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There is a time when a thing in the mind is a heavy thing to

carry, and then it must be put down. But such is its nature that

it cannot be set on a rock or shouldered off on to the fork of a

tree, like a heavy pack. There is only one thing shaped to

receive it, and that is another human mind. There is only one

time when it can be done, and that is in a shared solitude.

(Theodore Sturgeon, Scars [41])
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Abstract

This thesis touches on many different aspects of homogeneous relational structures. We

start with an introductory chapter in which we present all the background from model

theory and homogeneity necessary to understand the results in the main chapters.

The second chapter is a list of examples. We present examples of binary and ternary

homogeneous relational stuctures, and prove the simplicity or non-simplicity of their

theory. Many of these examples are well-known structures (the ordered rational numbers,

random graphs and hypergraphs, the homogeneous Kn-free graphs), while others were

constructed during the first stages of research. In the same chapter, we present some

combinatorial results, including a proof of the TP2 in the Fraı̈ssé limit of semifree

amalgamation classes in the language of n-graphs, such that all the minimal forbidden

configurations of the class of size at least 3 are all triangles.

The third chapter contains the main results of this thesis. We prove that supersimple

finitely homogeneous binary relational structures cannot have infinite monomial SU-rank,

show that primitive binary supersimple homogeneous structures of rank 1 are “random”

in the sense that all their minimal forbidden configurations are of size at most 2, and

partially classify the supersimple 3-graphs under the assumption of stable forking in the

theories of finitely homogeneous structures with supersimple theory.

The fourth chapter is a proof of the directed-graph version of a well-known result by

Erdős, Kleitman and Rothschild. Erdős et al. prove that almost all finite labelled triangle-

free simple graphs are bipartite, and we prove that almost all finite labelled directed graphs

in which any three distinct vertices span at least one directed arc consist of two disjoint

tournaments, possibly with some directed arcs from one to the other.
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§1. Introduction

“Mike, applications of the compactness theorem are a dime a dozen. Go
do something better.”

Saunders MacLane to Michael Morley [32].

1.1 Basic Model Theory

The work in this thesis is on homogeneous structures, an area where Group Theory,

Graph Theory, Combinatorics, and Model Theory converge. Throughout, model-theoretic

language and conventions are preferred, and so we will often talk of types, theories, ranks,

forking, etc. From permutation group theory, we adopt the terms transitive and primitive.

We say that the action of a group G on a structure M is transitive if for all x, y ∈ M

there exists g ∈ G such that xg = y; the group G acts primitively on M if the only

equivalence relations left invariant by the action of G are the trivial equivalence relation

(with equivalence classes of size 1) and the universal equivalence relation. In this section,

we set up the basic language and present some general results that will be used in later

chapters. This introductory chapter is largely based on [36], [34], [5], and [46].

Model Theory deals with the structures that satisfy a collection of sentences or axioms.

It studies the semantics of the axiom system in a particular logic, most often first-order

classical logic. An unintended consequence of this is a very relaxed attitude towards the

distinctions between a formula ϕ(x, ā) and the set of its solutions in a particular model,

{b ∈ M : M |= ϕ(b, ā)}, and other related issues. This may be confusing, and we

mention it here to alert the reader.
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A language is a set of symbols, which come in three flavours: there are constant

symbols, relational symbols, and function symbols. We will work exclusively in relational

languages, that is, languages without function symbols (we do allow constant symbols,

even though they are often identified with functions of arity 0). Formulas are well-formed

strings of symbols from the language, and a sentence is a formula for which all variables

are quantified.

A theory is simply a consistent set of sentences in a language L. We say that the theory is

complete if it is maximal in the partial ordering of theories in the language by inclusion.

A structure M for the language L is a set M together with interpretations for each of

the symbols of L. These interpretations are actual elements or tuples (for the constant

symbols), subsets of various Cartesian products Mn (relations), and functions of the

appropriate arity. A sentence σ is true in (or modeled by) a structure M if, after

interpreting all the symbols from L present in σ in the structure M what we get is a

true statement about M . This relation is expressed by M |= σ. Given a theory T in the

language L, a model for T is a structure M for L such that for each sentence σ ∈ T we

have M |= σ. The work in this thesis fits very well in Fraı̈ssé’s Theory of Relations,

and from that point of view, the concept of local isomorphism (bijections between finite

subsets preserving all relations) is as important as that of a formula—in fact, it is possible

to make a coherent exposition of Model Theory without refering to formulas, basing

everything on local isomorphisms and the back-and-forth method, as Poizat did in his

Course [36].

The most basic tool in first-order Model Theory is the Compactness Theorem; some even

go as far as saying that the purpose of Model Theory is to make efficient use of it. There

are two popular ways of proving this Theorem: as a corollary to Gödel’s Completeness

Theorem for first-order logic, and a more topological method using Łoś’s ultraproduct

construction. Of these two methods, the first has the advantage of giving a one-line proof

of the Compactness Theorem, but sweeps a number of important facts under the carpet (it

doesn’t even illustrate where the name compactness comes from), and rests on a syntactic

definition of proof. The ultrafilter proof requires only some basic knowledge of topology

and gives some insights into the space of types of the theory.
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Recall that a filter on an algebra of sets A is a set U ⊂ P(A) not containing ∅ such that

if u, u′ ∈ U then u ∩ u′ ∈ U , and if u ∈ U, v ∈ P(A), and u ⊆ v, then v ∈ U . An

ultrafilter is a maximal filter. It follows from Stone’s Representation Theorem that any

Boolean algebra is isomorphic to some algebra of sets, so we can transfer the concept

of filter to Boolean algebras. In our case, the Boolean algebra to have in mind is the

Tarski-Lindenbaum algebra of the language L. The ultrafilters of this algebra are the

complete theories in the language L; if we add constant symbols x, y, . . . to the language

(we think of these as variables—this is a technicality: the Tarski-Lindenbaum algebra

consists only of sentences in the language; therefore, any free variables in a formula would

automatically take it out of the algebra), the ultrafilters from the algebras associated with

the new languages are what we call (complete) types in variables x, y, . . . In other words,

a type p(x) in an ambient theory T is a maximally consistent set of formulas modulo

T -equivalence; equivalently, it is a completion of the theory T to the language L ∪ {x},
or a consistent set of formulas with at most the variables displayed free, such that for all

formulas ϕ(x) in the language, either ϕ(x) or ¬ϕ(x) belong to it. For more on this, see

[34] or [36].

We will assume that any filter is contained in a maximal filter (Tarski’s ultrafilter axiom).

Now we introduce ultraproducts, which are a way of creating new structures from existing

ones using an ultrafilter for organising purposes. Let A be a nonempty set and U an

ultrafilter on the power set of A, and for each a ∈ A let Sa be a structure with nonempty

universe Ma. We start by describing the universe of the ultraproduct of the Sa by

the ultrafilter U. Consider the relation ∼U on the product
∏
Sa which holds for tuples

(. . . , ba, . . .) and (. . . , ca, . . .) if the set {a : ba = ca} is in U . It is routine to check that

this is an equivalence relation; the universe of the ultraproduct is S =
∏
Sa/ ∼U .

Now we decide how to interpret the symbols of the language. For any symbol q ∈ L, let

qa be its interpretation in the structure Sa:

1. If c is a constant symbol, its interpretation in the ultraproduct is the equivalence

class of the tuple (. . . , ca, . . .).

2. If f is an n-ary function symbol, then, given an n-tuple α1, . . . , αn ∈ S, then

choose representatives b1, . . . bn of α1, . . . , αn, b1 = (. . . , b1,a, . . .), . . . , bn =
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(. . . , bn,a, . . .) and define the value of f(αi, . . . , αn) to be the equivalence class

of the tuple (. . . , f(b1,a, . . . , bn,a), . . .).

3. If R is an n-ary relation symbol and β1, . . . , βn ∈ S, then choose representatives

b1, . . . , bn and say that (β1, . . . , βn) satisfies R in the ultraproduct if the set of

indices a such that (b1,a, . . . , bn,a) satisfies R in Sa belongs to U .

Theorem 1.1.1 (Łoś’s Theorem) Let U be an ultrafilter of subsets of I , and let the

structures Si be indexed by I , all for the same language L. Let ϕ(x̄) be a formula in

L, and ᾱ = (α1, . . . , αn) be a tuple from
∏
Si/ ∼U ; let a1, . . . , an be representatives

in
∏
Si of α1, . . . , αn. Then

∏
Si/ ∼U satisfies ϕ(α1, . . . , αn) if and only if {i : Si |=

ϕ(a1,i, . . . , an,i)} belongs to U .

The proof of Łoś’s Theorem is by induction on the complexity of formulas, and is mostly

routine.

Fix a language L, and consider the set T of all complete theories in L. Given a sentence

σ in L, let 〈σ〉 be the set of all theories T ∈ T containing σ. We claim that the collection

B of all sets of the form 〈σ〉 is a base of open sets for a topology. To see this, notice that

if T ∈ 〈σ〉 ∩ 〈τ〉, then T |= σ ∧ τ , and therefore T ∈ 〈σ ∧ τ〉, and that complete theories

are nonempty by definition.

The elements of B are basic open sets of some topology on T . They are also closed sets,

as the complement in T of 〈σ〉 is clearly 〈¬σ〉. Therefore, T with the topology generated

by B is a totally disconnected space. And if two complete theories T, T ′ ∈ T differ, then

there exists some sentence σ belonging to T but not to T ′. By maximality, this means that

σ ∈ T and ¬σ ∈ T ′; therefore, T ∈ 〈σ〉 and T ′ ∈ 〈¬σ〉, and B generates a Hausdorff

topology on T .

A filter in a topological space X is a filter in the power set of X . A point x ∈ X is a limit

of a filter F if every neighbourhood of x belongs to F , and x is a cluster point of F if

x belongs to the closure of every member of F . In Hausdorff spaces, filters converge to

at most one point. A topological space is compact if and only if every filter has a cluster

point (Theorem 3.1.24 of [13]).
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Notice that to prove compactness with this definition, it suffices to prove that every

ultrafilter has a cluster point. Suppose that every ultrafilter has a cluster point, and let

F be a filter on X . By Tarski’s axiom, there exists an ultrafilter U extending F , and by

our hypothesis U has a cluster point x. The point x belongs to the closure of every set in

U , and in particular to the closure of every set in F . Therefore, x is a cluster point of F .

Theorem 1.1.2 (Compactness) The space T of complete theories for a language L with

the topology generated by B = {〈σ〉 : σ is a sentence in L} is compact and totally

disconnected. Equivalently, a set of sentences Σ in L is consistent if and only if any finite

subset of it is consistent.

Proof
We have seen that T is Hausdorff and totally disconnected. Now we prove that every

ultrafilter on T converges to some theory. For each theory T ∈ T , let MT |= T . Let

U be an ultrafilter on T . We claim that U converges to the theory θ of
∏
MT/ ∼U .

Any neighbourhood A of θ contains some 〈σ〉 with θ |= σ. By Łoś’s Theorem, the set

{T : MT |= σ} = 〈σ〉 ∈ U , and therefore A ∈ U .

For the equivalence, suppose first that T is compact. If any finite subset of Σ is consistent,

then the sets 〈
∧
i∈f σi〉 for σ ∈ Σ and f a finite subset of a set indexing Σ form a net in

T , which by compactness converges to a theory T0 satisfying all of Σ. If Σ is consistent,

clearly all its finite subsets are consistent.

Now suppose that Σ is consistent whenever its finite subsets are consistent. This is

equivalent to saying that every net in the totally disconnected space T converges.

Therefore, T is compact. �

Now let us consider the space of completions of a theory T in the language L to the

language L ∪ {xi : i ∈ I}. As we have remarked before, this is the space of types in the

variables xi. We can define a compact totally disconnected Hausdorff topology on this

space just as we did for T , using sets of the form 〈ϕ(x̄)〉 as basic open sets. This space

can also be constructed as the space of ultrafilters on the Tarski-Lindenbaum algebra, a
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Stone space denoted by SI(T ) (Sn(T ) for finite indexing sets). So far, we have defined

types without parameters; if we add constants to the language from a set A contained in

some model of T and consider the completions of T in the language L ∪ {ca : a ∈ A}
then we get types over the set of parameters A.

In a topological space X , a point x0 is isolated if the set {x0} is open. This condition

translates in the case of type spaces to the existence of a formula ϕ(x̄) consistent with T

such that the type p(x̄) consists of all the formulas with free variables from x̄ implied by

T ∪ {ϕ(x̄)}, in symbols, p(x̄) = {ψ(x̄) : T |= ϕ(x̄)→ ψ(x̄)}.

All isolated completions of T are realised in any model of a complete theory T : suppose

that p(x̄) ∈ S(T ) is isolated by ϕ(x̄). Then the sentence ∃x̄ϕ(x̄) is in T and any model

of T will have tuples realising ϕ, and therefore realising p. But non-isolated types can be

omitted in models of T .

Theorem 1.1.3 (Omitting Types Theorem) Let L be a countable language, T an L-

theory and p a non-isolated n-type over∅. Then there is a countable model of T omitting

p.

More generally, a “small” (meagre; compact Hausdorff spaces have the Baire property)

set of non-isolated types from each Sn(T ) can be omitted.

Given a cardinal number κ, a complete L-theory T is said to be κ-categorical if all its

models of size κ are isomorphic. All the theories in this thesis are ω-categorical. In

an ω-categorical theory, the (unique up to isomorphism) countable model M embeds

elementarily into every model of T (so M is a prime model of T ) by the Löwenheim-

Skolem Theorem. Suppose that T has a prime modelM and e : M → N is an elementary

embedding. If ā ∈ M satisfies a type p, then e(ā) satisfies the same type p; if a type p

realised in M were nonisolated, then we could find a model M ′ of the same cardinality

|M | into which M does not embed elementarily. Therefore, a prime model realises only

the isolated types of the theory; if the language is countable, the converse can be proved

by a back-and-forth argument. This gives us some more information about the topology

of the type spaces of T :
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Theorem 1.1.4 A complete countable theory T has a prime model if and only if the set

of isolated types in Sn(T ) is dense for each n ∈ ω.

Proof
Suppose that T has a prime model. We argued before that in this model the type of any

ā ∈ M is isolated. Let ϕ(x) be a formula consistent with T and M a prime model for T .

Then 〈ϕ(x)〉 is nonempty and T |= ∃xϕ(x). Find a tuple a in M satisfying ϕ. The type

of a is isolated and is contained in 〈ϕ(x)〉. Therefore, the set of isolated types is dense.

If the isolated types form a dense set, then the non-isolated types form a closed set with

empty interior, which is nowhere dense and therefore meagre. By Theorem 1.1.3, there

is a countable model M omitting all the non-isolated types. This model M is prime. �

A more extreme case is when every type in Sn(T ) is isolated.

Theorem 1.1.5 (Ryll-Nardzewski) A countable complete theory T is ω-categorical if

and only if Sn(T ) is finite for all n ∈ ω.

Proof
If Sn(T ) is infinite for some n, then it cannot consist only of isolated types because Sn(T )

is compact. By the omitting types theorem, there exist countable models M , N such that

M realises a non-isolated type p ∈ Sn(T ) and N omits p. These two countable models of

T cannot be isomorphic.

And if all the Sn(T ) are finite, then all its elements are isolated. Therefore, in any model

of T all tuples have an isolated type; moreover, if ā and b̄ have the same type in a model

M of T and we extend the tuple ā by adding an element a0, then we can find a formula

ϕ(x̄, y) isolating the type of āa0, so ā satisfies ∃x̄ϕ(x̄, y), as does b̄. Therefore, we can

find in M a b0 for which M |= ϕ(b̄, b0).

Under these conditions, any two models realise the same types over the empty set. These

two remarks are enough to establish a back-and-forth system and find an isomorphism
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between any two countable models of T . �

A model M is said to be κ-saturated if for any A ⊂ M of cardinality less than

κ, M realises every type over A. If no κ is mentioned, a saturated model M is

|M |-saturated. Under the GCH, one can prove the existence of saturated models of

uncountable cardinality. Saturated models can be thought of as “universal domains”

embedding other smaller infinite (non-saturated) models. A common formalism is to

consider all the models that appear in a discussion to be elementary submodels of a fixed

saturated model of strongly inaccessible cardinality, or of a cardinality at least as large as

the successor of the supremum of all the cardinalities of models or sets involved. This

model is called the monster model and denoted by M̄ or C, and its elementary submodels

are called small models, or simply models.

1.2 Simplicity

Following the great success of the 1980s in the study of stable theories, an effort was

made to find similar results for the less restricted class of simple theories, originally

defined by Shelah in [40] as theories without the tree property. The fundamental theorem

in simplicity is the Independence Theorem, which states the conditions under which a

common solution to two “sufficiently independent” types can be found.

A fundamental tool in stability theory and its variants is the use of indiscernible sequences.

An infinite sequence of tuples (āi : i ∈ ω) is said to be indiscernible over a set of

parameters A if for all i1 < . . . < in, we have tp(ā1, . . . , an/A) = tp(āi1 , . . . , āin/A).

Notice that by compactness, if we can find indiscernible sequences ordered by ω, then

we can find indiscernible sequences ordered by any linear order. The existence of

indiscernible sequences is proved using Ramsey’s theorem or the stronger Erdős-Rado

theorem. We do this next.

Theorem 1.2.1 (Ramsey’s Theorem) Let k, n be natural numbers and X be an infinite
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set. For each function c : X [n] → k there exists an infinite Y ⊆ X such that c is constant

on Y [n].

Proposition 1.2.2 If M is (|A|+ + κ)-saturated, then there is an infinite indiscernible

sequence of length κ over A.

Proof
Let P be the set of formulas on variables (xi : i < κ) stating that xi 6= xj for all i 6= j in

κ, together with the formulas from

{ϕ(xi0 , . . . , xin)↔ ϕ(x0, . . . , xn) : n ∈ ω, i0 < . . . < in < κ,ϕ ∈ LA}

Consider any finite subset s of P with k elements. Adding dummy variables if necessary,

we can think of these formulas as being all on n free variables. Fix an enumeration

s = {ϕ0, . . . , ϕk−1} of s and define a function c : Mn → 2k assigning to a tuple

m̄ = (m1, . . . ,mn) the subset of k corresponding to those formulas in s that m̄ satisfies.

By Ramsey’s Theorem, there is an infinite monochromatic set satisfying s, and by

compactness P is consistent; by saturation, there is an infinite sequence of length κ

satisfying P in M , which is indiscernible over A by definition. �

Tuples belonging to an indiscernible sequence have strong invariance properties. Clearly,

any two elements of an A-indiscernible sequence (ai : i ∈ I) of them have the same type

overA, and therefore are conjugates in a saturated model. But there is more. It is clear that

any two elements from an indiscernible sequence will have the same strong type, meaning

that they will be in the same equivalence class of any equivalence relation definable over

A with finitely many classes. Two elements in the same class of the transitive closure of

the relation a ∼indA b that holds if a, b start an A-indiscernible sequence are said to have

the same Lascar strong type overA; this relation holds if and only if a and b are conjugate

under some automorphism fixing a model containing A.

In the main chapters of this thesis, we will establish some connections between the orbits

under the natural action of the group of automorphisms of a structure and the solution sets

of types. The following definitions will prove useful:
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Definition 1.2.3 LetA be a set of parameters andM a saturated model of T of cardinality

greater than |A|.

1. Aut(M/A) is the group of automorphisms of M fixing A pointwise; Aut{A}(M),

is the group of automorphisms fixing A setwise.

2. An element is definable over A if it is fixed by all automorphisms of Aut(M/A).

The set of all definable elements over A is the definable closure of A, dcl(A).

3. An element is algebraic over A if its orbit under Aut(M/A) is finite. The set of all

elements which are algebraic over A is the algebraic closure of A, acl(A).

4. A relationR isA-invariant or invariant overA ifM |= R(c̄) impliesM |= R(σ(c̄))

for all σ ∈ Aut(M/A) and c̄ ∈M .

The contrast between the language in this section and the language in the section on basic

model theory has to do with a change in direction in the discipline after Morley’s proof

of his famous categoricity theorem (originally conjectured by Jerzy Łoś) and with the

historic East Coast/West Coast distinction of problems and methods in model theory. The

modern focus is on more “geometric” properties, many of which are generalisations of

situations arising in algebraic geometry, and the language of stability theory reflects this

situation. A central feature in algebra is the concept of independence (linear independence

in vector spaces, algebraic independence in fields, etc); when adapted to our level of

generality, we come to the definition of forking.

Definition 1.2.4 Let T be a complete L-theory, ā a tuple in some Cartesian power of

a small model M , and ϕ(x̄, ȳ) an L-formula. We say that ϕ(x̄, ā) k-divides (over A)

if there exists an infinite sequence (āi : i ∈ ω) of realisations of tp(ā) (tp(ā/A)) such

that any k-element subset of {ϕ(x̄, āi) : i ∈ ω} is inconsistent. A partial (i.e., not

necessarily complete) type π(x̄) is said to fork over A if there are n ∈ ω and formulas

ϕ0(x̄), . . . , ϕn−1(x̄) such that π(x̄) implies
∨
i<n ϕi(x̄), and each ϕi k-divides over A.

Using Ramsey’s theorem, we can require that the sequences in the definition of

forking/dividing be indiscernible over A. For (complete and partial) types p(x), we say
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that p divides/forks over A if it implies a formula which divides/forks over A. As is often

the case in model theory, the relation with all the desirable properties is non-forking. We

use the symbols A^
B

| C to mean “tp(a/BC) does not fork over B for any finite tuple a

from A.”

Dividing is the intuitively “correct” notion of dependence: if ϕ(x, a) divides over A, then

for some sequence (ai : i ∈ ω) the set {ϕ(x, ai) : i ∈ ω} is inconsistent, so any extension

of tp(a/A) including or implying ϕ contains more information about the relations holding

between a solution and the set Aa. But dividing has a technical disadvantage vis à vis

forking: it is not always true that we can extend a partial type over B that does not divide

over A to a complete type over B not dividing over A. This distinction turns out to be

irrelevant in the case of simple theories, which we introduce next.

Definition 1.2.5 A formula ϕ(x̄, ā) consistent with a theory T is said to have the k-tree

property if there is a tree of parameters {ās : s ∈ ω<ω} such that:

1. for all f : ω → ω, the set {ϕ(x̄, āf�n) : n ∈ ω} is consistent with T , and

2. for all sequences s ∈ ω<ω, the set {ϕ(x̄, āsi : i ∈ ω} is k-inconsistent with T .

The theory T has the k-tree property if some formula consistent with it has the k-tree

property, and is simple if no formula has the k-tree property for any k.

We will often prove that a theory is not simple by showing that it has the stronger tree

property of the second kind, or TP2. Here’s a definition for it:

Definition 1.2.6 A theory T has the TP2 if there exists a formula ϕ(x̄, ȳ) and an array of

parameters (āji : i, j ∈ ω) such that:

1. for all functions f : ω → ω, the set {ϕ(x̄, ājf(j)) : j ∈ ω} is consistent, and

2. each of the sets {aji : i ∈ ω} is k-inconsistent.
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In a simple theory, a type p ∈ S(B) divides over A if and only if it forks over A.

Non-forking independence has other useful properties in simple theories. The following

proposition is a synthesis of Propositions 5.3, 5.5, 5.6, 5.7, 5.18, and 5.20 in Casanovas’

book [5].

Proposition 1.2.7 The independence relation always has the following properties:

Invariance If f ∈ Aut(M̄) and A^
C

| B, then f(A) ^
f(c)

| f(B).

Normality A^
C

| B if and only if A^
C

| CB if and only if AC^
C

| B.

Finite character If a^
C

| b for all finite tuples a ∈ A, b ∈ B, then A^
C

| B.

Base monotonicity If A^
C

| B and B′ ⊆ B, then A ^
CB′
| B.

Monotonicity If A^
C

| B, A′ ⊆ A and B′ ⊆ B, then A′^
C

| B′.

Algebraic closure acl(A)^
A

| B.

Closedness The set of all complete types p(x) ∈ S(B) which do not fork overA is closed

in S(B).

If T is simple, then the independence relation also satisfies:

Local character For any B,C there is some A ⊆ B such that |A| ≤ |T | + |C| and

C^
A

| B.

Extension Let a be a tuple (possibly infinite). For any B, there is some a′ ≡A a such that

a′^
A

| B.

Symmetry For all A,B,C, A^
C

| B if and only if B^
C

| A.

Transitivity Whenever B ⊆ C ⊆ D, if A^
B

| C and A^
C

| D, then A^
B

| D.
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Reflexivity B^
A

| B if and only if B ⊆ acl(A).

Pairs Lemma ab^
A

| B if and only if a^
A

| B and b^
Aa

| B.

Change of base If ab^
A

| B, then a^
A

| b if and only if a ^
AB

| b.

• A^
B

| acl(B)

• A^
B

| C ↔ acl(A)^
B

| C ↔ A^
B

| acl(C)↔ A ^
acl(B)

| C

Actually, simplicity is equivalent to nonforking independence satisfying any of local

character, symmetry, or transitivity.

Let I be a linearly ordered set. An A-indiscernible sequence (ai : i ∈ I) is a Morley

sequence if for every i ∈ I , ai^
A

| {aj : j < i}. Most frequently, the existence of Morley

sequences is proved using the Erdős-Rado theorem. The proof is not very illustrative,

though. A more friendly way to find Morley sequences is using coheirs. Recall that a

type q ∈ S(B) is a coheir of p ∈ S(M), M ⊂ B, if q is finitely satisfiable in M , meaning

that any finite conjunction of formulas in q has a solution in M .

Given two models M ≺ N and a type p ∈ S(M), we can find a coheir of p as follows.

Consider the complete type p over M as an incomplete type π over N . Then π is finitely

satisfiable in M , and so the family of clopen sets P = {〈ϕ〉 : ϕ ∈ π} has the finite

intersection property in S(N): for any ϕ1, . . . , ϕn in π, there is some c ∈ M such that

tp(c) ∈ 〈ϕ1〉 ∩ . . . ∩ 〈ϕn〉. By compactness, the intersection of P is nonempty. We claim

that any element q of
⋂
P is a completion of π toN which is finitely satisfiable inM . The

first assertion is clear; to prove the second, suppose for a contradiction that q ∈
⋂
P is

not finitely satisfiable. This means that there exist ψ1, . . . , ψn ∈ q such that ψ1 ∧ . . .∧ ψn
have no solution in M . But in this situation q ∈ 〈ψ1 ∧ . . . ψn〉 ∩

⋂
P , so there is a finite

conjunction ϕ of formulas in π such that ϕ ` ψi for each i = 1, . . . , n, so any solution to

ϕ is a solution to all the ψi. It follows from the fact that π is finitely satisfiable in M (as

any type over M is) that ϕ has solutions in M , contradicting our assumption that q is not

finitely satisfiable in M .
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Proposition 1.2.8 If p ∈ S(M), M ≺ N ≺ N ′, and q ∈ S(N) is a coheir of p, then

there is an extension of q to the model N ′ which is a coheir of p.

Coheirs are nonforking extensions of the type they coinherit. A coheir sequence over

A is a sequence (ai : i ∈ I) such that for some model M ⊂ A and all i < j ∈ I ,

tp(ai/A{ak : k < i}) = tp(aj/A{ak : k < i}) and each tp(ai/A{ak : k < i}) is finitely

satifiable inM . We can find these sequences using 1.2.8: given any type p ∈ S(A) finitely

satisfiable in a model M ⊂ A, find an extension p′ ∈ S(C) which is finitely satisfiable in

M , and choose ai |= p′ � A{aj : j < i}.

Proposition 1.2.9 A coheir sequence (ai : i ∈ I) over A is Morley over A

Proof
It is clear that the sequence is indiscernible over A; and since coheirs are nonforking

extensions, it is also an independent sequence. �

Using the Erdős-Rado Theorem, we can find Morley sequences even in models of a

nonsimple theory. By the local character of forking, every type in a simple theory has a

Morley sequence. The next proposition is an immediate consequence of Proposition 3.2.7

in Wagner’s book [46], where it is phrased in terms of partial types and hyperimaginaries:

Proposition 1.2.10 Let T be simple, a, b tuples and ϕ(x, b) a formula over b. Then the

following are equivalent:

1. ϕ(x, b) does not fork over a.

2. ϕ(x, b) does not divide over a.

3. {ϕ(x, bi) : i ∈ ω} is consistent for all Morley sequences (bi : i ∈ ω) in tp(b/a).

4. There is a Morley sequence (bi : i ∈ ω) in tp(b/a) such that {ϕ(x, bi) : i ∈ ω} is

consistent.
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In Chapter 3, we will use the Lascar inequalities, which we include here for completeness.

Definition 1.2.11 The SU-rank is the least function from the collection of all types over

parameters in the monster model to On∪{∞} satisfying for each ordinal α that SU(p) ≥
α + 1 if there is a forking extension q of p with SU(q) ≥ α .

The SU-rank is invariant under definable bijections. Additionally, if q is a nonforking

extension of p, then SU(q) = SU(p). A theory T is supersimple if and only if SU(p) <∞
for all real types p. In the following theorem, we denote the Hessenberg sum of ordinals

by ⊕.

Theorem 1.2.12 (Lascar inequalities) The SU-rank satisfies the following inequalities:

1. SU(a/bA) + SU(b/A) ≤ SU(ab/A) ≤ SU(a/bA)⊕ SU(b/A).

2. Suppose SU(a/Ab) < ∞ and SU(a/A) ≥ SU(a/Ab) ⊕ α. Then SU(b/A) ≥
SU(b/Aa) + α.

3. Suppose SU(a/Ab) < ∞ and SU(a/A) ≥ SU(a/Ab) + ωαn. Then SU(b/A) ≥
SU(b/Aa) + ωαn.

4. If a^
A

| b, then SU(ab/A) = SU(a/A)⊕ SU(b/A).

