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Abstract 
 

 

In recent years the Rhodope Massif has risen in prominence due to the discovery of 

microdiamond in garnet from metapelites in the Greek Rhodope Mts., establishing the 

region as a rare UHP province.  This study is the first to establish that the UHP conditions 

continue through to Bulgaria, owing to the discovery of a microdiamond inclusion in garnet 

from metapelite in the vicinity of the town of Chepelare in the Bulgarian Central Rhodope 

Mts. This UHP metapelite outcrops within the Chepelare Shear zone (CSZ), a ‘melange’ of 

meta-igneous and meta-sedimentary rocks located on the edge of the Variscan Arda dome, 

one of three metamorphic core complexes that dominate the regional geology. Through a 

combination of petrographical and geochemical analysis, the metamorphic conditions 

experienced by these UHP samples have been reconstructed.   

Two populations of metabasic units in the Central Rhodope Mts. were identified in this 

study; one within the melange units of the CSZ, and one as boudins in orthogneiss 

overlying the CSZ. The boudins are shown to be retrogressed eclogites with a supra-

subduction zone origin unrelated to the metabasic units within the CSZ. Correlations are 

observed with Neoproterozoic/Ordovician metabasic samples previously reported from 

the Eastern Rhodope Mts., which represent remnants of the Variscan Orogeny in this 

region.  Metabasic melange samples within the CSZ instead have an N-MORB affinity, and 

display no evidence of a shared P-T history with the UHP metapelites.  

Sm-Nd garnet dating of the metapelites from the CSZ performed in this study indicates a 

Late Cretaceous age for the UHP metamorphic event. This is significantly younger than 

previously reported ages, and suggests a formation history associated with the northwards 

subduction of the Vardar Ocean beneath the Moesian Platform during the Late Mesozoic. 

The present day structure of the massif is the result of complex Cenozoic tectonics 

following post orogenic extension and formation of the metamorphic core complexes that 

are observed across the Rhodope Massif. 
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Chapter 1 : Introduction 

1.1 Introduction to Ultra High Pressure metamorphism 

In 1984, the understanding of subduction zone metamorphism fundamentally changed. 

Coesite, the high pressure polymorph of quartz, was found as inclusions in clinopyroxene 

from eclogite within the Caledonides of Norway (Smith, 1984) and as inclusions in pyrope 

garnet from a high grade blusechist within the Doria Maira Massif, Western Alps (Chopin, 

1984). These discoveries established that subducted continental crust can be exhumed 

from depths greater than 100km.  Following this discovery, diamond inclusions were found 

in garnet from the Kokchetav Massif (Sobolev and Shatsky, 1990) suggesting 

metamorphism at even greater pressures ( >40 kbar) and establishing the link between 

continental collision events and exhumation of deep crustal material. These discoveries led 

to the development of a new field of metamorphic petrology, ultrahigh pressure (UHP) 

metamorphism; the study of metamorphic processes occurring at pressures > 28 kbar (the 

minimum pressure required for coesite formation at 700 °C (Coleman and Wang, 1995)). 

Other indicators of UHP conditions, including quartz exsolution lamellae in clinopyroxene 

(Liou et al., 2009), α-PbO2-structured TiO2 (Yang et al., 2007) and supersilicic titanite 

(Ogasawara et al., 2002) have since been recognised, and as a result more than 20 UHP 

localities worldwide have been recognised (Figure 1-1).  

Recently, evidence has even arisen for the occurrence of decompressed stishovite in 

crustal rocks, suggesting that exhumation of crustal material from depths > 350 km is 

possible (Liu et al., 2007). Despite the large global effort to identify new UHP localities, a 

lot remains unknown about their formation, exhumation and preservation. Many of the 

UHP localities are in remote places where little geological work has been performed, and 

as such it is difficult to link numerical models for UHP formation and exhumation with field 

evidence. Only through increased understanding of the evolution of these UHP localities 

will the uncertainties surrounding their formation and preservation be understood.   

1.2 Formation of UHP terranes 

Globally, UHP terranes are dominated by quartzofeldspathic rocks, with only a small 

proportion of mafic/ultramafic rocks containing UHP indicators (Hacker and Gerya, 2013).  
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As a result, any scenario for formation of these UHP terranes requires the subduction of 

ordinarily buoyant continental crust to great depths. Six distinct mechanisms that would 

theoretically allow the subduction of buoyant material to great depths in the mantle have 

been proposed: 1) continental margin subduction, 2) micro-continent subduction, 3) 

sediment subduction, 4) intra-continental subduction, 5) subduction erosion and 6) 

foundering of a crustal root (Hacker and Gerya, 2013). A number of these mechanisms are 

valid irrespective of whether the upper plate is oceanic or continental. Each mechanism 

has been proposed for a number of locations worldwide. All are summarised graphically in 

Figure 1-2 and examples of each are presented in Table 1-1.  

 

Figure 1-2 : Graphical representation of the six proposed formation mechanisms for UHP rocks, 

redrawn from Hacker and Gerya (2013). Green plate is oceanic crust, blue plate is continental 

crust. White dot is sample protolith, black dot is sample experiencing UHP conditions.  

 

Recent work has also identified that UHP terranes can loosely be divided into two distinct 

groups termed ‘large, old, thick and slow’ and ‘small, young, thin and fast’ (Kylander-Clark 

et al., 2012).  These have been linked with different continental orogenic stages, the result 

of variation in buoyancy, traction forces, subduction rate and proportion of crust to 

mantle. The small, young terranes are believed to form during the initial stages of a 

subduction, owing to the larger amount of dense oceanic crust in the subduction system 

leading to rapid subduction and steep exhumation. Proposed examples are the Alps, and 

Himalaya. The large, older terranes are instead believed to be related to more evolved 

subduction zones, with greater amounts of continental crust in the subduction channel. 

The increased amount of buoyant material slows convergence and decreases the 

subduction angle, resulting in a longer lasting exhumation event. Proposed examples are 

the Western Gneiss Region of Norway and the Dabie-Sulu mountain range in China. 



4 
 

Mechanism  Present day example Ancient example 

Continental margin 

Subduction 

Banda Arc, Australia (Harris, 2003) Dabie Shan, China (Schmid 

et al., 2003) 

Micro continent 

subduction 

Yakutat Terrane, Alaska (Eberhart-

Phillips et al., 2006) 

Kokchetav Massif, 

Kazakhstan (Dobretsov et 

al., 1995) 

Sediment subduction Island arcs worldwide (Scholl and 

von Huene, 2007) 

unknown 

Intra-continental 

subduction 

Pamir (Sippl et al., 2013) Greenland (Gilotti and 

McClelland, 2007) 

Subduction erosion Island arcs worldwide (Scholl and 

von Huene, 2007) 

Pamir (Hacker et al., 2005) 

foundering of a 

crustal root 

The Pamir (Burtman and Molnar, 

1993) 

unknown 

Table 1-1: Table to show both ancient and present day examples of each of the UHP formation 

mechanisms 

 

It is conceivable that established UHP terranes could/should contain UHP phases formed as 

a result of both orogenic stages, but currently there is no documented evidence of either 

small younger UHP terranes within ancient larger UHP terranes, or vice versa. This is 

ascribed to preferential erosion of the small continental slivers within large terranes and 

the long timescales required for the exhumation of the large terranes. It is plausible that in 

younger UHP belts, large UHP terranes are trapped in the continental lower crust and are 

yet to manifest at the surface, as proposed by Walsh and Hacker (2004). This hypothesis of 

splitting UHP localities into two distinct groups is a recent development, and unfortunately 

there has been insufficient work at most UHP localities to test it.  

The significance of tectonic overpressure in the formation of UHP units is another factor 

that remains unclear. Whilst it is plausible, and has both been predicted by numerical 

models (Li et al., 2010) and used to explain  largely conflicting P-T histories (~ 1.5 GPa 

difference) for rocks of the same age in the same area of the Western Gneiss Region of 

Norway (Vrijmoed et al., 2009), it remains unclear whether the subducting lithosphere is 

strong enough to withstand such substantial overpressures (Warren, 2013).   

1.3 Preservation of UHP phases 

UHP samples are typically highly retrogressed, which traditionally has rendered 

thermobarometers unsuitable for constraining the peak P-T conditions experienced by a 

sample. As a result, identification of UHP phases (microdiamond and/or coesite) was the 

only established method to confirm UHP conditions. These phases are only preserved as 
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inclusions in refractory minerals such as garnet and zircon, which protect the UHP phases 

from the effects of post peak metamorphism or retrogression. Recent advances in P-T 

estimation using thermobarometric calculations, combined with microstructural features 

such as spinel inclusions in garnet or exsolution of clinoenstatite have led to the proposal 

of several new UHP localities where no UHP phases are preserved (Dobrzhinetskaya and 

Faryad, 2011).  

With coesite commonly transforming to quartz upon exhumation, microdiamond 

inclusions are the easiest and most definitive identifier of UHP conditions, with diamond 

being easily confirmed via Laser Raman Spectroscopy. A great deal of work has recently 

focused on establishing how microdiamonds form in UHP environments. Diamond was first 

synthesized from graphite in a laboratory by heating the graphite to extreme pressures 

and temperatures in the presence of both fluids rich in CH4, CO2 and H2O at specific fO2 

conditions and a metal solvent catalyst which is required to break the C-C Sp
2
 bond (Bundy 

et al., 1955).  Following this, many experiments have been conducted to attempt to 

synthesize diamonds under conditions that are more realistic in nature. Two different 

theories have been proposed; diamond formation via crystallisation from a supercritical C-

O-H fluid/melt (Stöckhert et al., 2001), or via direct transformation from metastable 

graphite to diamond (Korsakov et al., 2010a). The latter was used to explain carbon 

inclusions, with a graphite core and diamond rim in the Kokchetav Massif, but the 

calculated required P-T conditions are much higher than any proposed for continental 

orogenies (P > 12 GPa, T = 2000 °C (Dobrzhinetskaya, 2012)). Globally, microdiamonds are 

significantly more abundant in metasedimentary rocks than mafic or ultramafic samples, 

which can also be explained if as proposed by Stöckhert et al. (2001) an organic carbon rich 

fluid is required for diamond crystallisation. As such, this is the currently favoured 

formation mechanism (Dobrzhinetskaya, 2012).  

1.4 Exhumation mechanisms 

The mechanism for exhumation of UHP terranes is an important aspect of metamorphic 

petrology/plate tectonics that remains poorly understood; largely the result of 

overprinting during exhumation commonly destroying any structures that formed under 

UHP conditions. The problem can be divided into two key issues 1) What facilitates the 

initiation of exhumation and detachment of the subducting slab, and 2) What 

mechanism(s) allows the return of UHP units to the surface? A number of different 
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theories have been proposed (Hacker and Gerya, 2013, Warren, 2013), and as such a brief 

summary of the current understanding is presented below.   

1.4.1 Exhumation triggers 

Exhumation of UHP material requires decoupling and detachment of crust from the 

subducting slab, and a number of processes known to occur in subduction zones have been 

proposed to facilitate this. It remains unclear whether there is one overriding process that 

drives detachments from the subducting slab, or instead a combination factors trigger the 

eventual exhumation of UHP terranes.  

Partial melting of the subducted crust is a highly effective way to weaken rocks (Warren, 

2013). Migmatisation is widely documented in a number of UHP settings, and is therefore 

suggested as a driver of exhumation initiation in a number of numerical models (Gerya et 

al., 2008). A key uncertainty in all migmatised samples is when did melting occur? Did it 

occur during UHP metamorphism and therefore trigger exhumation, or is it instead the 

result of exhumation related decompression? Although an effective trigger for rock 

weakening, extraction of large degrees of partial melt will also remove the natural 

buoyancy of quartzofeldspathic units relative to the mantle (Hacker and Gerya, 2013). 

Serpentinization of the mantle due to dehydration of the subducting slab is a commonly 

proposed mechanism for exhumation of HP rocks, and has been used to explain blocks of 

HP metabasites within a sheared serpentinite matrix in places like Zermatt Saas/Monviso 

(Schwartz et al., 2001). Serpentinites have also been proposed to act as lubricants within 

the subduction channel by forming a mechanically weak zone along the roof of the 

subduction zone (Guillot et al., 2001). This zone lowers the viscosity of the wall of the 

subduction channel, ultimately assisting both subduction and subsequent exhumation.  

A reduction in grain size is frequently observed in metamorphic shear zones. There is an 

established inverse relationship between the amount of strain a rock experienced and its 

grain size. Metamorphic reactions, triggered either by fluids or deformation,  and dynamic 

recrystallization are possible candidates to account for the observed grain size reduction in 

HP metamorphic rocks (De Bresser et al., 2001).  Both mechanisms result in significant 

weakening, ultimately aiding exhumation (Warren, 2013).  

1.4.2 Proposed geodynamic processes for exhumation of UHP 

terranes 

It is accepted that the natural buoyancy of quartzofeldspathic units relative to the mantle 

is the key driver behind exhumation of most UHP terranes (Massonne et al., 2007). This 
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alone can explain the dominance of quartzofeldspathic UHP terranes worldwide, although 

surface traction, pressure gradients and local tectonic plate motions are likely to 

contribute towards exhumation to some degree (Chemenda et al., 1996, Hacker and 

Gerya, 2013, Heuret and Lallemand, 2005). As such, numerical models of exhumation that 

can take into account temperature and pressure related effects on variables like 

composition, density and rheology complement traditional analogue experiments.  To 

date, six different geodynamic processes have been proposed to return crustal material 

from great depths within the mantle.  These are, eduction, microplate rotation, crustal 

stacking, slab rollback, channel flow and trans-mantle diapirs (See Figure 1-3) 

1) Eduction is simply the reversal of plate motion. If continental crust follows ocean crust 

into a subduction zone the downwards slab pull forces will eventually exceed the strength 

of the slab, resulting in necking, and the eventual break off of the oceanic slab (van Hunen 

and Allen, 2011). The removal of the slab pull force, combined with the positive buoyancy 

of the continental crust results in exhumation. It was first proposed as an exhumation 

mechanism for the Western Gneiss Region of Norway (Andersen et al., 1991). Weak 

deformation, clear observable P-T gradient, no basal thrust fault, and an exhumation cycle 

up to 10 Ma are proposed diagnostic features (Duretz and Gerya, 2013).  

Figure 1-3: Graphical representation of each of the six 

proposed UHP exhumation mechanisms from Hacker and 

Gerya (2013). Green material: oceanic crust, blue material: 

continental crust, black material: UHP units, yellow 

material: subducting sediments.   
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2) Microplate rotation is the exhumation of UHP units as a result of rotation of the down 

going slab due to changing boundary conditions or body forces (Hacker and Gerya, 2013). 

A possible scenario is the subduction of continental crust into a small subduction zone, 

which could change both the direction and strength of slab pull forces. A coherent terrane, 

with a clear metamorphic gradient away from the point of rotation and associated 

stretching lineations are all expected. It has never been modelled computationally, but has 

been proposed to account for the formation of Dabie Shan, Eastern China (Hacker et al., 

2000).  

3) Crustal stacking involves a weak buoyant layer above a stronger negatively buoyant 

zone. When the subducting crust reaches a depth where buoyancy is greater than slab pull, 

the buoyant portion detaches, exhuming a semi coherent sheet. This was first proposed for 

the coesite bearing Doria Maira Massif by Chopin (1987),  and modelled in analogue 

experiments by Chemenda et al. (1995). It has since been reproduced via numerical models 

with a long heavy oceanic slab causing deep continental subduction (Sizova et al., 2012). 

Crustal stacking occurs on a large scale by brittle/plastic failure along the continental 

MOHO of the down going slab, resulting in the continental crust being thrust over the 

down going plate. It is thought to be favoured by slow subduction systems (Duretz and 

Gerya, 2013). 

4) Slab roll back is closely associated with the subduction of microcontinents. When a 

microcontinent enters a subduction system, its buoyant nature slows the subduction rate. 

This allows gravity to exert a more dominant force, leading to steepening of the 

subduction angle (Warren et al., 2008). The trench will retreat away from the upper plate, 

causing extension and thinning of the accretionary wedge which creates space for the 

buoyant UHP rocks to exhume into. When the buoyant part of the subducting slab 

detaches, the remaining dense part will roll back to its original position, driving arc 

extension and aiding exhumation of the UHP crustal material. This model has been used to 

explain the multiple subduction exhumation cycles observed in the Aegean and the 

Calabria-Apennine orogens (Brun and Faccenna, 2008). 

5) Channel flow involves the subduction of buoyant material in a confined channel 

bounded by the rigid subducting slab and overriding plate. A convection like cell forms, 

driven at the base by the traction of the downgoing slab, and the return by the relative 

buoyancy of the units, resulting in ductile return flow. Drivers of exhumation include 

introduction of new material into the channel (Li and Gerya, 2009), the pushing out of old 

material in a plunger like system (Warren et al., 2008) or buoyancy within the channel 
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exceeding subduction related traction. This process is thought leads to the generation of 

nappes or a melange, with mixing of units of vastly different P-T-t histories (Warren et al., 

2008, Beaumont et al., 2009, Li and Gerya, 2009). The French Massif Central is a possible 

examples of channel flow (Lardeaux et al., 2001),  

6) Exhumation via trans mantle diapirs involves crustal material rising in plumes beneath 

the hinterland of the subduction zone, forming a melange like sheet. It was first proposed 

for some of the smaller Alpine UHP terranes (Stöckhert and Gerya, 2005), and has since 

been used as a possible explanation for the formation of a series of eclogite bearing gneiss 

dome in the D’Entrrecteaux Islands off the coast of Papa New Guinea (Little et al., 2011).  

In addition to these mechanisms it is also worth noting the effect of processes such as 

erosion, which although does not occur at a sufficient rate to trigger exhumation, it would 

certainly decrease the downwards forces and assist in exhumation of the units (Warren, 

2013).  Ultimately, there remains a number of uncertainties surrounding the exhumation 

of units from mantle depths, and a combination of processes/mechanisms may be involved 

in the exhumation of UHP units.   

1.5 Thesis Overview 

In this thesis I will discuss the tectono-metamorphic evolution of UHP units from the 

northern part of the Rhodope Massif (RM) in Bulgaria. The RM is an established UHP 

terrane that spans the Greek-Bulgarian border. Currently all UHP discoveries are restricted 

to the Greek portion of the Massif, and as such this area has been the focus of the majority 

of geological studies of the RM in recent years. This thesis attempts to address this 

imbalance, and through detailed petrological, geochemical and geochronological 

investigations test whether current theories about the evolution of the RM hold true for 

the Bulgarian part of the Massif.   

Key questions that I will address are: 

• Are there UHP units in Bulgaria? If so, how extensive are they? When did they 

form, and do they share a common formation history across the RM? 

• How did metabasic units associated with the UHP metapelites form? Are they all 

related to the same subduction-exhumation cycle?  

• What was the exhumation mechanism for UHP units across the RM? Is it shared by 

all UHP localities in the RM?  
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The outline for this thesis is as follows: 

• In Chapter 2 I outline the current understanding of the geological evolution of the 

RM 

• In Chapter 3 I evaluate the petrogenesis of UHP metapelitic units from the Central 

Rhodope Mts, Bulgaria 

• In Chapter 4 I evaluate the petrogenesis of metabasic units from across the Central 

and Eastern Rhodope Mts. 

• In Chapter 5 I use high precision Sm/NdO+ garnet geochronology to place 

constraints on the timing of the UHP event 

• In Chapter 6 I discuss my new results and their impact on the tectono-

metamorphic evolution of the Rhodope Massif  
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Chapter 2 : Geological History 

2.1 Introduction 
The Rhodope Massif forms part of the Hellenides, the manifestation of the Alpine orogenic 

system in the Eastern Mediterranean. The Hellenides are an accretionary orogen composed of 

an amalgamation of terranes that were emplaced along the European margin as a result of the 

collision of the Apulian and European plates, and resultant closure of the Tethys and Vardar 

oceans  (Papanikolaou, 1997, Stampfli and Borel, 2002).  This region has experienced a 

particularly complicated geological history, owing to the opening and closure of multiple 

oceanic basins over the course of geological time. Since the advent of modern day plate 

tectonic theory, a number of different paleotectonic models have been proposed, largely 

involving contrasting geodynamic settings for the numerous ophiolite fragments found 

throughout the Hellenides, or invoking differing numbers of oceanic basins in the region 

(Robertson, 2004, Robertson et al., 1996).  

Current consensus is that the Hellenides can be divided into a series of NW-SE trending 

imbricated nappes or terranes, separated by ophiolitic fragments and thrust faults 

(Jacobshagen et al., 1986, Papanikolaou, 1997, Papanikolaou, 2013). These terranes can be 

divided into two distinct groups – the External and Internal Hellenides, separated by relicts of 

the Pindos Ocean, an ophiolite bearing suture zone containing Mesozoic sediments (Liati et al., 

2004, Robertson, 2004). The External Hellenides are predominantly made up of Mesozoic and 

Cenozoic supracrustal carbonates and flysch sediments, forming an orocline that connects the 

Dinarides to the NW with the Taurides to the SE (Mountrakis, 1986). The Internal Hellenides 

are characterized by Mesozoic/Paleozoic crystalline basements, and can be separated into 

three distinct massifs, the Pelagonian Massif, the Serbo-Macedonian Massif and the Rhodope 

Massif, the focus of this study (Figure 2-1).  

2.2 Geology of the Internal Hellenides 

2.2.1 The Pelagonian Massif 

The Pelagonian Massif forms the westernmost and largest part of the Internal Hellenides.  It 

merges to the south with the Attic-Cycladic massif (Dürr et al., 1978), and is separated from 

the metamorphic hinterland by the ophiolite bearing Vardar zone (Mercier et al., 1975). The 

basement is predominantly Permo-Carboniferous arc related granitic gneisses and late 

Paleozoic – Mesozoic metaclastic sediments and carbonates overlain by Tertiary cover (Anders 

et al., 2005).  Originally believed to be a fragment of the Cimmerian continent that separated 
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the Paleo and Neo-Tethys oceans (Mountrakis, 1986), subsequent work has shown that 

Pelagonia was part of the European Plate in the Variscan, and was rifted away as a result of 

back arc extension and the opening of the Mailac Ocean (Vavassis et al., 2000).  

 

 

2.2.2 The Vardar Zone 
The Vardar zone separates the Pelagonian Massif from the Serbo Macedonian massif. It hosts 

an Upper Jurassic suture (Zachariadis, 2007), with abundant ophiolitic fragments that can be 

divided into three distinct zones on the basis of their age, lithology and metamorphic grade. 

From West to East there are the Almopias, Paikon and Peonias subzones (Mercier, 1966).  

The Almopias zone forms the westernmost part of the Vardar Zone, and is characterized by 

ophiolite fragments, metavolcanic and metasidemintary rocks. It is interpreted as an oceanic 

basin that was subducted eastwards under the Serbo-Macedonian Massif in the mid – late 

Jurassic (Zachariadis, 2007).  The Paikon zone, the next zone east, has an unclear  origin 

(Anders et al., 2005). It is predominantly neritic marbles, clastic sediments, mica schists and 

Late Jurassic volcanics, thought to represent either a tectonic window into the underlying 

basement of the Pelagonian massif (Ricou et al., 1998), or the subduction of the Almopias zone 

Figure 2-1: Simplified geological map of the Eastern Mediterranean, highlighting 

major tectonic zones/massifs in SE Europe, after Meinhold et al. (2008)  
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under the Serbo-Macedonian Massif (Brown and Robertson, 2004). The Peonias zone forms 

the easternmost part of the Vardar zone, and is predominantly unmetamoprhosed Mid-

Triassic – late Jurassic sedimentary sequences and ophiolitic material. The zone is dominated  

by the Jurassic Guevgueli ophiolite that originated in a back arc basin to the east of the Paikon 

volcanic arc (Bebien, 1982, Brown and Robertson, 2003). Final suturing of the Vardar zone 

occurred in the Tertiary, resulting in the present day thrust structure seen in the Voras 

mountains, spanning the entire width of the Vardar zone (Brown and Robertson, 2004).  

2.2.3 Serbo-Macedonian Massif (SMM) 

The SMM is sandwiched between the Vardar suture and the Rhodope Massif (RM), situated  

between the Axios Basin to the West, and the Strimon Basin to the East (Dinter and Royden, 

1993). The Athos-Volvi zone, also referred to as the Circum Rhodope Belt separates the SMM 

from the Vadra zone to the west. This zone is a series of low grade metasediments 

(predominantly greenschist facies) in an ophiolite bearing melange of either Jurassic 

(Meinhold, 2007) or Cretaceous olistostromic flysch (Ricou et al., 1998) 

Originally the SMM was separated from the Rhodope Massif on the basis of contrasting 

metamorphic grades (Kockel and Walther, 1965). Subsequent works have suggested that the 

SSM and RM share a common formation history, the result of similar isotopic geochemical 

signatures, ages and structural features (Ricou et al., 1998). Current understanding indicates 

the SMM can be divided into two distinct units, the Kerdillon unit and the Vertiskos unit 

(Kockel et al., 1971). The Kerdillon unit is interpreted as the westwards extension of the RM, 

composed of banded biotite gneiss and migmatite domes (Himmerkus et al., 2006a, 

Himmerkus et al., 2009a, Ricou et al., 1998), with magmatic pulses of similar ages to the RM 

reported across the area (Himmerkus et al., 2006b). 

 The Vertiskos unit is the most widespread unit of the SMM, predominantly composed of 

Silurian continental magmatic arc orthogneiss, intruded by Triassic leucocractic granites 

(Himmerkus et al., 2009b). A further sub unit, the Pirgadika unit has also been delineated along 

the Chalkidiki Peninsula (Himmerkus et al., 2006a). Both the Vertiskos and the Pirgadikia units 

have been shown to be exotic crustal fragments that are unrelated to the surrounding parts of 

the Inner Hellenides (Himmerkus et al., 2006a, Himmerkus et al., 2009a).  

2.2.4 Rhodope Massif 

The Rhodope Massif (RM) forms the innermost part of the Hellenides, extending over large 

areas of SW Bulgaria and NE Greece. It is bounded to the North by the Sredna Gora zone – a 

Late Cretaceous volcanic arc chain of arc granite-monzodiorite intrusions (von Quadt et al., 

2005), separated from the RM by the Maritza dextral strike slip fault (Naydenov et al., 2009). 

To the west it is bounded by the SMM/Vardar suture zone (Ricou et al., 1998) defined by the 
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Strimon low angle normal fault (Dinter and Royden, 1993).  The southern extent of the massif 

is obscured by the Aegean Sea, and the eastern – north eastern boundary is covered by the 

large late Paleogene-Noegene Thrace- Maritza sedimentary basins. The eastwards lateral 

extension of the Rhodope Metamorphic complex towards Turkey is unclear (Bonev and 

Beccaletto, 2007) and obscured by greenschists units and ophiolites of the Circum Rhodope 

Belt (Kauffmann et al., 1976).  

 

The geological history of the RM has proved to be complex. It was originally considered a 

Precambrian crustal unit sandwiched between two branches of the Alpine Himalayan Orogenic 

belt; the Balkan belt to the North and the Dinarides-Hellenides belt to the South (Hsu et al., 

1977). Subsequent work has instead indicated a more complex evolution, with Precambrian, 

Varsican and Alpine metamorphic and igneous activity (Burchfiel, 1980, Ivanov et al., 1985, 

Carrigan et al., 2003, Haydoutov et al., 2004) followed by extensive Alpine deformation and 

complex extensional tectonics (Baziotis et al., 2008, Burg, 2011, Burg et al., 1996, Ricou et al., 

1998, Jahn-Awe et al., 2010, Kirchenbaur et al., 2012, Nagel et al., 2011).  

 

The overall structure of the RM is a 300 x 300 km open NW-SE trending antiform. Current 

understanding suggests the RM is a south directed nappe complex formed as a result of a 

north dipping Cretaceous subduction zone associated with the closure of the Vardar Ocean 

(Ricou et al., 1998). By the late Eocene-Miocene, the RM experienced post orogenic extension, 

which led to the emplacement of a series of large scale metamorphic domes (core complexes) 

that dominate the regional geology (Bonev et al., 2010b, Burg et al., 1990, Burg et al., 1996, 

Nagel et al., 2011). 

 

2.3 Paleogeographic evolution of the RM 

The RM has a complex tectonic history spanning the Neoproterozoic to present day, involving 

a number of distinct orogenic events. In this section the evolution of the RM is overviewd in 

the broader context of paleogeographic reconstructions of the Eastern Mediterranean.  

2.3.1 Pre-Variscan History 

The oldest units within the RM are Neoproteroic and Early Paleozoic metamafic units found 

within the Central and Eastern Rhodope Mts. As discussed in Chapter 4, this suite can be 

distinguished on the basis of bulk rock geochemistry, with protoliths ranging from MORB to 

SSZ units.  Granitic bodies of similar age have been reported from the SMM (Graf et al., 1998, 

Himmerkus et al., 2006a, Kounov et al., 2012) and the Stranzha zone and Istanbul Terranes of 

Turkey (Okay et al., 2008, Yilmaz Şahin et al.). Formation of these samples is the result of 
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subduction of the Prototethys ocean under the northern Gondwanan margin (Figure 2-2a). 

Metamafic samples from the RM formed in a back arc setting above the Cambrian-Early 

Ordivican subduction system related to the opening of the Eastern Rheic Ocean and 

northwards drift of peri gondwanan fragments (Figure 2-2b). These samples were emplaced 

into Neoproterozoic- Early Palaeozoic basement units, accounting for the large spread in both 

lithologies and sample age seen within these units (Bonev et al., 2013).   

 

 

 

2.3.2 The Variscan Orogeny – Formation of the Lower allochthon 

During the Variscan, the Paleotethys was subducted Northwards under the Southern boundary 

of Laurussia (Figure 2-3a), resulting in the accretion of Peri-Gondwanan terranes prior to  the 

late Paleozoic suturing of Laurussia with Gondwana associated with the formation of Pangea 

(Stampfli and Kozur, 2006). U-Pb zircon dating of metamafic samples from the RM suggests 

subduction to eclogite facies during this orogenic event (Arkadakskiy et al., 2003, Carrigan et 

al., 2003), in keeping with HP relics of the Variscan Orogeny recognised across Western Europe 

(Friedl et al., 2011, Roger and Matte, 2005). Continental arc magmatism associated with this 

northwards subduction event formed the granitic protolith of the Lower high grade basement 

unit found across the RM (Cherneva and Georgieva, 2005).  

Figure 2-2: Early Paleozoic paleogeographical plate reconstructions, redrawn from Stampfli and 

Borel (2002). A: Cambrian opening of the Rheic Ocean alongside rifting from Northern 

Gondwanan margin B: Devonian closure of the Rheic Ocean 

A B 
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2.3.3 Mesozoic History 

The Neotethys ocean opened during the Permian-Triassic following rifting along the Northern 

Gondwanan margin, the result of the breakup of Pangea (Figure 2-3b). Simultaneous 

northwards subduction of the Paleotethys ocean under the Eurasian margin occurred, with 

associated back arc rifting resulting in the opening of the Meliata and Maliac Oceanic basins 

(Stamplfi and Kozur, 2006, Figure 2-4a).  The southwards subduction of the Meliata-Meliac 

oceanic crust during the Late Triassic/Jurassic led to the establishment of the Eastern 

Rhodope-Evros arc system, with associated back arc extension leading to opening of the 

Vardar Ocean (Bonev et al., 2010c, Bonev and Stampfli, 2011). A change in subduction polarity 

occurred, and the Vardar Ocean was subducted beneath the Moesian platform during the Late 

Cretaceous (Bonev and Stampfli, 2011, Stampfli and Borel, 2002, Stampfli and Hochard, 2009). 

To the east, northwards subduction of the Neotethys under the Eurasian margin is continuous 

throughout this time (Stampfli and Borel, 2002, Figure 2-4b). The position of the RM during 

this period is poorly constrained, and will be discussed at length in section 6.1.  

Figure 2-3: Mid-Late Paleozoic paleogeographical plate reconstructions, redrawn from Stampfli 

and Borel (2002). A: Carboniferous, with Northwards subduction of the Palaeotethys ocean, B: 

Late Permian, with opening of the Neotethys ocean. Yellow areas: Suture zones, Orange areas: 

Rifting zones.  

A 
B 
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2.3.1 Cenozoic History 

During the Cenozoic, the Northern African margin remained passive, whilst the Hellenic 

orogenic front migrated southwards, resulting in the accretion of distinct terranes to the 

Eurasian margin (Papanikolaou, 2013).  

2.4 Stratigraphy of the Rhodope Massif 
Over the years a large number of different names for individual litho-tectonic sub-units across 

the Rhodope Massif have been used, often precluding direction comparisons between areas. 

To combat this, two simplifications of the geology of the RM have been proposed, grouping 

together units that share a common formation history. The first scheme, as proposed by Bonev 

(2006) divides the metamorphic basement into an upper high grade basement and lower high 

grade basement, whereas  the second divides this basement into four distinct units, the 

lowermost, middle,upper and uppermost allochthon (Jahn-Awe et al., 2010).  

 

 

 

Figure 2-4: Mesozoic paleogeographical plate reconstructions, redrawn from Stampfli and Borel 

(2002). A: with opening and Southern Subduction of the Meliata and Malicac Ocean basins, B: 

Late Cretaceous northwards subduction of the Vardar ocean under the Eurasian margin. . Yellow 

areas: Suture zones, Orange areas: Rifting zones.  

A B 
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B 

A 

Figure 2-5A: Summary map of the geology of the Rhodope Massif (after Bonev  2006 IJES and 

Bonev and stampfli 2007). ER: Eastern Rhodope Mts. CR: Central Rhodope Mts. WR: Western 

Rhodope Mts, NSZ: Nestos Shear Zone, CSZ: Chepelare Shear Zone.◊: Microdiamond locality,    : 

proposed coesite locality, yellow boxes: field areas studied in this thesis. B: Simplified 

sratigraphic column to show the startigraphic relationship of the different lithological units across 

the RM. 
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2.4.1 Lower High Grade Basement Unit 

The Lower high grade basement unit and lower allochthon are the same in both classification 

schemes, being predominantly orthogneiss with associated clastic metasediments, metamafic 

and ultramafic rocks (Jahn-Awe et al., 2010). The largest exposure is seen in the Pangeon-Pirin 

complex, outcropping south of the Netsos Shear zone in Northern Greece/Southern Bulgaria, 

but this basement unit also forms the core of the three extensional gneiss domes (Arda, Byala-

Reka, and Kesebir-Kardamos) that dictate the present day structure of the RM. The origin for 

this basement unit remains controversial. Studies of the gneiss domes have suggested a 

Variscan granitic protolith (Cherneva and Georgieva, 2005, Peytcheva and Von Quadt, 1995, 

Peytcheva et al., 2004) that has experienced amphibolite facies metamorphism during the 

Eocene- Oligocene, although the paleogeographic origin is unclear (Figure 2-5). With the RM 

forming the metamorphic hinterland of the Internal Hellenides, it has been suggested that this 

lower unit is a micro-continent that marks the first accretionary stage of the Hellenic Orogeny. 

Various suggestions for this continent have been put forward, Drama (Ricou et al., 1998), 

Thracia (Turpaud and Reischmann, 2010) or a fragment of the European margin (Krenn et al., 

2010). The alternative view is that this unit is derived from the Apulian margin, and is exposed 

beneath an orgogen-scale out-of-sequence thrust fault – the Nestos Shear Zone, which cuts 

through the entire Jurassic-Cretaceous Nappe pile of the Hellenides (Dinter, 1998, Krohe and 

Mposkos, 2002, Nagel et al., 2011).  

 

In this scenario, the three metamorphic core complexes to the North of the NSZ are envisaged 

as linked to the Pangeon-Pirin complex, and the Chepelare Shear Zone on Figure 2-5 is viewed 

as a continuation of the Nestos Shear Zone (Nagel et al., 2011). This link is the result of a 

commonly observed top to the southwest shear sense in mylonites from both the Arda dome 

and the NSZ, in-keeping with the idea of exhumation of units SW along a NE dipping 

subduction zone. An increased metamorphic grade has also been observed in the 3 core 

complexes relative to the Pangeon Pirin complex, in-keeping with a common south trending 

exhumation, as the Northern units must have been exhumed from greater depths in the Arda 

dome.  

2.4.2 Upper High Grade Basement Unit                                       

The next stratigraphic level in the RM is an extensive heterogeneous unit of meta-igneous and 

metasedimentary rocks of currently unresolved age and origin. This suite is the focus of this 

study. Ricou et al. (1998) and  Bonev (2006) both grouped all  lithological units at this level 

together into the Rhodope Terrane and Upper high grade basement unit respectively, whereas 

Jahn-Awe et al. (2010) subdivided it further into a middle and upper allochthon on the basis of  

contrasting protolith ages and tectonometamorphic histories. For the purpose of this study it 
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will be referred to as the Variegated Formation (VF), a term used locally in the Bulgarian 

Central Rhodope Mts. 

 

The middle allochthon is composed of intermingled amphibolites, marbles, eclogites, 

metapelites, ultramafics, ortho- and para-gneiss that have experienced upper 

amphibolite/eclogite facies metamorphism. Late Jurassic – Early Cretaceous protolith ages 

have been reported for orthogneiss in the middle allochthon from both above the NSZ 

(Turpaud and Reischmann, 2010) and the eastern extent of the Arda dome (Ovtcharova et al., 

2004).  The Upper allochthon is petrologically similar, but is proposed to represent a higher 

stratigraphic level in the RM, containing all recorded examples of UHP metamorphism in the 

Rhodope Massif (Jahn-Awe et al., 2010). The timing of metamorphism in this allochthon is 

poorly constrained and will be discussed in detail in Chapter 5. The exact criteria of whether a 

sample belongs to the middle or upper allochthon is not clear in the literature, but the 

melange zone found along the Nestos and Chepelare Shear Zones, and the Kimi complex  of 

the Eastern Rhodope Mts. have all been attributed to the upper allochthon (Jahn-Awe et al., 

2010, Nagel et al., 2011, Jahn-Awe et al., 2012).  

2.4.3 Overlying units 
Overlying the high grade metamorphic basement of the RM are a series of Mesozoic 

greenschist-blueschist metasediments and metavolcanics, thought to be a continuation of the 

Circum Rhodope belt from the Athos-Volvi zone, Greece (Boyanov and Russeva, 1989, 

Papanikolaou, 1997). This unit is made of greenschists and phylites overlain by arc tholeitic-

boninitic mafic lavas, which are in turn overlain by meta-pyroclastic rocks and turbiditic clastic 

and carbonaceous deposits (Bonev et al., 2010b). The entire sequence has been interpreted as 

an island arc accretionary assemblage (Bonev and Stampfli, 2008). Fragments have been 

identified in unmetamorphosed Jurassic sediments in the region (Kockel et al., 1971), 

suggesting formation pre-dates the main regional HP/UHP orogenic event(s).    

 

The entire sequence is overlain by a series of syn and post tectonic cover sequences. These 

supracrustal units consist of clastic, carbonanaceous and volcanic material, with ages ranging 

from Paleocene – Miocene (Boyanov and Goranov, 2001).  Widespread post metamorphic 

magmatic activity has been related to post orogenic extensional collapse (Harkovska et al., 

1989, Jones et al., 1992), likely a result of slab rollback due to a change in composition of the 

subducting crust (Jolivet and Brun, 2010)  
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2.5 UHP metamorphism in the Rhodope Massif 
In the last few decades the RM has been the focus of extensive research due to the discovery 

of microdiamond inclusions in garnets from kyanite-garnet gneiss of the Kimi Complex, part of 

the upper high grade basement in the Greek part of the RM (Mposkos and Kostopoulos, 2001). 

Two additional diamond localities have since been identified along the Nestos Shear Zone in 

the South of the Massif (Figure 2-5) and in the Sidironero Complex (Perraki et al., 2006, 

Schmidt et al., 2010). These discoveries have established the region as one of the few UHP 

provinces in Europe. Microdiamond inclusions are restricted to almandine-rich garnets from 

kyanite-garnet gneiss/schist units that are part of the VF/upper allochthon (melange) that is 

common throughout the upper high grade basement unit of the RM (Haydoutov et al., 2004). 

Kyanite-garnet schist is the only lithology to preserve evidence of UHP conditions.  

Pressure and temperature estimates for the Greek UHP localities range between 3.1 and 3.9 

GPa and 600 – 900 °C (for the Greek Central Rhodope Mts.) and > 4 GPa and at least 1100 °C 

(for the Greek Eastern Rhodope Mts.) (Liati et al. 2011). Thermobarometric studies of eclogites 

from the westernmost segments of the RM in Bulgaria (i.e. Pirin Mts.; Janak et al, 2011) and 

possible coesite discoveries from the neighbouring Ograzden Mts. of the SMM (Savov et al. 

2007) (see Figure 2-5) suggest that other parts of the RM may have experienced UHP 

conditions. 

2.6 Timing of key tectono-metamorphic events in the Rhodope 

Massif 

2.6.1 Protolith formation 

The geochronological record in the RM spans from the Proterozoic to the present day (figure 

3). The oldest recorded ages are U-Pb zircon ages from a metagabbro unit near Bubino in the 

Eastern Rhodope Mts., which record a core age of 572 ± 5 Ma (Carrigan et al., 2003).  Similar 

ages have been reported from eclogite boudins in the Central and Western Rhodope Mts. 

