
Checking Memory Safety of Level 1 Safety-Critical Java

Programs using Static-Analysis without Annotations

Christopher Alexander Marriott

PhD

University of York

Computer Science

September 2014

Abstract

Safety-Critical Java (SCJ) has been designed specifically to bring performance and re-

liability to the development of safety-critical Java programs. SCJ introduces a novel

programming paradigm based on missions and handlers, and has been designed to ease

certification. One of the distinguishing features of SCJ is its memory model, which is de-

fined as a hierarchical structure of scoped-based memory areas. Unlike in Java programs,

memory management is an important concern under the control of the programmer in

SCJ; it is not sufficient to write a program that conforms to the specification as memory

safety may still be broken.

By using static analysis techniques, it is possible to identify errors in programs before

they are executed. Analysing at the source-code level allows for a precise analysis that ab-

stracts away from machine details and unnecessary program details. As the SCJ paradigm

is different to that of Java, it is not possible to apply existing tools and techniques for

Java programs to SCJ.

This thesis describes a new static-checking technique for a comprehensive subset of

SCJ programs (comparable to Ravenscar Ada) that automatically checks for memory-

safety violations at the source-code level without the need for user-added annotations. An

abstract language (SCJ-mSafe) is used to describe the aspects of SCJ programs required to

check memory safety, and a set of inference rules define what it means for each aspect to

be memory safe. By using a points-to environment and automatically-generated method

properties, it is possible to produce a model of the execution of an SCJ program that

can identify possible memory-safety violations at each point in the execution. The whole

process has been automated with tool support and compared against other techniques. A

worst-case analysis is performed that can give false negatives.

3

Contents

Abstract 3

List of Figures 9

Acknowledgements 13

Declaration 15

1 Introduction 17

1.1 Background and motivation . 17

1.2 Objectives and hypothesis . 20

1.3 Contribution . 21

1.4 Overview . 22

1.5 Thesis outline . 23

2 Memory safety of real-time and safety-critical Java programs 25

2.1 Real-Time and Safety-Critical Java . 25

2.1.1 Real-Time Specification for Java . 25

2.1.2 Safety-Critical Java . 27

2.1.3 A Cruise Controller System . 30

2.2 Memory models and memory safety . 34

2.2.1 Java memory model . 34

2.2.2 RTSJ memory model . 34

2.2.3 SCJ memory model . 36

2.2.4 Memory safety . 39

2.3 Verifying memory safety in RTSJ . 40

2.3.1 Memory management based on method invocation 41

5

Contents

2.3.2 Type systems . 42

2.3.3 Ownership types . 44

2.3.4 Dynamic logic . 45

2.3.5 Bytecode analysis . 47

2.3.6 Conclusion . 48

2.4 Verifying memory safety in SCJ . 48

2.4.1 SCJ Annotations . 48

2.4.2 Model checking . 51

2.4.3 Correctness by construction . 54

2.4.4 Bytecode analysis . 57

2.4.5 Hardware checking . 58

2.4.6 Conclusion . 59

2.5 Summary . 59

3 SCJ-mSafe: An abstract language for memory-safety checking 61

3.1 An example program in SCJ-mSafe . 61

3.2 A formal model of SCJ . 65

3.3 A formal model of SCJ-mSafe . 69

3.3.1 SCJ-mSafe - Overall Program . 69

3.3.2 SCJ-mSafe - Safelet . 72

3.3.3 SCJ-mSafe - Mission Sequencer . 73

3.3.4 SCJ-mSafe - Missions . 73

3.3.5 SCJ-mSafe - Handlers . 74

3.3.6 SCJ-mSafe - Classes . 75

3.3.7 SCJ-mSafe - Methods . 75

3.3.8 SCJ-mSafe - Commands . 76

3.3.9 SCJ-mSafe - Expressions . 86

3.4 Translating SCJ to SCJ-mSafe . 88

3.5 A translation strategy . 90

3.5.1 Translating expressions . 94

3.5.2 Translating commands . 102

3.6 Final considerations . 104

6

Contents

4 Modelling and checking memory configurations 107

4.1 Introduction . 107

4.1.1 Analysing static variables and the safelet 108

4.1.2 Analysing the mission sequencer . 112

4.1.3 Analysing the mission . 113

4.1.4 Analysing handlers . 117

4.2 An environment for memory configurations 120

4.2.1 Expression reference sets . 121

4.2.2 Expression share relations . 122

4.2.3 The environment . 123

4.2.4 Handling concurrency . 124

4.3 Method properties . 127

4.4 Updating the environment . 131

4.4.1 Commands . 131

4.4.2 Handlers . 147

4.4.3 Missions . 149

4.4.4 Mission Sequencers and Safelets . 150

4.5 Generating method properties . 151

4.5.1 Commands . 151

4.5.2 Building all method properties . 155

4.6 Rules for checking SCJ-mSafe programs . 159

4.6.1 The dominates relation . 159

4.6.2 Environment . 161

4.6.3 Commands . 169

4.6.4 Overall SCJ-mSafe Program . 175

4.6.5 Safelet . 176

4.6.6 Mission sequencer . 177

4.6.7 Missions . 178

4.6.8 Handlers . 180

4.7 Checking method properties for memory-safety violations 181

4.8 Rules for checking method properties . 182

4.8.1 Method properties . 183

4.8.2 All method properties . 184

7

Contents

4.9 Final considerations . 185

5 TransMSafe and examples 187

5.1 TransMSafe . 187

5.2 Examples . 193

5.2.1 Unit testing . 193

5.2.2 EnterPrivateMemory example . 194

5.2.3 ExecuteInAreaOf example . 197

5.2.4 Concurrency example . 200

5.3 Case studies . 203

5.4 Evaluation . 206

5.5 Final considerations . 207

6 Conclusions and further work 209

6.1 Summary . 209

6.2 Conclusions . 210

6.3 Further work . 212

6.3.1 Level 0 programs . 212

6.3.2 Level 2 programs . 213

6.3.3 Mutual recursion . 213

6.3.4 Soundness . 213

6.3.5 Optimisation . 213

6.3.6 A more precise environment . 214

6.3.7 Automatic SCJ annotation . 214

6.3.8 Application to other languages . 214

A Z notation 215

B SCJ model in Z 217

C SCJ-mSafe model in Z 221

D Translation strategy in Z 227

E Checking technique in Z 255

References 311

8

List of Figures

1.1 Memory-safety checking technique . 23

2.1 SCJ programming paradigm. 27

2.2 SCJ programming paradigm with execution flow. 28

2.3 Concise SCJ API . 30

2.4 ACCS class diagram . 31

2.5 ACCS Mission in SCJ . 32

2.6 SpeedMonitor Handler in SCJ . 33

2.7 RTSJ memory structure . 36

2.8 SCJ memory model. 37

2.9 Default memory areas for SCJ paradigm components, and default allocation

contexts. 38

2.10 Concise SCJ memory model API . 39

2.11 RTSJ and SCJ memory representation in RSJ 54

3.1 ACCS Mission in SCJ-mSafe . 62

3.2 SpeedMonitor Handler in SCJ-mSafe . 64

3.3 SCJ Commands in Z . 67

3.4 SCJ Expressions in Z . 68

3.5 SCJ-mSafe BNF 1 . 70

3.6 SCJ-mSafe BNF 2 . 71

3.7 executeInAreaOf example in SCJ . 81

3.8 executeInAreaOf example in SCJ-mSafe . 82

3.9 getMemoryArea example in SCJ . 83

3.10 getMemoryArea example in SCJ-mSafe . 84

3.11 SCJ class translation to SCJ-mSafe paradigm components. 88

9

LIST OF FIGURES

3.12 SCJ class component translation to SCJ-mSafe methods and class fields. . 88

3.13 ACCS sketch in SCJ-mSafe . 89

3.14 Translate function that takes SCJ programs and returns SCJ-mSafe pro-

grams. 91

3.15 TranslateHandler function that takes an SCJ class identified as a handler,

and returns an SCJ-mSafe handler. 93

3.16 TranslateExpression function that illustrates the translation of a simple

assignment. 95

3.17 TranslateExpression function that illustrates a new instantiation as part of

an assignment. 97

3.18 TranslateExpression function that illustrates the initial translation of method

invocations. 98

3.19 TranslateExpression function that illustrates the translation of enterPri-

vateMemory method calls. 99

3.20 ExtractExpression function illustrating how SCJ-mSafe expressions are ex-

tracted from SCJ assignments. 101

3.21 ExtractExpression function illustrating binary expressions, field accesses,

and instance-of comparisons. 101

3.22 TranslateCommand function illustrating the translation of for loops and if

statements. 103

3.23 TranslateCommand function illustrating the return statement. 104

4.1 Simple protocol example - SCJ-mSafe safelet 109

4.2 Simple protocol example - SCJ-mSafe mission sequencer 111

4.3 Simple protocol example - SCJ-mSafe mission 112

4.4 Simple protocol example - SCJ-mSafe list class 115

4.5 Simple protocol example - Environment after the mission’s initialize method

has been analysed . 116

4.6 Simple protocol example - SCJ-mSafe handler 1 117

4.7 Simple protocol example - SCJ-mSafe mission memory entry class 118

4.8 Simple protocol example - Environment after Handler1 has been analysed . 119

4.9 Possible memory-safety violation introduced through concurrency. 125

4.10 Extract of method properties for SpeedMonitor constructor in ACCS SCJ-

mSafe program. 130

10

LIST OF FIGURES

4.11 CalcEnvAssignment function that updates the environment based on the

assignment command. 136

4.12 CalcEnvNewInstance function that updates the environment based on new

instantiations. 138

4.13 ApplyMethodProperties function that updates the environment based on

the execution of methods. 140

5.1 Class diagram for the MSafeProgram class 188

5.2 Class diagram for the MSafeSuperClass class 189

5.3 Class diagram for the MSafeMission class 189

5.4 Class diagram for the MissionComponentVisitor class 190

5.5 Class diagram for the ShareRelation class 191

5.6 Class diagram for the RefSet class . 192

5.7 Class diagram for the SCJmSafeChecker class 193

5.8 Example of possible memory-safety violation introduced by the enterPri-

vateMemory method. 196

5.9 Example of possible memory-safety violation introduced by the executeInAreaOf

method. 198

5.10 Example of possible memory-safety violation introduced through concur-

rency: MyHandler1. 200

5.11 Example of possible memory-safety violation introduced through concur-

rency: MyHandler2. 201

5.12 Table showing example and case study data. 204

11

Acknowledgements

I would like to express my sincere thanks to my supervisor, Professor Ana Cavalcanti,

for her continued support and guidance throughout my research. She has always been

available to give help and advice when needed, for which I am extremely grateful.

I am grateful to Professor Andy Wellings, my internal examiner, for his feedback at

each milestone of my PhD. I am also much obliged to Dr. Phil Brooke for taking the time

to examine this thesis.

Thanks to the EPSRC for providing the necessary funding that allowed me to under-

take this research. Thanks also to the Department of Computer Science, which has been

a huge part of my life for the last 8 years throughout my PhD and undergraduate masters

degree. I would also like to thank my colleagues in the department that have supported

me. In particular, Dr Frank Zeyda, who has repeatedly offered his guidance and knowl-

edge in formal methods and Safety-Critical Java.

On a personal level, I would like to thank my wife, Nicci, for her continued patience,

understanding, and support. Thanks also to my friends, who have made this chapter of

my life so enjoyable.

Finally, I would like to dedicate this work to my parents, for always being there for

me. My father has always been my inspiration for completing this work, and without him

I would not be where I am today. None of this, however, would have been possible if it

was not for my mother, to whom I am eternally grateful.

13

Declaration

I declare that the research described in this thesis is original work, which I undertook at

the University of York during 2010 - 2014. Except where stated, all of the work contained

within this thesis represents the original contribution of the author.

Some parts of this thesis have been published in conference proceedings; where items

were published jointly with collaborators, the author of this thesis is responsible for the

material presented here. For each published item the primary author is the first listed

author.

• Chris Marriott, Ana Cavalcanti. SCJ: Memory-safety checking without annotations.

In Proceedings of the 19th International Conference on Formal Methods, pages 465-

480, May 2014. [28]

The development of Safety-Critical Java (SCJ) has introduced a novel programming

paradigm designed specifically to make Java applicable to safety-critical systems. Un-

like in a Java program, memory management is an important concern under the

control of the programmer in SCJ. It is, therefore, not possible to apply tools and

techniques for Java programs to SCJ. We describe a new technique that uses an

abstract language and inference rules to guarantee memory safety. Our approach

does not require user-added annotations and automatically checks programs at the

source-code level, although it can give false negatives.

15

Chapter 1

Introduction

This chapter introduces the work and gives the necessary background and motivation

in Section 1.1. Section 1.2 describes the objectives of the work and includes the thesis

hypothesis. Section 1.3 summarises the contributions made before Section 1.5 describes

the outline of the thesis.

1.1 Background and motivation

Safety-critical systems are used, and relied upon, by everyone in today’s society. The

expectation on systems to automatically keep us safe is forever growing; recent exam-

ples include the introduction of pedestrian detection and automatic braking systems in

cars [48], and automatic lane-departure warning systems [47]. Systems such as these,

whose failure may cause serious injury or even death, are subject to extensive verification

and certification processes, especially in the automotive and avionics industries, to try and

ensure failure is not an option.

The Java programming language is undoubtedly one of the most common and pop-

ular programming languages for program developers today. Java is an object-oriented

language, and object orientation is considered to be the dominant programming paradigm

currently [9]. The language provides both compile-time and run-time checking; virtual

machines make the language architecture independent, whilst features such as Just-In-

Time (JIT) compilation gives better performance for specific environments. Java’s ability

to express concurrent implementations with threads also gives it appeal over languages

such as C.

In the Java memory model, all objects are placed on the heap; local variables are

17

Chapter 1: Introduction

stored on a method’s stack. When all references to a particular object are removed from

the run-time environment, an automatic garbage collector removes the object from the

heap on its next execution. The Java memory model is very much behind-the-scenes to

the developer; it is not necessary to think about where and when memory is allocated or

deallocated. The deallocation of memory by the garbage collector happens automatically

at potentially random points. This lack of control over the garbage collector provides a

good abstraction for programmers, but presents a potential problem when running time-

critical applications. Consider, for example, the automatic braking system previously

mentioned; it is not acceptable for the automatic brakes to wait whilst the garbage collector

operates.

Verification and certification are timely and costly procedures; methods to automate

or facilitate these activities are an interesting topic of research for both academia and

industry. One of the more recent attempts to aid the design, verification, and certifica-

tion of safety-critical systems is the introduction of Safety-Critical Java (SCJ) [46]. An

international effort, by various collaborators, has produced a specification for Java that

is suitable for safety-critical and real-time Java programs. It is no surprise that Java is

being adapted for use in safety-critical systems as it is already a widely used and popular

object-orientated language.

The Real-Time Specification for Java (RTSJ) [6] makes Java more suitable for real-

time systems, and provides both timing and behaviour predictability. RTSJ has been

successfully applied in several real-world examples including a controlled UAV from Boeing

and Purdue, and a battleship computing environment from IBM and Raytheon [33]. The

guarantees of reliability needed for safety-critical systems, however, were hard to achieve

without a further restricted language. SCJ strikes a balance between popular languages

(such as Java and C), and languages already considered suitable for high-integrity systems

(such as Ada).

This work is aimed specifically at the SCJ language as it is a new and upcoming

language that has already received interest from both industry and academia. Its con-

strained memory and programming models make it a potentially tractable language in

terms of static verification techniques.

The work is focused on memory safety of SCJ programs: the SCJ memory model is one

of the distinguishing features that sets the language apart from the RTSJ and standard

Java languages. The RTSJ introduces the notion of scoped memory areas that are not

18

1.1 Background and motivation

subject to garbage collection, however, the heap remains available for the programmer

to create and reference objects with no additional concerns. The SCJ memory model

goes one step further by completely removing access to the heap and limiting the entire

program to scoped memory areas and immortal memory. In addition, it restricts the way

in which the scoped memory areas are constructed and used.

The strict memory model of SCJ introduces the possibility of scoped memory violations

that must be checked. It is not enough, like in standard Java, to suggest that the lack

of null-pointers and array-out-of-bounds exceptions give a memory safe program. The

definition of memory safety in the context of SCJ must be enriched to include the scope

rules defined in the language specification. Briefly, the scoped memory areas in SCJ form

a hierarchy, and it is not valid to reference an object that is stored in a child memory area

as the object may be cleared out of memory before the reference variable.

SCJ programs are classified at a specific level, which corresponds to the level of com-

plexity of the program. Level 0 programs are the most simple and are cyclic executive

programs. Level 1 programs introduce concurrency and handle asynchronous events.

Finally, Level 2 programs are the most complex and contain an even greater degree of

concurrency as will be explained later. Level 0 programs will generally be reserved for

the strictest of programs with tight deadlines and a high level of assurance. Level 1 pro-

grams are not as restricted, but will provide some of the more interesting examples used

in safety-critical applications; therefore, Level 1 programs are the focus of this work.

As the SCJ language is relatively new, verification tools and techniques are currently

fairly sparse, however, the technique in [45] verifies that a given SCJ program is valid

according to the rules imposed by user annotations using a static checking tool. These

annotations are used to define level, behavioural, and memory properties for particular

classes and methods.

Another technique presented in [14] uses a bytecode checking technique to build a

points-to model of a program that enables memory-safety analysis to be performed without

user-added annotations. Bytecode analysis suffers from issues such as traceability and

unnecessary false negatives being raised through the simplifications made at compilation.

The basic memory model of SCJ has been captured formally in the UTP in [11]. The

memory model provides a basis to develop a formal representation of the necessary SCJ

components required to verify that a given program is memory safe. A formalisation of

the full language is not necessarily required in order to verify memory safety; abstractions

19

Chapter 1: Introduction

can be made as will be discussed later in Chapter 3.

Work is also ongoing into the expression of a new variation of the process algebra Circus;

it is being designed specifically to capture the SCJ programming paradigm independently

of the code [12]. Using this language, the plan is for the development of a refinement

strategy from abstract models, which do not consider the programming paradigm, to a

more concrete representation that facilitates the automatic generation of SCJ programs.

This work is complementary to that outlined here.

1.2 Objectives and hypothesis

In order to check memory properties of SCJ programs, it is important to understand what

memory safety is and what restrictions are imposed by the SCJ specification. This work

investigates the different memory models of Java, RTSJ, and the SCJ programming lan-

guages, and what it means for these to be memory safe. The advantages and disadvantages

of existing memory checking methods need to be identified and addressed in the technique

presented here.

Having identified existing techniques, and the restrictions imposed by each, the main

objective of this work is to identify a new technique that does not suffer from the same

restrictions whilst providing a method that is both useful and realistic for real-world

applications. The aim is to develop a static checking technique that can identify memory-

safety violations to prevent run-time exceptions.

Checking SCJ programs is not trivial, especially when all factors such as memory and

timing are considered. It is not crucial, however, to analyse all aspects of a program when

checking a specific property, and as such, abstractions can be made to make the checking

process easier. Part of this work aims to identify the abstractions that can be made

to simplify the analysis technique whilst maintaining all of the necessary information to

reason about memory safety.

Another objective of the work is to identify memory safety rules that describe what

it means for a program to be memory safe. If these rules can be applied to a program

successfully, then no memory-safety violations exist.

With all of these objectives in mind, the following hypothesis is defined to summarise

the aims of the work and outline what is believed to be possible.

It is possible to produce a sound, automatic static checking technique for valid

Level 1 Safety-Critical Java programs to identify possible unsafe uses of mem-

20

1.3 Contribution

ory at the source-code level, without the need for additional user-added anno-

tations.

1.3 Contribution

The main contribution of this thesis is a new static-checking technique that guarantees to

find possible memory-safety violations for Level 1 SCJ programs without the need for user-

added annotations. In addition to the definition of the overall technique, an underlying

formalisation that provides the basis to prove the soundness of the approach has also been

developed.

Another contribution is found in the way methods are handled. In this technique,

method properties, which are essentially method assertions or postconditions, are used to

define the behaviour of the method independently of the calling context. The contribution

is, therefore, an approach to define and analyse the behaviour of methods in the context

of memory safety that supports modular reasoning.

The technique defined here is based on the analysis of an intermediate language, which

is an abstraction of the original SCJ program. As the intermediate representation is an

abstraction, and not a transformation of the original program, it is easier to maintain

traceability in comparison to other existing techniques. The ability to map potential

errors back to a specific statement in the original SCJ program is, therefore, another

contribution of this work.

The intermediate representation has simple commands and expressions, and does not

contain any nested or complex statements. This allows for the definition of simple memory-

safety rules on the intermediate representation, which are easy to understand and follow.

The fact that the rules are simple and easy to understand is a contribution in its own

right. We view SCJ not only as a profile for Java, but a paradigm for programming of

safety-critical systems that can be adopted in the context of other programming languages

or even used to design new languages. Any such work can benefit from the rules we have

presented, given the clear and abstract nature of the language for which they are described.

The static checking technique described here has been implemented in a tool and

applied to several specific examples that generate memory-safety violations and also a

number of case studies from the literature. The implementation of the tool, and the

successful identification of possible memory-safety violations in examples, proves that the

overall approach is capable of fulfilling the hypothesis. The tool is, therefore, a contribution

21

Chapter 1: Introduction

as it allows others to verify that their SCJ programs are free of memory-safety violations.

Finally, a smaller yet valid contribution is the use of Z to formalise the entire approach,

which provides the community with another case-study in the language.

The next section summarises the overall approach at a high level.

1.4 Overview

The technique has three main steps, as shown in Figure 1.1. The first step takes a valid

SCJ program that is type correct and well formed according to the SCJ specification,

and automatically translates it into the new language called SCJ-mSafe, which is designed

to ease verification. This uses a translation strategy that has been formalised in Z. No

information relevant to memory safety is lost, but all irrelevant information is discarded.

Each SCJ program is described in the same style when translated to SCJ-mSafe; this

makes programs easier to read and facilitates the analysis. A uniform structure also eases

formalisation of SCJ-mSafe and of the checking technique, which is crucial in proving

soundness.

In the second step, an analysis strategy, which has also been formalised in Z, is used

to automatically generate method properties for each method in the SCJ-mSafe program.

These method properties are calculated independently of the execution of the program,

and give a summary of the method’s behaviour. These properties are used during the

analysis of the overall program at each method call; the allocation context at the calling

point of the method gives meaning to the method properties and memory safety can be

checked.

Finally, in conjunction with the method properties, inference rules are applied to the

SCJ-mSafe program using an environment that is automatically constructed to capture

memory properties of expressions required to determine memory safety. Each component

of an SCJ-mSafe program has an associated rule that defines in its hypothesis the con-

ditions that must be true for it to preserve memory safety. If all hypotheses of all rules

applied to a program are true, then the program is memory safe. If any of the hypotheses

are false, there is a possibility of a memory-safety violation.

Given an SCJ program, the technique consists of automatically translating it into SCJ-

mSafe and applying the memory-safety rules. In this way, safety can be verified without

additional user-based input such as annotations, for example.

In general, the memory configuration at particular points of a program cannot be

22

1.5 Thesis outline

Figure 1.1: Memory-safety checking technique

uniquely determined statically. It may depend, for example, from the values of inputs

to the program. Since the aim is to perform a static analysis, the worst-case scenario is

always assumed when checking memory safety.

The analysis is flow sensitive, path insensitive, context sensitive, and field sensitive.

The flow of the program is considered by checking each command individually as opposed

to summarising behaviour.

Precise knowledge of the control path is not necessary. For example, which branch of

a conditional statement is executed cannot be determined statically; both branches are

considered. Although the behaviour may be different in each branch, the effect on memory

may be the same; if not, the effects of both branches are considered. Analysis of loops

and recursion is based on the calculation of a loop summary.

The analysis is context sensitive as methods are analysed based on their calling site,

although each method is analysed once to establish a parametrised summary of behaviour.

This summary is used at each calling point of the method.

Finally, the analysis is field-sensitive as it considers all fields of a referenced object

when analysing assignments and new instantiations.

1.5 Thesis outline

Chapter 2 gives an introduction to Java, RTSJ, and SCJ, and describes the differences

between the memory models of each. It justifies the need for real-time and safety-critical

variations of Java, and how the different memory models are applicable. It also discusses

the existing memory checking techniques for RTSJ and SCJ programs, and evaluates their

effectiveness and limitations.

Chapter 3 describes the intermediary language called SCJ-mSafe language, which gives

23

Chapter 1: Introduction

an abstract representation of SCJ programs. SCJ-mSafe is designed to ease verification

as all programs are expressed in the same way; each program is a sequence of definitions

of components of an SCJ program. It also describes the translation strategy from SCJ to

SCJ-mSafe.

Chapter 4 describes the components required to perform analysis on SCJ-mSafe pro-

grams. An environment is defined that holds information about reference variables and

their corresponding objects. The chapter also describes method properties, which capture

the behaviour of methods independently of the calling context. The memory safety infer-

ence rules that define what it means for each SCJ-mSafe component to be memory safe

are also presented. Finally, the chapter describes how the environment is checked every

time it is updated in order to give a precise location in the program where a possible

memory-safety violation may occur.

Chapter 5 introduces the tool support for the technique that is capable of automatically

translating and checking a given SCJ program for possible memory-safety violations. It

demonstrates how specific programming patterns that are known to introduce possible

memory-safety violations are handled, and includes examples of each to illustrate the

checking technique and the output of the tool. The chapter also includes details of several

case studies that have been successfully checked with the automatic checking tool.

Finally, Chapter 6 draws some conclusions about the technique, and describes in more

detail the possible future work to be completed. In particular, how the technique could be

extended in order to work with Level 0 and Level 2 SCJ programs, and how the soundness

of the technique could be proven.

24

Chapter 2

Memory safety of real-time and

safety-critical Java programs

Memory safety refers to the property of a program whose execution is free from run-time

errors from dangling references. This chapter introduces RTSJ and SCJ and their different

memory models; it also describes what it means for a program written in each of these

languages to be memory safe, and how existing techniques have been developed to verify

this property.

Section 2.1 introduces the RTSJ and SCJ languages. Section 2.2 describes the memory

models of these languages, as it is memory safety in particular that this thesis is concerned

with. Section 2.3 discusses existing techniques for checking memory safety of RTSJ pro-

grams, whilst Section 2.4 explains techniques for SCJ. Finally, Section 2.5 summarises

the existing techniques and gives motivation for the technique presented in the remaining

chapters.

2.1 Real-Time and Safety-Critical Java

In order to make Java more applicable for use in real-time and safety-critical programs,

programming styles and new language features have been specified in two different Java

variants: RTSJ, and SCJ. These two languages are discussed in more detail below.

2.1.1 Real-Time Specification for Java

The RTSJ was designed to address the limitations found in standard Java when developing

real-time programs. The idea was to create a language that imposes as few limitations on

25

Chapter 2: Memory safety of real-time and safety-critical Java programs

the developer as possible, whilst also giving them the functionality required to express real-

time properties. The main additions to standard Java, found in the RTSJ, are discussed

individually below [49].

Time The standard concept of calendar time provided by Java is not enough for time-

critical systems. RTSJ introduces high-resolution time, which has granularity of a nanosec-

ond. This concept of time is then extended into two main categories: relative, and absolute.

Relative time is a simple duration from one point in time to another. Absolute time defines

an exact fixed point in time.

Scheduling In standard Java, the user has no guarantees about scheduling in the JVM;

this is not acceptable for systems with priority-based schedulables. The RTSJ supports

pre-emptive priority based scheduling. All schedulable objects in RTSJ have three param-

eters: a release requirement, a memory requirement, and a scheduling requirement. The

release requirement defines when the schedulable object is ready to run. The memory

requirement defines the rate at which the object allocates memory. Finally, the scheduling

requirement defines the priority of the object.

Schedulable objects can be periodic, aperiodic, or sporadic. Periodic event handlers

have a fixed arrival frequency whereas aperiodic and sporadic event handlers do not; they

are often triggered by external inputs to the system. The difference between aperiodic

and sporadic is the minimum inter-arrival time found in sporadic events, which specifies

the minimum time that must pass before the event can occur again.

Threads Java contains threads; the RTSJ introduces real-time threads, which inherit

the same requirements of a schedulable object. Real-time no-heap threads are also real-

time threads, but they guarantee not to reference or allocate any objects on the heap; this

makes them independent of the garbage collector.

Asynchronous events Threads are often used to perform tasks that are not associated

with some specific event; for this we use asynchronous event handlers.

RTSJ has been successfully applied in several real-world examples including a con-

trolled UAV from Boeing and Purdue, and a battleship computing environment from IBM

and Raytheon [33]. However it is often the case that restrictions have been applied to

facilitate analysis of RTSJ programs; the development of Safety-Critical Java, which is

26

2.1 Real-Time and Safety-Critical Java

Figure 2.1: SCJ programming paradigm.

presented in the next section, was undertaken to try and make Java more suitable for

safety-critical applications.

2.1.2 Safety-Critical Java

The SCJ specification is an official Java Specification Request (JSR-302) currently under

development by The Open Group. The latest draft version of the specification (v0.97) is

publically available, and was released in June 2014. The work presented here is based on

v0.94 from June 2013, and is referred to as ‘the specification’ from this point onwards [46].

The specification is based on Java and the RTSJ; it is designed to be more suited to

safety-critical systems, and in particular their certifiability. Restrictions are often imposed

to ensure that programs are suitable for certification; an example is garbage collection,

which is not considered suitable for use in real-time and safety-critical systems. The mem-

ory model of SCJ, which does not use garbage collection, is one of its most distinguishing

features, and is discussed in more detail below.

SCJ programs that conform to the specification, and use safety-critical libraries, may

be certifiable to Level A of the DO-178B [37] avionics standard. Level A systems are

defined as those whose failure could lead to catastrophic consequences and subsequently

prevent an aircraft from continuing safely. SCJ programs written to the specification are

not automatically certifiable; the specification is designed to make certification easier by

providing a programming paradigm.

SCJ Paradigm The SCJ programming paradigm is focused around the concept of mis-

sions, where each mission has a number of event handlers. Figure 2.1 gives a graphical

representation of the paradigm, and shows the four fundamental components: the safelet,

27

Chapter 2: Memory safety of real-time and safety-critical Java programs

Figure 2.2: SCJ programming paradigm with execution flow.

mission sequencer, missions, and handlers. The dotted line in between the two missions

represents a sequence, as only one mission can execute at a time per mission sequencer.

Figure 2.2 shows the execution flow of an SCJ program inside the paradigm. The entry-

point for an SCJ program is the safelet, which performs the necessary setup procedures of

the program (1) before creating a mission sequencer (2). The mission sequencer controls

the sequence of missions to be executed (3). Missions have three phases of execution:

initialisation (4), execution (5), and cleanUp (6). Periodic and aperiodic handlers

are pre-allocated during the initialisation phase of a mission (4), before executing in the

execution phase (5); a handler’s execution is based on its handleEvent method. Finally,

once the event handlers of a mission have finished executing, the cleanup phase (6) is

entered to perform any final tasks before the mission finishes. The mission sequencer is

then responsible for returning the next mission to execute (7), and the cycle continues.

Compliance levels Compliance levels are used to define the complexity of a program.

For example, hard real-time applications are often likely to contain a single thread of

execution with simple timing properties to ensure deadlines are not missed. More complex

programs may be highly concurrent with multiple threads executing at the same time.

Accordingly, SCJ has three compliance-levels: 0, 1 and 2. Level 0 programs refer to the

most simple programs described above, whilst Level 2 programs have increased complexity.

28

2.1 Real-Time and Safety-Critical Java

• Level 0 programs are cyclic executive programs. Missions contain only periodic

event handlers, which have fixed periods, priorities, and release times (in relation to

a cycle). There is no concurrency at this level. Only sequential missions are allowed

under a single mission sequencer.

• Level 1 programs introduce aperiodic and one-shot event handlers. These, along

with periodic event handlers, are executed concurrently in each mission. Schedulable

objects are controlled by a fixed-priority pre-emptive scheduler. Missions remain

sequential at this level under a single mission sequencer.

• Level 2 programs are the most complex and introduce real-time no-heap threads.

They also allow concurrent missions and nesting of missions; this is achieved through

multiple mission sequencers executing in parallel underneath the top-level mission se-

quencer. Methods that may cause blocking, such as Object.wait and Object.notify

are also allowed at this level.

Level 2 programs may be hard to analyse because of the possibility of multiple separate

missions executing concurrently. As such, existing research into SCJ has predominantly

focused on Level 1 applications, which is considered similar in complexity to Ravenscar

Ada [8, 11]. The work presented here is based on Level 1; the motivation for Level 2 SCJ

programs, and details of the added complexity, is discussed further in [50].

Annotations The SCJ specification includes specific annotations to express constraints

on programs. These annotations facilitate static analysis to be performed to ensure im-

plementations conform to the specification rules. They are also maintained in compiled

bytecode to allow checks at class load-time. The annotations are split into two categories:

compliance-level and behavioural.

Compliance-level annotations are used to ensure classes and methods are only used at

the correct level. For example, a Level 1 implementation could not use a method defined as

Level 2 compliant because the behaviour may break the restrictions of Level 1 programs;

however, a Level 2 implementation could use a Level 1 method. Behavioural annotations

are used to restrict properties such as blocking and allocation.

The annotations mentioned above are discussed in more detail in Section 2.4, which

also includes a set of proposed memory-safety annotations for SCJ programs.

29

Chapter 2: Memory safety of real-time and safety-critical Java programs

1 public interface Safelet

2 public void initializeApplication ()

3 public MissionSeqencer getSequencer ()

4
5 public abstract class MissionSequencer

6 protected abstract Mission getNextMission ()

7
8 public abstract class Mission

9 protected abstract void initialize ()

10 public MissionSequencer getSequencer ()

11 protected void cleanUp ()

12 public static Mission getMission ()

13
14 public abstract class PeriodicEventHandler

15 public void register ()

16
17 public abstract class AperiodicEventHandler

18 public void register ()

19 public final void release ()

Figure 2.3: Concise SCJ API

SCJ API A concise version of the SCJ API that illustrates the programming paradigm

and the SCJ-specific methods in each component is shown in Figure 2.3. The execution

stages described in Figure 2.2 correspond to the methods of the API.

In order to demonstrate the SCJ language, and illustrate how programs are developed

with the new programming paradigm, the next section describes a cruise control system

that has been implemented in SCJ. The next chapter will demonstrate how this example

is expressed in the intermediate representation used for the static checking technique.

2.1.3 A Cruise Controller System

Figure 2.4 (taken from [54]) shows the class diagram for an Automotive Cruise Controller

System (ACCS), which automatically monitors and maintains the speed of a vehicle. The

diagram shows how the program is structured according to the SCJ paradigm; it also shows

the SCJ infrastructure classes that are extended by each component in the implementation.

The example was originally described in [49], and an implementation as a Level 1

SCJ program has been described in [53]. The implementation has a single mission, and

is made up from seven handlers that monitor the vehicle’s gears, engine, brakes, throttle,

levers, wheel shaft, and speed. When an event occurs, such as pressing the brake pedal,

the associated handler communicates with the overall controller class in order to maintain

30

2.1 Real-Time and Safety-Critical Java

Figure 2.4: ACCS class diagram

an accurate representation of the vehicle’s state. In this situation, for example, the cruise

control system is automatically disabled because the driver of the vehicle has pressed the

brake pedal. A more detailed explanation of the system can be found in [53]; in what

follows, parts of the code are explained as needed.

Part of the ACCS mission class in SCJ is shown in Figure 2.5. It includes the

initialize method on line 5, which instantiates and registers all of the handlers in the

system. The createEvents method call on line 6 creates the events that correspond to

interactions between the vehicle and the cruise controller; these are real-world events, such

as the triggering of a sensor, for example. The createISRs method call on line 7 creates

the corresponding interrupt service routines (ISR) for each event; these are responsible for

firing the aperiodic handlers when the interrupt occurs. These ISRs are then registered

through the registerISRs method call on line 8.

The WheelShaft handler created on line 11 monitors the rotation of the wheel, and

increments a local counter when fired. A reference to the WheelShaft handler is passed

to the SpeedMonitor handler created on line 12, which periodically monitors the number

of rotations recorded by the WheelShaft handler, and calculates the current speed. The

SpeedMonitor handler is passed to the ThrottleController handler created on line 13,

which is responsible for maintaining the speed of the vehicle, since controlling the speed

requires knowing how fast the vehicle is currently going.

31

Chapter 2: Memory safety of real-time and safety-critical Java programs

1 class ACCMission extends Mission {

2
3 ...

4
5 public void initialize () {

6 createEvents ();

7 createISRs ();

8 registerISRs ();

9
10 /* Create handlers and controller. */

11 WheelShaft shaft = new WheelShaft(shaft_event);

12 SpeedMonitor speedo = new SpeedMonitor(shaft , 500);

13 ThrottleController throttle = new

ThrottleController(speedo);

14 Controller cruise = new Controller(throttle , speedo);

15 Engine engine = new Engine(cruise , engine_event);

16 Brake brake = new Brake(cruise , brake_event);

17 Gear gear = new Gear(cruise , gear_event);

18 Lever lever = new Lever(cruise , lever_event);

19
20 /* Register event handlers with the mission. */

21 shaft.register ();

22 engine.register ();

23 brake.register ();

24 gear.register ();

25 lever.register ();

26 speedo.register ();

27 throttle.register ();

28 }

29 }

Figure 2.5: ACCS Mission in SCJ

The Controller class created on line 14 is not a handler, it is responsible for main-

taining the state of the system. It is passed as a reference to the subsequent Engine,

Brake, Gear, and Lever handlers created on lines 15-18 as they can all invoke methods

in the Controller class that change the state of the system. Finally, all of the defined

handlers are registered on lines 21-27.

Figure 2.6 shows the SpeedMonitor handler, which has several fields to record the

necessary information to successfully calculate the current speed of the vehicle. The con-

structor of the handler includes a call to the parent constructor via the super method

on line 12; this records the necessary information for scheduling and memory usage. The

first parameter to the super call is the priority of the scheduler, which in the case of this

handler, is the highest possible priority in the system; only the throttle controller shares

the same highest priority. The second parameter determines the frequency at which the

periodic handler should be fired; this is passed as a parameter from the instantiation in the

32

2.1 Real-Time and Safety-Critical Java

1 public class SpeedMonitor extends PeriodicEventHandler {

2 public final int calibration; /* cm per rotation */

3 public final int iterationsInOneHour;

4 public final int cmInKilometer = 100000;

5
6 private WheelShaft wheel_shaft;

7 private long numberRotations = 0;

8 private long lastNumberRotations;

9 private int currentSpeed = 0; /* kilometers per hour */

10
11 public SpeedMonitor(WheelShaft shaft , long period) {

12 super(

13 new PriorityParameters(

14 PriorityScheduler.instance ().getMaxPriority ()),

15 new PeriodicParameters(null , new RelativeTime(period ,

0)),

16 new StorageParameters (32768 , 4096, 4096),

"SpeedMonitor");

17
18 calibration = wheel_shaft.getCallibration ();

19 iterationsInOneHour = (int) ((3600*1000) / period);

20 wheel_shaft = shaft;

21 lastNumberRotations = wheel_shaft.getCount ();

22 }

23
24 public synchronized int getCurrentSpeed () {

25 return currentSpeed;

26 }

27
28 public void handleAsyncEvent () {

29 numberRotations = wheel_shaft.getCount ();

30 long difference = numberRotations - lastNumberRotations;

31 currentSpeed = (int) ((difference * calibration *

iterationsInOneHour) / cmInKilometer);

32 lastNumberRotations = numberRotations;

33 }

34 }

Figure 2.6: SpeedMonitor Handler in SCJ

mission class, and is 500ms. Finally, the third parameter describes the amount of memory

that is required for the handler to execute. The remaining commands in the constructor

set up the necessary calibration information to calculate the speed; this is based on the

wheel shaft information and the frequency of the calculation.

When the handler is fired, the handleAsyncEvent method defined on line 28 is called;

this gets the current number of wheel rotations from the WheelShaft handler, and calcu-

lates the difference based on the previous execution. The current speed is then calculated,

and the number of rotations updated.

This example demonstrates the new programming paradigm introduced by SCJ, and

33

Chapter 2: Memory safety of real-time and safety-critical Java programs

in particular illustrates the roles of periodic and aperiodic event handlers within a system.

The controller class, which is instantiated inside the mission memory area is passed as a

reference to multiple event handlers, so that information can be transferred between the

mission and handlers. Passing references to objects between different memory areas could

potentially lead to the introduction of memory-safety violations, however, there are non in

this example. The different memory models of SCJ and the RTSJ are presented in more

detail next.

2.2 Memory models and memory safety

This section describes the memory models of the Java, RTSJ, and SCJ programming

languages. It also defines what it means for an SCJ program to be memory safe.

2.2.1 Java memory model

In the Java memory model, all objects are placed on the heap. Local variables are stored

on the stack; these variables may be primitive values, or reference values to objects. When

a scope finishes, the respective fragment of the stack is removed, and all local variables

stored are no longer accessible; this does not automatically remove objects in the heap

referenced from the stack. Once an object becomes unreachable in the program, it is

removed from the run-time environment, Java’s automatic garbage collector removes the

object from the heap and frees up the memory on its next execution.

The memory model is behind-the-scenes from the point of view of the developer; it is

not necessary to think about where and when memory is allocated or deallocated. In fact,

the deallocation of memory by the garbage collector happens automatically, and occurs

at potentially random points. There is no explicit allocation and deallocation of memory

as found in languages such as C, for example.

The lack of predictability from the garbage collector presents a potential problem when

running time-critical applications. To address this problem, and make Java more suitable

for use in real-time applications, the RTSJ language adds a more suitable memory model.

2.2.2 RTSJ memory model

As mentioned previously, it is not a desirable property for real-time applications to be

interrupted by the garbage collector, particularly if the point of interruption cannot be

34

2.2 Memory models and memory safety

predicted. To overcome this problem, the RTSJ language introduces a region-based mem-

ory model. These regions store dynamically created objects, and are not subject to garbage

collection. The use of regions gives the developer control of the memory structure knowing

that objects in regions are reclaimed together.

The two types of memory regions used in RTSJ are immortal and scoped areas, in

addition to the heap. The immortal memory region exists for the entire length of the

program; objects stored there cannot be removed, and remain in the memory until the

program terminates. In contrast, scoped memory areas have a shorter lifetime; all objects

stored in a scoped region are reclaimed when the region’s lifetime is finished. This is

determined by the number of schedulable objects executing in the region; a schedulable

object executes inside a region when the object is active and its allocation context is the

region in question. Once there are no schedulable objects executing in the region, the

objects are reclaimed. The memory region, which is an object itself, is reclaimed once its

containing region, or parent region, has no schedulable objects executing and is cleared

out.

Scoped regions can be defined and entered explicitly, or assigned to schedulable ob-

jects; this provides a technique for assigning individual memory areas that are not at

risk of interruption from the garbage collector to runnable objects. Scoped memory areas

can be nested, creating a hierarchical cactus-like structure of memory regions. This can

potentially cause errors with references to objects that resides further down the memory

structure than the reference variable. To ensure this problem does not arise, the following

rules exist for the RTSJ memory model:

• Objects in the heap cannot reference objects stored inside scoped memory areas.

• Objects in immortal memory cannot reference objects stored inside scoped memory

areas.

• Objects in scoped memory areas can only reference other scoped memory areas if

the target area is down the scope cactus, that is, towards the root.

• Scoped memory areas must have only one parent, that is, the outer memory area in

which the new memory area was entered.

RTSJ also includes a heap memory region, which behaves like the heap in standard Java;

the heap is subject to garbage collection, unlike the scoped memory regions. An example

35

Chapter 2: Memory safety of real-time and safety-critical Java programs

Figure 2.7: RTSJ memory structure

of a memory configuration of an RTSJ program is shown in Figure 2.7. It shows the heap

and immortal memory in conjunction with a cactus-structure of scoped memory areas.

The immortal memory area is separate as it lasts for the entire length of the program;

scoped memory areas S1 to S6 are created throughout the program execution. It is possible

to split the cactus such that memory areas have different paths to the root (like that of

S1, S2, and S3 in the diagram); this is because it is possible to execute code in existing

memory areas. It is not possible, however, to create cycles in the cactus, as this invalidates

the single-parent rule associated with memory areas.

2.2.3 SCJ memory model

The SCJ specification takes the memory restrictions one step further than RTSJ by com-

pletely removing the heap and garbage collector. Similarly, two types of memory area are

defined: immortal, and scoped memory areas. Immortal memory is the same as that in

RTSJ. Scoped memory areas are more restricted than those in RTSJ, and are used for

individual aspects of the SCJ programming model.

The immortal memory area is the top-level memory area, and lasts for the duration of

the program’s execution. Missions have their own scoped memory, called mission memory,

which lasts for the duration of a single mission. Handlers also have their own scoped

memory area for the execution of their handleAsyncEvent method; these are called per-

release memory areas, and last for the duration of the handleAsyncEvent method. The

final scoped memory area is the temporary private memory area, which is created and

entered by specific SCJ commands. Temporary private memory areas are used to execute

runnable objects, and only last as long as the runnable object’s run method. The SCJ

memory structure contains individual thread stacks for the program, mission sequencer,

and each event handler.

The hierarchy shown in Figure 2.8 demonstrates how temporary private memory areas

36

2.2 Memory models and memory safety

Figure 2.8: SCJ memory model.

can be entered from both the mission memory area (when in the initialisation phase of

the mission) and the per-release memory area of a handler (during the execution phase

of the mission). The hierarchy shown cannot be created directly at a specific point of

execution in a program because of the different stages of execution in each mission, but it

is designed to illustrate the relationship between scopes throughout all stages of execution

in a program. The two per-release memory areas correspond to two handlers executing in

the mission.

Each component of the SCJ paradigm is created in a specific memory area, and has

a default allocation context (memory area); new objects created during execution are

automatically created in these associated areas unless specified otherwise. Figure 2.9

shows the location of paradigm components and the default allocation contexts. The

safelet and mission sequencer are created in immortal memory, and allocate new objects

in immortal memory.

Missions, which are created as objects, reside in the mission memory area; the SCJ

infrastructure creates and enters the mission memory area before the getNextMission

method of the mission sequencer is called. New objects created by the mission are created

in the mission memory area.

Event handler objects are also created in the mission memory area, during the initial-

isation phase of the mission. Once the execution phase is entered and a handler is fired, a

per-release memory area associated with the handler is entered; new objects created during

the handleAsyncEvent method are created inside the per-release memory area associated

with the handler.

Temporary private scoped memory areas can be created and used during the initiali-

sation phase of a mission, and by individual handlers; these are organised in a stack-based

37

Chapter 2: Memory safety of real-time and safety-critical Java programs

Figure 2.9: Default memory areas for SCJ paradigm components, and default allocation
contexts.

structure. The default allocation context whilst the runnable object is executing is the

current temporary private memory area.

The following SCJ-specific methods are capable of changing the default behaviour of

the SCJ memory model, and introduce scope for memory errors.

• newInstance - This method can be called on a reference to a particular memory

area, and creates a new object of the given type in the specific memory area. A

reference to the new object is returned, which can be assigned to some expression,

creating a reference from one memory area to another.

• newArray - Like the newInstance method, this method creates a new array object

of a particular type in another memory area.

• executeInAreaOf - This method takes a runnable object and a reference variable,

and executes the runnable object’s run method in the memory area in which the

reference variable resides.

• executeInOuterArea - Similarly to the executeInAreaOf method, this method

takes a runnable object and executes its run method in the immediate outer memory

area.

38

2.2 Memory models and memory safety

1 public abstract class MemoryArea

2 public static MemoryArea getMemoryArea(Object object)

3 public Object newArray(Class <> type , int number)

4 public Object newInstance(Class <> type)

5
6 public final class ImmortalMemory extends MemoryArea

7
8 public final class ScopedMemory extends MemoryArea

9
10 public abstract class ManagedMemory extends ScopedMemory

11 public static void enterPrivateMemory(long size , Runnable

logic)

12 public static void executeInAreaOf(Object obj , Runnable

logic)

13 public static void executeInOuterArea(Runnable logic)

Figure 2.10: Concise SCJ memory model API

• enterPrivateMemory - This method takes a runnable object and executes its run

method in a new temporary private memory area.

The SCJ memory model API is shown in Figure 2.10. It illustrates how the memory areas

of SCJ are defined by an abstract MemoryArea class, which encapsulates both the immortal

and scoped memory areas. The SCJ-specific methods described above that have a direct

impact on the possible memory safety of a program are also shown.

To avoid the possibility of dangling references, the SCJ memory model has strict rules

about references within the hierarchical memory structure. References can only point to

objects stored in the same memory area, or a memory area that is further up the hierarchy,

that is, towards the immortal memory. For example, it is safe for a reference variable in

the mission memory to point to an object in the immortal memory, because the immortal

memory outlives the mission memory; therefore, the reference will never point to an object

that does not exist. Alternatively, if a reference variable in the mission memory points to

an object stored in the per release memory area of a handler, the reference may point to

an object that has been reclaimed once the handler has finished executing; if referenced,

this will produce a run-time exception.

2.2.4 Memory safety

The specific definition of memory safety for a particular language is defined based on

the rules of its memory model. It is not unreasonable, however, to state that for any

given programming language, a program is considered memory safe if there is no possible

39

Chapter 2: Memory safety of real-time and safety-critical Java programs

execution path through the program that could raise a memory-related run-time error.

Memory errors can be caused by several factors including buffer overflows, stack over-

flows, use of uninitialised variables, null pointers, or dangling references. The memory

models of RTSJ and SCJ increase the possibility of dangling references through the use

of scoped memory areas. Memory safety of references, therefore, corresponds to a pro-

gram that has no possible execution path that violates the scoped memory laws of each

language.

A program is typically defined as memory safe if there are no possible executions

paths that may lead to an attempt to access an object via a dangling reference, that is, a

reference to an object that has been previously deallocated.

In the context of RTSJ and SCJ, a more restrictive view is taken. Objects are not

allowed to refer to objects in an memory area lower in the hierarchy. Such references

may lead to dangling references and are forbidden altogether. Therefore, the following

definition of memory safety is defined.

Memory Safety A program is memory safe if there are no possible execution paths that

may lead to an exception being raised by a reference variable attempting to point to an

object in a memory area that is lower in the hierarchy, that is, further away from the

immortal memory area.

The focus of the work presented here is on memory safety; in particular, the definition

given above. Other aspects of memory safety, such as checking for null pointers or array-

out-of-bounds checking, for example, are out of the scope of this work. Whilst it may

be possible to extend the approach to statically check for possible null pointers, these

techniques have been well investigated in the literature and tools such as ESC/Java, for

example, already exist to find possible errors in Java programs [16]. The next section

describes existing techniques that have investigated memory safety of RTSJ programs.

2.3 Verifying memory safety in RTSJ

This section introduces existing techniques to check for possible memory-safety violations

in RTSJ programs that have been described in the literature. Each section describes a

different approach before some conclusions are drawn.

40

2.3 Verifying memory safety in RTSJ

2.3.1 Memory management based on method invocation

The memory model of RTSJ introduces the possibility of programming errors and in-

creases in execution time of an entire system. This is due to the additional control given

to the programmer with respect to memory management, and the additional run-time

checks required in RTSJ to ensure no dangling references occur in the memory structure.

The guidelines outlined in [23] reduce these problems by removing explicit memory area

control from the programmer, and by introducing a less complicated programming model.

The authors explain that a well-defined programming paradigm eliminates the need for

expensive run-time checks all together.

The programming language used in [23] is Ravenscar-Java [24], which is similar to

Ravenscar-Ada [8]. It is a restricted language for use with single-processor systems and

defines two execution phases: initialisation and mission phase. These phases, in conjunc-

tion with the memory model, produce a programming paradigm similar to that outlined

in SCJ. The technique presented is defined as an optional extension to the Ravenscar-Java

profile as it relaxes one of the original rules; that is, nested scoped memory areas are

allowed, but not in the original profile.

The technique is based on the link between memory areas and methods; more specifi-

cally, each method in a program is assigned to an anonymous memory area. This removes

the need for the programmer to understand the memory model, as the corresponding

memory area is not known, and only decided at run-time. When a method is called, the

associated memory area is entered; all objects created by the method are stored inside the

memory area. Once the method has finished executing, the memory area is cleared out

and reclaimed.

Threads do not have references to the memory areas in which they execute, and there

can be at most one thread executing in a memory area at one time. This means that no

thread can enter the same memory area twice; therefore, by using anonymous memory

areas, the run-time checks that ensure the single-parent rule is enforced are no longer

required.

References to objects created by a method in the same memory area are acceptable,

as are references to objects created by methods in higher memory areas; that is, caller

methods. References to objects that are created in a callee method are not allowed as they

break the dangling reference rule. There are no references from scoped memory areas to

the heap to prevent interaction with the garbage collector.

41

Chapter 2: Memory safety of real-time and safety-critical Java programs

The technique improves performance of the run-time checks by adding additional in-

formation to the code that prevents unnecessary checks. For example, when a method

returns a value that must be propagated up several nested method calls, a parameter that

specifies where the return object is to be assigned is placed at the original caller method;

exceptions are handled in the same way.

The additions to the code to aid run-time checks take the form of Java 1.5 annotations;

their usage is described below.

• ScopedMemoryMethod - This annotation declares that a method is invoked with

its own memory area. If this annotation is not used, methods use the memory area

associated with the caller.

• ReturnedObject - This annotation declares the particular object that is returned

to the caller.

• PropagatedException - This annotation is used to declare in which parent mem-

ory area exceptions are allocated.

The annotated Ravenscar-Java code can be used in one of two ways. It can be translated

into RTSJ and used in conjunction with existing RTSJ virtual machines; or alternatively,

a custom virtual machine that has knowledge of the annotations could be used. The

authors favour the transformation technique to make use of the existing RTSJ tools as the

semantics are the same.

The technique eliminates the need for the single-parent check, and improves the per-

formance of other memory related run-time checks. Whilst this may prove useful for

developers, as it simplifies the programming model of RTSJ, annotations are required to

improve performance at run-time. A static checking technique that completely eliminates

the need for memory related run-time checks would be even more efficient.

2.3.2 Type systems

Before the introduction of the SCJ specification, work was already being done to make

RTSJ more suitable for use within safety-critical systems. Nilsen presents a type system

to ensure scope safety in safety-critical Java modules [31], that is, reusable Java modules

that are applicable for use within safety-critical applications and have been successfully

certified. By using modules that are already certified, the need for whole-program analysis

42

2.3 Verifying memory safety in RTSJ

and certification is eliminated; this means that small changes to the developer code should

not require re-certification or re-analysis.

Pre-certified safety-critical modules, designed as off-the-shelf additions to a develop-

ment, must come with strict properties to ensure that varied use in different settings never

raises errors. The technique in [31] describes a series of type attributes that apply to Java

components through code annotations. These attributes are used to define memory prop-

erties that explicitly add information about the location of objects referenced by variables;

these are described below.

• Scoped - Variables that may hold references to objects stored in a scoped memory

area are given the scoped attribute. Any variable that does not have this attribute

cannot reference objects in scoped memory.

• Immortal - Variables that hold references to immortal memory, or null, are given

this attribute.

• Array - Variables that hold references to array objects stored in scoped memory

areas have the array attribute; this is used in conjunction with the scoped attribute.

Objects referenced by elements in the array are assumed to have the scoped attribute,

unless specified otherwise.

• Local - Variables that hold references to objects stored in scoped memory areas

have the local attribute if the variable is not assigned to another variable that may

live longer than the specified variable. This is used in conjunction with the scoped

attribute.

• Result - Variables whose value may be returned from a method are assigned the

result attribute.

These attributes define a technique to determine what type of memory is used for variables;

for example, reference variables with no attributes point to objects stored on the heap.

By using this system, the technique does not restrict references to explicit memory areas,

only the type of memory area used. For every assignment to a scoped variable, data-flow

analysis is used to identify specific conditions that, if true, remove the requirement for a

run-time check.

Programs are checked using Java bytecode verification to ensure the scope-safe type

system is maintained. As mentioned in the attributes above, scoped variables contain

43

Chapter 2: Memory safety of real-time and safety-critical Java programs

references to objects in scoped memory areas, whilst unannotated variables do not. The

verifier checks to make sure that objects referenced by scoped variables are never assigned

to non-scoped variables. Similarly, the verifier ensures that no local scoped variable is

assigned to another variable that does not have the local scoped attribute. The verifier

maintains consistency of attributes throughout inheritance and overriding; more specifi-

cally, attributes declared in the superclass cannot be removed in subclasses.

Whilst this technique ensures that no objects are referenced by variables that might

outlive the object, the number of annotations required is not insignificant. The method

of explicitly defining whether an object resides in scoped memory or not does not impose

a great restriction.

2.3.3 Ownership types

An alternative type system to provide a static checking technique for real-time Java com-

bines the use of ownership and region types in [7]. The type system guarantees that

well-typed RTSJ programs never fail at run-time through a memory-related software er-

ror, therefore eliminating the need to incorporate the additional run-time checks during

execution, which in turn reduces the amount of overhead required.

Ownership types are used to enforce object encapsulation and allow modular reasoning;

region types ensure that no dangling references are ever followed. For multi-threaded

programs, the notion of subregions is introduced; subregions allow long-lived threads to

share objects without utilising the heap or risking memory leakage. The use of subregions

allows threads to create and reclaim smaller sections of memory after specific sets of

instructions; for example, at the end of a loop iteration.

Real-time region types ensure threads do not use heap references, as execution may

be interrupted by the garbage collector. Also, they cannot create new memory regions,

or allocate objects in variable-time regions. Variable-time regions allocate memory on

demand, and therefore are not as fast as the pre-allocated linear-time regions.

The type system is based on a series of relations to explicitly define region and object

behaviour. For example, an ownership relation is used to define what owns an object.

Objects can be owned by regions or other objects; every object must have an owner. This

allows memory safety rules to be applied based on the relations, such as: the ownership

relation has no cycles, and regions that own objects also own all subsequent objects owned

by the object.

44

2.3 Verifying memory safety in RTSJ

The outlives relation is used to define the order in which objects and regions can be

reclaimed. For example, an object that owns another object must also outlive the same

object because that is the only way it can be accessed. Similarly, if an object in a region

r1 points to another object in a region r2, then the region r1 must outlive the region r2,

otherwise a dangling reference could exist. This set of rules enforces the fact that no

dangling references can exist. The dangling reference rules also apply to the subregions

found in concurrent programs: objects allocated outside of the subregion cannot reference

objects allocated inside the subregion.

The type system is enforced with a combination of type inference and defaults; the

authors admit that annotating a program fully is an onerous task. A translation from

their type system to standard RTSJ is presented; in reality, the aspects of the type system

described match the components in RTSJ very well. The technique is presented as being

suitable for a range of languages, however, the type system has been designed specifically

with RTSJ in mind. The elimination of run-time checks has allowed the authors to produce

RTSJ programs that run faster than normal implementations; they present a realistic

speed-up figure of 1.25 times faster without the checks.

2.3.4 Dynamic logic

Engel presents a technique to statically verify RTSJ programs using the KeY system [15].

The KeY system facilitates the verification and specification of a sequential subset of Java

using dynamic logic (JavaDL) [5]. The Java subset is JavaCard [13], a restricted language

designed specifically for use on smart cards. Dynamic logic is a modal logic that gives

a way to reason about states and programs; for example, given states s and s ′, and a

program p, the formula s ⇒ [p]s ′ is true if, and only if, the execution of p in every state

satisfying s will either reach s ′ or not terminate.

Dynamic logic allows the addition of programs (a sequence of valid JavaCard state-

ments) to be included in the specification; deduction uses symbolic program execution and

simple program transformations.

The technique imposes certain restrictions on the RTSJ language and programming

style in order to make verification easier. Specifically, the use of the heap is forbidden; the

use of the heap is not recommended in hard real-time programs, therefore, the technique

only caters for programs that exclusively use the immortal and scoped memory areas.

These restrictions take the memory model of RTSJ closer to that of SCJ.

45

Chapter 2: Memory safety of real-time and safety-critical Java programs

In order to specify the memory model of RTSJ in JavaDL, the semantics of the relevant

RTSJ API components are described using a reference implementation and a series of

JML [26] invariants. JML is a behavioural interface specification language for Java; it is

used to express additional information about the interface and behaviour of Java programs

using annotations. Interface properties describe the names and static information about

Java declarations; behavioural properties describe how a declaration acts when called.

The behavioural annotations are used to define pre and post conditions, and invariants,

for example.

In addition, the RTSJ scope stack is described by a new abstract class with JML

invariants. The nesting relation, which enables the technique to describe the order and

relationship between scopes, is defined as a partial order. Finally, a set of calculus rules to

describe the symbolic execution of RTSJ programs are defined. It is these rules that govern

the memory model; for example, there exists a rule that ensures that for all reachable

program states, the set of non-static attributes that are not null must obey the scope rules

outlined above.

As the technique uses symbolic execution and program transformation, the calculus

rules defined specify the laws of the memory model for every possible scenario. For exam-

ple, consider an assignment to an object’s field: o.f = a, which must accommodate the

following possibilities when checking for null pointers:

• The object o is not null; therefore, the assignment is legal.

• The object o is null; therefore, a null pointer exception is raised.

• Neither of the two cases above can be established as true, and an illegal assignment

error is raised.

When checking for violations in the RTSJ scoped region discipline, the rules specify that

no dangling references can exist. More specifically, a reference variable must point to

an object that resides in immortal memory, the same scoped memory area, or a scoped

memory area higher in the structure, that is, towards the root. This is checked with an

ordering on the scopes defined in a program and a record of the scopes in which objects

reside.

Although this technique provides a formalisation of the RTSJ memory model, and a

set of calculus rules to ensure programs obey the memory safety rules, it is limited by the

restriction that the KeY system can only verify sequential programs.

46

2.3 Verifying memory safety in RTSJ

2.3.5 Bytecode analysis

A popular method of analysing Java programs is through the bytecode, whose semantics is

simpler than source code. Bytecode analysis includes many simplifications over the source

code, including language-independence and name resolution, for example. The trade-off,

however, is the lack of precision through the absence of high-level structures. Comparisons

have been made between source code and bytecode analysers; these comparisons have

shown that the relative completeness of bytecode analysis, in comparison to source code

analysis, cannot always be guaranteed [27]. For example, source-code analysis is able to

use the program structure of loops to increase precision. It does, however, make analysis

more difficult, as analysing bytecode does not have to handle tasks performed by the

compiler such as name resolution and type checking. As static analysis techniques are

undecidable [25], the lack of precision found in bytecode analysis is often accepted as the

benefit of easier analysis is preferred. It is, however, possible to develop static analysis

techniques at the source code level that consider the worst-case scenario.

The technique in [43] is a context-sensitive, flow-sensitive points-to analysis based

on Java bytecode. Specifically, the analysis uses an intermediate representation of the

program that is generated from the bytecode and used by the JamaicaVM [1], which is a

Java virtual machine designed specifically for hard real-time systems.

The intermediate representation generated by the JamaicaVM is more fine-grained in

comparison to the bytecode; for example, an array access is split into four instructions

to check the array is not null, obtain the length of the array, check the index value,

and read the array element. By performing the points-to analysis on this finer-grained

representation, the technique is able to check for null pointers, check that the region-based

memory model of RTSJ is correct, and also calculate the worst-case memory allocation

and worst-case stack use.

The correctness of the RTSJ memory model is checked by analysing context infor-

mation about the allocation contexts for invocations and types. Allocation contexts are

recorded when entering new memory areas; the recorded allocation context is the default

context for runnable objects in that memory area.

The lack of scope cycles is checked using an ordering relation between contexts. As-

signments are checked based on the allocation context of the target, and the allocation

context of the invocation that is currently executing. If the allocation context of the target

is not equal to, or a parent of, the invocation context, a potential error is raised.

47

Chapter 2: Memory safety of real-time and safety-critical Java programs

This technique raises false-negatives, which are potential errors according to the anal-

ysis that can never be errors at run-time; it does not miss errors, however. In other words,

the technique is sound, but not complete. An example of this is where a value may de-

termine the execution path of a program, and potentially lead to an error on one path,

but not another. As static analysis cannot determine which path will be executed, both

options must be considered, therefore a false-negative is raised even if it is clear to the

programmer that the error can never occur.

2.3.6 Conclusion

Techniques to verify the memory safety of RTSJ programs discussed here are focused on

the removal of run-time checks to maximise the efficiency of the code. The overheads asso-

ciated with run-time checks affect execution performance times, however the disadvantage

is that removing them completely also removes the possibility to recover from any errors

that may occur.

Many of the techniques discussed restrict the programming or memory model of RTSJ

to facilitate checking of memory safety; these restrictions bring the paradigm closer to

that of SCJ. Existing techniques to check memory safety of SCJ programs are discussed

next.

2.4 Verifying memory safety in SCJ

As described previously, the SCJ language restricts the memory model of RTSJ by re-

moving the heap. Memory areas in SCJ also follow a more rigid structure outlined by the

SCJ programming paradigm. Techniques to establish the memory safety of SCJ programs

are relatively new and varied; several different methods including code annotations, model

checking, correctness by construction, and bytecode analysis are described below.

2.4.1 SCJ Annotations

Work to use static analysis in conjunction with SCJ annotations has been developed into

a tool to check the conformity of SCJ programs against the language specification in [45].

The SCJChecker is designed to check the behavioural and level compliance annotations

in the SCJ specification, but it also checks additional memory-safety annotations. The

memory-safety annotations are the focus of this discussion, and are presented below.

48

2.4 Verifying memory safety in SCJ

• @DefineScope - This is used to explicitly define a new scope and takes two argu-

ments: the name of the new scope and the parent scope.

• @Scope - This annotation restricts the scope in which a class, field, method, or

local variable must reside.

• @RunsIn - This is used to define the scope in which methods execute, which may

be different to the scope in which the enclosing class has been instantiated.

The static checking is achieved in two passes of the code. The first is used to produce an

abstract syntax tree of the program; it also produces a scope stack based on the memory

annotations and ensures no duplicates or cycles exist. Every scope stack must end with

the immortal memory area. The second pass is used to actually check the program against

the rules that accompany the annotations.

The memory-safety annotations are designed to impose restrictions on programs in

order to prevent dangling references. The rules designed to ensure memory safety according

to the SCJChecker are listed below.

• Objects must not be allocated outside the context defined.

• Arrays must not be allocated outside the context of their element type.

• Variables can only be declared in the same scope or those found further up the scope

stack; that is, parent scopes cannot contain references to child scopes.

• Static variables must reside in the immortal scope, or have no annotations.

• Overridden methods inherit annotations from the super method.

• Method invocation is only allowed when the allocation context is the same, or the

current context is a child of the method’s allocation context.

• The executeInAreaOf() method can only be called on parent scopes; the runnable

object passed as a parameter must be annotated to run in the corresponding scope.

• The enterPrivateMemory() method must be accompanied with an annotation on

the runnable object that defines a new scope, where the new scope is a child of the

current scope, and also has a RunsIn annotation defining its execution in the new

scope.

49

Chapter 2: Memory safety of real-time and safety-critical Java programs

• The newInstance() and newArray() methods can only be called if the element type

is allowed (through annotations) to be allocated in the target scope.

• When casting a variable, the scope must be the same as the target type, or the type’s

scope must be undefined at which point the current allocation context must be the

same as the current variable.

Rules also need to be defined for unannotated classes; the SCJChecker has the following

inbuilt rules.

• Unannotated classes may be instantiated anywhere.

• Unannotated classes may not be passed as parameters outside the context in which

they were instantiated.

• Methods that return unannotated objects must allocate them in their own context.

• Unannotated classes may not reference annotated objects.

All of these rules are checked to ensure that a given SCJ program is correct according to

the constraints described by the annotations.

It is important to note that it is possible to write a correct SCJ program according

to the language specification that is not considered correct based on the annotation con-

straints above. This is because the rules of the SCJChecker are stricter than those found in

the specification; the rules are stricter in order to make the static analysis of the program

easier.

As an example, consider the possible requirement that a class may be instantiated in

different memory areas; by using the SCJ annotations, classes are restricted to a partic-

ular scope. To fulfil this requirement, it is necessary to duplicate the class in the code

with a different @Scope annotation for each scope that may have instances of the class.

Alternatively, the class can be defined once without a specific scope annotation; however,

this becomes restricted by the rule that unannotated classes may not reference any other

annotated objects.

The technique is also restrictive with respect to reference variable assignments across

different scopes. For example, consider a class whose instances are defined to reside in the

per-release memory area of a handler. According to the memory safety rules of SCJ, it is

perfectly acceptable for an object that resides in the per-release memory area of a handler

50

2.4 Verifying memory safety in SCJ

to reference an instance of the class in the mission memory; however, this raises an error

in the checker to prevent the loss of scope knowledge.

The restrictions described here do not affect all SCJ programs; for example, the

SCJChecker is more than capable of confirming that a given SCJ program that does

not have a complex use of memory conforms to the SCJ specification. When the use of

memory in a program becomes more complex, that is, when objects are passed between

memory areas and classes are instantiated in different areas, the SCJChecker has limita-

tions that mean potentially valid programs cannot be accepted, or require modifications.

The SCJChecker is not limited to the memory properties we focus on here; it is also

capable of checking behavioural and level properties of SCJ programs with annotations.

2.4.2 Model checking

Java Pathfinder (JPF) is a model-checking tool for Java programs designed to automati-

cally analyse a multi-threaded Java program [18]. JPF uses a custom JVM that executes

concurrent Java programs in every possible way, ensuring that every possible execution

path is explored from a particular decision or instance of nondeterminism point (called

choice points). This is achieved using a state graph to represent the choice points in the

program execution.

Choice points occur when an input value is recorded or a particular thread is chosen

for execution. JPF records information about the current state, and checks the previously

visited states to ensure the same paths are not explored repeatedly. The state graph is

used for backtracking to ensure every execution path from a particular choice point has

been explored; considering all possible execution paths allows the model to be exhaustively

checked. Symbolic model checking allows JPF to check all possible input values as opposed

to a single value; this removes the need to produce tests to establish code coverage of all

valid inputs.

As the state space of concurrent programs increases rapidly, JPF suffers from the

state explosion problem. To tackle this, JPF uses an on-the-fly partial-order reduction

technique, which combines operations that do not require communication between different

threads into a single state. This is because the communications and interactions between

threads in concurrent programs represent choice points in the execution path.

The RSJ tool is an extension to JPF to support real-time Java programs, specifically

RTSJ and SCJ programs [22]. To overcome the limitations of JPF described above, and

51

Chapter 2: Memory safety of real-time and safety-critical Java programs

make JPF suitable for real-time programs, a scheduling algorithm that implements fixed-

priority preemptive scheduling without time-slicing is at the heart of RSJ. The reason for

using this algorithm is unclear, however, it is a common scheduling algorithm, widely used

within the real-time sector.

The RSJ algorithm is a more recent version of the older RJ algorithm [32]. The

original RJ algorithm was designed for RTSJ, whereas the newer RSJ is designed for both

RTSJ and SCJ. One of the key differences between the two algorithms comes from the

underlying platform used.

RJ is a platform-independent implementation that has no concept of code execu-

tion timings; this leads to a series of unrealistic schedulings. It was carried out without

considering timing properties due to the unavailability of a precise timing model for execu-

tion [32]. It does, however, present a method to check time-independent RTSJ programs

in JPF using a fixed-priority preemptive scheduling algorithm.

The newer RSJ algorithm is based on the Java Optimized Processor (JOP), which is

a hardware implementation of the JVM [39]. By using this platform optimised to give

time-predictable results, RSJ is a more efficient algorithm that explores fewer impossible

schedulings.

The RSJ algorithm is designed to operate with both RTSJ and SCJ programs; however,

in reality only a subset of SCJ programs can be checked. More specifically, Level 0 and

Level 1 programs are supported, however, there is no support for multi-processors or

aperiodic event handlers (APEHs). Multi-processor programs, which are valid at Level

1, are not included as the authors suggested at the time of writing that certification of

multi-processor Java applications seems not to be possible in the near future [22]. Their

approach is therefore restricted to the analysis of Level 1 SCJ programs without aperiodic

event handlers on single-core systems. APEHs are ignored also due to the inevitable

state explosion that occurs if included. Due to the unknown release times of aperiodic

events, including these in the checking process would effectively require the algorithm to

nondeterministically decide whether to release a currently non-released APEH after every

instruction.

