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ABSTRACT 

Self-learning systems have attracted increasing attention in the ramp 

metering domain in recent years. These systems are based on 

reinforcement learning (RL) and can learn to control motorway traffic 

adaptively. However, RL-based ramp metering systems are still in their early 

stages and have shown limitations regarding their design and evaluation. 

This research aims to develop a new RL-based system (known as RAS) for 

ramp metering to overcome these limitations.   

A general framework for designing a RL-based system is proposed in this 

research. It contains the definition of three RL elements in a ramp metering 

scenario and a system structure which brings together all modules to 

accomplish the reinforcement learning process. Under this framework, two 

control algorithms for both single- and multi-objective problems are 

developed. In addition, to evaluate the proposed system, a software platform 

combining the new system and a traffic flow model is developed in the 

research. Based on the platform developed, a systematic evaluation is 

carried out through a series of simulation-based experiments.  

By comparing with a widely used control strategy, ALINEA, the proposed 

system, RAS, has shown its effectiveness in learning the optimal control 

actions for different control objectives in both hypothetical and real motorway 

networks. It is found that RAS outperforms ALINEA on improving traffic 

efficiency in the situation with severe congestion and on maintaining user 

equity when multiple on-ramps are included in the motorway network. 

Moreover, this research has been extended to use indirect learning 

technology to deal with incident-induced congestion. Tests for this extension 

to the work are carried out based on the platform developed and a 

commercial software package, AIMSUN, which have shown the potential of 

the extended system in tackling incident-induced congestion. 
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CHAPTER 1 INTRODUCTION 

The first chapter of this thesis gives a brief overview of the research which is 

about the design and evaluation of a new self-learning system for ramp 

metering control. Section 1.1 of this chapter begins with an introduction to 

the background of ramp metering systems, in particular the recent control 

systems that have the “self-learning” capability. Then, the limitations of 

previous studies and research objectives proposed to overcome these 

limitations are outlined in Sections 1.2 and 1.3. Finally, Section 1.4 gives the 

organisation of the thesis. 

1.1 Background 

Traffic congestion has been recognised as one of the main issues affecting 

daily traffic operation on both urban and inter-urban networks, which occurs 

when the traffic demand for a road network approaches or exceeds its 

available road capacity. The cost of traffic congestion in the UK is estimated 

to range from £2 billion per year (Dodgson et al. 2002) to £20 billion per year 

according to the Confederation of British Industry (Grant-Muller and Laird 

2007). In addition to these economic costs, there are also many other 

adverse impacts related to traffic congestion, such as reduced safety, 

increased air pollution and resultant health problems (Han and Naeher 2006, 

Noland and Quddus 2005). Therefore, managing and controlling traffic 

congestion has become one of the main concerns of the transport 

community.  

In the inter-urban networks (i.e. motorways), the need for suitable control 

and management of traffic congestion is even more urgent, as motorways 

were originally designed to provide high mobility and guarantee orderly 

traffic operation (Papageorgiou and Kotsialos 2002). To alleviate traffic 
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congestion and reduce its adverse impacts on motorways, a number of 

traffic control systems and devices have been developed such as ramp 

metering, variable speed limits (VSL) and variable message signs (VMS). 

Among these control measures, ramp metering control has been identified 

as one of the most effective and efficient methods after more than 50 years 

application (Zhang and Wang 2013). In the UK, it has been reported that 

ramp metering can reduce journey times of motorway users by an average 

of 13% (Highways Agency 2007). 

In recent decades, a great number of ramp metering strategies have been 

proposed to control motorway traffic, from the early fixed-time method 

mentioned in (Wattleworth and Berry 1965), to traffic responsive strategies 

such as the capacity-density method (Masher et al. 1975), ALINEA 

(Asservissement Linéaire d’Entrée Autoroutière) and its variations 

(Papageorgiou et al. 1991, Papageorgiou and Kotsialos 2002, Smaragdis 

and Papageorgiou 2003), up to the recent optimisation-based approaches 

such as AMOC (Advanced Motorway Optimal Control) (Kotsialos et al. 2001), 

model predictive control methods (Hegyi et al. 2005, Papamichail et al. 2010) 

and other optimal control methods (Gomes and Horowitz 2006, Zhang and 

Wang 2013). Among these strategies, the optimisation-based method has 

become increasingly popular in recent studies, as it is sound and can solve 

ramp metering problems based on optimisation theory.  

Most existing optimisation-based methods are model-based methods which 

use a traffic flow model to predict traffic conditions and generate optimal 

control actions based on these predictions to maximise or minimise some 

predefined control objectives (e.g. maximise motorway throughput or 

minimise delays) (Hegyi et al. 2005, Papamichail et al. 2010). One limitation 

of these methods is that they rely on a specific model and have poor 

adaptability when a mismatch between the used model and the real traffic 



- 3 - 

 

condition exists (Davarynejad et al. 2011, Jacob and Abdulhai 2010, Rezaee 

et al. 2012). In order to overcome this limitation, the “self-learning” concept 

based on reinforcement learning (RL) was recently proposed by Jacob and 

Abdulhai (Jacob and Abdulhai 2006, Jacob and Abdulhai 2010) .  

RL is a model-free optimisation method, which means it is independent from 

any traffic flow models (Davarynejad et al. 2011, Jacob and Abdulhai 2010, 

Rezaee et al. 2012). Given new traffic models or even real road traffic 

conditions, RL can learn the optimal control actions from them without many 

adjustments, that is why it is also known as a “self-learning” method. 

Because of this self-learning capability, the RL-based system can 

continuously learn to improve itself and adapt to new traffic conditions. In 

addition to good adaptability, the RL-based system also has high scalability 

(El-Tantawy et al. 2013, Fares and Gomaa 2015). A memory base is 

maintained by each RL-based agent (a controller that can control the 

motorway traffic) and used to record the values of different control actions 

under different traffic conditions. This memory base can be shared with new 

agents, as long as they have the same structure. In this way, the RL-based 

system can be easily extended to involve new agents. 

Because of the aforementioned features, the RL-based system has attracted 

increasing attention in recent years. After the first contribution of Jacob and 

Abdulhai, some recent studies have also explored the use of RL to solve 

ramp metering problems under different settings and conditions. For 

instance, a RL-based system with the ability to manage on-ramp queue was 

developed in (Davarynejad et al. 2011), local ramp metering control using 

RL was studied in (Rezaee et al. 2012), coordinated ramp metering with RL 

was tested in (Veljanovska et al. 2012, Veljanovska et al. 2010) and an 

incident-responsive RL system for ramp metering was explored in (Lu et al. 

2013, Lu et al. 2014).  
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1.2 Research Problems 

Although the aforementioned studies have shown some positive results of 

using the RL-based system, there remain some limitations in the current 

applications of RL:  

(1) There is a lack of a general framework for designing a RL-based system 

for ramp metering application, and each study has its own way to define 

RL elements.  

(2) Although a few studies have considered the coordination problems in a 

RL-based strategy, improving motorway traffic efficiency is still the main 

concern. How to add new objectives such as user equity and balance 

different control objectives have not been well studied.  

(3) There is a lack of systematic evaluation for a RL-based system 

regarding the influence of learning parameters and the effectiveness of 

algorithms on different networks. 

This section only gives an outline of these limitations, and the detailed 

problems related to each limitation will be discussed further in Chapter 2 

after a review of the current RL-based systems in the ramp metering domain. 

1.3 Research Objectives 

To overcome the limitations presented in Section 1.2, a new self-learning 

system based on RL is developed in this study to deal with ramp metering 

problems with the following research objectives: 

(1) To investigate the state of the art of RL technology and its applications in 

the ramp metering domain, including both local and coordinated RL-

based systems. 
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(2) To provide a general framework for designing a RL-based ramp 

metering system, regarding the definitions of RL elements, the structure 

and modules of a RL-based system. 

(3) To explore the application of RL to ramp metering for both single- and 

multi-objective problems under the framework proposed in Objective (2). 

Two different control objectives with two control algorithms are 

developed and analysed. 

(4) To develop a platform with initial software implementations based on 

Objectives (2) and (3), which can be used to evaluate the RL-based 

system.  

(5) To evaluate the proposed system based on Objective (4) by conducting 

simulation-based experiments considering both hypothetical and real 

traffic networks.  

Objective (1) is the basis of all other objectives mentioned above. Problem 

(1) introduced in Section 1.2 can be solved by achieving Objective (2), and 

Objective (3) corresponds to a solution to Problem (2). Besides that, 

Problem (3) can be tackled by attaining Objectives (4) and (5). Each 

objective mentioned here will be explained further in Chapter 2 after an 

analysis of each problem. 

1.4 Thesis Organisation 

To achieve five research objectives, this thesis is divided into nine chapters 

presenting the whole design and evaluation process of a self-learning ramp 

metering system. The organisation of these chapters and their connections 

can be seen from Figure 1.1. 
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Chapter 1 Introduction

Chapter 2 Background and Literature

Chapter 3 Reinforcement Learning

Chapter 4 Ramp Agent System

Chapter 5 Implementation

Chapter 8 Extension to Congestion 

Case

Chapter 6 Case Studies for 

Hypothetical Networks

Chapter 9 Conclusions and Future 

Work 

· Control objectives

· Control strategies

· Markov decision process (MDP)

· Dynamic programming (DP)

· Q-learning algorithm

· Linear scalarised Q-learning algorithm

· Structure of ramp agent system 

(RAS)

· Introduction to asymmetric cell 

transmission model (ACTM)

· Design of ramp agent

· Software implementation of RAS

· Software implementation of ACTM

· Single-ramp case

· Multi-ramp case

· Incident problems

· Indirect reinforcement learning 

(IRL)

· Simulation experiments based on 

AIMSUN

Chapter 7 Case Study for Real 

Network

· ACTM calibration and validation

· Real-network case

 

Figure 1.1:  Thesis Organisation 

Besides the first chapter introduced here, the remainder of this thesis is 

organised as follows: 

Chapter 2 reviews the state of the art in ramp metering domain, including 

control objectives and related control strategies (especially the RL-based 

strategies) that can achieve these objectives.  
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Chapter 3 introduces the reinforcement learning technology in terms of its 

mechanisms, algorithms and multi-objective learning methods.   

Chapter 4 introduces the main work of this research. A general framework 

for designing a self-learning system is provided in this chapter. This 

framework contains a general definition of three RL elements, structure and 

modules used to accomplish the learning process. Besides that, two control 

algorithms based on the RL mechanism are developed to deal with both 

single- and multi-objective problems for ramp metering. 

Chapter 5 presents the software implementation of the proposed system and 

a traffic flow model used for evaluation. The C++ implementation of three 

reusable classes with related sub-classes and functions are introduced in 

this chapter.      

Chapter 6 presents two case studies based on hypothetical networks, i.e. 

single-ramp and multi-ramp case, to evaluate the proposed system using a 

macroscopic traffic flow model. Various abilities of the new system such as 

improving traffic efficiency, managing on-ramp queues and maintaining user 

equity are tested in this chapter. 

Chapter 7 presents the case study based on a real network selected from 

the M6 motorway in the UK. The ability of the self-learning system to deal 

with real fluctuating traffic flows is tested in this chapter. 

Chapter 8 gives an extension to the basic system developed in Chapter 4 to 

deal with non-recurrent congestion caused by incidents. Some initial tests for 

this strategy are carried out using AIMSUN. 

Chapter 9 gives conclusions of the whole thesis and discusses possible 

directions for future work. 
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CHAPTER 2 BACKGROUND AND LITERATURE 

This chapter reviews the main work related to ramp metering in terms of its 

control objectives and strategies. In Section 2.1, some background 

knowledge of ramp metering and traffic flow theory is introduced. A 

discussion of different control objectives of ramp metering is given in Section 

2.2. Then, Section 2.3 reviews the state of the art of ramp metering 

strategies that can achieve these objectives. Finally, Section 2.4 

summarises this chapter and further discusses the limitations of RL-based 

applications. 

2.1 Background of Ramp Metering 

Before the introduction of detailed control objectives and strategies of ramp 

metering, some background knowledge including a general introduction of 

ramp metering and related terminologies in the traffic flow theory is 

summarised in this section. 

2.1.1 Ramp metering problem 

Figure 2.1 shows an example of the relationship between ramp metering 

strategies and a typical motorway segment with one mainline and two linked 

ramps (i.e. one on-ramp and one off-ramp)1. The ramp metering problem 

mentioned in this study refers to the on-ramp metering control which uses a 

ramp meter (a signal device) located at the on-ramp to regulate the metering 

                                            

1 In the UK, the motorway mainline is also named the main carriageway, while the 

on- and off-ramp are also called the entry slip road and exit slip road, respectively. 

For ease of expression, the commonly used terminologies, i.e. “mainline”, “on-ramp” 

and “off-ramp” in the literature will be adopted in this study to describe the 

motorway. 
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rates, i.e. the number of vehicles entering the motorway mainline during 

each signal cycle (Arnold Jr 1998). For ease of expression, the example 

below only shows a typical scenario of ramp metering with only one 

controlled on-ramp. In some cases (such as the coordinated strategies), a 

ramp metering strategy may control more than one on-ramp.  

Ramp metering strategies 

with 

different control objectives

metering rate

traffic 

direction

 traffic information

Ramp meter

On-ramp

Mainline

Motorway segment

Off-r
amp

 

Figure 2.1:  An example of ramp metering 

Based on the traffic information (such as traffic flow, density and speed) 

collected from the motorway, a ramp metering strategy aims to generate 

suitable metering rates to alleviate traffic congestion and achieve some 

predefined control objectives such as reducing the total time spent on 

motorways, balancing the waiting time at on-ramps and decreasing vehicle 

emissions. In field applications, metering rates generated by the ramp 

metering strategy can be further converted to signal timings (i.e. the time 

duration of green, red and amber phases in each signal cycle) for ramp 

meters. According to different control strategies, the traffic information may 

be either the real-time traffic data collected from loop detectors (for traffic-

responsive strategies) or the historical data recorded in the database (for 

fixed-time strategies). Different control objectives considered in the existing 

studies will be introduced in Section 2.2, while the control strategies using 

different traffic information will be reviewed in Section 2.3.   
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2.1.2 Traffic flow description 

As mentioned above, traffic information regarding traffic flow, density and 

speed is essential for ramp metering strategies to generate metering rates. 

Hence, to better understand ramp metering problems, the background and 

some related terminologies of traffic flow should be known in advance. 

Generally, traffic flow has three fundamental characteristics namely flow, 

density and speed, which can be observed and described macroscopically 

or microscopically according to different levels of detail required (May 1990). 

The microscopic characteristics of road traffic are related to individual 

vehicles, such as the time and distance headway between two adjacent 

vehicles, and individual vehicle speeds. On the other hand, macroscopic 

information concentrates on traffic characteristics aggregated from a group 

of vehicles including traffic flow rates, density rates and average speeds. In 

the ramp metering area, macroscopic characteristics of traffic flow are 

usually used to describe road traffic and develop control strategies, which 

will be the focus of this study. The terminologies “flow”, “density” and “speed” 

mentioned in the following parts of this thesis all refer to their macroscopic 

descriptions, i.e. flow rate, density rate and average speed. These three 

terminologies are defined as follows (May 1990): 

 Flow (expressed by q  ) is the number of vehicles passing a fixed point 

on the road during a period of time (usually one hour). 

 Speed (denoted by v ) is the average rate of motion of vehicles, which is 

expressed by distance per unit time (such as km/h). According to 

different observation methods, speed can be further divided into two 

classes: time-mean-speed and space-mean speed. Time-mean-speed is 

the measured average speed of vehicle groups that pass a fixed point on 

the road. Space-mean-speed is the given distance travelled by vehicles 

divided by the average time these vehicles spend on travelling.  
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 Density (represented by  ) is the number of vehicles occupying a 

length of the roadway (usually one mile or one kilometre). 

The basic relationship among these three characteristics is given by: 

q

v
   (2.1) 

Through statistical studies of traffic data, more static relationships of flow, 

density and speed can be obtained through mathematical descriptions. As 

shown in Figure 2.2, one of the early works conducted by Greenshields 

(Greenshields et al. 1935) presented relationships between each two 

parameters. For a theoretical description, space-mean-speed instead of 

time-mean-speed is used here. Among these three diagrams, (a) presents 

the relationship between density and flow, (b) is the relationship between 

speed and density, and (c) shows the relationship between speed and flow. 

These three figures are usually named fundamental diagrams. 

 

Figure 2.2:  Fundamental diagrams 
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From fundamental diagrams, some important parameters can be used to 

describe the state of traffic under different conditions. These parameters and 

related traffic states are summarised as follows. 

· capq
 
denotes the road capacity that is the maximum number of vehicles 

passing a fixed point on the road during a period of time (usually one 

hour). 

· crit
 
is the critical density which corresponds to the road capacity capq . 

From Figure 2.2 (b) it can be seen that the critical density can divide 

traffic flow into two regimes. When traffic density is below the critical 

density, traffic flow is in the free-flow state. On the other hand, when 

traffic density exceeds the critical density, traffic flow is in the congestion 

state. 

· jam
 
is the jam density that dictates the maximum number of vehicles 

staying on a length of road. When jam density is measured, vehicle 

speed will drop to 0 and no flow can pass through. 

· freev
 
is the free-flow speed. This speed is the average speed of vehicles 

that can move at their desired speed under the low traffic density 

situation. 

· critv
 
is the critical speed. Similar to critical density, this value 

corresponds to the maximum traffic flow, i.e. road capacity. 

Fundamental diagrams are very important for analysing traffic flow models 

and traffic control strategies. After the contribution from Greenshields, some 

studies described fundamental diagrams as other shapes such as triangle 

and trapezoid. These diagrams will be explained in more detail when they 

are mentioned in other parts of this thesis. 
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2.2 Control Objectives 

In the early stages, improving motorway traffic efficiency in terms of reducing 

total time spent by road users is the only concern of developing a ramp 

metering control strategy. However, some important social and 

environmental impacts such as user equity (i.e. equally allocating motorway 

resources to different users), vehicle emissions and user safety are 

neglected by efficiency-orientated strategies. In recent years, these impacts 

of ramp metering have attracted considerable attention and some of them 

have been introduced as additional control objectives to the ramp metering 

problem. In this section, different control objectives of ramp metering are 

briefly introduced. 

2.2.1 Improving Efficiency 

The traffic efficiency of a motorway system is usually regarded as the 

primary objective of a successful ramp metering strategy. High efficiency 

means that motorway users can spend as short a time as possible travelling 

on motorways (Kotsialos and Papageorgiou 2001). Generally, total time 

spent (TTS) by users on motorways is used as an indicator to measure 

efficiency. Improving efficiency is equivalent to reducing TTS. As suggested 

by (Papageorgiou and Kotsialos 2002), the TTS of a motorway segment can 

be expressed by: 

1

0

( )
kN

k k

main on

k

TTS T n n




    (2.2) 

where, T  is the time interval between two time steps, k  is the index of  time 

step, k

mainn  and k

onn  denotes the number of vehicles on the mainline and on-

ramp, respectively. 
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When improving traffic efficiency is the main concern, two main mechanisms 

may help ramp metering control strategies to achieve this goal. As 

summarised by (Gomes and Horowitz 2006, Papageorgiou and Kotsialos 

2002), these two mechanisms are: (1) preventing mainline capacity drop, (2) 

increasing off-ramp outflows.  

The capacity drop mentioned in (1) is a widely observed phenomenon in 

bottleneck locations on motorways, such as on-ramp merge areas with lane 

drops (Cassidy and Bertini 1999, Hall and Agyemang-Duah 1991). In the 

congested condition (the density exceeds the critical value), a queue forms 

on the mainline, and the maximum downstream flow (or queue discharge 

rate) of the bottleneck location will reduce suddenly, which will lead to a gap 

between the original road capacity and the queue discharge rate under the 

congested condition. When reducing the TTS by users is the main concern, 

this kind of capacity drop should be prevented by maintaining the traffic flow 

on the motorway mainline around the original road capacity. 

The second mechanism is based on the fact that when the congestion 

propagates upstream and blocks the upstream off-ramps, the outflow of 

these off-ramps will be impeded. This will worsen congestion and increase 

delays on motorways. Therefore, easing the congestion in the mainline to 

avoid blocking off-ramps is necessary to improve traffic efficiency under the 

second mechanism. Two simple examples provided by (Papageorgiou and 

Kotsialos 2002) can be used to explain these two mechanisms clearly. In 

these two cases, all flows and demands are assumed to be constant during 

a period T . 
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(1) Preventing mainline capacity drop 

congestion areaqdis

don

qin qcap qin

queue

don

mr

(a) (b)

Figure 2.3: On-ramp only case: (a) no control, (b) with control (Source: 

Papageorgiou and Kotsialos, 2002) 

The motorway segment considered in (1) only contains one on-ramp. As 

shown in Figure 2.3, inq is the inflow entering the analysed motorway 

segment from its upstream segment, disq is the discharge flow under 

congestion conditions, ond
 
denotes the on-ramp demand, capq

 
is the capacity, 

rm
 
is the on-ramp flow (or metering rate)2 generated by control strategies. 

Assuming that in on capq d q  , without control (Figure 2.3 (a)), congestion 

occurs on the motorway mainline and leads to capacity drop in the 

congestion area. In this condition, the outflow of motorway segment drops to 

the queue discharge rate disq . Thus, main in on disn q d q   , 0onn   and the TTS 

can be calculated according to Equation (2.2), which is: 

( )n

in on disTTS T q d q  
 

(2.3) 

With control (Figure 2.3 (b)), the extra demand of on-ramp can be restricted 

from entering the motorway mainline. The metering rate calculated by the 

                                            

2  The on-ramp flow and metering rate are not distinguished by the literature 
reviewed in this chapter (maybe for ease of expression) and are both indicated by 
mr. However, the real on-ramp flow entering the mainline is not always the same as 

the generated metering rate (sometimes there may not be enough vehicles waiting 
at the on-ramp to reach the generated metering rate). In this study (Chapter 4), the 
on-ramp flow and metering rate will be indicated by two different variables mr and c 

respectively.   
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control strategy should satisfy r in capm q q  , which can maintain a high 

outflow of capq
 
during the control period. Thus,

main in r capn q m q   , 

on on rn d m   and the TTS in the controlled situation can be obtained from: 

( )c

in on capTTS T q d q  
 

(2.4) 

Therefore, compared with the non-controlled situation, the reduced TTS (in 

percentage) under control should be: 

100 100
n c

cap dis

no

in on dis

q qTTS TTS
TTS

TTS q d q


    

 
 

(2.5) 

For instance, if the mainline capacity drops by 5% ( 0.95dis capq q  ) and the 

demand is 20% more than capacity ( 1.2in on capq d q   ), then the TTS can be 

reduced by 20% with suitable control.  

(2) Increasing off-ramp outflow 

congestion area

qcap

d
n

off

qin

don

qcap

d
c
off

qin

queue

don

mr
qupqdown

(a) (b)

Figure 2.4: Off-ramp including case: (a) no control, (b) with control 

(Source: Papageorgiou and Kotsialos, 2002) 

The motorway segment with one on-ramp and one off-ramp is used for 

analysis in mechanism (2). n

offd
 
and c

offd
 
are outflows of off-ramps for non-

controlled and controlled situations. [0,1]   is used to denote the 

proportion of  mainline flow that exits the motorway from its linked off-ramp. 

Thus, it can be obtained that: n

off upd q 
 
and c

off ind q  . 
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To distinguish the effects of two different mechanisms, mechanism (2) does 

not consider the capacity drop phenomenon, which means the outflow of the 

motorway mainline does not reduce and keeps at capq
 
under the congestion 

conditions. Therefore, in the non-controlled situation, down cap onq q d 
 
and 

n

down up offq q d 
 
can be easily obtained from Figure 2.4 (a). Recall that 

n

off upd q  . Thus, [ / (1 )] ( )n

off cap ond q d     . 

Similar to mechanism (1), the TTS for non-controlled and controlled 

conditions can be calculated by: 

( )n n

in on cap offTTS T q d q d   
 

(2.6) 

( )c c

in on cap offTTS T q d q d   
 

(2.7) 

Considering c

off ind q   and [ / (1 )] ( )n

off cap ond q d     , the reduced TTS by 

control strategies can be computed with: 

100 100
n c

n

TTS TTS
TTS

TTS



    

 
(2.8) 

If   is 0.05, the TTS will fall 5% compared with the non-controlled condition. 

Indeed, the larger   is, the more TTS can be reduced. 

In some special cases that do not have off-ramps, preventing capacity drop 

is the only way to reduce the TTS, while in more general cases with both on- 

and off-ramps two mechanisms (1) and (2) may work together to improve 

efficiency. 

2.2.2 Maintaining Equity 

Although efficiency-orientated strategies have brought great benefits to the 

motorway system, these benefits may not be fairly allocated to all users 

involved, which causes severe inequity in using the motorway system  
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(Yafeng et al. 2004). The equity issue has been proposed as a negative 

impact of ramp metering since the 1960’s (Pinnell et al. 1967), but it was 

usually neglected by ramp metering strategies. It was not until the recent 

decade that this issue began to attract enough attention. Highly inequitable 

strategies may lead to restricting access for some users to the motorway, 

while allowing others to enter the motorway freely. This problem has affected 

the public acceptance of using ramp metering and restricted the effects of 

ramp metering strategies (Yafeng et al. 2004). Under such circumstances, 

equity has been regarded as one of the main purposes for developing 

coordinated ramp metering strategies with network-wide applications 

(Papamichail et al. 2010).  

User equity in a motorway system is defined as equally allocating motorway 

resources to different users from both a spatial and temporal point of view 

(Levinson and Zhang 2006, Levinson et al. 2002, Zhang and Levinson 2005). 

As summarized by Zhang and Levinson, user equity is classified into two 

categories, spatial equity and temporal equity. The former one measures the 

difference in time spent or travel speed among users from different on-ramps 

to the same motorway mainline at the same time. On the other hand, 

temporal equity means the equity among users who access the motorway 

mainline from the same on-ramp at different times. Compared with temporal 

equity, spatial equity is more meaningful in the network-wide scenario 

composed of multiple on-ramps. Thus, most of the existing control strategies 

are mainly focused on the spatial equity and its impacts on traffic efficiency 

(Kotsialos and Papageorgiou 2004a, Meng and Khoo 2010, Yafeng et al. 

2004, Zhang and Levinson 2005). This study also concentrates on the 

spatial equity issue, and the term “equity” in the following sections only 

refers to the spatial equity. 
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Although some work has been done to develop advanced algorithms to deal 

with equity problems, the measurement for capturing the equity is not well 

studied. Each study has its own indicator to measure user equity, and 

explains the equity in different ways. Some measurements used to capture 

the equity of a ramp metering system are summarised here. 

Gini coefficient 

1 1

1

2

N N

i j

i j

N

i

i

d d

N d

 






 

(2.9) 

where id  and 
jd  are delays of users i  and j  ( i j ), N  is the number of 

users. The Gini coefficient is a commonly used index in economics to 

measure the inequity of incomes, which is derived from the so-called Lorenz 

curves. This index was first used by Levinson et al. (2002) to measure the 

equity of a ramp metering system. However, this index needs the information 

of each individual vehicle on motorways which is difficult to obtain in real 

time and not suitable for developing real-time traffic control strategies. 

Another similar index using the Gini coefficient is proposed in (Yafeng et al. 

2004), where the time saving ratios instead of user delays were used to form 

the index. For the same reason as for measurement (2.9), this index cannot 

be used for algorithm development.   

Spatial variance of travel times 

2

1

( )
N

k k

i

i

T T

N





 
(2.10) 

where k

iT
 
is the average travel time of users for queuing at on-ramp i  and 

travelling a fixed length (6.5 km in their work) of the motorway mainline,  

1 /k N k

i iT T N   
and N  is the number of on-ramps, k  is the time step. This 
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measurement was used by Kotsialos and Papageorgiou (2004a) to measure 

the impact of their strategy on equity, but the measurement itself was not a 

part of the proposed control algorithm. In their algorithm, equity was 

considered by setting constraints for on-ramp queues. 

Total weighted travel time 

TWTT WFTT WRD   (2.11) 

where, TWTT  is the total weighted travel time of the motorway network,

WFTT  is the weighted mainline travel time, WRD  is the weighted on-ramp 

delays. Although Levinson et al. (2002) have used the Gini coefficient to 

measure the equity of a ramp metering system, it cannot be directly used to 

develop a control algorithm. In their following study that focused on 

developing a control algorithm with consideration of equity, another 

measurement, the weighted total travel time was used (Zhang and Levinson 

2005). The aim of this objective function is to balance the efficiency and 

equity through minimising the total weighted travel time. 

Ratio of minimum and maximum delays 

min

, 1,2,...,

max

k

i

k

k

i

k

D

i N

D

 
 
  
 
 
 



  

(2.12) 

where, k

iD
 
is the average delay of users from on-ramp i  at step k . The 

measurement (2.12) uses the ratio of the minimum and maximum average 

delays of N  different on-ramps to capture the equity (Meng and Khoo 2010). 

This ratio should be between 0 and 1. The user equity will increase when 

this ratio approaches to 1. This equity index was incorporated as a part of 

the objective function of their control strategy. 
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Equity constraint 

,1 ,2 ,

,1 ,2 ,

k k k

r r r N

k k k

on on on N

m m m

d d d
  

 

(2.13) 

In the work presented in (Zhang and Wang 2013), the ratio of metering rate 

k

rm  and demand flow  k

ond
 
at each time step k  was used to measure the 

equity. In their study, a good equity was obtained by making all the ratios of 

different on-ramps equal to each other.  

Some other work such as (Zhang and Shen 2010) and (Tian et al. 2012) 

formulated the equity problem of ramp metering from a more theoretical 

point of view that was based on a so-called monocentric network (without 

off-ramps) and did not consider the inside queues. Although some 

mathematical proofs and analysis work can be conducted in the simplified 

case, many realistic networks (with off-ramps) do not fit these assumptions. 

This kind of theoretical work is not the scope of this thesis.  

Of the equity measurements mentioned above, only the last three 

measurements, i.e. (2.11), (2.12) and (2.13) were used to develop equity-

related control algorithms. The main problem of measurement (2.12) is that it 

only captures the minimum and maximum on-ramp delays, and it cannot 

measure any in-between values when more than two on-ramps are included. 

Thus, as long as two cases have the same minimum and maximum on-ramp 

delays, they will have the same equity. There is a lack of clear definition of 

equity in (Zhang and Wang 2013), and why the ratio of metering rate and on-

ramp demand flow in measurement (2.13) can express the equity is not 

explained. Compared with (2.12) and (2.13), measurement (2.11) is more 

reasonable, which aims to balance the efficiency and equity by assigning 

weight values to the mainline travel time and on-ramp delays. In the study 

presented in this thesis, a similar concept of measurement (2.11) has been 
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used to derive the rewards (related to control objectives) of a self-learning 

system. The detailed definition of these rewards will be introduced in 

Chapter 4.  

2.2.3 Other objectives 

Except for efficiency and equity, some other control objectives such as 

reducing vehicle emissions and increasing user safety were also considered 

for ramp metering recently.  

Compared with efficiency and equity, how to reduce vehicle emissions by 

ramp metering has not been well studied. It is only until recent years this 

issue has been considered as one additional control objective for ramp 

metering (Csikós and Varga 2012, Zegeye et al. 2012). By combining 

vehicle emission models with a dynamic traffic flow model, these strategies 

aim not only to decrease the total time spent by users on motorways, but 

also to reduce vehicle emissions in the meanwhile. Another effect of ramp 

metering is to improve user safety through reducing the number of accidents 

on motorways (Abdel-Aty et al. 2007, Bhouri et al. 2013, Lee et al. 2006). 

These studies have shown that user safety is related to ramp metering. 

However, very few of them focused on developing control strategies specific 

to solving safety problems. Most work related to this issue was to evaluate 

the effect of existing ramp metering strategies on improving user safety on 

motorways (Abdel-Aty et al. 2007, Bhouri et al. 2013, Lee et al. 2006).  

Although vehicle emissions and user safety have been proposed as 

additional concerns of ramp metering, how to incorporate them into a control 

strategy has still not been well studied. One important reason for that is, 

except for the basic traffic flow operation, additional models are required to 

estimate vehicle emissions and accident potential when making the ramp 

metering strategies. Developing these models that can explicitly measure 
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emissions and safety itself is already a challenge in real-time situations 

(Banks 2000, Lee et al. 2006). In this study, the main focus is on the basic 

traffic flow operation and related objectives, namely traffic efficiency and 

user equity.  

2.3 Control Strategies 

The last section gave a brief introduction to control objectives, which has 

shown what can be achieved by ramp metering. This section focuses on 

how to achieve these objectives through specific control strategies. Traffic 

control strategies can be roughly classified into two categories: fixed-time 

strategies and traffic-responsive strategies (Papamichail et al. 2010, Zhang 

and Wang 2013). Fixed-time strategies are also known as pre-timed 

strategies, which are based on the constant historical data and adopt an off-

line method. Section 2.3.1 will give a brief introduction to this approach. 

Traffic-responsive strategies provide control solutions with consideration of 

dynamic traffic conditions and real-time measurements from the road 

network (Papamichail et al. 2010). These strategies can be further classified 

into two categories, namely local strategy and coordinated strategy 

according to their working scope (Papageorgiou et al. 2003, Papamichail et 

al. 2010), which will be introduced in Sections 2.3.2 and 2.3.3 respectively. 

The RL-based method can be regarded as one traffic-responsive strategy 

according to its capability of responding to traffic dynamics in real time. As 

the RL-based method is the main focus of this thesis, this method will be 

introduced in a separate section (Section 2.3.4). For each kind of strategy 

mentioned above, two control objectives, traffic efficiency and user equity 

will be highlighted.  
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2.3.1 Fixed-time strategies 

As one early attempt tackling ramp metering problems, Wattleworth (1965) 

modelled ramp metering for a motorway system as an optimisation problem 

according to historical demands for different times of day. This model is 

shown in (2.14), where the motorway studied was divided into several 

segments, and each segment contained one on-ramp. 

,

, ,

, ,

max

s.t. ,

0 ,

r i

i

ij r i cap j

i

r i on i

m

x m q j

m d i

 

  



  (2.14) 

where, ,r im
 
is the on-ramp flow of the i  th motorway segment, ijx

 
is the 

proportion of vehicles that came from the on-ramp of segment i  and passed 

through segment j , ,cap jq
 
is the mainline capacity of segment j , ,on id

 
is the 

demand flow rate for the on-ramp of segment i . By setting suitable 

constraints for motorway mainline traffic flows (
, ,ij r i cap j

i

x m q ) and on-ramp 

traffic flows ( , ,0 r i on im d  ), they aimed to maximise total on-ramp flows 

entering the mainline. It was equivalent to improving traffic efficiency. 

Besides the basic constraints shown in Equation (2.14), they suggested two 

more constraints to restrict the number of vehicles waiting at on-ramps. The 

first constraint is max

,on i onn n , which means the on-ramp queue ,on in
 
of on-

ramp i  should be less than a predefined boundary max

onn . This boundary can 

be set according to the maximum on-ramp storage space. The second 

restriction is expressed by , , 1on i on in n 
 
that guarantees the uniform 

distribution of queues at different on-ramps. This constraint is set for the 

requirement of user equity on motorways. 

After the work carried out by Wattleworth, some similar objective functions 

and constraints were proposed for different control aims, such as balancing 
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on-ramp queues, maximising total travel distance and total vehicular input 

(Yuan and Kreer 1971, Wang and May 1973, Chen et al. 1974, Schwartz 

and Tan 1977). Techniques such as linear programming were used to solve 

these optimisation problems in an off-line situation. 

Considering the evolution of traffic flow and variable demands, 

Papageorgiou (Papageorgiou 1980) proposed a more accurate model as an 

extension of static models mentioned above. In this work, the control period 

was divided into several intervals with different on-ramp demands. By 

introducing constant travel time for each motorway segment, the new model 

reformulated the static model in terms of outflow calculations for each 

segment, objective function and related constraints. This model can also be 

solved by linear programming. 

Fixed-time strategies can find the optimal metering rates according to static 

demands and fixed traffic conditions for different times of day. However, 

demands are not constant and may fluctuate within the control period. For 

the same time on different days, demands may also be different because of 

some special events such as incidents, road work and weather conditions 

(Papageorgiou and Kotsialos 2002). As fixed-time strategies do not take 

account of the real-time demands, they may make the motorway overloaded 

or underutilised. 

2.3.2 Local traffic-responsive strategies 

To overcome the limitations of fixed-time strategies, traffic-responsive 

strategies are developed to respond to the real-time traffic dynamics. Local 

traffic-responsive methods only measure the traffic information within the 

vicinity of one controlled motorway segment, and do not consider the 

performance of the whole motorway network. Thus, most local methods only 

focus on efficiency improvements within its controlled range. The equity 
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problem which needs the network-wide information from other on-ramps is 

neglected. 

Feed-forward control 

One of the most popular local strategies is called the demand-capacity 

strategy, which adopts an open-loop (feed-forward) control method (see 

Figure 2.5). 

Demand-capacity strategy

mr

qinoout

qcap

Motorway

Downstream Upstream

 

Figure 2.5: Demand-capacity Strategy  

(Kotsialos and Papageorgiou 2004b) 

At each time step, the metering rate can be calculated using the following 

equation (Masher et al. 1975) : 

1

min

, if

, otherwise

k k

k cap in out crit

r

r

q q o o
m

m

  
 

  

(2.15) 

where, k

rm
 
is the on-ramp flow (or metering rate) calculated at time step k , 

capq
 
is the motorway capacity collected downstream of the on-ramp, 1k

inq 

 
is 

the flow entering the controlled segment from the upstream motorway at 

time step 1k  , k

outo
 
is the occupancy measured downstream of the on-ramp 

at time step k , crito  is the critical occupancy of downstream motorway, and 

min

rm
 
denotes the minimum metering rate that is a predefined value. Usually, 

there exists a relationship between the occupancy and flow, and critical 

occupancy crito
 
corresponds to the maximum flow (capacity) capq . The main 
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objective of the demand-capacity strategy is to keep the flow departing the 

controlled motorway segment (measured downstream) close to the 

predetermined capacity. Another similar method also following the feed-

forward mechanism is the occupancy strategy (Masher et al. 1975) which 

adopts occupancy instead of flow inq
 
to calculate metering rates.  

Feedback control 

ALINEA (Asservissement Linéaire d’Entrée Autoroutière, i.e. Linear 

feedback control of a motorway on-ramp) is a widely used local ramp 

metering strategy, which is based on the feedback control mechanism as 

shown in Figure 2.6. Under the structure of ALINEA, the system output can 

be used to regulate the input. 

ALINEA

mr

qinoout

ô

Motorway

UpstreamDownstream

 

Figure 2.6: ALINEA Strategy  

(Kotsialos and Papageorgiou 2004b) 

The ramp metering rate at each time step is given by Equation (2.16) 

(Papageorgiou et al. 1991).
 

1 ˆ( )k k k

r r R outm m K o o  
 

(2.16) 

where, RK
 
is a regulatory parameter ( 0RK  ), ô  is a predefined target 

value which is typically set as a value close to the critical occupancy crito . In 

this way, ALINEA has the same objective of demand-capacity strategy that 
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is to keep the motorway outflow close to the capacity. By using the demand-

capacity strategy, the metering rate will be reduced to the minimum value 

after the outflow exceeds the road capacity ( k

out crito o ), which is relatively 

rough and unstable. On the other hand, ALINEA regulates the metering rate 

more smoothly and can avoid congestion in a more stable way.  

Besides the original ALINEA algorithm which uses downstream occupancy 

as the control variable, a number of variations, namely FL-ALINEA, UP-

ALINEA and UF-ALINEA, using different control variables such as 

downstream outflow, upstream occupancy and upstream inflow under the 

same control logic were also developed by the same authors (Smaragdis 

and Papageorgiou 2003).  

In practical applications, the on-ramp storage space is an important issue 

that should be considered by ramp metering strategies. When the on-ramp 

queue exceeds its storage space, it may spill back onto the adjacent local 

streets and cause severe congestion. Thus, a successful ramp metering 

strategy should be able to constrain the on-ramp queue under a maximum 

permitted value. By combining a queue management algorithm, ALINEA can 

be extended to ALINEA/Q which can take the queue constraints into account 

(Smaragdis and Papageorgiou 2003). This queue management algorithm is 

given by: 

1 ( )k k k k

on on on rn n T d m     (2.17) 

11
( )k k k

r on on onm n n d
T

      (2.18) 

where, k

onn  is the on-ramp queue length (the number of vehicles) at step k  

and onn  is the queue constraint, T  is the time interval between two steps. 

Equation (2.17) is used to estimate queue length, and equation (2.18) 
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determines the maximum metering rate that can keep queue length under 

constraint.  

By considering the metering rates generated by original ALINEA ( k

rm ) and 

queue management algorithm ( k

rm ), the final metering rate k

frm  is 

determined by:  

max{ , }k k k

fr r rm m m  (2.19) 

Through Equation (2.19), ALINEA/Q can make the ramp queue avoid 

exceeding queue constraints when it tries to achieve its target, such as 

keeping mainline density around the critical value. 

Other approaches 

Except for algorithms using the classic control theory, such as demand-

capacity (feed-forward control) and ALINEA (feedback control), some other 

approaches from artificial intelligence such as neural networks and iterative 

learning were also used to develop local ramp metering strategies. 

For instance, a neural network was combined with a feedback controller in  

(Zhang and Ritchie 1997) to maintain road density around the critical density. 