(Arkadakskiy et al., 2003, Savov et al., 2007). All of these samples record a Variscan 

metamorphic overprint event ca. 350 – 260 Ma, similar to ages reported from the SMM  

leading to the suggestion of a common history (Himmerkus et al., 2006a). Late Permian – Early 

Triassic protolith ages are also reported from U-Pb SHRIMP dating of eclogites from both the 

Western and Eastern Rhodope Mts. (Liati, 2005, Liati and Fanning, 2005). These ~ 250 Ma ages 

are interpreted as the result of underplating associated with Permo-Triassic rifting in the 

Paleo-Tethys (Liati et al., 2011).  

 

U-Pb zircon dating of orthogneiss reveals two widespread magmatic events across the RM. The 

oldest protolith ages are ~ 320 – 250 Ma, recorded in migmatic orthogneiss that forms the 
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lower high grade basement unit across the RM (Peytcheva and Von Quadt, 1995, Ovtcharova 

et al., 2002, Peytcheva et al., 2004, Liati and Fanning, 2005, Liati and Gebauer, 1999).  This 

event is also recorded in the core of monazite crystals from the island of Thasos, Greece 

(Wawrzenitz and Mposkos, 1997).  A second Jurassic (ca. 150 Ma) magmatic event is recorded 

in orthogneiss from within the VF (Gebauer and Liati, 1997, Liati, 2005, Liati et al., 2011, 

Ovtcharova et al., 2004, Turpaud and Reischmann, 2010), suggested to be the magmatic 

product of an UHP subduction zone (Turpaud and Reischmann, 2010).  Recent work to 

constrain the timing of the peak metamorphic event has questioned this interpretation (Liati et 

al., 2011), and this topic will be the subject of further discussion in chapters 5 and 6.  

 

 

 

2.6.2 Timing of HP/UHP metamorphism 
Four distinct age groups for HP metamorphism have been reported in the literature for the 

RM. These are 1) Late Jurassic ca. 150 Ma, 2) Late Cretaceous ca. 73 Ma, 3) Early Eocene ca. 51 

Ma, and 4) Late Eocene ca. 42 Ma, as shown in Figure 2-7. These ages have been interpreted as 

Figure 2-6: Published protolith ages from across the Rhodope Massif. 1: Turpaud and Reischmann, 

2010, U-Pb zircon SHRIMP, 2: Ovtcharova et al. 2002, U-Pb zircon TIMS, 3: Peytcheva et al. 2004, U-Pb 

zircon TIMS, 4: Ovtcharova et al. 2004, U-Pb zircon TIMS, 5: Peytcheva and Quadt, 1995, U-Pb zircon 

TIMS, 6: Carrigan et al., 2003,  U-Pb zircon, 7: Mposkos and Wawrzenitz, 1995, Rb-Sr, 8: Bauer et al. 

2007, U-Pb zircon SHRIMP, 9: Liati and Gebauer, 1999, U-Pb zircon, 10: Bonev et al. 2010a, U-Pb zircon 

LA-ICP-MS, 11: Liati et al, 2011, U-Pb zircon LA-ICP-MS, 12: Arkadakskiy et al. 2003, U-Pb zircon TIMS  
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reflecting either a Late Jurassic UHP metamorphic event and resetting by post peak 

metamorphism and fluid rock interaction (Turpaud and Reischmann, 2010), or multiple 

HP/UHP events spanning the Jurassic to the Eocene.  All 4 age groups have been recognised in 

HP zircon domains from across the massif, with pressure conditions established through index 

mineral inclusions, the lack of a Eu anomaly and unfractionated CI-normalised HREE profiles 

(Liati et al., 2011).  This suggests that all 4 age clusters are geologically significant, and any one 

of them could be attributed to the UHP metamorphic event. This topic will be discussed 

further in section 2.8 with respect to geodynamic implications, and in chapter 5 and 6 

incorporating new Sm-Nd garnet geochronological data. 

 

 

 

 

Figure 2-7: Summary of proposed metamorphic ages from across the Rhodope Massif: 1: Dinter et al. 

1995, U-Pb zircon and 
40

Ar/
39

Ar Mica, 2: Lips et al. 2000, 
40

Ar/
39

Ar Mica, 3: Mposkos and Wawrzenitz, 

1995, Rb-Sr Mica,  4: Mposkos and Krohe, 2000, K-Ar, 5: Wawrzenitz and Mposkos 1998, Sm-Nd WR-Grt-

CPX, Rb-Sr  mica, 6: Wawrzenitz and Krohe, 1998, Rb-Sr mica, 7: Liati et al. 2002, U-Pb zircon SHRIMP,  8: 

Liati and Gebauer 1999, U-Pb zircon SHRIMP, 9: Liati, 2005, U-Pb Shrimp, 10: Reischmann and Kostoplous, 

2002, Sm-Nd Grt-Wr, 11: Bauer et al. 2007, U-Pb zircon SHRIMP , 12: Bosse et al. 2010, U-Th-Pb Monazite 

LA-ICP-MS, 13: Kirchenbauer et al., 2012 Lu-Hf Grt, 14: Arkadisky et al., 2003, U-Pb Zircon        
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2.7 Area of Study 
For this project two areas within the RM were selected for study (Figure 2-5). The first is a 

recently re-mapped (at 1:50000 scale) area of the Central Rhodope Mts. in the vicinity of the 

town of Chepelare with exposure of the Upper high grade basement along the Chepelare 

Shear Zone (Sarov, 2004). The second area is in the vicinity of Krumovgrad in the Eastern 

Rhodope Mts. This area has been recently mapped by the Gold exploration company Dundee 

Precious Metals, who supported and advised our fieldwork in this area. This study area is close 

to the well-studied Kimi complex of the Greek Rhodope Massif, and was chosen to allow both 

further understanding of the geology of the Eastern Rhodope Mts., and to allow direct 

comparisons between the East and Central Rhodope Mts. to be made. A full list of sample 

localities with GPS coordinates can be found in appendix A. 

2.7.1 Geology of the Central Rhodope Mts., Bulgaria 

Chepelare is ~ 100km south of the city of Plovdiv, Bulgaria’s 2
nd

 largest city. It is located on the 

edge of the Arda dome in the Central Rhodope Mts, one of the three metamorphic core 

complexes seen across the RM.  Orthogneiss in this region has been divided into two distinct 

units, Arda 1 and Arda 2, separated by a high strain shear zone – the Chepelare Shear Zone 

(CSZ). The Arda 1 sub unit is part of the lowermost tectonic unit seen across the RM. Forming  

the core of the dome, it is composed of Early Permian orthogneiss with a late collisional calc 

alkaline granitic protolith (Cherneva and Georgieva, 2005).  

 

The Chepelare Shear Zone (CSZ)) occurs in a ~	2 km wide zone along the north and eastern 

flanks of the dome, marking the boundary between the Arda 1 and Arda 2 subunita (Sarov, 

2004). It is composed of upper high grade basement units, locally referred to as the Variegated 

Formation (VF).  Marble is the most abundant lithology, found alongside kyanite-garnet schist 

and amphibolite (Figure 2-8). The latter two lithologies will be discussed in detail in chapters 3 

and 4 respectively. A syn-metamoprhic thrust fault has been mapped as marking the upper 

boundary of the CSZ, although field evidence for this is unclear (Burg, 2011, Ricou et al., 1998). 

The lower boundary with the Arda 1 gneiss is not observed anywhere in the field area. 

Foliation in the host gneiss is consistently in the same orientation as the units of the 

Variegated Formation suggesting that emplacement of this package occurred prior to the late 

stage Eocene metamorphic overprint and formation of the core complex.  On the basis of 

proposed UHP conditions for garnet-kyanite schist samples (Kostopoulos et al., 2003), and a 

common stratigraphy the CSZ has been viewed as a continuation of the Nestos Shear Zones in 

recent studies (Jahn-Awe et al., 2010, Jahn-Awe et al., 2012, Nagel et al., 2011, Turpaud and 

Reischmann, 2010).   
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U-Pb zircon dating of the Arda 2 subunit has revealed a Late Carboniferous protolith,age with 

bulk rock geochemical studies suggesting an evolved volcanic arc origin (Cherneva and 

Georgieva, 2005). Eclogite boudins are found throughout the formation, with an increased 

concentration at the base. The reason for this is unclear, although work on the Starcevo Unit, 

analogous to the Arda 2 unit along the Eastern extent of the Arda dome, has revealed 

heterogeneity within this formation with contrasting P-T-t condition for distinct horizons (Jahn-

Awe et al., 2012). The Arda 2 unit has been attributed to the middle allochthon of the upper 

high grade basement unit, analogous to the Rhodope Terrane in the hanging wall of the Nestos 

Shear Zone (Jahn-Awe et al., 2010, Nagel et al., 2011, Turpaud and Reischmann, 2010). The 

exact reasoning behind this link is unclear, and will be discussed further in Chapter 6.  

 

Exposure of VF units is limited across the CSZ. Many of the best samples come from 

abandoned mines and exploration trenches, which prevents a clear understanding of the 

Chepelare 

Figure 2-8: Simplified map of the geology in the vicinity of the town of Chepelare in the Central 

Rhodope Mts. Bulgaria, and schematic cross section running N-S through the Arda dome (redrawn 

from Sarov et al. 2004) 
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outcropping style of a number of units. Despite this, a few sites preserve key relationships, and 

a similar repetition of units combined with consistent structural measurements between 

outcrops has resulted in the proposed sheet like structures that surround Chepelare (Figure 

2-8), an observation that is not necessarily intuitive at outcrop scale.  

 

2.7.2 Geology of the Eastern Rhodope Mts. 
Krumovgrad is a town in the Eastern Rhodope Mts, approximately 110 km SE of Plovdiv, and 

10km north of the Greek border.  A large area (35 km x 20 km) was studied south of this town, 

spanning from the village of Ivaylovgrad near the Turkish border to the east, to the village of 

Egrek, 1 km north of the Greek border. The regional geology is dominated by the Byala-Reka 

and Kesebir-Kechors late-Alpine extensional domes that expose the Variscan lower high grade 

basement unit across the region (Mposkos and Wawrzenitz, 1995, Peytcheva and Von Quadt, 

1995). The lower high grade basement unit is restricted to the core of the dome structures, 

forming the footwall of a detachment fault system that is easily identified at outcrop scale. The 

hanging wall is composed of upper high grade basement units: meta-igneous and 

metasedimentary rocks, eclogite boudins and metaophiolite lenses, essentially analogous to 

the VF of the Central Rhodope Mts., although with the addition of large amounts of ultramafic 

material (Bonev et al., 2013, Bonev et al., 2006, Daieva et al., 2007, Haydoutov et al., 2004).   

 

The first microdiamond discovery in the RM was found within a metapelite from the Kimi 

complex, ~ 5 km south of the study area (Mposkos and Kostopoulos, 2001). The Kimi Complex 

is proposed to occupy the highest structural level of the RM basement units (Upper 

allochthon), the result of Cenozoic extensional tectonics (Krohe and Mposkos, 2002). The 

extent of this UHP unit in the Bulgarian Rhodopes, and relationship with the middle allochthon 

in Bulgaria is currently unconstrained, and will be discussed with reference to studies of meta-

mafic units in Chapter 4.  
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2.8 Proposed geodynamic models for the evolution of the 

Rhodope Massif 
The restriction of upper allochthon (UHP?) units in the Central Rhodope Mts. to a melange 

zone along the Chepelare and Nestos Shear Zones has been used to place constraints on the 

geodynamic evolution of the Rhodope Massif. The Nestos Shear Zone was originally believed 

to mark a suture between Variscan granite of the Lower allochthon and the Jurassic units of 

the middle allochthon/ Rhodope Terrane. In this scenario the UHP units form in the Jurassic 

subduction zone associated with arc magmatic protolith, and samples experienced a prolonged 

single subduction-exhumation cycle, with accretion ages ranging from the Jurassic through to 

the Eocene (Krenn et al., 2010, Ricou et al., 1998, Turpaud and Reischmann, 2010).  

Figure 2-9: Simplified geological map of the Eastern Rhodope Mts. in the vicinity of the town of 

Krumrovgard, and schematic cross section through the Kesebir dome based on map of Bonev (2006) 
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Alternatively, the NSZ represents a stretching fault at the base of a collapsing orogenic wedge. 

This model, suggested by Nagel et al. (2011) is based on the lower allochthon occupying an 

external position in the Hellenide Nappe Stack, exposed beneath an orogenic scale out of 

sequence thrust (the NSZ), which extends underneath the Cretaceous nappe pile west of the 

RM, reaching the surface between the Pindos Zone and the external hellenides. The NSZ acts 

as a major shear zone, emplacing the orogenic wedge (including the middle allochthon) on top 

of the lower allochthon during the Eocene. Widespread horizontal extension in the hanging 

wall, the result of slab roll back resulted in exhumation of the middle allochthon. The upper 

allochthon is not involved in this Eocene subduction-exhumation event, but fragments are 

entrapped between the upper and lower allochthon during the course of Cenozoic thrusting, 

explaining the occurrence of UHP metapelites both within the Nestos Shear Zone (sandwiched 

between the middle and lower allochthon), and directly above the lower allochthon in the Kimi 

complex of the Eastern Rhodope Mts.  

 

Both of these models are built upon observations made along the Nestos Shear Zone, and do 

not take into account observations from the Central Rhodope Mts. As such, they will both be 

discussed in relation to the findings of this study from the Bulgarian Central Rhodope Mts. in 

chapter 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 
 

Chapter 3 Petrogenesis of Kyanite-Garnet schist units 

from the Rhodope Massif 

3.1 Introduction 
Metapelites are present throughout the upper high grade basement unit of the RM. They are 

the only unit to preserve evidence of UHP conditions, with 3 microdiamond localities known 

across the region (Mposkos and Kostopoulos, 2001, Perraki et al., 2006, Schmidt et al., 2010). 

Microdiamonds are found only as inclusions within garnets from metapelites (locally referred 

to as either kyanite-garnet gneiss or schist) within the upper high grade basement unit seen 

across the RM, as described in chapter 2.   

 

This chapter focuses on kyanite-garnet schist from the vicinity of Chepelare in the central 

Rhodope Mts. General UHP conditions have been proposed for this area by Kostopoulos et al. 

(2003) on the basis of exsolved quartz and rutile inclusions in garnet, however these features 

have since been shown to reflect high temperatures of garnet formation and are not definitive 

of UHP conditions (Chopin and Ferraris, 2003). A subsequent study by Georgieva et al. (2007) 

instead suggested that metapelites in the vicinity of Chepelare experienced HP conditions on 

the basis of GASP and GRAIL barometry, and underwent melting during HP granulite facies 

metamorphism. To date there has been no evidence of key UHP indicator minerals 

(microdiamond or coesite) or thermobarometric investigations that indicate UHP conditions. In 

this chapter I will present the first detailed petrological and geochemical study of metapelites 

from the Central Rhodope Mts., discuss their P-T history and contrast with the existing UHP 

localities of the RM.  

3.2 Analytical methods 
The following section is a summary of the analytical techniques used in this study.  Bulk rock 

major and trace element concentrations of representative kyanite schist samples were 

measured using ICP-AES and ICP-MS at Royal Holloway College, University of London in 2011, 

following flux fusion with LiBO2  for ICP-AES, and dissolution in a HF and HClO4 mix for ICP-MS. 

Further bulk rock trace element concentrations were measured via ICP-MS at the Open 

University in 2013, following dissolution in a HF-HNO3 mix. Textures and particularly small 

mineral inclusions (<50 µm) were investigated at the University of Leeds on a FEI Quanta 650 

FEG-ESEM. The chemical composition of the major rock forming minerals was determined via 

an electron probe micro analyser (EPMA) analysis at the University of Leeds, using a JEOL 8230 

EPMA. A range of analytical conditions were used, optimised for individual mineral targets, 

with spot sizes ranging between 2µm and 5µm and an accelerating voltage of 15kV.  . Laser 

Raman Spectroscopy was conducted at the University of Leeds using a Renishaw 2000 Raman 
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Microscope with a HeNe laser at 633nm. The laser was focused using the x50 objective lens to 

a 2-3 µm spot, and was operated at 100% power.  

3.3 Field relationships 
In this study, 18 samples of kyanite garnet schist were collected from the RM; 15 from the 

Central Rhodope Mts. in the vicinity of Chepelare, and 3 from the Eastern Rhodope Mts. south 

of the town of Krumovgrad.  Locations of all specimens collected can be found in appendix A. 

In Chepelare, all samples of kyanite garnet schist are found within the VF of the Chepelare 

Shear Zone, part of the upper high grade basement unit (upper allochthon) discussed in 

chapter 2. Exposure of these units is poor, with many of the specimens coming from 

abandoned exploration trenching or river beds. Of the 13 Chepelare specimens studied 2 were 

donated by the Bulgarian museum of natural history, Sofia. Only the general vicinity of these 

samples is known, as no co-ordinates were recorded in the museum archives.  

 

The exact shape and extent of most bodies is unclear. Outcrops are found in close association 

with amphibolite, marble and gneiss units, but often contacts are masked by vegetation or 

eroded material. Where seen in situ, the pervasive foliation in the kyanite-garnet schist follows 

that of the host gneiss (Figure 3-1a).  Alteration is widespread, and units can often be 

distinguished from the surrounding gneiss by an intense rust colouration and a heavily 

weathered fine grained matrix. In some extreme cases, heavily altered garnet is the only 

preserved mineral, and the entire matrix has weathered to an indistinguishable clay rich mud.   

  

A B 

Gneiss 

Ky-schist 
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Figure 3-1: Photographs of kyanite schist outcrop in the field, and hand specimens of the studied 

samples. A: Outcrop of kyanite schist and host gneiss, B: Outcrop of quartz rich ky-grt schist end 

member with large garnet crystals (sample 2-1-11), C: Museum specimen of ky-grt schist with 

elongated kyanite crystals (sample 26-1-10), D: Biotite rich ky-grt schist specimen with a well-defined 

schistosity (sample 3-1-10).  

 

Widespread mineralogical variation is observed between individual samples. Specimens can be 

grouped in terms of garnet size or colour, and relative abundance of key index minerals.  

Garnet colour can varies between light pink and a dark purple and size varies from <1mm to > 

2cm. Kyanite ranges from small, hard to distinguish needles < 1cm in length, to large crystals 

up to 7 cm long (figure 1b,c). Some samples display a clear schistosity defined by biotite (figure 

1d), whereas others have a quartz and feldspar rich matrix, or no matrix at all (figure 1c). In 

this study, the abundance of biotite and prevalence of a schistose texture was used to group 

the samples into 4 distinct sub groups.  

3.4 Sample Petrography 
13 kyanite garnet schist thin sections were examined from the Central Rhodope Mts. All 

samples contain abundant garnet and kyanite porphyroblasts of variable shape and size. 

Broadly speaking, each of the samples can be classified into one of four sub groups (Table 3-1). 

These are:  1) samples with a schistose texture defined by elongated biotite crystals (biotite 

rich matrix), 2) like group 1, but with associated quartz and plagioclase feldspar (quartz rich 

matrix), 3) samples with no visible matrix, where the sample is composed entirely of 

interlocking garnet and kyanite crystals (phaneritic samples), and 4) Samples dominated by 

quartz with no visible garnet (quartz dominated samples) 

 

 

 

 

 

 

D C 
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Sample 2-1-10 3-1-10 25-1-10 26-1-10 27-1-10 2-1-11 28-1-11 

Biotite rich matrix   x           

Quartz rich matrix x  x  x x x 

Phaneritic sample     x     

Quartz dominated sample               

Sample 33-1-11 35-1-11 38-1-11 47-1-11 5-1-12 13-1-12 - 

Biotite rich matrix x  x    - 

Quartz rich matrix     x  - 

Phaneritic sample    x   - 

Quartz dominated sample   x       x - 

Table 3-1 Summary of end member mineralogical and textural classifications for kyanite garnet schist 

samples from the vicinity of Chepelare 

 

3.4.1 Biotite rich matrix subgroup 
This suite of samples is dominated by large garnet and kyanite poikiloblastic porphyroblasts. 

The garnets range in size from ~100 µm - 7mm, are subhedral to anhedral in shape, and are 

often heavily retrogressed and fractured or fragmented (Figure 3-2a), with biotite and chlorite 

concentrated along the fractures. They contain abundant inclusions of quartz, rutile and biotite 

alongside rarer inclusions of muscovite, apatite, zircon, monazite and carbon phases 

(graphite/diamond). Multiphase inclusions are present in a large number of garnet crystals, 

with common associations being quartz + kyanite + biotite, quartz + muscovite + biotite and 

muscovite + quartz (Figure 3-3 b).  Exsolved, orientated needles of rutile and biotite alongside 

rods of quartz are commonly observed (Figure 3-2b). Smaller (< 300 µm) garnet crystals and 

the rims of the larger crystals are often have a lower inclusion density, and crystals rims are 

frequently replaced by biotite and chlorite (Figure 3-2a, Figure 3-3a).  

 

Kyanite forms large (up to 3mm in length) prismatic crystals that are often strongly deformed, 

exhibiting fragmentation, kink banding and undulose extinction (Figure 3-2c,Figure 3-3c). 

Inclusions of zircon, rutile, biotite and muscovite are common. Kyanite crystals are commonly 

strongly retrogressed, with rims exhibiting replacement by sericite (Figure 3-2d). The matrix of 

samples is dominated by platy biotite crystals that define a well-developed foliation and 

provides the observed schistose texture (Figure 3-2b). Biotite wraps around the garnet and 

kyanite porphyroblasts, and is commonly retrogressed to chlorite and kaolinite (Figure 3-2b,g). 

In areas it is closely associated with fibrous sillimanite (Figure 3-2e), and pockets of decussate 

biotite and quartz occur throughout the matrix, again outlined by the platy biotite (Figure 3-2f). 

Further quartz occurs in both pockets associated with kyanite (Figure 3-2g) and bands that 

follow the pervasive foliation (Figure 3-2h), ranging in size from a few crystals ~100 µm long to 

cm wide vein like structures that cut through samples.  Plagioclase, rutile, K-feldspar, white 

mica, apatite and pyrite are also all present in small amounts throughout the matrix. A TiO2 
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phase occurs as intergrowths with both muscovite and K-feldspar (Figure 3-3d) as inclusions in 

kyanite and in the matrix of samples.   

  

  

  

  

 

 

G 

500 µm 

Figure 3-2: Photomicrographs of sample 3-1-10. A:  dismembered garnet with biotite/chlorite 

matrix, B: intact garnet with exsolved needles of rutile and biotite matrix wrapping around crystal, 

C: large prismatic kyanite crystal, D: heavily retrogressed kyanite crystal showing breakdown to 

sericite, E: silimanite – biotite intergrowth in matrix, F: decussate biotite and quartz intergrowth, G: 

biotite wrapping around quartz and kyanite pocket, H: quartz lenses within matrix 
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Figure 3-3: Back scatter electron images from sample 3-1-10. A:  heavily fractured large garnet crystal, 

B: multiphase inclusion within garnet, C: heavily embayed kyanite crystal, D: TiO2 – K-feldpsar 

intergrowth associated with Quartz and biotite 

 

3.4.2 Quartz rich matrix samples  

This group is characterized by very large garnets, up to 2.5 cm in diameter. These grains are 

often deformed, with multiple aligned fractures and biotite filled cracks, and a characteristic 

biotite halo (Figure 3-4a,b). Inclusions are abundant, broadly the same as the biotite rich 

matrix samples but with the addition of chlorite. Swarms of orientated quartz rods are clearly 

visible (Figure 3-4 c), and the rims of crystals are often inclusion free.  Smaller fragments of 

garnet occur in association with decussate biotite and quartz, forming pockets within the 

matrix. 

 

Large kyanite porphyroblasts exhibit limited deformation and resorbtion (Figure 3-4d), 

although some do exhibit kink banding and undulose extinction. Some of the smaller crystals 

are heavily retrogressed, exhibiting retrogression to sericite (Figure 3-4 d,e,f). There is no 

preferred orientation for kyanite crystals.  Unlike the biotite rich subgroup there is no foliation 

defined by matrix biotite; instead the samples have a more gneissose appearance.  The matrix 

is dominated by quartz, which occurs in two forms. Most widespread is interlocking quartz 

grains ~ 100 – 500 µm in diameter that exhibit undulose extinction, bulging and grain 

boundary migration (Figure 3-4g). The remainder is recyrstallised quartz with a granoblastic 
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mortar texture (Figure 3-4h), often found in close association with biotite and chlorite (Figure 

3-4i, j).  
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Figure 3-4: Photomicrographs of sample 27-1-10, a quartz rich end member. A and B: large heavily 

fractured garnet crystals retrogressed by biotite, C: quartz rods and rutile needles exsolved within 

garnet, D: retrogressed garnet and kyanite, with quartz lense in matrix, E: Heavily altered kyanite, F: 

Kyanite breakdown to sericite,hosted by quartz matrx G: matrix kyanite breaking down to 

silimanite/sericite, H: crystalline quartz rich, I: fine grained recrystallised matrix, J: recrystallised 

quartz crystal 

3.4.3 Phaneritic sub group 
This subgroup contains no visible matrix. It is predominantly garnet and kyanite, with biotite, 

chlorite, rutile and sericite infilling the intergranular space. Garnets range in size from 500 µm 

to 10 mm, and despite intense fracturing remain largely intact. Few inclusions are observed 

(Figure 3-5a) although rutile exsolution is common and restricted to garnet cores. Garnet rims 

are inclusion free (Figure 3-5a). Kyanite forms large deformed porphyroblasts, with common 

kink banding, undulose extinction (Figure 3-5b) and no preferred crystal orientation. Sericite is 

observed along numerous kyanite grain boundaries (Figure 3-5c). Small pockets of fine grained 

aggregates of quartz and decussate biotite occur throughout the matrix (Figure 3-5d). 
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Figure 3-5: Photomicrographs of sample 47-1-11. A: intact, relatively inclusion free garnet, B: 

interlocking kyanite crystals, C: corroded kyanite breaking down to sericite, D: decussate biotite and 

quartz 

3.4.4 Quartz dominated subgroup 
These two samples are very quartz rich, with smaller amounts of biotite and no visible garnet. 

Apatite grains are widespread. Biotite is largely restricted to pockets within the thin section, 

forming intergrowths with quartz and rutile (Figure 3-6a). Kyanite is very rare, occurring as 

very small (< 500 µm) heavily retrogressed crystal fragments surrounded by a rim of biotite 

and rutile (Figure 3-6b). 

  

Figure 3-6: Photomicrographs of sample 35-1-11. A: Quartz and biotite matrix, B: Heavily 

retrogressed kyanite surrounded by quartz.  
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3.5 Mineral Chemistry 

3.5.1 Garnet  

The major element chemistry of garnet from 4 Central Rhodope samples was analysed. Results 

are presented in Table 3-2, and are displayed in Figure 3-7.    All garnets are almandine rich 

(Alm68-80), and display wide ranges of grossular (Gross0.7-7.4), pyrope (Pyp6.8-22.9) and spessartine 

(Sps0.8-6.6) content. The range in composition within individual samples is significantly smaller 

than that observed between samples, with only small degrees of core-rim variation. Sample 3-

1-10, a biotite rich sample has the lowest pyrope content and highest spessartine content of all 

samples analysed.  In addition, for two samples (2-1-11 and 27-1-10), polished wafers of large 

(~ 2cm in diameter) garnets cut through the geometric core were prepared. These were 

mapped on the electron microprobe (Figure 3-8). All 4 of the samples preserve Ca zonation, 

and three preserve Mn zonation. In sample 27-1-10 analyses were collected along a traverse at 

25 µm intervals (Figure 12a). Core- rim variation in both the spessartine (Sps0.9-2) and grossular 

(Gros2-9) content is seen. Almandine and pyrope content vary within the crystal (Alm66-72, Pyp21-

27), but with no systematic pattern (figure 12b).  

 

 

 

 

 

Figure 3-7: Ternary diagram of garnet composition for kyanite-garnet schist samples from the Central 

Rhodope Mts. UHP samples from the Kimi complex (Mposkos and Kostopoulos, 2001) and 

Sidironero complex (Schmidt et al., 2010) are plotted for comparison 
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 3-1-10 2-1-10 25-1-10 47-1-11 

  Core middle Rim Core middle rim Core rim core Rim 

SiO2 37.09 37.13 37.02 37.68 37.60 37.50 37.55 37.54 37.59 37.36 

TiO2 0.01 0.01 0.02 0.01 0.01 0.01 0.03 0.06 0.00 0.01 

Al2O3 21.02 21.10 21.05 21.05 20.95 21.03 21.32 21.26 21.26 21.20 

Cr2O3 0.01 0.01 0.03 0.02 0.00 0.01 0.01 0.02 0.02 0.02 

Fe2O3 0.22 0.06 0.01 0.51 0.60 0.36 0.74 0.68 0.41 0.52 

FeO 35.88 35.93 36.01 35.32 35.47 35.91 32.53 32.96 31.18 32.14 

MnO 1.69 1.72 2.36 0.46 0.49 0.56 0.74 0.83 0.69 0.89 

MgO 2.73 2.66 2.18 4.35 4.04 3.63 5.28 4.77 5.78 5.04 

CaO 1.73 1.77 1.70 1.25 1.46 1.51 2.15 2.39 2.58 2.67 

Total 100.35 100.48 100.39 100.65 100.63 100.52 100.35 100.52 99.52 99.86 

Si 2.99 2.99 2.99 3.00 3.00 3.00 2.97 2.97 2.98 2.97 

Ti 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Al 2.00 2.00 2.00 1.97 1.97 1.98 1.99 1.99 0.02 0.03 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe
3+

 0.01 0.00 0.00 0.03 0.04 0.02 0.04 0.04 0.02 0.03 

Fe
2+

 2.42 2.42 2.43 2.35 2.36 2.40 2.15 2.18 2.07 2.14 

Mn 0.12 0.12 0.16 0.03 0.03 0.04 0.05 0.06 0.05 0.06 

Mg 0.33 0.32 0.26 0.52 0.48 0.43 0.62 0.56 0.68 0.60 

Ca 0.15 0.15 0.15 0.11 0.12 0.13 0.18 0.20 0.22 0.23 

Total 8.01 8.01 8.00 8.00 8.00 8.00 8.01 8.01 8.01 8.02 

Mg# 11.88 11.65 9.73 17.96 16.87 15.27 22.44 20.50 24.62 21.59 

pyp 10.97 10.69 8.77 17.22 16.04 14.47 20.96 18.94 22.93 20.10 

gros 4.36 4.63 4.77 3.03 3.34 3.87 4.53 5.34 6.03 6.00 

alm 80.19 80.27 80.91 78.19 78.70 79.93 71.24 72.35 68.16 70.22 

Sps 3.86 3.93 5.40 1.03 1.11 1.27 1.66 1.88 2.0275 1.5628 

n 18 14 34 5 4 11 18 33 11 7 

Table 3-2: Summary of EPMA analyses of garnet from kyanite garnet schist from the vicinity 

of Chepelare. Pyp: Pyrope content, Gross: Grossular content, Alm: Almandine content, Sps: 

Spessartine content 
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Figure 3-8: WDS elemental distribution maps of single garnet wafer ~ 2.5 cm in diameter from sample 

27-1-10. The sample was mapped with 250 µm spacing between points.  

  

Figure 3-9, A: Scanned image of mapped garnet wafer from sample 27-1-10. Length of yellow line – 2.5 

cm. B: Plots of garnet compositional variations across sample 27-1-10. Individual zones from this 

crystal were dated via Sm/NdO+ garnet geochronology and are discussed in chapter 5.  
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3.5.2 White mica 

Results of white mica analyses from samples 25-1-10 and 3-1-10 are presented in Figure 3-10. 

White mica inclusions in garnet from sample 3-1-10 were divided into 4 distinct sub-groups: 1) 

those fully included in garnet, 2) those associated with cracks though the garnet, 3) those part 

of a multiphase inclusion, 4) those large (> 400 µm). All analysed crystals are 

muscovite/phengite, with small amounts of paragonite and negligible Margarite.  Paragonite 

content is varied, and although no trends are recognised between individual subgroups, two 

distinct populations of white mica are seen when Si atoms per formula unit is plotted against 

Na/(Na+K) (Figure 3-10a).  

Si content ranges between 3.03 and 3.63 a/fu, suggesting a variable phengite component of 

samples. This is reflected on Figure 3-10b, where Si, Fe2+ and Mg2+ exhibit strong correlation 

with AlVI and AlIV in all analyses, indicating a broad range of  compositions controlled by the 

phengite substitution reacton: SiIV + (Fe2+.,Mg)VI = AlIV + AlVI (Guidotti and Sassi, 2002). 

Although absolute Ti concentrations are very small, two distinct populations can be identified 

on the basis of Si and Ti content of grains, with the more phengitic Si rich grains (Si content up 

to 3.6 a/fu) containing no measureable Ti (Figure 3-10c). All muscovite found in association 

with kyanite is of the Ti rich category.   All analyses from sample 25-1-10 are Ti poor (max 

measured  0.015 a/fu), but display a wide range of Si contents (Si = 3.05 – 3.4 a/fu). 
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Figure 3-10: chemical analyses of white mica from sample 3-1-10. A: Plot of Si a/fu vs Na/(Na+K) 

showing two distinct sub groups. B: Plot of Si
IV 

+ (Fe
2+.

,Mg)
VI  

vs Al
IV

 + Al
VI

 showing strong correlation 

indicating phengite substitution is controlling the chemistry of the white mica. C: Plot of Si a/fu vs Ti 

a/fu, highlighting the two distinct populations on the basis of Ti content. (a/fu = atoms per formula 

unit).   
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  3-1-10 25-1-10 

  Inclusion in Grt Large Incl in Grt Crack in Grt Multiphase incl Matrix  Matrix 

   avg max min avg max min avg max min avg max min avg max min avg max min 

O
x

id
e

 W
t 

%
 

SiO2 47.25 50.88 45.23 47.52 50.34 45.58 46.24 49.68 44.66 48.17 50.20 45.93 48.53 56.47 44.27 48.70 51.85 47.07 

TiO2 0.56 1.38 0.00 0.59 1.05 0.00 0.57 1.15 0.00 0.30 0.67 0.02 0.37 1.41 0.00 0.06 0.20 0.00 

Al2O3 33.76 36.29 31.52 34.22 34.57 33.90 34.36 37.49 32.58 34.13 35.04 32.64 33.43 36.53 28.29 34.05 35.66 31.76 

FeO 2.78 4.00 1.98 2.43 2.88 1.77 2.72 6.03 1.54 2.10 2.73 1.42 1.68 2.85 0.49 1.85 2.97 1.08 

MnO 0.05 0.15 0.00 0.04 0.15 0.00 0.06 0.13 0.00 0.03 0.11 0.00 0.02 0.09 0.00 0.02 0.06 0.00 

MgO 0.66 1.12 0.32 0.56 0.71 0.30 0.58 1.03 0.29 0.59 0.83 0.38 0.73 1.26 0.22 1.26 1.88 0.85 

CaO 0.13 0.89 0.00 0.12 0.27 0.04 0.14 0.71 0.04 0.21 0.74 0.00 0.16 0.97 0.00 0.04 0.24 0.00 

Na2O 0.54 1.26 0.10 0.52 0.71 0.16 0.66 1.09 0.18 0.45 1.00 0.11 0.30 1.65 0.02 0.29 0.48 0.05 

K2O 9.28 10.06 7.70 9.46 10.17 8.45 9.28 10.11 7.37 9.19 10.23 7.40 9.58 11.08 6.08 10.43 10.99 9.53 

H2O 4.50 4.61 4.40 4.52 4.62 4.45 4.47 4.58 4.38 4.53 4.58 4.48 4.52 4.69 4.36 4.58 4.65 4.49 

 total 99.52     99.99     99.08     99.69     99.31     101.27     

C
a

ti
o

n
s 

to
 1

2
 O

, 
O

H
 

Si 3.15 3.34 3.03 3.15 3.27 3.06 3.09 3.25 3.03 3.19 3.32 3.07 3.22 3.63 3.04 3.19 3.35 3.12 

Al 0.85 0.97 0.66 0.85 0.94 0.73 0.91 0.97 0.75 0.81 0.93 0.68 0.78 0.96 0.37 0.81 0.88 0.65 

Al 1.80 1.89 1.73 1.82 1.89 1.77 1.81 1.95 1.75 1.85 1.89 1.81 1.83 1.94 1.75 1.81 1.88 1.73 

Ti 0.03 0.07 0.00 0.03 0.05 0.00 0.03 0.06 0.00 0.02 0.03 0.00 0.02 0.07 0.00 0.00 0.01 0.00 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe
2+

 0.16 0.22 0.11 0.13 0.16 0.10 0.15 0.34 0.08 0.12 0.15 0.08 0.09 0.16 0.03 0.10 0.16 0.06 

Mn 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 

Mg 0.07 0.11 0.03 0.06 0.07 0.03 0.06 0.10 0.03 0.06 0.08 0.04 0.07 0.13 0.02 0.12 0.19 0.08 

Ca 0.01 0.06 0.00 0.01 0.02 0.00 0.01 0.05 0.00 0.01 0.05 0.00 0.01 0.07 0.00 0.00 0.02 0.00 

Na 0.07 0.16 0.01 0.07 0.09 0.02 0.09 0.14 0.02 0.06 0.13 0.01 0.04 0.21 0.00 0.04 0.06 0.01 

K 0.79 0.86 0.65 0.80 0.87 0.71 0.80 0.87 0.64 0.78 0.87 0.62 0.81 0.96 0.51 0.87 0.93 0.78 

  n = 42 n = 12 n = 25 n = 10 n = 186 n = 17 

Table 3-3: Summary of EPMA data for white mica from samples 3-1-10 and 2-1-10 
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3.5.3 Biotite 

A study was conducted on biotite from the three petrological end members; samples 3-1-10 

(biotite rich), 25-1-10 (quartz rich) and 47-1-11 (phaneritic), Analyses have been divided into 

inclusions within garnet (inclusion, crack, multiphase inclusion and exsolution) and matrix 

(garnet rim and matrix samples). Results are summarised in Table 3-4 and Table 3-5.  