In SCJ, APEHs are realistically sporadic as opposed to true aperiodic handlers; there-

fore, it would be possible to assume the worst-case scenario where the APEH was released

at every possible point after the minimum inter-arrival time. This does not, however, get

over the problem of actual arrival times, where the release of an APEH may not coincide

52

2.4 Verifying memory safety in SCJ

nicely with the minimum inter-arrival time; by using a model checking technique, it would

still be essential to check all possible arrival times.

Level 0 SCJ programs contain no preemption or concurrency, and hence have only one

possible scheduling. As RSJ does not make use of JPF’s symbolic execution mode, it

cannot discover any additional errors to those found through testing at run-time, without

the addition of assertions in the original code. At Level 1, more errors can be found

than standard testing as every possible scheduling is executed. When focusing on memory

safety, the RSJ tool can be used to detect memory-access errors, dereferencing of null

pointers, and array-bound violations. It is also capable of checking the memory structure

of SCJ programs to ensure they match the rules outlined in the SCJ specification. This

is achieved by simply checking for exceptions that may arise during the model checking

process. If an exception occurs from a dangling pointer error then the assignment to the

reference variable breaks the memory safety rules of SCJ.

As RSJ is able to detect unhandled exceptions and report these as errors to the user,

it is also possible to check memory properties to ensure RTSJ or SCJ implementations

are memory safe. Null-pointer exceptions are found and reported like in JPF. Violations

of the memory structure produce exceptions, for example, when a reference in immortal

memory points to an object in mission memory.

RSJ operates on top of JPF, which is designed for use on standard Java implemen-

tations; therefore, the memory model of RTSJ and SCJ is modelled on top of Java. Fig-

ure 2.11 shows how immortal and scoped memory areas are used in conjunction with the

standard Java programming model. The RTSJ scope stack on the left is used to store ref-

erence and primitive values of variables in the individual scopes shown. Each new scope

contains a reference to the current memory area; for example, the variable ma in the first

scope points to the immortal memory area ima. Scoped memory areas are represented as

objects placed on the heap; this is a way of implementing the scoped memory model on

top of JPF. Similarly, objects that are allocated to a specific memory area are placed on

the heap like any other object; a reference to the memory area in which it lies is stored as

an additional field in the object.

Memory properties are managed in RSJ using a JPF listener that monitors bytecode

execution; the listener is used to maintain the program stack and memory areas. Garbage

collection is disabled for memory area objects to maintain the properties of scoped and

immortal memory. References to memory areas are not stored on the heap to ensure they

53

Chapter 2: Memory safety of real-time and safety-critical Java programs

Figure 2.11: RTSJ and SCJ memory representation in RSJ

are not removed by the garbage collector; instead, they are stored as a field in each scope

on the stack, as described above.

The lack of support for concurrency or APEHs makes it difficult to justify the author’s

claim of support for Level 1 programs. Model checking concurrent programs is a difficult

problem that quickly encounters issues with the state explosion problem. To fully take

advantage of the technique presented here, the symbolic execution offered by JPF must

be utilised to ensure that every possible set of input values still produce a memory safe

Level 0 program; however, this would not overcome the problems that limit this technique

to sequential programs.

2.4.3 Correctness by construction

An alternative to checking implementations are memory safe is to use a correctness-by-

construction technique to ensure the resulting implementation is guaranteed to be memory

safe. Cavalcanti et al. present a technique in [12] that uses the formal language Circus [51]

to define abstract models; these abstract models are used in a series of refinement stages

for the development of correct Level 1 SCJ programs.

The Circus language is based on a combination of Z [52], CSP [36], and Dijkstra’s

guarded commands [29]. Circus specifications are made up of a series of processes; Z

schemas describe the functional behaviour, whilst CSP is used to model the communication

54

2.4 Verifying memory safety in SCJ

and execution order of processes. The semantics of Circus is defined in the UTP [20], which

has existing theories about object-orientation and time; both of which are relevant to SCJ.

In order to fully specify the SCJ paradigm, additional Circus variants including Cir-

cusTime [42], which includes features of Timed CSP [34], and OhCircus [10] are used to

express timing properties and object-oriented features. Timed CSP allows specifications

to describe timing properties such as wait and timeout. OhCircus introduces classes;

behaviour is described through methods as opposed to actions.

The authors have defined a formalisation of both the SCJ mission model [53] and the

SCJ memory model [11] which in conjunction with the semantics of Circus and the UTP

gives them a solid verification platform.

By using the UTP, it allows the memory model to be integrated with existing theories

about object-orientation and time, both of which are relevant to SCJ. The memory model

has associated healthiness conditions that present a foundation to allow formal reasoning

about memory safety of SCJ programs. A program that conforms to these conditions is

guaranteed to be memory safe. This is currently the only formal definition of the SCJ

memory model. Sound approaches to verifying memory properties can be investigated

using this model.

The refinement strategy is split into four parts, characterised by models that follow

particular architectural patterns, and are called anchors, which define development steps

from a high-level specification to a low-level one that facilities code generation; each anchor

is a refinement of the previous one.

The first anchor, or the A anchor, represents the abstract model of the program. At this

level, there is no information about the structure of an SCJ program, classes, or objects;

instead, only the interaction of the system is described. Parallelism is used in this anchor

to represent the combination of multiple requirements, as opposed to the concurrency of

an implementation.

The second anchor, called the M anchor, introduces the concept of memory allocation;

classes and objects are also included. Data refinement is used to replace Z data types

with class types; these class types represent references to objects, whilst Z types represent

values.

The third anchor is the E anchor; this describes the execution model of the SCJ

paradigm; it is at this refinement stage that the concept of missions and handlers are

introduced into the model. This refinement step is itself split into four stages:

55

Chapter 2: Memory safety of real-time and safety-critical Java programs

1. The parallel composition of requirements in the A anchor are removed, as these are

only useful for the specification of requirements, and not the definition of the SCJ

paradigm.

2. The location of objects and shared data is based on the SCJ memory structure.

3. Actions are defined for each mission and handler; the corresponding sequence of

missions and parallelism of handlers is defined.

4. Algorithmic refinement is used to define the implementation of individual methods

and handler routines.

Finally, the fourth anchor, or the S anchor, is used to describe the E anchor in terms of the

SCJ framework. The overall specification is the parallel composition of the safelet, mission

sequencer, missions, and handlers. Each of these components is also a parallel composition

of two processes that describe the generic behaviour found in the SCJ framework, and the

actual behaviour of the specific program.

It is the S anchor that is very close to an actual SCJ implementation; and can be

used for code generation. Similarly, it is possible to reverse the translation and produce

models in the S anchor from SCJ programs if the SCJ program follows a specific design

pattern. The authors require that, for example, programs have separate classes to define

the safelet, mission sequencer, missions, and handlers. Whilst this is not an unreasonable

expectation, as it follows the structure presented in the SCJ specification, it is possible

to produce cyclic executive SCJ programs that only use a single class, which would not

conform to the requirements.

The advantage of generating S models from implementations comes from the memory

assurances automatically gained, assuming the implementation can be expressed success-

fully. Using correctness by construction, and the underlying formal representation of the

technique, it is guaranteed that any implementation that can be successfully expressed as

an S model is memory safe.

The main challenge that remains for the authors is the proof of soundness required

to backup the technique. A more in-depth description of the technique, and a real-world

case-study to demonstrate its applicability are shown in [54]. The overall development

technique is an idealised approach that requires skilled users to take full advantage of its

potential; however, the possible automatic production of S models from implementations

to guarantee memory safety is appealing.

56

2.4 Verifying memory safety in SCJ

2.4.4 Bytecode analysis

As mentioned previously, bytecode analysis is a popular and simpler analysis technique

for Java programs in comparison to source code analysis. Dalsgaard et al. have developed

a context-sensitive points-to analysis technique for SCJ bytecode that checks for possible

memory-safety violations according to the SCJ specification [14].

The analysis is based on WALA [4], which supports pointer analysis of Java bytecode

in user-defined contexts. WALA creates an intermediate representation of the bytecode in

static single assignment (SSA) form for the analysis.

The points-to analysis gives an over-approximation of the possible memory-safety vi-

olations in a program by recording all possible references between variables and objects.

A stack of SCJ memory areas gives context to the references and the scopes in which

associated objects reside, making checking for potential violations possible.

The definition of a scope (in this work) in which each object is allocated has two

components: the memory area identifier, and the type of scope. The memory area identifier

is a unique identifier associated with the specific memory area, whilst the type of scope

is defined as either immortal, mission, private memory, or unknown. The unknown scope

type is used when it is not possible to determine the particular scope of an allocation.

An ordering is defined on the possible scopes of a program, which is used as the basis for

checking whether a reference from one scope to another is valid or not.

The authors identify some of the SCJ-specific methods mentioned in Section 2.2 that

may have a direct impact on memory safety; these are tracked throughout the analysis

using a call graph. Other methods such as newArray, newInstance, getMemoryArea, and

executeInAreaOf are currently not handled.

The SCJ implementation used for the analysis is based on JOP [41]; possible errors

raised by the SCJ implementation are filtered out of the results as the authors state that

it is acceptable for the SCJ infrastructure to temporarily break the scope rules. This does

not conform to the definition of memory safety previously presented in Section 2.2, which

states that any downward reference is a possible memory-safety violation. Without an

official reference implementation for SCJ, it is difficult to see why the infrastructure would

need to break the rules of the memory model.

The reference implementation of SCJ is yet to be published, and decisions on how to

implement the memory structure are still undecided. The review in [40] describes the two

main possibilities of either using the existing RTSJ library and extending it for SCJ, or

57

Chapter 2: Memory safety of real-time and safety-critical Java programs

building a new representation in the SCJ library.

The authors also describe techniques to use additional commands found in the JOP/SCJ

implementation to successfully track the execution of SCJ-specific commands, such as the

startMission method. These additional commands, which are not part of the SCJ spec-

ification, are only required to track the execution of the program because the analysis

is at the bytecode level as opposed to the source code level. The technique suffers from

unnecessary false negatives that are raised by problems tracking the start of missions.

A number of optimisations have been applied to the analysis technique based on the

JOP/SCJ implementation to reduce the number of false negatives raised during the anal-

ysis. Specifically, a number of objects allocated by the JOP implementation in the initial-

isation phase are ignored. It is apparent that the analysis is not completely general, and

has been tailored to the JOP/SCJ implementation to improve its performance.

By using an intermediate representation of the bytecode, mapping possible errors back

to the source code is more difficult. Currently potential errors are reported based on the

names of fields, methods, and classes, which the authors have found sufficient.

The technique is sound but not complete, as false-negatives may be raised; however, the

soundness of the technique has not been proved. Overall, the technique demonstrates that

it is possible to produce a static checking technique that identifies possible memory-safety

violations in SCJ programs, without the need for additional user-added annotations.

2.4.5 Hardware checking

Memory-safety violations that occur at run-time raise exceptions; techniques described

above are aimed at removing run-time exceptions through static analysis, program re-

striction, or annotations. An alternative to this is to implement the checking technique in

hardware, which does not suffer from the same overheads as software-based approaches.

The technique in [35] describes a hardware checking technique, based on JOP, for

memory-safety violations in SCJ. Not only is the software-checking overhead eliminated,

but the execution time of applications with large numbers of cross-scope references is

improved. The trade-off with this approach is that it is hardware specific, and cannot be

applied at the more general bytecode or source-code level.

Reference assignments are checked at the hardware level using write barriers [19],

which are additional pieces of code placed at every instruction that may impact object

references. The additional code checks the scopes of the two objects to ensure that the

58

2.5 Summary

assignment will not cause a memory-safety exception. The scope level of each object is

stored in the corresponding reference pointer, which makes the checks possible through

simple arithmetic.

This method of checking bytecodes at the hardware level is about ten times faster

than software versions, and does not have a significant impact in terms of additional

memory required to store the required scope information. Also, when applied to several

benchmarks, the execution time decreased by as much as 18%, thus demonstrating the

possible speed-up achieved through removing software run-time checks.

2.4.6 Conclusion

Techniques to verify the memory safety of SCJ programs vary, as indicated by their de-

scription above. Currently, the most complete approach to checking memory safety of SCJ

implementations comes from the SCJ bytecode analysis technique; however, bytecode anal-

ysis is simpler than source code analysis, and can give more false-negatives based on the

difficulty to track execution through the SCJ paradigm.

The other comprehensive approach is the SCJChecker, which relies on the SCJ an-

notations; however, the strict restrictions imposed on programs make its practical use

questionable. The formal outline of the SCJ memory model defined using the UTP in [11]

gives a basis on which a sound checking technique can be based, however, currently no

such technique exists.

The use of model checking in safety-critical systems is widely used, and efforts are

still being undertaken to apply them to SCJ. The state explosion problem will remain a

problem in concurrent systems and therefore other static checking techniques are being

investigated.

2.5 Summary

This chapter has introduced the real-time and safety-critical variants of Java, and has

described the different memory models for each. The use of region-based memory models

has allowed the development of real-time and safety-critical software in the Java language.

Investigation into real-time garbage collection is still ongoing, however, as program devel-

opment with a region-based memory model is more difficult.

The programming paradigm and memory model defined in the RTSJ specification has

59

Chapter 2: Memory safety of real-time and safety-critical Java programs

been restricted in several techniques, thus prompting the development of SCJ, an even

tighter language designed specifically to aid static verification and to ease certification.

Several techniques to verify memory safety of SCJ programs have been presented, however,

there is currently no practical solution at the source-code level for Level 1 SCJ programs

that does not impose unwanted restrictions on program development.

The next chapter presents the outline of a source-code level static checking technique

that tries to limit the restrictions imposed by other techniques. In particular, the use

of annotations is avoided, and there are no further programming restrictions other than

those outlined in the SCJ specification.

The static checking technique presented in the next chapter is backed up with a math-

ematical formalisation of all aspects of the analysis, which gives a solid foundation in order

to prove the soundness of the technique. More specifically, it gives a precise definition of

the intermediate representation used, the translation strategy from SCJ to the interme-

diate representation, and the checking technique used to detect potential memory-safety

violations.

60

Chapter 3

SCJ-mSafe: An abstract language

for memory-safety checking

In this chapter, the SCJ-mSafe language is introduced; it is an intermediary language used

in the verification technique for SCJ programs. Section 3.1 demonstrates how the SCJ

program presented in the last chapter is defined in SCJ-mSafe. Section 3.2 defines a formal

model of SCJ programs in Z. Section 3.3 defines a formal model of SCJ-mSafe programs.

Together these two language models can be used to define a translation. An overview

of the translation is presented in Section 3.4 before a formal translation strategy in Z is

defined in Section 3.5. Finally, Section 3.6 draws some conclusions.

3.1 An example program in SCJ-mSafe

This section demonstrates how a case study implemented in SCJ is defined in SCJ-mSafe.

The SCJ-mSafe translation of the cruise controller example presented in the previous

chapter is shown in Figures 3.1 and 3.2.

Figure 3.1 shows the same extract from the ACCMission class in Figure 2.5 in SCJ-

mSafe. The initialize method in the SCJ implementation is represented as a specific

component of the mission in SCJ-mSafe, as opposed to a normal class method definition,

because it is an integral part of the SCJ paradigm. The first three simple method calls

remain unchanged. The creation of the handlers are now separated into two individual

commands for each one: a declaration, and an instantiation. Consider the creation of the

WheelShaft handler, which is first declared as the uninstantiated variable shaft (line 10,

Fig 3.1). This is then instantiated on the next line (line 11, Fig 3.1) with the NewInstance

61

Chapter 3: SCJ-mSafe: An abstract language for memory-safety checking

1 mission ACCMission {

2
3 ...

4
5 initialize {

6 createEvents ();

7 createISRs ();

8 registerISRs ();

9
10 WheelShaft shaft;

11 NewInstance(shaft , Current , WheelShaft , (shaft_event));

12 SpeedMonitor speedo;

13 NewInstance(speedo , Current , SpeedMonitor , (shaft , Val));

14 ThrottleController throttle;

15 NewInstance(throttle , Current , ThrottleController ,

(speedo));

16 Controller cruise;

17 NewInstance(cruise , Current , Controller , (throttle ,

speedo));

18 Engine engine;

19 NewInstance(engine , Current , Engine , (cruise ,

engine_event));

20 Brake brake;

21 NewInstance(brake , Current , Brake , (cruise ,

brake_event));

22 Gear gear;

23 NewInstance(gear , Current , Gear , (cruise , gear_event));

24 Lever lever;

25 NewInstance(lever , Current , Lever , (cruise ,

lever_event));

26
27 shaft.register ();

28 engine.register ();

29 brake.register ();

30 gear.register ();

31 lever.register ();

32 speedo.register ();

33 throttle.register ();

34 }

35
36 ...

37 }

Figure 3.1: ACCS Mission in SCJ-mSafe

command, which states that the object associated with the variable shaft is instantiated

in the default context, with type WheelShaft, and that the corresponding constructor

that accepts an AperiodicEvent as its argument (shaft_event) is called. The remaining

handlers and classes are declared and instantiated in the same way.

Figure 3.2 shows the SpeedMonitor handler from Figure 2.6 in SCJ-mSafe. Similarly to

the creation of the handlers in the mission class, the fields of the handler are also separated

62

3.1 An example program in SCJ-mSafe

into two parts: the declaration, and the instantiation. Instead of placing the instantiation

directly after the declaration, field declarations and instantiations are separated completely

into two components called fields and init, respectively. This is because it is useful to

know the fields of a class during the analysis, and this can be modelled better as a set of

fields rather than a mix of declarations and instantiations.

Most of the fields in the SpeedMonitor are of primitive type (line 2, Fig 3.2); their

initialisation commands are abstracted away. It does not matter what calculations are

performed to determine the result, as it will always be a value (as opposed to a reference),

and values are not important in memory-safety analysis. The translated commands are

shown on line 11 of Figure 3.2.

The first statement in the constructor of the handler in SCJ is a call to the method

super (line 12, Fig 2.6), however its arguments contain several embedded method calls

and instantiations. In SCJ-mSafe, these are extracted out as individual commands; as

such, new variables are introduced to record the results of method calls and instantiations

for use later in the program (lines 17-28, Fig 3.2). The first three statements in the

constructor in SCJ-mSafe are declarations; these are all new variables required to construct

the PriorityParameters object that specifies the priority of the handler.

The fourth statement, which is a call to the PriorityScheduler.instance method

(line 20, Fig 3.2) takes var11 as an argument. In the SCJ version (line 24, Fig 2.6), this

method was parameterless, however in SCJ-mSafe, because the method returns an object,

and it is now a command as opposed to an expression, an additional result variable is

required. In this example, the result variable is var11. The method getMaxPriority is

then called on the new variable var11 (line 21, Fig 3.2), as each method call is separated

out into a single command; the result of this is stored in the variable var12. Finally,

var10 is instantiated with a new instance of the PriorityParameters class, which takes

the max priority (var12) as a parameter (line 22, Fig 3.2).

The remaining statements are separated into their individual parts, with additional

variables being introduced to maintain references to values and objects where necessary.

This process has made the SCJ-mSafe version of the code longer in comparison to the

SCJ code, however, this makes the definition of a formal checking technique much easier,

as all the possibilities of nested commands and expressions do not need to be considered.

The local method getCurrentSpeed demonstrates how the result parameter is defined

and used (line 48, Fig 3.2). Whereas previously, in SCJ, the definition of the method

63

Chapter 3: SCJ-mSafe: An abstract language for memory-safety checking

1 handler SpeedMonitor {

2 fields {

3 int calibration;

4 int iterationsInOneHour;

5 int cmInKilometer;

6 WheelShaft wheel_shaft;

7 long numberRotations;

8 long lastNumberRotations;

9 int currentSpeed;

10 }

11 init {

12 cmInKilometer = Val;

13 numberRotations = Val;

14 currentSpeed = Val;

15 }

16 constr (shaft , period) {

17 PriorityParameters var10;

18 int var12;

19 PriorityScheduler var11;

20 PriorityScheduler.instance(var11);

21 var11.getMaxPriority(var12);

22 NewInstance(var10 , Current , PriorityParameters , (var12));

23 PeriodicParameters var13;

24 RelativeTime var14;

25 NewInstance(var14 , Current , RelativeTime , (period , Val));

26 NewInstance(var13 , Current , PeriodicParameters , (null ,

var14));

27 StorageParameters var15;

28 NewInstance(var15 , Current , StorageParameters , (Val ,

Val , Val));

29 super(var10 , var13 , var15 , Val);

30 int var16;

31 wheel_shaft.getCallibration(var16);

32 calibration = var16;

33 iterationsInOneHour = Val;

34 wheel_shaft = shaft;

35 long var17;

36 wheel_shaft.getCount(var17);

37 lastNumberRotations = var17;

38 }

39 handleEvent {

40 long var18;

41 wheel_shaft.getCount(var18);

42 numberRotations = var18;

43 long difference;

44 difference = Val;

45 currentSpeed = Val;

46 lastNumberRotations = numberRotations;

47 }

48 method getCurrentSpeed(Result) {

49 Result = currentSpeed;

50 } }

Figure 3.2: SpeedMonitor Handler in SCJ-mSafe

64

3.2 A formal model of SCJ

included a return statement (line 35, Fig 2.6), the SCJ-mSafe version performs an as-

signment from the variable currentSpeed to the new result parameter Result (line 49,

Fig 3.2). Any expression passed as an argument to the getCurrentSpeed method will be

assigned the value stored in currentSpeed.

The translation from SCJ to SCJ-mSafe is described in more detail in Sections 3.4

and 3.5.

3.2 A formal model of SCJ

In order to define a formalisation of the translation approach, both the SCJ and SCJ-

mSafe languages have been formalised in Z. This allows us to define the translation,

analysis, and checking strategies later. A description of the necessary components of the

SCJ formalisation is presented in this section; the full version can be found in Appendix B.

A table showing a description of the Z notation used can be found in Appendix A.

The models of each language define a set that contains as elements abstract represen-

tations of the terms of the language. At the top level of the model is a definition of an

SCJProgram, which is a description of the overall SCJ program being analysed. Inside

each SCJProgram is a set of classes defined by the SCJClass schema, which are in turn

made up of a set of fields and methods. At the lowest level of the model are the com-

mands and expressions, which are defined by the types SCJCommand and SCJExpression

respectively.

The top level of the model of an SCJ program is represented by the SCJProgram

schema, which has a single component classes recording the set of classes of the program.

SCJProgram

classes : PSCJClass

There is no distinction between the specific components of the SCJ paradigm, such as

missions or handlers, at this level. Every class inside the SCJ program is represented as

an SCJClass, which is made up of class modifiers, a name, type parameters, an extends

class, an implements class, and a sequence of class components.

65

Chapter 3: SCJ-mSafe: An abstract language for memory-safety checking

SCJClass

modifiers : SCJModifier

name : Name

typeParameters : PTypeParameter

extends : Name

implements : Name

members : seq SCJClassComponent

The modifiers of the SCJClass define whether the class is public, abstract, or final, for

example; the SCJModifier type represents either a Java flag or annotation, but is omitted

here. The class name is defined to be of type Name, and the type parameters used

for generic definitions are defined as a set of TypeParameters. The extends component

is of type Name and describes the extended class if applicable. The types Name and

Value represent names and values respectively; the model of the language includes some

explicit definitions of names in order to facilitate the identification of specific components.

The implements clause is also of type Name and describes the class being implemented.

Finally, the class components, which are fields and methods of the class, are represented

as a sequence of type SCJClassComponent .

SCJClassComponent ::= ClassField〈〈SCJVariable〉〉 | ClassMethod〈〈SCJMethod〉〉

A class component is defined as either a variable, which is a class field represented by the

SCJVariable schema, or a class method, which is represented by the SCJMethod schema.

Variables in SCJ consist of four elements: modifiers, the type, the name, and an

initialisation expression, which may be empty if the variable is declared but not initialised.

SCJVariable

mods : SCJModifier

type : TypeElement

name : Name

init : SCJExpression

Variable modifiers define whether the variable is public, private, or static, for example.

The type of the variable is defined by the TypeElement schema. The name of the variable

is defined to be of type Name, and finally the initialisation expression is defined to be an

SCJExpression, which will be described later.

The other possible class component is a method, which is made up of the method

modifiers, type parameters, a return type, a name, parameters, and the method body.

66

3.2 A formal model of SCJ

SCJCommand ::=

assert〈〈SCJExpression × SCJExpression〉〉
| block〈〈Boolean × SCJCommand〉〉
| break〈〈Name〉〉
| continue〈〈Name〉〉
| doWhile〈〈SCJExpression × SCJCommand〉〉
| empty

| eFor〈〈SCJModifier × TypeElement ×Name × SCJCommand

× SCJExpression × SCJCommand〉〉
| expression〈〈SCJExpression〉〉
| for〈〈SCJCommand × SCJExpression × SCJCommand × SCJCommand〉〉
| if 〈〈SCJExpression × SCJCommand × SCJCommand〉〉
| labeled〈〈Name × SCJCommand〉〉
| return〈〈SCJExpression〉〉
| switch〈〈SCJModifier × TypeElement ×Name × SCJCommand

× SCJExpression × seq SCJCommand〉〉
| synchronized〈〈SCJExpression × Boolean × SCJCommand〉〉
| throw〈〈SCJExpression〉〉
| try〈〈SCJCommand × SCJExpression × SCJCommand〉〉
| variable〈〈SCJVariable〉〉
| while〈〈SCJExpression × SCJCommand〉〉

Figure 3.3: SCJ Commands in Z

SCJMethod

modifiers : SCJModifier

typeParameters : PTypeParameter

returnType : TypeElement

name : Name

params : seq SCJVariable

body : SCJCommand

The method modifiers define whether it is a public, private, or static method, for exam-

ple. The set of type parameters defined by the TypeParameter type are used for generic

methods. The return type of the method is defined by a TypeElement . The method name

is defined by the type Name, and the parameters of the method are defined as a sequence

of variables. Finally, the body of the method is an SCJ command, which is defined by the

SCJCommand type.

The definition of the type SCJCommand is shown in Figure 3.3. Commands are

67

Chapter 3: SCJ-mSafe: An abstract language for memory-safety checking

SCJExpression ::=

null

| annotation

| arrayAccess〈〈SCJExpression × SCJExpression〉〉
| assignment〈〈SCJExpression × SCJExpression〉〉
| binary〈〈SCJExpression × SCJExpression〉〉
| compoundAssignment〈〈SCJExpression × SCJExpression〉〉
| conditional〈〈SCJExpression × SCJExpression × SCJExpression〉〉
| erroneous

| identifier〈〈Name〉〉
| instanceOf 〈〈SCJExpression × TypeElement〉〉
| literal〈〈Value〉〉
| memberSelect〈〈SCJExpression ×Name〉〉
| methodInvocation〈〈SCJExpression × seq SCJExpression〉〉
| newArray〈〈TypeElement × seq SCJExpression〉〉
| newClass〈〈Name × seq SCJExpression〉〉
| parenthesized〈〈SCJExpression〉〉
| typeCast〈〈TypeElement × SCJExpression〉〉
| unary〈〈SCJExpression〉〉

Figure 3.4: SCJ Expressions in Z

made up from additional commands and expressions; for example, the for command is

made up from three commands and one expression. These represent the loop initialisation

command, the expression that determines whether or not to enter the body of the loop,

the body of the loop itself, and finally the command executed after each iteration of the

body.

SCJ expressions are represented by the type SCJExpression, which is defined in Fig-

ure 3.4; most expressions are made up from additional SCJExpressions. For example, the

assignment expression has two additional expressions that represent the left and right-hand

sides of the assignment.

This model of the SCJ language facilitates the definition of a formal translation strategy

from SCJ programs to SCJ-mSafe programs; the formalisation of the SCJ-mSafe language

is presented next.

68

3.3 A formal model of SCJ-mSafe

3.3 A formal model of SCJ-mSafe

The formalisation of the SCJ-mSafe language in Z is presented in this section. The model is

based on the extraction of the necessary information in the original SCJ program to check

for possible memory-safety violations. The key components of the model are presented

here, however, the full version can be found in Appendix C. All of the Java language

features are handled except for lambda expressions. The use of generics is a typing issue

that is checked by the Java compiler, and it does not affect the ability to analyse programs

for potential memory-safety violations.

The SCJ-mSafe BNF is shown in Figures 3.5 and 3.6. Figure 3.5 shows the syntax for

the overall program, safelet, mission sequencer, missions, and handlers. Figure 3.6 shows

the syntax for individual classes, methods, commands, and expressions. The formalisa-

tion presented here is a model of the syntactic program that subsequently facilitates the

definition of a formal translation strategy between SCJ and SCJ-mSafe.

3.3.1 SCJ-mSafe - Overall Program

An SCJ-mSafe program is defined by a set of static variables and their corresponding

initialisations, a safelet, a mission sequencer, any number of missions, handlers, and user-

defined classes. This is shown on line 1 of Figure 3.5.

Field declarations that are instantiated at the point of declaration are split into two

separate commands, the first is the introduction of the new variable, and the second is

the initialisation command that may create a new object, or assign a value to the newly

declared variable, for example. The introduction of the new variable is defined as a

declaration in the fields component, whilst the corresponding initialisation commands

are recorded in the init component. Separating the declaration from the instantiation of

a variable allows for a simpler analysis later, which uses information about the fields of a

class without their corresponding initialisation commands.

The corresponding Z definition of the overall program is the schema SCJmSafeProgram,

which is shown below.

69

Chapter 3: SCJ-mSafe: An abstract language for memory-safety checking

1 <Program > ::= static (<Declaration >*)

2 sInit (<Com >*)

3 <Safelet >

4 <MissionSequencer >

5 <Mission >*

6 <Handler >*

7 <Class >*

8
9 <Safelet > ::= safelet Name {

10 fields (<Declaration >*)

11 init (<Com >*)

12 constr (<Method >)*

13 initializeApplication (<Com >)

14 getSequencer (<Com >)

15 method (<Method >)*

16 }

17
18 <MissionSequencer > ::= missionSeq Name {

19 fields (<Declaration >*)

20 init (<Com >*)

21 constr (<Method >)*

22 getNextMission (<Com >)

23 method (<Method >)*

24 }

25
26 <Mission > ::= mission Name {

27 fields (<Declaration >*)

28 init (<Com >*)

29 constr (<Method >)*

30 initialize (<Com >)

31 cleanUp (<Com >)

32 method (<Method >)*

33 }

34
35 <Handler > ::= handler Name {

36 fields (<Declaration >*)

37 init (<Com >*)

38 constr (<Method >)*

39 handleEvent (<Com >)

40 method (<Method >)*

41 }

Figure 3.5: SCJ-mSafe BNF 1

SCJmSafeProgram

static : PDec

sInit : PCom

safelet : Safelet

missionSeq : MissionSeq

missions : PMission

handlers : PHandler

classes : PClass

70

3.3 A formal model of SCJ-mSafe

1 <Class > ::= class Name extends Name {

2 fields (<Declaration >*)

3 init (<Com >*)

4 constr (<Method >)*

5 method (<Method >)*

6 }

7
8 <Method > ::= method Name (variable *) {<Com >}

9
10 <Com > ::= skip |

11 <LExpr > = <Expr > |

12 NewInstance (<LExpr >, <MetaRefCon >, <VarType >,

<Expr >*) |

13 <Com > ; <Com > |

14 <Declaration > |

15 do {<Com >} while (<Expr >) |

16 <LExpr >.Name (<Expr >*) |

17 ExecuteInAreaOf (<Expr >, <Expr >) |

18 ExecuteInOuterArea (<Expr >) |

19 EnterPrivateMemory (<Com >) |

20 GetMemoryArea(<Expr >, <Expr >) |

21 for (<Com >; <Expr >; <Com >) {<Com >} |

22 if (<Expr >) {<Com >} else {<Com >} |

23 switch (<Expr >) {<Com >+} |

24 try {<Com >} (catch (<Expr >) {<Com >})+ finally

{<Com >} |

25 while (<Expr >) {<Com >}

26
27 <Declaration > ::= Type Name

28
29 <Expr > ::= value | <Identifier > | <FieldAccess > |

OtherExpr | null | this

30
31 <LExpr > ::= <Identifier > | <FieldAccess >

32
33 <Identifier > ::= variable | arrayElement[value]

34
35 <FieldAccess > ::= <Identifier >.<Identifier >+

Figure 3.6: SCJ-mSafe BNF 2

As defined in the BNF, the definition above includes the set of static variables (static),

which is a set of declarations (Dec), the static fields corresponding initialisation commands

(sInit), which is a set of commands (Com), a safelet (safelet) of type Safelet , a mission

sequencer (missionSeq) of type MissionSeq , a set of missions (missions) of type Mission,

a set of handlers (handlers) of type Handler , and a set of user-defined classes (classes) of

type Class.

By defining SCJ-mSafe programs in this consistent structure, with all of the informa-

tion required to check memory safety, it is possible to produce a checking technique that

can be applied to any SCJ-mSafe program.

71

Chapter 3: SCJ-mSafe: An abstract language for memory-safety checking

3.3.2 SCJ-mSafe - Safelet

An SCJ-mSafe safelet is the starting point of a program. It sets up the program through

the initializeApplication method, which is the first method to be called by the infras-

tructure, and creates a mission sequencer in the getSequencer method.

As shown on line 9 of Figure 3.5, the safelet definition has the basic class components,

which are a name, fields, field initialisation commands, constructors, and other user-defined

class methods, along with an initializeApplication and getSequencer method.

The initializeApplication and getSequencer methods are defined as specific com-

ponents of the safelet, as opposed to simply being one of the regular class methods, because

their execution is a fundamental part of the SCJ paradigm. As they can only be called by

the infrastructure, and the order in which the infrastructure calls these methods is known,

the body of the method call can be extracted and defined as a command; there is no need

to represent infrastructure-called methods as methods. The corresponding formalisation

of the safelet class is shown below.

Safelet

name : Name

fields : seq Dec

init : seq Com

constrs : PMethod

initializeApplication : Com

getSequencer : Com

missionSeq : MissionSeq

methods : PMethod

The Safelet schema includes the safelet’s name (name), which is of type Name, the

class fields (fields), which is a sequence of declarations (Dec), the corresponding field

initialisation commands (init), which is a sequence of commands (Com), the class

constructors (constrs), which is a set of type Method , the initializeApplication

method (initializeApplication), which is a command (Com), the getSequencer method

(getSequencer), which is a command, the mission sequencer (missionSeq), which is of type

MissionSeq , and finally the user-defined class methods (methods), which is a set of type

Method .

72

3.3 A formal model of SCJ-mSafe

3.3.3 SCJ-mSafe - Mission Sequencer

Mission sequencers are responsible for creating the missions of an SCJ program. This is

achieved in the getNextMission method, which is defined as a specific component as it is

called by the infrastructure.

As shown on line 18 of Figure 3.5, the mission sequencer definition has the basic class

components plus a getNextMission method; the formalisation is shown below.

MissionSeq

name : Name

fields : seq Dec

init : seq Com

constrs : PMethod

getNextMission : Com

methods : PMethod

As in the Safelet schema, the MissionSeq schema includes components that capture the

name, fields, field initialisation commands, and user-defined methods. In addition to these,

the getNextMission component, which is of type Com, captures the getNextMission

method.

3.3.4 SCJ-mSafe - Missions

Missions in SCJ-mSafe perform some initialisation tasks in the initialize method, exe-

cutes the handlers it has defined, and then performs the cleanUp method after the handlers

have finished executing. In addition to the basic class components, missions include the

initialize and cleanUp methods that are specific to the paradigm as shown on line 26 of

Figure 3.5. An extract of the mission from the ACCS example that shows the initialize

method is shown in Figure 3.1. The corresponding formalisation of the mission is shown

below.

73

Chapter 3: SCJ-mSafe: An abstract language for memory-safety checking

Mission

name : Name

fields : seq Dec

init : seq Com

constrs : PMethod

initialize : Com

handlers : PName

cleanUp : Com

methods : PMethod

The name, fields, init , constrs, and methods components of the Mission schema are as

defined in previous components. The additional components initialize, handlers, and

cleanUp, define the initialize method, handlers of the mission, and cleanUp method,

respectively.

3.3.5 SCJ-mSafe - Handlers

Handlers in SCJ-mSafe programs have the same basic components as above, but also

include a specific handleEvent component, which is the command that is executed when

the event handler has been registered by a mission and is triggered for execution (either

periodically or by some external event). Handlers in SCJ-mSafe are not categorised as

periodic or aperiodic, as the precise release point of a handler is not important in the

checking technique.

The handleEvent method is defined as a specific component of the handler as shown

on line 35 of Figure 3.5. A handler from the ACCS example is shown in Figure 3.2. It can

not be called by other methods; it is only called during the execution phase of a mission

when triggered. The corresponding formalisation of the handler is shown below.

Handler

name : Name

fields : seq Dec

init : seq Com

constrs : PMethod

hAe : Com

methods : PMethod

As above, the basic components of a class are included in the handler definition along with

the handleEvent method (hAe), which is defined as a command (Com).

74

3.3 A formal model of SCJ-mSafe

3.3.6 SCJ-mSafe - Classes

Classes in an SCJ-mSafe program are user-defined classes that are not part of the SCJ

paradigm. Each one consists of the basic class components described above, as shown

on line 1 of Figure 3.6. Classes also include information about the extended class where

applicable. The corresponding definition in the formalisation is shown below.

Class

name : Name

extends : Name

embeddedIn : Name

fields : seq Dec

init : seq Com

constrs : PMethod

methods : PMethod

The extends component, which is of type Name, records the name of the extended class

where applicable. The embeddedIn component records the name of the class in which

the current class has been defined (again, if applicable), and is used when calculating the

visible fields of SCJ-mSafe methods. This is required as embedded SCJ classes are no

longer embedded in SCJ-mSafe; all classes are defined in the same way.

Interfaces are handled just like classes; this is because the typing issues of interfaces in

Java is a concern of the compiler, and not important to the analysis here. Any classes in

the input program that implement an interface must contain all of the necessary behaviour

by definition, therefore if an interface type is used at any point, all possible classes that

implement it are considered.

The definitions above capture the SCJ paradigm, where each element of the paradigm

has its own definition; this is different to SCJ where each component would be treated as

a regular class.

3.3.7 SCJ-mSafe - Methods

Methods in SCJ-mSafe are made up of a name, parameters, and a method body, as shown

on line 8 of Figure 3.6. The SCJ method modifiers are no longer important; information

about whether a method is public, private, or static, for example, is of no relevance. The

definition of an SCJ-mSafe model in the formalisation is shown below.

75

Chapter 3: SCJ-mSafe: An abstract language for memory-safety checking

Method

name : Name

type : Type

returnType : Name

params : seq Variable

body : Com

properties : MethodProperties

localVars : PExpr

visibleFields : PExpr

Each method has a method name (name), the return type (type), which is of type Type,

the return type name (returnType), a sequence of parameters (params), which is a se-

quence of Variables, and the actual body of the method (body), which is of type Com. In

addition, SCJ-mSafe methods also have method properties (properties), which is of type

MethodProperties, a set of local variables (localVars), which is of type Expr , and a set of

visible fields (visibleFields), which is also of type Expr .

Method properties define the behaviour of a method independently of its execution;

they are explained in greater detail in Section 4.3. The set of local variables is used when

checking memory-safety of a method; it is necessary to check the variables defined inside

a method for safety, but after which they are no longer required as they have gone out

of scope. This set keeps a record of the expressions that need to be checked as part of

the methods execution (including those defined in any subsequent method calls inside the

body), but not in the scope of the method call. Finally, the set of visible fields records the

fields of the method’s containing class, and all fields of classes that the containing class

extends in the class hierarchy. This is required to correctly identify which expressions are

being referenced inside method bodies.

3.3.8 SCJ-mSafe - Commands

Commands in SCJ-mSafe include just a subset of those found in SCJ, as not all commands

in SCJ affect memory safety. For example, the assert statement is not part of SCJ-mSafe as

it has no impact on memory safety; similarly, the scope command is removed. Additional

commands are included in SCJ-mSafe, however; SCJ expressions such as assignments, new

instantiations, and method invocations are all represented as commands in SCJ-mSafe.

They modify the value of program variables and are better characterised semantically as

commands rather than expressions as in SCJ. The commands of SCJ-mSafe are shown on

76

3.3 A formal model of SCJ-mSafe

line 10 of Figure 3.6. The definition of an SCJ-mSafe command in the formalisation is

shown below.

Com ::= Skip

| Asgn〈〈LExpr × Expr〉〉
| NewInstance〈〈newInstance〉〉
| Seq〈〈Com × Com〉〉
| Decl〈〈Dec〉〉
| DoWhile〈〈Com × Expr〉〉
| MethodCall〈〈methodCall〉〉
| ExecuteInAreaOf 〈〈MetaRefCon ×methodCall〉〉
| ExecuteInOuterArea〈〈methodCall〉〉
| EnterPrivateMemory〈〈methodCall〉〉
| GetMemoryArea〈〈getMemoryArea〉〉
| For〈〈Com × Expr × Com × Com〉〉
| If 〈〈Expr × Com × Com〉〉
| Switch〈〈Expr × seq Com〉〉
| Try〈〈Com × seq Expr × seq Com × Com〉〉
|While〈〈Expr × Com〉〉

There are several differences between the commands in SCJ and SCJ-mSafe. As mentioned

previously, assignments, new instantiations, and method calls are commands in SCJ-mSafe,

whereas they are expression in SCJ. SCJ-mSafe also includes commands that identify SCJ-

specific methods, such as EnterPrivateMemory , ExecuteInAreaOf , ExecuteInOuterArea,

and GetMemoryArea. These are regular method calls in SCJ, however they are extracted

as specific commands in SCJ-mSafe as they can directly affect memory safety. By recording

the relevant information for each method call and defining them as individual commands,

the memory safety of their uses can be checked statically without the need for knowledge

of their implementation. Each SCJ-mSafe command is described individually below.

Skip The Skip command (line 10 of Figure 3.6) is new to SCJ-mSafe and defines the

command with no behaviour; this is necessary if a command in SCJ is not needed in SCJ-

mSafe. As demonstrated in Section 3.5, which defines the translation strategy, the process

of translating an SCJ command must produce a corresponding SCJ-mSafe command;

those commands not required are represented as Skip.

Assignment The assignment statement (line 11 of Figure 3.6) in SCJ-mSafe is the

same as that in SCJ. For example, a = b is valid syntax for both SCJ and SCJ-mSafe.

77

Chapter 3: SCJ-mSafe: An abstract language for memory-safety checking

The formalisation of the assignment command (Asgn) has a left expression of type LExpr

and a right expression of type Expr . Left expressions are a subset of expressions that

record references to objects or values. Expressions in SCJ-mSafe are explained after the

commands.

NewInstance The NewInstance command (line 12 of Figure 3.6) is new to SCJ-mSafe,

and replaces the new expression in SCJ. For example, the SCJ command a = new A(b);

is defined as the SCJ-mSafe command NewInstance(a, Current, A, (b));. The argu-

ments passed to the NewInstance command are the expression that is being assigned a

reference to the new object, the memory area in which the new object is being created,

which is the current memory area, the type of the object being created, and the arguments

passed to the instantiation.

The NewInstance command is also used to represent the SCJ-specific method calls to

the methods newInstance and newArray, which create new objects and new arrays in a

specified memory area, respectively. New instantiations are defined by the NewInstance

command, which has a newInstance parameter. The formalisation of the newInstance

schema is shown below.

newInstance

le : LExpr

mrc : MetaRefCon

type : VarType

args : seq Expr

New instantiations are made up of the left expression that is being instantiated (le),

which is of type LExpr , a meta-reference context (mrc), which describes the memory area

in which the newly created object resides and is of type MetaRefCon, the type of the

object (type), which is of type VarType, and the arguments passed to the appropriate

constructor (args), which are a sequence of type Expr .

Meta-reference contexts are explained in greater detail later in Section 4.3, for now

it is sufficient to think of them as a way of establishing which memory area the object

being created resides. Most NewInstance commands will use the Current meta-reference

context, which corresponds to the current memory area at the point the command is

executed. The VarType construct that is used to describe the type of the object being

instantiated is described with the SCJ-mSafe expressions after the commands.

78

3.3 A formal model of SCJ-mSafe

Sequence The sequence command (line 13 of Figure 3.6) in SCJ-mSafe is used to

represent a sequence of commands. For example, a = 10; b = 5; is a sequence that first

associates a with the value 10 and then b with the value 5. The formalised Seq command

has two commands of type Com in its definition, which correspond to the first and second

commands in the sequence.

Declaration Declarations in SCJ-mSafe are the same as those in SCJ (line 14 of Fig-

ure 3.6), except that there can be no corresponding variable initialisation as part of the

declaration. For example, the declaration int a; is the same in SCJ and SCJ-mSafe. The

formalised Decl command has an associated declaration Dec, which is defined below.

Dec

var : Variable

The Dec schema has a single component, which is the variable var of type Variable. The

definition of a Variable is presented with expressions later.

Do-while The do-while loop is the same in SCJ-mSafe as it is in SCJ (line 15 of

Figure 3.6); for example, do {a} while (b); is valid in both SCJ and SCJ-mSafe. The

corresponding DoWhile command in the formalisation has an associated command of type

Com and expression of type Expr .

Method call Method calls in SCJ-mSafe (line 16 of Figure 3.6) are commands whereas

they are expressions in SCJ. In SCJ, the returned result of a method call can be assigned

to an expression, however, because method calls are commands in SCJ-mSafe, method

calls to methods that have a return type other than void have an additional parameter,

which is the result parameter. The returned result of the method call is assigned to the

result parameter as part of the call. For example, the method call a = b.get(); in SCJ

is represented as b.get(a); in SCJ-mSafe.

The method call command MethodCall in the formalisation has an associated

methodCall parameter; the methodCall schema is defined below.

79

Chapter 3: SCJ-mSafe: An abstract language for memory-safety checking

methodCall

le : LExpr

name : Name

args : seq Expr

methods : PMethodSig

Method calls are made up of a left expression (le) of type LExpr , which is the expression

that identifies the target object of the call, the name of the actual method (name) of type

Name, the arguments (args), which is a sequence of expressions of type Expr , and a set

of method signatures (methods) of type MethodSig that identifies the possible methods

being called.

Method signatures define a syntactic summary of the possible methods associated

with a method call. As will be explained later in the translation, these are required when

extracting embedded method calls from complex statements that require the introduction

of new variables, they are also required to handle dynamic binding. Without method

signatures, it is not possible to determine the type of the new variable that is being

introduced. For example, the SCJ expression method1(method2(), a, b); passes the

result of method2 as an argument to method1. As there are no embedded statements in

SCJ-mSafe, the resulting sequence of SCJ-mSafe commands is a new declaration to store

the result of method2, followed by the call to method2 with the newly defined variables as

the result parameter, and then finally the call to method1 with the newly defined variable,

a, and b as its arguments: retTypeM1 var; method1(var); method2(var, a, b);

ExecuteInAreaOf The executeInAreaOf method in SCJ (line 17 of Figure 3.6) takes

two arguments: a runnable object and an expression, whose memory area is used as the

execution area for the runnable object.

Figure 3.7 shows an example of how the executeInAreaOf method is used in SCJ.

The handleAsyncEvent method of the handler creates a new instance of the runnable

class MyRunnable, and assigns it to the myRun variable. The runnable object is later

executed in the memory area of the object referenced by the variable field through the

executeInAreaOf method call. In this simple example, a reference to the local variable

data is passed to the runnable object, and is stored as a local reference in the field

runField; this is perfectly legal. When the runnable object is executed through the

executeInAreaOf method call, the field of the handler (field) is assigned to point to the

local field of the runnable class runField. This introduces a memory-safety violation as

80

3.3 A formal model of SCJ-mSafe

1 public class MyHandler extends PeriodicEventHandler {

2
3 A field = new A();

4
5 ...

6
7 public void handleAsyncEvent () {

8 B data = new B();

9 MyRunnable myRun = new MyRunnable(data);

10 ManagedMemory.executeInAreaOf(field , myRun);

11 }

12
13 class MyRunnable implements Runnable {

14 A runField;

15
16 public MyRunnable(A arg) {

17 runField = arg;

18 }

19 public void run() {

20 field = runField;

21 }

22 }

23 }

Figure 3.7: executeInAreaOf example in SCJ

the handler field now references an object that resides in the per-release memory area of

the handler, whereas it should only reference objects stored in the mission memory area

or higher.

As demonstrated, it is possible for the executeInAreaOf method to introduce memory-

safety violations; for this reason it is defined as an individual command in SCJ-mSafe.

Figure 3.8 shows the same example in SCJ-mSafe. The translation shows the specific

ExecuteInAreaOf command, which states that the runnable object referenced by myRun

will be executed in the memory area associated with the handler field (Erc field). The

construct Erc field is a meta-reference context, which defines the memory area of an

object independently of the execution of the program, and is described in more detail in

Section 4.3.

The formalisation of the ExecuteInAreaOf command has a meta-reference context

(MetaRefCon) and a method call (methodCall) as its parameters. The meta-reference

context is used to describe the memory area in which the run method described by the

methodCall component is executed. Meta-reference contexts are explained in more detail in

Section 4.3. The ExecuteInAreaOf command uses a methodCall in SCJ-mSafe as opposed

to a reference to a runnable object like in SCJ as it is the run method of the runnable

81

Chapter 3: SCJ-mSafe: An abstract language for memory-safety checking

1 handler MyHandler {

2 fields {

3 A field;

4 }

5 init {

6 NewInstance(field , Current , A, ());

7 }

8 ...

9 handleEvent {

10 B data;

11 NewInstance(data , Current , B, ());

12 MyRunnable myRun;

13 NewInstance(myRun , Current , MyRunnable , (data));

14 ExecuteInAreaOf(Erc field , myRun);

15 }

16 }

17
18 class MyRunnable {

19 fields {

20 Object runField;

21 }

22 init {

23 }

24 constr (arg) {

25 runField = arg;

26 }

27 method run() {

28 field = runField;

29 }

30 }

Figure 3.8: executeInAreaOf example in SCJ-mSafe

object that is called as a result of its execution; the possibility of dynamic binding is still

handled. Therefore, as will be described during the translation strategy in Section 3.5,

the corresponding method call to the run method of the target object is defined.

ExecuteInOuterArea The executeInOuterArea method call in SCJ (line 18 of Fig-

ure 3.6) is very similar to the executeInAreaOf method presented above. The difference

between the two commands is that the executeInAreaOf command specifies the exact

area in which a runnable object will execute, whereas executeInOuterArea always exe-

cutes the runnable object in the immediate outer memory area, which is established based

on the current area and the memory hierarchy defined in the previous chapter.

Calls to the executeInOuterArea method in SCJ are defined as ExecuteInOuterArea

commands in SCJ-mSafe, which have a methodCall component as their parameter.

82

3.3 A formal model of SCJ-mSafe

1 public class MyHandler extends PeriodicEventHandler {

2
3 A handlerField = new A();

4
5 public void handleAsyncEvent () {

6 B data;

7 MemoryArea memArea =

MemoryArea.getMemoryArea(handlerField);

8 data = memArea.newInstance(B.class);

9 }

10 }

Figure 3.9: getMemoryArea example in SCJ

EnterPrivateMemory The enterPrivateMemory method (line 19 of Figure 3.6) is

similar to the executeInOuterArea method described above; however, instead of exe-

cuting a runnable object in the memory area immediately outside the current scope, the

enterPrivateMemory method call creates a new temporary private memory area specifi-

cally for the runnable object to execute. This can only be done during the initialisation

phase of the mission, and during the handleEvent methods of handlers.

If a reference to an object is passed as an argument to the runnable class, and the

corresponding run method manipulates fields of that reference, it is possible to introduce

downward references, which are illegal.

Calls to the enterPrivateMemory method in SCJ are defined as EnterPrivateMemory

commands in SCJ-mSafe, which have a methodCall component as their parameter.

GetMemoryArea The getMemoryArea method in SCJ (line 20 of Figure 3.6) is used

to acquire a reference to the memory area in which a particular object resides. Once a

reference has been established, it is possible to call the newInstance or newArray methods,

which create new objects and arrays respectively, of a specific type, in the specific memory

area. This illustrates that it is possible to create objects in memory areas other than the

current one during execution. Figure 3.9 shows a small example of how the getMemoryArea

method can be used to create a new instance of an object in a separate memory area.

The object referenced by the field of the handler (handlerField) is located in mission

memory as it was instantiated when the handler object was created. The local variable

data in the handleAsyncEvent method would reference an object in the handler’s per-

release memory area if instantiated normally. However, because the newInstance method

is used to create the new object, the object referenced by data is instantiated in the

memory area referenced by memArea, which is the same memory area as handlerField,

83

Chapter 3: SCJ-mSafe: An abstract language for memory-safety checking

1 handler MyHandler {

2 fields {

3 A a;

4 }

5 init {

6 NewInstance(a, Current , A, ());

7 }

8 handleEvent {

9 B data;

10 MemoryArea memArea;

11 GetMemoryArea(memArea , a);

12 NewInstance(data , Erc memArea , B, ());

13 }

14 }

Figure 3.10: getMemoryArea example in SCJ-mSafe

because the local variable memArea is assigned a reference to the mission memory area

through the getMemoryArea method.

As the getMemoryArea method can have a direct impact on where objects are instan-

tiated, it is defined as a specific command in SCJ-mSafe; Figure 3.10 shows the same

example in SCJ-mSafe. The method call MemoryArea.getMemoryArea in SCJ is defined as

the SCJ-mSafe command GetMemoryArea; the memory area in which the object referenced

by variable a resides is stored into the local variable memArea.

The SCJ method call to memArea.newInstance is defined as a NewInstance command

in SCJ-mSafe. The meta reference context that determines which memory area the object

is instantiated is the memory area of memArea; this is represented as Erc memArea.

The formalised GetMemoryArea command has a getMemoryArea parameter, which is

shown below.

getMemoryArea

ref : LExpr

e : LExpr

The ref component of getMemoryArea identifies the expression that is being queried to

determine the memory area, and the e component represents the expression that is assigned

the result.

For loop The for loop is the same in SCJ-mSafe as it is in SCJ (line 21 of Figure 3.6); for

example, for(a; b; c) {d} is valid in both SCJ and SCJ-mSafe. The corresponding For

command in the formalisation has three commands and an expression as its parameters.

84

3.3 A formal model of SCJ-mSafe

The commands, which are of type Com, represent the initialisation command, iteration

command, and body of the loop, respectively. The expression, which is of type Expr ,

represents the loop condition that must be true in order for the body to be executed.

If Conditional statements are also the same in SCJ-mSafe as they are in SCJ (line 22

of Figure 3.6); for example, if(a) {b} else {c} is valid in both SCJ and SCJ-mSafe.

Although the syntax and meaning of the statement are the same, conditional statements

in SCJ-mSafe always have an else branch, even if the behaviour of the else branch is

simply Skip; this is to keep the structure of commands uniform.

The corresponding If command in the formalisation has an expression and two com-

mands as its parameters. The expression, which is of type Expr , is the condition that

must be true for the true branch to be executed; the false (or else) branch is executed

otherwise. Although the expression is not required for the analysis, it is maintained in SCJ-

mSafe to ease readability; this is also the case for subsequent commands presented. The

two commands, which are of type Com, represent the true and false branches respectively.

Switch Switch statements are subtly different in SCJ-mSafe to those in SCJ (line 23

of Figure 3.6), the difference is that the expressions that are used to identify the cases in

SCJ are removed in SCJ-mSafe. This is because it is not possible to determine statically

which case will be executed, therefore, the possible cases are simply defined based on their

commands alone.

For example, the SCJ command switch(e) { case(1) {a}; case(2) {b} ...} is

represented in SCJ-mSafe as switch(e) { {a}, {b} }.

The corresponding Switch command in the formalisation has an expression and a

sequence of commands as its parameters. The expression, which is of type Expr , is the

expression that is being compared to determine which case is to be executed. The sequence

of commands, which is of type Com, represents the commands of the cases that may be

executed.

Try Try statements are the same in SCJ-mSafe as they are in SCJ (line 24 of Figure 3.6);

for example, try{a} catch(b){c} finally{d} is the same in SCJ-mSafe as it is in SCJ.

The corresponding Try command in the formalisation has four parameters; the first is the

command, which is of type Com, that represents the initial command whose execution is

attempted. The next two parameters, which are a sequence of expressions and a sequence

85

Chapter 3: SCJ-mSafe: An abstract language for memory-safety checking

of commands, represent the possible catch expressions and statements; these are of type

Expr and Com respectively. The fourth parameter is the finally command, which is of

type Com, that is executed when the try block exits.

While Finally, the While command is also the same in SCJ-mSafe and SCJ (line 25 of

Figure 3.6); for example, while(a) {b} is the same in SCJ-mSafe as it is in SCJ. The

corresponding While command in the formalisation has an expression, which is of type

Expr , and a command, which is of type Com, as its parameters. These represent the

condition that must be true in order for the body of the loop to execute, and the body of

the loop, respectively.

3.3.9 SCJ-mSafe - Expressions

Some SCJ expressions are not required in SCJ-mSafe as they are not able to affect memory

safety based on the static analysis technique used here; for example, an expression such as

++count may be crucial to behaviour and subsequently impact the memory configuration

of a program, but has no relevance to memory safety here as all execution paths are

considered regardless of the result of an expression. The syntax of expressions in SCJ-

mSafe is shown on lines 27 to 35 of Figure 3.6. The definition of all possible expressions

include values, identifiers, field accesses, other expressions, the special value null, and the

keyword this.

Expr ::= Val | ID〈〈Identifier〉〉 | FA〈〈FieldAccess〉〉 | OtherExpr | Null | This

The OtherExpr expression is used to identify expressions in SCJ that are not relevant

to memory safety, and therefore not included in SCJ-mSafe. For example, the expression

x > y may be used in a conditional statement to determine which branch is executed,

however, this is not relevant in SCJ-mSafe, and is defined as an OtherExpr .

The important expressions in SCJ-mSafe are left expressions, which are expressions

that can reference objects; identifiers and field accesses are left expressions as shown on line

31 of Figure 3.6. Left expressions in SCJ-mSafe are a subset of the possible expressions,

and are defined as the union of valid identifiers and valid field accesses.

LExpr == ran ID ∪ ran FA

Identifiers and field accesses denote objects manipulated in a program whose allocations

need to be checked. An identifier is a variable or an array access, as shown on line 33 of

Figure 3.6.

86

3.3 A formal model of SCJ-mSafe

Identifier ::= var〈〈Variable〉〉 | arrayElement〈〈ArrayElement〉〉

Field accesses are defined as a sequence of identifiers with at least two elements.

FieldAccess == seqtwo[Identifier]

The seqtwo definition ensures that all field accesses are sequences of identifiers whose

length is at least two, as there must be at least two elements in a field access; otherwise

it is just an identifier.

Variables are made up of a name, and a VarType.

Variable

name : Name

varType : VarType

The name is the variable’s identifier, and the VarType records information about the type

of the variable.

VarType

type : Name

isArray : Boolean

isPrimitive : Boolean

isReference : Boolean

resultVar : Boolean

isPrimitive 6= isReference

The type information recorded about each variable includes the type name, and the cate-

gory of the type, which is sufficient to distinguish how the variable is handled later in the

checking procedure; for example, the variable may or may not be an array, and may be

a primitive or reference type. The definition includes an invariant that states a variable

cannot be of both reference and primitives types simultaneously. Variables may also be

result variables.

Identifiers can also be array accesses, which are modelled as ArrayElements; these are

made up of a name and a type.

ArrayElement

name : Name

type : Name

87

Chapter 3: SCJ-mSafe: An abstract language for memory-safety checking

Figure 3.11: SCJ class translation to SCJ-mSafe paradigm components.

Figure 3.12: SCJ class component translation to SCJ-mSafe methods and class fields.

This model of SCJ-mSafe captures all of the information required to perform the analysis

and checking procedures to determine whether a program is memory safe or not. The next

sections describe the translation from SCJ to SCJ-mSafe.

3.4 Translating SCJ to SCJ-mSafe

Previous sections have described SCJ and SCJ-mSafe, this section describes the overall

translation from SCJ to SCJ-mSafe.

The translation from SCJ programs to SCJ-mSafe is not trivial, and includes analysis

of the input program to create an SCJ-mSafe program with the uniform structure required

for analysis. The translation is defined by a series of mappings from SCJ components to

corresponding SCJ-mSafe components.

The input SCJ program must be well formed and well typed; more specifically, no

errors must be raised during compilation. The program must correspond to the SCJ spec-

ification [46], and be defined in separate classes that identify the Level 1 SCJ programming

paradigm. Whilst it is possible to extend the translation to refactor input programs that

88

3.4 Translating SCJ to SCJ-mSafe

1 program {

2 static {

3 ...

4 }

5 sInit {

6 ...

7 }

8 safelet {

9 ...

10 }

11 missionSeq {

12 ...

13 }

14 mission ACCMission {

15 ...

16 }

17 handler SpeedMonitor {

18 ...

19 }

20 handler Engine {

21 ...

22 }

23
24 ...

25
26 class Controller {

27 ...

28 }

29 }

Figure 3.13: ACCS sketch in SCJ-mSafe

are not defined in separate classes, this restriction is not unfair given the guidelines in the

specification.

The input SCJ program consists of a series of SCJ classes. Classes that make up the

SCJ programming paradigm are translated into the corresponding SCJ-mSafe component

described previously. Classes that are user-defined, that is, they are not part of the SCJ

programming paradigm, are translated into regular SCJ-mSafe classes. Figure 3.11 shows

a summary of this translation, and indicates that classes in SCJ-mSafe are separated into

individual classes based on the paradigm of SCJ.

The components of SCJ classes are either methods or class fields; these are translated

to SCJ-mSafe methods, class fields, or commands. The SCJ methods that define the

programming paradigm, as mentioned above, are translated to SCJ-mSafe commands; for

example, the initialize method of missions is defined as a command (Com) in SCJ-

mSafe . Figure 3.12 indicates that SCJ class components are translated into three possible

89

Chapter 3: SCJ-mSafe: An abstract language for memory-safety checking

categories.

Figure 3.13 shows a sketch of the ACCS in SCJ-mSafe. Although very simple, this

gives an idea of the layout and structure of an overall SCJ-mSafe program; the ACCS

mission (ACCMission) and speed monitor handler (SpeedMonitor) defined on lines 14 and

17 respectively were presented in greater detail in Figures 3.1 and 3.2.

As shown from the program outline, components of the SCJ paradigm are defined in

an abstract way; for example, there is no need for package definitions or library classes to

be imported. Similarly, annotations and modifiers are not maintained; this is because the

input SCJ program is well-formed and type-correct, therefore the validity of the program

does not need to be re-checked.

3.5 A translation strategy

The translation strategy is defined by a series of compositional functions that map SCJ

components to corresponding SCJ-mSafe components. The formalisation of the trans-

lation functions is described here; the full version can be found in Appendix D. The

top-level Translate function, which translates the overall program, takes an SCJ program

and returns an SCJ-mSafe program; it is shown in Figure 3.14.

The SCJ programs in the domain of Translate are a subset of SCJ programs that are

valid and well typed (WellTypedPrograms), as defined on line 3.

Line 4 of the function defines the resulting SCJ-mSafe program (scjmsafe) and a

translation environment (transEnv). Lines 6-36 define the components of the resulting

SCJ-mSafe program.

The translation environment records the set of SCJ-mSafe variables defined from

SCJ variables throughout the translation, and also the set of method signatures for the

program.

TranslationEnv

variables : PVariable

methods : PMethodSig

As explained previously, method signatures record a summary about each method in

the SCJ program and are used to handle overloading and to establish which method is

being called at each method call. Method signatures are required at translation time to

facilitate the introduction of new variables, where necessary, when extracting embedded

90

3.5 A translation strategy

1 Translate : SCJProgram 7→ SCJmSafeProgram

2 ∀ program : SCJProgram

3 | program ∈WellTypedPrograms

4 • ∃ scjmsafe : SCJmSafeProgram; transEnv : TranslationEnv

5 | transEnv .methods = AnalyseMethodSigs program

6 • (∃ scjSafelet : SCJClass

7 | scjSafelet ∈ program.classes

8 ∧ Extends(scjSafelet , safelet , program) = True

9 • scjmsafe.safelet = TranslateSafelet(scjSafelet ,

10 scjmsafe, transEnv))

11 ∧ (∃ scjMissionSeq : SCJClass

12 | scjMissionSeq ∈ program.classes

13 ∧ Extends(scjMissionSeq ,missionSequencer , program) = True

14 • scjmsafe.missionSeq =

15 TranslateMissionSeq(scjMissionSeq , scjmsafe, transEnv))

16 ∧ (∀ scjMission : SCJClass

17 | scjMission ∈ program.classes

18 ∧ Extends(scjMission,mission, program) = True

19 • TranslateMission(scjMission, program, scjmsafe, transEnv)

20 ∈ scjmsafe.missions)

21 ∧ (∀ scjHandler : SCJClass

22 | scjHandler ∈ program.classes

23 (∧ Extends(scjHandler ,APeriodicHandler , program) = True

24 ∨ Extends(scjHandler ,PeriodicHandler , program) = True)

25 • TranslateHandler(scjHandler , scjmsafe, transEnv)

26 ∈ scjmsafe.handlers)

27 ∧ (∀ scjClass : SCJClass

28 | scjClass ∈ program.classes

29 ∧ abstract 6∈ scjClass.modifiers.flags

30 ∧ Extends(scjClass, safelet , program) = False

31 ∧ Extends(scjClass,missionSequencer , program) = False

32 ∧ Extends(scjClass,mission, program) = False

33 ∧ Extends(scjClass,APeriodicHandler , program) = False

34 ∧ Extends(scjClass,PeriodicHandler , program) = False

35 • TranslateClass(scjClass, scjmsafe, transEnv)

36 ∈ scjmsafe.classes)

37 ∧ Translate program = scjmsafe

Figure 3.14: Translate function that takes SCJ programs and returns SCJ-mSafe pro-
grams.

91

Chapter 3: SCJ-mSafe: An abstract language for memory-safety checking

method calls from complex statements.

Each method signature consists of the method name, the class in which it is defined,

the name of the class that the method’s class extends if applicable, a set of class names

that extend the method’s class (its descendants), the method return type and return type

name, and a sequence of type names for the parameters. A simple syntactic function can

be defined to specify how method signatures can be identified from the text of an SCJ

program, as needed to construct the translation environment.

MethodSig

name : Name

class : Name

classExtends : Name

descendants : PName

returnType : Type

returnTypeName : Name

paramTypes : seq Name

Most components of method signatures are of type Name because method signatures give

a syntactic description of the methods of a program before the translation.

All classes in an SCJ program are recorded inside the program component

program.classes; there is no distinction at the SCJ level between the safelet, mission

sequencer, missions, or handlers. The overall Translate function includes a case analysis

for each SCJ component; if a class in program.classes matches the criteria for a specific

component, the respective function to translate each component is used. Lines 6-10 define

the criteria for the safelet component, lines 11-15 define mission sequencers, lines 16-20

define missions, lines 21-26 define handlers, and lines 27-36 define user-defined classes.

The TranslateHandler function is used on line 25 when the result of the Extends func-

tion, which checks whether a class extends another with a particular name in the class hier-

archy, is true when compared against the names APeriodicHandler and PeriodicHandler .

The function that translates SCJ classes identified as handlers into SCJ-mSafe is shown

in Figure 3.15.

On line 5, the function specification states that there must exist a handler (handler)

of type Handler , which is the SCJ-mSafe handler identified as the result of the function

on line 31. Lines 6-30 identify the properties of the handler. The fields (handler .fields)

are defined on lines 6-8, for example. The corresponding field initialisation commands on

lines 9-11, the constructors on lines 12-17, the handleEvent method on lines 18-22, any

92

3.5 A translation strategy

1 TranslateHandler : SCJClass × SCJmSafeProgram

2 × TranslationEnv 7→Handler

3 ∀ scjClass : SCJClass; program : SCJmSafeProgram;

4 transEnv : TranslationEnv

5 • ∃ handler : Handler

6 • handler .fields =

7 TranslateComponentsFieldsDecs(scjClass.members,

8 program, transEnv)

9 ∧ handler .init =

10 TranslateComponentsFieldsInits(scjClass.members,

11 program, transEnv)

12 ∧ handler .constrs =

13
⋃
{classComponent : ran scjClass.members

14 • {method : SCJMethod

15 | classComponent = ClassMethod method

16 ∧ method .name = handler .name

17 • (TranslateConstr(method , program, transEnv))}}
18 ∧ (∃ classComponent : ran scjClass.members; method : SCJMethod

19 | classComponent = ClassMethod method

20 ∧ method .name = handleEvent

21 • handler .hAe = CreateSingleCommand(

22 TranslateCommandSeq(method .body , program, transEnv)))

23 ∧ handler .methods =

24
⋃
{classComponent : ran scjClass.members

25 • {method : SCJMethod

26 | classComponent = ClassMethod method

27 ∧ method .name 6= handler .name

28 ∧ method .name 6= handleEvent

29 • (TranslateMethod(method , program, transEnv))}}
30 ∧ handler .name = scjClass.name

31 ∧ TranslateHandler(scjClass, program, transEnv) = handler

Figure 3.15: TranslateHandler function that takes an SCJ class identified as a handler,
and returns an SCJ-mSafe handler.

user-defined methods on lines 23-29, and the handler name on line 30.

The TranslateHandler function calls subsequent functions to translate individual as-

pects of the handler. For example, the function TranslateComponentsFieldsDecs used

on line 7 takes a sequence of SCJ class members (scjClass.members), the resulting SCJ-

mSafe program (program), and the translation environment (transEnv) as its parameters,

and characterises a sequence of declarations that identify the fields of the handler; these

93

Chapter 3: SCJ-mSafe: An abstract language for memory-safety checking

are recorded in the handler .fields component.

The corresponding initialisation commands for the fields, if any, are identified and

identified in the handler .init component with the TranslateComponentsFieldsInits func-

tion on line 10, which takes the same arguments as above, and defines a sequence of

SCJ-mSafe commands.

Constructors and methods of the handler are also SCJ class components recorded in

scjClass.members; constructors are identified as methods whose name corresponds to the

name of the handler (method .name = handler .name on line 16), and are recorded in

handler .constrs. The constructors are translated with the TranslateConstr function on

line 17, which takes the SCJ method identified as a constructor (method), the resulting

SCJ-mSafe program (program), and the translation environment (transEnv), and returns

an SCJ-mSafe method.

The special method handleEvent is recorded as a specific component of the

handler (handler .hAe), and is identified through the condition method .name =

handleEvent on line 20. The SCJ method body (method .body) is translated using the

TranslateCommandSeq function, which takes a sequence of SCJ commands and returns a

sequence of SCJ-mSafe commands. This sequence is then combined into a single command

that makes use of the dedicated sequence command Seq with the CreateSingleCommand

function; the resulting command that defines the behaviour of the handleEvent method

of the handler is recorded in handler .hAe.

Additional methods that are not constructors or the special handleEvent method

are recorded in the handler component handler .methods; these are translated with the

TranslateMethod function, which is similar to the TranslateConstr function, except that

it introduces the additional result variable for methods that return a reference or value.

3.5.1 Translating expressions

Expressions in SCJ that identify values or references are translated into expressions in SCJ-

mSafe; the remaining expressions that impact memory safety are translated to commands.

Accordingly, two translation functions for expressions are defined.

TranslateExpression The first defines the translation of expressions into commands

(TranslateExpression). This function takes an SCJ expression and returns an SCJ-

mSafe command, and is shown in Figure 3.16.

94

3.5 A translation strategy

1 TranslateExpression : SCJExpression × TranslationEnv 7→ Com

2 ∀ scjExpr : SCJExpression; transEnv : TranslationEnv

3 | (scjExpr , transEnv) ∈ dom TranslateExpression

4 ∧ scjExpr ∈WellTypedExprs

5 • ...
6 ∨ (∃ e1, e2 : SCJExpression; lexpr , rexpr : Expr

7 | scjExpr = assignment(e1, e2)

8 ∧ lexpr = ExtractExpression e1

9 ∧ rexpr = ExtractExpression e2

10 • ...
11 ∨ (∃ e3, e4 : SCJExpression; args : seq SCJExpression;

12 name : Name; type : TypeElement

13 | e2 6= newArray(type, args)

14 ∧ e2 6= newClass(name, args)

15 ∧ e2 6= methodInvocation(e3, args)

16 ∧ e2 6= arrayAccess(e3, e4)

17 • TranslateExpression(scjExpr , transEnv) =

18 SimplifyCommandPair(

19 (TranslateExpression(e2, transEnv)),

20 (Asgn(lexpr , rexpr)))))

Figure 3.16: TranslateExpression function that illustrates the translation of a simple as-
signment.