1.3 Homogeneous Structures

Homogeneous structures appear in the work of Roland Fraı̈ssé from the 1950s as a very

special case of relational structures (see [18], [19]), but some trace the origins of the

subject to Cantor’s proof that any two countable dense linearly ordered sets without

endpoints are isomorphic. That theorem is proved by a back-and-forth argument, which in

model-theoretic terms says that the theory of (Q, <) eliminates quantifiers in the language

{<}.
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This subject is a meeting point for permutation group theory, model theory, and

combinatorics. From the model-theoretic perspective, homogeneous structures have many

desirable properties: they eliminate quantifiers, are prime, have few types, algebraic

closure does not grow too quickly. All these properties made a full classification, at

least for some restricted languages, accessible. There exist, for example, complete

classifications of the finite and countably infinite homogeneous posets (Schmerl, [39]),

graphs (Gardiner [21], Lachlan and Woodrow [31]), tournaments (Woodrow [47], Lachlan

[27]), and digraphs (Cherlin [9]).

During the 1970s and 80s, stability theory was a rapidly growing subject. Abstractions

from the dimension or rank concepts in “real life” theories were put to work, and

whole families of theories were classified. Gardiner and Lachlan found that most finite

homogeneous graphs and digraphs could be classified in a similar way: there was a

partition of the set of structures into families parametrised by a few numbers. This parallel

discovery led to Lachlan and Shelah’s study of stable homogeneous structures ([9], [29]),

and to Cherlin and Hrushovski’s work on structures with few types in [10].

Definition 1.3.1 A countable first-order structure M for the relational language L =

{Ri : i ∈ I} is homogeneous if any isomorphism between finite substructures extends to

an automorphism of M .

We will be dealing with finite languages practically all the time. It is essential to have a

relational language; if the language has function symbols, we would have to change “finite

substructures” to “finitely generated substructures” (functions can be iterated). Notice

that this definition is stronger than the definition of homogeneity in model theory: the

condition there is that partial elementary maps extend to automorphisms. This is one

reason why our homogeneous structures are often called ultrahomogeneous. Any partial

elementary map is a local isomorphism, and so every ultrahomogeneous structure is

homogeneous, but the converse is not true. The countability assumption is not necessary,

but we will not consider homogeneous structures of any higher cardinality.

If M is any (not necessarily homogeneous) first-order relational structure, the set of all

finite structures isomorphic to substructures of M is called the age of M , denoted by
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Age(M). It is clear from the definition that the age of a homogeneous structure M is of

particular importance if we wish to understand M .

Given countable relational structure M for a countable language, the following are true:

1. Age(M) has countably many members, since M itself is countable.

2. Age(M) is closed under isomorphism, by definition.

3. Age(M) is closed under forming substructures: given A ∈ Age(M), any

substructure B of A will be finite, and a composition of the embeddings B → A

and A→M proves that B ∈ Age(M).

4. Age(M) has the Joint Embedding Property or JEP: given two structures A,B ∈
Age(M), there exist embeddings f : A → C and g : B → C for some C ∈
Age(M).

The next theorem completes the picture:

Theorem 1.3.2 (Fraı̈ssé) Let L be a countable first-order relational language, and C a

class of finite L-structures.

1. There exists a countable structureA whose age is equal to C if and only if C satisfies

properties 1-4.

2. There exists a homogeneous structure A whose age is equal to C if and only if C
satisfies 1-4 and the amalgamation property: given A,B,C ∈ C with embeddings

f1 : A→ B and f2 : A→ C, there exists D ∈ C and embeddings g1 : B → D and

g2 : C → D such that g1 ◦ f1 = g2 ◦ f2. Furthermore, this structure is unique up to

isomorphism.

Consider a group of permutations G acting on a set X . Then G acts on each Cartesian

power of X coordinatewise. Peter Cameron introduced the term oligomorphic action to

describe the situation where G acts on a countably infinite set X and G has finitely many

orbits on Xn for each natural number n. The following theorem is a more elaborate

version of Theorem 1.1.5.
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Theorem 1.3.3 Let M be a countably infinite structure over a countable language and

T = Th(M). The following are equivalent:

1. M is ω-categorical

2. Every type in Sn(T ) is isolated, for all n ∈ ω

3. Each type space Sn(T ) is finite

4. (M,Aut(M)) is oligomorphic

5. For each n > 0 there are only finitely many formulas ϕ(x1, . . . , xn) up to Th(M)-

equivalence.

Proof
Condition 1 implies 2 by the omitting types theorem. The implication 2⇒3 is by

compactness of the type spaces; 3 implies 4 by saturation (see Proposition 1.3.5).

Condition 5 follows easily from 4. To prove that 5 implies 1, let M be a countable model

of T . Notice that the type of any tuple in Mn is isolated by the conjunction of the finitely

many formulas it satisfies together with the negations of the formulas it does not satisfy.

From this it follows easily that M is a prime model of T . It is easy to prove that any

two prime models of a complete theory in a countable language are isomorphic, but the

argument is too long for the purposes of this introduction. See [34] for a detailed proof. �

Proposition 1.3.4 Let M be a countably infinite structure homogeneous over a finite

relational language. Then M is ω-categorical.

Proof
The language is finite: there can be only finitely many isomorphism types of substructures

of M of size n; by homogeneity, any two isomorphic finite substructures are in the same

orbit, so by 1.3.3, M is ω-categorical. �
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Proposition 1.3.5 The unique model M of cardinality κ of a countable κ-categorical

theory is saturated.

Proof
By the Löwenheim-Skolem theorem and countability. �

Recall that a small substructure of a saturated model of cardinality κ is a substructure

of any cardinality λ < κ. In homogeneous models, partial elementary maps extend to

automorphisms. It is not hard to prove that saturated models are homogeneous; as a

consequence,

Proposition 1.3.6 In a saturated model M , two small substructures have the same type

if and only if they belong to the same orbit under Aut(M).

Proposition 1.3.7 Let M be a countable ω-categorical structure and A a finite subset of

M . A subset X ⊂M is definable over A if and only if X is a union of orbits of the set of

automorphisms of M fixing A pointwise.

Proof
This is a direct consequence of Proposition 1.3.3. �

Proposition 1.3.8 Let M be a countable ω-categorical structure over a relational

language L. Then M is homogeneous if and only if Th(M) eliminates quantifiers in

the language L.

Proof
If Th(M) eliminates quantifiers, homogeneity follows from saturation, by Proposition

1.3.5.

Given an n-tuple ā in M , its isomorphism type in the language L can be expressed

by a quantifier-free formula. And in a homogeneous structure, the isomorphism type
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of ā determines its orbit under the action of Aut(M), and therefore its complete type.

This is enough as we have shown that the quantifier-free type (i.e., the isomorphism

type of the substructure induced on the tuple) determines the complete type of the tuple. �

Quantifier elimination is a matter of language; we can always force it on a structure by

adding relation symbols to the language for each possible formula. If the structure we

start with is ω-categorical, then we need only add finitely many predicates for each natural

number n, corresponding to the finitely many elements of Sn(T ) or, equivalently by 1.3.3,

to the orbits of Aut(M).

1.4 More specific context

The present work is an attempt to understand a restricted class of homogeneous structures

with simple unstable theory, and as such, is a continuation of the work of Lachlan,

Harrington, Cherlin and Shelah in the 1980’s on stable homogeneous structures. They

proved that all stable structures homogeneous in a finite relational language arise as a limit

of finite homogeneous structures. The first stage was proving the result with the additional

restriction of a binary language. All languages in this thesis are finte an relational.

During the first stages of our research, we worked with some non-binary structures. After

some failed attempts to derive results even in very specific contexts (for example, we

attempted to prove the existence of a 0-1 law for the universal homogeneous tetrahedron-

free 3-hypergraph), it became clear that the combinatorics of non-binary structures can

be intimidating or even intractable. One good reason for this is the following observation

(Simon Thomas, [43]):

Observation 1.4.1 Let M be a binary homogeneous structure, and for each n ∈ ω, let

tn be the number of n-types realised in M . Let A ∈ [M ]<ω and let M1, . . . ,Mk be the

descomposition of M into atoms over A. Then for each 1 ≤ i ≤ k and n ∈ ω, the number

of n-types over A realised in Mi is at most tn.
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In Observation 1.4.1, the atoms (over A) are the solution sets of 1-types (over A) in the

countable model M .

This observation fails for structures homogeneous in languages of higher arity. For

example, in any homogeneous 3-hypergraph that is not complete, there is only one type

of pairs (a, b) with a 6= b, but over any vertex c ∈M there are two types of pairs.

Simon Thomas proved in [43] that it is not possible to interpret a ‘weak pseudoplane’ in

a homogeneous binary structure. In chapter 3 we prove some non-existence results for

3-graphs. A 3-graph is a complete graph with each edge coloured in one of three colours.

We prove (in Theorems 3.5.37 and 3.6.2):

Theorem 1.4.2 There are no primitive homogeneous 3-graphs with supersimple theory

of SU-rank 2.

Theorem 1.4.3 Let M be a primitive homogeneous 3-graph, and suppose that if a, b are

singletons and a^
∅
|6 b, then the formula isolating tp(ab) is stable. Then the theory of M

is of SU-rank 1.

In the course of the proof we use “geometric” methods similar to those present in [43],

defining an incidence structure on the 3-graphs. In Theorem 1.4.2 we have stable forking

(the condition in Theorem 1.4.3 is satisfied over any set of parameters, not only ∅)

by a result due to Assaf Peretz [35] stating that in supersimple ω-categorical theories,

the elements of SU-rank 2 satisfy stable forking. Under stable forking, we can see

Theorem 1.4.2 as the basis for an inductive argument for the non-existence of primitive

homogeneous supersimple 3-graphs of rank higher than 1. It is our feeling that the

hypothesis of stable forking should not be necessary to prove the conclusion of Theorem

1.4.3, and we are working towards eliminating stable forking from the statement of the

theorem.

We worked with a number of examples of simple structures homogeneous in a finite

relational language. At the time of this writing, all the examples of such structures

we are aware of are actually supersimple, so we conjecture that all simple structures
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homogeneous in a finite relational language have supersimple theory (and by a result

in this thesis, namely Theorem 3.2.7, those homogeneous in a binary language also

have finite SU-rank). It is easy to prove that any stable finitely homogeneous

(i.e., homogeneous in a finite relational language) structure is ω-stable, as any 1-type over

a countable model M is determined by finitely many φ-types, which are definable.

Another observation deriving from the examples we know is that all the binary primitive

(super)simple structures we know have SU-rank 1. Is it true that all primitive binary

homogeneous supersimple structures have SU-rank 1? In Chapter 3, we observe that

primitive simple homogeneous binary structures of rank 1 have trivial algebraic closure

and are “random” in the sense that all the restrictions, or forbidden structures, of their age

are of size 2 (Theorem 3.3.3). These rank 1 structures are the limit of a free amalgamation

class C, by which we mean, in the binary case, an amalgamation class in which there is

a distinguished relation R that solves all the amalgamation problems f : A → C, g :

A→ B where B,C are one-point extensions of A. By “solving” in this context we mean

that if we consider B and C as extensions of a common substructure A, the L-structure

defined on the union of B and C with R(b, c) is an element of C. (In the literature,

the term “free amalgamation class” is sometimes used in the more restricted sense that

the union of B and C, with no relations holding between elements from B \ g(A) and

C \f(A), is a solution to the amalgamation problem; we often assume that each 2-type of

distinct elements is isolated by a relation in the language, so the definition we have given

is more appropriate). This relates neatly with two of Cherlin’s “outrageous conjectures”

in [8] (Problem C2: Is every primitive infinite binary symmetric homogeneous structure

generic for a free amalgamation class?, and Problem D: If Γ is infinite, primitive, binary,

and finitely homogeneous, is acl(A) = A for all finite A?).

In the same line of thought, the simplicity of a binary structure seems to be very sensitive

to the presence of large forbidden structures. In Chapter 2, we explore all of the

examples in the Appendix to Cherlin’s monograph [9], and prove that they have the TP2

(Corollary 2.2.3). These are all the known examples of primitive homogeneous structures

in a binary language with up to four symmetric relations and non-free amalgamation,

all of whose forbidden structures are of size greater than 2 are triangles. We go on

to prove (Theorem 2.2.28) that any homogeneous n-graph in which all the minimal
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forbidden configurations are triangles and whose ages satisfy what Cherlin calls semifree

amalgamation have the TP2 (all of Cherlin’s examples from the monograph satisfy these

hypotheses). Another family of examples is that of Urysohn spaces with finite diameter

and integer distances. We prove that the only simple one is that with diameter 2,

isomorphic to the Random Graph. All these examples are consistent with the idea that

all primitive binary homogeneous structures with supersimple theory are random.

Question 1.4.4 Is it true that the minimal forbidden configurations in any simple

primitive binary homogeneous structure are of size at most 2?

In the case of superstable ω-categorical theories, it is known that they are one-based

and have finite Morley rank. The corresponding result for simple theories, namely

that supersimple ω-categorical theories have finite SU-rank, has been open for a long

time now. It is known, however, that supersimple ω-categorical one-based (and more

generally, CM-trivial) theories have finite SU-rank (see [46], section 6.2.3). The following

conjecture is a weakening of Problem 6.2.46 in Wagner’s book.

Conjecture 1.4.5 Supersimple finitely homogeneous relational structures are CM-trivial.

In Chapter 3 (Theorem 3.2.7), we prove:

Theorem 1.4.6 There are no binary finitely homogeneous structures with supersimple

theory of infinite SU-rank of the form ωα for any ordinal α ≥ 1.

The theories we deal with are low (Proposition 3.1.1), a condition that allows us to use the

amalgamation theorem very freely, as it implies in particular that to verify the equality of

Lascar strong types of realisations of the types we wish to amalgamate, it suffices to verify

the equality of their strong types. In most cases, the types we wish to amalgamate are 1-

types over the empty set in a primitive structure. Under the condition of homogeneity, this

means that any two realisations of the unique 1-type over ∅ will be of the same (Lascar)

strong type over the empty set.
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The structures we study in this thesis are purely combinatorial, in the sense that they

do not interpret any algebraic structures which could give us information about them.

In [1] and [44], Ben-Yaacov, Tomašić and Wagner prove an analogue of the group

configuration theorem for simple theories. They find an almost hyperdefinable group of

hyperimaginaries from a group configuration in a regular type. But the theories we deal

with in this thesis do not fulfil their hypotheses. In the case of ω-categorical structures,

this collapses to an interpretable group action, but we know the following fact from [33]

(for the definition of homogenizable structure, see [11]; every homogeneous structure is

homogenizable):

Theorem 1.4.7 If M is a homogenizable relational structure, then it is not possible to

interpret an infinite group in M .

In Chapter 4 we look more closely into the combinatorics of a particular homogeneous

binary structure, the universal homogeneous directed graph D not embedding a set of

3 vertices not spanning any directed arcs (what we call I3-free digraphs). Namely, we

investigate the almost sure theory of I3-free digraphs.

I3 = •

••

The theory of D is nonsimple, but we are interested in it because in the cases we are

aware of regarding simple binary relational structures (the random graph, random n-

graphs, the random tournament), the almost sure theory coincides with the theory of the

Fraı̈ssé limit. On the other hand, in the case of triangle-free simple graphs the almost sure

theory is, as a consequence of a result by Erdős, Kleitman and Rothschild, the theory the

generic bipartite graph and so is supersimple of rank 1, but the theory of the universal

homogeneous triangle-free graph is not simple. Our result is one more case where the

theory of the Fraı̈ssé limit of an amalgamation class and the almost sure theory of the

structures in an age do not coincide. A bitournament is a digraph whose vertex set can be

partitioned into two tournaments. Formally, what we prove is (Theorem 4.0.21):
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Theorem 1.4.8 Let F (n) denote the set of labelled I3-free digraphs on {0, . . . , n − 1}
and T (n) denote the set of bitournaments on the same set. Then

|F (n)| = |T (n)|(1 + o(1))

We conjecture that a similar result holds for other related digraphs, namely that almost all

finite labelled Im-free digraphs are m-multitournaments, and that the almost sure theory

of the generic Im-free digraph is supersimple of rank 1, and is that of the generic m-

multitournament.
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§2. Examples

In this chapter, we present a large number of examples of homogeneous relational

structures. These examples have guided our thought and informed our conjectures.

We start with the standard examples: the ordered rational numbers, the random graph,

the random k-hypergraph, the universal homogenous Kn-free graphs, and a few ternary

examples. In each case, we comment on the simplicity of the theory.

After that, we prove that all the examples of primitive binary structures with forbidden

triangles presented by Cherlin in the appendix to his memoir [9] have nonsimple theory.

We give a slight generalization to that fact and prove that any binary homogeneous

complete edge-coloured graph with semifree amalgamation (see Definition 2.2.10) and

all of whose minimal forbidden configurations are triangles, have the TP2. We also prove

the TP2 for homogeneous integer-valued metric spaces of diameter greater than or equal

to 2. We have two conjectures and a question related to this:

Conjecture 2.0.9 Finitely homogeneous relational structures with simple theory have

supersimple theory.

Conjecture 2.0.10 Binary finitely homogeneous relational structures with minimal

forbidden configurations of size greater than 2 have nonsimple theory.

Question 2.0.11 If Conjecture 2.0.10 holds, is it true that all such structures have the

TP2?

All of the primitive structures with simple theory that we present in this chapter have

supersimple theory of rank 1.
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2.1 First examples

In this thesis we are interested in a number of properties that some homogeneous

structures with simple theory have. Some of these are model-theoretical, some are

combinatorial. We have formulated some conjectures which were motivated by various

of examples, many of which have been studied before but not with an emphasis on these

particular aspects. In this chapter, we will explore some of the examples and remark on

their properties.

Our first example is (Q, <). This is the unique (up to isomorphism) countable model of

the theory of dense linear orders without endpoints. The homogeneity of (Q, <) can be

established by noticing that we can take any a1 < a2 < . . . < an to b1 < . . . < bn

by a piecewise linear map, which is an automorphism of the structure. The theory of this

structure is clearly unstable (a 1-type overQ corresponds to a Dedekind cut, and we know

there are 2ℵ0 of them) and not simple as it has the strict order property.

The universal homogeneous graph, also known as the random graph, is the archetypal

example of a homogeneous simple binary structure. It is the Fraı̈ssé limit of the

amalgamation class of all finite graphs, and its theory is axiomatised by the set {ϕn,m :

n,m ∈ ω}, where ϕn,m is ∀v1, . . . , vn∀w1, . . . , wm(D(v1, . . . , vn, w1, . . . , wm) →
∃x(
∧

1≤i≤nR(x, vi) ∧
∧

1≤j≤m ¬R(x,wj)). Here D(v1, . . . , vn, w1, . . . , wm) is the

formula stating that the all the vi and wj are distinct. When phrased as “whenever V1

and V2 are finite disjoint sets of vertices in G, there exists a vertex v such that for all

v1 ∈ V1 and v2 ∈ V2 the formula R(v, v1) ∧ ¬R(v, v2) holds in G,” the axiom schema

φn,m is known as Alice’s restaurant axiom. The theory of the random graph is supersimple

unstable of SU-rank 1 and weakly eliminates imaginaries.

The universal homogeneous triangle-free graph is an interesting example. It is the Fraı̈ssé

limit of the family of all triangle-free graphs, and it fails to be simple (we prove the TP2

for this theory in Proposition 2.2.1). Its theory is axomatised by an axiom schema similar

to Alice’s restaurant axiom: given any two finite sets A,B such that there are no edges in

A, there exists a vertex v such that v forms an edge with each element ofA, and a nonedge

with each element of B. The almost-sure theory of triangle-free graphs does not coincide
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with the theory of the Fraı̈ssé limit by a result of Erdős, Kleitman, and Rothschild ([14])

saying that almost all triangle-free graphs are bipartite. It is an open question whether the

universal homogeneous triangle-free graph is pseudofinite ([8]).

In languages of higher arity, we can mention the random k-hypergraph and the random

structure. The random k-hypergraph is a higher-dimensional analogue of the random

graph; its theory is unstable and is supersimple of S1-rank 1 (as mentioned by Hrushovski

in [23]). They are also interpretable in pseudofinite fields (see [2]). The random structure

is pseudofinite by a result of Fagin [17].

If we construct the analogue for 3-hypergraphs of the homogeneous universal triangle-

free graph, we get a universal homogeneous tetrahedron-free 3-hypergraph. Interestingly,

though unstable, its theory is simple. This was one of the first signs of a difference

between the binary and higher-arity cases that we noticed. If we go one step further, we

find the “dunce-cap free” 3-hypergraph:

Proposition 2.1.1 The family C of all finite 3-hypergraphs such that any four vertices

span at most two edges is an amalgamation class.

Proof
The family is clearly closed under isomorphism and substructure. The joint embedding

property can be shown to hold by observing that the disjoint union of any two finite

3-hypergraphs from this family is still in the family. To prove the amalgamation property,

suppose that we have A,B,C ∈ C, such that A embeds into both B and C. Let D be

(B×{0}∪C ×{1})/ ∼A, where (p1, p2) ∼A (q1, q2) if p1 and q1 are images of the same

element of A, let R be the ternary relation on D that holds on a triple of classes if RC or

RB holds for some representatives of the classes. It is easy to verify that D is isomorphic

to some structure in C. �

Proposition 2.1.2 The theory of the universal homogeneous dunce-cap free 3-hypergraph

is not simple.
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Proof
We can interpret the universal homogeneous triangle-free graph in the duncecap-free

hypergraph over one vertex. Take any a ∈ M and define x ∼ y if R(a, x, y) holds in

M . Then Γ = (M \ {a},∼) is isomorphic to the triangle-free graph. It is clear that

Γ is triangle-free, and given two finite and disjoint sets of vertices A,B ∈ M \ {a}
with no edges in A, there exists a vertex b ∈ M \ {a} such that for each of the vertices

v ∈ A, we have R(a, b, v) and forms no edges with the elements of B. In the interpreted

graph, this bwill be connected to all the elements ofA and to none of the elements ofB. �

Not much is known about the tetrahedron-free and dunce-cap free hypergraphs. Indeed,

some questions about them seem intractable. For example, establishing a 0-1 law for

either of them would give much more detailed information about large hypergraphs in

those classes than settling Turán’s conjecture for tetrahedron-free 3-hypergraphs (for

information on Turán problems, see [25]), or an analogous problem for the other family.

Lachlan and Tripp gave a classification of finite homogeneous 3-hypergraphs in [30], and

found that they were related to projective planes and lines over finite fields. Lachlan and

Tripp use the classification of finite 2-transitive groups in their proof.

2.2 Binary examples

In the binary case, things are, as far as we can see, less complicated. It seems to be the

case that large (that is, of size larger than 2) forbidden configurations are an obstacle to

simplicity in primitive structures; the easiest example of this is the homogeneous universal

triangle-free graph. The argument we use to prove that it is not simple (a well-known fact)

is also illustrative, and will occur again in a slightly more complicated form later.

Proposition 2.2.1 The theory of the universal homogeneous triangle-free graph is not

simple. In fact, it has the TP2.

Proof
We will prove that the formula ϕ(x, ab) : R(x, a)∧R(x, b) has the TP2. We claim that the
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set
⋃
i∈ω Σi(x̄, ȳ) is consistent with the theory of the universal homogeneous triangle-free

graph, where x̄ = (xij : i, j ∈ ω) and ȳ = (yij : i, j ∈ ω) and each

Σi(x̄, ȳ) = {R(xij, y
i
k) : j < k < ω} ∪ {¬R(xij, y

i
j) : j ∈ ω}∪

∪ {¬R(xij, x
k
s) ∧ ¬R(xij, y

k
s ) ∧ ¬R(yij, y

k
s ) : i, j, k, s ∈ ω, i 6= k}

Each Σi says that the ith level of the array of parameters forms an infinite half-graph, and

specifies that there are no edges towards any other level. As no triangles are implied, this

countable array can be embedded into the universal homogeneous triangle-free graph. It

is clear that it witnesses the TP2 for ϕ. �

2.2.1 Cherlin’s primitive examples

Cherlin presented several examples of primitive homogeneous edge-coloured complete

graphs in the appendix of his memoir [9], none of which has free amalgamation (though

they are very close to having it, since in all of them any amalgamation problem can be

solved using a relation from a distinguished proper subset of the language; Cherlin calls

such amalgamation “almost free”). In this subsection, we show that their theories are not

simple.

A connected graph is a metric space in the graph metric; if the associated metric space

is homogeneous, then the graph is said to be metrically homogeneous. Cherlin has

interpreted 20 of the examples in the appendix as metrically homogeneous graphs.

Cherlin uses notations of the type ABC to represent a triangle (three vertices in the

complete edge-coloured graph) in which the sides are of type A,B,C. Therefore, his first

example, listed as RBB, GGB, BBB (in the language L = {R,G,B}) is a homogeneous

primitive complete graph with edges coloured in R,G,B and omitting the triangles

•

••
R

B

B
•

••
G

G

B
•

••
B

B

B
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We will say that a theory T is non-simple by Argument(P,Q;R) if we can apply the

proof of Proposition 2.2.2 to T with the types P,Q,R instead of A,B,C. All of Cherlin’s

examples in the Appendix to [9] are non-simple.

Proposition 2.2.2 Suppose that M transitive and homogeneous in a binary language,

and that all its 2-types are symmetric. If its age is an amalgamation class all of whose

minimal forbidden configurations are triangles, and there are three 2-types A,B,C for

which

1. AAA,AAB,ABB are not forbidden

2. CCA is not forbidden, but CCB is

Then Th(M) has the 2-TP2.

Proof
Let {c̄ij}i,j<ω be pairs c̄ij = {aij, bij} of type A, such that for all i ∈ ω the sequence (āij)j∈ω

is indiscernible, satisfying for all s < k ∈ ω A(ais, a
i
k), A(bis, b

i
k), A(bis, a

i
k) and B(ais, b

i
k).

Such a sequence exists because it embeds no forbidden triangles by condition 1, and

witnesses 2-dividing the formula ϕ(x, a, b) of form C(x, a) ∧ C(x, b) divides. Again by

condition 1, we can connect these pairs as a monochromatic K4 of colour A along all

vertical lines: if r < t then all pairs of different elements from {arj , brj , atu, btu} are of type

A. By conditions 1 and 2, the set {C(x, arf(r)) ∧ C(x, brf(r)) : r ∈ ω} is consistent for all

f : ω → ω, and the rows are 2-inconsistent (the following diagram shows the first few

elements of this array in a simplified form).

•

•

•

•
. . .

•

•

. . .

•

•

...

. . .

A

A

A

B
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�

Corollary 2.2.3 All the examples in Table 2.1 have the TP2.

Proof
By Proposition 2.2.2 used in each case as specified in Table 2.1 �

The table in page 34 summarises our application of Proposition 2.2.2 to Cherlin’s

examples. The first row is in the language {R,G,B}; all others have the language

{R,G,A,X} (we list the examples in each language separately; that is why #1 appears

twice in the table).

2.2.2 Metric spaces

There is a clear connection with metric spaces: a finite integer-valued metric space

can be thought of as a complete graph with edges coloured in finitely many colours

omitting some triangles (corresponding to the triangle inequality). More formally, let

L = {d1, . . . , dn}, where each di is a binary relation, and let Cn be the family of all

finite L-structures A in which each of the di is symmetric and irreflexive, and for all pairs

of distinct elements a, b ∈ A exactly one of the di holds. Additionally, we impose the

condition that there are no triangles di(a, b) ∧ dj(a, c) ∧ dk(b, c) in which i + j < k or

i+ k < j or j + k < i.

Observation 2.2.4 The family Cn of all finite metric spaces with integer distances and

diameter at most n is a Fraı̈ssé class for all n ∈ ω \ {0}.

Proof
The family C is clearly closed under isomorphism and substructure; it is also easy to

see that there are only countably many different structures in C up to isomorphism. We

proceed to prove the Joint Embedding Property and the Amalgamation Property.
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Table 2.1: Non-simplicity of Cherlin’s examples

Number Forbidden triangles Argument

#1 RBB, GGB, BBB Argument(G,R;B)

#1 RXX, GAX, AXX Argument(G,R;X)

#2 RXX, GAX, AXX, XXX Argument(G,R;X)

#3 RXX, GAX, AXX, AAX Argument(G,R;X)

#4 RXX, GAX, AXX, AAA Argument(G,R;X)

#5 RXX, GAX, AXX, AAX, XXX Argument(G,R;X)

#6 RXX, GAX, AXX, XXX, AAA Argument(G,R;X)

#7 RXX, GAX, AAX, AXX, AAA Argument(G,R;X)

#8 RXX, GAX, AAX, AXX, XXX, AAA Argument(G,R;X)

#9 RXX, GAX, AAX, XXX Argument(G,R;X)

#10 RXX, GAX, AAX, XXX, AAA Argument(G,R;X)

#11 RXX, GGX, AXX, XXX Argument(G,R;X)

#12 RXX, GGX, AAX, AXX, XXX Argument(G,R;X)

#13 RXX, GGX, AXX, XXX, AAA Argument(G,R;X)

#14 RXX, GGX, AAX, AXX, XXX, AAA Argument(G,R;X)

#15 RXX, GAX, GGX, AXX, XXX Argument(G,A;X)

#16 RXX, GAX, GGX, AAX, AXX, XXX Argument(G,A;X)

#17 RXX, GAX, GGX, AXX, XXX, AAA Argument(G,A;X)

#18 RXX, GAX, GGX, AAX, AXX, XXX, AAA Argument(G,R;X)

#19 RXX, GAX, GGX, AAX, XXX Argument(A,R;X)

#20 RXX, GAX, GGX, AAX, XXX, AAA Argument(G,R;X)

#21 RAA, RXX, GAX, AAX, XXX Argument(G,R;X)

#22 RAA, RXX, GAX, AAX, AXX Argument(G,R;X)

#23 RAA, RXX, GAX, AAX, AXX, XXX Argument(G,A;X)

#24 RAA, RXX, GAX, AXX, XXX, AAA Argument(G,R;A)

#25 RAA, RXX, GAX, AAX, AXX, XXX, AAA Argument(G,R;A)

#26 RRX, RAA, RXX, GAX, GXX, AAX, XXX Argument(G,R;A)

#27 RRA, RRX, GAA, GAX, GXX, AAX, AXX, XXX, AAA Argument(R,G;A)
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To prove the AP, letA ∈ C, and letB = A∪{b}, C = A∪{c} be two one-point extensions

of A. If we define the distance between b and c as δ = min{min{d(b, a) + d(c, a) : a ∈
A}, n}, then for all a ∈ A the inequality d(b, c) ≤ d(b, a)+d(c, a) holds, and since δ ≤ n,

the structure thus defined on B ∪ C is an element of C.