In samples 3-1-10 large variations are seen in the Mg# of biotite crystals. Inclusions within 

garnet having the highest values, which likely the result of retrograde exchange reactions. Ti 

content has previously been shown to increase as a function of metamorphic grade (Guidotti, 

1984). Although little within sample variation in Ti content is seen, biotite from samples 25-1-

10 have higher Ti content, alongside higher Mg# than biotite from samples 3-1-10, indicating 

formation at higher metamorphic grades.  
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  3-1-10 

  Exsolution  (n = 2) Multiphase (n = 4) Crack (n = 10) inclusion in grt (n = 2) Matrix (n = 6) Garnet rim (n = 33) 

  avg max  min avg max  min avg max  min avg max  min avg max  min avg max  min 

O
x

id
e

 w
t%

 

SiO2 34.48 34.50 34.46 35.03 35.17 34.87 35.12 37.86 34.38 35.42 35.78 35.06 35.04 35.41 34.75 34.59 35.74 33.62 

TiO2 1.66 1.66 1.65 2.38 2.44 2.29 2.08 2.43 1.56 1.83 1.84 1.81 2.62 2.97 2.30 2.06 3.02 1.40 

Al2O3 20.49 20.57 20.42 20.40 20.47 20.23 20.56 24.08 19.74 21.37 21.58 21.17 19.61 19.91 19.47 20.29 22.19 19.16 

Cr2O3 0.02 0.04 0.00 0.03 0.05 0.00 0.02 0.05 0.00 0.02 0.03 0.01 0.01 0.04 0.00 0.02 0.06 0.00 

FeO 23.63 23.63 23.63 21.28 21.64 20.84 21.74 23.42 17.69 20.63 20.94 20.32 23.00 23.67 22.63 23.06 24.64 19.82 

MnO 0.11 0.13 0.10 0.05 0.08 0.02 0.08 0.10 0.05 0.09 0.10 0.08 0.04 0.06 0.01 0.09 0.33 0.03 

MgO 7.02 7.05 7.00 8.16 8.38 7.96 7.57 9.04 5.81 8.37 8.56 8.17 7.20 7.35 7.03 7.10 7.55 6.13 

CaO 0.03 0.04 0.02 0.02 0.02 0.01 0.02 0.05 0.00 0.04 0.06 0.02 0.00 0.01 0.00 0.04 0.66 0.00 

Na2O 0.32 0.32 0.32 0.28 0.29 0.28 0.28 0.34 0.20 0.31 0.31 0.31 0.27 0.30 0.23 0.27 0.32 0.20 

K2O 8.75 8.81 8.69 9.02 9.04 9.00 8.80 9.00 8.66 8.84 8.88 8.80 8.88 9.01 8.74 8.74 9.06 7.70 

H2O 3.92 3.93 3.92 3.97 3.98 3.97 3.96 4.09 3.91 4.01 4.02 4.00 3.94 3.98 3.91 3.92 3.95 3.86 

total 100.44   100.63   100.23   100.92   100.61   100.17   

C
a

ti
o

n
s 

to
 1

2
 O

, 
O

H
 

Si 2.63 2.64 2.63 2.64 2.65 2.63 2.66 2.77 2.63 2.65 2.67 2.63 2.66 2.68 2.64 2.64 2.71 2.58 

Al
iv

 1.37 1.37 1.36 1.36 1.37 1.35 1.34 1.37 1.23 1.35 1.37 1.33 1.34 1.36 1.32 1.36 1.42 1.29 

Al
vi

 0.48 0.48 0.48 0.46 0.47 0.45 0.50 0.85 0.42 0.53 0.56 0.50 0.42 0.45 0.40 0.47 0.70 0.40 

Ti 0.10 0.10 0.10 0.14 0.14 0.13 0.12 0.14 0.09 0.10 0.10 0.10 0.15 0.17 0.13 0.12 0.17 0.08 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe
2+

 1.51 1.51 1.51 1.34 1.37 1.31 1.38 1.49 1.08 1.29 1.31 1.27 1.46 1.50 1.44 1.47 1.57 1.26 

Mn 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.02 0.00 

Mg 0.80 0.80 0.80 0.92 0.94 0.90 0.86 1.02 0.63 0.93 0.96 0.91 0.82 0.83 0.79 0.81 0.86 0.70 

Ca 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 

Na 0.05 0.05 0.05 0.04 0.04 0.04 0.04 0.05 0.03 0.05 0.05 0.05 0.04 0.04 0.03 0.04 0.05 0.03 

K 0.85 0.86 0.85 0.87 0.87 0.87 0.85 0.87 0.83 0.84 0.85 0.84 0.86 0.87 0.85 0.85 0.88 0.75 

OH 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 

 Mg# 35 35 35 41 42 40 38 44 35 42 42 42 36 37 35 35 37 32 

Table 3-4: Summary of biotite EPMA analyses from sample 3-1-10 
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  25-1-10 47-1-11 

  Matrix (n = 38) Crack (n = 6) Inclusion (n =  6) Matrix  (n = 4) decussate (n = 3) 

  avg max min avg max min avg max min avg max min avg max min 

O
x

id
e

 w
t%

 

SiO2 35.86 36.89 32.86 36.22 37.06 35.28 36.22 37.06 35.28 35.90 36.06 35.80 35.54 35.76 35.31 

TiO2 3.82 4.61 2.59 3.31 4.49 2.71 3.31 4.49 2.71 2.37 2.45 2.30 1.76 1.98 1.33 

Al2O3 17.95 19.26 16.11 18.33 18.63 18.14 18.33 18.63 18.14 17.89 18.24 17.70 18.28 18.31 18.26 

Cr2O3 0.02 0.06 0.00 0.02 0.05 0.00 0.02 0.05 0.00 - - - - - - 

FeO 17.12 19.59 14.74 17.12 18.44 16.32 17.12 18.44 16.32 16.54 16.80 16.32 18.14 18.60 17.35 

MnO 0.03 0.08 0.00 0.03 0.06 0.00 0.03 0.06 0.00 0.03 0.04 0.01 0.07 0.08 0.05 

MgO 11.37 12.52 10.28 11.96 12.24 11.60 11.96 12.24 11.60 12.27 12.41 12.17 11.26 11.54 10.97 

CaO 0.07 1.83 0.00 0.00 0.01 0.00 0.00 0.01 0.00 -0.01 0.01 -0.03 0.03 0.04 0.00 

Na2O 0.15 0.29 0.08 0.18 0.22 0.14 0.18 0.22 0.14 0.25 0.27 0.22 0.07 0.33 -0.42 

K2O 7.99 9.23 6.24 7.85 8.32 7.27 7.85 8.32 7.27 8.71 8.80 8.52 8.31 8.67 8.04 

H2O 3.96 4.04 3.72 4.00 4.03 3.96 4.00 4.03 3.96 3.95 3.96 3.94 3.91 3.93 3.89 

total 98.41   99.08   99.08   97.91   97.37   

C
a

ti
o

n
s 

to
 1

2
 O

, 
O

H
 

Si 2.68 2.72 2.60 2.68 2.71 2.64 2.68 2.71 2.64 2.72 2.73 2.72 2.73 2.75 2.71 

Al
iv

 1.32 1.40 1.28 1.32 1.36 1.29 1.32 1.36 1.29 1.28 1.28 1.27 1.27 1.29 1.25 

Al
vi

 0.26 0.33 0.17 0.27 0.29 0.24 0.27 0.29 0.24 0.33 0.35 0.31 0.38 0.42 0.35 

Ti 0.21 0.26 0.15 0.18 0.25 0.15 0.18 0.25 0.15 0.14 0.14 0.13 0.10 0.11 0.08 

Cr 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Fe
2+

 1.07 1.25 0.91 1.06 1.15 1.00 1.06 1.15 1.00 1.05 1.06 1.04 1.16 1.19 1.12 

Mn 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 

Mg 1.27 1.38 1.15 1.32 1.36 1.27 1.32 1.36 1.27 1.39 1.40 1.38 1.29 1.32 1.25 

Ca 0.01 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Na 0.02 0.04 0.01 0.03 0.03 0.02 0.03 0.03 0.02 0.04 0.04 0.03 0.01 0.05 -0.06 

K 0.77 0.88 0.60 0.75 0.79 0.70 0.75 0.79 0.70 0.84 0.85 0.82 0.81 0.85 0.78 

OH 1.99 2.00 1.97 1.99 1.99 1.99 1.99 1.99 1.99 2.00 2.00 2.00 2.00 2.00 2.00 

 Mg# 54.18 60.14 48.31 55.44 56.47 54.00 55.44 56.47 54.00 56.93 57.12 56.46 52.52 54.24 51.42 

Table 3-5: Summary of biotite EPMA analyses from samples 25-1-10 and 47-1-11 
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3.6 Constraining P-T conditions 

3.6.1 Petrological constraints on P-T conditions 

To date there has been no reported direct evidence of UHP conditions (either coesite or 

microdiamond inclusions) in the Bulgarian part of the Central Rhodope Mts. Previous studies 

of Chepelare metapelites have suggested  HP/UHP conditions (Georgieva et al., 2007, 

Kostopoulos et al., 2003) on the basis of observed exsolution of rutile, polyphase inclusions in 

garnet. This has also been recognised in this study (Figure 3-11a,b), but in addition 

microdiamond inclusions have been found in garnet, establishing UHP conditions for the area.    

A promising inclusion was identified on the SEM (Figure 3-12a), confirmed as carbon using EDS 

spectroscopy and fluorescence was observed using the cathodeluminescence detector. Further 

Laser Raman spectroscopy investigation identified the inclusion as diamond, with the 

characteristic raman spectra peak at 1333.2 cm
-1

 (Figure 3-12d). Metamorphic microdiamonds 

are commonly associated with graphite, which acts as a clear test to discriminate from 

contamination of diamonds from a polishing paste (Perraki et al., 2009). Although a very broad 

peak around 1580 cm
-1

 (the main peak for graphite) is observed on the Raman spectra, this is 

too broad to definitively be graphite and rule out contamination by diamond polishing paste.  

Two methods were employed to ensure that the microdiamond was not an artefact from the 

polishing process. Firstly a study was conducted on the SEM of the diamond polishing paste 

itself. This revealed that the shape of the synthetic diamonds used was euhedral without the 

distinctive stepped cleavage observed in the diamond inclusion (Figure 3-12c).  In addition 

Figure 3-11: A: Back scatter electron image of exsolved rutile and quartz rods from sample 2-1-10, B: 

Photomicropgraph of rutile exsolition from sample 3-1-10 
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200 µm 500 µm 
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Qz 
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diamond pastes containing only 10 µm, 3µm and 1 µm were used in the polishing process i.e. 

the diamond inclusion of interest is not any of these sizes.  

 

  

Figure 3-12: A: SEM image of microdiamond inclusion from sample 3-1-10, B: SEM image of carbon 

inclusion that fluoresced under CL light from sample 3-1-10, C: SEM image of diamond polishing paste, 

D: Laser raman spectra from microdiamond.  

Secondly, a polished block of garnet separates from the same sample was prepared and 

polished with 0.3 µm alumina rather than diamond paste. A small carbon inclusion (Figure 

3-12b) (< 1 µm) fluoresced under cathodoluminescence, revealing that it is not graphite. The 

texture of this inclusion resembles partially graphitised microdiamonds from the Kokchetav 

massif (Korsakov et al., 2010b) and the results of experimental studies on UHP diamond 

crystallisation performed by Dobrzhinetskaya et al. (2013). The small size of the inclusion , 

however rendered it unsuitable for confirmation by laser raman spectroscopy.  These 

observations suggest that kyanite-garnet schist from the Chepelare area experienced 

pressures of at least 4 GPa, and reached depths in the crust in excess of 100 Km.   

 

 

3 µm 600 nm 

A B 

D C 

10 µm 
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3.6.2 Thermobarometry 

The complex petrological associations described in section 3.4 complicate establishing 

equilibrium assemblages for thermobarometry.  As a result, reconstructing the peak P-T 

conditions and the overall P-T path of these samples is challenging. A large number of 

published thermometers and barometers are also unsuitable for the expected pressures and 

temperatures for this assemblage. In this section a selection of the most appropriate 

thermobarometers have been applied.  

3.6.3 Geothermometry 

3.6.3.1 Zr in rutile thermometry 

Peak temperatures experienced by the kyanite-garnet schists have been determined using the 

Zr in rutile thermometer of Zack et al. (2004). This thermometer is based upon the the 

empirical relationship between Zr concentration in rutile and temperature of metamorphism. 

The Zr content of rutile is buffered by the reactions:  SiO2 + ZrO2 = ZrSiO4 and SiO2 +Ti2ZrO6 = 

2TiO2 + ZrSiO4.  ZrO2 (baddelyite) and Ti2ZrO6 (srilankite) have not been found in association 

with quartz in nature, and as such these equations are not considered equilibrium 

assemblages. Instead, quartz, rutile and zircon, the most common phases in the SiO2-TiO2-ZrO2 

system, are used as the basis for this thermometer (Zack et al., 2004).   

Temperatures are calculated via the equation: T °C = 127.8 x  ln (Zr in ppm) -10 

This relationship is pressure independent, removing a degree of uncertainty often associated 

with geothermometry. Rutile grains from different settings in samples 3-1-10 and 25-1-10 

were analysed, and results are presented in Table 3-6.  Rutile exsolved from garnet was 

ignored, as this will not have equilibrated with quartz and zircon. The EPMA was optimised for 

analysis of trace amounts of Zr, with analysis performed simultaneously on 3 spectrometers. 

The average Zr contents of all sub groups range between 350 and 560 ppm, equating to 

temperatures of 760 – 810 ± 50 °C. No distinction can be made between inclusions and matrix 

grains in either sample.  

Contamination by neighbouring zircon crystals can skew the calculated temperatures to 

unrealistically high values. As such, Si concentration of rutile grains is suggested as a suitable 

proxy to test the degree of contamination (Zack et al., 2004). Si concentrations range between 

20 and 15800 ppm. The reason for this variation is unclear; although contamination is possible, 

another explanation is differences in background measurements between runs on the electron 

microprobe - the result of a lack of a suitable Si standard for such small concentrations.  On 

plots of calculated temperature vs Si concentration no correlation is observed, and if all 
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analyses with Si > 200 ppm are ignored there is no change to the average calculated 

temperature, suggesting that zircon contamination has had a negligible effect on Zr content in 

rutile.  

Rutile 

loaction 
 

3-1-10 25-1-10 

Si (ppm) Zr (ppm) T °C Si (ppm) Zr (ppm) T°C 

Garnet 

Average 2152 353 759 227 564 807 

Max 15840 527 814 1440 1270 932 

Min 90 210 691 50 300 739 

crack 

Average 1499 412 776 80 352 760 

Max 2486 778 867 150 410 781 

Min 656 302 740 30 250 715 

multi-

phase 

Average 1317 442 790 76 362 764 

Max 2624 522 813 100 380 771 

Min 752 379 770 50 340 756 

matrix 

with 

kyanite 

Average 50 437 789 47 358 762 

Max 90 510 810 160 430 788 

Min 20 390 774 0 290 735 

Matrix 

with 

biotite 

Average - - - 82 391 774 

Max - - - 180 450 794 

Min - - - 10 320 748 
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Figure 3-13, A: Plot of temperature vs Si for sample 3-1-10, B: Same as plot A, but restricted to Si 

content < 1000 ppm, C: Plot of temperature vs Si for sample 25-1-10 

Table 3-6: Overview of all Zr in rutile thermometry analyses from samples 3-1-10 and 25-1-10 
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3.6.3.2 Garnet Biotite thermometry  

The garnet-biotite Fe-Mg exchange thermometer was also used to constrain metamorphic 

temperatures. The relationship between temperature and Fe-Mg content of coexisting garnet 

and biotite was first recognised by Kretz (1959), and the first experimental thermometer was 

published by Ferry and Spear (1978) based on the equation:  Almandine + Phlogopite = Pyrope 

+ Annite. Subsequent work has refined this thermometer, by expanding the effective 

temperature range of the thermometer and taking into account the effect of elements such as 

Ti and AlVI in biotite and Ca and Mn in garnet. Accordingly, a number of different calibrations 

now exist for this thermometer. The calibration by Bhattacharya et al. (1992) has been shown 

to be little affected by pressure variations, and has been used in this study, although results 

from other calibrations are presented for comparison (Table 3-7). Temperatures have been 

calculated at pressures of both 40 and 10 kbar for samples 25-1-10 and 3-1-10.    

Analyses from the rim of garnets at 40 Kbar in sample 25-1-10 yield temperatures between 

630 and 740 ºC, with an average of 671 ºC. In sample 3-1-10, the average from the same 

setting is 608 ºC, with a narrower range of 563 – 628 ºC. All analyses in sample 3-1-10 fall 

within this range irrespective of petrological setting. In both samples, inclusions of biotite 

within garnet yield lower temperatures than garnet rim analyses, as expected from the effects 

of diffusion between biotite inclusions and garnet.  
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Table 3-7: A: Garnet-biotite thermometry results from sample 3-1-10, B: results from sample 25-1-10.  

Rim: Temperatures calculated using Garnet and Biotite pairs at the rims of crystals, inclusion: 

temperatures calculated using biotite inclusions in garnet and neighbouring garnet composition, 

matrix: temperatures calculated using average garnet core and matrix biotite composition, B92: 

Bhattacharya et al. (1992) , Das91: Dasgupta et al. (1991), FS78: Ferry and Spear (1978), HS82: Hodges 

and Spear (1982), PL83: Perchuk and Lavrent’Eva (1983), T76: Thompson (1976), HL77: Holdaway and 

Lee (1977) 

Calculated temperatures using garnet-biotite pairs are likely blocking temperatures, owing to 

the effects of retrograde diffusion at the rims of garnet. As such, the average core of garnet 

compositions, combined with matrix biotite not in contact with garnet was used to calculate 

temperatures for sample 3-1-10. All calibrations yielded higher temperatures, closer to the 

range of values determined using the Zr in rutile thermometer. This calculation was not 

possible in sample 25-1-10, owing to the lack of matrix biotite not in equilibrium with garnet.   

3.6.4 Geobarometry 
Constraining peak pressure for the metapelites has proved to be problematic. The diverse 

mineral assemblage and uncertainty surrounding co-existing mineral phases questions the 

applicability of continuous net transfer equilibria barometers, such as GASP (garnet – Al2SiO5-

quartz-plagioclase) and GRAIL (garnet-rutile- Al2SiO5-ilmenite-quartz) to these samples. 

Previous studies have reported pressures of 12-14 kbar for Chepelare metapelite samples, 

significantly below the peak pressures suggested by the microdiamond inclusion.   

Studies have attempted to use phengite chemistry to place geobarometric constraints on 

pressures experienced. The Si content of phengite has been shown to increase with increasing 

pressure, although absolute values are dependent on the both the composition of the sample 

and the equilibrium assemblage. As such, it has not been calibrated as a barometer. Models 

produced for the assemblage, garnet + kyanite + phengite + quartz (the peak assemblage 
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inferred from petrological observations) do however suggest that phengite with Si a.fu > 3.5 

formed at pressures > 30 kbar (Massonne and Szpurka, 1997). Accordingly, the Si content of 

phengite in sample 3-1-10 could indicate UHP conditions.     

The Ti content of phengite has been proposed as a single element barometer suitable for 

samples that experienced UHP conditions based on the equilibrium 
VI

Ti
IV

Al–
VI

Al
IV

Si exchange in 

muscovite and phengite in equilibrium with rutile and quartz/coesite (Auzanneau et al., 2010). 

The pressure dependence of this exchange has since been questioned (Chambers and Kohn, 

2012), and results of this study indicate that the most phengitic muscovite crystals do not 

contain enough Ti to be suitable for geobarometry using the Auzanneau et al. (2010) 

calibration.  

3.7 Whole Rock Geochemistry 
The major elemental concentrations of three samples, and trace elemental concentrations of 

four samples from the vicinity of Chepelare were analysed. Results are presented in Table 3-8. 

These samples are representative of the biotite and quartz rich matrix end members described 

in section 3.4.  On a chondrite normalised REE diagram (Figure 3-14), all samples display strong 

LREE enrichment, and a relatively flat HREE profile, with a slight negative Eu anomaly. A plot of 

selected elements normalised to the GLOSS reference model for subducted sediment (Plank 

and Langmuir, 1998) is presented in Figure 3-15.  The GLOSS reference model is predominantly 

composed of terrigenous material, with a small biogenic component (approximately 17%). The 

composition is therefore akin to that of upper continental crust, and consequently is not a true 

representation of the protolith for the metapelites. Normalisation of these samples to GLOSS 

does however effectively distinguish elemental variations between samples. Although all 

samples exhibit general enrichment relative to GLOSS, strong depletions in Ca, Na, Sr, Mn, Dy 

and to a lesser extent Si and Ba are observed.  Cs, Rb and K display widespread variation 

between all samples.  
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Figure 3-14: Chondrite normalised REE diagram. Sample is normalised to Boynton (1985) values.   
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  2-1-10 3-1-10 25-1-10 38-1-11   2-1-10 3-1-10 25-1-10 38-1-11 

IC
P

-A
E

S
 (

W
t%

) 
SiO2 48.71 52.05 49.41 - 

 

Zr 213.06 184.10 192.79 1.82* 

Al2O3 28.18 24.11 27.18 - Nb* 36.66* 26.77* 28.96* 0.28* 

FeO 12.89 11.03 16.18 - Cs* 1.49* 7.92* 2.45* 0.05* 

MgO 2.94 2.49 3.45 - Ba 685.55 591.44 212.11 523.40* 

MnO 0.11 0.13 0.23 -  La 89.94 75.21 108.09 40.42 

CaO 0.41 0.31 0.89 - 

IC
P

-M
S

 (
pp

m
) 

Ce 166.21 141.21 206.95 86.96 

K2O 3.54 3.57 1.33 - Pr 18.66 15.67 22.66 9.92 

Na2O 0.31 0.09 0.17 - Nd 71.87 60.70 85.42 37.18 

TiO2 1.49 1.24 1.19 - Sm 13.43 11.87 15.08 7.40 

P2O5 0.11 0.12 0.13 - Eu 2.32 2.25 1.91 1.63 

IC
P

-A
E

S
 (

pp
m

) 

Li 13.33 59.89 14.46 21.01* Gd 11.13 9.29 11.84 5.79 

Sc 24.99 25.19 30.59 14.77* Tb 1.87 1.56 1.86 0.84 

Tl 0.76* 0.97* 0.38* - Dy 9.52 8.03 8.87 4.94 

V 130.41 148.86 85.33 129.66* Ho 1.83 1.62 1.84 1.04 

Cr 78.19 94.18 62.14 96.09* Er 4.84 4.51 5.21 3.06 

Co 27.72 29.30 24.38 26.35* Tm 0.72 0.68 0.86 2.98 

Ni 64.28 68.94 48.90 71.44* Yb 4.53 4.51 5.95 0.45 

Cu 34.45 32.97 29.00 42.97* Lu 0.61 0.59 0.83 0.07 

Zn 141.90 154.50 143.02 99.46* Hf 5.79 5.07 5.17 0.04 

Rb 175.65* 193.49* 56.75* 13.39* Ta 2.62 1.95 2.60 12.17 

Sr 66.03 14.84 20.28 170.76* Th 30.90 26.19 42.06 11.44 

Y 54.65 47.79 53.40 29.20* U 3.18 3.27 3.06 1.60 

 Mg # 0.19 0.18 0.18 

Table 3-8: Whole rock ICP-AES and ICP-MS measurements for kyanite garnet schist units from the Central Rhodope Mts. in the vicinity of chepelare . * highlights 

measurements made via ICP-MS  
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Figure 3-15: GLOSS normalised kyanite garnet schist samples from the Central Rhodope Mts.  GLOSS normalsing values from Plank and Langmuir (1998)
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3.8 The Eastern Rhodope metapelites 
To facilitate comparisons between metapelites from the Eastern and Central Rhodope Mts, 

a preliminary study was conducted on metapelites from the Bulgarian part of the Eastern 

Rhodope Mts, in the vicinity of the town of Krumovgrad. Three samples were collected 

from the northern flank of the Kesebir dome, within the upper high grade basement unit. 

All were heavily migmatised, with abundant quartz and plagioclase throughout samples. 

Sample 11-1-11 was the only kyanite bearing sample, and as such was thought most likely 

to preserve remnants of the HP assemblage. This sample was therefore characterised 

petrographically and whole rock trace element concentrations were analysed.   

Sample 11-1-11 does not fall into any of the petrological categories discussed for the 

Central Rhodope metapelites. The sample is very heterogeneous, with biotite, garnet and 

kyanite largely restricted to distinct zones within the sample (Figure 3-16a). The remainder 

of the matrix is predominantly large crystals (> 500 µm in diameter) of plagioclase and 

quartz (Figure 3-16b,c,d,e).  Garnets are heavily fractured and retrogressed, ranging in size 

from ~ 50 µm – 1mm (Figure 3-16b,c,d,e). The majority of crystals are inclusion poor 

(Figure 3-16b,e), but examples of rutile and quartz exsolution (as described in the 

Chepelare samples) are seen (Figure 3-16d). Where present, inclusions are not restricted to 

specific garnet zones. In Figure 3-16d inclusions are restricted to the core, but in numerous 

examples pockets of inclusions are seen at the rims of crystals (Figure 3-16e). It is not 

possible to delineate two distinct garnet populations.  

 Biotite is prevalent, closely associated with garnet and kyanite, but preserves no preferred 

orientation (Figure 3-16c). Kyanite crystals are largely elongated in the same orientation, 

heavily retrogressed and exhibit no evidence of kink banding or undulose extinction. 

Quartz and plagioclase are pervasive across the section. These crystals are well formed, 

and often contain inclusions of biotite, and surround small fragments of heavily 

retrogressed kyanite and garnet crystals (Figure 3-16f).  
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Figure 3-16: A: Backscatter montage of sample 11-1-11 highlighting the quartz and 

plagioclase rich areas, B: Heavily retrogressed garnet crystal surrounded by plagioclase 

and quartz crystals, C: Kyanite and garnet crystals found in association with biotite and 

quartz, D: Small inclusion rich garnet with distinctive rutile exsolution in core, E: Large, 

well-formed kyanite crystal alongside small, fractured, garnet crystal with inclusions 

concentrated at the crystal rim,  F: Heavily retrogressed kyanite surrounded by large 

plagioclase and quartz crystals.  

 

Bulk rock trace element concentrations of sample 11-1-11 are presented in Table 3-9, and 

a plot of this sample normalised to the GLOSS reference material is presented in Figure 

3-17. Three additional metapelite analyses from the Greek part of the Eastern Rhodope 

Mts, previously reported in (Cornelius, 2008), are plotted for comparison. Unlike the three 

samples from the Greek Rhodope Mts., widespread deviation from GLOSS is observed for 
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sample 11-1-11, with large depletions of Cs, Rb, Nb and Ta. The REE all exhibit 

concentrations similar to GLOSS. Sr concentrations are the closest to GLOSS of all samples 

analysed in this study.   

Sample 11-1-11 

Element Conc. (ppm) Element Conc. (ppm) Element Conc. (ppm) 

Li 49.4 Zr 1.7 Tb 1.8 
Sc 42.8 Nb 14.8 Dy 10.9 
V 115.0 Cs 6.9 Ho 2.3 
Cr 99.1 Ba 889.2 Er 6.5 
Co 58.1 La 104.3 Tm 5.7 
Ni 118.1 Ce  216.2 Yb 0.8 
Cu 130.0 Pr 23.4 Lu 0.1 
Zn 190.0 Nd 84.2 Hf 0.9 
Rb 214.0 Sm 15.7 Ta 26.6 
Sr 58.5 Eu 2.4 Th 36.0 
Y 63.4 Gd 12.3 U 4.5 

Table 3-9: Whole rock trace elemental data  measured for sample 11-1-11 

 

Figure 3-17: Selected trace elements from sample 11-1-11 normalised to GLOSS (Plank and 

Langmuir, 1998). Blue field: GLOSS normalised profiles for Central Rhodope metapelites, Red 

field: GLOSS normalised profiles for published UHP metapelites from the Greek Rhodope Mts. 

from Cornelius (2008)  

3.9 Discussion 

3.9.1 Protolith and Peak metamorphic conditions 
On the basis of K:Na, Al:Mg and Fe:Ca ratios these samples have an illite rich protolith 

(Gaudette et al., 1966), such as a continental shelf clay. Little of the prograde metamorphic 

growth history is preserved, however textural observations and inclusions within garnet 

indicate a common high pressure mineral assemblage of garnet + kyanite + phengite + 
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quartz + rutile for all samples. This peak pressure assemblage is widely recognised in UHP 

metapelites across the RM (Mposkos et al., 2010, Mposkos and Liati, 1993, Schmidt et al., 

2010), representing a minimum of upper amphibolite metamorphic conditions, with 

pressures > 18 kbar (Bucher and Grapes, 2011).  Diamond inclusion in almandine rich 

garnets from across the RM however indicate that metapelites in this region experienced 

pressures in excess of 3.5 GPa. 

Pseudosection modelling has previously suggested that this assemblage does not 

represent the true UHP assemblage, owing to the lack of expected clinopyroxene and 

coesite under UHP conditions (Schmidt et al., 2010). Instead, the observed assemblage is 

proposed to represent either portions of continental crust that experienced UHP 

conditions under metastable condition, or is the product of a HP metamorphic overprint 

event which obliterated the peak metamorphic record. The large deviations between 

samples relative to GLOSS reported in this study (Figure 3-15 & Figure 3-17) demonstrate 

the complex open system behaviour experienced by this suite of metapelites samples. As 

such, reconstructing an effective bulk rock composition is problematic, and it is 

unsurprising that the peak assemblage modelled by Schmidt et al. (2010) does not agree 

with petrographic observations.  

As discussed in chapter 2, a common link between metapelites samples of the upper high 

grade basement has been proposed for the NSZ and CSZ samples on the basis of common 

lithological and stratigraphic observations between the two areas (Jahn-Awe et al., 2010, 

Mposkos et al., 2010, Nagel et al., 2011, Turpaud and Reischmann, 2010). This new 

microdiamond discovery adds credence to this proposal. Implications of this new 

discovery, combined with new garnet geochronology data constraining the timing of the 

UHP metamorphic event presented in chapter 5 will be discussed in chapter 6.  

3.9.2  Partial melting of metapelites across the RM 
The widespread occurance of quartzofeldspathic material in the matrix of metapelite 

samples, commonly observed cross cutting the pervasive biotite foliation, indicates that 

these samples have undergone exhumation related partial melting. This is reflected in the 

low bulk rock SiO2 concentrations (ranging between 45 – 50 Wt%) , which are the same 

range as  metapelites from Connemara, Western Ireland that are interpreted as restites 

following extensive melt removal under H2O saturated upper amphibolite facies conditions 

(Yardley and Barber, 1991). Multiphase inclusions in garnet of kyanite + quartz + muscovite 

(Figure 3-3b) are further evidence of crystallisation following partial melting of phengite 

inclusions (Zheng et al., 2011), and have been previously reported from the Kimi complex 

of the Greek Rhodope Mts. complex (Mposkos et al., 2009).  
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In a previous study of metapelites from the Kimi complex, the lack of a negative Eu 

anomaly on chondrite normalise REE profiles was used as evidence for the addition of 

anatectic melt from an external source (Bauer et al., 2007). All samples analysed in this 

study do preserve a negative Eu anomaly, indicating that any leucocratic material 

originated from within the sample as a result of partial melting.  Under water saturated 

conditions metapelites can melt via the following congruent melting reactions: 

Qtz + Kfs + Pl + H2O = melt and Ms + Qz + Pl + Bt + H2O = melt 

The relevance of water saturated melting reactions during subduction zone metamorphism 

has been questioned (Clemens and Vielzeuf, 1987), owing to the low porosity of high grade 

metamorphic rocks. Yardley and Barber (1991) however demonstrated in Connemara that 

with a supply of H2O and heat from contemporaneous calc alkaline intrusions, widespread 

water saturated melting is feasible.  

At low pressures muscovite breaks down in the presence of quartz via the following 

reactions: 

1) 1Ms + 1 Ann + 3 Qtz = 1 Alm + 2 Kfs + 2 H2O 

2) Ms + Qtz = Kfs + Als + H2O 

The subsequent water produced can then further fuel water saturated melting. Although 

water saturated melting can occur, most melt forming reactions in metapelites occur at 

higher pressures under granulite facies conditions via dehydration melting of muscovite 

and/or biotite via the following reactions 

Ms + Pl + Qtz = Als + Kfs + melt, Bt + Als + Qz = grt + kfs + melt and Bt+ Pl+ Als + Qtz = Grt 

+kfs + melt 

Biotite reactions have been shown to  generate significantly more melt than muscovite 

breakdown, but generally occur at higher temperatures, in the range of 750 – 850 °C  

(Clemens and Vielzeuf, 1987). As a consequence of partial melting and melt extraction, the 

restite would have a higher modal abundance of the mafic phases aluminosilicate, biotite 

and garnet (Bucher and Grapes, 2011).   

The widespread stability of phengite under UHP pressures limits the extent of prograde 

dehydration and melting reactions (Hermann, 2003).   Much of the partial melting 

recorded in UHP rocks is instead believed to result from hydrate mineral breakdown where 

temperatures are > 800 °C during isothermal decompression. Evidence for this is seen at a 

number of UHP localities worldwide, with UHP samples from the Dabie-Sulu UHP belt and 
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Kokchetav massif both indicating a granulite facies overprint post-dating the peak 

metamorphic event (Zheng et al., 2011).  

In metapelites under UHP conditions, phengite is the main host of Cs, Rb and Ba (Spandler 

and Pirard, 2013).  Concentrations of Cs are highly varied in the samples analysed, ranging 

between 0.05 and 8ppm, indicative of varying degrees of phengite dehydration melting 

between samples. Although a positive correlation is obverved between Cs and Rb, (as 

expected by the experiments of Spandler and Pirard (2013)), larger Cs than Rb depletions 

are observed relative to GLOSS in all samples (Figure 3-15 & Figure 3-2). This fractionation 

could be the result of residual phengite preferentially retaining Rb, which is a better fit in 

the interlayer cation space owing to its ionic radius (Busigny et al., 2003, Hermann and 

Rubatto, 2009). This same fractionation process has however been documented in the 

presence of aqueous fluids (Melzer and Wunder, 2000), questioning the extent melting has 

on the observed profiles. The Cs concentrations and Cs/Rb ratios do correlate well with 

petrological observations; the two biotite end member samples have the highest Cs 

concentrations and low Cs/Rb values, indicating a smaller degree of mica dehydration 

melting in these samples.  Alternatively, the variation relative to GLOSS is simply the result 

of variation in sample protolith, accounting for the widespread mineralogical variation 

observed between samples. This alternative view is not supported by large observed 

intersample variation, especially between the Central and Eastern Rhodope samples, and 

the same trends (albeit with no general enrichment) are observed when samples are 

normalised to Pelagic Clay frpm IODP hole 801 rather than the GLOSS refrence material.   

Large depletions in Ca, Na and Sr relative to GLOSS are seen in all of the Central Rhodope 

metapelites samples, indicating the likely removal of plagioclase feldspar from these 

samples as a result of partial melting. Cs and Sr are both highly incompatible elements, and 

experimental studies have recognised a strong correlation between these two elements in 

the melt if widespread partial melting occurs (Hermann and Rubatto, 2009). No correlation 

is observed between Cs and Sr in any of the samples analysed, indicating that although 

biotite and phengite dehydration melting has occurred upon exhumation (to varying 

degrees), a prior melting event could also have occurred, unless the Sr concentrations are 

a function of either the protolith composition or hydrothermal alteration.  A prior melting 

event would explain the phaneritic “museum” samples, with no observed leucocratic 

material (they would essentially be restites prior to exhumation) and could act as the 

required trigger for exhumation. The source of water required for this earlier melting is 

hard to explain.   
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Sample 11-1-11 from the Eastern Rhodope Mts. is the only sample to exhibit large 

depletions in Nb and Ta relative to GLOSS, with an increased Nb depletion relative to Ta. 

Rutile is the major host of these two phases in metapelites (Spandler and Pirard, 2013). 

Although often viewed as a refractory insoluble phase, solubility is greatly increased in the 

presence of hydrous silicate melts (Dickinson Jr and Hess, 1985), and is highly temperature 

dependent (Hayden and Watson, 2007). Experimental studies have indicated residual rutile 

remaining in the sample will preferentially fractionate Ta over Nb (Hermann and Rubatto, 

2009), accounting for the observed trend on Figure 3-17.  This suggests that sample 11-1-11 

experienced either a higher degree of metamorphism, or a subsequent high temperature 

melting event, which is in keeping with the increased amount of leucocratic material 

observed in this sample (section 3.8).  

When compared to existing published data on Greek metapelites (Cornelius, 2008), the 

observed trends are not consistent. SiO2 concentrations from these samples are all 

consistently higher, indicating lower degrees of partial melting in-keeping with the higher 

concentrations of Na, Ca and Sr relative to the Chepelare samples. The Cs concentrations 

are however not as high as the biotite rich samples from Chepelare, suggesting either 

some degree of partial melting, or variations in the original protolith chemistry of samples. 

Ultimately a lot still remains unknown about the behaviour of trace elements during partial 

melting and interaction with aqueous fluids during subduction zone metamorphism (Zheng 

et al., 2011). The petrological variations observed between samples do appear to reflect 

contrasting melting histories between samples, but it is difficult to place constraints on the 

exact cause of melting, or when in the P-T path melting occurred 

3.9.3 Implications of observations for P-T evolution of RM 

metapelites 

A previous study of metapelites from the Greek portion of the RM reported petrological 

evidence for multiple garnet and kyanite populations related  to distinct HP metamorphic 

events (Mposkos et al., 2010). Although the euhedral, fracture free, inclusion poor garnet 

zones identified in the quartz rich sample 27-1-10 (Figure 3-4) could represent a later stage 

of garnet growth, this is rare and not widely recognised across samples. The lack of 

contrasting inclusion populations and the uniform garnet chemistry within samples 

indicates one garnet porphyroblast population and correspondingly one (U)HP garnet 

forming metamorphic event.   

The large variation in pyrope content observed between samples can be attributed to 

contrasting temperatures experienced between samples. In experimental studies 

investigating metapelitic garnet compostion at sub arc depths pyrope content increased 
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with increasing temperature, coupled with a slight decrease in Grossular content 

(Hermann and Spandler, 2008). This explains the apparent correlation between pyrope 

content and amount of matrix biotite, as the biotite rich samples underwent less partial 

melting than their quartz rich counterparts. This could explain the preservation of 

microdiamond in garnets with the lowest pyrope content; the decreased amount of partial 

melting aided preservation of the diamond.    

Much of the post peak metamorphic history has been destroyed as a result of the partial 

melting. The two distinct populations of white mica identified in sample 3-1-10 can be 

correlated with different stages of the samples history. The high Si, phengitic white mica 

are remnants of prograde metamorphism/peak metamorphic event. This is reflected in the 

low Na/(Na+K) ratios, which although not calibrated as a barometer is indicative of 

formation under high pressures (Guidotti and Sassi, 2002). Retrograde muscovite can form 

from aluminosilicate when in contact with a Ks feldspar ruch melt via the reaction:  Musc + 

Qz = Al2SiO5 + Kspar + Liquid (Spear et al., 1999). This would explain the higher Ti contents 

observed in this population, with Ti concentration an indicator of metamorphic grade of 

muscovite formation (Guidotti and Sassi, 2002). It is difficult to link these two populations 

to textural settings, with both populations found within the matrix and as inclusions in 

garnet.  

Coronas of retrograde biotite surrounding garnet porphyroblasts have likely formed via the 

reaction: Grt + Musc = Al2SiO5 + Bt + Qz, explaining the widespread occurrence of fibrolitic 

silimanite in close association with biotite and quartz throughout the matrix of samples. 

The absence of staurolite in samples indicates a “hot” exhumation path at temperatures 

exceeding the stability field of staurolite, in-keeping with the evidence of phengite and 

biotite dehydration melting as a result of isothermal decompression.  

3.10  Chapter Summary 

• There is compelling evidence for a new UHP locality in the vicinity of the town of 

Chepelare, in the Central Rhodope Mts. 

• Like all previous microdiamond discoveries in the region, all evidence of UHP 

conditions is restricted to inclusions within almandine rich garnets from 

metapelites.  

• These samples have a complicated metamorphic history. Very little of the prograde 

history is preserved, and there is evidence for variable degrees of partial melting 

between samples. 
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• The relationship with existing UHP localities across the massif is unclear, and will 

be discussed further with reference to timings of events in chapter 5.  
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Chapter 4 : Petrogenesis of Metabasic units of the 

Rhodope Massif 

4.1 Introduction 
Amphibolites and eclogites are widespread throughout the Rhodope Massif, with outcrops 

being reported from a number of locations in both the upper and lower high grade 

basement unit (Mposkos et al., 2012, Liati and Mposkos, 1990). Given the complex 

polymetamorphic history of the RM (Liati et al., 2011) this is unsurprising, but does create 

serious difficulties when attempting to correlate units across the RM. A number of studies 

have utilised both bulk rock geochemistry and geochronology to place constraints on the 

protolith and metamorphic history of these metabasic lithologies , but in many cases these 

yielded contradicting results (Bonev et al., 2006, Daieva et al., 2007, Georgieva et al., 2010, 

Haydoutov et al., 2004, Kirchenbaur et al., 2012, Kolcheva and Eskenazy, 1988). 

Consequently, the evolution of the Rhodope Massif remains unclear. 

In this chapter I present a detailed petrographic and geochemical study of eclogites and 

amphibolites from the upper high grade basement of both the Central and Eastern 

Rhodope Mts. Particular attention has been paid to bulk rock trace element and radiogenic 

isotope geochemistry to constrain the protolith of units. These results have been 

incorporated with existing geochemical and geochronological datasets to unravel the 

complex history of these units, Identify differences between middle and upper allochthon 

units and discuss the implications for the evolution of the Rhodope Massif.   

4.2 Analytical Techniques 
Bulk rock major element concentrations of samples were measured using ICP-AES at Royal 

Holloway College, University of London following flux fusion with LiBO2. Bulk rock trace 

element concentrations were measured using ICP-MS at both Royal Holloway College, 

University of London (2011), and the Open University (2013). The 2011 samples were 

digested in a HF-HClO4 mix, whereas the 2013 samples were digested in a HF-HNO3 mix.   

Textures and particularly small mineral inclusions (<50 µm) were investigated at the 

University of Leeds on a FEI Quanta 650 FEG-ESEM. The chemical composition of the major 

rock forming minerals was determined via electron microprobe analysis at the University 

of Leeds, using a JEOL 8230 electron probe micro-analyser (EPMA). A range of analytical 

conditions were used, optimised for each target mineral. Spot sizes range between 1µm 

and 5µm, and an accelerating voltage of 15kV was used. Bulk rock Sr and Nd isotopic 

measurements were made using a TRITON thermal ionisation mass spectrometer at the 
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University of Leeds. Details of the sample preparation, analytical procedure and quality 

control measures can be found in appendix B.  

4.3 Metabasic samples of the Central Rhodope Mts. 

4.3.1 Overview of previous research 

4.3.1.1 Metabasic samples from the Arda 2 Gneiss 

Eclogites in the Central Rhodope Mts. were first identified in  the Arda 2 gneiss (middle 

allochthon) of the upper high grade basement unit in the 1980’s (Kolcheva and Eskenazy, 

1988). In that study, bulk rock major and trace elemental data was used to infer a MORB 

like protolith, despite strong deviations from the typical N type MORB patterns. All samples 

exhibited strong LREE enrichment, which was interpreted as arising from a combination of 

migmatisation, (widespread evidence for which is seen in both eclogite samples and the 

host gneiss), and inheritance from the protolith. As such, the eclogites were classified as E 

or P type MORB, gravitating towards basalts with a more alkaline affinity. Subsequent 

studies have dated these eclogites as Neoproterozoic, with Lu-Hf garnet-omphacite dating 

yielded an age of 567.3 Ma (Savov et al., 2007), and U-Pb zircon dating yielding three 

distinct metamorphic growth zones at 560 Ma, 440 Ma and 265Ma, followed by a high 

grade metamorphic event at 38 Ma (Arkadakskiy et al., 2003).  

