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Abstract

Spray drying of atomised solutions or slurries is one of the most common methods for

the production of a wide variety of particulate products in the chemical, food, personal

care products and pharmaceutical industries. The modelling of a spray drying process

for the manufacture of detergent powder in a counter-current tower is carried out using

two different approaches: a simple one-dimensional multiphase plug-flow modelling

and a more rigorous CFD modelling approach. Both approaches are coupled with an

existing semi-empirical slurry droplet drying model. The plug-flow model considers

heat, mass and momentum transfer between the polydispersed droplets/particles and gas

phase, along the tower height. In the CFD model, based on the Eulerian-Lagargian

method, the three-dimensional turbulent swirling gas flow is fully coupled with the

droplets/particles motion along with particle-wall interactions via the heat, mass and

momentum exchanges. The simulation results are compared with the experimental data

collected from a large scale pilot-plant spray drying tower and a reasonable agreement

with the measured powder outlet temperature, moisture content, and exhaust gas

temperature is obtained, considering the complexity of the process and the accuracy of

the measured data. The plug-flow model gives similar qualitative trends compared to

the CFD model and can be a useful supplement for quick determination of operating

conditions for pilot-plant trials that would enable more extensive and accurate

optimisation of the process. The more computationally expensive CFD model can be

used for tackling operational and product quality issues including wall deposition and

thermal degradation. The gas flow and temperature profiles, and droplet/particle

trajectories obtained from the CFD modelling results are used to propose a zonal

modelling approach to model spray tower in a computationally efficient manner. This

approach can be used to develop models for process optimisation of counter-current

spray drying towers, as reliably as the CFD model.
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1. INTRODUCTION

1.1 Background and Motivation for Research

Spray drying is one of the oldest and the most common unit operations used in the

manufacture of food, chemical, pharmaceutical, household and personal care particulate

products (Masters, 1972). The earliest patented spray dryer design dates back to 1914

(Masters, 1984). The commercial production of food and chemicals using the spray

drying process started during the Second World War (Masters, 1972; Patel et al., 2009;

Cal and Sollohub, 2009). The process involves drying of a solution or slurry into dry

particles by a hot gas. The hot gas is typically atmospheric air, heated to the required

temperature. Spray drying is carried out in a spray drying tower, in which the feed is

atomised into small droplets. The atomised droplets come in contact with a hot air flow

and exchange heat, mass and momentum. Moisture leaves the droplets and solid

particles are formed. It is applicable to drying of both heat sensitive as well as thermally

stable products. The contact between the droplets/particles and a hot gas is either co-

current or counter-current. The co-current spray drying towers are suitable for drying of

heat sensitive materials such as food and pharmaceutical products. The counter-current

spray drying towers are thermally more efficient than co-current towers as they are

capable of utilising heat more efficiently due to the counter-current contact between the

two phases (Masters, 1984). Counter-current spray drying towers are used for the

manufacture of thermally stable products; the most common example is the detergent

powder, which is the focus of this study. Spray drying is preferred over other drying

unit operations (such as rotary dryers, fluidized bed dryers, spouted bed dryers, belt

dryers, etc.) for producing dry powders of required characteristics due to its advantage

of converting pumpable feed (solution/slurry) into a powder form in a single,

continuous unit operation and the resulting particles are typically fairly spherical. Due

to these advantages, spray drying is considered as one of the most important industrial

drying system (Masters, 1984).

It is highly desirable to have optimised design parameters (such as the tower diameter

and height, type of spray nozzle and angle of air inlet nozzles/swirl vane) and operating

conditions (such as feed temperature, moisture content, pressure and mass flow, drying

gas temperature and mass flow, and arrangement of nozzles for the case of multi-nozzle

tower) in a spray drying tower for stable and efficient tower operation and to produce
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powders of required characteristics such as bulk density, morphology, flowability, size

distribution and moisture content. Despite being a prevalent drying technology, the

design of spray drying towers and process optimisation rely heavily on the past

operating experience of the operator and the experimental data from laboratory and

pilot-scale plants (Marshall and Seltzer, 1950b; Masters, 1968, 1972; Bahu, 1992;

Langrish and Fletcher, 2003; Xin, and Mujumdar, 2009). This is because of the

complexity of the spray drying process as it involves simultaneous heat, mass and

momentum transfer between billions of droplets/particles of a wide range of sizes and

the drying gas with a complex, three-dimensional, turbulent and swirling flow pattern.

Furthermore, coalescence of droplets, agglomeration and breakage of particles,

droplets/particles deposition on the wall and re-entrainment of deposited material back

into the gas flow makes the prediction of the spray dryer design and operating

parameters even more challenging. A wide range of inter-dependent operating variables

are involved in the spray drying process that can be varied to optimise the process

(Oakley, 2004; Cal and Sollohub, 2009). These include drying gas temperature and flow

rate, nozzle arrangement (in the case of multiple nozzles), feed temperature, flow rate

and pressure and feed solid concentration. All of these affect the dried powder

characteristics including powder size distribution, morphology, flowability, moisture

content and bulk density. The performance of a spray dryer is stable only within a

narrow range of operating variables (Nath and Satpathy, 1998; Zbicinski et al., 2004).

To study the influence of these operating variables on dried powder characteristics,

laboratory and pilot-scale experimental trials are carried out and optimised operating

parameters are determined. These experimental trials are expensive, time consuming

and it is not possible to study the effect of major design modifications in the tower for

optimum performance. The scale-up of spray drying towers is challenging and relies

heavily on the experience of the designer (Masters, 1995). The use of dimensionless

groups, in the scale-up is of limited use as it is not possible to ensure dynamic similarity

between small and large drying chambers due to a wide range of length and velocity

scales inside the spray dryer including chamber diameter, atomiser dimensions, droplet

diameters and velocities of gas and droplets/particles (Arnason and Crowe, 1980;

Oakley, 1994; Langrish, 2007).

Mathematical modelling of spray drying towers can reduce the design and process

optimisation time and costs. The complexity of interacting transport processes in a spray

drying tower, as mentioned above, poses challenges to spray drying modelling. Many of

the modelling efforts made in the past used over-simplified assumptions (Parti and
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Palancz, 1974; Katta and Gauvin, 1975; Gauvin et al., 1975; Keey and Pham, 1976;

Topar, 1980; Montazer-Rahmati and Ghafele-Bashi, 2007). These simple modelling

approaches (mainly assuming plug-flow of the gas phase) ignored the interaction of the

droplets/particles with complex aerodynamics of the drying gas, droplets/particles and

wall interactions, and inter-particle interactions. Therefore, the existing simple models

find limited use in the determination of optimum design and operating conditions.

In recent decades, the modelling of spray drying towers using Computational Fluid

Dynamics (CFD) has gained attention. A number of studies have been published which

have shown the potential of CFD in predicting the spray dryer performance by

modelling the complex interactions between the droplets/particles with gas, inter-

droplet/particle interactions and particle-wall interactions. However, the focus of these

studies has been on the modelling of co-current spray drying towers. The CFD studies

on the counter-current towers are scarce.

A study of the complex interactions between the droplets/particles with the drying gas

and the droplet/particle-wall interactions along with the transport processes between the

discrete phase (droplets/particles) and the continuous phase (drying gas) using CFD can

improve our understanding of the spray drying processes in counter-current spray

drying towers. This will result in a more efficient design and operation of such drying

towers and improved product qualities. However, multi-phase CFD models have a

disadvantage of being computationally expensive; therefore this approach is not yet

feasible for routine use by industries to determine optimised parameters for spray drying

operations. A simplified approach is required to model counter-current spray drying

processes, capturing all the important features of the process that can have an impact on

the predictability of the spray dried powder characteristics. The improved understanding

of the spray drying process obtained via CFD simulations can be used to develop a

numerical model using a simplified approach, capturing important processes occurring

within the spray drying tower. Such a model can be used expediently for the

determination of optimised operating parameters for an efficient spray drying operation

and product quality improvement.

1.2 Aims and Objectives

The overall aim of this project is to improve the understanding of the spray drying

process for the manufacture of detergent powders in a counter-current spray drying

tower using CFD modelling, thereby setting up a CFD modelling methodology for these
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towers. Furthermore, to propose a methodology for the development of a numerical

model using a simplified approach which can be used routinely to predict the

performance of counter-current spray drying towers in a computationally efficient

manner. The data collected by other researchers in a counter-current pilot-plant spray

drying tower, called integrated pilot-plant (IPP), installed at Procter and Gamble (P&G)

Research Centres in Newcastle, UK, is used for the validation of modelling results.

The CFD modelling of this IPP spray drying tower is carried out considering heat and

mass transfer between the droplets/particles and the drying gas using an existing semi-

empirical detergent slurry droplet drying model developed by Hecht (2012). In addition,

the momentum coupling between the two phases and particle-wall interactions as well

as heat losses from the spray drying tower are also studied using the CFD model. The

experimental data, including input/output parameters from the pilot-plant spray tower as

well as flow and temperature profiles collected from inside the tower by the P&G

research team is used for validation of CFD modelling results. A simplified plug-flow

approach is also used to develop a model which considers one-dimensional flow of the

discrete phase and the drying gas coupled with heat, mass and particulate phase

momentum transfer. This model is validated against the pilot-plant data (IPP tower in

Newcastle) and also compared with CFD modelling results. The detailed information

about the droplet drying kinetics in the spray drying tower obtained from the CFD

modelling results is used to propose a simplified numerical modelling approach utilising

the simplicity of the plug-flow model for capturing important processes in the spray

tower. This can then be used to determine optimised operating conditions for the spray

drying process in a computationally efficient manner.

The specific aims and objectives of the project are outlined below:

(a) To develop a plug-flow model for a counter-current spray drying tower for

quick estimation of the influence of operating parameters on the properties of

spray dried powder and validate the modelling results with the experimental

data obtained in the IPP spray drying tower.

(b) To carry out CFD modelling of single-phase, isothermal turbulent swirling

flows in the IPP tower to select a suitable mesh size, numerical discretisation

scheme and turbulence model to reproduce the measured velocity profiles in

the tower. It is important to have a good prediction of the gas flow profiles for

a reliable estimation of dried powder characteristics.



5

(c) To carry out single-phase non-isothermal CFD modelling of the spray drying

tower to study the heat loss from the spray drying tower to the ambient and

validate the temperature predictions with the experimental data.

(d) To carry out multiphase CFD modelling of the spray drying tower considering

heat, mass and momentum transfer between the gas and the discrete phase,

droplet/particle wall interactions and heat loss from the tower to study the

spray drying process for the manufacture of detergent powders.

(e) Compare the results of the plug-flow and multiphase CFD model with

experimental data using single nozzle slurry spray as well as two nozzles at

two different heights.

(f) Propose a simplified zonal modelling approach for predicting the performance

of spray drying towers without requiring large computational resources. This

will be based on the CFD and plug-flow modelling results.

1.3 Structure of the Thesis

The contents of this thesis are outlined below:

In Chapter 2, a general spray drying process is described along with the description of

the major components of the spray drying process operation. The advantages and

disadvantages of the spray drying process are presented. The applications of spray

drying in various industries are discussed with particular focus on the spray drying in

the detergent manufacturing industry.

In Chapter 3, a review of existing models available for the prediction of the drying rate

of the droplets in a spray drying process is presented. A literature review on the

development that has been made in spray drying modelling is carried out.

In Chapter 4, the spray drying process in the IPP spray drying tower of P&G in

Newcastle is described along with measurements and tests carried out by other

researchers at P&G for dried powder characterisation. A brief description of the

measurement of the data taken from inside the IPP tower (including gas velocity and

temperature profiles) is given in this chapter. This data is used for validation of model

predictions.

In Chapter 5, a plug-flow model of spray drying in a counter-current spray tower as well

as the semi-empirical slurry droplet drying model (Hecht, 2012) used to predict the
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droplet drying rate is described. The results of the plug-flow model are compared with

the experimental data collected from the IPP tower.

In Chapter 6, single phase CFD simulations of the IPP spray drying tower is carried out

to determine a suitable mesh size, numerical scheme and turbulence model for

predicting the gas velocity profiles. The results are compared with the measured

velocity profiles at various axial locations. The simulation is further extended by

considering non-isothermal conditions with incorporated heat losses through the

insulated tower wall. The predicted temperature profiles at different axial locations are

compared with the experimental data.

In Chapter 7, CFD modelling of the detergent spray drying process is carried out

considering heat, mass and momentum transfer between the discrete (droplets/particles)

and continuous (drying gas) phases. The slurry is sprayed using a single centrally

located hollow-cone nozzle. The results of CFD model are compared with the

experimental data including output data (powder temperature, powder moisture content

and exhaust air temperature) and temperature profiles of gas phase inside the spray

drying tower (where available) as well as with the plug-flow modelling results. The

sensitivity of various parameters including initial droplet size distribution, droplet

injection velocity, drag coefficient and particle-wall interaction on the simulation results

is also studied.

In Chapter 8, the plug-flow and CFD approaches are applied to modelling of the spray

drying process with slurry sprayed using two single, centrally located hollow-cone

nozzles at different heights. The modelling results are validated with experimental data.

In Chapter 9, recommendations are made for dividing the tower into various zones

(comprising plug-flow and CSTR) to develop a zonal model based on the CFD

predicted gas flow pattern and droplet/particle trajectories.

Chapter 10 concludes the research work findings and recommendations are made for

future work.
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1.4 Thesis Map
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2. SPRAY DRYING FUNDAMENTALS

2.1 Spray Drying Process

The process of spray drying can be divided into three distinct stages as shown

schematically in Figure 2.1 (Masters, 1972). The first stage involves preparation of feed

consisting of a solution or slurry in a mixer. It is then pumped to an atomiser, which

atomises the solution or slurry into fine droplets inside a spray drying tower. In the

second stage, the fine droplets come in contact with a hot gas stream flowing either co-

current or counter-current to the droplets, the moisture in the droplets is evaporated and

dried particles are formed. In the final stage, the dried powder is separated from the gas

stream. This is typically done using a cyclone separator. The wet gas containing

evaporated moisture is removed either from the system (open cycle operation) or it is

recycled back to the dryer after scrubbing operation to remove the moisture (closed

cycle operation). Closed cycle operation is typically used when it is required to prevent

the contact of O2 with the powder to avoid oxidation or when a flammable solvent

system is involved; hence the drying gas in this case is not air. Open cycle operation is

by far the most widely used configuration (Masters, 1985). Process steps involved in

spray drying are depicted in Figure 2.1.

2.1.1 Advantages and Disadvantages of Spray Drying

Spray drying operation has the following advantages and disadvantages as listed

by Masters (1985) and Marshall and Seltzer (1950a):

1. Certain product properties and quality attributes can be effectively controlled and

varied by spray drying, including product density within a given range by varying

the operating parameters. Particle size distribution can be frequently varied in a

given range by varying the operating conditions.

2. Particle shape resulting from spray drying approximates a sphere either hollow or

solid depending on feed properties and operating conditions.

3. It is frequently possible to preserve the quality of a product and prevent it from

thermal degradation.

4. It is particularly suitable for large volume production as the cost per unit mass of

product decreases with increasing product volume compared to other dryer types.

5. The material is dried in a single unit operation, thus reducing the cost of

maintenance.
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6. A wide range of dryer designs are available, with selection of a suitable dryer

design, and product specification are readily met for drying both thermally stable

and heat sensitive products.

7. Spray dryers can be designed to any individual capacity requirement.

8. Spray dryers can handle inflammable organic solvent-based feedstocks, powders

which can potentially form explosive mixture, drying of toxic materials and

drying of feedstocks that require handling in aseptic/hygienic conditions.

Despite these advantages, spray drying also has some disadvantages. Some of these are

inherent in the spray drying operation while some are due to the lack of knowledge of

the spray drying operation. The disadvantages of spray drying are listed below:

1. It involves a higher initial investment than other types of continuous dryers.

Since the spray drying units are physically larger per unit mass of powder output

than other types of dryers.

2. Spray drying towers have relatively poor thermal efficiency compared to other

dryer types due to the large volume of the tower required to produce relatively

smaller amount of product.

3. The exhaust gas from the spray dryer contains a large amount of low-grade

waste heat and it is expensive to utilise this heat in a heat exchanger since the

equipment must handle powder-laden air.

4. Spray drying towers have larger evaporative loads compared to other dryer types

due to the requirement of pumpable liquid as feed.

5. Sometimes a low bulk density product is produced when a high bulk density

product is required.

6. A spray dryer designed for fine powder production in general cannot produce

coarse powder if required.



10

FEED ATOMIZATION

Wheel

(Vaned)

Wheel

(Bushing)

Disc

(Vaneless)
Pressure Sonic Pneumatic

Combined Rotary-Pneumatic

SPRAY-AIR CONTACT

Co-Current

Flow Dryer

Counter-Current

Flow Dryer

Mixed

Flow Dryer

Vertical

Dryer

Horizontal

Dryer

Conical

Base

Flat

Base

Flat

Base

Vertical

Dryer

Conical

Base

Flat

Base

Vertical

Dryer

Flat

Base

SPRAY EVAPORATION

PRODUCT SEPARATIONPOWDER

Product Discharge From

Chamber and Separation Unit

Total Product Discharge From

Separation Unit

Primary

Separation

Secondary

Separation

Product From

Conical Chamber

Base

Product Swept

From Flat

Chamber Base

Cyclone Bag Filter

Wet Scrubber

Rotary Atomizer Nozzle Atomizer

Figure – 2.1: Schematic of spray drying process shown in stages. (Adapted from

Masters, 1972).

2.2 Atomisation

Atomisation is carried out inside the spray drying tower by means of an atomiser to

convert a liquid or slurry feed into small droplets. The size distribution of the particles

is controlled by the size distribution of the droplets produced in atomisation. The

breakup of pumpable feed into small droplets requires energy. Atomisers used in spray

drying towers include rotary nozzle (utilisation of centrifugal energy), pressure swirl

nozzle (utilisation of pressure energy) and pneumatic (two-fluid) nozzle atomisers
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(utilisation of kinetic energy). The choice of an atomiser is dependent on both the nature

of feed, feed flow, type of spray tower and the required powder characteristics (Masters,

1985).

In a pressure swirl nozzle atomiser, the liquid is pumped into a swirl chamber at a high

pressure and discharged through an orifice (Figure 2.2). The choice of an orifice size is

dependent on the liquid flow and the required size distribution of the dried powder. To

produce finer particles, a higher nozzle pressure is required. The most commonly used

spray patterns in pressure nozzle atomisers are hollow cone and solid cone sprays

(Figure 2.3). The hollow cone spray has an air-core at the centre of the orifice which is

formed due to the tangential entry of the feed into the swirl chamber. This results in a

hollow cone pattern of the spray droplets. In the solid-cone sprays, the droplets are

distributed fairly uniformly throughout the spray. The size distribution in the hollow

cone spray is more homogeneous compared to the solid cone spray (Masters, 1985).

Swirl
Chamber

Spray Cone
Angle

Droplets

Sheet

Ligament

Slurry

Air
Core

Orifice

Inlet port

Figure – 2.2: Schematic of a pressure swirl nozzle atomiser.
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Figure – 2.3: Droplet population profiles in solid cone and hollow cone spray patterns.

Rotary atomisers are used to produce a fine to medium-coarse product. It is also called a

rotary wheel or centrifugal atomiser. In a rotary atomiser, a spinning disc is used to

accelerate the liquid or slurry feed to a high speed. The high relative speed between the

liquid or slurry film and the surrounding air at the edge of the wheel causes the liquid to

form small droplets. The liquid or slurry leaves the outer edge of the disc radially into

the hot air stream as a flat cloud of droplets. The major factor affecting the particle size

of the liquid or slurry droplets is the wheel tip speed. For finer particles, the centrifugal

atomiser is spun at a high speed. A wide variety of spray characteristics can be obtained

for a given feed by variation in feed rate, atomiser speed and design of atomiser. Rotary

atomisers are capable of handling varying loads (Masters, 1972). A drawback of rotary

atomiser is that it throws the droplets radially outwards, hence a larger chamber

diameter is required to ensure that the droplets do not impinge on the wall (Oakley,

1997), hence it is not suitable for a drying chamber with a small diameter (typically in

counter-current spray towers), it is also unsuitable for a highly viscous slurry feed.

Figure 2.4 is a schematic of a rotary atomiser.
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Figure – 2.4: Schematic of a rotary atomiser (adapted from Masters, 1985).

In two-fluid nozzle atomisers, the feed is impacted with high velocity air/gas, which

creates high frictional forces over liquid surfaces causing liquid disintegration into spray

droplets (Masters, 1985). Two-fluid nozzle atomisers are suitable for a low feed mass

flow because at high liquid mass flow, the air/gas cannot penetrate the thick liquid jet

and atomisation is incomplete, resulting in a wide range of droplet size distribution.

Figure 2.5 is schematic of a two-fluid nozzle atomiser.

Figure – 2.5: Schematic of a two-fluid atomiser (adapted from Masters, 1985).

The Sauter mean droplet diameter is widely used to characterise the distribution of

spray droplets, it is given by (Masters, 1985):
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2.3 Types of Spray Dryers

With respect to contact between the droplets/particles and the hot gas, spray dryers are

classified as co-current, counter-current and mixed-flow dryers. With respect to the

height to diameter ratio, the spray drying towers are classified as short-form and tall-

form. The short-form spray drying towers have a height to diameter ratio less than 3

(Masters, 1972). The choice of spray drying tower is based primarily on the properties

of material being dried. Figure 2.6 is a schematic of co-current, counter-current and

mixed flow dryers.

In co-current spray dryers (Figure 2.6 (a)), the feed and the gas flow in the same

direction. They are suitable for heat sensitive products, e.g., in food and pharmaceutical

industry. When feed is introduced into the drying tower, it contains a lot of moisture so

the heat is utilised in evaporation of moisture from the droplets and prevents the

droplets from getting exposed to high gas temperature. As the particles reach the

bottom, the gas becomes much cooler as most of the heat of the gas has been given up at

the top in evaporating the moisture. So a low temperature condition prevails at most of

the tower height (Masters, 1972). This configuration enables particles to have a lower

residence time which is important to ensure the stability of heat sensitive products. In

these towers, typically, the gas is introduced from the top via a swirl vane that induces

swirl in the gas flow inside the tower. The dried powder and drying gas both exit from

the bottom of the tower and particles are typically separated from the exhaust gas using

a cyclone separator. In these towers, short-form configuration is more common.

In counter-current spray dryers (Figure 2.6 (b)), the droplets enter the tower from the

top, while the hot gas is introduced near the bottom exit of the tower. The atomised

droplets come in contact with a relatively cold gas. Moisture evaporation from the

droplets takes place and is soon transformed into wet particles as it goes down due to

gravity. The particles at the bottom of spray tower come in contact with the hot gas. At

this point, since most of the moisture from the particles is evaporated, it results in a
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rapid rise in the temperature of the particles. Hence this configuration is suitable for

thermally stable products like detergents and ceramics. The dried powder is collected

from the bottom while the exhaust gas leaving the tower contains entrained fine powder,

which is typically separated using a cyclone separator. This configuration offers better

heat utilisation compared to co-current spray dryers and enables particles to have a

maximum residence time (Masters, 1972). In counter-current spray drying towers, the

gas is typically introduced via multiple inlet nozzles at the bottom of the tower. These

can be inclined tangentially, which imparts swirl to the gas flow (Masters, 1985). The

counter-current spray drying towers are typically tall-form.

In the mixed-type configuration (Figure 2.6 (c)), the particles moving upwards through

the drying chamber exhibit both co-current and counter-current flow to the hot gas. The

spray nozzle is located at the bottom (hence the slurry is sprayed in the upward

direction) while the gas enters the tower from the top. The droplets first come in

counter-current contact with the hot gas. The particles soon start moving downward due

to gravity and become co-current with the gas. The dried powder leaves with the

exhaust gas and is typically separated using a cyclone separator. This configuration

offers maximum residence time for a given tower height. This type of spray dryer

configuration is suitable for thermally stable products (Masters, 1972). The use of co-

current and counter-current spray drying towers is more common in industries

compared to mixed-flow configuration.

The spray dryers can also have a fluid bed integrated into the chamber base to promote

agglomeration, the powder is then discharged into an externally-mounted vibrated fluid

bed for powder cooling. This type of arrangement is used for semi-instant skim milk.

For dryers with a conical base at the bottom, vibrating fluidized beds are mounted

outside the chamber base. In these types it is ensured that the powder leaving the tower

base is sufficiently wet to promote agglomeration through self-adhesion of particles.

The powder is discharged to a first fluidized bed for completion of drying and

agglomeration and then onto a second fluidized bed for powder cooling (Masters,

1985).
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Figure – 2.6: Schematic diagrams of spray dryers: (a) Co-current flow; (b) Counter-

current flow; (c) Mixed flow
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2.4 Spray-Air Contact in Spray Drying Towers

In both co-current and counter-current spray drying towers, typically a swirl is induced

in the gas to improve thermal efficiency of the spray tower. It also helps in stabilising

the gas flow patterns which leads to steady tower operation and minimised deposition

on the wall (Langrish and Zbicinski, 1994; Huntington, 2004; Fletcher et al., 2003;

Langrish and Fletcher, 2003; Wawrzyniak et al., 2012a; Harvie et al., 2001). However,

in some cases, in both co-current and counter-current spray towers, the gas is introduced

into the tower without swirl in which case, a high instability in the gas flow patterns has

been reported (Southwell and Langrish, 2000; Wawrzyniak et al., 2012a; Wawrzyniak

et al., 2012b).

In co-current spray drying towers with the swirling flow, the gas is typically introduced

via a swirl vane at an angle that induces swirl in the gas flow inside the tower (Kieviet,

1997; Langrish et al., 2004). The gas flow consists of a faster flowing central core

surrounded by a slower recirculating gas flow due to sudden expansion of the gas in the

drying tower. The intensity of the swirl depends on the angle of air inlet swirl vanes. If

the vane angle is sufficiently large, then vortex breakdown (abrupt change in vortex

structure) may also occur (Langrish et al. 1993; Kieviet, 1997), resulting in back mixing

of the gas flow. The rotation of the rotary atomiser also induces swirl in the gas flow

(Woo et al., 2012) and it can be large enough to cause vortex breakdown. Studies on

spray drying in co-current towers have shown that back mixing is generally avoided,

because it results in dried particles coming in contact with the hot gas that promotes

thermal degradation (Southwell and Langrish, 2001). Highly swirling flow in spray

dryers also leads to greater deposition rate (Ozmen and Langrish, 2003, 2005). The co-

current spray drying towers due to a larger diameter have fairly unstable gas flow

patterns both with and without swirl, because there is a large unconstrained space for

the drying gas jet to give time-dependent oscillations (Langrish and Fletcher, 2001;

Lebarbier et al., 2001). In co-current spray drying towers, smaller particles typically

have shorter residence time because these particles remain in the faster moving gas core

in the central region of the tower due to smaller momentum, while the larger particles

are able to reach closer to the wall where the gas velocity is relatively smaller (Fletcher

et al., 2003; Saleh, 2010).

In counter-current spray drying towers, the gas enters via a number of tangential-entry

inlet nozzles at the bottom of the tower that imparts swirl to the gas flow (Place et al.,
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1959; Harvie et al., 2001; Sharma, 1990; Bayly et al., 2004). Due to restricted space

(height to diameter ratio greater than 3), the central core flow is stable, resulting in a

steady gas flow (Fletcher et al., 2003). In counter-current spray drying towers, the back

mixing resulting from the vortex breakdown is desirable as it improves the thermal

efficiency of the spray tower operation because it reduces the temperature gradient

along the tower axis and increases the contact time of the particles with the drying gas.

Smaller particles in counter-current towers, as they fall down and move counter-current

to the gas flow, have greater residence time compared to larger particles, because

smaller particles exhibit greater influence of drag force due to smaller momentum.

Since smaller particles have a larger residence time and greater heat and mass transfer

coefficients, these particles may lose all free moisture before they exit the tower and

may get exposed to high inlet gas temperature which may result in thermal degradation.

Previous experimental and CFD modelling studies of gas flow patterns in counter-

current spray drying towers are reviewed in Section 3.14 and 3.15, respectively.

2.5 Wall Deposition in Spray Dryers

Wall deposition is the particle build-up on the walls of the spray dryers due to the

adhesion of particles on initially clean walls. Subsequent layers of particles eventually

become attached to the wall during the operation (Langrish and Fletcher, 2001;

Langrish, 2007). The primary adhesive forces responsible for wall deposition are liquid

bridge forces, which depend on the composition of the feed (Booyani et al., 2004), Van

der Waals forces and electrostatic forces. Some materials also exhibit sticky nature

under a certain range of temperature called sticky point temperature. On the other hand,

particles may be removed by the gas flow past the wall. The primary forces responsible

for re-entrainment of the particles are the drag force, the lift force and the impact force

(Hanus and Langrish, 2007). The shear stress created from the gas flow past the wall

will also contribute to re-entrainment of the particles, eventually a dynamic equilibrium

is established between the deposited and the re-entrained particles (Masuda and

Matsusaka, 1997). Kieviet (1997) noted that wall deposition plays a major role in

determining the residence time of particles in co-current spray drying towers. Wall

deposition should be avoided as the deposited material may eventually dry, overheat

and degrade before falling and mixing with the dried powder, thus affecting the dried

product quality (Harvie et al. 2001). A thick layer of deposits on the wall may also

change the air flow profiles which would affect the spray dryer performance. Wall

deposition is promoted by highly unsteady gas flow pattern in co-current spray drying
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towers (Fletcher et al., 2003; Langrish and Fletcher, 2003). This unsteady flow pattern

may also promote wall deposition in counter-current spray dryers (Wawrzyniak et al.,

2012a). Counter-current spray towers exhibit considerable wall build-up (Marshall and

Seltzer, 1950b), which may be due to the fact that these towers typically have high

degree of swirl in the gas flow which allows particles to move close to the wall and

have more frequent particle-wall collision and promoting deposition. The counter-

current spray towers are also typically tall-form, i.e., having more restricted space

compared to co-current towers adding more possibility of particle-wall collision

resulting in deposition. Wall deposition may also occur during start-up and shutdown

when the system is out of equilibrium (Huntington, 2004).

The effect of wall surface properties including surface roughness, wall temperature,

surface energy and dielectric properties on wall deposition were experimentally studied

by Woo et al. (2008b). It was found that a surface with a higher roughness produced a

larger deposition flux. Higher temperatures tend to promote deposition on the wall,

lower surface energy material tends to inhibit deposition and dielectric material tends to

promote deposition on the wall. The study showed that in addition to the material being

spray dried, the wall surface properties can also influence deposition on the wall.

In a study carried out by Hassal (2011), the characteristics of the deposits on the wall

were studied in the IPP spray drying tower, which is used for CFD modelling in this

study. The deposits were a maximum close to the spray nozzle due to the particles being

more wet at this location. The deposits were a minimum close to the drying gas inlets

because as the particles become dry the tendency to stick to the wall decreases, the

higher velocity in the bottom region due to higher gas temperature also hampered the

deposition of particles. Typically, 2.5-9% of the material was deposited on the wall.

Various parameters influencing the deposition rate were also studied including initial

slurry moisture content, slurry composition, dried powder moisture content, size

distribution of dried powder, and dried powder outlet temperature. It was found that an

increase in initial slurry moisture content and the amount of surfactant in the slurry

increased the deposition rate. The deposition rate was also found to be greater when the

dried powder had a greater final moisture content, a higher mean particle size and a

lower powder outlet temperature.

The deposits on the wall also pose safety issues as the deposited material may be

exposed to a high temperature for a prolonged period of time that may result in
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combustion, causing a fire inside the spray drying tower. Therefore the spray drying

tower needs to be inspected for material build-up on the wall and cleaned periodically,

which requires shutting down the plant, which contributes to the production costs

(Masters, 1985). It is therefore highly desirable to have minimised deposition rate in a

spray drying operation for a safe, efficient and stable operation.

2.6 Thermal Efficiency of Spray Dryers

It is desirable to have spray dryers operated at the highest possible thermal efficiency.

The thermal efficiency of spray dryers can be represented in terms of an overall

adiabatic thermal efficiency defined as the fraction of total heat supplied to the dryer

used in evaporation process. It can be approximated using the following relation

(Masters, 1985):
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Spray dryers, like other industrial dryers, consume large amounts of energy, typically 3-

20 GJ per tonne of water evaporated (Baker and McKenzie, 2005) and are often

operated inefficiently (Al-Mansour et al., 2011). Baker and McKenzie (2005) analysed

32 industrial spray dryers in the UK chemical, food and ceramic industries using their

adiabatic dryer model and estimated that around 29% of the energy supplied to these

dryers was wasted. The thermal efficiency of spray dryers decreases with decreasing

capacity of dryers. Spray dryers with a capacity of <1 t/h typically consume 4-5 times

more energy in evaporating a unit mass of moisture (Baker and McKenzie, 2005). A

thermally efficient spray drying operation can reduce the operating cost by reducing fuel

consumption and become more environmentally friendly. The thermal efficiency can be

improved by minimising heat losses to the surroundings. From equation (2.1), it can be

realised that the thermal efficiency of spray dryers can be increased by increasing the

temperature of the drying gas and by operating the dryer at a minimum possible exhaust

gas temperature. However, this would also require operating the drying tower at a

higher feed rate, which can lead to more wall deposition (Masters, 1985). Operating the

spray tower at higher inlet gas temperature may also make the product more susceptible

to thermal degradation and increase the heat loss from the tower.



21

2.7 Applications of Spray Drying Process

The process of spray drying is used in a wide range of industries including food,

household and personal care products and pharmaceutical. It can be designed to fit any

required capacity ranging from a few kilograms per hour to tens of tonnes per hour. The

feed can be in the form of slurry, solution, paste or melt. Despite its disadvantage of

having a low thermal efficiency because a large volumetric flow of air is required for

drying relatively smaller amount of feed, it is considered as an ideal unit operation for

drying and particle formation due to unique product characteristics (Mujumdar, 1987).

Spray drying process offers a fair degree of precision and control over characteristics of

the product like bulk density, particle size, volatile retention and residual solvent. It

combines drying and particle formation in a single, continuous, unit operation.

Applications of spray drying process include detergent, ceramic, pesticide, fertilizer,

dyestuff, pigment, milk products, fruits, vegetables, egg products, fish products, anti-

biotics, enzymes, vaccines, plasma and many others (Masters, 1985). Recently, spray

drying has been used to produce nanoparticles in laboratory scale equipment (Arpagaus,

2012; Khan et al., 2012).

The main drivers for developments in spray drying technology include (Masters, 2004):

(i) Reduction of excessive undesirable deposition of powder on the tower wall.

(ii) Meeting changing market requirements regarding powder specifications.

(iii) Reduction in the cost of production of powder.

(iv) Meeting the ever more stringent health, safety and environmental protection

constraints.

2.7.1 Spray Drying in the Food Industry

Spray drying is used for drying and particle formation of food products including milk,

beverages, flavouring compounds, fruits, vegetables, corn products, sugar products and

wheat gluten. Food products are heat sensitive, so spray drying of food products is

generally carried out in the co-current spray dryers. In the spray drying of food

products, flavour and aroma retention is of primary importance. It is also required that

drying does not affect the nutritional content of food. To prevent the loss of flavours

and aroma, most of the food products are dried with edible gums plus carbohydrate that

form a solid edible film at the surface of the particle on the formation of solid shell

during drying (Masters, 1972). The deposition of particles on the wall is highly
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undesirable as this may lead to unhygienic conditions resulting from microbial growth

in the deposits (Masters and Masters, 2006).

2.7.2 Spray Drying in the Pharmaceutical Industry

Spray drying technology is widely applied in pharmaceutical field. Spray dried products

in the pharmaceutical industry include antibiotics, enzymes, yeasts, vaccines and

plasma. In pharmaceutical products, narrow particle size distribution, good flowability,

low friability, improved compressibility, low bulk density, high solubility and reduced

moisture content is important. Most of these products are high value compounds and are

produced in small quantities. Therefore, in selecting a spray dryer type, energy

conservation is of secondary importance (Mujumdar, 1987). The particle size of spray

dried products is very small for tablet production; hence spray drying is typically

followed by granulation.

2.7.3 Spray Drying in the Detergent Industry

Detergent powder is one of the best know examples of spray dried products (Marshall

and Seltzer, 1950a; Masters, 1985; Oakley, 1997). The commercial production of spray-

dried detergent powders started in the early 1930s (Chaloud et al., 1957; Huntington,

2004). Since then, although a number of other products forms have been introduced

including tablets, liquid detergents, gels and pouches, but the detergent powders

continue to dominate the laundry market (Rahse and Dicoi, 2001). Detergent powders

offer significant advantages over the other forms of detergents as they contain relatively

larger proportions of inorganic materials, such as water hardness removers, alkalinity

sources and bleaches, which tend to be cheaper. Owing to their low moisture content, it

is easier to include a range of more complex materials such as bleach and enzymes and

keep them stable for a longer period of time. Additionally, the powdered form also has

an advantage of being consistent in formulation, while in the liquid forms, phase

separation can occur (Bayly et al., 2009).

The global soap and detergent manufacturing industry includes about 700 companies

with a combined annual revenue of over £10 billion, with Procter and Gamble, Unilever

and Dial among the detergent manufacturing companies having the major market share

(First research, 2008). The laundry detergent accounts for 40% of this revenue. In order

to maintain this market share, the large companies are faced by competition to produce

cheaper detergent powder with improved quality. This requires continuous
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improvement in the product formulation and efficient production via spray drying

without compromising operational health and safety, and environmental protection

regulations.

For the manufacture of detergent powder, counter-current spray drying towers are

preferred (Masters, 1985; Oakley, 1997). The counter-current spray drying towers have

an advantage of being more thermally efficient compared to co-current spray drying

towers. The key quality measures of the spray dried detergent powder include: bulk

density, particle size distribution and moisture content (Huntington, 2004).

2.8 Detergent Powder Characteristics

2.8.1 Bulk Density

The bulk density is an important powder characteristic as many of the detergent packing

operations use volume fill rather than weight fill. The consumer also measures the

detergent powder in terms of volume for use in washing machine. The bulk density of

detergent powder is typically maintained in the range of 350 to 900 kg/m3 (Bayly,

2013). The bulk density of the spray dried powder is influenced by the extent of

inflation of the particles due to expansion of air and moisture vapour inside the particle

during drying (termed as puffing). Thus the amount of air introduced into the slurry

before atomisation is the primary controlling factor. The operating conditions inside the

tower also facilitate the extent of puffing. Typically, an increase in drying gas inlet

temperature and gas flow result in lower bulk density powder (Chu et al., 1951;

Chaloud et al., 1957). The initial slurry composition also influences the bulk density of

the dried powder (NIIR, 2013). Detergent powder shows a marked increase in bulk

density with increase in feed solid concentration (Marshall and Seltzer, 1950b). An

increase in feed temperature also tends to increase the bulk density (Marshall and

Seltzer, 1950b).

2.8.2 Particle Size Distribution

Particle size distribution is an important characteristic of the detergent powder. Powder

size must not be too coarse that it is slow in dissolution and must not be too fine to give

a dusty appearance (Huntington, 2004). Powder size distribution also influences its

flowability (Walton and Mumford, 1999a). A typical size distribution of a detergent

powder is listed in Table 2.1.
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Table – 2.1: A typical size distribution of a detergent powder (Masters, 1985).

Size Range (µm) Weight (%)

>1500 µm 2-3%

>500 µm 10-20%

>250 µm 50-75%

>120 µm 85-90%

>60 µm 95-100%

The size distribution of the dried powder is mainly a result of the degree of

agglomeration in the spray drying tower. This is dictated primarily by the gas

temperature in the atomisation zone, which is controlled by varying the distance from

hot gas inlets (Piatowski and Zbicinski, 2007). A high gas temperature in the

atomisation zone inhibits the agglomeration. Hence the mean particle size in this case is

smaller (Piatowski and Zbicinski, 2007). Furthermore, the spray angle and the initial

injection velocity and size distribution of the droplets are also important in influencing

the final powder size distribution (Langrish and Zbicinski, 1994).

2.8.3 Moisture Content

The final moisture content of the dried powder should be such that it forms a free

flowing powder. If the moisture in the dried powder is high, then the powder may form

a cake, which will cause difficulty in handling. Very low moisture content in the spray

dried powder is also avoided as the moisture-free powder may get over-heated upon

exposure to a high gas temperature at the bottom. This over-heating may cause thermal

degradation of the surfactant which affects the performance of detergent powder.

Typically, an increase in the air temperature and the air flow result in a more dried

powder. Powder packing, bulk density and colour density of the powder is also affected

by dried powder moisture content (Walton, 2000).

2.8.4 Powder Flowability

It is required that the spray dried powder should be free flowing to avoid issues in

handling and packing of the powder. Powder flowability is influenced by particle size,

size distribution, shape, moisture content and hygroscopic nature of powder (Walton

and Mumford, 1999a).
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3. LITERATURE REVIEW

3.1 Introduction

In this chapter a literature review of single droplet drying models used for modelling

drying kinetics is presented followed by a review of various approaches used in the

modelling of spray drying towers. Experimental investigation of counter-current spray

drying towers and Computational Fluid Dynamics (CFD) work carried out for the

modelling of counter-current spray drying towers is also presented.

3.2 Theory of Drying

Drying is the removal of moisture from a body to yield a dry solid. During drying,

energy is transferred from the heating source which evaporates the moisture (Mujumdar,

1987). Materials containing moisture can be classified as hygroscopic and non-

hygroscopic. The moisture in a hygroscopic material is present in two forms: bound

moisture and unbound moisture (Masters, 1985). The bound moisture exerts an

equilibrium vapour pressure less than pure water at the same temperature (see Figure

3.1). Examples of bound moisture include water contained in very small capillaries in a

porous solid, adsorbed at the surface or chemically combined with the solids. Unbound

moisture includes water that is in excess of the bound moisture. Unbound moisture

exerts an equilibrium vapour pressure equal to that of pure water at the same

temperature. In a non-hygroscopic material, all water is present as unbound moisture

(Masters, 1985). Examples of hygroscopic materials include salts, metal oxides and

many polymers. Examples of non-hygroscopic materials include crushed stones, plastic

pellets, etc. (Keey, 1978).

The drying of solids is divided into two periods, namely the constant rate period and the

falling rate period. In the constant rate period, all the unbound moisture from the

material is removed and the drying rate proceeds at a fairly constant rate. In this stage,

the partial pressure of vapour at the surface is equal to the saturation vapour pressure.

The first stage of drying continues as long as the rate of diffusion of moisture to the

surface maintains saturated conditions at the surface. Once all the unbound moisture has

been removed, the partial pressure of vapour at the surface falls and the drying rate

decreases, this is called the falling rate period. The moisture content at which

transformation from the constant rate period to the falling rate period occurs is termed
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as the critical moisture content. The drying continues to take place in the falling rate

period until the equilibrium moisture content is reached. The equilibrium moisture is the

moisture which is in equilibrium with the partial pressure of water vapour of the

surroundings.

Figure – 3.1: Equilibrium moisture curve (Adapted from Masters, 1985).

3.3 Droplet Drying in Spray Drying Towers

The drying of droplets in spray drying towers involves simultaneous heat, mass and

momentum transfer. When the droplets are injected from the atomiser, the droplets

come in contact with the drying gas, and heat is transferred from the gas to the droplet

via convection. The heat transferred to the droplet is converted to latent heat during

moisture evaporation. The velocity of the droplets leaving the atomiser is significantly

greater than the surrounding gas, hence the momentum transfer between the droplets

and the drying gas also take place. Figure 3.2 is a plot of typical temperature profile of a

droplet containing dissolved/suspended solids. Due to the evaporation of moisture from

the droplet surface, the temperature of the droplet reaches the wet bulb temperature (A-

B in Figure 3.2), and once the droplet is at the wet bulb temperature, the drying

proceeds at a nearly constant rate and the temperature of the droplet remains fairly

constant (B-C in Figure 3.2). There will be a slight increase in the temperature of

droplets containing dissolved solids (B-C` in Figure 3.2), as the presence of dissolved

solids will lower the vapour pressure and hence the mass transfer rate, causing the

droplet temperature to rise above the wet bulb temperature. Due to the evaporation of

moisture, the droplet surface is soon covered by a layer of solids and the droplet is
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transformed into a particle. The moisture content at which the droplet transformation to

a particle takes place is called the critical moisture content.

Once the critical moisture content is reached, the drying rate falls as the moisture

removal from the surface is limited by the diffusion of moisture from the inside of the

particle to the surface (Masters, 1985). Due to the reduced drying rate, most of the heat

transported to the droplet from the gas contributes to increasing the temperature of the

particle and the particle temperature rises rapidly (C-D in Figure 3.2). If the drying gas

temperature is greater than the boiling point of the moisture, the vapourisation of

moisture will take place at the boiling point. At this point, all heat will be used up in

vaporisation of moisture from the particle and the particle temperature will remain at the

boiling point. There will be an increase in the boiling point due to the presence of solids

(D-E in Figure 3.2). Once all the free moisture has been removed, the temperature of the

particle will again begin to rise as heat transferred to the dried particle results in

changing the particle temperature (E-F in Figure 3.2), the rise in particle temperature

continues until it reaches the drying gas temperature.
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Figure – 3.2: Typical droplet drying temperature curve in a spray dryer (Adapted

from Handscomb et al., 2009a).
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3.4 Single Droplet Drying

The modelling of spray drying towers requires information about the drying kinetics of

a single droplet. The complexity of the spray drying process makes it impracticable to

study heat, mass and momentum transfer from individual droplets in a spray drying

tower. Therefore, single droplet drying experiments are used. The single droplet drying

experiments provide useful information about the drying kinetics and morphological

changes that occur during drying. In a single droplet drying experiment, the droplet is

suspended in a flowing stream of drying gas using either a filament or it is levitated in a

gas stream. The gas stream is typically atmospheric air, heated using a heater. The

resulting changes in size and shape are monitored along with the temperature and

concentration of the exit gas stream. Many researchers (Ranz and Marshall, 1952;

Charlesworth and Marshall, 1960; Trommelen and Crosby, 1970; Sano and Keey, 1982;

Furuta et al., 1983; Cheong et al., 1986; Nešić and Vodnik, 1991; Hassan and

Mumford, 1993; Sunkel and King, 1993; Yamamoto and Sano, 1994; Hecht and King,

2000a; Lin and Gentry, 2003; Lin and Chen, 2002, 2004; Chen and Lin, 2005; Al-

Mubarak et al., 2010) have studied the drying behaviour of a single droplet

experimentally, among which Ranz and Marshall (1952) were one of the first to

investigate the drying of a droplet containing dissolved and suspended solids. The

droplet of about 1 mm diameter was suspended from a filament in a hot air stream and

the rate of heat and mass transfer were recorded. For the droplets containing dissolved

solids, they concluded that before the formation of a solid structure, the solvent

evaporated at a constant rate and the solution was saturated throughout the droplet. The

evaporation rate was less than that for a pure solvent. For the droplets containing

suspended solids, the presence of solid particles did not lower the vapour pressure

significantly; hence, the initial evaporation rate corresponded to that of pure solvent.

After the formation of a solid structure, the falling rate period began and the

temperature of the particle rose continually.

Based on the experimental data, the correlations for calculating Nusselt (Nu) and

Sherwood (Sh) numbers were proposed by Ranz and Marshall (1952) (equation (3.1)

and (3.2)), which were applicable to the droplet Reynolds number in the range of 0 to

1000, which covers the laminar (Stokes) and transition regimes for spherical bodies. For

Prandtl and Schmidt numbers, the range of applicability is in between 0 to 250. The

equations do not take into account the effect of sensible heat carried away by the



29

vapours diffusing out from the surface of the droplet/particles, which in high mass

transfer rates may be significant. The droplets were suspended using a filament, but in

the actual spray drying tower, the droplets may rotate, which may appreciably change

the rates of heat and mass transfer. The droplets/particles are spherical, however, in

spray drying towers, the particles may deform due to morphological changes during

drying as well as due to agglomeration/breakage of the particles, which may also change

the heat and mass transfer rates from the surface of the particle. Despite these

simplifying assumptions, these correlations predict Nu and Sh numbers with a fairly

good accuracy for a wide range of Re numbers and are widely used in calculating heat

and mass transfer for evaporating droplets/particles (Masters, 1985):

Nu = 2.0 + 0.6 Re0.5 Pr1/3 (3.1)

Sh = 2.0+0.6 Re0.5 Sc1/3 (3.2)

Many researchers cited above have carried out further single droplet drying experiments

for various solutions and slurry droplets. These experiments revealed that the drying

behaviour depended strongly on the morphological development, which in turn

depended primarily on the composition of the droplet. The droplet drying experiment

work has led to the development of single droplet drying models.

The models of droplet drying have been categorised into the following by Mezhericher

et al. (2010b):

1. Models based on the semi-empirical approach that utilise the concept of a

characteristic drying curve (CDC) (Keey and Pham, 1976; Fyhr and Kemp,

1998; Langrish and Kockel, 2001; Harvie et al., 2002; Jannot et al., 2004;

Huang et al. 2004b; Chen and Lin, 2005).

2. Drying models based on the reaction engineering approach (REA) (Chen and

Xie, 1997; Chen et al., 2001; Chen and Lin, 2004; 2005; Patel and Chen, 2005;

Lin and Chen, 2006; 2007; Putranto and Chen, 2012).

3. Models that describe the process of drying by using the continuity, momentum,

energy and species conservation equations called deterministic drying models

(Audu and Jeffreys, 1975; Sano and Keey, 1982; Cheong et al., 1986; Nešić and

Vodnik, 1991; Elperin and Krasovitov, 1995; Hecht and King, 2000b; Kadja and
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Bergeles, 2003; Farid, 2003; Mezhericher et al., 2007, 2008a; Handscomb et al.,

2009b; Al-Mubarak et al., 2010).

The semi-empirical CDC models have an advantage of being cheap in computational

resources because they are represented by a small set of empirical equations. The

temperature distribution inside the droplet/particle is ignored in these models (Biot

number assumed to be small). The drying rate is typically divided into two periods, the

constant rate period and the falling rate period. In the constant rate period, it is assumed

that the resistance to mass transfer lies in the vapour boundary layer and the mass flux

( DN̂ ) is proportional to the difference in the concentration of moisture vapours at the

droplet surface and in the bulk, which is given by:

)(ˆ
,,  vsvcD CCkN (3.3)

The droplet diameter is allowed to decrease due to evaporation of moisture from the

surface. The relative drying rate (f) is then defined as:

D
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where ND is the mass flux in the second stage of drying. f is a function of the

characteristic moisture content (̂ ), which is given by:
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where wl is the particle moisture fraction, weq is the equilibrium moisture fraction and wc

is the critical moisture fraction. The critical moisture fraction is defined as the moisture

fraction when a solid crust covers the surface of the particle and drying rate becomes

dependent on the internal diffusion of moisture to the surface, resulting in the onset of

the falling rate.

The mass flux in the second stage (falling rate) is then given by:
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)()ˆ( ,,  vsvcD CCkfN  (3.6)

f is determined from the characteristic drying rate curve that characterises the drying

rate of a given material. The value of f is 1 at the critical moisture content and becomes

zero at the equilibrium moisture content. Cv,s is calculated by assuming that the droplet

surface is saturated with water vapour. The characteristic drying rate curve is obtained

from a droplet drying experiment. Figure 3.3 is a plot of a typical characteristic drying

curve. The particle diameter is fixed during the falling rate period.

Figure – 3.3: Typical characteristic drying curve.

A limitation of this model is that it does not perform well in conditions different from

those used in the experimental investigation (Fyhr and Kemp, 1998; Mezhericher et al.,

2010b). The critical moisture content is considered to be a constant. However, it may

vary with the surrounding gas conditions encountered by the droplet. Initial droplet

moisture content also influences the critical moisture content (Zbicinski and Li, 2006).

In the droplet drying experiment, the suspended droplet size is typically greater than the

droplet size distribution resulting from the atomiser, but the same critical moisture

content is used for all droplet sizes. The critical moisture content may be different for

different droplet sizes. Additionally, this approach cannot model the morphological

changes that occur during particle drying.

In the REA approach, it is assumed that moisture evaporation is an activation process

and requires overcoming an energy barrier. The REA models require a good knowledge

of drying behaviour of the materials because the REA approach requires an empirical

correlation connecting the partial vapour concentration over the droplet/particle surface

Constant rate

Falling rate

10 


f

1
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and the average moisture content. This empirical correlation is determined

experimentally for each material whose drying behaviour is modelled at different

moistures. The droplet/particle surface vapour concentration is related to the saturation

water vapour concentration (Cv,sat) as follows (Chen and Xie, 1997):

)(,, psatvsv TCC  (3.7)

where Tp is the droplet/particle temperature.

 is a fractionality coefficient depending upon the moisture content at the interface. It

is in effect, the relative humidity at the interface of the droplet/particle and the drying

air.  is expressed as follows (Chen and Xie, 1997):
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vE is a correction factor for the apparent activation energy for drying. Equation (3.8)

approaches unity when the droplet surface is saturated with water vapour, hence vE is

zero in that case. vE is given by:
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Combining equation (3.7), (3.8) and putting in equation (3.3) gives the required mass

flux.
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The plot of vE v/s moisture content is considered as the characteristic of a material

being dried under the given conditions. For droplets under different drying conditions, a
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characteristic functional relationship is obtained from the following equation (Chen and

Xie, 1997):
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where  ,vE is the equilibrium activation energy, which represents the maximum vE

at relative humidity and temperature of the drying gas.

The temperature distribution inside the droplet/particle is neglected. The advantage of

this model is that it is relatively cheap in terms of computational resources and does not

require the critical moisture content, which may vary with the operating conditions as

well as the droplet size.

The REA modelling is a relatively new approach, applied mainly in predicting the

drying rate of food products, and has demonstrated a better agreement with

experimental data compared to the CDC model (Chen and Lin, 2004; Patel and Chen,

2005; Woo et al., 2008a). Due to low computing requirement, the CDC and REA

approaches have been used in the CFD models for studying drying kinetics of droplets

in spray drying towers. In both the REA and CDC models, the agglomeration and

deposition of particles on the wall must also be treated empirically since they depend on

the surface concentration, which is not resolved in these models.

In the deterministic drying models, the drying of droplets containing dissolved or

suspended solids has commonly been divided into two distinct stages. In the first stage,

the liquid evaporates from the surface at a fairly constant rate. The size of the droplet

reduces due to moisture evaporation. The second stage begins when a solid crust covers

the surface of the droplet. The drying rate in this stage becomes entirely dependent on

the internal diffusion of moisture to the surface. Hecht and King (2000b) introduced a

third stage which occurs when the particle temperature reaches the boiling point of

slurry. The drying rate in this stage is controlled by the rate of heat transfer to the

particle. It should be noted that in spray drying particles with a wide range of

morphologies can be produced which have been described by various phenomenological

models (see review in Charlesworth and Marshall, 1960; Walton and Mumford, 1999b).
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Two mechanisms of droplet drying process have been proposed for the development of

deterministic drying models herein referred to as Type 1 and Type 2 models are given

below:

1. Droplet with a dry solid crust (Audu and Jeffreys, 1975; Cheong et al., 1986;

Nešić and Vodnik, 1991; Elperin and Krasovitov, 1995; Kadja and Bergeles,

2003; Farid, 2003; Dalmaz et al., 2007; Mezhericher et al., 2007, 2008a;

Handscomb et al., 2009b, Al-Mubarak et al., 2010).

2. Droplet with a pliable crust and a bubble (Sano and Keey, 1982; Hecht and

King, 2000b; Handscomb et al., 2009b).

The modelling approaches based on these two mechanisms differ in the second stage of

drying process. In the Type 1 model, it is assumed that a rigid porous crust is formed

and the outer diameter of the particle remains constant. The evaporation only occurs at

the interface between the crust and the wet core. The evaporated vapour then diffuses

through the porous solid crust to its outer surface. The thickness of the crust increases as

solid is deposited on the crust core interface due to evaporation of moisture (Figure

3.4a). The wet core continues to shrink until all the moisture is evaporated resulting in a

dry porous particle as depicted in Figure 3.5a. In the Type 2 model (Figure 3.4b), after

the formation of a pliable solid crust, the moisture diffuses to the outer surface of the

particle from where it evaporates throughout the drying process. An increase in

temperature of the particle causes vapourisation of solvent within the wet core. It is

assumed that a single, centrally located saturated vapour bubble expands due to

vapourisation of the solvent. This causes the particle to inflate. An arbitrary maximum

particle size is specified in order to limit the expansion of the particle. The evaporation

of the solvent takes place from the surface of the particle throughout the drying period

(Figure 3.4b). This approach explains the formation of dry hollow particles (Figure

3.5b).

(a) (b)

Figure – 3.4: Mechanisms of droplet drying in the second stage of drying process.
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(a) (b)

Figure – 3.5: Scanning electron microscope images of spray dried particles. (a): Porous

ceramic particle (source: Effting et al., 2010), (b): Hollow detergent particle (Martin de

Juan, 2012).