The SCJ expressions in the domain of TranslateExpression are a subset of SCJ ex-

pressions that are valid and well typed (WellTypedExprs) as shown on line 4; for all SCJ

expressions in its domain, the resulting SCJ-mSafe command is defined based on a case

analysis of the type of expression. The simplest case for assignments, where the right-hand

side is not a new instantiation, method call, or array access, is shown above.

The SCJ assignment is identified on line 7; the ExtractExpression function, which

ignores any embedded commands inside expressions and simply defines the result of

the expression, is applied to the left and right-hand sides of the assignment on lines

8 and 9 respectively. The resulting expressions are recorded in lexpr and rexpr . The

ExtractExpression function is described later.

Lines 13-16 are used to identify the type of expression being translated; in this case, it is

a simple assignment where the right-hand side (e2) is not a new array, new class, method

invocation, or array access expression. Side effects embedded in the right-hand side of

the assignment statement are handled with a recursive call to the TranslateExpression

95

Chapter 3: SCJ-mSafe: An abstract language for memory-safety checking

function on line 19. The resulting command from this call is passed as the first parameter

to the SimplifyCommandPair function on line 18, which takes two separate commands and

defines a single command that uses the sequence command Seq . The second command

passed to SimplifyCommandPair is the new SCJ-mSafe assignment command on line 20.

In this way, assignments such as a = (b = c), which contain side effects, are trans-

lated as a sequence (Seq) of commands. The result of applying TranslateExpression to

a = (b = c) is Seq(Asgn(b, c),Asgn(a, b)). This is done by translating any embedded

side effects into separate commands that come first in a sequence, followed by the overall

expression; b = c is an embedded side effect of a = (b = c).

If an expression has no embedded side effects, the result of TranslateExpression on

line 19 is the command Skip. For example, the SCJ assignment a = b has no side effects

and is translated into the sequence Skip followed by Asgn(a, b). The introduction of the

command Skip is later removed by the SimplifyCommandPair function on line 18, which

simplifies the translation by removing unnecessary Skip commands.

The translation of assignments becomes significantly more complex if the right-hand

side of the assignment is a new instantiation, method call, or array access. As an exam-

ple, consider the instantiation of a new object: in SCJ this is treated as an assignment,

where the right-hand side includes the keyword new; this is translated into a NewInstance

command in SCJ-mSafe shown in Figure 3.17. If a new instantiation is embedded inside

another expression, a sequence of commands is defined in SCJ-mSafe that records the new

instantiation and overall expression separately.

This extract from TranslateExpression specifies how a new instance command nI is

constructed from the SCJ assignment (scjExpr on line 3) and new class instantiation (e2

on line 8). The type of the new object being instantiated is equal to the name of the

new class, as shown on line 9. The left expression (lexpr) being assigned the reference

to the new object is recorded in the new instance component nI .le, as shown on line 10.

The instantiation is taking place in the current memory area, therefore the meta-reference

context (nI .mrc) of the new instance, as described previously, is Current , as shown on

line 11. The arguments passed to the instantiation of the new class are recorded in the

new instance component nI .args, as shown on line 12; this is a sequence of expressions

passed to the ExtractExpression function.

The overall result of the TranslateExpression function on line 13 in this scenario is

the result of the MergeSideEffectsParamsCom function, which produces a Seq command

96

3.5 A translation strategy

1 ...

2 ∨ (∃ e1, e2 : SCJExpression; lexpr , rexpr : Expr

3 | scjExpr = assignment(e1, e2)

4 ∧ lexpr = ExtractExpression e1

5 ∧ rexpr = ExtractExpression e2

6 • ...
7 ∨ (∃ args : seq SCJExpression; nI : newInstance; name : Name

8 | e2 = newClass(name, args)

9 ∧ nI .type.type = name

10 ∧ nI .le = lexpr

11 ∧ nI .mrc = Current

12 ∧ nI .args = {n : 1..# args • n 7→ ExtractExpression(args n)}
13 • TranslateExpression(scjExpr , transEnv) =

14 MergeSideEffectsParamsCom((NewInstance nI),

15 {n : 1..# args

16 • (n 7→ TranslateExpression((args n), transEnv))},Skip))

Figure 3.17: TranslateExpression function that illustrates a new instantiation as part of
an assignment.

based on the side effects of the arguments passed to the new instantiation, and the new

instance command itself. Any side effects in the arguments to the new instantiation are

extracted through the TranslateExpression function, and are placed in a sequence before

the SCJ-mSafe new instance command NewInstance nI .

For example, the simple assignment a = new A(x = y); is translated to

Seq(Asgn(x , y),NewInstance(a,Current ,A, (x))). The side effect in the argument passed

to the new instantiation (x = y) is translated as a separate assignment command and

placed in a sequence before the NewInstance command. The NewInstance command then

states that the left expression a is assigned a new object of type A in the Current memory

area, with arguments x .

If the right-hand side of the assignment is a method call, the translation first analyses

the method call, and then adds the left expression of the assignment as the result parameter

of the method call. If a method call is embedded inside a more complex expression, it is

extracted; if necessary, new variables are introduced to record the values of method calls

that have been extracted from more complex expressions. These newly defined variables

are then used in place of the existing method call in the containing expression.

97

Chapter 3: SCJ-mSafe: An abstract language for memory-safety checking

1 ...

2 ∨ (∃ e1 : SCJExpression; args : seq SCJExpression; name,mname : Name;

3 c, sideEffect : Com; lexpr : Expr ; paramComs : seq Com;

4 paramExprs : seq Expr

5 | scjExpr = methodInvocation(e1, args)

6 ∧ c = TranslateExpression(e1, transEnv)

7 ∧ paramComs = {n : 1..# args

8 • n 7→ TranslateExpression((args n), transEnv)}
9 ∧ paramExprs = {n : 1..# args

10 • n 7→ ExtractExpression(args n)}
11 ∧ mname = GetMethodName e1

12 • ((∃ c1, c2 : Com; mc : methodCall

13 | c = Seq(c1, c2) ∧ c2 = MethodCall mc

14 ∨ c = MethodCall mc

15 • lexpr = (GetMethodCallReturnDec(mc, c)).1

16 ∧ sideEffect = (GetMethodCallReturnDec(mc, c)).2)

17 ∨ (∃ c1, c2 : Com; mc : methodCall |
18 c 6= MethodCall mc

19 ∧ c 6= Seq(c1, c2)

20 • lexpr = ExtractExpression e1

21 ∧ sideEffect = c))

Figure 3.18: TranslateExpression function that illustrates the initial translation of method
invocations.

Method calls are the most complex part of the TranslateExpression function; the first

part of its formalisation is shown in Figure 3.18. The left-hand side of the method call (e1)

needs to be analysed, as this may include side effects such as additional method calls; this

is shown on line 6. The command c records the result of applying TranslateExpression to

the left-hand side of the method call e1. The paramComs component records a sequence

of commands that represent the side effects in the parameters of the method call; this is

shown on lines 7 and 8. The paramExprs component records a sequence of expressions

that ignore the extracted side effects, as shown on lines 9 and 10.

The resulting left expression (lexpr) and side effect (sideEffect) components are based

on the result of c. If c is another method call, or a sequence whose second element is a

method call (because the first element is the side effect of the embedded method call),

then lexpr and sideEffect are specified using the GetMethodCallReturnDec function on

lines 15 and 16. This function analyses the method call and returns a command and an

98

3.5 A translation strategy

1 ...

2 ∨ mname = enterPrivateMemoryID

3 ∧ (∃mc : methodCall

4 | mc.methods = FindMethods((paramExprs 1), run, 〈〉, transEnv)

5 ∧ mc.le = paramExprs 1

6 ∧ mc.args = 〈〉
7 ∧ mc.name = run

8 • TranslateExpression(scjExpr , transEnv) =

9 MergeSideEffectsParamsCom((EnterPrivateMemory mc),

10 paramComs, sideEffect))

Figure 3.19: TranslateExpression function that illustrates the translation of enterPrivate-
Memory method calls.

expression that represent the behaviour of the method call. If the left expression of the

method call is not another embedded method call or a sequence, the sideEffect is just c,

as shown on lines 17-21.

For example, consider the statement b = getA(x = y).getB();. This statement has

two nested method calls, and an embedded side effect in the parameter of the first call.

This is translated into the following SCJ-mSafe code.
x = y;

A var0;

getA(x, var0);

var0.getB(b);

The result of applying GetMethodCallReturnDec to the embedded method call getA is

the sequence command (Seq) that contains the new declaration of var0 and method call

getA(x, var0), and the expression var0 that is used as the left expression for the second

method call getB(b).

The translation of method calls needs to identify which method is being called, and, if

appropriate, returns the corresponding SCJ-mSafe command dedicated to the method call.

For example, if the method call is to the enterPrivateMemory method, the result of the

translation is the SCJ-mSafe command EnterPrivateMemory ; this is shown in Figure 3.19.

When a call to enterPrivateMemory is identified, the run method of the runnable

object passed as the first argument to the method is determined by the FindMethods

function on line 4. The FindMethods function takes an expression that identifies the type of

99

Chapter 3: SCJ-mSafe: An abstract language for memory-safety checking

the left-hand side of the method call, the name of the method being called, the arguments

passed to the method, and the translation environment. All method signatures in the

translation environment that match the criteria are returned and recorded in mc.methods.

For example, if the call was a.run(), the FindMethods function identifies methods

called run in the class type of expression a, with no arguments. The FindMethods function

also identifies all possible methods in classes that inherit from the class, as dynamic binding

cannot be resolved precisely with static checking techniques, and so all possible methods

are considered; this is why each method signature has a list of class descendants.

The translation of regular methods that are not a specific part of the SCJ paradigm

is similar to that presented above. The main distinction is the lack of a special command

in SCJ-mSafe to represent the method; instead, a regular MethodCall command is used.

In the event of a method call returning a value or object, an additional result argument

is added to the method call. If the overall statement being analysed is an assignment, it

is the left-hand side of the assignment; if it is embedded in some other statement, a new

variable is introduced to specifically hold the result of the method call.

ExtractExpression The second function used to translate expressions is the

ExtractExpression function, which ignores any embedded commands inside expressions

and simply defines the result of the expression. It is used by TranslateExpression to ex-

tract the meaning of expressions whilst ignoring side effects. It takes an SCJ expression

and returns an SCJ-mSafe expression. Figure 3.20 shows an extract of the function, and

specifies how the results of assignments in SCJ are translated into SCJ-mSafe expressions.

The domain of ExtractExpression is the subset of well-typed SCJ expressions, as shown

on line 2. For all expressions in its domain, the SCJ-mSafe expression is extracted based

on the type of the input expression. For example, when ExtractExpression is applied to

an assignment a = b, the result is defined as the application of ExtractExpression to the

left-hand side of the assignment (line 7), which is a in this case. The right-hand side

of the assignment is ignored, because ExtractExpression is not interested in the actual

assignment itself, only the result of the assignment, which is the left-hand side. As the

left-hand side (a) is an identifier, the result is the SCJ-mSafe expression ID id (line 12),

which is an SCJ-mSafe identifier; the specific identifier id is a variable whose name is

equal to the SCJ identifier being analysed (a).

Figure 3.21 shows additional cases in the ExtractExpression specification that define

100

3.5 A translation strategy

1 ExtractExpression : SCJExpression 7→ Expr

2 dom ExtractExpression ⊂WellTypedExprs

3 ∧ ∀ scjExpr : dom ExtractExpression •
4 ...

5 ∨ (∃ e1, e2 : SCJExpression

6 | scjExpr = assignment(e1, e2)

7 • ExtractExpression scjExpr = ExtractExpression e1)

8 ...

9 ∨ (∃name : Name; id : Identifier |
10 scjExpr = identifier name

11 ∧ id = VariableName name

12 • ExtractExpression scjExpr = ID id)

Figure 3.20: ExtractExpression function illustrating how SCJ-mSafe expressions are ex-
tracted from SCJ assignments.

1 ...

2 ∨ (∃ e1, e2 : SCJExpression

3 | scjExpr = binary(e1, e2)

4 • ExtractExpression scjExpr = Val)

5 ∨ (∃ e1 : SCJExpression; name : Name; fa, fa2 : FieldAccess;

6 iden : Identifier ; v : Variable

7 | scjExpr = memberSelect(e1,name)

8 ∧ v .name = name

9 • (let lhs == ExtractExpression e1

10 • (lhs = ID iden

11 ∧ fa = 〈iden〉a 〈var v〉
12 ∧ ExtractExpression scjExpr = FA fa

13 ∨ lhs = FA fa2

14 ∧ fa = fa2 a 〈var v〉
15 ∧ ExtractExpression scjExpr = FA fa)))

16 ∨ (∃ e1 : SCJExpression; type : TypeElement

17 | scjExpr = instanceOf (e1, type)

18 • ExtractExpression scjExpr = OtherExpr)

Figure 3.21: ExtractExpression function illustrating binary expressions, field accesses, and
instance-of comparisons.

the behaviour for binary expressions (lines 2-4), field accesses (lines(5-15), and instance-of

comparisons (lines 16-18).

101

Chapter 3: SCJ-mSafe: An abstract language for memory-safety checking

The result of analysing binary expressions in ExtractExpression is simply a value (Val),

as defined on line 4. This is because the translation abstracts away from operators on

primitive types, and the actual result is not important; it is sufficient for the analysis to

know that the result of the expression is some value.

Member-select expressions in SCJ are translated to field accesses (FA) in SCJ-mSafe.

Member selects have two components, the left-hand expression (e1), and the name of the

variable being identified (name). The translation uses ExtractExpression again on the

left-hand side of the member select (line 9) and records it in the variable lhs, and then

combines it with the variable being selected in one sequence of identifiers, which is the

definition of a field access in SCJ-mSafe. If the result of applying ExtractExpression to the

left-hand side of the member select is a simple identifier, the result is a sequence containing

the identifier followed the variable, as shown on lines 11 and 12. If the left-hand side is

a field access, the result is the variable concatenated onto the end of the field access, as

shown on lines 14 and 15.

Instance-of comparisons in SCJ are translated to the SCJ-mSafe expression OtherExpr ,

which identifies expressions that are not important to the translation. The analysis does

not take into account the result of the instance-of comparisons, therefore it is not trans-

lated.

3.5.2 Translating commands

The translation of commands is simpler than expressions; Figure 3.22 shows an extract

from the TranslateCommand function specification, and illustrates how for loops and if

statements are translated into SCJ-mSafe.

The TranslateCommand function takes an SCJ command, an SCJ program, and a

translation environment, and returns an SCJ-mSafe command. All SCJ commands in

the domain of the function are in the set WellTypedComs, which defines all well-typed

commands in SCJ.

For loops in SCJ-mSafe are very similar to those in SCJ; the main difference is the

extraction of any side effects in the conditional expression. When a for loop in SCJ is identi-

fied (line 10), the resulting SCJ-mSafe command is a sequence of extracted side effects (line

13) followed by the SCJ-mSafe for command For (line 14). The SimplifyCommandPair

function on line 12 is used to simplify the sequence of commands if there are no side effects

in the expression. The translation of the initialisation command, main body of the loop,

102

3.5 A translation strategy

1 TranslateCommand : SCJCommand × SCJmSafeProgram

2 × TranslationEnv 7→ Com

3 ∀ scjCom : SCJCommand ; program : SCJmSafeProgram;

4 transEnv : TranslationEnv

5 | (scjCom, program, transEnv) ∈ dom TranslateCommand

6 ∧ scjCom ∈WellTypedComs

7 •
8 ...

9 ∨ (∃ c1, c2, c3 : SCJCommand ; e1 : SCJExpression

10 | scjCom = for(c1, e1, c2, c3)

11 • TranslateCommand(scjCom, program, transEnv) =

12 SimplifyCommandPair(

13 (TranslateExpression(e1, transEnv)),

14 (For((TranslateCommand(c1, program, transEnv)),

15 (ExtractExpression e1),

16 (TranslateCommand(c2, program, transEnv)),

17 (TranslateCommand(c3, program, transEnv))))))

18 ∨ (∃ e1 : SCJExpression; c1, c2 : SCJCommand

19 | scjCom = if (e1, c1, c2)

20 • TranslateCommand(scjCom, program, transEnv) =

21 SimplifyCommandPair(

22 (TranslateExpression(e1, transEnv)),

23 (If ((ExtractExpression e1),

24 (TranslateCommand(c1, program, transEnv)),

25 (TranslateCommand(c2, program, transEnv))))))

Figure 3.22: TranslateCommand function illustrating the translation of for loops and if
statements.

and the iteration command is specified by the TranslateCommand function, as shown on

lines 14-17.

Similarly, the translation of if statements extracts any side effects from the expression,

and creates a sequence before the SCJ-mSafe command If . For example, consider the

if command if((x = y) > 0); the side effect x = y is extracted and performed before

the If command. The expression used as the conditional statement is specified using

the ExtractExpression function on line 23, as its side effects have been removed with the

TranslateExpression function on line 22. The true and false branches of the conditional

are specified using the TranslateCommand function on lines 24 and 25 respectively.

One of the most complex commands to translate is the return statement inside a

103

Chapter 3: SCJ-mSafe: An abstract language for memory-safety checking

...

∨ (∃ e1 : SCJExpression; lexpr : Expr ; v : Variable

| scjCom = return e1

∧ v .name = Result

∧ v .varType.resultVar = True

• (e1 6= null

∧ ((∃ te : TypeElement ; args : seq SCJExpression; nI : newInstance

| e1 = newArray(te, args)

...

∨ (∃ args : seq SCJExpression; nI : newInstance; name : Name

| e1 = newClass(name, args)

...

∨ (∃ le : SCJExpression; args : seq SCJExpression; c : Com

| e1 = methodInvocation(le, args)

...

∨ e1 = null

∧ TranslateCommand(scjCom, program, transEnv) = Skip))

Figure 3.23: TranslateCommand function illustrating the return statement.

method. The translation is complex as the SCJ expression returned could be a simple

value, or a more complex method call or instantiation, for example. If the return statement

has an argument, that is, a value or object is being returned, the result of the translation

is the assignment of the expression being returned to the result parameter of the enclosing

method. If no expression is returned, the resulting command in SCJ-mSafe is Skip.

Figure 3.23 shows the outline of the specification of the TranslateCommand function for

return statements, which is similar to the translation of assignment statements in the

TranslateExpression shown in Figure 3.17, as it distinguishes the type expression being

returned.

3.6 Final considerations

This chapter has presented the SCJ-mSafe language and its corresponding formal model

in Z. In addition a formal model of SCJ has made it possible to produce a formalisation

of the strategy to translate programs from SCJ to SCJ-mSafe. The full formalisation of

SCJ, SCJ-mSafe, and the translation strategy can be found in Appendices B, C, and D

respectively.

104

3.6 Final considerations

It will not be possible to prove that the translation from SCJ to SCJ-mSafe is correct,

in the sense that it preserves the properties of the original program. It does not: it is an

abstraction. It is, however, possible to demonstrate that this formalisation is adequate for

the detection of memory-safety violations in the original SCJ program by analysing the

corresponding SCJ-mSafe abstraction that has been defined here. The definition of SCJ-

mSafe and the translation strategy using a formal language, namely Z, further supports

the possibility of proof of soundness of the technique.

The translation has been automated, as described in Chapter 5; the implementation

and testing of the tool validates the formalisation defined here. The validation process

uncovered errors with the formalisation that were addressed as part of the ongoing devel-

opment and testing process; this is discussed further in Section 5.4.

The next chapter describes the checking technique to identify possible memory-safety

violations in SCJ-mSafe programs that we obtain after the translation.

105

Chapter 4

Modelling and checking memory

configurations

In this chapter, the components required to perform memory-safety analysis on a trans-

lated SCJ-mSafe program are described. Section 4.1 gives an overview of the technique

and demonstrates how it is possible to check for memory-safety violations using a simple

example. Section 4.2 describes an environment that holds information about reference

variables and their corresponding objects. Section 4.3 gives a description of method prop-

erties, which are used to capture the behaviour of methods independently of the calling

context. Section 4.4 describes how the environment is updated throughout the analysis of

the program, whilst Section 4.5 describes how method properties are calculated from the

SCJ-mSafe program. Section 4.6 defines the memory-safety inference rules that support

the proof that an SCJ-mSafe program is memory safe using an environment and set of

method properties. Section 4.7 describes how possible memory-safety violations are de-

tected inside method properties, and Section 4.8 defines the inference rules for method

properties. Finally, Section 4.9 summarises the chapter and makes some final considera-

tions.

4.1 Introduction

This section gives an overview of the memory-safety checking technique described through-

out the remainder of this chapter. The purpose of this section is to demonstrate the steps

undertaken in the overall technique before the technical material is presented. An SCJ

program that represents a simple list protocol (as described in [12]) is described along

107

Chapter 4: Modelling and checking memory configurations

with the SCJ-mSafe translation, the calculated method properties, and the environment

used throughout the checking procedure.

This example does not contain any memory-safety violations, however, the worked

example presented here gives an indication as to how errors can be detected.

4.1.1 Analysing static variables and the safelet

Figure 4.1 shows the first part of the SCJ-mSafe translation of the example SCJ program,

which includes the static variables of the program (declared in a Handler1 class) and

the safelet. As explained in the previous chapter, static declarations and initialisations

are separated into the static and sInit components respectively. In this example, the

static variable is of a primitive type, and it is initialised with some value Val. The overall

order in which the static variables and their corresponding initializers are defined is not

important, and the order in which they are analysed does not affect the ability to detect

potential memory-safety violations.

Static variables in the environment are not recorded as fields of an object. They are

instead global reference variables at the top-level.

The translation of the safelet is below the static variables on lines 9-18, and demon-

strates that each component is empty except for the getSequencer method on line

14. This is because there are no fields and no constructor in the safelet. The

getSequencer method declares a new variable called sequencer and initialises it with

a new MainMissionSequencer object.

When analysing SCJ-mSafe programs, method properties for all non-paradigm meth-

ods are generated automatically; this includes the constructors of classes. An environment

is also used to record information about aliasing and memory areas of objects; this envi-

ronment is maintained throughout the analysis, as will be demonstrated with this example.

Before the checking phase is reached, method properties are generated for each method

in the SCJ-mSafe program. These method properties are similar to the environment in

the sense that they record information about the effects of executing a method. The key

difference is that method properties are independent of the execution, therefore it is not

possible to use explicit reference contexts, for example. Instead, meta-reference contexts

are defined, which enable the description of behaviour in an abstract way.

The first expressions added to the environment are the static variables of a program;

in this case, the IN_DATA_REGISTER_ADDRESS variable. The resulting environment is as

108

4.1 Introduction

1 program {

2 static {

3 long IN_DATA_REGISTER_ADDRESS;

4 }

5 sInit {

6 IN_DATA_REGISTER_ADDRESS = Val;

7 }

8
9 safelet {

10 fields { }

11 init { }

12 constr () { }

13 initializeApplication { }

14 getSequencer {

15 MainMissionSequencer sequencer;

16 NewInstance(sequencer , Current , MainMissionSequencer ,

());

17 Result = sequencer;

18 }

19 }

Figure 4.1: Simple protocol example - SCJ-mSafe safelet

follows:

{ IN DATA REGISTER ADDRESS 7→ IN DATA REGISTER ADDRESS

} 7→ {
IN DATA REGISTER ADDRESS 7→ {Prim}

}

The environment above records that the IN_DATA_REGISTER_ADDRESS expression exists

and maps to itself (because every expression is aliased with itself), and that the reference

context in which it resides is the Prim context, which represents primitive values. The

Prim reference context is defined specially because primitive values cannot give rise to

unsafety.

The initializeApplication method of the safelet is analysed next, as this is the

first execution point of the paradigm after the static variables have been initialised. The

initializeApplication method has no behaviour in this example, therefore the envi-

ronment is not changed. The getSequencer method is analysed next, which declares and

instantiates a new mission sequencer. After the declaration of the variable sequencer on

line 15 in Figure 4.1, the environment is as follows.

109

Chapter 4: Modelling and checking memory configurations

{ IN DATA REGISTER ADDRESS 7→ IN DATA REGISTER ADDRESS ,

sequencer 7→ sequencer

} 7→ {
IN DATA REGISTER ADDRESS 7→ {Prim}, sequencer 7→ {}

}

At this point, the sequencer variable has been declared so it is added to the environ-

ment, but it has not been instantiated, so an empty set of possibilities is recorded for the

reference context in which it resides, because currently it does not reference an object.

At the point of instantiation on line 16 of Figure 4.1, the set of reference contexts for

sequencer are updated to include IMem, to record that the new object has been created

in immortal memory, and the method properties for the appropriate constructor of the

MainMissionSequencer class are applied to the environment.

The mission sequencer class is shown in Figure 4.2; the method properties for the

constructor of the MainMissionSequencer class are shown below. The method properties

for constructors of classes record the declaration of all of the fields of the class and their

respective initialisation commands.

{mission done 7→mission done} 7→ {mission done 7→ {Rcs{Prim}}}

The mission_done field of the mission sequencer is of a primitive type, and therefore

the method properties above show that the result of executing the constructor will add

a mapping from mission_done to itself in the set of aliases, associated with a mapping

from mission_done to the specific meta-reference context Rcs{Prim}, which identifies

primitive types.

The result of creating the new MainMissionSequencer in the Current reference con-

text (as shown on line 16) and the application of the method properties above, produces

the following environment.

{ IN DATA REGISTER ADDRESS 7→ IN DATA REGISTER ADDRESS ,

sequencer 7→ sequencer ,

sequencer .mission done 7→ sequencer .mission done

} 7→ {
IN DATA REGISTER ADDRESS 7→ {Prim},
sequencer 7→ {IMem}, sequencer .mission done 7→ {Prim}

}

The sequencer expression now references an object that resides in the immortal memory

110

4.1 Introduction

1 missionSeq {

2 fields {

3 boolean mission_done;

4 }

5 init { }

6 constr () {

7 ...

8 mission_done = Val;

9 }

10
11 getNextMission {

12 if (mission_done) {

13 mission_done = Val;

14 MainMission mission;

15 NewInstance(mission , Current , MainMission , ());

16 Result = mission;

17 } else {

18 Result = null;

19 }

20 }

21 }

Figure 4.2: Simple protocol example - SCJ-mSafe mission sequencer

area (IMem), which is the reference context in which the getSequencer method is anal-

ysed. The mission_done field of the newly instantiated mission sequencer is referenced

as sequencer .mission done in the environment to ensure expressions with the same name

in different scopes are appropriately distinguished.

During the analysis, a notion of the current expression is defined, which captures

the expression of the current execution point. For example, when applying the method

properties of the mission sequencer constructor to the environment, the current expression

is sequencer , as this is the current execution point of the analysis.

The environment here is memory safe because there are no references that

may introduce a memory-safety violation. For example, the static variable

IN DATA REGISTER ADDRESS is pointing to the Prim reference context, which is

always safe, and the mission done field of the mission sequencer sequencer also points

to the Prim reference context. The sequencer variable is a local variable to the mission

sequencer and is, therefore, checked against the reference context in which it was defined,

which is the immortal memory area; as the object referenced by sequencer also resides in

immortal memory then no memory violation may occur.

111

Chapter 4: Modelling and checking memory configurations

1 mission MainMission {

2 fields {

3 List list;

4 }

5 init { }

6 constr () { }

7 initialize {

8 NewInstance(list , Current , List , ());

9 Handler1 handler1;

10 ...

11 NewInstance(handler1 , Current , Handler1 , (list , ...));

12 handler1.register ();

13 Handler2 handler2;

14 ...

15 NewInstance(handler2 , Current , Handler2 , (list , ...));

16 handler2.register ();

17 }

18 cleanUp {

19 Skip;

20 }

21 }

Figure 4.3: Simple protocol example - SCJ-mSafe mission

4.1.2 Analysing the mission sequencer

After the getSequencer method has been analysed, the getNextMission method of

the mission sequencer is analysed; the mission sequencer is shown in Figure 4.2. The

getNextMission method includes the declaration and instantiation of the variable

mission, which references the only mission object in the program. The getNextMission

method is executed in the mission memory area (MMem), therefore the Current reference

context in which the MainMission class is instantiated on line 15 of Figure 4.2 is the

mission memory area. The method properties of the MainMission constructor are shown

below.

{list 7→ list} 7→ {list 7→ {}}

The method properties above show that when a new MainMission object is instantiated,

the field list is added to the environment, however it is not instantiated, therefore the

set of reference contexts in which it may reside is empty. The resulting environment after

the getNextMission method has been analysed is shown below.

112

4.1 Introduction

{ IN DATA REGISTER ADDRESS 7→ IN DATA REGISTER ADDRESS ,

sequencer 7→ sequencer ,

sequencer .mission done 7→ sequencer .mission done,

sequencer .mission 7→ sequencer .mission,

sequencer .mission.list 7→ sequencer .mission.list

} 7→ {
IN DATA REGISTER ADDRESS 7→ {Prim},
sequencer 7→ {IMem},
sequencer .mission done 7→ {Prim},
sequencer .mission 7→ {MMem},
sequencer .mission.list 7→ {}

}

At this point the environment is still safe. As before, the expressions that point to the

Prim context cannot introduce memory-safety violations; the sequencer expression still

points to the immortal memory as before, and the sequencer .mission expression is a local

variable declared in the getNextMission method which executed in the mission memory

area. Therefore because the object referenced by sequencer .mission also resides in mission

memory, there can be no error.

4.1.3 Analysing the mission

After the getNextMission method in the mission sequencer is analysed, the missions of

the program are analysed. In this example, there is only one mission shown in Figure 4.3.

Its instance is referenced by the expression sequencer .mission. If a program contains

more than one mission, the order in which they are analysed does not matter, as will be

explained later.

The initialize method of the mission on lines 7-17 is executed first. It instantiates

the list variable with a new List object in the current memory area (which is the

mission memory area) before creating a new instance of the two handlers in the program.

The variables handler1 and handler2 reference instances of the Handler1 and Handler2

classes respectively, both of which are also instantiated in the current memory area.

The instantiation of the List class on line 8 creates a new object of type List referenced

by list and also calls the constructor of the List class. The SCJ-mSafe translation of

the List class is shown in Figure 4.4. The method properties of the constructor for the

List class are shown below.

113

Chapter 4: Modelling and checking memory configurations

{ val 7→ val ,

next 7→ next ,

empty 7→ empty

} 7→ {
val 7→ {Rcs{Prim}},
next 7→ {},
empty 7→ {Rcs{Prim}}

}

The resulting environment after the list variable has been instantiated with a new object

is shown below.

{ IN DATA REGISTER ADDRESS 7→ IN DATA REGISTER ADDRESS ,

sequencer 7→ sequencer ,

sequencer .mission done 7→ sequencer .mission done,

sequencer .mission 7→ sequencer .mission,

sequencer .mission.list 7→ sequencer .mission.list ,

sequencer .mission.list .val 7→ sequencer .mission.list .val ,

sequencer .mission.list .next 7→ sequencer .mission.list .next ,

sequencer .mission.list .empty 7→ sequencer .mission.list .empty

} 7→ {
IN DATA REGISTER ADDRESS 7→ {Prim},
sequencer 7→ {IMem},
sequencer .mission done 7→ {Prim},
sequencer .mission 7→ {MMem},
sequencer .mission.list 7→ {MMem},
sequencer .mission.list .val 7→ {Prim},
sequencer .mission.list .next 7→ {},
sequencer .mission.list .empty 7→ {Prim}

}

After the variable list has been instantiated with a new object, variables that reference

the two handlers in the program are defined and instantiated. The SCJ-mSafe translation

of the Handler1 class is shown in Figure 4.6. The method properties for the constructor

of the Handler1 class are shown below.

{ in data register 7→ in data register , list 7→ list , list 7→ listArg

} 7→ {
in data register 7→ {}, list 7→ {Erc listArg},

}
114

4.1 Introduction

1 class List {

2 fields {

3 int val;

4 List next;

5 boolean empty;

6 }

7 init { }

8 constr () {

9 next = null;

10 empty = Val;

11 }

12 method append(value) {

13 List node;

14 node = this;

15 while (node.empty) {

16 node = node.next;

17 }

18 node.val = value;

19 if (Val) {

20 NewInstance(node.next , Current , List , ());

21 } else {

22 node.next.empty = Val;

23 }

24 node.empty = Val;

25 }

26 ...

27 }

Figure 4.4: Simple protocol example - SCJ-mSafe list class

The method properties of the constructor illustrate that two fields in_data_register

and list are added to the environment, and that the list field is aliased with the

listArg variable, which is a parameter of the constructor. The reference context of

the in_data_register field is not known because it is assigned to point to an object

that is created with an infrastructure method call, and the technique currently uses a

stub reference implementation. The reference context of the list is defined as the expres-

sion meta-reference context of the listArg variable (Erc listArg). This is not known in

advance, however it can be calculated when the method properties are applied to an envi-

ronment to reflect a particular call to the method, at which point, the information about

the allocation of the argument is known.

The method properties for the Handler2 constructor are not shown here to simplify

the example. The resulting environment after the initialize method of the mission has

been analysed is shown in Figure 4.5.

When the expression sequencer .mission.handler1.list is added to the environment,

the set of reference contexts in which it resides is dependent on the argument

115

Chapter 4: Modelling and checking memory configurations

{ ...

sequencer .mission.handler1 7→ sequencer .mission.handler1,

sequencer .mission.handler1.in data register

7→sequencer .mission.handler1.in data register ,

sequencer .mission.handler1.list 7→ sequencer .mission.handler1.list ,

sequencer .mission.handler1.list .val 7→ sequencer .mission.handler1.list .val ,

sequencer .mission.handler1.list .next 7→ sequencer .mission.handler1.list .next ,

sequencer .mission.handler1.list .empty 7→ sequencer .mission.handler1.list .empty ,

sequencer .mission.list 7→ sequencer .mission.handler1.list ,

sequencer .mission.list .val 7→ sequencer .mission.handler1.list .val ,

sequencer .mission.list .next 7→ sequencer .mission.handler1.list .next ,

sequencer .mission.list .empty 7→ sequencer .mission.handler1.list .empty ,

sequencer .mission.handler2 7→ sequencer .mission.handler2

} 7→ {
...

sequencer .mission.handler1 7→ {MMem},
sequencer .mission.handler1.in data register 7→ {},
sequencer .mission.handler1.list 7→ {MMem},
sequencer .mission.handler1.list .val 7→ {MMem},
sequencer .mission.handler1.list .next 7→ {MMem},
sequencer .mission.handler1.list .empty 7→ {MMem},
sequencer .mission.handler2 7→ {MMem}

}

Figure 4.5: Simple protocol example - Environment after the mission’s initialize method
has been analysed

passed to the method (Erc listArg). The reference context of the argument

(sequencer .mission.list) is the mission memory (MMem) in this example, therefore the

mapping sequencer .mission.handler1.list 7→ {MMem} is added to the environment.

As the method properties of the handler constructor included the entry list 7→ listArg ,

the handler field list is updated to point to the same object as the argument passed

as a parameter to the constructor. In this case, the argument is the list field

of the mission object, which is referenced by the expression sequencer .mission.list .

Therefore the resulting environment includes the mapping sequencer .mission.list 7→

sequencer .mission.handler1.list , as they are now aliased. As a result of this aliasing,

all fields of the list object referenced from the mission are now fields of the object ref-

erenced from the handler. Additionally, the set of expressions that reference the fields

of the object (sequencer .mission.list .next and sequencer .mission.handler1.list .next , for

116

4.1 Introduction

1 handler Handler1 {

2 fields {

3 RawInt in_data_register;

4 List list;

5 }

6 init {

7 in_data_register = ...;

8 }

9 constr (listArg , priority , period , storage) {

10 list = listArg;

11 }

12
13 handleEvent {

14 int value;

15 int var6;

16 in_data_register.get(var6);

17 value = var6;

18 MemoryArea mission_memory;

19 GetMemoryArea(mission_memory , this);

20 MissionMemoryEntry memEntry;

21 NewInstance(memEntry , Current , MissionMemoryEntry ,

(value));

22 ExecuteInAreaOf(Erc mission_memory , memEntry);

23 }

24 }

Figure 4.6: Simple protocol example - SCJ-mSafe handler 1

example) are also aliased.

The environment after the initialize method of the mission has been analysed is

memory safe. This is because no fields or local variables reference objects that reside in

lower memory areas.

4.1.4 Analysing handlers

After the initialize method of the mission has been analysed, the handlers associated

with the current mission are analysed. The order in which handlers are analysed does not

matter due to the way in which the technique handles concurrency. The SCJ-mSafe trans-

lation of the Handler1 class is shown in Figure 4.6.

The behaviours of handlers are recorded in the environment by analysing the

handleEvent methods, which are executed in the per-release memory area of the as-

sociated handler. The handleEvent method shown on line 13 of Figure 4.6 reads in a

value from a data register, passes the value to a new instance of the MissionMemoryEntry

class (shown in Figure 4.7), and executes the run method of the MissionMemoryEntry

class inside the memory area of the object referenced by the mission_memory variable via

117

Chapter 4: Modelling and checking memory configurations

1 class MissionMemoryEntry {

2 fields {

3 int value;

4 }

5 init { }

6 constr (val) {

7 value = val;

8 }

9 method run() {

10 list.insert(value);

11 }

12 }

Figure 4.7: Simple protocol example - SCJ-mSafe mission memory entry class

the ExecuteInAreaOf command.

The run method of the MissionMemoryEntry class inserts the value that was passed

as a parameter to the constructor into the list object of the handler using the List class’

insert method. The insert method checks to see if the value is already stored in the list,

and adds it using the append method if not. The append method is shown in Figure 4.4

and its method properties are shown below.

{ node 7→ node,

node 7→ this,

node.val 7→ node.val ,

node.val 7→ value,

node.next 7→ node.next ,

node.next .next 7→ node.next .next ,

} 7→ {
node 7→ {Erc this,Erc node.next},
node.val 7→ {Erc value},
node.next 7→ {Current},

}

In calculating the method properties for the append method, the while loop is analysed,

which iteratively updates the local variable node to point to the last object in the list at

run time. If, for example, there were four elements in the list, the local variable node

would be aliased with the object referenced by list.next.next.next. When analysing

loops, a fixed point can be used to capture the behaviour regardless of the number of

iterations; however, in this case, a fixed point cannot be calculated as it is not possible to

determine statically how many objects are stored in the list.

To overcome this problem, the technique uses a loop summary that is sufficient to

118

4.1 Introduction

{ sequencer .mission.handler1.list 7→ sequencer .mission.handler1.list ,

sequencer .mission.handler1.list .val 7→ sequencer .mission.handler1.list .val ,

sequencer .mission.handler1.list .next 7→ sequencer .mission.handler1.list .next ,

sequencer .mission.handler1.list .empty 7→ sequencer .mission.handler1.list .empty ,

sequencer .mission.handler1.value 7→ sequencer .mission.handler1.value,

sequencer .mission.handler1.memEntry

7→sequencer .mission.handler1.memEntry ,

sequencer .mission.handler1.memEntry .value

7→sequencer .mission.handler1.memEntry .value,

sequencer .mission.handler1.list .node 7→ sequencer .mission.handler1.list .node,

sequencer .mission.handler1.list .node 7→ sequencer .mission.handler1.list ,

sequencer .mission.handler1.list .node.val

7→sequencer .mission.handler1.list .node.val ,

sequencer .mission.handler1.list .node.val

7→sequencer .mission.handler1.list .val ,

sequencer .mission.handler1.list .node.next

7→sequencer .mission.handler1.list .node.next ,

sequencer .mission.handler1.list .node.next

7→sequencer .mission.handler1.list .next ,

sequencer .mission.handler1.list .node.next .next

7→sequencer .mission.handler1.list .next .next ,

...

} 7→ {
sequencer .mission.handler1 7→ {MMem},
sequencer .mission.handler1.list 7→ {MMem},
sequencer .mission.handler1.list .val 7→ {MMem},
sequencer .mission.handler1.list .next 7→ {MMem},
sequencer .mission.handler1.list .empty 7→ {MMem},
sequencer .mission.handler1.mission memory 7→ {MMem},
sequencer .mission.handler1.memEntry 7→ {PRMem handler1},
sequencer .mission.handler1.memEntry .value 7→ {Prim},
sequencer .mission.handler1.list .node 7→ {MMem},
sequencer .mission.handler1.list .node.val 7→ {Prim},
sequencer .mission.handler1.list .node.next 7→ {MMem},
sequencer .mission.handler1.list .node.next .next 7→ {},
...

}

Figure 4.8: Simple protocol example - Environment after Handler1 has been analysed

119

Chapter 4: Modelling and checking memory configurations

detect possible memory-safety violations. Loop summaries define the behaviour of the

loop and are calculated in a single pass as will be explained in Section 4.4.

The method properties above state that after the method is executed, the variable

node resides in either the reference context associated with the target object (this), or

the reference context of the next element in the list (node.next). The field node.val

resides in the reference context of the argument value, and the field node.next resides

in the Current reference context as it is instantiated with a new object on line 20 of the

append method.

The resulting environment after the handleEvent method of the Handler1 class has

been analysed is shown in Figure 4.8. The environment contains all of the local variables

declared in the handleEvent method plus the method properties of the append method

that is subsequently called by the run method of the object referenced by memEntry.

The environment is memory safe despite the fact that a new element of the list is

instantiated and added whilst executing in the per-release memory area of the handler.

This is because the run method, which is responsible for calling the subsequent methods

that create the new instance of the list element, is executed in the same memory area

in which the list object resides, which is the mission memory area. In other words, all

elements of the list remain in the mission memory area, and no downward reference is

created to a new list element created in the per-release memory area, which would have

been the case had the executeInAreaOf method not been used.

After all handlers have been analysed, the cleanUp method of the mission is analysed.

Subsequent missions are then analysed until there are no more missions to analyse. At

this stage, the analysis is complete as there is no more user-defined code to be executed

before the program terminates.

The remainder of this chapter explains the details of the analysis and checking tech-

nique outlined in this example. A formalisation of the checking technique is presented

throughout, starting with a model of an environment that records information about the

expressions in a program.

4.2 An environment for memory configurations

In order to check the memory-safety of an SCJ-mSafe program, information about the

locations in which objects are allocated must be recorded. The memory area in which

an object resides is represented as a reference context. Reference contexts capture the

120

4.2 An environment for memory configurations

memory areas of SCJ plus an additional fictitious context called Prim, which represents

primitive values. The formalisation of a type RefCon of reference contexts is shown below.

RefCon ::= Prim

| IMem

| MMem

| PRMem〈〈Name〉〉
| TPMem〈〈Name × N〉〉
| TPMMem〈〈N〉〉

As mentioned above, the Prim reference context is used for primitive values, IMem rep-

resents the immortal memory area, MMem the mission memory area, PRMem the per-

release memory area of a specific handler, identified by the name of the handler, TPMem

the temporary private memory areas of a handler, identified by the name of the handler

and a natural number to capture nesting depth, and finally TPMMem, which represents

temporary private mission memory areas, identified with a natural number to represent

nesting depth, as used during the initialisation phase of a mission. Temporary private

mission memory areas are identified only by a natural number to capture the nesting

depth; since only one mission can execute at a single time, there is no need to identify the

associated mission like with handlers.

An ordering can be defined on these reference contexts based on the memory hierarchy

of SCJ, which allows us to check for possible memory-safety violations. This ordering is

defined in Section 4.6.

The remainder of this section introduces an expression reference set, which records

information about the reference contexts in which objects may reside, and an expression

share relation, which records information about the aliasing of a program. Both of these

elements make up the overall environment, which is also described. Finally, the method

of handling concurrency is presented.

4.2.1 Expression reference sets

The environment is used to record the reference contexts of objects referenced by variables

and fields. It is not always possible to determine precisely which reference context an object

may reside using a static analysis technique. For example, consider the code excerpt below.

121

Chapter 4: Modelling and checking memory configurations

1 ...

2 Object o;

3 if (x > y) {

4 o = new Object ();

5 } else {

6 MemoryArea memArea = MemoryArea.getMemoryArea(var);

7 o = memArea.newInstance(Object.class);

8 }

9 ...

In this simple example, the memory area in which the object referenced by variable o

resides is dependent on the path of execution through the conditional statement. If x is

greater than y, then o is instantiated in the current memory area (line 4), however, if

x is not strictly greater than y, then o is instantiated in the memory area of the object

referenced by a (lines 6-7).

In order to capture the necessary information to check memory safety, both the true and

false branches of the conditional must be considered. If, as in this example, the resulting

reference context of an object referenced by a left expression is different depending on the

branch of execution, the set of all possible reference contexts must be recorded.

If, for example, the object referenced by some variable var resides in IMem, and

the current allocation context is MMem, the object referenced by o may reside in either

IMem or MMem as a result of the conditional statement. The corresponding entry in an

expression reference set for the expression o would be as follows.

{o 7→ {IMem,MMem}}

The definition of an expression reference set is captured by the type ExprRefSet below. It

contains mappings from left expressions to sets of reference contexts.

ExprRefSet == LExpr 7→ PRefCon

An expression reference set captures a worst-case model of the execution if the precise

execution path cannot be determined, and can lead to different memory configurations.

4.2.2 Expression share relations

Another important aspect of programs that needs to be captured for the analysis is aliasing.

If two reference variables point to the same object and a field of the object is updated

through one of the reference variables, the change must also be reflected in the other.

122

4.2 An environment for memory configurations

Consider this very simple example below that illustrates the need to capture aliasing.

1 ...

2 o1 = new Object ();

3 o2 = new Object ()

4 a = o1;

5 o1.field = o2;

6 ...

7 a.field.var = ...

8 ...

In the example, the assignment of o1 to a on line 4 means that the following assignment

on line 5 to a field of the referenced object must be reflected in both o1 and a. After

line 5, o1.field references the same object as that referenced by o2; however, as a is

aliased with o1, the field a.field also references o2. This is important to capture as the

assignment on line 7 illustrates: if the aliasing had not been captured, further changes to

fields of a would not be recorded correctly and potential errors may be missed.

To capture aliasing, an expression share relation that is an element of the set

ExprShareRelation below is used. These are relations between two left expressions.

ExprShareRelation == LExpr ↔ LExpr

The ExprShareRelation and ExprRefSet definitions are the two elements used in an en-

vironment. Together they record sufficient information about the left expressions in an

SCJ-mSafe program to facilitate memory-safety checking.

4.2.3 The environment

The environment to capture the necessary information about an SCJ-mSafe program

is defined as a pair. The first element of the pair is an expression share relation, and

the second element is an expression reference set. The formalisation of the environment

is shown below; a table showing a description of the Z notation used can be found in

123

Chapter 4: Modelling and checking memory configurations

Appendix A.

Env == {env : ExprShareRelation × ExprRefSet

| ∀ rel , crel : ExprShareRelation; ref : ExprRefSet

| (rel , ref) = env

∧ crel = rel ∗ ∪ (rel ∗)∼

• dom crel = dom ref

∧ (∀ e1, e2 : LExpr

| e1 7→ e2 ∈ crel

• ref e1 = ref e2)}

There are two invariants satisfied by an environment; the first of these states that the

domain of the expression reference set is equal to the domain of the reflexive, symmetric,

transitive closure of the expression share relation. The reflexive, symmetric, transitive

closure of the expression share relation is taken because all three properties hold when

describing aliasing. For example, it is always true that an expression is aliased with itself,

therefore the relation is reflexive. It is true that if an expression a is aliased with another

expression b, then b is also aliased with a, therefore it is symmetric. And finally, if a

is aliased with b, and b is aliased with c, it is true that a is aliased with c, therefore

the relation is transitive. The domain of the reference set is equal to this because the

environment must record information about every expression.

The second invariant on environments states that all expressions related by the re-

flexive, symmetric, transitive closure of the expression share relation must have the same

set of reference contexts in the expression reference set. More specifically, if two expres-

sions reference the same object, that is, they are aliased, then the set of possible reference

contexts in which the object resides must be the same for each expression. It does not

make sense for two expressions that point to the same object to have two different sets of

reference contexts.

During the checking phase, the environment is updated after every command; if the

changes made introduce a possible memory-safety violation, the command is identified as

a possible source of error. The way in which the SCJ constructs affect the environment is

described in detail in Section 4.4.

4.2.4 Handling concurrency

In order to handle concurrency for Level 1 programs, the environment described above

includes the notion of history. This history records the set of all possible aliases, and the

124

4.2 An environment for memory configurations

Figure 4.9: Possible memory-safety violation introduced through concurrency.

set of all possible reference contexts of expressions and objects throughout the analysis

of a program. The changes made to the environment when it is updated are, therefore,

non-destructive.

Figure 4.9 describes how concurrency can introduce possible memory-safety violations

that would not be caught without preserving the history of aliases and reference contexts.

The field of the mission object (data) is shared between the handlers of the mission. The

handleEvent method of Handler1 updates a field f of the shared object referenced by

data to first point to an object in immortal memory, and then to an object in mission

memory. Both of these operations are safe as the object referenced by data resides in

mission memory.

The assignment in the handleEvent method of Handler2 is also valid, as it assigns

a field x of the object referenced by data.f to point to an object in mission memory.

However, if, because of concurrency, the assignment in Handler2 occurs in between the two

assignments in Handler1, a possible memory-safety violation may arise. This is because

the object data resides in mission memory, its field data.f resides in immortal memory,

and the subsequent field data.f.x resides in mission memory, hence creating a downward

reference from immortal memory to mission memory.

If Handler1 is analysed without the notion of history, the resulting environment con-

tains the mapping {data.f 7→ {MMem}}. When Handler2 is then analysed, the mapping

{data.f .x 7→ {MMem}} is considered safe. If, however, the history of possible reference

contexts is maintained, the resulting environment after analysing Handler1 would con-

125

Chapter 4: Modelling and checking memory configurations

tain the mapping {data.f 7→ {IMem,MMem}}, as both reference contexts were possible

at some stage during the execution. When Handler2 is then analysed, the possible unsafe

mapping from IMem to MMem is detected. If the handlers were analysed in the opposite

order, the unsafe mapping would be detected when the field data.f is assigned to point

to an object that resides in immortal memory, which is the first assignment in Handler1.

The history element of the environment also caters for the possibility of dynamic

mission sequencing, and handler scheduling. More specifically, the order in which missions

and handlers are analysed does not affect the analysis, as they are all analysed in the

context of every other one.

The notion of history does, however, introduce the possibility of false information

being recorded in the environment. This is because previous aliases and reference contexts

of objects are not removed when they are updated. This does not make the technique

unsound, but does increase the chances of false-negatives being raised. For example,

consider the simple extract of code below.

1 Node n;

2 Node pt = new Node();

3 n = pt;

4 pt.next = new Node();

5 pt = pt.next;

In this example, a recursive data structure is created, and a new object is added on line 4.

The head of the data structure is referenced by the variable n; the variable pt is updated to

point to the last element in the structure. At the end of line 4, the resulting environment

is as follows.

{ n 7→ n, pt 7→ pt ,n 7→ pt , pt .next 7→ pt .next ,n.next 7→ n.next ,n.next 7→ pt .next ,

n.next .next 7→ n.next .next , pt .next .next 7→ pt .next .next ,

n.next .next 7→ pt .next .next

} 7→ {
n 7→ {MMem}, pt 7→ {MMem},n.next 7→ {MMem}, pt .next 7→ {MMem},
n.next .next 7→ {}, pt .next .next 7→ {}

}

The environment above shows that the expressions n and pt are aliased, and therefore

all subsequent fields are also aliased. Assuming that this code executes in the mission

memory area, it also illustrates that n, pt, n.next, and pt.next all reside in the mission

memory area (MMem).

126

4.3 Method properties

At this point in the analysis, the environment is correct, however, after line 5 has been

analysed, the environment contains historic and current information, as shown below.

{ n 7→ n,n 7→ pt ,n 7→ pt .next , pt 7→ pt , pt 7→ n.next , pt .next 7→ pt .next ,

n.next 7→ n.next ,n.next 7→ pt .next , pt .next .next 7→ pt .next .next ,

n.next .next 7→ n.next .next , pt .next .next 7→ n.next .next

} 7→ {
n 7→ {MMem}, pt 7→ {MMem},n.next 7→ {MMem}, pt .next 7→ {MMem},
n.next .next 7→ {}, pt .next .next 7→ {}

}

The result of executing the command pt = pt.next is that the variable pt is updated to

point to the next object in the data structure; all previous information about the aliases

of pt is no longer current. During the analysis, which preserves history, the previous

information about the aliases of pt is not discarded. For example, the alias n 7→pt remains

in the environment, despite the fact that pt is now actually aliased with n.next. The new

alias pt 7→ n.next is added to the environment as expected, but historic information is

maintained.

This historic information increases the possibility of false-negatives being raised during

the analysis phase. On the other hand, it also facilitates the checking of recursive data

structures, and allows recursive methods and loops to be analysed in a single iteration,

which is a significant advantage to the technique, as will be described in Section 4.4.

4.3 Method properties

The environment described in Section 4.2 is used to record information about the expres-

sions and references during the checking phase of the technique. Method properties record

information about the effects of executing a method. It is not possible to use explicit

reference contexts as in the environment, therefore meta-reference contexts (elements of

MetaRefCon) are defined, which enable the description of behaviour in an abstract way.

MetaRefCon ::= Rcs〈〈PRefCon〉〉
| Erc〈〈LExpr〉〉
| Current

| CurrentPrivate〈〈N〉〉
| CurrentPlus〈〈N〉〉

The first constructor in the definition above defines a specific reference context (Rcs), and

is used when the reference context of an expression can be identified explicitly, regardless

127

Chapter 4: Modelling and checking memory configurations

of the execution context. The best example of this scenario is primitive types, which

always reside in the Prim reference context. The Erc meta-reference context is used to

identify that the set of possible reference contexts of an expression is equal to that of

another expression, or the Expression Reference Context (Erc) of that expression. For

example, if a is assigned to b, the meta-reference context Erc can be used to describe

the set of possible reference contexts of b in terms of a, without precise knowledge of the

reference contexts associated with a.

The three remaining meta-reference contexts: Current , CurrentPrivate, and

CurrentPlus, are used to describe expressions whose associated object resides in the cur-

rent reference context, a more nested reference context, or an outer reference context,

respectively. The Current context is the reference context in which the method is called.

The CurrentPrivate context has a natural number associated with it, which defines the

nesting level of temporary private memory areas that the object resides in. For example,

if an object that resides in the Current context has a field that resides in a CurrentPrivate

context, a possible memory-safety violation exists, because a downward reference occurs.

The CurrentPlus context is the opposite of CurrentPrivate, and describes the number of

levels up the scope an object is allocated in. For example, a reference from Current to

CurrentPlus is safe, because the CurrentPlus context will outlive the Current one.

Consider the example method body shown below, which illustrates the need for the

Current , CurrentPrivate, and CurrentPlus meta-reference contexts.

1 void myMethod () {

2 Object a = new Object ();

3 MyRunnable myRun = new MyRunnable ();

4 ManagedMemory.enterPrivateMemory (100, myRun);

5 ManagedMemory.executeInOuterArea(myRun);

6 }

7

8 class MyRunnable implements Runnable {

9 void run() {

10 Object b = new Object ();

11 }

12 }

In this method body, the local variable a on line 2 references an object that resides in the

Current meta-reference context, because it is instantiated in the memory area in which

128

4.3 Method properties

the method is called. The call to the enterPrivateMemory method on line 4 calls the run

method of the MyRunnable class, which declares and instantiates the local variable b with a

new object. As a temporary-private memory area has been entered, the object referenced

by b resides in a memory area that is lower than the memory area in which the method is

called, hence the object referenced by b resides in a CurrentPrivate meta-reference context.

Finally, the call to the executeInOuterArea method on line 5 executes the same run

method of the MyRunnable class but in the next outer scope from the memory area in which

the method was called. In this case, the local variable b references an object that resides

in a higher memory area, therefore it is defined to reside in a CurrentPlus meta-reference

context.

To capture which meta-reference contexts an expression of a method may reside in, a

method reference set function (element of MethodRefSet) is used, which maps left expres-

sions to a set of possible meta-reference contexts.

MethodRefSet == LExpr 7→ PMetaRefCon

This is very similar to the ExprRefSet in the environment, except that MetaRefCons are

used in the place of RefCons. It is still important to capture the aliasing of the commands

in a method, therefore, the method properties of a particular method are described with an

expression share relation (ExprShareRelation) and a method reference set (MethodRefSet).

MethodProperties == {properties : ExprShareRelation ×MethodRefSet

| ∀ rel , crel : ExprShareRelation; ref : MethodRefSet

| (rel , ref) = properties

∧ crel = rel ∗ ∪ (rel ∗)∼

• dom crel = dom ref

∧ (∀ e1, e2 : LExpr

| e1 7→ e2 ∈ crel

• ref e1 = ref e2)}

Similarly to the environment, there are two invariants satisfied by MethodProperties; the

first states that the domain of the method reference set is equal to the domain of the

reflexive, symmetric, transitive closure of the expression share relation.

The second invariant states that all expressions related by the reflexive, symmetric,

transitive closure of the expression share relation must have the same set of meta-reference

contexts in the method reference set. More specifically, if two expressions reference the

same object, that is, they are aliased, then the set of possible meta-reference contexts in

which the object they refer to resides must be the same for each expression.

129

Chapter 4: Modelling and checking memory configurations

{ var13 7→ var13,

var14 7→ var14,

var15 7→ var15,

var16 7→ var16,

calibration 7→ var16,

var16 7→ calibration,

wheel shaft 7→ shaft ,

shaft 7→ wheel shaft ,

...

} 7→ {
var13 7→ {Current},
var14 7→ {Current},
var15 7→ {Current},
var16 7→ {Prim},
calibration 7→ {Erc var16},
wheel shaft 7→ {Erc shaft},
...

}

Figure 4.10: Extract of method properties for SpeedMonitor constructor in ACCS SCJ-
mSafe program.

Figure 4.10 shows an extract from the method properties associated with the

SpeedMonitor constructor (originally shown in Figure 3.2). The expression share rela-

tion captures the new local variables that are created, along with the alias, changes should

the method be called. For example, the shaft expression is a parameter of the constructor,

and is assigned to the local field wheel shaft during the method’s execution. The method

reference set reflects this by including the entry wheel shaft 7→{Erc shaft}, which captures

the fact that wheel shaft points to an object that resides in the set of reference contexts

associated with the parameter shaft , which is determined by the argument passed at the

point of the method call.

The next section describes how the environment is updated throughout the analysis of

a program; it also highlights how the method properties described here are used.

130

4.4 Updating the environment

4.4 Updating the environment

In order to define the resulting environment after every construct in an SCJ-mSafe pro-

gram, a series of CalcEnv functions are defined. These functions take an environment and

an SCJ-mSafe component, and return an updated environment based on the analysis of

that component.

The resulting environments calculated after specific SCJ-mSafe components have been

analysed are used by other CalcEnv functions for components higher in the paradigm;

for example, the resulting environment after a handler has executed is used by the con-

taining mission. They are also used by the memory-safety inference rules as discussed in

Section 4.6.

A full formalisation of the analysis can be found in Appendix E; the interesting as-

pects are presented here. A description of how the environment is updated for all SCJ-

mSafe commands is included along with the handler, mission, mission sequencer, and

safelet components.

4.4.1 Commands

The CalcEnvCom function is used to calculate the environment based on the execution

of a specific command. The function takes an environment, a command, a left expres-

sion, a reference context, and an SCJ-mSafe program. The environment is the current

environment, the command is the command to be analysed, the left expression is the cur-

rent expression, which defines the expression of the current execution point, the reference

context is the current default reference context, and the SCJ-mSafe program is the one

currently being analysed . The result of the function is a new environment that has been

updated based on the specific command.

CalcEnvCom : Env × Com × LExpr × RefCon × SCJmSafeProgram 7→ Env

∀ env : Env ; c : Com; cexpr : LExpr ; rc : RefCon; p : SCJmSafeProgram

• ...

The CalcEnvCom function is essentially defined by a case-analysis for all SCJ-mSafe com-

mands that updates the environment accordingly. The update procedures for each com-

mand are described individually below.

Skip The first command in the case-analysis is the skip command.

131

Chapter 4: Modelling and checking memory configurations

c = Skip ∧ CalcEnvCom(env , c, cexpr , rc, p) = env

The skip command has no behaviour, and therefore the environment remains unchanged.

The result of the CalcEnvCom function when the command c is Skip is the original

environment env .

Declarations Declarations only add new information to the environment; no existing

information is changed. The resulting environment includes a mapping from the new

variable that is being declared to itself in the expression share relation, and a mapping to

either the reference context set {Prim} for primitive types, or the empty set ({}) otherwise,

in the expression reference set.

For example, consider the declaration int i;, which is a primitive type. When applied

to an empty environment, the resulting environment is

{i 7→ i} 7→ {i 7→ {Prim}}

Alternatively, consider the declaration Object o;, which is not primitive. When applied

to an empty environment, the resulting environment is

{o 7→ o} 7→ {o 7→ {}}

The formalisation of the declaration in CalcEnvCom is as follows.

∨ (∃ d : Dec

• c = Decl d ∧ CalcEnvCom(env , c, cexpr , rc, p) = AddDecToEnv(env , d))

The result of the CalcEnvCom function when the command c is a declaration Decl d is

determined by the AddDecToEnv function, which takes an environment and a declaration

and updates the environment accordingly. The AddDecToEnv function is one of many

specific-case functions used by CalcEnvCom that are explained individually.

AddDecToEnv : Env ×Dec 7→ Env

∀ env : Env ; d : Dec

• ∃ rel : ExprShareRelation; ref : ExprRefSet

| env = (rel , ref)

• AddDecToEnv(env , d) =

ExprShareAdd((ID(var d .var)), (ID(var d .var)), rel)

7→ ExprRefAdd((ID(var d .var)), (GetDecRefCon d), ref)

The function definition states that for all environments env and declarations d , there

132

4.4 Updating the environment

exists an expression share relation rel and an expression reference set ref such that the

environment is defined as (rel , ref). Moreover, the result of AddDecToEnv(env , d) is a

mapping from the updated expression share relation to the updated expression reference

context. The expression share relation rel update is defined by the ExprShareAdd function,

which takes two left expressions and an expression share relation, and returns an updated

expression share relation. In the case of a declaration, the two expressions passed to

ExprShareAdd are the same (ID(var d .var))). This is because the new expression being

declared is aliased with itself and nothing else at this point.

The expression reference set ref is updated with the ExprRefAdd function, which takes

an expression, a set of reference contexts, and the expressions reference set to be updated.

It returns an expression reference set with a new mapping from the left expression to

the set of possible reference contexts. In the case of a declaration, the set of possible

reference contexts is either {Prim}, if the type of the declaration is primitive, or empty ({})

otherwise, as no object has been created yet and therefore the expression does not reference

anything. This set of possible reference contexts is determined by the GetDecRefCon

function. The Z definitions of the functions ExprShareAdd , ExprRefAdd , GetDecRefCon,

and all other omitted here can be found in Appendix E.

Sequence Both commands in a sequence command (Seq) are analysed using the

CalcEnvCom function. First the environment is updated to reflect the effect of the first

command, then with the second.

∨ (∃ c1, c2 : Com

• c = Seq(c1, c2)

∧ CalcEnvCom(env , c, cexpr , rc, p) =

CalcEnvCom(

(CalcEnvCom(env , c1, cexpr , rc, p)),

c2, cexpr , rc, p))

The first command in the sequence c1 is analysed in the environment env with a recursive

call to CalcEnvCom. This gives an updated environment, which is used as the environment

passed to the CalcEnvCom function once again to analyse the second command c2.

Assignments The assignment command (Asgn) is one of the two most important com-

mands when updating the environment. The changes to the environment are made based

on the type of the left and right expressions. The assignment cases described here are

133

Chapter 4: Modelling and checking memory configurations

based on those described in [17].

Right expressions that are values have no impact on the environment because primitive

types always reside in the Prim reference context; it does not matter what the specific

value is. For all other assignments, the type of update is dependent on the left expression.

For example, consider the assignment x = 10; if the previous environment is

{x 7→ x} 7→ {x 7→ {Prim}}

irrespective of the right-hand side, the resulting environment will still be

{x 7→ x} 7→ {x 7→ {Prim}}

If the left expression is a variable, a mapping from the left expression to the right expression

is included in the environment share relation as long as the left expression is not a prefix

of the right expression. For example, in the assignment node = node.next, the variable

node is not aliased with node.next as a result of this assignment, therefore the mapping

is not included in the share relation.

The mappings for fields of the right expression, which are now fields of the left ex-

pression are also added. For example, consider the assignment a = b; where the current

environment is

{a 7→ a, b 7→ b, b.x 7→ b.x} 7→ {a 7→ {}, b 7→ {MMem}, b.x 7→ {Prim}}

The resulting environment is

{a 7→ a, b 7→ b, a 7→ b, a.x 7→ a.x , b.x 7→ b.x , a.x 7→ b.x}
7→ {a 7→ {MMem}, b 7→ {MMem}, a.x 7→ {Prim}, b.x 7→ {Prim}}

If the left expression is a field access or array element, the changes to the environment

described above are performed plus an additional change that updates all expressions

already in the environment that are equal to the left expression; any changes to fields of

the object are also applied to other expressions that reference it. For example, consider

the assignment a.f = x; where the current environment is

{a 7→ a, b 7→ b, a 7→ b, a.f 7→ a.f , b.f 7→ b.f , a.f 7→ p, b.f 7→ p}
7→ {a 7→ {MMem}, b 7→ {MMem}, a.f 7→ {IMem}, b.f 7→ {IMem}}

The resulting environment, assuming that x resides in the mission memory area, is

{a 7→ a, b 7→ b, a 7→ b, a.f 7→ a.f , b.f 7→ b.f , a.f 7→ x , b.f 7→ x , a.f 7→ p, b.f 7→ p}
7→ {a 7→ {MMem}, b 7→ {MMem}, a.f 7→ {MMem}, b.f 7→ {MMem}}

Here both a.f and b.f are updated to point to x, because a and b reference the same

134

4.4 Updating the environment

object. The mappings a.f 7→ p and b.f 7→ p remain a part of the resulting environment

because of the history element described previously.

Overall, the result of the CalcEnvCom function when the command c is an assignment

is determined by the CalcEnvAssignment function.

∨ (∃ le : LExpr ; re : Expr

• c = Asgn(le, re) ∧ CalcEnvCom(env , c, cexpr , rc, p) =

CalcEnvAssignment(env , le, re, cexpr , rc, p))

The CalcEnvAssignment function takes an environment, a left expression, an expression,

another left expression, a reference context, and an SCJ-mSafe program. The environment

is the current environment being updated, the first left expression is the left-hand side of

the assignment, the expression is the right-hand side of the assignment, the other left

expression is the current expression, the reference context is the current default reference

context, and the SCJ-mSafe program is the program currently being analysed. The result

is an updated environment that takes into account the effects of the assignment. The

CalcEnvAssignment function specification is defined in Figure 4.11.

If the right expression of the assignment is equal to Val , it is of a primitive type, and

so the result of CalcEnvAssignment is the original environment, as no changes are made;

this is specified on lines 5 and 6.

If the right expression is not Val (line 7), the left and right expressions (le and

re) are used to define expressions newle and newre, which have the completed names

of le and re. This is achieved with the MergeExprs function, which takes two ex-

pressions and the current SCJ-mSafe program and returns a new expression that

is a combination of both input expressions. For example, the result of merging

the current expression sequencer .mission.handler and handlerField is the expression

sequencer .mission.handler .handlerField .

The completed left expression of the assignment is defined based on the current ex-

pression using the MergeExprs function on line 9. If the right expression (re) is equal to

This, then the left expression is being assigned a reference to the current object, so the

new right expression newre is equal to the current expression cexpr (line 10); otherwise it

is defined using the MergeExprs function like the left expression (line 11).

If the left expression is a variable (line 12), three functions are applied to the environ-

ment. The first is ExprShareAddEnv , which takes the new left and right expressions and

adds the mapping newle 7→ newre to the expressions share relation (line 16). The second

135

Chapter 4: Modelling and checking memory configurations

1 CalcEnvAssignment : Env × LExpr × Expr × LExpr

2 × RefCon × SCJmSafeProgram 7→ Env

3 ∀ env : Env ; le, cexpr : LExpr ; re : Expr ; rc : RefCon;

4 p : SCJmSafeProgram

5 • re = Val

6 ∧ CalcEnvAssignment(env , le, re, cexpr , rc, p) = env

7 ∨ re 6= Val

8 ∧ (∃newle : LExpr ; newre : Expr

9 | newle = MergeExprs(cexpr , le, p)

10 ∧ (re = This ∧ newre = cexpr

11 ∨ re 6= This ∧ newre = MergeExprs(cexpr , re, p))

12 • ((∃ v : Variable | le = ID(var v)

13 • CalcEnvAssignment(env , le, re, cexpr , rc, p) =

14 AddAsgnFields(newle,newre,

15 (ExprRefAddEnvAsgn(newle,newre,

16 (ExprShareAddEnv(newle,newre, env))))))

17 ∨ (∃ fa : FieldAccess; ae : ArrayElement

18 | le = FA fa

29 ∨ le = ID(arrayElement ae)

20 • CalcEnvAssignment(env , le, re, cexpr , rc, p) =

21 UpdateEqualExprs(newle,newre,

22 (AddAsgnFields(newle,newre,

23 (ExprRefAddEnvAsgn(newle,newre,

24 (ExprShareAddEnv(newle,newre, env))))))))))

Figure 4.11: CalcEnvAssignment function that updates the environment based on the
assignment command.

is the ExprRefAddEnvAsgn function, which adds a mapping from the new left expression

to the set of reference contexts associated with the new right expression to the expression

reference set (line 15). Finally the third is the AddAsgnFields function, which adds any

fields of the new right expression as fields of the new left expression (line 14). For exam-

ple, if the field b.x exists, and b is assigned to a, the expression a.x is included in the

environment as it is aliased with b.x.

If the left expression is a field access or array element (line 17), four functions are

applied to the environment. The first three are the same as those described above (lines 22-

24). The fourth function is the UpdateEqualExprs function, which updates all expressions

in the environment that are aliased with the left expression (line 21). For example, if a is

aliased with b in the environment, and a.x is updated to reference y, the mapping a.x 7→y

136

4.4 Updating the environment

is updated in the environment; however, it is also important to update b.x, as this too

has been changed. The UpdateEqualExprs function would ensure the mapping b.x 7→ y is

also updated, for example.

NewInstance The new instance command (NewInstance) is the second of the two most

interesting commands regarding the update of the environment, as it is a possible source

of memory-safety violations. The resulting environment includes a mapping from the

expression being instantiated to the set of possible reference contexts in which the new

object may reside. The method properties of the corresponding object constructor are

also applied.

For example, consider the command NewInstance(o, Current, Object, ()), which

instantiates a new Object in the current reference context with no arguments and assigns

a reference to it to the expression o. If the environment before the instantiation is

{o 7→ o} 7→ {o 7→ {}}

the resulting environment is

{o 7→ o} 7→ {o 7→ {MMem}}

assuming the mission memory is the current reference context.

∨ (∃nI : newInstance

• c = NewInstance nI ∧ CalcEnvCom(env , c, cexpr , rc, p) =

CalcEnvNewInstance(env ,nI , cexpr , rc, p))

The result of the CalcEnvCom function in the case of a new instance command is the

result of the CalcEnvNewInstance function, which takes the environment, new instance

command, current expression, current reference context, and the SCJ-mSafe program

as arguments. The specification of the CalcEnvNewInstance function is defined in Fig-

ure 4.12.

When analysing a new instance command, the left expression being instantiated with

a new object must be updated based on the current expression. The new left expression

(newLe) introduced on line 5 is defined as the result of merging the current expression

(cexpr) with the left expression of the new instance command (nI .le), which is achieved

with the MergeExprs function (line 8).

