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Abstract

The breaking of ocean surface gravity waves is an important phenomenon that affects

the dynamics of the upper ocean, development of the wave field, and air-sea exchange

processes. As the surface expression of this process, whitecaps provide a visible sig-

nature of wave breaking; their areal extent per unit area sea surface—known as the

whitecap fraction, W—can be used to quantify the amount and scale of wave breaking.

W is traditionally estimated using digital images of the ocean surface and is widely used

to represent whitecaps in remote sensing applications, and in the parameterisation of

a host of air-sea processes in models. These parameterisations—generally functions of

wind speed alone—are based on limited amounts of data, and fail to take into account

the known influence of secondary factors on whitecaps.

A novel approach to estimating W using satellite observations has recently been de-

veloped, based on passive radiometric measurements of brightness temperature at mi-

crowave frequencies. The satellite-based approach enables measurement of W on a

global scale, and in a variety of conditions. In this work, the basic characteristics of W

estimates at two different radiometric frequencies, W10 (10 GHz) and W37 (37 GHz),

is investigated. The wind speed dependence, global distribution, and seasonal de-

pendence of the estimates are investigated. Comparison is made against estimates

obtained from simple, but widely used, wind speed only parameterisations formulated

from in situ data. A more direct comparison of radiometric and photographic W es-

timates, based on ship-satellite matchups, is also made. Both comparisons indicate

that satellite-based W has a different wind speed dependence, resulting in estimates

that are, on average, higher at low wind speeds and lower at higher wind speeds than

parameterisations formulated from in situ, photographic measurements. On a global

scale, this results in satellite-based W being more uniform latitudinally than predic-

tions from traditional formulations.

A dataset comprising estimates of W10 and W37, together with collocated and con-

current estimates for a variety of forcing parameters, is used to investigate the the

influence on W10 and W37 of secondary forcings, such as the wave field and environ-

mental factors. It is found that on a global scale wind speed describes much of the

variability in both W10 and W37 though the influence of secondary factors on W can be
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appreciable (especially for W37). Based on the magnitude of the influence of secondary

forcing factors on W10 and W37, it is concluded that much of the variability in whitecap

fraction is likely due to the behavior of the thinner, decaying foam patches, variability

that is not captured by the retrieval using the 10 GHz channel.

Though whitecap fraction offers a pragmatic approach to inferring the magnitude of

processes associated with breaking surface waves, it remains an indirect measure with

inherent limitations. More fundamental questions regarding the interpretation and use

of W are considered. A dynamical model that relates whitecap fraction to breaking

wave statistics is used to illustrate the contribution to whitecap fraction due to white-

caps in different lifetime stages. Such a model provides a framework for better relating

whitecap fraction to the dynamic, active part of the wave breaking process which is

likely more closely linked to processes such as breaking-induced energy dissipation,

turbulent mixing, and bubble-mediated gas exchange.

Finally, the implications of use of radiometric estimates for quantifying air-sea processes—

specifically production of sea spray aerosol and bubble-mediated gas exchange—is dis-

cussed. It is shown that difference between the satellite-based W estimates and those

predicted using traditional parameterisations provides an explanation for the consis-

tent geographical biases in sea spray aerosol concentration found in a number of large

scale models. The benefit of these novel observations will also extend to predictions of

other air-sea processes, and remote sensing applications, that require estimation of W ;

these benefits will be enhanced if whitecaps and their radiometric signature are more

closely related to the physical processes which they are used to quantify.
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Chapter 1

Introduction

The oceans cover approximately 71% of Earth’s surface area [Bigg, 2003] and form

an integral part of the climate system. Their importance—for example, as a major

reservoir for heat and carbon—has been known for some time. Several decades ago,

before major advances in both our understanding and in computational abilities, it

was common for the ocean and atmosphere to be explicitly separated in computer

models. Up until the 1980s, wave modellers were simply users of meteorological output

products—most often surface winds [Cavaleri et al., 2012]. Likewise, the role of the

ocean in determining the state of the atmosphere wasn’t fully considered in these early

atmospheric models.

In reality, the ocean-atmosphere system is intrinsically coupled. We now understand

much more about the complex physical interplay between the atmosphere and the

ocean, a result of decades of research to advance weather and climate science. This

two-way coupling of wave and meteorological modelling is a vital component of modern

coupled-climate models; the ocean must be considered by meteorologists as a strong

source and sink of heat, gas, and physical quantities, and it is no longer viable for

ocean modellers to simply take atmospheric wind fields as the boundary conditions for

their models.

The air-sea interface is a physically important boundary between the surface ocean

and lower atmosphere. Here there is a ceaseless two-way interaction between the wind

and the surface water; winds generate surface waves while waves modify the airflow

resulting in a loss of energy and momentum to the waves. Both the local weather

1
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and the longer-term climate are sensitive to these interactions. However, due to the

inherent chaotic and often non-linear nature of the atmosphere-ocean system, it is not

possible to explicitly model and numerically predict these processes. It is for this reason

that climate models rely on parameterisations of air-sea processes such as wave energy

dissipation, and the exchange of momentum, heat, moisture, gases, and particulate

matter.

One of the most important physical processes at the air-sea interface is that of sur-

face wave breaking. This process of air-entrainment into the ocean, forming bubbles

below and foam patches at the surface (known as whitecaps), modulates the air-sea

turbulent exchanges of aerosols, gases, heat and momentum. To successfully quantify

these exchanges in weather and climate models, we must be able to make accurate pre-

dictions of wave breaking and whitecapping from routinely measured meteorological

and oceanographic variables. This is no simple task; wave breaking is a complex and

highly non-linear phenomenon. Though much progress has been made in the past two

decades, we are not yet able to make accurate predictions of the scale and frequency

of occurrence of wave breaking on a global scale.

Wave breaking and formation of whitecaps plays a variety of different roles in air-sea

interaction. Bubble entrainment by breaking waves provides an efficient mechanism

for the exchange of gases, thus enhancing the total air-sea transfer [Wanninkhof et al.,

2009; Woolf, 1997]. It has been argued that the bubble-mediated contribution should

scale with whitecap fraction W [Monahan and Spillane, 1984; Woolf, 2005]. Whitecaps

are areas where sea spray droplets are actively produced through bubble bursting, and

via the wind tearing of wave crests at higher wind speeds [Andreas, 1995; Blanchard,

1963; Monahan et al., 1983], and as such are the main source of primary marine aerosols.

The presence of whitecaps on the ocean surface must also be accounted for in models of

the global radiation budget [Frouin et al., 2001], since sea foam layers increase ocean

albedo [Koepke, 1984]. Consideration of whitecaps is also required in optical ocean

color retrievals due to the masking of water-leaving radiance by foam patches [Gordon

and Wang, 1994]. At microwave frequencies, whitecaps mark areas with increased

surface emission and brightness temperature [Rose et al., 2002; Smith, 1988; Wentz,

1983]. This has implications for many remote sensing applications, including the use
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of satellite-borne radiometric and polarimetric instruments to obtain the surface wind

vector [Gaiser et al., 2004; Wentz, 1997; Yueh, 1997].