In the deterministic drying models, the process of drying is represented by a set of

differential equations with corresponding initial and boundary conditions. The solution

of these equations is complicated because of reduction in diameter in the first stage of

drying and the receding interface between the core and the solid crust in the second

stage of droplet drying for Type 1 models and increase in particle diameter due to the

bubble expansion in Type 2 models. These models have a disadvantage of being

computationally expensive, but since the concentration gradient inside the particle is

resolved in these models, therefore it is possible to model agglomeration and wall

deposition based on the surface moisture content. The only three-dimensional CFD

model reported in the literature which has utilised the Type 2 model for spray drying

process is by Verdurmen (2004). In the Type 1 model however, since a dry porous crust

is assumed (free from liquid moisture), therefore it may not be possible in the Type 1

model to predict agglomeration and deposition of particles on the wall after the

formation of a solid crust.

The deterministic models require knowledge of many parameters like thermal

diffusivity, mass diffusivity, particle porosity, critical moisture content etc. under

different conditions of moisture and temperature, which are often difficult to find, hence

experimental investigation is often required (Fyhr and Kemp, 1998; Mezhericher et al.,

2010b).

3.4.1 Effect of High Mass Flux on Droplet/Particle Heat Transfer

When the mass transfer rate from the surface of the droplet/particle to the bulk is large,

then it can significantly alter the heat transfer coefficient, hence a modification to the
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correlation used for Nu is required. A correction for Nusselt number (Nucorr) for high

mass transfer rates was proposed by Spalding (1953), which is given by:

Nucorr/Nu = 1/ B' ln(1+ B') (3.12)

where B' is the Spalding number (also called transfer number), which for the non-

volatile, evaporating droplets/particles is given by:

B' = cp,vap (Tgas – Tp)/hfg (3.13)

3.4.2 Effect of Radiation Heat Transfer

When the drying gas temperature is large, the effect of radiation may be significant. In

that case, the effective heat transfer coefficient is given as:

radeff   (3.14)

where

 is the convective heat transfer coefficient, calculated from equation (3.1)

rad is the radiative heat transfer coefficient, given by:

34 pmrad T  (3.15)

3.5 Particle Morphologies

Charlesworth and Marshall (1960) reported observations of different particle

morphologies observed during single droplet drying experiments of different aqueous

solutions under different initial solute concentrations and at different drying air

temperatures. The different morphologies that occurred during drying and final

appearance of the particles were dependent on the initial solute concentration, solution

type and the drying air temperature. Walton and Mumford (1999b) carried out single

droplet drying experiments to study particle morphology during drying of various

solutions, slurries and colloidal suspensions by varying the initial solids/solute
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concentration and temperature. The chemical and physical properties of the material

being dried influenced its drying behaviour and physical properties. Three distinct types

of dried particle morphologies were identified; they were defined structurally as skin

forming, crystalline and agglomerate. Skin forming material is defined as a particle

composed of a continuous non-liquid phase which is polymeric or sub-microcrystalline

in nature (Walton, 2000). The nature of skin forming material allowed multiple cycles

of inflation and collapse during drying. The ruptures on the skin surface occurred during

inflation and collapse were quickly sealed. Final particle structure of these materials

was either partially hollow with nearly spherical shape or a shrivelled and deformed

structure depending on the nature of the material, feed concentration and drying

temperature (see Figure 3.6 (a) and (b)). Materials which formed a skin-forming

structure included sodium silicate solution, sodium dodecyl sulphate solution, semi-

instant skimmed milk suspension, potassium nitrate solution, gelatine solution, yoghurt

and co-dried egg/skimmed milk suspension. The commercially spray-dried skin forming

materials show features such as particle inflation, particle collapse/shrivelling,

blowholes and cratering, particles with cracks and fissures, vacuolation, particles which

are hollow and particles which are solid with some vacuolation (Walton, 2000).

Crystalline material (Figure 3.6 (c) and (d)) is defined as a composition of large

individual crystal nuclei bound together by a continuous microcrystalline phase

(Walton, 2000). Materials which formed a crystalline structure included solutions of

ammonium dihydrogen orthophosphate, sodium chloride, sodium carbonate, trisodium

orthophosphate, zinc sulphate, sodium pyrophosphate, sodium benzoate, sodium

formate and ethylenediaminetetra-acetic 2Na+. The crystal size and shape varied with

the type of material being dried. Crystalline particles formed in commercial spray-

drying process in contrast to skin forming materials exhibit only a limited range of

morphological features, e.g., particles with cracks and fissures with occasional

cratering, particles with blowholes and particles which are hollow (Walton, 2000).

Agglomerate solid morphology (Figure 3.6 (e) and (f)) is defined as a composition of

individual grains of solids bound together by sub-micron solid particles (Walton, 2000).

In this case, the dried particles exhibited a high degree of sphericity with either solid or

hollow structure as the droplet containing suspended solids simply decreased in size

until most of the bulk moisture has been removed (Walton and Mumford, 1999b).

Particle blowholes and craters were uncommon in agglomerates. The wall structure was
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thicker in a hollow agglomerate structure. Materials which formed an agglomerate

structure included suspension of silica and colloidal carbon.

Particle morphologies produced from a combination of skin forming and crystalline

materials are complex. A detergent particle is one of the examples of a multi-component

mixture. The influence of level of feed aeration and drying temperature on the final

particle morphology of detergent particles was studied by Walton and Mumford

(1999b). All dried detergent particles showed a smooth surface with a highly porous

interior. In some cases, the vacuoles were so large that the particle could be regarded as

hollow despite a very little particle size inflation (less than 10%) was observed at

various drying temperatures. A number of reasons can be responsible for hollow particle

formation. According to Masters (1985), the following main reasons contribute to

hollow particle formation:

(i) Due to rapid formation of solid surface layer, semi-impervious to vapour

flow causing puffing or ballooning of the particle due to the pressure of

vapourised moisture trapped within the particle.

(ii) Due to increased rate of moisture evaporation compared to the rate of

diffusion of solids back into the core.

(iii) The capillary action may draw liquid and solids to the surface, leaving

void at the centre of the droplet.

(iv) The entrainment of air in the feed or during atomisation can cause hollow

particles during drying of a droplet.

(a) (b) (c)

(d) (e) (f)

Figure – 3.6: Particles with different morphologies: (a): Co-dried egg and skim milk

powder (skin forming structure), (b): Yoghurt powder (skin forming structure), (c):
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Trisodium orthophosphate (crystalline structure), (d): Organic UV brightener

(crystalline structure), (e): Lead Chromate (agglomerate structure), (f): Ferrite

(agglomerate structure). (Source: Walton and Mumford, 1999a).

Dlouhy and Gauvin (1960) carried out experimental investigation in a co-current spray

tower to study drying kinetics of various feed materials and found that the effect of

operating variables on the properties of the spray-dried particles was dependent on the

type of material being dried. For materials which formed crystalline structure, the effect

of inlet air temperature on particle density was not so significant whereas for skin

forming materials the effect of inlet air temperature showed pronounced effect on dried

powder density. Figure 3.7 depicts some of the particle morphologies that may result

from drying of droplets containing suspended or dissolved solids.

Theoretical explanation of the formation of dried particles of different morphologies is

based on Peclet number (Pe), defined as the ratio between the rate of advection and the

rate of diffusion of solute. For low Pe, the diffusion motion of the solutes is fast

compared to the receding droplet surface velocity. The droplet shrinks and the solutes

migrate to the centre until a solid structure is formed at the surface. This results in

formation of dense solid particles with fairly spherical shape (Vehring, 2008; Vicente et

al., 2013). For high Pe, the surface evaporation rate is faster and results in rapid

formation of dried solid layer at the surface. In such case, the particles can be hollow,

shrivelled or wrinkled (Vehring, 2008; Vicente et al., 2013). Vicente et al. (2013)

carried out experimental investigation to study the influence of initial droplet size,

initial concentration of solute and drying gas temperature on dried particle morphology

and it was concluded that the final particle morphology can be changed by varying these

parameters to produce dried powder of required characteristics.
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Figure – 3.7: Schematic of different particle morphologies resulting from spray drying

(Source: Handscomb et al., 2009a).

3.6 Detergent Slurry Composition

The morphological development and hence the drying behaviour and final powder

characteristics depends on the composition of the slurry. From an operational point of

view, it is advantageous to have as high initial solids concentration in the slurry as

possible (Walton and Mumford, 1999a). A few percentage increase in the level of solids

adds up to a significant economical benefit in the overall process of producing spray

dried detergents (Bentley and Waddill, 1973). Detergent slurry typically contains a high

solid concentration. The major detergent slurry components include surfactant, water

and conditioning agents (water hardness removers and alkalinity sources). The exact

composition of the detergent slurry is a commercially guarded secret. A typical

detergent slurry composition is given by Griffith et al. (2008) and is listed in Table 3.1.

Table – 3.1: Detergent slurry composition (Griffith et al., 2008).

Component Weight %

Linear Alkyl Sulfonate (LAS) 9

Water 29

Acusol polymer 3

Sodium sulfate 35

Zeolite 24
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Griffith (2008) reported that the detergent slurry comprises three phases, namely, the

neat phase, the lye phase and the solid phase. The neat and lye phases form the

continuous phase of the slurry. The composition of each phase is given in Figure 3.8

(Griffith, 2008):

Figure – 3.8: Detergent slurry composition in different phases.

3.7 Modelling Approaches for Spray Drying Towers

The aim of modelling spray drying towers is to predict spray dried powder

characteristics upon changing the operating and design conditions so that the operation

of the tower can be optimised and to troubleshoot operational and product quality

issues. For this purpose, the single droplet drying model (discussed in Section 3.4)

needs to be coupled with the various transfer mechanisms occurring within the gas

phase of the spray tower, i.e., momentum, heat and mass transfer. Various approaches

have been used for the modelling of spray drying towers, which can be categorised in

terms of geometry as being zero-dimensional (lumped parameter models), one-

dimensional, two-dimensional and three-dimensional. The zero-dimensional models are

based on overall mass and energy balance between the drying gas and the

droplets/particles at the feed and hot gas inlet and outlet and do not require any

information about the dryer design parameters, i.e., drying tower height and diameter. In

the one-dimensional models, plug-flow of the gas flow and the movement of the

discrete phase are considered in one-dimension only. They are also called plug-flow

models. In the two-dimensional models, the gas phase and the discrete phase vary in the

axial and in the radial coordinates. In the three-dimensional models, the gas and the

discrete phases are allowed to vary in the axial, radial as well as in the tangential

coordinates. The two-dimensional and three-dimensional models fall under the category
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of CFD models and a suitable turbulence model is used to solve the gas phase

turbulence.

3.8 Plug-Flow Models for Spray Drying

The plug-flow models are one of the simplest of the spray drying models that provide

information about important droplet/particle parameters like temperature, moisture

content etc. along the tower height. The properties of the drying gas are allowed to vary

in the axial direction. Complete mixing in the radial direction and no back mixing are

assumed. They offer a quick estimation of the performance of the spray drying towers

with varying design and operating parameters and can be used as an aid for design and

optimisation of spray drying towers. A disadvantage of this approach is that it is unable

to capture the complex interactions between the discrete phase (droplets/particles) and

the continuous phase (drying gas) due to coalescence, agglomeration, deposition on the

wall and re-entrainment of deposited particles into the gas.

Parti and Palancz (1974) developed a mathematical model for particle drying in both co-

current and counter-current spray drying towers that considered mono-sized particles,

uniformly dispersed over the cross-section of the spray drying tower. The

droplet/particle and air velocities were one-dimensional and parallel to the axis of the

dryer. The temperature and humidity of air were allowed to vary axially. The drying

model considered shrinking of the droplet due to evaporation of moisture. The diameter

was kept constant once it reached the critical moisture content. The heat loss from the

column was neglected. The model was not validated with the experimental data. Topar

(1980) extended the model proposed by Parti and Palancz (1974) by adding droplet size

distribution. The model results were presented for a co-current spray drying tower. It

was concluded that in the model with a single droplet size representing the mean

diameter, the particles were dried out in a much shorter time. No validation with the

experimental data was reported.

Montazer-Rahmati and Ghafele-Bashi (2007) proposed a mathematical model for a

counter-current spray drying of detergent slurry droplets. The model assumed plug-flow

of the particles and the gas phase. The droplet/particle size distribution was represented

through a fixed mean diameter. The drying of the particles was carried using a

deterministic drying model proposed by Kadja and Bergeles (2003). The heat loss from

the column was neglected. A unique feature of their model was the entrainment of finer

particles by the exit gas stream. The fines were 6-8% of the dried product leaving the
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tower. The exchange of particles from the downward moving particle stream to the

upward moving particle stream took place when particles of a certain fraction of the

distribution in the downward moving particle stream reached their terminal velocity.

The model was compared with experimental data collected from an industrial-scale

counter-current spray drying tower and an agreement within 10% was observed in terms

of exhaust gas temperature, dried powder moisture content and dried powder

temperature.

Recently, Pinto et al. (2014) presented a plug-flow model for a co-current spray drying

tower considering droplets of varying sizes. CDC model was used to study droplet

drying. Several scenarios were simulated to determine boundary values of drying

achieved, including consideration of only constant drying rate period without and with

droplet shrinkage due to evaporation, only falling rate period with and without

shrinkage. The results showed that the constant drying rate consideration results in

lower final moisture content, similarly if the droplet shrinkage is not considered, then

the drying rate is faster as the heat transfer to large, hollow non-shrinking droplets is

greater compared to the shrinking droplets. The model results showed that the average

moisture content of the particles exiting from the tower is dependent on the initial

droplet size as well as on the residence times.

Another class of one-dimensional models include those which allow variation of the

droplets/particles parameters along the height and relaxing the assumption of plug-flow.

These models are called Quasi one-dimensional models. Keey and Pham (1976)

developed a numerical model for a co-current spray drying tower by dividing into two

zones, namely the spray zone and the plug-flow zone. The spray zone, considered

variations in the cross-section of the droplets/particles parameters, but the drying gas

properties remain constant over the cross-section. In the plug-flow zone, the parameters

of the droplets/particles as well as the drying gas were varied only in the axial direction.

The model was applied to the drying of skim milk slurry. The model considered

droplets of varying sizes. In the droplet drying model (CDC model), after the formation

of a solid crust, the drying was approximated using the drying rate curve for skim milk

proposed by Trommelen and Crosby (1970). The influence of high mass transfer rate on

heat transfer was corrected using a blowing correction factor (Eisenklam et al., 1967).

The turbulence effects were taken into account by adding the turbulent velocity to the

mean air velocity. The effect of turbulence and radiation was found to be negligible.

The strongest influence on the simulation predictions was found for the drying air flow
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rates, inlet air temperature and the inlet solids concentration in the feed. The predicted

average moisture content was compared with experimental data and the difference

between predicted and measured value was within 0.4%.

Katta and Gauvin (1975) used a similar approach to predict droplet trajectories in the

nozzle zone (defined by the region traversed by rapidly decelerating droplets up to the

point where the droplets get freely entrained by the drying gas) and the free-entrainment

zone (where the droplets are freely conveyed by the drying gas) in a laboratory scale co-

current spray drying tower and to predict the drying rate of calcium lignosulfate

solution. In both zones, the trajectories of the droplets/particles were determined by the

equation of motion representing the axial, radial and tangential velocity components.

The axial, radial and tangential components of the gas phase were determined using

empirical equations. The model was also used to determine the maximum evaporative

capacity of the drying chamber which was limited by the condition that the largest

particle hitting the wall must be completely dry. The model results were compared with

the experimental observations and a reasonable accuracy was obtained. Gauvin et al.

(1975) applied this model for the determination of maximum capacity of a laboratory

scale co-current spray drying chamber using water droplets under given operating

parameters. Maximum capacity of the drying chamber was limited by the condition that

the largest droplet must be evaporated completely before hitting the wall.

Arnanson and Crowe (1980) compared the performance of one-dimensional and quasi

one-dimensional model against experimental data measured by Manning and Gauvin

(1960) for the evaporation of pure water droplets in a co-current spray drying tower.

The quasi one-dimensional model gave a better prediction compared to one-dimensional

model which tend to overpredict the evaporation rate.

3.9 CFD Modelling

In the past two decades, the use of CFD (Computational Fluid Dynamics) has developed

very rapidly. The advancement in computing power in the recent decades at lower costs

has made it possible to carry out modelling of three-dimensional (3D) flow inside

complex geometries of industrial scale equipment. There is a substantial scope of CFD

technique in the modelling of spray drying towers including design and troubleshooting

of operational problems due to the potential of CFD to predict complex 3D turbulent

gas flow patterns and interacting dispersed phase which is encountered in spray drying

towers.
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The most commonly used commercial CFD software is Fluent (Fluent, 2009), which is

used to carry out CFD simulation of the spray drying tower in this study. Fluent is an

unstructured mesh solver and uses the finite volume method for the discretisation of the

governing equations (given in Section 3.9.1) using a turbulence model (discussed in

Section 3.10) in the computational domain to give a set of algebraic equations. The

solution of the algebraic equations is then carried out using an iterative method

(Versteeg and Malalasekera, 1995).

3.9.1 Conservation Equations for the Fluid Flow

The modelling of turbulent fluid flow involves numerical solution of the conservation

equations for the transport of mass and momentum. The conservation equation for the

mass transport is given by the continuity equation. The momentum conservation

equation is given by the Navier-Stokes equation. In a three-dimensional turbulent flow,

the velocity components fluctuate randomly in all directions, even in a steady state

condition. In the instantaneous Navier-Stokes equations, no special treatment is required

for the numerical modelling of turbulent flows, but in order to capture the smallest scale

of the random fluctuations (Kolmogorov length scale), a very fine mesh is required for a

numerical solution. Additionally, the time scale used for integration of solution in time

must be small enough to capture the fastest fluctuating motion (Kolmogorov time

scale). The number of cells required for three-dimensional resolution scales of the order

of Re9/4 (Peyret, 1996). The method of numerically solving the Navier-Stokes equation

without any special treatment is called Direct Numerical Simulation (DNS). This

method is impractical for simulating turbulent flows in large geometries with high

Reynolds numbers due to the limitation of the available computational resources. A

solution to this lies in solving the time-averaged form of the Navier-Stokes equations,

which are derived by splitting the randomly fluctuating instantaneous velocity into time-

average and fluctuating (about the mean) quantity. The method of solving the turbulent

fluid flow based on the averaged, also referred to as the Reynolds averaged, form of the

Navier-Stokes equations is called the RANS method. Another approach for modelling

turbulence is the large eddy simulation (LES), where the small scale eddies are

modelled using RANS method and the large scale eddies are numerically resolved. The

velocities are decomposed into the modelled and filtered components. The size of the

filter is determined by the mesh size. The filtered Navier-Stokes equations resolve the

largest scales of fluid motion. The LES modelling approach is computationally

expensive compared to RANS modelling approach. An acceptable level of agreement
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between the simulated and measured velocity profiles has been shown by Bayly et al.

(2004) in a laboratory-scale counter-current spray drying tower using RANS modelling

hence it may be applicable for modelling of air flow in the IPP tower used in this study.

Therefore for CFD modelling of this tower, RANS approach has been selected. This

approach also has an advantage of using steady-state approximation and is less

computationally expensive compared to LES modelling.

The time-averaged continuity equation in the Cartesian tensor notation can be written

as:
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mS in equation (3.16) is the source term arising from the exchange of mass.

The time-averaged Navier-Stokes equation in Cartesian tensor notation can be

expressed as:
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The term
_____

''
jiuu in equation (3.17) is called the Reynolds stresses (also called

turbulent stresses) and results from averaging of the Navier-Stokes equation and

requires additional modelling.

3.10 Turbulence Modelling

Various turbulence models are available to model the Reynolds stresses that appear in

equation (3.17). The simplest turbulence models used in this study are based on the

eddy-viscosity concept proposed by Bousinesq in 1877, in which the Reynolds stress

term is replaced by the product of the turbulent viscosity (which is a property of the

fluid flow) and the mean velocity gradients. While more complex models are based on

solving the transport equation for the turbulent stresses. The modelling of turbulent

swirling flows using CFD poses a challenge due to anisotropic turbulent stresses in such
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flows (Chang and Dhir, 1994), additionally the presence of secondary flow

(recirculating flow) may also occur depending on swirl intensity (Kioth, 1991), which

should be predicted by the turbulence model.

3.10.1 Standard k-ɛ Model

The standard k-ɛ model proposed by Launder and Spalding (1972) is based on the eddy-

viscosity (turbulent viscosity) concept. The term k represents the turbulence kinetic

energy and the term ɛ represents the turbulence dissipation rate. In this model, the

differential transport equations for k and ɛ are solved to determine the eddy viscosity.

The model assumes isotropy of the Reynolds stresses. The turbulent viscosity has the

following form:
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The transport equation for k for incompressible flow is given by:
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where kG is the generation of the turbulence kinetic energy due to mean velocity

gradients, given by:
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Gk is evaluated using the following equation:
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The dissipation rate is computed with the following transport equation:
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where k and  are turbulent Prandtl numbers for k and  equations with values 1.0

and 1.3, respectively. 1C , 2C and C are model constants with values 1.44, 1.92 and

0.09, respectively (Launder and Spalding, 1974).

The standard k-ɛ model is one of the most widely used turbulence models due to its

simplicity and applicability in modelling a range of turbulent flows. A disadvantage of

this model is that it does not give satisfactory results for flows involving swirl, rotation,

streamline curvature and splitting of the streamlines. It is mainly due to the eddy

viscosity concept used by this model, which assumes the Reynolds stresses to be

isotropic. The shortcomings of the k- model in predicting the flows involving swirl

have been detailed by various researchers (Chen and Lin, 1999; German and Mahmud,

2005; Jakirlić et al., 2002; Jones and Pascau, 1989; Hoekstra et al., 1999; Hogg and

Leschziner, 1989; Leschziner, 1990; Leschziner and Kobayashi, 1988; Shamami and

Birouk, 2008; Talbi et al., 2011; Xia et al., 1998).

3.10.2 RNG k-ɛ Model

The RNG k-ɛ model is derived from instantaneous Navier-Stokes equations using a

mathematical technique called Renormalization group method (Choudhury, 1993). The

model is similar in form to the standard k-ɛ model, but it contains modification in the

dissipation equation for better prediction of flows with swirl and flows involving

splitting of the streamlines. It also contains an additional equation for the turbulent

viscosity modification due to swirl to take into account the non-isotropy of the Reynolds

stresses in swirling flow. The additional term in the ɛ equation is:
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The effect of swirl on turbulent viscosity is given by:
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where s is a swirl constant, taken as 0.07 for mildly swirling flows (Fluent, 2009), 

is the characteristic swirl number given by equation (3.73). to is the value of turbulent

viscosity without swirl modification. The model constants 1C , 2C , C , k and 

have the following values respectively: 1.42, 1.68, 0.085, 0.7179, 0.7179. Details of

RNG k-ɛ model can be found in Choudhury (1993).

The RNG k-ɛ model works well for high Reynolds number flows as well as flows in the

transition region and gives improved prediction for flows involving swirl in comparison

to the standard k-ɛ model (Bakker, 2002). A comparison of standard and RNG k-ɛ

models for recirculating flow by Papageorgakis and Assanis (1999) showed that the

RNG k-ɛ model predicts less dissipative behaviour, which enables it to better predict the

recirculation length compared to the standard k-ɛ model. Xia et al. (1998) compared the

prediction of both the standard k-ɛ and RNG k-ɛ models for strongly swirling flow (inlet

swirl number of 1.68, defined using equation 3.73) and found very little improvement in

the prediction of the central toroidal recirculation zone connected with the central

reverse zone; however both models failed to correctly predict the size of central

recirculation zone. Escue and Chui (2010) compared the prediction of RNG k-ɛ model

and Reynolds Stress Transport (RST) turbulence model against experimental data for

moderate and highly swirling flows with swirl number ranging from 0.25 to 2.0. The

RNG k-ɛ model showed better predictions with moderately swirling flows, while RST

model showed superior predictions for highly swirling flows.

3.10.3 Realizable k-ɛ Model
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In the Realizable k-ɛ model the term realizable means that the model meets certain

mathematical constraints on the normal stresses, consistent with the physics of the

turbulent flows (Fluent, 2009). It eliminates the possibility of unrealistic values of

normal stresses from occurring in highly strained flows. For the estimation of turbulent

viscosity, equation (3.18) is used but instead of keeping C a constant, it is treated as a

variable. The variable form of C is a function of the local strain rate and rotation of the

fluid.
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where Ao = 4.04 and As = cos6 (model constants) and *U is a function of strain rate

and rate of rotation of fluid tensor given by equations (3.40) and (3.41) respectively.

The realizable k-ɛ model uses different source and sink terms for eddy dissipation in the

transport equation. Details of this model can be found in Shih et al. (1995). The model

constants 2C , k and  have following values respectively: 1.90, 1.0 and 1.2. The

modified equation for ɛ and t makes this model superior to other k-ɛ models (Bakker,

2002). The model gave improved predictions for low to mildly swirling flows ( =

0.25) compared to the standard k-ɛ model (Shih et al., 1995). Recently, Rudolf (2012)

carried out numerical validation of highly swirling flows in a converging-diverging

nozzle using Realizable k-ɛ model and found that this model is not suitable for

predicting highly swirling flows as it gave a severely underpredicted peak value of the

Rankine vortex profile and overpredicted the size of the forced vortex region.

3.10.4 Shear Stress Transport (SST) Model

The SST model combines the eddy viscosity based model k-ω, applied to the near wall

region and the standard k-ɛ model in the region away from the walls. The model was

proposed by Menter (1994). The transport equation for ω is given by (Fluent, 2009):
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where F1 is a blending function (for near-wall calculation using k-ω model) calculated

using the expression given by Menter (1994). The model constants are (Fluent, 2009):

0828.0;075.0;31.0;168.1;0.1;0.2;176.1 2,1,12211  iikk a  

Yaras and Grosovenor (2003) compared the prediction of the SST model with

experimental data in a strongly swirling confined flow and concluded that the SST

model predicts excessive radial diffusive transport of turbulence. Lu et al. (2008)

compared the prediction of the SST model with standard k-ɛ model and Realizable k-ɛ

model in a swirl flow combustor and concluded that the SST model gives slight

improvement in predicting strong velocity variation and accompanying reverse flow.

3.10.5 Reynolds Stress Transport Model

The Reynolds stress transport (RST) model is based on the partial differential equations

for the transport of Reynolds stresses (Launder et al., 1975). In the RST model, the

shear stresses are anisotropic, hence it is capable of giving better predictions compared

to isotropic eddy-viscosity based models in flows involving streamline curvature and

swirl. The improved prediction of the RST model in such flows compared to the eddy-

viscosity based models has been shown by many researchers (Leschziner and

Kobayashi, 1988; Hogg and Leschziner, 1989; Jones and Pascau, 1989; Leschziner,

1990; Xia et al., 1998; Chen and Lin, 1999; Hoekstra et al., 1999; Jakirlić et al., 2002;

German and Mahmud, 2005; Shamami and Birouk, 2008; Talbi et al., 2011). The

general form of the Reynolds stress transport equation is given as (Fluent, 2009):
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The stress production terms Pij, Fij and the convection terms are exact, whereas, the

remaining terms are modelled. The turbulence dissipation due to viscous action is

assumed to be isotropic, the dissipation tensor, ij is given by:

 ijij
3

2


(3.30)

where ij =1, if i = j and 0, if i ≠ j.

The dissipation rate is computed using equation (3.22). The model constants in

equation (3.22) are assigned the following standard values proposed by Launder and

Spalding (1974): C =0.09, 1C =1.44, 2C =1.92,  =1.3

The production term Pij in equation (3.29) can be expressed as:
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The diffusion term TijD is modelled by a scalar turbulent diffusivity (Lien and

Leschziner, 1994). It is given by:
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The term Fij represents additional stress production due to system rotation, and is given

by:
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It has been shown by various researchers (Leschziner, 1990; Lu and Semiao, 2003;

Nikjooy and Mongia, 1991; Speziale et al.,1991; Younis et al., 2009) that the ability of

the RST model in predicting the flow fields depends largely on the modelling of the

pressure strain redistribution term ( ij ) given in equation (3.29). Although the isotropic

eddy viscosity assumption for turbulence dissipation term also impacts the quality of the

prediction of the RST model, for highly swirling flows, the predictions are more

sensitive to the modelling of the pressure strain term (Lu and Semiao, 2003). The

different versions of RST models used in this study differ in the modelling of ij . In the

first model of pressure strain term proposed by Launder et al., (1975) (hereafter referred

to as LRR model), the term ( ij ) is modelled using a linear approximation. The pressure

strain redistribution term is modelled as the sum of the “slow” pressure strain term ( 1,ij

), the “rapid” pressure strain term )( 2,ij , and the “wall reflection” term ( wij , ). The

pressure strain redistribution term ( ij ) can be written as:

wijijijij ,2,1,  
(3.34)

The slow pressure strain term 1,ij , which is also known as the return to isotropy term,

takes into account the effects of pressure on the Reynolds stresses. It is given by:
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The rapid pressure strain term 2,ij , which is also known as turbulence-mean flow

interaction term, takes into account the effect of mean flow on the Reynolds stresses. It

is given by (Launder, 1989):
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The wall reflection term wij , takes into account the near wall effects on the Reynolds

stresses (Gibson and Launder, 1978). It tends to damp the normal stress perpendicular to

the wall and enhances the normal stress parallel to the wall. It is given by:
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The model constants in equations (3.35), (3.36) and (3.37) are assigned the following

values proposed by Gibson and Launder (1978): 1C =1.8, 2C =0.60, '
1C =0.5, '

2C =0.3

In the second model proposed by Speziale et al. (1991) (hereafter referred to as SSG

model), ij is quadratic and does not require special treatment near the wall. The

pressure strain redistribution term is given by:
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where bij is the Reynolds stress anisotropy tensor, defined as:





















k

kuu
b

ijji

ij




2
3

2_____
''

(3.39)

The mean strain rate, Sij is defined as:

























j

i

i

j

ij
x

u

x

u
S

2

1 (3.40)

The mean rate of rotation tensor ij is defined as:
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The following constants are used (Speziale et al., 1991):

''
1C =3.4, *

1C =1.8, ''
2C =4.2, ''

3C =0.8, *
3C =1.3, ''

4C =1.25, ''
5C =0.4

A comparison of the LRR and SSG model predictions with the experimental data for

strongly swirling flows in a pipe was carried out by Chen and Lin (1999). It was found

that for a swirl number of 2.25 (defined using equation 3.73); both the LRR and SSG

RST models gave equally good agreement with the experimental data. But at a swirl

number of 0.85, the LRR model gave a relatively flat axial velocity profile compared to

the measurement which showed a lower velocity near the centre and a higher velocity

towards the wall. Ko et al. (2006) studied the performance of both of these models in a

cylindrical hydrocyclone for a swirl number of 8.1. The swirl number was based on the

ratio of mass flow through the hydrocyclone and the inlet cross-sectional area. It was

concluded that the SSG model gave an overall better prediction compared to the LRR

model.

3.10.6 Modelling of Flow Near the Wall

The modelling of flow near the wall is carried out using wall functions (Fluent, 2009).

In a region close to the wall (0  y+  5), the flow is influenced by the viscous stresses

and does not depend on the free stream parameters. The mean velocity close to the wall

(referred to as the viscous sub-layer) is given by law of the wall (Fluent, 2009):

)(  







 yf

yu
f

u

U
u



 



(3.42)

where u and
y are the dimensionless groups. The mean velocity U is given by:



 y
U w

(3.43)
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where w in equation (3.43) is the wall shear stress, and u in equation (3.42) is the

friction velocity given by:






wu 
(3.44)

Further away from the wall (30  y+  500), both viscous and turbulent stresses

dominate the flow (this layer referred to as log-law layer). The velocity distribution in

this region is given by a log-law:

)ln(
1

ln
1   EyByu



(3.45)

The above equation is valid for smooth surfaces when B = 5.5 (or E=9.8) for all

turbulent flows (Versteeg and Malalasekera, 1995).  is von Kármán constant. The

inner wall of a spray drying tower investigated has a layer of deposits on the wall which

causes significant surface roughness. A study was carried out by Kaya et al. (2011) to

see the effect of surface roughness on swirling flow in a tangential inlet cyclone

separator using CFD simulations with near-wall flow modelled using log-law of the

wall modified for surface roughness. A considerable reduction in the tangential velocity

was attributed to the surface roughness. The modification of log-law of the wall

(equation 3.45) for rough surfaces is based on the experiments for flow in rough circular

pipes with inner surface covered by tightly packed sand grains was given by Cebeci and

Bradshaw (1977). These experiments indicated that the mean velocity distribution near

the rough surface (in log-law of the wall region) has the same slope as that in equation

(3.45), but it has a different intercept. The shift in the intercept B is a function of the

dimensionless sand grain roughness height 
sk given by:



 uk
k s

s  (3.46)

where sk is the sand grain roughness height.
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The logarithmic law for the rough surface wall is given by (Cebeci and Bradshaw,

1977):

)(ln
1   skBByu


(3.47)

The relation between B and 
sk has been determined empirically from various types of

roughness geometry. Three regimes are distinguished, namely, aerodynamically smooth

( 50  
sk ), transitional ( 705  

sk ) and fully rough regime ( 70
sk ) (Schlichting,

1979). The surface is considered as hydrodynamically smooth when the roughness

height is below the viscous sub layer. The fully rough flow condition exists when the

roughness elements are so large that sublayer is completely eliminated and the flow can

be considered to be independent of the molecular viscosity. In the fully rough regime,

B is given by (Fluent, 2009):

)1ln(
1  sskCB


(3.48)

where Cs is a roughness constant and depends on the type of roughness. For a pipe with

the inner surface tightly packed with sand grain roughness a Cs value of 0.5 is

recommended (Fluent, 2009), whereas for the surface roughness that departs from a

uniform sand grain roughness, a higher value of sC varying from 0.5 ~ 1.0 can be used

(Fluent, 2009).

3.10.7 Modelling of Temperature Near the Wall

The modelling of temperature near the wall/deposit surface is carried out using a log-

law representation for thermal boundary layer, which is given as follows (Viegas et al.,

1985):
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where PT , PU and Pk are temperature, mean velocity and turbulence kinetic

energy at near-wall node respectively, and D is given by:

(3.49)
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For the temperature at the surface of the wall/deposit, equation (3.49) reduces to:
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The inside film coefficient αi for post-processing is calculated by Fluent using the

following equation (Fluent, 2009):
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3.10.8 Scalar Transport Equations

The transport of scalar including enthalpy and species is modelled using the scalar

transport equation, which is given by:
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S in equation (3.53) is the source term representing the species mass fraction added to

the continuous phase from the discrete phase in the species transport equation and gas-

particle heat transfer rate in the enthalpy transport equation.

The variable represents the mass fraction of species and gas enthalpy. J represents

the corresponding diffusion fluxes for turbulent flow which are modelled using the

gradient-diffusion approach, given by:
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In the above equation, t represents turbulent Prandtl number (Prt) in case of enthalpy

transport and turbulent Schmidt number (Sct) in case of species transport equation.

The gas enthalpy is related to the enthalpy of components using the following equation:
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(3.55)

In the non-isothermal simulation runs (Section 6.2 in Chapter 6), the density of the gas

is considered to be a function of temperature and composition of the gas and is

calculated using the ideal gas law, given by:
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(3.56)

3.11 Modelling of the Discrete Phase

The discrete phase is modelled using the Lagrangian approach. The trajectories of the

droplets/particles are calculated by solving the equation of motion for each

droplet/particle, which is given by:
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The first term on the right hand side is the drag force per unit mass, the second term

represents the gravity and buoyancy force per unit mass. The drag force is given by:
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where Re is the particle Reynolds number based on the relative velocity of the particle,

given by:
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(3.59)

CD in equation (3.58) is the drag coefficient discussed in Section 3.11.1.

A number of other forces also act on a particle inside the spray drying tower including

the Basset (history) force, shear and rotation induced lift force, thermophoretic and

Brownian forces. The Basset force occurs due to the delay in development of the

boundary layer as the relative velocity changes with time (Crowe et al., 1998), which in

this study is not taken into account. Similarly shear and rotation induced lift forces are

also neglected in the present study. Thermophoretic force (arising due to the

temperature gradient in the continuous phase) and Brownian force (arising due to

molecular motion) are neglected in this study as they are negligible for the size range of

droplets/particles considered (varying from 50 µm to 2300 µm).

3.11.1 Drag Force on Droplets/Particles

When droplets/particles move in an air flow, they experience a retarding force called

drag. The magnitude of this force is dependent on the density, shape and cross-sectional

area of the droplet/particle, which is represented using a dimensionless quantity called a

drag coefficient. A large number of drag coefficient correlations exist for a wide range

of shapes and for a range of Reynolds numbers. In the existing CFD simulations of

spray towers, the droplets and particles are assumed to be smooth and spherical
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throughout, and the drag coefficient correlation for spherical bodies proposed by Morsi

and Alexander (1972) is commonly used.

2
32

1
ReRe

aa
aCD 

(3.60)

where a1, a2 and a3 are constants which depend on the particle Reynolds number and is

applicable for particles Reynolds numbers ranging from 0 to 50000.

The droplets may deform as they move in the air flow field and in addition, the

evaporation from the droplet surface and shear induced internal recirculation of the

liquid inside the droplet may change the drag force acting on the droplets. Equation

(3.61) and (3.62) are the drag coefficient for burning fuel droplets (involving a high rate

of mass transfer which may modify the flow around the droplet) for a range of Reynolds

numbers reported by Williams (1976):

For Re < 80, 84.0Re27 DC
(3.61)

For 80 < Re < 10000, 217.0Re271.0DC
(3.62)

The particles may also change shape due to agglomeration as well as morphological

changes that occur during drying. Therefore the correlation given by equation (3.60)

may not be applicable if the particles become non-spherical. The particles experience

higher drag as they become non-spherical (Pettyjohn and Christiansen, 1948). Hence the

residence time of the non-spherical particles will be greater. Wadell (1934) introduced

the concept of particle sphericity (ϕs) to account for change in surface area due to

deviation of a particle shape from a sphere. It is defined as the ratio of surface area of

the sphere having the same volume as that of particle and the surface area of the

particle.

p

sphere

s
A

A


(3.63)

The drag coefficient correlation proposed by Haider and Levenspiel (1989) for non-

spherical particles valid for particle Re ranging from 0.1 to 100000, and is given by:
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To the best of author’s knowledge, no reported modelling work of spray drying towers

has considered drag coefficient for non-spherical particles. The size and shape of

particles can change during drying due to agglomeration and morphological changes

which is difficult to predict.

3.11.2 Effect of Mass Transfer on the Drag Coefficient

The drag coefficient of the drying particles is affected by the mass transfer from the

surface. Eisenklam et al. (1967) found that the evaporation of volatiles from the burning

fuel droplet affected the drag coefficient according to the following correlation:

B'1
'


 Do

D

C
C

(3.66)

where

DoC is the drag coefficient with no mass transfer, and

B' is the transfer number given by equation (3.13).

Equation (3.66) may be applied as a correction factor to equation (3.60) to account for

change in drag coefficient due to evaporation of moisture from the surface.

3.11.3 Particle-Wall Interaction

When a droplet/particle hits the wall, it can bounce back with a velocity either equal to

or less than the impact velocity (Figure 3.9). The particle-wall interaction can be

modelled using the reflect boundary condition in Fluent (2009). This is given by the

restitution coefficient which is defined as the ratio between the velocity after impact
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with the wall and the velocity before impact. Hence the value of restitution coefficient

can be in the range of 0 to 1.

Figure – 3.9: Droplet/particle wall impact.

The restitution coefficient has two components: the normal restitution and the tangential

restitution coefficients. The normal restitution coefficient defines the momentum in the

direction normal to the wall that is retained after impact with the wall. The tangential

restitution coefficient defines the momentum in the direction tangent to the wall retained

by the particle after impact. A number of factors can influence the normal and tangential

restitution coefficients including the surface and bulk characteristics of the impacting

particle, particle shape, impact angle, impact velocity (Hassal, 2011) as well as the

roughness of impacting surface (Sommerfeld, 1992; Huber and Sommerfeld, 1998;

Sommerfeld and Huber, 1999). It can also depend on the moisture content of the

impacting particle.

3.11.4 Turbulent Dispersion of Droplets/Particles

The degree of dispersion is characterised by the Stokes number, which is defined as the

ratio between the particle response time and the characteristic time scale.

F

p




St

(3.67)

where p is the particle response time, i.e., the time taken by the particle to respond to

change in the surrounding flow field and F is the characteristic time of the flow field,

which is defined as the ratio between the characteristic length of the flow field and the

flow velocity.
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If St << 1, then the response time of particles is much less than the characteristic time

associated with the fluid flow, hence the particles will have sufficient time to respond to

changes in the flow field and the particle will follow the fluid motion. Whereas, if St

>>1, the particles will move independently within the fluid (Crowe et al., 1998).

The velocity experienced by the droplets/particles in a turbulent flow field is the sum of

the mean velocity component and the fluctuating velocity component. The effect of the

fluctuating velocity component of gas on the droplets/particles dispersion is taken into

account using the discrete random walk model (Fluent, 2009), in which the discrete

phase is assumed to interact with a succession of eddies. The interaction with each eddy

lasts until the particle residence time in the computational cell exceeds the eddy

crossing time or the eddy lifetime. The fluctuating velocity components are sampled by

assuming a Gaussian probability distribution and are given by:

_____
2''

ii uu 
(3.68)

where  is the normally distributed random number. During the eddy interaction, the

fluctuating velocity is kept constant for a certain time interval. This time interval is

given by:



k
CT LL 

(3.69)

where CL is a constant determined empirically. In the RST model, its value is 0.30

(Fluent, 2009).

3.12 Coupling between the Discrete and Continuous Phases

The coupling between the drying gas (continuous phase) and the droplets/particles

(dispersed phase) can be achieved using either the Eulerian-Eulerian and Eulerian-

Lagrangian approaches. In the Eulerian-Eulerian approach, both the gas phase and the

dispersed are treated as continuum by solving the time-averaged transport equations and

each computational cell contains a certain fraction of the continuous and the dispersed

phases. This approach has a disadvantage of being highly computationally expensive in

modelling poly-dispersed flows, because each of the particle size classes will require an
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additional set of transport equations. In spray drying towers, the droplets/particles

consist of varying sizes, therefore a large number of transport equations will be required

to represent the range of droplets/particles, hence this approach is not feasible in the

modelling of spray drying towers.

In the Eulerian-Lagrangian approach, the gas phase is treated as a continuum by solving

the time-averaged continuity and Navier-Stokes equations (Eulerian reference frame)

for the fluid flow. Typically, the discrete phase in spray drying tower comprises billions

of droplets/particles. Tracking of each individual droplet/particle in this case is highly

computationally expensive. Therefore, the motion of droplet/particle is solved by

tracking a number of parcels through the calculated flow field of the continuous phase

by solving the droplet/particle equation of motion, this is termed as Lagrangian

reference frame (Nijdam et al., 2003). Each parcel in the Lagrangian reference frame

represents a number of droplets/particles having the same size, position and velocity.

Hence each parcel contains a certain fraction of the total mass flow of the discrete

phase. The trajectories of parcels are computed by integrating the equation of motion

(equation 3.57). These individual parcels are tracked through the flow domain until the

parcels exit the domain. Each individual droplet/particle in a parcel exhibits the same

heat, mass and momentum transfer. The source terms for the continuous phase resulting

from heat, mass and momentum transfer to the parcel in a cell is the sum of heat, mass

and momentum transfer to all the droplets/particles in that parcel respectively.

Increasing the number of parcels decreases the mass fraction of the discrete phase in

that parcel, but it also increases the computational time. Hence a preliminary CFD

investigation of the influence of number of parcels on the results is necessary to select a

suitable number of parcels to represent the discrete phase.

A parcel is treated as a point in the computational space and does not occupy any

volume in the computational cell. Hence the Eulerian-Lagrangian approach is not

suitable for dense discrete phase flows. This approach is computationally cheaper

compared to the Eulerian-Eulerian approach for modelling poly-dispersed flows. It also

provides history of each tracked parcel inside the flow domain. Because of these

advantages, in the existing CFD modelling studies of spray drying towers, the coupling

of heat, mass and momentum transfer between the continuous and the dispersed phase

has been carried out using the Eulerian-Lagrangian approach utilising the Particle-

Source-In-Cell (PSI-Cell) model developed by Crowe et al. (1977), Crowe (1980).
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In the PSI-Cell model, the calculation of multiphase simulation is started by solving the

gas phase only. Using the gas phase flow field and temperature, the droplets/particle

trajectories and associated heat and mass transfer are calculated. The mass, momentum

and energy source terms resulting from the interaction of the discrete and continuous

phases in each cell are determined. The gas phase equations are solved again along with

the calculated source terms. The resulting updated gas flow field and temperature is then

used to calculate the new droplets/particle trajectories as well as associated heat and

mass transfer resulting in new source terms for the gas phase equations. The iterative

calculations are repeated until a suitable level of tolerance is achieved in the overall heat

and mass balance. Figure 3.10 is a flow chart of the PSI-Cell scheme.

Figure – 3.10: Flow chart for PSI-Cell computational scheme (adapted from Crowe,

1977).
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3.12.1 Evaluation of Source Terms

The source terms that appear in the governing equations for the continuous phase result

from the exchange of heat, mass and momentum transfer between the discrete and the

continuous phases in each cell when two-way coupling is considered. The source term

resulting from momentum transfer between the two phases in a computational cell is

included in the Navier-Stokes equation (given by equation 3.17) and is evaluated by the

following equation:
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where n is the total number of parcels passing through the computational cell.

The source term for the continuous phase resulting from heat transfer between the two

phases in a computational cell is included in the scalar transport equation (given by

equation 3.53) and is evaluated using the following equation:
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The source term arising from the exchange of mass between the two phases in a

computational cell is included in the continuity equation (given by equation 3.16), and

in the species transport equation (given by equation 3.53), which is evaluated using the

following equation:
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The source terms for the heat, mass and momentum exchange are updated after each

continuous phase iteration by multiplying with a suitable under-relaxation factor.
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3.13 Importance of Gas Velocity Profiles in CFD Modelling of Spray

Drying Towers

CFD modelling of spray drying towers requires modelling of the gas flow patterns using

a suitable turbulence model and once a satisfactory validation of the fluid velocity

profiles using the turbulence model is achieved, the drying with the discrete phase is

considered using a suitable level of coupling between the discrete and the continuous

phases. The modelling of turbulent flow inside a spray drying tower is challenging due

to the presence of highly complex gas flow patterns resulting from a three-dimensional

and swirling flow. The gas flow patterns affect the droplet and particle trajectories and

consequently drying rates, coalescence/agglomeration, temperatures and residence

times, which in turn influence the quality of the dried powder, for example, powder size

distribution, average dried powder moisture content, powder colour and the level of

thermal degradation. It also influences the stability of drying operation by affecting the

deposition rate of particles on the wall. The understanding of gas flow patterns is

therefore extremely important in the design and optimisation of spray drying towers.

Information about the gas velocity profiles in a spray drying tower can be obtained by

experimental investigation using a velocity measurement instrument, which in the

presence of droplets/particles is very difficult due to the possibility of sticking of

droplets and wet particles with the measurement instrument. Alternatively, by carrying

out CFD modelling which is more convenient, but a proper validation of predicted

velocity profiles is required to gain confidence in the CFD model predictions. A review

of previous experimental studies carried out to study gas velocity profiles in counter-

current spray drying towers is given in Section 3.14. A review of CFD modelling work

carried out to model gas velocity profiles and its validation with measured velocity

profiles in these spray towers is given in Section 3.15.

3.14 Experimental Study of Gas Flow profiles in the Spray Drying

Tower

The counter-current spray drying tower involves three dimensional, turbulent and

swirling flow of the gas. The swirl is induced due to the tangential entry of the gas at the

bottom of the tower, as shown schematically in Figure 2.5 (b). The gas flow profiles in a

counter-current spray tower were first measured by Chaloud et al. (1957) in which the

tangential velocity profile showed the presence of a combined (Rankine) vortex and the

magnitude of the axial velocity was maximum at the central axis of the tower with a
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gradual decay away from the central axis. However, it was not mentioned how the

measurement was taken. The Rankine vortex can be divided into three regions, namely

the core, annular and the near-wall region (Kioth, 1991). The core region is dominated

by a forced vortex. The flow inside the forced vortex is rotational flow. In the forced

vortex region, the flow is stabilised due to a suitable pressure gradient and turbulence is

suppressed. The annular region is dominated by the free vortex. The flow inside the free

vortex is irrotational, unstable and highly turbulent. The turbulent stresses in this region

are highly anisotropic (Chang and Dhir, 1994). In the near-wall region, the wall effects

become important and a sharp decrease in the tangential velocity occurs. The advantage

of such a flow is that it stabilizes the gas flow pattern in a spray tower. It has been

shown by many researchers that the swirling flow also improves the inter-phase heat

(Chang and Dhir, 1995) and mass transfer rates (Shoukry and Shemll, 1985; Javed et

al., 2006). In a spray drying tower, the presence of a highly swirling flow enhances the

heat and mass transfer between the droplets/particles and gas due to high shear flow and

increased relative velocity between the droplets/particles and drying gas (Chaloud et al.,

1957). The strength of swirl in the flow is usually characterised by a dimensionless

swirl number, which is defined as the ratio of the angular momentum flux and the axial

momentum flux and is given by (Yajnik and Subbaiah, 1973):
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Flow at a swirl number greater than 0.5 is considered as highly swirling flow and in

such flows, vortex breakdown occurs resulting in the formation of a reverse flow zone

(Kioth, 1991). Many researchers have carried out experiments to study the gas flow

patterns in counter-current spray towers varying from industrial scale having height (H)

of 24 m, with diameter (D) of 6 m (H/D = 4.0) to laboratory scale having a height of 4.2

m and diameter of 1.2 m (H/D = 3.5). In earlier studies (Place et al., 1959; Paris et al.,

1971; Ade-John and Jeffreys, 1978; Sharma, 1990), tracer concentration measurement

and flow visualisation techniques were used to identify gas flow patterns. One of the

earliest reported data among such studies was given by Place et al. (1959), who used

helium as a tracer to study gas flow patterns and residence time distribution of air. The

tower studied was an industrial-scale counter-current tower, having a height of 15 m

(cylindrical section) and a diameter of 6.4 m. The contours of exit times of 50% of the
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injected tracer were plotted. The tracer injection experiment provided useful

information about the gas flow patterns in the spray tower. The gas flow patterns were

found to be highly unstable. Three zones were identified in the tower along the cross-

section, based on the gas-flow patterns, i.e., the inner, intermediate and the outer zone

(near the wall). In the inner and outer zones, the flow was in the upward direction, while

a slow moving or even downward flow was observed in the intermediate zone. This

reverse flow in the intermediate zone was the main mechanism of back mixing and was

believed to be beneficial for spray dryer performance as it gives uniformity in the

temperature along the tower height.

Paris et al. (1971) also used helium as a tracer in the air flow in an industrial-scale

counter-current spray drying to identify different flow zones. The tower used was

relatively large in height, having a height of 24 m and a diameter of 6 m. Place et al.

(1959) and Paris et al. (1971) used the measured residence time data to develop a model

for the prediction of residence time distribution (RTD) in the spray drying tower by

approximating sequences of well-mixed and plug-flow zones in different regions of the

spray tower. In both studies, the measurements were made without the spray of feed.

Reay (1988) highlighted the disadvantages of this approach, which includes the

requirement of accurate measurement of the RTD data, the method being incapable of

designing new towers and the inability to assess the effect of varying chamber geometry

or operating conditions on the RTDs. In addition to these disadvantages, the presence of

droplets/particles and temperature profiles may also influence the air flow profiles. Ade-

John and Jeffreys (1978) conducted experiments using a tracer to investigate different

zones of two phase air-water droplets flows in a laboratory-scale, transparent walled

spray drying tower having a height of 4.2 m and a diameter of 1.2 m, considering the

interaction of air with water droplets. Four zones were identified: an intensely turbulent

zone near the air inlets, a turbulent zone near the spray nozzle, a cylindrical plug-flow

zone in between these two zones and an air bypass zone near the wall that existed

throughout the height of the tower. Sharma (1990) used the flow visualisation technique

to study the gas flow patterns in the same spray drying tower used by Ade-John and

Jeffreys (1978) with and without the presence of a water spray by varying the angle of

tangential-entry gas inlets. The gas flow patterns were made visible by the use of smoke

as a tracer. The gas flow pattern and stability of the flow was found to be dependent on

the horizontal and radial angles of the gas inlet nozzles. A strongly swirling gas core
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was observed in the tower with a stable gas flow when both the horizontal and radial

angles were 25o.

The first reported quantitative measurements of gas velocity profiles in a counter-

current spray drying tower were made by Bayly et al. (2004). The measurement of axial

and tangential velocity components of the ambient gas flow were taken in the same

spray tower which was previously studied by Ade-John and Jeffreys (1978) and later by

Sharma (1990) using laser doppler anemometry technique at a series of axial locations.

The radial and horizontal gas inlet angles were 25o. The tangential velocity component

was an order of magnitude greater than the axial velocity component. The tangential

velocity profiles showed the presence of a Rankine vortex that persisted throughout the

tower height. The axial velocity profiles showed reverse flow (negative axial velocity)

in the annular region of the tower that persisted through most of the tower height. The

magnitude of negative axial velocity reduced along the tower height. The quantitative

measurement of gas velocity profiles in an industrial-scale counter-current spray drying

tower was recently done by Wawrzyniak et al. (2012a). The tower studied had a

diameter of 6 m and a height of 36 m. The measurement of magnitude of velocity

components at two axial locations was presented which was measured using a pitot

tube. The gas flow was found to be highly unsteady, which was reported to be due to the

construction of the gas inlets. The gas inlets did not have tangential entry hence no swirl

was imparted to the gas flow. The measured data by Bayly et al. (2004) and

Wawrzyniak et al. (2012a) was used to verify CFD model predictions of the gas flow by

these authors, which is discussed in the next section.

These experimental studies have revealed that the flow in a counter-current spray dryer

involves turbulent, swirling, complex flow patterns with back mixing and bypass

regions shown by both qualitative and velocity measurement techniques. The only

comprehensive quantitative measurement of velocity components is done by Bayly et

al. (2004) for a laboratory-scale spray tower, which shows that the tangential velocity

profiles contains a Rankine vortex and is an order of magnitude higher than the axial

velocity component. Also, the negative axial velocity indicates a vortex breakdown. The

exiting studies have not reported turbulence data which may be useful for validation of a

turbulence model used in the CFD study for flow modelling.
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3.15 CFD Modelling of Gas Flow in Counter-Current Spray Drying

Towers

The modelling of turbulent gas flow inside a spray drying tower is challenging due to

the presence of highly complex gas flow patterns resulting from three-dimensional and

swirling flows, as revealed by the previous experimental studies cited above. The gas

flow patterns in counter-current spray drying towers have been investigated using CFD

by a few researchers in the past. Harvie et al. (2001) used single phase, three-

dimensional CFD simulations with a very large eddy simulation (VLES) approach to

study the gas flow patterns in the laboratory-scale counter-current spray drying tower

which was previously studied experimentally by Sharma (1990). In the VLES approach

the computational mesh is chosen to be fine enough to resolve the significant flow

features and a turbulence model is used to represent the dissipative scale, which in this

case was k-ε model (Harvie et al., 2001). They investigated the effect of varying

horizontal and radial angles of the inlet gas nozzles on the gas flow pattern. The

simulation results showed that the gas velocity profiles were highly dependent on the

radial and horizontal angles of the gas inlet nozzles. The most stable (time invariant) gas

flow patterns were observed at a radial and horizontal angle of 25o, which confirmed the

findings by Sharma (1990). The predicted tangential velocity profiles showed the

presence of a forced vortex inside the cylindrical section of the tower. A good

qualitative agreement between the predicted flow patterns and that observed by Sharma

(1990) was also observed. No quantitative comparison of CFD simulation results was

made by Harvie et al. (2001).

Bayly et al. (2004) studied gas flow profiles in the same spray dryer which Sharma

(1990) studied experimentally, using single phase, three-dimensional CFD modelling

with a Reynolds stress transport (RST) model. The simulation results were compared

with the experimental data measured using an LDA technique at a series of axial

locations (see Section 3.14). A good quantitative agreement was observed between the

measured and simulated mean axial and tangential velocity profiles. In contrast to the

simulation results reported by Harvie et al. (2001) in the tangential velocity profiles

measured and predicted by Bayly et al. (2004), a Rankine vortex was observed in the

cylindrical section of the tower with a peak value in the tangential velocity profile

moving towards the centre as the gas flows in the upward direction. The study of Bayly

et al. (2004) also showed that the axial and tangential velocity components differ by an

order of magnitude (in both measurement and predictions); hence the comparison of
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observed flow patterns by Sharma (1990) with CFD predicted flow patterns study by

Harvie et al. (2001) to validate the CFD model predictions may not be a valid approach.