Similarly, if the meta-reference context of the new instantiation states that the new

object resides in the reference context of another expression (Erc), the associated expres-

sion must also be updated with the MergeExprs function (lines 9 and 10). The updated

137

Chapter 4: Modelling and checking memory configurations

1 CalcEnvNewInstance : Env × newInstance × LExpr × RefCon

2 × SCJmSafeProgram 7→ Env

3 ∀ env : Env ; nI : newInstance; cexpr : LExpr ; rc : RefCon;

4 p : SCJmSafeProgram

5 • ∃newLe, e1 : LExpr ; newMrc : MetaRefCon; constr : Method ;

6 rel : ExprShareRelation; ref : ExprRefSet

7 | env = (rel , ref)

8 ∧ newLe = MergeExprs(cexpr ,nI .le, p)

9 ∧ (nI .mrc = Erc e1

10 ∧ newMrc = Erc(MergeExprs(cexpr , e1, p))

11 ∨ nI .mrc 6= Erc e1

12 ∧ newMrc = nI .mrc)

13 ∧ constr = GetConstr(nI .type.type,nI .args, p)

14 • CalcEnvNewInstance(env ,nI , cexpr , rc, p) =

15 ApplyPossibleMethods(constr ,nI .args,

16 (rel 7→ ExprRefUpdate(newLe,

17 (RCsFromMRC (newMrc, rc, ref , cexpr)), ref)),

18 cexpr ,nI .le, rc, p)

Figure 4.12: CalcEnvNewInstance function that updates the environment based on new
instantiations.

meta-reference context is defined by the newMrc component introduced on line 5. If the

meta-reference context is not that of another expression (line 11), then newMrc is simply

defined to be equal to the meta-reference context of the new instance command (nI .mrc)

on line 12.

A result of instantiating a new object is that the constructor of the new object is

called immediately after the object is created. The constructor (constr) is determined

with the GetConstr function on line 13, which analyses all of the constructors defined in

the SCJ-mSafe program and identifies the relevant one based on the type of the object

being instantiated and the parameters passed. The overall SCJ-mSafe program is required

in order to determine all possible constructors.

The overall result of the CalcEnvNewInstance function is the result of the

ApplyPossibleMethods function, which takes a set of possible methods and applies the

associated method properties of the methods to the environment. In this case, the set

of possible methods is a singleton set containing only the relevant constructor. The

ApplyPossibleMethods function also takes an environment as an argument, which in this

138

4.4 Updating the environment

case is defined as the existing environment updated with a mapping from the left expres-

sion to the possible reference contexts the new object is being instantiated in. The set of

reference contexts is determined by the RCsFromMRC function, which analyses the meta-

reference context of the new instance command (newMrc) and returns a set of reference

contexts based on the current reference context rc.

If the meta-reference context is simply Current , the resulting set of reference contexts

returned by RCsFromMRC is a singleton set containing the current reference context. If,

however, the meta-reference context identifies that the method is to be executed in the

reference context of another expression Erc e, then the resulting set of reference contexts

is dependent on the set of reference contexts associated with the expression e in the

environment.

For every method in the set of possible methods associated with a call (one in the

case of a constructor), the ApplyPossibleMethods function updates the corresponding

method properties based on the arguments passed to the method, and subsequently calls

the ApplyMethodProperties function. The method properties associated with a method

include the expressions that correspond to the parameters, not the actual arguments. The

UpdateMethodPropertiesArgs function, which is omitted here, replaces the expressions

that represent parameters in the method properties with the corresponding argument

expressions. For example, if a method definition had the following signature

1 void myMethod(A a, B b) { ... }

and a call to the method was made with the arguments x.y, and z (myMethod(x.y, z);),

then all instances of a in the method properties are replaced with x.y, and all instances

of b are replaced with z.

Having updated the method properties to be applied, the ApplyMethodProperties func-

tion is called, which takes the method to be applied, the current environment, the argu-

ments passed to the method, the left expression of the target object, the current expression,

the current reference context, and the SCJ-mSafe program being analysed. The result is

an updated environment with the method properties of the particular method having been

applied. The specification of the ApplyMethodProperties function is defined in Figure 4.13.

The method properties to be applied (m.properties) to the environment (env) are based

on the current expression. For example, if the current expression is sequencer .mission and

the method properties included the entry a 7→ b, the updated method properties would

139

Chapter 4: Modelling and checking memory configurations

1 ApplyMethodProperties : Method × Env × seq Expr × LExpr

2 × LExpr × RefCon × SCJmSafeProgram 7→ Env

3 ∀m : Method ; args : seq Expr ; env : Env ; cexpr , lexpr : LExpr ;

4 rc : RefCon; p : SCJmSafeProgram

5 • ∃ rel ,methRel : ExprShareRelation; ref : ExprRefSet ;

6 methRef : MethodRefSet

7 | env = (rel , ref)

8 ∧ m.properties = (methRel ,methRef)

9 • let updatedShare == UpdateMethodPropertiesCExprShare(

10 methRel , args,m.visibleFields, cexpr , lexpr , p);

11 updatedRef == UpdateMethodPropertiesCExprRef (methRef ,

12 args,m.visibleFields, cexpr , lexpr , p)

13 • ApplyMethodProperties(m,m.properties,

14 env , args, cexpr , lexpr , rc, p) =

15 UpdateEqualExprsSet(updatedShare,

16 (AddAsgnFieldsSet(updatedShare,

17 (ExprShareAddSet(updatedShare, rel)

18 7→ ExprRefUpdateSet(

19 (RefSetFromMethodRef (updatedRef ,

20 ref , rc, cexpr)), ref)))))

Figure 4.13: ApplyMethodProperties function that updates the environment based on the
execution of methods.

include the mapping sequencer .mission.a 7→ sequencer .mission.b. This is defined with

the UpdateMethodPropertiesCExprShare and UpdateMethodPropertiesCExprRef function

calls on lines 9 and 11; a description of these functions is omitted here.

The method of calculating the result of the overall ApplyMethodProperties function is

similar to that of the CalcEnvAssignment function. Firstly, the reference set and share

relation, updated with the mappings in the method properties (lines 17 and 18), are defined

using the ExprRefUpdateSet and ExprShareAddSet functions. Next the fields of references

that have changed are defined with the AddAsgnFieldsSet function on line 16. Finally,

any expressions that are aliased with expressions that have been changed are defined with

the UpdateEqualExprsSet function on line 15.

If Both the true and false branches of If statements are analysed individually, and the

results are merged; the resulting environment reflects both possible behaviours.

140

4.4 Updating the environment

∨ (∃ e : Expr ; c1, c2 : Com

• c = If (e, c1, c2)

∧ CalcEnvCom(env , c, cexpr , rc, p) =

EnvJoin((CalcEnvCom(env , c1, cexpr , rc, p)),

(CalcEnvCom(env , c2, cexpr , rc, p))))

Both c1 and c2 are analysed in the same environment env as only one or the other is

actually executed at run-time. The two resulting environments are merged using the

EnvJoin function, which takes two environments and returns a single environment based

on the information in each. For example, if one environment records that some variable

resides in mission memory, but the other records that the same variable resides in immortal

memory, the merged environment contains a single entry for the variable with both mission

and immortal memory areas as possible reference contexts.

Switch The Switch command is analysed based on all possible cases of its execution.

The resulting environment is a summary of the behaviour of all possible cases like in the

If statement above.

Loops Commands such as the For , While, and DoWhile loops are analysed by calcu-

lating a loop summary, by analysing a single iteration of the loop.

∨ (∃ c1, c2, c3 : Com; exp : Expr

• c = For(c1, exp, c2, c3)

∧ CalcEnvCom(env , c, cexpr , rc, p) =

CalcEnvCom((CalcEnvCom(env , c1, cexpr , rc, p)),

(Seq(c2, c3)), cexpr , rc, p))

In the case above, the result of analysing the For command is a composition of analysing

the initialisation command c1 in the original current environment env followed by the

analysis of the body of the loop and the iteration command (c2 and c3) in the resulting

environment from analysing c1.

It is sufficient to analyse loops only once because of the history element of the en-

vironment. If the code being analysed contains a command that has an effect on the

environment, it is recorded in the loop summary regardless of the iteration. Further

analysis of the loop body is not required to capture all possible execution paths of all

iterations.

141

Chapter 4: Modelling and checking memory configurations

For example, consider the simple example shown below, which demonstrates how the

elements of an array are assigned.

1 for (int i = 0; i < store.size(); i++) {

2 local[i] = store[i];

3 }

In this example, the assignment on line 2 is translated to local[Val] = store[Val] in

SCJ-mSafe, as the precise index of the array is abstracted away. It does not matter how

many times this is executed, the resulting environment will always record an aliasing be-

tween local [Val] and store[Val], and record the set of possible reference contexts associated

with store[Val] with the entry for local [Val].

It is important to note that the loop summary described here is not the same

as a fixed point of a loop. It may not be possible to calculate the fixed point of

a loop. For instance, consider the example below, which shows a loop that instanti-

ates new objects of a recursive data structure and does not have a static bound for its size.

1 Node n;

2 Node pt = new Node();

3 n = pt;

4 while(e) {

5 pt.next = new Node();

6 pt = pt.next;

7 }

In this example, a precise environment to capture the behaviour of the loop cannot be

calculated statically. Without knowing the precise number of iterations the loop will

execute, the calculated environment may not be complete. This is because the exact

number of n.next .next .next ... fields created is not known in advance.

The environment after line 3 has been analysed in the example above is shown below

(assuming that this code is executing in the mission memory area).

{ n 7→ n, pt 7→ pt ,n 7→ pt , pt .next 7→ pt .next ,n.next 7→ n.next ,n.next 7→ pt .next

} 7→ {
n 7→ {MMem}, pt 7→ {MMem},n.next 7→ {}, pt .next 7→ {}

}

At this point, the reference context in which the object referenced by n and pt is known

to reside in the mission memory area. The fields n.next and pt .next point to null.

142

4.4 Updating the environment

After analysing the while loop on lines 5 and 6 once, the resulting environment is as

follows.

{ n 7→ n,n 7→ pt ,n 7→ pt .next , pt 7→ pt , pt 7→ n.next , pt .next 7→ pt .next ,

n.next 7→ n.next ,n.next 7→ pt .next , pt .next .next 7→ pt .next .next ,

n.next .next 7→ n.next .next , pt .next .next 7→ n.next .next

} 7→ {
n 7→ {MMem}, pt 7→ {MMem},n.next 7→ {MMem}, pt .next 7→ {MMem},
n.next .next 7→ {}, pt .next .next 7→ {}

}

As shown in the environment above, the object referenced by n.next and pt .next has been

instantiated in the mission memory area, and the new field n.next .next is not allocated.

The environment also includes the field pt .next .next , which should not exist. It should

not exist because the pointer pt is updated to point to pt .next , so only pt (aliased with

n.next) and pt .next (aliased with n.next .next) should reside in the environment. The

addition of pt .next .next to the environment is a side-effect of the history element of the

environment as previous aliases are not removed. The worst-case scenario for an environ-

ment that maintains history is that every expression references every other expression; in

this example, the fact that pt .next was once aliased with n.next means that any new fields

of n.next will also become new fields of pt .next .

Whilst the history element maintains old alias relationships in the environment and

subsequently may introduce false aliases, it also makes it possible to continue the analysis

when a precise environment cannot be calculated without compromising the ability to

detect memory-safety violations. More specifically, if every expression associated with the

data structure is aliased with the others, any assignments or instantiations to members

of the data structure are reflected in all other expressions. In the example above, this

means that the expression n.next and pt .next record the set of possible reference contexts

for all elements of the data structure. As will be shown later, it is not necessary to

know about n.next .next and n.next .next .next ... as all the information required to detect

memory-safety violations is recorded in n.next .

Method calls Method calls are analysed based on the method properties for each possi-

ble method that is being called. All method properties for all possible methods are applied

to the environment.

143

Chapter 4: Modelling and checking memory configurations

∨ (∃mc : methodCall

• c = MethodCall mc

∧ CalcEnvCom(env , c, cexpr , rc, p) = CalcEnvMethod(env ,mc, cexpr , rc, p))

The result of the CalcEnvCom function for method calls is based on the result of the

CalcEnvMethod function, which analyses the possible methods associated with a method

call and applies the respective method properties for each to the environment.

CalcEnvMethod : Env ×methodCall × LExpr × RefCon

× SCJmSafeProgram 7→ Env

∀ env : Env ; mc : methodCall ; cexpr : LExpr ; rc : RefCon;

p : SCJmSafeProgram

• CalcEnvMethod(env ,mc, cexpr , rc, p) =

ApplyPossibleMethods(

(GetMethodsFromSigs(mc.methods, p)),

mc.args, env , cexpr ,mc.le, rc, p)

Similarly to the application of constructors to the environment in the analysis of the new

instance command, the CalcEnvMethod function uses the ApplyPossibleMethods function

described previously to apply the method properties of all possible methods that are

associated with the method call to the environment. The GetMethodsFromSigs function

analyses the method signatures recorded in the method call (mc.methods), which describes

the set of possible methods that may be associated with the method call, and returns a set

of corresponding methods. The method properties of each of these methods are applied

to the environment in the ApplyPossibleMethods function.

EnterPrivateMemory The EnterPrivateMemory command executes the run method

of a runnable object inside a new temporary private memory area. At translation time, a

method call for the run method of the runnable object is defined and associated with the

EnterPrivateMemory command.

The EnterPrivateMemory command is analysed in a similar way to a regular method

call in the sense that the method call mc associated with the EnterPrivateMemory com-

mand is passed to the CalcEnvMethod function. The difference is that the method call is

analysed in a lower reference context.

144

4.4 Updating the environment

∨ (∃mc : methodCall

• c = EnterPrivateMemory mc

∧ CalcEnvCom(env , c, cexpr , rc, p) =

CalcEnvMethod(env ,mc, cexpr , (LowerRC rc), p))

The LowerRC function takes a reference context and returns the next lower reference

context based on the original. For example, if the current reference context is PRMem h1

for some handler h1, the result of LowerRC applied to PRMem h1 is the first temporary

private memory area for the handler: TPMem(h1, 0).

ExecuteInAreaOf Like the EnterPrivateMemory command, the ExecuteInAreaOf

command executes the run method of a runnable object, but in the memory area of

another particular object. The method call mc associated with the ExecuteInAreaOf

command corresponds to the run method of the runnable object.

Accordingly, the resulting environment after an ExecuteInAreaOf command has been

analysed is the result of executing the method call in the reference context of a particular

object, which is represented as a meta-reference context (mrc). For example, the meta-

reference context Erc a identifies that the method call mc is to be analysed in all possible

reference contexts in which the object referenced by the variable a may reside.

∨ (∃mrc : MetaRefCon; mc : methodCall ; ref : ExprRefSet

| ref = env .2

• c = ExecuteInAreaOf (mrc,mc)

∧ CalcEnvCom(env , c, cexpr , rc, p) =

DistEnvJoin{rc1 : RCsFromMRC (mrc, rc, ref , cexpr)

• (CalcEnvMethod(env ,mc, cexpr , rc1, p))})

The result of the CalcEnvCom function for ExecuteInAreaOf commands is defined as

the distributed join of the environments resulting from analysing the method call with

the CalcEnvMethod function in all of the possible reference contexts in which the object

defined as the target execution context may reside. The RCsFromMRC function is used to

determine the reference contexts associated with the target object. The set of all possible

environments is merged to create a single environment with the DistEnvJoin function,

which is a distributed version of the EnvJoin function.

145

Chapter 4: Modelling and checking memory configurations

ExecuteInOuterArea The ExecuteInOuterArea command, which executes the run

method of a runnable object in the immediately outer memory area, is analysed in a

similar way to the EnterPrivateMemory command. The difference is that the resulting

environment is the result of analysing the method call in the next outer reference context,

as opposed to the next lower reference context.

GetMemoryArea In SCJ, the getMemoryArea method returns a reference to the mem-

ory area object in which the expression passed as an argument resides. In SCJ-mSafe, it

is the set of reference contexts in which the object referenced by the expression passed as

an argument that are returned. This is subtly different as the behaviour in SCJ-mSafe re-

turns the associated reference context that describes the memory area as opposed to the

memory area object itself. The resulting environment after analysing a GetMemoryArea

command is defined by the CalcEnvGetMemArea function.

∨ (∃ gma : getMemoryArea

• c = GetMemoryArea gma

∧ CalcEnvCom(env , c, cexpr , rc, p) =

CalcEnvGetMemArea(env , gma, cexpr , rc, p))

The CalcEnvGetMemArea function defines the environment so that the reference compo-

nent gma.ref of the GetMemoryArea command points to the possible reference contexts

in which the object referenced by the expression gma.e resides. The function takes the

current environment, a getMemoryArea command, a left expression that defines the cur-

rent execution point, the current reference context, and the SCJ-mSafe program being

analysed as its parameters, and returns an updated environment.

1 CalcEnvGetMemArea : Env × getMemoryArea × LExpr

2 × RefCon × SCJmSafeProgram 7→ Env

3 ∀ env : Env ; gma : getMemoryArea; cexpr : LExpr ;

4 rc : RefCon; p : SCJmSafeProgram

5 • ∃ rel : ExprShareRelation; ref : ExprRefSet | env = (rel , ref)

6 • ∃newRef ,newExpr : LExpr ; erc : MetaRefCon

7 | newRef = MergeExprs(cexpr , gma.ref , p)

8 ∧ (gma.e = This ∧ newExpr = cexpr

9 ∨ gma.e 6= This ∧ newExpr = MergeExprs(cexpr , gma.e, p))

10 ∧ erc = Erc newExpr

11 • CalcEnvGetMemArea(env , gma, cexpr , rc, p) =

12 rel 7→ ExprRefUpdate(newRef ,

13 (RCsFromMRC (erc, rc, ref , cexpr)), ref)

146

4.4 Updating the environment

The CalcEnvGetMemArea function first defines the updated reference ref and expression

e based on the current expressions with the MergeExprs function (lines 7-9). The up-

dated expressions are recorded in the variables newRef and newExpr (defined on line 6),

respectively.

The overall result of the function is a mapping between the unchanged expression

share relation rel and the updated expression reference set, which is updated with the

ExprRefUpdate function (lines 11-13). The expression reference set is updated with a

mapping from the new reference newRef to the set of possible reference contexts associated

with the meta-reference context Erc newExpr , which is obtained with the RCsFromMRC

function.

Try The Try command is analysed based on the try statement, all possible catch state-

ments, and the finally statement. The resulting environment is a summary of all possible

behaviours.

1 ∨ (∃ c1, c2 : Com; eseq : seq Expr ; comseq : seq Com

2 • c = Try(c1, eseq , comseq , c2)

3 ∧ CalcEnvCom(env , c, cexpr , rc, p) =

4 EnvJoin(

5 (EnvJoin(

6 (CalcEnvCom(env , c1, cexpr , rc, p)),

7 (DistEnvJoin{com : ran comseq

8 • (CalcEnvCom(env , com, cexpr , rc, p))}))),
9 (CalcEnvCom(env , c2, cexpr , rc, p))))

The result of the CalcEnvCom function for the Try command is the merged result of

analysing the try component of the Try command (c1) on line 6, the distributed join of

all possible catch commands in comseq on lines 7 and 8, and the finally component c2 on

line 9.

4.4.2 Handlers

The resulting environment after a handler has executed is based on the execution of the

handleEvent method. The CalcEnvHandler function below describes how the environ-

ment is updated for an individual handler.

147

Chapter 4: Modelling and checking memory configurations

CalcEnvHandler : Env ×Handler × LExpr × SCJmSafeProgram 7→ Env

∀ env : Env ; h : Handler ; cexpr : LExpr ; p : SCJmSafeProgram

• CalcEnvHandler(env , h, cexpr , p) =

RemoveExprSetEnv((LocalVars h.hAe),

(CalcEnvCom(env , h.hAe, cexpr , (PRMem h.name), p)))

The CalcEnvHandler function takes an environment env , a handler h, the current ex-

pression cexpr , and the SCJ-mSafe program p being analysed, and returns an updated

environment. The result of the function is based on the result of CalcEnvCom, which anal-

yses the command h.hAe, which is the handleEvent method of the handler. The fourth

parameter passed to the CalcEnvCom function is the reference context in which the com-

mand is to be analysed; in the case of the handleEvent method, this is the per-release

memory area associated with the handler (PRMem h.name).

The environment resulting from the CalcEnvCom function call is then restricted with

the RemoveExprSetEnv function, which removes all of the local expressions defined in a

particular SCJ-mSafe construct, from the environment. In this case, the local variables of

the h.hAe component are removed. The local variables are calculated with the LocalVars

function, which takes a command and returns a set of expressions that describe the local

variables declared as part of the command.

The resulting environment is used as the environment to analyse subsequent handlers;

it does not contain any expressions local to the handler that has been analysed, but it

does contain information about the changes to any shared objects between handlers.

To calculate the resulting environment for all of the handlers associated with a partic-

ular mission, the CalcEnvHandlers function is defined.

CalcEnvHandlers : Env ×Mission × PHandler × CheckingEnv 7→ Env

∀ env : Env ; m : Mission; handlers : PHandler ; p : SCJmSafeProgram

• CalcEnvHandlers(env ,m, handlers, p) =

DistEnvJoin{h : handlers

• (CalcEnvHandler(env , h,GetHandlerExpr(p, h,m), p))}

This function takes an old environment env , a mission m, the set of handlers associated

with the mission handlers, and the SCJ-mSafe program p being analysed, and returns

an updated environment. The result of the function is the merged result of analysing all

handlers in the set of handlers with the CalcEnvHandler function; this is done with the

DistEnvJoin function. The third parameter of the CalcEnvHandler function is the current

148

4.4 Updating the environment

expression, which in the case of a specific handler is the left expression that references the

handler object. This is calculated with the GetHandlerExpr function, which is a syntactic

function on the SCJ-mSafe program; it takes the SCJ-mSafe program, the handler, and

the mission as its parameters, and returns an expression that references the handler object.

The resulting environment obtained from the CalcEnvHandlers function is a summary

of the behaviour of all handlers associated with a particular mission. This is then used by

the CalcEnvMission function that will be described next.

4.4.3 Missions

The resulting environment after a mission has executed is based on the execution

of the initialize method, the associated handlers, and the cleanUp method. The

CalcEnvMission function below describes how the environment is updated for an indi-

vidual mission.

1 CalcEnvMission : Env ×Mission × LExpr × SCJmSafeProgram 7→ Env

2 ∀ env : Env ; m : Mission; cexpr : LExpr ; p : SCJmSafeProgram

3 • let initializeEnv == CalcEnvCom(env ,m.initialize, cexpr ,MMem, p)

4 • let handlersEnv == CalcEnvHandlers(

5 (RemoveExprSetEnv(

6 (LocalVars m.initialize \GetHandlerExprs(p,m)),

7 initializeEnv)),

8 m, (GetHandlers(p,m.handlers)), p)

9 • let cleanUpEnv == CalcEnvCom(

10 (RemoveExprSetEnv((LocalVars m.initialize), handlersEnv)),

11 m.cleanUp, cexpr ,MMem, p)

12 • CalcEnvMission(env ,m, cexpr , p) =

13 RemoveExprSetEnv((LocalVars m.cleanUp), cleanUpEnv)

The CalcEnvMission function takes an old environment env , a mission m, the current

expression cexpr , and the SCJ-mSafe program p being analysed, and returns an updated

environment.

The function specification declares three local variables: initializeEnv (line 3),

handlersEnv (line 4), and cleanUpEnv (line 9), which correspond to the resulting en-

vironments after the initialize method has been analysed, the handlers associated with

the mission have been analysed, and the cleanUp method has been analysed.

The initializeEnv is the result of the CalcEnvCom function applied to the m.initialize

command in the current environment env . The handlersEnv is the result of the

149

Chapter 4: Modelling and checking memory configurations

CalcEnvHandlers function, when applied to initializeEnv as its environment, but removes

the local variables from the m.initialize command (as they have gone out of scope) except

for the expressions that identify the handlers. Finally, the cleanUpEnv is the result of

the CalcEnvCom function, which uses the handlersEnv as its environment, but removes

the remaining local variables from the m.initialize command, which includes all of the

expressions that identify handler objects.

The overall result of the function is the cleanUpEnv with the local variables from the

m.cleanUp command removed. The resulting environment is used as the environment

to analyse subsequent missions; it does not contain any expressions local to the mission

that has been analysed, but it does contain information about the changes to any shared

objects between missions.

To calculate the resulting environment after a set of missions have executed, the

CalcEnvMissions function is defined.

CalcEnvMissions : Env × PMission × SCJmSafeProgram 7→ Env

∀ env : Env ; missions : PMission; p : SCJmSafeProgram

• CalcEnvMissions(env ,missions, p) =

DistEnvJoin{m : missions

• (CalcEnvMission(env ,m, ((GetMissionExpr(p,m), p))}

The CalcEnvMissions function takes an old environment env , a set of missions missions,

and the SCJ-mSafe program p being analysed, and returns an updated environment.

The result of the function is the distributed join of all missions analysed with the

CalcEnvMission function. The third parameter of CalcEnvMission is the current ex-

pression, which in the case of a specific mission is the left expression that references the

mission object. Like the handler objects, this is also calculated with a syntactic function

(GetMissionExpr) on the SCJ-mSafe program.

4.4.4 Mission Sequencers and Safelets

There is no function to calculate the resulting environment after a mission sequencer

or safelet has executed. This is because when analysing a program, there is no

further execution after a mission sequencer has finished executing; therefore, the

resulting environment would not be used. Similarly, the safelet is the top-level com-

ponent in a program, and nothing would be able to make use of the resulting environment.

150

4.5 Generating method properties

All of these CalcEnv functions are used during the checking phase of the technique,

which is described in more detail in Section 4.6.

4.5 Generating method properties

The method properties for each method in an SCJ-mSafe program are generated after

the translation phase, and before the checking phase of the technique. The generation

of method properties is similar to the updating of the environment presented above. For

example, there exists a CalcPropertiesCom function that defines what happens to method

properties when a particular command is analysed. The main difference is the use of

meta-reference contexts as opposed to reference contexts; the interesting differences in the

calculation are presented here.

4.5.1 Commands

The CalcPropertiesCom function specifies the behaviour of a command and returns an

updated method properties and set of local variables based on the changes made. The

local variables for each method are calculated for the checking phase of the technique. As

method properties are only given a context when they are added to an environment, all

local variables that a method call introduces must be maintained in the method properties,

as they cannot be checked until the context of the method call is known. When they have

been checked against the calling context, they can be removed from the environment as

they are no longer in scope; maintaining the set of local variables during the generation

of method properties is therefore necessary to identify the variables that go out of scope.

The set of local variables also takes into account the local variables of additional methods

that are called from the current method being analysed. This is because, as mentioned

above, the calling context is not known at this point.

CalcPropertiesCom : Method ×MethodProperties × PLExpr

× Com × LExpr ×MetaRefCon × SCJmSafeProgram

7→ MethodProperties × PLExpr

∀m : Method ; properties : MethodProperties; localVars : PLExpr ;

c : Com; cexpr : LExpr ; mrc : MetaRefCon; p : SCJmSafeProgram

• ...

The function takes as its arguments the method that is being analysed (m), the old

method properties (properties), the old set of local variables (localVars), the command

151

Chapter 4: Modelling and checking memory configurations

to be analysed (c), the current expression (cexpr), the current meta-reference context

(mrc), and the SCJ-mSafe program being analysed (p), and returns an updated method

properties and set of local variables.

Declarations Declarations are analysed just like in the CalcEnvCom function; an addi-

tional function AddDecToMethodProperties is used to add the new mapping to the method

properties. If the new declaration is of a variable of a primitive type, the set of meta-

reference contexts is {Rcs{Prim}}, which identifies that the precise reference context of

the expression is known, and is the primitive context in this case. If the declaration is

not of primitive type, the set of meta-reference contexts is empty, because the variable is

uninitialised at this point.

∨ (∃ d : Dec

• c = Decl d

∧ CalcPropertiesCom(m, properties, localVars, c, cexpr ,mrc, p) =

(AddDecToMethodProperties(properties, d),

localVars ∪ {MergeExprs(cexpr , (ID(var d .var)), p)}))

The additional part of the declaration command analysis in CalcPropertiesCom is the

definition of localVars, which includes the declaration expression after it has been updated

with the current expression in the MergeExprs function. This is how the set of local

variables in a method is recorded. As mentioned above, this is necessary to identify the

expressions that, once checked, go out of scope in the method properties when a method

is called.

Assignments Assignments in CalcPropertiesCom are analysed in exactly the same way

as CalcEnvCom, that is, the expression share relation and method reference set are up-

dated based on the mapping from the left expression to the right expression, and all

subsequent fields and equal expression in the method properties are updated. The one

difference is how the method reference set is updated. When updating the environment,

the set of reference contexts associated with the left expression is defined as the set of ref-

erence contexts associated with the right expression in the environment. This is because

the left expression now points to the same object as the right expression, and it resides in

the possible reference contexts already recorded.

When calculating the changes to method reference sets, it may not be possible to

determine the set of meta-reference contexts of the right-hand side of the expression,

152

4.5 Generating method properties

because the right-hand expression may not be in the method properties. This is because

the right expression may be a global variable or field of the target object, for example. In

the case where the set of possible meta-reference contexts cannot be determined, because

there is no entry in the method properties, the MethodRefAddPropertiesAsgn function

uses the Erc meta-reference context to define that the referenced object resides in the

expression reference context of another expression that is not currently in scope.

MethodRefAddPropertiesAsgn : LExpr × Expr ×MethodProperties

7→ MethodProperties

∀ properties : MethodProperties; le : LExpr ; re : Expr

• ∃ rel : ExprShareRelation; ref : MethodRefSet | properties = (rel , ref)

• re ∈ dom ref

∧ MethodRefAddPropertiesAsgn(le, re, properties) =

rel 7→MethodRefUpdate(le, (ref re), ref)

∨ re 6∈ dom ref

∧ MethodRefAddPropertiesAsgn(le, re, properties) =

rel 7→MethodRefUpdate(le, {(Erc re)}, ref)

There are two cases for the result of MethodRefAddPropertiesAsgn. The first is when the

right expression re is in the domain of the method reference set ref (re ∈ dom ref), and

the second is when it is not in the domain (re 6∈ dom ref). If the right expression is in the

domain of the method reference set, the result is the set of reference contexts associated

with the right expression (ref re), which is defined in the method reference set by the

MethodRefUpdate function.

If not, the method properties calculated so far does not have information on the location

of the right expression; this occurs when the right expression is defined outside of the scope

of the method body. The result, therefore, is the meta-reference context Erc that states

the set of reference contexts of the left expression is defined by those of the right expression

re, which is unknown at this point. Erc meta-reference contexts are resolved when the

properties are added to an environment, as the right expression of the assignment will be

in scope at this point.

NewInstance Like in the CalcEnvCom function, the new instance command has its

own specific function when analysing method properties. The CalcPropertiesNewInstance

function is very similar to the CalcEnvNewInstance function; the main difference is that

the new expression is instantiated in a meta-reference context as opposed to a reference

context. The update of method properties is the same as the environment: the method

153

Chapter 4: Modelling and checking memory configurations

reference set is updated with a mapping from the left expression to the set of possible meta-

reference contexts in which the object is being instantiated, and the method properties of

the relevant constructor are applied.

In the CalcEnvNewInstance function, the RCsFromMRC function determines which

reference contexts the object may reside in based on the meta-reference context of the new

instance command (nI .mrc). In this case, the meta-reference context of the new instance

command is used to determine the set of meta-reference contexts in which the object may

reside (as opposed to reference contexts), and is calculated with the AnalyseMetaRefCon

function.

AnalyseMetaRefCon : MetaRefCon ×MetaRefCon ×MethodRefSet

7→ PMetaRefCon

∀nImrc,mrc : MetaRefCon; ref : MethodRefSet

• (∃n : N
nImrc = Current

∧ AnalyseMetaRefCon(nImrc,mrc, ref) = {mrc}
∨ (∃n : N
| nImrc = CurrentPrivate n

• ((∃n1 : N
| mrc = CurrentPlus n1

• n1− n > 0 ∧ AnalyseMetaRefCon(nImrc,mrc, ref) =

{CurrentPlus(n1− n)}
∨ n1− n < 0 ∧ AnalyseMetaRefCon(nImrc,mrc, ref) =

{CurrentPrivate(n − n1)}
∨ n1− n = 0 ∧ AnalyseMetaRefCon(nImrc,mrc, ref) =

{Current})
∨ mrc = Current ∧ AnalyseMetaRefCon(nImrc,mrc, ref) =

{CurrentPrivate n}
∨ (∃n1 : N
| mrc = CurrentPrivate n1

• AnalyseMetaRefCon(nImrc,mrc, ref) =

{CurrentPrivate(n1 + n)})))
∨ ...

The AnalyseMetaRefCon function takes two meta-reference contexts and a method refer-

ence set, and returns a set of possible meta-reference contexts. The first meta-reference

context (nImrc) is the meta-reference context associated with the new instantiation, and

the second (mrc) is the current meta-reference context. The extract from the function

above shows that if the new instance meta-reference context is equal to Current , then the

new object resides in the set of meta-reference contexts that contains only the current

154

4.5 Generating method properties

meta-reference context (mrc).

For example, when the analysis of a method body begins, the initial current meta-

reference context is Current . If a new instance command then instantiates a new object

in the Current meta-reference context, the result is that the new object resides in the

Current reference context. If, however, during the method body a temporary private

memory area is entered, the current meta-reference context would be CurrentPrivate(0).

If a new instance command instantiates a new object in the Current reference context

now, the new object will reside in the CurrentPrivate(0) reference context, as that is the

current context at the specific point of the analysis.

If, however, the new instance meta-reference context is equal to CurrentPrivate(n),

then the result of the function is a meta-reference context that is lower then the current

meta-reference context by depth n. For example, if the current meta-reference context is

Current and the new instance meta-reference context is CurrentPrivate(n), the resulting

meta-reference context is simply CurrentPrivate(n). If the current meta-reference context

is also a CurrentPrivate context with depth m, the resulting meta-reference context is

CurrentPrivate with depth (m + n).

If the current context is CurrentPlus(m), then the resulting meta-reference con-

text is calculated by subtracting the depth of the new instance meta-reference context

CurrentPrivate(n) from the depth of the current meta-reference context CurrentPlus(m).

If (m −n) is greater than zero, the result is CurrentPlus(m −n), if it is less than zero the

result is CurrentPrivate(n −m), and if it is exactly zero then the result is Current .

4.5.2 Building all method properties

After an SCJ program has been translated, the resulting SCJ-mSafe program contains

all of the classes and methods of the original SCJ program. These methods are trans-

lations of the SCJ methods, and have not been analysed. The BuildMethodProperties

function defined below analyses all methods inside an SCJ-mSafe program and returns

an updated SCJ-mSafe program whose methods now include the calculated method prop-

erties, local variables, and visible fields, which are fields of the containing class (and

any classes it inherits from) that are in scope during the method’s execution. The in-

put SCJ-mSafe program, which does not contain the generated method properties, is

rebuilt by the BuildMethodProperties function by a distributed application of the function

BuildMethodPropertiesMethod that specifies the method properties for a single method.

155

Chapter 4: Modelling and checking memory configurations

The output of the BuildMethodProperties function is essentially an SCJ-mSafe program

that has been automatically annotated with the method properties for each method in the

translated program.

1 BuildMethodProperties : SCJmSafeProgram 7→ SCJmSafeProgram

2 ∀ p : SCJmSafeProgram

3 • let methods == p.safelet .methods ∪ p.missionSeq .methods

4 ∪
⋃
{m : p.missions • m.methods}

5 ∪
⋃
{h : p.handlers • h.methods}

6 ∪
⋃
{c : p.classes • c.methods}

7 • ∃methodSeq : seq Method ; analysedMethods : PMethod ;

8 deps : MethodDependencies; p ′ : SCJmSafeProgram

9 | ran methodSeq = methods ∧ # methodSeq = # methods

10 ∧ analysedMethods = ran(BuildMethodPropertiesMethods(

11 (SortMethods(methodSeq , deps)), p))

12 ∧ deps = GetDeps p

13 • p′.static = p.static

14 ∧ p′.sInit = p.sInit

15 ∧ p′.safelet =

16 BuildMethodPropertiesSafelet(p.safelet , analysedMethods)

17 ∧ p′.missionSeq =

18 BuildMethodPropertiesMSeq(p.missionSeq , analysedMethods)

19 ∧ p′.missions =

20 BuildMethodPropertiesMissions(p.missions, analysedMethods)

21 ∧ p′.handlers =

22 BuildMethodPropertiesHandlers(p.handlers, analysedMethods)

23 ∧ p′.classes =

24 BuildMethodPropertiesClasses(p.classes, analysedMethods)

25 ∧ BuildMethodProperties p = p′

The function takes an SCJ-mSafe program (p) and returns an updated SCJ-mSafe pro-

gram. The set of all methods in an SCJ-mSafe program (methods) is defined as the union

of the methods from all classes (lines 3-6). The function definition then states that there

must exist a sequence of methods (methodSeq) such that every method in the set of meth-

ods methods is in the sequence (line 9); this sequence defines the basis for the ordering in

which the methods are analysed.

The order in which the methods are analysed is based on the method dependencies

156

4.5 Generating method properties

(deps), which is a relation that describes the call graph for methods. The dependencies

relation deps is calculated with the GetDeps function, which takes an SCJ-mSafe program

and returns a relation (line 12).

There must also exist another set of methods (analysedMethods), which records the

methods after their method properties have been calculated. The set of analysed methods

is calculated with the BuildMethodPropertiesMethods function.

The BuildMethodPropertiesMethods function is used to generate the method proper-

ties for a sequence of methods; the first parameter passed to the function is the result of

the SortMethods function, which analyses the method dependencies (deps) and returns a

sequence in which the methods can be successfully analysed. Methods that have no depen-

dencies on other methods, that is they do not call other methods as part of their execution,

are analysed first. Next, methods whose dependents have been analysed are added to the

sequence; this continues until all methods have a place in the analysis sequence.

If a method is dependent on itself, or more specifically, it is a recursive method, it

is analysed in the sequence like all other methods once all other dependents have been

analysed. Methods that are dependent on each other, that is, are mutually recursive, are

not handled in the technique; a discussion as to how they may be incorporated is included

in Section 6.3.

The resulting SCJ-mSafe program p ′ returned by BuildMethodProperties remains the

same as the input program p, except for the additional method properties that have been

added to each method. The BuildMethodProperties functions on lines 16-24 are used

to update specific components with the corresponding methods for that component in

analysedMethods.

Individual methods are defined using the BuildMethodPropertiesMethod function,

which takes a method and the SCJ-mSafe program being analysed and returns an updated

method.

157

Chapter 4: Modelling and checking memory configurations

BuildMethodPropertiesMethod : Method × SCJmSafeProgram 7→Method

∀method : Method ; p : SCJmSafeProgram

• ∃method ′ : Method

| method ′.name = method .name

∧ method ′.returnType = method .returnType

∧ method ′.type = method .type

∧ method ′.params = method .params

∧ method ′.class = method .class

∧ method ′.body = method .body

∧ method ′.properties = (CalcPropertiesCom(method , (∅,∅),

∅,method .body ,Null ,Current , p)).1

∧ method ′.localVars = (CalcPropertiesCom(method , (∅,∅),

∅,method .body ,Null ,Current , p)).2

∧ method ′.visibleFields = AnalyseMethodVisibleFields(method , p)

• BuildMethodPropertiesMethod(method , p) = method ′

The input method and SCJ-mSafe program p are used in the calculation of an updated

method (method ′), which is the overall result of the function. The updated method remains

the same as the input method, except for the method properties, local variables, and visible

fields, which are calculated by the function. The method properties and local variables

are defined using the CalcPropertiesCom function described previously. The arguments

given are the method being analysed (method), an empty method properties (∅,∅), an

empty set of local variables (∅), the command of the method body (method .body), the

current expression, which is Null as no execution has been analysed yet, the meta-reference

context Current (as the initial default allocation context is the current context), and the

SCJ-mSafe program.

The CalcPropertiesCom function returns a pair, as defined previously. The first ele-

ment of the pair is the method properties, which is recorded in method ′.properties, and the

second element is the set of local variables that have been defined as part of the method’s

execution, which are recorded in method ′.localVars.

Finally, the visible fields of the method are calculated using the

AnalyseMethodVisibleFields function, which takes the current method being anal-

ysed and the SCJ-mSafe program, and returns a set of left expressions that defines the

fields of the target object that are in scope when the method is executed.

The generation of method properties described in this section and the functions defined

to update the environment provide the necessary tools to check SCJ-mSafe programs

158

4.6 Rules for checking SCJ-mSafe programs

for possible memory-safety violations. The remainder of this chapter describes how the

checking of programs is performed.

4.6 Rules for checking SCJ-mSafe programs

This section defines the memory-safety rules of SCJ-mSafe programs; rules exist for all

components of SCJ-mSafe from the top-level overall program to commands. There is also

a rule that defines what it means for an environment to be memory safe, which is based

on the checking technique described above.

Each rule has a set of hypotheses and a conclusion. All hypotheses must be true in

order for the conclusion to be true. If one or more hypothesis of a rule is false, then there

exists possible memory-safety violations in the component associated with the rule.

The rules presented in this section are designed to give a readable description of the

underlying formalisation that can be found in Appendix E. The presentation of the first

rule includes a description of the associated formalisation; a discussion of the remaining

formalisations is omitted.

This section first defines the Dominates relation, which is an ordering on the reference

contexts of an SCJ-mSafe program. The memory safety inference rule for environments

is then presented before the rules for all SCJ-mSafe commands are defined. The rule

for an overall SCJ-mSafe program is then presented before the individual rules for each

SCJ-mSafe component.

4.6.1 The dominates relation

In order to establish whether a reference from one reference context to another is safe,

an ordering on the reference contexts used in the environment is defined; this is called

the Dominates relation. It defines which reference contexts dominate others, or more

specifically, which reference contexts are higher in the memory-structure hierarchy.

159

Chapter 4: Modelling and checking memory configurations

Dominates : RefCon↔ RefCon

Dominates = {(Prim 7→ IMem),

(IMem 7→MMem),

(MMem 7→ TPMMem 0)}
∪ {h : LExpr • (MMem 7→ PRMem h)}
∪ {h : LExpr • (PRMem h 7→ TPMem(h, 0))}
∪ {h : LExpr ; x : N • (TPMem(h, x) 7→ TPMem(h, (x + 1)))}
∪ {x : N • (TPMMem x 7→ TPMMem(x + 1))}

The mappings in the relation define a hierarchy of SCJ-mSafe reference contexts. At the

top of the hierarchy is the primitive reference context Prim, which dominates the immortal

memory IMem. Next, the immortal memory area IMem dominates the mission memory

area MMem.

The mission memory MMem dominates the first temporary private mission memory

area TPMMem 0, and also all the per-release memory areas for the handlers PRMem h.

Like the mission memory area, the per-release memory area for each handler domi-

nates the first temporary private memory area associated with the corresponding handler

(PRMem h 7→ TPMem(h, 0)).

Finally, all temporary private mission memory areas and temporary private mem-

ory areas of a handler dominate further nested temporary private mission memory areas

and temporary private memory areas respectively. For example, TPMem(h, 2) dominates

TPMem(h, 3) as the third temporary private memory area is more nested than the second.

The Dominates relation defines the hierarchy of the SCJ-mSafe reference contexts,

however, the reflexive transitive closure of the Dominates relation gives a complete defini-

tion of which reference contexts dominate others. For example, there is no mapping from

the immortal memory area IMem to a temporary private memory area TPMem(h, 1),

however, this mapping is included in through the transitive closure. The reflexive closure

is also taken as reference contexts dominate themselves; this is because a reference from

one object to another in the same memory area is safe.

Using the Dominates relation above, it is possible to check the environment throughout

the analysis to detect possible memory-safety violations. A memory-safety violation may

occur if a reference variable or a field of an object, points to an object that resides in a

lower reference context than the one in which it is defined. Checking for possible violations,

therefore, requires a traversal of the environment for each element to determine whether

any fields of that element reside in lower reference contexts.

160

4.6 Rules for checking SCJ-mSafe programs

4.6.2 Environment

The first inference rule presented is the rule that defines what it means for an environment

to be memory safe (mSafeEnv). This is the lowest-level rule and is the point at which

possible memory-safety violations are detected.

The hypotheses of the mSafeEnv rule state that the static variables, object fields,

and local variables must all be safe for the overall environment to be memory safe. In

summary, objects referenced by static variables must reside in the immortal memory or

be of a primitive type. Object fields must reside in a reference context that is equal to or

higher than that of the containing object. Finally, the local variables of the component

currently being analysed must reside in a reference context that is equal to or higher than

the reference context in which the variable was declared. The set of local variables is

a parameter of the rule as it is updated throughout the checking procedure, as will be

demonstrated in the rules for commands in the next section.

Consider, for example, the extract of code for a handler shown below.

1 public MyHandler extends PeriodicEventHandler {

2 static Object staticVar;

3 Object fieldVar;

4

5 public void handleAsyncEvent () {

6 Object localVar;

7 ...

In the example above, the static variable staticVar is checked against the immortal mem-

ory area, as the referenced object must reside in that memory area and no lower. The field

fieldVar is checked against the reference context of the containing object, which in this

case is the instance of the handler. The handler object resides in the mission memory area,

therefore the object referenced by the field must reside in either the mission or immortal

memory area. Finally, the local variable localVar is checked against the reference context

in which it was defined, which during the analysis of the handleAsyncEvent method is the

per-release memory area associated with the handler. Therefore the object referenced by

the local variables must reside in either the per-release memory area of the handler, the

mission memory area, or the immortal memory area. The mSafeEnv rule is shown below.

161

Chapter 4: Modelling and checking memory configurations

∀(le1, refSet1) : ref •
le1 ∈ GetStaticVars(p)

∧ DominatesLeast(refSet1) 7→ IMem ∈ Dominates ∗

∧ ∀(le1, refSet1), (le2, refSet2) : ref |
FieldOf (le1, le2) •
DominatesLeast(refSet1) 7→DominatesTop(refSet2) ∈ Dominates ∗

∧ ∀(le1, refSet1) : ref •
le1 ∈ localVars

∧ DominatesLeast(refSet1) 7→ rc ∈ Dominates ∗

∧ ∀(le1, refSet1) : ref |
le1 6∈GetStaticVars(p) ∧ le1 6∈ localVars

∧ (¬ ∃(le2, refSet2) : ref • FieldOf (le1, le2)) •
∃(le3, refSet3) | le3 = longestPrefixOf (env , le1) •
∧ DominatesLeast(refSet1) 7→DominatesTop(refSet3) ∈ Dominates ∗

mSafeEnv(env , localVars, rc, p)

where

env = (share, ref)

The conclusion of the memory-safety rule states that a particular environment env is

memory safe with the current local variables localVars, in the current reference context

rc, and SCJ-mSafe program p if the hypotheses are true. The static variables in the

environment must be safe to satisfy the first hypothesis. All fields of objects must be safe

to satisfy the second, and all local variables must be safe to satisfy the third. Expressions

that have not been checked by the first three hypotheses, are checked with the fourth and

final hypothesis, which is used to check incomplete environments, as will be explained in

what follows.

Static variables Static variables cannot be compared against the reference context of a

containing object as there is none. When checking each expression in the environment, if

the expression is a static reference variable, the reference context of the object referenced

must be the immortal memory area, otherwise a memory-safety violation may occur.

The first hypothesis states that for every expression in the reference set (le1) that is a

static reference variable, the worst-case mapping from the lowest possible reference context

of the expression to the immortal memory area is in the reflexive transitive closure of the

Dominates relation. More specifically, this states that all objects referenced by static

variables must reside in the immortal reference context.

162

4.6 Rules for checking SCJ-mSafe programs

As the precise reference context in which an object resides cannot always be deter-

mined, the worst-case mapping from one reference context to another is analysed. The

lowest possible reference context of the object referenced by the static variable is deter-

mined with the DominatesLeast function, which analyses a set of reference contexts and

returns the lowest in the hierarchy according to the Dominates relation. By taking the

lowest possible reference context, the possibility of an error is maximised, which is essential

to maintain a sound analysis.

The corresponding function in the formalisation to check the static variables in an

environment is the mSafeEnvStatic function, which takes an environment env , a command

com, and the SCJ-mSafe program p being checked, and returns a set of possible memory-

safety violations. The function below is slightly different to the rule above in the sense that

it takes a command as a parameter, and returns a set of possible violations as opposed to a

boolean result. This is because the rules presented here demonstrate what must be true for

a component to be memory safe, whereas the corresponding functions in the formalisation

return information on the specific violations for a program. An empty set of violations

characterises safety. The automatic tool, for usability, reports the violations specified in

our formalisation, rather than just a boolean result, as suggested by the inference rules.

mSafeEnvStatic : Env × Com × SCJmSafeProgram 7→ PViolation

∀ env : Env ; com : Com; p : SCJmSafeProgram

• ∃ rel : ExprShareRelation; ref : ExprRefSet | env = (rel , ref)

• mSafeEnvStatic(env , com, p) =

{e1 : dom ref ; v : Violation

| e1 ∈ GetStaticVars p

∧ (Dominates least(ref e1), IMem) 6∈Dominates ∗

∧ v .com = com

∧ v .rc1 = Dominates least(ref e1)

∧ v .e1 = e1

∧ v .rc2 = IMem

• v}

The function states that there must exist an expression share relation (rel) and expression

reference set (ref) such that the environment is equal to the (rel , ref) pair. The result of

the function is then a set of all violations found in the reference set characterised by an

expression e1, which is in the set of static variables determined by the syntactic function

GetStaticVars, where a mapping from the lowest possible reference context associated with

the expression e1 to the immortal memory area IMem is not in the reflexive transitive

163

Chapter 4: Modelling and checking memory configurations

closure of the Dominates relation. The formalisation here is the inverse of the hypothesis

of the rule, that is the mapping is not in Dominates as opposed to must be in Domiantes,

because the rule is specifying what must be true to guarantee safety, and the formalisation

is specifying what must be true for a violation v to occur.

The Violation schema presented below defines a memory-safety violation.

Violation

com : Com

e1 : LExpr

rc1 : RefCon

rc2 : RefCon

(rc2, rc1) 6∈Dominates ∗

The schema contains the SCJ-mSafe command com that caused the changes to the envi-

ronment that introduced the possible violation. The expression e1 and reference context

rc1 record the expression and associated reference context of the object that has caused

the violation. The reference context rc2 records the reference context used as a compari-

son to rc1 to detect the violation; for example, if e1 has been identified as the expression

that introduces an error because it is a field of another object and creates a downward

reference, the reference context rc2 records the context of the containing object. If e1 is

a local variable, rc2 records the reference context in which it was declared. Finally, if e1

is a static variable, rc2 is the immortal memory IMem.

Object fields Expressions that reference objects that are fields of other objects are

checked against the reference context of the containing object.

The second hypothesis states that for every possible pair of expressions in the reference

set (le1 and le2) such that the second expression is a field of the first, the worst-case map-

ping from the lowest possible reference context of the field to the highest possible reference

context of the containing object is in the reflexive transitive closure of the Dominates re-

lation. More specifically, this states that all fields of an object must reside in reference

contexts that dominate the reference context of the containing object. The highest possible

reference context of the containing object is determined with the DominatesTop function,

which returns the highest reference context in a set. The highest reference context of the

containing object and the lowest of the field is the worst case.

The corresponding function in the formalisation to check the object fields in an en-

164

4.6 Rules for checking SCJ-mSafe programs

vironment is the mSafeEnvFields function, which takes an environment env , a command

com, and a set of local variables localVars, and returns a set of possible violations.

mSafeEnvFields : Env × Com × PLExpr 7→ PViolation

∀ env : Env ; com : Com; localVars : PLExpr

• ∃ rel : ExprShareRelation; ref : ExprRefSet | env = (rel , ref)

• mSafeEnvFields(env , com) =

{e1, e2 : dom ref ; v : Violation

| FieldOf (e1, e2) = True

∧ e2 6∈ localVars

∧ (Dominates least(ref e1),Dominates top(ref e2)) 6∈Dominates ∗

∧ v .com = com

∧ v .e1 = e1

∧ v .rc1 = Dominates least(ref e1)

∧ v .rc2 = Dominates top(ref e2)

• v}

The function analyses all expressions in the expression reference set (ref) of the environ-

ment. For every possible pair of expressions e1 and e2 in the domain of the expression

reference set, such that e1 is a field of e2 and e2 is not a local variable, there must be a

mapping from the lowest possible reference context of e1 to the highest possible reference

context of e2 in the reflexive transitive closure of the Dominates relation to be safe.

More specifically, if an expression e1 is a field of the object referenced by e2, the

reference context of the field must dominate the reference context of the containing object,

as otherwise this would be a downward reference. If the mapping is not in the Dominates

relation, the violation v is returned, and the corresponding information about the error is

recorded in the components of v .

Local variables When analysing SCJ-mSafe components that have their own local

scope, the local variables declared are analysed based on the reference context in which

they were defined, as opposed to the reference context of the containing object.

The third hypothesis states that for every possible expression in the reference set (le1)

such that the expression is a local variable, the worst-case mapping from the lowest possible

reference context of the local variable to the current reference context is in the reflexive

transitive closure of the Dominates relation. More specifically, this states that all local

variables declared whilst analysing a particular component of the SCJ-mSafe program must

reside in reference contexts that dominate the current reference context of the component

being analysed. This facilitates the checking of local variables in the environment before

165

Chapter 4: Modelling and checking memory configurations

they go out of scope.

The corresponding function in the formalisation to check the object fields in an en-

vironment is the mSafeEnvLocal function, which takes an environment env , a command

com, a set of local variables localVariables, and the current reference context rc, and

returns a set of possible violations.

mSafeEnvLocal : Env × Com × PLExpr × RefCon 7→ PViolation

∀ env : Env ; com : Com; localVars : PLExpr ; rc : RefCon

• ∃ rel : ExprShareRelation; ref : ExprRefSet | env = (rel , ref)

• mSafeEnvLocal(env , com, localVars, rc) =

{e1 : dom ref ; v : Violation

| e1 ∈ localVars

∧ (Dominates least(ref e1), rc) 6∈Dominates ∗

∧ v .com = com

∧ v .e1 = e1

∧ v .rc1 = Dominates least(ref e1)

∧ v .rc2 = rc

• v}

The expressions in ref being analysed must belong to the set of local variables localVars,

and a mapping from the the lowest possible reference context of the expression e1 to the

current reference context rc must exist in the reflexive transitive closure of the Dominates

relation to be safe. If the mapping is not in Dominates, a violation v that contains the

details of the error is returned.

Incomplete environment It is possible for environments to be incomplete when re-

cursive data structures are used in a program. When checking the environment in this

situation, there may be expressions in the environment that cannot be analysed in the

ways described above. This happens when it has not be possible to determine the ref-

erence context of the containing object for an expression that is not a static or local

variable.

Consider again the recursive data structure example described previously, but with

an additional assignment on line 9.

166

4.6 Rules for checking SCJ-mSafe programs

1 Node n;

2 Node pt = new Node();

3 n = pt;

4 while(e) {

5 pt.next = new Node();

6 pt = pt.next;

7 }

8 ...

9 n.next.next.next = x;

This example demonstrates a case where the assignment at line 9 to field

n.next.next.next cannot be checked against its containing object because the environ-

ment does not have information about the containing object n.next.next. The reference

set of the environment after line 7 has been analysed in the example is shown below.

{ n 7→ {MMem}, pt 7→ {MMem},n.next 7→ {MMem}, pt .next 7→ {MMem},
n.next .next 7→ {}, pt .next .next 7→ {} }

Assuming that the object referenced by the variable x resides in the per-release memory

area of a handler, the resulting environment after line 9 has been analysed is as follows.

{ n 7→ {MMem}, pt 7→ {MMem},n.next 7→ {MMem}, pt .next 7→ {MMem},
n.next .next 7→ {}, pt .next .next 7→ {},n.next .next .next .next 7→ {PRMem h} }

This assignment has introduced a memory-safety violation as the data structure referenced

by n resides in mission memory, as do all of the subsequent elements of the data structure

referenced by n.next, and n.next.next.... However, the assignment at line 9 creates a

downward reference from the mission memory to the per-release memory area.

What is noteworthy is that the assignment changes a more-nested field than those

identified by the calculation of the loop summary. The assignment is to a valid expression

whose containing object is not captured in the environment.

Further analysis of the environment is required to establish the necessary informa-

tion to detect the error, and maintain soundness. From the reference set shown above,

it is possible to identify the downward reference by comparing the reference context of

n.next.next.next against that of n.next, which is the object furthest into the data

structure whose expression is a prefix of the one being checked and whose set of possible

reference contexts is not empty.

It does not matter that the information about n.next.next is not known; the fact that

the environment does not contain specific information about the set of possible reference

167

Chapter 4: Modelling and checking memory configurations

contexts in which it may reside illustrates that there has been no specific assignment to

the expression. Based on the analysis of recursive data structures as explained previously,

the field n.next records the set of reference contexts in which all subsequent objects in the

data structure reside. It is therefore safe to analyse n.next.next.next against n.next

because the set of reference contexts in which n.next.next resides would be equal to that

of n.next had a complete environment been created. If an assignment to n.next.next had

occurred during the ... on line 8 (or any expression that is it aliased with), the explicit

set of reference contexts would be known, which would allow the checking of n.next.next

against its containing object n.next, and also the result of the assignment on line for

n.next.next.next against n.next.next.

The fourth hypothesis of the mSafeEnv rule is true if all expressions that have not

been checked in an environment by the first three hypotheses are safe, according to the

Dominates relation, when checked against the expression that has the longest prefix in the

environment. Expressions that are not static or local variables, and do not have another

expression in the environment such that it is a field of the second expression, are checked

against the expression in the environment with the longest prefix. Fields of static variables

and local variables are also be checked in this way.

The corresponding function in the formalisation to check incomplete environments is

the mSafeEnvIncomplete function, which takes an environment env , a command com, a

set of local variables localVariables, and the SCJ-mSafe program p being checked, and

returns a set of possible violations.

mSafeEnvIncomplete : Env × Com × PLExpr

×SCJmSafeProgram 7→ PViolation

∀ env : Env ; com : Com; localVars : PLExpr ; p : SCJmSafeProgram

• ∃ rel : ExprShareRelation; ref : ExprRefSet | env = (rel , ref)

• let uncheckedExprs == dom ref \ localVars ∪GetStaticVars p

∪
⋃
{e : dom ref • {e1 : dom ref | e 6= e1 ∧ FieldOf (e, e1) = True • e}}

• mSafeEnvIncomplete(env , com, localVars, p) =

{e1 : uncheckedExprs; e2 : LExpr ; v : Violation

| e2 = LongestPrefixOf (env , e1)

∧ (Dominates least(ref e1),Dominates top(ref e2)) 6∈Dominates ∗

∧ v .com = com

∧ v .e1 = e1

∧ v .rc1 = Dominates least(ref e1)

∧ v .rc2 = Dominates top(ref e2)

• v}
168

4.6 Rules for checking SCJ-mSafe programs

The expressions that have not been successfully checked with the first three hypotheses

are recorded in the uncheckedExprs set, which is defined as the domain of the reference

set minus the local and static variables, and any expression in the environment that is a

field of another expression in the environment.

The unchecked expressions are then checked in the same way as in the mSafeEnvFields

function defined above, except that the expression used as a comparison (e2) is determined

by the LongestPrefixOf function as opposed to the FieldOf function. The LongestPrefixOf

function takes the environment and the expression e1 as its arguments and returns an

expression from the environment that has the longest prefix of the expression e1 and

whose set of possible reference contexts is not empty.

A prefix always exists in the environment as it is not possible to reference the field of

an object that has not been declared, and if the outer-most containing object of the field

has been declared, a prefix exists.

The function that defines the mSafeEnv rule as a whole in the formalisation is shown

below; it has the same parameters as the mSafeEnv rule presented above plus the command

com that is being analysed (as this is recorded in the violation if an error is found).

mSafeEnv : Env × Com × PLExpr × RefCon

× SCJmSafeProgram 7→ PViolation

∀ env : Env ; com : Com; localVars : PLExpr ; rc : RefCon;

p : SCJmSafeProgram

• mSafeEnv(env , com, localVars, rc, p) =

mSafeEnvStatic(env , com, p)

∪ mSafeEnvLocal(env , com, localVars, rc)

∪ mSafeEnvFields(env , com, localVars)

∪ mSafeEnvIncomplete(env , com, localVars, p)

The mSafeEnv function returns a set of possible violations; the set of viola-

tions is calculated with the mSafeEnvStatic, mSafeEnvLocal , mSafeEnvFields, and

mSafeEnvIncomplete functions.

4.6.3 Commands

SCJ-mSafe commands are the things that change the environment, and are therefore

the components of SCJ-mSafe programs that can introduce memory-safety violations.

169

Chapter 4: Modelling and checking memory configurations

Commands are considered memory safe if their execution does not lead to an environment

that contains a possible memory-safety violation.

The individual mSafeCom rules that define memory safety for each SCJ-mSafe com-

mand are described below. The parameters of each mSafeCom rule are an environment,

the command being analysed, the set of local variables for the current SCJ-mSafe com-

ponent being analysed, the current expression, the current reference context, and the

SCJ-mSafe program being analysed.

Skip The Skip command is always safe as it has no behaviour, and the environment

remains unchanged.

True

mSafeCom(env ,Skip, localVars, cexpr , rc, p)

The conclusion to the mSafeCom rule when the command is Skip, is therefore always true.

Declaration As with the Skip command, declarations are always safe.

True

mSafeCom(env ,Decl d , localVars, cexpr , rc, p)

As declarations can only add new expressions to the environment, and do not change the

set of reference contexts an expression is associated with, they cannot introduce possible

memory-safety violations; therefore, the conclusion of the rule is always true.

NewInstance As mentioned in the CalcEnv functions previously, the NewInstance

command is one of the most important commands as it creates new objects and has the

potential to introduce memory-safety violations.

mSafeEnv(CalcEnvCom(env ,NewInstance(nI), cexpr , rc, p), localVars, rc, p)

mSafeCom(env ,NewInstance(nI), localVars, cexpr , rc, p)

The rule has one hypothesis, which states that the resulting environment after the new

instance command has been analysed must be memory safe according to mSafeEnv .

170

4.6 Rules for checking SCJ-mSafe programs

Assignment The assignment command is the other important command that can

introduce memory-safety violations; the rule that allows us to prove memory-safety of

assignments is shown below.

mSafeEnv(CalcEnvCom(env ,Asgn(e1, e2), cexpr , rc, p), localVars, rc, p)

mSafeCom(env ,Asgn(e1, e2), localVars, cexpr , rc, p)

As with new instance commands, the one and only hypothesis for the memory-safety of

assignments states that the resulting environment after the assignment has been analysed

must be memory safe according to mSafeEnv .

Sequence The rule for the sequence command has two hypotheses: the first states that

the first command in the sequence must be memory safe, and the second states that the

second command in the sequence must be memory safe.

mSafeCom(env , c1, localVars, cexpr , rc, p)

mSafeCom(CalcEnvCom(env , c1, cexpr , rc, p), c2, localVars, cexpr , rc, p)

mSafeCom(env ,Seq(c1, c2), localVars, cexpr , rc, p)

The first hypothesis is true if the mSafeCom function applied to the first command in

the sequence (c1) is also true; the environment passed to the function is the original

environment env . The second hypothesis is true if the mSafeCom function applied to

the second command in the sequence (c2) is also true; the environment passed to the

function is the environment env updated with the effects of c1, which are calculated with

the CalcEnvCom function.

If The rule for conditional statements is true if both the true and false branches of the

conditional are also memory safe.

mSafeCom(env , c1, localVars, cexpr , rc, p)

mSafeCom(env , c2, localVars, cexpr , rc, p)

mSafeCom(env , If (e, c1, c2), localVars, cexpr , rc, p)

The first hypothesis is true if the true branch of the conditional statement (c1) is memory

safe according to the mSafeCom function. The second hypothesis is true if the false branch

of the conditional statement (c2) is also safe according to mSafeCom.

Both commands are analysed in the same environment env , as only one path executes

171

Chapter 4: Modelling and checking memory configurations

at run-time, and it does not make sense to analyse one in the resulting environment of the

other, like in the sequence command.

Switch The rule for switch commands is similar to the rule for conditional statements.

mSafeCom(env , comseq .1, localVars, cexpr , rc, p)

...

mSafeCom(env , comseq .n, localVars, cexpr , rc, p)

mSafeCom(env ,Switch(e, comseq), localVars, cexpr , rc, p)

Switch statements are memory safe if all of the possible commands in the switch statement

are also memory safe according to the mSafeCom function (comseq .1 ... comseq .n). As

with conditional statements, all possible commands in the switch statement are analysed

in the same environment.

For For loops are memory safe if the initialisation command of the loop is safe, and the

body of the loop followed by the iteration command is also safe.

mSafeCom(env , c1, localVars, cexpr , rc, p)

mSafeCom(CalcEnvCom(env , c1, cexpr , rc, p),Seq(c2, c3), localVars, cexpr , rc, p)

mSafeCom(env ,For(c1, e, c2, c3), localVars, cexpr , rc, p)

The first hypothesis states that the initialisation command c1 of the for loop must be safe in

the environment env according to the mSafeCom function. The second hypothesis states

that the sequence Seq(c2, c3), which is the body of the loop followed by the iteration

command must be safe in the resulting environment after the command c1 has been

analysed, which is calculated by the CalcEnvCom function, according to the mSafeCom

function.

Method call Method calls are memory safe if all of the possible methods that match

the signature of the method call are safe.

∀method : GetMethodsFromSigs(mc.methods, p)

• mSafeEnv(env ′, localVars ∪m.localVars, rc, p)

mSafeCom(env ,MethodCall(mc), localVars, cexpr , rc, p)

where

env ′ = ApplyPossibleMethods(m,mc.args, env , cexpr ,mc.le, rc, p)

172

4.6 Rules for checking SCJ-mSafe programs

The hypothesis of the rule states that for all methods that may be executed as a result

of the method call, which are determined by the GetMethodsFromSigs function, each

resulting environment env ′ that is calculated with the ApplyPossibleMethods function,

must be memory safe according to the mSafeEnv function. All possible methods according

to GetMethodsFromSigs are analysed individually with the ApplyPossibleMethods function

(hence the singleton set {m} as the first argument to the call) as this identifies the specific

method, if any, that introduces an error.

The set of local variables passed as a parameter to the mSafeEnv function are the

local variables of the current component being analysed (localVars) joined with the local

variables introduced as a result of analysing the corresponding method m (m.localVars).

EnterPrivateMemory The rule for the EnterPrivateMemory command is similar to

regular method call rule presented above.

∀method : GetMethodsFromSigs(mc.methods, p)

• mSafeEnv(env ′, localVars ∪m.localVars,LowerRC (rc), p)

mSafeCom(env ,EnterPrivateMemory(mc), localVars, cexpr , rc, p)

where

env ′ = ApplyPossibleMethods(m,mc.args, env , cexpr ,mc.le,LowerRC (rc), p)

The difference here is that the reference context rc passed to the ApplyPossibleMethods

function to calculate the resulting environment for the execution of a particular method m

is first passed to the LowerRC function, which returns the next lowest reference context

based on the current context rc.

The new, lower, reference context is passed as a parameter to the mSafeEnv function

as it is the lower reference context in which the environment should be analysed.

ExecuteInAreaOf The rule for the ExecuteInAreaOf command again analyses all of

the possible methods associated with the method call mc, but it also takes into account

the set of possible reference contexts in which the object specified as the area in which

the method is to be executed, resides.

173

Chapter 4: Modelling and checking memory configurations

∀method : GetMethodsFromSigs(mc.methods, p)

• ∀ rc1 : RCsFromMRC (mrc, rc, env .ref , p)

• mSafeEnv(env ′, localVars ∪m.localVars, rc1, p)

mSafeCom(env ,ExecuteInAreaOf (mrc,mc), localVars, cexpr , rc, p)

where

env ′ = ApplyPossibleMethods(m,mc.args, env , cexpr ,mc.le, rc1, p)

The hypothesis is true if all possible methods that match the criteria of the method call

mc are safe when analysed in all possible reference contexts of the object specified as the

area in which the method is to be executed. The updated environment env ′ is calculated

based on the possible reference context rc1 of the specified object.

ExecuteInOuterArea The rule for the ExecuteInOuterArea command is very sim-

ilar to the EnterPrivateMemory command. The one difference is that the resulting

environment calculated by the ApplyPossibleMethods function takes the immediate

outer reference context that is calculated by the RaiseRC function as opposed to the

immediately lower reference context.

GetMemoryArea The GetMemoryArea command is safe if the result of analysing

the GetMemoryArea command does not produce an unsafe environment according to

mSafeEnv .

mSafeEnv(CalcEnvCom(env ,GetMemoryArea(gma), cexpr , rc, p), localVars, rc, p)

mSafeCom(env ,GetMemoryArea(gma), localVars, cexpr , rc, p)

The hypothesis is true if the resulting environment calculated by the CalcEnvCom function

when the GetMemoryArea command is analysed is memory safe according to mSafeEnv .

Try The rule for the Try command states that the try component of the try statement

must be memory safe along with all of the commands in the catch statements and also

the finally clause.

174

4.6 Rules for checking SCJ-mSafe programs

mSafeCom(env , c1, localVars, cexpr , rc, p)

∀ com : ran comseq

• mSafeCom(env ′, com, localVars, cexpr , rc, p)

mSafeCom(env ′′, c2, localVars, cexpr , rc, p)

mSafeCom(env ,Try(c1, eseq , comseq , c2), localVars, cexpr , rc, p)

where

env ′ = CalcEnvCom(env , c1, cexpr , rc, p)

env ′′ = DistEnvJoin(com : ran comseq • CalcEnvCom(env ′, com, cexpr , rc, p))

The first hypothesis is true if the try statement c1 of the try command is memory safe

according to the mSafeCom function. The second hypothesis is true if all catch commands

in comseq are memory safe in the resulting environment env ′ that is calculated by analysing

c1 with the CalcEnvCom function. Finally, the third hypothesis is true if the finally

clause c2 of the try command is memory safe according to the mSafeCom function in the

environment env ′′, which is the result of analysing the effect of all of the catch commands

with the CalcEnvCom function and joining them with the DistEnvJoin function.

While The rule for the While command is true if the result of analysing the body of

the while command is safe.

mSafeCom(env , com, localVars, cexpr , rc, p)

mSafeCom(env ,While(e, com), localVars, cexpr , rc, p)

The hypothesis is true if the body of the while loop com is also memory safe according to

mSafeCom.

DoWhile The rule for the DoWhile command is identical to the rule for the While

command presented above, and so is omitted here.

Having presented the rules for the environment and SCJ-mSafe commands, the rules

to check an entire SCJ-mSafe program are presented in a top-down approach next.

4.6.4 Overall SCJ-mSafe Program

An SCJ-mSafe program is only memory safe if all of its components are also memory

safe. The rule to describe memory safety of an entire program is shown below.

175

Chapter 4: Modelling and checking memory configurations

mSafeMethods(scjmsafe ′)

mSafeSafelet(env ′′, scjmsafe ′.safelet , scjmsafe ′)

mSafe(scjmsafe)

where

scjmsafe ′ = BuildMethodProperties(scjmsafe)

env ′ = AddDecsToEnv(∅, scjmsafe ′.static)

env ′′ = DistEnvJoin({com : scjmsafe ′.sInit • CalcEnvCom(env ′, com,null , IMem)})

The rule states that a program scjmsafe is memory safe if all of the generated method

properties are safe and if the analysis of the safelet is memory safe.

The first hypothesis that must be true checks that all of the method properties of the

SCJ-mSafe program are memory safe. Method properties are checked independently of

their execution context as it is possible to detect memory-safety violations that occur in

methods regardless of the calling context. This is achieved with mSafeMethods that takes

the SCJ-mSafe program scjmsafe ′ as its parameter, which is defined as the original SCJ-

mSafe program scjmsafe but with the method properties included. The mSafeMethods

definition is presented in the next section. The method properties are generated as speci-

fied by the BuildMethodProperties function that was described previously.

The second hypothesis that must be true checks that the analysis of the safelet is safe.

This is achieved with the mSafeSafelet function, which takes an environment, a safelet,

and the SCJ-mSafe program being analysed as its parameters. The environment passed to

the function is env ′′, which is the result of adding the static variables (scjmsafe ′.static) to

an empty environment with the AddDecsToEnv function to get env ′, and the subsequent

analysis of all the static variable initialisation commands (scjmsafe ′.sInit) in the immortal

memory area with the CalcEnvCom function.