The primary focus of this study is whitecaps and the whitecap fraction W— a quantity

which is widely used as an indirect statistical quantification of wave breaking. In

this thesis: (i) the characteristics of satellite-based estimates of the whitecap fraction

are assessed, (ii) variability and forcings of W on a global scale are investigated and

quantified, (iii) the satellite-based estimates (and their wind speed dependence) are

compared to in situ based estimates, and (iv) comments are made on the implications

of our findings for air-sea interaction studies. In chapter 2 we provide background

material relevant to this study including properties of individual whitecaps, previous

work on measurement and parameterisation of W , and details on the role of whitecaps

in air-sea interaction.

A major part of this project is analysis of data from a recently developed satellite

retrieval of W . By its very nature, the air-sea interface lends itself well to remote

sensing. Driven by both technological advance and societal concern, by the early 1980s,

several ocean observing satellites were in use. For the first time, it became possible to

make measurements on a global scale and monitor the oceans over time. At present,

dozens of sensors on a variety of satellites retrieve wave spectral quantities, wind speed

and direction, currents and planetary waves, atmospheric water content and rain rate,

to name but a few. In chapter 3, a recently developed algorithm to obtain satellite-

based estimates of W from passive radiometric measurements of the ocean surface

is described, together with the ‘whitecap database’ that has been compiled in order

to study variability in the satellite-based estimates. Additional data used, including

ship-based whitecap estimates, are also described.

An accurate parameterisation of whitecap fraction is a requirement for successful mod-

eling of whitecap dependent processes, and for several ocean remote sensing applica-

tions. In nearly all current models, W is specified as a simple function of wind speed,

W (U10) (where U10 is the wind speed at a 10 m reference height). In chapter 4, we

compare satellite-based estimates with those obtained based on a wind speed only

parameterisation, focusing on the global distribution and seasonal dependence. We

then explore the wind speed dependence of satellite-based W estimates, and quantify

the correlation between wind speed and satellite W . A direct comparison between
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satellite-based W estimates with in situ estimates of W from photographic data is also

made.

Use of W (U10) parameterisations dictates that a reliable estimate of W can only be

obtained if it is assumed that wind speed can fully predict whitecap fraction; however,

there is substantial evidence that this is not the case [Anguelova and Webster, 2006;

Callaghan et al., 2008b; Monahan and O’Muircheartaigh, 1986]. In chapter 5, we

draw upon a year’s worth of satellite-based W estimates to explore variability in W

resulting from secondary factors such the wave field, sea surface temperature, and air-

sea stability. The relative importance of such variables in accounting for variability in

W is then quantified.

Whitecap fraction estimates are used to predict the magnitude of several air-sea pro-

cesses associated with wave breaking and bubble-plume production and decay. In

chapter 6, the relationship between individual whitecaps, W , and these processes is

discussed, with emphasis placed on use of the whitecap method to predict both sea

spray aerosol source fluxes and air-sea gas transfer velocities. The implications of a

move towards use of radiometric estimates of W , instead of parameterised values, is

explored. In light of recent results regarding the whitecap lifecycle, we combine break-

ing wave statistics with a model for the time evolution of the area of an individual

whitecap to explore how this information may be used to resolve different processes

contributing to measured W—namely foam associated with active wave breaking, and

the residual decaying foam left after a wave breaking event.

In chapter 7, we summarise our findings and draw conclusions, before making rec-

ommendations pertaining to the development and future use of satellite-based W es-

timates, and more generally the interpretation and use of whitecap fraction by the

air-sea interaction community.



Chapter 2

Background

2.1 Air-sea interaction and the marine boundary layer

The marine atmospheric boundary layer (MABL) is the part of the atmosphere that

is directly influenced by the presence of the ocean surface. At the air-sea interface, the

ocean and atmosphere are coupled through a variety physical, chemical, and biological

processes occurring over a range of scales (Figure 2.1). This ocean-atmosphere coupling

is, to a large degree, controlled by the transfer of momentum via the action of the

wind on the ocean surface. A moving atmosphere produces a stress on the ocean

surface, resulting in motion within the fluid. Although this motion can take many

forms such as surface currents and Langmuir circulations, it most notably produces

surface waves with amplitudes dependent upon the strength and duration of the wind

forcing. Waves subsequently grow in height and wavelength, and are modulated by

breaking and nonlinear interactions [Cavaleri et al., 2012].

The ocean surface generally acts as a barrier to exchanges between the ocean and

atmosphere [Rogers, 1995]. However, surface turbulent fluxes provide key pathways

through which these exchanges can occur [Bourassa et al., 2010], allowing momentum,

energy, moisture, sensible and latent heat, and trace constituents to be transferred

between the ocean and atmosphere. In energetic conditions, the excess energy imparted

to the wave field, due to the sustained action of the wind, causes waves to break and

the air-sea interface to be disrupted. In such conditions, wind-driven surface turbulent

5
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Figure 2.1: Schematic of the main physical, chemical, and biological processes
occurring at the air-sea interface (taken from http://www.whoi.edu/cms/images/

ooi oceanAtExchange en 70189.jpg).

fluxes can be greatly enhanced. These exchange processes have a critical role in weather

and climate, and so predicting them is of vital importance.

2.1.1 Wind-driven ocean surface waves and their breaking

Surface ocean wave generation is primarily driven by the action of the wind on the

ocean surface in a process that is now largely understood [Janssen, 1991]. Wind blowing

across a flat surface couples the two layers via a thin viscous layer. This leads to a

two-fluid shear instability with growing undulations that steer the wind over the waves.

This results in differential surface pressures that increase the transfer of energy and

momentum from the wind to the waves and drives wave growth [Cavaleri et al., 2012].

The presence of waves at the ocean surface can have a significant impact on on the local

atmospheric boundary layer. This is due to the sea state dependence of momentum

transfer from the air to the wave field. Overall, waves act to enhance the surface drag

which leads to a reduction in wind speed. Importantly, this drag depends of the shape

of the waves; steep waves extract more momentum from the airflow than smoother, less

http://www.whoi.edu/cms/images/ooi_oceanAtExchange_en_70189.jpg
http://www.whoi.edu/cms/images/ooi_oceanAtExchange_en_70189.jpg
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steep waves. As growing waves associated with young wind seas are steeper than old

wind seas (or swell-dominated seas), the roughness is said to be sea state dependent.

Therefore, the evolution of the wind is in part determined by the wave field. This can

have wider impacts on atmospheric circulation and climate [Cavaleri et al., 2012], with

global climate models performing significantly better when this two-way coupling is

included [Garfinkel et al., 2011].