Recent work has instead suggested an island arc origin for eclogites from within the upper 

high grade basement (Kirchenbaur et al., 2012). Of four samples analysed from across the 

Central Rhodope Mts. (including one from the Chepelare Shear Zone), three preserved 

negative Nb and Ta anomalies and unradiogenic Nd and Hf isotope signatures, which is 

inconsistent with a MORB protolith. The anomalous sample from the Kardzali unit (to the 

East of the Arda dome) was interpreted to have experienced a partial melting event earlier 

in the samples history, distorting the geochemical profile. On the basis of equilibrium 

assemblage diagrams modelled using the Theriak-Domino program, these samples were 

estimated to have experienced peak pressures in the region of 20 – 25 kbar, and 

temperatures > 600 °C.  

 Lu-Hf dating of these samples using garnet whole-rock pairs produced Eocene ages 

ranging between 42.8 and 44.6 Ma, with the exception of the anomalous Kardzali sample 

which yielded 126 Ma, and a Sm-Nd garnet–whole-rock- pyroxene age of 109 Ma 

(Kirchenbaur et al., 2012). The authors argue that these Eocene ages are not the result of a 

thermal resetting event, and are instead due to a distinct, short lived, HP Cenozoic 

subduction event.  The Early Cretaceous age is harder to resolve, but is in keeping with the 
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published 119 Ma age of a metagabbro unit from the Eastern Rhodope Mts. (Wawrzenitz 

and Mposkos, 1997).  

The significance of these age populations will be discussed in chapter 5 alongside new 

geochronological data. The important observation is that on the basis of both geochemical 

and geochronological data there appears to be two distinct populations of eclogites in the 

Central Rhodope Mts. The extent of these populations and their relationship to the 

metabasic units of the Variegated Formation in the nearby Chepelare Shear Zone is 

unclear, and as such is one of the main motivations for this chapter.  

4.3.1.2 Metabasic units from within the Variegated Formation 

(Chepelare Shear Zone) 

Little work has been performed on Amphibolite units from the VF in the vicinity of 

Chepelare.  Previous studies have attempted to draw correlations between amphibolites of 

the VF from the central and Eastern Rhodope Mts, highlighting a common boninitic/Island 

arc tholeite protolith for units across the RM (Daieva et al., 2007).  This study however 

focused on samples from the Madan-Davidkovo antiform, ~80 km east of Chepelare, and 

the relationship to samples in the HP/UHP Chepelare Shear Zone is unclear. A recent 

preliminary study on a garnet amphibolite sample from within the Chepelare Shear Zone 

suggested a MORB protolith, alongside minimum P-T constraints of 12-14 kbars and 700 – 

750 °C (Georgieva et al., 2010).  As a result a common formation history with the Arda 2 

metabasic units was tentatively suggested, although there is currently insufficient evidence 

to evaluate this claim.  

4.3.2 Field sampling 

In this study, a total of 29 metabasic samples were collected in the Central Rhodope Mts.  

in the vicinity of Chepelare. These have been divided into two groups, those from within 

the Arda 2 Gneiss, and those from the VF of the Chepelare Shear Zone. Sample locations 

can be found in appendix A.  

4.3.2.1 Metabasic samples from Arda 2 gneiss  

15 samples from within the gneiss of the Arda 2 subunit, north of the Chepelare Shear 

Zone were sampled. Although present throughout this unit, there is a larger concentration 

at the base directly above the Chepelare Shear Zone. All outcrops occur as boudins, 

wrapped by the pervasive foliation in the host gneiss (Figure 4-1a-d). These boudins range 

in size from less than 1m to greater than 10m in diameter.  They are very hard and dense, 

often weathering proud of the host gneiss. Garnets, when present are always clear, 

ranging in size from < 1 mm to 6mm, in a uniformly green matrix largely dominated by 

amphibole. There is no evidence in any hand samples for the preservation of omphacite. 
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Samples have undergone variable degrees of retrogression, with migmatisation and 

segregation of garnets into distinct zones commonly observed.  

  

  
Figure 4-1: A-D Field photographs of eclogite boudins outcropping north of the Chepelare Shear 

Zone within the Arda 2 Gneiss 

 

4.3.2.2 Metabasic samples from within the Chepelare Shear Zone 

14 metabasic samples from within the variegated formation of the CSZ were collected. 

They are found in close association with both metapelites and marbles, mapped as 

continuous sheets along the edge of the Arda dome in 2 km wide zone. Like the 

metapelites of chapter 3, direct contacts with surrounding units are often unclear or 

obscured. As such, it is difficult to ground truth the interpretation portrayed on the 

geological map of the area.  Outcrops vary greatly in style from large pods that are heavily 

migmatised (Figure 4-2a,b) to units conformable with surrounding metapelites and marble. 

(Figure 4-2c).  Garnet is clearly visible in some samples (Figure 4-2d), but only makes up a 

small proportion of most samples.  The unclear boundaries of the Chepelare Shear Zone 

complicate distinguishing VF and Arda samples.  

 

A B 

C D 
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Figure 4-2, A and B: Migmatized amphibolite boudin within the VF, C: Amphibole outcrop 

conformable with overlying marble, D: Garnet bearing amphibolite from within the VF 

 

4.3.3 Central Rhodope Mts. Petrology  

4.3.3.1 Metabasic samples from the Arda 2 garnet gneiss 

Four contrasting garnet morphologies are seen amongst the 11 Arda 2 garnet bearing 

metabasite samples. Small (<500 µm diameter), anhedral, and relatively inclusion poor 

garnet crystals are seen in 4 samples (Figure 4-3a,b), whilst a further  4 samples exhibit 

large (up to 4mm diameter), subhedral garnets with inclusions restricted to the cores of 

crystals (Figure 4-3c,d). In both of these subgroups garnets constitute 20-40% of the 

sample, and are almandine rich (Alm41-54), although the larger crystals have a higher pyrope 

content (up to Pyp35). The chemistry of these crystals is overviewed in detail in section 

4.3.5.1.  

In the large, inclusion rich garnets, inclusions are restricted to the cores of crystals.  Quartz, 

amphibole and plagioclase inclusions are the most common, but omphacite (Figure 4-4a) 

and orientated needles of rutile (Figure 4-3d) are observed, alongside apatite, ilmenite and 

zircon.  In sample 22-1-10, a quartz inclusion was found surrounded by distinct radial 

fracturing (Figure 4-4b). This phenomenon is often associated with the breakdown of 

coesite upon exhumation, but without the distinctive glassy rim is not definitive evidence 

for prior UHP conditions. 

A B 

C D 
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Figure 4-3: Photomicrographs of garnets and inclusions from Arda 2 metabasic samples .A: Small 

inclusion poor garnet hosted by amphibole-plagioclase symplectite (sample 22-1-10), B: Small 

inclusions poor garnets hosted by amphibole-plagioclase intergrowth (sample 31-1-11) C:Large 

inclusion rich garnet (sample 36-1-11), D: Quartz inlcusions and exsolved rutile needles in garnet 

(sample 36-1-11), E: Large resorbed inclusion poor garnet (sample 45-1-11), F: Heavily resorbed 

inclusion rich garnet (40-1-11) 

 

Of the remaining samples, 1 contains large (up to 2mm diameter) inclusion poor garnets 

(Figure 4-3e), which constitute ~ 10 % of the sample. The remaining two contain only rare 

fragments of heavily retrogressed inclusion rich garnet (Figure 4-3f). Sample 45a-1-11 is 

unique among all samples studied from the Central Rhodope Mts., containing rare 

poikoblastic kyanite porphyroblasts alongside the garnet porphyroblasts (Figure 4-4c,d). 
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The matrix of all samples is composed of plagioclase, amphibole and diopside, although 

large differences are seen in sample textures. Most are symplectites of either amphibole 

and plagioclase or diopside and plagioclase, with variations in the scale of symplectic 

intergrowth observed between samples (Figure 4-3a,c,Figure 4-5b,d,f). Retrogression of 

amphibole to both chlorite and biotite is commonly observed Figure 4-5f), alongside 

extensive quartz veining (Figure 4-5e). Two samples (45-1-11 and 44-1-11) have 

granoblastic matrices composed of interlocking subhedral amphibole and plagioclase 

crystal, 100 – 500 µm in diameter (Figure 4-5a,c). No retrogression to biotite is seen in 

these samples.  

  

  
Figure 4-4: indicators of HP metamorphism in Arda 2 garnet bearing samples A: Omphacite 

inclusion in garnet from sample 36-1-11, B: Possible coesite inclusion from sample 22-1-10.C: 

Kyanite crystal in contact with garnet, sample 45a-1-11, D: Kyanite porphyroblasts in sample 45a-

1-11 
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Figure 4-5: Photomicrographs of matrix of garnet bearing samples within the Arda gneiss of the 

Central Rhodope Mts. A: Large subhedral amphibole crystals (sample 45-1-11), B:  Large resorbed 

elongated  amphibole, with small garnet fragments (sample 23-1-10),C: : Granoblastic matrix of 

sample 44-1-11 composed of amphibole, plagioclase and quartz, D: Diopside rich symplectite from 

sample 12-1-13, E: Extensive quartz veining in sample 12-1-13,F: Biotite rich matrix in sample 36-

1-11 . ,  

4.3.3.1.1 Petrological evidence for Eclogite facies metamorphism 

The assemblage garnet+amphibole+plagioclase is not characteristic for eclogite, as by 

definition, eclogite should have the assemblage garnet + omphacite, with  no plagioclase 

present (Bucher and Grapes, 2011). The discovered omphacite inclusions in garnet (Jd35-

42(Figure 4-4a)), alongside the possible presence of coesite inclusions in garnet (Figure 

4-4b) indicates that at least some of these samples were eclogites, with extensive 

retrogression through amphibolite and greenschist facies. The abundance of plagioclase –

diopside symplectites, plagioclase-amphibole symplectites and amphibole rich areas can 

be explained through progressive hydration related retrograde metamorphism of 
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omphacite, a phenomenon seen in a number of eclogite localities worldwide (Carswell, 

1990). It is unclear whether variable degrees of exhumation related hydration is the sole 

cause for the inter-sample variation observed within these samples, or instead contrasting 

P-T histories and/or protoliths are contributing factors.  Kyanite porphyroblasts in sample 

45a-1-11(Figure 4-4c,d) indicate higher peak metamorphic temperatures than other 

samples, possibly forming as a result of anorthite breakdown under high pressure 

conditions.    

4.3.3.2 Arda 2 non garnet bearing metabasic samples 

Unlike the garnet bearing samples, significantly less variation is observed in this group. 

Amphibole, plagioclase and to a much lesser extent quartz are the main constituents of all 

samples, and variation is largely a function of grain size, and degree of deformation 

Amphibole ranges in size from ~ 2mm in the coarsest sample to ~ 100 µm in the finest 

(Figure 4-6a,b). Where present, quartz is largely restricted to either veins that cut through 

the sample, or in close association with biotite, forming intergrown pockets throughout 

the matrix (Figure 4-6d). In all, except sample 11-1-3, biotite and amphibole form a 

pervasive foliation throughout the matrix (Figure 4-6c).  

  

  

Figure 4-6 A: Garnet free amphibolite with large amphibole crystal from sample 36a-1-11, B: Fine 

grained amphibole and plagioclase from sample 11-1-13, C: Foliation defined by elongated 

amphibole crystals in sample 41-1-11, D: Pocket of intergrown biotiote and quartz in an otherwise 

granoblastic amphibolite, sample 3-1-13.  
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4.3.3.3 Garnet bearing metabasic samples from within the Chepelare 

Shear Zone 

Like their Arda counterparts, widespread mineralogical and textural variation is seen 

amongst the four garnet amphibolite samples collected from the Variegated Formation. 

Sample 3-1-11 closely resembles many of the garnet amphibolites boudins found within 

the Arda gneiss (described in section 4.3.3.1), containing  abundant small, inclusion free 

garnets, < 500 µm in diameter, often with a halo of plagioclase (Figure 4-7a,b). The matrix 

is predominantly amphibole and plagioclase, with small pockets of quartz (Figure 4-7a) and 

areas of symplectic intergrowth. Accessory titanite, ilmenite, apatite and magnetite are 

common. Sample 6-1-13 is similar, but with larger, well-formed amphibole crystals up to 

3mm in diameter (Figure 4-7c) and epidote veins cross cutting the sample (Figure 4-7d).  

Sample 1-1-11 contains little garnet. Although identified in the field and visible in hand 

specimen, no crystals were identified in the thin section. It is composed of interlocking 

crystals of amphibole, plagioclase and quartz 100 µm – 2mm in diameter, with no 

preferred orientation (Figure 4-7e). Titanite, apatite and magnetite are all common 

accessory minerals. The sample is cut by thick (~ 5mm) quartzofeldspathic veins, 

containing fragments of matrix amphibole/epidote, and quartz crystals that preserve 

evidence of dynamic recrystallisation (Figure 4-7f).  

Sample 30a-1-11 is unique amongst the garnet bearing amphibolite samples, owing to the 

presence of calcite throughout the matrix closely associated with amphibole, plagioclase 

and epidote (Figure 4-7g). Only one, 4mm diameter garnet occurs within the thin section. 

This crystal appears different to all garnets observed in the RM, being large and anhedral 

with inclusions of plagioclase, calcite and zoisite but without the characteristic mass of 

small inclusions (<10 µm) commonly observed in this study (Figure 4-7h).   

 

 

 



76 
 

  

  

  

  

Figure 4-7: Photomicrographs of garnet bearing amphibolites from within the VF. A: Small 

inclusion free, resorbed garnets, sample 3-1-11, B: Close up of resorbed garnet with plagioclase 

halo, sample 6-1-13, C: Large euhedral amphibole crystals, sample 6-1-13, D:  Epidote vein 

through amphibole rich matrix, sample 6-1-13, E: Interlocking amphibole crystals with no 

preferred orientation from sample 1-1-11, F: Quartz vein cross-cutting through sample 1-1-11, G: 

Calcite and epidote rich matrix, sample 30a-1-11, H: Heavily resorbed garnet with quartz and 

zoisite inclusions, sample 30a-1-11 
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4.3.3.4 Garnet free amphibolites within the Chepelare Shear Zone 

This suite forms a diverse group within the Variegated Formation., but samples range from 

hornblendites composed entirely of interlocking amphibole crystals (Figure 4-8a) to  

amphibolites with varying proportions of amphibole and plagioclase (Figure 4-8b,c,d). 

Some samples have large amounts of epidote (Figure 4-8c), and contain veins of quartz and 

k-feldspar both following (Figure 4-8b) and cross cutting the foliation (Figure 4-8d).   

  

  

  

Figure 4-8:  Photomicrographs of non-garnet bearing samples from the VF, in the vicinity of 

Chepelare. A: Interlocking amphibole crystals of sample 39-1-11, B:  Elongated amphibole and 

plagioclase crystals with quartz vein following samples foliation, sample 9-1-13, C: epidote rich 

matrix of sample 2-1-3, D: Quartz vein cross cutting the foliation in sample 1-1-3, E: Plagioclase-

amphibole intergrowth of sample 5-1-13, F: Epitaxial overgrowth of amphibole on diopside, 

sample 5-1-13.  
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Samples 34-1-11 and 5-1-13 contain distinctive pockets of amphibole-plagioclase 

intergrowths outlined by larger (up to 1mm in length) amphibole crystals, giving the 

appearance of a former porphyroblast that has undergone severe retrogression (Figure 

4-8). These two samples also contain large amounts of diopside (30-40%), with the 

amphibole crystals occurring as epitaxial overgrowths on the pyroxene (Figure 4-8f).   

4.3.4 Implications of petrographic observations 

The study of the Arda 2 metabasic units indicates that at least some of the garnet bearing 

samples are prior eclogites that have undergone retrogression through amphibolite facies.  

Textural evidence in the non-garnet bearing samples suggests the presence of former 

garnet porphyroblasts, possibly reflecting more severe greenschist facies retrograde 

metamorphism. Garnet with rare omphacite inclusions and the matrix kyanite from sample 

45a-1-11 are likely the only remnants of the peak metamorphic assemblage within these 

units. There is no clear evidence to suggest that the garnet bearing metabasic samples 

from the VF experienced eclogite facies metamorphism. The two samples which resemble 

the garnet bearing units of the Arda 2 gneiss do however have rare amphibole-plagioclase 

symplectites. The remaining samples are characterised by an increased greenschist facies 

overprint, and presence of calcite in sample 30a-1-11 suggests interaction with the 

adjacent marble units of the VF. Two of the garnet free samples exhibit textural evidence 

of former garnet porphyroblasts, which combined with the remnant diopside likely 

represents remnants of a previous, higher grade assemblage. No such evidence is seen in 

the other garnet free amphibolites.  

4.3.5 Central Rhodope Mts. Mineral Chemistry 

4.3.5.1 Garnet 

The major element chemistry of garnets from 5 samples is presented in Table 4-1.  3 

samples are from within the Arda 2 gneiss, and 2 are from within the VF of the CSZ. A 

graphical representation of the garnet composition is presented in Figure 4-9. Garnets 

from eclogite within the Arda unit are all almandine rich (Alm50-41). A large range in pyrope 

content is observed between samples (Pyp35-17), compensated by variations in almandine 

content. Limited variation in grossular content occurs (Gross25-19). Samples 31-1-11 and 

36a-1-11 preserve slight increases in pyrope content from core to rim, accompanied by a 

decrease in almandine content. In sample 45a-1-11 a slight increase in almandine content 

is observed from core to rim, which is offset by a decrease in grossular content.   

Garnets from amphibolite within the VF are significantly more varied in major element 

chemistry than their Arda counterparts. Sample 3-1-11 has almandine rich garnets with 

significant pyrope content (Alm55Pyp20Gross20), whereas sample 30a-1-11, although still 
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almandine rich has a higher grossular content and lower pyrope conent 

(Alm53Pyp10Gross28). This sample has the highest spessartine content of any analysed in this 

study (Sps5). No core to rim variation is seen in either of the VF samples.  

 

Figure 4-9: A graphical representation of garnet composition for metabasic samples from the 

Central Rhodope Mts. Square: Sample from VF, Triangle: Arda samples.  

4.3.5.2 Amphibole  

The major element chemistry of amphibole was measured for 8 samples; 6 from within the 

VF, and 2 from within the Arda gneiss. A summary of all results is presented in Table 4-2. 

Following the Leake et al. (1997) classification scheme, all amphiboles analysed are calcic, 

with CaB ≥ 1.5. All analyses are plotted on the relevant classification diagrams (Figure 

4-10a,b), with the division based on the (Na+K)A content of each analysis. 

The majority of samples cluster along the tschermakite - magnesiohornblende boundary. 3 

samples, all from the VF (1-1-11, 30-1-11 and 9-1-13) record a broader spectrum of 

compositions, extending throughout the magnesiohornblende field, and for 9-1-13 into the 

actinolite field. 4 samples (2 from Arda, 2 from VF) have amphibole with a sufficiently high 

(Na+K)A value to plot on the  second classification diagram, although sample 30a-1-11 is 

the only sample in which all analyses meet this criteria. Samples 30-1-11, 30a-1-11 and 31-

1-11 have 
VI

Al > Fe
3+

, and are therefore all pargasite – ferropargasite, whereas sample 41-

1-11 is predominantly magnesiohastingite. A clear positive trend is seen on plots of 

(Na+K)A vs AlIV and Ti vs Al
IV

 (Figure 4-11), likely reflecting the broad range of amphibole 

compositions seen in Figure 4-10,  the result of edenite and tschemrakite substitution 

reactions which vary as a function of  metamorphic grade (Spear, 1993).   
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A 

31-1-11 36-1-11 45a-1-11 

 Rim Mid Core Rim Mid Core Rim Mid Core 

O
x

id
e

 w
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, 
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m

e
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SiO2 38.49 38.45 38.36 38.93 38.82 38.79 39.63 39.73 39.80 

TiO2 0.23 0.57 0.09 0.06 0.06 0.09 0.06 0.21 0.08 

Al2O3 21.10 21.10 20.88 21.28 21.47 21.31 21.86 21.81 21.86 

Cr2O3 0.02 0.01 0.01 0.01 0.00 0.01 0.05 0.05 0.02 

Fe2O3 0.75 0.64 0.90 - - - 0.80 0.81 0.93 

FeO 23.52 24.27 24.04 23.72 24.49 24.26 20.04 19.80 19.55 

MnO 0.82 0.95 0.99 0.44 0.44 0.51 0.49 0.45 0.47 

MgO 5.12 4.42 4.48 7.30 6.57 6.87 9.30 9.28 9.25 

CaO 9.74 9.63 9.89 8.13 8.36 8.15 8.04 8.34 8.63 

total 99.79 100.03 99.65 99.87 100.19 99.99 100.27 100.48 100.59 

Fe=FeO 24.20 24.85 24.85 - - - 20.77 20.52 20.39 

C
a

ti
o

n
s 

to
 1

2
 O

 

Si 3.00 3.00 3.01 3.01 3.00 3.00 3.00 3.00 3.00 

Ti 0.01 0.03 0.01 0.00 0.00 0.00 0.00 0.01 0.00 

Al 1.94 1.94 1.93 1.94 1.96 1.94 1.95 1.94 1.94 

Fe
3+

 0.04 0.04 0.05 - - - 0.05 0.05 0.05 

Fe
2+

 1.53 1.58 1.58 1.53 1.58 1.57 1.27 1.25 1.23 

Mn 0.05 0.06 0.07 0.03 0.03 0.03 0.03 0.03 0.03 

Mg 0.59 0.51 0.52 0.84 0.76 0.79 1.05 1.04 1.04 

Ca 0.81 0.81 0.83 0.67 0.69 0.68 0.65 0.67 0.70 

total 7.99 7.98 7.99 8.02 8.02 8.02 8.00 8.00 8.00 

 Mg# 27.87 24.37 24.88 35.39 32.30 33.44 45.26 45.51 45.76 

 And 2.23 1.90 2.81 0.00 0.00 0.00 2.29 2.30 2.65 

 Pyp 20.02 17.35 17.65 28.93 25.78 27.21 35.10 35.02 34.76 

 Sps 1.83 2.11 2.24 1.00 0.97 1.15 1.04 0.97 1.01 

 Gross 25.14 25.36 25.22 23.14 23.60 23.13 19.37 20.18 20.61 

 Alm 50.72 53.26 52.04 46.91 49.63 48.48 42.02 41.38 40.92 

 n 17 18 10 20 12 9 8 23 11 

 
B 

3-1-11 30a-1-11 

 Rim Mid Core Rim Mid Core 
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SiO2 38.33 38.28 38.33 37.94 37.95 37.89 

TiO2 0.04 0.05 0.04 0.12 0.16 0.21 

Al2O3 21.08 21.00 20.95 20.57 20.41 20.37 

Cr2O3 0.01 0.01 0.01 0.02 0.03 0.04 

Fe2O3 1.09 1.24 1.25 1.01 1.14 1.24 

FeO 25.26 25.29 25.01 24.49 24.26 24.05 

MnO 0.58 0.62 0.55 2.06 2.13 2.24 

MgO 5.10 5.10 5.25 2.65 2.59 2.54 

CaO 8.59 8.53 8.59 10.86 11.03 11.20 

total 100.07 100.11 99.97 99.71 99.71 99.77 

Fe=FeO 26.24 26.41 26.13 25.39 25.29 25.16 

C
a

ti
o

n
s 

to
 1

2
 O

 

Si 2.99 2.99 2.99 3.01 3.01 3.00 

Ti 0.00 0.00 0.00 0.01 0.01 0.01 

Al 1.94 1.93 1.93 1.92 1.91 1.90 

Fe
3+

 0.06 0.07 0.07 0.06 0.07 0.07 

Fe
2+

 1.65 1.65 1.63 1.62 1.61 1.59 

Mn 0.04 0.04 0.04 0.14 0.14 0.15 

Mg 0.59 0.59 0.61 0.31 0.31 0.30 

Ca 0.72 0.71 0.72 0.92 0.94 0.95 

total 8.00 8.00 8.00 7.99 7.99 7.99 

 Mg# 26.46 26.42 27.22 16.16 15.99 15.85 

 And 3.20 3.67 3.67 3.04 3.44 3.74 

 Pyp 19.86 19.88 20.45 10.52 10.33 10.11 

 Sps 1.28 1.37 1.22 4.65 4.83 5.06 

 Gross 20.81 20.23 20.34 27.91 28.07 28.16 

 Alm 54.83 54.83 54.29 53.83 53.23 52.80 

 n 15 13 8 5 12 4 

Table 4-1: Summary of EPMA analyses of garnet from the Central Rhodope Mts.  A: Samples from within the Arda gneiss, B: Samples from within the Variegated Formation 
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B 

Figure 4-10: Classification diagrams to show changes in the chemistry of calcic amphiboles, 

after Leake et al. (1997), A:Amphibole analyses where CaB  ≥ 1.5, (Na+K)A < 0.5, CaA < 

0.5, B: Amphibole analyses where CaB  ≥ 1.5, (Na+K)A  ≥ 0.5, Ti < 0.5. Triangles: samples 

from within Arda gneiss, square: VF samples 
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Figure 4-11: Plots of amphibole chemistry for central rhodope metabasic samples. A: Plot of 

(Na+K)A vs Al
IV

, B: Plot of Ti vs Al
IV
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  Arda 

  31-1-11 41-1-11 

 Sample core rim core  rim 

O
x

id
e

 w
t%

, 
O

 b
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st
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h
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e
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SiO2 44.7 43.9 40.9 41.3 

TiO2 1.0 1.2 1.4 1.2 

Al2O3 12.0 12.5 12.1 11.5 

Cr2O3 0.1 0.0 0.0 0.0 

Fe2O3 3.4 3.2 6.2 6.5 

FeO 9.8 10.4 14.9 14.9 

MnO 0.1 0.1 0.4 0.3 

MgO 13.1 12.6 8.2 8.3 

CaO 11.6 11.6 11.5 11.6 

Na2O 1.8 1.9 1.5 1.5 

K2O 0.6 0.7 1.3 1.1 

F 0.0 0.0 0.0 0.0 

Cl 0.0 0.0 0.0 0.0 

H2O* 2.0 2.0 2.0 2.0 

 Total 100.3 100.1 100.2 100.1 

C
a

ti
o

n
s 

to
 2

3
O

 

Si 6.5 6.4 6.2 6.3 

Ti 0.1 0.1 0.2 0.1 

Al 2.1 2.2 2.2 2.1 

Fe
3+

 0.4 0.3 0.7 0.7 

Fe
2+

 1.2 1.3 1.9 1.9 

Mn 0.0 0.0 0.0 0.0 

Mg 2.8 2.7 1.8 1.9 

Ca 1.8 1.8 1.9 1.9 

Na 0.5 0.5 0.5 0.4 

K 0.1 0.1 0.2 0.2 

Total 15.5 15.5 15.6 15.6 

 n 21 20 23 25 

Table 4-2: Summary of EPMA analyses of amphibole from the Central Rhodope Mts. A: Samples from within the Arda Gneiss. B: Samples from within the VF 

  VF 

  1-1-11 3-1-11 30-1-11 30a-1-11 2-1-13 9-1-13 

 Sample core rim core rim core rim Core Rim core rim core rim 

O
x

id
e

 w
t%

, O
 b

y
 s

to
ic

h
io

m
e
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y

 

SiO2 43.1 44.8 44.6 44.1 44.6 46.2 41.5 41.7 40.9 41.2 44.6 43.3 

TiO2 0.8 0.7 0.6 0.7 0.8 0.8 1.0 1.0 0.8 0.8 0.9 1.5 

Al2O3 11.9 9.6 11.5 11.5 11.4 9.4 13.1 12.8 11.9 11.1 11.4 10.3 

Cr2O3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

Fe2O3 6.2 6.2 4.4 4.6 3.2 3.2 2.2 2.4 7.2 6.8 5.2 5.1 

FeO 11.2 11.3 13.2 13.3 11.7 11.4 16.2 15.7 12.9 13.2 13.3 13.0 

MnO 0.3 0.3 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.4 

MgO 10.4 11.2 10.9 10.6 11.6 12.5 9.1 9.4 8.4 8.6 9.5 9.3 

CaO 11.7 11.9 11.6 11.6 12.1 12.2 11.8 11.8 10.9 11.1 11.4 10.9 

Na2O 1.6 1.3 1.5 1.6 1.5 1.3 2.1 2.0 1.3 1.2 1.1 1.0 

K2O 0.2 0.2 0.1 0.1 0.7 0.7 1.1 1.2 1.3 1.3 1.0 0.9 

F 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

Cl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

H2O* 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.9 1.9 2.0 2.0 

 Total 99.4 99.4 100.8 100.5 100.0 99.9 100.5 100.3 97.9 97.7 100.8 97.6 

C
a

ti
o

n
s 

to
 2

3
O

 

Si 6.4 6.6 6.5 6.5 6.6 6.8 6.2 6.3 6.3 6.4 6.6 6.6 

Ti 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 

Al 2.1 1.7 2.0 2.0 2.0 1.6 2.3 2.3 2.2 2.0 2.0 1.9 

Fe
3+

 0.7 0.7 0.5 0.5 0.4 0.3 0.2 0.3 0.8 0.8 0.6 0.6 

Fe
2+

 1.4 1.4 1.6 1.6 1.4 1.4 2.0 2.0 1.7 1.7 1.6 1.7 

Mn 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 

Mg 2.3 2.5 2.4 2.3 2.5 2.7 2.0 2.1 1.9 2.0 2.1 2.1 

Ca 1.9 1.9 1.8 1.8 1.9 1.9 1.9 1.9 1.8 1.8 1.8 1.8 

Na 0.5 0.4 0.4 0.5 0.4 0.4 0.6 0.6 0.4 0.4 0.3 0.3 

K 0.0 0.0 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.2 0.2 0.2 

Total 15.4 15.3 15.4 15.4 15.5 15.4 15.8 15.8 15.4 15.4 15.3 15.3 

 n 8 23 12 20 22 14 13 15 5 10 9 16 

A B 
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4.3.5.3 Plagioclase  

The major element chemistry of plagioclase from 8 samples across the central Rhodope 

Mts. was measured; 6 from within the VF and 2 from within the Arda unit. A summary of 

all results is presented in Table 4-3. With the exception of sample 3-1-11, all analysed 

plagioclase from within the VF are andesine (Ab59-68An30-40), and most exhibit some degree 

of core-rim variation, with slightly elevated Ab content in crystal cores. Plagioclase from 

sample 3-1-11 is labradorite (Ab44An56) and exhibits no appreciable zoning. The two 

samples from the Arda unit have elevated Ab contents when compared to the VF samples. 

Plagioclase from sample 31-1-11 is andesine (Ab68An31), whereas plagioclase from sample 

41-1-11 is oligoclase (Ab69-71, An27-30).  

4.3.6 Central Rhodope Mts. Thermobarometry 

As discussed in section 4.3.4, little of the peak metamorphic assemblage is preserved in 

the metabasic units of the Central Rhodope Mts. This presents a real problem when 

attempting to constrain the prograde P-T path of samples, as with the absence of phengite 

inclusions in garnet there is no suitable mineral assemblage to constrain peak pressures or 

temperatures experienced by these samples. If all of the amphibole and plagioclase 

represents the product of omphacite breakdown, these phases were not in equilibrium 

with the garnet, and  thermobarometers such as the garnet-honrblende thermometer 

(Ravna, 2000) and the garnet-amphibole-plagioclase-quartz barometer (Kohn and Spear, 

1990) will yield meaningless P-T estimates for these samples.  This is demonstrated with 

garnet-hornblende thermometry suggesting temperatures range between 490 and 670 °C, 

and GAPQ barometry pressures between 9 and 12 kbar. Constraints can however be 

placed on the retrograde path using amphibole-plagioclase thermobarometry.  

4.3.6.1 Amphibole – Plagioclase Thermometer 

The amphibole-plagioclase thermometer of Blundy and Holland (1990) is the most widely 

used geothermometer for amphibolite facies metabasic units. The thermometer is based 

on temperature dependent changes to the Aliv content of an amphibole crystal coexisting 

with plagioclase in a silica saturated environment, following the equilibrium Edenite + 

Quartz = Tremolite + Albite. This original calibration has been refined to account for non-

ideal mixing within amphibole, and the coupled substitution of Ca in the A site and Al in 

the tetrahedral site of amphibole (Holland and Blundy, 1994).  Amphibole-plagioclase 

pairs measured from the matrix of samples were used to calculate temperatures; results 

therefore represent a minimum temperature for formation of these minerals. Calculated  
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  1-1-11  3-1-11 30-1-11  30a-1-11  2-1-13  9-1-13  

   core rim core rim core rim core rim core rim core rim 

O
x

id
e

 W
t%

, 
O

 b
y

 

st
o

ic
h

io
m

e
tr

y
 

SiO2 59.1 58.4 54.3 54.1 59.8 60.1 60.9 59.7 58.3 57.1 57.2 56.9 

TiO2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Al2O3 26.1 26.6 29.7 30.0 24.7 24.6 25.2 26.0 25.7 26.4 26.3 26.6 

FeO 0.1 0.3 0.3 0.5 0.1 0.2 0.1 0.3 0.2 0.3 0.1 0.2 

MnO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

MgO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

CaO 7.9 8.5 11.7 11.9 7.0 6.7 6.4 7.3 6.2 6.7 6.5 6.9 

Na2O 7.3 7.0 5.1 5.0 7.8 8.0 8.0 7.6 7.2 6.9 6.7 6.8 

K2O 0.1 0.1 0.0 0.0 0.3 0.2 0.2 0.2 0.2 0.2 0.5 0.2 

TOTAL 100.8 101.0 101.3 101.7 99.6 99.9 100.9 101.2 97.8 97.5 97.3 97.6 
C

a
ti

o
n

s 
to

 8
O

 
Si 2.6 2.6 2.4 2.4 2.7 2.7 2.7 2.6 2.7 2.6 2.6 2.6 

Al 0.0 0.0 0.0 0.0 1.3 1.3 0.0 0.0 1.4 1.4 1.4 1.4 

Ti 1.4 1.4 1.6 1.6 0.0 0.0 1.3 1.4 0.0 0.0 0.0 0.0 

Fe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Mn 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Mg 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Ca 0.4 0.4 0.6 0.6 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

Na 0.6 0.6 0.4 0.4 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.6 

K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Total 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

 Or 0.6 0.5 0.2 0.2 1.4 1.2 1.3 1.1 1.3 1.3 2.9 1.2 

 Ab 62.1 59.4 44.1 43.3 65.9 67.5 68.2 64.6 67.0 64.1 63.0 63.1 

 An 37.3 40.2 55.7 56.5 32.7 31.3 30.4 34.3 31.8 34.6 34.1 35.7 

 n 3 23 3 17 9 20 2 14 5 10 8 24 

   31-1-11 41-1-11 

   core rim core rim 

O
xi

d
e

 W
t%

, 
O

 b
y 

st
o

ic
h

io
m

e
tr

y
 

SiO2 60.9 60.8 61.4 60.6 

TiO2 0.0 0.0 0.0 0.0 

Al2O3 25.3 25.3 23.8 24.2 

FeO 0.2 0.3 0.2 0.3 

MnO 0.0 0.0 0.0 0.0 

MgO 0.0 0.0 0.0 0.0 

CaO 6.5 6.5 5.8 6.4 

Na2O 8.0 8.0 8.4 8.1 

K2O 0.2 0.2 0.3 0.2 

TOTAL 101.2 101.1 99.9 99.9 

C
a

ti
o

n
s 

to
 8

O
 

Si 2.7 2.7 2.7 2.7 

Al 0.0 0.0 1.2 1.3 

Ti 1.3 1.3 0.0 0.0 

Fe 0.0 0.0 0.0 0.0 

Mn 0.0 0.0 0.0 0.0 

Mg 0.0 0.0 0.0 0.0 

Ca 0.3 0.3 0.3 0.3 

Na 0.7 0.7 0.7 0.7 

K 0.0 0.0 0.0 0.0 

Total 5.0 5.0 5.0 5.0 

 Or 1.1 1.1 1.5 1.2 

 Ab 68.3 68.1 71.4 69.0 

 An 30.6 30.7 27.1 29.8 

 n 6 19 8 23 

Table 4-3: Summary of EPMA analyses of plagioclase from the Central Rhodope Mts. A: Samples from the Arda Gneiss, B: samples from the VF 

A B 
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values are presented in Table 4-4. Average temperatures for samples are consistently 

between 650 – 730 °C, irrespective of mineralogy or geographical location.  

 

 

 

 

 

4.3.6.2 Amphibole-Plagioclase barometer 

To address the lack of barometers for mafic lithologies which do not contain garnet, 

Bhadra and Bhattacharya (2007) calibrated a barometer based on the reaction Tremolite 

+ Tschermakite + 2 Albite = 2 Pargasite + 8 Quartz.  This was based on experimental data 

in the range 1 – 15 kbar and 650 to 950 °C. Pressures have been calculated for the same 

amphibole-plagioclase pairs used for geothermometry, and results are presented in Table 

4-5. A wide range of pressures are produced for all samples; VF values range between 2.4 

and 17.1 Kbar, and Arda samples range between 2 and 10 Kbar.   

 

4.3.6.3 Summary of key observation and implications for P-T history 

of samples  

The composition of garnets from the Arda 2 gneiss samples confirms the petrographical 

interpretation that some of these were once eclogites. Two of the samples have pyrope 

contents sufficiently high enough to be characterised as group B eclogites by the Coleman 

 sample (n) Avg T  max min stdvev 

V
F 

1-1-11 17 723 738 694 11 

3-1-11 17 787 838 745 29 

30-1-11 15 655 714 547 54 

30a-1-11 14 731 794 701 24 

2-1-13 8 731 749 712 11 

9-1-13 15 668 711 569 46 

A
rd

a
 

31-1-11 17 714 815 663 32 

41-1-11 17 738 757 718 10 

Table 4-4: Results for the amphibole – plagioclase thermometer of Holland and Blundy 

(1994). Temperature is reported in °C.   

  n Avg P max min stdev 

V
F 

1-1-11 22 9.6 10.7 7.3 0.8 

3-1-11 17 13.3 17.1 10.4 2.1 

30-1-11 15 5.2 8.0 2.4 1.9 

30a-1-11 14 6.6 14.2 4.4 2.5 

2-1-13 8 9.0 10.4 8.0 0.9 

9-1-13 10 8.1 9.5 5.5 1.2 

A
rd

a
 

31-1-11 17 5.0 10.0 2.0 2.0 

41-1-11 23 7.2 8.8 5.6 0.8 

Table 4-5 : Pressures 

estimated using the 

barometer of Bhadra and 

Bhattacharya (2007). All 

values been calculated using 

temperatures calculated by 

the Holland and Blundy 

(1994) thermometer. All 

pressures are reported in 

Kbar.   
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et al. (1965) classification scheme. The large range in pyrope content would however 

indicate contrasting P-T histories between samples. Garnets from the two samples of the 

VF have lower pyrope contents, and it is unclear whether they represent Group C eclogites 

or instead garnet amphibolites. The increased anorthite content seen in sample 3-1-11 is 

characteristic of a higher metamorphic grade, reflected in the pressure determined via 

amphibole-plagioclase barometry. This combined with large variations in amphibole 

composition confirms the contrasting P-T histories for VF samples.  

4.3.7 Whole Rock Geochemistry 

The whole rock trace element chemistry of 29 metabasic samples from the Central 

Rhodope Mts. was measured. These samples have been divided into VF and Arda, and 

further subdivided based on the presence or absence of garnet. Results for VF samples are 

presented in Table 4-6 and Arda samples in Table 4-7 .  

4.3.7.1 Discrimination diagrams 

Amphibolite can have a wide range of protoliths ranging from mixtures of decarbonated 

calcite/dolomite and pelites to metabasic basalt/dolerite (Leake, 1964). Field relationships 

indicate an igneous protolith for samples, with no intercalation with other units, or 

preservation of sedimentary structures. This interpretation is reflected in Cr-Ni-Ti 

concentrations, which in many samples are too high to be derived from a sedimentary 

protolith (Leake, 1964). Accordingly, all amphibolites are assumed to be derived from an 

igneous protolith.  

A number of discrimination diagrams, based on both major and trace element chemistry 

have been proposed for establishing the original tectonic setting of igneous units eg. 

Pearce and Cann (1973). Many of these diagrams utilise elements such as Ti and V, which 

are generally viewed as immobile elements during metamorphism (Cann, 1970, Floyd and 

Winchester, 1978), and as such are suitable for constraining the protolith of metabasic 

units.  

Subsequent work has since shown that element mobility is not simply a reflection of rock 

type or metamorphic grade, and there are instead a large number of mineralogical and 

fluid based controls on elemental mobility (Humphries, 1984). Given the complex tectonic 

history experienced by these metabasic samples, it is a large assumption that elements 

have remained immobile and the samples preserve a true geochemical record of the 

protolith. This has been combatted through using a number of different discrimination 
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diagrams which utilise different ‘immobile’ elements. The general trend displayed on 

these diagrams is therefore much more significant than indiviudal results.  

