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Abstract

The overall objective of this thesis was to develop an enhanced understanding

of the sulfonation of Starbons® and the properties of the sulfonated materials,

using conventional and microwave heating. Starbons® are materials prepared

from expanded starch. Due to their renewable nature, these materials are great

candidates  to  be  explored  in  our  search  for  sustainable  development.  The

sulfonated  Starbons® (S-Starbons®)  were  tested  as  solid-acid  catalysts  in

esterification reactions using microwave irradiation.

A green chemistry analysis of some current routes to sulfonated carbonaceous

materials is presented in Chapter 1. Here, an in-depth description of Starbons®

is  also  given,  as  a  brief  review  of  some  techniques  used  in  their

characterisation. Synthesis and characterisation of S-Starbons® by conventional

heating and microwave irradiation are presented in Chapter 2 and Chapter 3,

respectively.  Elemental  composition  of  Starbons® depends  on  carbonization

temperature, changing from high-oxygenated (300 °C) to more carbon-like (800

°C)  materials.  After  sulfonation,  the  sulfur  content  varies  with  carbonization

temperature,  being  particular  high  for  the  most-oxygenated  samples.  All  S-

Starbons® present  a  characteristic  IR  band  ca.  1030  cm -1 independently  of

sulfonation method.  13C solid-state NMR gives structural  information from S-

Starbons®, however, due to overlapping resonances it was difficult to identify the

C–S resonance. XPS showed that sulfur (VI) is the only one observed in S-

Starbons® 300,  but  sulfur  (II)  appears  in  higher  temperature  carbonized

Starbons®.  The  main  difference  between  microwave  and  conventional

sulfonated Starbons® 300, was the appearance of another sulfur (VI) species in

the microwaved samples. Chapter 4 relates to the stability of the sulfur-bonding

in S-Starbons®,through TG-FTIR analysis. This study suggests that stability of

the sulfur bonding is higher in S-Starbon® 300 than in S-Starbon® 800. This

observation was correlated with the catalytic performance of these materials

(Chapter  5),  where  S-Starbon® 800  loses  its  activity  more  rapidly  than  S-

Starbon® 300.

3



4



Table of contents

Abstract 3

List of figures 11

List of tables 19

Acknowledgements 21

Dedication 22

Declaration 23

Chapter 1. Introduction

1.1. Green chemistry, the approach to achieve sustainability 27

1.1.1. The green chemistry side of this project 29

1.2. Heterogeneous catalysis, as a green chemistry operational tool 30

1.2.1. Solid-acid catalysts 31

1.3. Carbon-based acid catalysts

1.3.1. The “sugar catalyst” 32

1.3.2. Porous catalysts 35

1.3.3. Sulfonated Starbons®, a mesoporous bio-based alternative 37

1.4. Microwave chemistry

1.4.1. What are microwaves? 40   

1.4.2.  Microwave heating 41

1.4.3. Microwave irradiation vs conventional heating 42

1.4.4. “Microwave activation”, “hot spots” and “super-heating
effect” 

44

1.5. Analytical techniques

1.5.1. Infrared spectroscopy, attenuated total reflectance (ATR-
FTIR)

44

1.5.2. Porosimetry characterisation

1.5.2.1. Type of isotherms 46

1.5.2.2. Type of hysteresis 47

1.5.2.3. Surface area determination, BET calculation 48

1.5.2.4. Pore size distribution, BJH method 50

1.5.3. X-ray photoelectron spectroscopy (XPS) 51

1.5.4. Nuclear Magnetic Resonance 51

5



1.5.4.1. Solid-state NMR, Cross-Polarization (CP)/Magic
Angle Spinning (MAS)

52

1.5.5. Thermogravimetric analysis coupled to infrared
spectroscopy (TG-FTIR)

55

1.5.6. Gas Chromatography Analysis 56

1.6. Project scope and objectives 57

Chapter 2. Synthesis and characterisation of sulfonated Starbons®

by conventional heating

2.1. Introduction 61

2.2. Preparation of sulfonated Starbons® 61

2.3. Leaching of sulfuric acid from sulfonated Starbons®: washing with 
methanol

64

2.4. Characterisation of Starbons and Sulfonated Starbons®

2.4.1. Elemental composition in Starbons® and sulfonated
Starbons®

67

2.4.2. Approximation of an empirical formula for Sulfonated
Starbons® 

72

2.4.3. Surface and bulk compositions of sulfonated Starbons® 75

         2.4.4. Characterisation of sulfonated Starbons® by FTIR 76

         2.4.5.  13C CP/MAS NMR studies on Sulfonated Starbons® 80

          2.4.5.1.Structural changes in Starbon® 300 81

          2.4.5.2. Identifying main functional groups in Sulfonated
          Starbons®  in 13C NMR spectra

83

         2.4.5.3. Increasing temperature of carbonization of
         Starbons®

84

        2.4.6. X-ray photoelectron spectroscopy studies on sulfonated
        Starbons®

        2.4.6.1. Before starting: data handling 86

        2.4.6.2. Starbons® 300 and 800 87

        2.4.6.3. Analysis of carbon bonding 89

        2.4.6.4.The sulfur components in sulfonated Starbons® 95

        2.4.7. Sulfur (VI) and acidity 100

        2.4.8. Morphology and porosity of sulfonated Starbons®

        2.4.8.1. SEM images 102

        2.4.8.2. Surface area and porosimetry 103

2.5. Conclusions 106

6



Chapter 3. Synthesis and characterisation of microwave 
sulfonated Starbons® 

3.1. Introduction 111

3.2. Bulk elemental composition 112

3.3. XPS analysis of microwave sulfonated Starbons® 115

3.3.1. Elemental composition 115

3.3.2. Carbon analysis 116

3.3.2.1. General overview 116

3.3.2.2. Quantification of components 121

3.3.3. High-resolution sulfur S2p spectra 123

3.4. Structural changes studied by 13C solid-state NMR spectroscopy 127

3.5. FTIR characterisation 131

3.6. Acidity of microwave sulfonated Starbons® 133

3.7. Morphology and textural characterisation 135

3.8. Conventional versus microwave sulfonation at 90 °C

3.8.1. Elemental composition 139

3.8.2. Chemical environments observed through XPS analysis

3.8.2.1. Sulfonated Starbons® 300 at 90 °C 140

3.8.2.2. Sulfonated Starbons® 450 at 90 °C 141

3.8.2.3. Sulfonated Starbons® 800 at 90 °C 142

3.8.3. Structural composition by 13C solid-state NMR 142

3.9. Conclusions 142

Chapter 4. Sulfonation of Starbons®  and their thermal stability

4.1. Introduction 147

4.2. Sulfur dioxide released during sulfonation of Starbons® 148

4.3. Thermal stability of sulfonated Starbons® prepared by conventional
heating

151

4.4. Thermal stability of microwave sulfonated Starbons® 156

4.5. Sulfur dioxide released during decomposition of Starbon® 300 
sulfonated at different temperatures using microwaves

160

4.6. Sulfur dioxide released in the decomposition of sulfonated 
Starbons® 800 

161

4.7. The effect of methanol washing 162

4.8. Physisorbed sulfuric acid? 165

7



4.9. FTIR spectra of sulfonated Starbons®: looking at washing effect 167

4.10. Conclusions 168

Chapter 5. Uses of sulfonated Starbons® in esterifications

5.1. Introduction 173

5.2. Esterification of lauric acid

5.2.1. Microwave irradiation or conventional heating? 175

5.2.2. Microwave irradiation: time effect 177

5.2.3. Evaluation of Sulfonated Starbons® 178

5.2.4. Reusability of S-Starbons® 181

5.3. Esterification of levulinic acid 183

5.3.1. The Shu-Lawrence approach 186

5.3.2. Identification of the 'intermediate' 188

5.3.3. Performance of sulfonated Starbons® in the esterification of
levulinic acid

193

5.4. Test in esterification of 4-phenyl butyric acid and benzoic acid with 
methanol

195

5.5. Test of microwave sulfonated Starbons® 197

5.6. Deactivation of sulfonated Starbons® 202

5.7. Conclusions 205

Chapter 6. Experimental

6.1. Chemical reagents 209

6.1.1. Chemicals used for synthesis and characterisation of
sulfonated Starbons®

209

6.1.2. Chemicals used in reactions 209

6.2. Carbonization treatment 209

6.3. Sulfonation process 210

6.3.1. Conventional sulfonation 211

6.3.2. Methanol washing 211

6.3.3. Microwave sulfonation 212

6.3.4. Quantification of sulfur dioxide (SO2) released during
sulfonation

213

6.4. Materials characterisation

6.4.1. Elemental analysis 214

8



6.4.2. Infrared spectroscopy 215

6.4.3. X-Ray photoelectron spectroscopy (XPS) 215

6.4.4. Solid-state 13C CP/MAS Nuclear Magnetic Resonance 215

6.4.5. Surface area and porosity 216

6.4.6. Scanning Electron Microscopy (SEM) analysis 216

6.4.7. Thermal gravimetric analysis coupled to infrared
spectroscopy (TG-FTIR)

216

6.4.8. Acidity determination 217

6.5. Catalytic testing 217

6.5.1. Sample preparation 217

6.5.2. Catalyst recycling 218

6.5.3. Gas Chromatography and Mass Spectra analysis 218

6.5.4. NMR spectroscopy 220

6.5.5. XRF analysis 220

Chapter 7. Thesis conclusion and further work

7.1. Conclusion and further work 223

7.1.1. New synthesis approaches 223

7.1.2. Characterisation outcomes

7.1.2.1. Sulfonated Starbons® by conventional heating 224

7.1.2.2. Microwave sulfonated Starbons® 225

7.1.3. Catalyst performance overview 225

7.2. Further work 227

Chapter 8. Abbreviations

8.1. List of abbreviations 231

Chapter 9. References

9.1. References 234

9



10



List of figures 

Chapter 1. Introduction 

Figure 1.1. The twelve principles of green chemistry (paraphrased) 28

Figure 1.2. Research progress in green chemistry 28

Figure 1.3. Easy recovery of a solid catalyst 31

Figure 1.4. Schematic representation of preparation of sugar 
catalyst 

33

Figure 1.5. Two typical methods for the preparation of ordered 
mesoporous carbons

36

Figure 1.6. Schematic representation of Starbons® preparation 38

Figure 1.7. New range of carbonized Starbons® 39

Figure 1.8. Electromagnetic spectrum 41

Figure 1.9. Microwave dielectric heating: dipolar polarization and 
ionic conduction mechanisms

42

Figure 1.10. Schematic representation of sample heating by 
conventional heating and using microwaves

43

Figure 1.11. Schematic diagram of multiple reflection in an ATR 
system

46

Figure 1.12. Adsorption isotherms commonly found in catalysts 46

Figure 1.13. Classification of adsorption-desorption hysteresis 
loops and its association with pores shapes

48

Figure 1.14. Schematic representation of the adsorption-desorption 
process in mesopores

50

Figure 1.15. Diagram of photoelectrons production in the XPS 
analysis

51

Figure 1.16. Spinning charge on nuclei generates magnetic dipole 52

Figure 1.17. Magic angle spinning (MAS) diagram 53

Figure 1.18. Cross-polarization pulse sequence sketch 55

Figure 1.19. Schematic representation of TG-FTIR analysis 56

Chapter 2. Synthesis and characterisation of sulfonated 
Starbons® by conventional heating

Figure 2.1. pH changes during washing of sulfonated Starbon® 300 63

Figure 2.2. Qualitative scale for sulfates concentration (A) and 
washings of sulfonated Starbon® 800 (B)

64

11



Figure 2.3. Leaching of sulfonated Starbons® analysed by XRF 65

Figure 2.4. Sulfur content (%) for sulfonated Starbons® after 
washing with methanol

66

Figure 2.5. FT-IR spectra for sulfonated Starbon® 350 after 
methanol washes

67

Figure 2.6.  C:O atomic ratio of Starbons® before sulfonation 68

Figure 2.7. Van Krevelen diagram for starting Starbons® 69

Figure 2.8.  Chemical composition of Starbons® before and after 
sulfonation

70

Figure 2.9. Van Krevelen diagram for Starbons® sulfonated at 90 °C
for 6 h and washed with MeOH (3 times). Inset figure showing the 
changes of oxygen (O) atoms per 100 carbon (C) atoms before and
after sulfonation.

71

Figure 2.10.  Chemical composition of Starbons® sulfonated at 90 
°C for 6 h and treated with MeOH (W3)

72

Figure 2.11.  Variation in chemical composition of Starbons® before 
and after sulfonation (Ca and Cb arbitrarily set to 10 for all 
samples)

73

Figure 2.12.  Variation in chemical composition of Starbons® before 
and after sulfonation

76

Figure 2.13.  FTIR spectra of original and sulfonated Starbon® 300 77

Figure 2.14. FTIR spectra sulfonated Starbons® carbonized at 
several temperatures

79

Figure 2.15. FTIR spectra showing p-TSA residues in Starbons® 
300 and 350

80

Figure 2.16. NMR spectra for Starbons® 300 before and after 
sulfonation

82

Figure 2.17. Functional groups identified for sulfonated Starbon® 
350

84

Figure 2.18. 13C NMR spectra for sulfonated Starbons carbonized at
several temperatures

85

Figure 2.19. Proposed “structures” for Starbon® 300 (a) and 
Starbon® (600)

86

Figure 2.20. Elemental ratio (from XPS analysis) for Starbons 300 
and 800 before and after sulfonation.

89

Figure 2.21. XPS spectra for C1s of Starbon®  300 prior (left) and 
after sulfonation (right).

90

Figure 2.22. XPS spectra for C1s of Starbon®  800 prior (left) and 
after (right) sulfonation

91

Figure 2.23. XPS spectra for C1s for conventional sulfonated 93

12



Starbons®  (a) 350 (b) 450 (c) 550 (d) 600 and (e) 700

Figure 2.24. XPS spectra comparison for C1s for conventional 
sulfonated Starbons®

94

Figure 2.25. XPS S2p spectra for conventionally sulfonated 
Starbons®

96

Figure 2.26. High-resolution S2p spectra for sulfonated Starbons® 
sulfonated Starbons® (a) 300 (b) 350  (c) 450 (d) 550 

97

Figure 2.26I. High-resolution S2p spectra for sulfonated Starbons® 
sulfonated Starbons®  (e) 600 (f) 700 (g) 800 

98

Figure 2.27. Proposed “structures” for sulfonated Starbon® 300 (a) 
and sulfonated Starbon® (600)

100

Figure 2.28. Sulfur content for sulfonated Starbons® at 90°C for 6h 101

Figure 2.29. SEM images of Starbon® 300 (a) sulfonated Starbon® 

300 (b); sulfonated Starbon® 450 (c) Sulfonated Starbon® 550 (d)
103

Figure 2.30. (a) Nitrogen adsorption isotherms and (b) pore size 
distribution for sulfonated and non-sulfonated Starbon®  300  

104

Figure 2.31. (a) Nitrogen adsorption isotherm and (b) pore size 
distribution for sulfonated  Starbon®  550  

105

Figure 2.32. Nitrogen adsorption isotherm (a) and  pore size 
distribution (b) for Starbon® 800; nitrogen adsorption isotherm (c) 
and  pore size distribution (d) for sulfonated Starbon® 800 (c)

106

Chapter 3. Synthesis and characterisation of microwave 
sulfonated Starbons® 

Figure 3.1. Scheme of microwave sulfonation of Starbons® 112

Figure 3.2. Elemental composition of microwave sulfonated 
Starbons® (a) 300, (b) 450 and (c) 800

114

Figure 3.3. Atomic composition of microwave sulfonated Starbons® 
for C (a), O (b) and S (c)

116

Figure 3.4. High-resolution C 1s spectra of microwave sulfonated of
Starbon® 300 at 90°C (a), 120 °C (b) and 150 °C(c)

117

Figure 3.5. High-resolution C 1s spectra of microwave (MW) 
sulfonated of Starbon® 450 at 90°C (a), 120 °C (b) and 150 °C(c). 
Van Krevelen diagram of MW sulfonated Starbons® 450 (d)

120

Figure 3.6. High-resolution C 1s spectra of microwave (MW) 
sulfonated of Starbon® 800 at 90°C (a), 120 °C (b) and 150 °C(c).

121

Figure 3.7. Deconvolution of high-resolution S2p spectra for 
microwave sulfonated Starbons® 300 (a), 450 (b) and 800 (c) at 90 
°C

124

Figure 3.8. Comparison of high-resolution S2p spectra for 126

13



microwave sulfonated Starbons 300 (a), 450 (b) and 800 (c) at 90, 
120 and 150 °C

Figure 3.9. Identification of functional groups in 13C solid-state 
CP/MAS NMR spectra for Starbon 300 before sulfonation

128

Figure 3.10. Curve-fitting of 13C solid-state CP/MAS NMR spectrum 
of Starbon® 300 microwave sulfonated at 90°C

128

Figure 3.11. 13C solid-state NMR spectra for microwave sulfonated 
Starbons 300 at 90°C (a), 120 °C (b) and 150°C (c)

130

Figure 3.12.  13C Solid-state NMR spectra for microwave sulfonated
Starbons® 450

131

Figure 3.13. FTIR spectra for microwave sulfonated Starbons® 300 132

Figure 3.14. FTIR spectra of Starbon® 450 before and after 
microwave sulfonation at 90°C and 120 °C.

133

Figure 3.15.  Titration curve for microwave sulfonated Starbon® 300 
at 90 °C 

134

Figure 3.16. Acidity determined by titration with NaOH (a) 
Comparison between obtained and expected sulfonic groups (b) for
sulfonated Starbons® 300 

135

Figure 3.17.  SEM Iimages for microwave sulfonated Starbons® at 
90 °C (a) S-Starbon® 300 MW 90 (b) S-Starbon® 450 MW 90 (c) S-
Starbon® 800 MW 90

136

Figure 3.18. Textural properties for microwave sulfonated Starbons®

(a) S-Starbon® 300 MW 90 (b) S-Starbon® 450 MW 90 (c) S-
Starbon® 800 MW 90

137

Figure 3.19. Surface area for microwave sulfonated Starbons® (a) 
300 (b) 450 (c)800 (d) summary of pore volume

139

Figure 3.20. van Krevelen diagram (left) and sulfur content (right) 
for sulfonated Starbons® using conventional heating and 
microwaves

140

Figure 3.21. XPS spectra for sulfonated Starbons® 300 by 
conventional and microwave heating

141

Chapter 4. Sulfonation of Starbons® and their thermal stability

Figure 4.1. Sulfonation of Starbon® by conventional heating (a) and 
FTIR spectra of gases released during process of sulfonation (b)

148

Figure 4.2. Diagram of suggested methodology for quantification of 
SO2 released during sulfonation

149

Figure 4.3. Quantified sulfur dioxide released during sulfonation of 
Starbons® 300 (a) and 800 (b) using microwaves.

150

Figure 4.4. TGA thermograms for conventional sulfonated Starbon® 152

14



300 (a) and Starbon® 800 (b)

Figure 4.5. FTIR spectra of gases evolved from sulfonated Starbon®

800 at 290 °C
153

Figure 4.6. TGA thermograms and IR absorbance of SO2 gas 
versus temperature for (a) sulfonated Starbon®  300 and (b) 
sulfonated Starbon®  800

154

Figure 4.7. Comparison in the re-usability of sulfonated Starbons® 
300 and 800

155

Figure 4.8.  TGA thermogram for microwave sulfonated Starbon® 
300 at 90°C-30 min

157

Figure 4.9.TGA thermogram for microwave sulfonated Starbon® 800
at 90°C-30 min

158

Figure 4.10. TGA thermograms and IR absorbance of SO2 gas 
versus temperature for  microwave sulfonated Starbon® 300 (a) and
sulfonated Starbon®  800 (b)

159

Figure 4.11. TGA thermograms (a) and IR absorbance of SO2 gas 
versus temperature (b) for  microwave sulfonated Starbon® 300 at 
90, 120 and 150 °C  

160

Figure 4.12. IR absorbances for evolving SO2 as function of 
temperature for sulfonated Starbons® 800 

161

Figure 4.13. IR absorbances for evolving SO2 from sulfonated 
Starbon 300 before (left) and after (right) methanol washing 

162

Figure 4.14. Schematic representation of likely sulfur groups 
present on surface of sulfonated Starbon® 300

163

Figure 4.15. IR absorbances for evolving SO2 versus temperature 
for microwave sulfonated Starbon® 300 before and after methanol 
washing 

164

Figure 4.16. Schematic representation of sulfonated sample at the 
first wash

166

Figure 4.17. IR absorbances for evolving SO2 versus temperature 
for microwave sulfonated Starbon® 300 at 150 °C after first wash 
(a) and after 14 washes (b)

166

Figure 4.18. Infrared spectra of microwave sulfonated Starbon® 300
prepared at 150 °C, after first and fourteenth washes.

167

Figure 4.19. IR spectra of sulfonated Starbons® 300 conventional 
(left) and microwave sulfonated (b) at 90 °C, before and after 
methanol washes.

168

Chapter 5. Uses of sulfonated Starbons® in esterifications

Figure 5.1. Mechanistic route of acid catalysed esterification 173

15



Figure 5.2. Comparison of the esterification of lauric acid by 
methanol using microwave irradiation and conventional heating

176

Figure 5.3. Esterification of lauric acid by MeOH at different times 
(MW fixed power 200 W)

178

Figure 5.4. Conversion in the esterification of lauric acid by MeOH 
using S-Starbons® (30 min, 200W)

179

Figure 5.5. Comparison of the esterification of lauric acid using 
MeOH and EtOH (30 min, 200 W)

180

Figure 5.6. Esterification of lauric acid by EtOH, using 40 mg S-
Starbons® (30 min, 200 W)

181

Figure 5.7. Diagram of recovery and reuse of catalyst 182

Figure 5.8. Reusability of S-Starbons® 300 and 800 in esterification 
of lauric acid with methanol 183

Figure 5.9. Molecular structure of 4-oxo-pentanoic acid/levulinic 
acid

183

Figure 5.10. GC -FID chromatogram of mixture of levulinic acid and
methanol (1:15, day 4)

184

Figure 5.11. Reaction of levulinic acid with refluxing methanol (15 
mmol acid, 10 mL alcohol, at 75 °C) (a) Conversion to ester (b) 
Conversion to intermediate

185

Figure 5.12. Molecular structure of 4-alkoxy-g-valerolactone 
proposed by Shu and Lawrence (1995)

186

Figure 5.13. Change in conversion of ester and intermediate in a 
solution of levulinic acid and methanol (a) molar ratio 1:30 and (b) 
molar ratio 1:15

187

Figure 5.14. Change in conversion of ester and intermediate in a 
solution of levulinic acid and methanol (a) molar ratio 1:20 and (b) 
molar ratio 1:10

188

Figure 5.15. Proposed structure formed during methanol storage of 
levulinic acid

188

Figure 5.16. Levulinic acid and relationship to its derivatives 189

Figure 5.17. 13C NMR spectra for mixture of levulinic acid-MeOH 48
h

190

Figure 5.18. Mass spectra of intermediate identified in levulinic acid
and methanol (1:30) solution 

191

Figure 5.19. Mass spectra of intermediate identified in levulinic acid
and methanol-d4 (1:30) solution

191

Figure 5.20. GC -FID chromatogram of mixture of levulinic acid and
ethanol (1:15, day 5)

192

Figure 5.21. Comparison of the esterification of lauric acid by 193

16



methanol using microwave irradiation and conventional heating 

Figure 5.22. Esterification of levulinic acid by MeOH, using 20 and 
40 mg of sulfonated Starbons® (30 min, 200 W)

194

Figure 5.23. Reusability of sulfonated Starbons® in esterification of 
levulinic acid with methanol (catalyst 400 mg; MW 200 W, 30 min)

194

Figure 5.24. Esterification of 4-phenyl-butyric acid (a) and benzoic 
acid (b) with methanol (MW 200 W, 30 min)

197

Figure 5.25. Esterification of lauric acid by methanol using 
microwave sulfonated Starbons® 300

199

Figure 5.26. Esterification of lauric acid by methanol using 
microwave sulfonated Starbons® 450

200

Figure 5.27. Esterification of lauric acid by methanol using 
microwave sulfonated Starbons® 800

200

Figure 5.28. Esterification of lauric acid by methanol using 
microwave sulfonated Starbons® 300 90, conventional and recycled
sulfuric acid

201

Figure 5.29. Reusability of sulfonated Starbons® 300 in the 
esterification of lauric acid by methanol 

202

Figure 5.30. Comparison in sulfur content left after three runs in 
sulfonated Starbons 300 and 800

203

Figure 5.31. Studies on leaching of sulfonated Starbons® 300 205

Scheme 5.1. Esterification of lauric acid by methanol 175

Scheme 5.2. Esterification of 4-phenyl butyric acid by methanol 195

Scheme 5.3. Esterification of benzoic acid by methanol 196

Chapter 6. Experimental

Figure 6.1. Carbonization procedure for Starbons® 210

Figure 6.2. Schematic representation of the sulfonation of 
Starbons® by conventional heating

211

Figure 6.3. Experimental set up used during sulfonation of 
Starbons® by microwave irradiation. Collection of gases using  H2O2

solution (30% v/v)

212

Figure 6.4.  Schematic representation of the quantification of sulfur 
dioxide through potentiometric titration

214

Figure 6.5. Reproducibility of results obtained in esterification of 
lauric acid with methanol (MW, 200W, 30 min) and associated 
errors 

219

17



18



List of  tables

Chapter 1. Introduction 

Table 1.1. IUPAC pore size classification 35

Chapter 2. Synthesis and characterisation of sulfonated 
Starbons® by conventional heating

Table 2.1. New range of carbonized Starbons® 62

Table 2.2. XRF analysis results 65

Table 2.3.  Variations in atomic content of H, O and SO3 before and 
after sulfonation on Starbons®

74

Table 2.4. Comparison between sugar catalyst and S-Starbons® 
formulas

74

Table 2.5. Percentage atomic content in sulfonated Starbons® 75

Table 2.6. Observed FTIR bands and their assignments 78

Table 2.7. Elemental composition ( atomic %) for Starbons® 300 
and 800

88

Table 2.8. Bonds assignments for components of C (1s) 90

Table 2.9. Chemical states of C and their relative concentration for 
Starbons® 300 and 800 before and after sulfonation. (Binding 
energies presented in parenthesis)

92

Table 2.10. Chemical states of C and their relative concentration for
Starbons® 350 to 700  after sulfonation conventionally. (Binding 
energies presented in parenthesis)

95

Table 2.11. Relative concentration of chemical states of sulfur and 
their binding energy (in parenthesis, eV)

99

Table 2.12. Surface characteristics of sulfonated Starbons® 105

Chapter 3. Synthesis and characterisation of microwave 
sulfonated Starbons® 

Table 3.1. Sulfur content in sulfonated samples prepared at 150 °C 115

Table 3.2. Relative concentrations of carbon functionalities in 
microwave sulfonated Starbons®

123

Table 3.3. Relative concentration of sulfur functionalities in 
microwave sulfonated Starbons® 300, 450 and 800

126

Chapter 4. Sulfonation of Starbons® and their thermal stability

Table 4.1. Comparison of sulfonation methods 147

19



Table 4.2. Sulfur content (mmolg-1) for sulfonated Starbons®  300 164

Chapter 5. Uses of sulfonated Starbons® in esterifications

Table 5.1. Molar ratios of the mixtures of levulinic acid in alcohols 186

Table 5.2. Molecular masses for levulinic acid and derivatives 190

Table 5.3. C:O atomic ratio and sulfur loading from some sulfonated
Starbons® 

195

Table 5.4. Description of microwave sulfonated Starbons® 198

20



Acknowledgements 

I would like to thank all the people who contributed in the making of this PhD thesis.

Firstly I want to thank to my super-supervisor, Dr. Duncan J. Macquarrie for all your

time,  knowledge  and  experience  shared  during  these  years.  Thanks  for  your

insightful questions, for your great advice, for signing my reports, for our research

update/chat meetings, for your patience, for your support in my low moods and for

giving me hugs when I need them. Gracias, Duncan.

I  also  express  my  gratitude  to  Professor  James  H.  Clark,  for  giving  me  the

opportunity to join this excellent Green Chemistry group.

I extend my gratitude to Dr. Vitaliy Budarin, Dr. Mario De bruyn, Dr. Thomas Farmer

and Dr. Simon Breeden, for sharing your experience and knowledge while I carried

out this research. Special thanks to the technical staff, Paul Elliot, Hannah Briers

and Charlotte Brannigan, who make sure our labs keep running. Thanks, Alison

Edmonds, Christine Vis and Rachel Crooks for your administrative assistance.

I am very grateful to Consejo Nacional de Ciencia y Tecnología, CONACyT-México

for  the  financial  support  received  through  the  scholarship  Reg.  183392 and  to

Secretaría de Educación Pública (SEP) for complementary funding.

I would like to thank past and present members of the Green Chemistry group, in

particular to Helen Parker, for all your support and advice since my arrival at York. I

also thank Sasha, Rob, Lucie, Hemin, Abdul, Cheng, Maggie, Roy, Emma Coops,

Andy Marriott, Gareth, Peter, Jimbo, Nonti, Keisuke and Tabitha, for all the good-

bad-funny-stressful-happy times shared in labs, offices and abroad during this time.

Thanks to all my friends, for giving a special touch to my life. I especially thank my

best friend, Martha, for the many adventures we have shared during our PhD time

at York. Thanks to Manolo, Bere, Sam, Irma, Bárbara, Ana, Wera and Radek, for

always having time for me to chat and laugh; a special “thank you” goes to Daniel,

Gabo, don Gus, Andrés, Diana, Marcel, Nancy, Vicente, Alonso, Chukis and doña

Soco  for  cheering  me  up  via  internet.  Thanks  to  my  little  ones,  Greg,  Lucas,

Marianita,  Cannelle  and  Greyson  and  their  respective  parents  for  giving  me  a

“break from chemistry” to experience my maternal love. 

A huge “thank you” to my Abuelito Mágico, don Alfredo Buenfil, and his family, for

all your love and support during all these years; thanks for going that 4 th of August

2000 to find me at Pebá, offering me the opportunity to keep growing; who would

say we’d be at this stage? Thanks to my family, especially to my parents, Aurora

and Julio, for encouraging me to follow my ideas and dreams; to my loves Bere and

Zoe, who fill  my heart and make me very happy. Finally, thanks to Enrique, for

being my companion through the distance and the years.

21



Dedication

To all  the  honest  hard-working  Mexicans,  whose families  live  in  social  and

economic inequality. Although the way to succeed is tough, it is also possible.

22



Declaration

I hereby declare that the work presented in this thesis is my own, except where 

otherwise acknowledged, and has not previously been submitted for a degree at

this or any other university. 

23



24



Chapter 1

Introduction

25



26



1.1. Green chemistry, the approach to achieve sustainability

In recent times, a high concern has arisen into the concept of  sustainability,

becoming the centre of attention for all the actors in society: industry, research,

education, government and public in general.1 It was in the report “Our common

future”2 prepared  by  the  United  Nations  where  the  term  sustainable

development was first defined as: “Meeting the needs of the present generation

without compromising the ability of future generations to meet their own needs.”

Since  then,  a  combination  of  endeavours  from  scientists,  industrialists  and

governments have been channelled to make sustainability an achievable goal.

In the early 1990s, Paul Anastas throughout his work in the US Environmental

Protection Agency (EPA) created the concept of  green chemistry,  defined as

the ‘‘design of chemical products and processes to reduce or eliminate the use

and generation of hazardous substances”.3,4 As Sheldon5 remarks that does not

mean that research on green chemistry did not exist before the early 1990s,

solely that it did not have the name. 

Green chemistry contains in its definition the word “design” and how its inventor

has alluded through several of his publications on the topic,4,6,7 it necessitates

“the  conscious  and  deliberative  use  of  a  set  of  criteria,  principles,  and

methodologies”.  This  guide  is  provided  in  the  Twelve  Principles  of  Green

Chemistry (Figure 1.1.).

These principles sort the fundamental approaches taken to achieve the green

chemistry  goals of  benign products and processes, and have been used as

guidelines and design criteria by molecular scientists.6
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1. Waste prevention instead of remediation 

2. Atom efficiency 

3. Less hazardous/toxic chemicals 

4. Safer products by design 

5. Innocuous solvents and auxiliaries 

6. Energy efficient by design 

7. Preferably renewable raw materials 

8. Shorter syntheses (avoid derivatization) 

9. Catalytic rather than stoichiometric reagents 

10. Design products for degradation 

11. Analytical methodologies for pollution prevention 

12. Inherently safer processes

Figure 1.1. The twelve principles of green chemistry (paraphrased)5

Since  the  appearance  of  the  green  chemistry  principles,  there  has  been  a

significant growth in the volume and scope of green chemistry related research.

In his review in 2005, Clark8 already remarks the rising of local and international

initiatives to fund the area; as well the increasing appreciation of the value of

green chemistry  at  all  stages in the lifecycle from ‘‘cradle to grave’’ (Figure

1.2.).  Although  most  of  the  research  effort  had  been  centred  in  the

manufacturing  area,  at  the  time  some  other  stages  were  becoming  more

thoroughly  explored,  creating  optimism in  the  development  of  this  emerging

discipline.

Figure 1.2. Research progress in green chemistry (taken from Clark, 20068)
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The green chemistry strategy aims to achieve sustainability at  the molecular

level4 and  the  twelve  principles  of  green  chemistry  constitute  a  guiding

framework7 to  make  it  possible.  Then,  through  the  application  of  the  green

chemistry concept, the design of new chemical products and processes can be

accomplished, which maintain and improve our quality of life but with few/no

environmental impacts. However, we need to bear in mind, that a large impact

would be got when all aspects of the process life-cycle are embedded in the

green chemistry  concept:  from the raw materials  used to  the efficiency and

safety of the transformation, the toxicity and biodegradability of products and

reagents used. 

1.1.1. The green chemistry side of this project

The overall aim of this work is to apply the green chemistry concept to develop

strong solid-acid catalysts (Principle 9), based on renewable materials (Principle

7),  using  a  type  of  modified  starch  through  controlled  carbonization,

denominated Starbons® and described as “mesoporous materials”.9 This project

also involves the use of microwave chemistry like an alternative to conventional

heating as an approach to improve energy efficiency (Principle 6). One of the

important  aspects  of  this  research  was  not  only  the  synthesis  but  also  the

characterisation of the sulfonated Starbons®, prepared by conventional heating

and at  big  scale  (Chapter  2)  and using  microwave  irradiation  (Chapter  3),

providing  an in-depth  knowledge of  the  properties  of  these novel  materials.

Further characterisation related to the thermal stability of sulfonated Starbons®

is  presented  in  Chapter  4,  to  get  a  better  understanding  of  its  intrinsic

properties. Finally,  Chapter 5, deals with the evaluation of these materials in

esterification  reactions using  both  conventional  and microwave heating,  and

including pretreatment, reuse and leaching trials. As presented in  Figure 1.2.,

this project falls into the manufacturing research progress carried out in green

chemistry, according to Clark,8 as it combines the use of recyclable catalysts

and microwaves in the production of chemicals from platform molecules, like

levulinic acid.
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Maybe not completely green? It is worth mentioning at this stage, that sulfuric

acid  was  used  for  sulfonation  of  materials,  despite  the  fact  of  its  hazards,

although it should also be borne in mind that is cheap, readily available10 and

sulfur reservoirs are not at risk of depletion.11 In addition sulfuric acid possesses

a high ability  to  create efficient  active solids.12 However, proposals to  move

toward a greener process include the change of origins and quantities of sulfuric

acid. Then, in this new approach, the sulfuric acid used was a commercial one

with 95 % purity against 99.999 % used in previous synthesis;13,14 as well, the

ratio of material used is 1 g of solid to 7 mL of sulfuric acid (1:7), decreased

compared with previous syntheses in which the ratio used was 1:10.13,14 These

attempts were also combined with the successful demonstration that recovery

and reuse the sulfuric acid in the preparation of more sulfonated Starbons®  is

possible and leads to active catalysts.

