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Abstract

In an effort to develop new methods of analysis and improving quantification accuracy in the 
transmission electron microscope (TEM) while using energy-dispersive X-ray spectroscopy 
(EDXS), several methods have been explored. Some of these methods have been applied to a 
sample that has a thin layer of some material embedded within a matrix of another material, while 
others can be applied to any sample that is homogeneous in chemical composition or nearly so.

For those methods that are applied to a thin layer embedded within a matrix, several conclusion can 
be drawn. While each of these methods works in simulations, only two ('absorption matching') 
provide reasonable results for experimental data. Unfortunately, these results differ considerably for
the same sample. The other methods either prove to be so sensitive that the data scatter is too large 
to draw meaningful conclusions from, or so insensitive that any change of a useful magnitude 
would not be detected.

The remaining methods were found to give good results, particularly when used together. The X-ray
intensity ratio from a pair of X-rays from a single spectrum (generally from the same element) can 
be used to calculate the sample thickness for that spectrum. The second method was a means of 
plotting a function of the Cliff-Lorimer k-factor as a function of thickness in order to better 
calculate the effect of absorption. Combined, these two methods can give considerably superior 
quantification of the chemical composition than when used alone.

Parts of this study have already been published in the conference proceedings listed on the 
following page.
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1 Introduction
The purpose of this study is to develop new methods of quantifying energy-dispersive X-ray spectra
in a transmission electron microscope with the intent of aiding both quantification of chemical 
composition and understanding of sample geometry. This is done in five parts:

Initially, several Monte Carlo programs were compared to discover which would be the most valid 
for the circumstances of this study, primarily in their modelling of X-ray absorption. While a direct 
comparison between experimental and simulation results is not valid, due to uncertainties in 
parameters such as fluorescence probabilities and absorption cross-sections, the general trends can 
be meaningfully compared. 

The first new part would be to explore the use of an equation that permits the calculation of the 
depth of a thin layer within a matrix using characteristic X-ray intensity at different take-off angles. 
Knowledge of the depth of a thin layer would permit more accurate quantification, as the absorption
correction of any method could be improved by knowing that all X-rays of a certain line originate 
from a particular depth and as such experience a specific amount of absorption. This amount of 
absorption could be quantified using well-known equations, with a resulting increase in the 
accuracy of quantifying chemical composition. There is an abundance of structures, such as thin 
semiconductor lasers for optoelectronics, that require a layer of material be present at a specific 
location: this method would assist in verifying this. Further, this method could in principle be 
extended into a more general metrological analysis tool.

Predominantly extended from the equation mentioned above, further work has been done on a 
number of miscellaneous methods that would permit not only calculation of the depth but also more
direct quantification of the sample composition. Two of the methods are graphical, for a general 
estimate of the sample geometry, while the remaining three are intended for providing a numerical 
result of the depth of a thin layer within a matrix.

Many samples either do not possess such a thin layer or accurate knowledge of its particulars is not 
a vital part of any analysis. In such cases, improved quantification can be carried out by accurately 
determining the thickness of the sample, as it is the thickness, density and chemical composition 
which influences the degree of absorption. This can be done by calculating the intensity ratio of X-
rays of different energies, matching this to what would be expected from prior experiments or 
simulations and thereby deriving the sample thickness. Some ratios allow more direct calculation of
the chemical composition, as they do see little change with thickness.

The Cliff-Lorimer ratio method is heavily reliant on the k-factor for its accuracy. As such, any 
means of improving the accuracy of the k-factor is desirable. By considering the k-factor not as a 
constant for a specific microscope but as a variable which effectively changes with thickness, it is 
possible to calculate a self-consistent chemical composition. It is also possible to calculate a more 
accurate k-factor that can be applied to any sample within the same microscope and detector system.
Of particular interest is how this method can be applied with any measure of thickness, such as 
detector deadtime or the method described in the above paragraph.

Three samples were examined for calculation of the depth of a thin layer in a matrix, while a further
five chemically homogeneous samples were examined using the latter two methods. 
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2 Theory of X-ray production and detection in EDXS in an 
electron microscope

The original intent of electron microscopy was to surpass the resolution limit of optical light. It was 
found, however, that beyond simply allowing the user to image very small objects, electron 
microscopy also made it possible to gather, with appropriate detectors, various other kinds of 
information from the material being examined. This information can be analysed in order to achieve
a quantitative understanding of the sample, thereby changing the microscope from a device which 
permits the viewing of the structure to a device which enables understanding the material on a far 
deeper level.

The information gathered can be loosely split into three categories: imaging, diffraction and 
spectroscopy, which could be by electron energy-loss spectroscopy (EELS) or energy-dispersive X-
ray spectroscopy (EDXS). Imaging, as already mentioned, would allow the user to view small 
objects, where 'small' is often on the nanometre or Angstrom scale: far superior to optical 
microscopy. Diffraction utilises the wave-like nature of electrons more directly than imaging to 
form diffraction patterns of the atomic structure from nano-scale or larger regions, thereby 
understanding the crystal structure of the material. EELS exploits the energy dependent cross-
sections of electrons interacting with atoms where electrons passing through the material lose an 
amount of energy, some of which is due to ionisation of core levels and thus reflects the chemical 
and electronic structure of the material. EDX detects the X-rays emitted from interactions (i.e. 
ionisation of shell electrons by those in the beam) with the atoms in the material to quantify its 
chemical composition.

There are two major alternatives by which an electron microscope would approach a sample: 
scanning/wide-field imaging and transmission/surface-excitation. A 'scanning' microscope would 
focus the beam on a small part of the sample at any given time and move the beam to analyse a 
different region, while a wide-field approach is to view the entire region of interest simultaneously. 
A 'transmission' microscope functions by utilising very high electron energies in conjunction with 
thin samples to ensure that the typical electron in the beam experiences little energy loss, meaning 
only a very few (generally zero or one) inelastic collisions and not so many elastic collision to have 
a significant effect (either singly or in total), which means that the typical electron statistically does 
not deviate far from its original path, and therefore behaves in a mathematically predictable manner 
(in that the first Born approximation can be applied). 'Surface-excitation' uses lower beam energies 
and generally much thicker (bulk) samples to limit the analysis to a fraction of the total sample 
thickness. The four kinds of electron microscopes are comprised of combinations of these 
alternatives: 

• Transmission & wide-field: A transmission electron microscope (TEM) is often used for 
high-precision analysis, particularly in the spatial plane.

• Scanning & surface-excitation: Scanning electron microscopy (SEM) uses, with the primary
advantage that imaging of the material surface is much easier and that much less (or no) 
sample preparation is required.

• Transmission & scanning:A scanning TEM (STEM) is a TEM which possesses the SEM 
capacity for a scanned focused electron probe, and to some extent combines the benefits of 
both.

• Wide-field & surface-excitation: The reflective electron microscope (REM) gathers 
information from elastically-scattered beam electrons, which can complement the SEM in 
such areas as determining the structure of crystals.
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This work is primarily concerned with EDXS in a TEM, and so the other areas will only be 
mentioned in passing. In particular, the use of EDXS in SEM is common but will not be discussed 
in detail.

2.1 Physical interactions of electrons with samples

There are several ways that electrons interact with the material they travel through [1]. However, as 
this work is exclusively concerned with X-rays these other interactions will not be described in 
detail. In short, it is possible to categorise interactions broadly as either elastic or inelastic, where 
elastic forms the basis of imaging and diffraction while inelastic is responsible for EDXS and 
EELS.

An electron passing through the cloud of electrons which surround the nucleus of an atom will 
interact with this electron cloud. Most often, the interaction of the beam electrons with the nuclei 
takes the form of elastic scattering, and the incoming electron is simply deflected slightly with no 
particular result for the bound electron cloud. However, occasionally the interaction will be strong 
enough to eject one of the electrons from the cloud, thereby leaving a hole in one of the atomic 
shells. This hole can then be occupied by a higher-shell electron, emitting the energy difference 
required to conserve momentum and energy. This energy is either emitted isotropically as 
electromagnetic radiation or as an Auger electron. For the purpose of this work, transitions which 
result in Auger electrons are ignored. The energy level of each shell is determined by the nucleus, 
and as such the energy emitted from an electron jumping from one specific shell to another specific 
shell will also be discrete. Assuming that the energy is emitted as electromagnetic radiation, then 
this discreteness can be exploited, as each element has its own set of unique shells with unique 
energy levels, and therefore emits a unique 'family' of energies in the X-ray band. As such 
determining qualitatively which element(s) is/are in the material is simply a case of matching the 
resulting spectra to previously known X-ray 'families'. These 'element-specific' X-rays are known as
'characteristic X-rays'.
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Figure 2.1.1: Diagram of characteristic X-ray 
emission. Note that the origin shell of the 
electron that falls into the hole created by the 
beam electron causes a change in the energy of 
the emitted X-ray, which is reflected by their 
different names. Superfluous electrons (those 
not in the shown interactions and the fate of the 
beam electron) have been omitted for clarity.

Unfortunately, there is another process which can result in an X-ray being emitted. If an incoming 
electron interacts not with the electron cloud but the electromagnetic field of the atomic nucleus 
then the fast primary electron will decelerate and/or be deflected by electromagnetic interactions 
with the screened nuclear potential. The energy lost is emitted as electromagnetic radiation. As there
are innumerable possible angles and resulting velocities for the electron approaching the nucleus, 
the radiation emitted by this process is a continuum in energy. However, the statistical likelihood is 
that X-rays of lower energies are emitted far more often than higher, and as such the resulting X-ray
output would, in theory, look like an exponentially decaying curve. The consequence of this is that 
the 'characteristic' X-rays appear as peaks on top of this background (or 'Bremsstrahlung') 
continuum, necessitating interpolation techniques to extract the number of characteristic X-rays by 
integration over some specific energy range.

However, there is still the issue of how X-rays interact with matter once they have been generated. 
An X-ray travelling through a material will have a certain probability of being absorbed, depending 
on the composition of the material and the X-ray's energy, where higher energy means it is less 
likely to be absorbed. The likelihood of being absorbed is not a simple curve with energy, however, 
as the atomic cross-section of an atom changes non-linearly with energy. The result of this is that 
some X-rays generated within the material will be absorbed before escaping, and as such cannot be 
detected. As the atomic cross-section for X-ray absorption (i.e. the probability of an X-ray being 
absorbed) is different for each X-ray energy and for each material it is not a simple matter to 
account for, as the number of X-rays detected does not reliably reflect the number generated. This is
reflected in the Lambert-Beer law:

I Detected=I Generated e
−D
λ Equation 2.1.1

where IDetected is the number of X-rays detected leaving the sample, IGenerated is the number of X-rays 
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originally generated within the sample, D is the distance that the X-ray travels through the sample 
in the way to the detector and λ is the attenuation wavelength which in this thesis is defined as the 
amount of material necessary to reduce the X-ray intensity to 1/e of its original strength. Further, an 
absorbed X-ray can cause another to be fluoresced, which can confuse the situation if the fluoresced
X-ray (with an energy slightly below the original X-ray) is of a similar energy to a characteristic X-
ray from that material. In principle, this can be accounted for by recognising in which materials it 
will occur, and removing the supposed self-fluoresced X-rays from their new energy and adding 
them back onto their original characteristic peak. The details of these artefacts are described in 
section 2.3.

In summary, the information required is the number of 'characteristic' X-rays of all elements in the 
specimen, as they permit identification of elements within the sample. However, it is necessary to 
remove the intensity from the energy range of interest that comes from the background and account 
for absorption/fluorescence.

2.2 Geometry of X-ray detector

Despite the sheer flux of electrons in a typical electron beam (on the order of billions per second) 
X-ray fluorescence is a relatively rare event. For an X-ray of a specific energy to be emitted, first a 
shell electron must be ejected, which is uncommon. This is a result of the fact that primary electrons
would be moving so quickly through a material that the interaction cross-section is very small. If 
the shell electron is ejected, then an electron from the correct shell for that particular emitted energy
must fall into the newly vacated hole. Last, the resulting energy must be emitted as electromagnetic 
radiation instead of an Auger electron. Combined, these three requirements result in an efficiency 
that is extremely low. Those X-rays which are emitted do so isotropically which means that the 
most efficient method to gather these X-rays would be to have as many detectors as large as 
possible as close as possible. Assigning a numerical value to how many X-rays gathered out of all 
those generated (and which escape the sample) is described as the detector collection angle, 
generally defined by Ω. It is worth noting that while a large Ω gives the maximum number of X-
rays being detected it also means a inferior spatial resolution, which can be important for methods 
like X-ray mapping. Generally, detectors are optimised for maximum count rate with a large Ω with 
spatial resolution being controlled by the size of the beam.
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Figure 2.2.1: Diagrams defining take-off angle, θ, and collection angle, Ω.

As already mentioned, the more material the X-ray must travel through the greater the chance of it 
being absorbed. As such, minimising the amount of material it must travel through reduces 
absorption and hence reduces the necessity for correction, thereby increasing accuracy. Assuming 
that the sample is placed flat then situating the detector vertically above it would minimise the 
distance travelled. This, however, is not feasible as doing so would place the detector in the path of 
the electron beam. As a compromise, placing the detector at the highest possible angle from an 
imaginary horizontal line drawn through the sample is the most efficient. The detector's angle above
a horizontal line drawn through the sample is defined as the take-off angle, θ. Changing this take-
off angle can cause significant changes in the detected intensity. 

There is generally very little additional space in the microscope in the area around the sample, as 
properly focussing the beam requires almost completely surrounding the sample with the objective 
lens. As such there is no guarantee that every X-ray which strikes the detector originates in the 
sample. X-rays from outside the sample can be generated almost anywhere, from the sample holder 
to an aperture. As one X-ray can fluoresce another, even parts outside the line of the electron beam 
are susceptible. To ensure that only a minimum of these spurious X-rays reach the detector, the 
detector is generally fitted with a collimator, which is a block of dense material with a hole of the 
correct size and shape so that only the sample itself is exposed to the detector in a direct line of 
sight. This block in often coated with a light element, so as to reduce fluorescence from the 
collimator. It is worth noting that despite this, some spurious X-rays will still be counted.

In addition to spurious X-rays, some of the beam electrons will experience what is known as 'back-
scattering'. This occurs when the electron undergoes a collision so strong that its direction is 
changed by more than ninety degrees from the beam path. These backscattered electrons can travel 
in almost any direction, including into the detector, where they result in a 'false positive'. This can 
be mostly mitigated by installing a magnet on the collimator, which would deflect electrons but not 
X-rays.

As there is little space around the sample there is generally only one X-ray detector. The position of 
this detector is guided by three sometimes conflicting requirements: that it must be large, close to 
the sample and at the highest possible angle above the horizontal. The final compromise is generally
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set by the manufacturer, with the user having no ability to change any of these three parameters. 
Any situation which requires changing the take-off angle can be accomplished by rotating the 
sample holder in place, which approximates the effect of moving the detector, with some side-
effects which will be described later.

2.3 Physics of X-ray detector

There are three types of semiconductor X-ray detectors in general use available: lithium drifted 
silicon (Si(Li)), intrinsic germanium (IG) and silicon drift detectors (SDD). All three function by 
the same broad principle: converting X-ray energy into a proportional charge pulse. As all the 
experimental results in this work were obtained with a Si(Li), this section will go into some detail 
as to their operation. A brief mention of the advantages and disadvantages of the other two types 
will also be included.

As already mentioned, an X-ray travelling through a material has a certain probability of being 
absorbed by an inner shell electron and ejecting it from its position. If an X-ray is absorbed by a 
semiconductor (such as either silicon or germanium) then the number of electron-hole pairs 
generated (by 'multiple exciton generation') would be proportional to the energy of the high-energy 
X-ray. By applying a reverse bias across the large intrinsic area, these electron-hole pairs would be 
separated and gathered at the electrical contacts. As the bulk of the detector is both intrinsic and 
reverse biased there are very few conduction electrons in the intrinsic region, minimising spurious 
counts. Once an X-ray has been absorbed in the intrinsic region, discovering the energy of the 
incident X-ray is, in principle, a simple matter of counting electron-hole pairs generated before the 
next X-ray arrives, though this can give rise to an artefact known as a 'sum peak', described later. 

The basic detector design is a large (in the order of 30mm2 to 50mm2) monolithic structure with 
electrical contacts on both ends. Unfortunately, the bulk of the material must be intrinsic (that is, not
n- or p-doped) so that there is neither too rapid recombination of electron-hole pairs (as for p-
doped) nor spurious pulses (for n-doped). Creating silicon of sufficient purity is not currently 
technologically possible, and so they are doped with lithium to cancel out the acceptor impurities 
and p-type behaviour. This doping is not perfectly effective, and so the regions of the detector 
between the effectively intrinsic material and the electrical contacts are effectively p-type. The p-
type region which lies between the intrinsic region and the detector is often called the 'dead layer', 
as any X-ray which creates electron-hole pairs in this region will see the resulting charges 
recombine before being counted. This reduces the effective count rate [1].

The electronics which counts the electron pulses takes a finite time to work. During this time, no 
further inputs are permitted, meaning that the detector is effectively switched off. This time is called
the 'dead time', and can be controlled to some extent by changing the degree of processing applied. 
Decreasing the 'dead time' would increase the number of X-rays detected (as the detector is 'off' for 
less time) but decreases the energy resolution (as the electronics would have less time to make a 
decision as to which energy range the pulse lies in) and as such is a compromise. 

The lithium implantation is also one of the reasons that the detector must be cooled with liquid 
nitrogen. If it were not cooled the lithium atoms would diffuse, effectively destroying the intrinsic 
region and rendering the detector useless. Cooling is also necessary to reduce the thermally 
generated noise in both the detector and the processing electronics. Recent advances have reduced 
the requirements from liquid nitrogen (-196°C) for SiLi to Peltier cooling for SDD detectors (to ~-
30°C).
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There are several artefacts present in any detector. These are: escape peaks, internal fluorescence 
peaks and sum peaks. An escape peak comes about if some of an incident X-ray's energy is lost, 
most commonly by fluorescing a Si K-line X-ray that then exits the detector, taking its energy with 
it. As such, a false peak with an energy 1.74keV below the true value will arise if there are large 
numbers of a specific X-ray line. This is only a significant problem if there is another element 
which has a characteristic emission close to that value (e.g. InL and AlK). Internal fluorescence peaks
generally originate from Si K X-rays being fluoresced in the dead zone by an incident X-ray. There 
is no way to differentiate between a Si K X-ray from the sample or from the detector. This is 
generally a fairly small peak, which does not have a particularly significant effect if the user is 
aware of the phenomenon and is not misled into thinking that its contribution is from the sample. A 
sum peak is a result of the processing method, where if two X-rays arrive almost simultaneously, 
then the detector cannot differentiate between them, and assumes that they are in fact a single X-ray
with the sum of their energies. In a TEM thin sample, this would also not generally a problem for 
the wary user. For an SEM, where the samples are often much thicker, this can be a serious 
problem.

The significant difference between Si(Li) and IG detectors is their effectiveness with changing X-
ray energy: a Si(Li) effectiveness decreases dramatically above ~20keV, as many such X-rays will 
pass straight through without being absorbed, while IG remains effective up to ~50keV while 
simultaneously giving somewhat better energy resolution. The only drawback to IG detectors is that
Si(Li) are significantly easier to manufacture and have much better low-energy detection efficiency.
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Figure 2.3.1: Detector efficiency for typical detector + window. Data calculated using DTSA II [2]. 
The data of this study was collected using a Oxford Instruments Si(Li) detector, model number 
6498, serial number 31094-1380-01, and a Pentafet UTW. As no relevant values for this detector or 
window was available, the default values of DTSA II were used. Throughout this thesis, values 
calculated from this figure were used for detector efficiencies, for consistency.

The design of a SDD is radically different. Instead of a single monolithic region, the bulk of the 
detector is composed of n-type silicon, with concentric rings of p-type silicon radiating out from a 
single collection anode. Since the voltage is applied between the p-type regions and the single 
anode (where the physical separation is much smaller) a much lower voltage is required. Further, a  
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small anode has a much lower capacitance than the large one of the monolithic detector design, 
thereby permitting much higher throughput (on the order of ten to a hundred times more than for a 
monolithic Si(Li)). This higher throughput means that sum peaks are rare. Unfortunately, generating
such a high count rate is generally not possible in most TEMs. While there is no lithium to diffuse 
there is no chance of lack of cooling destroying the detector, however, Peltier cooling to ~-30°C is 
still necessary to reduce thermal noise.

2.4 Detector window

The electron microscope must operate in a vacuum to maintain its effectiveness. However, this 
vacuum is not perfect, and over time contaminants can build up. For the majority of the 
microscope's interior, this is not that much of a problem, simply resulting in a slightly degraded 
vacuum, however the X-ray detector is particularly vulnerable as contamination both absorbs X-
rays (and thereby reduces the detector's efficiency) but also the cooling causes contamination to 
build up much faster by condensation. The solution to this is to separate the detector from the 
microscope column while leaving a thin window to allow X-rays to pass through.

Figure 2.4.1: Diagram of EDX detector, showing detector window, aperture for blocking unwanted
X-rays and electrons and the cooling tank.

The choice of material and thickness for this window is a compromise between maintaining the 
integrity of the vacuum and allowing the maximum number of X-rays to pass through. There are 
two types of windows in common use: beryllium windows and ultrathin polymer windows. A 
beryllium window will generally be ~12-25μm thick but still absorbs low-energy X-rays to a 
significant extent, so that X-rays with energies below ~0.6keV cannot be detected at all (this 
includes several elements which are potentially critical in some situations, like carbon and oxygen) 
and absorption is higher than for ultrathin windows up to approximately 1.7keV. An ultrathin 
window can range from less than a hundred to two hundred nanometres thick sheet of polymer, 
diamond or certain nitride compounds and gives significantly lower absorption at low energies and 
as such is vital for some studies. Some detectors can function effectively without a window, 
however this requires an extremely high quality vacuum. 

The presence of the window both removes the detector cooling causing an increase in deposition 
buildup and reducing the possibility of ice buildup (which has a similar effect to contamination in 
that it absorbs X-rays) but also aids removing said contamination by evaporation and allowing the 
microscope's powerful vacuum pumps to remove the particles, as doing so requires heating, which 
is problematic for the detector but far less so for the microscope itself.
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2.5 Quantification of X-ray spectra in EDXS: principles

To sum up, the output of EDXS is a spectrum which takes the form of a bremsstrahlung curve with 
detector artefacts, spurious X-rays and characteristic peaks superimposed. Obviously, correctly 
analysing this is non-trivial.

Figure 2.5.1: Example EDX spectra from a (In)GaAs sample. Note the SiK peak at 1.740keV, 
which clearly originates in the detector as there is no silicon in this sample. The CK and OK peaks 
(0.282keV and 0.523keV, respectively) are likely from contamination, while the FeKα (6.400keV) 
and ZnKα (8.631keV) are stray X-rays from the sample holder and the microscope itself. While the 
GaKβ line (10.263keV) is partially convolved with the AsKα (10.532keV) while the GaL and AsL 
lines (1.096keV and 1.282keV, respectively) are distinguishable at the top of the peaks but not at 
their base. This is a function of the processing time, with a longer time giving better separation.

Correctly removing detector artefacts and spurious X-rays is a matter of recognising what they are 
and subtracting them all from the spectrum. The difficulty with this approach arises when some 
artefact or spurious X-ray overlies a characteristic peak. When this occurs, the method is to either 
use a different characteristic peak for analysis or to attempt to remove the undesirable counts and 
analyse the remainder. Removing the undesirable counts is somewhat more difficult than it appears, 
however, as the strength of these detector artefacts and spurious X-rays changes from microscope to
microscope and from sample to sample. As a rule, properly accounting for this problem is not 
particularly difficult for most X-ray lines, though SiK and FeK,L suffer most strongly from 
fluorescence by the detector and microscope column, respectively. 

Aside from artefacts and spurious counts, it is also necessary to subtract the bremsstrahlung 
background. As the bremsstrahlung is not constant with energy, not doing so would cause some 
characteristic peaks to appear incorrectly high. As a first approximation, assuming the 
bremsstrahlung to be a linear interpolation between the beginning of the characteristic peak and the 
end is a good approximation, however this has problems when confronted with overlapping peaks. 
Given that a peak will be Gaussian in nature, with most peaks in the 0.5keV to 20keV range that is 
of most interest to microscopists being approximately 80eV to 180eV wide [1], it is reasonably 
straightforward to deconvolve the two, though doing so generally requires fairly sophisticated 
software that is commonly available.

One approach to quantification is the ZAF method [3], so called as it corrects for atomic number 
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(Z), absorption (A) and fluorescence (F). The difference in the atomic weight of the elements within
the sample must be corrected for, as the backscattering and stopping power of each element affects 
the chance of X-ray fluorescence. Without this correction, a large difference between the atomic 
numbers of the elements within the sample would cause grossly erroneous results. The absorption 
correction takes into account the number of X-rays absorbed in the sample. Self-fluorescence within
the sample must also be corrected for, by removing the estimated number of self-fluoresced X-rays 
from an intensity peak and adding them the original. Of the three, fluorescence is generally the most
minor. The procedure begins by applying the equation

C i=
I sample

I standard
Equation 2.5.1

where Ci is the concentration of a specific element as a percentage, and Isample,standard are the X-ray 
intensities from the sample and the pure-element standard (usually only available for SEM), 
respectively. Multiplying with the necessary terms for Z, A and F accounts for those effects, giving 
the total composition of that element. There are many different equations which can be used to 
determine the necessary terms, as the behaviour, for example, light elements can be radically 
different from that of heavier elements. After doing so for all X-ray lines of interest, the sum of the 
chemical concentrations is taken. If this result is not close to 100% (98% to 102% would be an 
acceptable range) then there is some error in the parameters that must be corrected. Assuming that 
this built-in error check passes, then the method re-calculates the ZAF values to arrive at new 
results for the compositions, then iteratively loops through this algorithm until the result converges. 
In this way the method arrives at the most appropriate result, ideally while avoiding errors.

Figure 2.5.2: Sketch of φ(ρz) method, illustrating how each slice would be considered separately. 
Note that this is representative, and was not derived from actual data.

As mentioned, there are many different equations for deriving the corrections of the ZAF method. 
One of the most popular is known as the φ(ρz) approach, where the sample is divided into a number
of arbitrarily thin slices and then each slice is dealt with separately for matters such as absorption. 
This would, in principle, give a superior view of the sample, though it is critically dependent on 
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accurate knowledge of how X-ray generation changes with depth, which in turn requires knowing 
both the sample composition and previously acquired data such as the stopping power of this 
material. Since the sample composition is necessary for the correction, an iterative approach is 
necessary.

Previously, the φ(ρz) approach had predominantly been used for bulk analysis in the SEM, typically
with beam energies up to 40kV. However, a study conducted in 2003 [4] appears to demonstrate that
the φ(ρz) approach is equally applicable to TEM analysis on the condition that the beam current can
be measured: this means that knowledge of X-ray production yield as number of X-rays per electron
would be required. As such, it appears to operate on those samples where the zeta-factor approach 
would also function. A significant advantage of this method is that the thickness naturally emerges 
from the equation, removing any necessity to calculate it independently.

The ZAF method, however, is dependent on having a pure-element sample on hand, which is 
obviously not ideal for TEM. Fortunately, scientific understanding of the physical processes 
involved has grown to the point where an entirely theoretical spectrum can, in principle, be used in 
place of the standard, though this does introduce some additional uncertainty. Further, the beam 
current must be stable over the period of time in which data is taken. If this is not the case, then the 
error check of summing compositions must be discarded [5].

A different approach to quantification is known as the Cliff-Lorimer method [6], which does not 
directly address the three factors as the ZAF method does but instead conflates most into a single 'k-
factor' term. This conflation is possible since TEM foils are so thin (tens of nanometres thick) that a 
great deal of simplification can be applied. One of these simplifications is to assume that X-ray 
generation is linear with thickness, contrary to the SEM where such would not be the case. 

The essence of the method are the following equations:

∑C n=100%     and     C j=

I j k j a j e j

A j

∑n

I n k n anen

An

Equation 2.5.2

where Cj are the percent compositions of elements, Ij are the detected counts from those elements, kj

is a sensitivity factor, aj are corrections for absorption, ej is the detector efficiency at that energy and
Aj is the atomic weight of the relevant element which needs to be included when kj is expressed as 
weight percentage. kj, the k-factor, takes into account the differences between materials, 
microscopes and detectors, including such parameters as the chance of X-ray fluorescence. The k-
factor is given with respect to that of a specific X-ray line, SiK being the most common reference. If 
SiK is the reference then it is defined as kSiK=1. In principle, the only unknown should be Cj,n, which 
results in an algebraically simple, simultaneous equation problem. This approach is straightforward 
and in principle works fine. While it does not consider self-fluorescence this is generally not a 
problem. The chief difficulty is ensuring that the input parameters are correct, as variables like the 
detector efficiency can be incorrect by as much as ±10%. Given that this is not an iterative 
procedure there is no internal correction for such problems. While this method is gradually being 
supplanted by the zeta-factor method (below) it is still in common use.

As already mentioned, a major drawback of using k-factors is the need for a comparable standard. 
There is another approach, called the 'Zeta-factor method', initially developed in 1996 [7] by 
combining two other methods [8] [9], expanded in 1999 [10] and again in 2006 [11], which does not
require compound standards, but can instead function with pure-element standards, which are much 
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easier to use. 

If absorption and fluorescence are negligible (i.e. the thin-film approximation) then a characteristic 
X-ray line would increase with mass thickness, ρt. A term known as the zeta-factor, ζ, can then be 
defined as

ζ=
A

N 0 Q bωi Equation 2.5.3

where A is the atomic weight, N0 is Avogadro's number, Q is the ionisation cross-section, b is the 
relative probability of a certain electron transition taking place after the inner-shell electron is 
ejected, ω is the probability of an X-ray being generated from that transition and i is the beam 
current. As there is no dependence on composition, density or thickness these factors can be 
ignored. This can then be used to establish the equation

ρt=ζA

I A

C A
Equation 2.5.4

where IA is the X-ray intensity and CA is the concentration. Then, the resulting calculation is similar 
to the Cliff-Lorimer method:

ρt=∑ I n ζn       and          C j=
I j ζ j

∑ I n ζn

Equation 2.5.5

The drawback of this approach is that the beam current must be recorded with high accuracy, which 
is generally not possible in the typical TEM. This method exploits the fact that X-ray generation is 
proportional to the mass thickness to arrive at equations which are theoretically independent of 
sample thickness, density and composition. As a result, correcting for absorption is considerably 
more straightforward for the Zeta -factor method than for the Cliff-Lorimer method. Despite the 
advantages of the zeta-factor, the experimental results in this work are calculated with regard to the 
Cliff-Lorimer method, as the microscope available did not have the capability to measure the beam 
current in situ that the variable ζ requires.

2.6 Other methods for quantification 

There has been much interest in improving the quality of compositional quantification over the 
years since quantification became feasible. This section describes a few of these methods and 
discusses their apparent usefulness in comparison to those developed in this thesis.

2.6.1 Absorption correction in ionic compounds

A method for correcting for absorption in ionic compounds was derived in 1994 [12], which 
exploits the fact that each atom would have an excess charge. Dependent on the assumption of 
sample charge neutrality (i.e. that summing all the anions and cations times their respective valence 
states gives a result of zero), this method does not depend on knowledge of the sample thickness 
and density and the detector take-off angle. Indeed, if two of these factors are known then the third 
to some degree of accuracy may be calculated as a result of quantification. Obviously, this assumes 
a degree of homogeneity which would render this method useless for a layered specimen structure. 