 These were revisited by Vermeesch (2006), who applied discriminant analysis to refine 

the fields of these classic discrimination diagrams.  These are presented in Figure 4-12.  All 

suggest MORB as the main protolith for these units. The diagrams that utilise more mobile 

elements such as Eu and Sr exhibit a wider scatter between samples, with some samples 

plotting in the ocean island basalt and island arc basalt fields. No distinction on the basis 

of geography (Arda vs VF) or mineralogy can be seen in any of these diagrams.  

 



89 
 

 No Garnet Garnet 

 30-1-11 34-1-11 37-1-11 4-1-12 1-1-13 2-1-13 5-1-13 7-1-13 9-1-13 1-1-11 3-1-11 30a-1-11 1-1-12 6-1-13 

Li 10.5 17.5 19.1 5.5 5.8 3.2 20.7 14.6 9.8 13.7 7.7 17.0 9.5 8.6 

Sc 45.3 49.2 13.0 32.8 27.7 27.1 53.4 29.9 35.1 43.6 47.4 37.6 42.2 70.2 

Ti 8345.3 7549.6 6077.5 6898.2 5292.3 5806.3 6076.4 13474.0 10751.9 9555.0 18893.7 6790.6 13207.9 16925.5 

V 354.1 306.8 135.2 218.8 162.8 263.0 336.7 282.3 256.1 391.3 464.3 225.7 414.4 623.6 

Cr 159.2 390.6 22.3 320.7 187.8 13.9 327.9 31.6 132.9 110.0 32.1 291.3 83.4 170.8 

Mn 1525.5 1975.1 954.6 1106.8 910.7 1002.9 2183.5 1250.5 1556.4 1770.0 2129.1 1089.2 1808.3 2902.7 

Co 46.3 43.7 14.8 35.3 30.4 23.2 39.8 34.3 39.0 51.1 49.3 45.1 50.3 68.7 

Ni 66.7 135.0 12.4 40.3 48.9 10.4 91.6 25.9 9.5 63.6 25.4 133.2 50.8 92.6 

Cu 135.8 21.0 3.1 23.8 45.0 35.0 7.5 37.8 37.9 51.1 12.5 79.3 59.8 184.6 

Zn 105.1 156.5 83.8 76.6 58.9 73.7 129.8 83.9 90.6 112.2 132.7 76.0 126.1 172.7 

Ga 17.5 20.9 22.8 16.8 18.8 17.5 21.1 20.4 21.1 17.3 19.3 15.5 20.2 21.7 

Rb 12.6 22.1 143.4 27.4 14.0 13.5 16.5 43.6 20.9 2.5 10.9 17.1 4.8 14.8 

Sr 152.2 97.2 351.9 212.9 182.9 206.9 73.5 277.5 252.0 108.2 46.9 279.8 109.1 97.5 

Y 36.6 54.4 23.7 30.4 33.8 25.1 49.6 41.0 35.1 41.5 76.6 27.3 51.4 76.4 

Zr 11.4 13.5 5.3 8.6 8.4 9.2 11.2 13.0 11.0 10.0 8.0 10.3 12.8 18.8 

Nb 3.3 30.9 19.3 4.2 6.1 1.9 39.8 15.6 6.2 3.8 9.9 2.5 4.8 7.7 

Mo 0.4 0.5 0.5 0.3 0.3 0.3 0.3 0.6 5.1 0.5 1.9 0.3 0.5 1.1 

Sn 1.9 12.6 5.3 2.4 4.5 1.4 13.8 5.0 3.6 2.0 2.5 1.1 2.3 3.0 

Sb 0.2 0.2 0.1 0.1 0.0 0.2 0.2 0.1 0.2 0.2 0.1 0.2 0.1 0.4 

Cs 0.5 0.5 7.5 2.0 0.5 2.4 0.3 0.8 3.2 0.3 0.8 7.8 0.4 0.7 

Ba 44.1 150.9 715.4 119.6 109.9 120.2 87.7 278.2 93.2 18.7 20.1 31.6 35.6 73.8 

La 4.3 6.6 50.2 9.9 18.5 7.1 3.6 27.3 12.9 4.7 12.9 3.7 5.8 9.1 

Ce 11.7 16.6 105.6 22.4 39.6 17.1 10.5 62.5 30.0 12.9 34.3 10.5 17.6 25.9 

Pr 1.9 2.4 12.2 3.1 5.2 2.4 1.9 8.1 4.1 2.1 5.2 1.7 3.0 4.2 

Nd 9.6 10.8 44.7 13.7 21.1 11.2 10.5 32.4 18.1 10.8 25.7 8.7 15.3 20.3 

Sm 3.4 4.0 8.6 3.8 5.2 3.3 4.6 7.7 5.0 3.9 8.7 2.9 5.2 6.4 

Eu 1.1 1.0 1.7 1.1 1.3 1.0 1.0 1.8 1.4 1.3 2.5 1.1 1.8 1.6 

Gd 4.6 5.6 6.3 4.3 5.5 3.6 6.4 7.4 5.7 5.2 11.0 3.7 6.9 8.1 

Tb 0.8 1.2 0.9 0.8 0.9 0.6 1.2 1.2 1.0 1.0 1.9 0.7 1.2 1.7 
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 No Garnet Garnet 

 30-1-11 34-1-11 37-1-11 4-1-12 1-1-13 2-1-13 5-1-13 7-1-13 9-1-13 1-1-11 3-1-11 30a-1-11 1-1-12 6-1-13 

Dy 5.7 8.1 4.3 4.8 5.5 3.9 7.9 7.0 6.2 6.4 12.1 4.3 8.1 11.7 

Ho 1.3 1.9 0.8 1.0 1.2 0.8 1.7 1.4 1.4 1.5 2.6 1.0 1.8 2.6 

Er 3.8 5.6 2.1 3.0 3.3 2.4 4.9 3.8 3.8 4.3 7.4 2.7 5.2 7.6 

Yb 3.5 5.4 1.7 2.8 2.9 2.2 4.7 3.3 3.4 4.1 6.7 2.5 4.8 7.1 

Lu 0.5 0.8 0.2 0.4 0.4 0.3 0.7 0.5 0.5 0.6 1.0 0.4 0.7 1.1 

Hf 0.6 1.1 0.3 0.5 0.5 0.5 1.2 0.7 0.6 0.6 0.6 0.5 0.8 1.0 

Ta 0.2 1.8 1.3 0.4 0.5 0.2 3.9 1.1 0.6 0.2 0.5 0.2 0.3 0.4 

Pb 4.9 4.6 14.5 5.6 5.6 11.9 4.8 2.6 7.0 1.6 1.6 4.8 8.7 4.5 

Th 0.4 2.0 14.2 2.8 7.3 2.4 0.3 3.9 3.1 0.4 1.4 0.3 0.4 0.5 

U 0.3 1.2 3.4 0.9 2.2 1.3 0.3 0.6 1.1 0.2 0.7 1.2 0.2 0.5 

Table 4-6: Whole rock trace and REE element concentrations for VF metabasic samples from the Central Rhodope Mts. All were measured using ICP-MS at the Open University, 

summer 2013, and are reported as ppm.  

 No Garnet Garnet 

 32-1-11 36a-1-11 41-1-11 3-1-13 22-1-10 23-1-10 36-1-11 40-1-11 42-1-11 44-1-11 45-1-11 14-1-12 15-1-12 11-1-13b 12-1-13 

Li 21.9 34.6 16.1 10.9 12.5* 6.3* 21.4 14.1 25.8 18.0 5.3 20.9 13.7 21.3 6.0 

Sc 17.6 29.6 30.5 31.4 31.4* 39.8* 30.0 28.7 63.4 39.9 35.5 42.8 49.1 26.9 33.2 

Ti 8740 10910 16889 8870 13132* 14438* 10021 15031 27435 3376 10013 8423 23439 9391 3626 

V 218.0 268.2 345.1 235.8 239.0* 334.6* 289.3 294.4 600.0 344.8 304.0 304.0 747.9 235.2 210.7 

Cr 342.7 70.5 30.5 242.5 209.6* 129.7* 74.9 10.7 143.9 52.2 203.0 363.1 123.8 270.3 250.9 

Mn 1145.2 1468.4 1438.9 1188.1   1712.6 1716.8 4475.8 1374.2 1534.0 1646.2 2566.8 1320.5 791.3 

Co 48.4 57.2 34.4 42.2 39.0* 43.4* 73.2 32.1 81.8 38.2 44.2 50.1 75.3 53.5 42.1 

Ni 153.6 96.7 21.3 112.4 150.9* 53.8* 110.9 12.6 101.3 28.5 23.0 119.5 101.4 58.8 113.2 

Cu 64.7 11.5 32.9 23.0 55.1* 72.6* 90.7 41.7 64.6 28.0 33.3 9.6 287.7 38.3 154.2 

Zn 79.2 101.7 95.8 87.2 123.9* 140.3* 127.1 113.5 227.1 80.8 98.4 86.9 178.7 83.8 53.6 

Ga 15.6 20.0 20.6 17.0 - - 22.7 21.5 37.7 14.5 20.2 16.8 26.5 17.5 14.9 

Rb 28.3 113.2 53.7 16.3 13.5 14.5 25.9 72.3 36.9 2.8 11.7 1.0 13.6 15.4 4.6 

Sr 166.2 279.3 188.6 132.9 164.6* 350.5* 267.1 211.2 550.7 86.6 149.5 256.8 638.5 257.6 583.8 

Y 18.3 23.9 53.2 33.6 52.4* 33.3* 23.0 49.7 70.5 15.3 33.5 35.8 40.1 23.1 13.2 
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 No Garnet Garnet 

 32-1-11 36a-1-11 41-1-11 3-1-13 22-1-10 23-1-10 36-1-11 40-1-11 42-1-11 44-1-11 45-1-11 14-1-12 15-1-12 11-1-13b 12-1-13 

Zr 9.4 13.3 7.7 10.6 204.6* 165.3* 14.0 9.8 13.9 7.0 17.2 17.0 11.4 9.0 5.2 

Nb 4.5 8.3 11.3 2.9 4.5 19.0 7.9 12.1 21.8 0.2 3.9 2.6 17.4 3.7 1.4 

Mo 0.4 1.1 1.0 0.4 - - 0.5 1.7 2.9 0.2 0.2 0.3 1.1 0.4 0.2 

Sn 2.6 2.6 2.5 1.7 - - 3.1 3.8 3.5 0.4 1.9 1.6 2.8 1.7 1.6 

Sb 0.1 0.2 0.1 0.2 - - 0.1 0.1 0.3 0.1 0.1 0.1 0.2 0.2 0.0 

Cs 1.2 7.7 1.7 1.3 0.5 0.8 1.3 2.0 2.0 0.5 0.1 0.1 0.7 0.9 0.4 

Ba 507.1 139.3 375.3 71.1 89.0* 260.8* 112.8 464.2 256.6 26.4 104.5 12.4 114.3 86.7 79.8 

La 7.7 10.3 29.6 6.6 9.9 16.1 8.1 29.4 30.4 1.1 8.9 5.1 14.2 8.6 4.8 

Ce 20.6 26.0 66.5 17.2 25.9 34.8 20.8 67.2 73.5 3.1 21.5 13.8 34.7 21.7 12.6 

Pr 2.9 3.9 8.8 2.7 4.0 4.9 3.1 8.6 10.3 0.5 3.2 2.3 5.2 3.0 1.9 

Nd 13.5 18.0 37.7 13.2 20.0 23.4 14.4 35.9 45.6 2.8 14.5 11.6 24.3 13.7 8.6 

Sm 3.6 4.7 9.3 4.1 5.8 6.4 4.0 8.8 11.8 1.2 4.3 3.8 6.9 3.6 2.3 

Eu 1.2 1.6 2.6 1.4 1.7 2.0 1.4 2.5 3.6 0.4 1.4 1.3 2.4 1.3 0.8 

Gd 3.8 4.3 9.8 4.9 6.1 6.0 4.3 8.9 12.1 1.8 5.2 5.0 7.4 4.1 2.3 

Tb 0.6 0.7 1.5 0.9 1.2 1.0 0.7 1.4 2.0 0.3 0.9 0.9 1.2 0.7 0.4 

Dy 3.9 4.1 9.0 5.4 6.8 5.4 4.1 8.3 12.0 2.4 5.8 5.7 6.9 4.2 2.2 

Ho 0.8 0.9 1.9 1.2 1.5 1.1 0.9 1.7 2.5 0.6 1.3 1.3 1.4 0.9 0.5 

Er 2.2 2.3 5.1 3.3 3.8 2.8 2.3 4.7 6.9 1.7 3.6 3.5 3.8 2.5 1.4 

Yb 1.9 2.1 4.2 2.9 4.1 2.7 2.0 4.0 6.1 1.6 3.2 3.2 3.2 2.3 1.3 

Lu 0.3 0.3 0.6 0.4 0.5 0.4 0.3 0.6 0.9 0.2 0.5 0.5 0.5 0.3 0.2 

Hf 0.5 0.7 0.5 0.6 3.8 4.1 0.6 0.6 0.5 0.4 0.8 0.9 0.6 0.4 0.3 

Ta 0.2 0.7 0.9 0.3 0.3 1.1 0.4 0.8 1.1 0.1 0.3 0.2 1.0 0.2 0.2 

Pb  5.2 8.2 4.1 4.9 - - 3.0 5.3 3.5 4.3 4.9 1.8 3.8 2.0 3.2 

Th 0.9 0.6 6.8 0.6 0.9 1.5 0.6 7.9 1.6 0.3 1.4 0.3 1.0 0.4 0.4 

U  0.2 0.9 1.3 0.2 0.4 0.5 0.3 1.6 0.4 0.1 0.6 0.2 0.3 0.1 0.3 

Table 4-7 Whole rock trace and REE element concentrations for Arda metabasic samples from the Central Rhodope Mts. With the exception of samples 22-1-10 and 23-1-10, all were 

measured using ICP-MS at the Open University, summer 2013, and are reported as ppm. Samples 22-1-10 and 23-1-10 were measured at Royal Holloway in 2011, and values marked 

with a * were measured using an ICP-AES rather than ICP-MS.  
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Figure 4-12: Tectonic discrimination diagrams  

for metabasic samples from the Central 

Rhodope Mts. from Vermeesch (2006)A and B : 

Discrimination diagram utilising Eu, Sr and Lu 

plotted in Log ratio space (A) and as a ternary 

diagram(B), C & D: Discriminations utilising 

immobile element Ti, Sm and V plotted in log 

ratio space (C) and as a ternary diagram (D), 

E:Ti-V discrimination of Shervais (1982) redrawn 

using linear discriminant analysis (Vermeesch, 

2006) 

D 

A B C 

E 
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4.3.7.2 Chondrite normalised REE diagrams 

Chondrite normalised REE diagrams are presented for all samples in Figure 4-13. Garnet 

bearing samples within the VF all show flat profiles (Figure 4-13a), many with a slight 

negative Eu anomaly.(Eu/Eu*) which ranges from 0.7 to 0.9. Only sample 30a-1-11 has no 

Eu anomaly. Non garnet bearing samples are more varied, ranging from LREE depleted to 

those with a distinct LREE enrichment, although most appear to have a similar flat profile 

to the garnet bearing samples (Figure 4-13b). (La/Sm)N range from 0.5 to 3.7. All samples 

have a negative Eu anomaly, with (Eu/Eu*) ranging from 0.6 to 0.9.    

Garnet bearing samples within the Arda unit vary greatly. Like the Non garnet VF samples, 

they range from extremely LREE enriched, to LREE depleted with (La/Sm)N ratios ranging 

from 0.6 to 2.1 (Figure 4-13c). Eu anomalies are rare; where present they are negligible 

with (Eu/Eu*) ~ 0.9. Non garnet bearing samples from the Arda gneiss are generally LREE 

enriched, with one flat profile (Figure 4-13d). (La/Sm)N ratios range from 1 to 2. Where 

present Eu anomalies are small, wth Eu/Eu* ranging from 0.82-0.95.   

4.3.7.3 MORB normalised trace element diagrams 

N-MORB normalised trace element diagrams are presented in Figure 4-14 . A feature of all 

samples analysed at the Open University in 2013 is a strong depletion in Zr and Hf. Rather 

than being indicative of an island arc source setting, these patterns are likely the result of 

incomplete dissolution of zircon during digestion, explaining the lack of depletions in 

samples analysed at Royal Holloway College, University of London in 2011.  

Garnet bearing samples from within the VF all have a broadly similar trace element 

pattern, characterised by flat profiles for the HFSE (with the exception of Zr and Hf), and 

deviations form MORB for the LILE (Figure 4-14a). Non garnet bearing samples exhibit 

more variation (Figure 4-14b). Like the garnet bearing samples, the more compatible HFSE 

are uniformly flat, and a large spread of values are observed for the LILE. This suite 

however exhibits a larger range of Nb-Ta concentrations. Although most preserve some 

degree of negative anomaly, sample 30-1-11 closely resembles the garnet bearing units, 

and samples 5-1-13 and 34-1-11 preserve positive anomalies.  

Garnet bearing samples from within the Arda unit exhibit the same degree of variation as 

the non-garnet bearing VF sample, with a large spread in Nb, Ta and LILE concentrations 

(Figure 4-14c). This suite also has the largest range of absolute concentrations for each 

element. Of the 4 non-garnet bearing samples from the Arda unit, 3 preserve negative Nb-

Ta anomalies (Figure 4-14). All have uniformly flat HFSE and enriched LILE concentrations.
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4.3.7.4 Radiogenic Isotope Geochemistry 

Bulk rock Sr and Nd isotope measurements were made on 12 samples from the Central 

Rhodope Mts. to further constrain the tectonic setting of sample protoliths. Details of the 

analytical procedure are described in appendix B.  87Sr/86Sr isotope ratios were deemed 

unsuitable for constraining tectonic settings; a large range of fRb values (between -0.18 – 

11.05) indicates varying degrees of enrichment relative to CHUR, likely the result of 

interaction with the gneiss of the Arda dome. Results for the Sr isotope study can be 

found in appendix B. 143Nd/144Nd isotope ratios are presented in Table 4-8. Details of the 

effect of sample age on calculated initial values and the calculation of ɛNd and fSm can be 

found in appendix B.   

 
 

Sample 
143

Nd/
144

Nd 
Initial 

143
Nd/

144
Nd 

ɛt
Nd fSm 

 
 

A
rd

a
 

G
a

rn
e

t 

1-22-10 0.512847 ± 6 0.512211 5.50 -0.10 

1-23-10 0.512721 ± 4 0.512123 3.78 -0.16 

36-1-11 0.512788 ± 6 0.512181 4.92 -0.14 

40-1-11 0.512469 ± 4 0.511937 0.14 -0.25 

44-1-11 0.512934 ± 6 0.512006 1.49 0.31 

45-1-11 0.512696 ± 3 0.512053 2.43 -0.09 

N
o

 

G
rt

 36a-1-11 0.512785 ± 9 0.512216 5.60 - 

41-1-11 0.512488 ± 7 0.511950 0.41 -0.24 

V
F

 

G
a

rn
e

t 1-1-11 0.512975 ± 6 0.512620 5.93 0.10 

3-1-11 0.512692 ± 7 0.512357 0.80 0.04 

30a-1-11 0.512876 ± 7 0.512543 4.42 0.04 

No Grt 34-1-11 0.512531 ± 5 0.512163 -3.00 0.14 

Table 4-8: Overview of Nd isotope results for metabasic samples from the Central Rhodope Mts. 

Protolith formation ages of 550 Ma for Arda  samples, and 250 Ma for VF samples have been 

used to calculate the initial values. These are based on reported ages in the literature (Burg, 

2011).  

All of the samples analysed have low fSm values, indicating that any interaction with 

crustal material had a limited effect on Nd isotope signature. Two groups of samples can 

be identified on the basis of ɛ
t
Nd in the Arda 2 samples. Most have positive values 

(2.43 – 5.5) indicative of samples originating from a depleted mantle source region 

and a subsequent MORB protolith. The lower ɛ
t
Nd of samples 40-1-11 and 41-1-11 

are indicative of an increased crustal component. The same range of high and low 

ɛ
t
Nd samples is seen in the VF samples.  
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4.3.7.5 Key findings of geochemical analysis 

Trace elemental discrimination diagrams indicate a  MORB protolith for all of the 

metasbasic samples of the Central Rhodope Mts. Chondrite normalised REE and MORB 

normalised trace element profiles however indicate a variable SSZ input for samples, 

which is confirmed through variations in 143Nd/144Nd isotope ratios.   

All metabasic units from the Arda 2 gneiss display characteristics of this SSZ input, 

suggesting an E-MORB/island arc basalt protolith. The only sample with a distinct N-MORB 

REE profile (44-1-11), has the highest fSm value of all samples analysed, indicating this 

anomalous REE pattern may be as a result of interaction with surrounding lithologies. The 

two samples with the highest (La/Sm)N (40-1-11 and 41-1-11) exhibit low to negative ɛ
t
Nd 

values indicative of an increased crustal component, strongly indicating an Island arc 

protolith for these samples.   

Garnet bearing samples from within the VF all have flat REE profiles, and lack the 

characteristic negative Nb-Ta anomalies, indicating a reduced SSZ input. This is reflected in 

the 
143

Nd/
144

Nd isotope for two samples, with positive ɛ
t
Nd valus indicative of formation 

from a depleted mantle source region, typical of N-MORB. The low ɛ
t
Nd value for sample 3-

1-11 likely reflects a small degree of crustal contamination rather than a contrasting 

protolith. The non-garnet bearing amphibolite samples from the VF exhibit a wide range 

of geochemical characteristics, indicating an amalgamation of Island arc/E-MORB and N-

MORB protoliths.  

4.3.8 Discussion of Central Rhodope metabasic samples 

This study has demonstrated widespread petrographical and geochemical variation 

between metabasic samples of the Arda 2 gneiss and the Variegated Formation., to the 

extent that a common formation history for these two formations is unlikely.  

Despite the petrographical differences between the Arda 2 metabasic samples, 

geochemical analysis indicates a common protolith of E-MORB/Island arc basalt  for these 

units, supporting the findings of Kirchenbaur et al. (2012). The variation in pyrope content 

in garnet of these samples suggests contrasting P-T histories, explaining the observed 

petrographical differences. On this basis, without two contrasting protoliths for samples it 

is difficult to explain the conflicting age data reported in the literature (Arkadakskiy et al., 

2003, Kirchenbaur et al., 2012, Savov et al., 2007).  

Eocene thermal resetting of the garnet could explain the Cenozoic ages reported by 

Kirchenbaur et al. (2012). In their study the garnets dated from the Arda 2 unit lack Mn, Ca 

and Fe core-rim variation, and a LA-ICP-MS study indicated diffusion of Lu across the 



98 
 

crystals. The authors attributed this to a subsequent near peak metamorphic event, owing 

to virtually identical Cenozoic ages across the Central Rhodope Mts. in samples that do 

preserve Lu zonation across crystals.  

A Cenozoic HP metamorphic event is hard to reconcile with existing studies of the host 

Arda 2 orthogneiss. There is no evidence for an Eocene eclogite facies event in this unit 

(Cherneva and Georgieva, 2005), with all Eocene zircon ages restricted to discordant 

leucsomes associated with  amphibolite facies migmatisation (Ovtcharova et al., 2002, 

Peytcheva et al., 2004). Studies of the Western Gneiss Region of Norway have however 

demonstrated the difficulties involved in establishing the peak metamorphic condition 

experienced by felsic lithologies such as orthogneiss (Carswell and Cuthbert, 2003). 

Further geochronological investigations of the Arda 2 metabasic samples and petrological 

studies of the host Arda 2 gneiss are required to fully understand the extent and 

conditions experienced during the Cenozoic.     

There is no evidence to suggest that the garnet amphibolite units of the Variegated 

formation from the CSZ experienced eclogite facies conditions, suggesting a metamorphic 

history unrelated to both their kyanite-garnet schist counterparts (described in chapter 3), 

and the metabasic units hosted by the Arda 2 gneiss described in this study. The 

contrasting P-T conditions and protoliths described in this study indicate that the sheet 

like structure mapped for amphibolite units in the vicinity of Chepelare (Sarov, 2004) may 

be an over simplification, and instead the area is a true melange of lithologies with 

contrasting protliths and P-T histories.  

4.4 Metabasic samples of the Eastern Rhodope Mts.  

4.4.1 Overview of existing research  
Eclogites are widespread throughout both the upper and lower high grade basement units 

of the Eastern Rhodope Mts., occurring in a variety of different stratigraphic and structural 

settings. Outcrop morphologies include lenses, sheet like structures concordant with 

marbles and gneiss and as metagabroic dykes (Liati and Mposkos, 1990). Samples from 

the two terranes can be distinguished on the basis of contrasting metamorphic grade, 

with the lower unit samples experiencing peak P-T conditions of 17 Kbar and 620 °C 

(although pressures up to 21 Kbar for kyanite eclogites), and the upper unit samples 

experiencing higher temperatures, and pressures in excess of 20 Kbar (Liati and Mposkos, 

1990, Mposkos et al., 2012, Baziotis et al., 2008). Most samples underwent severe 

retrogression upon exhumation in amphibolite facies (534 °C, 8 Kbar), destroying most 
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evidence of the high pressure assemblage (Liati and Mposkos, 1990, Mposkos et al., 

2012).  

 All eclogites were proposed to share a common protolith of tholeitic basalt (Liati, 1986, 

Mposkos and Perdikatsis, 1989), although subsequent work on samples from the lower 

high grade basement has questioned this interpretation. Two distinct populations of 

eclogite have been recognised in the Kechros Complex of the lower high grade basement 

unit of the Greek Eastern Rhodope Mts. on the basis of bulk rock geochemistry. Low Fe-Ti 

eclogites, with strong LREE enrichment, and a negative Nb anomaly are thought to 

originate in a rift related tectonic setting, whereas high Fe –Ti eclogites have more MORB 

like REE and trace element profiles, and are interpreted to have formed during partial 

melting in an extensional oceanic environment (Baziotis and Mposkos, 2010, Mposkos et 

al., 2012). Eclogites from within the Kimi complex of the upper high grade basement unit 

have been shown to have formed via fractional crystallisation of tholeitic magmas 

(Baziotis et al., 2008). These units are commonly cross cut by tonalitic-trondhjemitic 

dykes, which are interpreted as the product of partial melting of mafic material at the 

base of the thickened continental crust during the early tertiary – essentially being akin to 

modern adakites, but forming in a collision environment (Baziotis et al., 2008).   

 Studies of metabasic units from the VF of the Bulgarian upper high grade basement 

suggest a supra-subduction zone origin for all units. Protoliths range from boninite/island 

arc tholeite (Daieva et al., 2007, Haydoutov et al., 2004) through to MORB (Bonev et al., 

2006), suggesting the metabasic suite is recording the full evolution of a subduction zone 

and associated back are rifting (Bonev et al., 2006). Estimated P-T conditions on the basis 

of conventional thermobarometry are 6-2 kbars and 520 - 630 °C, with the exception of a 

metagabbro sample from Bubino, which yielded granulite facies conditions of 11-5 Kbar, 

and 780-680 °C (Haydoutov et al., 2004). There is no indication that any of the Bulgarian 

samples are retrogressed eclogite, and as such the relationship to metabasic samples 

described from the Greek Rhodopes is unclear.  

Like in the Central Rhodope Mts., the age of both the protolith and of metamorphism 

remains very unclear. Zircons from the granulite facies Bubino metagabbro described in 

Haydoutov et al. (2004) have been dated via U-Pb SHRIMP dating (Carrigan et al., 2003).  

Cores yielded ages of 572 ± 5Ma, and the rims of many crystals yielded Variscan ages of ~300 – 350 Ma. This Neoproterozoic formation age has been used as evidence for a 

Variscan aged suture zone separating the VF from the underlying Varsican aged 

orthogneiss of continental origin from the Bela-Reka dome (Haydoutov et al., 2004). 
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Recently discovered Ordovician metabasic units from the village of Egrek in the Avren 

Synform support this interpretation (Bonev et al., 2013).  

U-Pb zircon dating of eclogite units from the Kimi complex however yielded magmatic 

Permian cores with HP metamorphic rims, suggesting eclogite facies metamorphism 

between 160 and 195 Ma (Bauer et al., 2007). Some rims were dated at 115 Ma, and 79 

Ma, both of which have been attributed to metamorphic overprint events. Permo-Triassic 

protolith ages have also been reported from eclogites of the Kechros complex (Liati and 

Fanning, 2005), where the age of eclogite metamorphism has been placed sometime 

between the late Jurassic and Late Cretaceous (Liati and Mposkos, 1990), but remains 

poorly constrained (Mposkos et al., 2012).  Ultimately the relationship between the Neo-

Proterozoic Bubino Gabbro, and the Permian metabasic units of the Kimi complex and the 

Kechros dome remain unclear.  

4.4.2 Field sampling  

In this study, 15 samples were collected from across the Bulgarian part of the Eastern 

Rhodope Mts (Figure 4-17).  With the exception of sample 19-1-11, all samples outcrop as 

part of the upper high grade basement unit, predominantly along the flanks of the Byala 

Reka and Kesebir domes. This is the same tectonic setting as the samples described in the 

Haydoutov et al. (2004) study.                                                                                                    

 

 

 

 

 

 

 

 

Figure 4-15:  Simplified geological map of the Eastern Rhodopes Mts. Sampled localities are 

highlighted in blue. 1:15-1-11, 2: 9-1-10, 14-1-02, 24-1-02, 3: 8-1-10, 4: 4-1-10, 6a-1-10, 6b-1-10, 

5:19-1-11, 6: 18-1-11. Additional samples collected, but not lying within the area of this map are 

shown in green, Ivaylovgrad: 26-1-11, 27-1-11, Zlatoygrad: 4-1-11, 7-1-11 
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As in the Central Rhodope Mts. vegetation and poor outcrop exposure limit detailed 

observations on the morphology of units and their relationship to surrounding lithologies. 

This is particularly true at Bubino, where 4 samples were collected along a river bed over a 

distance of ~  200m. Despite this, most samples within the Avren Synform and flanks of 

the metamorphic domes appear to have a sheet like structure, sandwiched between 

mylonitized gneiss, and are found in close association with ultramafic bodies and often 

marble (Figure 4-16a).  Samples from Ivaylovgrad (26-1-11 and 27-1-11) are instead large 

boudins, found within the walls of the dam (Figure 4-16e.f).  

Some of the amphibolites encountered within the VF appear to have a clear sedimentary 

origin. Fine intercalations of amphiblolite with marble and gneiss are observed (Figure 

4-16c), suggesting a flysch like origin. Boudinaged amphibolite is also seen sandwiched 

between marble layers, appearing to preserve primary sedimentary characteristics (Figure 

4-16d).  These outcrops were all extensively weathered, and were therefore not sampled 

for geochemical analysis.  

  

  

A B 

C D 
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Figure 4-16, A: sample 15-1-1: Amphibolite 

found in close association with Marble 

and Bt Gneiss, B: Clear retrogressed 

garnet of sample 19-1-11, C: Very finey 

foliated marble, amphibolite and gneiss 

within the VF south of Avren, D: Marble 

closely associated with boudinaged 

amphibolite layers. E and F: Large Grt-

Amphibolite boudins from the 

Ivaylovgrad dam.  

 

 

4.4.3 Petrography 

The samples have been grouped on the basis of geographical location; Bubino, 

Ivalylovgard, the flanks of the Byala-Reka and Kesbir domes and Zlatovgrad. Each of these 

locations will be discussed in turn.  

4.4.3.1 Bubino 

Large variation is seen over a very short distance in the river running north of Bubino. 

Furthest from the village is sample 4-1-10, a weakly foliated, possibly banded, 

amphibolite. Anhedral amphibole crystals up to 2mm in length, together with biotite and 

chlorite make up ~50% of the sample, alongside accessory diopside, zoisite and epidote 

(Figure 4-17a). The remainder of the sample is anhedral, sericitized plagioclase and 

deformed quartz preserving evidence of bulging and sub grain recrystallisation (Figure 

4-17a,b). 

Samples 6a and 6b-1-10 are from the same outcrop but have very different textures. 6a-1-

10 is composed almost entirely of anhedral elongated amphibole crystals, up to 4mm 

long, with pockets of quartz and plagioclase (Figure 4-17c). Sample 6b-1-10 instead has a 

fine grained matrix, predominantly made of amphibole, with a mortar like texture (Figure 

4-17d). Distinct areas are dominated by plagioclase and quartz, again with a mortar 

texture, forming pockets throughout the amphibole rich matrix (Figure 4-17e,f). Larger 

amphibole and quartz porphyroblasts are seen throughout the sample (Figure 4-17f).  

E F 
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Figure 4-17: Photomicrographs of Bubino amphibolite samples. A: Anherdral amphibole and 

sericitisized plagioclase alongside dynamically recrystallised quartz from sample 4-1-10, B: Quartz 

and plagioclase band in sample 4-1-10, C: Large anhedral amphibole crystal, sample 6a-1-10, D: 

fine grained amphibole rich matrix, sample 6b-1-10, E: pocket of fine grained felsic material, 

sample 6b-1-10, F: Larger amphibole, plagioclase and quartz crystals surrounded by fine grained 

matrix, sample 6b-1-10 

4.4.3.2 Byala-Reka and Kesebir domes 

4 garnet bearing amphibolites were studied from the flanks of the two metamorphic 

domes: samples 7b-1-02, 12-1-02, 18-1-11 and 19-1-11. With the exception of 12-1-02 all 

contain poikioblastic garnet porhyroblasts, alongside a pervasive foliation defined by 

amphibole and epidote, that post-dates garnet formation (Figure 4-18a,b). Garnets are 

heavily fractured and resorbed, containing abundant inclusions of epidote and clinozoisite 

(Figure 4-18,d). The matrix is predominantly amphibole and epidote, with areas of heavily 

coroded poikioblastic plagioclase crystals (Figure 4-18). Epidote crystals can reach up to  
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Figure 4-18: Photomicrographs of samples from flanks of the Byala-Reka and Kesebir domes. A: 

Foliation defined by amphibole and epidote crystal, alongside large resorbed porphyroblastic 

plagioclase crystals  from sample 19-1-11, B: Resorbed garnet and associated amphibole and 

chlorite surrounded wrapped by foliated amphibole in sample 19-1-11, C: Large amphibole 

crystal altering to epidote in sample 19-1-11, D: Large inclusion rich fractured and resorbed 

garnet, surrounded by quartz vein parallel to foliation in sample 18-1-11, E & F: Resorbed kyanite 

crystal and small, strongly resorbed garnet from sample 12-1-02, G: Anhedral, orientated 

amphibole and strongly resorbed plagioclase from sample 8-1-10, H: Calcite, plagioclase and 

epidote rich vein of sample 15-1-11.    
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1mm in diameter and are seen forming form amphibole (Figure 4-18c). Quartz veins 

parallel to foliation are common, displaying evidence of dynamic recrystallisation (Figure 

4-18d). Sample 12-1-02 is unique amongst all mafic samples from the Eastern Rhodope 

Mts., due to heavily resorbed kyanite porphyroblasts throughout the matrix (Figure 

4-18e,f).  Garnet is rare, and where present crystals are small and highly resorbed, 

containing inclusions of quartz (Figure 4-18e,f). 

Samples 8-1-10, 9-1-10 and 15-1-11 are the 3 non-garnet bearing samples from this area. 

Samples 8-1-10 and 15-1-11 have a clear foliation defined by amphibole and chlorite 

crystals, which range from elongated and prismatic to anhedral in shape (Figure 4-18g). A 

series of discontinuous quartz veins run parallel to the foliation. Poikioblastic anhedral 

plagioclase crystals are common, containing inclusions of zoisite/epdiote. A large (3mm 

thick) calcite, epidote and plagioclase vein is seen cross cutting sample 15-1-11(Figure 

4-18h). Sample 9 -1-10 is predominantly plagioclase and quartz. These crystals form 

spherical pockets outlined by amphibole and chlorite, up to 1 cm in diameter.  

 

4.4.3.3 Ivaylovgrad 

The two samples from Ivaylovgrad are very different. Sample 26-1-11, from the dam wall 

contains small (<300 µm) euhedral-subhedral inclusion poor garnets within a matrix of 

predominantly large (up to 2mm diameter), subhedral, amphibole and clinopyroxene 

(augite/diopside) crystals (Figure 4-19a,b). There are many examples of garnet included 

within amphibole crystal. Areas of the matrix contain clinozoisite – plagioclase 

symplectites (Figure 4-19b). Epidote is present, but restricted to a vein network that cross-

cuts the entire sample. Sample 27-1-11 closely resembles the garnet-amphibolites from 

the flanks of the metamorphic domes. Garnets are anhedral (Figure 4-19c), and a clear 

foliation is defined by elongated prismatic amphibole crystals, and associated epidote and 

poikioblastic plagioclase (Figure 4-19d).  
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Figure 4-19: Photomicrographs of eclogite samples from Ivaylovgrad. A: Small subhedral inclusion 

free garnets, hosted by larger subhedral amphibole crystals (sample 26-1-11), B: Diopside and 

amphibole crystals, alongside small inclusion free garnet and clinozoisite plagioclase symplectite 

(sample 26-1-11), C: Elongated amphibole and chlorite crystals, small resorbed inclusion poor 

garnets and foliation parallel quartz veins (sample 27-1-11), D: Poikioblastic anhedral plagioclase 

crystals, alongside elongated amphibole crystals (sample 27-1-11).  

4.4.3.4 Zlatovgrad 

Samples 4-1-11 and 7-1-11 come from Zlatovgrad, an area of the upper high grade 

basement unit 30 km NW of the Kesebir dome. Both samples are composed of elongated, 

foliated amphibole and plagioclase. In sample 4-1-11 amphibole and plagioclase are 

coarse grained and subhedral, ~1 mm in length (Figure 4-20a). Sample 7-1-11 is fine 

grained, and contains a number of discontinuous quartz veins parallel to the sample 

foliation (Figure 4-20b).  

  
Figure 4-20: Photomicrographs of samples from Zlatovgrad. A: Coarse grained elongated 

amphibole and plagioclase crystals (sample 4-1-11), B: Fine grained elongated amphibole, and 

foliation parallel quartz vein (sample 7-1-11).  
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4.4.3.5 Implications of petrographical observations 

Widespread petrographical variation is seen amongst the metabasic samples of the 

Bulgarian Eastern Rhodope Mts. Some samples, such as those from Bubino exhibit no 

evidence of a HP garnet-amphibolite/eclogite facies metamorphic event. Here, the 

observed petrographic differences are likely a result of contrasting protoliths and post 

metamorphic deformation.  Sample 26-1-11, from Ivaylovgrad, is the only sample which 

texturally resembles the eclogites from the Central Rhodope Mts. The clinozoiste-

plagioclase symplectites in this sample could represent a further degree of retrogression 

following the hydration of omphacite. Kyanite porphyroblasts in sample 12-1-02 also 

indicate a previous HP metamorphic event, likely from the breakdown of anorthite. No 

omphacite, or amphibole-plagioclase/diopside-plagioclase symplectite which would 

indicate eclogite facies conditions were found in any of the samples   

Varying degrees of retrogression in greenschist facies between samples is recorded, with 

both epidote and clinozoisite commonly seen both as veins and constituent parts of the 

matrix. Veining of calcite and epidote in some samples likely reflects differing degrees of 

interaction with other units of the upper high grade basement unit.  

 

4.4.4 Mineral Chemistry and Thermobarometry 

4.4.4.1 Garnet 

The major element chemistry of garnets from 4 samples was measured from the Eastern 

Rhodope Mts. (2 from the Avren Synform, 1 from Egrek and 1 from Ivaylovgrad). Results 

are presented in Table 4-9, and a graphical representation of the garnet composition for 

each sample is presented in Figure 4-21. All analysed garnets from the Eastern Rhodope 

Mts. are almandine rich (Alm43.3-59.1). Large variation is seen in both pyrope (Pyp5.9-25) and 

spessartine (Sps 1.2-8.9) content, but grossular is consistent in all samples (Gross22.3-29.3). No 

consistent variation is seen between the core and rim in any sample.  The most pyrope 

rich sample (26-1-11 from the Ivaylovgrad dam) is also the sample with lowest almandine 

and spessartine content.  