If A, B are nonempty elements of C, then each of them embeds the one-point metric

space and AP implies the JEP for this case. JEP follows trivially if one of them is empty.

�

From the previous observation we get a universal countable integer-valued metric space

Un of diameter n for each n ∈ ω \ {0}. By Fraı̈ssé’s Theorem, it is homogeneous, so

whenever we have a partial self-isometry f : ā→ ā′ for finite subsets ā, ā′ of Un, there is

an isometry of Un extending f .

If we allow only distances 0 and 1, then the triangle inequality does not impose any

forbidden configurations, and M2 is in fact the Random Graph. The situation is different

if the diameter is an integer larger than two but we keep all other hypotheses. If Un is a

homogeneous metric space with diameter n ≥ 3, then the triangle inequality does impose

restrictions on the age. For example, a triangle with edges labelled 1,1,3 is not an element

of Cn. In fact, that triangle will be a forbidden configuration for all n ≥ 3. From this it

follows

Observation 2.2.5 The theory of any homogeneous metric space with integer distances

and finite diameter n ≥ 3 has the TP2.

Proof
This is a consequence of Proposition 2.2.2. In the language of Section 2.2.1, these

theories have the TP2 by Argument(d2, d3; d1). �

If we drop the condition of having a finite diameter, but keep the integer distances, we

get a family C∞ consisting of all finite metric spaces with integer distances between every

pair of elements. This time, the language is not finite.
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Observation 2.2.6 C∞ is a Fraı̈ssé class.

Proof
Note that every finite metic space with integer distances can be thought of as a pair

({0, . . . , n − 1}, (d00, d01, . . . , dn−1,n−1)) ∈ ω × ω<ω (the first element of the pair can

be thought of as the set of points and the second as a distance matrix), and therefore there

are only ω different such spaces, up to isomorphism.

To prove AP, let A ∈ C∞, and let B = A∪{b}, C = A∪{c} be two one-point extensions

of A. Let d(b, c) = min{d(b, a) + d(a, c) : a ∈ A}. With this distance, all triangle

inequalities hold and B ∪ C ∈ C∞. Again, the JEP follows from the AP. �

Consider an indiscernible sequence (ai : i ∈ ω) in some model of Th(U∞), where U∞ is

the Fraı̈ssé limit of C∞. For any element b the set {d(b, ai) : i ∈ ω} is finite, since d(b, ai)

for i > 0 is bounded by d(b, a0) + d(a0, a1). Therefore, we have

Observation 2.2.7 Given a sequence (ai : i ∈ ω) indiscernible over the empty set and a

finite set of parameters B, there is a subsequence (a′i : i ∈ ω) that is indiscernible over

B.

Proof
Enumerate B as b0, . . . , bk−1, and colour the sequence with f : ai 7→
(d(ai, b0), d(ai, b1), . . . , d(ai, bk−1)). Since each of the coordinates can take only finitely

many values, there is only a finite number of tuples in the range of f . So there is an

infinite A ⊂ ω such that |{f(ai) : i ∈ A}| = 1: all the ai with i ∈ A have the same type

over B. Re-enumerate as (a′i : i ∈ ω).

The new sequence is still indiscernible over the empty set (so all pairs are at the same

distance), and the types tp(x0, . . . , xn/B) are isolated byDB(x̄) =
∧n
i=0

∧k
j=0 d(xi, bj) =

ci,j . So tp(ai0 , . . . , ain/B) = tp(a0, . . . , an/B) and the sequence is indiscernible over

B. �
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Notice that the proof of Observation 2.2.7 depends only on the set {d(b, ai) : i ∈ ω}
being finite. In a finitely homogeneous structure, this condition is satisfied automatically

for any formula ϕ(x, a) in the place of d(b, a); we will use this fact in Chapter 3 to prove

that the theories of finitely homogeneous simple structures are low.

If we allow the metric to take all non-negative rational values, we obtain a universal

homogeneous metric space, whose completion is the universal homogeneous Polish

space:

Proposition 2.2.8 There is a unique countable rational space U0 which is homogeneous

and embeds every finite rational space. Urysohn’s space U is the completion of U0.

In his paper [45], A. Vershik proves that with probability one a random metric space is

universal. More precisely, he proves that the random countable metric space is isometric

to an everywhere dense subset of the Urysohn space. This is similar to the Erdős-Renyi

construction of the Random Graph. These properties are related to Cameron’s concepts

of ubiquity.

Clearly, the argument from Proposition 2.2.5 proves the TP2 for U0 and U , as the same

array of parameters can be embedded into them.

2.2.3 Forbidden triangles

As we have seen, the universal homogeneous triangle-free graph is not simple. In the

previous section, we proved that all but two of the universal homogeneous metric spaces

with finite diameter and integer distances have the TP2, and that in those with a simple

theory (diameter 1 and 2), the triangle inequality does not really impose any forbidden

structures, as all triangles with sides of length 1 and 2 satisfy the triangle inequality. In

all these cases, some triangles are forbidden. It is easy to prove that Henson’s Kn-free

graphs also have the TP2. All this seems to point towards the following conjecture.

Conjecture 2.2.9 The minimal forbidden configurations of primitive binary

homogeneous structures with simple theory are of size at most 2.
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We will require the following definitions:

Definition 2.2.10 Let L be a relational language consisting exclusively of binary

relations, P,Q ∈ L, and C an amalgamation class of finite L-structures. We assume that

exactly one relation from the language holds for each pair of elements in the L-structures

and that each relation is symmetric.

1. Let C be a family of isomorphism types of finite structures. We can define a partial

order ≤ on C by A ≤ B if there is an embedding A → B. In the case when

C ⊂ D are ages of relational structures and B ∈ D, we say that B is a forbidden

configuration of C if B ∈ D \ C; it is a minimal forbidden configuration if B is

≤-minimal in the set of all forbidden configurations of C with respect to D. We will

not make reference to D when the identity of D is clear from the context.

2. We say that C has PQ-semifree amalgamation if whenever B = A ∪ {b} and

C = A ∪ {c} are one-point extensions in C of a common finite substructure A ∈ C,

then at least one of the structures defined on the union of B and C with P (b, c) or

Q(b, c) belongs to C. The predicates P and Q are assumed to be distinct.

3. We say that C has P -free amalgamation if whenever B = A∪{b} and C = A∪{c}
are one-point extensions in C of a common finite substructure A ∈ C, then the

structure defined on the union of B and C with P (b, c) belongs to C.

4. We denote the set of (isomorphism types) of minimal forbidden configurations of C
(with respect to the age of the random L-structure) of size n by Forbn(C); the set

of all minimal forbidden configurations of C is Forb(C).

5. A triangle over X ⊆ L is the isomorphism type of an X-structure on 3 vertices.

We denote a triangle as the sequence RST of predicates that hold in the unordered

pairs of vertices.

6. Let Pi be a set of amalgamation problems of one-point extensions of structures in

C. We say that the Pi have a common solution in X ⊂ L if there exists R ∈ X such

that R is a solution to each of the Pi.
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In this subsection, we prove a weak version of this conjecture (Theorem 2.2.28), namely:

Theorem 2.2.11 If C is a PQ-semifree amalgamation class C of edge-coloured graphs

restricted by triangles with primitive Fraı̈ssé limit ΓL, then either Forb3(C) = ∅ or the

theory of ΓL has the TP2.

In our argument, we strengthen Cherlin’s hypothesis of “almost free” amalgamation to

say that any amalgamation problem of one-point extensions can be solved using one of

two predicates. As we will see (Proposition 2.2.19), it follows that the subages consisting

of finite structures realising only those two types have free amalgamation, and therefore

we can embed inM any countable structure realising only those types. This is very useful

when building indiscernible sequences.

Our conjecture for primitive binary homogeneous simple structures is that they are

“random” in the sense that all of their minimal forbidden configurations are of size 2. The

examples we have presented so far certainly point in that direction, but all of our proofs are

ad hoc and depend on detailed information about the set of forbidden configurations. At

the moment, we are not aware of any method suitable to prove our conjecture. The reason

is that we have no way, other than the amalgamation property and the Independence

Theorem, of establishing relations between the minimal forbidden configurations. In other

words, when we are trying to build an array of parameters witnessing a tree property,

we need some information about the forbidden configurations to ensure that the array

will be embeddable into the structure under scrutiny, and so far we have not found an

effective way of obtaining this kind of information from the Amalgamation Property and

the Independence Theorem.

Remark 2.2.12 An amalgamation class with PQ-semifree amalgamation has in

particular the disjoint amalgamation property: the embeddings f : A → B and

g : A → C can be chosen to be inclusions, and if (B \ A) ∩ (C \ A) = ∅, then a

solution to the problem is a structure D on B ∪ C which is in the amalgamation class.

We aim to show that if M is a primitive homogeneous L-structure in which all relations

are symmetric, with a nonempty set of minimal forbidden configurations of size greater
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than 2, all of which are triangles, and whose age has PQ-semifree amalgamation, then

the theory of M has the TP2. The proof of this fact is not hard, but is somewhat laborious

and involves a good deal of fiddling with amalgamation problems.

Throughout this section, we assume that the isomorphism types of a loop R(x, x) and a

directed edge R(x, y) ∧ ¬R(y, x) are in Forb2(C) for all R ∈ L, and that all unordered

pairs are coloured by exactly one relation in the language (i.e., the isomorphism type of

a solution to
∧
R∈L ¬R(x, y) is in Forb2(C)). Additionally, we assume that Forbn(C) =

∅ for all n > 3. We will summarize these conditions by saying “C is a PQ-semifree

amalgamation class of edge-coloured graphs restricted by triangles.”

Most proofs in this section involve using the Amalgamation Property to show that we

can embed a particular array of parameters in M . In practice, we use only amalgamation

problems of one-point extensions of one- and two-element structures. Suppose that V ∈ C
is a two-element structure on {v1, v2} and that R(v1, v2) holds in V . If

V

Y

X

f
77

g ''

is an amalgamation problem in C, and X, Y are one-point extensions of V , we will

assume that f, g are inclusions and if X = V ∪ {x}, Y = V ∪ {y}, with relations

S1(x, v1), S2(x, v2), T1(y, v1), T2(y, v2), we will write the amalgamation problem as

•y • x

•

•

S1

S2
R

T1

T2

If the amalgamation problem of one-point extensions we are considering is over a one-

point structure, then we are looking for a predicate to complete a triangle. We will refer

to the problem

• •

•
RS

as RS .
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Definition 2.2.13 Let C be a PQ-semifree amalgamation class of L-structures, where L

is a language consisting exclusively of binary relations, and let L′ ⊂ L. We use C �L′ to

denote the set of all L′ ∪ {P,Q}-structures in C.

Observation 2.2.14 Let C be a PQ-semifree amalgamation class of edge-coloured

graphs restricted by triangles. For all L′ ⊂ L, C �L′ is an amalgamation class. We

denote its Fraı̈ssé limit by ΓL′ .

Proof
This follows immediately from the definiton of PQ-semifree amalgamation. �

In particular, C �{P,Q} is an amalgamation class, and its Fraı̈ssé limit Γ{P,Q} is a

homogeneous graph restricted by triangles.

Remark 2.2.15 If C is a PQ-semifree amalgamation class of edge-coloured graphs

restricted by triangles, then by Ramsey’s theorem, at least one of PPP,QQQ is in C.

We will assume PPP ∈ C.

Remark 2.2.16 By the Lachlan-Woodrow Theorem 3.4.11, Γ{P,Q} or its complement is

isomorphic to one of the following:

1. The random graph if Forb3(C �{P,Q}) = ∅

2. KP
ω [KQ

n ] or KQ
n [KP

ω ] if QQP ∈ Forb3(C �{P,Q}) or PPQ ∈ Forb3(C �{P,Q}),

respectively.

3. The homogeneous universal triangle-free graph if Forb3(C �{P,Q}) is {QQQ}.

In the last of these cases, the theory of the Fraı̈ssé limit cannot be simple. Our first goal

is to prove that we need not consider the second case.

Proposition 2.2.17 Let C be a PQ-semifree amalgamation class of edge-coloured graphs

restricted by triangles. If n ≥ 2 amalgamation problems of the form RiSi , i ∈ n, have

a common solution in L, then they have a common solution in {P,Q}.
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Proof
We proceed by induction on n.

For n = 2, if two problems ST and UV have a common solution X , but no common

solution in {P,Q}, then either STP ∈ C and UV P ∈ Forb(C), or STQ ∈ C and

UV Q ∈ Forb(C).

If STP ∈ C and UV P ∈ Forb(C), then UV Q ∈ C by semifree amalgamation. The

amalgamation problem

• •

•

•

S V

T
X

U

has a solution in {P,Q}. If P is a solution to this problem, then V SP, TUP ∈ C, and the

problem

• •

•

•

U V

T
P

S

has solution Q as UV P ∈ Forb(C). This implies that Q is a common solution to ST

and UV , contradiction.

And if STQ ∈ C and UV Q ∈ Forb(C), then the problem

• •

•

•

U V

T
Q

S

shows that P is a common solution to UV and ST . This completes the proof for

n = 2.

Now suppose that any k ≥ 2 problems R1S1 , . . . , RkSk with a common solution have

a common solution in {P,Q}. Consider k + 1 problems R1S1 , . . . , Rk+1Sk+1 with a

common solution X . If P is not a solution to Rk+1Sk+1 , then the common solution to
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R2S2 , . . . , Rk+1Sk+1 is Q; similarly, the system R1S1 , R3S3 , . . . , Rk+1Sk+1 has

solution Q. Therefore, Q is a common solution to the k + 1 problems. �

Proposition 2.2.18 If C is a PQ-semifree amalgamation class of edge-coloured graphs

restricted by triangles, and there is a predicate R ∈ L such that PPP, PPR,RRP ∈ C
and RRR ∈ Forb(C), then the theory of ΓL has the TP2.

Proof
We will present an array of parameters (āij), where each āij is an edge of type P (bij, c

i
j),

testifying the TP2 for the formula R(x, b) ∧R(x, c).

Let Σ(xij, y
n
m)i,j,n,m∈ω be the set containing formulas saying that the xij and ynm are all

distinct, P (xij, y
n
m) for all combinations of i, j, n,m such that one of i = n∧j = m, i 6= n,

P (xij, x
n
m) and P (yij, y

n
m) whenever (i, j) 6= (n,m), and R(xij, y

n
m) for i = n ∧ j 6= m.

We claim that Σ is consistent with the theory of ΓL. This is clear as the only triangles

implied by a solution to a finite subset of ΓL are PPR, PPP , and PRR. Let (āij)i,j∈ω =

(bij, c
i
j)i,j∈ω be a solution of Σ in ΓL.

Now notice that for all i ∈ ω, the set {R(x, bij) ∧ R(x, cij) : j ∈ ω} is 2-inconsistent

because the triangle RRR is forbidden, and for any f : ω → ω, {R(x, āif(i)) : i ∈ ω} is

consistent, as only triangles of type PRR and PPP are implied by such a set. Therefore,

R(x, b) ∧R(x, c) has the TP2. �

Proposition 2.2.19 Let C be a PQ-semifree amalgamation class of edge-coloured graphs

restricted by triangles such that the theory of the Fraı̈ssé limit does not have the TP2. If

C �{P,Q} is the age of an imprimitive homogeneous graph, then ΓL is imprimitive as well.

Proof
The structure Γ{P,Q} is homogeneous in the language {P,Q} by Observation 2.2.14,

so one of P,Q defines an equivalence relation. Suppose without loss that P is an

equivalence relation in Γ{P,Q}, so we have PPQ ∈ Forb(C �{P,Q}). Note that, by



§2. Examples 44

semifree amalgamation, this implies PQQ ∈ C, since the problem PQ has a solution in

{P,Q}; by the same reason, PPP ∈ C.

Suppose for a contradiction that ΓL is primitive. We will prove by induction that a

disjunction of predicates defines a proper equivalence relation on Γ{R1,...,Rk} for each

k ≤ n, so at some point we exhaust the (finite) language and reach a contradiction.

Since ΓL is primitive, P does not define an equivalence relation on ΓL. Therefore,

there exists a predicate R ∈ L such that PPR ∈ C. We will prove that each of the

problems PP ,RR , PR can be solved with any predicate from {P,R}, and that

PPQ,RRQ,PRQ are forbidden; from this it will follow that P ∨ R defines a proper

equivalence relation in Γ{P,Q,R}.

First, suppose that PQR ∈ C. Then PP and PQ have R as a common solution, so by

Proposition 2.2.17 they have a common solution in {P,Q}. But this is impossible since

PPQ ∈ Forb(C). Therefore, PQR ∈ Forb(C), PPR ∈ C.

To prove RRQ ∈ Forb(C), suppose for a contradiction RRQ ∈ C. Then QR and PP

have R as a common solution, so they have a common solution in {P,Q}. Again this is

impossible as PPQ,PQR ∈ Forb(C). Therefore, RRP ∈ C. From this it follows that

RRR ∈ C, as otherwise Proposition 2.2.18 would imply that ΓL has the TP2. Therefore,

all triangles over {P,R} are in C and PPQ,RRQ,PRQ are forbidden. It follows that

P∨R defines an equivalence relation on Γ{P,Q,R}. This constitutes our basis for induction.

For the inductive step, suppose that P ∨R1 ∨ . . . ∨Rk defines an equivalence relation on

Γ{P,Q,R1,...,Rk} and that every triangle over {P,R1, . . . , Rk} is in C. We aim to show that

there exists a relation Rk+1 such that P ∨ R1 ∨ . . . ∨ Rk ∨ Rk+1 defines an equivalence

relation on Γ{P,Q,R1,...,Rk,Rk+1}.

By primitivity of ΓL there exists Rk+1 such that some triangle XY Rk+1 is in C, for some

X, Y ∈ {P,R1, . . . , Rk}.

Claim 2.2.20 If XY Rk+1 is in C for some X, Y ∈ {P,R1, . . . , Rk}, then PPRk+1 ∈ C.

Proof
By the induction hypothesis, XY P ∈ C, so Rk+1X and PX have Y as common
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solution. By Proposition 2.2.17 and the induction hypothesis (PXQ ∈ Forb(C)), the

triangles PPX,PXRk+1 are in C. Now PP , PRk+1 have X as a common solution,

so these two problems have a common solution in {P,Q}. Since PPQ ∈ Forb(C), we

get PPRk+1 ∈ C. �

Our next goal is to prove that all the triangles XYQ with X, Y ∈ {P,R1, . . . , Rk+1}
are forbidden. We know by the induction hypothesis that all those triangles in which

X, Y ∈ {P,R1, . . . , Rk} are forbidden, so we need only prove that XRk+1Q is forbidden

for all X ∈ {P,R1, . . . , Rk+1}.

First, PRk+1Q ∈ Forb(C), as otherwise we would have Rk+1 as a common solution to

PP and PQ , so by Proposition 2.2.17 they would have a common solution in {P,Q},
which is impossible, since PPQ ∈ Forb(C).

Now suppose for a contradiction that XRk+1Q ∈ C for some X ∈ {R1, . . . , Rk}. Then

XQ and PP have Rk+1 as a common solution, but there is no common solution

to these problems in {P,Q}, contradicting Proposition 2.2.17. Therefore, XRk+1Q ∈
Forb(C) for all X ∈ {P,R1, . . . , Rk}. Finally QRk+1Rk+1 ∈ Forb(C), since PP and

QRk+1 do not have a common solution in {P,Q}. This shows that XYQ ∈ Forb(C)
for all X, Y ∈ {P,R1, . . . , Rk+1}. By semifree amalgamation, XY P ∈ C for all

X, Y ∈ {P,R1, . . . , Rk+1}.

The last step in the induction is to prove that all triangles over {P,R1, . . . , Rk+1} are in

C. We already know that every triangle XY Z over {P,R1, . . . , Rk} is in C and that for

all X, Y ∈ {P,R1, . . . , Rk+1} the triangle XY P is in C, so it suffices to prove that all the

triangles XY Rk+1 with X, Y ∈ {R1, . . . , Rk+1} are in C.

The triangle Rk+1Rk+1Rk+1 is in C by Proposition 2.2.18, since we have

PPP, PPRk+1, PRk+1Rk+1 ∈ C. All triangles Rk+1Rk+1X with X ∈ {R1, . . . , Rk}
are in C by Proposition 2.2.2 because we have PPP, PPX,PXX,PRk+1Rk+1 ∈ C.

The same argument proves that XXRk+1 ∈ C for all X ∈ {R1, . . . , Rk}.

So we need only prove XY Rk+1 ∈ C for distinct X, Y ∈ {R1, . . . , Rk}. We have

Y Y Y, Y Y P, PPY, PPP ∈ C by the induction hypothesis, and since C is restricted by
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triangles, any finite P, Y -structure is in C. The array of parameters āij = (bij, c
i
j) with

i, j ∈ ω in which Y (bij, c
i
s) holds for all natural numbers i and all s 6= j, and in which

all other edges are of type P (see illustration below), witnesses the TP2 for the formula

Rk+1(x, b) ∧X(x, c) if XY Rk+1 ∈ Forb(C), so we must have XY Rk+1 ∈ C.

•c0
0

•b0
0

•c0
1

•b0
1
. . .

•c1
0

•b1
0

. . .

•c1
1

•b1
1

...

. . .

P

P

P

Y

We conclude that the disjunction of all the predicates in the language, except Q, defines

an equivalence relation in ΓL, contradicting our hypothesis of primitivity. Therefore, if

Γ{P,Q} is imprimitive, then so is ΓL. �

It follows from Proposition 2.2.19 and the Lachlan-Woodrow Theorem 3.4.11 that we

may assume Forb3(C �{P,Q}) = ∅. Now we proceed to prove that in this situation all the

semifree amalgamation classes restricted by triangles with primitive limit have nonsimple

theory.

Observation 2.2.21 Let C be a PQ-semifree amalgamation class of edge-coloured

graphs restricted by triangles, and suppose Forb3(C �{P,Q}) = ∅. If for some R ∈
L \ {P,Q}, we have RRQ ∈ Forb(C) (similarly, RRP ∈ Forb(C)), then R(x, a) has

the TP2 in the theory of ΓL.

Proof
As there are no forbidden PQ-triangles, any countable PQ-structure can be embedded
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in ΓL. In particular, the array of parameters (aij)i,j∈ω, where for each i ∈ ω the set

{aij : j ∈ ω} is a Q-clique and all other edges are of type P , can be embedded in ΓL.

By PQ-semifree amalgamation, RRP ∈ C, and therefore any vertical path

{R(x, aif(i)) : i ∈ ω} is consistent, but for any i the set {R(x, aij) : j ∈ ω} is

2-inconsistent, as RRQ ∈ Forb(C). �

Definition 2.2.22 Let RST be a triangle over L, where |{R, S, T}| ≥ 2. If RST ∈
Forb(C), then we say that RST is a special forbidden triangle every triangle over any

nonempty `  {R, S, T} is in C. If |{R, S, T}| = 2, we call RST a bicoloured triangle;

if |{R, S, T}| = 3, RST is a tricoloured triangle.

Proposition 2.2.23 Suppose that C is a PQ-semifree amalgamation class of edge-

coloured graphs restricted by triangles with a primitive Fraı̈ssé limit M , and

Forb3(C �{P,Q}) = ∅. Assume that RST over L \ {P,Q} is a special forbidden triangle.

Then the M has the TP2.

Proof
Suppose for a contradiction that the Fraı̈ssé limit is NTP2. There are two cases to

consider:

I IfRST is a tricoloured special forbidden triangle, then C �{S,T} has S− and T− free

amalgamation. It is easy to show thatR(x, a)∧S(x, b) has the TP2; the argument is

the same as in Observation 2.2.18 with T in the position of R and S in the position

of P in the array of parameters.

II Suppose RST is a bicoloured special forbidden triangle, say RST = RSS.

The problems SS , RS have solutions in {P,Q}. By Observation 2.2.21,

SSP, SSQ,RRP,RRQ ∈ C. We will prove tha these conditions are, under NTP2,

inconsistent with PQ-semifree amalgamation.

Claim 2.2.24 PPR ∈ Forb(C).
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Proof
If PPR ∈ C, then we have all PR-triangles in C, and therefore all countable

PR-graphs can be embedded in M (as the class is restricted by triangles). In

particular, we can find an array (aij) of vertices in which each level (fix i) is an

infinite R-clique and all other edges are of type P . This array witnesses the TP2

for the formula S(x, a). �

Claim 2.2.25 QQR ∈ Forb(C).

Proof
By the same argument as in the preceding claim. �

Now we can see that the problem

• •

•

•

P R

Q
R

R

has no solution in {P,Q}, contradicting PQ-semifree amalgamation. Therefore,

there are no special forbidden bicoloured triangles in Forb(C).

This concludes our proof. �

It follows from Proposition 2.2.23 that in any PQ-semifree amalgamation class of edge-

coloured graphs restricted by triangles with a primitive limit, if Forb3(C �{P,Q}) = ∅,

then all forbidden configurations are either monochromatic or have at least one edge in

{P,Q}. Now we eliminate the former of these two possibilities:

Proposition 2.2.26 Let C be a PQ-semifree amalgamation class of edge-coloured graphs

restricted by triangles with a primitive limit, and assume Forb3(C �{P,Q}) = ∅. If for

some R ∈ L \ {P,Q} we have RRR ∈ Forb(C), then the theory of ΓL has the TP2.
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Proof
It follows from Observation 2.2.21 that RRP,RRQ ∈ C. Therefore, RQ ,PR have,

by Proposition 2.2.17 a common solution in {P,Q}.

If P is a common solution to RQ ,PR , then RQP,PPR ∈ C and the set of PR-

structures embeddable in ΓL is the age of all PR-graphs which are RRR-free. It follows

that the theory of ΓL has the TP2.

If Q is a common solution to RQ ,PR , then RQP,QQR ∈ C, and the same argument

(with Q replacing P ) shows that the theory of ΓL has the TP2. �

We have proved so far that in any PQ-semifree amalgamation class of edge-coloured

graphs restricted by triangles C, if C �{P,Q} is the age of an imprimitive homogeneous

graph, then the limit of C is imprimitive as well, so we need only concern ourselves

with those C in which Forb(C) �{P,Q}= ∅, and in this case there are no special or

monochromatic forbidden triangles.

Observation 2.2.27 If C is a PQ-semifree amalgamation class of edge-coloured graphs

restricted by triangles with primitive NTP2 limit and Forb(C) �{P,Q}= ∅, then all the

elements of Forb3(C) have at least one edge in {P,Q}.

Proof
Consider a forbidden triangle RST . By Proposition 2.2.23, RST is not special.

If RST is a bicoloured triangle, then, because it is not special, there is a monochromatic

forbidden triangle, and by Proposition 2.2.26, the theory of the limit is not simple.

If RST is a tricoloured triangle, then by Proposition 2.2.23, at least one of

RSS,RRS,RRT,RTT, STT, SST,RRR, SSS, TTT is a minimal forbidden

configuration. By Proposition 2.2.26, RRR,SSS, TTT ∈ C, and therefore the

forbidden bicoloured triangle over {R, S, T} is special, and by Proposition 2.2.23, the

theory of the limit cannot be NTP2. We conclude that in all the cases we are interested

in, all the forbidden triangles have at least one edge in {P,Q}. �



§2. Examples 50

We are ready to prove:

Theorem 2.2.28 If C is a PQ-semifree amalgamation class C of edge-coloured graphs

restricted by triangles with primitive Fraı̈ssé limit ΓL, then either Forb3(C) = ∅ or the

theory of ΓL has the TP2.

Proof
It follows from Proposition 2.2.19 and Remark 2.2.16 that we may assume that

Forb3(C �{P,Q}) = ∅. By Observation 2.2.27, all the forbidden triangles have at least

one edge in {P,Q}. This leaves us with four cases to consider:

1. For some R ∈ L \ {P,Q}, RRP ∈ Forb(C). In this case, it follows from

Observation 2.2.21 that the theory of ΓL cannot be simple.

2. For some R ∈ L \ {P,Q}, RPP ∈ Forb(C). The triangle PQR is forced to be in

C by semifree amalgamation, and the amalgamation problem

• •

•

•

R Q

R
R

P

implies that QQR ∈ C. Therefore, we have QQR,QRR,RRR,PPQ ∈ C
and RPP ∈ Forb(C), and by Proposition 2.2.2 (Argument(Q,R;P )) there is

a formula with the TP2 in the theory of ΓL.

3. For some distinct R, S ∈ L \ {P,Q}, RSP ∈ Forb(C). Then semifree

amalgamation forcesRSQ ∈ C. By Case 2, all of SSQ, SSP,RRP,RRQ are in C.

The array of pairs (āij)i,j∈ω = (bij, c
i
j)i,j∈ω, where P (bij, c

n
m) holds if i = n, j 6= m,

and Q(bij, c
n
m) holds for all other i, j, n,m, and all the edges between bij, b

n
m and

cij, c
n
m are of type Q, can be embedded into ΓL because all the finite PQ-structures

can be embedded into ΓL, and witnesses the TP2 for the formula R(x, b) ∧ S(x, c).

4. For some R ∈ L \ {P,Q}, RPQ ∈ Forb(C). By semifree amalgamation,

RPP,RQQ ∈ C, and by Observation 2.2.21, RRP,RRQ ∈ C. The array of
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pairs (āij)i,j∈ω = (bij, c
i
j)i,j∈ω, where P (bij, c

i
j) holds for all i, j ∈ ω, Q(bij, c

i
k)

holds for all other j 6= k, and all other edges are of type P , witnesses the TP2

for R(x, b) ∧ P (x, c).