Eventually, due to a combination of sustained input of energy from the wind and

wave-wave interactions, certain waves will grow so steep that they break. Breaking

is of vital importance to a host of upper ocean processes: it is the main mechanism

for wave energy dissipation, modulates momentum transfer from the wind to ocean

currents, enhances vertical mixing in near-surface water, affects the exchange of heat

and trace gases, is a source of underwater noise, and is involved in the generation of

aerosols by bursting bubbles.

However, breaking is an intermittent, random process and occurs at scales ranging

several orders of magnitude; from small micro-breakers, to large breaking waves that

generate large amounts of turbulence that is injected into the surface waters. As

neatly summarized by Zhao and Toba [2001], ‘Wave breaking is a highly nonlinear

process and its quantitative estimation is difficult, both experimentally and theoret-

ically.’ Quantification requires both detection and measurement of breaking events,

both of which are challenging tasks [Babanin, 2011]. Although techniques (includ-

ing analytical methods and contact measurements) to directly detect and measure

breaking have greatly evolved over the past few decades, the post-breaking signature

of wave breaking remains the most practical and efficient means for detection and

quantification of breaking. In particular, the visual signature of breaking (assuming

air entrainment)—whitecaps—remains the most common method to investigate the

breaking of ocean surface waves.

2.2 Oceanic whitecaps

One consequence of surface wave breaking is that air is entrained into the seawater,

forming clouds of bubbles, which subsequently rise to the surface forming patches of

foam, known as whitecaps. In this thesis we distinguish these surface layers of sea
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foam (whitecaps) from sub-surface bubble plumes and sea spray droplets suspended

closely above the surface, though all three are the result of breaking surface waves and

can be classified as sea foam. Callaghan et al. [2013] define the term ‘whitecap’ as the

surface expression of wave breaking that persists for a length of time over which it can

be visually distinguished from the background water.

2.2.1 Whitecap formation and evolution

Although individual whitecaps are in constant temporal evolution (as illustrated in

Figure 2.2), it is possible to define two distinct phases of a whitecap’s life-cycle [Mon-

ahan and Lu, 1990]. During the active breaking stage, air is entrained into the water

column at the wave crest (Figure 2.2a), with associated generation of underwater noise

due to bubble formation and fragmentation [Callaghan et al., 2013; Deane and Stokes,

2002]. As the leading wave crest progresses forwards, it continues to entrain air (Fig-

ure 2.2b). The resulting surface expression is a dense layer of foam, termed active (or

stage A) whitecap, with a visible albedo of around 0.5 [Whitlock et al., 1982]. The

characteristic whiteness is due to light scattering through the air-water mixture.

Figure 2.2: (a-c) Temporal evolution of an individual oceanic whitecap (left to
right). Successive images are separated in time by 750 ms, with the first image

acquired 1.2 s after the onset of breaking (taken from Callaghan [2013]).

Following active air-entrainment, the whitecap enters its second phase (stage B) as

bubbles in the sub-surface plume rise to the surface due to buoyancy and turbulent

forces. Once at the surface, the lifetime of risen bubbles is dictated by a combination of

seawater chemistry (e.g., salinity, saturation levels of dissolved gases), turbulent forces,

thin film fluid drainage, and stabilizing or destabilizing forces [Callaghan, 2013]. The
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surface foam layer as a whole gradually decays—a result of thinning of the bubble raft

due to bubble bursting—leading to a reduction in albedo (Figure 2.2c). The foam layer

persists as long as there is a sufficient flux of bubbles to the surface; usually this is of the

order of seconds. In some instances, foam can persist on the surface for much longer,

perhaps several minutes. One example is the stable, thread-like structures associated

with confinement of foam patches by Langmuir vortices [Sharkov, 2007].

2.2.2 Physical description of whitecaps

2.2.2.1 Mechanical structure

A layer of sea foam on the ocean surface is an air-water mixture in which air bubbles

are inclusions. The properties of such a mixture depend on a set of variables that de-

scribe this ‘medium’: bubble dimensions (characterized by radius and wall thickness),

bubble concentration or size distribution N(r), foam layer thickness t, and foam void

fraction fa (fraction of unit ocean volume occupied by air). These micro and macro

characteristics represent the specific mechanical structure of sea foam [Anguelova and

Gaiser, 2013].

Within the foam layer, the dimensions of the densely packed bubbles gradually change

with depth. Figure 2.3 shows the structure of a typical foam layer; the photo was

taken during an experiment in 2004 with the foam layer created in a large outdoor

basin filled with salt water (35 psu) [Padmanabhan et al., 2007]. In the upper part

of the layer, thin-walled bubbles contain little seawater (dry foam). Moving down

through the foam layers, the bubbles become smaller and thicker-walled resulting in

decreasing air content (wet foam). The consequence of such vertical stratification is

that foam characteristics acquire a large range of values, with a vertical profile; for

example, the void fraction can range from 100% at the air-foam interface to 1% at the

foam-water interface [Anguelova, 2008].

In the open ocean, foam layer thickness, δ, can range from 1–20 cm for active whitecaps

and 0.1–1 cm for residual foam [Anguelova and Gaiser, 2011]. Foam layer thickness is

thus distributed [Reul and Chapron, 2003], being dependent upon the meteorological

and oceanographic forcings of new foam formation, and the lifetime stage of the foam.
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Figure 2.3: Schematic of a vertically stratified surface foam layer. Photo by Bill
Asher (Applied Plysics Laboratory, University of Washington)

2.2.2.2 Dielectric properties and remote sensing signature

The dielectric properties of sea foam determine the absorption, scattering, and trans-

mission of electromagnetic radiation through it, and so determine its radiative prop-

erties and remote sensing signature. The most important quantity in this context is

the foam complex dielectric constant (relative permittivity) εf . This dictates all other

dielectric properties of sea foam [Anguelova and Gaiser, 2011]. As the microstructure

of the foam layer has a vertical profile, so does the dielectric constant i.e., εf (z), where

z is the depth in the foam layer.

The visible signature of whitecaps is well known to the casual observer of the ocean

surface in the presence of breaking waves. Whitecaps are highly reflective at visible

frequencies and their presence at the ocean surface increases its albedo. The reflectance

of sea foam varies with both the thickness of the foam layer and it’s mechanical prop-

erties. The irradiance reflectance (in the visible range) of a thicker foam layer with

tens of layers of bubbles can reach 55% [Whitlock et al., 1982]. To account for this

dependency, an effective reflectance can be introduced which accounts for changes in
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optical properties with whitecap lifetime; Koepke [1984] estimated this quantity to be

22% in the visible.

