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Abstract 

Forecast climate scenarios indicate global surface temperature to rise by up to 5.8 

Celsius degrees (C°) by 2100, although considerably more at high-latitudes. 

Possible responses of long-lived species, such as seabirds, to climate change are 

less easy to predict. The Great Skua Catharacta skua, adapted for breeding at 

high-latitudes, may be restricted by heat stress at southern range margins and is 

an ideal species for which to determine responses to climatic change. A 

biophysical model constructed for the Great Skua, indicated that the upper limit 

of the thermoneutral zone was ~10 ˚C and the critical limit, above which 

evaporative heat loss was no longer sufficient for thermoregulation, was ~20˚C. 

Within the next 80 years, critical levels will only be exceeded regularly at 

colonies in arctic Russia or south of current range margins. Field data from Foula, 

Shetland, in 2002 and 2003, indicated that breeding Great Skuas were currently 

responding to heat stress by increasing the time spent bathing at the expense of 

other activities. When foraging conditions were poor, however, bathing was 

traded-off for extra foraging time and heat was lost by panting. Within Foula, 

mean operative temperature (a measure of heat stress) at low altitude breeding 

sites was consistently greater than at higher altitudes, and adult bathing activity 

was correspondingly more frequent at lower altitudes. Even so, breeding 

performance (laying date, hatching success and productivity) was not influenced 

by differences in heat stress exposure, even when adult energy expenditure was 

high. The flexibility of adult behaviour therefore accommodated current levels of 
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heat stress. Dispersal models indicated that Great Skua breeding populations were 

still expanding from artificially low levels and, if not restricted by changes in 

food availability, would spread throughout the coasts of western Scotland and 

Northern Ireland by 2100. The European Great Skua distribution is probably in 

equilibrium with climate and future distributions are expected to track changes in 

food availability. In arctic areas, the timing of spring snow melt constrains the 

length of the breeding season and was the most probable climatic mechanism 

restricting seabird breeding distributions. The Great Skua, being primarily limited 

by pelagic food availability, illustrated the likely impacts of climate change on 

predominantly sub-arctic seabirds. Uncertainty concerning climatic impacts on 

marine productivity, combined with interspecific variation in foraging ecology, 

however, will cause species to respond in individualistic ways to climate change. 
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1.1 Evidence for recent rapid climatic change 

Dramatic changes in global climate over the past century are evident from a 

variety of sources. For temperature, times-series are reconstructed using tree-ring, 

coral, ice-core and historical records (Mann, Bradley & Hughes, 1999), for 

atmospheric composition, long-term records are available from polar and glacial 

ice-cores (e.g. Etheridge et al. (1996)) and direct atmospheric measurements 

(Keeling et al., 1995). Historical data sets exist for precipitation records (Hulme, 

Osborn & Johns, 1998) and satellite-borne sensors allow determination of sea- 

and glacial-ice extent (Houghton et al., 2001). Such sources reveal that mean 

global surface temperature has increased by 0.6 Celsius degrees (C°) over the 

past 100 years (Figure 1.1), the extent of snow and ice cover in the Northern 

Hemisphere has contracted by 10-15 % since the late 1960s and, on average, sea 

level has risen by 0.2 m worldwide (Houghton et al., 2001). There has also been a 

concurrent 0.5-1 % per decade increase in overall precipitation for the continents 

in the Northern Hemisphere, with more than twice that for the tropics, but a 

corresponding 0.2 – 0.3 % decline per decade for sub-tropical zones (Houghton et 

al., 2001). Many of these changes are beyond the bounds of natural climate 

variability (Houghton et al., 2001). Since the end of the last ice, ~10,000 years 

b.p., global temperatures have risen gradually, although with a rapid increase 

over the last century (Figure 1.1). Changes in atmospheric carbon dioxide 

concentrations over the last century have also been rapid, comparable in 

magnitude to those during the last deglaciation (Sundquist, 1993). 



 3

    

Figure 1.1 (a) Global surface temperature change 1860-2000 and (b) mean annual 
surface temperature for the Northern Hemisphere over the last 1,000 years. Both 
figures taken from Houghton et al. (2001). 95% confidence limits are given by (a) 
grey error bars and (b) grey regions. 
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This is most obvious in the annual concentration of CO2 in the atmosphere 

measured at Mauna Loa, Hawaii, that increased from 316.1 ppmv (parts per 

million by volume) in 1959 to 358 ppmv in 1994 (Figure 1.2) (IPCC, 1996). 

Greenhouse gases, such as CO2, all produce considerable positive radiative 

forcing which tends to warm the Earth’s surface (Houghton et al., 2001). Possible 

climatic changes resulting from such forcing, when compared to those actually 

observed over the past 50 years, indicate that temperature changes over this 

period cannot be attributed solely to natural variability or the forcing of 

stratospheric volcanic aerosols (Tett et al., 1999). However, they can be 

explained by climatic responses to anthropogenic changes in greenhouse-gas 

concentrations (Mann, Bradley & Hughes, 1998; Tett et al., 1999). 

   

Figure 1.2 Atmospheric carbon dioxide concentrations measured at Mauna Loa, 
Hawaii (line of high amplitude) and the South Pole (line of low amplitude) from 
1958–1996. Data from Keeling(1986), Keeling & Worf (2000). 
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 Regional deviations from global trends, however, can be substantial: 

climate modeling has indicated that warming at high latitudes is substantially 

reduced in areas of the North Atlantic and Southern Oceans where deep-ocean 

mixing occurs (Houghton et al., 2001). At regional scales, indices of large-scale 

climatic variability have been derived from anomalies in either sea-level 

temperatures or pressures for different regions, e.g. the Pacific Decadal 

Oscillation (PDO) for the Pacific Ocean and the Arctic Oscillation (AO) for 

northern polar regions (Ambaum, Hoskins & Stephenson, 2001; Newman, 

Compo & Alexander, 2003). In the Pacific Ocean, variability in the PDO is 

related to frequency and intensity of El Nino Southern Oscillation (ENSO) events 

(Newman et al., 2003) that strongly influence weather and marine productivity 

(Barber & Chavez, 1983; Ramusson & Wallace, 1983). In the temperate north 

Atlantic, climatic variability can be described by anomalies in the North Atlantic 

Oscillation index (NAOI), calculated from sea level pressure gradients (Hurrell, 

1995). Long-term analyses indicate a strongly positive NAOI anomaly since 

1980, signifying drier, milder winters in central and southern Europe coupled 

with lower temperatures and higher precipitation over the north-west Europe 

(Hurrell, 1995; Wilby, O'Hare & Barnsley, 1997). 

1.2 Forecasting future climatic trends 

General Circulation Models (GCMs) have been developed to explore how 

atmospheric circulation may be altered under different climatic regimes 

(Houghton et al., 2001). These models usually comprise a multi-layered 



 6

atmosphere overlaid on a spatial grid and incorporate climatic variables such as 

sea surface temperature (SST), wind speed, water vapour pressure and mean 

cloud volumes but may also include explicitly modeled variables, such as soil 

moisture and seasonal solar angle variations (Houghton et al., 2001). Original 

models provided no information on rates of climate change and were often run 

until atmospheric carbon dioxide reached equilibrium, commonly at twice the 

current concentrations (Houghton et al., 2001). Since 1992, GCMs have included 

components describing rates of change in carbon dioxide concentrations, usually 

1 % yr-1, with consequent positive radiative forcing and also negative forcing 

from other atmospheric components (Houghton et al., 2001). Recent models, 

such as the UK Meteorological Office’s HadCM3 (Wood et al., 1999; Gordon et 

al., 2000), have also dispensed with ‘flux adjustments’ (used to restrict models 

from entering unrealistic states) but still simulate observed atmospheric 

circulation quite closely (Houghton et al., 2001).  

 Climatic predictions have been made using GCMs for a range of scenarios 

over the next 100 years (Houghton et al., 2001).  Based on a doubling of global 

atmospheric CO2 concentrations by 2100, extrapolated from observed rates of 

change in atmospheric CO2, these models indicate an increase in global averaged 

surface temperature of 1.4-5.8 C° and increases in the frequency and intensity of 

precipitation (Houghton et al., 2001). Nearly all terrestrial areas are predicted to 

warm more rapidly than this global average, particularly at high northern 

latitudes or in the winter months. An increase in the frequency of tropical storms 

and extreme precipitation events is also predicted (Houghton et al., 2001). 

Northern Hemisphere snow cover and sea-ice are simulated to decline further 
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over the next 100 years and the Greenland Ice Sheet is predicted to loose mass 

and contribute to a rise in mean global sea-level of 0.09 -0.88 m by 2100 

(Houghton et al., 2001). These predicted rates of climate change are more rapid 

than any reconstructed for any period within the Holocene, the last ~10,000 years 

(Huntley, 1995). 

1.3 Biological responses to climate change 

Responses to recent climate change have been recorded for a wide range of 

taxonomic groups with diverse geographical distributions (Walther et al., 2002; 

Moore, 2003; Parmesan & Yohe, 2003; Root et al., 2003). For short-lived or 

poikilothermic organisms, there is a strong indication of shifts in distribution and 

abundance (Parmesan et al., 1999; Pounds, Fogden & Campbell, 1999). In 

contrast, for longer-lived homeothermic taxa current data primarily concern 

changes in phenology (reviewed in Root et al. (2003)) and breeding success, e.g. 

Winkel & Hudde (1997). Animals capable of rapid dispersal, such as birds and 

butterflies, have been able to shift their distributions in response to climatic 

change (Parmesan et al., 1999; Thomas & Lennon, 1999; Thomas et al., 2001) 

but other species, particularly long-lived plants, have lower rates of dispersal and 

may be threatened by extinction as a result of rapidly changing climates (Huntley, 

1991; Thomas et al., 2004). Species respond in individualistic ways to climate 

change (Huntley, 1991) and responses may differ considerably even for closely 

related species (Warren et al., 2001; Hill et al., 2002) and can be constrained by 

habitat availability (Hill, Thomas & Huntley, 1999; Hill et al., 2001). Differences 

in rates of response will lead to changes in the composition of ecological 
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communities and varying susceptibilities of species to extinction (Davis et al., 

1998; McCarty, 2001; Walther et al., 2002).  

1.4 Susceptibility and responses of high-latitude seabirds to changing 

climate 

Animals living at high-latitudes are adapted to survive and reproduce in cold 

environments by virtue of their morphology, physiology and ecology (Phillips, 

Butler & Sharp, 1985; McNab, 2002). Such is the case for resident and migrant 

seabirds breeding in arctic and sub-arctic regions, that characteristically have 

high metabolic rates (McNab, 1966; Gabrielsen, Mehlum & Karlsen, 1988; 

Bryant & Furness, 1995), thick insulative plumage (Furness, 1988) and additional 

insulative adaptations on their un-feathered extremities (Lustick, 1984; Furness, 

1987). Given that climatic warming is expected to be more rapid at high latitudes 

(Houghton et al., 2001)(section 1.2), such adaptations may cause foraging adults 

to experience problems of heat-dissipation under forecast climatic regimes 

(Furness, 1988). To date, no empirical data are available to support this, although 

the temperate breeding range margins of Great Skuas (Catharacta skua) and 

Arctic Skuas (Stercorarius parasiticus) are strongly associated with particular 

thermal conditions (Furness, 1988). 

 The sizes and distributions of bird populations are directly influenced by 

resource availability, particularly food supply, breeding habitat, predation and 

severe episodic weather events (Newton, 1998). Climatic change can alter the 

availability of breeding, over-wintering or staging habitats, the size and 

distribution of prey populations and prevailing weather conditions at all these 
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sites (Huntley, 1995). Seabirds are generally long-lived species with low 

fecundity and changes in population sizes and distribution will usually lag several 

years behind changes in resource availability, predation or direct climatic effects 

(Weimerskirch et al., 2003). Even so, climate has been implicated in many recent 

changes in the demography of Antarctic and temperate seabird populations (Veit 

& Hyrenbach, 2001; Croxall, Trathan & Murphy, 2002; Hyrenbach & Veit, 2003; 

Weimerskirch et al., 2003). In Antarctic areas, changes in the annual retreat of 

sea-ice have led to a reduction in the survival of wintering Adelie Penguins 

(Pygoscelis adeliae),  Emperor Penguins (Aptenodytes forsteri) and Snow Petrels 

(Pagodroma nivea) (Croxall et al., 2002), although the proximate causes of 

increased mortality differ among species. The survival of juvenile Adelie 

Penguins is reduced during winters with lower extents of sea-ice because of 

greater distances from roosts to foraging grounds and an increase in susceptibility 

to predation (Wilson et al., 2001; Ainley, 2002). Reduced krill abundance in 

warmer waters was the proximate cause of reduced survival of adult Emperor 

Penguins at Terre Adelie in the late 1970s (Barbraud & Weimerskirch, 2001b). 

Conversely, survival of adult Snow Petrels was reduced when winter sea-ice was 

more extensive, probably as a result of concurrent reduction in polynyas, areas of 

water kept ice-free by currents, that are used by this species (Barbraud & 

Weimerskirch, 2001b, a). Breeding success of all three species was highest 

during years of less extensive sea-ice, however, because shorter distances 

between breeding grounds and foraging areas led to higher provisioning rates of 

chicks (Croxall et al., 2002), whereas breeding is often deferred during years of 

extensive summer sea-ice  (Barbraud & Weimerskirch, 2001a). Similar impacts 
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of fluctuating sea-ice on seabird species have been observed in Arctic regions 

(Agler et al., 1999; Gaston, Woo & Hipfner, 2003; Divoky, 2005).  

 In temperate areas, not dominated by ice dynamics, changes in sea-surface 

temperatures have been implicated in altered productivity regimes (Reid, 2003) 

leading to changes in prey abundance at low trophic levels (Reid et al., 1998) and 

changes in population dynamics (breeding success, survival and incidence of 

breeding) of seabirds (Montevecchi & Myers, 1997; Thompson & Ollason, 2001; 

Jones & Hunter, 2002; Durant, Anker-Nilssen & Stenseth, 2003; Harding, Piatt & 

Hamer, 2003; Inchausti et al., 2003; Grosbois & Thompson, 2005). Changes in 

food availability are thought to be the major factors affecting numbers of 

breeding seabirds (Cairns, 1989) and there is some evidence that competition for 

food resources has shaped the distribution of seabird colonies within the UK 

(Furness & Birkhead, 1984; Lewis et al., 2001).  

 The availability of appropriate nesting habitat can also be affected by sea-

level or floral change associated with climatic warming (Micol & Jouventin, 

2001; Croxall et al., 2002). Changes in vegetation patterns are liable to be most 

extreme in tundra areas (Huntley & Cramer, 1991), which are important breeding 

grounds for some seabird species, particularly small skuas (Maher, 1974). Under 

forecast rates of climatic warming in the Northern Hemisphere, boreal forest 

regions will probably encroach upon areas of tundra, reducing the extent of 

breeding habitat available (Zockler & Lysenko, 2001).  

 Increased competition and predation, resulting from differential rates of 

spread of individual species, may result from climatic warming (Davis et al., 

1998) and changes in the intensity of predation on different seabird species as a 
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direct consequence of climate change is evident in polar regions. For Adelie 

Penguins, juvenile mortality rates are thought to increase as a result of predation 

by Leopard Seals (Hydrurga leptonyx) when sea-ice extent is relatively sparse 

(Ainley, 2002). At a breeding colony in arctic Alaska, predation by Tufted 

Puffins (Fratercula cirrhata) on Black Guillemot (Cepphus grille) chicks has 

increased dramatically in recent years ever since adult puffins began to breed at 

the same colony, most probably because new foraging areas have became 

available for puffins as a result of progressively earlier seasonal retreat of sea-ice 

(Divoky, 2005).  

 Episodic severe weather, such as storms, heavy rain, tornados and heat-

waves, can cause up to 90% mortality in some bird populations (Newton, 1998) 

and ‘wrecks’ of seabirds can be dramatic during such episodes (e.g. Harris & 

Wanless (1996)). These weather events can influence survival of seabirds in 

breeding and wintering areas and can severely reduce breeding success 

(Schreiber, 2001). Some studies have also linked wind and seasonal storm events 

to foraging and breeding dynamics of temperate seabirds (Aebischer & Coulson, 

1990; Aebischer & Wanless, 1992; Finney, Wanless & Harris, 1999). 

1.5 The morphology, taxonomy and ecology of skuas 

Skuas are large seabirds of the family Stercorariidae, close relatives of gulls 

(family Laridae), from which they differ mainly in possessing strong hooked 

claws, hard scales (skutes) on their legs and a prominent distal nail on the upper 

mandible (Furness, 1987). All skuas exhibit reversed sexual size dimorphism, 

with females weighing 11-17 % more than males and often possessing longer 
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wings (Furness, 1987). Skuas are commonly separated into two genera; the  

smaller Stercorarius species with wedge-shaped tails and narrower wings, and 

the substantially larger Catharacta skuas (Furness, 1987). Recent evidence from  

 

 Table 1.1 Classification of the skuas (family Stercorariidae), adapted from Cohen 
et al.(1997) with the modifications of Hamer (2001). 

  

nuclear DNA supports the placing of all species in a monophyletic group chiefly 

because of the small genetic distance between Pomarine and Great Skuas 

(Andersson, 1999; Sangster et al., 2004). It is probable, however, that pomarinus 

Family Genus Species Sub-species Common name 

(English) 

longicaudus longicaudus Long-tailed 
Skua (western) 

STERCORARIIDAE Stercorarius 

 pallescens Long-tailed 
Skua (eastern) 

  parasiticus  Arctic Skua 

pomarinus Pomarine Skua 

skua Great Skua 

maccormicki South Polar 
Skua 

iönnbergi Brown Skua 

hamiltoni Tristan Skua 

chilensis Chilean Skua 

 Catharacta 

antarctica Falkland Skua 
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originally arose through geographic speciation followed by hybridization with 

ancestors of C. skua (Hamer, 2001). The classification proposed by Hamer 

(2001) provides the discrimination used throughout this thesis (Table 1.1) 

because inclusion of all skuas within a single genus Stercorarius, as endorsed by 

Sangster et al. (2004), obscures the fact that data on behaviour, feather-lice and 

mitochondrial DNA all indicate that large skuas and pomarinus form one clade 

and the two smaller skuas another.  

 Skuas most probably originated in the northern hemisphere where they 

diverged from the same ancestors as the gulls and are thought to have 

subsequently colonized the southern hemisphere, eventually to return to the North 

in the form of the Great Skua (Catharacta skua), within the last 500 years 

(Furness, 1987). All skuas breed at high-latitudes, exceeding 37º (Furness, 1987). 

Stercorarius skuas are mostly restricted in their breeding grounds to the Arctic 

Circle but both Arctic (S. parasiticus) and Long-tailed Skuas (S. longicaudus) 

have a circumpolar distribution (Furness, 1987). Pomarine Skuas (C. pomarinus) 

breed from the Kanin Peninsula in East Russia eastwards through Siberia, Alaska 

and the Canadian Arctic but are absent from Greenland and across most of 

Europe (Furness, 1996). All large skuas, with the exception of the Great Skua, 

breed exclusively in the southern hemisphere, although only the Brown (C. 

lönnbergi) and South Polar Skua (C. maccormicki) maintain a circumpolar 

distribution, the latter breeding at considerably higher latitudes (Furness, 1987). 

Tristan (C. hamiltoni), Falkland (C. antarctica) and Chilean Skuas (C. chilensis) 

have a more restricted distribution (Furness, 1987). Breeding Great Skuas are 
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confined to the Western Palearctic either on small islands or remote areas of 

larger ones, such as Iceland and Svalbard (Snow & Perrins, 1998) (Figure 1.3). 

The majority of skua species breed colonially but, although colonies can 

be extremely dense (up to 200 nests per km2 for Arctic Skuas on Foula, Shetland 

(Furness, 1987)), this depends on their diet (Furness, 1987), since those that feed 

within their nesting territory actively defend larger areas (0.02-0.15 nests per km2 

for Arctic Skuas on the North Slope, Alaska (Maher, 1974)). Incubation for the 

Great Skua lasts between 26-32 days (Hamer, 2001) but the smaller species have 

shorter incubation periods, 23-28 days (Snow & Perrins, 1998). The pre-fledging 

period, from hatching to fledging, is between 40 and 59 days for large skuas 

(Furness 1987) but only 24-31 for the smaller species (Snow & Perrins, 1998). 

Modal clutch size in skuas is two eggs (Furness, 1987), although often a 

small proportion of pairs in a colony will lay only a single egg (Hamer, 2001). 

Hatching success is generally 60-70% for all skua eggs, often even higher in 

Great and Brown Skuas (70-80%) that nest on maritime islands with no nest 

predators (Furness, 1987; Reindhart, 1997). Skua chicks are semi-altricial and 

semi-nidifugous (Furness, 1987). Skua chicks are fed by complete regurgitation, 

the provisioning adult depositing the food on the ground and the chicks 

consuming it in situ, often with the help of the brooding adult if the chicks are 

very young (Furness, 1987). In colonies with access to abundant food supplies, 

survival to fledging is very high, but brood reduction may occur when food is 

limiting (Young, 1963; Lamey, 1995) and overall breeding success may be as 

low as 8 % in some years (Hamer, Furness & Caldow, 1991). Breeding success is 

often more variable for South Polar Skuas, because of severe weather (Young, 
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1963), and Pomarine Skuas, because of variable prey abundance (Maher, 1974). 

For small skuas nesting in the tundra, eggs and chicks are commonly lost to 

predatory mammals and birds (Maher, 1974) but predation by conspecifics is 

very important in large species (Young, 1963; Hamer et al., 1991; Lamey, 1995; 

Catry & Furness, 1999). For Great Skuas in years of poor availability, adults 

spend more time foraging and this can lead to territories being left unguarded 

(Caldow & Furness, 2000) and high chick mortality from conspecific predation 

(Hamer et al., 1991). Yearly survival of adults is very high and from analyses of 

ringing recovery data, Catharacta skuas appear to have a slightly higher rate of 

adult survival than the Stercorarius skuas (91-4% versus 80-90%) (Furness, 

1978; Andersson, 1981; Furness, 1987; Ratcliffe et al., 2002).  

Diet and feeding techniques of skuas are extremely variable between 

individuals, colonies, species and the time of year (Furness, 1987). Pomarine 

Skuas are lemming specialists during the breeding season (Maher, 1974) but 

resort to scavenging, kleptoparasitism and predation of small seabirds during the 

winter months (Furness, 1987). Long-tailed and Arctic Skuas can breed in tundra 

areas where there are no lemmings at all, exploiting passerines, juvenile 

shorebirds and even insects during the breeding season (Maher, 1974). Arctic 

Skuas feed solely by kleptoparasitism of other seabirds during their migration and 

wintering periods and also when they breed in coastal regions (Furness, 1987). Of 

the large skua species, only Great and South Polar Skuas catch pelagic prey, 

sandeels and krill respectively, although the relative importance of these items in 

the diet varies greatly between colonies (Young, 1963; Phillips et al., 1997). 

Great Skuas also scavenge behind fishing trawlers (Hudson & Furness, 1988), 
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and this appears to provide a valuable secondary food source for Shetland birds 

during years of poor sandeel abundance (Furness & Hislop, 1981; Votier et al., 

2004). Another common prey item for Great Skuas and other large skuas during 

the breeding season is other seabirds, taken either by direct predation or 

scavenging (Furness, 1987). Skuas feeding on burrow-nesting birds or mammals 

or by scavenging from penguin rookeries commonly hold a breeding territory that 

overlaps their feeding grounds (Young, 1963; Mougeout, Genevois & 

Bretagnolle, 1998). 

1.6 Examining responses of high-latitude seabirds to changing climates: 

Great Skuas as a model species 

This thesis aims to determine the most probable responses of Great Skuas 

(Catharacta skua) to forecast climatic change and the consequent implications 

for other seabirds breeding at high-latitudes. Great Skuas have one of the highest 

conservation values of any breeding British species, with the UK hosting 60% of 

the world population (Hamer, 2001).  

Research over the last 35 years has provided a good understanding of the 

breeding dynamics of Great Skuas (Hamer, 2001) and detailed records exist 

concerning the distribution of this species at its southern range margin over the 

last century (Furness, 1987). Nearly all the Great Skua breeding colonies are 

currently found within Europe (Figure 1.3) (Furness, 1996; Hamer, 2001) where 

some of the most detailed climatic records exist (e.g. New et al. (1999)). There is 

also a strong correlation between this distribution and prevailing thermal 
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Figure 1.3 The current breeding distribution of the Great Skua (black squares) 
(Hagemeijer & Blair, 1997) and its association with the 13 ˚C isotherm from 1900 
(Bartholomew & Herbertson, 1899), proposed as a possible thermal limit for 
breeding of this species (Furness, 1988). Small black dots indicate no breeding data. 

conditions during the breeding season suggesting a possible climatic limitation in 

this species (Figure 1.3) (Furness, 1988) and recent range expansion has taken 

place away from the most southerly boundaries, in arctic Norway, Finland and 

Russia (Hamer, 2001). By virtue of their morphological and physiological 

adaptations for breeding in cold environments, Great Skuas breeding at southern 

range margins in the UK could experience thermal stress during breeding that 

could act to constrain breeding activities (Furness, 1988). UK breeding 

populations have expanded rapidly from a bottleneck population (~40 breeding 

pairs) in the early 1900s, resulting from persecution, (Furness, 1987) to over 

6,000 pairs, more than 2,000 of which nest at Foula, Shetland (Furness & 

Ratcliffe, 2004). However, there are still many areas south of their current 

distribution where appropriate food resources and suitable breeding habitat exist 

13 ˚C 
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and this also implies a climatic limitation of breeding latitude (Furness, 1988). 

During migration, though, Great Skuas encounter a wide range of climatic 

conditions and therefore should be less likely to be directly affected by climate. 

To date, the most regularly observed impacts of climate warming on high-

latitude seabirds have been through changes in food availability in response to 

shifts in the timing and extent of sea-ice (section 1.4). Great Skuas commonly 

breed in areas where the influence of sea-ice is negligible, as do many European 

seabird species. Over-winter survival of adult Great Skuas is high (between 89 

and 96 % for birds aged 7-22 yr) but influenced by conditions at breeding sites, 

being reduced during and after seasons characterized by poor food availability 

(Ratcliffe et al., 2002). Reductions in reproductive success during years of poor 

food availability are even clearer (Hamer et al., 1991). Being a top predator, 

however, any climatic effects on food availability that filter up from low trophic 

levels will be also be harder to detect, especially since adult diet appears very 

flexible (Votier et al., 2004). Additionally, breeding distributions may be slow to 

respond to climate because of high philopatry and low fecundity. These aspects 

of their ecology that may complicate the detection of climate-induced responses 

also make the Great Skua an ideal model species for which to determine 

responses to climatic change of general applicability for a wide range of marine 

predators. 

 

To understand the probable responses of Great Skuas to changing 

climates, the following questions need to be addressed. Firstly, prevailing heat 

stress conditions throughout the breeding range of Great Skuas need to be 
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quantified to determine whether or not this species regularly experiences thermal 

stresses during breeding. Chapter 2 develops a biophysical model, parameterized 

from results of field studies and available literature, to explore the temporal and 

spatial variation in heat stress experienced by breeding adults over the past 

decade.  

Secondly, the influence of thermal conditions on adult behaviour, activity 

budgets, nest site selection, and breeding success needs to be investigated. 

Chapter 3 examines the behavioural responses of Great Skuas to prevailing heat 

stress conditions at a colony in the south of their breeding range, employing both 

proven and novel field techniques, and focusing on freshwater bathing as a 

response to heat stress. Chapter 4 links behavioural responses to reproductive 

success, examining the influence of microclimate and breeding site in years of 

contrasting food availability and experimentally manipulated reproductive cost.  

Thirdly, it is important to examine responses to climate at larger scales. In 

Chapter 5, detailed models of the dispersal and spread of breeding colonies are 

constructed with data from fieldwork, long-term studies and the published 

literature, to assess the degree to which climate limits breeding distributions and 

the likely future spread of breeding colonies within the UK. This chapter aims to 

determine whether correlations between breeding distribution and air temperature 

result from mechanistic climatic limitations or from a lag in the spread of Great 

Skuas from small breeding populations in the early twentieth century.  

Fourthly, the extent to which current distributions of northern hemisphere 

skua species can be attributed to mechanistic limitations associated with climate 

requires investigation, as do the most probable mechanisms limiting distributions. 
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In addition, probable changes in species distributions and the potential for 

bioclimatic models developed for skuas to simulate the likely responses of other 

seabird species require further study. Chapter 6 employs response surface models 

to explore the most probable mechanistic relationships between prevailing 

climatic conditions and current distributions of skua species throughout Europe. 

These models are then used to simulate future breeding ranges under forecast 

climatic change.  