�
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§3. Supersimple Homogeneous Binary
Structures

This chapter contains an analysis of binary homogeneous structures with supersimple

theory. The opening section contains general results on binary structures, the first

of which states that if T is the theory of a finitely homogeneous structure, and we

know additionally that T is simple, then T is low. The proof is very easy in the

homogeneous case. A related result by Casanovas and Wagner [6] is that every ω-

categorical supersimple theory is low. Our result is used in arguments that involve the

Independence Theorem, mainly to verify easily the condition of equality of Lascar strong

types in that Theorem.

In Section 3.2, we prove a general result saying that finitely homogeneous binary

relational structures with supersimple theory cannot have monomial infinite SU-rank.

This can be thought of as a first approximation to proving that all the structures we are

interested in have finite rank.

The third section in this chapter is concerned with structures of SU-rank 1. We prove

that all primitive supersimple unstable binary homogeneous structures satisfy extension

axioms which, in the case of graphs, translate to Alice’s restaurant axiom.

Then we move on to structures of SU-rank 2. Things are more complicated in this

case, and we focus on those unstable structures with three binary symmetric irreflexive

predicates R, S, T , which are assumed to be disjoint (as subsets of M2) and such that

every pair of distinct elements from the structure satisfy exactly one of them. We call

these structures 3-graphs.



§3. Supersimple Homogeneous Binary Structures 54

We use a result due to Assaf Peretz [35] saying that supersimple theories of rank 2 have

stable forking, and therefore assume throughout Section 3.5 that the forking relations in

a 3-graph of SU-rank 2 are stable. It follows from this that we have only one forking

relation (assumed to be R), as more of them would imply that all the relations are stable,

and therefore the structure is stable. The stable 3-graphs were classified by Lachlan in

[28], and we use his classification in some of our work.

The classification of homogeneous 3-graphs looks very hard. There exist uncountably

many of them, by a simple variation on Henson’s proof of the existence of uncountably

many homogeneous directed graphs [22], so additional conditions like stability and

simplicity are probably necessary to achieve partial classifications (though in the case

of digraphs, Cherlin obtained a complete classification, presented in [9]).

The main result of Section 3.5 is that there do not exist primitive homogeneous 3-graphs

with supersimple theory of SU-rank 2. We use this result in Section 3.6, to prove that if

ω-categorical supersimple structures of finite SU-rank have stable forking, then there do

not exist supersimple primitive homogeneous 3-graphs of any finite rank higher than 1.

It is open whether we can weaken the hypothesis of supersimplicity to simplicity, as is

whether we can omit the hypothesis of stable forking. More specifically, are all simple

finitely homogeneous structures supersimple? In the stable case, we know that superstable

ω-categorical theories are 1-based [7]; is it true that supersimple finitely homogeneous

structures are 1-based? If the answer to the latter question is yes, and binary homogeneous

supersimple structures have finite rank, then we should be able to use Theorem 4.2 of [3]

(1-based theories with finite SU-rank and weak elimination of imaginaries have stable

forking) to eliminate the stable forking hypothesis.

3.1 General results on binary supersimple structures

We collect in this section a number of results that will be used later. We start with an

easy but extremely useful proposition saying that all the theories we are interested in

are low. The relevance of this is that in arguments using the Independence Theorem,
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lowness allows us to perform the amalgamation of the nonforking extensions tp(b/AB)

and tp(c/AC) if stp(b/A) = stp(c/A). This condition is generally easier to verify than

the standard Lstp(b/A) = Lstp(c/A), and in many of the cases that we will encounter,

satisfied automatically.

Recall that a simple theory is low if for every formula ϕ(x̄, ā) there exists a natural number

nϕ such that given any indiscernible sequence (āi : i ∈ ω), if the set {ϕ(x̄, āi) : i ∈ ω} is

inconsistent, then it is nϕ-inconsistent.

Proposition 3.1.1 Let T be an ω-categorical simple theory eliminating quantifiers in a

finite relational language. Then T is low.

Proof
Let ϕ(x, a) be a formula in L. Denote by m the highest arity for a relation in L, and let

`(a) be the length of the tuple a. Given any indiscernible sequence (ai : i ∈ ω), the first

m tuples of the sequence determine the type over ∅ of ai0 ...aik for any i0 < . . . < ik and

any k < ω.

By the Ryll-Nardzewski theorem, there are ony finitely many types of (l(a)×m)-tuples, so

there are only finitely many kinds of indiscernible sequences over∅. We claim that, given

an A-indiscernible sequence (di : i ∈ ω), the set D = {ϕ(x, di) : i ∈ ω} is consistent

if and only if for any ∅-indiscernible sequence (ci : i ∈ ω) such that tp(d0 . . . dm−1) =

tp(c0 . . . cm−1), the set C = {ϕ(x, ci) : i ∈ ω} is consistent. If D is consistent, then

viewing (di : i ∈ ω) as indiscernible over ∅ shows one direction.

For the other direction, suppose that C is consistent but D is k-inconsistent for some

k ∈ ω. Let u satisfy C. In particular, u satisfies ϕ(x, c0) ∧ . . . ∧ ϕ(x, ck−1). Using

homogeneity, there is an automorphism σ of M taking c0...ck−1 to d0...dk−1, so σ(u)

contradicts the k-inconsistency of D.

Let Φj(x) = {ϕ(x̄, i) : i ∈ Ij}. If Φj(x) is inconsistent, then by indiscernibility it is

nj-inconsistent for some minimal nj ∈ ω. If we define nϕ := maxj∈{1,...,k} nj , then

it is clear that for any indiscernible sequence I of `(ā)-tuples, if {ϕ(x, i) : i ∈ I} is
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inconsistent, then it is nϕ-inconsistent. �

The next theorem appears as Theorem 6.4.6 in Wagner’s book [46].

Theorem 3.1.2 Let T be a low theory. Then Lascar strong type is the same as strong

type, over any set A.

The immediate corollary is:

Corollary 3.1.3 Let T be an ω-categorical simple theory eliminating quantifiers in a

finite relational language. Then the Lascar strong type of any tuple is the same as its

strong type, over any set A. �

Recall that an equivalence relation with finitely many classes is referred to as a finite

equivalence relation. The classes of an A-definable finite equivalence relation correspond

to strong types over A in a saturated model.

Proposition 3.1.4 If M is a binary homogeneous simple structure in which there are

no ∅-definable finite equivalence relations on M , then for each n ∈ ω greater than 1,

whenever a1, . . . , an are pairwise independent elements ofM , we have for each 1 ≤ i ≤ n

that ai |̂ a1, . . . , ai−1, ai+1, . . . , an.

Proof
We proceed by induction on n. The proposition is trivial for n = 2; suppose that

it holds for all n ≤ n0 and a1, . . . , an0+1 are pairwise independent but such that

tp(a1/a2, . . . , an0+1) divides over ∅. By the induction hypothesis, a1 |̂ a2, . . . , an0

and a1 |̂ an0+1, so those two types are nonforking extensions of tp(a1). We also have

an0+1 |̂ a2, . . . , an0 by induction. Let b |= tp(a1/an0+1) and b′ |= tp(a1/a2, . . . , an0);

this also ensures that stp(b) = stp(b′), and because Th(M) is low by 3.1.1, they are of

the same Lascar strong type. Therefore, Lstp(b/∅) = Lstp(b′/∅). By the Independence

Theorem, Lstp(b)∪ tp(a1/an0+1)∪ tp(a1/a2, . . . , an0) is a consistent set of formulas and
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is realised by some a′ |̂ a2, . . . , an0+1. But in this case, because the language is binary,

tp(a1/a2, . . . , an0+1) = tp(a′/a2, . . . , an0+1), a contradiction. �

By Proposition 3.1.1, we can carry out the argument in Proposition 3.1.4 over any set of

parameters, as in any low theory a ≡stp
A b if and only if a ≡Lstp

A b.

Reformulating 3.1.4 for sequences:

Observation 3.1.5 In a binary homogeneous primitive simple structure, if (ai : i ∈ ω) is

an∅-indiscernible sequence of singletons such that a0 |̂ a1, then (ai : i ∈ ω) is a Morley

sequence over ∅. �

Remark 3.1.6 The argument in Proposition 3.1.4 can be carried out in finitely

homogeneous binary simple structures even over sets of parameters as long as we

guarantee that the realisations of the types we want to amalgamate have the same strong

type over the set of parameters, by Proposition 3.1.1.

Definition 3.1.7 Let L be a finite relational language in which each relation is binary.

We will say that a family B of finite L-structures is the age of a random L-structure if B

is an amalgamation class and all the minimal forbidden structures of B (cf. Definition

2.2.10) are of size at most 2.

Proposition 3.1.8 Let M be a binary homogeneous simple structure in which there are

no ∅-definable finite equivalence relations on M . Suppose that all the relations in L =

{R1, . . . , Rm} are realised in M , and R1, . . . , Rk are the only forking relations. Then the

subfamily of Age(M) consisting of all finite {R1, . . . , Rk}-free substructures of M is the

age of a random L \ {R1, . . . , Rk}-structure.

Proof
We aim to show that any finite structure not realising any of R1, . . . , Rk embeds in M .

All the {R1, . . . , Rk}-free structures of size 2 are realised in M because the Ri isolate

2-types. Consider an {R1, . . . , Rk}-free structure B on n + 1 points. We wish to show
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that this structure can be embedded into M , or, equivalently, that its isomorphism type

belongs to Age(M).

Let A = {a1, . . . , an} realise the substructure of B on the first n points, embedded

in M , so a1 |̂ a2, . . . , an. By the induction hypothesis, the type p1 of an+1 in B

over a1, and p2, the type of an+1 over a2, . . . , an are nonforking extensions of the

unique strong type over the empty set, which by lowness (Proposition 3.1.1) is Lascar

strong, and therefore by the Independence Theorem there is a single element b of M

simultaneously satisfying both types, so using that B is a binary structure, we get

tp(b/a1) ∪ tp(b/a2, . . . , an) ` tp(b/a1, . . . , an), and conclude that B can be embedded

into M . �

By the same argument:

Observation 3.1.9 Let M be a homogeneous 3-graph of SU-rank 2 with no definable

finite equivalence relations on M , and suppose S, T are nonforking relations. Then all

finite S, T structures can be embedded into the SU-rank 2 homogeneous 3-graphs S(a)

and T (a) for any vertex a.

Proof
This is a direct consequence of Proposition 3.1.8. �

Observation 3.1.10 In a transitive supersimple ω-categorical structure of finite SU-rank,

for all a, b ∈M we have SU(a/b) = SU(b/a).

Proof
By the Lascar inequalities (Theorem 1.2.12),

SU(a/b) + SU(b) = SU(ab) = SU(b/a) + SU(a)

By transitivity, there is a unique 1-type over ∅ in M , and hence SU(a) = SU(b) for all

a, b ∈M . The result follows. �
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The following observation is folklore, but we include a proof for completeness.

Observation 3.1.11 In a primitive ω-categorical structure, acl(a) = {a}.

Proof
The relation x ∼ y that holds if acl(x) = acl(y) is an equivalence relation. It is clearly

reflexive and transitive, and it is symmetric because if y ∈ acl(x), then acl(y) ⊆ acl(x)

and |acl(y)| = |acl(x)|, so the algebraic closures of x and y are equal as, by ω-categoricity,

they are finite sets. Hence∼ is a symmetric relation, and clearly invariant. By primitivity,

the ∼-classes are finite, and this relation is trivial.

Definition 3.1.12 A (complete) n-edge-coloured graph is a structure (M,R1, . . . , Rn) in

which each Ri is binary, irreflexive and symmetric; also, for all distinct x, y ∈M exactly

one of the Ri holds and n ≥ 2. Sometimes we refer to these structures as n-graphs

or simply graphs. We assume that all the relations in the language are realised in a

homogeneous n-graph. If Ri(x, y) holds, we often say that there is an edge of colour i or

Ri between x and y, or that (x, y) is an edge of colour i (Ri).

For any relation P in the language of an n-graph M and any tuple ā, P (ā) denotes the

set {x̄ ∈M : P (ā, x̄)}.

�

Given a natural numberm and an irreflexive symmetric relationR, we denote the structure

on m vertices v0, . . . , vm−1 in which for all distinct vi, vj the formula R(vi, vj) holds by

KR
m. In the following observation, a minimal finite equivalence relation is a proper finite

equivalence relation with minimal number of classes.

Observation 3.1.13 If (M ;R0, . . . , Rk) is a simple homogeneous transitive k + 1-graph

in whichR0 is a minimal finite equivalence relation withm classes, andR1 is a nonforking

relation realised between any two R0-classes, then M embeds KR1
m .
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Proof
First note that we can embed the triangle R1R1R1 across any three R0-classes. To see

this, consider a, b with R1(a, b). By transitivity, a and b are of the same type over the

empty set. The relation R1 is realised between any two classes; consider a′, b′ in the same

R0-class such that R1(a, a′) and R1(b, b′). Then a′ and b′ have the same (Lascar) strong

type over ∅ and tp(a′/a), tp(b′/b) are nonforking extensions of the unique 1-type over

the empty set; we can apply the Independence Theorem to find an element c in the same

R0 class such that abc is a KR1
3 .

The result follows by iterating the same argument, amalgamating nonforking (R1)

extensions of smaller complete graphs over the empty set. We can only iterate as many

times as the number of R0-classes. �

Observation 3.1.14 Let M be a simple homogeneous 3-graph in which R defines an

equivalence relation. If for any pair of distinctR-classesC,C ′ only one of S, T is realised

transversally to C,C ′, then the S, T -graph induced on a set X containing exactly one

element from each R-class is homogeneous.

Proof
Consider the graph defined on M/R with predicates Ŝ, T̂ which hold of two distinct

classes a/R, b/R if for some/any α ∈ a/R, β ∈ b/R we have S(α, β) (respectively,

T (α, β)). This graph is clearly isomorphic to the graph induced on X .

Claim 3.1.15 The graph interpreted in M/R as described in the preceding paragraph is

homogeneous in the language {Ŝ, T̂}.

Proof
Let π denote the quotient map M → M/R. Given two isomorphic finite substructures

A,A′ of M/R, then any transversals to π−1(A) and π−1(A′) are isomorphic, so by the

homogeneity of M there exists an automorphism σ taking π−1(A) to π−1(A′). The map

πσπ−1 is an automorphism of M/R taking A to A′. �

And the result follows. �
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3.2 A result on the rank of supersimple binary structures

We prove in this section that supersimple structures homogeneous over a finite binary

relational language cannot have infinite monomial SU-rank, that is, with an SU-rank of

the form ωα for some ordinal α > 0.

Throughout this section, whenever we speak of a transitive binary homogeneous

supersimple structure we will assume, in addition to the stated hypotheses, that M

homogeneous in the finite binary language L = {R1, . . . , Rn}, where each Ri isolates

a 2-type over the empty set, and that R1, . . . , Rk are forking relations: Ri(x, y) implies

that tp(x/y) divides over ∅ for i ∈ {1, . . . , k}, while all other relations in L are assumed

to be nonforking. Finally, we assume that there are no ∅-definable equivalence relations

with finitely many classes. This last assumption is innocuous because if E is such a

relation, then we could carry out the argument in some infinite class.

Proposition 3.2.1 Let M be a transitive binary homogeneous supersimple structure of

SU-rank ωα, for some α ≥ 1. Then M is imprimitive: the relation F given by F (a, b) if

tp(a/b) divides over ∅ is an equivalence relation.

Proof
Define F by F (x, y) ↔

∨k
i=1Ri(x, y) ∨ x = y. This relation is clearly reflexive, and by

simplicity (symmetry of forking) it is symmetric; now suppose that M |= ∃z(F (a, z) ∧
F (z, y)). This means that for some i, j ≤ k and b, c ∈ M such that F (a, c) ∧ F (c, b),

Ri(a, c) ∧ Rj(c, b) holds (the Ri are mutually exclusive because they isolate distinct 2-

types), or a = c ∨ b = c, in which case transitivity holds trivially.

In the case α = 1, forking implies that SU(c/a) and SU(b/ca) are both finite, so the

Lascar inequalities yield SU(bc/a) ≤ SU(c/a) + SU(b/ca) < ω, and since SU(b/a) ≤
SU(bc/a), we get SU(b/a) < ω. By transitivity of M , SU(b) = ω, and therefore tp(b/a)

divides over ∅ and F is transitive.

And if α > 1, then write SU(c/a) = ωβ1c1 + . . . + ωβkck and SU(b/ac) =

ωγ1d1 + . . . + ωγsds. Since tp(c/a) and tp(b/ac) are forking extensions of
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the unique 1-typeover ∅, we know that β1, γ1 < α. By the Lascar inequalities,

SU(bc/a) ≤ SU(c/a) ⊕ SU(b/ca), and the leading term of the ordinal on the right-hand

side of this inequality has leading term λ = ωmax{β1,γ1}e, where e is the coefficient

corresponding to max{ωβ1 , ωγ1}. The properties of the Cantor normal form tell us that

λ < ωα, so we get as before SU(b/a) < ωα and tp(b/a) divides over ∅. In any case, F

is transitive. �

Proposition 3.2.2 Let M be a transitive binary homogeneous supersimple structure of

SU-rank ωα for some α ≥ 1, and let S∗M2 (A) denote the set of 2-types of distinct elements

over A in M that are nonforking over ∅. There exists a partition {Rk+1 . . . Rn} = P1 ∪
. . .∪Pm of S∗M2 (∅) and a bijection f : {1, . . . ,m} → S

∗M/F
2 such that (α, β) ∈ (M/F )2

realises f(i) if and only if for all a ∈ α and b ∈ β, tp(a, b) ∈ Pi.

Proof
By transitivity of M and invariance of F , all classes are isomorphic. By the definition

of F , only relations in {Rk+1 . . . Rn} hold between elements of different classes, and by

homogeneity, if Rt(a, b) holds for some a ∈ α and b ∈ β, then it holds for some elements

of any pair of equivalence classes of the same 2-type as α, β. The conclusion follows. �

Observation 3.2.3 Let M be a transitive binary homogeneous supersimple structure

of SU-rank ωα. Consider M/F as a structure in the language {P1, . . . , Pm} from

Proposition 3.2.2. Then we may assume that M/F is primitive.

Proof
If M/F is imprimitive, then by ω-categoricity there are only finitely many ∅-definable

equivalence relations. If one of them, E, has infinitely many classes, then the formula

E(x, b) divides over ∅ in M and therefore E equals F . In the case where E has finitely

many classes, then at least one of them will contain a cofinal set of F -classes and will

therefore be a rank ωα structure with the same language as M/F and fewer ∅-definable

equivalence relations. �
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Proposition 3.2.4 Let M be a transitive binary homogeneous supersimple structure of

SU-rank ωα for some α ≥ 1. If a1, . . . , an ∈ M belong to different F -classes, then

a1 |̂ a2, . . . an.

Proof
The proposition clearly holds for n = 2. Now suppose that it holds up to n = k

and we are given a1, . . . , ak+1 in different F -classes and tp(a1/a2 . . . ak+1) divides

over ∅. Then by the induction hypothesis, we have a1 |̂ a2 . . . ak and a1 |̂ ak+1.

Let b |= tp(a1/ak+1) and b′ |= tp(a1/a2 . . . ak); again by the induction hypothesis,

ak+1 |̂ a2 . . . ak; Lstp(b) = Lstp(b′) because of the way we chose them and lowness of

the theory (cf. Proposition 3.1.4). We can apply the Independence Theorem to obtain

a |= Lstp(b)∪ tp(b/ak+1)∪ tp(b′/a2 . . . ak). Because the language is binary, this implies

that tp(a/a2 . . . ak+1) = tp(a1/a2 . . . ak+1), a contradiction since one of them divides

over ∅ and the other does not. �

In the next proposition, we use paq to denote the imaginary element corresponding to the

F -class of a.

Proposition 3.2.5 Let M be a transitive binary homogeneous supersimple structure of

SU-rank ωα for some α ≥ 1. In M/F , tp(paq/A) divides over ∅ iff paq ∈ A.

Proof
The “if” part is clear. For the “only if” part, we proceed as follows:

It is clear by Proposition 3.2.4 that the proposition holds if |A| = 1. More

generally, suppose that paq |̂6 pa1q, . . . , pamq for some m > 1. Then we can

find bi ∈ paiq such that paq |̂6 b1 . . . bm, but in this case, for any b ∈ paq, since

tp(b/b1 . . . bm) ` tp(pbq/b1 . . . bm) because pbq ∈ dcl(b), we have b |̂6 b1 . . . bm,

contradicting Proposition 3.2.4. �
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Proposition 3.2.6 Let M be a transitive binary homogeneous supersimple structure of

SU-rank ωα for some α ≥ 1. Then SU(M/F ) = 1

Proof
By primitivity, there is a unique 1-type p over ∅. Suppose q ∈ S(A) is a forking

extension of p. Then by Proposition 3.2.5, q includes the formula x = a for some a ∈ A,

so q itself has no forking extensions and therefore has rank 0. It follows that SU(p) = 1. �

Theorem 3.2.7 There are no binary finitely homogeneous structures with supersimple

theory of infinite SU-rank of the form ωα, for any ordinal α > 0.

Proof
As we have seen, in this case forking would be a definable equivalence relation with

classes of lower rank. But in this case, M/F would be of infinite rank, contradicting

Proposition 3.2.6. �

3.3 Binary homogeneous structures of SU-rank 1

In this section we investigate supersimple binary homogeneous structures of SU-rank 1.

Under this assumption, tp(a/B) forks over A ⊂ B iff a ∈ acl(B) \ acl(A), and algebraic

closure on an SU-rank 1 structure induces a pregeometry.

3.3.1 The primitive case

Proposition 3.3.1 Let M be a binary homogeneous structure with supersimple theory of

SU-rank 1 such that Aut(M) acts primitively on M . Then acl(a, b) = {a, b}.

Proof
Suppose not. Then there is c ∈ acl(ab) \ (acl(a) ∪ acl(b)) and a^

∅
| b, since by primitivity
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(Observation 3.1.11) acl(a) = a. By primitivity, there is only one strong type of elements

over ∅, and since the rank is finite, this implies that all elements are of the same Lascar

strong type. So we have Lstp(a) = Lstp(b). Take two elements c′, c′′ realising tp(c/a)

and tp(c/b) respectively. Note that c′^
∅
| a and c′′^

∅
| b.

Therefore we can apply the Independence Theorem to produce d |= Lstp(a) ∪ tp(c/a) ∪
tp(c/b) with d^

∅
| ab. Since the language is binary, tp(d/ab) = tp(c/ab) (an algebraic

type), so d ∈ acl(ab) which contradicts d^
∅
| ab. �

A stronger statement is:

Proposition 3.3.2 Under the hypotheses of 3.3.1, acl(A) =
⋃
a∈A acl(a) = A.

Proof
We prove this by induction on |A|. The case |A| = 1 is true by primitivity and |A| = 2

is Proposition 3.3.1. Now suppose that the result holds for sets of cardinality k, and let

A = {a1, . . . ak+1}.

Suppose that the equality does not hold, and take b ∈ acl(A) \
⋃
a∈A acl(a). By the

rank 1 assumption, ak+1 ^
∅
| A0, where A0 = A \ {ak+1}. Now take b0 realizing tp(b/A0)

and b1 realizing tp(b/ak+1). By the induction hypothesis, b0^
∅
| A0 and b1^

∅
| ak+1. By

primitivity, Lstp(b0) = Lstp(b1) (over the empty set), so we can apply the Independence

Theorem to get a β |= tp(b0/A0) ∪ tp(b1/a) with β^
∅
| A. By rank 1, β is not algebraic

over A.

But tp(β/A) = tp(b/A); indeed, tp(β/A0) = tp(b/A0), which implies that

tp(β/α) = tp(b/α) for all α ∈ A0, and also tp(β/a) = tp(b/a). Since the

language is binary, this implies that tp(β/A) = tp(b/A). This is a contradiction (because

b is algebraic over A.) �

Let D(x̄) denote the formula expressing that the elements of the tuple x̄ are all different.

Recall that the theory of the Random Graph is axiomatised by the set of sentences {φn,m :

n,m ∈ ω}, where φn,m is ∀v1, . . . , vn∀w1, . . . , wm(D(v1, . . . , vn, w1, . . . , wm) →
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∃x(
∧

1≤i≤nR(x, vi) ∧
∧

1≤j≤m ¬R(x,wj)). When phrased as “whenever V1 and V2 are

finite disjoint sets of vertices in G, there exists a vertex v such that for all v1 ∈ V1 and

v2 ∈ V2 the formula R(v, v1) ∧ ¬R(v, v2) holds in G,” the axiom schema φn,m is known

as Alice’s restaurant axiom.

We will assume for the rest of this section that M is a binary relational structure,

homogeneous in a language L = {R1, . . . , Rn}, and that each 2-type over ∅ of distinct

elements is isolated by one of the relations in the language. Our aim is to show that

supersimple primitive binary homogeneous structures are very similar to the random

graph, in the sense that we can prove analogues of Alice’s restaurant axioms in them. As

in other proofs in this chapter, at the core of the argument is the Independence Theorem.

Proposition 3.3.3 Let M be a countable relational structure homogeneous in the binary

language L = {R1, . . . , Rn}, and assume that each complete 2-type over ∅ is isolated

by one of the Ri. Suppose that R1, . . . , Rm are symmetric relations and Rm+1, . . . , Rn

are antisymmetric. If M is primitive and Th(M) is supersimple of SU-rank 1, then for

any collection {A1, . . . , Am, Am+1, A
′
m+1, . . . , An, A

′
n} of pairwise disjoint finite sets of

elements from M there exists v ∈M such that

M |=
∧

i∈{1,...m}

(
∧
vi∈Ai

Ri(v, vi)) ∧
∧

i∈{m+1,...,n}

(
∧
vi∈Ai

Ri(v, vi) ∧
∧

wi∈A′i

Ri(wi, v))

Proof
To prove this, we use Proposition 3.3.2 and the Independence Theorem. We may assume

that all the Ai, A′i are of the same size, and will prove this proposition for |Ai| = 1

(it will be clear that the same argument can be iterated for larger sets). By Proposition

3.3.2, a1 |̂ a2 if a1 6= a2, and for any A,B,C, A^
C

| B if (A \ C) ∩ (B \ C) = ∅. Let

Ai = {ai} and A′j = {a′j} for m + 1 ≤ j ≤ n, and assume all the ai are different and

therefore pairwise independent. Then by homogeneity, there exist bi with Ri(ai, bi), and

tp(bi/ai) does not fork over ∅. By primitivity, Lstp(b1) = Lstp(b2), so we can apply

the Independence Theorem and find b12 |= Lstp(b1) ∪ tp(b1/a1) ∪ tp(b2/a2) satisfying

b12 |̂ a1a2.
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Now we have b12 |̂ a1a2 and we know a1a2 |̂ a3 and tp(b3/a3) does not fork over ∅.

Also, by primitivity Lstp(b3) = Lstp(b12) and we can apply the independence theorem

again. Iterating this process, we find α |= Lstp(b1) ∪ tp(b1/a1) ∪ . . . ∪ tp(bn/an)

independent from a1, . . . , am, am+1, a
′
m+1, . . . , an, a

′
n. �

3.3.2 Finite equivalence relations

If M is a transitive, imprimitive rank 1 structure in which all the definable equivalence

relations have infinite classes, then it follows from the rank hypothesis that each of the

equivalence relations has finitely many classes. From homogeneity and transitivity it

follows that ifE is a definable equivalence relation onM and¬E(a, b), then a/E and b/E

are homogeneous structures with the same age, and each has fewer definable equivalence

relations than M . By ω-categoricity, there are only finitely many definable equivalence

relations, so thatM is in fact the union of finitely many primitive homogeneous structures

(which are the equivalence classes of the finest definable equivalence relation on M with

infinite classes) in which all invariant equivalence relations have finite classes. Our next

goal is to describe how two classes of a finite equivalence relation in a rank 1 binary

homogeneous structure can relate to each other.

The archetypal example of an imprimitive simple unstable binary homogeneous structure

with a finite equivalence relation is the Random Bipartite Graph. It is the Fraı̈ssé limit

of the family of all bipartite graphs with a specified partition or equivalence relation; it

is not homogeneous as a graph, but is homogeneous in the language {R,E}, where E is

interpreted as an equivalence relation. To axiomatise this theory, it suffices to express that

E is an equivalence relation with exactly two infinite classes, R is a graph relation, and

that for any finite disjoint subsets A1, A2 of the same E-class there exists a vertex v in the

opposite class such that R(v, a) holds for all a ∈ A1 and ¬R(v, a′) holds for all a′ ∈ A2.

If A,B are different classes of the finest definable finite equivalence relation E on M ,

we will say that a relation R holds transversally or across A,B if there exist a ∈ A

and b ∈ B such that R(a, b) ∨ R(b, a). Relations which hold transversally for some
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pair of E-classes are refered to as transversal relations. Notice that by homogeneity

any relation holding across E-classes does not hold within a class, and vice-versa. By

quantifier elimination and our assumption on the disjointness of the binary relations, E

is defined by a disjunction of atomic formulas
∨
i∈I Ri(x, y) for some I ⊂ {1, . . . n}.

Therefore, the transversal relations are those in L \ {Ri : i ∈ I}. We assume that each 2-

type of distinct elements is isolated by a relation in the language; therefore, each relation

is either symmetric or antisymmetric.

Given two E-classes A,B, if only one symmetric relation R holds across A,B then we

say that R is complete bipartite in A,B, for the reason that if we forget the structure

within the classes, what we obtain is a complete bipartite graph. All other relations are

null across A,B in this case, i.e., not realised across these classes.

If D is an antisymmetric relation realised across A,B, we say that the ordered pair of

classes (A,B) is directed for D if all the D-edges present in A ∪ B go in the same

direction, that is, if either ∀(c, c′ ∈ A ∪ B)(D(c, c′) → c ∈ A ∧ c′ ∈ B) or ∀(c, c′ ∈
A ∪ B)(D(c, c′) → c ∈ B ∧ c′ ∈ A). A dramatic example of a D-directed pair of

E-classes is when ∀a ∈ A∀b ∈ B(D(a, b)). We adopt the convention that if (A,B) is

directed for D, then the D-edges go from A to B. If (A,B) is not directed for any D,

then we say that (A,B) is an undirected pair of E-classes.