4.6.5 Safelet

The rule for the safelet component is used by the rule for the overall program above.

It defines what must be true in order to guarantee that the safelet is memory-safety

violation free.

176

4.6 Rules for checking SCJ-mSafe programs

mSafeCom(env , s.initializeApplication,LocalVars(s.initializeApplication),

Null , IMem, p)

mSafeCom(env ′, s.getSequencer ,LocalVars(s.getSequencer),Null , IMem, p)

mSafeMissionSeq(env ′′, p.missionSeq , p)

mSafeSafelet(env , s, p)

where

env ′ = CalcEnvCom(env , s.initializeApplication,Null , IMem, p)

env ′′ = CalcEnvCom(env ′, s.getSequencer ,Null , IMem, p)

The safelet component is memory safe if the initializeApplication method,

getSequencer method, and mission sequencer components are safe.

The first hypothesis is true if the mSafeCom function applied to the

initializeApplication method (s.initializeApplication) in the immortal memory area

(IMem) is safe. The parameters passed to the function are the environment env ,

the command to be analysed (s.initializeApplication), the local variables of the

initializeApplication method, the current expression Null (as this is the top level

of execution), the current reference context (IMem), and the SCJ-mSafe program p.

The second hypothesis is true if the mSafeCom function applied to the getSequencer

method (s.getSequencer) in the immortal memory area (IMem) is safe. It uses the envi-

ronment that results from the execution of the initializeApplication method (env ′),

and is calculated with the CalcEnvCom function.

Finally, the third hypothesis is true if the mSafeMissionSeq function, which checks to

see if the mission sequencer component is memory safe, is safe. The environment env ′′

results from the execution of the getSequencer method on env ′, and is calculated with

the CalcEnvCom function.

4.6.6 Mission sequencer

The rule for the mission sequencer component is used by the safelet rule above, and

defines what must be true for the mission sequencer to be free of memory-safety violations.

177

Chapter 4: Modelling and checking memory configurations

mSafeCom(env ,mSeq .getNextMission,LocalVars(mSeq .getNextMission),

GetMissionSeqExpr(p,mSeq),MMem, p)

mSafeMissions(env ′,mSeq .missions, p)

mSafeMissionSeq(env ,mSeq , p)

where

env ′ = CalcEnvCom(env ,mSeq .getNextMission,LocalVars(ms.getNextMission),

GetMissionSeqExpr(p,mSeq),MMem, p)

The rule states that a mission sequencer mSeq is memory safe if the getNextMission

method is safe, and all of the missions are safe.

The first hypothesis is true if the mSafeCom function applied to the getNextMission

method (mSeq .getNextMission) in the mission memory area (MMem) is safe. The param-

eters of the mSafeCom function are the environment env , the command to be checked

(mSeq .getNextMission), the set of local variables defined in the command being analysed,

the expression that references the mission sequencer object, which is obtained through the

syntactic function GetMissionSeqExpr , the current reference context (MMem), and the

SCJ-mSafe program p.

The second hypothesis is true if the mSafeMissions function applied to the missions of

the mission sequencer (mSeq .missions) are memory safe. The environment env ′ in which

the missions are checked is the result of executing the getNextMission method in env ,

and is calculated with the CalcEnvCom function.

4.6.7 Missions

The rule that can be used to prove memory safety of a set of missions is the mSafeMissions

rule, which is used by the rule for mission sequencers above.

∃m : missions • mSafeMission(env ,m, p)

∧ mSafeMissions(env ′,missions \ {m}, p)

mSafeMissions(env ,missions, p)

where

env ′ = CalcEnvMission(env ,m, (GetMissionExpr(p,m)), p)

The hypothesis is true if a mission m that belongs to the set missions is safe according to

the mSafeMission function, and if all other missions that are not equal to m are also safe

according to the same mSafeMissions function, but in an environment env ′, which takes

178

4.6 Rules for checking SCJ-mSafe programs

into account the behaviour of the mission m, and is calculated with the CalcEnvMission

function.

In the hypothesis above, the application of mSafeMissions to the remaining missions

in the set missions will eventually be empty, therefore the following rule is required to

define that an empty set of missions is always safe.

True

mSafeMissions(env ,∅, p)

The mSafeMission function used in the definitions above states what must be true for a

single mission to be memory safe.

mSafeCom(env ,m.initialize,LocalVars(m.initialize),mExpr ,MMem, p)

mSafeHandlers(env ′,GetHandlers(p,m.handlers), p)

mSafeCom(env ′′,m.cleanUp,LocalVars(m.cleanUp),mExpr ,MMem, p)

mSafeMission(env ,m)

where

mExpr = GetMissionExpr(p,m)

env ′ = CalcEnvCom(env ,m.initialize,mExpr ,MMem, p)

env ′′ = CalcEnvHandlers(env ′,GetHandlers(p,m.handlers), p)

The rule states that a mission is memory safe if the initialize method is safe, the

execution of the mission’s handlers is safe, and the cleanUp method is safe.

The first hypothesis is true if the mission’s initialize method is safe according

to the mSafeCom function. The parameters passed to the mSafeCom function are the

environment env , the initialize method (m.initialize), the local variables declared during

the initialize method, the expression that references the mission object (mExpr), the

current reference context (MMem), and the SCJ-mSafe program being analysed (p).

The second hypothesis is true if the mSafeHandlers function is true, which checks the

safety of all the handlers associated with the mission (m.handlers). The environment used

to analyse the handlers (env ′) is the result of analysing the initialize method in the

original environment env ; this is calculated with the CalcEnvCom function.

Finally, the third hypothesis is true if the cleanUp method is safe according to the

mSafeCom function. The environment used to analyse the cleanUp method (env ′′) is the

result of applying CalcEnvHandlers to the set of handlers in the environment env ′.

179

Chapter 4: Modelling and checking memory configurations

4.6.8 Handlers

The rule that can be used to prove memory safety of a set of handlers is the mSafeHandlers

rule, which is used by the rule for missions above.

∃ h : handlers • mSafeHandler(env , h,GetHandlerExpr(p, h,m), p)

∧ mSafeHandlers(env ,m, handlers \ {h}, p)

mSafeHandlers(env ,m, handlers, p)

where

env ′ = CalcEnvHandler(env , h, (GetHandlerExpr(p, h,m)), p)

In order for the rule to be true, the set of handlers (handlers) must be memory safe.

The hypothesis is true if a handler h that belongs to handlers is safe according to the

mSafeHandler function, and all other handlers that are not equal to h are also safe ac-

cording to the same mSafeHandlers function, but in an environment env ′, which takes

into account the behaviour of the handler h, and is calculated with the CalcEnvHandler

function.

In the hypothesis above, the application of mSafeHandlers to the remaining handlers

in the set handlers will eventually be empty, therefore the following rule is required to

define that an empty set of handlers is always safe.

True

mSafeHandlers(env ,m,∅, p)

The mSafeHandler rule used above states what must be true for a single handler to be

memory safe.

mSafeCom(env , h.handleEvent ,LocalVars(h.handleEvent), hExpr ,PRMem h, p)

mSafeHandler(env , h, hExpr , p)

where

hExpr = GetHandlerExpr(p, h,m)

The rule states that a handler is memory safe if the handleEvent method is safe. The

hypothesis is true if the handler’s handleEvent method is safe according to the mSafeCom

function. The parameters passed to the mSafeCom function are the environment env ,

the handleEvent method (h.handleEvent), the local variables declared during the

180

4.7 Checking method properties for memory-safety violations

handleEvent method, the expression that references the handler object (hExpr), the

current reference context, which is the per-release memory area of the handler being

analysed (PRMem h), and the SCJ-mSafe program being analysed (p).

The above memory-safety inference rules define what must be true for an SCJ-

mSafe program to be memory safe. When applied to a program, if all hypotheses of

all rules are true, then the program does not contain any possible memory-safety viola-

tions. If, however, one or more of the hypotheses are found to be false during the analysis,

then that particular component may introduce a memory-safety violation.

By checking the environment after each command, it is possible to determine the exact

location of a possible violation.

4.7 Checking method properties for memory-safety viola-

tions

This section describes how the checking technique establishes whether a possible memory-

safety violation may occur based on the information recorded in method properties.

Like the Dominates relation for reference contexts defined previously, the

MRCDominates relation describes what it means for relations between meta-reference

contexts to be safe.

MRCDominates : MetaRefCon↔MetaRefCon

MRCDominates = {e : LExpr ; mrc : MetaRefCon • (Erc e 7→mrc)}
∪{x : N • (CurrentPlus x 7→ CurrentPlus(x − 1))}
∪{(CurrentPlus 0 7→ Current)}
∪{(Current 7→ CurrentPrivate 0)}
∪{x : N • (CurrentPrivate x 7→ CurrentPrivate(x + 1))}
∪{rcs1, rcs2 : PRefCon

| Dominates least rcs1 7→Dominates top rcs2 ∈ Dominates ∗

• (Rcs rcs1 7→ Rcs rcs2)}

The first part of the above definition states that any Erc meta-reference context dominates

all other meta-reference contexts. In other words, if the location of an object is dependent

on that of another expression that is not in the scope of the method properties being

checked, then no decision can be made as to whether or not it is memory safe. Therefore

the Erc meta-reference context dominates all others as the possibility of a memory-safety

181

Chapter 4: Modelling and checking memory configurations

violation cannot be checked until applied to an environment.

The next set of relations state that all CurrentPlus(x) meta-reference contexts dom-

inate those with a lower nesting level (CurrentPlus(x − 1)). For example, if an object

resides in CurrentPlus(2) (three meta-reference contexts above the Current context), then

it dominates another meta-reference context CurrentPlus(1), which resides only two meta-

reference context above the Current context.

The third part of the definition states that CurrentPlus(0) dominates Current , which

is true as CurrentPlus meta-reference contexts represent reference contexts that are higher

than the current reference context in the hierarchy. The next two parts of the definition

state that Current dominates CurrentPrivate(0), which is the first private meta-reference

context below Current , and that a meta-reference context CurrentPrivate(x) dominates a

more nested context CurrentPrivate(x +1). This is because CurrentPrivate meta-reference

contexts represent reference contexts that are more-nested than the current reference con-

text; that is, they are in a lower memory area.

The final part of the definition states that for two Rcs meta-reference contexts with

possible sets of reference contexts rcs1 and rcs2 respectively, Rcs rcs1 dominates Rcs rcs2

if, and only if, the lowest possible reference context of rcs1 dominates the highest possible

reference context of rcs2 according to the reflexive transitive closure of Dominates.

Using the MRCDominates relation above, it is possible to check method properties for

possible memory-safety violations before the analysis of the program. Any memory-safety

violations detected are independent of the execution, which therefore means the method

in which the violation is detected is never safe, regardless of its calling point.

Method properties are checked in the same way as environments, that is, expressions

in the method reference set that are fields of other expressions are compared against each

other, and local variables are compared against the Current meta-reference context.

4.8 Rules for checking method properties

This section defines the memory-safety rules for method properties. As above, each rule

has a set of hypotheses that must be true in order for conclusion of the rule to be true.

182

4.8 Rules for checking method properties

4.8.1 Method properties

The rule that defines what it means for a method’s properties to be memory safe is

mSafeProperties shown below.

∧ ∀(le1, refSet1), (le2, refSet2) : ref |
FieldOf (le1, le2) •
∀(mrc1 : refSet1), (mrc2 : refSet2) •

mrc1 7→mrc2 ∈ MRCDominates ∗

∧ ∀(le1, refSet1) : ref •
le1 ∈ m.localVars

∧ ∀(mrc1 : refSet1) •
mrc1 7→ Current ∈ MRCDominates ∗

∧ ∀(le1, refSet1) : ref |
le1 6∈m.localVars

∧ (¬ ∃(le2, refSet2) : ref • FieldOf (le1, le2)) •
∃(le3, refSet3) | le3 = longestPrefixOf (properties, le1) •
∀(mrc1 : refSet1), (mrc3 : refSet3) •
∧ mrc1 7→mrc3 ∈ MRCDominates ∗

mSafeProperties(m, properties)

where

properties = (share, ref)

The mSafeProperties rule is similar to the mSafeEnv rule in the sense that it checks all

fields and local variables recorded in the method properties for possible memory-safety vio-

lations. It also checks expressions that are not checked by the first and second hypotheses,

which check the fields and local variables respectively.

The first hypothesis, which checks the fields of objects, states that for every pair of

entries in the method reference set of the method properties such that the expression of

the second pair is a field of the expression of the first pair, there must be a mapping from

all possible meta-reference contexts of the second expressions to all possible meta-reference

contexts of the first expression in the reflexive transitive closure of the MRCDominates

relation.

The second hypothesis, which checks local variables, states that for every entry in the

method reference set of the method properties such that the entry’s expression is a local

variable, there must be a mapping from all possible meta-reference contexts associated with

183

Chapter 4: Modelling and checking memory configurations

the expression to the Current meta-reference context in the reflexive transitive closure of

the MRCDominates relation.

The third hypothesis, which checks expressions in the method properties that have not

been checked by the first and second hypotheses, states that for every entry in the method

reference set of the method properties such that the expression is not a local variable,

and there is no other expression such that the first is a field of the second, there must

be a mapping from all possible meta-reference contexts of the unchecked expression to all

possible meta-reference contexts of the expression with the longest prefix in the reflexive

transitive closure of the MRCDominates relation.

Unlike in the mSafeEnv rule, it may be possible that a longest prefix of an expression

does not exist inside a method’s properties, which means the expression remains unchecked

until the properties are applied to an environment. This is because the containing object

may be defined outside the scope of the method, and is not known until the properties are

added to an environment.

4.8.2 All method properties

To ensure that all methods of an SCJ-mSafe program are memory safe, the mSafeMethods

rule is defined below, which takes an SCJ-mSafe program as its parameter, and checks

all of the methods for possible memory-safety violations.

∀m : p.safelet .methods

∪ p.missionSeq .methods

∪
⋃
{m : p.missions • m.methods}

∪
⋃
{h : p.handlers • h.methods}

∪
⋃
{c : p.classes • c.methods}

• mSafeProperties(m,m.properties)

mSafeMethods(p)

The hypothesis of this rule states that for all methods in every SCJ-mSafe component in

an SCJ-mSafe program p, the mSafeProperties rule must be true for each.

Once an SCJ program has been translated to SCJ-mSafe, and the method properties

have been generated, the two rules above can be used to prove that no possible memory-

safety violations exist inside methods when analysed independently of their calling context.

The mSafeMethods definition is used by the mSafe rule described above, which checks the

184

4.9 Final considerations

overall SCJ-mSafe program.

4.9 Final considerations

This chapter has presented the environment and method properties used to record the

necessary information during the analysis of an SCJ-mSafe program in order to facilitate

memory-safety checking. The corresponding formalisation of the environment and method

properties has been presented here in Z; the full analysis formalisation can be found

in Appendix E. This chapter has also described how the analysis maintains an up-to-

date representation of the environment and method properties based on the semantics of

individual SCJ-mSafe components.

This chapter has also presented the memory inference rules that characterise a tech-

nique to prove that an SCJ-mSafe program component is memory safe; the rules for

memory-safe method properties have also been presented. The corresponding formalisa-

tion of the checking technique for environments and method properties has been presented

in Z; the full checking formalisation can also be found in Appendix E.

The Z formalisation presented in this thesis has been developed and type checked using

Z-Eves [38], however, no formal proof of its correctness has been carried out. In order to

prove that the technique is correct, that is, to prove that a memory-safety violation in

an SCJ program will be detected when translated to SCJ-mSafe and analysed with the

technique defined in this chapter, a formal semantics of SCJ and its memory model must

be defined. The definition of the SCJ memory model defined in the UTP discussed in

Chapter 2 ([11]) is a good starting point for this; a complete semantics for SCJ that

caters for its memory model does not exist yet.

The next chapter demonstrates how the overall technique presented in this thesis is

applicable to SCJ programs. A number of specific test cases that produce memory-safety

violations are presented, along with details of how the technique has been applied to

several larger case studies.

185

Chapter 5

TransMSafe and examples

In order to evaluate the technique, a tool to check SCJ programs for possible memory-

safety violations has been developed. The TransMSafe tool is described in Section 5.1,

which implements the translation strategy defined in Chapter 3 and the checking strategy

defined in Chapter 4. The tool, along with all of the examples described here and more,

can be downloaded from [3].

A series of individual case studies that test specific features of the SCJ language are

defined and applied to the tool. All of the individual examples illustrate how the features

of SCJ can introduce possible memory-safety violations. Section 5.2 defines a series of

examples that use the enterPrivateMemory and executeInAreaOf methods, and intro-

duce possible memory-safety violations. It also illustrates how concurrency of Level 1

programs can introduce possibilities of memory-safety violations that do not occur at

Level 0. Section 5.3 illustrates the applicability of the technique to larger case studies,

and describes the possible memory-safety violations found when analysing them. Finally,

Sections 5.4 and 5.5 evaluate the technique based on the results of the examples and draw

some conclusions.

5.1 TransMSafe

The formalised translation from SCJ to SCJ-mSafe described in Chapter 3 has been fully

automated in a tool called TransMSafe [3]. The tool is an extension to the tool described

in [54]. The existing tool is implemented in Java and uses third-party utilities and libraries

including the compiler tree API [2] to aid analysis and translation of SCJ programs; it is

tailored for modifications and extensions.

187

Chapter 5: TransMSafe and examples

Figure 5.1: Class diagram for the MSafeProgram class

The SCJ-mSafe model presented in Chapter 3 is encoded in Java in the implementation.

Types defined in the model are represented as Java classes; components of definitions in

the model are represented as fields of the class. Functions in the model are defined as

methods in the implementation; the parameter types and return types correspond to the

types in the model.

The overall architecture of the TransMSafe tool is split into three main parts. The

first is the set of classes used to model SCJ-mSafe programs, the second is the set of

translation classes that correspond to the Translate functions, and the third is the set of

checking classes that correspond to the CalcEnv and mSafe functions. It is important to

note that the implementation of the tool is an accurate representation of the formalisation

so that examples can be applied to verify the technique is correct. To ensure this is the

case, every component of the formalisation has a corresponding class or method in the

implementation.

Figure 5.1 shows a class diagram of the MSafeProgram class, which represents the

overall SCJ-mSafe program. As shown in the diagram, the class contains fields for each

188

5.1 TransMSafe

Figure 5.2: Class diagram for the MSafeSuperClass class

Figure 5.3: Class diagram for the MSafeMission class

component of the program, and has add methods for each.

All classes in SCJ-mSafe, including the paradigm classes, inherit from the

MSafeSuperClass class, which is shown in Figure 5.2. The MSafeSuperClass contains

components that are common to all classes in SCJ-mSafe, including the name, fields, field

189

Chapter 5: TransMSafe and examples

Figure 5.4: Class diagram for the MissionComponentVisitor class

initialisation commands, constructors, and class methods.

Figure 5.3 shows the class diagram of the MSafeMission class, which represents SCJ-

mSafe missions. The additional components here include the initialize method, clean-up

method, and the associated handlers.

The TransMSafe tool uses the Java compiler tree API [2] to analyse the individual com-

ponents of the input SCJ program and translate them into SCJ-mSafe. Each component

has its own visitor, which is implemented as an extension of the Java SimpleTreeVisitor

class. These visitors execute the corresponding visitX method, where X corresponds to

the type of tree being analysed; for example, the visitIf method is used to identify and

translate conditional statements.

These component visitors correspond to the individual Translate functions de-

fined in Chapter 3. The TranslateMission function is implemented via the class

MissionComponentVisitor, which analyses the variables and methods inside the class,

and builds up the SCJ-mSafe mission (MSafeMission). Figure 5.4 shows the

MissionComponentVisitor class diagram. The visitMethod and visitVariable meth-

ods are overridden from the SimpleTreeVisitor class to perform the translation.

The automatic translation has been successfully applied to several case studies and

specific test cases that are discussed later in this chapter.

The formalised environment and method properties, and their corresponding calcu-

lation functions described in Chapter 4 have also been fully automated in the TransM-

Safe tool. The tool uses the translated SCJ program in SCJ-mSafe and checks for

possible memory-safety violations.

190

5.1 TransMSafe

Figure 5.5: Class diagram for the ShareRelation class

The models of the environment and method properties are translated into Java classes

in the implementation. The functions used to generate method properties and update

the environment during the analysis are defined as individual methods in Java. Like in

the implementation of the translation, a class or method exists for each component of the

model to ensure the implementation is a true representation of the formalisation.

Figures 5.5 and 5.6 show the expression share relation class ShareRelation and expres-

sion reference set class RefSet respectively. These correspond to the ExprShareRelation

and ExprRefSet components of the environment.

As shown in Figure 5.5, the ShareRelation class has a field shares, which stores a

set of Share objects. Each Share object has two fields that represent the left and right

expressions of an individual mapping in an expression share relation.

The methods in the ShareRelation class correspond to the functions of the formal-

isation. For example, the addShare and addShares methods are used to add singular

and multiple Share objects into the share relation; these correspond to the ExprShareAdd

and ExprShareAddSet functions respectively. The getShares method is used to return

all shares in the set shares that have the expression passed as a parameter in them;

this gives the same functionality as the domain or range restriction functions in Z. The

matchingExprsInShareRelation method is used to return a set of expressions that ref-

erence the same object based on the shares in the shares set. In Z, this is achieved with

the domain and range restriction operators on the expression share relation.

Figure 5.6 shows that the RefSet class has a field refSet, which stores a set of

RefMapping objects. Each RefMapping object has two fields that represent the left ex-

191

Chapter 5: TransMSafe and examples

Figure 5.6: Class diagram for the RefSet class

pression and a set of possible reference contexts of an individual mapping in an expression

reference set.

The methods in the RefMapping class also correspond to the functions of the for-

malisation. For example, the addRefMapping and addRefMappings methods are used

to add RefMapping objects to the set refSet; these correspond to the ExprRefAdd and

ExprRefAddSet functions respectively. The getRefMapping method takes an expression

and returns the RefMapping object in the reference set that has the same expression. In Z,

this is achieved by restricting the domain of the expression ref to the particular expression.

The updateRefSet method takes a RefMapping object and updates the corresponding en-

try in the reference set with the same expression to include all reference contexts from the

new and existing RefMapping object; this corresponds to the ExprRefUpdate function.

The automatic analysis of environments and method properties has been successfully

applied to several case studies and specific test cases that have been automatically trans-

lated to SCJ-mSafe.

The formalised memory inference rules also described in Chapter 4 have been fully

automated in the TransMSafe tool. Figure 5.7 shows the SCJmSafeChecker class which

is responsible for the overall checking of the program.

As shown in Figure 5.7, the SCJmSafeChecker class contains fields that store references

to the names and expressions of all the components of an SCJ-mSafe program; these fields

store syntactic information generated from SCJ-mSafe programs, and correspond to the

results of functions like GetMissionExpr and GetHandlerExpr in the formalisation. It

192

5.2 Examples

Figure 5.7: Class diagram for the SCJmSafeChecker class

also includes individual methods to check the corresponding components of a program,

for example checkMissions and checkHandlers, which correspond to the mSafeMissions

and mSafeHandlers rules respectively. These are called by the checkProgram method,

which implements the checking technique for the entire SCJ-mSafe program stored in the

field SCJmSafePROGRAM.

5.2 Examples

This sections describes a number of specific test cases that illustrate how SCJ-specific com-

ponents may introduce memory-safety violations. In particular, the examples include the

use of the enterPrivateMemory method, the executeInAreaOf method, and concurrency.

5.2.1 Unit testing

During the development of the translation and checking tool, a series of specific test

cases were used to ensure the behaviour that had been specified in the formalisation was

correct. These examples included complex nested expressions and commands to ensure

193

Chapter 5: TransMSafe and examples

the translation was extracting side effects correctly, all the way to simple assignments

during the checking phase to ensure that fields and equal expressions were being updated

correctly.

During the translation from SCJ to SCJ-mSafe, it was important to test that each

individual command and expression in SCJ was translated correctly into the corresponding

SCJ-mSafe command or expression. Once complete, it was necessary to make the SCJ

commands and expressions more complex, that is, embed commands and expressions inside

other commands and expressions, and ensure that the translation extracted the side effects

appropriately, and where necessary introduced the relevant new variables to ensure there

were no embedded side effects in commands in SCJ-mSafe. It was also important to

ensure that the SCJ paradigm classes were being identified correctly and translated into

the dedicated SCJ-mSafe component.

During the checking of SCJ-mSafe programs, the unit tests ensured that the method

properties and environment were updated correctly after every possible SCJ-mSafe com-

mand. For some commands, this was simple, as it was sufficient to check that no changes

were being made; for example, the Skip command. Other commands, however, such as

the assignment command, required more extensive testing. As identified in the previous

chapter, the assignment command updates the environment in several different ways de-

pending on the structure of the assignment itself. For example, an assignment to a field of

an object where there exists an aliasing for that object in the environment is much more

complicated than that of a simple primitive value assignment.

5.2.2 EnterPrivateMemory example

The enterPrivateMemory method executes a runnable object in a new temporary private

memory area that is lower in the hierarchy than the current memory area. This introduces

the possibility to create new objects in a lower memory area, and the potential to create

references to these objects from reference variables that reside in higher memory areas.

For example, consider the simple example shown in Figure 5.8. In the handler’s

handleAsyncEvent method, a new object of type A is created and assigned to the local

variable a; this object resides in the per-release memory area associated with the handler.

The variable a is then passed as a parameter to the instantiation of the MyRunnable object

referenced by the local variable myRun, which also resides in the per-release memory area.

The MyRunnable class constructor assigns the reference passed as a parameter to

194

5.2 Examples

its own field called aField. At this point, the local variable a inside the handler’s

handleAsyncEvent method and the field aField inside the instance of MyRunnable refer-

enced by myRun are aliased.

The final line of the handleAsyncEvent method calls the enterPrivateMemory method

with the myRun variable as its parameter. This executes the run method of the MyRunnable

class referenced by myRun in a new temporary private memory area associated with the

handler. The run method creates a new object of type Object inside the temporary-private

memory area and assigns it to the field o of the local field aField.

An extract of the reference set of the environment at the end of the execution of the

handleAsyncEvent method is shown below.

{
sequencer 7→ {IMem},
sequencer .mission 7→ {MMem},
sequencer .mission.handler 7→ {MMem},
sequencer .mission.handler .a 7→ {PRMem(MyHandler)},
sequencer .mission.handler .a.o 7→ {TPMem(MyHandler , 0)},
sequencer .mission.handler .myRun 7→ {PRMem(MyHandler)},
sequencer .mission.handler .myRun.aField 7→ {PRMem(MyHandler)},
sequencer .mission.handler .myRun.aField .o 7→ {TPMem(MyHandler , 0)},
...

}

As shown from this extract, the field sequencer.mission.handler.myRun.aField.o

(or sequencer.mission.handler.a.o) resides in the first temporary private mem-

ory area associated with the handler (TPMem(MyHandler , 0)). Its containing ob-

ject sequencer.mission.handler.myRun.aField (or sequencer.mission.handler.a)

resides in the per-release memory area of the handler (PRMem(MyHandler)).

The execution of the run method in a new temporary private memory area through

the enterPrivateMemory method call has introduced a possible memory-safety violation.

The error is reported to the user as a possible violation because of the inherent nature of a

worst-case analysis; whilst an error is guaranteed to be found, all reported errors may not

be actual errors. To avoid confusion, the term possible is used as opposed to definite, for

example. The resulting of analysing this example with the tool is the error message below

that demonstrates the technique’s ability to automatically find the potential memory

violation.

195

Chapter 5: TransMSafe and examples

1 public class MyHandler extends PeriodicEventHandler {

2
3 ...

4
5 public void handleAsyncEvent () {

6 A a = new A();

7 MyRunnable myRun = new MyRunnable(a);

8 ManagedMemory.enterPrivateMemory (1, myRun);

9 }

10
11 class MyRunnable implements Runnable {

12 A aField;

13
14 public MyRunnable(A arg) {

15 aField = arg;

16 }

17
18 public void run() {

19 aField.o = new Object ();

20 }

21 }

22 }

Figure 5.8: Example of possible memory-safety violation introduced by the enterPrivate-
Memory method.

POSSIBLE MEMORY SAFETY VIOLATION - The field ‘se-

quencer.mission.handler.myRun.aField.field’ may reference an ob-

ject stored in ‘TPMem(MyHandler, 0)’ when its containing

object ‘sequencer.mission.handler.myRun.aField’ may reside in

‘PRMem(MyHandler)’

This is an important example as it illustrates how the passing of references to runnable

objects may cause memory-safety violations when the corresponding run method is ex-

ecuted in a lower memory area. This type of error is not restricted to the per-release

and temporary-private memory areas shown in the example above. It may also arise in

the initialize method of a mission where an object that resides in mission memory is

passed as a reference to a runnable object that executes in a temporary private memory

area associated with the mission. Similarly, if an object that resides in a temporary private

memory area is passed as a reference to a runnable object that executes in a more nested

temporary private memory area, the same error may arise.

The two other main techniques that are capable of detecting memory-safety violations

of Level 1 SCJ programs are the SCJChecker [45] and bytecode analysis [14] techniques;

both of these techniques are capable of detecting this type of error.

196

5.2 Examples

In order for the SCJChecker to detect this error, it would be necessary to define

annotations that specify which memory areas the MyRunnable and A classes must reside

in, along with the memory area in which the runnable object’s run method executes in.

With these annotations, at the point of the new instantiation inside the run method, the

SCJChecker is able to identify that the new object stored in a field of the A class does not

reside in the same memory area in which objects of class A must reside.

The bytecode checker is able to detect the error using a similar method to the technique

presented here. Neither the bytecode checking technique nor the technique presented here

rely on annotations in order to check for possible memory-safety violations. In addition,

neither technique restrict instances of the MyRunnable or A classes to a particular memory

area.

5.2.3 ExecuteInAreaOf example

The executeInAreaOf method executes a runnable object in the memory area of a par-

ticular object. This introduces the possibility of creating new objects in memory areas

other than the current memory area. Like in the example above, this may introduce the

possibility of downward references.

For example, consider the example shown in Figure 5.9. In this example, the handler

field handlerField is declared and instantiated in the mission memory area, because the

handler object itself resides in the mission memory area. When the handleAsyncEvent

method executes, the per-release memory area for the handler is entered. The local variable

data is instantiated with a new object that resides in the per-release memory area. The

local variable data is then passed to the constructor of the MyRunnable class on line 9 and

is stored in the field runField of the object referenced by myRun.

When the runnable object referenced by myRun is passed as an argument to the

executeInAreaOf method, the run method is executed in the same memory area as the

first argument passed to the executeInAreaOf method. In this example, the first argu-

ment is the handlerField variable, which references an object that resides in mission

memory; the run method is therefore executed in mission memory.

The run method assigns the local field runField to the handler field handlerField.

As the local field runField references an object that was instantiated in the per-release

memory area of the handler (line 8), and handlerField is a field of the handler object

that resides in mission memory, a possible downward reference is introduced. The resulting

197

Chapter 5: TransMSafe and examples

1 public class MyHandler extends PeriodicEventHandler {

2
3 Object handlerField = new Object ();

4
5 ...

6
7 public void handleAsyncEvent () {

8 Object data = new Object ();

9 MyRunnable myRun = new MyRunnable(data);

10 ManagedMemory.executeInAreaOf(handlerField , myRun);

11 }

12
13 class MyRunnable implements Runnable {

14 Object runField;

15
16 public MyRunnable(Object arg) {

17 runField = arg;

18 }

19
20 public void run() {

21 handlerField = runField;

22 }

23 }

24 }

Figure 5.9: Example of possible memory-safety violation introduced by the exe-
cuteInAreaOf method.

environment after the handleAsyncEvent method has executed is shown below.

{
sequencer 7→ {IMem},
sequencer .mission 7→ {MMem},
sequencer .mission.handler 7→ {MMem},
sequencer .mission.handler .handlerField 7→ {MMem,PRMem handler},
sequencer .mission.handler .data 7→ {PRMem handler},
sequencer .mission.handler .myRun 7→ {PRMem handler},
sequencer .mission.handler .myRun.runField 7→ {PRMem handler},
...

}

As shown in the environment above, sequencer .mission.handler .handlerField has two

possible reference contexts in which the referenced object may reside. This is because

the field is instantiated at the point of declaration when the handler object is cre-

ated, and so may reside in the mission memory area (MMem), but also the later as-

signment as part of the executeInAreaOf method call introduced the possibility of

sequencer .mission.handler .handlerField referencing an object that resides in the per-

release memory area associated with the handler.

198

5.2 Examples

As sequencer .mission.handler .handlerField is a field of sequencer .mission.handler ,

it is checked against the location in which sequencer .mission.handler may reside. In

this example, sequencer .mission.handler resides in mission memory (MMem). There is

a possibility that sequencer .mission.handler .handlerField may reside in the per-release

memory PRMem handler , therefore, a potential memory-safety violation is raised. The

tool produces the following error message.

POSSIBLE MEMORY SAFETY VIOLATION - The field ‘se-

quencer.mission.handler.handlerField’ may reference an object

stored in ‘PRMem(MyHandler)’ when its containing object ‘se-

quencer.mission.handler’ may reside in ‘MMem’

As in the previous example, this executeInAreaOf example illustrates how the passing

of references to runnable objects that execute in different memory areas may introduce

memory-safety violations. This example is useful to highlight two possible sources of errors

in SCJ programs. The first is that despite the fact that the runnable object in this example

is being executed in a memory area higher than the current memory area, it is still possible

to introduce possible memory-safety violations with the executeInAreaOf method. The

second is that fields of handlers cannot be instantiated or assigned new objects that are

created in the per-release memory area, or more specifically during the handleEvent

method of the handler. This is because handler fields must reside in the mission memory

or higher, as handler objects themselves are created in the mission memory, and new

objects instantiated inside the handleEvent method reside in the per-release memory

area of the handler.

The executeInOuterArea method can also produce possible memory-safety violations

in the same way as the executeInAreaOf method. The main difference between the two

methods is that the executeInOuterArea method executes runnable objects in the im-

mediately outer scope whilst the executeInAreaOf method executes them in the memory

area of any object passed as an argument.

The SCJChecker would prevent this type of memory-safety violation occurring as it

would not be possible to create a new instance of the object referenced by the handler field

handlerField in the mission memory and then another referenced by the local variable

data in the per-release memory area. This is because in order to facilitate checking, a

scope annotation would be required on the class being instantiated, which would restrict

199

Chapter 5: TransMSafe and examples

1 public class MyHandler1 extends PeriodicEventHandler {

2
3 A sharedData;

4 MemoryArea iMemRef;

5 MemoryArea mMemRef;

6
7 public MyHandler1(PriorityParameters priority ,

PeriodicParameters release , StorageParameters storage ,

A data , MemoryArea iMem , MemoryArea mMem) {

8 super(priority , release , storage);

9 sharedData = data;

10 iMemRef = iMem;

11 mMemRef = mMem;

12 }

13
14 public void handleAsyncEvent () {

15 sharedData.entry = (A) iMemRef.newInstance(A.class);

16 ...

17 sharedData.entry = (A) mMemRef.newInstance(A.class);

18 }

19 }

Figure 5.10: Example of possible memory-safety violation introduced through concurrency:
MyHandler1.

objects of that type to a particular memory area. In order to cater for this type of example,

where instances of a class resides in two different memory areas, class duplication would

be required, which this technique does not require.

The bytecode analysis technique is not currently capable of handling the

executeInAreaOf method, and therefore would not be able to handle this example. This

restriction is not imposed through a limitation of the bytecode technique, and support

could be added relatively easily.

5.2.4 Concurrency example

Level 1 SCJ programs introduce the possibility of concurrency. The previous chapter

described how the technique handles concurrency. As an example, we consider the event

handler shown in Figure 5.10, which is an implementation of the example presented in

Figure 4.9. This event handler contains a local field sharedData that references an object

stored in mission memory; a reference to this object is passed to all the handlers in the

program so that data can be shared between them. The handler defines local fields that

contain references to the immortal and mission memory areas respectively, which are also

passed as arguments to the constructor.

During the handleAsyncEvent method of the handler, the field entry of the object

200

5.2 Examples

1 public class MyHandler2 extends PeriodicEventHandler {

2
3 A sharedData;

4 MemoryArea mMemRef;

5
6 public MyHandler2(PriorityParameters priority ,

PeriodicParameters release , StorageParameters storage ,

A data , MemoryArea mMem) {

7 super(priority , release , storage);

8 sharedData = data;

9 mMemRef = mMem;

10 }

11
12 public void handleAsyncEvent () {

13 ...

14 sharedData.entry.field = (A)

mMemRef.newInstance(A.class);

15 ...

16 }

17 }

Figure 5.11: Example of possible memory-safety violation introduced through concurrency:
MyHandler2.

referenced by the expression sharedData is instantiated twice; firstly in the immortal mem-

ory area, and secondly in the mission memory area. This is done with the newInstance

command, which returns a reference to a newly created object in a particular memory

area.

When considering the behaviour of this handler independently, all seems fine. This

is because the object referenced by sharedData resides in mission memory, and the field

entry either resides in the immortal memory area, which is an upward reference, or in

the mission memory, which is the same memory area. The resulting environment after the

handleAsyncEvent method has been analysed is shown below.

{
sequencer 7→ {IMem},
sequencer .mission 7→ {MMem},
sequencer .mission.handler1 7→ {MMem},
sequencer .mission.handler1.iMemRef 7→ {IMem},
sequencer .mission.handler1.mMemRef 7→ {MMem},
sequencer .mission.handler1.sharedData 7→ {MMem},
sequencer .mission.handler1.sharedData.entry 7→ {MMem, IMem},
...

}

In the environment above, no memory-safety violations may occur as all references are

201

Chapter 5: TransMSafe and examples

either in the same memory area or up the hierarchy.

The second handler in the program is shown in Figure 5.11. This handler also

contains a field that references the shared data object stored in the mission memory

area. During the execution of the handleAsyncEvent method of this handler, the field

sharedData.entry.field is instantiated with a new object that resides in the mission

memory area. When analysed on its own, this behaviour is fine because the object ref-

erenced by sharedData resides in the mission memory area, and so does the new object

that is being created.

However, it may be true that these handlers execute concurrently, which introduces the

possibility that the expression sharedData.entry.field references an object that resides

in mission memory while its containing object referenced by sharedData.entry resides

in the immortal memory area. This introduces a possible memory-safety violation as a

downward reference exists from sharedData.entry to sharedData.entry.field. The

resulting environment after both handlers have been analysed is shown below.

{
sequencer 7→ {IMem},
sequencer .mission 7→ {MMem},
sequencer .mission.handler1 7→ {MMem},
sequencer .mission.handler1.iMemRef 7→ {IMem},
sequencer .mission.handler1.mMemRef 7→ {MMem},
sequencer .mission.handler1.sharedData 7→ {MMem},
sequencer .mission.handler1.sharedData.entry 7→ {MMem, IMem},
sequencer .mission.handler1.sharedData.entry .field 7→ {MMem},
sequencer .mission.handler2 7→ {MMem},
sequencer .mission.handler2.mMemRef 7→ {MMem},
sequencer .mission.handler2.sharedData 7→ {MMem},
sequencer .mission.handler2.sharedData.entry 7→ {MMem, IMem},
sequencer .mission.handler2.sharedData.entry .field 7→ {MMem},
...

}

Without the history element of the environment, the fact that sharedData.entry ever

referenced an object that resides in the immortal memory area would be lost, as it is

overwritten with a reference to an object that resides in the mission memory later in the

execution. During the analysis of the second handler, the tool outputs the following error

message.

202

5.3 Case studies

POSSIBLE MEMORY SAFETY VIOLATION - The field ‘se-

quencer.mission.handler2.sharedData.entry.field’ may reference

an object stored in ‘MMem’ when its containing object ‘se-

quencer.mission.handler2.sharedData.entry’ may reside in ‘IMem’

The history maintained in the environment makes it possible to detect errors that are

only introduced through concurrent execution of handlers. It also allows the technique to

analyse missions and handlers independently of the actual execution order in the program.

The SCJChecker is capable of handling concurrency because restrictions are put in

place at the point of code annotation rather than program analysis. More specifically, it

would not be possible to specify annotations for the example program presented here for

the SCJChecker. This is because the instantiation of the two objects in the first handler’s

handleAsyncEvent method are in different memory areas, which is not possible in the

SCJChecker as a necessary scope annotation would restrict instances of the class to a

particular memory area. In order to get around this limitation, code duplication would

be required.

The bytecode analysis technique is capable of handling Level 1 programs [14], however

there is no description in published material that explains how the technique handles

concurrency. Subsequently it is not clear how, if at all, the technique is able to handle

examples such as this.

5.3 Case studies

The examples above describe specific cases that may produce memory-safety violations

in a program. These small examples illustrate that the technique is capable of detecting

violations, however the application of the technique to larger case studies is also interesting.

Figure 5.12 shows a table with the data for the case studies and examples above run

through the tool; the case studies are discussed individually below.

CDx One of the most interesting examples discussed in the SCJ literature is the collision

detector simulator (CDx) [21]. The CDx is a flight collision detection algorithm that

calculates the possible collisions of aircraft based on their position and movement, and is

a benchmark for SCJ. This example is interesting because it makes use of the new SCJ-

specific methods that have a direct impact on memory; the executeInAreaOf method

203

Chapter 5: TransMSafe and examples

Example LOC Analysis time Expected Errors False
(secs) errors found negatives

ACCS 847 1.8 0 0 0

CDx 2,852 16.5 0 1 0

InOutParameter 169 1.3 2 1 0

Minepump 1,447 3.3 1 1 0

Pacemaker 780 2.5 0 0 0

Papabench 6,373 21.4 0 0 0

SCJChecker 148 1.2 0 0 0

Concurrency 138 2.1 1 1 0

EnterPrivateMemory 106 1.2 1 1 0

ExecuteInAreaOf 97 1.2 1 1 0

Figure 5.12: Table showing example and case study data.

is used, for example. Although this method is used, it is used safely, and therefore no

memory-safety violations were expected when analysing the tool, as show in the fourth

column of Figure 5.12. The tool is able to translate the CDx program, generate the method

properties, and analyse the program successfully in an average of 16.5 seconds; the CDx

has nearly 3k lines of code. These results were gathered from a system running Linux,

with an Intel Core i5 650 processor at 3.20GHz, with 8GB RAM.

As shown from the figure, the output of the tool for the CDx example included a

possible memory-safety violation, which was not expected. Upon closer inspection of the

code, the error raised is a valid error that may occur during execution. The error occurs

when an array object that is a handler field is updated to include a new object that is

created during the handleEvent method of the handler. This is a genuine error because

the handler field resides in the mission memory whilst the new object that is added to

the array is defined in the per-release memory area. The containing array object therefore

references an object that resides in a lower memory area. This error has previously gone

undetected in the literature for other techniques. The tool raised no other errors, and

therefore no false-negatives were raised.

ACCS Another example is the Automotive Cruise Controller System (ACCS) [49] pre-

sented in Chapter 3 that automatically monitors and maintains the speed of a vehicle.

The implementation is a Level 1 program with a single mission and is made up from seven

handlers that monitor the vehicle’s gears, engine, brakes, throttle, levers, wheel shaft, and

speed. The example does not include any interesting uses of SCJ-specific methods that

affect memory, and therefore no errors were expected to arise when put through the tool.

204

5.3 Case studies

This was confirmed when analysed, as no errors were returned; this also means that no

false-negatives were raised during the analysis. The analysis took an average of 1.8 seconds

to complete for 847 lines of code.

PapaBench and Pacemaker Two other examples analysed with the tool include the

PapaBench implementation, which is a real-time benchmark adapted for SCJ [30], and

an SCJ pacemaker implementation described in [44]. Once again, neither implementation

includes any interesting uses of memory, and therefore there were no expected errors for

either example. As expected, there were no possible memory-safety violations raised by

the tool in either example. Once again, no false-negatives were raised.

The analysis times for the PapaBench and pacemaker examples were 21.4 and 2.5

seconds, on average, respectively. The PapaBench case study is the largest analysed here,

and is made up of over 6k lines of code. The pacemaker example is significantly smaller

at less than 1k lines of code.

SCJChecker example The SCJChecker technique includes an example in the litera-

ture that demonstrates the need for class duplication when annotating classes that are

instantiated in different memory areas [45]. This example has been reworked to remove

the annotations and class duplication and checked with the tool. No errors are raised and

no false-negatives reported, which illustrates the ability to check SCJ programs without

the need for class duplication or user-added annotations.

Other case studies The literature associated with the bytecode analysis technique

describes several other SCJ examples, some of which include potential memory-safety

violations [14]. These include a simple in-out parameter implementation that writes the

values of an input to a string output. The output of the tool for this example includes a

possible memory-safety violation as a static variable may reference an object that resides

in the mission memory. Inspection of the code revealed that the error is a legitimate

memory-safety violation as one of the static variables is assigned to point to a new object

that is created in the mission’s initialize method, which executes in the mission memory

area. Objects referenced by static variables must reside in the immortal memory area. The

bytecode analysis technique is also capable of detecting this error, and as such, the error

was expected, as demonstrated in Figure 5.12.

The other expected error in this example comes from a buffer object that may be

205

Chapter 5: TransMSafe and examples

re-allocated in a temporary private memory area if the buffer length is exceeded. This re-

allocation causes a downward reference, which is a memory-safety violation. The TransM-

Safe tool does not report this because a stub reference implementation is used; if a full

reference implementation was used whilst analysing programs, then the TransMSafe tool

would also raise the possible error. This is reflected in Figure 5.12 as the number of errors

detected is less than the number of errors expected.

Another example used in the bytecode analysis technique is the textbook mine-pump

example [9]. This version includes logging features and includes a engineered memory-

safety violation for testing purposes. The output of the TransMSafe tool includes a

possible memory-safety violation, which is the error deliberately introduced. Similarly to

the CDx example, the error occurs because a new array entry is created in a memory area

that is lower than that of the array object itself.

5.4 Evaluation

The TransMSafe tool described here provides validation that the formalised technique

described in Chapters 3 and 4 is capable of detecting potential memory-safety violations

in SCJ programs. This has been shown by the automatic translation and analysis of several

case studies and a series of specific test cases that are known to generate memory-safety

violations.

A number of lessons were learnt during the implementation of the tool. For example,

in the simple assignment test case, it became clear that the formalisation was not correct.

In the specific case where an assignment is of the form a.b = x, the existing expressions

that are aliased with a were not being updated to include the new value of the field b.

The implementation of the checking technique also helped to identify the necessary

steps to handle concurrency; for example, like in the concurrency example presented pre-

viously, it soon became clear that a naive approach of analysing handlers independently

was not sufficient. Instead this lead to the history element of the environment, which

facilitates the individual analysis of handlers whilst also dealing with concurrency.

The implementation of the translation and checking tool totals 13k lines of Java code

and is an extension to the hiJaC tools described in [54]. The implementation is a proof-

of-concept for the technique defined here, and it is inevitable that attempts to optimise

the code will improve the translation and analysis times. Optimisation opportunities are

discussed in more detail in the next chapter.

206

5.5 Final considerations

5.5 Final considerations

This chapter has described the TransMSafe tool that translates SCJ programs into SCJ-

mSafe and checks for possible memory-safety violations. A number of specific examples

that illustrate the ability to detect memory-safety violations have also been presented

along with a selection of case studies. Finally, an evaluation of the tool and technique is

given. The next chapter draws a conclusion on this thesis and describes possible future

work.

207

Chapter 6

Conclusions and further work

This chapter summarises the work presented here and describes some possible extensions

to the technique that could be completed as further work.

6.1 Summary

The original hypothesis of this work claimed that it was possible to produce an automatic

static checking technique for valid Level 1 SCJ programs to identify possible unsafe uses of

memory at the source-code level, without the need for additional user-added annotations.

The previous chapters and examples described here demonstrate that this hypothesis is

true.

This thesis has defined a memory-safety checking technique for SCJ programs. Several

other techniques to verify memory safety of SCJ programs have been presented, however,

currently the technique presented here is the only practical solution at the source-code

level for Level 1 SCJ programs that maintains traceability, does not raise unnecessary false

negatives through simplification to bytecode, and does not impose unwanted restrictions

on program development.

The translation strategy defined in Chapter 3 provides a technique to generate SCJ-

mSafe programs from valid Level 1 SCJ input programs that conform to the specification

outlined in [46]. The structured SCJ-mSafe language allows for the definition of a simpler

checking technique that does not have to cater for all of the complex commands and

expressions that are possible in Java. It also provides the foundations to formally prove

that the technique is sound, as discussed in the conclusions from Chapter 4.

The checking technique defined in Chapter 4 provides a method to check SCJ-

209

Chapter 6: Conclusions and further work

mSafe programs for possible memory-safety violations. One of the most interesting aspects

of the technique is the generation of individual method properties, which provide a sum-

mary of a method’s behaviour independently of its execution. The technique also uses an

environment to capture the necessary information about aliasing and reference contexts of

objects to facilitate the detection of possible memory-safety violations. The environment

uses a flat structure to represent all expressions of an SCJ-mSafe program and is built up

and maintained throughout the analysis.

A set of memory-safety inference rules have been defined that state what it means

for a particular SCJ-mSafe component to be memory safe. Using the method properties,

environment, and these rules, it is possible to establish the precise point in a program where

a possible memory-safety violation may occur. As the technique uses static analysis, the

compromise to the approach is that a worst-case view of the program must be taken, which

means false-negatives may be raised during the analysis.

Finally, in the previous chapter, a number of test examples and case studies have been

applied to the TransMSafe tool, which implements the translation and checking techniques.

The results of the examples demonstrate the technique’s ability to detect memory-safety

violations in SCJ programs. The implementation of the tools also verify that it is possible

to perform such checks automatically.

The technique is able to find possible memory-safety violations without the need for

additional user-added annotations. Moreover, this avoids the restrictions that are imposed

on SCJ programs by the addition of annotations; if an input SCJ program is valid accord-

ing to the specification, it can be checked with the technique presented here, unlike the

SCJChecker, which may require code duplication to handle some SCJ programs.

The bytecode analysis technique described has similar results to that presented here.

It is faster at performing the analysis of a program, however, there are certain SCJ-specific

methods that have not been handled, but this is a simple addition.

6.2 Conclusions

The main contribution of this thesis is a new static checking technique that is able to detect

memory-safety violations using source-code analysis for the SCJ programming paradigm

and memory model. The entire technique is formalised in Z to precisely define the lan-

guages, translation, and checking strategies involved; this formalisation can be used as the

starting point to prove the soundness of the technique. For example, it is possible to prove

210

6.2 Conclusions

the following.

mSafe(Translate(p))⇒ memorySafe(model [[p]])

The above states that, given an SCJ program p, the proof that mSafe holds, for the

translation of p characterised by the Translate function defined in Chapter 3, using the

rules for mSafe defined in Chapter 4 is possible only if the program p can be characterised

as memory safe using its semantics defined by a semantic function model for SCJ.. Proving

this would prove the soundness of the technique, that is, given a memory-safety violation

in an SCJ program, the representation and analysis of that program in SCJ-mSafe will

also identify the error. The above is not true in reverse; more specifically, it is not true

that mSafe(Translate(p)) will always result in a memory-safe verdict for p even if the

semantic definition states that p is error free. This is because the technique is sound, but

not complete, and it may raise false negative, which is a sacrifice made when performing

worst-case static analysis.

Other techniques such as the bytecode analysis technique in [14] perform similarly to

the approach defined here in the sense that neither require annotations to detect possible

memory-safety violations, however, there are differences between the two techniques. The

intermediate representation of the source code used here is SCJ-mSafe; the representation

of the source code used in the bytecode checking technique is Java bytecode. The difference

between analysis of SCJ-mSafe and analysis of bytecode is reflected in issues of traceability

and execution tracking. More specifically, by using SCJ-mSafe, which is an abstraction of

the original source code as opposed to a transformation (like bytecode), it is much easier to

map the points at which potential memory-safety errors are discovered back to the precise

location in the source code. Secondly, the structure of the program and commands is

maintained in SCJ-mSafe, which facilitates a well-defined flow of analysis throughout the

program. It is easy to identify when missions are started, for example. At the bytecode

level, this is not as easy, and as such the bytecode analysis technique encounters false

negatives as a result of the simplifications made during compilation.

The method properties used in the technique have demonstrated the ability to perform

modular reasoning and pre-analysis error detection for the SCJ memory model using an

assertion (or postcondition) based technique. Whilst it is not always possible to determine

the precise result for all reference variables or fields in advance of the analysis, there are

situations where it is possible to detect errors that will always occur regardless of the

execution context. A modular reasoning approach also reduces analysis time for large-

211

Chapter 6: Conclusions and further work

scale programs.

The memory-safety inference rules defined for SCJ-mSafe are clear and concise, which

is made possible by the simple commands and expressions used in the SCJ-mSafe lan-

guage. The simplification of complex SCJ statements during the translation from SCJ to

SCJ-mSafe has lead to fewer rules that are easy to understand. This is not only an advan-

tage to the analysis of SCJ programs, but to the overall new programming paradigm of

safety-critical systems on which the rules are based: a well-defined programming paradigm

that uses simple commands and expressions leads to simple and comprehensible rules for

memory safety.

The TransMSafe tool has both demonstrated and validated that the formalised tech-

nique is, in fact, applicable to SCJ programs. The results of the examples and case studies

in the previous chapter illustrate the power of the technique to not only pick up well-

defined and known errors, but also unknown errors in larger examples that are difficult

to analyse by hand. The time taken to analyse these programs is also pleasing, as the

algorithms used in the implementation of the tool are not as efficient as they could be.

The application of the tool to very-large and complex systems is yet to be seen as such

examples in SCJ do not exist yet; the results from the previous chapter are, however,

positive.

6.3 Further work

The technique presented here could be extended to facilitate analysis of a larger set of

SCJ programs and optimise the performance of the tool. A proof of soundness would give

additional confidence in the approach; a number of ideas for further work are described

below.

6.3.1 Level 0 programs

Currently the technique is only applicable to Level 1 SCJ programs. Level 0 programs also

suffer from possible memory-safety violations as they have the same hierarchy of memory

areas. The main difference between handling Level 0 and Level 1 programs is the structure

of the input SCJ program. One possible piece of further work is to extend the translation

strategy to accommodate the structure of Level 0 programs, and translate them into the

existing SCJ-mSafe structure for analysis.

212

6.3 Further work

6.3.2 Level 2 programs

Similarly, Level 2 programs are not supported by the technique. The translation strategy

for Level 1 programs is applicable to Level 2 SCJ programs, however the checking technique

is not applicable. In order to extend the checking technique to handle Level 2 programs,

it would be necessary to enrich the definition of a reference context to handle the analysis

of concurrent and nested missions; it is not sufficient to simply define the mission memory

area, as multiple missions may be executing simultaneously. One possible method to

overcome this would be to introduce an additional parameter on the mission reference

contexts that identifies the expression associated with the particular mission object. This

mission expression would also be need to be associated with any associated handler per-

release reference context. Finally, temporary-private reference contexts that are currently

associated with a handler name and nesting level would need to be associated with the

mission expression, handler, and the nesting level.

6.3.3 Mutual recursion

Currently the technique is capable of handling simple method recursion and does not cater

for mutual recursion. This is because no SCJ example discovered has included mutual

recursion, however support for mutual recursion is a possibility in the technique. As

recursive method properties are generated with a single pass of the method body, mutual

recursion can also be handled by first analysing the bodies of each method whilst ignoring

method calls to the dependant method. Having generated partial method properties for

each, the full method properties for each can be calculated by re-running the analysing

and taking into account the partial method properties of the dependant method.

6.3.4 Soundness

Having defined a formal model of the technique, it should be possible to prove the sound-

ness of the technique. As mentioned previously, a formal model of the memory-model of

SCJ has been defined in the UTP [11]; such a model would be a good starting point to

prove the soundness of the approach.

6.3.5 Optimisation

As mentioned in the previous chapter, the implementation of the TransMSafe tool could

be optimised to improve translation and analysis times, this is because the initial im-

213

Chapter 6: Conclusions and further work

plementation was undertaken as a proof-of-concept. A further optimisation would be to

investigate the implications of not using the reflexive, symmetric, transitive closure of the

expression share relation, but instead keeping a simpler representation of which objects

are aliased.

6.3.6 A more precise environment

The environment used to store the information required to determine possible memory-

safety violations could be enriched to store more precise information about the analysis of a

program. For example, the current model is a pair that captures the aliasing and references

information for the whole program. It is possible to use a function instead that maps

aliasing information to associated reference information. This would allow more precise

versions of the current aliasing of a program to be stored simultaneously, subsequently

reducing the number of false-negatives raised during analysis. A more precise aliasing

would be possible when analysing conditional statements, for example. If the true branch

produces one possible aliasing whilst the false branch produces another, the resulting

environment could store both possibilities along with the associated reference information

for each.

6.3.7 Automatic SCJ annotation

As described in the previous chapter, the generation of method properties for an SCJ-

mSafe program can be considered as the automatic annotation of every method with

a set of method properties. Another piece of possible further work would be to map

these automatically generated method properties for SCJ-mSafe programs back to the

corresponding methods in SCJ.

6.3.8 Application to other languages

The technique presented here is based on the new programming paradigm of SCJ and

the scoped-based memory model that complements it. The fact that Java has been the

language used to implement the new paradigm is potentially irrelevant, and the checking

technique defined here could be applied to other languages that adopt a similar paradigm

or memory model. Further work could investigate the application of this technique to other

languages, or even investigate the application of the paradigm itself to other languages.

214

Appendix A

Z notation

215

Appendices A: Z notation

Z notation Description

7→ Partial function

↔ Relation

∀ Universal quantification

∃ Existential quantification

¬ Not

× Cross

∧ Conjunction

∨ Disjunction

7→ Maps to

seq Sequence

〈〉 Empty sequence

a Sequencer concatenation

head Head of a sequence

tail Tail of a sequence

P Power set

F Finite set

∅ Empty set

∪ Set union

\ Set difference

∈ Set membership

⊂ Subset

⊆ Subset or equal to

⊕ Override

∗ Reflexive transitive closure

∼ Inverse

dom Domain

ran Range

216

Appendix B

SCJ model in Z

217

[ReturnType, Body, Annotation]

»_TypeParameter________________________________
Æname: Name
–_______________________________________

»_TypeElement_________________________________
Æname: Name
ÆtypeParameters: seq TypeParameter
–_______________________________________

[Value]

Æsafelet, missionSequencer, mission, APeriodicHandler, PeriodicHandler: Name

ÆhandleEvent, initialize, cleanUp, getSequencer, initializeApplication,
ÆgetNextMission: Name

Ævoid, run, Result, Object, Unknown, Empty: Name

ÆexecuteInAreaOfID, executeInOuterAreaID, getMemoryAreaID, newArrayID,
ÆnewInstanceID, enterPrivateMemoryID, PeriodicEventHandler,
ÆAperiodicEventHandler, register: Name

Flag ::= abstract
 | final
 | native
 | private
 | protected
 | public
 | static
 | strictfp
 | synchronized
 | transient
 | volatile

SCJExpression ::= null
 | annotation
 | arrayAccess œSCJExpression x SCJExpression¿
 | assignment œSCJExpression x SCJExpression¿
 | binary œSCJExpression x SCJExpression¿
 | compoundAssignment œSCJExpression x SCJExpression¿
 | conditional œSCJExpression x SCJExpression x SCJExpression¿
 | erroneous
 | identifier œName¿
 | instanceOf œSCJExpression x TypeElement¿
 | literal œValue¿
 | memberSelect œSCJExpression x Name¿
 | methodInvocation œSCJExpression x seq SCJExpression¿
 | newArray œTypeElement x seq SCJExpression¿

Appendices B: SCJ model in Z

218

 | newClass œName x seq SCJExpression¿
 | parenthesized œSCJExpression¿
 | typeCast œTypeElement x SCJExpression¿
 | unary œSCJExpression¿

ÆWellTypedExprs: P SCJExpression
«_______________
ÆWellTypedExprs c SCJExpression

»_SCJModifier_________________________________
Æflags: P Flag
Æannotations: P Annotation
–_______________________________________

»_SCJVariable_________________________________
Æmods: SCJModifier
Ætype: TypeElement
Æname: Name
Æinit: SCJExpression
–_______________________________________

SCJCommand ::= assert œSCJExpression x SCJExpression¿
 | block œBoolean x SCJCommand¿
 | break œName¿
 | continue œName¿
 | doWhile œSCJExpression x SCJCommand¿
 | empty
 | eFor œSCJModifier x TypeElement x Name x SCJCommand x
 SCJExpression x SCJCommand¿
 | expression œSCJExpression¿
 | for œSCJCommand x SCJExpression x SCJCommand x SCJCommand¿
 | if œSCJExpression x SCJCommand x SCJCommand¿
 | labeled œName x SCJCommand¿
 | return œSCJExpression¿
 | switch œSCJModifier x TypeElement x Name x SCJCommand x
 SCJExpression x seq SCJCommand¿
 | synchronized1 œSCJExpression x Boolean x SCJCommand¿
 | throw œSCJExpression¿
 | try œSCJCommand x seq SCJExpression x seq SCJCommand x
 SCJCommand¿
 | variable œSCJVariable¿
 | while œSCJExpression x SCJCommand¿

ÆWellTypedComs: P SCJCommand
«_______________
ÆWellTypedComs c SCJCommand

»_SCJMethod__________________________________
Æmodifiers: SCJModifier
ÆtypeParameters: P TypeParameter
ÆreturnType: TypeElement
Æname: Name

219

Æparams: seq SCJVariable
Æbody: seq SCJCommand
–_______________________________________

SCJClassComponent ::= ClassField œSCJVariable¿ | ClassMethod œSCJMethod¿

»_SCJClass __________________________________
Æmodifiers: SCJModifier
Æname: Name
ÆtypeParameters: P TypeParameter
Æextends: Name
Æimplements: Name
Æmembers: seq SCJClassComponent
–_______________________________________

»_SCJProgram _________________________________
Æclasses: P SCJClass
–_______________________________________

Appendices B: SCJ model in Z

220

Appendix C

SCJ-mSafe model in Z

221

Boolean ::= True | False

[Name]

Type ::= Primitive | Ref œName¿ | Array œType¿

»_VarType___________________________________
Ætype: Name
ÆisArray: Boolean
ÆisPrimitive: Boolean
ÆisReference: Boolean
ÆresultVar: Boolean
«_______________
ÆisPrimitive Î isReference
–_______________________________________

»_Variable __________________________________
Æname: Name
ÆvarType: VarType
–_______________________________________

»_ArrayElement ________________________________
Æname: Name
Ætype: Name
–_______________________________________

Identifier ::= var œVariable¿ | arrayElement œArrayElement¿

seqtwo[X] == { s: seq X | # s > 1 }

FieldAccess == seqtwo[Identifier]

Expr ::= Val | ID œIdentifier¿ | FA œFieldAccess¿ | OtherExpr | Null | This

LExpr == ran ID U ran FA

»_Dec_____________________________________
Ævar: Variable
–_______________________________________

RefCon ::= Prim | IMem | MMem | PRMem œName¿ | TPMem œName x N¿ | TPMMem œN¿

MetaRefCon ::= Rcs œP RefCon¿
 | Erc œLExpr¿
 | Current
 | CurrentPrivate œN¿
 | CurrentPlus œN¿

»_MethodSig__________________________________
Æname: Name
Æclass: Name
ÆclassExtends: Name

Appendices C: SCJ-mSafe model in Z

222

Ædescendants: P Name
ÆreturnType: Type
ÆreturnTypeName: Name
ÆparamTypes: seq Name
–_______________________________________

»_methodCall _________________________________
Æle: LExpr
Æname: Name
Æargs: seq Expr
Æmethods: P MethodSig
–_______________________________________

»_newInstance_________________________________
Æle: LExpr
Æmrc: MetaRefCon
Ætype: VarType
Æargs: seq Expr
–_______________________________________

»_getMemoryArea________________________________
Æref: LExpr
Æe: LExpr
–_______________________________________

Com ::= Skip
 | Decl œDec¿
 | Asgn œLExpr x Expr¿
 | Seq œCom x Com¿
 | Scope œCom¿
 | NewInstance œnewInstance¿
 | If œExpr x Com x Com¿
 | Switch œExpr x seq Com¿
 | For œCom x Expr x Com x Com¿
 | MethodCall œmethodCall¿
 | EnterPrivateMemory œmethodCall¿
 | ExecuteInAreaOf œMetaRefCon x methodCall¿
 | ExecuteInOuterArea œmethodCall¿
 | GetMemoryArea œgetMemoryArea¿
 | Try œCom x seq Expr x seq Com x Com¿
 | While œExpr x Com¿
 | DoWhile œCom x Expr¿

»_Method ___________________________________
Æname: Name
ÆreturnType: Name
Ætype: Type
Æparams: seq Variable
Æclass: Name
Æproperties: MethodProperties
Æbody: Com
ÆlocalVars: P LExpr

223

ÆvisibleFields: P LExpr
–_______________________________________

»_Class____________________________________
Æname: Name
Æextends: Name
ÆembeddedIn: Name
Æfields: seq Dec
Æinit: seq Com
Æconstrs: P Method
Æmethods: P Method
–_______________________________________

»_Handler___________________________________
Æname: Name
Æfields: seq Dec
Æinit: seq Com
Æconstrs: P Method
Æmethods: P Method
ÆhAe: Com
–_______________________________________

»_Mission___________________________________
Æname: Name
Æfields: seq Dec
Æinit: seq Com
Æconstrs: P Method
Æmethods: P Method
Æinitialize: Com
Æhandlers: P Name
ÆcleanUp: Com
–_______________________________________

»_MissionSeq _________________________________
Æname: Name
Æfields: seq Dec
Æinit: seq Com
Æconstrs: P Method
Æmethods: P Method
Æmissions: P Name
ÆgetNextMission: Com
–_______________________________________

»_Safelet___________________________________
Æname: Name
Æfields: seq Dec
Æinit: seq Com
Æconstrs: P Method
Æmethods: P Method
ÆinitializeApplication: Com
ÆgetSequencer: Com

Appendices C: SCJ-mSafe model in Z

224

ÆmissionSeq: MissionSeq
–_______________________________________

»_SCJmSafeProgram_______________________________
Æstatic: P Dec
ÆsInit: P Com
Æsafelet: Safelet
ÆmissionSeq: MissionSeq
Æmissions: P Mission
Æhandlers: P Handler
Æclasses: P Class
–_______________________________________

225

Appendix D

Translation strategy in Z

227

ÆWellTypedProgs: P SCJProgram
«_______________
ÆWellTypedProgs c SCJProgram

»_TranslationEnv _______________________________
Ævariables: P Variable
Æmethods: P MethodSig
–_______________________________________

ÆExtractExpression: SCJExpression ß Expr
«_______________
Ædom ExtractExpression c WellTypedExprs
Æ¶ (A scjExpr: dom ExtractExpression
Æ • (scjExpr = null ¶ ExtractExpression scjExpr = Null
Æ v scjExpr = annotation ¶ ExtractExpression scjExpr = OtherExpr
Æ v (E e1, e2: SCJExpression; iden: Identifier
Æ | scjExpr = arrayAccess (e1, e2)
Æ • (let arrayExpr == ExtractExpression e1
Æ • ((E iden: Identifier; v: Variable; ae: ArrayElement
Æ | arrayExpr = ID iden
Æ ¶ iden = var v
Æ ¶ ae.name = v.name
Æ • ExtractExpression scjExpr
Æ = ID (arrayElement ae))
Æ v (E iden: Identifier; ae: ArrayElement
Æ | arrayExpr = ID iden ¶ iden = arrayElement ae
Æ • ExtractExpression scjExpr = ID iden)
Æ v (E fa: FieldAccess; v: Variable; ae: ArrayElement
Æ | arrayExpr = FA fa ¶ v.name = ae.name
Æ • last fa = var v
Æ ¶ ExtractExpression scjExpr
Æ = FA (front fa ^ „arrayElement aeÒ)))))
Æ v (E e1, e2: SCJExpression | scjExpr = assignment (e1, e2)
Æ • ExtractExpression scjExpr = ExtractExpression e1)
Æ v (E e1, e2: SCJExpression | scjExpr = binary (e1, e2)
Æ • ExtractExpression scjExpr = Val)
Æ v (E e1, e2: SCJExpression | scjExpr = compoundAssignment (e1, e2)
Æ • ExtractExpression scjExpr = ExtractExpression e1)
Æ v (E e1, e2, e3: SCJExpression | scjExpr = conditional (e1, e2, e3)
Æ • ExtractExpression scjExpr = OtherExpr)
Æ v scjExpr = erroneous ¶ ExtractExpression scjExpr = OtherExpr
Æ v (E name: Name; iden: Identifier; v: Variable
Æ | scjExpr = identifier name ¶ iden = var v ¶ v.name = name
Æ • ExtractExpression scjExpr = ID iden)
Æ v (E e1: SCJExpression; type: TypeElement
Æ | scjExpr = instanceOf (e1, type)
Æ • ExtractExpression scjExpr = OtherExpr)
Æ v (E value: Value | scjExpr = literal value
Æ • ExtractExpression scjExpr = Val)
Æ v (E e1: SCJExpression; name: Name; fa, fa2: FieldAccess;
Æ iden: Identifier; v: Variable
Æ | scjExpr = memberSelect (e1, name) ¶ v.name = name
Æ • (let lhs == ExtractExpression e1
Æ • (lhs = ID iden

Appendices D: Translation strategy in Z

228

Æ ¶ fa = „idenÒ ^ „var vÒ
Æ ¶ ExtractExpression scjExpr = FA fa
Æ v lhs = FA fa2
Æ ¶ fa = fa2 ^ „var vÒ
Æ ¶ ExtractExpression scjExpr = FA fa
Æ v lhs Î ID iden
Æ ¶ lhs Î FA fa2
Æ ¶ ExtractExpression scjExpr = OtherExpr)))
Æ v (E identifier: SCJExpression; e1: seq SCJExpression
Æ | scjExpr = methodInvocation (identifier, e1)
Æ • ExtractExpression scjExpr = OtherExpr)
Æ v (E type: TypeElement; args: seq SCJExpression
Æ | scjExpr = newArray (type, args)
Æ • ExtractExpression scjExpr = OtherExpr)
Æ v (E name: Name; args: seq SCJExpression
Æ | scjExpr = newClass (name, args)
Æ • ExtractExpression scjExpr = OtherExpr)
Æ v (E e1: SCJExpression | scjExpr = parenthesized e1
Æ • ExtractExpression scjExpr = ExtractExpression e1)
Æ v (E type: TypeElement; e1: SCJExpression
Æ | scjExpr = typeCast (type, e1)
Æ • ExtractExpression scjExpr = ExtractExpression e1)
Æ v (E e1: SCJExpression | scjExpr = unary e1
Æ • ExtractExpression scjExpr = ExtractExpression e1)))

ÆSimplifyCommandPair: Com x Com ß Com
«_______________
ÆA c1, c2: Com
Æ • c1 = Skip ¶ ! c2 = Skip ¶ SimplifyCommandPair (c1, c2) = c2
Æ v ! c1 = Skip ¶ c2 = Skip ¶ SimplifyCommandPair (c1, c2) = c1
Æ v ! c1 = Skip
Æ ¶ ! c2 = Skip
Æ ¶ SimplifyCommandPair (c1, c2) = Seq (c1, c2)

ÆGetMethodCallReturnDec: methodCall x Com ß Expr x Com
«_______________
ÆA c1: methodCall; c2: Com
Æ • E mc: methodCall; v1, v2: Variable; n: Name; d: Dec
Æ • (# mc.args = 0
Æ v ! last mc.args = ID (var v2)
Æ v last mc.args = ID (var v2) ¶ v2.varType.resultVar = False)
Æ ¶ c1 = mc
Æ ¶ v1.name = n
Æ ¶ v1.varType.type = Unknown
Æ ¶ d.var = v1
Æ ¶ GetMethodCallReturnDec (c1, c2)
Æ = (ID (var v1), Seq ((Decl d), c2))
Æ v # mc.args > 0
Æ ¶ last mc.args = ID (var v2)
Æ ¶ v2.varType.resultVar = True
Æ ¶ GetMethodCallReturnDec (c1, c2) = (ID (var v2), c2)