At microwave wavelengths, sea foam has a high blackbody-like emissivity [Aziz et al.,

2005; Nordberg et al., 1971; Rose et al., 2002], suggestive of foam being a highly ab-

sorptive medium. For remote sensing applications, the bulk of the registered radiation

emanates from a thin layer known as the skin depth—defined as the medium thick-

ness over which the electromagnetic radiation decreases by a factor 1/e. This depth

in seawater varies from around 0.5 mm to 10 mm, and is frequency dependent. The

microwave remote sensing of whitecaps is discussed in detail in chapter 3.

2.2.3 Properties of individual whitecaps

2.2.3.1 Geometry

Whitecaps can occur over a range of scales and with a variety of geometries. However, it

is widely acknowledged that for quasi-steady (as opposed to unsteady) breaking ocean

surface waves the overall geometry may be assumed to be statistically self-similar.

It is therefore possible to describe the geometry of an individual whitecap through

scaling laws. In the geometry considered by Duncan [1981], the whitecap forms at

the turbulent region growing on the forward face of an individual spilling (rather than

plunging) breaker.

Figure 2.4 depicts the breaking region forming on the forward crest of spilling wave of

wavelength λ and phase velocity c. δ is the breaking region vertical thickness and Λ is

the arc length of the breaking front. Duncan [1981] found that (i) all the laboratory

produced waves have breaking regions with the same aspect ratio Ab/L
2
b ≈ 0.1 where

Ab = δLb is its area and L2
b its length in the direction of propagation, and (ii) the

ratio of breaking area length and the breaking wave’s wavelength is the same for all

conditions, Lb/λ ≈ 0.3.

Bortkovskii [1987] reported on the aspect ratio of individual whitecaps (with areas of

5–10 m2) using photographic data from the literature. It was found that the width of

the whitecap along the wave crest w and Lb followed closely w/Lb = 2.15.
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Figure 2.4: Schematic of a quasi-steady spilling breaker, moving from left to right
(from Reul and Chapron [2003]).

2.2.3.2 Time-evolution of area

The property of whitecaps of most interest to this study is the areal extent. A single

frozen image of the sea surface would yield a distribution of whitecap areas, some of

which would correspond to active whitecaps and others to residual foam patches. In-

dividual oceanic whitecaps have typical mean areas ranging from tens of centimeters

(as reported by Snyder et al. [1983] in shallow coastal waters at low wind speeds) to

tens of meters for dominant breakers; mean areas have been cited to be several me-

ters [Bortkovskii, 1987]. The distribution of individual crests and strip-like structures

were parameterized as gamma distributions by Bondur and Sharkov [1982] from aerial

photography of the ocean surface; through dividing whitecap formations into ‘crests’

(corresponding to active whitecaps) and ‘stripe-like structures’ (stage B foam), it was

found that at moderate wind speeds (6–11 m s−1) the mean areas of individual crests

and foam stripes increases from ∼0.5 m2 to ∼1.2 m2 and from ∼20 m2 to ∼30 m2,

respectively, as wind speed increases. More recently, Kleiss and coworkers analyzed

aircraft video recordings of breaking waves to obtain the distribution of foam patch

area. It was found that the probability density function of whitecap areas follows

closely a power law relationship of the form A−1.8 [Kleiss, 2009]. Callaghan et al.
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[2012] investigated the distribution of maximum foam patch area Amax of individual

whitecaps. The largest whitecap resolved in the study had a maximum area of 26 m2

but for the majority of whitecaps Amax < 10 m2.

Monahan and Zietlow [1969], based on laboratory measurements of simulated white-

caps, introduced an exponential decay model to describe the time evolution of the

surface area of an individual whitecap subsequent to formation:

A(t) = A0 exp(−t/τ) (2.1)

where τ is the e-folding decay time (or characteristic whitecap decay time). In this

model, τ is constant across a range of whitecap scales i.e., it has no dependence on

A0, the initial area of the laboratory produced whitecap. In such a model, the rate of

change of an individual whitecap’s area is independent of its size, and is simply the

quotient of the area at a time t, and τ :

dA/dt =
−A(t)

τ
. (2.2)

It can be seen from equation 2.1 that the time-averaged areal extent of an individual

whitecap is dependent upon its decay rate τ . There exists large variation in reported

decay times. Estimates for the mean lifetime of foam patches have been reported by

several authors, although only some make a distinction between active breaking crests

and residual foam patches. Estimates range from fractions of a second [Kondo et al.,

1973] to tens of seconds [Bondur and Sharkov, 1982]. The large variation in estimates

from these early studies is likely due in part to differences in image collection and

processing, as well as image resolution.

In the laboratory study of Monahan and Zietlow [1969], the decay rate was measured

as 2.54 s for fresh water whitecaps and 3.85 s for salt water whitecaps. The salt water

decay rate was measured as 3.53 s in a subsequent study by Monahan and colleagues

[Monahan et al., 1982, 1986]. For some time, this value was taken as the standard

characteristic decay rate and was used in a variety of applications such as in estimating

the SSA source flux.
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Using digital images of whitecaps, Callaghan [2013] characterised the evolution of

whitecap area by considering distinct growth and decay phases, based on the appear-

ance of a well-defined peak in the whitecap area time series which allows the area to be

operationally separated into a linear formation phase and an exponential decay phase.

A whitecap formation timescale for an individual whitecap (τform) is defined as

τform =
1

Amax

∫ t=0

t=−∞
A(t)dt (2.3)

where Amax is the maximum surface area of the whitecap reached at t = 0. The decay

timescale for the individual whitecap is defined as

τdecay =
1

Amax

∫ t=∞

t=0
A(t)dt. (2.4)

Combining these timescales gives the whitecap timescale (τwc) for an individual white-

cap: τwc = τform + τdecay.

The whitecap decay timescales was investigated by Callaghan et al. [2012] using the

same data set of digital images. It was found that τdecay scales with Amax, such that

τ = K0A
k1
max, (2.5)

where mean values for index K1 is approximately 0.43, and factor K0 = 1.97. Indi-

vidual whitecap decay rates can vary by a factor of 20, and though an area-weighted

average whitecap decay time can be defined, it will be different between different obser-

vational periods with different environmental forcing conditions. These results support

the earlier findings of Jessup et al. [1997] who observed that the decay rate scales with

the strength of breaking, with larger whitecaps taking longer to decay.

The temporal evolution of the area of three evolving individual oceanic whitecaps is

illustrated in figure 2.5, using time-series of area evolution obtained from analysed

digital images [Callaghan, 2013]. Note that in this figure, t = 0 defines the time at

which the whitecap has reached its maximum area Amax and the point at which the

growth phase ends and the decay phase begins. The three whitecaps show a similar

evolution of area, characterised by a linear growth phase, followed by an exponential

decay phase.
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Figure 2.5: The evolution of whitecap area for three different breaking waves, each
with different values for τform and τdecay. Figure taken from Callaghan [2013]

2.3 The whitecap fraction, W

2.3.1 Definition of W

The whitecap fraction W is defined as the spatial fraction of the sea surface covered

by whitecaps at any instant in time:

W =

∑
iAi

Aobs
(2.6)

where Ai is the area of an individual whitecap and Aobs is the total ocean surface

area of the scene. Using this instantaneous definition, Aobs should be large enough to

contain a sufficient number of whitecaps (so that the measured W is representative of

the actual coverage), but should be sufficiently restricted to satisfy the requirement of

spatial uniformity of the wave field Massel [2007]. Note that ‘whitecap fraction’ is used

interchangeably throughout the literature with ‘whitecap coverage’, and that both can

be given as a fraction or percentage. Throughout this text, we use the term whitecap

fraction, and give as a percentage.