Observation 3.3.4 Let M be a binary homogeneous imprimitive transitive relational

structure in which there are proper nontrivial invariant equivalence relations with infinite

classes. Let E be the finest such equivalence relation in M . If (A,B) is a directed pair

of equivalence classes for some D ∈ L, then no symmetric relations are realised across

A,B and for all antisymmetric relations D′ in the language realised across A,B, either

(A,B) or (B,A) is directed for D′.

Proof
The first assertion follows from the fact that if R(a, b) for some symmetric relation R,

where a ∈ A and b ∈ B, then by homogeneity there would exist an automorphism taking

a → b and b → a, which is impossible by invariance of E and the fact that (A,B) is

directed for D. Similarly, if for some directed relation D′ we had a, a′ ∈ A and b ∈ B
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with D′(a, b) ∧ D′(b, a′) then by homogeneity there would exist an automorphism of M

taking ab to ba′, again impossible since (A,B) is directed for D. �

Observation 3.3.5 Let M be a binary homogeneous imprimitive transitive relational

structure with supersimple theory of SU-rank 1 in which there are proper nontrivial

invariant equivalence relations with infinite classes. Let E be the finest such equivalence

relation in M , and assume that Aut(M) acts primitively on each E-class. If a1, . . . , an,

n ≥ 2, are distinct E-equivalent elements of M , then a1 |̂ a2, . . . , an.

Proof
We proceed by induction on n. For the case n = 2, let a1, a2 be distinct elements of M ,

E(a1, a2). In the situation described, each of the relations that imply E is non-algebraic,

since otherwise the action of Aut(M) on a1/E would not be primitive. It follows that the

relation isolating tp(a1a2) is nonforking, so a1 |̂ a2.

Now suppose that any k distinct E-equivalent elements of M are independent. Suppose

for a contradiction that a1, . . . , ak+1 are pairwise independent E-equivalent elements

of M , and ak+1 |̂6 a1, . . . ak. By the induction hypothesis, a1 |̂ a2, . . . , ak, ak+1 |̂ a1

and ak+1 |̂ a2, . . . , ak. Let b1 |= tp(ak+1/a1) and b2 |= tp(ak+1/a2, . . . , ak); these

are nonforking extensions of the unique 1-type over ∅ to a1 and a2, . . . , ak, and are

of the same strong type. Therefore, by the Independence Theorem, there exists c

satisfying tp(ak+1/a1) ∪ tp(ak+1/a2, . . . , ak) in the same class as ak+1, independent

(i.e., non-algebraic) from a1, . . . , ak. But then tp(c/a1, . . . , ak) = tp(ak+1/a1, . . . , ak)

because the language is binary, which is impossible as the type on the left-hand side of

the equality is non-algebraic, while the other one is algebraic. �

Given a pair of E-classes A,B, denote the set of nonforking transversal relations realised

in A ∪ B by I(A,B). If (A,B) is a directed pair of classes, then I∗(A,B) is the set of

nonforking relations D realised in A ∪ B such that D(a, b) for some a ∈ A, b ∈ B. Note

that for directed pairs, I(A,B) = I∗(A,B) ∪ I∗(B,A).
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Proposition 3.3.6 Let M be a binary homogeneous imprimitive transitive relational

structure with supersimple theory of SU-rank 1 in which there are proper nontrivial

invariant equivalence relations with infinite classes. Let E be the finest such equivalence

relation in M , and assume that Aut(M) acts primitively on each E-class. Suppose

that (A,B) is a D1-directed pair of E-classes. Enumerate I∗(A,B) = {D1, . . . , Dn}
and I∗(B,A) = {Q1, . . . , Qm}. Then for all finite disjoint V1, . . . , Vn ⊂ B and

W1, . . . ,Wm ⊂ A there exist c ∈ A and d ∈ B such that Di(c, v) holds for all v ∈ Vi

(1 ≤ i ≤ n) and Qj(w, d) holds for all w ∈ Wj (1 ≤ j ≤ m).

Proof
We will prove only that for all finite disjoint V1, . . . , Vn ⊂ B there exists c ∈ B such that

Di(c, v) holds for all v ∈ Vi; the same argument produces the d from the statement.

We proceed by induction on k = |V1| + . . . + |Vn|, with an inner induction argument.

If k = n, so Vi = {bi} then by Observation 3.3.5 we have b1 |̂ b2. There exist

a, a′ ∈ A such that D1(a, b1) ∧ D2(a′, b2); since D1 and D2 are nonforking relations,

a |̂ b1 and a′ |̂ b2, and since a, a′ are E-equivalent, they have the same strong

type. By the Independence Theorem, there exists c12 ∈ A such that c12 |̂ b1b2 and

D1(c12, b1) ∧D2(c12, b2). Now suppose that for t ≤ n− 1, we can find c1...t |̂ a1, . . . , at

such that D1(c1...t, b1) ∧ . . . ∧ Dt(c1...t, bt). Given distinct b1, . . . , bt+1 with t + 1 ≤ n,

it follows from Observation 3.3.5 that bt+1 |̂ b1, . . . , bt. By the induction hypothesis,

there exists c1...t |̂ b1, . . . , bt satisfying
∧t
i=1Di(c1...t, bi); and we know that there exists

ct+1 ∈ A such that Dt+1(ct+1, bt+1). Since Dt+1 is nonforking, ct+1 |̂ bt+1, and by the

Independence Theorem, there exists c1...t+1 |̂ b1, . . . , bt+1 such that
∧t+1
i=1 Di(c1...t+1, bi).

This concludes, by induction, the case k = n. The same argument proves the inductive

step on k. �

By the same argument, we can prove:

Proposition 3.3.7 Let M be a binary homogeneous imprimitive transitive relational

structure with supersimple theory of SU-rank 1 in which there are proper nontrivial
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invariant equivalence relations with infinite classes. Let E be the finest such equivalence

relation in M , and assume that Aut(M) acts primitively on each E-class. Suppose that

(A,B) is an undirected pair of E-classes, I(A,B) = {R1, . . . , Rk} ∪ {D1, . . . , Ds},
where each Ri is symmetric and each Dj is antisymmetric. Then for all finite disjoint

subsets V1, . . . , Vk,W1, . . . ,Ws,W
′
1, . . . ,W

′
s ⊂ B there exists c ∈ A such that Ri(c, v)

for all v ∈ Vi, Dj(c, w) for all w ∈ Wj , and Dj(w, c) for all w ∈ W ′
j .

We remark here that if all the relations are symmetric, Proposition 3.3.7 says that a

nonforking transversal relation R occurs across a pair of E-classes A,B in one of three

ways, namely:

1. Complete, that is, only one relation is realised across A,B,

2. Null, so R is not realised in A ∪B

3. Random bipartite: it satisfies that given two disjoint nonempty finite subsets V, V ′

of A (B), there is a vertex v in B (A) that is R-related to all vertices from V and to

none from V ′

The results in this section tell us exactly what to expect from binary supersimple

homogeneous structures of SU-rank 1. Even though we did not phrase it as a list of

structures, Proposition 3.3.7 is essentially a classification result for imprimitive binary

homogeneous structures of SU-rank 1 in which one of the relations defines an equivalence

relation with infinite classes. Our next proposition is, in the same sense, a classification

of unstable imprimitive simple 3-graphs (language {R, S, T}, all relations symmetric and

irreflexive, each pair of distinct vertices realises exactly one of them) in which one of

the predicates defines a finite equivalence relation. This result is of interest in the final

sections of this chapter; we make implicit use Proposition 3.1.1:

Proposition 3.3.8 Let M be a transitive simple unstable homogeneous 3-graph in which

R defines an equivalence relation with m < ω classes. Then M has supersimple theory

of SU-rank 1, the structure induced on each pair of classes is isomorphic to the Random

Bipartite Graph, and for all k ≤ m and all k-sets of R-classes X , any S, T -graph of size

k is realised as a transversal to X .
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Proof
The first assertion follows easily from transitivity (only one 1-type q0 over∅) and the fact

that if ϕ(x, ā) is a formula not implying x = ai for some ai ∈ ā, then ϕ does not divide

over ∅, so the only forking extensions to the unique 1-type over ∅ are algebraic. To see

this, consider any such ϕ(x, ā). We may assume that ϕ is not algebraic, as in that case we

would already know that any extension of q0 implying ϕ is algebraic and so of SU-rank

0. Let c realise this formula, c 6∈ ā. We wish to prove that c |̂ ā; by simplicity, this is

equivalent to proving ā |̂ c.

Let ϕ′(x̄, c) be the formula isolating tp(ā/c). Consider any ∅-indiscernible sequence

I = (ci : i ∈ ω) such that c ∈ I . This is an infinite sequence contained in the R-class of

c. Colour the elements of I according to the types they realise over ā. Since ā is finite,

there are only finitely many colours, and by the pigeonhole principle there is an infinite

monochromatic subset I ′ of I . Then we have I ′ ≡c I and I ′ is indiscernible over ā, so

ϕ(x, ā) does not divide over ∅ and the SU-rank of q0 (and therefore M ) is 1.

The relation R is clearly stable in M , so S and T must be unstable. By instability, there

are parameters ai, bi (i ∈ ω) such that S(ai, bj) holds iff i ≤ j. Since R is stable, we have

T (ai, bj) for all j < i in this sequence of parameters. If we consider the aibi as pairs of

type S and colour the pairs of distinct pairs in the sequence by the type they satisfy over

∅, then using Ramsey’s theorem we can extract an infinite ∅-indiscernible sequence of

pairs, which we also call ai, bi. By indiscernibility, the new ai and bi form monochromatic

cliques, which are of colour R because there are no other infinite monochromatic cliques

in M . This proves that S and T are realised as transversals to any pair of R-classes. By

homogeneity, all pairs of classes are isomorphic.

The relationR is clearly nonforking inM . By instability, both S and T are non-algebraic,

so for any a ∈ M the sets S(a) and T (a) contain infinite R-cliques. It follows that S

and T are nonforking transversal relations, so by Proposition 3.3.7 the structure on any

pair of R-classes is isomorphic to the Random Bipartite Graph. Using the Independence

Theorem, we can embed any S, T -graph of size k as a transversal to a union of k

R-classes, for any k ≤ m. �
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3.4 Primitive homogeneous 3-graphs of SU-rank 2

Let M be a simple homogeneous 3-graph of SU-rank 2 (the language is {R, S, T}). Of

the three relations R, S, T (all of which are realised in M ), we assume that R is stable and

forking, and S, T are nonforking. This assumption (not needed in the proof of Theorem

3.4.2 below) is justified by a suitable version of the Stable Forking Conjecture in graphs

of rank greater than or equal to 3. Given any a ∈ M , consider R(a). This is a definable

set of rank at most 1 by our assumptions on R and the rank of M . What is the structure

of R(a)? The main theorem of this section is:

Theorem 3.4.1 Suppose that supersimple binary homogeneous structures have stable

forking, and let M be a primitive supersimple homogeneous 3-graph. Then the theory

of M is of SU-rank 1.

To prove Theorem 3.4.1, we prove first

Theorem 3.4.2 There are no supersimple primitive homogeneous 3-graphs of SU-rank

2.

Theorem 3.4.2 is proved by arguing first that R defines an equivalence relation on R(a)

with finitely many classes. We use the imprimitivity blocks of the R-neighbourhoods

to define an incidence structure. This incidence structure is a semilinear space. The

analysis divides into two main cases, depending on the R-diameter of the 3-graph; most

of the work goes into proving the non-existence of primitive homogeneous supersimple

3-graphs of SU-rank 2 and R-diameter 2. The case with diamR(M) = 3 is considerably

easier.

The proof of Theorem 3.4.1 rests on the possibility of defining the semilinear space. We

use this observation to start an inductive argument on the rank of the structure. Theorem

3.4.2 is the basis for induction in that proof.
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3.4.1 Preliminary notes, notation and assumptions

Our objective in this section is to study the structure of some countable homogeneous

n-graphs (definition below) with supersimple theory of SU-rank 2. Most of our results

are for 3-graphs, but some hold in more general contexts.

The symbol M denotes a countable homogeneous structure throughout this section.

The language may vary, though. Most of the time we refer to the relational language

L = {R, S, T}, where each relation is assumed binary, symmetric and irreflexive. For

most of the section, we will assume that the SU-rank of Th(M) is 2; by a result of

Assaf Peretz [35], the rank 2 elements in a supersimple ω-categorical theory have stable

forking: the statement “tp(a/B) divides over A ⊆ B” is witnessed by a stable formula.

In statements where the language is {R, S, T}, we assume that R is a forking relation

(R(a, b) implies tp(a/b) divides over ∅), and therefore stable. In view of Lachlan’s

classification of stable homogeneous 3-graphs (see Theorem 3.5.4), we may suppose

that Th(M) is unstable. Since any Boolean combination of stable formulas is stable, it

follows that both S and T are unstable, therefore nonforking. Statements for the language

{R1, . . . , Rn} may be more general and refer to ω-categorical homogeneous n-graphs.

Note that if all relations are nonforking then a primitive structure M is random in the

sense that all its minimal forbidden structures are of size 2 (examples: the Random Graph,

Random n-edge-coloured graphs), by the Independence Theorem argument used in the

proof of Theorem 3.3.3.

Recall that for any relation P and tuple ā, P (ā) = {x̄ ∈ M |P (ā, x̄)}. We sometimes

refer to this set as the P -neighbourhood of ā. In Definition 3.1.12, we defined an n-graph

to be a structure (M,R1, . . . , Rn) in which each Ri is binary, irreflexive and symmetric;

also, we assume that for all distinct x, y ∈ M exactly one of the Ri holds and n ≥ 2.

Finally, if M is a homogeneous n-graph, we assume that for each i ∈ {1, . . . , n} there

exist ai, bi ∈M such that Ri(ai, bi) holds in M .

Some definitions:

Definition 3.4.3
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1. A path of colour i and length n between x and y is a sequence of distinct vertices

x0, x1, . . . , xn such that x0 = x, xn = y and for 0 ≤ j ≤ n− 1 the edge (xj, xj+1)

is of colour i.

2. Two vertices x, y in an edge-coloured graph (M,R1, . . . , Rn) are Ri-connected if

there exists a path of colour i between them; a subset A of M is Ri-connected if

any a, a′ ∈ A are Ri-connected by a path in A. A maximal Ri-connected subset of

M is an Ri-connected component.

3. The Ri-distance between two vertices x, y in an edge-coloured graph, denoted by

di(x, y), is the length of a minimal Ri-path between x and y (∞ if no such path

exists). The Ri-diameter of an Ri-connected graph A is defined as the supremum of

{di(x, y)|x, y ∈ A}.

4. An n-graph is R-multipartite with k (k > 1 possibly infinite) parts if there exists

a (not necessarily definable) partition P1, . . . , Pk of its vertex set into nonempty

subsets such that if two vertices x, y are R-adjacent then they do not belong to the

same Pi. We will say that G is R-complete-multipartite if G is R-multipartite with

at least two parts and for all pairs a, b from distinct classes, R(a, b) holds.

5. For any relation R, n ∈ ω, and a, Rn(a) is the set of vertices at R-distance n from

a.

6. A half-graph for colourR withm pairs in an n-coloured graphM is a set of vertices

{ai : i ∈ m} ∪ {bi : i ∈ m} ⊂M such that R(ai, bj) holds iff i < j.

We often divide binary relations in two groups: forking and nonforking. We mean:

Definition 3.4.4 Let L = {R1, . . . , Rn} be a binary relational language. We say that

Ri is a forking relation if R(a, b) implies that tp(a/b) forks over ∅. Otherwise, Ri is

nonforking.

By simplicity, forking and dividing coincide, so in our statements and arguments we

usually prove or use dividing instead of forking. We assume that all relations in the

language are realised in M .
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3.4.2 More facts about homogeneous n-graphs

This is a short section with a few useful observations about homogeneous edge-coloured

graphs.

Observation 3.4.5 In any homogeneous transitive n-graph (M,R1, . . . , Rn), if Ri(a) is

an Ri-complete graph, then for any b ∈ Ri(a) we have {a} ∪Ri(a) = {b} ∪Ri(b)

Proof
If c ∈ Ri(b) \ Ri(a), then both a and c are in Ri(b), which is Ri-complete by transitivity,

and therefore Ri(a, c) holds, contradiction. �

Observation 3.4.6 If (M,R1, . . . , Rn) is an ω-categorical n-graph, then each connected

component of (M,Ri) has finite diameter.

Proof
Each of the Ri-distances is preserved by automorphisms. If one of the connected

components of (M,Ri) has infinite diameter, then there are infinitely many 2-types,

contradicting ω-categoricity. �

As a consequence of this observation, in ω-categorical edge-coloured graphs the relation

Ei(x, y) which holds if there is a path of colour i between x and y is definable. Also,

in primitive n-coloured graphs, each (M,Ri) is connected, since the equivalence relation

x ∼Ri y that holds if x and y are Ri-connected is invariant under Aut(M).

Observation 3.4.7 If (M,R1, . . . , Rn), where n > 1, is a primitive homogeneous n-

graph, then for all i with 1 ≤ i ≤ n, the structure Ri(a) is not Ri-complete.

Proof
Suppose not. Then, using Observation 3.4.5 and homogeneity, there is i with 1 ≤ i ≤ n
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such that for all a, b withRi(a, b) we have {a}∪Ri(a) = {b}∪Ri(b). Hence, {a}∪Ri(a)

is an Ri-connected component. This contradicts primitivity, since |Ri(a)| > 0 and as

n > 1, {a} ∪Ri(a) 6= M . �

Observation 3.4.8 If (M,R1, . . . , Rn) is a homogeneous n-graph, then the diameter of

each connected component of (M,Ri) is at most n.

Proof
Suppose there are a, b ∈ M at Ri-distance n + 1, so there are distinct

a = x0, x1, . . . , xn+1 = b such that Ri(xj, xj+1) for 0 ≤ j ≤ n and Ri does not

hold in any other pair from {x0, . . . , xn+1}. Then the n pairs (a, xj) (2 ≤ j ≤ n + 1)

are coloured in n − 1 colours, so at least two of them have the same colour. Using

homogeneity, there is an automorphism of M taking the pair with the smaller index in the

second coordinate to the other pair, and therefore we can find a shorter path from a to b. �

Observation 3.4.9 If (M ;R, S, T ) is a countable transitive 3-graph of R-diameter 2

where all three predicates are realised, then S and T are realised in R(a) for any a ∈M .

Proof
For any a, there exist c1, c2 ∈M such that S(a, c1) and T (a, c2). Since the R-diameter of

the graph is 2, there exist b1, b2 ∈ R(a) such that R(b1, c1) and R(b2, c2). Therefore, the

triangles RRS and RRT are in Age(M). The conclusion follows by transitivity. �

Proposition 3.4.10 Let (M ;R1, . . . , Rn) be an Ri-connected transitive homogeneous n-

graph. If for some a ∈ M the set Ri(a) is Ri-complete-multipartite, then M is Ri-

complete-multipartite (and in particular is not primitive).

Proof
For simplicity, we will write R and notRi. Note first that the partition ofR(a) is invariant
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over a, defined by R(a, x) ∧ R(a, y) ∧ ¬R(x, y) =: Ea(x, y). Take any b ∈ R(a). By

homogeneity, R(b) consists of a/Eb together with R(a) \ (b/Ea). We claim that this is

all there is in M . First note that there are no more classes in R(b) \ R(a): if we had

c ∈ R(b) \ R(a) not Eb-equivalent to a, then by homogeneity we would have R(a, c),

contradicting c /∈ R(a). Therefore, a/Eb ∪ R(a) is an R-connected component of M ; by

connectedness, it is all of M , diamR(M) = 2, and ¬R(x, y) is an equivalence relation.

�

The following theorem was proved by Lachlan and Woodrow in [31]:

Theorem 3.4.11 (Lachlan-Woodrow 1980) Let G be an infinite homogeneous graph.

Then either G or Gc is of one of the following forms:

1. Im[Kn], where at least one of m,n is infinite,

2. Generic omitting Kn+1,

3. Generic (the Random Graph)

Remark 3.4.12 From this list, graphs in the first category are ω-stable of SU-rank 1

if only one of m,n is infinite; the graph Iω[Kω] is of rank 2. The random graph is

supersimple unstable of SU-rank 1, and the homogeneous Kn-free graphs are not simple.

Observation 3.4.13 If (M ;R, S, T ) is a homogeneous primitive simple 3-coloured graph

in which R is a forking relation and S, T are nonforking, then there are no infinite S- or

T -cliques in R(a).

Proof
By 3.1.5, an infinite S- or T -clique is a Morley sequence over ∅. By Proposition

1.2.10, since R(x, a) divides over ∅, for any Morley sequence (ai : i ∈ ω) the set

{R(x, ai) : i ∈ ω} is inconsistent. �
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A related result in a richer language:

Proposition 3.4.14 If (M ;R1, . . . , Rn) is a simple primitive homogeneous n-graph in

whichR1, . . . , Rm are forking non-algebraic relations andRm+1, . . . , Rn are nonforking,

then for each 1 ≤ i ≤ m there exists a j in the same range, such that for any a ∈ M , the

set Ri(a) embeds infinite Rj-cliques.

Proof
Consider Ri(a) for any a ∈ M , with 1 ≤ i ≤ m. As M is primitive, Ri(x, a) is infinite

(Observation 3.1.11). By simplicity, for any Morley sequence (aj : j ∈ ω), the set

{Ri(x, aj) : j ∈ ω} is inconsistent. In a primitive homogeneous simple n-graph, any

infinite clique of a nonforking colour is a Morley sequence over ∅ in any enumeration

(by primitivity and the Independence Theorem). Therefore, in Ri(a) there are no infinite

cliques of any nonforking colour. By Ramsey’s theorem, there are infinite monochromatic

sets of pairs, which are necessarily of some forking colour. �

And a result we will later quote:

Proposition 3.4.15 In a supersimple unstable primitive rank 1 homogeneous n-graph

(M ;R1, . . . , Rn), n > 1, each of the Ri is unstable.

Proof
In SU-rank 1 structures, forking is algebraic, so tp(a/b) forks iff over ∅ iff

a ∈ acl(b) \ acl(∅). Therefore, each relation is non-algebraic, by primitivity, and

so each relation is nonforking. Using the Independence Theorem to amalgamate partial

structures over the empty set (cf. 3.1.4, 3.1.8), we can embed infinite half-graphs for each

of the Ri into M , witnessing instability. See also Theorem 3.3.3. �

From these observations two possible pictures emerge for the structure of 3-graphs of

rank 2 with relations R, S, T : either (M,R) has diameter 2, or it has diameter 3. In the

latter case, since Aut(M) preserves the R-distance, for any a ∈ M the sets S(a) and

T (a) correspond to R-distance 2 and 3 from a, so Aut(M,R) = Aut(M,R, S, T ).
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3.5 Semilinear 3-graphs of SU-rank 2

In this section we present the proof of Theorem 3.4.2. Assaf Peretz proved in [35] that

the elements of SU-rank 2 in an ω-categorical supersimple structure have stable forking.

Therefore we may assume that the forking relation R is stable. We cannot have more

than one forking relation because we assume that each relation in the language isolates a

2-type, so by Peretz’s theorem, if we had two forking relations then both would be stable,

which would imply that the third (which is equivalent to the negation of the other two) is

also a stable relation, and the theory of the homogeneous 3-graph would be stable; and by

Theorem 3.5.4 (due to Lachlan), there are no primitive stable 3-graphs. Here we start a

case-by-case analysis of these graphs.

Observation 3.5.1 If M is a primitive supersimple ω-categorical relational structure of

SU-rank 2, and R is a forking relation, then R(a) is a set of rank 1.

Proof
Given any a ∈ M , R(a) is a set of rank at most 1. If it were of rank 0, then the set of

solutions of R(x, a) would be finite, and therefore any element satisfying it would be in

the algebraic closure of a, impossible by Observation 3.1.11. Therefore, the rank of R(a)

is 1. �

Proposition 3.5.2 Suppose thatM is a simple primitive homogeneousR, S, T -graph, the

formula R(x, a) forks, and S, T are unstable, nonforking relations. Then M embeds KR
n

for all n ∈ ω.

Proof
Being KR

n -free would either force R(a) to be algebraic, contradicting primitivity by

Observation 3.1.11, or contradict, by Ramsey’s Theorem, Observation 3.4.13. �
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Observation 3.5.3 Equivalence relations definable in an SU-rank 1 structure cannot

have infinitely many infinite classes.

Proof
Let p be a type in S1(∅), ϕ a formula defining an equivalence relation Eϕ in M , and

a ∈M . If Eϕ has infinitely many infinite classes, then the extension p1 of p to {a} which

includes ϕ(x, a) divides over ∅. Since each class is infinite, SU(p1) ≥ 1, and therefore

SU(p) ≥ 2, a contradiction. �

Note that if M is a simple 3-graph in which R is stable, then R is still a stable relation in

the (homogeneous, simple) structure R(a), since any model of the theory of R(a) can be

defined in a model of the original theory, and therefore witnesses for instability in R(a)

theory would also witness instability in the original theory.

What can we say about R(a)? We will show in the next section that the action of

Aut(M/a) is imprimitive on R(a), and that the vertices together with the imprimitivity

blocks of their neighbourhoods form a semilinear space. In our argument, we will use

Lachlan’s classification of stable homogeneous 3-graphs:

Theorem 3.5.4 (Lachlan 1986, [28]) Every stable homogeneous 3-graph is isomorphic

to one of the following:

1. P∗∗

2. Z

3. Z ′

4. Qi
∗

5. P i
∗

6. P i[Ki
m]

7. Ki
m[Qi]

8. Qi[Ki
m]

9. Ki
m[P i]

10. Ki
m ×Kj

n

11. Ki
m[Kj

n[Kk
p ]]

where {i, j, k} = {R, S, T} and 1 ≤ m,n, p ≤ ω.
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Items 1 to 5 are finite 3-graphs; for 6-11, if at least one of m,n, p is infinite, the 3-graph

is infinite. We will not explain what Z, the asterisks, and primes mean, since we are

concerned only with infinite graphs. In the j, k-graph P i there are five vertices, and both

the j-edges and the k-edges form a pentagon. The j, k-graph Qi is defined on 9 vertices;

the j- and k-edges form a copy of K3 ×K3.

For 1 ≤ m,n ≤ ω, Ki
m ×Kj

n is the graph with vertex set m× n and relations

((a1, b1), (a2, b2)) ∈


i if a1 6= a2 ∧ b1 = b2

j if a1 = a2 ∧ b1 6= b2

k if a1 6= a2 ∧ b1 6= b2

where we again assume {i, j, k} = {R, S, T}.

And if G, H are 3-graphs, then G[H] is the 3-graph with vertex set V (G) × V (H) and

in which the 3-graph induced on {(a, v) : v ∈ V (H)} is isomorphic to H for each

a ∈ V (G), and for any function f : V (G)→ V (H), the 3-graph induced on {(a, f(a)) :

a ∈ V (G)} is isomorphic to G. More formally, P ((a, b), (c, d)) holds in G[H] if a = c

and H |= P (b, d), or if G |= P (a, c), where P ∈ {R, S, T}.

We summarise some properties of some of these infinite stable homogeneous 3-graphs

in the table in page 83. We present only those structures that may appear as R(a) in a

primitive homogeneous 3-graph.

3.5.1 Lines

In this subsection we define the main tool that we will use to eliminate candidates to be

primitive homogeneous 3-graphs of SU-rank 2, a family of sets we call lines. Thus we

interpret an incidence structure in M in which lines are infinite and each point belongs to

a finite number of lines. It is tempting to try to see this structure as a pseudoplane and

use a general result of Simon Thomas on the nonexistence of binary omega-categorical

pseudoplanes (see [43]), but our incidence structure falls short of being a pseudoplane

or even a weak pseudoplane, which is what Thomas uses in his proof. It is a semilinear

space (see Definition 3.5.6), which under some conditions also qualifies as a generalised
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Table 3.2: Some stable homogeneous 3-graphs

Structure Equivalence relations U-rank

PR[KR
ω ] R 1

KR
ω [QR] S ∨ T 1

QR[KR
ω ] R 1

KR
ω [PR] S ∨ T 1

KR
ω ×KS

n R, S 1

KR
ω ×KT

n R, T 1

KR
ω [KS

n [KT
p ]] S ∨ T, T 1

KR
ω [KT

n [KS
p ]] S ∨ T, S 1

KS
m[KR

ω [KT
p ]] T ∨R, T 1

KT
m[KR

ω [KS
p ]] S ∨R, S 1

KS
m[KT

n [KR
ω ]] R ∨ T,R 1

KT
m[KS

n [KR
ω ]] R ∨ S,R 1
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quadrangle (cf. Observation 3.5.18, see the paragraph preceding it for the definition of

generalised quadrangle).

Remark 3.5.5 By Observation 3.4.8, the R-diameter of a homogeneous 3-graph is at

most 3. We are interested in “proper” 3-graphs, that is, structures in which all three

colours are realised; therefore, we may assume that the R-diameter of M is either 2 or 3.

If the R-diameter of M is 3, then, as the automorphism group of M preserves R-distance,

we may adopt the convention that S(a) and T (a) correspond to R2(a) and R3(a) (cf.

the paragraph after Proposition 3.4.15). Note that in R-diameter 3, the triangle RRT is

forbidden, and therefore the R-neighbourhood of any vertex a is an R, S-graph, stable by

the stability of R.

Definition 3.5.6 A semilinear space S is a nonempty set of elements called points

provided with a collection of subsets called lines such that any pair of distinct points

is contained in at most one line and every line contains at least three points.