Recently, Wawrzyniak et al. (2012a) carried out single phase CFD modelling of an

industrial counter-current spray drying tower, which they also studied experimentally as

mentioned above in Section 3.14. The predicted gas velocity magnitude using the RST

model was compared with the experimentally measured data at two axial locations. A

fairly good agreement between the experimental data and modelling results was

observed, considering the unsteadiness in the flow which was reported to be due to the

construction of gas inlets as a result of which no swirl was induced in the gas flow at the

entry. However, a comparison of individual velocity components was not presented as

they were not measured. Wawrzyniak et al. (2012a) also studied the effect of varying

the horizontal angle of the gas inlet nozzles on the stability (steadiness) of gas flow

patterns using CFD simulation. It was found that the most stable gas flow patterns were

observed at gas inlet nozzle angles of 20o and 30o. This confirmed the findings by other

researchers (Sharma, 1990; Harvie et al., 2001) that the stability of the gas flow patterns

depends on the degree of swirl, which is dependent on the angles of the tangential-entry

gas inlets.

The limited numerical simulations have revealed that the CFD models are capable of

reproducing qualitatively the observed flow profiles in laboratory scale spray drying

tower and quantitatively using the RST model. It has been shown via CFD modelling

that the gas flow pattern depends significantly on the angle of the gas inlet nozzles and

become stable when the gas inlet nozzle angles are between 20o to 30o. The tangential

velocity component is the dominant component in the spray drying tower with an order

of magnitude higher than the axial velocity component. There is a lack of

comprehensive quantitative validation of the turbulence models with experimental data

for large scale counter-current spray drying towers. The pilot-plant and industrial scale

spray drying towers have a layer of deposits on the wall due to sticking of the wet

particles and droplets on the wall. This results in a rough surface at the wall and an

increased frictional resistance. The role of wall roughness due to wall deposits in

altering the velocity profiles is not evaluated in the existing simulations. This layer of

deposits provides additional frictional resistance to the swirling flow and this result in a

faster decay of swirl along the height (Francia et al., 2013). Hence the effect of wall

roughness on the modelling of gas flow in the tower also needs to be evaluated.
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Additionally, no comparison has been made between the measured and predicted

fluctuating velocity components.

3.16 CFD Modelling of Spray Drying Process

Most of the previous CFD modelling work on spray drying process is focused on the co-

current spray drying towers (Livesley et al., 1992; Oakley and Bahu, 1993; Langrish

and Zbicinski, 1994; Zbicinski, 1995; Kieviet, 1997; Southwell et al., 1999; Straatsma

et al., 1999; Harvie et al., 2002; Huang et al., 2003a, 2003b, 2004a, 2004b, 2006;

Verdurmen et al., 2004; Li and Zbicinski, 2005; Kota and Langrish, 2007;

Anandharamakrishnan et al., 2010; Saleh, 2010; Mezhericher et al., 2008b, 2009,

2010a, 2012a, 2012b; Jin and Chen, 2009, 2010; Sadripour et al., 2012). In these

studies, the continuous phase is treated as Eulerian while the discrete phase (droplets

and particles) is treated as Lagrangian. The coupling between the two phases is done

using the Particle-Source-in-Cell (PSI-Cell) model of Crowe et al. (1977). It was found

that the turbulence model, droplet drying kinetics model, initial atomisation parameters

and turbulent particle dispersion were crucial parameters that influenced the accuracy of

CFD modelling results.

These studies have demonstrated the potential of CFD for improving the design and

operation of co-current spray drying towers to produce better product quality. It is found

that the stability of gas flow patterns have an impact on wall deposits (Langrish and

Zbicinski, 1994) and the uniformity of dried product characteristics. The swirl flow

improves the stability of gas flow, however, a disadvantage of swirl in co-current spray

towers is that it increases the residence time of particles which may cause over drying as

well as conveying the particles towards a higher gas temperature region, causing

thermal degradation (Harvie et al., 2002). Studies have also been carried out to check

the dryer performance using different nozzle types (Huang et al., 2006;

Anandharamakrishnan et al., 2010) and also by changing the inlet angle of swirl vane to

change the level of swirl of the drying gas (Langrish and Zbicinski, 1994). CFD

simulation has also been used to evaluate alternate chamber geometries including

conical, hour-glass and lantern shaped drying chambers (Huang et al., 2003b). CFD

simulations have been carried out to predict agglomeration (Verdurmen et al., 2004) and

deposition of particles on the wall (Jin and Chen, 2010; Sadripour, 2012) and has shown

a good deposition trend compared to experimental data. A review of CFD modelling of

spray drying in co-current towers is given by Kuriakose and Anandharamakrishnan
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(2010), Jamaleddine and Ray (2010), Langrish (2007), Norton and Sun (2006), Langrish

and Fletcher (2003), Langrish and Fletcher (2001).

Spray drying in a counter-current tower is a poorly understood process (Zbicinski and

Piatkowski, 2009). Less attention has been given to the experimental and modelling

work to gain a good understanding of the counter-current spray drying process.

According to Zbicinski and Piatkowski (2009), complicated hydrodynamics of the

continuous and discrete phases, intensive agglomeration, less availability of counter-

current spray towers and difficulty in gathering reliable data for model validation are the

major factors limiting the research work on the counter-current spray drying towers.

Counter-current spray drying towers offer better heat utilisation compared to the co-

current spray drying towers. A better understanding of drying kinetics in these towers

would enable the operating issues pertinent to counter-current spray drying towers,

including high wall deposits, high agglomeration and product thermal degradation to be

controlled by making modifications in the operating parameters and in the tower design.

This may also enable a wider range of products to be dried using counter-current spray

towers.

Crowe (1983) applied the PSI-Cell model in a 2-D counter-current spray tower

simulation. The diameter and height of the tower were 1 m and 4 m, respectively. The

gas flow was modelled using the k-ɛ turbulence model. It was concluded that the heat,

mass and momentum coupling between the discrete and the continuous phases has a

significant influence on the results. The model was not validated by experimental data.

Livesley et al. (1992) used the same approach for 2D and 3D CFD modelling of a pilot-

scale counter-current spray tower having a height and diameter of 9 m and 1.8 m,

respectively. The turbulence was modelled using the k-ɛ model. The dispersion of the

particles due to turbulence was included in the simulation. The mean droplet/particle

size across the radius was compared with the measurement at 0.3 m below the atomiser

for water droplets and at 1.3 m for a zeolite slurry. The spread of the mean size of the

water droplets over the radius was slightly underpredicted which was attributed to the

shortcomings in the turbulence model used. For the case in which a zeolite slurry was

used, the agreement between the measured mean droplet/particle size across the radius

and the prediction was poor. Because the model did not account for coalescence and

agglomeration, the mean droplet/particle sizes along the radius were underpredicted.

The predicted gas temperature profiles in the spray drying tower were highly

asymmetric in the bottom region of the tower, but became symmetric near the top
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outlet. The predicted temperature profiles were not validated by experiment. The hot gas

inlet angles were not reported in the study, which significantly impacts the velocity

profiles in the spray tower (Sharma 1990; Harvie et al., 2001 and Wawrzyniak et al.,

2012a). It is also not mentioned how the droplet/particle and wall interaction were

modelled which can significantly affect the residence time of the discrete phase as

reported by Kieviet (1997) for a co-current spray tower. This study indicated the

potential of the CFD technique in modelling spray drying processes in a counter-current

tower and highlighted the importance of accurate modelling of the gas flow using a

reliable turbulence model and the need for inclusion of agglomeration.

Zbicinski and Zietara (2004) carried out a 2D, axisymmetric, steady-state simulation of

a counter-current spray drying tower using an aqueous solution of maltodextrin as the

feed. The coalescence/agglomeration process was included in the CFD model using a

non-physical collision model for droplets and particles based on a stochastic approach

for determining the probability of collisions (Sommerfeld, 2001). However, the detail of

the droplet/particle and wall interaction was not given. The results of measured

temperature and humidity profiles of the gas and moisture content of particles were

compared with the predictions at various axial locations. Overall a good agreement was

observed, but at some axial locations, significant discrepancy was seen; this was

attributed to measurement errors.

Recently, Wawrzyniak et al. (2012b) developed a novel approach for CFD modelling of

heat and mass transfer in an industrial counter-current spray drying tower having a

height of 37 m and a diameter of 6 m. The modelling approach was based on a negative

heat source term which reflects the energy necessary for evaporation of moisture from

the discrete phase. This approach required estimation of the total power consumption

during the drying process and the determination of a power density distribution function

in the dryer. The energy source term in the energy transport equation was used as a

negative heat source term in the gas phase reflecting the energy transport in vapourising

the moisture content from the discrete phase without requiring the need to include

drying kinetics of the discrete phase in the CFD model. This negative energy source

term was obtained from the heat and mass balances of the tower under operation using

the measured temperature data. Hence this approach required the accurate determination

of temperatures across the radius and along the height, from which a volumetric map of

the energy used for evaporation of moisture inside the dryer was formulated using a

probability function. The determination of the gas temperatures in the spray drying
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tower posed difficulties due to the presence of droplets/particles as well as the highly

transient nature of the gas flow in the spray tower. Some artificial limits to the predicted

temperatures were imposed in the model to prevent uncontrolled gas temperatures either

to rise or fall to unrealistic values during the iterations. The determination of accurate

temperature profiles in spray drying towers is difficult due to the presence of wet

particles in the gas phase and in some cases the transient behaviour of gas phase also

makes the measurements less reliable. Another disadvantage of this approach is that it

requires experimental trials for the determination of the volumetric energy source term:

hence reliance on experimental trials is not eliminated using this approach.

The existing work on CFD modelling of counter-current spray drying towers has shown

the potential of modelling the complex interacting transport processes inside the spray

drying tower. However, there are still many gaps in the spray drying process modelling

including comprehensive validation of the turbulence models used to simulate gas flow

profiles in a spray drying tower, consideration of drying kinetics of droplets/particles in

three-dimensional gas flow with coupled heat, mass and momentum transfer along with

particle-wall interactions. Investigation of the role of initial specified droplet size

distribution and velocity on the final dried powder parameters has not been investigated

in the earlier studies. The final residence times of particles and moisture content as a

function of sizes also needs to be evaluated and compared with experimental data, the

influence of change in size/shape of the particle on the heat and mass transfer

coefficients as well as on the drag force is also remains unexplored. In addition, the

influence of inter droplets/particle collisions as well as particle-wall interactions

including wall deposition and re-entrainment of the wall deposits as well as breakage of

particles due to these interactions in the CFD modelling of spray drying tower also

needs to be evaluated.

3.17 Experimental Studies on Spray Drying Process in Counter-

Current Towers

Experimental studies provide useful information about the behaviour of the

droplets/particles and the drying gas in a spray drying tower. The experimental data can

also be used for the validation of spray drying process models. A limited number of

experimental studies have been carried out to study drying kinetics in counter-current

spray drying towers. Piatowski and Zbicinski (2007) conducted experiments in a

counter-current spray drying tower using a solution of maltodextrin (50% w/w) as a
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feed to investigate the effect of gas temperatures near the atomisation zone on the

agglomeration by varying the height of a single centrally located pneumatic nozzle. The

tower studied had a height of 9 m and a diameter of 0.5 m. The hot gas was injected via

fins with adjustable angles that induced swirl in the flow. It was found that this

parameter has a significant influence on agglomeration. The percentage of larger

particles (>150 µm) collected from the bottom of the tower increased with a larger

distance between the gas inlet and the nozzle. The increase in distance between the gas

inlets and the atomiser resulted in a lower temperature near the atomisation zone which

promoted the agglomeration process, while a higher gas temperature near the

atomisation zone (achieved by decreasing the distance between the gas inlets and the

nozzle) hampered the agglomeration process due to rapid moisture evaporation near the

atomisation zone. Hence agglomeration happens when the colliding particles have a

greater moisture content. The morphology of the spray dried particle was also reported.

In the drying conditions which resulted in minimum agglomeration, the particles were

in the form of combined spheres. In the case of severe agglomeration, the particles were

of more uniform spherical structure. Zbicnski and Piatkowski (2009) later studied the

extent of deposition on the wall in the same spray tower by changing the feed pressure

to the atomiser, which changed the size distribution of the atomised droplets. The

deposition of droplets/particles on the walls was found to be more severe for coarse

atomisation (larger droplets). The axial velocity of the droplets/particles was found to be

dependent on the gas velocity except in the vicinity of the atomiser. The effect of

atomiser height on the level of agglomeration was also investigated. It was found that at

a lower height (close to the gas inlet), the level of agglomeration was significantly

smaller. Above the nozzle, the smaller particles were freely entrained with the drying

gas to the top receiver. The temperature distributions of the gas with and without the

presence of the spray were also reported. In the presence of spray, the temperature

profiles of the gas were less uniform. It was found that the slurry flow rate, nozzle

location and inlet gas temperature are the most decisive factors that control size

distribution and density of the dried powder.

3.18 Conclusions

A review of droplet drying models used in the modelling of spray drying process is

presented. The droplet drying models are either based on a semi-empirical approach or a

theoretical approach. The low computing requirement of semi-empirical models make

them suitable for studying drying kinetics using CFD modelling of spray drying
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process. Two most common approaches used in the modelling of spray drying towers

are the plug-flow approach and the CFD approach. The one-dimensional (plug-flow)

models give quick estimations of the effect of the operating parameters on the dried

powder characteristics, but are unable to model complex processes including particle-

wall interactions and the resulting wall deposition/re-entrainment and droplet/particle-

particle interactions. The CFD models are computationally expensive, however, in these

models it is possible to capture complex interactions between the discrete and the

continuous phases, and to identify and troubleshoot problems pertaining to the dryer

performance, for example excessive or insufficient level of agglomeration and wall

deposition, and optimisation of the tower operation and design. Most of the modelling

work on spray drying towers has been focused on co-current spray drying towers. The

modelling work on counter-current spray drying towers is scarce. Very limited

experimental work has been reported on the study of drying process in a counter-current

spray drying tower. There is a need to carry out modelling work on counter-current

spray drying towers considering the interactions between the discrete and continuous

phases to develop a better understanding of the drying kinetics in these towers, which

would help in developing more efficient and optimised operation of spray drying

towers, more reliable prediction of dried powder characteristics as well as in

troubleshooting the operating problems.
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4. COLLECTION OF EXPERIMENTAL DATA

4.1 Introduction

The counter-current spray drying tower which was used to collect data for the validation

of modelling results in this study is a pilot-plant tower, called integrated pilot-plant

(IPP), at P&G research centre in Newcastle, UK. The data is collected by other

researchers in P&G research centre. This spray drying tower is a scaled-down version of

typical commercial spray drying towers used by P&G to manufacture detergent powder.

It is used to evaluate the effect of operating conditions on the quality of the detergent

powder (determined by measuring spray dried powder moisture content, bulk density

and size distribution) using different detergent slurry formulations and hence to

optimise the operating parameters to assist in the determination of optimised operating

parameters in the commercial spray drying units. This spray tower has a single centrally

located hollow-cone pressure nozzle atomiser installed at different heights. The spray

drying process can be carried out using a single as well as multiple nozzles at different

heights during the operation. The commercial spray drying units have similar height but

have a larger diameter due to greater capacity. The slurry in commercial spray drying

towers is sprayed using a ring of nozzles at various heights.

4.2 Spray drying process in the IPP unit

In the spray drying process studied, the feed is a detergent slurry. The slurry is a

mixture of zeolite, surfactant, water and additives. Typical initial moisture fraction of

the slurry is in the range of 0.25-0.35 w/w wet basis. The slurry is prepared in mixing

tanks in a batch wise manner, which is then fed to a crutcher (mixer), which acts as a

holding tank for the continuous supply of feed. The slurry from the crutcher is fed to a

hollow cone pressure nozzle atomiser at a pressure of about 60-75 bar inside the IPP

spray drying tower. This is done using a series of low-pressure and high pressure

pumps. The height of the atomiser can be adjusted, this will primarily have an impact on

the residence time of the particles. The slurry can also be sprayed using two nozzles at

different heights in the tower. The slurry is atomised into small droplets in the spray

drying tower. Figure 4.1 is a process flow diagram of the spray drying process in the

IPP.
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Figure – 4.1: Process flow diagram of detergent slurry spray drying.

The hot gas used as the drying medium is composed of atmospheric air and flue gas.

The atmospheric air is injected into a direct fired furnace via an air blower. Methane is

used as fuel gas for the furnace. The air is heated up to the required temperature

(typically 200 to 300oC). The resulting hot gas is a mixture of air, CO2 and H2O

vapours. The hot gas goes into the distribution ring. The gas is distributed around the

ring and goes into the gas inlet nozzles. The gas inlet nozzles are mounted tangentially

to the spray drying tower at an angle. The tangential entry of gas gives swirl to the hot

gas flowing counter-current to the droplets/particles. The hot gas inlet temperature is

measured using a k-type thermocouple (comprising chromel-alumel alloys) in a duct

that supplies drying gas to the distribution ring. The contact of the gas with droplets and

particles results in removal of moisture. The dried particles fall into a belt conveyor at

the bottom of the tower inside a semi enclosed chamber. The temperature of the dried

powder is measured at the belt conveyor using an infrared probe a few meters away

from the location of the particle exit from the tower. The dried powder is then lifted up

using an air lift and collected in a storage tank, from where the sample of powder is

collected for the measurement of moisture content, bulk density and cake strength

testing. The operating pressure inside the spray drying tower is slightly below

atmospheric (-300 Pa at the outlet) using an induced draft fan. Due to lower operating
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pressure, some amount of atmospheric air gets entrained into the tower from the open

ends at the sides of the enclosure around the belt conveyor (see Figure 4.2). This

amount of cold air results in cooling of the dried particles exiting from the bottom.

Figure – 4.2: Collection of dried powder at the bottom of the tower.

Fine particles (typically <150 µm) get entrained by the exhaust gas exiting from the top

of the spray drying tower. Fine particles need to be separated before the gas can be

released into the atmosphere. To separate fine particles from the exhaust gas stream, the

gas goes into a cyclone separator. The fines are collected from the bottom of the cyclone

separator (see Figure 4.3). The exhaust gas stream is then released to the atmosphere.

The exhaust gas stream temperature is measured at the inlet header of the cyclone

separator using a k-type thermocouple.

The spray drying tower is insulated using fibre glass insulation. Electrical trace heating

is also provided between the insulation and the wall of the tower, which ensures that the

inside temperature of insulation does not fall below (60oC) when the tower is not in

operation to avoid delay in the tower start-up. The inside walls of the spray drying

tower during a spray drying run are covered by a layer of deposits. Therefore, the wall

of the tower is usually cleaned using a brushing assembly before a new run is started.
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Figure – 4.3: Separation of entrained fine powder from exhaust gas.

4.3 Geometry of the Tower

Figure 4.4 is a schematic of the spray drying tower. It is a long-form counter-current

spray tower which is characterised by height to diameter ratio greater than 3. It consists

of a cylindrical section and the bottom conical section. The gas enters the tower

tangentially into the bottom conical section via gas inlet nozzles which are inclined at an

angle both horizontal and radial. The horizontal angle (β) is the angle which the gas

inlets make with the horizontal axis (Figure 4.4 (b)). The radial angle (θ) is the angle

between the gas inlet nozzle and line normal to the tangent of the dryer circumference

(Figure 4.4 (c)). This tangential entry of the gas imparts swirl to the flow. The gas

leaves the tower via a vortex finder at the top. Due to confidentiality reasons the

geometrical dimensions are not shown.

ß

(b)



(a) (c)

Figure – 4.4: Schematic of the spray drying tower.
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4.4 Characterisation of Dried Detergent Powder

The measurement of spray dried powder characteristics is carried out by researchers at

P&G using a sample of spray dried powder in a laboratory at P&G, Newcastle

Technical Centres. The tests include measurement of size distribution of dried powder,

average moisture content, measurement of bulk density and cake strength.

4.4.1 Measurement of Powder Size Distribution

Dried powder collected from a spray drying tower consists of a range of particle sizes.

A number of factors impact the size distribution of the dried powder including

coalescence, agglomeration and re-entrainment of deposited particles during spray

drying. The spray dried powder should neither contain too much fines (<150 µm) nor it

should contain an excessive amount of coarse particles (>1000 µm). Powder containing

excessive amount of fine particles causes dust formation (Djurdjevic, 2010). On the

other hand, excessively coarse powder affects the dissolution rate (Ahmadian, 2012).

Typically the mass mean diameter of dried powder should be between 300µm to

600µm. The measurement of dried powder size distribution is carried out by sieving.

Typically 10 sieve sizes (ranging from 150 µm to 3350 µm) are used to classify

particles of different sizes (Martin de Juan, 2011). The separated fractions are then

weighed to determine the powder mass mean diameter.

4.4.2 Measurement of Moisture Content

The moisture content is another important characteristic of the spray dried powder. The

dried powder moisture content is affected by the drying conditions in the spray drying

tower as well as the slurry formulation. The target moisture content in the dried powder

is typically 2.0 to 3.0% by weight (wet basis). If the exit moisture content of the dried

powder is below this limit, it indicates exposure of powder to a high temperature,

resulting in thermal degradation of powder and affects its performance. Moisture

content higher than 3% is also avoided as it results in the formation of cake, thereby

affecting powder flowability. Moisture content of dried powder sample collected from

the tower (as depicted in Figure 4.2) is measured using gravimetric analysis. A sample

of 2 gm of powder is placed in a heater for 5 minutes at 160 oC, the sample is then again

weighed. The resulting weight loss is the amount of moisture present in the dried

powder sample (Martin de Juan, 2011).
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4.4.3 Measurement of Bulk Density

Bulk density of dried powder affects the amount required for mixing with additives

including perfume and optic brighteners before packing as well as final packaging of

powder because powder is consumed by the end user in terms of volume. The bulk

density of powder is primarily affected by inflation (puffing) of particles during drying,

which is controlled by varying the amount of air injected in the slurry feed line. The

conditions inside the tower also influence the extent of inflation of particles. The bulk

density of powder is measured by putting the sample of powder into a container of

known volume and measuring the sample weight. The ratio between sample weight and

volume is the bulk density of powder.

4.4.4 Measurement of Envelope Density

Envelope density (ρenvelop) refers to the density of a single particle including the volume

of internal and external pores. For the comparison of density of particles predicted by

the models, envelope density is used. It is defined as the mass occupied by a single

particle divided by total volume of a single particle including pore volume (see Figure

4.5). It is given by:

solidpore

solid
envelop

VV

M




(4.1)

Figure – 4.5: Schematic of a porous particle.

The envelope density is measured using a GeoPyc device (Micromeritics, 2013). The

equipment consists of a piston and cylinder arrangement (see Figure 4.6) in which a

sample of powder is poured along with a commercial fluid that occupies the remaining

volume in the cylinder. A force is then applied to the piston, so that the fluid occupies
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the inter-particle voids in the sample. The density of sample is then calculated from the

displacement of piston for a known applied force.

Figure – 4.6: Cylinder and piston arrangement in GeoPyc device.

4.4.5 Measurement of Cake Strength

Cake strength is important in determining flowability of the dried powder as it impacts

the handling of powder. To measure the cake strength, the powder sample is

compressed to form cake in a die. The cake is subjected to unconfined load until the

cake fractures. The load at which deformation occurs in the cake gives a measure of

powder flowability.

Figure – 4.7: Measurement of powder cake strength.

4.5 Droplet Size Distribution Measurement

The measurement of size distribution of droplets resulting from atomisation of liquid

slurry feed is carried out by Martin de Juan (2012) in an assembly developed in-house

by P&G, called the atomisation rig depicted in Figure 4.8. The slurry is atomised in the
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atomisation rig at the required pressure using a hollow-cone pressure nozzle atomiser.

The resulting size distribution of droplets in the spray is measured using laser

diffraction in Malvern Spraytec Analyser (Malvern, 2013) which records the angular

intensity of scattered laser beam as the spray passes through it. The scattering pattern is

then analysed using Malvern RTSizer to yield a size distribution. Typically, size

distribution of the sprayed droplets range from 10 µm to 1000 µm. The spray angle can

also be measured by taking a photograph of the spray using a camera installed in the

atomisation rig.

Figure – 4.8: Schematic of the atomisation rig.

4.6 Data from the IPP Spray Drying Tower

The data measured inside the tower was used to validate the model predictions. The data

used for validation of models in this thesis include velocity components (axial, radial

and tangential) inside the spray drying tower and temperature measurements of gas at

various axial locations.

4.6.1 Measurement of velocity profiles inside the spray drying tower

The velocity profiles inside the spray drying tower were measured by Francia (2011).

Measurements were taken using sonic velocity anemometer for air flow at ambient
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temperature (8oC) without the spray. The variation of axial, tangential and radial

velocity components along the radius were measured at five axial locations within the

cylindrical region inside the spray drying tower. At each axial location, the data was

taken at 11 points along the radius. Due to the construction of the anemometer,

measurements very close to the wall could not be taken as the access was limited by the

equipment inaccessibility. The measured time-averaged data is used to validate the

turbulence models used for reproducing the velocity profiles in the spray drying tower.

Additionally the measured turbulence intensity data is also used to validate the CFD

model predictions. The tower used for velocity profiles measurement contained a layer

of deposits on the wall, which adds to the wall surface roughness. A comparison of

velocity profiles predicted by CFD using various turbulence models and the

measurements are given in Chapter 6.

4.6.2 Measurement of temperature profiles inside the spray drying tower

Temperature profiles of the gas phase were measured by Martin de Juan (2012),

Davidson (2012) and Ahmadian (2013) inside the spray drying tower with and without

the spray. The temperature measurements were taken using k-type thermocouples which

were placed in a temperature measurement probe developed to measure the gas

temperature along the radius of the tower (Figure 4.9 (a)). The temperature probe

consisted of seven thermocouples which measured the temperature of drying gas along

the radius. The temperature probe diameter was 10 mm while the diameter of the

thermocouples was 1 mm. The temperature probe was aligned inside the tower so that

the thermocouples face the direction of gas flow (see Figure 4.9 (b)). The temperature

measurements were taken at various axial locations in the cylindrical region of the

tower. A comparison of time-averaged gas temperature measurements and predicted

temperatures inside the tower without the spray is given in Chapter 6. The measured

time-averaged gas temperature profiles with the spray and its comparison with predicted

gas temperature profiles is given in Chapter 7. Due to the presence of droplets/particles

in that case, at the end of the trial, the temperature probes were inspected for possible

deposition of particles on the thermocouples. Most of the powder was deposited on the

upper side of the probe which prevented particles from depositing on the

thermocouples, although some deposition on the thermocouple was also observed.

Figure 4.9 (c), (d) and (e) are photographs of thermocouples taken out at the end of an

experimental run which clearly show some deposition on the thermocouples, which

affected the accuracy of measured gas temperatures in the presence of droplets/particles.
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(a) (b)

(c) (d)

(e)

Figure – 4.9: Temperature measurement probe (a): thermocouple mounted on the rod,

(b) direction of thermocouple facing the gas flow, (c), (d) and (e): Temperature

measurement probe after the run with droplets/particles (Martin de Juan, 2012).

Two sets of data were taken by Martin de Juan, referred to as Martin de Juan (2011) and

Martin de Juan (2012). The data measured in 2011 included measurement of input

parameters and outlet values of the IPP spray drying tower run, which are listed in

Tables 5.1, 5.5, 7.4, 7.8 and 7.11. The data measured in 2012 was more extensive and

included gas temperature profiles inside the IPP tower without and with the spray of

droplets, depicted in Figures 6.30 and 7.41, respectively. Additionally, the measurement

of input parameters and outlet values of the IPP spray drying tower runs were also

carried out, which are listed in Tables 5.6, 5.10, 6.5, 7.10, 8.1 and 8.3.
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5. PLUG-FLOW MODELLING OF SPRAY DRYING

TOWER

5.1 Introduction

In this chapter, a mathematical model for a counter-current spray drying tower is

developed using the plug-flow modelling approach to evaluate the suitability of this

approach in modelling the spray drying process. A semi-empirical single droplet drying

model developed in-house by P&G (Hecht, 2012) is used to model the drying kinetics to

droplets of a range of sizes. The semi-empirical model is based on the full numerical

model proposed by Hecht and King (2000b). The plug-flow model considers axial

variation of temperature, density, viscosity and humidity of the hot gas and simulates

drying of droplets/particles of a range of sizes. The model is validated against data from

the IPP spray drying tower.

5.2 Droplet/Particle Drying Model

The spray drying of droplets of detergent slurry consisting of an aqueous solution

containing insoluble solid particles is addressed. The droplet/particle drying model is

applied to each particle size. Major components of the detergent slurry include a

surfactant, a polymer, a binding agent dissolved in water and a softening agent as solid

particles. The exact composition of the slurry cannot be provided because of the

confidentiality reasons, however it is very similar to the detergent slurry studied by

Griffith et al. (2008) and Handscomb et al. (2009b). The components of that slurry

along with soluble and insoluble compounds are given in Section 3.6 in Chapter 3. The

model based on Hecht and King (2000b) has been selected for describing the drying rate

of the detergent slurry in a counter-current spray drying tower as it explains the

formation of hollow particles (see Figure 3.5 (b) in Section 3.4), which is observed in

the dried detergent particles.

5.2.1 Droplet/Particle Drying Mechanism

The drying process illustrated in Figure 5.1 consists of four stages. In the first stage (A-

C), the initial heating/cooling of droplets to the wet bulb temperature takes place as the

moisture evaporates from the surface of the droplet. The size of droplet also decreases

due to the evaporation of water in this stage. The second stage (C-D) begins when the

water in the droplet is insufficient to maintain a saturated condition at the droplet
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surface, thus causing a solid crust to form at the surface. The particle temperature begins

to rise rapidly in this stage. The third stage (D-F) starts when the particle temperature is

equal to the boiling point of the slurry. The particle inflates in this stage due to internal

vapourisation of moisture in a saturated vapour bubble. Drying continues after

maximum inflation of the particle until the moisture reaches equilibrium. In the fourth

stage, the particle temperature reaches the gas temperature and the equilibrium moisture

in the particle changes accordingly.

A B C

EF

First Stage Second Stage

Third Stage

Initial Slurry Droplet
Surface Evaporation Crust Formation

Inflated ParticleFinal Particle

D

Bubble Nucleation

G

Equilibrium
Moisture Content

Fourth Stage

Figure – 5.1: Four stages of drying of a slurry droplet.

5.2.2 Drying Model Assumptions

The following assumptions are applicable to the single droplet/particle drying model

used in this study:

1. There are no temperature/concentration gradients within the droplet/particle. Since

the droplets/particles are very small (ranging from 50 µm to 2300 µm), the

variation of temperature within the droplet can be neglected (Biot number is small

< 0.1).

2. Internal circulation inside the slurry droplet is neglected. The droplet sizes are

relatively small and the presence of solid particles inside the droplet hampers

internal circulation of the liquid.

3. The droplets and the resulting particles remain spherical throughout the tower. The

shape of the particles may undergo changes due to morphological development
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during drying, agglomeration, particle-wall interaction and breakage of the

particles. The simulation of droplets/particles with non-spherical symmetry

involves excessive complexity, which may not be worth the additional effort at this

stage.

4. It is assumed that drying continues to take place in the third stage until all the

moisture is evaporated from the particle, since modelling particle drying in the

fourth stage requires a water isotherm for the detergent as a function of

temperature, which is not available. Therefore, in the fourth stage, only sensible

heat transfer takes place from the gas to the particle until the particle temperature is

equal to the gas temperature.

5. To account for particle inflation in the third stage due to internal vapourisation of

moisture, the size of the particle is increased to the initial diameter of the droplet.

This results in a change in particle density. The choice of the maximum size of the

inflated particle is based on the measured density of dried powder.

6. The density and specific heat of the slurry, and the diffusivity of vapours into the

bulk remain constant.

5.2.3 Governing Equations

The change in temperature of the droplet/particle as a function of vertical distance can

be calculated by the following energy balance:
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The heat transfer coefficient, p , in equation (5.1) is calculated from the Ranz and

Marshall (1952) correlation (equation 3.1).

The moisture content in the droplet is calculated using the equation proposed by Hecht

and King (2000b):
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The change in droplet radius due to evaporation of liquid in the first stage of drying (see

Figure 5.1) is given by:
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In the first stage of drying, the evaporation of moisture from the surface of the droplet

depends upon the surface vapour concentration and the vapour concentration in the

bulk. The initial slurry droplet drying rate is given by:
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The surface vapour concentration ( svC , ) in equation (5.4) is calculated by assuming the

partial pressure of vapours at the surface to be in equilibrium with the liquid phase, it is

given by:
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The saturated vapour concentration is calculated using Antoine’s equation (Perry and

Green, 1997).

kc in equation (5.4) is the mass transfer coefficient, and is calculated from the Ranz and

Marshall (1952) correlation (equation (3.2)).

The transformation of the first stage of drying to the second stage takes place when a

layer of solids covers the surface of the droplet. The time for the surface to become dry

is approximated by solving the diffusion equation in planar coordinates system for

diffusion in a semi-infinite slab. The analytical solution is given by Crank (1975) and

for the surface concentration it becomes:
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where erfc is the complementary error function and K is the partition coefficient, given

by:

slurryinitiall

gas

s

v

w

H

C

C
K





,

 (5.7)

Equation (5.6) is simplified by introducing the following dimensionless parameter:
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Equation (5.6) now becomes:
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The surface drying time (tsd) is taken as the time for Cl,s to reduce to a value

corresponding to 90% of the equilibrium moisture content (Hecht, 2012). Thus,

equation (5.9) becomes:

  1.0)(erfcexp 2 BB (5.10)

The solution of equation (5.10) using trial and error results in:

B = 5.5 (5.11)

From equations (5.8) and (5.11), tsd is given by:
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Once the surface is dry (step C in Figure 5.1), the drying rate becomes dependent on the

internal diffusion of moisture to the surface. Hecht (2012) developed an algebraic

equation for this step by fitting results from a full numerical model for droplet drying
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previously developed by Hecht and King (2000b). The drying rate for this stage is given

by:
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where A, B and C are constants for the exponential curve fit with values of 18.9, 0.2 and

17.7, respectively.

Puffing (particle inflation) starts at the beginning of stage 3, when the particle

temperature is equal to the boiling point of the slurry (step D in Figure 5.1). To take into

account the inflation of particles in this stage, the diameter of the particle is changed to

the initial droplet diameter. During the puffing stage, the drying process is controlled by

the external heat transfer from the gas to the particle. As the particle dries, the boiling

temperature of the slurry increases. The drying rate is obtained by a simple energy

balance on a particle, with the boiling temperature of the slurry represented as a

function of moisture content:
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The relationship between the boiling point of the detergent slurry and moisture content

was determined experimentally by Amador (2012) and is given by:
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5.3 Spray Drying Tower Model

The model of the spray drying tower illustrated in Figure 5.2 is taken to be a vertical

cylinder with a uniform cross-sectional area. In the actual tower, the hot gas enters the

bottom enlarged region of the tower by a number of inlets. The tower is operated at

slightly below atmospheric pressure which causes entrainment of air from the bottom

exit of the tower. In the model, an enthalpy balance is used to obtain the inlet hot gas

temperature (adiabatic mixing of hot gas and cold entrained air streams) and the gas

velocity is also a combination of the two streams. This hot gas flows counter-currently

to the droplet/particles. The mass flow, humidity, density and temperature of gas are

allowed to vary in the axial direction by dividing the tower height into a number of

equal increments, because the resulting differential equations need to be discretised and

solved using a finite difference method. In each increment, the heat and mass transfer

between the two phases and the particulate phase momentum transfer are solved.

Hot Air Inlet Hot Air Inlet

Solution/Slurry Inlet

Exhaust Air

Dried Particles

Figure – 5.2: Counter-current spray drying tower schematic.

5.3.1 Assumptions Incorporated in the Spray Drying Tower Model

1. The flow of hot gas in a spray drying tower involves complex three-dimensional

swirling flow. However, for simplicity, the radial and angular velocities of the hot

gas and droplets/particles are assumed to be zero.
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2. Hot gas is assumed to follow the ideal gas law. The spray drying tower operates at

atmospheric pressure and medium temperature (200-400oC).

3. Heat transfer by radiation is neglected as it only becomes significant at very high

temperatures.

4. The droplets/particles are uniformly dispersed over the cross section of the tower

with no interaction between them. In actual spray drying towers, interaction

between the droplets/particles takes place, which may result in change in size of the

droplets/particles. The modelling of particle-particle and particle-wall interactions

inside the spray drying tower is not included due to the complexities involved.

5. The minimum velocity of the particles is limited to the terminal falling velocity of

the particles. Although particles of diameter up to 200 µm get entrained with the

gas and exit from the top, but this amount is only 3% by mass of the dried powder

collected from the bottom. Hence the entrainment of particles is not considered. In

the actual spray drying tower, the particles move close to the wall where the gas

velocity is almost zero. This leads to smaller particles exiting from the bottom

which would otherwise get entrained in the gas stream.

5.3.2 Governing Equations

An energy balance on the gas phase results in the following equation for the variation of

the gas temperature:
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where j is the identifier for each discrete size. J is the total number of discrete sizes. The

number of droplets or particles (nj) for each discrete size in a control volume per unit

time is given by:
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For the calculation of heat loss to the environment, a constant thickness of column wall

and insulation is assumed. The overall heat transfer coefficient (U) in equation (5.16) is

calculated along the column height and is given by:

)(

lnln
11

inswiamb

i

ins

wi

inswi
i

w

i

wi
i

D r

rr

r
r

r

r
r

U 









 























 



(5.18)

where ri is the inside radius of the column, measured from the centre to the column

wall.

The Nusselt number used for calculation of the inside film coefficient ( D ) is given by

(Kreith, 1973):

33.08.0 PrRe023.0Nu DD  (5.19)

Equation (5.19) is applicable to fully developed turbulent flow in a circular duct (Re >

4000), typical value of gas Re in the cylindrical region is 2×105. The change in mass

flow of the gas is given by the following equation:
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The droplet/particle velocity for each particle size is calculated from the equation of

motion:
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The buoyancy force ( aF


) is given by:
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The drag force ( dF


) in equation (5.21) is given by:
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The Reynolds number based on the relative velocity is given by:
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The drag coefficient for the droplets is calculated using correlations proposed by

Williams (1976), which was measured for burning oil droplets and is given by equation

(3.61) and (3.62). The drag coefficient for the particles is calculated using correlations

proposed by Morsi and Alexander (1972) which is applicable to smooth spherical

particles, given by equation (3.60). The minimum velocity of the particle is limited to

the particle terminal velocity to avoid negative velocity values for the particles and is

given by:
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The density of the hot gas as a function of temperature is calculated by the ideal gas

law:
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The viscosity of gas is considered as a function of gas temperature and is calculated

using the following relationship obtained from air viscosity data in Perry and Green

(1997):

)8626.11060036.0(10
275  
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The mass weighted average particle temperature at the outlet is calculated using the

following equation:
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The mass weighted average particle moisture content at the outlet is calculated using the

following equation:
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The temperature of the gas stream going into the tower is calculated using the following

equation:
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A derivation of generalised form of the equations representing the heat and mass

transfer between the droplets/particles and the gas in the plug-flow model are given in

Appendix I.
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5.3.3 Droplets Initial Velocity

The slurry is atomised using a hollow-cone pressure nozzle atomiser. The initial

velocity is assumed to be same for all the droplet sizes and is calculated using the

following equation:
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The above equation requires the radius of the air core (rc) and spray cone injection angle

(θ). The injection angle is taken to be 40o based on the vendor provided data and the

radius of the nozzle ro is 1.38×10-3 m. The air core radius is taken from the data reported

by Nelson and Stevens (1961).

5.3.4 Boundary Conditions

At z = 0 (at the top of the tower corresponding to droplet inlet), the following boundary

conditions are applicable:

0,pp TT  , 0,pp uu  , 0,ll ww  , 0,pp dd  , 0,gasgas MM   , 0,gasgas TT  and

0,gasgas uu  (5.32)

At z = Z (at the bottom of the tower corresponding to the gas inlet), the following

boundary conditions apply:

Zgasgas TT , and Zgasgas uu , (5.33)

5.3.5 Solution Methodology

The spray tower is divided into a number of equal sized increments of length Δz to solve

the differential equations using a finite difference method. The differential equations

(5.1, 5.2, 5.3, and 5.21) are discretised using a forward difference approximation;

whereas equations (5.16 and 5.20) are discretised using a backward difference

approximation. In equation (5.1), the mass, drying rate, heat transfer coefficient,

specific heat and velocity of each particle size are considered to be constant within the
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increment. The counter-current particle-gas flow arrangement and unknown exit

conditions of the gas (at z = 0) and particles (at z = Z), necessitate an iterative technique

to obtain the numerical solution, thus converting the boundary value problem to an

initial value problem. The starting point of the calculation is at the top of the tower (z =

0) where the slurry is sprayed (see Figure 5.3). The initial values of the outlet gas

temperature and mass flow are required in order to solve the discretised equations for

the first iteration. These values are estimated based on the overall energy balance

assuming that the particles outlet temperatures are equal to the inlet gas temperature and

moisture fraction of the particles is zero. The calculated gas temperature at the bottom

of the tower (z = Z) is compared with the known value of inlet gas temperature. The

initial estimated value of the outlet gas temperature is then adjusted, based on the

difference between the calculated value and the known value of inlet gas temperature.

The outlet gas moisture content is also adjusted, based on the moisture content of the

dried particles. The calculation is repeated until specified values of tolerances of 0.5 K

between the calculated and known gas inlet temperatures as well as a 1% difference

between the outlet mass flow of the gas for two successive iterations are obtained. The

solution methodology is implemented in the computer software package MATLAB

(2010). Figure 5.4 is the logic flow diagram of the algorithm for the numerical solution

of the full model.
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Figure – 5.3: Control volume inside the spray tower.
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Figure – 5.4: Logic flow diagram of the solution algorithm.

5.4 Size Distribution of Droplets

The spray drying process starts from a distribution of droplets resulting from the

atomisation of feed using an atomiser. The estimation of initial size distribution may be

important in predicting the overall performance of the spray drying tower. In this study,

the measured size distribution of the slurry droplets as well as the measured size
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distribution of the dried powder is used as the initial size distribution by considering

various cases. The cumulative size distribution curve of the sprayed droplets in the

simulation is represented by using a Rosin-Rammler fit (Rosin and Rammler, 1933)

given by equation (5.34).

  su
mpd ddY  exp (5.34)

5.5 Simulation Results

The plug-flow model is used to simulate spray drying of a detergent slurry to predict

detergent powder characteristics in the IPP spray tower. It is important to first

investigate the influence of grid size (Δz) on the simulation results. Similarly it is also

important to investigate the effect of number of cut sizes which are used to represent

droplet/particle size distribution on the simulation results. Increase in the number of

discrete sizes used to represent the size distribution should result in a more accurate

representation of how the size distribution affects the predicted results of the

simulations, but there will be corresponding increase in the run times per simulation.

The input operating conditions are taken from the pilot-plant for checking numerical

accuracy and suitable number of cut sizes, which are listed in Table 5.1 (Martin de Juan,

2011). This case is referred to as the Base Case. The droplets initial velocity is

calculated using equation (5.31). The simulation results are later compared with the

experimental data to establish the validity of this model.

An experimentally measured dried powder size distribution resulting from the above

listed operating conditions from the spray tower is used in this investigation as the

initial droplet size distribution. The range of sizes is from 100 µm to 2300 µm. The

measurement of the particle size distribution was carried out by P&G (Martin de Juan,

2011) using 10 sieve sizes (see Section 4.4.1). Figure 5.5 is the particle size distribution

showing cumulative mass fraction oversize as a function of sieve size. A Rosin-

Rammler distribution using equation (5.34) is fitted to experimentally measured data for

dried particles (shown by a continuous curve). The best curve fit is obtained using a size

constant (dm) of 750 µm with a distribution parameter (us) of 1.35.

The continuous function represented in Figure 5.5 cannot be used in the simulations and

so the size distribution will be a number of particles of equal size cuts. For instance, a

size cut of 100 m results in 23 discrete particle sizes: starting at 100 m in intervals of
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100 m up to 2300 m. Each particle size will be considered in parallel during the

calculations. The particle size in each of the 23 discrete samples, the percentage by

weight, the surface area of each size and the area density are listed in Table 5.2. The

particle size of 300 m has the greatest wt% (9.84 %) followed by size of 400 m. The

smallest particle size of 100 µm has the largest number of particles (not shown due to

confidentiality reasons), which have the lowest surface area, but by far the greatest

specific surface area.

Each of these droplets/particle sizes will have very different experiences within the

spray tower and it is imperative in any simulation to accommodate the size distribution.

In addition, it will be important to investigate how the number of discrete sizes (bins)

representing the particle size distribution affects the predicted performance of the spray

tower.

Figure – 5.5: Particle size distribution plot on a cumulative mass basis.
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Table – 5.1: Input operating conditions for Base Case (Martin de Juan, 2011).

Droplet Properties

Slurry inlet temperature opT , 358 K

Slurry mass flux towerslurry AM / 0.21 kg/m2s

Specific heat of dried particle solidpc , 1500 J/kg K

Specific heat of solvent waterpc , 4180 J/kg K

Specific heat of vapours vapourspc , 1900 J/kg K

Density of slurry slurry 1200 kg/m3

Latent heat of vapourisation fgh 2260000 J/kg

Diffusion coefficient of water in slurry WSD 11100.3  m2/s

Diffusion coefficient of water vapour into air AWD 5106.2  m2/s

Gas Properties

Hot gas temperature hotgasT , 563 K

Hot gas mass flux towerhotgas AM /,
 0.92 kg/m2s

Gas pressure p 101325 Pa

Gas thermal conductivity gas 2100.3  W/mK

Entrained air mass flux towercoldgas AM /,
 0.046 kg/m2s

Entrained air temperature coldgasT , 293 K

Specific heat of air gaspc , 1006.4 J/kg K

Ambient temperature ambT 293 K

Column Wall

Metal wall thickness w 0.006 m

Metal wall thermal conductivity w 18.8 W/mK

Insulation thickness ins 0.105 m

Insulation thermal conductivity ins 0.04 W/mK
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Table – 5.2: Discrete droplet size distribution

Size µm Weight %
Surface Area

(m2)×108

Specific surface

Area

(m2/m3)×10-3

100 6.44 3.14 59.97

200 9.18 12.56 29.98

300 9.84 28.26 19.99

400 9.73 50.24 14.99

500 9.20 78.50 11.99

600 8.45 113.04 9.99

700 7.59 153.86 8.57

800 6.69 200.96 7.50

900 5.82 254.34 6.66

1000 5.00 314.00 6.00

1100 4.24 379.94 5.45

1200 3.56 452.16 5.00

1300 2.97 530.66 4.61

1400 2.45 615.44 4.28

1500 2.01 706.50 4.00

1600 1.64 803.84 3.75

1700 1.32 907.46 3.53

1800 1.06 1017.36 3.33

1900 0.85 1133.54 3.16

2000 0.67 1256.00 3.00

2100 0.53 1384.74 2.86

2200 0.42 1519.76 2.73

2300 0.33 1661.06 2.61

Total 100

5.5.1 Solution Dependency on the Number of Increments

The solution was investigated for numerical accuracy by changing the number of

increments (Δz) used for the representation of total tower height. A size cut of 100 µm

with 23 discrete sizes is used for this investigation. In Table 5.3 the variation of

calculated values of the outlet mass weighted average particle temperature, moisture
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content and gas temperature as well as the inlet air temperature are listed for total

number of increments of 1500, 3000, 6000 and 12000. The simulation diverged when

the total increments were reduced below 1500. The sensitivity of the results on the

number of grid sizes (Table 5.3) is very small and the corresponding increase in run

time is also negligible. Hence any number of increments in the above range can be used.

For this case, 6000 increments have been used to represent the total tower height.

Figure 5.6 is a plot of the convergence of the error between the calculated and known

inlet air temperature against the iteration number for the simulation with 6000 grids.

The solution for this run reaches the required tolerance limit (0.5 K) in 7 iterations.

Table – 5.3: Solution dependency on the number of increments for Base Case.

S.

No.

No. of

increments

No. of

iterations

Particle

average

outlet

temperature

(K)

Particle

average

moisture

% (w/w)

Outlet air

temperature

(K)

Inlet air

temperature

(K)

Run time

(minutes)

1 1500 6 482.19 5.89 396.26 550.29 0.3

2 3000 6 482.21 5.89 396.39 550.29 0.6

3 6000 7 482.20 5.88 396.46 550.29 1.7

4 12000 6 482.20 5.88 396.49 550.29 3.3

5.5.2 Solution Dependency on Cut Sizes

The size distribution of the droplets/particles in Figure 5.5 is represented by a number of

discrete sizes. Increase in the number of discrete sizes used to represent the size

distribution should result in a more accurate representation of the size distribution and

can affect the predicted results of the simulations, but there will be a corresponding

increase in the run times per simulation. Table 5.4 lists simulated values of the average

particle outlet temperature and moisture content, and the gas outlet temperature for

increasing the number of discrete sizes. The number of discrete sizes slightly influences

the simulation results. An increase in the average particle moisture content and outlet

gas temperature is observed with increase in number of discrete droplet sizes; however

its influence on the particle average outlet temperature is negligible. The predictions

using 23 discrete sizes are very close to the predictions using 92 discrete sizes. Hence a

size cut of 25 μm is sufficient for this investigation.
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Figure – 5.6: Plot of Error (difference in predicted and actual gas inlet temperature) v/s

Iteration.

Table – 5.4: Solution dependency on the number of discrete droplet sizes.

S.

No.

Discrete

droplet

sizes

Size cut

(μm)

Particle

average

outlet

temperature

(K)

Particle

average

moisture

content %

(w/w)

Outlet air

temperature

(K)

Run Time

(minutes)

1 23 100 482.20 5.88 396.46 1.7

2 46 50 481.03 5.99 399.93 3.05

3 92 25 480.45 6.03 401.82 6.2

An overall enthalpy balance error is 0.43% for the simulation run number 1 in Table

5.4, which is based on these predicted outlet values and the inlet conditions and is given

by the following expression:

100×[(E1+E2)-(E3+E4+E5)]/(E1+E2) (5.35)

where E is the enthalpy of a stream and the subscripts 1, 2, 3, 4 and 5 refer to the

streams of the gas inlet, the slurry inlet, the gas outlet, the particles outlet and heat loss,

respectively, and is given by:
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Similarly, the overall mass balance error is 0.25%.

5.5.3 Simulation Results and Discussion

All the results presented here are based on the simulation case with 6000 increments

and a size cut of 25 µm. The profiles are presented and discussed for the particle

residence times, temperatures, moisture contents, drying rates and velocities for selected

particle sizes. Also the plots of profiles of the gas temperature, gas velocity and wall

heat flux are presented and discussed below.

Figure 5.7 is a plot of residence time of particles of different sizes in the tower ranging

from 100 µm to 2300 µm. The smaller particles (up to 300 µm) have significantly

greater residence times compared to the larger particles. The difference in the residence

times of very large particles is very small (1300 µm and greater). On the contrary, the

difference in the residence times of the smaller particles vary significantly with particle

sizes. The residence time distribution plot shows an exponential decline with increasing

particle sizes.

Figure – 5.7: Residence time distribution of particles.
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Figure 5.8 is a plot of normalised velocity profiles of a selected number of sizes: 100

µm, 400 µm, 800 µm, 1000 µm, 1500 µm and 2300 µm, along the dimensionless tower

height, where 0 represents the nozzle location (where droplets are sprayed) and 1 is the

bottom outlet. The initial velocity of all the injected droplets is the same. Smaller

particles lose the initial velocity quicker compared to larger particles because smaller

particles have smaller weight and hence smaller inertia and a greater influence of drag

force, therefore deceleration of smaller particles occurs more rapidly as they move

downwards. The minimum velocity of the particles is set to the terminal falling velocity

based on stationary gas velocity as explained in the model assumptions. This is an

appropriate assumption considering the fact that the particles move close to the wall and

the gas velocity near the wall is approaching zero, as found in the CFD investigation

(Chapter 7). Therefore when the particles reach their terminal falling velocity, they

continue to fall at this terminal velocity. Smaller particles have a smaller terminal

falling velocity compared to the larger particles. Hence the overall result is that smaller

particles have greater residence times compared to larger particles, which is observed in

Figure 5.7.

Figure – 5.8: Velocity profile of droplets/particles of different sizes.

Figure 5.9 is a plot of temperature profiles of selected particles sizes as well as for the

gas along the dimensionless height. When the droplets are injected from the atomiser,

the initial temperature of the slurry droplets is greater than the wet bulb temperature. At

this stage, the evaporation occurring from the surface of the droplet is greater than the
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sizes. However, none of the droplets reaches an expected constant wet bulb temperature

of 325 K. After a certain point, the temperature of the particles starts to rise rapidly.

This is due to a crust formation at the droplet surface. This trend is observed for all

droplet sizes. The crust formation occurs at a much shorter distance for smallest

droplets compared to larger droplet sizes. Once a crust is formed, the rate of moisture

loss from the droplet decreases, resulting in greater heat transfer to the droplet compared

to heat released due to evaporation of moisture. The smallest particle size (100 µm)

quickly reaches the gas temperature thereafter and continues to rise as the gas

temperature increases towards the bottom of the tower. For 400 µm and greater particle

sizes, a constant temperature region at about 373 K occurs. This temperature

corresponds to the boiling point of the slurry. Once the slurry reaches the boiling point,

the rise in droplet temperature is dependent on the slurry boiling point. The boiling

point starts to rise as the moisture fraction in the slurry decreases, because the

equilibrium pressure of the moisture over the slurry is lowered by the presence of the

solute. The slurry boiling point is a weak function of moisture content at high moisture

fractions, but increases rapidly as the moisture reduces. The temperature of 400 µm

particles approaches the gas temperature as it moves downward. For the 800 to 1500 µm

particle size, the particles exit at slurry boiling point at the corresponding moisture

content. For the largest particle size (2300 µm) the particle exits just below the boiling

point. The gas temperature is highest at the bottom; the gas temperature reduces due to

heat exchange with droplets/particles and exits from the top at a temperature of about

396 K which is greater than the initial slurry droplets temperature.

Figure – 5.9: Temperature profile of droplets/particles of different sizes.
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Figure 5.10 is a plot of heat transfer coefficient of selected sizes along the

dimensionless tower height. The heat transfer coefficient for all sizes is largest at the top

and decreases along the tower height. The initial value of the heat transfer coefficient is

the largest for the smallest droplet as it is inversely proportional to diameter. It

decreases very rapidly along the height due to the rapid decrease in the velocity and

eventually becomes constant as the minimum particle velocity is limited at the terminal

falling velocity. Despite a rapid decrease in heat transfer coefficient for this size, it

remains the highest compared to all larger sizes. The heat transfer coefficient is smallest

for the largest size (2300 µm).

Figure – 5.10: Heat transfer coefficient profile of droplets/particles of different sizes.

Figure 5.11 is a plot of mass transfer coefficient of particles of different sizes. A similar

trend occurs for the mass transfer coefficient profile along the dimensionless tower

height for different sizes as for the heat transfer coefficient. Hence the same explanation

applies to the mass transfer coefficient for the reduction in values along the tower

height. Since the heat and mass transfer coefficients for smaller particles are greater and

the residence times of smallest particles are also greater, therefore the smaller particles

exit at much lower moisture contents compared to larger particles.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000

D
im

en
si

o
n

le
ss

H
ei

g
h

t
(z

/Z
)

Heat Transfer Coefficient (W/m2K)

100 µm

400 µm

800 µm

1000 µm

1500 µm

2300 µm



114

Figure – 5.11: Mass transfer coefficient profile of droplets/particles of different sizes.

Figure 5.12 is a plot of dimensionless moisture profiles (wl/wl,o) of droplets/particles of

selected sizes. The smaller particles sizes lose the moisture quicker than the larger
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particle reaches slurry boiling point. The rate of moisture-loss decreases as the particle
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Figure – 5.12: Moisture profiles of droplets/particles of different sizes along the

dimensionless tower height.

Figure 5.13 is a plot of drying rates of selected particle sizes along the dimensionless

tower height. The horizontal axis is plotted on a logarithmic scale due to the orders of

magnitude difference in the drying rate of particles of different sizes. The drying rate

profiles correspond to the three stages of drying and are more clearly visible for larger

particle sizes (400 µm and above). For all the sizes, the drying rate is the highest in the

beginning of the first stage of drying. The drying rate in the first stage falls quickly as

the velocity of the injected droplets starts to reduce due to drag, this reduces the mass

transfer coefficient and hence the drying rate. The drying rate in the second stage is

independent of the surrounding conditions in the tower as it is internal moisture

diffusion controlled, hence it is relatively uniform. The drying rate increases in the third

stage due to the internal vapourisation of moisture that facilitates the transport of

moisture to the surface, hence the heat transfer to the particle controls the rate of drying.

In the third stage of drying, for larger particle sizes, sharp changes in the drying rate are

observed, this occurs when particle temperature starts to rise more rapidly, resulting in a

decrease in the heat transfer driving force (temperature difference between the gas and

the particle), at some stage, the heat transfer to the particle becomes insufficient to

maintain the particle temperature at its corresponding boiling point and therefore the

drying rate fluctuates between the second and third stages.
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Figure – 5.13: Drying rate of droplets/particles of different sizes along the

dimensionless tower height.

Figure 5.14 is a plot of particle temperature, the corresponding boiling and drying rate

for a 400 µm particle size, and gas temperature along the dimensionless tower height.

