⊂ A such that Ψe(σ;x) converges and gives the right value. We may

suppose that σ is in T since A is on T . If there is T is e-nonsplitting then

to compute Ψe(A;x), it is enough to find any string τ ∈ T such that Ψe(τ ;x)

converges. Now Ψe(σ;x) must be equal to Ψe(τ ;x) since otherwise they would

be an e-splitting. Hence their value must be equal to Ψe(A;x).

For (ii), suppose that T is e-splitting. We show how to generate increasingly

long segments of A recursively in Ψe(A). Given T (σ) ⊂ A, since A lies on T

either T (σ ∗ 0) or T (σ ∗ 1) will be included in A, and we have to decide which

one of them is in A. Since T is e-splitting there exists some x ∈ ω such that

Ψe(σ ∗ 0;x) and Ψe(σ ∗ 1;x) are defined and not equal. Then only one of them

can be compatible with Ψe(A;x), and this determines which of the two strings

is included in A. �

Lemma 3 (Minimality Lemma). (Spector, 1956) For any e ∈ ω and a recursive

tree T , there is a recursive tree Q ⊂ T such that one of the following holds:

(i) For every A on Q, if Ψe(A) is total then Ψe(A) is recursive.

(ii) For every A on Q, if Ψe(A) is total then A ≤T Ψe(A).

Proof. We build Q with either no e-splitting on it, or as an e-splitting tree.

If there is a string σ ∈ T such that there is no e-splitting above σ, then Q has

no e-splitting and Q is the full subtree of T above σ. If every string on T has

two e-splitting extensions, then we can construct an e-splitting subtree Q of T

by induction as follows:

Given Q(σ), we let Q(σ ∗ 0) and Q(σ ∗ 1) be two e-splitting extensions of it

for the first such e-splitting strings we found recursively. We will then be able

to compute A from Ψe(A) the same way as in the previous lemma. �
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Now we can give the final theorem which follows from the given lemmas.

Theorem 13 (Spector, 1956). There exists a minimal degree.

Proof. The requirements we need to satisfy are as follows.

R2e : A 6= Ψe

R2e+1 : C ≤T A⇒ C is recursive or A ≤T C

We built a decreasing sequence of trees.

Stage 0. Let T0 be the identity tree.

Stage s = 2e+ 1. We let T2e+1 be the Q of the Diagonalization Lemma for

T = T2e.

Stage s = 2e + 2. We let T2e+2 be the Q of the Minimality Lemma for

T = T2e+1.

We then let A =
⋃

s∈ω Ts(∅) and so A will satisfy the requirements. �

If we analyze the proof we can see that it gives us the existence of a minimal

degree below 0′′. The reason is because of the question we ask in the Minimality

Lemma, whether or not there is a string σ ∈ T such that there is no e-splitting

above σ. This uses a ∅′′ oracle. Therefore, we can only assert the existence of

a minimal degree below 0′′. However, instead of using total recursive trees, if

we are allowed to use partial trees, then we can prove that there is a minimal

degree below 0′.

Theorem 14 (Sacks, 1961). There exists a minimal degree below 0′.

The fact that there is minimal degree suffices to show that (D,≤) is not

dense. However, it is a remarkable result that this is not true for the recursively

enumerable degrees.

Theorem 15 (Sacks, 1964). Let a and b be two recursively enumerable de-

grees. Then there exists another recursively enumerable degree c such that

a < c < b.

This means that minimal degrees cannot be recursively enumerable.
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1.6 Jump classes

We now know that there are degrees strictly between 0 and 0′, but how close

are they to 0 or 0′? We give the jump hierarchy in this subsection. This will

formalize the notion of sets being close to 0 or 0′. We know that the jump of

0 is 0′. Therefore, for degrees a ≤ 0′, 0′ is the least possible jump and 0′′ is

the greatest possible jump. We now show that, 0 is the not only degree whose

jump is 0′.

Definition 26. A degree a is called low if a′ = 0′.

Spector [17] constructed a non-recursive ∆0
2 low degree, hence gave the

following result about the behavior of the jump operator.

Theorem 16 (Spector, 1956). The jump operator is not one to one.

The next theorem, shown in [18], is known in the literature as jump inversion

for ∆0
2 degrees, and concerns the range of the Turing jump.

Theorem 17 (Friedberg, 1957). If b ≥ 0′ then there exist a degree a such

that a′ = b.

A local version for this theorem for r.e. degrees is given by Shoenfield [14].

Theorem 18 (Shoenfield, 1959). If a ∈ Σ0
2 and a ≥ 0′, then there exists a

degree b < 0′ such that b′ = a.

We will see that the last two theorems are connected with the results in

Chapter 3.

The question as to whether or not there exists a r.e. degree strictly between

0 and 0′ was asked by Emil Post and this was one of the oldest questions in

recursion theory. This was answered positively in [19] and [20]. The fact that

there is a ∆0
2 degree strictly between 0 and 0′ does not answer the question.

However, it can be shown that there are non-recursive low r.e. degrees. We give

the proof because the method describes a finite injury priority construction.

Theorem 19 (Friedberg-Muchnik Theorem). There exists a non-recursive r.e.

low degree.
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Proof. We construct a set A which is non-recursive r.e. and low. We define A

by enumerating it as the construction progresses. This means we cannot use

an oracle because the construction must be carried out effectively.

We first consider the requirements for making A non-recursive. In order to

satisfy this, it is enough to ensure that A is infinite and that:

Pe : |We| = ℵ0 ⇒We ∩A 6= ∅.

These requirements suffice because

A is recursive iff A and A are r.e.

Now we look to satisfy the lowness property. For this it is enough to consider

the following requirements.

Ne : (∃
∞s) [Ψe(As; e) [s] ↓] ⇒ Ψe(A; e) ↓.

Recall that (∃∞s)R(s) means “there are infinitely many s such that R(s)

holds”. We let A =
⋃

s∈ω As, where As contains precisely those elements

enumerated into A by the stage s. SatisfyingNe will give us a low degree. To see

this, let g be a function which is defined in the following way: If Ψe(As; e) [s] ↓

then let g(e, s) = 1. Otherwise, let g(e, s) = 0. Let g∗(e) = lims→∞g(e, s).

Satisfaction of Ne means that this limit exists. Then g∗ is the characteristic

function of A′. Also note that since g is computable, g∗ is computable when

given an oracle for ∅′. In order to satisfy Ne, for each e we define a restraint

function

re(s) = u(As; e, e, s),

where u(As; e, e, s) is the use function we defined earlier. We say that re

gets injured at stage s + 1 if we enumerate n < re(s) into A at this stage.

One important property about this function is that if there exists a stage after

which re is not injured, then Ne is satisfied and lims→∞ re(s) is defined. To

see this, suppose that re is not injured at any stage ≥ s0. If there is no stage

t ≥ s0 such that Ψe(At; e) [t] ↓, then Ne will be satisfied and lims→∞ re(s) = 0.

Otherwise, let t be the least such stage. Since we do not enumerate in a value

less than u(At; e, e, t) into A after stage t, this computation is preserved so
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that Ψe(A; e) ↓ and re(s) = re(t) for all s ≥ t. To satisfy all requirements, we

give them priorities as N0 > P0 > N1 > P1 > · · · , where N0 is the highest

priority requirement. We agree that a requirement Pe is not allowed to injure

any requirement Ni of a higher priority. Once Pe enumerates some value into

A then this requirement will be satisfied so each Pe can enumerate only one

element into A. For every Ni requirement, note that there are finitely many

higher priority requirements Pe. This means that after some stage Ni will

not be injured. Therefore it will be satisfied and lims→∞ ri(s) will be defined.

Then this means that we can satisfy each of the Pe requirements since We is

infinite, then it will have a member greater than the limit values of all restraint

functions of higher priority, and we can enumerate this number into A in order

to satisfy the requirement. We define the construction as follows.

Stage s = 0. Let A0 = ∅.

Stage s+1. Given As, we see if there exists least i ≤ s such thatWi,s∩As =

∅ and

(*) ∃s [x ∈Wi,s ∧ x > 2i ∧ (∀e ≤ i) [re(s) < x]],

where, Wi,s is the domain of Ψi [s]. If there is such i, then we enumerate

the least x satisfying (∗) into A, i.e. As+1 = As ∪ {x}. If there is no such i we

let As+1 = As. This ends the construction. For verification, the fact that A is

infinite follows from the fact that each requirement Pe enumerates at most one

element into A, and if it does enumerate an x into A then x > 2e. The fact

that every requirement is satisfied follows by induction on the priority ranking

of the requirements. �

Definition 27. A degree a is called high if a′ = 0′′.

The following is due to [21].

Theorem 20 (Sacks, 1963). There exists a high degree a < 0′.

Definition 28. We say that a function f dominates a function g if f(n) ≥ g(n)

for all but finitely many n.

A nice characterization of high degrees is given in terms of domination

properties, by Martin [23].
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Theorem 21 (Martin, 1966). Let a be a degree. Then, a′ ≥ 0′′ iff there is a

function recursive in a which dominates every recursive function.

The low and high jump classes can then be extended to give a richer hier-

archy, as follows.

Definition 29. For any n ≥ 0, we define the following:

Lown = {a : a(n) = 0(n)}.

Highn = {a : a(n) = 0(n+1)}.

Clearly, Lown ⊂ Lown+1 and Highn ⊂ Highn+1. In fact, Sacks [22] proved

the following.

Theorem 22 (Sacks, 1963). For every n, Lown+1 − Lown 6= ∅. Similarly for

Highn degrees.
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Chapter 2

Degrees of Peano

Arithmetic and Π0
1 Classes

A Π0
1 class is basically an effectively closed subset in Cantor space 2ω.1 The

study of determining the complexity of the members of Π0
1 classes continues

to be of strong interest after many years of analysis and investigation. It

is also an important topic since Π0
1 classes are closely related to recursively

axiomatizable theories such as Zermelo-Fraenkel Set Theory (ZFC) or Peano

Arithmetic (PA). They are also related to topology, algebra, and combinatorics

such as graph theory. In this chapter we introduce Π0
1 classes which are essential

for our study. We start with giving standard definitions including an alternative

characterization of Π0
1 classes in terms of complete and consistent extensions

of axiomatizable theories. We then give some basis and non-basis results that

are known in the literature such as low basis theorem, hyperimmune-free basis

theorem and so forth. We also introduce the degrees of (models of) Peano

Arithmetic and give some relevant results related to that. We finally mention

variants of Π0
1 classes and their basic properties.

1Occasionally we use subsets of Baire space ωω but unless we explicitly state that, we will
be working in Cantor space.

29
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2.1 Cantor Space and Topology

We start by defining the Cantor space and its topology before we define Π0
1

classes. For a detailed account of general topology, we refer the reader to [24],

[25]. We now work with second order objects, i.e. sets of subsets of ω rather

than just subsets of ω.

Definition 30. Cantor space is 2ω with the following topology. For every

σ ∈ 2<ω, we define the basic open set

JσK = {A : A ∈ 2ω & A ⊃ σ}.

The open sets of Cantor space are unions of basic open sets. A set A ⊂ 2<ω is

an open representation of the open set

JAK =
⋃

σ∈AJσK.

Definition 31. (i) We say that A ⊂ 2ω is effectively open if A = JAK for an

r.e. set A ⊂ 2<ω.

(ii) We let A ⊂ 2ω be a Σ0
1 class if there exists a recursive predicate ϕ(n,X)

s.t. X ∈ A ⇐⇒ ∃nϕ(n,X) where n ranges over ω and X ranges over 2ω.

We may say that a class A being effectively open is logically equivalent

to A being Σ0
1. We shall now define closed classes. It is known from general

topology that a set is closed if its complement is open. However, we shall give

the effective analogue of this using trees which will lead us defining Π0
1 classes.

In fact, Π0
1 classes can be defined in several different ways. Hence we should

not give only one.

From now on we simply define tree T as a set of finite strings which is

downward closed, i.e. if σ ∈ T and τ ⊂ σ then τ ∈ T . Note that this definition

is different than the one given in Chapter 1.

Definition 32. We say that a tree T is recursive if for any string σ, we can

decide whether or not σ ∈ T .

Definition 33. (i) Let T ⊂ 2<ω be a tree. The set of infinite paths through

T is
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[T ] = {A : ∀n(A ↾ n ∈ T )}.

(ii) A class A ⊂ 2ω is Π0
1 if there exists a recursive predicate ϕ(n,X) s.t.

X ∈ A ⇐⇒ ∀nϕ(n,X) where n ranges over ω and X ranges over 2ω.

(iii) A class A ⊂ 2ω is effectively closed if its complement is effectively open.

Definition 34. We let {Λi}i∈ω be an effective listing of downward closed

recursive sets of strings such that for any Π0
1 class P there exists i such that P

is the set of all infinite paths through Λi.

Now from the definitions, it is easy to see the following.

Theorem 23. Let A ⊂ 2ω be a class. The following are equivalent.

(i) A = [T ] for some recursive tree T .

(ii) A is effectively closed.

(iii) A is a Π0
1 class.

Using trees is a convenient way of representing open and closed sets. We

know that if A is a closed set there is a tree T such that A = [T ]. Let

A = 2<ω−T . Now T is downward closed and we may assume that A is upward

closed. Moreover, A defines the open set JAK = 2ω − [T ] which is equal to A.

Notice that A and T are complementary in 2<ω. So JAK which is an open set

and [T ], a closed set, are complementary in 2ω.

Since we are working in Cantor space, we shall mention the compactness

property of it. We are particularly interested in König’s Lemma but compact-

ness can also be provided by the following.

Theorem 24. (i) Let {Tn}n∈ω be a decreasing sequence of trees such that

[Tn] 6= ∅ for every n ∈ ω, and that Tω =
⋂

n∈ω Tn. Then [Tω] is non-

empty.

(ii) Let {Ai}i∈ω be a countable sequence of closed sets such that
⋂

i∈F Ai 6= ∅

for every finite set F ⊂ ω. Then,
⋂

i∈ω Ai is non-empty as well.

(iii) Any open cover JAK = 2ω has a finite open subcover F ⊂ A such that

JF K = 2ω.
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We now give König’s Lemma [26].

Lemma 4 (König’s Lemma). If T is a finitely branching infinite tree, then T

has an infinite path.

Proof. Let T be a finitely branching infinite tree. We define a set A =
⋃

s∈ω σs

on T by induction. We let σ0 = ∅, i.e. the root of T . Given σs in T such that

there are infinitely many extensions in T , let σs+1 be an immediate successor of

σs in T such that σs has infinitely many extensions in T . Now it exists because

σs has infinitely many extensions in T , but only finitely many immediate suc-

cessors since T is finitely branching. Therefore, at least one of the immediate

successors must have infinitely many extensions in T . �

We shall now give some notation for trees.

Definition 35. Let T ⊂ 2<ω be a tree.

(i) For any given σ ∈ T , we let Tσ be the subtree of nodes compatible with σ

and be defined as

Tσ = {τ ∈ T : σ is compatible with τ}.

(ii) A path A ∈ [T ] is said to be isolated if there exists a string σ such that

[Tσ] = {A}. Otherwise A is called a limit point.

Note that when σ isolates A we have JσK ∩ [T ] = {A}, and there are no

incompatible infinite extensions of σ in T .

Definition 36. We say that σ ∈ T is infinitely extendible in T if there exists

some A ⊃ σ such that A ∈ [T ].

The next theorem is the effective analogue of compactness property.

Theorem 25. Let T ⊂ 2<ω be a recursive tree.

(i) If [T ] is non-empty then there exists a set A ∈ [T ] such that A ≤T ∅′.2

(ii) Whenever [T ] is non-empty, the leftmost branch of [T ], i.e. lexicographi-

cally least member, is of r.e. degree.3

2This is also known as Kreisel’s basis theorem which will be extended by the low basis
theorem.

3Lexicographical order means the dictionary order.



2.1. Cantor Space and Topology 33

Proof. (i) We use an oracle for ∅′ to choose A ∈ [T ] such that A =
⋃

n∈ω σn

is defined as follows.

Let σ0 = ∅. Given σn such that σn is infinitely extendible, we let σn+1 be

σn ∗ 0 if σn ∗ 0 is infinitely extendible and we let σn+1 be σn ∗ 1 otherwise.

(ii) Let A be the leftmost branch on T , i.e. lexicographically least member

of [T ]. Then A is Turing equivalent to B which is the set of finite strings strictly

to the left of A, and which is an r.e. set. �

The following theorem gets important for further analysis when we intro-

duce Π0
1 classes that are countable.

Theorem 26. Let T be a recursive tree. If A ∈ [T ] is isolated, then A is

recursive.

Proof. Let T be a recursive tree and let A be a path on T . Suppose that A

is isolated. Then there exists a string σ ⊂ A such that no path on T except A

extends σ. Then, by König’s Lemma, for any n > |σ|, there is a unique τ ⊃ σ

such that the subtree of T above τ is infinite. So in order to compute A ↾ n

for n > |σ|, we find m ≥ n such that exactly one τ ⊃ σ of length n has an

extension of length m in T . Then A ↾ n = τ . �

Definition 37. A Π0
1 class is called special if it does not contain any recursive

member.

The next corollary is particularly an important consequence as it will be

used later on. It says that Π0
1 classes with no recursive member are quite

“dense”.

Corollary 4. If P is a special Π0
1 class, then P has cardinality 2ℵ0 .