Remark 3.5.7 As we have mentioned before, these structures are related to weak

pseudoplanes. Given a structure M and a definable family B of infinite subsets of M , the

incidence structure P = (M,B) is a weak pseudoplane if for any distinct X, Y ∈ B we

have |X ∩ Y | < ω and each p ∈M lies in infinitely many elements of B. The connection

between our semilinear spaces and weak pseudoplanes is, then, that a semilinear space

interpreted (i.e., the lines form a definable family of subsets of M ) in a homogeneous

structure in which each line is infinite and each point lies in infinitely many lines is a

weak pseudoplane. In all the semilinear spaces that we will encounter in this chapter,

lines are infinite and each point belongs to finitely many lines.

The rest of this chapter consists of a study of the properties of a semilinear space definable

in homogeneous primitive 3-graphs of SU-rank greater than or equal to 2.

Proposition 3.5.8 Let M be an infinite 3-graph such that Aut(M) acts transitively on

M , R(a) is infinite for any a, and R is a transitive relation on R(a) such that the reflexive

closure ofR onR(a) has finitely many equivalence classes. Denote by `(a, b) the maximal
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R-clique in M containing the R-edge ab. Then (M,L), where L = {`(a, b) : M |=
R(a, b)}, is a semilinear space.

Proof
We start by justifying our use of the when we said that `(a, b) is “the maximal R-clique

in M containing the R-edge ab.” Since we chave R(a, b), we know that b ∈ R(a), so

it is an element of one of the finitely many classes of R in R(a). Let b/Ra denote the

R-equivalence class of b in R(a); then {a} ∪ b/Ra is an infinite clique containing a, b.

We claim that any clique containing a, b is a subset of {a} ∪ b/Ra. To see this, let K be

an R-clique containing a, b, and let x 6= a, b ∈ K. Such an x exists because R partitions

an infinite set into finitely many subsets. Since K is a clique, we have that x ∈ R(a), and

as R defines an equivalence relation on R(a) and R(x, b) holds, we have that x ∈ b/Ra.

Therefore, x ∈ {a} ∪ b/R(a) and `(a, b) denotes this set.

So we have that two distinct points (vertices) belong to at most one element of L. Any

line contains at least three points, by transitivity of M and the fact that R forms infinite

cliques within R(a). �

Definition 3.5.9 A 3-graph is semilinear if it satisfies the hypotheses of Proposition 3.5.8.

In particular, whenever we refer to a semilinear 3-graph in this chapter we assume that

points are incident with only finitely many lines.

Definition 3.5.10 IfM is a semilinear 3-graph andR(a, b) holds inM , then `(a, b) is the

imprimitivity block in R(a) to which b belongs, together with the vertex a. Equivalently,

it is the largest R-clique in M containing a and b. We refer to these sets as lines.

We have introduced semilinear 3-graphs because a good deal of the analysis of

homogeneous primitive 3-graphs of SU-rank 2 depends more on this combinatorial

property than on any simplicity or rank assumptions. The next two results establish that

anything we prove about semilinear 3-graphs is also true of homogeneous primitive 3-

graphs of SU-rank 2.
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Observation 3.5.11 Suppose M is a primitive homogeneous supersimple 3-graph of SU-

rank 2, where R is a forking relation, S, T are nonforking, and a ∈ M . Then R(a) is

imprimitive.

Proof
If the R-diameter is 2, then all three predicates are realised in R(a) (see Observation

3.4.9). By Proposition 3.5.1, R(a) is a 3-graph of rank 1, so it cannot be primitive

and unstable by Proposition 3.4.15, as it would embed infinite S-cliques, contradicting

Observation 3.4.13. And by Lachlan’s Theorem 3.5.4, R(a) cannot be primitive and

stable (see the table of 3-graphs without infinite S- or T -cliques in page 83).

If the R-diameter is 3, then R(a) is a homogeneous RS-graph. It follows from the

Lachlan-Woodrow Theorem 3.4.11 and simplicity that R(a) is isomorphic to Im[Kω] or

to Iω[Kn] (m,n ∈ ω). �

Proposition 3.5.12 If M is a homogeneous supersimple primitive 3-graph of SU-rank 2,

then R defines an equivalence relation on R(a) with finitely many infinite classes.

Proof
We know from Observation 3.5.11 thatR(a) is imprimitive. By quantifier elimination and

our assumption that exactly one of R, S, T holds for any pair of vertices in M , to show

that R defines an equivalence relation on R(a), an invariant equivalence relation on R(a)

is defined by a disjunction of at most two predicates from L. Our two main cases depend

on the R-diameter of M .

I. If diamR(M) = 3, then R(a) is a homogeneous R, S-graph, which must be stable

since R is stable and in which both R and S are realised, by Observation 3.4.7. The

formula S(x, y) does not define an equivalence relation on R(a) by Proposition

3.4.10. Therefore, R is an equivalence relation on R(a) and by Observation 3.4.13,

this equivalence relation has finitely many classes, each of which is infinite by

homogeneity and the fact that R(a) is an infinite set.
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II. If diamR(M) = 2, then all predicates are realised in R(a).

By Proposition 3.4.10 the relation S ∨ T does not define an equivalence relation.

If R ∨ S defines an equivalence relation on R(a), then it must have finitely many

classes as any transversal toR∨S is a T -clique and T does not form infinite cliques

in R(a). Each R ∨ S-class in R(a) is a homogeneous graph, so by the Lachlan-

Woodrow Theorem 3.4.11 it must be of the form KS
n [KR

ω ], since KR
n [KS

ω ] is

impossible because S forms infinite cliques in it. It follows that R(a) is isomorphic

to KT
m[KS

n [KR
ω ]], and R defines an equivalence relation on R(a) with m×n infinite

classes (see the table on page 83). The same argument shows that if R ∨ T defines

an equivalence relation on R(a), then R is also an equivalence relation there, with

finitely many infinite classes.

If S defines an equivalence relation on R(a), then it is a stable relation on R(a),

its classes are finite, and R(a) is a stable 3-graph of one of the forms 6-11 from

Lachlan’s Theorem 3.5.4. We can eliminate all those stable graphs in which S ∨ T ,

R ∨ S, or R ∨ T defines an equivalence relation, since we have already dealt with

those cases. In all other cases (see the table on page 83), R defines an equivalence

relation with finitely many infinite classes.

�

Observation 3.5.11 and Proposition 3.5.12 tell us that in supersimple homogeneous

primitive 3-graphs of SU-rank 2 the forking predicate R defines an equivalence relation

on R(a) with finitely many infinite classes. We summarise this in a lemma for easier

reference:

Lemma 3.5.13 Primitive homogeneous supersimple 3-graphs of SU-rank 2 are

semilinear. The lines of the semilinear space are infinite and each point is incident with

finitely many lines.

Proof
By primitivity, none of the relations R, S, T is algebraic (cf. Observation 3.1.11), so R(a)
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is infinite. The transitivity of the 3-graph follows trivially from primitivity. Observation

3.5.11 and Proposition 3.5.12 prove that (the reflexive closure of) R is an equivalence

relation on R(a) with finitely many infinite classes. �

We have defined a semilinear space over a homogeneous structure, but there is no reason

for it to be homogeneous as a semilinear space. This observation differentiates our work

from Alice Devillers’ study of homogeneous semilinear spaces (see [12]).

In Devillers’ formulation, a semilinear space is a two-sorted structure with one sort for

points and another for lines; it is homogeneous if the usual condition on the extensibility

of local isomorphisms between finite configurations of points and lines is satisfied.

Our semilinear space is defined in a primitive homogeneous supersimple 3-coloured

graph. It is clear that we have two types of non-collinear points, corresponding to S-

and T -edges in the coloured graph. If the diameter of the graph is 2, then we will see that

n = |R(c) ∩ R(a)| and m = |R(d) ∩ R(a)| are not necessarily equal for c ∈ S(a)

and d ∈ T (a), even though ac and ad are isomorphic as incidence structures. Any

automorphism of the semilinear space extending the isomorphism a 7→ a, c 7→ d would

necessarily take R(c) ∩ R(a) to R(d) ∩ R(a), impossible. Thus, we cannot expect our

linear spaces to be homogeneous in the sense of Devillers.

We will use the semilinear space to analyse the structure of SU-rank 2 graphs. Any two

distinct vertices belong to at most one line and two distinct lines intersect in at most one

vertex. Any given vertex belongs only to a finite number of lines, each of which is infinite.

As a consequence:

Observation 3.5.14 Suppose that M is a semilinear 3-graph and a ∈ M . Then for all

d ∈ R2(a) and ` a line through a, |R(d) ∩ `| < 2.

Proof
If we had two different points b1, b2 on ` ∩ R(d), then as we have R(b1, b2) we get that

b1, b2 belong to the same line through d. But then b1, b2 ∈ `(a, b1)∩ `(d, b1), contradicting

the fact, obvious from Definition 3.5.6 that the intersection of two distinct lines in a



§3. Supersimple Homogeneous Binary Structures 89

semilinear space is either empty or a singleton. �

The situation in primitive semilinear 3-graphs is essentially different from that in primitive

structures of SU-rank 1. Compare our next observation with Proposition 3.3.1.

Observation 3.5.15 Let M be a primitive homogeneous semilinear 3-graph. If the R-

distance between a and b is 2, then acl(a, b) 6= {a, b}.

Proof
The vertices a and b belong to a finite number of lines. Since the R-distance from a to b is

2, there exists at least one element c ∈ R(a) such that R(c, b) holds. There is at most one

such c in any line through a. These points are algebraic over a, b and distinct from them. �

Observation 3.5.14 implies that the lines of the semilinear space interpreted in a semilinear

3-graph do not form triangles.

The sets R(a), S(a), T (a) are homogeneous in the language L, so having the same type

over a is equivalent to being in the same orbit under Aut(M/a). Therefore, we cannot

have more than 2 nested a-invariant/definable proper nontrivial equivalence relations in

any of them, as we would need more than 3 types of edges to distinguish them. For the

same reason, the number of lines through a that R(c) meets for c ∈ R2(a) is invariant

under a-automorphisms (which fix the set of lines through a) as c varies in an a-orbit.

3.5.2 The nonexistence of primitive homogeneous 3-graphs of R-

diameter 2 and SU-rank 2

We know by Lemma 3.5.13 that finitely many lines are incident with any vertex a ∈ M
in a primitive supersimple homogeneous 3-graph of SU-rank 2. Recall from subsection

3.5.1 that that two lines intersect in at most one point (by Observation 3.5.14 or by the

definition of a semilinear space). The main question to ask is: if a and b are not R-related,

how many lines containing a can the R-neighbourhood of b meet?
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Proposition 3.5.16 Let M be a homogeneous primitive semilinear 3-graph with simple

theory in which S and T are nonforking predicates, and suppose that diamR(M) = 2. If

for every b ∈ R(a) and each line ` through b other than `(a, b) we have that `∩ S(a) and

`∩ T (a) are both nonempty, then either `∩ S(a) and `∩ T (a) are both infinite, or one of

them is of size 1 and the other is infinite.

Proof
Clearly, at least one of ` ∩ S(a) and ` ∩ T (a) is infinite. Suppose for a contradiction

that 1 < |` ∩ S(a)| < ω. The formula S(x, a) does not divide over ∅; therefore,

for any indiscernible sequence (ai)i∈ω the set {S(x, ai) : i ∈ ω} is consistent by

simplicity. In particular when R(a0, a1) holds. Therefore, S(a) embeds infinite R-cliques

and by homogeneity every R-related pair in S(a) is in one such clique. Take any

c, c′ ∈ ` ∩ S(a), and let X be an infinite R-clique in S(a) containing them. Consider

d ∈ X \ `; X ⊂ `(c, d) and b /∈ `(c, d), and the same is true of c′. But both belong

to `(b, c). Therefore, there are two points which lie on two different lines, contradiction. �

Our next observation is crucial to proving that there are no homogeneous 3-graphs of rank

2 and diameter 2. We mentioned before that the incidence structure interpreted in M by

the lines and vertices is close to being a generalised quadrangle. Recall that a generalised

quadrangle (see [42]) is an incidence structure of points and lines with possibly infinite

parameters s and t satisfying:

1. any two points lie on at most one line,

2. any line is incident with exactly s+ 1 points, and any point with exactly t+ 1 lines,

and

3. if x is a point not incident with a line L, then there is a unique point incident with

L and collinear with x.

In [33], Macpherson proves:

Theorem 3.5.17 Let M be a homogenizable structure. Then it is not possible to interpret

in M any of the following:
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(i) an infinite group,

(ii) an infinite projective plane,

(iii) an infinite generalised quadrangle, or

(iv) an infinite Boolean algebra.

Observation 3.5.18 If M is homogeneous primitive semilinear 3-graph and

diamR(M) = 2, then it is not the case that for all b ∈ R2(a) the set R(b) intersects all

lines containing a.

Proof
In this case, the incidence structure interpreted in M with lines of the form `(x, y) and

vertices as points is a generalised quadrangle with infinite lines and as many lines through

a point as R-classes in R(a), contradicting Theorem 3.5.17. �

The following observation will help us find different points c, c′ in S(a) or T (a) such that

R(c) and R(c′) meet the same lines through a. Recall that given a subset B of M , the

group of all automorphisms of M fixing B setwise is denoted by Aut(M){B}.

Observation 3.5.19 Let M be a primitive homogeneous semilinear 3-graph of R-

diameter 2. Let X be a set of lines incident with a. Then Aut(M/a){⋃X} acts transitively

on ` \ {a} for all ` ∈ X .

Proof
Note that at least one of RSS,RTT is realised in R(a). Assume without loss of

generality that RSS is realised in R(a). Let b, b′ be elements of R(a) satisfying R(b, b′).

Enumerate the lines in X as `1, . . . , `k, and assume b, b′ ∈ `k \ {a}. We can find elements

d1 ∈ `1, . . . , dk−1 ∈ `k−1 such that S(b, di) ∧ S(b′, di) for i ∈ {1, . . . , k − 1}, so

tp(b/d1, . . . , dk−1) = tp(b′/d1, . . . , dk−1). By homogeneity, there is an automorphism of

M fixing a, d1, . . . , dk−1 (and therefore fixing
⋃
X setwise) taking b to b′. �
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If only one of S, T is realised in the union of two lines through a, then each pair of R-

classes in R(a) is isomorphic to a complete bipartite graph (the parts of the partition are

R-cliques and the edges are of colour S or T ), so we have two orbits of pairs of lines

through a. This is not the case if all relations are realised in the union of two lines through

a.

Observation 3.5.20 Let M be a primitive homogeneous simple semilinear 3-graph of R-

diameter 2. If in R(a) all relations are realised in the structure induced on a pair of lines

through a, and there are m lines through a, then there is only one orbit of k-sets of lines

over a, for all k ≤ m.

Proof
There are two cases, depending on whether we can find witnesses to the instability of S, T

within R(a).

If R(a) is a stable structure, then it is isomorphic to KS
m × KR

ω or to KT
m × KR

ω ], by

Lachlan’s Theorem 3.5.4, Observation 3.4.13, and the hypothesis that all relations are

realised in the structure induced on a pair of incident lines. In any of these structures

there are monochromatic transversal cliques of size m, so the observation follows by

invariance and homogeneity.

If we can find witnesses to the instability of S, T within R(a), then R(a) is isomorphic to

a simple unstable homogeneous 3-graph in which R defines a finite equivalence relation.

By Proposition 3.3.8, we can embed transversal monochromatic cliques, and again the

observation follows by invariance and homogeneity. �

Notice that if for some element b ∈ R(a) and some line ` through b different from `(a, b)

the sets `∩S(a) and `∩T (a) are both nonempty, then by homogeneity we can transitively

permute the lines through b whilst fixing ab, and therefore all lines through any b ∈ R(a),

except `(a, b), meet both orbits over a in R2(a). Furthermore, the size of the intersections

does not change and is either 1 or infinite, with at least one of them infinite. To put it

differently, if one line through b (not `(a, b)) is almost entirely contained (the point b is
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assumed to be in R(a)) in S(a), then each line is almost entirely contained in one orbit.

Now we prove that all lines that meet R2(a) meet both S(a) and T (a).

We will need the following well-known fact from permutation group theory (see, for

example, 2.16 in [4]) to strengthen Observation 3.5.19 :

Theorem 3.5.21 Let G be a permutation group on a countable set Ω, and let A,B be

finite subsets of Ω. IfG has no finite orbits on Ω, then there exists g ∈ G withAg∩B = ∅.

Proposition 3.5.22 Suppose that M is a primitive simple homogeneous semilinear 3-

graph with m lines through each point, and let X = {`i : 1 ≤ i ≤ k} be a set of lines

through a ∈M . Then for any transversal A to the k lines in X , there exists a transversal

B to X such that B ∼= A and B ∩ A = ∅.

Proof
This is a direct consecuence of Theorem 3.5.21 and Observation 3.5.19. �

Proposition 3.5.23 Let M be a simple homogeneous primitive semilinear 3-graph of R-

diameter 2, in which all predicates are realised in the structure induced on a pair of

incident lines, and a ∈ M . Then for all b ∈ R(a), each line ` 6= `(a, b) through b meets

both S(a) and T (a).

Proof
First note that it is not possible to have R(b) ∩ S(a) = ∅ or R(b) ∩ T (a) = ∅. To see

this, suppose for a contradiction that R(b) ∩ S(a) = ∅; moving b by homogeneity within

R(a), it follows that R(b′) ∩ S(a) = ∅ for all b′ ∈ R(a), contradicting the assumption

that vertices in S(a) are at R-distance 2 from a. Similarly, R(b) ∩ T (a) 6= ∅. Therefore,

this proposition can only fail if we have at least 3 lines through a.

Suppose for a contradiction that there arem ≥ 3 lines incident with a and for all b ∈ R(a)

and ` 6= `(a, b) through b, ` \ {b} ⊂ S(a) or ` \ {b} ⊂ T (a). By Observation 3.5.18, we
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may assume that k = |R(c)∩R(a)| < m for all c ∈ S(a). We define two binary relations

on S(a): for c, c′ ∈ S(a), E(c, c′) holds if R(c) and R(c′) meet the same lines through

a, and C(c, c′) holds if there exists b ∈ R(a) such that b, c, c′ are collinear. Given two

elements x, y ∈ S(a), let #(x, y) denote the number of R-classes in R(a) that R(x) and

R(y) meet in common, that is #(x, y) = |{z ∈ R(x) ∩ R(a) : ∃w(w ∈ R(y) ∩ R(a) ∧
(R(w, z) ∨ w = z))}|.

I. If k = 1, then there are at least four types of unordered pairs of vertices in S(a).

We prove this assertion as follows: let bc denote the unique element in R(c)∩R(a)

for c ∈ S(a). The relations P̂ (c, c′) that hold if P (bc, bc′) is true (P ∈ {R, S, T})
are invariant and imply that bc, c, c′ are not collinear. It follows from the assumption

that for all ` 6= `(a, b) through b ∈ R(a) the set ` \ {b} is contained in S(a) or in

T (a) and the first paragraph of this proof that C is also realised in S(a). That gives

us too many types of distinct unordered pairs of elements in S(a).

II. If 2 ≤ k < m, then we have two subcases:

(i) If m − k ≥ 2, then we can find at least five types of unordered pairs of

elements in S(a). The proof is as follows: Observation 3.5.20 implies that E

is a nontrivial proper equivalence relation on R(a) and that it has
(
m
k

)
classes.

Now we claim that there are at least four types of E-inequivalent elements in

S(a). By Observation 3.5.20 there exist pairs of elements c, c′ ∈ S(a) with

¬E(c, c′)∧#(c, c′) = k−1. Using Proposition 3.5.22, we can find pairs which

additionally satisfy R(c) ∩R(c′) ∩R(a) 6= ∅ and R(c) ∩R(c′) ∩R(a) = ∅.

We can follow the same argument in the case #(c, c′) = k − 2 to find two

more types of unordered pairs of distinct elements from S(a), giving a total

of at least five.

(ii) Suppose then that m − k = 1, so E has m equivalence classes. There is at

least one line through b almost entirely contained in T (a), so we are left with

at most m− 2 lines through b distinct from `(a, b) which may meet S(a).

Claim 3.5.24 R(b) meets m− 1 E-classes in S(a).
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Proof
We know that R(b) ∩ S(a) 6= ∅. Let c ∈ R(b) ∩ S(a). By hypothesis,

|R(c) ∩ R(a)| = m − 1. Let X denote R(c) ∩ R(a). By Observation 3.5.20,

we can find a-translates ofXi, i ≤ m−1, to any of them−1 sets ofm−1 lines

through a that include the R-class to which b belongs. And by the transitivity

of Aut(M/a) on R(a) we can find translates Yi in those sets of lines such that

b ∈ Yi. By homogeneity, each of the automorphisms taking X to Yi moves c

to a new E-class.

Clearly,R(b) does not meet theE-class of elements whoseR-neighbourhoods

meet all the lines in R(a) except `(a, b). �

As the lines are infinite and E has only finitely many classes, for each line `

through b that meets S(a) there is at least one E-class that contains infinitely

many elements of `. Since we have at most m − 2 lines through b that meet

S(a) and R(b) meets m − 1 E-classes, there is at least one line that meets

more than one E-class. Note that if a line ` meets more than one E-class,

then the intersection of ` with each of the E-classes it meets is infinite, by

homogeneity as elements in each class have the same type over ab and at least

one of the intersections of ` with an E-class is infinite.

Again by homogeneity (we can permute the lines over b that meet S(a) whilst

fixing ab), each line through b that meets S(a) meets more than one class.

As k ≥ 2, there exist b1, b2 ∈ R(a) such that for some c ∈ S(a) we have

`(bi, c) \ {bi} ⊂ S(a) (i = 1, 2). Take c′ ∈ `(b1, c) ∩ S(a) and c′′ ∈
`(b2, c)∩S(a), both distinct from c andE-equivalent to c. Such elements exist

because the intersections of lines through bi with the E-class of c are infinite,

by homogeneity and the fact that at least one of the intersections is infinite,

so we have E(c, c′) ∧ R(c, c′). Also, c′ and c′′ are not R-related (because the

lines of the semilinear space do not form triangles, cf. Observation 3.5.14),

but are E-equivalent since we have E(c, c′) and E(c, c′′), so at least one of

E(c′, c′′) ∧ S(c′c,′′ ) and E(c′, c′′) ∧ T (c′, c′′) is realised. This gives us at least

two types of E-equivalent pairs.
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Now we will show that there are at least two types of E-inequivalent pairs.

By Proposition 3.5.22, we can find pairs of E-inequivalent elements with no

commonR-neighbours inR(a) and also pairs ofE-inequivalent elements with

commonR-neighbours inR(a). Again, we get at least four types of unordered

pairs of distinct elements from S(a).

�

Proposition 3.5.25 Let M be a primitive homogeneous semilinear 3-graph with

supersimple theory and R-diameter 2, and assume that R is a forking relation and S, T

are nonforking. Then each element is incident with at least three lines.

Proof
Note first that if in any pair of lines through a only two of the predicates in the language

are realised, then we get the result automatically because R, S, T are realised in R(a) by

the diameter 2 hypothesis. So we may assume that in the structure induced by M on a

pair of lines through a all predicates are realised.

By Observation 3.4.7, each vertex belongs to at least two lines.

If R(a) has exactly two imprimitivity blocks, then by homogeneity for any b ∈ R(a) the

setR(b) consists of two infiniteR-cliques as well, one of which is `(a, b)\{b}. Therefore,

R(b)∩R2(a) is an infinite R-clique, and by Proposition 3.5.23, R(b)∩R2(a) meets both

S(a) and T (a), as by the diameter 2 hypothesis both S and T are realised in R(a).

Claim 3.5.26 For all b ∈ R(a), `b ∩ S(a) and `b ∩ T (a) are infinite.

Proof
Suppose that each vertex is incident with two lines. Then for all b ∈ R(a), there is a

unique line through b that meets R2(a); let `b denote that line, for each b ∈ R(a).

Proposition 3.5.16 tells us that either `b ∩ S(a) and `b ∩ T (a) are both infinite, or one of

them is of size 1 and the other is infinite. As this line is uniquely determined for each
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b ∈ R(a), if we had, say |`b ∩ S(a)| = 1 and |R(c) ∩ R(a)| = 1 for all c ∈ S(a), then

this would establish a definable bijection between R(a) and S(a). This is impossible as

the rank of R(a) is lower than that of S(a).

Therefore, in orded to establish the claim, we need to eliminate the case where |`b ∩
S(a)| = 1 and |R(c) ∩R(a)| = 2.

By Observation 3.5.18, if these conditions are satisfied then |R(d)∩R(a)| = 1 for all d ∈
T (a). Given any c ∈ S(a), the setR(c) consists of two infiniteR-cliques by homogeneity;

from these two cliques, two vertices belong to R(a).

Therefore, for any c ∈ S(a), all relations in the language are realised in R(c) ∩ T (a).

Define Q(d, d′) on T (a) to hold if there exists c ∈ S(a) such that R(d, c) ∧R(d′, c).

We claim that Q ∧ R, Q ∧ S, Q ∧ T are realised in T (a). The reason is that both lines

through c are almost entirely contained in T (a): c and the two vertices in R(c) ∩ R(a)

are the only elements of R(c) not in T (a), since any other element of R(c) ∩ S(a) would

be forced to be an element of R(b1) or of R(b2), contradicting R(b) ∩ S(a) = 1 for all

b ∈ R(a). Our claim follows from the transitivity of Aut(M/c) on R(c) and Theorem

3.5.21.

Now, since S does not divide over ∅ in M we must have the triangle SSR in Age(M)

(otherwise, S would divide, as witnessed by an ∅-indiscernible sequence (ei)i∈ω with

R(e0, e1)). Notice that we have an additional a-definable equivalence relation F on T (a)

with two classes, F (d, d′) holds if R(d) and R(d′) meet the same line through a. If Q and

F were satisfied simultaneously by a pair from T (a) then F ∧R, F ∧ S, F ∧ T (realised

because R, S, T are realised in the union of any two incident lines), and ¬F already give

us too many relations on T (a). And if they are not simultaneously realised by any pair,

then any F -equivalent pair is Q-inequivalent, so this together with the three relations

from the preceding paragraph give us four types of unordered pairs of distinct elements

from T (a). �

By Observation 3.5.18, we may also assume that |R(c) ∩R(a)| = 1 for all c ∈ T (a).
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Consider the relation W (x, y) on T (a) that holds if there exists a b ∈ R(a) such that

R(b, x) ∧ R(y, b). This is clearly a symmetric and reflexive relation, and if W (x, y) and

W (y, z), then there exist b, b′ ∈ R(a) such that R(x, b) ∧ R(y, b) and R(y, b′) ∧ R(z, b′).

The hypothesis that |R(c) ∩ R(a)| = 1 for all c ∈ R2(a) implies b = b′, as they are both

R-related to y and in R(a). Therefore, x, y, z are all collinear with b and W (x, z). Given

a vertex c ∈ T (a) denote by bc the unique element of R(c) ∩R(a), and define P̂ (c, c′) on

T (a) if P (bc, bc′) holds for P ∈ {R, S, T}. This gives us at least four types of unordered

pairs of distinct elements in T (a): W -equivalent and three types of W -inequivalent pairs

(corresponding to R̂, Ŝ, T̂ ). �

Observation 3.5.27 If M is a primitive homogeneous simple semilinear 3-graph with

diamR(M) = 2 in which any point a is incident with at least three lines, then it is not

possible for all c ∈ R2(a) to satisfy |R(c) ∩R(a)| = 1.

Proof
In this case, the sets R(b) ∩ R2(a), b ∈ R(a), partition the set of maximal rank R2(a)

into infinitely many infinite parts, each consisting of at least 2 infinite R-cliques. By

Proposition 3.5.16, at least one of S(a) and T (a) is partitioned into infinitely many infinite

R-cliques by the family of sets ` \ {b}, where b ∈ R(a) and ` is a line through b not

containing a. We may assume it is S(a).

Define the relation Q(c, c′) on S(a) to hold if there exists b ∈ R(a) such that R(b, c) ∧
R(b, c′) holds. We claim that Q is an equivalence relation. It is clearly symmetric and

reflexive. Now supposeQ(x, y)∧Q(y, z). Then there exist b, b′ ∈ R(a) such thatR(b, x)∧
R(b, y) and R(b′, y) ∧ R(b′, z), so b = b′ since |R(y) ∩ R(a)| = 1. Therefore, Q(x, z)

holds.

A Q-equivalence class consists of a finite number m > 1 of R-cliques, because we

assume that at least three lines are incident with a. Define the binary relations P̂ (c, c′)

to hold if ¬Q(c, c′) and P (b, b′), where {b} = R(c) ∩ R(a), {b′} = R(c′) ∩ R(a) and

P ∈ {R, S, T}. This gives 3 types ofQ-inequivalent pairs, plus at least two more types of

Q-equivalent pairs (collinear and not collinear), so we have too many types of unordered
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pairs of elements from S(a). �

By Observation 3.4.13, not all R-free structures can be embedded into R(a). If R(a) is

a stable 3-graph, then it must be of one of the forms 6-11 in 3.5.4, as all the others are

finite. Observation 3.4.13 implies that only one of m,n, p is ω (and the corresponding

superindex is R).

The sets of relations realised with endpoints in different classes of an equivalence relation

partition the set of types of pairs of classes in a homogeneous binary structure. In our

case, there can be no more than 2 types of pairs of R-classes in R(a). This is implicitly

used in the proof of our next result:

Proposition 3.5.28 There are no primitive supersimple homogeneous 3-graphs of R-

diameter 2 such that all relations are realised in the union of any two maximal R-cliques

in R(a).