ÆCreateSingleCommand: seq Com ß Com

229

«_______________
ÆA seqCom: seq Com
Æ • # seqCom > 1
Æ ¶ CreateSingleCommand seqCom
Æ = Seq ((head seqCom), (CreateSingleCommand (tail seqCom)))
Æ v # seqCom = 1 ¶ CreateSingleCommand seqCom = head seqCom
Æ v # seqCom = 0 ¶ CreateSingleCommand seqCom = Skip

ÆMergeSideEffectsParamsCom: Com x seq Com x Com ß Com
«_______________
ÆA c1, c2, c3: Com; seqCom: seq Com | c3 = CreateSingleCommand seqCom
Æ • c2 = Skip
Æ ¶ (# seqCom = 0 ¶ MergeSideEffectsParamsCom (c1, seqCom, c2) = c1
Æ v (E c4, c5: Com
Æ • # seqCom > 0
Æ ¶ (c1 = Seq (c4, c5)
Æ ¶ MergeSideEffectsParamsCom (c1, seqCom, c2)
Æ = Seq ((Seq (c3, c4)), c5)
Æ v ! c1 = Seq (c4, c5)
Æ ¶ MergeSideEffectsParamsCom (c1, seqCom, c2)
Æ = Seq (c3, c1))))
Æ v ! c2 = Skip
Æ ¶ (E c4, c5: Com
Æ • (# seqCom = 0
Æ ¶ (c1 = Seq (c4, c5)
Æ ¶ MergeSideEffectsParamsCom (c1, seqCom, c2)
Æ = Seq ((Seq (c2, c4)), c5)
Æ v ! c1 = Seq (c4, c5)
Æ ¶ MergeSideEffectsParamsCom (c1, seqCom, c2)
Æ = Seq (c2, c1))
Æ v # seqCom > 0
Æ ¶ c1 = Seq (c4, c5)
Æ ¶ MergeSideEffectsParamsCom (c1, seqCom, c2)
Æ = Seq ((Seq ((Seq (c2, c3)), c4)), c5)
Æ v ! c1 = Seq (c4, c5)
Æ ¶ MergeSideEffectsParamsCom (c1, seqCom, c2)
Æ = Seq ((Seq (c2, c3)), c1)))

ÆGetMethodName: SCJExpression ß Name
«_______________
ÆA e: SCJExpression
Æ • (E n: Name | e = identifier n • GetMethodName e = n)
Æ v (E e1: SCJExpression; n: Name | e = memberSelect (e1, n)
Æ • GetMethodName e = n)

ÆExtractExprType: Expr ß Name
«_______________
ÆA e: Expr
Æ • (E fa: FieldAccess • ExtractExprType e = ExtractExprType (ID (last fa)))
Æ v (E ae: ArrayElement • ExtractExprType e = ae.type)
Æ v (E v: Variable • ExtractExprType e = v.varType.type)

Appendices D: Translation strategy in Z

230

ÆExtractArgTypes: seq Expr ß seq Name
«_______________
ÆA e: seq Expr
Æ • ExtractArgTypes e
Æ = „ExtractExprType (head e)Ò ^ ExtractArgTypes (tail e)

ÆFindMethods: Expr x Name x seq Expr x TranslationEnv ß P MethodSig
«_______________
ÆA e: Expr; n: Name; args: seq Expr; transEnv: TranslationEnv
Æ • E n1: Name; classes: P Name; argTypes: seq Name
Æ | n1 = ExtractExprType e
Æ ¶ classes
Æ = U { ms: transEnv.methods | ms.class = n1
Æ • ({ms.class} U ms.descendants) }
Æ ¶ argTypes = ExtractArgTypes args
Æ • FindMethods (e, n, args, transEnv)
Æ = U { ms: transEnv.methods
Æ | ms.class e classes
Æ ¶ ms.name = n
Æ ¶ # ms.paramTypes = # argTypes
Æ • { n1: ms.paramTypes; n2: argTypes | n1 = n2 • ms } }

ÆFindMethodType: Expr x Name x seq Expr x TranslationEnv ß Name
«_______________
ÆA e: Expr; n: Name; args: seq Expr; transEnv: TranslationEnv
Æ • E methods: P MethodSig | methods = FindMethods (e, n, args, transEnv)
Æ • # methods = 0 ¶ FindMethodType (e, n, args, transEnv) = void
Æ v (E ms: methods
Æ • # methods = 1
Æ ¶ FindMethodType (e, n, args, transEnv)
Æ = ms.returnTypeName)
Æ v # methods > 1
Æ ¶ (E types: P Name
Æ | types = { ms: methods • ms.returnTypeName }
Æ • ((E t: Name
Æ • t e types
Æ ¶ (A t2: Name | t2 ‰ types ¶ t Î t2
Æ • FindMethodType (e, n, args, transEnv)
Æ = t))
Æ v (E t, t2: Name | t e types ¶ t2 e types ¶ t Î t2
Æ • FindMethodType (e, n, args, transEnv)
Æ = void)))

ÆTranslateExpression: SCJExpression x TranslationEnv ß Com
«_______________
Æ A scjExpr: SCJExpression; transEnv: TranslationEnv
Æ | (scjExpr, transEnv) e dom TranslateExpression
Æ ¶ scjExpr e WellTypedExprs
Æ • scjExpr = null ¶ TranslateExpression (scjExpr, transEnv) = Skip
Æ v scjExpr = annotation ¶ TranslateExpression (scjExpr, transEnv) = Skip
Æ v (E e1, e2: SCJExpression | scjExpr = arrayAccess (e1, e2)
Æ • TranslateExpression (scjExpr, transEnv)
Æ = SimplifyCommandPair ((TranslateExpression (e1, transEnv)),

231

Æ (TranslateExpression (e2,
Æ transEnv))))
Æ v (E e1, e2: SCJExpression; lexpr, rexpr: Expr
Æ | scjExpr = assignment (e1, e2)
Æ ¶ lexpr = ExtractExpression e1
Æ ¶ rexpr = ExtractExpression e2
Æ • ((E type: TypeElement; args: seq SCJExpression;
Æ nI: newInstance
Æ | e2 = newArray (type, args)
Æ ¶ nI.le = lexpr
Æ ¶ nI.mrc = Current
Æ ¶ nI.type.type = type.name
Æ ¶ nI.type.isReference = True
Æ ¶ nI.type.isArray = True
Æ ¶ nI.args
Æ = { n: 1 .. # args
Æ • n ∏ ExtractExpression (args n) }
Æ • TranslateExpression (scjExpr, transEnv)
Æ = MergeSideEffectsParamsCom ((NewInstance nI),
Æ { n: 1 .. # args
Æ • (n
Æ ∏ TranslateExpression ((args n),
Æ transEnv)) },
Æ Skip))
Æ v (E args: seq SCJExpression; nI: newInstance; name: Name
Æ | e2 = newClass (name, args)
Æ ¶ nI.type.type = name
Æ ¶ nI.type.isReference = True
Æ ¶ nI.le = lexpr
Æ ¶ nI.mrc = Current
Æ ¶ nI.args
Æ = { n: 1 .. # args
Æ • n ∏ ExtractExpression (args n) }
Æ • TranslateExpression (scjExpr, transEnv)
Æ = MergeSideEffectsParamsCom ((NewInstance nI),
Æ { n: 1 .. # args
Æ • (n
Æ ∏ TranslateExpression ((args n),
Æ transEnv)) },
Æ Skip))
Æ v (E le: SCJExpression; args: seq SCJExpression; c: Com
Æ | e2 = methodInvocation (le, args)
Æ ¶ c = TranslateExpression (e2, transEnv)
Æ • ((E mc: methodCall | c = MethodCall mc
Æ • TranslateExpression (scjExpr, transEnv)
Æ = Seq ((GetMethodCallReturnDec (mc, c)).2,
Æ (Asgn (lexpr,
Æ (GetMethodCallReturnDec (mc,
Æ c)).1))))
Æ v (E c1, c2: Com | c = Seq (c1, c2)
Æ • ((E mc: methodCall | c2 = MethodCall mc
Æ • TranslateExpression (scjExpr,
Æ transEnv)
Æ = Seq ((GetMethodCallReturnDec (mc,
Æ c2)).2,
Æ (Asgn (lexpr,

Appendices D: Translation strategy in Z

232

Æ (GetMethodCallReturnDec (mc,
Æ c2)).1))))
Æ v (E nI: newInstance
Æ | c2 = NewInstance nI
Æ ¶ nI.le = lexpr
Æ • TranslateExpression (scjExpr,
Æ transEnv)
Æ = Seq (c1, (NewInstance nI)))
Æ v (E gMem1, gMem2: getMemoryArea
Æ | c2 = GetMemoryArea gMem1
Æ ¶ gMem2.e = gMem1.e
Æ ¶ gMem2.ref = lexpr
Æ • TranslateExpression (scjExpr,
Æ transEnv)
Æ = Seq (c1,
Æ (GetMemoryArea gMem2)))))
Æ v (E nI: newInstance
Æ | c = NewInstance nI ¶ nI.le = lexpr
Æ • TranslateExpression (scjExpr, transEnv)
Æ = NewInstance nI)
Æ v (E gMem: getMemoryArea
Æ | c = GetMemoryArea gMem ¶ gMem.ref = lexpr
Æ • TranslateExpression (scjExpr, transEnv)
Æ = GetMemoryArea gMem)))
Æ v (E e3, e4: SCJExpression | e2 = arrayAccess (e3, e4)
Æ • ((E e5: SCJExpression; e6: seq SCJExpression; c: Com
Æ | e3 = methodInvocation (e5, e6)
Æ ¶ c = TranslateExpression (e3, transEnv)
Æ • (E mc: methodCall | c = MethodCall mc
Æ • TranslateExpression (scjExpr,
Æ transEnv)
Æ = SimplifyCommandPair ((SimplifyCommandPair (
Æ (GetMethodCallReturnDec (mc,
Æ c)).2,
Æ (TranslateExpression (e4,
Æ transEnv)))),
Æ (Asgn (lexpr,
Æ (GetMethodCallReturnDec (mc,
Æ c)).1))))
Æ v (E c1, c2: Com; mc: methodCall
Æ | c = Seq (c1, c2)
Æ ¶ c2 = MethodCall mc
Æ • TranslateExpression (scjExpr,
Æ transEnv)
Æ = SimplifyCommandPair ((SimplifyCommandPair (
Æ (GetMethodCallReturnDec (mc,
Æ c)).2,
Æ (TranslateExpression (e4,
Æ transEnv)))),
Æ (Asgn (lexpr,
Æ (GetMethodCallReturnDec (mc,
Æ c)).1)))))
Æ v (E e5: SCJExpression; e6: seq SCJExpression;
Æ c: Com
Æ | e3 Î methodInvocation (e5, e6)
Æ ¶ c = TranslateExpression (e3, transEnv)

233

Æ • TranslateExpression (scjExpr, transEnv)
Æ = SimplifyCommandPair ((SimplifyCommandPair (c,
Æ (TranslateExpression (e4,
Æ transEnv)))),
Æ (Asgn (lexpr,
Æ rexpr))))))
Æ v (E e3, e4: SCJExpression; args: seq SCJExpression;
Æ name: Name; type: TypeElement
Æ | e2 Î newArray (type, args)
Æ ¶ e2 Î newClass (name, args)
Æ ¶ e2 Î methodInvocation (e3, args)
Æ ¶ e2 Î arrayAccess (e3, e4)
Æ • TranslateExpression (scjExpr, transEnv)
Æ = SimplifyCommandPair ((TranslateExpression (e2,
Æ transEnv)),
Æ (Asgn (lexpr, rexpr))))))
Æ v (E e1, e2: SCJExpression; lcom, rcom, lcom2, rcom2: Com
Æ | scjExpr = binary (e1, e2)
Æ ¶ lcom = TranslateExpression (e1, transEnv)
Æ ¶ rcom = TranslateExpression (e2, transEnv)
Æ • ((E mc1, mc2: methodCall
Æ • lcom = MethodCall mc1
Æ ¶ ! rcom = MethodCall mc2
Æ ¶ lcom2 = (GetMethodCallReturnDec (mc1, lcom)).2
Æ ¶ rcom2 = rcom)
Æ v (E mc1, mc2: methodCall
Æ • rcom = MethodCall mc2
Æ ¶ ! lcom = MethodCall mc1
Æ ¶ rcom2 = (GetMethodCallReturnDec (mc2, rcom)).2
Æ ¶ lcom2 = lcom)
Æ v (E mc1, mc2: methodCall
Æ • ! lcom = MethodCall mc1
Æ ¶ ! rcom = MethodCall mc2
Æ ¶ lcom2 = lcom
Æ ¶ rcom2 = rcom))
Æ ¶ TranslateExpression (scjExpr, transEnv)
Æ = SimplifyCommandPair (lcom2, rcom2))
Æ v (E e1, e2: SCJExpression; sideEffect: Com
Æ | scjExpr = compoundAssignment (e1, e2)
Æ ¶ sideEffect = TranslateExpression (e2, transEnv)
Æ • (sideEffect = Skip
Æ ¶ TranslateExpression (scjExpr, transEnv)
Æ = Asgn ((ExtractExpression e1), Val)
Æ v ! sideEffect = Skip
Æ ¶ TranslateExpression (scjExpr, transEnv)
Æ = Seq (sideEffect,
Æ (Asgn ((ExtractExpression e1), Val)))))
Æ v (E e1, e2, e3: SCJExpression | scjExpr = conditional (e1, e2, e3)
Æ • TranslateExpression (scjExpr, transEnv)
Æ = Seq ((TranslateExpression (e1, transEnv)),
Æ (If ((ExtractExpression e1),
Æ (TranslateExpression (e2, transEnv)),
Æ (TranslateExpression (e3, transEnv))))))
Æ v scjExpr = erroneous ¶ TranslateExpression (scjExpr, transEnv) = Skip
Æ v (E name: Name | scjExpr = identifier name
Æ • TranslateExpression (scjExpr, transEnv) = Skip)

Appendices D: Translation strategy in Z

234

Æ v (E e1: SCJExpression; type: TypeElement
Æ | scjExpr = instanceOf (e1, type)
Æ • TranslateExpression (scjExpr, transEnv)
Æ = TranslateExpression (e1, transEnv))
Æ v (E value: Value | scjExpr = literal value
Æ • TranslateExpression (scjExpr, transEnv) = Skip)
Æ v (E e1: SCJExpression; name: Name | scjExpr = memberSelect (e1, name)
Æ • TranslateExpression (scjExpr, transEnv)
Æ = TranslateExpression (e1, transEnv))
Æ v (E e1: SCJExpression; args: seq SCJExpression; name, mname: Name; c,
Æ sideEffect: Com; lexpr: Expr; paramComs: seq Com;
Æ paramExprs: seq Expr
Æ | scjExpr = methodInvocation (e1, args)
Æ ¶ c = TranslateExpression (e1, transEnv)
Æ ¶ paramComs
Æ = { n: 1 .. # args
Æ • n ∏ TranslateExpression ((args n), transEnv) }
Æ ¶ paramExprs
Æ = { n: 1 .. # args • n ∏ ExtractExpression (args n) }
Æ ¶ mname = GetMethodName e1
Æ • ((E c1, c2: Com; mc: methodCall
Æ | c = Seq (c1, c2) ¶ c2 = MethodCall mc
Æ v c = MethodCall mc
Æ • lexpr = (GetMethodCallReturnDec (mc, c)).1
Æ ¶ sideEffect = (GetMethodCallReturnDec (mc, c)).2)
Æ v (E c1, c2: Com; mc: methodCall
Æ | c Î MethodCall mc ¶ c Î Seq (c1, c2)
Æ • lexpr = ExtractExpression e1))
Æ ¶ (mname = executeInAreaOfID
Æ ¶ (E mc: methodCall
Æ | mc.methods
Æ = FindMethods ((paramExprs 2), run, „Ò,
Æ transEnv)
Æ ¶ mc.le = paramExprs 2
Æ ¶ mc.args = „Ò
Æ ¶ mc.name = run
Æ • TranslateExpression (scjExpr, transEnv)
Æ = MergeSideEffectsParamsCom ((ExecuteInAreaOf ((Erc (paramExprs 1)),
Æ mc)),
Æ paramComs,
Æ sideEffect))
Æ v mname = executeInOuterAreaID
Æ ¶ (E mc: methodCall
Æ | mc.methods
Æ = FindMethods ((paramExprs 1), run, „Ò,
Æ transEnv)
Æ ¶ mc.le = paramExprs 1
Æ ¶ mc.args = „Ò
Æ ¶ mc.name = run
Æ • TranslateExpression (scjExpr, transEnv)
Æ = MergeSideEffectsParamsCom ((ExecuteInOuterArea mc),
Æ paramComs,
Æ sideEffect))
Æ v mname = getMemoryAreaID
Æ ¶ (E gMem: getMemoryArea
Æ | gMem.ref = Null ¶ gMem.e = paramExprs 1

235

Æ • TranslateExpression (scjExpr, transEnv)
Æ = MergeSideEffectsParamsCom ((GetMemoryArea gMem),
Æ paramComs,
Æ sideEffect))
Æ v mname = newArrayID
Æ ¶ (E nI: newInstance; varType: VarType
Æ | nI.le = Null
Æ ¶ nI.mrc = Erc lexpr
Æ ¶ nI.type = varType
Æ ¶ nI.args = „Ò
Æ ¶ varType.type = ExtractExprType (paramExprs 1)
Æ ¶ varType.isReference = True
Æ ¶ varType.isArray = True
Æ • TranslateExpression (scjExpr, transEnv)
Æ = MergeSideEffectsParamsCom ((NewInstance nI),
Æ paramComs,
Æ sideEffect))
Æ v mname = newInstanceID
Æ ¶ (E nI: newInstance; varType: VarType
Æ | nI.le = Null
Æ ¶ nI.mrc = Erc lexpr
Æ ¶ nI.type = varType
Æ ¶ nI.args = „Ò
Æ ¶ varType.type = ExtractExprType (paramExprs 1)
Æ ¶ varType.isReference = True
Æ • TranslateExpression (scjExpr, transEnv)
Æ = MergeSideEffectsParamsCom ((NewInstance nI),
Æ paramComs,
Æ sideEffect))
Æ v mname = enterPrivateMemoryID
Æ ¶ (E mc: methodCall
Æ | mc.methods
Æ = FindMethods ((paramExprs 1), run, „Ò,
Æ transEnv)
Æ ¶ mc.le = paramExprs 1
Æ ¶ mc.args = „Ò
Æ ¶ mc.name = run
Æ • TranslateExpression (scjExpr, transEnv)
Æ = MergeSideEffectsParamsCom ((EnterPrivateMemory mc),
Æ paramComs,
Æ sideEffect))
Æ v (E mc: methodCall; type: Name
Æ | mc.le = lexpr
Æ ¶ mc.name = mname
Æ ¶ mc.methods
Æ = FindMethods (lexpr, mname, paramExprs,
Æ transEnv)
Æ ¶ type
Æ = FindMethodType (lexpr, mname, paramExprs,
Æ transEnv)
Æ • (E d: Dec; v: Variable
Æ | d.var = v
Æ ¶ v.varType.type = type
Æ ¶ v.varType.resultVar = True
Æ • (type Î void
Æ ¶ mc.args = paramExprs ^ „ID (var v)Ò

Appendices D: Translation strategy in Z

236

Æ ¶ TranslateExpression (scjExpr, transEnv)
Æ = MergeSideEffectsParamsCom ((Seq ((Decl d),
Æ (MethodCall mc))),
Æ paramComs,
Æ sideEffect)
Æ v type = void
Æ ¶ mc.args = paramExprs
Æ ¶ TranslateExpression (scjExpr,
Æ transEnv)
Æ = MergeSideEffectsParamsCom ((MethodCall mc),
Æ paramComs,
Æ sideEffect))))))
Æ v (E type: TypeElement; args: seq SCJExpression; v: Variable; d: Dec;
Æ nI: newInstance
Æ | scjExpr = newArray (type, args)
Æ ¶ v.varType.type = type.name
Æ ¶ v.varType.isReference = True
Æ ¶ v.varType.isArray = True
Æ ¶ d.var = v
Æ ¶ nI.mrc = Current
Æ ¶ nI.le = ID (var v)
Æ ¶ nI.args
Æ = { n: 1 .. # args • n ∏ ExtractExpression (args n) }
Æ ¶ nI.type = v.varType
Æ • TranslateExpression (scjExpr, transEnv)
Æ = MergeSideEffectsParamsCom ((NewInstance nI),
Æ { n: 1 .. # args
Æ • (n
Æ ∏ TranslateExpression ((args n),
Æ transEnv)) },
Æ (Decl d)))
Æ v (E name: Name; args: seq SCJExpression; v: Variable; d: Dec;
Æ nI: newInstance
Æ | scjExpr = newClass (name, args)
Æ ¶ v.varType.type = name
Æ ¶ v.varType.isReference = True
Æ ¶ d.var = v
Æ ¶ nI.mrc = Current
Æ ¶ nI.le = ID (var v)
Æ ¶ nI.args
Æ = { n: 1 .. # args • n ∏ ExtractExpression (args n) }
Æ ¶ nI.type = v.varType
Æ • TranslateExpression (scjExpr, transEnv)
Æ = MergeSideEffectsParamsCom ((NewInstance nI),
Æ { n: 1 .. # args
Æ • (n
Æ ∏ TranslateExpression ((args n),
Æ transEnv)) },
Æ (Decl d)))
Æ v (E e1: SCJExpression | scjExpr = parenthesized e1
Æ • TranslateExpression (scjExpr, transEnv)
Æ = TranslateExpression (e1, transEnv))
Æ v (E type: TypeElement; e1: SCJExpression
Æ | scjExpr = typeCast (type, e1)
Æ • TranslateExpression (scjExpr, transEnv)
Æ = TranslateExpression (e1, transEnv))

237

Æ v (E e1: SCJExpression | scjExpr = unary e1
Æ • TranslateExpression (scjExpr, transEnv)
Æ = TranslateExpression (e1, transEnv))

ÆExtractParamComs: seq SCJExpression x TranslationEnv ß seq Com
«_______________
ÆA args: seq SCJExpression; transEnv: TranslationEnv
Æ • (E te: TypeElement; e: SCJExpression
Æ • head args = typeCast (te, e)
Æ ¶ ExtractParamComs (args, transEnv)
Æ = ExtractParamComs ((„eÒ ^ tail args), transEnv))
Æ v (E scje1, scje2: SCJExpression; c: Com
Æ • head args = binary (scje1, scje2)
Æ ¶ c
Æ = SimplifyCommandPair ((TranslateExpression (scje1,
Æ transEnv)),
Æ (TranslateExpression (scje2,
Æ transEnv)))
Æ ¶ ! c = Skip
Æ ¶ ExtractParamComs (args, transEnv)
Æ = „cÒ ^ ExtractParamComs ((tail args), transEnv))
Æ v (E te: TypeElement; scje: seq SCJExpression; c: Com
Æ • head args = newArray (te, scje)
Æ ¶ c = TranslateExpression ((head args), transEnv)
Æ ¶ ExtractParamComs (args, transEnv)
Æ = „cÒ ^ ExtractParamComs ((tail args), transEnv))
Æ v (E name: Name; scje: seq SCJExpression; c: Com
Æ • head args = newClass (name, scje)
Æ ¶ c = TranslateExpression ((head args), transEnv)
Æ ¶ ExtractParamComs (args, transEnv)
Æ = „cÒ ^ ExtractParamComs ((tail args), transEnv))
Æ v (E scje: SCJExpression; scjes: seq SCJExpression; name: Name; c: Com
Æ • ((head args = methodInvocation (scje, scjes)
Æ v head args = memberSelect (scje, name))
Æ ¶ c = TranslateExpression ((head args), transEnv)
Æ ¶ (E mc: methodCall
Æ • (c = MethodCall mc
Æ ¶ ExtractParamComs (args, transEnv)
Æ = „(GetMethodCallReturnDec (mc, c)).2Ò
Æ ^ ExtractParamComs ((tail args), transEnv)))
Æ v (E c1, c2: Com; mc: methodCall
Æ • c = Seq (c1, c2)
Æ ¶ c2 = MethodCall mc
Æ ¶ ExtractParamComs (args, transEnv)
Æ = „(GetMethodCallReturnDec (mc, c)).2Ò
Æ ^ ExtractParamComs ((tail args), transEnv))))

ÆExtractParamExprs: seq SCJExpression x TranslationEnv ß seq Expr
«_______________
ÆA args: seq SCJExpression; transEnv: TranslationEnv
Æ • (E te: TypeElement; scje: SCJExpression
Æ • head args = typeCast (te, scje)
Æ ¶ ExtractParamExprs (args, transEnv)
Æ = ExtractParamExprs ((„scjeÒ ^ tail args), transEnv))
Æ v (E scje1, scje2: SCJExpression; e: Expr

Appendices D: Translation strategy in Z

238

Æ • head args = binary (scje1, scje2)
Æ ¶ e = ExtractExpression (head args)
Æ ¶ ExtractParamExprs (args, transEnv)
Æ = „eÒ ^ ExtractParamExprs ((tail args), transEnv))
Æ v (E te: TypeElement; name: Name; scje: seq SCJExpression; c, c1,
Æ c2: Com; nI: newInstance; e: Expr
Æ • (head args = newArray (te, scje)
Æ v head args = newClass (name, scje))
Æ ¶ c = TranslateExpression ((head args), transEnv)
Æ ¶ c = Seq (c1, c2)
Æ ¶ c2 = NewInstance nI
Æ ¶ ExtractParamExprs (args, transEnv)
Æ = „nI.leÒ ^ ExtractParamExprs ((tail args), transEnv))
Æ v (E scje: SCJExpression; scjes: seq SCJExpression; name: Name; c: Com;
Æ e: Expr
Æ • ((head args = methodInvocation (scje, scjes)
Æ v head args = memberSelect (scje, name))
Æ ¶ c = TranslateExpression ((head args), transEnv)
Æ ¶ (E mc: methodCall
Æ • (c = MethodCall mc
Æ ¶ ExtractParamExprs (args, transEnv)
Æ = „(GetMethodCallReturnDec (mc, c)).1Ò
Æ ^ ExtractParamExprs ((tail args), transEnv)))
Æ v (E c1, c2: Com; mc: methodCall
Æ • c = Seq (c1, c2)
Æ ¶ c2 = MethodCall mc
Æ ¶ ExtractParamExprs (args, transEnv)
Æ = „(GetMethodCallReturnDec (mc, c)).1Ò
Æ ^ ExtractParamExprs ((tail args), transEnv))))

ÆTranslateVariable: SCJVariable x SCJmSafeProgram x TranslationEnv ß seq Com
«_______________
ÆA scjVar: SCJVariable; program: SCJmSafeProgram; transEnv: TranslationEnv
Æ • E dec: Dec; scjExpr: SCJExpression; com: Com
Æ • dec.var.name = scjVar.name
Æ ¶ dec.var.varType.type = scjVar.type.name
Æ ¶ scjExpr = scjVar.init
Æ ¶ dec.var e transEnv.variables
Æ ¶ (scjExpr = null
Æ ¶ TranslateVariable (scjVar, program, transEnv) = „Decl decÒ
Æ v (E type: TypeElement; e1: SCJExpression; var: SCJVariable
Æ | scjExpr = typeCast (type, e1)
Æ ¶ var.mods = scjVar.mods
Æ ¶ var.type = scjVar.type
Æ ¶ var.name = scjVar.name
Æ ¶ var.init = e1
Æ • TranslateVariable (scjVar, program, transEnv)
Æ = TranslateVariable (var, program, transEnv))
Æ v ((E name: Name; scjArgs: seq SCJExpression; args: seq Expr;
Æ nI: newInstance
Æ | scjExpr = newClass (name, scjArgs)
Æ ¶ nI.le = ID (var dec.var)
Æ ¶ nI.mrc = Current
Æ ¶ nI.type = dec.var.varType
Æ ¶ nI.args = ExtractParamExprs (scjArgs, transEnv)

239

Æ • dec.var.varType.isReference = True
Æ ¶ dec.var.varType.type = name
Æ ¶ com
Æ = MergeSideEffectsParamsCom ((NewInstance nI),
Æ (ExtractParamComs (scjArgs,
Æ transEnv)),
Æ Skip))
Æ v (E type: TypeElement; scjInits: seq SCJExpression;
Æ nI: newInstance
Æ | scjExpr = newArray (type, scjInits)
Æ ¶ nI.le = ID (var dec.var)
Æ ¶ nI.mrc = Current
Æ ¶ nI.type = dec.var.varType
Æ ¶ nI.args = ExtractParamExprs (scjInits, transEnv)
Æ • dec.var.varType.isReference = True
Æ ¶ dec.var.varType.isArray = True
Æ ¶ com
Æ = MergeSideEffectsParamsCom ((NewInstance nI),
Æ (ExtractParamComs (scjInits,
Æ transEnv)),
Æ Skip))
Æ v (E lhs: SCJExpression; args: seq SCJExpression;
Æ lhsCom: Com
Æ | scjExpr = methodInvocation (lhs, args)
Æ ¶ lhsCom = TranslateExpression (lhs, transEnv)
Æ • (E c1, c2: Com | lhsCom = Seq (c1, c2)
Æ • ((E le1: LExpr; n1: Name; seqExpr: seq Expr;
Æ rexpr: Expr; sideEffect: Com;
Æ mc: methodCall
Æ | mc.le = le1
Æ ¶ mc.name = n1
Æ ¶ mc.args = seqExpr
Æ ¶ c2 = MethodCall mc
Æ ¶ (rexpr, sideEffect)
Æ = GetMethodCallReturnDec (mc,
Æ lhsCom)
Æ • com
Æ = Seq (sideEffect,
Æ (Asgn ((ID (var dec.var)),
Æ rexpr))))
Æ v (E le1: LExpr; n1: Name;
Æ seqExpr: seq Expr; rexpr: Expr;
Æ sideEffect: Com; mc: methodCall
Æ | mc.le = le1
Æ ¶ mc.name = n1
Æ ¶ mc.args = seqExpr
Æ ¶ lhsCom = MethodCall mc
Æ ¶ (rexpr, sideEffect)
Æ = GetMethodCallReturnDec (mc,
Æ lhsCom)
Æ • com
Æ = Seq (sideEffect,
Æ (Asgn ((ID (var dec.var)),
Æ rexpr)))))))
Æ v (E expr, index: SCJExpression
Æ | scjExpr = arrayAccess (expr, index)

Appendices D: Translation strategy in Z

240

Æ • ((E e1: SCJExpression; args: seq SCJExpression; c1,
Æ c2, sideEffect: Com; rexpr: Expr
Æ | expr = methodInvocation (e1, args)
Æ ¶ c1 = TranslateExpression (expr, transEnv)
Æ ¶ c2
Æ = TranslateExpression (index, transEnv)
Æ • (E le1: LExpr; n1: Name; args2: seq Expr;
Æ c3: Com; mc: methodCall
Æ | mc.le = le1
Æ ¶ mc.name = n1
Æ ¶ mc.args = args2
Æ ¶ c1 = MethodCall mc
Æ ¶ (rexpr, c3)
Æ = GetMethodCallReturnDec (mc,
Æ c1)
Æ ¶ sideEffect
Æ = SimplifyCommandPair (c3, c2)
Æ • com
Æ = SimplifyCommandPair (sideEffect,
Æ (Asgn ((ID (var dec.var)),
Æ rexpr))))
Æ v (E seq1, seq2: Com; c3: Com; le1: LExpr;
Æ n1: Name; args2: seq Expr;
Æ mc: methodCall
Æ | c1 = Seq (seq1, seq2)
Æ ¶ mc.le = le1
Æ ¶ mc.name = n1
Æ ¶ mc.args = args2
Æ ¶ seq2 = MethodCall mc
Æ ¶ (rexpr, c3)
Æ = GetMethodCallReturnDec (mc,
Æ c1)
Æ ¶ sideEffect
Æ = SimplifyCommandPair (c3, c2)
Æ • com
Æ = SimplifyCommandPair (sideEffect,
Æ (Asgn ((ID (var dec.var)),
Æ rexpr)))))
Æ v (E c1, c2, sideEffect: Com; rexpr: Expr
Æ | rexpr = ExtractExpression scjExpr
Æ ¶ c1
Æ = TranslateExpression (expr,
Æ transEnv)
Æ ¶ c2
Æ = TranslateExpression (index,
Æ transEnv)
Æ • sideEffect = SimplifyCommandPair (c1, c2)
Æ ¶ com
Æ = SimplifyCommandPair (sideEffect,
Æ (Asgn ((ID (var dec.var)),
Æ rexpr))))))
Æ v (E sideEffect: Com; rhs: Expr
Æ | sideEffect
Æ = TranslateExpression (scjExpr, transEnv)
Æ ¶ rhs = ExtractExpression scjExpr
Æ • (sideEffect = Skip

241

Æ ¶ com = Asgn ((ID (var dec.var)), rhs)
Æ v (E le1: LExpr; n1: Name; seqExpr: seq Expr; mc1,
Æ mc2: methodCall
Æ | mc1.le = le1
Æ ¶ mc1.name = n1
Æ ¶ mc2.args = seqExpr
Æ ¶ sideEffect = MethodCall mc1
Æ ¶ mc2.le = le1
Æ ¶ mc2.name = n1
Æ ¶ mc2.args = seqExpr ^ „ID (var dec.var)Ò
Æ • com = MethodCall mc2)
Æ v com
Æ = Seq (sideEffect,
Æ (Asgn ((ID (var dec.var)), rhs)))))
Æ ¶ (static e scjVar.mods.flags
Æ ¶ dec e program.static
Æ ¶ com e program.sInit
Æ ¶ TranslateVariable (scjVar, program, transEnv)
Æ = „SkipÒ
Æ v static ‰ scjVar.mods.flags
Æ ¶ TranslateVariable (scjVar, program, transEnv)
Æ = „Decl dec, comÒ)))

ÆTranslateCommand: SCJCommand x SCJmSafeProgram x TranslationEnv ß Com
«_______________
ÆA scjCom: SCJCommand; program: SCJmSafeProgram; transEnv: TranslationEnv
Æ | (scjCom, program, transEnv) e dom TranslateCommand
Æ ¶ scjCom e WellTypedComs
Æ • (E e1, e2: SCJExpression | scjCom = assert (e1, e2)
Æ • TranslateCommand (scjCom, program, transEnv) = Skip)
Æ v (E bool: Boolean; c1: SCJCommand | scjCom = block (bool, c1)
Æ • TranslateCommand (scjCom, program, transEnv)
Æ = Scope (TranslateCommand (c1, program, transEnv)))
Æ v (E name: Name | scjCom = break name
Æ • TranslateCommand (scjCom, program, transEnv) = Skip)
Æ v (E name: Name | scjCom = continue name
Æ • TranslateCommand (scjCom, program, transEnv) = Skip)
Æ v (E e1: SCJExpression; c1: SCJCommand | scjCom = doWhile (e1, c1)
Æ • TranslateCommand (scjCom, program, transEnv)
Æ = SimplifyCommandPair ((DoWhile ((TranslateCommand (c1,
Æ program,
Æ transEnv)),
Æ (ExtractExpression e1))),
Æ (TranslateExpression (e1, transEnv))))
Æ v scjCom = empty ¶ TranslateCommand (scjCom, program, transEnv) = Skip
Æ v (E mods: SCJModifier; type: TypeElement; name: Name; c1,
Æ c2: SCJCommand; e1: SCJExpression
Æ | scjCom = eFor (mods, type, name, c1, e1, c2)
Æ • TranslateCommand (scjCom, program, transEnv)
Æ = SimplifyCommandPair ((TranslateExpression (e1, transEnv)),
Æ (For ((TranslateCommand (c1, program,
Æ transEnv)),
Æ (ExtractExpression e1), Skip,
Æ (TranslateCommand (c2, program,
Æ transEnv))))))

Appendices D: Translation strategy in Z

242

Æ v (E e1: SCJExpression | scjCom = expression e1
Æ • TranslateCommand (scjCom, program, transEnv)
Æ = TranslateExpression (e1, transEnv))
Æ v (E c1, c2, c3: SCJCommand; e1: SCJExpression
Æ | scjCom = for (c1, e1, c2, c3)
Æ • TranslateCommand (scjCom, program, transEnv)
Æ = SimplifyCommandPair ((TranslateExpression (e1, transEnv)),
Æ (For ((TranslateCommand (c1, program,
Æ transEnv)),
Æ (ExtractExpression e1),
Æ (TranslateCommand (c2, program,
Æ transEnv)),
Æ (TranslateCommand (c3, program,
Æ transEnv))))))
Æ v (E e1: SCJExpression; c1, c2: SCJCommand | scjCom = if (e1, c1, c2)
Æ • TranslateCommand (scjCom, program, transEnv)
Æ = SimplifyCommandPair ((TranslateExpression (e1, transEnv)),
Æ (If ((ExtractExpression e1),
Æ (TranslateCommand (c1, program,
Æ transEnv)),
Æ (TranslateCommand (c2, program,
Æ transEnv))))))
Æ v (E name: Name; c1: SCJCommand | scjCom = labeled (name, c1)
Æ • TranslateCommand (scjCom, program, transEnv)
Æ = TranslateCommand (c1, program, transEnv))
Æ v (E e1: SCJExpression; lexpr: Expr; v: Variable
Æ | scjCom = return e1
Æ ¶ v.name = Result
Æ ¶ v.varType.resultVar = True
Æ • (e1 Î null
Æ ¶ ((E te: TypeElement; args: seq SCJExpression;
Æ nI: newInstance
Æ | e1 = newArray (te, args)
Æ ¶ v.varType.type = te.name
Æ ¶ nI.mrc = Current
Æ ¶ nI.le = ID (var v)
Æ ¶ nI.args = ExtractParamExprs (args, transEnv)
Æ ¶ nI.type = v.varType
Æ • TranslateCommand (scjCom, program, transEnv)
Æ = MergeSideEffectsParamsCom ((NewInstance nI),
Æ (ExtractParamComs (args,
Æ transEnv)),
Æ Skip))
Æ v (E args: seq SCJExpression; nI: newInstance; name: Name
Æ | e1 = newClass (name, args)
Æ ¶ nI.type.type = name
Æ ¶ nI.type.isReference = True
Æ ¶ nI.le = ID (var v)
Æ ¶ nI.mrc = Current
Æ ¶ nI.args = ExtractParamExprs (args, transEnv)
Æ ¶ nI.type = v.varType
Æ • TranslateCommand (scjCom, program, transEnv)
Æ = MergeSideEffectsParamsCom ((NewInstance nI),
Æ (ExtractParamComs (args,
Æ transEnv)),
Æ Skip))

243

Æ v (E le: SCJExpression; args: seq SCJExpression; c: Com
Æ | e1 = methodInvocation (le, args)
Æ ¶ c = TranslateExpression (e1, transEnv)
Æ • ((E mc: methodCall; rexpr: Expr
Æ | c = MethodCall mc
Æ ¶ rexpr
Æ = (GetMethodCallReturnDec (mc, c)).1
Æ • TranslateCommand (scjCom, program,
Æ transEnv)
Æ = Seq ((GetMethodCallReturnDec (mc,
Æ c)).2,
Æ (Asgn ((ID (var v)), rexpr))))
Æ v (E c1, c2: Com; mc: methodCall; rexpr: Expr
Æ | c = Seq (c1, c2)
Æ ¶ c2 = MethodCall mc
Æ ¶ rexpr
Æ = (GetMethodCallReturnDec (mc, c)).1
Æ • TranslateCommand (scjCom, program,
Æ transEnv)
Æ = Seq ((GetMethodCallReturnDec (mc,
Æ c)).2,
Æ (Asgn ((ID (var v)),
Æ rexpr)))))))
Æ v e1 = null
Æ ¶ TranslateCommand (scjCom, program, transEnv) = Skip))
Æ v (E a: SCJModifier; type: TypeElement; name: Name; c1: SCJCommand;
Æ c2: seq SCJCommand; e1: SCJExpression
Æ | scjCom = switch (a, type, name, c1, e1, c2)
Æ • (let translatedSeq ==
Æ { i: 1 .. # c2
Æ • i
Æ ∏ TranslateCommand ((c2 i), program,
Æ transEnv) }
Æ • TranslateCommand (scjCom, program, transEnv)
Æ = SimplifyCommandPair ((TranslateExpression (e1,
Æ transEnv)),
Æ (Switch ((ExtractExpression e1),
Æ translatedSeq)))))
Æ v (E e1: SCJExpression; bool: Boolean; c1: SCJCommand
Æ | scjCom = synchronized1 (e1, bool, c1)
Æ • TranslateCommand (scjCom, program, transEnv)
Æ = TranslateCommand (c1, program, transEnv))
Æ v (E e1: SCJExpression | scjCom = throw e1
Æ • TranslateCommand (scjCom, program, transEnv)
Æ = TranslateExpression (e1, transEnv))
Æ v (E c1, c2: SCJCommand; eseq: seq SCJExpression; comseq: seq SCJCommand
Æ | scjCom = try (c1, eseq, comseq, c2)
Æ • (let translatedExprs ==
Æ { i: 1 .. # eseq • i ∏ ExtractExpression (eseq i) };
Æ translatedComs ==
Æ { i: 1 .. # comseq
Æ • i
Æ ∏ TranslateCommand ((comseq i), program,
Æ transEnv) }
Æ • TranslateCommand (scjCom, program, transEnv)
Æ = Try ((TranslateCommand (c1, program, transEnv)),

Appendices D: Translation strategy in Z

244

Æ translatedExprs, translatedComs,
Æ (TranslateCommand (c2, program, transEnv)))))
Æ v (E scjVar: SCJVariable | scjCom = variable scjVar
Æ • TranslateCommand (scjCom, program, transEnv)
Æ = CreateSingleCommand (TranslateVariable (scjVar, program,
Æ transEnv)))
Æ v (E e1: SCJExpression; c1: SCJCommand | scjCom = while (e1, c1)
Æ • TranslateCommand (scjCom, program, transEnv)
Æ = Seq ((TranslateExpression (e1, transEnv)),
Æ (While ((ExtractExpression e1),
Æ (TranslateCommand (c1, program, transEnv))))))

ÆTranslateComponentsFieldsDecs: seq SCJClassComponent x SCJmSafeProgram x
Æ TranslationEnv
Æ ß seq Dec
«_______________
ÆA components: seq SCJClassComponent; program: SCJmSafeProgram;
Æ transEnv: TranslationEnv
Æ • components = „Ò
Æ ¶ TranslateComponentsFieldsDecs (components, program, transEnv) = „Ò
Æ v (E dec: Dec; h: SCJVariable; t: seq SCJClassComponent; seqCom: seq Com
Æ | components = „ClassField hÒ ^ t
Æ ¶ seqCom = TranslateVariable (h, program, transEnv)
Æ ¶ head seqCom = Decl dec
Æ • TranslateComponentsFieldsDecs (components, program, transEnv)
Æ = „decÒ
Æ ^ TranslateComponentsFieldsDecs (t, program, transEnv))
Æ v (E h: SCJMethod; t: seq SCJClassComponent
Æ | components = „ClassMethod hÒ ^ t
Æ • TranslateComponentsFieldsDecs (components, program, transEnv)
Æ = „Ò)

ÆTranslateComponentsFieldsInits: seq SCJClassComponent x SCJmSafeProgram x
Æ TranslationEnv
Æ ß seq Com
«_______________
ÆA components: seq SCJClassComponent; program: SCJmSafeProgram;
Æ transEnv: TranslationEnv
Æ • components = „Ò
Æ ¶ TranslateComponentsFieldsInits (components, program, transEnv) = „Ò
Æ v (E h: SCJVariable; t: seq SCJClassComponent; seqCom: seq Com
Æ | components = „ClassField hÒ ^ t
Æ ¶ seqCom = TranslateVariable (h, program, transEnv)
Æ • TranslateComponentsFieldsInits (components, program, transEnv)
Æ = tail seqCom
Æ ^ TranslateComponentsFieldsInits (t, program, transEnv))
Æ v (E h: SCJMethod; t: seq SCJClassComponent
Æ | components = „ClassMethod hÒ ^ t
Æ • TranslateComponentsFieldsInits (components, program, transEnv)
Æ = „Ò)

ÆTranslateParams: seq SCJVariable ß seq Variable
«_______________

245

ÆA scjParams: seq SCJVariable
Æ • E params: seq Variable
Æ • scjParams = „Ò ¶ TranslateParams scjParams = „Ò
Æ v (E h: SCJVariable; t: seq SCJVariable; v: Variable
Æ | scjParams = „hÒ ^ t
Æ ¶ v.name = h.name
Æ ¶ v.varType.type = h.type.name
Æ • TranslateParams scjParams = „vÒ ^ TranslateParams t)

ÆMethodResultParam: SCJMethod ß seq Variable
«_______________
ÆA scjMethod: SCJMethod
Æ • E var: Variable
Æ • scjMethod.returnType.name Î void
Æ ¶ scjMethod.body Î „Ò
Æ ¶ var.name = Result
Æ ¶ var.varType.type = scjMethod.returnType.name
Æ ¶ MethodResultParam scjMethod = „varÒ
Æ v (scjMethod.returnType.name = void v scjMethod.body = „Ò)
Æ ¶ MethodResultParam scjMethod = „Ò

ÆTranslateCommandSeq: seq SCJCommand x SCJmSafeProgram x TranslationEnv
Æ ß seq Com
«_______________
ÆA seqCom: seq SCJCommand; program: SCJmSafeProgram; transEnv: TranslationEnv
Æ • TranslateCommandSeq (seqCom, program, transEnv)
Æ = „TranslateCommand ((head seqCom), program, transEnv)Ò
Æ ^ TranslateCommandSeq ((tail seqCom), program, transEnv)

ÆTranslateMethod: SCJMethod x Name x SCJmSafeProgram x TranslationEnv ß Method
«_______________
ÆA scjMethod: SCJMethod; name: Name; program: SCJmSafeProgram;
Æ transEnv: TranslationEnv
Æ • E method: Method
Æ | scjMethod.name = method.name
Æ ¶ method.class = name
Æ ¶ method.params
Æ = TranslateParams scjMethod.params
Æ ^ MethodResultParam scjMethod
Æ ¶ method.returnType = scjMethod.returnType.name
Æ ¶ method.body
Æ = CreateSingleCommand (TranslateCommandSeq (scjMethod.body,
Æ program,
Æ transEnv))
Æ • TranslateMethod (scjMethod, name, program, transEnv) = method

ÆTranslateConstr: SCJMethod x Name x SCJmSafeProgram x TranslationEnv ß Method
«_______________
ÆA scjMethod: SCJMethod; name: Name; program: SCJmSafeProgram;
Æ transEnv: TranslationEnv
Æ • E method: Method
Æ | scjMethod.name = method.name

Appendices D: Translation strategy in Z

246

Æ ¶ method.class = name
Æ ¶ method.params = TranslateParams scjMethod.params
Æ ¶ method.body
Æ = CreateSingleCommand (TranslateCommandSeq (scjMethod.body,
Æ program,
Æ transEnv))
Æ • TranslateConstr (scjMethod, name, program, transEnv) = method

ÆTranslateClass: SCJClass x SCJmSafeProgram x TranslationEnv ß Class
«_______________
ÆA scjClass: SCJClass; program: SCJmSafeProgram; transEnv: TranslationEnv
Æ • E class: Class
Æ • class.fields
Æ = TranslateComponentsFieldsDecs (scjClass.members, program,
Æ transEnv)
Æ ¶ class.init
Æ = TranslateComponentsFieldsInits (scjClass.members, program,
Æ transEnv)
Æ ¶ class.constrs
Æ = U { classComponent: ran scjClass.members
Æ • { method: SCJMethod
Æ | classComponent = ClassMethod method
Æ ¶ method.name = class.name
Æ • (TranslateConstr (method, scjClass.name,
Æ program, transEnv)) } }
Æ ¶ class.methods
Æ = U { classComponent: ran scjClass.members
Æ • { method: SCJMethod
Æ | classComponent = ClassMethod method
Æ ¶ method.name Î class.name
Æ • (TranslateMethod (method, scjClass.name,
Æ program, transEnv)) } }
Æ ¶ class.name = scjClass.name
Æ ¶ TranslateClass (scjClass, program, transEnv) = class

ÆTranslateHandler: SCJClass x SCJmSafeProgram x TranslationEnv ß Handler
«_______________
ÆA scjClass: SCJClass; program: SCJmSafeProgram; transEnv: TranslationEnv
Æ • E handler: Handler
Æ • handler.fields
Æ = TranslateComponentsFieldsDecs (scjClass.members, program,
Æ transEnv)
Æ ¶ handler.init
Æ = TranslateComponentsFieldsInits (scjClass.members, program,
Æ transEnv)
Æ ¶ handler.constrs
Æ = U { classComponent: ran scjClass.members
Æ • { method: SCJMethod
Æ | classComponent = ClassMethod method
Æ ¶ method.name = handler.name
Æ • (TranslateConstr (method, scjClass.name,
Æ program, transEnv)) } }
Æ ¶ handler.methods
Æ = U { classComponent: ran scjClass.members

247

Æ • { method: SCJMethod
Æ | classComponent = ClassMethod method
Æ ¶ method.name Î handler.name
Æ ¶ method.name Î handleEvent
Æ • (TranslateMethod (method, scjClass.name,
Æ program, transEnv)) } }
Æ ¶ (E classComponent: ran scjClass.members; method: SCJMethod
Æ | classComponent = ClassMethod method
Æ ¶ method.name = handleEvent
Æ • handler.hAe
Æ = CreateSingleCommand (TranslateCommandSeq (method.body,
Æ program,
Æ transEnv)))
Æ ¶ handler.name = scjClass.name
Æ ¶ TranslateHandler (scjClass, program, transEnv) = handler

ÆHandlers: SCJProgram ß P Name
«_______________
ÆA program: SCJProgram
Æ • Handlers program
Æ = { c: program.classes
Æ | c.extends = PeriodicEventHandler
Æ v c.extends = AperiodicEventHandler • c.name }

ÆAnalyseHandlers: SCJProgram x SCJClass ß P Name
«_______________
ÆA program: SCJProgram; class: SCJClass
Æ • AnalyseHandlers (program, class)
Æ = U { m: ran class.members; method: SCJMethod
Æ | m = ClassMethod method ¶ method.name = initialize
Æ • { c: ran method.body; e: SCJExpression; n: Name;
Æ args: seq SCJExpression
Æ | c = expression e
Æ ¶ e = newClass (n, args)
Æ ¶ n e Handlers program • n } }

ÆTranslateMission: SCJClass x SCJProgram x SCJmSafeProgram x TranslationEnv
Æ ß Mission
«_______________
ÆA scjClass: SCJClass; scjProg: SCJProgram; program: SCJmSafeProgram;
Æ transEnv: TranslationEnv
Æ • E mission: Mission
Æ • let missionMethods == {initialize, cleanUp}
Æ • mission.fields
Æ = TranslateComponentsFieldsDecs (scjClass.members, program,
Æ transEnv)
Æ ¶ mission.init
Æ = TranslateComponentsFieldsInits (scjClass.members,
Æ program, transEnv)
Æ ¶ mission.constrs
Æ = U { classComponent: ran scjClass.members
Æ • { method: SCJMethod
Æ | classComponent = ClassMethod method

Appendices D: Translation strategy in Z

248

Æ ¶ method.name = mission.name
Æ • (TranslateConstr (method, scjClass.name,
Æ program,
Æ transEnv)) } }
Æ ¶ mission.handlers = AnalyseHandlers (scjProg, scjClass)
Æ ¶ mission.methods
Æ = U { classComponent: ran scjClass.members
Æ • { method: SCJMethod
Æ | classComponent = ClassMethod method
Æ ¶ method.name Î mission.name
Æ ¶ method.name ‰ missionMethods
Æ • (TranslateMethod (method, scjClass.name,
Æ program,
Æ transEnv)) } }
Æ ¶ (E classComponent: ran scjClass.members; method: SCJMethod
Æ | classComponent = ClassMethod method
Æ ¶ method.name = initialize
Æ • mission.initialize
Æ = CreateSingleCommand (TranslateCommandSeq (method.body,
Æ program,
Æ transEnv)))
Æ ¶ (E classComponent: ran scjClass.members; method: SCJMethod
Æ | classComponent = ClassMethod method
Æ ¶ method.name = cleanUp
Æ • mission.cleanUp
Æ = CreateSingleCommand (TranslateCommandSeq (method.body,
Æ program,
Æ transEnv)))
Æ ¶ mission.name = scjClass.name
Æ ¶ TranslateMission (scjClass, scjProg, program, transEnv)
Æ = mission

ÆMissions: SCJProgram ß P Name
«_______________
ÆA program: SCJProgram
Æ • Missions program
Æ = { c: program.classes | c.extends = mission • c.name }

ÆAnalyseMissions: SCJProgram x SCJClass ß P Name
«_______________
ÆA program: SCJProgram; class: SCJClass
Æ • AnalyseMissions (program, class)
Æ = U { m: ran class.members; method: SCJMethod
Æ | m = ClassMethod method ¶ method.name = getNextMission
Æ • { c: ran method.body; e: SCJExpression; n: Name;
Æ args: seq SCJExpression
Æ | c = expression e
Æ ¶ e = newClass (n, args)
Æ ¶ n e Missions program • n } }

ÆTranslateMissionSeq: SCJClass x SCJProgram x SCJmSafeProgram x TranslationEnv
Æ ß MissionSeq
«_______________

249

ÆA scjClass: SCJClass; scjProg: SCJProgram; program: SCJmSafeProgram;
Æ transEnv: TranslationEnv
Æ • E missionSeq: MissionSeq
Æ • missionSeq.fields
Æ = TranslateComponentsFieldsDecs (scjClass.members, program,
Æ transEnv)
Æ ¶ missionSeq.init
Æ = TranslateComponentsFieldsInits (scjClass.members, program,
Æ transEnv)
Æ ¶ missionSeq.constrs
Æ = U { classComponent: ran scjClass.members
Æ • { method: SCJMethod
Æ | classComponent = ClassMethod method
Æ ¶ method.name = missionSeq.name
Æ • (TranslateConstr (method, scjClass.name,
Æ program, transEnv)) } }
Æ ¶ (E classComponent: ran scjClass.members; method: SCJMethod
Æ | classComponent = ClassMethod method
Æ ¶ method.name = getNextMission
Æ • missionSeq.getNextMission
Æ = CreateSingleCommand (TranslateCommandSeq (method.body,
Æ program,
Æ transEnv)))
Æ ¶ missionSeq.missions = AnalyseMissions (scjProg, scjClass)
Æ ¶ missionSeq.methods
Æ = U { classComponent: ran scjClass.members
Æ • { method: SCJMethod
Æ | classComponent = ClassMethod method
Æ ¶ method.name Î missionSeq.name
Æ ¶ method.name Î getNextMission
Æ • (TranslateMethod (method, scjClass.name,
Æ program, transEnv)) } }
Æ ¶ missionSeq.name = scjClass.name
Æ ¶ TranslateMissionSeq (scjClass, scjProg, program, transEnv)
Æ = missionSeq

ÆTranslateSafelet: SCJClass x SCJmSafeProgram x TranslationEnv ß Safelet
«_______________
ÆA scjClass: SCJClass; program: SCJmSafeProgram; transEnv: TranslationEnv
Æ • E safelet: Safelet
Æ • let safeletMethods == {initializeApplication, getSequencer}
Æ • safelet.fields
Æ = TranslateComponentsFieldsDecs (scjClass.members, program,
Æ transEnv)
Æ ¶ safelet.init
Æ = TranslateComponentsFieldsInits (scjClass.members,
Æ program, transEnv)
Æ ¶ safelet.constrs
Æ = U { classComponent: ran scjClass.members
Æ • { method: SCJMethod
Æ | classComponent = ClassMethod method
Æ ¶ method.name = safelet.name
Æ • (TranslateConstr (method, scjClass.name,
Æ program,
Æ transEnv)) } }

Appendices D: Translation strategy in Z

250

Æ ¶ safelet.methods
Æ = U { classComponent: ran scjClass.members
Æ • { method: SCJMethod
Æ | classComponent = ClassMethod method
Æ ¶ method.name Î safelet.name
Æ ¶ method.name ‰ safeletMethods
Æ • (TranslateMethod (method, scjClass.name,
Æ program,
Æ transEnv)) } }
Æ ¶ (E classComponent: ran scjClass.members; method: SCJMethod
Æ | classComponent = ClassMethod method
Æ ¶ method.name = initializeApplication
Æ • safelet.initializeApplication
Æ = CreateSingleCommand (TranslateCommandSeq (method.body,
Æ program,
Æ transEnv)))
Æ ¶ (E classComponent: ran scjClass.members; method: SCJMethod
Æ | classComponent = ClassMethod method
Æ ¶ method.name = getSequencer
Æ • safelet.getSequencer
Æ = CreateSingleCommand (TranslateCommandSeq (method.body,
Æ program,
Æ transEnv)))
Æ ¶ safelet.name = scjClass.name
Æ ¶ TranslateSafelet (scjClass, program, transEnv) = safelet

ÆExtractParamTypes: seq SCJVariable ß seq Name
«_______________
ÆA vars: seq SCJVariable
Æ • E var: SCJVariable | var = head vars
Æ • ExtractParamTypes vars
Æ = „var.type.nameÒ ^ ExtractParamTypes (tail vars)

ÆAnalyseMethodSig: SCJClass x SCJMethod ß MethodSig
«_______________
ÆA class: SCJClass; method: SCJMethod
Æ • E ms: MethodSig
Æ | ms.name = method.name
Æ ¶ ms.class = class.name
Æ ¶ ms.classExtends = class.extends
Æ ¶ ms.descendants = 0
Æ ¶ ms.returnTypeName = method.returnType.name
Æ ¶ ms.paramTypes = ExtractParamTypes method.params
Æ • AnalyseMethodSig (class, method) = ms

ÆAnalyseMethodSigsClass: SCJClass x seq SCJClassComponent ß P MethodSig
«_______________
ÆA class: SCJClass; components: seq SCJClassComponent
Æ • (E method: SCJMethod | head components = ClassMethod method
Æ • AnalyseMethodSigsClass (class, components)
Æ = {AnalyseMethodSig (class, method)}
Æ U AnalyseMethodSigsClass (class, (tail components)))
Æ v (E method: SCJMethod | head components Î ClassMethod method

251

Æ • AnalyseMethodSigsClass (class, components)
Æ = AnalyseMethodSigsClass (class, (tail components)))

ÆCalculateDescendants: SCJProgram x P MethodSig ß P MethodSig
«_______________
ÆA program: SCJProgram; methods: P MethodSig
Æ • CalculateDescendants (program, methods)
Æ = U { ms: methods
Æ • { c1: program.classes; ms2: MethodSig
Æ | ms.class = c1.name
Æ ¶ ms.name = ms2.name
Æ ¶ ms.class = ms2.class
Æ ¶ ms.classExtends = ms2.classExtends
Æ ¶ ms.returnType = ms2.returnType
Æ ¶ ms.returnTypeName = ms2.returnTypeName
Æ ¶ ms.paramTypes = ms2.paramTypes
Æ ¶ ms2.descendants
Æ = { c2: program.classes
Æ | c1 Î c2 ¶ c2.extends = c1.name
Æ • c2.name } • ms2 } }

ÆAnalyseMethodSigs: SCJProgram ß P MethodSig
«_______________
ÆA program: SCJProgram
Æ • AnalyseMethodSigs program
Æ = CalculateDescendants (program,
Æ (U { c: program.classes
Æ • (AnalyseMethodSigsClass (c,
Æ c.members)) }))

ÆExtends: SCJClass x Name x SCJProgram ß Boolean
«_______________
ÆA class: SCJClass; name: Name; program: SCJProgram
Æ • class.extends Î Empty
Æ ¶ (class.extends = name ¶ Extends (class, name, program) = True
Æ v (E c1: SCJClass | c1 e program.classes ¶ c1.name = class.extends
Æ • Extends (class, name, program)
Æ = Extends (c1, name, program)))
Æ v class.extends = Empty ¶ Extends (class, name, program) = False

ÆTranslate: SCJProgram ß SCJmSafeProgram
«_______________
ÆA program: dom Translate | program e WellTypedProgs
Æ • E scjmsafe: SCJmSafeProgram; transEnv: TranslationEnv
Æ | transEnv.methods = AnalyseMethodSigs program
Æ • (E scjSafelet: SCJClass
Æ | scjSafelet e program.classes
Æ ¶ Extends (scjSafelet, safelet, program) = True
Æ • scjmsafe.safelet
Æ = TranslateSafelet (scjSafelet, scjmsafe, transEnv))
Æ ¶ (E scjMissionSeq: SCJClass
Æ | scjMissionSeq e program.classes

Appendices D: Translation strategy in Z

252

Æ ¶ Extends (scjMissionSeq, missionSequencer, program)
Æ = True
Æ • scjmsafe.missionSeq
Æ = TranslateMissionSeq (scjMissionSeq, program,
Æ scjmsafe, transEnv))
Æ ¶ (A scjMission: SCJClass
Æ | scjMission e program.classes
Æ ¶ Extends (scjMission, mission, program) = True
Æ • TranslateMission (scjMission, program, scjmsafe,
Æ transEnv) e scjmsafe.missions)
Æ ¶ (A scjHandler: SCJClass
Æ | scjHandler e program.classes
Æ ¶ (Extends (scjHandler, PeriodicHandler, program) = True
Æ v Extends (scjHandler, APeriodicHandler, program)
Æ = True)
Æ • TranslateHandler (scjHandler, scjmsafe, transEnv)
Æ e scjmsafe.handlers)
Æ ¶ (A scjClass: SCJClass
Æ | scjClass e program.classes
Æ ¶ abstract ‰ scjClass.modifiers.flags
Æ ¶ Extends (scjClass, safelet, program) = False
Æ ¶ Extends (scjClass, missionSequencer, program) = False
Æ ¶ Extends (scjClass, mission, program) = False
Æ ¶ Extends (scjClass, APeriodicHandler, program) = False
Æ ¶ Extends (scjClass, PeriodicHandler, program) = False
Æ • TranslateClass (scjClass, scjmsafe, transEnv)
Æ e scjmsafe.classes)
Æ ¶ Translate program = scjmsafe

253

Appendix E

Checking technique in Z

255

ExprShareRelation == LExpr j LExpr

ExprRefSet == LExpr ß P RefCon

Env ==
 { env: ExprShareRelation x ExprRefSet
 | A rel, crel: ExprShareRelation; ref: ExprRefSet
 | (rel, ref) = env ¶ crel = rel * U (rel *) ~
 • dom crel = dom ref
 ¶ (A e1, e2: LExpr | e1 ∏ e2 e crel • ref e1 = ref e2) }

MethodRefSet == LExpr ß P MetaRefCon

MethodProperties ==
 { properties: ExprShareRelation x MethodRefSet
 | A rel, crel: ExprShareRelation; ref: MethodRefSet
 | (rel, ref) = properties ¶ crel = rel * U (rel *) ~
 • dom crel = dom ref
 ¶ (A e1, e2: LExpr | e1 ∏ e2 e crel • ref e1 = ref e2) }

ÆPrefixOf: Expr x Expr ß Boolean
«_______________
ÆA le1, le2: Expr
Æ • le1 = le2 ¶ PrefixOf (le1, le2) = True
Æ v (le1 Î le2

Æ ¶ ((le1 = Null v le1 = This v le1 = Val v le2 = Val)
Æ ¶ PrefixOf (le1, le2) = False)
Æ v (E id: Identifier; fa: FieldAccess | le1 = ID id ¶ le2 = FA fa
Æ • („idÒ prefix fa ¶ PrefixOf (le1, le2) = True
Æ v ! „idÒ prefix fa ¶ PrefixOf (le1, le2) = False))
Æ v (E fa1, fa2: FieldAccess | le1 = FA fa1 ¶ le2 = FA fa2

Æ • (fa2 prefix fa1 ¶ PrefixOf (le1, le2) = True
Æ v ! fa2 prefix fa1 ¶ PrefixOf (le1, le2) = False)))

ÆLengthOf: LExpr ß N
«_______________
ÆA e: LExpr
Æ • E fa: FieldAccess
Æ • e = FA fa ¶ LengthOf e = # fa v e Î FA fa ¶ LengthOf e = 1

ÆFieldOf: Expr x Expr ß Boolean
«_______________
ÆA le1, le2: Expr
Æ • le1 = le2 ¶ FieldOf (le1, le2) = False
Æ v (le1 Î le2

Æ ¶ ((le1 = Null v le1 = This v le1 = Val v le2 = Val)
Æ ¶ FieldOf (le1, le2) = False)
Æ v (E id: Identifier; fa: FieldAccess | le1 = ID id ¶ le2 = FA fa
Æ • („idÒ prefix fa
Æ ¶ LengthOf le2 = LengthOf le1 + 1
Æ ¶ FieldOf (le2, le1) = True
Æ v ! „idÒ prefix fa ¶ FieldOf (le2, le1) = False))
Æ v (E fa1, fa2: FieldAccess | le1 = FA fa1 ¶ le2 = FA fa2

Æ • (fa1 prefix fa2

Appendices E: Checking technique in Z

256

Æ ¶ LengthOf le2 = LengthOf le1 + 1
Æ ¶ FieldOf (le2, le1) = True
Æ v ! fa2 prefix fa1 ¶ FieldOf (le2, le1) = False)))

ÆExprShareAdd: LExpr x LExpr x ExprShareRelation ß ExprShareRelation
«_______________
ÆA le1, le2: LExpr; rel: ExprShareRelation | PrefixOf (le1, le2) = False
Æ • ExprShareAdd (le1, le2, rel) = (rel U {(le1 ∏ le2), (le2 ∏ le1)}) *

ÆExprShareAddSet: P (LExpr x LExpr) x ExprShareRelation ß ExprShareRelation
«_______________
ÆA set: P (LExpr x LExpr); rel: ExprShareRelation
Æ • ExprShareAddSet (set, rel)
Æ = (rel
Æ U U { le1, le2: LExpr
Æ | (le1, le2) e set ¶ PrefixOf (le1, le2) = False
Æ • {(le1 ∏ le2), (le2 ∏ le1)} }) *

ÆExprShareAddEnv: LExpr x LExpr x Env ß Env
«_______________
ÆA le1, le2: LExpr; env: Env
Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • ExprShareAddEnv (le1, le2, env)
Æ = ExprShareAdd (le1, le2, rel) ∏ ref

ÆExprShareAddSetEnv: P (LExpr x LExpr) x Env ß Env
«_______________
ÆA set: P (LExpr x LExpr); env: Env
Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • ExprShareAddSetEnv (set, env)
Æ = (rel
Æ U U { le1, le2: LExpr
Æ | (le1, le2) e set ¶ PrefixOf (le1, le2) = False
Æ • {(le1 ∏ le2), (le2 ∏ le1)} }) *
Æ ∏ ref

ÆExprShareRemove: LExpr x ExprShareRelation ß ExprShareRelation
«_______________
ÆA le: LExpr; rel: ExprShareRelation
Æ • let toRemove == { e: dom rel | e = le v PrefixOf (le, e) = True • e }
Æ • ExprShareRemove (le, rel) = toRemove y rel u toRemove

ÆExprShareRemoveSet: P LExpr x ExprShareRelation ß ExprShareRelation
«_______________
ÆA lexprs: P LExpr; rel: ExprShareRelation
Æ • let toRemove ==
Æ U { le: lexprs
Æ • { e: dom rel | e = le v PrefixOf (le, e) = True
Æ • e } }
Æ • ExprShareRemoveSet (lexprs, rel) = toRemove y rel u toRemove

257

ÆExprShareRemoveEnv: LExpr x Env ß Env
«_______________
ÆA le: LExpr; env: Env
Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • ExprShareRemoveEnv (le, env) = ExprShareRemove (le, rel) ∏ ref

ÆExprRefAdd: LExpr x P RefCon x ExprRefSet ß ExprRefSet
«_______________
ÆA le: LExpr; rcs: P RefCon; ref: ExprRefSet
Æ • ExprRefAdd (le, rcs, ref) = ref ± {(le ∏ rcs)}

ÆExprRefUpdate: LExpr x P RefCon x ExprRefSet ß ExprRefSet
«_______________
ÆA le: LExpr; rcs: P RefCon; ref: ExprRefSet
Æ • ExprRefUpdate (le, rcs, ref) = ref ± {(le ∏ ref le U rcs)}

ÆExprRefUpdateSet: P (LExpr x P RefCon) x ExprRefSet ß ExprRefSet
«_______________
ÆA set: P (LExpr x P RefCon); ref: ExprRefSet
Æ • ExprRefUpdateSet (set, ref)
Æ = ref
Æ ± { le: LExpr; rcs: P RefCon | (le, rcs) e set
Æ • (le ∏ ref le U rcs) }

ÆExprRefAddEnv: LExpr x P RefCon x Env ß Env
«_______________
ÆA le: LExpr; rcs: P RefCon; env: Env
Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • ExprRefAddEnv (le, rcs, env) = rel ∏ ExprRefAdd (le, rcs, ref)

ÆExprRefUpdateEnv: LExpr x P RefCon x Env ß Env
«_______________
ÆA le: LExpr; rcs: P RefCon; env: Env
Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • ExprRefUpdateEnv (le, rcs, env)
Æ = rel ∏ ExprRefUpdate (le, rcs, ref)

ÆExprRefUpdateSetEnv: P (LExpr x P RefCon) x Env ß Env
«_______________
ÆA set: P (LExpr x P RefCon); env: Env
Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • ExprRefUpdateSetEnv (set, env)
Æ = rel
Æ ∏ ref
Æ ± { le: LExpr; rcs: P RefCon | (le, rcs) e set
Æ • (le ∏ ref le U rcs) }

ÆExprUpdateSetEnv: P (LExpr x LExpr) x P (LExpr x P RefCon) x Env ß Env
«_______________

Appendices E: Checking technique in Z

258

ÆA shares: P (LExpr x LExpr); refSets: P (LExpr x P RefCon); env: Env
Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • ExprUpdateSetEnv (shares, refSets, env)
Æ = (rel
Æ U U { le1, le2: LExpr | (le1, le2) e shares
Æ • {(le1 ∏ le2), (le2 ∏ le1)} }) *
Æ ∏ ref
Æ ± { le: LExpr; rcs: P RefCon | (le, rcs) e refSets
Æ • (le ∏ ref le U rcs) }

ÆExprRefRemove: LExpr x ExprRefSet ß ExprRefSet
«_______________
ÆA le: LExpr; ref: ExprRefSet
Æ • let toRemove == { e: dom ref | e = le v PrefixOf (le, e) = True • e }
Æ • ExprRefRemove (le, ref) = toRemove y ref

ÆExprRefRemoveSet: P LExpr x ExprRefSet ß ExprRefSet
«_______________
ÆA lexprs: P LExpr; ref: ExprRefSet
Æ • let toRemove ==
Æ U { le: lexprs
Æ • { e: dom ref | e = le v PrefixOf (le, e) = True
Æ • e } }
Æ • ExprRefRemoveSet (lexprs, ref) = toRemove y ref

ÆExprRefRemoveEnv: LExpr x Env ß Env
«_______________
ÆA le: LExpr; env: Env
Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • ExprRefRemoveEnv (le, env) = rel ∏ ExprRefRemove (le, ref)

ÆRemoveExprEnv: LExpr x Env ß Env
«_______________
ÆA le: LExpr; env: Env
Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • RemoveExprEnv (le, env)
Æ = ExprShareRemove (le, rel) ∏ ExprRefRemove (le, ref)

ÆRemoveExprSetEnv: P LExpr x Env ß Env
«_______________
ÆA lexprs: P LExpr; env: Env
Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • RemoveExprSetEnv (lexprs, env)
Æ = ExprShareRemoveSet (lexprs, rel)
Æ ∏ ExprRefRemoveSet (lexprs, ref)

ÆExprRefJoin: ExprRefSet x ExprRefSet ß ExprRefSet
«_______________
ÆA ref1, ref2: ExprRefSet
Æ • ExprRefJoin (ref1, ref2)

259

Æ = (dom ref1 \ dom ref2) r ref1 U (dom ref2 \ dom ref1) r ref2

Æ U { le: dom ref1 I dom ref2 • (le ∏ ref1 le U ref2 le) }

ÆDistExprRefJoin: F ExprRefSet ß ExprRefSet
«_______________
ÆA erefsets: F ExprRefSet
Æ • E ref: erefsets
Æ • erefsets Î 0
Æ ¶ DistExprRefJoin erefsets
Æ = ExprRefJoin (ref, (DistExprRefJoin (erefsets \ {ref})))
Æ v erefsets = 0 ¶ DistExprRefJoin erefsets = 0