Proof. By the previous theorem, since there is no recursive member in P,

every branch splits. Therefore the number of infinite branches is 2ℵ0 . �

Corollary 5. Let P be a finite Π0
1 class. Then every member of P is recursive.

Proof. Let T be a recursive tree such that P = [T ] and that T has only

finitely many paths. Therefore, every member of T is isolated. Hence, they are

all recursive. �
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2.2 Axiomatizable theories

In this section we give the link between axiomatizable theories and Π0
1 classes.

This will show the strong connection between logical theories and Π0
1 classes.

Definition 38. (i) A theory is a set of sentences in the formal language of

first order arithmetic closed under logical deduction.

(ii) Let T be a theory. Then T is called consistent if no contradiction can be

derived from T , i.e. for any statement S in the language of T , S ∧ ¬S is

not provable from T .

(iii) Let T be a theory. Then T is called complete if either S or ¬S is provable

from T for any given sentence S in the language of T .

Definition 39. Let T be a theory and let R be a set of sentences in the

language of T .

(i) We say that R is an extension of T if T ⊂ R.

(ii) R is a complete (consistent) extension if R is complete (consistent).

(iii) T is recursively axiomatizable if it has a recursive set of axioms.

(iv) T is decidable if it is recursive. Otherwise T is called undecidable.

A classical result [28] is that any consistent theory has a complete and

consistent extension which follows from Zorn’s Lemma.4 It is also known that

r.e. sets are associated with recursively axiomatizable theories. That is, every

r.e. degree contains a recursively axiomatizable theory and vice versa [29].

Π0
1 classes can be viewed as complete and consistent extensions of recursively

axiomatizable theories. The following theorem is due to Shoenfield [30].

Theorem 27 (Shoenfield, 1960). The set of complete and consistent extensions

of a recursively axiomatizable theory is a Π0
1 class.

Proof. Let T be a theory. By Gödel numbering, we can enumerate the set

of all sentences, say S0, S1, . . ., in the formal language of T . So any sentence

4Zorn’s Lemma: If a partially ordered set P has the property that every totally ordered
subset has an upper bound in P , then P contains a maximal element.
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can be identified with its index i ∈ ω. Then T can be represented by the set

{i : Si ∈ T} and a class of sets of sentences can be represented by a class in

2ω. We let T ⊢s Si mean that Si is provable from T in s steps. When we say

s steps, we mean the number of derivations or the length of the proof. Note

that this type of provability is a recursive relation since it is bounded. Let

Γ(T ) be the class of complete and consistent extensions of T . Then Γ(T ) can

be represented by the set of infinite branches through a recursive tree Q ⊂ 2<ω

which is defined in a way that σ is in Q iff the following conditions hold.

(i) For any i < n, if T ⊢s Si then σ(i) = 1.

(ii) For any i, j < n, if T ⊢s Si ⇒ Sj and σ(i) = 1, then σ(j) = 1.

(iii) For any i, j, k < n, if Sk = (Si∧Sj), σ(i) = 1 and σ(j) = 1, then σ(k) = 1.

(iv) For any i, j < n, if σ(i) = 1 and Sj = ¬Si, then σ(j) = 0.

(v) For any i, j < n, if Sj = ¬Si, then either σ(i) = 1 or σ(j) = 1.

Let f be an infinite branch on Q and let ∆ = {Si : f(i) = 1}. Now the

conditions (i), (ii), and (iii) ensure that ∆ is a theory and the first item ensures

that ∆ extends T . The fourth condition ensures that ∆ is consistent. The last

condition ensures that ∆ is a complete theory. �

The converse of this theorem is provided by Ehrenfeucht [31].

Theorem 28 (Ehrenfeucht, 1961). Any Π0
1 class can be represented as the set

of complete and consistent extensions of a recursively axiomatizable theory.

Proof. We give the proof which appears in [32]. We let the language L consists

of a countable sequence A0, A1, . . . of propositional variables. For any S ∈ 2ω,

we can define a complete and consistent theory ∆(S) in the language L to be

the set of consequences of {Ci} such that Ci = Ai if S(i) = 1 and Ci = ¬Ai

otherwise. So for any Π0
1 class P we construct a theory Γ such that ∆(P) =

{∆(S) : S ∈ P} is the set of complete and consistent extensions of Γ. For each

string σ such that |σ| = n, we let Pσ = ∧n−1
i=0 Ci, where Ci = Ai if σ(i) = 1, and

Ci = ¬Ai otherwise. Let T be a given recursive tree such that P = [T ] and

we define the theory Γ(T ) consists of all sentences Pσ ⇒ An such that σ ∈ T
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but σ ∗ 0 6∈ T , and similarly of all sentences Pσ ⇒ ¬An such that σ ∈ T but

σ ∗ 1 6∈ T , where σ is of length n.

It suffices if we show that ∆(P) equals the set of complete and consistent

extensions of Γ(T ). Assume that S is in P and let ∆(S) be the set of conse-

quences of {Ci} for i ∈ ω. Note that any sentence γ ∈ Γ(T ) is either of the

form Pσ ⇒ An or Pσ ⇒ ¬An for some σ ∈ T of length say n. We need to look

at different cases. Suppose that σ = σ ↾ n such that σ ⊂ S. If σ∗0 6∈ T then we

know that S(n) = 1 so that Cn = An is in ∆(S), hence ∆(S) proves Pσ ⇒ An.

Otherwise, i.e. if σ ∗ 1 6∈ T , it must be the case that ∆(S) proves Pσ ⇒ ¬An.

Therefore ∆(S) is a complete and consistent extension of Γ(T ). Now let ∆ be

a complete and consistent extension of Γ(T ). Then, by the definition of com-

pleteness, ∆ either proves Ai or its negation for each i ∈ ω. We let Ci = Ai if

∆ proves Ai and let Ci = ¬Ai otherwise. Then define S ∈ 2ω such that S ∈ P

iff ∆ proves Ai. Hence it is easy to see that ∆ is equal to ∆(S). We still need

to show that S ∈ P. Suppose that S 6∈ P. Then there is some n ∈ ω such that

S ↾ n ∈ T but S ↾ n + 1 6∈ T . Then Pσ = ∧n−1
i=0 Ci so that ∆ proves Pσ and

that Pσ ⇒ ¬Ci is a sentence in the theory Γ(T ) so ∆ contradicts Γ(T ). �

The last theorem was modified by Jockusch and Soare [3] and they showed

that the theory could be taken to be propositional.

Now from these theorems, Π0
1 classes can be viewed as the set of complete

and consistent extensions of an axiomatizable theory.

Separating Sets

It is worth giving another natural example of Π0
1 classes in another form.

The class of so called separating sets of a pair of disjoint r.e. sets is also a

natural example of a Π0
1 class.

Definition 40. Let A and B be disjoint r.e. sets. Then C is a separating

set for A and B if A ⊂ C and B ∩ C = ∅. Let S(A,B) denote the class of

separating sets for A and B. If A and B have no separating set, then they are

called recursively inseparable.

The notion of recursively inseparable sets originally was introduced by

Kleene in [33]. Shoenfield proved in [34] that every nonzero r.e. degree contains
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a pair of recursively inseparable sets. Shoenfield again in [30] showed that for

any pair of r.e. sets A and B, S(A,B) is a Π0
1 class. Notice that S(A, ∅) is

the class of supersets of A and S(∅, B) is the class of subsets of the Π0
1 set

{0, 1}ω − B. It is easy to observe that S(A,B) is finite iff A ∪ B is cofinite.

So A, B, and the separating set C are all recursive in this case. Otherwise the

class of separating sets for A and B is a perfect set in a sense that there are

no isolated points. So the class has the cardinality 2ℵ0 . But then countably

infinite Π0
1 classes cannot be represented by any class of separating sets. So the

class of separating sets of a pair of disjoint r.e. sets can be seen as a Π0
1 class

but the other way around is not true.

2.3 Basis theorems

The main motivation of this thesis is the investigation of degrees of members

of Π0
1 classes. This is usually provided by theorems which tell what kind of

members are contained or not contained in Π0
1 classes. The investigation of the

degrees of members of Π0
1 classes has been studied by many researchers but

two of the most well known papers, and earliest, in this field are by Jockusch

and Soare [3], [4]. In this section we give some important properties about the

members of Π0
1 classes. We start with so called basis theorems.

Definition 41. (i) A class A of sets is a basis for Π0
1 classes if every non-

empty Π0
1 class has a member in A. A set of degrees is a basis for Π0

1

classes if the union of the set of degrees is.

(ii) Anything which is not a basis is called non-basis.

So a basis theorem is a theorem which asserts that every non-empty Π0
1 class

contains a member of a particular kind. A well known result is the low basis

theorem, shown in [3]. This theorem extends Kreisel’s basis theorem which

says that every Π0
1 class contains a ∆0

2 set. Recall that a degree a is low if

a′ = 0′.

Theorem 29. Every non-empty Π0
1 class contains a member of low degree.

Proof. Let P be a non-empty Π0
1 class such that P = [T ] for a recursive tree

T . We build a set A on T such that A′ ≤T ∅′.
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We let T0 = T . Given Te, in order to decide the membership of e in A′ we

consider the following:

Ue = {σ : σ ∈ Te and Ψe(σ; e) ↑}.

Now Ue is a downward closed set of strings and can be finite or infinite.

If it is infinite, we let Te+1 = Ue. In this case e 6∈ A′ for any A on Te+1.

If it is finite, we let Te+1 = Te. Now in this case we have that e ∈ A′ because

Ψe(σ; e) ↑ for only finitely many strings on Te+1. Then the computation must

converge for sufficiently large strings.

Now A is in T because T0 = T , and whenever A ∈
⋂

e∈ω Te we have that

A′ ≤T ∅′. The reason that this is so is because we can decide on the case

distinction by König’s lemma and using an oracle for ∅′. �

Corollary 6. There exists a complete and consistent extension of PA which

is of low degree.

Proof. The corollary follows from the fact that any axiomatizable theory,

particularly PA, can be viewed as a Π0
1 class together with the low basis theo-

rem. �

We give another basis theorem but it is necessary to give some definitions

first.

Definition 42. A set A is of hyperimmune-free degree if for every function f

such that f ≤T A, there exists a computable function g which majorizes f , i.e.

g(n) ≥ f(n) for all n ∈ ω.

Let us discuss what this intuitively means. If A is of hyperimmune-free de-

gree then A has no ability to compute fast growing functions. This means that

for every f ≤T A there is a recursive function g which grows at least as quickly

as f . It is clear that 0 is a hyperimmune-free degree. However, the minimal

degree construction given in the previous chapter can be modified to get a min-

imal degree which is hyperimmune-free. A way to construct hyperimmune-free

degrees would be as follows. Suppose that f = Ψi(A) for some i ∈ ω, and if A

is on a total recursive i-splitting tree then we have that Ψi(σ;n) ↓, for every σ

of level n+1 in the tree by induction on n. Since the tree is total as a function
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we can compute all computations of the form Ψi(σ;n) for any σ of level n+1.

Then we can define g(n) to be larger than what Ψi(σ;n) gives as an output for

all σ of level n+1. The idea of the proof of the next theorem is similar to this

argument and that of low basis theorem.

Theorem 30. Every non-empty Π0
1 class contains a member of hyperimmune-

free degree.

Proof. Let P be a non-empty Π0
1 class such that P = [T ] for some recursive

tree T . We construct a set A of hyperimmune-free degree such that A ∈ [T ]

and that whenever Ψe(A) is total, it is majorized by a recursive function.

We let T0 = T . Given Te, we consider the following set.

U〈e,n〉 = {σ : σ ∈ Te and Ψe(σ;n) ↑}.

As in the previous theorem, there are two cases we need to look at. Now

U〈e,n〉 is again a downward closed set of strings and can be finite or infinite.

If it is infinite for some n ∈ ω, we let Te+1 = U〈e,n〉 for that n. Now

in this case for any A on Te+1, Ψe(A) will be partial so the requirement is

automatically satisfied.

If however U〈e,n〉 is finite for all n, then we let Te+1 = Te. Then in this case,

for any A on Te+1 we find a recursive function that majorizes Ψe(A). For this,

we look for a level m in a computable fashion such that Ψe(σ;n) is defined for

all σ of level m. We finally let g(n) be greater than the value of Ψe(σ;n) for

all σ of level m. �

Corollary 7. There exists a complete and consistent extension of PA which

of hyperimmune-free degree.

In [35], Diamondstone, Dzhafarov and Soare give a result which is a strong

version of the low basis theorem.

Definition 43. A set A is truth-table reducible to a set B, denoted A ≤tt B,

if there is a total Turing functional Ψe such that A = Ψe(B).

Definition 44. A set A is called superlow if A′ ≤tt ∅
′.

The following is the superlow basis theorem, given in [35]. We omit the

proof.
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Theorem 31. If P is a non-empty Π0
1 class then it contains a member of

superlow degree.

In the same paper, the following result is given.

Theorem 32. Every special Π0
1 class has a member of degree that is Lown+1

but not Lown.

We said earlier that any class of degrees which does not form a basis is a

non-basis. An example for a non-basis theorem, given in [4], would be the fact

that the class of r.e. degrees strictly below 0′ does not form a basis. We earlier

showed that every Π0
1 class contains a member of r.e. degree. However, it does

not necessarily have to contain a member of degree strictly below 0′.

Another non-basis theorem would be again by Jockusch and Soare [4] that

the class of recursive sets does not form a basis since there exists a special Π0
1

class, i.e. all members are non-recursive. It is worth giving the construction of

such classes since we will use special Π0
1 classes in the later chapters.

Theorem 33. There exists a Π0
1 class which does not contain a recursive

member.

Proof. The construction is simply by diagonalization. We recall that the

notation Ψe [s] denotes the computation of Ψe after s steps. We define T such

that σ of length n is in T iff Ψe(e) [n] 6= σ(e) for each e < n. Note that [T ] is

non-empty since A ∈ [T ] for A defined as follows:

A(e) =

{

1−Ψe(e) if Ψe(e) ↓

0 otherwise.

Then for any B ∈ [T ] and any e ∈ ω such that Ψe is total, it is easy to see

that B 6= Ψe. �

2.4 PA Degrees and Π0
1 Classes

Peano arithmetic (PA), established by Giuseppe Peano [36], is a formal ax-

iomatic system containing a set of axioms for natural number arithmetic. The
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theory of Peano arithmetic is of course known to be undecidable by the incom-

pleteness theorem.

Definition 45. A degree is called PA if it contains a set which (computably)

codes a complete and consistent extension of Peano arithmetic.

First observation is that PA degrees cannot be recursive since the theory is

undecidable. We cover the properties of PA degrees in the next few chapters

but now we shall give the relationship between Π0
1 classes and PA degrees. We

start with Scott Basis Theorem [37].

Theorem 34. If a is a PA degree then D(≤ a) forms a basis for Π0
1 classes.

Proof. Let P be a Π0
1 class such that P = [T ] for some recursive tree T and

let A codes a complete and consistent extension of PA. We compute a path

B =
⋃

s∈ω σs on T recursively in A. Let σ0 = ∅. Given σs of length s, we

consider all such τ ⊃ σs in T of length s+ 1, say τ0 and τ1. We then let σs+1

be τ0 if

(*) there exists some m such that τ0 has an extension in T of length m but τ1

does not.

Otherwise we let σs+1 be τ1.

Note that (*) is expressible in PA since the statement is Σ0
1 and since that

Peano arithmetic is Σ0
1-complete. Now if (*) is true then is it provable in A.

Let us call this true statement ψ0. Similarly if we exchange τ0 and τ1 in (*),

and let us call it ψ1, assuming that ψ1 is true, it is also provable. But since

A is consistent, ψ0 ∧ ψ1 cannot be provable. So we simply choose τi if ψi is

provable in A, for i = {0, 1}. Note that any string which does not infinitely

extend σs will be eliminated and the remaining path which we choose will be

the one which infinitely extends σs. �

The converse of the previous theorem is provided by Solovay (unpublished).

Theorem 35 (Solovay, unpublished). If D(≤ a) is a basis for Π0
1 classes then

a is a PA degree.



42 Chapter 2. Degrees of Peano Arithmetic and Π0
1 Classes

Proof. We give the proof due to [7] and [27]. The claim follows from the

upward closure of PA degrees which we now show here. We let A be a complete

and consistent extension of PA recursive in a set C. It suffices to build a tree

recursively in A containing sets which code complete and consistent extensions

of PA. Then the path which is determined by C has the same Turing degree

of C. Let {φn}n∈ω be an effective enumeration of sentences in the language of

PA. We let A∅ be the theory of PA. Given Aσ, we shall follow two steps.

For completeness, suppose that we are given φn such that n = |σ|. Our

aim is to add either φn or its negation to Aσ preserving consistency. As in

the previous proof we let ψ0 be true if and only if there is some m ∈ ω which

codes a proof of φn in Aσ but ¬φn cannot be proved by the proof coded by any

n < m. Similarly we let ψ1 be true if and only if there is some m ∈ ω which

codes a proof of ¬φn in Aσ but φn cannot be proved by the proof coded by any

n < m. Now since ψ0 and ψ1 are Σ0
1 statements and since A is Σ0

1-complete, ψi

is provable in A iff ψi is true, for i = {0, 1}. By the consistency of A, ψ0 ∧ ψ1

cannot be provable at the same time. We recursively decide in A which one of

them is suitable to be provable.