 

 

 

 



108 
 

  19-1-11 26-1-11 12-1-02 7b-1-02 

  Rim Mid Core Rim Mid Core Small  rim core rim core 

O
x

id
e

 w
t%

, 
O

 b
y

 s
to

ic
h

io
m

e
tr

y
 

SiO2 37.5 37.5 37.4 39.0 39.0 39.0 39.0 38.2 38.1 37.3 37.4 

TiO2 0.2 0.1 0.2 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 

Al2O3 20.8 20.8 20.8 21.5 21.6 21.5 21.4 21.7 21.6 21.0 21.1 

Cr2O3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 

Fe2O3 1.4 1.4 1.4 0.8 0.8 0.8 0.8 0.0 0.1 0.6 0.7 

FeO 26.5 27.0 25.9 20.5 20.5 20.4 20.3 23.9 23.6 25.1 25.6 

MnO 3.4 3.2 3.9 0.6 0.5 0.6 0.5 3.4 3.8 2.8 3.3 

MgO 1.5 1.6 1.4 6.5 6.7 6.7 6.2 4.0 4.0 3.5 2.9 

CaO 9.9 9.7 10.1 10.9 10.7 10.7 11.5 8.6 8.6 8.4 8.6 

total 101.1 101.2 101.0 99.9 99.9 99.8 99.8 100.0 99.9 98.9 99.6 

Fe=FeO 27.8 28.2 27.1 21.3 21.2 21.1 21.0 23.9 23.7 25.7 26.2 

C
a

ti
o

n
s 

to
 1

2
 O

 

Si 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 

Ti 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Al 1.9 1.9 1.9 1.9 2.0 2.0 1.9 2.0 2.0 2.0 2.0 

Cr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fe
3+

 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fe
2+

 1.8 1.8 1.7 1.3 1.3 1.3 1.3 1.6 1.6 1.7 1.7 

Mn 0.2 0.2 0.3 0.0 0.0 0.0 0.0 0.2 0.3 0.2 0.2 

Mg 0.2 0.2 0.2 0.7 0.8 0.8 0.7 0.5 0.5 0.4 0.3 

Ca 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.7 0.7 0.7 0.7 

total 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 

 Mg# 9.0 9.2 8.6 36.1 36.8 37.1 35.1 23.1 23.3 19.9 16.9 

 And 4.2 4.1 4.1 2.4 2.3 2.4 2.5 0.0 0.3 1.9 2.0 

 pyp 5.9 6.2 5.5 24.9 25.6 25.8 23.7 15.8 15.8 14.0 11.7 

 Sps 7.7 7.2 8.9 1.2 1.2 1.3 1.2 7.5 8.4 6.3 7.4 

 Gross 24.2 23.4 24.8 27.5 27.2 26.9 29.3 24.1 23.8 22.3 22.6 

 alm 58.1 59.1 56.6 43.8 43.7 43.5 43.3 52.4 51.6 55.5 56.3 

 n 12 19 13 22 26 13 8 8 7 7 6 

 

Table 4-9: Summary of  EPMA analyses of garnet from the Eastern Rhodope Mts. 

 

 

 

 

 

 

 

 

 

Figure 4-21: Ternary diagram showing garnet compositions for Eastern Rhodope metabasic samples 
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4.4.4.2 Amphibole 

The major element chemistry of amphibole was measured for 7 samples from across the 

Eastern Rhodope Mts.  A summary of all results is presented in Table 4-10. Following the 

Leake et al. (1997) classification scheme, all amphiboles analysed during this study are 

calcic, with CaB ≥ 1.5. All analyses are plotted on the relevant classification diagrams 

(Figure 4-22a,b), with the division being based on the (Na+K)A content of each analysis.The 

majority of samples have a broad range of compositions spanning the tschermakite and 

magnesio-hornblende fields.  Samples 4-1-10, 8-1-10 and 26-1-11 all contain some crystals 

with an elevated (Na+K)A content, plotting in the pargasite field. Sample 26-1-11 contains 

the broadest range of amphibole compositions of all analysed samples. In addition, some 

analyses plot in the actinolite and edenite fields.  Like the amphibole analyses from the 

Central Rhodope Mts. a strong correlation is observed between both (Na+K)A and AlIV and 

Ti and AlIV (Figure 4-23), again reflecting the broad spectrum of metamorphic grades under 

which these amphiboles formed (Spear, 1993). 

 

 

A 

B 

Figure 4-22: Classification of calcic amphibole using diagrams from Leake et al. (1997). A: analyses 

with CaB ≥ 1..5, (Na+K)A < 0.5 &  CaA < 0.5, B: Amphibole analyses where CaB  ≥ 1.5, 

(Na+K)A,  ≥ 0.5 & Ti < 0.5  
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Figure 4-23: Plot of amphibole mineral chemistry. A: Plot of (Na+K)A vs Al
IV

, B: Plot of Ti 

vs AlIV 

 

 

A 

B 
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Bubino Avren Synform Ivaylovgrad 

  

4-1-10 6a-1-10 8-1-10 7b-1-02 12-1-02 23-1-02 26-1-11 

  

core rim core rim core rim core rim core rim core rim core rim 

O
xi

d
e

 w
t%

, 
O

 b
y

 s
to

ic
h

io
m

e
tr

y 

SiO2 40.2 40.7 48.0 46.8 42.2 42.2 42.5 42.7 44.5 44.8 47.0 48.3 45.4 45.7 

TiO2 1.0 0.8 0.4 0.5 0.7 0.6 0.6 0.6 0.4 0.4 0.4 0.3 0.9 0.7 

Al2O3 16.2 14.3 7.9 9.7 13.4 13.0 14.0 13.7 14.5 14.1 11.1 9.4 13.3 13.5 

Cr2O3 0.0 0.0 0.1 0.1 0.0 0.1 0.0 0.0 0.1 0.1 0.1 0.3 0.0 0.0 

Fe2O3 5.3 5.4 6.0 6.1 5.3 5.1 6.0 6.0 4.2 4.1 4.1 3.6 2.2 2.8 

FeO 9.6 10.7 4.6 5.3 10.1 10.7 10.7 10.6 8.3 9.0 6.9 6.8 7.4 6.6 

MnO 0.3 0.4 0.2 0.2 0.2 0.2 0.3 0.4 0.3 0.3 0.3 0.2 0.0 0.1 

MgO 8.2 8.6 15.4 14.5 10.7 10.5 10.5 10.7 11.8 11.6 13.9 14.8 14.2 14.2 

CaO 12.6 12.1 11.5 11.3 11.4 11.6 10.9 10.7 11.5 11.6 11.5 11.7 11.8 11.7 

Na2O 1.6 1.5 1.2 1.5 1.8 1.7 1.9 1.9 1.6 1.6 1.7 1.4 2.4 2.2 

K2O 0.9 0.7 0.2 0.2 0.7 0.6 0.2 0.3 0.3 0.3 0.5 0.3 0.1 0.1 

F 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Cl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

H2O* 2.0 2.0 2.1 2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.1 2.1 

Total 98.0 97.2 97.5 98.4 98.5 98.3 99.9 99.8 99.6 100.1 99.7 99.3 99.8 99.8 

C
a

ti
o

n
s 

to
 2

3
O

 

Si 6.1 6.2 7.0 6.8 6.3 6.3 6.3 6.3 6.4 6.5 6.8 6.9 6.5 6.5 

Al iv 1.9 1.8 1.0 1.2 1.7 1.7 1.7 1.7 1.6 1.5 1.2 1.1 1.5 1.5 

Al vi 0.9 0.8 0.3 0.4 0.7 0.6 0.7 0.7 0.9 0.9 0.6 0.5 0.7 0.8 

Ti 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1 

Cr 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Fe3+ 0.6 0.6 0.6 0.7 0.6 0.6 0.7 0.7 0.5 0.4 0.4 0.4 0.2 0.3 

Fe2+ 1.2 1.4 0.6 0.6 1.3 1.3 1.3 1.3 1.0 1.1 0.8 0.8 0.9 0.8 

Mn 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

Mg 1.8 1.9 3.3 3.1 2.4 2.3 2.3 2.3 2.6 2.5 3.0 3.2 3.0 3.0 

Ca 2.0 2.0 1.8 1.8 1.8 1.9 1.7 1.7 1.8 1.8 1.8 1.8 1.8 1.8 

Na 0.5 0.4 0.3 0.4 0.5 0.5 0.5 0.6 0.5 0.4 0.5 0.4 0.7 0.6 

K 0.2 0.1 0.0 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.1 0.1 0.0 0.0 

 Total 15.4 15.4 15.1 15.2 15.5 15.5 15.4 15.4 15.3 15.3 15.3 15.2 15.5 15.4 

 n 13 16 19 15 12 14 3 4 5 7 5 5 9 18 

Table 4-10: Summary of amphibole EPMA 

analyses from across the Eastern 

Rhodope Mts.  
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4.4.4.3 Plagioclase  

The major element chemistry of plagioclase from 7 samples from across the Eastern 

Rhodope Mts. was measured. A summary of all results is presented in Table 4-12. 

Plagioclase from all samples is albite rich (Ab65.9-80.3, An18.9-37.7), and display a consistent 

albite enrichment in the core of crystals relative to the rim. Plagioclase from samples 26-1-

11 and 12-1-02 are andesine, and all other analyses are oligoclase. One crystal of 

bytownite (Ab15.6An84.3) was analysed in sample 12-1-02. 

4.4.4.4 Eastern Rhodope Mts. Thermobarometry 

The lack of distinct indicators for eclogite facies metamorphism in all samples from the 

Eastern Rhodope Mts. could indicate a larger range of valid geothermobarometers for this 

suite of samples. Preliminary tests conducted using the garnet-hornblende thermometer 

(Ravna, 2000) and the garnet-amphibole-plagioclase-quartz barometer (Kohn and Spear, 

1990) however yielded low pressure and temperature estimates (temperatures between 

400 and 560 °C  and pressures between 7.5 and 11 Kbar) indicating that garnet was not in 

equilibrium with plagioclase or amphibole in these samples. As such, pressures and 

temperatures were calculated using the amphibole-plagioclase thermobarometers 

described in section 4.3.6. The composition of adjacent minerals from the matrix of 

samples was used for calculations, resulting in minimum estimates for pressures and 

temperatures experienced by samples. Results are presented in Table 4-11. Temperatures 

calculated using the Holland and Blundy (1994) amphibole-plagioclase thermometer range 

between 580 and 710 °C, and pressures calculated using the Bhadra and Bhattacharya 

(2007) amphibole-plagioclase barometer range between 2.5 and 12.2 Kbar.  

 

A n average max min stdev 

4-1-10 9 679.3 708.5 648.8 20.9 

6a-1-10 10 622.5 657.3 583.0 25.4 

8-1-10 11 671.1 693.1 649.1 13.8 

26-1-11 12 680.0 693.8 646.9 13.8 

B n average max min stdev 

4-1-10 9 7.0 10.0 5.8 1.4 

6a-1-10 9 4.9 6.0 2.5 1.1 

8-1-10 11 9.8 12.2 8.2 1.5 

26-1-11 12 7.8 8.9 6.3 1.0 

 Table 4-11: Summary of 

thermobarometric results for 

Eastern Rhodope Metabasic 

samples. All temperatures are 

reported in °C, and all pressures are 

reported in Kbar. A: Temperature 

estimates determined using the 

amphibole plagioclase thermometer 

of Holland and Blundy (1994), B: 

Pressures estimated using the 

amphibole-plagioclase barometer of 

Bhadra and Bhattacharya (2007).  



113 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bubino Avren Synform Ivaylovgrad 

 

4-1-10 6a-1-10 8-1-10 7b-1-02 12-1-02 23-1-02 26-1-11 

core rim core rim core rim core rim core rim core rim core rim 

SiO2 63.4 62.2 63.4 62.7 62.1 61.3 63.2 62.2 60.8 59.3 63.4 62.7 48.1 48.0 

TiO2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Al2O3 23.0 24.1 23.2 23.5 24.0 24.5 22.8 23.3 24.9 25.6 23.1 23.1 26.1 25.3 

FeO 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.4 0.1 0.2 0.1 0.2 0.3 0.1 

MnO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

MgO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 

CaO 4.1 5.0 4.1 4.5 5.1 5.7 4.1 4.7 6.2 7.1 4.2 4.3 15.6 16.0 

Na2O 9.6 9.1 9.6 9.3 9.0 8.8 9.3 9.1 8.2 7.7 9.4 9.3 4.3 4.6 

K2O 0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.2 0.0 0.0 

TOTAL 100.4 100.8 100.5 100.4 100.6 100.7 99.7 99.8 100.4 100.1 100.4 99.9 94.6 94.1 

Si 2.9 2.8 2.8 2.8 2.7 2.7 2.8 2.8 2.7 2.6 2.8 2.8 2.3 2.4 

Al 1.2 1.3 1.2 1.2 1.2 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Ti 0.0 0.0 0.0 0.0 0.0 0.0 1.2 1.2 1.3 1.3 1.2 1.2 1.5 1.5 

Fe 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Mn 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Mg 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Ca 0.2 0.2 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.3 0.2 0.2 0.8 0.8 

Na 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.8 0.8 0.4 0.4 

K 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Total 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.1 5.1 

Or 1.1 1.1 0.8 0.9 1.2 1.3 0.5 0.4 0.6 0.6 0.8 0.9 0.1 0.0 

Ab 79.8 75.9 80.3 78.2 75.1 72.7 79.9 77.3 69.7 65.5 79.7 78.9 66.7 65.9 

An 19.0 22.9 18.9 20.9 23.7 26.0 19.6 22.3 29.6 33.9 19.5 20.2 33.2 34.0 

n 3 10 9 13 8 11 5 3 13 15 6 6 14 12 

Table 4-12: Summary of plagioclase EPMA analyses from the Eastern Rhodope Mts. 
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4.4.4.5 Summary of key observation and implications for P-T history 

of samples  

The range of pyrope content of garnet seen across the area confirms the petrographic 

observations, with sample 26-1-11 appearing the most eclogitic sample in section 0, and 

correspondingly having the highest pyrope content of the garnets analysed. The two 

samples with the highest pyrope contents have the broadest range of amphibole 

compositions, spanning tschermakite to actinolite, indicating prolonged retrograde 

metamorphism under amphibolite – greenschist facies conditions. This could explain the 

lack of evidence beyond garnet composition for HP metamorphism. The lack of variation 

between remaining samples, in both mineral composition and P-T estimates indicates 

pervasive amphibole facies metamorphism for all samples across the Eastern Rhodope 

Mts.  

4.4.5 Bulk rock Geochemistry 

The whole rock major element chemistry of 5 metabasic samples and trace element 

chemistry of 12 metabasic samples from the Eastern Rhodope Mts. were measured. Major 

element concentrations are presented in Table 4-13 and trace and REE concentrations are 

presented in Table 4-14.  

 

Bubino Avren Egrek 

Sample 4-1-10. 6a-1-10. 6b-1-10. 8-1-10. 9-1-10. 

SiO2 62.4 49.6 51.7 51.3 57.3 

Al2O3 13.7 8.9 15.6 13.9 16.6 

FeO 7.3 10.6 10.0 12.0 8.0 

MgO 3.7 15.3 6.9 7.7 4.6 

MnO 0.1 0.2 0.2 0.2 0.2 

CaO 6.4 10.7 9.7 9.7 6.7 

K2O 1.2 0.3 0.2 0.6 0.3 

Na2O 3.3 1.5 3.6 2.7 5.2 

TiO2 1.0 0.4 0.9 1.3 0.9 

P2O5 0.3 0.0 0.1 0.1 0.2 

Table 4-13: Major element composition of 5 metabasic samples from the Eastern Rhodope Mts, 

measure via ICP-AES. All values are reported as Wt. %.  

 

4.4.5.1 Discrimination diagrams  

For the same reasons outlined in section 4.3.7.1, an igneous protolith has been assumed 

for all samples. As with the metabasic samples from the Central Rhodope Mts., a number 

of different discrimination diagrams have been used to constrain the protolith of 

individual samples (Figure 4-24). A diverse range of protoliths are suggested on the Hf-Th-
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Ta and Zr-Nb-Y diagrams (Figure 4-24a,b), encompassing MORB, island arc basalts and 

within plate basalt. This is not reflected in the discrimination diagrams of Vermeesch 

(2006) drawn using linear discriminant analysis (Figure 4-24c-f). The diagrams utilising the 

immobile elements Ti,V and Sm (Figure 4-24c,e,f) all suggest that protoliths are either 

MORB or IAB, with a larger population of MORB samples. The restriction of all samples to 

the IAB field on the Eu-Lu-Sr diagram (Figure 4-24d) is likely the result of the increased 

mobility of these elements relative to Ti, V and Sm, rather than being a true reflection of 

the protolith.   



116 
 

 Li Sc TiO2 (Wt%) V Cr Co Ni Cu Zn Rb Sr Y Zr Nb Cs Ba 

4-1-10* 1.9 21.6 1.0 128.7 93.4 22.2 223.2 52.4 72.4 17.8 166.6 49.3 210.4 14.9 0.3 246.0 

6a-1-10* 5.7 27.4 0.4 219.9 953.5 34.9 386.2 14.4 95.3 5.6 28.7 12.6 23.1 0.6 0.2 37.7 

6b-1-10* 1.8 34.2 0.9 269.8 206.7 31.7 72.7 22.2 68.1 3.2 184.6 25.7 51.1 0.8 0.5 75.1 

8-1-10* 27.6 43.7 1.3 295.6 208.0 31.7 65.9 50.8 95.7 7.1 206.3 34.7 83.2 4.4 0.2 41.7 

9-1-10* 4.4 25.7 0.9 150.9 119.6 18.4 40.4 60.4 98.4 1.9 232.2 27.6 199.2 56.4 0.2 419.8 

4-1-11 9.0 39.1 1.9 354.0 87.5 47.1 48.6 8.4 60.5 4.2 165.7 38.3 14.5 6.8 0.1 60.5 

7-1-11 23.8 43.7 2.2 400.6 90.4 44.2 54.0 56.1 117.9 6.1 115.4 51.0 4.8 3.6 0.0 34.1 

15-1-11 5.7 32.4 0.9 243.8 52.9 41.6 49.8 109.3 66.7 5.2 313.9 15.8 7.3 1.9 0.0 47.4 

18-1-11 10.2 44.8 1.8 322.3 146.4 61.4 87.5 82.7 94.0 8.8 343.0 31.0 6.7 8.6 0.8 30.7 

19-1-11 9.6 41.6 2.3 312.1 92.9 53.3 62.1 114.9 108.2 9.1 161.4 34.3 5.2 11.1 1.7 110.2 

26-1-11 9.0 51.9 1.3 568.1 8.5 64.5 9.7 185.3 97.3 8.4 106.0 7.3 2.6 5.6 0.3 60.5 

27-1-11 9.1 35.3 0.6 260.8 81.7 36.4 32.0 7.7 108.7 2.7 149.2 25.3 5.6 0.8 0.0 46.2 

 

 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Yb Lu Hf Ta Th U 

4-1-10* 59.8 114.5 13.9 59.0 13.5 2.3 10.8 1.6 7.9 1.6 4.7 5.2 0.7 5.7 0.9 10.4 1.2 
6a-1-10* 0.9 3.2 0.6 3.2 1.1 0.5 1.4 0.3 1.9 0.4 1.2 1.3 0.2 0.7 0.1 0.4 0.3 
6b-1-10* 4.0 9.1 1.5 8.3 2.9 1.0 3.1 0.7 4.0 0.9 2.3 2.5 0.4 1.6 0.1 0.9 0.3 
8-1-10* 4.4 10.5 1.7 9.1 3.3 1.1 3.9 0.9 5.3 1.2 3.3 3.6 0.5 2.2 0.3 0.3 0.2 
9-1-10* 21.8 40.8 5.5 24.2 5.5 1.5 4.9 1.1 4.5 1.0 2.7 2.9 0.4 7.3 3.5 6.1 1.4 
4-1-11 7.7 20.6 3.2 15.1 4.8 1.5 5.7 1.0 6.3 1.4 3.8 3.6 0.5 0.8 0.4 0.7 0.2 
7-1-11 5.4 16.3 2.8 14.2 5.0 1.7 6.8 1.2 8.0 1.8 5.0 4.6 0.7 0.3 0.3 0.3 0.1 
15-1-11 3.8 9.7 1.5 7.4 2.3 0.8 2.5 0.4 2.6 0.6 1.6 1.4 0.2 0.4 0.2 0.4 0.1 
18-1-11 8.7 21.1 3.1 14.3 4.3 1.4 5.1 0.9 5.3 1.1 3.1 2.8 0.4 0.3 0.4 0.6 0.2 
19-1-11 10.5 26.6 4.0 18.4 5.3 1.8 6.0 1.0 6.2 1.2 3.5 2.9 0.4 0.3 0.5 0.9 0.3 
26-1-11 0.3 1.0 0.2 1.2 0.6 0.6 1.0 0.2 1.3 0.3 0.9 0.8 0.1 0.2 8.2 0.0 0.0 
27-1-11 5.6 12.6 1.8 8.6 2.7 0.9 3.3 0.6 3.9 0.9 2.6 2.3 0.3 0.4 0.1 1.2 0.6 

Table 4-14: Whole rock trace and REE concentrations for Eastern Rhodope Metabasic samples. Samples marked with * were analysed at RHUL, all remaining samples were 

analysed at the Open University, summer 2013.  
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50*Sm 

Figure 4-24 Tectonic discrimination diagrams for metabasic samples from the Eastern  Rhodope Mts. A: 2010 samples plotted on Th-Hf-Ta discrimination diagram of Wood (1980), 

B :2010 sample plotted on Zr-Nb-Y diagram of Meschede (1986), C:  Ti-V discrimination of Shervais (1982) redrawn using linear discriminant analysis (Vermeesch, 2006), D: Ternary 

discrimination diagram utilising Eu, Sr and Lu  (Vermeesch, 2006) E & F: Discrimination diagrams utilising immobile element Ti, Sm and V plotted as a ternary diagram (E) and in log 

ratio space (F) (Vermeesch, 2006). MORB: Mid Ocean Ridge Basalt, OIB: Ocean Island Basalt, IAB: Island Arc Basalt  

A B C 

D E F 
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4.4.5.2 Chondrite normalised REE diagrams 

Chondrite normalised REE diagrams for all of the Eastern Rhodope metabasic units are 

presented in Figure 4-25. Patterns range from strongly LREE depleted with a positive Eu 

anomaly to strongly LREE enriched with a negative Eu anomaly. (La/Sm)N ratios range from 

0.3 to 2.8. All samples from the Avren Synform have flat to LREE enriched profiles. Sample 

26-1-11 from the Ivaylovgrad dam wall exhibits the strongest LREE depletion ((La/Sm)N = 

0.35), closely followed by sample 6a-1-10 from Bubino ((La/Sm)N = 0.54). Samples from 

Bubino exhibit the largest variation from a single area with (La/Sm)N ranging between 0.54 

and 2.8. With the exception of samples 26-1-11 and 4-1-10, little to no Eu anomaly is seen 

in any of the samples, with Eu/Eu* ranging between 0.7 and 1.2.  

 

Figure 4-25: Chondrite normalised REE diagram for metabasic samples from across the Eastern 

Rhodope Mts. Normalising values from Boynton (1985) 

4.4.5.3 MORB normalised trace element diagrams 

N-MORB normalised trace element diagrams, with elements plotted in order of increasing 

compatability are presented in Figure 4-26. As with the Central Rhodope samples, most 

analyses from the Open University in 2013 exhibit strong Zr and Hf depletions, attributed 

to incomplete zircon dissolution. HFSE profiles are uniformly flat, but concentrations 

relative to MORB vary greatly. There is no distinct pattern for the LILE; widespread 

variation is seen in both the absolute concentration of individual elements and their 

behaviour relative to neighbouring elements.  Approximately half of the samples preserve 

a negative Nb-Ta anomaly relative to U and La. Sample 26-1-11 is unique with a strong 

enrichment in Ta, U and Th depletions, and the lowest overall concentration of HFSE. At 

Bubino, widespread variation is seen from within the same outcrop. Sample 6a-1-10 has a 

uniformly flat HFSE profile, with some of the lowest concentrations, whereas sample 6b-1-
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10 has a strong negative Nb-Ta anomaly, and HFSE concentrations akin to N-MORB. There 

is no correlation between (La/Sm)Chondrite normalised and (La/Nb)MORB normalised.  

 

Figure 4-26: N-MORB normalised trace element data from across the Eatsern Rhodope Mts. 

Normalising values from McDonough and Sun (1995) 

4.4.5.4 Radiogenic Isotope geochemistry  

Whole rock Sr and Nd isotope measurements were made on 11 samples from across the 

Eastern Rhodpe Mts. As with the Central Rhodope Mts. samples, large variation was seen 

in fRb values, indicating crustal contamination. Results of the Sr isotope can be found in 

appendix B. Nd isotope measurements are presented in Table 4-15.As a result of unclear 

protolith ages, initial ratios have been calculated for protolith ages of both 570 Ma and 250 

Ma.  

 Sample 
143

Nd/
144

Nd 
570 Ma 250 Ma 

fSm 

 
initial ɛ

t
Nd initial ɛ

t
Nd 

Avren 

Synform 

1-14-02 0.512884 ± 7 0.512053 2.92 0.512520 3.98 0.13 

1-24-02 0.512986 ± 18 0.512171 5.22 0.512629 6.10 0.11 

1-8-02 0.512780 ± 16 0.511910 0.12 0.512399 1.61 0.18 

8-1-10 0.512987 ± 5 0.512172 5.24 0.512630 6.12 0.11 

9-1-10 0.512508 ± 4 0.511990 1.70 0.512281 -0.68 -0.30 

Ivaylovgrad 
23-1-02 0.512608 ± 6 0.511953 0.97 0.512321 0.09 -0.11 

27-1-11 0.512750 ± 7 0.512049 2.85 0.512443 2.48 -0.05 

Bubino 

4-1-10 0.512385 ± 5 0.511866 -0.72 0.512158 -3.09 -0.29 

6a-1-10 0.512934 ± 6 0.512160 5.01 0.512595 5.44 0.05 

6b-1-10 0.512940 ± 4 0.512152 4.85 0.512595 5.44 0.07 

Zlatovgrad 4-1-11 0.512932 ± 7 0.512221 6.20 0.512620 5.94 -0.03 

Table 4-15: Summary of Nd isotope data for Eastern Rhodope metabasic samples 
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Irrespective of the formation age used, large variations are seen in ɛt
Nd values, with 

Neoproterozoic protolith ages yielding ɛt
Nd values between -0.7 and 5.2, and Triassic ages 

yielding ɛt
Nd between -3.1 and 6.1. There is no geographical pattern to this variation, with 

samples from the same area yielding contrasting ɛt
Nd values. This indicates contrasting 

protoliths and/or formation ages between samples across the Eastern Rhodope Mts.   

4.4.5.5 Synthesis of whole rock geochemistry 

Geochemical analysis of the Eastern Rhodope metabasic units indicates a broad array of 

protoliths. Tectonic discrimination diagrams, trace element geochemistry and Nd isotopes 

all indicate protoliths ranging from N-MORB through to island arc basalts. This is 

particularly apparent on the REE plots, with (La/Sm)N ranging from 0.3  to 2.8. At first 

glance, there is no obvious trend in sample protolith on the basis of geographical location, 

with contrasting protoliths from the same area.  Samples 6a-1-10 and 6b-1-10 from Bubino 

are essentially the same outcrop, reflected in the near identical ɛt
Nd values, yet large 

differences are observed in the REE and trace element geochemical profiles. The LREE 

depleted profile of sample 6a-1-10 is characteristic of an N-MORB protolith, whereas 

sample 6b-1-10 has a flat REE profile and a distinct negative Nb-Ta anomaly indicative of an 

increased SSZ component. The same contrasting protolith characteristics are seen in 

samples from Ivaylovgrad (26-1-11 and 27-1-11).   

Of the samples from the Avren Synform and the flanks of the Byala-Reka and Kesebir 

domes, with the exception of sample 9-1-10 from Egrek, there is less indication of a SSZ 

input. These samples have flat REE profiles (La/Sm)N ranging between 0.67 and 1.23, no 

negative Nb and Ta anomaly on the MORB normalised trace element diagram, and positive 

ɛt
Nd values indicative of a MORB protolith. This would suggest that two distinct populations 

of metabasic samples can be identified across the Eastern Rhodope Mts.; one suite of 

samples where SSZ units are juxtaposed against MORB, and a second suite of MORB 

samples that lack this distinctive SSZ signature.  

4.4.6 Discussion of metabasic samples from the Eastern 

Rhodope Mts. 

This study has demonstrated the diverse and complex evolution of metabasic samples 

from across the Eastern Rhodope Mts. Few distinctions can be made between samples on 

the basis of petrographic observations; likely the result of the complex metamorphic 

history and variable P-T conditions experienced by samples. Sample geochemistry does 

however provide valuable information regarding protoliths across the Eastern Rhodope 

Mts.  



121 
 

Protoliths associated with a SSZ environment from Bubino are in keeping with bonninites 

previously reported from this area by Haydoutov et al. (2004). The diversity reported from 

the same outcrop at Bubino in this study (samples 6a-1-10 and 6b-1-10) does however 

indicate the juxtaposition of oceanic crust from contrasting tectonic settings. This same 

trend of contrasting MORB and SSZ signatures is seen for the two Ivaylovgrad samples (26-

1-11 and 27-1-11) and in the metabasic samples studied by Bonev et al. (2013) from the 

eastern flank of the Kesebir-Kardamos dome, in the vicinity of Egrek. Sample 9-1-10, also 

from Egrek, shares some of the SSZ characteristics with LREE enrichment and a low ɛ
t
Nd 

value. U-Pb zircon dating of these outcrops suggests Neoproterozoic (Carrigan et al., 2003) 

and Ordovician (Bonev et al., 2013) formation ages, with Carboniferous, Jurassic and 

Eocene metamorphic overprints. On this basis, these outcrops in Bulgaria appear to record 

a distinct Variscan metamorphic cycle, and were used as evidence for a Variscan aged 

suture between the upper and lower high grade basement by Haydoutov et al. (2004).  

The existence of a second, distinct population of metabasic samples with a stronger MORB 

affinity from the Avren Synform is supported by existing geochronological data. The oldest 

age of zircon from eclogite in the adjacent Kimi Complex of the Greek Rhodope Mts. is 288 

Ma, and the youngest reported age of inherited zircon in the associated UHP metapelites is 

300 Ma (Bauer et al., 2007).  These younger zircon ages from the Kimi Complex indicate a 

history postdating both formation and metamorphism of samples from Bubino and Egrek, 

and raise doubts concerning the existence of a Variscan suture between the upper and 

lower high grade basement units of the Eastern Rhodope Mts.   

How the Kimi Complex relates to the upper high grade basement of the Bulgarian Eastern 

Rhodope Mts. is poorly constrained. The Kimi Complex is mapped as a distinct tectonic 

slice separated from neighbouring regions by large scale Late Eocene/Oligocene 

detachment faults (Krohe and Mposkos, 2002). A clear tectonic contact, observed in the 

field, marks the boundary between the upper high grade basement and gneiss of the 

Byala-Reka dome, likely the continuation of the basal detachment fault of the Kimi 

complex. The western extent of the Kimi complex into Bulgaria is however unclear, and a 

number of different faults (normal, thrust and detachment) have been mapped throughout 

the Avren Synform, which could mark the boundary between the middle and upper 

allochthon. If the MORB samples of the Avren Synform represent a continuation of the 

Kimi Complex into Bulgaria, this would explain the contrasting metabasite populations 

identified in this study.  
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Jahn-Awe et al. (2010) however did not separate the Kimi Complex from the remainder of 

the upper high grade basement unit of the Eastern Rhodope Mts. In their study all units 

were attributed to the upper allochthon, and the boundary with the lowermost allochthon 

was proposed to represent a Cenozoic suture. The heterogeneous nature of metabasic 

units of  the upper high grade basement of the Eastern Rhodope Mts. presented in this 

study suggests the grouping of all units together is an over simplification, and further work 

is required to establish the limits of the pre and post Variscan metamorphic units of the 

Eastern Rhodope Mts.  

4.5  Comparison of metabasic samples from the Central and 

Eastern Rhodope Mts.  
A link between the metabasic units of the Central and Eastern areas on the basis of shared 

stratigraphic relationships and boninitic/Island arc protoliths has previously been proposed 

(Daieva et al., 2007).  This connected history is reinforced by the discovery of 

microdiamond inclusions in garnet from metapelitic units from across the RM (Mposkos 

and Kostopoulos, 2001, Schmidt et al., 2010).  Exact linkages are however complicated by 

contrasting stratigraphic terminology between studies, and a wide array of proposed 

formation and metamorphic ages for individual units (See chapter 5).  

This chapter has highlighted the varied nature of the metabasic units over a small area in 

the central Rhodope Mts. There is a clear distinction between the VF and Arda units on the 

basis of both geochemistry and field relationships that reinforces the previously reported 

conflicting geochronological data. This same distinction of two populations is observed in 

the Eastern Rhodope Mts. As such, there is a population of Pre-Mesozoic metabasic 

samples unrelated to the UHP metamorphic event across the RM.  

Contrasting protoliths are seen within this Pre-Mesozoic group of samples.  The MORB 

nature of many of the Pre-Mesozoic samples from the Eastern Rhodope Mts., combined 

with an increased amount of associated ultramafic units relative to the Central Rhodope 

Mts. could reflect increased preservation of oceanic crust/sheeted dyke complex, 

essentially the basement units of a more complete ophiolite succession. The Arda units of 

the Central Rhodope Mts. would then represent only the overlying island arc portion of the 

oceanic crust. In that sense the entire life cycle of a Variscan subduction-exhumation event 

is recorded in this suite of samples. This scenario is hard to reconcile with the reported 

Eocene eclogite ages reported by Kirchenbaur et al. (2012), unless their garnet-whole rock 
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Lu-Hf ages are recording exhumation and emplacement processes rather than the peak 

metamorphic event. 

 A MORB protolith is recognised across the RM for all garnet bearing amphibolite samples 

within the VF. This common protolith, combined with the shared UHP conditions for 

metapelites as reported in chapter 3,  requires a novel exhumation mechanism to emplace 

the ‘melange’ at different stratigraphic levels across the massif.  The mechanism proposed 

by Mposkos et al. (2010), whereby all units of the VF are part of the same subducting slab, 

and the current stratigraphy of the Central Rhodope Mts. is the result of fragments of the 

Upper Allochthon being caught beneath the lower Allochthon during Cenozoic thrusting is 

a viable scenario.  The timing of this subduction event and the associated peak 

metamorphic event is a controversial topic, and will be discussed in detail in chapter 5.  

4.6 Chapter Summary  

• Two contrasting populations of metabasic units have been identified in both the 

Central and Eastern Rhodope Mts.  

• An older, Pre-Mesozoic population records a diverse range of protoliths 

incorporating both MORB and SSZ protoliths 

• A second group of metabasic samples with MORB protoliths are found within the 

VF, in close association with the UHP units. There is no indication that these 

samples experienced the same UHP conditions as the associated metapelites  

• Common links between both populations have been recognised across the 

Rhodope Massif 
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Chapter 5 : Timing of UHP metamorphism across the 
Rhodope Massif 

5.1 Introduction 
As alluded to in chapter 2, the timing of UHP metamorphism across the Rhodope Massif is 

unclear. A number of different ages have been proposed in the literature, ranging from 

171 Ma to 40 Ma, and 4 viable time periods have been suggested for the UHP 

metamorphic event across the RM (Liati et al., 2011). In this chapter, I report new Sm-Nd 

garnet ages for the metapelites from the Central and Eastern Rhodope Mts. studied in 

chapter 3. I discuss the validity of these new ages and their implication for the tectonic 

evolution of the Rhodope Massif. 

5.2 Overview of existing geochronolgical data    

5.2.1 The Rhodope Massif 
In recent years a large number of geochronological studies have been conducted across 

the Rhodope Massif, utilising a variety of different dating techniques.  A summary of all 

existing age data for the age of the metamorphic event across the RM is presented in Table 

5-1, and presented as a histogram in Figure 5-1 

Age 

(Ma) 

Error    

( ±Ma) 
Rock Type Location 

Dating 

technique 
Reference 

567 
 

Eclogite C-RM BG Lu-Hf Grt-Omp (Savov et al., 2007) 

~300 
 

Metagabbro E-RM BG U-Pb zircon 
(Carrigan et al., 

2003) ~300 
 

Eclogite C-RM BG Lu-Hf Grt-Omp (Savov et al., 2007) 

~186 
 

metapelite C-RM GC U-Pb Monazite  
(Reischmann and 

Kostopoulos, 2002b) 

171 1 metapelite E-RM GC U-Pb zircon (Bauer et al., 2007) ~160 
 

Eclogite E-RM GC U-Pb zircon (Bauer et al., 2007) 

160 1 Metapelite E-RM GC U-Pb zircon (Bauer et al., 2007) 

153 13 Amphibolite C-RM GC Sm-Nd Grt 
(Kostopolous, in 

Burg (2011)) ~150 
 

Garnet Gneiss E-RM GC U-Pb zircon (Liati et al., 2011) ~150 
 

Metapelite C-RM BG U-Pb Monazite (Didier et al., 2012) 

148.8 2.2 Paragneiss C-RM GC U-Pb zircon (Liati, 2005) 

147.2 4.7 Paragneiss C-RM GC U-Pb zircon (Liati, 2005) 

143.4 3.3 Eclogite C-RM GC U-Pb zircon (Liati, 2005) ~140 
 

Metapelite C-RM BG U-Pb monazite (Bosse et al., 2010) 

140 4 Metapelite C-RM GC Sm-Nd Grt 
(Reischmann and 

Kostopoulos, 2002b) ~130 
 

Metapelite C-RM GC U-Pb zircon (Krenn et al., 2010) 

126 0.7 Eclogite C-RM BG Lu-Hf Grt 
(Kirchenbaur et al., 

2012) 
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Age 

(Ma) 

Error    

( ±Ma) 
Rock Type Location 

Dating 

technique 
Reference 

119 3.5 Garnet-Pyroxenite E-RM GC Sm-Nd Grt 
(Wawrzenitz and 

Mposkos, 1997) 

117 1.9 
Garnet 

amphibolite 
E-RM GC U-Pb zircon (Liati et al., 2002) 

~115 
 

Eclogite E-RM GC U-Pb zircon (Bauer et al., 2007) 

82.8 1.3 Paragneiss C-RM GC U-Pb zircon (Liati, 2005) 

79 3 Eclogite E-RM GC U-Pb zircon (Bauer et al., 2007) ~77 
 

Pegmatites C-RM GC U-Pb zircon (Bosse et al., 2009) 

73.9 0.8 Garnet Gneiss E-RM GC U-Pb zircon (Liati et al., 2011) 

73.5 3.4 Grt Amphibolite E-RM GC U-Pb zircon (Liati et al., 2002) 

72.9 1.1 Pyroxenite E-RM GC U-Pb zircon (Liati et al., 2002) 

71.4 1.1 Orthogneiss E-RM GC U-Pb zircon (Liati et al., 2011) 

55.9 7.2 Orthogneiss C-RM BG U-Pb zircon 
(von Quadt et al., 

2006) 

51 1 
Garnet 

Amphibolite 
C-RM GC U-Pb zircon 

(Liati and Fanning, 

2005) ~50 
 

Metapelite C-RM BG U-Pb monazite (Didier et al., 2012) 

49.1 6 Metagabbro E-RM BG U-Pb zircon (Bonev et al., 2010a) 

~43 
 

Eclogite C-RM BG Lu-Hf Grt 
(Kirchenbaur et al., 

2012) 

42.4 1.4 Pyroxenite C-RM GC U-Pb zircon (Liati et al., 2011) 

42.2 0.9 Amp Eclogite C-RM GC U-Pb zircon (Liati et al., 2002) 

42.1 1.2 Pegmatites C-RM BG U-Pb Monazite (Bosse et al., 2009) ~40 
 

Leucosome C-RM GC U-Pb zircon (Liati et al., 2002) ~40 
 

Metapelite C-RM BG U-Pb Monazite (Bosse et al., 2010) 

39.7 1.2 Lecuosome C-RM GC U-Pb zircon (Liati, 2005) 

38.1 0.8 
Garnet 

Amphibolite 
C-RM GC U-Pb zircon (Liati, 2005) 

Table 5-1: Summary of all available published metamorphic ages for the Rhodope Massif. E-RM: 

Eastern Rhodope Mts., C-RM: Central Rhodope Mts., GC: Greece, BG: Bulgaria, OMP: omphacite, 

Grt: Garnet.  

It is clear from both Table 5-1 and Figure 5-1 that pulses in metamorphic activity have 

occurred during the formation of the RM. Accordingly, recreating the history of the RM 

and placing constraints on the timing of the UHP metamorphic event(s), particularly for the 

oldest units is extremely difficult. A recent review paper (Liati et al., 2011) further refined 

the pulses shown in Figure 5-1 to suggest 4 HP events, all of which are possible for the age 

of UHP metamorphism. These are ca. 150 Ma, ca. 73 Ma, ca. 51 Ma and ca, 42 Ma.  As 

shown in Table 5-1, the majority of ages are U-Pb zircon dates.  Although a very robust 

chronometer, with a high closure temperature that results in geological meaningful ages 

(Lee et al., 1997), it has the additional complication of inheritance, and the complexity of 

multiple metamorphic rims on single grains.  In recent year this has been combated via 

trace element analysis, which has been used to distinguish magmatic and metamorphic 
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zones within individual crystals. Zircon that formed under high pressure conditions has 

been shown to have a flatter REE profile and  a smaller negative Eu anomaly than their 

magmatic counterparts (Rubatto, 2002).  Zircons from all four of the possible UHP age 

groups have these HP indicators, and as such constraining the UHP event through zircon 

geochronology is problematic (Liati et al., 2011).  