ÆEnvJoin: Env x Env ß Env
«_______________
ÆA env1, env2: Env
Æ • E rel1, rel2: ExprShareRelation; ref1, ref2: ExprRefSet
Æ | (rel1, ref1) = env1 ¶ (rel2, ref2) = env2

Æ • EnvJoin (env1, env2) = rel1 U rel2 ∏ ExprRefJoin (ref1, ref2)

ÆDistEnvJoin: F Env ß Env
«_______________
ÆA envs: F Env
Æ • envs = 0
Æ ¶ (E env: envs
Æ • DistEnvJoin envs = EnvJoin (env, (DistEnvJoin (envs \ {env}))))
Æ v envs = 0 ¶ DistEnvJoin envs = (0, 0)

ÆGetStaticVars: SCJmSafeProgram ß P LExpr
«_______________
ÆA p: SCJmSafeProgram • GetStaticVars p = { d: p.static • ID (var d.var) }

ÆRaiseRC: RefCon ß RefCon
«_______________
ÆA rc: RefCon
Æ • E h: Name; n: N
Æ • rc = MMem ¶ RaiseRC rc = IMem
Æ v rc = PRMem h ¶ RaiseRC rc = MMem
Æ v rc = TPMem (h, n) ¶ n > 0 ¶ RaiseRC rc = TPMem (h, (n - 1))
Æ v rc = TPMem (h, n) ¶ n = 0 ¶ RaiseRC rc = PRMem h
Æ v rc = TPMMem n ¶ n > 0 ¶ RaiseRC rc = TPMMem (n - 1)
Æ v rc = TPMMem n ¶ n = 0 ¶ RaiseRC rc = MMem

ÆRaiseRCBy: RefCon x N ß RefCon
«_______________
ÆA rc: RefCon; count: N
Æ • count > 0
Æ ¶ RaiseRCBy (rc, count) = RaiseRCBy ((RaiseRC rc), (count - 1))
Æ v count = 0 ¶ RaiseRCBy (rc, count) = rc

Appendices E: Checking technique in Z

260

ÆLowerRC: RefCon ß RefCon
«_______________
ÆA rc: RefCon
Æ • E h: Name; n: N
Æ • rc = MMem ¶ LowerRC rc = TPMMem 0
Æ v rc = PRMem h ¶ LowerRC rc = TPMem (h, 0)
Æ v rc = TPMem (h, n) ¶ LowerRC rc = TPMem (h, (n + 1))
Æ v rc = TPMMem n ¶ LowerRC rc = TPMMem (n + 1)

ÆLowerRCBy: RefCon x N ß RefCon
«_______________
ÆA rc: RefCon; count: N
Æ • count > 0
Æ ¶ LowerRCBy (rc, count) = LowerRCBy ((LowerRC rc), (count - 1))
Æ v count = 0 ¶ LowerRCBy (rc, count) = rc

ÆRCsFromMRC: MetaRefCon x RefCon x ExprRefSet x LExpr ß P RefCon
«_______________
ÆA mrc: MetaRefCon; rc: RefCon; refSet: ExprRefSet; cexpr: LExpr
Æ • mrc = Current ¶ RCsFromMRC (mrc, rc, refSet, cexpr) = {rc}
Æ v (E n: N | mrc = CurrentPrivate n
Æ • RCsFromMRC (mrc, rc, refSet, cexpr) = {LowerRCBy (rc, n)})
Æ v (E n: N | mrc = CurrentPlus n
Æ • RCsFromMRC (mrc, rc, refSet, cexpr) = {RaiseRCBy (rc, n)})
Æ v (E rcs: P RefCon | mrc = Rcs rcs
Æ • RCsFromMRC (mrc, rc, refSet, cexpr) = rcs)
Æ v (E e: LExpr | mrc = Erc e ¶ e = This
Æ • RCsFromMRC (mrc, rc, refSet, cexpr) = refSet cexpr)
Æ v (E e: LExpr | mrc = Erc e ¶ e Î This
Æ • RCsFromMRC (mrc, rc, refSet, cexpr) = refSet e)

Ωæææ[X]ææææææææææææææææææææææææææææææææææææ
ÆSeqRestriction: seq X x P N f seq X
«_______________
ÆA s: seq X; n: P N • SeqRestriction (s, n) = squash (n r s)
–_______________________________________

ÆgetFirstExpr: LExpr ß LExpr
«_______________
ÆA e: LExpr
Æ • E fa: FieldAccess
Æ • e = FA fa ¶ getFirstExpr e = ID (head fa)
Æ v e Î FA fa ¶ getFirstExpr e = e

ÆgetLastExpr: LExpr ß LExpr
«_______________
ÆA e: LExpr
Æ • E fa: FieldAccess
Æ • e = FA fa ¶ getLastExpr e = ID (last fa)
Æ v e Î FA fa ¶ getLastExpr e = e

261

ÆgetFrontOfExpr: LExpr ß LExpr
«_______________
ÆA e: LExpr
Æ • E fa: FieldAccess
Æ • e = FA fa ¶ getFrontOfExpr e = FA (front fa)
Æ v e Î FA fa ¶ getFrontOfExpr e = e

ÆMergeShareExprExprs: LExpr x LExpr x LExpr ß LExpr
«_______________
ÆA newle, newre, sharee: LExpr
Æ • (E id: Identifier
Æ | newle = Val v newre = Val v sharee = Val v sharee = ID id
Æ • MergeShareExprExprs (newle, newre, sharee) = newle)
Æ v (E fa1, fa2: FieldAccess | sharee = FA fa1 ¶ newre = FA fa2

Æ • ((E id: Identifier | newle = ID id
Æ • MergeShareExprExprs (newle, newre, sharee)
Æ = FA („idÒ
Æ ^ SeqRestriction (fa1, (# fa2 + 1 .. # fa1))))
Æ v (E fa3: FieldAccess | newle = FA fa3

Æ • MergeShareExprExprs (newle, newre, sharee)
Æ = FA (fa3

Æ ^ SeqRestriction (fa1,
Æ (# fa2 + 1 .. # fa1))))))
Æ v (E fa1: FieldAccess; id1: Identifier
Æ | sharee = FA fa1 ¶ newre = ID id1

Æ • ((E id2: Identifier | newle = ID id2

Æ • MergeShareExprExprs (newle, newre, sharee)
Æ = FA („id2Ò ^ tail fa1))
Æ v (E fa2: FieldAccess | newle = FA fa2

Æ • MergeShareExprExprs (newle, newre, sharee)
Æ = FA (fa2 ^ tail fa1))))

ÆMergeExprs: Expr x Expr x SCJmSafeProgram ß LExpr
«_______________
ÆA e1, e2: Expr; p: SCJmSafeProgram
Æ • e2 = Null ¶ MergeExprs (e1, e2, p) = e1

Æ v (e1 = Null v e1 = This v e1 = Val) ¶ MergeExprs (e1, e2, p) = e2

Æ v e2 e GetStaticVars p ¶ MergeExprs (e1, e2, p) = e2

Æ v (E fa1, fa2: FieldAccess; ae: ArrayElement; v: Variable
Æ • (e1 = FA fa1

Æ ¶ e2 = FA fa2

Æ ¶ MergeExprs (e1, e2, p) = FA (fa1 ^ fa2)
Æ v e1 = FA fa1

Æ ¶ e2 = ID (arrayElement ae)
Æ ¶ MergeExprs (e1, e2, p) = FA (fa1 ^ „arrayElement aeÒ)
Æ v e1 = FA fa1

Æ ¶ e2 = ID (var v)
Æ ¶ MergeExprs (e1, e2, p) = FA (fa1 ^ „var vÒ)))
Æ v (E fa1: FieldAccess; ae: ArrayElement; v1, v2: Variable
Æ • (e1 = ID (var v1)
Æ ¶ e2 = FA fa1

Æ ¶ MergeExprs (e1, e2, p) = FA („var v1Ò ^ fa1)
Æ v e1 = ID (var v1)
Æ ¶ e2 = ID (arrayElement ae)

Appendices E: Checking technique in Z

262

Æ ¶ MergeExprs (e1, e2, p) = FA („var v1Ò ^ „arrayElement aeÒ)
Æ v e1 = ID (var v1)
Æ ¶ e2 = ID (var v2)
Æ ¶ MergeExprs (e1, e2, p) = FA („var v1Ò ^ „var v2Ò)))
Æ v (E fa1: FieldAccess; ae1, ae2: ArrayElement; v: Variable
Æ • (e1 = ID (arrayElement ae1)
Æ ¶ e2 = FA fa1

Æ ¶ MergeExprs (e1, e2, p) = FA („arrayElement ae1Ò ^ fa1)
Æ v e1 = ID (arrayElement ae1)
Æ ¶ e2 = ID (arrayElement ae2)
Æ ¶ MergeExprs (e1, e2, p)
Æ = FA („arrayElement ae1Ò ^ „arrayElement ae2Ò)
Æ v e1 = ID (arrayElement ae1)
Æ ¶ e2 = ID (var v)
Æ ¶ MergeExprs (e1, e2, p)
Æ = FA („arrayElement ae1Ò ^ „var vÒ)))

ÆGetDecRefCon: Dec ß P RefCon
«_______________
ÆA d: Dec
Æ • d.var.varType.isPrimitive = True ¶ GetDecRefCon d = {Prim}
Æ v d.var.varType.isPrimitive = False ¶ GetDecRefCon d = {}

ÆAddDecToEnv: Env x Dec ß Env
«_______________
ÆA env: Env; d: Dec
Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • AddDecToEnv (env, d)
Æ = ExprShareAdd ((ID (var d.var)), (ID (var d.var)), rel)
Æ ∏ ExprRefAdd ((ID (var d.var)), (GetDecRefCon d), ref)

ÆAddDecsToEnv: Env x P Dec ß Env
«_______________
ÆA env: Env; decs: P Dec
Æ • (E d: decs
Æ • AddDecsToEnv (env, decs)
Æ = AddDecsToEnv ((AddDecToEnv (env, d)), (decs \ {d})))
Æ v decs = 0 ¶ AddDecsToEnv (env, decs) = env

ÆGetExprType: LExpr ß Name
«_______________
ÆA e: LExpr
Æ • (E v: Variable | e = ID (var v) • GetExprType e = v.varType.type)
Æ v (E ae: ArrayElement | e = ID (arrayElement ae)
Æ • GetExprType e = ae.type)
Æ v (E fa: FieldAccess | e = FA fa
Æ • GetExprType e = GetExprType (ID (last fa)))

ÆMatchingTypes: seq Expr x seq Variable ß Boolean
«_______________
ÆA args: seq Expr; params: seq Variable

263

Æ • let matchSet ==
Æ { n: 1 .. # args
Æ | GetExprType (args n) = (params n).varType.type • False }
Æ • # args Î # params ¶ MatchingTypes (args, params) = False
Æ v # args = # params
Æ ¶ matchSet = 0
Æ ¶ MatchingTypes (args, params) = True
Æ v # args = # params
Æ ¶ False e matchSet
Æ ¶ MatchingTypes (args, params) = False

ÆMatchingTypesMethSig: seq Name x seq Variable ß Boolean
«_______________
ÆA types: seq Name; params: seq Variable
Æ • let matchSet ==
Æ { n: 1 .. # types | types n = (params n).varType.type • False }
Æ • # types Î # params ¶ MatchingTypesMethSig (types, params) = False
Æ v # types = # params
Æ ¶ matchSet = 0
Æ ¶ MatchingTypesMethSig (types, params) = True
Æ v # types = # params
Æ ¶ False e matchSet
Æ ¶ MatchingTypesMethSig (types, params) = False

ÆGetMethodsFromSigs: P MethodSig x SCJmSafeProgram ß P Method
«_______________
ÆA sigs: P MethodSig; p: SCJmSafeProgram
Æ • let methods == p.safelet.methods U p.missionSeq.methods
Æ U U { mission: p.missions • mission.methods }
Æ U U { handler: p.handlers • handler.methods }
Æ U U { class: p.classes • class.methods }
Æ • GetMethodsFromSigs (sigs, p)
Æ = U { sig: sigs
Æ • { m: methods
Æ | m.name = sig.name
Æ ¶ sig.returnType = m.type
Æ ¶ MatchingTypesMethSig (sig.paramTypes,
Æ m.params) = True • m } }

ÆGetConstr: Name x seq Expr x SCJmSafeProgram ß Method
«_______________
ÆA name: Name; args: seq Expr; p: SCJmSafeProgram
Æ • let constrs == p.safelet.constrs U p.missionSeq.constrs
Æ U U { mission: p.missions • mission.constrs }
Æ U U { handler: p.handlers • handler.constrs }
Æ U U { class: p.classes • class.constrs }
Æ • E m: Method | m.name = name ¶ MatchingTypes (args, m.params) = True
Æ • GetConstr (name, args, p) = m

ÆAddAsgnFields: LExpr x Expr x Env ß Env
«_______________
ÆA env: Env; le: LExpr; re: Expr

Appendices E: Checking technique in Z

264

Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • AddAsgnFields (le, re, env)
Æ = ExprShareAddSet ({ e1, e2: LExpr
Æ | (e1, e2) e rel
Æ ¶ PrefixOf (re, e1) = True
Æ • ((MergeShareExprExprs (le, re, e1)),
Æ e1) }, rel)
Æ ∏ ExprRefUpdateSet ({ e1, e2: LExpr
Æ | (e1, e2) e rel
Æ ¶ PrefixOf (re, e1) = True
Æ • ((MergeShareExprExprs (le, re,
Æ e1)),
Æ (ref e1)) }, ref)

ÆAddAsgnFieldsSet: P (LExpr x Expr) x Env ß Env
«_______________
ÆA shareSet: P (LExpr x LExpr); env: Env
Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • AddAsgnFieldsSet (shareSet, env)
Æ = U { le: LExpr; re: Expr | (le, re) e shareSet
Æ • (ExprShareAddSet ({ e1, e2: LExpr
Æ | (e1, e2) e rel
Æ ¶ PrefixOf (re, e1) = True
Æ • ((MergeShareExprExprs (le,
Æ re,
Æ e1)),
Æ e1) }, rel)) }
Æ ∏ DistExprRefJoin { le: LExpr; re: Expr | (le, re) e shareSet
Æ • (ExprRefUpdateSet ({ e1, e2: LExpr
Æ | (e1, e2)
Æ e rel
Æ ¶ PrefixOf (re,
Æ e1)
Æ = True
Æ • ((MergeShareExprExprs (le,
Æ re,
Æ e1)),
Æ (ref e1)) },
Æ ref)) }

ÆAddAsgnFieldsShareSet: P (LExpr x Expr) x ExprShareRelation
Æ ß ExprShareRelation
«_______________
ÆA shareSet: P (LExpr x LExpr); rel: ExprShareRelation
Æ • AddAsgnFieldsShareSet (shareSet, rel)
Æ = U { le: LExpr; re: Expr | (le, re) e shareSet
Æ • (ExprShareAddSet ({ e1, e2: LExpr
Æ | (e1, e2) e rel
Æ ¶ PrefixOf (re, e1) = True
Æ • ((MergeShareExprExprs (le, re,
Æ e1)),
Æ e1) }, rel)) }

265

ÆAddAsgnFieldsRefSet: P (LExpr x Expr) x ExprShareRelation x ExprRefSet
Æ ß ExprRefSet
«_______________
ÆA shareSet: P (LExpr x LExpr); rel: ExprShareRelation; ref: ExprRefSet
Æ • AddAsgnFieldsRefSet (shareSet, rel, ref)
Æ = DistExprRefJoin { le: LExpr; re: Expr | (le, re) e shareSet
Æ • (ExprRefUpdateSet ({ e1, e2: LExpr
Æ | (e1, e2) e rel
Æ ¶ PrefixOf (re, e1)
Æ = True
Æ • ((MergeShareExprExprs (le,
Æ re,
Æ e1)),
Æ (ref e1)) },
Æ ref)) }

ÆUpdateEqualExprs: LExpr x Expr x Env ß Env
«_______________
ÆA env: Env; le: LExpr; re: Expr
Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • (E fa: FieldAccess | le = FA fa
Æ • (let shareSet ==
Æ { e1, e2, equale: LExpr
Æ | (e1, e2) e rel
Æ ¶ FA (front fa) = e1
Æ ¶ equale = MergeShareExprExprs (e2, e1, le)
Æ • (equale, re) };
Æ refSet ==
Æ { e1, e2, equale: LExpr
Æ | (e1, e2) e rel
Æ ¶ FA (front fa) = e1
Æ ¶ equale = MergeShareExprExprs (e2, e1, le)
Æ • (equale, ref re) }
Æ • UpdateEqualExprs (le, re, env)
Æ = AddAsgnFieldsSet (shareSet,
Æ (ExprShareAddSet (shareSet, rel)
Æ ∏ ExprRefUpdateSet (refSet,
Æ ref)))))
Æ v (E ae: ArrayElement | le = ID (arrayElement ae)
Æ • (let shareSet ==
Æ { e1, e2, equale: LExpr; v: Variable;
Æ fa: FieldAccess
Æ | (e1, e2) e rel
Æ ¶ v.name = ae.name
Æ ¶ last fa = var v
Æ ¶ (e1 = ID (var v) v e1 = FA fa)
Æ ¶ equale
Æ = MergeShareExprExprs (e2, e1, le)
Æ • (equale, re) };
Æ refSet ==
Æ { e1, e2, equale: LExpr; v: Variable;
Æ fa: FieldAccess
Æ | (e1, e2) e rel
Æ ¶ v.name = ae.name
Æ ¶ last fa = var v

Appendices E: Checking technique in Z

266

Æ ¶ (e1 = ID (var v) v e1 = FA fa)
Æ ¶ equale
Æ = MergeShareExprExprs (e2, e1, le)
Æ • (equale, ref re) }
Æ • UpdateEqualExprs (le, re, env)
Æ = AddAsgnFieldsSet (shareSet,
Æ (ExprShareAddSet (shareSet,
Æ rel)
Æ ∏ ExprRefUpdateSet (refSet,
Æ ref)))))

ÆUpdateEqualExprsSet: P (LExpr x Expr) x Env ß Env
«_______________
ÆA env: Env; set: P (LExpr x Expr)
Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • UpdateEqualExprsSet (set, env)
Æ = U { le: LExpr; re: Expr | (le, re) e set
Æ • (U { fa: FieldAccess | le = FA fa
Æ • (let shareSet ==
Æ { e1, e2, equale: LExpr
Æ | (e1, e2) e rel
Æ ¶ FA (front fa) = e1
Æ ¶ equale
Æ = MergeShareExprExprs (e2,
Æ e1,
Æ le)
Æ • (equale, re) }
Æ • (AddAsgnFieldsShareSet (shareSet,
Æ (ExprShareAddSet (shareSet,
Æ rel))))) }
Æ U U { ae: ArrayElement | le = ID (arrayElement ae)
Æ • (let shareSet ==
Æ { e1, e2, equale: LExpr;
Æ v: Variable; fa: FieldAccess
Æ | (e1, e2) e rel
Æ ¶ v.name = ae.name
Æ ¶ last fa = var v
Æ ¶ (e1 = ID (var v)
Æ v e1 = FA fa)
Æ ¶ equale
Æ = MergeShareExprExprs (e2,
Æ e1,
Æ le)
Æ • (equale, re) }
Æ • (AddAsgnFieldsShareSet (shareSet,
Æ (ExprShareAddSet (shareSet,
Æ rel))))) }) }
Æ ∏ DistExprRefJoin { le: LExpr; re: Expr | (le, re) e set
Æ • (DistExprRefJoin ({ fa: FieldAccess
Æ | le = FA fa
Æ • (let shareSet ==
Æ { e1,
Æ e2,
Æ equale: LExpr
Æ | (e1,

267

Æ e2)
Æ e rel
Æ ¶ FA (front fa)
Æ = e1
Æ ¶ equale
Æ = MergeShareExprExprs (e2,
Æ e1,
Æ le)
Æ • (equale,
Æ re) };
Æ refSet ==
Æ { e1,
Æ e2,
Æ equale: LExpr
Æ | (e1,
Æ e2)
Æ e rel
Æ ¶ FA (front fa)
Æ = e1
Æ ¶ equale
Æ = MergeShareExprExprs (e2,
Æ e1,
Æ le)
Æ • (equale,
Æ ref re) }
Æ • AddAsgnFieldsRefSet (shareSet,
Æ rel,
Æ (ExprRefUpdateSet (refSet,
Æ ref)))) }
Æ U { ae: ArrayElement
Æ | le
Æ = ID (arrayElement ae)
Æ • (let shareSet ==
Æ { e1,
Æ e2,
Æ equale: LExpr;
Æ v: Variable;
Æ fa: FieldAccess
Æ | (e1,
Æ e2)
Æ e rel
Æ ¶ v.name
Æ = ae.name
Æ ¶ last fa
Æ = var v
Æ ¶ (e1
Æ = ID (var v)
Æ v e1
Æ = FA fa)
Æ ¶ equale
Æ = MergeShareExprExprs (e2,
Æ e1,
Æ le)
Æ • (equale,
Æ re) };
Æ refSet ==

Appendices E: Checking technique in Z

268

Æ { e1,
Æ e2,
Æ equale: LExpr;
Æ v: Variable;
Æ fa: FieldAccess
Æ | (e1,
Æ e2)
Æ e rel
Æ ¶ v.name
Æ = ae.name
Æ ¶ last fa
Æ = var v
Æ ¶ (e1
Æ = ID (var v)
Æ v e1
Æ = FA fa)
Æ ¶ equale
Æ = MergeShareExprExprs (e2,
Æ e1,
Æ le)
Æ • (equale,
Æ ref re) }
Æ • AddAsgnFieldsRefSet (shareSet,
Æ rel,
Æ (ExprRefUpdateSet (refSet,
Æ ref)))) })) }

ÆExprRefAddEnvAsgn: LExpr x Expr x Env ß Env
«_______________
ÆA env: Env; le: LExpr; re: Expr
Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • ExprRefAddEnvAsgn (le, re, env)
Æ = rel ∏ ExprRefUpdate (le, (ref re), ref)

ÆCalcEnvAssignment: Env x LExpr x Expr x LExpr x RefCon x SCJmSafeProgram ß Env
«_______________
ÆA env: Env; le, cexpr: LExpr; re: Expr; rc: RefCon; p: SCJmSafeProgram
Æ • re = Val ¶ CalcEnvAssignment (env, le, re, cexpr, rc, p) = env
Æ v re Î Val
Æ ¶ (E newle: LExpr; newre: Expr
Æ | newle = MergeExprs (cexpr, le, p)
Æ ¶ (re = This ¶ newre = cexpr
Æ v re Î This ¶ newre = MergeExprs (cexpr, re, p))
Æ • ((E v: Variable | le = ID (var v)
Æ • CalcEnvAssignment (env, le, re, cexpr, rc, p)
Æ = AddAsgnFields (newle, newre,
Æ (ExprRefAddEnvAsgn (newle, newre,
Æ (ExprShareAddEnv (newle,
Æ newre,
Æ env))))))
Æ v (E fa: FieldAccess; ae: ArrayElement
Æ | le = FA fa v le = ID (arrayElement ae)
Æ • CalcEnvAssignment (env, le, re, cexpr, rc, p)
Æ = UpdateEqualExprs (newle, newre,

269

Æ (AddAsgnFields (newle, newre,
Æ (ExprRefAddEnvAsgn (newle,
Æ newre,
Æ (ExprShareAddEnv (newle,
Æ newre,
Æ env))))))))))

ÆUpdateMethodPropertiesCExprShare: ExprShareRelation x seq Expr x P LExpr x
Æ LExpr x LExpr x SCJmSafeProgram
Æ ß ExprShareRelation
«_______________
ÆA rel: ExprShareRelation; args: seq Expr; fields: P LExpr; cexpr,
Æ lexpr: LExpr; p: SCJmSafeProgram
Æ • UpdateMethodPropertiesCExprShare (rel, args, fields, cexpr, lexpr, p)
Æ = { e1, e2: LExpr
Æ | (e1, e2) e rel
Æ ¶ (A arg: ran args • PrefixOf (arg, e1) = False)
Æ ¶ (A field: fields • getFirstExpr e1 Î field)
Æ ¶ (A arg: ran args • PrefixOf (arg, e2) = False)
Æ ¶ (A field: fields • getFirstExpr e2 Î field)
Æ • (MergeExprs ((MergeExprs (cexpr, lexpr, p)), e1, p)
Æ ∏ MergeExprs ((MergeExprs (cexpr, lexpr, p)), e2, p)) }
Æ U { e1, e2: LExpr
Æ | (e1, e2) e rel
Æ ¶ ((E arg: ran args • PrefixOf (arg, e1) = True)
Æ v (E field: fields • getFirstExpr e1 = field))
Æ ¶ (A arg: ran args • PrefixOf (arg, e2) = False)
Æ ¶ (A field: fields • getFirstExpr e2 Î field)
Æ • (MergeExprs ((MergeExprs (cexpr, (getFrontOfExpr lexpr),
Æ p)), e1, p)
Æ ∏ MergeExprs ((MergeExprs (cexpr, lexpr, p)), e2, p)) }
Æ U { e1, e2: LExpr
Æ | (e1, e2) e rel
Æ ¶ (A arg: ran args • PrefixOf (arg, e1) = False)
Æ ¶ (A field: fields • getFirstExpr e1 Î field)
Æ ¶ ((E arg: ran args • PrefixOf (arg, e2) = True)
Æ v (E field: fields • getFirstExpr e2 = field))
Æ • (MergeExprs ((MergeExprs (cexpr, lexpr, p)), e1, p)
Æ ∏ MergeExprs ((MergeExprs (cexpr, (getFrontOfExpr lexpr),
Æ p)), e2, p)) }
Æ U { e1, e2: LExpr
Æ | (e1, e2) e rel
Æ ¶ ((E arg: ran args • PrefixOf (arg, e1) = True)
Æ v (E field: fields • getFirstExpr e1 = field))
Æ ¶ ((E arg: ran args • PrefixOf (arg, e1) = True)
Æ v (E field: fields • getFirstExpr e1 = field))
Æ • (MergeExprs ((MergeExprs (cexpr, (getFrontOfExpr lexpr),
Æ p)), e1, p)
Æ ∏ MergeExprs ((MergeExprs (cexpr, (getFrontOfExpr lexpr),
Æ p)), e2, p)) }

ÆUpdateMethodPropertiesCExprRef: MethodRefSet x seq Expr x P LExpr x LExpr x
Æ LExpr x SCJmSafeProgram
Æ ß MethodRefSet

Appendices E: Checking technique in Z

270

«_______________
ÆA ref: MethodRefSet; args: seq Expr; fields: P LExpr; cexpr, lexpr: LExpr;
Æ p: SCJmSafeProgram
Æ • UpdateMethodPropertiesCExprRef (ref, args, fields, cexpr, lexpr, p)
Æ = { e: LExpr; mrcs: P MetaRefCon
Æ | (e, mrcs) e ref
Æ ¶ (A arg: ran args • PrefixOf (arg, e) = False)
Æ ¶ (A field: fields • getFirstExpr e Î field)
Æ • MergeExprs ((MergeExprs (cexpr, lexpr, p)), e, p)
Æ ∏ mrcs \ { mrc: mrcs; e1: LExpr | mrc = Erc e1 • mrc }
Æ U { mrc: mrcs; e1: LExpr
Æ | mrc = Erc e1
Æ ¶ (A arg: ran args • PrefixOf (arg, e1) = False)
Æ ¶ (A field: fields • getFirstExpr e1 Î field)
Æ ¶ e1 = This • Erc (MergeExprs (cexpr, lexpr, p)) }
Æ U { mrc: mrcs; e1: LExpr
Æ | mrc = Erc e1
Æ ¶ (A arg: ran args • PrefixOf (arg, e1) = False)
Æ ¶ (A field: fields • getFirstExpr e1 Î field)
Æ ¶ e1 Î This
Æ • Erc (MergeExprs ((MergeExprs (cexpr, lexpr, p)),
Æ e1, p)) }
Æ U { mrc: mrcs; e1: LExpr
Æ | mrc = Erc e1
Æ ¶ ((E arg: ran args • PrefixOf (arg, e1) = True)
Æ v (E field: fields • getFirstExpr e1 = field))
Æ • Erc (MergeExprs ((MergeExprs (cexpr,
Æ (getFrontOfExpr lexpr),
Æ p)), e1, p)) } }

ÆUpdateMethodPropertiesCExpr: ExprShareRelation x MethodRefSet x seq Expr x
Æ P LExpr x LExpr x LExpr x SCJmSafeProgram
Æ ß ExprShareRelation x MethodRefSet
«_______________
ÆA rel: ExprShareRelation; ref: MethodRefSet; args: seq Expr; fields: P LExpr;
Æ cexpr, lexpr: LExpr; p: SCJmSafeProgram
Æ • UpdateMethodPropertiesCExpr (rel, ref, args, fields, cexpr, lexpr, p)
Æ = (UpdateMethodPropertiesCExprShare (rel, args, fields, cexpr, lexpr,
Æ p),
Æ UpdateMethodPropertiesCExprRef (ref, args, fields, cexpr, lexpr,
Æ p))

ÆRefSetFromMethodRef: MethodRefSet x ExprRefSet x RefCon x LExpr ß ExprRefSet
«_______________
ÆA methRef: MethodRefSet; ref: ExprRefSet; rc: RefCon; cexpr: LExpr
Æ • RefSetFromMethodRef (methRef, ref, rc, cexpr)
Æ = { e: LExpr; mrcs: P MetaRefCon | (e, mrcs) e methRef
Æ • e ∏ U { mrc: mrcs • (RCsFromMRC (mrc, rc, ref, cexpr)) } }

ÆApplyMethodProperties: Method x MethodProperties x Env x seq Expr x LExpr x
Æ LExpr x RefCon x SCJmSafeProgram
Æ ß Env
«_______________

271

ÆA m: Method; properties: MethodProperties; args: seq Expr; env: Env; cexpr,
Æ lexpr: LExpr; rc: RefCon; p: SCJmSafeProgram
Æ • E rel, methRel: ExprShareRelation; ref: ExprRefSet;
Æ methRef: MethodRefSet
Æ | env = (rel, ref) ¶ properties = (methRel, methRef)
Æ • let updatedShare ==
Æ UpdateMethodPropertiesCExprShare (methRel, args,
Æ m.visibleFields, cexpr,
Æ lexpr, p);
Æ updatedRef ==
Æ UpdateMethodPropertiesCExprRef (methRef, args,
Æ m.visibleFields, cexpr,
Æ lexpr, p)
Æ • ApplyMethodProperties (m, properties, env, args, cexpr, lexpr,
Æ rc, p)
Æ = UpdateEqualExprsSet (updatedShare,
Æ (AddAsgnFieldsSet (updatedShare,
Æ (ExprShareAddSet (updatedShare,
Æ rel)
Æ ∏ ExprRefUpdateSet ((RefSetFromMethodRef (updatedRef,
Æ ref,
Æ rc,
Æ cexpr)),
Æ ref)))))

ÆUpdateParamWithArg: LExpr x Variable x LExpr ß LExpr
«_______________
ÆA comp, arg: LExpr; param: Variable
Æ • (E v: Variable | comp = ID (var v)
Æ • v = param ¶ UpdateParamWithArg (comp, param, arg) = arg
Æ v v Î param ¶ UpdateParamWithArg (comp, param, arg) = comp)
Æ v (E fa: FieldAccess | comp = FA fa
Æ • (head fa = var param
Æ ¶ (E fa2: FieldAccess | arg = FA fa2
Æ • UpdateParamWithArg (comp, param, arg)
Æ = FA (fa2 ^ tail fa))
Æ v (E id: Identifier | arg = ID id
Æ • UpdateParamWithArg (comp, param, arg)
Æ = FA („idÒ ^ tail fa))
Æ v head fa Î var param
Æ ¶ UpdateParamWithArg (comp, param, arg) = comp))

ÆUpdateMethodPropertiesArgsShare: ExprShareRelation x seq Expr x seq Variable
Æ ß ExprShareRelation
«_______________
ÆA rel: ExprShareRelation; args: seq Expr; params: seq Variable
Æ • UpdateMethodPropertiesArgsShare (rel, args, params)
Æ = rel
Æ \ U { e1, e2: LExpr | (e1, e2) e rel
Æ • { n: 0 .. # args; e3, e4: LExpr
Æ | e3 = UpdateParamWithArg (e1, (params n), (args n))
Æ ¶ e4
Æ = UpdateParamWithArg (e2, (params n),
Æ (args n))

Appendices E: Checking technique in Z

272

Æ ¶ (e1, e2) Î (e3, e4) • (e1, e2) } }
Æ U U { e1, e2: LExpr | (e1, e2) e rel
Æ • { n: 0 .. # args; e3, e4: LExpr
Æ | e3 = UpdateParamWithArg (e1, (params n), (args n))
Æ ¶ e4
Æ = UpdateParamWithArg (e2, (params n),
Æ (args n)) • (e3, e4) } }

ÆUpdateMethodPropertiesArgsRef: MethodRefSet x seq Expr x seq Variable
Æ ß MethodRefSet
«_______________
ÆA ref: MethodRefSet; args: seq Expr; params: seq Variable
Æ • UpdateMethodPropertiesArgsRef (ref, args, params)
Æ = ref
Æ \ U { e1: LExpr; mrcs: P MetaRefCon | (e1, mrcs) e ref
Æ • ({ n: 0 .. # args; e2: LExpr
Æ | e2
Æ = UpdateParamWithArg (e1, (params n), (args n))
Æ ¶ e1 Î e2 • (e1, mrcs) }
Æ U U { n: 0 .. # args
Æ • { mrc: mrcs; e3, e4: LExpr
Æ | mrc = Erc e3
Æ ¶ e4
Æ = UpdateParamWithArg (e3,
Æ (params n),
Æ (args n))
Æ ¶ e3 Î e4 • (e1, mrcs) } }) }
Æ U U { e1: LExpr; mrcs: P MetaRefCon | (e1, mrcs) e ref
Æ • { n: 0 .. # args; e2: LExpr
Æ | e2 = UpdateParamWithArg (e1, (params n), (args n))
Æ • (e2
Æ ∏ mrcs
Æ \ { mrc: mrcs; e3, e4: LExpr
Æ | mrc = Erc e3
Æ ¶ e4
Æ = UpdateParamWithArg (e3,
Æ (params n),
Æ (args n))
Æ ¶ e3 Î e4 • mrc }
Æ U { mrc: mrcs; e3, e4: LExpr
Æ | mrc = Erc e3
Æ ¶ e4
Æ = UpdateParamWithArg (e3,
Æ (params n),
Æ (args n))
Æ ¶ e3 Î e4 • Erc e4 }) } }

ÆUpdateMethodPropertiesArgs: Method x seq Expr ß MethodProperties
«_______________
ÆA m: Method; args: seq Expr
Æ • E rel: ExprShareRelation; ref: MethodRefSet | m.properties = (rel, ref)
Æ • UpdateMethodPropertiesArgs (m, args)
Æ = UpdateMethodPropertiesArgsShare (rel, args, m.params)
Æ ∏ UpdateMethodPropertiesArgsRef (ref, args, m.params)

273

ÆApplyPossibleMethods: P Method x seq Expr x Env x LExpr x LExpr x RefCon x
Æ SCJmSafeProgram
Æ ß Env
«_______________
ÆA methods: P Method; args: seq Expr; env: Env; cexpr, lexpr: LExpr;
Æ rc: RefCon; p: SCJmSafeProgram
Æ • E newLe: LExpr | newLe = MergeExprs (cexpr, lexpr, p)
Æ • methods = 0
Æ ¶ ApplyPossibleMethods (methods, args, env, cexpr, lexpr, rc, p)
Æ = env
Æ v methods Î 0
Æ ¶ ApplyPossibleMethods (methods, args, env, cexpr, lexpr, rc, p)
Æ = DistEnvJoin { m: methods
Æ • (ApplyMethodProperties (m,
Æ (UpdateMethodPropertiesArgs (m,
Æ args)),
Æ env, args,
Æ cexpr, newLe,
Æ rc, p)) }

ÆCalcEnvNewInstance: Env x newInstance x LExpr x RefCon x SCJmSafeProgram ß Env
«_______________
ÆA env: Env; nI: newInstance; cexpr: LExpr; rc: RefCon; p: SCJmSafeProgram
Æ • E newLe, e1: LExpr; newMrc: MetaRefCon; constr: Method;
Æ rel: ExprShareRelation; ref: ExprRefSet
Æ | env = (rel, ref)
Æ ¶ newLe = MergeExprs (cexpr, nI.le, p)
Æ ¶ (nI.mrc = Erc e1 ¶ newMrc = Erc (MergeExprs (cexpr, e1, p))
Æ v nI.mrc Î Erc e1 ¶ newMrc = nI.mrc)
Æ ¶ constr = GetConstr (nI.type.type, nI.args, p)
Æ • CalcEnvNewInstance (env, nI, cexpr, rc, p)
Æ = ApplyPossibleMethods ({constr}, nI.args,
Æ (rel
Æ ∏ ExprRefUpdate (newLe,
Æ (RCsFromMRC (newMrc,
Æ rc, ref,
Æ cexpr)),
Æ ref)), cexpr, nI.le,
Æ rc, p)

ÆRemoveOutOfScopeVars: Env x P LExpr ß Env
«_______________
ÆA env: Env; vars: P LExpr
Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • RemoveOutOfScopeVars (env, vars)
Æ = ExprShareRemoveSet (vars, rel) ∏ ExprRefRemoveSet (vars, ref)

ÆCalcEnvMethod: Env x methodCall x LExpr x RefCon x SCJmSafeProgram ß Env
«_______________
ÆA env: Env; mc: methodCall; cexpr: LExpr; rc: RefCon; p: SCJmSafeProgram
Æ • CalcEnvMethod (env, mc, cexpr, rc, p)
Æ = RemoveOutOfScopeVars ((ApplyPossibleMethods ((GetMethodsFromSigs (mc.methods,
Æ p)),

Appendices E: Checking technique in Z

274

Æ mc.args, env, cexpr,
Æ mc.le, rc, p)),
Æ (U { m: GetMethodsFromSigs (mc.methods, p)
Æ • m.localVars }))

ÆCalcEnvGetMemArea: Env x getMemoryArea x LExpr x RefCon x SCJmSafeProgram
Æ ß Env
«_______________
ÆA env: Env; gma: getMemoryArea; cexpr: LExpr; rc: RefCon; p: SCJmSafeProgram
Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • E newRef, newExpr: LExpr; erc: MetaRefCon
Æ | newRef = MergeExprs (cexpr, gma.ref, p)
Æ ¶ (gma.e = This ¶ newExpr = cexpr
Æ v gma.e Î This ¶ newExpr = MergeExprs (cexpr, gma.e, p))
Æ ¶ erc = Erc newExpr
Æ • CalcEnvGetMemArea (env, gma, cexpr, rc, p)
Æ = rel
Æ ∏ ExprRefUpdate (newRef,
Æ (RCsFromMRC (erc, rc, ref, cexpr)),
Æ ref)

ÆCalcEnvCom: Env x Com x LExpr x RefCon x SCJmSafeProgram ß Env
«_______________
ÆA env: Env; c: Com; cexpr: LExpr; rc: RefCon; p: SCJmSafeProgram
Æ • c = Skip ¶ CalcEnvCom (env, c, cexpr, rc, p) = env
Æ v (E d: Dec
Æ • c = Decl d
Æ ¶ CalcEnvCom (env, c, cexpr, rc, p) = AddDecToEnv (env, d))
Æ v (E nI: newInstance
Æ • c = NewInstance nI
Æ ¶ CalcEnvCom (env, c, cexpr, rc, p)
Æ = CalcEnvNewInstance (env, nI, cexpr, rc, p))
Æ v (E c1: Com
Æ • c = Scope c1
Æ ¶ CalcEnvCom (env, c, cexpr, rc, p)
Æ = CalcEnvCom (env, c1, cexpr, rc, p))
Æ v (E le: LExpr; re: Expr
Æ • c = Asgn (le, re)
Æ ¶ CalcEnvCom (env, c, cexpr, rc, p)
Æ = CalcEnvAssignment (env, le, re, cexpr, rc, p))
Æ v (E c1, c2: Com
Æ • c = Seq (c1, c2)
Æ ¶ CalcEnvCom (env, c, cexpr, rc, p)
Æ = CalcEnvCom ((CalcEnvCom (env, c1, cexpr, rc, p)), c2,
Æ cexpr, rc, p))
Æ v (E e: Expr; c1, c2: Com
Æ • c = If (e, c1, c2)
Æ ¶ CalcEnvCom (env, c, cexpr, rc, p)
Æ = EnvJoin ((CalcEnvCom (env, c1, cexpr, rc, p)),
Æ (CalcEnvCom (env, c2, cexpr, rc, p))))
Æ v (E e: Expr; comSeq: seq Com
Æ • c = Switch (e, comSeq)
Æ ¶ CalcEnvCom (env, c, cexpr, rc, p)
Æ = DistEnvJoin { c: ran comSeq

275

Æ • (CalcEnvCom (env, c, cexpr, rc, p)) })
Æ v (E c1, c2, c3: Com; exp: Expr
Æ • c = For (c1, exp, c2, c3)
Æ ¶ CalcEnvCom (env, c, cexpr, rc, p)
Æ = CalcEnvCom ((CalcEnvCom (env, c1, cexpr, rc, p)),
Æ (Seq (c2, c3)), cexpr, rc, p))
Æ v (E mc: methodCall
Æ • c = MethodCall mc
Æ ¶ CalcEnvCom (env, c, cexpr, rc, p)
Æ = CalcEnvMethod (env, mc, cexpr, rc, p))
Æ v (E mc: methodCall
Æ • c = EnterPrivateMemory mc
Æ ¶ CalcEnvCom (env, c, cexpr, rc, p)
Æ = CalcEnvMethod (env, mc, cexpr, (LowerRC rc), p))
Æ v (E mrc: MetaRefCon; mc: methodCall; ref: ExprRefSet | ref = env.2
Æ • c = ExecuteInAreaOf (mrc, mc)
Æ ¶ CalcEnvCom (env, c, cexpr, rc, p)
Æ = DistEnvJoin { rc1: RCsFromMRC (mrc, rc, ref, cexpr)
Æ • (CalcEnvMethod (env, mc, cexpr, rc1,
Æ p)) })
Æ v (E mc: methodCall
Æ • c = ExecuteInOuterArea mc
Æ ¶ CalcEnvCom (env, c, cexpr, rc, p)
Æ = CalcEnvMethod (env, mc, cexpr, (RaiseRC rc), p))
Æ v (E gma: getMemoryArea
Æ • c = GetMemoryArea gma
Æ ¶ CalcEnvCom (env, c, cexpr, rc, p)
Æ = CalcEnvGetMemArea (env, gma, cexpr, rc, p))
Æ v (E c1, c2: Com; eseq: seq Expr; comseq: seq Com
Æ • c = Try (c1, eseq, comseq, c2)
Æ ¶ CalcEnvCom (env, c, cexpr, rc, p)
Æ = EnvJoin ((EnvJoin ((CalcEnvCom (env, c1, cexpr, rc, p)),
Æ (DistEnvJoin { com: ran comseq
Æ • (CalcEnvCom (env,
Æ com,
Æ cexpr,
Æ rc,
Æ p)) }))),
Æ (CalcEnvCom (env, c2, cexpr, rc, p))))
Æ v (E e: Expr; c1: Com
Æ • c = While (e, c1)
Æ ¶ CalcEnvCom (env, c, cexpr, rc, p)
Æ = CalcEnvCom (env, c1, cexpr, rc, p))
Æ v (E e: Expr; c1: Com
Æ • c = DoWhile (c1, e)
Æ ¶ CalcEnvCom (env, c, cexpr, rc, p)
Æ = CalcEnvCom (env, c1, cexpr, rc, p))

ÆGetComSet: Com x SCJmSafeProgram ß P Com
«_______________
ÆA c: Com; p: SCJmSafeProgram
Æ • c = Skip ¶ GetComSet (c, p) = {c}
Æ v (E d: Dec • c = Decl d ¶ GetComSet (c, p) = {c})
Æ v (E nI: newInstance • c = NewInstance nI ¶ GetComSet (c, p) = {c})
Æ v (E c1: Com • c = Scope c1 ¶ GetComSet (c, p) = GetComSet (c1, p))

Appendices E: Checking technique in Z

276

Æ v (E le: LExpr; re: Expr • c = Asgn (le, re) ¶ GetComSet (c, p) = {c})
Æ v (E c1, c2: Com
Æ • c = Seq (c1, c2)
Æ ¶ GetComSet (c, p) = GetComSet (c1, p) U GetComSet (c2, p))
Æ v (E e: Expr; c1, c2: Com
Æ • c = If (e, c1, c2)
Æ ¶ GetComSet (c, p) = GetComSet (c1, p) U GetComSet (c2, p))
Æ v (E e: Expr; comSeq: seq Com
Æ • c = Switch (e, comSeq)
Æ ¶ GetComSet (c, p)
Æ = U { c1: ran comSeq • (GetComSet (c1, p)) })
Æ v (E c1, c2, c3: Com; exp: Expr
Æ • c = For (c1, exp, c2, c3)
Æ ¶ GetComSet (c, p)
Æ = GetComSet (c1, p) U GetComSet (c2, p)
Æ U GetComSet (c3, p))
Æ v (E mc: methodCall
Æ • c = MethodCall mc
Æ ¶ GetComSet (c, p)
Æ = U { m: GetMethodsFromSigs (mc.methods, p)
Æ • (GetComSet (m.body, p)) })
Æ v (E mc: methodCall
Æ • c = EnterPrivateMemory mc
Æ ¶ GetComSet (c, p)
Æ = U { m: GetMethodsFromSigs (mc.methods, p)
Æ • (GetComSet (m.body, p)) })
Æ v (E mrc: MetaRefCon; mc: methodCall
Æ • c = ExecuteInAreaOf (mrc, mc)
Æ ¶ GetComSet (c, p)
Æ = U { m: GetMethodsFromSigs (mc.methods, p)
Æ • (GetComSet (m.body, p)) })
Æ v (E mc: methodCall
Æ • c = ExecuteInOuterArea mc
Æ ¶ GetComSet (c, p)
Æ = U { m: GetMethodsFromSigs (mc.methods, p)
Æ • (GetComSet (m.body, p)) })
Æ v (E gma: getMemoryArea
Æ • c = GetMemoryArea gma ¶ GetComSet (c, p) = {c})
Æ v (E c1, c2: Com; eseq: seq Expr; comseq: seq Com
Æ • c = Try (c1, eseq, comseq, c2)
Æ ¶ GetComSet (c, p)
Æ = GetComSet (c1, p) U GetComSet (c2, p)
Æ U U { com: ran comseq • (GetComSet (com, p)) })
Æ v (E e: Expr; c1: Com
Æ • c = While (e, c1) ¶ GetComSet (c, p) = GetComSet (c1, p))
Æ v (E c1: Com; e: Expr
Æ • c = DoWhile (c1, e) ¶ GetComSet (c, p) = GetComSet (c1, p))

ÆGetHandlerExpr: SCJmSafeProgram x Handler x Mission ß LExpr
«_______________
ÆA p: SCJmSafeProgram; h: Handler; m: Mission
Æ • let coms == GetComSet (m.initialize, p)
Æ • E nI: newInstance; mc: methodCall
Æ | nI.type.type = h.name
Æ ¶ mc.le = nI.le

277

Æ ¶ mc.name = register
Æ ¶ NewInstance nI e coms
Æ ¶ MethodCall mc e coms • GetHandlerExpr (p, h, m) = nI.le

ÆGetHandlerExprs: SCJmSafeProgram x Mission ß P LExpr
«_______________
ÆA p: SCJmSafeProgram; m: Mission
Æ • let coms == GetComSet (m.initialize, p);
Æ handlerNames == { h: p.handlers • h.name }
Æ • GetHandlerExprs (p, m)
Æ = { nI: newInstance; mc: methodCall
Æ | nI.type.type e handlerNames
Æ ¶ mc.le = nI.le
Æ ¶ mc.name = register
Æ ¶ NewInstance nI e coms
Æ ¶ MethodCall mc e coms • nI.le }

ÆGetMissionExpr: SCJmSafeProgram x Mission ß LExpr
«_______________
ÆA p: SCJmSafeProgram; m: Mission
Æ • let coms == GetComSet (p.missionSeq.getNextMission, p)
Æ • E nI: newInstance; e1, e2: Expr; c: Com; v: Variable
Æ | nI.type.type = m.name
Æ ¶ c = Asgn (e1, e2)
Æ ¶ e1 = ID (var v)
Æ ¶ v.name = Result
Æ ¶ e2 = nI.le
Æ ¶ NewInstance nI e coms
Æ ¶ c e coms • GetMissionExpr (p, m) = nI.le

ÆGetMissionExprs: SCJmSafeProgram ß P LExpr
«_______________
ÆA p: SCJmSafeProgram
Æ • let coms == GetComSet (p.missionSeq.getNextMission, p);
Æ missionNames == { m: p.missions • m.name }
Æ • GetMissionExprs p
Æ = { nI: newInstance; e1, e2: Expr; c: Com; v: Variable
Æ | nI.type.type e missionNames
Æ ¶ c = Asgn (e1, e2)
Æ ¶ e1 = ID (var v)
Æ ¶ v.name = Result
Æ ¶ e2 = nI.le
Æ ¶ NewInstance nI e coms
Æ ¶ c e coms • nI.le }

ÆGetMissionSeqExpr: SCJmSafeProgram x MissionSeq ß LExpr
«_______________
ÆA p: SCJmSafeProgram; ms: MissionSeq
Æ • let coms == GetComSet (p.safelet.getSequencer, p)
Æ • E nI: newInstance; e1, e2: Expr; c: Com; v: Variable
Æ | nI.type.type = ms.name
Æ ¶ c = Asgn (e1, e2)

Appendices E: Checking technique in Z

278

Æ ¶ e1 = ID (var v)
Æ ¶ v.name = Result
Æ ¶ e2 = nI.le
Æ ¶ NewInstance nI e coms
Æ ¶ c e coms • GetMissionSeqExpr (p, ms) = nI.le

ÆLocalVars: Com ß P LExpr
«_______________
ÆA c: Com
Æ • c = Skip ¶ LocalVars c = 0
Æ v (E d: Dec • c = Decl d ¶ LocalVars c = {ID (var d.var)})
Æ v (E nI: newInstance • c = NewInstance nI ¶ LocalVars c = 0)
Æ v (E c1: Com • c = Scope c1 ¶ LocalVars c = LocalVars c1)
Æ v (E le: LExpr; re: Expr • c = Asgn (le, re) ¶ LocalVars c = 0)
Æ v (E c1, c2: Com
Æ • c = Seq (c1, c2) ¶ LocalVars c = LocalVars c1 U LocalVars c2)
Æ v (E e: Expr; c1, c2: Com
Æ • c = If (e, c1, c2) ¶ LocalVars c = LocalVars c1 U LocalVars c2)
Æ v (E e: Expr; comSeq: seq Com
Æ • c = Switch (e, comSeq)
Æ ¶ LocalVars c = U { c1: ran comSeq • (LocalVars c1) })
Æ v (E c1, c2, c3: Com; exp: Expr
Æ • c = For (c1, exp, c2, c3)
Æ ¶ LocalVars c = LocalVars c1 U LocalVars c2 U LocalVars c3)
Æ v (E mc: methodCall • c = MethodCall mc ¶ LocalVars c = 0)
Æ v (E mc: methodCall • c = EnterPrivateMemory mc ¶ LocalVars c = 0)
Æ v (E mrc: MetaRefCon; mc: methodCall
Æ • c = ExecuteInAreaOf (mrc, mc) ¶ LocalVars c = 0)
Æ v (E mc: methodCall • c = ExecuteInOuterArea mc ¶ LocalVars c = 0)
Æ v (E gma: getMemoryArea • c = GetMemoryArea gma ¶ LocalVars c = 0)
Æ v (E c1, c2: Com; eseq: seq Expr; comseq: seq Com
Æ • c = Try (c1, eseq, comseq, c2)
Æ ¶ LocalVars c
Æ = LocalVars c1 U LocalVars c2
Æ U U { com: ran comseq • (LocalVars com) })
Æ v (E e: Expr; c1: Com • c = While (e, c1) ¶ LocalVars c = LocalVars c1)
Æ v (E c1: Com; e: Expr
Æ • c = DoWhile (c1, e) ¶ LocalVars c = LocalVars c1)

ÆCalcEnvHandler: Env x Handler x LExpr x SCJmSafeProgram ß Env
«_______________
ÆA env: Env; h: Handler; cexpr: LExpr; p: SCJmSafeProgram
Æ • CalcEnvHandler (env, h, cexpr, p)
Æ = RemoveExprSetEnv ((LocalVars h.hAe),
Æ (CalcEnvCom (env, h.hAe, cexpr, (PRMem h.name),
Æ p)))

ÆCalcEnvHandlers: Env x Mission x P Handler x SCJmSafeProgram ß Env
«_______________
ÆA env: Env; m: Mission; handlers: P Handler; p: SCJmSafeProgram
Æ • CalcEnvHandlers (env, m, handlers, p)
Æ = DistEnvJoin { h: handlers
Æ • (CalcEnvHandler (env, h,

279

Æ (GetHandlerExpr (p, h, m)),
Æ p)) }

ÆGetHandlers: SCJmSafeProgram x P Name ß P Handler
«_______________
ÆA p: SCJmSafeProgram; names: P Name
Æ • GetHandlers (p, names) = { h: p.handlers | h.name e names • h }

ÆCalcEnvMission: Env x Mission x LExpr x SCJmSafeProgram ß Env
«_______________
ÆA env: Env; m: Mission; cexpr: LExpr; p: SCJmSafeProgram
Æ • let initializeEnv == CalcEnvCom (env, m.initialize, cexpr, MMem, p)
Æ • let handlersEnv ==
Æ CalcEnvHandlers ((RemoveExprSetEnv ((LocalVars m.initialize
Æ \ GetHandlerExprs (p,
Æ m)),
Æ initializeEnv)), m,
Æ (GetHandlers (p, m.handlers)), p)
Æ • let cleanUpEnv ==
Æ CalcEnvCom ((RemoveExprSetEnv ((LocalVars m.initialize),
Æ handlersEnv)), m.cleanUp,
Æ cexpr, MMem, p)
Æ • CalcEnvMission (env, m, cexpr, p)
Æ = RemoveExprSetEnv ((LocalVars m.cleanUp), cleanUpEnv)

ÆCalcEnvMissions: Env x P Mission x SCJmSafeProgram ß Env
«_______________
ÆA env: Env; missions: P Mission; p: SCJmSafeProgram
Æ • CalcEnvMissions (env, missions, p)
Æ = DistEnvJoin { m: missions
Æ • (CalcEnvMission (env, m, (GetMissionExpr (p, m)),
Æ p)) }

ÆCalcEnvMissionSeq: Env x MissionSeq x SCJmSafeProgram ß Env
«_______________
ÆA env: Env; ms: MissionSeq; p: SCJmSafeProgram
Æ • let getNextMissionEnv ==
Æ CalcEnvCom (env, ms.getNextMission, (GetMissionSeqExpr (p, ms)),
Æ MMem, p)
Æ • CalcEnvMissionSeq (env, ms, p)
Æ = RemoveExprSetEnv ((LocalVars ms.getNextMission),
Æ (CalcEnvMissions (getNextMissionEnv,
Æ p.missions, p)))

ÆExprShareAddProperties: LExpr x LExpr x MethodProperties ß MethodProperties
«_______________
ÆA le1, le2: LExpr; properties: MethodProperties
Æ • E rel: ExprShareRelation; ref: MethodRefSet | properties = (rel, ref)
Æ • ExprShareAddProperties (le1, le2, properties)
Æ = ExprShareAdd (le1, le2, rel) ∏ ref

Appendices E: Checking technique in Z

280

ÆExprShareAddSetProperties: P (LExpr x LExpr) x MethodProperties
Æ ß MethodProperties
«_______________
ÆA set: P (LExpr x LExpr); properties: MethodProperties
Æ • E rel: ExprShareRelation; ref: MethodRefSet | properties = (rel, ref)
Æ • ExprShareAddSetProperties (set, properties)
Æ = (rel
Æ U U { le1, le2: LExpr | (le1, le2) e set
Æ • {(le1 ∏ le2), (le2 ∏ le1)} }) *
Æ ∏ ref

ÆMethodRefAdd: LExpr x P MetaRefCon x MethodRefSet ß MethodRefSet
«_______________
ÆA le: LExpr; mrcs: P MetaRefCon; ref: MethodRefSet
Æ • MethodRefAdd (le, mrcs, ref) = ref ± {(le ∏ mrcs)}

ÆMethodRefUpdate: LExpr x P MetaRefCon x MethodRefSet ß MethodRefSet
«_______________
ÆA le: LExpr; mrcs: P MetaRefCon; ref: MethodRefSet
Æ • MethodRefUpdate (le, mrcs, ref) = ref ± {(le ∏ ref le U mrcs)}

ÆMethodRefUpdateSet: P (LExpr x P MetaRefCon) x MethodRefSet ß MethodRefSet
«_______________
ÆA set: P (LExpr x P MetaRefCon); ref: MethodRefSet
Æ • MethodRefUpdateSet (set, ref)
Æ = ref
Æ ± { le: LExpr; mrcs: P MetaRefCon | (le, mrcs) e set
Æ • (le ∏ ref le U mrcs) }

ÆMethodRefAddProperties: LExpr x P MetaRefCon x MethodProperties
Æ ß MethodProperties
«_______________
ÆA le: LExpr; mrcs: P MetaRefCon; properties: MethodProperties
Æ • E rel: ExprShareRelation; ref: MethodRefSet | properties = (rel, ref)
Æ • MethodRefAddProperties (le, mrcs, properties)
Æ = rel ∏ MethodRefAdd (le, mrcs, ref)

ÆMethodRefUpdateProperties: LExpr x P MetaRefCon x MethodProperties
Æ ß MethodProperties
«_______________
ÆA le: LExpr; mrcs: P MetaRefCon; properties: MethodProperties
Æ • E rel: ExprShareRelation; ref: MethodRefSet | properties = (rel, ref)
Æ • MethodRefUpdateProperties (le, mrcs, properties)
Æ = rel ∏ MethodRefUpdate (le, mrcs, ref)

ÆMethodRefUpdateSetProperties: P (LExpr x P MetaRefCon) x MethodProperties
Æ ß MethodProperties
«_______________
ÆA set: P (LExpr x P MetaRefCon); properties: MethodProperties
Æ • E rel: ExprShareRelation; ref: MethodRefSet | properties = (rel, ref)

281

Æ • MethodRefUpdateSetProperties (set, properties)
Æ = rel
Æ ∏ ref
Æ ± { le: LExpr; mrcs: P MetaRefCon | (le, mrcs) e set
Æ • (le ∏ ref le U mrcs) }

ÆMethodRefJoin: MethodRefSet x MethodRefSet ß MethodRefSet
«_______________
ÆA ref1, ref2: MethodRefSet
Æ • MethodRefJoin (ref1, ref2)
Æ = (dom ref1 \ dom ref2) r ref1 U (dom ref2 \ dom ref1) r ref2

Æ U { le: dom ref1 I dom ref2 • (le ∏ ref1 le U ref2 le) }

ÆDistMethodRefJoin: F MethodRefSet ß MethodRefSet
«_______________
ÆA mrefsets: F MethodRefSet
Æ • E ref: mrefsets
Æ • mrefsets Î 0
Æ ¶ DistMethodRefJoin mrefsets
Æ = MethodRefJoin (ref, (DistMethodRefJoin (mrefsets \ {ref})))
Æ v mrefsets = 0 ¶ DistMethodRefJoin mrefsets = 0

ÆMethodPropertiesJoin: MethodProperties x MethodProperties ß MethodProperties
«_______________
ÆA p1, p2: MethodProperties
Æ • E rel1, rel2: ExprShareRelation; ref1, ref2: MethodRefSet
Æ | (rel1, ref1) = p1 ¶ (rel2, ref2) = p2

Æ • MethodPropertiesJoin (p1, p2)
Æ = rel1 U rel2 ∏ MethodRefJoin (ref1, ref2)

ÆDistMethodPropertiesJoin: F MethodProperties ß MethodProperties
«_______________
ÆA properties: F MethodProperties
Æ • properties = 0
Æ ¶ (E p: properties
Æ • DistMethodPropertiesJoin properties
Æ = MethodPropertiesJoin (p,
Æ (DistMethodPropertiesJoin (properties
Æ \ {p}))))
Æ v properties = 0 ¶ DistMethodPropertiesJoin properties = (0, 0)

ÆRaiseMRC: MetaRefCon ß MetaRefCon
«_______________
ÆA mrc: MetaRefCon
Æ • E n: N
Æ • mrc = CurrentPlus n ¶ RaiseMRC mrc = CurrentPlus (n + 1)
Æ v mrc = Current ¶ RaiseMRC mrc = CurrentPlus 0
Æ v mrc = CurrentPrivate n
Æ ¶ n > 0
Æ ¶ RaiseMRC mrc = CurrentPrivate (n - 1)
Æ v mrc = CurrentPrivate n ¶ n = 0 ¶ RaiseMRC mrc = Current

Appendices E: Checking technique in Z

282

ÆRaiseMRCBy: MetaRefCon x N ß MetaRefCon
«_______________
ÆA mrc: MetaRefCon; count: N
Æ • count > 0
Æ ¶ RaiseMRCBy (mrc, count) = RaiseMRCBy ((RaiseMRC mrc), (count - 1))
Æ v count = 0 ¶ RaiseMRCBy (mrc, count) = mrc

ÆLowerMRC: MetaRefCon ß MetaRefCon
«_______________
ÆA mrc: MetaRefCon
Æ • E n: N
Æ • mrc = CurrentPlus n ¶ n > 0 ¶ LowerMRC mrc = CurrentPlus (n - 1)
Æ v mrc = CurrentPlus n ¶ n = 0 ¶ LowerMRC mrc = Current
Æ v mrc = Current ¶ LowerMRC mrc = CurrentPrivate 0
Æ v mrc = CurrentPrivate n ¶ LowerMRC mrc = CurrentPrivate (n + 1)

ÆLowerMRCBy: MetaRefCon x N ß MetaRefCon
«_______________
ÆA mrc: MetaRefCon; count: N
Æ • count > 0
Æ ¶ LowerMRCBy (mrc, count) = LowerMRCBy ((LowerMRC mrc), (count - 1))
Æ v count = 0 ¶ LowerMRCBy (mrc, count) = mrc

ÆAnalyseMetaRefCon: MetaRefCon x MetaRefCon x MethodRefSet ß P MetaRefCon
«_______________
ÆA nImrc, mrc: MetaRefCon; ref: MethodRefSet
Æ • (E n: N | nImrc = CurrentPlus n
Æ • (E n1: N | mrc = CurrentPlus n1
Æ • AnalyseMetaRefCon (nImrc, mrc, ref)
Æ = {CurrentPlus (n + n1)})
Æ v mrc = Current
Æ ¶ AnalyseMetaRefCon (nImrc, mrc, ref) = {CurrentPrivate n}
Æ v (E n1: N | mrc = CurrentPrivate n1
Æ • (n - n1 > 0
Æ ¶ AnalyseMetaRefCon (nImrc, mrc, ref)
Æ = {CurrentPlus (n - n1)}
Æ v n - n1 < 0
Æ ¶ AnalyseMetaRefCon (nImrc, mrc, ref)
Æ = {CurrentPrivate (n1 - n)}
Æ v n - n1 = 0
Æ ¶ AnalyseMetaRefCon (nImrc, mrc, ref) = {Current})))
Æ v nImrc = Current ¶ AnalyseMetaRefCon (nImrc, mrc, ref) = {mrc}
Æ v (E n: N | nImrc = CurrentPrivate n
Æ • ((E n1: N | mrc = CurrentPlus n1
Æ • n1 - n > 0
Æ ¶ AnalyseMetaRefCon (nImrc, mrc, ref)
Æ = {CurrentPlus (n1 - n)}
Æ v n1 - n < 0
Æ ¶ AnalyseMetaRefCon (nImrc, mrc, ref)
Æ = {CurrentPrivate (n1 - n)}
Æ v n1 - n = 0
Æ ¶ AnalyseMetaRefCon (nImrc, mrc, ref) = {Current})
Æ v mrc = Current

283

Æ ¶ AnalyseMetaRefCon (nImrc, mrc, ref) = {CurrentPrivate n}
Æ v (E n1: N | mrc = CurrentPrivate n1
Æ • AnalyseMetaRefCon (nImrc, mrc, ref)
Æ = {CurrentPrivate (n1 + n)})))
Æ v (E e: LExpr | nImrc = Erc e
Æ • AnalyseMetaRefCon (nImrc, mrc, ref) = ref e)

ÆGetDecMetaRefCon: Dec ß P MetaRefCon
«_______________
ÆA d: Dec
Æ • d.var.varType.isPrimitive = True ¶ GetDecMetaRefCon d = {Rcs {Prim}}
Æ v d.var.varType.isPrimitive = False ¶ GetDecMetaRefCon d = {}

ÆAddDecToMethodProperties: MethodProperties x Dec ß MethodProperties
«_______________
ÆA properties: MethodProperties; d: Dec
Æ • AddDecToMethodProperties (properties, d)
Æ = MethodRefAddProperties ((ID (var d.var)), (GetDecMetaRefCon d),
Æ (ExprShareAddProperties ((ID (var d.var)),
Æ (ID (var d.var)),
Æ properties)))

ÆAddDecsToMethodProperties: MethodProperties x P Dec ß MethodProperties
«_______________
ÆA properties: MethodProperties; decs: P Dec
Æ • (E d: decs
Æ • AddDecsToMethodProperties (properties, decs)
Æ = AddDecsToMethodProperties ((AddDecToMethodProperties (properties,
Æ d)),
Æ (decs \ {d})))
Æ v decs = 0 ¶ AddDecsToMethodProperties (properties, decs) = properties

ÆAddAsgnFieldsProperties: LExpr x Expr x MethodProperties ß MethodProperties
«_______________
ÆA properties: MethodProperties; le: LExpr; re: Expr
Æ • E rel: ExprShareRelation; ref: MethodRefSet | properties = (rel, ref)
Æ • AddAsgnFieldsProperties (le, re, properties)
Æ = ExprShareAddSet ({ e1, e2: LExpr
Æ | (e1, e2) e rel
Æ ¶ PrefixOf (re, e1) = True
Æ • ((MergeShareExprExprs (le, re, e1)),
Æ e1) }, rel)
Æ ∏ MethodRefUpdateSet ({ e1, e2: LExpr
Æ | (e1, e2) e rel
Æ ¶ PrefixOf (re, e1) = True
Æ • ((MergeShareExprExprs (le, re,
Æ e1)),
Æ (ref e1)) }, ref)

ÆAddAsgnFieldsPropertiesSet: P (LExpr x Expr) x MethodProperties
Æ ß MethodProperties

Appendices E: Checking technique in Z

284

«_______________
ÆA shareSet: P (LExpr x LExpr); properties: MethodProperties
Æ • E rel: ExprShareRelation; ref: MethodRefSet | properties = (rel, ref)
Æ • AddAsgnFieldsPropertiesSet (shareSet, properties)
Æ = U { le: LExpr; re: Expr | (le, re) e shareSet
Æ • (ExprShareAddSet ({ e1, e2: LExpr
Æ | (e1, e2) e rel
Æ ¶ PrefixOf (re, e1) = True
Æ • ((MergeShareExprExprs (le,
Æ re,
Æ e1)),
Æ e1) }, rel)) }
Æ ∏ DistMethodRefJoin { le: LExpr; re: Expr
Æ | (le, re) e shareSet
Æ • (MethodRefUpdateSet ({ e1,
Æ e2: LExpr
Æ | (e1,
Æ e2)
Æ e rel
Æ ¶ PrefixOf (re,
Æ e1)
Æ = True
Æ • ((MergeShareExprExprs (le,
Æ re,
Æ e1)),
Æ (ref e1)) },
Æ ref)) }

ÆAddAsgnFieldsMethodRefSet: P (LExpr x Expr) x ExprShareRelation x MethodRefSet
Æ ß MethodRefSet
«_______________
ÆA shareSet: P (LExpr x LExpr); rel: ExprShareRelation; ref: MethodRefSet
Æ • AddAsgnFieldsMethodRefSet (shareSet, rel, ref)
Æ = DistMethodRefJoin { le: LExpr; re: Expr | (le, re) e shareSet
Æ • (MethodRefUpdateSet ({ e1, e2: LExpr
Æ | (e1, e2) e rel
Æ ¶ PrefixOf (re,
Æ e1)
Æ = True
Æ • ((MergeShareExprExprs (le,
Æ re,
Æ e1)),
Æ (ref e1)) },
Æ ref)) }

ÆUpdateEqualExprsProperties: LExpr x Expr x MethodProperties ß MethodProperties
«_______________
ÆA properties: MethodProperties; le: LExpr; re: Expr
Æ • E rel: ExprShareRelation; ref: MethodRefSet | properties = (rel, ref)
Æ • (E fa: FieldAccess | le = FA fa
Æ • (let shareSet ==
Æ { e1, e2, equale: LExpr
Æ | (e1, e2) e rel
Æ ¶ FA (front fa) = e1

285

Æ ¶ equale = MergeShareExprExprs (e2, e1, le)
Æ • (equale, re) };
Æ refSet ==
Æ { e1, e2, equale: LExpr
Æ | (e1, e2) e rel
Æ ¶ FA (front fa) = e1
Æ ¶ equale = MergeShareExprExprs (e2, e1, le)
Æ • (equale, ref re) }
Æ • UpdateEqualExprsProperties (le, re, properties)
Æ = AddAsgnFieldsPropertiesSet (shareSet,
Æ (ExprShareAddSet (shareSet,
Æ rel)
Æ ∏ MethodRefUpdateSet (refSet,
Æ ref)))))
Æ v (E ae: ArrayElement | le = ID (arrayElement ae)
Æ • (let shareSet ==
Æ { e1, e2, equale: LExpr; v: Variable;
Æ fa: FieldAccess
Æ | (e1, e2) e rel
Æ ¶ v.name = ae.name
Æ ¶ last fa = var v
Æ ¶ (e1 = ID (var v) v e1 = FA fa)
Æ ¶ equale
Æ = MergeShareExprExprs (e2, e1, le)
Æ • (equale, re) };
Æ refSet ==
Æ { e1, e2, equale: LExpr; v: Variable;
Æ fa: FieldAccess
Æ | (e1, e2) e rel
Æ ¶ v.name = ae.name
Æ ¶ last fa = var v
Æ ¶ (e1 = ID (var v) v e1 = FA fa)
Æ ¶ equale
Æ = MergeShareExprExprs (e2, e1, le)
Æ • (equale, ref re) }
Æ • UpdateEqualExprsProperties (le, re, properties)
Æ = AddAsgnFieldsPropertiesSet (shareSet,
Æ (ExprShareAddSet (shareSet,
Æ rel)
Æ ∏ MethodRefUpdateSet (refSet,
Æ ref)))))

ÆUpdateEqualExprsPropertiesSet: P (LExpr x Expr) x MethodProperties
Æ ß MethodProperties
«_______________
ÆA properties: MethodProperties; set: P (LExpr x Expr)
Æ • E rel: ExprShareRelation; ref: MethodRefSet | properties = (rel, ref)
Æ • UpdateEqualExprsPropertiesSet (set, properties)
Æ = U { le: LExpr; re: Expr | (le, re) e set
Æ • (U { fa: FieldAccess | le = FA fa
Æ • (let shareSet ==
Æ { e1, e2, equale: LExpr
Æ | (e1, e2) e rel
Æ ¶ FA (front fa) = e1
Æ ¶ equale