If ψ1 is provable in A then it must be the case that ψ0 is not provable in

Aσ. Therefore ¬φn is consistent with it. Then we can let A′
σ = Aσ ∪ {¬φn}.

Otherwise we let A′
σ = Aσ ∪ {φn}.

Now it is a known fact by [38] and [39] that the sets of provable and refutable

sentences of PA are a recursively inseparable pair of r.e. sets.5 This also

applies to A′
σ since it extends PA. So we can recursively find a sentence ψ

which is neither provable nor refutable in A′
σ. Let Aσ∗0 = A′

σ ∪ {ψ} and let

Aσ∗1 = A′
σ ∪ {¬ψ}. Now let S =

⋃

σ⊂C Aσ. If A ≤T C then S is a complete

extension of PA. Given S we can compute C as follows. Suppose that we have

computed C ↾ n and AC↾n. We know whether φn or ¬φn is in S. Since we can

know A′
C↾n we can find a sentence ψ and decide which of ψ or ¬ψ is in S. Then

we can know C ↾ n+1 and A′
C↾n+1. Hence S and C are Turing equivalent. �

Corollary 8. PA degrees are upward closed, i.e. if a is a PA degree and b ≥ a

5In fact they are effectively inseparable pair of r.e. sets. That is, there is an effective
method which, given a potential index for a recursive separator S, finds a counter example
to that S is a separating set, i.e. a number which demonstrates that S does not separate the
two r.e. sets.
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then b is a PA degree as well.

Proof. Follows immediately from the theorem. �

Corollary 9. Every PA degree computes a member in every Π0
1 class.

The following result, given in [3], is sufficient to show that PA degrees

cannot be minimal.

Theorem 36. If a is a PA degree then any countable poset is embeddable in

the ordering of degrees ≤ a.

Then, so far we can say that PA degrees cannot be minimal, recursive, or

incomplete r.e. We will give more about PA degrees in the following chapters.

2.5 Variants of Π0
1 classes

Since the fifth chapter of this thesis concerns a variant of Π0
1 classes, it it useful

to give other variants of Π0
1 classes considered so far by some researchers. Some

variants include countable Π0
1 classes, minimal and thin Π0

1 classes.

Countable Π0
1 classes

Countable Π0
1 class is a Π0

1 class whose cardinality is countable. Perhaps the

most well known papers in this area are [40], [41], [42]. We showed earlier that

any countable Π0
1 class contains an isolated member and any isolated member

is recursive. So every countable Π0
1 class contains a recursive member. We also

showed earlier that if P is a finite Π0
1 class then every member of P is recursive.

The study of countable Π0
1 classes are investigated through the generalization

of the notion of isolated points.

Definition 46. A set A ⊂ 2ω is called perfect if there is no f ∈ A and an open

set O such that O ∩A = {f}, i.e. it has no isolated points.

The well known Cantor-Bendixson Theorem states the following.

Theorem 37. Any closed set P ⊂ 2ω is the union of a perfect set K and a

countable set S.



44 Chapter 2. Degrees of Peano Arithmetic and Π0
1 Classes

The following definition is not the original version but it is provably equiv-

alent.

Definition 47. A set is called ranked if it is a member of a countable Π0
1 class.

For example, it was shown in [40] that for any computable ordinal α, each

∅(α) is Turing equivalent to a ranked set. Cenzer and Smith [41] showed that

∅′ is not a ranked set. In the same paper it was shown that every r.e. set is

Turing equivalent to an r.e. ranked set. Some negative results by the same

authors were shown including that there is an r.e. set which is not ranked.

Jockusch and Shore [43] showed that there exists a Σ0
2 set which is not Turing

equivalent to any ranked set. In an unpublished work of Soare, mentioned in

[40], it was shown that any ∆0
2 set is Turing equivalent to a ranked set. These

results are interesting in their own right and are related to our study.

Minimal and Thin Π0
1 classes

Another variant is minimal and thin Π0
1 classes which were introduced in

[42].

Definition 48. A Π0
1 class P ⊂ {0, 1}ω is thin if every Π0

1 subclass Q of P is

the intersection of P with some clopen set, i.e. a set which is both open and

closed.

Definition 49. An infinite Π0
1 class P is calledminimal if every Π0

1 classQ ⊂ P

is either finite or cofinite in P.

A thin Π0
1 class can be thought of as the analogue of maximality in a lattice

of r.e. sets under inclusion. So thin Π0
1 classes are strongly connected with the

lattice of r.e. sets and also with recursive combinatorics. This type of classes

are useful for such analysis. We shall mention some of the degree theoretic

properties of members of such classes rather than their relationship with the

lattice of r.e. sets. For a more lattice theoretic treatment, we refer the reader

to [44]. Now any isolated member of a Π0
1 class is recursive. A result in [42]

says that any recursive member in a thin Π0
1 class is isolated. The same authors

also showed that for any ordinal α > 1 no set of degree 0(α) can be a member



2.5. Variants of Π0
1 classes 45

of a thin Π0
1 class. Moreover, there exists an r.e. degree a such that no set of

degree a is a member of a thin Π0
1 class. The connection between minimal and

thin Π0
1 classes is also given in the same work. In [42], the authors show that

if P is a thin Π0
1 class and the set of isolated points is a singleton then P is

minimal. Another result, provided in the same work, is that if P is minimal

and contains a non-recursive member then P is thin.

Another variant of Π0
1 classes, introduced by Binns [45], is small Π0

1 classes.

These classes have been investigated with respect to Medvedev and Muchnik

degrees.
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Chapter 3

Antibasis theorems and

jump inversion

3.1 Introduction

This chapter establishes a connection between degrees of members of Π0
1 classes

and the Turing jump. The chapter contains so called antibasis theorems for

Π0
1 classes. We prove two antibasis theorems concerning Π0

1 classes. The first

theorem concerns the global structure of the Turing degrees, and the second

concerns the degrees below 0′. We show that for any degree a ≥ 0′, if a Π0
1

class P contains members of every degree b such that b′ = a, then P contains

members of every degree. A local version of this result is also given. Namely

that when a is Σ0
2 and a ≥ 0′, it suffices in the hypothesis to have a member of

every ∆0
2 degree b such that b′ = a. These theorems extend the low antibasis

theorem given in [2] which is the main motivation of this chapter.

In the previous chapter we gave some basis theorems including the low basis

theorem and the hyperimmune-free basis theorem. A basis theorem tells us that

every non-empty Π0
1 class contains a member of a particular kind. For example,

the low basis theorem says that every non-empty Π0
1 class contains a member

of low degree a, i.e. a′ = 0′. Similarly, the hyperimmune-free basis theorem

This chapter is based on my published work [1].

47
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says that every non-empty Π0
1 class contains a member of hyperimmune-free

degree. This type of theorem is often proved by the method of forcing with Π0
1

classes (also known as Jockusch-Soare forcing). The idea behind forcing with

Π0
1 classes is similar to forcing in set theory [46] but it is in fact simpler. In

forcing with Π0
1 classes, we successively move from a set to one of its subsets

in order to force satisfaction of a given requirement. This is a very general

technique and can be used to obtain many useful results about the members of

Π0
1 classes. A non-basis theorem gives a set of degrees which does not constitute

a basis for Π0
1 classes. For example, not every Π0

1 class contains a recursive set,

i.e. there exists a Π0
1 class such that all members are non-recursive.

An antibasis theorem, on the other hand, tells us that a Π0
1 class cannot

have all/any members of a particular kind without having a member of every

degree. Kent and Lewis [2] proved the low antibasis theorem which says that

if a Π0
1 class contains a member of every low degree then it contains a member

of every degree. Recall that a set A ⊂ 2ω is perfect if there is no f ∈ A and an

open set O such that O ∩A = {f}, or basically if A has no isolated points.

Definition 50. A tree is perfect if every infinitely extendible string in the tree

has at least two incompatible extensions.

So if a tree T is perfect then [T ] must be uncountable and it has no isolated

points. But this does not mean that it does not contain a computable member.

It is worth noting here that if a Π0
1 class P contains all paths through a perfect

computable tree T , then it has a member of every degree. To see this, suppose

that P contains all paths through T of this kind. Given any set B, we can then

define a set C ∈ [T ] such that C =
⋃

s∈ω σs which is of the same degree as of

B. We define σ0 to be the string at level 0 in T . Given σs, we let σs+1 to be

the leftmost successor of σs in T if B(s) = 0. Otherwise, define σs+1 to be the

rightmost successor of σs in T . Since there exists a Π0
1 class which contains a

member of every degree, any antibasis theorem for such classes is not expected

to be “proper” in a sense that there will always be a Π0
1 class which actually

contains a member belonging to the relevant set. This is same as the problem

that basis results are not proper too since a Π0
1 class can be taken to be the

empty set. However, antibasis results will get more concrete in Chapter 5 when

we introduce Π0
1 choice classes.
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We begin with some definitions. The motivation comes from the notion of

invisible degrees.

Definition 51. A degree a is called invisible if any Π0
1 class which contains a

member of degree a contains a member of every degree.

Definition 52. A set T ⊂ 2<ω is said to be dense if for every τ there is some

σ ⊃ τ in T .

Definition 53. A set A is weakly 2-generic if for every dense set of strings T

such that T is Σ0
2, there exists σ ⊂ A such that σ ∈ T . A degree is weakly

2-generic if it contains a weakly 2-generic set.

Definition 54. For any P ⊂ 2ω, define S(P), the degree spectrum of P, to be

the set of all Turing degrees a such that there exists A ∈ P of degree a.

Jockusch, Kent and Lewis [2] showed that if a is weakly 2-generic then it is

invisible. We give the proof in that paper.

Theorem 38 (Jockusch, Kent and Lewis, 2010). Every weakly 2-generic degree

is invisible.

Proof. We try to define a string σ(i, j, τ) for every i, j, τ such that Ψi(σ(i, j, τ))

is in Λj if and only if Λj contains a member of every degree, i.e. if S([Λj ]) = D.

We start by letting T be an i-splitting set of strings enumerated in a computable

fashion such that τ is the root of T , i.e. the only element of level 0, and that

whenever σ is not a leaf of T , σ has exactly two successors and for any leaf σ

of T there does not exist an i-splitting set of strings above σ. We suppose that

we enumerate strings in T which properly extend leaves of T that are already

enumerated into T . We also suppose that the strings in T are ordered first

according to their level and then from left to right.

Now if there is a least string σ ∈ T such that either σ is a leaf of T or else

Ψi(σ) 6∈ Λj then define σ(i, j, τ) to be that string. Otherwise, σ(i, j, τ) remains

undefined.

Suppose that [Λk] does not contain a member of every degree. Then for

every i ∈ ω, the set

Ti = {σ(i, j, τ) : τ ∈ 2<ω}
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is dense and Σ0
2. If A is weakly 2-generic then for every i ∈ ω there is

some σ ⊂ A such that σ ∈ Ti. So either Ψi(A) is partial or computable, or

Ψi(A) 6∈ [Λj ]. Since weakly 2-generic sets are not computable the result follows

immediately. �

Definition 55. Let E be a class of Turing degrees. We say that E is an

antibasis for Π0
1 classes if whenever a Π0

1 class contains a member of every

degree a ∈ E, it contains a member of every degree.

Note that every singleton containing an invisible degree is an antibasis for

Π0
1 classes. So since weakly 2-generic degrees are invisible, any singleton con-

taining a weakly 2-generic set is an antibasis. Kent and Lewis [2] gives the

following definition for the initial motivation to low antibasis theorem.

Definition 56. A set of degrees α is called a sufficiency set for a degree a

if every Π0
1 class that contains a member of every degree in α also contains a

member of degree a.

In [2], the authors argue that for every countably infinite sufficiency set α

for a there is a proper subset β of α such that β is a sufficiency set for a. The

following theorem, so called the low antibasis theorem, suffices to show that

there is some a and a countable set α which is a sufficiency set for a such that

no finite subset of α is a sufficiency set for a.

Theorem 39 (Low Antibasis Theorem). If a Π0
1 class contains a member of

every low degree, then it contains a member of every degree.

Another antibasis theorem given in the same paper considers generalized

low degrees. We shall give the definition for generalized low degrees first and

then state the theorem.

Definition 57. For n ≥ 1, a degree a is called generalized lown (GLn) if a
(n) =

(a∨0′)(n−1). A degree a is called generalized highn (GHn) if a
(n) = (a∨0′)(n).

Theorem 40 (Kent and Lewis, 2010). If b is non-GL2 and P is a Π0
1 class

which does not contain a member of every degree then there exists some nonzero

a ≤ b such that P does not contain any member of nonzero degree below a.
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We extend the low antibasis theorem to every jump level below 0′. This

gives us an idea about the relationship between the degrees of members of Π0
1

classes and the Turing jump. However, first we need to modify the definition

of σ(i, j, τ) that we gave earlier.

3.2 Modifying σ(i, j, τ)

The definition of σ(i, j, τ) given earlier was for finite strings. We need to modify

this definition in order to make it work for strings with infinite domain as well

since this is necessary for the second theorem. For τ which is partial computable

with computable domain and for every i, j, we define σ(i, j, τ) as follows: We

let T be an i-splitting set of strings, which is recursively enumerable (in some

generic fashion) such that:

(i) all strings in T are compatible with τ ;

(ii) each element which is not a leaf has precisely two immediate successors;

(iii) for any σ′ which is a leaf of T there does not exist an i-splitting set of

strings above σ′ compatible with τ ;

(iv) at each stage of the enumeration of T we only enumerate strings which

properly extend leaves of the set of strings previously enumerated into T .

So roughly speaking, when τ is a finite string, T is the recursively enumer-

able i-splitting tree above τ . When τ has infinite domain, T is a recursively

enumerable i-splitting tree in which all strings are compatible with τ .

Note. Of course the notion of string extension for infinite strings is different

than that for finite strings. If θ is an infinite string with partial domain then

θ′ extends θ when some of the undefined bits in θ get defined in θ′ and the

defined bits of θ are just kept compatible with θ′.

Let the strings in T be ordered first according to their level and then from

left to right. If there exists a string σ′ in T such that either σ′ is a leaf of T ,

or else Ψi(σ
′) 6∈ Λj then define σ(i, j, τ) to be the least such string, where Λj

is as defined earlier in the introduction part of the previous chapter. If there

exists no such string then σ(i, j, τ) is undefined.
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Definition 58. For any degree a ≥ 0′, let Jump−1(a) = {b : b′ = a}. Sim-

ilarly, for any degree a ≥ 0′ such that a is recursively enumerable in 0′, let

Jump−1
≤0′(a) = {b : b ≤ 0′ and b′ = a}.

So Jump−1(a) is basically the jump inversion set of a, i.e. the set of all

degrees whose jump is a. Similarly, Jump−1
≤0′(a) gives those of below 0′ when

a is recursively enumerable in and above 0′.

3.3 First theorem

The following theorem concerns the global structure of the Turing degrees.

Theorem 41. For any a ≥ 0′ and any Π0
1 class P, if Jump−1(a) ⊂ S(P) then

P contains a member of every degree.

Proof. Recall that, as shown earlier, if a Π0
1 class contains all paths through

a perfect computable tree, then it has a member of every degree. Given a set

A ≥T ∅′, let j be such that [Λj ] = P does not contain a member of every

degree. Let σ(i, j, τ) be defined as modified, for any given i, τ . Note that, since

P does not have a member of every degree, σ(i, j, τ) is defined for all i, τ , since

otherwise Λj is a superset of the perfect tree which is the set of all strings

Ψi(τ
′) for τ ′ ∈ T , with T as specified in the definition of σ(i, j, τ).

We will define B =
⋃

i∈ω σi such that each σi is finite, which is non-recursive

such that B′ ≡T A and such that if Ψi(B) is total and non-recursive then it is

not an element of [Λj ]. Now here we do not have to consider the case that τ

has infinite domain in the definition of σ(i, j, τ). The formal construction is as

follows.

At stage s = 0, define σ0 = ∅.

If s = 4i+ 1, define σ4i+1 = σ(i, j, σ4i).

If s = 4i+2, then we see if there exists some σ ⊃ σ4i+1 such that Ψi(σ; i) ↓.

If so, we let σ4i+2 = σ for smallest such σ. Otherwise we just let σ4i+2 be some

σ ⊃ σ4i+1.

If s = 4i + 3, find the smallest σ ⊃ σ4i+2 such that σ is not an initial

segment of Ψi(∅). Then we let σ4i+3 = σ.
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If s = 4i + 4, we code the i-th element of A into B simply by σ4i+4 =

σ4i+3 ∗ 〈A(i)〉.

3.3.1 Verification

Note that the first three steps are recursive in ∅′ which is recursive in A by

hypothesis. The fourth step is recursive in A since we use it directly. Hence

the construction is recursive in A. Since i ∈ B′ ⇐⇒ Ψi(σ4i+2; i) ↓ we have

B′ ≤T A. The construction is also recursive in ∅′ ⊕B since the action at stage

4i + 4 simply adds one bit which can be determined by B. Then i ∈ A if and

only if B(|σ4i+4|) = 1, so A ≤T ∅′ ⊕B. Since B ⊕ ∅′ ≤T B′ we have A ≤T B′.