This method functions by establishing various concentrations for the individual elements, projecting

17



how those concentrations would change with different mass-absorption lengths, then combining 
them to discover the only mass-absorption length which upholds charge neutrality (the accuracy of 
which calculation would obviously depend on the accuracy of the mass-absorption value), and 
therefore the absorption correction which yields the true composition. This requires processing the 
spectrum once for each element within the sample, and then again for the final result. Fortunately, it
does function for complex system with multiple elements.

Plainly, the most significant disadvantage of this method is that it can only be used for ionic 
compounds. Beyond this, it seems to serve well enough and appears to suffer no significant 
drawback compared to the methods discussed in this thesis.

2.6.2 Discovering the depth of thin layers in an SEM by varying the beam 
voltage

This is a standard technique used in SEMs for determining the depth of a thin layer within a bulk 
material [13][14][15][16]. By varying the beam voltage the interaction volume will change which, 
if the variation in voltage is over the correct range, will cause more or fewer X-rays to be emitted 
from the layer of interest. If the user understands the behaviour of electrons in the material well 
enough (i.e. what kind of change can be expected from the interaction volume with varying voltage)
then the reduction in the number of X-rays from the layer of interest can be correlated to its depth 
within the bulk material.

2.6.3 Extrapolation method of absorption correction

Originally developed in 1986 [17] and 1987 [18], then expanded in 1991 [19], this was an attempt 
to correct for absorption in the specimen. By taking measurements at several different thicknesses 
and plotting the resulting X-ray intensity ratios against either thickness or the intensity of a third X-
ray line which does not suffer significant absorption, the absorption can to first order approximation
be removed through linear extrapolation to zero thickness. Obviously, this is very similar to the 
method described in Chapter 7, though the report [19] indicates an interest more in accurate 
quantification for individual experiments rather than arriving at k-factors for general use. This 
method has been used with success [20]. It should be noted that the linear extrapolation is suggested
to be used for any system, and as such may not be suitable for those specimens where the 
exponential decay with increasing thickness of an X-ray line has a significant effect. It is also worth
noting that, like the method discussed in Chapter 7, a significant spread of thicknesses and a 
reasonably stable beam current are required for accurate quantification. This, however, can be 
overcome using the 'multigeometry' approach [19][8], which ensures that only a single thickness is 
required if the take-off angle can be varied sufficiently.

2.7 Methods for determination of sample thickness

2.7.1 Converged-Beam Electron Diffraction

While travelling though crystalline material, electrons will diffract in a similar manner to photons. 
In certain conditions, this diffraction leads to a phenomenon known as Kossel-Möllenstedt fringes 
which change as a function of sample thicknesss. The extent of this change is dependent on three 
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factors: the lattice parameters and atomic number of the material and the energy of the electron 
beam. The particulars of this relationship were first described in 1975 [21] and then detailed in 
1981[22]. Fortunately, this method lends itself well to computerisation in that the changes are 
mathematically predictable.

This method is generally considered the most accurate, however the requirement for a undistorted, 
flat, crystalline area severely limits its use. It can, however, be carried out concurrently with other 
methods to give a self-consistent measurement of the thickness.

2.7.2 EELS plasmon

The EELS method of analysis is dependent on the inelastic interactions between beam electrons and
sample material. Any specific electron would fall into three categories defined by the number of 
interactions: none, one or several. A thin sample would see most the electrons passing through 
without interacting, as the sample becomes thicker more electrons would interact, beginning with 
only one interaction on average but with a thick enough sample would multiple interactions would 
become commonplace. In this middle ground, where most electrons interact once, the relationship 
between those who do not interact and the total electron count is mathematically predictable [23], 
giving and accuracy of better than ±20%. If most electrons do not interact then the method loses 
sensitivity due to the insufficient number of electron in the remainder of the spectrum, while if 
many electron interact multiple times then the calculations become both more complex and less 
reliable.

2.7.3 Multigeometry and/or EELS determination of thickness

This method, developed in 1993 [24], attempts to correct for absorption iteratively without having 
to rely on knowing either the specimen thickness or mass absorption coefficients. If, while either 
changing the take-off angle or moving the beam to another region of the sample, the change in the 
amount of material the emitted X-rays would travel through can be accurately quantified, then in 
principle the degree of absorption can be modelled.

The only requirement is accurate knowledge of the amount of change and at least one X-ray line for
which absorption can be neglected. Both of these conditions can be satisfied for samples which 
possess an X-ray line that is of sufficiently high energy compared to the thickness. For the first, it is 
worth noting that the absolute change is not necessary, only the relative change. If one has access to 
EELS, then this is readily achievable even when moving the beam from one region to another, 
further assuming that the sample is chemically homogeneous between the examined regions. The 
second condition can often be achieved, though it does impose a maximum thickness for which the 
method holds, dependent on the energies of the available X-rays. It should also be noted that EELS 
thickness determination experiences significantly larger errors beyond approximately 200nm 
sample thickness.

This method has been reported several times in the literature[25][26][27][28][29][30][31][32]. In 
particular, it is useful for those samples which are composed primarily of light elements with at 
least one hard X-ray line that is not strongly absorbed for the given sample thickness, and therefore 
can be used as a reference.

The chief disadvantage of this method is the requirement for multiple measurements. In cases where
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the absorption correction is most necessary, i.e. light elements and therefore samples susceptible to 
knock-on beam damage, this can be a significant constraint, in particular with regards to counting 
statistics. The requirement for an X-ray line with negligible absorption is also of some difficulty, 
since it imposes a natural limitation on the maximum thickness for which this method can be used. 
It is worth noting that while the 'K/L ratio' method discussed in Chapter 6 prefers a hard X-ray (and 
the existence of such considerably simplifies the procedure) it is not strictly necessary to have such 
an X-ray line available.

2.7.4 Thickness determination via increasing X-ray counts

As previously described, the quantity of X-rays generated increases with sample thickness, linearly 
if the thickness is sufficiently small so that the beam electrons will not have lost significant energy. 
In principle, this relationship can be exploited to determine the thickness of the sample using only 
the X-ray spectrum, simply by observing how the X-ray intensity changes as the beam dose is 
increased while analysing the same area [33]. Obviously, this method is heavily dependent on 
calibration having been carried out for that particular microscope and detector, and rapidly becomes
useless as the parameters (such as attempting to use a different detector) deviate further from those 
of the calibration. Correct calibration would allow determination of the absolute thickness, though 
this calibration must be very accurate. The biggest problem would be the beam current, as X-ray 
generation is also linearly dependent on the quantity of electrons, and as such a change in the 
current would be indistinguishable from a change in thickness. There is also the further difficulty 
that the X-ray line of interest (or more accurately the energy window, as this method functions 
equally well with bremsstrahlung) might experience absorption as thickness increases, thereby 
changing the apparent result. The logical solution is to use an energy window that is the highest 
possible for detection (19.5keV to 20keV, for example) while monitoring the beam current. 
Unfortunately, the bremsstrahlung and detector efficiency both decrease significantly at higher 
energies, and so statistical fluctuations could begin to dominate. As a result, this would be a 
compromise. Overall, this method appears to be inferior to the 'K/L ratio' method except when the 
ratio method cannot be used (no elements present with detectable K- and L-lines, for example). It 
should be noted that a characteristic X-ray peak is not strictly necessary for this process [34][35]
[36].

2.7.5 Improvement to contamination spot size separation method

The method of thickness determination known as 'contamination spot separation' was initially 
proposed some time ago [37]. This approach is reliant on the fact that a specimen that is not cooled 
builds up contamination relatively quickly while under electron bombardment in a TEM with poor 
vacuum. Having focussed the the beam on the sample for long enough this contamination will build
up on both the upper and lower surfaces to the point where it would be visible with a less focused 
beam. Tilting the sample would then cause the contamination spots to move, where the extent of 
that motion would be dependent on the degree of tilt and, for the spot on the lower surface, the 
thickness of the sample. By knowing precisely how much the sample has been tilted by and 
measuring the apparent distance between the two spots, it is possible to use trigonometry to 
calculate the distance between them, and hence the thickness of the sample. Unfortunately, this 
method is known for somewhat overestimating the thickness, and some effort has been put into 
correcting this [38]. The degree of overestimation can be severe, up to a factor of three.

A slight modification to this method is to irradiate a line rather than a spot [39]. This retains the 
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effect of producing contamination on both surfaces while minimising the base broadening effect 
which seems to induce the overestimation of the spot method. This appears to function with good 
accuracy.

The obvious drawback of this method is that introducing this contamination changes the sample. If 
the region of interest is large, with many possible areas to investigate, then this is not a problem, 
however, a smaller region of interest could be rendered significantly less useful for further analysis, 
and as such would be a method that should be reserved for after all other methods have failed.

2.7.6 K/L ratio

The differential X-ray absorption (DXA) approach is straightforward in methodology. By taking the
intensity ratio of two characteristic X-ray lines, preferably one which experiences significant 
absorption and one which does not, the thickness of the sample can be deduced. This is due to the 
fact that such a ratio would have a unique curve, where each point along the curve uniquely 
corresponds to a thickness. In principle, this would make thickness measurement trivial. There are, 
however, several significant problems with this: the sheer number of possible combinations (as each
X-ray energy is absorbed differently in each material), the size of the errors inherent in acquiring 
that curve and the difficulty in making that curve universal, given the plethora of parameters 
associated with acquiring X-ray spectra.

This method was first proposed in 1979 [8], then expanded into a full-fledged quantification method
in 1989 [40]. This method does have the obvious weakness of being dependent on there being two 
X-rays to compare. The zeta-factor method overcame this weakness [7]. While in principle those X-
rays do not need to originate from the same element, this being the case would help as the user can 
be assured that any difference in detected intensities is due to differing fluorescence probabilities 
and absorption, as opposed to different quantities of each element in the sample.

Quantifying by this method is done iteratively. Considering that the available variables are the X-
ray intensities, k-factors, chemical composition and the absorption correction. The X-ray intensities 
and k-factors are gathered during the experiment or determined beforehand, respectively, leaving 
only the chemical composition and the absorption correction. The absorption correction is a 
function of density, thickness and mass-absorption coefficients. All relevant mass-absorption 
coefficients can be determined from pre-existing stores of data (such as the NIST database), while 
the thickness is given by the DXA method. This leaves the density, which is a function of the 
chemical composition, which itself can be described by a percentage sum of all elements within the 
sample to 100%. Iterating back and forth would then give the correct values.

2.8 Microcalorimeter

Counting the resulting charge pulses is not the only way to determine the energy of an incoming X-
ray. Another type of detector is also possible: the microcalorimeter, a type of detector that measures 
heat. 

A material, upon absorbing an X-ray, will experience a rise in temperature proportional to the 
energy of the X-ray. It is this relationship that a microcalorimeter exploits. By necessity, a 
microcalorimeter is generally a small metal plate, as it needs to have high density (to absorb X-
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rays), high thermal conductivity (to transmit the heat pulse quickly) and low 'background' heat (so 
that the detector quickly returns to the baseline). The method can deliver an energy resolution of 
approximately 5-10eV,  which in some situations is sufficient to provide information about the 
chemical structure while theoretically providing a count rate similar to EDXS. There are several 
disadvantages, however: the small collection angle, which impairs counting statistics, the need to 
cool the detector using liquid helium instead of liquid nitrogen (a considerable difference), the fact 
that high-energy X-rays would either pass through the detector or, if absorbed, swamp it with a 
large pulse of heat thereby presenting such a high background that quantification would become 
impossible for some time, and the mechanical difficulties involved in attaching such a device to a 
TEM. Currently, microcalorimeters are not common and are only available for SEMs, not TEMs, 
mainly due to the effect of X-rays with an energy of >10keV.

2.9 WDXS

EDXS is based around the concept of detecting all X-rays and counting them based on their energy 
deposited in a suitable detector. Another approach is to sort the incoming X-rays by wavelength 
before allowing them into the detector: this is known as wavelength-dispersive X-ray spectroscopy 
(WDXS), a method where only X-rays of a specific narrow band of wavelengths are permitted into 
the detector. 

WDXS is a general approach where, instead of allowing all X-rays to strike the detector and then 
attempting to differentiate their energies from each other, all incoming X-ray are filtered by a 
crystal diffractometer so that only those which lie within a small band of wavelength (and therefore 
energy) are admitted to the detector. The advantages of this is that the energy resolution can be 
made extremely high (~5-10eV is typical) while retaining high throughput due to the fact that the 
detector no longer needs to differentiate between X-rays of different energies and can be designed 
for maximum counting speed. Filtering the X-rays is accomplished by passing them through a 
crystal with known structure, so that Bragg diffraction causes the X-rays with the desired energy to 
be diffracted into the detector, while all others are intercepted by an aperture. Changing the desired 
energy for diffraction is a matter of mechanically rotating the crystal, which can introduce 
significant vibrations to the microscope. These vibrations, which necessitate correcting in an 
extremely sensitive system such as an electron microscope, in addition to the very small collection 
angle in comparison to EDXS, means that WDXS is not popular, despite its very high energy 
resolution. The differences between EDXS and WDXS can be summed up as EDXS acquires counts
very fast with relatively poor energy resolution over the entire spectrum while WDXS counts much 
slower in a very narrow band but with much higher resolution. Presently, this is used only in SEMs 
with very low spatial resolution (on the order of a micrometer) and with very high probe current 
(~μA) for a good count rate, and as such is often used in metallography and mineralogy.

3 Monte Carlo Simulation Software
The principles of electron-atom interaction are well understood. Since each scattering or absorption 
event is independent of all others it is possible to sum the results of many such individual 
interactions for an overall average result [41]. Doing so analytically would be difficult: using a 
computer to simulate many such events in quick succession is a computationally far more efficient 
method. Of course, such a simulation would be dependent on correct parameters, both from the user
and the programs' built-in values (such as fluorescence probabilities and X-ray absorption cross-
sections)[42], and a capacity for the random numbers necessary to provide realistic fluctuations in 
the interactions between wave/particle and material.
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First presented to the broader community for use with computers in 1949 [43], the approach is 
based on a concept first brought about in the nineteenth century as the ‘theory of sets’. The 
computer programs which permitted these calculations were initially written as part of the United 
States’ Manhattan Project, where they were used to model nuclear reactions. This class of 
simulation programs are known as 'Monte Carlo' programs, named after a casino where one of the 
inventors' uncle gambled. One of the earliest civilian uses was in 1972 [44].

Four different programs were used in the course of this report: Hurricane, Casino, NISTMonte and 
EDAX Electron Flight Simulator. Their primary characteristics are listed below, followed by a 
comparison intended to discover which is the most appropriate for use.

3.1 Hurricane 

Designed for commercial use, the Hurricane [45] simulation program is theoretically capable of 
simulating an arbitrarily complex sample geometry and returning a wide variety of results, such as 
the X-ray intensities of different lines, the number of electron that transmit through the sample or 
are backscatterered or the number of events such as elastic scattering or plasmon generation. 
However, for the purposes of this project, where only X-ray generation and absorption simulation is
necessary, its tendency to produce relatively few X-rays per incident electron and that in the output 
the number of said X-rays that are absorbed is limited to four decimal places is inconvenient. 

Since the output is for absolute numbers of X-rays, simple Poisson statistics can be applied, 
allowing the user to readily estimate the error. Unfortunately, the time taken to simulate appreciably
high numbers of X-rays can be very long, going some way to cancelling out this advantage. For 
example, 104 counts would result in 1% relative error, but even for a strong X-ray line (i.e. Likely to
be generated) simulating this would take a day or more.

Hurricane is designed for high energies taking into account relativistically corrected cross-sections, 
but as shall be seen in Table 3.6.1 and Table 3.6.2, the absorption cross-sections appear to be too 
small. The final disadvantage is that some degree of instability in the running of the program is 
exhibited, particularly where high amounts of memory are required. As the samples most often 
under discussion tend to be moderately simple and as such can be reduced in size, this has not been 
of great concern.

Hurricane has been used several times in the literature. For example, it was used in 2009 to help 
determine the effects of the presence or absence of water in a polymer [46] where it was used to 
deduce the effects of charge accumulation, or in 2006 when it was used to provide comparison for 
the size of the interaction volume at low beam energy [47].

3.2 Casino 

For a free software program, Casino [48] is remarkably useful. It only possesses the ability to 
simulate simple samples that take the form of layers, either horizontal or vertical, but as this is by 
far the most common geometry of interest it is of little concern here. The primary advantage of this 
program is that the amount of electrons required to achieve good reproducibility is such that most 
simulations can be run in minutes. Partially cancelling this advantage is that the output X-ray 
intensities are not absolute values but internally-consistent scaled numbers, and as such would 
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require repeated simulation to give a quantifiable error.

Since Casino was designed for SEM functionality, accurate simulation at high energies is not 
guaranteed. Despite this, it seems capable of producing reliable results at 200keV, as seen in Table 
3.6.1 and Table 3.6.2.

Casino is also capable of simulating a tilted sample. This is relevant to this project, as described in 
section 3.5.1.

The capabilities of Casino are described in many journal publications. Most notably, its complete 
functionality was described in reports [49][50], which was updated in 2007 [51] when the new 
version was released. It has been used for many different applications, such as studying particles
[52] or to explore the theory of electron backscattering at low energies [53].

3.3 EDAX Electron Flight Simulator (EEFS) 

EEFS [54] is a program sold by EDAX as part of a SEM operator package. Designed to function in 
the ≤30keV range, it is not ideally suited for TEM simulation. Lacking the ability to simulate 
complex samples, having a 32,000 electron history per simulation limit and the results being 
truncated at 4 decimal places all contribute to ensure that it cannot be a mainstay program.

The only significant advantage that EEFS possesses is that it is extremely fast, with a typical 
simulation taking only seconds. This, however, is partly due to the maximum number of electrons 
per simulation limit. Extrapolating the simulation time up to match the number of histories typically
used in Casino sees no significant difference.

Broadly, EEFS is mostly useful to acquire a first order estimate, and should not be trusted for more 
serious calculations which involve electrons moving at relativistic speeds. This can be seen in the 
literature, where very few reports use EEFS with a beam energy higher than 30keV [55][56][57]. 
This can be contrasted to CASINO, which is occasionally used for higher energy calculations.

3.4 NISTMonte 

Developed by the National Institute of Science and Technology, NISTMonte [58] is by far the most 
flexible of the programs used. Capable of an arbitrarily complex sample, up to the limits of the 
computer's hardware, it can be used for any kind of simulation, no matter how obscure or 
convoluted.

Requiring somewhat higher numbers of electron histories than Casino, and consequently running 
slower, NISTMonte produces non-absolute intensity values, and hence several simulations are 
needed to quantify the error.

NISTMonte results tend to be accurate to some extent: absorption effects appear to be somewhat 
weaker than in experimental results: this appears to be a systematic effect, implying that it could be 
possible to simply multiply any calculated result by some factor to determine the correct answer. 
This is most obviously seen in Table 3.6.1 and Table 3.6.2. 

The capabilities of NISTMonte have been adequately described in the following articles by the 
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author of the program [59][60]. 

3.5 PENELOPE

PENELOPE, "Penetration and ENErgy LOss of Positrons and Electrons", was developed at the 
University of Barcelona in 1996 [61] and then improved repeatedly up to 2011 [62]. PENELOPE, 
like NISTMonte, is capable of an arbitarily complex sample.

Running much slower than NISTMonte or CASINO, PENELOPE inevitably suffers problems when
faced with a requirement for high statistical accuracy.

A report has shown that PENELOPE is more accurate in some situations than either NISTMonte or 
CASINO [63], though this paper indicates that the difference is not tremendously large.

Due to the difficulty in achieving good functionality with this program and the uncertain benefits of 
doing so, PENELOPE was not used in this thesis.

3.6 Comparison of absorption values of X-rays from Monte Carlo 
simulation programs

For the purposes of this project, there are fundamentally two properties that need to be correctly 
modelled for accurate Monte Carlo simulation: X-ray production yield and attenuation. If the 
former is incorrect, then any ratio of intensities of different X-ray lines will be suspect and 
comparison between simulated and experimental data will be difficult. If the latter is wrong, then 
the fundamental portion of the methodology of estimating absorption and calculating its effects on 
quantification of intensities cannot be determined. To this end, several attempts have been made to 
compare the programs used, to determine their suitability.

The method of comparison will be the determination of the variable λ from Equation 2.1.1 which is 
the slope of a linear least-squares fit of a ln Intensity vs. effective thickness curve, where its utility 
will be explained later. In this case, the calculation is done by simulating a  thin layer capped by 
different amounts of material, as seen in Figure 3.6.1, and then calculating the slope of the resulting 
ln Intensity vs. thickness  curve. This gives a distance in nanometres (assuming thickness is also in 
nanometres) for which the X-ray intensity would have fallen to 1/e (i.e.36%) of its original value. 
For the purposes of this comparison, all layers will be 10nm thick and composed of the pure 
element, and each program used their default models and parameters.
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Figure 3.6.1: Diagram of change in sample for λ calculation.

GaN matrix (density 6.15gcm-3)

X-
ray

Line

NISTMonte EEFS Hurricane CASINO Mean

λ ± λ ± λ ± λ ± λ ±

MgK 273.51 0.1 264.4 0.14 266 1 278 5 270 5

AsL 285.13 0.06 278.39 0.14 266 1 282.2 3 278 3

AlK 373.03 0.14 341.6 0.2 343 1 352 3 352 3

SiK 555.2 0.4 465.2 0.3 496 2 508 2 506 5

PK 810.7 0.6 694.8 0.7 732 6 740 1 744 6

InL 3397 9 2666 9 2669 18 2859 3 2900 20

SbL 4620 20 3420 14 3600 300 3766 4 3900 300

AsK 13250 190 8198 9 8500 600 12850 80 10700 800

Table 3.6.1: Comparison of calculated absorption-path length λ for different lines in GaN 
simulated with four different programs. The X-ray lines used are those of typical dopants, e.g. Mg 
or Si, and group III and group V elements that can substitute partially for Ga or N, respectively. 
Error is standard error of least-squares method.
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GaAs matrix (density 5.316gcm-3)

X-
ray

Line

NISTMonte EEFS Hurricane CASINO Mean

λ ± λ ± λ ± λ ± λ ±

NK 144.15 0.01 134.43 0.05 140 3 138 4 139 5

AlK 365.41 0.01 344.6 0.2 342 1 354 1 352 1

SiK 502.52 0.01 419 0.3 470 10 468 1 460 10

PK 725.65 0.02 625.9 0.5 670 10 668 4 672 11

InL 2770.24 0.15 2393 9 2390 30 2551 2 2530 40

SbL 3627.3 0.3 3064 11 3010 40 3334 4 3290 50

Table 3.6.2: Comparison of calculated absorption-path length λ for different lines in GaAs 
simulated with four different programs. The X-ray lines used are those of typical dopants, e.g. P or
Si, and group III and group V elements that can substitute partially for Ga or As, respectively. 
Error is standard error of least-squares method.

By comparing calculated λ values (as described in section 4.5) it is possible to describe the 
programs' relative absorption characteristics. Note that the stated error is the standard error 
calculated by the least-squares method.

Of note is that the different programs provide different scatter, with NISTMonte reproducing 
numerical values with sufficiently small error so as to disappear into rounding errors. Hurricane 
would require much longer processing times to achieve significantly better reproducibility, EEFS 
cannot by software limitation and Casino can run for the same amount of time as NISTMonte but 
would give more than five times the error. It is worth noting that while the CASINO values are 
generally close to the mean, this is not always the case, as seen for the AsK in GaN values.

27



1 10 100 1000 10000 100000 1000000
0.01

0.1

1

10

100

CASINO

Hurricane

Experiment

NISTMonte

EEFS

GaAs thickness (nm)

A
s K

/A
s L in

te
ns

ity
 ra

tio

Figure 3.6.2: Comparison of AsK / AsL ratio in different thicknesses between four simulation 
programs and experimental results [64]. Note the double-log scale. Detector efficiencies applied to 
simulated data: AsL: 68%, AsK: 79%. Simulated sample homogeneous GaAs (density = 5.316gcm-3),
take-off angle constant = 90°.

Figure 3.6.2 is the result of a comparison between simulated and experimental data for a GaAs 
wedge sample of known varying thickness. As the sample thickness increases monotonically from 
the edge it is theoretically possible to determine the thickness of the sample by taking the ratio of 
AsK / AsL. It is clear that the closest correlation to the experimental results will likely be the most 

accurate program. The same trend is visible in all five curves, though EDAX Electron Flight 
Simulator cannot complete it because of a software limitation disallowing samples thicker than 
3µm. Clearly, it is NISTMonte and Casino that agree rather well with the experimental results and 
as such are considered the most accurate, which appears to agree with a recent study [63].

4 Method for determination of the depth of thin layer within a 
matrix material by X-ray spectroscopy

4.1 Description of method
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The ability to know the depth of a thin layer within a matrix is potentially very valuable. The most 
obvious way to do this is by creating a cross-section sample that is representative of the whole. 
Unfortunately, this is not always feasible, and as such a means of discovering the depth of a plan-
view sample is described here. The most obvious use of this is to overcome the inherent assumption
in the Cliff-Lorimer, ZAF or Zeta-factor methods that the sampled material is homogeneous, more 
specifically that X-rays originate equally from all depths. In cases where there is a large 
concentration instead of a homogeneous distribution of certain elements correcting for absorption 
can cause significant errors. It is expected that this approach would be useful for embedded 
quantum structures and certain forms of tomography.

A method for doing so was proposed in 2008 [65]. This is built on the model that the detected 
intensity (assuming a perfect detector) can be calculated by the Lambert-Beer law (Equation 2.1.1):

where D is the amount of the material between the origin of the X-ray and the surface and λ is the 
attenuation wavelength (a value representing the distance a X-ray line can travel through a material 
before being reduced to 1/e % of its original intensity). This λ variable will initially be taken as 
given, with details of its calculation given in section in 4.5. IDetected is given by the detector during 
experiment, λ would be calculated beforehand while both IGenerated and D are unknowns. IGenerated must 
always be eliminated by division: this is facilitated by the assumption that it does not change 
between analyses, provided the sample or beam conditions does not change significantly. In those 
cases where either the sample or the beam change then certain methods can be employed to 
compensate, such as that described in section 2.6.2. Through application of trigonometry and 
algebra D can be calculated using:

d =

λ ln
I 1

I 2

cosecθ 2−cosecθ 1

=

λ ln
I 1

I 2

(cos(θ 1−θ 2)−cos (θ 1+θ 2))

4 sin(θ 1−θ 2

2 )cos(θ 1+θ 2

2 )
Equation 4.1.1

where d=D/sinθ is the depth of the thin layer within the matrix, θ1,2 are two different take-off angles 
and I1,2 are IDetected for the respective take-off angles. Changing the take-off angle results in a change 
in absorption. This change in absorption is proportional to the change in the amount of material the 
X-rays travel through, and as such reflects the depth of the layer.

Equation 4.1.1 is used by analysing every possible combination of angles from the data set in order 
to arrive at the largest possible number of results, though (as explored later) some of these results 
may have to be discarded. Further variations and logical extrapolations on this method are discussed
in section 4.8.
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Figure 4.1.1: Diagram describing the variables of equation 4.1.1.

4.1.1 Assumptions

There are several assumptions in this model:

• That the embedded layer is sufficiently thin that self-absorption can be ignored and that all 
X-rays can be presumed to originate from a single point.

• That the embedded layer is homogeneous in its size, depth and composition over the entire 
area within which the electron beam interacts with the sample.

• That the region of the sample that the resulting X-ray travel through is sufficiently 
homogeneous that any change can be assumed to come from change in take-off angle.

• That the embedded layer is sufficiently deep so as to provide enough change in absorption 
over the range of take-off angles used.

• That sufficient X-rays are generated in the embedded layer so as to minimise statistical 
fluctuations.

• That there is only one thin layer.
• Either that the beam current remains constant or that any change in the number of X-rays 

generated can be normalised.

These assumptions can be summed up as: change of absorption by a predictable amount while 
holding all other parameters constant. As a rule, making sure that the same area is always examined 
even after changing the take-off angle is necessary. Closely monitoring the beam current can be 
avoided through normalisation with respect to a hard X-ray, though this introduces a dependency on
total sample thickness.
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4.1.2 Corrections

There are four corrections required for use of equation 4.1.1. These are the livetime correction, 
specimen tilt correction, beam straggling correction and the shielding correction. The beam 
straggling correction is required for calculation of λ: this is discussed in Section 4.5. 

4.1.2.1 Livetime correction

Not all analysis is carried out with the same parameters. A obvious aspect to change is the detector 
livetime: how long the detector spends actively waiting to process X-rays. Measuring analysis 
length by the livetime ensures that the time for which the detector is active is always known. 
Increasing the livetime means that the detector is active for longer and that more X-rays are 
counted, which in turn means better counting statistics. It also, however, means that the analysis 
itself takes longer, which can be detrimental when facing issues such as sample drift and beam 
damage.

It is often necessary for the user to change the livetime to optimise the desired result from the 
analysis: this would often be necessary if the analysis is taking place in a region that is close to the 
border of effectiveness between two livetimes. These spectra will have a different number of total 
X-ray counts and therefore a change in the absolute value for the characteristic X-ray of interest. As 
equation 4.1.1 compares absolute values between spectra this can produce incorrect results. This 
can be resolved by dividing by the livetime, such that the values used in equation 4.1.1 are 
expressed in counts per seconds (i.e. the count rate for the X-ray of interest) or by dividing and 
multiplying each spectra to be analysed by the appropriate values so that they all have the same 
'effective' livetime.

4.1.2.2 Specimen Tilt correction

Equation 4.1.1 requires that the only change be the take-off angle. In many microscopes, this is 
accomplished by tilting the specimen toward or away from the detector. However, doing this 
changes the size of interaction volume, as demonstrated in Figure 4.1.2.2.1. This increase in 
interaction volume causes a change in the number of X-rays generated, which would appear as a 
change in size, violating the second assumption described in Section 4.1.1.
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Figure 4.1.2.2.1: Diagram describing the geometry and the variables α, the specimen tilt, and θ, the
take-off angle. Note that tilting the specimen causes a change in the interaction volume that is 
accounted for by the 'cos α' function of the lower part of the diagram.

Since the increase in interaction volume with tilt compared to the horizontal is cos α, then 
correcting for this increase simply requires multiplying the detected intensity with the cosine of the 
specimen tilt. In terms of of interaction volume, the sample would then have been reduced to its 
horizontal equivalent, with the only change being take-off angle.

4.1.2.3 Beam Straggling

Electrons travelling through material lose energy in several ways. If the amount of material 
travelled through changes then the average energy of the electrons changes. As the interaction 
cross-section of an atom changes with the energy of the incident electron, lower energy means a 
higher probability of interaction and therefore more X-ray fluorescence. This increase in interaction 
probability also means an increase in electron backscatter which in turn causes an increase in X-ray 
generation, often at fairly shallow depths: this effect is generally so small that it can be readily 
neglected.