1.2. Heterogeneous catalysis, as a green chemistry operational tool

In fact, as far as chemistry is concerned, catalysis is the key to sustainability,  it

has been regarded as the “pillar of green chemistry”15 because its potential to

achieve both economical and environmental goals.16 Heterogeneous catalysis

covers  all  the  cases  where  the  catalyst  and  the  substrate  are  in  different

phases. However, when chemists refer to heterogeneous catalysis, they usually

describe a system where the catalyst is a solid and the reactants are (most

often) gases or liquids.17 It has been already mentioned that green chemistry

attempts to get optimized processes, this could be accomplished through the

replacement  of  stoichiometric  methodologies  with  green  catalytic

alternatives,5 as  pointed  out  in  the  twelve  principles  guidelines.  Among  the

desirable characteristics of  a catalyst  we can enumerate its activity, stability,

insolubility and ease to be recovered.10,16 Then, in a solid-liquid interaction, the

catalyst (solid) could be easily removed from mixture and reused over and over

(Figure 1.3.).
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Figure 1.3. Easy recovery of a solid catalyst (adaptation from Clark, 200210)

1.2.1. Solid-acid catalysts

Use of acid catalysts is widespread, as it can be applied in all sectors of the

chemical, pharmaceutical and associated industries, as well the largest scale

use is in the petrochemical  industries where the processes are largely quite

efficient  and  the  use  of  solid-acid  catalysts,  mainly  zeolites  is  well

established.10,12 Among the solid acids, we can find mixed oxides such as silica–

alumina and sulfated zirconia, acidic clays, zeolites, supported heteropolyacids,

organic ion exchange resins and hybrid organic–inorganic materials such as

mesoporous oxides containing pendant organic sulfonic acid moieties.18 Thus,

sulfonated Starbons® will  fall  in the latter category. The conversion reagent–

products over solid acids used as catalysts represents a convenient choice to

replace  conventional  processes  carried  out  in  concentrated  aqueous  acid

solutions, as they are considered not to be environmentally friendly; they are

difficult  to  separate  from the  organic  products  and  their  use  leads  to  large

volumes  of  hazardous  waste.10 In  addition,  an  aqueous  work-up  for

esterification can lead to hydrolysis of the product, then a dry agent is needed;

increasing the steps and materials for purification. Also, the recovery of catalyst

requires purification or concentration, which often is difficult and wasteful.

Then recyclable solid-acid catalysts can eliminate hazardous waste associated

with conventional acids, giving the opportunity to achieve sustainability through

the  green  chemistry  principles.  Just  as  it  was  mentioned  above,  there  are

several types of known solid inorganic acids amongst which we find sulfated
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zirconia, which is very widely applied and has been extensively studied due to

its acid strength, in spite of the microporosity characteristic of the material;19–

21 as well, the use of sulfonic silicas in catalysis have emerged like a way to

develop efficient and recyclable solid catalysts,20,22 although their preparation

could be very costly.23 However, the present study focuses more on carbon-

base acid catalysts which is presented next.

1.3. Carbon-based acid catalysts

1.3.1. The “sugar catalyst”

In this section, a short review about some carbonaceous solid-acid catalysts

developed recently is presented. In 2004, Hara et al24 reported  the  preparation

of  a  strong  solid  acid  obtained  through  the  incomplete  carbonization  of

sulfoaromatic  hydrocarbons,  resulting  in  small  polycyclic  aromatic  carbon

sheets,  with  attached  sulfonic  groups  (~SO3H).  This  carbon-base  catalyst

exhibited a remarkably high-content of acid sites and high activity, comparable

to sulfuric acid,  although very low surface area. In spite of  its high catalytic

activity, it is worth mentioning some drawbacks from this approach, as the use

of  petroleum-based  materials  such  as  naphthalene;  as  well  the  high

temperature of sulfonation (200 to 300 °C),  compared with our approach, in

which we use bio-based starting materials, commercial H2SO4 acid (95 % purity)

and lower temperatures in the sulfonation process.

In  2005,  the  sugar  catalyst  made  its  first  appearance,25 in  this  work  the

preparation of a carbon-based solid acid was carried out using D-glucose as

precursor,  again  the  approach  consisted  in  the  partial  carbonization  of  the

precursor followed by its sulfonation with sulfuric acid at 150 °C (Figure 1.4).
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Figure 1.4.  Schematic representation of preparation of sugar catalyst (from  Toda et
al25)

The surface area obtained for this material was even lower (<2m2g-1) than that

reported for the past carbonized materials (<24m2g-1).24 This time, the authors of

the  sugar  catalyst,  claimed  to  have  obtained  very  stable  and  high  activity

catalyst, as well as high recyclability. We are going to see further, that other

researchers  attributed  this  high  activity  to  the  leaching  of  sulfonic-aromatic

groups from the materials.26 In  the subsequent  years of  its appearance,  the

sugar  catalyst  has  undergone  some  modifications  like  the  temperature  of

carbonization of the D-glucose precursor or the sulfonation process;27,28 further

developments  include  the  switch  to  cellulose  as  starting  material;29 and

subsequently, the use of wood powder with other materials as ZnCl2, to prepare

another  kind of  carbon material.  This  new material  was shown to  be highly

porous,  representing  an  improvement  in  the  synthesis30 of  the  sulfonated

material,  in  which  fuming sulfuric  acid  (15  % SO3)  was used.  Although this

methodology could be very effective to bond sulfonic groups to the materials, it

is worth pointing out the hazard of its manipulation. Another approach proposed

by Hara's group to create very efficient solid-acid carbon catalysts consisted in

using  as  precursors  resorcinol  and  a  formaldehyde solution  to  form  an

aerogel.31 This method improved the porosity of the obtained material, but it is

worth mentioning that this design uses benzene derivatives and formaldehyde,

a carcinogenic compound; in addition, the quantity of sulfuric acid used was

astonishingly high:  4.0 g of solid and 200 mL of fuming H2SO4  (15 % SO3),

making this process a bit far from the green chemistry concept. At this point, it is

worth  asking  how much can we sacrifice  to  get  “very  efficient”  materials  in

exchange for not providing environmentally friendly initiatives? We should bring

back  the  twelve  principles  of  green  chemistry  to  re-evaluate  whether  our

strategies to achieve sustainability are consistent.
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The use of D-glucose as starting material for the creation of solid acids based

on the sulfonation of amorphous polycyclic carbons, caused great interest to

scientific community that some other investigations were carried out afterwards.

For example, the preparation of a “very strong” sugar catalyst carbonized at 400

°C, which after sulfonation with sulfuric acid, showed that can be used up to 50

cycles in the esterification of oleic acid.32 

Another  study  suggested  the  use  of  other  sulfonating  agents  such  as  p-

Toluenesulfonic acid (p-TSA),33 although the material seems to be very efficient

catalytically, its activity looks to be more related to the residues of p-TSA on the

material than to sulfonic groups attached, because the analysis of the sample in

the infrared spectra showed bands associated specifically to p-TSA.34–36 Another

draw back  from this  proposal  is  related  to  the  fact  of  preparing  p-TSA,  as

precursors involved will be toluene (petroleum based material) and sulfuric acid.

One  more  methodology  recommended  consisted  of  using  a  mixture  of  D-

glucose and starch in aqueous solution,37 which was carbonized at 400 °C after

24 h of repose. Afterwards, the resulting black solid was sulfonated with sulfuric

acid  (>98 %)  at  150–160 °C for  5  hours.  Although the  materials  presented

modest catalytic activity and it was noticed that deactivation when increasing

the cycles of the esterification of oleic acid with methanol, it is worth pointing out

that these authors suggested to reactivate their catalysts using more sulfuric

acid solutions (5 % and 98 %). This methodology invites to bring up our 12

principles of green chemistry, is it a good idea to use more and more sulfuric

acid?

Other  types  of  sulfonated  carbons  have  been  also  proposed  as  potential

materials to replace traditional liquid acids. These materials include sulfonated

activated carbon,38 this research proposed another way to carry out sulfonation,

through  a  reduction  process  with  4-benzene-diazonium  sulfonate  salts  and

hypophosphorous acid (H3PO2). Although the materials showed high activities

during first runs, the authors suggests to reactivate the materials with sulfuric

acid,  just  like previous case.37 Another  synthesis,  which use this  sulfonating

agent, 4-benzene-diazonium sulfonate salts, was the preparation of sulfonated
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graphene,39 in this investigation, the materials obtained seem to be very active

to hydrolysis reactions and keep their activity through several cycles (>5). In

contrast to the previous methodologies, the reactivation with sulfuric acid was

not  needed.  Finally, another  interesting  approach  to  create  a  carbonaceous

solid acid catalyst was using lignosulfonate, waste of paper-making industry, in

a reaction with sulfuric acid.40 This new catalyst tested in esterification reactions,

presented activities comparable to the resin Amberlyst-15, a well-known acid

catalyst. 

1.3.2. Porous catalysts

A porous material is a solid matrix composed of an interconnected network of

pores (voids), filled with a fluid (liquid or gas). These kind of materials provide

higher surface areas within pores, allowing high interaction between the solid

and its surroundings. Another intrinsic characteristic is their volume ratio, which

is related to the diffusion process that takes in place into the materials, this is

driven by the pore size. 

According to the International Union of Pure and Applied Chemistry (IUPAC),

porous materials are divided into three classes41 which are summarized in Table

1.1.

Table 1.1. IUPAC pore size classification 

Pore type Size (nm)

Micropores < 2

Mesopores 2 – 50 

Macropores > 50

As mentioned previously, heterogeneous catalysis can play a key role in the

development of environmentally benign processes; so, the search for efficient

solid catalysts is fundamental. Although, zeolites are very popular due to their

highly  ordered  structure  and  excellent  thermal  stability,  some  of  their

applications are limited because of their microporosity; as presents high surface
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area  but  diffusion  into  the  small  pores  makes  harder  the  interaction  of  the

molecules. Then, in this respect, ordered mesoporous catalysts could open the

door for new catalytic processes.42 As mesoporous materials, are more suitable

for liquid-phase applications, because their pore size allow access to specific

active sites and provide efficient diffusion/mass transfer of liquid phase analyte

and sustrate.43

One example of these materials are the ordered mesoporous carbons, in which

there is an increasing interest because of their potential applications. Several

strategies have been proposed for preparation of these ordered mesoporous

carbons prepared  by  controlling  carbonization44,45 materials  which  could  be

modified to solid acids later. Two typical methods for the preparation of ordered

mesoporous carbon materials are presented below in Figure 1.5. showing the

silica hard templates and the use of copolymers.

Figure 1.5. Two typical methods for the preparation of ordered mesoporous carbons44

Although  these  methodologies  give  some  advantages  like  tunable  porosity,

uniform pores and high surface they also present some disadvantages as the

use of  expensive  silica  sources23 or  the  use of  hydrofluoric  acid  to  remove

silica45 and in general, the use of several steps and reagents to prepare the

material. 
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Research associated with the use of silica supports in the preparation of solid

acids was applied to the synthesis of sulfonated carbon nanocages,46 materials

which possess high surface area and highly ordered mesopores. Despite the

fact that sulfonated carbon nanocages present relatively high catalytic activity

and reusability, their preparation including several steps and sulfonation was

carried out using benzene-sulfonic reagents, materials coming from petroleum

sources.  Active  solid  acid  catalysts  using  ordered  mesoporous  carbons  as

precursor has been also proposed by Xing et al. In this approach the sulfonation

was  carried  out  through  vapour-phase  transfer  using  sulfur  trioxide.  These

materials presented high catalytic activity and reusability in the condensation of

bulky molecules such as benzaldehyde and ethylene glycol.23 

As  it  is  presented  above,  ordered  mesoporosity  on  carbons  is  a  desirable

characteristic, which could be achieved through the use of silica supports or

templates,44 however, most of these methodologies require of several steps in

the  preparation,  energy  consumption  to  remove  templates,  generating

unnecessary waste,47 getting us away from the green chemistry concept. 

1.3.3. Sulfonated Starbons®, a mesoporous biobased alternative

In 2006, Budarin  et al reported a novel approach for the generation of a new

family  of  mesoporous  carbonaceous  materials  with  surfaces  ranging  from

hydrophilic to hydrophobic, which is controlled by the degree of carbonization9.

The strategy consisted in  synthesizing  mesoporous carbonaceous materials,

called  “Starbons®”, using  mesoporous  expanded  starch  as  the  precursor

without the need for a templating agent.48 A schematic representation of the

methodology is presented in Figure 1.6. First, a simple process of gelatinization

in water opens up and disorders the dense biopolymer network, after which it

partially recrystallizes during a process of retrogradation. Exchanging water with

ethanol prevents collapse of the network structure during the drying process.

After drying, the expanded mesoporous starch is obtained. In the final stage of

the  process,  mesoporous  starch  is  doped  with  a  catalytic  amount  of  p-

toluenesulfonic acid and heated under vacuum. This enables fast carbonization

and  fixing  of  the  mesoporous  structure.  Heating  at  different  temperatures,
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ranging from 150 to 800 °C produces a variety of mesoporous materials from

amorphous carbons to graphite-like activated carbons. 

Since their discovery, the method for preparing Starbons® has been very well

explored  and  the  resulting  materials  characterised.  Through  this  way,  the

elemental  composition  dependency  from the  carbonization  temperature  was

found, the starch-like material at low temperatures switches to graphitic-like at

high temperature of carbonization.9  It is worth mentioning that at the beginning,

these procedures were carried out at scale of some grams and using a kind of

starch identified as Hylon starch.

Figure 1.6. Schematic representation of Starbons® preparation

Growing interest in moving the preparation of Starbons® from lab-bench scale to

industrial scale, motivated the synthesis of the materials used and characterised

in this project. How will our Starbons® change?

Then, it is important to mention that the main variations from previous Starbons®

include the use of a different starting material: Cleargum starch. According to

Shuttleworth,49 Cleargum starch differs from Hylon starch in the percentage of

amylose; as the later contains 70 % of amylose and the former, contains, 27 %.

Cleargum starch,  this  material  also  received  an  acidic  treatment  before
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gelatinisation. The preparation of the mesoporous starch carried out at Contract

Chemicals Ltd., Knowsley (>100 kg) and the large scale carbonization (over 10

Kg) at 300°C, 400°C and 800 °C done at Nabertherm, Germany. The 300, 400

and 800 materials were examined “as received” and the other Starbons® were

prepared from these by lab-scale carbonization of the 300 to produce 350 and

400 for further temperatures (Figure 1.7.). This carbonization was done under

nitrogen flow (100 mLmin-1), using over 50 g of starting material, this approach

is also significantly different from previous synthesis, where carbonization was

done in the scale of few grams.

Figure 1.7. New range of carbonized Starbons®

To keep the scale-up approach, sulfonation of  Starbons® was carried out at

higher proportions using over 80 g of these carbonaceous materials, compared

with  small  quantities  prepared  previously.13,14 Other  modifications  in  the

preparation  of  sulfonated  Starbons® were  the  suppression  of  “conditioning

steps” with toluene after sulfonation, trying to get a greener method, bearing in

mind the green chemistry concept, so it was intended to decrease the number

of reagents and steps in preparation and to eliminate some toxic components.

As mentioned initially, our sulfonation was carried out using a higher ratio of

Starbon® to acid, so the proposed proportion was 1 g Starbon®: 7 mL H2SO4 (95

%), using less pure sulfuric acid that before (99.999 %),13 it is important to point

out that further reduction in acid content led to mixtures which were very difficult
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to stir.

With this switch to a scale-up approach and the above mentioned changes, we

intended with the realization of this work to carry out a re-discovery of Starbons®

and sulfonated Starbons®, through their characterisation and tests on catalysis

applications.  This  was done,  keeping in  mind that,  because of  their  nature,

Starbons® have  shown  to  be  versatile  materials,  with  tuneable  surface

properties, not only related to porosity characteristics related, but also to the

several functional groups present on the materials.

The move towards more environmentally sustainable approaches in chemical

processes, have stimulated the use of recyclable solid acids,50 in this approach

sulfonated Starbons® emerge as good candidates to be used.

1.4. Microwave chemistry

The  use  of  microwaves  as  an  energy  source  for  chemical  reactions  and

processes has been extensively investigated during recent years,51 indeed, the

technique was nominated as the “Bunsen Burner of the 21st century”.52 Among

the most common benefits claimed due to the use of microwaves in assisted

synthesis  we  find:  very  rapid  reactions,  in  many  cases  during  just  a  few

minutes,  because  of  high  and  heterogeneous  temperatures  and  possibly

combined with pressure effects (if  reaction occurs in closed vessels);  higher

degree of purity achieved due to short  residence time at high temperatures;

yields  often  better,  obtained  within  shorter  times  and  with  purer

products.53 Microwave  irradiation  was  used  for  the  synthesis  of  sulfonated

Starbons® (Chapter 3) as well as for the evaluation of the sulfonated Starbons®

in esterification reactions (Chapter 5). 

1.4.1. What are microwaves?

Microwaves are a form of electromagnetic radiation that belongs to the lower

frequency end of the electromagnetic spectrum, the frequency range of which is

defined from 300 to about 300 000 megahertz (MHz)54,55 (Figure 1.8). The most
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usual frequency used in industrial, medicinal, domestic or scientific applications

has been prescribed by international  legislation51,53,56 and corresponds to the

value of 2450 MHz (or  2.45 GHz), with a wavelength of 12.2 cm.

Figure 1.8. Electromagnetic spectrum

1.4.2.  Microwave heating

Heating of materials exposed to microwave irradiation results from the material-

wave interaction, as well as the capacity of some materials (liquids and solids)

to transform electromagnetic energy into heat.53,57 Transformation into heat of a

part  of  the  energy  contained  in  the  microwaves  is  called  dielectric

heating.51,55 According to Loupy, the physical origin of this heating conversion is

related to the ability of the electric wave component to induce polarization of

charges within the heated product.58 As the reversals of the electric field are

faster than the polarization of the molecules, this process induces stirring and

friction on molecules, promoting heating of the irradiated media.53,58

There are two principal mechanisms through which microwave dielectric heating

is generated: the dipolar polarization and the ionic conduction.55,59 These two

mechanisms  are  presented  in  Figure  1.9.  In  the  dipolar  polarization
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mechanism, the heat is generated through the interaction of the waves with the

substance which must have a dipole moment.  Polar molecules placed in an

electric  field,  become  aligned  to  the  field;  when  the  electric  field  starts

oscillating, the molecules begin to align and realign, creating an internal friction

and  then  internal  heat.55,58 The  ionic  conduction  mechanism,  requires  the

presence of free ions or ionic substances, the heat is generated by the motion

of the ions in the material  as they try to orient themselves to the oscillating

applied field.55 From this information it is inferred that non-polar molecules such

as  toluene,  carbon tetrachloride,  diethyl  ether  and benzene  are  microwave-

inactive, while polar molecules such as H2O, methanol, ethanol acetonitrile and

CH2Cl2,  are  microwave-active,  remembering  that  polar  molecules  can  align

themselves with the electric field.56

Dipolar polarization mechanism Ionic conduction mechanism

Heat  generated  by  the  rotational
movements  of  molecules  during
matter-wave interaction

Heat  generated  by  the  motion  of
ions/ionic material during matter-wave
interaction

Figure  1.9.  Microwave  dielectric  heating:  dipolar  polarization  and  ionic  conduction
mechanisms55

1.4.3. Microwave irradiation vs conventional heating

In general, chemical synthesis has been done through conductive heating using

an external heat source. However, this approach has shown to be slow and

sometimes has been considered inefficient. Microwave heating is different from

conventional heating,60 as was mentioned above, the interaction between the

electromagnetic wave and the irradiated medium produces the heat in medium.

So,  a  fundamental  difference  between  microwave  and  conventional  heating

could be pointed out: in conventional heating heat energy is transferred to the
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material through convection, conduction and radiation of heat from the surfaces

of the vessel, in other words, heat transfers take place from the heating device

to  the  medium;  while  in  microwave  heating,  heat  is  spread  inside  of  the

irradiated medium, through molecular interaction with the electromagnetic field

(Figure 1.10). Then, in conventional heating heat transfers depend on thermal

conductivity, on  the  temperature  difference  from the  heating  medium to  the

vessel walls and finally to the solution being heated, as well as on convection

currents, this causes that temperature increment to often be slow. In microwave

heating, the conversion of electromagnetic energy to thermal energy is through

direct interaction of the incident radiation with the molecules of the material, it is

a  mass  heating,  then  heat  goes  from  the  medium  to  the  outside.  In  this

approach the  important  parameters  are the microwave power used and the

dipolar characteristics of the irradiated material, then much faster temperature

increases can be obtained.60,61

Figure 1.10. Schematic representation of sample heating by conventional heating and
using microwaves (adaptation from Hayes, 200254)
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1.4.4. “Microwave activation”, “hot spots” and “super-heating effect” 

At this stage it is worth referring to terms associated with microwaves. One of

them  is  the  term  “microwave  activation”,  which  does  not  refer  to  a  "direct

molecular  activation",  because  of  the  microwave  irradiation.60 Here  it  is

important  to  mention  the  corresponding  energy  for  the  microwaves  with

frequencies 300 MHz and 300 GHz which result in 1.24 × 10 -6 and 1.24 × 10-3

eV, respectively. These energies are much lower than typical ionization energies

of biological compounds (5 eV), of bond energies (5 eV), and even lower than

hydrogen bonds (2.10 eV), van der Waals intermolecular interactions (2 eV); so

molecular  transformations  because  of  the  microwave  interactions  should  be

discarded.58,60

As microwave heating does not depend on thermal conductivity of the vessel

materials, the distribution of the heat is heterogeneous and the creation of local

“hot  spots”  may  occur  if  the  heat  generation  is  faster  than  heat

distribution.58,60 The  hot  spots  then  can  become  the  “super-heating  effect”,

describe  as  local  overheating.51 This  difference  in  the  way  how  energy  is

delivered in microwave heating, makes microwaves attractive to explore in the

processing of materials and synthetic transformations. 

1.5. Analytical techniques

A brief  review  is  given  for  some  of  the  analytical  techniques  employed  in

characterisation  of  the  materials  synthesized  as  well  in  the  analysis  of  the

products obtained in reactions carried out in this work. Specific details of the

measurements are presented in the Experimental section in Chapter 6.

1.5.1. Infrared spectroscopy, attenuated total reflectance (ATR-FTIR)

In the infrared spectroscopy technique, samples are exposed to infrared (IR)

radiation.  Molecules  with  covalent  bonds  may  absorb  IR  radiation.  This

absorption  is  quantized,  then  only  certain  frequencies  of  IR  radiation  are

absorbed; when radiation is absorbed, the molecule moves to a higher energy
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state. The energy associated with IR radiation is sufficient to cause molecules to

rotate (if possible) and to vibrate. The energy required for causing a change in

the rotation level is smaller than the one required for causing a change in the

vibration level,  then each vibrational  change has multiple rotational  changes

associated with  it.  Therefore, gas phase IR spectra consists  of   a series of

discrete lines;  as free rotation does nor  occur  in condensed phases,  the IR

absorption  spectrum  for  a  solid  or  liquid  is  composed  of  broad  vibrational

absorption bands. In this project,  both gases and solids are analysed by IR

spectroscopy, in  a  wavenumber  range  which  corresponds  to  the  mid-region

from 4000–400 cm-1. Molecules absorb radiation when a bond in the molecule

vibrates at the same frequency as the incident energy; once the molecules have

absorbed the energy, they have more energy and vibrate at higher amplitudes.

The frequency absorbed depends on the masses of the atoms in the bond, the

geometry of the molecule, the strength of the bond, and several other factors.

Not all molecules can absorb IR radiation. The molecule must have a change in

dipole moment during vibration in order to absorb IR radiation.  Then, different

functional groups absorb characteristic frequencies of IR radiation, this will allow

the structural elucidation and the possible compound identification.34,62,63

In the attenuated total reflectance (ATR) approach, the IR travels throughout an

optical element of high refractive index, called ATR crystal until it reaches the

sample (of low refractive index). From this interaction two phenomena can be

distinguished: a complete reflection of radiation (1), that means sample does

not absorb any of the input radiation; alternatively, if the sample absorbs part of

the radiation, then IR is attenuated at the frequency where the sample absorbs

(2).  These  processes  are  related  to  the  angle  of  incidence  between  the

interaction  of  the  beam  and  sample.62,63 Schematically  ATR  analysis  is

presented in Figure 1.11. 
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Figure 1.11. Schematic diagram of multiple reflection in an ATR system

1.5.2. Porosimetry characterisation

1.5.2.1. Type of isotherms

Porosimetry  analysis  is  an  important  technique  which  provides  information

related to surface properties of solid materials,  such as surface area, pore size

and  pore  volume.  This  analysis  was  done  for  the  prepared  sulfonated

Starbons®. The most common approach utilizes nitrogen adsorption at boiling

temperature (77 K) to determine surface area and textural properties. The first

approximation  in  the  identification  of  the  “type”  of  material  is  given  by  its

isotherm. According to the IUPAC41 there are six types of isotherms, but the

mostly common found in catalysts are four,64 presented below in Figure 1.12. 

Figure 1.12. Adsorption isotherms commonly found in catalysts
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As shown in  Table 1.1. there are different pore sizes, then the shape of the

isotherm obtained during adsorption of  nitrogen by the material  will  indicate

what kind of pores are present on the sample. Type II isotherm corresponds to

macroporous solids, in which it is observed that at low relative pressure, the

formation of a monolayer of adsorbed molecules is the prevailing process; while

at  high  relative  pressure  a  multilayer  adsorption  takes  place,  the  amount

adsorbed increases gradually as the relative pressure increases, although the

multilayer buildup close to the saturation vapor pressure may be quite abrupt. In

this  case,  the adsorption and desorption branches of  the isotherm coincide,

there  is  no  hysteresis.  In  isotherm  type  IV,  the  adsorption  proceeds  via

multilayer adsorption followed by capillary condensation; the adsorption process

is initially similar to that on macroporous solids, but  at higher pressures the

amount  adsorbed  rises  very  steeply  due  to  capillary  condensation  in

mesopores.  After  these  pores  are  filled,  the  adsorption  isotherm levels  off.

Capillary condensation and capillary evaporation often do not take place at the

same pressure, which allows the appearance of hysteresis loops. Isotherm type

I, corresponds to microporous solids; in these materials, the adsorption takes

place  also  at  very  low relative  pressures  because  of  the  strong  interaction

between pore walls  and adsorbate.  Pore filling takes place without  capillary

condensation in  the low relative pressure region (<0.3),  then the monolayer

formation  is  not  distinguishable.  The  type  VI  isotherm  represents  stepwise

multilayer  adsorption  on  a  uniform  non-porous  surface  or  it  has  been

suggested, corresponds to materials which contain ultramicropores (pore size

<0.7  nm).64 The  step-height  represents  the  monolayer  capacity  for  each

adsorbed layer and, in the simplest case, remains nearly constant for two or

three adsorbed layers.41,64,65Then for mesoporous materials, as our Starbons®,

the expected isotherm corresponds to the type IV. 

1.5.2.2. Type of hysteresis

Adsorption on mesoporous materials occurs via multilayer adsorption followed

by capillary condensation.65 Ideally a reversible process will be expected in the

adsorption–desorption process, but in mesoporous materials there are delays in

the processes causing the formation of hysteresis. This characteristic could be
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related to the shape of pores or the porous network present in the materials

(Figure 1.13).  Types H1 and H2 hystereses are characteristic of  solids with

aggregates  or agglomerates of spheroidal particles. These hysteresis are as

well assigned to cylindrical or ink-bottle shaped pores. If the pores have uniform

size  and  shapes  corresponds  to  type  H1;  if  there  are  non-uniform  then

corresponds to H2.41,65 Most mesoporous carriers and catalysts present these

types of hystereses.64 While hystereses Type H3 and H4 are associated with

agglomerates or aggregates of particles forming slit  shaped pores (plates or

edged particles like cubes). If size and shape are uniform we have type H4 if

they are not uniform, hysteresis corresponds to type H3.41,65 Common materials

with these characteristics are active carbons and zeolites.64

Uniform Non-uniform Non-uniform Uniform

Cylindrical pores   ink-bottle shaped Slit-shaped pores

Figure  1.13. Classification  of  adsorption-desorption  hysteresis  loops  and  its
association with pores shapes

1.5.2.3. Surface area determination, BET calculation

The  Brunauer-Emmet-Teller  (BET)  method  is  a  widely  employed  procedure

used to evaluate specific surface area of a solid material. It is based on the

evaluation of the monolayer capacity (nm),  which is the number of  adsorbed

molecules in the monolayer on the surface material. This approach utilizes gas
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adsorption experimental  data and fitting these values into  the BET equation

(Equation  1.1.).  The  plot  of  relative  pressure  (p/p0)  against  the  quantity  of

molecules adsorbed at certain relative pressures gives a straight line with slope,

m  and  intercept,  b.  From  these  values,  the  monolayer  capacity  could  be

obtained as well, the constant C, related to enthalpy energy of the adsorbate on

the solid.66

p / p0

n(1−p / p0)
=

C−1
nmC

p
p0

+
1

nmC

Equation 1.1.  BET equation and its linear approach; n, amount of gas adsorbed at
relative pressure, p/p0; nm is the monolayer capacity and C is dimensionless constant66

Thus,  specific  surface  area,  S  can  be  calculated  (Equation  1.2.)  once  the

monolayer capacity is obtained, this is multiplied by the cross-sectional area (a)

of the adsorbed molecule in the monolayer on a given surface . In the case of

nitrogen (N2), the accepted cross-sectional area64,66 is 0.162 nm2. 

S=
nm N a

mx 22400

Equation 1.2. Determination of specific surface area BET equation; where nm is the
monolayer  capacity;  N,  Avogadro  number,  a,  is  the  cross-sectional  area  of  the
adsorbed molecule; m, mass of sample; 22400 is the volume (mL) of occupied by a
gas at STP.

It is worth mentioning that BET calculation was used to determine the surface

area of the materials presented in this thesis.
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1.5.2.4. Pore size distribution, BJH method

The method of Barrett-Joyner-Halenda (BJH) was used in the characterization

of the materials analyzed by porosimetry in this work. This method is widely

used  in  calculation  of  pore  size  distribution  on  mesoporous  materials.  The

model is based on the Kelvin equation (that relates vapour pressure depression

to capillary radius); the BJH method proposes that adsorption in mesopores of a

given size occurs as multilayer adsorption, followed by capillary condensation at

a specific relative pressure. Capillary condensation is a process seen as filling a

pore core, that is, space which is not occupied by the multilayer film on the pore

walls.  The  desorption  is  illustrated  as  capillary  evaporation  at  a  relative

pressure. The capillary evaporation consists in emptying of the pore core but

maintaining the multilayer film, followed by thinning of the multilayer.65 (Figure

1.14.).  It  is worth mentioning that this approach assumes a geometric model

cylindrical or slit pores.64

Schematic
representation
of a cylindrical

pore

Monolayer
formation

Multilayer
formation

Capillary
condensation

Capillary
Evaporation

Figure  1.14.  Schematic  representation  of  the  adsorption-desorption  process  in
mesopores 67,68

To obtain  the  pore  size  distribution  using  BJH  method,  a  graphical  plot  of

dV/dlog(r)  versus pore diameter (r)  is  used, where dV/dlog(r)  represents the

differential  of  the  volume  adsorbed  as  function  of  pore  size  (r).  The  semi-

logarithmic approximation is often used when the pores have wide distribution

(e.g. from 2 to 100 nm).
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1.5.3. X-ray photoelectron spectroscopy (XPS)

XPS also known as ESCA (Electron Spectroscopy for Chemical Analysis) is a

technique used to characterize material surfaces. The method consists in the

bombardment of the surface with X-rays resulting in the ejection of electrons

from the atoms located on the surface (Figure 1.15). These emitted electrons

are subsequently separated according to their energy and counted. The energy

of  photoelectrons  is  related  to  their  atomic  and  molecular  environment,

providing  information  about  the  oxidation  state  of  the  atom  where  it  is

originated; as well as details about the bonded atoms. The quantity of electrons

emitted is related to the concentration of the emitting atom. The XPS spectrum

is a plot of  the number of  emitted electrons per energy interval versus their

binding  energy, this  allows the  identification of  the  elements  present  on  the

surfaces.62,63,69

(a) Surface under ultra high vacuum 
environment is irradiated by X-rays and 
emission of electrons from surface atoms

(b) X-ray photon transfers its energy to a
core-level electron, which is enough to be

ejected from the atom

Figure 1.15. Diagram of photoelectrons production in the XPS analysis

Then,  the basic XPS analysis  of  a surface can provide both qualitative and

quantitative  information  of  the  elements  which  compose  the  material.  This

technique was used to characterise the surface of Starbons® and sulfonated

Starbons® prepared during the development of this project.

1.5.4. Nuclear Magnetic Resonance 

Nuclear magnetic resonance (NMR) spectroscopy is a technique that  allows

identification of the different chemical environments of the NMR-active nuclei
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present in a molecule, providing information about the shape and structure of

molecules. This technique is classified as an absorption method, this means a

sample can absorb electromagnetic radiation under appropriate conditions in a

magnetic field. Absorption is a function of certain nuclei in the molecule. These

nuclei rotate about an axis (Figure 1.16.) and therefore have a nuclear spin,

represented as I, the spin quantum number. In addition, nuclei are charged. The

spinning of a charged body produces a magnetic moment along the axis of

rotation. For a nucleus to give a signal in an NMR experiment, it must have a

non-zero  spin  quantum number  and must  have a magnetic  dipole  moment.

Among the common nuclei analysed we find 1H and 13C. The NMR spectrum is

formed by a plot of the frequencies of the absorption versus peak intensities.

Because  the  spread  of  frequencies  is  caused  by  the  different  chemical

environments, the signals are described as having a chemical shift from some

standard frequency.34,62,70

Figure 1.16. Spinning charge on nuclei generates magnetic dipole

1.5.4.1. Solid-state NMR, Cross-Polarization (CP)/Magic Angle Spinning(MAS) 

Broad  lines  are  observed  in  the  NMR  spectra  of  solid  samples,  this

phenomenon can be attributed to two principal factors: chemical shift anisotropy

and dipolar couplings. The first one is related to the spatial orientation of the

molecule,  which  in  a  powder  or  non-crystalline  material  occurs  in  all  the

directions possible,  affecting the observed chemical  shift.  The second factor

refers to the inter- and intra-molecular spatial interaction between two nuclei.
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These broad lines can be narrowed with the use of high-resolution techniques

as Magic Angle Spinning (MAS) and Cross-polarization (CP). In general, NMR

properties of a molecule are tensor properties. That means, their value depends

upon the spatial relationship of the molecule to the applied magnetic field. As

such, each property can be described using three principal components, plus

three  angles  to  specify  the  orientation  of  the  molecule  within  the  applied

magnetic  field.  For  all  such  interactions,  the  magnitude  of  the  interaction

depends upon (3cos2 – 1), where   is the angle between the magnetic field

and a significant molecular direction. In the liquid state, fast isotropic molecular

tumbling causes (3cos2 – 1) to go to zero, so that no anisotropic interactions

are present. In the solid state, these interactions can dominate the observed

spectrum. Then MAS approach, involves spinning the sample about a particular

axis  at  very  fast  speeds.  Taking  into  account  that  anisotropic  interactions

depend upon the term (3cos2 – 1), these interactions can go away, simply set

this mathematical expression equal to zero, and solve for the angle . The result

is 54.74°, which is called the ‘‘magic angle” (Figure 1.17.). Effectively the fast,

random tumbling of molecules present in solution is artificially reintroduced for

solids using this technique. In practice, the spinning rate of the sample about

the magic angle needs to be fast relative to the observed static line width of the

sample, then, if the observed anisotropic line width is 20 kHz, then the sample

must spin faster than 20 kHz.71

Figure 1.17.  Magic angle spinning (MAS) diagram. Bo represents the direction of the
magnetic field. The sample rotor is rotated rapidly at a velocity, vr, and an angle,  ,
relative to the magnetic field. The angle is set to 54.74°

The strong dipolar coupling between protons and carbons could be overcome

using cross-polarization.  The fundamental  strategy behind CP is  to create a
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very large amount of magnetization by irradiating a group of high abundance

nuclei, typically protons, and transferring this magnetization to a group of low

abundance nuclei, typically carbon in order to increase the magnetization and

thus the observed signal intensity of the low abundance nuclei.62,71,72 In practice

CP is achieved using a pulse sequence (Figure 1.18.). This shows the case for

protons as the high abundance nuclei and carbon as the low abundance nuclei.