 

Figure 5-1: Histogram of ages displayed in Table 5-1. The 3 distinct post Variscan episodes of 

(U)HP metamorphism are shown, with peaks focused around ca. 150 Ma, 80 Ma & 45 Ma.  Bin 

size: 5 Ma.  

In the Liati et al. (2011) study the Jurassic (ca. 150 Ma ) was favoured as the most likely 

time for UHP metamorphism, due to the lack of extensive recrystallization of the ca. 150 

Ma zircon domain, which would be expected with subsequent UHP metamorphism. They 

do however concede that a Jurassic UHP event fails to explain the preservation of 

microdiamond inclusions and exsolution textures within garnets in the same samples, and 

all four periods are possible candidates for the timing of UHP metamorphism.   

Studies attempting to date garnet, the only host of UHP indicators across the RM yield 

largely contrasting results, with ages ranging from 567 Ma, to 40 Ma.  The Neoproterozoic 

and Carboniferous ages from metabasic samples are interpreted as relicts of the Pan 

African and Hercynian Orogeny (Carrigan et al., 2005, Savov et al., 2007) which have been 

correlated with ages from ophiolite successions in the Balkan Terrane to the North (Savov 

et al., 2001). These are therefore unrelated to the UHP metamorphic event. The remaining 

garnet ages broadly coincide with the pulses recognised in the zircon record. The majority 

of these studies have focused on dating eclogite. Only one study has dated garnets from a 
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UHP metapelite unit in the RM (Reischmann and Kostopoulos, 2002b), which yielded a 140 

Ma age.  

One anomaly is a 119 Ma age reported from a garnet pyroxenite body in the Kimi complex, 

which was interpreted as the timing of eclogite facies metamorphism (Wawrzenitz and 

Mposkos, 1997). The only similar reported age is 117 Ma reported for oscillatory zircon 

domains from a garnet rich mafic rock (Liati et al., 2002), which was interpreted as the 

time of crystallisation of a (U)HP cumulate. The relationship between these mid-

Cretaceous ages and the proposed (U)HP events remains unclear.  

5.2.2 Geochronology of the Bulgarian Central Rhodope Mts.  

Significantly less geochronological work has been performed on the Bulgarian Central 

Rhodope Mts. relative to the rest of the Rhodope Massif.  The oldest ages in the Central 

Rhodope Mts. come from eclogite samples hosted by the Arda 2 gneiss. Neoproterozoic  

protolith ages are recorded in the cores of zircons from two samples: U-Pb TIMS dating of 

zircons from a gabbroic eclogite yielded ages of ~ 610 Ma, whereas zircons from a basaltic 

eclogite yielded ages of ~ 560 Ma, 440 Ma and 265 Ma (Arkadakskiy et al., 2003). These 

ages, alongside a Carboniferous metamorphic overprint have also  been replicated in 

eclogites from the Central Rhodope Mts. and the Ograzhden Mts. to the west, dated via 

Lu-Hf Grt-Omph geochronology (Savov et al., 2007). These dates have been used, in 

conjunction with Variscan zircon rims from the Eastern Rhodope Mts. (Carrigan et al., 

2003), to infer a widespread Variscan HP metamorphic event across the entire RM. The 

relationship between these Neoproterozoic eclogites and the HP/UHP units of the UHP 

units of the VF, as discussed in chapter 4, is currently unconstrained (Burg, 2011). 

On the basis of Y concentrations two populations of monazite have been identified in 

metapelities from the Chepelare Shear Zone (Bosse et al., 2010, Didier et al., 2012). 

Monazite inclusions in garnet and kyanite are uniformly depleted in Y, where matrix 

crystals have strong Y enrichment in the rim, likely the result of garnet resorbtion. These 

two zones reveal distinctly different ages; Y poor regions produced 
208

Pb/
232

Th ages 

between 130 and 155 Ma, whereas Y rich regions produced Cenozoic ages between 40 and 

50 Ma.  These Cenozoic ages are inkeeping with monazite  dates from pegmatites hosted 

by felsic gneiss within the Variegated Formation, interpreted as the formation age of this 

body (Bosse et al., 2009). In the same study, U-Pb zircon dating did not reveal such a clear 

story, with Triassic zircon cores surrounded by complex Late Cretaceous overgrowth 
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patterns. These were interpreted as relicts from one or more Mesozoic metamorphic 

cycles (Bosse et al., 2009).  

As discussed in chapter 4, Cenozoic ages are also reported from eclogite samples within 

the Chepelare Shear Zone (Kirchenbaur et al., 2012). In this study, Lu-Hf  garnet-whole rock 

dating yielded ages of 45 Ma. Fission track dating of zircons and apatites from gneiss and 

associated migmatites from the Central Rhodope Mts. also all yield Eocene – Oligocene 

ages, ranging from 35 – 20 Ma (Wüthrich, 2009). It remains unclear whether these ages 

represent a regional cooling event from amphibolite to greenschist facies (Burg, 2011), or 

an Eocene HP subduction exhumation cycle (Nagel et al., 2012).  

5.3 Sample selection 
In this study, 5 kyanite-garnet schist samples from the vicinity of Chepelare were chosen 

for Sm-Nd garnet geochronology in the TIMS facility at Boston University.  These samples 

were selected to encompass the three main petrographic end members described in detail 

in chapter 3. Samples 3-1-10 and 38-1-11 both have a strong foliation defined by biotite, 

samples 27-1-10 and 2-1-11 both have a quartz rich matrix with little biotite, and sample 

47-1-11 is one of the samples donated by the Bulgarian Natural History Museum with no 

visible matrix. A map showing the location of each sample is presented in Figure 5-2. In 

addition, one kyanite-garnet schist sample (sample 11-1-11) and a layered serpentinised 

garnet peridotite sample (sample 22-1-11) were dated from the Bulgarian part of the Kimi 

complex in the Eastern Rhodope Mts. 6 garnet amphibolite and eclogite samples were also 

prepared for Sm-Nd garnet dating, but unfortunately their partial dissolution technique 

(See section 5.5.1) could not be perfected and no meaningful ages were produced. In 

addition, zircons were extracted and dated from a metagabbro sample in the Eastern 

Rhodope Mts. (sample 8-1-12).  
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Figure 5-2: Geological map in the vicinity of Chepelare in the Central Rhodope Mts. Location of 

dated kyanite-garnet schist samples are highlighted 

  

5.4 Overview of garnet geochronology 

5.4.1 Why date garnet?  
Garnet is a key metamorphic mineral that occurs over a wide range of conditions and in a 

diverse array of tectonic settings. It generally records prograde growth conditions, and 

often preserves chemical and age zonation upon exhumation (Baxter and Scherer, 2013). 

As such, dating the age of garnet crystals is a powerful tool to aid understanding the 

formation history of a sample. In addition, provenance issues associated with dating of 

inclusions such as zircon or monazite are removed 

A large variety of methods have bee used to date garnets over the years. Early studies 

attempted to use the U-Pb and Rb-Sr systems (Mezger et al., 1989, Christensen et al., 

1989). These were shown to be inappropriate, largely due to vast numbers of inclusions 

and element mobility in crustal fluids (Sousa et al., 2013). As a result, 
176

Lu – 
176

Hf and 

147
Sm - 

143
Nd have become the isotope systems of choice for dating the age of a garnet 

crystal (Baxter and Scherer, 2013). This is the result of ubiquitous HREE enrichment of 

garnet resulting in high Sm/Nd and Lu/Hf ratios. Both systems are widely used, and tend to 

Amphibolite 

Gneiss 

Kyanite Schist 

Marble 

Eclogite 
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complement each other with their own distinct advantages and disadvantages, which are 

discussed in section 5.4.2 

 

5.4.2 Common problems associated with garnet geochronology 

There are a number of issues related to garnet geochronology that need to be addressed in 

order to correctly interpret garnet ages. These are summarised below 

1) Isotope systematics: garnet strongly fractionates Sm over Nd and Lu over Hf – the basis 

for both systems acting as viable geochronometers. The Lu fractionation is stronger than 

Sm, resulting in very high Lu/Hf parent daughter ratios, especially in the core of garnets. 

This has been suggested as a possible explanation for older ages produced for the Lu-Hf 

system relative to the Sm-Nd system for the same garnet crystals (Skora et al., 2009). 

This problem can be exacerbated by the effects of resorption of the garnet crystal (Smit et 

al., 2010). During resorption, Lu concentrations are raised in the rim of the relict crystal, 

whereas Hf, due to its incompatible nature is lost from the crystal. This redistribution of Lu 

and Hf produces ages that are markedly younger than the garnet crystallisation age (Kelly 

et al., 2011). Conversely, intracrystalline diffusion of Lu relative to Hf can lead to anti 

clockwise rotation of the isochron, and apparent older ages (Kohn, 2009). A combination of 

these two factors has been suggested as the reason behind the large spread in ages 

observed in some Lu-Hf data sets (Anczkiewicz et al., 2012).  This is less of a problem for 

the Sm-Nd system, as there is a much smaller difference in diffusion rate between Sm and 

Nd (Baxter and Scherer, 2013).                                                                                                                                                                                                                           

2) Inclusions: The presence of inclusions rich in Hf (rutile, zircon) and Nd (monazite) results 

in the measurement of artificially high concentrations for these elements in garnet. The 

consequence of this is a small spread in the parent/daughter isotopes, and as a result a 

large uncertainty associated with the calculated age. Partial dissolution techniques can be 

been used to dissolve such inclusions in garnet, therefore removing their effect from the 

garnet analysis (Dewolf et al., 1996, Anczkiewicz and Thirlwall, 2003, Pollington and Baxter, 

2011). Although applicable to the Sm/Nd system where no preferential leaching of Sm vs 

Nd or vice versa occurs (Pollington and Baxter, 2011), it has been shown that leachates 

preferentially leach Lu relative to Hf, rendering partial dissolution inappropriate for Lu-Hf 

dating (Scherer et al., 2000). Instead, techniques that involve preferential dissolution of 

garnet relative to refractory minerals such as zircon and rutile have been established 

(Lagos et al., 2007).   
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3) Thermal resetting: For garnets that experience temperatures > 700 °C, diffusional 

resetting of their age starts to become a problem. It is widely accepted that the Lu-Hf 

system has a higher closure temperature than the Sm-Nd system, and retains age 

information at higher temperatures. Many authors have attempted to put an exact 

temperature on the effective closure temperature of the Sm-Nd system, and published 

estimates range from 480 – 900 °C (Smit et al., 2013). The concept of closure temperature 

is however misleading. It is dependent on a number of factors including, size, composition, 

exhumation rate.  A recent study by Baxter and Scherer (2013), using published kinetic 

diffusion data for Nd in garnet (Tirone et al., 2005), demonstrated that it would take 360 

Ma to reset the age of a 5 mm garnet heated to 700 °C. A 1 mm diameter garnet would 

only take 14 Ma to reset under the same conditions. As such, it is impossible to assign a 

single temperature, and a number of different factors have to be evaluated to place the 

Sm-Nd garnet age of high temperature (>700 °C) in context. As shown in chapter 3, 

metapelites from the vicinity of Chepelare have experienced temperatures in the range of 

750 – 850 °C, and as such the impact of closure temperature on the garnet ages will be 

discussed in detail in section 5.8.1.    

5.4.3 Advantage of analysis of garnet as NdO+  

The increased ionisation efficiency of NdO+ relative to Nd metal has long been recognised, 

making the method ideally suited for the analysis of material of small/limited sample size 

(DePaolo and Wasserburg, 1976, Lugmair et al., 1976). Conventional techniques however 

to supply a source of oxygen (i.e. an oxygen bleed valve and/or silica gel) result in much 

poorer precision for NdO
+
 analyses when compared to Nd

+
. A recent advance in the 

analysis of very small aliquots ( < 10 ng) of Nd via Thermal Ionisation Mass spectrometry  

has occurred through the use of a Ta2O5 phosphoric acid slurry during loading to act as the 

required oxygen source  (Harvey and Baxter, 2009). 

Prior to the work of Harvey and Baxter (2009) the best reported  external precision for a 

NdO
+
   was 22 ppm  (2σ RSD) on a 10-15 ng load of La Jolla standard (Amelin and 

Rotenberg, 2004). This is significantly higher than the best measurements made with Nd
+
, 

where external precision can be as low as 2ppm  (2σ RSD) on a 300 – 500 ng load (Caro et 

al., 2006). Using the new technique of Harvey and Baxter (2009), studies have 

demonstrated that 1-10 ng Nd samples yield 
143

Nd/
144

Nd with 10-20ppm (2σ RSD) precision 

(Pollington and Baxter, 2011, Dragovic et al., 2012). 
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5.5 Laboratory technique  

5.5.1 Sample preparation and partial dissolution 

Samples were crushed using a steel hammer and anvil, from which approximately 0.1 g of 

garnet were picked and inspected via binoclular microscope to limit the amount of non-

garnet material included. The garnet then underwent further hand crushing in a tungsten 

carbide mortar and pestle to a grain size between 106 µm and 63 µm, using a 140-230 

mesh sieve. Typical mass loss during this final preparation stage was 50 – 60%. Samples 

were then processed using a frantz magnetic separator running at 0.5, before a final hand 

picking stage to ensure only garnet remained.  

The garnet samples then underwent a three step partial dissolution procedure to remove 

all remaining inclusions.  This procedure is largely based on that reported by Baxter et al. 

(2002) but has been modified after subsequent studies  (Pollington and Baxter, 2011, 

Dragovic et al., 2012) and a number of tests on samples from this study.  1 ml of HF was 

added to samples, before heating on a hotplate at 120 °C for 60 minutes in closed beakers. 

Samples were ultrasonicated for 5 minutes for every 10 minutes spent on the hotplate. 

The leachate was then decanted prior to a series of washing and decanting steps using 1.5 

N HCl and Milli-Q water. Once dry, 1ml of 1.5N HCl and 2ml of conc HClO4 was added and 

the samples were heated again in closed beakers for an hour at 150 °C. Samples were 

ultrasonicated for 5 minutes before and after this heating step. After the final 

ultrasonication, the beaker is attached to an elbow still and left to dry overnight on a 

hotplate at 150 °C. Once dry, the wash, ultrasonicate and decant steps using 1.5 N HCl and 

Milli-Q water were repeated. 2ml of 7N HNO3 was then added to the samples, which were 

then heated in closed beakers on a hotplate at 120 °C for 180 minutes. All samples were 

ultrasonicated for 5 minutes after every 55 minutes on the hotplate.  The HNO3 was then 

decanted, and the wash, ultrasonicate and decant steps using 1.5 N HCl and Milli-Q water 

were repeated. The final stage involves partial dissolution in aqua regia. 2ml of 6 N HCl and 

500 µl of concentrated HNO3 were added to samples, which were then ultrasonicated for 5 

minutes. Samples were heated in closed beakers on a hotplate for 50 minutes at 120 °C. 

Following a final ultrasonication for 5 minutes, the wash, ultrasonicate and decant steps 

using 1.5 N HCl and Milli-Q water were repeated.  

Samples were then dried, weighed and inspected under a microscope to ensure that only 

optically clean garnet remained.  Any impurities were removed via handpicking, although 

their presence was extremely rare. This partial dissolution method, although effective, 
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results in significant volume loss of garnet. On average 45-60% of the sample is lost, which 

when combined with the initial ~ 50% loss during hand crushing/sieving, results in up to 

80% total sample loss during sample preparation.  

5.5.2 Chemical separation of Sm and Nd 

Once clean, samples underwent full dissolution following a similar process to that 

described in Harvey and Baxter (2009).  Samples were dissolved in 2 ml of HF on a hotplate 

at ~ 120 °C. Once dissolved, the solutions were dried down and then re-dissolved in a mix 

of 2ml conc. HNO3 and 1 ml 6 N HCl. Once dissolved, these samples were again dried down 

and re-dssolved in a mix of 4ml 1.5 N HCl and 1ml 6N HNO3. This dissolution procedure 

failed to fully dissolve whole rock samples owing to the large abundance of kyanite in each 

sample. As a result, these samples were digested using Parr 4749 general purpose acid 

digestion bombs in an oven. The same sequence of chemical digestion was used, but 

samples were left for longer times in the oven to ensure full dissolution. Upon dissolution 

these samples were again dried down, ready for spiking and chromatographic separation. 

A mixed 
147

Sm-
150

Nd spike was used on all samples. Samples were passed through a series 

of three columns to separate Nd and Sm. The first column contained a cation exchange 

resin (AG50w-X4) to remove all Fe from the sample, as Fe has previously been shown to 

overwhelm the subsequent columns, resulting in a poor yield (Pollington and Baxter, 

2011). The second column is a teflon microcloumn containing Eichrom TRU-spec resin to 

isolate the rare earth elements, before a final 2-methyl lactic acid (MLA) column to 

separate Sm and Nd. MLA columns are used in preference to LN-spec columns to ensure 

complete separation of Pr from Nd.  

 

5.5.3 Dating of individual zones from a single garnet crystal 

4 large garnet crystals were extracted from kyanite garnet schist samples from the Central 

Rhodope Mts.; 2 from sample 27-1-10 and 2 from sample 2-1-11. These were cut through 

the geometric centre of the crystal, and polished to form a 2mm thick wafer. Samples were 

mapped for Ca, Mg, Fe and Mn via EPMA at the University of Leeds (see Figure 5-3A). A 

grid spacing of 250 µm was used for all samples. The probe was operated at an 

accelerating voltage of 15Kv, a probe current of 150 nA and a counting time of 5s for each 

of the 4 major cations.   

The best sample was selected for micro sampling at Boston University, following the 

procedure outlined in Pollington and Baxter (2011) and Dragovic et al. (2012). Using the 

Mn elemental map, 5 zones were defined and drilled using a NewWave MicroMill. The 
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garnet wafer was attached to a graphite block using Crystal Bond, a substance that is easily 

dissolved in acetone and has low concentrations of Nd. The block was surrounded by a 

water tight Teflon ring which allows drilling whilst the sample is submerged in milli-Q 

water, both ensuring a neat trench and preservation of the diamond drill bit (Figure 5-3B). 

Multiple traverses are made of each trench, with each pass drilling 50 µm deep. 5 trenches 

were drilled to isolate the 5 garnet zones (Figure 5-3A). Once extracted, each zone 

underwent the same hand crushing, magnetic separation and partial dissolution technique 

as described in section 5.5.1.   

Figure 5-3: A: Mn map of large garnet 

from sample 27-1-10. Trenches for 

micromilling, alongside points used for 

micromilling are shown. B: Photo 

showing drilling of a garnet submerged 

in milliQ water using the NewWave 

Micromill at Boston University 

 

 

5.5.4 Analytical technique 

All samples were analysed at the TIMS facility at Boston University, using a multicollector 

Thermo Finnigan TRITON mass spectrometer. Nd separates were loaded onto single Re 

filaments using 1µl of 2 M HNO3 with 2 µl of H3PO4 and Ta2O5 activator slurry, as described 

in Harvey and Baxter (2009). The triton was run in static mode with amplifier rotation, and 

Nd was measured as NdO
+
.
 
In-house Nd standard solution (Ames metal) yielded a mean of 

143
Nd/

144
Nd=0.5121318 ± 0.000016 (31 ppm, 2 RSD, n=35), and in house Sm standard 

solution yielded a mean  
147

Sm/
152

Sm of 0.560820 ± 0.000021 (39ppm, 2 RSD, n=28) over 

the duration of sample analysis for this study. Whole procedural blanks ranged between 

13.4 and 26.1 pg for Nd, and around 3.3 pg for Sm. The blank value for samples that were 

bombed using acid digestion vessels was measured at 171 pg. This high blank value is the 

A B 
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result of contamination restricted to this sample, and is unlikely to be representative of the 

other samples that were ‘bombed’. Unfortunately the Sm blank value could not be 

calculated, due to a combination of a poor yield from the MLA columns and high pressure 

when run on the Triton. 3 column blanks ranged between 12 and 20 pg for Nd, and were 

consistently 1.6 pg for Sm.  

5.6 Results – Central Rhodope Mts.  

5.6.1 Bulk Garnet Separates  
The isotopic compositions of 5 bulk garnet separates are presented in Table 5-3. Multiple 

repeats were conducted on samples 47-1-11 and 3-1-10, the diamond bearing sample. 

With the exception of sample 47-1-11, all samples yielded good 
147

Sm/
144

Nd (>1.0), and low 

Nd concentrations < 0.5 ppm, suggesting successful elimination of contaminating 

inclusions.  Calculated garnet ages range between 70.3 and 99.6 Ma (Table 5-2). All ages 

were calculated using the Isoplot Program (Ludwig, 2003).  

 

 

 

There are a number of disadvantages to utilising two point iscohrons as used in this 

technique. Two point isoschrons always define a perfect line, so there is no check on the 

degree of geological scatter and adherence to isochron assumptions. They do however 

have the advantage that there is no chance of introducing phases into the isochron that 

may have formed at different times within the sample; isotopic equilibrium on a two point 

isochron is significantly more likely. In this study, 2 point isochrons were constructed for all 

samples studied. In addition, multiple garnet separates were processed for two samples, 

samples 3-1-10 and 47-1-11, which allowed the construction of multipoint isochrons in 

addition to the 2-point iscohrons (Figure 5-4).   

The isochron for sample 3-1-10 (Figure 5-4a) has a very low MSWD of 0.08, reflecting 

overestimation of analytical uncertainties in the calculation of the isochron. The high 

A Age Error 

38-1-11 80.6 3.0 

27-1-10 89.3 6.0 

3-1-10 70.3 2.4 

3-1-10 2 70.8 2.7 

2-1-11 89.7 2.3 

47-1-11 91.5 4.6 

47-1-11 2 99.6 5.3 

 B Age Error MSWD 

3-1-10 70.5 1.9 0.08 

47-1-11 95 73 8 

Table 5-2: A: Age data calculated from 2 point 

isochrons for kyanite-garnet schist samples 

from the vicinity of Chepelare. B: Age data 

calculated using 3 point isochrons (multiple 

bulk garnet separates)   
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MSWD value for sample 47-1-11 (Figure 5-4b) is the result of the large error associated 

with the garnet analyses in this samples, and subsequent increased scatter on the ischron. 

Despite this, both of these multipoint isochrons do replicate the same ages (within error) 

as the 2-point isochrons, significantly increasing confidence in the technique used. The 

reason for the larger error associated with sample 47-1-11 is unclear. Both garnet 

separates have higher Nd concentrations than the other samples (Table 5-3). Extra time in 

HF for the 2
nd

 garnet separate actually had the inverse effect of lowering the 
147

Sm/
144

Nd 

ratio. This could be the result of near complete dissolution off all silicate inclusions, 

resulting in the undesired effect of the HF attacking the garnet that remains, therefore 

lowering the measured 
147

Sm/
144

Nd ratio. Alternatively, there was simply a Nd rich 

inclusion that the partial dissolution technique failed to eliminate in both analyses, in 

which case the older (ca. 90 Ma) age for this sample should not be trusted.  
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Figure 5-4: A: 3 point iscohron calculated for sample 3-1-10, the diamond 

bearing sample from Chepelare, Central Rhodope Mts. B: 3 point isochron 

calculated for sample 47-1-11, the phaneritic “museum” sample, also from 

Chepelare.  

 

A: Sample 3-1-10 

B: Sample 47-1-11 
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Sample Sm (ppm) Nd (ppm) ng Nd loaded 
147

Sm/
144

Nd ± 2 S.E. (ppm) 
143

Nd/
144

Nd ± 2 S.E. (ppm) 

38-1-11 Grt 1.026 0.367 13.1 1.690875 0.000389 0.512771 0.000030 

27-1-10 Grt 1.749 0.498 6.7 2.122316 0.000788 0.513150 0.000079 

3-1-10 Grt 1 0.457 0.208 4.4 1.331532 0.000306 0.512441 0.000017 

3-1-10 Grt 2 0.537 0.309 9.6 1.049758 0.000085 0.512314 0.000015 

2-1-11 Grt 0.837 0.375 10.3 1.351216 0.000430 0.512598 0.000013 

47-1-11 Grt 1 1.006 1.005 18.9 0.605892 0.000207 0.512212 0.000012 

47-1-11 Grt 2 0.792 1.065 16.9 0.449974 0.000050 0.512135 0.000008 

38-1-11 WR 17.392 94.458 72.99 0.111374 0.000026 0.511938 0.000007 

27-1-10 WR 10.822 70.294 69.36 0.093124 0.000021 0.511965 0.000006 

3-1-10 WR 8.304 45.382 49.21 0.110683 0.000012 0.511879 0.000008 

2-1-11 WR 11.950 64.308 78.35 0.112403 0.000026 0.511871 0.000014 

47-1-11 WR 2.538 11.294 48.40 0.135933 0.000031 0.511930 0.000008 

Table 5-3: Sm-Nd isotope data collected for both whole rock samples and garnet separates. BG: Bulk garnet separate, WR: Whole rock 

Sample Sm (ppm) Nd (ppm) ng Nd loaded 
147

Sm/
144

Nd ± 2 S.E. (ppm) 
143

Nd/
144

Nd ± 2 S.E. (ppm) 

27-1-10 Z1 1.184 0.483 6.52 1.482306 0.000547 0.512406 0.000011 

27-1-10 Z2 0.410 0.228 1.10 1.090185 0.000467 0.512454 0.000043 

27-1-10 Z3 0.818 0.412 3.28 1.201346 0.000313 0.512556 0.000021 

27-1-10 Z4 0.927 0.629 10.22 0.891774 0.000307 0.512405 0.000017 

27-1-10 Z5 1.046 0.598 3.34 1.058207 0.000243 0.512490 0.000021 

27-1-10 P1 3.632 14.675 5.12 0.149733 0.000042 0.511899 0.000013 

27-1-10 P5 36.791 220.6 158.4 0.100879 0.000023 0.511846 0.000005 

Table 5-4: Sm-Nd isotope data for single zoned garnet crystal. Z1-Z5 correspond to zones 1- 5 defined in Figure 5-3, P1 and P5: Garnet powders collected during hand 

crushing of zones 1 and 5 
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5.6.2 Single Zoned Crystal 
Results from dating of the five garnet zones from the same large garnet crystal (sample 27-

1-10) are reported in Table 5-4.  At first glance these ages appear wrong, as it is obviously 

impossible to have a garnet core younger than its rim. Zone 5 was run through columns at 

a later date, ensuring there was no mix up in the column chemistry, and these calculated 

ages are correct for each zone processed.  

A younger age for the garnet core is difficult to explain. Commonly, artificially young ages 

in Sm/Nd garnet geochronology are the result of incomplete removal of younger monazite 

inclusions during partial dissolution. As the two inner zones underwent the same partial 

dissolution procedure as the three outer zones, and both have high 
147

Sm/
144

Nd values this 

appears unlikely. A resistant retrograde mineral unique to the garnet core, such as allanite, 

could explain the anomaly, but none have been identified as inclusions in garnet from the 

thin section of this sample.  

Resorption and recrystallization of the core during retrograde metamorphism, akin to 

formation of atoll garnet, would explain the age profile, but this is not reflected in thin 

section textures, and is not in keeping with the prograde zonation preserved in garnet 

crystals.  Younger garnet cores have previously been recognised in garnets form Gore 

Mountain, in the Adirondack highlands of upstate New York (Mezger et al., 1992). In this 

study, they attributed the resetting of the core to the result of a denser inclusion 

population effectively decreasing the grain size and facilitating resetting more easily than 

the rim.  Although possible, it is hard to envisage this occurring when the rims of the 

crystal preserve no evidence of resetting to this 40 Ma age. Alternatively, a shift in the 

whole rock 
143

Nd/
144

Nd occurred between growth of the core and the outer zones. The 

partial melting and subsequent open system behaviour described in Chapter 3 could 

facilitate this, assuming melting and new garnet growth occurred simultaneously. This is 

the favoured explanation for the anomalous core ages. Alternatively physical mixing of 

different sample populations (e.g. in a cataclasite) could account for a shift in the whole 

rock 
143

Nd/
144

Nd. If this occurred, any petrological evidence has been destroyed through 

subsequent HP/HT metamorphism.  

Because of the close fit of all the garnet ages (with the exception of zone 1), a series of 

multi point isochrons were constructed. Results are displayed in Table 5-4, and all 

calculated multipoint isochrons are displayed in Figure 5-6. All yield ages in the vicinity of 

the 84 Ma, with the best fit (MSWD of 0.85) coming from the combination of zones 3, 4 

and 5 with the WR measurement, yielding an age of 82.9 ± 2 Ma.  
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A) Age Error 

Zone 1 48.6 1.4 

Zone 2 75.1 6.6 

Zone 3 81.5 3 

Zone 4 84.4 3.4 

Zone 5 83.2 3.4 
 

 

 

 B) Age Error MSWD 

Z3+Z4+Z5+WR 82.9 2 0.85 

Z3+Z4+Z5+WR+BG 83.5 1.9 2 

Z2+Z3+Z4+Z5+ 

WR+BG 
86 12 3 

 

 

Table 5-5: A: Age information from 2 point isochrons calculated for each individual zone, B: Age 

information calculated from a series of different multipoint isochrons displayed in Figure 5-6 

83.2 ± 3.4 Ma 

81.5 ± 3 Ma 

84.4 ± 3.4 Ma 

75.1 ± 6.6 Ma 

48.6 ± 1.4 Ma 

Figure 5-5: EPMA Mn elemental map of the single zoned garnet crystal 

annotated with age information. Crystal diameter ~ 2.5 cm 
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Figure 5-6: TL: Overview 

of all isotope data 

collected from the zoned 

garnet crystal. TR: 5 point 

isochron calculated using 

the WR, BG and Z3, Z4 

and Z5 values. BL: 6 point 

isochron calculated using 

the WR, BG and Z2, Z3, Z4 

and Z5 values. BR: 4 point 

isochron calculated using 

Z3, Z4, Z5 and WR values.  
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5.7 Results – Eastern Rhodope Mts.  
Results of the Sm-Nd garnet geochronology performed on Eastern Rhodope samples are 

presented in Table 5-6a, and calculated ages are presented in Table 5-6b.  Both samples 

yielded high 147Sm/144Nd ratios, suggesting successful cleaning of samples and mitigation of 

the effects of inclusions not in equilibrium the garnet. The large error associated with the 

analysis of sample 22-1-11 is the result of the very small size of the garnet aggregate post 

partial dissolution, and subsequent small amount of Nd loaded. The garnet peridotite 

sample, 22-1-11 yielded ages broadly similar to the metapelites from the Central Rhodope 

Mts, with an Sm-Nd age of 73.4 ± 4.3 Ma.  The kyanite-garnet schist sample, 11-1-11 

produced a significantly younger age of 37.6 ± 1.2 Ma.  

In addition to the garnet geochronology, U-Pb Zircon dating was performed on a 

metagabbro sample from the vicinity of the town of Avren.  ~	80 kg of sample were 

processed, from which zircons were extracted and characterised via cathode luminescence 

spectroscopy. 8 zircons were then dated in the LA-ICP-MS lab in the Geological Institute at 

the Bulgarian Academy of Sciences following analytical procedures as outlined in Aysal et 

al. (2012). A  PerkinElmer Elan DRC-eICP-MS connected to a NewWave UP193FC laser 

ablation system was used for all analyses. CL images of all analysed zircons are presented 

in Figure 5-8.  All collected isotopic data is presented in Table 5-6C, and a Concordia 

diagram of all results is presented in Figure 5-7. The large spread in ages is inconclusive, 

but do suggest Proterozoic-Cambrian and Carboniferous age clusters, with Pb loss events 

around 249, 75 and 34 Ma.   

 

Figure 5-7: Concordia 

diagram plotted for the 

8 zircons analysed from 

the Avren metagabbro 

sample (8-1-12) from 

the Eastern Rhodope 

Mts., in close proximity 

to sample  22-1-11 , the 

73.4 Ma garnet 

peridotite sample.  

 



143 
 

Sample Sm (ppm) Nd (ppm) ng Nd loaded 
147

Sm/
144

Nd ± 2 S.E. (ppm) 
143

Nd/
144

Nd ± 2 S.E. (ppm) 

Kyanite 

Schist 

11-1-11 BG 1.585729 0.336676 5.444055 2.849039 0.000655 0.512900 0.000021 

11-1-11 WR 5.926138 31.087001 54.46773 0.115312 0.000027 0.512228 0.000007 

Layered 

Serpentinite 

22-1-11 BG 0.096213 0.032738 0.813208 1.777736 0.000409 0.513553 0.000041 

22-1-11 WR 0.27512094 0.649462879 4.237320 0.256242 0.000126 0.512817 0.000010 

 

 

 

 

 

 

 

 

 

 

Age Error 

11-1-11 Grt 37.6 1.2 

22-1-11 Grt 74 4.3 

Zircon 
207

Pb/
235

U 1σ error 
206

Pb/
238

U 1σ error 
206

Pb/
238

U 1σ error 

1 1.2994 0.0517 0.1410 0.0021 850.1 11.87 

3 0.7494 0.0558 0.0929 0.0018 572.7 10.63 

2c 0.5636 0.0279 0.0574 0.0010 359.6 5.83 

5 0.7232 0.0469 0.0809 0.0016 501.6 9.32 

6 0.5633 0.0354 0.0621 0.0012 388.5 7.09 

8 0.2731 0.0168 0.0394 0.0007 249 4.39 

9 0.0648 0.0074 0.0049 0.0002 31.5 0.93 

4 0.1170 0.0079 0.0117 0.0002 75.2 1.51 

Table 5-6: A: Sm-Nd isotope data collected for Eastern Rhodope samples (BG: Bulk garnet separates, WR: Whole rock sample), B: Age information calculated 

from Sm-Nd isotope data using 2 point isochrons, C: U/Pb isotope data collected for metagabbro sample 8-1-12, with ages highlighted in red  
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Figure 5-8: Cathode luminescence images of all zircons analysed in this study. Red circles correspond to LA-ICP-MS spots 
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5.8 Discussion 

5.8.1 Metamorphic growth ages or thermal resetting of Sm-Nd 

age? 

As previously shown in chapter 3, metapelites in this study have experienced peak 

temperature conditions in the range of ~	750 – 850 ºC and have undergone varying 

degrees of partial melting, putting the samples at risk of thermal resetting of Sm-Nd 

profiles (Smit et al., 2013). The preservation of Mn and Ca prograde growth zones by 

Chepelare metapelites however indicates a limited degree of thermal resetting of garnet 

ages. Garnet size is another key factor in the extent of thermal resetting of garnet, as 

discussed in section 5.4.2. It is intuitive that longer timescales are required to fully reset 

larger garnets (Baxter and Scherer, 2013). No correlation is observed in this study between 

garnet ages and garnet size. As such the ages determined in this work for Central Rhodope 

metapelite samples are assumed to represent garnet growth ages, rather than a thermal 

resetting event.  

As described in chapter 3, sample 11-1-11 from the Eastern Rhodope Mts. has a very 

different appearance to those samples from the Central Rhodope Mts. Quartz, and 

plagioclase are widespread, and both kyanite and garnet crystals are heavily resorbed and 

fractured – all of which can be expected by a late stage partial melting event, and 

therefore the young 37.6 ± 1.2 Ma age determined in this study is unsurprising.  Very 

similar ages have been reported from late stage pegmatite bodies emplaced in the nearby 

Kimi Complex (Liati and Gebauer, 1999), and for nearby igneous intrusions bodies 

(Marchev et al., 2013), suggesting a thermal resetting event rather than a distinct 

metamorphic event.  This ca. 40 Ma thermal resetting age recorded in metapelites from 

the Eastern Rhodopes is related to the Late Eocene – Early Oligocene zone that forms part 

of the Macedonion-Rhodope-North Aegean belt (Marchev et al., 2013). This is a ~ 250 km 

belt of post collisional adakitic rocks that formed following the collision of the Rhodope 

and Pelagonian Massifs (Christofides et al., 1998, Marchev et al., 2013, Rohrmeier et al., 

2013).  A deep slab break off event has been suggested as the likely trigger for this large 

scale asthenospheric upwelling, and associated regional core complex formation (Marchev 

et al., 2013).  

5.8.2 Why is there a large spread in ages? 

There is a large spread in the calculated ages for the 5 garnet aggregate samples in the 

vicinity of Chepelare, with over 20Ma between the oldest and youngest samples. Repeat 
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analysis of garnet aggregates from samples 3-1-10 and 47-1-11 yield the same age, 

suggesting preferential sampling of rim vs. core (or vice versa) during sample preparation is 

unlikely. There is also no geographical pattern to the ages collected. 

Thermal resetting is possible to account for the large spread in ages, owing to the effect of 

grain size on the cooling rate of crystals – larger crystals would take a longer time to cool 

below the closure temperature. But as demonstrated in section 5.8.1, thermal setting 

appears unlikely, and there is no correlation between garnet age and average garnet size. 

There is however an apparent correlation between the age of sample and its petrological 

make up. Samples with a biotite rich matrix (3-1-10 & 38-1-11) yield the youngest ages (Ca. 

70 Ma and 80.6 Ma). Both samples 2-1-11, and 27-1-10 have a quartz rich matrix, and ages 

ca. 90 Ma, whereas the two garnet aggregates from sample 47-1-11 yielded ages of 91.5 

Ma and 99 Ma. In chapter 3 these distinct petrological end members were linked with 

varying degrees of partial melting. If partial melting has altered the whole rock 
143

Nd/
144

Nd 

ratio, as suggested by the anomalously young core of the large zoned single crystal from 

sample 27-1-10, this could account for the observed spread in ages. This is however largely 

dependent on when in the P-T-t history of samples melting occurred. Although the large 

zoned garnet indicates melting contemporaneous with garnet growth, repeats of samples 

3-1-10 and of 47-1-11 replicating the same age shows the whole rock 
143

Nd/
144

Nd in these 

samples did not change significantly during garnet growth, in keeping with the petrological 

observations of exhumation related meting tied to phengite/biotite dehydration. Large 

variations in whole rock 
143

Nd/
144

Nd cannot have occurred upon exhumation, owing to the 

low MSWD values for the 3 point isochrons of samples 3-1-10 and 47-1-11. 

The spread in ages could also be related to the partial dissolution technique used to 

cleanse the garnet of inclusions. The repeat analysis of 47-1-11 yielded a lower Sm/Nd 

ratio despite a longer time in HF, so some degree of the spread in ages could be related to 

the inclusion density within crystals and the degree of garnet dissolution during the partial 

dissolution stages. Alternatively the ages are simply real, reflecting formation of garnet 

over a ~20 Ma period. This is in keeping with the large spread of ages in the calc-alkaline 

magmatic rocks found in the Sredno Gora zone to the north, which will be discussed 

further in section 5.8.4.  The cause of age spread cannot be established with the current 

dataset, but does not detract from the clear evidence for a Late Cretaceous (U)HP 

metamorphic event in the vicinity of Chepelare. 
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5.8.3 How significant are these ages relative to published data 

from both the Central Rhodope Mts. and the entire RM? 
Despite being widespread across the RM (Figure 5-1), Late Cretaceous ages have not 

previously been reported from metamorphic units in the Bulgarian Central Rhodope Mts. 

The only prior evidence was from zircon rims within Cenozoic pegmatite bodies (Bosse et 

al., 2009). If just the bulk garnet separates were analysed in this study, the Late Cretaceous 

ages produced could be interpreted as averaging of the ca. 150 Ma and ca. 40 Ma domains 

recorded in the monazite record (Bosse et al., 2010, Didier et al., 2012) . The dating of 

individual zones within a garnet crystal demonstrates that this is not possible, and the 

garnets in this study do, for the first time record a Late Cretaceous metamorphic event in 

the Bulgarian Central Rhodope Mts.      

There is currently no evidence for HP metamorphism in the Hercynian Gneiss of the Arda 

dome. All metamorphic zircon populations are Eocene aged, and restricted to discordant 

leucosomes thought to be related to an amphibolite facies metamorphic event (Cherneva 

and Georgieva, 2005). Previous studies of metapelites from the Chepelare Shear Zone have 

also found Eocene aged monazite crystals in the matrix of samples (Bosse et al., 2009). 

Together, this age information suggests that the juxtaposition of metapelites with the Arda 

gneiss occurred after the peak metamorphic period, but prior to the Eocene amphibolite 

facies event, placing key constraints on the exhumation history of the Chepelare 

metapelites. This will be discussed further in chapter 6.  