For the same purpose, an iterative learning algorithm was developed by 

(Hou et al. 2008). The main drawback of these methods is similar to 

algorithms based on the classic control theory, i.e. a target value such as 

critical density (occupancy) or capacity flow should be defined in advance. 

As mentioned in (Papamichail et al. 2010) this target value (capacity flow) is 

not stable in some realistic situations, and any algorithms trying to obtain a 

predefined value may worsen the traffic operations. Moreover, without 

suitable optimisation mechanism, these methods cannot be easily extended 

to solve multi-objective problems. Therefore, these methods are usually 
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limited to local problems with one control objective that is to improve traffic 

efficiency. 

2.3.3 Coordinated traffic-responsive strategies 

Unlike the local methods introduced above, coordinated strategies take the 

whole network into account and all involved on-ramps can be uniformly 

controlled by the coordinated ramp metering strategy. With network-wide 

information, equity issues can be considered by the coordinated strategies. 

The remainder of this section will review some important algorithms and 

strategies in this area. 

Efficiency-orientated strategies 

Although equity has been proposed as one important impact of coordinated 

ramp metering strategies (Papamichail et al. 2010), many of them are still 

only focused on efficiency improvement. One example of these efficiency-

oriented strategies is known as METALINEA (Papageorgiou et al. 1990), 

which is an extension of the local strategy ALINEA. METALINEA followed 

the feedback control logic, and tried to generate metering rates for all 

controlled on-ramps simultaneously. To calculate different metering rates for 

different on-ramps, METALINEA used a number of vectors and matrices as 

shown in the equation below. 

1 1 ˆ( ) ( )k k k k k     r r 1 2m m K o o K O O  (2.20) 

where, rm , o , Ô  and O  are all vectors and each vector contains a group 

of elements related to different on-ramps, 1K
 
and 2K  are two gain matrices 

(containing a group of regulatory parameters) that should  be calibrated for 

specific problems. The objective of METALINEA is the same as ALINEA that 

is to keep the road density or occupancy at a predefined level. Besides the 

feedback control method, some other operational algorithms such as FLOW 
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(Jacobson et al. 1989), SWARM (Paesani et al. 1997) and ZONE (Lau 1997) 

also attempted to improve traffic efficiency by maintaining the outflow around 

the road capacity. 

Another group of studies focused on formulating different ramp metering 

scenarios as optimisation problems and using optimal control strategies to 

solve them. The purpose of these strategies was to optimally solve an 

efficiency-related objective function, not achieve some predefined target 

value. Examples of optimisation-based methods can be found in (Zhang et al. 

1996, Zhang and Recker 1999, Gomes and Horowitz 2006, Chow and Li 

2014), where macroscopic traffic flow models were combined with control 

strategies to formulate optimisation problems. Traffic dynamics generated by 

these traffic flow models at each time step can be involved in the 

optimisation process, which is different from the fixed-time strategies 

introduced in Section 2.3.1. 

Equity-involved strategies 

In recent two decades (especially the recent ten years), the equity issue has 

attracted increasing attention which has been considered in some 

coordinated ramp metering strategies. 

One of the early attempts was made by (Benmohamed and Meerkov 1994), 

where a feedback control framework for equity consideration was developed. 

This control method adopted a decentralised architecture that balanced the 

local efficiency (benefits for each section) and global equity (benefits for all 

sections involved). In their work, the so-called max-min fairness 3  was 

                                            

3  The max-min fairness is an objective about the resource allocation in a 

communication network, which can be achieved when improving the resource (such 

as bandwidth) obtained by any one user of a specific user group will lead to the 

decrease of resources allocated to some other users in the same group. 
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guaranteed in a hypothetical freeway network. For motorway traffic control, 

the recourse allocation problem was transformed to the road capacity 

allocation problem. Thus, the fairness in a freeway system was obtained by 

equally distributing the available road capacity to users on different routes 

between different OD pairs.      

Kotsialos et al. (2001) developed an optimal coordinated control method 

named advanced motorway optimal control (AMOC) for large-scale 

situations. By adding some constraints to the objective function to restrict the 

queue length on each on-ramp involved, they showed in their work 

(Kotsialos and Papageorgiou 2001, Kotsialos and Papageorgiou 2004a) that 

the equity problem can be partially tackled, if the equity was measured by 

Equation (2.10). By considering the uncertainty of the motorway traffic 

system, a hierarchical control approach composed of AMOC and ALINEA 

were developed in (Papamichail et al. 2010), which provided a similar 

performance of AMOC on maintaining equity using the same measurement. 

Without an explicit equity measurement, the infrastructure limitations 

(maximum queue length on on-ramps) are not enough for maintaining equity 

of the whole system. Zhang and Levinson (2005) proposed a more explicit 

way using an equity-related control objective (the measurement (2.11)) to 

balance efficiency and equity of motorway systems. The main contribution of 

their work is the weighted total travel time that combines the efficiency and 

equity problem into one objective function. Different weight values need to 

be defined according to different on-ramp delays. For the equity 

consideration, larger weight values should be assigned to longer on-ramp 

delays to encourage more vehicles to enter the mainline. The goal of their 

control algorithm is to minimise this weighted total travel time by coordinating 

a number of on-ramps in the upstream of the critical section (the congested 

motorway segment).  
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However, prior knowledge is required in the above strategy to predefine 

different weight values, which is usually very difficult to obtain by system 

designers. Thus, Meng and Khoo (2010) formulated a multi-objective 

optimisation problem for balancing efficiency and equity. Without defining 

any explicit weights for any objective involved, a set of non-dominated 

solutions forming a so-called pareto front 4can be obtained by solving a 

multi-objective optimisation problem. In this problem, the equity 

measurement (2.12) was used as one of the control objectives. For the real 

application, operators in the control room can choose their preferred 

solutions from the solution set.  

Considering the computational complexity of mathematical models in the 

existing optimal control strategies, Zhang and Wang (2013) presented a 

hierarchical control method based on linear programming. Three objective 

functions aiming to minimise congestion, restrict the on-ramp queue length 

without spilling back, maximise throughput and balance the equity (the last 

two objectives are combined into one objective function with equity 

constraints shown in (2.13)) were formulated and assigned with different 

priorities. Through linear programming, these functions can be solved 

efficiently. 

Summary 

It can be seen from the review of recent studies that optimisation-based 

methods (such as optimal control) have attracted considerable attentions, 

because these strategies are theoretically sound and can be easily extended 

to deal with different control objectives. Many of existing equity-involved 

                                            

4 Pareto front is composed of non-dominated solutions. These solutions cannot be 

updated by improving any objectives considered without degrading at least one of 

the other objectives. 
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strategies fall into this category. However, most of them are model-based 

methods that cannot adapt to different simulation models without 

modifications. For those strategies based on complicated mathematical 

models, high computational demand is required to solve the optimisation 

problem, which increases the difficulty of field application (Jacob and 

Abdulhai 2010). To overcome these limitations, another optimisation-based 

method, reinforcement learning (RL), was introduced to the ramp metering 

area. This method is based on the Markov decision process and dynamic 

programming, which can approximately solve the optimisation problem 

through continuous learning without any models. Some recent applications 

of RL are investigated in the following section. 

2.3.4 Reinforcement learning based strategies 

RL-based control strategies for ramp metering are still in the early stages 

and most of them only have a local view with efficiency improvement as the 

main control objective. Examples of RL strategies from both local and 

coordinated perspectives are shown below. 

Local RL-based strategies 

The first work on the use of RL to solve ramp metering problems was 

conducted by Jacob and Abdulhai (Jacob and Abdulhai 2006, Jacob and 

Abdulhai 2010). In their system, ramp metering was combined with VMS to 

deal with incident-induced congestion and the coordination of multiple ramp 

meters was not considered. This approach was based on RL or specifically 

Q-learning which adopted a “trial-and-error” method to improve the strategy 

for selecting control actions (metering rates and VMS settings) from a 

predefined action set. After a number of trials, the best control actions under 

different traffic situations can be obtained to reduce the total time spent by 

users. In this system, the reward at each time step was derived from the 
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measurement of TTS shown in Equation (2.2). A six-dimensional state space 

was used by the control system, which contained two sub-sets for speed (for 

two roads), one sub-set for ramp meter (metering rates), one sub-set for 

VMS (VMS message settings) and two sub-sets for incidents (for two roads).   

Except for the main concern of maximising motorway throughput (or 

mainline outflow which is equivalent to minimising TTS), on-ramp queue 

constraints were considered in (Davarynejad et al. 2011). This system also 

adopted Q-learning to solve local ramp metering problems. To reduce the 

computational complexity, an additional agent (or controller) was developed 

specifically for managing on-ramp queues in this system. The final metering 

rate was determined by the maximum value generated by two controllers 

responsible for maximising throughput and regulating on-ramp queues 

respectively. In this work, the state space was composed of five sub-sets 

regarding the downstream density, on-ramp queue length, metering rates, 

current and one-step predicted on-ramp demand. Another similar Q-learning 

based algorithm was presented in (Wang et al. 2012) which also tried to 

maximise the mainline outflow. The reward of their system was directly 

related to the mainline outflow, while the mainline inflow and ramp metering 

rates were used to form the state space. 

Rezaee et al. (2012) used the Q-learning algorithm with function 

approximation to deal with the ramp metering control problems under the 

continuous state space. In this work, the state space was not composed of a 

number of discrete states as in the traditional Q-learning problems, but all 

possible states observed from the external environment. With the help of an 

algorithm based on k-nearest neighbours, the Q values (related to control 

objectives) for new observed states can be estimated. Similar to (Jacob and 

Abdulhai 2006, Jacob and Abdulhai 2010), the reward in this work was 

derived from the Equation (2.2) for TTS reduction. It was found in this work 
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that TTS was reduced by 44% compared with non-controlled situation. Two 

states regarding the mainline density and on-ramp flow were used to form 

the state space. In one of the later works shown in (Rezaee et al. 2013), 

some analysis and suggestions about parameter settings under continuous 

state conditions were provided. In another work presented in (Rezaee et al. 

2014), the comparison of different function approximation methods were 

discussed. 

Another local RL-based system was proposed in (Lu et al. 2013). This 

system extended the basic Q-learning to deal with incident-induced 

congestion. This method combined the direct reinforcement learning (DRL, 

i.e. the basic Q-learning) and the model-based planning together to obtain 

the benefits from both sides. The new method was compared with DRL and 

ALINEA. Experimental results obtained from simulation showed that, with 

suitable weight values, IRL can achieve a superior performance in many 

scenarios. Moreover, compared with DRL, IRL has a faster learning speed. 

The detailed description of this extended system will be given in Chapter 8.  

Coordinated RL-based strategies 

Besides the local applications, some recent studies have been done to 

explore the coordinated application of RL. In the work presented in (Bai et al. 

2009, Zhao et al. 2011), a new coordinated method based on adaptive 

dynamic programming (ADP) was used to control a hypothetical motorway 

with four pairs of on- and off-ramps where ADP is a practical implementation 

and extension of RL (Lewis and Vrabie 2009). Compared with basic RL, two 

extra networks namely critic network and action network are maintained in 

the ADP structure. The critic network is used to generalise the reward 

function with respect to states, while the action network can correlate actions 

and rewards. In this way, continuous states and actions can be considered 

in the ADP-based method, which makes the control system more accurate 
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than the discrete RL. However, both the critic and action networks should be 

trained before or during the basic learning process, which requires extra 

computation and complicates the whole system. Similar to AMOC analysed 

in (Kotsialos and Papageorgiou 2004a), although queue constraints were 

considered in the ADP system to prevent on-ramp queues from exceeding 

their maximum permitted values, there was no equity measurement to 

capture equity conditions. Thus, the equity issue cannot be explicitly solved 

in this work. 

Another RL-based coordinated ramp metering system was proposed by 

(Veljanovska et al. 2010, Veljanovska et al. 2012). Although some positive 

simulation results for improving traffic efficiency were shown in their work, 

the whole system in terms of three critical elements (i.e. state, action and 

reward) and how multiple agents (responsible for controlling multiple on-

ramps) worked with each other was not clearly defined. It was mentioned in 

this work that the objective was to maximise the exit flows (including the 

outflows of both the mainline and off-ramps), but how this objective was 

converted to the reward at each time step was not presented. The same 

problem occurred with the action definition, and it was not clear what kinds 

of actions (such as how many vehicles are allowed to enter the mainline at 

each control step) were adopted.  

One of the most recent applications of coordinated RL in the ramp metering 

area is (Fares and Gomaa 2015). In their work, the multi-agent concept 

based on the coordination graph was used to build a learning system. 

Similar to the feedback control algorithm ALINEA, the goal of this system 

was to keep the mainline density close to the critical value. Through 

simulation experiments, they showed that the new system can significantly 

reduce the travel time of road users. However, the equity issue was not 

considered by this system.  
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In the above three coordinated RL systems, the equity issue was not solved, 

and improving traffic efficiency was the only objective considered. Zhaohui 

and Kaige (2010) developed a new system based on RL that can take the 

equity problem into account. In their work, equity was measured by Gini 

coefficient and calculated at each time step. As mentioned in Section 2.2.2, 

to obtain the Gini coefficient, the relevant information (such as speed and 

travel time) of each user at each on-ramp is required. This information is 

very difficult to obtain in a real-time situation. It was not clear in this work 

how this information can be captured by the control system and converted to 

rewards at each time step.  

2.4 Summary and Discussion 

Through a brief investigation of control objectives, it can be seen that traffic 

efficiency is not the only concern of ramp metering in many recent studies. 

Increasing impacts from social and environmental sides, especially the 

equity issue, have been considered by the ramp metering community. To 

maintain user equity in a motorway system, some ramp metering strategies 

that can balance waiting times (or delays) for users from different on-ramps 

have been developed. 

The review of ramp metering strategies showed that, compared with fixed-

time methods, traffic-responsive approaches are more effective under 

dynamic conditions and have become the major strategies for ramp metering. 

Among traffic-responsive strategies, an increasing trend of using 

optimisation-based methods such as optimal control was shown in the 

literature. This is mainly because these strategies can solve the ramp 

metering problem based on optimisation theory that can provide sound 

solutions.  
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As an approximated optimisation method, RL was recently proposed to 

overcome some drawbacks of traditional optimal control strategies, such as 

poor adaptability and high computational demand. However, existing studies 

using RL are still in their early stages and have shown some limitations 

which are summarised as follows.  

(1) There is a lack of a general framework for designing RL-based system 

for a ramp metering application, and each study has its own way to 

define RL elements, especially the state and reward. For example, the 

rewards in (Jacob and Abdulhai 2010, Rezaee et al. 2012, Rezaee et al. 

2013) were derived from a commonly used TTS measurement, while in 

(Davarynejad et al. 2011, Wang et al. 2012) the rewards were related to 

outflows of the controlled motorway. Besides the reward, variant 

definitions of state space can be found in existing studies. Different 

states were used to form different state spaces from the simple 2-

dimensional state space such as (Rezaee et al. 2012, Wang et al. 2012) 

to the more complicated 6-dimensional state space (Jacob and Abdulhai 

2010). There was not enough explanation in these studies as to why 

these states were chosen. Some of the existing studies, such as 

(Veljanovska et al. 2012, Veljanovska et al. 2010, Zhaohui and Kaige 

2010) even missed a clear definition of these elements, which makes 

their strategies very difficult to understand and be generalised to 

different scenarios. 

(2) Although a few studies have considered the coordination problems in a 

RL-based strategy, improving traffic efficiency is still the main concern. 

How to add new objectives such as user equity and balance different 

control objectives have not been well studied. According to the review 

presented in Section 2.3, only one work has been done to incorporate 

the equity issue into the RL-based system. However, this work used the 
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Gini coefficient as the equity measurement, which is difficult to obtain in 

real time (as discussed in Section 2.2.2). How this coefficient was 

captured by their system and how to convert it to the equity-related 

rewards was not mentioned.  

(3) There is no systematic evaluation for the RL-based system regarding the 

influence of learning parameters and the effectiveness of algorithms on 

different traffic networks (hypothetical and real networks). Most of 

existing studies selected learning parameters on an ad hoc basis without 

analysing these parameters in advance. To the best knowledge of the 

author, the only published work related to the analysis of learning 

parameters for ramp metering is shown in (Rezaee et al. 2013). This 

work provides some useful suggestions about how to select suitable 

parameters in a continuous state case with some adaptive settings. 

However, the behaviour of different parameter values and their impacts 

on the algorithm performance are not analysed, especially in a more 

common case with discrete states. Moreover, only a few studies such as 

(Jacob and Abdulhai 2010, Rezaee et al. 2012) have evaluated the RL-

based system using real traffic data collected from a real motorway 

network, and most of the existing studies were based on a hypothetical 

network with assumed traffic demands.  

To overcome these limitations, the main objectives introduced in Chapter 1 

can be explained as follows: 

(1) To investigate the state of the art of RL technology and its applications in 

the ramp metering domain. This objective forms the basis of all the other 

four objectives. By achieving this objective, the basic mechanism of RL 

and ramp metering can be obtained to develop the self-learning control 

system. The review of RL-based ramp metering systems has been 
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accomplished in this chapter, and the investigation of RL mechanism will 

be presented in Chapter 3. 

(2) To provide a general framework for designing a RL-based ramp 

metering system. This framework contains a definition of three RL 

elements, namely reward, state and action, in a general ramp metering 

scenario and a structure with related modules that can bring together 

three elements and accomplish the learning process. The details of 

these elements and modules will be presented in Chapter 4. 

(3) To explore the application of RL to ramp metering for both single- and 

multi-objective problems under the framework proposed by (1). Two 

control objectives relating to the traffic efficiency and user equity are 

considered in this study. A specific reward will be defined for each 

control objective. After that, two control algorithms will be developed to 

deal with single- (only efficiency) and multi-objective (both efficiency and 

equity) problems respectively. This part of the system design will also be 

introduced in Chapter 4. 

(4) To provide a platform with initial software implementations based on 

objectives (1) and (2), which can be used to evaluate the RL-based 

system. The proposed system and a macroscopic traffic flow model will 

be programmed as two reusable classes by C++. This provides a flexible 

way to evaluate the RL-based system under different traffic conditions 

simulated by the traffic flow model.  The detailed implementation issue 

will be tackled in Chapter 5. 

(5) To evaluate the proposed system based on (3) by conducting simulation-

based experiments considering both hypothetical and real traffic 

networks. Three cases including two hypothetical cases and one real 

case (with the real traffic data collected from a real motorway network) 
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will be designed to evaluate the proposed system on different tasks, 

such as improving traffic efficiency, managing on-ramp queue length and 

maintaining user equity at different on-ramps. This part of evaluation will 

be presented in Chapters 6 and 7. Moreover, an extension of the 

proposed system will also be tested in a simulation environment where 

the ability of the new system to deal with incident-induced congestion will 

be analysed. This test will be shown in Chapter 8.        

The background and basic mechanisms of RL will be introduced in the next 

chapter. 
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CHAPTER 3 REINFORCEMENT LEARNING 

This chapter introduces the basic idea and mechanism of reinforcement 

learning (RL). Section 3.1 begins with a brief introduction to how the agent 

interacts with its external environment by using RL. Then, the theoretical 

basis of RL, in terms of the Markov decision process (MDP) and dynamic 

programming (DP) are introduced in Sections 3.2 and 3.3. Section 3.4 gives 

the core algorithms, i.e. temporal difference (TD) algorithms of RL. The 

extension of basic RL algorithms to multi-objective problems is presented in 

section 3.5. The summary of this chapter is given in Section 3.6. 

3.1 Agent and Environment Interaction 

Agent Environment

state

reward

action
 

Figure 3.1: Agent and environment interaction 

In a RL problem, the learning process is conducted through the interaction 

between an agent and its external environment as shown in Figure 3.1. Here, 

the agent is defined as an autonomous entity that can observe the 

environmental changes and take actions in response (e.g. the controller that 

can generate suitable metering rates in a ramp metering problem). The 

environment can be anything that should be controlled by the agent and is 

usually represented by a group of states (e.g. the state of traffic flow on 

motorways in a ramp metering problem). Through receiving a reward (either 
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positive or negative) after each execution of control actions, the agent can 

know how good its actions are.  

The RL process usually follows the discrete-time mechanism, which means 

the learning process is discretised into a number of time steps. At each step, 

the agent interacts with its environment by taking a specific action and 

observing the change of environmental state with a relevant reward for this 

action. If this change leads to a good result, a positive reward will be 

received by the agent as an encouragement. If the change is undesirable, a 

negative reward will be received as a penalty. The objective of an agent is to 

get the maximum cumulative reward after executing a sequence of actions 

(Sutton and Barto 1998). 

This section gives a general introduction about how RL works through the 

interaction between an agent and its external environment. To understand 

the detailed mechanism of RL, two kinds of problems, namely the Markov 

decision process (MDP) and dynamic programming (DP) should be known 

first. These two problems form the basis of RL. 

3.2 The Markov Decision Process 

Formally, RL is described as an MDP which can be represented by a 4-tuple 

{ , , ( , , ), ( | , )}S A R s a s P s s a   (Watkins 1989, Puterman 2009, Davarynejad et al. 

2011). 

 S  is the state set (or state space) used to describe the external 

environment of an agent. In the discrete state case, a state set S  is 

composed of a finite number of states. At each time step, a state s S  is 

observed by the agent to capture the environmental change. 
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 A  is the action set, containing all executable actions for the agent. After 

observing the state at each time step, the agent chooses an action a A  

to execute according to different action selection strategies. 

 ( , , )R s a s  is the reward function, which generates an immediate reward 

r  ( r  ) for the agent reaching state s  from state s  after taking action 

a . r  can be a positive or negative real number related to the goal (or 

objective) of an agent. 

· ( | , )P s s a  is the state transition probability. For state pair ( , )s s S , 

( | , )P s s a  represents the probability of reaching state s  after executing 

action a  at state s  ( ( | , ) 1s S P s s a
  ). 

Given the reward function and state transition probability, the expected 

reward ( , )R s a  can be obtained by Equation (3.1), which is usually used to 

solve an MDP problem (Puterman 2009).  

( , ) ( , , ) ( | , )
s S

R s a R s a s P s s a


    (3.1) 

From the definition of MDP, it can be seen that the state transition probability 

( | , )P s s a  to the next state s  is only determined by the current state s  and 

action a , not all previous states and actions. This property is termed the 

“Markov property”, based on which the value of the current state is sufficient 

for finding optimal actions for the next state (Puterman 2009). The Markov 

property determines whether a problem can be modelled as a Markov 

decision process, which will be mentioned again in Chapter 4, for defining 

RL elements in a ramp metering problem. Besides four basic elements, for 

solving an MDP problem, some other terminologies such as policies, returns 

and value functions should also be defined. 
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3.2.1 Policies and returns 

As mentioned earlier, the aim of an agent is to maximise the cumulative 

reward by taking a sequence of actions. In a formal definition, the sequence 

of actions is determined by “policy” and the cumulative reward is expressed 

by “return”. 

A policy   is defined as a mapping from observed states to executable 

actions ( : S A  ) (Watkins 1989). Therefore, the policy determines which 

action to take with observation of a specific state. If a policy with actions can 

lead to the maximum cumulative reward, this policy is defined as the optimal 

policy. Therefore, maximising the cumulative reward is equivalent to finding 

the optimal policy. 

The return 
tRe  is used to aggregate a sequence of rewards (cumulative 

reward) after time step t . If the immediate reward generated by the reward 

function ( , , )R s a s  at step t  is tr  , then 
tRe  can be defined as a weighted 

sum of rewards of all the following steps (Sutton and Barto 1998). 

1 2 ( ) 1 ( ) 1

0

t t t n t n n t n

n

Re r r r r  


     



        (3.2) 

The superscripts of Re  and r  are time step indices, while 
( )n  means   to 

the power n .   ( [0,1]  ) is the discount rate, which indicates that, with the 

increase of time step, the importance of its corresponding reward for 

calculating the return 
tRe  is decreasing.  

3.2.2 Value functions 

The return defined above only gives a sample of the cumulative reward, and 

a number of returns may exist in an MDP problem. Thus, to better express 

the cumulative reward, the expectation (denoted by {}E ) of these returns 
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should be used. Usually, this expectation can be defined as two value 

functions, state-value function and action-value function (Sutton and Barto 

1998). 

Definition of value functions 

Given a policy  , according to the Markov property, the expectation of 

returns can be formulated as a function of a state s , i.e. ( )V s
. This function 

is named the “state-value function” for policy   at state s  (as given by 

Equation (3.3)). 

 ( ) 1

0

( ) | , | ,t t n t n t

n

V s E Re s s E r s s   


 



 
    


  (3.3) 

Besides the state s , if the action a  is also one variable that can determine 

the cumulative reward, another similar function named the “action-value 

function” ( ( , )Q s a
) can be defined by Equation (3.4), which is for policy   at 

state s  after taking action a . 

 ( ) 1

0

( , ) | , , | , ,t t t n t n t t

n

Q s a E Re s s a a E r s s a a   


 



 
      


  (3.4) 

This function can also be called the Q function, and the value of the Q 

function is known as the Q value. 

Bellman equation 

One important feature of value functions is that they can be updated at each 

step, which provides a way for developing relevant algorithms to solve MDP 

problems iteratively. Take the state-value function for example, there exists 

a recursive relationship between the value of the current state and its 

possible next states, through which optimal values and policies can be 

updated recursively by proper algorithms. This relationship is called the 
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Bellman equation (Kaelbling et al. 1996) which can be derived from Equation 

(3.3) and expressed as follows: 

( ) 1

0

1 ( ) 2

0

1 ( ) 2 1

0

( ) | ,

,

( | , ) ,

( , ) ( | , ) ( )

n t n t

n

t n t n t

n

t n t n t

s S n

s S

V s E r s s

E r r s s

P s s a r E r s s

R s a P s s a V s





 

  

  




 




  




   

 



 
  



 
   



  
     

  

  





 



 (3.5) 

Based on the Bellman equation, the optimal value 
*( )V s  (

*( ) max ( )V s V s

 ) 

of state s  can be obtained by the equation below: 

* *( ) max ( , ) ( | , ) ( )
a A

s S

V s R s a P s s a V s




 
   

 


 

(3.6) 

Thus, the optimal policy 
*( )s  can be defined as the policy that can lead to 

the maximum value of state s . 

* *( ) arg max ( , ) ( | , ) ( )
a A s S

s R s a P s s a V s 
 

 
   

 


 

(3.7) 

Similarly, for the action-value function, the optimal value of the state-action 

pair ( , )s a  can be expressed by: 

* *( , ) ( , ) ( | , )max ( , )
a

s S

Q s a R s a P s s a Q s a




      (3.8) 

Based on the Bellman equation, some algorithms such as DP algorithms 

have been developed to solve MDP problems. The next section will 

introduce these algorithms. 
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3.3 Dynamic Programming 

Given a model of state transition probabilities and reward function, DP 

provides a possible way to solve an MDP problem. In this section, two basic 

algorithms of DP, namely policy iteration and value iteration are introduced. 

3.3.1 Policy iteration 

The policy iteration algorithm can be found in Algorithm 3.1 (Kaelbling et al. 

1996). The basic idea of policy iteration is that the algorithm begins with an 

arbitrarily selected policy and then improves it iteratively. Specifically, two 

core steps (lines 4 and 5 of Algorithm 3.1) of the algorithm are repeated to 

get the optimal policy. 

Algorithm 3.1: Policy iteration 

1. initialise a policy   arbitrarily 

2. repeat 

3.     

4. calculate the value for   

by solving the linear equations: 

( ) ( , ( )) ( | , ( )) ( )
s S

V s R s s P s s s V s   


     

5. improve the policy for each s S  

( ) arg max ( , ) ( | , ) ( )
a A s S

s R s a P s s a V s 
 

 
    

 
  

6. until    is the same as    

 

(1) The first core step (line 4) is named the policy evaluation. | |S Linear 

equations presented by ( ) ( , ( )) ( | , ( )) ( )s SV s R s s P s s s V s   
   

 
(one 

for each state s S ) are solved in this step to get the expected value 

( )V s

 under policy   for each state s . Here, ( )s a  . 
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(2) The second core step (line 5) is termed the policy improvement. Any 

new policy    with the maximum ( )V s

 is used to replace the current 

policy   .  

This algorithm ends when no policies are better than the current one (when

   ). In this way, the optimal policy can be found after a number of 

iterations. 

3.3.2 Value iteration 

The value iteration algorithm can be found in Algorithm 3.2 (Watkins 1989). 

Algorithm 3.2: Value iteration 

1. initialise 
0 ( )V s  arbitrarily, 0i   

2. repeat 

3. 1i i   

4. for each s S do 

5. 
1( ) max ( , ) ( | , ) ( )i i

a A
s S

V s R s a P s s a V s 




 
   

 
  

6. until the differences between ( )iV s and 
1( )iV s

 

are small enough for all s  

 

Because the policy   is not known, the value function ( )iV s  instead of  

( )V s
 is used here to denote the value updated in the i  th iteration. Unlike 

policy iteration, this algorithm starts with an arbitrary value 
0 ( )V s  for each 

s S . After that, it chooses an action a A  iteratively to improve the values 

(that is why it is called value iteration). For the i  th iteration, the value of 

each state ( )iV s  is computed according to the value of each state 
1( )iV s

 

from the last iteration 1i  . The action a  that can lead to the maximum ( )iV s  

for each state is recorded in the policy. In this way, through continuously 
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improving ( )iV s  for a number of iterations, the algorithm can learn the policy 

corresponding to the maximum ( )iV s  for each state.  

In real applications, when the differences between ( )iV s  and 
1( )iV s

 for all 

states are smaller than a predefined value (usually a small positive number), 

the algorithm will end. 

Two basic DP methods (policy iteration and value iteration) used to solve 

MDP problems have been introduced in this section. One important 

precondition of DP is knowing of a model related to the transition probability 

( | , )P s s a
 and reward function ( , , )R s a s . However, it is very difficult for 

many practical applications (such as ramp metering problems) to get this 

model in advance. Under such circumstances, the agent needs to interact 

with its external environment directly and learn the optimal policy without the 

help of models. This concept of “learning without models” forms the basis of 

some important RL-based algorithms. The next section will introduce the 

mechanisms of these algorithms. 

3.4 Temporal Difference Learning 

Without a model of transition probabilities and reward functions, an 

alternative way of solving MDP problems is the temporal difference (TD) 

learning. TD learning is the core idea of RL that can help the agent learn 

how to find suitable solutions by directly interacting with its environment. TD 

(or TD (  )) contains a group of algorithms extended from the basic DP. 

TD(  ) learning is a model-free method which tries an action at a state, and 

estimates its related value according to the immediately received reward and 

the value of the next state without knowing all state transition probabilities 

and rewards (Kaelbling et al. 1996).   here is a parameter related to the so-

called eligibility trace of each state, which determines how many rewards are 
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considered in the return (cumulative reward) and which states are eligible for 

updating the state values ( ( )tV s ) (Sutton and Barto 1998) . Similar to the 

value iteration, ( )tV s  here is the value updated at time step t . 

3.4.1 SARSA and Q-learning 

A particular case of TD (  ) with  = 0 is a TD(0) algorithm where only one 

immediate reward is considered in the return. Because of its simplicity, this 

algorithm has been widely used in practice, and this study will focus on TD(0) 

only. 

Through the updating rule (3.9), at each time step t , the value 
1( )t tV s 

 of the 

last visited state 
1ts 

 is updated to approach 
1( )t t tr V s   which is the sum 

of the immediate reward tr  and the discounted value of the current state 

1( )t tV s 
. Because tr  is the real received reward, through each updating, 

1( )t t tr V s   should get closer to the real value of this state  
1( )tV s 

. Thus, 

the optimal value of each state can be obtained through recursively calling 

the updating rule (3.9). 

1 1 1 1 1 1( ) ( ) ( ) ( )t t t t t t t t tV s V s r V s V s             (3.9) 

where,   is the learning rate or step-size parameter that is used to 

determine how fast values of states can be updated approaching their 

maximum values (Even-Dar and Mansour 2004). Typically,   is a small 

positive fraction value within the range between 0 and 1.  

SARSA learning  

Equation (3.9) shows how the state-value function is updated according to 

the basic idea of TD(0) learning. If this equation is extended to update the 

action-value function (Q value), a new TD(0) algorithm named “SARSA” 

(state-action-reward-state-action) with the updating rule (3.10) can be 

derived from (3.9) (Sutton and Barto 1998). 
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1 1 1 1 1 1 1 1 1( , ) ( , ) ( , ) ( , )t t t t t t t t t t t t tQ s a Q s a r Q s a Q s a                (3.10) 

SARSA is an on-policy TD, because the Q value update is directly 

dependent on the action executed according to some sort of action selection 

strategy, which means 
1 1( , )t t tQ s a 

 is calculated according to 
1( , )t t tQ s a

.  

Q-learning 

For an off-policy method, 1max ( , )
t

t t t

a
Q s a

 
instead of 

1( , )t t tQ s a

 is used to 

update the Q value. In this way, the greedy action corresponding to the 

optimal Q value is selected to update Q values, which is independent from 

the real executed action. This kind of learning method forms another TD(0) 

algorithm called “Q-learning”. The updating rule for Q-learning is given below 

(Sutton and Barto 1998):
 

1 1 1 1 1 1 1 1 1( , ) ( , ) max ( , ) ( , )
t

t t t t t t t t t t t t t

a
Q s a Q s a r Q s a Q s a             

  
 (3.11) 

With suitable parameters, for the same problem, both SARSA and Q-

learning can converge to the optimal policy, while Q-learning has an earlier 

convergence in many cases (Sutton and Barto 1998). In practical 

applications, Q-learning is more popular than SARSA learning. 

3.4.2 Action selection strategies 

For a RL-based agent, exploitation and exploration are two basic behaviours 

(Kaelbling et al. 1996). Exploitation means the agent always takes the 

greedy action that can obtain the maximum cumulative reward (such as the 

Q value in Q-learning) according to the existing experience. Exploration is 

the behaviour when the agent tries non-greedy actions with smaller 

cumulative reward. These two behaviours are essential for the continuous 

learning of RL. Exploration can help the agent discover new actions that may 

be better than the greedy actions found previously (because of the new 
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information captured). In the meanwhile, exploitation can keep the agent 

from being interrupted too often by the exploration.  

In order to balance these two behaviours, some action selection strategies 

are developed for selecting suitable executed actions, among which the so-

called “  -greedy” is the most commonly used strategy. Specifically, this 

strategy takes a random non-greedy action ( t t

greedya a ) with probability   

and chooses the greedy action ( t t

greedya a ) with probability 1   at each 

state 
ts  (as shown in Equation (3.12)). The greedy action t

greedya
 
at state 

ts  

is the action corresponding to the maximum Q value at this state. 

1, if , arg max( ( , ))
( | )

1 , otherwise

t

t t t t t t

greedy greedy
t t

a

a a a Q s a
p a s





  
 

 

 (3.12) 

When  ( [0,1]  ) is larger, the agent will be more adventurous and always 

try to explore the unknown actions. This kind of exploration may be good, 

and better actions may be found much faster than using a conservative 

strategy. However, it may also interrupt the learning process by trying worse 

actions too often.  

3.5 Multi-objective Reinforcement Learning 

So far the basic mechanism and related algorithms of RL with one control 

objective has been introduced. In many practical applications, decisions 

should be taken on the basis of the trade-off between multiple objectives, 

which are usually formulated as multi-objective optimisation problems 

(MOO). The aim of MOO is to achieve one or more acceptable compromises 

of all desired objectives (Ngatchou et al. 2005). These acceptable 

compromises can form a so-called Pareto front with non-dominated solutions. 
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In order to solve MOO problems, the basic reinforcement learning has been 

extended to multi-objective reinforcement learning (MORL) with a number of 

emerging algorithms (Vamplew et al. 2011). In this section, some relevant 

MORL algorithms will be briefly introduced. Generally, the MORL algorithms 

can be classified into two main categories namely single policy and multi 

policy algorithms according to the number of policies needed by a problem 

domain (Vamplew et al. 2011). 

3.5.1 Single-policy algorithms 

In single-policy scenarios, only one policy is required according to some 

predefined criteria. Most algorithms of MORL are focused on single policy 

learning (Roijers et al. 2013). 

W-learning is one extension of single-objective Q-learning that uses multiple 

agents to learn multiple Q values, each of which corresponded to an 

objective (Humphrys 1995). The final decision was made based on 

negotiation between all agents involved and the action proposed by the 

“winning” agent was selected as the executed action. This “winner takes all” 

method can guarantee that the action selected is optimal for at least one 

objective. In recent years, this method was extended to distributed scenarios 

and applied to solve urban traffic control problems (Dusparic and Cahill 

2009). Although this method is efficient for many problems, its drawback is 

also obvious. As mentioned by (Roijers et al. 2013) this method may fail to 

find the solution (or policy) that should be a compromise of different 

objectives. 

Without using multiple agents, Gábor et al. (1998) proposed a general 

framework for solving MORL problems. One objective can be maximised by 

making some constraints to other objectives. Through setting preferences for 

different objectives, a good compromise between these objectives can be 
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obtained. In some cases, the information about preferences on different 

objectives cannot be directly obtained in advance. Under such 

circumstances, fuzzy logic was applied in (Yun et al. 2010) to quantify 

preferences based on the relative importance between different pairs of 

objectives. 

Obviously, specific knowledge about the problem domain is required to set 

constraints and quantify preferences for different objectives. This knowledge 

is usually difficult to obtain in advance. Another way to solve this problem is 

by using the linear scalarisation method (Vamplew et al. 2011). Each 

objective in the problem domain can be assigned a weight value, and the 

weighted sum of all objectives can form a new objective that should be 

maximised (or minimised). The relative importance between different 

objectives can be regulated by setting different weight values. By running the 

algorithm several times under different weight settings, the user can select 

the acceptable solution from a set of generated solutions. Thus, no pre-

existing knowledge is required.  

3.5.2 Multi-policy algorithms 

For multi-policy cases, a number of possible policies that can generate the 

Pareto front are required. In many practical cases, the objective of an 

algorithm is to find one or more suitable solutions to solve the problem 

encountered and there is no need to find all solutions forming the theoretical 

Pareto front. Moreover, generating a number of policies requires high 

computational demand that drastically increases the cost in time. Thus, not 

too much work has been done on multi-policy algorithms, especially when 

practical applications are considered. One example related to multiple 

policies can be found in (Barrett and Narayanan 2008) where optimal 

policies related to different preferences can be learnt in parallel. As 

mentioned in (Vamplew et al. 2011), the linear scalarisation method can also 
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be used to find multiple policies by regulating the weight values one at a time 

and running the algorithm several times. However, this method may not be 

able to find all possible solutions to form the Pareto front (Vamplew et al. 

2011). 

3.5.3 Linear scalarised Q-learning  

As a practical application of RL, this thesis focuses on finding suitable 

solutions to balance different objectives for ramp metering, not a theoretical 

Pareto front. The linear scalarised algorithm that does not need pre-existing 

knowledge will be of interest here. Although this method may not be able to 

find all solutions to form a Pareto front, several possible options of balancing 

different control objectives are enough for a practical control problem such 

as ramp metering. The most acceptable one among these solutions can be 

selected by operators according to different requirements about the 

importance of different objectives (such as improving traffic efficiency and 

maintaining user equity). 

One commonly used way for linear scalarisation in RL is to extend the 

single-objective Q-learning to linear scalarised Q-learning. Compared with 

single-objective case, two differences arise in linear scalarised Q-learning 

(Vamplew et al. 2011): (1) multiple rewards are received at each time step 

for different objectives, (2) action selection is based on the scalarised Q 

value related to all objectives involved. Thus, how to scalarise different 

objectives is one important issue in scalarised Q-learning. An effective 

method mentioned in (Van Moffaert et al. 2013) is introduced here to linearly 

scalarise Q values. The scalarised Q value can be expressed by the 

following equation: 
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1

( , ) ( , )
jN

t t

j j

j

SQ s a Q s a


   
 

(3.13) 

where, ( , )tSQ s a  is the scalarised Q value for state-action pair ( , )s a , ( , )t

jQ s a
 

is the Q value for objective j , jN
 
is the number of objectives considered, j

 

is the weight value for ( , )t

jQ s a  and 1 1jN

j j  . The Q value for each 

objective should be updated following a new updating rule shown below. 

1 1 1 1 1 1 1 1 1( , ) ( , ) ( , ) ( , )t t t t t t t t t t t t t

j j greedy jQ s a Q s a r Q s a Q s a                 
(3.14) 

Instead of 1arg max ( ( , ))t

t t t t

greedy a
a Q s a , the greedy action in the linear 

scalarised Q-learning is selected according to 1arg max ( ( , ))t

t t t t

greedy a
a SQ s a . 

3.6 Summary and Discussion 

This chapter introduced the basic knowledge of RL and one of its extensions 

to solve multi-objective problems.  

As the core algorithm of RL, TD learning was developed on the basis of the 

basic policy iteration algorithm. TD learning contains a series of algorithms 

that can solve MDP problems adaptively without the help of models. Q-

learning is one off-policy TD algorithm which has been widely used to solve 

practical problems, especially in the ramp metering domain, because this 

algorithm is efficient and easy to implement.  