Proof
By Propositions 3.5.18 and 3.5.27, we have two cases to analyse:

I. For some c ∈ R2(a), |R(c) ∩ R(a)| = 1. By homogeneity, this is true for all the

elements of the orbit of c under the action or Aut(M/a). Without loss of generality,

assume S(a, c). We can define E(x, y) on S(a) if R(x) and R(y) meet the same

line through a, and refine this equivalence relation with E ′(x, y) if they meet the

same line at the same point. These two are equivalence relations, and E ′(x, y) →
E(x, y). For E-inequivalent pairs, since both S and T are realised in R(a), we can

define Ŝ(x, y) and T̂ (x, y) if S (respectively, T ) holds between the elements of the

intersections R(x)∩R(a) and R(y)∩R(a). Notice that both Ŝ and T̂ are realised,

as any element in R(a) has a neighbour in S(a). We have too many 2-types of

distinct elements over a, since E ′(x, y) ∧ x 6= y, E(x, y) ∧ ¬E ′(x, y), Ŝ(x, y) ∧
¬E(x, y), T̂ (x, y) ∧ ¬E(x, y) are all realised.

II. For no element b of R2(a) does |R(b) ∩ R(a)| = 1 hold. Then, without loss of

generality, the elements of S(a) satisfy |R(b) ∩ R(a)| = k, where 1 < k < m.
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Define E(c, c′) on S(a) if R(c) and R(c′) meet the same lines through a. There are

two subcases to analyse:

(i) If m − k ≥ 3, then define Pi(c, c′) on S(a) for 0 ≤ i ≤ min{k,m − k}
to hold if R(c) ∪ R(c′) meet a total of k + i lines through a. The Pi are

invariant under Aut(M/a) and mutually exclusive; therefore all cases with

min{k,m − k} ≥ 3 are impossible, as we would get at least four types of

pairs of distinct elements in S(a). This leaves us with only one more possible

case, namely m − k ≥ 3, k = 2, since the case m − k ≥ 3, k = 1 is covered

in Case I.

Suppose then that m− k ≥ 3 and k = 2. We claim that there are two types of

pairs satisfying P1. Let {b, b′} = R(c)∩R(a) for some c ∈ S(a), and take any

line ` through a not including b or b′. By homogeneity, there exists a b′′ ∈ `
satisfying the same relation with b′ as b. Therefore, there exists c′ ∈ S(a)

satisfying P1(c, c′) and the relation Q(c, c′) defined by ∃x(R(a, x)∧R(c, x)∧
R(c′, x)). Using Proposition 3.5.23, we can find pairs d, d′ in S(a) satisfying

P1(d, d′) andR(d)∩R(d′)∩R(a) = ∅. Therefore, we have at least four types

of pairs of distinct elements from S(a), as the relations E, P1 ∧Q, P1 ∧ ¬Q,

P2 are all realised.

(ii) Suppose m − k = 1. By Proposition 3.5.19, there exist unordered pairs of

distinct elements satisfying E in S(a), and P1 (defined as in Case II(i)) is

realised by homogeneity and Observation 3.5.20.

Notice that there are two types of pairs satisfying P1(c, c′), namely those with

R(c)∩R(c′)∩R(a) = ∅, and those with R(c)∩R(c′)∩R(a) 6= ∅. Both are

realised by Proposition 3.5.22.

This leaves us with two possibilities: for distinct c, c′ ∈ S(a), either E(c, c′)

impliesR(c)∩R(c′)∩R(a) = ∅ (this can happen if the structure on any pair of

lines through a is that of a perfect matching andR(c) picks a transversal clique

of the matching colour), or we can have E(c, c′) ∧R(c) ∩R(c′) ∩R(a) 6= ∅.

In the latter case, we have found four types of pairs of unordered distinct

elements from S(a).
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Therefore, assume that E(c, c′) impliesR(c)∩R(c′)∩R(a) = ∅ for all c 6= c′

in S(a). We claim that this can only happen in the situation described before,

namely if the structure on two lines is that of a matching and for all pairs

b, b′ ∈ R(c) ∩ R(a), the edge bb′ is of the colour of the matching predicate,

say T . This claim follows from the argument of Proposition 3.5.19: if for

some edge bb′ in R(c) ∩ R(a) we were able to find some b′′ collinear with b′

such that bb′′ and bb′ are of colour T , then by homogeneity we could find a c′

E-equivalent to c with b ∈ R(c) ∩R(c′) ∩R(a).

It follows that in the situation we are considering T is an algebraic predicate

in R(a) and the set of KT
m−1 in R(a) is in definable bijection with S(a) by the

function taking a T -clique c̄ to the unique element of
⋂
{R(c) : c ∈ c̄}∩S(a).

This is impossible, since the rank of S(a) is greater than that of the set of

T -cliques in R(a), as T is algebraic.

(iii) If m− k = 2, then the relations E,P1, P2 defined in Case II(i) are realised in

S(a). As in case (i), there are two types of pairs c, c′ satisfying P1: some with

R(c) ∩ R(c′) ∩ R(a) 6= ∅ and some with R(c) ∩ R(c′) ∩ R(a) = ∅, by the

same argument as in Case II(i).

�

Proposition 3.5.28 eliminates all cases where R(a) is unstable, as in this case for some

infinite R-cliques A,B in R(a) the induced structure is isomorphic to the Random

Bipartite Graph. But Proposition 3.5.28 also covers some stable cases (for example, if S

or T is a perfect matching on the union of the two R-cliques). The only cases that remain

are those in which R(a) is stable and the induced structure on any pair of R-cliques in

R(a) is isomorphic to a complete bipartite graph, that is, those cases in which for all pairs

of lines `1, `2 through a and all (b1, b2), (c1, c2) ∈ `1 × `2, tp(b1b2) = tp(c1c2). In all of

these cases, R(a) is stable.

Proposition 3.5.29 Let M be a homogeneous primitive semilinear 3-graph of R-

diameter 2 with finitely many lines through each point. If all types of pairs are realised in
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R(a), but not in any pair of lines through a, then it is not possible for any c ∈ R2(a) to

satisfy |R(c) ∩R(a)| > 3.

Proof

Claim 3.5.30 If tp(ac) = tp(ac′), then tp(R(c) ∩R(a)) = tp(R(c′) ∩R(a)).

Proof
By homogeneity, there exists an automorphism σ ∈ Aut(M/a) taking c 7→ c′; this

automorphism takes R(c) ∩R(a) to R(c′) ∩R(a). �

Claim 3.5.31 Under the hypotheses of Proposition 3.5.29, the isomorphism type of

R(c) ∩ R(a) for any c ∈ R2(a) depends only on the set of lines through a that R(c)

meets.

Proof
By Observation 3.5.14, the set R(c) ∩ R(a) is transversal to a set of k lines through a,

and by the hypotheses of Proposition 3.5.29, all transversals to the same set of k lines are

isomorphic. �

Now suppose that for some c ∈ S(a) we have |R(c) ∩ R(a)| > 3. By Claim 3.5.30,

the intersections of the R-neighbourhood of any two elements of S(a) with R(a) are

isomorphic; let E be the (not necessarily proper) equivalence relation on S(a) that

holds for elements that meet the same set of lines through a. Claim 3.5.31 says that if

A = R(c) ∩ R(a) for some c ∈ S(a) and we take any other set B transversal to the same

set of k > 3 lines then there exists an automorphism taking A to B over a that moves c to

an E-equivalent element of S(a). Therefore, the a-invariant relations Pi(c, c′) holding if

E(c, c′) ∧ |R(c) ∩ R(a)| = i for i ∈ {0, . . . , k − 1} are all realised. As k ≥ 4, this gives

us too many invariant relations on pairs over a. This completes the proof of Proposition

3.5.29. �
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Proposition 3.5.32 There are no homogeneous primitive 3-graphs of SU-rank 2 and R-

diameter 2.

Proof
We know by Proposition 3.5.25 that the number m of lines through a is greater than or

equal to 3, and that all types of pairs are realised in R(a), but not in any pair of lines

through a (Proposition 3.5.28). By Proposition 3.5.29, for all c ∈ R2(a) we have |R(c) ∩
R(a)| ≤ 3. Assume that k = max{|R(c) ∩ R(a)|, |R(d) ∩ R(a)|}, where c ∈ S(a) and

d ∈ T (a).

I. First we prove that k = 3 is impossible. Let E(c, c′) be the equivalence relation

on S(a) that holds if R(c) and R(c′) meet the same lines through a. The key

observation in this case is that the graph induced on R(c) ∩ R(a) is a finite

homogeneous graph of size 3, so it must be a monochromatic triangle (see also

Gardiner’s classification [21] of finite homogeneous graphs).

We start by arguing that E is always a proper equivalence relation on S(a) if

k = 3. By the preceding paragraph, R(c) ∩ R(a) is a complete graph in S or

T . If E were universal in S(a), then it follows either that there are only three

lines through a (impossible as in that case one of the predicates would not be

realised in R(a)), or, assuming without loss that R(c) ∩ R(a) is isomorphic to

KS
3 , that R(a) is isomorphic to KT

m[KS
n [KR

ω ]]. In the latter case, we must have

n = 3 because otherwise we could move by homogeneity the KS
3 corresponding to

R(c)∩R(a) to another set of 3 lines in the sameR∨S-class and findE-inequivalent

elements. Finally, if m > 1 then again we have that E is a proper equivalence

relation, depending on which R ∨ S-class in R(a) the set R(c) meets. We reach a

contradiction in any case; E is a proper equivalence relation on R(a).

Suppose for a contradiction that for c ∈ S(a) we have |R(c)∩R(a)| = 3. SinceE is

a proper equivalence relation, we have at least 4 invariant and exclusive relations on

S(a): E-inequivalent and three ways to be E-equivalent, as we can define Ii(c, c′)

on S(a) to hold if E(c, c′) and |R(c) ∩ R(c′) ∩ R(a)| = i for i ∈ {0, 1, 2} (these

relations are realised because the intersection of the R-neighbourhoods of c and a
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is a complete monochromatic graph, so any two transversals to the lines that R(c)

meets are isomorphic); this already gives us too many invariant relations on pairs

from S(a).

II. Assume max{|R(c) ∩ R(a)|, |R(d) ∩ R(a)|} ≤ 2 (c ∈ S(a), d ∈ T (a)). By

Observation 3.5.27 and Proposition 3.5.25, it must be equal to 2. Suppose that the

maximum is reached in S(a). The equivalence relationE(c, c′) that holds on S(a) if

R(c) andR(c′) meet the same lines through a is proper: sincem ≥ 3 and k = 2, we

can use homogeneity to move an element of R(c)∩R(a) to any line not containing

any elements of R(c) ∩ R(a); this automorphism moves c to an element of S(a)

that is not E-equivalent with c. Therefore we have at least four types of pairs on

S(a): two satisfying E(c, c′) (one with R(c) ∩ R(c′) ∩ R(a) empty, the other with

R(c) ∩R(c′) ∩R(a) nonempty), and, similarly, two with ¬E(c, c′).

We have exhausted the list of possible cases. The conclusion follows. �

3.5.3 The nonexistence of primitive homogeneous 3-graphs of R-

diameter 3 and SU-rank 2

By homogeneity, if the R-diameter of the graph is 3, then, since R-distance is preserved

under automorphisms, if there are a, b, c such that S(a, c)∧R(a, b)∧R(b, c), then all pairs

c, c′ with S(c, c′) consist of vertices at R-distance 2; and similarly T (a) would be the set

of vertices at R-distance 3 from a. From this point on, we will follow the conventions

S(a) = R2(a) and T (a) = R3(a).

The situation in diameter 3 is considerably simpler than in diameter 2, as the sets S(a)

and T (a) are more clearly separated. The first thing to notice is that if the R-diameter of

M is 3, then RRT is a forbidden triangle, as T corresponds to R-distance 3.

Proposition 3.5.33 Suppose that M is a semilinear homogeneous primitive 3-graph of

R-diameter 3 and that each point a is incident with m < ω lines. Then it is not possible

for any b ∈ S(a) to be collinear with m elements from R(a).
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Proof
The R-neighbourhood of b has m R-connected components by transitivity. But by

homogeneity and diameter 3, b is adjacent to some element of R3(a). Therefore, if

R(b) meets each line through a, then R(b) has at least m + 1 R-connected components,

contradicting homogeneity. �

Proposition 3.5.34 Let M be a semilinear homogeneous primitive 3-graph with

diamR(M) = 3 and m < ω lines through each point, and let k denote |R(b) ∩ R(a)|
for any b ∈ S(a). Then k = 1.

Proof
By Proposition 3.5.33, k < m. The main point here is that we get the conclusion of

Observation 3.5.20 for free in this situation, as the intersection of any pair of lines through

a with R(a) is isomorphic to a complete bipartite graph (edges given by S, non-edges

given by R). We can define an equivalence relation E on S(a) holding for c, c′ if R(c)

and R(c′) meet the same lines through a. By Proposition 3.5.33 and homogeneity, E is

a nontrivial proper equivalence relation on S(a) with
(
m
k

)
classes. Notice that for any

E-equivalent c, c′, the isomorphism types of R(c) ∩ R(a) and R(c′) ∩ R(a) are the same

over a, and in fact are the same as the isomorphism type of any set transversal to k lines.

Therefore, we can define Pi(c, c′) for 0 ≤ i < k ifE(c, c′)∧|R(c)∩R(c′)∩R(a)| = i. All

of these relations are realised by homogeneity, and invariant over a. This implies k ≤ 2.

Now we eliminate the case k = 2. If |R(c)∩R(a)| = 2 for c ∈ S(a), then by Proposition

3.5.33 we have at least 3 lines through a, and the relation E defined in the preceding

paragraph is a proper nontrivial equivalence relation. By the same argument, there are

at least two types of E-equivalent pairs, plus at least two types of E-inequivalent pairs,

depending on whether the intersections of their R-neighbourhoods meet R(a) or not.

The conclusion follows. �

The situation is similar to what we had in diameter 2 after Observation 3.5.18, but we

have the additional information |R(b) ∩R(a)| = 1 for b ∈ S(a).
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Proposition 3.5.35 Let M be a semilinear primitive homogeneous 3-graph of R-

diameter 3 and m < ω lines through each point. Then m = 2.

Proof
By Proposition 3.5.34, for any b ∈ S(a) we have |R(b) ∩ R(a)| = 1. Let m denote the

number of lines through a. We know by Observations 3.4.7 and 3.5.11 that m ≥ 2. Now

suppose for a contradiction that m ≥ 3. Define E1, E2 on S(a) by

E1(c, c′)↔ R(c) ∩R(a) = R(c′) ∩R(a)

E2(c, c′)↔ R(b, b′) ∨ b = b′

where {b} = R(c) ∩ R(a) and {b′} = R(c′) ∩ R(a). The relation E2 holds iff R(c)

and R(c′) intersect the same line through a; E1 holds iff they meet R(a) at the same

point. There are m E2-classes and each of them contains infinitely many E1-classes.

Since m ≥ 3 and the R-diameter of M is 3, each E1-class contains at least two infinite

disjoint cliques, corresponding to the lines through a particular b ∈ R(a). Therefore, we

can define an invariant F (c, c′) if E1(c, c′) ∧R(c, c′), breaking each E1-class into finitely

many R-cliques.

We have only three 2-types over a in S(a), corresponding to R, S, T , but we need at least

four invariant relations for these three nested equivalence relations. �

Proposition 3.5.36 There are no primitive homogeneous 3-graphs of SU-rank 2 and R-

diameter 3.

Proof
We know by Propositions 3.5.34 and 3.5.35 that under the hypotheses of this proposition

we have |R(c) ∩ R(a)| = 1 for all c ∈ S(a) and there are exactly two lines through each

point in M . So far, the main characters in our analysis have been R(a) and R2(a). Now

the structure on R3(a) will also come into play. The structure of S(a) in diameter 3 and a

single element in |R(a) ∩ R(c)| consists, by Proposition 3.5.35, of two E2-classes, each

divided into infinitely many E1-classes (R-cliques), where E1, E2 are as in the proof of

Proposition 3.5.35. We have two subcases:
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I. Suppose that S holds between E1-classes contained in the same E2-class. Take

d ∈ T (a). The set R(d)∩R2(a) meets each E1-class in at most one vertex and one

E2 class (T holds across E2-classes; if R(d) ∩R2(a) met both E2-classes, then the

triangle RRT would be realised, contradicting our assumption that T (a) = R3(a)).

Therefore, we can define an equivalence relation on T (a) with two classes: define

F (d, d′)↔ ∃(c, c′ ∈ S(a))(c ∈ R(d) ∩ S(a) ∧ c′ ∈ R(d′) ∩ S(a) ∧ E2(c, c′))

So F (d, d′) holds iff R(d) and R(d′) meet the same E2-class in R2(a). We have a

further subdivision into cases, depending on how many E1-classes R(d) meets:

(i) If |R(d) ∩ R2(a)| = 1, then we can define on T (a) two more equivalence

relations:

F ′(e, e′)↔ E1(c, c′)

F ′′(e, e′)↔ R(e) ∩ S(a) = R(e′) ∩ S(a)

where {c} = R(e) ∩ S(a) and {c′} = R(e′) ∩ S(a). The condition |R(d) ∩
R2(a)| = 1 ensures that these relations are transitive. Clearly, F ′′ → F ′ →
F ; and as there are two lines through any vertex, F is a proper nontrivial

equivalence relation. To prove that F ′ and F ′′ are both realised and different,

take any c ∈ S(a). There are two lines incident with it, one of which is its

E1-class, together with some point from R(a); the other line, `, through c is

almost entirely contained in T (a). Two points on ` ∩ T (a) satisfy F ′′, and

F -equivalent points in T (a) on lines through different elements from S(a)

satisfy F ′ ∧ ¬F ′′ if the elements from S(a) belong to the same E1-class, and

they satisfy F ∧ ¬F ′ if the elements from S(a) are E2-equivalent and S-

related.This gives us three nested invariant equivalence relations in T (a). This

rules out the possibility of |R(d) ∩R2(a)| = 1 in the situation of Case I(i).

(ii) If R(d) meets more than one E1-class, then by homogeneity, since any vertex

lies on two lines, it has to intersect exactly two of E1-classes. Note that

R(d) ∩ S(a) is contained in a single E2-class, because the triangle RRT is

forbidden. Again, we find too many types realised on T (a). For any pair

d, d′ ∈ T (a), the number of E1-classes that R(d) ∪ R(d′) meets is invariant
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under a-automorphisms. Notice that it is not possible for |(R′(d) ∪ R(d′)) ∩
R2(a)| to be 2, as in that case d and d′ would belong to two different lines:

by homogeneity, each element c ∈ S(a) lies on two lines, one of which is its

E1-class; therefore, if d, d′ ∈ T (a) are such that R(d, c) ∩ R(d′, c) 6= ∅, then

c, d, d′ must be collinear. Define F1(d, d′) on T (a) if R(d) and R(d′) meet the

same two E1-classes, and P (d, d′) if R(d) ∩ R(d′) ∩ S(a) 6= ∅. There are

pairs satisfying all of F1 ∧ P, F1 ∧ ¬P,¬F1 ∧ P,¬F1 ∧ ¬P , giving us four

invariant relations on pairs from T (a).

II. If T holds betweenE1-classes contained in the sameE2-class, then S holds between

E2-classes (as each E1-class is an R-clique). Again, we have two subcases,

depending on |R(d) ∩ S(a)| for d ∈ T (a):

(i) If |R(d)∩S(a)| = 1 for d ∈ T (a), then we can define an equivalence relation

E ′(e, e′) on T (a) holding if R(e) and R(e′) meet the same E2-class in S(a).

We will show that we already have three invariant and mutually exclusive

relations on unordered pairs in each of the E ′ classes. Define R̂, T̂ on T (a) by

P̂ (e, e′) iff P holds for the points in the intersection of R(e) and R(e′) with

S(a) (P ∈ {R, T}), and C(e, e′) if e, e′ are collinear with some c ∈ S(a),

which happens if R(e)∩R(e′)∩S(a) 6= ∅. We would need at least one more

predicate to separate the E ′-classes.

(ii) And if |R(d) ∩ S(a)| = 2 for d ∈ T (a), then the intersection with each E2-

class is of size one, as otherwise the triangle RRT would be realised. Then

we can count the total number of E1-classes that R(e) and R(e′) meet, which

can be 4, 3, or 2. And in the cases where this number is 3 or 2, we have

another two relations, depending on whether R(e) ∩ R(e′) ∩ S(a) is empty

or not. Again, we find too many invariant and mutually exclusive relations on

unordered pairs of distinct elements from T (a).

�

We can now prove that no primitive homogeneous supersimple 3-graphs have SU-rank 2.
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Theorem 3.5.37 There are no homogeneous primitive simple 3-graphs of SU-rank 2.

Proof
By Observation 3.4.8, the diameter of a primitive homogeneous simple 3-graph of

SU-rank 2 is either 2 or 3. Propositions 3.5.32 and 3.5.36 say that both situations are

impossible. �

3.6 Higher rank

We have now proved that there are no homogeneous primitive supersimple 3-graphs of

SU-rank 2. In this section, we see that result as the basis for an inductive argument on the

rank of the theory, under the assumption of stable forking. We remark that in the course

of the proof of nonexistence of supersimple 3-graphs of rank 2, we only use the rank 2

hypothesis to prove that we can define in M a semilinear space with finitely many lines

through each point. Also, for most of the analysis simplicity suffices, and we require

supersimplicity only in Propositions 3.5.25 and 3.5.28 (and, indirectly, Proposition 3.5.32

because the proof uses 3.5.25 and 3.5.28); in these results we use the fact that the theory

is ranked by SU, but the specific value of its rank is irrelevant.

Therefore, if we prove that supersimple homogeneous 3-graphs of rank 3 or greater are

semilinear with finitely many lines through each point, then the rest of the argument from

Section 3.5 is valid in higher rank.

Proposition 3.6.1 Suppose that supersimple binary finitely homogeneous structures

satisfy stable forking. Let M be a homogeneous primitive supersimple 3-graph of SU-

rank k ≥ 2. Then M is semilinear.

Proof
Independently of the rank, if diamR(M) = 3, then R(a) is a stable RS-graph. It cannot

be primitive by Theorem 3.4.11. And S is not an equivalence relation by Proposition
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3.4.10; therefore, R is an equivalence relation on R(a) with finitely many infinite classes

(by Proposition 3.4.13).

So we need only worry about those cases with diamR(M) = 2. We proceed by transfinite

induction on k. The case k = 2 corresponds to Lemma 3.5.13. Suppose that up to k ≥ 3,

we know that there are no primitive homogeneous supersimple 3-graphs of SU-rank k−1

(for k = 3, this is the content of Theorem 3.5.37).

If we are given a homogeneous primitive supersimple 3-graph of SU-rank k + 1 and R-

diameter 2, then we may assume by stable forking that S and T are nonforking, so we

know that R(a) is a supersimple homogeneous 3-graph of rank at most k. It follows that

either R(a) is imprimitive or it is of rank 1 as a structure in its own right (it could have a

higher rank as a subset ofM due to external parameters). IfR(a) is imprimitive, the same

arguments as in Proposition 3.5.12 show thatR is an equivalence relation; by Observation

3.4.13, it has finitely many classes.

Now we argue that R(a) is not primitive. By the induction hypothesis, if R(a) were

primitive, then its rank would be 1.

The structure onR(a) cannot be stable, as in that case it would be one of Lachlan’s infinite

stable 3-graphs from Theorem 3.5.4, all of which are imprimitive.

And R(a) cannot be isomorphic to a primitive unstable 3-graph of rank 1, as by

Proposition 3.4.15 primitivity contradicts the stability of R. Therefore, R(a) is

imprimitive and R defines an equivalence relation on R(a) with finitely many classes,

by Observation 3.4.13. This proves the proposition for all successor ordinals k ≥ 3.

If the SU-rank of the structure is a limit ordinal λ, and we know that there are no

homogeneous supersimple primitive 3-graphs of rank γ for all ordinals γ satisfying

1 < γ < λ, then we again have that R(a) is, as a structure in its own right, a 3-graph of

rank δ < γ. It follows that it is either imprimitive or δ = 1. The same arguments as in

the proof for successor ordinals prove that R defines an equivalence relation with finitely

many classes on R(a). �

Proposition 3.6.1 tells us that we can define a semilinear space on M just as we did in
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subsection 3.5.1. The analysis from subsections 3.5.2 and 3.5.3 translates verbatim to

this more general setting, as the rank hypothesis was used there only to ensure that M

interprets a semilinear space. As a consequence,

Theorem 3.6.2 Suppose that supersimple binary finitely homogeneous structures satisfy

stable forking, and let M be a primitive supersimple homogeneous 3-graph. Then the

theory of M is of SU-rank 1.

�

Under stable forking, all the homogeneous supersimple unstable primitive 3-graphs of

finite SU-rank have rank 1. We know from Section 3.3 that those are random, and that in

the case of imprimitive structures with finitely many classes, the transversal relations in

a pair of classes are null, complete or random. This gives us a reasonably clear image of

what a classification should look like, but more work is needed to prove it, particularly in

the class of imprimitive structures with infinite classes.

Our next conjecture is a tentative classification of supersimple homogeneous 3-graphs

assuming stable forking. We do not mention stable forking as a hypothesis because we

have reason to believe that homogeneous simple 3-graphs satisfy stable forking.

Conjecture 3.6.3 The following is a list of all supersimple infinite transitive

homogeneous n-graphs with n ∈ {2, 3}:

1. Stable structures:

(a) Iω[Kn] or its complement Kω[In] for some n ∈ ω + 1

(b) P i[Ki
m]

(c) Ki
m[Qi]

(d) Qi[Ki
m]

(e) Ki
m[P i]
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(f) Ki
m ×Kj

n

(g) Ki
m[Kj

n[Kk
p ]]

2. Unstable structures:

(a) Primitive structures:

i. The random graph ΓS,T

ii. The random 3-graph ΓR,S,T

(b) Imprimitive structures with infinite classes:

i. KR
m[ΓS,T ], m ∈ ω + 1

ii. ΓS,T [KR
ω ]

iii. BS,T
n ∗KR

ω , n ∈ ω + 1, n ≥ 2

(c) Imprimitive structures in which the equivalence relation has finite classes:

i. Structures in which both unstable predicates are realised across any two

equivalence classes: C(Γ)

ii. Structures in which only one of the unstable predicates is realised across

any two equivalence classes: ΓS,T [KR
n ], n ∈ ω.

Here BS,T
n ∗ KR

ω is the 3-graph consisting of n copies of KR
ω in which the structure on

the union of any two maximal infinite R-cliques is isomorphic to the random bipartite

graph, and all S, T -structures of size k ≤ n are realised transversally in the union of any

k maximal infinite R-cliques. The meaning of C(Γ) is explained below.

All the stable graphs and 3-graphs are in our list by Theorems 3.4.11 and 3.5.4, and

Remark 3.4.12.

Given an supersimple unstable homogeneous graph or 3-graph ∆, if it is primitive then

it has to be isomorphic to the Random Graph ΓS,T or the Random 3-graph ΓR,S,T , by

Proposition 3.4.15 assuming stable forking. If ∆ is imprimitive and the equivalence

classes are finite, it follows by instability and the stable forking hypothesis that the

equivalence relation is defined by the stable relation R. This case is not very well

understood, but the examples of 3-graphs of this form that we are aware of are finite
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covers of a reduct of some homogeneous graph. To give an example, enumerate the

random graph as {wi : i ∈ ω}, and define a 3-graph C(Γ) on countably many vertices

{vi : i ∈ ω} where R holds for pairs of vertices of the form v2nv2n+1,

S(vi, vj) if



i 6= j, i = 2m, j = 2n,E(wm, wn)

i 6= j, i = 2m+ 1, j = 2n+ 1, E(wm, wn)

i 6= j, i = 2m, j = 2n+ 1,¬E(wm, wn)

i 6= j, i = 2m+ 1, j = 2n,¬E(wm, wn)

and all other pairs of distinct vertices satisfy T (E denotes the edge relation in the random

graph). This structure is a finite cover in the sense of Evans (see [15], [16]) of a reduct

of the random graph. Its theory is supersimple of rank 1, as it can be interpreted in

Γ × {0, 1}. The conjecture here is that given a finitely homogeneous binary structure G

in which there is a proper nontrivial equivalence relation with finite classes, we can find

a binary homogeneous structure H without any equivalence relations with finite classes

such that G is a finite cover of a reduct of H . In the more restricted case of 3-graphs, we

conjecture that C(Γ) is the only homogeneous 3-graph with an equivalence relation with

finite classes in which both S and T are realised in the structure induced on the union of

two R-classes.

Continuing with our ∆, if the R-classes are finitely many and infinite, then, as the

structure is unstable and homogeneous, it follows that the other two predicates are realised

across any twoR-classes. This case is almost completely covered by Proposition 3.3.8: ∆

should be BS,T
n ∗KR

ω for some n ≥ 2 in ω, though we still need to prove that these are the

only homogeneous simple 3-graphs satisfying the conditions on transversals mentioned

in Proposition 3.3.8. It seems likely that a little group theory and a study of homogeneous

multipartite graphs (including the related but not identical structures in [24]) will settle

the issue. The case with infinitely many infinite classes probably requires a different

approach.

Finally, if ∆ is imprimitive and the equivalence relation is defined as a disjunction of two

predicates S, T in the language, then the other predicate R is stable and each class is a

primitive and (because S, T are unstable) unstable graph. Therefore, each S ∨ T -class is

isomorphic to the random graph and ∆ is isomorphic to KR
m[ΓS,T ] for some m ∈ ω + 1.
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§4. An asymptotic result

The work on this chapter is only tangentially related to the rest of the thesis. The main

result can be stated informally as saying that almost all finite directed graphs in which

any three vertices span at least one directed edge consist of two tournaments with some

directed edges between them. This is a directed-graphs version of the following theorem

by Erdős, Kleitman, and Rothschild (Theorem 2 in [14]):

Theorem 4.0.4 Let Tn be the number of labelled triangle-free graphs on a set of n

vertices, and Sn be the number of labelled bipartite graphs on n vertices. Then

Tn = Sn(1 + o(
1

n
)).

So the proportion of triangle-free graphs on n vertices that are not bipartite is negligible

for large n.

Now we explain the link connecting this work to the rest of the thesis. Recall that a

sentence σ is almost surely true (respectively, almost surely false) if the fraction µn(σ) of

structures with universe {0, . . . , n − 1} satisfying σ converges to 1 (0) as n approaches

infinity. Fagin [17] proved:

Theorem 4.0.5 Fix a relational language L. For every first-order sentence σ over L,

µn(σ) converges to 0 or to 1.