Appendices E: Checking technique in Z

286

Æ = MergeShareExprExprs (e2,
Æ e1,
Æ le)
Æ • (equale, re) }
Æ • (AddAsgnFieldsShareSet (shareSet,
Æ (ExprShareAddSet (shareSet,
Æ rel))))) }
Æ U U { ae: ArrayElement | le = ID (arrayElement ae)
Æ • (let shareSet ==
Æ { e1, e2, equale: LExpr;
Æ v: Variable; fa: FieldAccess
Æ | (e1, e2) e rel
Æ ¶ v.name = ae.name
Æ ¶ last fa = var v
Æ ¶ (e1 = ID (var v)
Æ v e1 = FA fa)
Æ ¶ equale
Æ = MergeShareExprExprs (e2,
Æ e1,
Æ le)
Æ • (equale, re) }
Æ • (AddAsgnFieldsShareSet (shareSet,
Æ (ExprShareAddSet (shareSet,
Æ rel))))) }) }
Æ ∏ DistMethodRefJoin { le: LExpr; re: Expr | (le, re) e set
Æ • (DistMethodRefJoin ({ fa: FieldAccess
Æ | le
Æ = FA fa
Æ • (let shareSet ==
Æ { e1,
Æ e2,
Æ equale: LExpr
Æ | (e1,
Æ e2)
Æ e rel
Æ ¶ FA (front fa)
Æ = e1
Æ ¶ equale
Æ = MergeShareExprExprs (e2,
Æ e1,
Æ le)
Æ • (equale,
Æ re) };
Æ refSet ==
Æ { e1,
Æ e2,
Æ equale: LExpr
Æ | (e1,
Æ e2)
Æ e rel
Æ ¶ FA (front fa)
Æ = e1
Æ ¶ equale
Æ = MergeShareExprExprs (e2,
Æ e1,
Æ le)

287

Æ • (equale,
Æ ref re) }
Æ • AddAsgnFieldsMethodRefSet (shareSet,
Æ rel,
Æ (MethodRefUpdateSet (refSet,
Æ ref)))) }
Æ U { ae: ArrayElement
Æ | le
Æ = ID (arrayElement ae)
Æ • (let shareSet ==
Æ { e1,
Æ e2,
Æ equale: LExpr;
Æ v: Variable;
Æ fa: FieldAccess
Æ | (e1,
Æ e2)
Æ e rel
Æ ¶ v.name
Æ = ae.name
Æ ¶ last fa
Æ = var v
Æ ¶ (e1
Æ = ID (var v)
Æ v e1
Æ = FA fa)
Æ ¶ equale
Æ = MergeShareExprExprs (e2,
Æ e1,
Æ le)
Æ • (equale,
Æ re) };
Æ refSet ==
Æ { e1,
Æ e2,
Æ equale: LExpr;
Æ v: Variable;
Æ fa: FieldAccess
Æ | (e1,
Æ e2)
Æ e rel
Æ ¶ v.name
Æ = ae.name
Æ ¶ last fa
Æ = var v
Æ ¶ (e1
Æ = ID (var v)
Æ v e1
Æ = FA fa)
Æ ¶ equale
Æ = MergeShareExprExprs (e2,
Æ e1,
Æ le)
Æ • (equale,
Æ ref re) }
Æ • AddAsgnFieldsMethodRefSet (shareSet,

Appendices E: Checking technique in Z

288

Æ rel,
Æ (MethodRefUpdateSet (refSet,
Æ ref)))) })) }

ÆMethodRefAddPropertiesAsgn: LExpr x Expr x MethodProperties ß MethodProperties
«_______________
ÆA properties: MethodProperties; le: LExpr; re: Expr
Æ • E rel: ExprShareRelation; ref: MethodRefSet | properties = (rel, ref)
Æ • re e dom ref
Æ ¶ MethodRefAddPropertiesAsgn (le, re, properties)
Æ = rel ∏ MethodRefUpdate (le, (ref re), ref)
Æ v re ‰ dom ref
Æ ¶ MethodRefAddPropertiesAsgn (le, re, properties)
Æ = rel ∏ MethodRefUpdate (le, {(Erc re)}, ref)

ÆCalcPropertiesAssignment: Method x MethodProperties x LExpr x Expr x LExpr x
Æ SCJmSafeProgram
Æ ß MethodProperties
«_______________
Æ A m: Method; properties: MethodProperties; le, cexpr: LExpr; re: Expr;
Æ p: SCJmSafeProgram
Æ • E newle: LExpr; newre: Expr; v: Variable
Æ | newle = MergeExprs (cexpr, le, p)
Æ • re = Val
Æ ¶ CalcPropertiesAssignment (m, properties, le, re, cexpr, p)
Æ = properties
Æ v re Î Val
Æ ¶ (re = This ¶ newre = cexpr
Æ v re Î This ¶ newre = MergeExprs (cexpr, re, p))
Æ ¶ ((E v: Variable | le = ID (var v)
Æ • CalcPropertiesAssignment (m, properties, le, re,
Æ cexpr, p)
Æ = AddAsgnFieldsProperties (newle, newre,
Æ (MethodRefAddPropertiesAsgn (newle,
Æ newre,
Æ (ExprShareAddProperties (newle,
Æ newre,
Æ properties))))))
Æ v (E fa: FieldAccess; ae: ArrayElement
Æ | le = FA fa v le = ID (arrayElement ae)
Æ • CalcPropertiesAssignment (m, properties, le, re,
Æ cexpr, p)
Æ = UpdateEqualExprsProperties (newle, newre,
Æ (AddAsgnFieldsProperties (newle,
Æ newre,
Æ (MethodRefAddPropertiesAsgn (newle,
Æ newre,
Æ (ExprShareAddProperties (newle,
Æ newre,
Æ properties)))))))))

ÆUpdateMethodRefSetForMrc: MethodRefSet x MetaRefCon ß MethodRefSet
«_______________
ÆA ref: MethodRefSet; mrc: MetaRefCon

289

Æ • UpdateMethodRefSetForMrc (ref, mrc)
Æ = { e: LExpr; mrcs: P MetaRefCon | (e, mrcs) e ref
Æ • e
Æ ∏ U { mrc1: mrcs • (AnalyseMetaRefCon (mrc1, mrc, ref)) } }

ÆApplyMethodPropertiesProperties: Method x Method x MethodProperties x
Æ MethodProperties x P LExpr x seq Expr x
Æ LExpr x LExpr x MetaRefCon x SCJmSafeProgram
Æ ß MethodProperties x P LExpr
«_______________
Æ A m, method: Method; properties1, properties2: MethodProperties;
Æ localVars: P LExpr; args: seq Expr; env: Env; cexpr, lexpr: LExpr;
Æ mrc: MetaRefCon; p: SCJmSafeProgram
Æ • E rel, methRel: ExprShareRelation; ref, methRef: MethodRefSet
Æ | properties2 = (rel, ref) ¶ properties1 = (methRel, methRef)
Æ • let updatedShare ==
Æ UpdateMethodPropertiesCExprShare (methRel, args,
Æ method.visibleFields,
Æ cexpr, lexpr, p);
Æ updatedRef ==
Æ UpdateMethodPropertiesCExprRef (methRef, args,
Æ method.visibleFields,
Æ cexpr, lexpr, p)
Æ • ApplyMethodPropertiesProperties (m, method, properties1,
Æ properties2, localVars,
Æ args, cexpr, lexpr, mrc, p)
Æ = (UpdateEqualExprsPropertiesSet (updatedShare,
Æ (AddAsgnFieldsPropertiesSet (updatedShare,
Æ (ExprShareAddSet (updatedShare,
Æ rel)
Æ ∏ MethodRefUpdateSet (
Æ (UpdateMethodRefSetForMrc (updatedRef,
Æ mrc)),
Æ ref))))),
Æ localVars
Æ U { e: method.localVars • MergeExprs (cexpr, e, p) })

ÆApplyPossibleMethodsProperties: Method x P Method x seq Expr x
Æ MethodProperties x P LExpr x LExpr x LExpr x
Æ MetaRefCon x SCJmSafeProgram
Æ ß MethodProperties x P LExpr
«_______________
ÆA m: Method; methods: P Method; args: seq Expr; properties: MethodProperties;
Æ cexpr, lexpr: LExpr; localVars: P LExpr; mrc: MetaRefCon; p: SCJmSafeProgram
Æ • E newLe: LExpr | newLe = MergeExprs (cexpr, lexpr, p)
Æ • methods = 0
Æ ¶ ApplyPossibleMethodsProperties (m, methods, args, properties,
Æ localVars, cexpr, lexpr, mrc, p)
Æ = (properties, localVars)
Æ v methods Î 0
Æ ¶ ApplyPossibleMethodsProperties (m, methods, args, properties,
Æ localVars, cexpr, lexpr, mrc,
Æ p)
Æ = (DistMethodPropertiesJoin { m1: methods
Æ • (ApplyMethodPropertiesProperties (m,

Appendices E: Checking technique in Z

290

Æ m1,
Æ (UpdateMethodPropertiesArgs (m1,
Æ args)),
Æ properties,
Æ localVars,
Æ args,
Æ cexpr,
Æ lexpr,
Æ mrc,
Æ p)).1 },
Æ localVars
Æ U U { m1: methods
Æ • (ApplyMethodPropertiesProperties (m, m1,
Æ (UpdateMethodPropertiesArgs (m1,
Æ args)),
Æ properties,
Æ localVars,
Æ args, cexpr,
Æ lexpr, mrc,
Æ p)).2 })

ÆCalcPropertiesNewInstance: Method x MethodProperties x P LExpr x newInstance x
Æ LExpr x MetaRefCon x SCJmSafeProgram
Æ ß MethodProperties x P LExpr
«_______________
ÆA m: Method; properties: MethodProperties; localVars: P LExpr;
Æ nI: newInstance; cexpr: LExpr; mrc: MetaRefCon; p: SCJmSafeProgram
Æ • E newLe, e1: LExpr; newMrc: MetaRefCon; constr: Method;
Æ rel: ExprShareRelation; ref: MethodRefSet
Æ | properties = (rel, ref)
Æ ¶ newLe = MergeExprs (cexpr, nI.le, p)
Æ ¶ (nI.mrc = Erc e1 ¶ newMrc = Erc (MergeExprs (cexpr, e1, p))
Æ v nI.mrc Î Erc e1 ¶ newMrc = nI.mrc)
Æ ¶ constr = GetConstr (nI.type.type, nI.args, p)
Æ • CalcPropertiesNewInstance (m, properties, localVars, nI, cexpr,
Æ mrc, p)
Æ = ApplyPossibleMethodsProperties (m, {constr}, nI.args,
Æ (rel
Æ ∏ MethodRefUpdate (newLe,
Æ (AnalyseMetaRefCon (newMrc,
Æ mrc,
Æ ref)),
Æ ref)),
Æ localVars, cexpr, nI.le, mrc,
Æ p)

ÆCalcPropertiesMethod: Method x MethodProperties x P LExpr x methodCall x LExpr
Æ x MetaRefCon x SCJmSafeProgram
Æ ß MethodProperties x P LExpr
«_______________
ÆA m: Method; properties: MethodProperties; localVars: P LExpr; mc: methodCall;
Æ cexpr: LExpr; mrc: MetaRefCon; p: SCJmSafeProgram
Æ • CalcPropertiesMethod (m, properties, localVars, mc, cexpr, mrc, p)
Æ = ApplyPossibleMethodsProperties (m,

291

Æ (GetMethodsFromSigs (mc.methods,
Æ p)), mc.args,
Æ properties, localVars, cexpr, mc.le,
Æ mrc, p)

ÆCalcPropertiesGetMemArea: Method x MethodProperties x getMemoryArea x LExpr x
Æ MetaRefCon x SCJmSafeProgram
Æ ß MethodProperties
«_______________
ÆA m: Method; properties: MethodProperties; gma: getMemoryArea; cexpr: LExpr;
Æ mrc: MetaRefCon; p: SCJmSafeProgram
Æ • E rel: ExprShareRelation; ref: MethodRefSet | properties = (rel, ref)
Æ • E newRef, newExpr: LExpr; erc: MetaRefCon
Æ | newRef = MergeExprs (cexpr, gma.ref, p)
Æ ¶ (gma.e = This ¶ newExpr = cexpr
Æ v gma.e Î This ¶ newExpr = MergeExprs (cexpr, gma.e, p))
Æ ¶ erc = Erc newExpr
Æ • CalcPropertiesGetMemArea (m, properties, gma, cexpr, mrc, p)
Æ = rel ∏ MethodRefUpdate (newRef, {erc}, ref)

ÆCalcPropertiesCom: Method x MethodProperties x P LExpr x Com x LExpr x
Æ MetaRefCon x SCJmSafeProgram
Æ ß MethodProperties x P LExpr
«_______________
ÆA m: Method; properties: MethodProperties; localVars: P LExpr; c: Com;
Æ cexpr: LExpr; mrc: MetaRefCon; p: SCJmSafeProgram
Æ • c = Skip
Æ ¶ CalcPropertiesCom (m, properties, localVars, c, cexpr, mrc, p)
Æ = (properties, localVars)
Æ v (E d: Dec
Æ • c = Decl d
Æ ¶ CalcPropertiesCom (m, properties, localVars, c, cexpr, mrc,
Æ p)
Æ = (AddDecToMethodProperties (properties, d),
Æ localVars U {MergeExprs (cexpr, (ID (var d.var)), p)}))
Æ v (E nI: newInstance
Æ • c = NewInstance nI
Æ ¶ CalcPropertiesCom (m, properties, localVars, c, cexpr, mrc,
Æ p)
Æ = CalcPropertiesNewInstance (m, properties, localVars, nI,
Æ cexpr, mrc, p))
Æ v (E c1: Com
Æ • c = Scope c1
Æ ¶ CalcPropertiesCom (m, properties, localVars, c, cexpr, mrc,
Æ p)
Æ = CalcPropertiesCom (m, properties, localVars, c1, cexpr,
Æ mrc, p))
Æ v (E le: LExpr; re: Expr
Æ • c = Asgn (le, re)
Æ ¶ CalcPropertiesCom (m, properties, localVars, c, cexpr, mrc,
Æ p)
Æ = (CalcPropertiesAssignment (m, properties, le, re, cexpr,
Æ p), localVars))
Æ v (E c1, c2: Com

Appendices E: Checking technique in Z

292

Æ • c = Seq (c1, c2)
Æ ¶ CalcPropertiesCom (m, properties, localVars, c, cexpr, mrc,
Æ p)
Æ = CalcPropertiesCom (m,
Æ (CalcPropertiesCom (m, properties,
Æ localVars, c1,
Æ cexpr, mrc, p)).1,
Æ (CalcPropertiesCom (m, properties,
Æ localVars, c1,
Æ cexpr, mrc, p)).2,
Æ c2, cexpr, mrc, p))
Æ v (E e: Expr; c1, c2: Com | c = If (e, c1, c2)
Æ • (let trueResult ==
Æ CalcPropertiesCom (m, properties, localVars, c1,
Æ cexpr, mrc, p);
Æ falseResult ==
Æ CalcPropertiesCom (m, properties, localVars, c2,
Æ cexpr, mrc, p)
Æ • CalcPropertiesCom (m, properties, localVars, c, cexpr,
Æ mrc, p)
Æ = (MethodPropertiesJoin (trueResult.1, falseResult.1),
Æ localVars U trueResult.2 U falseResult.2)))
Æ v (E e: Expr; comSeq: seq Com
Æ • c = Switch (e, comSeq)
Æ ¶ CalcPropertiesCom (m, properties, localVars, c, cexpr, mrc,
Æ p)
Æ = (DistMethodPropertiesJoin { c: ran comSeq
Æ • (CalcPropertiesCom (m,
Æ properties,
Æ localVars,
Æ c,
Æ cexpr,
Æ mrc,
Æ p)).1 },
Æ localVars
Æ U U { c: ran comSeq
Æ • (CalcPropertiesCom (m, properties, localVars,
Æ c, cexpr, mrc, p)).2 }))
Æ v (E c1, c2, c3: Com; exp: Expr
Æ • c = For (c1, exp, c2, c3)
Æ ¶ CalcPropertiesCom (m, properties, localVars, c, cexpr, mrc,
Æ p)
Æ = ((CalcPropertiesCom (m,
Æ (CalcPropertiesCom (m, properties,
Æ localVars, c1,
Æ cexpr, mrc,
Æ p)).1,
Æ localVars, (Seq (c2, c3)), cexpr,
Æ mrc, p)).1,
Æ (CalcPropertiesCom (m, properties, localVars, c1, cexpr,
Æ mrc, p)).2
Æ U (CalcPropertiesCom (m,
Æ (CalcPropertiesCom (m, properties,
Æ localVars, c1,
Æ cexpr, mrc,
Æ p)).1,

293

Æ localVars, (Seq (c2, c3)), cexpr,
Æ mrc, p)).2))
Æ v (E mc: methodCall
Æ • c = MethodCall mc
Æ ¶ CalcPropertiesCom (m, properties, localVars, c, cexpr, mrc,
Æ p)
Æ = CalcPropertiesMethod (m, properties, localVars, mc,
Æ cexpr, mrc, p))
Æ v (E mc: methodCall
Æ • c = EnterPrivateMemory mc
Æ ¶ CalcPropertiesCom (m, properties, localVars, c, cexpr, mrc,
Æ p)
Æ = CalcPropertiesMethod (m, properties, localVars, mc,
Æ cexpr, (LowerMRC mrc), p))
Æ v (E mrc2: MetaRefCon; mc: methodCall
Æ • c = ExecuteInAreaOf (mrc2, mc)
Æ ¶ CalcPropertiesCom (m, properties, localVars, c, cexpr, mrc,
Æ p)
Æ = CalcPropertiesMethod (m, properties, localVars, mc,
Æ cexpr, mrc2, p))
Æ v (E mc: methodCall
Æ • c = ExecuteInOuterArea mc
Æ ¶ CalcPropertiesCom (m, properties, localVars, c, cexpr, mrc,
Æ p)
Æ = CalcPropertiesMethod (m, properties, localVars, mc,
Æ cexpr, (RaiseMRC mrc), p))
Æ v (E gma: getMemoryArea
Æ • c = GetMemoryArea gma
Æ ¶ CalcPropertiesCom (m, properties, localVars, c, cexpr, mrc,
Æ p)
Æ = (CalcPropertiesGetMemArea (m, properties, gma, cexpr,
Æ mrc, p), localVars))
Æ v (E c1, c2: Com; eseq: seq Expr; comseq: seq Com
Æ • c = Try (c1, eseq, comseq, c2)
Æ ¶ CalcPropertiesCom (m, properties, localVars, c, cexpr, mrc,
Æ p)
Æ = (MethodPropertiesJoin ((MethodPropertiesJoin ((CalcPropertiesCom (m,
Æ properties,
Æ localVars,
Æ c1,
Æ cexpr,
Æ mrc,
Æ p)).1,
Æ (DistMethodPropertiesJoin { com: ran comseq
Æ • (CalcPropertiesCom (m,
Æ properties,
Æ localVars,
Æ com,
Æ cexpr,
Æ mrc,
Æ p)).1 }))),
Æ (CalcPropertiesCom (m, properties,
Æ localVars, c2,
Æ cexpr, mrc,
Æ p)).1),
Æ (CalcPropertiesCom (m, properties, localVars, c1, cexpr,

Appendices E: Checking technique in Z

294

Æ mrc, p)).2
Æ U U { com: ran comseq
Æ • (CalcPropertiesCom (m, properties, localVars,
Æ com, cexpr, mrc, p)).2 }
Æ U (CalcPropertiesCom (m, properties, localVars, c2,
Æ cexpr, mrc, p)).2))
Æ v (E e: Expr; c1: Com
Æ • c = While (e, c1)
Æ ¶ CalcPropertiesCom (m, properties, localVars, c, cexpr, mrc,
Æ p)
Æ = CalcPropertiesCom (m, properties, localVars, c1, cexpr,
Æ mrc, p))
Æ v (E c1: Com; e: Expr
Æ • c = DoWhile (c1, e)
Æ ¶ CalcPropertiesCom (m, properties, localVars, c, cexpr, mrc,
Æ p)
Æ = CalcPropertiesCom (m, properties, localVars, c1, cexpr,
Æ mrc, p))

ÆGetEmbeddedInClasses: P Name x SCJmSafeProgram ß P Name
«_______________
ÆA names: P Name; p: SCJmSafeProgram
Æ • E names’: P Name
Æ | names’
Æ = names
Æ U { c: p.classes | c.name e names ¶ c.embeddedIn Î Empty
Æ • c.embeddedIn }
Æ • # names’ = # names ¶ GetEmbeddedInClasses (names, p) = names
Æ v # names’ > # names
Æ ¶ GetEmbeddedInClasses (names, p)
Æ = GetEmbeddedInClasses (names’, p)

ÆAnalyseMethodVisibleFields: Method x SCJmSafeProgram ß P LExpr
«_______________
ÆA method: Method; p: SCJmSafeProgram
Æ • let classes == GetEmbeddedInClasses ({method.class}, p)
Æ • AnalyseMethodVisibleFields (method, p)
Æ = { d: ran p.safelet.fields | p.safelet.name e classes
Æ • ID (var d.var) }
Æ U { d: ran p.missionSeq.fields | p.missionSeq.name e classes
Æ • ID (var d.var) }
Æ U U { m: p.missions | m.name e classes
Æ • { d: ran m.fields • (ID (var d.var)) } }
Æ U U { h: p.handlers | h.name e classes
Æ • { d: ran h.fields • (ID (var d.var)) } }
Æ U U { c: p.classes | c.name e classes
Æ • { d: ran c.fields • (ID (var d.var)) } }

ÆBuildMethodPropertiesMethod: Method x SCJmSafeProgram ß Method
«_______________
ÆA method: Method; p: SCJmSafeProgram
Æ • E method’: Method
Æ | method’.name = method.name

295

Æ ¶ method’.returnType = method.returnType
Æ ¶ method’.type = method.type
Æ ¶ method’.params = method.params
Æ ¶ method’.class = method.class
Æ ¶ method’.body = method.body
Æ ¶ method’.localVars
Æ = (CalcPropertiesCom (method, (0, 0), 0, method.body, Null,
Æ Current, p)).2
Æ ¶ method’.visibleFields = AnalyseMethodVisibleFields (method, p)
Æ ¶ method’.properties
Æ = (CalcPropertiesCom (method, (0, 0), 0, method.body, Null,
Æ Current, p)).1
Æ • BuildMethodPropertiesMethod (method, p) = method’

MethodDependencies == Method j Method

ÆBuildMethodPropertiesMethods: seq Method x SCJmSafeProgram ß seq Method
«_______________
ÆA methods: seq Method; p: SCJmSafeProgram
Æ • # methods > 1
Æ ¶ BuildMethodPropertiesMethods (methods, p)
Æ = „BuildMethodPropertiesMethod ((head methods), p)Ò
Æ ^ BuildMethodPropertiesMethods ((tail methods), p)
Æ v # methods = 1
Æ ¶ BuildMethodPropertiesMethods (methods, p)
Æ = „BuildMethodPropertiesMethod ((head methods), p)Ò

ÆSortMethods: seq Method x MethodDependencies ß seq Method
«_______________
ÆA sequence: seq Method; deps: MethodDependencies
Æ • # sequence > 1
Æ ¶ (A m: ran (tail sequence)
Æ • (head sequence ∏ m ‰ deps *
Æ ¶ SortMethods (sequence, deps)
Æ = „head sequenceÒ ^ SortMethods ((tail sequence), deps)))
Æ v (E m: ran (tail sequence)
Æ • head sequence ∏ m e deps *
Æ ¶ SortMethods (sequence, deps)
Æ = SortMethods ((tail sequence ^ „head sequenceÒ), deps))
Æ v # sequence = 1 ¶ SortMethods (sequence, deps) = „head sequenceÒ

ÆBuildMethodPropertiesSafelet: Safelet x P Method ß Safelet
«_______________
ÆA s: Safelet; methods: P Method
Æ • E s’: Safelet
Æ | s’.name = s.name
Æ ¶ s’.fields = s.fields
Æ ¶ s’.init = s.init
Æ ¶ s’.initializeApplication = s.initializeApplication
Æ ¶ s’.getSequencer = s.getSequencer
Æ ¶ s’.missionSeq = s.missionSeq
Æ ¶ s’.methods
Æ = { m: methods | m.class = s.name ¶ m.name Î s.name • m }

Appendices E: Checking technique in Z

296

Æ ¶ s’.constrs
Æ = { m: methods | m.class = s.name ¶ m.name = s.name • m }
Æ • BuildMethodPropertiesSafelet (s, methods) = s’

ÆBuildMethodPropertiesMSeq: MissionSeq x P Method ß MissionSeq
«_______________
ÆA ms: MissionSeq; methods: P Method
Æ • E ms’: MissionSeq
Æ | ms’.name = ms.name
Æ ¶ ms’.fields = ms.fields
Æ ¶ ms’.init = ms.init
Æ ¶ ms’.missions = ms.missions
Æ ¶ ms’.getNextMission = ms.getNextMission
Æ ¶ ms’.methods
Æ = { m: methods | m.class = ms.name ¶ m.name Î ms.name • m }
Æ ¶ ms’.constrs
Æ = { m: methods | m.class = ms.name ¶ m.name = ms.name • m }
Æ • BuildMethodPropertiesMSeq (ms, methods) = ms’

ÆBuildMethodPropertiesMission: Mission x P Method ß Mission
«_______________
ÆA m: Mission; methods: P Method
Æ • E m’: Mission
Æ | m’.name = m.name
Æ ¶ m’.fields = m.fields
Æ ¶ m’.init = m.init
Æ ¶ m’.initialize = m.initialize
Æ ¶ m’.handlers = m.handlers
Æ ¶ m’.cleanUp = m.cleanUp
Æ ¶ m’.methods
Æ = { meth: methods | meth.class = m.name ¶ meth.name Î m.name
Æ • meth }
Æ ¶ m’.constrs
Æ = { meth: methods | meth.class = m.name ¶ meth.name = m.name
Æ • meth }
Æ • BuildMethodPropertiesMission (m, methods) = m’

ÆBuildMethodPropertiesMissions: P Mission x P Method ß P Mission
«_______________
ÆA missions: P Mission; methods: P Method
Æ • BuildMethodPropertiesMissions (missions, methods)
Æ = { m: missions • BuildMethodPropertiesMission (m, methods) }

ÆBuildMethodPropertiesHandler: Handler x P Method ß Handler
«_______________
ÆA h: Handler; methods: P Method
Æ • E h’: Handler
Æ | h’.name = h.name
Æ ¶ h’.fields = h.fields
Æ ¶ h’.init = h.init
Æ ¶ h’.hAe = h.hAe
Æ ¶ h’.methods

297

Æ = { m: methods | m.class = h.name ¶ m.name Î h.name • m }
Æ ¶ h’.constrs
Æ = { m: methods | m.class = h.name ¶ m.name = h.name • m }
Æ • BuildMethodPropertiesHandler (h, methods) = h’

ÆBuildMethodPropertiesHandlers: P Handler x P Method ß P Handler
«_______________
ÆA handlers: P Handler; methods: P Method
Æ • BuildMethodPropertiesHandlers (handlers, methods)
Æ = { h: handlers • BuildMethodPropertiesHandler (h, methods) }

ÆBuildMethodPropertiesClass: Class x P Method ß Class
«_______________
ÆA c: Class; methods: P Method
Æ • E c’: Class
Æ | c’.name = c.name
Æ ¶ c’.fields = c.fields
Æ ¶ c’.init = c.init
Æ ¶ c’.methods
Æ = { m: methods | m.class = c.name ¶ m.name Î c.name • m }
Æ ¶ c’.constrs
Æ = { m: methods | m.class = c.name ¶ m.name = c.name • m }
Æ • BuildMethodPropertiesClass (c, methods) = c’

ÆBuildMethodPropertiesClasses: P Class x P Method ß P Class
«_______________
ÆA classes: P Class; methods: P Method
Æ • BuildMethodPropertiesClasses (classes, methods)
Æ = { c: classes • BuildMethodPropertiesClass (c, methods) }

ÆBuildMethodProperties: SCJmSafeProgram x MethodDependencies ß SCJmSafeProgram
«_______________
ÆA p: SCJmSafeProgram; deps: MethodDependencies
Æ • let methods == p.safelet.methods U p.missionSeq.methods
Æ U U { m: p.missions • m.methods }
Æ U U { h: p.handlers • h.methods }
Æ U U { c: p.classes • c.methods }
Æ • E methodSeq: seq Method; analysedMethods: P Method;
Æ p’: SCJmSafeProgram
Æ | ran methodSeq = methods
Æ ¶ # methodSeq = # methods
Æ ¶ analysedMethods
Æ = ran (BuildMethodPropertiesMethods ((SortMethods (methodSeq,
Æ deps)),
Æ p))
Æ • p’.static = p.static
Æ ¶ p’.sInit = p.sInit
Æ ¶ p’.safelet
Æ = BuildMethodPropertiesSafelet (p.safelet,
Æ analysedMethods)
Æ ¶ p’.missionSeq
Æ = BuildMethodPropertiesMSeq (p.missionSeq,

Appendices E: Checking technique in Z

298

Æ analysedMethods)
Æ ¶ p’.missions
Æ = BuildMethodPropertiesMissions (p.missions,
Æ analysedMethods)
Æ ¶ p’.handlers
Æ = BuildMethodPropertiesHandlers (p.handlers,
Æ analysedMethods)
Æ ¶ p’.classes
Æ = BuildMethodPropertiesClasses (p.classes,
Æ analysedMethods)
Æ ¶ BuildMethodProperties (p, deps) = p’

ÆDominates: RefCon j RefCon
«_______________
ÆDominates
Æ = {(Prim ∏ IMem), (IMem ∏ MMem), (MMem ∏ TPMMem 0)}
Æ U { x: N • (TPMMem x ∏ TPMMem (x + 1)) }
Æ U { h: Name • (MMem ∏ PRMem h) }
Æ U { h: Name • (PRMem h ∏ TPMem (h, 0)) }
Æ U { h: Name; x: N • (TPMem (h, x) ∏ TPMem (h, (x + 1))) }

ÆDominates_top: P1 RefCon ß RefCon
«_______________
ÆA rcs: P1 RefCon
Æ • Dominates_top rcs e rcs
Æ ¶ (A rc_others: RefCon | rc_others e rcs
Æ • Dominates_top rcs ∏ rc_others e Dominates *)

ÆDominates_least: P1 RefCon ß RefCon
«_______________
ÆA rcs: P1 RefCon
Æ • Dominates_least rcs e rcs
Æ ¶ (A rc_others: RefCon | rc_others e rcs
Æ • rc_others ∏ Dominates_least rcs e Dominates *)

»_Violation__________________________________
Æcom: Com
Æe1: LExpr
Ærc1: RefCon
Ærc2: RefCon
«_______________
Æ(rc2, rc1) ‰ Dominates *
–_______________________________________

ÆMRCDominates: MetaRefCon j MetaRefCon
«_______________
ÆMRCDominates
Æ = { e: LExpr; mrc: MetaRefCon • (Erc e ∏ mrc) }
Æ U { x: N • (CurrentPlus x ∏ CurrentPlus (x - 1)) }
Æ U {(CurrentPlus 0 ∏ Current)}
Æ U {(Current ∏ CurrentPrivate 0)}

299

Æ U { x: N • (CurrentPrivate x ∏ CurrentPrivate (x + 1)) }
Æ U { rcs1, rcs2: P RefCon
Æ | Dominates_least rcs1 ∏ Dominates_top rcs2 e Dominates *
Æ • (Rcs rcs1 ∏ Rcs rcs2) }

»_PropertiesViolation_____________________________
Æcom: Com
Æe1: LExpr
Æmrc1: MetaRefCon
Æmrc2: MetaRefCon
«_______________
Æ(mrc2, mrc1) ‰ MRCDominates *
–_______________________________________

ÆmSafeEnvStatic: Env x Com x SCJmSafeProgram ß P Violation
«_______________
ÆA env: Env; com: Com; p: SCJmSafeProgram
Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • mSafeEnvStatic (env, com, p)
Æ = { e1: dom ref; v: Violation
Æ | e1 e GetStaticVars p
Æ ¶ (Dominates_least (ref e1), IMem) ‰ Dominates *
Æ ¶ v.com = com
Æ ¶ v.rc2 = IMem
Æ ¶ v.e1 = e1
Æ ¶ v.rc1 = Dominates_least (ref e1) • v }

ÆmSafeEnvFields: Env x Com x P LExpr ß P Violation
«_______________
ÆA env: Env; com: Com; localVars: P LExpr
Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • mSafeEnvFields (env, com, localVars)
Æ = { e1, e2: dom ref; v: Violation
Æ | FieldOf (e1, e2) = True
Æ ¶ e2 ‰ localVars
Æ ¶ (Dominates_least (ref e1), Dominates_top (ref e2))
Æ ‰ Dominates *
Æ ¶ v.com = com
Æ ¶ v.e1 = e2
Æ ¶ v.rc1 = Dominates_least (ref e1)
Æ ¶ v.rc2 = Dominates_top (ref e2) • v }

ÆLongestPrefixOf: Env x LExpr ß LExpr
«_______________
ÆA env: Env; lexpr: LExpr
Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • E e: dom ref | PrefixOf (e, lexpr) = True
Æ • A e1: dom ref
Æ | e1 Î e ¶ e1 Î lexpr ¶ LengthOf e1 < LengthOf e
Æ • LongestPrefixOf (env, lexpr) = e

Appendices E: Checking technique in Z

300

ÆmSafeEnvIncomplete: Env x Com x P LExpr x SCJmSafeProgram ß P Violation
«_______________
ÆA env: Env; com: Com; localVars: P LExpr; p: SCJmSafeProgram
Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • let uncheckedExprs ==
Æ dom ref \ localVars U GetStaticVars p
Æ U U { e: dom ref
Æ • { e1: dom ref
Æ | e Î e1 ¶ FieldOf (e, e1) = True • e } }
Æ • mSafeEnvIncomplete (env, com, localVars, p)
Æ = { e1: uncheckedExprs; e2: LExpr; v: Violation
Æ | e2 = LongestPrefixOf (env, e1)
Æ ¶ (Dominates_least (ref e1),
Æ Dominates_top (ref e2)) ‰ Dominates *
Æ ¶ v.com = com
Æ ¶ v.e1 = e1
Æ ¶ v.rc1 = Dominates_least (ref e1)
Æ ¶ v.rc2 = Dominates_top (ref e2) • v }

ÆmSafeEnvLocal: Env x Com x P LExpr x RefCon ß P Violation
«_______________
ÆA env: Env; com: Com; localVars: P LExpr; rc: RefCon
Æ • E rel: ExprShareRelation; ref: ExprRefSet | env = (rel, ref)
Æ • mSafeEnvLocal (env, com, localVars, rc)
Æ = { e1, e2: dom ref; v: Violation
Æ | PrefixOf (e1, e2) = True
Æ ¶ e2 e localVars
Æ ¶ (Dominates_least (ref e1), rc) ‰ Dominates *
Æ ¶ v.com = com
Æ ¶ v.e1 = e2
Æ ¶ v.rc1 = Dominates_least (ref e1)
Æ ¶ v.rc2 = rc • v }

ÆmSafePropertiesLocal: MethodProperties x Com x P LExpr x MetaRefCon
Æ ß P PropertiesViolation
«_______________
ÆA properties: MethodProperties; com: Com; vars: P LExpr; mrc: MetaRefCon
Æ • E rel: ExprShareRelation; ref: MethodRefSet | properties = (rel, ref)
Æ • mSafePropertiesLocal (properties, com, vars, mrc)
Æ = U { e1, e2: dom ref | PrefixOf (e1, e2) = True
Æ • { v: PropertiesViolation; mrc1: MetaRefCon;
Æ e: LExpr; rcs: P RefCon
Æ | mrc1 e ref e1
Æ ¶ mrc1 Î Erc e
Æ ¶ mrc1 Î Rcs rcs
Æ ¶ e2 e vars
Æ ¶ (mrc1, mrc) ‰ MRCDominates *
Æ ¶ v.com = com
Æ ¶ v.e1 = e2
Æ ¶ v.mrc1 = mrc1
Æ ¶ v.mrc2 = mrc • v } }

ÆmSafePropertiesFields: Method x MethodProperties x Com ß P PropertiesViolation

301

«_______________
ÆA m: Method; properties: MethodProperties; com: Com
Æ • E rel: ExprShareRelation; ref: MethodRefSet | properties = (rel, ref)
Æ • mSafePropertiesFields (m, properties, com)
Æ = U { e1, e2: dom ref
Æ | FieldOf (e1, e2) = True ¶ e2 ‰ m.localVars
Æ • { v: PropertiesViolation; mrc1, mrc2: MetaRefCon;
Æ e: LExpr; rcs: P RefCon
Æ | mrc1 e ref e1
Æ ¶ mrc2 e ref e2
Æ ¶ mrc1 Î Erc e
Æ ¶ mrc2 Î Erc e
Æ ¶ mrc1 Î Rcs rcs
Æ ¶ mrc2 Î Rcs rcs
Æ ¶ (mrc2, mrc1) ‰ MRCDominates *
Æ ¶ v.com = com
Æ ¶ v.e1 = e2
Æ ¶ v.mrc1 = mrc2
Æ ¶ v.mrc2 = mrc1 • v } }

ÆmSafePropertiesMethod: Method x MethodProperties x Method x methodCall x LExpr
Æ x MetaRefCon x SCJmSafeProgram
Æ ß P PropertiesViolation
«_______________
ÆA properties: MethodProperties; m, meth: Method; mc: methodCall; cexpr: LExpr;
Æ mrc: MetaRefCon; p: SCJmSafeProgram
Æ • E properties’: MethodProperties
Æ | properties’
Æ = (ApplyPossibleMethodsProperties (m, {meth}, mc.args,
Æ properties, 0, cexpr, mc.le,
Æ mrc, p)).1
Æ • mSafePropertiesMethod (m, properties, meth, mc, cexpr, mrc, p)
Æ = mSafePropertiesFields (m, properties’, (MethodCall mc))
Æ U mSafePropertiesLocal (properties’, (MethodCall mc),
Æ meth.localVars, mrc)

ÆmSafePropertiesMethodCall: Method x MethodProperties x methodCall x LExpr x
Æ MetaRefCon x SCJmSafeProgram
Æ ß P PropertiesViolation
«_______________
ÆA m: Method; properties: MethodProperties; mc: methodCall; cexpr: LExpr;
Æ mrc: MetaRefCon; p: SCJmSafeProgram
Æ • mSafePropertiesMethodCall (m, properties, mc, cexpr, mrc, p)
Æ = U { meth: GetMethodsFromSigs (mc.methods, p)
Æ • (mSafePropertiesMethod (m, properties, meth, mc, cexpr,
Æ mrc, p)) }

ÆmSafeProperties: MethodProperties x Method x Com x MetaRefCon
Æ ß P PropertiesViolation
«_______________
ÆA properties: MethodProperties; m: Method; com: Com; mrc: MetaRefCon
Æ • mSafeProperties (properties, m, com, mrc)
Æ = mSafePropertiesFields (m, properties, com)

Appendices E: Checking technique in Z

302

Æ U mSafePropertiesLocal (properties, com, m.localVars, mrc)

ÆmSafePropertiesCom: Method x MethodProperties x Com x LExpr x MetaRefCon x
Æ SCJmSafeProgram
Æ ß P PropertiesViolation
«_______________
ÆA m: Method; properties: MethodProperties; c: Com; cexpr: LExpr;
Æ mrc: MetaRefCon; p: SCJmSafeProgram
Æ • E properties’: MethodProperties
Æ | properties’
Æ = (CalcPropertiesCom (m, properties, 0, c, cexpr, mrc, p)).1
Æ • c = Skip
Æ ¶ mSafePropertiesCom (m, properties, c, cexpr, mrc, p) = 0
Æ v (E d: Dec
Æ • c = Decl d
Æ ¶ mSafePropertiesCom (m, properties, c, cexpr, mrc, p)
Æ = 0)
Æ v (E nI: newInstance
Æ • c = NewInstance nI
Æ ¶ mSafePropertiesCom (m, properties, c, cexpr, mrc, p)
Æ = mSafeProperties (properties’, m, c, mrc))
Æ v (E c1: Com | c = Scope c1
Æ • mSafePropertiesCom (m, properties, c, cexpr, mrc, p)
Æ = mSafePropertiesCom (m, properties, c1, cexpr, mrc,
Æ p))
Æ v (E le: LExpr; re: Expr
Æ • c = Asgn (le, re)
Æ ¶ mSafePropertiesCom (m, properties, c, cexpr, mrc, p)
Æ = mSafeProperties (properties’, m, c, mrc))
Æ v (E c1, c2: Com | c = Seq (c1, c2)
Æ • (let c1result ==
Æ mSafePropertiesCom (m, properties, c1, cexpr,
Æ mrc, p);
Æ c1properties ==
Æ (CalcPropertiesCom (m, properties, 0, c1, cexpr,
Æ mrc, p)).1
Æ • (let c2result ==
Æ mSafePropertiesCom (m, c1properties, c2,
Æ cexpr, mrc, p)
Æ • mSafePropertiesCom (m, properties, c, cexpr,
Æ mrc, p)
Æ = c1result U c2result)))
Æ v (E e: Expr; c1, c2: Com | c = If (e, c1, c2)
Æ • (let c1result ==
Æ mSafePropertiesCom (m, properties, c1, cexpr,
Æ mrc, p);
Æ c2result ==
Æ mSafePropertiesCom (m, properties, c2, cexpr,
Æ mrc, p)
Æ • mSafePropertiesCom (m, properties, c, cexpr, mrc, p)
Æ = c1result U c2result))
Æ v (E e: Expr; comSeq: seq Com | c = Switch (e, comSeq)
Æ • (let comresults ==
Æ { c: ran comSeq
Æ • mSafePropertiesCom (m, properties, c,

303

Æ cexpr, mrc, p) }
Æ • mSafePropertiesCom (m, properties, c, cexpr, mrc, p)
Æ = U comresults))
Æ v (E c1, c2, c3: Com; exp: Expr
Æ • c = For (c1, exp, c2, c3)
Æ ¶ mSafePropertiesCom (m, properties, c, cexpr, mrc, p)
Æ = mSafePropertiesCom (m, properties, c1, cexpr, mrc,
Æ p)
Æ U mSafePropertiesCom (m, properties,
Æ (Seq (c2, c3)), cexpr, mrc,
Æ p))
Æ v (E mc: methodCall
Æ • c = MethodCall mc
Æ ¶ mSafePropertiesCom (m, properties, c, cexpr, mrc, p)
Æ = mSafePropertiesMethodCall (m, properties, mc,
Æ cexpr, mrc, p))
Æ v (E mc: methodCall
Æ • c = EnterPrivateMemory mc
Æ ¶ mSafePropertiesCom (m, properties, c, cexpr, mrc, p)
Æ = mSafePropertiesMethodCall (m, properties, mc,
Æ cexpr, mrc, p))
Æ v (E mrc2: MetaRefCon; mc: methodCall
Æ • c = ExecuteInAreaOf (mrc2, mc)
Æ ¶ mSafePropertiesCom (m, properties, c, cexpr, mrc, p)
Æ = mSafePropertiesMethodCall (m, properties, mc,
Æ cexpr, mrc, p))
Æ v (E mc: methodCall
Æ • c = ExecuteInOuterArea mc
Æ ¶ mSafePropertiesCom (m, properties, c, cexpr, mrc, p)
Æ = mSafePropertiesMethodCall (m, properties, mc,
Æ cexpr, mrc, p))
Æ v (E gma: getMemoryArea
Æ • c = GetMemoryArea gma
Æ ¶ mSafePropertiesCom (m, properties, c, cexpr, mrc, p)
Æ = mSafeProperties (properties’, m, c, mrc))
Æ v (E c1, c2: Com; eseq: seq Expr; comseq: seq Com
Æ | c = Try (c1, eseq, comseq, c2)
Æ • (let c1result ==
Æ mSafePropertiesCom (m, properties, c1, cexpr,
Æ mrc, p);
Æ c1properties ==
Æ (CalcPropertiesCom (m, properties, 0, c1, cexpr,
Æ mrc, p)).1
Æ • (let comSeqResult ==
Æ { com: ran comseq
Æ • mSafePropertiesCom (m, c1properties,
Æ com, cexpr, mrc,
Æ p) };
Æ comSeqProperties ==
Æ DistMethodPropertiesJoin { com: ran comseq
Æ • (CalcPropertiesCom (m,
Æ c1properties,
Æ 0,
Æ com,
Æ cexpr,
Æ mrc,

Appendices E: Checking technique in Z

304

Æ p)).1 }
Æ • (let c2result ==
Æ mSafePropertiesCom (m,
Æ comSeqProperties,
Æ c2, cexpr, mrc, p)
Æ • mSafePropertiesCom (m, properties, c,
Æ cexpr, mrc, p)
Æ = c1result U U comSeqResult
Æ U c2result))))
Æ v (E e: Expr; c1: Com
Æ • c = While (e, c1)
Æ ¶ mSafePropertiesCom (m, properties, c, cexpr, mrc, p)
Æ = mSafePropertiesCom (m, properties, c1, cexpr, mrc,
Æ p))
Æ v (E e: Expr; c1: Com
Æ • c = DoWhile (c1, e)
Æ ¶ mSafePropertiesCom (m, properties, c, cexpr, mrc, p)
Æ = mSafePropertiesCom (m, properties, c1, cexpr, mrc,
Æ p))

ÆmSafeMethodProperties: Method x SCJmSafeProgram ß P PropertiesViolation
«_______________
ÆA m: Method; p: SCJmSafeProgram
Æ • mSafeMethodProperties (m, p)
Æ = mSafePropertiesCom (m, (0, 0), m.body, Null, Current, p)

ÆmSafeEnv: Env x Com x P LExpr x RefCon x SCJmSafeProgram ß P Violation
«_______________
ÆA env: Env; com: Com; localVars: P LExpr; rc: RefCon; p: SCJmSafeProgram
Æ • mSafeEnv (env, com, localVars, rc, p)
Æ = mSafeEnvStatic (env, com, p)
Æ U mSafeEnvLocal (env, com, localVars, rc)
Æ U mSafeEnvFields (env, com, localVars)
Æ U mSafeEnvIncomplete (env, com, localVars, p)

ÆmSafeMethod: Env x Method x methodCall x P LExpr x LExpr x RefCon x RefCon x
Æ SCJmSafeProgram
Æ ß P Violation
«_______________
ÆA env: Env; m: Method; mc: methodCall; localVars: P LExpr; cexpr: LExpr; rc,
Æ currentrc: RefCon; p: SCJmSafeProgram
Æ • E env’: Env
Æ | env’
Æ = ApplyPossibleMethods ({m}, mc.args, env, cexpr, mc.le, rc, p)
Æ • mSafeMethod (env, m, mc, localVars, cexpr, rc, currentrc, p)
Æ = mSafeEnv (env’, (MethodCall mc), (m.localVars U localVars),
Æ currentrc, p)

ÆmSafeMethodCall: Env x methodCall x P LExpr x LExpr x RefCon x RefCon x
Æ SCJmSafeProgram
Æ ß P Violation
«_______________

305

ÆA env: Env; mc: methodCall; localVars: P LExpr; cexpr: LExpr; rc,
Æ currentrc: RefCon; p: SCJmSafeProgram
Æ • mSafeMethodCall (env, mc, localVars, cexpr, rc, currentrc, p)
Æ = U { m: GetMethodsFromSigs (mc.methods, p)
Æ • (mSafeMethod (env, m, mc, localVars, cexpr, rc, currentrc,
Æ p)) }

ÆmSafeCom: Env x Com x P LExpr x LExpr x RefCon x SCJmSafeProgram ß P Violation
«_______________
ÆA env: Env; c: Com; localVars: P LExpr; cexpr: LExpr; rc: RefCon;
Æ p: SCJmSafeProgram
Æ • E env’: Env | env’ = CalcEnvCom (env, c, cexpr, rc, p)
Æ • c = Skip ¶ mSafeCom (env, c, localVars, cexpr, rc, p) = 0
Æ v (E d: Dec
Æ • c = Decl d
Æ ¶ mSafeCom (env, c, localVars, cexpr, rc, p) = 0)
Æ v (E nI: newInstance
Æ • c = NewInstance nI
Æ ¶ mSafeCom (env, c, localVars, cexpr, rc, p)
Æ = mSafeEnv (env’, c, localVars, rc, p))
Æ v (E c1: Com
Æ • c = Scope c1
Æ ¶ mSafeCom (env, c, localVars, cexpr, rc, p)
Æ = mSafeCom (env, c1, localVars, cexpr, rc, p))
Æ v (E le: LExpr; re: Expr
Æ • c = Asgn (le, re)
Æ ¶ mSafeCom (env, c, localVars, cexpr, rc, p)
Æ = mSafeEnv (env’, c, localVars, rc, p))
Æ v (E c1, c2: Com | c = Seq (c1, c2)
Æ • (let c1result ==
Æ mSafeCom (env, c1, localVars, cexpr, rc, p);
Æ c1env == CalcEnvCom (env, c1, cexpr, rc, p)
Æ • (let c2result ==
Æ mSafeCom (c1env, c2, localVars, cexpr, rc,
Æ p)
Æ • mSafeCom (env, c, localVars, cexpr, rc, p)
Æ = c1result U c2result)))
Æ v (E e: Expr; c1, c2: Com | c = If (e, c1, c2)
Æ • (let c1result ==
Æ mSafeCom (env, c1, localVars, cexpr, rc, p);
Æ c2result ==
Æ mSafeCom (env, c2, localVars, cexpr, rc, p)
Æ • mSafeCom (env, c, localVars, cexpr, rc, p)
Æ = c1result U c2result))
Æ v (E e: Expr; comSeq: seq Com | c = Switch (e, comSeq)
Æ • (let comresults ==
Æ { com: ran comSeq
Æ • mSafeCom (env, com, localVars, cexpr, rc,
Æ p) }
Æ • mSafeCom (env, c, localVars, cexpr, rc, p)
Æ = U comresults))
Æ v (E c1, c2, c3: Com; exp: Expr
Æ • (let c1env == CalcEnvCom (env, c1, cexpr, rc, p)
Æ • c = For (c1, exp, c2, c3)
Æ ¶ mSafeCom (env, c, localVars, cexpr, rc, p)

Appendices E: Checking technique in Z

306

Æ = mSafeCom (c1env, c1, localVars, cexpr, rc, p)
Æ U mSafeCom (env, (Seq (c2, c3)), localVars,
Æ cexpr, rc, p)))
Æ v (E mc: methodCall
Æ • c = MethodCall mc
Æ ¶ mSafeCom (env, c, localVars, cexpr, rc, p)
Æ = mSafeMethodCall (env, mc, localVars, cexpr, rc, rc,
Æ p))
Æ v (E mc: methodCall
Æ • c = EnterPrivateMemory mc
Æ ¶ mSafeCom (env, c, localVars, cexpr, rc, p)
Æ = mSafeMethodCall (env, mc, localVars, cexpr,
Æ (LowerRC rc), rc, p))
Æ v (E mrc: MetaRefCon; mc: methodCall; ref: ExprRefSet
Æ | ref = env.2
Æ • c = ExecuteInAreaOf (mrc, mc)
Æ ¶ mSafeCom (env, c, localVars, cexpr, rc, p)
Æ = U { rc1: RCsFromMRC (mrc, rc, ref, cexpr)
Æ • (mSafeMethodCall (env, mc, localVars,
Æ cexpr, rc1, rc, p)) })
Æ v (E mc: methodCall
Æ • c = ExecuteInOuterArea mc
Æ ¶ mSafeCom (env, c, localVars, cexpr, rc, p)
Æ = mSafeMethodCall (env, mc, localVars, cexpr,
Æ (RaiseRC rc), rc, p))
Æ v (E gma: getMemoryArea
Æ • c = GetMemoryArea gma
Æ ¶ mSafeCom (env, c, localVars, cexpr, rc, p)
Æ = mSafeEnv (env’, c, localVars, rc, p))
Æ v (E c1, c2: Com; eseq: seq Expr; comseq: seq Com
Æ | c = Try (c1, eseq, comseq, c2)
Æ • (let c1result ==
Æ mSafeCom (env, c1, localVars, cexpr, rc, p);
Æ c1env == CalcEnvCom (env, c1, cexpr, rc, p)
Æ • (let comSeqresult ==
Æ { com: ran comseq
Æ • mSafeCom (c1env, com, localVars,
Æ cexpr, rc, p) };
Æ comSeqEnv ==
Æ DistEnvJoin { com: ran comseq
Æ • (CalcEnvCom (c1env, com,
Æ cexpr, rc,
Æ p)) }
Æ • (let c2result ==
Æ mSafeCom (comSeqEnv, c2, localVars,
Æ cexpr, rc, p)
Æ • mSafeCom (env, c, localVars, cexpr, rc, p)
Æ = c1result U U comSeqresult
Æ U c2result))))
Æ v (E e: Expr; c1: Com
Æ • c = While (e, c1)
Æ ¶ mSafeCom (env, c, localVars, cexpr, rc, p)
Æ = mSafeCom (env, c1, localVars, cexpr, rc, p))
Æ v (E e: Expr; c1: Com
Æ • c = DoWhile (c1, e)
Æ ¶ mSafeCom (env, c, localVars, cexpr, rc, p)

307

Æ = mSafeCom (env, c1, localVars, cexpr, rc, p))

ÆmSafeHandler: Env x Handler x LExpr x SCJmSafeProgram ß P Violation
«_______________
ÆA env: Env; h: Handler; cexpr: LExpr; p: SCJmSafeProgram
Æ • mSafeHandler (env, h, cexpr, p)
Æ = mSafeCom (env, h.hAe, (LocalVars h.hAe), cexpr, (PRMem h.name), p)

ÆmSafeHandlers: Env x Mission x P Handler x SCJmSafeProgram ß P Violation
«_______________
ÆA env: Env; m: Mission; handlers: P Handler; p: SCJmSafeProgram
Æ • E h: Handler | h e handlers
Æ • mSafeHandlers (env, m, handlers, p)
Æ = mSafeHandler (env, h, (GetHandlerExpr (p, h, m)), p)
Æ U mSafeHandlers ((CalcEnvHandler (env, h,
Æ (GetHandlerExpr (p, h, m)),
Æ p)), m, (handlers \ {h}), p)

ÆmSafeMission: Env x Mission x SCJmSafeProgram ß P Violation
«_______________
ÆA env: Env; m: Mission; p: SCJmSafeProgram
Æ • let initializeResult ==
Æ mSafeCom (env, m.initialize, (LocalVars m.initialize),
Æ (GetMissionExpr (p, m)), MMem, p);
Æ initializeEnv ==
Æ CalcEnvCom (env, m.initialize, (GetMissionExpr (p, m)), MMem, p)
Æ • let handlersResult ==
Æ mSafeHandlers ((RemoveExprSetEnv ((LocalVars m.initialize
Æ \ GetHandlerExprs (p,
Æ m)),
Æ initializeEnv)), m,
Æ (GetHandlers (p, m.handlers)), p);
Æ handlersEnv ==
Æ CalcEnvHandlers ((RemoveExprSetEnv ((LocalVars m.initialize
Æ \ GetHandlerExprs (p,
Æ m)),
Æ initializeEnv)), m,
Æ (GetHandlers (p, m.handlers)), p)
Æ • let cleanUpResult ==
Æ mSafeCom (handlersEnv, m.cleanUp, (LocalVars m.cleanUp),
Æ (GetMissionExpr (p, m)), MMem, p)
Æ • mSafeMission (env, m, p)
Æ = initializeResult U handlersResult U cleanUpResult

ÆmSafeMissions: Env x P Mission x SCJmSafeProgram ß P Violation
«_______________
ÆA env: Env; missions: P Mission; p: SCJmSafeProgram
Æ • E m: Mission | m e missions
Æ • mSafeMissions (env, missions, p)
Æ = mSafeMission (env, m, p)
Æ U mSafeMissions ((CalcEnvMission (env, m,
Æ (GetMissionExpr (p, m)),

Appendices E: Checking technique in Z

308

Æ p)), (missions \ {m}), p)

ÆmSafeMissionSeq: Env x MissionSeq x SCJmSafeProgram ß P Violation
«_______________
ÆA env: Env; ms: MissionSeq; p: SCJmSafeProgram
Æ • let getNextMissionResult ==
Æ mSafeCom (env, ms.getNextMission, (LocalVars ms.getNextMission),
Æ (GetMissionSeqExpr (p, ms)), MMem, p);
Æ getNextMissionEnv ==
Æ CalcEnvCom (env, ms.getNextMission, (GetMissionSeqExpr (p, ms)),
Æ MMem, p)
Æ • let missionsResult ==
Æ mSafeMissions ((RemoveExprSetEnv ((LocalVars ms.getNextMission
Æ \ GetMissionExprs p),
Æ getNextMissionEnv)),
Æ p.missions, p)
Æ • mSafeMissionSeq (env, ms, p)
Æ = getNextMissionResult U missionsResult

ÆmSafeSafelet: Env x Safelet x SCJmSafeProgram ß P Violation
«_______________
ÆA env: Env; s: Safelet; p: SCJmSafeProgram
Æ • let initializeResult ==
Æ mSafeCom (env, s.initializeApplication,
Æ (LocalVars s.initializeApplication), Null, IMem, p);
Æ initializeEnv ==
Æ CalcEnvCom (env, s.initializeApplication, Null, IMem, p)
Æ • let getSeqResult ==
Æ mSafeCom ((RemoveExprSetEnv ((LocalVars s.initializeApplication),
Æ initializeEnv)),
Æ s.getSequencer, (LocalVars s.getSequencer), Null,
Æ IMem, p);
Æ getSeqEnv ==
Æ CalcEnvCom (initializeEnv, s.getSequencer, Null, IMem, p)
Æ • let seqResult ==
Æ mSafeMissionSeq ((RemoveExprSetEnv ((LocalVars s.getSequencer
Æ \ {GetMissionSeqExpr (p,
Æ p.missionSeq)}),
Æ getSeqEnv)),
Æ p.missionSeq, p)
Æ • mSafeSafelet (env, s, p)
Æ = initializeResult U getSeqResult U seqResult

ÆmSafeProgram: SCJProgram
Æ ß SCJmSafeProgram x P PropertiesViolation x P Violation
«_______________
ÆA scjProgram: SCJProgram
Æ • E scjmsafe, scjmsafe’: SCJmSafeProgram; deps: MethodDependencies;
Æ env: Env
Æ | scjmsafe = Translate scjProgram
Æ ¶ scjmsafe’ = BuildMethodProperties (scjmsafe, deps)
Æ ¶ env
Æ = DistEnvJoin { c: scjmsafe’.sInit

309

Æ • (CalcEnvCom ((AddDecsToEnv ((0, 0),
Æ scjmsafe’.static)),
Æ c, Null, IMem, scjmsafe’)) }
Æ • let methods ==
Æ scjmsafe’.safelet.methods U scjmsafe’.missionSeq.methods
Æ U U { m: scjmsafe’.missions • m.methods }
Æ U U { h: scjmsafe’.handlers • h.methods }
Æ U U { c: scjmsafe’.classes • c.methods }
Æ • mSafeProgram scjProgram
Æ = (scjmsafe’,
Æ U { m: methods
Æ • (mSafeMethodProperties (m, scjmsafe’)) },
Æ mSafeSafelet (env, scjmsafe’.safelet, scjmsafe’))

Appendices E: Checking technique in Z

310

References

[1] Jamaica Virtual Machine. https://www.aicas.com/cms/en/JamaicaVM.

[2] Java Compiler Tree API. http://docs.oracle.com/javase/7/docs/jdk/api/

javac/tree/com/sun/source/tree/package-summary.html. Accessed: 2014-06-25.

[3] SCJmSafe Automatic Translation and Checking Tool. http://www.cs.york.ac.uk/

circus/hijac/tools.html.

[4] T.J. Watson libraries for analysis (WALA). http://wala.sf.net/.

[5] W. Ahrendt, T. Baar, B. Beckert, W. Menzel, and P.H. Schmitt. The KeY tool, inte-

grating object oriented design and formal verification. software and systems modeling

4, 2005.

[6] G. Bollella and J. Gosling. The real-time specification for Java. Computer, 33(6):47–

54, 2000.

[7] C. Boyapati, A. Salcianu, W. Beebee, Jr., and M. Rinard. Ownership types for

safe region-based memory management in real-time Java. ACM SIGPLAN Notices,

38(5):324–337, May 2003.

[8] A. Burns. The ravenscar profile. ACM SIGAda Ada Letters, 19(4):49–52, 1999.

[9] A. Burns and A.J. Wellings. Real-time systems and programming languages, volume

2097. Addison-Wesley, 1998.

[10] A. Cavalcanti, A. Sampaio, and J. Woodcock. Unifying classes and processes. Software

& Systems Modeling, 4(3):277–296, 2005.

[11] A. Cavalcanti, A.J. Wellings, and J. Woodcock. The Safety-Critical Java memory

model: A formal account. FM 2011: Formal Methods, pages 246–261, 2011.

311

https://www.aicas.com/cms/en/JamaicaVM
http://docs.oracle.com/javase/7/docs/jdk/api/javac/tree/com/sun/source/tree/package-summary.html
http://docs.oracle.com/javase/7/docs/jdk/api/javac/tree/com/sun/source/tree/package-summary.html
http://www.cs.york.ac.uk/circus/hijac/tools.html
http://www.cs.york.ac.uk/circus/hijac/tools.html
http://wala.sf.net/

REFERENCES

[12] A. Cavalcanti, A.J. Wellings, J. Woodcock, K. Wei, and F. Zeyda. Safety-Critical Java

in Circus. In A.J. Wellings and A.P. Ravn, editors, Java Technologies for Real-time

and Embedded Systems, pages 20–29. ACM, 2011.

[13] Z. Chen. Java card technology for smart cards: architecture and programmer’s guide.

Addison-Wesley Professional, 2000.

[14] A.E. Dalsgaard, R.R. Hansen, and M. Schoeberl. Private memory allocation analysis

for SCJ. In Proceedings of Java Technologies for Real-time and Embedded Systems,

pages 9–17. ACM, 2012.

[15] C. Engel. Deductive verification of RTSJ programs. In Proceedings of the 2nd Junior

Researcher Workshop on Real-Time Computing (JRWRTC 2008), 2008.

[16] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata.

Extended static checking for Java. In Proceedings of the ACM SIGPLAN 2002 Con-

ference on Programming language design and implementation, pages 234–245. ACM,

2002.

[17] W. Harwood, A. Cavalcanti, and J. Woodcock. A theory of pointers for the UTP. In

Theoretical Aspects of Computing-ICTAC 2008, pages 141–155. Springer, 2008.

[18] K. Havelund and T. Pressburger. Model checking Java programs using Java

pathfinder. International Journal on Software Tools for Technology Transfer (STTT),

2(4):366–381, 2000.

[19] M.T. Higuera-Toledano and M.A. de Miguel-Cabello. Dynamic detection of access

errors and illegal references in RTSJ. In Real-Time and Embedded Technology and Ap-

plications Symposium, 2002. Proceedings. Eighth IEEE, pages 101–110. IEEE, 2002.

[20] C. A. R. Hoare. Unified Theories of Programming. Technical report, Oxford Univer-

sity Computing Laboratory, Oxford - UK, 1994.

[21] T. Kalibera, J. Hagelberg, F. Pizlo, A. Plsek, B. Titzer, and J. Vitek. CDx: a family

of real-time Java benchmarks. In Proceedings of Java Technologies for Real-time and

Embedded Systems, pages 41–50. ACM, 2009.

[22] T. Kalibera, P. Parizek, M. Malohlava, and M. Schoeberl. Exhaustive testing of

Safety-Critical Java. In Proceedings of Java Technologies for Real-time and Embedded

Systems, pages 164–174. ACM, 2010.

312

REFERENCES

[23] J. Kwon and A.J. Wellings. Memory management based on method invocation in

RTSJ. In Robert Meersman, Zahir Tari, and Angelo Corsaro, editors, OTM Work-

shops, volume 3292 of Lecture Notes in Computer Science, pages 333–345. Springer,

2004.

[24] J. Kwon, A.J. Wellings, and S. King. Ravenscar-Java: a high-integrity profile for real-

time Java. Concurrency and Computation: Practice and Experience, 17(5-6):681–713,

April 2005.

[25] W. Landi. Undecidability of static analysis. ACM Letters on Programming Languages

and Systems (LOPLAS), 1(4):323–337, 1992.

[26] G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary design of JML. ACM SIGSOFT

Software Engineering Notes, 31(3), 2006.

[27] F. Logozzo and M. Fähndrich. On the relative completeness of bytecode analysis

versus source code analysis. In Compiler Construction, pages 197–212. Springer,

2008.

[28] C. Marriott and A. Cavalcanti. SCJ: Memory-safety checking without annotations.

In FM 2014: Formal Methods, pages 465–480. Springer, 2014.

[29] C. C. Morgan. Programming from Specifications. Prentice-Hall, 2nd edition, 1994.

[30] F. Nemer, H. Cassé, P. Sainrat, J.P. Bahsoun, and M. De Michiel. PapaBench: a free

real-time benchmark. WCET, 4, 2006.

[31] K. Nilsen. A type system to assure scope safety within Safety-Critical Java modules.

In Proceedings of Java Technologies for Real-time and Embedded Systems, pages 97–

106. ACM, 2006.

[32] P. Parizek, T. Kalibera, and J. Vitek. Model checking real-time Java. Technical

report, Citeseer, 2010.

[33] F. Pizlo and J. Vitek. Memory management for real-time Java: State of the art. In

11th ISORC, pages 248–254, Orlando, FL, 2008. IEEE Press.

[34] G. M. Reed and A. W. Roscoe. A timed model for communicating sequential pro-

cesses. Theoretical Computer Science, 58:249–261, 1988.

313

REFERENCES

[35] J.R. Rios and M. Schoeberl. Hardware support for safety-critical Java scope checks.

In Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC),

2012 IEEE 15th International Symposium on, pages 31–38. IEEE, 2012.

[36] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in

Computer Science. Prentice-Hall, 1998.

[37] RTCA/DO-178B. Software Considerations in Airborne Systems and Equipment Cer-

tification, 1992.

[38] M. Saaltink. The Z/EVES System. In J. P. Bowen, M. G. Hinchey, and D. Till,

editors, ZUM’97: The Z Formal Specification Notation, volume 1212 of Lecture Notes

in Computer Science, pages 72 – 85. Springer-Verlag, 1997.

[39] M. Schoeberl. JOP: A Java optimized processor. On The Move to Meaningful Internet

Systems 2003: OTM 2003Workshops, pages 346–359, 2003.

[40] M. Schoeberl. Memory management for Safety-Critical Java. In Andy J. Wellings

and Anders P. Ravn, editors, Java Technologies for Real-time and Embedded Systems,

pages 47–53. ACM, 2011.

[41] M. Schoeberl and J.R. Rios. Safety-critical Java on a Java processor. In Proceedings

of the 10th International Workshop on Java Technologies for Real-time and Embedded

Systems, pages 54–61. ACM, 2012.

[42] A. Sherif, A. Cavalcanti, H. Jifeng, and A. Sampaio. A process algebraic framework

for specification and validation of real-time systems. Formal Aspects of Computing,

22(2):153–191, 2010.

[43] F. Siebert. Proving the absence of RTSJ related runtime errors through data flow

analysis. In Proceedings of the 4th international workshop on Java Technologies for

Real-time and Embedded Systems, pages 152–161. ACM, 2006.

[44] N.K. Singh, A.J. Wellings, and A. Cavalcanti. The cardiac pacemaker case study

and its implementation in Safety-Critical Java and Ravenscar Ada. In Proceedings

of the 10th international workshop on Java Technologies for Real-time and Embedded

Systems, pages 62–71. ACM, 2012.

314

REFERENCES

[45] D. Tang, A. Plsek, and J. Vitek. Static checking of Safety-Critical Java annotations.

In Proceedings of Java Technologies for Real-time and Embedded Systems, pages 148–

154. ACM, 2010.

[46] The Open Group. SCJ technology specification (v0.94). Technical report, June 2013.

[47] U.S. Department of Transportation. Lane Departure Warning Systems

(LDWS). http://www.fmcsa.dot.gov/facts-research/research-technology/

report/\lane-departure-warning-systems.htm.

[48] Volvo. The all-new Volvo V60 sports wagon blends style and performance with ground-

breaking safety. http://www.volvocars.com/uk/top/about/news-events/Pages/

default.aspx?itemid=50.

[49] A.J. Wellings. Concurrent and real-time programming in Java. Wiley, 2004.

[50] A.J. Wellings, M. Luckcuck, and A. Cavalcanti. Safety-Critical Java level 2: moti-

vations, example applications and issues. In Proceedings of the 11th International

Workshop on Java Technologies for Real-time and Embedded Systems, pages 48–57.

ACM, 2013.

[51] J. Woodcock and A. Cavalcanti. The semantics of Circus. In ZB 2002: Formal

Specification and Development in Z and B, pages 184–203. Springer, 2002.

[52] J. C. P. Woodcock. Using Z – Specification, Refinement and Proof. Prentice-Hall,

1994. To appear.

[53] F. Zeyda, A. Cavalcanti, and A.J. Wellings. The Safety-Critical Java mission model:

A formal account. In Shengchao Qin and Zongyan Qiu, editors, ICFEM, volume 6991

of Lecture Notes in Computer Science, pages 49–65. Springer, 2011.

[54] F. Zeyda, L. Lalkhumsanga, A. Cavalcanti, and A.J. Wellings. Circus models for

Safety-Critical Java programs. The Computer Journal, 2013.

315

http://www.fmcsa.dot.gov/facts-research/research-technology/report/ \ lane-departure-warning-systems.htm
http://www.fmcsa.dot.gov/facts-research/research-technology/report/ \ lane-departure-warning-systems.htm
http://www.volvocars.com/uk/top/about/news-events/Pages/default.aspx?itemid=50
http://www.volvocars.com/uk/top/about/news-events/Pages/default.aspx?itemid=50

	Abstract
	List of Figures
	Acknowledgements
	Declaration
	Introduction
	Background and motivation
	Objectives and hypothesis
	Contribution
	Overview
	Thesis outline

	Memory safety of real-time and safety-critical Java programs
	Real-Time and Safety-Critical Java
	Real-Time Specification for Java
	Safety-Critical Java
	A Cruise Controller System

	Memory models and memory safety
	Java memory model
	RTSJ memory model
	SCJ memory model
	Memory safety

	Verifying memory safety in RTSJ
	Memory management based on method invocation
	Type systems
	Ownership types
	Dynamic logic
	Bytecode analysis
	Conclusion

	Verifying memory safety in SCJ
	SCJ Annotations
	Model checking
	Correctness by construction
	Bytecode analysis
	Hardware checking
	Conclusion

	Summary

	SCJ-mSafe: An abstract language for memory-safety checking
	An example program in SCJ-mSafe
	A formal model of SCJ
	A formal model of SCJ-mSafe
	SCJ-mSafe - Overall Program
	SCJ-mSafe - Safelet
	SCJ-mSafe - Mission Sequencer
	SCJ-mSafe - Missions
	SCJ-mSafe - Handlers
	SCJ-mSafe - Classes
	SCJ-mSafe - Methods
	SCJ-mSafe - Commands
	SCJ-mSafe - Expressions

	Translating SCJ to SCJ-mSafe
	A translation strategy
	Translating expressions
	Translating commands

	Final considerations

	Modelling and checking memory configurations
	Introduction
	Analysing static variables and the safelet
	Analysing the mission sequencer
	Analysing the mission
	Analysing handlers

	An environment for memory configurations
	Expression reference sets
	Expression share relations
	The environment
	Handling concurrency

	Method properties
	Updating the environment
	Commands
	Handlers
	Missions
	Mission Sequencers and Safelets

	Generating method properties
	Commands
	Building all method properties

	Rules for checking SCJ-mSafe programs
	The dominates relation
	Environment
	Commands
	Overall SCJ-mSafe Program
	Safelet
	Mission sequencer
	Missions
	Handlers

	Checking method properties for memory-safety violations
	Rules for checking method properties
	Method properties
	All method properties

	Final considerations

	TransMSafe and examples
	TransMSafe
	Examples
	Unit testing
	EnterPrivateMemory example
	ExecuteInAreaOf example
	Concurrency example

	Case studies
	Evaluation
	Final considerations

	Conclusions and further work
	Summary
	Conclusions
	Further work
	Level 0 programs
	Level 2 programs
	Mutual recursion
	Soundness
	Optimisation
	A more precise environment
	Automatic SCJ annotation
	Application to other languages

	Z notation
	SCJ model in Z
	SCJ-mSafe model in Z
	Translation strategy in Z
	Checking technique in Z
	References