Finally, chapter 7 provides a general discussion, examining the most 

likely responses of Great Skuas to forecast climatic change and the possible 

consequences for other high-latitude seabirds and cold-adapted species.  
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Summary 

Great Skuas (Catharacta skua) are adapted to breed at low ambient temperatures 

and reproductive success may be directly constrained by overheating at breeding 

colonies. A biophysical model was developed using heat transfer equations to 

quantify positive energy balance (heat stress) at current and potential breeding 

colonies, and explore temporal variation in heat stress. The model predicted the 

upper threshold of the thermoneutral zone for adult Great Skuas to be reached at 

air temperatures of 10.6 °C and the critical limit, at which heat dissipation by 

maximal evaporative cooling is exceeded, to be 20.6 °C. Critical heat stress 

decreased with increasing colony latitude, although at all colonies this thermal 

limit was exceeded on only a few days each year. Heat stress was highest during 

the more energetically-costly incubation and mid-to-late chick-rearing stages, 

because metabolic heat production was the most important process contributing 

to heat stress. The southern limit of the breeding distribution of Great Skuas is 

associated with mean July temperatures of 13 °C, rather than the critical limit of 

20 °C, suggesting that trade-offs between breeding and thermoregulatory 

behaviour may occur if temperatures regularly exceed 13 °C. Under forecast 

climatic warming, most current Great Skua breeding colonies are unlikely to 

experience critical heat stress on a daily basis, even by 2080. Great Skuas 

breeding in arctic Russia or at any new colonies founded south of the current 

range margin, however, will probably need to employ thermoregulatory 

behaviours other than panting on a regular basis. 
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2.1  Introduction 

Climatic warming is predicted to be most extreme in arctic regions and mean air 

temperatures in some areas may increase by as much as 8 Celcius degrees (C°) by 

2100 (Houghton et al., 2001). Many species will be affected directly by changes 

in temperature regimes (McCarty, 2001; Bale et al., 2002) and there is growing 

evidence of changes in phenology (Root et al., 2003), distribution (Croxall, 

Trathan & Murphy, 2002) and size of breeding populations (Smith et al., 1999) 

for a diverse array of taxa. Ectothermic animals are often directly influenced in 

their activities by ambient temperatures (Cloudsley-Thompson, 1991) and may be 

expected to exhibit behavioural and/or physiological adjustments if they are to 

ameliorate the impacts of climatic warming. However, many long-lived 

homeotherms breeding at high latitudes are constrained in their ability to loose 

heat, because they possess adaptations for increased endogenous heat production 

and conservation (Gabrielsen, Mehlum & Karlsen, 1988). Skuas (Family 

Stercorariidae) are high-latitude seabirds capable of high levels of activity at low 

temperatures because of their high basal metabolic rate and body temperature 

(Bryant & Furness, 1995), thick skutes on their legs, and heavy insulative 

plumage (Furness, 1987, 1988). Effective temperatures can often exceed 30 ºC in 

the Arctic summer (Klaassen, 1994) and this could lead to difficulties in heat 

dissipation for adults at breeding colonies during periods of warm weather, with 

negative consequences for feeding and guarding of chicks, and hence for chick 

growth and survival (Furness, 1988). The rapid temperature rise predicted in 
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arctic regions over the next 100 years (Houghton et al., 2001) may therefore 

require skuas and other high-latitude species to make behavioural and 

physiological adjustments if they are to maintain their current breeding 

distributions. 

 For homeothermic animals, external thermal exchange (via convection, 

conduction, radiation and evaporation) is balanced against metabolic heat 

production to maintain more-or-less constant body temperature (McNab, 2002). 

The range of temperatures under which this balance is maintained without active 

thermoregulation is known as the thermoneutral zone (Monteith & Unsworth, 

1990). As ambient temperature rises above this threshold, further heat loss occurs 

via evaporative cooling or behavioural responses such as ptiloerection that reduce 

radiative heat gain within thick plumages or alter convective heat loss (McNab, 

2002). Conduction from the feet is also thought to be of considerable importance 

for heat-loss in marine birds (Lustick, 1984) and, because Great Skuas possess 

insulative scales, or skutes, on their legs in addition to a dense plumage (Furness, 

1987), the webs of the feet should be important sites for heat exchange. At 

extreme temperatures or high vapour pressures, evaporative cooling cannot be 

increased further and birds undergo hyperthermia, increasing their body 

temperature (Monteith & Unsworth, 1990), although larger birds can maintain 

low levels of heat storage temporarily (Lustick, 1984). For Great Skuas, high 

levels of territorial attendance are necessary to guard chicks against predation by 

conspecifics (Catry & Furness, 1999). Adults breed on low-lying moorland or 

tundra vegetation (Furness, 1987) and incubation and chick-rearing restricts their 

ability to thermoregulate by seeking shade or selecting different microhabitats.  
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 The breeding range of Great Skuas is expanding rapidly at its eastern 

margin in arctic Russia, but not at its southern margin in the UK (Hamer, 2001). 

To examine whether or not this difference is related to differential exposure to 

heat stress across the breeding range, a biophysical model (O'Conner & Spotila, 

1992) was developed to quantify the upper limits of the thermoneutral zone and 

the threshold temperature at which the capacity for evaporative cooling was 

exceeded. Biophysical models relate thermal inputs, such as metabolic heat 

production, to heat transfer mechanisms such as convection and conduction 

(O'Conner & Spotila, 1992) and reveal the conditions under which animals may 

be constrained by their thermal environment. Similar models have been used for 

exploring the ecology of poikilothermic animals (Spotila, 1972; Tracy, 1982; 

Casey, 1992) but only rarely for homeotherms (e.g. McCafferty et al. (2001)). 

This is the first time that such a model has been constructed for a high-latitude 

seabird. Using outputs from the model, this chapter examines seasonal, yearly 

and latitudinal variation in heat stress exposure, the relative importance of 

environment and morphology in determining heat stress intensity and the possible 

link between heat stress and the reproductive success of Great Skuas.  
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2.2 Methods  

2.2.1 Data retrieval and formatting 

 Environmental data (maximum global radiation, maximum air 

temperature and grass temperatures, mean wet and dry bulb temperatures, mean 

proportional cloud cover and base-height and mean wind speed) were retrieved 

for 15 potential or actual Great Skua breeding sites from the British Atmospheric 

Data Centre’s Meteorological Office Station (MET) and European Synoptic (ES) 

databases for years of near-complete data coverage. Potential breeding sites at 

latitudes outside the current breeding range were chosen to explore whether heat 

stress conditions outside the current Great Skua breeding range were very 

different from those in areas in which this species breeds. Sites were chosen that 

had adequate data coverage and were either large colonies for other seabird 

species (Isles of Scilly, Azores), or areas for which there were occasional 

breeding records for Great Skuas (Northern Ireland). Table 2.1 details the 

locations, years of coverage and datasets used in all modeling, while their 

geographical locations are shown in Figure 2.1. Data for Spitsbergen, Svalbard, 

were retrieved from the Stiftung Alfred-Wegener-Institut für Polar und 

Meeresforschung in der Helmholtz-Gemeinshaft (AWI). If a variable was 

unavailable at a specific colony, data from the nearest station were used, except 

in the following cases: global radiation was unavailable for ES data and was 

calculated from latitude and date (see Appendix A1.1); grass temperature (Tgrs)  
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Table 2.1 Latitude, longitude, breeding incidence, data span and data source for 
locations modeled. Breeding incidence: a= confirmed breeding, ? = possible 
breeding (known colony within 100 km), r = confirmed non-breeding (source 
Snow and Perrins (1998)). ?r= recent breeding record within 50 km (R. W. 
Furness, pers. com.). Data sources: see text.   

Location Latitude Longitude Recorded 
Breeding 

Data span 
(years) 

Source

Spitsbergen (Svalbard) 78.900 N 11.900 E a 1993 – 2002 AWI 

Bjornoya (Bear Island) 74.310 N 19.010 E a 1990 – 1996 ES 

Jan Mayen (Norway) 70.560 N 8.400 W a 1990 – 1996 ES 

Murmansk (Russia) 68.590 N 33.070 E ? 1990 – 1996 ES 

Sojna (Russia) 67.530 N 44.080 E ? 1990 – 1996 ES 

Bodo-vi (Norway) 67.160 N 14.220 E ? 1990 – 1996 ES 

Keflavikurflugvollur 
(Iceland) 

63.580 N 22.360 W a 1990 – 1996 ES 

Thorshaven  (Faeroe 
Islands) 

62.010 N 6.460 W a 1990 – 1996 ES 

Foula (Shetland, UK) 60.154 N 2.072 W a 1989 – 2002 MET 

Fair Isle (Shetland, UK) 59.526 N 1.626 W a 1989 – 2002 MET 

Hoy (Orkney, UK) 58.289 N 2.898 W a 1989 – 1999 MET 

Handa (Sutherland, UK) 58.289 N 5.070 W a 1989 – 1999 MET 

St. Kilda (Western Isles, 
UK) 

57.811 N 8.563 W a 1989 – 1999 MET 

County Fermanagh (N. 
Ireland, UK) 

54.400 N 7.650 W ?r 1989 – 1999 MET 

Isles of Scilly (UK) 49.913 N 6.295 W r 1989 – 1999 MET 

Azores (Portugal) 38.460 N 27.060 W r 1990 – 1996 ES 
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 Figure 2.1 Geographical locations of the 16 sites for which seasonal heat stress of breeding adult Great Skuas was modeled. Only the Isles of 
Scilly and Azores do not support skua breeding colonies (Snow & Perrins, 1998). The 13 °C mean July isotherm (1900) is shown to illustrate the 
close correspondence with the realised breeding range (meteorological data are from Bartholomew & Herbertson (1899)). 
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was unavailable for ES and AWI data, and was approximated by regression with 

air temperature (Ta) (F1,3428 = 858.3, R2 = 0.2, P < 0.001). This regression 

equation, derived from 14 years of data at Fair Isle (the location with the longest 

grass temperature time series), was: 

Tgrs = 2.00 (SE ± 0.18) + 0.29 (SE ± 0.01) Ta             Eqn 2.1 

 Wet and Dry Bulb temperatures were converted into vapour pressure (e), 

using the following equation, from Monteith and Unsworth (1990):  

e = γ(TD -TW)                      Eqn 2.2  

where, γ = 0.67 (psychometer constant), TD and TW are dry and wet-bulb 

temperatures, respectively. Air temperature, vapour pressure, wind speed were 

converted from hourly measurements into daily (09:00-21:00 BST) means. 

Global radiation was converted into a single daily maximum. 

2.2.2 Biophysical model 

The model is a thermal energy balance equation for heat-exchange between an 

animal and its environment (O'Conner & Spotila, 1992) (Figure 2.2, eqn 2.3). The 

seven components sum to give an energy surplus or deficit. When energy balance 

was positive (surplus), animals were considered to be heat stressed. 

  The model was run to provide a single daily value for maximum potential 

heat stress, calculated as energy balance per second (W bird-1; watts per bird).  

Two versions of the model were used, differing only in the equations used to 
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Figure 2.2 Structure of the biophysical model. The balance equation (2.3) comprises seven separate equations representing processes of heat transfer 
between a skua and its environment. The two models use different evaporative cooling scenarios: either passive (PM) (2.8a) or maximal (MM) heat 
loss (2.8b) (panting). Values for metabolic heat generation are taken from the literature (Table 2.3). 

 

Passive evaporative loss: 

λE = 0.25(E) + 0.75(E(VPsat - VPa)/( VPsat - VPstd)) (4.6a)

Conduction: 

G = Kf Ag((Twebs – Tsurf)/df)   (4.7)

Heat-stress = (M   +  Qs  +  Rin)  -  (C   + Rout   + λE   + G) (4.1) 

Solar radiation: 

Qs = A vfs S (1-albedo)   (4.2)

Incoming long-wave radiation: 

Rin = ((1 – TCA)( σ ∈sky Ta
4)  

+ TCA( σ ∈sky* Tcb
4)) A     (4.3) 

Convection: 

C = Ain hc (Tb – Tcoat)   (4.4) 
Outgoing long-wave 

radiation: 

Rout = σ (Tcoat
4)∈A   (4.5)

or 

Metabolic heat generation (M):

empirical estimates  

Maximum evaporative loss: 

λEmax = (258.6W0.8)/60)(-2.3727 Ta + 2501)   (4.6b) 

Legend: 
σ = Stefan-Boltzmann constant 
∈ = emissivity of skua 
∈sky = emissivity of clear sky 
∈sky* = emissivity cloudy sky 
A = skua surface area 
Ag = surface area of skua webs 
Ain = skua surface area w/o plumage
df = skin thickness of webs 
E = evaporative cooling at Ta  
hc = convection coefficient 
Kf = conductivity of skin 
S = global radiation 

 Ta = air temperature 
Tb = body temperature 
Tcb = cloud-base temperature 
Tcoat = coat surface temperature 
Twebs = surface temperature of webs
Tsurf = ground surface temperature 
TCA = total cloud amount 
vfs = view factor 
VPa = vapour pressure of air 
VPsat = saturated vapour pressure  
VPstd = standard vapour pressure  
W = skua body mass 

(2.6)

(2.8b) 

) (2.8a) 

(2.9)

(2.3)

(2.5) 
(2.4)

(2.7)
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Table 2.2 Species-specific (Great Skua) parameters of the model: values, units 
and source.  

Parameter Value Units Source 

mass (W) 1600 g Furness (1987) 

radius with plumage 0.1987 m empirical 

surface area 0.125 m2 empirical 

Body temperature 
(Tb) 

42.0 °C Furness (1988) 

Plumage depth 0.026 m empirical 

Plumage density 15327.3 gm-3 Furness (1988) and empirical 

Albedo 0.34 (estimated) none Monteith & Unsworth (1990) 

Thermal 
conductivity~wind 
exponent (c) 

0.45 (estimated) none Bakken (1990) 

Thermal 
conductivity of 
webbing between 
toes (webs) 

0.14 (for leather) Wm-1°C-1 www.hukseflux.com/thermal
%20conductivity/thermal.ht
m 

Temperature of webs 
(Tweb) 

34.0 (estimated) °C Wolf & Walsberg (1996) 

Area of web 
conductive surface 
(Ag) 

0.00296 m Empirical 

Thickness of webs 
(df) 

0.0015 m Empirical 

 

predict evaporative heat loss. The “passive” model (PM) quantified the upper 

threshold of the thermoneutral zone (when evaporative cooling was a passive 

process (Figure 2.2, eqn 2.8a)) and the “maximal” model (MM) determined the 

critical threshold over which the capacity to loose heat by evaporative cooling at 

a maximal rate was exceeded (Figure 2.2, eqn 2.8b). For both models, conductive 
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heat loss was assumed to be maximised and radiative and convective heat 

exchange were passive processes not influenced by adjustments in posture or 

orientation. Both models were run for dates between March 1st and October 31st 

in each breeding location (to span the period in which Great Skuas are in the 

vicinity of their breeding sites) for each year of data (Table 2.1). All species-

specific parameter values used in the model are shown in Table 2.2, other non-

specific constants and thermal properties are given in Appendix A1.2, Table A.1. 

Table 2.3 Estimates of field metabolic rates (FMR) of adult Great Skuas and 
duration of the six stages in the breeding cycle. 3.5 × BMR is the average FMR 
estimate of Phillips, Thompson & Hamer, (1999), 4.1 × BMR reflects a 0.6 
increase from incubation activities (Grant, 1984), 5.0 × BMR has been recorded 
for Great Skuas in poor foraging conditions (Hamer, Furness & Caldow, 1991) 
and 4.0 × BMR is an estimate based on these values. 

Breeding stage Length 
(days) 

FMR 
(multiple 
of BMR) 

FMR    
(W bird-1) 

Components of FMR 

Pre-breeding varies   
(eqn 2.10) 

3.5 21.79 standard, courtship, 
territoriality 

Incubation 29 2.1 25.53 standard, incubation 

Early chick-
rearing 

13 3.5 21.79 standard,  provisioning of 
small chicks 

Mid chick-
rearing 

22 5.0 31.13 standard, provisioning of 
large chicks 

Late-chick-
rearing 

varies   
(eqn 2.11) 

5.0 31.13 standard, provisioning of 
large chicks 

Post-breeding 14 4.0 24.90 standard, defending non-
independent fledglings 
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Values for metabolic heat generation (M) were field metabolic rates (FMR) 

estimated for adult Great Skuas breeding at Foula, Shetland (Table 2.3). 

Durations of the six breeding stages were taken from Hamer (2001) or calculated 

from predicted modal laying Julian dates (Ld) and length of chick development 

(Lgrowth), both of which increase with latitude (φ) (Young, 1977; Hamer, 2001):  

Ld = 1.8954 φ + 24.52                   Eqn 2.10                             

Lgrowth = 0.5556 φ - 18.33              Eqn 2.11 

where, Lgrowth is the length of the late chick-growth period in days. Equations 

2.10 and 2.11 are derived from regressions with latitude using Great and Arctic 

Skua data from Hamer (2001) and Furness (1987).  

 Energy input from short-wave solar radiation (Qs), incorporating both 

direct and diffuse radiation (Figure 2.2, eqn. 2.4), depended on global radiation 

(S), Great Skua surface area, plumage albedo, depth and density and the 

proportion of the bird directly exposed to the sun (vfs) (O'Conner & Spotila, 

1992). To simplify calculations, the animal was modeled as a sphere of surface 

area equal to that of an adult Great Skua, following O'Conner & Spotila (1992). 

Despite this false assumption, modeling the effect of shape and air flow on heat 

loss would unnecessarily complicate a model developed to examine seasonal and 

regional variation in relative heat stress, that could not include small scale 

phenomena such as wind direction and posture because of data limitations.  

 Incoming long-wave radiation (Rin) (Figure 2.2, eqn. 2.5) was calculated 

from air temperature (Ta), cloud-base temperature (Tcb), emissivity of the sky in 
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clear (∈sky) and cloudy (∈sky*) conditions, and the proportion of cloud cover 

(TCA) (Monteith & Unsworth, 1990). For simplification, three levels of cloud 

were identified: high-level cloud (cirrus) had cloud base height (CBH) > 7009 m 

and ∈sky* = 0.7, medium-level cloud (stratus) had CBH = 1980-7009 m and ∈sky* 

= 1.0, and low-level cloud (cumulus) had CBH ≤ 1980 m and ∈sky* = 1.0 (Ruffner 

& Bair, 1984). Where fog was recorded, or if Ta was below dew point 

temperature, ∈sky* = 1.0 and Tcb = Ta, otherwise the dry adiabatic lapse rate was 

used to determine cloud-base temperature:  

Tcb = -0.00984 CBH + Ta            Eqn 2.12 (Monteith & Unsworth, 1990) 

 Convective energy transfer (C) (Figure 2.2, eqn. 2.6) was derived from 

the temperature gradient between the skin surface (Tb) and plumage surface 

(Tcoat), the skin surface area (Ain) and the convection coefficient (hc): 

hc = 6.77 × V c         Eqn 2.13 (adapted from O'Conner and Spotila (1992)) 

where, V is wind speed and c is the exponent describing the dependence of 

thermal conductivity upon wind speed (e.g. Bakken (1990)). 

 Outgoing long-wave radiation (Rout) (Figure 2.2, Eqn 2.7) was calculated 

as a function of plumage surface temperature (Tcoat) and several constants 

(Monteith & Unsworth, 1990). Tcoat was estimated as air temperature (Ta) plus 

heat input from solar radiation (Qs) : 

Tcoat = Ta + (Qs / (mc × Cp))               Eqn 2.14 
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where, mc is the mass of the plumage surface that absorbs solar radiation and Cp 

is the specific heat capacity of feathers. 

 Passive evaporative heat loss (λE) (Figure 2.2, eqn. 2.8a) was calculated 

as a linear decrease in energy transfer via evaporation (E) with decreasing 

difference in vapour pressure between the respiratory surface (VPsat) and the air 

(VPa) (respiratory loss) but maintaining a constant 25 : 75 % ratio of cutaneous to 

respiratory evaporative loss (Monteith & Unsworth, 1990). E was derived from 

an exponential relationship with air temperature (Ta) using data from Calder and 

King (1974) and Dawson & Hudson (1970): 

E = 6.0×10-7 (Ta 
2.4155) × (-2.3727 Ta + 2501)          Eqn 2.15 

where E = 0 at Ta = 0 °C, as water freezes at this temperature. This equation 

incorporated the elevated capacity for heat loss allowed Great Skuas by gular 

fluttering (rapid fluttering of the gular area of the throat)since the equations of 

Calder and King (1974) were derived from birds that gular flutter (frogmouth, 

roadrunner, pigeon & ostrich). 

 Maximal evaporative heat loss (λEmax) (Figure 2.2, eqn. 2.8b) was 

calculated from an allometric relationship with water-loss (Calder & King, 1974) 

combined with changes in the latent heat of evaporation at different air 

temperatures (Monteith & Unsworth, 1990). 

 Conductive heat loss to the ground (G) (Figure 2.2, eqn. 2.9), thought to 

be of considerable importance in marine birds (Lustick, 1984), was a function of 

the conductivity (Kf), area (Ag) and thickness of the webs on the feet (df), and the 

temperature difference with the ground (O'Conner & Spotila, 1992). In the 
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absence of an empirical value (for incomplete time-series), ground surface 

temperature (Tsurf) was estimated from eqn. 2.14, substituting the appropriate 

values for soil (Appendix A1.2). Conduction was assumed to occur only through 

the skin of the webs because skuas have skutes on their legs to minimise heat loss 

(Furness, 1987), and to be maximized by maintaining the webs at a high 

temperature (Tweb), estimated as 34 °C (Wolf & Walsberg, 1996).  

2.2.3 Model sensitivity, analysis and accuracy 

Sensitivity analysis of the maximal version of the biophysical model 

(MM) was carried out for environmental variables and fixed parameters (Table 

2.4), recording the change in the output resulting from independently raising each 

variable or parameter by 1 % of its median value (following Phillips et al., 1999). 

To quantify changes in model output for more extreme environments, 

environmental variables were independently adjusted to their upper and lower 

quartile values and parameters were either increased by 5 %, or to extreme values 

taken from the literature. 

The accuracy of the model was assessed by linear regression of predicted 

energy balance (for model runs without metabolic heat production (Table 2.3) or 

evaporative cooling (eqns 2.8a & b)) with operative temperatures calculated from 

data for Foula, Shetland, between May and August of 2002 and 2003. Operative 

temperature is the temperature achieved by a blackbody object under prevailing 

environmental conditions and does not incorporate metabolic heat production or 

evaporative heat loss (Bakken, 1992). Operative temperatures were calculated 

from empirical measurements at the colony using a 75 mm diameter water-filled 
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copper sphere covered with a feathered Great Skua pelage. Internal temperatures 

approximated operative temperature (Bakken, 1992), providing an approximation 

of thermal loading but not accounting for metabolic heat production or 

evaporative cooling (Walsberg & Weathers, 1986). Regression analysis was used 

to develop an equation to predict operative temperature from air temperature 

recorded simultaneously (full details in Chapter 3, section 3.2.1). 

2.2.4 Thermal thresholds for the Great Skua 

The operative temperatures at which Great Skuas were predicted to exhibit heat 

stress for both passive and maximal evaporative cooling models were calculated 

from linear regression of operative temperatures measured empirically at Foula in 

2002 and 2003 with output from both models (see section 2.2.3). Operative 

temperature thresholds, above which birds were predicted to experience heat 

stress (positive energy balance), occurred where regression lines intercepted the 

x-axis at 0.0 W bird-1 energy balance. Since operative temperature spheres have 

higher specific heat capacity (Cp) than air (most of the sphere volume was water: 

Cp = 4.184 Jg-1K-1, whereas Cp for air ~ 1.0 Jg-1K-1), these threshold values were 

converted into air temperature equivalents using the regression equation 

determined in Chapter 3 (section 3.2.1). 

2.2.5 Temporal variation in heat stress and its relation to the North 

Atlantic Oscillation and reproductive success of Great Skuas 

Generalized linear models (GLMs) with normal errors and identity link functions, 

appropriate for normally-distributed response data (Nelder & Wedderburn, 1972), 
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were fitted for passive and maximal models to examine differences in energy 

balance between breeding stages (Table 2.3), years and locations (including these 

as covariate factors in the model). Variation in climatic indices in north-west 

Europe, such as air and sea temperatures, is know to correlate with changes in the 

North Atlantic Oscillation (Ottersen et al., 2001), calculated as the difference in 

atmospheric pressure between Azores and Iceland in the North Atlantic 

Oscillation Index (NAOI) (Hurrell, 1995). GLMs with normal errors and identity 

link functions were also fitted to determine if mean energy balance within each 

breeding stage for each year from 1990 to 1996 was related to corresponding 

yearly NAOI values (retrieved from http://www.cgd.ucar.edu/~jhurrell 

/nao.stat.winter.html), controlling for variation attributable to location by 

including this as a covariate factor. Both of these GLMs were repeated replacing 

mean energy balance with the proportion of days in which energy balance was 

positive during a stage as the dependent variable, and using binomial errors and 

logit-link functions accordingly. 

 A GLM was also fitted to determine if the mean productivity of Great 

Skuas at Foula, Fair Isle and Hoy (mean number of chicks fledged per nest) was 

related to either mean energy balance throughout incubation, mid and late chick-

rearing stages or annual NAOI values (location and Shetland sandeel abundance 

included as covariate factors). Sandeel abundance data from Shetland was used to 

account for the strong relationship between sandeel availability and Great Skua 

productivity (Hamer et al. 1991) because it was the most available archive in the 

region, even though birds from Hoy probably commonly exploit more local 

sandeel stocks. This analysis was restricted to Hoy, Foula and Fair Isle because 
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productivity data were only available from these sites (annual data collected from 

>100 nests in each location between 1989 and 2002, (R.W.Furness unpublished 

data)) and Shetland sandeel abundance was more likely to be related to food 

availability at these colonies. Also, this GLM was restricted to incubation, mid 

and late chick-rearing stages since results of prior analyses (section 2.3.3) 

indicated that heat stress was most probable within these stages. Sandeel 

abundance was the total number of 0-group sandeels in the previous year (since 

Great Skuas feed mainly on 1+ year groups (Hamer et al. 1991)) estimated for the 

whole of Shetland, taken from ICES (2002) and Oro & Furness (2002). This 

GLM was repeated replacing mean energy balance with proportion of days of 

positive energy balance during incubation and mid and late chick-rearing.   

2.2.6 Latitudinal trends in heat stress 

 Seven-year means (± SD) for annual energy balance and for the 

proportion of days in a year when energy balance was positive were calculated 

for each colony, using data for years 1990 to 1996, available at all locations 

except Spitsbergen (data from 1993 to 1999 were used for this colony). 

Latitudinal trends in these values were examined by linear regression with colony 

latitude. 

 All statistical analyses were undertaken using Genstat (Genstat, 1993) and 

SPSS (Norusis, 2000) statistical software. 
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2.3 Results 

2.3.1 Model performance and sensitivity 

The model was most sensitive to changes in bird mass, radius, plumage density, 

web skin temperature and thickness, and specific heat capacity of feathers (Table 

2.4). Different components of size had contrasting effects on modeled heat stress: 

a larger radius increased the surface area available for absorption of solar 

radiation and raised heat stress (positive energy balance) whereas a greater mass 

increased maximal evaporation, reducing heat stress. Elevated body temperature 

(Tb) and temperature of webs (Twebs) raised the temperature difference between 

the animal and its environment, increasing convective and conductive heat loss, 

respectively. Increased thickness of the webs inhibited conductive exchange with 

the ground leading to increased heat stress. Increasing plumage density and 

specific heat capacity of feathers (Cp) caused reductions in the heat lost by long-

wave radiation, increasing heat stress. 

 The model was less sensitive to percentile changes in environmental 

variables than to changes in the fixed parameters (Table 2.4). Given the wide 

range of input values for environmental variables at all colonies, however, their 

overall effect on energy balance was considerable. Running the model using 

upper and lower quartile values for each variable separately resulted in a change 

of 1.4 - 7.4 % in estimated energy balance (except for vapour pressure, that had a 

negligible effect on heat-balance) (Table 2.4). Increasing wind speed increased 

convective heat loss and reduced heat stress. Increasing air and ground 
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Table 2.4 Sensitivity of biophysical model to changes in environmental variables and 
parameter values: % change in output of maximal model when variables or parameters 
are increased by 1 or 5 % above median or fixed values and when changed to upper or 
lower quartile values or extremes reported in the literature (mass, Dunning (1993); Tb, 
Furness (1988); c, Bakken (1990); Tweb, empirical field data (unpublished)). 

                Sensitivity to 
moderate values 

(% change in 
output for given 
change in value) 

Sensitivity to 
quartile values  

(% change in 
output for given 
change in value) 

Sensitivity to 
extreme values 

Variable / 
Parameter 

Median or 
fixed value 1 %  5 %  lower 

quartile 
upper 
quartile 

Extreme 
value 

% 
change 

Mass (g) 1600.0 -1.22 . . . 1300.0 +23.40 

Radius (m) 0.1258 +0.97 +4.94 . .  . 

Tb (°C)  42.0 -0.79 . . . 41.5 
40.0 

+0.94 
+3.78 

Plumage 
density (gm-3) 16093.7 +0.59 +2.84 . . . .

Plumage depth 
(m) 0.0273 <0.01 <0.01 . . . .

albedo 0.357 +0.06 +0.30 . . . .

c (conductivity) 0.450 -0.22 . . . 0.540 -4.58 

foot length (m) 0.0588 <0.00 <0.00 . .  .

foot height (m) 0.0609 <0.00 <0.00 . .  .

Tweb (°C) 34.0 -1.01 . . . 
15.6 
23.6 
42.0 

+54.76 
+30.95     
- 23.81 

web thickness 
(m) 0.0016 +0.87 +4.19 . . . . 

Cp (Jg-1K-1) 1.785 +0.59 +2.84 . . . .

Qs (Wm-2) 102.4 -0.06 . 2.20 -3.57 . .

Ta (°C) 8.19 +0.11 . -2.86 3.45 . .

VPa (kPa) 1.03 <0.01 . <0.01 <0.01 . .

DewPT (°C) 4.92 <0.01 . <0.01 1.45 . .

Tgrass (°C) 4.46 +0.11 . -4.38 4.20 . .

Wind speed 
(ms-1) 5.06 -0.21 .    7.10 -7.42 . .

TCA 
(proportion) 0.72 -0.01 .    

0.42     -0.15 . .

CBH (m) 196.9 -0.01 .    
0.60 -1.48   
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Figure 2.3 Mean values (± 1 SD) for main components of heat balance 
(parameters of the balance equation, eqn. 2.3), calculated using all output from 
every run of the biophysical model. Negative values indicate a mean cooling 
effect. Rnet is the sum of Qs, Rin and Rout. 

temperatures reduced the temperature difference between the animal and its 

environment, restricting convective and conductive heat loss, respectively. 

Elevating solar radiation raised plumage temperatures, increasing the temperature 

difference with the air, and so increasing convective and radiative heat loss. 

Increasing dew point temperature (DewPT) increased estimated cloud 

temperature and the tendency for low-level condensation, leading to elevated heat 
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stress via increased incoming radiation. Altering vapour pressure of the air (VPa) 

and cloud cover (TCA), however had little effect on heat stress.  

 The contribution of seven main components of the energy balance 

equation (Figure 2.2, eqn 2.3) to overall energy balance varied considerably 

(Figure 2.3). Although values for incoming and outgoing long-wave radiation 

were large, when combined their overall contribution to energy balance (Rnet) was 

less than that of metabolic heat production, conduction and convection. 

Evaporative cooling was only important in the biophysical model when modeled 

at a maximal rate (Figure 2.3).  