The drying rate is highest initially when the droplet is injected and begins to decrease

due to the fall in the particle velocity (which reduces the heat and mass transfer

coefficients). The particle temperature becomes lower during this period. Once a crust is

formed at the surface, a dramatic fall in the drying rate happens and a corresponding rise

in temperature as most of the heat is used up in rising the particle temperature. This

continues until the particle temperature is equal to the slurry boiling point (Tboil). The

drying rate increases rapidly at the slurry boiling point as the mass transfer from the

particle is controlled by rate of heat transfer to the particle. The rate of heat transfer to

the particle is dependent on the temperature difference between the particle and the gas.

After a certain height, the temperature of the particle begins to rise as the moisture

content in the particle reduces and the slurry boiling point increases. The equilibrium

pressure of water vapours over the slurry is lowered as the slurry becomes thicker due to

loss of moisture and results in a rise in slurry boiling point. The rise in slurry boiling

point also results in rise in particle temperature. The rise in particle temperature results

in a decrease in the heat transfer driving force (Tgas – Tp) depicted in Figure 5.15. The

rapid decrease in driving force results in a rapid decrease in the drying rate and the

particle temperature reduces slightly below the slurry boiling temperature as sufficient

heat is not transferred to the particle. The drying rate fluctuates between second and the

third stage until the slurry boiling point corresponding to particle moisture content

becomes greater than the gas temperature and the drying rate again becomes diffusion
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rate controlled. After a certain dimensionless height all the moisture from the particle is

removed and only sensible heat transfer takes place from the gas to the particle there

onwards. At the exit, the particle temperature is very close to the gas temperature.

Figure – 5.14: Particle and gas temperatures, slurry boiling point and corresponding

drying rate along the dimensionless height for a 400 µm size particle.

Figure – 5.15: Particle and gas temperatures, slurry boiling point and the temperature

difference along the dimensionless height for a 400 µm size particle.
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reduces very sharply. This is due to the expansion of particle in the third stage. The

largest particle (2300 µm) does not undergo puffing as it exits from the tower in the

second stage of drying.

Figure – 5.16: Density of droplets/particles of different sizes along the dimensionless

tower height.

Figure 5.17 is a plot of the specific heat of particles of different sizes along the

dimensionless tower height. The specific heat of all particle sizes reduces along the

tower height; the plots are qualitatively similar to the particle moisture fraction profiles.

Since the specific heat of particles changes with moisture content.

Figure – 5.17: Specific heat of droplets/particles of different sizes along the

dimensionless tower height.
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zero moisture content due to greater residence times and lower resistances to heat and

mass transfer. The temperatures of these particles are also very high compared to larger

particles (800 µm and above). The larger particles have a higher moisture content and a

considerably lower temperature at the exit due to shorter residence times and greater

resistances to heat and mass transfer.

Figure – 5.18: Outlet temperatures and moisture contents as a function of size.

Figure 5.19 is a plot of gas velocity along the tower height normalised by the initial gas

velocity which is the maximum. The gas velocity reduces due to a reduction in

temperature as it goes up, which increases the gas density and hence the reduction in

velocity. However the mass flow of the gas gets larger due to the increase in moisture

content of the gas as it travels upwards, but the net effect is a decrease in gas velocity up

the tower.

Figure – 5.19: Normalised gas velocity along the tower height.

Figure 5.20 is a plot of the heat fluxes through the insulated column wall to the

surroundings along the dimensionless tower height. The negative sign indicates that the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

300

350

400

450

500

550

100 500 900 1300 1700 2100

D
im

en
si

o
n

le
ss

M
o

is
tu

re
F

ra
ct

io
n

(w
l/w

l,
o)

F
in

al
T

em
p

er
at

u
re

(K
)

Particle Size (µm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.7 0.75 0.8 0.85 0.9 0.95 1

D
im

en
si

o
n

le
ss

H
ei

g
h

t
(z

/Z
)

Normalised Gas Velocity (ugas/ugas,in)



120

heat is being lost from the tower to the surroundings. The heat flux is a maximum at the

bottom of the tower due to increased velocity and higher temperature of the gas at the

bottom of the tower. As the gas loses temperature and decreases in velocity, the heat

flux also decreases. The predicted total heat loss through the column walls is 5.58 kW.

Figure – 5.20: Heat flux through the column wall v/s dimensionless height.

To evaluate the influence of rate of mass transfer from the surface of the droplet/particle

on the heat transfer coefficient calculated using the Nusselt number correlation (given

by equation (3.1)), the corrected Nusselt number is calculated using equation (3.12),

based on which the corrected heat transfer coefficient is calculated. Figure 5.21 is a plot

of heat transfer coefficient calculated using equation (3.1) compared with that calculated

using the Nusselt number correction due to high surface mass transfer rate for a 500 µm

particle size along the dimensionless tower height. It is observed that the difference in

the corrected heat transfer coefficient is negligibly small. Hence the rate of mass

transfer from the droplet/particle surface is not sufficiently high to appreciably change

the Nusselt number proposed by Ranz and Marshall (1952).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-100 -90 -80 -70 -60 -50 -40 -30 -20

D
im

en
si

o
n

le
ss

H
ei

g
h

t
(z

/Z
)

Heat Flux (W/m2)



121

Figure – 5.21: Corrected heat transfer coefficient v/s dimensionless height.

The effect of mass transfer rate on the drag coefficient and hence the velocity profile of

the droplet/particle was evaluated using equation (3.66). Figure 5.22 is a plot of velocity

profile of a 500 µm particle size along the dimensionless tower height calculated using

the surface mass transfer corrected drag coefficient and compared with that calculated

without the surface mass transfer correction. It is observed that the surface mass transfer

correction in the drag coefficient does not appreciably change the velocity profile; hence

its influence in changing the residence times of the droplets/particles is negligible.

Figure – 5.22: Corrected particle velocity v/s dimensionless height.
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Table – 5.5: Comparison of simulation results and pilot-plant data.

Predicted

Experimental

(Martin de

Juan, 2011)

Difference

Gas outlet temperature (K) 396.4 367 29.4

Powder outlet temperature (K) 482.2 356 126.2

Dried powder moisture content

%(w/w)
5.88 1.80 4.08

Heat loss though the tower (kW) 5.58 62.1 -56.5

The predicted and experimental data are not in good agreement and this is due to several

factors. There is a difference of 126.2 K (35%) in the calculated and experimentally

measured powder outlet temperatures. The measured outlet temperature of the powder is

much less than the calculated value, because in the actual process, the dried powder

comes into contact with an entrained cold air stream at the bottom exit of the spray

tower and this will result in cooling of the powder. In addition, the measured

temperature is not at the exit of the tower, but is obtained by a temperature probe

installed on a belt conveyor at a few metres away from the location where the powder

falls from the tower (see Figure 4.2). The temperature of the powder will be reduced

significantly by this point. The model does not consider cooling of particles due to

entrained air and cooling of particles when the powder falls on the belt conveyor.

The predicted moisture content is different from the measured value of the spray dried

powder. This is primarily because of two reasons. Firstly, the assumption in the droplet

drying model that drying continues to take place in the third stage of drying even at very

low moisture content. In reality, the particles moisture content will not reduce below the

equilibrium moisture condition at the exit gas condition; hence the actual moisture

content will be greater. Secondly, the moisture content of the dried powder is measured

from a sample which is first conveyed through the belt to the air lift and is then

transported to the sampling section via an air lift. The dried powder in this route not

only gets a reduction in temperature, but it also absorbs surrounding moisture content

and begins to equilibrate with the new conditions. Hence the measured moisture content

is expected to be greater than the predicted average powder moisture content. But in the

current case, the measured moisture content is smaller than the predicted value. This

could mainly be due to the use of the dried powder size distribution as the initial droplet

size distribution.
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The dried powder size distribution is expected to be greater than the initial droplet size

distribution resulting from atomisation at the nozzle. As the droplets fall downwards,

they collide with other droplets which may coalesce; similarly the wet particles may

also collide to form agglomerates. Furthermore, the entrainment of deposits on the wall

may also have a contribution in the increased mean particle size. Due to the increase in

particle size and mass, the particles will fall down more quickly as it has been shown in

Figure 5.7 that the larger particles have significantly smaller residence times, similarly,

the larger particles exit at a much higher moisture content compared to the smaller

particles. The heat and mass transfer coefficients of the larger particles are also

significantly less than those of the smaller particles (Figures 5.10 and 5.11). These

conditions favour more rapid evaporation of moisture from the smaller particles

compared to the larger particles.

The predicted exhaust gas temperature is also higher than the measured value. The

exhaust gas temperature indicates the amount of heat exchange taking place between the

gas and the droplets/particles. In this case, the predicted exhaust gas temperature is 29 K

greater than the measured temperature. Since the predicted particle exit moisture content

is greater, hence the exhaust gas temperature is also greater. Furthermore, the heat loss

predicted by the model is significantly smaller than the calculated heat loss (based on

measured temperatures) taking place in the spray drying tower. The actual heat loss is

calculated based on the measured values, although it also includes the associated

measurement errors, but the difference in measured and predicted heat losses is not

expected to be as high as 56.5 kW. There are several reasons for a higher heat loss

taking place from the tower compared to the prediction. Firstly, the inlet gas

temperature is measured in the inlet gas duct to the distribution ring. The distribution

ring is fairly poorly insulated; hence a reduction in gas temperature will take place

before the gas actually enters the tower. In addition to the heat loss through the

insulated wall to the surroundings, there may be conduction through the body of the

tower to the supporting structure. Furthermore, there may be air ingress through the

inspection hatches into the tower, since the tower operates at slightly below atmospheric

pressure, this entrained air will reduce the gas temperature. These factors will contribute

to greater heat losses calculated via measured temperatures. Additionally, the

measurement of exhaust gas temperature is taken at a few metres away from the exit,

inside the gas duct by an unsheathed thermocouple; hence there may be some

measurement error in the exhaust gas temperature. In the model, the heat loss from the
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wall is allowed up to the height of nozzle location. Consideration of heat loss from the

tower walls above the nozzle will reduce the difference between the measurement and

prediction. The inside film coefficient ( D ) is calculated using the correlation

applicable to fully developed flow, however, the flow inside the tower is a swirling flow

induced due to tangential entry of the inlets. It is well known that the swirling gas flow

significantly enhance the film coefficient (Razgaitis and Holman, 1976).

Other reasons for the differences between the measurements and the simulation results

could be due to the simplifying assumptions in the model to predict the particle

residence times including the limitation of minimum particle velocity to the terminal

falling velocity, the use of smooth particle drag law, no particle deposition on the wall

and no particle-particle interaction. The smaller particles will get entrained by the gas,

in addition they may get caught up in the recirculating zones, and this will increase their

residence times. The drag law which is used for the calculation of the drag force on the

particles is valid for smooth spherical particles. However, the particles will undergo a

change in shape due to drying as well as agglomeration. The irregular shaped particles

may experience a larger drag force, and hence, a greater residence time, which is not

accounted in the simulation. The wet particles may get deposited on the wall; the

particles may retain at the wall for some time and lose moisture before the particles

eventually get entrained back into the gas stream. The particle-particle interaction is

also ignored in the simulation. The larger particles move faster compared to smaller

particles, hence the movement of larger particles will be hindered by the slower moving

particles and vice versa. These assumptions need to be relaxed for a better estimation of

the particle residence times.

The particles are assumed to move only in the axial direction and the swirl component

of the gas phase and the particles is ignored. Due to the presence of swirl, most of the

particles move close to the wall hence a temperature gradient in the gas phase will be

present along the cross-section, i.e., a high temperature gas in the central region and

relatively lower temperature gas near the walls. Hence the plug-flow assumption may

give overprediction of the spray drying tower performance. The correlations which are

used to obtain the heat and mass transfer coefficients are applicable to the smooth

spherical particles, the change in shape of the particles may also cause a deviation of the

heat and mass transfer coefficients from the ones calculated using Ranz and Marshall

(1952) correlations.
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5.5.4 Influence of Initial Droplet Size Distribution on the Simulation Results

In the Base Case, it is found that the size distribution of the droplets specified at the top

inlet can have a significant impact on the spray dryer modelling results as the smaller

particles dry more quickly and the larger particles take a longer time. In addition, the

residence time of particles vary significantly with size. Therefore, to investigate the

influence of initial size distribution specification on the plug-flow modelling results,

two further simulation runs are carried out, hereafter referred to as plug-flow Case 1 and

plug-flow Case 2. The two cases differ in the specification of initial droplet size

distribution. In the plug-flow Case 1, the measured size distribution of the droplets

(Martin de Juan, 2012) is used as the initial droplet size distribution. In the plug-flow

Case 2, the measured size distribution of the dried powder (Martin de Juan, 2012) is

specified as the initial droplet size distribution. The measured droplet size distribution

data is fitted using a size constant (dm) of 325 µm and a distribution parameter (us) of

1.6. The measured powder size distribution was fitted using two Rosin-Rammler

distributions for the entire range of sizes. For sizes up to 600 µm, dm = 500 µm with us =

2.2 was used and for sizes greater than 600 µm, dm = 300 µm with us = 0.6 gave the best

fitting with measurements. Figure 5.23 is a plot of cumulative size distribution of

droplets and particles, and the corresponding curve fits using a Rosin-Rammler

distribution.

Figure – 5.23: Size distribution of atomised droplets and spray dried powder cumulative

mass basis.
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Table – 5.6: Input operating conditions (Martin de Juan, 2012).

Droplet Properties

Slurry inlet temperature 365.5 K

Slurry mass flux 0.17 kg/m2s

Specific heat of dried particle 1500 J/kg K

Specific heat of solvent 4180 J/kg K

Specific heat of vapours 1900 J/kg K

Density of slurry 1566 kg/m3

Latent heat of vapourisation 2.26×106 J/kg

Diffusion coefficient of water in slurry 3.0×10-11 m2/s

Diffusion coefficient of water vapour into gas 2.6×10-5 m2/s

Gas Properties

Hot gas temperature 559.5 K

Hot gas mass flux 0.76 kg/m2s

Gas pressure 101325 Pa

Gas thermal conductivity 0.03 W/mK

Entrained air mass flux 0.038 kg/m2s

Specific heat 1006 J/kg K

Ambient temperature 281 K

Column Wall

Metal wall thickness 0.006 m

Metal wall thermal conductivity 18.8 W/mK

Insulation thickness 0.105 m

Insulation thermal conductivity 0.04 W/mK

The size distribution of the droplets varies from 20 µm to 1000 µm whereas the size

distribution of the dried powder varies from 100 µm to about 2300 µm. The distribution

range of dried powder as well as the final particle size of the dried powder is larger than

the sizes of the initial droplets. The Sauter mean diameter (d32) of the measured droplets

size distribution, shown in Figure 5.23, is calculated using equation (2.1) and the value

is 198 µm. The d32 of the measured dried powder size distribution (see Figure 5.23) is

350 µm. If it is assumed that no coalescence, agglomeration and attrition takes place in

the spray drying tower, then the following equation can be used to calculate the final

mean particle size from the initial mean droplet size (Pinto et al., 2014):



127

3/1

,

,

,32,32
)1(

)1(




















plp

dld

dp
w

w
dd



 (5.41)

Using the above equation, d32,p of the particle is calculated to be 792 µm, which is more

than two times greater than the d32,p value based on the measured powder size

distribution. This indicates that the increase in the mean particle size is mainly due to

coalescence and agglomeration.

For both simulation cases the operating conditions are listed in Table 5.6 (Martin de

Juan, 2012), which are from an experimental run in the IPP spray drying tower. For the

droplet size distribution case (plug-flow Case 1), the minimum droplet size is taken to

be 50 µm as the mass fraction of the droplets smaller than 50 µm is less than 3%. The

predicted overall enthalpy balance error for plug-flow Case 1 is 0.6%, whereas for plug-

flow Case 2, it is 0.3%.

5.5.5 Solution Dependency on the Number of Increments

The solution was investigated for numerical accuracy by increasing the total number of

increments (Δz). Although this has been done in the Base Case, but the input operating

conditions (gas and slurry mass flow and temperatures) are changed, therefore this

investigation is carried out again. The particle size distribution was represented using 39

discrete sizes. In Table 5.7, the variations of the calculated values of the outlet mass

weighted average particle temperature, moisture content and gas temperature as well as

the inlet gas temperature are listed for total number of increments of 3580 and 7160.

The simulation did not converge when the total number of increments was reduced

below 3580. The sensitivity of the results on the number of grid size is very small. The

grid size selected for all further simulations is 3580. The simulation run time for 3580

grids is about 1 minute on a desktop PC.

Table – 5.7: Solution dependency on the number of increments.

S. No.

Total

number of

increments

No. of

iterations

Particle

average outlet

temperature

(K)

Particle

average

moisture

% (w/w)

Outlet gas

temperature (K)

1 3580 7 525.31 1.08 378.28

2 7160 7 525.32 1.08 378.30
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5.5.6 Solution Dependency on the Number of Discrete Sizes

Table 5.8 lists simulated values of the average particle outlet temperature and moisture

content, and the gas outlet temperature for increasing the number of discrete sizes used

for representing the size distribution from 20 to 77. By increasing the number of

discrete sizes, a small increase in the average outlet moisture fraction is observed along

with an increase in gas outlet temperature. The influence of number of discrete sizes on

particle average outlet temperature is negligible. Overall, the influence of number of

discrete sizes on the simulation results is not dramatically large. Hence any of the above

listed size cuts can be used for the simulation run. In this study, total 39 discrete sizes

are used to represent the droplet size distribution.

Table – 5.8: Solution dependency on the number of discrete sizes.

S. No.

Number

of

discrete

sizes

Size cut

(μm)

Particle

average

outlet

temperature

(K)

Particle

average

moisture

content %

(w/w)

Gas outlet

temperature

(K)

Simulation

Time (s)

1 20 50 525.57 1.07 375.41 39

2 39 25 525.31 1.08 378.28 76

3 77 12.5 525.18 1.09 379.82 156

Plug-Flow Case 1:

Figure 5.24 is a plot of residence time of particles of different sizes. Smaller particles

have larger residence times compared to larger particles and the decline in the residence

time with increasing particle sizes is exponential. Larger particles show less sensitivity

towards the decrease in residence time with increase in particle size compared to

smaller particles. Similar trend is observed in the plot of residence time distribution of

particles in the previous case (Figure 5.7).
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Figure – 5.24: Residence time of particles of different sizes for plug-flow Case 1.

Figure 5.25 is a plot of temperature profiles of the droplets/particles of different sizes as

well as the gas temperature profile. The initial temperature of the slurry droplets is

greater than the wet bulb temperature, which is found to be 322 K at the exit gas

condition. Therefore the temperature of all the droplets initially falls as the droplets

move downward. It is observed that none of the droplet sizes achieve a constant wet

bulb temperature. After a certain height, the temperature of the particles starts to rise.

This is due to the formation of a crust at the surface and the transformation from droplet

to wet particle. At this stage, since the rate of moisture removal from the surface

becomes dependent on the internal diffusion of moisture to the surface, this result in a

decrease in the drying rate and hence most of the absorbed heat causes a rapid rise in the

particle temperature. For smaller particles, the temperature quickly reaches the gas

temperature and follows the gas temperature profile along the tower height afterwards.

This is because smaller particles have a greater specific surface area, a smaller diffusion

path and larger heat and mass transfer coefficients (as depicted in Figure 5.10 and 5.11

in the Base Case), resulting in greater heat and mass exchange rates. The temperature

profiles of particle sizes of diameter 400 µm and greater remain fairly constant at about

373 K up to a certain height before they start to rise again. This temperature of 373 K

corresponds to the slurry boiling temperature. Once the particles reach the slurry boiling

point, the drying rate becomes dependent on the rate of heat transfer to the particles

(third stage of drying). The slurry boiling point increases rapidly as the particles lose

moisture content; therefore a sharp rise in the particle temperature is observed, which is

more obvious for particle sizes up to 400 µm. The larger particles exit at lower

temperatures, because the residence times of larger particles are shorter than the smaller
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particles and the specific surface area is also smaller. The hot gas temperature is highest

at the bottom of the tower and decreases rapidly as the gas flows towards the top due to

heat exchange with the droplets/particles.

Figure – 5.25: Temperature profiles of droplets/particles and hot gas for plug-flow

Case 1.

Figure 5.26 is a plot of temperature and moisture content of the particles at the exit of

the spray drying tower. Smaller particles (up to 450 µm) have zero moisture content,

because these particles have higher residence times and higher specific area, resulting in

greater heat and mass transfer. The larger particles exit at a higher moisture content.

Smaller particle sizes (up to 450 µm) exit at nearly a constant temperature. The moisture

content of these particle sizes is also zero. Hence once the particles are completely

dried, they quickly acquire the surrounding gas temperature. A sharp decrease in the

temperature of the particles sizes ranging from 425 µm to 650 µm occurs. The exit

moisture content in this range of particles has a sharp rise with an increase in particle

size. Since the particles exit at the slurry boiling temperature (third stage of drying), in

this stage, the boiling point of slurry is a function of moisture content. The slurry

boiling point increases exponentially with a decrease in the moisture content as

moisture becomes more bound. Hence a sharp decrease in temperature of the particles

happens as the moisture content increases. The exit temperatures of particle sizes

greater than 650 µm are fairly constant as the slurry boiling point does not vary

significantly at higher moisture content. These distributions are used to generate the

weighted average values of temperature and moisture content.
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Figure – 5.26: Particle exit temperature and moisture content for plug-flow Case 1.

Plug-Flow Case 2:

Figure 5.27 is a plot of residence time of the range of particle sizes considered in this

case. The plot is qualitatively similar to the previous cases with an exponential decrease

in the residence time with an increase in particle sizes. The residence time becomes

nearly uniform for very large particle sizes ( > 1700 µm).

Figure – 5.27: Residence time of particles of different sizes for plug-flow Case 2.

Figure 5.28 is a plot of temperature profiles of the droplets/particles of selected sizes

and the hot gas. The temperature profiles of the droplets/particles and the hot gas is

qualitatively similar to that obtained from Case 1, however, the range of sizes is

different. In the previous case, all the particles exited at the boiling point of the slurry.
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While in this case, the larger particles exit at a temperature less than the slurry boiling

point. This occurs for the 1500 µm and 2300 µm particle size profiles.

Figure – 5.28: Temperature profiles of droplets/particles and hot gas for plug-flow

Case 2.

Figure 5.29 is a plot of exit temperature and moisture content of the particles as a

function of size. The smaller particles (up to 450 µm) exit at an almost uniform

temperature and the moisture content of these particles is also zero. The particle sizes in

the range of 500 µm to 650 µm show a similar behaviour as in plug-flow Case 1, in

which the greatest change in moisture content and exit temperature are observed with

increasing particle sizes from 425 µm to 650 µm. The particle sizes in the range of 700

µm to 1200 µm exit at almost uniform temperature, because the slurry boiling

temperature has a very small variation in this range of the moisture content. For the

particle sizes greater than 1200 µm, the temperature starts to fall and the moisture

content is nearly uniform, because these particles exit in the second stage of drying, in

which the drying rate is controlled by moisture diffusion to the surface. The temperature

of these particles depends on how much exposure the particles have with the hot gas.

For this range of particle sizes (1250 µm to 2300 µm), since the larger particles have

shorter residence times, hence the exit temperature is also lower compared to smaller

particles.
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Figure – 5.29: Particle exit temperature and moisture content for plug-flow Case 2.

Figure 5.30 is a plot of heat fluxes through the insulated column wall to the surrounding

v/s the dimensionless column height for both cases. The negative sign indicates that the

heat is lost from the tower to the surrounding. The heat loss is greatest at the bottom of

the tower because the temperature difference between the hot gas and the ambient is the

largest, as the temperature of the hot gas is lowered; the heat loss also becomes

relatively smaller. From the comparison of the two cases, it is found that, up to a

dimensionless height of 0 - 0.1 from the top, the heat flux in plug-flow Case 1 is

smaller, but it becomes greater after a dimensionless height of 0.1. Since most of the

heat and mass exchange between the droplets and particles with the gas takes place in

the top region of the tower in plug-flow Case 1 due to smaller droplets/particles having

greater surface areas, allowing rapid evaporation of moisture. Hence the temperature of

the gas is greater in the bottom region of the tower due to comparably less heat

exchange as most of the heat is taken up in evaporating the moisture from the

droplets/particles in the top region of the tower.
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Figure – 5.30: Heat Flux through the column wall to the surrounding.

Table 5.9 lists the surface drying time and residence time of particles of different sizes.

The surface drying time for smaller particles is very short compared to larger particles

since the surface drying time is inversely proportional to the square of the mass transfer

coefficient, which is greater for smaller particles. For larger particles, the residence time

is only slightly greater than the surface drying time hence these particles exit soon after

a crust is formed at the surface.
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Table – 5.9: Surface drying time and residence time of different particle sizes.

Particle Size

(µm)

Surface

Drying Time (s)

Residence

Time (s)

100 0.012 37.540

200 0.027 8.127

300 0.043 4.600

400 0.059 3.094

500 0.075 2.255

600 0.091 1.739

700 0.107 1.413

800 0.124 1.192

900 0.141 1.028

1000 0.157 0.906

1100 0.174 0.812

1200 0.191 0.741

1300 0.208 0.686

1400 0.224 0.644

1500 0.241 0.611

1600 0.258 0.583

1700 0.275 0.559

1800 0.292 0.538

1900 0.309 0.519

2000 0.326 0.502

2100 0.343 0.486

2200 0.360 0.471

2300 0.378 0.455

Table 5.10 lists the mass weighted average particle temperature and moisture content

for the whole size distribution, the gas outlet temperature and heat loss for the plug-flow

Case 1 and plug-flow Case 2 along with the measured values. The mass weighted

average dried powder moisture content predicted by plug-flow Case 1 is smaller than

plug-flow Case 2 and measurement. This is primarily because of the use of measured

droplet size distribution as the initial droplet sizes in the simulation. As it has been

shown earlier, the drying rates of the droplets/particles vary significantly with size.
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Smaller droplets/particles lose the moisture content more quickly due to higher specific

surface areas, smaller moisture diffusion paths and higher heat and mass transfer

coefficients. In addition, the residence times of smaller particles are also greater. These

are the primary reasons of overprediction of the drying of particles in plug-flow Case 1.

In this case, since the dried particle average moisture content is smaller, hence the gas

outlet temperature is also smaller.

In plug-flow Case 2, the measured dried powder size distribution is used to represent the

initial droplet size distribution. This results in an underprediction of the drying of

particles, since larger particles exchange less heat due to lower specific surface areas,

larger moisture diffusion paths, smaller heat and mass transfer coefficients and smaller

residence times. In the actual spray drying process, the size distribution of the particles

continue to change with the tower height since the particles agglomerate as they fall

down as a result of which the particle size distribution of dried powder is significantly

greater than the initial droplet size distribution. These results suggest that the inclusion

of agglomeration in the counter-current spray drying tower is important for a more

reasonable prediction of the dried powder parameters. Large differences occur between

the measured and predicted heat loss from the tower wall. Possible reasons for this large

discrepancy in the measured and predicted heat losses have been given in the discussion

on the results of the previous case. The possible reasons for the large discrepancy in the

measured and predicted temperature are also explained in the previous case (Base

Case).

Table – 5.10: Simulation results and measured data.

Parameter
Plug-Flow

Case-1

Plug-Flow

Case-2

Experiment

(Martin de

Juan, 2012)

Dried powder average moisture content %

(w/w)
1.08 4.62 2.49

Powder average outlet temperature (K) 525.31 486.12 361.7

Gas outlet temperature (K) 378.28 402.92 382.3

Average particle density (kg/m3) 1134 1190 703

Heat Loss (kW) 3.42 3.26 21.43
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5.6 Conclusions

A one-dimensional plug-flow model has been developed to simulate droplet/particle

drying in a counter-current arrangement for gas and particle flow in a spray drying

tower. The particles are assumed to be uniformly dispersed over the cross-section of the

tower. The particles size strongly influences the temperature and moisture history of the

particles as it affects the residence time of the particles and the surface area available for

heat and mass transfer. Smaller droplets/particles have greater heat and mass transfer

coefficients and larger residence times hence these particles exit at lower moisture

content. The slurry inlet temperature is higher than the wet bulb temperature; therefore,

the temperature of the droplets begins to fall. However, a constant wet bulb temperature

is not reached since the solids content in the slurry is very high and a crust is formed

before a constant wet bulb temperature could be reached. The crust formation of smaller

particles occurs quicker. After the crust formation, the temperature of the particle begins

to rise.

From a comparison of the simulation results of plug-flow Cases 1 and 2 with

experimental data, it is found that the case with measured droplet size distribution

overpredicts, while the case with dried powder size distribution underpredict the heat

and mass exchange between the gas and the particles. The large difference in the results

of the simulated cases indicate the importance of accurate initial size distribution of the

droplets as well as inclusion of coalescence/agglomeration to allow for changes in

droplet/particle diameters along the tower height. The large discrepancy in the predicted

and measured powder outlet temperature and powder average moisture content is

primarily due to the difference in the location of the predicted output value used for the

comparison and the locations where the sample of powder for data measurement are

taken. The temperature of the dried powder is expected to reduce significantly at the

measured temperature location due to cooling effect with atmospheric gas. Similarly

dried powder will approach equilibrium moisture condition under new temperature and

surrounding moisture content. Hence there is a need for a more accurate data

measurement from the tower for a more fair validation of the predictions.

This simple plug-flow model has an advantage of being computationally efficient

compared to a more detailed modelling approach. Despite the simplifying assumptions

made in the model, the quality of measured data and the complexity of the spray drying

process, the model predicts similar trends to that of the measurements. The model can
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be used to quickly estimate the performance of a counter-current spray drying tower

with a low computing requirement (few minutes on a desktop computer) and can be a

useful supplement in the determination of operating conditions for pilot-plant trials that

would enable more extensive and accurate optimisation of the spray drying process.
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6. SINGLE PHASE CFD MODELLING

This chapter is divided into two sections, in the first section, single phase, three-

dimensional CFD modelling of spray drying tower has been carried out to select a

suitable mesh size and turbulence model for the prediction of air velocity profiles in the

spray drying tower considering isothermal conditions, since the air velocity profiles

have a significant influence on the droplet/particle trajectories, residence times and

hence the drying rates. The predicted velocity profiles are compared with

experimentally measured velocity profiles collected from the IPP spray drying tower. In

the second section, non-isothermal single phase CFD modelling of a spray drying tower

has been carried out to investigate the heat loss from the tower and to validate the

predicted radial gas temperature profiles within the tower with measured gas

temperatures.

6.1 Isothermal Single Phase CFD Modelling

In this section, single phase, three-dimensional CFD simulations are carried out using

steady state, isothermal and incompressible flow assumptions using commercial CFD

software Fluent v.12 (Fluent, 2009) which uses the finite volume method to discretize

the fluid flow equations given in Section 3.8, in the computational domain. The purpose

of this study is to select a suitable mesh size and discretisation scheme as well as to

select a turbulence model that gives the best validation with measured gas velocity

profiles, which will then later be used to carry out multiphase CFD simulation of spray

drying tower (Chapter 7). For this purpose, mesh independency test is carried out in

Section 6.1.3 with different mesh to select an optimal mesh size with respect to

accuracy as well as the computational time. The effect of convective discretisation

scheme on the solution results is assessed in Section 6.1.4. The influence of steady and

transient simulation conditions on the simulation results is investigated in Section 6.1.5.

The influence of various turbulence models on the simulation results is assessed in

Section 6.1.6. The effect of wall roughness on the predicted velocity profiles is assessed

in Section 6.1.8 and the effect of pressure strain term in the predictability of the

Reynolds stress turbulence is presented in Section 6.1.9. Conclusions of the

investigations are given in Section 6.1.10.
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6.1.1 Numerical Solution Method

The discretised equations are solved using the PISO (Issa, 1985) scheme for the

pressure-velocity coupling and for pressure interpolation, PRESTO! (Patankar, 1980)

scheme is used which is recommended for flows with swirl (Fluent, 2009). The

simulations were initialised using the first-order upwind discretisation scheme, since the

second-order scheme is less stable. In order to avoid divergence, the second-order

scheme was selected after a few thousand iterations. The under-relaxation factors used

in the simulation are listed in Table 6.1. The convergence criteria are specified as 1×10-4

for the continuity, momentum and the turbulence quantities.

Table – 6.1: Under relaxation factors

Pressure Momentum k  t

0.3 0.5 0.8 0.8 0.5

6.1.2 Boundary Conditions

The air enters the tower at ambient temperature and is assumed to be moisture free. Due

to the absence of measured mass flow distribution of air in each nozzle, the air flow is

assumed to be distributed equally in each inlet nozzle. Some air gets entrained through

the bottom outlet of the tower from where the particles exit due to lower pressure in the

core region of the tower (see Figure 4.4 in Chapter 4). The amount of entrained air is

assumed to be 5% of the mass flow of the air introduced through the inlet nozzles. The

Reynolds number in the cylindrical region of the tower is of the order of 2×105. A

summary of boundary conditions are listed in Table 6.2.

Table – 6.2: Boundary conditions used in isothermal simulation cases.

Parameter Value Boundary Condition Type

Inlet air mass flux 2.215 kg/m2s Velocity Inlet

Entrained air mass flux 5% of inlet air Velocity Inlet

Pressure at outlet face -300 Pa Pressure Outlet

Air density 1.25 kg/m3 --

Air viscosity 1.78×10-5 kg/ms --
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For the inlet turbulence boundary conditions, a turbulent intensity (It) of 5% at the inlet

face of the air inlet nozzle and the bottom outlet along with the hydraulic diameter (DH)

is specified. This is used for the calculation of Reynolds stresses, k and ε at the

boundaries using the following equations:
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(6.1)

The swirl is imparted due to the tangential entry of the air; therefore the initial

turbulence condition in the air inlet nozzle is not likely to have significant influence on

the swirling flow in the tower. The wall is considered to be smooth for the sensitivity

studies carried out, including mesh independency test, selection of a suitable

discretisation scheme and turbulence model. The influence of wall roughness on the

simulation results is studied in Section 6.1.8. The no-slip boundary condition is applied

at the wall. The modelling of flow near the wall is carried out using wall functions. The

non-dimensional wall distance y+ was checked to ensure that it lies in the log-law of the

wall region, which is required by the standard wall functions to be applicable in the

near-wall region.

6.1.3 Mesh Independency Test

Before evaluating the effect of the turbulence model on the CFD modelling results, it is

ensured that the results are essentially independent of the number of cells used in the

computational domain. The standard k-ɛ model is selected to perform the mesh

independency tests with a second-order upwind convective discretisation scheme. Due

to time constraint, the tests have been carried out using three different unstructured

mesh sizes. The mesh type and the number of cells used in three different meshes are

listed in Table 6.3. The mesh for the whole spray drying tower is shown in Figure 6.1

(a). Figure 6.1 (b) is the cross-sectional view of the three meshes in the cylindrical

region of the tower. The degree of skewness is shown by colours. The yellow colour
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indicates cells with a low skewness, while green colour indicates cells with a higher

skewness. Highly skewed cells (skewness > 0.9) can cause the solution to diverge.

Therefore it is ensured during meshing that the maximum skewness of the cells is less

than 0.9.

Table – 6.3: Meshes used for grid independency test.

Mesh Name Mesh Type Number of Cells
Max.

Skewness

Mesh 1 Tetrahedral cells 1.3×106 0.79

Mesh 2

Primarily tetrahedral cells with

refined mesh using prism cells

near the wall in the cylindrical

region.

3×106 0.849

Mesh 3 Same as in Mesh 2 4.8×106 0.83

(i) (ii) (ii)

Figure – 6.1 (a): Meshing of spray drying tower: (i) Mesh-1, (ii) Mesh-2, (iii) Mesh-3.
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(i) (ii) (iii)

Figure – 6.1 (b): Cross-sectional view of the mesh: (a) Mesh 1, (b) Mesh 2, (c) Mesh 3.

Simulations were carried out using 2.9 GHz Intel quad core processor with 16 GB of

RAM. The typical simulation time for Mesh 1 was 12 hrs, Mesh 2 was 27 hrs and Mesh

3 was 48 hours. Varied levels of convergence were achieved for the three mesh sizes

based on monitoring of the residuals (defined as the imbalance in the computed

variables summed over all the computational cells). The residuals of all three meshes

did not converge to the required tolerance limit specified in Section 6.1.1. Figure 6.2 is

a plot of residuals for the three meshes. For Mesh 1, the residual of continuity did not

change after reaching 5×10-4, while the residuals of momentum and turbulence

equations were below the specified tolerance limit. The simulation was considered to be

converged at this point. For Mesh 2, the residual of continuity was 7×10-4 while the

residuals of momentum and turbulence were below the required tolerance limit. In Mesh

3, highest fluctuations in the residuals were observed and the residuals of continuity,

momentum and turbulence equations were above the specified tolerance limits. A sharp

peak observed in all three convergence residuals is due to shifting of the upwind

discreteisation scheme from the first-order to the second-order.

A comparison of the mean axial velocity profiles at different heights using three mesh

sizes is given in Figure 6.3, all the reported values are taken along the x-axis of the

tower (see Figure 6.1 (b)) at different dimensionless heights (z/Z), with zero

representing the bottom of the tower and 1 representing the top. From the plot of mean

axial velocity profiles, it is observed that Mesh 3 has a slightly higher axial velocity in

the central region of the tower compared to the Mesh 1 and Mesh 2. The variation of the

axial velocity magnitude in all three meshes at all heights is very small with a maximum

deviation of 0.3 m/s in the centreline. All three meshes produce qualitatively similar

velocity profiles.

x

y
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(a)

(b)

(c)

Figure – 6.2: Convergence residuals: (a) Mesh-1, (b) Mesh-2, (c) Mesh-3

A comparison of the mean tangential velocity profiles at different dimensionless heights

(z/Z) using the three mesh sizes is given in Figure 6.4. From the plot of tangential

velocity profiles in Figure 6.4, it is observed that all three meshes produce qualitatively

similar velocity profiles. Mesh 2 and Mesh 3 have refined mesh near the wall in the
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cylindrical region. Mesh 3 gives higher velocity magnitude near the walls, with a

maximum deviation of 16% compared to Mesh 1, also refined mesh near the wall (Mesh

2 and Mesh 3) results in a slight shift in the maximum tangential velocity towards the

wall, which is not captured in Mesh 1. However, this requires significantly larger

number of cells that increase the computational time by about 3 times. The level of

convergence of Mesh 1 is also better compared to Mesh 2 and Mesh 3. Hence Mesh 1 is

taken as the optimal mesh size with respect to accuracy as well as the computational

time.

(a) (b)

(c) (d)

(e)

Figure – 6.3: Cross-sectional axial velocity profiles
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(a) (b)

(c) (d)

(e)

Figure – 6.4: Cross-sectional tangential velocity profiles

6.1.4 Numerical Discretisation Scheme

The lower order discretisation schemes such as first-order upwind discretisation scheme

and power law, for the convection terms of the governing equations are easier to

converge because they are more stable but they have greater numerical diffusion errors

compared to the higher order discretisation schemes. The higher order discretisation

schemes are difficult to converge and slower in computation time compared to the lower

order discretisation schemes, but they have lesser numerical diffusion error. Therefore
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to select a suitable discretisation scheme with respect to stability, convergence and

accuracy, CFD simulations have been carried out using Mesh 1 with the standard k-ɛ

turbulence model using the first-order upwind (FOU) (Versteeg and Malalasekera,

1995), second-order upwind (SOU) (Versteeg and Malalasekera, 1995) and quadratic

upstream interpolation for convective kinetics (QUICK) (Leonard and Mokhtari, 1990)

discretisation schemes. The boundary conditions and the convergence criteria are kept

same as described in Section 6.1.1 and 6.1.2. For the cases in which SOU and QUICK

schemes are used, the simulations were initialised with the converged solution utilising

the FOU scheme as these discretisation schemes are less stable.

Figure 6.5 is a plot of the residuals for all three discretisation schemes. All the

discretisation schemes did not show convergence to the required tolerance limit. The

simulations were taken to be converged when the residuals of the continuity equation

stopped changing with iterations. The residual of continuity in the FOU scheme did not

change after a value of 1.7×10-4, the residual of SOU and QUICK schemes stopped

changing after 5×10-4. A sharp peak in the cases utilising the SOU and QUICK schemes

at about 6200 iterations is because these simulations are initialised from the FOU

scheme at 6200 iterations. Total number of iterations required for FOU scheme is 6200

and for SOU and QUICK scheme is 12600.

A comparison of the axial velocity profiles computed using these schemes at different

heights is given in Figure 6.6. It is observed in Figure 6.6 that the FOU discretisation

scheme produces flatter axial velocity profiles, more prominent at the top region of the

tower, which is a result of a higher numerical diffusion error. The higher order schemes

produce very similar velocity profiles. Hence both the SOU and QUICK discretisation

schemes are acceptable discretisation schemes. The SOU discretisation scheme is

selected because it is comparably more stable and computationally more efficient than

the QUICK scheme.
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(a)

(b)

(c)

Figure – 6.5: Convergence residuals for discretisation scheme. (a) FOU; (b) SOU; (c)

QUICK
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(a) (b)

(c) (d)

(e)

Figure – 6.6: Cross-sectional axial velocity profiles computed using different

discretisation schemes

6.1.5 Transient vs Steady State

In the previous sections, the steady state assumption was used to carry out simulations.

To check the assumption that the mean flow is time independent, transient simulations

were carried out and the results were compared with the steady state simulations. The

turbulence models used are the standard k-ɛ turbulence and the RST model. In the

transient simulation, the time step was set to be adaptive in which the size of the time

step is selected based on the estimation of the truncation error associated with the time
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integration scheme (Fluent, 2009). The average residence time of the fluid in the spray

tower (volume of the geometry/volumetric flow of air) is 13.5 s. The transient

simulations were run for about 20 s of the flow time to ensure that it has reached a

stable condition.

For the steady and transient simulations using the standard k-ɛ turbulence model, the

under-relaxation factors are specified in Table 6.1. For the RST model, the under-

relaxation factors used are listed in Table 6.4. The LRR model (Launder et al., 1975) is

used for the pressure strain term. The convergence criteria for the simulations with both

turbulence models are specified as 1×10-4 for the continuity, momentum and turbulence

model equations. The SOU discretisation scheme is selected for both models. The

boundary conditions used are specified in Section 6.1.2.

Table – 6.4: Under relaxation factors used with the RST turbulence model

Pressure Momentum k  t
_____

''
jiuu

0.3 0.7 0.8 0.8 0.5 0.5

The simulations were initialised using the converged results obtained from the FOU

scheme steady solution. For the steady state simulation using the standard k-ɛ turbulence

and the RST model the residuals did not converge to the required tolerance limits. The

residuals of continuity in both models reached a constant value after certain number of

iterations. The simulations were considered to be a converged solution at that point.

Figure 6.7 is a plot of residuals for the steady state simulations for both the standard k-ɛ

turbulence and the RST model.
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(a)

(b)

Figure – 6.7: Convergence residuals for steady state solution. (a) Standard k-ɛ

turbulence model; (b) RST model.

A comparison of the mean axial velocity profiles for the steady state and transient

simulations computed using the standard k-ɛ turbulence model is given in Figure 6.8.

The mean axial velocity profiles are averaged over a period of the last 2.5 seconds in the

transient simulation case. It is observed that both the steady and transient simulations

show similar velocity profiles both qualitatively and quantitatively. Hence the mean

axial velocity in the spray tower is steady.
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(a) (b)

(c) (d)

(e)

Figure – 6.8: Steady v/s transient simulation axial velocity comparison using standard

k-ɛ model.

A comparison of the mean tangential velocity profiles using the standard k-ɛ model is

given in Figure 6.9. The tangential velocity profiles computed using the steady and

transient simulations also look similar both qualitatively and quantitatively at all the

axial locations.
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(a) (b)

(c) (d)

(e)

Figure – 6.9: Tangential velocity comparison for steady v/s transient case using standard

k-ɛ model.

A comparison of the steady state axial velocity with the time averaged axial velocity

from the transient simulation carried out using the RST turbulence model is given in

Figure 6.10. The average is taken over a period of the last 2.5 seconds of simulation. It

is observed that the average profiles of the transient simulation match very well with the

steady state simulation results at all the axial locations, which indicates that the flow

profiles in the spray tower are not time dependent.
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(a) (b)

(c) (d)

(e)

Figure – 6.10: Steady v/s transient simulation axial velocity comparison using the RST

model.

A comparison of the tangential velocity profiles computed using the steady and

transient simulations using the RST model is given in Figure 6.11. A good comparison

between the steady and time-average tangential velocity profiles is observed at all the

dimensionless heights. At z/Z = 0.83 (Figure 6.11 (e)), a slight asymmetry is observed in

the tangential velocity profile predicted by the steady state RST model but the

difference is not significantly large. Hence the mean tangential component of velocity is

also time independent.
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(a) (b)

(c) (d)

(e)

Figure – 6.11: Tangential velocity comparison for steady v/s transient case using RST

model.

A comparison between the steady state and the transient simulation results show that the

difference between the two are negligible, this confirms the findings of previous studies

(Sharma, 1990; Harvie et al., 2001; Wawrzyniak et al., 2012a) that the flow patterns in

the spray tower are stable at horizontal and radial angles of the air inlet nozzles in the

range of 20o and 30o. A good agreement between the steady and transient simulation

cases also confirms that the level of residuals taken as converged solution is sufficient

for this study. The time required for running a transient simulation is typically 1 week,

while the time required for running a steady state simulation is about 12 hours. Hence

0

2

4

6

8

10

12

-1 -0.5 0 0.5 1
r/R

Tangential velocity (m/s)
at z/Z=0.29

steady
transient

0

2

4

6

8

10

12

-1 -0.5 0 0.5 1
r/R

z/Z=0.47 steady
transient

0

2

4

6

8

10

12

-1 -0.5 0 0.5 1
r/R

z/Z=0.56 steady
transient

0

2

4

6

8

10

12

-1 -0.5 0 0.5 1
r/R

z/Z=0.74 steady
transient

0

2

4

6

8

10

12

14

-1 -0.5 0 0.5 1
r/R

z/Z=0.83 steady
transient



156

the simulation can be run with the steady state approximation. The details of the

differences observed in the predicted axial and tangential velocity profiles computed

using the k-ɛ turbulence model and the RST model is given in the next section.

6.1.6 Selection of Turbulence Model

To check the dependency of results on the turbulence models, the steady state results of

the RST turbulence model are compared with the steady state results of the standard k-ɛ,

RNG k-ɛ model, Realizable k-ɛ model and SST model. In the RST model, the linear

pressure strain (LRR) model (Launder et al., 1975) is used, which is defined in Section

3.10.5. The boundary conditions used are specified in Section 6.1.2. In each of the

turbulence model, the SOU discretisation scheme is used. The simulations are started

using the FOU discretisation scheme solution to avoid divergence, which was later

changed to the SOU scheme. The mesh used for the comparison of turbulence models is

Mesh 1. The convergence criteria, under-relaxation factors and the numerical method

are kept the same as in the previous simulation cases. In all the simulations, the wall is

assumed to be smooth. The simulation results are also compared with the experimental

data taken by Francia (2011), the details about velocity measurements is given in

Section 4.6.1.

A comparison of the mean axial velocity profiles computed using different turbulence

models as well as with the experimental data (Francia, 2011) in the cylindrical section

of the tower is given in Figure 6.12. It is observed that only the RST and the Realizable

k-ɛ models are able to predict qualitatively the shape of the measured axial velocity

profiles including a sharp rise in the velocity at the centreline. The rest of the turbulence

models (based on eddy-viscosity concept) fail to correctly reproduce the measured

velocity profiles at all measurement locations. The velocity profiles predicted by these

models are nearly flat in the central region of the tower. However, the RST turbulence

model overpredicts the axial velocity in the centreline while the Realizable k-ɛ gives

underpredicts velocity at almost all axial locations. Measured negative velocities can be

seen in the annular region of the tower in the bottom cylindrical section (at z/Z = 0.29

and 0.47), which both the RST and the Realizable k-ɛ fail to correctly reproduce. In the

top region of the tower (at z/Z = 0.74 and 0.83), Figure 6.12 (d) and (e), the RST model

gives a better qualitative agreement with measurements although the magnitude of

velocity is overpredicted in the centreline. It can be concluded that the RST turbulence
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model gives an overall best agreement in predicting the axial velocity profiles compared

to the eddy-viscosity based turbulence models.

(a) (b)

(c) (d)

(e)

Figure – 6.12: Comparison of axial velocity profiles using different turbulence models

and with experimental data by Francia (2011).
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Figure 6.13 is a plot of mean tangential velocity profiles computed using different

turbulence models and a comparison with experimental data at various measurement

locations in the cylindrical region of the tower.

(a) (b)

(c) (d)

(e)

Figure – 6.13: Comparison of tangential velocity profiles computed using different

turbulence models with experimental data by Francia (2011).
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From the experimental data (Francia, 2011) in Figure 6.13, it is observed that the forced

vortex transforms into a Rankine vortex after the first measurement location at z/Z =

0.29. This trend is only correctly predicted by the RST turbulence model. All other

models predict a forced vortex profile at all measurement locations, including the

Realizable k-ε model although this model gives a good qualitative comparison with the

measured axial velocities at most of the tower height (Figure 6.12). The magnitude of

the mean tangential velocity profiles predicted by all the turbulence models is about two

times greater than the measured velocity magnitude. This could be explained by the fact

that the tower wall contains highly uneven deposit layer of detergent powder. The

presence of deposits on the wall will cause roughness at the surface which reduces the

tangential momentum and hence the swirl intensity. As mentioned above, these

simulations are carried out with smooth wall assumption; hence the predicted tangential

velocity component is significantly higher than measurements. The effect of surface

roughness is studied in Section 6.1.8.

A comparison of velocity profiles predicted by different turbulence models with

experimentally measured mean axial and tangential velocity profiles show that only the

RST turbulence model is able to predict correct qualitative behaviour, although the

magnitude differ significantly for the tangential velocity profiles. The eddy-viscosity

based turbulence models fail to correctly reproduce the measured velocity profiles.

Hence the RST model has been selected for further investigation of air flow patterns in

the spray drying tower.

6.1.7 Results and Discussion of the RST Model

In Section 6.1.6, it is found that the RST model gives an overall better qualitative

agreement. Hence in this section the results of the RST model are further discussed.

Figure 6.14 is a plot of cross-sectional view of the contours of the magnitude of mean

velocity components obtained from the RST model. The air entry nozzles are located at

a dimensionless height of 0.13. The magnitude of mean velocity components is high in

the annular region of the tower, both in the conical region as well as in the cylindrical

region of the tower. A low velocity magnitude persists in the central region of the tower

up to a dimensionless height (z/Z) of 0.81. The radius of low velocity region becomes

smaller as the air moves upwards in the cylindrical region. Above z/Z=0.81, the velocity

in the centreline region starts to increase as the air passes through a narrow tube (vortex

breaker) and eventually goes to the exhaust gas duct.
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(m/s) z/Z

Figure – 6.14: Contours of magnitude of mean velocity components.

Figure 6.15 is a plot of path lines of air velocity magnitude coloured by the mean

tangential velocity component (m/s) in the bottom conical section of the tower. It is

observed that a low tangential velocity in the downward direction exists near the cone

wall, while a high tangential velocity in the annular region and a low velocity in the

central region of the tower exist. The flow reversal occurs near the bottom exit of the

tower. This type of flow also exists in cyclone separators.
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Figure – 6.15: Path lines of air velocity coloured by tangential velocity component (m/s)

in the bottom conical region.

Figure 6.16 is a contour plot of the turbulent intensity defined as (Fluent, 2009):
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It is observed that the turbulent intensity inside the tower is a maximum near the air

inlet nozzles and at the bottom outlet. In the cylindrical region of the tower above the air

inlet nozzle, the turbulent intensity is a maximum in the centreline and it decays along

the height of the tower due to the decay in swirl as given in Figure 6.24. The flow

becomes relatively more homogenous in the top cylindrical region (z/Z=0.7-0.8) of the

tower as the turbulence intensity becomes fairly uniform over the radius. The turbulence

intensity is below 100% in the cylindrical region of the tower.
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(%) z/Z

Figure – 6.16: Contour plot of turbulent intensity.

Figure 6.17 is a plot of the magnitude of the mean velocity components at different

dimensionless heights over the cross-section of the tower cylindrical region, and at

different times (taken at time intervals of 0.12s) obtained using the transient simulation

using the RST model. From the plot it is observed that the predicted air flow is

symmetrical throughout the tower height and the flow is not changing with time. The

low velocity magnitude coincides with the centre of the tower at all reported times,

indicating that vortex precision is not present in the predicted air flow.
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Figure – 6.17: Cross-sectional view of mean velocity magnitude contours at various

dimensionless heights and at different times.

6.1.8 Effect of Surface Roughness

To include the effect of roughness produced on the tower wall surface due to the

presence of deposits, a uniform roughness height is specified thought the tower height

(varying from 2 mm to 5 mm) and a roughness constant of Cs = 1.0 is used. These are

incorporated in the log-law of the wall for rough surfaces (equation (3.47)). The rest of

the boundary conditions and numerical method are kept the same as specified in

Sections 6.1.1 and 6.1.2. The modelling of pressure strain term is carried out using LRR

model defined in Section 3.10.5.

Figure 6.18 is a plot of mean tangential velocity profiles at different dimensionless

height. The y-velocity profiles obtained from Fluent were converted to tangential

z/Z=0.29 z/Z=0.47 z/Z=0.56 z/Z=0.74 z/Z=0.83

(m/s)

31.70 s

31.82 s

31.94 s

32.06 s
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velocity profiles using coordinate transformation. A comparison is made between the

measured data by Francia (2011) and predicted values obtained from the LRR-RST

model with clean wall (ks = 0 mm) and rough wall considering ks = 2 mm and 5 mm. It

is observed that there is a significant improvement in the predicted mean tangential

velocity profiles after including the effect of surface roughness in the simulation

compared to the predictions of the clean surface in which the predicted mean tangential

velocities were about two times greater than the measurements. From a comparison of

predicted tangential velocity profiles obtained from all three simulation cases, it is

observed that the magnitude of tangential velocity profile decreases with increasing

roughness height at all measurement locations but qualitatively, all three cases give

similar tangential velocity profiles. Hence the decay in the angular momentum of the air

flow is greater with a higher value of roughness height. The case with a roughness

height of 2 mm gives the closest prediction to the measured data while the case with

clean wall assumption (ks = 0 mm) overpredicts the tangential velocity magnitude and a

5 mm roughness height assumption gives underprediction particularly in the magnitude

of forced vortex at all measurement locations.

Figure 6.19 is a plot of mean axial velocity profiles at different dimensionless heights

obtained using smooth and rough wall assumptions. It is observed that the wall

roughness height influences the axial velocity profiles at all measured locations. The

smooth wall predicts a greater velocity in the centreline compared to the simulation

cases with rough wall assumption. Additionally, the axial velocity profile predicted

using the smooth wall assumption shows negative axial velocity (recirculation zone)

only at z/Z = 0.29 (Figure 6.19 (a)). The radial location of the negative velocity is also

not well predicted by the smooth wall assumption. The axial velocity profile predicted

using 2 mm roughness height gives an overall better agreement in predicting the

centreline velocity and the radial location of the recirculation zone at all measurement

locations. The case with 5 mm roughness height gives an underprediction in the axial

velocity at the centreline at all measurement locations.

The CFD simulation case with 2 mm roughness height gives the best agreement with

the measured axial and tangential velocity profiles hence a roughness height of 2 mm is

selected for further investigation.
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Figure – 6.18: Tangential velocity profiles predicted using smooth and rough wall

assumption and a comparison with experimental data by Francia (2011).
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Figure – 6.19: Axial velocity profiles predicted using smooth and rough wall

assumption and a comparison with experimental data by Francia (2011).

6.1.9 Effect of Pressure Strain Term in the RST Model Prediction and a

Discussion of Final Results

As stated earlier in Section 3.10.5, the predictability of the RST model depends largely

on the modelling of the pressure strain term. The simulations were carried out with two

models of the pressure strain term, the LRR and the SSG models (see Section 3.10.5).
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transient approach. The time step was set to be adaptive. The simulation was run for

about 26 s, which is about twice the average residence time of the fluid in the tower.

Figure 6.20 is a plot of the predicted mean axial velocity profiles along with

experimental data at various axial locations in the cylindrical section of the spray tower.
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Figure – 6.20: Axial velocity profiles computed using LRR and SSG pressure strain

models and a comparison with experimental data by Francia (2011).
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Figure – 6.21: Predicted pressure variation along the dimensionless radius at various

dimensionless heights using the LRR-RST model.

From the plot of axial velocity profiles (Figure 6.20), it is observed that both the LRR

and SSG pressure strain models used in the RST model give very similar prediction at

all measurement locations. Both predict a peak velocity in the central region and a low

velocity in the annular region at all measurement locations, which are validated using

the measured data. A reverse flow is observed in the measured data in the annular

region (at 0.3 < r/R < 0.4) of the tower in Figure 6.20 (a), (b) and (c). This is due to high

tangential velocities in these regions, as depicted in Figure 6.22, which cause adverse

pressure gradient (in the flow direction) in the annular region, resulting in the flow

reversal. Figure 6.20 is a plot of the variation of pressure along the radius at these

measurement locations predicted using the LRR-RST model. A low pressure zone exists

in the centre of the tower, while a higher pressure near the wall. In the annular region,

the pressure increases along the height which is responsible for the reverse flow.