However, the basic Q-learning lacks the ability to deal with multiple 

objectives. To overcome this limitation, one extension of Q-learning, linear 

scalarised Q-learning was proposed to solve multi-objective problems. One 

advantage of this algorithm is that it does not need pre-existing knowledge of 

the problem domain, and a set of solutions can be generated by it through 

properly regulating related parameters.  
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Because of the simplicity of implementation, the Q-learning and its extension, 

linear scalarised Q-learning, will be considered by this research to develop 

related control algorithms in a ramp agent system. The detailed design 

process of this ramp agent system and two control algorithms using RL (Q-

learning and linear scalarised Q-learning) will be introduced in the following 

chapter. 
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CHAPTER 4 RAMP AGENT SYSTEM 

Chapter 3 gave a detailed introduction of RL including its structure, 

mechanism and algorithms. The basic agent-environment architecture of RL 

introduced in Section 3.1 will be extended to deal with ramp metering 

problems in this chapter. Based on the RL mechanism, a ramp agent system 

(RAS) that can learn how to control motorway traffic via ramp metering will 

be developed. This chapter gives a systematic description of the RAS design 

regarding its structure, elements, modules and algorithms. The sections of 

this chapter are organised as follows. 

Section 4.1 firstly presents the basic architecture of agent-environment 

interaction in a ramp metering problem including RAS and the controlled 

motorway. Then, how the controlled motorway can be simulated by a traffic 

flow model is discussed in Section 4.2, which provides traffic related 

information to RAS. Based on this information, the detailed definition and 

design of RAS are given in Section 4.3. After that, Section 4.4 presents two 

control algorithms for RAS, which can be used to deal with both single- and 

multi-objective problems of ramp metering. Finally, a discussion of this 

chapter is given in Section 4.5. 

4.1 Ramp Agent and Environment 

4.1.1 General architecture 

It has been introduced in Chapter 2 that the main work of a ramp metering 

strategy especially the traffic-responsive strategy is to convert the traffic 

information collected from motorways to suitable metering rates. In this study, 

the controller that can implement a RL-based strategy is the ramp agent. A 

system that is composed of a group of agents is known as a ramp agent 
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system (RAS). The whole control process 5  is conducted through the 

interaction between each ramp agent and its controlled motorway.  

Based on the motorway layout and detector locations, the controlled 

motorway is usually divided into several segments. For ease of modelling 

and expression, each controlled segment contains only one metered on-

ramp (Becerril-Arreola and Aghdam 2007). Following this partition method, 

an example for practical application of one ramp agent is presented in Figure 

4.1. This architecture is extended from the basic agent-environment 

interaction shown in Figure 3.1 of Section 3.1.  

Ramp agent
Optimal

metering rate

Information 

sharing
Other agents

RampAgent 

module

Objective 

module

Mainline 

detectors

Traffic direction

Ramp 

detectors

Mainline & On-ramp

 traffic information

Ramp meter

On-ramp

Mainline

 

Figure 4.1: Ramp agent and motorway interaction 

                                            

5 In this thesis, a “control cycle” or “control process” of a ramp agent is also known 

as the “learning process”. In the following sections of this thesis, two terms “control” 

and “learning” may be used alternatively according to different contexts. 
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The environment in this case refers to the controlled motorway segment, 

while the agent is extended to a ramp agent that controls this segment. At 

the beginning of each control cycle, the ramp agent obtains traffic 

information (e.g. density, flow and speed) from detectors located at the 

motorway mainline and on-ramp. Then, it generates optimal metering rates 

for the related ramp meter. If necessary, these metering rates can be further 

converted to specific signal timings for field applications.  

The ramp agent is developed on the basis of RL mechanism. Two main 

modules, the RampAgent module and the Objective module are included in 

the agent structure. The RampAgent module contains sub-modules that can 

convert the raw traffic information into states and actions. To deal with 

different control objectives, a specific Objective module responsible for 

calculating rewards and updating related Q values is maintained. The 

learning process of a ramp agent can be accomplished by these two 

modules and their corresponding sub-modules. The more detailed 

description of these sub-modules will be presented in Section 4.3.  

4.1.2 Working mechanism of RAS 

Before the detailed introduction of a specific ramp agent, the problem of how 

the agents work with each other to form a system is discussed here.  

In this study, two main control objectives related to ramp metering, i.e. 

improving traffic efficiency and maintaining user equity are included in the 

design of RAS. According to the number of objectives considered, RAS has 

two modes: a single-objective mode and a multi-objective mode.  

In the single-objective mode, traffic efficiency is the only objective 

considered. When this mode is triggered, each ramp agent in RAS only 

captures the traffic information from its own controlled motorway segment. 

The objective of each ramp agent is to improve traffic efficiency within its 
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own control range. Thus, under the single-objective mode, RAS can be 

considered as a local control strategy, which only focuses on the local 

information.  

In the multi-objective mode, user equity is involved as an additional control 

objective. Since each controlled segment only contains one on-ramp, the 

information from other motorway segments is essential to maintaining. In this 

situation, ramp agents in RAS need to share information with each other and 

work together to achieve this objective. Therefore, RAS becomes a 

coordinated strategy when the multi-objective mode is triggered.  

Through these two modes, ramp agents in RAS can work independently to 

pursue their local objectives, or work together for a common goal. The 

details about what information should be captured from the local motorway 

segment and what information is required from other agents will be 

discussed in Section 4.3. 

4.2 Controlled Motorway: ACTM 

Usually, the newly developed control strategy cannot be directly tested in a 

real motorway network. Traffic flow models that can simulate the real traffic 

operation are commonly used as tools to evaluate traffic control strategies in 

the traffic engineering domain. This study also uses a traffic flow model to 

evaluate the proposed RAS. For the practical application, as suggested by 

(Jacob and Abdulhai 2010, El-Tantawy et al. 2013), the ramp agent can 

learn the optimal control strategy from a simulation model first, and then use 

that strategy to control the real traffic.  

A macroscopic traffic flow model named the asymmetric cell transmission 

model (ACTM) is selected for this study, because this model is 

computationally efficient and has shown its effectiveness on evaluating ramp 

metering strategies in some recent studies (Gomes and Horowitz 2006, 
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Haddad et al. 2013, Sun and Horowitz 2006). ACTM was developed 

specially for simulating traffic flows on motorways and derived from the 

famous cell transmission model (CTM). This section will briefly introduce the 

development of CTM and how ACTM is derived.  

4.2.1 Cell transmission model 

LWR model 

CTM is a very commonly used traffic flow model for simulating traffic 

dynamics on both urban and interurban road networks (Daganzo 1994, 

Daganzo 1995). This model is a finite difference approximation of the 

Lighthill-Whitham-Richards (LWR) model, which was the first macroscopic 

traffic flow model inspired from hydrodynamics (Lighthill and Whitham 1955, 

Richards 1956). This model assumed that the traffic flow satisfies the 

principle of mass conservation (or vehicle conservation for traffic) and gave 

the equation below: 

( , ) ( , )
0

y z q y z

z y

 
 

   
(4.1)

 

where, ( , )y z  denotes the density that is a function of location y  and time 

z , ( , )q y z  is the flow related to location y  and time z . By introducing a 

relationship between the traffic flow and density under the equilibrium flow 

situation shown in Equation (4.2), the LWR model can be written as a 

solvable partial differential equation given by (4.3). 

( , ) ( ( , ))eq y z q y z
 

(4.2)
 

( ( , ))( , ) ( , )
0edq y zy z y z

z d y

 



 
  

   
(4.3) 
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Figure 4.2: Cell connection for CTM 

CTM 

Considering the principle of vehicle conservation, CTM tried to discretise this 

continuum LWR model and solved it with a finite difference approximation 

method (Daganzo 1994, Daganzo 1995). Specifically, in CTM, the road 

studied is divided into a group of short segments called cells. As an example 

shown in Figure 4.2, each cell is assigned an index i  and has a length il . 

The time period for simulation is also divided into a sequence of intervals 

and each interval has a duration of sT  with a time step index k . If iv  is the 

free flow speed, the cell length il  should be set according to: 

min i i s
i

l v T   (4.4)
 

This is called Courant–Friedrichs–Lewy (CFL) condition. Short cell length 

that does not satisfy the CFL condition will lead to the invalidation of vehicle 

conservation given by Equation (4.2). If the cell length is too long, model 

accuracy may not be guaranteed. Thus, the cell length of CTM is usually set 

from 100 to 1000 metres. With suitable settings of cell lengths and time 

intervals, the discrete vehicle conservation of CTM can be expressed by: 

1

1

k k k k

i i i in n q q

  
 

(4.5)
 

where, k

in
 
and 1k

in 

 
are the number of vehicles on the cell i  at time step k  

and 1k  . k

iq
 
and 

1

k

iq   
are inflows of cell  i  and 1i   at time step k . k

iq
 
is 

determined by the following equation: 

 , 1 ,min ;k k k

i S i R iq q q
 

(4.6)
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where, 
, 1

k

S iq   
represents the number of vehicles that can be sent by cell 1i   

at time step k  during a time period sT , while 
,

k

R iq  is the number of vehicles 

that can be received by cell i  at time step k  during a time period sT . 

These two values can be calculated by Equations (4.7) and (4.8) according 

to the triangular or trapezoidal fundamental diagram shown in Figure 4.3.  

 , 1 1 , 1min ;k k

S i i cap iq n q  
 

(4.7)
 

 max

, ,min ; ( / ) ( )k k

R i cap i i i i iq q w v n n  
 

(4.8) 

where, iw  is the congestion wave speed, i  is the density of cell i , ,jam i  is 

the jam density of cell i , , 1cap iq 
 is the maximum number of vehicles that can 

be sent by 1i   during sT , 
,cap iq  is the maximum number of vehicles that can 

be received by i  during sT , i i in l   and max

,i jam i in l  . In the original CTM 

shown in (Daganzo 1994, Daganzo 1995), it was assumed that both sT  and 

iv  were unit values( sT  = 1 and iv  = 1), and il  is chosen as il = i sv T =1.  
 

qcap,i

qi

crit,i i0 jam,i

vi

wi

qcap,i

crit,i0 jam,i

vi

wi

qi

i

(a)                                                                               (b) 

Figure 4.3: Triangular and trapezoidal fundamental diagrams 
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Extension of CTM 

Considering more general road networks, Daganzo (Daganzo 1995) 

extended the basic CTM to simulate more complicated traffic flow dynamics 

such as merging and diverging conditions. 

2

3

1
q21

k

q
31

k

 

Figure 4.4: Merging model of CTM 

For a merging situation, as shown in Figure 4.4, traffic flows coming from 

two different upstream cells (cell 2 and 3) need to merge into one cell (cell 1). 

Here, 
21

kq
 
is used to represent the traffic flow coming from cell 2 to cell 1, 

and 
31

kq  is the traffic flow from cell 3 to cell 1. These two flows can be 

obtained through the following two equations: 

 21 ,2 ,1 ,2 21 ,1mid ; ;k k k k k

S R S Rq q q q p q  
 

(4.9) 

 31 ,3 ,1 ,3 31 ,1mid ; ;k k k k k

S R S Rq q q q p q  
 

(4.10)
 

In above equations, mid{}
 
function is used to get the middle value of three 

involved arguments. 21p
 
and 31p

 
are used to assign different priorities for 

traffic flows from cell 2 and cell 3. These two parameters satisfy that 

21 31, [0,1]p p 
 
and 21 31 1p p  .  

2

3

1q1
k

q
12

k

q13
k

 

Figure 4.5: Diverging model of CTM 
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Figure 4.5 shows the diverging traffic condition. The flow from cell 1 is 

divided into two parts with one part entering cell 2 and the other going to cell 

3. 
12

kq
 
is the flow from cell 1 to cell 2, while 

13

kq
 
denotes the flow from cell 1 

to cell 3. If 
1 12 13

k k kq q q  , then the flows entering cells 2 and 3 can be 

computed with: 

 1 ,1 ,2 12 ,3 13min ; / ; /k k k k

S R Rq q q q 
 

(4.11) 

12 12 1

13 13 1

k k

k k

q q

q q





  


   

(4.12)
 

In the above equations, 12
 
and 13

 
are split ratios determining portions of 

the flow coming from cell 1 (
1

kq ) that enters cells 2 and 3 at time step k , 

and 12 13 1   . 

4.2.2 Asymmetric cell transmission model 

The CTM and its extension introduced above can be used to simulate traffic 

dynamics in a more general case. For motorway traffic, it shows some 

limitations regarding the use of ramp metering strategies. To overcome 

these limitations, the asymmetric cell transmission model (ACTM) was 

developed by (Gomes and Horowitz 2003, Gomes and Horowitz 2006). This 

section will introduce this model.  

Limitations of CTM 

The limitations of CTM and what improvements have been made by ACTM 

are summarised below. 

Using a symmetric merge model given by Equations (4.9) and (4.10), CTM 

does not distinguish traffic flows from different merging cells (cells 2 and 3), 

and models these flows without difference. On the other hand, ACTM 

separates the on-ramp follow from the mainline traffic flow model, and 
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clearly distinguishes these two flows when considering ramp metering. With 

this modification, the on-ramp traffic flow can be easily linked with ramp 

metering strategies, which provides convenience for testing different 

strategies. 

The other limitation of the original CTM is that it cannot mimic the capacity 

drop phenomenon, which is one of the important reasons for applying ramp 

metering to improve traffic efficiency (as discussed in Section 2.2.1). ACTM 

can reproduce this phenomenon by applying a discontinuous variation. In 

this way, ACTM is more effective on testing ramp metering strategies when 

the traffic efficiency is considered as an objective. 

Roughly speaking, CTM is more general, while ACTM was developed 

specifically for motorway ramp metering control.  

Definition of ACTM 

...             i+1                   i                         i-1             ...

don,i
k

mr,i
k

qin,i
k

qout,i
k

doff,i
k

 

Figure 4.6: A typical motorway network for ACTM 

Similar to the basic CTM, the motorway studied for ACTM should also be 

divided into short cells. Each cell may only contain the mainline, and may 

also be linked with on- or/and off-ramps. To simplify the expression in this 

study, the cell with one on- or off-ramps is named the “on-ramp cell” or the 

“off-ramp cell”, the cell with a pair of on- and off-ramps is named the “on-off 

cell”, and the cell without any ramps is named the “normal cell”. A typical cell 

(cell i ) with one on-ramp and one off-ramp is shown in Figure 4.6, according 

to which the ACTM can be written as follows. 
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· Mainline flows 

, , ,

max max1
, 1 , 1 1 , 1 , ,

1

min{(1 ) ( );

1
( ); ; }

k k ki
out i i main i i r i s

i

k ki i
main i main i i r i s cap i off i

i i

v
q n m T

l

w
n n m T q d

l

 







   



      


     

 (4.13) 

· On-ramp flows 

max

, , , ,

max
, , , , ,

min{( ) / ; ( ) / ; / },

if is metered on-ramp cell

min{( ) / ; ( ) / },

if is unmetered on-ramp cell

0, otherwise

k k k k

on i on i s s i main i main i s i s

k k k k
r i on i on i s s i main i main i s

n d T T n n T c T

i

m n d T T n n T

i





    




    




 (4.14) 

· Mainline conservation 

1

, , , , ,( / (1 ))k k k k k

main i main i s in i r i out i in n T q m q         (4.15) 

· On-ramp conservation 

1

, , , ,( )k k k k

on i on i s on i r in n T d m      (4.16) 

For ease of application, a more general expression by considering different 

cell lengths ( il ) and time intervals ( sT ) is used here. If il  and sT  are removed 

from above equations and parameters iv , iw , ,

k

on in  and ,

k

main in  are replaced by 

their normalised counterparts 
,nor iv , 

,nor iw , ,

k

onnor in  and ,

k

mainnor in , the same 

expression shown in (Gomes and Horowitz 2006) can be obtained. Here,

, ( ) /nor i i s iv v T l  , 
, ( ) /nor i i s iw w T l  , , , /k k

onnor i onnor i sn n T  and , , /k k

mainnor i main i sn n T .  

In Equations (4.13) to (4.16), to distinguish the inflow and outflow of a 

specific cell, two different flows ,

k

in iq
 
and ,

k

out iq
 
are defined. Two parameters

 

i  (flow allocation parameter) and i  (flow blending parameter) are defined 

specially for ACTM. i
 
indicates the influence of mainline traffic density on 

on-ramp flows, which is related to the merging behaviour of the on-ramp and 
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mainline flows. i
 
determines how much of the on-ramp flow should be 

added to the mainline outflow calculation before the mainline inflow is joined 

at each time step. This parameter is set according to the location of the on-

ramp. If the on-ramp is close to the exit boundary of cell i , i
 
should be 

larger, as more on-ramp flow has entered the mainline before mainline inflow 

arrives. If the on-ramp is located at the entering boundary of cell i , on-ramp 

flow and mainline inflow can enter cell i  together and i
 
should be set as 0 

(Gomes and Horowitz 2006).  

4.2.3 Discontinuous ACTM 

The original ACTM introduced in Section 4.2.2 can also be called continuous 

ACTM. For reproducing the capacity drop phenomenon, a discontinuous 

version of ACTM was developed by the same authors (Gomes and Horowitz 

2003). They divided the mainline flow Equation (4.13) into several 

discontinuous equations given by (4.17). The capacity drop phenomenon 

can be simulated by considering a queue discharge rate 
,dis iq , which should 

be less than capacity 
,cap iq . Here the capacity drop parameter   is used to 

correlate 
,dis iq

 
and 

,cap iq , such that 
, ,dis i cap iq q  . (0,1]   denotes the 

percentage of capacity left after capacity drop. In this way, different capacity 

drops can be considered by regulating  . 

The only difference between continuous and discontinuous ACTM is the 

equation for calculating mainline flows, and other equations from (4.14) to 

(4.16) are the same. The mainline flow of discontinuous ACTM is computed 

with: 
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 (4.17) 

In the above equation, 
, /k k

i main i in l   and 
1 , 1 1/k k

i main i in l    . As introduced in 

Section 2.1, when the mainline density exceeds the critical density 

(
,

k

i crit i  ), congestion will occur on motorways. In this situation, capacity 

drop phenomenon may arise. From Equation (4.17), it can be seen that 

when cell i  is congested and cell 1i   is not congested, the maximum 

outflow (capacity) of cell i  becomes 
,dis iq  (

, ,dis i cap iq q  ). If   equals 1, 

Equation (4.17) is exactly the same as Equation (4.13), because no capacity 

drop is considered. In the remainder of this thesis, this discontinuous ACTM 

will be used to simulate traffic flow dynamics.  

4.2.4 Relationships between ACTM and RAS 

To correlate ACTM and RAS, two relationships between them should be 

clear here. If ACTM is used to simulate motorway traffic, the controlled 

motorway is divided into a number of cells, and each ramp agent has its own 

controlled cell (the term “cell” can be used to replace the word “segment” in 

a motorway network). For ease of expression, the controlled cell will have 

the same index of its corresponding ramp agent. For example, if cell i  is 

under control of agent I , all variables relating to cell i  can be converted to 

their counterparts with index I . Thus, it can be obtained that: 
, ,mian i main In n , 

, ,on i on In n , , ,in i in Iq q , , ,out i out Iq q , , ,on i on Id d ,
i Ic c , , ,on i on Im m ,

i I  ,
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i I  ,
i I  . In the reminder of this chapter, these agent-related 

variables will be used to define elements of the ramp agent, such as state, 

action and reward. 

Besides the agent index, the other relationship is about the control step and 

simulation step. In ACTM, sT  is the duration of each simulation interval 

between two simulation steps ( t ). If cT  is used to denote the control interval 

between two control steps ( k ), then, c cs sT N T  , which means each control 

interval can contain csN
 
simulation steps. One example with 4csN   is 

shown in Figure 4.7.  

TC

Ts

control step t

simulation step k

0 1 2

0 1 2 3 . . .

. . .

4 5 6 7 8
 

Figure 4.7: Control-simulation relationship 

The reason for this setting is as follows. sT
 
is sometimes set as a very small 

value such as 10 or 15 seconds to guarantee the accuracy of simulation. 

However, it is not reasonable to change the metering rate within such a short 

time, because it may confuse drivers. For this reason, a suitable range 

should be set for cT  (usually 30 to 60 seconds as suggested by 

(Papageorgiou et al. 2007)) that may be a few times as long as sT . This 

relationship is very important for RAS to convert control actions to suitable 

metering rates at each time step for ACTM. This relationship will be 

mentioned again in Section 4.3.5. 

4.2.5 Summary 

This section introduced a traffic flow model named ACTM regarding its origin 

and definition. The ACTM was developed specifically to deal with ramp 
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metering problems, because it can distinguish on-ramp flows and reproduce 

capacity drop phenomenon. 

Besides the detailed description of ACTM, how to correlate ACTM and RAS 

was also discussed in this section. Two relationships in terms of the 

controlled cell and ramp agent, as well as the control step and simulation 

step were defined. Based on these two relationships, the detailed description 

of one ramp agent will be given in the next section.    

4.3 Ramp Agent Design 

Recall that, in Section 4.1, the basic structure of a ramp agent which 

contains two modules: the Rampagent module and the Objective module 

has been introduced. These two modules are detailed in this section with the 

definitions of related elements and sub-modules.  

4.3.1 Element definition 

As mentioned in Chapter 3, RL is used to solve MDP problems. But unlike 

the basic MDP, RL does not need to consider the state transition probability 

of the system. Therefore, for a specific application of RL, only three basic 

elements including state, action and reward should be defined. In this 

section, a general definition of these three elements in a ramp metering 

problem will be given. 

Markov property 

To formulate an effective RL problem, three elements of RL should be 

defined under the MDP framework which means they should satisfy the 

Markov property. The formal expression of the Markov property is given 

below (Puterman 2009): 

1 0 0 1 1 1( | , ,..., , , , ) ( | , )t t t t t t t tp s s a s a s a p s s a     (4.18) 
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This equation means that given the state and action at time step t , the next 

state at step 1t  can be captured without knowing all the previous states 

and actions. In other words, the current state and action contain all the 

information required to determine the next state.  

Reward 

In a RL problem, reward is used to guide the agent to achieve its objectives. 

Therefore, the definition of reward should be derived from the control 

objectives. Let us get back to the ramp metering control problem introduced 

in Chapter 2. A general indicator measuring the performance of ramp 

metering strategies is TTS (Equation (2.2)) which is the total time spent on 

motorways. TTS is usually used to derive the control objectives and can be 

further divided into two parts: TTT and TWT (Kotsialos and Papageorgiou 

2004a). The Equation (2.2) can be rewritten here using agent ( I ) and 

control step ( t ) indices: 

1 1 1

, , , ,

0 0 0

( )
t t t

I I

N N N
t t t t

I c main I on I c main I c on I

t t t

TTT TWT

TTS T n n T n T n
  

  

        

 

(4.19) 

where, ITTS  is the TTS of the cell controlled by agent I , which is composed 

of the total travel time on the mainline ITTT
 
and the total waiting time at the 

on-ramp ITWT .  

Through this modification, the definition of TTS  becomes: TTS TTT TWT   

which is similar to Equation (2.11) introduced in Section 2.2.2, i.e. 

TWTT WFTT WRD   (TWTT  is the total weighted travel time,WFTT  is the 

weighted mainline travel time, WRD  is the weighted on-ramp delay). To 

obtain one common objective TWTT  that can balance the efficiency and 

equity, different weight values were assigned to WFTT  and WRD . In this 

study, instead of one common objective, two different objectives are defined 
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for the efficiency and equity respectively. In this way, a ramp agent can 

easily add or remove its control objectives according to different working 

modes.    

In the single-objective mode, the only objective is to improve traffic efficiency, 

i.e. minimise TTS. As cT  is a fixed value, minimising TTS is equivalent to 

minimising the number of vehicles on both the motorway mainline and on-

ramp 1

0 , ,( )tN t t

t main I on In n


  . To minimise this value, the sum of numbers of 

vehicles on the mainline and on-ramp at each control step t  is defined as a 

negative reward shown in Equation (4.20). This means that the more 

vehicles that are on the motorway, the more penalties will be received by the 

ramp agent.  

, ,1 , ,( )t t t

raw I main I non Ir n n    (4.20) 

In the multi-objective mode, except for efficiency improvement, an additional 

objective is to maintain user equity at different on-ramps. Following the 

definition of equity introduced in Section 2.2.2, perfect equity in this study 

means that users from different on-ramps can have the same total waiting 

time at on-ramps, i.e. the same TWT. Here, the standard deviation of TWT 

at different on-ramps is used to measure this equity, which can be 

expressed by: 

 
2

1
2

,

1 01( )

on ton
N NN

t

on I c on cI
I tI

on on

n T n TTWT TWT

SD TWT
N N



 

 
    

  

 

 

(4.21) 

where, TWT is the average TWT of all on-ramps, 
onn is the average 

cumulative on-ramp queue during the whole control period, which can be 

obtained by 1

1 0 ,( ) /on tN N t

on I t on I onn n N


    . To get the highest equity, ( )SD TWT  

should be minimised.  
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Since the reward is obtained at each time step, to derive the equity-related 

reward, ( )SD TWT  at each time step should be known. Similar to ( )SD TWT  

of the whole control period, ( )tSD TWT  at step t  can be calculated by: 

 

 

 

2

1

2

,

1

2
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1
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(4.22) 

where, 
t

TWT is the average TWT at step t , t

onn
 
is the average on-ramp 

queue at step t  ( 1 ,( ) /onNt t

on I on I onn n N  ). Once again, cT
 
is a fixed value, 

minimising ( )tSD TWT  is equivalent to minimising  
2

1 , /onN t t

I on I on onn n N  . 

Thus, the equity-related reward can be defined as a negative reward and 

expressed by: 

 
2

,

1
, ,2

onN
t t

on I on
t I

raw I

on

n n

r
N





 


 (4.23) 

Both the efficiency-related reward , ,1

t

raw Ir  and equity-related reward , ,2

t

raw Ir  

defined in this section are both raw rewards which should be normalised 

before the real application. The normalisation process will be introduced in 

Section 4.3.3. 

State and action 

From the definition of rewards, it can be seen that ,

t

main In
 
and ,

t

on In  contain 

the direct information relating to control objectives of a ramp agent. These 
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two variables will be used to derive the definitions of state and action. The 

evolution of 
,

t

main In
 
and 

,

t

on In  over time can be obtained from the vehicle 

conservation (see Equations (4.15) and (4.16)) which is rewritten here using 

the agent ( I ) and control step ( t ) indices.  

1

, , , , ,( / (1 ))t t t t t

main I main I s in I r I out I In n T q m q         (4.24) 

1

, , , ,( )t t t t

on I on I s on I r In n T d m      (4.25) 

From the above two equations, it can be seen that 1

,

t

mian In   is determined by 

,

t

main In , 
,

t

in Iq , 
,

t

r Im  and 
,

t

out Iq , while 1

,

t

on In 

 
can be determined by ,

t

on In , 
,

t

r Im
 
and 

,

t

on Id . According to the fundamental diagram (see Figure 2.2 and Figure 4.3), 

there exists a relationship between flow (
,

t

out Iq )
 
and density ( , /t

main I In l ). As the 

cell length Il  is a fixed value, ,

t

out Iq  can be determined by ,

t

main In . Similar to 

,

t

out Iq , the on-ramp flow ,

t

r Im
 
is not an independent variable either. ,

t

r Im  is 

related to ,

t

main In , ,

t

on Id  and t

Ic  (see Equation (4.14)). Thus, removing ,

t

out Iq  and 

,

t

r Im , 1

,

t

main In   and 1

,

t

on In 

 
are determined by five variables: ,

t

main In , ,

t

in Iq , ,

t

on In , ,

t

on Id
 

and t

Ic . Here, t

Ic
 
is the metering rate generated by ramp metering strategies, 

which is used to define the control action of a ramp agent. The other four 

variables are used to define the state.  

Among four variables ( ,

t

main In , ,

t

in Iq , ,

t

on In  and ,

t

on Id ), ,

t

in Iq  and ,

t

on Id
 
are related 

to demand flows from the motorway mainline and on-ramp. At each time 

step, the values of these two variables cannot be changed by control actions. 

Therefore, the next state at time step 1t   (related to 1

,

t

main In  , 1

,

t

on In 

, 
1

,

t

in Iq   and 

1

,

t

on Id  ) can be completely determined by the current state (related to ,

t

main In , 

,

t

in Iq , ,

t

on In  and ,

t

on Id ) and the control action (related to t

Ic ) at time step t . If 

four state variables related to ,

t

main In , ,

t

in Iq , ,

t

on In  and ,

t

on Id  are defined as ,

t

nmain Is , 

,

t

qin Is , ,

t

non Is  and ,

t

don Is , and the action variable related to t

Ic  is defined as t

Ia , 

the following relationship can be obtained: 
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( , , , | , , , , ,...,

, , , , )

( , , , | , , ,

t t t t

nmain I qin I non I don I nmain I qin I non I don I I

t t t t t

nmain I qin I non I don I I

t t t t t t t

nmain I qin I non I don I nmain I qin I non I don

p s s s s s s s s a

s s s s a

p s s s s s s s s

   

    , )t t

I Ia

 (4.26) 

The above equation means the state and action at current time step is 

enough to determine the state at next time step. In other words, the sate and 

action variables defined here satisfy the Markov property and can be used to 

formulate an effective RL problem.  

Since all states and actions need to be recorded onto the Q (or SQ) table as 

indices, these states and actions should be converted to integers ranging 

from 0 to their maximum values. The detailed conversion process will be 

introduced in Sections 4.3.4 and 4.3.5. All possible values of the state and 

action can form two sets namely a state set (or state space) IS
 
and an 

action set IA , which can be expressed by:  

, ,

, ,

, ,

, ,

, , , ,

{0,1,2,..., 1}

{0,1,2,..., 1}

{0,1,2,..., 1}

{0,1,2,..., 1}

:

nmain I nmain I

qin I qin I

non I non I

don I don I

nmain I qin I non I don I I

S N

S N

S N

S N

f S S S S S

 


 



 
  


   

 (4.27) 

,{0,1,2,..., 1}I A IA N 
 

(4.28) 

The state set IS
 
is mapped from four sub-sets 

,nmain IS , 
,qin IS , 

,non IS and 
,don IS  

following a state mapping function f . These four sub-sets contain all 

possible values of ,

t

nmain Is , ,

t

qin Is , ,

t

non Is  and ,

t

don Is . Similarly, the action set IA
 
is 

composed of all possible values of t

Ia  which correspond to a number of 

discrete metering rates within the permitted range. Assuming that the set of 

discrete metering rates is ,{ (0), (1), (2),..., ( 1)}I I I I I A IC c c c c N  , then each 

action t

Ia  of IA has its own counterpart ( )t

I Ic a
 
in IC . 
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4.3.2 Ramp agent structure 

Based on the above definition, a ramp agent can be designed to conduct the 

reinforcement learning process regarding state mapping, reward calculation, 

action selection, Q value update and scalarisation. All these five functions 

are incorporated into the agent structure as five sub-modules (as shown in 

Figure 4.8) belonging to two main modules. The RampAgent module 

contains state mapping, action selection and Q values scalarisation. The 

Objective module consists of reward calculation and Q value update.  

Ramp agent

Information 

sharing

Other 

agents

State mapping

Action selection

Reward calculation 

Q value update

Q value scalarisation

RampAgent module Objective module

Raw information storage

Ramp meter

Mainline & On-ramp 

traffic information

Optimal 

metering rate

 

Figure 4.8: Ramp agent structure 

For a ramp agent, the state and reward cannot be directly observed from the 

raw traffic information. Through state mapping and reward calculation, the 

state of current motorway traffic and the reward for previous executed action 

can be extracted from the raw information. Based on the extracted 

information of state, reward and previous recorded Q values, the optimal 

metering rate can be generated by a suitable action selection strategy. After 

that, every Q value included (related to each control objective) and the 
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scalarised Q value aggregated from all Q values can be updated for future 

use.  

The working mechanism of these sub-modules is presented in the following 

four sections from Section 4.3.3 to 4.3.6.  

4.3.3 Reward calculation 

Reward 

calculation

n
t
on,J 

(J≠I,J=1,2,...,Non)

n
t
main,I

n
t
on,I

r
t
I,1

r
t
I,2

 

Figure 4.9: Reward calculation 

Figure 4.9 illustrates the process of reward calculation which is used to 

convert raw traffic information regarding agent I  (i.e. ,

t

mian In , ,

t

on In ) and other 

agents (i.e. ,

t

on Jn  ( , 0,1,2,..., )onJ I J N  ) to the reward at each time step. In 

Section 4.3.1, two negative rewards have been defined relating to efficiency 

and equity. For real applications, these two rewards need to be normalised 

into the same range for the following scalarisation process. In this study, all 

rewards are normalised into the range [0,1], and a general normalisation 

process of reward , ,

t

raw I jr
 
is shown below: 

min

, , , ,

, max min

, , , ,

t

raw I j raw I jt

I j

raw I j raw I j

r r
r

r r





 (4.29) 

where, , ,

t

raw I jr
 
is the reward calculated directly from the raw traffic information, 

max

, ,raw I jr
 
and min

, ,raw I jr
 
are upper and lower bounds for the raw reward value. In 

this study, the immediate reward received at time step t  ( ,

t

I jr ) refers to the 

normalised reward. 

Efficiency-related reward 
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For the efficiency-related reward defined by Equation (4.20), the minimum 

reward value is min max max

, ,1 , ,( )raw I main I on Ir n n   , and the maximum reward value is  

max

, ,1raw Ir = 0. Thus, after normalisation, 
, ,1

t

raw Ir
 
can be converted to 

,1

t

Ir  which is 

expressed by: 

min

, ,1 , ,1

,1 max min

, ,1 , ,1

max max

, , , ,

max max

, ,

max max

, , , ,

max max

, ,

( ) [ ( )]

0 [ ( )]

( ) ( )

t

raw I raw It

I

raw I raw I

t t

main I on I main I on I

main I on I

t t

main I on I main I on I

main I on I

r r
r

r r

n n n n

n n

n n n n

n n






    


  

  




 

(4.30) 

To ensure that ,1

t

Ir  
is strictly in the range [0,1], some conditions should be 

added into (4.30). Then, the final determined ,1

t

Ir  
is given below. 

max max

, , , ,

,1 max max

, , , ,

max max

, ,

0, if or

( ) ( )
, otherwise

t t

main I main I on I on I

t

I t t

main I on I main I on I

main I on I

n n n n

r
n n n n

n n

  



 
  

 

 

(4.31) 

When ,

t

main In
 
or ,

t

on In
 
exceeds its maximum permitted value, the smallest 

reward value 0 will be assigned to ,1

t

Ir . In this way, it can be guaranteed that

,1 [0,1]t

Ir  . In the meanwhile, the on-ramp queue constraints can be 

considered by setting different values for max

,on In . 

Equity-related reward 

The equity related reward , ,2

t

raw Ir
 
can be normalised according to max

, ,2raw Ir
 
and 

min

, ,2raw Ir . When there is no difference between each pair of TWTs, max

, ,2raw Ir
 
can 

be obtained that is 0. It has been shown in many studies that the most 

efficient ramp metering strategy is also the most inequitable strategy 

(Kotsialos and Papageorgiou 2004a, Meng and Khoo 2010, Zhang and 

Levinson 2005). Assuming that ( )efSD TWT
 
is the maximum standard 
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deviation of TWT when efficiency is the only objective considered. Then, 

( )efSD TWT  should be related to min

, ,2raw Ir . Following the definition of 
, ,2

t

raw Ir
 
in 

Equation (4.23), it can be obtained that min

, ( ) /raw I ef cr SD TWT T  . Given max

, ,2raw Ir
 

and min

, ,2raw Ir , the normalised 
,2

t

Ir  
can be computed with: 

 

 

min

, ,2 , ,2

,2 max min

, ,2 , ,2

2

1 ,

2

1 ,

/ ( ) /

0 ( ) /

( ) / /

( ) /

on

on

t

raw I raw It

I

raw I raw I

N t t

I on I on on ef c

ef c

N t t

ef c I on I on on

ef c

r r
r

r r

n n N SD TWT T

SD TWT T

SD TWT T n n N

SD TWT T










     


   

 






 (4.32) 

Similar to ,1

t

Ir  defined in Equation (4.31), some conditions should be added 

into (4.32) to guarantee that ,2 [0,1]t

Ir  . Then, ,2

t

Ir  
is rewritten as: 

 

 

2

1 ,

2
,2

1 ,

0, if ( ) / /

( ) / /
, otherwise

( ) /

on

on

N t t

ef c I on I on on

t
N t tI

ef c I on I on on

ef c

SD TWT T n n N

r
SD TWT T n n N

SD TWT T






 


   








 (4.33)  

 

4.3.4 State mapping 

State mapping
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s
t
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Figure 4.10: State mapping 

As shown in Figure 4.10, state mapping is a translation process, through 

which the raw traffic information collected from the controlled motorway 

( ,

t

main In , ,

t

in Iq , ,

t

on In , ,

t

on Id ) can be translated to state variables ( ,

t

main Is , ,

t

in Is , ,

t

on Is , 



- 84 - 

 

,

t

on Is ) required by the ramp agent. The final determined state t

Is  belonging to 

the state set IS  is calculated from these four state variables. Functions 

regarding the state mapping are given in Equations (4.34) to (4.39):  

, ,

, , , , , ,,

, , ,

0, if

( ) / , if

( ) / 1, otherwise

t low

main I main I

t lower low t upt
main I main I main I main I main I main Inmain I

up low

main I main I main I

n n

n n n n n ns

n n n

 
      


    

 (4.34) 

, ,

, , , , , ,,

, , ,

0, if

( ) / if

( ) / 1, otherwise

t low

in I in I

t low low t upt
in I in I in I in I in I in Iqin I

up low

in I in I in I

q q

q q q q q qs

q q q

 
      


    

 (4.35) 

, ,

, , , , , ,,

, , ,

0, if

( ) / if

( ) / 1, otherwise

t low

on I on I

t low low t upt
on I on I on I on I on I on Inon I

up low

on I on I on I

n n

n n n n n ns

n n n

 
      


    

 (4.36) 

, ,

, , , , , ,,

, , ,

0, if

( ) / if

( ) / 1, otherwise

t low

on I on I

t low low t upt
on I on I on I on I on I on Idon I

up low

on I on I on I

d d

d d d d d ds

d d d

 
      


    

 (4.37) 

, , , , ,

, , , , ,

, , , , ,

, , , , ,

( ) / 2

( ) / 2

( ) / 2

( ) / 2

up low

nmain I nmain I main I main I main I

up low

qin I qin I in I in I in I

up low

non I non I on I on I on I

up low

don I don I on I on I on I

N S n n n

N S q q q

N S n n n

N S d d d

       
        


       


       

 (4.38) 

, , , , , , , , , ,

t t t t t

I qin I non I don I nmain I non I don I qin I don I non I don Is N N N s N N s N s s           (4.39) 

In the above equations,    is the ceiling function that returns the smallest 

integer not less than the considered value. Through Equations (4.34) to 

(4.37), all state sets can be discretised into a number of states with integer 
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values, and all raw traffic information can be mapped to its corresponding 

states. 

Take Equation (4.34) for example, within the predefined boundaries 
,

low

main In
 

(usually 0) and 
,

up

main In
 
(usually max

,main In ), the maximum number of vehicles on 

the mainline can be uniformly divided into a group of intervals according to 

,main In . Each interval corresponds to a state with a value from 1 to 

, , ,( ) /up low

main I main I main In n n    . When ,

t

main In  exceeds two boundary values, two 

additional states 0 and , , ,( ) / 1up low

main I main I main In n n      
are added into the state 

set. Hence, ,nmain IS  has , , , ,( ) / 2up low

nmain I main I main I main IN n n n       states, and

, {0,1,2,..., 1}nmain I nmainS N  . Through Equation (4.34), at time step t , 
,

t

main In
 

can be mapped to 
,

t

nmain Is  that corresponds to a value of {0,1,2,..., 1}nmainN  .  

In the same way, other raw traffic information related to 
,

t

in Iq , ,

t

on In  and ,

t

on Id  

can be mapped to ,

t

qin Is , ,

t

non Is  and ,

t

don Is  through Equations (4.35)~(4.37). 

State numbers 
,qin IN , 

,non IN  and 
,don IN

 
can be obtained by (4.38). Thus, 

, , ,{0,1,2,..., 1}I nmain qin I non I don IS N N N N     . By combining all these four state 

variables, t

Is
 
can be obtained by Equation (4.39), which is a value of

, , ,{0,1,2,..., 1}nmain qin I non I don IN N N N    . 

4.3.5 Action selection 

Action selections
t
I

SQ
t
I 

get greedy action

get executable action a
t
I

a
t
greedy,I

Q
t
I,1

Q
t
I,2

 

Figure 4.11: Action selection 
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As shown in Figure 4.11, action selection is responsible for selecting suitable 

actions at each state according to the recorded Q (
,1

t

IQ
 
related to 

,1

t

Ir , and 

,2

t

IQ
 
related to 

,2

t

Ir ) and SQ (scalarised Q) values. According to the Q-

learning mechanism introduced in Section 3.4.1, two kinds of actions, the 

greedy action 
,

t

greedy Ia
 
and the executable action t

Ia  should be selected by the 

agent for Q values update and real execution, respectively.  

Recall that in Section 4.3.1, the action set IA  has been defined for a ramp 

metering problem, which corresponds to a group of discrete metering rates. 

The discretisation can be conducted using a method proposed by (Kotsialos 

et al. 2006) where the metering rate is uniformly divided into a number of 

integer values. Then, the relationship between the action variable and its 

corresponding discrete metering rate can be derived from: 

min max min

,

( ) ( )
1

t
t I

I I I I I

A I

a
c a c c c

N
   


 (4.40) 

where, max

Ic  and min

Ic
 
are the maximum and minimum permitted values of 

metering rate. In this way, each discrete metering rate ( )t

I Ic a  is related to an 

action t

Ia . For real applications, ,A IN  can be regulated to ensure that all 

discrete metering rates are integer values. 