First  a  standard  90°  pulse  is  applied  to  the  protons  to  create  the  initial

magnetization. Then a pair of special spin-locking pulses is applied. This pair of

pulses must meet the requirements of the “Hartmann-Hahn” match condition:

HBH = CBC 

Equation 1.3. The Hartmann-Hahn condition

In this equation, H is the gyromagnetic ratio of the high abundance nucleus; BH

is the applied field for the high abundance nucleus; C is the gyromagnetic ratio

for  the  low  abundance  nucleus;  and  BC is  the  applied  field  for  the  low

abundance nucleus. This spin-locking pulse pair  is followed by a decoupling

scheme  to  decouple  the  protons  from  carbon  during  the  acquisition  of  the

carbon signal. The duration of the spin-locking pair of pulses is known as the

“contact  time”  and  is  typically  set  for  between  1  and  10  ms.  The  overall

sensitivity gain achievable is equal to the ratio of the gyromagnetic ratios, from

protons and carbons this ratio H/ C is equal to 4, so there is a four-fold potential

gain in the signal-to-noise ratio.62,71
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Figure 1.18.  Cross-polarization pulse sequence sketch. The high abundance nuclei,
such  as  protons,  are  first  irradiated with  a  standard  90°  pulse  to  create  the initial
magnetization. A special pair of spin-locking pulses is applied during a period called the
contact  time  in  order  to  transfer  the  magnetization  from  the  protons  to  the  low
abundance nuclei, such as carbons. Protons are then decoupled from carbons during
the acquisition of the carbon signal71

Solid-state  13C  CP/MAS  NMR  spectroscopy  has  being  used  to  study  the

structure of the Starbons® and sulfonated Starbons® prepared in this work.

1.5.5. Thermogravimetric analysis coupled to infrared spectroscopy (TG-

FTIR)

Thermal  analysis  experiments  permit  the  evaluation  of  the  physical  and

chemical  changes  that  a  sample  may  suffer  during  exposition  to  thermal

induced conditions. Thermogravimetric analysis (TGA) is used to monitor the

change in mass (weight)  of  a sample as it  is heated or held isothermally at

specific temperature. During the analysis an inert gas is passed through the

system to  provide  an appropriate  atmosphere  for  the  analysis  as  well  as  a

carrier of the decomposed materials or gases formed during heating.62,63 

Identification of the volatile products formed during the heating process can be

carried  out  using  coupled  techniques  like  TG-MS  (Thermogravimetry–Mass

Spectrometry) or TG–FTIR (Thermogravimetry–FT infrared). TG-FTIR analyses

the  gases  evolved  from  thermal  analysis  taking  the  advantage  that  FTIR
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spectrometer counts with an interferometer, which allows fast analysis in the

complete IR spectra range (4000–400 cm-1). The technical requirements for this

methodology include a heated transfer  line (minimum at  200 °C) to  prevent

condensation of travelling gases; a heated gas cell with appropriate windows

(ZnSe) and also a fast detector like a liquid nitrogen cooled MCT detector.73 It is

worth  mentioning  that  these  characteristics  were  covered  in  the  equipment

Brüker  Equinox  55  used  during  the  thermal  decomposition  of  sulfonated

Starbons®. The analysis (TG-FTIR) is schematically depicted in Figure 1.19.

Figure 1.19. Schematic representation of TG-FTIR analysis

1.5.6. Gas Chromatography Analysis

Gas chromatography (GC) was used for the analysis of reaction mixtures during

the study of sulfonated Starbons® as catalysts (Chapter 5).  GC enables the

dynamic separation and identification of volatile components in a mixture. Its

use  can  be  qualitative  and  quantitative.  Among  the  components  of  this

technique62,74 we find: 

 A carrier gas, which carries the sample through the system. Helium is the

most common gas used.

 A GC injector, which allows the introduction of the sample through the

system and to the gas stream.

 A column, which is in charge of separation of the components of  the

mixture. Selection of column is related to the characteristics of samples

like polarity and volatility.

 A detector, responsible for the identification of components.  The most

popular  is  the  flame  ionization  detector  (FID).  This  detector  is  very
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sensitive for any type of hydrocarbon component. Organic components

burn in a flame.

 Data  acquisition,  this  component  converts  the  electrical  signals

generated by the detector to a chromatogram peak. The peak area is

representative of the concentration of the component in the mixture. As

each  component  has  a  different  susceptibility  to  the  detector,  a

calibration  curve  is  needed.  A chromatogram plots  the  retention  time

(distance in minutes from the point of injection to the peak maximum)

versus signal intensity. 

1.6. Project scope and objectives

The aim of this project was to apply the green chemistry concept to prepare

strong  solid-acid  catalysts  from  a  bio-based  material,  Starbon® (carbonized

expanded starch). The development of the project originated a “rediscovery” of

these  Cleargum based  Starbons®;  as  well  it  creates  helpful  and  interesting

information from the sulfonated Starbons®. Then, the particular objectives of the

thesis are enumerated below:

• Synthesis  of  a  range  of  carbonized  Starbons® (350–700°C)  from

precursor scale-up Starbons® prepared at 300, 400 and 800 °C.

• Synthesis and characterisation of sulfonated Starbons® via conventional

heating. Creation of a range of sulfonated Starbons® from 300 to 800 °C.

• Synthesis and characterisation of sulfonated Starbons® using microwave

irradiation using Starbons® 300, 450 and 800.

• Test  of  sulfonated  Starbons® as  solid  acid  catalysts  in  esterification

reactions

• Study of reactions using microwave and conventional heating, including

reuse and leaching studies.

• Development  of  an  understanding  of  the  effects  of  the  sulfonation

process  on  the  materials  themselves  and  on  their  effectiveness  as

catalysts.
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Chapter 2

Synthesis and characterisation 

of sulfonated Starbons® 

by conventional heating
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2.1. Introduction

This chapter deals with the preparation and sulfonation of Starbons® done by

conventional  heating.  During  this  process,  modifications  to  previous

methodologies were promoted, such as the decrease of sulfuric acid used and

elimination of some conditioning steps. This sulfonation approach is the first

reported to be carried out at large scale (over 80 g of material). The crucial

component of this research consisted in the study of the characteristics and

properties evolved from the synthesis of these new materials. Characterisation

of  materials  consisted  in  determination  of  elemental  composition  by  CHN

analysis;  as well, the structural changes suffered by the materials and studied

by FT-IR spectroscopy and  13C CP/MAS NMR spectroscopy; in addition, the

identification of the chemical species formed after sulfonation, analysed by X-

ray photoelectron spectroscopy (XPS).

2.2. Preparation of sulfonated Starbons® 

Starbons® are carbonaceous materials discovered in Green Chemistry Centre

of Excellence at the University of York. Among their interesting characteristics

are  their  mesoporosity  and  functionality  dependence  on  the  degree  of

carbonization. During the first synthesis of these materials many attempts at

changing the methodology and the starting material were carried out, studies

that are out of the scope of the present thesis. As mentioned in  Chapter 1,

these Starbons® were prepared from expanded  Cleargum starch by Contract

Chemicals Inc., this being the first trial to prepare Starbons® at very large scale

(over 100 kg). 

Another  important  procedure  in  preparation  of  these  Starbons® is  the

carbonization, which was carried out for Starbons® 300, 400 and 800 (°C), on a

large scale at  Nabertherm, in Germany. These three pyrolysed Starbons® were

the  starting  materials  for  a  range  of  new  carbonized  Starbons® presented

already in Figure 1.7. and summarized below in Table 2.1.
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Table 2.1. New range of carbonized Starbons®

Starting material Temperature/ °C

Starbon® 300 350

Starbon® 400 450 500 550 600 700

Starbon® 800 No treatment required

Sulfonation was carried out using commercial sulfuric acid (95%) in a ratio 1 g

of Starbon® to 7 mL of acid, with constant stirring at 90 °C for 6 h as described

in the experimental section in  Chapter 6. Afterwards, materials were washed

repeatedly  with  hot  distilled  water;  this  was  done  at  constant  stirring  at

temperatures over 80 °C for 20 minutes with the aim to remove the excess of

sulfuric acid. This sulfonation approach is a modification of previous sulfonation

procedure carried out on Starbons® and tested in different reactions.13,75,76 In the

previous procedure a ratio of 1 g of Starbon® to 10 mL of sulfuric acid (99.999

%) is used; the washes are carried out using room temperature water, without

stirring. As well, in the new approach the ratio of acid:Starbon® has decreased

and “conditioning steps” with toluene and boiling water used in the previous

synthesis have been eliminated, looking for a more sustainable way to prepare

sulfonated Starbons®. 

pH  of  solutions  was  monitored  after  every  wash;  Figure  2.1 shows  pH

increments as the number of washes increases, suggesting that most of sulfuric

acid  in  excess  is  removed  during  the  first  five  washes.  In  the  subsequent

washes, pH remains steady, and does not rise to neutral pH as other authors

have mentioned during preparation of acid catalysts using sulfuric acid.75 Thus,

another way to determine the end of hot water washings was performed.
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Figure 2.1. pH changes during washing of sulfonated Starbon® 300

Then, sulfonated Starbons® were washed until sulfates were not longer detected

in the washing water through a test with a barium chloride (BaCl2) solution; this

approach  has  been  followed  by  other  authors  during  the  preparation  of

sulfonated materials.30,77 The test consisted in the reaction of an acidic solution

of BaCl2 (0.1M in HCl 0.1M) with sulfates remaining in washings of sulfonated

Starbon®, this  forms  a  white  precipitate  of  barium  sulfate  according  to  the

equation below (Equation 2.1.)

Ba2+  (aq)  + SO4
2-  (aq)                BaSO4 (s)

Equation 2.1. Precipitation reaction of barium ions and sulfates

A qualitative scale of standard solutions containing barium chloride and sulfuric

acid at different concentrations was created like a visual reference to determine

the end of material washing (Figure 2.2). The top of the figure (A) shows that

higher  concentration  of  sulfates  (0.1  M)  gives  a  very  distinguishable  white

precipitate,  while at concentrations lower than 0.001 M the solution is much

clearer. The bottom of the figure (B) corresponds to actual washes of sulfonated

Starbon® 800, in which the last two samples display a clearer solution, which

indicate the end of hot water washings of the sulfonated Starbon®.
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Qualitative scale

Colour changes due
to different 
concentration of 
sulfuric acid. 
3 mL of solution with
300 mg of  BaCl2 
0.1M (in HCl 0.1M) A

Samples

Water washes of 
sulfonated Starbon® 
800.
13 – 16 

B

Figure 2.2. Qualitative scale for sulfates concentration (A) and washings of sulfonated
Starbon® 800 (B)

2.3.  Leaching of  sulfuric acid from sulfonated Starbons®:  washing with

methanol

Leaching of sulfur from sulfonated Starbons® was observed during preliminary

studies on the application of these materials as catalysts in esterifications of

some organic acids with methanol, ethanol and 2-propanol, these observations

suggest  that  homogeneous  catalysis  was  responsible  of  high  conversions

obtained.  As  reactions  aforementioned  were  carried  out  using  microwave

irradiation,  thus  a  similar  procedure  using  alike  conditions  was  followed  for

washing the sulfonated Starbons®. 

Thus,  determination  of  sulfur  released  from sulfonated Starbons® was done

through the analysis of reaction mixtures prepared using 3 mL of alcohol and 20

mg of  catalyst;  mixtures were heated in a  CEM Discover  reactor  under  the

following microwave conditions: fixed power 200 W, at constant stirring for 5
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minutes.  After  reaction  finished,  the  catalyst  was  filtered  off  and  the  liquid

fraction  was  analysed  by  X-ray  fluorescence  (XRF)  spectroscopy.  Results

presented in  Table 2.2  and  Figure 2.3  show that high  concentration of sulfur

(as  ppm) is  observed for  all  the range of  sulfonated materials  washed with

methanol, except for Starbon® 800. The concentration of sulfur was significantly

greater  for  low-temperature  carbonized  Starbons® (T  <  500  °C),  being  the

highest for sulfonated Starbon® 400, with a sulfur concentration of 1300 ppm

determined in the methanol wash. The sulfur content determined through this

analysis was also higher for the first four samples of the series in the ethanol

and 2-propanol  washes,  but  sulfur  concentration  in  these  two  solvents  was

much lower than that found in methanol washes. These observations are quite

similar  to  the  results  obtained  by  Mo  et  al, who  found  that deactivation  of

sulfonated  carbon  catalysts  is  higher  using  methanol  as  washing  solvent26.

From these results, it was also noticed that the sulfur content found in the range

of alcohol washes is lower for high-temperature Starbons® (T > 500 °C) than

that  obtained for low-temperature materials, which would indicate less leaching

of sulfur compounds.

Table 2.2. XRF analysis results

Sulfur concentration 
(average) in ppm 

S-Starbon® MeOH EtOH i-PrOH

300 662 202 145

350 1000 265 242

400 1310 201 242

450 938 240 167

500 236 127 63

550 119 101 16

600 112 98 55

700 65 59 36

800 77 21 180 Figure 2.3. Leaching of sulfonated Starbons® 
analysed by XRF

After these findings, an extra treatment of washing the sulfonated Starbons®

with methanol was carried out. The procedure is described in the Experimental

section  in  Chapter  6  and  consisted  in  using  microwave  irradiation,  as  this

technique would be used for  carrying reactions out.  It  was found that sulfur
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content  decreased  for  the  materials  after  methanol  treatment  (Figure  2.4),

suggesting that physisorbed sulfuric acid was removed.

Figure 2.4. Sulfur content (%) for sulfonated Starbons® after washing with methanol

This perceptible removal of excess of sulfuric acid and/or physisorbed sulfates

was examined in the infrared spectra of sulfonated Starbon® 350. FT-IR spectra

(Figure  2.5)  shows that  after  increasing  the  number  of  washes,  the  region

1450–1350  cm-1 related  to  covalent  sulfates34 decreases.  The  absorbance

identified for S=O stretching at 1040 cm-1 did not change in a perceptible trend

with  increasing  the  number  of  methanol  washes,  as  the  band seems much

broader for sulfonated Starbon® 350 after second wash than for the first wash.

Looking at  the spectra at  lower wavenumbers (900–750 cm -1),  it  is  found a

flattening  of  the  absorbance  at  830  cm-1 assigned  to  sulfate  ester

SOR,78 suggesting that this type of sulfur bond is broken during the methanol

treatment  using  microwave  irradiation.  Therefore  it  seems  that  methanol

washing  removes  physisorbed  sulfuric  acid  and  some  covalently  bonded

sulfates. After this procedure of washing the initial sulfonated Starbons® with

methanol by triplicate, the new sulfonated Starbons® washed three times were

bor®n, “S-Starbons® W3”. Thus, from now on,  “sulfonated Starbons®” or  “S-

Starbons®” refer to these Starbons® sulfonated by conventional heating and

washed with methanol three times. 
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Figure 2.5. FT-IR spectra of sulfonated Starbon® 350 after methanol washes

2.4. Characterisation of Starbons® and Sulfonated Starbons®

2.4.1. Elemental composition in Starbons® and sulfonated Starbons®

Starbons® are carbonaceous materials whose properties depend on the degree

of  carbonization.9 A study  of  the  composition  in  Starbons® before  and  after

sulfonation  was  carried  out  by  elemental  analysis.  Figure  2.6 shows  the

carbon-oxygen  ratio,  C:O  atomic  ratio  for  original  Starbons® as  function  of

temperature of carbonization. Composition found in these materials, prepared

from  Cleargum starch,  differs  from  the  composition  observed  in  earlier

synthesized Starbons®,  as in those materials the maximum C:O atomic ratio

observed was 8 for Starbon® 700;9 whilst in this new generation of Starbons®,

the C:O ratio observed is 18 for 700 and over 30 for Starbon® 800, which could

be  due  to  different  starch  precursor  or  some differences  in  the  preparation

methodology, as  these  materials  were  prepared  at  large  scale  by  Contract

Chemicals, as has been already said. However, that study is not comprised in

this work. 

Taking as starting point that unmodified starch has a C:O ratio equal to one, for

these  new  expanded  starch-based  materials  the  C:O  ratio  obtained  from

elemental analysis is over two; this change in C:O ratio was already observed in

previous Starbons®: C:O ratio increases as temperature does.43 Then, Starbon®
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300 presents the lowest C:O ratio, suggesting to contain more oxygen groups

than other Starbons®. Increasing in the C:O ratio is steep, having a value lower

than 6 for the low temperature Starbons®, up to 450;  and higher than 10 for

high-temperature Starbons®. As it was shown previously in Budarin et al work9,

as temperature of carbonization increases, the structure of Starbons® become

more  graphitic-like.  These  changes  in  composition  of  the  Starbons® due  to

carbonization  could  be  mainly  attributed  to  dehydration  and  decarboxylation

processes.79,80  It is worth mentioning that preparation of Starbon® 350 came

from Starbon® 300 and Starbons® 450–700 were prepared from Starbon® 400.

This description was presented in Table 2.1.

Figure 2.6.  C:O atomic ratio of Starbons® before sulfonation

Another way to evaluate the carbonization process qualitatively is through the

van Krevelen diagram which uses the O:C ratio as the abscissa and the H:C

ratio as the ordinate in a plot.81 This diagram provides information about the

changes in chemical structure after carbonization. Figure 2.7 shows the atomic

ratios of H/C and O/C for the starting Starbons® in which it could be observed

the most oxygenated sample corresponds to Starbon® 300, as it has 35 oxygen

(O) atoms per 100 carbon (C) atoms. This sample seems also to be the most
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saturated one, as it contains 71 hydrogen (H) atoms per 100 of C atoms. It can

be  noticed  that  composition  for  these  two  low-temperature  carbonized

Starbons® showed a significant decrease in the number of oxygens (65) and

hydrogens (129) per 100 carbon atoms, from the C:O ratio of original starch.

Starbons® 350 and 400 have similar O:C and H:C ratios: 20 O atoms per 100 C

and 60 H atoms per 100 C atoms, suggesting that contains less oxygenated

groups than Starbon® 300,  but  they have quite  significant  saturated groups.

After carbonization at 450 °C, decrease in the O:C ratio is very significant as

Starbons® carbonized at 500, 600, 700 and 800 present less than 10 atoms of O

for 100 of carbon. Starbon® 800 shows the lowest atomic ratio, just 4 oxygen

atoms  per  100  of  carbon,  suggesting  the  formation  of  polycyclic  aromatic

structures9 during carbonization  at  higher  temperatures.  Both  Starbons® 450

and 550 did not follow the trend, as the content of oxygenated groups is higher

than expected and it  is  not  quite  different  from the content  found in  parent

Starbon® 400. This abnormality from the trend is observed in Starbon® 450, as it

contains fewer saturated groups than would be expected.

Figure 2.7. Van Krevelen diagram for starting Starbons®

When  chemical  compositions  of  Starbons® are  compared  before  and  after

conventional sulfonation, it is found a small variation in the C:O atomic ratio for

the  low  temperature  Starbons® (T<500  °C);  the  ratio  drops,  suggesting  an

increase  in  the  oxygenated  groups  in  these  materials.  As  temperature  of
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carbonization increases, the change in oxygen composition after sulfonation is

very significant (Figure 2.8 ). A general trend in decreasing the C:O atomic ratio

is followed, and for Starbon® 800 is very noticeable, as the C:O ratio drops from

32 to 6, and it is also slightly lower than the one obtained for Starbon® 700. The

increase  of  oxygen  in  Starbons® after  sulfonation  would  suggest  that  this

oxygen would come from sulfonic groups (~SO3H) attached to the material or

oxidation of functional groups as alcohols or aldehydes to carboxylic acids. 

 

Figure 2.8.  Chemical composition of Starbons® before and after sulfonation

Van Krevelen diagram for  Starbons® after  sulfonation (Figure 2.9),  provides

useful information about their atomic composition to monitor changes suffered

by  the  materials.  Then,  it  could  be  seen  that  S-Starbon® 300  presents  the

highest content in oxygenated and saturated groups. Although the increase in

oxygen-carbon ratio is less significant than for other sulfonated Starbons®; as

this was from 35 to 41 O atoms per 100 of C atoms; meanwhile Starbons® 350

and 400 rose from 20 to 34 oxygen atoms per 100 carbon atoms (inset Figure

2.9). This increment in oxygen atoms is also significant for Starbon® 800, which

parent  sample  presented  just  4  O  atoms  per  100  of  C  atoms;  and  after

sulfonation there are 12 oxygen atoms per 100 of carbon. The trend for original

Starbons® is  followed:  as  temperature  of  carbonization  increases  there  is  a
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decrease in the O:C and H:C atomic ratios. The variations in oxygen-carbon

ratios after sulfonation are more notable for low temperature Starbons® (<450)

than the middle-chart ones: 500 and 550. In this case there is a general trend

similar to the original  Starbons®,  however sulfonated Starbon® 400, presents

less  hydrogen  than  expected;  and  sulfonated  Starbon® 500  presents  less

oxygenated  groups  than  anticipated,  maybe  because  there  were  not  found

sulfur groups attached.

Figure  2.9.  Van Krevelen  diagram for  Starbons® sulfonated at  90  °C for  6  h  and
washed with MeOH (3 times). Inset figure showing the changes of oxygen (O) atoms
per 100 carbon (C) atoms before and after sulfonation.

A study between elemental composition and sulfur content was also done for

conventionally sulfonated Starbons®.  Figure 2.10  shows the content of sulfur

(mmol per gram) is higher for low temperature Starbons® 300–450, than for

high-temperature carbonized Starbons®.  Similar sulfur  contents are observed

for Starbons® 550-800 (less than 0.6 mmolg-1), but an anomalous observation is

found in Starbon® 500, in which the content observed was negligible. It is worth

reembering  these  sulfonated  Starbons® were  treated  with  methanol  after

leaching  observed during test reactions. This fact may imply for this particular

Starbon®,  strong  attachment  of  sulfur  groups  during  sulfonation  was

unsuccesful.
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Figure 2.10.  Chemical composition of Starbons® sulfonated at 90 °C for 6 h and 
treated with MeOH (W3)

2.4.2. Approximation of an empirical formula for Sulfonated Starbons® 

An attempt to find an empirical molecular formula for Starbons® after sulfonation

was made, once the elemental composition has been found for these materials

and assuming that all  the sulfur is present in samples as sulfonic groups. In

Figure 2.11 is shown the trend in composition changes before (b) and after (a)

sulfonation. A general trend is found: the content of oxygen in sample increases

after  sulfonation  for  all  the  samples.  The hydrogen  content  decreases  after

sulfonation  for  low  temperature  Starbons®  (T  <  450°C),  just  Starbon® 450

presents an increment in the hydrogen content in sample. For high-temperature

Starbons®, the variation shows a very small  increase after  treatment.  When

sulfonic groups present on samples are analysed before and after sulfonation, it

could be observed an increment in  these groups in  the materials.  However,

Starbon®  300 showed the other way round, as the presence of sulfonic groups

due to p-TSA added during the synthesis9 and before sulfonation is higher than

for  the  sulfonated  Starbon®  300.  Starbons® 350,  400,  450  and  800  also

presented sulfur in the starting material; for the low temperature ones, residues

of  p-TSA were identified  in  the  FTIR spectra.  However, for  Starbon® 800 is

difficult to say that remaining p-TSA is still in the sample, as high temperature

carbonization  would  decompose  the  p-toluenesulfonic  acid,  which  could  still
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react with material to form other sulfur groups. This would explain the presence

of  sulfur  in  sample  before  sulfonation  and  the  absence  of  bands  in  the  IR

spectrum corresponding to p-TSA.

Figure 2.11.  Variation in chemical composition of Starbons® before (b) and after (a) 
sulfonation (Ca and Cb arbitrarily set to 10 for all samples)

The trend observed in  Figure 2.11 could be also summarized in  Table 2.3, in

which  the  oxygen content  before  (b)  and after  (a)  sulfonation  is  presented,

considering the formula  C10HxOy(SO3)z. The quantity shown is considering the

oxygen left after the formation of sulfonic groups. Then, it could be observed

that there is an increase in the oxygen content after treatment with sulfuric acid,

implying that sulfonation process sulfonates and oxidizes the materials. As far is

known, in previous works with acid Starbons®  13,75,76 this characteristic has not

been reported.
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Table 2.3.  Variations in atomic content of H, O and SO3 before and after sulfonation 
on Starbons®

Starbons® Hb Ob (SO3)b Ha Oa (SO3)a

300 7.14 2.64 0.165 5.76 3.64 0.143

350 5.99 1.73 0.076 5.42 2.86 0.174

400 5.91 1.74 0.099 3.81 2.88 0.146

450 3.33 1.73 0.044 4.33 2.59 0.092

500 4.13 1.05 4.11 1.32

550 3.61 0.759 3.73 1.58 0.067

600 3.16 0.599 3.41 1.26 0.055

700 1.93 0.539 2.17 0.83 0.057

800 1.35 0.232 0.025 1.62 1.44 0.078

A comparison between the composition determined in sulfonated Starbons® and

other  sulfonated  sugar-based  catalysts  was  made.  The  comparison  is

presented in  Table 2.4,  considering  previous  formula  C10HxOy(SO3)z.  In  this

matter, sulfonated Starbons® presented a slightly higher sulfur content than the

one  prepared  by  Okamura  et  al;28 although  same  trend  was  found  in  both

sulfonated  materials:  increasing  the  temperature  of  carbonization  of  sugar,

decreases the content of sulfur in samples. Other differences found between

sulfonated Starbons® and sulfonated sugars are related to the hydrogen and

oxygen contents, which are significant higher for sugars carbonized at 300 and

400,  suggesting  that  they  contain  more  oxygenated  groups  than  sulfonated

Starbons®,  as  sulfur  content  is  similar  for  these  two  samples.  It  is  worth

mentioning at this stage, that for these “sugar catalysts”, it was found an excess

of sulfuric acid coming from the samples when they were tested in catalysis.26 

Table 2.4. Comparison between sugar catalyst and S-Starbons® formulas

Temperature Sugar catalyst S-Starbons®

x y z x y z

300 7.1 5.5 0.11 5.76 3.6 0.14

400 4.5 3.5 0.14 3.81 2.9 0.15

500 5.0 2.6 0.14 4.11 1.4 0

600 3.7 0.35 0.05 3.41 1.3 0.06
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2.4.3. Surface and bulk compositions of sulfonated Starbons®

X-ray photoelectron spectroscopy (XPS) analysis  was carried out  during the

characterisation of sulfonated Starbons®. In this section the results in the atomic

concentration are presented to compare with the bulk composition.  Table 2.5

presents the results obtained for the percentage atomic content of C, O, S, for

sulfonated Starbons® at their different carbonization temperatures. From these

values it can be seen that concentration of oxygen drops as temperature rises;

the  other  way  round  is  for  carbon  concentration,  which  increases  as

temperature does. As the concentration of sulfur is very heterogeneous for the

range  of  sulfonated Starbons®,  a  notable  trend was  not  found.  The highest

concentration is found for S-Starbon® 300 and the lowest for S-Starbon® 400.

Although, percentages lower than 1.0% were also found for high-temperature

Starbons® 700 and 800.

Table 2.5. Percentage atomic content in sulfonated Starbons®

Starbon® % at. C % at. O % at. S Starbon® % at. C % at. O % at. S

300 78.0 19.87 2.13 550 87.23 11.28 1.49

350 79.02 19.38 1.60 600 89.26 9.66 1.08

400 82.39 16.98 0.64 700 92.35 6.78 0.87

450 83.63 15.10 1.27 800 93.14 6.03 0.83

A comparison between the C:O atomic ratio determined for bulk analysis and

surface analysis was made (Figure 2.12). From this comparison it was found

that C:O ratios are higher on the surfaces of the materials than in the bulk of

samples;  as  well,  the  content  of  sulfur  for  most  of  the  materials.  Although,

sulfonated Starbon® 400 presents an abnormality because it displayed lower S

concentration on the surface than in the bulk material. It seems that most of the

functional groups are well exposed at low depth analysis (~10 nm). The trend of

increasing  C:O  atomic  ratio  as  temperature  raises,  is  very  similar  to  that

observed  in  the  bulk  composition;  however,  in  the  surface  analysis,

concentration  S-Starbon® 800  presents  the  highest  C:O  atomic  ratio;

meanwhile,  in  the  bulk  composition,  this  atomic  ratio  was  a  bit  lower  than
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Starbon® 700, which presented the highest atomic ratio for bulk analysis of S-

Starbons®. The differences between bulk and surface compositions were also

observed during the preparation of previous Starbons®,  this observation was

attributed to the carbonization mechanism which goes from external surface into

the interior bulk of the materials.9

Figure 2.12.  Variation in chemical composition of Starbons® before and after 
sulfonation

2.4.4. Characterisation of sulfonated Starbons® by FTIR 

Fourier transform infrared (FTIR) spectroscopy is a traditional technique applied

in structural  analysis and it  was used to  characterise chemical  structures of

sulfonated Starbons®. All the FTIR spectra were obtained in a Bruker Vertex 70

(ATR), in the frequency range from 4000 to 600 cm -1 with a resolution of 4 cm-1

and 64 scans. Due to these equipment characteristics, peaks appearing in the

region 2300–2000 cm-1 could be difficult to analyse. The spectrum for Starbon®

300 before and after sulfonation is shown in Figure 2.13. Although the spectrum

of original Starbon® 300 looks a bit noisy due to the strongly absorbing nature of

carbonaceous  materials,  it  can  be  seen  the  existent  similarities  with  the

sulfonated Starbon®. A broad band rises from 3800-2600 cm-1, in this region ca.

3400cm-1, could be identified O-H vibration,34 corresponding to OH groups from

carboxylic acids and alcoholic groups from sugars present in the starch-based

material,  as well  any phenolic  groups37 which  have been formed during  the

76



carbonization of the starch precursor. There is also a small peak at 2900 cm -1

could  be  assigned  to  CHx stretching  vibrations.82 Vibrational  bands

corresponding  to  carbonyl  C=O  and  C=C stretchings  are  observed  in  both

materials  and  were  assigned  to  1705  cm-1  and  at  1600  cm-1  vibrations,

respectively.34 The latter band designated to alkenes could be associated with

furan moieties present in degraded sugars. This absorption could be related as

well  to  presence  of  aromatic  groups  in  Starbon® 300,  although  another

characteristic band for aromatic groups ca. 1500 cm-1, is hardly distinguishable

in the spectra because of the broad bands in that region, however as it will be

seen afterwards,13C solid-state NMR studies confirm the presence of aromatic

groups in the materials. In the spectra is also noticed a band around 1430 cm -1

which could correspond to the vibration of C–O stretching and OH bending of

carboxylic acids.82,83 As well for original and sulfonated Starbon® 300, a broad

band around 1200 cm-1 is observed; in this broad region, a band centered at

1160 cm-1 is distinguished, which could be assigned to antisymmetrical C-O-C

stretching of sugars and furans and a shoulder at 1220 cm-1 is also observed ,

this suggests the presence of Ar-OH groups.84 Bands in low region at 893 cm-1

observed for  both  original  and sulfonated Starbon® 300 could  be related  to

symmetrical C-O-C stretching85; and the absorption appearing at 767 cm-1 can

be assigned to the presence of aromatic C-H out of plane deformations.34,83,86

Figure 2.13.  FTIR spectra of original and sulfonated Starbon® 300
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Compared with Starbon® 300, S-Starbon® 300 W3 spectra exhibits a noticeable

peak at 1031 cm-1, which is assigned to symmetric S=O stretching of sulfonic

groups37,84–87 attached to  the  material. The asymmetric  mode is  expected to

appear at 1184 cm-1, 46,86–88 however, it is difficult to distinguish because of the

broad band of the furan C-O linkages of Starbons® in the region 1400-1100 cm-1.

It is worth mentioning that there is a shift of the S=O vibration, as it would be

expected  at  1050  cm-1;  this  displacement to  lower  frequency vibrations  has

been  associated  with  bulky/cyclic  substituents  attached  to  the  sulfur,  which

affects the bond order and tends to lower the frequency vibration.89

The absorption observed at 680 cm-1 has been assigned to S=O bending mode

of -SO3H.90 Parent Starbon® 300 spectra shows bands at 680 (just mentioned

previously),  812,  1001,  1028 and 1120 cm-1,  which  have been identified  as

correspondent to residues of p-toluenesulfonic acid (p-TSA). Bands appearing

at 812, 1001 and 1120 cm-1 correspond to bending (C-H) of benzene ring and

the one at 1028 cm-1 is assigned to C-S stretching.36 This compound was used

during the preparation of Starbon® 300 as previously reported by Budarin  et

al9 and traces of it was found in the material. These bands are not present in the

sulfonated Starbons®, suggesting that treatment with sulfuric acid removed the

surface p-TSA.  Then, after this analysis, a summary of the vibrational bands

assignments  observed in sulfonated Starbon® 300 is presented in Table 2.6. 

Table 2.6. FTIR bands assignments observed in sulfonated Starbon® 300 

Wavenumber cm-1 IR band assignment Wavenumber cm-1 IR band assignment

3400 O-H stretching 1220 Ar-OH groups

2900 CHx stretching 1160 asymmetrical  C-O-C
stretching

1705 C=O stretching 1031 S=O  symmetric
stretching of ~SO3H

1600 C=C stretching 893 symmetrical  C-O-C
stretching

1430 C(=O)-O stretching 680  S=O bending
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Figure  2.14. shows the  IR  spectra  for  sulfonated  Starbons®,  carbonized  at

different  temperatures.  In  all  of  them,  a  band  observed  at  1031  cm -1 is

preserved, indicating the presence of sulfonic groups, through the symmetric

S=O  stretching,  although  elemental  composition  showed  that  sulfur  content

varies with temperature, in the spectra there is not a notable difference in the

intensity  of  the  band  at  1031  cm-1.  One  of  the  most  important  differences

observed  among  the  spectra  are  the  changes  in  the  band  at  1705  cm -1

corresponding  to  C=O  and  the  one,  C=C  at  1600  cm-1  carbonization

temperatures  increment.  The  first  band  decreases  when  temperatures  are

higher,  while  the  C=C  increases  with  temperature;  suggesting  the

disappearance of carboxylic groups and the transformation of the Starbon® to

more  graphitic-like  structure.9 These  changes  agreed  with  the  elemental

composition shown previously, in which there is an increase in the C:O ratio

with raising the carbonization temperature. This also could be supported by the

appearance  of  peaks  at  1445,  875  and  830  cm -1 related  to  aromatic

groups.34 This structural information is further supported by the analysis using
13C CP/MAS NMR spectroscopy. Unfortunately, it  was not possible to obtain

adequate FTIR spectra of higher temperature materials, due to the increased

broad band absorption which occurs in very dark materials, observed in the past

by Budarin et al.9

Figure 2.14. FTIR spectra sulfonated Starbons® carbonized at several temperatures
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2.4.4.1. Residues of p-Toluenesulfonic acid

In previous section, it was mentioned that remaining p-toluenesulfonic acid (p-

TSA)  was  observed  in  the  original  Starbon® 300,  and  some  traces  of  this

compound were also observed in Starbons® 350 before sulfonation, due to the

fact  that  Starbon® 300  was  the  precursor  of  Starbon® 350.  Complementary

information is obtained from the elemental composition, in which is determined

that there is less than half of sulfur content (%weight) in Starbon® 350 that the

one observed in Starbon® 300. This lower concentration was also observed in

the FTIR spectra presented in Figure 2.15, where the peaks corresponding to

p-TSA have decreased significantly, suggesting that further thermal treatment

(350 °C) could also remove unbounded p-TSA. 

Figure 2.15. FTIR spectra showing p-TSA residues in Starbons® 300 and 350

2.4.5.  13C CP/MAS NMR studies on sulfonated Starbons®

The use  of  high-resolution  techniques as  Magic  Angle  Spinning  (MAS)  and

Cross-Polarization (CP) has allowed the achievement of well-resolved 13C  NMR

spectra for solid  carbonaceous samples.  This technique was used to  obtain

information about different structural types present in Starbons® and sulfonated

Starbons®. 
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2.4.5.1.Structural changes in Starbon® 300

Solid-state  13C  NMR  spectra  obtained  for  Starbon® 300  before  and  after

sulfonation are displayed in Figure 2.16. There are distinguishable differences

between two spectra  prior  and after  sulfonation.  The main  difference is  the

decrease  of  the  broad  band  around  30–40  ppm,  which  is  attributed  to

methylene and methine linkages.91–93 As well, the broadness of the peak centred

at ca. 130 ppm, which is characteristic of saturated systems C=C or aromatic

rings,91,93,94 which  also  contains  the  bands  at  108  and  140  ppm  of  furan

carbons91, The band which appears at ca.150 ppm, correspondent to phenolic

groups91,93,95 is preserved after sulfonation and seems broader than original one.