With regard to using equation 4.1.1, the consequence of this is that tilting the specimen introduces a
slight change in the amount of material travelled through, which cannot be compensated for as 
readily as the change in interaction volume. This can, in principle, be corrected for by normalising 
the detected intensity with respect to the generated intensity. This normalisation, however, is only 
available in simulations. Unfortunately, there does not appear to be a reliable way to account for this
in experiments beyond increasing the beam energy. The point at which beam straggling becomes 
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relevant changes with material and beam energy, and as such the user should be aware that below a 
certain acceleration voltage the X-ray fluorescence becomes thickness dependent. This point can 
theoretically be determined by observing when the data deviates significantly from the expected 
curve (assuming that all parameters other than take-off angle remain the same).

4.1.2.4 Shielding

The shape of the sample holder is also relevant. As each sample holder has the sample positioned in 
a recess, it is necessary to consider whether some X-rays that should have reached the detector 
instead strike the side of the recess. This effect is referred to as 'shielding'. This can be 
accomplished by placing a test sample into he holder and then tilting it until the centre of the sample
is no longer visible from the side. If the tilt is measured finely enough, a good estimate for the 
amount of shielding can be acquired. For both sample holders analysed (model number EM-31041),
this angle was found to be ~10±2° and ~5±2°, where the difference between the centre of the 
sample and the far edge proved to be negligible. This can be interpreted as asserting that all X-rays 
leaving the sample at an angle of 10° or 5° or less from the sample's horizontal will be absorbed by 
the holder. Note that tilting the holder would cause the sample's horizontal to change from the 
absolute horizontal.

However, even for low take-off angles the detector will only be partially obscured by the specimen 
holder. Given knowledge of the detector's natural take-off angle, the degree of shielding, the radius 
or area of the detector and the collection angle it is possible to calculate the effect of changing take-
off angle on the amount of X-rays blocked. The analytical calculation can be found in the appendix.

Determining the degree of shielding for a specific specimen holder is straightforward. Since it is 
assumed that this shielding occurs completely for a particular take-off angle (despite the fact that 
some hard X-rays would pass through the corner of the specimen holder's edge) then visual 
examination will suffice to determine at what angle the sample could no longer be seen. In the case 
of this attempt, the specimen holder was lined up with a specified point in space and then tilted until
the centre of the holder was no longer visible. Then, it is a simple matter of measuring the degree to 
which it has been tilted. 

Figure 4.1.2.4.1: Demonstration of principle behind shielding.

Assuming a nominal, average take-off angle of 25°, degree of shielding as specified, nominal area 
of the detector =30mm2 and collection angle = 0.12mrad, then the resulting change in the X-ray 
intensity is as seen in Figure 4.1.2.4.2. The curve of this graph indicates the proportion of X-rays 
generated by the sample that are not shielded by the sample holder, and does not account for any 
other effect. Proper comparison of simulations to experimental data requires that either the 
simulated data be multiplied with this curve or the experimental data divided by the curve. Doing so
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would remove one source of disparity between the two data sets.

4.1.2.5 Detector solid angle

One of the core assumptions of this method is that the detector is a point. Physically, this is 
unrealistic, as the typical detector would be as large as possible in order to collect the greatest 
number of X-rays possible. A detector small enough in it's solid angle to effectively be a point 
would acquire almost no X-rays, and as such the atrocious statistics would offset any benefit from 
closer adherence to the method's assumptions.

Simulations imply that using a non-point detector has two effects: a possible increase in statistical 
fluctuations in the results (fairly small, in the order of 1%, if it exists at all) and an increase in the 
calculated depth, as the detector will to some extent appear analogous to a point detector with larger
take-off angle. This latter effect is due to the fact that the portions of the detector that has a higher 
take-off angle will receive a larger portion of X-rays as a result of lesser absorption, but the detector
does not record which part of itself received the X-ray and as such this effect cannot be removed.

In principle, correcting for this would be a matter of accurately simulating the detector used in the 
experiment with different variations of the calculated depth: this should give a reasonable estimate 
of the detector's effect on the result.

From a hardware perspective, a detector made of several independent sections which track X-rays 
separately would overcome this problem: this would be consistent with the design of a typical SDD.

4.1.3 Error determination

It can generally be assumed that the error in θ is negligible, as it is the difference between the two 
take-off angles that have a strong effect, not their absolute values. The error in equation 4.1.1 can be
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Figure 4.1.2.4.2: Projected effect of shielding by the specimen holder. Note that this effect is 
independent of changes in X-ray intensity due to take-off angle.



given by 

Δ d=√(√(Δ I 1
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)
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+(Δλ
λ )

2 Equation 4.1.3.1

where I1,2 are the intensities, d is the depth of the thin layer, λ is the attenuation wavelength 
described in section 4.1 and the character Δ denotes the error in the associated variable.

The error in λ will generally be known to the user before the experiment begins. The error in I1,2 will
be due to counting statistics and background subtraction. Typical experimental error appears to be in
the range of 1-10%. Both of these errors can be mitigated by longer analysis time, a more intense 
beam and a thicker thin layer. A more intense beam could damage the sample, while longer analysis 
time may be hampered by available time on the microscope or the sample drifting such that the 
same region is no longer is being examined. This error estimation can be used to determine whether 
the analysis is worthwhile.

4.2 Detector Tilt Approach

The simplest application of equation 4.1.1 is in simulation with the change in take-off angle 
facilitated by moving the detector. For brevity, moving the detector instead of tilting the sample 
may be called the 'Detector Tilt' approach (despite the fact that the detector does not actually tilt).

Figure 4.2.1 shows simulated InL detected intensity from a 5nm thick layer of InAs embedded at 
different depths within GaAs. The resulting curve is distinctive and appears to apply to any system 
with a thin layer, as it is the function of the change of absorption. It is worth noting that increasing 
the depth both changes the value of convergence and the slope as a result of there being a different 
amount of material to travel through before reaching the detector due to the changed thickness pf 
the overlayer. This is obviously due to the fact that X-rays from a shallower layer are not absorbed 
as much, and do not see as much of a change in the degree of absorption with changing take-off 
angle.
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Figure 4.2.1: Intensity vs. take-off angle simulated for various overlayer thicknesses. Simulation 
run in NISTMonte at beam energy 197keV with 107 electron histories. Sample composition 5nm 
InAs (density = 6.51gcm-3) at the bottom surface of 30, 50, and 70nm of GaAs (density = 
5.316gcm-3).

Figure 4.2.2 shows the calculated result from the 50nm deep embedded InAs, using a λInL value of 
2770nm. The correct value would be 52.5nm, i.e. the depth plus half the thickness of the layer. It is 
clear that, while there is some scatter, the results are very uniform, with a mean of 52.6nm±1.0nm.
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Figure 4.2.2: Calculated d (nm) from equation 4.1.1 for 5nm thick InAs layer at the bottom surface 
of 50nm of GaAs. Simulations run in NISTMonte at beam energy 197keV with 107 electron 
histories for two take-off angles θ1 and θ2.

Figure 4.3.1.2 and Figure 4.2.4 present this data in histogram form. Figure 4.3.1.2 uses the 
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internally consistent NISTMonte λ value of 2770 while Figure 4.2.4 uses the average value of all 
four Monte Carlo programs (2526). The Gaussian spread is clear, indicating that the method works 
with some statistical fluctuation. It is worth noting that the mean being slightly higher than expected
(52.63±0.95nm as opposed to the true value of 52.5nm) while still being well within one standard 
deviation is typical, and implies that the calculated λ is slightly too high, possible due to a minor 
fault in the λ calculation method. This will be investigated later. 

Figure 4.2.3: Histogram of simulated results from
Error: Reference source not found using 
NISTMonte self-consistent λ = 2770nm value. 
Mean 52.63nm with a standard deviation of 
0.95nm. Mean is 0.14 standard deviations away 
from true value of 52.5nm.

Figure 4.2.4: Histogram of simulated results 
using a λ = 2526nm value taken from the average
of the four simulation programs. Mean 48.00nm 
with a standard deviation of 0.86nm.

Figure 4.2.5 is the equivalent simulation run in CASINO. The Gaussian spread is again visible, 
though even using either the average or the internally consistent λ value of 2525nm did not give the 
correct result. This is likely due to a function of the program's internal logic: re-running the 
simulation gave subtly different results. In this case, achieving d = 52.5nm would require a λ of 
2312nm.

Figure 4.2.5: CASINO results for an equivalent simulation with λ = 2526nm. Mean is 57.34nm with
a standard deviation of 1.83nm, 2.64 standard deviations from correct value.
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Table 4.2.1 shows the calculated depths for 5nm InAs embedded within a GaAs matrix at certain 
depths using NISTMonte's  λ value for self-consistency. The trend for the calculated d to be slightly 
higher than the expected holds throughout, though there appears to be no discernible pattern in the 
magnitude of the error. Even for an overlayer thickness of 10nm (i.e. at depth 10nm) the method 
works despite the fact that the λ is much larger than this. This demonstrates that even very small 
changes in intensity can be used, provided there is sufficiently small statistical scatter. Of course, 
experimental results would not necessarily be accurate enough at this level, since it would require 
an exceptionally high signal to noise ratio.

4.3 Specimen Tilt Approach

4.3.1 Indium Simulations

As already mentioned, in transmission electron microscopes the take-off angle can be changed only 
by tilting the specimen. This causes a change in the interaction volume that must be accounted for.
Figure 4.1.2.4.1 demonstrates the need for this in a GaAs matrix with 1nm of InAs buried 50nm 
deep. The 'Raw data' curve does not have any correction, while the 'Tilt-corrected' curve has only 
the tilt correction. It is obvious that not applying the tilt correction causes the resulting curve to 
differ tremendously from that expected from a change in take-off angle, due to the change in 
interaction volume. Specifically note the negative tilts, where the raw data is higher than it should 
be as a result of the tilt, despite the decrease in take-off angle.
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Depth
(nm)

Correct calculated
depth, d (nm)

Average calculated d
(nm)

Relative error (dcalculate – dtrue) / standard
deviation

10 12.5 12.5±0.8 0.1
30 32.5 32.7±0.3 0.6

50 52.5 52.6±1.0 0.1
70 72.5 72.7±0.6 0.3

90 92.5 92.7±1.1 0.2
110 112.5 112.7±0.8 0.2

Table 4.2.1: Average calculated depth in GaAs for various overlayer thicknesses. Error is standard 
deviation. Simulation run in NISTMonte at beam energy 197keV with 107 electron histories. 
Sample composition 5nm InAs (density = 6.51gcm-3) at the bottom surface of the specified 
thickness of GaAs (density = 5.316gcm-3). θ range of 15° to 50° inclusive in steps of 5°.  λ = 
2770nm
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Figure 4.3.1.1: X-ray intensity vs. specimen silt for InL in GaAs. Simulation run in NISTMonte at 
beam energy 197keV with 107 electron histories. θ = α +25°. Sample is comprised of 1nm of InAs 
(density = 5.67gcm-3) at the bottom surface of a 50nm thick GaAs (density = 5.316gm-3) overlayer. 

Figure 4.3.1.2 is a comparison between the 'Detector Tilt' model and the corrected 'Specimen Tilt', 
where both curves are normalised with respect to the +15° data point for ease of comparison. It is 
clear that the deviation between them increases with increasing take-off angle, more specifically 
that the deviation is numerically relevant even at +20° (i.e. -5° tilt), the first data point after the 
normalisation. This difference is most apparent in Table 4.3.1.1, specifically the 'Ratio' column, 
which contains the ratio of 'Specimen Tilt' over 'Detector Tilt'. In Figure 4.3.1.2, that ratio is also 
plotted against the vertical axis with the scale on the right.
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Figure 4.3.1.2: Simulated X-ray intensity vs. effective take-off angle for InL in GaAs. The 'Ratio' 
curve is plotted against the vertical axis on the right. Simulation run in NISTMonte at beam energy
197keV with 107 electron histories. Effective θ = α +25°. Sample is comprised of 1nm of InAs 
(density 5.67gcm-3) at the bottom surface of a 50nm thick GaAs (density = 5.316gm-3) overlayer.

Figure 4.3.1.3 is the same simulations as in
Figure 4.3.1.1, extended to +65° tilt to show 
the effects of beam straggling. To the eye, it 
appears that the curve begins to significantly
deviate at +55°, however the curve from 
+25° increases approximately linearly where
it should converge at some value, indicating 
that there are differences even before the 
deviation is obvious. This implies that beam 
straggling due to 50nm GaAs begins to have 
a significant effect surprisingly early. 

Figure 4.3.1.3 shows the consequence of 
increasing the beam energy by an order of 
magnitude. Here, the expected trend 

continues up to +65° without significant deviation, implying that beam straggling at this level has 
little to no effect. Unfortunately, as a 2MeV beam is beyond the reach of most electron 
microscopists this is not tremendously useful for many applications. 
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θ [°]
Specime
n tilt

Detector
tilt

Ratio of specimen- 
over detector-tilt

15 1 1 1
20 1.017 1.018 0.999

25 1.027 1.029 0.999
30 1.034 1.036 0.998

35 1.039 1.041 0.998
40 1.043 1.045 0.999

45 1.046 1.048 0.998
50 1.049 1.050 0.999

Table 4.3.1.1: Numerical data from Figure 4.3.1.1.
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Figure 4.3.1.3: Simulation of X-ray intensity vs. Specimen Tilt for InL in GaAs. Simulation run in 
NISTMonte at beam energy 197keV with 107 electron histories. θ = α +25°. ‘Raw data’ is plotted 
against the vertical axis on the left, while ‘Tilt-corrected’ is against the vertical axis on the right. 
Sample is comprised of 1nm of InAs (density 5.67gcm-3) at the bottom surface of a 50nm thick 
GaAs (density = 5.316gm-3) overlayer.
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Figure 4.3.1.4: Simulation of X-ray intensity vs. Specimen Tilt for InL in GaAs with a beam energy 
of 1970keV. Simulation run in NISTMonte for 107 electron histories. θ = α +25°. Sample is 
comprised of 1nm of InAs (density 5.67gcm-3) at the bottom surface of a 50nm thick GaAs (density 
= 5.316gm-3) overlayer.

Figure 4.3.1.5 shows the calculated d values using the data in Figure 4.2.3 without tilt correction. It 
is obvious that these results are consistently incorrect, and more so with increasing tilt: note the 
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logarithmic vertical axis.
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Figure 4.3.1.5: Calculated d (nm) results without applying geometric tilt correction, where the 
correct answer would be 50.5nm. Simulation run in NISTMonte at beam energy 197keV with 107 
electron histories. θeff = α +25°, where α is the specimen tilt towards the detector. Sample is 
comprised of 1nm of InAs (density 5.67gcm-3) at the bottom surface of a 50nm thick GaAs (density 
= 5.316gm-3) overlayer.

Figure 4.3.1.6 is again the data from Figure 4.2.3 but with tilt correction. The results here are far 
more consistent. Looking at the low tilt results (i.e. -10° to 10°) the results appear to be almost 
uniformly slightly lower than expected (in this case, 50.5nm) with only one which is significantly 
higher: this may be due to statistics. Moving into higher tilts, it is clear that using a low-tilt intensity
in conjunction with a high-tilt intensity is better than two high-tilts. The significant deviation from 
the expected result in the 10°-15° value implies that beam straggling has an effect much sooner than
expected, but that this effect is small enough to be almost negated by selecting using another data 
point which does not have significant beam straggling. Strictly, the point at which the results 
deviate too far would likely be +55°, however certain combinations before this give incorrect 
results. If the user is aware of this then those results that would be projected to be incorrect can, in 
principle, be ignored. Determining at which point beam straggling has an unacceptable effect is 
difficult, not least because said point is different for every system. This can be done crudely by 
simply being more willing to discount the higher tilt data points as outliers, however a more formal 
approach would require calculating how much more intensity was generated due to beam straggling 
(either through analytical calculation or Monte Carlo simulation) and then deciding how much of an
effect on the data set is permissible.
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Figure 4.3.1.6: Calculated d (nm) results with applied tilt correction. Simulation run in NISTMonte 
at beam energy 197keV with 107 electron histories. θ = α +25°, where α is the specimen tilt towards 
the detector. The correct answer is 50.5nm. Sample is comprised of 1nm of InAs (density 5.67gcm-

3) at the bottom surface of a 50nm thick GaAs (density = 5.316gm-3) overlayer.

Figure 4.3.1.7 is the calculated d from Figure 4.3.1.3 for 1.97MeV. Here, the correct answers extend
much further but still increasingly deviate at higher tilts. This implies that even a 2MeV beam is not
enough to eliminate this effect in 50nm of GaAs. As a consequence, the user must be aware of this 
problem, regardless of beam energy.
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Figure 4.3.1.7: Calculated d (nm) results for 1970keV with tilt correction. Simulation run in 
NISTMonte at beam energy 1970keV with 107 electron histories. θ = α +25°, where α is the 
specimen tilt towards the detector. The correct answer is 50.5nm. Sample is comprised of 1nm of 
InAs (density 5.67gcm-3) at the bottom surface of a 50nm thick GaAs (density = 5.316gm-3) 
overlayer.

Figure 4.3.1.4 summarises the results of Figure 4.3.1.6 in a histogram. In this context, the mean and 
the standard deviation are both too large to be accurate or useful, respectively. The notable 
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difference between this result and that of Figure 4.3.1.2 is that it is not Gaussian in nature: this 
difference exists due to the use of fairly high take-off angles introducing results that deviate 
increasingly from the correct answer. Without cherry-picking, it is difficult to justify rejecting many
of the results based only on a-priori knowledge of the layer's depth (information which the user 
would obviously not possess in most experiments), however it is worth noting that with the 
exception of the '75+' channel the highest frequency lies in the '50 to 51' channel. This is very 
interesting, as it implies that simply calculating the mode of the reasonable results can give the 
correct answer, even if a straightforward averaging approach would not work.

Figure 4.3.1.9 is the corresponding histogram of the results from Figure 4.3.1.7. In this case, the 
choice of channels causes a Gaussian curve that is skewed to the right where a simple average can 
work, if the user were to discount those values which are obviously incorrect . Again, however, the 
correct answer lies within the channel which has the highest frequency, and as such it is possible to 
avoid making an arbitrary choice as to which method to use.

44

Figure 4.3.1.8: Histogram of Figure 4.3.1.6. The mean (discounting those obviously unreasonable, 
i.e. in the 75+ channel) is 56.36nm with a standard deviation of 6.93nm. Sample is comprised of 
1nm of InAs (density 5.67gcm-3) at the bottom surface of a 50nm thick GaAs (density = 5.316gm-3) 
overlayer.



Figure 4.3.1.9: Histogram of Figure 4.3.1.7. The mean (discounting the two values greater than 
56nm) is 50.88nm with a standard deviation of 0.76nm. Sample is comprised of 1nm of InAs 
(density 5.67gcm-3) at the bottom surface of a 50nm thick GaAs (density = 5.316gm-3) overlayer.

Table 4.3.1.2 shows the calculated d value for 1nm of InAs with various overlayer thicknesses of 
GaAs. for the 197keV data, there is considerable difference between results calculated including or 
excluding the +25° take-off angle data point, where +25° would be the most susceptible to beam 
straggling effects. This difference takes the form of a broadly consistent change in the calculated 
depth (approximately 1nm) and a significant increase in the standard deviation. This indicates that 
beam straggling has a small effect that is mainly independent of the overlayer thickness. This is 
obviously an interesting conclusion. This trend is not observed in the 2MeV case.

Overlayer 
thickness 
(nm)

Correct 
depth, d 
(nm)

Average 
calculated d (nm)
including 25° 
value for 197keV

Average 
calculated d (nm) 
excluding 25° 
value for 197keV

Average calculated
d (nm) excluding 
25° value for 
1.97MeV

Average calculated 
d (nm) including 
25° value for 
1.97MeV

10 10.5 10.8±0.6 11.3±1.4 10.43±0.13 10.47±0.18 
30 30.5 32.0±1.5 32.4±1.7 30.5±0.6 30.5±0.6

50 50.5 51.5±1.4 53±3 50.44±0.13 50.49±0.16
70 70.5 71.6±1.5 73±3 70.41±0.09 70.41±0.08

90 90.5 91.7±1.7 93±3 90.4±0.3 90.4±0.3
110 110.5 112±2 113±3 110.31±0.11 110.5±0.5

Table 4.3.1.2: Average calculated depth in GaAs for various overlayer thicknesses with SpecTilt 
correction. Error is standard deviation. Conducted in NISTMonte for 107 electron histories and a θ 
range of -10° to +25° inclusive, in steps of 5°. Sample is comprised of 1nm of InAs (density 
5.67gcm-3) at the bottom surface of a GaAs (density = 5.316gm-3) overlayer of the thickness listed 
in the first column.

4.3.2 Aluminium Simulations

Figure 4.3.2.1 shows equivalent results for Figure 4.3.1.1 using AlK instead of InL, where the InAs 
thin layer has been replaced with a pure aluminium thin layer and all other parameters kept 
constant. There is an obvious similarity between the two figures, though in Figure 4.3.2.1 the 
difference between the corrected and non-corrected for specimen tilt is significantly less 
pronounced. 
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The generated intensities of the InAs and pure Al layers are plotted in Figure 4.3.2.2. Here, we can 
see that while they are plotted against different scales (entirely expected, given their different 
fluorescence probabilities) there is very little difference in their forms. This indicates that the 
difference seen in the tilt-corrected data between the Al and In systems (Figure 4.3.2.1 and Figure 
4.3.1.1, respectively) is due to differing absorption characteristics, and that the different 
fluorescence probabilities do not have any significant effect. It can be assumed that any X-ray under
an appreciable amount of material would give a similar curve.
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Figure 4.3.2.1: X-ray intensity vs. specimen tilt (α) for AlK in GaAs. Correction applied is for 
specimen tilt. Simulation run in NISTMonte at beam energy 197keV with 107 electron histories. θ 
= α +25°. Sample is comprised of 1nm of pure Al at the bottom surface of a 50nm thick GaAs 
(density = 5.316gm-3) overlayer.
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The calculated depths resulting from equation 4.1.1 is shown in Figure 4.3.2.3 using a λ value of 
365nm. The majority of the results agree with the nominal values within error bars of <1nm. 
Interestingly, the effects of beam straggling do not appear until ~25° sample tilt, in contrast to ~15° 
for the InAs system seen in Figure 4.3.1.6, which could be due to the lower ionisation energy 
required for fluorescence of AlK compared to InL. This further indicates that a simple guideline 
would not function for reliably avoiding beam straggling, as it would differ in different materials.
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Figure 4.3.2.2: Comparison of generated (i.e. without absorption) X-ray intensities between InL 
and AlK in GaAs. AlK is plotted against the vertical axis on the right. Simulation run in NISTMonte
at beam energy 197keV with 107 electron histories. θ = α +25°. Sample is comprised of 1nm of 
InAs (density 5.67gcm-3) or 1nm of pure Al at the bottom surface of a 50nm thick GaAs (density =
5.316gm-3) overlayer.
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Figure 4.3.2.3: Calculated d (nm) results with applied tilt correction. Simulation run in NISTMonte 
at beam energy 197keV with 107 electron histories. θ = α +25°. The correct result would be 50.5nm.
Sample is comprised of 1nm of pure Al at the bottom surface of a 50nm thick GaAs (density = 
5.316gm-3) overlayer. Mean is 50.35nm±0.52nm.

A comparison of average calculated d for different depths is given in Table 4.3.2.1, with the first 
column neglecting the +25° data point while the second includes it. This was done to test the effect 
of beam straggling. Unlike the In data shown in Table 4.3.1.2 the only difference between the two 
data sets is that the second column has a fractionally higher average depth and scatter. This is 
obviously different to the In system.

48



Overlayer thickness (nm) Correct d (nm) Excluding +25° data point Including +25° data point
10 10.5 10.2±0.3 10.3±0.3

20 20.5 20.15±0.16 20.3±0.4
30 30.5 30.2±0.2 30.3±0.3

40 40.5 40.2±0.3 40.3±0.4
50 50.5 50.2±0.2 50.4±0.5

60 60.5 60.2±0.2 60.4±0.7
70 70.5 70.2±0.3 70.3±0.4

80 80.5 80.3±0.4 80.4±0.5
90 90.5 90.18±0.17 90.4±0.6

100 100.5 100.2±0.3 100.4±0.5
110 110.5 110.2±0.4 110.4±0.6

120 120.5 120.2±0.3 120.4±0.5
Table 4.3.2.1: Average calculated depth from AlK in GaAs for various overlayer thicknesses. Error 
is standard deviation. Conducted in NISTMonte for 107 electron histories and a θ range of -10° to 
+25° inclusive, in steps of 5°. Sample is comprised of 1nm of pure Al at the bottom surface of a 
GaAs (density = 5.316gm-3) overlayer of the thickness listed in the first column.

4.4 Multiple thin layers within one matrix

One of the assumptions of this method is that there is only one thin layer with the specific element 
embedded within the matrix. If analysing an unknown sample, this assumption would not be 
justified, and as such it would be necessary to arrive at some manner of correction for these 
situations.

Figure 4.4.1 is a sketch of such a system, with the relevant variables marked.

Figure 4.4.1: Sketch of multilayer system.
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Table 4.4.1 shows the calculated depth from two pure indium layers embedded within a GaAs 
matrix using the 'Specimen Tilt' method. Comparing the t1=1, d1=0, d2=120 and  t1=20, d1=0, d2=120
reveals that when the second layer is deeply buried, the first layer dominates, regardless of t2. 
Looking at t1=1, d1=0, d2=30 and  t1=20, d1=0, d2=30 shows that a shallower deeper layer has a 
much stronger effect on the calculated outcome, particularly for t1=1 and t2>5, as the increased 
counts caused by the thickness are not absorbed in the large depth as it was for d2=120. Moving to  
t1=1, d1=30, d2=120 and  t1=20, d1=30, d2=120, this trend is negated, with the change in t2 having 
little to no effect. This is due to the fact that the first layer so strongly dominates the change in 
absorption. This contrasts with the d1=0 results, which see very little absorption from the first layer 
which causes the change in absorption from the second layer to dominate. The  t1=1, d1=100, 
d2=180 and t1=20, d1=100, d2=180 sets support this trend, as does the  t1=1, d1=160, d2=180 and  
t1=20, d1=160, d2=180 sets.

It seems that the conclusion is this: if the two layers are separated by a certain amount of material 
then the thickness of the second layer is irrelevant, as the X-rays emitted from the first layer 
dominate the output. Beyond this, the calculated depth appears to be a weighted average that could, 
in principle, be used for more accurate total quantification even if it cannot be used to determine the
exact depths of the two layers. This similarity is demonstrated in Figure 4.3.2.2, which compares 
the detected output from systems with multiple layers and those with only a single layer. The form 
of the curves is indistinguishable between the two systems. 

t1 = 1nm

t2 (nm)
d1=0, d2=120

(nm)
d1=0, d2=30

(nm)
d1=30, d2=120

(nm)
d1=100, d2=180

(nm)
d1=160, d2=180

(nm)

1 1.4±1.2 16.1±1.0 33±3 145±8 178±10
3 1.3±1.3 26±3 33±3 167±10 184±12

5 1.3±1.3 30±4 33±3 174±9 184±7
7 1.2±0.9 32±4 33±3 178±10 187±9

10 1.2±0.9 346±4 33±3 183±9 189±9
15 1.5±1.3 374±5 33±3 187±10 192±11

20 1.5±1.4 39±2 33±3 191±11 195±13
Table 4.4.1: Calculated depth from InL from two layers of pure indium in GaAs (density = 
5.316gcm-3). Variables as specified in Figure 4.4.1. Simulation run in NISTMonte at beam energy 
197keV with 106 electron histories. θ = α +25°. 'Specimen tilt' method used, with tilts from -10° to 
+30° in steps of 10°.

50



t1 = 20nm

t2 (nm)
d1=0, d2=120

(nm)
d1=0, d2=30

(nm)
d1=30, d2=120

(nm)
d1=100, d2=180

(nm)
d1=160, d2=180

(nm)

1 11±3 11.1±1.5 42±4 117±9 177±10
3 11±2 14±3 42±3 124±9 177±9

5 11±3 15±3 41±3 128±8 179±11
7 11±3 16±2 42±4 133±8 179±10

10 11±3 19±4 42±4 140±12 180±9
15 11±3 23±4 42±5 147±9 183±11

20 11±3 25±4 42±4 153±9 187±13
Continuation of Table 4.4.1

Table 4.4.2 shows the results from running an identical set of simulations with 107 electron 
trajectories, an order of magnitude more than that of Table 4.4.1. Interestingly, there is no 
significant difference in either the calculated depths or the standard deviations. This implies that the
statistical error is negligible compared to the systematic error introduced by having multiple layers. 
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Figure 4.4.2: Comparison of calculated depth from InL in GaAs of single layer and multiple layer 
systems. Variables as specified in Figure 4.4.1. Simulation run in NISTMonte at beam energy 
197keV with 106 electron histories. θ = α +25°. 'Specimen tilt' method used, with tilts from -10° to 
+30° in steps of 10°. Normalised against 0° tilt. Note that the 'Single layer, d=30nm' and 'd1=30, 
d2=120, t1=1, t2=1 (nm)' overlap to a significant extent.



t2 d1=100, d2=180, t1=1 (nm) d1=100, d2=180, t1=20 (nm)
1 145±8 118±8

3 167±10 124±8
5 174±10 129±9

7 179±11 133±8
10 183±10 139±9

15 188±10 147±10
20 191±11 154±10

Table 4.4.2: Equivalent of the relevant columns in Table 4.4.1 with 
107 electron trajectories , to explore whether the error is systematic 
or statistical.