 Figure 2.4 Accuracy of the biophysical model: energy balance predicted by the 
model (without metabolic heat production or evaporative cooling) on days of 
different maximum daily operative temperature (determined from empirical data). 
The regression equation shown (y = 0.93x - 32.6) explained 40 % of the variance 
in modeled energy balance (F1,152 = 100.5, R2 = 0.40, P <0.001). 
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 Modeled output, without metabolic heat production or evaporative 

cooling, for Foula in 2002 and 2003 was strongly correlated with operative 

temperature predicted from measured environmental data at this site in these 

years (Linear Regression: F1,152 = 100.5, R2 = 0.40, P <0.001, Figure 2.4). This 

linear relationship indicates that even though energy balance was the estimated 

maximum rate of energy transfer and did not contain the information about 

duration of exposure that was inherent in maximum temperatures measured 

empirically by operative temperature spheres, temporal variation in both 

measures was determined by the same heat-transfer mechanisms. This illustrates 

that output from the biophysical model faithfully replicated variation in potential 

heat stress conditions measured in the field. 

2.3.2  Thermal thresholds of the Great Skua 

The operative temperature thresholds above which energy balance was positive 

were 12.1 °C for the passive model (PM) (upper limit of the thermoneutral zone) 

and 24.0 °C for the maximal model (MM) (temperature at which capacity for heat 

loss by evaporative cooling is exceeded). The equivalent air temperatures at 

which these thresholds were reached were 10.6 and 20.6 °C, respectively, derived 

using an equation from the regression of simultaneous operative and air 

temperatures measurements made at Foula. 

2.3.3 Temporal variation in heat stress and its relation to the North 

Atlantic Oscillation and reproductive success of Great Skuas 

Modeled energy balance for Great Skuas differed significantly between stages of 

the breeding season for both passive (PM) (GLM: F5, 37205 = 12399.3, P < 0.001) 
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and maximal models (MM) (GLM: F5, 37205 = 12608.4, P < 0.001). In both cases, 

energy balance was higher during incubation, and in mid- and late-chick rearing 

than at other stages (Figure 2.5a). The proportion of days on which energy 

balance was positive was also significantly higher in mid- and late-chick rearing 

and incubation stages (PM, GLM: F5,888 = 1941.5, P < 0.001; Figure 2.5b). There 

was significant annual variation in energy balance, with low levels of heat stress 

in 1989 and 2000-2002, and greater heat stress in the early and late 1990s, 

although the pattern of annual variation differed for the different breeding stages 

(Figure 2.6a). The proportion of days on which energy balance was positive was 

highest in the late 1990s for all breeding stages except incubation (GLMs,  
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Figure 2.5 (a) Mean (± 1 SD) energy balance and (b) percentage of days on 
which energy balance was positive in the six breeding stages for both models 
over all locations and years combined. Standard deviations for % days of the 
maximal model were 0.0, 2.3, 0.0, 9.2, 7.9 and 0.5 % for the breeding stages in 
order shown, but omitted for clarity. Formal statistics were not available for MM 
because the predominance of zero values prevented convergence of maximum-
likelihood estimates during GLM parameterisation. 
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Figure 2.6 (a) Mean (± 1 SD) energy balance and (b) % days of positive energy 
balance for the maximal model (MM) within incubation, mid and late chick-
rearing stages for all years. Differences in mean energy balance were significant 
in GLMs between years (MM: F13, 37197  = 32.7, P < 0.001; PM: F13,31797 = 36.3, P < 
0.001) and stages. Formal statistics were not available for % days from the MM 
(see Figure 2.5). 

stage*year interaction, PM: F65,37145 = 5.2, P < 0.001; MM: F65,37145 = 4.4, P < 

0.001;  Figure 2.6b). Mean energy balance from both models was negatively 

correlated with the North Atlantic Oscillation Index (NAOI) (GLMs, PM: F1, 892 
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= 6.96, P < 0.01; MM: F1, 892 = 5.47, P < 0.05). The proportion of days on which 

energy balance was positive also showed a negative correlation with NAOI 

(GLMs, PM: F1, 892 = 59.6, P < 0.001). Mean productivity of Great Skuas (chicks 

fledged per nest) at Hoy, Fair Isle and Foula, however, was not related to mean 

energy balance (GLMs, PM: F1, 37 = 0.02, P = 0.89; MM: F1, 37 = 0.00, P = 0.95), 

the proportion of days on which balance was positive (GLMs, PM: F1, 37 = 0.10, P 

= 0.75; MM: F1, 37 = 0.27, P = 0.60), or NAOI (GLMs, PM: F1, 37 = 0.04, P = 

0.85; MM: F1, 37 = 0.03, P = 0.87).  

2.3.4 Latitudinal trends in heat stress 

Table 2.5  Mean energy values (± SD) for main parameters of heat transfer at sites 
of extreme latitude and absolute and percentage difference between these 
latitudes. For each parameter, means across all 16 study sites are for comparison. 

 Mean from 
all 16 sites 

Azores       
(38.5 ˚N)   

Mean 

Spitsbergen 
(78.9˚N) 

Mean 

Parameter change 
from 38.5 to 78.9° 

latitude 
Parameter  (Wm-2) (Wm-2) (Wm-2) (Wm-2) % 

Metabolic heat 
production (M) 23.9 (± 3.3) 24.2 (± 2.8) 23.4 (± 3.1) -0.8 -3.3 

Convection (C) -7.0 (± 2.9) -1.9 (±2.5) -8.3 (± 3.3) -6.4 -92.0 

Passive evaporative 
loss (λE) -0.4 (± 0.2) -1.8 (± 0.6) 0.0 (± 0.0) 1.8 468.8 

Maximal evaporative 
loss (λEmax) 

-15.6 (± 0.1) -15.4 (± 0.1) -15.7 (± 0.1) -0.3 -2.0 

Conduction (G) -8.6 (± 1.6) -7.7 (± 1.2) -9.6 (± 1.8) -1.9 -21.8 

Solar radiation (Qs) 5.8 (± 39) 11.2 (± 6.4) 3.6 (± 3.2) -7.6 -132.0 

Incoming long-wave 
radiation (RIN) 68.4 (± 4.8) 80.8 (± 3.7) 60.4 (± 5.4) -20.4 -29.8 

Outgoing long-wave 
radiation (ROUT) -79.0 (± 8.7) -101.5 (± 14.1) -65.4 (± 7.8) 36.1 45.6 

NET radiative flux 
(Rnet) 

-4.9 (± 2.9) -9.5 (± 5.9) -1.4 (± 1.3) 8.1 165.5 
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Mean seven-year energy balance declined significantly with increasing latitude 

when evaporative cooling was modeled at a maximum rate but did not show any  

latitudinal trend when evaporative cooling was passive (Figure 2.7a). The small 

but significant decline in energy balance with latitude was due mainly to higher  

Figure 2.7 Seven year (a) mean (± SD) energy balance for passive evaporative 
model (open squares) and maximal model (black diamonds), and (b) number of 
days in which energy balance was positive per year (maximal model). Equations, 
R2 and significance of linear regressions are given. 
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conductive and convective energy losses at high latitudes (Table 2.5), since these 

contribute the most to mean energy balance (section 2.3.1). Energy lost by 

passive evaporative cooling also declined significantly with latitude (Linear 

Regression: y = 0.044x, R2 = 0.86, P < 0.001) reducing overall energy balance at 

lower latitudes in the passive model and removing the latitudinal trend observed 

in output from the maximal model. The number of days in which energy was 

positive also showed no significant latitudinal variation (Linear Regression: F1,14 

= 3.2, P = 0.09; Figure 2.7b). 
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2.4 Discussion 

2.4.1 Temporal variation in exposure of breeding Great Skuas to heat 

stress 

The biophysical model constructed produced daily estimates of positive energy 

balance (heat stress) for individual adult Great Skuas at actual and potential 

colonies both within and outside the current breeding range. Similar models have 

been used successfully for exploring the ecology of poikilotherms (Spotila, 1972; 

Tracy, 1982; Casey, 1992) but only rarely for homeotherms (e.g. McCafferty et 

al. (2001)). The model indicated that, for Great Skuas, the most influential 

processes determining heat stress were metabolic heat production, maximal 

evaporative heat loss (panting/gullar fluttering), conduction and convection. 

These in turn were influenced by environmental variables, particularly convective 

heat loss that was higher at high wind speeds and under intense solar radiation 

(due to increased temperature of the insulating plumage surface) but inhibited at 

high air temperatures. Conductive heat loss was reduced when ground 

temperatures increased, although the ability of birds to alter the temperature of 

their feet was not included in the model and may be very important for marine 

birds (Lustick, 1984), especially given the sensitivity of the model to changes in 

this parameter (Table 2.4) 

 Heat stress (positive energy balance) was highest during mid-to-late chick 

rearing (>12 day old chicks) and incubation. This resulted from a combination of 

increased metabolic rate from elevated adult activity during these stages 
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(maintaining eggs at incubation temperature (Grant, 1984) or provisioning large 

chicks (Furness, 1988)) and the high mid-summer temperatures that occurred 

concurrently. The proportion of days on which energy balance was positive was 

also higher during these stages, indicating that adult Great Skuas were more 

likely to actively thermoregulate at these times. Indeed, these were the only 

stages in which energy balance was ever predicted to be positive by the maximal 

model and therefore the only periods in which adults would be predicted to 

require behavioural and physiological responses other than panting/gullar 

fluttering in order to alleviate heat stress. 

 Heat stress intensity at Great Skua breeding colonies was negatively 

correlated with variation in the North Atlantic Oscillation Index, a good indicator 

of broad-scale climatic variability (Hurrell, 1995). A positive phase of the NAOI 

indicates cooler conditions in the north-west Europe (Hurrell, 1995) explaining 

this negative relationship with modeled heat stress. Yearly variation in both heat 

stress intensity and the proportion of days of predicted heat stress was evident 

during all breeding stages and the model predicted that adults were most likely to 

have been heat stressed during the late 1990s. There was no correlation between 

mean annual heat stress and breeding success within the last 14 years for Great 

Skuas breeding at Hoy, Fair Isle and Foula. It is known that poor food availability 

leads to breeding failure in this species (Hamer et al. 1991) and, even though data 

on sandeel availability were included in this analysis, variations in the diet of 

Great Skuas breeding in this area and uncertainty in the suitability of fisheries 

estimates (Votier et al. 2004), especially for these fairly widespread colonies, 

probably masked any influence of heat stress conditions. Consequently, impacts 
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of heat stress are probably small, presumably because at these sub-arctic colonies 

the majority of skuas are able to avoid overheating by behavioural mechanisms 

(altering their orientation to the sun or wing drooping) (Lustick, 1984), use of 

water on territory (Hand, Hunt & Warner, 1981), bathing (Chapter 3), or other 

physiological methods when energy balance exceeds that effectively dissipated 

by maximal evaporative cooling. Since metabolic heat production appears to be 

the main factor contributing to heat stress, skuas may also be able to avoid 

overheating by restricting activity during periods of critical heat stress, as 

observed bird species breeding in desert areas (Dawson & Bartholomew, 1968; 

Tieleman & Williams, 2002).  

2.4.2 Latitudinal variation in heat stress and consequences of forecast 

climatic change 

 Heat stress declined with latitude when evaporative heat loss was 

modeled at a maximal rate, but not when birds were modeled to employ only 

passive evaporative cooling. This was because lower temperatures at higher 

latitudes resulted in lower rates of passive evaporative loss despite lower 

humidity, counteracting increased conductive and convective heat losses at these 

locations. Modeled maximal evaporative heat loss, however, was not affected by 

vapour pressure because this rate was determined more by physiology of the bird. 

Consequently, the probability of Great Skuas requiring to thermoregulate by 

panting in order to supplement passive heat losses was the same at all colonies, 

regardless of latitude, whereas the probability of birds exceeding the threshold at 

which panting was no longer sufficient to dissipate thermal loads decreased with 
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latitude. There was no significant effect of latitude on the proportion of days 

during which birds were critically heat stressed because this threshold was 

reached only on a maximum of eight days in any one year, although the trend was 

similar to that described above for heat stress intensity (Figure 2.7c).  

  

 

   

Figure 2.8 Mean maximum July air temperature (°C) for observed 1961-1990 
climatology. The lower (black) line is the 20 °C mean July isotherm for 1969-
1990 and the upper (blue) line is the 20 °C mean July isotherm predicted for 
2080 from HadCM2 general circulation model scenario IS92a. These isotherms 
are the predicted limits of thermal stress at which heat loss mechanisms other 
than evaporative cooling are required. Data from the IPCC (http://ipcc-
dcc.cru.uea.ac.uk). Temperatures (°C) are given in the legend. 

 The upper air temperature threshold of the thermoneutral zone for Great 

Skuas was predicted to be 10.6 °C whilst 20.6 °C was the threshold for effective 

thermoregulation by employing evaporative cooling (panting) at a maximal rate. 

 

2080 
1990 
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While this threshold was estimated by comparison of predicted positive energy 

balance with operative and air temperature measurements made over two years at 

one site (Foula, Shetland), within-year variation in heat stress conditions was far 

greater than that observed between sites or years (compare Figure 2.5 with 

Figures 2.6 & 2.7) indicating that these thresholds are likely to hold throughout 

the entire breeding range of the Great Skua. Within the temperature range 

between these two thresholds, birds can thermoregulate by panting/gullar 

fluttering alone but over ~20 ºC other heat loss behaviours become necessary. 

Figure 2.8 shows the current distribution of this upper thermal limit and that 

forecast for 2080, throughout the regions where Great Skuas breed (see Figure 

2.1). The breeding distribution of Great Skuas in the late 1980s showed marked 

association with the 13 °C mean July isotherm at the end of the nineteenth 

century (Figure 2.1) (Furness, 1988) rather than current estimated 20 °C thermal 

limit (Figure 2.8). This suggests that although Great Skuas are able to cope 

physiologically in air temperatures above 13 °C, regular daily exposure to these 

temperatures may require time-consuming thermoregulatory activities, such as 

bathing, to be traded-off against essential breeding activities. Alternatively, Great 

Skuas may not be restricted to breeding in regions where July air temperatures 

remain below 13° C but, as a result of their high philopatry (Hamer 2001), may 

have yet to spread to suitable locations beyond the southern range margins (this is 

explored in Chapter 5).  

 Within the next 80 years, a large proportion of possible breeding locations 

for the Great Skua will regularly exceed the thermal limit at which adults are 

required to thermoregulate by panting at a maximal rate (Figure 2.8). However, 
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because the current distribution is restricted close to the 13 °C isotherm only very 

few current colonies, such as those on Nova Zemlya, will experience regular 

critical heat stress as a consequence of this change. Even so, it should be 

anticipated, given the forecast rates of climatic warming at high-latitudes 

(Houghton et al. 2001), that thermoregulatory demands will increasingly 

influence the foundation of future breeding colonies. 

2.4.3  The biophysical model  

 Energy contribution from all heat transfer processes approximated the 

ranges quoted in the literature for studies of birds and mammals (Table 2.6), with 

the main differences arising from use of different species and environmental 

conditions. The heat transfer processes that were most important in determining 

modeled heat stress for Great Skuas were metabolic heat generation, maximal 

evaporative cooling, conductive and convective heat loss. The model was 

correspondingly most sensitive to the parameters that influenced these processes: 

wind speed, ground and air temperatures and short-wave solar radiation, the size 

of the bird and characteristics of its plumage and feet (the route for conductive 

heat loss). Changes in heat stress with latitude and year primarily resulted from 

changes in conductive and convective heat loss, whereas seasonal variation was 

driven by breeding activity and corresponding changes in metabolic heat 

production. Great Skuas are known to have both high basal (Bryant & Furness, 

1995) and field metabolic rates (Hamer et al., 1991; Phillips et al., 1999) so it is 

unsurprising that metabolic activity contributes primarily to heat stress. Basal 

metabolic rate (BMR) is known to vary between species breeding at different 
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latitudes (Ellis, 1984), and low BMR is often cited as an adaptation for avoiding 

heat stress at low latitudes (Klaassen, 1994). Thus, the high metabolic rates of 

Table 2.6 Mean energy values for modeled heat transfer processes and those 
available in the literature. Study conditions for published data are given. 
Metabolic heat generation and evaporative cooling were derived from the 
literature (see methods, section 2.2.2) 

Mean energy contribution (Wm-2) 

Heat transfer 
component This study 

Published 
values Study conditions Source 

Convection 55.8 20.9, 41.8 hypothetical bird 
at 20 °C, 

different wind 
speeds  

Calder & King 
(1974) 

Conduction 68.4 28.0, 40.0 pig at 20 °C, 
different 
substrate 

Mount (1967) 

Net Radiation 39.3 

5.0, 31.3 

20.0, 70.0 

sheep at 15 and 
36 °C 

rabbits, different 
seasons 

Monteith & 
Unsworth (1990) 

 
Althoff et al. 

(1997) 

 

Great Skuas may become disadvantageous at lower latitudes.   

 Conductive heat loss via the feet is suspected to be important for marine 

birds (Lustick, 1984) and, in the absence of active panting, is predicted to be the 

primary method of heat loss for Great Skuas. Convective heat loss is of slightly 

lesser importance than conductive heat loss because of the high plumage mass 

and hard scales on the legs of skuas (Furness, 1988) restricting heat loss to the 

webbing of the feet. In the maximal model, evaporative loss was the primary 
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form of heat loss, which is the case for birds at high air temperatures (Dawson & 

Hudson, 1994), but the capacity for energy loss by this process did not vary 

greatly with time or location (Table 2.5).  

 The model accurately predicted heat stress at Foula in 2002 and 2003, 

daily predicted energy balance explaining 40 % of the variability in operative 

temperatures. The relative temporal and spatial predictions of the model were 

realistic despite the following assumptions. Energy balance was modeled as a 

daily snapshot at the time when positive energy balance was most probable and 

so did not account for the duration of the exposure. Chronic exposure may be 

important in determining how heat stress impacts on breeding because many 

birds are able to store excess heat over small time scales (Phillips et al., 1985). 

The shape of an animal, here simplified to a sphere, may greatly influence 

convective heat loss (Calder & King, 1974) because shape affects the friction, 

and consequently the width of the boundary layer, between the animal’s surface 

and the air (Porter et al., 2000). Bakken (1990) found that the exponent 

describing the dependence of convection on windspeed (see Eqn. 2.13) varied 

between 0.5-1.0 for taxanomic mounts of six bird species. The assumption of a 

spherical shape therefore, probably leads to substantial errors in estimation of 

absolute, although not relative, convective heat loss at high wind speeds but, 

because of the model sensitivity to wind speed (Table 2.3), positive heat stress 

was already very unlikely under these conditions. Although extremes in 

evaporative cooling were modeled, changes in behaviour (e.g. orientation, 

posturing, flying, utilizing water) and physiology (e.g. changes in blood 

circulation and therefore temperature of the legs and feet) (Lustick, 1984) were 
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not accounted for and these may allow birds to reduce positive energy balance 

below critical thresholds. Orientation with respect to the sun (reducing exposed 

surface area, increasing insulation of exposed surface and exposing the white 

surfaces) can alter net radiative transfer by as much as 130 Wm-2 for Herring 

Gulls (Larus argentatus) (Lustick, Battersby & Kelty, 1978) but this is probably 

less effective for Great Skuas, that have a more uniformly dark plumage. Even 

so, further heat loss can be achieved by immersing feet in water (Lustick et al. 

1978), and presumably even more from bathing. Consequently, output from the 

model reflected critical thresholds at which such adjustments would be required, 

not lethal limits. 

 Results from these modeling activities suggest that breeding Great Skuas 

only rarely experience the critical heat stress conditions under which 

thermoregulatory behaviours other than panting become necessary. Great Skaus 

are transequatorial migrants (Furness, 1987) and presumably utilize such 

behaviours as bathing, soaring at high altitudes and resting on water (increasing 

conductive heat loss) (Lustick, 1984) to cope with higher heat stress at low 

latitudes. Similar methods are probably used at breeding colonies in Shetland and 

Orkney, near the lower latitude margin of their breeding range, since current heat 

stress conditions do not appear to significantly impair breeding. Given forecast 

climatic warming, however, several colonies in arctic Russia and any new 

colonies founded to the south of the current range will be subject to conditions 

that necessitate regular use of thermoregulatory behaviours other than panting, 

such as bathing, that may be traded-off against breeding activities. 
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Chapter 3. 

Bathing behaviour of a high-latitude seabird: 

relationships with ambient temperature and foraging 

activity 
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Summary 

Climate warming at high latitudes has the potential to impair breeding in cold-

adapted homeotherms by increasing heat stress during daily activities. Bathing 

has previously been suggested as being important for thermoregulation mainly in 

hot desert areas, but it is also a way in which high-latitude species such as Great 

Skuas Catharacta skua (Brünnich) may reduce heat stress at breeding sites. At a 

colony in the south of their breeding range, Great Skuas bathed more during 

periods of greater heat stress, both within each day and comparing between days. 

Time spent bathing was inversely related to time spent foraging, and pairs given 

supplementary food not only reduced their foraging activity but also increased 

their time spent bathing in addition to increasing their territorial attendance. Thus, 

in addition to a trade-off between foraging and territorial attendance, there was 

also a trade-off between foraging and bathing. This trend is exemplified by large 

and consistent reductions in the size of bathing flocks in years when food 

availability was low. The ability of high-latitude homeotherms to alter their daily 

activity budgets in response to heat stress has implications for models predicting 

changes in the distributions of species in response to climate change. Currently, 

however, climate change is more likely to affect Great Skuas and other high-

latitude seabirds by altering food availability than through direct physiological 

effects (see Chapter 6).  
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3.1 Introduction 

There is growing evidence that climate change over the past 30 years has had 

profound impacts on a wide range of species (Moore 2003; Parmesan & Yohe 

2003; Root et al. 2003). However, the nature of this evidence varies greatly 

between taxa. For short-lived or poikilothermic organisms, there is a strong 

indication of shifts in distribution and abundance (Parmesan et al. 1999; Pounds, 

Fogden & Campbell 1999). In contrast, for longer-lived homeothermic taxa such 

as birds, current data primarily concern changes in phenology (reviewed in Root 

et al. 2003) and breeding success (e.g. Winkel & Hudde (1997)). Climate 

envelope models of the relationship between climate and distribution have 

predicted range retractions and population declines leading to large-scale 

extinctions of birds, based on forecast changes in distributions of suitable climate 

space (Thomas et al. 2004). However, current evidence of climate-induced range 

shifts and population changes is limited (Smith et al. 1999; Thomas & Lennon 

1999; Croxall, Trathan & Murphy 2002) and some studies have concluded that 

bird distributions have not yet been affected by climate (Archaux 2004). Those 

climatic influences that are evident for long-lived marine predators have been 

found to act indirectly, altering food and habitat availability (Micol & Jouventin, 

2001; Croxall, Trathan & Murphy, 2002), rather than by directly changing 

species’ thermoregulatory requirements, and consequent shifts in species 

distribution have lagged behind climatic change (Weimerskirch et al., 2003). 

Recent climate change has been at a rate unprecedented within the last 10,000 

years (Huntley 1995) but, even so, homeotherms may have been able to make 
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physiological or behavioural adjustments to reduce the possible direct impacts 

(Pearson & Dawson 2003) and limit range shifts over the short-term. For 

instance, individuals may reduce heat stress by altering posture (Lustick 1984; 

Lustick, Adam & Hinko 1980) or orientation with respect to the sun (Lustick, 

Battersby & Kelty 1978), by soaring at high altitudes (Piersma 2002) or by active 

panting and gular fluttering (Dawson & Hudson 1994). Orientation in Herring 

Gulls (Larus argentatus) can reduce heat stress temporarily by as much as 130 

Wm-2 (Lustick, Battersby & Kelty, 1978) and because air temperature drops by 5-

10 Celsius degrees (C°) per km altitude, depending on saturation (Monteith & 

Unsworth, 1990), high-altitude flight can also quickly reduce heat stress. 

Individuals may also reduce heat stress by drinking or bathing in cool water: this 

not only lowers core body temperature but also replaces water lost during 

panting, and probably requires less energy than prolonged panting (Dawson & 

Hudson 1970; Hand, Hunt & Warner 1981). Bathing is presumably a more 

effective heat-loss method than standing in water, which in turn is thought to 

allow greater heat loss than changes in orientation (Lustick et al., 1978). 

However, no studies to date have examined the importance of bathing as a 

response to thermoregulatory conditions. 

 Seabirds breeding at high latitudes display morphological and 

physiological adaptations to low ambient temperatures, including heavy 

insulative plumage and high basal metabolic rates (Gabrielsen, Mehlum & 

Karlsen 1988; Bryant & Furness 1995), and so might be expected to experience 

problems of heat dissipation at higher temperatures. Climate warming is 

predicted to be greatest at high latitudes (Houghton et al. 2001) but there are 
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currently few data addressing the capacity of individuals to employ behavioural 

means to reduce the direct physiological impacts of climate warming in these 

areas. Great Skuas Catharacta skua (Brünnich) have a breeding distribution 

confined to colonies where mean temperature is < 13 °C during July, the month 

of most intense breeding activity (Furness 1988). It has been suggested that 

problems of heat dissipation may inhibit foraging activity and be a critical factor 

in determining this species’ southern range margin (Furness 1988). Both Great 

Skuas and Tristan Skuas Catharacta  hamiltoni (Hagen) have been observed to 

bathe communally at freshwater lakes near their breeding territories, although 

whether the main function of this activity is thermoregulation, feather 

maintenance or social interaction is currently unclear (Furness 1987).  

 In this study, the bathing activity of Great Skuas was examined at a 

colony in the south of their breeding range to determine its importance in 

thermoregulation. Possible trade-offs with foraging and chick-guarding activities 

were examined and the influence of food availability on bathing activity was 

explored by experimentally supplementing adult diets. 
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3.2 Methods 

Fieldwork was carried out at the Great Skua colony (approx. 2400 breeding pairs) 

at Foula, Shetland (60°08’N, 2°05’W), in the southern part of this species’ 

breeding distribution (Mitchell et al. 2004), during the breeding seasons (5 May - 

6 August) of 1994, 2002 and 2003.  

3.2.1 Developing an index for heat stress conditions 

Relative humidity, air and soil temperature, solar radiation and wind speed were 

logged as 10 min means using Data Hog II™ loggers (Skye Instruments Limited, 

Wales, UK) on breeding territories. At the same time, the internal temperature of 

a water-filled copper sphere of radius 75 mm, covered with a feathered Great 

Skua pelage and placed at the colony was logged. This approximated the 

operative temperature of an unheated taxidermic mount with surface area equal to 

that of an adult Great Skua. Such models provide acceptable approximations of 

thermal loading by measuring the temperature that the body would attain in the 

absence of metabolic heat production or evaporative cooling (Walsberg & 

Weathers 1986). 

 The range of values for the most complete time-series of climate variables 

and operative temperatures measured simultaneously at Great Skua territories 

during the warmest part of the day are given in Table 3.1. Recorded operative 

temperatures and climatic variables were normalised by square-root or arc-sine 

transformation (Table 3.1); normality assessed by probability plots (Zar, 1999). 
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The transformed data series was reordered randomly to remove autocorrelation, 

reducing the dependence of values at time t on those at time t-1 (Shumway & 

Stoffer 2000).  

Table 3.1 Descriptive statistics (untransformed) and transformations for 
all logged variables used in regression analysis of predicted operative 
temperature. This series was logged at Ristie (60°09’16.1 N, 2°04”58.1 
W, Altitude 60m) from 13:00 to 16:00 BST between 15 May and 5 
August 2003 (n = 1577). 

Logged Variable Mean Minimum Maximum Transformation 

Relative Humidity (%) 83.4 62.9 100.0 Arcsin 

Air Temperature (°C) 15.1 6.9 24.8 Square-root 

Soil Temperature at 30 mm 
depth (° C) 17.3 8.1 26.1 Square-root 

Direct Solar Radiation (Wm-2) 414.5 25.1 884.7 Square-root 

Wind Speed (m sec-1) 2.48 0.00 9.95 Square-root 

Operative Temperature (°C) 17.6 8.0 30.0 Square-root 

 

 The model that best predicted operative temperature from normalised 

climatic variables was determined by best subset regression (Draper & Smith 

1998). This indicated the best regression model from a set of models with 

different numbers of predictor variables (in this case limited to between 1 and 4), 

to retain variable combinations that may be important rather than discarding 

variables according to their individual contributions (stepwise regression). Since 
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there were strong correlations between the logged environmental variables, such 

as air temperature and solar radiation (Spearman rank: rs 11832 = 0.61, P < 0.001), 

many regression models with multiple predictors suffered from multicollinearity 

and were discarded (Draper & Smith, 1998). Transformed air temperature (√Ta) 

explained the most variation in transformed operative temperature (√Te) (F1,1576 = 

7037.1, P < 0.001, R2 = 0.81), according to the following equation: 

√Te = {-0.1465 + (1.114√Ta)}    Eqn. 3.1 

By squaring the right hand-side of this equation, operative temperatures (an index 

of heat stress that breeding adults experienced) were estimated in all three years 

because empirical measurements were not available for 1994. 

 To verify that operative temperature estimates derived in this way were a 

good index of heat stress conditions, heat stress behaviours (panting, gullar 

fluttering and wing drooping) were observed for Great Skuas at their breeding 

territories in 2002 and 2003. The presence or absence of these behaviours and 

whether a bird was incubating/brooding or not was recorded between 13:00-

16:00 BST at 10 minute intervals, for over 72 breeding individuals in each year. 

These behavioural watches were repeated at least five times during each breeding 

season, giving up to 12 hours of continuous observation for some individuals in a 

year. 

3.2.2 Bathing activity 

Birds at the main freshwater bathing site on Foula (Mill Loch) were observed 

through a 20 × telescope from a distance of < 60 m for periods of 3-12 hours on a 

minimum of 17 occasions spanning the breeding season each year. On each 
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occasion, the number of birds bathing every 10 mins and the number of birds 

joining the bathing flock during each 10-min interval was recorded. These data 

were then used to calculate the average flock size (mean of counts at start and end 

of 10-min interval) and the flock turnover rate (number of arrivals divided by 

average flock size). The mean duration of bathing bouts was then calculated as 

recording interval divided by turnover rate. Comparison of the number of birds 

bathing (flock size multiplied by turnover rate) on different days was restricted to 

observations between 14:00h and 16:00h because all daily observations included 

this period. The length of individual bathing bouts was also sampled for a subset 

of individuals in 2002 and 2003 (n =179): each bout, from arrival at the loch until 

the end of bathing, was timed by direct observation. 