One of the earliest observations of the reverse axial flow in highly swirling flows was

reported by Nuttal (1953). Yajnik and Subbaiah (1973) carried out experimental

investigation into confined swirling flows and observed a tendency of reversed axial

flow in the annular region with increasing swirl number () from 0 to 0.15. Hence the

flow in this region can be classified as highly swirling flow. The reverse flow can lead

to an enhanced mixing of air and a smaller temperature gradient of air along the tower

height in spray drying operations. This can result in an improved efficiency of the

tower. Both models predict reverse flow at z/Z = 0.29 (  1.7) and 0.47 (  1.5) as

observed in Figure 6.20 (a) and (b). The length of this reverse flow zone is slightly

underpredicted by both models since the measured data show negative axial velocities at

z/Z = 0.56 in Figure 6.20 (c) but the models predict positive velocity in the annular

-20

-10

0

10

20

30

40

50

-1 -0.5 0 0.5 1

P
re

ss
u

re
(P

a)

r/R

0.185

0.385

0.485

0.685

0.785

0.29

0.47

0.56
0.74

0.83



169

region at this axial location. The flow becomes positive in the annular region in Figure

6.20 (d) and (e) due to the reduction of swirl velocity as the air goes up. An overall

good agreement can be seen with the measured data at all measurement locations in the

annular region. The predicted axial velocity profiles are axisymmetric at all

measurement locations. The measured axial velocity at the axis of the tower starts to

increase as the air flows upwards, due to the presence of a vortex finder at the top of the

tower; hence more fluid has to pass through the central core region to satisfy the mass

conservation. Both the LRR and SSG models predict this sharp rise in the axial velocity

at the tower axis. Similar simulation results for the axial velocity profiles using a VLES

approach have been reported by Harvie et al. (2001) at the top region for a laboratory-

scale counter-current spray tower. As depicted in Figure 6.20, the peak velocity in the

central region of the tower is underpredicted by both pressure strain models at all

measurement locations, this could be due to the shortcomings of the RST model

including isotropic eddy-viscosity assumption for turbulence dissipation rate and the

modelling of pressure strain terms. However, an overall fair agreement with the

measured data can be seen at all measurement locations despite the complexity of the

flow.

The simulation results show the existence of a high axial velocity near the walls which

is desirable because this results in an increased residence time of the particles going

downwards and hence a more efficient drying operation. The quality of the predicted

velocity profiles close to the wall could not be ascertained because of the lack of data

due to inaccessibility of the sonic velocity anemometer probe near the wall. It should be

noted that the experimental data (Francia, 2011) includes measurement errors related to

the accuracy of the sonic velocity anemometer (1% RMS in speed and 1o in direction),

error due to variation in the mass flow of air throughout the experiment resulting from

the variability in the speed of the fan delivering the air to the tower. The errors in

measurement of the sonic velocity anemometer position and alignment as well as

disruption caused to the air flow due to the presence of anemometer. It should be noted

that the sonic anemometer measures the velocity data between the transducer path

length, which is not a point measurement, hence any sharp variation in velocity between

the transducer cannot be measured, and the measured velocity is an average of the

transducer path length.
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Figure – 6.22: Tangential velocity profiles computed using LRR and SSG pressure

strain models and a comparison with experimental data by Francia (2011).

From the plot of mean tangential velocity profiles along the tower dimensionless height

in Figure 6.22, it is observed that the forced vortex at the bottom of the tower (Figure

6.22 a) transforms into a combination of free and forced vortex as air goes at the top.

Similar measurements and simulation results of the tangential velocity profiles have

been reported by Bayly et al. (2004) in a laboratory-scale counter-current spray drying

tower. The magnitude of the tangential velocity (measured and predicted) in the bottom

region of the tower is about twice as large as the axial velocity component. Hence the

tangential velocity is the dominant component in the spray tower. The peak velocity in

the forced vortex moves towards the tower central axis as the air flows in the upward
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direction as a consequence of the decay in swirl due to roughness, therefore the swirl

number reduces (Figure 6.24). The prediction of radial location of transformation from

the free vortex to the forced vortex by both the LRR and SSG models is similar. The

predicted tangential velocity profiles show a fair agreement with the measured

tangential velocity magnitude in the core region of the tower in Figure 6.22 c, d and e.

However, some discrepancy exists between the predicted and measured radial locations

of the free to forced vortex transformation regions. This may be attributed to a high

degree of unevenness in the deposits layer (variation in deposit layer thickness) on the

tower causing a highly non-uniform surface roughness and a reduction in the cross-

sectional area of the tower, which is simplified to a uniform surface roughness with a

constant height (ks) in the simulation using equation (3.47).

It is observed in Figures 6.20 and 6.22 that both the mean axial and tangential velocity

profiles (measured and predicted) continue to change with the axial distance. Hence a

fully developed flow is not achieved in the tower and the swirl flow persists throughout

the height of the tower. A high tangential velocity exists in the near wall region which

may be useful in reducing the level of deposition on the tower wall (Wawrzyniak et al.,

2012a). The swirling flow, in addition to improving heat and mass transfer, also adds

centrifugal force to the particles as a result the particles falling down the tower will be

more populated near the wall. Hence the wet particles with a tendency to stick may get

deposited but the dried particles will cause attrition to the deposited layer. Thus

equilibrium will be established between the deposition and re-entrainment of the

particles.

Figure 6.23 is a plot of the measured and predicted mean radial velocity profiles at

different measurement locations. The predicted radial velocity profiles are asymmetric

around the axis in contrast to the axial and tangential velocity profiles which are fairly

symmetric. It is observed that the magnitude of the measured radial velocity component

is very small at all measurement locations compared to the axial and tangential velocity

components. Hence a definite conclusion about the performance of the models in

predicting the radial velocity profiles compared to the experimental data cannot be

drawn.
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Figure – 6.23: Radial velocity profiles computed using LRR and SSG pressure strain

models and a comparison with experimental data by Francia (2011).

Figure 6.24 is a plot of the predicted swirl number calculated from equation (3.73) using

the predicted mean axial and tangential velocities as a function of the dimensionless

height compared with the swirl number calculated using the measured velocities. It is

observed that the swirl decays as the air flows to the top and both the pressure strain

models predict a declining trend in the swirl as the air flow to the top; however the rate

of decay in swirl intensity is slightly underpredicted by both CFD models (LRR 2mm

and SSG 2mm). The initial swirl number in the case of smooth wall (LRR-clean) is

about 3.4. A rapid decrease in the swirl number in this case is found after z/Z = 0.6, this
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is due to contraction of the air flow towards the outlet as the air exits through a narrow

tube hence more air passes through the central region of the tower and the swirl number

may not be valid to represent intensity of swirl in a region very close to the exit. The

case with 5 mm roughness height (LRR 5 mm) underpredicts the swirl number

compared to the values based on the measured velocity data. In the experimental swirl

number, due to the absence of measured axial velocity and tangential velocity

components close to the wall, the measured profiles were extrapolated towards the wall,

therefore, the swirl number based on experimental data contains errors due to

extrapolation of axial and tangential velocity data towards the wall.

Figure – 6.24: Swirl number as a function of dimensionless height.

Figure 6.25 is a plot of turbulent intensity (%) (defined using equation 6.2) at various

dimensionless heights in the cylindrical region of the tower, predicted using LRR-RST

and SSG-RST turbulence models (ks = 2 mm). A comparison is made with the measured

data by Francia (2011). In both measurements and experimental data, a decreasing trend

with increasing height is observed. In the measurements and predictions, the turbulent

intensity in the bottom region of the tower (z/Z = 0.29 to 0.56) is highest near the centre

and decreases away from the centre. At z/Z = 0.74 and 0.83, the measurements and the

predictions give a relatively flat turbulence intensity profile. The decay in turbulence

intensity with increasing height due to decay in swirl is well predicted by both

turbulence models; the SSG-RST model however, gives a better prediction throughout

the tower height.
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Figure – 6.25: Turbulent intensity computed using LRR and SSG pressure strain models

and compared with measurements by Francia (2011).

Figure 6.26 is a plot of turbulent normal stresses, normalised by square of mean velocity

at various dimensionless heights along the x-axis of the tower. U, V and W referrers to

the normalised axial, radial and tangential normal stresses respectively, which are

obtained from the LRR-RST model (see Section 6.1.9). At z/Z = 0.29, all three normal

stresses are isotropic in the central region of the tower up to a dimensional radius of 0.5,

0

10

20

30

-1 -0.5 0 0.5 1

Turbulent Intensity (%)
z/Z=0.29

exp. (Francia, 2014)
LRR
SSG

0

5

10

15

20

25

30

-1 -0.5 0 0.5 1

z/Z=0.47 exp. (Francia, 2014)
LRR
SSG

0

5

10

15

20

25

30

-1 -0.5 0 0.5 1

z/Z=0.56 exp. (Francia, 2014)
LRR
SSG

0

5

10

15

20

25

30

-1 -0.5 0 0.5 1

z/Z=0.74 exp. (Francia, 2014)
LRR
SSG

0

5

10

15

20

25

30

-1 -0.5 0 0.5 1

z/Z=0.83 exp. (Francia, 2014)
LRR
SSG



175

after which the normal stresses start to become anisotropic. Similar pattern is observed

at z/Z = 0.47, at this location, the maximum value of the normal stresses near the wall is

relatively smaller. At z/Z = 0.56, the normal stresses are isotropic up to a dimensionless

radius of 0.4, thereafter, the stresses start to become anisotropic. At z/Z = 0.74 and 0.83,

the maximum value of normal stresses near the wall is smaller and the difference

between the normal stresses near the wall and at the centre is relatively smaller. At all

the axial locations, the normal stress in the radial direction is the smallest in the annular

region and greatest at the wall, while the axial normal stress is the maximum in the

annular region followed by a sharp decline near the wall. The isotropy of normal

stresses in the central region of the tower and highly anisotropic stresses in the near-

wall region particularly in the bottom region of the tower is due to the presence of

stronger swirl in the bottom region (see Figure 6.24). The presence of stronger swirl

makes the normal stresses isotropic in the central region and highly anisotropic near the

wall. As the swirl reduces as the air flows up the tower, the difference in the normal

stresses at the central and the wall region also reduces. Hence the eddy viscosity based

turbulence models using isotropic turbulence assumption are not valid for the modelling

of flow encountered in the investigated counter-current spray drying tower.
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Figure – 6.26: Plots of normalised turbulent normal stresses computed using the LRR-

RST model.

6.1.10 Conclusions

The basic features of the turbulent swirling air flow in a pilot-scale counter-current

spray drying tower including the presence of a Rankine vortex in the tangential velocity

profiles and reverse flow in the axial velocity profiles in the bottom cylindrical region

of the tower is observed in the measurements made by Francia (2011). A quantitative

validation of the CFD predictions using different turbulence models with the measured
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inlet nozzles configuration, the measured velocity profiles in the spray tower is stable

and hence can be modelled using the steady state approximation. Only the RST models

are able to reproduce the basic features of the air flow including a Rankine vortex in

tangential velocity profile and reverse flow in the annular region in axial velocity

profiles. The eddy-viscosity based turbulence models failed to reproduce these flow

features and predicted a forced vortex in tangential velocity profile and a relatively flat

axial velocity profiles.

It is found that the surface roughness on the wall due to the solid deposits plays a major

role in the decay of swirl in the tower, which was verified by carrying out three

simulation runs with different roughness heights specified in the modified log-law of

the wall and the best agreement with experimental data was obtained with 2 mm

roughness height specification. The predictions of both the LRR and SSG pressure

strain models used in RST model are very similar in capturing the basic features of the

flow and are in general good agreement with the measured velocity profiles. Both the

LRR-RST and SSG-RST models have predicted the forced vortex in the bottom

cylindrical region as well as the transformation of forced to Rankine vortex and the

decay of swirl along the height of the tower with a reasonably good accuracy. A strong

level of swirl persists throughout the tower, although it decays along the tower height.

The axial and tangential velocity components are symmetrical and are the main velocity

components in the spray tower.
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6.2 CFD Modelling of Non-Isothermal Single Phase Flows

In this section, CFD modelling of single-phase, steady state, non-isothermal flows in the

spray drying tower without the spray of slurry droplets has been carried out. The

predicted gas temperature profiles inside the spray drying tower at various heights have

been validated with two sets of experimental data measured by P&G (Martin de Juan,

2012; Ahmadian, 2013). In the first set of experimental data by Martin de Juan (2012),

the predicted temperature profiles are compared with measured gas temperature profiles

inside the spray tower to validate the CFD model predictions; in addition the heat loss

from the tower is also investigated. The measured operating conditions of the spray

tower for the first experimental data are given in Table 6.5. In the second set of

experimental data by Ahmadian (2013), the role of wall roughness in influencing the

temperature profiles inside the spray tower is investigated and compared with the

measured gas temperature profiles. The details of temperature probe used for

measurement of gas temperature inside the spray tower and experimental setup are

given in Section 4.6.2 in Chapter 4.

Table – 6.5: Spray tower operating conditions for non-isothermal run (without slurry

spray by Martin de Juan, 2012).

Parameter Value

Inlet hot gas temperature 373 K

Outlet gas temperature 358 K

Ambient temperature 293 K

Mass flux of hot gas 1.0 kg/m2s

Pressure at the outlet -300 Pa

6.2.1 Modelling of Heat Loss From the Wall

The heat loss from the tower wall to the surrounding is taken into account in the CFD

simulation by considering radial conduction through the insulated wall. The inner

surface of the wall contains a layer of deposits; the thermal resistance of the deposit

layer is also taken into account by assuming it to be of uniform thickness throughout the
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tower height. The conditions of the wall used for calculating the heat loss are given in

Table 6.6.

Table – 6.6: Wall conditions for the calculation of heat loss.

Figure – 6.27: Thermal resistances considered in the calculation of heat loss.

The heat flux from the tower is specified as a thermal boundary condition using Fluent

UDF feature. The heat flux through the insulated tower wall (Figure 6.27) is given by:

)( ambdep TTUq  (6.3)

where:

q is the heat flux,

U is the overall heat transfer coefficient,

Wall material Stainless Steel 316

Insulation material Glass Fibre

Wall thickness 6 mm (top), 8 mm (bottom)

Insulation thickness 105 mm

Thermal conductivity of metal wall 18.8 W/m K

Thermal conductivity of fibre glass insulation 0.04 W/m K

Deposit layer thickness 2 mm

Thermal conductivity of deposit 1.3 W/m K
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Tdep is the temperature of the deposit layer inside surface, and

Tamb is the ambient temperature,

The overall heat transfer coefficient (U) is given by:
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In equation (6.4), the overall heat transfer coefficient does not include the thermal

resistance of the convective film along the inside surface of the deposit layer since the

temperature at the surface of the deposits (Tdep) is known as it is calculated using

equation (3.51), which is the log-law representation of the thermal boundary layer. The

value of outside film coefficient ( amb ) is taken to be a constant value of 14 W/m2K

(Heggs, 2012).

6.2.2 Numerical Solution Method

Mesh 1 is used for all non-isothermal cases. The non-isothermal, turbulent and swirling

drying gas flow is modelled using the Reynolds-averaged continuity, Navier-Stokes and

energy equations (given in Section 3.9.1 and 3.10.8). The turbulence is modelled using

the RST model (Section 3.10.5). The pressure strain term in the RST is modelled using

the linear approximation by Launder et al. (1975). The choice of the turbulence model is

based on the results of CFD simulations of isothermal (cold) gas flow in which the

predictions of different turbulence models were compared with experimentally

measured time-averaged axial and tangential velocity profiles at various axial locations

in the tower (Section 6.1.9). The tower wall roughness due to deposit layer on the inner

wall is taken into account by assuming a roughness height of ks = 2.0 mm and a

roughness constant of Cs = 1.0 (as in Section 6.1.9). For the heat transfer calculations,

the energy transport equation is solved (equation 3.53). The turbulent diffusion flux in

the energy transport equation is modelled using the gradient-diffusion approach

(equation 3.54) with a value of 0.85 for the turbulent Prandtl number, which is the

recommended value in Fluent (2009). Radiation heat transfer is not considered as this is

a low temperature system.
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For pressure-velocity coupling, the PISO scheme (Issa, 1985) has been used and for

pressure interpolation, PRESTO! scheme (Patankar, 1980) is used which is

recommended for flows with swirl (Fluent, 2009). The convective terms are discretized

using the SOU scheme. The under-relaxation factor for the energy equation is specified

as 1.0. The under-relation factors for all other equations are listed in Table 6.1. The

convergence criteria are specified as 1×10-4 for the continuity, momentum and the

turbulence quantities. The convergence criterion for energy equation is 1×10-6.

6.2.3 Boundary Condition Specifications

The concentrations of water vapour and CO2 in the gas stream (resulting from the

heating of air in a direct fired furnace) are small and hence neglected in the CFD

simulation, hence the air is considered as the hot gas. The hot gas is injected into the

tower through the tangential-entry gas inlet nozzles. For the hot gas inlet nozzles, the

mass flow is specified as the inlet boundary condition. For the gas exhaust, a pressure

boundary condition is specified. The specified temperature and mass flow of the hot gas

inlet and the exhaust gas pressure are given in Table 6.5. Some cold air is entrained

from the bottom of the spray drying tower due to below atmospheric pressure inside the

tower. The exact amount of the cold air entrained in the tower is not known. This is

assumed to be a certain percentage of the mass flow of the hot gas (listed in Table 6.7)

and is used as the boundary condition to account for the cold air entrainment. The

temperature of the cold air is considered to be the same as the temperature of the

ambient air given in Table 6.5. Both streams are assumed to be moisture-free. Heat flux

through the insulated tower wall is calculated using equation (6.3), which requires

inside deposit surface temperature (Tdep) and ambient temperature (Tamb). Tdep is

calculated using log-law of the wall for thermal boundary layer (equation 3.51). The gas

density is considered a function of temperature and is calculated using the ideal gas law

(equation 3.56). The gas viscosity and specific heat are considered to be constant with a

value of 1.79×105 kg/ms and 1006.4 J/kgK, respectively.

6.2.4 Simulation Cases

Four non-isothermal cases of CFD simulations are carried out for the input operating

conditions given in Table 6.5. In Case 1, a fixed amount of cold air (5% of the hot gas

flow) entrained from the bottom of the tower is specified. The thermal conductivity of

the insulation is also specified as a fixed value of 0.04 W/mK. However, this resulted in

a significantly smaller heat loss compared to the heat loss based on the measurement.
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Therefore, three further simulation cases are carried out. In Case 2, the amount of cold

entrained air is specified to be 10% of the hot gas mass flow. In Case 3, the thermal

conductivity of the insulation is calculated on the basis of measured heat loss, which is

then specified in the simulation for the calculation of heat loss. The cold air entrainment

value is specified to be 10% of the hot gas mass flow. In Case 4, it is assumed that most

of the heat loss occurs before the gas enters the tower via tangential entry inlets, i.e., the

gas loses heat due to heat loss in the inlet gas duct (which supplies gas to the gas

distribution ring) and in the gas distribution ring (which supplies gas to the hot gas inlet

nozzles). A lower gas inlet temperature, assuming a temperature drop of 10oC is

specified and the thermal conductivity of insulation and the cold air entrainment value is

kept the same as in Case 1. The differences in the boundary conditions of all four

simulation cases are listed in Table 6.7.

Table – 6.7: Boundary Conditions used in the simulation of Case 1 to 4.

Simulation

Case

Specified hot gas

temperature (K)

Specified cold air

entrained mass flow
Wall heat flux condition

Case 1 373
5% of hot gas mass

flow

Heat flux based on

constant λins (0.04 W/mK)

Case 2 373 10% of hot mass flow Same as in Case 1

Case 3 373 Same as in Case 2 Heat flux based on λins,calc

Case 4 363 Same as in Case 1 Same as in Case 1

6.2.5 Simulation Convergence

The level of residuals for continuity, momentum and turbulence quantities (given in

Section 6.2.2) did not reach the required level of convergence and became fairly stable

after a few thousand iterations and the level of residuals for continuity, momentum and

turbulence quantities is of the same order of magnitude as in the isothermal simulation

case. Therefore, the mass weighted average axial and tangential velocities of the gas in

the cylindrical region of the tower at two different heights were monitored. The solution

was taken to be converged when the monitored weighted average velocities become

stable and do not fluctuate significantly with iterations. Figure 6.28 is a plot of residuals
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and Figure 6.29 is a plot of variation of monitored velocity components with iteration

for non-isothermal Case 1.

Figure – 6.28: Convergence residuals for non-isothermal Case 1.

Figure – 6.29: Convergence history of weighted averaged axial and tangential

velocities.

6.2.6 Simulation Results for Case 1

The measured temperatures at various dimensionless heights (Martin de Juan, 2012)

with z/Z=0 at the bottom outlet and z/Z=1 at the top outlet of the spray tower (all

measurements are taken in the cylindrical region of the tower) are compared with the

predicted temperature profiles in Figure 6.30. The shape of the measured temperature

profile varies from a bird-wing profile in the bottom region of the tower (z/Z=0.24 to

tang-z/Z = 0.83

tang-z/Z = 0.29

axial-z/Z = 0.29

axial-z/Z = 0.83
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0.60) to a nearly plug-flow profile in the central region at the top (z/Z=0.82). Up to a

dimensionless height of 0.60, a lower temperature in the central region of the tower is

observed. This is due to the mixing of the hot gas with cold air entrained through the

centrally located opening at the bottom of the tower for dried powder exit. A sharp

decline in the temperature in both measurement and prediction can be observed near the

wall at all measurement locations. This is due to heat loss through the wall. It is

observed that the predicted temperatures in Case 1 are 10-15 K higher than the

measured values. It may be due to the fact that the actual heat loss occurring through the

insulation is greater than the calculated heat loss due to damaged insulation. It may also

be due to incorrect specification of the amount of entrained cold air. The actual amount

of entrained cold air may be higher which may reduce the temperature in the tower. For

this experimental trial (Martin de Juan, 2012), the air mass flow entrained from the

bottom of the tower was not measured, therefore a value of 5% of the hot gas mass flow

is assumed. In the measured temperature profiles, it is observed that the lower

temperature in the centreline region persists up to a dimensionless height of 0.60, but in

the simulation, the lower centre line temperature can be seen only at z/Z = 0.24. The

predicted temperature profiles are relatively flat compared to measurements in the

central region of the tower for z/Z > 0.42, this indicates that the mixing of the hot gas

and the cold entrained air is overpredicted by the simulation. The value of Prt used for

turbulent mixing may also influence the gas temperature prediction which in this case is

taken to be 0.85. The influence of this parameter in predicting the gas temperature

profiles is given in Figure 6.38. The predicted temperature profiles show a sharp

temperature decline near the wall at all dimensionless heights; however, the predicted

near-wall temperature is 10-15 K greater.

The measured temperature profiles taken by Martin de Juan (2012) in Figure 6.30 were

not corrected for measurement errors due to radiation losses. Therefore, corrections in

the measured temperature profiles for radiation losses have been carried out in this

study. The calculation procedure as well as the corrected temperature profiles is given in

Appendix II. The corrections in the measured temperature are not significant (with a

maximum difference of 0.4 K), hence the measured temperatures are used for the

comparison with the predicted profiles.
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(a) (b)

(c) (d)

Figure – 6.30: Temperature profiles at different axial locations, a comparison of non-

isothermal cases with experimental data.

Figure 6.31 is a contour plot of the predicted gas temperature inside the spray drying

tower. The gas temperature is highest at the gas inlet nozzles. A minimum temperature

at the bottom outlet can be seen due to the entrainment of cold air from the bottom exit

of the spray drying tower. The cold air mixes with the hot gas as it travels upwards, due

to which a lower temperature is observed in the centreline of the tower, eventually the

gas temperature becomes fairly constant along the radius of the tower at z/Z = 0.35.
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(K)

Figure – 6.31: Contours of the predicted gas temperature profiles inside the spray drying

tower.

Figure 6.32 is a plot of the predicted axial velocity profiles at various dimensionless

heights. Negative velocity is observed in the annular region in the bottom section of the

tower (at z/Z = 0.24 and 0.42). This negative velocity is also observed in the isothermal

single phase simulation cases (Section 6.1.8) and is due to highly swirling flow in the

bottom region of the spray tower. The annular recirculation region does not appear in

the top section of the spray tower due to decay of swirl as the gas flows upwards and

loses the tangential momentum due to friction and viscous losses. The magnitude of

velocity in the centreline can be seen to increase with the axial distance. The axial

velocity plots of isothermal single phase simulation cases are qualitatively similar to the

non-isothermal simulation case.
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(a) (b)

(c) (d)

Figure – 6.32: Predicted axial velocity profiles at various axial locations (Case 1).

Figure 6.33 is a plot of mean tangential velocity profiles at different dimensionless

heights. The tangential velocity profile in Figure 6.33 (a) resembles a forced vortex.

Which is also observed in the isothermal single phase CFD cases (Section 6.1.8). The

force vortex transforms into a Rankine vortex at z/Z = 0.42 and above. The radial

location of the transformation of forced to free vortex region becomes closer to the

centreline as the gas flows upwards, which is also observed in the isothermal CFD

simulation cases. The tangential velocity profiles in the non-isothermal CFD simulation

case is qualitatively similar to the isothermal CFD simulation cases.

Figure 6.34 is a plot of the inside film coefficient (left) and the corresponding Nusselt

number (right) for Case 1. The inside film coefficient is calculated in Fluent as post-

processing using equation (3.52). The wall heat flux (in equation 3.52) is calculated

using equation (6.3). The value given in the plot is averaged over the tower

circumference. The inside film coefficient is a maximum at the tangential-entry inlets

(z/Z = 0.13) as the swirl is maximum at the inlets (Figure 6.36). The influence of swirl

in increasing the surface heat transfer for air flow in a pipe was experimentally

investigated by (Chang and Dhir, 1995). For a flow with a swirl number of 2.5, Chang
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and Dhir (1995) found a 200% increase in surface Nusselt number compared to non-

swirling air flow. In this case, the maximum swirl number is 2.5 (at z/Z = 0.13) and the

swirl number near the outlet (z/Z = 0.90) is about 1.0 (Figure 6.36). The Nusselt number

in this case is about 220% greater near the tangential-entry inlets compared to the

Nusselt number near the gas outlet. The swirl increases the axial velocity profile close

to the wall (due to radial pressure gradient resulting from centrifugal force due to swirl)

which increases the convective heat transfer close to the wall surface, hence an increase

in the heat transfer coefficient (Chang and Dhir, 1995). The inside film coefficient

decreases as the gas flows upwards due to decrease in the swirl, resulting in a decrease

the axial velocity close to the wall.

(a) (b)

(c) (d)

Figure – 6.33: Predicted tangential velocity profiles at various heights (Case 1).
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Figure – 6.34: Predicted inside film coefficient along the dimensionless height (Case 1).

6.2.7 Case 2

In Case 1, it was found that the predicted temperature is higher than the measured

temperature at all measurement locations. The maximum temperature difference is

between 10-15 K. The predicted temperature profiles in Case 1 are also relatively flat

compared to the measured temperature profiles. One of the reasons for this may be due

to the fact that the amount of cold air entrained is greater than that specified in the

calculation. Therefore, in this case, the amount of cold air in the tower is increased to

10% of the hot gas mass flow. For the prediction of heat loss through the tower wall, the

thermal conductivity of insulation is specified to be 0.04 W/mK (same as in Case 1).

The predicted temperature profiles for Case 2 are depicted in Figure 6.30.

It is observed that by increasing the mass flow of cold air, the predicted gas temperature

goes down. At the first measurement location Figure 6.30 (a), the predicted temperature

in the central region is higher in Case 1 with 5% of mass flow of cold air, while in the

case of 10% of mass flow, the temperature in the central region matches well with the

measured value at r/R = 0 to 0.3. However, the temperature near the wall is

overpredicted in both cases, although in Case 2 the predicted temperature is relatively in

better agreement with measurement. At the second measurement location Figure 6.30

(b), the wall temperature as well as the temperature in the central region of the tower is

overpredicted in both 5% and 10% of the cold air flow rates. In contrast to a flat

temperature profile in Case 1, the temperature profile predicted by Case 2 gives a bird

wing profile similar to the measurement but the predicted temperature is greater by

about 6 K. At the third measurement location (Figure 6.30 (c)), the predicted
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temperature is greater near the wall as well as near the centreline. At the third and fourth

measurement locations, the temperature is overpredicted by both cases. The predicted

centreline temperature at these locations is greater, which shows that in the predicted

gas temperatures, mixing of the cold air and the hot gas takes place more rapidly

compared to the measurement. The predicted wall temperature is higher than the

measured temperature at all measurement locations; this could be due to greater heat

losses from the tower, and is underpredicted by the simulation. The temperature in the

central region of the tower at z/Z = 0.42, 0.60 and 0.82 is overpredicted by both

simulation cases.

6.2.8 Case 3

In the previous two cases, it is found that the temperature at the wall is overpredicted by

the model even when the mass flow of cold entrained air is 10% of the mass flow of hot

gas. This indicates that the heat loss from the tower may be underpredicted by the

simulation. In Case 3, the calculated value of the overall heat transfer coefficient using

the measured temperatures (Martin de Juan, 2012) is specified in the CFD simulation.

6.2.9 Analysis of Experimental Data

The evaluation of the overall heat transfer coefficient based on measured temperatures

requires calculation of the average gas temperature at the measured heights, which is

calculated using two methods. In the first method, an area weighted average value of the

measured gas temperature at the axial location is calculated from the integration of a

polynomial curve fit equation of the experimental data. The average temperature is

given by:


R

gasavg drrrT
R

T
0

2
)(

2
(6.5)

The polynomial curve fits of the experimentally measured data are given by continuous

lines in Figure 6.30. The curve fit equations and their respective R2 values for all

measurement heights are given below:

For z/Z=0.24, the polynomial curve fit equation is:



191

Tgas = -24(r/R)3 + 22.385(r/R)2 + 3.3772(r/R) + 355.446 (6.6)

The corresponding R2 value for the curve fit is 0.98.

For z/Z=0.42 m height, the polynomial curve fit equation is:

Tgas = -24.79(r/R)4 + 32.393(r/R)3 – 20.885(r/R)2 + 13.259(r/R) + 355.968 (6.7)

The corresponding R2 value is 0.96.

For z/Z=0.60 m, the curve fit equation is:

Tgas = -31.305(r/R)3 + 27.878(r/R)2 – 1.5844(r/R) + 357.246 (6.8)

The corresponding R2 value is 0.98.

For z/Z=0.82, the curve fit equation is:

Tgas = -96.334(r/R)4 + 146.36(r/R)3 – 70.053(r/R)2 + 11.151(r/R) + 358.133 (6.9)

The corresponding R2 value is 0.99.

The heat flux at the wall (required for the calculation U) is calculated using the

following equation:

)( depavgi

Rr

gas

gas TT
dr

dT
q 



 (6.10)

where λgas is the thermal conductivity of gas taken as a constant value of 0.03 W/mK for

the range of gas temperatures in the experimental investigation. The temperature

gradient in equation (6.10) is calculated by differentiating the polynomial curve fit

equations (6.6, 6.7, 6.8 and 6.9) at r = R.

The overall heat transfer coefficient (U) is then calculated using the following equation:
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)( ambavg TT

q
U





(6.11)

The inside film coefficient i is calculated using equation (6.10).

Table 6.8 summarises the calculated heat flux values and the corresponding U values

and insulation thermal conductivity (λins,calc) (calculated using equation (6.4)) based on

the calculated U values (using equation 6.11).

Table – 6.8: Heat flux calculated using the first method

Dim.

Height

(z/Z)
Tavg (K)

depT

(K) Rr

gas

dr

dT



(K/m)

q

(W/m2)

αi

(W/m2K)

U

(W/m2K)

λins,calc

(W/mK)

0.24 359.31 357.0 -35.18 1.05 0.45 0.015 0.0015

0.42 359.05 356.18 -35.87 1.07 0.37 0.016 0.0016

0.60 357.65 351.85 -59.95 1.80 0.31 0.027 0.0027

0.82 356.75 348.90 -106.85 3.20 0.40 0.050 0.0049

From the above table it is observed that the calculated value of λins,calc is much smaller

than the value of glass fibre insulation thermal conductivity reported in the literature

(Kreith, 1973) is 0.04 W/mK, which is unrealistic, hence these values are not used for

calculation of heat losses.

In another method, the mean axial velocity profiles obtained from non-isothermal Case

1 (Figure 6.32) and the measured temperature profiles are used to calculate the bulk

(cup mixing) temperature (the difference in the axial velocity profiles obtained from

Case 1 and Case 2 was negligible, resulting in a maximum difference in bulk

temperature of 0.1 K). The bulk temperature is given by (Jawarneh, 2011):






R

axial

R

gasaxial

b

drur

drrTur

T

0

0

)(
(6.12)
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where

bT is the bulk temperature,

r is the radial coordinate,

R is the radius of the spray tower, and

uaxial is the mean axial velocity of gas.

Equation (6.12) is solved by numerical integration with trapezoidal rule using the

measured gas temperature (Martin de Juan, 2012) and the CFD predicted mean axial

velocity at the corresponding radial location. The calculated Tb values at each

measurement location are listed in Table 6.9. The tower is divided into four sections

based on the measured temperature locations and the cup mixing temperature is then

used to calculate the heat losses in each section of the spray drying tower using enthalpy

balance equation given by:

)( 1,2,, bbgaspgas TTcmQ   (6.13)

where:

Q is the heat loss from the tower,

airm is the mass flow of gas,

gaspc , is the specific heat of gas, and

bT is the bulk temperature.

At the first measurement location (z/Z=0.24), the change in temperature of the hot gas

will take place not only due to heat losses, but also due to mixing with the entrained air

which is at a room temperature. Assuming the entrained amount of cold air to be 10% of

the hot gas mass flow, the amount of heat exchanged between the hot gas and cold

entrained air is 15.8 kW. This amount of heat is subtracted from the heat loss obtained

from equation (6.13) to get the actual amount of heat loss from the tower at the first

measurement height.

From the calculated heat loss, the overall heat transfer coefficient (U) is calculated using

the following equation:
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)( , ambaverageb TTA

Q
U





(6.14)

where

Tb,average is the average (arithmetic mean) of the bulk temperatures at two successive

axial measurement locations.

The inside film coefficient (αi) is calculated using the following equation:

q

TT depb

i 

)( 
 (6.15)

where Tdep is the deposit surface temperature given in Table 6.8 and is calculated using

the polynomial curve fit equations (6.6, 6.7, 6.8 and 6.9) by putting r/R=1.

The calculated value of U obtained from equation (6.14) is put into equation (6.4) and

solved for the thermal conductivity of insulation λins,calc. The calculated value of heat

flux ( q ), U and λins,calc is listed in Table 6.9. In non-isothermal Case 3, the calculated

values of the insulation thermal conductivity listed in Table 6.9 are used to calculate the

overall heat transfer coefficient (U) in each section and specified in the CFD simulation

using Fluent UDF feature. The heat flux from the tower is then calculated using

equation (6.3).

Table – 6.9: Heat losses calculated using the second method

Dim.

Height

(z/Z)

Tb (K)

q

(W/m2)

Q

(W)

αi

(W/m2K)

U

(W/m2K)

λins,calc

(W/mK)

0.24 359.88 220.8 17400 76.7 3.311 0.414

0.42 359.39 55.2 1209 17.2 0.833 0.086

0.60 357.95 175.8 3604 28.8 2.710 0.325

0.82 357.71 22.43 599 2.5 0.347 0.035

The computed temperature profiles after including the estimated insulation thermal

conductivity are depicted in Figure 6.30. It is observed that the computed temperature

profiles are in a relatively better qualitative and quantitative agreement with
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measurements at all axial locations compared to Case 1 and 2. The maximum error

between the predicted temperature and the measurement in this case is 4 K at z/Z=0.24.

The predicted near-wall temperature by Case 3 is in good agreement with the measured

temperature at this height. At a dimensionless height of 0.42 to 0.82, Case 3 predicts a

correct qualitative temperature prediction (a lower temperature at the centre and near the

wall), however, the predicted gas temperature is greater.

Figure 6.35 is a plot of heat flux along the dimensionless tower height in the cylindrical

region of the tower predicted for Case 1 and Case 3 and a comparison with the

experimental data. The negative sign indicates that the heat is lost from the tower to the

surrounding. From the plot it is observed that the heat flux calculated in Case 3 matches

well with the experimental data because in this case, the thermal conductivity of the

insulation was adjusted to match with the calculated heat loss based on measurements,

whereas Case 1 gives a smaller heat flux and is fairly constant throughout the tower

height.

Figure – 6.35: Heat flux along the dimensionless tower height.

From the plots in Figures 6.34 and 6.35, it is observed that the insulation thermal

resistance is the major resistance to heat transfer, as the major difference in Case 1 and

Case 3 predicted heat flux is the value of insulation thermal conductivity. Although the

inside film coefficient reduces by 300% along the tower height, but in Case 1, the heat

flux is fairly constant throughout the tower height as depicted in Figure 6.35.

Figure 6.36 is a plot of inside convective film coefficient and swirl number along the

dimensionless tower height for Case 3. The inside film coefficient decreases as the gas
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moves upwards due to decrease in the swirl number along the tower height. A strong

swirl causes a higher tangential and axial velocity close to the wall leading to a higher

convective heat transfer rate, hence a large film coefficient. The CFD predicted inside

film coefficient reduces by 300% due to decrease in swirl number. The strength of swirl

reduces as the gas moves upwards due to viscous and frictional resistance. The dotted

points represent the value of inside film coefficient based on measured temperatures,

calculated using equation (6.15), which show a general declining trend up the tower

height, although the values differ significantly at z/Z=0.24 and at 0.82. This is because

the calculated values are based on the average of the heat flux in the entire section, and

the deposit surface temperature (Tdep) used in the calculation of i is obtained from the

extrapolation of values obtained from the polynomial curve fits to the measured

temperature profile, assuming that the same declining trend (observed near the wall)

continues up to the deposit surface.

Figure – 6.36: Heat transfer coefficient and swirl number along the dimensionless tower

height (Case 3).

6.2.10 Case 4

In the simulation Case 4, it is assumed that most of the heat loss from the hot gas is

occurring in the gas duct that supplies gas to the distribution ring around the spray

drying tower as well as in the gas distribution ring. Therefore, a lower temperature is

specified as the gas inlet temperature. The gas temperature at the inlets was not

measured; hence an assumption was made that the gas loses its temperature by 10 K as

it reaches the tangential-entry inlets. The specified hot gas inlet temperature in this case
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is 353.15 K and the amount of cold air entrainment is taken to be 5% of the hot gas

mass flow. For the calculation of heat loss through the wall, a constant value of thermal

conductivity reported in the literature (Kreith, 1975) with a value of 0.04 W/mK is

considered.

Figure 6.30 is a plot of temperature profiles predicted by Case 4. It is observed that

Case 4 gives the best agreement with the experimental data at all the measured locations

both in the central region of the tower as well as close to the wall. Therefore, most of

the heat loss takes place before the gas actually enters the tower, i.e., in the inlet gas

duct and in the distribution ring which supplies gas to the tangential-entry inlets. This

indicates that the insulation in the duct and the distribution ring is severely damaged and

requires replacement to prevent excessive heat loss in these regions. Another source of

error could be due to the fact that the temperature measurement in the duct is taken at

the centre, which may not represent the mean temperature of the gas as a non-uniform

temperature profile may exist inside the inlet gas duct.

In all of the above four cases, the value of turbulent Prandtl number (Prt) used to

compute the turbulent heat flux, is taken to be 0.85, which is the default value in Fluent.

The effect of Prt on the predicted temperature profiles is given in Figure 6.37, utilising

Case 4 input conditions. The value of Prt is varied from 0.5 to 1.0. The predicted

temperature profile becomes flatter as the value of Prt is decreased i.e., less than 1.0, in

which case, turbulent heat diffusivity is greater than turbulent momentum diffusivity.

The influence of Prt is more apparent in the bottom regions of the tower (z/Z = 0.24 to

0.42). A default value of Prt = 0.85 (used in all previous cases) gives the best

predictions compared to experimental data in the bottom regions of the tower.
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(a) (b)

(c) (d)

Figure – 6.37: The effect of turbulent Prandtl number in predicting temperature profiles

(using Case 4 conditions).

Total heat loss from the tower wall is 4.1 kW in Case 1, 3.9 kW in Case 2, 15.1 kW in

Case 3 and 3.5 kW in Case 4. The heat loss based on the experimental measurement of

temperatures at the inlet gas duct and the exhaust gas temperature is 22.2 kW, which is

12% of the total heat input to the tower (taking entrained air mass flow to be 5% of the

hot gas). Table 6.10 lists the measured and predicted exhaust gas temperatures from

Cases 1 to 4. Case 4 gives the best agreement with measured exhaust gas temperature

with a difference of 0.3 K.
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Table – 6.10: A comparison of measured (Martin de Juan, 2012) and predicted exhaust

gas temperatures.

Case Exhaust Gas Temperature (K)

Case 1 368.1

Case 2 364.7

Case 3 360.6

Case 4 358.7

Measurement 358.4

From the previous four cases, it is evident that most of the heat loss occurs before the

gas enters the spray drying tower; therefore it is important to measure the gas

temperature at the inlet of the tangential-entry nozzles. A new experimental run was

carried out by Ahmadian (2013) at P&G, in which the gas inlet temperature was

measured at the tangential-entry inlets in addition to the temperature in the inlet gas

duct. For the measurement of hot gas temperature at the tangential-entry nozzles,

thermocouples were placed inside each of the inlet nozzles. By assuming equal mass

flow distribution through each of the tangential-entry nozzles, the average inlet gas

temperature entering the tower was calculated. In this experimental run, the amount of

cold air entrained from the bottom of the tower was also measured by Ahmadian (2013)

using a hot wire anemometer, which is found to be 4.3% of the mass flow of the hot gas.

Hence the assumption of 5% of mass flow of hot gas used as entrained air used in the

previous simulation cases (Case 1 and 4) was a reasonable approximation. The

experimental conditions and the measured gas temperatures, and measured mass flux of

entrained air are listed in Table 6.11.
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Table – 6.11: Spray drying tower operating conditions under non-isothermal condition

(Ahmadian, 2013).

Parameter Value

Hot gas temperature at the duct 403.0 K

Average hot gas temperature at the tangential-entry nozzles 388.8 K

Exhaust gas temperature 381.2 K

Ambient temperature 299.5 K

Mass flux of hot gas 1.224 kg/m2s

Mass flux of entrained air
0.052 kg/m2s

(4.3% of hot gas)

Pressure at the outlet -25.0 Pa

For the new non-isothermal CFD simulation case, the operating conditions listed in

Table 6.11 are used. From this table, it is observed that the actual gas temperature at the

tangential-entry inlets is 14.2 K smaller than the gas temperature measured in the hot

gas supply duct. The measured average hot gas temperature (Ahmadian, 2013) at the

tangential-entry nozzles is used in the simulation cases as the hot gas inlet temperature.

To evaluate the role of wall roughness in impacting the gas temperature profiles, three

simulation cases have been carried out. In Case 5, 6 and 7, the influence of wall

roughness is evaluated in predicting the gas temperature profiles. In Case 5, 6 and 7, a

roughness height of 2 mm, 1 mm and 0.5 mm is specified respectively. To model heat

loss from the wall, a constant thermal conductivity of 0.04 W/mK is specified

throughout the tower height. Prt value of 0.85 is used in these simulation cases.

Figure 6.38 is a plot of measured temperature profiles (Ahmadian, 2013) and a

comparison with temperature predictions from Case 5, 6 and 7 at various dimensionless

heights, with 0 representing the tower bottom and 1 representing the tower top. From a

comparison of measured temperatures in Figure 6.38 with Figure 6.30, it is observed

that the measured temperature plots are qualitatively similar i.e., a lower temperature in

the centreline in the bottom region of the tower, which becomes more like a plug-flow

profile as the gas moves upwards. The presence of roughness at the wall contributes

significantly on the decay of swirl in the tower, which influences both tangential and
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axial velocity profiles hence the mixing of the cold (entrained) air and the hot gas.

Similarly, the turbulence intensity in the central region of the tower decreases with an

increase in swirl intensity but gets amplified in the near-wall region (Figure 6.25 in

Section 6.1). This particularly influences the gas temperature profiles in the bottom

region of the tower. At a dimensionless height of z/Z= 0.22, the CFD simulation run

with a roughness height of 2 mm gives a higher temperature in the central region, while

0.5 mm roughness height gives an underprediction. A roughness height of 1 mm gives a

closer agreement with the measurement. Hence the mixing of the entrained air stream

and the hot gas becomes more rapid (resulting in a flatter temperature profile) with

decreasing swirl in the gas flow. At z/Z = 0.45, 2 mm and 1 mm roughness height cases

predict a relatively flat temperature profile in the central region while 0.5 mm predicts a

slightly lower temperature in the central region but it is greater than the measured

temperature. At z/Z = 0.85, all the CFD simulation cases as well as measured data gives

a flat temperature profile, however, the simulations overpredict the temperature by

about 2 K. Overall, the simulation case with a roughness height of 1 mm gives the best

agreement with experimental data.

(a) (b)

(c)
Figure – 6.38: Temperature profiles at different axial locations, a comparison of non-

isothermal cases with different wall roughness with experimental data.
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6.2.11 Conclusions

CFD modelling work has been carried out to validate the predicted temperature profiles

with available measurements for gas temperature within the spray drying tower and to

study heat loss. In the first four non-isothermal simulate ion cases, different cold air

entrainment rates, wall thermal conductivity and inlet gas temperatures were used to

give the best prediction with the measured temperature profile. It was found that the

case in which a lower inlet gas temperature was used gave the best prediction, while the

other cases predicted a higher gas temperature compared to the measured temperatures.

This implies that most of the heat loss takes place due to poor insulation in the inlet gas

distribution duct and in the gas distribution ring that results in the lowering of the inlet

gas temperature at the tangential-entry nozzles, which can be minimised by replacing

the damaged insulation in the inlet gas duct and in the gas distribution ring. The

discrepancy in using the measured inlet duct temperature could also be partly due to the

fact that inside the duct, a single temperature measurement at the centre of the duct is

made, which may not represent the true mean temperature of the gas flow in the duct. It

is important to measure the gas temperature at the inlet of the tangential-entry nozzles,

hence in the available data for the second experimental run, the measured temperature at

the inlet of the tangential-entry nozzles was specified as the hot gas inlet temperature in

the simulation and the effect of wall roughness on the predicted temperature profiles

was evaluated. It was found that the wall roughness influences the gas temperature

profiles particularly in the bottom region of the spray drying tower as mixing of cold

(entrained) air with the hot gas is dependent on the gas velocity profiles and turbulence

intensity, which are influenced by the wall roughness.
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7. MULTIPHASE CFD MODELLING

In this chapter, multiphase CFD modelling of spray drying tower is carried out

considering isothermal (Section 7.1) and non-isothermal (Section 7.2) conditions. In the

isothermal (constant temperature) CFD cases, only the influence of dried detergent

particles on the gas phase (comprising air) velocity profiles and vice versa is assessed

by considering momentum coupling between these two phases. The heat and mass

transfer between the particles and the air is not considered. The effect of the number of

particle trajectories on the air velocity profiles is also assessed and the resulting air

velocities are compared with the single phase air velocity profiles (modelled previously

in Section 6.1.9) to assess how the presence of particles influence the air velocity

profiles. In Section 7.2, CFD simulations considering non-isothermal conditions are

carried out to determine the gas flow and temperature profiles, the particle trajectories

and drying behaviour of the droplets and particles in a complex three-dimensional

swirling counter-current gas flow. The simulations consider coupled heat, mass and

momentum transfer between the gas phase and the droplets/particles. The influence of

particle-wall interaction, drag law and initial droplet size distribution specification on

the model predictions is checked by carrying out various CFD simulation cases. A

rough-wall collision model is developed and the influence of wall roughness on the

particles post-collision trajectories and the heat and mass transfer is evaluated. The

predictions are compared with the data collected from the IPP tower, which include

measured output parameters (average powder moisture content, temperature and exhaust

gas temperature) as well as the gas temperature profiles (wherever available) to assess

the predictability of the CFD modelling approach in modelling the counter-current spray

drying tower. The results of the plug-flow model (described in Chapter 5) are also

compared with the CFD model to assess the validity of plug-flow approach in modelling

the spray drying process.

7.1 Study of Particle Flow under Isothermal Flow Condition

To assess the impact of particulate flow on the gas flow field, multiphase CFD

simulation of the IPP tower is carried out considering isothermal flow (constant gas

temperature) condition and dried particles are injected from the atomiser location. The

simulation is two-way coupled in terms of momentum exchange between the dried

particles and the air using the Eulerian-Lagrangian approach (described in Section

3.12), and the heat/mass transfer between these two phases is ignored.
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7.1.1 Numerical Solution Method and Boundary Conditions

Continuous Phase

The continuous phase comprises air and the prediction of the air velocity profiles inside

the spray drying tower is required so that the trajectories of the discrete phase can be

calculated. The discretisation scheme for the continuous phase equations, pressure-

velocity coupling and pressure interpolation schemes are kept the same as in the single

phase isothermal CFD simulation run (given in Section 6.1.1). The turbulence

modelling is carried out using the RST model with linear pressure strain term (LRR), as

this gave the best agreement with the measured velocity profiles (Section 6.1.9). The

modelling of flow near the wall is carried out using the standard wall functions. In order

to take into account the effect of wall surface roughness due to the deposits on the air

flow profiles, a roughness height of 2 mm is specified with a roughness constant of 1.0

in the log-law of the wall modified for roughness as this gave the best agreement with

the measured velocity profiles (Section 6.1.8). For the gas phase boundary conditions,

velocity inlet is specified as the boundary condition at the tangential-entry air inlets and

at the entrained air inlet with the values given in Table 7.1. A pressure outlet boundary

condition is specified at the air outlet with a value of -300 Pa pressure. The continuous

phase is modelled using the steady state assumption.

Discrete Phase

For the modelling of the discrete phase (comprising dried detergent particles), a

Lagrangian approach with steady state tracking is used. The discrete phase is

represented by a number of parcels. Each parcel represents a fraction of the total mass

flow of the discrete phase as explained in Section 3.12. The size distribution of dried

powder measured using sieves by Martin de Juan (2011) is specified as the initial size

distribution in this case. The measured size distribution of powder is fitted using the

Rosin-Rammler distribution (Rosin and Rammler, 1933). The size distribution

measurement and corresponding curve fit is given in Figure 5.5 (Section 5.5 of Chapter

5). The particles are injected at a dimensionless height of 0.8 in a hollow-cone pattern.

The size distribution of powder ranges from 100 µm to 2300 µm. This range of particle

sizes is represented using 23 diameters. The particle trajectories are calculated by

solving the equation of motion of the particles (equation (3.57)) considering the

gravitational, buoyancy and drag forces. The drag coefficient correlation proposed by

Morsi and Alexander (1972) is used (equation (3.60)). The turbulence dispersion of
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particles (i.e., the dispersion of particles due to the fluctuating velocity components) is

considered in the simulation by using the Discrete Random Walk model (Fluent, 2009),

described in Section 3.11.4, in which the parcel is tracked multiple times from the same

injection location to get a statistically meaningful sample of the trajectory. In this case,

the dispersed phase is tracked 3 times. 50 parcels are considered for each size

considered. Hence the total number of parcels representing the discrete phase is 3450

(3×50×23). To allow the simulation to be completed in a reasonable period of time, the

maximum number of length steps allowed for each parcel trajectory is set to 50,000

corresponding to a maximum path length of 50 m. Any parcel trajectory that cannot exit

from the computational domain within 50,000 length steps is eliminated from the parcel

trajectory calculation and the next parcel is tracked.

The operating condition specifications for the discrete and continuous phases, required

to run the simulation case are listed in Table 7.1. The inlet air mass flow is the same as

specified in single phase CFD simulation cases in Chapter 6 (Table 6.2 in Section 6.1.2)

and the amount of entrained air in this case is also assumed to be 5% of the inlet air

mass flow.

Table – 7.1: Input parameters for studying particle flow under isothermal (constant

temperature with no heat and mass transfer) condition.

Parameter Value

Continuous Phase

Inlet air mass flux 2.215 kg/m2s

Entrained air mass flux 0.010 kg/m2s (5%)

Air density 1.25 kg/m3

Air viscosity 1.78×10-5 kg/ms

Discrete Phase

Particle mass flux 0.232 kg/m2s

Particle density 860 kg/m3

Spray cone half angle 20o

Particle initial velocity 65 m/s

In the simulation case (referred to as isothermal Case 1), the particle-wall interaction is

modelled by specifying a restitution coefficient of 1.0 for both the normal and tangential

components to the wall, which is a default value in Fluent. This corresponds to a
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perfectly elastic collision with the wall. Hence particles will bounce off from the wall

with the same velocity and angle as that of the impact.

Simulation initialisation and convergence

The multiphase simulation was initialised using the converged solution of isothermal

single phase CFD simulation run carried out using the RST model with linear pressure-

strain term (Section 6.1.9), the particles are injected at about 50,000 iterations, therefore

a peak is observed in the residuals at this point in the plot of residuals given in Figure

7.1. The discrete phase is tracked once after each continuous phase iteration, and the

resulting continuous phase source term for the momentum exchange between the two

phases (given by equation (3.70)) is updated with each iteration. The convergence

criteria for the residuals were set to 1×10-4 for the continuity, momentum and turbulence

stresses equations. The specified convergence criteria for the residuals could not be met

during the simulation run due to the complexity of the air flow patterns and its

interaction with the particles. During the multiphase simulation run the level of

residuals for continuity, momentum and turbulence stresses were fluctuating in a similar

order of magnitude as in the single phase flow (air-only case) simulation residuals.

Hence this criterion could not be used as a check for simulation convergence.

Figure – 7.1: Residuals of convergence for isothermal Case 1.

To ensure that the simulation has reached a steady solution, the area weighted average

axial and tangential velocities of the air along the x-axis were monitored at two different

heights during the iterations. When the values of these tangential and axial velocities

showed fluctuations about a constant mean value, then the simulation was stopped and

Single phase with FOU scheme

Single phase with SOU scheme

Multiphase with SOU scheme
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the simulation was considered to be converged. Figure 7.2 is a plot of tangential and

axial velocity profiles during the simulation run.

Figure – 7.2: Area weighted average tangential and axial velocity profiles during the

simulation run for isothermal Case 1.

Figure 7.3 is a plot of particle trajectories of a selected number of tracks. In the plot of

particle trajectories, it is observed that the particle sizes up to 200 µm get entrained by

the gas from the top of the tower. The larger particles strike the wall after being injected

into the spray tower and bounce back and reach the other side of the wall. These

particles eventually reach the bottom conical region of the tower because of greater

momentum compared to smaller particles (up to 200 µm sizes) and have less influence

of drag force acting in the upward direction. As these particles come down the tower,

they take up the swirling momentum of the air. The particles start swirling in the bottom

conical region of the tower and do not come out from the bottom exit. These particles

are swirling at a velocity sufficient to hold the particles in the conical region and the

gravitational force acting in the downward direction is balanced by the normal contact

force component acting in the upward direction arising from the swirling motion of

particles and the drag force acting in the upward direction as depicted in Figure 7.4.

This unrealistic behaviour of particles in the bottom conical region of the tower is due to

the specification of perfectly elastic collision (Cr = 1.0) between the wall and the

particles, since the particles gain tangential momentum as they move down due to the

momentum exchange with the swirling air flow, and do not lose this momentum upon

collision with the wall.

tang-z/Z = 0.29
tang-z/Z = 0.83

axial-z/Z = 0.29

axial-z/Z = 0.83

Initial changes in

air velocity

profiles. Fluctuations about a constant mean value.
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(m)

Figure – 7.3: Particle trajectories of different sizes in the spray drying tower coloured by

diameter (Cr = 1.0).

Figure – 7.4: Forces acting on a particle in the bottom conical region of the tower.

The above simulation case shows unrealistic particle behaviour since the particles do

not come out from the bottom exit of the tower. To validate that this is due to the

specification of elastic collision consideration between particle and wall, another

simulation run is carried out (referred to as isothermal Case 2) with a wall restitution

coefficient (Cr) value of 0.4 for both normal and tangential components. This value of

Cr is based on the measurement of restitution coefficient of spray dried detergent

powder particles determined by Hassal (2011) in which a typical value obtained for
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dried particles was 0.4. Figure 7.5 is a plot of particle trajectories coloured by particle

diameter. It is observed that the larger particles exit from the bottom outlet of the tower.

Since the particles in this case do not exhibit elastic collision, therefore a collision of

particle with the wall results in loss of particle momentum, hence the swirling velocity

of particles does not increase to a value such that the normal contact force component

can be balanced by the gravitational force. Therefore particles in this case exit from the

bottom outlet. At the end of each discrete phase iteration, typically 10-20 parcels out of

3450 parcels get entrapped into the recirculation zones in the tower and get eliminated

from the calculation domain without exiting from the tower. The smaller particles (up to

200 µm) get entrained by the air and leave the tower from the top outlet as in the

isothermal Case 1.