Table 4.4.3 is the aluminium equivalent of Table 4.4.1, in that it shows the calculated depths from 
different combinations of two layers of pure aluminium embedded within a GaAs matrix. The same 
broad patterns are visible, with the difference that the point at which changing the thickness of the 
second layer causes a significant change in the calculated depth is much smaller than for pure 
indium, which is presumably due to AlK having significantly lower energy X-ray and hence higher 
probability of being absorbed.

t1 = 1nm

t2 (nm)
d1=0, d2=120

(nm)
d1=0, d2=30

(nm)
d1=30, d2=120

(nm)
d1=100, d2=180

(nm)
d1=160, d2=180

(nm)

1 41±6 13.7±0.8 64±4 132±4 170.0±1.8
3 72±6 21.3±0.8 88±4 152±3 174.7±1.4

5 86±6 23.9±0.7 97±3 161±3 176.3±1.2
7 93±5 25.3±0.6 102±3 165±2 177.2±0.9

10 100±4 26.5±0.7 107±3 169±2 178.0±1.4
15 106±3 27.6±0.6 111±2 172±2 178.7±1.2

20 109±3 28.1±0.6 113.0±1.9 174.2±1.7 179.2±1.4
Table 4.4.3: Calculated depth from AlK for two layers of pure aluminium in GaAs (density = 
5.316gcm-3). Simulation run in NISTMonte at beam energy 197keV with 106 electron histories. θ = 
α +25°. 'Specimen tilt' method used, with tilts from -10° to +30° in steps of 10°.
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t1 = 20nm

t2 (nm)
d1=0, d2=120

(nm)
d1=0, d2=30

(nm)
d1=30, d2=120

(nm)
d1=100, d2=180

(nm)
d1=160, d2=180

(nm)

1 3.4±0.8 1.1±0.4 33.1±0.8 103.0±1.1 161.0±0.9
3 8.5±1.4 1.9±0.3 37.2±1.2 106.9±1.6 160.9±1.0

5 13±2 2.6±0.5 40.9±1.6 110.1±1.9 161.2±1.1
7 17±3 3.2±0.3 44.2±1.8 113.1±1.9 161.1±1.3

10 23±3 4.0±0.4 48±2 117±2 161.2±1.1
15 31±4 5.0±0.4 54±2 121.8±2.0 161.3±1.1

20 37±4 5.9±0.4 59±3 1269±2 161.3±1.0
Continuation of Table 4.4.3

Table 4.4.4 shows the results for a three layer In system, where the notation is logically extended 
from the two layer method. Introducing a third layer does not break the pattern, in that the 
calculated depth is a weighted average of the multiple layers, with changing the thickness of the 
third layer only causing a statistically significant change in the calculated depth when the third layer
is either sufficiently thin or sufficiently deep so as to be negligible compared to the first and/or 
second layer(s). This can be readily seen by comparing the 'd1=10, d2=50, d3=90, t1=1, t2=1 (nm)' to 
'd1=10, d2=50, d3=90, t1=20, t2=1 (nm)'  results, where increasing the thickness of the first layer 
causes a change in the thickness of the third layer to have an effect on the calculated depth. This 
pattern is not visible for the 'd1=10, d2=50, d3=90, t1=20, t2=20 (nm)' results, as the increased 
thickness of the second layer has a much stronger effect than the thickness of the third layer and 
hence the effect of change in the third layer becomes negligible compared to the statistical variation.
Similar trends are seen in other simulations with different values for the depths and thicknesses (not
shown here). Given that the same trend is visible in a system with either two or three layers, it is 
reasonable to assume that a similar comparison to a single layer is valid, and that this trend likely 
continues to systems with more than three layers. 

d1=10, d2=50, d3=90 (nm)

 t1=1 (nm) t1=10 (nm) t1=20 (nm)

t3

(nm)
t2=1nm t2=10nm t2=20nm t2=1nm t2=10nm t2=20nm t2=1nm t2=10nm t2=20nm

1 32±3 52±6 59±7 26±5 41±10 52±12 25.3±1.9 32.5±2.0 41±4

3 31±3 53±4 60±5 36±4 47±8 50±8 32±9 36±4 48±10

5 33±5 52±7 60±3 42±2 47±5 53±8 39±10 42±6 51±15

7 31±4 53±4 62±10 49±8 52±8 55±5 43±9 45±7 48±5

10 33±5 51±3 59±8 55±5 55±4 57±3 47±10 49±7 52±11

15 29±3 50±3 61±6 65±4 61±6 62±6 53±6 54±5 56±10

20 33±4 51±5 61±7 71±6 69±9 69±8 58±4 58±7 58±5

Table 4.4.4: Calculated depth from InL from three layers of pure indium in GaAs (density = 
5.316gcm-3). Variables as specified in Figure 4.4.1. Simulation run in NISTMonte at beam energy 
197keV with 106 electron histories. θ = α +25°. 'Specimen tilt' method used, with tilts from -10° to 
+30° in steps of 10°.

d1=10, d2=50, d3=150 (nm)

t1=1 (nm) t1=10 (nm) t1=20 (nm)

t3 t2=1nm t2=10nm t2=20nm t2=1nm t2=10nm t2=20nm t2=1nm t2=10nm t2=20nm
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(nm)

1 31±3 53±6 59±5 21±5 36±6 45±3 23±2 30.1±1.7 40±3

3 34±3 53±3 64±13 17±6 34.9±1.4 47±6 24±6 32±7 40±4

5 33±4 56±6 61.3±10.0 19±3 36.6±5.2 46±4 22±4 35.1±10.0 42±7

7 34±10 50±4 60±7 17.8±1.2 40±12 47±4 19±4 31±8 41±4

10 35±6 50.6±1.0 61±10 19±4 34±5 46±4 24±4 34±4 40±7

15 34±9 53±7 60±8 20±6 35±4 48±10 22.6±1.6 33±9 40±5

20 32±1.7 54±7 57.4±0.7 21±6 35±4 51±11 23±3 34±10 42±8

Table 4.4.4 Continued.

4.5 Calculation of λ for use in equation 4.1.1

4.5.1 Comparison of different methods for calculating λ

As described in section 4.1, the variable λ, the attenuation wavelength, defines the thickness of 
material that would reduce the intensity of the relevant X-ray line to 1/e of it's original value. The 
value calculated by equation 4.1.1 is heavily dependent on λ being correct, and as such this section 
describes the difficulties associated with its calculation. Previously, this has been taken as given, but
as seen in this section its calculation is non-trivial. As a reminder,  if the natural log of the intensity 
ratio is plotted against the effective thickness (i.e. D/sinθ) then λ would be the slope of that curve. 
This slope is linear and can be accurately fitted with linear least squares regression, as given by the 
following equations:

y=mx+b Slope=m=

N⋅∑
i=0

i=n

(x i y i)−∑
i=0

i=n

x i⋅∑
i=0

i=n

y i
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i=n

xi
2
−(∑

i=0

i=n

x i)
2

Intercept=b=

∑
i=0

i=n

yi−m⋅∑
i=0

i=n

xi

N

where N is the total number of data points and xi,yi are the ith value of that axis.

Any method for changing the effective depth while holding all other parameters constant would 
work to determine the characteristic X-ray absorption length, λ. This gives the user two options: the 
'Depth Variation' method or the 'Take-off Angle Variation' method.

The 'Depth Variation' method uses a series of samples with thin layers embedded within the matrix 
material where the part of the composition that changes is the overlayer thickness, ideally 
distributed over a range of thickness. The difficulty with this is obvious: manufacturing a single  
sample with a thin layer at a very well known depth is costly, manufacturing many would take 
tremendous resources. Given that knowledge of the depth is most reliably acquired through creation
of a cross-section sample this would require two samples for each data point. This is obviously 
undesirable from a practical standpoint.

The other method, 'Take-off Angle Variation', instead relies on changing the take-off angle. This 
causes a change in the effective depth and hence results in the required curve. This method would 
require only two samples: a cross-section to determine the depth of the thin layer and another to 
carry out the analysis on. As previously mentioned, most microscopes cannot change the take-off 
angle by moving the detector and must instead rely on tilting the sample to achieve the same effect. 
This means that this method suffers from the same difficulties as the 'Specimen Tilt' approach 
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described in section 4.3. While the increase in interaction volume can be readily corrected, the 
result of beam straggling is somewhat more difficult. In simulations, this can be accounted for by 
dividing the detected intensity by the generated intensity, which has the dual function of removing 
the effect of beam straggling and statistical fluctuations in the generated intensity, leaving the 
change in the effective take-off angle the only variable. While this is obviously impossible in 
experiment it does serve to give a self-consistent estimate of the experimental result, which in 
theory are proportional to the experimental by some consistent factor given by the electron dose, as 
any simulation is likely to differ from experiment in parameters such as detector efficiency (perfect 
in simulations, not in experiment) or fluorescence probabilities.

Table 4.5.1.1 is the calculated λ values for InL in GaAs using the 'Depth Variation' method. The 
result with and without correcting for beam straggling is shown. The various depths were chosen to 
correspond to effective take-off angles (as defined by D/sinθ), for later direct comparison to the 
'Take-off Angle Variation' method. The non-corrected result has higher error and R2, as expected, 
but it also has significantly higher λ, which is quite surprising. Comparing this result to that 
obtained by only considering either the shallowest six or shallowest three data points gives the 
expected result, as trending toward the corrected value is to be expected when discounting those 
data points which experience the effect of straggling most strongly. The increase in the error is to be
expected, given that analysing fewer data points increases the proportional effect of statistical 
fluctuations.

Previously, 'beam straggling' has been taken to mean as a result of tilting the sample. However, 
straggling would occur in any occasion where the amount of material that the beam travels through 
changes between data points. While fairly slight, this would have an effect if the thin layer is made 
deeper in order to calculate λ as in Table 4.5.1.1, which would lead to the change in calculated λ 
seen for the non-corrected results. The change in the corrected value as fewer data points are used is
interesting. The fact that the result calculated from using only the three shallowest data points has 
slightly higher R2 than that from the full range and comparable error while the result from six data 
points has higher error and worse R2 could be due to chance.

effective take-
off angle (º)

actual depth 
(nm)

from all 8 depths from 25° to 50° from 40° to 50°

15 42.42574 without correcting for beam straggling

20 45.96194 λ (nm) 3027 3000 2800
25 50.56102 Δλ (nm) 10 30 40

30 56.66202 R2 0.9999 0.9996 0.9998 
35 65 corrected for beam straggling

40 76.90155 λ (nm) 2768.5 2725 2750.2 
45 95.02364 Δλ (nm) 1.1 3 1.1

50 125.5704 R2 1.0000 1.0000 1.0000
Table 4.5.1.1: Results of λ calculation using the ‘Depth Variation’ method. Simulation run in 
NISTMonte at beam energy 197keV with 107 electron histories at constant take-off angle of 90°. 
Sample is comprised of 5nm of InAs (density = 5.67gcm-3) at the bottom surface of a GaAs 
(density = 5.316gm-3) overlayer of a thickness given in the second column.

Table 4.5.1.2 is the equivalent of Table 4.5.1.1 run with a beam energy of 1970keV to reduce the 
effect of beam straggling. Here, the error is small and the R2 value is high, for both corrected and 
non-corrected results, though the corrected results are fractionally better, as expected. Reducing the 
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number of data points used causes an increase in the error and worsening of the R2, though the non-
corrected three data point result appears to experience the same exceptionally high R2 value as Table
4.5.1.1's corrected three data point result. Given that the λ calculated from the corrected full range 
has slightly worse R2 than that of the non-corrected three data point result, it is clear that R2 alone 
cannot be used as the only criterion. As the default position, however, it is logical to use the result 
gained from applying the relevant correction and considering the full range of data available to be 
the correct choice. The fact that this result roughly agrees with the equivalent for 197keV is also 
encouraging.
 
effective take-
off angle (º)

actual 
depth (nm)

from all 8 depths from 25° to 
50°

from 40° to 50°

15 42.42574 non-corrected for beam straggling

20 45.96194 λ (nm) 2774.0 2775 2783.9
25 50.56102 Δλ (nm) 0.9 3 1.6

30 56.66202 R2 1.0000 1.0000 1.0000
35 65 corrected for beam straggling

40 76.90155 λ (nm) 2771.6 2731 2715 
45 95.02364 Δλ (nm) 0.8 3 17

50 125.5704 R2 1.0000 1.0000 1.0000
Table 4.5.1.2: Results of λ calculation using the ‘Depth Variation’ method with 1970keV beam 
energy. Simulation run in NISTMonte at beam energy 197keV with 107 electron histories at 
constant take-off angle of 90°. Sample is comprised of 5nm of InAs (density = 5.67gcm-3) at the 
bottom surface of a GaAs (density = 5.316gm-3) overlayer of a thickness given in the second 
column.

The results of an equivalent simulation conducted using the 'Detector Tilt' model are shown in Table
4.5.1.3. Take-off angles where chosen to allow direct comparison to Table 4.5.1.1 and Table 4.5.1.2,
with parameters of the sample being held constant. While there is no beam straggling, the straggling
correction also functions to remove some part of the statistical fluctuations, as already mentioned, 
and as such is also carried out here. The results from the use of fewer data points for comparison 
retains the trend of increasing error and worsening R2. Most interestingly, the calculated λ is 
significantly different when compared to the assumed correct value seen in Table 4.5.1.2's corrected
full range result. Further, normalising with respect to generated intensity causes the result to deviate
further rather than converge. This is discussed in Table 4.5.1.4
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take-off angle 
(º)

effective 
depth (nm)

from all 8 depths from 25° to 50° from 40° to 50°

15 42.42574 non-corrected for beam straggling

20 45.96194 λ (nm) 2785 2750 2900
25 50.56102 Δλ (nm) 11 3 130

30 56.66202 R2 0.9999 0.9997 0.9979
35 65 corrected for beam straggling

40 76.90155 λ (nm) 2798.3 2798 2779
45 95.02364 Δλ (nm) 0.8 2 6

50 125.5704 R2 1.0000 1.0000 1.0000
Table 4.5.1.3: Results of λ calculation using the ‘Detector Tilt’ method. Simulation run in 
NISTMonte at beam energy 197keV with 107 electron histories. Sample is comprised of 5nm of 
InAs (density = 5.67gcm-3) at the bottom surface of a 30nm GaAs (density = 5.316gm-3) overlayer. 
θ is given in the first column.

Table 4.5.1.4 shows the results from the same simulation run three times. In this case, the full range 
of data points was used and no correction was applied. The variation between the results is not 
significant, as they lie within less than two standard deviations from each other. The corrected full 
range value of the first iteration, seen in Table 4.5.1.3, lies at the approximate average of all three 
values. Considering this average and the degree of scatter, this implies that the effect of beam 
straggling is significant enough that it must be considered. Indeed, it could be proposed that 
calculation of λ via the 'Detector Tilt' method is superior to the 'Depth Variation' methods, as it more
closely resembles typical experimental conditions.

iteration 1 iteration 2 iteration 3

λ 2785 2803 2793 Mean λ 2794
Δλ 11 8 8 Standard error 6

R2 0.9999 0.9999 1.0000
Table 4.5.1.4: Results of λ calculations using the ‘Detector Tilt’ method. Simulation run in 
NISTMonte at beam energy 197keV with 107 electron histories.Sample is comprised of 5nm of 
InAs (density = 5.67gcm-3) at the bottom surface of a 30nm GaAs (density = 5.316gm-3) overlayer. 
θ varies from 15° to 50° in steps of 5°.

Table 4.5.1.5 is the same simulation run with 1970keV. The result is significantly different from the 
non-corrected 197keV results, however it is extremely close to the corrected 197keV result, and 
remains so whether it is corrected or not. This could be due to the fact that the beam experiences 
only little straggling whether the amount of material changes thickness or not. The effect of this 
straggling would be to cause a Gaussian distribution in the energy range of the beam electrons. As a
result of this, the size of the absorption cross-sections (and therefore the fluorescence probabilities) 
would have an additional factor increasing the statistical fluctuations. This effect would be far more 
significant with a beam energy of 197keV than 1970keV, as the higher energy electrons would 
interact less and as such would not lose energy so quickly.
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take-off 
angle (º)

effective depth 
(nm)

from all 8 depths from 25° to 50° from 40° to 50°

15 42.42574 non-corrected for beam straggling

20 45.96194 λ (nm) 2798.1 2800 2781
25 50.56102 Δλ (nm) 1.4 4 11

30 56.66202 R2 1.0000 1.0000 1.0000
35 65 corrected for beam straggling

40 76.90155 λ (nm) 2798.3 2795 2783
45 95.02364 Δλ (nm) 0.9 3 18

50 125.5704 R2 1.0000 1.0000 1.0000
Table 4.5.1.5: Results of λ calculation using the ‘Detector Tilt’ method and beam energy 1970keV. 
Simulation run in NISTMonte with 107 electron histories. Sample is comprised of 5nm of InAs 
(density = 5.67gcm-3) at the bottom surface of a 30nm GaAs (density = 5.316gm-3) overlayer. θ is 
given in the first column.

Table 4.5.1.6 is the 'Specimen Tilt' equivalent of the previous simulation. In this case, correction for 
specimen tilt and for beam straggling are handled separately. It is worth noting that correcting for 
straggling also corrects for tilt, and as such there is no need to apply both. In this case the sets of 
results are for -10° to +25° (limited tilt range) and -10° to +65° (wider tilt range). A direct 
comparison between the Limited Tilt-Corrected results and the full range non-corrected results from
Table 4.5.1.3 indicates roughly similar errors and R2, while the calculated λ values are somewhat 
different. Correcting for straggling brings λ closer to the values calculated previously. 

Considering the total range of data points causes the tilt-corrected results to be very different, with a
large error and low R2. However, the full range while correcting for straggling gives results much 
closer to the expected. This upholds what was seen previously about how beam straggling has an 
effect with significant sample tilt.
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specimen tilt (º) effective thickness (nm)
-10 125.5704 limited, tilt range (-10° to+25°)

-5 95.02364 tilt-Corrected straggling-Corrected
0 76.90155 λ 2773 2795.06

5 65 Δλ 14 0.14
10 56.66202 R2 0.9998 1.0000

15 50.56102
20 45.96194 total, tilt range (-10° to+65°)

25 42.42574 tilt-Corrected straggling-Corrected
35 37.52777 λ 2230 2794.61

45 34.58578 Δλ 200 0.3
55 33.00136 R2 0.9279 1.0000

65 32.5
Table 4.5.1.6: Results of λ calculation using the ‘Specimen Tilt’ method. Simulation run in 
NISTMonte at beam energy 197keV with 107 electron histories. θ = α + 25°. Sample is 
comprised of 5nm of InAs (density = 5.67gcm-3) at the bottom surface of a 30nm GaAs (density
= 5.316gm-3) overlayer. α is given in the first column.

The 1970keV beam energy equivalent to the results of Table 4.5.1.6 are shown in Table 4.5.1.7. It is
clear that the 'Limited Tilt-Corrected' results are much superior to that seen in Table 4.5.1.6, most 
obviously in that the error is lower and the R2 higher, but also in that the λ value has shifted toward 
that expected given previous results. The difference between the 'Limited' and the 'Total' results has 
also decreased, as expected.

specimen tilt (º) effective thickness (nm)

-10 125.6 Limited, tilt range (-10° to+25°)
-5 95.0 Tilt-Corrected Straggling-Corrected

0 76.9 λ 2795.4 2796.1
5 65.0 Δλ 1.4 0.5

10 56.7 R2 1.0000 1.0000
15 50.6

20 46.0 Total, tilt range (-10° to+65°)
25 42.4 Tilt-Corrected Straggling-Corrected

35 37.5 λ 2789 2795.8
45 34.6 Δλ 4 0.4

55 33.0 R2 1.0000 1.0000
65 32.5

Table 4.5.1.7: Results of λ calculation for InL using the ‘Specimen Tilt’ method at beam energy 
1970keV. Simulation run in NISTMonte with 107 electron histories. θ = α + 25°. Sample is 
comprised of 5nm of InAs (density = 5.67gcm-3) at the bottom surface of a 30nm GaAs (density = 
5.316gm-3) overlayer. α is given in the first column.

Figure 4.5.1.1 compares the calculated λ values for InL values from each method, with the 'sub-
methods' of 'Specimen Tilt' also considered, as this is the most representative of typical 
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experimental conditions. It is clear that the 197keV 'Specimen Tilt' result has the largest error with 
the 197keV 'Detector Tilt' error slightly less. This difference can be attributed to the effects of beam 
straggling resulting from the changing amount of material travelled through when the sample is 
tilted. The fact that the straggling-corrected 197keV 'Variable Depth' and its 1970keV non-corrected
equivalent disagree with the result from 'Specimen/Detector Tilt' further implies that the two models
are not exact equivalents, even when straggling correction is used. This difference is, however, 
fairly small, and likely to be negligible in experiment.

Specimen 
Tilt Limited 
Tilt

Specimen 
Tilt Limited 
Straggling

Specimen 
Tilt Total 
Straggling
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Tilt MeV 
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Figure 4.5.1.1: Comparison of λ values and their errors for the different methods. Mean is 2785.42 
with a standard error of 4.25.

4.5.2 Calculation of λ using normalised X-ray intensity

Sometimes the intensity of the X-ray line of interest deviates from the expected curve due to 
inconsistency in the sample or experimental conditions, such as a change in beam current. This can 
often be resolved by normalising with respect to another X-ray line, ideally one that experiences 
negligible absorption. A good example of this would be an indium rich layer in GaAs, where the InL

can be normalised with respect to AsK, which for most typical TEM sample thicknesses does not 
suffer appreciable absorption. In an ideal situation, this would not have an effect on the resulting 
calculation, however, even a tiny change in detected intensity would potentially cause difficulty. As 
seen in Figure 4.5.2.1, even a fairly hard X-ray like AsK (10.543keV) experiences some intensity 
change with specimen tilt. 
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Figure 4.5.2.1: AsK intensity from GaAs sample. Note the small change in the absolute magnitude 
of the y-axis. Simulation run in NISTMonte at beam energy 197keV with 107 electron trajectories. 
θ = α + 25°. Correction for tilt was applied. Sample is comprised of 210nm of GaAs (density = 
5.316gcm-3) with a 5nm thick layer of pure indium embedded 50nm deep within the matrix.

A comparison of InL and InL/AsK is shown in Figure 4.5.2.2. The difference between the form of the 
two curves is obvious, with the InL/AsK having a much weaker curvature.
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Figure 4.5.2.2: Comparison of InL intensities and InL/AsK intensity ratio against specimen tilt, both 
normalised to unity at zero tilt. Simulation run in NISTMonte at beam energy 197keV with 107 
electron trajectories. θ = α + 25°. Correction for tilt was applied. Sample is comprised of 210nm of 
GaAs (density = 5.316gcm-3) with a 5nm thick layer of pure indium embedded 50nm deep within 
the matrix.

This change in curvature can be accounted for by calculating the λ for the ratio and using that in 
equation 4.1.1. This difference in listed in Table 4.5.2.1, which compares the calculated λ values in 
different materials for InL and the normalised counterparts. The normalisation universally increases 
the λ, with the change being smaller the higher the energy of the normalising X-ray line. This can be
readily seen by comparing the results for AlSb and AlAs. Normalising with respect to SbK 
(26.3591keV) causes a much smaller proportional change than when AsK (10.543keV) is used: this 
is due to the fact that while both experience little absorption, and therefore change with take-off 
angle, the higher energy X-ray experiences even less absorption than the lower energy X-ray. An 
interesting exception to this is GaAs, which sees AsK (10.543keV) cause a greater change than GaK 
(9.251keV), despite being higher energy. Recalling that one X-ray can significantly fluoresce 
another if there is little difference in their energies, a simulation was run for a layer of pure indium 
in hypothetical ZnNi, which has a similar range of X-ray energies ([ZnK: 8.63886, NiK: 
7.47815keV) despite not being a semiconductor material and hence not otherwise relevant to this 
discussion. The same trend is visible, which indicates that self-fluorescence is the cause of this 
discrepancy. 

matrix material X-ray line λ (nm) Δλ (nm) R2

AlSb (ρ = 
4.26gcm-3)

InL 4590 80 0.9983

InL/SbL 4950 70 0.9990

AlAs (ρ = 
3.81gcm-3)

InL 3670 40 0.9994

InL/AsK 4190 20 0.9998

BAs (ρ = InL 2900 40 0.9988

62



5.22gcm-3) InL/AsK 3307 19 0.9998

GaAs (ρ = 
5.316gcm-3)

InL 2755 20 0.9997

InL/AsK 4290 60 0.9986

InL/GaK 3280 40 0.9992

GaN (ρ = 
6.15gcm-3)

InL 3010 20 0.9997

InL/GaK 3620 30 0.9996

GaP (ρ = 
4.138gcm-3)

InL 3440 40 0.9990

InL/GaK 4110 30 0.9997

ZnNi (ρ = 
7.87gcm-3)

InL 2240 40 0.9977

InL/ZnK 5600 300 0.9811

InL/NiK 3050 120 0.9907

Table 4.5.2.1: Comparison of calculated λ for InL and their normalised counterparts in different 
matrix materials. Specimen tilt method used, with tilt (α) ranging from -10° to +25° in steps of 5°. 
Sample was 5nm of pure indium embedded 50nm within a 210nm thick matrix of the stated 
material and density.

An equivalent set of simulations was also run with indium replaced with aluminium. The result of 
this is shown in Table 4.5.2.2. The same trends are again visible, in that using higher energy for 
normalisation causes less change in the calculated λ. The difference between normalisation with 
respect to AsK and GaK also persists, for the same reason as previously.

matrix material X-ray line λ (nm) Δλ (nm) R2

BAs  (ρ = 
5.22gcm-3)

AlK 435.9 0.8 1.0000

AlK/AsK 442.8 0.5 1.0000

GaAs (ρ = 
5.316gcm-3)

AlK 381.9 0.7 1.0000

AlK/AsK 401.4 0.4 1.0000

AlK/GaK 389.8 0.4 1.0000

GaN (ρ = 
6.15gcm-3)

AlK 384.8 0.8 1.0000

AlK/GaK 392 0.2 1.0000

GaP (ρ = 
4.138gcm-3)

AlK 680.5 0.9 1.0000

AlK/GaK 698.7 1.2 1.0000

InAs (ρ = 
5.67gcm-3)

AlK 474.4 0.7 1.0000

AlK/AsK 480.3 0.9 1.0000

AlK/GaK 496.2 0.9 1.0000

InSb (ρ = 
5.775gcm-3)

AlK 566.5 1.7 0.9999

AlK/InK 575 0.9 1.0000

AlK/SbK 575.2 0.9 1.0000

InP (ρ =  AlK 811 30 0.9999
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5.12gcm-3) AlK/InK 823 3 0.9999

InN (ρ = 
6.81gcm-3)

AlK 547 2 0.9999

AlK/InK 554.3 1.1 1.0000

Table 4.5.2.2: Comparison of calculated λ for AlK and their normalised counterparts in 
different matrix materials. Specimen tilt method used, with tilt (α) ranging from -10° to +25° 
in steps of 5°. Sample was 5nm of pure aluminium embedded 50nm within a 210nm thick 
matrix of the stated material and density.

The use of equation 4.1.1 is, as already mentioned, dependent on several assumptions. One of these 
assumptions is that absorption in the thin layer is negligible, more specifically that the only 
absorption of the X-ray line of interest is from the overlayer. The following section explores the 
validity of this assumption.

Table 4.5.2.3 lists the calculated λ values of the InL X-ray line resulting from In or InAs layer of 
different thicknesses with an overlayer of 30nm GaAs. The apparent increase in λ with layer 
thickness is clear. λ is somewhat lower for thinner layers for the InAs only to increase to 
approximately the same value at 10nm thickness, though it should be noted that the magnitude of 
the error means that this cannot be taken as a trend. It is interesting that a tenfold increase in the 
thickness of the thin layer causes an apparent 2.1% change in λ. This implies that this change due to 
self-absorption may need to be accounted for in quantification, depending on the desired 
reproducibility. As a general rule, it seems that while a thicker layer does cause a change in λ, a 
thinner layer would require longer analysis for comparable statistical reproducibility, which may not
be feasible. It is worth noting that this change due to self-absorption appears to be stronger than all 
other numerical effects, such as statistical fluctuations or beam straggling. This is due to the fact 
that the layer has a significantly different absorption cross-section than the matrix combined with 
the layer has a thickness that is not much less than that of the overlayer.

pure indium InAs

t (nm) 1 5 10 t (nm) 1 5 10
λ 2753 2773 2790 λ 2740 2765 2797

Δλ 13 14 15 Δλ 17 13 15
R2 0.9999 0.9998 0.9998 R2 0.9998 0.9999 0.9998

Table 4.5.2.3: Calculated λ for InL in GaAs for various thicknesses of pure indium or InAs for GaAs
capping layer thickness 30nm. Simulation run in NISTMonte at beam energy 197keV with 107 
electron trajectories. θ = α + 25°. Correction for tilt was applied. Sample is comprised of the 
specified thickness of either InAs (density = 5.67gcm-3) or pure indium at the bottom surface of a 
30nm GaAs (density = 5.316gm-3) overlayer.

Figure 4.5.2.3 plots the InL X-ray intensity from the simulations run for Table 4.5.2.3 against sample
tilt, where Table 4.5.2.4 contains the ratios from the curves of InL intensity from the pure indium 
system relative to that of the InAs system for each specimen tilt at each thickness. For ease of 
comparison, each curve has been normalised with respect to its -10° data point. It is clear from
Figure 4.5.2.3 that the general form of each curve is the same, and that the curves for In and InAs 
for each layer thickness are very similar. Comparing the ratios of In over InAs is interesting: t = 
1nm has what could be a minor trend to a value slightly greater than one with significant statistical 
noise, t = 5nm showing a consistent value of less than one and then t = 10nm giving a ratio that is 
always larger than one. This is logical: the t = 1nm curve can be understood as having significant 
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statistical uncertainty (as it is thinner than the other two thicknesses) in addition to experiencing a 
smaller change in self-absorption (and so the average value would be closer to one), and so does not
contribute to the trend. Running the simulation again gives the same result to within statistical 
variation. This trend is a function of the exponential decay of X-ray intensity due to absorption, as 
the two materials display different absorption characteristics.                                                               

Figure 4.5.2.4 shows the calculated λ value from Table 4.5.2.3 in graphical form. The apparent trend
for the pure indium result to have a higher initial value but a weaker slope is obvious, though the 
size of the error bars precludes any definitive assessment. 
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Figure 4.5.2.3: Comparison of ratios of normalised InL 
series between pure indium and indium arsenide of 
different thicknesses. Note that each curve for pure 
indium is overlaying the equivalent for InAs.

thickness, t (nm)

specimen
tilt, α (°)

1 5 10

-10 1.0000 1.0000 1.0000

-5 1.0003 1.0000 1.0001

0 1.0001 0.9999 1.0000

5 1.0000 0.9999 1.0001

10 0.9999 1.0000 1.0001

15 1.0001 0.9999 1.0000

20 0.9999 0.9999 1.0001

25 1.0000 0.9999 1.0001
Table 4.5.2.4: Normalised ratios of InL 
intensity from the pure indium layer relative
to that of the InAs layer of Figure 4.5.2.3 
for their respective thicknesses. Sample is 
comprised of the specified thickness of 
either InAs (density = 5.67gcm-3) or pure 
indium at the bottom surface of a 30nm 
GaAs (density = 5.316gm-3) overlayer.
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Figure 4.5.2.4: Calculated λ values for InL X-ray line plotted against layer thickness. ‘Specimen Tilt’
method was used. Simulation run in NISTMonte at beam energy 197keV with 107 electron histories.
θ = α + 25°. Correction for tilt was applied. Sample is comprised of the specified thickness of either
InAs (density = 5.67gcm-3) or pure indium at the bottom surface of a 30nm GaAs (density = 
5.316gm-3) overlayer.

The result of using these different λ is shown in Table 4.5.2.5 to calculate the depth of an In or InAs 
layer of different thicknesses buried beneath 30nm of GaAs. The difference between varying the λ 
with layer thickness ('Varying') to accommodate the thin layer self-absorption or using the average 
('Average'), as would likely be done in an experiment where knowledge of the layer thickness is 
unlikely, is very small, well within standard deviations. This implies that for In or InAs, a change in 
the thickness of the thin layer can be ignored.

thickness, t (nm) indium indium arsenide
varying average varying average

1 31.0±1.2 31.2±1.3 31.0±1.0 31.3±1.1
5 33.1±1.2 33.1±1.2 33.0±1.2 33.0±1.2

10 35.6±1.2 35.4±1.2 35.6±1.2 35.2±1.2
Table 4.5.2.5: Comparison of calculated d for layers of different thicknesses. Correct d is 30 + half
thickness. ‘Specimen Tilt’ method was used. Simulation run in NISTMonte at beam energy 
197keV with 107 electron histories. θ = α + 25°. Correction for tilt was applied. Sample is 
comprised of the specified thickness of either InAs (density = 5.67gcm-3) or pure indium at the 
bottom surface of a 30nm GaAs (density = 5.316gm-3) overlayer.

A similar test for different layer materials is shown in Table 4.5.2.6, again with a capping layer of 
30nm GaAs. There are two comparisons of interest: between pure Al and AlAs (analogous to the 
In/InAs of Table 4.5.2.3), and between each pure material. The calculated λ values for the AlK-line 
for Al and AlAs at 1nm thickness is very close, as there is too little material to exhibit their different
absorption coefficients. The difference from the 10nm thick layer is significantly greater than that of
the indium equivalent in Table 4.5.2.3, which is not surprising given that AlK has lower energy than 
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InL, and that introducing arsenic into aluminium would have a more significantly effect on the 
density (and therefore the absorption) than introducing arsenic into indium.