The greedy action ,

t

greedy Ia
 
corresponds to the optimal metering rate which is 

determined according to current Q or SQ values. If traffic efficiency is the 

only objective considered, the greedy action can be determined by related Q 

values as shown below: 

1

, ,1arg max( ( , ))
t
I

t t t t

greedy I I I I
a

a Q s a  (4.41) 
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If both traffic efficiency and user equity should be considered, the greedy 

action is determined by SQ values. 

1

, arg max( ( , ))
t
I

t t t t

greedy I I I I
a

a SQ s a

 

(4.42) 

For real execution, an exploration probability should be considered to 

explore non-greedy actions. If -greedy strategy is used (as introduced in 

Section 3.4.2), the executable action t

Ia  can be selected according to the 

following probability: 

,, if
( | )

1 , otherwise

t t

t t I greedy I

I I

a a
p a s





 
 

  

(4.43) 

A relationship between the control and simulation is introduced in Section 

4.2.4 (Figure 4.7), which defines that each control interval may contain 

several simulation steps. Under such regulation, the control action at one 

control step may be used to determine the metering rates for more than one 

simulation step. To correlate action t

Ia  of the ramp agent and metering rate 

k

Ic
 
of ACTM, the following relationship should be satisfied:  

( )t
k I I
I

cs

c a
c

N
  (4.44) 

where, t  is the control step and k  is the simulation step. At each control step, 

a value t

I Ia A
 
is selected as the ramp metering rate and evenly assigned 

to each simulation step belonging to this control step.
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4.3.6 Q value update and scalarisation 

Q value 

update
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(a) 

Q value 

scalarisation

Q
t
I,1 

Q
t
I,2

SQ
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(b) 

Figure 4.12: Q update and scalarisation 

The ramp agent can obtain the immediate feedback from a controlled 

motorway by converting the raw traffic information to rewards. The long-term 

impacts of its actions are recorded by Q values (cumulative rewards) which 

are the discounted aggregation of rewards observed at different time steps.  

As shown in Figure 4.12 (a), two Q tables regarding efficiency ( ,1IQ ) and 

equity ( ,2IQ ) are maintained and updated for each recorded state and action 

pair. For a Q-learning problem, the updating rule given by Equation (3.11) 

can be used to update the Q table at each time step. For ramp agent I

designed in this chapter, this updating rule can be rewritten as the following 

two equations with the agent index I : 

1 1 1 1 1 1

,1 ,1 ,1 ,1 ,

1 1 1

,1

( , ) ( , ) [ ( , )

( , )]

t t t t t t t t t t

I I I I I I I I I I I greedy I

t t t

I I I

Q s a Q s a r Q s a

Q s a

      

  

    


 (4.45) 

1 1 1 1 1 1

,2 ,2 ,2 ,2 ,

1 1 1

,2

( , ) ( , ) [ ( , )

( , )]

t t t t t t t t t t

I I I I I I I I I I I greedy I

t t t

I I I

Q s a Q s a r Q s a

Q s a

      

  

    


 (4.46) 
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Equation (4.45) is used to update ,1IQ , while Equation (4.46) corresponds to 

the updating of ,2IQ .  

For the multi-objective problem, different Q values regarding different control 

objectives should be aggregated together through linear scalarisation as 

shown in Figure 4.12 (b). In this study, only two control objectives (regarding 

,1IQ and ,2IQ ) are included in the ramp metering problem. According to the 

linear scalarisation method introduced in Section 3.5.3 (Equation (3.13)), the 

scalarised Q value for the two-objective case can be obtained by: 

1 1 1 1 1 1

1 ,1 2 ,2( , ) ( , ) ( , )t t t t t t t t t

I I I I I I I I ISQ s a Q s a Q s a         

 

(4.47)
 

where, 1
 
is the weight value for ,1IQ , 2

 
is the weight value for ,2IQ , and 1

+ 2 = 1. 

4.3.7 Summary 

Section 4.3 presented the systematic design of a ramp agent including the 

definition of three basic elements (i.e. state, action and reward) and the 

working mechanism of five sub-modules (i.e. state mapping, reward 

calculation, action selection, Q value update and scalarisation). 

Among three basic elements, the reward was defined according to the 

control objectives considered. In this section, two kinds of rewards were 

derived from the definitions of two objectives regarding traffic efficiency and 

user equity. The state and action were defined to satisfy the Markov property, 

which guaranteed that the definitions in this section can formulate an 

effective RL problem.   

Based on the element definition, a structure of ramp agent containing five 

sub-modules was proposed. State mapping and reward calculation can 
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convert raw traffic information to states and rewards required by the ramp 

agent. Action selection can help the agent select suitable metering rates to 

control the motorway. Q value update and scalarisation are responsible for 

updating the agent’s memory about the optimal metering rates. These five 

sub-modules contain all the information required by a learning process, 

which will be used to develop two learning algorithms in the next section.
 

4.4 Algorithms of Ramp Agent 

Two modes of RAS have been introduced in Section 4.1.2 including the 

single-objective mode and the multi-objective mode. This section firstly 

presents an algorithm for the single-objective mode. Then this algorithm is 

extended to a more general form that can deal with multiple objectives. 

Although the main aim of algorithms developed in this section is to deal with 

two main control objectives regarding improving traffic efficiency (i.e. 

reducing TTS) and maintaining user equity (i.e. balancing TWT), other 

objectives can be involved by using the same framework of these two 

algorithms.  

4.4.1 Single-objective algorithm 

When reducing TTS is the only concern and no information from other 

agents is required, a single-objective algorithm can be used to learn the 

optimal solution for ramp metering control. In this case, the ramp agent only 

captures the information within its vicinity and tries to obtain the minimum 

total time spent of its controlled motorway segment. The flow chart of this 

single-objective algorithm is shown in Figure 4.13. 
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· Initialise episode and control step:

· Initialise learning parameters:

· Initialise  reward and Q value: 

Start

· Initialise state and control action: 

· Reward calculation: get

      through equation (4.31) 
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Figure 4.13: Flow chart for the single-objective algorithm 
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The basic single-objective algorithm contains two loops for episode e and 

control step t  respectively. One episode (or iteration) represents one whole 

control period that usually begins with the occurrence of congestion and 

ends when the traffic returns to its normal situation (e.g. the algorithm can be 

triggered during the peak hours). Each episode may consist of a sequence 

of control steps, the number of which depends on the duration of the whole 

control period and each control interval. The number of episodes is 

determined according to experience, which is usually set as a big enough 

number to guarantee that the ramp agent can learn the optimal strategy after 

finishing these episodes.  

The algorithm starts with the initialisation of relevant parameters for the 

learning strategy and control objective. Then, for each episode, the initial 

state and action should be set for the loop of control step. At each control 

step, the ramp agent obtains the current state of its controlled motorway 

segment through state mapping and receives the reward for its executed 

action at last step by reward calculation. After that, the ramp agent selects 

the greedy action for the current state and takes one executable action to 

perform by using an action selection strategy (here it is -greedy strategy). 

Finally, the Q value for observed state-action pair recorded in the Q table is 

updated. 

4.4.2 Multi-objective algorithm 

The single-objective algorithm introduced above can only deal with local 

objective problems (with local information within the vicinity of one ramp 

agent). For more general scenarios which consider both local (can be 

finished by one ramp agent) and group (need to be achieved by a group of 

agents) objectives, a multi-objective algorithm is developed in Figure 4.14.  
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Figure 4.14: Flow chart for the multi-objective algorithm 
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Similar to the algorithm introduced in the previous section, the multi-

objective algorithm also contains two main loops for the episode and control 

step. To deal with multiple objectives, two additional loops for different 

objectives ( j ) are embedded in the algorithm. 

The multi-objective algorithm also begins with the initialisation of related 

parameters. Similar to the single-objective algorithm, the ramp agent starts 

with observing the state and receiving reward at each control step. The only 

difference is the reward related to each objective should be recorded 

separately. Then the ramp agent selects actions for the Q update and 

execution according to the SQ value, not the Q value in the single-objective 

case. After that, Q values are updated and scalarised to obtain the new SQ 

value for the recorded state-action pair. The Q scalarisation function should 

be used to calculate the SQ value as a weighted sum of different Q values 

for different objectives. 

4.4.3 Ending rules of algorithms 

In the above descriptions, algorithms end after a fixed number of episodes. If 

the target value of each control objective is known in advance, an alternative 

ending rule may be used to end the algorithm. According to these target 

values, two boundaries ,boundary ITTS  and ( )I boundarySD TWT  can be set for TTS 

and SD(TWT), respectively. The algorithm does not need to finish all 

episodes and can end as long as the predefined boundaries are achieved. 

One example of this ending rule is shown in Figure 4.15. The algorithm will 

end when ITTS
,boundary ITTS . In the same way, ( )ISD TWT  ( )I boundarySD TWT

can be used as another condition to determine whether the algorithm should 

end. 
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· 1e e 
, ?I boundary ITTS TTS No

· 1eN e Yes

 

Figure 4.15: An example of ending rule 

Usually, in the first run of the algorithm, a fixed number of episodes are 

required to obtain the optimal objective value. Then, this value can be set as 

a boundary of the algorithm for the following runs with ending rules 

introduced in this section.  

4.4.4 Summary 

In this section, two learning algorithms were developed to deal with single-

objective and multi-objective problems. In the single-objective mode, only 

traffic efficiency was considered and the ramp agent was only concerned 

with what happened on its own controlled motorway segment.  

On the other hand, two objectives including both efficiency and equity were 

added into the multi-objective mode, which required the information from 

other agents. Although only two control objectives of minimising TTS and 

keeping equity were considered in the current stage, more objectives may 

be added under the same algorithm framework (shown in Figure 4.14). 

4.5 Discussion 

In this chapter, a systematic design of ramp agent that can deal with ramp 

metering control problems was provided. A traffic flow model, ACTM, was 

used to simulate the motorway traffic and evaluate the ramp agent system 

(RAS).  
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Some issues related to the traffic flow model and the main contributions of 

this chapter are highlighted here. 

(1) The discontinuous version of ACTM was selected for evaluation because 

of its capability of mimicking traffic dynamics on motorways especially 

the capacity drop phenomenon. This model is independent of RAS. 

Under the general architecture of agent-environment interaction, RAS 

can be evaluated by any simulation models or even the real motorway 

traffic. That is why RAS is considered as a model-free method. 

(2) In this chapter, a general definition of three basic elements, i.e. state, 

action and reward was proposed for ramp metering problems. The 

definition of two rewards was derived from a general objective function in 

the ramp metering domain that is related to TTS and TWT. The definition 

of state and action was based on the vehicle conservation and satisfied 

the Markov property. Such a general definition satisfying the Markov 

property was omitted by previous related studies introduced in Section 

2.3.4. Each study had its own way of defining the three elements, 

especially the reward and state, which cannot guarantee their 

effectiveness. The general definition proposed in this chapter provided a 

clearer way to define these elements based on the Markov property, and 

thus, they can guarantee an effective RL process.     

(3) A group of sub-modules for the RL, or specifically Q-learning process 

was developed on the basis of a general definition of three elements. 

These sub-modules contained all the information required to accomplish 

a Q-learning process and were used to formulate two algorithms 

regarding single- and multi-objective problems. Although two specific 

objectives are considered at the current stage, these two algorithms can 

be extended to include other objectives based on their general 

frameworks shown in Sections 4.4.1 and 4.4.2.  
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After the whole design process of a ramp agent system presented in this 

chapter, Chapter 5 will introduce the relevant software implementation 

issues. 
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CHAPTER 5 IMPLEMENTATION 

Chapter 4 described how to design a ramp agent system and details of a 

macroscopic traffic flow model “ACTM” used for evaluation. The next 

problem is how to implement these models and use them as a platform to do 

the evaluation. In this chapter, the software implementation of ACTM and 

ramp agent system with reusable classes are developed, which provides a 

flexible way to evaluate the RL-based ramp metering system under different 

traffic conditions. The full source code (including header files and source 

files) is shown in Appendix A, this chapter will focus on the general 

implementation issue and some main functions related to it. 

5.1 ACTM Implementation 

The implementation issue of this section is focused on using C++ to 

implement ACTM introduced in Section 4.2. ACTM is programmed by Visual 

C++ 6.0 in this work.  

5.1.1 Class diagram 

The cell of ACTM is classified into four categories corresponding to normal 

cell, on-ramp cell, off-ramp cell and on-off cell, as defined in Section 4.2.2. 

Examples of four kinds of layout for different cells can be seen form Figure 

5.1. For real applications, different combinations of these four cells can be 

chosen by software users to simulate different motorway networks with 

different layouts.  
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(c)

traffic 

direction

(a) (b)

(d)

 Figure 5.1: Examples of different cells: (a) normal cell, (b) on-

ramp cell, (c) off-ramp cell, (d) on-off cell 

 

Figure 5.2: Class diagram for ACTM 

Cell

+q_in: double
+q_out: double
+delta_nmain: double
+n_main: double
+max_nmain: double
+q_cap: double
+l: double
+v: double
+w: double
+t_simu: double
+lambda: double

<<create>>-Cell()
#getMinThree()
#getMinTwo()

CellNor

<<create>>-CellNor()
+traFlowNor()
+vehConsNor()
+setInitialCell()

CellOn

+d_on: double
+m_r: double
+delta_non: double
+n_on: double
+c_action: double
+eta: double
+theta: double

<<create>>-CellOn()
+traFlowOn()
+vehConsOn()
+setInitialCell()

CellOff

+d_off: double
+beta: double

<<create>>-CellOff()
+traFlowOff()
+vehConsOff()
+setInitialCell()

CellOnf

+d_on: double
+m_r: double
+delta_non: double
+n_on: double
+c_action: double
+eta: double
+theta: double
+beta: double

<<create>>-CellOnf()
+traFlowOnf()
+vehConsOnf()
+setInitialCell()
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To represent four kinds of cells in the program, four classes: CellNor 

(normal cell), CellOn (on-ramp cell), CellOff (off-ramp cell) and CellOnf (on-

off cell) are developed (see Figure 5.2). These four classes inherit from one 

parent class: Cell. The class Cell contains basic variables and functions 

related to all kinds of cells. For each kind of cell, two specific functions are 

used to calculate traffic flow dynamics and vehicle conservation.  

5.1.2 Functions for flow dynamics 

Flow dynamics mentioned here refer to the calculation of mainline flow and 

ramp flow defined by Equations (4.14) and (4.17) (in Sections 4.2.2 and 

4.2.3). The functions related to flow dynamics are used to solve (4.14) and 

(4.17) at each simulation step.  

The class CellNor does not contain any additional variables for on- and off-

ramps, so the traffic flow dynamics are only related to mainline traffic flows. 

The function responsible for calculating flow dynamics on the mainline is 

named traFlowNor(), which is shown in Appendix A.1, code 5. A Boolean 

variable capa_drop is used in this function to determine whether the 

capacity drop phenomenon is considered. 

For the on-ramp cell (class CellOn), one on-ramp is linked with the mainline. 

Thus, flow dynamics are composed of mainline flow and on-ramp flow 

dynamics. The implementation of traFlowOn() is shown in Appendix A.1, 

code 9. An additional Boolean variable control is used by ramp metering 

strategies, which determines whether or not the cell is under control. 

The class CellOff contains functions and variables related to the mainline 

and off-ramp traffic. On-ramp flow is not considered in this class. The 

function traFlowOff() is shown in Appendix A.1, code 13. 

Both on- and off-ramps are considered in the class CellOnf, which is a 

combination of on-ramp cell and off-ramp cell. Here, the function 
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traFlowOnf() is responsible for calculating traffic flows in all three areas: 

mainline, on-ramp and off-ramp. The implementation of this function is given 

in Appendix A.1, code 17. 

5.1.3 Functions for vehicle conservation  

As shown in Equations (4.15) and (4.16) (in Section 4.2.2), vehicle 

conservation contains the conservation on the mainline and on-ramp. 

Functions related to conservation are summarised below. 

The function related to the class CellNor is named as vehConsNor(), which 

only considers the mainline traffic conservation of a normal cell and is given 

in Appendix A.1, code 6.  

For the class CellOn, both mainline and on-ramp conservation should be 

considered. The function vehConsOn() used to calculate the conservation 

of an on-ramp cell is shown in Appendix A.1, code 10. 

The conservation function vehConOff() of the class CellOff is similar to 

vehConsNor(), except that the split flow (related to split ratio beta) should 

be considered in the mainline conservation of an off-ramp cell. This function 

is shown in Appendix A.1, code 14. 

The conservation function vehConsOnf() of the class CellOnf is a 

combination of related functions from the classes CellOn and CellOff, which 

is implemented in Appendix A.1, code 18. 

For real applications, different cells can be instantiated according to the 

layout of motorway network. Two functions related to traffic flow dynamics 

and vehicle conservation can be called to simulate traffic operations 

represented by Equations (4.14) and (4.17). 

In addition to the main functions introduced above, some other functions are 

also embedded in ACTM. These functions are responsible for basic 
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calculations and initialisation required by the main functions. The annotation 

of these functions is listed in Table 5.1. 

Table 5.1: Function annotations of ACTM 

Function Class Annotation 

Cell() Cell constructor used for initialisation 

getMinThree() Cell get the minimum value of three arguments 

getMinTwo() Cell get the minimum value of  two arguments 

setInitialCell() 

CellNor 

CellOn 

CellOff 

CellNof 

set initial parameters for cells 

 

5.2 Ramp Agent Implementation 

Section 4.3 has introduced main modules of a ramp agent including state 

mapping, reward calculation, action selection, Q value update and 

scalarisation. This section will discuss how to convert them into reusable 

classes and functions. 
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5.2.1 Class diagram 

 

Figure 5.3: Class diagram for the ramp agent 

 

 

 

Objective

+reward_value: double
+reward: double
+max_reward: double
+min_reward: double
+gamma: double
+alpha: double
+R: vector<vector <double> >
+Q: vector<vector <double> >

+setSize()
+getReward()
+getQValue()

RampAgent

+n_main: double
+n_on: double
+q_in: double
+d_on: double
+delta_nmain: double
+delta_non: double
+delta_qin: double
+delta_don: double
+higher_nmain: double
+higher_non: double
+higher_qin: double
+higher_don: double
+lower_nmain: double
+lower_non: double
+lower_qin: double
+lower_don: double
+epsilon: double
+action: int
+pr_state: int
+cu_state: int
+pr_action: int
+cu_action: int
+obj: vector<Objective*>
+state_number: int
+action_number: int
+state_main: int
+state_ramp: int
+greedy_action: int

<<create>>-RampAgent()
+setObjective()
+deleteObjective()
+setInitialSA()
#getState()
#getActionEG()

MORampAgent

+obj_number: double
-max_SQ: double
-S_Q: vector<vector <double> >

<<create>>-MORampAgent()
+startStateTransition()
+setSQSize()
+inputRQ()
+outputRQ()
-getSQValue()
-getGreedyActionSQ()

SORampAgent

<<create>>-SORampAgent()
+startStateTransition()
+inputRQ()
+outputRQ()
-getGreedyAction()

1..*1
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Figure 5.3 shows the class diagram for a ramp agent. There are four classes 

in the agent architecture including RampAgent, SORampAgent, 

MORampAgent and Objective. The class RampAgent contains the main 

functions related to the application of RL such as state mapping, action 

selection and Q value scalarisation. Both the classes SORampAgent and 

MORampAgent are inherited from the class RampAgent and designed 

according to different modes. To be more specific, SORampAgent is 

designed for single-objective mode only, while MORampAgent can deal 

with multi-objective problems with more than one objective. The class 

Objective maintains a table recording the Q value for each state-action pair. 

Functions for reward calculation and updating Q values are also contained in 

this class. These functions help the ramp agent accomplish its learning 

process according to different control objectives, which are the software 

implementations of two control algorithms introduced in Section 4.4, or 

specifically the Equations (4.29) to (4.47). The main functions related to 

ramp agent and its control objectives will be described in detail in the next 

two sections. 

5.2.2 Functions for ramp agent 

The state mapping of a ramp agent is realised by the function getState(). 

This function is responsible for getting the state according to real-time data 

observed from road traffic (refer to Equations (4.34) to (4.39) in Section 

4.3.4). The source code of this function is shown in Appendix A.2, code 5. 

The action selection module is responsible for selecting two kinds of actions: 

the greedy action and executable action, which can be realised by three 

functions introduced as follows.  

For SORampAgent, the greedy action at each state is selected according to 

Q values and can be implemented by getGreedyAction() (refer to Equation 
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(4.41) in Section 4.3.5). The implementation of this function is shown in 

Appendix A.2, code 9. 

The greedy action of MORampAgent is selected according to SQ values not 

Q values, which can be obtained by getGreedyActionSQ() (refer to 

Equation (4.42) in Section 4.3.5). This function is shown in Appendix A.2, 

code 17. 

Based on the greedy action, the real executable action (using  -greedy 

strategy) can be obtained by the function getActionEG() (refer to Equation 

(4.43) in Section 4.3.5). This function is contained in the class RampAgent 

which can be used by both the classes SORampAgent and MORampAgent. 

The source code of this function can be found in Appendix A.2, code 6. 

Another module of the ramp agent is Q scalarisation, which can be realised 

by getSQValue() (refer to Equation (4.47) in Section 4.3.5). This function is 

responsible for scalarising Q values to get the SQ value. The source of this 

function is shown in Appendix A.2, code 18. 

5.2.3 Functions for objective 

The class Objective contains two main functions getReward() and 

getQValue(), which can be used to realise the reward calculation and Q 

values update, respectively.  

The function getReward() is used to get the immediate reward according to 

real-time data observed from road traffic (refer to Equations (4.29) to (4.33) 

in Section 4.3.3). The function getQValue() is responsible for getting the Q 

value for each state-action pair (refer to Equations (4.45) and (4.46) in 

Section 4.3.5). These two functions are implemented in Appendix A.3, code 

3 and code 5, respectively. 



- 106 - 

 

Besides the main functions related to the learning process, some other 

functions are included in RAS for the basic operations, such as initialising 

the system, maintaining Q tables and objectives. The annotation of these 

functions is shown in Table 5.2. 

Table 5.2: Function annotations for RAS 

Function Class Annotation 

RampAgent() RampAgent constructor used for initialisation 

setInitialSA() RampAgent set the initial state and action 

setObjective() RampAgent 
set objectives according to the number of objectives 

required 

deleteObjective() RampAgent delete objectives  

SORampAgent() SORampAgent constructor used for initialisation 

MORampAgent() MORampAgent constructor used for initialisation 

setSQSize() MORampAgent set the scalarised Q table size  

setSize() Objective set the R and Q table size 

startStateTransition() 
SORampAgent 

MORampAgent 

do the state transition within the state space which 

combines all functions to accomplish the learning 

process 

inputRQ() 
SORampAgent 

MORampAgent 
read Q values from a text file 

outputRQ() 
SORampAgent 

MORampAgent 
write Q table to a text file 

setSize() Objective set the Q table size 

 

5.2.4 Sequence diagrams 

The class diagram has shown the main functions and variables required by 

the RampAgent class and the Objective class. This section will introduce 

how these two classes work together to conduct the learning process. Two 

sequence diagrams related to SORampAgent and MORampAgent are 

shown in Figures 5.4 and 5.5, respectively.  
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Figure 5.4: Sequence diagram for the single-objective mode 

control steploop

episodeloop

 : USER

 : SORampAgent  : Objective

1 : SORampAgent()
<<create>>

2 : setObjective()

3 : setSize()

4 : setInitialSA()

5 : inputRQ()

6 : startStateTransition()

7 : getState()

8 : getReward()

9 : getGreedyAction()

10 : getActionEG()

11 : getQValue()

12 : outputRQ()

13 : delete()

<<destroy>>
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Figure 5.5: Sequence diagram for the multi-objective mode 

loop

loop

episodeloop

control steploop

 : USER

 : MORampAgent  : Objective

1 : MORampAgent()

<<create>>

2 : setSQSize()

3 : setObjective()

4 : setSize()

5 : setInitialSA()

6 : inputRQ()

7 : startStateTransition()

8 : getState()

9 : getReward()

10 : getGreedyActionSQ()

11 : getActionEG()

12 : getQValue()

13 : getSQValue()

14 : outputRQ()

15 : delete()

<<destroy>>



- 109 - 

 

These two sequence diagrams present the specific implementation of two 

algorithms, namely single-objective and multi-objective algorithms as 

previously introduced in Section 4.4. The flow charts in Figures 4.13 and 

4.14 have described the working mechanisms of these two algorithms at an 

abstract level. In this section, two sequence diagrams will show how different 

functions (introduced in Sections 5.2.2 and 5.2.3) can be called and used to 

realise two algorithms at an implementation level. 

In the single-objective mode (Figure 5.4), the learning process starts with the 

initialisation of a ramp agent through the constructor SORampAgent(). Then 

two loops related to each episode (including setInitialSA(), inputRQ(), 

startStateTransition() and outputRQ())  and the control step are triggered. 

The main part of the learning process (state transition) is realised by 

startStateTransition(), which contains all functions required for Q-learning 

such as getState(), getReward(), getGreedyAction(), getActionEG() and 

getQValue(). At the end of each learning process, delete() is used to 

release memory. 

In the multi-objective mode (Figure 5.5), the constructor MORampAgent() 

instead of SORampAgent() is used to initialise the ramp agent. More than 

one control objective can be considered in this case, thus, besides two basic 

loops for episode and control step, two more loops for getReward() and 

getQValue() are maintained to deal with different objectives. In the state 

transition process of multi-objective case, the greedy action is selected by 

function getGreedyActionSQ() according to SQ value. Compared with 

single-objective case, one more function getSQValue() is required to 

scalarise Q values. 

For real applications, two kinds of agents can be instantiated according to 

the number of control objectives required. The Q-learning process can be 
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conducted through calling related functions embed in the classes 

RampAgent, SORampAgent, MORampAgent and Objective.  

5.3 Summary 

This chapter has introduced the detailed implementation issues related to 

ACTM and RAS. Both of these two parts were programmed by C++ and can 

be used as a platform to test RL algorithms under various traffic conditions 

(for different network layouts and different traffic demands).  

The ACTM contains four kinds of cells expressed by four classes. For each 

kind of cell, two functions related to traffic flow dynamics and vehicle 

conservation can be called. In other works, these functions are software 

implementations of Equations (4.14) to (4.17) introduced in Section 4.2.  

Two main modules of the ramp agent were implemented by two classes, 

namely the RampAgent class and the Objective class. Here, a special 

class Objective was developed to generalise the calculation process of 

different control objectives (regarding reward calculation and Q update). In 

this way, different objectives can be easily involved under the same 

framework. To deal with two different modes, the RampAgent class was 

extended to have two sub-classes, namely the SORampAgent class and 

the MORampAgent class. A number of functions embedded in these two 

classes can be called to complete the learning process and realise the 

single- and multi-objective algorithms introduced in Chapter 4. 

For ACTM, all classes defined in Section 5.1 are contained in two files 

including the header file “trafficflowmodel.h” and implementation file 

“trafficflowmodel.cpp”. For a ramp agent, four files relating to the 

RampAgent module and the Objective module were developed. The 

RampAgent module contains two files “rampagent.h” and “rampagent.cpp”, 

while the Objective module is composed of the files “objective.h” and 
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“objective.cpp”. These six files contain the complete information regarding 

the declaration and implementation of developed classes for ACTM and 

RAS, which can be used together or separately according to different 

requirements. The full source code of these files can be found in Appendix A. 

The evaluation of RAS based on the platform developed in this chapter will 

be presented in Chapters 6 and 7. 
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CHAPTER 6 CASE STUDIES FOR 

HYPOTHETICAL NETWORKS 

Following the description of the learning system and relevant software 

implementation, the following two chapters (6 and 7) will focus on case 

studies used to evaluate the proposed ramp agent system (RAS). To do the 

evaluation, a number of simulation experiments are designed and conducted 

in these two chapters using the platform developed in Chapter 5. Various 

aspects of RAS will be tested through three cases regarding two 

hypothetical networks (with single on-ramp and multiple on-ramps) and a 

real network selected from the M6 motorway in the UK. The performance of 

RAS is compared with the situation of no control and one of the most widely 

used control algorithms, ALINEA, in all three cases. Although a coordinated 

version of ALINEA, i.e. METALINE (as introduced in Section 2.3.3) can be 

considered in the multi-ramp case, it has been mentioned in (Papageorgiou 

and Kotsialos 2002) that METALINE had no advantages over ALINEA when 

recurrent congestion occurred (e.g. during daily peak hours). Since only 

recurrent congestion is considered in three cases, METALINEA will not be 

used for comparison.  

This chapter will focus on the two hypothetical networks, while the real 

network will be discussed in Chapter 7. The aims of the evaluation of the two 

hypothetical cases are summarised as follows: 

(1) In the single-ramp case, the aim is to use the simplest network with only 

one on-ramp to analyse the performance and characteristics of one 

ramp agent. This test is essential, because the whole RAS is based on 

the features of each ramp agent included. The analysis of one ramp 

agent can provide important information for extending from one agent to 
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a ramp agent system. The performance of one ramp agent will be tested 

regarding the influence of different learning parameters, the ability to 

improve traffic efficiency and the ability to deal with queue constraints. 

(2) The multi-ramp case is an extension from the single-ramp case, which 

uses a network with three pairs of on- and off-ramps. The test here will 

focus on the performance of three ramp agents working as a system 

(RAS). Specifically, two abilities of the RAS will be tested, which 

comprises: the ability to improve traffic efficiency under different 

simplified demand profiles and the ability to maintain user equity in a 

scenario with an obvious inequity. 

These two case studies are introduced in Sections 6.1 and 6.2 respectively. 

Section 6.3 gives the summary and discussions of this chapter. 

6.1 Single-ramp Case 

A simple network used by (Gomes and Horowitz 2003) is selected for the 

first case study. This network has shown its effectiveness for testing different 

control algorithms such as the capacity-demand strategy and ALINEA. In the 

single-ramp case, minimising TTS is the only objective considered, and 

without off-ramp, the only way of reducing TTS is to prevent the capacity 

drop phenomenon (the first mechanism introduced in Section 2.2.1).  

6.1.1 Experiment design 

Network layout 

Figure 6.1 shows the layout of a single-ramp network which is a stretch of a 

typical three-lane motorway with one single-lane on-ramp. In ACTM, this 

network is divided into four cells including one on-ramp cell (cell 2), three 

normal cells (cells 0, 1 and 3). Thus, only one ramp agent is required to 

control the on-ramp cell 2.  
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Figure 6.1: Network layout for the single-ramp case 

Parameters for ACTM 

The cell length and road capacity are selected from (Hegyi et al. 2005), 

where all cells have the same length il  
= 1 km, the capacity of each lane is 

set as 2000 veh/h, and thus for a three-lane mainline, 
,cap iq
 
= 6000 veh/h. 

Following (Jiang and Chung 2013), the average vehicle length is assumed to 

be 4 metres and the minimum distance between two vehicles is 1 metre, 

then, each lane can contain up to 200 vehicles per kilometre. For a three-

lane motorway, the jam density can be determined by: 
,jam i
 
= 600 veh/km 

(200 veh/lane/km). The free-flow speed iv
 
= 100 km/h and two specific 

parameters for ACTM including flow blending parameter i
 
= 0 and flow 

allocation parameter i
 
= 0.16 are all selected from (Gomes and Horowitz 

2006). According to these parameters, the congestion wave speed and 

critical density can be calculated as iw
 
= 11.1 km/h and 

,crit i
 
= 60 veh/km 

(20 veh/lane/km) respectively. sT  is set as 30 s to guarantee that 

min{ / }s i iT l v  (the CFL condition which was introduced in Section 4.2). A 

typical control interval cT =30 s is selected (Papageorgiou et al. 2007), which 

is the same as the simulation interval sT . It is assumed that a typical 
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capacity drop, i.e. 10% (Cassidy and Bertini 1999), will appear on the 

mainline when congestion occurs in the bottleneck location. Thus,   = 0.9.  

Demand profile 

 

Figure 6.2: Demand profile for the single-ramp case 

In the first hypothetical case, a trapezoidal demand profile for peak hours is 

adopted. This kind of demand profile simplifies the demand change in peak 

hours and provides a simple, but effective way to test the effectiveness of 

ramp metering. The trapezoidal demand profile has been used to test the 

performance of various ramp metering strategies in many simulation-based 

studies, such as model predictive control (Hegyi et al. 2005), ALINEA 

(Kotsialos et al. 2006), optimal control (Zhang and Shen 2010), and 

reinforcement learning (Davarynejad et al. 2011).  

The trapezoidal demand profile in this study is presented in Figure 6.2 which 

is similar to the one used by (Hegyi et al., 2005) and (Davarynejad et al., 

2011). The overall test period is 1 hour with 120 time steps (simulation 

interval sT  is 30 s). For the first 60 steps, a higher demand can cause traffic 

congestion on the motorway mainline. The decreased demand flow during 

the remaining 60 steps guarantees that traffic congestion can be completely 
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alleviated within the test period. Before each test period, there will be a 

warm-up period (60 steps) with a demand flow of 5000 veh/h for the mainline 

and 600 veh/h for the on-ramp. Under this setting, the system can reach a 

steady state by the beginning of the real test. 

6.1.2 Strategy settings 

In this chapter, all the simulation experiments are designed and carried out 

using ACTM. To combine RAS and ALINEA with ACTM, some necessary 

settings and modifications should be done here, as described below.  

Modifications for ALINEA 

The original ALINEA introduced in Section 2.3 was focused on the field 

applications which cannot be directly used in ACTM. Two modifications 

should be made to link ALINEA with ACTM. 

(1) In the original ALINEA algorithm (Equation (2.16)), occupancy ,

k

out io  is 

used as the controlled variable, as it is a stable measurement that can 

be directly collected from loop detectors. Occupancy is defined as the 

proportion of time during which a detector is occupied by vehicles, and it 

can be converted to the density through some observed linear 

relationships (Kim and Hall 2004). Under the simulation environment of 

ACTM, occupancy cannot be directly generated. Thus, to combine 

ALINEA and ACTM, density k

i  can be used to replace occupancy ,

k

out io
 

as mentioned in (Gomes and Horowitz 2003). 

(2) Another problem is that the calculated metering rate may not be the 

same as measured on-ramp flow in real applications. To make a better 

calculation, these two rates should be distinguished by using the 

measured on-ramp flow 1

,

k

r im   from the last time step 1k   to update the 

calculated metering rate k

ic  at current step k  (Papageorgiou et al. 1997). 
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Through the aforementioned modifications, the ALINEA updating equation 

used in ACTM is given below: 

1

,
ˆ( )k k k

i r i R i ic m K      (6.1) 

To apply ALINEA, two parameters regarding RK  (regulatory parameter) and 

ˆ
i  (target density) should be set. The calibration of these two parameters is 

shown in Appendix B.1 where two parameter values RK
 
= 0.3 and ˆ

i
 
= 20 

veh/lane/km are found to be optimal. 

In this study, two ALINEA-related algorithms namely ALINEA-C and 

ALINEA-D are used as a comparison. ALINEA-C is the theoretical 

application of ALINEA, by which the metering rates are directly calculated 

from Equation (6.1). Thus, continuous metering rates that may not be integer 

can be generated. The ALINEA-D (Kotsialos et al. 2006), on the other hand, 

is more practical, as it only allows an integer number of vehicles to enter the 

motorway mainline during each control interval. The discrete metering rates 

can be calculated by rounding the rate values generated by Equation (6.1) to 

the nearest integer numbers. By setting the same minimum and maximum 

metering rates, ALINEA-D can generate discrete metering rates in the same 

range of RAS, which guarantees a fair comparison. 

Settings of RAS 

For real applications, the action set and state set of RAS should be defined 

and regulated according to different network conditions. In a typical single-

lane on-ramp used in this section, the minimum and maximum metering 

rates can be set as typical values: 240 veh/h and 1200 veh/h (Arnold Jr 

1998). Then the set of discrete metering rates can be represented by 

{2,3,4,5,6,7,8,9,10}IC    veh/ cT   with 9 discrete metering rates that cover all 

possible values within the predefined range.  
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In Section 4.3.4, a four-dimensional state space containing four sub-sets

,nmain IS , ,qin IS , ,non IS  and ,don IS
 
has been defined for ramp metering. The main 

problem considered in this section is how to divide these four state sets. In 

this study, all state sets are uniformly divided into a number of states, and 

the more states there are, the more smooth the learning process is. 

However, an increased number of states for each state set will exponentially 

increase the size of state space, and thus increase the burden of computer 

memory and searching time in this state space. In this study, a suitable state 

deviation that enables a relatively smooth learning process with an 

acceptable number of states is as follows 6: 

(1) ,nmain IS =32 (
,

up

main in = 600 veh, 
,

low

main in =0 veh, 
,main in =20 veh) 

(2) ,qin IS =12 (
,

up

in iq = 6000 veh/h, 
,

low

in iq = 3000 veh/h, 
,in iq =300 veh/h) 

(3) ,non IS  12 ( ,

up

on in = 100 veh, ,

low

on in =0 veh, 
,on in =10 veh) 

(4) ,don IS  12 ( ,

up

on id = 1200 veh/h, ,

low

on id =600 veh/h , 
,on id =60 veh/h) 

where, 
,

low

main in
 
and 

,

low

on in  are determined according to the minimum possible 

number of vehicles on the mainline and on-ramp which are both 0, ,

up

main in  is 

the maximum possible vehicles on the mainline which can be calculated by 

,

up

main in
 
= 

jam il 
 
= 600 veh, ,

up

on in
 
= 100 veh is the maximum acceptable vehicle 

queue length at on-ramp. ,

up

in iq
 
= 6000 veh/h is the maximum inflow of a cell, 

i.e. the capacity flow. ,

low

in iq
 
= 3000 veh/h, ,

up

on id
 
= 1200 veh/h and ,

low

on id
 
= 600 

veh/h are all determined from the demand profile (Figure 6.2) which 

                                            

6 The main system configuration of the computer in this study is as follows: the 

CPU is an Intel Core 5 CPU, 1.18 GHz and the installed memory is 2.92 GB. It is 

found in this study that when the number of states of one ramp agent is around 

60000, the learning process is relatively smooth and does not take too much time 

(usually within one hour). For other computers with different configurations, the 

acceptable state number may be different. 
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indicates the highest and lowest flows from both the mainline and on-ramp. 

Thus, the total number of states is IS = 32121212 = 55296 (can be 

calculated from Equation (4.38)). 

Besides the action and state, three learning parameters, namely learning 

rate  , action selection parameter  , and discount rate   should be well set 

to guarantee a good performance of RAS. To find suitable parameter 

settings, these three parameters will be analysed in Section 6.1.3. 

6.1.3 Learning parameters analysis 

A simple sensitivity analysis named One-at-a-Time (OAT) (Saltelli 1999) is 

used here to find suitable parameter settings and analyse the influence of 

different learning parameters. The minimum TTS of cell 2 achieved by RAS 

is around 3920 veh.min (this value can be obtained by the test shown in 

Section 6.1.4), which will be set as a benchmark in OAT analysis. Once the 

ramp agent reaches this benchmark line, it has learned the required control 

actions. The influence of three parameters on the algorithm performance is 

tested according to two aspects: learning speed and convergence stability. 

The number of episodes (NE) spent to reach the benchmark line is used as 

an indicator of learning speed. The higher NE is, the slower the agent learns 

to find the required result. The convergence stability is measured by the 

variance of results (VR) after the benchmark has been reached. Higher VR 

means lower stability.  

The OAT analysis is conducted by regulating one parameter at a time, while 

keeping others fixed. For instance, if   is the parameter analysed,   and   

will be set as their baseline values for the whole test period. Then, the 

parameter   will be changed slightly from its baseline value to observe the 

changes of NE and VR. Two sensitivity indices SI(NS) | NE / |    and 

SI(VR) | VR / |    are used to measure the changes of NE and VR 
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respectively. For   and  , the same method can be used to test their 

influence. A commonly used value 0.8 (Rezaee et al. 2012) is chosen as the 

baseline of  . The other two baselines for   and   are set as 0.05 and 0.01 

which are their minimum values in the test.  

Based on this method and the experimental design shown in Section 6.1.1, a 

series of experiments are conducted in this section. Each experiment runs 

for one million episodes taking about 25 minutes to guarantee the 

convergence (15 seconds for each 10000 episodes). The test results are 

discussed as follows.  

Learning rate  

Table 6.1: NE and VR for different learning rates  

  0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

NE ( 4
10 ) 82.00 50.00 32.00 22.00 18.00 16.00 15.00 15.00 15.00 15.00 

SI(NE) ( 4
10 ) ― 640.00 360.00 200.00 80.00 40.00 20.00 0.00 0.00 0.00 

SI(NE) ( 4
10 ) 148.9 

VR ( 4
10 ) 0.75 1.84 2.09 4.93 13.04 24.63 30.07 41.73 45.62 57.05 

SI(VR) ( 4
10 ) ― 21.80 5.00 56.80 162.20 231.80 108.80 233.20 77.80 228.60 

SI(VR)  ( 4
10 ) 125.1 

 

Table 6.1 presents NE and VR corresponding to different learning rates, and 

Figure 6.3 shows examples (with   = 0.05, 0.15, 0.3 and 0.5) of TTS 

convergence. For cases with 0.5  , the algorithm performance is very 

unstable, which is not shown here. From the test results, it can be seen that 

the learning speed is very sensitive to   when it is less than 0.2. For 

learning rates greater than 0.2, the learning speed cannot be increased too 

much by increasing  , and the number of episodes spent keeps at the 

same level around 150000 episodes. The convergence stability, on the other 

hand, continues to decrease with the growth of  . Therefore,   is 
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suggested to be set close to 0.2 to avoid low stability and keep a relatively 

high learning speed.  