 Several hundred Great Skuas breeding at Foula have been colour-ringed 

since 1988 (Hamer et al. 1991; Ratcliffe et al. 2002). Colour-ring combinations 

of individuals roosting and preening beside the bathing site were recorded in 

2002 and 2003. The breeding status of these birds was then determined from 

observations at breeding territories. 

3.2.3 Relationship between bathing and foraging 

In order to determine how bathing activity was related to day-to-day variation in 

foraging conditions around the colony, the mean number of birds attending 

breeding territories was determined from spot counts of at least 70 territories on 

the same days that bathing activity was recorded. Since breeding Great Skuas 

only leave their territories to forage or bathe (Furness 1987), and time spent 

bathing is thought to represent only 1 % of the time activity budget of breeders 
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(Ratcliffe & Furness, 1999), daily attendance measured in this way is a reliable 

index of foraging effort (Hamer et al. 1991; Caldow & Furness 2000).   

 To provide an experimental assessment of the influence of foraging on 

bathing activity, 32 breeding pairs were selected in 2003 from an area of colony 

about 200 m north of Mill Loch. Sixteen of these pairs were given 600 g of cat-

food, placed on their territory between 10:00 and 12:00 BST on nine days 

between late incubation and the middle of chick-rearing. This represented about 

45 % of the daily food requirements of birds (adults plus chicks) in each territory 

(Ratcliffe 1993). Birds at all territories readily consumed supplements by the 

third occasion that they were provided. There was no difference between 

supplemented and control pairs in brood size or hatching date of first chick 

(brood size: χ2
2 = 1.06, P = 0.6; hatching date: t32 = 0.34, P = 0.7). Unfortunately, 

only a few of these birds were colour-ringed and so age and sex of individual 

adults was not possible to determine accurately. The time that adults spent away 

from territory foraging and bathing plus the number and duration of each type of 

trip were recorded from 13:00-16:00 BST on the final six days of supplementary 

feeding, when all supplements were consumed. Bathing and foraging are the two 

main activities performed off-territory (Furness 1987), and occasions when adults 

flew towards Mill Loch or returned to the territory with saturated plumage, not 

attempting to feed their chicks and eliciting no begging responses from their 

partners were assumed to be bathing trips. 
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3.2.4 Analyses 

A generalized linear mixed effect model (GLMM) (Schall, 1991) with binomial 

error distribution and logit link was fitted, using Genstat software (Payne 1997), 

to determine the relationship between the probability of breeding skuas exhibiting 

heat stress behaviours and estimated operative temperature. This model 

accounted for variation resulting from incubating/brooding activity, breeding site, 

stage of breeding cycle and year by including these as covariate fixed factors and 

used the identity of individuals and breeding pairs as random factors to avoid 

pseudoreplication and non-independence. Wald statistics are reported for 

components from GLMM analyses and their significance determined by 

comparison with percentiles of the χ2-distribution (Elston, Horgan & Hunter, 

2001). 

  A generalized linear model (GLM) with Poisson error distribution and 

logarithmic link function was fitted to determine the effect of the factors, 

operative temperature, adult territorial attendance, date and year, on the number 

of Great Skuas bathing between 14:00 and 16:00 each day. A separate GLM, with 

Poisson errors and logarithmic link, and including the same factors, examined 

yearly differences in only the number of colour-ringed breeders bathing within 

this time period, for 2002 and 2003. A GLM with normal errors and identity link 

function, appropriate for normally-distributed response data (Nelder & 

Wedderburn, 1972), was used to examine the relationship between the length of 

individually observed bathing bouts and operative temperature, with mean flock-

size (at the beginning of a bout), daily adult attendance and year as covariate 

factors, to control for their effects on bathing length. 
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 A series of generalized linear mixed models (GLMM) (Schall 1991) were 

fitted to determine the effect of supplementary feeding on bathing and foraging 

activity of breeding pairs (see Table 3.2 for response variables), accounting for 

variation resulting from breeding stage (egg or chick), brood size, hatching date, 

operative temperature, adult territorial attendance and date by including these as 

covariate fixed factors. The identity of each pair was included as a random factor 

in these models to account for pseudoreplication. Errors had Poisson distributions 

with logarithm-link functions in models 1 and 2, and binomial distributions with 

logit-link functions in models 3-6 (Table 3.2). 
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3.3 Results 

3.3.1 Measuring heat stress 

The probability of breeding Great Skuas exhibiting heat stress behaviour was 

positively correlated with operative temperature estimated from the regression 

with air temperature (Figure 3.1). Of all significant covariates, operative 

temperature was the second strongest predictor of heat stress behaviour, after 

whether a bird was incubating/brooding or not (mean (± SE) probability of 

Figure 3.1 Mean probability of adult Great Skuas exhibiting heat stress 
behaviour at different operative temperatures in 2002 (black) and 2003 
(grey). Probabilities are estimated from components of the most 
parsimonious GLMMs, error bars are standard errors of the estimates. 
Data shown are for actively incubating skuas breeding at Fleck. The 
effect of operative temperature was highly significant (GLMM: χ2 1,10619 
= 44.74, P < 0.001, n = 10750). Yearly differences were also significant 
(GLMM: χ2 1,10619 = 9.72, P < 0.01, n = 10750). 
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exhibiting heat stress behaviour: when incubating/brooding, 0.23 (± 0.001) , 

otherwise, 0.02 (± 0.001) ; GLMM: χ2 1,10619 = 524.8, P < 0.01, n = 10750). 

3.3.2 Bathing activity 

 Figure 3.2 Boxplots showing the median size of the bathing flock, with 
interquartiles and ranges, for Great Skuas bathing at Mill Loch at 
different times of day. Data are for all three years combined. The lower 
trend line is derived from a regression of numbers of birds bathing upon 
time of day. The upper series is 10 min means of estimated operative 
temperature (˚C) (± 95% CI) across the whole study period combined 
(179 days across three years). 
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On average, 2.3% (SD ± 1.7) of birds bathing at Mill Loch were colour-ringed 

individuals known to be breeding in 2002 and 2003, with no difference in this 

proportion between years (GLM: t27 = 1.25, P = 0.2). Fewer than 10 % of Great 

Skuas breeding at Foula are colour-ringed (Catry et al. 1998; Ratcliffe et al. 

2002) suggesting that at any one time more than 20% of the bathing flock 

(including unmarked birds) at Mill Loch were breeders. The average size of 

bathing flocks during each hour showed a daily cycle, with time of day 

explaining 44% of the total variation in numbers (F2, 473 = 188.8, P < 0.001, R2
 = 

0.44; Figure 3.2). There was a peak between 14:00h and 16:00h in both operative 

temperature and size of bathing flocks (Figure 3.2), indicating that more birds 

bathed under warmer conditions. More importantly, within each year, the overall 

number of birds bathing within this peak period each day was significantly 

greater on days of higher mean operative temperature (GLM: t29 = 12.54, df = 1, 

P < 0.001; Figure 3.3). This value incorporated not only flock size but flock 

turnover (birds arriving and leaving during this period) and indicated that the 

overall number of Great Skuas bathing was higher on days of elevated heat stress. 

Most bathing activities involved drinking and complete immersion, also 

indicating the likely importance of this activity for heat-loss and 

thermoregulation. 

 The number of birds bathing was higher in 1994 than in 2002 (GLM: t29 = 

15.46, df = 1, P < 0.001) or 2003 (GLM: t29 = 35.75, df = 1, P < 0.001; Figure 

3.3). Again, bathing number was the product of flock size and flock turnover and 

because flock size and turnover were negatively correlated with one another (rs = 

-0.61, n = 280, P < 0.001) more birds bathed on days when midday bathing flocks  
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Figure 3.3 Daily total number of Great Skuas bathing at Mill Loch 
between peak hours (14:00 –16: 00) at different estimated operative 
temperatures in all years: 1994 (black squares and dark line), 2002 (grey 
triangles and grey line) and 2003 (open circles and light grey line). 
Regression lines are derived from GLM analysis (F5,24 = 428.75, P < 
0.001). 

were small, but had high turnover.  Consequently, individual bathing bouts 

calculated from turnover rate were shorter in small flocks because of high flock 

turnover. As a result of larger bathing numbers in 1994 (Figure 3.3), and 

correspondingly smaller bathing flocks with higher flock turnover, bathing bouts 

were much shorter in 1994 than in 2002 or 2003 (median = 10.0 mins, 

interquartile range [IQR ] = 1.9; median = 19.8 mins, IQR = 13.2 and median = 
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Kruskall-Wallis test; H2,35 = 25.7, P < 0.001). Direct observations of lengths of 

individual bathing bouts confirmed this year effect (GLM: F1,178 = 95.17, n= 179,  

Figure 3.4 Predicted relationship between length of individual bathing 
bouts and estimated operative temperature from GLM analysis (F1,178 = 
4.26, n= 179, P > 0.05). Mean flock-size, food availability (adult 
attendance) and year (2002 and 2003) were included in the model as as 
covariates. Dotted lines are ± 1 S.E..  

P > 0.001) and revealed a positive relationship between operative temperature 

and bathing length, independent of flock size (Figure 3.4). More birds also bathed 

later in the season in all three years (GLM: t29 = 4.49, df = 1, P < 0.001). 

3.3.3 Bathing in relation to foraging  

After accounting for the effect of operative temperature on bathing activity, more 
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foraging conditions were good (GLM: t29 = 5.62, df =1, P < 0.001). Adult 

territorial attendance was not, however, related to mean daily operative 

temperature on days during which bathing was observed (Spearman rank 

correlation: rs  = -1.05, n = 30, P = 0.6). Pairs given supplementary food spent 

significantly more time bathing and less time foraging than did control pairs 

(Table 3.2). Supplemented pairs also made more bathing trips and significantly 

fewer foraging trips, which were shorter in duration than those of controls (Table 

3.2). In addition, supplemented pairs had significantly higher attendance (% time) 

at their breeding territories than did control pairs (supplemented median = 73.1%, 

IQR = 26.3; control median = 64.3%, IQR = 27.6; Wilcoxon signed-ranks test; 

Z61 = 2.92, P < 0.005). 
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Table 3.2 Results of statistical analysis (GLMM) of the effect of supplementary feeding on Great Skua time budgets between 13:00-
16:00 BST. Means and variability of supplemented and non-supplemented pairs, Wald statistics and significance values (df =1, n = 
146) are given for each variable. 

Mean (± SD) Model Response Variable 

Fed Unfed 

Wald statistic (χ2) P value 

1 Number of bathing trips (in 3 hr) 1.02 (0.10) 0.58 (0.07) 13.67 < 0.001 

2 Number of foraging trips (in 3 hr) 0.32 (0.04) 0.42 (0.04) 5.03 < 0.05 

3 Time spent bathing (% of 3 hr watch) 12.2 (1.3) 8.6 (1.2) 4.20 < 0.001 

4 Time spent foraging (% of 3 hr watch) 14.7 (2.5) 27.1 (2.5) 10.92 < 0.001 

5 Mean bathing trip duration (min) 16.7 (1.6) 14.9 (1.6) 0.43 0.514 

6 Mean foraging trip duration (min) 24.4 (4.5) 47.8 (4.8) 11.31 < 0.001 
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3.4 Discussion 

There was a clear diurnal cycle in freshwater bathing activity, with largest 

bathing flocks occurring during the period of maximum operative temperature 

(Figure 3.2). Operative temperature was a good predictor of heat stress 

conditions, indicated by a strong correlation with the observed frequency of heat-

loss behaviour in breeding Great Skuas, but this pattern could reflect diurnal 

variation in foraging activity rather than variation in heat stress. However, the 

number of birds bathing was also greater on days of overall higher operative 

temperature within each year (Figure 3.3), suggesting that this variation in time 

spent bathing was in direct response to heat stress conditions. Bathing appears to 

be important because, despite cannibalism being the main cause of breeding 

failure in this species (Hamer, 2001), adults left their territories and chicks in 

order to bathe and at least 20% of birds bathing at Mill Loch were breeders.  

 Bathing and drinking have been cited as being of possible importance for 

thermoregulation and water balance (Dawson & Hudson 1970), but the few 

previous field studies of this phenomenon were restricted to low-latitude species 

(Thomas & Robin 1977). For example, in the Morrocon steppe, more sandgrouse 

were found to utilise freshwater sites for drinking on hotter days (Thomas & 

Robin 1977). This is the first time that variation in activity budgets in response to 

heat stress conditions has been documented for a homeotherm breeding at high-

latitudes.  

 Adult attendance at breeding territories was not related to operative 

temperature but more birds bathed on days when territorial attendance was high 
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and foraging conditions were presumably good, irrespective of heat stress 

conditions. Increased bathing could have primarily reflected the activity of non-

breeders rather than breeding birds. However, breeding birds given 

supplementary food not only spent less time foraging but also spent more time 

spent bathing, and made more bathing trips in addition to spending more time on 

territory. This increase in time spent bathing by fed pairs was only one third of 

that for territorial attendance, indicating the relative importance of these two 

activities for breeding Great Skuas. These data show that in addition to a trade-

off between foraging and territorial attendance, there was also a trade-off between 

foraging and bathing.  

 Breeding success of Great Skuas at Foula was higher in 1994 (0.8 chicks 

pair-1) than in 2002 (0.6 chicks pair-1) or 2003 (0.1 chicks pair-1), due largely to 

lower prey availability in the latter years (Walsh, Brindley & Heubeck 1995; 

Mavor et al. 2002, 2003). Breeding success in this species is known to decrease 

with increasing time spent off-territory (Catry & Furness, 1999; Caldow & 

Furness, 2000), usually as a result of elevated foraging effort when food is scarce 

(Hamer, Furness & Caldow, 1991). Bathing numbers were highest in 1994 but 

reduced in 2002 and even lower in 2003 (Figure 3.3) probably as a result of 

bathing being traded-off for increased foraging time in the latter two years. The 

probability of breeding Great Skuas exhibiting heat loss behaviours, such as 

panting and gullar fluttering, on territory was higher in 2002 than 2003 (Figure 

3.1). This probably resulted from very poor food availability in 2003 causing 

high breeding failure and limiting breeding in that year to the most experienced 

pairs (Chapter 4). These individuals are known to exhibit enhanced coordination 
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of their breeding activities (Caldow & Furness, 2000) that presumably led to 

reduced mean individual metabolic expenditure for breeders in 2003 and lower 

intensities of heat stress experienced (Chapter 2). Durations of bathing bouts 

showed the opposite pattern to that seen in bathing activity, being longest in 2003 

and shortest in 1994 and suggesting a negative relationship between the number 

of birds bathing and the time spent bathing per individual. Observations at the 

bathing loch suggested that in large bathing flocks, interruptions to bathing 

caused by interactions with other conspecifics often led individuals to prolong 

bathing bouts. Irrespective of flock size, though, individual bathing bouts were 

longer on days of higher operative temperature, suggesting that thermoregulation, 

rather than social interaction, is the primary purpose of freshwater bathing. 

Bathing numbers were also higher later in the season in all three years but this 

was probably due to the arrival of large numbers of non-breeders at the colony 

(Klomp & Furness 1992). 

 Climate change currently appears more likely to affect Great Skuas and 

other high-latitude seabirds by altering food availability than by direct 

physiological effects (Durant, Anker-Nilssen & Stenseth 2003; Croxall 2004). 

However, heat stress for animals breeding at high latitudes is likely to become 

increasingly important given projected rises of up to 6 C° in air temperatures 

within the next 100 years (Houghton et al. 2001). Great Skuas and probably 

many other vertebrates adapted for breeding in these regions have the ability to 

ameliorate the effects of rising temperatures by employing heat-loss behaviours 

such as bathing, which offer a way to supplement energetically-costly 

thermoregulatory behaviour such as panting, with fewer problems of water 
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conservation. However, any time spent bathing is traded-off against that available 

for foraging, and so it could impose an additional constraint on reproductive 

success, particularly in years of low food availability. All these factors indicate 

that, even if currently climatic change is impacting species indirectly, rapid 

temperature rise at high-latitudes may begin to impact directly on the physiology 

and ecology of species and should be accommodated in models forecasting the 

consequences of changing climates. 
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Summary 

Aspects of the breeding ecology of Great Skuas may vary within colonies in 

relation to nest-site location and microclimate, and studying such local-scale 

variation could lead to improved predictions of influences of climate change on 

breeding distributions. The breeding ecology of Great Skuas was examined at 

sites on Foula, Shetland, that differed in altitude, proximity to coast and thermal 

exposure, using both natural and experimentally enlarged broods. Sites differed 

by up to 3 Celsius degrees (C°) in operative temperatures experienced by adults. 

Foraging time was traded-off for extra bathing time at the warmest site but at 

higher altitudes foraging effort was higher, bathing was less frequent and birds 

reduced thermal loading by panting on territory. Despite this, there were no 

differences in breeding performance at different altitudes, indicating that 

behavioural responses were sufficient to cope with variation in thermal regimes. 

Forecast temperature rises in the UK are less extreme than at higher latitudes and 

food availability currently appears to be more important than heat stress in 

determining Great Skua breeding performance and distribution.  
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4.1 Introduction 

Climate warming in the late twentieth century was greater than at any previous 

time over the last 10,000 years (Huntley, 1995). Mean global air temperature is 

projected to rise by as much as 5.8 Celsius degrees (C°) between 1990-2100 and 

at high latitudes in America and Asia this change is likely to be 40 % higher than 

the global mean (Houghton et al., 2001). In northern Europe, conservative 

estimates for increases in air temperature are around 6.5 C° by 2080 for arctic and 

subarctic regions (from climate models using A1B SRES scenario (Houghton et 

al., 2001)). At the margins of their range, populations persist in areas of broadly 

unsuitable habitat (Thomas et al., 1999; Thomas et al., 2001). By selecting the 

areas of highest suitability available within these marginal regions, many species 

maintain viable breeding populations (Thomas et al., 1999; Hill et al., 2002; van 

der Ree & Bennett, 2003). It is likely that climate warming at low-latitude range 

margins will quickly enhance the competitiveness of insurgent species from 

lower latitudes, displacing these marginal populations (Davis et al., 1998; 

Thomas et al., 2001). Given the scale of range shifts predicted to result from 

changing climatic conditions (Thomas et al., 2004), even populations in less 

marginal areas are likely to become restricted to high quality sites as climatic 

suitability diminishes. In order to predict climate-induced range shifts with any 

accuracy, heterogeneity in site quality must be determined, especially the 

availability of sites that may still maintain suitable microclimates following 

climatic warming.  
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 Many seabirds have wide geographical distributions but are restricted 

within these areas to particular breeding sites (Buckley & Buckley, 1980) and, 

within colonies, there is often great  variation in nest-site quality (Montevecchi & 

Wells, 1984; Burger & Gochfeld, 1991; Stokes & Boersma, 1991; Harris et al., 

1997). Suitable cover provided by vegetation, rocks or ledges can limit the 

exposure to thermal extremes experienced by breeding adults and their chicks 

(Salzman, 1982; Buttemer & Astheimer, 1990; Stokes & Boersma, 1998) and so 

reduce the requirement for brooding (Klaassen, 1994). Such cover can also 

increase the breeding success of ground-nesting seabirds by reducing the 

proportion of eggs lost to predators (Cassady & St. Clair, 1996; Stokes & 

Boersma, 1998; Mallach & Leberg, 1999; Good, 2002; Velando & Freire, 2003) 

and limiting intraspecific aggression at high breeding densities (Burger & 

Gochfeld, 1988; Cassady & St. Clair, 1996). Other important characteristics of 

nest sites are proximity to water (Burger & Lesser, 1978; Hand, Hunt & Warner, 

1981), including freshwater for drinking and bathing (for Great Skuas, Kittiwakes 

and Fulmars at Foula (Furness, 1987; Furness, pers. comm.), and suitable prey  

(Young, 1963; Pierotti & Annett, 1991; Votier et al., 2004).  

 Great Skuas (Catharacta skua) have a breeding distribution restricted to 

northern Europe and arctic Russia (Hamer, 2001). The largest breeding colonies 

for this species are in the northern British Isles (Mitchell et al., 2004), less than 

300 miles from the southern range margin. Adult Great Skuas exhibit high natal 

philopatry (Klomp & Furness, 1992), with territory size and location varying 

little between years (Catry, Ratcliffe & Furness, 1997). At Foula, Shetland, the 

second largest Great Skua colony in the world (Mitchell et al., 2004), breeding 
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pairs nest primarily amongst wet moorland vegetation (Hamer, 2001) but occupy 

a wide range of sites, varying in exposure, altitude and vegetation. The impacts of 

this variation in microclimate on breeding ecology have not previously been 

assessed. 

 This chapter reports the influences of site (location and vegetation) and 

microclimate on breeding biology, examined for Great Skuas at Foula in 2002 

and 2003. In 2003, some adults were given experimentally enlarged broods to 

illustrate the importance of any site and microclimate effects observed. In both 

years, breeding parameters and aspects of time/activity budgets were recorded at 

different sites with distinct microclimates. 
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4.2 Methods 

Fieldwork was carried out at Foula during the breeding seasons (5 May - 6 

August) of 2002 and 2003. Foula is a small island (~ 14 km2) that supports over 

2400 breeding pairs of Great Skua, and has been the site of a long-term study of 

this species since the mid-1970s (Ratcliffe & Furness, 1999).  

Figure 4.1 Map of Foula showing the four study sites, Fleck (FL), Mill Loch (ML), 
Ristie Marsh (RI) and South Netherfandal (SN). Bathing lochs are represented by grey 
shading and Mill Loch, the main bathing site, is labelled. Black triangles indicate the 
island’s four major summits (height in m). Broken lines are 75 m and 150m contours. 
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Table 4.1 Details of study sites at Foula in 2002 and 2003, including location (point at which environmental measurements were taken), aspect 
(direction of maximum exposure to the sky), altitude, maximum number of study nests followed, number of behavioural watches and minimum and 
maximum daily (24hr mean) operative temperatures over days in which behavioural watches took place. 

2002 2003  

Easting Northing 

Aspect 
(compass 
direction)

Altitude 
(m) 

Total no. 
study nests  

No. 
behavioural 

watches 

Max, min 
daily 

operative 
temperature 

(º C) 
Total no. 

study nests  

No. 
behavioural 

watches 

Max, min 
daily 

operative 
temperature 

(º C) 

Fleck -2º05’36.5 60º08’39.7 N 129 22 5 12.1, 14.8 70 5 15.0, 19.6 

Mill Loch -2º03’54.8 60º08’16.6 E 41 21 5 12.3, 16.2 - - - 

Ristie -2º04’58.1 60º09’16.1 SSE 60 20 5 13.9, 17.0 53 5 15.4, 19.4 

South 
Netherfandal -2º04’14.4 60º08’33.8 ESE 82 22 5 11.5, 14.8 - - - 
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4.2.1 Selecting study sites 

Four sites of contrasting altitude and exposure (Fleck, Mill Loch, Ristie Marsh 

and South Netherfandal) were selected to examine how nest site microclimate 

and location influenced breeding activity and reproductive success (Figure 4.1, 

Table 4.1). These sites differed in distance from the main freshwater bathing 

loch, Mill Loch (Figure 4.1). Although some sites had smaller freshwater lochs 

nearby, these were far less important for bathing, supporting bathing flocks never 

exceeding ~50 Great Skuas (pers. obs.), compared with flocks sizes of over 100 

birds observed daily at Mill Loch (Chapter 3, Figure 3.2). The number of nests 

followed each year is given in Table 4.1. Different territories were selected at 

each site each year to avoid non-independence of data. To reduce variation 

associated with parental quality,pairs laying more than ten days from the modal 

laying date in each year were not selected for study.  

 In 2002, egg laying and hatching dates and the growth and survival of 

chicks were measured at each site, and adult behaviour was observed during 

incubation and chick-rearing. Since operative temperature was greatest at Ristie 

Marsh and lowest at The Fleck in 2002 (Figure 4.2), in 2003 the same 

observations were made only at these two sites. In 2003, the energetic cost of 

breeding was increased for all study pairs by experimentally increasing each 

brood to three chicks, under licence from Scottish Natural Heritage (SNH). 

Chicks were transferred from donor nests (matched by laying date) between 1-3 

days after hatching. Only two of these manipulations failed, when the donor 

chicks were either rejected or left the surrogate nest: these were excluded from 
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subsequent analyses and the two chicks were placed at alternative nests not 

included in the study. 

4.2.2 Measuring microclimate and site-specific differences in 

vegetation cover 

Operative temperature for the whole study period was estimated from 

measurements of air temperature, at 10 min intervals at each site, using the 

regression equation (Eqn. 3.1): 

√Te = {-0.1465 + (1.114√Ta)},     

developed in chapter 3 (regression statistics: F1,1576 = 7037.1, P < 0.001, R2 = 

0.81). Since all sites were within two kilometres of each other, between-site 

heterogeneity in microclimate was limited to differences in sea mist frequency, 

orographic rainfall (precipitation caused by forced upwards flow of air over 

hills), both related to altitude and aspect, and the shading of sites by steep hills 

early and late in the day. Relative humidity (RH) provided a strong measure of 

mist intensity and rainfall, and solar radiation (Qs) accurately recorded shading at 

different sites (pers obs). Both of these measures were highly correlated with air 

temperature (RH: rs 19716 = -0.51, P < 0.001; Qs: rs 19716 = 0.59, P < 0.001) once 

autocorrelation was removed by randomizing the time series (Shumway & 

Stoffer, 2000)(Chapter 3), indicating that trends in operative temperature 

accounted for the main differences in microclimate between sites. 

 Percentage cover, sward height and vegetation type contributing most to 

nest-cover (in all cases grasses) were estimated from a sample of five 1 m2 

quadrats at each breeding site in 2002. Quadrats were placed according to random 
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number cell selection within a grid map of each site. Soil moisture was estimated 

in each quadrat by measuring water uptake (mm of paper wetted in five seconds) 

on a strip of blotting paper (10 mm width) inserted 10 mm into the soil. 

4.2.3 Timing of breeding, hatching success, chick growth and 

survival 

Ages of study adults were determined from colour-ring combinations (birds had 

been ringed as chicks with a monel ring and subsequently recaptured and colour-

ringed (Hamer, Furness & Caldow, 1991; Ratcliffe et al., 2002). In both 2002 and 

2003, the laying date of the first egg of each study pair was determined by 

visiting nests every second day during the laying period. The volume of the first 

laid egg was calculated from its length and breadth (Coulson, Potts & Horobin, 

1969). 

 Nest checks were resumed 25 days after laying (modal incubation period 

at Foula is 28 days (Hamer, 2001)) to determine hatching success, and continued 

until chicks had fledged. Growth of chicks from study nests was determined by 

measurement of body mass and wing length (maximum chord excluding down 

(Redfern & Clark, 2001)) every four to seven days until fledging. Chicks were 

individually colour-marked under license from SNH using a combination of nail 

varnish on the claws and sheep-marker spray on the breast. Following Hamer et 

al. (1991), chicks were recorded as dead if they were not located on three 

consecutive visits to the territory. . 
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4.2.4 Adult behaviour and territorial attendance 

To examine variation in adult behaviour between sites, five behavioural watches 

were made at each site in both years (Table 4.1). All watches spanned the period 

13:00-16:00 BST, when operative temperature was found to be highest (Chapter 

3, Figure 3.2). During watches, the behaviour of both adults of a focal pair 

(maximum sample size per site: 13 pairs in 2002, 24 pairs in 2003) was recorded 

from spot-checks at 10 min intervals, providing up to 12 hours of observation for 

each individual in a year. In 2003, focal adults at both sites were matched by 

brood size and hatch date (± 1 day), to ensure broadly comparable samples 

despite small sizes. Adults that were present on territory were recorded as 

incubating/brooding, bathing (if bathing within their territory) or other (roosting, 

standing, preening and territorial defense). If adults exhibited heat-loss behaviour 

(panting, gular-fluttering or drinking) this was also recorded. If absent from the 

territory an adult was categorized as either bathing or foraging since these are the 

only two activities commonly performed off-territory (Furness, 1987; Catry & 

Furness, 1999). Bathing trips were distinguished by adults flying towards 

freshwater lochs or, when they returned, having saturated plumage or not 

attempting to feed their chicks and eliciting no begging response from their 

partner. If neither adult was on territory the nest site was counted as deserted for 

that spot check. 

 For each observation, stage in the breeding cycle of focal adult was 

defined as follows: incubation (between laying and hatching date of first egg), 

early chick-rearing (up to 12 days after hatching), mid chick-rearing (13-34 days 

after hatching) and late-chick rearing (35-44 days after hatching).  
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4.2.5 Foraging conditions, nesting density and diet 

Several covariates were measured to reduce variance not resulting from 

differences in site or heat stress exposure. The proportion of pairs attending 

breeding territories, determined daily from spot counts of at least 70 territories in 

both years, was used as a proxy for foraging conditions in the vicinity of the 

colony (Hamer et al., 1991). In both years, mean distance between a study nest 

and its two nearest neighbours was used to indicate territory size. Diets of birds at 

each territory were assessed from regurgitated pellets collected from all territories 

twice in 2003 (during early-mid laying and late chick-rearing). In each case, these 

data were used to calculate the proportion of pellets at each territory that 

comprised seabirds. Diet was included in analyses only for 2003 because data 

were not available for all sites in 2002. 

4.2.6 Analyses 

All statistical analyses were performed using Genstat (Genstat, 1993) software 

unless otherwise specified. All between-site differences in environmental 

variables recorded in 2002 were compared with ANOVA. Paired t-tests 

contrasted simultaneous operative temperature measurements between The Fleck 

and Ristie Marsh in 2003. A generalized linear mixed effect model (GLMM)  

(Schall, 1991) with normal error distribution and identity link function, for the 

analysis of normally distributed data (Nelder & Wedderburn, 1972), determined 

yearly differences in paired operative temperature measurements (made 

simultaneously at different sites), with pairing identity included as a random 

factor to avoid pseudoreplication. Wald statistics are reported for components 
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from GLMM analyses, their significance determined by comparison with 

percentiles of the χ2-distribution (Elston, Horgan & Hunter, 2001).    