Also note that if Ψe(B) is total and non-recursive then it is not an element of

[Λj ]. This is satisfied at stage 4i+ 1. �

So the first theorem basically says that for any degree a ≥ 0′, if a Π0
1 class

contains members of every degree whose jump is a then it contains members

of every degree. We now prove the next theorem which concerns the degrees

below 0′.

3.4 Second theorem

Now we know from the first theorem that if a ≥ 0′ is the jump of b and if a

Π0
1 class P contains a member of every such b, then P contains a member of

every degree. But the theorem does not quite say where b can be placed in

the jump hierarchy. The next theorem considers degrees below 0′. Hence, it

gives us more precisely what is sufficient for a Π0
1 class to contain a member

of every degree. We cannot however use strings with finite extensions in the

second theorem since we need to work with strings having infinite domain.

Definition 59. A coinfinite condition is a partial function θ : ω → ω with

coinfinite recursive domain. A coinfinite condition is recursive if it is recursive

as a partial function.

The proof of the following theorem uses coinfinite conditions and jump

inversion theorem for r.e. degrees.
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Theorem 42. For any c ≥ 0′ which is recursively enumerable in 0′ and any

Π0
1 class P, if Jump−1

≤0′(c) ⊂ S(P) then P contains a member of every degree.

Proof. Given a degree c ≥ 0′ which is r.e. in 0′, let j be such that [Λj ] = P

does not contain a member of every degree. We aim to construct a set A =
⋃

s∈ω σs by coinfinite extension such that A ≤T ∅′ and A′ ≡T C for C ∈ c and

such that Ψi(A) 6∈ [Λj ] for any i, if Ψi(A) is total and non-recursive.

Let C ∈ c be r.e. in ∅′ such that ∅′ ≤T C. To satisfy C ≤T A′ we want

to make sure that x ∈ C ⇐⇒ lims→∞A(〈x, s〉) = 1, so that C ≤T A′ by the

relativized limit lemma (see Theorem 10). Choose a one-one enumeration f

of C recursive in ∅′. When a new element x appears in f , we put the x-th

column of C in A with finitely many exceptions. To make sure that A′ ≤T C

we will prove the existence of some function g which is recursive in C such

that Ψe(A; e) ↓ if and only if Ψe(σg(e); e) ↓. Now we begin with the formal

construction.

At stage s = 0 we let σ0 = ∅. At each next stage,

If s = 3i+ 1 then σ3i+1 = σ(i, j, σ3i). Note that we can compute this value

using an oracle for ∅′ since σ3i is partial computable with computable domain.

If s = 3i + 2 then, given σ3i+1, choose some n ∈ ω such that σ3i+1(n) ↑.

Then define

σ3i+2(n) =

{

1−Ψi(∅;n) if Ψi(∅;n) ↓

0 otherwise.

If s = 3i + 3, given σ3i+2, we look for the least e ≤ 3i + 2 such that

Ψe(σ3i+2; e) ↑ and such that there exists a string σ compatible with σ3i+2 such

that Ψe(σ; e) ↓ and giving only value 0 to elements of the columns with index

smaller than e, when σ3i+2 is not already defined on them. If e exists, then let

σ be the smallest string compatible with σ3i+2 and then define σ3i+3 as follows.

σ3i+3(x) =























σ3i+2(x) if σ3i+2(x) ↓

σ(x) if σ(x) ↓

1 if x = 〈f(i), z〉, otherwise

0 if x = 〈n, z〉 ∧ n 6= f(i) ∧ n, z ≤ 3i+ 2
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In this case we also say that g receives attention with respect to argument

e at stage s.

If e does not exist we define σ3i+3 as above but we take σ = ∅. That is we

define σ3i+3 in this case as

σ3i+3(x) =















σ3i+2(x) if σ3i+2(x) ↓

1 if x = 〈f(i), z〉, otherwise

0 if x = 〈n, z〉 ∧ n 6= f(i) ∧ n, z ≤ 3i+ 2

We then let A =
⋃

s∈ω σs. Since the construction of A is recursive in ∅′,

A ≤T ∅′ is satisfied.

3.4.1 Verification

Lemma 5. C ≤T A′.

Proof. Since the columns that correspond to the elements of C are only finitely

affected by the construction, the last clause in the definition of σ3i+3 ensures

that A is total. We have that A ≤T ∅′ by construction and x ∈ C ⇐⇒

lims→∞A(〈x, s〉) = 1. So C ≤T A′ is satisfied by the relativized limit lemma.

Lemma 6. A′ ≤T C.

Proof. We show how to construct the function g such that Ψe(A; e) ↓ if and

only if Ψe(σg(e); e) ↓. Choose s
′ large enough so that the elements smaller than

e which are in C have been generated before stage s′. We can find such s′

recursively in C. Then let s′′ ≥ s′ + 4e be congruent to 3 mod 4, and define

g(e) = s′′. Now we have Ψe(A; e) ↓⇐⇒ Ψe(σs′′ ; e) ↓ since if Ψe(σs′′ ; e) ↑ and

Ψe(σ; e) ↓ for some extension σ of σs′′ which is correctly defined on higher

priority columns, then g would receive attention with respect to argument e at

stage s′′. �

A natural consequence of the theorem is the high antibasis theorem of course.

Corollary 10 (High Antibasis Theorem). The class of high degrees is an an-

tibasis for Π0
1 classes.
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A more general corollary can be given as follows.

Corollary 11. If a Π0
1 class contains members of every degree of any non-

recursive jump level below 0′, then it contains members of every degree.



Chapter 4

Join Property and

effectively closed sets

In this chapter we give two new results for Π0
1 classes. Recall that a Π0

1 class

is called special if it does not contain a recursive member. We first give the

cupping non-basis theorem which says that there exists a special Π0
1 class such

that no join of two members computes ∅′. This gives the non-basis cupping

analogue of Jockusch and Soare’s capping basis theorem for Π0
1 classes which

says that every non-empty Π0
1 class has members whose degrees form a minimal

pair. The second, and the primary result for this chapter, is about the relation

between the join property and members of Π0
1 classes. We show that there

exists a non-empty special Π0
1 class such that no member satisfies the join

property. As a future work, we end the chapter by giving some open questions,

one on the relation between minimal covers and PA degrees, and the other on

the relation between minimal covers and degrees of members of Π0
1 classes, at

the end of the chapter.

4.1 Related work

We start by giving a couple of results which can be found in [35]. First we shall

give a useful module for upper cone avoidance.

57
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Lemma 7 (Upper cone avoidance). If C is a non-recursive set and T is an

infinite recursive tree and i ∈ ω, then there exists an infinite recursive subtree

T0 ⊂ T such that C 6= Ψi(A) for any A ∈ [T0]. Index for T0 can be found

recursively in ∅′ ⊕ C from i and an index for T .

Proof. For every e ∈ ω, define the following set.

Ue = {σ ∈ T : Ψi(σ; e) ↑ or Ψi(σ; e) ↓6= C(e)},

where the computation is bounded by the length of σ here. Now for every

e ∈ ω, Ue is a recursive tree and its index can be found recursively in C from

i and from an index for T . We shall show that there exists some e such that

Ue is infinite. If not, then for any e ∈ ω it could be possible to find a level

m ∈ ω and some k ∈ ω such that Ψi(σ; e) ↓= k for all σ of length m. But then

we would have that C(e) = k, and C would be recursive which contradicts the

hypothesis that C is non-recursive. We then find the least e such that Ue is

infinite and we let T0 be that Ue. So we have that Ψi(A) 6= C as required for

all A ∈ [T0]. �

Corollary 12. If C is a non-recursive set, then every non-empty Π0
1 class has

a member which does not compute C.

Lemma 8 (Lower cone avoidance). If C is a non-recursive set and T is an

infinite recursive tree with no recursive paths and i ∈ ω, then there exists an

infinite recursive subtree T0 ⊂ T such that A 6= Ψi(C) for any A ∈ [T0]. Index

for T0 can be found recursively in C ′ from i and an index for T .

Proof. Now since T has no recursive paths, T must be perfect. That is every

infinitely extendible string in T must have two incompatible extensions, say σ

and τ in T . Let n be the smallest value smaller than the length of σ and τ such

that σ(n) 6= τ(n). We ask recursively in C ′ if Ψi(C;n) is defined. If so, then at

least one of the strings, say σ, must disagree with Ψi(C;n). We then let T0 be

all strings in T which are compatible with σ. Then we have that A(n) = σ(n)

for all A ∈ [T0]. Hence, Ψi(C) 6= A for all A ∈ [T0]. Otherwise, we let T0 = T

and the result follows automatically in this case. �

Corollary 13. If C is a non-recursive set, then every special non-empty Π0
1

class has a member which is not recursive in C.
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It is possible to combine upper and lower cone avoidance modules and as

well as the low basis theorem to get a single basis result. The following was

originally proved in [3]. We give the proof due to [35].

Theorem 43. Let C0, C1, . . . be a sequence of non-recursive sets, and let D =

⊕j∈ωC
′
j . Then every special non-empty Π0

1 class contains a member A which

is Turing incomparable with each Ci and satisfies A′ ≤T D.

Proof. Let P be a non-empty special Π0
1 class and let T be a recursive tree such

that P = [T ]. We construct a sequence of recursive trees T = T0 ⊃ T1 ⊃ · · · .

We let T = T0. Given Ts,

If s = 3e for some e ∈ ω, we apply the low basis theorem on Ts and let Ts+1

be the resulting tree from there.

If s = 3 〈i, j〉 + 1 for some i, j ∈ ω, we apply Lemma 7 on Ts and on Cj .

Then we let Ts+1 be the resulting tree T0 from the lemma.

If s = 3 〈i, j〉+ 2, then we similarly apply Lemma 8.

Now since ∅′ ≤T D and C ′
j ≤T D for all j, in either case D is sufficient

to find an index for Ts+1 from an index for Ts. We finally let A ∈
⋂

s∈ω [Ts].

Note that the first modulo stage ensures the lowness. The second modulo stage

ensures that C 6≤T A, and the third one ensures that A 6≤T C. �

Corollary 14. Let C0, C1, . . . be a sequence of non-recursive low sets. Then

every non-empty special Π0
1 class contains a member that is low and Turing

incomparable with each Ci.

Definition 60. Let a and b be two Turing degrees. Then we say that a and

b form a minimal pair if they are non-recursive and their greatest lower bound

is 0, i.e. ∀c(c ≤ a ∧ c ≤ b ⇒ c = 0).

Lemma 9 (Minimal pair basis). If C is a set and T is an infinite recursive tree,

and i, j ∈ ω, then there exists an infinite recursive subtree T0 ⊂ T such that if

Ψi(A) = Ψj(C) = B for some A ∈ [T0] and some set B then B is recursive.

Proof. Given T , we ask if there exist strings σ, τ ∈ T which are infinitely

extendible and an x ∈ ω such that Ψi(σ;x) ↓6= Ψi(τ ;x) ↓. We can do this

using an oracle for ∅′′ because it is easy to see the question that if a given string

in a recursive tree is infinitely extendible can be expressed by a Π0
1 statement.
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If there are no such strings, then whenever Ψi(A) is total for some A ∈ [T ] it

must be recursive. To compute the value of Ψi(A;x) we proceed as follows. We

first see if Ψi(A) is partial on a non-empty subclass of [T ]. Note that this is

a ∅′′-question. If there is such subclass then the theorem automatically holds.

Otherwise, Ψi(A) is total on [T ] and there are two subcases:

i) There is an i-splitting on [T ].

ii) There is no such splitting.

In case (i), we choose the string σ such that Ψi(σ;x) is defined and agrees

with Ψi(A;x). In case (ii), we find a level on T such that all strings σ ∈ T at

this level yield the same output value, on argument x, which gives the value of

Ψi(A;x). We then we let T0 be the full subtree above σ.

Now suppose that such σ and τ do exist. We fix the least such and we use

an oracle for C ′ to see whether or not Ψj(C;x) converges. If not, the lemma

holds automatically and we can let T0 = T . If it converges, then one of the

output of two computations, i.e. Ψi(σ;x) and Ψi(τ ;x), must be different from

that of Ψj(C;x). If Ψi(σ;x) is the different one, we let T0 be the set of all

strings in T compatible with σ. Otherwise we let T0 be the set of all strings in

T compatible with τ . Hence, we have Ψi(A) 6= Ψj(C) for any A ∈ [T0]. �

Theorem 44. For any non-recursive set C of degree c, any non-empty special

Π0
1 class contains a member B of degree b such that b and c form a minimal

pair, i.e. b ∧ c = 0.

Proof. Let P be a non-empty special Π0
1 class such that P = [T ] for some

recursive tree T . We construct a sequence of recursive trees T = T0 ⊃ T1 ⊃

· · · . We first let T = T0. Suppose that we are given Ts, and let s = 〈i, j〉

for some i, j ∈ ω. We apply the previous lemma on Ts and we let Ts+1 be

the resulting tree obtained from there. Then we let B ∈
⋂

s∈ω [Ts]. Clearly,

A = Ψi(B) = Ψj(C) for some A if A is recursive. Hence, b and c form a

minimal pair. �

An interesting result given in [47] which we omit the proof is the following.

Theorem 45 (Jockusch and Soare, 1971). There exist special Π0
1 classes P

and Q such that for any A ∈ P of degree a and B ∈ Q of degree b, a ∧ b = 0.
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Another result related with the connection between minimal degrees and

Π0
1 classes is given by Groszek and Slaman [48].

Theorem 46 (Groszek and Slaman, 1997). There exists a non-empty Π0
1 class

such that every member computes a minimal degree.

4.2 Cupping Non-basis theorem

Jockusch and Soare’s capping basis theorem [3] which we gave earlier says that

any non-empty special Π0
1 class contains members of degrees a,b such that

a ∧ b = 0. We now give the proof of the cupping non-basis analogue of this

theorem. In fact, we show something more stronger.

Theorem 47. There exists a non-empty special Π0
1 class P such that ∅′ 6≤T

A⊕B for any A ∈ P, B ∈ P.

Proof. We aim to satisfy ∅′ 6≤T A ⊕ B by constructing a set T such that

P = [T ] and an r.e. set D such that D 6≤T A⊕B.

The requirements are:

R2e+1 : If S ∈ P then S 6= Ψe(∅)

R2e+2 : If A ∈ P and B ∈ P then Ψe(A⊕B) 6= D.

At stage s = 0, enumerate ∅ into T .

At stage s > 0,

(i) Find the least string τ ∈ T such that τ is of level 2e+1 and τ ⊂ Ψe(∅) [s].

Let τ0 ∈ T be the immediate predecessor of τ and let τ1 be a leaf of T

extending τ0 and incompatible with τ . Stop enumerating any strings

extending τ0 in T , then enumerate two incompatible extensions of τ1 into

T .

(ii) If the enumerated strings are at even level, we consider all pairs {σ0, τ1}

of strings of that level in T such that one of σ0 or τ1 is in {σ0, τ1}. For

each such pair fix some value n ∈ ω not yet enumerated in D. Find the
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least τ ∈ T , σ ∈ T of level 2e+2 such that there exists σ′ ⊃ σ and τ ′ ⊃ τ

such that Ψe(σ
′ ⊕ τ ′;n) ↓= 0 and D(n) = 0, for that fixed n. If they

exist, enumerate n into D. Then stop enumerating any extensions of σ

and τ in T , and then enumerate σ′ and τ ′, or some extensions of them,

into T .

After these instructions, choose two incompatible strings σ, τ extending each

leaf of T , and enumerate these strings into T . This ends the construction.

4.2.1 Verification

We shall first show that [T ] is a Π0
1 class. For this we need to show explicitly

that there exists a downward closed computable set of strings Λ such that

[T ] = [Λ]. We let Λ be the set of all strings which are initial segments of strings

in T at any stage. We next show that Λ is downward closed, computable and

[Λ] = [T ]. Now Λ is computable since we enumerate in strings that only extend

strings in Λ of the previous stage. Clearly, every infinitely extendible string in

T is also in Λ by the defintion of Λ. The opposite direction is also true. By

contrapositive, suppose that σ is not infinitely extendible in Λ. Then σ must

be a leaf of T in which case σ is not infinitely extendible in T since otherwise

σ would be infinitely extendible in Λ.

Lemma 10. R2e+1 is satisfied.

Proof. Suppose that S ∈ [T ] and S = Ψe(∅) for some e. Then for all σ ⊂ S,

where σ ⊂ Ψe(∅), we have σ ∈ T . Let σ0 be the immediate predecessor of σ.

Then any extensions of σ0, compatible with σ, are not enumerated into T . But

then, σ ⊂ Ψe(∅) is in T for finitely many σ’s. A contradiction.

Lemma 11. R2e+2 is satisfied.

Proof. Suppose the contrary that there exist A ∈ [T ] and B ∈ [T ] such that

Ψe(A⊕B) = D for some e. Then there are σ ⊂ A and τ ⊂ B in T , and there

exist σ′ ⊃ σ, τ ′ ⊃ τ such that Ψe(σ
′ ⊕ τ ′;n) = D(n) which, according to our

construction, is a contradiction. This proves the theorem.

�
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Corollary 15. There exists a special non-empty Π0
1 class P such that a∨b 6= 0′

for any two members of P of degrees a and b.

Corollary 16. There exists a special non-empty Π0
1 class P in which there

exist members of degrees a and b such that (a,b) forms a minimal pair and

that a ∨ b 6= 0′.