It is interesting to notice the appearance of a small peak at ca. 165 ppm, which

could  be  attributed  to  carbon  in  ester/lactones  environment;93 the  peak

corresponding to the carboxylic acids at 175 ppm34,93 is embedded in the broad

band in sulfonated Starbon® 300. The resonance observed at high downfield at

ca.  205  ppm  for  the  Starbon® 300,  could  be  assigned  to  aldehyde

groups,96 groups  which  disappeared  after  sulfonation.  Instead  of  these

hydrogenated  carbonyls,  the  appearance  of  the  resonance  at  190  ppm

suggests the formation of ketones.96 As shown previously through the elemental

composition, sulfonation increments the oxygen content in Starbons®, this would

promote appearance of more oxidized components; thus, lactones, esters and

carboxylic acids could be related to the oxidation of aldehyde groups; or the

ketone groups derived from oxidation of alcohol groups. 

In  both  spectra,  a  small  resonance  ca.  70  ppm  is  observed,  this  band  is

assigned to ether structures95 which is more apparent in sulfonated Starbon®

300 than in starting material. It is interesting to notice that sulfonated Starbon®

300 presents a noticeable peak centred at 53 ppm, this peak is assigned to

methoxy  groups,92 which  would  suggest  that  it  is  formed  after  methanol

washing, because the sulfonated Starbon® 300 prior methanol treatment did not

present  this  band.  As  mentioned  in  section  2.3.,  the  sulfonated  Starbons®

studied here correspond to sulfonated Starbons® (W3) “washed” with methanol. 
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Although elemental analysis showed high sulfur content on sulfonated Starbon®

300, the C–S bond, expected  at around 140 ppm,28 was not distinguished in its

NMR  spectra  because  of  the  broadness  from  the  overlapping  bands

corresponding to aromatic (130 ppm) and phenolic groups (150 ppm). However,

Starbon® 300, the starting material, presents a well defined peak around 140

ppm,  which  could  be  assigned  either  to  the  S–C aromatic  bond,  of  p-TSA

residues, or to the furan carbons. These broadening in resonances could be

associated as well to the amorphous structure of  materials.93

Figure  2.16.  13C  Solid-state  NMR  spectra  for  Starbons® 300  before  and  after
sulfonation

The structural changes observed by solid-state  13C NMR could be correlated

with the variations in atomic ratios determined in the materials. Then, the drop

in the C:O atomic ratio  for  sulfonated Starbons® 300,  could be attributed to

oxidation  of  some components  of  starting  Starbons® (formation  of  lactones,

esters, carboxylic acids, ketones) as well to attachment of sulfonic groups to the

structure. This decrease was from 3.18 to 2.45 and has been showed before in

Figure 2.8.  Another observation concerning the atomic composition changes in

these materials refers to the increment of C:H atomic ratio, presented in the

approximation of the Empirical Formula, in Figure 2.11. This would suggest  the

appearance  of  conjugated  and  aromatic  systems  in  the  material  after

sulfonation, which would be associated with the broadening of band at ca. 130

ppm observed in the solid-state 13C NMR spectra.
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2.4.5.2. Identifying main functional groups in Sulfonated Starbons®  in 13C NMR

spectra

A reference 13C NMR spectra was created to identify the main components in

sulfonated  Starbons®,  after  the  previous  review  during working  through  the

structural differences found by 13C solid-state NMR between Starbons® 300 prior

and  post  sulfonation.  This  reference  spectra  is  displayed  Figure  2.17. and

shows  the  different  carbon  resonances  regions  identified  on  sulfonated

Starbon® 350 and their corresponding assignment.  In the upfield region around

20–30 ppm, the resonances are assigned to aliphatic carbons, suggesting the

presence  of  methylene  and  methyl  end  groups  derived  of  the  starch

decomposition.91 The resonance located at  52 ppm corresponds to  methoxy

groups,92 CH3-O-, which could be formed during the treatment of the sulfonated

Starbons® with methanol.  It is worth mentioning that this resonance does not

appear in the spectrum of sulfonated materials before methanol washing, which

would suggest that methanol may react with alcohol groups or carboxylic acids,

present on the structure of the material, forming these methoxy species. The

resonance ca.  65  ppm corresponds to  ether  structures,91,93 which  were  also

observed in Starbon® 300, before sulfonation. Presence of these ether linkages

could be due to the remaining glycosidic bonds of component sugars of starch

or  cross-linking  of  starch  chains.96 At  this  point  it  is  worth  referring  to  the

structural  changes  promoted  by  thermal  treatment  of  polysaccharides,  the

approach  considers  the  breakdown  of  components,  internal  reactions  and

rearrangement.80,96,97 Thus, in the case of starch, the breakdown would lead first

to formation of oligosaccharides and then to respective monosaccharides, these

then suffer dehydration and fragmentation.80 It  has been suggested that first

product from dehydration of hexoses and pentoses are hydroxy methyl furfural

(HMF)  and  furfural,  respectively;  products  identified  as  reactive  to

carbonaceous materials.98 Then it has been suggested that furfuryl alcohol and

furfural are the predominant pyrolysis products in starch carbonized at 350 °C.96

This would explain the presence of  furan moieties in the structure of sulfonated

Starbon® 350,  with  corresponding  resonances  at  ca.  113  ppm  and  ca.142

ppm.91,98,99 Identification  of  furan  moieties  was  already  observed  during

synthesis  of  original  Starbons®.9 The  band  centred  at  128  ppm  has  been
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identified  as  conjugated  and  aromatic  systems  found  in  pyrolysed

carbonaceous  materials.28,91,93 These  aromatic  clusters  would  be  formed  by

condensation via intermolecular dehydration of aromatic molecules derived from

decomposition/dehydration of the monosaccharides components of starch80.

The band which appears at ca. 150 ppm has been identified as OH-substituted

carbons of phenols,28,91,93 components present in Starbon® 300 before and after

sulfonation. Beside the phenolic groups, a small band appears at ca. 165 ppm,

which has been assigned to C in esters environment.93 It is worth mentioning

this band seems to appear after sulfonation of Starbons®, as shown in Starbon®

300.  Between  175  and  180  ppm  the  resonance  observed  is  assigned  to

carboxylic  acids.93,96,100 At  very  high  downfield,  around  195–205  ppm  the

resonance is assigned to ketone or aldehyde groups,95,96 which also are related

with the increasing O:C ratio for sulfonated Starbons®, presented previously.  

Figure 2.17. Functional groups identified for sulfonated Starbon® 350

2.4.5.3. Increasing temperature of carbonization of Starbons®

13C solid-state  NMR spectra  (Figure  2.18), shows that  there  are  significant

structural  changes  in  the  materials  when  carbonization  temperature  of

Starbons® increases. From the broadness and several functionalities identified
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in Starbon® 300 to a narrow band centred at ca. 130 ppm for Starbon® 600, the

changes  suggest  the  transformation  of  the  furan  rings  observed  in  low-

temperature Starbons® to polycyclic aromatic system in the high-temperature

ones;  this  has  already  been  observed  for  thermal  treatment  of  starch96 or

cellulose.93

Another observation as carbonization temperature increases in Starbons®,  is

the  dropping  in  the  aliphatic  resonances  at  upfield  regions,  being  less

noticeable at Starbons® treated above 500 °C. The methoxy group identified at

53  ppm  also  decreases  in   intensity  as  temperature  rises.  Other  obvious

changes are the decrease in phenolic (150 ppm) and carboxylic groups (195

ppm), as the materials are carbonized. These structural changes could also be

correlated with the increase in the C:O ratio for high-temperature Starbons® and

found previously in the transition from starch-like to graphitic-like materials.9 

Figure  2.18.  13C  NMR  spectra  for  sulfonated  Starbons® carbonized  at  several
temperatures

13C solid-state NMR spectra showed there are significant  structural  changes

from low-temperature sulfonated Starbons® to high-temperature ones; changing

from a polyfunctional material to an aromatic-predominant material. Through the

spectra it was not possible to identify the C–S bond corresponding to sulfonic

groups attached to the structure, because of overlapping of resonances with the
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furan moieties at 140 ppm. The methoxy resonance observed at ca. ~50 ppm is

suggested  to  appear  because  of  the  methanol  treatment  carried  out  on

materials, as mentioned earlier.

Figure 2.19.  shows suggesting structures for starting materials Starbons® 300

and  600,  based  on  the  information  obtained  by  13C solid-state  NMR about

carbon functional groups present on their respective sulfonated Starbons® .  

(a)
(b)

Starbon® 300 Starbon® 600

Figure 2.19. Proposed “structures” for Starbon® 300 (a) and Starbon® (600)

2.4.6. X-ray photoelectron spectroscopy studies on sulfonated Starbons®

X-ray photoelectron spectroscopy (XPS) technique is widely applied to study

the surface compositions of materials as metals, polymers, semiconductors, etc.

This  method  could  also  be  applied  to  determine  the  chemical  or  electronic

states  of  the  elements  present  on  the  material's  surface  providing  useful

information for characterisation. With this aim, parent Starbons® and sulfonated

Starbons® were analysed.

2.4.6.1. Before starting: data handling

Analysis  of  results  was  carried  out  as  follows:  the  data  obtained  from  the

spectrometer were converted into the VAMAS file format (*.vms) and imported

into the CasaXPS software package for manipulation and curve-fitting. All C1s
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peaks  were  recalibrated  so  that  the  peak  maximum appeared  at  a  binding

energy of 284.5 eV and all binding energies (BEs) are measured relative to this

C 1s (hydrocarbon) reference. The elemental composition data are derived from

the survey scans via the instrument quantification software. 

Carbon analysis:  The C1s core level peak positions of the carbon atoms were

centered  at  284.5  eV. The deconvolutions  were  done considering  Gaussian

fitting. The full width at half-maximum (FWHM) was considered equal for all the

carbon components.

Sulfur  analysis: the  S  2p peaks were  fitted  using  a  Gaussian  function  with

provision for the 1.2 eV spin-orbit splitting for 2p1/2 and 2p3/2; the 1:2 intensity

ratio of this splitting was maintained in the fitting.

Plots:  dots  correspond  to  the  actual  measurements  and  the  yellow  line

corresponds to the spectra fitting.  

2.4.6.2. Starbons® 300 and 800

These two materials represent the extremes of the range of Starbons® studied.

The low temperature one presents more starch-like characteristics and the high-

temperature one, is more graphitic-like as reported by  Budarin et al9.yl   And

from previous section of  13C NMR these characteristics are  reconfirmed,  as

Starbon  300  presents  a  wide  range  of  functional  groups,  hydroxy  groups,

carbonyls and carboxyl groups; while Starbon® 800 is more related to polycyclic

aromatic carbons. Then, parent and sulfonated Starbons® 300 and 800 were

analysed by XPS to determine their compositions. As it has been noted before

p-toluensulfonic acid (p-TSA) is used catalytically during preparation of parent

Starbons® 300 and 800. Then, the presence of sulfur in the original materials is

related to this compound; which presence was observed by FTIR in Starbon®

300,  while  for  Starbon® 800,  the  presence  of  the  compound  p-TSA is  not

confirmed  by  FTIR,  however,  elemental  analysis  showed that  Starbon® 800

contains  sulfur,  which  would  be  derived  from  p-TSA.  Table  2.7  shows  the

atomic percentage composition found for these materials. As expected, higher

percentage of carbon is observed for Starbon® 800 than 300; the other way

round is found for the content of oxygen, which is higher for Starbon® 300 than

800. The sulfur content on surface, is close to double for both Starbons® after
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sulfonation, but a better analysis could be made, when comparing the elemental

ratios, presented in Figure 2.20. 

Table 2.7. Elemental composition ( atomic %) for Starbons® 300 and 800

Parent Sulfonated

C O S C O S

Starbon®

300
84.61 14.26 1.14 78 19.87 2.13

Starbon®

800
97.14 2.44 0.41 93.14 6.03 0.83

A massive  drop  in  the  C:O  ratio  is  observed  from  original  material  to  the

sulfonated   Starbon® 800,  indicating  the  increase  of  oxygen  content  in  the

sample,  due  to  the  attachment  of  sulfonic  groups  or  the  oxidation  of  the

sample.101 This decrease in C:O ratio is less obvious for Starbon® 300, mainly

because original material already contains oxygenated groups in the structure.

The sulfur-carbon ratio observed on the surfaces of Starbons® 300 and 800

increased by  double  after  sulfonation.  It  is  important  to  point  out  that  initial

content of sulfur in parent Starbons® can be related to  p-TSA remaning in the

structure.  As has been mentioned,  p-TSA was used during the synthesis  of

Starbons® 300 and 800. The presence of  p-TSA in parent Starbon® 300 was

confirmed in previous studies by FTIR; however, in the case of parent Starbon®

800, there is no IR information. In this case, it is difficult to discern whether the

sulfur observed corresponds just to physisorbed p-TSA on the material instead

of bounded to the structure of Starbons®,  as high-temperature treatment can

promote  the  decomposition  of  p-TSA  and  subsequent  sulfonation  of  the

material. Both Starbons were treated in a similar way for the sulfonation (H2SO4

95% in a ratio 1: 7 mL; at 90°C for 6 h), however, the concentration of sulfur is

higher for the Starbon® 300 than Starbon® 800, suggesting  that sulfuric acid

reacts in higher proportion with the functionalities found in Starbon® 300 than for

the high-temperature carbonized Starbon®.
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Figure 2.20.  Elemental ratio (from XPS analysis) for Starbons® 300 and 800 before
and after sulfonation.

2.4.6.3. Analysis of carbon bonding

The  analysis  of  the  high-resolution  C1s  peak  shape  with  peak  fitting  is  a

powerful tool to identify the functionalities present on the sample. Depending on

the chemical environment of the carbon atom, the C1s peak can present high-

chemical shifts making it relatively easy to identify its main components. This

process was carried out using CasaXPS software, as mentioned previously. In

this respect, a chart based on literature review was created as a reference for

the  assignments  made  for  each  component.  However,  it  is  not  always  as

straightforward,  because  some  species  could  present  very  similar  chemical

shifts.  Table  2.8  presents  the  assignments  considered  in  this  study  for  the

different carbon environments found in Starbons® and sulfonated Starbons®. 
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 Table 2.8. Bonds assignments for components of C1s

Binding
Energy/eV

Bond References

284.3 – 284.8 C = C (sp2) 102,107 
106

285.1 – 285.5 C – C (sp3) 102,107

285.3 C – COO 108

285.7 C – S 109

286.0 – 287.0 C – O (alcohol/phenol) 92,107,110

106

287.2 – 288.0 C = O or O – C – O 92,102,103,107

106

289.0 – 290.2 O – C = O 92,103,107,111

106

290.2 – 292.1  –  transitions 102,103

104

105

Figure  2.21. shows  a  comparison  between  Starbon® 300  and  sulfonated

Starbon® 300, prepared by conventional sulfonation. Broadening of the C 1s

peak could be observed after treatment; as well, increasing of oxidized states,

components observed at 287.6 eV and 289.9 eV, corresponding to C=O and

O-C=O,  respectively.  These  results  agreed  with  the  increasing  of  oxygen

content  observed  by  elemental  analysis,  suggesting  that  sulfonation  of

Starbons® promotes the oxidation of the components. 

Figure 2.21.  XPS spectra for  C1s of  Starbon® 300 prior  (left)  and after  sulfonation
(right).
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A comparison between Starbon® 800 before and after sulfonation is shown in

Figure  2.22. The  spectra  shows  that  Starbon® 800  is  very  different  from

Starbon® 300, as there is a noticeable decrease in the oxygenated carbon and

the  presence  of  aromatic  carbon  has  increased  substantially.  A long  tailing

above 290 eV is observed, attributed to  –  transitions of the aromatic groups

present  in  the  material.106 Another  characteristic  observed  in  these  high-

temperature Starbons®,  is  the presence of  a  peak around 285.5 eV in  both

sulfonated  and  non-sulfonated  Starbons® 800;  according  to  the  references

presented  in  Table  2.8., this  peak  could  be  assigned  either  to  sp3 carbon-

carbon bonds or to C–S bonds, the later is considered an option because, as

seen by elemental composition, both materials contain sulfur in the structure.

After conventional sulfonation of Starbon® 800 there are slight changes in the

carbon components, as the decrease of carbon-carbon bonds and the small

increase  in  oxidized  forms  of  carbon  as  alcohols,  carbonyls  and  carboxyl

groups; suggesting the reaction of C=C bonds with sulfuric acid.101,107  Table 2.9

summarizes  the  relative  concentration  of  each  component  determined  for

Starbons®  300 and 800 before and after sulfonation. 

Figure  2.22.  XPS  spectra  for  C1s  of  Starbon® 800  prior  (left)  and  after  (right)
sulfonation
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Table 2.9. Chemical states of C and their relative concentration (%) for Starbons® 
300 and 800 before and after sulfonation. (Binding energies presented in 
parenthesis)

 C = C C – C  /
C – S 

 C – O C = O, 
O – C – O 

O – C = O  – 

Starbon® 300 58.2

(284.5)

- 31.8

(286.3)

6.8

(288.2)

3.2

(290.6)

S-Starbon®

300 W3
44

(284.5)

- 31.9

286.0

18.3

(288.5)

5.8

(289.9)

Starbon® 800 74

(284.5)

10.6

(285.6)

5.1

(286.6)

3.2

(287.7)

2.9

(289.0)

4.2

(290.2-292)

S-Starbon®

800 W3
69.7

(284.5)

11.9

(285.5)

6.5

(286.3)

3.7

(287.9)

3.2

(289.0)

5

(290.2-292) 

A similar analysis in spectra of C1s is carried out for subsequent sulfonated

Starbons®,  presented in  Figure 2.23.  Sulfonated Starbon® 350 still  presents

broad  bands  similar  to  Starbon® 300,  which  is  the  starting  material  from

carbonization. However, as temperature of carbonization increases, the peaks

get  narrow,  indicating  a  shift  from  oxidized  carbon  to  more  graphitic-like.

Sulfonated Starbon® 450 presents an abnormality  as one of  its  components

appears at lower BE's, 283 eV. According to the references in XPS Handbook 106

low BE's in carbon indicates carbides, however in this material is very unlikely to

contain  them;  so  another  assignment  needs  to  be  made.  Some  authors

assigned the appearance of amorphous carbon, during modification of polymers

with plasma.104 
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(a) S-Starbon® 350 (b) S-Starbon® 450

(c) S-Starbon® 550 (d) S-Starbon® 600

(e) S-Starbon® 700

Figure 2.23. XPS spectra for C1s for conventional sulfonated Starbons®  (a) 350 (b)
450 (c) 550 (d) 600 and (e) 700

Another  way  to  present  this  transition  from  starch-like  to  graphitic-like  for

sulfonated  Starbons® as  temperature  increases  is  displayed  throuh  the

comparison of the high-resolution C1s spectra of each sample (Figure 2.24.). It

can be observed the narrowing of the peaks after 450 °C and the appearance of

tailing  after  BE  at  290  eV, indicating  the  presence  of  shake  up  electrons

attributed  to  aromatic  systems.106 Although  sulfonation  of  Starbon® 500  was

carried out, the spectra is not presented because the elemental analysis did not
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show sulfur at all, suggesting an unsuccessful sulfonation.

Figure 2.24. XPS spectra comparison for C1s for conventional sulfonated Starbons®

Relative concentrations of carbon components found in sulfonated Starbons®

are presented in Table 2.10. As Figure 2.24. suggests there is an increase in

sp2 carbon bond and a general decrease of oxygenated carbon as temperature

increases. The appearance of a band around 285.6–285.9 eV is observed for

sulfonated  Starbons® 600  and  700,  as  found  in  sulfonated  Starbon  800,

previously. The assignation of the peak at ~285.6 eV to C–C or C–S is still

difficult to be made, because there is not spectra for Starbons® 600 and 700

before sulfonation; however, the analysis of sulfur by XPS would complement

the information needed to make the corresponding designation. The decrease

in the component C–O is noticeable from sulfonated Starbon® 350 to 450, as it

changes from 28 % to 15 %. A drastic drop of this component  is  found for

sulfonated Starbons® 600 and 700, in which this component represents less

than 6%. Higher concentration (26 %) for carbon double bond oxygen (C=O or

O–C–O) is observed in sulfonated Starbon® 350, even higher than sulfonated

Starbon® 300 (18%); however, in higher temperature carbonized Starbons®, 450
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and onwards, this component appears in very low concentration, less than 6 %.

The  carboxylic  component  is  observed  in  all  the  sulfonated  Starbons®,  its

concentration is usually lower than other oxygenated components and did not

follow a clear trend as carbonization temperature increases.

Table 2.10. Chemical states of C and their relative concentration (%) for Starbons® 
350 to 700  after sulfonation. (Binding energies presented in parenthesis)

 C = C C – C
C – S  

 C – O C = O, 
O – C – O

O – C = O  – * 

S-Starbon®

350 W3
38.6

(284.5)
- 28.5

(286.3)
25.9

(287.9)
7

(290.6)

S-Starbon®

450 W3
66.1

(284.6)
Amorphous

C 
8.9

(283.0)

15.2
(286.1)

5.2
(287.8)

4.6
(289.4)

S-Starbon®

550 W3
77.7

(284.5)
11.2

(286.0)
4.7

(287.2)
4.5

(288.8)
1.9

(290.3)

S-Starbon®

600 W3
78.8

(284.5)
8.8

(285.9)
4.7

(286.3)
3.5

(288.3)
2.6

(289.4)
1.6

(290.8)

S-Starbon®

700 W3
73.3

(284.5)
11.4

(285.6)
5.8

(286.6)
3.1

(287.8)
3.3

(289)
3.1

(290-
291.3)

2.4.6.4.The sulfur components in sulfonated Starbons®

X-ray photoelectron spectroscopy was also used to identify the sulfur species

present in sulfonated Starbons®. Figure 2.25 shows the S2p core level spectra

for a range of sulfonated Starbons® prepared by conventional heating (90 °C

and 6 h). In the figure, two main bands could be distinguished: one centred

above 167 eV and another ca. 163.5 eV. The high binding energy is attributed to

oxidized states of sulfur: sulfones, sulfonic acids and sulfates (referred as S-ox

subsequently)  and  the  low  binding  energy  represents  sulfur  in  “reduced”

systems, with R–S configuration (labelled as S-red).105,106,112–114
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Figure 2.25. XPS S2p spectra for conventionally sulfonated Starbons®

High-resolution S2p core level spectra for sulfonated Starbons® are presented in

Figure  2.26.  The  S2p  peaks  were  fitted  using  Gaussian  function  through

CasaXPS software. In this process, the spin-orbit splitting 2p1/2 and 2p3/2 was

considered with a binding energy of 1.2 eV and the 1:2 intensity ratio of this

splitting was maintained in the fitting.115,116 

Sulfonated Starbons® 300 and 350 (Figure 2.26. (a)  and  (b)) present similar

spectra,  with  just  one band centred  at  167 eV, identified  as  S(VI)  which  is

attributed to the presence of sulfonic acids on the materials.112,114 Looking at all

the spectra presented in Figure 2.26., it is noticed that reduced sulfur assigned

to S(II)112 band ca. ~163.5 eV is only observed for high temperature Starbons®,

(450 onwards). When comparing our sulfonated Starbons® with other sulfonated

carbons,  it  is  interesting  to  find  that  materials  with  similar  structure  to  our

graphitic-like Starbons® do not present reduced sulfur S(II) in their structure and

just  S  (VI),attributed  to  sulfonic  acid.27,28 This  difference  could  be  attributed

either to the distinct nature of the material or the sulfonation approach.

96



(a) (b)

(c) (d)

(e) (f)

Figure 2.26. High-resolution S2p spectra for sulfonated Starbons® (a) 300 (b) 350
(c) 450 (d) 550  (e) 600 (f) 700
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(g)

Figure 2.26.i. High-resolution S2p spectra for sulfonated Starbons® (g) 800 

A rough quantification of the sulfur components is presented in  Table 2.11.,

composition is based on the areas of each component. Similar concentration of

reduced  sulfur  is  observed  for  Starbons® 450,  550  and  600  (15  %).  For

Starbons® 700 and 800, there is an increase in the quantity of reduced sulfur, as

it was observed 25 % and 31 % respectively, suggesting that more graphitic-like

Starbons® possess more reduced sulfur. At this point, it is worth mentioning that

during  sulfonation  of  Starbons®,  gases  were  released;  sulfur  dioxide  was

identified among those gases. In the following chapter, of microwave sulfonated

Starbons® is  presented an attempt to  quantify  it  using a  hydrogen peroxide

solution. However,  results were erratic and difficult to correlate.
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Table 2.11. Relative concentration (%) of chemical states of sulfur 
and their binding energy (in parenthesis, eV)

Starbon®

Carbonization
Temperature/°C

S2p3/2 Ox S2p3/2 Red

300 100 (167.2)

350 100 (167.2)

450 85 (167.9) 15 (163.8)

550 85 (167.9) 15 (163.7)

600 85 (167.9) 15 (163.7)

700 75 (167.7) 25 (163.7)

800 69 (167.9) 31 (163.6)

XPS analysis  showed that  there  are  significant  differences  in  the  nature  of

carbon  and  sulfur  present  in  the  range  of  sulfonated  Starbons®  prepared.

Results  suggest  that  sulfonation  promotes  the   oxidation  of  components  of

original Starbons®, these results are in agreement with the increasing in oxygen

content  observed by  elemental  analysis;  in  addition  with  the  appearance of

more  oxygenated  carbon  compounds  as  carboxylic  acid  and  ketones  in

sulfonated  Starbons®.  The  analysis  of  S2p  spectra  showed  there  are  two

different sulfur species: oxidized S(VI) and reduced S(II). The former appears

above 167 eV and the latter, ca. 163.5 eV. Low temperature Starbons 300 and

350  presents  only  the  oxidized  form of  sulfur  S(VI);  while  high-temperature

Starbons®,  present  the  two  species,  oxidized  S(VI)  and  reduced  S(II).  It  is

assumed that all S(VI) present corresponds to sulfonic acid groups, meanwhile

S(II)  is  thought  to be attached as C–S–C  bonds.  Although this assignation

would  need  to  be  more  supported  by  other  analysis,  the  C1s  spectra  for

sulfonated  Starbons  600,  700  and  800  showed a  band  at  285.6  eV, which

corresponds to C–S  bonds; thus, is very tentative to accept  the formation of

the C–S–C.

The suggested structures for Starbon® 300 and Starbon® 600 (Figure 2.19.)

were  modified  to  integrate  the  sulfur  groups  identified  on  their  respective

sulfonated  Starbons®,  according  with  the  information  obtained  for  their  S2p

spectra  by  XPS  analysis  (Figure  2.27.).  The  main  difference  between
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sulfonated  Starbon® 300  and  sulfonated  Starbon® 600  is  the  presence  of

reduced sulfur  S(II)  in  S-Starbon® 600.  It  is  important  to  point  out  that  both

structures are proposed with the aim to schematically represent the functional

groups present on the materials.

(a) (b)

Sulfonated Starbon® 300 Sulfonated Starbon® 600

Figure 2.27.  Proposed “structures”  for  sulfonated Starbon® 300 (a)  and  sulfonated
Starbon® (600)

2.4.7. Sulfur (VI) and acidity

Quantity  of  sulfonic  groups  (~SO3H)  attached  to sulfonated  Starbons® was

estimated by titration using an aqueous solution of NaOH. The procedure used

for sulfonated Starbons® is a modification of the method proposed by P. Lin et

al46  for sulfonated carbon nanocage materials. In our work, 20 mg of sample

was dispersed in 15 g of methanol-aqueous (1:1) solution of NaCl (2 M); sample

was  stirred  overnight  at  room  temperature.  Afterwards,  the  dispersion  was

filtered to remove the solid sulfonated Starbon® and then, filtrate was titrated

potentiometrically  using  NaOH  0.005  M.  It  is  worth  mentioning  that  this

approach consider that all the (H+) coming from the interchange with (Na+) come

from sulfonic acid groups. Thus, a comparison between sulfur (VI) determined

by XPS and acidity was intended to find possible correlations (Figure 2.28).

The  acidity  (quantity  of  ~SO3H  groups  mmol  g-1)  determined  using  this

methodology gives lower values than S(VI) determined by XPS. However, there

is  a  trend  between  S(VI)  and  acidity,  both  decrease  with  increment  of

temperature of carbonization of sulfonated Starbon®.  The acidity obtained for
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sulfonated Starbon® 300 was 0.82 mmolg-1 almost half  of  the value of S(VI)

content obtained by XPS. Sulfonated Starbons® 350 and 450 present 0.57 and

0.40 mmolg-1, respectively. Again, values above the half of S(VI) determined by

XPS. This observation would indicate that S(VI) does not only corresponds to

sulfonic acids, but to other S(VI) species as sulfates or sulfones; as well, it could

be considered that sodium chloride solution possibly does not interact with all

the sulfonic acid groups present on sulfonated materials. Lower acidity density

respect  to  their  S(VI)  content  was  also  observed  in  other  sulfonated

carbons.27 This observation can explain why some authors when refer to “acidity

density”,  make  the  assumption  that  sulfur  content  determined  by  elemental

analysis or by XPS corresponds only to sulfonic acid groups (~SO3H).28,31

Sulfonated Starbons® 550, 600, 700 and 800 present very low values in their

acidity; values are too low in comparison with the quantity of sulfur (VI) obtained

by  XPS.  This  lack  of  correlation  could  be  associated  with  the  increasing

hydrophobicity of samples, making more difficult the interaction of the sodium

chloride solution (H2O-MeOH,1:1). It is worth mentioning, that this solution was

prepared  with  methanol  trying  to  improve  the  interaction  with  hydrophobic

materials.  Then,  this  observation for  hydrophobic sulfonated Starbons®,  may

apply  for  sulfonated  Starbons®  300  and  350,  as  they  also  present  some

hydrophobic carbons in their structure, as it has been demonstrated by FTIR

and 13C solid-state NMR.

Figure 2.28. Sulfur content for sulfonated Starbons® at 90°C for 6h
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The acidity obtained for sulfonated Starbon® 300 is lower than the one obtained

in sulfonated nanocages46 (1.53 mmol/g-1) following similar procedures in the

quantification of sulfonic acid groups. In general, the acidities (~SO3H density)

determined  for  sulfonated  Starbons® have  lower  values  in  comparison  with

other sulfonated carbonaceous materials.30,31 This could be attributed not just to

the difference of starting materials, but as well the methodologies used in their

synthesis.  Sulfonation  of  those  materials  is  done  using  fuming  sulfuric  acid

(15% SO3), in solid (g) – acid (mL) ratios which go from 1:30 to 1:50, while our

synthesis is carried out in ratios 1 g : 7 mL of sulfuric acid, in our approach of

sustainable development of solid acid catalysts.

2.4.8. Morphology and porosity of sulfonated Starbons®

2.4.8.1. SEM images

The  morphology  of  the  materials  was  observed  by  Scanning  Electron

Microscopy (SEM). In  Figure 2.29. parent and sulfonated Starbons®  300 are

shown (a) and (b); the analysis suggests there are not severe physical changes

in the materials after sulfonation carried out at 90°C for 6h. Porous structure of

the  original  material  is  preserved.  This  characteristic  is  also  observed  in

sulfonated Starbons® 450 and 550, in which porosity is preserved. From these

SEM images, it is discerned Starbons® and sulfonated Starbons® are formed as

porous agglomerates.64 This observation is further supported with the results

obtained  by  N2 adsorption-desorption  isotherms  and  pore  size  distribution

shown afterwards.
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(a) Starbon® 300 (b) Sulfonated Starbon® 300

(c)  Sulfonated Starbon® 450 (d) Sulfonated Starbon® 550 

Figure 2.29. SEM images of Starbon® 300 (a) sulfonated Starbon® 300 (b); sulfonated
Starbon® 450 (c) Sulfonated Starbon® 550 (d)

2.4.8.2. Surface area and porosimetry

Following the previous comparison approach between parent and sulfonated

Starbon® 300, porosimetry measurements shown that both materials have very

similar nitrogen adsorption isotherms in which the condensation step starts at

higher relative pressure P/P0 ≈  0.8 (Figure 2.30.a).  According to the IUPAC

classification,  the  isotherms  observed  in  these  materials  are  type  IV,

corresponding to mesoporous materials;41,64 this means, materials with pore size

between 2  to  50  nm,  as  presented in  Table  1.1. The pore  size  distribution

observed  for  non  and  sulfonated  Starbons® are  quite  similar,  showing

mesopores with pore diameters in the range of 30 nm. However, both materials,
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parent and sulfonated Starbons® 300, presented very low surface area 16 and

32 m2g-1, respectively. These values are significant lower to the ones expected.

This  observation  was  attributed  to  the  fact  that  starting  materials  (scale  up

carbonized  materials)  were  left  several  weeks  in  sealed  containers,  this

suggests that some of the volatiles, which were known to have recondensed in

the mesopores, have slowly polymerised, blocking the pores.117 

The pore size distribution (PSD) shows a slight increase in the pore volume in

the  materials  after  sulfonation,  it  seems that  pores were opened during the

process (Figure 2.30b).  This  observation differs to  the one reported for  the

sulfonation of activated carbon by Liu et al, as they found a decrease in  pore

volume due to the sulfonic groups SO3H grafted into the  material.38 However,

their  material  had  much  smaller  pore  diameters,  making  it  potentially  more

prone to pore blocking.

Figure  2.30. (a)  Nitrogen  adsorption  isotherms  and  (b)  pore  size  distribution  for
sulfonated and non-sulfonated Starbon®  300  

As reported in previous works related to preparation of Starbons®, microporosity

of materials increases as carbonization temperature increments9. This could be

observed in the isotherm and pore size distribution of sulfonated Starbon® 550

shown in  Figure 2.31., there is a significant contribution of micropores to the

surface area and their presence is noticeable in the PSD plot.
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(a) (b)
Figure  2.31. (a)  Nitrogen  adsorption  isotherm  and  (b)  pore  size  distribution  for
sulfonated  Starbon®  550  

Table 2.12. summarizes the surface areas,  pore  diameter  and pore volume

obtained for the range of prepared sulfonated Starbons®. As mentioned earlier,

low surface area obtained in S-Starbon® 300 might be related to the problems

found  in  the  starting  material  (“pore  blocking”).  Thus,  a  general  trend  of

increasing surface area with carbonization temperature is observed, just it has

been observed in previous synthesis. 

Table 2.12. Surface characteristics of sulfonated Starbons®

S-Starbon® Surface area
m2g-1

Pore volume
cm3g-1

Pore diameter
nm

300 32 0.16 30

350 285 0.13 26

450 308 0.20 30

550 324 0.20 28

600 379 0.15 28

700 344 0.20 29

800 97 0.20 29

However, sulfonated Starbon® 800 falls out of the trend. It is important to point

out that starting material Starbon® 800, possesses a surface area of 387 m2g-1,

then  reduction  of  surface  area  is  significant.  Figure  2.31.  displays  the  N2

adsorption-desorption isotherm of parent (a) and sulfonated (c) Starbons® 800.
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The isotherm shows a decrease in the total  volume adsorbed for sulfonated

material,  suggesting  a  minor  micropores  contribution  to  surface  area.  This

observation  can  be  correlated  with  the  PSD  plot  Figure  2.32.,  in  which

micropores are hardly distinguished on sulfonated Starbon® 800 (d). Then, it

seems the micropores present in the starting Starbon® 800 are blocked during

sulfonation with sulfuric acid at 90 °C for 6 hours; but the mesopore volume

does not change significantly.

(a) (b)

(c)
(d)

Figure  2.32. Nitrogen  adsorption  isotherm  (a)  and   pore  size  distribution  (b)  for
Starbon® 800;  nitrogen  adsorption  isotherm  (c)  and   pore  size  distribution  (d)  for
sulfonated Starbon® 800 (c)

2.5. Conclusions

Synthesis of a range of sulfonated Starbons® was carried out following a new

sulfonation  approach.  This  methodology  proposes  the  use  of  commercial

sulfuric  acid  (95%) and a  lower ratio  of  Starbon®–sulfuric  acid  (1  g:  7  mL).