Variation between sites and years in clutch size, nesting density, egg 

volume and laying date was compared with separate general linear models 

(GLMs) to ensure that study pairs at different sites were comparable. The former 

GLM was fitted with binomial errors and logit link with laying date and first egg 

volume included as covariates. All other GLMs had normal errors, identity links 

and included brood size (prior to manipulation), territory size, and (for laying 

date analysis only) egg volume as covariates. Site-specific and yearly differences 

in hatching success were examined in a GLM with binomial errors and logit link, 

incorporating laying date, volume of the first egg and territory size as covariates.  

 Mass and maximum wing chord growth of chicks were analyzed 

separately in non-linear mixed effects models (NLMEs) because few complete 

growth curves were available for individual chicks because of small sample sizes 

and high chick mortality. In these models wing and mass had a logistic 

relationship with age: 

Mass (or wing) = φ / 1 + e- k (age – t0).    Eqn. 5.1 

         

where, φ = asymptote, k = scale parameter and t0 = point of inflection. Models 

were fitted in S-plus (Insightful Corporation, 2001) and stepwise addition of 

factors (year and site) and covariates (egg laying date, brood size, hatching order, 

survival) determined the most parsimonious model in each case (Pinheiro & 

Bates, 2000). 

 In 2002, chicks were not recaptured at regular intervals at each site 

because more sites were studied and so robust mark-recapture analysis was not 
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possible. Instead, individuals not found during a territory check but recaptured 

later in the season were removed from the analyses (< 3% of chicks). A GLMM, 

with binomial errors and logit link, was fitted to determine whether survival 

varied between sites, accounting for variation resulting from hatching order, 

brood size and hatching date by including these as covariate fixed factors. The 

random factors in this model were chick and nest identity, to avoid 

pseudoreplication from repeated measurements of the same individual and non-

independence of siblings, In 2003 recapture rate was only 89 % and Cormack-

Jolly-Seber (CJS) mark-recapture models (Cormack, 1964; Jolly, 1965; Seber, 

1965) were built and tested using the program MARK (White & Burnham, 1999) 

to avoid unrealistically low estimations of survival. These models compared 

recapture and survival probabilities in six recapture periods for chicks at different 

sites, incorporating hatch date, hatching order and brood size as covariates. 

Akaike’s Information Criterion (Akaike, 1973) corrected for small sample size 

and overdispersion (QAICc) was used to select the best model (Burnham & 

Anderson, 1998). For both years, mean productivity (chicks fledged per nest) for 

each site was hatching success × overall chick survival (estimated without brood 

size as a covariate: overall survival then included the combined effect of time 

period and brood size). Four GLMMs with binomial error distribution and 

logit links (Models 1, 2, 3 & 4) examined differences between years and sites for 

different independent variables: the probability of adults exhibiting three different 

behaviours (heat-loss (1), bathing (2), foraging (3)) and the probability of the nest 

site being deserted (4). Data were all individual spot checks made during every 

watch at all sites in both years. Individual and nest identity were random factors 
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to account for repeated measures and non-independence of observations of adults 

from the same pair, respectively. Covariates entered into maximal models to 

accommodate their effects on adult behaviour were: heat stress conditions 

(predicted operative temperature), time of day (as a quadratic factor to account 

for the daily cycle in activity (Chapter 3, Figure 3.1)), stage in the breeding cycle, 

adult quality (laying date, volume of first egg), overall nest productivity, daily 

adult attendance (index of foraging conditions) and nest density. Observations of 

foraging and bathing were excluded from the heat-loss GLMM (model 1 above) 

because it was not possible to determine heat-loss when adults were absent from 

territories. Incubating/brooding behaviour was an additional factor in this model 

because birds often exhibited heat-loss whilst incubating or brooding. Data from 

only one member of each pair were used in the desertion GLMM (model 4 

above) (the individual was chosen randomly, since sex was undetermined for 

most birds) and nest number was the only random factor. The effect of diet on 

adult behaviour was explored with additional GLMMs fitted with data from only 

2003, the year in which diet samples were available.  To determine whether 

foraging effort outside this midday period varied between years, a GLM was 

fitted to data from all morning spot-checks of adult territorial attendance, 

including date as a covariate to account for changing patterns of attendance 

throughout the season. 
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4.3 Results 

4.3.1 Nest-site microclimate 

Measured operative temperatures (heat stress) varied significantly between sites, 

differences being most extreme between The Fleck and Ristie Marsh (on average 

Ristie Marsh was 2.75 ºC warmer) (Figure 4.2). Independent of site effects, 

operative temperatures were significantly lower in 2003 than 2002 (predicted 

means from GLMM: 2003, 11.76 °C; 2002, 11:04 °C; GLMM: χ2 1, 4035 = 67.29, 

P < 0.001, n = 4040), although this difference (mean difference 0.72ºC) was 

smaller than those between sites (Figure 4.2). Of all breeding sites, the Fleck was 

characterised by the lowest levels of heat stress, highest frequency of mist  and 

greatest degree of shading (least direct solar radiation) (Figure 4.2). Grasses 

provided the majority of nest cover at all sites, although at Mill Loch, where 

grass cover was sparse, many territories were dominated by low-lying mosses 

(Figure 4.2). Grass sward height was similar at all sites but soils were driest at 

Mill Loch (Figure 4.2). 

4.3.2 Timing of breeding, chick growth, survival and productivity 

Breeding density was highest at South Netherfandal (Table 4.2). There were no 

differences in clutch size or laying date between sites, although clutches were 

generally smaller and laid later in 2003 than in 2002 (Table 4.2). Hatching 

success and overall productivity were similar at all sites in both years (Table 4.2). 
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Figure 4.2 Mean (± 1 SE) (a) operative temperature measured at all sites in 2002 and 
(b) 2003. Mean (± 1 SE) (c) solar radiation, (d) relative humidity, (e) grass cover and 
(f) height and (g) relative soil moisture at all sites in 2002 are shown for comparison, 
although some sample sizes were too small for statistical evaluation. Statstics indicated 
by *** for site-specific differences are highly significant (P < 0.001).  
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 Growth in mass of chicks was not significantly different between years 

(growth asymptote (φ): t611 = 0.78, df = 428, P = 0.4), once variability in growth  

resulting from eventual fate (whether a chick fledged or died: NLME models 

projected growth curves for chicks that died during the study), laying date, egg 

volume, brood size and hatching order had been accounted for (Figure 4.3). 

However, asymptotic wing length of chicks was significantly lower in 2003 than 

in 2002 (means from NLME: 2002, 340 mm; 2003, 305 mm; t611 = 5.34, df = 

425, P < 0.001). Chicks reared at Mill Loch exhibited small but significant 

reductions in the rate of growth up to 20 days of age but final asymptotic mass 

and wing length of chicks was similar at all sites in both years (Mass, Figure 4.3; 

Wing, logistic parameters: t0 , t611 = 2.51, df = 425, P < 0.05; k , t611 = 2.62, df = 

425, P < 0.01 φ, t611 = 1.17, df = 425, P = 0.24). 

 Mean chick survival (± SE) was similar in both years, with 64.0 (± 0.1) % 

of hatching chicks surviving to fledging in 2002 and 72.5 (± 0.1) % in 2003. The 

significance of these small differences was not possible to determine because of 

the different methods used in their estimation. Mean chick survival was no 

different between sites in either year (2002, GLMM, χ2 
1, 399 = 0.06, P = 0.98, n = 

404; 2003, site was excluded from the best fitting CJS model in Table 4.3). In 

both years, survival was higher in larger broods (2002, GLMM, χ2 
1, 398 = 64.15, P 

< 0.001, n = 402; 2003, Table 4.3) but was unaffected by hatching order 

(2002,GLMM, χ2 
2, 397 = 2.68, P = 0.1, n = 404, 2003, Table 4.3). Chicks hatched 

late in the season had a lower survival probability in 2002 (GLMM, χ2 
1, 401 = 

11.49, P < 0.001, n = 404) but hatch date did not significantly influence survival 

in 2003 (Table 4.3). 
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Table 4.2 Means (± 1 SE) of various breeding parameters for Great Skuas breeding at different sites and years within the Foula colony. Yearly values (in 
bold) for combined sites are predicted from GLM (incorporating significant covariates). Significance levels: n.s. P >0.05, ** P < 0.01 and *** P <0.001. 

 1 means predicted for nests with a natural clutch size of 2, 2 productivity is the sum of hatching success and cumulative chick survival (hatching to fledging), 
standard errors are cumulative, 3 2003 data predicted from most parsimonious CJS model (without brood size). 

 2002 2003 GLM Test Statistics 

Site Fleck Mill Loch Ristie 
South 

Neverfandel All sites Fleck Ristie All sites 
Year 

Comparison 
Site 

Comparison 

Sample size (n) 19 18 11 18 66 66 51 117 - - 

Nearest neighbour 
distance (m)  

52.2      
(± 4.2) 

53.3      
(± 5.5) 

61.2     
(± 4.6) 

41.2          
(± 5.2) 

54.1      
(± 3.3) 

55.5      
(± 2.6) 

64.5      
(± 3.1) 

57.4     
(± 2.4) F1,173 = 0.54n.s. F3,173 = 5.21**. 

Natural clutch size 
(eggs) 

1.95 
(±0.05) 

1.83    
(± 0.11) 

1.83   
(± 0.09) 

1.94          
(± 0.06) 

1.90    
(± 0.02) 

1.73    
(± 0.05) 

1.62     
(± 0.07) 

1.68    
(± 0.02) F1,188 = 10.38*** F3,185 = 1.13n.s. 

Volume of first egg 
(mm3) 

84.7 
(0.41) 

81.6 
(±1.4) 

81.7 
(±1.7) 

82.7   
(±1.4) 

83.3  
(±0.9) 

80.5 
(±0.7) 

80.9 
(±0.8) 

80.5 
(±0.6) F1,183 = 5.68* F3,183 = 0.41n.s. 

Laying date1          
(Julian date) 

140.3    
(± 1.4) 

138.5  
(± 1.7) 

142.6  
(± 1.5) 

139.5        
(± 1.7) 

139.9 
(±0.9) 

143.5 (± 
0.9) 

145.7   
(± 1.1) 

144.4  
(± 0.8) F1,183 = 17.6*** F3,178 = 1.69n.s. 

Hatching success 
(proportion of eggs 

hatching) 

0.75      
(± 0.07 

0.64    
(± 0.10) 

0.63   
(± 0.09) 

0.61          
(± 0.10) 

0.66    
(± 0.05) 

0.78    
(± 0.07) 

0.66     
(± 0.07) 

0.72    
(± 0.06) F1,148 = 0.48n.s. F3,182 = 0.92n.s.. 

Overall productivity 

(chicks fledged/ nest) 2,3 
0.40      

(± 0.15) 
0.40     

(± 0.20) 
0.45    

(± 0.20) 
0.47          

(± 0.20) 
0.42    

(± 0.10) 
0.49    

(± 0.18) 
0.52     

(± 0.25) 
0.52    

(± 0.18) - n.s. (see text) 
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Figure 4.3 Age-specific mass of skua chicks reared at (a) Fleck, (b) Mill Loch, (c) Ristie and (d) South Neverfandel, in 2002 (black circles) and 2003 (open squares). Logistic
trend line is from the most parsimonious non-linear mixed effects model, not different between years. Growth asymptote (dashed line) was not significantly different between
sites (t611 = 1.29, df = 445, P = 0.2).  There was a small but significant reduction in early growth for chicks (dotted line) at Mill-Burns (difference in logistic parameters: t0, t611
= 2.60, df = 428, P < 0.01; k, t611 = 2.92, df = 428, P < 0.01). Fate of a chick (fledged or dead) (t611 = 4.78, df = 428, P < 0.0001), brood size (t611 = 2.56, df = 428, P < 0.05),
egg volume (t611 = 2.67, df = 428, P < 0.01) and hatching order (t611 = 2.94, df = 428, P < 0.005), also significantly influenced growth. 

(d) (d) 
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Table 4.3 Most parsimonius CJS model for Great Skua chick survival in 2003 (n = 89) and best 
model incorporating site differences in survival. Different survival (Φ) and recapture (p) 
parameters are represented by each term within (): t[x,y] indicate different parameters for 
recapture periods x and y; period-specific brood-size is included as a covariate. Lowest QAICc = 
85.16, ĉ = 3.56.   

  

4.3.3 Adult behaviour and territorial attendance 

In 2002, the probability of breeding adults exhibiting heat-loss, bathing and foraging 

behaviour or simultaneously deserting breeding territories between 13:00 and 16:00 

BST all differed significantly between sites. The probability of bathing off-territory was 

highest for adults breeding at Ristie, but heat–loss behaviour was more commonly 

observed at Fleck and Mill Loch (Figure 4.4). Half of the difference in heat-loss 

probability between sites was attributable to site-specific differences in operative 

temperature, although less than 30 % of the difference in bathing probability between 

sites resulted from differences in microclimate (Table 4.4). Overall site-specific 

differences, although significant, were small: mean differences in these two behaviours 

were at most 2 % of the three hour watch period (or 3.6 min) (Figure 4.4). For many 

birds, however, up to 74 % of watch periods were spent panting and up to 68 % bathing, 

but individuals varied because of differences in the heat stress exposure within their 

territories (shading, nest cover and standing water) and their activities prior to the 

No. Model 
No. of 

parameters ∆QAICc 

QAICc 
weight 

1 Ф(t[2-4,5-7] +brood size)/p(t[2,3-7]) 4 0.00 0.146 

2 Ф(site + t[2-4,5-7] +brood size)/p(t[2,3-7]) 5 1.75 0.061 
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Table 4.4 Statistics for the effect of site from the most parsimoniuos GLMMs using data from 
both years but with and without operative temperature included as a factor. When operative 
temperature is not included in the model, site effects incorporate the effects of operative 
temperature (microclimate). Changes in  the Wald statistic indicate the magnitude of importance 
of site in the GLMM. 

  Without operative 
temperature 

With operative temperature 

 N Wald 
χ2 

df P Wald 
χ2 

df P 

Heat-loss 10750 84.74 3,10621 < 0.001 42.85 3,10619 < 0.001 

Bathing 14076 14.18 3,12945 0.003 10.77 3,12944 0.013 

 

watch. Differences between sites in the mean probability of bathing were also much 

higher on days when mean daily operative temperature exceeded 13 °C: at most 9% of 

the watch (or 16.2 min) was spent bathing off-territory. In 2002, simultaneous desertion 

of territories by both members of a breeding pair was significantly more frequent at the 

Fleck than at any other site (Table 4.5). 

 The mean probability of foraging during the midday period did not differ 

between years (means from GLMM: 2002, 0.36; 2003, 0.38; GLMM, χ2 
1,12940 = 1.92, P 

= 0.17, n = 14076). This was also the case for foraging effort between 10:00 and 11:30 

BST, as determined from spot-checks of territorial attendance (GLM: F1,130 = 1.72, P= 

0.19). In 2002, adults breeding at Ristie Marsh foraged for less time (mean probability 

of foraging = 0.31) than other sites (probability = 0.40) but this was not the case in 2003 

(mean probability at all sites ~0.39) (GLMM year*site, χ2 
5,12940 = 13.11, P < 0.001, n = 

14076). In 2003, the probability of adults exhibiting heat-loss behaviour was lower
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Figure 4.4 Predicted mean probability (from GLMM) of adult Great Skuas exhibiting (a) heat-
loss and (b) bathing behaviour between 13:00 and 16:00 shown for all sites studied in 2002 
(black) and 2003 (grey). Behavioural observations were limited to the Fleck and Ristie Marsh 
in 2003. Differences in the incidence of heat-loss and bathing between sites are significant 
(Table 4.4). In 2003, heat-loss probability was lower at Fleck than Ristie (GLMM: χ2 

1,2147 = 
5.51, P < 0.05, n = 2272), but bathing probability was not significantly different (GLMM: χ2 

3,4489 = 2.60, P = 0.11, n = 4766). 
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Table 4.5 Probability of simultaneous nest desertion by a breeding pair at all sites in both years. 
Significance of site-specific differences are from GLMM. Overall, nest desertion was less 
frequent in 2003 than in 2002 (GLMM: χ2 1,6888 = 25.21, P < 0.001, n = 7038). a for χ2 

3,5087; b for 
χ2 

3,2273. 

      Site-specific 
differences 

Year Fleck 
Mill 
Loch Ristie 

South 
Neverfandel Overall 

Wald 
Statistic P 

2002 0.14 0.09 0.11 0.09 0.12 7.31a <0.001 

2003 0.08 - 0.07 - 0.08 2.87b 0.09 

  

 

at Fleck than at Ristie but there was no difference in probability of bathing off-territory 

(Figure 4.4). Simultaneous absence of both pairs from breeding territories was also 

lower in 2003 (Table 4.5).  

 The probability of adults exhibiting heat-loss and bathing behaviour increased 

with operative temperature (Figure 4.5). If a bird was incubating or brooding it was far 

more likely to display heat-loss behaviour (mean probability from GLMM: 

incubating/brooding, 0.21; not incubating/brooding, 0.02; χ2 1,10619 = 524.9, P < 0.001, n 

= 10750) and as a result, heat-loss behaviour was far more common during incubation  

(Figure 4.6). 
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Figure 4.5  Mean probability of adult Great Skuas exhibiting (a) heat-loss and (b) bathing 
behaviour at different operative temperatures in 2002 (black) and 2003 (grey). Trend lines are 
probabilities estimated from components of the most parsimonious GLMMs and error bars are 
standard errors of the estimates. The effect of operative temperature was highly significant for 
both behaviours (heatloss GLMM: χ2 1,10619 = 44.74, P < 0.001, n = 10750; bathing GLMM: χ2 
1,12944 = 13.21, P < 0.001, n = 14076). Predicted heat-loss trends are shown for actively 
incubating skuas breeding at Fleck once variability resulting from breeding stage was 
removed, although data are for all individuals at the Fleck at all times during the season. 
Consequently, observed probabilities are lower than those predicted for actively incubating 
individuals. Predicted bathing trends are shown for skuas breeding at Fleck once variability 
resulting from breeding stage, time of day and productivity covariates was removed, and  data 
are for all individuals at the Fleck in all breeding stages, at all times of day and in all 
productivity categories (0-3 chicks fledged). The predicted trend line for bathing in 2003 is no 
different from that in 2003 (GLMM: χ2 1,12943 = 2.04, P = 0.15, n = 14076). The effect of 
operative temperature was highly significant for both behaviours (heatloss GLMM: χ2 1,10619 = 
44.74, P < 0.001, n = 10750; bathing GLMM: χ2 1,12944 = 13.21, P < 0.001, n = 14076).  
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Figure 4.6 Differences in mean probability of skuas exhibiting heat-loss, bathing and 
foraging behaviours or pairs deserting an active breeding territories at different stages 
of the breeding season. Probabilities are predicted from GLMMs fitted with data from 
both years. All between-stage differences are significant (heat-loss GLMM, χ2 

3,10620 = 
279.02, P < 0.001, n = 10750, bathing GLMM, χ2 

3,12944 = 44.80, P < 0.001, n = 14076, 
foraging GLMM, χ2 

3,12941 = 31.55, P < 0.05, n = 14076, desertion GLMM, χ2 
3,6888 = 

123.39, P < 0.001, n = 7038). Heat-loss probabilities incorporate the influence of 
incubating/brooding behaviour, without which means are 0.056, 0.043, 0.080, 0.083, 
for the respective stages.  

 
 The prevalence of all behaviours varied significantly during the breeding 

season (Figure 4.6). Heat-loss behaviour was least common during early chick-

rearing (0-12 days old), when foraging rate was also lowest (Figure 4.6). The 

incidence of foraging behaviour and territorial desertion increased as chicks 

grew, although foraging was also common during incubation (Figure 4.6). 

Bathing became more common for adults as their chicks grew but was curtailed 

just prior to fledging (Figure 4.6). 

 Breeding skuas that had a diet consisting of a high proportion of seabird 

exhibited heat-loss behaviour more often (χ2 1,2145 = 8.25, P < 0.01, n = 2272), 

spent more time foraging (χ2 1,4447 = 33.1, P < 0.001, n = 4766), and were more 
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likely to be simultaneously absent from territories (χ2 1,2237 = 4.8, P < 0.05, n = 

2383). However, diet was not significantly different between sites, comprising 

31.3 (± 7.2) % seabird at Fleck and 21.3 (± 6.6) % at Ristie (GLM: F1,79 = 1.04, P 

= 0.3).  
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4.4 Discussion 

4.4.1 Effect of microclimate and nest-site on breeding performance 

Despite consistent differences in microclimate between breeding sites, 

microclimate did not influence breeding success (hatching success or chick 

survival) or important breeding parameters (laying date, egg volume and clutch 

size). Altitude shaped the local microclimate of Great Skua breeding sites at 

Foula: operative temperature at Ristie Marsh (60 m above sea-level) was on 

average 3 C° more than at the Fleck (129 m above sea-level). Increased 

frequency of mist at higher elevations reduced exposure to solar radiation, 

although variation in nesting habitat was less pronounced, grasses being 

dominant at all sites.  Mean global temperature is set to rise by 1.4-5.8 C° by 

2100 and by up to 8 C° at higher latitudes (Houghton et al., 2001). Given the 

relatively large within-colony variation in thermal exposure, an altitudinal shift of 

breeding sites would be likely to precede any range changes. Currently, however, 

differences in thermal exposure do not affect the breeding performance of Great 

Skuas. 

 Breeding success was below the long-term average at Foula in both years 

of this study (R.W. Furness unpubl. data). In 2003, breeding conditions were 

poorer than in 2002, reflected by retarded egg laying, reduced clutch sizes and 

slower wing growth of chicks, and most probably resulting from low availability 

of 1-group sandeels around Shetland (Mavor et al., 2004). Operative 

temperatures were higher on average in 2003, but this difference was small in 
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comparison to site-specific variation and so could not account for these 

differences in reproductive success. Differences between sites in breeding 

performance (hatching success, chick growth and survival) were probably 

obscured by low sandeel abundance (Mavor et al., 2004) causing universally poor 

performance in this year (Ratcliffe, Furness & Hamer, 1998), especially given the 

extra reproductive costs imposed by experimentally enlarged broods. It is 

interesting that breeding success in this study was higher in 2003 (0.52 chicks 

pair-1; Table 4.2) than that determined for a larger sample at Foula in the same 

year (0.1 chicks pair-1; Mavor et al., (2004). This probably resulted from 

experimental brood enlargement during this study because the mean size of 

broods at fledging was significantly larger in 2003 (1.65 chicks) than 2002 (1.27 

chicks), when no brood manipulation was performed (t43 = 2.15, P < 0.05). Even 

so, no site-specific differences in breeding performance were observed in 2002 

either, indicating that differences in microclimate at breeding sites were 

insufficient to affect breeding success and timing of Great Skuas in either year of 

the study. Unfortunately, only 19 of all adults studied were of known age so 

statistical comparison of age between sites was not possible, although the absence 

of differences in performance between sites suggests that there was no marked 

difference in the quality of breeders.  

4.4.2 Effect of microclimate and nest-site on adult behaviour 

Although breeding performance was unaffected, adults were found to be 

responding behaviourally to levels of thermal stress experienced at breeding sites. 
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In 2002, Great Skuas breeding at Ristie were significantly more likely than birds 

at other sites to leave their territories in order to bathe between 13:00 and 16:00 

BST, hours of peak thermal stress (Chapter 3, Figure 3.2). These adults also spent 

less time foraging during this period (on average 25 % less than those at the 

Fleck) presumably in part resulting from the trade-off between time spent in both 

activities (Chapter 3). In 2002, however, heat-loss behaviour (panting and gullar 

fluttering) was not most frequent at Ristie, despite birds at this site experiencing 

significantly higher operative temperatures. In the same year, Great Skuas 

breeding at Fleck and Mill Loch, sites of significantly lower operative 

temperature, exhibited 33 % higher foraging rates and a 22 % lower incidence of 

bathing, but were observed panting at breeding territories more frequently (27 % 

more than birds at Ristie). This suggests that increased time spent bathing for 

birds at Ristie reduced thermal loads to a point where panting was no longer 

necessary but at Fleck and Mill Loch adults traded-off bathing for extra foraging 

time and reduced thermal loads by panting on territory. This latter strategy should 

be most advantageous in the Great Skua, for which territorial attendance prevents 

cannibalism of chicks by conspecifics (Caldow & Furness, 2000). At Mill Loch, 

however, both adults of a pair still temporarily deserted territories more often 

than those at Ristie. Absolute differences between sites were fairly small in 

comparison to individual differences: on average only a maximum of 11 % of the 

three hour watch period was spent panting (up to 74 % for some individuals), 14 

% spent bathing (up to 68 % for individual birds), and mean differences in these 

two behaviours between sites was at most 2 % of the watch period (or 3.6 min), 

although this increased to 9 % (16.2 mins) on warm days. Consequently, it is 
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unsurprising that the mean frequency of nest desertion was not necessarily related 

to differences in thermal exposure and that there were no overall differences in 

breeding performance between sites. 

 Heat loss behaviour (panting, gullar fluttering) and bathing were both 

most common at high operative temperatures (Figure 4.5) but only heat loss 

varied between years, being highest in 2002, despite lower mean operative 

temperatures. Foraging effort for Great Skuas on Foula was no different between 

years, as determined from observed territorial absence during midday watches 

and spot checks made between 10:00 and 11:30 BST (Caldow & Furness, 2000). 

However, the incidence of both birds of a pair being absent from territories was 

lower in 2003 and chick survival was 10 % higher in this year. This indicates that 

in 2003 the only breeders that managed to raise chicks were probably the best 

quality parents, that achieved better coordination of their individual foraging 

(Caldow & Furness, 2000) and bathing trips. In this year, the incidence of bathing 

and heat-loss at Fleck and Ristie reflected observed differences in thermal 

exposure, both being higher at Ristie. Poor breeding for other species in this year, 

particularly Kittiwakes (Risa tridactyla), Puffins (Fratercula arctica) and 

Guillemots (Uria aalge) (Mavor et al., 2004), necessitated increased foraging 

effort for Great Skuas specializing on seabird prey, which is usually a less 

energetically costly foraging strategy (Votier et al., 2004), although there were no 

differences in diet between sites. 
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4.4.3 Differences in susceptibility to microclimate at different 

breeding stages 

Adult Great Skuas were most susceptible to thermal conditions during incubation 

and when their chicks were close to fledging. Heat loss behaviour was more 

frequently observed in actively incubating or brooding birds, presumably because 

these birds were restricted in their ability to alleviate heat stress by altering 

posture or position (Bartholomew & Dawson, 1979) or utilizing standing water 

on territory, e.g. Hand et al. (1981). Time spent bathing increased concurrently 

with foraging rate as chicks grew, probably as a result of thermal loading caused 

by increased metabolic heat-production of active adults (Chapter 2). Bathing 

activity was curtailed when chicks were close to fledging and panting on territory 

was common at this time, indicating that during this period bathing was probably 

traded off for extra foraging opportunity and birds pant to alleviate heat stress. 

4.4.4 Impacts of changing climates on breeding Great Skuas 

Altitude was the most important factor determining exposure to thermal stress at 

Foula and skuas at lower altitude sites were more regularly exposed to high 

operative temperatures. Currently, differences in microclimate seem to be 

influencing thermoregulatory decisions of breeding Great Skuas, particularly the 

probability of leaving territories to bathe at freshwater lochs. Behavioural budgets 

of breeding adults, however, appear sufficiently flexible to accommodate the 

consequential small reductions in foraging activity at sites of higher thermal 

stress without a reduction in breeding success. At cooler sites, or when foraging 

demands were highest, bathing activity was curtailed to increase foraging time 



 

 131

and heat was lost instead by panting on territory. Consequently, breeding success 

was unaffected by differential exposure to heat stress.  

Great Skuas at Foula, if temperatures regularly exceed those at which heat-

loss by panting becomes insufficient (see Chapter 2), thermoregulation by 

bathing off-territory may restrict time available for foraging or guarding chicks 

and low altitude breeding sites will be first to suffer reductions in chick growth or 

survival. Currently, however, no such change has been observed and, because in 

the UK, air temperature is unlikely to rise by > 2 C° over the next 80 years 

(predictions from HadCM3 climate model (Gordon et al., 2000)), direct thermal 

stress should not be a major problem at this colony.  

There is evidence, however, that climate change is influencing the 

productivity of waters around Foula (Reid et al., 1998; Reid, 2003) and poor food 

availability in recent years has caused widespread breeding failure for many 

seabirds around Shetland, including the Great Skua (Mavor et al., 2004). 

Persistence of these conditions will lead to high levels of conspecific predation 

and low levels of breeding success at Great Skua colonies within the UK. For this 

species it appears that indirect effects of climate change, mediated by changes in 

food availability, are likely to be far more important than direct changes in 

thermal exposure. 
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Chapter 5. 

The influence of climate, food and habitat availability on the past, 

present and future spread of Great Skua breeding colonies within 

the United Kingdom 
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Summary 

The breeding range of Great Skuas is expanding rapidly at its eastern margin in 

arctic Russia, but not at its southern margin within the UK. To examine whether 

the current UK distribution resulted from direct climatic requirements, habitat 

availability and distribution of food resources or a time lag in the spread from a 

previous bottleneck population, two different dispersal models were used: the 

incidence function model (IFM) and a spatially-realistic cellular automaton 

model (MIGRATE). IFMs were parameterised with colony data from a 

nationwide long-term population monitoring programme, and MIGRATE models 

were seeded with these data and parameterized from values in the literature. The 

UK was represented as a grid of 25 km2 cells and, in each, suitability for 

supporting a breeding population of Great Skuas was determined from empirical 

data on habitat and climatic suitability and food availability. Models were seeded 

with observed distribution in 1969. Simulated breeding distributions from both 

models for the year 2000 were in good agreement with those observed. 