Proof. Follows from the cupping non-basis theorem and Theorem 44. �

4.3 Join property and Π0
1 classes

In this section we establish a connection between the join property and members

of Π0
1 classes. This will be the primary result for this chapter.

Definition 61. A degree a satisfies the join property if for all non-zero b < a

there exists c < a such that b ∨ c = a.

Theorem 48. There exists a non-empty special Π0
1 class such that no member

satisfies the join property.

Proof. We construct a non-empty special Π0
1 class P and we define a functional

ϕ such that for any A ∈ P we satisfy the following requirements.

Pi : ϕ(A) 6= Ψi(∅)

R〈i,j〉 : Ψj(Ψi(A)⊕ ϕ(A)) = A =⇒ Θi,j(Ψi(A)) = A

for some functional Θi,j we aim to construct for each given i, j ∈ ω.

Before writing the construction let us give the idea of the proof. The con-

struction has stages at which we act to satisfy a requirement and each stage

is aimed to satisfy one or more desired properties. We will place modules on

strings. At any stage of the construction, we refer to σ as a leaf if σ has a

module placed on it, and no proper extension of σ has modules placed on it.

The Π0
1 class P is defined via its complement, i.e. A 6∈ P iff there exists

some stage at which A does not extend a leaf. So we shall start with a single

module placed on ∅. During the construction, modules placed on leaves will

place further modules.

Now consider the module α placed on σ. We have to decide which require-

ments are active at α at any given point of the construction.
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For the Pi requirements this is easy. The level of α is the number of proper

initial segments of σ on which modules are placed. At any given point, the Pi

requirement active at α is Pn, where n is the level of σ.

For the R〈i,j〉 requirements a little more work is needed. Consider the

module α placed on σ, and let σ0, σ1 be the ‘successors’ of σ on which modules

are placed such that σ0 and σ1 are incompatible. Roughly speaking if R〈i,j〉 is

active at α then the module α will search for both

(i) an extension σ∗
1 ⊃ σ1 on which a module is placed such that

σ1 ⊂ Ψj(Ψi(σ
∗
1)⊕ ϕ(σ∗

1))

(ii) an extension σ∗
0 ⊃ σ0 on which a module is placed such that

σ0 ⊂ Ψj(Ψi(σ
∗
0)⊕ ϕ(σ∗

0)).

When (i) occurs we shall say that α is complete for all triples (i, j, σ′) such

that σ′ ⊃ σ1. Similarly, when (ii) occurs we shall say that α is complete for

all triples (i, j, σ′) such that σ′ ⊃ σ0. If a module is complete then we will be

putting a ϕ splitting there which is what the Pi requirements are looking for.

Until then R〈i,j〉 requirements will be active. This pattern will continue in the

general picture.

We decide whether or not the pair (i, j) requires attention at α, placed on

σ, as follows. The pair (i, j) requires attention at α unless there exists β placed

on a proper initial segment σ′ of σ such that R〈i,j〉 is active at β but β is not

complete for (i, j, σ).

Now we can specify which R〈i,j〉 requirements are active at α. We will

denote the set of R〈i,j〉 requirements active at α placed on a string σ by Πα.

It will be determined with their indices. For example, if Πα = {(m,n)} then

only R〈m,n〉 active at α.

If σ = ∅ then Πα = {R〈0,0〉}.

Suppose that σ 6= ∅ and is of level n > 0. Let σ′ be the initial segment of

σ on which a module β is placed of level n− 1. If β is complete for all (i, j, σ)

such that (i, j) ∈ Πβ , then

Πα = Πβ ∪ {(i, j)}
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where (i, j) is the least pair not in Πβ which requires attention at α. Oth-

erwise Πα is the set of all (i, j) ∈ Πβ which require attention at α.

For a given module, there will be a finite set of requirements which are

active at any given point. At each stage, the module performs the instructions

for all of these (in order of priority).

We have to be careful about one case. Suppose that for some distinct

A,B ∈ P, we have Ψj(Ψi(A) ⊕ ϕ(A)) = A and Ψj(Ψi(B) ⊕ ϕ(B)) = B.

Then, if Ψi(A) = Ψi(B) we have a problem since Θi,j cannot be asked to map

compatible strings to incompatible values. In order to avoid this problematic

situation, we shall proceed roughly as follows. Suppose the R〈i,j〉 requirement

is working above σ, i.e. a module is placed on σ at which R〈i,j〉 is active. Let

σ0 and σ1 be two incompatible successors of σ on which modules are placed.

We shall ensure at all later stages, that for each σ∗
1 ⊃ σ1 there exists σ∗

0 ⊃ σ0

such that ϕ(σ∗
0) and ϕ(σ

∗
1) are compatible. Similarly, for each σ∗

0 ⊃ σ0 we shall

ensure that there exists σ∗
1 ⊃ σ1 such that ϕ(σ∗

1) and ϕ(σ∗
0) are compatible.

Now, if we find σ∗
1 ⊃ σ1, for example, with Ψj(Ψi(σ

∗
1)⊕ϕ(σ

∗
1)) ⊃ σ1 we can take

σ∗
0 ⊃ σ0 such that ϕ(σ∗

0) and ϕ(σ∗
1) are compatible. We can then enumerate

axiom such that ϕ(σ∗
0) = ϕ(σ∗

1) and remove all extensions of σ0 and σ1 except

σ∗
0 and σ∗

1 . Now we can then enumerate the axiom Θi,j(Ψi(σ
∗
1)) ⊃ σ1. Since

ϕ(σ∗
0) = ϕ(σ∗

1) and since σ0 and σ1 are incompatible, if we subsequently find

some σ+
0 ⊃ σ∗

0 such that Ψj(Ψi(σ
+
0 ) ⊕ ϕ(σ+

0 )) ⊃ σ0 then Ψi(σ
+
0 ) and Ψi(σ

∗
1)

must be incompatible. So we can now enumerate the axiom Θi,j(Ψi(σ
+
0 )) ⊃ σ0.

We maintain a downward closed set of strings Φ which contains possible ϕ

values. We define the ϕ values of the form ϕ(σ) ⊃ τ . At any given stage, ϕ(σ)

is the longest τ for which we have enumerated some axiom ϕ(σ′) ⊃ τ with

σ′ ⊂ σ (or ϕ(σ) = ∅ if we have enumerated no such axioms). If want to satisfy

the R〈i,j〉 requirements, as long as Ψi(σ)⊕ ϕ(σ) seems to be computing σ, via

Ψj , we also have enumerate axioms for Θi,j . When we enumerate an axiom of

the form Θi,j(σ) = τ , we ensure the following:

(i) Ψj(Ψi(σ)⊕ ϕ(σ)) already maps to an initial segment of A ⊃ σ of length

longer than n, where n is the least value such that Θi,j(σ;n) ↑.

(ii) Internal consistency of the axioms. That is, we do not want to enumer-

ate an axiom where Θi,j(σ;n) = k holds when there is already some
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τ compatible with σ for which we have enumerated an axiom where

Θi,j(τ ;n) = 1− k holds.

Instructions for Pi requirements at α, placed on σ:

If Πα = ∅ and α does not have successor modules then we follow the in-

structions in (1). Otherwise we follow the instructions in (2). We initially let

Φ = ∅.

(1) We check to see whether there exist two incompatible strings τ0, τ1 ∈ Φ

extending ϕ(σ).

If so, choose such τ0, τ1 of shortest possible length, choose σ0, σ1 extending

σ such that σ0 and σ1 are incompatible, place modules on σ0 and σ1 and then

enumerate the axioms

ϕ(σ0) ⊃ τ0, ϕ(σ1) ⊃ τ1.

If not, let τ ′ ⊃ ϕ(σ) be the longest extension of ϕ(σ) in Φ. Choose two

incompatible strings σ0 and σ1 extending σ, place modules on σ0 and σ1, and

enumerate the axioms

ϕ(σ0) ⊃ τ ′ ∗ 0, ϕ(σ1) ⊃ τ ′ ∗ 1.

Also, enumerate τ ′ ∗ 0 and τ ′ ∗ 1 into Φ.

(2) Unless already declared successful at α, the strategy searches for strings

σ0, σ1 extending σ on which modules are placed such that ϕ(σ0) and ϕ(σ1) are

incompatible and either

(a) ϕ(σ0) ⊂ Ψi(∅) or

(b) ϕ(σ1) ⊂ Ψi(∅)

If the module, for instance, finds that (a) occurs (we follow similar instruc-

tions with roles exchanged when (b) occurs) then it

(i) declares itself successful at α,

(ii) chooses σ′
1 ⊃ σ1 which is a leaf,
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(iii) removes all strings from Φ which extend ϕ(σ) and are incompatible with

ϕ(σ′
1),

(iv) runs the ‘Φ-adjustment’ procedure with argument (σ, σ′
1).

Instructions for R〈i,j〉 requirements at α, placed on σ.

The module is initially in state 0.

If α does not have successors, then choose two incompatible strings σ0 and

σ1 extending σ, and place modules on σ0 and σ1.

Let the successors of σ be σ0, σ1 such that they are incompatible. While in

state 0 the strategy searches for either

(a) σ∗
0 ⊃ σ0 such that

Ψj(Ψi(σ
∗
0)⊕ ϕ(σ∗

0)) ⊃ σ0

or

(b) σ∗
1 ⊃ σ1 such that

Ψj(Ψi(σ
∗
1)⊕ ϕ(σ∗

1)) ⊃ σ1.

If it finds that (a) holds then we perform the following instructions (the

instructions for (b) are similar).

(i) Let σ+
1 ⊃ σ∗

1 and σ+
0 ⊃ σ∗

0 be leaves such that ϕ(σ+
1 ) is compatible with

ϕ(σ+
0 ). Note that we shall prove in the verification that the Φ-adjustment

procedure guarantees such strings indeed exist.

(ii) Enumerate axioms so that ϕ(σ+
1 ) = ϕ(σ+

0 ).

(iii) Remove all modules from proper extensions of σ.

(iv) Place modules on σ+
0 and σ+

1 .

(v) If α is complete for all (i, j) ∈ Πα then

(v-a) We check to see whether there exist incompatible extensions of

ϕ(σ+
0 ) in Φ. If so, let τ0 and τ1 be shortest such strings. Oth-

erwise let τ be the longest extension of ϕ(σ+
0 ) in Φ. Then define

τ0 := τ ∗ 0, τ1 := τ ∗ 1, and enumerate these strings into Φ.
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(v-b) Let τ0 and τ1 be as above. Enumerate axioms ϕ(σ+
1 ) ⊃ τ1, ϕ(σ

+
0 ) ⊃

τ0.

(vi) Enumerate the axiom Θi,j(Ψi(σ
+
0 )) ⊃ σ0.

(vii) Run the ‘Φ-adjustment’ procedure with argument (σ, σ+
0 ).

(viii) Declare the requirement complete with respect to (i, j) and complete with

respect to all triples (i, j, σ′) such that σ′ ⊃ σ0.

(ix) Declare the module to be in state 1.

While in state 1, let k ∈ {0, 1} be such that the requirement is not complete

with respect to (i, j, σk). We search for σ∗
k ⊃ σk such that Ψj(Ψi(σ

∗
k)⊕ϕ(σ

∗
k)) ⊃

σk.

If σ∗
k is found then choose σ+

k ⊃ σ∗
k which is a leaf, remove all modules from

extensions of σk, place a module on σ+
k . Enumerate the axiom Θi,j(Ψi(σ

+
k )) =

σk. Then we run the ‘Φ-adjustment’ procedure with argument (σ, σ+
k ). Declare

state 2.

In state 2, we do nothing.

Subroutine for Φ-adjustment procedure with argument (σ, σ′):

Remove all strings from Φ which are compatible with ϕ(σ) and incompatible

with ϕ(σ′). We also remove any module α placed on a string τ such that ϕ(τ)

has just been removed from Φ.

If α placed on σ′′ now has precisely one successor σ′′′ then let σ(iv) ⊃ σ′′′

be a leaf. Remove all modules from proper extensions of σ′′, place modules on

σ(iv) ∗ 0 and σ(iv) ∗ 1.

If Πα (α at σ) is empty or if α is complete for all (i, j) ∈ Πα then we check

to see if there exist incompatible extensions of ϕ(σ(iv)) in Φ. If so, let τ0 and τ1

be shortest such strings. Otherwise, let τ be the longest extension of ϕ(σ(iv))

in Φ, and define τ0 := τ ∗ 0, τ1 := τ ∗ 1, and then enumerate τ0 and τ1 into Φ.

Also enumerate axioms

ϕ(σ(iv) ∗ 0) = τ0,

ϕ(σ(iv) ∗ 1) = τ1.
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4.3.1 Verification

First we shall explain why Φ-adjustment procedure avoids us having Ψi(A) =

Ψi(B) when ϕ(A) = ϕ(B) for i ∈ ω, and A,B ∈ P such that A 6= B. Suppose

that a module is placed on some σ at which R〈i,j〉 is active. Let σ0 ⊂ A and

σ1 ⊂ B be two incompatible successors of σ on which modules are placed.

Suppose that the module for R〈i,j〉 requirements finds, say σ∗
0 ⊃ σ0. We choose

σ+
1 ⊃ σ∗

1 and σ+
0 ⊃ σ∗

0 so that ϕ(σ+
1 ) and ϕ(σ+

0 ) are the same. Suppose that

we later find, for example, τ ⊃ σ+
1 for which Ψj(Ψi(τ)⊕ ϕ(τ)) ⊃ σ1. Now the

reason Ψi(τ) must be incompatible with Ψi(σ
∗
0) is because σ0 is incompatible

with σ1, and since we have Ψj(Ψi(σ
∗
0)⊕ϕ(σ

∗
0)) ⊃ σ0 and that ϕ(τ) is compatible

with ϕ(σ∗
0) by the Φ-adjustment procedure, if the ϕ parts are compatible, then

the Ψi parts cannot be compatible since this would contradict the monotonicty

of Turing functionals that they cannot map compatible strings to incompatible

values. We shall argue more about why Φ-adjustment procedure ensures that

σ+
1 and σ+

0 do exist with compatible ϕ values. This is given by the following

lemma. We also argue that ϕ is total.

Lemma 12. The Φ-adjustment procedure ensures the existence of strings σ+
0

and σ+
1 with compatible ϕ values. Moreover, ϕ is a total functional.

Proof. For the totality of ϕ, note that if σ is a leaf, then the Φ-adjustment

procedure will always define the ϕ values of some two incompatible extensions of

σ. Then we are able to find incompatible strings extending each leaf where their

ϕ values are defined. This is ensured by the last paragraph of the subroutine.

Next we show the existence of σ+
0 and σ+

1 with compatible ϕ values. We

prove by induction. In the base case, we take the empty string and we define

the ϕ values of two incompatible extensions of the empty string to be equal to

each other. Now suppose that σ is a string on which a module is placed and

let σ0 and σ1 be two incompatible extensions of σ such that for any σ+
0 ⊃ σ0

there exists some σ+
1 ⊃ σ1, and vice versa, such that ϕ(σ+

0 ) and ϕ(σ+
1 ) are

compatible. It is ensured then by the first sentence of the subroutine followed

by the last part where we define the ϕ values that when Φ is non-empty and

whenever we leave a string, it will be an extension of σ+
1 for which there exists

some extension of σ+
0 , and vice versa, such that we define compatible ϕ values
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of these strings in Φ. We also want to make sure that every module has at least

two successors. This is guaranteed by the second paragraph of the subroutine

when we define σ(iv). �

Lemma 13. Axioms enumerated for Θi,j are consistent for any i, j ∈ ω.

Proof. Suppose that we enumerated an axiom Θi,j(Ψi(σ)) ⊃ τ such that

σ ⊃ τ . First note that, for monotonicity, if σ′ ⊃ σ then Θi,j(Ψi(σ
′)) will

extend Θi,j(Ψi(σ)) since Ψi(σ
′) ⊃ Ψi(σ). For consistency we first need to show

that Ψj(Ψi(σ) ⊕ ϕ(σ)) already maps to an initial segment of A ⊃ σ of length

longer than n, where n is the least value such that Θi,j(Ψi(σ);n) ↑. This is

satisfied by (a) and (b) in the instructions for the R〈i,j〉 requirement. Next we

need to ensure that if σ and σ′ are two incompatible strings and if Ψi(σ) is

compatible with Ψi(σ
′), then we make sure not to enumerate Θi,j(Ψi(σ)) = τ

and Θi,j(Ψi(σ
′)) = τ ′ such that τ and τ ′ are incompatible. This is guaranteed

by having ϕ(σ) = ϕ(σ′). Since we make sure that ϕ parts are compatible, the

same argument given in the beginning of verification suffices to show that we do

not map compatible strings to incompatible values. Hence, internal consistency

is preserved. �

Lemma 14. For every i, j ∈ ω, Pi and R〈i,j〉 requirements are satisfied.

Proof. For Pi requirements, this is ensured by steps (ii) and (iii) in the in-

structions for Pi. For R〈i,j〉 requirements, this follows from the lemmas. �

4.4 Future work

We finish this chapter by giving some open questions. We first consider the

connection between PA degrees and minimal covers. First we shall give some

important properties of PA degrees. The following theorem, for which we omit

the proof, gives us a nice relation between Π0
1 classes and PA degrees [35].

Theorem 49. There exists a Π0
1 class such that every member is of PA degree.