Sulfonation was performed in a range of carbonized Starbons® prepared from
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the  first  scale-up  Starbons® 300,  400  and  800  °C,  synthesized  at  Green

Chemistry Centre of Excellence, University of York.  

Elemental analysis of the new carbonized Starbons® showed an increasing C:O

ratio as temperature of carbonization increments suggesting the formation of

aromatic polycyclic materials. This observation is further supported by FTIR, 13C

solid-state NMR and C1s XPS analysis.

Sulfonation  of  Starbons® promotes  the  appearance  of  an  absorbance  at

ca.~1030cm-1, observed in the FTIR spectra of sulfonated Starbons. This band

is identified as the symmetric S=O stretching related to sulfonic acids attached

to samples. However, the band assigned to C–S  bond is not observed neither

in the IR spectra nor 13C solid-state NMR spectra because of overlapping and

broadening of the bands located at around 140 ppm. However, XPS analysis

C1s for high-temperature Starbons 600, 700 and 800 shows a peak at ~285.6

eV  attributed  to  this  bond.  It  is  interesting  to  notice,  that  other  sulfonated

Starbons like 300 or 350, do not show this peak; this could be due to the high

concentration of the other oxygenated components compared with the carbon-

sulfur groups.  

Studies  by  elemental  analysis  showed that  sulfur  content  is  higher  for  low-

temperature  Starbons® (300  and  350  °C)  than  for  higher  temperature

carbonized  samples.  This  trend  is  also  observed  by  the  surface  elemental

composition done by XPS. Changes in C:O atomic ratio of Starbons® after were

related to the inclusion of sulfonic acids to the structures and to the oxidation of

the components present in the starting materials. Oxidation of functional groups

is further confirmed by  13C solid-state NMR and C1s XPS, which shows the

appearance of more oxygenated functional groups as ketone, aldehydes, esters

and carboxylic acids. The analysis of high-resolution S2p spectra showed that

S(VI) assigned to sulfonic acids appears in all the sulfonated Starbons studied.

However, for Starbons® carbonized at temperatures of 450 °C and onwards, the

presence of reduced sulfur S(II) is identified.
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Density of sulfonic acid groups, referred as “acidity” was determined using a

NaCl ionic interchange solution; however, the values obtained are lower than

the  ones  expected  from  the  estimation  of  S(VI)  determined  by  XPS.  This

observation, can be associated to the presence of other S(VI) species in the

materials apart from sulfonic acids; however, it can be considered the fact of

weak  interaction  between  the  NaCl  solution  with  the  materials  because  of

sample's hydrophobicity. 

Sulfonation of Starbons® do not seem to affect the mesoporosity of samples, but

it  possible affect  the micropores present in samples, decreasing the surface

area  from  starting  material  to  the  sulfonated  one,  as  was  observed  for

sulfonated Starbon® 800.
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Chapter 3

Synthesis and characterisation 

of microwave sulfonated Starbons® 
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3.1. Introduction

Microwave irradiation is a well-known method for heating and drying materials,

the use of which has been widespread in recent years as a “green approach” in

organic synthesis, because of its easy manipulation and instantaneous, rapid

and specific heating.118–120 Microwave-assisted sulfonation using sulfuric acid as

sulfonating  agent  has  already  been  tested  with  naphthalene  and  naphthol,

results  showed  high  conversions  and  selectivity  under  non-severe  reaction

conditions.57,121 These observations motivated us to use microwave irradiation

and commercial sulfuric acid as an alternative route for synthesis of sulfonated

Starbons®. This chapter deals with the preparation and characterisation of the

resulting microwave sulfonated Starbons®. The synthetic approach involves the

use of three different starting materials Starbons® 300,  450 and 800, (same

carbonized  Starbons® used  in  conventional  sulfonation)  and  exploring  three

temperatures (90, 120, 150 °C) taking advantage of the controlled microwave

assistance. Sulfonation was carried out using the “open vessel” method in a

microwave reactor CEM Discover. 

In this new process (Figure 3.1.), there were some changes compared with the

Starbons® sulfonation by conventional heating; among them, the suppression of

methanol washes, trying to reduce the number of steps in the production of the

solid acid catalyst; another change involves the use of microwave irradiation for

the washes with hot water, which were carried out in shorter times (10 min) than

conventional washes (20 min); sample was extensively washed until no sulfates

were detected when tested with a BaCl2 solution (0.1 M). Microwave sulfonated

Starbons® were prepared using 2.0 g of material  and 14 mL of sulfuric acid

(95%); keeping the same ratio as for the materials prepared by conventional

heating. 

As mentioned in Chapter 2,  sulfur dioxide (SO2) is released during sulfonation

of Starbons®; which was also observed during microwave sulfonation. Then,  a

suitable  set  up  was  used  during  the  preparation  of  microwave  sulfonated

Starbons® to collect the released SO2 in a hydrogen peroxide solution H2O2 (30
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% v/v) forming sulfuric acid which can be quantified. However, the main findings

from this approach are presented in Chapter 4.

Characterisation of these novel sulfonated Starbons® is presented throughout

this  chapter.  The  first  section  presents  the  characterisation  by  elemental

analysis to determine the composition of materials. In the following section, X-

ray photoelectron spectroscopy (XPS) is used to identify the chemical states of

carbon and sulfur that constitute these microwave sulfonated Starbons®.  The

chemical environment for carbons found by XPS is further supported by  13C

solid-state NMR and FTIR. Subsequently, acidity quantification for microwave

sulfonated Starbons® 300 is  presented followed by  morphology and surface

studies. Finally, a small comparison between samples prepared conventionally

and using microwaves at 90 °C is made to find out similarities and differences.

Figure 3.1. Scheme of microwave sulfonation of Starbons® 

3.2. Bulk elemental composition

Determination  of  elemental  composition  of  bulk  materials  was  carried  out.

Figure 3.2.  shows the C:O molar ratio and sulfur content (mmol/g) obtained for

the three selected materials at different microwave sulfonation temperatures. A

general  trend was found, as temperature of sulfonation increases,  C:O ratio
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decreases  for  all  materials,  suggesting  the  formation  of  more  oxygenated

materials after treatment.  This is more noticeable for Starbon® 800, the C:O

ratio of which drops from 30 for original Starbon® 800 (Figure 2.6) to 10 for

sulfonated sample at 90°C; being even lower for sample prepared at 150 °C, in

which the C:O ratio is around 6 (Figure 3.2.c). Meanwhile for Starbon® 300, the

changes in C:O ratio are less obvious as temperature of sulfonation increases

(Figure 3.2.a); very similar ratios were found for sample prepared at 120 and

150 °C. For Starbon® 450, there is a continuous decrease as temperature of

sulfonation gets higher, changing from 4.5 for sample prepared at 90°C to 3.0

for the one prepared at 150 °C (Figure 3.2.b). 

Examination of sulfur content on samples shows that, in general, this increases

with  microwave  sulfonation  temperature.  Starbon® 300  presents  the  highest

sulfur contents among the materials, 450 and 800; it was determined up to 1.3

mmol/g for sample prepared at 150 °C  (Figure 3.2.a).  Although for samples

prepared at 90 and 120 °C, there is not a significant difference (0.95 mmolg -1).

This behaviour was also observed for Starbon® 450 samples prepared at 90

and 120 °C, as both of them present similar sulfur content (Figure 3.2.b). When

sulfonation is carried out at 150 °C, the content reached over 0.64 mmolg -1.

Starbon® 800 shows an increment in sulfur content as sulfonation temperature

increases, changing from 0.48 mmolg-1 for sample sulfonated at 90 °C to 0.88

mmolg-1 for  sample  sulfonated  at  150  °C  (Figure  3.2.c).  Sulfonation

temperature seems to have a greater impact on the sulfur content in Starbons®

800,  because  high  temperature  promoted  higher  sulfur  contents  on  these

materials. 
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(a) (b)

(c)

Figure 3.2.  Elemental composition of microwave sulfonated Starbons® (a) 300, (b)
450 and (c) 800

The microwave sulfonated Starbons® prepared at 150°C were compared with

other sulfonated carbons. With this aim a brief review on the methodology used

for  sulfonation  of  sugars27,28 proposed  by  Hara  et  al,  was  done.  The  main

findings are presented in Table 3.1. It is worth mentioning that Hara's approach

used higher acid:solid ratio, of 10 mL acid for 1 g of solid; and longer reaction

times,  which  is  over  15  hours.  The  comparison  of  sulfur  content  between

sulfonated sugars carbonized at 300°C and 600°C and sulfonated Starbons®

300 and 800, shows the former materials contain less sulfur than sulfonated

Starbons® prepared using microwave irradiation. These results would suggest

that  microwave  sulfonation  would  be  a  more  effective  method  to  carry  out

sulfonations at this temperature of 150°C and it could be achieved in shorter

times.
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Table 3.1. Sulfur content in sulfonated samples prepared at 150 °C

Hara's methodology
150 °C – 15 h

MW sulfonation
150 °C – 30 min

Carbonization
Temperature/°C

mmol S g-1 Carbonization
Temperature/°C

mmol S g-1

300 0.49 300 1.33

600 0.37 800 0.87

3.3. XPS analysis of microwave sulfonated Starbons®

3.3.1. Elemental composition

Core-level  X-ray photoelectron spectroscopy (XPS or ESCA) is an important

technique for characterisation of carbonaceous materials, as it allows for the

determination  of  chemical  composition  and  nature  of  chemical  bonds  on

surfaces and interfaces.122 The elements C, S and O were observed in the full-

scan  XPS  spectrum;  this  survey  allowed  the  determination  of  elemental

composition of microwave sulfonated Starbons® 300, 450 and 800 prepared at

90°C, 120 °C and 150 °C to find out main differences (Figure 3.3). This analysis

helped to  complement  the  information  obtained  previously  by  the  elemental

analysis  of  bulk  samples.  As  expected,  carbon  composition  is  higher  for

Starbon® 800 at over 93 % (Figure 3.3.a.), meanwhile for Starbon® 300, it is

around  76  %;  although  significant  differences  were  not  found  among  the

sulfonation  temperatures.  However,  oxygen  content  in  samples  changes

dramatically as it drops from 20 % to 6 % from 300 to 800, respectively (Figure

3.3.b.).  This  trend  was  already  mentioned  in  section  2.4.6  and  previously

reported  as  increasing  C:O  ratio  with  increasing  carbonization

temperature.9,13 Although, the oxygen content in samples seems to be affected

by the temperature of sulfonation, these changes are not regular among them.

The sulfur content determined by XPS was shown to be significantly higher for

sulfonated Starbon® 300 than for sulfonated Starbons® 450 and 800 (Figure

3.3.c.);  showing  the  highest  percentage  of  sulfur  (%S)  in  Starbon® 300

microwave  sulfonated  at  150  °C.  In  spite  of  the  composition  differences

between  Starbon® 450  and  Starbon® 800,  both  materials  present  similar

quantities of sulfur, with a concentration less than 1.5 % (±0.1 %).
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a) b)

c)

Figure 3.3. Atomic composition of microwave sulfonated Starbons® for C (a), O (b) 
and S (c)

3.3.2. Carbon analysis

3.3.2.1. General overview

High-resolution C1s curve analysis was carried out for microwave sulfonated

Starbons®  similar  to  the  approach  presented  previously  for  conventional

sulfonated Starbons® in  Chapter 2.  This analysis was done using CasaXPS

software  package.  Figure  3.4,  presents  the  high-resolution  C1s  spectra

obtained for Starbon® 300 microwave sulfonated at 90°C (a),  120°C (b) and

150°C (c).  As  can be seen,  the  shape of  each C1s curve  is  quite  different
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among  the  samples;  the  different  carbon  functionalities  could  be  identified

through a peak fitting analysis. The assignment of the carbon bonds found in

microwave sulfonated Starbons® are based on the ones reported in Table 2.8.

Five components can be identified in all sulfonated Starbon® 300 samples. The

concentration of each component varies with temperature of sulfonation. These

five  components  identified  are  the  sp2-hybridized  C=C centred  at  ca.  284.5

eV;102,103 a  carbon  oxygen  (C–O)  bond  at  286.2–286.4  eV;  double  bond  to

oxygen  (C=O,  O–C–O)  at  287.6–287.8  eV, the  bond  O–C=O  appearing  at

289.3–289.6 eV and the long tailing with a maximum at 291.2 eV, is attributed to

 – *  “shake  up”.107,123 The  relative  concentration  of  each  component  was

calculated considering their peak areas ratio; the finding are presented in Table

3.2. 

a) b)

c)

Figure 3.4. High-resolution C 1s spectra of microwave sulfonated of Starbon® 300 at 
90°C (a), 120 °C (b) and 150 °C(c)
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The  carbon  components  present  in  microwave  sulfonated  Starbons® 450

prepared at  90°C,  120  °C and 150 °C  were  determined following  a  similar

analysis  to  previous sample.  Thus,  deconvolution of  the high-resolution C1s

spectra  was  done  and  presented  in  Figure  3.5. The  shape  of  every  C1s

envelope for each sample looks very different among them; changing from a

narrow band of Starbon® 450 sulfonated at 90 °C  to a broad band for sample

sulfonated at 150 °C. Starbon® 450 microwave sulfonated at 90 °C presents a

particular  shape after  deconvolution  of  the  curve,  because  the  maximum is

centred at 285.6 eV, and presents a small band at 284.5 eV, this one has been

assigned  to  sp2 C=C  bond.102,103 Meanwhile  for  Starbons® 450  microwave

sulfonated at 120 °C and 150 °C, the band attributed to C=C is more prominent

than the peak observed at 285.6 eV, differing from the observation in sample

prepared  at  90  °C.  This  peak  observed  at  285.6  eV was  also  observed  in

conventional sulfonated Starbons® 600, 700 and 800; as discussed in Chapter

2, this peak could be attributed to aliphatic carbons with sp3 hybridization C–C
102,107 or  to  C–S bonds,  observed in sulfonated graphene;109  although some

other authors  have reported that the appearance of C–S bond from sulfonic

acids attached to carbons, appears at higher binding energies, at 288.7-288.8

eV,90,124 however  this  latter  value  differs  from the  “expected  range”  for  C–S

bonds published  by Briggs in the XPS and Auger Database and the Polymer

Database.106 

The high concentration of  the carbon species observed at 285.6 eV in MW

sulfonated Starbon® 450 at 90°C, makes it difficult to “accept” that most of the

carbon present in the material is solely related to C–S bonds, as the quantity of

sulfur  determined is  less  than 1%,  which makes it  unlikely  that  64% of  the

carbon can be attributed to the C–S bonds. Thus, another approximation was

used to find the nature of the carbon at that binding energy 285.6 eV. During the

search, it was found that some authors have also referred to this signal as a -

carbon,  C–COOR  found  in  different  XPS  studies  on  other  carbon

derivatives.92,108 Other  researchers  have  assigned  this  signal  to  “amorphous

carbon”,  implying  the  breaking  of  a  rigid  structure  to  give  sp3 carbon

bonds,125 which was suggested to have arisen due to the strong oxidation of

sulfuric acid;90 this observation at 285.6 eV is similar to the above related to
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aliphatic carbons with sp3 hybridization. 

Analysis  carried to determine if this peak was due to -carbons, shows that all

three microwave sulfonated Starbons® 450 samples have  similar concentration

of carboxylates, and therefore it is unlikely that the peak is due to  -carbons.

The reasonable assignation for this high-intensity band in sulfonated Starbons®

450 prepared at 90 °C would be related to sp3 C–C bonds.  Unfortunately, as will

be  seen  in  the  13C  solid-state  NMR  section,  the  spectra  obtained  for

Starbon®450 microwave sulfonated at 90 °C has poor quality and it does not

provide  enough  information  to  confirm  the  massive  increase  in  aliphatic

carbons. 

An  analysis  of  the  bulk  elemental  composition  (Figure  3.5d)  shows  that

Starbon® 450 sulfonated at 90°C presents the lowest O/C ratio,  which could

explain the low quantity of oxygenated moieties observed on the surface of the

sample,  although  when  the  H/C  ratio  is  examined,  the  ratio  is  very  similar

among the three samples, approximately 35 H atoms per 100 of C atoms. 

Continuing  with  the  analysis  of  the  components  observed  in  microwave

sulfonated  Starbon® 450  at  90,  120  and  150  °C,  the  peak  fitting  also

distinguished  bands  centred  in  the  ranges  286.2–287.2,  287.6–288.4  and

289.0–289.6  eV  which  have  been  assigned  to  single  C–O  bond  ethers  or

hydroxyl  groups,  double  oxygen  bond  O–C–O,  carbonyl  or  quinone  groups

(C=O)   and  carboxylic  groups,  esters  or  lactones  (-COOR)

respectively.102,103,107,126 At  higher  binding  energies,  there  were  two  bands

identified,  one  ca.  290.5–290.8  eV  and  another  ca.  291.4–292.0  eV;  some

authors refer to the first signal as carbonates (O–COO–), found in oxidation of

carbon  nanotubes107,125 or  acid  treated  carbon-fibres102 and  the  last  one

assigned to * transitions in aromatic rings.103,125,127

119



(a) (b)

(c)
(d)

Figure 3.5. High-resolution C 1s spectra of microwave (MW) sulfonated of Starbon® 
450 at 90°C (a), 120 °C (b) and 150 °C(c). Van Krevelen diagram of MW sulfonated 
Starbons® 450 (d)

The  deconvolution  of  high-resolution  C1s  spectra  for  microwave  sulfonated

Starbon® 800 are presented in Figure 3.6. There are not significant differences

among the three spectra, as they presented a maximum band at ca. 284.5 eV

corresponding to C=C bonds; in all spectra, a signal at 285.6 eV is observed,

similar to microwave sulfonated Starbons® 450; which could be assigned to sp3

C–C bonds.102,107 However, the oxygenated carbon moieties appeared in lower

concentration than for Starbons® 450, which could also be related with the lower

oxygen  atomic  percentage  present  in  the  sample,  determined  in  the  XPS

survey. These findings would suggest that sulfonation at different temperatures
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did not promote drastic changes on these materials. 

(a) (b)

(c)

Figure 3.6. High-resolution C 1s spectra of microwave (MW) sulfonated of Starbon® 
800 at 90°C (a), 120 °C (b) and 150 °C(c).

3.3.2.2. Quantification of components

When analysing the concentration of the components (Table 3.2) of microwave

sulfonated  Starbon® 300  at  different  temperatures,  it  is  found  that  sample

sulfonated at 150 °C presents the highest concentration of C=C bonds, close to

40 %. The concentration obtained for the signal corresponding to carbon single

bound to oxygen are similar among them, being just slightly higher for 120 and

150 than for sample prepared at 90 °C. The concentration found for carbon

double bound to oxygen decreases from 25 % to 20 % from samples prepared
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at 90 °C and 150 °C, respectively. Meanwhile, the signal assigned to ester type

compounds  varies  without  a  noticeable  trend,  being  higher  for  microwave

sulfonated  sample  at  120  °C.  In  these  samples,  the  carbonate  O-COO-

component was not observed.

As mentioned previously, Starbon® 450 microwave sulfonated at 90 °C presents

a maximum ca. 285.6 eV, then compositional analysis for this sample differs

considerably from other two samples prepared at 120 and 150 °C. This signal at

285.6 eV represents 64 % of total carbon moieties found on surface of Starbon

450 sulfonated at 90 °C, meanwhile both Starbons® 450 prepared at 120 and

150 °C have higher concentration of C=C bonds (over 40 %) and over 20 % of

the band ca. 285.6 eV. The concentration of oxygenated moieties for single and

double carbon-bond oxygen, seems to be slightly higher for sulfonated sample

at 150. The remaining components are very similar among them. 

The  analysis  of  the  concentration  of  moieties  observed  in  Starbons® 800

microwave sulfonated at 90, 120 and 150 °C, presents a maximum of sp2 C=C

bonds  over  70%,  this  concentration  is  higher  for  Starbon® 800  than  for

Starbons® 300 and 450 with respect to the other components,  these did not

differ greatly within the three distinct temperatures of sulfonation, suggesting

that modification of 800 would need more effort.
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Table  3.2. Relative  concentrations  (%)  of  carbon  functionalities  in  microwave
sulfonated Starbons®

 C = C C – C C – O C=O, 
O-C-O

-COO O-COO *

300-MW90 33.4 29.4 25.4 7.8 4

300-MW120 28.7 32.8 21.6 9.6 7.3

300-MW150 39.3 32 19.6 6.3 2.7

450-MW90 9.7 64 12.9 4.1 4.1 2.6 2.5

450-MW120 42.5 26.7 12.5 6.8 4.8 3.3 3.1

450-MW150 46 22.7 16 7 4.1 2.9 1.6

800-MW90 72 9.6 5.3 3 2.7 2.4 1.5

800-MW120 72.2 9.5 5.2 3 2.7 2.5 1.6

800-MW150 70.7 10.2 3.5 3.2 2.9 2.4 1.4

3.3.3. High-resolution sulfur S2p spectra

Further analysis on the chemical bonding formed in Starbons® after microwave

sulfonation was carried out. High-resolution XPS measurements on sulfur were

performed; a strong S2p signal was detected for microwave sulfonated samples

300,  450  and  800  at  the  three  temperatures  90°C,  120°C and  150°C.  The

spectrum of each sample was fitted by two components, considering that each

component has a S2p3/2 and S2p1/2 doublet with a fixed intensity ratio of 2:1 and

an energy of separation of 1.2 eV. The fitted spectra for samples sulfonated at

90°C are shown in  Figure 3.7.  It can be seen that sulfonated Starbons® 450

and 800 present  a  component  at  low binding  energies,  in  which  S2p 3/2A is

centred at 163.5 eV, which could be assigned to R–S thiophenic species, i.e. C–

S bonds.109,114,128 Whilst, microwave sulfonated Starbon® 300 did not present this

component, instead it presented a very broad band which was fitted into two

oxidized components, one with S 2p3/2A at 167.5 eV and another band S 2p3/2B

appearing at 169.8 eV. The first peak is attributed to sulfonic acid112,114 although

some authors refer the appearance of this band at higher binding energies at

168–168.7 eV.37,90,129,130 Although, the component appearing at 169.8 eV is very
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tentatively assigned to sulfates, the data reported for sulfur in sulfates do not

exceed 169 eV.112 This peak has been assigned to “persulfates” (C-O-O-SO3) as

in the work by Siow et al131 on sulfonated surfaces of polymers prepared with

SO2 by  plasma  treatments.  However,  due  to  the  differences  between  our

method of synthesis and the plasma approach that assignation was discarded.

Bands at  higher binding energies,  over 169 eV, have been also reported in

sulfur compounds of this type ROSO2OR,112 identified as organo sulfate esters.

These compounds would be more reasonable to be attributed to our materials.

It  is  worth  mentioning  that  appearance of  this  component  at  higher  binding

energy was not observed during the conventional sulfonation of Starbon® 300,

suggesting  that  microwave  sulfonation  promotes  the  formation  of  this  sulfur

species. 

(a) (b)

(c)

Figure 3.7. Deconvolution of high-resolution S2p spectra for microwave sulfonated
Starbons® 300 (a), 450 (b) and 800 (c) at 90 °C
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Figure  3.8  presents  the  high  resolution  S2p  spectra  of  the  microwave

sulfonated Starbons® 300, 450 and 800 at different temperatures.  It  can be

seen  that  spectra  are  very  similar  among  them;  for  Starbon® 300,  the  two

oxidized components are observed in all the temperatures. For Starbons® 450

and  800,  spectra  are  also  similar,  presenting  the  reduced  and  oxidized

components  along  the  treatment  temperatures.  A  quantification  of  the

concentration of each component was carried out in every sample through the

fitting  analysis  as  presented  in  Figure  3.7.  A summary of  these  findings  is

presented  in  Table  3.3. For  the  microwave  sulfonated  Starbon® 300,  the

concentration of  the component appearing at 169.8 eV, is higher for the sample

sulfonated at 150 °C, being slightly higher than 50 %. In Starbon® 450, the

oxidized component at 167.5 eV is found in less quantity for the treatment at

90°C,  meanwhile  treatments  at  120  and  150  °C  present  similar  quantities,

approximately 80 %. For the spectra of Starbon® 800, similar concentrations are

found in  the component  at  167.5  eV, around 70 %, being  slightly  lower for

sample treated at 90°C. It is interesting to notice that Starbon® 800 presented

higher concentration of reduced component, than Starbon® 450, which did not

vary noticeable among the different treatment temperatures.
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a) b)

c)

Figure  3.8. Comparison  of  high-resolution  S2p  spectra  for  microwave  sulfonated
Starbons® 300 (a), 450 (b) and 800 (c) at 90, 120 and 150 °C

Table 3.3. Relative concentrations (%) of sulfur functionalities in microwave sulfonated 
Starbons® 300, 450 and 800

 -SO3H
(167.5 eV)

ROSO2OR
(169.8 eV)

R-S-R 
(163.5 eV)

-SO3H
(167.5 eV)

300-MW90 56.7 43.3 450-MW90 65.2 34.8

300-MW120 64.4 35.6 450-MW120 81.9 18.1

300-MW150 49.7 50.3 450-MW150 79.9 20.1

800-MW90 69.8 30.2

800-MW120 72.4 27.6

800-MW150 72.9 26.1
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3.4. Structural changes studied by 13C solid-state NMR spectroscopy

XPS  analysis  has  given  a  remarkable  framework  in  the  characterisation  of

microwave sulfonated Starbons® because of  the  useful  information  provided

about composition of the materials. These studies could be complemented with
13C solid-state CP/MAS NMR spectroscopy, as this gives a powerful approach

to molecular analysis of carbonaceous materials.132 It is worth mentioning that

sulfonated Starbon® 800 was not able to be analysed, because of its highly

conductive characteristics. 

An overview of the functionalities found in Starbon® 300 before sulfonation is

presented in  Figure 3.9. Some of these chemical groups have been already

mentioned in  the  previous chapter. In  the  downfield  region,  mainly  aliphatic

groups  are  found;  terminal  methyl  groups  ca.  15  ppm  and  a  noticeable

resonance at 20 ppm assigned to the carbon of a methyl group attached to

aromatic carbon.95 A broad band arises from 30 to 50 ppm, which could be

attributed to methylene or methine linkages.91 A broad band with distinguishable

peaks  appears  above  108  ppm;  in  this  region,  carbons  belonging  to  furan

moieties could be identified at 108 ppm and 138 ppm.91 In the middle of this

region, a sharp peak arises, which is assigned to aromatic components in the

materials, specifically referred to as polycondensed aromatic rings.91–93,133,134 A

perceptible resonance is observed at 153 ppm, which has been attributed to

carbon in phenolic functionalities.28,91–93 Resonances at 175 ppm and 200 were

assigned to carboxyl groups and ketone-aldehydes groups, respectively.93
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Figure 3.9. Identification of functional groups in 13C solid-state CP/MAS NMR spectra
for Starbon® 300 before sulfonation

After  sulfonation  of  Starbon® 300,  the  most  remarkable  change  is  the

broadening of the NMR spectra, especially the band centered at 128 ppm. The

identification of the resonances present in the sample was carried out through

the deconvolution of the spectra using a Lorentzian multipeak fitting (Figure

3.10). Curves arisen during the fitting process were analysed and assigned to

reasonable  carbon  functionalities.  The  analysis  was  more  qualitative  than

quantitative,  there  is  no  attempt  to  determine  the  concentration  of  each

resonance. It is interesting to notice in Figure 3.10, the contribution of different

components to the width of spectra.

Figure 3.10.  Curve-fitting of  13C solid-state CP/MAS NMR spectrum of Starbon® 300
microwave sulfonated at 90°C
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After the identification of contribution of each component through curve fitting, a

shading of the spectra was carried out to make recognition of the functionalities

present in each sample easier (Figure 3.11). The analysis of the spectra in the

upfield region, allows the identification of terminal methyl groups ca. 15 ppm; it

is worth mentioning that resonances appearing at 24 ppm and 65 ppm have

been identified as 2-propanol residues used for cleaning and maintenance of

NMR equipment. 

As  found  in  Starbon® 300  original,  the  spectrum  presents  a  broad  band

observed in the range 35–60 ppm, which is attributed to methylene groups. In

the broad band ca. 128 ppm could be identified several components, this main

peak at 128 ppm assigned to aromatic groups; the band at 108 ppm and 140

ppm could be attributed to furan rings, however at 140 ppm is also expected to

see the bond between aromatic carbon and sulphur;28 then this resonance could

represent both moieties. Samples sulfonated at these different temperatures,

present resonances at 155 ppm and 165 ppm. The first  one is attributed to

carbon in phenolic groups, which were also found in original Starbon® 300. The

resonance at 165 ppm is assigned to ester groups, which could be promoted by

the oxidation with sulfuric acid, as was observed in a similar treatment of starch

with  HNO3
93 and previously  in  the  sulfonation  of  Starbons® by  conventional

heating; the formation of more oxygenated functionalities is reflected with the

increasing in oxygen, as shown by elemental composition.  It is interesting to

notice  along  the  different  sulfonation  temperatures  of  Starbon® 300,  the

continuity  of  the  aldehyde  (190  ppm)  and  ketone  (203  ppm)

resonances,93 suggesting  that  microwave  treatment  did  not  affect  these

functional groups during sulfonation.
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a)

b)

c)

Figure 3.11. 13C solid-state NMR spectra for microwave sulfonated Starbons® 300 at
90°C (a), 120 °C (b) and 150°C (c)

The  13C  solid-state  NMR  spectra  for  parent  Starbon® 450  and  microwave

sulfonated Starbons® 450 are presented in  Figure 3.12.  Unfortunately some

spectra are noisy and was harder in some cases to confirm the existence of

resonances. The identification of main components on materials was achieved

through a reasonable curve-fitting. As found previously, resonances at 24 and
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65 ppm belong to 2-propanol contaminant. Spectra pre and post-sulfonation are

very similar, they show a noticeable resonance at ~128 ppm, corresponding to

aromatic carbons in polycondensed systems. The bands visible at 108 and 140

ppm could be attributed to furan rings present in Starbons® 450; although, the

latter could also be due to aromatic carbon-sulfur bond in sulfonated Starbons®. 

Figure 3.12.  13C Solid-state NMR spectra for microwave sulfonated Starbons® 450

3.5. FTIR characterisation

Infrared spectroscopy was applied in further evaluation of the chemical structure

of the microwave sulfonated Starbons®. Figure 3.13 shows the FTIR spectra for

microwave sulfonated Starbons® 300 at 90,  120 and 150 °C,  which present

similarities  with  the  conventional  sulfonated  Starbons® 300  displayed  in

Chapter 2. In all spectra, two main bands are distinguished at 1715 cm -1 and

1600  cm-1 which  were  assigned  to  C=O  and  C=C  stretchings,

respectively,34,37,80,90,129 observation that  agrees with  the  presence of  carboxyl

groups and saturated-aromatic carbons found through XPS and 13C solid-state

NMR analysis. Looking at this region, a particularity is observed in Starbon® 300

microwave sulfonated at 150°C, as it shows a small shoulder at 1770 cm -1, this
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vibration could be assigned to formation of lactones135 during the process of

sulfonation at higher temperatures, as samples prepared at 90°C and 120°C do

not show this particular band. Moving to lower wavenumbers, a broad band is

observed  in  the  region  1350–1100  cm-1,  in  which  two  maxima  could  be

distinguished: one ca. 1225 cm-1 and another ca. 1160 cm-1,  the first  one is

assigned to vibration of ether bridges C–O–C,34,129 while the second band could

be attributed to C-O stretching of alcohol groups.90,136 The presence of sulfonic

groups -SO3H can be identified by stretching vibrations  at 1392 cm-1 and 1183

cm-1 (-SO2- asymmetric and symmetric, respectively), however when absorptive

water combines with the sulfonic group, the asymmetric and symmetric modes

shift  to  lower  wavenumbers,  1150  and  1030  cm-1.46,90,137 In  this  respect,  the

asymmetric vibration of sulfonic groups overlaps in the band observed at 1160

cm-1, described earlier; whereas, the symmetric mode is quite noticeable in all

microwave sulfonated Starbons® 300; as in conventional sulfonated Starbons;

with that band at 1030 cm-1 attributed to symmetric S=O stretching. In the FTIR

spectrum of Starbon® 300 microwave sulfonated at 150 °C two bands can be

distinguished at 886 cm-1 and 820 cm-1, which can be related to sulfate esters

like in conventional sulfonated Starbons® before methanol treatment. It is worth

remembering  that  microwave  sulfonated  Starbons® were  not  treated  with

methanol.

Figure 3.13. FTIR spectra for microwave sulfonated Starbons® 300
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FTIR spectra for  microwave sulfonated Starbon® 450 at 90 and 120 °C are

compared with the Starbon® 450 before sulfonation and presented in  Figure

3.14.  The  spectra  looks  very  different  to  Starbon® 300,  as  the  band

corresponding  to  C=O  stretching  and  located  at  1705  cm-1 has  decreased

significantly for these materials. Whereas, the vibration corresponding to C=C

stretching ca. 1600 cm-1 is more prominent than the one for Starbons® 300. In

the  original  Starbon® 450,  the  broad band ca.  1200 cm-1 seems to  be  less

prominent  than  the  ones  in  microwave  sulfonated  Starbon® 450;  the  peaks

corresponding to ether bridges (1225 cm-1) and C-C or C-O stretching (1160 cm-

1) are hardly discriminated in the original Starbon® 450, meanwhile are obvious

in sulfonated ones. The symmetric stretching of sulfonic groups rises at 1030

cm-1,46,90,137 as  expected  this  band  is  not  observed  in  the  original  material,

confirming the functionalization of the materials through microwave sulfonation.

Figure 3.14.  FTIR spectra of Starbon® 450 before and after microwave sulfonation at
90°C and 120 °C.

3.6. Acidity of microwave sulfonated Starbons®

Acidity of microwave sulfonated Starbons® 300 was determined using the NaCl

solution, following the methodology presented in Chapter 2, the method used is

a modification of the one proposed by Lin et al46 as in this work the solution of

sodium  chloride  is  prepared  using  a  mixture  of  methanol-water  (1:1).  After
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stirring the mixture of sulfonated Starbons® and NaCl solution overnight, sample

is  filtered and the  filtrate  is  titrated potentiometrically  with  a NaOH solution.

Figure  3.15. corresponds  to  a  titration  curve  for  sulfonated  Starbon® 300

prepared at 90°C using microwaves, in which the equivalence point is pointed

out. Titrations were carried out in triplicate and an average of mmol of sulfonic

groups (-SO3H) per gram was determined.

Figure 3.15.  Titration curve for microwave sulfonated Starbon® 300 at 90 °C 

Figure 3.16. shows a comparison of sulfonic groups determined in sulfonated

Starbons® 300 through the titration with NaOH. It is interesting to notice that

sulfonated  Starbons® 300  either  prepared  by  conventional  heating  or  using

microwave  irradiation  at  different  temperatures,  present  similar  quantities  of

sulfonic  groups  determined  by  potentiometric  titrations  (Figure  3.16.a).

However, the values obtained by titration related to sulfonic acids are lower than

those expected from S (VI) quantified on the surface by XPS analysis (Figure

3.16  b).  This  difference  between  the  “expected”  quantity  of  S(VI)  and  the

quantity  “determined”  by  exchange  using  NaCl  solutions  has  also  been

observed  in  Chapter  2,  and  in  other  materials,  such  as  sulfonic  silica

materials.138,139 As has already been mentioned, this fact would indicate that not

all  the  S(VI)  on  samples  are  as  sulfonic  acids,  but  as  well  as  sulfones  or

sulfates, as the case of microwave sulfonated Starbons 300, with the presence

of organo sulfate esters, ROSO2OR.
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(a)

Quantity of SO3H/ mmol g-1

Titration* S (E.A)** S(XPS)***
Original 0.45 0.90 0.89

Conv90 0.82 0.73 1.61

MW90 0.80 0.95 1.09

MW120 0.86 0.98 1.26

MW150 0.90 1.33 1.12

* determined by titration with NaOH
** expected from sulfur determined by elemental analysis
*** expected from sulfur determined by XPS analysis

(b)

Figure 3.16. Acidity determined by titration with NaOH  (a)  Comparison between
obtained and expected sulfonic groups (b) for sulfonated Starbons® 300 

3.7. Morphology and textural characterisation

The  morphology  of  the  samples  was  observed  by  Scanning  Electron

Microscopy.  The  images  (Figure  3.17  a-c) show  that  materials  retain  their

porous structures after microwave sulfonation at 90 °C. Although, for samples
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carbonized at high temperatures (450 and 800 °C) it was common to observe

some condensed particles,  it  looks like materials  were  encapsulated.  In  the

three Starbons®, particle sizes are not homogeneous and vary from 10 – 50 m.