Simulations indicated that, in the absence of dramatic climate change, Great Skua 

colonies are predicted to spread southwards along the western Scottish seaboard, 

and to a lesser extent in north-east Scotland and Northern Ireland. A degree of 

uncertainty surrounded the extent of the expected spread because of difficulties in 

determining the flexibility of adult diets, although this pattern could be altered by 

changes in adult diets or prey availability.  
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5.1 Introduction 

Breeding populations of birds are limited in their size and distribution by intrinsic 

demographic features (birth, death, immigration and emigration rates) and by 

extrinsic environmental factors (Newton, 1998). Extrinsic factors include inter-

specific competition and predation, resource and habitat availability and climatic 

limitation (Newton, 1998), either acting directly (Turner, Lennon & Lawrenson, 

1988) or influencing other factors (Davis et al., 1998; Lennon, Greenwood & 

Turner, 2000). Seabirds are long-lived species with low annual fecundity, and 

changes in population size and distribution usually lag several years behind 

changes in demographic parameters. For instance, changes in adult survival effect 

population size far more rapidly and profoundly than changes in breeding success 

(Weimerskirch et al., 2003). Climate has been implicated in many recent changes 

in the demography of Antarctic and temperate seabird populations (Veit & 

Hyrenbach, 2001; Croxall, Trathan & Murphy, 2002; Weimerskirch et al., 2003). 

In Antarctic areas, changes in the annual retreat of sea-ice have led to changes in 

juvenile and adult survival and breeding success of several seabird species, 

although proximate causes differ (Wilson et al., 2001; Croxall et al., 2002; 

Weimerskirch et al., 2003). In temperate areas, not dominated by ice dynamics, 

changes in sea-surface temperatures have been implicated in changing 

productivity regimes (Reid, 2003), prey abundance at low trophic levels (Reid et 

al., 1998) and population dynamics (breeding success, survival and incidence of 

breeding) of seabirds (Montevecchi & Myers, 1997; Jones & Hunter, 2002; 

Durant, Anker-Nilssen & Stenseth, 2003; Harding, Piatt & Hamer, 2003; 
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Inchausti et al., 2003). Such changes in food availability are thought to be the 

major factors affecting numbers of breeding seabirds (Cairns, 1989) and there is 

some evidence that competition for these resources has shaped the distribution of 

seabird colonies within the UK  (Furness & Birkhead, 1984; Lewis et al., 2001). 

Dietary variation within a species may complicate responses to climatically-

forced changes in food availability with some individuals benefiting and some 

being adversely affected by an increase in some prey species at the expense of 

others (Pinaud & Weimerskirch, 2002; Inchausti et al., 2003).  

 Great Skuas (Catharacta skua) are transequatorial migrants breeding in 

north-west and arctic Europe, Scandinavia, western Russia and wintering mainly 

off the coast of Spain and western Africa (Hamer, 2001; J. Crane unpubl. data). 

Given the high over-winter survival of adults (Ratcliffe et al., 2002) and high 

natal philopatry (Klomp & Furness, 1992a), changes in breeding distributions are 

more likely to be determined by resource availability and suitability of breeding 

sites than by events outside the breeding season. Mortality of adults during the 

breeding season is low (Furness, 1977, 1978b; Klomp & Furness, 1992a) but 

there is some evidence of inter-colony dispersal, despite high site fidelity once 

established within a colony (Klomp & Furness, 1992a). For instance, Great Skuas 

ringed in Shetland have contributed greatly to the expanding colony at St. Kilda 

(Phillips et al., 1999a) and one quarter of the birds breeding on Fair Isle in the 

mid-1970s were ringed as chicks on Foula (Furness, 1977, 1978b). The 

attractiveness of a colony should determine rates of immigration and emigration 

but because of the high philopatry of established breeders, colony extinction may 

have a generational lag time (Weimerskirch et al., 2003). 
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 A number of different dispersal models have been used to simulate the 

direction and rates of change of animal populations (e.g. Hanski (1994), Hill et al. 

(2002)). The incidence function model (IFM) is a stochastic patch occupancy 

model (SPOM) (Moilanen, 1999) relating occupancy of habitat patches (in this 

case breeding colonies) to the twin processes of extinction (a function of patch 

size) and colonisation (a function of dispersal). The main components of IFMs 

are detailed in Hanski (1994; 1998; 1999). Extinction probability is proportional 

to patch area (i.e. population size) given that all patches have the same “quality” 

and therefore equal equilibrium density (Hanski, 1994). Colonisation probability 

is a function of the yearly immigration to a specific patch which is directly 

related to patch connectivity (describing how dispersal declines with distance to 

each source patch (Wilson et al., 2002)).  

 MIGRATE is a two-dimensional spatially-explicit model simulating 

migration over a gridded landscape, fully described by Collingham et al. (1996). 

The model has previously been used to simulate range expansion in a variety of 

species including birds and butterflies (Collingham et al., 1996; Hill et al., 2001). 

MIGRATE is sensitive to variation in dispersal (Collingham & Huntley, 2000) 

and also requires information on period of maturation, survival, reproductive 

output and breeding density (Collingham et al., 1996).  

 The distribution pattern and recent northwards expansion of Great Skuas 

suggests that their southern range margin may be determined by climate (Furness, 

1988; Hamer, 2001), even though available evidence indicates that breeding birds 

are not directly constrained by climate at their breeding colonies (Chapters 2, 3 & 

4). The most widely observed constraint upon Great Skua breeding populations is 
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food availability. Great Skuas have a very catholic diet (Hamer, 2001) which 

varies according to available food resources (Votier et al., 2004b). In the UK, 

observed diets during the breeding season include sandeels (Ammodytes marinus) 

and fisheries discards as well as adult seabirds (Hamer, 2001) and recently 

changes in the availability of all these prey have been evident around Great Skua 

breeding colonies (Mavor et al., 2003, 2004; Votier et al., 2004b). Distribution 

may also be limited by the availability of suitable nesting habitat (Micol & 

Jouventin, 2001; Croxall, 2004), which may be affected by sea-level or floral 

changes associated with climatic warming (Houghton et al., 2001).  

 This chapter examines whether range expansion in Great Skuas is most 

strongly influenced by direct climatic requirements, habitat availability, 

distribution of food resources or a time-lag in dispersal from a previous 

bottleneck population of ~40 pairs in 1900 (Chapter 1). Two models of 

population spread and dispersal were run for two contrasting diet scenarios and 

both models incorporated estimates of climatic and habitat suitability. These 

models were used to simulate future breeding distributions of Great Skuas within 

the UK. 
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5.2  Methods 

 Two spatially explicit dispersal models, the incidence function model (IFM) 

(Hanski, 1994) and a cellular automaton model (MIGRATE) (Collingham et al., 

1996), were used to simulate recent changes in UK Great Skua breeding 

distributions and most probable future distributions. Data for the sizes of all UK 

colonies were available for census years from the JNCC Seabird Colony Register. 

5.2.1 Developing a gridded landscape for spatial modelling: variation 

in suitability of the UK landmass for breeding by Great Skuas 

A landscape representing the entire UK landmass was developed for use with 

both dispersal models (Figure 5.1). This was as an equal-area grid, of 58176, 5 × 

5 km cells, encompassing all UK landmasses between 9°58’48 W, 48°35’24 N, 

and 3°43’12 E, 61°30’00 N, but not the Republic of Ireland. An index of the 

suitability of each cell for supporting a Great Skua colony was calculated using 

three criteria: habitat suitability, food availability and climate suitability. The 

index of overall suitability was the lowest of these three values, i.e. the limiting 

factor. Figure 5.1 shows the cell suitability across the landscape for two different 

diet scenarios. 

 Habitat suitability was the proportion of the cell classified as either 

“mountain, heath, bog” or “semi-natural grassland” in the Land Cover Map of 

Great Britain 2000 (Aggregative Class codes 6 or 5; © Centre for Ecology and 

Hydrology 2001; www.ceh.ac.UK/data/lcm/index.htm) since these categories 

encompassed the nesting habitat of Great Skuas (Furness, 1987; Hamer 2001).
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Figure 5.1 The relative suitability of each cell in the model landscape for breeding by Great Skuas (i.e. the proportion of a cell that is available 
for breeding relative to all other cells (see text)). Suitability varies when diet is modeled as (a) predominantly seabird (60 %) or as (b) 
predominantly pelagic (15 % seabird) and is determined from the relative availability of habitat, suitable climatic conditions or food resources, 
whichever is most limiting.  Since cells are 5 km × 5 km, grey regions indicate none of the cells are suitable, green regions have 0.001-0.05 cell 
suitability, yellow 0.05-1.0 cell suitability, orange 0.1-0.2 cell suitability and red > 0.2 cell suitability. Cell suitability is used in the dispersal 
models to indicate the proportion of a 25 km2 cell that is available for breeding (maximum population size = suitability / breeding density). 

a b
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 An index of food availability was calculated by combining data on the 

three food resources most commonly used by Great Skuas in the UK: small 

pelagic fish, fisheries discards and seabirds (Hamer, Furness & Caldow, 1991; 

Phillips et al., 1997; Hamer, 2001; Votier et al., 2004b). Mean cholorophyll-a 

concentration during chick-rearing (15th June – 31st July) in 1997 (averaged from 

daily means held by NERC Remote Sensing Data Analysis Service (RSDAS) 

(www.npm.ac.UK/rsdas)) was used as an index of the availability of small 

pelagic fish (Valavanis et al., 2004). The relative availability of this prey in each 

cell was determined from kernel density estimation (e.g. Wood et al. (2000)) of 

mean cholorphyll-a values using a search radius of 50 km (the estimated 

maximum radius of foraging trips; Furness (1978a)). Density values for each cell 

were then converted to proportions of the maximum cell value observed within 

the landscape.  

 Data on fisheries discards (yearly means between 1988 and 2001) for 

Mackerel Scomber scombrus, Whiting Merlangius merlangus, Blue Whiting 

Micromesistius poutassou and Haddock Melanogrammus aeglefinus (the main 

species eaten by Great Skuas (Votier et al., 2004b)) were taken from the 

International Council for the Exploration of the Sea (ICES) (www.ices.dk) for the 

11 ICES fishing areas around the UK. The density of discards available in each 

cell was calculated using kernel analysis, and converted into a proportional value, 

as for chlorophyll density.  

 Population sizes of those seabird species eaten by Great Skuas were 

obtained from the Joint Nature Conservation Committee (JNCC) Seabird Colony 

Register (SCR) (www.jncc.gov.uk) as a mean of two years in which complete 
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coverage was made (1969-70 and 1985-87). Numbers of breeding Puffins 

Fratercula artica, Common Guillemots Uria aalge, Razorbills Alca torda, 

Kittiwakes Rissa tridactyla and Fulmars Fulmarus glacialis were converted into 

energetic equivalents (multiplying numbers of individual birds by species-

specific mean body masses (Dunning, 1993) and energy density  (Phillips et al., 

1997)(Table 5.1)). Energy available from seabirds for a grid cell, calculated as 

the sum of energetic equivalents of all five species, was used to predict the 

maximum size of breeding Great Skua colony that the cell could support, by 

dividing by the energy requirement of a breeding skua (307,000 kJ per season; 

(Phillips et al., 1999b)). Since Great Skuas do not consume entire breeding 

populations of these seabirds in a single year, realised skua populations will be 

smaller than those predicted in this way (Furness, 2004). To account for this, 

 

Table 5.1 Mean body mass, energy density and content of the main seabird prey of Great 
Skuas, assuming all tissues to be consumed. a mean of values for males and females 
(from Dunning (1993)); b values from Phillips et al. (1999b). 

Species Mean body mass (g) a Energy density 
(kJ.g-1) b 

Energy content of 
one bird (kJ) 

Puffin 381.0 10.9 4152.9 

Guillemot 992.5 10.9 10818.2 

Razorbill 719.0 10.9 7387.1 

Kittiwake 407.0 10.9 4436.3 

Fulmar 544.0 10.9 5929.6 
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observed sizes of Great Skua colonies at Foula and St. Kilda, for which diet data 

were available, were multiplied by the mean proportion of seabird in the diet, to 

give the number of breeding individuals directly dependent on seabirds (Table 

5.2). This value was then divided by predicted colony size, giving a calibration 

between predicted and observed colony size. Maximal colony sizes predicted 

from simple energy requirements were therefore multiplied by 0.156, the 

conservative estimate for St. Kilda (Table 5.2). Kernel analysis, with a search 

radius of 10 km was used to estimate the number of Great Skuas that could be 

supported by seabird populations in every grid cell, because birds specialising as 

seabird predators often maintain regular feeding areas not far from their breeding 

territories (Reinhardt, 1997; Mougeout, Genevois & Bretagnolle, 1998; Votier et 

al., 2004a). This number was then converted to a proportion, as for chlorophyll 

density. 

 The diet of breeding Great Skuas varies widely between colonies (Phillips 

et al., 1997) but reflects the relative availability of different food resources 

(Votier et al., 2004b). Overall food resource availability in each cell was 

therefore calculated for two extreme scenarios based on documented diets at two 

colonies, St. Kilda (mean diet: 58.2 % seabird, 36.4 % fish, 5.4% other) and 

Foula, (mean diets: 10.4 % seabird, 84.9 % fish, 4.7 % other) (Phillips et al., 

1997). Fish diet was assumed to be split equally between discards and active fish 

predation, because when pelagic fish are scarce discards make up a higher 

proportion of the diet (S. Votier, pers. comm.), and the “other” component of the 

diet was ignored.  
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Table 5.2 Available seabird prey (1969 & 1986 JNCC censuses), overall energy, maximum predicted skua breeding population and dietary scenarios 
compared with observed population sizes at Hirta, St. Kilda, and Foula, Shetland. Data sources: a Phillips et al. (Phillips et al., 1999a), b Klomp & 
Furness (1992b).  Proportion observed/maximum predicted accounts for differences between realised population sizes and those estimated from 
bioenergetics, incorporating necessities of prey population persistence and predator searching and handling times.  

Mean numbers of seabird prey species  

Colony Puffin Guillemot Razorbill Kittiwake Fulmar 

Overall energy 
available from 
seabird prey 

(kJ) 

Maximum 
number of 

bird-
specialist 

skuas 

Observed 
maximum 
breeding 

skua 
population 

(individuals) 

Maximum 
proportion 

of seabird in 
diet 

Observed 
(corrected 
for diet) 

/maximum 
predicted 

St. Kilda 10,179 11,982 3,404 20,094 54,556 609,488,761.5 1,792 466 a 0.60 0.156 

Foula 50,630 23,156 3,367 5,556 59,275 863,216,475.0 2,812 5090 b 0.10 0.181 
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  For the scenario assuming a diet comprising mainly seabirds, food 

availability for each cell was calculated by multiplying the availability of 

seabirds, discards and chlorophyll-a by 0.6, 0.2 and 0.2, respectively, and 

summing the products. For the scenario assuming a diet comprising mainly fish, 

food availability was calculated in the same way but multiplying proportional 

availability of seabirds, discards and fish by 0.10, 0.45 and 0.45, respectively. 

 Climatic suitability of each cell was calculated from the probability of 

occupancy in climate response surface analysis (Chapter 6), interpolated for each 

25 km2 grid cell. Climate variables used in the response surface were those that 

best simulated current European distribution: mean temperature of the coldest 

month, growing degree days > 5 °C, and spring sea surface temperature (model 

H2, Kappa = 0.725; Chapter 6).  

 Overall cell suitability was the value for either relative habitat suitability, 

food availability or climate suitability, whichever was lowest, i.e. most limiting. 

The proportion of cells in the landscape for which overall suitability was dictated 

by habitat suitability, food availability or climatic suitability indicated the relative 

importance of these three factors in constraining the UK breeding distribution of 

Great Skuas during simulations.  

 Competition for resources may occur between closely-spaced breeding 

colonies of seabirds, especially when colonies are large (Ashmole, 1963; Lewis et 

al., 2001). To incorporate the negative effect of large neighbouring colonies, the 

suitability of cells within 10 km of Great Skua colonies supporting over 15 pairs 

(data from 1969 & 1986 (Cramp, Bourne & Saunders, 1974; Lloyd, Tasker & 
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Partridge, 1991)) was reduced, depending on the proximity of the neighbouring 

colony (suitability was  equal to s × (0.1d), where s is original cell suitability and 

d is distance (in km) from the large colony. This led to a halving of the suitability 

for neighbouring cells, 5 km distant).  

5.2.2 Model parameterisation 

Figure 5.2 details the IFM equations and Table 5.3 describes the individual 

parameters used in this dispersal model. All but two IFM parameters were 

estimated from data on the presence/absence of breeding Great Skuas for all cells 

in the landscape at four snapshots in time (colony size data from SCR, years 

1969-70, 1982, 1985-7, and 1992). For 1982 and 1992, when coverage was 

incomplete, occupancy was assumed if patches were occupied during the 

previous census. Parameterization was performed with SPOMSIM software 

(Moilanen, 2003) using the Turnover Monte Carlo (TMC) method of Moilanen 

(2000) that allowed accurate estimation despite an observed increase in Great 

Skua breeding populations within this period. This estimated IFM parameters 

from observed trends in extinction and colonization during this 23 year period. 

Values of α and β, describing dispersal of offspring from their natal colony, were 

estimated independently from a negative power curve (y = 1/[1 + βxα]) in which 

98 % of offspring returned to breed within 5 km of their natal colony and 2 % 

dispersed further (Figure 5.3), as observed empirically for Great Skuas from 

Shetland (Furness, 1978b; Klomp & Furness, 1992a). To investigate the variation 

in rates of change of Great Skua breeding populations, a separate IFM 

parameterization (for all parameters including α and β) was performed with 
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Figure 5.2 Equations and explanations of IFM components used to model Great Skua 
spread within the UK. Parameter definitions and values are given in Table 5.3. 
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Table 5.3 Parameters in the basic IFM model, with usual data source and typical values 
(for butterfly studies). Sources: a Hanski (1994); b Wilson et al. (2002). In this study, area 
of patch (cell) (Ai) = value for overall cell suitability × cell size (25 km2). 

 

Parameter Description Source Typical 
values 

α Parameter describing 
distribution of migration 
distances 

Estimated from mark-
recapture, or pres/abs data  

2a ; 2,3,4,5 b 

β Parameter describing 
distribution of migration 
distances 

Estimated from mark-
recapture, or pres/abs data  

1 

Ai Area of patch i Empirical maps 0.4-0.9 ha a 

dij Pair-wise distances between 
patches 

Empirical maps <1 km b 

pi Presence or absence of species 
in year of survey 

Empirical pres/abs or data N/A 

y Colonization ability of species 
(smaller gives more migrants) 

Parameter estimation 0-2.663 a 

e Threshold area for extinction Parameter estimation 0.01-0.044 a 

x Extinction susceptibility with 
patch area 

Parameter estimation 0.5-1.099 a 
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Figure 5.3 Dispersal kernels, used in both IFM (solid) and MIGRATE (dashed) models, 
predicting the proportion of offspring returning to breed at different distances from the 
natal colony. IFM curve derived from negative power function ( y = 1 / [βxα ] ), with α = 
2.063 and β = 0.548, MIGRATE curve also included long range dispersal (see text). 

 

SPOMSIM for the period 1900-1960 (data for 1900, 1910, 1920, 1930, 1940, 

1950, 1960 from Furness (1987)[Tables 13 & 14]). 

 Species-specific parameters used in MIGRATE simulations are given in 

Table 5.4. The proportion of each cell available for colonization was the overall 

cell suitability (section 5.2.1). Since 98 % of Great Skuas recruit to their natal 

colony, 0.98 of migrants were set to return to breed within the cell from which 

they originated. The dispersal function used in these simulations incorporated two 

different curves representing, medium- and long-range dispersal. Medium-range 
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dispersal was estimated with the negative power function used in IFM 

parameterizations (Figure 5.3). This function alone may underestimate long-

range dispersal (Collingham & Huntley, 2000) and so a separate negative power 

function (α = 1.0 and β = 0.01), giving the cumulative probability of breeding 

observed for Great Skua colonies (0.02 for all distances > 5 km, i.e. 2 % long-

distance dispersal)) (Klomp & Furness, 1992a), was incorporated to simulate 

long-distance dispersal.  

5.2.3 Simulations and analyses 

Both IFM and MIGRATE models were run for the two different diet scenarios 

(section 5.2.1), using the final parameters (IFM: Table 5.6, MIGRATE: Table 

5.4). Runs for each scenario were made from starting distributions in 1969 (the 

first full census of Great Skua colonies in the UK) (Figure 5.4) and output was 

obtained for years 2000, 2050 and 2100 to provide model assessment and future 

predictions for the same periods as climate change analyses (Houghton et al., 

2001). Since both IFM and MIGRATE are subject to stochastic processes, each 

run was replicated (100 times for IFM; 10 times for MIGRATE simulations 

because each lasted many hours). Each replicate dataset was bootstrapped with 

replacement (Efron, 1982) to generate a sample of 1000 replicates for each run. 

Means were calculated for probability of occupancy (for IFM) and mean colony 

size (for MIGRATE) of each cell in 2000, 2050 and 2100 from these bootstrap 

datasets for each scenario. Mean probability of occupancy was also calculated for 

all outputs from MIGRATE scenarios by defining only cells with simulated 

colony size > 0 as occupied prior to bootstrapping. 
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Table 5.4 MIGRATE parameters, sources and values used to simulate recent spread of 
Great Skuas in the UK. a data collected at Foula, Shetland in 2002 and 2003 (Chapter 4). 

Parameter Description Source Value 

 Probability of dispersal 98 % philopatry (Klomp 
& Furness, 1992a) 

 0.02 

 Dispersal function 98 % philopatry (Klomp 
& Furness, 1992a) 

y = 1 / [βxα ]  

where, α = 3.25,     
β = 0.43 

 Time to reach maturity  Conservative estimate 
(Furness, 1987) 

8 years 

L Length of cell Grid cell size 5 km 

a Area occupied by an adult Mean density estimated 
from nearest neighbour 
distances at Foula in 
2002 & 2003a 

3631 m2          
(for a circular 
territory of  
radius 34 m) 

Kij Proportion of each cell 
available for colonisation 
(carrying capacity) 

Cell suitability (section 
5.2.1) 

range 0.00-0.54 

T Time step Time taken for offspring 
to return to breed;  
(Furness, 1977, 1987) 

8 years  

S No. offspring produced per 
generation 

Calculated from intrinsic 
rate of increase 

depends on 
colony size 

P0 Probability of offspring 
reaching maturity (8 years) 

Calculated from yearly 
survival estimates 
(Klomp & Furness, 
1992a; Ratcliffe et al., 
2002) 

0.257 

P1 Probability of adults 
surviving a second 
generation (8 years) 

Mean of yearly survival 
estimates (Ratcliffe et 
al., 2002) 

0.394 

F No. offspring produced per 
individual in a generation 
(8 years) 

Mean of available 
productivity (× 8) data 
for Shetland and Orkney 
(Furness, unpublished 
data) 

8 
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 The Kappa statistic (Monserud & Leemans, 1992) was calculated by 

comparison of mean probability of occupancy from IFM and MIGRATE 

simulations for 2000 with observed data for that year (Mitchell et al., 2004). 

Kappa is a quantitative index useful for the comparison of spatial data (Manel, 

Williams & Ormerod, 2001) and indicates, for all cells, the proportion of 

predicted presences/absences that were in agreement with those observed. To 

calculate this statistic, it is necessary to define a probability threshold, over which 

breeding colonies are predicted as being present for that cell. Thresholds for each 

comparison were chosen by simultaneously optimizing the sensitivity (proportion 

of observed presences that were simulated) and the accuracy (proportion of 

simulated presences/absences that coincided with those observed), following 

Huntley et al. (1995).   



 157

Figure 5.4 Observed distribution of Great Skua breeding colonies in the UK in (a) 1900 and  (b) 1969. Data from 1969 were used as the starting point 
for IFM and MIGRATE simulations. Colony sizes (number of breeding pairs) are indicated in legend. 
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5.3 Results 

5.3.1 Model Performance 

Simulated Great Skua breeding distributions in 2000 from both IFM and 

MIGRATE were in good agreement with their observed distribution (Mitchell et 

al., 2004) (Table 5.5, Figures 5.5 & 5.6).  

 

Table 5.5 Agreement of simulated UK Great Skua breeding distributions for 2000 from 
dispersal models with those observed in the Seabird 2000 census for each diet scenario. 
Kappa in excess of 0.5 indicates good correspondence between predicted and observed 
distributions (Monserud & Leemans, 1992). Probability thresholds associated with 
maximum Kappa vales are given.  

Dispersal 
Model  

Main 
component 

in diet Threshold 
Max. 

Kappa 

Seabird 0.102 0.580 MIGRATE 

Pelagic 
resources 0.140 0.641 

Seabird 0.035 0.595 IFM 

Pelagic 
resources 0.966 0.561 
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Figure 5.5 (a) Observed distribution and sizes of Great Skua colonies in the UK in 2000 and (b) simulated distribution from MIGRATE dispersal 
model for the same year. Filled circles in (a) are apparently occupied territories, open circles in (b) are predicted number of breeding pairs in cells 
where colonies are simulated in > 50 % of replicated simulations and shaded squares in (b) indicate colonies simulated in < 50 % of replicates, 
extensive light grey areas have zero probability. 

Pairs 
ο 1-50 
ο  50-300 
   300+ 
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Figure 5.6 (a) Observed distribution and sizes of Great Skua colonies in the UK in 2000 and (b) simulated breeding probability from IFM dispersal 
model for the same year. Filled circles in (a) are apparently occupied territories, and shaded squares in (b) are simulated colonies in different 
proportions of simulation replicates, extensive light grey areas have zero probability. 

Probability
■ 0.001-0.25
■ 0.251-0.50
■ 0.501-0.75
■ 0.751-1.00
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5.3.2 Simulated future breeding distributions for the Great Skua 

within the UK 

Simulated probability of supporting a breeding colony, for all cells in the 

landscape, is shown for 2050 (Figures 5.7 & 5.9) and 2100 (Figures 5.8 & 5.10) 

for MIGRATE and IFM models. Running MIGRATE models with two observed 

extremes of diet (60 % seabird and 15 % seabird) substantially influenced the rate 

of spread of breeding colonies but not the extent (Figures 5.7 & 5.8). MIGRATE 

simulations indicated extensive colonies to spread through all coastal regions of 

western Scotland and parts of eastern Scotland and Northern Ireland by 2100, 

although newly founded colonies only exceeded 300 pairs in simulations 

incorporating predominantly pelagic diets (Figure 5.8). Using the same extremes 

of diet in IFM models, however, affected both the rate and extent of spread. 

Simulations run with predominantly pelagic diet indicated a more rapid 

southward spread along coastal regions. IFM simulations incorporating 

predominantly pelagic diet predicted an extent of spread by 2100 similar to that 

seen in corresponding MIGRATE simulations (Figure 5.10). The rate of this 

simulated expansion, however, was much slower in IFM models (compare 

Figures 5.7 & 5.9) and, for the IFM model with a predominantly seabird diet 

simulated distribution in 2100 was barely any different from that observed in 

2000 (compare Figures 5.6 & 5.10). 
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Figure 5.7 Simulated probability of Great Skuas breeding in all cells in 2050 from the MIGRATE model incorporating predominantly (a) seabird and 
(b) pelagic diets. Shading indicates the probability of a cell containing a breeding colony, extensive light grey areas have zero probability. Black circles 
indicate colonies of > 300 breeding pairs. 

Probability
■ 0.001-0.25
■ 0.251-0.50
■ 0.501-0.75
■ 0.751-1.00

Probability
■ 0.001-0.25
■ 0.251-0.50
■ 0.501-0.75
■ 0.751-1.00
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Figure 5.8 Simulated probability of Great Skuas breeding in all cells in 2100 from the MIGRATE model incorporating predominantly (a) seabird and 
(b) pelagic diets. Shading indicates the probability of a cell containing a breeding colony, extensive light grey areas have zero probability. Black circles 
indicate colonies of > 300 breeding pairs. 

Probability
■ 0.001-0.25
■ 0.251-0.50
■ 0.501-0.75
■ 0.751-1.00

Probability
■ 0.001-0.25
■ 0.251-0.50
■ 0.501-0.75
■ 0.751-1.00
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Figure 5.9 Simulated probability of Great Skuas breeding in all cells in 2050 from the IFM model incorporating (a) predominantly seabird and (b) 
pelagic diets. Shading indicates the probability of a cell containing a breeding colony, extensive light grey areas have zero probability. 

Probability
■ 0.001-0.25
■ 0.251-0.50
■ 0.501-0.75
■ 0.751-1.00

Probability
■ 0.001-0.25
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Figure 5.10 Simulated probability of Great Skuas breeding in all cells in 2100 from the IFM model incorporating (a) predominantly seabird diet (b) 
predominantly pelagic diets. Shading indicates the probability of a cell containing a breeding colony, extensive light grey areas have zero probability. 

Probability
■ 0.001-0.25
■ 0.251-0.50
■ 0.501-0.75
■ 0.751-1.00

Probability
■ 0.001-0.25
■ 0.251-0.50
■ 0.501-0.75
■ 0.751-1.00
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5.3.3 Recent and historical rates of spread 

Compared to parameters estimated from colony occupancy between 1969 and 

1992, populations expanding from the 1900 bottleneck were best simulated in 

IFM models by a three-fold increase in the survival of migrants (reduced α) plus 

an eight-fold increase in migration density (β) (Table 5.6). However, during this 

rapid phase of expansion (1900-1960) the colonization ability, a measure of how 

size and proximity to neighbouring colonies influences rates of colonization, was 

lower (as indicated by a large value of y).  

 

Table 5.6 IFM parameter values estimated using Turnover Monte Carlo (TMC) 
estimation for years of rapid (1900-1960) and recent expansion (1969-1992). See Figure 
5.2 & Table 5.3 for parameter definitions. 

 

 

 

 

 

Parameter Rapid expansion 
(1900-1960) 

Recent expansion 
(1969-1992) 

α 0.94 3.25 

β 3.79 0.43 

b 0.82 0.93 

y 128.9 5.47 

e 34.33 35.16 

x 1.76 1.55 

R 0.76 0.66 
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5.3.4 Relative importance of habitat, food and climate in limiting simulated 

suitability of sites for breeding by Great Skuas 

Habitat suitability was the most limiting factor determining overall cell suitability in 

the model landscape (Table 5.7). Climatic suitability only restricted breeding sites for 

Great Skuas in ~ 7 % of the landscape and approximately 5 % of cells were restricted 

by food availability alone (Table 5.7). When more than one factor was limiting (Table 

5.7), habitat suitability was part of this limitation in 62 % of cases, climatic suitability 

also in 62 % of cases but food availability only in 15 %. 

 

Table 5.7 Proportion of all cells in study area in which the overall cell suitability for breeding 
Great Skuas is limited by climate, diet or habitat alone or by more than one of these factors. 
Proportions are given for the two extreme diet scenarios. 