Using a steady-state approximation, Monahan [1971] related the whitecap fraction to

the area of an individual whitecap, given by equation 2.1. In such a model, the statistics

of the area of a given whitecap are independent of the whitecap number distribution.

Assuming whitecaps with a mean initial area of A0, the whitecap area formed per unit

time and unit area is A0R, where R is the breaking rate per unit area of water surface

(s−1 m−2). This quantity is balanced by the rate of whitecap area decay per unit sea



Chapter 2: Background 16

surface area; following from equation 2.2 this quantity is given by W/τ . Rearranging

for W , we have

W = A0Rτ. (2.7)

It follows that an increase in W can result from larger waves breaking, a higher fre-

quency of breaking, or a longer whitecap decay time.

Alternatively, the whitecap fraction can be defined by taking into account the time-

dependence of whitecap area. Following Callaghan [2013], for a given observational

area and time period T , in steady state conditions, W can be written as

W =

∑
i

∫
Ai(t)dt

AobsT
. (2.8)

The time integral in the numerator can be rewritten as

∫
Ai(t)dt = Amax,i(τform + τdecay) = Amax,iτwc,i (2.9)

and when substituted into equation 2.8 yields

W =

∑
iAmax,iτwc,i

AobsT
. (2.10)

The whitecap timescale therefore plays an important role in determining the whitecap

fraction. Importantly, variable growth and decay timescales are likely a major source

of variability in W estimates between data sets. Furthermore, variable foam decay

time will affect primary marine aerosol production, and energy dissipation estimates

from breaking waves [Callaghan et al., 2012].

2.3.2 Relation of W to wave breaking and energy dissipation

Whitecap observations provided one of the first means of observing and quantifying

wave breaking. It should be noted that W quantifies the post-breaking signature

of wave breaking and therefore deviates from a measure of the strength, scale, and

frequency of breaking because (i) contributions to W are from all breaking scales

(with this information on relative contributions lost when W is evaluated), and (ii) W

includes residual foam cover Massel [2007] which is affected by post-breaking processes.
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As Kleiss and Melville [2010] summarise: ‘Whitecap [fraction] and the breaking rate

provide bulk representations of the amount of breaking, without any indication of the

scales of waves that are breaking and dissipating energy. Information about the scales

of breaking waves is of fundamental importance for the development of more rational

models of air-sea mass, momentum, and energy transfer and mixed layer dynamics.’

However, this information is not currently attainable on a global scale i.e., from routine

model output or satellite measurements, and whitecaps remain the most conveniently

observable indication of breaking surface waves [Hwang, 2012]. Further, the relation

between the scale and severity of breaking and W is equivoval; for example, the same

whitecap fraction can result from different frequencies of occurrence of breaking waves,

depending on the scale and severity of the breaking events [Babanin, 2011].

For air-sea interaction processes (such as gas transfer) where dissipation of wave energy

is the primary concern, one must critically assess how suitable W is as a representation

of (i.e., a quantity directly proportional to) energy dissipation. We have seen above that

W is dependent on post-breaking processes—the decay of residual foam, for example.

Even if these factors do not play a role, the dependence of W on energy dissipation

is not clear. By definition, the total energy flux from the wind to the waves (and

therefore total energy dissipation rate in a quasi-stationary case) is

〈ε〉 = τU (2.11)

where

τ = ρau
2
∗ = ρaCdU

2
10 (2.12)

is the wind stress imposed at the surface, U is a characteristic velocity of energy

propagation in the lower atmosphere, u∗ is the air-side friction velocity, ρa is the air

density, and the drag coefficient is defined as Cd = u2
∗/U

2
10. According to the above

relationships, the wave energy dissipation is related to some wind speed cubed, though

the precise details of the relationship depend on the choice of characteristic wind speed

U [Babanin, 2011]. However, these relationships do not imply that W ∼ U3, though

some authors have enforced a cubic dependence of W on U10 in their parameterisations.

The parameterisation of W in terms of wind quantities and wave energy dissipation

rate is discussed in more detail in section 2.6
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2.3.2.1 The Phillips spectral framework for wave breaking and whitecaps

Recently there has been a renewed interest in the work of Phillips [1985] (the Phillips

framework), in which a theory for equilibrium range wind wave interaction was for-

malised. In this work, a new statistical measure was introduced which offers a scale-

dependent description of wave breaking. The scale of a breaking wave is ideally speci-

fied by its wave number, but this can be difficult to measure in the field. As a surrogate,

Phillips [1985] proposed using the breaker speed c, which is related to the wave number

via the deep water dispersion relation. The Phillips distribution Λ(c) (m−2 s), is de-

fined such that Λ(c)dc is the average total length per unit sea surface area of breaking

fronts propagating with speeds in the range (c, c + dc). This parameter can also be

defined to account for a directional spread in the horizontal, but here we focus on the

scalar distribution. It follows that the average total length of breaking crests per unit

area ocean surface is

Ltotal ≡
∫
c
Λ(c)dc (2.13)

with units of m−1. The distribution was originally predicted by Phillips [1985] using

a spectral model of wave energy dissipation for wind and waves in equilibrium. More

recently, the distribution has been measured empirically using video or infrared record-

ings of breaking waves (see Callaghan et al. [2012]; Kleiss and Melville [2010]; Melville

and Matusov [2002]), and obtained from a spectral wave model [Leckler et al., 2013].

The relevance of the Phillips framework for this study is that it provides a semi-

empirical approach to obtaining a relationship between whitecap fraction and the en-

ergy and momentum balances of surface gravity waves. Moments of the crest length

distribution define various statistics for breaking waves; the first moment of Λ(c) de-

fines the fraction of the surface area ‘turned over’ by breaking fronts per unit time

[Phillips, 1985]

R =

∫
c
cΛ(c)dc (2.14)

which is related to heat and gas exchange between the ocean and the atmosphere

[Jessup et al., 1997]. R can also be interpreted as the breaking frequency at a fixed

point, and so has units of inverse seconds. The quantity under the integral sign defines

the area swept by breaking wave crests of incremental wave speed dc per unit are per

unit time, A = cΛ(c)dc (s−1). Phillips [1985] combined equation 2.14 with a timescale
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TPhillips to obtain an expression for W :

W = TPhillips

∫
c
cΛ(c)dc. (2.15)

Phillips [1985] defined this timescale as an ‘average bubble persistence time’, setting it

as a constant though noting that it likely varied with water surface temperature and

other environmental factors.