In Starbon® 450, it can be observed agglomerates of small particles which form

lumps. 

(a) (b)

(c) 

Figure 3.17. SEM Iimages for microwave sulfonated Starbons® at 90 °C (a) S-
Starbon® 300 MW 90 (b) S-Starbon® 450 MW 90 (c) S-Starbon® 800 MW 90

The  pore  size  distribution  showed  that  microwave  sulfonated  Starbons®

prepared  at  90°C  are  mesoporous  materials,  they  possess  pores  with  an

average diameter of 30 nm (Figure 3.18 a-c). From the surface area analysis

was  found  that  micropores  ratio  increases  as  temperature  of  carbonization

does,  as  was  mentioned  in  Chapter  2.  For  Starbon® 300,  the  ratio  of

micropores was 47 %; and for the Starbon® 450, the ratio increased to 75 %

and for Starbon® 800 the contribution of micropores to the total surface area
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was 87%. The increase of  microporosity  with  increment  of  temperature  has

been observed during the synthesis of Starbons®, previously.9  

(a)

(b)

(c)  

Figure 3.18. Textural properties for microwave sulfonated Starbons® at 90 °C  
(a) S-Starbon® 300 MW 90 (b) S-Starbon® 450 MW 90 (c) S-Starbon® 800 
MW 90
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Microwave sulfonation for Starbon®  300 showed interesting changes on surface

area, as this increases noticeably with temperature of sulfonation. As mentioned

previously, the starting material based on  Cleargum starch, showed very low

surface area, attributed to a pores blocking phenomenon during preparation.

Results presented in  Figure 3.19a  suggest that sulfonation using microwaves

would 'unblock'  the pores,  as the  surface area changed from 16 m2g-1  from

starting material, Starbon® 300 to 240 m2g-1 for sample microwave sulfonated at

150 °C. However, for Starbon® 450 (Figure 3.19b) the surface does not change

significantly through the different temperatures of microwave sulfonation, then

non-effect can be observed. While, for Starbon® 800, it seems that surface area

changed in a different way, decreasing from the original material (390 m2g-1)

through the different temperature treatment using microwave irradiation (Figure

3.19c).  This  phenomenon  was  observed  in  the  conventional  sulfonation  of

Starbon® 800 and it can be attributed to micropores blockage. It is interesting to

notice that pore volume for original and microwave sulfonated Starbons® did not

vary widely; when the three temperature Starbons® are compared, that Starbon®

450 has bigger pore volume than Starbons® 300 and 800 (d).
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(a) (b)

(c)

Pore volume/cm3g-1

300 450 800

Original 0.14 0.24 0.19

MW 90 0.14 0.25 0.17

MW 120 0.13 0.25 0.17

MW 150 0.13 0.23 0.17

(d)

Figure 3.19. Surface area for microwave sulfonated Starbons® (a) 300 (b) 450 (c)800
(d) summary of pore volume

3.8. Conventional versus microwave sulfonation at 90 °C

3.8.1. Elemental composition

The elemental composition of Starbons® after sulfonation showed an increase in

the oxygenated groups (O:C ratio) either  via conventional or using microwave

irradiation  (Figure  3.20);  however,  a  specific  trend  was  not  observed  with

respect  to  the  method  of  sulfonation.  Values  are  too  similar  for  both

methodologies. With respect to the sulfur content, Starbon® 300 showed higher

content  when  sulfonation  was  carried  out  using  microwave  irradiation  than

conventional  heating.  At  this  point,  it  is  worth  mentioning  that  sulfur

quantification of all samples was determined just once, however an estimate of

the sulfur variation among different samples is presented in  Figure 3.20.  For
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Starbons® 450 and 800, the sulfur content does not differ significantly from both

methods of sulfonation. However, it  is important to point  out that microwave

sulfonated  Starbons® were  not  treated  with  methanol  as  the  conventional

sulfonated  ones  were;  as  seen  in  Chapter  2,  the  treatment  with  methanol

decreases  the  sulfur  content  from  the  original  sulfonated  samples.  This

suggests that overall quantity of sulfur attached to material could be lower than

it appears.

Figure  3.20.  van  Krevelen  diagram  (left)  and  sulfur  content  (right)  for  sulfonated
Starbons® using conventional heating and microwaves

3.8.2. Chemical environments observed through XPS analysis

3.8.2.1. Sulfonated Starbon® 300 at 90 °C

The number of carbon species identified by the analysis of high-resolution C1s

spectra  is  different  from  microwave  sulfonated  Starbon® 300  (5)  and

conventional sulfonated Starbon® (4); a broader spectrum is obtained for the

former, the components of which indicate there are more oxygenated carbons

than in conventional sulfonated sample. Tailing of the spectra is  observed in the

microwave sulfonated Starbon®, but not in the conventional sulfonated system.

Analysis  of  the  S2p  spectra  showed  that  sulfonated  Starbons®  using

microwaves present another S(VI) specie, identified as  ROSO2OR which does

not appear in the conventional sulfonated sample (Figure 3.21.) 
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C1s conventional sulfonated Starbon® 300 C1s microwave sulfonated Starbon® 300

S2p conventional sulfonated Starbon® 300 S2p microwave sulfonated Starbon ®300

Figure  3.21. XPS  spectra  for  sulfonated  Starbons® 300  by  conventional  and
microwave heating

3.8.2.2. Sulfonated Starbon® 450 at 90 °C

Analysis  of  the  C1s  spectra  showed  that  microwave  sulfonated  Starbons®

present a prominent peak at 285.6 eV, while samples prepared by conventional

heating  present  a  small  band  in  the  same  binding  energy.  It  seems  that

microwave sulfonation promotes the appearance of a more oxygenated carbon,

identified  as  carbonate  O-COO-,  which  is  not  observed  in  Starbon® 450

sulfonated by conventional heating. Another interesting finding is the ratio of

sulfur (VI) and sulfur (II) found by analysis of the S2p spectra. It seems that

microwave  sulfonated  Starbons  has  a  lower  ratio  of  S(VI),  around  65  %

compared with Starbon® 450 sulfonated conventional heating, which presents

85 %.
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3.8.2.3. Sulfonated Starbon® 800 at 90 °C

According with the C1s spectra, the main difference between microwave and

conventional  sulfonated Starbons® 800 is the appearance of the oxygenated

component,  carbonate  O-COO-  in  the  sample  prepared  using  microwaves.

However, its relative concentration is significantly low, being around 2%. The

S2p spectra  shows that  both  samples  present  S(VI)  and  S(II)  in  the  same

proportion (70:30).

3.8.3. Structural composition by 13C solid-state NMR

Unfortunately, no significant information were retrieved from the 13C solid-state

NMR spectra of microwave sulfonated Starbon® 450, due to its poor quality.

However,  a  signal  centred  at  130  ppm  is  identified,  as  in  conventional

sulfonated Starbon® 450; this signal is associated to polycyclic aromatic groups.

The  13C solid-state NMR spectrum for microwave sulfonated Starbon® 300 is

broader than the one obtained for conventional sulfonated Starbon® 300. The

spectra indicates the presence of oxygenated carbons in higher proportion than

in  conventional  sulfonated  one;  which  agrees  with  the  XPS results  present

previously. 

3.9. Conclusions

In this chapter the sulfonation of Starbons® 300, 450 and 800 using microwave

irradiation  has  been  described.  The  synthesis  was  done  at  three  different

temperatures  90,  120  and  150  °C.  The  resulting  materials  were  then

characterised. The analysis by elemental composition showed the sulfur content

is higher for sulfonated Starbons® 300 independent of sulfonation temperature;

however, in sulfonated Starbons® 800, the higher content was observed at the

highest sulfonation temperature, 150 °C. 

The analysis of  the high-resolution C1s spectra of  the samples showed that

more  oxygenated  carbons  are  observed  in  microwave  sulfonated  Starbons®

when  temperature  of  sulfonation  increases;  this  was  more  noticeable  on
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microwave  sulfonated  Starbons® 800.  Analysis  of   the  S2p  spectra  on

microwave  sulfonated  Starbons® showed  the  appearance  of  another  sulfur

specie  (VI),  assigned  to  organo  sulfate  esters,  ROSO2OR in  Starbon® 300

together with the species assigned to sulfonic acids. For Starbons® 450 and

Starbons® 800  both  present  sulfur  (VI)  and  a  reduced  sulfur  species  (II);

proportion of S(VI) to S(II) is slightly higher for Starbons® 800 than for 450.

Microwave sulfonated Starbons®, presented a band ca.~1030 cm-1 assigned to

S=O  stretching,  as  was  observed  in  conventional  sulfonated  Starbons®

indicating  the  presence  of  sulfonic  groups  attached.  The  increasing  surface

area  of  the  microwave  sulfonated  Starbons® 300  suggest  that  microwaves

would unblock the porous of the materials, as the starting material presented a

surface area of 16 m2g-1, and the sample sulfonated at 150 °C reaches over 200

m2g-1.  The  surface  area  of  Starbons® 800  decreased  after  microwave

sulfonation, this phenomenon was also observed in the conventional sulfonation

of Starbon® 800 and it can be related with the blockage of micropores of the

sample.

The results obtained in microwave sulfonated Starbons®, make it attractive to

keep exploring this  methodology, as  it  represents  an opportunity  to  develop

novel sulfonated materials, reducing the time for preparation. 
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Chapter 4

Sulfonation of Starbons®  

and their thermal stability
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4.1. Introduction

The  preparation  and  characterisation  of  sulfonated  Starbons® using

conventional heating and microwave irradiation has already been discussed in

Chapters 2 and 3, respectively. In the present chapter, attention is addressed to

the  sulfonation  process  and  studies  on  the  thermal  stability  of  sulfonated

Starbons®. This investigation was carried out using thermogravimetric analysis

coupled  to  infrared  spectroscopy  (TG-FTIR),  in  which  gases  evolved  from

samples during heating treatment were analysed, providing useful information

about the materials.

Sulfonation is a substitution reaction used to attach sulfonic groups (~SO3H) to

organic compound through a carbon-sulfur bond. Some of the agents used for

sulfonation  of  materials  include,  sulfuric  acid,  sulfur  trioxide  (SO3)  or  some

derivatives  such  as  chlorosulfonic  acid.140 As  mentioned   previously,  in  this

study, sulfonation of materials was carried out using commercial sulfuric acid 95

%. Table 4.1. summarizes the conditions used for sulfonation of Starbons® via

conventional and microwave treatments.

Table 4.1. Comparison of sulfonation methods

CONVENTIONAL MICROWAVE IRRADIATION

Mass of Starbon ~80 g of Starbon® prepared at
temperatures from 300 – 800 °C

~ 2 g of Starbon® 300, 450 and 800

Ratio 1 g of solid: 7 mL acid 1 g of solid: 7 mL acid

Temperature
and time

Constant stirring @ 90°C for 6 h Constant stirring @ 90, 120 and 150
°C for 30 min (200 W)

Post-sulfonation
treatment

Washed several times (t >20; time:
20–30 min) at constant stirring with

hot water (~80°C).
Methanol treatment using microwave
irradiation (200 W, 10 min; 3 times)

Washed with hot water using
microwave irradiation @ 80 °C (t > 12;

time: 10 min)
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4.2. Sulfur dioxide released during sulfonation of Starbons®

Formation of  gases on the top of the reaction mixture was observed during

sulfonation of Starbons® by conventional heating (Figure 4.1.a); these gases

were collected using a syringe and subsequently the sample was analysed by

FTIR-ATR to identify the components of the gaseous mixture. In the IR spectra

obtained (Figure 4.1.b),  the components identified were sulfur dioxide (SO2)

observed  at  1375 cm-1 and 1160 cm-1;  and  carbon dioxide (CO2)  between

2200-2400 cm-1.83  

(a) (b)

Figure 4.1. Sulfonation of Starbon® by conventional heating (a) and FTIR spectra of
gases released during process of sulfonation (b)

Release of SO2 would imply a reduction of S(VI) present in sulfuric acid to S(IV)

within sulfur dioxide, which has been associated with thermal decomposition of

sulfur trioxide and/or sulfates, which has been observed during the oxidation of

hydrocarbons, such as anthracene with sulfuric acid.141 This process can be

represented in Equation 4.1. It is worth mentioning that sulfur dioxide was also

observed during the sulfonation of Starbons® by microwave irradiation. As it was

seen in previous Chapters 2 and 3, the samples got more oxygenated groups

after treatment with sulfuric acid, in agreement with this suggestion.

 

Equation 4.1
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An  attempt  to  quantify  sulfur  dioxide  released  during  sulfonation  from both

methods,  microwaves  and  conventional  heating  was  made.  The  proposed

methodology consisted in collecting the SO2 (g) in a solution of H2O2 (30% v/v)

giving sulfuric acid as product. The gases were collected using nitrogen as a

carrier  gas,  with  an  aliquot  from  solution  then  titrated  with  NaOH  solution

(Figure 4.2.).

Figure  4.2.  Diagram  of  suggested  methodology  for  quantification  of  SO2 released
during sulfonation

This methodology was tested in microwave sulfonated Starbons®, prepared at

three different temperatures with the aim to find any correlation between SO2

released from samples and temperature of sulfonation. The trend is presented

in Figure 4.3. The quantity of sulfur dioxide determined by titration of hydrogen

peroxide  solution,  showed that  Starbon® 300  (a) released greater  quantities

than Starbon® 800  (b). It also seems, that higher temperatures of sulfonation

using microwaves give higher concentrations of sulfur dioxide, however, large

variations in the values obtained were also observed. The fact that Starbon®

300 showed a greater release of SO2 during sulfonation could be correlated with

the presence of several functionalities in Starbon® 300 (Chapter 2) which could

experience oxidation, promoting at same time sulfuric acid reduction.141
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(a)

(b)

Figure 4.3. Quantified sulfur dioxide released during sulfonation of Starbons® 300 (a)
and 800 (b) using microwaves.

Although, the proposed quantification of sulfur dioxide release using a solution

hydrogen peroxide would be very useful in terms of correlation of sulfur used

during sulfonation and sulfur attached to samples, this technique showed large

deviations  in  the  values  and  not  a  great  correlation  in  some cases.  These

variations could be related to the heterogeneity of samples, as well as some

details that could be improved in measurement, like the nitrogen flow, which

was not controlled.
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4.3. Thermal stability of sulfonated Starbons® prepared by conventional

heating

Thermogravimetric analysis (TGA) has been the conventional and most popular

technique used to study the thermal stability and decomposition of materials.

This  method  measures  the  mass  changes  of  the  material  as  a  function  of

temperature  and  time,  providing  information  about  the  degradation  of   the

material. When this technique is coupled to FTIR, the information obtained is

even more useful,  as it  allows the analysis of  gases evolved during thermal

treatment, suggesting degradation pathways of the material.73,142

Thermal  stability  of  sulfonated  Starbons® was  studied  through  the coupled

technique of TG-FTIR. The measurements were carried out in a Netzch STA

490, using 50 mg of sample in an inert atmosphere with nitrogen flow at 100

mLmin-1. The temperature programme was set to increase at 10°C per minute

from room temperature up to 1000 °C. 

TGA  thermograms  for  sulfonated  Starbons® 300  (S300SW3)  and  800

(S800SW3)  are  displayed  in  Figure  4.4. The  decomposition  profiles  are

different from each other; the weight loss for S300SW3 is approximately 50 %

and for S800SW3, just 12 %. This big difference could be attributed to higher

content  of  oxygenated  groups  of  sulfonated  Starbon® 300  compared  to

sulfonated  Starbon® 800  (already  shown  in  Chapter  2),  which  decompose

during heating. Both thermograms showed weight losses below 150 °C which

can be attributed to moisture loss from the samples.142,143 In that first  stage,

sulfonated Starbon®  300 shows higher  weight  loss  than sulfonated Starbon®

800, which some authors have related with high hydrophilicity in these lower

temperature samples.144 In the second stage, the mass dropped dramatically for

S300SW3 (approximately 40 wt%) from 200 to 700 °C; this mass change is due

to decarboxylation and dehydroxylation of the samples,142,145,146 together with the

release of sulfur dioxide coming from decomposition of sulfonic groups attached

to sulfonated Starbons®.144,147,148For sulfonated Starbon® 800, the mass dropped

only slightly by 5 wt%, from 200 to 400 °C which could be related to sulfonic

groups splitting and CO2 and H2O release144,147,148 and a third stage is observed
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from 500 °C to  1000 °C, in which sample lost 4 wt%. 

(a)

(b)

Figure  4.4.  TGA thermograms  for  conventional  sulfonated  Starbon® 300  (a)  and
Starbon® 800 (b)

Gases evolving from the materials were monitored by FTIR whilst the sample

was  heated  within  the  TGA oven  and  analysed  in  a  spectrometer  Bruker

Equinox 55. An important strength of the TGA-FTIR analysis is the ability to

display gas component evolution profiles in real time on exactly the same line

as the TGA weight loss profile. A series of spectra were collected over the time-
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temperature range. Figure 4.5. shows the spectra of gases evolved at 290 °C

from sulfonated Starbon® 800, S800SW3. The main compounds distinguished

are water at 4000–3500 cm-1 and 2000–1400 cm-1  observed as well in starch

decomposition;142 carbon dioxide at ca. 2385, 2338 cm-1 and absorbance due to

sulfur dioxide identified at 1375–1324 cm-1.83

Figure 4.5. FTIR spectra of gases evolved from sulfonated Starbon® 800 at 290 °C

Sulfur dioxide (SO2) is produced by the degradation of the sulfonic groups from

the  materials.  Sulfur  dioxide  released  during  heating  of  the  material  was

measured by monitoring the absorbance band at at ~1375 cm -1 as function of

temperature. A correlation between the weight loss of sulfonated Starbons® 300

and  800  and  SO2 gas  phase  absorbance  as  a  function  of  temperature  is

presented in Figure 4.6. 
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(a)

(b)

Figure 4.6. TGA thermograms and IR absorbance of SO2 gas versus temperature for
(a) sulfonated Starbon®  300 and (b) sulfonated Starbon®  800

The diagram shows that the temperature range of SO2 released from sulfonated

Starbon® 300 is from 200 to 500 °C, which is wider than the one observed for

sulfonated Starbon® 800, in which SO2 is released between 200 to 400 °C. The

maximum absorbance for sulfur dioxide was observed at 350 °C and 290°C for

sulfonated  Starbons® 300  and  800,  respectively.  This  would  suggest  that

sulfonic groups are more strongly attached to sulfonated Starbon® 300 than to

sulfonated Starbon® 800. 
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As  will  be  seen  in  Chapter  5,  it  is  worth  mentioning  that  deactivation  of

S800SW3 occurs  more  rapidly  during  use as  a  catalyst  than  for  S300SW3

(Figure  4.7.),  which  is  consistent  with  this  suggestion.  As  was  previously

mentioned in  Chapter 2, sulfonated Starbon® 300 present more sulfur groups

attached to the material than sulfonated Starbon® 800, especially more sulfur

(VI) groups, assigned to sulfonic groups. 

Figure 4.7. Comparison in the re-usability of sulfonated Starbons® 300 and 800

Diagrams presented in Figure 4.6. also contain the IR spectra of gases evolved

at three different temperatures: the beginning and the end of SO2 evolution and

the  temperature  with  the  maximum  absorbance  for  SO2.  At  all  three

temperatures,  CO2 is  observed  at  ca.  2385,  2338  cm-1.  At  532  °C,  a  band

appeared at 2100 cm-1 which would suggest the formation of carbon monoxide

(CO).  In  addition,  a  small  band  at  3000-3100  cm-1 appears  at  this  high

temperature; which can be related to a C-H bond vibration83 from methyl groups

released.142 Sin et al, suggests the formation of hydrocarbon products (alkanes,

alkenes and aromatics) ocurred at 450°C during the heating of a composite of

polyvinyl alcohol-cassava starch,145 it is therefore very likely to be related to a

hydrocarbon  product.  The  band  between  3000  and  3100  cm -1 was  also

observed  during  the  degradation  of  Nafion®,  which  was  ascribed  to  methyl

groups formed during the breaking of bonds.149
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Carbon dioxide (CO2) was also identified in the gases evolving from sulfonated

Starbon® 800 between 200 and 395 °C, the obtained absorbances for this gas

seem very similar for the three selected temperatures. As well,  IR vibrations

related with water are observed coming from the sample. It is worth mentioning

that CO is not distinguished for sulfonated Starbon® 800 in this narrow range of

temperature in which SO2 is released. This observation can be attributed to the

lower observed temperature (395 °C) an also to the lower C:O molar ratio for

this sample with respect to sulfonated Starbon® 300.

4.4. Thermal stability of microwave sulfonated Starbons®

A study on the thermal  degradation of  sulfonated Starbons® prepared using

microwave irradiation was also carried out with the aim to observe the main

differences to the sulfonated Starbons® prepared by conventional heating. TGA

thermograms for sulfonated Starbons® 300 and 800 prepared at 90 °C using

MW  are  presented  in  Figure  4.8.  and  Figure  4.9. respectively.  The  TGA

thermogram of sulfonated Starbon® 300 MW 90 (S300SMW90) presented in

Figure  4.8. differs  from the  corresponding  one for  sulfonated Starbon® 300

prepared conventionally, as the microwaved sample presents three stages of

decomposition: first stage, assigned as dehydration142,143 occurs from 80 to 160

°C;  the  second  stage,  which  would  contain  the  splitting  of  sulfonic

groups144,147,148 is clearly observed from 200 to 280 °C, whilst this stage was not

distinguished  clearly  in  the  conventional  sulfonated  sample,  as  the

decomposition  was constant  from 200 °C up to  700 °C.  The third  stage of

degradation  is  observed  from 300  °C  up  to  800  °C  at  similar  rates  as  for

Starbon® 300  conventionally  sulfonated,  because  decomposition  occurs

continuously; at the end of thermal treatment, weight loss reached 50 wt%.
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Figure 4.8.  TGA thermogram for microwave sulfonated Starbon® 300 at 90°C-30 min

The  thermal  decomposition  of  sulfonated  Starbon® 800  prepared  using

microwave irradiation at 90 °C (S800SMW90) presented in Figure 4.9. is very

similar to the degradation of sulfonated Starbon® 800 prepared by conventional

heating.  Three  stages  are  observed  in  both  samples:  the  first  one  located

between 80 to 160 °C assigned to the dehydration of the material; the second

stage  is  identified  from  220  to  320  °C,  in  which  has  been  identified  the

decomposition of sulfonic groups; the last degradation stage starts at 400 °C up

to 1000 °C. The weight loss after thermal treatment is close to 11 %, with a

value  similar  to  the  one  obtained  for  the  sample  prepared  by  conventional

heating.
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Figure 4.9.TGA thermogram for microwave sulfonated Starbon® 800 at 90°C-30 min

As mentioned previously, SO2 release was monitored through its absorbance at

1375 cm-1 as a function of temperature. For S300SMW90, the SO2 absorbance

is observed in a range of 200 to 420 °C and it shows two maxima, the first one

is observed at 240 °C and another at 315 °C (Figure 4.10.a), it appears that

sulfur dioxide is released in two steps, suggesting two kinds of sulfur groups are

attached to the materials. In the range of temperature from 200 to 400 °C there

is  a  significant  decrease  in  the  weight  around  15  %,  which  is  attributed  to

splitting  of  attached  sulfonic  groups  as  well  as  decarboxylation  and

dehydroxylation of material, as shown in the FTIR spectra of the evolving gases

analysed, in which traces of CO2 and H2O are observed. It is interesting to note

that IR spectrum obtained at 475 °C shows CO absorbance at ca. 2100 cm -1

and a small peak at 3000 cm-1 associated with    C–H  vibrations, mentioned

earlier.149

Sulfonated Starbon® 800 microwaved at 90°C (S800SMW90) shows a narrow

temperature range in which SO2 is released, which goes from 200 to 380 °C

(Figure  4.10.b)  comparable  to  the  sulfonated  Starbon® 800  formed

conventionally (S800SW3). The maximum absorbance was observed at ca. 287

°C. FTIR spectra recorded at 201, 287 and 389 °C showed CO2 and water
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released from the sample. It is interesting to note that the absorbance intensity

for CO2 is  lower for Starbon® 800 sulfonated using microwave than the one

prepared conventionally.

(a)

(b)

Figure 4.10. TGA thermograms and IR absorbance of SO2 gas versus temperature for
microwave sulfonated Starbon® 300 (a) and sulfonated Starbon®  800 (b)
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4.5.  Sulfur  dioxide  released  during  decomposition  of  Starbon® 300
sulfonated at different temperatures using microwaves

Microwave  sulfonation  of  Starbon® 300  was  carried  out  at  three  different

temperatures: 90, 120 and 150 °C. The weight loss for these samples present

similar  decomposition  pattern,  independent  of  temperature  of  sulfonation

(Figure 4.11.a). A high rate of degradation from 200 to 700 °C is assigned to

dehydroxylation and decarboxylation of samples as mentioned beforehand, as

well as the detachment of sulfonic groups.142,145,146  

The  SO2 release  monitored  as  a  function  of  temperature  for  these  three

sulfonated Starbons®  300 is  presented in  Figure 4.11.b.  The profiles exhibit

some similarities, a maximum in a low temperature range of 230–240 °C and

with a secondary broad  release over a range of temperatures, with a maximum

around 300 °C. The absorbance for SO2 released from sulfonated Starbon® 300

MW 150 (S300SMW150) decreases steadily over the temperature range 260 to

450 °C; whilst samples sulfonated at 90 and 120 °C have similar profiles. At this

point,  it  is  worth  mentioning  that  sulfur  content  for  microwave  sulfonated

Starbons® 300 at  90 °C and 120 °C have similar  values of  0.95  and 0.98

mmolg-1, respectively, whereas the sample sulfonated at 150 °C has a slightly

higher  content  1.33  mmolg-1.  This  could  therefore  contribute  to  the  wider

temperature  range  required  to  break  down the  sulfonic  groups  and  release

sulfur dioxide.

(a) (b)

Figure 4.11. TGA thermograms (a) and IR absorbance of SO2 gas versus temperature
(b) for  microwave sulfonated Starbon® 300 at 90, 120 and 150 °C  
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4.6. Sulfur dioxide released in the decomposition of sulfonated Starbons®

800 

As shown previously, the SO2 absorbance observed for sulfonated Starbons®

800,  present  a  smaller  temperature  range  than  the  SO2 absorbance  profile

obtained for sulfonated Starbons® 300. Unlike the profile obtained for sulfonated

Starbons® 300,  the  curves  correlated  with  the  sulfur  dioxide  evolved  from

sulfonated Starbons® 800 are very symmetric and present a maximum close to

290 °C (Figure 4.12.). 

The sulfur content for samples sulfonated at 90 °C have comparable values, for

instance, 0.52 and 0.48 mmolg-1 for conventional and microwave procedures,

respectively. However, the analysis of the FTIR spectra of released SO2 as a

function  of  temperature,  shows  that  absorbance  for  the  microwave  sample

starts at lower temperatures (210 °C) than the samples prepared conventionally,

in  which  the  initial  temperature  of  decomposition  shifts  to  240  °C.  This

observation  indicates  that  sulfur  groups  attached  to  S800SMW90,  present

slightly weaker bonds. Although the sulfur content for samples sulfonated at 120

°C is a bit higher (0.76 mmolg-1), there is not a notable difference in the SO2

release profile.  On the contrary, the absorbance observed for this sample is

lower than the one obtained for samples prepared at 90 °C. The curve of SO 2

release  from  the  sample  sulfonated  at  120°C  under  microwave  conditions,

follows the one observed for conventional sulfonated Starbon® 800 (S800SW3),

in which SO2 absorbance appears  at temperature over 220 °C.

Figure 4.12. IR absorbances for evolving SO2 as function of temperature for sulfonated
Starbons® 800 
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The temperature at which SO2 loss from sulfonated Starbons® 800 reaches its

maxima is very similar to the temperatures observed for sulfonated polycyclic

aromatic  carbons24 or  for  other  sulfonated  carbonaceous  materials  like

lignosulfonate materials, for which a maxima at 230 °C was observed,40 or of

sulfonated  chitosan,  in  which  decomposition  of  sulfonic  groups  is  observed

between 200–250 °C.150 However, the temperature of the splitting of sulfonic

groups in sulfonated Starbons® is found below the range observed for Nafion®-

H,  which  is  reported  as  310–380  °C151 and  for  composites  with  SiO2,  the

temperature of SO2 release is even higher, close to 600 °C.149

4.7. The effect of methanol washing

As  presented  previously,  the  SO2 evolution  from  microwave  sulfonated

Starbons® 300 showed a maximum at a low temperature of ~240 °C. Looking

for  a  possible  explanation  for  this  observation,  a  comparison  between

sulfonated  Starbon® 300  prepared  conventionally  before  and  after  methanol

washing was made. In Chapter 3 it was mentioned that microwave sulfonated

Starbons® were not washed with methanol, as the aim was to prepare stable

sulfonated materials that did not  require additional  purification procedures.  It

was interesting to discover that sulfonated Starbon® prior to methanol washing

has a similar profile to microwave sulfonated Starbons®, showing a maximum in

the absorbance of SO2 at 241 °C (Figure 4.13). 

Figure 4.13.  IR absorbances for evolving SO2 from sulfonated Starbon® 300 before
(left) and after (right) methanol washing 
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This observation would suggest that there are sulfur groups weakly bounded to

the materials, whose decomposition occurs at lower temperature and could be

removed with  methanol  using  microwave treatment.  These groups could  be

related  to  physisorbed  sulfates,  remaining  from  sulfuric  acid  used  during

sulfonation, the presence sulfate esters or even sulfuric acid on the surface

(Figure 4.14.). It is also worth mentioning that another source of released SO2

could  originate  from  desulfonation  of  the  materials,  as  some  authors  have

discussed that the detachment of sulfonic groups from sulfonated resins may

occur on the very external surface of the particles.152

Figure 4.14. Schematic representation of  likely sulfur groups present  on surface of
sulfonated Starbon® 300

Microwave  sulfonated  Starbon® prepared  at  90  °C  was  also  subjected  to

methanol treatment. The evolved SO2 profile showed a significant decrease in

the  maximum observed  at  250  °C  (Figure  4.15),  as  also  observed  for  the

previous sample treated with methanol.

163



Figure  4.15. IR  absorbances  for  evolving  SO2 versus  temperature  for  microwave
sulfonated Starbon® 300 before and after methanol washing 

Elemental analysis of the materials after washing with methanol shows that the

sulfur content decreases (Table 4.2.), indicating the removal of sulfur groups.

The  most  significant  decrease  is  observed  for  the  conventional  sulfonated

Starbon® 300,  in  which  the  content  dropped  by  32%;  whilst  for  sulfonated

Starbon® 300 microwaved at 90 °C, the change is close to 8 %.

Table 4.2. Sulfur content (mmolg-1) for sulfonated Starbons® 300

Original After MeOH After EtOH

Sulfonated
Starbon® 300

Conventional 90 1.08 0.73 0.83

Microwave 90 0.97 0.90

Studies on the deactivation of sulfonated carbonaceous materials have been

carried out by several researchers. A remarkable approach was carried out  by

Mo et al,26 whose investigation found sugar catalyst prepared by Hara's group is

not as stable as they claimed.25 The high activity obtained during esterification

of fatty acids with methanol were achieved because of the leaching of active

sites,  identified  as  polycyclic  aromatic  carbons  containing  sulfonic  groups

~SO3H. Those authors also found significant leaching of sulfonic groups in other
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solvents like ethanol,  water and hexane.26 However, our studies using X-ray

fluorescense (XRF), showed that the sulfur content leaching from sulfonated

Starbons® using other alcohols like ethanol or 2-propanol were lower than the

sulfur found in methanol  (Chapter 2).  Sulfur content for  sulfonated Starbon®

300 after washing with ethanol is shown in Table 4.2., its value is a bit higher

than the one obtained for sample washed with methanol, it might allude that

less sulfur groups are removed from the material.

Other studies on the deactivation of sulfonated carbon-base catalysts suggest

that the decrease in catalytic activity during esterification of palmitic acid with

methanol  is  due  to  the  formation  of  sulfonic  esters.153 Whilst  other  authors

attribute desulfonation of Amberlyst-15 to the hydrolysis of sulfonic acids.154 At

this point, it is worth mentioning that solid-state 13C NMR spectra obtained for

sulfonated  Starbon® 300  after  methanol  washing,  shows  the  formation  of

methoxy  groups  in  the  material  (Chapter  2),  therefore  splitting  of  sulfonic

groups via hydrolysis or methanolysis could happen.

Another approach to explain the decrease in the activity of sulfonated carbons

is related to structural changes in the material, such as through swelling and

opening of the structure using methanol in the production of biodiesel.155 In our

study then, methanol may allow to open the structure of sulfonated Starbons®

allowing the interaction with those “weak” sulfur groups attached on the surface,

promoting their removal.  

4.8. Physisorbed sulfuric acid?

To try to discover whether the SO2 released at lower temperature (~240 °C) was

related to an excess of sulfuric acid due to the lack of washing, an analysis of

the  sulfonated Starbon® 300 microwaved at  150 °C only  washed once was

performed.  This sample corresponds to the material washed with water at room

temperature, immediately after filtration of the reaction mixture (Figure 4.16.).
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Figure 4.16. Schematic representation of sulfonated sample at the first wash

The absorbance of  SO2 evolved from sulfonated Starbon® 300  washed  once  as  a

function of temperature, shows a prominent maximum at 212 °C  (Figure 4.17a). the

release of SO2 starts at a relatively low temperature, ~150°C, with respect to previous

samples. The SO2 released from the excess of sulfuric acid appears in a temperature

range from 150 to 260 °C. After this point, the evolving SO2 decreases gradually up to

450 °C. After 14 washes (Figure 4.17b), the released SO2 profile changes significantly,

as the appearance of SO2 determined by FTIR starts at 180 °C and the maximum of

the absorbance obtained from sulfonated sample shifts to a higher temperature, at 230

°C. There is a small inflection in the curve at ~260 °C and after this temperature the

absorbance of sulfur dioxide decreases gradually up to 450 °C. These observations

would  insinuate  that  excess  or  physisorbed  sulfuric  acid  decomposes  at  lower

temperatures.

Figure  4.17. IR  absorbances  for  evolving  SO2 versus  temperature  for  sulfonated
Starbon® 300 microwaved at 150 °C after first wash (a) and after 14 washes (b)
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4.9. FTIR spectra of sulfonated Starbons®: looking at washing effect

As presented in  Scheme 4.2., there are several possible sulfur functionalities

on the surface of sulfonated Starbons®. Combined with the changes observed in

the sulfur dioxide release profiles during thermal decomposition of the materials,

it  was further  proposed to  investigate  their  surfaces,  looking  at  the  infrared

spectra  (FTIR-ATR)  of  the  materials  before  and  after  washing  treatments.

Figure 4.18. shows the  spectra for  sulfonated Starbon® 300 microwaved at

150  °C  after  the  first  and  fourteenth  washes.  The  spectrum  shows

distinguishable differences, such as the massive decrease in the band centered

at 1030 cm-1 after 14th washes. This band has been assigned to S=O stretching

vibrations,  previously.83 It  is  also  interesting  to  notice  the  disappearance  of

bands situated at ~1210 cm-1 which could be attributed to sulfuric acid,156 along

with the band located at ca. 950 cm-1. The presence of sulfate ions, SO4
2-, has

been attributed to vibrations observed at 680–650 cm -1 according to Socrates'

infrared characterisation chart.83 Whilst bands observed at 870 and 770 cm-1

could be assigned to asymmetric and symmetric vibrations, of the S–O–C bond

in sulfate esters.83,157,158

Figure 4.18. Infrared spectra of microwave sulfonated Starbon® 300 prepared at 150
°C, after the  first and fourteenth washes.
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The changes in  the  spectra  of  sulfonated Starbons after  methanol  washing

(Figure 4.19) are less obvious than the changes observed after several washes

with hot water presented in the previous spectra. The most visible change is the

diminution in intensity and broadness of the band situated at 1030 cm -1, as well

the  flattening  of  bands situated at  1180 and 980 cm-1, which are  tentatively

attributed to vibrations of sulfates and sulfuric acid, respectively.83

Figure  4.19. IR  spectra  of  sulfonated  Starbons® 300  conventional  (left)  and
microwave sulfonated (b) at 90 °C, before and after methanol washes.