This theorem has some consequences. By the low basis theorem, we now can

say that there exists a PA degree which is low. Similarly, by the hyperimmune-

free basis theorem, there exists a PA degree which is hyperimmune-free. It is
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also known that each PA degree strictly bounds another PA degree and that

PA degrees are upward closed. So clearly every degree above 0′ is PA.

Definition 62. A degree a satisfies the cupping property if for any degree

b > a there exists some c < b such that a ∨ c = b.

The following theorem was proven in [50]

Theorem 50 (Kučera, 1985). Every PA degree satisfies the cupping property.

A different classification of PA degrees is provided by {0, 1}-valued diago-

nally non-recursive functions. We shall give the definition and some properties.

Definition 63. A function f : ω → ω is fixed point free (FPF) if Ψe 6= Ψf(e)

for all e ∈ ω. A degree is FPF if it contains an FPF function.

Definition 64. A function f : ω → ω is called diagonally non-recursive (DNR)

if f(e) 6= Ψe(e) ↓ for every e ∈ ω. A degree is DNR if it contains a DNR

function.

Definition 65. A function f is said to be n-valued if f(e) < n for all e ∈ ω.

It is known that a degree is DNR iff it is FPF [49]. We are mainly interested

in {0, 1}-valued DNR functions. The following result is a known fact and we

give the proof which appears in [51].

Theorem 51. A degree is PA if and only if it contains a {0, 1}-valued DNR

function.

Proof. The fact that PA degrees compute {0, 1}-valued DNR functions follows

from Solovay’s unpublished result (Theorem 35) and the fact that the set of all

{0, 1}-valued DNR functions is a Π0
1 class. It is also clear to see that the degrees

containing {0, 1}-valued DNR functions are upward closed. Now suppose that

a degree a contains a {0, 1}-valued DNR function f . Then f can compute a

path on any Π0
1 class as follows. We let P be the set of all infinite paths of

Λ for some downward closed computable set of strings Λ. We define σ0 = ∅.

Suppose that we are given σs which is infinitely extendible in [Λ]. We then

look for the least j ≤ 1 and l such that σs ∗ j has no extension in Λ of length l.

Let i be such that Ψi(i) is defined and j = Ψi(i) if such j exists. Then σs ∗f(i)

is infinitely extendible in [Λ], so we define σs+1 to be σs ∗ f(i). �
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Another classification of PA degrees was given by Lewis [52] as follows.

Definition 66. A tree T is a-incapable if no path on T is of degree ≥ a.

Theorem 52 (Lewis, 2007). If a is PA then it computes a perfect a-incapable

tree.

We know that {0, 1}-valued DNR degrees cannot be minimal. However, the

following was given in [53].

Theorem 53 (Kumabe and Lewis, 2009). There exists a minimal degree which

is FPF.

We want to know the relationship between minimal covers and PA degrees.

We therefore ask the following question.

Open question. Does there exist a PA degree which is a minimal cover for a

non-PA degree?

Some related results are known in the literature. Recall that the modulus

function of K, mK(n) is defined as the least s such that Ψm(m) [s] ↓ for every

m ≤ n, where m ∈ K.

Definition 67. A degree a is called array non-recursive (ANR) if there is a

function f ≤T A for A ∈ a which is not dominated by the modulus function of

K

ANR degrees and PA degrees share some properties. For example, it was

shown by Downey, Jockusch, Stob in [54] that no ANR degree is minimal.

Definition 68. A degree is 2-minimal if it is a minimal cover for a minimal

degree. More generally, a degree is n + 1-minimal if it is a minimal cover for

some n-minimal degree.

An interesting result, given by Cai [55], which might be related to the open

question is the following.

Theorem 54 (Cai, 2010). There exists a 2-minimal ANR degree.
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In fact, Cai in [56] asked a stronger form of the open question we gave

above, asking whether or not there exists a 2-minimal PA degree. Certainly,

this has a negative answer below 0′ by the following two results by Cai [57]

and Kučera [58].

Theorem 55 (Cai, 2014). If a is n-minimal for some n ∈ ω then it cannot

compute any non-recursive r.e. degree.

Theorem 56 (Kučera, 1986). Every fixed point free (in particular PA) degree

≤ 0′ bounds a non-recursive r.e. degree.

So to answer our question positively, we could aim to look for a PA degree

which is a minimal cover for an incomplete r.e. degree perhaps. Kučera in [59]

shows that there exists an incomplete high PA degree which computes a high

incomplete r.e. degree. This theorem might be helpful for the investigation of

finding an answer to the open question we proposed.

We can extend the notion of minimal degree to minimal upper bounds.

Definition 69. A degree b is a minimal cover for a degree a if a < b and there

does not exist a degree c such that a < c < b.

Note that every degree has a minimal cover since the minimal degree con-

struction can be relativized.

Now one could also investigate the relation between minimal covers and

degrees of members of Π0
1 classes. We know, by Grozsek and Slaman [48],

that there exists a non-empty Π0
1 class such that every member computes a

minimal degree. We give the following open question that whether every Π0
1

class contains a minimal upper bound.

Open question. Does there exist a non-empty special Π0
1 class such that no

member is a minimal cover?

It can be seen this is related to the join property result. So it is likely that

the question has a positive answer.
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Chapter 5

Choice Classes

5.1 Introduction

This chapter is devoted to the study of so called Π0
1 choice classes. A Π0

1 choice

class is another variant of Π0
1 classes with a restriction on its elements. The

work in this chapter can be considered as a Π0
1 choice class analogue of the

work by Kent and Lewis [2]. We first give some properties about the structure

of the degree spectra of Π0
1 choice classes. We show that the existential theory

of this structure is decidable. We then prove the existence of Turing degrees

which are not contained in any degree spectrum of a Π0
1 choice class but can

be contained in the degree spectrum of some Π0
1 class which is not necessarily

choice. We define Π0
1 choice classes as follows.

Definition 70. A Π0
1 class is called a choice class if no two members have the

same Turing degree.

We study the basic properties of Π0
1 choice classes. Define Pc = {S(P) :

P is a Π0
1 choice class}, where S(P) is the degree spectrum of P, i.e. the set of

all degrees a such that there exists A ∈ P of degree a. We denote the elements

of Pc by α, β, γ. We define P in the same manner for Π0
1 classes which are

not necessarily choice. We study the structure (Pc, <) where the elements

are ordered by inclusion. We also investigate degrees which are called choice

invisible degrees that are not contained in any of the degree spectra of Π0
1

75
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choice classes. This gives us proper antibasis results. Note that if we consider

Π0
1 classes, since they can contain members of every degree, an antibasis result

for such classes makes sense for those that do not contain members of every

degree. However, as we will see, one does not need to worry about this case for

Π0
1 choice classes.

5.2 Properties of (Pc, <)

It is known that Π0
1 choice classes do exist. An example of a Π0

1 choice class

would be a Π0
1 class such that each member is incomparable with each other.

The existence proof of such class is given in Theorem 4.7 of [3]. The first

observation is that if P is a Π0
1 choice class then S(P) 6= D. This is true,

as proved in [2], because a Π0
1 class P contains all paths through a perfect

computable tree T iff it has members of every degree. To see why this is

enough to ensure that P is not a Π0
1 choice class, suppose that P contains

all paths through T of this kind. Given any set B, we can then define a set

CB ∈ [T ] such that CB =
⋃

s∈ω σs which is of the same degree as of B. We

define σ0 to be the string at level 0 in T . Given σs, we let σs+1 to be the

leftmost successor of σs in T if B(s) = 0. Otherwise, define σs+1 to be the

rightmost successor of σs in T . Then for B′ 6= B but of the same degree as B,

CB′ 6= CB but CB′ ∈ [T ] and CB ∈ [T ]. Note that the same argument suffices

to show the other direction.

Since no Π0
1 choice class contains a member of every degree, in particular

there exists a Π0
1 class P such that S(P) 6= S(Q) for any Π0

1 choice class

Q. Another interesting observation is that Π0
1 choice classes appear to have

cardinality restrictions. First of all, a Π0
1 choice class P cannot be finite unless

it has a single element, because the members of finite classes are all recursive.

In fact, we will show something stronger than this.

Let us recall that a subset A of a topological space is dense in itself if A

contains no isolated points. Consider the Cantor topology on 2ω. The Cantor-

Bendixson derivative of P is the set of non-isolated points of P according to

the Cantor topology and is denoted by D(P). The iterated derivative Dα(P)

is defined for all ordinals α by transfinite recursion:
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(i) D0(P) = P;

(ii) Dα+1(P) = D(Dα(P));

(iii) Dβ(P) =
⋂

α<β D
α(P) for any limit ordinal β.

The following theorem is a sufficient condition for the statement that every

non-empty element except {0} of Pc is uncountable.

Theorem 57. Any countably infinite Π0
1 class has members of the same degree.

Proof. Let P be a countably infinite Π0
1 class. We show there are at least

two recursive members in P. For this it suffices to show that in fact there are

at least two isolated points. Suppose that, for the sake of contradiction, P is

countable and has only one isolated point, say A. Let Q = P − {A}. Now

Q is still a closed set because A is an isolated point. So Q is a Π0
1 class and

contains no isolated point, hence D(Q) = D. Then, Q is dense in itself and

it is perfect. Therefore, Q is uncountable. But then, P is uncountable since

Q ⊂ P. A contradiction. �

Corollary 17. Every non-empty Π0
1 choice class is uncountable unless it has

a single element.

Since there does not exist a Π0
1 choice class which contains a member of

every degree, it is natural to ask first if there exists a maximal element of

(Pc, <). It is known that there is no maximal element of P for special Π0
1

classes. This is provided by Jockusch and Soare [4]. The theorem says that if

P is a special Π0
1 class then there exists a nonzero r.e. degree a 6∈ S(P). On the

other hand, for every degree a with 0 < a ≤ 0′ there exists a special Π0
1 class

P ′ with a ∈ S(P ′). Then P ′ ∪ P is a special Π0
1 class and it properly includes

P.

We know that for (P, <), the greatest element is D, but since D 6∈ Pc, we

first ask if there exists a maximal element in the case for Π0
1 choice classes. We

now show that there is no maximal element of (Pc, <) and we do not need to

worry this time about the cases where the given class contains a member of

every degree since the set of all Turing degrees is not a degree spectrum of a

Π0
1 choice class.
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To prove this we are given a Π0
1 choice class P such that S(P) = α, where

α 6= D of course, and we construct a Π0
1 choice class Q ⊃ P with S(Q) = β and

α < β. A way to construct Q is to add reals in P to extend it to a larger class

Q. We may call Q the choice extension of P. Note that we do not need Q−P

to be infinite since it would be sufficient to add a single element whose degree

is not the same as the degree of any member in P. Other kinds of extensions

are possible as well. A few notions which we are not going to discuss here

were introduced by Cenzer [60] on the minimal extensions of Π0
1 classes, and

by Lawton [61] on minor superclasses of Π0
1 classes.

Before we show how to construct Q, it will be useful first to prove the

following theorem, which holds for Π0
1 classes, and is well known. Now it is

easy to observe that any countable set of Turing degrees is not the degree

spectrum of a Π0
1 choice class unless it is {0}. However, we have the following

result.

Lemma 15. For any nonzero recursively enumerable degree a, {0,a} is the

degree spectrum of a Π0
1 class.

Proof. Let A ⊂ ω be an r.e. set of degree a. Suppose that we are given an

enumeration of A,

f(n) = µs(As ↾ n = A ↾ n).

So f(n) shows how long we have to wait until the enumeration of A is correct

up to the initial segment of length n. The idea behind the proof is to code the

enumeration function on a path of the Π0
1 class that we are constructing and

let all other paths be recursive. We also construct a set, we call Λ∗, which will

be used in the construction. The role of Λ∗ is to put delimiters in a way so that

we can fill 0’s above some strings in the class to get a some kind of enumeration

distance between the enumerated elements in A, i.e. number of stages required

for the enumeration of the next element. We keep adding zeros above some

strings in case we change our mind about the enumeration function of A, say

f(n), and need to come back, for some n, and increase the coded value. So once

a string is an initial segment in Λ∗, we will always have zeros added on each

stage of the construction. We put 1 after a sequence of zeros when the distance
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between the 1’s gets sufficient enough to code the enumeration function up to

stage s.

We define a Π0
1 class P which has one element B such that

B = 0f(0)+110f(1)+110f(2)+11 · · ·

and such that all other elements end with an infinite sequence of 0’s. We

define P to be the set of all infinite paths through Λ =
⋃

s∈ω Λs which we

define in the construction. Let fs(n) = µs′ ≤ s such that As′ ↾ n = As ↾ n.

So fs(n) is a function that shows how f would look if the enumeration of A,

by stage s, were correct up to the initial segment of length n. We then let

τs = 0fs(0)+110fs(1)+110fs(2)+11 · · · be the approximation of B at stage s. The

construction is as follows:

Stage 0. Enumerate ∅ into Λ0, and let Λ∗ = ∅.

Stage s+ 1. Given Λs, for each leaf τ ∈ Λs,

(i) Enumerate τ ∗ d into Λs+1 (for d = {0, 1}) if τ ∗ d ⊂ τs for some value of

d.

If d = 1, then enumerate τ ∗ d also into the set Λ∗.

(ii) If τ has an initial segment in Λ∗, then enumerate τ ∗ 0 into Λs+1.

Now since f and A are both computable in each other, f is non-recursive

by hypothesis. However, note that fs is recursive. As s increases, fs(n) can

only get larger for a given argument n ∈ ω. If we ever want to change our

guess about fs(n), we come back and increase our guess. It is easy to see

that every fs(n) gets changed finitely many times. Also note that Λ∗ contains

strings that end with a 1, so step (ii) at stage s + 1 guarantees that there is

an extension succeeded with all zeros. Hence, this step provides us that every

string which does not become an initial segment of τs anymore is chosen to

become an infinite computable path in Λ since it ends with infinite zeros. �

In fact, we can modify the previous proof to get something stronger. We

now want to prove the following.

Lemma 16. If α is the degree spectrum of a Π0
1 class P then for any recursively

enumerable degree a 6∈ α, α ∪ {a} is the degree spectrum of a Π0
1 class.

Proof. We aim to add above some strings a “copy” of a given Π0
1 class which

has the degree spectrum α instead of just adding 0’s as in the previous proof.



80 Chapter 5. Choice Classes

We again use the functions f and fs in the same way we used in the previous

lemma. If we never have to come back and increase our guess about fs(n), for

a given argument n, then we are fine since we will be leaving a copy of P above

some string. If we come back to increase our guess, we kill all but one branch

and we increase our guess about fs(n) by raising the delimiter symbol for

coding the enumeration distance. However, since there will be zeros and ones

in the copy of P, particularly on the branch we leave, we have to use another

delimiter to code the enumeration distance in stages. For this purpose we build

our new Π0
1 class with a degree spectrum α ∪ {a} as a subset of {0, 1, 2}ω and

use the distance between 2’s instead to code the enumeration function f .

We should first define what we mean by a copy of P. Here a copy of P = [Λ]

for some downward closed recursive set of strings Λ, is just defined by the set

{τ ∗ σ : σ ∈ Λ} for any τ .

Suppose that P = [Λ] is a Π0
1 class with a degree spectrum α and suppose

that we are given a recursively enumerable degree a 6∈ α. We build a downward

closed set of strings Υ =
⋃

s∈ω Υs as a subset of {0, 1, 2}<ω such that Q = [Υ]

is a Π0
1 class with a degree spectrum α ∪ {a}. So we consider Υ like a ternary

tree containing many copies of Λ. When building Q, we begin to place a copy

of P above strings that end with a 2 in Υs in the form of a set of strings in Λ

up to a certain length at each stage of the construction. When putting the bits

of Λ into Υs, we put Λ up to strings of length fs(0) + 1, fs(0) + 1, fs(2) + 1,

and so on. We consider a set Πs of strings of the form

{0, 1}fs(0)+12{0, 1}fs(1)+12{0, 1}fs(2)+12 · · ·

Since we are enumerating the branches of Λ between 2’s, if we let Λ ↾ n

denote the set of strings in Λ of length n then we can put the strings in Πs of

the form

(Λ ↾ f(0) + 1)2(Λ ↾ f(1) + 1)2(Λ ↾ f(2) + 1)2 · · ·

The construction is similar to the one in the previous lemma with a few

modifications. Now we do not have τs but Πs.

At stage 0, we enumerate ∅ into Υ0 and let Υ∗ = ∅.

At stage s+ 1. Given Πs and Υs, let σ be a leaf of Υs.
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(i) We enumerate σ ∗ d into Υs+1 for d = {0, 1, 2} if there exists a string

τ ∈ Πs such that σ ∗ d ⊂ τ .

If d = 2, then we enumerate σ ∗ d also into Υ∗.

(ii) To put a copy of P, we see if σ has an initial segment in Υ∗. If so then

enumerate each σ ∗ (Λ ↾ fs(n) + 1), for a given n ∈ ω, into Υs+1.

�

We now want to show that the last lemma holds for Π0
1 choice classes.

Theorem 58. If α is the degree spectrum of a Π0
1 choice class P then for any

recursively enumerable degree a 6∈ α, α ∪ {a} is the degree spectrum of a Π0
1

choice class.