(m)

Figure – 7.5: Particle trajectories of different sizes coloured by diameter (Cr = 0.4).

Figure 7.6 is a plot of axial velocity of the air at different dimensionless heights for this

case. The air velocity profiles for the multiphase simulation case are compared with the

single phase CFD simulation case (LRR-RST model) carried out in Section 6.1.9 (both

cases have the same boundary condition specifications for the air mass flow). It is

observed in Figure 7.6 that the particles have a significant impact on the axial velocity

profiles along the tower height. Without the particles, at z/Z = 0.29, 0.47 and 0.56, the

air flow very close to the wall is a maximum, and it is minimum in the annular region of

the tower but in the presence of particles at all dimensionless heights, the peak value of
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mean axial velocity shifts towards the annular region because the particles exert

momentum on the air, additionally the axial velocity is lower in the centreline of the

tower. At z/Z = 0.29 and 0.47, in the axial velocity profiles without particles, negative

velocity is observed in the annular region (at r/R = 0.3 to 0.4) as a consequence of

strong swirl, this is not observed in the velocity profiles with particles. At z/Z = 0.74 and

0.83, without the particles, the maximum value of air velocity lies at the centreline,

whereas in the presence of particles, it is minimum at the centreline at z/Z = 0.74 and at

z/Z = 0.83, the axial velocity profile in the presence of particles resembles closely to a

parabolic velocity profile observed in pipe flow without swirl. This position is above the

particle injection location. Hence the flow of particles is fairly dense to impact the axial

velocity profiles of the air at all the reported locations.

r/R r/R
(a) (b)

r/R r/R
(c) (d)

r/R

(e)
Figure – 7.6: Comparison of single phase and multiphase axial velocity profiles.
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Figure 7.7 is a plot of mean tangential velocity profiles at different dimensionless

heights for this case and a comparison is made with the single phase CFD simulation

carried out in Section 6.1.9. It is observed at all the locations that the magnitude of

tangential velocity is significantly reduced due to the presence of particles that take up

the swirling momentum of the air. The tangential velocity of air with particles at z/Z =

0.29 and 0.47 is about 2 times smaller than that without particles. As the air goes up in

the presence of particles, the reduction in the tangential velocity occurs much faster.

The particles are injected at z/Z = 0.8, therefore, at locations close to and above the

nozzle (i.e., z/Z = 0.74 and 0.83), the tangential velocity is very close to zero because

the swirling momentum is transferred to the particles. The Rankine vortex profile is also

not observed at these locations.

r/R r/R
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Figure – 7.7: Comparison of single phase and multiphase tangential velocity profiles.
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Figure 7.8 is a plot of swirl number along the dimensionless tower height in the

cylindrical region of the tower with 0 at the bottom and 1 at the top of the tower. The

swirl number for this case is compared with the swirl number for the single phase CFD

simulation run (LRR-RST model with ks = 2 mm). As observed in the tangential

velocity profiles (Figure 7.7), the presence of particles lowers the tangential velocity

and hence the swirl number is smaller, the decay in swirl number compared to the single

phase simulation case is faster, because a significant amount of air tangential

momentum is taken up by the particles as they move down in addition to the frictional

resistance from the rough wall.

Figure – 7.8: Swirl number comparison along the tower height.

Figure 7.9 is a plot of air mean velocity magnitude. It is observed that the air mean

velocity profiles are symmetrical along the tower height both above and below the

particle injection location. Below the particle injection location, in the cylindrical region

of the tower, a low air velocity magnitude is observed in the central region of the tower

as well as along the wall. The velocity magnitude is higher in the annular region of the

tower. A high velocity magnitude exists at the particle injection location, this indicates

that the particles exert large momentum on the continuous phase near the injection

location and change the air flow pattern in this region. The velocity magnitude is a

maximum near the top outlet as the air passes through a narrow tube (vortex breaker)

and eventually goes to the exhaust duct.
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(m/s) z/Z

Figure – 7.9: Contour plot of air velocity magnitude.

Figure 7.10 is a vector plot of magnitude of mean air velocity close to the particle

injection location. It is observed that the air gets entrained into the spray of particles due

to a high momentum exerted by the particles on the air, and results in the formation of a

jet of air in the downward direction. Recirculation zones are observed at the edges of the

jet.

Figure 7.11 is a contour plot of air turbulence intensity (defined using equation 6.2) for

the isothermal multiphase case compared with the single phase isothermal case. In the

case of multiphase simulation, high turbulence intensity is observed near the particle

injection location, this is caused by the recirculation of air due to high momentum

exerted by the particles. The turbulence intensity above the particle injection location is

greater compared to the turbulence intensity below the spray in the cylindrical section of

the tower. Above the particle injection location, only smaller particles (up to 300 µm)

flow (Figure 7.5) and these particles may enhance the air flow turbulence. The swirl

intensity above the particle injection location is also smaller which may also make the
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flow more unstable and result in increased turbulence intensity. Overall, the turbulence

intensity is increased in the presence of particles.

(m/s)

Figure – 7.10: Vector plot of air velocity magnitude near the nozzle.

(%) Single Phase z/Z Multiphase
Figure – 7.11: Contour plot of turbulent intensity.
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The effect of number of stochastic tracks for each parcel for tracking the dispersion of

particles due to turbulence on the residence time of particles and on the velocity profiles

of the continuous phase is checked by varying the number of stochastic parcel tracks

from 1, 3 and 5. This also increased the total number of parcels tracked to 1150, 3450 to

5750 respectively and the computational time was also increased accordingly. Figure

7.12 is a comparison of the plot of average residence time of all the particles of a

particular diameter collected from the bottom of the tower for the three cases.

Figure – 7.12: Residence time of particles collected from the bottom of the tower.

In the plot of residence time of particles collected from the bottom of the tower, it is

observed that the smaller particles have greater residence time compared to larger

particles. The initial size range specified at the particle injection location is from 100

µm to 2300 µm. However, 100 and 200 µm particles exit from the top of the tower

because smaller particles get entrained by the air. The residence time of larger particle

sizes (400 µm and greater) in all three cases is very similar and is independent of the

number of parcel tracks used for stochastic tracking. This is because the larger particles

have greater momentum and show less influence of the effect of particle dispersion due

to turbulence. For the case in which 1 parcel track is used for stochastic tracking, the

residence time of the smallest particle that exits from the bottom, i.e., 300 µm particle is

slightly greater than the other two cases. Overall, the number of tries for stochastic

tracking and hence the number of total tracks do not influence the residence time of

particles collected from the bottom of the tower.

Figure 7.13 is a plot of size distribution of particles collected from the bottom of the

tower for all three cases. It is observed that the size distribution of particles exiting from

the tower bottom is similar in all the cases. Total mass flux of the particles injected was

0.232 kg/m2s. The particle mass flux collected from the bottom of the tower is 0.176
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kg/m2s and the mass flux of particles entrained by the air is 0.051 kg/m2s. Hence a total

of 0.227 kg/m2s of powder exits from the tower, while the remaining 0.005 kg/m2s of

the powder mass flux gets entrapped in the spray drying tower and is unable to get out

from the outlets within the maximum number of length steps specified for each parcel

trajectory tracking. The entrapped particles form only 2.2% by mass of the total powder

injected. Hence the specification of 50,000 steps for tracking parcel trajectories is

satisfactory for a reasonable mass conservation of the discrete phase.

Figure – 7.13: Size distribution of particles collected from the bottom.

Figure 7.14 is a plot of size distribution of particles collected from the top of the tower.

Particle sizes up to 300 µm get entrained by the gas and exit from the top of the tower.

However, some of the 300 µm particles also exit from the bottom of the tower (Figure

7.13). The mass percentage of particles collected from the top is significantly different

for the case in which 1 track is used, but in the case of 3 and 5 tracks, it is very similar.

The size distribution of particles collected from the bottom of the tower is not

significantly influenced by the number of tracks (Figure 7.13), but the smaller particles

that exit from the top of the tower, show sensitivity towards this parameter, because

smaller particles get more influenced by turbulence compared to the larger particles.

Hence 3 stochastic parcel tracks are sufficient.

Figure 7.15 is a comparison of mean axial velocity profiles of the air for 1150, 3450 and

5750 parcel trajectories using 1, 3 and 5 tracks respectively for stochastic tracking at

different dimensionless heights from bottom to top. It is observed that the axial

velocities in the region below the nozzle (from z/Z=0.29 to 0.56) are similar. The

locations z/Z=0.74 and 0.83 lie above the particle injection location. Above the particle

injection location, smaller particles sizes (up to 300 µm) get entrained by the gas and

show greater influence of turbulence on the trajectories, therefore, above the injection
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location, the axial velocity profiles show a slight dependency of the number of tracks on

the simulation results. However, the difference in the axial velocity profiles above the

injection location is not significant.

Figure – 7.14: Size distribution of particles collected from the top of the tower.

r/R r/R
(a) (b)
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Figure – 7.15: Mean axial velocity profiles of the air at different heights.
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7.1.2 Conclusions

Isothermal, multiphase CFD simulation of spray drying tower is carried out considering

dried particles in the tower and momentum exchange between the particles and the air to

study the impact of particles on the gas velocity profiles. It is found that the suitable

convergence criteria are to monitor the weighted axial and tangential velocity

components at different heights. The smaller particles (up to 300 µm) get entrained by

the air and exit from the top of the tower while the larger particles (>300 µm) in the

case of elastic particle-wall collision keep rotating in the conical region and do not come

out of the tower. Hence this condition cannot be used for particle-wall interaction. The

restitution coefficient of 0.4 measured by Hassal (2011) was used in another simulation

run, in which it is observed that all larger particles come out from the bottom exit of the

tower. The axial and tangential velocities of the air in the multiphase simulation case are

compared with single phase air velocity profiles. It is found that the presence of

particles significantly impact the velocity profiles of the air. Hence two-way momentum

coupling is required for the simulation of spray drying process. The influence of the

number of parcel trajectories and the number of tracks (used for stochastic tracking) on

the residence time of particles is also checked. It is found that 3450 parcels with 3 tracks

for the stochastic tracking are sufficient for this investigation. Total 50,000 length steps

per parcel is allowed in the computational domain before its trajectory is eliminated

from the calculation if the parcel does not exit from the domain, which gives a discrete

phase mass balance error of about 2%. In a comparison of turbulence intensity of the

single phase non-isothermal case with multiphase case, it is found that the turbulence

intensity is increased by the presence of particles due to the momentum exerted by the

particles on the gas phase.
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7.2 CFD Simulation of Spray Drying Process

In this section, the assumption of isothermal flow condition is relaxed and the

droplet/particle flow is studied by considering heat, mass and momentum transfer

between the discrete phase (comprising droplets/particles) and the continuous phase

(comprising gas). The gas phase is assumed to follow ideal gas law. The convergence

criterion is kept the same as in the isothermal multiphase simulation run, additionally;

the mass weighted average gas temperature at the exhaust is also monitored with

iteration as this indicates the amount of heat exchange with the discrete phase and could

be used to assess the level of convergence of the simulation run. For the gas phase, in

addition to the continuity, momentum, Reynolds stresses, turbulence kinetic energy and

turbulence dissipation rate, additional transport equations are also solved, i.e., the

energy transport equation for the heat transfer between the discrete phase and the

continuous phase and the species transport equation for the transport of species. Heat

loss from the column to the surrounding atmosphere is also taken into account in the

simulation by considering radial thermal conduction through the insulated wall with the

inside of the wall containing a uniform 2 mm thick layer of the deposits. The modelling

of heat loss through the wall is explained in Section 6.2.1. This is specified in the CFD

simulation using Fluent UDF feature. The wall conditions used for the calculation of

heat loss from the tower are given in Table 6.4 in Chapter 6. Heat transfer due to

radiation is not considered in the simulation, both in the calculation of heat loss as well

as in the calculation of heat transfer between the discrete and the continuous phases as

this is a relatively low temperature system. Several cases are considered to assess the

importance of modelling various interactions and specifications on the CFD modelling

of spray drying towers. In Cases 1 and 2, the influence of particle-wall interaction on

the particle trajectories and heat and mass transfer is evaluated. In Case 3, the effect of

thermal boundary condition is evaluated. In Case 4, the influence of non-spherical

particle drag law on the residence times is evaluated. In Cases 5 and 6, the influence of

initial droplet size distribution on the overall heat and mass transfer is evaluated. In

Case 7, a rough-wall collision model is applied to predict post particle-wall collision

trajectories and its effect on heat and mass transfer. A summary of all the cases

considered in this chapter is given in Table 7.2.
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Table – 7.2: Summary of modelling conditions in the CFD simulation cases

Case

Name

Input

Operating

Conditions

Particle-

Wall

Interaction

Heat Loss

Modelling

Drag Law Droplet Size

Disrtribution

Case 1 Given in

Table 7.4

Fixed Cr Based on

constant λins

(0.04

W/mK)

Smooth

spherical

particles

Measured

powder PSD

(see Figure

5.5)

Case 2 Same as in

Case 1

Linear

function of

wl

Same as in

Case 1

Same as in

Case 1

Same as in

Case 1

Case 3 Same as in

Case 1

Same as in

Case 2

Based on

λins,calc

Same as in

Case 1

Same as in

Case 1

Case 4 Same as in

Case 1

Same as in

Case 2

Same as in

Case 3

Rough

particle

drag law

Same as in

Case 1

Case 5 Given in

Table 5.6

Same as in

Case 2

Same as in

Case 3

Droplet

drag law

and smooth

spherical

particle law

Given in

Figure 5.23

(for droplets)

Case 6 Same as in

Case 5

Same as in

Case 2

Same as in

Case 3

Same as in

Case 5

Given in

Figure 5.23

(for particles)

Case 7 Same as in

Case 1

Rough

particle-

wall

model

Same as in

Case 1

Same as in

Case 1

Same as in

Case 1

7.2.1 Drying Gas Composition and its Physical Properties

The drying gas contains atmospheric air and combustion products including H2O

vapours and CO2 since the air is heated using a direct fired furnace using methane as the

fuel. CO2 is neglected in the drying gas stream since the mass fraction of CO2 is very

small (~0.01). The composition of the drying gas specified in the simulation is given in
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Table 7.3. The density of the drying gas is considered to be a function of temperature

and composition and is calculated using ideal gas law (equation (3.56)). The viscosity of

the drying gas is considered as a linear function of temperature.

Table – 7.3: Specified composition of drying gas at the inlet of the spray tower

Species Mass Fraction

H2O 0.0229

Air (O2 + N2) 0.9771

7.2.2 Initial Size Distribution of Droplets

The experimentally measured size distribution of the dried powder is specified as the

initial size distribution of the droplets in Cases 1 to 4. Although the size distribution of

the droplets in the spray is expected to be different from the size distribution of the

dried product collected from the bottom due to coalescence, agglomeration and

breakage of the droplets/particles, but these are not considered in the simulation due to

complexities involved in modelling of coalescence, agglomeration and breakage. The

size distribution measurement and corresponding curve fit is given in Figure 5.5 in

Chapter 5. The sizes vary from 100 microns to 2360 microns. A total 23 discrete sizes

are used to represent the droplets of varying sizes. Inter-particle collision is not

considered in the simulation.

7.2.3 Initial Velocity of Droplets

The droplets are injected using a hollow cone pressure nozzle atomiser (T3C). The

initial velocity of the droplets is calculated using the equation (5.31). It is assumed that

the droplets are formed immediately after the slurry exits from the nozzle, i.e. the

formation of liquid sheet and its breakup into ligament is ignored. The initial velocity of

all the droplets sizes is assumed to be the same. Other researchers (Sharma, 1990;

Kieviet, 1997; Huang et al., 2006) have also used equation (5.31) to calculate the initial

velocity of the injected droplets from a pressure nozzle atomiser. Equation (5.31)

requires the air core radius, which is taken from the data reported by Nelson and

Stevens (1961), in which the variation of air-core radius with the spray cone angle is

reported. The vendor-provided spray cone angle for T3C pressure nozzle atomiser for

water at an operating pressure of 70 bar is 40o (full cone angle), which is used in all the

simulation cases.
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7.2.4 Droplet Drying Kinetics

The semi-empirical droplet drying model by Hecht (2012) used in the plug-flow spray

drying model described in Chapter 5 (equations (5.4), (5.13) and (5.14) for calculating

drying rates in different drying stages) is also applied in the multiphase CFD

simulations to model droplet drying kinetics. The source term for the enthalpy transport

equation (3.53) for the gas phase comprises the heat transported to the droplets/particles

which is given by equation (3.71). The source term for the species transport equation

comprises moisture that is transported from the droplets/particles into the gas phase as

vapours which is given by equation (3.72). The droplet drying model is incorporated

into the CFD simulation using User-Defined Function (UDF).

Due to smaller cross-sectional area of the bottom outlet the volume fraction of particles

in the cell becomes larger as the particles approach the outlet. A lower temperature of

the continuous phase also exists at the bottom outlet due to cold air entrainment at the

bottom exit. Hence a high mass fraction of the hot particles get exposed to a very low

temperature as they approach the bottom outlet. This results in sudden cooling of the

dried particles in this region. Therefore the source term for the heat transfer becomes

very large and results in unrealistic temperature in the bottom cone region near the

outlet, which causes the simulation to diverge. To overcome this problem, two

conditions are imposed to allow the heat transfer to take place in this region. In the first

condition, the heat transfer between the discrete and continuous phase is allowed only

when the temperature difference between these two phases is less than 15 K. In the

second condition, the heat transfer is allowed when the discrete phase volume fraction

in the computational cell is less than 2%. The first condition is eventually removed as

the particles cool down and gas temperature in this region rises so the temperature

difference between the two phases becomes less than 15 K in the region where the solid

volume fraction is less than 2%. However, in the computational cells with larger solid

volume fraction (> 2%) no heat or mass transfer takes place, this condition exists in the

cells very close to the bottom outlet since the area of the bottom outlet is smaller, and

this does not have an appreciable impact on the predicted results. This is due to the

limitation of the Lagrangian approach as it considers the discrete phase as a point source

(occupying no volume) in a computational cell and hence not valid approach in the

regions containing high volume fraction of the discrete phase in the computational cell.
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7.2.5 Modelling of Particle-Wall Interaction and Particle Motion

In the previous isothermal simulation cases in Section 7.1, it was found that the particle-

wall interaction greatly influences the particles trajectories. For the case in which elastic

collision was assumed, the particles did not exit from the bottom outlet. Whereas for the

case in which a lower value of restitution coefficient was used, larger particles (>200

µm) exited from the bottom. In this section, the particle-wall interaction is modelled

using two cases. In Case 1, a constant value of 0.4 for the restitution coefficient for both

tangential and normal components is used. The value of restitution coefficient is based

on measurement of restitution coefficient of dried particles by Hassal (2011). In Case 2,

the restitution coefficient is specified as a linear function of moisture content varying

from 0 for droplets with an initial moisture content, to 0.4 for dried particles in the

calculation of both tangential and normal restitution components. The linear relationship

between the moisture content and the restitution coefficient is given by:
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For Case 2, in the bottom conical region of the tower, a constant restitution coefficient

of 0.4 is specified regardless of the particle moisture content, since the wet particles will

be carried away by the dried particles as all the particles slide down along the wall in

the bottom conical region of the tower. Otherwise, the particles with high moisture

content will become almost stationary at the conical wall and will not come out of the

tower, which is unrealistic in a steady spray drying operation.

The motion of the droplets/particles, the drag force, the dispersion of particles due to

turbulence is modelled in the same way as described in Section 7.1.1 for the discrete

phase. Total number of parcel trajectories selected for the simulation run is 3750 with 3

tracks for stochastic tracking, which were found to be sufficient for the multiphase

isothermal case in Section 7.1; similarly the maximum number of length steps allowed

for each parcel tracking is set to 50,000.

7.2.6 Boundary Conditions

For both Case 1 and 2, the hot gas inlet nozzles, the mass flow is specified as the inlet

boundary condition. For the gas exhaust, a pressure outlet boundary condition is
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specified. The specified temperature and mass flow of the hot gas inlet and the exhaust

gas pressure are given in Table 7.4. Some cold air is entrained from the bottom of the

spray drying tower due to below atmospheric pressure inside the tower. The exact

amount of the cold air entrained in the tower is not known. This is assumed to be 5% of

the mass flow of the hot gas and is used as the boundary condition to account for the

cold air entrainment, the same amount was assumed in the isothermal single phase

simulation cases. The composition of the hot gas is listed in Table 7.3. The cold

(entrained) air is assumed to be moisture-free. The initial conditions of the sprayed

droplets are listed in Table 7.4. The slurry droplets physical properties are listed in

Table 5.1.

Table – 7.4: Initial and boundary condition specifications (Martin de Juan, 2011).

Parameter Value

Continuous Phase

Drying gas mass flux 0.92 kg/m2s

Hot gas temperature 563 K

Entrained air mass flux 0.046 kg/m2s (5%)

Entrained air/ambient temperature 293 K

Air outlet pressure -300 Pa

Drying gas density Ideal gas law

Drying gas viscosity Function of temperature

Discrete Phase

Slurry mass flux 0.21 kg/m2s

Slurry temperature 361 K

Spray cone half angle 20o

Dimensionless height of the nozzle (z/Z) 0.67

7.2.7 Numerical Solution Method for the Continuous Phase

The numerical solution method for the continuous phase is kept the same as in the non-

isothermal simulation runs, specified in Section 6.2.2.

7.2.8 Convergence Criteria

For all the multiphase simulation runs, initially, the single phase gas velocity profiles

were allowed to reach a fairly converged state, after which the discrete phase was
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introduced. The simulations were carried out using the under-relaxation factors listed in

Table 7.5. The level of residuals specified for convergence is also given in Table 7.5.

However, the level of residuals did not reach the required tolerance limit. The plot of

residuals for simulation Case 1 is given in Figure 7.16 and that for Case 2 is given in

Figure 7.17. Therefore, to ensure that the simulation has converged, the mass weighted

exit gas temperature, which is a measure of the amount of heat exchange taking place

between the discrete phase and the continuous phase was monitored with iteration,

which is given in Figure 7.18 for Case 1 and Figure 7.19 for Case 2. The simulation

runs were stopped when the exit gas temperature became fairly constant. Additionally,

the area weighted averaged axial and tangential velocities were also monitored (Figure

7.20 for Case 1 and 7.21 for Case 2), which also become fairly stable at the end of the

simulation run.

Table – 7.5: The under-relaxation factors used in the simulation and the level of

residuals specified and at converged solution.

Under-relaxation

factor

Residual level

specified

Pressure/Continuity 0.3 1×10-4

Momentum 0.7 1×10-4

Turbulent Viscosity 1 -

Species 0.7 1×10-4

Turbulent Kinetic Energy 0.8 1×10-4

Turbulent Dissipation Rate 0.8 1×10-4

Energy 0.7 1×10-6

Body Forces 1 -

Density 1 -

Reynolds Stresses 0.5 1×10-4

Discrete Phase 0.5 -
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Figure – 7.16: Residuals for Case 1.

Figure – 7.17: Residuals for Case 2.

Figure – 7.18: Exhaust gas temperature v/s iteration for Case 1.

Single phase simulation Multiphase simulation

Single phase Multiphase simulation
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Figure – 7.19: Exhaust gas temperature vs iterations for Case 2.

Figure – 7.20: Area weighted average axial and tangential velocities v/s iteration for

Case 1.

tang-z/Z = 0.29

axial-z/Z = 0.29

axial-z/Z = 0.83

tang-z/Z = 0.83

Multiphase simulationSingle phase
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Figure – 7.21: Area weighted average axial and tangential velocity profiles for Case 2.

The overall heat and mass balance at the end of the simulation run was also checked to

ensure that the mass and energy balance is satisfied up to a tolerance level. All the

injected parcel trajectories were able to escape from the computational domain within

the maximum allowed 50,000 length steps. The mass balance for the discrete phase for

Case 1 and 2 is given in Table 7.6 and is reported in terms of mass flux i.e., the mass

flow divided by the tower cross-sectional area for confidentiality reasons. For Case 1,

the total mass balance error is 4.7×10-2 % and for Case 2, the mass balance error is

-0.58%. The simulations typically took 4 days for the required convergence on a 2.8

GHz quad core processor.

Table – 7.6: Mass balance on the discrete phase.

Case 1 Case 2

Mass flux of injected droplets (kg/m2s) 0.2101 0.2101

Mass flux of powder collected from bottom (kg/m2s) -0.1374 -0.1404

Mass flux of powder entrained by gas (kg/m2s) -0.0171 -0.0164

Vapours evaporated from the discrete phase to gas (kg/m2s) -0.0555 -0.0544

Percentage mass imbalance (%) 4.7×10-2 -0.58

Table 7.7 lists the overall enthalpy balance on the tower for Case 1 and 2. The overall

enthalpy balance is carried out considering the inlet and outlet streams for the

continuous and discrete phase inside the spray drying tower as well as heat loss

tang-z/Z = 0.83

tang-z/Z = 0.29

axial-z/Z = 0.83

axial-z/Z = 0.29

Multiphase simulation
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(depicted in Figure 7.22). The enthalpy of inlet streams is taken as positive and the

enthalpy of outlet streams is taken as negative. The overall enthalpy balance error is the

difference of enthalpy in the inlet and outlet streams. The reported enthalpies in Table

7.7 are based on a reference temperature of 288.16 K.

Figure – 7.22: Overall enthalpy balance schematic.

Table – 7.7: Overall enthalpy balance.

Case 1 Case 2

Slurry inlet E1 (W) 97218.8 97218.8

Hot gas inlet E2 (W) 576581.4 576581.4

Gas outlet E3 (W) -533499.5 -542956.5

Dried particles outlet E4 (W) -129716.2 -125399.4

Heal loss E5 (W) -6600.0 -5430.0

Cold air inlet E6 (W) 1241.3 1241.3

Entrained particles outlet E7 (W) -7801.3 -8490.3

Total enthalpy inlet (E1+E2+E6) 675041.5 675041.5

Total enthalpy outlet (E3+E4+E5+E7) -677617.0 -682276.3

Percentage Error (%) -0.4 -1.07

The overall enthalpy balance error and mass balance error is acceptable in both cases

considering the complexity of the process.
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7.2.9 Simulation Results and Discussion

Figure 7.23 is a plot of a selected number of predicted trajectories of the

droplets/particles in the tower, coloured by diameter obtained from Case 1 and 2. The

droplets are injected using a hollow cone pressure nozzle atomiser at a dimensionless

height of 0.67. The smaller droplets/particles (100 µm and some 200 µm) are entrained

by the gas and flow in the upward direction, whereas larger diameters droplets/particles

(>100 µm) reach the wall in both the cases. The particles are wet and when they hit the

wall, they are more susceptible to deposit there. In Case 1, the droplets/particles

trajectories are similar to those computed in Section 7.1 using Cr = 0.4. In Case 2, i.e.,

Cr = f(wl), the particles move along the wall after they strike the wall. In this case, since

the values of Cr are smaller than those of Case 1 (equation (7.1)), the particles lose most

of their momentum upon collision with the wall. The smaller particles are observed to

move downwards along the wall with a swirling motion as the swirl momentum of the

gas is taken up by the particles as they move downwards. Hassal (2011) studied the

concentration distribution of particles in the same tower using Particle Image

Velocimetry (PIV) technique. The study showed a higher concentration of particles

moving along the wall. Hence Case 2 provides relatively more realistic particle

trajectories. In the isothermal Cases (Section 7.1), particle sizes up to 300 µm were

entrained because the air mass flow was greater and also due to the specification of

dried particle density at the injection point, which is smaller than the droplet density.
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Diameter (m) Case 1 z/Z Case 2

Figure – 7.23: Droplet/particle tracks coloured by diameter.

Figure 7.24 (a) is a plot of size distribution of particles collected from the bottom of the

tower and Figure 7.24 (b) is the size distribution plot of particles that get entrained by

the gas and exit from the top of the tower, which in both Case 1 and 2 were similar

therefore only Case 2 results are plotted. It is observed that all 100 m particle sizes exit

from the top of the tower. A fraction of 194 m particle sizes exit from the top and the

remaining exits from the bottom of the tower. All particle sizes greater than 194 m

diameter exit from the bottom of the tower. The entrained particles comprise mostly of

100 m particle sizes. A mass balance for the discrete phase along with the mass flow

of particles that exit from the top and bottom of the tower for both Case 1 and 2 is given

in Table 7.6.
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(a) (b)

Figure – 7.24: Size distribution of particles exiting from the bottom (a) and top (b) of

the tower (Case 2).

In Figure 7.25 a comparison of residence time is made between these two cases for

particles of different sizes collected from the bottom of the tower. It is observed that the

smaller particles have greater residence time compared to larger particles. In both cases,

the residence time decreases rapidly with the increase in particle size up to 300 m and

then relatively slowly for larger particles. The plot does not contain residence time of

100 m particles since all 100 m particles get entrained by the gas and exit from the

exhaust gas outlet at the top. The smaller particles lose their initial momentum quicker.

The trajectories of the smaller particles also get more influenced by the turbulence and

recirculating zones in the gas flow compared to the larger particles. From a comparison

of the two cases, it is observed that the residence times in Case 2 are smaller for the

particle sizes less than 500 µm, while they are greater for larger particles. The smaller

particles (<500 µm) have a lower residence time in Case 2 compared to Case 1, since

the gas velocity near the wall in Case 2 is smaller compared to Case 1. This is because

all the particles in Case 2 start to move downwards close to the wall upon collision. The

downward moving particles exert momentum on the gas flowing counter-current to the

particles. This exchange of momentum causes the gas flow to become almost stationary

near the wall. For sizes greater than 500 µm, the residence time becomes greater in Case

2, since larger particles have greater moisture and lose more momentum upon each

collision with the wall, although the gas velocity near the wall is smaller. In Case 1

however, most of the particles after striking the wall bounce back towards the tower

centre and do not move close to the wall over most of the tower height. Therefore a

relatively higher gas velocity exists near the wall. Hence the smaller particle sizes in

Case 2 reach the bottom outlet much quicker compared to those in Case 1. The larger

particles in Case 1 have greater momentum because particles after striking the wall do
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not lose most of the momentum (as they have higher restitution coefficient) and thus

move faster, this results in a lower residence times of larger particles in Case 1.

Figure – 7.25: Residence times of particles collected from the bottom outlet.

Figure 7.26 is a plot of velocity distribution of the gas phase coloured by gas velocity

magnitude. Below the nozzle, a lower velocity near the wall and at the centre and a high

velocity in the annular region are observed. The flow is symmetrical in the bottom

region of the tower up to a dimensionless height of 0.5. The gas flow becomes

asymmetric as it approaches the nozzle. This asymmetry persists in the top region of the

tower above the nozzle. In Case 1, the low velocity zone in the centre of the tower

below the nozzle (at z/Z =0.45) becomes wider, because the particles pass through the

centre after bouncing from the wall. The flow of gas becomes almost stationary in this

region due to the exchange of momentum between the two phases. In Case 2, the high

velocity annular region becomes narrower with height, which eventually disappears at

z/Z = 0.49 and the velocity becomes more uniform over the cross-section except near

the wall where the low velocity exists. At the top of the tower, the gas exits via a narrow

tube with vortex breaker installed at the top of the tube. Due to smaller diameter of the

tube the gas velocity increases sharply in the tube and in the exhaust gas header, a jet of

gas can be seen which impinges to the wall of the header. The flow is symmetrical in

the isothermal CFD simulation case (Figure 7.9), whereas, in the non-isothermal

simulation cases, it is slightly asymmetric near the nozzle, primarily due to the

temperature gradient near the nozzle as a consequence of the evaporation of droplets.
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(m/s) Case 1 z/Z Case 2

Figure – 7.26: Gas velocity distributions coloured by velocity magnitude.

Figure 7.27 is a vector plot of the gas flow pattern (coloured by magnitude of the

velocity components) near the nozzle. The gas flow patterns near the nozzle are similar

in both cases, therefore, only the flow patterns obtained from Case 1 are plotted. Just

below the droplet injection point, a jet of gas can be seen. This is due to the exchange of

momentum between the high velocity droplets and the gas resulting in the entrainment

of the surrounding gas into the spray of droplets. At the outer edge of the spray,

recirculation regions are established which are caused by the reversal of the direction of

the gas flow. Figure 7.27 is very similar to Figure 7.10, in which no heat/mass exchange

took place between the two phases except for the asymmetry of the flow above the

nozzle in Figure 7.27. The evaporation of droplets does not significantly alter the gas

flow patterns near the nozzle although some asymmetry is present due to evaporation of

the droplets.
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(m/s)

Figure – 7.27: Vector plot of air velocity magnitude near the nozzle.

Figure 7.28 is a plot of mean axial and tangential velocity profiles along the radius of

the tower, calculated using Case 1 and 2 at various dimensionless heights. At z/Z = 0.2,

the axial and tangential velocity profiles predicted using both cases are qualitatively

similar. Since the particles in Case 1 pass through the centre of the tower after collision

with the wall, therefore, the axial velocity near the centreline is slightly smaller

compared to Case 2, consequently, the small change in the tangential velocity (Figure

7.28 (b)) is also reflected. The dimensionless height of z/Z = 0.5 is close to the spray

zone (nozzle is at z/Z = 0.67), at this location, since the particles after collision with the

wall move close to the wall in Case 2, therefore the axial velocity near the wall is

smaller and it is higher at the centre and resembles a parabolic profile, whereas in Case

1, the velocity is maximum in the region close to the wall and minimum near the

centreline due to momentum exerted by the particles as they pass through the centreline.

The tangential velocity profile at this location is asymmetric particularly in Case 1. At a

dimensionless height of z/Z = 0.78 (above the nozzle), the axial velocity profiles in both

40o
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cases are parabolic. The tangential velocity in above the nozzle in both cases is very

small as most of the angular momentum is transferred to the droplets/particles.

r/R r/R
(a) (b)

r/R r/R
(c) (d)

r/R r/R
(e) (f)

Figure – 7.28: Mean axial and tangential velocity profiles computed from Case 1 and 2.

Figure 7.29 is a plot of swirl number along the dimensionless tower height for Case 1

and 2. The spray nozzle is located at a dimensionless height of 0.67, below the spray
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nozzle along the tower height, the swirl number is greater in Case 1 compared to Case

2, because in Case 1, the droplets/particles after collision with the wall do not flow close

to the wall where the tangential velocity is maximum at most of the tower height,

therefore the angular momentum exchange between the gas and the droplets/particles in

Case 1 is not as rapid as in Case 2. Above z/Z = 0.67, the swirl number in both cases is

close to zero as the swirling momentum is transferred to the droplets at this location.

High swirl number along the tower height is desirable as it results in increased relative

velocity between the droplets/particles and drying gas as well as increased turbulence

intensity which favours higher heat and mass transfer rates.

Figure – 7.29: Swirl number along the tower height.

Figure 7.30 is a plot of turbulent intensity of the gas phase defined using equation (6.2).

The turbulence intensity is maximum in the spray region of the tower. The turbulence

intensity below the nozzle is relatively smaller compared to the turbulence intensity

above the nozzle. Therefore, the presence of smaller particles enhances turbulence.

Furthermore, the swirl above the nozzle is smaller, due to which the flow is more

unstable and more turbulent. High turbulence intensity can be seen at the exit header

bent due to a sharp change in the flow direction. The turbulence intensity plots in both

Case 1 and Case 2 are very similar except at z/Z = 0.4 to 0.5. This is due to the bouncing

of larger particles in Case 1, which pass through this region after post-wall collision.

This does not occur in Case 2, in which case all particle sizes move close to the wall

after collision.
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(%) Case 1 z/Z Case 2

Figure – 7.30: Gas turbulence intensity distributions.

Figure 7.31 is a plot of discrete phase concentration in the bottom region of the tower.

The discrete phase concentration was very similar for both cases, therefore, only for

Case 2 is depicted. The discrete phase concentration is defined as the mass flow of

particles per unit volume of a computational cell multiplied by the residence time of

those particles. Hence the discrete phase concentration gives an indication of the solid

loading/volume fraction of the discrete phase in the computational cells. In the bottom

cylindrical region (z/Z = 0.15 to 0.21), the discrete phase concentration is a maximum

close to the wall as the particles move close to the wall. In the bottom conical region of

the tower, the discrete phase concentration increases as the particles approach the

bottom outlet due to a decrease in the cross-sectional area of the tower.
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Figure – 7.31: Discrete phase concentration for Case 2.

Figure 7.32 is a plot of contours of the gas temperature and moisture fraction

distributions. The gas temperature is higher at the bottom of the tower (at the tangential-

entry inlets) and decreases as the heat exchange takes place between the two phases,

similarly the water vapour fraction is the minimum at the inlets and increases due to

inclusion of evaporated moisture from droplets and wet particles. A low gas temperature

region in the spray zone is observed (z/Z = 0.61 to 0.7). The mass fraction of water

vapour is a maximum inside the spray region in both cases. This indicates that

maximum evaporation is occurring inside the spray zone, because the droplets initially

have free moisture at the surface and the velocity of the droplets is a maximum in the

spray. This results in a high heat and mass transfer coefficient and therefore the

evaporation rate is a maximum. The temperature of injected droplets is greater than the

wet bulb temperature; therefore the droplets get cooled down due to rapid evaporation

of moisture from their surface, resulting in cooling of the surrounding gas. Above the

nozzle, the gas phase temperature and moisture content is fairly uniform indicating that

very little evaporation is occurring. It is observed that the temperature and moisture

profiles are significantly different between the two cases below the spray region (z/Z <

0.61). In the central region of the tower below the nozzle (at z/Z = 0.4 to 0.5), the

temperature is lower in Case 1 compared to Case 2. Because in Case 1, the particles

0

0.05

0.1

0.15

0.2



240

after colliding with the wall bounce back with a higher velocity and pass through this

region of the tower and exchange heat with the gas, resulting in an increase in the

particle temperature and a decrease in the gas temperature. In Case 2, the gas

temperature near the wall below the spray region is lower and the moisture fraction is

higher as the particles flow close to the wall after the first impact with the wall. This

results in heat/mass exchange between the two phases taking place near the wall. The

exhaust gas temperature in Case 1 is 375.3 K, while that in Case 2 is 381.4 K. The exit

gas temperature in Case 1 is smaller, hence there is greater heat exchange taking place

between the two phases in Case 1. In Case 1, the particles bounce back from the wall

and move through the central region of the tower, where the gas temperature is higher,

therefore a greater amount of heat exchange take place between the gas and particles

compared to Case 2 in which particle move along the wall and a relatively lower

temperature difference persists between the two phase at most of the tower height.

(K)

Temperature Moisture Temperature Moisture

(w/w)

Case 1 z/Z Case 2

Figure – 7.32: Gas temperature and moisture distributions.
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Figure 7.33 is a plot of heat flux through the cylindrical region of the tower along the

dimensionless tower height. The negative value indicates that the heat is being lost

through the column wall to the ambient. The spray nozzle is located at a dimensionless

height of 0.67. Above the nozzle, the heat flux is fairly constant, since the gas

temperature is fairly uniform above the nozzle (see Figure 7.32) whereas below the

nozzle, at a dimensionless height of 0.67 to 0.55, the heat flux first increases and then

decreases to a minimum value. This region corresponds to the spray zone in which the

gas is entrained in the spray, due to the entrainment of gas, in the spray, the gas exhibits

recirculation (Figure 7.27) and also, a relatively lower temperature exists in this zone

due to evaporative cooling of the droplets. Below the dimensionless height of 0.55, the

heat flux increase continuously. The fluctuations in the heat flux are due to collision of

particles with the wall that results in change in the gas flow profiles close to the wall

and hence the inside film coefficient. From a comparison of the heat flux profiles for

both cases, it is observed that the heat flux above the nozzle for Case 1 is smaller and

below the nozzle it is greater. Because above the nozzle, the gas temperature in Case 1

is smaller and below the nozzle, the near-wall gas temperature in Case 1 is greater

(Figure 7.32), resulting in greater heat flux through the wall below the nozzle and lower

heat flux above the nozzle. The total heat loss through the wall in Case 1 is 6.66 kW and

in Case 2 is 5.43 kW.

Figure – 7.33: Heat flux along the dimensionless tower height.

Figure 7.34 is a plot of temperature and normalised moisture fraction versus size of the

particles that exit from the bottom outlet. In general, the temperature of smaller particles

is greater compared to the larger particles. The moisture content of smaller particles
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sizes is less than that of the larger sizes. The particles sizes up to 800 µm exit at almost

the same temperature because the exit moisture content of these particle sizes is zero.

Once the particles are completely dried; further heat exchange with the gas results in

change in particle temperature. Due to a high surface area and lower heat capacity of the

small, dried particles, the particles exit at a temperature similar to the surrounding gas at

the bottom outlet. A sharp decrease in the exit particle temperatures is observed for the

particle sizes in the range of 900 µm to 1200 µm. This is because the particle drying rate

in the third stage depends on the boiling point of the slurry which is a function of

moisture content (equation 5.14). The slurry boiling point increases exponentially at

lower moisture content. The exit moisture content of these particle sizes lie in that range

of moisture content, hence a large difference in the exit temperatures in these particle

sizes results with small changes in the exit moisture content. The exit temperature of

particles greater than 1200 µm is fairly uniform because these particles exit at a high

moisture, the slurry boiling point is fairly constant in that range of moisture content.

From a comparison of particles exit temperatures and moisture contents of the two

cases, it is observed that the temperatures of particles in Case 2 are smaller for particle

size up to 1300 µm and the moisture content is greater. Because the particles move

close to the wall at most of the tower height, the temperature of the drying gas is lower

near the wall hence the particles in this case exchange less heat and mass with the

drying gas. The slurry boiling point at high moisture content does not show a large

variation with moisture content hence the temperature of particles greater than 1300 µm

(having high moisture content) is the same in both cases even though the exit moisture

content of particles in Case 2 is greater. In Case 1, the particles bounce back and get

exposed to a higher temperature in the central region of the tower, this results in greater

heat and mass exchange between the two phases and hence the particles sizes up to

1500 µm have a higher exit temperature. The trend of smaller particles exiting at zero

moisture content is unrealistic and is due to the assumption in the drying model that the

particle drying continues to take place even at below the equilibrium moisture content.

In reality, the particle drying will stop when it reaches the equilibrium moisture content

with the surrounding gas. Therefore, another stage is required in the drying model in

which the particles remain at equilibrium moisture content with the surrounding gas,

which is not considered at this stage.
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Figure – 7.34: Particle exit temperature and moisture content at the bottom outlet.

Figure 7.35 is a plot of density of particles that exit from the bottom of the tower. The

density variation with particle size looks qualitatively similar to the moisture fraction

profile (Figure 7.34), since the density of the particles vary with the moisture fraction.

Figure – 7.35: Particle exit density at the bottom outlet.

Figure 7.36 is a plot of temperature profile of a 700 µm particle size and dimensionless

moisture fraction as a function of residence time inside the spray drying tower. The

droplet temperature rises initially and keeps fairly constant at a temperature of 373 K up

to about 4 seconds of its residence time. This corresponds to the slurry boiling point.

The particle moisture continues to decrease with time. After about 4 seconds, the

moisture becomes more bound and slurry boiling point increases exponentially with

decrease in moisture content. Therefore the temperature of the particle rises rapidly. At
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about 7 seconds all the moisture from the particle is removed and the particle exhibits a

maximum temperature at this point. The maximum temperature is exhibited by the

particle near the gas inlets, when the particle reaches the bottom conical region of the

tower. Thereafter, it starts to cool down due to cold air entrainment from the bottom of

the tower where the particles reaches the bottom exit of the tower.

Figure – 7.36: Temperature profile and dimensionless moisture profile of a 700 µm

particle size.

In Cases 1 and 2, the thermal conductivity of the fibre glass insulation taken from the

literature is used to model heat loss through the wall. However, in Section 6.2.8 it is

shown that the effective thermal conductivity of the insulation, back calculated from the

measured temperature data (in the absence of measured gas temperature at the tangential

entry inlet) is significantly larger at various heights of the tower, resulting in greater

heat loss. To assess the influence of heat losses from the wall on the simulation results,

a simulation case with calculated effective thermal conductivity of the insulation is

carried out, referred to as Case 3 and compared with Case 2. The input operating

conditions for both gas and droplets/particles and convergence criteria are the same as

in the previous two cases. The wall restitution coefficient is considered as a linear

function of particle moisture content as in Case 2. Figure 7.37 is a plot of comparison of

heat flux through the wall in Case 2 and Case 3.

In Figure 7.37, it is observed that the heat flux in Case 3 is significantly greater than the

heat flux calculated in Case 2 especially in the bottom region of the tower due to the use

of effective thermal conductivity of the insulation calculated in Section 6.2.8. Total heat

loss from the wall in Case 3 is 35.2 kW. The exit particle average temperature, moisture

content and exhaust gas temperature calculated for Case 3 and its comparison with other

cases and experimental data (Martin de Juan, 2011) is given in Table 7.8.
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Figure – 7.37: Comparison of heat flux through the column wall.

7.2.10 Study of the Influence of Non-Spherical Drag Law

In the previous three cases, the drag law proposed by Morsi and Alexander (1972) has

been used, which is applicable to smooth spherical particles. However, the particles

undergo changes in shape due to agglomeration as well as morphological changes

occurring during the drying of particles. The resulting particles are non-spherical in

shape and the drag force acting on non-spherical bodies is expected to be greater. To

assess the influence of drag law used for calculating drag force on particles residence

times, a drag law for non-spherical particles proposed by Haider and Levenspiel (1989)

is used for particles (equation 3.64). For the droplets, the drag law reported by Williams

(1976) has been used, which was obtained for burning oil droplets (equation 3.61 and

3.62). The drag law is changed from CD for droplets by Williams (1976) to CD for non-

spherical particles when a crust is formed at the surface of the droplet and it transforms

into a wet particle. The drag laws were specified using Fluent user-defined function

feature. This case is referred to as Case 4. The drag law for non-spherical particles

depends on the value of sphericity (defined in Section 3.11.1), which is assumed to be a

constant with a value of 0.8, corresponding to a cubical shape. The effect of different

drag laws on the value of drag coefficient for a range of particle Reynolds numbers is

depicted in Figure 7.38 using log-log scale. Up to a Rep of 100, a linear decreasing trend

is predicted by all three drag laws, after which the drag laws proposed by Haider and

Levenspiel (1989) and Williams (1976) show a slight increasing trend with increasing

Rep but Morsi and Alexander (1972) correlation shows a decreasing trend with CD

reaching a plateau as Rep approaches 10000. It is observed that at low Rep (0.1-10), the
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drag coefficient calculated by smooth and rough particle drag laws are very similar, but

the one reported by Williams (1976) is smaller. At high Rep (>100), the drag coefficient

proposed by Haider and Levenspiel (1989) and Williams (1976) give similar values.

Figure – 7.38: Residence time of particles collected from the tower bottom.

The tower input operating conditions are kept the same as in the previous three cases.

The wall restitution coefficient is considered as a function of moisture content (as in

Case 2 and 3) and for the modelling of heat loss through the wall, modified insulation

thermal conductivity is used, which is also used in Case 3.

Figure 7.39 is a plot of residence time of particles collected from the bottom of the

tower obtained from simulation Case 4 and compared with simulation Case 3. All 100

µm particles in both cases exit from the top of the tower due to entrainment by the gas

hence the residence time of these particles is not shown. The residence time of the

smallest particle size that exits from the tower (200 µm) is about 8 seconds greater in

Case 4 in which non-spherical drag coefficient is used compared to Case 3. The

residence times of larger particles (>200 µm) are only slightly greater in Case 4. The

residence time of particles greater than 1000 µm is on average about 2 seconds greater

in Case 4. The residence time of exiting particles is increased by the use of non-

spherical drag law. The rough drag coefficient requires the value of sphericity, which is

very difficult to predict because the particle will deviate from a perfect spherical shape

due to complex interactions between particle-particles and particle-wall, resulting in

breakage and agglomeration. Furthermore, during the drying process, the morphological

changes that occur in particles may also cause particles to become non-spherical in

shape. Therefore the sphericity of the particles is expected to change throughout the

tower height. This is not accounted for in the model.
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Figure – 7.39: Residence time of particles collected from the tower bottom.

A comparison of simulation results of Case 1, 2, 3, 4 and experimental data collected

from the spray drying tower is presented in Table 7.8. From a comparison of Case 1 and

2, it is observed that Case 1 predicts greater heat/mass transfer between the two phases

and hence smaller moisture content and smaller exhaust gas temperature. In Case 1, the

particles come in contact with the hot gas in the central region of the tower when the

particles bounce off from the wall and therefore exchange more heat. Hence the way

particle-wall interaction is modelled influences the residence times and trajectories of

the particles, which in turn affects the predicted dried powder average moisture content.

The dried particle average moisture content in Case 2 and Case 3 is very similar,

however, the exhaust gas temperature in Case 3 is about 8 K smaller. This is due to

greater heat loss from the wall in this case. The moisture content in Case 3 is slightly

smaller due to greater heat loss from the wall causing a lower temperature close to the

wall hence relatively less heat exchange takes place between the droplets/particles and

drying gas, although the difference in the particle exit moisture of Case 2 and 3 is not

significant. The average particle moisture content in Case 4 is 4% while in Case 3, it is

5%. The increase in residence time of particles (due to non-spherical drag law) has

reduced the average particle moisture content, as the particles get more time in Case 4 to

exchange heat with the drying gas. The heat loss in Case 4 is similar to the heat loss in

Case 3 because in both cases, the effective thermal conductivity of insulation is used for

the calculation of heat flux (calculated in Section 6.2.8 in Chapter 6). The exhaust gas

temperature in Case 4 is the smallest. From a comparison of all the simulation cases

with the experimental data, it is observed that the measured moisture content and outlet

gas temperature is smaller compared to the simulation results. Hence the heat transfer
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between the two phases is underpredicted by all the simulation cases. One of the reasons

can be due to the use of dried powder particle size distribution (which is typically larger

compared to the droplet size distribution) as the initial droplet size distribution. The

other reason could be the underprediction of the residence time of the particles due to

the assumption of smooth spherical particles. The shape of the particles is expected to

change throughout the tower height due to drying and agglomeration.

Table – 7.8: Comparison of simulation results with experiment.

Parameter Case 1 Case 2 Case 3 Case 4
Measured

(Martin de Juan,
2011)

Particle weighted average

moisture content, %

3.03 4.75 5.03 4.03 1.8

Particle weighted average

temperature, K

468.2 456.2 446.6 442.3 356

Outlet gas temperature, K 375.3 381.4 373.2 372.2 367

Heat loss, kW 6.6 5.4 35.2 35.8 62.1

As discussed in Chapter 5, the outlet particle temperature is significantly higher

compared to the measured temperature, because the temperature measurement is taken

at the belt which is a few meters away from the location where the particles fall from

the tower. The temperature of the particles is expected to fall down very quickly on

contact with the cold air as the dried particles have a low heat capacity.

The heat loss calculated from the measured data is significantly greater than the

predicted heat loss in Case 1 and Case 2. However in Case 3 and 4, the predicted heat

loss is closer to the heat loss based on measured temperatures because an effective

thermal conductivity was used, which was larger than the value reported in the literature

for insulation thermal conductivity. The difference in the predicted heat loss and the

heat loss based on the measurement is primarily due to the temperature measurement

error at the inlet as it is found in Section 6.2.9 of Chapter 6 that the gas loses

temperature in the duct and in the distribution ring that supplies hot gas to the

tangential-entry inlets.

7.2.11 Study of the Influence of Initial Droplet Size Distribution

In all four cases considered above, the measured powder size distribution was used as

the initial droplet size distribution at the nozzle. In Chapter 5, it is found that the initial
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droplet size distribution specification significantly influences the overall heat and mass

transfer taking place between the gas phase and the droplets/particles. Therefore, two

more CFD simulation runs are carried out (referred to as Case 5 and Case 6) to assess

the influence of the initial droplet size distribution specification on the overall heat and

mass transfer between the gas and the droplets/particles. In Case 5, the measured droplet

size distribution is used as the initial droplet size distribution. In Case 6, the measured

spray dried powder size distribution is used. The measured droplet and particle size

distribution and the corresponding curve fits are depicted in Figure 5.23. The operating

conditions used for both Case 5 and 6 are listed in Table 5.6 in Chapter 5. The droplets

are sprayed at a dimensionless height of 0.4. The heat loss through the insulated wall is

modelled considering the effective thermal conductivity of the insulation. The wall

restitution coefficient is specified as a function of moisture content (equation 7.1). The

drag coefficient correlation reported by Williams (1976) is used for droplets and for the

particles the drag correlation proposed by Morsi and Alexander (1972) is used. The

CFD numerical methodology, boundary condition type and convergence criteria are

kept the same as in the previous simulation Cases 1 to 4 (given in Sections 7.2.6 and

7.2.7).

Table 7.9 lists mass balance of the discrete phase for Case 5 and 6. In Case 5, 58.4% of

the total slurry mass is collected from the bottom of the tower while 13.6% of the inlet

slurry mass gets entrained by the gas as fine powder. The remaining amount is the

vapours evaporated from the discrete phase to the gas phase. In Case 6, 70.4 % of the

mass of slurry exits from the bottom region of the tower while 4% of the powder gets

entrained by the gas and the remaining amount is the evaporated vapours that exit with

the gas. The overall enthalpy balance error for Case 5 is 0.07% and for Case 6, it is

1.5%.

Table – 7.9: Mass balance on the discrete phase.

Parameter Case 5 Case 6

Mass flux of injected droplets (kg/m2s) 0.1669 0.1669

Mass flux of powder collected from bottom (kg/m2s) -0.0930 -0.1175

Mass flux of powder entrained by gas (kg/m2s) -0.0227 -0.0067

Vapours evaporated from the discrete phase to gas (kg/m2s) -0.0453 -0.0416

Percentage mass imbalance (%) 3.53% 0.65%

Figure 7.40 is a plot of contours of gas temperature in the cylindrical region of the

tower. The spray nozzle is located at a dimensionless height of 0.4. A low gas
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temperature exits in the spray region in both Cases 5 and 6, due to rapid evaporation of

moisture from the initial slurry droplets causing cooling of the surrounding gas (inlet

slurry temperature is 365.5 K). The temperature in the bottom cylindrical region of the

tower is highest and gets lowered as the gas moves upwards due to exchange of heat

with the droplets/particles. In Case 5 (droplet PSD), the gas temperature at z/Z = 0.15 is

higher compared to Case 6 (particle PSD), and above the nozzle z/Z > 0.4, the gas

temperature is relatively lower in Case 5. This is due to the specification of initial

droplet size distribution in Case 5, resulting in a more rapid heat exchange between the

two phases near the spray nozzle, hence the outlet gas temperature in Case 5 is lower

than that in Case 6. Similarly, the gas temperature in Case 5 is higher in the bottom

region (z/Z = 0.15), because most of the heat exchange takes place close to the nozzle,

hence when the particles reach the bottom region, only sensible heating is the dominant

heat transfer mode for most of the particles, whereas in Case 6, since the sizes are

larger, they fall down relatively quicker and much of the drying is taking place in the

bottom cylindrical region of the tower, and this heat for drying is supplied by the gas,

therefore, the gas temperature in the bottom region is smaller in Case 6 and the particles

are less susceptible to thermal degradation.
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Figure – 7.40: Contours of gas temperature distribution.
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Figure 7.41 is plot of measured time-averaged gas temperature profiles along the radius

at two axial locations compared with predicted gas temperature profiles in Case 5 and

Case 6. At a dimensionless height of 0.23 (below the spray nozzle), the measured

temperature profiles represents a parabolic profile. The gas temperature is lower near

the wall and higher near the centre. Above the spray nozzle (z/Z=0.41), the measured

temperature profile is relatively flat and resembles a plug-flow profile. It is observed

that Case 2 (particle PSD) gives a closer comparison with measured temperature profile

at both measurement locations. It should be noted that due to the presence of slurry

spray, the droplets/particles were also deposited to the thermocouples (Figure 4.9 (c),

(d) and (e) in Chapter 4), hence the measured temperatures also include associated

errors due to the deposition of particles on the thermocouples.

r/R r/R
(a) (b)

Figure – 7.41: Predicted gas temperature profiles compared with measurements by

Martin de Juan (2012).