 

Figure 6.3: TTS convergence for different learning rates 

Discount rate 

Table 6.2: NE and VR for different discount rates  

  0.50 0.55 0.60 0.65 0.70 0.72 0.75 0.78 0.80 0.85 0.90 0.95 

NE ( 4
10 ) 78.00 80.00 80.00 80.00 82.00 82.00 82.00 82.00 82.00 85.00 95.0 >100 

SI(NE) 

( 4
10 ) 

― 40.00 0.00 0.00 40.00 0.00 0.00 0.00 0.00 60.00 200.0 ― 

SI(NE)

( 4
10 ) 

34.0 

VR ( 4
10 ) 2.34 1.22 0.98 0.79 0.78 0.76 0.73 0.74 0.75 0.93 1.87 ― 

SI(VR) 

( 4
10 ) 

― 22.40 4.80 3.80 0.20 0.40 1.00 0.20 0.40 3.60 18.80 ― 

SI(VR)  

( 4
10 ) 

5.6 
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Figure 6.4: TTS convergence for different discount rates 

With an increasing value of  , the number of episodes required to approach 

the benchmark grows gradually (see Table 6.2). When   reaches 0.95 (as 

shown in Figure 6.4 (d)), the benchmark value cannot even be achieved 

within one million episodes. For the stability test, one interesting finding is 

that VR does not fall all the time with the growth of  . Indeed, one flexion 

point arises between 0.7 and 0.8 (in this test, this point is 0.75), around 

which the highest stability can be obtained. From the test of  , it can be 

concluded that the learning speed is not sensitive to the discount rate, and 

the highest   cannot guarantee the best stability. Thus, a value between 0.7 

and 0.8 (0.75 in this test) should be chosen for   to achieve the highest 

stability.   
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Action selection parameter 

Table 6.3: NE and VR for different action selection parameters  

  0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

NE ( 4
10 ) 82.00 58.00 42.00 40.00 34.00 32.00 32.00 30.00 30.00 30.00 

SI(NE) 

( 4
10 ) 

― 
2400.00 1600.00 200.00 600.00 200.00 0.00 200.00 0.00 0.00 

SI(NE)

( 4
10 ) 

577.8 

VR ( 4
10 ) 0.75 2.47 7.76 11.55 22.16 43.74 66.28 79.70 93.78 94.26 

SI(VR) 

( 4
10 ) 

― 
172.00 529.00 379.00 1061.00 2158.00 2254.00 1342.00 1408.00 48.00 

SI(VR)  

( 4
10 ) 

1039.0 

 

Figure 6.5: TTS convergence for different action selection parameters 

From Table 6.3, it can be seen that both NE and VR are very sensitive to   

(examples of TTS convergence of   = 0.02,   = 0.05,   = 0.07,   = 0.1 are 

shown in Figure 6.5). Higher   leads to lower stability. When  reaches 0.1, 

the VR is already 94.26 (
410 ). On the other hand, NE reduces with the 

growth of  , while after   = 0.05, the learning speed cannot be improved 
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greatly with NE around 30 (
410 ). Therefore, it is better to set   as a very 

small value such as 0.01 to obtain acceptable convergence stability.     

In summary, the most sensitive parameter for both learning speed and 

convergence stability is   with the highest average indices 577.8 (
410 ) and 

1039.0 (
410 ).   has less impacts on the algorithm than   and it has the 

average indices 148.9 (
410 ) for learning speed and 125.1 (

410 ) for 

convergence stability. Compared with   and  , the discount rate   seems 

to be less important with average sensitivity indices 34.0 (
410 ) and 5.6 

(
410 ) for the learning speed and convergence stability, respectively.  

Through the comparison of different parameter values, one possible 

parameter setting is given as:   = 0.2,   = 0.75,   = 0.01 that can 

guarantee a high learning speed without losing too much stability. These 

parameters will be used for the remaining tests in both Chapters 6 and 7. 

6.1.4 Efficiency test 

As mentioned earlier, in the single-ramp case, efficiency improvement is the 

only objective considered. In the first case study, an efficiency test is 

conducted by comparing RAS with a non-controlled situation (NC) and 

ALINEA.  

Non-controlled situation 

As shown in Figure 6.6, without control, during the first 60 time steps, 

because of the high demand from both mainline and on-ramp, congestion 

occurs in cell 2 (between 2 and 3 km) and propagates upstream to cell 1 

(between 1 and 2 km). The most severe congestion occurs around the 50th 

time step with the highest density in cell 2 around 70veh/lane/km. For the 

last 60 time steps, the reduction of traffic demand alleviates traffic 
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congestion, and after nearly 100 steps, traffic flow returns to free-flow state. 

During the whole test period of the non-controlled situation, the TTS of cell 2 

is 7160 veh.min, while the network TTS reaches 17156 veh.min. 

 

 

Figure 6.6: Density without control: (a) density evolution, (b) cell 

density 

Controlled situation 

Figure 6.7 illustrates the convergence of RAS (shows the TTS of cell 2) 

under parameter settings selected from Sections 6.1.2 and 6.1.3. The 

optimal control actions can be found after 220000 episodes which take about 

5 minutes.  

1 2 30O1

O2

D
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Figure 6.7: TTS convergence of RAS 

 

Figure 6.8: Cell density with control: (a) cell 0, (b) cell 1, (c) cell 2, (d) 

cell3 

As shown in Figure 6.8, all three strategies can eliminate network congestion 

by keeping mainline density below the critical value. For TTS reduction, RAS 

and ALINEA-D have almost the same performance (see Figure 6.9). Under 
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these two control strategies, as shown in Table 6.4, the TTS of cell 2 during 

the whole test period can be reduced by 45.3%, and the network TTS can be 

reduced by 30.2%. ALINEA-C is better than RAS and ALINEA-D, which can 

reduce the TTS of cell 2 by 48.8% and for the network by 31.7%.  

 

Figure 6.9: TTS comparison for: (a) cell 2, (b) network 

Table 6.4: TTS comparison 

Strategies 
TTS of cell 2 

(veh.min) 
Reduction (%) 

TTS of the network 

(veh.min) 
Reduction (%) 

NC 7160 _ 17156 _ 

ALINEA-C 3664 48.8 11725 31.7 

ALINEA-D 3917 45.3 11971 30.2 

RAS 3919 45.3 11977 30.2 

 

The main reason for this result can be explained by Figure 6.8 (c), from 

which it can be seen that ALINEA-C can make the mainline density exactly 

the same as the critical value (20 veh/lane/km) between time steps 10 and 

80 by using continuous metering rates. In this situation, the outflow of cell 2 

can keep at a higher level, which leads to a shorter queue length as shown 

in Figure 6.10, and thus has lower TTS. On the other hand, the critical 

density cannot be strictly reached by RAS and ALINEA-D with discrete 
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integer metering rates. Thus, these two strategies have a longer queue 

length and higher TTS than ALINEA-C.  

 

Figure 6.10: On-ramp queue comparison 

6.1.5 Queue constraints test 

It has been mentioned in Section 2.3 that a successful ramp metering 

strategy should be able to keep the on-ramp queue within a predefined 

constraint to avoid interrupting the traffic operation in local streets. A popular 

way to tackle queue constraints is to combine existing metering strategies 

with a queue management algorithm, such as ALINEA/Q introduced in 

Section 2.3.2 (Equations (2.17), (2.18) and (2.19)). RAS developed in this 

study, on the other hand, does not need an extra queue management 

algorithm. In RAS, different queue constraints can be considered through 

setting different queue boundaries, i.e. 
max

,on in  in Equation (4.31).  

In this section, the ability of RAS to deal with queue constraints is tested and 

compared with ALINEA/Q. Here, ALINEA/Q consists of two algorithms 

namely ALINEA-C/Q and ALINEA-D/Q corresponding to ALINEA-C and 

ALINEA-D respectively. Queue estimation given by Equation (2.17) is not 

required in our test, as the exact on-ramp queue generated by ACTM can be 

directly obtained. Five different queue constraints (10 veh, 20 veh, 30 veh, 
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40 veh, 50 veh) are used to form the test. The simulation results are shown 

below. 

 

 

 

Figure 6.11: On-ramp queue comparison under queue constraints: (a) 

50 veh, (b) 40 veh, (c) 30 veh, (d) 20 veh, (e) 10 veh 

Figure 6.11 shows on-ramp queues under different control strategies and 

queue constraints. RAS can successfully keep the on-ramp queue under 

constraint in all five situations. By taking continuous metering rates, ALINEA-

C/Q can also restrict the ramp queue length under predefined constraints 
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during the whole control period. With discrete metering rates, ALINEA-D/Q 

cannot work as well as ALINEA-C/Q. At some time steps, the on-ramp 

queue may exceed its maximum acceptable value under the control of 

ALINEA-D/Q (as shown in Figure 6.11 (a)). This is mainly because the 

metering rate generated by ALINEA-D/Q needs to be rounded to the nearest 

integer number. 

 

Figure 6.12: Cell 2 TTS comparison under queue constraints: (a) 50 veh, 

(b) 40 veh, (c) 30 veh, (d) 20 veh, (e) 10 veh 
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Figure 6.13: Network TTS comparison under different queue 

constraints: (a) 50 veh, (b) 40 veh, (c) 30 veh, (d) 20 veh, (e) 10 veh 

For the TTS comparison illustrated in Figures 6.12 and 6.13, ALINEA-C/Q 

has lower TTS than RAS and ALINEA-D/Q under all five queue constraints, 

because it can release a continuous number of vehicles. With the same 

range of discrete metering rates, RAS can reduce more TTS of cell 2 than 

ALINEA-D/Q (Figure 6.12), while RAS and ALINEA-D/Q possess a similar 

performance on reducing TTS for the whole network (Figure 6.13). This 

result can be explained by an example shown in Figure 6.14 where densities 

under different control strategies with queue constraint of 30 veh are 

compared.  
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Figure 6.14: Cell density with queue constraint 30 veh: (a) cell 0, (b) cell 

1, (c) cell 2, (d) cell 3 

Because of the queue constraints of on-ramp, extra vehicles that exceed the 

constraint should be released to the motorway mainline. In this situation, the 

mainline density cannot be maintained around the critical value, and 

congestion cannot be eliminated (see Figure 6.14 (c)). Thus, the outflow of 

cell 2 cannot be improved and will stay at a lower value equalling the queue 

discharge rate (because of capacity drop). In this test, the main objective of 

RAS is to minimise the TTS of cell 2. Compared with ALINEA, RAS is less 

strict on maintaining on-ramp queue length and lets more vehicles stay on 

the mainline. Therefore, fewer vehicles can be received by cell 2 which leads 

to lower inflow to cell 2. As the outflow does not change, the reduced inflow 

of cell 2 can reduce the TTS of this cell. However, as shown in Figure 6.14 
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(b), the reduced inflow to cell 2 causes more severe congestion in its 

upstream cell 1, which increases the TTS of cell 1. In this situation, there is 

little difference between the sum of these two TTSs (cell 1 and 2) controlled 

by RAS and ALINEA-D/Q. Moreover, as shown in Figure 6.14 (a) and (d), 

the densities of cell 0 and 3 have no obvious changes using different control 

strategies. Therefore, the network TTS (the sum of TTS of cell 0, 1, 2 and 3) 

controlled by RAS is close to the one controlled by ALINEA-D/Q. 

6.1.6 Summary 

In this section, a number of simulation experiments were conducted to 

analyse and test the performance of RAS comprising only one ramp agent.  

Through the analysis of learning parameters, it was found that the learning 

speed is very sensitive to   when it is less than 0.2, while the most 

sensitive parameter is   which should be set as a very small value. 

Compared with   and  ,   had the least effect on both learning speed and 

convergence stability. Based on these findings, a group of parameter 

settings with   = 0.2,   = 0.75,   = 0.01 that can balance the speed and 

stability was selected and used for the following tests. 

In the efficiency test, RAS showed a good performance on improving traffic 

efficiency, which can reduce the network TTS by 30.2% from the non-

controlled situation. This performance was almost the same as ALINEA-D, 

but not as good as ALINEA-C which can reduce TTS by 31.7%.  

In the queue constraints test, RAS demonstrated its ability to manage on-

ramp queues under predefined constraints. Different from ALINEA which 

needs to be combined with a queue management algorithm, RAS can 

manage queue length by directly setting boundaries for its reward (i.e. 

values for max

,on in ). When the same range of discrete metering rates was used, 
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RAS had a lower TTS in the controlled cell than ALINEA, but the network 

TTS of the two strategies was similar.  

6.2 Multi-ramp Case 

The single-ramp case discussed in Section 6.1 analysed the performance of 

one ramp agent. This section will focus on the ramp agent system that 

contains more than one ramp agent. In the efficiency test shown in Sections 

6.2.2, 6.2.3 and 6.2.4, improving traffic efficiency is the only objective. In the 

equity test presented in Section 6.2.5, except for efficiency improvement, 

maintaining user equity will be considered as an additional objective. Three 

demand profiles leading to different congestion levels will be used to form a 

series of simulation-based experiments.  

6.2.1 Experimental design 

Network layout 

1513 1431 20 121110987654
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Figure 6.15: Network layout for the multi-ramp case 

In the multi-ramp case, a motorway network with 16 cells is used here. This 

network is extended from the simple network described in Section 6.1. For 

ease of comparison, these cells are grouped into 5 motorway sections from 

section 0 to section 4, and one motorway section may contain more than 

one cell. Motorway sections 1, 2 and 3 are controlled sections including on-

ramp cells 6, 9 and 12. Except for one on-ramp cell, each controlled section 
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contains one normal cell and one off-ramp cell as presented in Figure 6.15. 

For RAS, three ramp agents with index 1, 2 and 3 are used to control their 

corresponding on-ramps, i.e. on-ramp 1, 2 and 3. For ALINEA, three 

controllers are used, which have the same indices as their controlled on-

ramps. 

Parameters for ACTM 

In the multi-ramp case, all cell lengths are set as 500 metres, and split ratios 

( 1 2 3, ,   ) for off-ramps (1, 2 and 3) are set as a typical value 0.1. To satisfy 

the CFL condition, sT  is set as 15 s. All other parameters are set as the 

same values in the single-ramp case, which are summarised as follows: 

,crit i
 
= 60 veh/km (20 veh/lane/km), 

,jam i
 
= 600 veh/km (60 veh/lane/km), 

,cap iq
 
=  6000veh/h, iv

 
= 100 km/h, iw

 
= 11.1 km/h, i

 
= 0, i

 
= 0.16,   = 0.9. 

6.2.2 Efficiency test I 

 

Figure 6.16: Demand profile 1 
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Figure 6.16 illustrates demand profile 1 where demand flows from on-ramp 1 

(O1) and 2 (O2) will be kept at a low level around 600 veh/h during the 

whole test period, while the demand flow from on-ramp 3 (O3) will increase 

to 1200 veh/h during the first 120 time steps. Under this demand profile, 

congestion is caused by the demand flow from on-ramp 3 that has significant 

influence on motorway section 3.  

Non-controlled situation 

 

 

Figure 6.17: Density evolution under NC (demand 1) 

Figure 6.17 shows the density evolution under the non-controlled situation 

(NC). Traffic congestion occurs in cell 12 (between 6 and 6.5 km) and 

propagates upstream to cell 8 (between 4 and 4.5 km) during the next 100 
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steps. With a lower demand starting from step 120, the congestion 

dissipates gradually. After 180 steps, no congestion can be found in the test 

network. During the whole test period without control, the network TTS is 

28809 veh.min. 

Controlled by RAS 

Learning parameters of three ramp agents are set as the same values 

selected from the single-ramp case. These parameters worked well in all 

tests presented in Section 6.2, which will not be recalibrated in the following 

subsections. The same discrete metering rate {2,3,4,5,6,7,8,9,10}IC    veh/ 

cT  used in the single-ramp case will also be adopted by the multi-ramp case. 

As the cell length in the multi-ramp case is 500 metres, the maximum 

number of vehicles on the mainline should be 
,

up

main in
 
= 300 veh (which is half 

of the single-ramp case), and the maximum on-ramp queue ,

up

on in  is set as 

200 veh because of the heavier traffic load in the multi-ramp case. Other 

state-related parameters are all the same as the single-ramp case. Thus, the 

state number of each agent should be IS = 17121222= 53856. This 

state space will be used by all three ramp agents (controlling three on-ramps 

1, 2 and 3) in all tests of the multi-ramp case. 

The convergence of RAS with the selected parameters is shown in Figure 

6.18, and it takes around 250000 episodes (15 minutes) to learn the optimal 

control actions. Figure 6.19 illustrates the density evolution under the control 

of RAS, from which it can be seen that congestion can be completely 

eliminated during the whole control period. When RAS is used, the network 

TTS can be reduced to 23195 veh.min, which is a 19.5% reduction 

compared with the non-controlled situation. 
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Figure 6.18: RAS convergence (demand 1)  

 

Figure 6.19: Density evolution under RAS (demand 1) 
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Comparison with ALINEA 

The parameters of three ALINEA controllers (controlling three on-ramps) are 

also selected from the single-ramp case, which are the same for both 

ALINEA-C and ALINEA-D: 
,1RK =

,2RK =
,3RK =0.3, 1̂ = 2̂ = 3̂ = crit .  

 

Figure 6.20: Density comparison (demand 1): (a) RAS, (b) ALINEA-C, (c) 

ALINEA-D 

The density comparison of RAS, ALINEA-C and ALINEA-D is shown in 

Figure 6.20. All three strategies can keep a smooth density evolution below 

the critical value. Compared with RAS and ALINEA-D, lower TTS with a 

reduction of 21.0% can be obtained by ALINEA-C (see Table 6.5 and Figure 

6.22). ALINEA-D provides almost the same performance as RAS which can 

reduce TTS by 19.5%. This result is similar to the single-ramp case, as only 

one on-ramp (on-ramp 3) may cause congestion and needs strict control. 
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Because no congestion can be caused by on-ramps 1 and 2, metering rates 

for these two on-ramps are both kept at the maximum value by the three 

strategies, which leads to no waiting vehicles on these two on-ramps (see 

Figure 6.21).  

 

Figure 6.21: On-ramp queue comparison (demand 1) for: (a) section 1, 

(b) section 2, (c) section 3 

 

Figure 6.22: Network TTS comparison (demand 1) 
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Table 6.5: TTS comparison (demand 1) 

Strategies 

TTS for the whole period (veh.min) 

Section 

0 

Section 

1 

Section 

2 

Section 

3 

Section 

4 
Network 

Reduction 

(%)  

NC 5316 3936 5143 9766 4648 28809 ― 

ALINEA-C 5316 3936 4092 4760 4648 22752 21.0 

ALINEA-D 5316 3936 4092 5210 4648 23202 19.5 

RAS 5316 3936 4092 5203 4648 23195 19.5 

 

6.2.3 Efficiency test II 

 

Figure 6.23: Demand profile 2 

In the second demand situation shown in Figure 6.23, demand flows from 

the mainline (O) and on-ramp 1 (O1) will keep at the same values as in the 

first demand profile during the whole test period. For on-ramp 2 (O2) and 3 

(O3), demand flows will experience an increase in the first 120 steps that 

can cause congestion in two controlled cells (cell 9 and 12). Compared with 

demand profile 1, more severe congestion that influences two sections (2 

and 3) will occur under demand profile 2.  



- 142 - 

 

Non-controlled situation 

 

 

Figure 6.24: Density evolution under NC (demand 2) 

Figure 6.24 shows the density evolution in the non-controlled situation. Two 

congested motorway sections, one starting from cell 9 and the other 

originating from cell 12, appear in the network. This traffic congestion starts 

from step 20 and lasts around 200 time steps. After the 220th time step, 

congestion dissipates completely. Under demand profile 2, the congestion is 

more severe than the first demand profile from both temporal and spatial 

points of view. Without control, the network TTS in this scenario is 36378 

veh.min, which is much higher than the first demand situation with only one 

congested motorway section. 
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Controlled by RAS 

 

Figure 6.25: RAS convergence (demand 2) 

 

Figure 6.26: Density evolution under RAS (demand 2) 

Using the same parameters selected from the first demand profile, RAS also 

takes about 250000 episodes to find the optimal solution in this test. 

However, compared with demand profile 1, the convergence of RAS under 
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demand profile 2 is more unstable (see Figure 6.25). This is mainly because 

two congested motorway sections are included in this test, and the instability 

is cumulated from these two sections. Although more severe congestion that 

affects two motorway sections occurs, RAS can still eliminate this 

congestion and keep the mainline density around the optimal value as 

presented in Figure 6.26. Consequently, the network TTS can be reduced to 

27482 veh.min.  

Comparison with ALINEA 

 

Figure 6.27: Density comparison (demand 2) for: (a) RAS, (b) ALINEA-C, 

(c) ALINEA-D 
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Figure 6.28: Cell density (demand 2): (a) cell 6, (b) cell 9, (c) cell 12 

 

Figure 6.29: On-ramp queue comparison (demand 2) for: (a) on-ramp 1, 

(b) on-ramp 2, (c) on-ramp 3 
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Figure 6.30: Network TTS comparison (demand 2) 

Table 6.6: TTS comparison (demand 2) 

Strategies 

TTS for the whole period (veh.min) 

Section 

0 

Section 

1 

Section 

2 

Section 

3 

Section 

4 
Network 

Reduction 

(%) 

NC 5316 4909 10314 11048 4791 36378 ― 

ALINEA-C 5316 3936 4652 9733 4791 28428 21.9 

ALINEA-D 5316 3936 5442 8870 4791 28355 22.1 

RAS 5316 3936 4666 8773 4791 27482 24.5 

 

Different from RAS, some parameters selected from the first test are no 

longer effective for both ALINEA-C and ALINEA-D under demand profile 2. 

The calibration should be redone for ALINEA to obtain effective parameter 

settings. The detailed calibration process is presented in Appendix B.2.1, 

through which the optimal parameters can be determined as: for ALINEA-C,

,1RK = 
,2RK = 

,3RK = 0.3, 1̂
 
= crit , 2̂

 
= crit , 3̂

 
= 0.98 crit , and for ALINEA-D, 

,1RK = 
,2RK = 

,3RK = 0.3, 1̂
 
= crit , 2̂

 
= crit , 3̂

 
= 0.97 crit . 

Compared with ALINEA-C and ALINEA-D, RAS is more unstable on 

maintaining mainline density in motorway section 3 (distance around 6 km, 



- 147 - 

 

see Figures 6.27 (a)). However, as shown in Figure 6.28, it can keep the 

mainline density closer to the critical value in the controlled cells 9 and 12. 

Thus, RAS has higher outflows on the mainline with less vehicles waiting at 

on-ramps 2 and 3 (see Figure 6.29).  As on-ramp 1 cannot cause congestion, 

all three strategies generate the maximum metering rates for this on-ramp 

and let vehicles from on-ramp 1 enter the mainline freely without queuing. 

Although ALINEA-C can keep a short queue length (the same as RAS) at 

on-ramp 2, it leads to the longest queue length at on-ramp 3 among the 

three strategies. In contrast, ALINEA-D has a shot queue length at on-ramp 

3, while lets the longest queue form at the on-ramp 2. Accordingly, for 

reducing the network TTS, ALINEA-C and ALINEA-D possess a similar 

performance with a reduction of 21.9% and 22.1% respectively (as illustrated 

in Table 6.6 and Figure 6.30). On the other hand, RAS has the lowest 

network TTS of the three strategies, which corresponds to a 24.5% reduction 

from the non-controlled situation. 
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6.2.4 Efficiency test III 

 

Figure 6.31: Demand profile 3 

The mainline demand flow in this test is the same as the previous two 

scenarios, while compared with demand profile 2, one more on-ramp (on-

ramp 1) will have increased demand in the first 120 steps as shown in Figure 

6.31. Thus, under demand profile 3, all three on-ramp demand flows are 

able to cause congestion which will affect three motorway sections (1, 2 and 

3). This is the most congested scenario among all three demand profiles.   

Non-controlled situation 

Figure 6.32 illustrates the density evolution when no control strategies are 

triggered. Without control, traffic congestion occurs in motorway sections 1, 

2 and 3 around the 20th step, which leads to three congested areas during 

the next 200 steps. Compared with demand profiles 1 and 2, demand profile 

3 causes the most serious congestion covering almost 5 km of the 8 km long 
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motorway. In this situation, the network TTS reaches 40237 veh.min, which 

is also the highest one among all three demand profiles. 

 

 

Figure 6.32: Density evolution under NC (demand 3) 

Controlled by RAS 

 

Figure 6.33: RAS convergence (demand 3) 
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Figure 6.34: Density evolution under RAS (demand 3) 

Parameters of RAS are still kept unchanged here. With these parameters, 

the learning speed of RAS in the third test is almost the same as the 

previous two scenarios where 250000 episodes are needed to learn the 

optimal control actions. As shown in Figure 6.33, with three congested 

motorway sections, demand profile 3 leads to the most unstable 

convergence among the three scenarios. Although high instability exists, 

RAS still works well on reducing TTS. Using optimal control actions, RAS 

can completely eliminate severe congestion (as shown in Figure 6.34) and 

reduce the network TTS to 30124 veh.min. 

 



- 151 - 

 

Comparison with ALINEA 

 

Figure 6.35: Density comparison (demand 3) for: (a) RAS, (b) ALINEA-C, 

(c) ALINEA-D 
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Figure 6.36: Cell density (demand 2): (a) cell 6, (b) cell 9, (c) cell 12 

 

Figure 6.37: On-ramp queue comparison (demand 3) for: (a) on-ramp 1, 

(b) on-ramp 2, (c) on-ramp 3 
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Figure 6.38: Network TTS comparison (demand 3) 

Table 6.7: TTS comparison (demand 3) 

Strategies 

TTS for the whole period (veh.min) 

Section 

0 

Section 

1 

Section 

2 

Section 

3 

Section 

4 
Network 

Reduction 

(%) 

NC 5650 9116 10362 10261 4848 40237 ― 

ALINEA-C 5316 4280 8898 7199 4848 30541 24.1 

ALINEA-D 5316 4510 8697 7439 4848 30811 23.4 

RAS 5316 4510 8529 6921 4848 30124 25.1 

 

Some parameters of both ALINEA-C and ALINEA-D used in the previous 

sections are not suitable here, because of the changed demand profile. A 

recalibration of these parameters is shown in Appendix B.2.2. Then, the 

optimal parameter values is listed below: for ALINEA-C, 
,1RK
 
= 0.3, 

,2RK
 
= 

0.3, 
,3RK

 
= 0.1, 1̂

 
= crit , 2̂

 
= 0.98 crit , 3̂

 
= 0.98 crit , and for ALINEA-D, 

,1RK
 
=  0.3, 

,2RK
 
= 0.2,  

,3RK
 
= 0.1, 1̂

 
= crit , 2̂

 
= 0.96 crit , 3̂

 
= crit .  

As shown in Figure 6.35, under demand profile 3, both densities of 

motorway sections 2 (distance around 4 km) and 3 (distance around 6 km) 

experience an unstable evolution when RAS is triggered. On the other hand, 
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ALINEA-C and ALINEA-D can maintain a smoother density evolution in all 

three controlled motorway sections.  

Although RAS cannot make a smooth density evolution, it can keep the 

densities of cells 9 and 12 closer to the critical value compared with ALINEA-

C and ALINEA-D (see Figure 6.36). Therefore, similar to the second test, 

RAS has the shortest queue length at both on-ramps 2 and 3 (see Figure 

6.37). Under such circumstances, RAS achieves the lowest network TTS as 

shown in Figure 6.38, which corresponds to a 25.1% decrease from the non-

controlled situation (illustrated in Table 6.7). ALINEA-C and ALINEA-D 

perform worse with a reduction of 24.1 % and 23.4% respectively. 

6.2.5 Equity test 

So far, the ability of RAS in improving motorway efficiency (by reducing TTS) 

has been tested in three scenarios with different demand profiles. In this 

section, the equity issue will be discussed. As shown in efficiency test 1 

(Section 6.2.2), to maintain a high efficiency, vehicle queues only form at the 

on-ramp 3, and users from on-ramps 1 and 2 can access the motorway 

mainline freely without any restriction. The unfairness of using the motorway 

mainline in this case is very obvious, as only the users from on-ramp 3 have 

to wait at the on-ramp, and users from the other two on-ramps have no 

waiting times at all. This demand profile will be used to test the ability of RAS 

on maintaining user equity. 

Controlled by RAS-EQ 

In this test, equity is added as an additional objective and two control 

objectives regarding traffic efficiency and user equity are considered by RAS 

simultaneously. The multi-objective algorithm developed in Section 4.4.2 is 

used here to balance efficiency and equity. As only one more objective 
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(equity) is included, the multi-objective algorithm used here is named RAS-

EQ for ease of comparison.  

In this test, all three ramp agents have the same weight values for the 

efficiency and equity. Assume that 1  is the weight value of the efficiency-

related objective and 2  is the weight value of the equity-related objective, 

then 1 2, [0,1]    and 1 21   . By regulating 2  within its permitted range, 

different importance can be assigned to user equity. In this test, the equity is 

measured by the standard deviation of total waiting time ( ( )SD TWT  and 

( )tSD TWT ) on different on-ramps, which can be obtained from Equations 

(4.21) and (4.22) (introduced in Section 4.3.1). 

 

Figure 6.39: RAS-EQ convergence with different 2
 : (a) 0.9, (b) 0.9, (c) 

0.5, (d) 0.5, (e) 0.1, (f) 0.1 
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Table 6.8: TTS and SD (TWT) under different 2
  

2
  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

TTS 

(veh.min) 
23195 24038 24047 24059 24156 24187 24213 24385 24452 24566 28809 

Minimum 

SD(TWT) 

(veh.min) 

424.2 412.3 392.7 306.1 88.5 57.5 14 2.7 1 0.2 0 

 

Table 6.8 illustrates the network TTS and on-ramp SD(TWT) under different 

values of 2 . Since this test is focused on the equity, the minimum SD(TWT) 

after convergence (300000 episodes as shown in Figure 6.39) that 

corresponds to the highest equity and its related TTS are selected.  

For reward normalisation, the value of ( )efSD TWT  in Equation (4.33) 

(introduced in Section 4.3.3) can be determined by the maximum ( )tSD TWT  

under the control of efficiency-orientated RAS, which is 6.7 veh.min in this 

case (see Figure 6.41).  

When 2  = 1, equity will be the only objective considered. This is the same 

as the non-controlled situation, in which users can enter motorway mainline 

freely and thus have no waiting times at all on-ramps. Thus, SD(TWT) in this 

case is 0. When 2
 
= 0, equity will not be considered and RAS becomes an 

efficiency-oriented algorithm as discussed in the previous section. Higher 2
 

corresponds to higher TTS and smaller SD(TWT), as more importance is 

assigned to user equity. This result is consistent with the findings mentioned 

in (Kotsialos and Papageorgiou 2004a, Meng and Khoo 2010, Zhang and 

Levinson 2005) where user equity was found to be partially competitive with 

traffic efficiency, and the most efficient case is also the most inequitable 

case (as illustrated in Table 6.8). 
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Comparison with other strategies 

RAS-EQ with a high equity ( 2 =0.9) is used to make a comparison with 

efficiency-oriented RAS (i.e. RAS) and ALINEA. Figure 6.40 shows on-ramp 

queues under different control strategies. Compared with RAS and ALINEA 

which only control vehicles from on-ramp 3, RAS-EQ makes a more even 

distribution of queues at different on-ramps. Thus, during the test period, 

especially the first 120 steps with heavier traffic load, RAS-EQ can maintain 

a lower SD(TWT), below 2 veh.min at each time step, than other strategies 

(see Figure 6.41). For SD(TWT) of the whole test period, RAS-EQ has a 

very low value, 0.2 veh.min, which is close to the no controlled situation and 

much lower than ALINEA-C (221.8 veh.min), ALINEA-D (434.1 veh.min) and 

RAS (424.2 veh.min).  

 

Figure 6.40: On-ramp queues comparison: (a) ALINEA-C, (b) ALINEA-D, 

(c) RAS, (d) RAS-EQ 
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Figure 6.41: SD(TWT) comparison 

 

Figure 6.42: Density evolution under RAS-EQ 
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Figure 6.43: TTS comparison for equity test: (a) section 0, (b) section 1, 

(c) section 2, (d) section 3, (e) section 4, (f) network   

Table 6.9: TTS and SD(TWT) under different strategies  

Strategies NC ALINEA-C ALINEA-D RAS RAS-EQ 

TTS (veh.min) 28809 22752 23202 23195 24566 

TTS reduction (%) ― 21.0 19.5 19.5 14.7 

SD(TWT) (veh.min) 0 221.8 434.1 424.2 0.2 

 

Because of the fairly distributed TWT, the TTS of the three motorway 

sections (1, 2 and 3) controlled by RAS-EQ is also equally distributed. On 

the other hand, as shown in Figure 6.43 (b), (c) and (d), RAS and ALINEA 

make the TTS of motorway section 3 much higher than the other two 
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controlled sections. To maintain a higher equity, RAS-EQ at on-ramps 1 and 

2 leads to slight congestion in cell 6 (between 3 and 3.5 km) and 9 (between 

4.5 and 5 km) at some time steps by managing equal on-ramp queues 

(Figure 6.40). Thus, compared with RAS and ALINEA, RAS-EQ has the 

highest TTS of the whole network (Figure 6.43 (f)). 

Although RAS-EQ cannot work as well as other strategies in improving traffic 

efficiency, it can still reduce TTS by 14.7% compared with the non-controlled 

situation, and in the meanwhile, it can maintain a high equity with very low 

SD(TWT) (as illustrated in Table 6.9). 

6.2.6 Summary 

In this section, the performance of RAS consisting of multiple ramp agents 

was tested in an extended network with multiple on-ramps. Three demand 

profiles with different congestion levels were used in the test. 

Under demand profile 1, only one on-ramp may cause congestion. A similar 

result as the single-ramp case was found in this test. With discrete metering 

rates, RAS achieved almost the same performance of ALINEA-D which 

reduced the network TTS by 19.5% from the no controlled situation. Using 

continuous metering rates, ALINEA-C showed a better performance with a 

21% reduction on the network TTS.  

Under demand profiles 2 and 3, more than one on-ramp may cause 

congestion. RAS in these two scenarios outperformed both ALINEA-C and 

ALINEA-D on reducing TTS with a reduction of 24.5% and 25.1% 

respectively. However, RAS could not keep a smooth density evolution as 

both ALINEA-C and ALINEA-D did.  

In the equity test, the demand profile 1 was used for analysis. It can be 

found from the comparative result that RAS-EQ achieved a superior 

performance on maintaining user equity than RAS (424.2 veh.min) and 
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ALINEA (221.8 veh.min for ALINEA-C, 434.1 veh.min for ALINEA-D), which 

corresponded to a low SD (TWT) of only 0.2 veh.min. In the meanwhile, 

RAS-EQ could reduce the network TTS by 14.7% from the non-controlled 

situation. Thus, with suitable weight values, efficiency and equity can be well 

balanced by RAS-EQ.  

6.3 Discussion 

In this chapter, two case studies based on hypothetical networks, namely the 

single-ramp and multi-ramp cases were designed to test the performance of 

RAS. Some findings obtained from various comparative experiments in 

terms of the parameter characteristics, algorithm advantages and 

disadvantages are discussed here:  

(1) Learning parameters (  ,  ,  ) selected from the single-ramp case 

worked well in all tests presented in this chapter. Indeed, it has been 

found in Section 6.1.3 that, within the test range, these three parameters 

had no obvious effects on the optimal solution itself (the benchmark line), 

and they only affected how fast and steadily this solution can be 

obtained. Thus, without recalibrations, RAS can be directly used in both 

the single-ramp case and multi-ramp case, which means RAS has good 

adaptability in a new environment (as introduced in Chapter 1 and 

mentioned in some other studies such as (Davarynejad et al. 2011, 

Jacob and Abdulhai 2010, Rezaee et al. 2012) ). On the other hand, the 

parameters of ALINEA need to be recalibrated to obtain an acceptable 

performance in some scenarios, such as the multi-ramp case with 

demand profile 2 and 3. 

(2) In some cases with light congestion such as the single-ramp case and 

the multi-ramp case under demand 1, RAS achieved almost the same 

performance as ALINEA-D in reducing TTS. With continuous metering 



- 162 - 

 

rates in this situation, ALINEA-C was even a little better than RAS. When 

heavier congestion that may influence more than one on-ramp occurs, 

RAS obtained a superior performance than either ALINEA-C or ALINEA-

D. This means, compared with ALINEA, RAS has no improvement on 

reducing TTS when one ramp agent can work independently to eliminate 

congestion. On the other hand, when multiple ramp agents should work 

together to alleviate congestion, RAS outperforms ALINEA. 

(3) When the equity issue was considered, RAS-EQ could successfully 

maintain a low SD (TWT) close to the non-controlled situation, which 

was much better than ALINEA. With different weight values, RAS could 

balance efficiency and equity to different degrees. In this test, it was 

found that higher efficiency usually corresponded to lower equity, which 

reaffirms the competitive relationship of efficiency and equity found in 

previous studies (Kotsialos and Papageorgiou 2004a, Meng and Khoo 

2010, Zhang and Levinson 2005). 

(4) Although many benefits regarding improving efficiency and maintaining 

equity can be achieved by RAS, one drawback was found in the tests 

carried out in this chapter. As presented in Sections 6.2.3 and 6.2.4, 

when severe congestion occurs, RAS failed to keep a smooth density 

evolution as ALINEA did. This is mainly because RAS adopted a 

uniformly divided discrete state space. In the severe congested situation, 

mainline density will always fluctuate around the critical value, and slight 

changes of mainline density around this value may lead to completely 

different TTS. In the uniformly divided state space, states around the 

critical value may not be enough to distinguish the slight changes of 

mainline density, and thus make the control strategy unstable. The other 

reason for this is the action selection strategy RAS used. As mentioned 

in Section 4.3.4, there exists a probability for the ramp agent to select 
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new actions that may be non-greedy. Sometimes a worse attempt may 

make the control system unstable at some points. However, it was found 

from various tests that the unstable density evolution had no obvious 

effects on the network TTS. Under this circumstance, if a reduction in 

TTS is the main concern, this kind of instability can be ignored. However, 

if the system stability is considered as one important issue, other kinds 

of state space or adaptive action selection strategies can be analysed in 

future work.  
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CHAPTER 7 CASE STUDY FOR REAL 

NETWORK 

Chapter 6 has shown the test of RAS in two hypothetical cases with 

simplified demand profiles. In this chapter, the third case adopting a real 

network is analysed. This case is named the real-network case which 

focuses on a practical motorway network with real observed traffic data. The 

realistic network layout and fluctuating traffic flows are considered in this 

case, which will be used to test RAS regarding its ability to: (1) improve 

traffic efficiency and (2) maintain user equity with a highly fluctuating 

demand profile and split ratios.  

Chapter 7 is organised as follows. Section 7.1 describes the real network 

selected for the test. Then, how ACTM is calibrated to simulate the traffic in 

this network is discussed in Section 7.2. The validation of calibrated ACTM 

is presented in Section 7.3, which shows the effectiveness of the calibration. 

After that, RAS is tested using ACTM calibrated from the real traffic data in 

Section 7.4. Section 7.5 finally summarises this chapter. 

7.1 Description of the Real Network 

7.1.1 Network layout 

One of the metered motorway segments (southbound direction) of the M6 in 

the UK was chosen for the case study. This motorway segment is between 

junction 10A (J10A) and junction 6 (J6) with an approximate length of 11.6 

km (outlined in blue in Figure 7.1). The reasons for selecting this network are 

summarised as follows:  
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(1) A part of this network has been analysed in (Bergsma 2006) where 

recurrent congestion was found during peak hours. This can provide an 

effective scenario to test the proposed system.  

(2) High quality flow and speed data are available, which can be used to set 

parameters for ACTM and test RAS.  

(3) Various layouts of on-ramps are included in the network, such as 

metered on-ramps in J10, J9 and J7, unmetered on-ramp in J8, closely 

located on-ramps in J10 and J9, and an isolated on-ramp located at J7, 

which provides a more general case to test RAS. 

 

Figure 7.1: Real network layout 

7.1.2 Network partition 

The test motorway network consists of a three-lane mainline, three metered 

two-lane on-ramps, one unmetered on-ramp and four off-ramps. According 
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to the location of ramps and road layout, the whole motorway segment is 

divided into 21 cells with indices from 0 to 20. Among these cells, cells 5, 9 

and 18 are controlled cells linked with three metered on-ramps, i.e. on-ramp 

1, 2 and 4. The network partition and length of each cell can be seen from 

Figure 7.2. 
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Figure 7.2: Network partition 

7.2 Parameter Settings for ACTM 

7.2.1 Available data 

Two kinds of data recorded in the highways agency database JTDB (journey 

time database) and TRADS (traffic flow data system) 7 can be obtained to 

set parameters for ACTM and test RAS. JTDB provides link data between 

                                            

7 These two databases are included in the highways agency traffic information 

system (HATRIS), which can be found from: https://www.hatris.co.uk/ .   

https://www.hatris.co.uk/
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two adjacent junctions, which can be used to calibrate the fundamental 

diagram and generate suitable values for the parameters of ACTM. TRADS 

contains detector data from the selected motorway network. Real demand 

flows and split ratios at different times can be generated from these data, 

which can be used to set the simulation experiments and test the 

effectiveness of selected parameters. Examples of the data collected from 

JTDB and TRADS can be found in Appendix C.  