Given an L-sentence τ with µn(τ) > 0 for all n, denote by µn(σ|τ) the conditional

probability µn(σ|τ) = µn(σ ∧ τ)/µn(τ). These conditional probabilities need not
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converge, but for some special cases they do converge. Given a relational language L

and appropriate τ , let Tas(L; τ) be the set of L-sentences σ with limn→∞ µn(σ|τ) = 1.

We call this the almost sure theory of L. It follows from Gaifman’s [20] and Fagin’s work

that T is consistent and complete when τ is ∀x(x = x); Fagin proved in [17] that T is

also consistent and complete in the cases where L is the language {R} and τ expresses

one of the following:

1. R is a graph relation,

2. R is a tournament predicate symbol.

We can think of Fraı̈ssé’s construction as a way to associate a complete first-order theory

with infinite models (the theory of the Fraı̈ssé limit) to a countable hereditary family of

finite structures with the JEP and AP; Fagin’s theorem provides us with an alternative way

of associating a first-order theory with a family of finite structures, namely the almost sure

first-order theory of the language in question (possibly with some restrictions, represented

by the sentences τ ).

In the studied cases of simple binary relational structures (the random graph, random n-

graphs, the random tournament), the almost sure theory coincides with the theory of the

Fraı̈ssé limit. On the other hand, in the known cases where τ is such that the conditional

probabilities µn(σ|τ) converge, and the class of finite structures satisfying τ is the age of a

non-simple homogeneous structure, the almost sure theory is simple (in fact, supersimple

of SU-rank 1). For example, it is known that the almost sure theory of triangle-free graphs

is the theory of the Random Bipartite Graph (the proof has two stages, the first of which

is Theorem 4.0.4; the second step is proving that almost all bipartite graphs satisfy the

appropriate extension axioms); and whilst the generic triangle-free graph is not simple,

the generic bipartite graph has supersimple theory of SU-rank 1. Similarly, the almost-

sure theory of partial orders is, by a result due to Kleitman and Rothschild [26], the theory

of the generic 3-level partial order in which every element of the bottom level is less than

every element of the top level; this theory is supersimple of SU-rank 1.

Definition 4.0.6
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1. A digraph is a pair (G,E) where G is a set and E is a subset of G × G such that

for all g ∈ G (g, g) /∈ E and (g, g′) ∈ E implies (g′, g) /∈ E. We will often denote

a digraph (G,E) by G and write g → g′ if (g, g′) ∈ E.

2. A digraph G is I3-free if every subset of three distinct vertices spans at least one

arrow.

3. A tournament is a digraph G in which for all distinct x, y, either x → y or y → x

holds. A bitournament is a digraph whose vertex set can be partitioned into two

tournaments T1, T2 (we allow arrows from one tournament to the other).

4. Given two vertices x, y in a digraph G, we write x 6∼ y if x 6→ y, y 6→ x, and

x 6= y. If v is a vertex in a digraph G, then ∆(v) = {x ∈ G : x 6∼ v}. If Q ⊂ G,

then ∆(Q) = (
⋃
v∈Q ∆(v)) \Q.

5. We denote the set of I3-free digraphs on {0, . . . , n − 1} by F (n), and the set of

bitournaments on the same set by T (n).

The following is the main theorem of this chapter.

Theorem 4.0.7 |F (n)| = |T (n)|(1 + o(1))

Remark 4.0.8 Given an I3-free digraph (D,E), the graph (D,Q(D)), where Q is the

set of pairs (d, d′) ∈ D2 such that (d, d′), (d′, d) /∈ E and d′ 6= d) is a triangle-free graph.

Conversely, if we start with a triangle-free graph G, any orientation of the complement of

G is an I3-free digraph.

Proposition 4.0.9 There exists a universal homogeneous I3-free digraph D and it is a

primitive structure.

Proof
We will show that the family C of all finite I3-free digraph satisfies Fraı̈ssé’s conditions. It

is clear that C is countable (up to isomorphism) and closed under induced substructures.
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Given two structures A,B ∈ C, we can embed both A and B in the structure defined

on A × {0} ∪ B × {1} where for all b ∈ B and all a ∈ A we have R((a, 0), (b, 1)).

The amalgamation property follows from the fact that given an amalgamation problem

f1 : A→ B and g1 : A→ C, let D be (B × {0} ∪ C × {1})/ ∼, where (b, 0) ∼ (c, 1) if

there exists a ∈ A such that f1(a) = b and g1(a) = c, and define a digraph relation on D

by ((p, i)/ ∼) → ((q, j)/ ∼) if there exist representatives of the classes that are related

in B or C, or if that condition fails and i < j.

If D were imprimitive, then the reflexive closures of 6∼ or the relation x → y ∨ y → x

would define an equivalence relation on D, by quantifier elimination. But these relations

are not transitive as D embeds the triangles

•

•• oo

and •

•• ??
oo

�

Proposition 4.0.10 The theory of the universal homogeneous I3-free digraph is not

simple.

Proof
We will prove that the formula ψ(x, a, b) = x 6∼ a ∧ x 6∼ b has the TP2. Let

{(aij, bij) : i, j ∈ ω} be an array of parameters such that cis → cit for s < t and c ∈ {a, b},
ais → bit if s ≤ t and ais 6∼ ajt for t < s, and there are no other pairs satisfying cis 6∼ djt

(c, d ∈ {a, b}). Any such array of parameters can be embedded into the universal

homogeneous I3-free digraph as elements from different levels Li = {(aij, bij) : j ∈ ω}
are in a directed edge, and therefore no I3 embeds into any level. Each level Li witnesses

2-dividing for ψ, and each branch is a tournament. Therefore, ψ has the TP2. �

Remark 4.0.11 It is tempting to argue that given an I3-free digraph, the associated graph

obtained as in Remark 4.0.8 is almost always a bipartite graph, and so an orientation
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of its complement will be a bitournament. But formalising this argument is not as

straightforward as it seems.

The general strategy we will follow consists of breaking up the set F (n) into four parts:

the bitournaments and three classesA(n), B(n), C(n). We prove that as n tends to infinity

the proportion of I3-free digraphs in A(n) ∪ B(n) ∪ C(n) becomes negligible. In this

chapter, we use logarithms base 2, and when making assertions of the type n = logm,

where n is an integer, by logm we mean the integral part of logm.

Definition 4.0.12

1. A(n) = {Γ ∈ F (n) : ∃v ∈ Γ(|∆(v)| ≤ log(n))}

2. B(n) = {Γ ∈ F (n) \ A(n) : ∃v ∈ Γ∃Q ⊂ ∆(v)(|Q| = log(n) ∧ |∆(Q)| ≤
(1/2− 1/106)n)}

3. C(n) = {Γ ∈ F (n) \ (A(n) ∪ B(n)) : ∃x, y ∈ Γ(x 6∼ y ∧ ∃Qx ⊆ ∆(x), Qy ⊆
∆(y)(|Qx| = |Qy| = log(n) ∧ |∆(Qx) ∩∆(Qy)| ≥ n/100))}

We follow the techniques and ideas from [38] and [37].

Observation 4.0.13 Let G be an I3-free digraph and v ∈ G. Then ∆(v) is a tournament,

v ∈ ∆(∆(v)), and ∆(v) ∩∆(∆(v)) = ∅.

Proof
There can be no undirected arcs between any elements of ∆(v) as any such pair would

form an I3 with v. Take any y ∈ ∆(v). Then y 6∼ v, so v ∈ ∆(y) ⊂ ∆(∆(v)). And if

x ∈ ∆(v) ∩∆(∆(v)), then x 6∼ v and x 6∼ y for all y ∈ ∆(v), so xyv forms an I3. �

Definition 4.0.14 A pinwheel on n vertices v0, . . . , vn−1 is a digraph in which vi 6∼ vi+1

(addition is modulo n) for each i ∈ n. Equivalently, it is an orientation of the complement

of a Hamiltonian graph on n vertices. We will abuse notation and denote a pinwheel by

Cn even though there are several isomorphism types of pinwheels of the same size.
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Lemma 4.0.15 If n is sufficiently large, then F (n) ⊆ T (n) ∪ A(n) ∪B(n) ∪ C(n)

Proof
Suppose for a contradiction that for all n, F (n) is a proper superset of T (n) ∪ A(n) ∪
B(n) ∪ C(n), and let Γ ∈ F (n) \ (T (n) ∪ A(n) ∪ B(n) ∪ C(n)). This means that every

vertex v in Γ, |∆(v)| > log(n) and all nonempty subsets Q of ∆(v) of size log n satisfy

|∆(Q)| > (1/2− 1/106)n. As Γ 6∈ C(n), if x 6∼ y and x 6= y, then |∆(Qx) ∩∆(Qy)| <
n/100, where Qx and Qy are any subsets of ∆(x),∆(y) of size log(n).

Claim 4.0.16 Γ contains no pinwheels C5, C7 or C9.

Proof
The idea of the proof is the same in all cases: if we had a pinwheel on {v0, . . . , v2m}
for m = 2, 3, 4, then as Γ is not in B(n) ∩ A(n) we know that there is a subset Qvi of

∆(vi) of size log n such that Rvi := ∆(Qvi) contains approximately half the vertices of

the digraph. This implies that the Rvi have large intersection for i even (odd), so the only

way to satisfy that condition is if Rv0 contains almost all the vertices of the digraph, but

then there are not enough vertices left for Rv1 . We present the formal proofs next.

Suppose that there is a C5 on a set of vertices {v0, . . . , v4}. Denote by Rvi the set ∆(Qvi),

where Qvi ⊆ ∆(vi) is of size log(n). For any distinct x, y with x 6∼ y,

|Rx ∪Ry| = |Rx|+ |Ry| − |Rx ∩Ry| ≥ n(1− 2/106 − 1/100)

and

|R̄x ∩ R̄y| = n− |Rx ∪Ry| ≤ (2/106 + 1/100)n,

where R̄x stands for the complement of Rx in the vertex set of Γ. Notice that as |Rv1 ∩
Rv2| < n/100 and |R̄v0 ∩ R̄v1| ≤ n(2/106 + 1/100), then

|Rv0 ∩Rv2| ≥ |Rv2| − |Rv2 ∩Rv1 | − |R̄v0 ∩ R̄v1| ≥ n(
1

2
− 3

106
− 2

100
).

Similarly, |Rv0 ∩Rv3 | ≥ n(1
2
− 3

106
− 2

100
). This gives us

|Rv0| = |Rv0 ∩Rv2|+ |Rv0 ∩Rv3| − |Rv0 ∩Rv2 ∩Rv3|+ |Rv0 ∩ R̄v2 ∩ R̄v3| ≥

≥ n(
1

2
− 3

106
− 2

100
) + n(

1

2
− 3

106
− 2

100
)− n

100
=

= n(1− 6

106
− 5

100
)
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So R(v0) is almost all the digraph. Now,

|Rv1| = |Rv1 ∩ R̄v0|+ |Rv1 ∩Rv0| ≤

≤ n(
6

106
+

5

100
) +

n

100
=

= n(
6

106
+

6

100
) < n(

1

2
− 1

106
),

which contradicts Γ 6∈ B(n).

Suppose now that we have a pinwheel on 7 vertices v0, . . . , v6. Our estimate for |Rv0∩Rv2|
is still valid, and by the same argument we know |Rv0 ∩Rv5 | > n(1/2− 3/106− 2/100).

Now we estimate |Rv0 \Rv3| (the calculations hold for |Rv0 \Rv4| as well).

|Rv0 ∩Rv3| = |Rv0 ∩Rv2 ∩Rv3|+ |Rv0 ∩Rv3 ∩ R̄v2| ≤

≤ |Rv3 ∩Rv2|+ |Rv0 \Rv2| <

<
n

100
+ |Rv0| − |Rv0 ∩Rv2| <

<
n

100
− n(

1

2
− 3

106
− 2

100
) + |Rv0|

Therefore, |Rv0 \ Rv3| > n(1/2 − 3/106 − 3/100). Similarly, |Rv0 \ Rv4| > n(1/2 −
3/106 − 3/100). Now we use this information to get a new estimate of |Rv0|.

|Rv0| = |Rv0 \Rv3|+ |Rv0 \Rv4| − |Rv0 ∩ R̄v3 ∩ R̄v4|+ |Rv0 ∩Rv3 ∩Rv4|

> 2n(
1

2
− 3

106
− 3

100
)− n(

2

106
+

1

100
) ≥

≥ n(1− 8

106
− 7

100
)

Again, Rv0 contains almost all the vertices in Γ. As before, this contradicts Γ 6∈ B(n):

|Rv1| = |Rv1 ∩ R̄v0|+ |Rv1 ∩Rv0| < n(
8

106
+

8

100
) < n(

1

2
− 1

106
)

Finally, suppose that there is a pinwheel on nine vertices in Γ. We know that |Rv0∩R̄v3| ≥
n(1/2−3/106−3/100) and |Rv0 ∩ R̄v3 ∩ R̄v4| ≤ n(2/106 +1/100). From this, we derive

|Rv0 ∩ R̄v3 ∩Rv4 | = |Rv0 ∩ R̄v3 | − |Rv0 ∩ R̄v3 ∩ R̄v4| >

> n(
1

2
− 3

106
− 3

100
)− n(

2

106
+

1

100
) =

= n(
1

2
− 5

106
− 4

100
)
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It follows that |Rv0 ∩ Rv4| > n(1
2
− 5

106
− 4

100
), and by the same argument (going down

the other side of the pinwheel), |Rv0 ∩Rv5| > n(1
2
− 5

106
− 4

100
). It follows that

|Rv0| = |Rv0 ∩Rv4|+ |Rv0 ∩Rv5| − |Rv0 ∩Rv4 ∩Rv5|+ |Rv0 ∩ R̄v4 ∩ R̄v5| ≥

≥ 2n(
1

2
− 5

106
− 4

100
)− n

100
= n(1− 1

105
− 9

100
)

As a consequence, |R̄v0| < n( 1
105

+ 9
100

). Therefore,

|Rv1| = |Rv1 ∩ R̄v0|+ |Rv1 ∩Rv0| < n(
1

105
+

9

100
) +

n

100
=

= n(
1

105
+

1

10
) < n(

1

2
− 1

106
),

contradicting Γ 6∈ B(n). �

Now we describe how to find a partition of Γ into two tournaments. For readability,

we will use Uv to denote ∆(∆(v)). Take an arbitrary non-arc x 6∼ y; then as Γ is I3-

free, ∆(x) ∩ ∆(y) = ∅ and Ux ∩ Uy = ∅ because any z ∈ Ux ∩ Uy would form

a C5 with x, y, x′, y′, for some x′ ∈ ∆(x) and y′ ∈ ∆(y). For the same reason (no

C5), Ux and Uy are tournaments. Let W = V (Γ) \ (∆(x) ∪ Ux ∪ ∆(y) ∪ Uy), and

Wx = {v ∈ W : Rv ∩ Rx 6= ∅}, Wy = {v ∈ W : Rv ∩ Ry 6= ∅}; again Wx ∩Wy = ∅
because there are no C9s in Γ.

We know that |Rx ∪Ry| ≥ n(1− 2/106− 1/100), and since Γ 6∈ B(n), for all v ∈ W we

have |Rv| ≥ n(1/2− 1/106); therefore, Rv ∩ (Rx ∪Ry) 6= ∅ and every vertex in W is in

Wx or Wy. Our partition consists of Wx ∪ Ux ∪∆(y) and Wy ∪ Uy ∪∆(x).

We claim that Wx ∪ Ux ∪ ∆(y) is a tournament. By Observation 4.0.13, ∆(x) is a

tournament.

Now consider w ∈ ∆(x) and w′ ∈ Uy. We argued before that Ux ∩ Uy = ∅, so Uy ⊆
V (Γ)\Ux, and therefore Uy ⊆

⋂
v∈∆(x)(V (Γ)\∆(v)), so there is a directed edge between

w and w′. Thus, Uy ∪∆(x) is a tournament.

If w and w′ are in Wx, then there exist p ∈ ∆(v), p′ ∈ ∆(v′), q, q′ ∈ Rx, r, r
′ ∈ ∆(x).

From all these vertices, p 6= p′ because the digraph is I3-free. So we have w 6∼ p 6∼ q

and w′ 6∼ p′ 6∼ q′. If q = q′, then a directed edge is forced between w and w′ because Γ

is C5-free. Similarly, an edge is forced if r 6= r′ because Γ is C7-free. Finally, even if all
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the vertices are distinct, an edge is forced because r, r′ ∈ ∆(x), so a C9 would be formed

if w 6∼ w′.

Finally, suppose for a contradiction that w ∈ Wx, w
′ ∈ Ux and w 6∼ u. Then there exist

qw ∈ Qw and rw ∈ Rw ∩ Rx such that w 6∼ qw 6∼ rw. We also have either a 6∼-path of

length 2 rw 6∼ v 6∼ u with v ∈ ∆(x) or a 6∼-path of length 4 rw 6∼ d 6∼ x 6∼ d′ 6∼ u with

d, d′ ∈ ∆(x); in the first case we get a C5 and in the second, a C7, contradicting in any

case Claim 4.0.16. Therefore, Γ is a bitournament, contradiction. �

Lemma 4.0.17 |T (n+ 1)| ≥ 6n/2|T (n)|

Proof
There are |T (n)| bitournaments on [n]. From a bitournament T on [n], we can build a

bitournament on [n+ 1] by adding the vertex n+ 1 to the smaller of the tournaments in a

given partition of T into two tournaments, which is of size at most n/2. Now we connect

the vertex to the rest of the digraph: we need to make at least 3n/2 choices to connect it

to the other tournament and at most 2n/2 choices to connect it to the smaller tournament.

In total, at least 6n/2 choices for each tournament in T (n), and the result follows. �

We wish to prove that the setsA(n),B(n), andC(n) are negligible in size when compared

to T (n). The next step is to find bounds for their sizes relative to that of F (n).

Lemma 4.0.18 For sufficiently large n, log( |A(n)|
|F (n−1)|) ≤ n+ log2 n+ log n− 1

Proof
To construct a digraph in A(n), we need to

1. Select a vertex v that will satisfy the condition in the definition of A(n): n possible

choices;

2. Select the neighbourhood ∆(v) of size at most log n:
∑logn

i=0

(
n−1
i

)
choices;

3. Choose a digraph structure on [n] \ {v}: |F (n− 1)| choices;
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4. Connect v to [n] \∆(v): at most 2n−1 choices;

In total, this gives the following estimates:

|A(n)| ≤ n(

logn∑
i=0

(
n− 1

i

)
)2n−1|F (n− 1)|

≤ nnlogn2n−1|F (n− 1)|

So

log(
|A(n)|
|F (n− 1)|

) ≤ log n+ log2 n+ n− 1,

as desired. �

Lemma 4.0.19 For sufficiently large n, log( |B(n)|
|F (n−logn)|) ≤ βn log n + n + 3

2
log2 n −

1
2

log n, where β = 1+α
2

+ 1−α
106

, and α = log 3.

Proof
All the digraphs in B(n) can be constructed as follows:

1. Choose a set Q of size log n:
(

n
logn

)
choices;

2. Choose a tournament structure on Q: 2(logn
2 ) choices;

3. Choose a digraph structure on [n] \Q: |F (n− log n)| choices;

4. Choose R = ∆(Q): at most 2n choices;

5. Connect Q to R: 3(logn)|R| choices;

6. Connect Q to [n] \R: 2(logn)|[n]\R| choices

So we have

|B(n)| ≤
(

n

log n

)
2(logn

2 )|F (n− log n)|2n3logn|R|2logn|[n]\R| (4.1)
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From this expression, the factor 3logn|R|2logn|[n]\R| depends on the size ofR. We claim that

3logn|R|2logn|[n]\R|, and therefore the expression 4.1, is maximised when |R| is maximal,

i.e., |R| = n(1/2− 1/106).

log(3logn|R|2logn|[n]\R|) = α log n|R|+ log n(n− |R|) =

= n log n+ (α− 1)|R| log n

This expression is, as a function of |R|, a linear polynomial with positive slope (α − 1).

Therefore, the value of the expression in equation 4.1 is maximal when |R| = n(1/2 −
1/106) is maximal, as claimed. Let us continue with the calculations:

|B(n)| ≤
(

n

log n

)
2(logn

2 )|F (n− log n)|2n3logn|R|2logn|[n]\R| ≤

≤
(

n

log n

)
2(logn

2 )|F (n− log n)|2n3n logn( 1
2
− 1

106
)2n logn( 1

2
+ 1

106
) =

=

(
n

log n

)
2(logn

2 )+n+n logn( 1
2

+ 1
106

)|F (n− log n)|3n logn( 1
2
− 1

106
)

Therefore,

log(
|B(n)|

|F (n− log n)|
) ≤ log

(
n

log n

)
+

(
log n

2

)
+ n+ n log n(

1

2
+

1

106
)+

+ αn log n(
1

2
− 1

106
) ≤

≤ log2 n+
log2 n− log n

2
+ n+ n log n(

1

2
(α + 1) +

1

106
(1− α)) =

= βn log n+ n+
3

2
log2 n− 1

2
log n.

�

Lemma 4.0.20 For large enough n, log( |C(n)|
|F (n−2)|) ≤ γn + 2 log2 n + 2 log n, where γ =

1 + 4
106

+ 3
100

+ α(1− 2
106
− 2

100
)

Proof
Counting the elements in C(n) is harder than counting B(n) or A(n), so we will give a

rougher bound. All the elements in C(n) can be found in the following way:
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1. Choose two elements x, y, which will satisfy x 6∼ y: n× (n− 1) < n2 choices.

2. Choose an I3-free structure for [n] \ x, y: |F (n− 2)| options

3. Choose neighbourhoods Qx, Qy in ∆(x),∆(y) of size log n. The 6∼-

neighbourhoods of x and y are disjoint because the digraph is I3-free. So we

have
(
n−1
logn

)(
n−2−logn

logn

)
≤
(
n−2
logn

)2 ≤ n2 logn choices. Notice that at this point the

neighbourhoods Rx, Ry of Qx and Qy are determined by the I3-free structure for

[n] \ {x, y}, but we will only count those cases in which |Rx ∩Ry| ≥ n
100

.

4. Connect x, y to [n]\{x, y}: We have already decided how to connect x, y toQx, Qy,

so we need to decide:

(a) If u ∈ Rx ∩Ry, then there are only 4 possible ways to connect x, y to u.

(b) If u ∈ Rx \Ry or u ∈ Ry \Rx, then there are 6 possible ways to connect x, y

to u.

(c) If u ∈ the complement of Rx ∪Ry, there are 8 ways to connect x, y to u.

Therefore, we have

4|Rx∩Ry |6|Rx\Ry |+|Ry\Rx|8n−|Rx∪Ry | (4.2)

choices to make at this point. We claim that the expression 4.2 is maximised when

|Rx ∩Ry| and |Rx ∪Ry| are minimised.

log(4|Rx∩Ry |6|Rx|+|Ry |−2|Rx∩Ry |8n−|Rx|−|Ry |+|Rx∩Ry |) =

2|Rx ∩Ry|+ (1 + α)(|Rx|+ |Ry| − 2|Rx ∩Ry|) + 3(n− |Rx| − |Ry|+ |Rx ∩Ry|)

= 3n+ (3− 2α)|Rx ∩Ry|+ (α− 2)(|Rx|+ |Ry|).

This is a linear polynomial in variables |Rx∩Ry|, |Rx|,|Ry|, and is clearly maximal

(in (0, n]3) when the variables are minimised, as 3−2α and α−2 are both negative.

By hypothesis, this happens when |Rx ∩ Ry| = 1
100
n and |Rx| = |Ry| = n(1/2 −

1/106). Therefore, we have at most
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4|Rx∩Ry |6|Rx\Ry |+|Ry\Rx|8n−|Rx∪Ry | =

= 4|Rx∩Ry |6|Rx|+|Ry |−2|Rx∩Ry |8n−(|Rx|+|Ry |−|Rx∩Ry |) ≤

≤ 4
1

100
n6n(1− 2

106
− 2

100
)8n( 2

106
+ 1

100
) =

= 2
2

100
n2n log 6(1− 2

106
− 2

100
)23n( 2

106
+ 1

100
) =

= 2n log 6(1− 2
106
− 2

100
)+ 2

100
n+3n( 2

106
+ 1

100
) =

= 2n(1+α)(1− 2
106
− 2

100
)+ 2

100
n+3n( 2

106
+ 1

100
) =

= 2n(1+ 4
106

+ 3
100

+α(1− 2
106
− 2

100
)) =

= 2γn

ways to connect x, y to the rest of the digraph.

In total, this gives us
|C(n)|
|F (n− 2)|

≤ n2n2 logn2γn

So

log(
|C(n)|
|F (n− 2)|

) ≤ 2 log n+ 2 log2 n+ γn

�

Theorem 4.0.21 |F (n)| = |T (n)|(1 + o(1)).

Proof
Set η = 2

1
3000 . We will prove that there exists a constant c ≥ 1 such that for all n,

|F (n)| ≤ (1 + cη−n)|T (n)| (4.3)

holds. Let n0 be a natural number large enough for all our estimates from Lemmas 4.0.18

to 4.0.20 to hold, and choose a c ≥ 1 such that |F (n)| ≤ (1 + cη−n)|T (n)| for all n ≤ n0.

We use this as a basis for induction on n.

Suppose that for all n′ < n equation 4.3 holds. From Lemma 4.0.15, we have

|F (n)| ≤ |T (n)|+ |A(n)|+ |B(n)|+ |C(n)|
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If we show that the ratio |X(n)|
|T (n)| , where X is any of A,B,C, is at most c

3
η−n, the result will

follow. We will use Lemmas 4.0.18 to 4.0.20 and induction to prove these bounds.

1.

|A(n)|
|T (n)|

=
|A(n)|
|F (n− 1)|

|F (n− 1)|
|T (n− 1)|

|T (n− 1)|
|T (n)|

≤

≤ 2n+log2 n+logn−1(1 + cη−(n−1))6−
1
2

(n−1) ≤

≤ 2c2n+log2 n+logn−12−
log 6
2

(n−1) =

= c2n+log2 n+logn− 1+α
2

(n−1) =

= c2n( 1−α
2

)+log2 n+logn+α+1
2

The leading term in the exponent of 2 is n(1−α
2

). Notice that 1− α < 0, so as n0 is

assumed to be a very large number,

c2n( 1−α
2

)+log2 n+logn+α+1
2 ≤ c

3
η−n

2.

|B(n)|
|T (n)|

=
|B(n)|

|F (n− log n)|
|F (n− log n)|
|T (n− log n)|

logn∏
i=1

|T (n− i)|
|T (n− i+ 1)|

≤

≤ 2βn logn+n+ 3
2

log2 n− 1
2

logn(1 + cη−(n−logn))

logn∏
i=1

6−
1
2

(n−i) ≤

= 2βn logn+n+ 3
2

log2 n− 1
2

logn(1 + cη−(n−logn))6−
1
2

(
∑logn
i=1 (n−i)) ≤

≤ 2βn logn+n+ 3
2

log2 n− 1
2

logn(1 + cη−(n−logn))6−
1
2

(logn(n− 1
2

logn+1)) ≤

≤ c2βn logn+n+ 3
2

log2 n− 1
2

logn+16−
1
2

(logn(n− 1
2

logn+1)) =

= c2βn logn+n+ 3
2

log2 n− 1
2

logn+1+(1+α)(− 1
2

(logn(n− 1
2

logn+1)))
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For readability, we will continue our calculations on the exponent of 2 until we

reach a more manageable expression:

βn log n+ n+
3

2
log2 n− 1

2
log n+ 1 + (1 + α)(−1

2
(log n(n− 1

2
log n+ 1))) =

=
3

2
log2 n− 1

2
log n+ n+ βn log n+ 1− 1

2
n log n− 1

4
log2 n−

− 1

2
log n− α

2
n log n+

α

2
log2 n− α

2
log n =

= (
3 + α

2
− 1

4
) log2 n+ n log n(β − 1

2
− α

2
)−

− log n(1 +
α

2
) + n+ 1 =

= n log n(β − 1

2
− α

2
) + n+

5 + 2α

4
log2 n− log n(

2 + α

2
) + 1 =

=
1− α
106

n log n+ n+
5 + 2α

4
log2 n− log n(

2 + α

2
) + 1

Therefore,
|B(n)|
|T (n)|

≤ c2
1−α
106

n logn+n+ 5+2α
4

log2 n−logn( 2+α
2

)+1

The leading term in the exponent is 1−α
106

n log n, and 1 − α < 0. For sufficiently

large n,

c2
1−α
106

n logn+n+ 5+2α
4

log2 n−logn( 2+α
2

)+1 <
c

3
η−n

3.

|C(n)|
|T (n)|

=
|C(n)|
|F (n− 2)|

|F (n− 2)|
|T (n− 2)|

|T (n− 2)|
|T (n− 1)|

|T (n− 1)|
|T (n)|

≤

≤ 2γn+2 logn+2 log2 n(1 + cη−(n−2))6−
1
2

(n−2)6−
1
2

(n−1) ≤

≤ 2γn+2 logn+2 log2 n2c6−
1
2

(n−2)6−
1
2

(n−1) =

= 2γn+2 logn+2 log2 n2c6−
1
2

(2n−3) =

= c2γn+2 logn+2 log2 n+1− log 6
2

(2n−3) =

= c2(γ−log 6)n+2 logn+2 log2 n+1+ 3
2

log 6

Now, γ−log 6 = 1+ 4
106

+ 3
100

+α(1− 2
106
− 2

100
)−(1+α) = 4

106
+ 3

100
− 2α

106
− 2α

100
< 0,

so |C(n)|
|T (n)| <

c
3
η−n. Therefore,

|F (n)|
|T (n)|

≤ 1 + cη−n
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and we conclude that the proportion of I3-free digraphs on n vertices which are not

bitournaments becomes negligible as n tends to infinity. �
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