Comparing the relative change in calculated λ value between the different pure materials at different
layer thicknesses, it seems that there is little difference with energy, with the exception of antimony,
which has a relative change much smaller than its error. SbL seeing little difference from layer 
thickness is not surprising, given its high energy, however the relative constancy of the change in 
the other materials is unexpected. This can be understood to be a function of each pure material 
giving approximately the same relative change in self-absorption, where the AlAs compound has 
different behaviour because the presence of the As changes its characteristics while the SbL values 
experience statistically negligible change due to its much higher energy. 

thickness, t (nm) SbL ±sd
1 3604 18

4 3600 20
7 3620 20

10 3610 30
% change 0.23

Table 4.5.2.6 continued

Figure 4.5.2.5 is the equivalent of Figure 4.5.2.3 in comparing Al and AlAs instead of In and InAs, 
while Table 4.5.2.7 is the equivalent of Table 4.5.2.4. The same trend is visible, specifically that the 
curves for each thickness are very similar. The results of taking the ratio of the AlK curves from the 
pure aluminium over the AlAs equivalent, shown in Table 4.5.2.7, show a consistent trend for the 
pure Al intensity over the compound AlAs. This is not a surprise, as the absorption cross-section of 
the compound has already been established as larger than that of the pure element.
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thickness, t 
(nm)

NK ±sd AlK ±sd AlKAs ±sd SiK ±sd PK ±sd

1 145.99 0.09 369.8 0.3 367.3 0.3 508.1 0.7 733.2 1.2

4 153.37 0.06 388.1 0.3 375.6 0.2 533.4 0.5 770.3 1.0
7 160.39 0.04 405.7 0.3 383.1 0.2 557.6 0.5 805.4 1.1

10 167.41 0.04 423.2 0.2 390.4 0.3 581.2 0.6 839.6 0.9
% change 12.80 12.63 5.92 12.57 12.66

Table 4.5.2.6: The effect of layer thickness on the λ values of various X-rays. ‘Specimen Tilt’ 
method was used. Simulation run in NISTMonte at beam energy 197keV with 107 electron 
histories. θ = α + 25°. Correction for tilt was applied. Sample is comprised of the specified 
thickness of either AlAs (density = 3.81gcm-3) or the specified pure element at the bottom 
surface of a 30nm GaAs (density = 5.316gm-3) overlayer. sd = standard error. '% change' is the 
percentage difference between t = 1nm and t = 10nm of each material, to illustrate the total 
change over this range of thicknesses.
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Figure 4.5.2.5: Comparison of ratios of AlK series 
between pure aluminum and aluminum arsenide. 
Note that all the pure aluminium and the 'AlAs t = 
1nm' are superimposed on each other.

thickness, t (nm)

specimen
tilt, α (°)

1 4 7 10

-10 1.0000 1.0000 1.0000 1.0000

-5 1.0006 1.0027 1.0046 1.0063

0 1.0009 1.0042 1.0072 1.0103

5 1.0011 1.0052 1.0091 1.0129

10 1.0012 1.0060 1.0104 1.0147

15 1.0013 1.0063 1.0113 1.0160

20 1.0014 1.0069 1.0119 1.0171

25 1.0014 1.0071 1.0125 1.0200
Table 4.5.2.7: Ratios of aluminium over 
aluminium arsenide from Figure 4.5.2.5 for 
their respective thickness. Sample is comprised
of the specified thickness of either AlAs 
(density = 3.81gcm-3) or pure aluminium at the 
bottom surface of a 30nm GaAs (density = 
5.316gm-3) overlayer.

Table 4.5.2.8 shows the results of using the thickness-specific ('Varying') or average ('Average') λ 
values for each material. Similar to Table 4.5.2.5 these calculation are performed for layers 
embedded under 30nm of GaAs, and as such the correct result would be 30nm plus half the 
thickness of the layer. The 'Varying' results perform exactly as expected, in that they give 
approximately the correct result for each material. The 'Average' calculations from all but the AlAs 
and Sb, however, give a similar result for each layer thickness, indicating that the constant λ value 
has a stronger effect than the changes in detected intensity from changing the layer thickness. For 
AlAs and Sb the 'Average' value is much closer to the 'Varying'. For AlAs this can be attributed to 
the higher self-absorption of the compound compared to the pure element, in that a change in the 
layer thickness has a much greater effect on the detected intensity. With Sb this can be understood 
as a result of the extremely high λ value, resulting in a negligible difference in absorption between 
the GaAs matrix and the Sb layer.
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thickness, t
(nm)

NK AlK for pure Al AlK for AlAs
Varying Average (λ

=156.79)
Varying Average (λ

=396.67)
Varying Average (λ

=379.09)

1 30.56±0.10 32.82±0.11 30.60±0.17 32.82±0.18 30.58±0.14 31.56±0.14
4 32.04±0.07 32.75±0.07 32.07±0.18 32.78±0.19 32.06±0.11 32.36±0.11

7 33.53±0.06 32.78±0.06 33.57±0.14 32.82±0.14 33.56±0.11 33.24±0.11
10 35.03±0.06 32.81±0.06 35.06±0.14 32.86±0.13 35.09±0.18 34.07±0.17

Table 4.5.2.8: Comparison of calculated depth, d, for different materials with layers of different 
thicknesses. Correct d is 30nm + half thickness. ‘Specimen Tilt’ method was used. Simulation run 
in NISTMonte at beam energy 197keV with 107 electron histories. θ = α + 25°. Correction for tilt 
but not straggling was applied. Sample is comprised of the specified thickness of either AlAs 
(density = 3.81gcm-3) or the specified pure element at the bottom surface of a 30nm GaAs (density 
= 5.316gm-3) overlayer. 'Varying' λ is that given in Table 4.5.2.6.

thickness, t
(nm)

SiK PK SbL

Varying Average (λ
=545.05)

Varying Average (λ
=787.12)

Varying Average (λ
=3608.88)

1 30.6±0.3 32.9±0.3 30.8±0.4 32.9±0.4 31.1±1.3 31.1±1.3
4 32.1±0.2 32.8±0.2 32.1±0.3 32.8±0.3 32.7±1.4 32.8±1.4

7 33.6±0.2 32.8±0.2 33.7±0.4 32.9±0.3 34.1±1.3 34.0±1.3
10 35.1±0.3 32.9±0.3 35.1±0.3 32.9±0.3 36±2 36±2

Table 4.5.2.8 continued.

Figure 4.5.2.6 shows the simulated results of calculating λ using the straggling-corrected 'Variable 
Depth' method in various matrices for different pure element thin layers. This is intended to 
demonstrate the difference between various materials, and in particular how λ changes with material
density. It is clear that while there is a general trend for λ to decrease with increasing density, there 
is no easily discernible pattern. Instead, the λ values are significantly scattered around this broadly 
linear decrease, with the InL and SbL results from BN being the most obviously different.
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Figure 4.5.2.6: Calculated λ for four lines in a variety of substrates. ‘Variable Depth’ method used. 
Correction for straggling applied. Simulation run in NISTMonte at beam energy 197keV with 107 
electron histories at constant take-off angle of θ = 90°. Sample is comprised of 10nm of the 
specified pure element at the bottom surface of an overlayer that varies from 10nm to 190nm in 
steps of 10nm.

Figure 4.5.2.7 shows calculated λ values taken from the NIST XCOM database [66] for the same 
materials as Figure 4.5.2.6. These are calculated from the photoelectric absorption using the 
following equation:

λ=
1

μ
ρ ]spec

A

⋅ρ

⋅
1

10−7 Equation
4.5.2.1

where μ
ρ ]spec

A

is the mass absorption coefficient in cm2g-1, ρ is the density in gcm-3 and the 10-7 

converts the resulting value into nanometres. The results show a general trend for decreasing λ with 
increasing density remains, to broadly the same extent. The reasons for the difference is not clear, 
nor is which should be preferred. Obviously, using the λ value from a Monte Carlo program to 
calculate depth using data from that same program would give superior, self-consistent results, 
however determining which is the most valid experimentally requires considerable experimental 
data. Verifying which, if either, is correct could also be accomplished by the parameters used to 
arrive at the answers in in a Monte Carlo program, as doing so would leave only 'real world' effects 
(e.g. beam spreading) and eliminate any differences caused by variations in the absorption and 
density parameters.
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Figure 4.5.2.7: Calculated λ using equation 4.5.2.1 and photoelectric absorption coefficients taken 
from NIST XCOM [66].

Figure 4.5.2.8 show all possible ratio combinations using the X-ray lines from Figure 4.5.2.6. This 
is an attempt to determine if there exists  any systematic ratio between the various materials, so that 
it might be possible to determine a reliable inference and from that calculate others. It is clear that 
InL/SbL gives a strong trend for values near 0.763, with a slight difference for AlN and BN. PK/InL and
PK/SbL also give reasonably stable ratios for certain ranges of density, as does AlK/PK. Verifying 
whether these values are accurate would require comparison to experimental data, however it is 
worth noting that there is no particular reason to think that the approach is invalid, so that any of 
these the values themselves could be incorrect without invalidating the approach.
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In general, the calculated λ shown in this section are likely incorrect by some constant factor but are
correct in the trends seen between different materials and methods. This is typical of simulations, 
regardless of which Monte Carlo program is used. In terms of accuracy, Hurricane and NISTMonte,
the programs that would be expected to give good results, instead give values that are too low and 
too high, respectively. 'Calibrating' these results, by comparing them to experimental values, noting 
the difference and then extrapolating to other values, would in principle allow the use of both to 
calculate λ values without direct comparison to experiment.

A typical TEM sample (i.e ~100nm) would likely provide enough change in absorption to calculate 
λ with good accuracy, regardless of the methods used. This is obvious in the calculation of λ for 
such X-ray lines as InL while using a sample that is in many cases <100nm thick.

4.6 Total Sample Thickness by the Sample Flip Method

It is possible to utilise equation 4.1.1 to determine the total thickness of a sample that is 
homogeneous other than having a thin layer at a certain depth, if λ is known. This can be 
accomplished by taking a data series, inverting the sample and then taking another data series in the 
same region. In principle, the total sample thickness would then be the sum of the two resulting 
calculated depths of the thin layer.

Obviously, it is not quite so simple. The most prominent problem is that the same region must be 
analysed twice from different viewpoints. Inverting the sample would require removing and re-
inserting the sample, which in turn would introduce slight changes in orientation. While these 
changes would be invisible to the naked eye, even a change of 1μm would cause considerable 
difficulty in locating the same region. This, of course, assumes that the region is readily identifiable 
from the inverted viewpoint, which would not be the case in most cases.
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The data that follows was simulated using a 200nm GaAs sample. Part of the GaAs was replaced 
with either Al or In of varying thicknesses and depths, but the total sample thickness of 200nm 
remains constant. In this case, it was considered more expedient to specify the depth and the centre 
of the layer, i.e. a 5nm layer embedded 50nm within the sample occupies the depth range 47.5nm to
52.5nm.

α2 (°)
-5 0 5 10 15 20 25

α1 (°)

-10 10.2 10.3 10.5 10.6 10.6 10.7 11.1
-5 10.3 10.7 10.9 10.8 11.0 11.6

0 11.4 11.4 11.2 11.5 12.3
5 11.6 11.1 11.5 12.8

10 10.6 11.5 13.5
15 12.7 15.6

20 19.5
Table 4.6.1: Calculated d (nm) results with applied tilt correction. Simulation run in NISTMonte at
beam energy 197keV with 107 electron histories. θ = α +25°. Sample is comprised of 1nm of pure 
indium 10nm deep inside a 200nm GaAs (density = 5.316gm-3) matrix. Mean 11.7±1.9nm.

α2 (°)

-5 0 5 10 15 20 25

α1 (°)

-10 189.5 188.8 189.4 189.7 190.3 191.2 191.8

-5 187.8 189.4 189.8 190.8 192.3 193.2
0 191.7 191.6 192.9 194.9 196.1

5 191.5 193.8 196.9 198.3
10 197.0 201.0 202.3

15 206.4 206.3
20 206.2

Table 4.6.2: Calculated d (nm) results with applied tilt correction. Simulation run in NISTMonte at
beam energy 197keV with 107 electron histories. θ = α +25°. Sample is comprised of 1nm of pure 
indium 10nm deep inside a 200nm GaAs (density = 5.316gm-3) matrix. This is a companion table 
to Table 4.6.1. Mean 194.3±5.6nm.

Table 4.6.1 and Table 4.6.2 show the calculated depths for a 1nm thick In layer embedded 9.5nm 
and 189.5nm within the sample, respectively. These depths were chosen to mimic the effect of 
inverting the sample. The pattern of increasing deviation with take-off angle described in Section
4.3 also holds for this data set, as expected. Their summation is shown in Table 4.6.3.
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α2 (°)
-5 0 5 10 15 20 25

α1 (°)

-10 199.7 199.1 199.9 200.3 200.9 201.9 202.9
-5 198.1 200.1 200.7 201.7 203.3 204.8

0 203.1 203.1 204.1 206.3 208.3
5 203.1 204.9 208.4 211.1

10 207.5 212.5 215.8
15 219.1 222.0

20 225.7
Table 4.6.3: Summation of Table 4.6.1 and Table 4.6.2. Expected result = 200nm. Mean 
206.0±7.2nm.

It is clear that summing the two depths does give the correct answer, though the effects of 
increasing take-off angle do give increasingly incorrect results. Increasing the thickness of the In 
layer to 5nm and 10nm gives the summed result seen in Table 4.6.4 and Table 4.6.5.

α2 (°)

-5 0 5 10 15 20 25

α1 (°)

-10 198.1 198.8 199.2 199.8 200.5 201.1 202.3

-5 200.1 200.3 201.2 202.2 203.0 204.8
0 200.5 202.1 203.6 204.8 207.3

5 204.4 206.1 207.4 210.8
10 208.5 209.7 214.5

15 211.3 219.1
20 229.2

Table 4.6.4: Summation of depth calculation with tilt correction applied from 5nm pure indium 
embedded 10nm and 190nm within 200nm of GaAs (density = 5.316gcm-3). Expected result = 
200nm. Simulation run in NISTMonte at beam energy 197keV with 107 electron histories. θ = α 
+25°. Mean 205.4±6.9nm.
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α2 (°)
-5 0 5 10 15 20 25

α1 (°)

-10 197.5 197.2 297.9 198.5 198.8 200.0 201.3
-5 196.6 198.2 199.3 199.7 201.4 203.5

0 200.6 201.6 201.8 204.3 207.1
5 203.0 202.8 206.5 210.6

10 202.5 209.3 215.0
15 218.3 224.4

20 232.5
Table 4.6.5: Summation of depth calculation with tilt correction applied from 10nm pure indium 
embedded 10nm and 190nm within 200nm of GaAs (density = 5.316gcm-3). Expected result = 
200nm. Simulation run in NISTMonte at beam energy 197keV with 107 electron histories. θ = α 
+25°. Mean 204.7±8.6nm.

It is clear that while there is some systematic change in the extent of the deviation at higher take-off
angles, the difference for lower take-off angles is negligible. This can be interpreted as it being 
reasonable to assume that a change in the thickness of the layer does not have a strong effect, 
though it should be noted that this situation is for d<<λ. Looking at the means of the summations, it 
is clear that there is no significant difference for different thicknesses of the thin layer.

Table 4.6.6 and Table 4.6.7 are the Al equivalent of Table 4.6.1 and Table 4.6.2, in that they are for 
a 1nm AlAs film buried 10nm within a 200nm GaAs sample. Again the trend seen in Section 4.3.2 
holds consistent, in that the effects of beam straggling are much less for Al than for In. 

α2 (°)

-5 0 5 10 15 20 25

α1 (°)

-10 10.0 10.1 10.1 10.1 10.1 10.2 10.2

-5 10.1 10.1 10.1 10.2 10.2 10.3
0 10.1 10.2 10.2 10.3 10.4

5 10.3 10.3 10.5 10.5
10 10.4 10.6 10.6

15 10.9 10.8
20 10.7

Table 4.6.6: Calculated d (nm) results with applied tilt correction. Simulation run in NISTMonte at
beam energy 197keV with 107 electron histories. θ = α +25°. Sample is comprised of 1nm of pure 
aluminium 10nm deep inside a 200nm GaAs (density = 5.316gm-3) matrix. Mean 10.3±0.2nm
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α2 (°)
-5 0 5 10 15 20 25

α1 (°)

-10 189.7 189.8 189.8 189.8 189.9 190.0 190.1
-5 189.8 189.9 189.9 190.1 190.2 190.4

0 190.1 190.0 190.3 190.5 190.7
5 190.0 190.4 190.8 191.1

10 191.0 191.4 191.6
15 191.9 192.0

20 192.1
Table 4.6.7: Calculated d (nm) results with applied tilt correction. Simulation run in NISTMonte at
beam energy 197keV with 107 electron histories. θ = α +25°. Sample is comprised of 1nm of pure 
aluminium 10nm deep inside a 200nm GaAs (density = 5.316gm-3) matrix. Mean 190.5±0.7nm.

Their summation is shown in Table 4.6.8. Clearly, the total thickness is very accurately calculated, 
with the previously noted exceptions of those data points significantly affected by beam straggling.

α2 (°)

-5 0 5 10 15 20 25

α1 (°)

-10 199.8 199.8 199.9 200.0 200.0 200.2 200.3

-5 199.9 200.0 200.0 200.2 200.5 200.6
0 200.2 200.2 200.5 200.8 201.0

5 200.2 200.7 201.2 201.5
10 201.4 202.0 202.0

15 202.8 202.8
20 202.8

Table 4.6.8: Calculated d (nm) results with applied tilt correction. Summation of Table 4.6.6 and
Table 4.6.7. Mean 200.8±1.0nm.

The summed results for a similar simulation where the Al layer thickness is changed to 5nm and 
10nm respectively are shown in Table 4.6.9 and Table 4.6.10. The deviation from the correct value 
stems from the previously-explored change in λ with changing layer thickness. As described in 
Section 4.5, this change effects softer X-rays much more strongly than harder X-rays. This change 
causes an underestimation of the depth, particularly for the layer near the surface, which then results
in the summed result being incorrect.
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α2 (°)
-5 0 5 10 15 20 25

α1 (°)

-10 195.8 195.8 195.9 196.0 196.0 196.2 196.3
-5 195.8 195.9 196.1 196.2 196.4 196.6

0 196.1 196.4 196.5 196.7 197.0
5 196.7 196.8 197.1 197.4

10 196.9 197.4 197.8
15 198.1 198.5

20 199.0
Table 4.6.9: Summation of depth calculation with tilt correction applied from 5nm pure aluminium
embedded 10nm and 190nm within 200nm of GaAs (density = 5.316gcm-3). Expected result = 
200nm. Simulation run in NISTMonte at beam energy 197keV with 107 electron histories. θ = α 
+25°. Mean 196.7±0.9nm.

α2 (°)

-5 0 5 10 15 20 25

α1 (°)

-10 190.0 190.1 190.1 190.2 190.2 190.3 190.5

-5 190.2 190.2 190.3 190.4 190.6 190.7
0 190.2 190.4 190.6 190.8 191.0

5 190.7 190.9 191.1 191.5
10 191.2 191.6 191.9

15 192.0 192.4
20 192.9

Table 4.6.10: Summation of depth calculation with tilt correction applied from 10nm pure 
aluminium embedded 10nm and 190nm within 200nm of GaAs (density = 5.316gcm-3). Expected 
result = 200nm. Simulation run in NISTMonte at beam energy 197keV with 107 electron histories. 
θ = α +25°. Mean 190.8±0.8nm.

While the layer thickness is largely irrelevant when d<<λ, the results of Table 4.6.9 and Table 4.6.10
indicate that such is not the case when d and λ are within an order of magnitude of each other. In 
this case, the means of the summations do change with layer thicknesses. This appears to be a 
function of the first analysis (i.e. for 10nm overlayer thickness) giving an underestimate of the 
depth which increases with the thin layer thickness. This is a result of self-absorption in the layer 
which would affect AlK much more strongly than InL. 

Running a similar set of simulations for pure Al layers of 1, 5 and 10nm thickness embedded 50nm 
and 100nm within a GaAs sample gives an equivalent result. This includes the increased 
underestimation of the total thickness due to self-absorption, though this effect becomes less 
pronounced as the depth increases.

4.7 Quantification

As already mentioned, determining the depth of a thin layer in a thin foil sample can be used to 
achieve a more accurate quantification result. The difference between a homogeneous sample of 
some average chemical composition and one with an embedded thin layer is the extent of the 
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absorption, in that changing the take-off angle would cause different changes in the two samples. As
such, it is logical to approach the problem of utilising the improved knowledge of the sample 
composition through the absorption correction.

This can be done by replacing the material's absorption correction used in the homogeneous 
approaches with the following equation:

a j=e
−D

λ jsin θ Equation 4.7.1

where D = thickness of overlayer in nm, λj the absorption decay length in nm of X-ray line j in 
material of thickness D and given ρ and θ is the take-off angle.

4.8 Other methods of determining thin layer depth

4.8.1 Graphical comparison of change in X-ray intensity ratio with varying 
take-off angle

Using equation 4.1.1 is not the only way to calculate the depth of a thin layer. Another method, 
described in the following section, called 'Graphical comparison', attempts to compare the degree of
absorption for two or three different X-ray intensities. By taking the ratio of an X-ray from the thin 
layer to another from the matrix and plotting that ratio against changing take-off angle, it is 
theoretically possible to determine the thickness of the matrix material above the thin layer. 
Specifically, the slope and y-intercept of the ratio can be compared to simulated data in order to 
deduce the depth of the embedded layer, while the absolute value at some consistent take-off angle 
(e.g. 0°) in conjunction with the depth reflects the chemical composition.
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Figure 4.8.1.1: Example of typical plot. Simulation run in CASINO at 200keV beam energy with 
108 electron trajectories, for 10nm of pure indium at the bottom surface of 60nm of GaAs (density =
5.316gcm-3). θ = α +25°.

Taking two ratios improves the method considerably. If the matrix material emits two X-rays, one 
of higher energy than the thin layer's X-ray line while the other is of lower energy, then taking the  
ratios of the two X-rays will converge towards a value in a manner distinctive to the structure of the
sample, as seen in Figure 4.8.1.2. Here, there are three different geometries: where the thin layer is 
on top of the matrix, where the thin layer is embedded within the matrix and when the thin layer is 
below the entire matrix. It is obvious that when the thin layer is on top of the matrix, the lower 
energy ratio has a strong slope while the higher energy ratio has a very weak slope. The inverse is to
some extent true when the thin layer is underneath the matrix, where the trend would become more 
pronounced if the matrix were to become thicker. It is worth noting that the situation when the thin 
layer is embedded within the matrix is distinguishable from the situation where the thin layer is 
underneath the matrix, in that the latter scenario would detect more of both high and low energy X-
rays from the matrix.
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Figure 4.8.1.2: NISTMonte simulation of 1nm of InAs (density = 5.67gcm-3) within a 99nm thick 
GaAs (density = 5.316gcm-3) matrix. Layer is positioned on top (d = 0), within (d = 60nm) or 
under (d = 99nm) the matrix. Simulation run at beam energy 197keV with 107 electron histories. θ 
= α +25°.

Figure 4.8.1.3 shows a comparison between NISTMonte and CASINO. Note that they are on 
different scales. It is already known that the simulation programs produce different absolute 
quantities of X-rays and so it is no surprise that their scale is different. Of particular interest is the 
fact that their curvature is different: NISTMonte seems to show a stronger slope than CASINO. 
Determining which, if either, is more accurate would require experimental calibration. 
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Figure 4.8.1.3: Comparison of simulation programs. θ = α +25°. NISTMonte simulations run at 
beam energy 197keV, 107 electron histories, for a 8nm thick layer of In0.24Ga0.76As (density = 
6.0262gcm-3) in a 424nm GaAs (density = 5.316gcm-3) matrix, where the overlayer is as specified in
the legend. CASINO simulations run at beam energy 197keV, 106 electron histories, for a 8nm thick
layer of In0.24Ga0.76As (density = 6.0262gcm-3) in a 236nm GaAs (density = 5.316gcm-3) matrix, 
where the overlayer is as specified in the legend.

4.8.2 Determination of the depth of a thin layer by matching absorption curves

The two methods presented in this subsection rely on the same principle as equation 4.1.1, that the 
degree of absorption changes predictably with changing take-off angle. The first method used a 
model to emulate the effects while the second uses simulations. In either case, the general idea is to 
find the modelled or simulated curve that best fits the experimental data and thereby matches the 
experimental sample composition and geometry.

4.8.2.1 Modelled absorption matching

The idea that the absorption changes with take-off angle can be  approached from a different 
direction. If both the sample and the electron beam intensity are assumed to be constant then it is 
possible to use the ratio of X-ray intensities to determine, via comparison between modelled and 
experimental results, the depth of the layer and, ideally, the thickness of that layer.

Taking the ratio of the detected intensities for one specific X-ray line of intensity I and attenuation 
wavelength λ results in the following equation:
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I 1

I 2

=
e

−d
λ∗sin(θ 1)

e
−d

λ∗sin(θ 2)

Equation
4.8.2.1.1 

where I1,2 are the X-ray intensities, θ1,2 the respective take-off angles, λ the attenuation wavelength 
described in section 4.5 and d is the depth of the layer. This equation can be used to plot a number 
of curves, each with a different assumed value of d. Matching the simulated to the experimental 
results could, in principle, yield the depth of the layer. 
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Figure 4.8.2.1.1: Comparison of simulation and model (equation 4.8.2.1.1). Simulation run in 
NISTMonte at beam energy 197keV with 107 electron histories. θ = α +25°. Sample is comprised 
of 5nm of pure aluminium at the bottom surface of a 10nm thick GaAs (density = 5.316gm-3) 
overlayer. λ = 369nm. Straggling correction applied to simulated data. 

Figure 4.8.2.1.1 shows the result of such a comparison for 5nm of Al under 10nm of GaAs using λ =
369nm. It is clear that the curves are similar but the absolute values differ because of self-
absorption in the layer. 

Bringing the model closer to the results requires correcting for thin self-absorption in the layer. 
While this is generally regarded as negligible this appears not to be valid for this method. 
Correcting for this requires using the following equation:
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Equation
4.8.2.1.2 

where I1,2 are the X-ray intensities, θ1,2 the respective take-off angles, λmatrix,material are the attenuation 
wavelengths (described in section 4.5) of the matrix and the layer, respectively, d is the depth of the 
thin layer and t is the thickness of the layer. This results in the improved curve shown in Figure 
4.8.2.1.2, which is obviously superior in accuracy to that seen in Figure 4.8.2.1.1.
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Figure 4.8.2.1.2: Comparison of simulation and model (equation 4.8.2.1.2). Simulation run in 
NISTMonte at beam energy 197keV with 107 electron histories. θ = α +25°. Sample is comprised 
of 5nm of pure aluminium at the bottom surface of a 10nm thick GaAs (density = 5.316gm-3) 
overlayer. λ = 369nm. Simulated data corrected for straggling. 

This practice of dividing by another data point is acceptable in simulations where the data points 
always follow the expected trend, however, in an experimental analysis this is often not the case. If 
nothing else, statistical error will ensure that no individual data point is a suitable reference for 
normalising with respect to. The solution to this is to attempt to normalise with respect to each data 
point in a separate analysis, so that the final conclusion will have a number of results equal to the 
number of data points in the data set. Determining the values of d and t would be a matter of 
minimising some numerical value describing the difference between the model and the 
experimental curve. An obvious candidate would be the χ-squared goodness of fit (i.e. sum of 
squares (i.e. Σ (modelled value – experimental value)2 over the entire range)).
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4.8.2.2 Simulated absorption matching

The above method ('Modelled Absorption Matching') relies on both the model and the parameters 
being correct. Another way of approaching the same problem is to use simulations instead of the 
model of equation 4.8.2.1.2, as this considerably simplifies the problem from the user's perspective 
by removing the burden of ensuring that the model is correct, both in form and in its parameters. It 
would also theoretically allow for different geometries, such as where the thin layer is curved or 
inconsistent in some known way, such as a change in layer thickness or chemical composition. The 
disadvantage is that this approach is computationally intensive, as each data point must be 
simulated individually. By normalising a series of simulated curves, each with different overlayer 
thickness, to a particular experimental data point it is possible to observe how the resulting sum of 
squares between the simulated and experimental curves varies with overlayer thickness. If this 
variation has a minimum, then this closest match between the simulations and experiment is the 
overlayer thickness estimated by this method.

4.8.3 Curve Fit

This approach is built upon the same foundation as equation 4.1.1: as already mentioned, the 
procedure for calculating λ is to plot the natural log of the X-ray intensity against the effective 
thickness between the X-ray source and detector. Recognising that the effective thickness can be 
calculated by

t eff =
d

sinθ

where teff is the distance travelled through the sample between the X-ray point of origin and the 
detector, d is the depth of the thin layer and θ is the take-off angle. Taking into consideration the 
fact that take-off angle θ is under direct user control and therefore can be easily manipulated, it 
becomes clear that λ's definition as the inverse slope of a plot of loge I vs. teff means that it is 
possible to fit the intensities to that slope by varying the assumed depth. This can be achieved 
iteratively by either the 'Detector Tilt' or 'Specimen Tilt' methods of λ calculation by inserting a 
value of d, observing how the calculated λ differs from the known value, then inserting another 
value of d based on that observation. This process would converge to the correct value for the depth.

Table 4.8.3.1 shows simulated results when using two different λInL values (5nm thick pure indium 
layer in GaAs, density = 5.316gcm-3). These two values are from section 4.5.1, where they were 
calculated by the 'Specimen Tilt' and 'Variable Depth' methods. It is clear that the method functions 
reasonably well, better for 1970keV beam energy than for 197keV. Both beam energies are 
consistent in their slopes. While the higher energy results are better than those from lower energy, at
70.5nm, 90.5nm and 110.5nm depth with λ = 2796nm the result is fractionally outside the layer, 
indicating that an incorrect λ value provides erroneous results, regardless of the quality of the data. 
Unfortunately, the method does not yet contain an error estimate. 
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fitted depth, d (nm), for:
true input depth, d 
(nm)

λ = 2776nm (Variable depth) λ = 2796nm (Specimen tilt)
U = 197keV U = 1970keV U = 197keV U = 1970keV

10.5 10.8 10.5 10.9 10.6
30.5 31.0 30.5 31.2 30.8
50.5 51.2 50.5 51.6 50.9
70.5 71.3 70.5 71.9 71.1
90.5 91.4 90.5 92.1 91.2

110.5 111.5 110.5 112.3 111.3
Table 4.8.3.1: Comparison of d values calculated for two different λ values.  Simulations run in 
NISTMonte for 107 electron histories. ‘Specimen Tilt’ method used. U is electron beam energy.

4.8.4 Piecewise curve fit

As already mentioned, the weakness of the above method is a reliance on minimal noise and data 
scatter. This is not always experimentally feasible, most commonly due to either insufficient 
counting statistics (leading to noise) or inconsistent sample composition such as the thin layer 
changing thickness or the chemical composition of the sample along the X-ray path changing 
(leading to data scatter). A potentially superior method would be to consider each data point 
separately and attempt to fit a curve that utilises only the most reliable points.