Proof. Now if we want the last lemma to work for Π0
1 choice classes we have

to make some modifications because we do not want to have multiple copies of

the given class P = [Λ], for some downward closed computable set of strings Λ,

in the class Q = [Υ] that we construct. One idea is to copy mutually disjoint

parts of the given class P into different parts of Q. However, there are some

technical difficulties. If we are given a Π0
1 choice class P such that P = [Λ] for

some downward closed computable set of strings Λ, with a degree spectrum α

and if a 6∈ α is an r.e. degree, then we construct our new Π0
1 choice class Q

having degree spectrum α ∪ {a} in the following way.

Since we want to enumerate mutually disjoint subclasses of P, above various

strings in Υ, we have to decide which parts of P we should take. For this

we approximate a sequence of pairwise mutually incompatible strings {σs}s∈ω

in Λ. For i ∈ ω, let [σi] denote the set of infinite branches of {τ ∈ Λ :

τ is compatible with σi}. Each σs will satisfy P ∩ [σs] 6= ∅ and if A is the

leftmost path in [Λ] then we should have that P = {A} ∪
⋃

i∈ω([σi] ∩ P). For

any s ∈ ω, let us denote the class [σs] by Ps. Now for any s ∈ ω, Ps is a Π0
1

choice class since Ps ⊂ P and also for any s, t ∈ ω, Ps ∪ Pt is a choice class

because of the fact that they are mutually disjoint subclasses of P. Instead

of adding the entire class as in the previous lemma, we keep on adding the

mutually disjoint subclass of P above different strings in Υ. Namely, we add
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Ps for every s ∈ ω. As we keep on enumerating strings into Q, one of the

following problems might occur in Ps.

(i) We find out that the set of infinite paths in [Λ] above our present ap-

proximation to some σs is empty.

(ii) We eventually find out that the set of infinite paths above some σs turns

out to be the whole class P.

These cause problems because we have to code the enumeration function of

the given set of r.e. degree a on an infinite path of Q and we might need to

change our guess about the sequence of mutually incomparable strings. So we

have to change our mind about the values σs, and so about the various Ps of

which we are placing copies in Q. Note that it is also a problem that even if we

add copies of all Ps into Q, we will still miss the leftmost branch A ∈ P because

for any i, j ∈ ω, σi is incompatible with σj and if one looks at Figure 5.2, in

any kind of mutually incompatible sequence of strings for forming a sequence

of mutually disjoint subclasses of P, the leftmost path will not be covered by

the mutually incompatible sequence of strings. This leftmost path, however, is

of r.e. degree, just like a. Then, instead of enumerating a single r.e. set into

Q, we also have to enumerate the leftmost branch of P that we miss. But then

we have to be careful about not duplicating the branches of P when we put

copies. We can solve this by enumerating the bits of Ps on two r.e. branches

in an alternating fashion. That is, since we enumerate in two r.e. branches,

we put the bits of Ps into the first r.e. branch then enumerate Ps+1 into the

second, Ps+2 into the first again and so on.

When we approximate the sequence {σs}s∈ω problem (i) or (ii) may occur.

To overcome these problems, it suffices to ensure that for each i ∈ ω the class

P ∩ [σi] is non-empty and that each branch on Λ, except the leftmost branch,

extends some σi.

Regarding problem (ii), if there exists a string σ ∈ Λ such that the set of

infinite paths above σ is actually the entire class, then the set of infinite paths

above any string τ ∈ Λ which is incompatible with σ must be empty. However,

we may still have finite branches above σ. If this is the case then we have

to work on the subtree above σ. If we denote the subtree of Λ above σ by

Λ′ and if we let P ′ = [Λ′] be a Π0
1 class, clearly P ′ is a Π0

1 choice class since
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new r.e. path missing r.e. path

P1

P3

P5

P0

P2

P4

Figure 5.1: Two r.e. paths on Q.

Λ′ ⊂ Λ. Moreover, S(P ′) = S(P) since P ′ − P has no infinite branch, and in

fact P = P ′.

We shall now give the construction of the sequence of mutually incompatible

strings.

Now let Λ ↾ n denote the elements of Λ of length n. We assume further

that P has no isolated members, i.e. there does not exist any finite σ such that

P has precisely one element extending σ. We can assume this because we can

separately enumerate in any isolated path to our new class at the very end of

its construction.

Let A be the leftmost element of P. The following construction produces an

approximation to a sequence {σi}i∈ω such that the members of this sequence

are pairwise incompatible and satisfy:

a) For each i ∈ ω, P ∩ [σi] is non-empty.

b) For all B ∈ P except A, there exists i ∈ ω with σi ⊂ B.

We define values σi[s] for a finite number of i at each stage s of the con-

struction. So σi[s] shows our guess for σi at stage s. For each i we shall ensure

σi[s] is defined and takes the same value for all sufficiently large s.
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b

b

b

b

bb

σ1

σ2

σ0

Figure 5.2: A simple example of how {σi}i∈ω could be formed.

At stage s = 0, we let τ = ∅.

At stage s > 0, let τ be the leftmost element of Λ of length s. Perform the

following iteration until instructed to stop:

Step i. Let ρi be the rightmost element of Λ ↾ s which does not extend any

σj [s] with 0 ≤ j < i. If ρi = τ then terminate the iteration, and proceed to the

next stage of the construction. Otherwise, let υi be the longest string which is

an initial segment of both τ and ρi. Define σi[s] = υi ∗ 1, and proceed to step

i+ 1 of the iteration.

Now we verify that the sequence {σi[s]}s∈ω converges for every i ∈ ω and

satisfies the desired properties in (a) and (b) written above. Recall that A is

the leftmost member of P. Let B0 be the rightmost element of P, and let υ0

be the longest string which is an initial segment of both A and B0. Given Bi

and υi, let Bi+1 be the rightmost element of P extending υi ∗ 0, and let υi+1

be the longest string which is an initial segment of both A and Bi+1.

For each i we wish to show:

(a) For all sufficiently large s we have:

σi[s] ↓= υi ∗ 1.

(b) All elements of P extending σi or to the right of σi, extend some σj for

j ≤ i.

Suppose (a) and (b) are true for all j < i, and let s be large enough that,
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for all s′ ≥ s and all j < i, σj [s
′] ↓= υj ∗ 1.

Now let s′ > s be sufficiently large that there do not exist any elements of

Λ ↾ s′ strictly to the right of υi, other than those which extend some σj for

j < i (the fact that such an s′ exists follows from the compactness of Cantor

space, i.e. König’s Lemma).

Then at all stages s′′ ≥ s′ we have σi[s
′′] ↓= υi ∗ 1, and (b) also clearly

holds as required.

Now that we have {σi}i∈ω, we describe how to construct Q. The construc-

tion of Q uses the previous lemma but modified as described here. For the

construction we shall have a supermodule µ which handles two submodules;

one for the new r.e. branch and one for the missing r.e. branch. Let us call

them κ and λ, respectively. Now κ will use Lemma 16 but instead we put Pi

such that i = 2j for every j ∈ ω above the j-th enumeration point. Then, in

the limit, we obtain on this side a Π0
1 choice class with an an r.e. branch of

degree a with single copy of each Pi such that i = 2j for every j ∈ ω. Module λ

is defined similarly for the missing leftmost path of r.e. degree and subclasses

Pi such that i = 2j + 1 for every j ∈ ω. Again, we eventually obtain a Π0
1

choice class containing a member of degree deg(A) with single copy of each Pi

such that i = 2j + 1 for every j ∈ ω. The supermodule µ passes the control to

κ at even stages and passes to λ at odd stages to fully obtain Q. Then Q is

clearly a Π0
1 choice class such that S(Q) = α ∪ {a}. �

The idea can be easily modified to get the same result for ∆0
2 degrees.

Instead of coding the modulus function for r.e. sets, we code the modulus

function for ∆0
2 sets and the construction becomes similar. Then, since a Π0

1

choice class cannot contain members of every ∆0
2 degree, this makes sure that

the following corollaries hold.

Corollary 18. (Pc, <) has no maximal element.

Definition 71. We say that β is a minimal cover for α if there is no γ ∈ Pc

strictly between α and β.

Corollary 19. For every α ∈ Pc, there exists a minimal cover for α in Pc.

Definition 72. We say that a poset P has the meet property if for any a there

exists some b such that a ∧ b gives the least element of P .
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We now want to show that (Pc, <) has the meet property. This almost

follows from a theorem due to Cole and Simpson [62]. However, to get the

desired result we need to modify it for Π0
1 choice classes. The original theorem

is as follows and the proof is given in [2].

Theorem 59 (Simpson and Cole, 2007). For any special Π0
1 class P0 there

exists a special Π0
1 class P1 such that no member of P1 computes any member

of P0.

We modify this theorem for Π0
1 choice classes.

Theorem 60. For any special Π0
1 class P0 there exists a special Π0

1 choice class

P1 such that no member of P1 computes any member of P0.

Proof. Let P0 be given such that P0 = [Λ] for some downward closed com-

putable set of strings Λ. We define an approximation to a set of strings T such

that P1 = [T ] is a Π0
1 choice class which satisfies the statement of the theorem.

For each level of T , we aim to satisfy a single requirement for those strings at

that level. Specifically, all those strings at level 2i+ 1 will be defined so as to

satisfy

Ξi : If A ∈ P1 and Ψi(A) is total then Ψi(A) 6∈ P0.

For those strings at level 2i + 2, we should aim to satisfy the choiceness

property (in fact we satisfy something stronger in the construction). That is,

Θi : If A ∈ P1 and C ∈ P1 then A 6= Ψi(C) or C 6= Ψi(A).

At stage s = 0, enumerate ∅ into T .

At stage s > 0,

(i) Find the least string τ ∈ T such that τ is of level 2i + 1, Ψi(τ)[s] is

compatible with some string in Λ of length s and there is some leaf τ ′

of T extending τ such that Ψi(τ
′)[s] properly extends Ψi(τ)[s]. If this is

the case then we remove all strings extending τ from T except τ ′.

(ii) We find the least string τ ∈ T such that τ ⊂ Ψi(σ)[s] for some σ ∈ T of

level 2i+ 2 which is incompatible with τ . If such τ exists, we remove all

strings extending τ from T and enumerate two incompatible extensions

of σ into T .
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After these instructions, choose two incompatible strings extending each

leaf of T , and enumerate these strings into T .

We claim that P1 is a Π0
1 class. The argument is standard. For this we

let Υ be the set of all strings which are initial segments of strings in T at any

stage. We show that Υ is downward closed, computable and [Υ] = [T ]. Now Υ

is computable since we enumerate in strings that only extend strings in Υ of

the previous stage. Clearly, every infinitely extendible string in T is also in Υ

by the definition of Υ. The opposite direction is also true. By contrapositive,

suppose that σ is not infinitely extendible in Υ. Then σ must be a leaf of T

in which case σ is not infinitely extendible in T since otherwise σ would be

infinitely extendible in Υ. Approximation to T converges, i.e. requirements

are satisfied. Now it is easy to see that step (ii) simply ensures that no branch

of P1 computes another. For the Ξi requirements, suppose that for some least

i there is a sequence {τj}j∈ω of strings such that each τj is a string of level

2i + 1 in T at some stage of the construction and τj ⊂ τj+1 for all j. Let

A =
⋃

j∈ω τj . Then Ψi(A) is computable and is in P0. A contradiction. �

Corollary 20. (Pc, <) has the meet property.

The following theorem is another observation about the structure of the

degree spectra of Π0
1 choice classes.

Theorem 61. (i) (Pc, <) has a least element and it is defined as 0Pc
=

0P = ∅.

(ii) We say that α > 0Pc
in Pc is minimal if there does not exist β ∈ Pc with

0Pc
< β < α. Then, (Pc, <) has only one minimal element, i.e. {0}.

Proof. There is nothing to prove for (i).

We prove (ii). Obviously {0} is minimal. Suppose that there is another

minimal element of Pc, say α. Then there would be a Π0
1 choice class P such

that S(P) = α and P = [Λ] for some downward closed computable set of strings

Λ. Note that S(P) must be uncountable. Take two immediate incompatible

extensions, σ and τ , of any element of Λ. Remove every extension of τ and let

R be the resulting class with the degree spectrum β. Now, R is a Π0
1 choice

class such that R ⊂ P and hence β < α. A contradiction. �
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We state the following conjecture for which we shall give a proof for a special

case and then discuss about possible solutions to prove the general case. The

reader can skip to Section 5.3 without loss of continuity.

Conjecture. (Pc, <) is an upper semilattice.

The requirement here is that given two Π0
1 choice classes P and Q such

that P = [Λ] and Q = [Υ] for some downward closed computable sets of

strings Λ and Υ, to get a Π0
1 choice class (in which the elements are not Turing

equivalent to another via any pair of Turing functionals) with a degree spectrum

S(P)∪S(Q), we enumerate the elements of Q into the copy of P. We only give

an informal proof here for a fixed pair of Turing functionals. Hence, note that

Q will be a Π0
1 “choice” class in a sense that with respect to the given fixed

pair of Turing functionals. So we will enumerate those elements which are not

Turing equivalent to any of the members of P with respect to a given pair of

Turing functionals. We do this by avoiding exception points which is defined

as follows.

Definition 73. Let P and Q be two Π0
1 classes. An exception point for Q is

a path A ∈ Q such that Ψi(A) = B and Ψj(B) = A for a given i, j ∈ ω and

some B ∈ P.

We take a sequence {σk}k∈ω of mutually incompatible strings for Q as we

constructed in Theorem 58. The idea is roughly that at some point we try to

add in everything in Q above some σk, but that later, we may decide, actually,

for η ⊃ σk, that we do not want to add in everything above η. Then later, for

another η′ ⊃ σk which is incompatible with η, we might decide we do not want

to add everything above there either, and so on. Then later for some τ ⊃ η we

might decide that we do want to add in the strings above τ and etc. Ultimately

we do not want to add the exception points into the Π0
1 choice class we wish to

construct. Let {τk}k∈ω be an effective enumeration of the terminal strings of

Λ. We take a copy of Λ and we start adding the strings in Υ above σk into Λ

above the k-th terminal string of Λ, assuming that the strings in Λ are ordered

first by length and then from left to right. We also fix some nk ∈ ω for each τk

such that nk+1 > nk. We stop adding the extensions of η ∈ Υ whenever we find

such η ⊃ σk which computes some τ ∈ Λ via Ψi up to the initial segment of



5.2. Properties of (Pc, <) 89

length nk and vice versa via Ψj , for a fixed pair of indices i, j ∈ ω. In this case

we say that η carries risk up to nk. When a string carries risk up to some nk,

this does not completely mean that there exists A ⊃ η such that Ψi(A) = B

and Ψj(B) = A for some B ∈ P. Therefore, we need to check if there exist

infinitely many extensions of η which carry risk up to all sufficiently large nk’s.

One thing we will be sure is that if Ψi(A) 6= B or Ψj(B) 6= A, there will be

some k ∈ ω such that A ∈ Q and B ∈ P do not compute each other up to the

initial segment of length nk. So if this is the case A will eventually be added

into the copy of P, particularly it will be added above some τk ∈ Λ. To see if

there exist infinitely many extensions of η which carry risk up to all sufficiently

large nk’s, we start putting η again and all its initial segments above the next

terminal string of Λ for which we take the next sufficiently large nk+1 for the

enumeration of the subtree of Υ above σk+1. If we ever find out that some

η′ ⊃ η carries risk up to nk+1 we stop enumerating the strings above η′ and

continue enumerating it above another terminal and so on.

For a fixed t = 〈i, j〉, we give the construction of Λt as follows. We define

Λt as a subset of {0, 1, 2}<ω as in Theorem 58.

We fix some sufficiently large nk for each τk such that nk+1 > nk. We take

a copy of P in the form of downward closed computable sets of strings Λt such

that Pt = [Λt], where t = 〈i, j〉. We shall add strings of elements of Υ into Λt.

At stage 0, we define Λt[0] = Λ (where, for any n ∈ ω, Λt[n] denotes Λt

defined at stage n).

Whenever we decide on the new value of σk[s] (as in Theorem 58) we perform

the following instructions.

At stage s > 0, we assume that we are given Λt[s− 1].

For each k < s, suppose that σk[s] is given. Consider the set T of strings

in Υ above σk[s] up to length s (relative to σk[s]). We enumerate those strings

η ∈ T into Λt[s − 1] above τk such that there is no τ ∈ Λ of length ≤ |η|

satisfying that Ψi(η) = τ and Ψj(τ) = η up to the initial segment of length

nk (We assume that τk ∗ 2 has already been enumerated before we start to put

strings in, indicating the starting point of the information content of Q).

If there is such τ ∈ Λ satisfying that Ψi(η) = τ and Ψj(τ) = η up to the

initial segment of length nk, we stop enumerating any string extending η into
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Λt[s−1] above the point τk. To keep checking (for later stages) if the extensions

of η carry risk up to larger values of n, i.e. nl for l > k, we add the strings in

{η∗ ∈ Υ : η∗ is compatible with η} to the set of strings above σk+1[s], hence

this way we will be able to continue to enumerate η and its extensions into Λt

above some other terminal string where we take nk+1 for that. We define Λt[s]

to be the set of strings we enumerate by the end of this stage union Λt[s− 1].

Now this construction gives us Pt. However, again note that we add in Pt

the elements of Q which are not Turing equivalent to any of the elements of

P only via a fixed pair of Turing functionals (Ψi,Ψj), where t = 〈i, j〉. Let S

be the leftmost member of Q. Then, using Theorem 58, we let R = Pt ∪ {S}.