The fifth moment of the distribution determines the breaking-induced energy dissipa-

tion:

ε(~c)d~c = bg−1c5Λ(~c)d~c (2.16)

where b is the ‘breaking strength’ proportionality factor [Drazen et al., 2008; Phillips,

1985; Romero et al., 2012], and g the acceleration due to gravity. Combining equa-

tions 2.15 and 2.16 one can obtain an expression relating W to the energy dissipation

rate:

W = gTPhillipsb
−1

∫
c
c−4ε(~c)d~c. (2.17)

The term ε(~c)d~c can be expressed as the spectral rate of energy loss from wave com-

ponents in the equilibrium range of the wave spectrum [Phillips, 1985]. Using such an

expression, one can integrate equation 2.17 over a suitable range of breaking front ve-

locities (cmin,cmax). In the result of this integration appears the total (i.e., integrated)

energy dissipation rate
∫
c ε(~c)d~c = 〈ε〉/pw where ρw is the density of water [Phillips,

1985]. A final expression relating W to 〈ε〉 is obtained:

W (〈ε〉) =
gTPhillips

4bρw

〈ε〉
c4

minln(cmax/cmin)
. (2.18)

The merit of such an expression is that the whitecap fraction is determined by the

kinematics and dynamics of the breaking waves via c and 〈ε〉. However, the nature

of this framework results in an expression with several other parameters that are not

well constrained; to obtain W , one requires 〈ε〉 estimates (or measurements), as well

as values for b, cmin and cmax, and TPhillips. Estimates of b, cmin and cmax are given in

the literature, but these parameters generally show a large variation between studies.

In the original formalism set out in Phillips [1985], the factor TPhillips is somewhat

ambiguous. Reul and Chapron [2003] suggest that choice of the factor TPhillips can—to
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first order—discriminate between different stages of whitecap evolution i.e., between

active and residual coverage. Based on a model of an individual breaker, the per-

sistence time of the generated foam layer is not constant, but scales with the period

of the underlying carrier waves: TPhillips = aTb = a2πc/g, where a is a constant of

proportionality.

2.4 Measurement of whitecap fraction

2.4.1 In situ observations

Estimates of whitecap fraction have traditionally been obtained from in situ measure-

ment of the ocean surface via photographic or video imagery [Anguelova and Webster,

2006; de Leeuw et al., 2011]. Measurements have been made from aircraft, ships, and

fixed platforms (e.g. Bobak et al. [2011]; Callaghan and White [2009]; Sugihara et al.

[2007]). W is generally estimated as an average value of a range of individual mea-

surements of W over a time period short enough that forcing remains constant (∼30

minutes). Typically, estimates from video measurements are an order of magnitude

lower than those from photographic measurements taken in comparable conditions; the

exact reason for this difference is unknown but could be related to image resolution.

Early observations of wave breaking and measurements of whitecap fraction include

those of Munk [1947], Blanchard [1963], Gathman and Trent [1968], and Cardone

[1969]. Although there were some exceptions (e.g., the study of Munk [1947] where the

number density of foam patches were reported), the majority of these studies reported

estimates of W obtained through manual processing of photographs. These were used

in conjunction with wind speed measurements to obtain some of the first empirical

relationships between whitecaps and wind speed (section 2.6).

Over subsequent decades, dozens of observational data sets from field campaigns were

published, with a trend of increasing data volume due to a move from film to digital

photography, and use of automated systems to extend the period of measurement.

Anguelova and Webster [2006, Table 2] give a chronological listing of whitecap fraction

data sets spanning nearly 50 years, from 1952–2000. Individual W estimates from

these data sets are plotted against corresponding U10 estimates in Figure 2.6.
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Figure 2.6: Scatter plot of individual W estimates from photographic data as a
function on U10. Figure taken from Anguelova and Webster [2006]

Of the 28 data sets documented in Anguelova and Webster [2006], only a small selec-

tion focus on measurements made in the open ocean where the ocean waves are not

fetch limited (namely those of Spillane et al. [1986] and Stramska and Petelski [2003]).

The data sets used by Monahan and O’Muircheartaigh [1980], and Bortkovskii [1987]

contain a mixture of open ocean and coastal measurements. In subsequent years, two

more open ocean datasets have been published, those of Callaghan et al. [2008a] and

[Moat et al., 2009]. Practically, coastal measurements are easier to obtain, but both

the physical and environmental conditions pertinent to coastal sites will affect the wave

breaking mechanism and the whitecap fraction. For example, one might expect rela-

tively higher W values in coastal zones due to the effect shallowing in the surf zone has

on slowing and steepening swell waves. On the other hand, fetch-limited conditions

occur more frequently in coastal regions and so W could be expected to be relatively

lower than that for open ocean regions under comparable wind forcing.
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Figure 2.7: W estimates as a function of U10 from five new datasets (colours), and
previous photographic studies (grey). W estimates less than or equal to 1 × 10−6

are omitted. The line represents the formulation of Monahan and O’Muircheartaigh
[1980], equation 2.20. Figure taken from de Leeuw et al. [2011].

2.4.1.1 Variability between W estimates from different data sets

Figure 2.7 shows W against U10 for five recent data sets (that of Lafon et al. [2004],

Lafon et al. [2007], Sugihara et al. [2007], Callaghan et al. [2008a], and Callaghan

et al. [2008b] [colours]), together with all previous photographic estimates [de Leeuw

et al., 2011] (grey). In this figure, estimates of W from video recordings are omitted

as they are thought not to be as accurate as those by film photography [Lewis and

Schwartz, 2004]. Also shown is the widely used Monahan and O’Muircheartaigh [1980]

relationship, denoted MM80 henceforth (see section 2.6.1).

As can be seen, the pooling of many historical data sets results in large scatter in W

when plotted solely in terms of wind speed. Part of this variability is likely due to the

use of different measurement techniques; this is especially true of earlier data sets where

data volume is generally much lower, and measurement techniques less consistent. It

has been shown by Callaghan and White [2009] that to obtain an individual estimate

of W with a fractional error of a few percent from sea surface images with a limited
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field of view, one needs to average over order hundreds of individual photographs (or

video frames) within an interval short enough to have constant forcing. Analysis of an

insufficient number of images—as was the case in many of the earlier studies—can lead

to nonconvergent W estimates with larger uncertainties, contributing to data scatter

[Callaghan and White, 2009].

The more recent data sets show a clustering of W estimates when plotted as a function

of U10. This clustering is indicative of improvements to the extraction of W from

photographic data and increases in data volume, although it should be acknowledged

that the clustering may in part be due to the similar image processing methodology

adopted in these recent studies.