Late Cretaceous ages rare in the vicinity of Chepelare, but have been widely reported from 

across the RM. Previously recognised in HP zircon rims from both garnet rich mafic rocks 

and their surrounding orthogneiss in the Kimi Complex (Liati et al., 2002, Liati et al., 2011), 

both the layered garnet peridotite and metagabbro samples dated in this study record 

metamorphic events during this same period. This new age link between the Central and 

Eastern Rhodopes provides extra credibility to the idea of a Late Cretaceous UHP event, 

and questions the interpretation of a single long lasting subduction-exhumation cycle 

spanning the Jurassic to the Eocene as proposed by Turpaud and Reischmann (2010). The 

Eocene age from the Eastern Rhodope metapelite in this study has been widely reported in 

previous geochronological studies from across the Rhodope Massif (Liati and Seidel, 1996, 

Kirchenbaur et al., 2012, Nagel et al., 2012). In these studies it was linked with a distinct 

metamorphic event rather than thermal resetting as suggested by this work. The 

implications of these new ages on the geodynamic evolution of the RM will be discussed 

further in chapter 6.   
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5.8.4 How do these new ages relate to the surrounding area? 
It is widely accepted that the much of the formation history of the RM is closely associated 

with the northwards subduction of the African plate under the Eurasian Margin and the 

closure of the Tethys ocean (Burg, 2011). This has been imaged in a number of seismic 

tomography studies of the Aegean, showing a clear northwards dipping high velocity 

anomaly, with pooling along the 660 km discontinuity (Bijwaard et al., 1998, Piromallo and 

Morelli, 2003), and interpreted as evidence for a long protracted subduction event  

spanning the Jurassic to the Eocene (Krenn et al., 2010, Turpaud and Reischmann, 2010).   

There is however increasing evidence in the Eastern Rhodopes for a southern dipping 

subduction zone during the Late Jurassic – Early Cretaceous associated with the closure of 

the Meliata–Maliac Ocean (Bonev et al., 2010c, Bonev and Stampfli, 2003). Studies of other 

continental collision systems (e.g. the Western and Central Alps) have also established that 

long lasting single subduction exhumation events are unlikely, and instead invoke multiple 

subduction cycles involving different micro continents and oceanic fragments to explain 

age peaks (Gebauer, 1999, Froitzheim, 2001, Liati et al., 2011). The pulsed nature of ages 

preserved in the metamorphic record across the RM, as demonstrated in Figure 5-1 

supports this view of multiple subduction exhumation events.   

The Late Cretaceous ages reported in this study fit well with the idea of a northwards 

dipping subduction zone at this time. The Sredna Gora zone to the north of the Rhodope 

Massif is composed of a series of large largely felsic calc-alklaine magmatic intrusions with 

subduction related signatures associated with large spread Cu-Au ore deposits. Ages for 

these intrusions range from 92 – 69 Ma, with a progressive younging from north to south 

associated with slab retreat (Georgiev et al., 2012, Peytcheva et al., 2008, von Quadt et al., 

2005). These ages have been replicated in numerous studies, and similar aged granitic 

bodies have even been recognised in the Rila Batholith of the Western Rhodopes 

(Peytcheva et al., 1998). This close geographical proximity between metamorphic and 

igneous units of the same age allows a number of key constraints to be placed on the 

evolution of the Massif, which will be discussed in chapter 6.  

5.9 Chapter Summary 
• 4 different age periods have previously been proposed for UHP metamorphism in 

the Rhodope Massif – Ca. 150 Ma, 80 Ma, 50 Ma and 40 Ma. 

• This study is the first to date metapelitic garnet, the only host of UHP indicators 

across the RM  
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• Sm/NdO+ geochronology of both garnet aggregates and zones from within a single 

crystal suggest a Late Cretaceous metamorphic event. 

• The Late Cretaceous age is in keeping with both proposed regional northwards 

dipping subduction zone, and widespread Late Cretaceous magmatism found with 

the Sredna Gora zone to the north of the RM.  
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Chapter 6 : Discussion 

6.1 Geodynamic implications of Late-Cretaceous 

UHP metamorphism on formation of the RM 
In Chapter 2, two contrasting geodynamic models for the evolution of the Rhodope Massif 

were summarised. These were: 

1) A long lasting northwards dipping subduction zone spanning the Jurassic to the 

Late Cretaceous/Paleocene (Burg, 2011, Krenn et al., 2010, Turpaud and 

Reischmann, 2010),   

2) Multiple distinct subduction-exhumation events spanning the Jurassic – Eocene, 

with UHP samples forming in the southwards dipping Jurassic subduction zone 

(Jahn-Awe et al., 2010, Jahn-Awe et al., 2012, Kirchenbaur et al., 2012, Nagel et al., 

2011) 

The two models are based predominantly on observations from the Nestos Shear Zone in 

the Greek Rhodope Mts., where two microdiamond localities have been reported (Perraki 

et al., 2006, Schmidt et al., 2010).  A common link between the Nestos Shear Zone and 

Chepelare Shear Zone has previously been proposed on the basis of outcropping style, with 

melange units being restricted to a thin zone up to 2km wide sandwiched between 

Orthogneiss units (Jahn-Awe et al., 2010, Kirchenbaur et al., 2012, Nagel et al., 2011, 

Turpaud and Reischmann, 2010). The establishment of UHP conditions (chapter 3) 

reinforces this link, and as a result studies of Chepelare samples provide an ideal 

opportunity to test the feasibility of the two models on other parts of the RM.  

 

6.1.1 Long Lasting Northwards dipping subduction event 

Evidence for a long lasting northward dipping subducting slab is seen though seismic 

imaging of the Aegean (Bijwaard et al., 1998), and confirmed by a uniform SSW sense of 

shear in the upper high grade basement units (Burg, 2011).  In these models, the UHP units 

form as a result of northwards subduction of the Paleotethys/Neotethys ocean under the 

Eurasian margin. A single subduction event is envisaged, accounting for both the proposed 

Jurassic ages UHP metamorphism (Bauer et al., 2007) and the large amount of Jurassic 

granite with an arc signature found within the Rhodope Terrane of the middle allochthon, 

in the hanging wall of the Nestos Shear Zone (Turpaud and Reischmann, 2010). This is 

overviewed in Figure 6-1. The large range of U-Pb zircon ages recorded in UHP 

metamorphic units across the massif are explained via a complex exhumation history, 

rather than a series of distinct subduction-exhumation events. 
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This model effectively accounts for the contrasting protoliths and metamorphic histories of 

metamafic units from the VF and Arda 2 units, (as described in chapter 4), with the 

Neoproterozoic/Early Paleozoic units being metamorphosed and emplaced in the Moesian 

Platform prior to the Jurassic granitic magmatism.  It is however difficult to reconcile with 

geochronological data from across the RM. No possible mechanism is proposed to explain 

(U)HP Cretaceous or Eocene metamorphism reported from both the Kimi Complex (Liati, 

2005, Liati et al., 2011) and the Central Rhodope Mts. (This study, Kirchenbauer et al. 

2012). The upper allochthon is also envisaged as a single sheet, and there is no explanation 

for the occurrence of UHP units at apparently different structural levels in the Rhodope 

Massif (Kimi complex vs Nestos Shear Zone/Chepelare Shear Zone).  
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Figure 6-1: Series of schematic cross sections overviewing the single subduction zone model of 

Turpaud and Reischmann (2010). A: Formation of widespread Variscan arc magmatism following 

northwards subduction of the Palaeotethys, B: Separation of the two Variscan Terranes through 

opening of the Neotethys ocean, C: Subduction of the Neotethys ocean resulting in UHP 

metamorphism and associated Jurassic arc magmatism in the overriding plate, D: Collison and 

accretion has been continuous since the Late Cretaceous  

6.1.2 Multiple Subduction exhumation events 

An alternative model proposed by Nagel et al. (2011) allows for multiple subduction-

exhumation episodes across the RM. The UHP units are proposed to be the result of 

southwards subduction of the Meliata and Maliac Oceanic crust during the Jurassic, prior 

to the opening of the Vardar Ocean and northwards subduction under the Eurasian 

margin. A northwards directed sense of shear, recognised in low grade Mesozoic units of 
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the Circum Rhodope Belt, is key evidence for this Jurassic southward directed subduction 

event and associated exhumation (Bonev et al., 2010c, Bonev and Stampfli, 2011). During 

subduction of the Vardar Ocean, the UHP units of the upper allochthon were already 

exhumed and emplaced in the overriding plate, as such only units of the middle and lower 

allochthon are involved in the Cretaceous-Eocene northwards dipping subduction event. 

Late Cretaceous slab rollback facilitates exhumation along the Nestos Shear Zone, and 

orogenic wedge collapse results in the present day architecture of the RM. In that sense, 

the UHP Kimi complex represents the true stratigraphic position for the UHP units in the 

RM, and the position of the UHP NSZ and CSZ localities are the result of Cenozoic faulting 

(Figure 6-2).  Evidence of Eocene subduction related HP metamorphism, reported from 

eclogite units in the Arda 2 unit (middle allochthon) is used as key evidence to support this 

model (Kirchenbaur et al., 2012).  

 

 

Figure 6-2: Schematic cross sections to 

show trhe Cenozoic evolution of the RM 

following the multiple subduction zone 

model of (Nagel et al., 2011). UHP samples 

in the Upper Allochthon have been 

subducted and exhumed  prior to a 

Southwards dipping Jurassic subduction 

event.  
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Resutlts of this study raise a number of issues that are not addressed by this geodynamic 

model. The Sm-Nd garnet geochronology reported in Chapter 5 indicates a Late Cretaceous 

UHP metamorphic event. Irrespective of whether this age is recording garnet growth or a 

thermal resetting event (as discussed in chapter 5), this must have occurred as a result of  

northwards subduction of the Vardar Ocean/Paleotethys. This age is not compatible with 

the subduction and exhumation of the upper allochthon during the Jurassic prior to a 

quiescent period in the overriding plate during the Cretaceous subduction event.   

 

The only evidence for a southwards dipping Jurassic subduction zone is seen in the low 

grade Mesozoic schists of the Cricum Rhodope Belt (Bonev et al., 2010c, Bonev and 

Stampfli, 2011). Any evidence of a Northwards sense of shear is conspicuously lacking from 

the UHP units in the Eastern Rhodope Mts. The genetic link between UHP units and the 

Circum Rhodope Belt is based solely on U-Pb zircon geochronology, which has the added 

complication of possible inheritance. No Jurassic Sm-Nd or Lu-Hf garnet ages have been 

recorded in (U)HP units anywhere across the RM.  

 

The Eocene HP metamorphic event is difficult to relate to existing reported Eocene ages. 

Matrix monazite crystals in metapelites from the Chepelare shear Zone (Bosse et al., 2010, 

Didier et al., 2012), and pegmatites within the host gneiss (Bosse et al., 2009) all record 

Eocene ages. Rare Eocene zircon grains have also been reported from within discordant 

leucosomes in the Arda 2 gneiss (Cherneva et al., 2002, Cherneva and Georgieva, 2005). 

This recognition of a common Eocene metamorphic event in both the middle and upper 

allochthon indicates juxtaposition of these units prior to a common Eocene metamorphic 

(HT?) history. The absence of evidence for Eocene metamorphism in the garnets of the 

metapelites (chapter 5) indicates that this metamorphic event was restricted to at most 

amphibolite facies, with temperatures not high enough to reset the Sm-Nd ages.  

 

Previous studies of metamafic units from the Arda 2 gneiss of the Central Rhodope Mts. 

have also indicated a Neoproterozoic protolith and Variscan metamorphism (Arkadakskiy 

et al., 2003, Savov et al., 2007).  These ages, combined with the uniform geochemistry of 

Arda metamafic units reported in Chapter 4, are hard to reconcile with an Eocene elcogite 

facies metamorphic event in the Arda 2 gneiss (Kirchenbaur et al., 2012). A recent study 

has suggested that the middle allochthon overlying the Eastern extent of the Arda dome 

should be divided into two distinct units, with Eocene HP eclogites restricted to the base of 

the middle allochthon (Jahn-Awe et al., 2012).  This could explain the Hercynian ages 
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reported from Arda 2 (Cherneva and Georgieva, 2005), and Jurassic ages reported from the 

Rhodope Terrane, north of the NSZ (Turpaud and Reischmann, 2010). As such, it may be 

incorrect to assume a common formation history for the units of the middle allochthon, 

and further studies of the Rhodope Terrane and Arda 2 gneiss are required to resolve this 

issue.  

 

6.1.3 Implications of this study and requirements of future 

models 

The results of this study indicate that the UHP units formed part of the subducting slab 

dipping North in the Cretaceous. In this sense, results appear to agree with that of Turpaud 

and Reischmann (2010) and Burg (2011), however a Late Cretaceous metamorphic event 

allows sufficient time for a complete subduction-exhumation cycle related to a prior 

Southwards dipping Cretaceous/Jurassic subduction zone as suggested by (Bonev et al., 

2010c).  As such, a hybrid of the two existing geodynamic models is envisaged. This is 

summarised in Figure 6-3 .  

 

This new model incorparates the well documented evidence for a regional southwards 

dipping subduction zone in the Mid-Jurassic – Early-Cretaceous from the Circum-Rhodope 

belt (Bonev et al., 2010c, Bonev and Stampfli, 2011). Zircon geochronological studies 

indicate that this subduction event led to at least HP metamorphism (Liati, 2011). 

Subsequently, a subduction reversal event occurs. This regional northwards dipping 

subduction event is widely documented across Bulgaria and led to the formation of the 

Sredna Gora mountain range (von Quadt et al., 2005). Results of this study are among the 

first to indicate that the Northward dipping Cretaceous subduction zone is the souce of the 

regional UHP metamorphism in SE Europe. 

 

Exhumation is likely the result of channel flow or slab rollback, both of which would explain 

the documented Eocene HP metamorphism (Kirchenbauer et al., 2012, Nagel et al., 2012). 

Further work is required to address the extent of the Eocene HP metamorphic event, and 

heterogeneity within the middle allochthon in order to fully understand the Cenozoic 

evolution of the RM. It remains unclear whether this is a continuartion of the same 

subduction zone or a distinct separate HP subduction-exhumation event post dating the 

UHP metamorphism.  
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Figure 6-3: New simplified tectonic model for the evolution of the Rhodope Massif incorporating 

results of this study. This model accomodates a southwards dipping Cretaceous subduction 

zone (which has been documented in the Circum Rhodope belt (Bonev et al, 2011)) prior to 

a Late Cretaceous Northwards dipping subduction zone that led to the formation of the 

Sredna-Gora magmatic arc and the UHP metamorphic units found throughout the 

Variegated Formation  of the Rhodope Massif. Final exhumation of samples occurred in the 

Early Eocene as a result of slab rolback from the subduction of continental crust or channel 

flow. It remains unclear whether the Rhodope Massif has experienced multiple periods of 

UHP metamorphism, or if the Late Cretaceous event suggested by this study is the only 

UHP metamorphic event.  
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6.2 Constraints on exhumation mechanism of UHP unit 
As Summarised in chapter 1, six different exhumation models have been proposed for UHP 

samples. These are all based upon numerical modelling, but each is linked to specific field 

observations including size, structural characteristics, P-T gradient and duration of 

metamorphism (Hacker and Gerya, 2013, Kylander-Clark et al., 2012, Warren, 2013). 

Previous work has suggested that a lack of a detailed tectono-chronologic framework for 

the RM restricts the full understanding of the exhumation mechanism of the UHP units 

(Kylander-Clark et al., 2012). This is true, but the observations made in this study, 

combined with recently published results allows a number of important constraints to be 

placed on the exhumation of the UHP lithologies in the RM.  

 

The relatively small size and inconsistent outcropping of UHP units across the RM suggests 

that both eduction (reversal of plate motion, and exhumation of buoyant UHP rocks with 

little strain (Hacker and Gerya, 2013)) and microplate rotation are not viable exhumation 

mechanisms for the RM.  Equally, the lack of UHP units relate to the Sredna Gora arc to the 

North of the RM indicates that transmantle diapirs did not transport UHP material into the 

overriding crust. Of the remaining mechanisms, the crustal stacking model of Chemenda et 

al. (1995) would explain the relative lack of mantle peridotite material seen in the Central 

Rhodope Mts.  The widespread occurrence of perdiotite in the Eastern Rhodopes however, 

combined with the link in Sm-Nd ages between Central Rhodope metapelites and an 

Eastern Rhodope garnet peridotite (as reported in chapter 5) indicates a linked formation 

history for these units, and as such crustal stacking is not viewed as a viable exhumation 

mechanism.    

Whether slab rollback or channel flow exhumed the RM UHP units is dependent on which 

geodynamic model for the evolution of the RM is correct.  The long lasting Jurassic –

Paleocene/Eocene model (Burg, 2011, Krenn et al., 2010, Turpaud and Reischmann, 2010) 

is difficult to reconcile with either model, with no existing model of UHP exhumation 

currently able to account for such a long, protracted exhumation process (Liati et al., 

2011). If UHP metamorphism occurred in the northwards dipping subducting slab during 

the Late Cretaceous, slab rollback is a viable exhumation mechanism.  North to South 

younging of Late Cretaceous magmatism in the Sredna Gora Volcanic Arc North of the RM 

(von Quadt et al., 2005) can be explained through the subduction of one of the many 

buoyant Tethyan microcontinents, and resultant slab steepening due to influx of buoyant 

crustal material slowing the subduction rate. Subsequent Eocene extension and faulting 
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would then explain the contrasting stratigraphic levels of UHP units with the RM, and 

restriction of peridotite to the Eastern Rhodope Mts.   

If instead a polymetamorphic history is envisaged with a Jurassic UHP metamorphic event, 

Channel flow (Hacker and Gerya, 2013) or plunger expulsion (Warren, 2013) are more 

likely mechanisms, accounting for both the restriction of UHP localities to localised areas 

and the observed mixing of units with contrasting P-T-t histories within the Nestos and 

Chepelare Shear zones. Ultimately, if this scenario is correct, the complex post peak 

metamorphic history inhibits further deductions about the exhumation history of these 

units.  
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Chapter 7 : Conclusions and Future Work 

7.1 Conclusions 
This study has established that metapelites in the Bulgarian Central Rhodope Mts. in the 

vicinity of the town of Chepelare have experienced UHP metamorphism. A microdiamond 

inclusion within garnet was discovered in a kyanite-garnet schist sample from the 

Chepelare Shear Zone (CSZ); an approx. 2km wide zone of units of mixed origin sandwiched 

between orthogneiss units of the Arda dome. Comparisons with existing studies (Jahn-Awe 

et al., 2010, Mposkos et al., 2010) indicate that the CSZ is analogous to the Nestos Shear 

Zone of the Greek Central Rhodope Mts. and the Kimi Complex of the Eastern Rhodope 

Mts. Together these UHP units form the Upper Allochthon, the stratigraphically highest 

basement units seen across the RM.  Petrographical and geochemical investigations 

indicate widespread partial melting throughout the kyanite garnets schists of the CSZ. The 

extent of partial melting is varied and likely occurred both during metamorphism, and 

upon exhumation. The microdiamond inclusion is preserved in a sample that has 

undergone a limited degree of partial melting. Kyanite-garnet schist is the only lithology to 

preserve evidence of UHP conditions within this unit, with associated metabasic units 

recording at most upper amphibolite facies conditions. 

Two distinct populations of metabasic samples have been recognised across the RM. This is 

clearest in the vicinity of the town of Chepelare, where metabasic units with a MORB 

protolith are restricted to the Chepelare Shear Zone. Metabasic boudins hosted by the 

Arda 2 gneiss overlying the CSZ have an increased SSZ component, indicating an E-

MORB/Island Arc Basalt protolith, and preserve evidence for prior eclogite facies 

metamorphism. It remains unclear whether the Arda 2 boudins represent remnants of the 

Variscan orogeny, or instead are the product of a Cenozoic HP metamorphic event. These 

populations have also been recognised in the Eastern Rhodope Mts., where U-Pb zircon 

ages clearly delineate Pre-Mesozoic (Ordovician/Neoproterozoic) and Mesozoic metabasic 

populations (Bauer et al., 2007, Bonev et al., 2013, Carrigan et al., 2003, Liati and Fanning, 

2005).  Increased variation is observed within these two populations relative to the Central 

Rhodope Mts., where samples with a MORB protolith were identified in the 

Ordovician/Neoproterozoic samples. This likely reflects preservation of the original oceanic 

crust that SSZ units were emplaced onto.  

Sm-Nd garnet geochronology indicates a Late Cretaceous age for the UHP metamorphic 

event across the RM. This is significantly younger than the Jurassic UHP event currently 
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proposed by monazite and zircon geochronology (Bosse et al., 2010, Jahn-Awe et al., 2010, 

Mposkos et al., 2010, Nagel et al., 2011, Turpaud and Reischmann, 2010, Bauer et al., 

2007), but is in keeping with HP metamorphic conditions recorded in zircons across the 

Eastern Rhodope Mts. (Liati et al., 2011). A Late Cretaceous age for UHP metamorphism 

indicates that the upper allochthon formed part of the Vardar Ocean which was subducting 

northwards under the Moesian platform. This is in disagreement with existing geodynamic 

models of RM formation which suggest UHP metamorphism as a result of southwards 

subduction of Meliata and Maliac oceanic crust southwards during the Jurassic, and a 

quiescent Late Cretaceous history for the UHP samples  (Jahn-Awe et al., 2010, Jahn-Awe 

et al., 2012, Kirchenbaur et al., 2012, Nagel et al., 2012). 

7.2 Future work 
Despite the significant amount of recently collected age data from across the RM (Bauer et 

al., 2007, Bosse et al., 2010, Didier et al., 2012, Jahn-Awe et al., 2010, Kirchenbaur et al., 

2012, Liati et al., 2011), there remains a number of questions that can be answered 

through further integrated petrological and geochronological investigations of this region:  

• Further dating of garnet from other UHP localities is required to better constrain 

the timing of the peak metamorphic event. Previous studies indicated a smaller 

degree of partial melt for UHP metapelites samples in the vicinity of Xanthi along 

the Nestos Shear Zone in the Greek Rhodope Mts. (Cornelius, 2008). These 

samples are therefore at less risk of thermal resetting, and would provide 

additional constraints on whether the garnet ages reported in this study represent 

the age of UHP metamorphism.  

• Continued geochronological investigation of the eclogites of the middle allochthon 

in the Arda 2 gneiss are required to establish the extent of the Eocene age 

population, and ascertain whether these ages represent a Cenozoic HP 

metamorphic event as proposed by Kirchenbaur et al. (2012) or are instead the 

result of a thermal resetting event related to post orogenic extension and core 

complex formation. A detailed petrological investigation of the Arda 2 gneiss to 

assess whether this unit also experienced Eocene eclogite facies metamorphism 

would greatly aid in assessing the validity of the proposed Cenozoic HP 

metamorphism.   

• Further petrological, geochronological and structural studies of the upper high 

grade basement Bulgarian Eastern Rhodope Mts. are required to assess the degree 
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of heterogeneity within this unit, the extent of remnants of the Variscan orogeny 

and ultimately the relationship with the Kimi Complex of the Greek Rhodope Mts.   

Other remaining unanswered questions include whether metapelites were the only 

lithology to experience UHP conditions across the region. A recent study of kyanite bearing 

eclogite from the Pirin Mts. to the west of the RM indicated UHP conditions through 

thermobarometry (Janak et al., 2011), suggesting with further investigation more evidence 

for UHP conditions in different lithologies across the region may be discovered.  The link 

between the metabasic sample studied in this work and ultramafic samples seen across 

the Eastern Rhodope Mts. is also poorly constrained, and warrants further investigation.   
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Appendix A: sample location 

Kyanite-garnet Schist samples 

 

Metabasic Samples - Central Rhodope Mts.  

 

  

Sample Northing Easting Brief description 

V
a

ri
e

g
a

te
d

 F
o

rm
a

ti
o

n
 G
a

rn
e

t 
b

e
a

ri
n

g
 

1-1-11 41°41.832 24°42.048 From Janchouvska  to summit of St Ilia 

3-1-11 41°42.134 24°42.448 3.5 Km SE of Chepelare, Janchouvska river 

30a-1-11 41°42.492 24°42.297 Heading east from old marble quarry 

1-1-12 41°40.457 24°40.877 Mechai Chal 

6-1-13 41°44.438 24°39.430 Along Sivkoska river 

G
a

rn
e

t 
Fr

e
e

 

30-1-11 41°42.491 24°42.296 Heading east from old marble quarry 

34-1-11 41°44.383 24°38.581 Along Sivoksa river 

37-1-11 41°44.149 24°40.866 Behind Cemetery, North of Chepelare 

39-1-11 41°41.238 24°42.496 Along path from Progled North to St Ilia 

4-1-12 41°44.362 24°41.062 NW of Cemetry, north of Chepelare 

1-1-13 41°41.972 24°41.984 Along path to summit of St Ilia 

2-1-13 41°43.675 24°30.961 North of Breze 

5-1-13 41°44.389 24°38.647 Along Sivkoska river 

7-1-13 41°44.449 24°39.460 Along Sivkoska river 

9-1-13 41°43.834 24°41.944 NE of ski factory in North Chepelare 

 

 

  Sample Northing Easting Brief description 

Central 

Rhodope 

Samples 

2-1-10 41°43.299  24°42.002 Along path to Quarry 

3-1-10 41°44.137  24°41.457 North of Chepelare behind logging factory 

25-1-10 41°42.14 24°42.278 Along Janchouvska river 

26-1-10 Museum Sample Near old marble Quarry 

27-1-10 41°42.17 24°42.369 Along Janchouvska river 

2-1-11 41°43.327  24°41.761 Along road to Quarry 

28-1-11 41°41.262 24°39.406 Mechai Chal summit 

33-1-11 41°44.103 24°38.885 Along Sivkoska river 

35-1-11 41°43.846 24°41.587 Behind Ski factory north of Chepelare 

38-1-11 41°44.148 24°41.464 North of Chepelare behind logging factory 

47-1-11 Museum Sample Near old marble Quarry 

5-1-12 41°42.197 24°42.398 Along Janchouvska river 

13-1-12 41°45.921 24°42.992 North of Boguveto 

Eastern 

Rhodope 

Samples 

11-1-11 41°20.243 25°22.146 1 Km north Kirkovo 

12-1-11 41°17.591 25°19.865 NW of village of Kremen 

13-1-11 41°18.194 25°19.131 1.5 Km NE Chakalarovo 
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Sample Northing Easting Brief description 

A
rd

a
 2

 G
n

e
is

s 

G
a

rn
e

t 
b

e
a

ri
n

g
 

22-1-10 41°42.628 24°27.122 Beden 

23-1-10 41°43.564 24°37.106 West along Sivkoska river 

31-1-11 41°45.119 24°42.343 Along Lapouska river 

36-1-11 41°43.700 24°42.246 Behind Ski factory, at base of Arda 2 

42-1-11 41°45.612 24°40.562 Zornitsa 

44-1-11 41°43.679 24°42.218 Sameish location as 36-1-11 

45-1-11 41°43.564 24°37.106 Along Sivkoska river 

45a-1-11 41°43.565 24°37.107 Along Sivkoska river 

14-1-12 41°43.402 24°36.304 Further west along Sivoska river 

15-1-12 41°43.882 24°35.426 Further west along Sivoska river 

3-1-13 41°43.751 24°31.048 Village of Breze 

11-1-13 41°43.859 24°41.999 NE of Ski factory North of Chepelare 

12-1-13 41°43.904 24°42.139 Summit of hill above 11-1-13 

G
a

rn
e

t 
fr

e
e

 

32-1-11 41°44.868 24°42.410 Lapoushka river north of Chepelare 

36a-1-11 41°43.701 24°42.247 Behind Ski factory, at base of Arda 3 

40-1-11 41°45.117 24°40.686 Along road from Chepelare to Zornitsa 

41-1-11 41°45.390 24°40.640 Along path from Progled towards St Ilia 

 

Metabasic samples – Eastern Rhodope Mts.  

Sample Northing Easting Brief description 

4-1-10 41°33.457 25°48.551 Along river bed, NW of Bubino  

6a-1-10 41°33.459 25°48.553 Along river bed, NW of Bubino  

6b-1-10 41°33.460 25°48.554 Along river bed, NW of Bubino  

8-1-10 41°20.197 25°42.644 1 km south of Avren, along river bed 

9-1-10 41°19.899 25°37.81 Along road into Egrek 

4-1-11 41°23.549 25°05.060 Zlatograd 

7-1-11 41°24.452 25°12.897 2km NE of Zradvchets 

7b-1-11 41°24.453 25°12.898 2km NE of Zradvchets 

15-1-11 41°23.721 25°33.997 500 m East of Topolka 

18-1-11 41°24.905 25°53.299 Along road, 1.2 km east of Kazak 

19-1-11 41°21.548 25°48.542 4 km NE of Chernichevo 

26-1-11 41°34.778 26°06.493 Along road to Ivaylovgrad dam, 200m from dam wall 

27-1-11 41°32.043 26°03.183 Along road from Ivaylovgrad to Pokrovan 

8-1-12 41°19.390 25°40.844 South of Avren  

7b-1-02 - - Golyama Devesil 

1-8-02 - - Golyama Devesil 

1-14-02 - - Egrek 

23-1-02 - - Ivaylovgrad dam 

1-24-02 - - Egrek 
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Appendix B: Details of Sr and Nd Isotope Geochemistry 

A total of 23 samples were analysed for bulk rock Sr and Nd isotopes using Thermo 

Scientific TRITON thermal ionisation mass spectrometer (TIMS) at the University of Leeds.  

Chemical separation of Sr and Nd 

Approx. 0.1g of powdered samples were dissolved in a mixture of 1.5 ml conc. HF, and 

0.5ml conc. HNO3 in sealed 15ml Teflon jars, heated overnight on a hotplate. Once 

dissolved, samples were dried down, dissolved in a mix of 1.5ml conc. HNO3 and 0.5ml 

conc. HCl, and heated once more overnight. This evaporation-dissolution procedure was 

repeated with 2ml 6M HCl, before final dissolution in 2ml of 2.5M HCl ready for chemical 

separation of elements. 

1 ml of each sample was centrifuged, and loaded onto Ion exchange columns containing 

BioRad AG50-X12 resin. Columns were rinsed with a calibrated amount of 2.5M HCl to 

wash elements away, prior to collection of the Sr fraction, which was dried down ready for 

loading. Following removal of Rb following a further rinse with 4.25M HCl to remove Ba 

from samples, the REE fraction was collected. This Nd fraction was dried down and 

redissolved in 1ml Conc HNO3. Following further drying down, the samples was dissolved in 

a 75/25 acetic nitric mixture, before loading onto REE ion exchange columns 

preconditioned with 90/10 acetic nitric mixture. Columns were rinsed with an acetic/nitric 

mixture prior to elution with 10ml of MeOH cocktail comprising 10% acetic nitric mixture, 

5% conc. HNO3 and 10% UHQ water. The sample was then collected in 30ml of the MeOH 

cocktail.  

Following drying down, samples were dissolved in 1ml 6M HCl. This was then dried down 

again, redissolved again in 1ml 6M Hcl, before evaporation to a tiny drop. This was 

dissolved in 250 µl of 0.25M HCl, and loaded onto columns containing LN-Spec resin. 

Following elution with a calibrated amount of 0.25M HCl, samples were collected in 2.5 ml 

HCl, and evaporated to just dryness ready for loading.  

Sample loading 

Sr samples were loaded onto single Tungsten wire filaments with a TaCl activator. A single 

drop of TaCl solution was loaded onto the filaments in small increments prior to sample 

loading. The sample was dissolved in a small (approx. 2 µl) drop of 2.5 M HCl, and loaded 

onto the filament in the smallest possible increments. Nd Isotopes were loaded onto 

Rhenium wire double filaments, in a small (approx. 2 µl) drop of 10% HNO3 in the smallest 

possible increments.  
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Analytical Precision 

For 87Sr/86Sr analysis, the TIMS was run between 3 and 5V on 87Sr.  200 ratios were 

measured per sample, and the 2σ error was 10-6. For 143Nd/144Nd analysis the TIMS was run 

between 0.2 and 0.9 V on 
144

Nd. 240 ratios were measured pre sample, and the 2σ error 

was 10
-6

. The external precision was monitored through analysis of NBS-987 and La Jolla 

standards for Sr and Nd respectively.  Over the duration of analyses (January 2011 – March 

2014)  NBS 987 
87

Sr/
86

Sr averaged 0.710261 ± 0.000028 (2 RSD, n 68), and La Jolla 

143
Nd/

144
Nd averaged 0.511843 ± 0.000018 (2 RSD, n=43). The literature value for NBS-987 

is 0.710248, and the La Jolla value is 0.51185 (Thirlwall, 1991). A correction was applied to 

all measurements based on deviations of the standard material relative to the literature 

values within each run.  

Results 

Results for Sr and Nd isotope from the Central and Eastern Rhodope Mts. are presented in 

the following tables. The unclear age of these samples complicates calculation of initial 

87
Sr/

86
Sr and 

143
Nd/

144
Nd ratios. A number of different corrections have been made on the 

basis of proposed protolith formation ages in the literature; these are 570Ma, 250Ma and 

150 Ma. Half-life values of 1.42 x 10
-11

 for the Rb-Sr system, and 6.54 x 10
-12

 for the Sm-Nd 

system were used in these calculations.  

 
Sample 

87
Sr/

86
Sr ± 

Initial 
87

Sr/
86

Sr 

 

550 Ma 250 Ma 150 Ma 

A
rd

a
 

44-1-11 0.706471 4 0.705756 0.706147 0.706277 

1-22-10 0.705717 4 0.703840 0.704866 0.705207 

36-1-11 0.705466 4 0.703260 0.704466 0.704866 

1-23-10 0.707840 4 0.706538 0.707249 0.707486 

45-1-11 0.706631 8 0.704864 0.705830 0.706151 

41-1-11 0.708840 2 0.702409 0.705923 0.707091 

40-1-11 0.709935 6 0.702223 0.706437 0.707838 

V
F

 

1-1-11 0.705106 3 0.704583 0.704869 0.704964 

3-1-11 0.711901 5 0.706653 0.709521 0.710474 

30a-1-11 0.706506 6 0.705118 0.705876 0.706128 

34-1-11 0.709136 3 0.704005 0.706809 0.707741 
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 Sample 
143

Nd/
144

Nd 
  550 Ma 250 Ma 150 Ma 

 
±  initial ɛt(Nd)  initial ɛt(Nd)  initial ɛt(Nd) 

A
rd

a
 

44-1-11 0.512934 6 0.512006 1.49 0.512512 3.83 0.512681 4.61 

1-22-10 0.512847 6 0.512211 5.50 0.512558 4.72 0.512674 4.46 

36-1-11 0.512788 6 0.512181 4.92 0.512512 3.83 0.512623 3.47 

36a-1-11 0.512785 9  0.512216 5.60 0.512527 4.11 0.512630 3.61 

1-23-10 0.512721 4 0.512123 3.78 0.512449 2.60 0.512558 2.21 

45-1-11 0.512696 3 0.512053 2.43 0.512404 1.72 0.512521 1.48 

41-1-11 0.512488 7 0.511950 0.41 0.512244 -1.41 0.512341 -2.02 

40-1-11 0.512469 4 0.511937 0.14 0.512227 -1.74 0.512324 -2.36 

V
F

 

1-1-11 0.512975 6 0.512193 5.16 0.512620 5.93 0.512762 6.19 

3-1-11 0.512692 7 0.511955 0.49 0.512357 0.80 0.512491 0.90 

30a-1-11 0.512876 7 0.512142 4.16 0.512543 4.42 0.512676 4.51 

34-1-11 0.512531 5 0.511720 -4.09 0.512163 -3.00 0.512310 -2.63 

 

 

 

 

 

 

 

 

  87Sr/86Sr 

  initial
 87

Sr/
86

Sr 

  

± 550 250 150 

Avren 

Synform 

1-14-02 0.70455 6 0.703109 0.703897 0.704158 

1-24-02 0.70866 6 0.706755 0.707796 0.708142 

1-8-02 0.704784 7 0.704118 0.704482 0.704603 

1-8-10 0.706539 5 0.705765 0.706188 0.706328 

1-9-10 0.705153 6 0.704767 0.704978 0.705048 

Ivaylovgrad 27-1-11 0.706019 4 0.705612 0.705834 0.705908 

Bubino 

 

1-4-10 0.707098 5 0.704688 0.706005 0.706443 

6a-1-10 0.70508 6 0.700654 0.703072 0.703876 

6b-1-10 0.704469 33 0.704079 0.704292 0.704363 

Zlatovgrad 4-1-11 0.704521 4 0.703955 0.704264 0.704367 

 Sample 
143

Nd/
144

Nd 
570 Ma 250 Ma 150 Ma 

 
initial ɛ

t
(Nd) initial ɛ

t
(Nd) initial ɛ

t
(Nd) 

Avren 

Synform 

1-14-02 0.512884 ± 7 0.512053 2.92 0.512520 3.98 0.512666 4.31 

1-24-02 0.512986 ± 18 0.512171 5.22 0.512629 6.10 0.512772 6.38 

1-8-02 0.512780 ± 16 0.511910 0.12 0.512399 1.61 0.512551 2.08 

8-1-10 0.512987 ± 5 0.512172 5.24 0.512630 6.12 0.512773 6.40 

9-1-10 0.512508 ± 4 0.511990 1.70 0.512281 -0.68 0.512372 -1.42 

Ivaylovgrad 
23-1-02 0.512608 ± 6 0.511953 0.97 0.512321 0.09 0.512436 -0.18 

27-1-11 0.512750 ± 7 0.512049 2.85 0.512443 2.48 0.512566 2.36 

Bubino 

4-1-10 0.512385 ± 5 0.511866 -0.72 0.512158 -3.09 0.512249 -3.83 

6a 0.512934 ± 6 0.512160 5.01 0.512595 5.44 0.512731 5.58 

6b 0.512940 ± 4 0.512152 4.85 0.512595 5.44 0.512733 5.62 

Zlatovgrad 4-1-11 0.512932 ± 7 0.512221 6.20 0.512620 5.94 0.512745 5.86 
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Epsilon(t) Nd values were calculated from the three possible initial 143Nd/144Nd ratios using 

the following equations:  

ɛ��� = 	
( �
��� / �
)��� ������� − 1�	× 	10� 

������ =		 ������ −	�  !��"
�
��� #����

� ($%� − 1) 
Where ������ = 0.512638 when normalised to 146Nd/144Nd = 0.7219. and 		& '()*+

��)** ,����
�

= 

0.1967.  

Enrichment parameters for both Rb and Sm (f) relative to CHUR were calculated for all 

samples, using the following equations, and are presented in the table below : 

-'( = . /  !��" / �
��� 0/  !��" / �
��� 0����� 1 − 1 

-�2 = . / 345" /  657 0/ 345" /  657 0����� 1− 1 

 

 

 

 

 

 

 

The widespread variation seen in fRb values indicates varying degrees of enrichment, likely 

the result of differing interactions with a crustal unit such as the gneiss of the Arda dome 

in the Central Rhodope Mts. Little variation is seen amongst the fSm values, indicating that 

any interaction with crustal material has had a neglible effect on the Nd isotope ratios. This 

is confirmed on the plots of 1/Nd vs ɛ
t
Nd below, where no correlation is seen in samples 

 

sample fRb fSm 

 A
rd

a
 

44-1-11 0.12 0.31 

1-22-10 1.93 -0.10 

36-1-11 2.45 -0.14 

1-23-10 1.03 -0.16 

45-1-11 1.76 -0.09 

41-1-11 9.05 -0.24 

40-1-11 11.05 -0.25 

V
F 

1-1-11 -0.18 0.10 

3-1-11 7.20 0.04 

30a-1-11 1.17 0.04 

34-1-11 7.02 0.14 

  
fRb fSm 

Avren 

Synform 

1-14-02 1.25 0.13 

1-24-02 1.98 0.11 

1-8-02 0.04 0.18 

8-1-10 0.21 0.11 

9-1-10 -0.40 -0.30 

Ivaylovgrad 
23-1-02 -  -0.11 

27-1-11 -0.36 -0.05 

Bubino 

4-1-10 2.77 -0.29 

6a-1-10 5.92 0.05 

6b-1-10 -0.39 0.07 

Zlatovgrad 4-1-11 -0.11 -0.03 
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from the Central Rhodope Mts.  A possible correlation is observed is observed in the 

metabasic samples from the Eastern Rhodope Mts., although this is not clear and requires 

further investigation.  

 

 

 

The age of the sample can have a large effect on ɛ
t
Nd values, the result of small 

variations in  fSm values, which is likely related to crustal contamination . For the 

samples from the Central Rhodope Mts, if Neoproterozoic formation ages are used 

ɛ
t
Nd ranges between 0.14 and 5.6, whereas if Jurassic ages are used ɛ

t
Nd ranges 

between -2.3 and 4.6.)  A clear correlation between (La/Sm)N and all ɛ
t
Nd  values, 

irrespective of age is seen in this, as shown on the following figure., indicating that 

143
Nd/

144
Nd still preserved a record of the samples original tectonic setting 
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Plots of 1/Nd vs ɛNd(550)Ma for A) metabasic samples from Central Rhodope Mts., 

and B) metabasic samples from Eastern Rhodope Mts.  

B 
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.  

For the samples from the Eastern Rhodope Mts. a wide range of ɛ(Nd)t values are 

reported for across the area, with values spanning from -3.8 to 6.4 for a 150 Ma formation 

age and -0.72 to 6.2 for a Neoproterozoic formation age. On a plot of (La/Sm)N vs ɛ(Nd)t, 

no correlation is observed for any of the age populations. This is likely the result of an 

increased degree of crustal contamination although the two samples with the highest 

(La/Sm)N values (4-1-10 and 9-1-10) have some of the lowest ɛ values, as expected if these 

values represent an increased SSZ component.  
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