Main 
component in 

diet Climate Diet Habitat Multiple 

Seabird  0.068 0.057 0.254 0.621 

Pelagic 
resources 

0.072 0.049 0.258 0.621 
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5.4 Discussion 

5.4.1 Simulated breeding distributions of Great Skuas wíthin the UK 

Both IFM and MIGRATE models accurately simulated the observed breeding 

distribution of Great Skuas in 2000 when seeded with data for 1969. Several new 

colonies have been formed within this period and many established colonies have 

grown by > 10 % over the last ten years (Furness & Ratcliffe, 2004). 

Consequently, both dispersal models adequately incorporated observed trends in 

expansion and population increase over the past 30 years.  

MIGRATE models assuming a predominantly pelagic diet produced the 

most accurate simulations but for IFM the most accurate simulation was for the 

diet comprising mainly seabirds. Small inaccuracies in simulated spatial 

dynamics are compounded the more years that simulations are run for and so 

predictive accuracy of these models declines for future simulations. IFM models 

run with a predominantly seabird diet simulated very little change in the breeding 

distribution of Great Skuas within the UK over the next 100 years (Figures 5.6b, 

5.9a & 5.10a). IFM models assuming a predominantly pelagic diet simulated a 

range expansion similar to, although not as extensive as, that predicted by 

MIGRATE models with either diet specification (Figures 5.7 & 5.8). The 

influence of diet specification in MIGRATE models was to determine the rate at 

which breeding colonies spread southward, being much faster for models using 

predominantly pelagic diet. Neither of the diet scenarios truly represented 
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observed flexibility in Great Skua diets, however, because diet appears to be 

largely a function of relative availability of food resources (Votier et al., 2004b). 

Although, on average, Great Skua diets lie between the modelled extremes, both 

diet scenarios for MIGRATE models indicated a southward expansion of 

breeding colonies, as did the IFM model using a predominantly pelagic diet. 

Therefore, given the model assumptions, it is most likely that Great Skua 

breeding colonies will spread southward, particularly along the western Scottish 

seaboard over the next 50-100 years. 

In addition to the inherent assumptions of the two models (section 5.4.3), 

simulations produced were dependent on there being no change in habitat or food 

availability or climatic conditions over the next 100 years. In the UK, 

temperature rise is predicted to be only moderate by comparison with global 

estimates (Houghton et al., 2001). Considering that within current colonies, 

breeding sites may consistently differ in heat-stress by as much as 3 Celsius 

degrees (C°) (Chapter 4), direct impacts of this climatic warming are unlikely to 

impose new restrictions on the spread of breeding colonies. In both models food 

availability was found to be a limiting resource for at most 15 % of the whole 

study landscape. This is surprising since food availability is known to have major 

impacts on breeding success and adult survival in Great Skuas (Hamer et al., 

1991; Ratcliffe et al., 2002) and is often the proximate cause of population 

changes in response to climatic change (Croxall et al., 2002). This discrepancy 

exists because food availability data were from years in which food shortages at 

major colonies were not evident: chlorophyll data were from a snapshot in 1997 

(Thompson, Brindley & Heubeck, 1988), seabird distributions from 1969 and 
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1986 (Cramp et al., 1974; Lloyd et al., 1991) and discard data from 1988-2001 

(Votier et al., 2004b). Therefore, all model simulations were based on food 

availability being sufficient throughout much of the breeding range. This 

assumption may lead to over-estimation of future distributions in view of  future 

likely reductions in discarding rates (Furness, 2000), regime shifts in pelagic 

productivity (Reid, 2003) and sporadic widespread breeding failure of seabirds in 

areas of the UK (Proffit, 2004) .  

 

5.4.2 Differences between recent and historical rates of spread of 

breeding populations 

Expansion from an artificially low population in 1900 (~ 40 pairs (Furness, 

1987)) was best represented by colonisation parameters that differed from those 

accurately describing recent population change (1969-2000). This former period 

was characterised by more migrants leaving existing colonies and being more 

likely to survive to breeding. Expansion during this time appeared to be 

predominantly local, because a high value for the parameter y indicated that 

connectivity, the influence of surrounding colonies, was much reduced. This is as 

observed: the majority of breeding range expansion between 1900 and 1960 was 

restricted to Shetland and, to a lesser extent, Orkney (Furness, 1987). Expansion 

since 1969 appears to have been less tightly focused, with new colonies being 

founded in the Hebrides as well as Orkney and Shetland (Cramp et al., 1974; 

Lloyd et al., 1991; Furness & Ratcliffe, 2004) and with fewer migrants leaving 

each breeding colony but there being many more colonies in existence.  
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5.4.3 Limitations of dispersal model simulations 

One problem when parameterizing IFM models from observed colonisation and 

extinction dynamics of long-lived seabird colonies is that, even for data spanning 

> 20 years, extinction and colonisation events are relatively rare (only 6 colony 

extinctions were identified between 1969 and 1992). Thus, even with four or 

more snapshots of patch occupancy, model parameterization may under- or over-

estimate rates of extinction and colonisation (Moilanen, 1999). Stochasticity 

eventually causes a network of colonies to become either fully occupied or empty 

(Hanski, 1998) and becomes more important the longer simulations are run for. 

Consequently, IFM simulations of Great Skua distributions for 2100 are probably 

far less accurate than those for 2000.  

 All models included competition from neighbouring large colonies, as 

suggested for other seabirds species (Ashmole, 1963; Lewis et al., 2001), 

However, currently no studies show such competition at Great Skua breeding 

colonies and by 2100 simulated probabilities were moderate for most cells 

surrounding large colonies, suggesting that the influence of competition was 

minimal. All IFM predictions exhibited a steady cell-to-cell spread of breeding 

populations, in contrast with observed patchiness in the spread of Great Skua 

populations over the last 100 years (Furness, 1987; Furness & Ratcliffe, 2004). 

This difference arises because each cell is simulated as either occupied to 

capacity or empty (Hanski, 1994) but within real colonies growth is more gradual 

(e.g. Phillips et al. (1999a)). The observed spread of Great Skua colonies 

(Furness, 1987; Furness & Ratcliffe, 2004) is better described by low frequencies 

of long-distance migration, as simulated by MIGRATE (Collingham et al., 1996), 
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although figures 5.5, 5.7 & 5.8 were derived from many model runs and so show 

moderate probabilities for many cells that were not occupied in all simulations. 

Unfortunately, MIGRATE simulations are very dependent on the dispersal 

characteristics selected (Collingham & Huntley, 2000). Although long-distance 

dispersal can be described using a negative power curve (as here), this function 

assumes that the migrants that disperse furthest are fewer in number than those 

dispersing any shorter distances. For the Great Skua, detailed dispersal 

information is unavailable and while only 2 % of recruits breed away from their 

natal colony (Furness, 1978b; Klomp & Furness, 1992a), it may be that all of 

these individuals migrate over 50 km rather than spread across migration 

distances in the way simulated by negative power curves. Also, there was also 

considerable uncertainty in the variability of MIGRATE parameters such as adult 

and juvenile survival and breeding success throughout all UK colonies of 

different size and age. Whilst the parameters used in MIGRATE simulations 

were from robust studies at certain colonies (e.g. Ratcliffe et al., 2002), it is 

unlikely that all colonies will exhibit similar dynamics, and so further uncertainty 

surrounds the accuracy of simulated distributions. Finally, migration rates are 

much lower in landscapes in which suitable habitats, or aggregations of habitat, 

are isolated (Collingham & Huntley, 2000). However, in the current study, spatial 

suitability was determined using empirical data and while cells of the highest 

suitability were aggregated, especially when a predominantly seabird diet was 

assumed (Figure 5.1a), migration between these was possible by spreading 

through cells of lower, but still positive, habitat suitability. 
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5.4.4 Implications of probable future Great Skua breeding 

distributions within the UK 

Great Skuas were one of the only UK seabird species to exhibit large population 

expansions over the past 30 years (Mitchell et al., 2004) but the rate of growth of 

breeding populations within the UK has slowed substantially since expansion 

from artificially low levels at the beginning of the twentieth century. Dispersal 

simulations indicate that substantial spread of breeding populations of Great 

Skuas is also liable to occur throughout northern and western Scotland and 

Northern Ireland within the next 50-100 years; the first Great Skua breeding in 

Northern Ireland was recorded in 2003 (R. W. Furness, pers. comm.). Although, 

current UK breeding distributions are associated with the 13 °C mean July 

isotherm (Furness, 1988), simulations indicate that UK distributions are still 

expanding from previous population bottlenecks and are not yet in equilibrium 

with the observed climatic tolerances of Great Skuas (Chapters 2 & 6). The rate 

of spread of populations, however, will depend on the diet of Great Skuas at 

breeding colonies which is very flexible and dependent on available resources 

(Votier et al., 2004b). 
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Chapter 6. 

Climatic mechanisms limiting the breeding distributions 

of skuas and other high-latitude seabirds 
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Summary 

To simulate the consequences of climate change for breeding distributions of 

long-lived seabirds, it is necessary to determine the most probable mechanisms 

by which species are restricted to observed climatic conditions at current 

breeding sites. Climate response surfaces were constructed for the four European 

species of skua (Stercorariidae), selecting climatic variables based on three 

mechanisms by which climate could be limiting the breeding distribution of these 

species. Simulated distributions using these surfaces were compared to observed 

distributions to determine the performance of each model and therefore the most 

likely mechanisms restricting skuas to their observed climate envelopes. The 

breeding distributions of Catharacta pomarinus, Stercorarius longicaudus and S. 

parasiticus were most accurately simulated by surfaces constructed with climatic 

variables related to the timing of snow melt during the arctic breeding season.  

The breeding distribution of the Great Skua (Catharacta skua) was best simulated 

by surfaces constructed with variables associated with habitat and pelagic food 

availability. Mechanistic models for skuas were found to apply only to gull and 

tern species with similar distributions. Simulated future distributions using 

forecast European climate in these response surfaces suggested that in the next 

60-90 years most high latitude seabirds would suffer range contractions with core 

European breeding populations shifting to the east. 
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6.1  Introduction 

Responses to climatic change have been recorded for a wide range of taxonomic 

groups with diverse geographical distributions (Walther et al., 2002). For long-

lived taxa, available data indicate changes in the phenology (reviewed in Root et 

al. (2003)) and distributions of individual species (e.g. Winkel & Hudde (1997)) 

and in the composition of ecological communities (McCarty, 2001; Walther et 

al., 2002). However, because species respond in individualistic ways to changing 

climate it is important to determine the proximate mechanisms driving such 

responses (Huntley, 1991, 1995). Forecast rates of climate warming are greatest 

in polar regions (Houghton et al., 2001) and it is imperative to determine the 

climatic limitations for breeding in high-latitude species to be able to estimate the 

impacts of climate change on important seabird populations. 

 Many recent models exploring biological responses to climate change have 

utilized a ‘climate envelope’ approach (Berry et al., 2002; Erasmus et al., 2002; 

Midgley et al., 2002; Pearson et al., 2002; Hill, Thomas & Huntley, 2003; 

Thomas et al., 2004) whereby a species is assumed to be restricted in its 

distribution to the climatic conditions under which it presently persists (Pearson 

& Dawson, 2003). Ecological response surfaces are bioclimatic modeling tools 

developed to relate the presence/absence of species in geographical space to 

measured climatic variables at the same locations (e.g. Bartlein et al. (1986)). 

Multiple regression of these variables produces a ‘climate response surface’ 

defining the combination of climatic variables most strongly associated with the 
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occurrence of a species (Huntley, 1995).  Response surfaces can be used to assess 

the extent to which a species’ distribution is limited by climate (Beerling, 

Huntley & Bailey, 1995; Huntley et al., 1995) and, by selecting appropriate 

climatic variables, the mechanism(s) behind climatic limitation can be explored 

(Lenihan, 1993). Response surfaces can be used to simulate distributions of  

species from observed climate variables in different regions (Beerling et al., 

1995) or in historical (Bartlein et al., 1986; Huntley, 1993) or future time periods 

(Huntley et al., 1995; Sykes, Prentice & Cramer, 1996). When modeling 

migratory and homeothermic species, such as birds, it is essential to consider 

possible mechanisms by which climate may constrain their distributions and 

choose climatic variables accordingly (Huntley, 1995). Use of mechanistic 

variables reduces the risk of defining a climatic envelope based purely on 

correlative variables that are related to the current distribution by chance and 

would provide erroneous estimations of future distributions (Pearson & Dawson, 

2003). 

 Bioclimatic models, such as response surfaces, have often been criticised 

because they may not be useful for some species for several reasons. Biological 

interactions such as competition and predation can influence how a species 

responds to climate change (Davis et al., 1998), yet bioclimatic models often 

work well over continental scales, indicating that climate is the dominant factor at 

these scales (Pearson & Dawson, 2003).  For species with slow rates of dispersal, 

the observed climatic envelope may not reflect current climatic restrictions 

(Woodward, 1990) and substantial barriers to dispersal may prevent climatically 

suitable areas from being colonised (Peterson, Soberon & Sanchez-Cordero, 
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1999), reducing the ability of bioclimatic models to estimate actual climatic 

envelopes (Pearson & Dawson, 2003). In addition, the extent to which species 

can track these conditions as climate changes determines the speed with which 

they will respond to climate change by changing their distribution or, where their 

response is insufficient, their rate of extinction (Walther et al., 2002; Thomas et 

al., 2004). Therefore, future distributions derived from bioclimatic models may 

not necessarily be the realized distributions, only potential distributions given the 

forecast magnitude of climatic change (Huntley et al., 1995; Pearson & Dawson, 

2003).  

 Consequently, it is important to confine bioclimatic analyses to species that 

have high rates of dispersal such as Skuas (Family Stercorariidae) that are 

transequatorial migrants, capable of long-range dispersal events (Furness, 1987; 

Klomp & Furness, 1992). In addition, three out of four northern hemisphere 

skuas exhibit a circumpolar distribution suggesting that their distribution is in 

equilibrium with climate. It is possible, however, that the current breeding 

distribution of Great Skuas may not be at equilibrium with climate since this 

species probably colonized the northern hemisphere within the last 500 years 

(Furness 1987). Data detailing the recent spatial distribution of the four species 

that breed in Europe are readily available from several atlases (Hagemeijer & 

Blair, 1997; Snow & Perrins, 1998) and the most complete time-series’  of 

climatic variables are also available for this region (e.g. CRU Mean Monthly 

Terrestrial Climatology (New, Hulme & Jones, 1999)). 

Much recent research has found that breeding success, survival and 

distribution of seabirds in polar areas is influenced by climate (via changes in 
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sea-ice and resulting food availability) (Croxall, Trathan & Murphy, 2002; 

Weimerskirch et al., 2003). There are several mechanisms potentially restricting 

the breeding distributions of high-latitude seabirds to particular climatic 

conditions. Since skuas nest among short vegetation and are adapted for breeding 

at high latitudes by virtue of their morphology and physiology (Furness, 1988), 

they may be limited by direct physiological effects of prevailing climatic 

conditions whilst breeding. For instance, correlations of the southern limits of 

breeding distributions of Great (Catharacta skua) and Arctic Skuas with mean 

July air temperatures could indicate a climatic constraint imposed by 

thermoregulatory requirements (Furness, 1988). For Long-tailed, Arctic, and 

Pomarine Skuas nesting in arctic Europe, the breeding season is restricted by 

climatic conditions through the availability of nest-sites, prey and days on which 

foraging is possible (Maher, 1974), and such restrictions may influence breeding 

distributions. The availability of suitable habitat may also be important in 

limiting exposure to thermal extremes (Salzman, 1982; Buttemer & Astheimer, 

1990; Stokes & Boersma, 1998).  

 To select between the most likely mechanisms by which climate may 

limit breeding distributions of high-latitude seabirds, response surfaces were 

constructed for the four skua species breeding in Europe using climatic variables 

that reflected heat stress conditions, habitat and food availability and limits on the 

timing of breeding. The accuracy of these response surfaces was estimated by 

comparison of simulated with observed distributions. To examine whether the 

narrow geographic distribution of Great Skuas in the northern hemisphere was 

directly related to climate suitability, surfaces were constructed for southern 
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hemisphere Catharacta species and used to simulate the distributions of Great 

Skuas in Europe. The best performing response surfaces for all skuas were used 

to estimate future distributions of these species within Europe using forecast 

climatic variables from GCM scenarios. The applicability of these mechanistic 

response surfaces for other seabird species was then assessed by using them to 

simulate the distributions of other seabird species with contrasting morphology, 

distribution and habitat requirements.  
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6.2 Methods 

6.2.1 Climate data 

European breeding records (presence/absence) were taken from the European 

Atlas of Breeding Birds (EBBC) (Hagemeijer & Blair, 1997) for 16 seabird 

species (four skuas, six terns and six gulls; Table 6.2). These data were on a ~ 50 

km × 50 km UTM grid adapted from Atlas Florae Europaeae (AFE) (Jalas & 

Suominen, 1972). 

 Climate data were extracted from the Climate Research Unit (CRU) 1960-

1991 mean 30-year climatology (New et al., 1999). These data relate to the 

climate normal period 1961-1990 and include 30 year monthly means for 

temperature, solar radiation, precipitation and wind speed (New et al., 1999). 

Thirty-year means for sea surface temperature (SST) were calculated from 

GISST2.2 (1º resolution) data (Parker, Jackson & Horton, 1995) for the same 

period.  

 Future climate data for the period 2061-2090, summarized as 30 year 

monthly means, were taken from simulations of the HadCM3 global climate 

circulation model (Gordon et al., 2000; Pope et al., 2000) for all variables except 

sea surface temperature, which was derived from simulations of the CGCM2 

(Flato & Boer, 2001). All climate variables were interpolated to the adapted AFE 

UTM grid as a mean value at the centre of each grid cell. 
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6.2.2 Constructing response surfaces 

Three climatic variables were used to derive a single response surface from 

climate data and bird distributions. The main hypotheses and their associated 

variables are listed in Table 6.1 and reflect possible constraints of climate through 

direct physiological effects (heat stress), indirect physical effects (snow melt) and 

indirect biological effects (vegetation and marine productivity). 

Thermoregulatory requirements during breeding may result in the observed 

correlation between summer air temperatures and skua distributions (Furness, 

1988). Therefore, one surface (H1, Table 6.1) was constructed with variables 

reflecting the frequency and intensity of heat stress above the anticipated thermal 

threshold (13 ºC, Chapter 2) during the breeding season (May to June) and other 

variables important in heat-transfer (solar radiation and wind speed (Monteith & 

Unsworth, 1990). An index of pelagic productivity was derived by subtracting 

mean sea surface temperature (SST) in March from the mean of sea surface 

temperatures for April and May, since the timing and extent of the spring bloom 

in phytoplankton productivity in arctic seas is reflected to some extent by 

differences in sea surface temperatures between early and late spring (Engelsen et 

al., 2002; Edwards & Richardson, 2004). Such regions of high marine primary 

productivity are often associated with the best feeding grounds for pelagic 

seabirds (Chown & Gaston, 1999) and spring plankton blooms have a strong 

influence on the availability of sandeels (Wright & Bailey, 1996), which is an 

important determinate of breeding success for Great and Arctic Skuas (Hamer, 

Furness & Caldow, 1991; Phillips, Furness & Caldow, 1996). The SST index was 

combined with the mean temperature of the coldest month and growing degree 
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Table 6.1 Hypothesized mechanisms limiting the distribution of skuas in Europe and the variables used to explore these hypotheses. 

 

 

 

     No. Hypothesized 
mechanism  

Description Variable 1 Variable 2 Variable 3 

H1 Heat stress Heat-gained through convection and 
radiation with convective heat-loss 

Temperature sum over 
13˚ C during breeding 

season 

Mean solar radiation  
during breeding season 

Mean wind speed 
during breeding season 

H2 Vegetation and  
pelagic food 
availability 

Vegetation growth and survival and 
pelagic food availability 

Mean temperature of 
the coldest month 

Growing degree days 
over 5 ˚C 

Spring sea surface 
temperature index 

H3 Timing of spring 
snow melt 

Amount of snow fall and timing and 
extent of spring snow melt 

Mean temperature of 
the coldest month 

Mean precipitation 
(snow fall) in winter and 

spring 

Mean spring 
temperature 
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days over 5 ºC (variables important for plant growth (Huntley et al., 1995)) to 

create a surface (H2, Table 6.1) reflecting the indirect effect of climate via both 

habitat and food availability. A surface corresponding to the timing and extent of 

the breeding season in arctic regions (H3, Table 6.1) incorporated variables 

determining the extent of snow fall (Stone et al., 2001): mean winter/spring 

precipitation amount (December to May), mean temperature of the coldest month 

(reflecting the severity of winter, without requiring the definition of the exact 

winter period) and the intensity of the spring melt (mean air temperature from 

March to May). This hypothesis accounted for importance of known delays in the 

onset of breeding for skuas at high-latitudes caused by snow cover (Maher, 

1974). 

  Solar radiation and wind speed were calculated as means of monthly 

values for May, June and July directly from the CRU climatology. Mean air 

temperature during spring (March to April) and winter/spring mean precipitation 

(snow fall) amount (December to May) were computed in a similar way. The 

SST index was calculated for coastal cells only, since foraging ranges for the 

Great Skua, the European species that is most dependent on pelagic food 

resources (Furness, 1987), are commonly < 50 km (Furness, 1978). Mean 

temperature of the coldest month (MTCO) was the mean temperature of the 

coldest month in the year averaged over the 30 year period. Growing degree days 

above 5 ˚C was the sum of air temperature above this threshold throughout the 

year and mean temperature sum above 13 ºC was the air temperature sum during 

the breeding season (May to July). Future climatological variables were 

calculated in the same way but using HadCM3 data, or CGCM2 data for SST. 
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 For each of the three hypotheses (Table 6.1), the response surface was fitted 

with three climatic variables using the LOWESS (locally-weighted regression) 

method (Cleveland & Devlin, 1988), following Huntley et al. (1995). 

6.2.3 Simulations of current and future breeding distributions of 

skuas 

Fitted surfaces were used to simulate the probability of occurrence of Long-tailed 

Skua (Stercorarius longicaudus), Arctic Skua (S. parasiticus), Pomarine Skua 

(Catharacta pomarinus) and Great Skua (C. skua) separately throughout the AFE 

grid. The probability threshold for simulation was determined by assessing the 

concurrency of simulated with observed distribution (data from Hagemeijer et al. 

(1997)). Predicted presences and absences were derived from probabilities 

produced by response surfaces and the performance of each response surface was 

given by the Kappa statistic (Landis & Koch, 1977): a value < 0.4 indicated poor 

predictive ability, between 0.4 and 0.55 moderate, between 0.55 and 0.7 good, 

between 0.7 and 0.85 very good, and over 0.85 excellent (Monserud & Leemans, 

1992). 

 Potential future distributions within Europe were simulated for each skua 

species by substituting future climatic data for 2061-2090 into the response 

surface that best simulated the current breeding distribution, following Huntley et 

al. (1995). Since GCM data were at a coarser resolution, simulated future 

distributions were smoothed using LOWESS smoothing splines (Cleveland & 

Devlin, 1988) to aid visual interpretation of major trends.  
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6.2.4 Determining the generality of mechanistic response surfaces    

Response surfaces were also constructed for six species of gull (Family Laridae) 

and six species of tern (Family Sternidae). Each species was chosen because of 

its particular habitat requirements, latitude of breeding, or body size (Burger & 

Gochfeld, 1996; Gochfeld & Burger, 1996)(Table 6.2), so that performance of the 

models for species of varying ecology/morphology could be assessed. 

Simulations from these models were compared to observed distributions of these 

species (Hagemeijer & Blair, 1997) and model performance was determined from 

maximized Kappa (section 6.2.3). Distributions for 2061-2090 were simulated by 

substituting GCM data into the best performing response surfaces. These 

simulations were made only for species for which model performance was high 

(Kappa > 0.75). 

 To determine if the climatic envelope observed for breeding Great Skuas 

was representative of the range of breeding conditions observed for congeners, 

simulations of Great Skua distributions in Europe were performed using models 

constructed for southern hemisphere Catharacta species. Mechanistic models 

were constructed with CRU and GISST2.20 (sea surface temperature) data (at the 

same resolution) for the southern hemisphere (spanning all longitudes between -

30˚ and -60˚ latitude, for which climate data were readily available). Variables 

calculated for winter (December to May), spring (March to April) or summer 

(May to July) during the construction of the response surface (section 6.2.2), 

were derived using the corresponding months for the austral season (e.g. summer 

was November to January). Model performance was assessed by correspondance 
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Table 6.2 Gull (Family Laridae (L)) and tern (Family Sternidae (S)) species for which 
response surfaces were constructed to determine the generality of hypothesis developed 
for skua species. Body mass, mid-point between extremes of breeding latitude and 
breeding habitat preferences are given to aid interpretation of model performance. “No 
veg.” Indicates that this species prefers no vegetation. Data sources: mass Dunning 
(1993); latitude, habitat and breeding range, Burger & Gochfeld (1996); Gochfeld & 
Burger (1996). 

 

Species 
Common 

Name 
Family 
(L/S) 

Mass 
(g) 

Mid-
point of 
breeding 
latitude 

(˚) 
Breeding habitat 

preference 

Main 
habitat 
features

Larus ridibundus Black-headed 
Gull L 284  51.2 N 

Open ground or 
low bushes in 

wetlands 
Wet 

Rissa tridactyla Black-legged 
Kittiwake L 407  59.2 N Cliffs No veg.

Larus fuscus Lesser Black-
backed Gull L 766  58.2 N Dry vegetation Long 

Larus argentatus Herring Gull L 1135  57.0 N 
Short, drv 

vegetation or 
bare rock 

Short 

Larus hyperboreus Glaucous 
Gull L 1413  68.6 N 

Cliff ledges, 
short vegetation 

or beaches 
Short 

Larus marinus 
Greater 

Black-backed 
Gull 

L 1659  57.3 N 
Short vegetation 
or bare rock or 

sand 
Short 

Sterna albifrons Little Tern S 57  12.2 N Sand and shingle 
beaches No veg.

Childonias nigra Black Tern S 65  48.7 N 
Vegetation or 
logs within 
wetlands 

Wet 

Sterna paradisaea Arctic Tern S 110  59.2 N 

Gravel islands, 
beaches or 

tundra 
vegetation 

Short 

Sterna hirundo Common 
Tern S 120 37.7 N Low vegetation 

or beaches Short 

Thalasseus 
sandvicensis 

Sandwich 
Tern S 208   6.2 N Short vegetation 

or beaches 
Short 

Sterna caspia Caspian Tern S 655  11.8 N Low sand or 
short vegetation 

Short 
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of simulated distributions with observed combined breeding distributions of all 

southern hemisphere Catharacta species within these latitudes (distribution maps 

in Furness (1987)) using Kappa. These response surfaces were substituted with 

corresponding climate data from Europe to give simulations of Catharacta 

distributions in the northern hemisphere. Coincidence between simulated 

distributions and observed Great Skuas distributions was determined with Kappa 

and two other statistics indicating accuracy of prediction at the probability 

threshold determined for C. skua (Huntley et al., 1995). 
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6.3 Results 

6.3.1 Simulating current distribution of breeding skuas 

Table 6.3 details the performance of response surface models constructed with 

variables reflecting three possible mechanisms by which breeding distributions of 

northern hemisphere skuas might be constrained to their observed climate 

envelopes. The breeding distributions of Stercorarius species were best simulated 

by surfaces constructed with variables that determined the timing and extent of 

the spring snow melt (H3) (Figures 6.1d, 6.2b). This model was also excellent at 

simulating the breeding distribution of Pomarine Skuas (C. pomarinus) (Figure 

6.2a). Surfaces using variables reflecting the timing of snow melt were relatively 

poor at simulating the breeding distribution of Great Skuas (C. skua) which was 

estimated more accurately by surfaces reflecting the combined influence of the 

availability of habitat and pelagic food resources (H2) (Table 6.3; Figure 6.3 d). 

This surface (H2) performed less well for Arctic Skuas (Stercorarius 

parasiticus), predicting more breeding colonies southwest Scotland and the Baltic 

coasts (compare Figures 6.1c & d). Models including pelagic food availability 

(H2) also performed relatively poorly for Long-tailed (S. longicaudus), Pomarine 

and Arctic Skuas (Table 6.3). 

   Surfaces constructed with variables important in determining heat stress 

during the breeding season (H1) performed less well for all four species (Table 

6.3). Figure 6.1b illustrates the distribution simulated for Arctic Skuas by this 
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model, indicating that although this species is largely confined to coastal areas in 

Scandinavia and the UK (Figure  6.1a), thermal conditions suitable for breeding 

exist further inland. 

   

Table 6.3 Kappa values indicating coincidence of simulated distributions 
from response surfaces constructed following three mechanistic hypotheses 
with observed breeding distributions of European skua species. Kappa 
values between 0.55 and 0.7 indicate good agreement, 0.7-0.85 very good 
agreement, > 0.85 excellent agreement (Monserud & Leemans, 1992).  