Aside from the reduced scatter in recent data sets, it is clear that there is a general

trend of lower W estimates (at a given wind speed) than the older historical data.

The Monahan and O’Muircheartaigh [1980] relationship acts as a sort of upper bound

for W estimates at a given wind speed. Furthermore, it appears that the wind speed

dependence is also different; at low wind speeds (U10 < 7 m s−1), the new measurements

are suggestive of a faster rate of increase of W (U10) than MM80, whereas at higher

wind speeds (U10 > 15 m s−1) the rate of increase seems to level off, with W estimates

plateauing.

The almost order-of-magnitude scatter that remains is likely an indication that factors

other than wind speed play a role in determining whitecap fraction. Thus, there is a

need for global, consistent measurement ofW , with sufficient documentation of relevant

oceanographic and meteorological conditions— something which hitherto has not been

achieved.

2.4.1.2 Limitations of in situ measurement

In situ observations, while instrumental in gaining knowledge of whitecapping so far,

have their limitations. Sampling frequency and data volume may be low, with as few

as five individual photographs having been used to construct a W (U10) parameterisa-

tion [Blanchard, 1963]. The number of individual W estimates obtained per study has
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increased dramatically since the earliest studies with a move from film to digital pho-

tography, and use of automated systems to extend the period of measurement [Moat

et al., 2009].

Most studies are limited spatially, with observations from platforms and ships offering

measurements only in environmental conditions pertinent to the given location. Nearly

all existing datasets were obtained in coastal, or fetch-limited waters [Anguelova and

Webster, 2006]. The only open ocean datasets are those presented in Bortkovskii [1987],

Bondur and Sharkov [1982], the more recent study of Callaghan et al. [2008a], and to

some extent Reising et al. [2002] and Stramska and Petelski [2003]. Furthermore,

only one study has been conducted in the Southern Hemisphere (from the POLEX-

YUG campaign, reported in Bortkovskii [1987]). Thus, existing datasets significantly

under represent open ocean conditions, specifically those encountered in regions of

the Southern Ocean where sea conditions are influenced by persistent winds over long

fetches [Anguelova and Webster, 2006]. Another bias may result from the small amount

of data obtained in warm waters; measurements have generally been conducted in cold

waters where sea surface temperatures are lower than ∼17◦C. It is plausible that the

seawater temperature (or more fundamentally, the kinematic viscosity νw) could alter

whitecap fraction due to changes in wave breaking kinematics and the behaviour of

bubbles comprising the surface foam layer (section 2.5.2).

Temporal coverage is limited by the measurement period—often of the order of days,

and usually no longer than several weeks. There are likely to be seasonal changes

in whitecap fraction at a given location, due to changes in wind patterns and other

forcings. Hitherto, an in-depth analysis of temporal changes in whitecap fraction over

the course of a whole year has remained elusive.

A further weakness of this method is the subjective choice of the intensity threshold

used in the processing algorithm to extract the ‘white areas’. On a related note,

it is known this method works better for stage A whitecaps (dense, recently formed

foam layers from an active breaking wave) due to there more intense ‘whiteness’ in

comparison with the more grey stage B (residual surface foam) whitecaps. Therefore,

stage B whitecaps may not always be well quantified using photographic images.



Chapter 2: Background 25

2.4.2 Satellite-based estimates of whitecap fraction

Both the large variability in whitecap fraction and the limitations of traditional mea-

surement approaches necessitates a new method for obtaining global W estimates.

Remote sensing of the ocean surface can capture both spatial and temporal variabil-

ity of W , and better quantify its dependence on meteorological and oceanographic

forcings.

The first direct implementation of a method to estimate W from remote sensing mea-

surements is described in chapter 3. This method, in contrast to in situ measurement,

does not require the resolving and counting of individual whitecaps. Rather, what is of

interest is how much the average emission of a given ocean area changes with appear-

ance of whitecaps, and how well these changes can be retrieved from measured data

[Anguelova and Webster, 2006]. Importantly, a more comprehensive study of variabil-

ity in W becomes viable if estimates are supplemented with accompanying estimates

or measurements of different forcing variables.

2.5 Factors affecting whitecap fraction

In the previous section, it was shown that decades of measurements of W have indicated

significant scatter in estimates of W at a given wind speed, leading to suggestion that

factors other than wind speed play a role in determining W . This should come as no

real surprise; W is a function of the size and frequency of breaking waves, and the

characteristic rate at which an individual whitecap decays. Therefore, any physical

factor that could affect either of these quantities will have an impact on the measured

whitecap fraction. For example, both A and R will primarily be a function of the wave

field, whereas τ will also be dependent upon factors that influence foam lifetime. In

this section, we review the literature regarding the influence of forcing factors on W .

2.5.1 Influence of the wave field

Stramska and Petelski [2003], working with data obtained in the North Atlantic, cat-

egorized measurements of W by the corresponding wave conditions; this was achieved

by comparing measured significant wave height, Hs, with that expected for a fully
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developed sea given the measured wind speed [Pierson et al., 1955]; the data points

were classified as representing an undeveloped sea state when the observed Hs was at

least 0.5 m less than the expected Hs for a hypothetical fully developed sea. The 0.5-

m criterion was chosen due to the relatively low accuracy of the Hs estimates. They

concluded that at a given wind speed, a developed sea should result in a slightly higher

whitecap fraction than that of an undeveloped sea, suggesting that the wind duration

or fetch is an important factor in determining W. The results of this analysis are shown

in Figure 2.8.

Figure 2.8: Variation in W due to degree of wave development (taken from Stramska
and Petelski [2003]). See text for details of the classification used.

It can be seen that for a given wind speed, a developed sea resulted in a slightly

higher whitecap fraction than that of an undeveloped sea. The authors thus conclude

that wind history is an important factor; winds blowing in the same direction over a

prolonged period of time will lead to developed seas. Additionally, wind history (or

wave development) should account for some of the variation in W . This wind history

influence may be contributing some of the difference in W by geographic location; to

use the authors’ example, wind in trade winds regions is likely to vary less over a
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period of time, leading to developed seas and higher whitecapping in comparison to

polar waters where atmospheric conditions can be highly variable.

Sugihara et al. [2007] found evidence that whitecaps are produced most actively under

the condition of a pure wind sea, and that W is suppressed by swell, indicating that

whitecapping is primarily a result of breaking wind waves. The authors also report

that in conditions of a pure wind sea, at a given value of U10, W increases with wave

age, supporting the conclusions of Stramska and Petelski [2003].

In contrast to the above two studies, Lafon et al. [2007]—by analysing photographs

taken in a coastal environment—found that there is a peak in W at an intermediate

wave age, and that W is likely to be lower both above and below this point i.e., in

growing or fetch-limited seas, or under swell-dominated conditions.