Figure 7.42 is a plot of residence time of particles of different sizes that exit from the

bottom of the tower in CFD Case 5 and Case 6. The smaller particles have greater

residence time compared to larger particles. The smaller particles (up to about 600 µm)

show a greater decrease in the residence time with increasing particle size compared to

larger particles. For particle sizes larger than 1000 µm in CFD Case 5, the residence

time does not change appreciably with increasing particle size. From a comparison of

the residence time of both CFD Cases, it is observed that the predicted residence times

for the common sizes is very similar in both cases, same observation applies to the plug-

flow predicted residence times. It is observed that the predicted temperature profile

(Figure 7.40 and 7.41) in CFD Case 5 has a greater temperature in the bottom

cylindrical region, but it does not affect the predicted residence times appreciably when

compared with the common particle sizes in Case 5 and 6. In Case 5, 150 µm particle
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sizes also exit from the tower bottom and have a much larger residence time compared

to the larger particle sizes. In the plug-flow model, the entrainment of particles is not

considered; therefore the residence time of particles sizes less than 150 µm is also

observed. The residence times of all particle sizes in the plug-flow cases are smaller

than the residence times predicted by the CFD cases. The differences in the residence

times are greatest for smaller particle sizes because smaller particles show greater

influence of turbulent fluctuating velocities and smaller particles also get caught up in

the recirculating regions of the gas flow which are not taken into account in the plug-

flow model. Additionally, in the plug-flow model, the minimum velocity is set to the

terminal falling velocity, but particles may exhibit velocity less than the terminal falling

velocity therefore this limitation of the plug-flow model is also responsible for

predicting shorter residence time of particles. However, both the plug-flow and CFD

cases give qualitatively similar residence times, i.e., an exponentially decreasing trend

in the residence times with increasing particle sizes.

Figure – 7.42: Predicted residence times of different particle sizes.

Figure 7.43 is a plot of exit temperature and normalised moisture fraction of particles of

different sizes at the tower bottom in both Cases 5 and 6. Particle size up to about 500

µm exit at zero moisture content in both cases, while larger particles have greater

moisture content with increasing size. This is because smaller particles have greater

residence times compared to larger particles (Figure 7.42), additionally, smaller

particles have greater heat and mass transfer rates due to greater specific area and hence

lose moisture quicker. Similarly these particle sizes have the highest exit temperature as

dried particles quickly acquire the surrounding gas temperature near the bottom exit.
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The exit particle temperature of these sizes is greater in Case 5 because the gas

temperature is greater at the bottom in Case 5 (Figure 7.40). A noticeable difference is

observed in the predicted exit normalised moisture of particles in the range of 550 to

900 µm in Case 5 and 6. Case 5 predicts a relatively smaller moisture content for these

sizes, this is because in Case 5, the gas temperature in the bottom region of the tower is

larger (Figure 7.40) as most of the drying in this case takes place near the nozzle.

Therefore, the particles whose moisture content is above zero pass through higher

temperature and lose moisture relatively quicker than Case 6. It is interesting to note

that this gas temperature difference in both cases does not appreciably influence the exit

particle residence times of the common sizes of Case 5 and 6 (Figure 7.42). Hence a

higher gas temperature has a more dominant influence on the particles drying rates and

less dominant influence on the residence times. In Case 6, for particle sizes greater than

1900 µm, the exit temperature starts to reduce again, this is because these particles exit

at a higher moisture content and their temperatures do not reach the slurry boiling point.

Figure – 7.43: Particle exit temperature and moisture content at the bottom outlet.

Table 7.10 lists a comparison of predicted dried powder parameters and exhaust gas

temperature with the measured values. From a comparison of both simulation cases with

experimental measurements by Martin de Juan (2012), it is found that the case with

droplet size distribution (Case 5) overpredicts the overall heat and mass transfer

between the discrete phase and the continuous phase as indicated by a lower gas

temperature and dried powder moisture content. The case utilising measured powder

size distribution (Case 6) underpredicts heat and mass transfer between the two phases

as indicated by greater moisture content and a larger exhaust gas temperature. The same
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trend is also observed in the plug-flow Case 1 and 2 and a discussion on the results is

given in Section 5.5.6. It should be noted that the experimental data also include

measurement errors as mentioned previously in Section 7.2.10.

Table – 7.10: Comparison of simulation results with experiment.

Parameter
Case 5

(Droplet
PSD)

Case 6
(Powder

PSD)

Measured
(Martin de
Juan, 2012)

Particle weighted average moisture content,

%

0.51 4.39 2.49

Particle weighted average temperature, K 458.5 412.5 361.7

Average single particle density, kg/m3 1167 1228 703

Outlet gas temperature, K 374.6 385.19 382.3

Heat loss, kW 35.06 34.37 21.43

7.2.12 Modelling of Rough-Wall Collision Model

From a comparison of CFD Cases 1 and 2, it is found that particle-wall interaction

modelling impacts particle trajectories and residence times. In all the previous cases, the

dispersion of particles due to rough surface resulting from wall deposits was not taken

into account. In this section, a stochastic model for collision between the particle and

the wall has been developed, that generates a surface roughness inclination angle at the

point of particle-wall impact. The inclination angle of the rough wall surface is

determined by assuming a Gaussian distribution with roughness surface inclination

angle varying from -90o to 90o. The probability of multiple particle rebound is evaluated

and its effect on the particle trajectory is also calculated. The impacting particles are

assumed to be smooth and spherical. The model is applied to the counter-current spray

drying tower to predict post particle-wall collision trajectories considering a rough wall

surface with a specified roughness height. Different particle-rough wall collision

scenarios are depicted in Figure 7.44.
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Figure – 7.44: Particle-rough wall collision.

Before the particle-wall collision takes place, the angle of inclination of the wall surface

roughness is required, which is sampled from a Gaussian distribution of surface

inclination angles varying from -90o to 90o and a mean value of 0o. Same approach was

used by Sommerfeld and Huber (1999) in generating a roughness surface inclination

angle. It is given by the following equation:

3


 w

(7.2)

In equation (7.2),  is the standard deviation of roughness angles, which in this case

is taken to be 90o.  is a random variable taken from a normal distribution with a mean

of 0 and a standard deviation of 3.0. If the sampled surface inclination angle is negative,

then the particle will hit the luff side of the surface roughness. If the sampled surface

inclination angle is positive, then the particle can hit the lee side of the surface

roughness. But due to the shadow effect, the particle can only hit the lee side if the

sampled surface inclination angle (θw+) is less than the particle inclination angle θpi. If

θw+ > θpi, a new surface inclination angle is sampled, the expressions are given by

equation (7.3):
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If the particle is hitting the lee side of the surface roughness, then the surface roughness

angle of the luff side is determined and vice versa in order to evaluate the possibility of

multiple particle rebound. The length between the peaks of two successive roughness

inclinations (ls) is calculated using the following equation:
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In the following scenarios, only a single collision will take place between the particle

and the wall:

1. If the particle hits the luff side and the particle-wall impact angle ( wp ) is less

than 90o.

2. If the particle hits the lee side and the particle rebound angle ( 1pr ) is greater

than or equal to the roughness inclination angle of the luff side ( w ).

3. If the diameter of the particle is greater than ls.

The particle post collision velocity components are determined by the normal and

tangential restitution coefficients. The normal restitution coefficient is considered as a

linear function of particle-wall impact angle obtained from the data given by Hassal

(2011) who determined the restitution coefficients of dry detergent particles by

impacting on a smooth steel wall at different impact angles. The normal restitution

coefficient is given by:

45.00033.0,  wpnrC  (7.5)

The tangential restitution coefficient (Cr,t) is considered as a linear function of moisture

content (equation (7.1)).

To evaluate whether multiple particle rebound occurs, the post collision angle ( 1pr ) is

required, which is calculated using the following equation:
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The height of the particle-wall impact location is determined by stochastic approach,

using the following equation:

'
1 skh  (7.7)
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where ' is a uniformly distributed random number in the range 0 to 1.

The height traversed by the rebound particle at a distance lp from the first impact

location is calculated using the following equation:
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If the sum of h1 and h2 is less than the roughness height (ks), then the particle will

rebound with the wall again. The post rebound velocity of the particle is then again

calculated using the normal and tangential restitution coefficients given by equation

(7.5) and (7.1) respectively. An algorithm for particle-rough wall collision model is

depicted in Figure 7.45. The particle-rough wall collision has been applied to the

modelling of spray drying process to predict post particle-wall collision trajectories. The

model is incorporated in Fluent using user-defined functions. The value of roughness

height (ks) is specified to be 2 mm.

7.2.13 Simulation Results With Rough Wall Collision Model

The input operating conditions for the discrete and continuous phases are listed in Table

7.4. The wall heat flux is modelled in the same manner as in Case 2. The convergence

criteria are kept the same as in the previous cases. The resulting particle trajectories of

different sizes are given in Figure 7.46, which are coloured by particle diameter. From

the plot of droplet/particle trajectories, it is observed that the larger particles after

colliding with the wall move towards the centre of the wall until they reach the other

side of the wall, while the smaller particles (up to 200 µm) get entrained by the gas.

Particles greater than 200 µm strike the wall and start to move close to the wall. In the

trajectories of the largest particle sizes, the effect of wall roughness on rebound angle is

not very significant, but it is more prominent for particles in the intermediate range (500

µm to 2000 µm), in which a spread in the rebound angle is observed due to the

stochastic treatment of roughness inclination angles.

65.6% of the slurry inlet mass exits from the tower bottom and 7.2% of the slurry mass

exits as entrained powder and the remaining mass of the slurry is evaporated from the

droplets/particles as water vapours.
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Figure – 7.45: Particle-rough wall collision model algorithm.
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Diameter (m)

Figure – 7.46: Particle trajectories coloured by diameter.

Figure 7.47 is a plot of discrete phase concentration along the radius of the column. The

droplets are sprayed at z/Z=0.67. At all dimensionless heights, the discrete phase

concentration is highest close to the wall and smallest near the centre. At the closet

location to the spray nozzle (z/Z=0.56), the concentration of droplets/particles is more

uniform along the radius compared to all other dimensionless heights. As the particles

further move downward, the discrete phase concentration near the wall increases and

near the centreline it decreases. This is due to the centrifugal action of the swirling gas

flow that forces the particles to move towards the wall as they flow downwards. At z/Z

= 0.38, 0.29 and 0.20, the concentration of particles near the centreline is zero.
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Figure – 7.47: Discrete phase concentration at different dimensionless heights.

In Figure 7.48, the trajectory of each particle size is plotted and the path lines are

coloured by particle velocity. The smallest particle size (100 µm) escape from the top of

the tower. Some of the 200 µm particle sizes escape from top region while the others

escape from the bottom of the tower. Particle sizes having a diameter of 300 µm and

above escape from the bottom region of the tower. Particle sizes of diameter 200 µm

and 300 µm start to move towards the wall after the first impact with the wall, while the

larger particle sizes 400 µm and above bounce back from the wall after the first

collision, since these particles have relatively greater momentum and have smaller

influence of drag compared to particle sizes up to 300 µm. From the post particle-wall

collision trajectory, it is found that particle bounce off at different angles even of the

same size, as the rough wall inclination is treated in a stochastic manner for each

tracked parcel.

In Figure 7.49, the trajectories of particles of different sizes are plotted and are coloured

by post-wall collision angle. It is observed that smaller particles (200 µm) bounce back

from the wall at a higher angle as they swirl down the wall in the bottom cylindrical

region of the tower. All particle sizes when they hit the wall from the injection location

bounce back with different post-wall collision angles due to surface roughness at the

wall treated stochastically for each particle-wall collision.
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Figure – 7.48: Trajectories of particles of different sizes coloured by velocity.

Figure 7.50 is a plot of residence times of particles of different sizes that exit from the

bottom of the tower. A comparison is made between Case 2 and Case 7, because in both

cases, the same input conditions were used but the wall restitution coefficient in Case 2

was considered a linear function of moisture content for both normal and tangential

components. It is interesting to note that the residence times of particles of different

sizes in both cases are very similar. It may be due to the fact that the tangential

restitution coefficient (used for computing velocity component parallel to the wall) in

Case 7 is also modelled in the same way as in Case 2, i.e., a linear function of moisture

content given by equation (7.1). In both cases, an exponential trend of decreasing

residence time with increasing particle size is observed.
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Figure – 7.49: Trajectories of particles of different sizes coloured by post-wall collision

angles.
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Figure – 7.50: Residence time of particles of different sizes.

Figure 7.51 is a plot of contours of gas temperature; a comparison is made with Case 2,

in which the same thermal boundary condition was used as in Case 7 but the wall

restitution coefficient was considered a linear function of moisture content for both the

normal and tangential components. From a comparison of the gas temperature contours

of both cases it is observed that in the bottom cylindrical region (z/Z = 0.16-0.5) of the

spray tower, a higher near-wall temperature exists in Case 7 compared to Case 2, this is

due to the use of rough-wall surface modified restitution coefficient, in which the

particles after striking the wall get more dispersed over the cross-section compared to

Case 2, in which particles continue to move very close to the wall. Since the particles

are more dispersed, therefore the temperature near the wall is relatively higher. The

exhaust gas temperature in Case 7 is lower, because the particles are more dispersed and

come in contact with higher gas temperature away from the wall, therefore more heat

exchange takes place between the two phases, resulting in a lower gas temperature at

the exit. The temperature near the tangential inlets (z/Z = 0.12) of the tower in Case 7 is

greater compared to Case 2, since most of the heat exchange between the two phases

takes place in the top region of the tower, on the contrary, particles in Case 2 have a

higher moisture when they reach the bottom region because they get exposed to a lower

gas temperature in the top region and hence exchange relatively more heat with the

drying gas in the bottom region, therefore in Case 2, the conical region has a lower

temperature.
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(K) Case 2 z/Z Case 7

Figure – 7.51: Gas temperature distributions.

Figure 7.52 is a plot of temperature and normalised moisture fraction of particles that

exit from the bottom outlet of the spray tower. A comparison is made between Case 2

and Case 7. In Case 7, the particles of sizes up to 1500 µm exit at a higher temperature

compared to Case 2 prediction. Because in Case 7, the particles get more dispersed over

the cross-section of the tower as a result of particle-rough wall impact, therefore they

exchange more heat in the cylindrical region of the tower and at the bottom, they have a

lower moisture content and thus exit at a higher temperature compared to Case 2 in

which particles remain closer to the wall as they fall down, where the temperature is

lower and thus heat and mass transfer between the two phases is not as rapid, and when

they reach the bottom conical region, the moisture in larger particles sizes (>900 µm) is

still evaporating resulting in cooling of the gas in the bottom conical region of the

tower.
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Figure – 7.52: Exit temperature and normalised moisture fraction of particles.

Table 7.11 lists a comparison of CFD simulation Cases 2 and 7 and measured data. It is

observed that Case 7 gives a very close agreement with measured particle weighted

average moisture content and outlet gas temperature compared to Case 2. The predicted

weighted average particle outlet temperature in Case 7 is greater than in Case 2 as the

particles in this case exit at a much lower moisture content and the gas temperature in

the bottom conical region in Case 7 is also greater compared to Case 2 (Figure 7.51).

The large difference between the heat loss based on measured values and that predicted

by the simulation results is already explained in Section 5.5.3.

Table – 7.11: Comparison of CFD simulation results with experimental data.

Parameter Case 2 Case 7
Measured

(Martin de Juan,
2011)

Particle weighted average moisture content,
%

4.75 2.19 1.8

Particle weighted average temperature, K 456.19 479.7 356

Outlet gas temperature, K 381.4 368.7 367

Heat loss, kW 5.4 5.91 62.1

7.2.14 Conclusions

Multiphase CFD modelling of spray drying process was carried out considering heat,

mass and momentum transfer between the discrete phase and the continuous phase

using steady state, Eulerian-Lagrangian approach. The droplet drying kinetics was

modelled using a semi-empirical droplet drying model. It was found that the modelling
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of particle-wall interaction is one of the critical factors, as it influences the particle

trajectories and hence the heat and mass transfer between the two phases. A restitution

coefficient which is a function of moisture content gives more realistic particle

trajectories. The influence of non-spherical drag law on the particles residence time is

also evaluated. It is found that the drag coefficient for non-spherical particle increases

the particles residence time. But it is very difficult to calculate particle sphericity as it

depends on a number of factors including the level of agglomeration, morphological

changes during drying and temperature history of particles. Further simulation runs

were carried out to assess the influence of initial droplet size distribution specification

by specifying measured droplet size distribution as well as powder size distribution as

the initial droplet sizes. This parameter significantly influences the simulation results as

the smaller droplets sizes exchange more heat and mass and have greater residence time

compared to larger particles. The larger particles have smaller heat and mass transfer

rate and shorter residence time. It is found that in Case 5 (droplet PSD) that the gas

temperature is higher in the bottom region of the tower, but this does not have a

significant influence on the residence time of common particle sizes compared with

Case 6 (powder PSD), however an appreciable difference in the exit particle moisture

content is observed in common particle sizes between the two cases. Hence it can be

concluded that the change in gas temperature has a stronger influence on the particle

drying rate and less influence on the particle residence time. When the powder PSD is

used (Case 6), then the final particle temperature is smaller for sizes exiting at zero

moisture content, hence the possibility of thermal degradation is greater if a fine powder

is produced compared to a coarser powder.

From a comparison of plug-flow modelling results with CFD it is found that the plug-

flow model underpredicts the residence time of particles. This is primarily due to the

assumption of terminal falling velocity of the particles as the minimum velocity,

although both the plug-flow model and the CFD models predict the same trend of

increasing residence time with decreasing particle size. A rough-wall particle collision

model is developed based on stochastic approach to study the influence of wall surface

roughness on the post-wall collision trajectories in CFD modelling. Wall roughness

increases the dispersion of particles over the cross-section of the tower after particle-

wall impact and this primarily increases the heat and mass transfer rate between the two

phases because the particles get exposed to a higher gas temperature. This results in a

lower exhaust gas temperature and a lower exit particle moisture content.
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The present work emphasizes on the importance of inclusion of agglomeration in the

CFD modelling of spray drying process for a more reliable prediction, additionally, the

data used for CFD model validation should be measured at the same location.

Furthermore, the effect of wall deposition and re-entrainment of particles upon wall

collision should also be assessed by developing appropriate models for wall deposition

and re-entrainment of deposits back into the gas flow.
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8. MODELLING OF A SPRAY DRYING TOWER WITH

TWO NOZZLES

8.1 Introduction

In Chapters 5 and 7, modelling of the IPP spray drying tower was carried out

considering a single centrally located hollow-cone nozzle using plug-flow and CFD

approaches respectively. The spraying of slurry using multiple nozzles at different

heights is commonly practised in the commercial spray drying towers to increase the

throughput without adversely affecting the level of agglomeration (Bayly, 2013). The

IPP tower has multiple centrally located hollow-cone nozzles at different heights and

sometimes the slurry is sprayed using two nozzles to evaluate its effect on the spray

dried powder characteristics as it closely resembles the operating mode of the

commercial spray drying towers. The mass flows of slurry and hot gas in this

configuration are typically larger than those from a single nozzle. In this chapter, both

plug-flow and CFD modelling have been carried out using two nozzles and the results

are validated with experimental data collected from the IPP spray drying tower.

8.2 Plug-Flow Modelling with Two Nozzles

A plug-flow modelling simulation run is carried out considering two centrally located

nozzles located at different heights in the tower (listed in Table 8.1). To accommodate

two nozzles in the simulation run, no changes in the plug-flow solution methodology

were required. The set of equations described in Chapter 5 for the droplets/particles and

the gas are also applicable to the two nozzle case. The solution algorithm was however

modified to account for the second nozzle and changes were made in the MATLAB

(2010) code to accommodate spray of droplets from another nozzle located at a

specified height. The solution is initialised using estimated values of outlet gas

temperature (Tgas,out) and outlet gas mass flow. The polydispersed droplet/particle

velocities, Reynolds numbers, drying rates, temperatures and moisture contents, sprayed

from the first nozzle are calculated at each incremental height (Δz) until the height of

the tower reaches the second nozzle location where the polydispersed droplets injected

from the second nozzle are also included into the heat and mass transfer calculations at

each incremental height (Δz) until they reach the bottom outlet of the tower. Figure 8.1

is the logic flow diagram of the algorithm for the numerical solution.
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Calculate droplet/particle velocity and
Reynolds number for Nozzle 1

Calculate drying rate, droplet temperature,
moisture content and new diameter

Calculate gas temperature
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No
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End
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.
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Reynolds number for Nozzle 2

Calculate drying rate, droplet temperature,
moisture content and new diameter

f<F Yes

k=k+1

N2 = Second nozzle height

Z<N2

No

Yes

Figure – 8.1: Logic flow diagram of the algorithm for the plug-flow model with two

nozzles.

Two cases are considered for this mode of operation of the tower, hereby referred to as

plug-flow Case 3 and plug-flow Case 4. In plug-flow Case 3, the measured droplet size

distribution is used as the initial droplet size distribution, whereas in plug-flow Case 4,

the measured size distribution of the dried powder is used as the initial droplet size

distribution. The measured droplet and particle size distributions and the corresponding
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curve fits using a Rosin-Rammler distribution (dm=245 µm, us=1.4 for droplets; dm =

700 µm, us = 1.8 for particle sizes up to 600 µm, and dm = 1100 µm with us = 1.4 for

particle sizes greater than 600 µm) are given in Figure 8.2 (Martin de Juan, 2012). The

input operating conditions listed in Table 8.1 were taken from the IPP spray drying

tower run (Martin de Juan, 2012) carried out with two centrally located nozzles at

different heights.

Table – 8.1: Input operating conditions for two nozzle configuration (Martin de Juan,

2012).

Droplet Properties

Slurry inlet temperature 367.2 K

Slurry mass flux by each nozzles 0.164 kg/m2s

Specific heat of dried particle 1500 J/kg K

Specific heat of solvent 4180 J/kg K

Specific heat of vapours 1900 J/kg K

Density of slurry 1566 kg/m3

Latent heat of vapourisation 2.26×106 J/kg

Diffusion coefficient of water in slurry 3.0×10-11 m2/s

Diffusion coefficient of water vapour into gas 2.6×10-5 m2/s

Spray Nozzle Position Plug-Flow CFD

Dimensionless height of nozzle 1 0 0.8

Dimensionless height of nozzle 2 0.5 0.4

Gas Properties

Hot gas temperature 563.1 K

Hot gas mass flux 1.221 kg/m2s

Gas pressure 101325 Pa

Gas thermal conductivity 0.03 W/mK

Entrained air mass flux 0.061 kg/m2s

Specific heat 1006 J/kg K

Ambient temperature 282 K

Column Wall

Metal wall thickness 0.006 m

Metal wall thermal conductivity 18.8 W/mK

Insulation thickness 0.105 m

Insulation thermal conductivity 0.04 W/mK
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The first nozzle is located at a greater height compared to the plug-flow Case 1 and 2

(Chapter 5). The total number of increments used for this case is 7180; this corresponds

to the same step size height (Δz) as used in plug-flow Cases 1 and 2. The number of

discrete sizes used for representation of the spray droplets of different sizes is 39 based

on the sensitivity study in the plug-flow Case 1 in Chapter 5.

Figure – 8.2: Cumulative droplet and particle size distribution.

Figure 8.3 is a plot of residence time of particles of different sizes that exit from the

bottom of the spray drying tower. The droplets are sprayed from nozzle 1 and nozzle 2

located at two different heights. The residence time of nozzle 2 particles is shorter

because the nozzle is located at a lower height compared to nozzle 1, which is twice the

height of nozzle 2. The qualitative trend is similar as that of single nozzle plug-flow

cases, i.e., the smaller particles show a greater decline in residence time with an increase

in size compared to larger particles (>600 µm), which are almost insensitive to the

particle size.

Figure – 8.3: Residence time of particles of different sizes for plug-flow Case 3.
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Figure 8.4 is a plot of outlet temperature and normalised moisture content of particles of

different sizes which are initially sprayed using nozzle 1 and 2. The particle sizes up to

about 450 µm exit at zero moisture content and the exit temperature is uniform for these

particle sizes. The temperature drops rapidly and the moisture content increases for

particle sizes greater than 450 µm. For the nozzle which is located at a lower height

(nozzle 2), the exit particle temperature is smaller and moisture content is greater

because these particles have smaller residence times compared to the droplets injected

from nozzle 1.

Figure – 8.4: Final temperature and moisture content of particles of different sizes for

plug-flow Case 3.

Figure 8.5 is a plot of temperature profiles of the droplets/particles which are injected

from nozzle 1 (at z/Z = 1) in plug-flow Case 3. The temperature of initial slurry droplets

is greater than the wet bulb temperature, therefore the temperature starts to fall rapidly

for all droplet sizes. After a certain distance from the nozzle, the temperature starts to

rise. This is due to crust formation on the surface causing a rise in temperature due to

the lowering of the evaporation rate. Smaller droplets (50-100 µm) reach the gas

temperature very quickly as they get dried quicker due to greater heat and mass transfer

coefficients, smaller diffusion path and greater specific surface area. For larger particle

sizes (>100 µm), there is a constant temperature region corresponding to about 373 K,

this is the boiling point of the slurry. Once the particles reach the slurry boiling point,

the drying rate becomes dependent on the rate of heat transfer to the particles (third

stage of drying). The slurry boiling point varies strongly at lower moisture contents,

therefore as the particles become more dry, the temperature starts to rise rapidly, which

is observed in the temperature profile of particle sizes up to 400 µm. The exit gas

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

350

400

450

500

550

600

50 250 450 650 850

N
o

rm
al

is
ed

M
o

is
tu

re
F

ra
ct

io
n

(w
l/w

l,
o
)

T
em

p
er

at
ur

e
(K

)

Particle size (µm)

nozzle 1
nozzle 2



273

temperature is lower than the initial slurry droplet temperature due to the use of two

nozzles and nozzle 1 is located at a greater height compared to plug-flow Case 1 and 2,

therefore the gas gets more time to exchange heat with the droplets and particles and

evaporative cooling lowers the exit gas temperature to below the initial slurry droplet

temperature.

Figure – 8.5: Temperature profiles of gas and particles injected from nozzle 1.

Figure – 8.6: Temperature profiles of gas and particles injected from nozzle 2.

Figure 8.6 is a plot of temperature profiles of droplet/particles injected using nozzle 2 in

plug-flow Case 3, which is located at a lower height. All the droplets/particles exhibit

similar behaviour as in Figure 8.5 but these droplets/particles get exposed to a higher

gas temperature. Therefore the rise in temperature of particles is steeper. Consequently
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the constant temperature region corresponding to slurry boiling point at high moisture

content is observed to be shorter for 200 µm and 400 µm particles because the drying

rate is faster for particles injected from nozzle 2.

The predicted temperature profiles in plug-flow Case 4 are qualitatively similar, and the

discussions of Figures 8.5 and 8.6 are also applicable to this case, therefore they are not

presented.

Figure 8.7 is a plot of residence time of different particle sizes obtained from plug-flow

Case 4 simulation run. The residence time distribution plot is qualitatively similar to

that in Figure 8.3 for plug-flow Case 3. In this case, the size distribution of

droplets/particles ranges from 100 to 2300 µm.

Figure – 8.7: Residence time of particles of different sizes for plug-flow Case 4.

8.3 CFD Modelling with Two Nozzles

In this section, CFD simulation cases have been carried out to study the influence of

slurry sprayed from two nozzles on the gas velocity and temperature profiles and how

well the CFD model predicts the dried powder characteristics compared to experimental

data in this mode of operation and how it compares with the results of the plug-flow

model. The two cases considered are referred to as CFD Case 8 and CFD Case 9. In

CFD Case 8, the measured initial droplet size distribution at each nozzle is used and in

CFD Case 9, the measured dried powder size distribution is used, both fitted using

Rosin-Rammler distribution given in Figure 8.2. The input operating conditions used in

CFD Case 8 and 9 are listed in Table 8.1.

0

5

10

15

20

25

30

35

100 600 1100 1600 2100

R
es

id
en

ce
T

im
e

(s
)

Particle size (µm)

nozzle 1

nozzle 2



275

For the modelling of particle-wall collisions, a restitution coefficient varying as a linear

function of moisture content (equation 7.1) is used. The modelling of heat loss is carried

out in the same manner as in Cases 5 and 6 in Chapter 7. The convergence criteria used

for the single nozzle cases carried out in Chapter 7 is also used to check the

convergence of multiple nozzle cases. Table 8.2 shows the mass balance on the discrete

phase (given in terms of mass flux due to confidentiality reasons) for Case 8 and Case 9

at the end of the simulation runs. 24% of the input slurry mass is entrained by the gas in

Case 8, while in Case 9, it is only 5.2%. This is due to the use of a smaller size

distribution in Case 8, therefore a larger mass of powder comprises smaller sizes, which

gets entrained with the exhaust air. The overall enthalpy balance error is 2.1 % for CFD

Case 8 and that for CFD Case 9 is 0.2%.

Table – 8.2: Mass balance on the discrete phase for CFD simulations.

Parameter Case 8 Case 9

Mass flux of injected droplets (nozzle 1+ nozzle 2) (kg/m2s) 0.3282 0.3282

Mass flux of powder collected from bottom (kg/m2s) 0.1570 0.2359

Mass flux of powder entrained by gas (kg/m2s)
0.0797

(24%)

0.0173

(5.2%)

Vapours evaporated from the discrete phase to gas (kg/m2s) 0.0896 0.0770

Percentage mass imbalance of discrete phase 0.57% -0.61%

Figure 8.8 is a plot of contours of gas velocity profile coloured by magnitude of mean

velocity components for CFD Cases 8 and 9. A higher gas velocity can be seen at a

dimensionless height of 0.82 and 0.4 at which the droplets are sprayed via hollow-cone

nozzles. This is due to the entrainment of gas in the spray zone as a high momentum is

exerted by the sprayed droplets. A lower gas velocity region exists close to the wall

throughout the tower height in the cylindrical region of the tower. Below nozzle 2 at a

dimensionless height of 0.4, the flow is symmetrical in the cylindrical region with a low

gas velocity magnitude near the wall and in the central region of the tower and a higher

velocity in the annular region of the tower. This is due to swirling gas flow below

nozzle 2 (as given by a higher swirl number in Figure 8.9, below z/Z = 0.4). Above

nozzle 2 (at z/Z > 0.4), the gas velocity is nearly plug-flow in the cylindrical region, but

a low gas velocity region exists near the wall. The velocity magnitude in both cases is
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very similar throughout the tower height. The overall velocity profiles in both cases are

reasonably symmetrical.

(m/s)

Case 8 z/Z Case 9
Figure – 8.8: Gas velocity distribution coloured by magnitude of velocity components.

Figure 8.9 is a plot of swirl number along the dimensionless tower height. The initial

swirl number in Case 8 in the cylindrical region is about 1.6 which decreases sharply as

the gas approaches the second nozzle located at z/Z = 0.4, above the second nozzle, the

swirl number is less than 0.1, which approaches zero as the gas flows upwards, towards

the first nozzle located at z/Z = 0.8, the gas loses all the swirl momentum at this

location. In Case 9, the initial swirl number is about 1.8 and the decrease in swirl

number in this case is relatively slower, hence a higher swirl strength exists in Case 9

even after the first nozzle (at z/Z = 0.4). This is due to the fact that in Case 9 the

distribution of droplets/particles comprises larger sizes compared to Case 8 and the

larger sizes fall down faster (Figure 8.14) and have less time to exchange swirl

momentum with the gas.
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Figure – 8.9: Swirl number along the dimensionless tower height (Case 8).

Figure 8.10 is a plot of gas velocity vectors obtained from Case 8 near the top and

bottom spray nozzles. In both cases the entrainment of gas inside the spray is observed

due to the high momentum of the sprayed droplets moving in the downward direction,

this causes a jet of gas to move in the downward direction. Around the edges of the

spray in both spray nozzles, recirculation of the gas flow is observed due to reversal in

the gas flow direction. The flow pattern in the top nozzle is asymmetric and a higher gas

velocity is observed at the right side of the edge of the spray, whereas the gas flow in

the bottom nozzle is more symmetrical with an even distribution of gas velocity around

the spray, the gas has higher swirl momentum at the bottom, which could be responsible

for a more even flow distribution around the bottom spray nozzle. Asymmetric gas flow

around the nozzle is undesirable as this may lead to impingement of droplets onto the

wall, causing excessive deposition, which could be minimised by decreasing the mass

flow in the top nozzle.
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Figure – 8.10: Gas velocity vectors coloured by velocity magnitude (Case 8).
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Figure 8.11 is a plot of the trajectories of droplets/particles of selected sizes sprayed

from both top and bottom nozzles in Case 8 and 9. Smaller particles (up to 200 µm) get

entrained by the gas in both cases from both the top and bottom nozzles. The larger

particles exit from the bottom of the tower. The larger particles, after collision with the

wall, start to move along the wall. The particles below the second (bottom) nozzle in

both cases start to swirl as they flow downwards due to higher swirling gas flow below

the bottom nozzle.

(m)
(m)

Case 8 z/Z Case 9

Figure – 8.11: Gas velocity distribution coloured by magnitude of

velocity components.

Figure 8.12 is a plot of temperature distributions of the gas phase for CFD Cases 8 and

9. The overall temperature distributions in both cases are similar. The gas temperature

in the spray zone of the nozzle located at a dimensionless height of 0.4 is lower

compared to the surrounding gas temperature. This is due to rapid evaporation of

moisture from the droplets causing cooling of the gas. Below the nozzle, at a

dimensionless height 0.35, the gas temperature is lower near the wall as the particles

move close to the wall. Above the nozzle (z/Z > 0.4) the temperature is reasonably

uniform. The gas temperature is further reduced above the nozzle at a dimensionless

height of 0.81. The exhaust gas temperature in Case 8 is 351 K and that in Case 9 is 374
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K. The exhaust gas temperature in Case 8 is lower due to the use of droplet size

distribution at the exit of the spray nozzle, which comprises smaller sizes (50 to 1000

µm) compared to the powder size distribution (100 to 2300 µm) and the heat/mass

transfer rates are more rapid, resulting in a lower exhaust gas temperature in Case 8.

(K)

Case 8 z/Z Case 9
Figure – 8.12: Gas temperature distributions.

Figure 8.13 is a plot of radial temperature profiles for both CFD Cases 8 and 9 at 6

dimensionless heights in the cylindrical region of the tower. At a dimensionless height

of 0.29 (Figure 8.13 (a)), the gas profile is parabolic for both cases. The gas temperature

is lower close to the wall and higher in the central region of the tower. This location

corresponds to a height below the second nozzle. At this location, the particles move

close to the wall, therefore, the temperature close to the wall is smaller as the gas gets

cooled down by exchanging heat with the particles. The calculated temperature in Case

9 is about 5 K greater than in Case 8 due to the use of particle size distribution. This

trend is opposite to that found in temperature profiles for CFD simulation Case 5 and 6
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carried out with a single nozzle in Chapter 7. CFD Case 5 (droplet size distribution

specification) had a greater temperature in the bottom cylindrical region compared to

Case 6 (particle size distribution specification). This opposite trend observed in Case 8

and 9 can be explained by the fact that below the top nozzle (nozzle 1), the temperature

in Case 8 is smaller, hence less drying takes place with the use of the droplet size

distribution, therefore greater drying is taking place below the bottom nozzle (nozzle 2),

resulting in a lower gas temperature in Case 8 in the bottom cylindrical region. Figure

8.13 (b) represents the gas phase temperature within the spray zone of the second

nozzle. In both cases at this location, a lower temperature in the central region is

observed due to evaporative cooling of the sprayed droplets passing through this region

causing the lowering of the gas temperature. The gas temperature is lower in Case 8

compared to Case 9 due to the use of the droplet size distribution comprising smaller

sizes (50 to 1000 µm), and causing more rapid evaporation compared to Case 9 (sizes

ranging from 100 to 2300 µm). At a dimensionless height of 0.56 and 0.67 (above the

second spray nozzle), the gas temperature profile is relatively flat in both cases. The

highest gas temperature is still at the centre of the tower. The lower wall temperature is

due to heat loss through the tower wall and due to droplets/particles from the first

nozzle moving close to the wall and exchange heat with the drying gas. The calculated

gas temperature in Case 9 is about 20 K greater than in Case 8 at all three locations. The

temperature reduces as the gas goes to the top in both cases due to the heat exchange

with the droplets/particles. The dimensionless height of 0.78 (Figure 8.13 (e)) lies in the

spray zone of the first nozzle. At this location, the temperature profile in Case 8 is

qualitatively different from that of Case 9. In Case 8, a lower gas temperature near the

walls and a higher gas temperature at the central region with slight asymmetry is

observed. However, in Case 9, the temperature profile depicts a lower temperature at the

centre with increasing temperature towards the wall due to evaporative cooling of the

droplets as they pass through the central region after being injected. In Case 8, the gas is

already at a low temperature, and therefore does not exhibit cooling in the central

region. At a dimensionless height of 0.83 (just above the first nozzle), the temperature

profile in Case 9 is fairly uniform while the temperature profile in Case 8 gives a lower

temperature near the wall and a higher temperature in the central region of the tower,

because the mass flow of powder entrained in Case 8 is greater than that in Case 9

(Table 8.2), hence relatively more heat exchange takes place in Case 8 above the nozzle,

compared to Case 9, which changes the gas temperature profile in Case 8.
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r/R r/R
(a) (b)

r/R r/R
(c) (d)

r/R r/R

(e) (f)
Figure – 8.13: Gas temperature profile comparison for Cases 8 and 9.

Figure 8.14 is a plot of near-wall gas temperature along the tower height. The near-wall

gas temperature is not smooth along the tower height primarily due to the interaction of

the gas with droplets/particles. The near-wall gas temperature is higher for Case 9 at

most of the tower heights (z/Z = 0.15 to 1.0) as explained above, but in the bottom

conical region of the tower (z/Z = 0.1 to 0.15), it is smaller in Case 9, since the larger

particles evaporate in the bottom conical region of the tower in this case. It is due to this

reason that the exit temperature of dried particles in Case 9 is smaller (Figure 8.16).

From a comparison of near-wall temperature with single nozzle CFD Cases 5 and 6

carried out in Chapter 7 (Figure 7.40), it is found that in Case 8 (droplet size

distribution), the near-wall temperature is lowered at most of the tower height by the use
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of two nozzles, which in the case of single nozzle (Case 5 utilising droplet size

distribution) was higher in the bottom cylindrical region compared to Case 6 (utilising

particle size distribution), thus making the particles (especially the smaller sizes) more

susceptible to thermal degradation. Hence by manipulating the slurry mass flow and

spray nozzle arrangements, thermal degradation can be controlled.

Figure – 8.14: Gas temperature near the wall along the dimensionless tower height.

Figure 8.15 is a plot of residence times of particle sizes exiting from the tower bottom,

initially sprayed as droplets from nozzle 1 (top nozzle) and nozzle 2 (bottom nozzle) for

CFD Case 8. The qualitative trend of decreasing residence times with increasing sizes is

similar for both nozzles 1 and 2 and the residence times of particles initially injected

from nozzle 1 (top nozzle) must travel a greater distance and hence have about twice as

large residence times compared to those from nozzle 2 (bottom nozzle).

Figure – 8.15: Residence time of particles of different sizes for CFD Case 8.
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The residence time distribution plot in Figure 8.16 is an average of the residence time of

all the particles of a particular size at the bottom of the tower, which are initially

sprayed as droplets from both nozzles. In CFD Case 8, the exit particle size distribution

ranges from 200 µm to 1000 µm since the measured droplet size distribution is used as

the initial condition, which varies from 50 to 1000 µm. In both CFD Cases 8 and 9, the

particle sizes up to 100 µm get entrained by the gas and exit from the top of the tower,

therefore the residence times of particle sizes less than 200 µm are not present in this

plot. Particle sizes up to 300 µm show a sharper decline in residence times with

increasing particle size compared to larger particle sizes in both cases. A similar trend

was observed in the residence time distribution plots in the previous cases (in Chapter

7) in which the slurry was sprayed using a single nozzle. The residence times of

particles in CFD Case 8 are lower than these for CFD Case 9. This may be due to the

fact that the gas temperature is lower in CFD Case 8 at most of the tower height

(Figures 8.12 and 8.13), which decreases the velocity of the gas due to an increase in

gas density. The difference in the residence times of particles of larger sizes (>700 µm)

is smaller between CFD Cases 8 and 9, since the larger particles have a greater

momentum hence they travel faster and are less sensitive to the changes in gas velocity

due to the temperature differences in CFD Cases 8 and 9. The predicted residence times

from the plug-flow Cases 3 and 4 are also plotted in Figure 8.16. The plug-flow model

underpredicts the residence times for all particle sizes, although qualitatively the trend is

similar. The underprediction by the plug-flow model is due to the fact that the minimum

particle velocity is limited to the terminal falling velocity, additionally the particle-wall

interactions are also not considered in the plug-flow model.

Figure – 8.16: Residence time of particles at the tower bottom.
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Figure 8.17 is a plot of particles temperatures and normalised moisture fraction at the

tower bottom exit as a function of size, which are initially sprayed from nozzles 1 and 2.

It is found that the particles that are resulting from nozzle 1 (top nozzle) exit at

relatively higher moisture fraction and consequently lower temperature for sizes > 700

µm compared to those from nozzle 2 (bottom nozzle) despite the fact that the particles

from nozzle 1 travel a larger distance and have a greater residence time compared to

those from nozzle 2. This unexpected trend is due to the fact that the droplets sprayed

from the bottom nozzle exhibit a greater relative velocity between the gas and the

droplets, resulting in a higher heat and mass transfer coefficient. Therefore, the droplets

which are sprayed from the bottom nozzle in the first stage of drying lose the moisture

quicker compared to those from the top nozzle (see Figure 8.18) and this causes the

particles sprayed from the bottom nozzle to exit at lower moisture content. As observed

in Figure 8.4, this trend is not captured by the plug-flow model.

Figure – 8.17: Final temperature and moisture content of particles of different sizes for

CFD Case 8.
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Figure – 8.18: Moisture fraction profile of 800 µm particle size for Case 8.

Figure 8.19 is a plot of the temperature of particles of different sizes that exit from the

tower bottom (sprayed from both nozzles). The exit particle temperatures for both CFD

cases for the sizes up to 700 µm are fairly uniform (~ 490 K for Case 8 and 470 K for

Case 9). Particle sizes greater than 700 µm in both CFD cases have a sharp decline in

their temperatures as they exit with a greater moisture content (Figure 8.20). In CFD

Case 9, particles greater than 1100 µm exit at a uniform temperature of 373 K

corresponding to the slurry boiling point at a high moisture content. In CFD Case 8, the

exit temperature of particles up to 700 µm is greater and for larger particles (>700 µm)

it is smaller compared to CFD Case 9 as the exit moisture of particle sizes >700 µm in

CFD Case 8 is comparably greater and is explained below. A comparison of CFD

predicted exit particle temperatures with plug-flow Cases 3 and 4 reveals that for

smaller particles (up to 600 µm) the exit temperature is overpredicted by the plug-flow

model, whereas for larger particles (>600 µm) it is underpredicted by plug-flow model.

This is mainly due to the small and dried particles (up to 500 µm) not coming into

contact with entrained cold air at the bottom exit once all the moisture has been

removed from them; hence a higher exit temperature is predicted by the plug-flow

model. The larger particles (>600 µm) which do not become completely dried (Figure

8.20) have a smaller residence time (Figure 8.16) compared to the CFD model, hence

they exit at a lower temperature and consequently at a greater moisture fraction.

Figure 8.20 is a plot of average normalised moisture content of the particles at the

bottom of the spray tower initially sprayed as droplets from both nozzles. Particle sizes

up to about 700 µm in both of the CFD cases exit at zero moisture content. Larger

particles (>700 µm) contain moisture which increases with increasing particle size. A

comparison of both CFD cases shows that in Case 8, the particles > 700 µm exit at
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greater moisture content compared to Case 9. It could be due to relatively shorter

residence times of particles in CFD Case 8 (Figure 8.16) and due to a lower gas

temperature in CFD Case 8 resulting in a smaller evaporation rate. A comparison of

CFD and plug-flow predicted exit particle moisture profiles shows that the exit moisture

predicted by the plug-flow models is greater for particle sizes larger than 500 µm

mainly due to shorter residence times predicted by the plug-flow model (Figure 8.16).

Figure – 8.19: Temperature of particles at the tower bottom.

Figure – 8.20: Moisture of particles at the tower bottom.

Figure 8.21 is a plot of gas temperature profiles along the axial direction with z/Z = 0

representing the tower bottom and 1 representing the tower top, predicted using the
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0.15, the temperature decreases, due to entrainment of cold air from the bottom, which

is not considered in the plug-flow model, therefore this results in a greater particle outlet

temperature prediction in the plug-flow cases (Table 8.3). The drop in gas temperature

with increasing height up to the bottom nozzle location (z/Z = 0.4) is sharper compared

to the decline in temperature between the nozzle 1 and 2 in both the plug flow and CFD

cases. In plug-flow Case 4, the gas temperature is significantly greater compared to

CFD Case 9 (both using powder size distribution), since in the plug-flow model the

residence times are underpredicted, resulting in less heat and mass transfer between the

two phases. The predicted gas temperature below the nozzle 2 (bottom nozzle at z/Z =

0.4) in plug-flow Case 3 is overpredicted compared to CFD Case 8 (droplet size

distribution cases). However, above the nozzle 2 (z/Z > 0.4), the gas temperature

predictions in both cases are very similar.

Figure – 8.21: Gas temperature profiles along the tower axis.

Table 8.3 is a list of parameters measured from the IPP spray tower and predicted from

the plug-flow and CFD models. When the measured droplet size distribution is used to

represent the size distribution at the nozzle exit, both plug-flow Case 3 and CFD Case 8

models underpredict the measured moisture content, the predicted outlet gas

temperature is also lower compared to the measured temperature. When the measured

powder size distribution is used to represent the size distribution at the nozzle, both
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average particle density is higher than the measurement due to the restriction of the

particle inflation up to the initial particle size in the boiling stage of drying. These same

trends were observed in plug-flow Cases 1 and 2 (Chapter 5) and CFD Cases 5 and 6

(Chapter 7). The reasons for this trend have been explained in the previous discussion

on those results in Chapters 5 and 7. Hence the presence of two nozzles does not change

the predictability trend in both plug-flow and in CFD modelling approaches. The value

of heat loss based on measured data is significantly greater than the predicted values. It

is mainly due to wrong location of inlet hot gas temperature measurement (i.e., in the

inlet gas header), which is further exacerbated by the fact that a single measurement at

the centre of the gas header was taken which may not represent the gas mean

temperature. Hence more accurate data is required for a better validation.

Table – 8.3: Simulation results and experimental measurements.

Parameter

Plug-

Flow

Case 3

Plug-

Flow

Case 4

CFD

Case 8

CFD

Case 9

Measured

(Martin de

Juan, 2012)

Particle weighted average

moisture content, %
0.88 9.35 0.19 7.70 5.03

Particle weighted average

temperature, K
531.1 453.1 485.6 429.2 358.7

Average single particle

density, kg/m3
1131.0 1279.1 1121.0 1201.9 703

Outlet gas temperature, K 345.8 420.8 351.1 374.1 366.9

Heat loss, kW 5.2 6.9 36.6 38.2 110.8

The results of plug-flow Case 3 and CFD Case 8 are very similar in terms of particle

average moisture content and exhaust gas temperature, however the particle average

outlet temperature is greater by about 45 K in plug-flow Case 3, mainly because in the

plug-flow model, the particles do not cool down as they approach the bottom outlet,

whereas in the CFD model, the particles get cooled down due to contact with entrained

air from the bottom outlet. From a comparison of plug-flow Case 4 with CFD Case 9, it

is found that the plug-flow model predicted particle average moisture content is greater

than the CFD model and the predicted exhaust gas temperature is also greater.

Additionally, the plug-flow model does not consider entrainment of particles, which in

the CFD model is found to be 24% in Case 8 and 5.2% in Case 9 (Table 8.2). The
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predicted average single particle density is very similar in all four simulated cases but

greater than the measured value. The density is primarily affected by the amount of

puffing, in the simulated cases, the maximum expansion of the particle due to puffing in

the cases considered was allowed up to the point when it reaches the size equal to the

initial diameter of the droplet. In the drying model, if the particle is allowed to increase

further, then a more realistic density prediction could be obtained.

8.4 Conclusions

Modelling of the spray drying process has been carried out considering two nozzles at

different heights using plug-flow and CFD approaches and validation is carried out with

data collected from the IPP spray drying tower. In both modelling approaches, two

cases are considered, i.e. the measured droplet size distribution and measured powder

size distribution as the initial droplet size distribution at the nozzle. The overall trends

of the results obtained considering two nozzles, i.e. the exhaust gas temperature, particle

average temperature, moisture content and density are similar to those obtained from the

single nozzle cases with both plug-flow and CFD approaches. However, in the CFD

model, it is found that the droplets sprayed from the bottom nozzle are more dried at the

bottom exit compared to that from the top nozzle, which is not captured by the plug-

flow model. The gas flow around the top nozzle in CFD is asymmetric which can cause

excessive deposition near the top nozzle, which could be minimised by decreasing the

slurry mass flow in the top nozzle. The heat loss from the tower based on experimental

data is somewhat unrealistic and emphasizes the need to take measurements of the inlet

gas temperature at the tangential-entry inlets instead of the inlet gas duct and

measurement of more reliable dried powder outlet parameters (temperature and

moisture content).
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9. ZONAL MODELLING OF SPRAY DRYING TOWER

9.1 Introduction

In the previous chapters, the modelling of the counter-current spray drying tower was

carried out using a simplified one-dimensional plug-flow approach as well as using a

three-dimensional CFD modelling approach. The plug-flow modelling approach

predicted similar trends in the prediction of residence times, particle temperature and

moisture content compared to the CFD model, however it underpredicted the residence

times, and the predicted powder outlet moisture content was greater. In this chapter, a

new approach for modelling of the spray drying process is used, which is aimed to give

a closer prediction with the CFD model without requiring the need to have large

computational resources and expertise, which are the draw backs of the CFD approach,

to enable plant operators to get a quick estimation of the optimised operating conditions

for the manufacture of powder with required characteristics.

9.2 Description of a Zonal Model

The zonal modelling of spray drying tower has been carried out to predict dried powder

characteristics using a simplified approach, using the results obtained from CFD

simulation and in a computationally efficient manner. In the zonal model, the spray

drying tower is divided into different zones and the heat, mass and momentum transfers

between the gas phase and the droplets/particles takes place in each zone using either a

plug-flow or a CSTR approach. The results of CFD simulation Case 2 modelled in

Chapter 7 has been used as the basis for dividing the spray tower into different zones.

Figure 9.1 is a schematic of the spray drying tower depicting different zones based on

the CFD modelling results. The basis for division of each zone is given below. Figure

9.2 depicts the variables which are transferred from one zone to the other. The blue

arrows represent the transfer of discrete phase variables and the black arrows represent

the gas phase variables.
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Figure – 9.1: Zones for numerical modelling of spray drying tower.
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Figure – 9.2: Variables in zonal modelling.

9.2.1 Zone 1 (Entrained Particles Zone)

The entrained particle zone lies above the droplets injection point (Figure 9.1) at a

height of z/Z = 0.67. In this zone, the gas temperature is fairly uniform (Figure 9.3 and

9.4) and the gas flow contains entrained droplets/particles which flow co-current with
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the gas flow. Figure 9.4 is a plot of the gas temperature in the centreline and near the

wall along the dimensionless tower height. The nozzle is located at a dimensionless

height of 0.67, above the nozzle, the temperature is fairly uniform both near the wall as

well as in the centreline. The particle size range up to 200 µm diameters get entrained

by the gas (see Figure 7.24 in Chapter 7). The gas as well as the entrained particles exit

from the top outlet of the spray drying tower. The droplets/particles above the nozzle

are dispersed randomly as depicted in Figure 7.23, which causes non-smooth

concentration distributions along the radius in Figure 9.5. Heat and mass transfer

between the droplets/particle and the drying gas in this zone is modelled by using a

CSTR approach. It is assumed that the entrained particles at the exit of the spray drying

tower have the same temperature as that of the drying gas and the moisture content of

the particles that exit from the top outlet of the spray drying tower is equal to zero. The

heat and mass transfer between the gas phase and the droplets/particles as well as the

heat losses from this zone is modelled by an overall energy balance.

Figure – 9.3: Gas temperature profile along the above the spray nozzle.

The following assumptions are made for the overall energy balance:

1. A well-mixed (CSTR) approach is used for both particles as well as for the gas

phase.

2. The particles exiting from Zone 1 have zero moisture content and the final

temperature of the particles is taken to be equal to the exit gas temperature.

3. The exit gas temperature is taken from the CFD modelling result.

4. Particle size distribution in this zone is taken from the CFD modelling results.
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5. The initial moisture content of the particles that enter zone 1 is taken from zone

2 data, and requires an iterative solution.

Figure – 9.4: Gas temperature in the centreline of the tower along the dimensionless

height.

Figure – 9.5: Discrete phase concentration along the radius of the tower above the

nozzle.

The gas temperature ( 12, gT ) at the interface of Zone 1 and Zone 2 is calculated using an
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(9.1)

The subscripts 21  represent the variable at the interface of zone 1 and 2 and the

subscripts 01  represent the outlet value of variable exiting from zone 1. The exhaust

gas temperature ( 01, gT ) and mass flow ( 01, gM ) is obtained from CFD.

9.2.2 Zone 2 (Spray Zone)

The spray zone is the region where the droplets are injected into the spray drying tower

using a hollow-cone pressure nozzle atomiser. The droplets have a high injection

velocity at the nozzle tip which results in entrainment of the surrounding drying gas into

the spray of droplets. Hence the droplets move in the downward direction in a complex

gas flow patterns with part of the flow moving counter-current to the droplets while

some of the gas gets entrained into the spray. The complex gas flow pattern in this zone

are depicted in Figure 7.27. The temperature profiles along the radius of the tower in

this zone is depicted in Figure 9.6. It is observed from Figure 9.6 that a complex radial

variation of gas temperature exists in this zone. Near the nozzle location (z/Z = 0.67 -

0.65), the gas temperature lowers down sharply in the centreline, due to rapid

evaporation of droplets causing cooling of the gas. The drop in temperature flattens out

away from the nozzle (z/Z = 0.63 - 0.61), further away from the nozzle at z/Z = 0.59, the

gas temperature is higher near the centre and lower near the wall. Figure 9.7 is a plot of

normalised mass flow of the gas (based on inlet gas mass flow) in the spray zone. Near

the centreline the flow is in the downward direction (negative), hence the gas flow is

entrained by the gas whereas near the wall, the flow is positive hence moving counter-

current to the droplets. At z/Z = 0.59, the gas flow is positive along the radius with but

zero at the tower centreline hence the gas flow is not entrained at this location.
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Figure – 9.6: Gas temperature along the radius of the tower in the spray zone.

Figure – 9.7: Gas mass flow along the radius of the tower in the spray zone.

The smaller droplets/particles (up to 200 µm diameters) in this zone start to get

entrained by the gas flow moving in the upward direction at a certain distance below the

nozzle, whereas the larger droplets/particles eventually hit the wall (see Figure 7.23 and

7.24). The main assumptions in this zone are as follows:

1. The gas phase as well as the droplets/particles are assumed to follow the plug-

flow approach.

2. The calculation of particle sizes which get entrained by the gas phase is stopped

once it reaches the terminal velocity or the specified height of this zone.

3. The minimum velocity of particles which are collected from the bottom exit of

the tower is limited to the terminal falling velocity.

The temperature of the gas phase is calculated using the following equation:
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The temperature of the droplets/particles is calculated using the following equation:
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The drying rate of the droplets/particles is calculated using the semi-empirical droplet

drying model described in Chapter 5, using equations (5.4), (5.13) and (5.14),

representing the drying rates at different stages. The droplet/particle velocity is

calculated by solving the equation of motion for the particles (equation 5.3) given in

Chapter 5. The boundary conditions specifications for the solution of equation (9.2) and

(9.3) are given below:

2,slurryM , 2,lw , 2,pu , 2,pT , 12,  gg TT , 12,2,  gg MM  , PSD

9.2.3 Zone 3 (Annular Plug-Flow Zone) and Zone 4 (Hot Core Zone)

The annular plug-flow zone lies below the spray zone in the cylindrical region of the

tower. This zone comprises the annular region close to the wall where the

droplets/particles move downward and counter-current to the gas flow. The selection of

this zone is based on the fact that the droplets/particles move close to the wall in the

cylindrical region of the tower as observed in CFD Case 2 in Chapter 7. The particle

concentration profiles in the cylindrical region of the tower, depicted in Figure 9.8 also

disclose a high concentration of particles close to the wall. Therefore, the annular region

of a dimensionless radius from 0.88 to 1.0 is considered in the annular plug-flow zone.

The assumptions used in this zone are listed below:

1. Both the gas phase and the particle phase in this zone are modelled using the

plug-flow assumption.
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2. Only those droplets/particle sizes are considered in this zone which exit from

the bottom of the tower (fines that exit from the tower top are excluded).

3. The minimum velocity of the droplets is set to the terminal falling velocity.

Figure – 9.8: Radial profiles of discrete phase concentration in the cylindrical region of

the tower.

Figure 9.9 is a plot of radial temperature profiles of the gas phase along the

dimensionless tower height obtained from the CFD analysis. The radial temperature

profiles of the gas phase show a lower temperature in the annular region of the tower

due to exchange of heat with the particles. The temperature in the core region of the

tower decreases as the gas goes up due to mixing of the hot gas in the core region of the

tower with gas in the annular region as well as thermal diffusion. Therefore the core

region of the tower can be modelled as a separate zone, and the heat transfer between

the core region and the annular region of the tower can be estimated by calculating the

cup mixing temperature of both the annular region and the core region and calculating

the heat transfer from the core to the annular region using the calculated cup mixing

temperatures. Figure 9.10 is a plot of cup mixing temperature in the core, annular and

for the entire cross section of the tower along the tower height within the cylindrical

region of the tower with 0 representing the tower bottom and 1 representing the tower

top. The solid lines represent the respective curve fits with R2 values greater than 0.99.