As introduced in Section 4.1, ACTM is derived from the fundamental 

diagram (triangular or trapezoid). Thus, the parameters of ACTM can be 

obtained from one related fundamental diagram, or specifically the triangular 

fundamental diagram in this study. Two kinds of link data namely link flow 

(traffic flow passing through a link between two junctions) and link average 

speed can be collected from JTDB (Appendix C.1). However, not all time 

periods have the full data record for the network studied. A time period 

between May and August 2011 was selected, because it contains all the 

traffic data required. Furthermore, more than 95% data of this period are 

marked as “high quality” 8. Only high quality data are considered in this work. 

Density can be calculated by the basic relationship /q v   (introduced in 

Section 2.1) from flow and speed. Consequently, the scatter plot of flow and 

density can be obtained (see Figure 7.3). The link data collected between J9 

and J8 is used, since this link experiences more severe congestion than 

others, which can provide better congestion-related flow data. 

                                            

8 The definition of “high quality” can be found from the JTDB reference manual 

(https://jtdb.hatris.co.uk/JTDB%20Reference%20manual.pdf). Each data source 

has its own definition of high quality. Take the MIDAS for example (which is the 

main data source of JTDB), the high quality data should be: (1) observed data, and 

(2) with a minimum of a loop per 1 km of link.  

https://jtdb.hatris.co.uk/JTDB%20Reference%20manual.pdf
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Figure 7.3: Flow-density scatter plot 

To form the triangular fundamental diagram, three main parameters: free-

flow speed v , congestion wave speed w , and capacity 
capq  should be 

determined. Other parameters such as critical density 
cap  and jam density 

jam  can be obtained from the triangular fundamental diagram shown in 

Figure 7.4. 
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Figure 7.4: Target fundamental diagram  

7.2.2 Parameter Settings 

Free-flow speed 

There are a total of 8928 lines of data among which 8723 lines have the 

quality “high”, and only high quality data are used. The method mentioned in 

(Chow and Li 2014) can be used to determine free-flow speed. In their work, 
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the free-flow line of the fundamental diagram is formed by linear regression, 

and then the slope of this free-flow line is regarded as free-flow speed (as 

shown in Figure 7.4). To fit the regression, free-flow related data should be 

selected from all observed data. Here a threshold of speed is defined as the 

85th percentile of all observed speeds, i.e. 98 km/h in this case. All data 

points corresponding to speeds higher than 98 km/h are considered as free-

flow related data (Chow and Li 2014). To guarantee that when the density is 

zero, flow is also zero, the regression line should pass through the origin 

point (0,0) as shown in Figure 7.5. The slope of this regression line is 

determined as the free-flow speed v , which is 100 km/h. 

 

Figure 7.5: Regression of free-flow line 

Capacity and critical density 

Following (Chow and Li 2014, Dervisoglu et al. 2009), the maximum 

observed flow 6800 veh/h is regarded as capacity in this study. Given free-

flow speed v =100 km/h and capacity 
capq = 6800 veh/h, the critical density 

can be obtained by /crit capq v  = 68 veh/km. 
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Congestion wave speed and jam density 

Congestion wave speed w  is determined from the congestion line of the 

fundamental diagram (Figure 7.4). The congestion-related data with density 

higher than the critical density are used to form the congestion line. To 

guarantee the triangular shape of the fundamental diagram, the constrained 

regression line should pass the vertex ( , )crit capq . From the triangular 

fundamental diagram shown in Figure 7.4, a relationship between flow and 

density can be obtained: ( ) ( )cap critq q w      . Letting 
capy q q  and 

critx    , the constraint regression can be converted to the method used 

for determining free-flow speed where the regression line should pass 

through the origin point (0,0). 

 
   (a)                                                                       (b) 

 

(c) 

Figure 7.6: Regression of congestion line using data with density 

larger than: (a) 68 veh/km, (b) 80 veh/km, (c) 90 veh/km  
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However, not all data that have density larger than the critical value (68 

veh/km) can be used to calibrate the congestion line in our case. As shown 

in Figure 7.6, the data with density around 68 veh/km (between 50 and 90 

veh/km) are highly unstable and many data within this range have flows 

much lower than the capacity (6800 veh/h). Including these data, the 

regression line may be unrealistic with higher congestion wave speeds (see 

Figure 7.6 (a)). As mentioned in (Muñoz et al. 2004), a physically reasonable 

congestion wave speed in the real network should be 10 20w  mile/h 

(16 32w  km/h). Thus, only data with density higher than 90 veh/km are 

used to calibrate the congestion line, and the congestion wave speed ( w ) 

can be obtained from Figure 7.6 (c), which is 25 km/h. Jam density can then 

be calculated by 
jam = /cap critq w  = 340 veh/km. Although the data with 

density higher than 90 veh/km can provide a reasonable congestion wave 

speed, the regression of these data is not very good with 2R  = 0.25 (shown 

in Figure 7.6 (c)). It is mainly because the available database JTDB cannot 

provide enough congestion data (with high density), and most data are 

distributed around the critical density. However, with 25 km/h as the 

congestion wave speed, ACTM works well when the averaged midweek data 

are used to test ACTM in Section 6.3.3. These averaged midweek data will 

also be used to test RAS. Therefore, the congestion wave speed and 

resultant jam density obtained in this section can be used to test RAS in 

Section 6.3.4.  

Capacity drop 

  is another important parameter of ACTM which is used to simulate 

capacity drop phenomenon at bottleneck locations. To obtain the value of 

this parameter, the flow-density data at bottleneck locations are required. 

However, only link flow-density data are available so far and they are not 
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sufficient to determine capacity drop. Under such circumstances, the result 

presented in a published report (Bergsma 2006) is considered. In this report, 

a 10% capacity drop was found in the same motorway location. According to 

this finding,   can be determined as 0.9 in this study.   

qcap

jam
crit

v

w

 

Figure 7.7: Calibrated fundamental diagram 

After all the parameters have been decided, the final triangular fundamental 

diagram can be seen in Figure 7.7. Parameters of ACTM are determined as 

follows: free-flow speed v  is 100 km/h, capacity 
capq  is 6800 veh/h, 

congestion wave speed w  is 25km/h, critical density crit  is 68 veh/km (23 

veh/lane/km), jam density 
jam  is 340 veh/km (113 veh/lane/km), and the 

capacity drop parameter   is 0.9. Other ACTM-related parameters such as 

 = 0,  = 0.16 are both set as their typical values selected from (Gomes 

and Horowitz 2006). Similar to the hypothetical cases, the simulation interval 

sT  for ACTM is set as 15s to guarantee the CFL condition ( sT v < 500 

meters, the minimum cell length shown in Figure 7.2). 

Because of the data limitation in JTDB, the location-specific fundamental 

diagrams cannot be obtained (there are no location-specific densities or 

speed data available). It is assumed that all locations have the same 

fundamental diagram calibrated in Figure 7.7. Another problem about the 
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available data is that these data are aggregated with 15-minute intervals, 

which cannot capture the flow changes within a short time. The ideal data 

should be with 1 or 5 minute intervals (Dervisoglu et al. 2009, Chow and Li 

2014). Although these limitations exist in the current work, the effectiveness 

test in this study shows that the selected parameters work well within the 

test period (peak hours). Thus, the parameters presented in this section are 

acceptable for this study. The detailed effectiveness test of these 

parameters is presented in the next section.   

7.3 Effectiveness Test for ACTM 

7.3.1 Data description 

The detector data collected from TRADS are traffic flow data at different 

locations of the network. These data were selected from May 2011 to August 

2011 with 15-minute intervals (the same period as JTDB data used in 

Section 7.2). The averaged midweek data are used to test the effectiveness 

of ACTM here and test RAS in the next section, as Wednesday has the 

heaviest traffic load among all week days.  

Detectors are located on the motorway mainline (with a spacing of 500 

meters) and different ramps (both on- and off-ramps), from which the 

demand flows at different origins and the split flows (flows exiting the 

motorway from off-ramps) at different off-ramps can be extracted. 

Specifically, demand flows from O, O1, O2, O3, and O4 can be collected 

from detectors 30030314, 30032404, 30032418, 134 and 30020764, while 

split flows to D1, D2 and D3 are observed from detectors 30020741, 

30032428, and 30032414 (as shown in Figure 7.2). There was no data 

record for off-ramp 4 during the data collection period, thus, the difference 

between data collected upstream (30022010) and downstream (30030763) 

of off-ramp 4 is used as the split flow to D4. Split ratios of four off-ramps can 
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be calculated by dividing upstream flows of off-ramps (collected from 

30030314, 30032408, 30032392 and 30030763) by their corresponding split 

flows (collected from 30020741, 30032428, 30032414 and the difference 

between 30022010 and 30030763).  

 

Figure 7.8: Observed demand flows 

 

Figure 7.9: Demand flows of AM peak period 
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Figure 7.10: Split ratios of AM peak period 

From Figure 7.8, it can be seen that two peak periods including AM peak 

period (around 06:00-10:00) and PM peak period (around 16:00-20:00) 

existed during the daily traffic operation. Compared with PM peak period, a 

heavier traffic load can be observed in AM peak period which will be 

selected for this study. Demand flows and split ratios between 06:00 and 

10:00 are shown in Figures 7.9 and 7.10, which will be input to ACTM at 

each time step.  

7.3.2 Test results 

The flow data of three locations at the end of cell 5, cell 9 and cell 18 near 

three metered on-ramps are used to test the effectiveness of ACTM on 

simulating real traffic. These three locations were selected because both 

free-flow states and congestion states can be observed from them. The real 

flow data at the end of cell 5 and cell 9 were collected from detectors 

30032408 and 30032392 respectively. For cell 18, this flow can be obtained 

by summing data observed from 30030763 and 30020764. The comparison 

of real observed data and simulated data by ACTM can be seen from Figure 

7.11.  
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(a) 

 

(b) 

 

(c) 

Figure 7.11: Comparison of observed and simulated flows 

Following (Muñoz et al. 2003) and (Muñoz et al. 2004), the mean-

percentage errors (MPE) between observed data and corresponding 

simulated data can be used to measure the effectiveness of ACTM. The 

MPE of each cell i  ( ,MPE iE ) can be calculated by: 

0
1000

2000

3000
4000

5000

6000

7000
8000

0
6

:0
0

0
6

:1
5

0
6

:3
0

0
6

:4
5

0
7

:0
0

0
7

:1
5

0
7

:3
0

0
7

:4
5

0
8

:0
0

0
8

:1
5

0
8

:3
0

0
8

:4
5

0
9

:0
0

0
9

:1
5

0
9

:3
0

0
9

:4
5

1
0

:0
0

Fl
o

w
 (

ve
h

/h
)

Time of Day

ACTM

Real data

0
1000
2000
3000
4000
5000
6000
7000
8000

0
6

:0
0

0
6

:1
5

0
6

:3
0

0
6

:4
5

0
7

:0
0

0
7

:1
5

0
7

:3
0

0
7

:4
5

0
8

:0
0

0
8

:1
5

0
8

:3
0

0
8

:4
5

0
9

:0
0

0
9

:1
5

0
9

:3
0

0
9

:4
5

1
0

:0
0

Fl
o

w
 (

ve
h

/h
)

Time of Day

ACTM

Real data

0
1000
2000
3000
4000
5000
6000
7000
8000

0
6

:0
0

0
6

:1
5

0
6

:3
0

0
6

:4
5

0
7

:0
0

0
7

:1
5

0
7

:3
0

0
7

:4
5

0
8

:0
0

0
8

:1
5

0
8

:3
0

0
8

:4
5

0
9

:0
0

0
9

:1
5

0
9

:3
0

0
9

:4
5

1
0

:0
0

Fl
o

w
 (

ve
h

/h
)

Time of Day

ACTM

Real data



- 177 - 

 

1
, ,

,

0 ,

ˆ1
100%

ˆ

k
k kN
out i out i

MPE i k
kk out i

q q
E

N q






  

 

(7.1) 

where 
,

k

out iq is the cell outflow generated by ACTM, 
,

ˆ k

out iq is the real observed 

flow at the same location, kN  is the number of time steps. For three test 

cells, the calculated MPEs following Equation (7.1) are: 
,5MPEE =7.4%, 

,9MPEE

=7.4% and 
,18MPEE =3.6%. The mean error of ACTM at three locations is 6.1%. 

Thus, ACTM can provide a good simulation of the test network with errors 

lower than 10%. This low percentage error also indicates that the test 

motorway network was not well controlled during the data collection period, 

as observed flows were very close to flows generated by ACTM without 

control.  

7.4 RAS Test 

7.4.1 Non-controlled situation 

Figure 7.12 illustrates the density evolution without control, where traffic 

congestion starts forming at Junction 9 (distance around 5 km) around 06:30 

in the morning because of increased demand flows from both the mainline 

and on-ramps. This congestion increases during the next two hours which 

propagates upstream and worsens the traffic operation at Junction 10 

(distance around 2 km). When high demand flows from O1 and O2 arrive 

between 07:00 and 09:00, severe congestion occurs at Junctions 10 and 9 

with the highest density about 70 veh/lane/km, while traffic operation at 

Junction 7 (distance around 9 km) is smoother with only slight congestion 

corresponding to the highest density around 30 veh/lane/km. After 08:30, 

with decreased demand flows, traffic congestion dissipates quickly and 

traffic operation in the whole network goes back to the free-flow state with 

mainline density below 20 veh/lane/km. 
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Figure 7.12: Density evolution without control (real network) 

7.4.2 Under control of RAS 

In contrast to the hypothetical cases, on-ramps in the real network have two 

lanes. Thus, an even number of vehicles should be released within each 

control interval. The discrete metering rate set for the real network can be 

defined as: {2,4,6,8,10,12,14,16,18}IC   veh/ cT  ranging from 240 to 2160 

veh/h. The control interval cT  is set as a typical value of 30s (the same as 

the hypothetical cases). Because the demand flows and parameters of 

ACTM have been changed in the real-network case, the state set needs to 

be regulated here following the same method introduced in Section 6.1.2.  

Off           On      Off      On   Off                                On  Off  On 

       1               1           2         2     3                                     3     4     4 
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(1) ,nmain IS =12 (
,

up

main in = 
,jam i il   = 170 veh, 

,

low

main in =0 veh, 
,main in =17 veh) 

(2) ,qin IS =21 (
,

up

in iq  = 
,cap iq  = 6800 veh/h, 

,

low

in iq = 3000 veh/h, 
,in iq =200 veh/h) 

(3) ,non IS  22 (
,

up

on in = 200 veh, 
,

low

on in =0 veh, 
,on in =10 veh) 

(4) ,don IS  12 (
,

up

on id = 2400 veh/h, 
,

low

on id =400 veh/h , 
,on id = 200 veh/h) 

There are total IS
 
= 12212212 = 66528 states in the state set. Other 

parameters for RAS and RAS-EQ including three learning parameters in the 

real-network case are the same as the hypothetical cases introduced in 

Chapter 6. RAS takes about 500000 episodes (about 1 hour) to get 

convergence in the real-network case (see Figure 7.13). From Figure 7.14, it 

can be seen that RAS can greatly alleviate traffic congestion in locations 

between 1 and 6 km (around on-ramp 1 and 2), but cannot completely 

eliminate it with the minimum metering rate 240 veh/h. The highest mainline 

density is around 25 veh/lane/km which is slightly higher than the critical 

value (23 veh/lane/km). In the location between 8 and 10 km (around on-

ramp 4), mainline density has no obvious changes before 08:00 compared 

with the non-controlled situation and keeps between 25 and 30 veh/lane/km. 

After 08:00 (as outlined in red), traffic congestion can be eliminated with the 

density below the critical value.  

 

Figure 7.13: RAS convergence (real network) 
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Figure 7.14: Density evolution under RAS (real network) 

 

Figure 7.15: On-ramp queue under RAS (real network) 

Off           On      Off      On   Off                                On  Off  On 

       1               1           2         2     3                                     3     4     4 
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Figure 7.15 shows on-ramp queues under the control of RAS. Among all 

three controlled on-ramps (on-ramp 1, 2 and 4), only on-ramp 2 is strictly 

controlled with the longest queue around 120 veh. Both on-ramp 1 and 4 are 

under loose control with no waiting vehicles at on-ramps. On-ramp 3 is not 

controlled, and there is no queue on this on-ramp. In this situation, the 

network TTS can be reduced to 125299 veh.min (an 18.5% reduction from 

the non-controlled situation as illustrated in Table 7.1).  

7.4.3 Under control of RAS-EQ 

 

Figure 7.16: RAS-EQ convergence (real network) 

 

Figure 7.17: On-ramp queue under RAS-EQ (real network) 
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Figure 7.18: Density evolution under RAS-EQ (real network) 

This test will focus on the equity issue of on-ramps 1 and 2, as these two on-

ramps are closely located and have a great effect on each other. On-ramp 4 

is located far from on-ramp 2 (with a distance about 5 km), which only 

causes slight congestion and has no obvious impacts on its upstream traffic. 

Therefore, on-ramp 4 is not involved in the equity test.  

It has been shown in the multi-ramp case (Section 6.2) that, higher 2  leads 

to higher equity. To obtain a high importance on equity, the weight value 2
 

of ramp agents 1 and 2 (controlling on-ramp 1 and 2 respectively) is set as 

0.9, while for ramp agent 4 (controlling on-ramp 4) 2
 
is set as 0, which 

Off           On      Off      On   Off                                On  Off  On 

       1               1           2         2     3                                     3     4     4 
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means equity is not considered by ramp agent 4. The influence of different 

weight values has been tested in Section 6.2 which will not be repeated here. 

This section only focuses on RAS-EQ with a high equity ( 2  = 0.9). Following 

the same way mentioned in Section 6.2.5, the value of ( )efSD TWT
 
is set as 

15.9 veh.min according to Figure 7.21.  The RAS-EQ convergence can be 

seen from Figure 7.16, which takes about 700000 episodes (75 mins) to find 

the acceptable solution. 

Figure 7.17 illustrates vehicle queues under RAS-EQ. Because on-ramp 4 is 

not involved in the equity consideration, both on-ramps 3 and 4 have no 

waiting vehicles. On the other hand, vehicle queues of on-ramps 1 and 2 can 

be kept at almost the same level and thus lead to a more equal distribution 

of TWT at these two on-ramps. However, to maintain this equity, a long 

vehicle queue builds up at on-ramp 1 and causes unnecessary congestion 

on the mainline around 07:00 (as outlined in Figure 7.18). Both the on-ramp 

queue and mainline congestion lead to a higher network TTS (135255 

veh.min) than RAS. 

7.4.4 Comparison with ALINEA 

 

Figure 7.19: TTS comparison (real network) 
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Figure 7.20: On-ramp queue comparison (real network): (a) ALINEA-D, 

(b) RAS, (c) RAS-EQ 

 

Figure 7.21: SD (TWT) comparison (real network) 

In the real-network case, the practical ALINEA strategy ALINEA-D with 

integer number of vehicles is used for analysis. Within the same rate range 

of RAS, control action generated by ALINEA-D at each step is rounded to 

the nearest even number (for a two-lane on-ramp in the real network). The 
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parameters calibrated from Section 6.1 also work well in the real-network 

case and are accordingly used in this test.  

Figure 7.19 illustrates the TTS comparison of three strategies. Although RAS 

is slightly better than ALINEA-D between 07:30 and 08:00 in terms of TTS 

reduction, the overall performance of RAS and ALINEA-D during the whole 

test period is very close, with respectively 17.9% (126200 veh.min) and 18.5% 

(126200 veh.min) reduction on the network TTS. RAS-EQ can reduce TTS 

by 12% (135255 veh.min) which is less than the other two strategies. 

An on-ramp queue comparison is illustrated in Figures 7.20, from which it 

can be seen that queue difference between two on-ramps under RAS-EQ is 

much smaller than RAS and ALINEA-D. Accordingly, as shown in Figure 

7.21, RAS-EQ can keep a much lower SD (TWT) for most of the time 

(especially between 07:00 and 08:00) than both RAS and ALINEA-D. As 

illustrated in Table 7.1, the overall SD (TWT) of the whole test period can be 

kept at a low level about 5.7 veh.min by RAS-EQ. Without considering equity, 

RAS has a much higher SD (TWT) than RAS-EQ which is 1710.2 veh.min. 

Among the three strategies, ALINEA-D has the worst performance on 

maintaining equity, which has the highest SD (TWT) about 2105.8 veh.min. 

Table 7.1: TTS and SD(TWT) under different strategies (real network)  

Strategies NC ALINEA-D RAS RAS-EQ 

TTS (veh.min) 153657 126200 125299 135255 

TTS reduction (%) ― 17.9 18.5 12.0 

SD (TWT) (veh.min) 0 2105.8 1710.2 5.7 

7.5 Summary and Discussion 

In this chapter, a real motorway network selected from the M6 motorway in 

the UK was applied to test the performance of RAS on dealing with real 

observed traffic data. Specifically, two kinds of data collected from the 



- 186 - 

 

highways agency database JTDB and TRADS were used to set parameters 

for ACTM, based on which simulation experiments were designed to test 

RAS. The main difference between hypothetical cases and the real-network 

case is the demand profiles (for the motorway mainline and on-ramps) and 

the split ratios (for off-ramps) used for simulation. In the hypothetical cases 

presented in Chapter 6, the simplified trapezoidal demands and fixed split 

ratios were adopted. In the real-network case, on the other hand, both 

demand flows and split ratios were derived from the practical traffic data 

which fluctuated greatly during the test period (see Figure 7.9 and 7.10). 

Although traffic conditions fluctuated in the real-network case, RAS could still 

achieve a good performance on improving efficiency and maintaining equity. 

For efficiency improvement, RAS reduced the network TTS by 18.5% which 

was slightly better than ALINEA (17.9%). For maintaining equity, RAS-EQ 

could keep a much lower SD(TWT) than ALINEA (2105.8 veh.min), which 

was around 5.7 veh.min.  

As previously mentioned in Chapter 4, a self-learning system needs to be 

trained by a simulation model before it can be used for real traffic (Jacob and 

Abdulhai 2010, El-Tantawy et al. 2013). In the tests presented in Chapters 6 

and 7 (using ACTM), RAS usually needs 5 to 70 minutes to get convergence 

according to different network scopes (from 4 km to 12 km) and test periods 

(from 1 h to 4 h). Although ALINEA can be used immediately for the real 

traffic control, a calibration process (before real applications) is required by 

this system to guarantee the algorithm performance. When ACTM is used, 

10 to 60 minutes are required to calibrate ALINEA in different scenarios. 

Therefore, the learning time required by RAS is reasonable according to the 

tests in this study.    
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CHAPTER 8 EXTENSION TO CONGESTION 

CASE 

The case studies presented in Chapters 6 and 7 showed the effectiveness of 

RAS in dealing with congestion in peak hours. This kind of congestion is 

usually named recurrent congestion, because it is caused by the daily traffic 

operation with increased demands in peak hours (Skabardonis et al. 2003). 

Considering the daily normal traffic operation on motorways, most of existing 

ramp metering systems focused on the recurrent congestion which is also 

the main concern of this research. However, besides the recurrent 

congestion, there is the other traffic congestion named non-recurrent 

congestion that also causes delays for motorway users. Instead of the 

normal traffic operation, the non-recurrent congestion is caused by incidents 

(e.g. vehicle collisions, breakdowns, spilled loads), inclement weather or 

other unexpected events on motorways (Dowling et al. 2004).  

Non-recurrent congestion in the literature usually refers to incident-induced 

congestion (Hall 1993, Skabardonis et al. 2003), as incidents are the main 

cause of this kind of congestion. Compared with recurrent congestion, non-

recurrent congestion is more uncertain (e.g. uncertain capacity during the 

incident), which may interrupt the normal traffic operation and complicate the 

control process. In this chapter, one attempt has been done to extend the 

original RAS to deal with incident-induced non-recurrent congestion. Some 

simulation-based experiments are designed to test the effectiveness of RAS 

in an incident situation.  

As mentioned in Chapter 5, RAS is independent from ACTM and it can also 

be reused by other traffic simulation models. In this chapter, the other 

purpose is to test the reusability of RAS using the traffic simulation software 
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AIMSUN9. This test provides an example about how to link RAS-related files 

developed in Chapter 5 with other commercial software (such as AIMSUN). 

The organisation of this chapter is as follows. Section 8.1 briefly introduces 

the existing ramp metering strategies dealing with incidents and their 

limitations. Section 8.2 presents the influence of incidents on the traffic flow 

operation with uncertain capacity. The design of extended RAS including its 

structure and algorithm is given in Section 8.3. Then the simulation 

experiments based on AIMSUN and relevant results are discussed in 

Section 8.4. Finally, Section 8.5 gives some conclusions and the summary of 

this chapter. 

8.1 Related Work 

Non-recurrent congestion caused by incidents is a main cause of traffic 

delays on motorways. Studies have shown that incident-induced delays 

account for more than 60% of all the delays on some motorway networks 

(Prevedouros et al. 2008). To alleviate incident-induced congestion, traffic 

incident management systems (TIMS) with advanced traffic control 

technologies such as  ramp  control, variable message signs (VMS) and 

adaptive arterial signal control have been developed (Ozbay and Kachroo 

1999). As an important part of these TIMSs, incident-responsive ramp 

metering control has been proposed and also studied in some literature. 

As an early attempt, Greenlee and Payne (Greenlee and Payne 1977) 

proposed a system structure for solving the incident-responsive ramp 

metering problem based on a simple macroscopic flow model, but no 

computational solution was provided. Considering some dynamic incident 

                                            

9 The AIMSUN used in this study is the version 6.1. Detailed information about this 
software can be found in http://www.aimsun.com/wp/. 
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features, such as incident duration and traffic arrival rates, Wang (Wang 

1994) formulated a more complex problem and solved it using a linear 

programming model. In the study introduced in (Jiuh-Biing and Mei-Shiang 

2007), lane-changing and queuing behaviour caused by an incident was 

modelled. A stochastic optimal control method was proposed to solve this 

problem. These strategies are all model-based methods, as they all need 

predefined models to generate control actions. In addition to model-based 

methods, a model-free approach was recently proposed in (Jacob and 

Abdulhai 2010). As introduced in Chapter 2, this system is based on RL and 

combined with VMS to deal with incident control problems. In this chapter, 

this RL-based system can be named as a DRL (direct reinforcement learning) 

method, as it is based on the basic Q-learning and works without the help of 

models. Thus, the RAS developed in Chapter 4 is also a DRL system. 

Both model-based and model-free strategies mentioned above have 

advantages and limitations. The model-based method is based on accurate 

models of the controlled road traffic. These models are used to predict traffic 

states or specify control rules for traffic control. This method is thus 

theoretically reliable and can be used immediately once defined. 

Nonetheless, models cannot continuously learn to improve themselves and 

thus have poor adaptability (Jacob and Abdulhai 2010). A model-free 

method such as DRL, on the other hand, can continuously learn from 

interactions with road traffic without using models. However, DRL can only 

learn from real interactions with the traffic flow operation and cannot make 

full use of historical data (traffic information that has been collected). 

Because of this limitation, DRL usually needs a great number of trials to 

obtain the best control strategy for highly uncertain problems, such as 

incident-responsive ramp metering. Fortunately, in the practical incident 

management, some useful information such as the distribution of road 
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capacity can be derived from the historical database and used to build 

related models (Smith et al. 2003). This provides an opportunity to combine 

model-based and model-free methods to achieve benefits from both sides. 

For this purpose, an indirect reinforcement learning (IRL) approach based on 

Dyna-Q architecture has been developed and outlined here. The IRL 

algorithm developed in this study is extended from the basic RAS, which has 

three features: (1) Similar to the model-free method (the original RAS), IRL 

can continuously learn from real interactions with the road traffic. (2) Similar 

to the model-based method, some simple models are maintained to speed 

up the learning process. (3) Another distinguishing feature of IRL is that 

model can be improved based on the observed traffic data (from detectors).  

8.2 Influence of Incident 

Before the detailed design of an IRL system, some background knowledge 

related to incident-induced traffic operation is presented here. 

8.2.1 Traffic operation during the incident 

Usually, incidents on motorways refer to any non-recurrent events that 

cause a rapid reduction of the motorway capacity such as vehicle collisions, 

breakdowns and spill loads (Farradyne 2000). Figure 8.1 illustrates a typical 

incident situation on a two-lane motorway. When an incident happens, one 

or more lanes of the motorway will be blocked according to the incident 

extent. The outflow of the incident section ( outq ) will be affected until this 

incident is cleared and traffic operation returns to its normal situation.  
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Figure 8.1: A typical incident situation 
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Figure 8.2: Traffic operation under incidents 

The traffic operation during an incident is usually presented by a simple 

deterministic queuing diagram shown in Figure 8.2 (Fu and Rilett 1997, Li et 

al. 2006, Wang 1994). The slope of each line represents the flow rate. When 

an incident occurs, the road capacity capq will be reduced to the incident 

capacity incq  because of the lane blockage. The outflow of incident section 

during the whole incident duration (between incident occurrence and incident 

clearance) is restricted by incq . After the incident clearance, the vehicle 

queue on the motorway will gradually dissipate and the traffic flow will 

recover to its normal situation. During the recovery, the outflow of incident 

section equals the queue discharge rate disq
 
which is the same as original 

road capacity. Therefore, when incident-induced congestion occurs, outq
 
can 
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be represented by two flows, i.e. incq  (from incident occurrence to clearance) 

and disq  (from incident clearance to recovery). 

8.2.2 Uncertain capacity 

The deterministic queuing diagram gives a general expression of the traffic 

operation in an incident situation where the incident capacity ( incq ) 

determines traffic flow during an incident.  

In the practical incident situations, many uncertain factors such as incident 

locations, road conditions, and driving behaviour have great effects on the 

incident capacity. Thus, this parameter is usually not constant and has been 

considered as a stochastic value in many studies such as (Fu and Rilett 

1997, Li et al. 2006, Smith et al. 2003). In these studies, the uncertainty of 

incident capacity is modelled by the capacity reduction 10  which is the 

difference between the original capacity ( capq ) and incident capacity ( incq ). In 

this chapter, the uncertain capacity during the incident will be considered in 

the IRL system.  

8.2.3 Simulating uncertain capacity 

Considering the lack of direct functions in AIMSUN for simulating stochastic 

capacity reduction during the incident, an alternative approach as proposed 

by (Hadi et al. 2007) can be used. In their work, a relationship between the 

vehicle speed in the incident section and road capacity reduction was found 

in the AIMSUN’s simulation model (see Figure 8.3). Road capacity can be 

adjusted through changing the permitted vehicle speed in the incident 

                                            

10  The capacity reduction is not the same as capacity drop phenomenon 

introduced in Chapter 2. The capacity reduction is caused by incident-induced lane 

blockage on motorways. Therefore, it cannot be eliminated until the incident is 

cleared.  On the other hand, the capacity drop can be avoided through keeping 

mainline density below the critical value. 
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section. To simulate stochastic capacity reduction, the permitted speed in 

the incident section can be regulated to make the capacity reduction follow a 

predefined distribution.  

 

Figure 8.3: Relationship between vehicle speed and capacity reduction 

Many potential distributions can be used to model capacity reduction during 

an incident, such as the normal distribution, beta distribution and Johnson 

distribution (Smith et al. 2003). For a three-lane motorway, an incident with 

one lane blocked usually reduces road capacity by around 50% (Hadi et al. 

2007). To simplify the problem, it is assumed in this chapter that the capacity 

reduction follows a normal distribution with mean 50% and standard 

deviation 5% for one-lane blocked incident on a three-lane motorway (Figure 

8.4.). Only one-lane blocked incident is considered in this study, as it takes 

the largest part of all lane-blocking incidents (Rodgers et al. 2006).  

 

Figure 8.4: Histogram for capacity reduction distribution  
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8.3 IRL Strategy 

After a description of traffic operation during the incident, this section will 

focus on the development of an IRL system. The IRL system was extended 

from the basic RAS and following the Dyna-Q architecture. 

8.3.1 Dyna-Q architecture 

Value/Policy

Experience Model

Acting

Model

learning

Planning
Direct RL

I II

 

Figure 8.5: Dyna-Q architecture 

Dyna-Q architecture is an extension of standard Q-learning that  integrates 

planning, acting and learning together (Sutton 1991). Unlike Q-learning 

which learns from the real experience without a model, Dyna-Q learns a 

model and use this model to guide the agent (Kaelbling et al. 1996). After 

capturing the real experience, two loops run to learn the optimal actions that 

can help the agent obtain the maximum Q value in Dyna-Q architecture (see 

Figure 8.5). 

In Loop I, direct RL is the standard Q-learning process that can be used to 

interact with the real external environment. Loop II contains two main tasks: 

(1) model learning is used to improve the model accuracy through obtaining 

new knowledge from real experience, (2) planning is the same process of 

direct RL except that it uses the experience generated by a model. Acting is 

the action execution process.  
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Applying a model, the agent can predict reactions of its external environment 

before executing a specific action, which provides an opportunity for agent to 

update Q value before receiving the real feedback. Simultaneously, direct 

RL is running to update the Q value through the real interaction. Therefore, 

optimal policy is learned through both real experience and predictions. By 

using this strategy Dyna-Q can learn faster than Q-learning in many 

situations (Sutton and Barto 1998). 

8.3.2 IRL structure 
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 Figure 8.6: IRL structure 

Following Dyna-Q architecture, the structure of IRL agent with three 

components is shown in Figure 8.6. Real experience, composed of observed 

flows from the mainline ( t

inq
 
and t

outq ) and on-ramp ( t

ond ), is used to update 

models and Q values at control step t . Two simple models of the estimated 

traffic flows ( d

inq , d

outq
 
and d

ond ) and road capacity reduction ( ( )t

ip x ) are 

updated continuously to generate simulated experience at planning step d . 

Based on models, several planning steps are triggered to generate reward 

and update Q values before real experience is captured. To make these 
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three components work, three basic elements (state, action and reward) and 

two models (reduced capacity and estimated flows) are defined as follows. 

Reward 

In this chapter, the ramp agent is tested in a simple network with only one 

on-ramp. It has been shown in Section 2.2.1 (mechanism (1)) that, without 

off-ramps, ramp metering can reduce the total time spent on the whole 

motorway network through avoiding capacity drop. However, when the 

incident happens, the capacity cannot recover to its original value until this 

incident is cleared. In this case, the primary objective, i.e. reducing the total 

time spent on the network is invalid. As the mainline traffic is more important 

than the on-ramp traffic, a similar objective proposed by (Wang, 1994) is 

adopted here. Specifically, the IRL algorithm is aiming to transfer delays 

from the motorway mainline to the on-ramp (reducing the mainline travel 

time only) without making the on-ramp queue exceed the on-ramp storage 

space and worsening other environmental problems such as improving 

vehicle emissions. Since delays in the congestion situation are mainly 

caused by vehicle queues, the objective considered in this chapter can be 

achieved through balancing the vehicle queue length on the mainline and 

on-ramp. For this purpose, a new reward can be defined as follows:  

min min

max min max min

max max
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where, tr is the immediate reward at control step t , ˆt

mainn
 
and ˆ t

onn
 
is the 

queue increase on the mainline and on-ramp at step t , respectively. maxˆ
mainn

 

and minˆ
mainn

 
denote the maximum and minimum mainline queue increases. 

Similarly, maxˆ
onn  and minˆ

onn
 
are the maximum and minimum on-ramp queue 

increases. These maximum and minimum values are used to normalise 

queue increases, which can be estimated from the previous observed flow 

rates of the network. t

mainn
 
and t

onn
 
can be obtained according to vehicle 

conservation.   ( [0,1]  ) is the weight that indicates the importance of 

traffic on the mainline and on-ramp. Through assigning different weight 

values, two queues can be properly balanced to achieve the control 

objective. 

State and action 

Similar to the recurrent congestion situation, the reward defined for the non-

recurrent congestion is also related to t

mainn
 
and t

onn . Thus, to satisfy the 

Markov property, the state set used here is the same as the one defined in 

Section 4.3.1. The control action is related to a set of discrete metering rates 

with 9 flow rates between the minimum (2 veh/min) and maximum (18 

veh/min) values. The interval between each two rates is 2 veh/min. 

Capacity reduction 

For the purpose of real application, capacity reduction is discritised into y  

intervals, which can be represented by a vector  0 1 1, , , yX x x x 
 
with y  

elements. After each real observation at control step t , a simple estimation 

method shown below can be used to learn and update the probability 

distribution for ( 0,1, ,2,..., 1)ix i y  . 
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where, im is the number of samples for ix observed from previous iterations 

and steps. im ( 0im 
 
or 1) is the number of samples for ix  estimated in the 

current time step t . In this study, y  is set to 10 with the capacity reduction 

ranging from 37% to 62% (following the capacity reduction introduced in 

Section 8.2.3). 

Estimated flows 

Given a capacity reduction percentage ix , the estimated mainline outflow in 

the congested situation at planning step d , d

outq  can be calculated according 

to the queuing diagram (Figure 8.2): 

(1 ),

, otherwise

cap i dd
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q x d N
q

q
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
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where, 
capq

 
is the original road capacity (veh/min) before the incident, dN  is 

the number of control steps before incident clearance,     
is a ceiling 

function that can convert the incident duration to a number of control steps 

according to the control interval cT . Although some studies (Li et al. 2006, 

Valenti et al. 2010) mentioned that the incident duration cannot be explicitly 

estimated in highly uncertain situations, in this study, the incident duration is 

deterministic and assumed to be known in advance. How to explicitly predict 

the incident duration is not the focus of this study. 

An estimation method described in (Wang 1994) can be used to estimate 

inflows of the mainline and demand flows of the on-ramp. This method 

simply average the most recently observed flow data to predict demand 

flows (for both the mainline and on-ramp) for the next several steps. In the 

model presented here, the flow data collected from the last N steps (N=5) 
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are used for the estimation. Therefore, the mainline inflows and on-ramp 

demand flows in the planning process can be calculated by: 

1
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where, , 1t t

inq  and , 1t t

ond   are estimated mainline inflow and on-ramp demand 

flow for the planning process between control step t  and 1t  .  

8.3.3 IRL algorithm 

Based on the Dyna-Q architecture and models described in Sections 7.3.1 

and 7.3.2, an IRL algorithm is developed in this section which is extended 

from the single-objective algorithm of RAS (introduced in Section 4.4.1). 

The IRL algorithm is episode-based. Each episode (or iteration) starts from 

incident occurrence and terminates when the incident is cleared and the 

traffic flow returns to its normal situation, or the simulation in AIMSUN has 

been finished ( tN  steps from the algorithm is triggered to the simulation in 

AIMSUN has been finished). initials  is the state before the incident occurrence. 

If the incident is cleared ( 1 dt N  ) and the traffic state returns to its initial 

state ( t initials s ), then the traffic flow has recovered to its normal situation. 

The whole algorithm of IRL is described in Figure 8.7. 

One episode of the IRL algorithm contains two loops corresponding to the 

two loops in Dyna-Q architecture shown in Figure 8.5. Loop I  is related to 

the control step t , and loop II  is related to planning step d . After 

initialisation, the direct learning is triggered. This process is the same as the 

basic Q-learning process of the single-objective algorithm introduced in 
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Section 4.4.1. After that, the model learning process is used to update the 

distribution of capacity reduction ( )t

ip x , mainline inflow , 1t t

inq 

 
and on-ramp 

demand flow , 1t t

ond   for planning. Finally, ten planning steps11 following the 

control step t  are triggered to update Q table according to the estimated 

flows. Sometimes, the planning process does not need to finish all ten steps. 

When the flow returns to its normal situation (i.e. t initials s and 1 dd N  ), 

the planning process will end immediately.   

For implementation, the main difference between the IRL algorithm and 

single-objective algorithm of RAS is the function startStateTransition(). 

Besides the basic Q-learning process, model learning and planning are 

incorporated in the function startStateTransition() of the IRL algorithm. The 

source code for this function is shown in Appendix A.2, code 19. 

                                            

11 The selection of ten planning steps between each two learning steps in this 
chapter is for ease of presentation. For real applications, this number is restricted 
by the control interval (time duration between two learning steps). For example, if 
the control interval is 30 s, the determination of the number of planning steps 
should guarantee that all planning steps can be finished within 30 s.  
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Figure 8.7: IRL algorithm 



- 202 - 

 

8.4 Simulation Experiments 

Taking the non-controlled (NC) situation as the base line, a series of 

experiments is designed to compare the proposed IRL algorithm with two 

other methods, one is the standard RAS and the other is the widely used 

algorithm ALINEA (Papageorgiou et al. 1991). Experiments and relevant 

results are described as follows. 

8.4.1 Link with AIMSUN 

The AIMSUN used in this chapter is version 6.1. RAS can be linked with 

AIMSUN through the API (application program interface) provided by 

AIMSUN.  

AIMSUN

simulation module

Ramp agent &

Objective

· rampagent.h

· rampagent.cpp

· objective.h

· objective.cpp

AIMSUN

API module

· AAPI.dll

· AAPI.cpp

 

Figure 8.8: Connection between AIMSUN and RAS 

Figure 8.8 shows the connection between RAS and AIMSUN. Functions 

embed in the files “rampagent.cpp” and “objective.cpp” can be linked with 

AIMSUN API in the file “APPI.cpp” which can be further converted to a DLL 

(dynamic-link library) file “AAPI.dll”. Through this DLL file, the ramp agent 

can capture raw traffic information from AIMSUN and generate suitable 

control actions to control the simulated motorway traffic in AIMSUN. This 

kind of interaction can be implemented at each control step. One simulation 



- 203 - 

 

run of the AIMSUN corresponds to one episode of RAS. The main difference 

between original RAS and IRL is the function startStateTransition() (in the 

file “rampagent.cpp”), by replacing this function with the one introduced in 

Section 8.3.3, the same way mentioned here can be used to link IRL and 

AIMSUN.  