Given that a plot of natural log of the intensity against effective depth (i.e. ln I vs. d / sin (θ)) will be
linear, it is simple to consider a data point and then use λ to calculate where the adjacent points 
should be. For example, for a data set that begins at +15° take off angle and increases by 5° to 50°, 
it would be possible to take the natural log of the intensity at the +25° data point and then calculate 
using λ the expected natural log of the intensities for +20° and +30°, as sketched in Figure 4.8.4.1.
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Figure 4.8.4.1: Demonstration of method: how λ (= 2770nm) can be used to plot a linear curve 
centred around a known data point. Effective depth = actual depth (d) / sin (take-off angle (θ)). 

Doing the same for every data point would effectively give a series of linear plots, as shown in
Figure 4.8.4.2.
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Figure 4.8.4.2: Extension of Figure 4.8.4.1 to an entire tilt series. λ = 2770nm. Effective depth = 
actual depth (d) / sin (take-off angle (θ)). d = 50.5nm. θ  = 25°. Simulation run in NISTMonte at 
beam energy 197keV with 107 electron histories. Sample is comprised of 1nm of InAs (density = 
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5.67gcm-3) at the bottom surface of a 50nm thick GaAs (density = 5.316gm-3) overlayer. 

Varying d will then cause the plots to change accordingly, which can be exploited to bring the 
curves together. The ideal would be to overlap the projected points with the actual, however doing 
so in every instance would mean that this method is not required (as the previous technique would 
function well enough) and so instead the user can attempt to get the best fit by eye.
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Figure 4.8.4.3:Complement to Figure 4.8.4.2, using d = 55nm to demonstrate the change. λ = 
2770nm. θ  = 25°. Effective depth = actual depth (d) / sin (take-off angle (θ)). Simulation run in 
NISTMonte at beam energy 197keV with 107 electron histories. Sample is comprised of 1nm of 
InAs (density = 5.67gcm-3) at the bottom surface of a 50nm thick GaAs (density = 5.316gm-3) 
overlayer. 
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Figure 4.8.4.4: Complement to Figure 4.8.4.2, using d = 45nm to demonstrate the change. λ = 
2770nm. θ  = 25°. Effective depth = Actual depth (d) / sin (take-off angle (θ)). Simulation run in 
NISTMonte at beam energy 197keV with 107 electron histories. Sample is comprised of 1nm of 
InAs (density 5.67gcm-3) at the bottom surface of a 50nm thick GaAs (density = 5.316gm-3) 
overlayer. 

The difference between Figure 4.8.4.3 and Figure 4.8.4.4 is very slight to the eye, despite a relative 
change of 20% of the true depth. This, unfortunately, means that the method is not sensitive enough 
to be useful experimentally, as a change in the order of magnitude in the estimated depth is required
to cause a perceptible change in the graph. Note that applying a numerical means of comparing 
accuracy (such as summing the differences between all projected data points and their experimental 
counterparts) would transform this method into that seen in section 4.8.3.

4.9 Conclusion

The details of equation 4.1.1 were explored. In simulations, this method worked very well, giving 
distinct, well-defined Gaussian distributions even for very thin overlayers. This method was also 
shown to work in simulations for double and triple layer systems, being potentially sensitive to 
changes even when the additional layers are somewhat deeper than the first.

The means of calculating the variable λ was also discussed. Comparison of the different methods of 
calculation led to the conclusion that while the detector tilt method gives results closest to the mean,
this seems to be a result of its large uncertainty. Even though the 'specimen tilt' method of 
calculating λ is not the exact equivalent of the 'variable depth' method, the difference is sufficiently 
small as to likely be negligible for experimental conditions. Looking at different materials saw that 
there are some trends that can be exploited: the constancy of the ratio of λInL/λSbL seems especially 
interesting. It was also discovered that the user must be aware that fairly soft X-rays can see a 
change in λ due to the thickness of the thin layer: this could, in some cases, allow a user to 
determine the thickness of the layer.
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Further, several other methods of determining the depth of thin layer, mostly extrapolations of 
equation 4.1.1, were discussed. In each case, the theoretical results seem promising, though their 
experimental efficiency was not discussed. In particular, the graphical methods ('Graphical 
comparison' and 'Piecewise curve fit') may be susceptible to variations in perception between users, 
while the remainder could suffer from statistical or over-sensitivity problems.

Comparison to existing methods (that described in section 2.6.2 would be one example) leads to the
conclusion that in theory, these methods could be extremely useful, for example where tilting the 
sample is possible but changing the beam voltage to appreciable affect would not.

5 Experimental results for methods shown in Chapter 4

5.1 8nm thick In0.24Ga0.76As layer embedded 95nm deep in a GaAs matrix

Figure 5.1.1 shows the EDX spectrum from a In0.24Ga0.76As layer buried under 95nm of GaAs using 
5° shielding by the sample holder, acquired over the course of an afternoon. This composition and 
layer thicknesses were confirmed by EDX analysis and imaging of the layer in a cross-sectional 
sample, as seen in Figure 5.1.3. 

Figure 5.1.1: EDX spectrum for this experimental sample. 0° specimen tilt.
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Figure 5.1.2: ADF-STEM of cross-sectional sample.

Figure 4.4.2 shows the livetime-corrected InL intensity from this sample recorded in plan-view (top)
geometry. Note that the corrections are sequential from top down (i.e. 'Tilt corrected' also has the 
livetime correction, while 'Shielding corrected' has all three corrections). It is clear that the general 
form but not the extent of the shielding corrected experimental curve matches the simulated data, 
albeit with considerable scatter. Note that several tilts have two readings, which generally lie within 
each other's error bars.
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Figure 5.1.3: Experimental results from a GaAs sample with an 8nm In0.24Ga0.76As embedded 95nm 
deep within. Note that when the data points from several ranges overlay each other for a significant 
range of sample tilts, most significantly for 'Tilt corrected', which is only particularly visible for 
greater than ~+12° tilt. Simulation normalised with respect to experimental 0° tilt data point. The 
simulated data has been corrected for tilt but not for shielding by the specimen holder. θ = α + 25°. 
Simulation run in NISTMonte at beam energy 197keV with 106 electron histories, for a 8nm 
In0.24Ga0.76As layer at the bottom surface of a 94nm thick GaAs (density = 5.316gm-3) overlayer. 

5.1.1 Using  equation 4.1.1

The result of applying equation 4.1.1 to calculate the depth of the In0.24Ga0.76As layer solely from the
above plan-view measurements is shown in Figure 5.1.1.1. It is clear that there is a tremendous 
amount of scatter, including many numerical results which are either negative (indicating that the 
slope is trending downward with increasing tilt) or measured in the microns: too large to be 
physically reasonable for an electron transparent sample. There could be a very slight maximum in 
the range of 100-120nm, though given the scatter and the number of physically impossible results 
this is not to be considered significant. Taking an average of all values between 0nm and 500nm 
gives 200.0±132.1, which is both far larger than the nominal and also has a relative error that is 
large enough that no meaningful conclusion can be drawn. Fitting a curve using the equation A * (1-
e(C+offset)) and Excel's SOLVER function gives results that are more consistent but ranging from 
~700nm to ~2nm, with no obvious means of differentiating which are correct.
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Figure 5.1.1.1: Histogram of calculated d from Figure 4.4.2. λ = 2525nm. Nominal d is 99nm. 
Average of all values between 0nm and 500nm = 200.0±132.1, where 45.5% of all data points fall 
into that range.

Attempting the analysis with different parameters for the shielding correction does not give 
appreciably better results.

Attempting to normalise with respect to AsK gives the results shown in Figure 5.1.1.2, where the 
detector efficiencies of InL and AsK were estimated as 73% and 79%, respectively (Figure 2.3.1). 
Note that the λ is so different so as to follow the trend found in section 4.5.2, though using much 
smaller values does not produce results closer to the expectation. Again the scatter is large, this time
without even a small maximum.
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Figure 5.1.1.2: Histogram of calculated d using InL/AsK from the sample in Error: Reference source 
not found. λ = 3900nm. Nominal d is 99nm. Average of all values between 0nm and 500nm = 
233.8±132.4, where 33.8% of all data points fall into that range.

It is reasonable to conclude that despite the apparently correct trend of the data, no answer can be 
found using equation 4.1.1 for this sample. This is likely due to the large statistical error in the data. 
It should be noted that the total indium content, averaged over the sample thickness, was 0.9at% 
and as such this difficulty is not entirely unexpected.

5.1.2 Graphical Comparison

Figure 5.1.2.1 shows simulated results for different overlayer thicknesses using the ratios of InL to 
AsK or InL to AsL, where the thin layer is moved about within a matrix of thickness 424nm, where 
this thickness was arrived at as an estimate by comparison with simulations. This causes the 
distinctive change in the ratios seen in Figure 4.8.1.1. For reference, arsenic was chosen instead of 
gallium as the quantity of As is homogeneous throughout the sample, while the Ga concentration 
drops in the layer of interest: this drop would cause a slight, undesirable change in the ratio. The 
experimental InL/AsL curve has too strong a slope to match any of the simulated curves: taking this 
result naïvely would imply that the layer is possessed of negative depth, which is impossible. It is 
worth considering that the total assumed thickness could be incorrect (in this case the total thickness
was calculated using NISTMonte simulations of a KL intensity ratio (Chapter 6) for self-
consistency),  as this would indeed cause the slope to become stronger, bringing about a better 
match between experiment and simulations for InL/AsL but worsening for InL/AsK. While the 
InL/AsL curve does have a distinctive slope, there is too much scatter to be certain of matching a 
curve to a better accuracy than ~±100nm. The InL/AsK shows far too much scatter to draw any 
conclusion at all. As seen in Figure 4.8.1.3, the slope of the simulations is in doubt. From this, it is 
possible that the NISTMonte InL/AsL curve does not have a strong enough slope. If this is the case 
then the experimental InL/AsL could be reasonable and not an issue with the experimental data.
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Figure 5.1.2.1: Results for 8nm In0.24Ga0.76As with different overlayer thicknesses, with a nominal 
value of 95nm. Simulation run in NISTMonte at beam energy 197keV with 107 electron histories. 
θ = α +25°. Simulated results run at beam energy 197keV, 106 electron histories, for a 424nm thick
matrix GaAs (density = 5.316gcm-3) with the overlayer thickness specified in the legend, 
In0.24Ga0.76As (density = 6.0265gcm-3) thin layer and specimen tilts between -10° and +20° in steps 
of 10°. Note that the experimental data was multiplied by a constant so as to arrive at the same 
scale as the simulations. Detector efficiencies were assumed to be for experimental data InL: 73%, 
AsL: 68%, AsK: 0.79%.
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5.1.3 Modelled Absorption Matching

Table 5.1.3.1 shows the result of equation 4.8.2.1.2 being applied to the data by automated trial and 
error through Microsoft Excel 2007's SOLVER functionality. To avoid local minima, the nominal 
values for both depth and thickness were given as the initial guesses. Both the InL and InL/AsK 
curves were used, where λ for InL/AsK was calculated with respect to that of InL according to the 
values described in 4.5.2. The most obvious fact is that the thickness of the layer seems to have no 
significant effect on the result, as attempting the analysis with either a varying or constant thickness
does not materially change the result: this is a function of the fact that the λ values for the matrix 
and layer are very similar. The InL results are fairly reasonable though too high, while the InL/AsK 
results still posses the same cohesiveness as the InL but are considerably too large. The outliers in 
the InL data were taken as the -10°, -6° and +16° data points, as these were a factor of 2 larger than 
the others or gave a depth of near zero. The differences in the average results between InL and 
InL/AsK are the result of the difference in λ: reducing this difference by using a smaller value for 
InL/AsK causes the difference to become smaller. Lowering λ, however, cannot be reconciled with 
that value determined in 4.5. 

The overall trend for the InL results to yield too high apparent depth values can be understood as 
either the result of using λ values that are themselves too high or that the experimental curvature of 
the slope in the experimental data is too strong for the nominal composition. λ has been calculated 
in multiple ways and as such is unlikely to be incorrect, and so it is the logical conclusion that the 
curvature is stronger than anticipated. Whether this is due to sample inconsistency, the nominal 
geometry being incorrect or some other factor not accounted for in the model is not currently clear.
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InL, λmatrix = 2525nm, λlayer = 2602nm InL/AsK, λmatrix = 3913nm, λlayer = 4033nm
Tilt normalised 
to (°)

depth of
layer

thickness 
of layer

depth 
of layer

thickness 
of layer

depth of 
layer

thickness 
of layer

depth of 
layer

thickness 
of layer

-10 532.1 0.0 539.1 8 740.3 0.0 747.0 8
-9 162.0 0.0 166.4 8 518.9 0.0 524.5 8

-8 185.1 0.0 189.6 8 371.7 0.0 376.6 8
-7 124.2 0.0 128.3 8 246.0 0.0 250.4 8

-6 0.0 4.0 2.9 8 274.3 0.0 278.8 8
-5 125.6 0.0 129.7 8 324.9 0.0 329.6 8

-4 204.2 0.0 208.7 8 354.4 0.0 359.1 8
-3 178.5 0.0 182.9 8 377.3 0.0 382.1 8

-2 112.0 0.0 115.8 8 334.7 0.0 339.3 8
-1 204.9 0.0 209.4 8 441.9 0.0 446.9 8

0 212.9 0.0 217.4 8 545.4 153.4 490.0 8
1 269.5 77.5 245.1 8 553.4 157.8 495.6 8

2 248.0 72.7 226.1 8 524.2 146.4 470.5 8
3 193.8 56.3 177.0 8 487.8 138.4 438.1 8

4 273.5 0.0 278.3 8 467.2 132.3 420.9 8
5 176.9 47.7 163.6 8 414.0 0.0 419.1 8

6 210.2 0.0 214.8 8 390.7 0.0 395.7 8
7 119.0 0.0 123.0 8 458.4 0.0 463.6 8

8 263.6 0.0 268.5 8 500.4 0.0 505.8 8
9 195.3 0.0 199.9 8 483.1 0.0 488.3 8

10 222.8 0.0 227.5 8 485.1 0.0 490.3 8
11 179.2 0.0 183.6 8 401.8 0.0 406.8 8

12 96.8 0.0 100.6 8 478.5 0.0 483.7 8
13 83.2 14.3 81.0 8 493.3 0.0 498.6 8

14 268.0 0.0 272.9 8 529.8 0.0 535.2 8
15 156.0 0.0 160.2 8 640.7 171.2 574.3 8

16 571.4 153.7 506.1 8 442.2 0.0 447.2 8
17 206.0 0.0 210.5 8 402.9 0.0 407.8 8

18.3 263.7 0.0 268.6 8 333.0 0.0 337.6 8
Average depth
with all data

points
208.2±114.5 206.8±107.5 448.8±105.5 441.5±97.0

Average depth
with outliers

removed
189.8±56 190.4±54.8 Not applicable Not applicable

Table 5.1.3.1: Result of applying equation 4.8.2.1.2 to a 8nm thick In0.24Ga0.76As layer with a 95nm 
GaAs overlayer. λlayer calculated using mass-absorption coefficient from XCOM [66] and density 
from NSM archive [67]. Note that a value of '0.0' means a value of 0.001, which was the minimum 
permitted to the function.
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5.1.4 Simulated Absorption Matching

Figure 5.1.4.1 shows the above named method applied to the sample. Only a representative sample 
of the curves are shown. The scatter in the curves is predominantly from counting statistics, as the 
number of electron trajectories in each simulation was limited to produce an answer in a reasonable 
timeframe. Not all curves have a minimum: in Figure 5.1.4.1 the +12° tilt curve does not. A curve 
without a minimum would either be monotonically rising or monotonically falling. A rising curve 
implies that the actual overlayer thickness is smaller than the minimum simulated value for 
overlayer thickness while a falling curve would imply that the overlayer thickness is larger than the 
maximum simulated. In this data set, overlayer thicknesses between 2nm and 200nm were 
simulated, so a curve without a minimum would either mean an overlayer thickness of <2nm or a 
value far larger than 200nm. In both cases, these values would be omitted as the result of outliers, 
which can be justified by comparing experimental and simulated curves (not shown here).
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Figure 5.1.4.1: InL/AsK summed sum of squares for 8nm In0.24Ga0.76As layer under 95nm of GaAs. 
Simulated results run at beam energy 197keV, 106 electron histories, for thicknesses between 2nm 
and 200nm in steps of 2nm and specimen tilts between -10° and +17° in steps of 1°, followed by 
18.3°. θ = α + 25°. Sample composition as described with GaAs (density = 5.316gcm-3) and 
In0.24Ga0.76As (density = (6.0265gcm-3). Detector efficiencies InL: 73%, AsK: 79%.

Table 5.1.4.1 shows the results of this analysis for both InL and InL/AsK. The raw 'base' data was 
smoothed by averaging over two ('Pairs') and three ('Triplets') data points. It is immediately 
apparent that the InL results do not have many minima and those that do are almost uniformly larger 
than expected. Each of the InL vs. overlayer thickness curves were monotonically falling, which 
implies that the InL data indicates a much deeper layer than the nominal. The InL/AsK results, 
however, give results that are fairly reasonable, with some (notably the -10° tilt) that do not give 
minima. The average of the results is fairly close to the nominal, though the error is very large. The 
fact that the two data sets do not agree implies that the statistical error, which is known to be large 
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and could produce a false positive for larger overlayer thicknesses, is possibly being counteracted 
by the AsK normalisation. Despite this, however, the InL/AsK results are still subject to the extremely
large variation that is inherent to this data set, and as such sees considerable inconsistency.
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base data set pairs data set triplets data set

specimen tilt, α, 
normalised to (°)

d (nm) from: specimen tilt, α, 
normalised to (°)

d (nm) from: specimen tilt, α, 
normalised to (°)

d (nm) from:

InL InL/AsK InL InL/AsK InL InL/AsK

-10 200 200 -9.5 200 200 -9 200 200

-9 200 104 -8.5 200 148 -8 200 162

-8 200 198 -7.5 200 200 -7 200 148

-7 200 200 -6.5 200 104 -6 200 104

-6 194 36 -5.5 200 60 -5 200 70

-5 200 102 -4.5 200 104 -4 200 80

-4 200 148 -3.5 200 80 -3 200 42

-3 200 76 -2.5 194 24 -2 198 26

-2 186 34 -1.5 200 18 -1 200 24

-1 200 84 -0.5 200 62 0 200 62

0 200 82 0.5 200 100 1 200 80

1 200 136 1.5 200 104 2 200 104

2 200 148 2.5 200 104 3 200 148

3 200 88 3.5 200 148 4 200 130

4 200 188 4.5 200 180 5 200 180

5 198 110 5.5 200 124 6 198 70

6 200 194 6.5 200 80 7 200 80

7 200 16 7.5 200 68 8 200 44

8 198 148 8.5 200 104 9 200 70

9 200 88 9.5 200 70 10 200 66

10 200 104 10.5 200 84 11 200 18

11 200 110 11.5 200 18 12 200 2

12 200 2 12.5 200 2 13 200 2

13 200 4 13.5 200 6 14 200 2

14 198 104 14.5 200 6 15 200 126

15 200 2 15.5 200 158 16 200 126

16 200 200 16.5 200 200 17.1 200 200

17 200 110 17.65 200 148 InL/AsK mean: 89.1±46.5, 

18.3 200 194 InL/AsK mean: 87.6±49.6 error of mean: 9.9

InL/AsK mean: 108.5±54.4 error of mean: 10.1

error of mean: 11.1

Table 5.1.4.1: Calculated overlayer thickness for the 8nm thick In0.24Ga0.76As layer at the bottom 
surface of 95nm of GaAs. Blank cells are those with no minimum. 'Pairs' and 'Triplets' are the 
result of averaging over two or three experimental data points respectively in order to smooth the 
curve. Simulated results run at beam energy 197keV, 106 electron histories, for thicknesses between
2nm and 200nm in steps of 2nm and specimen tilts between -10° and +17° in steps of 1°, followed 
by 18.3°. θ = α + 25°. Sample composition as described with GaAs (density = 5.316gcm-3) and 
In0.24Ga0.76As (density = (6.0265gcm-3). Detector efficiencies InL: 73%, AsK: 79%.
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A histogram of the data in Table 5.1.4.1 is shown in Figure 5.1.4.2. While the data is not perfectly 
Gaussian, the spread does crudely imply such a distribution and as such the data is likely scattered 
with some degree of randomness about the means given in Table 5.1.4.1.

Figure 5.1.4.2: Histogram of data in Table 5.1.4.1. Known correct d = 99nm. Average overall: 
95.3±50.6nm. Mean error of the mean: 6.0.

5.1.5 Curve Fit

The results from applying the 'Curve fit' method is shown in Table 5.1.5.1. As a test, both the InL 
and InL/AsK data were used. Further, the method was inverted in the third column, by inserting the 
correct d and calculating the resulting λ. The R2 value indicates the quality of the resulting fit and as 
such the reliability of the result. It is obvious that the fit is extremely poor and that the calculated 
values are far from their nominal values. This is despite the fitted lines being visually similar to the 
experimental when plotted on a graph. Previously, incorrect values given by equation 4.1.1 could be
interpreted as data scatter in each individual data point, however the fact that the slope of the curve 
appears incorrect implies that any correct answer from equation 4.1.1 would be due to chance. 

d at correct λ λ at correct d R2

InL 674.0 370.9 0.329

InL/AsK 893.5 433.6 0.261

Table 5.1.5.1: Results from 'Curve fit' method.

5.1.6 Piecewise Curve Fit

Figure 5.1.6.1 shows the result of applying this method with a d of 99nm, while Figure 5.1.6.2 
would be the same calculations performed with d = 129nm, for comparison. Both use the same set 
of data points (3°≥α≥17°), truncated for clarity. The two graphs are very similar, with the change 
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between them so small as to be imperceptible to the human eye, even with the 23% change seen 
here. In fact, a tremendous change in the assumed depth is required to introduce a sufficiently large 
difference so as to be visible to the user: approximately and order of magnitude would be sufficient 
in this case. The conclusion to be drawn is that while this method does not seem useful for 
discerning the exact value of the depth, it could give an order of magnitude estimate, which could 
be useful in some situations, such as for resolving conflicting data that implies a great variety in 
depths.
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Figure 5.1.6.1: Result of piecewise curve fit method applied to this sample. λ = 2525, d = 99nm.
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Figure 5.1.6.2: Result of piecewise curve fit method applied to this sample. λ = 2525, d = 129nm.
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5.2 Second Sample

Figure 5.2.1: AFM topographical map 
of sample [68].

The second sample analysed was a 2nm InAs quantum well nominally embedded 6nm within a 
GaAs sample using 10° shielding by the sample holder. An AFM topographical map of this sample, 
shown in Figure 4.4.2, indicates that the capping is partial, so that the expected d would vary 
between 0nm and 6nm.

Whether such a shallow layer would produce enough change in X-ray intensity with changing take-
off angle was studied in simulations, giving a calculated d shown in Figure 5.2.2 for different 
depths. It is clear that even such a small change as 2nm can, in theory, be detected.

Figure 5.2.2: NISTMonte simulations of 2nm InAs (density = 5.67gcm-3) at the bottom surface of 4,
6, 8nm of GaAs (density 5.316gcm-3). λ = 2770nm. Specimen tilt range -10° to +20° in steps of 5°, 
where take-off angle is tilt + 25°. Beam energy 197keV and 107 electron histories.

Experimental X-ray data from this sample is shown in Figure 5.2.3. It is immediately apparent that, 
despite the error bars being relatively small, the curve does not match that expected from 
simulations. This can be attributed to the possibility that a slightly different region was illuminated 
by the beam when the sample was tilted. This would result in a different amount of absorption 
thereby violating one of the core assumptions.
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Figure 5.2.3: InL intensity for a 2nm InAs nominally buried under 6nm of GaAs. θ = α + 25°. 
Simulated curve scaled with respect to +10° experimental data point, and is corrected for tilt but not
shielding. Simulation run in NISTMonte at beam energy 197keV, 107 electron histories. Sample is 
comprised of 4nm of InAs (density = 5.67gcm-3) at the bottom surface of 6nm of GaAs (density = 
5.316gcm-3). Note that the curvature of the simulations is not visible on this scale.

Applying equation 4.1.1 to the data of Figure 5.2.3 gives the results shown in Table 5.2.1. 
Obviously, these values are almost uniformly too large or negative, where neither category indicates
a correct answer. Attempting the same analysis with different parameters for the shielding 
correction does not improve either the correctness nor the cohesiveness of the results.

α2 (°)
-5 0 5 10 15 20 25

α1 (°)

-10 1791 751 589 555 566 654 414.03
-5 -1002 -635 -429 -275 -54 -386

0 -77 83 224 501 -62
5 311 473 863 -54

10 693 1292 -268
15 2087 -989

20 -4990
Table 5.2.1: Calculated d from the data in Figure 5.2.3. λ = 2525nm. Nominal 
d is approximately 6 to 8nm.
 
Using InL/AsK gives the values shown in Table 5.2.2, which exhibit the same broad characteristics 
as Table 5.2.1.
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α2 (°)
-5 0 5 10 15 20 25

α1 (°)

-10 2862 1579 1258 1124 928 1071 626
-5 -585 -374 -259 -402 -43 -672

0 -53 32 -276 274 -718
5 154 -459 478 -1069

10 -1297 730 -1785
15 3419 -2151

20 -9396
Table 5.2.2: Calculated d using InL/AsK from the sample in Figure 5.2.3. λ = 
3900nm. Nominal d is approximately 6 to 8nm. The detector efficiencies of InL

and AsK were taken as 73% and 79%, respectively, from Figure 2.3.1.

Again, equation 4.1.1 has failed to provide a good result. In this case, the reason for this is likely the
fact that the overlayer was of inconsistent thickness, which in turn caused both significantly 
different regions to be examined and a different amount and chemical composition of material for 
the resulting X-rays to travel through when the sample was tilted. 

5.2.1 Graphical Comparison

As was seen in section 5.1.2, this method struggles to differentiate between small variations in 
overlayer thickness. As such, no meaningful result can be arrived at for this sample.

5.2.2 Modelled Absorption Matching

Table 5.2.2.1 shows the result of applying this method. It is plain that the results are inconsistent 
and do not provide any sort of useful answer. 

InL, λmatrix = 2525nm, λlayer = 2602nm InL/AsK, λmatrix = 3913nm, λlayer = 4033nm

Tilt normalised 
to (°)

depth of
layer

thickness 
of layer

depth 
of layer

thickness 
of layer

depth of 
layer

thickness 
of layer

depth of 
layer

thickness 
of layer

-10 758.0 338.3 646.4 2 893.4 0.3 895.2 2

-5 314.4 315.2 312.9 2 431.9 0.0 433.2 2
0 846.3 213.3 728.5 2 1172.9 295.1 1009.0 2

2.5 414.6 0.0 416.0 2 574.8 0.0 576.1 2
5 993.5 243.2 791.1 2 1377.3 337.3 1095.5 2

7.5 691.4 185.7 597.7 2 953.9 228.1 827.8 2
10 198.2 57.7 178.3 2 275.2 83.8 246.7 2

12.5 829.9 212.1 710.6 2 1148.0 282.3 984.2 2
15 695.8 188.1 603.7 2 963.4 255.5 836.2 2

17.5 32.9 0.0 33.8 2 45.6 0.0 46.5 2
18.3 31463.6 0.0 1722.4 2 44447.7 0.0 2385.2 2

Table 5.2.2.1: Result of applying equation 4.8.2.1.2 to a 2nm thick InAs layer with a nominal 6nm 
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GaAs overlayer. λlayer calculated using mass-absorption coefficient from XCOM [66] and density 
from NSM archive [67]. Note that a value of '0.0' means a value of 0.001, which was the minimum 
permitted to the function. Averages not included due to lack of meaning.

5.2.3 Simulated Absorption Matching

For this sample, this method gives results which are almost invariably larger than 100nm: the 
significant exception to this would be while matching to the InL/AsK curve that was fitted to the 
experimental data rather than the experimental data itself. For this curve all of the results where 
10nm, which is both consistent and remarkably close to the nominal. This is likely to be the result 
of applying so many different speculative corrections that one happens to function in the precisely 
correct way. While it is encouraging that one of the twenty four attempts succeeded this should not 
be taken as a guarantee of accuracy for future work.

5.2.4 Curve Fit

Equivalent to section 5.1.5, the 'Curve Fit' method was applied to this sample. Again, however, the 
results are poor. This is again a result of the experimental results not matching the expected, in 
addition to the poor fit implied by the low R2 value.

d at correct λ λ at correct d R2

InL 964.7 20.9 0.378

InL/AsK 1690.4 18.5 0.356

Table 5.2.4.1: Results from 'Curve fit' method.

5.2.5 Piecewise Curve Fit

The conclusion from attempting this method is the same as with the previous sample: only order of 
magnitude changes provide perceptible changes, and as such no useful answer was arrived at.

5.3 Third Sample

A third sample, originally a GaAs matrix with two 11nm thick layers of InGaAs, one at the surface 
and another 100nm deep, was analysed using the holder that gives 5° shielding. This sample 
suffered considerable contamination by Al2O3 (composition confirmed by EDX and taken as 
stoichiometric on average) re-sputtering from the support of the specimen in the ion mill during the 
sample preparation, which results in a large AlK signal that dominates all spectra of this sample. 
This means that the sample is very thick, with typical analysed areas being approximately 700-
900nm thick, which contributes to bremsstrahlung and that  much of the detector's time was spent 
collecting these AlK X-rays, thereby reducing the number of InL X-rays detected, which in turn 
worsens the signal-to-noise ratio of InL. Both these effect contribute to a larger relative error. The 
advantage of this structure for the present study is that it presents a somewhat larger degree of 
absorption than the previous two samples, which should assist in giving more reliable results.
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As seen in section 4.4, the correct d for a double layer system is some weighted average of the two 
individual layers. If the Al2O3 were not present, then the correct d would be approximately 65nm to 
75nm. 

A FIB lift-out was carried out to analyse the exact composition and size of the contamination, 
resulting in the SE image seen in Figure 5.3.1. 

Figure 5.3.1: ADF-STEM images of sample. Note the difference in scale. The left image has two 
layers of platinum and copper deposited during the FIB lift-out, and do not exist in the sample 
analysed.

The InL intensity from this sample is shown in Figure 5.3.2. The form of the curve is a good match 
to the general curvature seen in all simulations and the error bars are reasonably small. However, 
the fact that the simulations do not match the experimental data is not encouraging, as it implies 
some previously unforeseen factor or unexpected combination of existing factors. An example of 
this would be the possibility that tilting the sample is causing the area being examined to change 
significantly as a result of the sample thickness, instead of the minor change that is typically 
assumed.
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Figure 5.3.2: Experimental InL data from a GaAs sample with a 11nm thick InGaAs layer at its 
surface and another buried 100nm deep. In addition, there is a 576nm Al2O3 layer on top of the 
GaAs. θ = α + 25°. Note that in this case there was such variation in the livetime that normalising to
1s livetime was chosen. Simulated curve scaled with respect to -1° data point, and is corrected for 
tilt but not shielding. Simulation run in NISTMonte at beam energy 197keV, 106 electron histories. 
Sample is comprised of two 11nm thick layers of InAs (density = 5.67gcm-3) positioned at the 
surface and 100nm deep within a 200nm GaAs (density = 5.316gcm-3) matrix which is itself capped
by 576nm of Al2O3 (density = 4gcm-3).