Then we have that S(R) = S(P)∪S(Q) with respect to the fixed pair of Turing

functionals with indices (i, j).

Now we shall give the verification.

Let t = 〈i, j〉 be fixed. Let S(P) = α and S(Q) = β. We shall argue that

R is a Π0
1 choice class, with respect to t, and has the degree spectrum α ∪ β.

It is clear that Pt is a Π0
1 class and that S(Pt) ⊃ α since Λt[0] = Λ for every

t ∈ ω and that for any given Λt[n] we recursively construct Λt[n+1]. If A ∈ P

and B ∈ Q such that Ψi(A) = B and Ψj(B) = A for i, j ∈ ω then B 6∈ R

since otherwise there would exist some k ∈ ω and η ⊂ B such that η carries no

risk up to nk′ for all k′ > k. Therefore it must be that either Ψi(A) 6= B or

Ψj(B) 6= A for A ∈ P. Also, S(R) ⊃ β since every infinite branch except the

leftmost one is extended by some σk by Theorem 58 and since we can enumerate

the missing r.e. path by the same result. This completes the argument.

Now the argument gives us a degree spectrum of the class, for a fixed pair

indices i, j ∈ ω,

P ∪ {A ∈ Q : there exists no B ∈ P such that Ψi(A) = B and Ψj(B) = A}.

Of course this class does not necessarily have to be a real Π0
1 choice class

since the enumerated element might be Turing equivalent to some element in

P via some other pair of functionals. We now want to give an idea about how

one might prove the conjecture. However, it is important to note that we do

not give an actual proof here. If we want to prove the conjecture we need

to look at all pairs of Turing functionals. To work with all pairs of Turing
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functionals, one thing we could do is to work simultaneously on infinitely many

copies of P, say {Pt}t∈ω, where t = 〈i, j〉 according to some fixed computable

bijection ω × ω → ω, and work with (Ψi,Ψj) for that Pt = [Λt]. We add the

elements of Q into Pt which are not Turing equivalent to any of the members

in Pt via (Ψi,Ψj). Now for each t we get the elements of P together with the

elements of Q which are not Turing equivalent to any member of P via only

(Ψi,Ψj). We would like to intersect each Pt to get such elements of Q, hence

obtain those which are not Turing equivalent to any member of P (via any

pair of Turing functionals). However, taking simply
⋂

t∈ω Pt does not work

here, because we have to be careful about the possibility that a member in Q

might get enumerated above different terminal strings in different copies of P.

So when we take the intersection of all Pt’s it might not give us the desired

elements of Q since the sets we want to obtain might have different initial

segments in each Pt up to the point where we start to enumerate in. This

is why we want to construct the class as a subset of {0, 1, 2} as in Theorem

58. So recall that we enumerated strings from Υ above terminal strings in

Λ. Let us call them enumeration points. We can certainly have a recursive

enumeration for enumeration points for a given Π0
1 class since we can enumerate

its terminal strings. Let [Λe
t ] denote the set of all infinite branches above the

e-th enumeration point of the t-th copy of Λ. Now let P+ =
⋂

t

⋃

e[Λ
e
t ] ∪ S,

where S is the leftmost branch of Λ. The problem here is that we need to

show, for each t, that
⋃

e[Λ
e
t ] is actually a Π0

1 choice class. That is, we need

to show there exists a downward closed computable set of strings Λ∗
t such that

[Λ∗
t ] =

⋃

e[Λ
e
t ]. If one could show this then it would be possible to prove the

conjecture. One would also show (Pc, <) also forms a lower semilattice by

modifying the proof of Theorem 8.1 in [2], hence show that the structure is a

lattice. We end the discussion here. Anything stated after the argument for

the conjecture remains as a future study.

5.3 Decidability of the ∃-theory of (Pc, <)

Next, we consider the existential (∃) theory of (Pc, <) and observe that it is

decidable indeed. By the ∃-theory of (Pc, <), we mean the set of sentences in
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the first order language of partial orders that are true about the degree spec-

tra of Π0
1 choice classes, and that are of the form ∃x1∃x2 · · · ∃xkR(x1, . . . , xk)

for some k ∈ ω, where R(x1, . . . , xk) is a quantifier free expression with free

variables x1, . . . , xk.

Theorem 62. The ∃-theory of (Pc, <) is decidable.

Proof. We define a countable infinite independent sequence {Pn}n∈ω of Π0
1

choice classes with degree spectra {αn}n∈ω, i.e. a sequence satisfying that

αk 6⊂ αk1
∪ · · · ∪ αkn

with k 6= ki for any of the ki’s.

We begin with a Π0
1 choice class P = [Λ] for some downward closed recursive

set of strings Λ such that all members in P are Turing incomparable. Let

{σi}i∈ω be a sequence of mutually pairwise incomparable set of finite strings in

Λ the same manner in Theorem 58. Given any n ∈ ω, we let Pn to be the Π0
1

choice class above σn, i.e. the set of all infinite strings in P extending σn. Note

that this is a Π0
1 choice class because all members are still Turing incomparable

since Pn ⊂ P. If we take any finite set J ⊂ ω and take P ′ =
⋃

n∈J Pn, which

is a Π0
1 choice class since P ′ ⊂ P and P contains members that are Turing

incomparable, then it is easy to see that αm 6⊂ S(P ′) for m 6∈ J . We still have

to show that there exists an embedding from any finite partially ordered set

into the structure of the degree spectra of Π0
1 choice classes. We assert this in

the next lemma.

Lemma 17. Any finite partially ordered set is embeddable in (Pc, <).

Proof. Let M = 〈M,≤〉 be a finite partially ordered set and let M = {xi :

i < n}. We define an order preserving bijection from M into Pc. Let {αi}i∈ω

be an independent sequence of degree spectra for Π0
1 choice classes and let Pi

has the degree spectrum αi. For each k < n, let F (k) be the set of all i such

that xi ≤ xk. Put Qk =
⋃

i∈F (k) Pi and define βk to be the degree spectrum

of Qk. We define an embedding as follows: g(xi) = βi for every i < n. In

order to verify that this is indeed an embedding we must show that for all

i, j < n, xi ≤ xj ⇔ Qi ⊂ Qj . Suppose first that xi ≤ xj . Then, F (i) ⊂ F (j)

so the result follows immediately. Next, suppose that Qi ⊂ Qj and xi 6≤ xj in

order to derive a contradiction. Then Pi ⊂ Qi ⊂ Qj , so Pi ⊂
⋃

k∈F (j) Pk and

i 6∈ F (j), which contradicts the fact that {Pi}i∈ω is an independent sequence
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of Π0
1 choice classes. Now, the reason this works is because an existential

statement of the theory of (Pc, <) asserts the existence of finitely many degree

spectra α1, . . . , αk and for i, j it asserts that αi < αj , while for other pairs of i, j

it asserts that αi 6≤ αj . Since we have just showed existence of an independence

sequence, it only remains to check whether or not the statement is satisfiable

by running through finite number of possibilities, which is a decidable process

so this completes the proof of the theorem. �

5.4 Choice invisible degrees

Next, we want to show that there exists a degree such that no Π0
1 choice class

contains a member of that degree but can be contained in a Π0
1 class which

does not contain a member of every degree. These kinds of results are often

associated with antibasis theorems. Examples of antibasis theorems can be

seen in [2] and [1]. When proving antibasis theorems for Π0
1 classes, we usually

exclude the case that the given class might contain a member of every degree.

Then for Π0
1 choice classes, it is more concrete to have an antibasis result since

there is no such Π0
1 choice class at all which contains a member of every degree.

This way we avoid the exception of having a Π0
1 class containing a member of

every degree.

Definition 74. A degree is called invisible if no Π0
1 class contains a member

of that degree unless it contains a member of every degree. A degree is choice

invisible if no Π0
1 choice class contains a member of that degree.

Let I denote the set of all invisible degrees for Π0
1 classes and let CI denote

the set of all choice invisible degrees. Every invisible degree is choice invisible.

But we ask if the relation I ⊂ CI is strict and we will show that CI− I is

indeed non-empty.

Recall that a degree is PA if it contains a set which codes a complete

and consistent extension of Peano Artihmetic according to some computable

bijection between sentences of first order language of arithmetic and the natural

numbers. Although we give a more precise definition later, let us call for now a
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degree Martin-Löf random (1-random) if it contains a random set. It is worth

noting that every degree a ≥ 0′ is 1-random. They are also PA since 0′ is a PA

degree and PA degrees are upward closed. Moreover, if a is PA and 1-random,

then 0′ ≤ a. For a detailed account of the theory of algorithmic randomness

we refer the reader to [27] and [64]. We first consider hyperimmune-free PA

degrees for our purpose and then we consider 1-random sets.

Definition 75. (Kent and Lewis, 2010) We say that α 6= 0P is subclass invari-

ant if for any Π0
1 class P with S(P) = α and any non-empty Π0

1 class P ′ ⊂ P,

S(P ′) = α. We say that α 6= 0P is weakly subclass invariant if there exists a

Π0
1 class P with S(P) = α and for any non-empty Π0

1 class P ′ ⊂ P, S(P ′) = α.

Now, any α which is minimal must be subclass invariant. If α is subclass

invariant, suppose that P be a Π0
1 class such that S(P) = α and suppose that

P ′ is a non-empty Π0
1 class with S(P ′) ⊂ α. Then let Q = {0 ∗ A : A ∈

P} ∪ {1 ∗ A : A ∈ P ′} be a Π0
1 class. Note that S(Q) = α, so Q witnesses

the fact that α is not subclass invariant which is a contradiction. So subclass

invariancy is equivalent to minimality.

Theorem 63. (Kent and Lewis, 2010) Suppose that α is weakly subclass

invariant. If a Π0
1 class contains any member of any hyperimmune-free degree

in α then it contains a member of every degree in α.

Then, by hyperimmune-free basis theorem, any non-empty Π0
1 class which

contains only members of degree in α contains a member of hyperimmune-free

degree in α. Hence, by the theorem above, we have the fact that α is minimal

if and only if it is weakly subclass invariant.

Recall that a degree is PA if and only if it contains a {0, 1}-valued DNR

function. Let r be the set of all 1-random degrees and let p be the set of all

PA degrees. Kent and Lewis [2] showed that both r and p are minimal in

(P, <). This is not the case for Π0
1 choice classes. In fact, we show that r

and p are not in Pc. The reason is that if a Π0
1 class contains a member of

hyperimmune-free PA degree, then it contains a member of every PA degree.

This is basically followed by the hyperimmune-free basis theorem and by the

fact that any non-empty Π0
1 class containing only {0, 1}-valued DNR functions

contains a member of every PA degree. The proof of the latter fact, originally
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proved in [65], appears in [2]. We modify that proof to get the desired result.

But first we need to give a lemma which is necessary for our claim.

Lemma 18. If there exists a Π0
1 choice class which contains a member of

hyperimmune-free PA degree, then there exists a non-empty Π0
1 choice class

which contains only {0, 1}-valued DNR functions.

Proof. Let P be a Π0
1 choice class containing a hyperimmune-free PA member

A. Then there exists a set B which is {0, 1}-valued DNR such that A ≡tt B.

This means there are total Turing functionals Ψm and Ψn such that Ψm(A) = B

and Ψn(B) = A. We then let Q contain all sets C such that Ψm(C) = D and

Ψn(D) = C, where D is a member of P. We then let Q′ be the elements of Q

which are {0, 1}-valued DNR. Now we need to argue that Q′ is a non-empty

Π0
1 choice class. Now an infinite string is {0, 1}-valued DNR if and only if

there is no finite stage at which we see that some initial segment of it is not

{0, 1}-valued DNR. So then, we take a downward closed and computable set

of strings Λ such that Q = [Λ]. To form Λ′ such that Q′ is the set of infinite

paths on Λ′, we enumerate Λ but whenever we see that any finite string σ is

not {0, 1}-valued DNR, we stop enumerating in any extensions of σ. Then let

Q′ be the set of infinite paths through Λ′. Clearly, Q′ is a non-empty Π0
1 choice

class containing only {0, 1}-valued DNR functions. �

Theorem 64. Any non-empty Π0
1 class P containing only {0, 1}-valued DNR

functions contains a member of every PA degree. Moreover, P contains mem-

bers of the same degree.

Proof. The proof uses forcing with Π0
1 classes. If Λ is computable and down-

ward closed then consider Ψi(∅) such that Ψi(∅; i) ↓= n if and only if there

exists some l > i such that τ(i) = n for all τ ∈ Λ of length l. By the uniformity

of the recursion theorem (Theorem 1), there exists a computable function f

such that, whenever [Λj ] is non-empty and contains only {0, 1}-valued DNR

functions, there exist sets A,B ∈ [Λj ] with A(f(j)) = 0 and B(f(j)) = 1. Here

one can also use Lemma 2.6 in [63].

Assume that we are given j0 such that [Λj0 ] = P is non-empty and contains

only {0, 1}-valued DNR functions. Let A be a {0, 1}-valued DNR function. We

construct B =
⋃

s∈ω σs which is in P and is of the same degree as A. We define
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an infinite descending sequence [Λj0 ] ⊃ [Λj1 ] ⊃ [Λj2 ] ⊃ · · · for approximating

B in P.

Suppose that we are given j0 such that [Λj0 ] is non-empty.

At stage 0: Define σ0 = ∅.

At stage s > 0: Suppose that we have already decided js−1 and σs−1.

Suppose also that there exists C ∈
[

Λjs−1

]

with C(f(js−1)) = A(s− 1).

Using an oracle for A, we can therefore compute σ of length f(js−1)+1 such

that σ(f(js−1)) = A(s − 1) which is an initial segment of some C ∈
[

Λjs−1

]

.

This follows from the fact that any {0, 1}-valued DNR function computes a

member of any non-empty Π0
1 class such that every member is {0, 1}-valued

DNR.

We then define σs = σ. Then define js so that [Λjs ] is the set of all

C ∈
[

Λjs−1

]

which extends σ.

The fact that B computes A follows from the fact that an oracle for B

allows us to retrace every step of the construction defining B.

This proves the first part. Now to show that there are two members of the

same degree, suppose that P = [Λ] is a Π0
1 class, for some downward closed

computable set of strings Λ, such that P contains only {0, 1}-valued DNR

functions. We take two incompatible strings σ0 and σ1 in Λ. Now since every

member of the set of all infinite branches above σ0 and σ1 is {0, 1}-valued DNR,

they both contain a member of every PA degree by the previous part. Hence,

they contain members of the same degree and therefore so does P. �

Corollary 21. CI− I is non-empty. Moreover, p is not a subset of the degree

spectrum of any Π0
1 choice class.

Proof. It follows from Lemma 18 and Theorem 64 that hyperimmune-free PA

degrees are choice invisible but not invisible.

5.4.1 Random sets and Π0
1 choice classes

We first review Lebesgue measure for Cantor space. Intuitively, a set A of

binary reals is measured by estimating how much of the interval [0, 1] = N∅ it

covers. This is done by covering A with sets that can be measured, i.e. sets
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that can be expressed by countable unions of open intervals Nσ, and taking

the infimum of the measure of such covers.

Definition 76. (i) Let A ⊂ 2ω be a set. We say {Nσ}σ∈Γ is a covering of

A if A ⊂
⋃

σ∈ΓNσ.

(ii) The Lebesgue outer measure µ∗ is given by:

µ∗(A) = Inf{
∑

σ∈Γ 2
−|σ| : {Nσ}σ∈Γ is a covering of A}.

(iii) A is Lebesgue measurable if for each X ⊂ 2ω we have

µ∗(X ) = µ∗(X ∩A) + µ∗(A ∩ X ).

If A is measurable, the Lebesgue measure of A is µ(A) = µ∗(A).

Now we shall give the definition for 1-random sets more precisely as follows.

Definition 77. A class P ⊂ 2ω is of Σ0
1-measure zero if there is a recursively

enumerable sequence of Σ0
1 classes B0,B1, . . . such that ∀n(µ(Bn) < 2−n) and

P ⊂
⋂

n∈ω Bn. A set B ⊂ ω is called 1-random (Martin-Löf random) if the

class {B} is not of Σ0
1-measure zero.

Although Π0
1 choice classes can contain a member of PA degree, we now shall

argue that 1-random sets are too “computationally related” to be a member of

a Π0
1 choice class. The following result can be found in [66].

Theorem 65 (Kautz, 1991). If a Π0
1 class contains a 1-random set, then it is

of positive measure.

The next theorem was shown by Kučera [50].

Theorem 66 (Kučera, 1985). If a Π0
1 class is of positive measure then it

contains a member of every 1-random degree.

The following result shows that Π0
1 choice classes do not contain random

sets.

Theorem 67. No Π0
1 choice class contains a 1-random set.
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Proof. Suppose that a Π0
1 class P = [Λ], for some downward closed computable

set of strings Λ, contains a 1-random set. Then it is of positive measure. Hence,

it must contain at least two 1-random sets, say A and B, since the class of sets

which are not 1-random is of measure 0 and any class of positive measure must

contain positive measure of sets which are 1-random. Similar to Theorem 64,

let σ0 ⊂ A and σ1 ⊂ B be two incompatible strings in Λ such that they are

infinitely extendible. Then the set of all infinite branches above each σi, for

i = {0, 1}, is of positive measure. Hence, they both contain members of every

1-random degree. Therefore, P must contain members of the same degree.

This contradicts the definition of Π0
1 choice classes. �
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