 

Performance of model (Kappa) No. Hypothesis 

S. parasiticus S. longicaudus C. pomarinus C. skua 

H1 Heat stress 0.673 0.571 0.707 0.530 

H2 
Vegetation and  

pelagic food 
availability 

0.657 0.452 0.577 0.725 

H3 Timing of spring 
snow melt 0.784 0.761 0.970 0.596 

 

  Climatic envelopes for breeding colonies of the four skua species are 

shown in Figure 6.4. The three smaller species showed similar climatic 

preferences at the northern edge of their range, breeding in areas where winter 

temperatures regularly dropped below -17 ºC but only where winter precipitation 

(snow fall) was low. The distribution of Pomarine Skuas was restricted to these 
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Figure 6.1 Observed breeding distribution of S. parasiticus (a), and distributions simulated for this species using response surfaces 
constructed with climatic variables related to (b) heat stress (H1), (c) vegetation growth and pelagic food availability (H2) and (d) timing 
of snow melt (H3). Observed maps: (■) confirmed breeding, (·) no data. Simulated maps: (■) simulated breeding.   

c d

ba

c d

ba
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Figure 6.2 Observed breeding distributions (top panels) and distributions simulated using response surfaces constructed with variables 
relating to the timing of spring snow melt (H3) (bottom panels) for (a) Catharacta pomarinus and (b) Stercorarius longicaudus. 
Observed maps: (■) confirmed breeding, (·) no data. Simulated maps: (■) simulated breeding.  

b)  S. longicaudus a)  C. pomarinus 
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cb

a

cb

a
Figure 6.3 Observed Catharacta skua breeding
distribution (a) and simulated C. skua distributions
from response surfaces constructed with variables
relating to  (b) heat stress (H1) and (c) vegetation
growth and pelagic food availability (H2). Observed
maps: (■) confirmed breeding, (·) no data; Simulated
maps: (■) simulated breeding.  
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Figure 6.4 Climate envelopes for breeding populations of the four northern 
hemisphere skua species within Europe derived from the most accurate 
mechanistic response surfaces. Surfaces were constructed with variables 
related to the timing of spring snow melt (H3) for (a) Stercorarius parasiticus, 
(b) S. longicaudus and (c) Catharacta pomarinus, and  habitat pelagic food 
availability (H2) for (d) C. skua. Variables on axes are winter precipitation 
(mm/month), mean temperature of the coldest month (MTCO) (ºC), growing 
degree days over 5 ºC (GDD5) (ºC) and sea surface temperature index (SST) 
(ºC). For each surface the third variable [spring temperature (ºC) in (a), (b) and 
(c), MTCO in (d)] is contoured (dashed contour lines, with labels, at 5 ºC 
intervals). Blank regions indicate that the species was not observed breeding 
under this particular combination of climatic variables. 

a

c

b

d

a

c

b

d
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areas (Figure 6.4c) but Long-tailed Skuas bred in areas of higher winter snowfall 

so long as the spring-temperatures were above freezing (Figure 6.4b) as did 

Arctic Skuas (Figure 6.4a). Great Skuas exhibited a dichotomous climate 

envelope, breeding in areas of similar mean winter temperatures as the other 

species (the high arctic zone, with corresponding short growing season (low 

GDD5) (Figure 6.4d)) but also in regions where the spring sea surface 

temperature index was 6-12 ºC (sharp increases in temperature between March 

and April/May, suggesting higher marine productivity) (Figure 6.4d).  

6.3.2 Generality of mechanistic response surfaces constructed for 

skua species 

58% of response surface simulations for terns and gulls gave a ‘good’ level of 

agreement (Monserud & Leemans, 1992) with observed distributions (Table 6.4). 

Incorporating climatic variables that determined the timing of snow melt (H3) 

produced surfaces that gave, on average, the best match with observed 

distributions (mean Kappa (± SD): 0.673 (± 0.13)). The performance of H3, 

however, was negatively correlated with breeding range, i.e. data prevalence (rs = 

-0.96, n = 12, P < 0.01). Response surfaces constructed with variables related to 

the combined influence of habitat and pelagic food availability (H2) were, on 

average, less accurate (mean Kappa (± SD): H2, 0.452 (± 0.18)) (Table 6.4). The 

performance of this model, but not H3, was independent of species’ breeding 

latitude (Table 6.4) and simulation accuracy for terns and gulls was not related to 

the body size or habitat requirements of these species (Table 6.4).
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Table 6.4 Measures of fit (maximum Kappa) between observed breeding distributions and distributions simulated for 12 species of gull (Laridae) and 
tern (Sternidae) using response surfaces constructed with variables relating to vegetation growth and pelagic food availability (H2) and timing of snow 
melt (H3). Data are ranked by mid-point of breeding latitude. Species, family, body mass and main habitat requirements are given for comparison. 
Only latitude showed a significant correlation with model performance (H3: rs = 0.89, n = 12, P < 0.01). n = breeding range (km) (i.e. data prevalence). 
Data sources: mass Dunning (1993); latitude, habitat and breeding range, Burger & Gochfeld (1996); Gochfeld & Burger (1996). 

 
 Species Family H2 H3 Mass (g) 

Mid-point of 
breeding latitude (˚) 

Main habitat 
requirements n 

Thalasseus sandvicensis Sternidae 0.551 0.446 208     6.2 N No vegetation 136 

Sterna caspia Sternidae 0.654 0.613 655  11.8 N No vegetation 83 

Sterna albifrons Sternidae 0.368 0.480 57   12.2 N No vegetation 509 

Sterna hirundo Sternidae 0.213 0.614 120   37.7 N Short 1520 

Childonias nigra Sternidae 0.291 0.702 65   48.7 N Wet 698 

Larus ridibundus Laridae 0.207 0.660 284   51.2 N Wet 1682 

Larus argentatus Laridae 0.350 0.731 1135   57.0 N Short 824 

Larus marinus Laridae 0.493 0.726 1659   57.3 N Short 481 

Larus fuscus Laridae 0.434 0.692 766   58.2 N Long 527 

Rissa tridactyla Laridae 0.621 0.714 110   59.2 N Short 241 

Sterna paradisaea Sternidae 0.435 0.773 407   59.2 N No vegetation 642 

Larus hyperboreus Laridae 0.802 0.926 1413   68.6 N Short 72 
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 Response surfaces constructed for Catharacta species in the southern 

hemisphere performed well between 30 and 60 °S but poorly simulated the 

breeding distribution of Great Skuas in Europe (Table 6.5). The most accurate 

simulations were from surfaces constructed with variables related to habitat and 

pelagic food availability (H2) (Table 6.5, Figure 6.5). Surfaces constructed with 

variables reflecting heat stress during breeding only predicted three European 

grid cells as suitable for breeding and Great Skuas bred in none of them (Table 

6.5). 

Table 6.5 Accuracy of simulated distributions from mechanistic response 
surfaces (Table 6.3) constructed for Catharacta species in the southern 
hemisphere (30-60 °S). Simulations were made of current breeding 
distributions of all Catharacta species between 30-60 °S and for Great 
Skuas in Europe. Kappa, the number of observed and simulated presences, 
the proportion of observed presences that are correctly predicted (P1) and 
the proportion of all simulated presences that are correct (P2) are included 
for model assessment. 

Simulations 
between 30 
and 60 °S 

Simulations within Europe 

No. Hypothesis 

Performance 
of model 
(Kappa) 

No. 
observed 

No. 
simulated P1 P2 

Performance 
of model 
(Kappa) 

H1 Heat stress 0.254 69 3 0.00  0.00 0.000 

H2 

Vegetation 
and pelagic 

food 
availability 

0.679 69 42 0.36  0.61 0.416 

H3 Timing of 
snow melt 0.637 69 76 0.17 0.17 0.159 
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c

a

b c

a

b

Figure 6.5 Breeding distributions of C. skua: (a)
observed breeding distribution, and distributions
simulated using response surface models constructed
for Catharacta spp. in the southern hemisphere with
climatic variables important for (b) vegetation
growth and pelagic food availability (H2) and (c)
timing of snow melt (H3). Dots indicate no data and
black squares indicate observed /simulated presence
of breeding colony 
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6.3.3 Simulations of the future distribution of skuas and other high-

latitude seabirds 

 Simulated breeding distributions throughout Europe, derived from the three best 

performing mechanistic response surfaces, are given in Figures 6.6-6.7 for each 

European skua species, and in Figure 6.8 for two high-latitude gull and tern 

species. These simulations suggest radical changes in distribution for all these 

high-latitude seabird species over the next 60-90 years. 

Breeding Pomarine Skuas were predicted to shift out of Europe and west 

Russia over the next 60-90 years (Figure 6.7a). Great Skuas were simulated as 

being lost as a breeding species in Iceland, the Faroes and the UK and shifting to 

the most favourable climatic conditions in the south Baltic Sea (Figure 6.7b). 

Breeding Long-tailed skuas were simulated as being lost from the mountain areas 

of Norway and Sweden and retracting to the coast and continent of west arctic 

Russia (Figure 6.6b). Simulated changes in the distribution of Arctic Skuas and 

Arctic Terns (Sterna paradisea) were similar, with general range retractions 

eastward within Europe, through Scandinavia and the continental north-east 

(Figures 6.6a & 6.8b). The future strongholds of Arctic Skuas are projected as the 

arctic islands of Spitsbergen, Franz-Joseph Land and Nova-Zemlya, whilst Arctic 

Terns are simulated as breeding only in the Baltic States and continental arctic 

Russia, respectively (Figures 6.6a & 6.8b). The simulated breeding distribution 

Glaucous Gulls (Larus hyperboreus) within Europe showed the least change of 

all species examined (Figure 6.8a), with slight eastward retractions from colonies 

in Spitsbergen and Iceland over the next 60 to 90 years. 
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 Figure 6.6 Observed breeding distributions (top panels) and future distributions simulated for 2061-2090 from response surfaces constructed with 
climatic variables relating to timing of snow melt (H3) (bottom panels) for (a) Stercorarius parasiticus and (b) S. longicaudus. Observed/simulated  
breeding (■, heavy shading indicates very high probabilities (> 0.75)),  no data (·). 

a b 
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 Figure 6.7 Observed breeding distributions (top panels) and future distributions (bottom panels) simulated for 2061-2090 from response surfaces 
constructed for (a) Catharacta pomarinus with climatic variables relating to timing of snow melt (H3) for and (b) C. skua with climatic variables 
important for vegetation growth and pelagic food availability (H2). Observed/simulated breeding (■), no data (·). 

a b 
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 Figure 6.8 Observed current breeding distributions (top panels) and distributions simulated for 2061-90 from response surfaces constructed with 
variables relating to timing of snow melt (H3) (bottom panels) for (a) Larus hyperboreus and (b) Sterna paradisea. Observed/simulated breeding 
(■), no data (·). 

a b 
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6.4 Discussion 

6.4.1 Climatic mechanisms restricting the distribution of skuas in 

Europe 

Breeding distributions of all three small species of skua (Stercorarius parasiticus, 

S. longicaudus and Catharacta pomarinus) were most accurately simulated by 

response surfaces constructed with climatic variables important in determining 

the timing of spring snow melt (H3). Actual climate envelopes for each species 

differed though, with C. pomarinus being restricted to the coldest, most arid 

regions whilst the other two species bred in these regions and, if mean spring 

temperatures were around 0 ºC, in warmer areas with higher winter snow fall. 

Breeding is probably inhibited by the presence of snow on the ground on arrival 

at the breeding grounds (Maher, 1974; Furness, 1987) and this appears to be the 

main climatic factor determining the European breeding distribution of these 

species. Southern range margins, however, will not be constrained by the length 

of the breeding season, although changes in thermal stress, prey availability, 

predation pressure and competition linked to the timing of snow melt may limit 

breeding here.  

 Surfaces constructed following the hypothesis that skua distributions were 

restricted by thermal conditions during breeding (Furness, 1988) performed 

poorly for all species, indicating this hypothesis probably only holds, if at all, at 

southern range margins (Furness, 1988). Surfaces constructed with sea surface 
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temperature (H2) also performed relatively poorly for Pomarine, Long-tailed 

Skuas, that feed mainly on terrestrial prey during the breeding season (Maher, 

1974; Furness, 1987). Arctic Skua distributions were poorly defined by sea 

surface temperatures, presumably because, within Europe, there are many 

continental breeding populations also feeding on predominantly terrestrial prey. 

Difficulty in defining the influence of climate on terrestrial prey availability 

consequently limits the accuracy of mechanistic bioclimatic models for these 

species, although the entire European distributions seem associated with the 

timing of spring snow melt. 

 Timing of snow melt was far less important for Great Skuas (C. skua) and 

surfaces constructed according to habitat and pelagic food availability (H2) 

simulated the breeding distribution of this species most accurately. Although 

Great Skuas were found to breed within two distinct climatic regimes, the high 

arctic of Spitsbergen and the warmer regions near the North and Baltic Seas, the 

majority of the population bred in these warmer areas, where distribution was 

associated with habitat availability and marine productivity and not timing of 

snow melt. Response surfaces accurately simulating distributions of Catharacta 

species in the southern hemisphere did not correctly simulate the breeding 

distribution of Great Skuas in Europe. The closest correspondence was achieved 

by the model constructed with variables related to vegetation and pelagic food 

availability (H2). This model failed to predict breeding in arctic areas because 

only data from between 30 and 60 °S had been used in its construction (climate 

data at higher latitudes was incomplete). Consequently, the southern breeding 

margin of Great Skuas in Europe probably reflects the constraint of current 
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habitat suitability and food availability, not a continuing expansion from recent 

colonization ~ 500 years ago (Furness, 1987). 

6.4.2 Mechanistic response surfaces as a tool for predicting changes 

in breeding distributions of high-latitude seabirds 

Response surfaces developed with mechanistic variables important for skuas 

simulated breeding distributions of other seabird species relatively well. The most 

general surface was constructed with variables determining the timing of spring 

snow melt (H3) and its simulations were accurate for arctic and sub-arctic 

seabirds. Surfaces constructed according to habitat and pelagic food availability 

simulated breeding distributions well for species breeding on isolated islands, e.g. 

the Glaucous Gull (Larus hyperboreus), but poorly for seabirds with continental 

distributions, e.g. the Common Tern (Sterna hirundo). Accuracy of this model, 

however, was also correlated with data prevalence as found for other European 

taxa (Huntley et al., 2004). Species’ body size and estimates of habitat 

requirement did not influence the performance of response surfaces, indicating 

response surface models were not influenced by characteristics of secondary 

importance for the distributions of these species.  

  Simulated breeding distributions for the period 2061-2090 were derived 

for the four skua and one gull and one tern species. Models simulated large 

changes in European breeding range for all six species within the next 60-90 

years with all expected to shift east of their current distribution (Figures 6.6-6.8). 

Seabirds are generally long-lived and the species for which simulations were 

performed exhibit strong breeding site fidelity (Furness, 1987; Burger & 
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Gochfeld, 1996; Gochfeld & Burger, 1996). Consequently, shifts in distribution 

simulated from these bioclimatic models are likely to be over-estimates of actual 

rates of change (Pearson & Dawson, 2003) although, unless a species can adapt 

to new climatic regimes, these changes will eventually occur.  

 The simulated distribution for breeding Great Skuas in 2061-2090 was 

restricted to southern Baltic coasts, with breeding colonies being lost from 

Iceland, the UK and arctic areas. This simulation is unlikely to be realized for 

several reasons. Firstly, models constructed to reflect habitat and pelagic food 

availability, although the best performing model for this species, produced less 

accurate simulations than those using snow melt variables to simulate the 

distribution of other species. Secondly, the timing of the spring phytoplankton 

bloom is only weakly related to sea surface temperature in arctic areas (Engelsen 

et al., 2002), differs in strength for different plankton species (Edwards & 

Richardson, 2004) and the sea surface temperature index used was too broad to 

determine the exact timing of plankton bloom events at different latitudes. 

Additionally, changes in fisheries discards within important areas of this species’ 

range should lead to shifts in diet (Votier et al., 2004), possibly lessening the 

dependence of breeding distributions on areas of high marine productivity. Since 

Great Skua distributions do not appear to be restricted by thermal stress during 

breeding, this species may be able to respond to such changes in food availability 

by colonizing areas south of its current breeding range. 

 Mechanistic response surfaces developed for skuas have provided insights 

into climatic mechanisms that might be limiting breeding distributions. The 

applicability of these models, however, is restricted to other high-latitude species. 
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Consequently, individual differences in ecology and distribution appear to limit 

the generality of mechanistic models, even though more correlative surfaces 

perform well for a wide range of taxa, e.g. Huntley et al. (2004). 
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7.1 Introduction 

There is increasing evidence that the rate of recent change in global and regional 

climate does not only exceed any since the end of the last glacial period, 10,000 

years ago (Sundquist, 1993; Huntley, 1995), but is affecting individuals, 

communities and species at all trophic levels (Parmesan & Yohe, 2003; Root et 

al., 2003; Thomas et al., 2004). Species are predicted to respond in individualistic 

ways to changing climatic regimes (Huntley, 1991) depending on their life-

histories (Hill et al., 2002), ecological requirements (Warren et al., 2001) and 

community dynamics (Davis et al., 1998). At lower trophic levels, species are 

often directly influenced by climate (Huntley, 1991, 1995), since solar radiation 

and temperature influence the rate of photosynthetic processes and therefore plant 

and phytoplankton growth. For higher predators or highly mobile species, 

however, direct climatic limitations are not so clear (Huntley, 1995) and indirect 

effects of climate, such as restrictions in food or habitat availability, may be more 

important (Huntley, 1995) and could obscure direct impacts. Changes in food or 

habitat availability often lag behind underlying changes in climate (Huntley, 

1991) but any direct effect of climate upon an animal species would increase the 

immediacy of its response and the risk posed by forecast rapid climate change. 

To estimate the potential impacts of forecast climate change on migratory higher 

predators it is therefore important to determine the mechanisms by which climate 

may be currently limiting the reproduction, survival and spread of these species 

(Huntley, 1995).  
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 Great Skuas (Catharacta skua) are long-lived seabirds, adapted for 

breeding at high-latitudes, but restricted to small areas of northern and Arctic 

Europe, Scandinavia and Russia (Hamer, 2001) (Chapter 1). The worldwide 

breeding population is only ~14,000 pairs and because 60 % of these nest in the 

UK (Hamer, 2001) this species is of important national and international 

conservation concern. Since climate warming is forecast to be greatest at high-

latitudes (Houghton et al., 2001) the threat posed to this species by climate 

change needs to be quantified. Recent spread and distribution of Great Skua 

breeding colonies suggest that climate may be directly restricting breeding via 

heat stress at breeding colonies (Furness, 1988). To date, however, most observed 

impacts of climate warming on high-latitude seabirds have been mediated by 

changes in food availability in response to shifts in the timing and extent of sea-

ice (Micol & Jouventin, 2001; Croxall, Trathan & Murphy, 2002; Weimerskirch 

et al., 2003). Great Skuas commonly breed in areas where the influence of sea-ice 

is negligible, as do many European seabird species. These and other aspects of 

their ecology, e.g. long-distance migration, high philopatry (Chapter 1, section 

1.6), complicate the detection of climate-induced responses but also make the 

Great Skua an ideal model species to study responses to climatic change that may 

be generally applicable for a wide range of marine predators. 

7.2 Current responses of Great Skuas to climate 

For the Great Skua, a high-latitude seabird adapted for breeding in cool arctic 

and sub-arctic climates, observed rapid climatic warming (Houghton et al., 2001) 

may be expected to directly impair breeding success and survival by increasing 
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the probability of overheating during foraging or constraining time budgets by 

increased demand for thermoregulatory activities (Furness, 1988). Substantial 

variation in heat stress exposure was predicted throughout the entire breeding 

range (Chapter 2). Both frequency and intensity of estimated heat stress 

decreased with latitude suggesting that the probability of over-heating was 

highest for lower-latitude colonies, such as Foula, Shetland (60 ˚N), and any 

negative reproductive consequences should be evident at these colonies.  

Observations and experiments at Foula, one of the largest Great Skua breeding 

colonies, indicated that the effects of food shortage were far more important than 

thermal stress in determining adult time budgets, chick growth and consequent 

breeding success (Chapters 3 & 4). This was not because heat stress at breeding 

colonies was unimportant, since breeding adults often traded-off time that could 

have been spent foraging or guarding chicks to bathe in freshwater when thermal 

conditions were challenging. This trade-off was more commonly observed for 

birds breeding at low-altitude sites, at which operative temperature, an index of 

heat stress, was found to be consistently higher (Chapter 4). Experimentally 

supplementing the diet of breeding adults reduced the time they spent foraging 

and increased bathing activity, again indicating a trade-off between bathing and 

foraging activities (Chapter 3). Despite these behavioural responses, breeding 

performance (laying dates, hatching success, chick growth and survival) of Great 

Skuas was unaffected because adults exhibited considerable behavioural 

flexibility: when thermal stress and energetic demands of growing chicks were 

high but food availability was scare, adults maintained territorial attendance (to 

guard chicks) but traded-off bathing for increased foraging time, and instead 
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panted at territories to reduce thermal loading (Chapter 4). As a result of this 

behavioural flexibility, Great Skuas breed successfully in regions where air 

temperatures during chick-rearing regularly exceed the predicted upper limit of 

their thermoneutral zone but only occasionally rise above 20 ºC, where panting 

and gullar fluttering are no longer sufficient for heat loss (Chapter 2). Currently, 

there is no evidence that climate is directly restricting the breeding success, and 

consequently distribution, of Great Skuas by one of the most plausible 

mechanisms: heat stress at breeding colonies. 

  Large scale analyses indicated that the dependence of breeding adults on 

predominantly marine prey that varies according to climatic conditions was the 

most probable mechanism by which climate may have shaped European Great 

Skua breeding distributions (Chapter 6). It is not certain, however, that Great 

Skua distributions are currently restricted by climate, in part because climatic 

mechanisms affecting productivity in marine systems are unclear and variable 

(Reid et al., 1998; Edwards & Richardson, 2004) and consequently difficult to 

model (Chapter 6). Also, recent changes in the breeding distributions of Great 

Skuas in Europe are evident (Hamer, 2001) and many new colonies have been 

founded in the UK during the last 30 years (Chapter 5). During this period of 

expansion, Great Skua colonies in Shetland, accounting for over 70 % of the UK 

population (Furness & Ratcliffe, 2004), experienced several years of low 

breeding success as a result of poor food availability ((Hamer, Furness & 

Caldow, 1991; Ratcliffe, Furness & Hamer, 1998; Caldow & Furness, 2000). 

Such poor food availability dictated time budgets for breeding adults during 

recent food shortfalls at Foula, Shetland, leading to lower than average breeding 
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success (Chapter 4) and has also been found to reduce survival of fledglings 

(Hamer et al., 1991) and adults (Ratcliffe et al., 2002). Population expansion over 

the last 30 years suggests that periodic low food availability at UK breeding 

colonies did not restrict the breeding distribution of this species (Chapter 5), even 

though models indicate that, throughout Europe, breeding distribution is more 

likely to be shaped by food availability than expansion from historical 

distributions (Chapter 6). 

7.3 Responses of Great Skuas to forecast climatic change 

A bioclimatic model for the Great Skua indicated that active thermoregulation by 

panting or gullar fluttering was necessary at air temperatures above 10.6 ˚C, 

while above 20.6 ˚C additional behavioural modifications were required to 

maintain homeothermy and prevent over-heating (Chapter 2). In high-latitude 

regions, mean air temperatures are forecast to rise by as much as 8 Celsius 

degress (C°) over the next century, even in conservative scenarios (B2 SRES 

scenario, HadCM3 global climate model (Gordon et al., 2000; Pope et al., 

2000)). Great Skua breeding populations are currently expanding in arctic Russia 

and it is in these areas where the highest levels of climate warming are expected 

(Houghton et al., 2001). At these, and any new colonies at south-eastern range 

margins, higher altitude breeding territories should be occupied preferentially to 

limit exposure to heat stress. Even so, time available for foraging may still 

become restricted by the need for heat loss by bathing off-territory (Chapter 3). 

Other heat-loss behaviours are likely to be exhibited more often, especially wing-

drooping, drinking freshwater, bathing, standing in water and shading chicks 
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(Lustick, 1984) or flying at high altitudes (Piersma, 2002), all of which were 

observed at breeding territories at Foula in 2002 and 2003. These behaviours and 

trade-offs will be most evident at times when heat stress is intense, particularly 

during incubation and late chick-rearing (Chapters 2 & 4), and chicks or eggs 

may become exposed to conspecific predation, the main cause of breeding failure 

in this species (Caldow & Furness, 2000; Hamer, 2001).  

In the UK, where temperature rise predicted from these same models is 

only ~ 2 C° in the next 80 years, changes in frequency and intensity of heat stress 

can probably be accommodated by selection of high altitude nesting sites or by 

small alterations of time budgets by breeding adults (Chapter 4). Dispersal 

models simulated rapid colonization of western Scotland and Northern Ireland by 

breeding Great Skuas over the next 50-100 years (Chapter 5). These models, 

however, made no provision for changes in climate or food availability. Drastic 

changes in availability of pelagic food resources, especially sandeels (Proffit, 

2004) and consequent breeding failure for gulls and auks (Oro & Furness, 2002), 

coupled with future restrictions in whitefish discard (Furness, 2000) are all likely 

to lead to an increasing frequency of food shortfall for breeding Great Skuas at 

many UK colonies. In the UK, climate change has been implicated in recent 

reductions in sandeel availability (Proffit, 2004), and phytoplankton data indicate 

that marine productivity has responded to changing climate (Reid, de Fatima 

Borges & Svendsen, 2001), with subsequent effects on marine productivity 

(Solow & Beet, 2005). Persistent food shortfall around large breeding colonies, 

seen in Shetland since 2002 (Mavor et al., 2003, 2004; Parsons, 2004), would 

reduce breeding success and post-fledging (Hamer et al., 1991) and adult survival 
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(Ratcliffe et al., 2002) at these sites. Breeding populations may decline if food 

shortage continues through successive years and, if philopatry remains high 

(Klomp & Furness, 1992), fewer migrants would spread to new breeding sites. 

Future simulations from response surface models, incorporating the effect 

of changing climate on pelagic food sources, indicated large reductions in 

breeding range for Great Skuas within the next 100 years (Chapter 6). 

Uncertainty surrounding estimations of marine productivity from climatic 

variables, coupled with observed flexibility of Great Skua diet (Votier et al., 

2004), however, limit the reliability of these predictions. Additionally, changes in 

distribution are likely to lag behind causal mechanisms, as a result of the 

longevity and high philopatry of Great Skuas, and will be preceded by successive 

seasons of poor breeding success in areas of food shortage.  

7.4 Responses of Great Skuas to climate: consequences of climate change 

for high-latitude seabirds 

Great Skuas had much potential as a model for determining the consequences of 

climate change for a variety of high-latitude seabirds because of their adaptations 

for breeding at high-latitudes (Furness, 1988), observed thermal preferences 

(Furness, 1988), high trophic level and varied diet (Hamer, 2001). Climate was 

found to be most likely to limit breeding success and distribution of this species 

indirectly, by influencing the availability of food resources: chiefly, small pelagic 

fish and other seabird species. Available evidence indicates that the effect of 

climate change on other high-latitude seabirds is also most commonly mediated 

by the availability of food (Croxall et al., 2002; Durant, Anker-Nilssen & 
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Stenseth, 2003; Weimerskirch et al., 2003). The breeding distribution of the 

Great Skua within Europe was accurately simulated by climatic variables thought 

to represent marine productivity (Chapter 6). Unfortunately, this model 

performed poorly at simulating observed breeding distributions of other seabird 

species, probably resulting from difficulties in defining climatic influences on 

marine productivity and interspecific differences in foraging ecology (Chapter 6). 

The observed influences of heat stress frequency and intensity were insufficient 

to restrict Great Skua breeding success or distributions (Chapters 4 & 6), despite 

morphological, physiological and ecology adaptations for limiting heat loss in 

this species (Furness, 1988) (Chapter 1). Consequently, it is unlikely that other 

high-latitude seabirds will be directly affected by heat stress, unless they exhibit 

more restricted time budgets or experience additional problems concurrently, 

such as parasitism (Gaston, Hipfner & Campbell, 2002). Although the Great Skua 

illustrates the most probable responses of high-latitude seabirds to climate 

change, interspecific differences in life-history, foraging ecology and diet 

preclude any direct application of observed responses for other species. 

 Response surface models indicated that the timing of spring snow melt 

was important in determining the distribution of seabirds that are largely 

restricted to breeding in polar regions (Chapter 6). The length of the breeding 

season is very critical for these species (Maher, 1974; Furness, 1987) and egg-

laying cannot begin until areas of the breeding site are free from snow cover 

(Maher, 1974). Any change in the timing of snow melt will directly affect 

breeding success and eventually breeding distributions. Although global 

temperatures are projected to rise over the next 100 years, regional estimates vary 
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and snow fall is expected to increase in areas of western Europe (Houghton et al., 

2001). Easterly range shifts are therefore predicted for all these species since 

temperature rise may cause migration of competitors or predators from lower 

latitudes and force these seabirds northwards (Chapter 6). As a result, changes in 

marine productivity and food availability may not be the only factors determining 

the responses of high-latitude seabirds to changing climates, especially in high-

arctic regions, where meteorological phenomena can directly limit breeding 

success.  
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Appendix 1 (see Chapter 2 for references) 

 

A1.1 Calculating solar radiation (Qs) indirectly 

Qs = Qs* × TCA               eqn.A1.1 

where, TCA is total cloud amount (proportional) and Qs* is global radiation 

reaching the surface: 

Qs* = S cos Z        eqn.A1.2 (Monteith & Unsworth, 1990) 

where, S is the direct solar radiation on a horizontal perpendicular to the solar 

beam (1025.25 Wm-2  (Xue et al., 2000)) and Z is the zenith angle of the sun: 

Z = φ - δ        eqn.A1.3 (Monteith & Unsworth, 1990) 

where, φ is latitude and  δ is the declination angle of the sun.  
 

δ = 0.006918 - 0.399912 cos (θd) + 0.070257 sin (θd) -0.0067518 cos (2θd) + 

0.000907 sin (2θd) - 0.002697 cos (3θd) + 0.001480 sin (3θd) 

eqn.A1.4 (Hartmann, 1994) 

which is a simple expansion of the Fourier series where, θd is the time of year (in 

radians) given by: 

θd = (2 π dn )/ 365        eqn.A1.5 (Hartmann, 1994) 
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where, dn is the time of year as a Julian Date. 
 

A1.2 Constants used in biophysical model 

 
Parameter Value Units Source 

Specific heat 
capacity of soil (Cp)    

1.921 Jg-1K-1 Jury (2004) 

Specific heat 
capacity of plumage 
(Cp)    

1.7 Jg-1K-1 http://www.engineeringtool
box.com/24_393.html 

Mass of soil 
absorbing surface 
(mc)1 

715  g see footnote 1 

Mass of plumage 
absorbing surface 
(mc)1 

0.419 g see footnote 1 

Vapour pressure 
under standard 
conditions2 (VPstd) 

1.0092 kPa Monteith and Unsworth 
(1990) 

Table A.1 Constants and fixed parameters of the model: values, units and source.  

                                                 

1 Assuming, mc = surface area × view factor × penetration × (plumage 
mass/plumage volume). Data: plumage mass (210.67 g) Furness (1988), surface 
area and view factor (Table 4.1), plumage volume (empirical: 0.0073 m3), 
penetration (0.00055 m) Wolf & Walsberg (2000), soil values from Jury (2004). 
2  60 % relative humidity and 25 °C air temperature. 