4.10. Conclusions

Studies on thermal stability of sulfonated Starbons® using the coupled technique

TG-IR  were  carried  out.  The  analysis  of  SO2 released  during  heating  of

sulfonated Starbons® showed that  sulfonated Starbons® 300 present a broader

temperature of release range than sulfonated Starbons® 800. This suggests that

sulfur is attached to the structure of sulfonated Starbons® 300 (via sulfur-carbon

or sulfur-oxygen bonds) in a more stable way than in sulfonated Starbon® 800.

This  can  also  be  related  to  the  number  of  uses  of  those  catalysts  during

esterification reactions, as sulfonated Starbon® 800 loses its activity in fewer

cycles than sulfonated Starbon® 300.

TG-IR analysis also allowed the analysis of the effect of repeated washings on

sulfonated Starbons®. It was found that samples with an excess of sulfuric acid

released SO2 at  lower temperatures (212°C) than samples after  14  washes

(230°C). This observation suggests that low temperature SO2 release can be
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related to physisorbed sulfuric acid. This was further confirmed by the analysis

of FTIR spectra.

A change in the SO2 release profile is observed in sulfonated Starbon® 300 after

washing with methanol, as the maximum observed at ~240 °C does not appear

in the SO2 profile of the sample after the sample is washed with methanol (3

times),  this  suggests  that  methanol  could  remove  weak  bonded  sulfur

components.

Quantification of sulfur dioxide released during sulfonation of Starbons® using

hydrogen peroxide solution could be a useful tool to get more information about

sulfonation mechanisms, trying to correlate the sulfur species involved, like the

SO2 released, the sulfur content on sample with the initial content of sulfuric

acid. However, this approach needs to be improved.
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Chapter 5

Uses of sulfonated Starbons® 
in esterifications

171



172



5.1. Introduction

Since the end of  last  century, the efforts  to  find alternatives to  displace the

petroleum-based  materials  and  build  a  strong  bio-based  industry  have

increased significantly. Among the molecules identified as “platform” are found

several organic acids, i.e. levulinic acid, succinic acid, etc. The development of

this biorefinery industry also includes the transformation of fatty acids through

esterifications  or  transesterifications.159,160 Then,  the  exploration  of  chemical

reactions of some of these platform molecules would be of interest using our

also biobased catalysts, Starbons®. 

Esterification  is  one of  the  most  fundamental  reactions in  organic chemistry

extensively  employed in industrial  synthesis  of  several  products that  include

fragrances, monomers, solvents, plasticizers, etc.161 Esters are produced when

carboxylic acids react with alcohols; although esterification is a  self-catalysed

reaction  due  to  the  presence of  the  “acid”,  it  is  slow, requiring  catalysts  to

proceed. The catalysts promote the protonation of the carbonyl oxygen on the

carboxylic  group,  activating  nucleophilic  attack  by  an  alcohol  to  form  a

tetrahedral intermediate. Release of a water molecule leads to the formation of

the ester.162 (See Figure 5.1.)

Figure 5.1. Mechanistic route of acid catalysed esterification (adapted from Liu et al, 
2006)
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Many industrial esterification processes are carried out using mineral acids such

as  sulfuric  acid,  hydrofluoric  acid  or  phosphoric  acid;  however,  these  are

considered as environmentally unfriendly catalysts due their toxicity, difficulty in

handling  and  disposing,  as  well,  because  of  the  amount  of  waste

formed.10 Several approaches to get efficient solid-acid catalysts based on silica

or  aluminosilicates  materials  and  mesoporous  zirconia-based  have  been

developed,10,24,25 in  which  the  key  properties  wanted  include  thermal  and

chemical stability and evenly distributed of the active sites on the materials. In

this sense, mesoporous sulfonated Starbon® become to an alternative to be

used in acid-catalysed reactions. In the early stages of production of sulfonated

Starbons®, a comparison with other acid catalysts (zeolites, sulfated zirconias

and  acidic  clays)  was  performed in  the  esterification  of  diacids  in  aqueous

media, results showed that Starbons® were superior in those conditions.13 The

high activity observed in Starbons® is attributed to their mesoporosity as well as

to  the  hydrophobic/hydrophilic  ratio  of  the  functional  groups  present  in  the

material,  promoting  the  effectiveness  in  the  esterification  of  those  chosen

diacids. Preliminary synthesized Starbons® have been also tested in other acid-

catalysed  reactions13,163 as  well  as  glycerol  transformations.  As  mentioned

previously,  tests  in  esterification  reactions  like  succinic  acid14,75 have  been

carried out using Starbons®, however the conditions used water in the media,

then an examination of Starbons®'  activity in usual conditions (without water)

were of interest.

In this chapter is presented the tests carried out in esterification reactions using

the new sulfonated Starbons® as solid acid catalysts. The aim is to get a general

overview of the performance in catalysis of this range of sulfonated Starbons®,

as  described  in  Chapter  2,  which  were  prepared  in  a  wider  carbonization

temperature range and using a different starting material: Cleargum starch. It is

worth remembering that  these new sulfonated Starbons® present other main

variations from previous synthesized Starbons® as they were manufactured at a

larger scale: carbonization (over 10 Kg) and sulfonation (80 g) compared with

the small quantities prepared previously. Other modifications in the preparation

of  sulfonated  Starbons® were  the  suppression  of  “conditioning  steps”  with

toluene after  sulfonation,  looking for  a greener  method to  achieve an “ideal
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synthesis”1, decreasing the number of reagents and steps in preparation and

avoiding some toxic components. The 300, 400 and 800 were examined “as

received”  and  the  other  Starbons® were  prepared  from  these  by  lab-scale

carbonization  of  the  300  to  produce  350  and  400  for  further  temperatures.

Sulfonation was carried out at 1 g Starbon:7 mL H2SO4 (95%) ratio, using less

pure sulfuric acid that before (99.999%)13, and increasing the ratio of Starbon®

to acid to a more realistic level. Further reduction in acid content led to mixtures

which were very hard to stir.

Monitoring of the performance of sulfonated Starbons was done through the

conversion of the ester through GC analysis. At this point, it is worth mentioning

that the approximation to the conversions was done in a simplified way only

considering  the  peak area ratios  of  the ester  and acid  observed in  the  GC

chromatogram.  This  would  not  affect  the  relative  trends  observed  in  the

performance of the materials in esterifications. 

5.2. Esterification of lauric acid 

5.2.1. Microwave irradiation or conventional heating?

Studies on the esterification of  lauric acid by methanol  (Scheme 5.1.)  were

carried out using sulfonated Starbons® (S-Starbons®), prepared as mentioned in

Chapter 2. 

Scheme 5.1. Esterification of lauric acid by methanol

The reaction was done using conventional heating and microwave irradiation to

compare the effectiveness of both procedures. Figure 5.2.  shows that for the

chosen  S-Starbons® 300  and  800,  higher  conversions  are  obtained  in  30

minutes  of  reaction  using  microwave  than  12  hours  of  reaction  in  refluxing
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methanol. Similar conversions over 80 % are observed for both catalysts using

microwave  irradiation;  however,  when  the  reaction  is  done  by  conventional

heating, the lower temperature S-Starbon® 300 seems to be more effective in

the  reaction  than  S-Starbon® 800,  as  the  difference  in  conversion  is  more

evident:  77  % of  conversion for  S-Starbon®  300 and less  than 50 % for  S-

Starbon® 800. Conversions for blank reactions of esterification of lauric acid with

methanol  are  lower  than  10%  for  both  procedures  (conventional  and

microwave-assisted reactions). This observation is similar to previous reports

that describes decreasing reaction times, combining microwave irradiation and

sealed  vessel  processes.164 The  significant  difference  between  conversion

obtained using S-Starbon® 800 and S-Starbon® 300 could be attributed to the

availability of acid sites on the material.  As it was shown in  section 2.6., S-

Starbon® 800 contains less sulfur than S-Starbon® 300; and part of this sulfur is

found as reduced sulfur according to the oxidation states study done by XPS.

Then,  microwave-assisted  chemistry  may  allow  to  reach  high  conversions

because the energy transfer  efficiency120 together  with  the fact  that  reaction

reached  higher  temperature  (~105  °C)  than  conventional  heating  reactions,

carried out in refluxing methanol (~70 °C); the difference between temperatures

is over 30 °C which could be very significant to achieve high conversions.

Figure  5.2.  Comparison  of  the  esterification  of  lauric acid  by  methanol  using
microwave irradiation and conventional heating

176



5.2.2. Microwave irradiation: time effect 

Effect of the reaction times for the esterification of lauric acid with methanol

using microwave irradiation was investigated. A different reaction was run every

time  due  to  set-up  of  the  microwave  system,  reactions were  carried  out  at

closed  vessel  with  automatic  cooling,  making  difficult  to  take  samples  at

established  times.  Time  of  reaction  comprehends  the  total  reaction  time,

including  ramping  and  holding  time  at  determined  temperature.  Figure  5.3

shows the performance of  the reaction of  lauric  acid  and methanol  at  fixed

power 200 W, using S-Starbons® 300 and 350 as catalysts. For S-Starbon® 300,

high conversion is observed during 5 minutes of reaction, obtaining over 60 %;

increasing time to 10 minutes, conversion slightly increases to 70 %; conversion

reaches 85 % when time is set to 20 minutes; after 30 minutes of reaction,

conversion did not change significantly from previous time, ~85 %; increasing

reaction  times  up  to  45  minutes,  conversion  rises  to  95  %.  However,  the

behaviour for S-Starbon® 350 differs from the S-Starbon® 300, as the former

shows a very low conversion for 5 minutes reaction; when time increases to 10

minutes, the increment is very pronounced, since it changes from 13 % to 58 %;

whilst the reaction time increases up to 20 minutes, the conversion changes to

77 %;  after  30  minutes  the  conversion  observed is  84  %.  After  40  and 45

minutes  of  reaction,  both  S-Starbons® 300 and 350  showed conversions of

approximately 95 %.
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Figure 5.3. Esterification of lauric acid by MeOH at different times (MW fixed power
200 W)

5.2.3. Evaluation of Sulfonated Starbons®

As mentioned previously, a range of carbonized Starbons® were sulfonated and

tested in esterification reactions. Then, reaction time set to 30 minutes and fixed

power  at  200 W were  chosen to  evaluate the  performance of  the range of

prepared S-Starbons® in the esterification of lauric acid (5 mmol) by methanol

(75 mmol); using 20 mg of catalyst. In  Figure 5.4.,  it can be observed that,

when using low temperature S-Starbons®, 300 to 450, higher conversions are

obtained;  however,  there  is  a  decrease  in  the  conversion  when  pyrolysis

temperature  of  Starbon® increments  up to  600,  showing a  deficiency in  the

catalytic activity. This is then reversed, with high temperature S-Starbons®, 700

and 800 showing conversions similar to those obtained using low temperature

S-Starbons®. It is interesting to note that trend observed in conversion in the

esterification of lauric acid with methanol  is very similar to  the trend in bulk

sulfur determined on the materials and presented in Figure 2.12.  Decreasing in

catalytic  activity  with  increased of  carbonization temperature of  carbon-base

materials have been reported previously.28,30 This has been attributed to difficulty

of  sulfonation  of  high-temperature  carbonized  materials,  then  lower  -SO3H

groups  are  attached  to  the  carbonaceous  catalyst.30 However,  these
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approaches did not perform carbonizations over 700 °C and origins of materials

are different from Starbons®.

The esterification of lauric acid by ethanol was also examined to compare with

the reaction using methanol. In this study, S-Starbons® 300, 450 and 800 were

evaluated.  As  Figure  5.5. shows,  conversion  is  lower  in  all  cases  for  the

esterification of lauric acid using ethanol. The decrease is more perceptible for

S-Starbons® 300  and  800;  although  similar  results  are  found  for  the  three

chosen catalysts, conversions in all cases falling between 45-55 %. It seems

that  maintaining the same quantity  of  catalyst,  20 mg, is  not  enough to get

conversions similar to the ones obtained in the esterification of lauric acid by

methanol.  The decrease in reactivity could be related to the increasing chain of

primary alcohol.165
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(30 min, 200W)



Esterification of lauric acid by ethanol using 20 mg showed conversions around

50 %, reactions with a higher catalyst loading (40 mg/ 4 wt%) were also carried

out. In  Figure 5.6, it can be seen that low temperature S-Starbons® 300 and

350 achieved conversions over 80 %; however for the high temperature ones,

conversions  are  less  than  60  %.  It  is  worth  mentioning  that  increasing  the

quantity of catalyst for S-Starbon® 800 did not show an obvious improvement,

since the conversion for 20 mg was 49 % and using double  quantity, 40 mg,

conversion raised up to 59 %. In the case, of S-Starbon® 300, the difference in

conversion  was  more  noticeable,  as  it  changed  from  56  %  to  84  %.  The

behaviour of catalysts are very similar to the one observed using methanol, low-

temperature Starbons® (300 and 350) present higher conversions, then there is

a drop in the middle of the range, S-Starbon® gives the lowest conversion for

both alcohols; then a slight increase is obtained for S-Starbons® 700 and 800.

As mentioned, previously, it seems to maintain a relation with the sulfur groups

loading on materials, as S-Starbon® 600 presents the lowest bulk quantity. With

respect to the fact that both Starbons® 700 and 800 did not get comparable

conversions to the ones obtained using methanol, could be referred as a bulky
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hindrance  interaction  between  materials  and  reagents.  A  screening  in  the

performance of S-Starbons in the esterification of lauric acid by i-PrOH using 20

mg of catalyst was carried out, however conversions were very low, then no

more studies were done. 

5.2.4. Reusability of S-Starbons®

One of the main concerns when working with catalysts is lifetime. A study of the

deactivation  of  S-Starbons® was  also  done.  Chosen catalysts  were  the  two

extremes  of  the  range  of  carbonized  S-Starbons®, 300  and  800,  the

performance  of  which  was  evaluated  in  the  esterification  of  lauric  acid  by

methanol. Reactions were carried out as previous studies: 5 mmol of lauric acid,

3 mL of methanol and 20 mg of catalyst using microwave irradiation 200 W for

30 minutes. A summary of the recovery and reuse treatment is presented in

Figure 5.7, acetone was used to remove unreacted lauric acid on materials.
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Figure 5.7. Diagram of recovery and reuse of catalyst 

When S-Starbon® 300 is compared with S-Starbon® 800, it  is found that the

latter loses its activity after the third run, dropping to less than 40 %, meanwhile,

conversion obtained using S-Starbon® 300 remains steady at around 60 % after

five runs (Figure 5.8). The lack of activity observed in S-Starbon® 800 could be

attributed  to  the  lower  quantity  of  sulfonic  groups  attached  to  the  material,

compared with S-Starbon® 300, shown in Chapter 2. This decrease in activity

can be also correlated with the findings presented in  Chapter 4 about more

stable sulfur groups attached to sulfonate Starbons® 300.
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Figure 5.8. Reusability of S-Starbons® 300 and 800 in esterification of lauric acid with
methanol

5.3. Esterification of levulinic acid 

Levulinic  acid  or  4-oxo-pentanoic  acid  (Figure 5.9.) is  a  product  formed by

treatment  with  acid  of  6-carbon  sugar  carbohydrates  from  starch  and

lignocellulosics. This material has been identified as one of the top value added

chemicals from biomass, as it can serve as a primary biorefinery building block

and  a  platform  chemical  because  it  can  be  transformed  to  other  valuable

compounds.  The  high  reactivity  of  this  compound  could  be  attributed  to  its

functional groups: a ketone group and carboxylic group; making this material

very attractive for several chemical reactions.

Figure 5.9. Molecular structure of 4-oxo-pentanoic acid/levulinic acid
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In the present work, esterification of levulinic acid with methanol and ethanol

was  carried  out  using  sulfonated  Starbons®.  During  the  monitoring  of

esterification of levulinic acid by Gas Chromatography (FID) an extra peak was

observed in the chromatogram (Figure 5.10) aside from the methyl ester and

levulinic acid; this peak was attributed to an “intermediate” and its identity will be

discussed  further.  An  interesting  observation  about  this  component  was  its

appearance and permanence through the course of the reactions.

Figure 5.10.  GC -FID chromatogram of mixture of levulinic acid and methanol (1:15,
day 4)

Conversions to ester or intermediate were measured using the GC peak areas

obtained in the chromatogram as mentioned initially; as the only components

observed are the “products” and the “acid”, the determination of intermediate

was done as following:

% i = 
Areai

∑
i=1

i=n

Areai

One of the first approaches to study the activities of sulfonated Starbons® 300

and  800   (S-Starbon® 300  and  S-Starbon® 800  respectively)  consisted  of

monitoring the esterification of levulinic acid in refluxing methanol at different

run times. A blank reaction (without catalyst)  was also carried out under the

same conditions. Ester was not found in the blank reaction, during the 12 hours
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of  running  (Figure  5.11.).  Comparison  between  the  sulfonated  Starbons®

aforementioned, showed that S-Starbon® 300 promotes the conversion to ester

in 5 % after 30 minutes of reaction, which subsequently increases up to 78 %

after 12 hours. For S-Starbon® 800, ester formation appears in 10 % after 4

hours  of  reaction,  the  maximum  obtained  is  40  % in  12  hours  of  reaction

(Figure 5.11 a). This suggests the S-Starbon® 800 has lower activity than S-

Starbon® 300, which could be attributed to the quantity and type of sulfur groups

attached to the materials, already discussed in Chapter 2. In Section 2.2 it was

found that S-Starbon® 300 has higher  sulfur  content  (0.73 mmolg-1)  than S-

Starbon® 800 (0.52  mmolg-1)  combined with  the  XPS results  about  reduced

sulfur (IV) present in high-temperature Starbons®.

The first measurement of the intermediate appearance in the blank reaction was

16 %; as time of reaction increases, slight variations between 16 to 22 % were

observed without a clear correlation with time (Figure 5.11 b). However, in the

case  of   S-Starbon® 300,  this  intermediate  decreases  as  time  of  reaction

increases, after 6 hours of reaction it is not seen any more. In the case, of S-

Starbon® 800, this intermediate disappears after 12 hours of reaction. It  was

noticed  this  intermediate  does  not  change  greatly  during  the  first  hours  of

reaction using S-Starbon® 800, however, when ester appears for first time, the

intermediate  gets  lower,  suggesting  that  its  permanence  is  affected  by  the

production of ester; and that it may be converted to ester indirectly or directly.

Figure 5.11. Reaction of levulinic acid with refluxing methanol (15 mmol acid, 10 mL
alcohol, at 75 °C) (a) Conversion to ester (b) Conversion to intermediate
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5.3.1. The Shu-Lawrence approach

The formation of an “extra peak” during GC analysis was also observed by Shu

and Lawrence166 (1995) during the storage of levulinic acid with several alcohols

(ethanol,  geraniol  and  benzyl  alcohol)  at  room  temperature.  In  their

observations, the peak that appears at slightly higher retention time than ester,

is formed prior to the ester and got to a maximum in 3 weeks. After this time, the

intermediate  peak  starts  decreasing,  while  the  corresponding  ester  peak

increases. According to the authors, the intermediate would be assigned to the

formation of 4-alkoxy--valerolactone (Figure 5.12). 

Figure 5.12. Molecular structure of 4-alkoxy--valerolactone proposed by Shu and 
Lawrence (1995)

However, in their published work, no reference to methanol was made. Due to

these  circumstances,  a  monitoring  of  the  methanol  and  levulinic  acid  was

carried out as well monitoring of a mixture of levulinic acid and ethanol. The

study was done using two different concentrations, one that corresponds to the

concentrations  prepared  according  with  Shu  and  Lawrence  and  the  other

corresponds to the concentration used in reactions of esterification of levulinic

acid; this could be summarized in Table 5.1, from this table it is observed that

proposed mixtures have double of alcohol than mixtures prepared by Shu and

Lawrence. 

Table 5.1. Molar ratios of the mixtures of levulinic acid in alcohols

Molar ratio acid:alcohol
Shu-Lawrence conditions

Molar ratio acid:alcohol
C.MenaD conditions

MeOH 1:30 1:15

EtOH 1:20 1:10
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Figure 5.13a shows the conversion obtained by GC analysis of the formation of

the ester and intermediate during the storage time. The intermediate appeared

from the first day in a concentration over 32 % and remained around 35 % after

5 days. The appearance of ester is in the second day which slightly increases

through time, up to 6 % after 5 weeks of storage at room temperature. 

For the solution of levulinic acid and methanol prepared in a molar ratio 1:15, a

similar trend to the previous sample was observed (Figure 5.13b). In the first

day of storage, the intermediate was present around 30 %; but in the third day,

the intermediate decreases slightly to 25 %. Meanwhile, the conversion to ester

increases gradually  up  to  3 % in  the first  5  days.  The changes were  more

noticeable after three and five weeks, when ester increases up to 8% and 16 %,

respectively.  This conversion to ester is almost three times the one found for

the sample prepared with  a higher  ratio  of  methanol  (6  %);  meanwhile,  the

conversion to  intermediate obtained after  5 weeks of  storage is  significantly

lower (18 %) than the one obtained for the sample in excess of methanol (30

%). This would suggest that excess of methanol inhibits the ester formation and

allows the permanence of the intermediate; this also could be related to the fact

of less concentrated “acid” present in the mixture, which does not promoting the

conversion to ester through an acid-catalysed reaction.

(a) (b)

Figure 5.13. Change in conversion of ester and intermediate in a solution of levulinic
acid and methanol (a) molar ratio 1:30 and (b) molar ratio 1:15
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An evaluation of the storage of levulinic acid with ethanol was also carried out

(Figure 5.14.). Conversion to the formed intermediate was lower than the one

obtained in the methanol solution, with a maximum of 14 %. The permanence of

the intermediate does not show a clear trend for the solution with excess of

ethanol;  whereas,  for  solution  prepared  in  the  acid:alcohol  ratio  1:10,  the

intermediate concentration decreases with respect to time. However, in both

ethanol mixtures it is observed that formation of ester increases with increased

storage time. As in the case of methanol solution, ester seems to be a bit more

favoured in lower acid:alcohol ratio.

(a) (b)

Figure 5.14. Change in conversion of ester and intermediate in a solution of levulinic
acid and methanol (a) molar ratio 1:20 and (b) molar ratio 1:10

5.3.2. Identification of the 'intermediate'

Based on the proposal made by Shu and Lawrence about the formation of 4-

alkoxy--valerolactone during  storage  time  in  alcohols,  further  analysis  were

carried  out  to  confirm  the  aforementioned  structure.  Then,  in  a  methanol

solution is expected to see a 4-methoxy--valerolactone (Figure 5.15.).166

molecular mass C6H10O3: 130.12 gmol-1

Figure 5.15. Proposed structure formed during methanol storage of levulinic acid
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Before taking Shu-Lawrence proposal as the definitive compound formed as an

intermediate, a review of possible derivatives formed from levulinic acid167 was

made  and  presented  in  Figure  5.16. Then  through  different  analytical

techniques, compounds were confirmed or discarded. 

Figure 5.16. Levulinic acid and relationship to its derivatives

One  of  the  most  common  derivatives  from  levulinic  acid  are  the

angelicalactones  (structures  5 and  6)  which  are  formed  by

dehydration.160,167 Then an attempt to identify them in the mixture was made.

However, the 13C NMR spectra (Figure 5.17.) does not show signals between

115–140  ppm,  region  where  it  is  expected  to  find  carbon  alkenes

resonances.34 Then,  with  this  information,  angelicalactones are  discarded (5

and 6), as well structures 4 and 10 which contain carbon double bonds.
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Figure 5.17. 13C NMR spectra for mixture of levulinic acid-MeOH 48 h

Another  useful  technique used for  characterization  of  intermediate  was Gas

Chromatography coupled to Mass Spectrometry (GC-MS) analysis by Electron

Ionization. This analysis was carried out taking into account molecular masses

of possible derivatives from levulinic acid and presented in Table 5.2. Some of

them have been already discarded, but it is worth having them in mind.

Table 5.2. Molecular masses for levulinic acid and derivatives

Derivatives Molecular Mass 

Levulinic acid (1) 116

Pseudo-levulinic acid (3) 116

-angelica lactone / -angelica lactone (5, 6) 98

 4-methoxy--valerolactone (8) 130

Figure 5.18. shows the mass spectra obtained for the intermediate peak in the

mixture of levulinic acid–methanol (1:30 ratio) after 48 h. The mass obtained for

the  formed  molecular  ion  was  of  115.17;  this  mass  is  lower  than  the  one

expected  for  the  4-methoxy--valerolactone,  130.12;  differing  from  Shu-

Lawrence proposal. 
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Figure 5.18.  Mass spectra of  intermediate identified in  levulinic  acid and methanol
(1:30) solution 

Another test made to determine the mass of the “intermediate” through GC-MS

analysis  consisted  in  the  preparation  of  a  solution  of  levulinic  acid  with

deuterated  methanol  (MeOD-d4)  in  the  ratio  acid:alcohol,  1:30,  as  the  one

prepared by Shu and Lawrence. The mass spectra for the intermediate peak is

presented  in  Figure  5.19.,  in  where  it  is  observed  that  the  mass  did  not

increase  greatly  (up  to  130)  discarding  again  the  attachment  of  a  methoxy

group in the position 4 of the -valerolactone; the molecular ion mass was found

between  118–119  amu,  which  would  suggest  a  proton-deuterium exchange,

likely to happen with the methyl group of the ketone, giving up to 3 deuterium

atoms in the molecule.

Figure 5.19.  Mass spectra of intermediate identified in levulinic acid and methanol-d4

(1:30) solution
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The intermediate formed in the solution of ethanol and levulinic acid was also

examined. It was interesting to find that ethanol intermediate appears at similar

retention time in the chromatogram obtained for methanol by GC-FID (Figure

5.20.). When analysis of the peak corresponding to intermediate formed from

levulinic  acid–ethanol  mixture  is  done  by  GC-MS,  the  molecular  ion  mass

obtained was 116; these results are comparable with the ones obtained from

MSc project on levulinic acid esterifications by EtOH carried out by Ms. Petchey,

who also identified the formation of this intermediate. In the assumption of 4-

ethoxy--valerolactone would be produced during the storage with ethanol, then

the mass expected for the molecular ion would be close to 144. These findings

differ again from the proposal made by Shu and Lawrence.166

Figure 5.20. GC -FID chromatogram of mixture of levulinic acid and ethanol (1:15, day
5)

With  these  findings,  we  get  back  to  Figure  5.16.,  to  try  to  point  out  the

corresponding  structure  to  this  intermediate.  Then,  it  seems  that  derivative

formed during the mixing of levulinic acid and methanol/ethanol resembles with

5-hydroxy--valerolactone  or  pseudo-levulinic  acid,167 which  appears  to  be

better  dissolved  in  methanol  than  ethanol.  The  formation  of  5-hydroxy--

valerolactone (3) is attributed to the facility in the transfer of the proton from the

carboxy group to the carbonyl atom of oxygen.168
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5.3.3.  Performance  of  sulfonated  Starbons® in  the  esterification  of

levulinic acid

Esterification of levulinic acid by methanol was carried out using conventional

and microwave irradiation,  using sulfonated Starbons® 300 and 800 (Figure

5.21.).  As  observed  for  esterification  of  lauric  acid  by  methanol,  conversion

obtained using microwave irradiation in 30 minutes is higher than the obtained

using  conventional  heating  by  12  hours.  This  increment  in  conversion  for

reactions carried out under microwave irradiation could be associated with the

high temperatures reached during reaction119 (105 °C  vs  75 °C).  Sulfonated

Starbon® 300 seems to  be more effective than sulfonated Starbon® 800,  as

previous observation during esterification of lauric acid by methanol.

Figure  5.21.  Comparison  of  the  esterification  of  lauric  acid  by  methanol  using
microwave irradiation and conventional heating 

A scope of efficiency of sulfonated Starbons® in the esterification of levulinic

acid with methanol was also performed employing 20 and 40 mg of catalyst

loading  (Figure  5.22.).  As  expected,  higher  catalyst  loading  gives  higher

conversions; complete conversions to the ester are observed using sulfonated

Starbons® 300, and over 95 % is obtained using sulfonated Starbons® 350, 550

and 800.
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Figure 5.22. Esterification of levulinic acid by MeOH, using 20 and 40 mg of sulfonated
Starbons® (30 min, 200 W)

A quick test on reusability of sulfonated Starbons® 300, 350, 550 and 800 in

esterification of levulinic acid with methanol was carried out, using 40 mg of

sample  (Figure  5.23.).  It  was  interesting  to  find  out  that  activity  of  high-

temperature  Starbons® decreased  dramatically  just  in  the  second  use  to

approximately 50 %.

Figure 5.23.  Reusability of sulfonated Starbons® in esterification of levulinic acid with
methanol (catalyst 400 mg; MW 200 W, 30 min)
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A  summary  of  some  compositional  properties  of  sulfonated  Starbons® is

presented  in  Table  5.3. with  the  aim  to  find  a  correlation  between  these

characteristics and catalytic performance. It  is  observed that both sulfonated

Starbons® 550 and 800 have higher C:O ratio, implying that they contain less

oxygenated groups. When sulfur content is analysed, the samples have less

sulfur loading on bulk or on surface, which could explain the loss in activity. This

observation was also made in esterification of lauric acid by methanol,  so it

seems that  high-temperature sulfonated Starbons® are less stable than low-

temperature ones.

Table 5.3. C:O atomic ratio and sulfur loading from some sulfonated 
Starbons® 

Sulfonated
Starbon®

C:O atomic ratio S/mmolg-1

bulk
S (VI)/mmolg-1

surface

300 2.45 0.73 1.61

350 2.97 0.94 1.22

550 5.61 0.43 0.98

800 5.94 0.52 0.46

5.4. Test in esterification of 4-phenyl butyric acid and benzoic acid with
methanol

An evaluation  of  performance  of  sulfonated Starbons® in  esterification  of  4-

phenyl butyric acid and benzoic acid with methanol was also carried out. Two

different catalyst loading were tested: 20 and 40 mg to find out main differences

(Figure 5.24.). Similar trends are observed as with the previous reactions: low-

temperature sulfonated Starbons® (300 and 350) show better catalytic activity

than high-temperature sulfonated Starbons®.

Scheme 5.2. Esterification of 4-phenyl butyric acid with methanol
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Figure 5.24a  presents a comparison between conversion to methyl ester of 4-

phenyl butyric acid and sulfur content in sulfonated Starbons®, trying to find a

correlation  between these findings.  In  general,  content  of  sulfur  (VI)  on  the

surface is higher than the content on the material in bulk. However, the trend of

conversion obtained seems to be more related to sulfur content in the material,

as conversion decreases in the middle samples just as sulfur content does for

these  samples.  It  is  worth  mentioning  that  the  decrease  in  sulfonic  groups

[referred  as  S(VI)]  is  also  observed  for  other  sulfonated  carbonaceous

materials.28,30 It  seems  that  increasing  the  temperature  of  carbonization  of

carbonaceous materials, incrementing their similitude to graphitic-like materials,

affects the attachment of sulfonic groups to the structure.

Regarding  the  esterification  of  benzoic  acid  by  methanol,  using  sulfonated

Starbons® (Figure 5.24b), it was found that materials with higher sulfur content

promoted  higher  conversions,  although  this  was  achieved  using  40  mg  of

catalyst,  reaching  a  maximum of  60  % of  conversion.  It  is  well-known that

aromatic  carboxylic  acids  are  quite  stable  and  esterification  could  be  very

slow.165

Scheme 5.3. Esterification of benzoic acid with methanol
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(a)

(b)

Figure  5.24.  Esterification  of  4-phenyl-butyric  acid  (a) and  benzoic  acid  (b) with
methanol (MW 200 W, 30 min)

5.5. Short test of microwave sulfonated Starbons®

Preparation  and  characterization  of  sulfonated  Starbons®  using  microwave

irradiation were presented in  Chapter 3. As it was mentioned, there were not

extra washes with methanol, aiming to decrease steps in preparation of stable

sulfonated catalysts. 
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Test of the efficiency of these microwave sulfonated catalysts was carried out in

the esterification of lauric acid by methanol, using the standards measurements:

MW 200 W, 30 min and 20 mg of catalysts. As presented in previous chapters,

these  materials  were  sulfonated  at  three  different  temperatures,  due  to  the

facility  provided  by  microwave  open  vessel  equipment.  A  brief  summary,

describing  the preparation  of  microwave sulfonated samples is  presented in

Table 5.4.

Table 5.4. Description of microwave sulfonated Starbons® 

300

S300SW3 Starbon® 300 conventionally sulfonated @ 90°C,
washed with MeOH

S300SMW90 Starbon® 300 sulfonated @ 90°C by microwave 
irradiation

S300SMW90RH Starbon® 300 sulfonated @ 90°C by microwave 
irradiation using  recycled sulfuric acid

S300SMW120 Starbon® 300 sulfonated @ 120°C by microwave
irradiation

S300SMW150 Starbon® 300 sulfonated @ 150°C by microwave
irradiation

450

S450SMW90 Starbon® 450 sulfonated @ 90°C by microwave 
irradiation

S450SMW120 Starbon® 450 sulfonated @ 120°C by microwave
irradiation

S450SMW150 Starbon® 450 sulfonated @ 150°C by microwave
irradiation

800

S800SMW90 Starbon® 800 sulfonated @ 90°C by microwave 
irradiation

S800SMW120 Starbon® 300 sulfonated @ 120°C by microwave
irradiation

S800SMW150 Starbon® 300 sulfonated @ 150°C by microwave
irradiation

The performance of the catalysts described is presented below.  Figure 5.25.

shows the conversion obtained during esterification of lauric acid by methanol

using microwave sulfonated Starbons® 300. In the first run all the catalysts of

Starbon® 300 showed the highest conversion, which decreases to less than 80

% in second use and it drops slightly in the third run, being more noticeable in

microwave sulfonated Starbon® 90 °C. These observations would suggest that

first  run  is  equivalent  to  the  conditioning  step  using  methanol  as  for  the

methanol washed Starbon® 300 sulfonated by conventional heating, because
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the conversion for the second and third run are very similar to the one obtained

for S300SW3. 

Figure  5.25. Esterification  of  lauric  acid  by  methanol  using  microwave  sulfonated
Starbons® 300

Effectiveness in the esterification of lauric acid by methanol using microwave

sulfonated Starbons® 450 and 800 are presented in  Figure 5.26.  and  Figure

5.27., respectively. Both sample batches displayed very high conversions in the

first use, but a massive drop in conversion to methyl lauric ester in the second

use of the catalyst,  alluding to the weak stability of sulfonated high-temperature

Starbons®.  Continued  use  showed  that  during  the  third  use  of  sulfonated

catalyst,  conversion obtained is scarcely over 30 %, for sulfonated Starbons®

450  and  800.  Temperature  of  sulfonation  seems  to  have  more  effect  in

microwave  sulfonated  Starbon® 450  than  for  Starbon® 800;  as  samples

prepared at 150 °C showed better conversions than lower temperatures. For

sulfonated Starbons® 800, the trend in deactivation is similar.
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Figure  5.26.  Esterification  of  lauric  acid  by  methanol  using  microwave  sulfonated
Starbons® 450

Figure  5.27.  Esterification  of  lauric  acid  by  methanol  using  microwave  sulfonated
Starbons® 800

Although these last  two samples,  450 and 800,  deactivated after  few uses,

sulfonated Starbons® 300 appear to be more stable for further uses. Microwave

sulfonated Starbon® 300 at 90 °C seem to be slightly better when it is compared

with conventional sulfonated Starbon® 300,  because it maintains conversions

over 70 % after three uses (Figure 5.28.). An additional benefit we discovered

was related to the conversion to methyl laurate ester obtained using microwave

sulfonated Starbon® 300 prepared using recycled sulfuric acid, which appears to
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have similar activity to samples prepared with “new sulfuric acid” 95 %.