8.4.2 Network layout 

 

 

Figure 8.9: Layout of the analysed motorway segment 

A simple network with two origins and one destination is used for the 

analysis. This network contains a typical motorway segment composed of a 

three-lane mainline and a two-lane on-ramp (Figure 8.9). O1 and O2 

represent the origins of mainline and on-ramp traffic, respectively. D is the 

shared destination of trips from both O1 and O2. Detectors on the mainline 

and on-ramp are used to capture the real-time traffic arrival and departure 

rates of the motorway segment. 

In this study, an incident with only one lane blocked is considered. The 

incident is located in the outer lane of the normal segment as shown in 

Figure 8.9. Detector spacing on the mainline and on-ramp is 1000 m and 

350 m, respectively. The merge area and normal segment have the same 

length, 250 m. The incident extent is 80 m that is assumed to be constant 

during the incident. 
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8.4.3 Scenarios and parameters  

The simulation experiment is designed to cover one and a half hours from 

8:00 to 9:30. After 30 minutes of normal operation (for warm-up), the incident 

is triggered at 8:30 and lasts for 30 minutes. Three scenarios with different 

traffic demand (high, medium and low) of O1 and O2 are considered as 

follows:  

(1) Scenario A: O1: 3000 vehs/h, O2: 900 vehs/h  

(2) Scenario B: O1: 2700 vehs/h, O2: 750 vehs/h  

(3) Scenario C: O1: 2400 vehs/h, O2: 600 vehs/h 

For ALINEA, the default parameters provided by AIMSUN are used: the 

regulator parameter is 70 veh (this is a commonly used parameter for 

ALINEA and has shown its effectiveness in many field tests (Papageorgiou 

et al. 1997)), the desired downstream occupancy is 26 percent, and the 

calculation interval is the same as the control interval (1 minute). For IRL 

and RAS, learning parameters are the same (  =0.2,  =0.75,  =0.01). 

Other parameters related to the traffic network can be set according to the 

limitations of motorway storage space and historical traffic data (collected 

through running AIMSUN without control), which are summarised in Table 

8.I. In this study, three weight values (0.8, 0.6 and 0.5) denoting different 

importance assignment for the mainline and on-ramp traffic are considered 

for comparison. 

Table 8.1: Parameters for RAS and IRL 

Parameter cap
q  maxˆ

main
n  

minˆ
main

n  
maxˆ
on

n  
minˆ
on

n  
max

main
n  

max

on
n  

Value 111.5 26 -28 13 -8 650 140 
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8.4.4 Results  

The IRL algorithm in this study is aiming to save the travel time on the 

motorway mainline (not the whole network) without making the on-ramp 

queue exceed its storage space and worsening other environmental 

problems such as vehicle emissions. In this case, the comparison between 

IRL, RAS and ALINEA is conducted from three aspects: mainline total travel 

time (TTT)12, on-ramp queue length, CO2 emissions of the whole network 

and the learning speed (this is just related to IRL and RAS). Both RAS and 

IRL run for 5000 iterations before the experiment.  

Table 8.2:  Mainline total travel time comparison 

Scenario ξ 

Mainline TTT comparison 

NC 

(min) 

ALINEA RAS IRL 

Value 

(min) 

Dec* 

(%) 

Value 

(min) 

Dec 

(%) 

Value 

(min) 

Dec* 

(%) 

A 

0.8 6630.3 6045.1 9.7 5535.6 16.5 3989.6 39.8 

0.6 6630.3 6045.1 9.7 5543.3 16.4 4955.0 25.3 

0.5 6630.3 6045.1 9.7 5573.4 15.9 5023.5 24.2 

B 

0.8 3925.9 3701.9 6.1 3066.0 21.9 2724.2 30.6 

0.6 3925.9 3701.9 6.1 3132.2 20.2 2808.9 28.5 

0.5 3925.9 3701.9 6.1 3337.7 15.0 3054.7 22.2 

C 

0.8 2287.9 2425.6 -5.7 2385.5 -4.3 2282.8 0.2 

0.6 2287.9 2425.6 -5.7 2406.2 -5.2 2320.0 -1.4 

0.5 2287.9 2425.6 -5.7 2462.8 -7.6 2326.2 -1.7 

* Dec means decrease compared with NC 

                                            

12 The mainline total travel time (TTT) used by AIMSUN is not the same as the TTT 
in a macroscopic model mentioned in chapter 4. In AIMSUN, TTT is defined at the 
micro level, which is the sum of travel times experienced by all the vehicles that 
have crossed the mainline.  
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Figure 8.10: On-ramp queue length comparison for (a) scenario A, (b) 

scenario B, (c) scenario C 

(1) A comparison of the mainline total travel time (TTT) can be found in 

Table 8.2. In most situations, RAS and IRL can outperform ALINEA on 

the TTT saving in the mainline. This is mainly because ALINEA cannot 

regulate its target according to changed road capacity. ALINEA always 

tries to obtain the predefined downstream occupancy, which will lead to 

severe congestion in the mainline. Compared with RAS, IRL can always 
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produce a better performance especially in the high and medium 

demand situations (A, B). This is because IRL learns faster than RAS. 

After the same number of iterations (5000), IRL can learn a better control 

strategy than RAS, which is closer to the optimal solution. Under the low 

demand scenario C, congestion does not always exist. In this situation, 

all three strategies cannot reduce the mainline TTT (although IRL can 

reduce TTT by 0.2%, this reduction is too small). This result is 

reasonable, because the traffic efficiency cannot be improved when 

congestion does not occur (Zhang et al. 1996). In this situation, the 

motorway should be left without control. 

(2) A comparison of on-ramp queues can be found in Figure 8.10. The 

queue length in the simulation experiments is captured every 5 minutes. 

RAS and IRL can keep the queue length under the maximum allowed 

value (140 vehicles limited by the storage space) in all scenarios. The 

weight value has great impacts on the on-ramp queue. A high weight 

value means that more importance is assigned to the mainline traffic. 

This leads to longer on-ramp queue, especially in the high demand 

scenario A. ALINEA keeps the queue length at a low level close to the 

non-controlled situation in all scenarios. 

(3) A comparison of total CO2 emissions for the whole network during the 

incident is shown in Figure 8.11. CO2 emissions can be estimated  using 

the model proposed by (Int Panis et al. 2006), which has been imbedded 

in AIMSUN. Compared with NC, all three algorithms will increase CO2 

emissions in the low demand scenario C. In scenario B, RAS with weight 

value 0.5, IRL with weight values 0.6 and 0.5 outperform ALINEA. 

However, in scenario A, except for RAS with a weight of 0.5, the RAS 

and IRL algorithms cannot work as well as ALINEA. 
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Figure 8.11: Total CO2 emissions during the incident 

8.5 Summary and Conclusions 

The aim of this chapter is to test RAS and its extension IRL in an uncertain 

incident situation. The reusability of RAS has been shown by successfully 

linking the RAS-related files with AIMSUN in a number of simulation 

experiments. Through comparative experiments, it is found that: (1) both IRL 

and RAS can outperform ALINEA on reducing the mainline TTT during the 

incident, (2) with the same number of iterations (5000), IRL can outperform 

RAS in almost all scenarios, which means IRL can learn faster than RAS, (3) 

In the medium demand scenario, IRL can reduce both mainline TTT and 

vehicle emissions with suitable weights (such as 0.6 and 0.5).  

Although some positive results of IRL have been shown in this chapter, as a 

preliminary test, many situations such as different motorway networks (e.g. 

with off-ramps or multiple on-ramps), incident locations (e.g. in the merge 

area or near the on-ramp), incident extents (e.g. two lanes are blocked) and 

other weight values have not been involved. As incident-induced congestion 

is considered as an extension to the main work presented in this thesis, all 

the aforementioned situations lie outside the scope of this study, but can be 

left for future work.  
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CHAPTER 9 CONCLUSIONS AND FUTURE 

WORK 

This chapter summarises the main achievements in the thesis and gives 

possible directions for future work. The organisation of this chapter is as 

follows. Firstly, Section 9.1 summarises how the research objectives of this 

doctoral research are achieved. Then, the main contributions of this thesis to 

the RL-based ramp metering control are presented in Section 9.2. Some 

limitations of the current work and several possible directions for future work 

are discussed in Section 9.3. Finally, Section 9.4 gives a final remark of the 

whole thesis. 

9.1 Research Summary 

A self-learning motorway traffic control system has been developed in this 

doctoral research to deal with ramp metering problems. This system is 

named RAS (ramp agent system) which contains a group of ramp agents 

that can work independently or cooperatively with shared information to 

achieve predefined control objectives. To overcome some limitations of 

previous RL-based systems, five research objectives were proposed in 

Chapter 1. In this section, how these objectives were achieved through this 

study is summarised. Firstly, a brief review of research problems, their 

related research objectives and where each research objective has been 

achieved is shown Table 9.1. After that, a detailed summary about how 

these research objectives were attained is given in this section.  
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Table 9.1:  Summary of research objectives 

Research Problems Research Objectives 
Supporting Chapters 

and Sections 

 

(1) To investigate the state of 

the art of RL technology and its 

applications in the ramp 

metering domain, including both 

local and coordinated RL-based 

systems. 

Chapters 2 and 3 

(1) There is a lack of a general 

framework for designing a RL-

based system for ramp 

metering application, and each 

study has its own way to 

define RL elements. 

(2) To provide a general 

framework for designing a RL-

based ramp metering system, 

regarding the definitions of RL 

elements, the structure and 

modules of a RL-based system. 

Chapter 4 (Sections 

4.1, 4.2 and 4.3) 

(2) Although a few studies 

have considered the 

coordination problems in a RL-

based strategy, improving 

motorway efficiency is still the 

main concern. How to add 

new objectives such as user 

equity and balance different 

control objectives have not 

been well studied. 

(3) To explore the application of 

RL to ramp metering for both 

single- and multi-objective 

problems under the framework 

proposed in Objective (2). Two 

different control objectives with 

two different control algorithms 

are developed and analysed. 

Chapter 4 (Sections 

4.3 and 4.4) 

(3) There is a lack of 

systematic evaluation for a 

RL-based system regarding 

the influence of learning 

parameters and the 

effectiveness of algorithms on 

different networks. 

 

(4) To develop a platform with 

initial software implementations 

based on Objectives (2) and (3), 

which can be used to evaluate 

the RL-based system 

Chapter 5 

(5) To evaluate the proposed 

system based on Objective (4) 

by conducting simulation-based 

experiments considering both 

hypothetical and real traffic 

networks. 

Chapters 6, 7 and 8 
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Objective (1): To investigate the state of the art of RL technology and 

its applications in the ramp metering domain 

This objective is the basis for all other four research objectives. Through the 

review of RL-based ramp metering systems in Chapter 2, three problems (or 

limitations) regarding the system design and evaluation were found (as 

shown in Table 9.1), based on which four specific research objectives were 

proposed for this study. Both theoretical and technical issues of RL were 

investigated in Chapter 3, through which the main mechanism and 

algorithms of RL can be obtained. Specifically, two kinds of the basic RL 

algorithms, namely Q-learning and linear scalarised Q-learning were found 

to be suitable for building a ramp metering system and used in the following 

chapter about the system design in  this study. 

Objective (2): To provide a general framework for designing a RL-

based ramp metering system 

A general framework for designing a RL-based system was presented in 

Chapter 4, which contains the definition of three elements (i.e. state, action 

and reward), the structure of the ramp agent with related modules that can 

accomplish the learning process. 

 The structure and modules relating to a ramp agent were described in 

Sections 4.1 and 4.3. This structure contains two main modules, namely 

the RampAgent module and the Objective module. The advantage of a 

separate Objective module is that it contains general functions for 

reward calculation, Q value updating and scalarisation. Based on these 

functions, different rewards according to different control objectives can 

be defined under the same general framework. 

 The elements of a ramp agent were defined in Section 4.3. The Markov 

property is considered in the definition of three elements, especially the 
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state and action. In this way, the state transition of a ramp agent satisfies 

the Markov decision process, which can guarantee the effectiveness of 

RL on ramp metering problems.  

Objective (3): To explore the application of RL to ramp metering for 

both single- and multi-objective problems 

To deal with both single and multiple control objectives, in Chapter 4, RAS 

was designed to contain two working modes, i.e. single-objective mode and 

multi-objective mode with two corresponding control algorithms. In this study, 

two control objectives, namely improving traffic efficiency by reducing TTS 

(total time spent on motorways) and maintaining user equity by balancing 

TWT (total waiting time at on-ramps) were considered. According to these 

two objectives, two rewards were derived from a common definition of TTS 

and TWT. Given different control objectives and their corresponding rewards, 

control algorithms (for single- and multi-objective modes) can integrate 

relevant functions from different modules (developed in Objective (2)) and 

solve ramp metering problems by generating optimal metering rates at each 

time step. 

 A single-objective algorithm was developed in Section 4.4.1 for the 

single-objective mode. Only the reward related to TTS was involved in 

this control algorithm. Under the single-objective mode, ramp agents of 

RAS can work independently to achieve the relevant objective (reducing 

TTS) based on the Q-learning mechanism.  

 A multi-objective algorithm was developed in Section 4.4.2 for the multi-

objective mode. Both rewards regarding TTS and TWT were considered 

in this algorithm. Through sharing information about the on-ramp queues, 

ramp agents in RAS can balance TWT at different on-ramps while trying 
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to reduce TTS. The multi-objective algorithm was derived from the linear 

scalarised Q-learning algorithm.   

Objective (4): To develop a platform with initial software 

implementations  

A software platform containing reusable classes for RAS and ACTM 

(asymmetric cell transmission model) was developed in Chapter 5. All 

classes relating to RAS and ACTM were programmed by C++, which can be 

used to evaluate the proposed system.  

 Although the main purpose of ACTM in this study is to evaluate RAS, it 

can also be used to test other control strategies such as ALINEA 

mentioned in Chapter 6.  

 The implementation of RAS is completely independent from ACTM. It 

can be reused by other traffic flow models under the same programming 

framework (using C++). For instance, in Chapter 8, the reusability of 

RAS was tested with the microscopic simulation software AIMSUN. 

Objective (5): To evaluate the proposed system using simulation-based 

experiments  

To evaluate the proposed RAS, a series of simulation-based experiments 

from three case studies, namely single-ramp, multi-ramp and real-network 

cases were designed and conducted in Chapters 6 and 7. The performance 

of RAS in three cases was compared with one of the most widely used ramp 

metering strategies, ALINEA. 

 In the single-ramp case (Section 6.1), only one ramp agent with one 

controlled on-ramp was considered. One important issue considered in 

this case is how to select suitable learning parameters for a ramp agent. 

Through the sensitivity analysis about three parameters   (learning 
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rate),   (discount rate) and   (action selection parameter), it was found 

that the parameters with  = 0.2,  = 0.75 and  = 0.01 could achieve a 

good performance which were used for the following tests of Chapters 6 

and 7. With these selected parameters, both the abilities of RAS to 

improve traffic efficiency and manage the on-ramp queue under 

predefined constraints were tested. As shown in Section 6.1.5, by setting 

suitable constraints for the normalised reward, RAS can successfully 

restrict the on-ramp queue under the permitted length. However, for the 

efficiency test in Section 6.1.4, RAS showed no advantages to improve 

efficiency compared with ALINEA. Both RAS and ALINEA reduced the 

network TTS to the same level (around 3920 veh.min). 

 In the multi-ramp case (Section 6.2), the performance of RAS composed 

of multiple ramp agents was tested. In this case, both single- and multi-

objective algorithms were analysed. As shown in Section 6.2.2 to 6.2.4, 

with the single-objective algorithm, RAS outperformed ALINEA on 

improving efficiency when multiple on-ramps could cause congestion, 

while it showed no improvement when only one on-ramp could cause 

congestion. Besides efficiency improvement, an additional objective 

about user equity (balancing TWT) was involved in the multi-objective 

algorithm shown in Scetion 6.2.5. With necessary information sharing 

about the on-ramp queues, two control objectives can be achieved 

together with a suitable compromise by properly setting the weights of 

the multi-objective algorithm. RAS provided a huge advantage over 

ALINEA in terms of maintaining equity. As shown in Section 6.2.5, RAS-

EQ could keep the stand deviation of TWT (SD(TWT)) close to 0 

veh.min, while ALINEA corresponded to a SD(TWT) higher than 200 

veh.min. 
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 In the real-network case (Chapter 7), a stretch of the M6 motorway in the 

UK was selected for the case study. The real network layout and traffic 

data in morning peak hours were considered in this case. Fluctuating 

demand flows and split ratios were extracted from the highways agency 

traffic information system (HATRIS), based on which both single- and 

multi-objective modes of RAS were tested. Through the simulation 

experiments, RAS showed its effectiveness in dealing with fluctuating 

real traffic conditions. Similar to the multi-ramp case, RAS was much 

better than ALINEA in terms of maintaining user equity. As shown in 

Section 7.4.4, RAS-EQ provided a much lower SD(TWT) (5.7 veh.min) 

than ALINEA (2105.8 veh.min). 

Besides the evaluation of RAS in the recurrent congestion situation 

presented in Chapters 6 and 7, an extension of RAS was tested in Chapter 8 

where the non-recurrent congestion caused by incidents was used as a test. 

The extension of RAS (named IRL) was based on the Dyna-Q architecture, 

and compared with ALINEA and RAS (RAS without extension). With suitable 

parameter settings, IRL outperformed both ALINEA and RAS on reducing 

mainline total travel time without increasing the vehicle emissions. 

9.2 Research Contributions 

Through achieving five research objectives, this study has made its 

contributions to the applications of RL in the ramp metering domain. Some 

key contributions are highlighted as follows: 

 Two rewards were defined for two different control objectives, i.e. traffic 

efficiency and user equity. These two rewards were derived from the 

commonly used definitions of total time spent on the motorway 

(efficiency-related) and total waiting time at on-ramps (equity-related). 

So far, the equity-related objective has not been well studied in the RL-
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based systems, and there has been very little research into the definition 

of equity-related reward. To the best knowledge of the author of this 

thesis, the only attempt can be found so far is shown in (Zhaohui and 

Kaige 2010). Although the equity issue was considered in this work, how 

to derive an equity-related reward was not clearly described. In the 

research presented in this thesis, the equity-related reward was defined 

to balance the total waiting times at different on-ramps in real time, and 

the effectiveness of this reward has been proved in the following tests. 

 A general definition of state and action that satisfies the Markov property 

was proposed, which provided a clear way to define RL-related elements 

for ramp metering problems. RL is a learning method that can solve the 

MDP problems without models. Thus, an effective RL problem should be 

an MDP problem and satisfy the Markov property. However, this issue 

was neglected by most of existing studies. Each study used its own way 

to define state and action without enough explanations for why their 

definitions worked. In this study, the definition of state and action was 

derived from the vehicle conservation (a commonly accepted 

conservation law in traffic flow models) and satisfied the Markov property, 

which guaranteed the effectiveness of this definition.  

 Two control algorithms for both single- and multi-objective problems 

were developed. These two algorithms were derived from the basic Q-

learning and linear scalarised Q-learning algorithms, which can be used 

to deal with single- and multi-objective problems, respectively. Most of 

existing RL-related studies focused on using Q-learning to solve single-

objective problems in the ramp metering domain. When multiple control 

objectives are involved, the basic Q-learning will become invalidated. 

This thesis provided a possible solution to solve multi-objective ramp 

metering problems using the linear scalarised Q-learning. 
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 A software platform was developed in this study. The reusability of this 

platform provided a flexible way to test RL-based algorithms and other 

ramp metering strategies using simulation-based experiments. This 

platform was programmed by C++ containing the implementations of 

RAS and ACTM. It has been shown in the thesis that, both of these two 

parts can be reused, e.g. RAS can be linked with AIMSUN and ACTM 

can be used to test ALINEA. This platform can be easily extended for 

use by other researchers in the RL or ramp metering domain. 

 A systematic evaluation of RAS was presented in this research. Various 

aspects of RAS, such as the ability to improve traffic efficiency, manage 

on-ramp queues and maintain user equity was tested, which proved the 

effectiveness of RAS in dealing with ramp metering problems. In addition, 

the competitive relationship between efficiency and equity found in some 

literature (Kotsialos and Papageorgiou 2004a, Meng and Khoo 2010, 

Zhang and Levinson 2005) was reaffirmed in the test of maintaining 

equity in this thesis. 

9.3 Research Limitations and Future Work 

Although the proposed RAS has shown its effectiveness in many cases, 

some limitations regarding this new system and related simulation 

experiments still exist. To overcome these limitations, some possible 

solutions can be used to form the basis for future work.  

 One main limitation of RAS is that it can only tackle a problem with a 

discrete state set. The main issue faced by the discrete state set is the 

curse of dimensionality, which means that the Q-table size of a ramp 

agent will increase exponentially with the growing number of states 

(Barto and Mahadevan 2003). It will not only increase the burden on the 

memory of the computer, but also greatly affect the learning time. In this 



- 218 - 

 

study, to reduce the memory burden and obtain an acceptable learning 

time (usually within one hour), the state number of one ramp agent was 

limited to around 60000. This however led to another problem introduced 

in Chapter 6. With a limited number of states, the ramp agent was not 

able to distinguish some critical states with slight differences (such as 

states around the critical density when severe congestion occurs). In this 

situation, the ramp agent could fail to find suitable control actions for 

some states. Thus, as mentioned in Sections 6.2.3 and 6.2.4, the ramp 

agent could generate unstable control actions (causing unstable density 

evolution) at locations with severe congestion. One possible solution to 

this problem is to use the function approximation method. This method 

can help the ramp agent construct a function that can directly generate 

Q values from the continuous state values without a Q table (Sutton and 

Barto 1998). Thus, all state values, not a limited number of discrete 

states, can be captured and used by the ramp agent. Combining 

function approximation methods and RAS will be a direction of future 

work.  

 The simulation-based experiments using ACTM only took account of 

deterministic flow rates (perfect data without noise) from the motorway 

mainline and on-ramp. Although the fluctuating demands were 

considered in the real-network case, these demand flows were still kept 

deterministic for each 15-minute interval. In the practical application, the 

real-time traffic data are collected with very short time intervals (usually 

within 1 minute) and has stochastic noise (Kotsialos et al. 2006, 

Smaragdis and Papageorgiou 2003). This study focused on an ideal 

traffic environment without the impact of noise. In the future work, a 

sensitivity analysis can be done to analyse the effects of different types 

of noise on the performance of RAS (such as its learning speed and 
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stability), which may provide some advice for field applications of RAS 

with real-time traffic data. 

 Because of the resource limitation, RAS was only compared with one 

widely used control strategy, ALINEA. Other more advanced control 

strategies such as model predictive control methods are not considered 

in this study. It is mainly because these strategies are very difficult to 

implement and usually need the support of sophisticated algorithms 

(Hegyi et al. 2005). The codes and related tools for these algorithms are 

not available at the current stage. If these resources are available, it is 

worthwhile to compare RAS with these advanced control strategies in 

future work. 

 The field application is the ultimate goal of any control systems. However, 

the RL-based traffic control systems are still in their early stages and 

cannot be used to learn from the real-time traffic directly so far (it will 

take too long in the real-world traffic situation). One solution proposed in 

(El-Tantawy et al. 2013, Jacob and Abdulhai 2010) suggested that the 

RL system can learn the optimal control actions from a simulation model 

first (the simulation can run much faster than the real traffic), and then 

these actions can be used to control the real traffic. However, the real 

traffic is highly dynamic which may change after the calibration of 

simulation models. The control actions obtained from an inaccurate 

model may not be suitable for the real traffic. Under such circumstances, 

an alternative way for the field application can be based on the IRL 

algorithm discussed in Chapter 8. This method can learn from a model 

and the real traffic simultaneously. The real-time traffic data can be used 

to improve the model in an on-line situation. This feature has been 

showed in a preliminary study on IRL presented in this thesis. Further 



- 220 - 

 

studies can be done to investigate the stability and adaptability of IRL for 

different types of models. 

 Ramp metering was the only control measure considered in this study. 

One shortcoming of ramp metering is that it can only control the traffic 

from on-ramps. For a more effective motorway control, an integrated 

control system that can control the traffic on both motorway on-ramps 

and mainline with multiple control measures, such as ramp metering (for 

on-ramp traffic) and variable speed limit (VSL) (for mainline traffic), is 

required (Carlson et al. 2014). The ramp agent developed in this study 

can also be extended to deal with VSL problems by defining three RL 

elements (state, action and reward) in a VSL scenario. 

9.4 Final remark 

A self-learning motorway traffic control system focusing on ramp metering 

has been developed in this thesis. The new system was based on RL and 

developed following a general framework which overcomes some limitations 

of previous RL-based applications. The performance of this system was 

tested through a number of simulation experiments where the effectiveness 

of the new system in both hypothetical and real networks was shown. 

Although the RL-based ramp metering systems are still in their early stages, 

the potential of RL to deal with various tasks, such as improving traffic 

efficiency, managing queue length and maintaining user equity, has been 

shown in this thesis, which provides some evidence for improving RL-based 

systems in future work. 
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LIST OF ABBREVIATIONS 

 

ACTM Asymmetric cell transmission model 

ADP Adaptive dynamic programming 

ALINEA Asservissement Linéaire d’Entrée Autoroutière, i.e. 

Linear feedback control of a motorway on-ramp 

ALINEA-C ALINEA with continuous metering rates 

ALINEA-D ALINEA with discrete metering rates 

ALINEA/Q ALINEA combined with the queue management 

algorithm 

AMOC Advanced motorway optimal control 

API Application program interface 

CTM Cell transmission model 

CFL Courant–Friedrichs–Lewy condition 

DLL Dynamic link library 

DP Dynamic programming 

DRL Direct reinforcement learning 

HATRIS Highways agency traffic information system 

IRL Indirect reinforcement learning 

JTDB Journey time database 

LWR Lighthill-Whitham-Richards model 

MDP Markov decision process 

MOO Multi-objective optimisation problems 

MORL Multi-objective reinforcement learning 

NC Non-controlled situation 

NE Number of episodes 

OAT One-at-a-time sensitivity analysis 

RAS Ramp agent system 
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RAS-EQ Ramp agent system with consideration of equity 

RL Reinforcement learning 

SARSA State-action-reward-state-action algorithm 

SD Standard deviation 

TD Temporal differential learning 

TIMS Traffic incident management system 

TRADS Traffic information database system 

TTS Total time spent 

TTT Total travel time 

TWT Total waiting time 

TWTT Total weighted travel time 

VR Variance of results 

VSL Variable speed limits 

VMS Variable message signs 

WFTT Weighted mainline travel time 

WRD Weighted on-ramp delay 
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APPENDIX A 

SOURCE CODE LIST 

A.1 Source Code of ACTM 

 

//trafficflowmodel.h 

//**************header file for ACTM******************************* 

 

#ifndef TRAFFICFLOWMODEL_H_ 

#define TRAFFICFLOWMODEL_H_ 

 

#include <vector> 

using namespace std; 

 

class Cell 

{ 

public: 

    Cell(double li, double ve, double wa, 

        double m_nmain, double q_c, double d_t); 

    double q_in, q_out, delta_nmain, n_main; 

    double max_qmain, max_dmain; 

    double l, v, w; 

    double t_simu; 

    double lambda;   

         

protected: 

    double getMinThree (double a, double b, double c); 

    double getMinTwo (double a, double b); 

}; 

 

class CellNor:public Cell 

{ 

public: 

    CellNor(double li, double ve, double wa, double m_nmain, double 

q_c,double d_t); 

    void traFlowNor(bool capa_drop, double w_next, double l_next, 

double max_nmain_next, double n_main_next, double 

theta_next, double m_r_next); 

    void vehConsNor(); 

    void setInitialCell(); 

}; 

 

class CellOn: public Cell 

{ 

public: 

    CellOn(double li, double ve, double wa, double et, double th,  

            double m_nmain, double q_c, double d_t); 

    double d_on, m_r, delta_non, n_on; 

    double c_action; 

    double eta, theta; 
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    void traFlowOn(bool capa_drop, bool control, double w_next, 

double l_next, double max_nmain_next, double 

n_main_next, double theta_next, double m_r_next); 

    void vehConsOn(); 

    void setInitialCell(); 

}; 

 

class CellOff: public Cell 

{    

public: 

    CellOff(double li, double ve, double wa, double be,  

        double m_nmain, double q_c, double d_t); 

    double d_off; 

    double beta; 

    void traFlowOff(bool capa_drop, double w_next, double l_next, 

double max_nmain_next, double n_main_next, double 

theta_next, double m_r_next); 

    void vehConsOff(); 

    void setInitialCell(); 

}; 

 

class CellOnf: public Cell 

{ 

public: 

    CellOnf(double li, double ve, double wa, double et, double th, 

        double beta, double m_nmain, double q_c, double d_t); 

    double d_on, m_r, delta_non, n_on; 

    double c_action; 

    double eta, theta, beta; 

    void traFlowOnf(bool capa_drop, bool control, double w_next, 

double l_next, double max_nmain_next,double 

n_main_next, double theta_next, double m_r_next); 

    void vehConsOnf(); 

    void setInitialCell(); 

}; 

 

#endif 

 
//trafficflowmodel.cpp 

//**************source file for ACTM******************************* 

 

//**************code 1************** 

 

Cell::Cell(double li, double ve, double wa, 

        double m_nmain, double q_c,double d_t) 

{ 

    l = li; 

    v = ve; 

    w = wa; 

    max_nmain = m_nmain; 

    q_cap = q_c;     

    t_simu = d_t; 

    lambda = 0; 

    q_in = q_out = delta_nmain =  0; 

    n_main  = 0; 

} 

 

//**************code 2************** 
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double Cell::getMinThree(double a, double b, double c) 

{ 

    double d, min; 

    d = (a<b?a:b); 

    min = (d<c?d:c);  

    return min; 

} 

 

//**************code 3************** 

 

double Cell::getMinTwo(double a, double b) 

{ 

  if (a >= b) return b; 

  else return a; 

} 

 

//functions for normal cell 

 

//**************code 4************** 

 

CellNor::CellNor(double li, double ve, double wa,double m_nmain, 

double q_c,double d_t) 

           :Cell(li,ve,wa,m_nmain,q_c,d_t) 

{ 

} 

//**************code 5************** 

 

void CellNor::traFlowNor(bool capa_drop, double w_next, double 

l_next, double max_nmain_next,double 

n_main_next, double theta_next, double 

m_r_next) 

{ 

    //determine capacity drop 

    if (capa_drop == true) lambda = 0.9;     

    else lambda = 1; 

     

//calculate mainline traffic flow 

    if (n_main/l <= den_crit) 

    { 

       if (n_main_next/l_next <= 60)  

       q_out = v/l*n_main; 

       if (n_main_next/l_next > 60)  

       q_out = getMinTwo(v/l*n_main, w_next/l_next 

               *(max_nmain_next*l_next-n_main_next-

theta_next*m_r_next*t_simu)); 

    } 

    if (n_main/l > den_crit) 

    { 

       if (n_main_next/l_next <= den_crit)  

       q_out = lambda*q_cap; 

       if (n_main_next/l_next > den_crit)  

       q_out = w_next/l_next*(max_nmain_next*l_next-n_main_next-

theta_next*m_r_next*t_simu); 

    } 

} 

//**************code 6************** 

 

void CellNor::vehConsNor() 

{    
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    delta_nmain = (q_in - q_out) * t_simu; 

    n_main += delta_nmain; 

    if (n_main < 0) n_main = 0; 

} 

//**************code 7************** 

 

void CellNor::setInitialCell() 

{ 

    q_in = q_out = delta_nmain = 0; 

    n_main = 0; 

} 

 

 

//functions for on-ramp cell 

 

//**************code 8************** 

 

CellOn::CellOn(double li, double ve, double wa, double et, double 

th, double m_nmain, double q_c,double d_t) 

        :Cell(li, ve, wa, m_nmain, q_c, d_t) 

{ 

    d_on = m_r = delta_non = n_on = c_action = 0; 

    eta = et; 

    theta = th; 

} 

//**************code 9************** 

 

void CellOn::traFlowOn(bool capa_drop,bool control,double w_next, 

double l_next, double max_nmain_next, double 

n_main_next, double theta_next, double 

m_r_next) 

{  

    //determine capacity drop 

    if (capa_drop == true) lambda = 0.9;     

    else lambda = 1; 

     

//calculate mainline flow            

    if (n_main/l <= den_crit) 

    { 

       if (n_main_next/l_next <= den_crit)  

       q_out = v/l*(n_main + theta*m_r*t_simu); 

       if (n_main_next/l_next > den_crit)  

       q_out = getMinTwo(v/l*(n_main + theta*m_r*t_simu),  

               w_next/l_next*(max_nmain_next*l_next-n_main_next-

theta_next*m_r_next*t_simu)); 

    } 

    if (n_main/l > den_crit) 

    { 

       if (n_main_next/l_next <= den_crit)  

       q_out = lambda*q_cap; 

       if (n_main_next/l_next > den_crit)  

       q_out = w_next/l_next*(max_nmain_next*l_next-n_main_next-

theta_next*m_r_next*t_simu); 

    } 

     

//calculate on-ramp flow     

    if (control==true) 

    { 
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        m_r = getMinThree((n_on+d_on*t_simu)/t_simu, 

eta*(max_nmain*l-n_main)/t_simu, c_action/t_simu); 

    } 

    if (control==false) 

    { 

        m_r = getMinTwo((n_on+d_on*t_simu)/t_simu, 

eta*(max_nmain*l-n_main)/t_simu); 

       

    } 

} 

//**************code 10************** 

 

void CellOn::vehConsOn() 

{ 

    //mainline conservation 

    delta_nmain = (q_in + m_r - q_out) * t_simu; 

    n_main += delta_nmain; 

     

//on-ramp conservation       

    delta_non = (d_on - m_r) * t_simu; 

    n_on += delta_non; 

 

    if (n_main < 0) n_main = 0; 

    if (n_on < 0) n_on = 0; 

} 

//**************code 11************** 

 

void CellOn::setInitialCell() 

{ 

    q_in = q_out = delta_nmain = 0; 

    d_onm = m_r = delta_non = n_on = c_action = 0; 

    n_main = 0; 

} 

 

//functions for celloff 

 

//**************code 12************** 

 

CellOff::CellOff(double li, double ve, double wa, double be,  

                 double m_nmain, double q_c,double d_t) 

        :Cell(li, ve, wa, m_nmain, q_c, d_t) 

{ 

    d_off = 0; 

    beta = be; 

} 

//**************code 13************** 

 

void CellOff::traFlowOff(bool capa_drop, double w_next, double 

l_next, double max_nmain_next, double 

n_main_next, double theta_next, double 

m_r_next) 

{ 

    //determine capacity drop 

    if (capa_drop == true) lambda = 0.9; 

    else lambda = 1; 

     

//calculate mainline flow 

    if (n_main/l <=  den_crit) 

    { 
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       if (n_main_next/l_next <=  den_crit)  

       q_out = (1-beta)*v/l*n_main; 

       if (n_main_next/l_next >  den_crit)  

       q_out = getMinTwo((1-beta)*v/l*n_main,  

               w_next/l_next*(max_nmain_next*l_next-n_main_next-

theta_next*m_r_next*t_simu)); 

    } 

    if (n_main/l >  den_crit) 

    { 

       if (n_main_next/l_next <=  den_crit)  

       q_out = lambda*q_cap; 

       if (n_main_next/l_next >  den_crit)  

       q_out = w_next/l_next*(max_nmain_next*l_next-n_main_next-

theta_next*m_r_next*t_simu); 

    } 

}       

//**************code 14************** 

 

void CellOff::vehConsOff() 

{ 

    delta_nmain = (q_in - q_out/(1-beta)) * t_simu; 

    n_main += delta_nmain; 

    if (n_main < 0) n_main = 0; 

} 

//**************code 15************** 

 

void CellOff::setInitialCell() 

{ 

    q_in = q_out = delta_nmain =  0; 

    n_main = 0; 

    d_off = 0; 

} 

 

 

//functions for cellonf 

 

//**************code 16************** 

 

CellOnf::CellOnf(double li, double ve, double wa, double et, double 

th, double be, double m_nmain, double q_c, double 

d_t) 

      :Cell(li, ve, wa, m_nmain, q_c, d_t) 

{ 

    d_onm = m_r = delta_non = n_on = c_action = 0; 

    eta = et; 

    theta = th; 

    beta = be; 

} 

//**************code 17************** 

 

void CellOnf::traFlowOnf(bool capa_drop, bool control, double 

w_next, double l_next, double 

max_nmain_next, double n_main_next, double 

theta_next, double m_r_next) 

{  

    //determine capacity drop 

    if (capa_drop == true) lambda = 0.9; 

    else lambda = 1; 
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//calculate mainline flow 

    if (n_main/l <= den_crit) 

    { 

       if (n_main_next/l_next <= den_crit)  

       q_out = (1-beta)*v/l*(n_main + theta*m_r*t_simu); 

       if (n_main_next/l_next > den_crit)  

       q_out = getMinTwo((1-beta)*v/l*(n_main + theta*m_r*t_simu),  

               w_next/l_next*(max_nmain_next*l_next-n_main_next-

theta_next*m_r_next*t_simu)); 

    } 

    if (n_main/l > den_crit) 

    { 

       if (n_main_next/l_next <= den_crit)  

       q_out = lambda*q_cap; 

       if (n_main_next/l_next > den_crit)  

       q_out = w_next/l_next*(max_nmain_next*l_next-n_main_next-

theta_next*m_r_next*t_simu); 

    } 

     

//calculate on-ramp flow     

    if (control==true) 

    { 

        m_r = getMinThree((n_on+d_on*t_simu)/t_simu, 

eta*(max_nmain*l-n_main)/t_simu, c_action/t_simu); 

    } 

    if (control==false) 

    { 

        m_r = getMinTwo((n_on+d_on*t_simu)/t_simu, 

eta*(max_nmain*l-n_main)/t_simu);       

    } 

} 

//**************code 18************** 

     

void CellOnf::vehConsOnf() 

{ 

    //mainline conservation 

    delta_nmain = (q_in + m_r - q_out/(1-beta)) * t_simu; 

    n_main += delta_nmain; 

     

//on-ramp conservation 

    delta_non = (d_on - m_r) * t_simu; 

    n_on += delta_non; 

 

    if (n_main < 0) n_main = 0; 

    if (n_on < 0) n_on = 0; 

} 

//**************code 19************** 

 

void CellOnf::setInitialCell() 

{ 

    q_in = q_out = delta_nmain =  0; 

    d_onm = m_r = delta_non = n_on = c_action = 0; 

    n_main = 0; 

} 
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A.2 Source Code of RampAgent 

//rampagent.h 

//**************header file for RampAgent************************* 

 

#ifndef RAMPAGENT_H_ 

#define RAMPAGENT_H_ 

  

#include "objective.h" 

#include <iostream> 

#include <fstream> 

#include <vector> 

#include <string.h> 

#include <stdio.h> 

using namespace std; 

 

class RampAgent   

{                 

public: 

    RampAgent(double h_nmain,double l_nmain,double d_nmain,double 

h_non,double l_non,double d_non,double h_qin,double 

l_qin,double d_qin,double h_don,double l_don,double 

d_don); 

    RampAgent(); 

     

    double n_main, n_on, q_in, d_on; 

    double delta_nmain, delta_non, delta_qin, delta_don,  

           higher_nmain, higher_non, higher_qin, higher_don, 

           lower_nmain, lower_non, lower_qin, lower_don; 

    double epsilon; 

    int action[9]; 

    int pr_state; 

    int cu_state; 

    int pr_action; 

    int cu_action; 

    void setObjective(int o_number); 

    void deleteObjective(int o_number); 

    void setInitialSA(); 

    vector<Objective*> obj; 

    int state_number, action_number; 

    int state_main, state_ramp; 

    int greedy_action; 

 

protected:   

    void getState(); 

    void getActionEG(int upperBound, int lowerBound); 

    long myrandom(long n); 

}; 

 

class SORampAgent: public RampAgent 

{ 

public: 

    SORampAgent(double h_nmain,double l_nmain,double d_nmain,double 

h_non,double l_non,double d_non,double h_qin,double 

l_qin,double d_qin,double h_don,double l_don,double 

d_don); 

    SORampAgent(); 

    void startStateTransition(); 

    void startStateTransitionFA(); 
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    void inputRQ(); 

    void outputRQ(ofstream& out); 

 

private: 

    void getGreedyAction();  

}; 

 

class MORampAgent: public RampAgent 

{ 

public: 

    MORampAgent(double h_nmain,double l_nmain,double d_nmain,double 

h_non,double l_non,double d_non,double h_qin,double 

l_qin,double d_qin,double h_don,double l_don,double 

d_don, double o_number); 

    MORampAgent(); 

    double obj_number; 

    void startStateTransition(double w_1); 

    void setSQSize(); 

    void inputRQ(); 

    void outputRQ(); 

     

private: 

    double max_SQ;   

    vector<vector <double> > S_Q; 

    void getSQValue(double w_1); 

    void getGreedyActionSQ();      

}; 

 

#endif 

 

//rampagent.cpp 

//**************source file for RampAgent************************** 

 

//**************code 1************** 

 

RampAgent::RampAgent(double h_nmain,double l_nmain,double 

d_nmain,double h_non,double l_non,double 

d_non,double h_qin,double l_qin,double 

d_qin,double h_don,double l_don,double d_don) 