The plots of cup mixing temperatures of the annular and core regions reveal that the

annular temperature is smaller than the core temperature. The cup mixing temperature

for the entire cross-section is close to the temperature of the core region of the tower.
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Figure – 9.9: Radial temperature profiles of gas in the cylindrical region of the tower.

Figure – 9.10: Cup mixing temperature along the tower height in the cylindrical region

of the tower.

Figure 9.11 is a plot of radial profile of the gas phase dimensionless mass flow

(normalised by dividing with inlet gas flow) at different dimensionless heights. The

mass flow is a minimum at the centre of the tower throughout the height, it increases

away from the centre and reaches a maximum value at a certain location away from the

wall and starts to decrease again close to the wall. The mass flow at z/Z = 0.56 shows a

downward flow of the gas near the wall due to high momentum exerted by the

downward moving droplets/particles that result in reversal of the gas flow in this region.

The plot indicates that the mass flow of the gas in the annular region of the tower is not

a constant and varies along the height.
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Figure – 9.11: Radial profile of gas mass flow at different heights.

The curve fit equations of gas temperature obtained from plots in Figure 9.10 are used

in Zone 3 and Zone 4. Therefore the gas temperature is pre-specified along the height of

the two zones (Zone 3 and 4), given by:

  218.0
/09.341


 ZzTannular

(9.4)

  23.563/35.282  ZzTcore
(9.5)

The gas temperature in the annular region can also be calculated using equation (9.6).

The term 43q in equation (9.6) can be estimated using two methods, i.e., by calculating

the heat transfer coefficient responsible for the transfer of heat from the core to the

annular region of the tower or by using a curve fit equation for the heat flux obtained by

calculating the heat transfer between zone 3 and 4 by analysing the CFD results.

However this is left as a future work and the curve fit equations in Figure 9.10 are used

for the determination of gas temperature.
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The residence times of droplets/particles in the annular plug-flow zone (Zone 3) is taken

from CFD Case 2 results in Chapter 7 and are listed in Table 9.1.

Table – 9.1: Residence time of particles in the cylindrical region of the tower.

Particle size

(µm)

Residence time in cylindrical

region (s)

200 4.1

300 4.8

500 4.6

1000 2.8

1500 1.5

2000 0.8

The data listed in Table 9.1 are used to estimate the best fit curve of residence times of

particles v/s size in the cylindrical region of the tower, the residence time data and the

corresponding curve fit equation is given in Figure 9.12.

Figure – 9.12: Residence time of particles in the cylindrical region.
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The drying rate of the droplets/particles is calculated using the semi-empirical droplet

drying model described in Chapter 5, using equations (5.4), (5.13) and (5.14),

representing the drying rates at different stages.

9.2.4 Zone 5 (CSTR Zone)

The hot gas entry is via tangential-entry inlets hence a highly swirling gas flow exists in

this conical region of the tower. The particles exchange heat with the gas phase in the

conical region of the tower and exit from the bottom outlet of the tower. The gas phase

in this zone is modelled as a well mixed region using CSTR approach, while the

particles are modelled as plug-flow with the particles residence time specified from the

CFD modelling results. The residence time of various particle sizes in the conical region

of the tower obtained from CFD Case 2 results in Chapter 7 for different particle sizes is

listed in Table 9.2. The data listed in Table 9.2 are then used to estimate the best fit

curve of residence time of particle v/s particle size in the bottom conical region of the

tower. The corresponding curve fit with an R2 value of 0.95 is depicted in Figure 9.13.

The temperature of the gas phase in this zone is the average (mean) of the gas mass

weighted inlet temperatures 5,hgT , 5,cgT and the gas mass weighted temperatures at the

interface of Zone 4-5 and Zone 3-5.

Table – 9.2: Residence time of particles in the conical region of the tower.

Particle size

(µm)

Residence time in conical region

(s)

200 4.1

300 4.8

500 4.6

1000 2.8

1500 1.5

2000 0.8
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Figure – 9.13: Residence time of particles in the conical region of the tower.

The drying rate of the droplets/particles in this zone is calculated in the same manner as

in Zone 3.

9.2.5 Solution Methodology

The calculation is started from the top region of the tower. Using equation (9.1) the gas

temperature at the interface of Zone 1 and 2 is calculated. Equation (9.1) requires

temperature and moisture content of entrained droplets/particles at the interface of Zone

1 and 2, which is not known, therefore an iterative solution is required. For the first

iteration, it is assumed that the entrained droplets/particles have the temperature and

moisture content specified as the initial slurry (feed) condition. The calculated exhaust

gas temperature at the interface of Zone 1 and 2 is used to solve Zone 2 using a plug-

flow approach. In this zone, the calculation of particle sizes that get entrained (obtained

from CFD) is stopped when the velocity of these particle sizes reaches the terminal

velocity, and the final moisture content and temperature of these particles is used for the

next iteration at the interface of Zone 1 and 2. The larger particles (particle sizes which

exit from the bottom outlet) upon reaching terminal velocity are assumed to continue to

fall with the same velocity in this zone. In Zone 3, heat exchange takes place only from

the gas to the particles and the gas phase temperature obtained from CFD results as the

curve fit equation for the gas temperature is specified as a function of height (Figure

9.10). The mass exchange between the droplets and particles and the gas is allowed to

take place. The velocity of droplets/particles in Zone 3 is calculated from the residence

time of particles in this section of the tower obtained from CFD (Figure 9.12). The gas

phase in Zone 5 is solved as a CSTR while the particles are assumed to be plug-flow.
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The exit mass flow of the gas is compared after each iteration. The solution is

converged when the difference in the exit mass flow between the two successive

iterations is less than the specified tolerance limit. The solution algorithm is depicted in

Figure 9.14. The solution methodology is implemented in the computer software

package MATLAB (2010).
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Figure – 9.14: Solution algorithm for zonal modelling.

Since the gas temperature in Zone 3 and Zone 4 is not calculated, therefore it is not a

predictive model, and is hereby referred to as Zonal Model 1 (ZM 1) and is used as a

concept to prove that this approach can be used to give results similar to the CFD

model. In another approach, referred to as Zonal Model 2 (ZM 2), Zone 3 and Zone 4

are combined as a single plug-flow zone and the gas temperature is calculated in the

same manner as in Zone 2, hence Zone 2, 3 and 4 are merged as a single plug-flow zone
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in ZM 2. The solution methodology in ZM 2 is the same as in ZM 1. The results of both

approaches are compared with CFD modelling results as well as with the plug-flow

model.

9.2.6 Simulation Results

For the zonal modelling of spray drying tower, CFD simulation Base Case 2 results

were used, therefore the tower is simulated using the operating conditions of this case,

which are listed in Table 7.1 (Chapter 7). Most of the entrained powder predicted by the

CFD model in Figure 7.24 comprises 100 µm size, therefore only 100 µm size is

considered as the entrained particles in Zone 1 (Entrained Particles Zone) particle sizes

greater than 100 µm are allowed to exit from the tower bottom. For Zone 2, 3, and 5

(requiring plug-flow approach for the droplets/particles) the height of each of these

zones is divided into a number of increments (Δz). The size of the increments is based

on the study of solution dependency on number of increments, carried out in Section

5.5.1 in Chapter 5. Two iterations were required to get the difference in the exit mass

flow of the gas between the iterations to be less than the required tolerance limited,

which was specified to be 0.5%. The time for convergence of solution was less than 1

minute.

Figure 9.15 is a plot of gas temperature profiles along the dimensionless height in

different zones calculated using ZM 1 approach. Zone 1 is modelled as a CSTR

therefore, its temperature is constant. The gas temperature in this zone is the lowest

compared to all other zones as it lies above the nozzle and most of the heat exchange

with droplets/particles takes place around and below the nozzle, therefore, the exiting

gas temperature is the minimum. Zone 2 is modelled as plug-flow, therefore, the gas

temperature decreases along the height due to exchange of heat with droplets in this

zone. In Zone 3 and 4, the gas temperature is pre-specified using curve fit equations for

gas temperatures, which show a decrease in temperature as the gas moves upwards.

Zone 5 is modelled as a CSTR; therefore, gas temperature in this zone is constant. It has

the highest temperature, since this lies at the tower bottom, near the hot gas inlets.
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Figure – 9.15: Gas temperature profile along the dimensionless tower height in different

zones using ZM 1 approach.

Figure 9.16 is a plot of gas temperature profiles along the dimensionless height in

different zones of the tower obtained using ZM 2 approach. In this case, the gas

temperatures at the interface of Zone 2 and Zone 3/4 overlap because the Zone 3/4 gas

temperature is calculated using a plug-flow approach. It is observed that the gas

temperature in Zone 3/4 using ZM 2 approach is greater compared to the curve fit gas

temperatures in ZM 1 approach. The calculated gas temperature in Zone 5 using ZM 2

approach is also greater compared to that in ZM 1 approach.

Figure – 9.16: Gas temperature profile along the dimensionless tower height in different

zones using ZM 2 approach.
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Figure 9.17 is a plot of temperature of particles that exit from the bottom of the tower

obtained from CFD, zonal (ZM 1 and ZM 2) and plug-flow models for the same input

conditions. The smaller particles exit at a higher temperature in all models, a sharp

decrease in the exit temperature is observed in all the model results for particles of a

certain size range. The larger particles exit at a fairly uniform temperature. Plug-flow

model predicts the highest temperature for the smaller particles (up to 500 µm). A sharp

decrease in exit particle temperature occurs for sizes in the range of 600 to 1000 µm

particle sizes. The exit temperature of particles greater than 1000 µm is fairly constant

and for sizes greater than 1400 µm, it coincides with the results of CFD and zonal

models. In ZM 1, the exit temperatures of particles up to 700 µm is slightly smaller

compared to the plug-flow model, since a CSTR approach is used to model the bottom

region of the tower and has a lower gas temperature compared to the gas inlet

temperature. A sharp decrease in exit particle temperature occurs for sizes in the range

of 800 to 1200 µm. The larger particles (>1200 µm) exit at a constant temperature. The

exit temperature of particle sizes in the range of 800 to 1200 µm is larger compared to

the plug-flow model because in the zonal model, residence times obtained from CFD

are used, which are larger compared to the plug-flow predicted residence times (Figure

9.19). In ZM 2, the exit temperature of smaller particles ranging from 200 to 600 µm

exit at a higher temperature compared to ZM 2, primarily because Zone 3 and Zone 4

are merged as a single Zone and the resulting gas temperature is greater compared to the

curve fitted gas temperature used in Zone 3 in ZM 1, but the residence times in both ZM

1 and ZM 2 are same. Hence ZM 2 predicts the highest exit particle temperatures for

sizes in the range of 700 to 1400 µm compared to all other models. The CFD model

predicts the lowest exit particle temperature for sizes in the range of 200 to 700 µm,

because in the CFD model, the exiting particles come in contact with cold entrained air

before they exit the tower and the smallest particles are more dried and have higher

specific surface area therefore they quickly lose temperature upon contact with cold air.

The exit particle temperature predicted by CFD for sizes in the range of 800 to 1100 µm

is higher than the plug-flow model and less than ZM 1 and ZM 2 models. The exit

temperature of sizes greater than 1100 µm is constant.
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Figure – 9.17: Particle exit temperature obtained from different models.

Figure 9.18 is a plot of normalised moisture fraction of particles exiting from the tower

bottom, obtained from CFD, zonal (ZM 1 and ZM 2) and Pug Flow models. The results

of all the models are qualitatively similar, i.e., the smaller particles exit at zero moisture

content while the larger particles exit at higher moisture content. In the plug-flow

model, particle sizes up to 700 µm exit at zero moisture content. While particle sizes

greater than 700 µm show increasing exit moisture content with increasing particle size.

In both CFD and ZM 1 model predictions, the exiting moisture content of particle sizes

up to 800 µm is zero, while the larger particles show an increasing trend with increasing

particle size. The ZM 2 model predicts the lowest exit moisture content of particles,

because in ZM 2 model the temperature profiles in Zone 3 are calculated, which are

greater than ZM 1 approach, therefore the particles get dried more quickly. The results

of exit moisture content of the ZM 1 are very similar to that of CFD. Hence

consideration of lower gas temperature in the annular region of the tower and good

prediction of residence time are important factors necessary for a good agreement of

particle exit moisture content with the CFD model.
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Figure – 9.18: Exit normalised moisture content of particles.

Figure 9.19 is a plot of the residence times of the exiting particles obtained from the

CFD simulation, the zonal (ZM 1/ZM 2) and plug-flow modelling results. Qualitatively,

the trend in the residence times of particles exiting from the tower bottom with

changing particle sizes is very similar in all three approaches. The smaller particles take

longer to exit from the tower bottom while the larger particles exit more quickly. From

a comparison of the residence times of particles obtained from all the models, the plug-

flow model predicts a shorter residence time for all particles sizes compared to the other

two models. Because in the plug-flow model, particle-wall interaction as well as

recirculation of the particles and entrainment are not considered. The CFD model

predicts a very large residence time for the smallest particle size (200 µm), which exits

from the tower bottom compared to the zonal models, because the smallest particle size

in the CFD model is caught up in the recirculation regions close to the injection

location, whereas in the zonal models (both ZM 1 and ZM 2), the residence time of

droplets/particles in Zone 2 is calculated by solving the equation of motion. The

residence times in the zonal models in Zone 3 and 5 are obtained from the CFD

simulation. The residence times of larger particles (400 µm and greater) in the zonal

models are very similar to that obtained from CFD simulation, because these particle

sizes do not get caught up in the recirculation zones near the nozzle due to greater

momentum.
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Figure – 9.19: Particles residence times obtained from different models.

The weighted average powder outlet parameters and tower heat loss obtained from

CFD, zonal and plug-flow models are listed in Table 9.3. The weighted average

temperature of the powder is smaller in the CFD model compared to all other models.

The exit powder temperature predicted by the plug-flow and the ZM 1 is very similar.

The exit powder temperature predicted by the ZM 2 is the highest. The weighted

average powder moisture content is very similar in both the ZM 1 as well as in the CFD

model, and is slightly higher in the plug-flow model. The heat loss predicted by CFD,

ZM 1 and plug-flow models is very similar, but in ZM 2 it is slightly greater because in

the annular region in ZM 2, the gas temperature is greater. Overall, the ZM 1 model

gives a closer agreement with the CFD model compared to the plug-flow and the ZM 2

models. In the ZM 1, a lower gas temperature in the annular region (obtained from

CFD) was imposed; hence consideration of lower gas temperature in the zonal model is

necessary for a good agreement with the CFD model. Hence the prediction of exit

temperature of the particles can be further improved by considering another zone below

Zone 5, in which the particles get cooled down due to contact with entrained air.
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Table – 9.3: Average results from the CFD, zonal and plug-flow models.

Parameter CFD
Zonal

(ZM 1)
Zonal

(ZM 2)
Plug-Flow

Particle weighted average
moisture content, %

4.75 4.31 2.82 5.88

Particle weighted average
temperature, K

456.2 485.7 506.7 482.2

Heat loss, kW 5.4 5.6 7.0 5.5

9.3 Conclusions

Zonal modelling methodology comprising plug-flow and well mixed zones has been

used to model the spray drying process in a counter-current spray drying tower. The

basis of dividing the tower into different zones is obtained by interpolating the CFD

modelling results. A comparison of the results of CFD, ZM 1, ZM 2 and plug-flow

model is presented. All the models give the same qualitative trends when the exit

particle moisture contents, temperatures and residence times are compared for different

particle sizes. The ZM 1 model gives the closest agreement with the CFD modelling

results compared to the plug-flow and ZM 2 models. Thus the present zonal modelling

methodology can be used as an alternative to the CFD model to predict dried powder

parameters as reliably as a CFD simulation. The results of ZM 1 and ZM 2 models vary

significantly. The only difference in these two models is the consideration of lower

temperatures near the wall in ZM 1 by imposing CFD predicted gas temperature profile,

whereas in ZM 2, the gas temperature is constant over the entire cross-section of the

tower and is calculated by solving heat and mass transfer between the droplets/particles

and gas, in this case the modelled gas temperature in Zone 3 is found to be greater than

the imposed gas temperature profile. Hence consideration of lower gas temperature in

the cylindrical region of the tower is important for a closer agreement with the CFD

model. The exit particle temperature prediction can be improved by considering another

zone in which the exiting particles only exchange heat with the entrained air and get

cooled down, which is left as a future work.
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10. CONCLUSIONS AND RECOMMENDATIONS

The conclusions drawn from the plug-flow, CFD and zonal modelling work on the IPP

spray drying tower and the recommendations for the future work are given below.

10.1 Conclusions

The modelling of the IPP spray drying tower was carried out considering plug-flow,

CFD and zonal modelling approaches. All modelling approaches utilised a semi-

empirical single droplet drying model (Hecht, 2012) to model the drying kinetics. All

models considered droplets/particles of a range of sizes and variation of gas temperature

along the tower height. In the plug-flow and CFD models, simulations were performed

using different operating conditions obtained from the IPP tower runs using a single

nozzle as well as two nozzles at different heights and the results were compared with

the experimental data. The main conclusions drawn from the research work are given

below:

10.1.1 Plug-Flow Modelling

1. Plug-flow modelling considering a single spray nozzle was carried out (Chapter 5)

to evaluate the suitability of this approach in modelling the counter-current spray

drying tower. An algorithm was developed to solve the model equations and it

was implemented in the computer software package MATLAB (2010). In the

plug-flow model, several simplifying assumptions were made to make it workable

including limiting the final velocity of particles to the terminal falling velocity

based on the stationary gas. The justification of this assumption was due to the

fact that the particles move close to the wall where the gas velocity is very small

and hence the particles fall according to the terminal falling velocity. This

assumption had a direct influence on the residence time of particles. In the

predicted residence times, it was found that the smaller particles have greater

residence times and larger particles have shorter residence times (Figure 5.7). This

is expected because smaller particles have lower weight hence less momentum

and will have a greater influence of drag force. The trend of a decrease in the

residence times of particles with increasing sizes is exponential.

2. It was found that the heat and mass transfer coefficients increased with decreasing

droplet diameter; additionally, as the specific surface area of smaller particles was

larger, the rate of heat and mass transfer was the highest for smaller particles
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(Figures 5.10 and 5.11). Additionally the residence times of smaller particles were

greater, hence the smaller particles exchanged more heat and mass with the gas

compared to the larger particles.

3. Smaller particle sizes exited the tower at zero moisture content, which is

unrealistic because the moisture content of the particles will not go down below

the equilibrium moisture content at the surrounding gas conditions (Figure 5.18).

This is due to the simplifying assumption in the droplet drying model (Hecht,

2012), which assumes that the drying process continues to take place even when

particle moisture content falls below the equilibrium moisture content at

surrounding gas conditions. Similarly, the larger particles that exited the bottom

of the tower had a very high moisture content. This is also unrealistic, since the

larger particles (>1000 µm) in the simulation were considered to form and fall

from the top of the tower (at the nozzle spray); however, these particles will be a

result of coalescence and agglomeration below the nozzle spray. As the

droplets/particles flow downwards they will become larger in size due to droplet-

droplet, droplet-particle and particle-particle interactions resulting in coalescence

and agglomeration. Hence by the time particles become very large they would

lose much of the moisture content. Since coalescence and agglomeration

processes were not considered in the model, therefore, these larger particles,

having excessively high predicted moisture content acted to balance out the zero

moisture content of the smaller particles in the average powder moisture content

when compared with experimentally measured powder moisture fraction.

4. The measured outlet temperature of the powder was significantly less than the

predicted value, because in the actual process, the dried powder comes into

contact with an entrained cold air stream at the bottom exit of the tower and this

will result in cooling of the powder. In addition, the powder temperature

measurement is not taken at the exit of the tower, but is obtained by a temperature

probe installed on a belt conveyor at a few metres away from the location where

the powder falls from the tower (see Figure 4.2). The temperature of the powder is

expected to reduce at this point. The model does not consider cooling of particles

due to the entrained cold air and cooling of particles on the belt conveyor.

5. To find out the influence of the initial droplet size distribution on the modelling

results, two more simulation cases were carried out. One case considered the

measured droplet size distribution (plug-flow Case 1) and in the other case, the

dried powder size distribution (plug-flow Case 2) was considered at the nozzle
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spray. From a comparison of the predicted dried powder average moisture content

with the measured data, it was found that the plug-flow Case 1 overpredicted,

while the plug-flow Case 2 underpredicted the heat and mass transfer rates

between the gas and particles. The large difference in the predicted dried powder

moisture contents in these two simulated cases indicates the importance of

accurate initial size distribution of the droplets as well as inclusion of

coalescence/agglomeration to allow for changes in droplet/particle diameters

along the tower height.

6. The plug-flow model was extended to accommodate two spray nozzles at

different heights (Chapter 8) and a comparison was made with the experimental

data. The trends of the results obtained (discussed above) considering two nozzles

were similar to those obtained for a single nozzle.

7. The results of the plug-flow model were also compared with the CFD simulation

results and it was found that this approach gave similar qualitative trends

compared to the CFD model but underpredicted the residence times of particles

primarily due to the limitation of particle falling velocity to its terminal velocity.

The plug-flow model however has the advantage of being cheap in computational

resources and can be used as an aid for quick estimation of optimised parameters

for the IPP spray drying tower.

10.1.2 Single Phase CFD Modelling

1. Before carrying out the CFD modelling of the detergent spray drying process it

was necessary to ensure that the turbulence model successfully predicted the gas

velocity profiles, because the particle trajectories and hence the residence time of

particles depended on the predicted gas velocity profiles. Additionally it is

important to ensure that the results are mesh independent. Therefore a single

phase, CFD simulation of the IPP tower was carried out under isothermal

conditions to study the sensitivity of predicted air velocity profiles on the mesh

size. After selection of a suitable mesh size, the predicted mean axial, radial and

tangential velocity profiles were compared with measured velocity profiles at

various axial locations using various turbulence models. It was found that the

LRR-RST model gave the best agreement with the experimental data. The mean

tangential velocity component was found to be the major velocity component

followed by the mean axial velocity component.
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2. The IPP tower typically contains a layer of deposited particles on the wall that

increases the wall surface roughness. It was found that the wall surface roughness

significantly affected the strength of swirl (Figure 6.24) and consequently the

tangential (Figure 6.18) and axial (Figure 6.19) velocity profiles as the air went up

the tower. Therefore it is important to include wall surface roughness in modelling

this spray drying tower.

3. From a comparison of the steady state and transient simulation results (Section

6.1.5), it was found that the mean air velocity profiles in the spray tower are stable

and hence can be modelled using a steady state assumption.

4. A comparison of the predicted and measured air turbulent intensities was made

(Figure 6.25); the LRR-RST model gave a better prediction of the measured

turbulence intensity in the top cylindrical region of the tower as compared to the

SSG-RST model.

5. Single phase non-isothermal CFD modelling of the IPP tower was carried out to

validate the gas temperature predictions with measurements and to evaluate the

heat loss from the tower (Section 6.2). In the experimental run, the inlet hot gas

temperature measurement was taken at the inlet gas duct that supplies hot gas to

the distribution ring. It was found that a significant drop in the gas temperature

occurred between the inlet of the gas duct and the gas inlet nozzles mounted at the

gas distribution ring. When this drop in temperature was taken into account the

predicted gas temperature profiles inside the tower at various axial locations

agreed well with the measured temperatures (Figure 6.30).

6. It was found that the internal film heat transfer coefficient at the tower wall

decreased as the swirl intensity decreased (Figure 6.36). The overall decrease in

the inside film coefficient was about 220%.

7. It was found that the wall surface roughness boundary condition affected the

predicted gas temperature profiles inside the spray drying tower, particularly in

the bottom cylindrical region as the mixing of the hot gas and cold entrained air

was affected by the strength of swirl in the tower (Figure 6.38).

10.1.3 Multiphase CFD Modelling

1. Isothermal, momentum-coupled multiphase CFD simulation of gas-particles flows

in the spray drying tower was carried out using the Eulerian-Lagrangian approach.

For the case in which a restitution coefficient of 1.0 was used, it was found that

the larger particles (>200 µm) did not exit from the bottom of the tower (Figure
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7.3). This was because of the use of elastic collision of particles with the wall.

These particles gained angular momentum as they fell down and by the time

particles reached the conical section of the tower, the angular momentum was

high enough, so that on collision with the inclined wall they experienced an

upward normal contact force component high enough to balance the gravitational

force. Therefore, a lower value of the coefficient of restitution, 0.4 (based on the

measured value for dried powder by Hassal (2011)), was used. In this case, the

larger particles exited from the bottom of the tower (Figure 7.5).

2. The presence of particles significantly influenced the gas flow profiles. The swirl

in the gas flow decayed faster (Figure 7.8), consequently, the axial (Figure 7.6)

and tangential (Figure 7.7) velocities of the air also changed significantly

compared to the corresponding single phase as the particles exchanged

momentum with the gas phase. Hence the momentum coupling between the

particles and the gas phase is important for this process.

3. Multiphase CFD simulations of the detergent spray drying process were carried

out considering heat, mass and momentum transfer between the gas phase and the

discrete phase (comprising droplets and particles) using the Eulerian-Lagrangian

approach. It was found that the smaller particles (up to 200 µm) were entrained by

the upward flowing gas and they exited from the top of the tower with the exhaust

gas, while the larger particles exited from the bottom (Figure 7.24). It was also

found that the way the particle-wall interaction was modelled significantly altered

the particle trajectories. The case in which a constant value of the restitution

coefficient was used (a value of 0.4), the predicted particle trajectories showed an

unrealistic behaviour of bouncing off from the wall (Figure 7.23). When the

restitution coefficient was considered as a linear function of the particle moisture

content (ranging from 0 for initial slurry droplets to 0.4 for dried particles), the

particle trajectories were more realistic as confirmed by the visual inspection of

particles in the pilot-scale spray tower. It is therefore important to include the

particle-wall interaction as a function of moisture content. Due to the

unavailability of data, it was assumed to be a linear relationship between the

moisture content and the restitution coefficient. However, in reality it may be non-

linear and in addition to the moisture content, the restitution coefficient can also

vary with particle size, shape, impact angle, impact velocity and the wall

roughness.
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4. A rough-wall particle collision model was developed based on a stochastic

approach (Section 7.2.12) to study the influence of wall surface roughness on the

post-wall collision trajectories in multiphase, non-isothermal CFD modelling of

the spray drying process in the IPP tower. The dispersion of particles increased

over the cross-section of the tower due to the wall roughness. This resulted in a

greater heat and mass exchange between the droplets/particles and the drying gas

as the gas temperature was higher in the central region of the tower (Table 7.11).

5. The influence of non-spherical drag law on the particles residence times was

checked (Section 7.2.10) by assuming a constant value of the sphericity to define

the particle shape (assuming it to be cubical) and it was found that this increased

the residence time of particles. But the particle sphericity depends on a number of

factors including the degree of agglomeration, morphological changes during

drying and breakage of particles and will continue to change as the particles fall

down the tower, which were not considered due to the complexities involved in

modelling these processes.

6. The influence of initial droplet size distribution specification on the simulation

results was checked by using the measured droplet size distribution and the

measured powder size distribution (Section 7.2.11). For the case in which droplet

size distribution was used (CFD Case 5 in Chapter 7), the average dried powder

moisture content was overpredicted and that for the powder size distribution (Case

6 in Chapter 7) was underpredicted compared to measured data (Table 7.10).

Hence it is important to include coalescence and agglomeration in the model for a

better prediction of the dried powder characteristics. For the common particle

sizes in both cases, the difference in the residence times is negligible (Figure

7.42), but the exit powder moisture content is appreciably different (Figure 7.43).

The use of different initial droplet size distributions primarily influenced the gas

temperature profiles (Figure 7.40 and Figure 7.41). Hence the change in gas

temperature has a stronger influence on particle drying rate than its residence

time.

7. The residence times predicted by the CFD model were compared with the plug-

flow predictions (Figure 7.42) and it was found that both gave a similar

exponential decreasing trend with increasing particle size; however, the plug-flow

model underpredicted the residence times.

8. The results of different CFD modelling cases were compared with the

experimental data (Table 7.8, 7.10, and 7.11) and a reasonably good agreement
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was observed when the restitution coefficient was considered a function of

moisture content and when the rough wall collision model was used for predicting

post-particle wall collision trajectories.

9. CFD modelling of the IPP tower was carried out considering two nozzles. The gas

flow around the top nozzle was fairly asymmetric while at the bottom nozzle it

was symmetrical, which is believed to be due to higher swirl in the bottom region

of the tower and lower swirl at the top. Uneven distribution of gas flow around the

nozzle may cause excessive deposition, which may be minimised by reducing the

mass flow of slurry at the top nozzle. The overall trends of the results obtained

considering two nozzles were similar to those obtained from the single nozzle

cases when compared with measurements (Table 8.3).

10. CFD is a useful modelling tool which provides detailed information about the gas

flow and temperature profiles and droplets/particles trajectories and can be used to

tackle spray tower operational and product quality issues such as wall deposition

and thermal degradation.

10.1.4 Zonal Modelling

1. A zonal modelling strategy was developed to enable predictions of the dried

powder characteristics in the IPP tower as reliably as the CFD model but requiring

much less computational time. The gas flow profiles and droplet/particle

trajectories obtained from the multiphase CFD model were used to divide the

tower into five zones. In each zone (see Figure 9.1), a CSTR or a plug-flow

modelling methodology was used.

2. Two cases of zonal modelling were considered, referred to as ZM 1 and ZM 2. In

ZM 1, the gas temperature profiles obtained from the CFD simulation were

imposed in Zone 3 (Annular Zone) and Zone 4 (Hot Core Zone). In ZM 2, Zone 3

and 4 were merged into a single plug-flow zone and the gas temperature was

calculated based on heat exchange with the droplets along the length of the tower.

In ZM 1, the gas temperature in the annular zone was lower compared to that in

ZM 2. The ZM 1 case gave a very close prediction of the exit particle moisture

content compared with the CFD modelling results and hence it is a valid approach

for dividing the tower into different zones. The ZM 2 model predicted a much

lower exit particle moisture content due to a higher gas temperature in the whole

region. Hence the consideration of a lower gas temperature in the annular region

of the tower is important for a reliable prediction using the zonal model. The exit
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particle temperature for particles having a moisture content greater than zero in

the ZM 1 model matched well with the CFD model, but the temperature of

particles exiting at zero moisture content was higher in both zonal models as

compared to the CFD model, because the cooling of particles due to entrained air

was not considered.

3. From a comparison of plug-flow and zonal models with the CFD model, it was

found that the ZM 1 model gave a closer agreement with the CFD predicted exit

particle moisture content (Figure 9.18). Hence the proposed zonal modelling

methodology (ZM 1) can be applied to model spray drying process in a

computationally efficiently manner.

10.1.5 Summary of Modelling Approaches

1. The simple plug-flow model has the advantage of being cheap in computational

resources and can be used to determine the influence of various operating

parameters (gas mass flow, gas temperature, slurry mass flow, initial slurry

moisture content and slurry temperature) on the product quality attributes and

hence to select optimised parameters for the spray drying tower.

2. The more detailed CFD modelling approach provides information about the gas

velocity profiles, temperature profiles, particle trajectories and can be used to

tackle operational and product quality issues such as wall deposition and thermal

degradation. The influence of changes in the design of the tower for optimised

operation can also be assessed more comprehensively using CFD.

3. The zonal modelling approach can be used to predict the influence of changes in

operating parameters on the dried product characteristics as reliably as the CFD

model, but it is currently not a fully predictable model as it requires residence

time distribution of particles and gas temperature profiles from the CFD model.

10.2 Recommendations for Future Work

Based on the plug-flow, CFD and zonal modelling results and their comparison with the

measured data in the IPP tower, the following recommendations are made for future

work to improve the quality of model predictions:

1. In the CFD model, the restitution coefficient should be considered as a function of

the particle impact velocity, size, impact angle and other particle characteristics,

the wall surface roughness and structure in addition to the moisture content of
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particles. In this study a linear function of moisture was assumed in the absence of

any experimental data. The restitution coefficient may in fact not vary linearly

with moisture content and an experimental investigation for the determination of

restitution coefficient with varying moisture content should be carried out.

Similarly the effect of impact angle and impact velocity should also be studied

and then incorporated in the CFD model.

2. The importance of particle-particle interaction in changing the residence times

should evaluated as the larger particles fall down quicker and smaller particles

move at a lower velocity, and the particles are more densely populated near the

wall hence the larger particles will collide with slower moving smaller particles

and get decelerated and vice versa. This can be studied by carrying out isothermal,

coupled CFD-DEM simulation.

3. The residence times predicted by the models should be validated with the

measured residence times of particles of different sizes in the IPP tower.

4. Particle-particle collision will result in agglomeration provided that the colliding

particles are sufficiently wet. Therefore the conditions for agglomeration of wet

particles should be determined experimentally and an agglomeration model

should be developed based on experimental data and included in the CFD model

as it has been found in both the plug-flow and CFD simulation results that the

inclusion of the coalescence and agglomeration processes can make a significant

improvement in the model predictions.

5. The influence of the particle-wall interactions resulting in the deposition of

particles on the wall and re-entrainment of deposited particles should be explored,

as the deposited material will have a greater residence time and will continue to

exchange heat/mass with the drying gas before it eventually gets entrained back

into the gas flow. The size of the re-entrained particles may also be different from

the size of the deposited particles. This process may be equally responsible for the

change in size of the particles as is the coalescence/agglomeration.

6. The drying gas inlet temperature measurement was taken at the inlet of the duct

that supplies gas to the distribution ring to which the inlet nozzles are mounted for

all multiphase CFD cases. This region of the tower is poorly insulated; therefore,

the actual temperature of the gas at the inlet of the spray drying tower is lower.

This affects the tower heat loss calculations using the measured temperature at the

inlet of the gas supply duct. This may also influence the heat and mass transfer

rate between the two phases in the tower as a higher gas temperature will result in
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a more rapid drying of particles and vice versa. Therefore, the inlet hot gas

temperature measurement in the IPP tower should be taken by shielded

thermocouples inside the tangential inlet nozzles.

7. There is a need for more accurate data of powder outlet parameters used for the

validation of modelling results. The temperature measurement should be taken at

the bottom section of the tower before the bottom bent header (see Figure 4.2).

The sample for moisture measurement should also be taken at that point.

8. The cold air entrained from the bottom outlet of the tower should also be

measured and the measured entrained air value should be used in the multiphase

CFD model.

9. It should be ensured that the IPP tower walls are as clean as possible when

experimental trials are carried out for data collection for the purpose of validation,

as the deposit layer thickness and the wall roughness can significantly alter the

gas velocity profiles.

10. In the droplet drying model, the drying continues to take place in the third stage

even at a very low moisture content. The drying is expected to proceed at a very

slow rate as the particle moisture content reaches the equilibrium moisture

content. To prevent the particles moisture content from getting below the

equilibrium moisture content with the surrounding gas a fourth stage is required in

which the particles remain at the equilibrium moisture. This requires a water

isotherm in the detergent at the exit temperature which should also be determined

experimentally and a fourth stage should be included in the droplet drying model.

11. The spray drying models predictions depend on the reliability of the single droplet

drying model. Therefore single droplet drying experiments for the detergent slurry

droplet should be carried out under conditions identical to those encountered in

the spray drying tower and the results of the semi-empirical droplet drying model

should be validated with the experimental data.

12. The drag law used for the calculation of drag coefficient was applicable to smooth

spherical particles. However, the particles undergo changes in shape due to

agglomeration as well as morphological changes during drying and it may be

necessary to take into account the change in the shape of particles as shown by the

use of drag law for non-spherical particles (in Case 4, Chapter 7), which increased

the residence time of particles. Similarly, the correlations used for the heat and

mass transfer coefficient were applicable to spherical droplets/particles. The effect
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of non-spherical shape on heat and mass transfer coefficients should also be

evaluated.

13. As the droplets/particles are more concentrated near the wall, the effect of higher

concentration of the discrete phase on the heat and mass transfer rates of

individual droplets/particles should be evaluated.

14. In the zonal modelling approach (ZM 1), the gas temperature profile obtained

from the CFD simulation was used in the annular zone (Zone 3) to prove that the

suggested zoning methodology is able to predict the dried powder characteristics

close to the CFD results. However, this was not a fully predictive model, as it

requires a temperature profile obtained from CFD predictions for every new set of

spray tower operating conditions in the annular (Zone 3) and core zone (Zone 4).

To improve the predictability of the model, the modelling of exchange of heat and

mass between Zone 3 and Zone 4 is required.

15. An additional zone should be added to the zonal model at the bottom outlet of the

tower to allow for cooling of the dried particles with the entrained cold air and

equilibration of the moisture content with the air conditions, to get a better

agreement of the predicted particle temperatures between the zonal and CFD

models, and measurements.
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APPENDIX – I

Mass and Energy Balance in a Spray Drying Tower
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1. Overall Mass Balance on an element of unit volume in a Spray Tower
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Figure – A1.1.1: Overall mass balance on an element of unit volume in a spray tower.

It is assumed that the mass of solid in the droplet/particle remains constant. The change

in total mass of the droplets/particles pM takes place due to change in mass of the

solvent which evaporates into the gas. One dimensional flow of gas and particles is

considered. Radial and tangential velocity is assumed to be zero (Figure A1.1.1).

Rate of mass input to the control volume: tMtM
zzgaszp 





Rate of mass output from the control volume: tMtM
zgaszzp 





By Taylor series:
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Similarly for the gas, according to Taylor series expansion:
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Accumulation of mass in the control volume is zero, as the process is a steady state

process. So, Input = Output

Higher order differentials in equation (A1.1.1) and (A1.1.2) can be neglected. A mass

balance on control volume gives:
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Therefore we have:
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Let z approaches zero, equation (A1.1.4) becomes:
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Equation (A1.1.5) is the general equation for mass balance over a control volume in a

spray tower. Equation (A1.1.5) is applicable to any control volume within the spray

tower ranging in the following limits:
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2. Change in Concentration of a Single Droplet/Particle in a Control Volume

It is assumed that the droplet is perfectly spherical throughout the control volume and

mass of solute/solid remains constant in the droplet. The change in concentration of

solvent in a single particle is given by following differential equation:
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


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
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Following initial and boundary conditions are applicable to equation (A1.2.1)

Initial condition:

For t 0 lC = )(, rC pl prr 0 (A1.2.2)

Boundary Condition:
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Introducing an average solvent concentration in the particle defined as follows:
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where plC ,

~
is the mean concentration of solvent in the particle. Equation (A1.2.5) can be

written as:
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Equation (A1.2.1) can be integrated with respect to r as limit r from 0 to rp:
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Rearranging the first term of equation (A1.2.7) to give:
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Putting equation (A1.2.6) in equation (A1.2.8) and integrating the term on the r.h.s of

the equation results in the following:
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Insertion of boundary conditions equation (A1.2.3) and (A1.2.4) into equation (A1.2.9)

results in the following equation:
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Mass of the droplet/particle is given as:

solutesolventp MMM  (A1.2.11)

where soluteM remains constant. Differentiating equation (A1.2.11) with respect to time:
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Concentration of solvent in a particle is given by:
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where particleV is the volume of particle given by:
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Equation (A1.2.14) can be put into equation (A1.2.13) to give:
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Equation (A1.2.15) can be differentiated with respect to time (t) to give:
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Equation (A1.2.16) can be put into equation (A1.2.10) to give:







  gaslrplcp

p CCkr
t

M

p
,,

2
4

d

d
 (A1.2.17)

Equation (A1.2.17) gives change in mass of the particle in the first stage of drying

process. Equation (A1.2.17) can be written in terms of particle residence time as:
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Equation (A1.2.18) is the general equation for change in mass of the particle in a control

volume due to evaporation of solvent from the surface of the particle. From equation

(A1.1.5) in section 1, we have:
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where pM and gasM are the total change in mass of the droplet/particle and the gas in a

control volume respectively. Hence for total change in mass of the gas in a control

volume, equation (A1.2.18) can be written as:
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where n is the total number of droplets/particles in a control volume.
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3. Overall Energy Balance on an Element of Unit Volume in a Spray Tower

Overall energy balance can be carried out by assuming the control volume to be

adiabatic. It is also assumed that the gas is perfectly mixed over the cross section, but

there is no longitudinal mixing.

Rate of energy input to the control volume: thMthM
zzggaszpp 





Rate of energy output from the control volume: thMthM
zggaszzpp 
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

By Taylor series:
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Similarly for the gas, according to Taylor series expansion:

 
alsDifferentiOrderHigher

d

d






zz

ggas

zzggaszggas
z

hM
zhMhM




Input = Output

   
t

z

hM
zthMt

z

hM
zthM

thMthM

zz

ggas

zzggas

z

pp

zpp

zzggaszpp











d

d

d

d 







(A1.3.1)

Equation (A1.3.1) can be written as:
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Equation (A1.3.2) is the general equation for overall energy balance on the control

volume in a spray tower.



350

4. Energy Balance on a Single Droplet/Particle
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Figure – A1.4.1: Energy balance on a single droplet/particle.

Enthalpy balance about the droplet/particle can be carried out by assuming the

temperature of the droplet/particle to remain uniform at any given location z and

assuming the control volume to be adiabatic. It is also assumed that the gas is perfectly

mixed along the cross section, but there is no longitudinal mixing. Droplet collision

with the walls and with other droplets is also neglected and one dimensional flow of the

droplets/particles and the gas is assumed (Figure A1.4.1).
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where pM is the mass, pH is the enthalpy and pu~ is the average velocity of

droplet/particle respectively. inQ is the rate of heat transfer from the gas to a single

droplet/particle.

Equation (A1.4.1) is divided by z and multiplied by pu~ to give the following:
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The heat flow into the droplet is as follows:

 
zpgasppin TTAQ   (A1.4.3)

where gasT is the temperature of gas, pA and pT are the area and temperature of the

droplet/particle respectively.
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Hence combination of equations (A1.4.2) and (A1.4.3) results in the following

relationship:
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In equation (A1.4.4) limit can be taken as z approaches zero:
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Putting equation (A1.4.8) in (A1.4.7):
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Equation (A1.4.9) is the general equation for calculating temperature at any location

along z.

Assuming droppc , to remain constant, equation (A1.4.9) can be written as:
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M
huTTA

z

T
cMu p

pppgaspp

p

dropppp
d

d~
d

d~
,  (A1.4.10)

Equation (A1.4.10) is the final equation for temperature of droplet at any location along

z with constant cp.
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5. Energy Balance on the Gas Phase
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where n is the number of particles in a control volume, gasM , gh and vaph is the mass

flow rate, enthalpy of the gas and enthalpy of vapours respectively. outQ is the amount

of heat transferred by the gas to a single droplet and to the evaporated vapours.
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Equation (A1.5.2) can be put into (A1.5.1) and dividing by
z

u p



~
to give:
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In equation (A1.5.3) limit can be taken as z approaches zero:
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Putting (A1.5.7) in (A1.5.6):
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The change in gas mass flow is given by equation (A1.5.9) and is due to the evaporation

of vapours from the droplets/particles:
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Rearranging the above equation:
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Assuming specific heat of the gas to be same as that of the evaporated vapours, we get:
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Equation (A1.5.13) is the general equation for the calculation of gas temperature profile

along the height of column.
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6. Change in a Single Droplet/Particle Temperature

It is assumed that the droplet/particle is perfectly spherical throughout the control

volume. The change in temperature of a single droplet is given by the following

differential equation:
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Equation (A1.6.1) can be written as:
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Following initial and boundary conditions are applicable to equation (A1.6.2);

Initial condition:

For 0t pT = )(rTp prr 0 (A1.6.3)

Boundary Condition:
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Introducing an average temperature in the particle defined as follows:
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where pT
~

is the mean temperature of the particle. Equation (A1.6.6) can be written as:
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Equation (A1.6.2) can be integrated with respect to r as limit r from 0 to rp:
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Rearranging the first term of equation (A1.6.8) to give:
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Putting equation (A1.6.7) in equation (A1.6.9) and integrating the term on r.h.s of the

equation results in the following:
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Insertion of boundary conditions equation (A1.6.4) and (A1.6.5) into equation (A1.6.10)

results in the following equation:
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Equation (A1.6.11) can be written as:
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Density of the particle is given by:
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where particleV is the volume of a single particle given by following equation:
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Equation (A1.6.14) can be put into equation (A1.6.12) to give:
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Equation (A1.6.15) gives change in temperature of the particle in the first stage of

drying process. Equation (A1.6.15) can be written in terms of particle residence time as:
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Equation (A1.6.16) is the general equation for change in temperature of the particle in a

control volume.

However, the average and surface temperatures are not known in equation (A1.6.16)

and so it is assumed that they are equal for this version of the model. Hence equation

(A1.6.16) becomes:
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7. Momentum Balance on a Single Droplet/Particle

For momentum balance on a single droplet/particle, the forces that are considered

include the gravitational force, the buoyancy force and the drag force (Figure A1.7.1).
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Figure – A1.7.1: Momentum balance on a single droplet/particle.
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Equation (A1.7.1) can be divided by z to give:
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In equation (A1.7.2), limit can be taken as z approaches zero:
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Equation (A1.7.4) is the equation for momentum balance on the droplet.
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APPENDIX – II

Measured Temperature Corrections for Radiation Loss
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1. Corrections for Gas Temperature Measured at Inlet Gas Duct

The inlet gas duct has a single centrally located k-type thermocouple that measures the

gas temperature supplied to the gas distribution ring. The gas temperature measured by

the thermocouple is corrected for radiation loss. The dimensions of the inlet gas duct

and the insulation thickness is given in Table A2.1.1.

Table – A2.1.1: Data used for calculation of corrected gas temperature at inlet gas duct.

Thermocouple diameter dT 0.006 m

Thermocouple material SS 316

Thermocouple emissivity ɛm 0.85

Diameter of inlet gas duct di 0.6 m

Area of inlet gas duct Ai 0.36 m2

Inlet gas mass flux mgas 0.92 kg/m2s (based on tower cross-section)

Inlet gas viscosity µgas 2.676×10-5 kg/ms

Inlet gas density ρgas 0.65 kg/m3

Inlet gas thermal conductivity λgas 0.043 W/mK

Inlet gas specific heat cp,gas 1047 J/kgK

Measured temperature Tgas 563 K

Ambient temperature Tamb 293 K

Thickness of metal wall δw 0.008 m

Thickness of insulation δins 0.075 m

Thermal conductivity of metal wall λw 18.8 W/m2K

Thermal conductivity of insulation λins 0.04 W/m2K

Stefan-Boltzman constant σ 5.670 W/m2K4

The surface heat transfer coefficient for the thermocouple ( T ) is calculated using the

following correlation (Kreith, 1973):

The Reynolds number inside the duct is: 1.29×105

The Reynolds number (ReT) for the thermocouple is 1174.

For this ReT the value of constants C and n in equation (A2.1.1) is 0.615 and 0.466

respectively (Source: Kreith, 1973).
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Putting the values given in equation (A2.1.1) gives:

The inside film coefficient in the duct ( D ) is given by:

Assuming
bgas
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,

,




to be equal to unity and putting the values in equation (A2.1.2) gives:

The overall heat transfer coefficient (U) based on a circular pipe with equivalent

hydraulic diameter is given by:

amb (convective film coefficient for the outside surface) is taken to be 14 W/m2K which

combines convection and radiation. This gives the following overall heat transfer

coefficient:

U 0.44 W/m2K

Assuming that the heat absorbed by the thermocouple via convection is lost via

radiation only, the energy balance for the thermocouple can be written as:

Rearranging equation (A2.1.4) in terms of Tgas gives:

The wall temperature (Tw) can be calculated using the following equation:
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Q in equation (A2.1.6) is calculated using the following equation:

The wall temperature (Tw) and fluid temperatures are not known, hence the set of

equations (A2.1.5), (A2.1.6) and (A2.1.7) solved iteratively. Initially the value of Tgas is

assumed to be equal to TT, from which the heat flux is evaluated using equation

(A2.1.6). The wall temperature is computed using equation (A2.1.7) and the new fluid

temperature is calculated using equation (A2.1.5). The initial guessed value of Tgas is

compared with the calculated value using equation (A2.1.5). If the difference is greater

than 0.1 K, the calculated value of Tgas is used as the new guessed value for the

calculation of Tw in equation (A2.1.6). The iterations are continued until the difference

in guessed and calculated Tgas values is less than 0.1 K. A program is written in

MATLAB (2010) for this purpose.

The value of Tgas is found to be 565.7 K. The fluid temperature measured by the

thermocouple is 563.15 K. The difference between the thermocouple measurement and

the fluid temperature (Tgas) is 2.55 K.

)( wgasDi TTAQ   (A2.1.6)

)( ambgaso TTUAQ  (A2.1.7)
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2. Corrections for Gas Temperature Measured at Exhaust Gas Duct

The exhaust gas duct has a single centrally located k-type thermocouple that measures

the exhaust gas temperature. The gas temperature measured by the thermocouple is

corrected for radiation loss. The dimensions of the exhaust gas duct and the insulation

thickness is given in Table A2.2.2.

Table – A2.2.2: Data used for calculation of corrected gas temperature at exhaust gas

duct.

Thermocouple diameter dT 0.006 m

Thermocouple material SS 316

Thermocouple emissivity ɛm 0.85

Area of the gas duct Ai 0.33 m2

Exhaust gas mass flux mi 1.006 kg/m2s (based on tower cross-section)

Gas viscosity µgas 1.72×10-5 kg/ms

Gas density ρgas 0.88 kg/m3

Gas thermal conductivity λgas 0.045 W/mK

Gas specific heat cp,gas 1072 J/kgK

Measured temperature Tgas 367 K

Ambient temperature Tamb 293 K

Thickness of metal wall δw 0.006 m

Thickness of insulation δins 0.105 m

Thermal conductivity of metal wall λw 18.8 W/m2K

Thermal conductivity of insulation λins 0.04 W/m2K

Stefan-Boltzman constant σ 5.670 W/m2K4

The equations and calculation procedure is the same as in the case of temperature

correction for inlet gas duct. The difference in measured and corrected exhaust gas

temperature is 0.09 K.
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3. Corrections for Gas Temperatures Measured Inside the Spray Drying Tower

The temperature profiles measured inside the spray drying tower are corrected to

account for radiation losses. The wall temperature in this case is estimated by

extrapolation of the polynomial curve fits to the measured temperature profiles (given

by equations 6.6, 6.7, 6.8 and 6.9) up to the wall (given in Figure 6.30). Therefore,

iterative procedure was not required. For the calculation of convective film coefficients

for the thermocouples, the magnitude of the velocity components obtained from Fluent

for non-isothermal simulation Case 1 (Section 6.2.6) were used. Equation A2.1.5 was

applied to calculate the corrected temperature. Figure A2.2.1 depicts the corrected and

measured temperature profiles.

(a) (b)

(c) (d)
Figure – A2.2.1: Measured and corrected gas temperatures inside the spray drying

tower.

350

352

354

356

358

360

362

0 0.2 0.4 0.6 0.8 1

T
em

p
er

at
ur

e
(K

)

r/R

z/Z=0.24 measured
corrected

350

352

354

356

358

360

362

0 0.2 0.4 0.6 0.8 1

T
em

p
er

at
ur

e
(K

)

r/R

z/Z=0.42 measured
corrected

350

352

354

356

358

360

362

0 0.2 0.4 0.6 0.8 1

T
em

p
er

at
ur

e
(K

)

r/R

z/Z=0.59 measured
corrected

350

352

354

356

358

360

362

0 0.2 0.4 0.6 0.8 1

T
em

p
er

at
ur

e
(K

)

r/R

z/Z=0.82 measured
corrected



364

APPENDIX – III

Publications Arising from this Thesis



365

1. Papers in Referred Journals

The first author is highlighted in bold.

1. Ali, M., Mahmud, T., Heggs, P. J., Ghadiri, M., Djurdjevic, D., Ahmadian, H.,

Juan, L. M., Amador, C. and Bayly, A. (2014). A one-dimensional plug-flow model

of a counter-current spray drying tower. Chem. Eng. Res. Des., vol. (92), pp. 826-

841.

2. Ali, M., Mahmud, T., Heggs, P. J., Ghadiri, M., Francia, V., Ahmadian, H., Martin

de Juan, L., Djurdjevic, D. and Bayly, A. CFD modelling and validation of air

velocity profiles in a counter-current spray drying tower, In Preparation.

3. Ali, M., Mahmud, T., Heggs, P. J., Ghadiri, M., Davidson, A., Ahmadian, H.,

Martin de Juan, L., Djurdjevic, D. and Bayly, A. Investigation of heat losses from a

pilot-scale counter-current spray drying tower. In Preparation.

4. Ali, M., Mahmud, T., Heggs, P. J., Ghadiri, M., Ahmadian, H., Martin de Juan, L.,

Djurdjevic, D. and Bayly, A. Study of the influence of restitution coefficient on the

modelling of a counter-current spray drying tower using CFD. In Preparation.

5. Ali, M., Mahmud, T., Heggs, P. J., Ghadiri, M., Ahmadian, H., Martin de Juan, L.,

Djurdjevic, D. and Bayly, A. Study of the influence of initial size distribution on

the spray drying process in a counter-current spray drying tower using CFD. In

Preparation.

6. Ali, M., Mahmud, T., Heggs, P. J., Ghadiri, M., Ahmadian, H., Martin de Juan, L.,

Djurdjevic, D. and Bayly, A. A stochastic particle-wall collision model applied to

Eulerian-Lagrangian simulation of a spray drying tower. In Preparation.

2. Peer-Reviewed Conference Papers

The first author is highlighted in bold.

1. Ali, M., Mahmud, T., Heggs, P. J., Ghadiri, M., Bayly, A., Ahmadian, H., Martin

de Juan, L. and Djurdjevic, D. Particle flow patterns in spray drying towers. To be

presented in 13th International Conference on Multiphase Flow in Industrial Plants,

17-19 September 2014, Sestri Levante, Italy.

2. Ali, M., Mahmud, T., Heggs, P. J., Ghadiri, M., Bayly, A., Ahmadian, H., Martin

de Juan, L. and Djurdjevic, D. CFD simulation of a counter-current spray drying

tower with stochastic treatment of particle-wall collision. 7th World Congress on

Particle Technology, 19-22 May 2014, Beijing, China.



366

3. Ali, M., Mahmud, T., Heggs, P. J., Ghadiri, M., Davidson, A., Ahmadian, H.,

Martin de Juan, L., Djurdjevic, D. and Bayly, A. Heat losses from a pilot-scale

counter-current spray drying tower. 13th UK Heat Transfer Conference

UKHTC2013, 2-3 Sept. 2013, Imperial College London, UK.

4. Ali, M., Mahmud, T., Heggs, P. J., Ghadiri, M., Francia, V., Ahmadian, H., Martin

de Juan, L., Djurdjevic, D. and Bayly, A. CFD modelling of a counter-current spray

drying tower. 8th International Conference on Multiphase Flow ICMF 2013, 26-31

May 2013, Jeju, South Korea.

3. Oral Presentations

The presenter and the first author is highlighted in bold.

1. Ali, M., Mahmud, T., Heggs, P. J., Ghadiri, M., Bayly, A., Ahmadian, H., Martin

de Juan, L. and Djurdjevic, D. Particle flow patterns in spray drying towers. To be

presented in 13th International Conference on Multiphase Flow in Industrial

Plants, 17-19 September 2014, Sestri Levante, Italy.

2. Ali, M., Mahmud, T., Heggs, P. J., Ghadiri, M., Bayly, A., Ahmadian, H., Martin

de Juan, L. and Djurdjevic, D. CFD simulation of a counter-current spray drying

tower with stochastic treatment of particle-wall collision. 7th World Congress on

Particle Technology, 19-22 May 2014, Beijing, China.

3. Ali, M., Mahmud, T., Heggs, P. J., Ghadiri, M., Davidson, A., Ahmadian, H.,

Martin de Juan, L., Djurdjevic, D. and Bayly, A. Heat losses from a pilot-scale

counter-current spray drying tower. 13th UK Heat Transfer Conference

UKHTC2013, 2-3 Sept. 2013, Imperial College London, UK.

4. Ali, M., Mahmud, T., Heggs, P. J., Ghadiri, M., Francia, V., Ahmadian, H., Martin

de Juan, L., Djurdjevic, D. and Bayly, A. CFD modelling of a counter-current spray

drying tower. 8th International Conference on Multiphase Flow ICMF 2013, 26-31

May 2013, Jeju, South Korea.

5. Ali, M., Mahmud, T., Heggs, P. J., Ghadiri, M., Djurdjevic, D. and Bayly, A.

Modelling drying of slurry droplets in a counter-current spray drying tower. 8th

European Congress of Chemical Engineering, 25-29 September 2011, Berlin,

Germany.

6. Ali, M., Mahmud, T., Heggs, P. J., Ghadiri, M., Djurdjevic, D. and Bayly, A.

Numerical modelling of a counter-current spray drying tower. Computer Aided

Process Engineering Forum CAPE 2011: 21-22 March 2011, Bradford, UK.