Calculating d directly from this data is not the correct approach. First, the additional absorption 
given by the Al2O3 must be either removed or otherwise accounted for.

Absorption can be modelled by the equation:

absorption=e

−
μ
ρ ]spec

A

ρ t

sinθ
Equation 5.3.1

where μ
ρ ]spec

A

is the mass-absorption coefficient, ρ is the density, t is the thickness and θ is the 

take-off angle. Taking 402.8cm2g-1 as the mass-absorption coefficient of Al2O3 and 4gcm-3 as the 
density, then the InL curve after the absorption from the Al2O3 overlayer would be that shown in
Figure 5.3.3. This curve remains of the kind expected from a thin layer, though there is a 
tremendous disagreement between experiment and simulation.
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Figure 5.3.3: Figure 5.3.2 with the absorption effect from the Al2O3 overlayer removed. Simulated 
curve scaled with respect to -1° data point, and is corrected for tilt but not shielding. Simulation run 
in NISTMonte at beam energy 197keV, 106 electron histories. Sample is comprised of two 11nm 
thick layers of InAs (density = 5.67gcm-3) positioned at the surface and 100nm deep within a 200nm
GaAs (density = 5.316gcm-3) matrix.

Applying equation 4.1.1 to the data in Figure 5.3.3 gives the results shown in Table 5.3.1. Again, 
there is no coherency, though it is encouraging that there are so few negative values. Too large 
values indicate that the slope is too strong, and so trial-and-error variation of the Al2O3 overlayer 
thickness (and therefore the modelled absorption) was attempted. In doing so, it was found that as 
the Al2O3 overlayer increases, the positive tilt values become negative (i.e. show downward slope) 
before the negative tilt data points give reasonable answer. From this, it is reasonable to conclude 
that the Al2O3 overlayer modelling is not the issue.
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α2 (°)
-9 -8 -7 -6 -5 -4 -3 -1 5 10 15

α1 (°)

-11 3493 2636 2955 2722 2685 2556 2496 2381 2051 1937 1639
-9 549 2262 2021 2106 1991 1970 1900 1604 1520 1187

-8 4192 2898 2757 2467 2363 2192 1758 1640 1258
-7 1449 1910 1753 1769 1718 1395 1325 936

-6 2424 1932 1900 1790 1387 1309 880
-5 1386 1595 1588 1221 1170 713

-4 1825 1670 1193 1142 641
-3 1580 1079 1053 512

-1 848 898 263
5 986 -342

10 -2157
Table 5.3.1: Calculated d values from the data of Figure 5.3.3 after removal of the effect of the
Al2O3 contamination layer. λ = 2525nm. Nominal d is 65nm to 75nm.

Attempting to normalise with respect to AsK produces the results shown in Table 5.3.2. Again, there 
are no reasonable results.

α2 (°)

-9 -8 -7 -6 -5 -4 -3 -1 5 10 15

α1 (°)

-11 2983 2314 2497 2440 2445 2392 2465 2499 2102 1941 1470

-9 687 1870 1947 2059 2035 2192 2290 1828 1662 1101
-8 3204 2698 2633 2480 2608 2636 1995 1783 1147

-7 2131 2296 2181 2414 2502 1815 1607 922
-6 2479 2210 2529 2601 1766 1543 790

-5 1911 2559 2640 1652 1425 608
-4 3272 2932 1608 1363 467

-3 2737 1307 1114 163
-1 650 635 -439

5 609 -1563
10 -4531

Table 5.3.2: Calculated d using InL/AsK from the data of the sample used in Figure 5.3.3. λ = 
3900nm. Nominal d is 65nm to 75nm.

In this case, the reason for the failure of equation 4.1.1 to produce the correct depth is less clear. 
The confounding variables are the Al2O3 overlayer and the double layer structure. If the presence of 
the second layer was distorting the results (if, for example, the second layer is only barely present at
the bottom of the sample during one analysis then the slight changes in the area being examined as 
the sample is tilted could have caused the second layer to not exist in that second analysis) then 
there would be a strong, abrupt change in certain data points, however, such a change is not 
observed. The equation describing absorption is well understood and considered reliable and as 
such is unlikely to be the problem. Varying the Al2O3 overlayer thickness did not improve matters. A
layer of contamination is not constant in thickness, and as such it is possible that this sample 

110



violates the assumption concerning the amount of material that the X-rays travel through. This 
would be exacerbated by the fact that these X-rays would originate from a deep point within the 
sample and therefore even a slight change in take-off angle would cause them to travel through a 
significantly different region. This is not known with any certainty, however, and as such, the reason
for this data set not producing good results is currently unknown.

5.3.1 Graphical Comparison

As with the previous sample, this method proved to be insufficiently sensitive to change in depth to 
give a useful answer.

5.3.2 Modelled Absorption Matching

This method, in its current form, cannot be applied to a sample with multiple thin layers or several 
different matrices. As such, no meaningful result can be acquired from this sample using this 
method.

5.3.3 Simulated Absorption Matching

Another sample that this was applied to was the InGaAs double layer system, previously studied in
Figure 5.3.1. This sample possessed two 11nm thick InGaAs layers in a GaAs matrix, one at the 
surface and the other 100nm deep. Additionally, there was found to be a large Al2O3 contamination 
on the surface that had to be accounted for. As seen in Figure 5.3.2, the Al2O3 contamination proved 
to be a confounding variable and so in this case it was decided to hold the GaAs matrix constant and
vary the thickness of the contamination. The results of this are shown in Table 5.3.3.1. It is clear 
that there is poor self-consistency. This implies that the data, despite seemingly falling on the 
correct curve, does not actually do so. It is possible that this could be due to a inconsistency in the 
thickness of the Al2O3 overlayer.
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base data set pairs data set triplets data set
specimen tilt, α,
normalised to (°)

InL InL/AsK
specimen tilt, α,
normalised to (°)

InL InL/AsK
specimen tilt, α,
normalised to (°)

InL InL/AsK

-11 -10 -9.33
-9 -8.5 470 -8

-8 -7.5 -7 455
-7 -6.5 -6

-6 645 -5.5 -5
-5 -4.5 -4

-4 645 -3.5 -2.67
-3 710 -2 0.33

-1 740 2 4.67
5 7.5 10 600

10 12.5 400
15

Table 5.3.3.1: Calculated Al2O3 overlayer thickness from an InGaAs in GaAs double layer system 
with Al2O3 contamination layer on the surface. Blank cells are those with no minimum. 'Pairs' and 
'Triplets' are the result of averaging over two or three data points respectively in order to smooth 
the curve. Simulations carried out in NISTMonte for Al2O3 thicknesses between 300nm, 400nm, 
450nm to 760nm in steps of 5nm and 800nm, beam energy 197keV, 106 electron histories. Sample 
comprised of two 11nm thick layers of InAs (density = 5.67gcm-3) embedded at the surface and 
100nm deep in a 200nm GaAs (density = 5.316gcm-3) matrix, capped by a Al2O3 (density = 4gcm-3)
layer of varying thickness. Simulated tilts matched that of experimental. θ = α + 25°. Detector 
efficiencies InL: 73%, AsK: 79%.

As with the modelled absorption match, this method does not see enough change from being 
applied to a 2nm InAs buried under 6nm GaAs to give meaningful answers.

5.3.4 Curve Fit

Table 5.3.4.1 shows the results of applying the curve fit method in an attempt to discover the 
effective depth of the two layer. A value for d of 66nm was chosen in accordance with that found in 
section 4.4. Despite the R2 values being significantly higher, the calculated values are no more 
reasonable.

d at correct λ λ at correct d = 66nm R2

InL 1831.9 91.0 0.901

InL/AsK 1934.0 133.5 0.862

Table 5.3.4.1: Results from 'Curve fit' method, after manual correction for absorption.

5.3.5 Piecewise Curve Fit

Once again, this method does not show enough change with varied d to be useful for precision 
better than order of magnitude.
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5.4 Conclusion

Three samples have been analysed using all the available methods, and it was found that only the 
absorption matching methods gave good answers, and that only once. Multiple attempts with the 
same samples (where only the best where included) do not show improvement. In some cases, the 
reason for this failure is obvious: statistical uncertainty or sample inconsistency. For the third 
sample, despite being a somewhat complex sample, good results could still have been reasonably 
expected. It is unclear why this was not found to be the case, though a likely culprit would be the 
necessity of manually correcting for absorption in the contamination layer, which could have 
introduced errors into the calculation. 

Concerning the validity of the different methods, it is reasonable to say that the 'Graphical 
Comparison' and 'Piecewise Curve Fit' methods cannot give meaningful numerical results to better 
than the closest order of magnitude. 'Curve Fit' would require extremely accurate data with no 
outliers and as such presents little advantage over equation 4.1.1, while the two absorption matching
methods do show some promise, even if only compared to the other methods. 

Experimentally, other methods (such that described as section 2.6.2) have achieved much greater 
success than those attempted here.

While these results are not encouraging, it is possible that the failure to acquire correct results is a 
result of poor samples and/or data acquisition: the primary limitation to counting statistics was the 
time before sample drift causes an unacceptable change in the area being examined. As such, 
perhaps a sample of InSb, with a 10nm thick layer of either pure Al or AlAs buried approximately 
50nm under the surface. Such a sample would give good counting statistics while simultaneously 
the X-ray of interest would be soft enough compared to the matrix material's density to experience 
significant absorption with changing take-off angle at that depth.

6 The use of EDX to determine sample thickness

6.1 Simulated Analysis

The basic principle of this method is straightforward: taking the ratio of two X-ray line intensities 
of the same element with different energies and therefore different absorption characteristics should 
yield a distinctive curve as a function of thickness. This dependence can then be used to determine 
the thickness of the sample from X-ray spectroscopy (if composition is homogeneous), removing 
the need to determine the sample thickness by some other method. This sample thickness can then 
be used to provide a more accurate absorption correction, which should generally give better 
accuracy in determining the chemical composition. Of course, accurate calculation of the sample 
thickness requires knowledge of the composition, which in turn requires the sample thickness: this 
problem can be overcome by iterating between the composition and the thickness.

The principle of this method is shown in Figure 6.1.1, using GeK and GeL in a simulated pure Ge 
sample. The distinctive trends seen here often arise: the intensity of the higher-energy X-ray (in this 
example, GeK) rises almost linearly with thickness up to at least several microns thickness while 
that of the lower-energy X-ray (GeL) begins roughly linear but saturates after a particular thickness, 
here approximately 1000nm. As X-ray generation is approximately linear with increasing thickness 
and a hard X-ray will not experience appreciable absorption, its intensity will rise almost linearly 
with thickness. For a lower energy X-ray this is not the case: while the rate of X-ray generation 
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does increase with thickness, those X-rays originating deeper within the sample will be absorbed 
before reaching the detector, giving rise to the saturation. The slight linear increase in GeL after 
saturation is due to a very few X-rays from deep in the sample reaching the detector (which will 
happen in very small numbers due to statistics) combined with backscattered electrons (both from 
the beam and those generated in the sample) generating X-rays at fairly shallow depths. Of course, 
absorption would eventually have such an effect on the higher energy X-ray line as well, though this
would not occur until the sample were much thicker.  In this case, the saturation of GeK is not 
visible at these thicknesses but a non-linearity is faintly visible, beginning at approximately 
5000nm. This non-linearity can be understood as the result of the fact that it would be experiencing 
very little absorption regardless of thickness and so the detected intensity closely follows the 
number of X-rays generated, with the slight rise above the linear due to beam straggling increasing 
the X-ray fluorescence probability, beam spreading increasing the interaction volume exponentially 
with the increased thickness and the effects described above for GeL also applying to different 
extents for GeK. For the range of thicknesses present in typical TEM analysis, this trend (one X-ray 
almost linear, the other not) will likely hold for the intensity ratios both of many K/L pairs and (for 
heavier elements) L/M pairs.

As a consequence, the thickness dependence of the ratio is also rather universal in form, though the 
magnitude of its slope and the thickness from which it becomes approximately linear will depend 
on the material and X-ray energies. This means that assuming a linear relationship between the 
magnitude of the intensity ratio and the thickness is not valid for large thicknesses (several 
microns), though most experimental analysis is carried out for samples much thinner than this and 
so this non-linearity is not generally relevant. If deliberately using a thick sample to increase the 
accuracy of extrapolation then this non-linearity must be accounted for. Note that a homogeneous 
sample would be the most useful here, though any buried features of different materials could be 
ignored if sufficiently small.

As a note concerning the use of λ in previous chapters to denote the attenuation wavelength (i.e. the 
amount of material required to reduce the intensity of the X-ray line to 1/e), it could be considered 
logical to continue using the same concept here. Such is not the case, however, as previously 
matters such as beam spreading and backscattering could be legitimately neglected due to the 
extremely thin layers that the X-rays originated from while in this chapter the samples being 
examined are often very thick for TEM purposes.
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Figure 6.1.2 is the same as Figure 6.1.1 for a much smaller range of thicknesses. It is clear that the 
ratio is almost linear over the entire range of thicknesses. The plot not being linear would introduce 
considerable difficulty into the analysis, in that a linear curve would be much easier to assign values
to from experimental measurements. It is worth noting that a linear curve would only require two 
data points to plot, though those two points would need to be very accurate.
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Figure 6.1.1: Simulation of result of K/L ratio method for germanium. 'Ratio' is against the right 
vertical axis. Simulation run in NISTMonte at beam energy 197keV, take-off angle 25° with 107 
electron histories. Sample composition pure germanium lamella of varying thickness. 
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Figure 6.1.2: Magnification of Figure 6.1.1. 'Ratio' is against right vertical axis. Simulation run in 
NISTMonte at beam energy 197keV, take-off angle 25° with 107 electron histories. Sample 
composition pure germanium lamella of varying thickness.



Results for a GaAs sample from the Monte Carlo simulation programs NISTMonte and CASINO 
are shown in Figure 6.1.3. The AsK/AsL and GaK/GaL curves from both programs are similar, 
however there is a significant difference in the slopes. For a fairly typical TEM sample (i.e. t ~ 
100nm) the GeK/GeL intensity ratios from the two programs disagree significantly (NISTMonte 
predicts ~ 1 while CASINO gives ~1.4), a difference that vanishes at t = 0nm. The implication of 
this is that the two programs model absorption to different extents but that the fluorescence 
probability (at least of the X-rays in question) are similar. Determining which, if either, is closer to 
reality would require comparison to experimental data.

Figure 6.1.4 presents a further comparison between NISTMonte and CASINO. This is again for a 
homogeneous GaN sample. Here, the GaK/GaL intensities for both programs are plotted along with 
their normalised counterparts, where this normalisation is against the relevant 'absorption-less' 
intensity. This is to remove any difference in fluorescence probabilities between the two programs. 
It is clear that the form of both pairs of curves is different. Most obviously, the NISTMonte 
normalised curve has a larger absolute magnitude than its standard counterpart, while the reverse is 
true for CASINO. This implies that the absorption cross-section is significantly different for each 
program. The way that the two 'normalised' curves converge on approximately the same value while
possessing significantly different slopes implies that their fluorescence probabilities are similar for 
low thickness but differ for higher thickness: this could be due to how beam straggling and 
spreading are modelled. It is interesting to note that despite the significant difference in the 
'normalised' curves, the two non-normalised curves are fairly similar, implying that the different 
factors cancel out to some extent.
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Figure 6.1.3: Comparison of NISTMonte and CASINO simulated results from GaAs sample. Both 
CASINO and simulations run at beam energy 197keV, take-off angle 20° with 107 electron 
histories. Sample GaAs (density = 5.316gcm-3) lamella of varying thickness.
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Figure 6.1.4: Comparison of NISTMonte and CASINO with absorption and without absorption for 
GaN. Both CASINO and NISTMonte simulations run at beam energy 197keV, take-off angle 25° 
with 106 electron histories. Sample composition GaN (density = 6.15gcm-3) lamella of varying 
thickness. 

To explore the usefulness of this method with different materials, an InP sample was simulated in 
NISTMonte. Figure 6.1.5 shows the simulated X-ray intensities over a large range of thicknesses. 
The expected trend is present: the highest energy X-ray (InK) is only somewhat non-linear over most
of the thickness range while those with lower energies begin with a linear rise but saturate at certain
values, each  of different particular thicknesses. Interestingly, the InM curve rises quickly, tails off, 
then begins to rise again. This is the same effect as for GeL in Figure 6.1.1, only much more visible. 
A similar effect can be seen in the PK and InL curves. Interestingly, the InK curve does not follow this
general pattern, in that it has a slightly exponential form. Obviously, the difference is due to its 
much higher energy (24.2097keV) compared to InL (3.2694keV). The form of the InK is the same as 
GeK from Figure 6.1.1. Interestingly, the point at which the non-linearity begins being visible is the 
same for InK as for GeK, despite their very different energies.
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Figure 6.1.6 shows all possible intensity ratios from the indium lines of Figure 6.1.5. It is clear that 
the InK/InM intensity ratio is the closest to being linear, and as such would be the logical choice for 
determining thickness, assuming that the InM intensity is readily detectable. This is due to the fact 
that a linear curve is much easier to interpolate from and is far more predictable than an exponential
or polynomial curve.
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Figure 6.1.7 shows the results from a more complicated sample: InSb. Here, there are a total of six 
X-ray lines to detect, giving a large number of possible intensity ratios. This should prove sufficient
to demonstrate validity for a complex sample.
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Figure 6.1.6: Comparison of ratios from Figure 6.1.5. InK/InM, InL/InM against right vertical axis. 
Beam energy 197keV, take-off angle 25° with 106 electron histories. Sample InP (density = 
5.12gcm-3) lamella of varying thickness.
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Figure 6.1.7: NISTMonte simulated X-ray intensities for InSb. InM and SbM against right vertical 
axis. Beam energy 197keV, take-off angle 25° with 106 electron histories. Sample composition InSb 
(density = 5.775gcm-3) lamella of varying thickness.



Figure 6.1.8 shows all possible intensity ratios from Figure 6.1.7, both for different lines of each 
one element and between lines of different elements. Particularly interesting is the InK/SbK ratio, 
which is effectively constant over the entire range of thickness. This can be attributed to their high 
line energies, in that neither experiences significant absorption over the relevant range. This can be 
compared to the InL/SbL and InM/SbM ratios which exhibit similar behaviour but with an initial non-
linear thickness behaviour. This difference in behaviour is due to the fact that the L or M-lines do 
experience significant absorption, to very similar but not quite identical extents, which causes a 
difference in the change of intensity with increasing sample thickness. Presumably, a similar trend 
would be visible for the InK/SbK ratio if the sample were made thick enough.

As a rule, it is wise to avoid relying on a ratio that uses X-rays from two different elements to 
measure thickness, as while the sample as a whole is stoichiometric there could be some local 
change of the concentration of one element which would bias the result (e.g. surface oxidation will 
mean small thicknesses could give different results). There is the further difficulty that in non-
stoichiometric materials (either local impurity or characteristic of the material) there is an additional
uncertainty introduced that would in turn be passed onto the final thickness calculation.

The InK/SbL ratio is very similar in form to the InK/InL and SbK/SbL ratios, which is again no surprise
given their similar energies. This pattern holds for all the intra- and inter-element ratios. In 
principle, this similarity could be exploited by varying the composition of a theoretical sample of 
e.g. InGa1-xSbx until all the ratios agree on thickness.

Figure 6.1.9 and Figure 6.1.10 show the intensity ratios within In and Sb. The degree of similarity is
to be expected, since both elements have X-ray families that are similar in their energy spread 
relative to other X-rays within the same family.
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Figure 6.1.9: Comparison of Inx/Iny ratios from Figure 6.1.7. InK/InL against right vertical axis. 
Beam energy 197keV, take-off angle 25° with 106 electron histories. Sample composition InSb 
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Figure 6.1.10: Comparison of Sbx/Sby ratios from Figure 6.1.7. SbK/SbL against right vertical axis. 
Beam energy 197keV, take-off angle 25° with 106 electron histories. Sample composition InSb 
(density = 5.775gcm-3) lamella of varying thickness.

6.2 Experimental Analysis

Figure 6.2.1 shows the In line intensity ratios resulting from a experimental InP sample, where the 
ratios are plotted against detector deadtime instead of thickness. This is due to the fact that sample 
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thickness must be measured independently, but deadtime is a product of analysis that is both well-
defined (i.e. small-error) and is self-consistent. It is thought that deadtime directly correlates with 
thickness to some extent, as increased thickness causes an increase in X-rays detected which in turn 
increases deadtime. This graph could be considered a scaled equivalent of the simulated data in
Figure 6.1.6, where deadtime of unity would be equal to that thickness at which the detector 
saturates. Comparing the two figures, it is obvious that there are significant differences. It is worth 
noting that a difference in the absolute value of the ratios is to be expected: of concern is a 
difference in form of the curves. Of note is that the spectra could not be analysed with the available 
ISIS software and so intensity values were extracted manually, using linear interpolation to subtract 
the background and Gaussian fits to remove the OK and CK peaks that straddle the InM characteristic 
peak. The consequence of this is that all error bars are simple Poisson statistics (i.e. n /√n ) and 
that the general quality of the data is likely to be inferior compared to that extracted with dedicated 
software. 

The InK/InL curves could match, as the linear rise seen in the simulation may also be present in the 
experimental result, however the scatter and the error preclude any reasonable conclusion. InK/InM 
matches better, with a slight non-linearity at high deadtime that is mirrored by the simulated curve 
at high thickness. InL/InM does not match, as the experimental curve shows a trend similar to InK/InM

that is significantly beyond the error bars. InK/PK could be a partial match at high deadtime: a very 
slight rise might exist for the curves after the cluster at low deadtime. InL/PK does not match in 
form, but as this curve is expected to be fairly constant it is difficult to be certain. InM/PK could be a 
match, albeit with considerable scatter. In summary, three experimental curves from this InP sample
show partial matches in form with their simulated counterparts, two do not match at all and one 
gives a good match.

In a system where there are multiple good matches between simulated and experimental (or two 
experimental data sets where one is very well understood) it would in principle be possible to 
compare the inflexion points and thereby match deadtime to thickness for that particular detector 
processing time. This is not possible for the available data set, as the match is not sufficient.

Using the total X-ray counts from the entire spectrum instead of the detector deadtime resulting in a
similar but inferior fit, primarily due to the fact that the data points were not so distributed along the
x-axis but clustered to one side. 

Further analysis will be carried out in Chapter 7.
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Figure 6.2.1: InP experimental data. Detector efficiencies were taken as InK: 89%, InL: 73%, InM: 
41%, PK: 69% (Figure 2.3.1). These were calculated for the strongest line in each family and 
assumed to apply to the entire peak.. Refer to Figure 6.1.6 for simulated comparison.

Figure 6.2.2 shows a comparison between simulated and experimental results for a FIB-prepared 
GaAs lamella. The numerical values for a linear least-squares fit are included in Table 6.2.1. The 
experimental result for the AsK/AsL ratio agrees better with NISTMonte than CASINO, while the 
reverse is true for GaK/GaL. While this is not conclusive, it does imply that neither program can be 
relied upon to give sufficiently accurate results for all X-ray lines in all materials. The other fact of 
note is that the R2 of both experimental data sets is fairly close to unity, which implies that the 
linearity assumption is valid at these thicknesses.
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Figure 6.2.2: Comparison of experimental to simulated X-ray intensity ratios for a GaAs FIB 
lamella, where the thickness was estimated from SEM imaging. Detector efficiencies AsK: 79%, 
AsL: 68%, GaK: 77%, GaL: 64%. Note that both the 350nm experimental data points are overlaying 
each other. Take-off angle 25°, 107 electrons trajectories, beam energy 197keV.

X-ray intensity ratio slope (x10-3) intercept R2

AsK/AsL (Experimental) 3.3±0.3 1.1±0.2 0.984

AsK/AsL (CASINO) 4.25±0.04 0.97±0.03 0.998

AsK/AsL (NISTMonte) 2.92±0.05 0.70±0.03 0.999

GaK/GaL (Experimental) 2.02±0.16 1.60±0.11 0.987

GaK/GaL (CASINO) 1.65±0.03 1.17±0.01 0.994

GaK/GaL (NISTMonte) 1.40±0.02 0.81±0.01 0.998

Table 6.2.1: Linear least-squares regression fits of the data in Figure 6.2.2.

Figure 6.2.3 shows a comparison of three different experimental samples, two wedges and a FIB 
lamella (where the lamella is the same data used in Figure 6.2.2). Note the double-log scale. It is 
plain that all three follow the same general curvature, however the fact that the lamella sits between 
the two wedges does not assist in determining to what extent the shape of a wedge affects its 
absorption characteristics. 

Comparing the simulation to the three experimental data sets, it is clear that, apart from some 
outliers, the form of the curves are similar. The two 10nm data points deviating from the expected 
curve is not a surprise: such thicknesses are difficult to measure and are also susceptible to effects 
such as specimen warping and surface oxidation. The second wedge's 10000nm data point is much 
lower than expectation: this is unlikely to be a case of incorrect thickness (as it would have to be an 
order of magnitude smaller to match the curve) and could be due to the detector having difficulties 
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at such high thickness and therefore high countrate. It could also be due to a parallax effect, as the 
specimen would no longer the electron transparent at such a high thickness. The remaining two 
obvious outliers, 1000nm and 1400nm from the second wedge, cannot be so readily explained. It is 
possible that if the wedge was imperfectly cleaved then there would be bulges or depressions that 
would give much larger absorption than the expected. The fact that the value between them, 
1200nm, is slightly lower than expected implies that this could be the case.
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Figure 6.2.3:Experimental comparison of three different samples. Note the double-log scale. 
Simulation was run in NISTMonte for beam energy 197keV, 107 electron histories, with a GaAs 
(density = 5.316gcm-3) lamella of varying thickness with take-off angle 25°. Detector efficiencies 
AsK: 79%, AsL: 68%, GaK: 77%, GaL: 64%. Note that the thickness of the two 10nm data points is 
not well known, and could vary by as much as 50%.

Table 6.2.2 contains the calculated parameters from least-squares fitting third order polynomials to 
the curves in Figure 6.2.3, with the exception of the lamella data set, which does not posses enough 
data points to justify a second order polynomial fit. These fits are justified by the simulated data. 

This analysis will be continued in Chapter 7.

y-intercept R2

First wedge (all data points) 2.5±0.4 0.971

First wedge (outliers removed) 1.1±0.2 0.997

Second wedge (all data points) -2±12 0.170

Second wedge (outliers removed) 1.8±0.7 0.993

Lamella 1.1±0.2 0.984

Simulation 0.69±0.04 0.9997

Combined (all data points) -1±6 0.112

Combined (outliers removed) 0.6±1.9 0.772
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Table 6.2.2: Least-squares regression of the curves in Figure 6.2.3. First wedge outlier is the 10nm 
data point. Second wedge outliers are 10nm, 1000nm, 1400nm and 10000nm data points. 
'Combined' is all data sets analysed together, where the outliers are those specified in the individual
sets.

Much of the method of taking the ratio of two X-rays to determine the thickness of the sample has 
already been explored [9], with further details on how it can be used for more accurate 
quantification. The new aspects covered here is the discussion of the merits of using deadtime (or 
total X-ray intensity) as a measure of thickness. A further improvement will be detailed in Chapter
7. 

6.3 Method for Determination of Thickness by Varying Take-off Angle

The change in the strength of absorption of an X-ray line with changing take-off angle is 
mathematically predictable. This predictability can be exploited in homogeneous samples to 
determine the thickness of the sample by taking a series of spectra at different take-off angles. The 
advantage of this method compared to the K/L ratio is that it does not require either two X-ray lines 
from the same material or known sample composition.  This is most obviously useful for those 
elements which do not possess an L-line (i.e. Z≤10) or those whose L-line cannot be readily 
quantified with today's technology (E≤200eV). The disadvantage is that multiple data points are 
necessary, which in turn requires a stable beam intensity and insignificant sample drift or damage 
and does not allow enhanced quantification from one spectrum alone.

A commonly accepted method to calculate the absorption factor is that used in the Cliff-Lorimer 
ratio method, below:

 a=(
μ
ρ ]spec

A

μ
ρ ]spec

B )(1−e
−

μ
ρ ]spec

B

ρ t arcsin (θ )

1−e
−

μ
ρ ]spec

B

ρ t arcsin (θ ))
where μ

ρ ]spec

A

is the mass-absorption coefficient in cm2g-1, ρ is the density in gcm-3, t is the 

thickness in m and θ is the take-off angle in degrees. For the same X-ray line at two different take-
off angles θ1 and θ2 this reduces to:

I 1

I 2

=(1−e
−

μ
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B

ρ t arcsin (θ 2 )

1−e
−

μ
ρ ]spec

B

ρ t arcsin (θ 1 )) Equation 6.3.1

This would result in a graph similar to Figure 6.3.1, where each curve is for a different thickness. 
Comparing experimental results to similar curves would allow the user to determine the thickness 
by finding the closest match.
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Figure 6.3.1 shows that for a large change in take-off angle there is a very significant difference in 
GaL intensity between different thicknesses, thereby allowing the user to readily distinguish 
between thicknesses. Note that this does not apply when the sample is beyond a certain critical 
thickness, as the X-rays would reach a 'saturation point' beyond which additionally generated X-
rays would be mostly absorbed by the sample, regardless of take-off angle.
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Figure 6.3.2 is an equivalent to Figure 6.3.1 with GaK instead of GaL. It is clear that while the 
overall form of the curves is the same their response to increasing thickness is much weaker, and it 
is the low thicknesses that see little difference in Figure 6.3.2 as opposed to the high thicknesses 
seen in Figure 6.3.1. This implies that a sample with a number of X-rays with energy values 
covering a large range of energies could use this method to estimate thickness, as if one X-ray line 
will not work then another would. Obviously, different lines could then be used for a self-
consistency check. For example, the above simulations imply that such cross-checking could be 
carried out for sample thicknesses of between approximately 120-480nm.

In summary, the advantage of this method is the lack of requirement for either two clearly defined 
X-ray lines from the same element or known sample composition. The drawbacks is a need for 
several data points acquired with a constant beam intensity of the same region without significant 
sample drift or damage.
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7 An improvement to the Cliff-Lorimer k-factors

7.1 Simulated Analysis

As already mentioned, the Cliff-Lorimer ratio method uses the following equation for 
quantification:

 Equation
7.1.1

where Xj,i are compositions, Ij,i,n X-ray intensities, aj,i,n the absorption correction, kj,i,n the k-factors, 
ej,i,n the detector efficiencies at the relevant energies, Aj,i,n the atomic weight, n every element in the 
sample and i,j two elements of interest. The absorption correction a and the k-factor are defined 
relative to another. Taking a and k as relative to ai and ki causes Equation 7.1.1 to simplify to

X j

X i

=
I j a j k j e j

I i e i

Ai

A j


a j k j=

X j

X i

I i e i

I j e j

A j

Ai

Equation
7.1.2

Using this method means that the k-factor and the absorption correction cannot be separated. 
Therefore, arriving at a value for one can be accomplished by setting the other to a specific value: 
the most obvious way to do this is to drive the absorption correction to unity, as this can be done 
through extrapolating to zero thickness. As such, arriving at correct values for either variable is 
difficult. However, this can be accounted for by taking a series of measurements at different sample 
thicknesses, as doing so would result in a series of monotonic data points as seen in Figure 7.1.1. 
This can be used in two ways: by extrapolating the value to zero a value of the k-factor without the 
effect of absorption can be estimated and the product of the absorption and k-factor, which may be 
called an effective k-factor keff, can be determined from knowledge of the thickness. This is superior 
to the current generally accepted method of calculating a value for the k-factor and estimating the 
absorption correction from sample density and thickness. Of course, knowledge of the sample 
thickness is necessary for this method to function: this knowledge can be acquired using the same 
data set using the method described in Chapter 6. It is worth noting that the form of the curve seen 
in Figure 7.1.1 is not universal, though such curves are always monotonic. It is also worth noting 
that this method would apply to a sample that is not homogeneous, if the inhomogeneity is 
sufficiently small.