Figure  5.28.  Esterification  of  lauric  acid  by  methanol  using  microwave  sulfonated
Starbons® 300 prepared at 90°C, conventional and recycled sulfuric acid

A general  overview  of  sulfonated  Starbons® 300  used  as  catalysts  in  the

esterification of lauric acid by methanol is depicted in  Figure 5.29.  It is found

that all microwave sulfonated Starbons® 300 gave high conversions in the first

use, as mentioned previously, this could be taken as “the conditioning step” with

methanol. After that, in the second run, conversions dropped for all samples,

even  for  sample  sulfonated  by  conventional  heating.  In  the  third  use,

conversions dropped even more, although microwave sulfonated Starbons® 120

and  150  showed  conversions  over  75  %  and  the  sample  conventionally

sulfonated shows the lowest conversion close to 60 %. It is also noticeable that

the  sample  prepared  using  recycled  sulfuric  acid  also  presented  a  faster

deactivation than other microwave sulfonated samples.
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Figure 5.29. Reusability of sulfonated Starbons® 300 in the esterification of lauric acid
by methanol 

5.6. Deactivation of sulfonated Starbons®

In the preparation of solid-acid catalysts it is desirable that they are recyclable

to allow reactions to be carried out many times; however, the loss of activity

and/or deactivation of material could happen when catalyst is reused. As it has

been shown previously, sulfonated Starbons® show a decrease in conversion of

ester after first use, characteristic which may put Starbons® at a disadvantage

when  compared  with  other  carbon-base  catalysts,  as  some  authors  have

reported  very  'stable'  sulfonated  carbonaceous  materials,24,28 and  others

claiming  to  use  sugar  catalyst  carbonized  at  400  °C  for  50  consecutive

cycles.32 Although  some  authors  have  reported  recyclability  without  any

treatment, there are some others which gave an extra treatment to recovered

catalysts,  among  post-recovery  treatment,  using  solution  of  sulfuric  acid  or

concentrated  sulfuric  acid  to  “reactivate”  the  materials37,38 which  activity  is

retained  after  several  cycles  more.  The use of  sulfuric  acid  in  treatment  of

reused catalysts seems to be more a kind of adding this mineral acid to the

material than a proper regeneration. 
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In the case of sulfonated Starbons®, recovery and regeneration is presented in

Figure 5.7. in which acetone was used to remove “residues” from reactants,

next sample was dried in an oven prior to use again. Although loss of activity

could be attributed to loss of materials, in the case of sulfonated Starbons®, this

was  less  than  ~0.2  mg  in  ~20  mg  of  catalyst.  Mo  et  al26 investigated  the

deactivation of sulfonated carbon materials based on Hara's results.24 Former

authors found that deactivation is a common problem for sulfonated catalysts as

fresh and washed methanol showed very similar conversions in esterification

reactions  monitored;  indicating  that  catalytically  active  species  leached  into

methanol after washing procedure. These species were identified as sulfonic

polycyclic  carbons.  Elemental  analysis  of  sulfur  left  in  the  materials  after  3

cycles (Figure 5.30.), showed that sulfonated Starbon® 800 just retained 55 %

of initial sulfur while sulfonated Starbon® 300 contained 72 % of original sulfur;

this might explain the lower conversion to the methyl ester observed during use

of sulfonated Starbon® 800.  Decreased sulfur content was also observed by Mo

et al26 during their deactivation studies, mentioned earlier.

Figure 5.30.  Comparison in sulfur content left after three runs in sulfonated Starbons
300 and 800

Deactivation has been suggested to depend on reaction media, in the case of

sulfonated  carbonaceous  materials,  differences  are  observed  from  aqueous

media to less polar solvents as alcohols153 and being more noticeable when

methanol  is  used.  This  statement agrees with  our  observations about  sulfur
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leaching shown in  Chapter 2,  where significant differences in sulfur leached

among the studied alcohols were found, being quite higher for methanol than for

2-propanol. It is also worth mentioning that deactivation of sulfonated carbon-

base  materials  can  also  be  related  to  the  formation  of  methyl  ethers  on

materials;153 this suggestion coincides with our results presented in Chapter 2,

in which a methoxy group is identified in sulfonated Starbons® after methanol

treatment, through 13C CP/MAS NMR studies.

A scope about leaching and stability of microwave sulfonated Starbons® 300

was carried out and depicted in  Figure 5.31. Reactions were carried out in 5

minutes instead of regular time of 30 minutes. Results shown that during first

use all sulfonated Starbons® reached high conversions, over 60 %; and values

obtained are very alike between leached methanol  and fresh methanol  with

catalyst.  There  is  a  significant  decrement  in  the  second  run,  in  which  the

maximum conversion was slightly over 35 %; and for third use, conversion to

methyl  ester  was  approximately  of  30  %.  It  is  interesting  to  note  that  the

contribution from leaching decreases as well, during the second and third uses;

suggesting that conversions to methyl ester observed during second and third

run  are  more  related  to  heterogeneous  capacity  of  sulfonated  Starbons®.

Although,  conventional  sulfonated  Starbon® 300  showed  slightly  lower

conversions, it is important to emphasize that this material has already been

washed with methanol, while microwave sulfonated Starbons were not treated

with methanol before these reactions.
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Figure 5.31. Studies on leaching of sulfonated Starbons® 300

5.7. Conclusions

A general overview of the performance of sulfonated Starbons® in esterification

reactions was carried out. The conversion to ester was evaluated using the GC

peak areas of the ester and acid, which gives an approximate value. Reactions

were  carried  out  by  conventional  heating  and  microwave  irradiation;  higher

conversions were achieved in reactions done using microwaves, which could be

attributed to the reaction conditions,  as reactions were carried out  in closed

vessel and temperatures reached over 100 °C. 

Assessment of the range of sulfonated Starbons® prepared, showed differences

in  their  activity  according  to  their  carbonization  temperature  of  materials,

obtaining  higher  conversions  to  the  ester  when  low-temperature  sulfonated

Starbons® are used. The weak activity of high-temperature Starbons® could be

attributed  to  less  sulfonic  groups  attached  to  the  material  as  presented  in

Chapter 2 and Chapter 3. This characteristic has been already reported as a

difficulty to introduce sulfonic groups to aromatic polycyclic carbons24.
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Although  there  are  not  references  of  studies  on  recyclability  of  previous

sulfonated Starbons® to  compare  with  directly, our  results  showed the  rapid

deactivation of materials in reactions with methanol and among the range of

sulfonated Starbons® prepared, sulfonated Starbon® 300 showed to be the most

stable.

Synthesis  of  sulfonated  Starbons® using  microwave  irradiation  could  be  an

efficient  approach  to  get  solid-acids,  however,  high-temperature  carbonized

Starbons® (450 and 800) would require higher temperatures of sulfonation (120

or 150) because deactivation occurs easily for samples prepared at 90 °C. In

this  section,  it  was also shown that  sulfonated Starbon® 300 prepared from

recycled sulfuric acid (S300SMW90RH) has similar activity to the sulfonated

Starbons® 300 prepared from new and clean sulfuric  acid.  This  observation

opens the opportunity to explore further the preparation and characterisation of

sulfonated Starbons® using recycled sulfuric acid. 
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Chapter 6

Experimental
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6.1. Chemical reagents

6.1.1.  Chemicals  used  for  synthesis  and  characterisation  of  sulfonated

Starbons®

Sulfuric acid (≥ 95 %) was purchased from Fischer Scientific. Deionised water

obtained from a Purite system at the Department of Chemistry was used for

washings. Methanol AR grade (VWR chemicals) was  used for the methanol

extra  wash  carried  out  on  sulfonated  Starbons®.  Sodium  chloride  (Fischer

Scientific) was used to prepare a 2 M solution (H2O/MeOH, 1:1 v/v) for acidity

determination.  Barium  chloride  dihydrate  (99  %)  was  purchased  from  Alfa

Aesar for the preparation of BaCl2 solution 0.1 M (0.1 M HCl). Hydrochloric acid

(HCl) 0.1 M used in the preparation of solution BaCl2 0.1 M was purchased

from  Fischer  Scientific.  Collection  of  gases  released  during  sulfonation  of

Starbons® via microwave irradiation was done using a solution of hydrogen

peroxide  H2O2 (30  % v/v).  Sodium hydroxide,  NaOH solution  (0.1  M)  from

Fischer  Scientific  was  used  as  base  to  prepare  more  diluted  solutions  for

titrations.

6.1.2. Chemicals used in reactions

Lauric acid (≥98 %) and benzoic acid (99 %) were purchased from Sigma-

Aldrich. 4-phenylbutyric acid (99 %) was purchased from Alfa Aesar; levulinic

acid  (98%)  was  purchased  from  Acros  Organics.  Methanol,  ethanol  and

acetone used for reactions and reactivation of catalyst were AR grade (VWR

Chemicals).  The comparable catalysts used during reactions were activated

carbon Norit® (Fluka) and sulfated zirconia, 13 % Al2O3 (Engelhard Exceptional

Technologies). 

6.2. Carbonization treatment

Starbons® used  in  this  research  were  prepared  from  Cleargum starch.

Expansion of the material was done at Contract Chemicals Inc., according with

Budarin methodology.9,48 The carbonization of expanded starch was carried out

at  three  different  temperatures  at  300,  400  and  800  °C  at  Nabertherm,
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Germany, received in batches of 10 kilograms. They were the starting materials

for the range of new carbonized Starbons®. Carbonization was carried out in a

furnace  Thermolyne  6000  under  nitrogen  flow  at  100  mLmin -1 according  to

diagram presented in Figure 6.1.

Figure 6.1. Carbonization procedure for Starbons®

6.3. Sulfonation process

Sulfonation of Starbons® were carried out through different methodologies: 

using conventional heating and microwave irradiation.
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6.3.1. Conventional sulfonation

The  sulfonation  was  carried  out  in  a  round-bottom  flask  with  an  adapted

condenser.  This  reaction  was  heated  in  a  sand  bath  at  90  °C  for  6  hours

(Figure 6.2). The ratio used in this synthesis was 1 g of Starbon®  to 7 mL of

sulfuric acid 95 % (at scale of 80 g). Solid was filtered off and unreacted sulfuric

acid was recovered (~30% of the original volume), afterwards samples were

extensively washed with hot water (over 80 °C) until  test with solution BaCl2

0.1M was negative to the presence of sulfates coming off from washes. The pH

of washes was measured using a pH meter and conductivity Jenway 3540. After

washing treatment, samples were dried at 105 °C overnight in a Carbolyte oven.

Sulfonation Washes Filtrate test Drying

Figure 6.2.  Schematic representation of the sulfonation of Starbons® by conventional
heating

6.3.2. Methanol washing

Leaching of sulfuric acid was observed in the first reactions done using these

sulfonated  samples  (Chapter  2),  it  was  decided  to  give  an  extra  treatment

wash with  methanol,  using similar  conditions to  reactions,  then it  was done

using  microwaves.  So,  sulfonated  Starbons® were  washed  with  methanol

(reagent grade) in a ratio 1 g solid : 5 mL methanol. Washes were done in a

CEM Discover SP microwave reactor at 200 W during 10 minutes with constant

stirring. The procedure was repeated three times. Finally samples were dried in

an oven at 105 °C overnight, before reaction testing.
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6.3.3. Microwave sulfonation

Sulfonation  of  Starbons® using  microwaves was carried  out  in  a  microwave

CEM Discover reactor with PC control. “Open vessel” was the mode selected to

do the sulfonation and the maximum power was set to 200 W. Samples were

prepared in the same ratio as conventional sulfonation 1 g of Starbon® to 7 mL

of acid, but in a lower scale, using 2 g of solid. The samples were heated at

fixed  temperatures  (90,  120  and  150  °C)  during  30  minutes  with  constant

stirring. Gases released during sulfonation were collected in a H2O2 solution

(30% v/v) using nitrogen as carrier, according to the system presented in Figure

6.3.

Figure 6.3. Experimental set up used during sulfonation of Starbons® by microwave 
irradiation. Collection of gases using  H2O2 solution (30% v/v)

After sulfonation, samples were filtered off to remove excess of sulfuric acid.

Then, samples were washed using microwaves. The ratio was 1 g of solid to 30

mL of water. The microwave set conditions were an open vessel mode, constant

stirring at fixed temperature at 90 °C, during 10 minutes; the maximum power

was set to 200 W.  
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Most of the microwave sulfonated Starbons® were not treated with methanol as

conventional sulfonated Starbons®, with the aim to evaluate the effectiveness of

this  new method of  sulfonation.  However, if  a  comparison with  conventional

sulfonated Starbons® was needed, the methanol wash treatment of microwave

sulfonated Starbons® was carried out and it consisted of heating samples (1 g of

sulfonated Starbon® to 15 mL of methanol), using microwaves in open vessel

mode, during 30 minutes with constant stirring at 75 °C. After treatment, sample

was filtered off and oven dried at 105 °C.

6.3.4. Quantification of sulfur dioxide (SO2) released during sulfonation

SO2 was identified in the released gases during sulfonation and collected in a

hydrogen peroxide (H2O2) solution (30% v/v) at room temperature (Figure 6.3.).

Thus, it is possible to quantify SO2 with the aim of correlating the released SO2

quantity  with the sulfur content obtained in sulfonated Starbons®,  taking into

account the mass of sulfuric acid used.  It is worth mentioning that this method

was based in a proposal used in wine industry.169 According to this method, the

SO2 dissolved in hydrogen peroxide solution will form sulfuric acid (Equation

6.1.). 

H2O2(aq)+SO2(g)→S O3(g)+H 2O(l)→H 2S O4(aq)

Equation 6.1.  Formation of  sulfuric  acid during reaction of  hydrogen peroxide with
sulfur dioxide

An aliquot (10 mL) was taken from this sulfuric acid (H2SO4) solution and titrated

potentiometrically with a sodium hydroxide (NaOH) solution, according with  a

neutralization reaction. Equation 6.2. Titration was done by triplicate. 

H 2 SO4 (aq)+2 NaOH (aq)→Na2 SO4 (aq)+H 2 O(l)

Equation  6.2.  Neutralization  reaction  between sulfuric  acid  and  sodium hydroxide,
used to determine quantity of SO2 released.
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The determination of SO2 released per gram of Starbon® is related to the mole

number of H2SO4, considering the dilution factor (5) and taking into account the

mass of Starbon® used in sulfonation. This is schematically presented in Figure

6.4. 

Figure 6.4.  Schematic representation of the quantification of sulfur dioxide through
potentiometric titration

6.4. Materials characterisation

6.4.1. Elemental analysis

Elemental composition (carbon, hydrogen, oxygen) of samples was determined

by CHN analysis through the service provided by the Department of Chemistry,

University of York, York, UK. This analysis was done by Dr. Graeme Mcallister

using a Sartorius SE2 analytical balance for weighing samples and an Exeter

Analytical Inc CHN analyser. 

Sulfur  content  in  sulfonated samples  was determined externally  by  Lancrop

Laboratories, Manor Place, Wellington Road, The Industrial Estate, Pocklington,

York, YO42 1DN. The methodology described by the external analyst consists

in putting a weighed sample in a microwable digestion tube, then reverse aqua

regia [9 mL of HNO3 (conc.) and 3 mL of HCl (conc.)] is added. The sample is

then digested with the aid of a Mars Xpress microwave digester. Once digestion
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has taken place, the sample is made up to 25 mL using deionised water and

filtered. It is then analysed on a axial Varian vista ICP. Results are automatically

corrected by dilution factor. This  information was provided by Darren Clegg,

Business manager of Analytical Services and Lancrop Laboratories.

6.4.2. Infrared spectroscopy

FTIR spectra were recorded using a Bruker Vertex 70 FTIR spectrometer fitted

with an ATR golden gate attachment with diamond top plate analysis window;

controlled  throughout  Opus  software.  The  spectrum  was  recorded  in  the

wavenumber range 4000–600 cm-1. The number of scans used for background

and samples was set at 64 and 32 scans, respectively. The resolution selected

was 4 cm-1.

6.4.3. X-Ray photoelectron spectroscopy (XPS)

XPS analysis was conducted by Dr Benjamin Johnson, EPSRC XPS service at

the University of  Leeds, School  of  Physics and Astronomy, Leeds,  LS2 9JT.

XPS  spectra  were  recorded  on  a  Kratos  Axis  Ultra  DLD  photoelectron

spectrometer  using  a  hemispherical  photoelectron  analyser  with  a

monochromatic AlKα X-ray source (75-150 W) and analyser pass energies of

160  eV  (for  survey  scans)  and  40  eV  (for  detailed  scans).  Samples  were

mounted using double-sided tape. Binding energies were referenced to the C 1s

binding energy 284.5 eV. Prior to analysis samples were dried overnight at 105

°C. The analysis of the spectra was carried out using CasaXPS sofware.

6.4.4. Solid-state 13C CP/MAS Nuclear Magnetic Resonance

Solid-state 13C CP/MAS NMR spectra were obtained at the EPSRC UK National

Solid-state NMR Service at Durham, the University of Durham, Department of

Chemistry,  Durham,  DH1  3LE.  The  analysis  was  carried  out  by  Dr  David

Apperley.

13C CP/MAS NMR spectra were obtained using a Varian VNMRS spectrometer
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with  a  frequency  of  100.56  MHz.  Spectra  were  recorded  following  a  “black

carbon” acquisition conditions: extended spectra width, rotor synchronised spin-

echo, adjusted Hartmann-Hahn match and 14 kHz spin-rate. CP linear on H,

contact time 1.00 ms and two-phase two-modulated (TPPM) decoupling at 77.5

kHz. Spectral referencing was with respect to tetramethylsilane.

6.4.5. Surface area and porosity

Nitrogen-adsorption measurements were carried out at 77 K by using an ASAP

2020 volumetric adsorption analyser from Micromeritics. Prior analysis, weighed

samples  (80 – 100 mg)  were degassed for 5 hours at 160 °C. The equilibration

time established for the measurement was of 10 seconds. Surface area was

determined  by  using  the  BET  model  (Equation  1.2.)  and  the  pore  size

distribution on the materials was determined using the BJH model.

6.4.6. Scanning Electron Microscopy (SEM) analysis

Electron microscopy images were acquired with the help of Ms Meg Stark at the

Technology Facility in the Department of Biology, University of York, UK. SEM 

images were recorded using a JEOL JSM-6490LV. Samples were mounted on 

alumina plates and coated with a 7 nm layer of Au/Pd using a high resolution 

sputter SC-7640 coating device prior to analysis. Typical magnifications used 

were x1500, x3000, x4500 and x7000. 

6.4.7. Thermo gravimetric analysis coupled to infrared spectroscopy (TG-

FTIR)

TG-FTIR studies were carried out using a Netzch 409 STA thermal analyser

coupled to a Bruker Equinox 55 infrared spectrometer via a transfer line. The

temperature of the transfer line was set at 200 °C and the IR detector used was

a  MCT  (HgCdTe)  cooled  with  liquid  nitrogen.  For  the  measurement,

approximately 50 mg of sample was mounted in a 3.5 mL ceramic crucible and

heated  under  a  flow  of  nitrogen  (100  mLmin-1).  Prior  to  analysis  the  oven

chamber was evacuated and backfilled three times with nitrogen. Samples were
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heated at 10 °C min-1 to 1000 °C. 

6.4.8. Acidity determination

Quantity  of  sulfonic  groups  (~SO3H)  attached  to  sulfonated  samples  was

determined by  titration  using  an aqueous solution  of  NaOH.  The  procedure

used for sulfonated Starbons® is a modification of the method proposed by P.

Lin  et al46  for sulfonated carbon nanocage materials. In our work, 20 mg of

sample was dispersed in 15 g of methanol-aqueous (1:1) solution of NaCl (2 M);

sample was stirred overnight at room temperature. Afterwards, the dispersion

was filtered to remove the solid sulfonated Starbon® and the filtrate was then

titrated  potentiometrically  using NaOH 0.005 M.  Considering that  number  of

equivalents (H+-OH-) are in a 1:1 ratio; the quantity of H+ neutralized can be

found  using  the  volume  of  NaOH  solution  in  the  equivalent  point  and  its

concentration, as shown in Equation 6.3. 

~SO3H/mmol g-1 = 
(vol . NaOH /mL)(conc . NaOH /M )

massof Sulfonated Starbon®/ g
 *                    

Equation 6.3.  Calculation  of  the quantity  of  sulfonic  groups through potentiometric
titration with NaOH * vol. = volume; conc.= concentration; assuming all H+ come from
SO3H groups

6.5. Catalytic testing

6.5.1. Sample preparation

Conventional  heating  reactions  were  carried  out  using  a  Radleys  Discovery

multipoint with set temperature at 75 °C and continuous stirring.  In this test,

reaction mixture contained: 15 mmol of organic acid, 225 mmol of alcohol and

60 mg of catalyst. Reaction progress was monitored by sampling aliquots of

reaction mixture taken at specific times, which were subsequently analysed by

gas chromatography. 

217



Microwave experiments were carried out in a CEM Discover model  with PC

control, the experiments were conducted in close vessels (pressure controlled)

under continuous stirring. The microwave method was set to be a fixed power

output at 200 W during 30 minutes. The reaction mixture kept the same ratio as

those carried out on the multipoint reactor: 5 mmol of lauric acid, 75 mmol of

methanol and 20 mg of catalyst. Samples were analysed by GC, as mentioned

previously.

6.5.2. Catalyst recycling

Regeneration of catalyst for microwave reactions was done as follows: reaction

mixture was separated from catalyst by decantation. Then 3 mL of acetone was

added to the microwave vial and stirred at 45 °C during 15 minutes, to remove

unreacted reagents. Afterwards, samples were centrifuged in Thermo Scientific

Megafuge  40R  centrifuge  at  3500  rpm  for  10  minutes  and  acetone  was

removed. Recovered catalysts were dried at 105 °C for 4 h before next use

(presented in Figure 5.7.).

6.5.3. Gas Chromatography and Mass Spectra analysis

Gas chromatography (GC) analysis was done using an Agilent 6890 GC model

chromatograph with  a flame ionization detector (FID).  This was fitted with a

carbowax DB-wax capillary column (30 m x 0.25 mm x 0.25  m) at constant

pressure of 14.3 psi. The carrier gas used was helium with a flow rate of 35.8

mLmin-1.  The split  ratio was set at 25:1. The initial  temperature in oven was

maitained at  50 °C for  3  min,  then temperature incremented at  a  rate  of  8

°Cmin-1 to  150  °C,  it  was  held  at  this  temperature  for  1  minute.  Then,

temperature rose at 10 °Cmin-1 to 240°C and was maintained for 1 minute. Both

injector and FID detector were heated at 240 °C.

Peaks  were  identified  by  comparison  with  standard  compounds.The

performance  of  the  sulfonated  Starbons® in  esterification  reactions  was

monitored through the estimated conversion to the ester. This approximation

was done using the ratio peak areas between the ester and acid components
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according  to  Equation 6.4. This  approach employs  simple  manipulations  to

obtain a general picture of the reaction behaviour. It is worth mentioning that

studies on reproducibility  in  the  microwave esterifications  of  lauric  acid  with

methanol,  the reactions mixtures were analysed by GC following this peak area

ratio approach, the results yielded standard deviations of ±3.6 % (Figure 6.5.).

These observations give us enough confidence with the approximations carried

out. As well, it is worth mentioning that similar quantities of analyte was taken

(~50 mg).

% i = 
Areai

∑
i=1

i=n

Areai

Equation 6.4. Determination of conversion to ester (component i) in an esterification 
reaction

Figure  6.5.  Reproducibility  of  results  obtained  in  esterification  of  lauric  acid  with
methanol (MW, 200W, 30 min) and associated errors 

Gas chromatograph mass spectrometry (GC-MS) was performed on a Perkin

Elmer  Clarus  500  GC  coupled  with  a  Clarus  560  S  quadrapole  mass

spectrometer. This equipment was fitted with a DB5HT capillary column (30m x

250 μm x 0.25 μm nominal) at constant pressure of 22.35 psi with a helium

carrier gas. The temperature of the injector was maintained at 350 °C and the

flow  rate  was  set  to  1.00  mLmin-1.  The  split  ratio  used  was  10:1.  The

temperature of the injector and transfer line were maintained at 300 °C and 350

°C, respectively. The initial  oven temperature was maintained at 60 °C for 1

minute. The temperature was then ramped at a rate of 8 °Cmin -1 to 360 °C and

held for 10 minutes. The Clarus 500 quadrapole mass spectra was operated in
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the electron ionization mode (EI) at 70 eV, a source temperature of 300 °C with

the quadrapole at 300 °C. The scanning mass range was of 30 - 1200 amu. per

second.  The data  was collected  with  the  PerkinElmer  enhanced TurboMass

(V.5.4.2) chemical software and compounds were identified by comparison of

mass fragmentation patterns with spectra contained in the NIST library (v. 2.2)

and by direct comparison with standard compounds.

6.5.4. NMR spectroscopy

Reaction mixtures were dissolved in chloroform-d for 13C NMR spectra, which

were obtained using a JEOL JNM-ECS400 NMR operating at 100.52 MHz, 256

scans. Spectral referencing was with respect to tetramethylsilane.

6.5.5. XRF analysis

Analysis of elemental sulfur in washing alcohols (MeOH, EtOH and i-PrOH) for

leaching  tests  were  measured  in  a  Rigaku  NEX-CG  X-ray  fluorescence

spectrometer  equipped  with  a  X-ray  tube  with  Pd  anode.  Control  of  the

instrument and data storage was performed through a Hewlett Packard PC with

RPF-SQX software.  This  software  allows  to  obtain  semi-quantitative  values

(without  standards)  of  the chosen elements  to  be  analysed.  Measurements

were carried out in a helium atmosphere. 
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7.1. Conclusion

7.1.1. New synthesis approaches

The general objective of this project was to prepare solid-acid catalysts from

Starbons®, starch derived materials. These solid acid catalysts were prepared

by  sulfonation  of  a  range  of  carbonized  Starbons® with  sulfuric  acid.  The

sulfonation approach consisted of using commercial sulfuric acid (95 %) instead

of  high purity  (99.999 %) which had been used in  earlier  versions of  these

materials;  low solid (g):  acid (mL) ratio of  1:7 compared to 1:10 of previous

works done using Starbons® or even to 1:50 used in the synthesis of solid acid

catalysts based on sugars. Our approach of sulfonation of Starbons® avoids the

use  of  “conditioning  steps”  that  include  toluene;  the  removal  of  excess  of

sulfuric acid after sulfonation was done using hot washes. 

A range of carbonized Starbons® from 350 °C to 700 °C was prepared using as

starting material Starbons® 300 and 400 (°C) prepared for scale up. It is worth

mentioning that this work is the first one in using carbonized materials prepared

at scale of 10 Kg for further modifications with the availability of large scale

manufactured Starbon® 800; the temperature of carbonized Starbons® extends

from 300 to 800 °C. Elemental composition of these materials showed that C:O

ratio  increases  with  temperature  of  carbonization,  obtaining  high  values  for

Starbon® 800, indicating the carbon-like nature of the material.

The sulfonation of Starbons® was done following two methodologies: sulfonation

by  conventional  heating  and  by  the  use  of  microwave  irradiation.  The

conventional sulfonation was done for a range of carbonized Starbons®, whilst

microwave sulfonation explores only three Starbons®,  the two extremes, 300

and  800  and  the  middle  450.  In  the  conventional  approach  the  reaction  is

carried  out  at  90°C  for  6  h;  for  microwave  sulfonations,  the  temperatures

examined were 90, 120 and 150 °C, and the reaction lasted 30 minutes. During

preliminary  tests  of  conventional  sulfonated  Starbons® in  esterifications,  the

leaching of sulfuric acid from the materials was found. Then a new approach

was  proposed  to  decrease  the  contribution  of  homogeneous  catalysis.  This
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consisted  in  “washing”  the  original  conventional  sulfonated  Starbons® ,  with

methanol  using  similar  reaction  conditions.  In  this  way, the  new  sulfonated

Starbons®  were  born:  S-Starbons® (temperature)  W3.  However,  this  extra

washing with methanol was not performed for microwave sulfonated Starbons® ,

trying to evaluate the efficiency of these sulfonated materials.

7.1.2. Characterisation outcomes

7.1.2.1. Sulfonated Starbons® by conventional heating

The  elemental  composition  analysis  for  sulfonated  Starbons® prepared  by

conventional heating showed an increase in the oxygen:carbon ratio compared

with their respective parent Starbons®. This observation was attributed to the

introduction of sulfonic acid groups as well  as the oxidation of some carbon

functionalities  present  in  the  original  material  during  sulfonation.  This

observation was further supported by XPS analysis and  13C solid-state NMR;

which  show  the  increase  in  carbonyl,  carboxyl,  esters,  lactones  groups  in

sulfonated  Starbons®;  this  increase  in  oxygenated  compounds  was  more

noticeable  on  high-temperature  Starbons® 700  and  800,  which  showed  a

significant decrease in the C:O ratio after sulfonation. 

The  13C solid-state NMR showed a transition from a complex broad spectrum

for sulfonated Starbon® 300 to a narrow band centred at 130 ppm for sulfonated

Starbon® 600, interpreted as the change from more oxygenated structures for

low-temperature  Starbons® (300)  to  more  carbon-like  for  high-temperature

carbonized Starbons®; in agreement with the C:O ratio obtained by elemental

analysis. 

The sulfur content seems to change as well with temperature, being noticeably

higher for low-temperature Starbons® than for high-temperature Starbons®. The

XPS  analysis  showed  that  reduced  sulfur,  S(II)  is  observed  in  carbonized

Starbons® from 450 °C onwards; while sulfonated Starbons® 300 and 350 only

present sulfur (VI), associated with sulfonic acid groups. It is worth mentioning

that  sulfonic  groups  are  also  observed  in  Starbons® prepared  at  higher
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temperature,  however  the  ratio  of  S(VI)  is  lower  than  the  one  obtained  for

sulfonated Starbons® 300 and 350.

7.1.2.2. Microwave sulfonated Starbons®

Similar  to  the  conventional  sulfonated  Starbons®,  microwave  sulfonated

Starbons® showed  an  increase  in  oxygenated  groups  due  to  the  oxidation

promoted  by  sulfuric  acid.  The  main  difference  between  microwave  and

conventional  sulfonation  relied  on  the  sulfur  components  obtained  after

microwave sulfonation. Thus, an extra sulfur species is identified in microwave

sulfonated  Starbons® 300,  ascribed  to  S(VI)  in  the  form  of  organosulfates,

ROSO2OR.  The  sulfonation  temperature  used  in  the  microwave  approach,

seems to have a greater effect on the sulfur content in sulfonated Starbon® 800

than for 300 and 450; because microwave sulfonated Starbon® 800 prepared at

150 °C presents a significant higher sulfur content than samples sulfonated at

90 or 120 °C.

Independent  from  the  sulfonation  approach  used  in  their  preparation,

Sulfonated Starbons® present a characteristic absorption band in the infrared

attributed to symmetric stretching of S=O of sulfonic acids at ~1030 cm-1.

7.1.3. Catalyst performance overview

The conventional sulfonated Starbons® were  tested in esterifications reactions,

it was found that reactions carried out using microwave irradiation gave higher

conversions  than  reactions  done  by  conventional  heating.  The  test  of

conventional sulfonated Starbons® in microwave-assisted esterification, showed

that  low temperature  Starbons® (300,  350)  have  a  better  performance  than

sulfonated  Stabons® situated  in  the  middle  carbonization  range  (550,  600),

getting slightly better at the end (700, 800). This trend is similar to the trend of

sulfur bulk content observed in the materials. 

Reusability  of  conventional  sulfonated  Starbons® 300  and  800  tested  in

esterification  of  lauric  acid  with  methanol,  showed  that  materials  promoted
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higher  conversions  in  the  first  run,  which  drops  during  second  use.  In  that

reaction, conventional sulfonated Starbon® 300 can be used more times than

sulfonated  Starbon® 800.  This  observation  was  correlated  to  the  thermal

stability  studied by TG-FTIR.  This  study shows that  SO2(g)  is  released in  a

broader  range  of  temperature  in  sulfonated  Starbon® 300  than  sulfonated

Starbon® 800; with a  maximum temperature at 350 °C and 280 °C, respectively.

This outcome would indicate that sulfur species present in Starbon® 300 are

thermally more stable than those present in sulfonated Starbon® 800.

 

The test using microwave sulfonated Starbons® in esterification of lauric acid

with methanol, showed that high conversions are achieved in the first use; but

the  conversion  decreases  in  the  second  run,  being  significant  lower  for

microwave sulfonated Starbons® 450 and 800 than for Starbon® 300. 

A leaching test performed using sulfonated Starbons® 300 in esterification of

lauric acid with methanol in MW reactions for 5 minutes, showed that the first

run gives high conversions, but in subsequent runs, conversion decreased. In

this test the contribution of leaching to reaction is over 50% in most cases.

The acidity, in terms of density of sulfonic groups present on the materials, was

determined using a NaCl solution as interchange media. The values determined

for sulfonated Starbons® 300 is lower than the expected according to the S(VI)

measured  by  XPS.  This  difference would  suggest  that  S(VI)  exists  in  other

species rather than solely sulfonic acids.

Finally, as a general conclusion, it can be added that during the realization of

this work a broad range of sulfonated Starbons® were prepared following two

sulfonation  methodologies.  These materials  were  widely  characterised  using

several  techniques,  although  their  activities  as  catalyst  would  require  some

improvement, the findings from this work can be used as a reference framework

for  future  studies  on  sulfonation  of  other  carbonaceous  and  possibly  other

biobased materials.
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7.2. Further work

This  work  presents  a  general  overview  of  the  application  of  sulfonated

Starbons® in esterification reactions using methanol, which could be a strong

deactivating  solvent.  Then  it  would  be  worth  to  try  other  acid-catalysed

reactions, to determine activity of sulfonated Starbons® in another media.

Microwave sulfonation offers the option to obtain novel sulfonated Starbons®,

then it would be interesting to explore new synthesis conditions; like increasing

reaction time. This would be explored with a better system for the quantification

of SO2 released to find out a relationship between the sulfur content obtained in

sample, the SO2 released and the quantity of input. sulfuric acid.

Changes  observed  on  the  properties  i.e.  surface  area  of  the  microwave

sulfonated Starbons® can be more explored using different solvents such as

water or methanol, to identify whether the increase in surface area is related to

the interaction of the solvent and the material under microwave conditions or it

is  directly  related  to  the  sulfonation  process.  In  this  sense,  it  would  be

interesting as well  to explore another analysis methodology such as Density

Functional Theory, DFT model.

The use of recycled sulfuric acid in the sulfonation Starbons® is as well worth to

be studied in-depth, as our results are promising for the preparation of active

solid acid catalyst.

With  the  information  obtained  throughout  the  different  characterisation

techniques  and  further  analysis,  it  would  be  interesting  to  work  out  the

mechanisms of sulfonation of Starbons®.

A better  understanding of  the deactivation of  sulfonated Starbons® could be

done using XPS and TGIR to analyse the sulfonated Starbons® after reaction;

this  would help to  determine the chemical  states left  on materials  and their

thermal stability.  
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8.1. List of abbreviations

amu

AR

ATR

BJH

BE

BET

CP

eV

FID

FT

g

GC

GHz

IR

IUPAC

kg

M

MAS

MHz

mL

MW

nm

NMR

p-TSA

ppm

rpm

SEM

TGA

TGIR

v/v

XRF

XPS

Atomic mass unit

Analytical reagent

Attenuated total reflectance

Barrett Joyner and Halenda

Binding energy

Brunauer Emmet and Teller

Cross polarization

Electron volts

Flame ionization detector

Fourier transform 

grams

Gas chromatography

Gigahertz

Infrared

International Union of Pure and Applied Chemistry

Kilogram

Molar (mol per litre)

Magic angle spinning

Megahertz

Mililitres

Microwaves

Nanometer

Nuclear magnetic resonance

Para-toluenesulfonic acid

Parts per million

Revolutions per minute

Scanning Electron Microscopy

Thermogravimetric analysis

Thermogravimetric infrared analysis

Volume/volume

X-ray fluorescence spectroscopy

X-ray photoelectron spectroscopy
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