{   

int temp_arr[9] = {2,3,4,5,6,7,8,9,10}; 

    memcpy(action,temp_arr,sizeof(temp_arr));    

    higher_nmain = h_nmain; 

    lower_nmain = l_nmain; 

    delta_nmain = d_nmain; 

    higher_non = h_non; 

    lower_non = l_non; 

    delta_non = d_non; 

    higher_qin = h_qin; 

    lower_qin = l_qin; 

    delta_qin = d_qin; 

    higher_don = h_don; 

    lower_don = l_don; 

    delta_don = d_don; 

    action_number = 9; 

    state_number = (ceil((h_nmain-l_nmain)/d_nmain+2)) 

                  *(ceil((h_non-l_non)/d_non+2)) 

                  *(ceil((h_qin-l_qin)/d_qin+2)) 

                  *(ceil((h_don-l_don)/d_don+2)); 
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} 

 

 

//**************code 2************** 

 

void RampAgent::setObjective(int o_number) 

{ 

    for (int i=0; i< o_number; i++) 

    { 

        Objective *ob; 

        ob = new Objective; 

        obj.push_back(ob); 

        obj[i]->setSize(state_number, action_number); 

    } 

} 

 

//**************code 3************** 

 

void RampAgent::deleteObjective(int o_number) 

{ 

    for (int i=0; i< o_number; i++) 

    { 

        delete obj[i]; 

    } 

} 

 

//**************code 4************** 

 

void RampAgent::setInitialSA() 

{ 

    pr_state = 0; 

    pr_action = 8; 

    cu_state = 0; 

    cu_action = 8; 

    n_main = 0; 

    n_on = 0; 

    greedy_action = 0; 

    q_in = d_on = 0; 

} 

 

//**************code 5************** 

 

void RampAgent::getState() 

{ 

    //state for mainline vehicles 

    if (n_main <= lower_nmain) state_nmain = 0; 

    if (n_main > lower_nmain && n_main <= higher_nmain )  

        state_nmain = ceil((n_main-lower_nmain)/delta_nmain);    

    if (n_main > higher_nmain )  

        state_nmain = ceil((higher_nmain-

lower_nmain)/delta_nmain+1); 

     

//state for mainline inflow 

    if (q_in <= lower_qin) state_qin = 0; 

    if (q_in > lower_qin && q_in <= higher_qin)  

        state_qin = ceil((q_in-lower_qin)/delta_qin); 

    if (q_in > higher_qin)  

        state_qin = ceil((higher_qin-lower_qin)/delta_qin+1);    
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//state for on-ramp queue 

    if (n_on <= lower_non) state_non = 0; 

    if (n_on > lower_non && n_on <= higher_non)  

        state_non = ceil((n_on-lower_non)/delta_non); 

    if (n_on > higher_non)  

        state_non = ceil((higher_non-lower_non)/delta_non+1); 

     

//state for on-ramp demand 

    if (d_on <= lower_don) state_don = 0; 

    if (d_on > lower_don && d_on <= higher_don)  

        state_don = ceil((d_on-lower_don)/delta_don); 

    if (d_on > higher_don)  

        state_don = ceil((higher_don-lower_don)/delta_don+1); 

     

//integrated state 

    cu_state = 

state_qin_number*state_non_number*state_don_number*sta

te_nmain+state_non_number*state_don_number*state_qin  

             + state_don_number*state_non + state_don;      

} 

 

//**************code 6************** 

 

void RampAgent::getActionEG(int upperBound, int lowerBound) 

{        

    int range = (upperBound - lowerBound)+1; 

    int a; 

    //generate a random number between 0 and 99 

    a = rand()%100; 

     

    //find the non-greedy action with the probability epsilon/100 

    if(a<epsilon) 

    { 

        do {cu_action = lowerBound + int(range * rand() / (RAND_MAX 

+ 1.0)); 

} 

        while(cu_action == greedy_action); 

    } 

    else  

    { 

        cu_action = greedy_action; 

    } 

} 

 

 

//source code for SORampAgent 

 

//**************code 7************** 

 

SORampAgent::SORampAgent(double h_nmain,double l_nmain,double 

d_nmain,double h_non,double l_non,double d_non, 

                     double h_qin,double l_qin,double d_qin,double 

h_don,double l_don,double d_don) 

:RampAgent(h_nmain,l_nmain,d_nmain,h_non,l_non,d_non,h_qin,l_qin,d_

qin,h_don,l_don,d_don) 

{ 

    setObjective(1); 

} 
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//**************code 8************** 

 

void SORampAgent::startStateTransition() 

{ 

    getState(); 

    obj[0]->getReward(pr_state, pr_action); 

         

    getGreedyAction(); 

    getActionEG(8,0); 

    obj[0]->getQValue(pr_state, pr_action, cu_state, greedy_action); 

    pr_state = cu_state; 

    pr_action = cu_action; 

} 

 

//**************code 9************** 

 

void SORampAgent::getGreedyAction() 

{ 

    int greedy = 0; 

    //find the greedy action with the maximum Q 

    for (int i=0; i < action_number; i++) 

    { 

        if((obj[0]->Q[cu_state][i]) > (obj[0]->Q[cu_state][greedy])) 

        greedy = i;  

    }    

    greedy_action = greedy; 

} 

 

//**************code 10************** 

 

void SORampAgent::inputRQ() 

{ 

    ifstream in("M:\\SORQ.txt");//open the file 

    //read data from the file 

    for(int i1 = 0; i1 < state_number; i1++){ 

        for(int j1 = 0; j1 < action_number; j1++){ 

            in >> obj[0]->Q[i1][j1]; 

        } 

    } 

    in.close(); 

} 

 

//**************code 11************** 

 

void SORampAgent::outputRQ(ofstream& out) 

{ 

   for(int i1 = 0; i1 < state_number; i1++){ 

       for(int j1 = 0; j1 < action_number; j1++){ 

           out<<obj[0]->Q[i1][j1]<<" "; 

        } 

        out<<endl; 

        if (i1 == state_number-1) { 

        out<<endl; 

        } 

     } 

} 

 

//source code for MORampAgent 
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//**************code 12************** 

 

MORampAgent::MORampAgent(double h_nmain,double l_nmain,double 

d_nmain,double h_non,double l_non,double 

d_non,double h_qin,double l_qin,double 

d_qin,double h_don,double l_don,double 

d_don,double o_number) 

:RampAgent(h_nmain,l_nmain,d_nmain,h_non,l_non,d_non,h_qin,l_qin,d_

qin,h_don,l_don,d_don) 

{ 

    setSQSize(); 

    obj_number = o_number; 

    setObjective(obj_number); 

} 

 

//**************code 13************** 

 

void MORampAgent::setSQSize() 

{ 

    S_Q.resize(state_number,vector<double>(action_number,0)); 

} 

 

//**************code 14************** 

 

void MORampAgent::startStateTransition(double w_1) 

{ 

    getState(); 

    for (int i=0; i< obj_number; i++) 

    { 

        obj[i]->getReward(pr_state, pr_action); 

    } 

    getGreedyActionSQ(); 

    getActionEG(8,0); 

 

    for (int i1=0; i1< obj_number; i1++) 

    { 

        obj[i1]->getQValue(pr_state, pr_action, cu_state, 

cu_action); 

    } 

    getSQValue(w_1); 

    pr_state = cu_state; 

    pr_action = cu_action; 

} 

 

//**************code 15************** 

 

void MORampAgent::inputRQ() 

{ 

    ifstream in("M:\\MORQ.txt");//open the file 

    //read data from the file 

    for(int i1 = 0; i1 < state_number; i1++){ 

        for(int j1 = 0; j1 < action_number; j1++){ 

            in >> obj[0]->Q[i1][j1]; 

        } 

    } 

    for(int i2 = 0; i2 < state_number; i2++){ 

        for(int j2 = 0; j2 < action_number; j2++){ 

            in >> obj[1]->Q[i2][j2]; 

        } 
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    } 

    for(int i3 = 0; i3 < state_number; i3++){ 

        for(int j3 = 0; j3 < action_number; j3++){ 

            in >> S_Q[i3][j3]; 

        } 

    } 

    in.close(); 

} 

//**************code 16************** 

 

void MORampAgent::outputRQ() 

{ 

    ofstream out("M:\\MORQ.txt"); 

    for(int i2 = 0; i2 < state_number; i2++){ 

        for(int j2 = 0; j2 < action_number; j2++){ 

            out<<obj[0]->Q[j2][j2]<<" "; 

        } 

        out<<endl; 

        if (i2 == state_number-1) { 

        out<<endl; 

        } 

     } 

     for(int i3 = 0; i3 < state_number; i3++){ 

        for(int j3 = 0; j3 < action_number; j3++){ 

            out<<obj[1]->Q[i3][j3]<<" "; 

        } 

        out<<endl; 

        if (i3 == state_number-1) { 

        out<<endl; 

        } 

     } 

     for(int i4 = 0; i4 < state_number; i4++){ 

        for(int j4 = 0; j4 < action_number; j4++){ 

            out<<S_Q[i4][j4]<<" "; 

        } 

        out<<endl; 

        if (i4 == state_number-1) { 

        out<<endl; 

        } 

     } 

     out.close(); 

} 

//**************code 17************** 

 

void MORampAgent::getGreedyActionSQ() 

{ 

    int greedy = 0; 

    for (int i=0; i < action_number; i++) 

    { 

        if(S_Q[cu_state][i] > S_Q[cu_state][greedy]) 

        greedy = i;  

    }    

    greedy_action = greedy; 

} 

//**************code 18************** 

 

void MORampAgent::getSQValue(double w_1) 

{    

    S_Q[pr_state][pr_action] =  
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                w_1 * obj[0]->Q[pr_state][pr_action] + (1-w_1) * 

obj[1]->Q[pr_state][pr_action]; 

} 
 

//**************code 19************** 

 

void SORampAgent::startStateTransition() 

{          //basic Q-learning     

    getState(); 

    obj[0]->getReward(pr_state, pr_action);      

    getGreedyAction(); 

    getActionEG(8,0); 

    obj[0]->getQValue(pr_state, pr_action, cu_state, 

greedy_action); 

    pr_state = cu_state; 

    pr_action = cu_action; 

         //model learning   

    pr_state_plan = pr_state; 

    pr_action_plan = pr_action; 

    cu_state_plan = cu_state; 

    plan_step = control_step; 

    n_main_plan = n_main; 

    n_on_plan = n_on; 

    capaDistribution(q_out); 

    q_in_plan = (qin[0]+qin[1]+qin[2]+qin[3]+qin[4])/5; 

    d_on_plan = (don[0]+don[1]+don[2]+don[3]+don[4])/5;    

          //planning     

    for (plan_step = 0; plan_step <= plan_max; plan_step++) 

    { 

        q_out_plan = q_cap*capa_redu; 

        getState(); 

        obj[0]->getReward(pr_state_plan, pr_action_plan);        

        getGreedyAction(); 

        getActionEG(8,0); 

        obj[0]->getQValue(pr_state_plan, pr_action_plan, 

cu_state_plan, greedy_action); 

        pr_state_plan = cu_state_plan; 

        pr_action_plan = cu_action_plan;         

        if ((plan_step == control_step+9)||((q_out <= q_bound) && 

(plan_step+1 >= incident_step)) 

        plan_max = plan_step+1; 

    } 

} 
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A.3 Source Code of Objective 
 

//objective.h 

//**************header file for Objective************************** 

 

#ifndef OBJECTIVEFUNCTION_H_ 

#define OBJECTIVEFUNCTION_H_ 

 

#include <iostream> 

#include <fstream> 

#include <vector> 

#include <string.h> 

#include <stdio.h> 

using namespace std;  

 

class Objective 

{ 

public:  

    void setSize(int state_number, int action_number); 

    double reward_value, reward, min_reward, max_reward; 

    double max_reward; 

    double min_reward; 

    double gamma; 

    double alpha; 

     

    vector<vector <double> > ad_alpha; 

    vector<vector <double> > Q; 

    void getReward(int pr_state, int pr_action); 

    void getQValue(int pr_state, int pr_action, int cu_state, int 

cu_action); 

    void getAdQValue(int pr_state, int pr_action, int cu_state, int 

cu_action); 

    void countAlpha(int pr_state, int pr_action); 

    void resizeAlpha(int state_number, int action_number); 

}; 

 

#endif 
 
//objective.cpp 
//**************source file for Objective************************** 

 

//**************code 1************** 

 

void Objective::setSize(int state_number, int action_number) 

{ 

    ad_alpha.resize(state_number,vector<double>(action_number,0)); 

    Q.resize(state_number,vector<double>(action_number,0)); 

} 

 

//**************code 2************** 

 

void Objective::resizeAlpha(int state_number, int action_number) 

{ 

    ad_alpha.resize(state_number,vector<double>(action_number,0)); 

} 

 

//**************code 3************** 
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void Objective::getReward(int pr_state, int pr_action)  

{ 

    reward = (reward_value-min_reward)/(max_reward-min_reward); 

} 

 

//**************code 4************** 

 

void Objective::countAlpha(int pr_state, int pr_action) 

{ 

    ad_alpha[pr_state][pr_action] = ad_alpha[pr_state][pr_action]+1; 

} 

 

//**************code 5************** 

 

void Objective::getQValue(int pr_state, int pr_action, int cu_state, 

int cu_action) 

{     

    Q[pr_state][pr_action] = Q[pr_state][pr_action]+  

        alpha * (reward + gamma * Q[cu_state][cu_action]-

Q[pr_state][pr_action]); 

} 

 

//**************code 6************** 

 

void Objective::getAdQValue(int pr_state, int pr_action, int 

cu_state, int cu_action) 

{ 

    countAlpha(pr_state, pr_action); 

    Q[pr_state][pr_action] = 

Q[pr_state][pr_action]+(1/ad_alpha[pr_state][pr_action])

*(reward + gamma * Q[cu_state][cu_action]-

Q[pr_state][pr_action]); 

} 
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APPENDIX B 

CALIBRATION OF ALINEA 

B.1 Calibration in Single-ramp Case 

It has been mentioned in (Gomes and Horowitz 2003) that, to make ALINEA 

work under ACTM, two parameters should satisfy:  0,2(2 )R norK v   and 

 ˆ / ,dis critq v  . In this study, the normalised free-flow speed norv can be 

calculated by: ( ) / 0.833nor sv v T l   , and the discharge rate is 0.9dis critq   . 

Thus, two parameters should be in the range:  0,2.3RK  and 

 ˆ 0.9 ,crit crit    . Within these two ranges, two parameters of ALINEA can 

be calibrated to obtain the minimum TTS of the controlled cell 2.  

ALINEA-C 

Tables B.1 and B.2 show the calibration results for ALINEA-C. To calibrate

RK , the target density ̂  is set as the critical value crit = 20 veh/lane/km, 

which is not changed during the test. The optimal RK
 
found in Table B.1 will 

be used in the calibration of ̂ . 

Table B.1: Calibration of R
K  for ALINEA-C 

R
K  0.10 0.20 0.25 0.30 0.35 0.40 0.50 1.00 1.50 2.00 2.30 

TTS of cell 2 3828 3689 3775 3664 3760 7218 8155 8732 9360 9232 9121 
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Table B.2: Calibration of ̂  for ALINEA-C
 
 

̂  
crit

  
0.99

crit
  

0.98

crit
  

0.97

crit
  

0.96

crit
  

0.95

crit
  

0.94

crit
  

0.93

crit
  

0.92

crit
  

0.91

crit
  

0.90

crit
  

TTS 

of 

cell 2 

3664 4063 4572 5202 5968 6882 7958 9164 10494 11923 13362 

 

Figure B.1: density of cell 2 under different R
K : (a) 0.1, (b) 0.3, (c) 0.5, 

(d) 1, (e) 2 

As shown in Figure B.1, with smaller RK (below 0.3), cell density can be 

steadily maintained around the critical density, while it takes more time 
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(around 40 steps) than larger RK
 
to reach this value. When RK

 
is above 0.3, 

the critical density can be reached faster (20 steps), but the algorithm is 

getting unstable. An optimal RK
 
which is fast and stable can be found at RK

= 0.3. With this parameter value, ALINEA-C can obtain the minimum TTS of 

3664 veh.min. ̂  is better set as the critical value (20 veh/lane/km), smaller 

values lead to lower outflow and thus have longer TTS. 

ALINEA-D 

ALINEA-D can be calibrated by the same method and the calibration results 

can be found in Tables B.3 and B.4. The same as ALINEA-C, RK = 0.3 and 

̂ = crit  are also optimal for ALINEA-D. 

Table B.3: Calibration of ̂  for ALINEA-D 

̂  
crit

  
0.99

crit
  

0.98

crit
  

0.97

crit
  

0.96

crit
  

0.95

crit
  

0.94

crit
  

0.93

crit
  

0.92

crit
  

0.91

crit
  

0.90

crit
  

TTS 

of 

cell 2 

3917 4963 4969 6509 8596 8657 8716 8776 8857 8896 11664 

Table B.4: Calibration of R
K  for ALINEA-D 

R
K  0.10 0.20 0.25 0.30 0.35 0.40 0.50 1.00 1.50 2.00 2.30 

TTS of cell 2 8676 4962 4946 3917 3917 3917 3917 3917 9283 9261 9166 
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B.2 Calibration in Multi-ramp Case 

In the first demand scenario, only one on-ramp may cause congestion which 

is similar to the single-agent case. Calibrated parameters from B.1 also work 

well in this test. However, under demand profile 2 and 3, these parameter 

values are no longer effective and should be recalibrated.  

B.2.1 Demand profile 2 

Figure B.2 shows mainline densities in three controlled cells (cell 6, 9 and 12) 

under demand profile 2 with parameters calibrated from B.1. For cell 6 and 9, 

mainline density can be successfully maintained around the critical value (20 

veh/lane/km), while the density of cell 12 is not effectively controlled which 

even reaches 45 veh/lane/km in some time steps. Thus, the calibration 

under demand profile 2 will be mainly focused on the controller (controller 3) 

that controls cell 12 (corresponding to on-ramp 3). 

 

Figure B.2: Cell density under demand 2 
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ALINEA-C 

Firstly, different values of 3̂  are tested with fixed 
,3RK = 0.3 (optimal value in 

B.1). The calibration result can be seen from Table B.5, where ̂ = 0.98 crit   

is found to be better than other values.  

Table B.5: Calibration of 3
̂  for ALINEA-C (demand 2) 

 
3

̂   
crit

  
0.99

crit
  

0.98

crit
  

0.97

crit
  

0.96

crit
  

0.95

crit
  

0.94

crit
  

0.93

crit
  

0.92

crit
  

0.91

crit
  

0.9

crit
  

TTS  
Sect 3 19147 18801 9733 10888 12186 13551 14966 15580 16090 16551 16965 

Network 37769 37416 28428 29583 30868 32202 33585 34186 34685 35135 35540 

 

When 
,3RK

 
is less than 0.5, the algorithm performance is very stable with 

almost the same network TTS. The same as B.1, 
,3RK = 0.3 will be chosen 

as the optimal parameter value. 

Table B.6: Calibration of 
,3R

K  for ALINEA-C (demand 2) 

,3R
K  0.10 0.20 0.25 0.30 0.35 0.40 0.50 1.00 1.50 2.00 2.30 

Network 

TTS  
28428 28428 28428 28428 28428 28429 28429 32494 33668 33636 33846 
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Figure B.3: Comparison of: (a) cell densities, (b) cell inflows, (c) cell 

outflows, (d) on-ramp flows 

A comparison of 3̂ = crit  and 3̂ = 0.98 crit  can be seen from Figures B.3 

and B.4, which can be used to explain why slight reduction of 3̂  sometimes 

leads to a drastic change of TTS. As shown in Figure B.3 (a), when 3̂  is set 

as the critical density (20 veh/lane/km), the controller will try to reach this 

value and sometimes may make the mainline density a little bit higher than 

20 veh/lane/km (around the 20th step). Once mainline density exceeds the 
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critical value, congestion will happen and the cell outflow will drop to the 

5400 veh/h because of capacity drop (see Figure B.3 (c)). Although the cell 

inflow will reduce because of congestion, the sum of the minimum controlled 

on-ramp flow (240 veh/h) and cell inflow (5160 veh/h) is still not smaller than 

5400 veh/h. Thus, the mainline density cannot be eliminated as shown in 

Figure B.4 (a). In the meanwhile, this minimum on-ramp flow causes a long 

vehicle queue on the on-ramp (Figure B.4 (b)). Both of the mainline 

congestion and long on-ramp queue lead to a high TTS. When ̂  is set as a 

lower value such as 0.98 crit , the mainline density will never exceed the 

critical value, and accordingly, the outflow of cell 12 can keep at a higher 

level around 5900 veh/h. Therefore, as shown in Figure B.4 (a) and (b), the 

mainline congestion can be completely eliminated, and a much shorter 

queue can be found on the on-ramp. Thus, when 3̂ = 0.98 crit , the TTS can 

be greatly reduced. 

 

(a) 
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(b) 

Figure B.4: Comparison of: (a) cell densities, (b) on-ramp queues 

ALINEA-D 

Following the same process introduced above, the calibration results of 

ALINEA-D can be obtained and illustrated in Tables B.7 and B.8. 3̂ =0.97

crit  and 
,3RK = 0.3 are optimal parameter values. 

Table B.7: Calibration of 3
̂  for ALINEA-D (demand 2) 

 
3

̂   
crit

  
0.99

crit
  

0.98

crit
  

0.97

crit
  

0.96

crit
  

0.95

crit
  

0.94

crit
  

0.93

crit
  

0.92

crit
  

0.91

crit
  

0.9

crit
  

TTS  
Sect 3 18500 17932 17932 8870 9009 11599 11771 14226 14530 17099 17539 

Network 37818 37257 37257 28355 28494 31074 31242 33639 33936 36445 36876 

Table B.8 Calibration of 
,3R

K  for ALINEA-D (demand 2) 

,3R
K  0.10 0.20 0.25 0.30 0.35 0.40 0.50 1.00 1.50 2.00 2.30 

Network 

TTS 
29104 37291 37274 28355 28378 28385 28461 29416 29407 36853 37859 
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B.2.2 Demand profile 3 

Under demand profile 3, when parameters calibrated from B.1 are used, 

both of cell 6 and 9 (corresponding to controller 2 and 3) are not well 

controlled (see Figure B.5). Therefore, parameters of two controllers ( 2̂ , 

,2RK , 3̂ , 
,3RK ) controlling these two cells should be recalibrated.  

 

Figure B.5: Cell density under demand 3 

ALINEA-C 

Firstly, 2̂  is calibrated with all other parameters fixed, i.e. 
,2RK = 0.3, 3̂ = crit   

and 
,3RK = 0.3. When the optimal 2̂

 
is found, 2̂

 
will be set as this value in 

the calibration of 3̂ . Tables B.9 and B.10 present the results for 2̂
 
and 3̂ , 

from which we can see that both 2̂
 
and 3̂

 
should be 0.98 crit . 
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  Table B.9: Calibration of 2
̂  for ALINEA-C (demand 3) 

2
̂  

crit
  

0.99

crit
  

0.98

crit
  

0.97

crit
  

0.96

crit
  

0.95

crit
  

0.94

crit
  

0.93

crit
  

0.92

crit
  

0.91

crit
  

0.9

crit
  

TTS of 

Sect 2 
19147 18801 9733 10888 12186 13551 14966 15580 16090 16551 16965 

  Table B.10: Calibration of 3
̂  for ALINEA-C (demand 3) 

 
3

̂   
crit

  
0.99

crit
  

0.98

crit
  

0.97

crit
  

0.96

crit
  

0.95

crit
  

0.94

crit
  

0.93

crit
  

0.92

crit
  

0.91

crit
  

0.9

crit
  

TTS  
Sect 3 16926 16669 7232 8179 9281 10546 11969 13465 14586 15097 15529 

Network 40128 39875 30574 31522 32623 33888 35288 36749 37842 38339 38760 

 

After the calibration of 2̂
 
and 3̂ , 

,2RK
 
and 

,3RK
 
will be calibrated by the 

same method. Tables B.11 and B.12 show the calibration results where 
,2RK

= 0.3 and 
,3RK = 0.1 are optimal. 

Table B.11: Calibration of 
,2R

K  for ALINEA-C (demand 3) 

,2R
K  0.10 0.20 0.25 0.30 0.35 0.40 0.50 1.00 1.50 2.00 2.30 

Network 

TTS 
36082 30590 30581 30574 30574 30575 30579 30583 31134 34443 35679 

Table B.12: Calibration of 
,3R

K  for ALINEA-C (demand 3) 

,3R
K  0.10 0.20 0.30 0.40 0.50 1.00 1.50 2.00 2.30 

Network 

TTS 
30541 30567 30574 30576 30575 30571 30573 39008 39582 
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ALINEA-D 

Calibration results of ALINEA-D are shown in table B.13 to B.16, from where 

the optimal parameters are selected as: 2̂ = 0.96 crit , 3̂ = crit , 
,2RK = 0.2 

and 
,3RK = 0.1. 

Table B.13 Calibration of 2
̂  for ALINEA-D (demand 3) 

2
̂  

crit
  

0.99

crit
  

0.98

crit
  

0.97

crit
  

0.96

crit
  

0.95

crit
  

0.94

crit
  

0.93

crit
  

0.92

crit
  

0.91

crit
  

0.9

crit
  

TTS of 

Sect 2 
17663 17663 16851 16872 9668 9941 12333 12673 14849 15324 15750 

  Table B.14 Calibration of 3
̂  for ALINEA-D (demand 3) 

 
3

̂   
crit

  
0.99

crit
  

0.98

crit
  

0.97

crit
  

0.96

crit
  

0.95

crit
  

0.94

crit
  

0.93

crit
  

0.92

crit
  

0.91

crit
  

0.9

crit
  

TTS  

Sect 3 7439 7469 7511 7539 7580 7611 7651 7680 7711 7751 9931 

Network 31781 31811 31853 31881 31922 31953 31993 32022 32053 32093 34272 

Table B.15 Calibration of 
,2R

K  for ALINEA-D (demand 3) 

,2R
K  0.10 0.15 0.20 0.25 0.30 0.40 0.50 1.00 1.50 2.00 2.30 

Network 

TTS 
30874 30814 30811 31126 31781 31837 31932 32885 32841 37778 38171 

Table B.16 Calibration of 
,3R

K  for ALINEA-D (demand 3) 

,3R
K  0.10 0.20 0.30 0.40 0.50 1.00 1.50 2.00 2.30 

Network 

TTS 
30811 38988 39452 39443 39427 39380 39360 39360 39360 
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APPENDIX C 

COLLECTED TRAFFIC DATA 

C.1 Example of JTDB Data 

 

Link 

ID 

Link 

Description 
Date 

Time 

Period 

Day 

Category 
Quality 

Avg Travel 

Time (secs) 

Avg Travel 

Speed (km/h) 

Total Flow 

(vehicles) 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

00:00 - 

00:15 
Sunday High 81.71 106.18 233 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

00:15 - 

00:30 
Sunday High 82.9 104.66 228.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

00:30 - 

00:45 
Sunday High 82.55 105.1 210.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

00:45 - 

01:00 
Sunday High 81.35 106.65 191 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

01:00 - 

01:15 
Sunday High 80.9 107.25 189.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

01:15 - 

01:30 
Sunday High 85.81 101.11 168.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

01:30 - 

01:45 
Sunday High 83.61 103.77 153 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

01:45 - 

02:00 
Sunday High 82.44 105.24 144 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

02:00 - 

02:15 
Sunday High 81.73 106.15 115 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

02:15 - 

02:30 
Sunday High 84.5 102.68 103.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

02:30 - 

02:45 
Sunday High 84.19 103.05 107.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

02:45 - 

03:00 
Sunday High 81.17 106.89 100.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

03:00 - 

03:15 
Sunday High 84.6 102.55 97.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

03:15 - 

03:30 
Sunday High 84.52 102.65 100 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

03:30 - 

03:45 
Sunday High 86.6 100.18 115.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

03:45 - 

04:00 
Sunday High 85.34 101.66 102 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

04:00 - 

04:15 
Sunday High 83.98 103.31 109.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

04:15 - 

04:30 
Sunday High 84.76 102.36 109.5 
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LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

04:30 - 

04:45 
Sunday High 87.16 99.54 114 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

04:45 - 

05:00 
Sunday High 85.56 101.4 99 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

05:00 - 

05:15 
Sunday High 84.24 102.99 118 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

05:15 - 

05:30 
Sunday High 83.5 103.9 133.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

05:30 - 

05:45 
Sunday High 83.2 104.28 142 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

05:45 - 

06:00 
Sunday High 84.45 102.74 144.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

06:00 - 

06:15 
Sunday High 82.88 104.68 158 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

06:15 - 

06:30 
Sunday High 82.75 104.85 192 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

06:30 - 

06:45 
Sunday High 81.54 106.4 219.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

06:45 - 

07:00 
Sunday High 83.05 104.47 212 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

07:00 - 

07:15 
Sunday High 81.77 106.1 219.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

07:15 - 

07:30 
Sunday High 82.66 104.96 264 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

07:30 - 

07:45 
Sunday High 82.31 105.4 312.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

07:45 - 

08:00 
Sunday High 83.28 104.18 344.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

08:00 - 

08:15 
Sunday High 82.22 105.52 366 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

08:15 - 

08:30 
Sunday High 82.47 105.2 423 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

08:30 - 

08:45 
Sunday High 82.27 105.46 473 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

08:45 - 

09:00 
Sunday High 82.17 105.59 533.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

09:00 - 

09:15 
Sunday High 82.97 104.57 592.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

09:15 - 

09:30 
Sunday High 83.24 104.23 688.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

09:30 - 

09:45 
Sunday High 84.93 102.15 807 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

09:45 - 

10:00 
Sunday High 84.41 102.78 906 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

10:00 - 

10:15 
Sunday High 85.33 101.68 881 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

10:15 - 

10:30 
Sunday High 86.53 100.27 1037.5 

LM10 M6 J10 to 01/05/2011 10:30 - Sunday High 92.47 93.82 1058 
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22 M6 J9 10:45 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

10:45 - 

11:00 
Sunday High 95.96 90.41 1139 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

11:00 - 

11:15 
Sunday High 96.21 90.18 1158 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

11:15 - 

11:30 
Sunday High 95.38 90.96 1176.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

11:30 - 

11:45 
Sunday High 97.4 89.08 1190 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

11:45 - 

12:00 
Sunday High 96.71 89.71 1193.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

12:00 - 

12:15 
Sunday High 96.69 89.73 1219 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

12:15 - 

12:30 
Sunday High 96.37 90.03 1245 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

12:30 - 

12:45 
Sunday High 96.34 90.06 1231.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

12:45 - 

13:00 
Sunday High 97.3 89.17 1225 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

13:00 - 

13:15 
Sunday High 98.68 87.92 1185.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

13:15 - 

13:30 
Sunday High 99.69 87.03 1189.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

13:30 - 

13:45 
Sunday High 96.68 89.74 1193 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

13:45 - 

14:00 
Sunday High 95.71 90.65 1173.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

14:00 - 

14:15 
Sunday High 94.67 91.64 1170.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

14:15 - 

14:30 
Sunday High 95.5 90.85 1149.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

14:30 - 

14:45 
Sunday High 95.51 90.84 1161.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

14:45 - 

15:00 
Sunday High 94.13 92.17 1169 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

15:00 - 

15:15 
Sunday High 94.46 91.85 1178 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

15:15 - 

15:30 
Sunday High 94.72 91.6 1169.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

15:30 - 

15:45 
Sunday High 94.92 91.4 1110 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

15:45 - 

16:00 
Sunday High 95.14 91.19 1135 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

16:00 - 

16:15 
Sunday High 94.64 91.67 1145.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

16:15 - 

16:30 
Sunday High 95.36 90.98 1133.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

16:30 - 

16:45 
Sunday High 95.78 90.58 1129 
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LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

16:45 - 

17:00 
Sunday High 103.99 83.43 1182.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

17:00 - 

17:15 
Sunday High 101 85.9 1171 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

17:15 - 

17:30 
Sunday High 96.67 89.75 1160.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

17:30 - 

17:45 
Sunday High 96.85 89.58 1175 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

17:45 - 

18:00 
Sunday High 95.58 90.77 1060 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

18:00 - 

18:15 
Sunday High 96.33 90.07 1081 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

18:15 - 

18:30 
Sunday High 95.51 90.84 1110 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

18:30 - 

18:45 
Sunday High 94.53 91.78 1068 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

18:45 - 

19:00 
Sunday High 94.78 91.54 1011.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

19:00 - 

19:15 
Sunday High 94.03 92.27 902.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

19:15 - 

19:30 
Sunday High 93.28 93.01 962 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

19:30 - 

19:45 
Sunday High 84.95 102.13 898 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

19:45 - 

20:00 
Sunday High 85.04 102.02 860 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

20:00 - 

20:15 
Sunday High 84.27 102.95 846.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

20:15 - 

20:30 
Sunday High 83.14 104.36 835.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

20:30 - 

20:45 
Sunday High 82.82 104.76 785.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

20:45 - 

21:00 
Sunday High 82.62 105.01 701 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

21:00 - 

21:15 
Sunday High 82.98 104.56 687 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

21:15 - 

21:30 
Sunday High 82.12 105.65 611.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

21:30 - 

21:45 
Sunday High 82.46 105.21 587.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

21:45 - 

22:00 
Sunday High 81.69 106.21 557.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

22:00 - 

22:15 
Sunday High 82.31 105.41 451 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

22:15 - 

22:30 
Sunday High 82.37 105.33 459.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

22:30 - 

22:45 
Sunday High 82.87 104.69 395.5 

LM10 M6 J10 to 01/05/2011 22:45 - Sunday High 82.46 105.21 337 
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22 M6 J9 23:00 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

23:00 - 

23:15 
Sunday High 82.38 105.32 319 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

23:15 - 

23:30 
Sunday High 82.34 105.37 322.5 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

23:30 - 

23:45 
Sunday High 81.27 106.76 273 

LM10

22 

M6 J10 to 

M6 J9 
01/05/2011 

23:45 - 

00:00 
Sunday High 82.42 105.26 225 
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C.2 Example of TRADS Data 

 

Period report between Sunday 1st May 2011 and Monday 1st Aug 2011 for site 9/30030314, , 

M6, MIDAS site at M6/5993B, 050/6/024/321 on M6 southbound between J10A and J10(E399061, 

N299818) view site location on map 

15 Min Flows 
          

                    
  

b Mon Tue Wed Thu Fri Sat Sun Mn-Fr Mn-Sn 
  

x11 x12 x13 x13 x13 x11 x11 Mean Mean 
  

00:15 230 207 219 227 216 235 220 219 222 
  

00:30 212 185 208 205 207 239 211 203 209 
  

00:45 189 165 185 178 194 219 194 182 189 
  

01:00 164 151 166 162 172 203 196 163 173 
  

01:15 158 138 157 160 153 189 168 153 160 
  

01:30 139 131 144 162 150 184 158 145 152 
  

01:45 129 123 138 139 138 168 142 133 139 
  

02:00 120 115 137 132 142 163 129 129 134 
  

02:15 122 125 140 136 141 156 113 132 133 
  

02:30 112 130 142 146 154 160 112 136 136 
  

02:45 108 137 143 147 149 154 94 136 133 
  

03:00 119 132 134 141 151 146 91 135 130 
  

03:15 126 149 156 165 174 161 88 154 145 
  

03:30 148 174 178 170 182 162 103 170 159 
  

03:45 180 190 201 194 199 162 108 192 176 
  

04:00 201 199 205 199 200 164 107 200 182 
  

04:15 218 216 221 220 225 184 107 220 198 
  

04:30 272 237 234 231 226 191 106 240 213 
  

04:45 343 283 278 283 272 192 116 291 252 
  

05:00 405 346 321 322 304 214 114 339 289 
  

05:15 493 420 393 401 372 244 119 415 348 
  

05:30 606 527 502 505 460 297 137 520 433 
  

05:45 735 649 630 610 552 336 156 635 524 
  

06:00 805 740 703 691 619 356 164 711 582 
  

06:15 940 907 891 843 787 403 181 873 707 
  

06:30 1119 1173 1147 1132 1031 492 236 1120 904 
  

06:45 1182 1295 1324 1289 1175 562 271 1253 1014 
  

07:00 985 1265 1253 1259 1162 568 278 1184 967 
  

07:15 862 1085 1189 1212 1101 573 289 1089 901 
  

07:30 844 1074 1130 1128 1123 656 336 1059 898 
  

07:45 923 1044 1100 1089 1110 709 376 1053 907 
  

08:00 948 958 1087 1114 1066 738 401 1034 901 
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08:15 918 921 1069 1049 1022 735 414 995 875 
  

08:30 973 897 948 1039 995 810 471 970 876 
  

08:45 958 988 920 990 953 875 512 961 885 
  

09:00 963 1027 949 970 954 868 560 972 898 
  

09:15 909 977 1001 1031 940 918 616 971 913 
  

09:30 932 990 984 1031 972 985 704 981 942 
  

09:45 956 962 976 1079 1010 1065 777 996 975 
  

10:00 986 998 947 1062 1051 1109 880 1008 1004 
  

10:15 1017 932 962 1091 1078 1118 916 1016 1016 
  

10:30 1020 939 987 1077 1095 1139 991 1023 1035 
  

10:45 1095 1012 992 1083 1178 1185 1040 1072 1083 
  

11:00 1100 973 989 1114 1193 1177 1104 1073 1092 
  

11:15 1123 1006 1032 1101 1208 1159 1114 1094 1106 
  

11:30 1133 985 1036 1104 1169 1175 1159 1085 1108 
  

11:45 1198 1037 1045 1084 1240 1171 1203 1120 1139 
  

12:00 1174 1036 1081 1095 1190 1158 1181 1115 1130 
  

12:15 1162 1052 1047 1095 1200 1118 1134 1111 1115 
  

12:30 1143 1071 1080 1100 1179 1113 1169 1114 1122 
  

12:45 1170 1031 1073 1106 1187 1090 1152 1113 1115 
  

13:00 1132 1059 1036 1106 1199 1090 1188 1106 1115 
  

13:15 1090 1065 1066 1065 1194 1046 1202 1096 1104 
  

13:30 1113 1053 1065 1111 1160 1092 1148 1100 1106 
  

13:45 1097 1036 1110 1088 1137 1066 1162 1093 1099 
  

14:00 1088 991 1070 1112 1108 1053 1128 1073 1078 
  

14:15 1081 1004 1071 1100 1081 1019 1068 1067 1060 
  

14:30 1090 1062 1121 1126 1208 981 1101 1121 1098 
  

14:45 1089 1038 1103 1157 1198 958 1109 1117 1093 
  

15:00 1084 1064 1106 1142 1194 962 1107 1118 1094 
  

15:15 1111 1075 1079 1122 1145 935 1100 1106 1081 
  

15:30 1066 1094 1164 1141 1159 941 1073 1124 1091 
  

15:45 1102 1090 1180 1201 1197 920 1127 1154 1116 
  

16:00 1101 1150 1209 1213 1158 884 1109 1166 1117 
  

16:15 1120 1177 1235 1232 1151 865 1117 1183 1128 
  

16:30 1175 1210 1307 1258 1129 931 1134 1215 1163 
  

16:45 1208 1223 1298 1274 1102 880 1153 1221 1162 
  

17:00 1196 1188 1266 1218 1097 859 1132 1193 1136 
  

17:15 1166 1192 1227 1246 1114 883 1136 1189 1137 
  

17:30 1216 1152 1226 1244 1166 875 1109 1200 1141 
  

17:45 1156 1157 1206 1196 1127 876 1114 1168 1118 
  

18:00 1101 1102 1181 1119 1081 874 1148 1116 1086 
  

18:15 1007 1062 1112 1074 1037 827 1127 1058 1035 
  

18:30 979 1029 1049 1050 1031 829 1139 1027 1015 
  

18:45 931 920 987 1053 1029 811 1119 984 978 
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19:00 844 819 938 938 1011 760 1089 910 914 
  

19:15 837 813 901 900 994 730 1039 889 887 
  

19:30 768 754 831 865 989 679 1058 841 849 
  

19:45 738 691 766 821 944 644 1050 792 807 
  

20:00 690 660 671 762 917 595 1043 740 762 
  

20:15 656 621 642 714 883 575 991 703 726 
  

20:30 658 604 629 697 854 560 959 688 708 
  

20:45 600 557 570 630 776 502 889 626 646 
  

21:00 562 518 524 576 680 461 837 572 594 
  

21:15 511 485 481 534 618 418 788 525 547 
  

21:30 489 450 459 516 566 405 759 496 520 
  

21:45 447 412 429 462 526 374 685 455 476 
  

22:00 418 385 395 420 448 355 587 413 429 
  

22:15 377 358 364 393 406 328 504 379 390 
  

22:30 359 337 348 362 389 320 452 359 366 
  

22:45 322 300 318 329 349 328 403 323 335 
  

23:00 291 281 309 298 322 287 363 300 307 
  

23:15 260 269 296 290 296 271 319 282 285 
  

23:30 244 266 274 289 287 264 286 272 272 
  

23:45 240 259 277 281 284 260 272 268 267 
  

24:00:00 216 245 255 240 260 240 248 243 243 
  

            
Totals 

           
07-19hr 50850 50007 52036 53430 53427 45861 46638 51950 50321 

  
06-22hr 62450 61597 63949 65850 66777 54184 58289 64124 61870 

  
06-24hr 64759 63912 66390 68332 69370 56482 61136 66552 64340 

  
00-24hr 71093 69781 72325 74258 75122 61361 64389 72515 69761 

  

            
b Bank Holiday w Weather a Accident t Time change r Road Works 

Showing only complete days. No estimated data. Not including hidden data. 
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