[CLARIFY CONNECTION TO ZAF METHOD]
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Figure 7.1.2 shows a comparison between the results from NISTMonte and CASINO. Both keff are 
with respect to SiK. The curves from GeK are clearly very similar, with only a slight difference 
between their absolute values and slopes. The CASINO GeL curve is similar to the two GeK curves 
in slope, with, the difference being the absolute magnitude. The NISTMonte GeL curve, however, 
has a very different slope and y-intercept, though it does agree with CASINO at high thickness. It is 
difficult to be certain which of the two is correct. Given the very different energies of GeK and GeL a
change in the slope would be expected, which agrees with NISTMonte, however, such a similarity 
in y-intercept would not be expected. This will be discussed in more detail in Figure 7.2.5. A large 
difference at low thicknesses that grows smaller with increasing thickness implies that there is a 
difference in the rate of X-ray production for that line that is being counterbalanced by the effect of 
different levels of absorption modelled.
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Figure 7.1.3 shows the calculated keff with respect to InK for an InP binary system. The InM curve 
seems almost linear, with a very slight curve at low thickness, while both the InL and PK curves have
obvious non-linearities that extend into micron thicknesses. Obviously, this would be problematic 
for attempts to calculate the absorption-less k-factor, as while the form of the experimental curve 
will likely correspond to simulations the strength of the slope may not, meaning that multiple 
measurements in the non-linear regions would be necessary for accurate extrapolation.
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Figure 7.1.4 shows the calculated keff for all X-rays in the binary InSb system, calculated with 
respect to SbK. InM and SbM both show slight non-linear behaviour followed by a linear region: 
given their similar energies this is to be expected. InL and SbL also share a trend for much the same 
reason. InK is effectively horizontal: this is a function of energy similar to SbK.
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(density = 5.775gcm-3) lamella of varying thickness.



Figure 7.1.5 is the same system as Figure 7.1.4 where all lines are calculated with respect to InK 
instead of SbK. Given the comparatively similar energies of InK and SbK it is no surprise that the 
same trends hold.

Figure 7.1.6 shows data again for the InSb system, this time calculated with respect to InL. This line 
would experience significantly more absorption than either InK or SbK, and as such would result in 
very different calculated trends. This time, it is the SbL line that is almost horizontal, a function of 
its energy similar to InL. It is worth noting that, unlike the InK curve in Figure 7.1.4, this curve is not
completely horizontal as a function of the slightly different absorption that InL and SbL experience, 
where this trend would presumably also be visible for the InK of Figure 7.1.4 if the thickness was 
increased sufficiently. The curves of InM and SbM, being absorbed more strongly than InL, begin 
with a strong increase (which would translate to a decrease in relative intensity) and then level off: 
this would be due to most additional X-rays generated by greater thickness being self-absorbed by 
said greater thickness. InK and SbK show the opposite trend as a result of being much higher in 
energy than InL. 
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vertical axis. Beam energy 197keV, take-off angle 25° with 106 electron histories. Sample 
composition InSb (density = 5.775gcm-3) lamella of varying thickness.



Given that higher energy X-rays (like InK and SbK) give a much more linear curve (as seen in Figure
7.1.4 and Figure 7.1.5) compared to X-rays of lower energy (like InL) it would be reasonable to ask 
why investigate such curves at all. The chief advantages would be availability, statistics and 
whether the change due to absorption is desirable: the detection efficiency of a Si(Li) detector at the
energies of harder X-rays is significantly less than that of softer X-rays, which could mean 
significantly inferior counting statistics if this loss of intensity due to detector efficiency is greater 
than the gain from decreased absorption. If the intent is to arrive at the sample thickness, then 
certain combinations of X-rays would be unsuitable as there would be very little change (e.g. SbL / 
InL in Figure 7.1.6), though such curves would be ideal for determining chemical composition as 
they are almost independent of sample thickness. It is also worth noting that a lower energy X-ray 
may be selected as the comparator simply because the highest energy X-ray may be emitted from a 
material that is of low concentration in the sample, such as InK from In0.1Ga0.9As. 

The primary difficulty in extrapolating from a few data points in a non-linear curve is that the slope 
and the point of transition from non-linear to linear are both critical to analysis and difficult to 
measure with good accuracy. As such, a method that reduces the problem to a simple linear 
extrapolation would be useful. Noting that in Figure 7.1.6 the InM and InK curves are inverse 
functions implies that some manner of combination might lead to a linear curve. An obvious way to 
do this is to take their ratio, which results in the curve seen in Figure 7.1.7. The extent to which this 
curve is linear can be judged by its linear least-squares R2 value of 0.9972. It is worth noting that 
this curve could still be extrapolated to zero so as to arrive at a k-factor without absorption, but the 
resulting value would be the weighted sum of the two relevant k-factors, which would require 
knowledge of one in order to extract the other.
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Figure 7.1.6: NISTMonte simulated X-ray intensities for InSb. InM/InL and SbM/InL against right 
vertical axis. Beam energy 197keV, take-off angle 25° with 106 electron histories. Sample 
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Figure 7.1.7: NISTMonte simulated X-ray intensities for InSb. Beam energy 197keV, take-off 
angle 25° with 106 electron histories. Sample InSb (density = 5.775gcm-3) lamella of varying 
thickness.

Given that the InM and InK curves in Figure 7.1.6 are of different orders of magnitude it is clear that 
simple addition will not suffice, however a weighted sum could do instead. This can be done by 
following this equation:

I =
I M

wM

+
I K

w K

Equation
7.1.3

where I is the resulting intensity (hopefully linear with thickness), IM and IK are the low and high X-
ray energy intensities respectively and wM and wK are their respective weights. Using trial and error 
for simulated curves it was found that the most linear result is when wK = 1 and wM = 55.22, 
resulting in the curve displayed in Figure 7.1.8. Linear least-squares analysis gives this curve an R2 
value of 0.9916. Depending on what experimental data points are available, this could be favourable
compared to the exponential curves seen in Figure 7.1.6 and could be superior to the curve seen in
Figure 7.1.7 if the two intensities chosen for this analysis are not scaled opposites, since a ratio 
would not necessarily result in a linear curve while a weighted sum might.
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Figure 7.1.8: Weighted sum of InM/InL and InK/InL in InSb. NISTMonte simulation run at beam 
energy 197keV, take-off angle 25° with 106 electron histories. Sample InSb (density = 5.775gcm-3) 
lamella of varying thickness.

Calculating the corrected k-factor from this method would then be a simple matter of subtracting the
additional k-factor from the extrapolated intercept. 

The only samples considered up to this point are binary in composition. Many samples, however, 
would be comprised of three or more materials: the prior derivation holds true in this case, where 
the presence of the additional elements can be ignored for the purposes of the calculation. It is 
worth noting that the keff for values above t = 0 will be different, but that for t  = 0 it will be the 
same. The validity of this approach is shown in Figure 7.1.9, which shows that varying the indium 
concentration in InxGa1-xAs can be properly accounted for to give the same y-intercept.
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In principle, this means that several corrected k-factors could be derived from a single sample. The 
difficulty with this is twofold: reduced counting statistics for individual lines compared to if they 
were analysed in a binary sample (since all available lines 'compete' for detector processing time) 
and uncertainty in knowledge of the composition. In many binary samples, a certain composition 
can be assumed with a fair degree of accuracy (a Type III and Type V sample would be 1:1, for 
example) however such would not be the case for a sample with more elements. Counting statistics 
is unlikely to be a problem, as analysis time can be devoted in full to a single sample rather than 
needing to split between two or more samples: this would likely offset any increase in error due to 
background subtraction. The composition issue would likely introduce significant errors: this could 
be partially mitigated by an iterative approach, cycling back and forth between the composition, 
sample thickness at that particular point (possibly aided by that discussed in Chapter 6) and fitting 
to modelled or simulated curves. Other than convenience, this approach would have the advantage 
of producing self-consistent k-factors.

7.2 Experimental analysis

The first experimental sample to be analysed is the GaAs lamella previously seen in Figure 6.2.2. 
As already mentioned, extrapolating the value to zero thickness gives the k-factor value, as seen in
Figure 7.2.1. Given that there are only a few data points and that they lie along a fairly straight line, 
a linear least-squares regression seemed the best choice. The results of this analysis is shown in
Table 7.2.1, along with the nominal values extracted from the LINK ISIS software. The R2 values 
are uniformly high and the relative errors comparatively low. Compared to the currently accepted 
values the absorption-less k-factors are significantly different, with all but the GaK/AsK ISIS values 
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being smaller than their corrected counterpart. The reason for why this is not clear: it could be that 
the ISIS values were calculated with an excessive correction for absorption and therefore gave 
values that are too low.
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Figure 7.2.1: Experimental data from GaAs lamella. Estimated detector efficiencies AsK: 79%, AsL: 
68%, GaK: 77%, GaL: 64%.

y-intercept R2 ISIS value

GaK/AsK 0.764±0.003 0.975 0.88

GaL/AsK 1.20±0.07 0.987 0.90

AsL/AsK 1.4±0.3 0.984 0.89

AsK/GaK 1.38±0.01 0.977 1.14

AsL/GaK 1.7±0.4 0.984 1.02

GaL/GaK 2.32±0.16 0.987 1.03

Table 7.2.1: Least-squares linear regression of the data in Figure 7.2.1.

Plotting keff against thickness is not the only method for correcting the k-factor. Another viable 
method is to plot it against a K/L ratio, such as those seen in Chapter 6. In this case, to give the 
correct k-factor without absorption value the curve must not extrapolated to the y-intercept but 
instead to some value of the K/L ratio that corresponds to zero thickness. This value can be 
determined from the same data set to provide a self-consistent result. It is worth noting that this 
approach would exclude the calculation of certain k-factors, as plotting the keff of a pair of X-rays 
against its own K/L ratio is not meaningful. The data of Figure 7.2.1 is plotted against AsK/AsL and 
GaK/GaL in Figure 7.2.2: plainly the same trends are followed.
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Figure 7.2.2: Figure 7.2.1 data plotted against AsK/AsL and GaK/GaL. Estimated detector efficiencies 
AsK: 79%, AsL: 68%, GaK: 77%, GaL: 64%.

The linear least-squares regression results of the curves shown in Figure 7.2.2 are displayed Table 
7.2.2. It is clear that plotting against either AsK/AsL or GaK/GaL gives similar results, with only 
minor changes in both the error of the results and the R2 and the calculated keff at t=0 being the same
in both cases. There is no clear trend as to which is superior, though perhaps the AsK/AsL fits have, 
on average, a slightly higher R2. Of particular interest is comparing these results to those found in
Table 7.2.1: the answer calculated using the K/L ratios almost uniformly have lower relative error 
and R2 values closer to unity than those calculated with respect to sample thickness. In a sample of 
this nature, where the data is well-behaved, this approach may well not be necessary, however, if 
there is more scatter or other problems with the data then the increased self-consistency could give 
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far greater benefits. Comparing the corrected k-factors with those given by the ISIS software, there 
are some changes particularly in the softer X-rays (AsL and GaL). This is as expected, as a softer X-
ray is more susceptible to absorption and hence removing absorption would change the values to a 
greater extent.

k-factor at t=0 R2 ISIS values

plotted against 
AsK/AsL

GaK/AsK 0.766±0.002 0.980 0.88

GaL/AsK 1.20±0.08 0.995 0.90

AsK/GaK 1.382±0.004 0.983 1.14

AsL/GaK 1.7±0.4 1.000 1.02

GaL/GaK 1.61±0.12 0.996 1.03

k-factor at t=0 R2 ISIS values

plotted against 
GaK/GaL

GaK/AsK 0.765±0.002 0.964 0.88
GaL/AsK 1.20±0.07 1 0.90

AsK/GaK 1.390±0.004 0.968 1.14
AsL/GaK 1.7±0.4 0.996 1.02

AsL/AsK 1.05±0.18 0.996 0.89
Table 7.2.2: Linear least-squares regression of data in Figure 7.2.2 where the KL ratio 
corresponding to t=0 was taken from Figure 6.2.2. 

An example of a data set which is not well-behaved when plotted with respect to sample thickness 
would be either of the two 'wedge' data sets shown in Figure 6.2.3. This behaviour is most apparent 
in ratios other than AsK/AsL which had not been plotted previously. Plotting keff for different X-ray 
lines against sample thickness illustrates this issue, as seen in Figure 7.2.3. It is plain that in some 
cases, such as the GaK/AsK or AsL/GaK curves, neither a linear nor a second order polynomial fit will
suffice. In other curves this is less obvious, such as the GaL/GaK, which has a slight curvature at 
high thicknesses and a strong curve in the other direction at low thickness.
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Figure 7.2.3: Various keff for a GaAs cleaved wedge. Detector efficiencies AsK: 79%, AsL: 68%, GaK:
77%, GaL: 64%.

Plotting the same curves against a KL ratio, however, gives a much superior plot, as seen in Figure 
7.2.4. These curves are significantly more linear than those seen in Figure 7.2.3 and therefore are 
better suited for extrapolation. 
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Figure 7.2.4: Wedge AsK/AsL and GaK/GaL data plotted against thickness.

Calculating a corrected k-factor using this method is extremely dependent on first acquiring a 
correct value for the KL that corresponds to zero thickness. For this sample, this proved to be 
difficult: the AsK/AsL at t=0 possess large error bars. However, it is also possible to use external data
for this purpose: Table 7.2.3 contains the results for corrected k-factors taken with respect to 
thickness, then with respect to AsK/AsL where the KL ratio corresponding to zero thickness was 
first taken from the data set and then from the lamella of Figure 7.2.1. First, note that some the 
values calculated with respect to thickness are of good quality, such as AsK/GaK or GaK/AsK. In other
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cases, however, the fit is considerably worse such as GaL/GaK or GaL/AsK. Looking at the values 
calculated with respect to AsK/AsL the trend is different, with curves that had low error before 
gaining large uncertainty, such as AsK/GaK, while those that were previously uncertain see a 
decrease in error. Those values calculated with the lamella KL ratio at t=0 show superior relative 
error, which is to be expected. This inversion of the error characteristic is a function of the plots: 
those curves plotted against AsK/AsL are much more linear and hence much better suited to 
extrapolation, but are also subject to the error in the KL ratio that corresponds to zero thickness. The
lesson to be learned in that correctly and accurately calculating the KL ratio that corresponds to zero
thickness is critical. It is worth noting that there is no reason why both methods cannot be used, 
with some keff being calculated against sample thickness and others against KL ratio.

corrected k-factor R2 ISIS values

against thickness

AsL/AsK 1.4±0.5 0.924 0.89

GaL/AsK 2.5±1.3 0.850 0.90
GaK/AsK 0.66±0.04 0.679 0.88

AsL/GaK 2.4±1.1 0.942 1.02
GaL/GaK 5±3 0.890 1.03

AsK/GaK 1.54±0.10 0.765 1.14

Corrected k-factor:
using self-consistent KL 
ratio for t=0

using lamella KL 
ratio for t=0

R2

against AsK/AsL

GaL/AsK 2.1±1.2 1.3±0.5 0.990
GaK/AsK 2.1±1.0 1.5±0.4 0.958

AsL/GaK 1.48±0.09 1.42±0.03 0.999
GaL/GaK 0.68±0.04 0.70±0.02 0.990

AsK/GaK 3±2 1.8±0.8 0.968
Table 7.2.3: Corrected k-factors for the data shown in Figure 7.2.4.

The previously shown sample were all possessed of a 1:1 composition. Correcting for binary 
compounds with a different composition can also be done. To demonstrate this, a Si0.54Ge0.46 sample 
was analysed, with the resulting intensities shown in Figure 7.2.5. It is readily perceptible that the 
simulations broadly follow the experimental results, however NISTMonte matches the GeK/SiK 
curve better than CASINO while the reverse is true for GeL/SiK, where the CASINO curve's slope 
matches fairly well. In this case, no measurement of sample thickness was undertaken.
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Figure 7.2.5: Si0.54Ge0.46 experimental to simulation comparison. NISTMonte simulation: beam 
energy 197keV, take-off angle 25° with 106 electron histories. CASINO simulation: beam energy 
200keV, take-off angle 25° with 106 electron histories. Simulated sample composition Si0.54Ge0.46 
(density = 3.71gcm-3) lamella of varying thickness. Estimated detector efficiencies SiK: 70%, GeL: 
64%, GeK: 77%.
 
Using a value for the KL ratio at t=0, determined previously, of 1.3±0.05, the corrected k-factors are
shown in Table 7.2.4. Clearly, the fits are of good quality and produce little error. This is, it is worth
noting, a well-behaved data set, in that both curves are well defined with no outliers. It does, 
however, serve to indicate that a good fit and accurate knowledge of the KL ratio at t=0 can give 
very accurate results.

corrected k-factor R2 ISIS value

GeL/SiK 2.15 ±0.06
0.07 0.982 1.654

GeK/SiK 2.13±0.09 0.992 1.609

Table 7.2.4: Second order polynomial least-squares regression keff at t=0 for the data in
Figure 7.2.5.

As already mentioned, keff can be plotted with respect to any scale that represents sample thickness. 
Previously, this was the KL ratio, however other scales such as detector deadtime would also 
function. Shown in Figure 7.2.6 is the results from a InP sample plotted against deadtime from the 
same sample as that shown in Figure 6.2.1. As a reminder, this data was extracted manually and as 
such the error is purely Poisson statistics and the general quality is lower than that given by 
dedicated software.
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Figure 7.2.6: InP keff against deadtime. Detector efficiencies were taken as InK: 89%, InL: 73%, InM: 
41%, PK: 69% (Figure 2.3.1).

The second order polynomial fits from Figure 7.2.6 are shown in Table 7.2.5. The R2 value for each 
fit is significantly lower than could be desired, though the relative error is generally good. 
Unfortunately, ISIS only contains the k-factors for InL and PK and so no other comparison is 
possible. Without pre-existing k-factors to compare to it can only be said that the fits are not of very
good quality.
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keff at t=0 R2 ISIS values
InK/PK 4.1±0.5 0.627

InL/PK 0.90±0.10 0.609 1.822
InM/PK 52±9 0.632

InL/InK 0.219±0.004 0.399
InM/InK 11.2±1.7 0.532

PK/InK 0.23±0.02 0.582
Table 7.2.5: Second order least-squares 
regression results from the data shown in
Figure 7.2.6.

In comparison, these keff were plotted against InK/InL, InK/InM and InL/InM to determine whether this 
would improve either the error or the R2. Using a second order polynomial fit for the three ratios 
above to determine at what ratio value the deadtime reaches zero (since this would correspond to 
zero thickness), excluding the 0.195 deadtime data point as an outlier, gives the values shown in
Table 7.2.6. Many of the fits were very poor (R2 < 0.3) and so no meaningful keff could be calculated
for them. In opposition to the expected, only a few fits are superior to their deadtime counterparts 
seen in Table 7.2.5. This can be interpreted as deadtime already being a scale of sample thickness 
that is fairly accurate, and attempting to improve this by using the intensity ratio does not always 
help. Note that the deadtime is known very accurately, while sample thickness must be measured 
some other way, which implies that the error in keff when measured against sample thickness is a 
function of uncertainty of the sample thickness measurement. Interestingly, the best quality fits are 
when plotted against InL/InM neither of the intensity ratios involving InK are superior. This could be 
the result of InK being such high energy that it has a low detector efficiency.
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keff at t=0 R2 ISIS values

Against InK/InL

InK/PK 0.225

InL/PK 0.269 1.822

InM/PK 51±8
18 0.607

InM/InK 8±1.2
4 0.735

PK/InK 0.255

keff at t=0

Against InK/InM

InK/PK 0.211

InL/PK 0.227 1.822

InM/PK 55±3
6 0.889

InL/InK 0.21±9x10−4

1.81x10−3

0.652

PK/InK 0.190

keff at t=0

Against InL/InM

InK/PK 0.189

InL/PK 0.194 1.822

InM/PK 55±3
5 0.878

InL/InK 0.21±0.8x10−3

1.6x10−3

0.594

InM/InK 8.6±0.4
0.9 0.997

PK/InK 0.166
Table 7.2.6:Second order polynomial fit results for various keff 
in InP.

7.2.1 Conclusion

A method for both accurately accounting for absorption and correcting k-factors has been discussed.
This method has been shown to apply in simulations to a variety of different samples and 
compositions. Further, a means by which this method can be utilised without a direct reliance on 
knowledge of sample thickness has also been expanded upon.

Experimentally, both the original method and expanded form have been shown to work in some 
cases. Indeed, the GaAs wedge sample demonstrated that a dual effect could function well, with 
some keff being calculated with respect to sample thickness and other in terms of KL ratio. Further, it
was shown that to some extent detector deadtime can serve as a viable replacement for thickness, in 
some cases proving superior to the X-ray intensity ratio method.
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8 Conclusion
The Monte Carlo simulation programs compared led to the conclusion that CASINO appears to 
give the best absorption values, though all four programs used followed the same trends. The bulk 
of the simulations were run in NISTMonte for speed and ease of use. 

The use of the equation to calculate the depth of a thin layer was explored in some detail. While it 
was found to work very well in simulations, attempts to apply it to experimental data uniformly met
with failure. This appears to be primarily due to counting statistics and sample inconsistencies, 
where both are more strenuous to achieve to the required accuracy than initially assumed. 
Calculation of the variable λ was examined with the intent of determining its associated difficulties. 
Several issues were found: the fact that the different methods of calculating λ provide different 
results, how normalisation changes the effective λ  value and the sometimes strong effect of self-
absorption in the thin layer. It was also discovered that the value of λ for one material can 
sometimes be used to estimate that of another material, such as InL and SbL. It was found that a 
sample with multiple thin layers behaves much like that with a single thin layer at some 
intermediate depth, though this could see an increase in the statistical error of the result.

The five other methods of Chapter 5 for the determination of the depth of a thin layer were also 
discussed. Here, it was found that both the graphical methods can only be used to give a general 
estimate of the depth, as they are insufficiently sensitive for meaningful numerical results. The 
'curve fit' approach gave results that were incorrect by orders of magnitude: given that this method 
is built on the principle of calculating λ from equation 4.1.1 this implies that experimental 
calculation of this critical parameter would be more difficult than first thought. Both the 'absorption 
matching' methods gave coherent results, though these results are very different. This appears to be 
a matter of the input parameters: which, if either, is correct is not clear.

A method of calculating the thickness of a sample from a ratio of two X-rays was discussed. It was 
discovered that certain X-ray intensity ratios allow direct calculation of the chemical composition 
by virtue of being near-unchanged with thickness. Further, it is possible to use spectra that have 
been gathered with knowledge of some other measure of sample thickness, such as detector 
deadtime. A theoretical method for calculating the thickness of a sample by analysis of the same 
region at different take-off angles was also discussed, though no reliable experimental data was 
available to test this approach.

Finally, a method for calculation of effective k-factors that include the absorption effectwas 
discussed. It was found that this method can be attempted with respect to other measures of 
thickness that also vary with sample thickness, such as detector deadtime or the ratio described 
above. In the case of the X-ray intensity ratio, a much improved value can result, as the curves 
become far more self-consistent, which in turn improves the accuracy of any fit. Taking this method
with respect to detector deadtime appears to give an improved result compared to the X-ray 
intensity ratio, though whether this is a function of the sample differing from the expected geometry
or a general trend is unknown.

8.1 Applications

Obviously, the most sophisticated methods are useless if there is no need for them. Clearly, equation
4.1.1 and its associated methods are useful for any situation where there is a thin layer embedded 
within a matrix, such as a quantum domain structure (i.e. well, wire or dot). Such semiconductor 
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structures are exceptionally useful in that they present novel characteristics, particularly in terms of 
bandgap and therefore electromagnetic properties. At present, there appears to be no other method 
which does this in a TEM, and as such there are comparatively few situations presented in the 
literature where such a method would be useful [69][70][71][72][73][74][75][76]. Further, the same
principle could be applied to other fields such as X-Ray Fluorescence (XRF) or Particle Induced X-
ray Emission (PIXE), which stimulate X-ray emission by means other than electrons. Details may 
differ (for example, XRF would experience the equivalent effect to beam straggling as a reduction 
in X-ray generation, as the 'waves' used do not lose energy gradually in the same way as electrons), 
and as such simulations with the appropriate software would be necessary to discover the extent of 
the differences, but the fundamental concept should remain sound.

The 'K/L ratio' method can be utilised in any sample with at least one element whose Z≥20. The 
usefulness would be to either acquire the specimen thickness for its own value or use that 
knowledge of the thickness to more accurately correct for absorption. Obviously, this situation is 
common [77][78][79][80][81][82][83][84][85][86][87][88].

The 'k-factor' is useful in any situation where the Cliff-Lorimer ratio method is used. It can also be 
used to complement the 'K/L ratio' method, in that once the thickness has been determined the 
absorption can be arrived at through interpolation [26][89][90][91]. In principle, this could also be 
utilised in a SEM, if there is sufficient knowledge of the interaction volume to give an 'effective' 
thickness.

Obviously, there are far more situations where these techniques could be useful: those listed here 
are only a small fraction for brevity.

8.2 Further work:

For further work, I would recommend the following:

For equation 4.1.1, attempting the analysis of a sample with a fairly thick layer (e.g. 10nm) of some 
element which possesses a soft X-ray (e.g. aluminium) embedded somewhat shallowly (~50nm) 
within a matrix of some material which does not produce characteristic X-rays that would interfere 
with the X-ray of interest and of sufficient absorption cross-section that it would provide strong 
absorption (e.g. InSb). Ideally, this could be carried out in a microscope that is equipped with an 
SDD for the higher resolution at the expected countrate, provided that this countrate can be utilised 
without damaging the sample during analysis. Of note is that the thin layer should be fairly shallow,
as this would present the smallest change in the region that the generated X-rays travel through on 
their way to the detector. Such an analysis must have sufficient livetime to ensure that statistical 
error would not mitigate the accuracy of the results. Further note that self-absorption in the layer 
must be accounted for.

Be sure to apply the two 'absorption matching' methods to the data gathered from the above sample.
In theory, the results should match. If they do not, attempt to discover why.

It has been suggested that a spherical particle could be used instead of a layer to remove interaction-
volume effects. This would work, provided that the beam is significantly wider than the sample. 
The disadvantage would be an increased number of X-rays from the matrix which would still suffer 
from these effects and as such could not be used as a correction for such things an uncertainty in the
beam electron density. Despite this disadvantage, an experiment with a spherical particle could be 
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used in place or in addition to that described above, with similar parameters. Note that multiple 
particles or nanocomposites would likely function in a manner analagous to the multiple layers 
discussed in section 4.4, and as such would give no particular advantage.

The correction for shielding by the sample holder is heavily reliant on accurate parameters for the 
sample holder (the cut-off angle). Acquiring this parameter to a high degree of accuracy would be 
beneficial, as the distinctive curve seen in the X-ray intensity as a function of sample tilt is to a 
significant extent the result of this shielding effect. This could be done by mounting the sample 
holder in some manner of apparatus which would hold it steady while simultaneously allowing it to 
be rotated with a high degree of precision. Then, a laser could be aimed at the centre of where the 
sample is placed. From there, it would be a simple matter of rotating the sample holder until the 
laser is obscured. What has already been done is a somewhat low-precision form of this.

Devise and carry out an experiment with the above improved shielding cut-off angle and some 
means of measuring exactly which region of the sample is being examined relative to the edge of 
the specimen holder. Otherwise, the exact position of the area being examined could have an effect 
on the degree of shielding.

Perform an experiment with a holder that has no shielding at all: while it is thought that shielding 
has been properly modelled it would be wise to be certain of this.

Further, it would be wise to explore the assumption that the detector is a single point: can equation
4.1.1 be extended to have a range of take-off angles? What about an annular detector, which has a 
tremendous solid angle?

Investigate the consequences of using a detector with a take-off angle far from that used in this 
project (25°). What about multiple detectors, or those with an unusual shape?

Could equation 4.1.1 be utilised in conjunction with the φ(ρz) method to give better correction for 
absorption? If nothing else, fitting to the X-ray generation vs. depth curve could give better results 
if several experimental curves with differing take-off angles were used for one sample.

Extend the 'curve fit' methods by plotting a single curve of ln (X-ray intensity) against 1/sin(θ). A 
linear fit of this would, in principle, give the ratio of d/λ. This was not done due to time constraints.

Apply the varying take-off angle method of chapter 6 to a reliable experimental sample to explore 
its validity.

Continue attempting to explore the validity of the the method of chapter 7 when applied to indirect 
means of measuring the sample thickness, such as detector deadtime and X-ray intensity ratios.

Confirm that the effective k-factors measured against indirect measures for thickness can be 
extended to other methods of quantification (such as Watanabe's ζ method).
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10 Appendix

What follows is the derivation of the degree of shielding caused by tilting the sample holder or 
moving the detector. The previously known variables are the collection angle, Ω, the natural take-
off angle (i.e. the angle at which the detector is fixed with respect to the horizontal), θ, the degree of
specimen tilt, α, the area of the detector, A, and the angle at which the sample holder is assumed to 
cut off all X-rays, σ. This derivation could be used with different initial known variables, with 
appropriate extension.

Figure 10.1: Diagram showing relevant variables. Note that neither diagram accounts for a change 
in specimen tilt, α.

The collection angle Ω is defined in terms of steradians (srad). Given this, the distance between the 
sample and the detector, R, can be calculated as the radius of the hypothetical sphere that the 
steradian unit envisions. The distance between sample and detector can be calculated from the 
definition:

Ω=
A

R2∴ R=√ A
Ω

where A is the area of the detector and R is the radius of the hypothetical sphere and hence the 
distance between sample and detector.

The radius of the detector (which is assumed to be perfectly circular) is simply given by r=√ A
π .
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β, half the two dimensional angle covered by the detector, is given by β = tan-1 (r/R) and γ, the angle
between the horizontal and the bottom of the detector is γ = θ -  β

The first step is to calculate the angle shielded, measured from the bottom of the detector for 
simplicity: σ – α - γ

This can then be expressed as the distance from the bottom of the detector that is shielded, rs:

r s=r−R⋅tan(β−(σ−α−γ))

It is then possible to calculate the area of the (circular) detector that is part of the segment described
by rs, As:

A s=r 2
⋅cos−1( r−r s

r )−(r−r s)⋅√(2⋅r⋅r s−r s
2
)

From there, it is a simple matter to calculate the fraction of the detector that is exposed:

multiplier=
A−A s

A

which would be multiplied with simulated results to bring them in line with experiment, or divide 
experimental results by this value to arrive at the expected value without shielding.

In the case of the specific detector used to gather the experimental results of this project, the 
following values were used:

Ω 0.12 srad

θ 25 degrees

σ 10 or 5 degrees

A 30 mm2

The values for α are set in each individual experiment.
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