Callaghan et al. [2008b], focusing on a fetch-limited coastal region, observed that:

(i) scatter in W was reduced when seas were mixed (i.e., when the spectral intensity

of wind waves is of the same order of magnitude as the swell) rather than swell-

dominated, (ii) swell-dominated seas result in overall lower values of W than mixed

seas (as in Sugihara et al. [2007]) and (iii) the presence of a tidal current can augment

W estimates depending on the relative direction of the tidal current and the waves.

Most recently, Goddijn-Murphy et al. [2011] provided evidence that, at a given wind

speed for higher winds (U10 > 10 m s−1), W is slightly larger in conditions of developed

seas (mostly associated with decreasing winds) as opposed to developing seas (increas-

ing winds), as shown in Figure 2.9a. Callaghan et al. [2008a], using the same dataset

of W estimates, had previously reached the same conclusion, reporting higher values

of W in cases of decreasing winds (developed seas). In the study of Goddijn-Murphy

et al. [2011], it was also concluded that whitecap fraction is generally reduced in swell

conditions compared to wind sea conditions in cases of cross swell (angle between direc-

tion of wind and swell waves between ±45o and ±135o) (Figure 2.9b). Perhaps a more

important conclusion from the [Goddijn-Murphy et al., 2011] study is that a grouping

of sea state according to wave development, wind history, or the composition of wind

and swell waves was not observed when ECMWF or QuikSCAT data was used.

It can prove difficult to isolate the effect of the wave field because of inherent corre-

lations between wind speed and measures of the degree of wave development. Many
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Figure 2.9: The effects of (a) wave development, and (b) wave field conditions,
on whitecapping. (a) Developed seas—indicating bigger waves—are associated with
enhanced W at a given wind speed, while cross swell can suppress W at moderate

wind speeds (b). Figure adapted from Goddijn-Murphy et al. [2011]

different measures of sea state have been adopted; these vary in how exactly the de-

gree of wave development should be defined in terms of readily available measurements.

Both Stramska and Petelski [2003] and Sugihara et al. [2007] consider the effect of wave

development on W ; however, the classification of Stramska and Petelski [2003] is based

on significant wave height only, which may include contributions from swell, while Sug-

ihara et al. [2007] used directional frequency wave spectra to separate swell-dominated

from pure wind seas. This makes a direct comparison of their results questionable.

On a practical level, individual in situ data sets are likely to span only a narrow range

of possible wave conditions due to the temporal and spatial limitations of an individual

field campaign, so that a direct comparison of results may not be viable.

2.5.2 Influence of other environmental factors

Aside from the wave field, many other factors—acting alone or in combination—have

the potential to enhance or suppress W . It has proven difficult to quantify the depen-

dence of W on sea surface temperature (SST). Only a handful of studies of whitecap

fraction variability consider this effect, and furthermore, where data for SST does

exist, conditions are often limited to a small range of temperatures. Monahan and

O’Muircheartaigh [1986] suggest that SST has an influence on whitecap fraction, the



Chapter 2: Background 29

effect being twofold. First, they found evidence that the exponent of a W (U10) power

law fit increased with increasing SST. The authors reason that the true cause of this re-

sult is the inherent correlation between SST and average duration of high wind events;

at higher latitudes (lower SSTs), the average duration of these events is shorter, lead-

ing to a wave spectrum that is not fully developed. Second, the authors propose that

W should increase with increasing SST because of the reduction in water viscosity;

a lower viscosity results in less viscous dissipation, with a larger fraction of energy

available for dissipation through wave breaking and whitecapping.

Bortkovskii [1987] classified W–U10 fits by SST, and found no apparent trend in the

parameters; however, the total whitecap fraction (i.e., the sum of active and residual

foam) was found to increase with increasing SST. Thus result may, however, have been

largely influenced by the inclusion of a cold water (SST < 5oC) data set. Both Wu

[1988] and Stramska and Petelski [2003] report no systematic trends in W with SST.

In summary, although several studies show increasing W with increasing SST (decreas-

ing water viscosity), there is little agreement as to the physical bases of this dependence

[Lewis and Schwartz, 2004, section 4.5.3.1].

Atmospheric stability is thought to affect whitecapping through its influence on how

the air over the sea interacts with waves. In unstable conditions, there can be signifi-

cant deviations from the standard logarithmic wind profile describing the steady lower

boundary layer. This effect can be difficult to take into account, and can result in

biases in U10 and thus W–U10 dependencies. It is also possible that an atmospheric

stability type signal in W data may actually be a result of correlation between stability

and other factors, such as SST.

The air-sea temperature difference ∆T = Ta−Ts is generally used as a proxy for atmo-

spheric stability; a negative ∆T represents unstable conditions, a positive ∆T stable.

Monahan and O’Muircheartaigh [1986] find evidence for greater values of W under

unstable conditions than stable conditions at the same wind speed, with W increasing

by nearly 10% per oC, at a fixed wind speed. Wu [1988] concluded that W will increase

as conditions become more unstable, based on an hypothesized relationship between

the drag coefficient and ∆T . However, Stramska and Petelski [2003] found no evidence

of a relation between ∆T and W at a given wind speed.



Chapter 2: Background 30

Monahan and Woolf [1988] quantified the stability effect on active and residual white-

cap fractions separately. Estimates using their empirical expressions show that the

largest changes resulting from stability effects would be on stage A whitecapping with

an increase of a factor of 7 as the temperature difference between air and water in-

creases from 0oC to 10oC; the increase in stage B whitecap fraction would be a factor

of 2.4.

Again, there is no general consensus as to the effects of atmospheric stability on W ;

those trends have been observed are small relative to the spread of data.

Whilst the salinity difference between freshwater and saltwater can have a large effect

on the persistence of bubble plumes (and thus W ) [Monahan and Zietlow, 1969], the

effect is expected to be much more subtle over the relatively small range of salinity

variations encountered in the open oceans; it was demonstrated by Peltzer and Griffin

[1987] that changes to foam lifetime due to salinity are insignificant in the open ocean.

Another factor to consider is the role of salinity in changing bubble sizes which could

affect the remote sensing signature of the whitecaps, though this effect is not well

understood. More pertinent to this study is inclusion of the effects of salinity by con-

sidering the role it plays in determining water viscosity—a parameter which essentially

combines the effects of SST and salinity.

The role surface-active substances (surfactants) play in modulating W in the open

ocean has yet to be evaluated, although some laboratory studies do exist [Garrett, 1967;

Peltzer and Griffin, 1987; Scott, 1986]. Recently, Callaghan et al. [2013] confirmed that

the presence of surfactants acts to stabilize surface bubbles and so increase whitecap

decay times. As the concentration of surfactants is known to vary markedly over the

global oceans [Falkowski et al., 1998; McClain et al., 2004], it is plausible that presence

of such material can significantly affect residual whitecap fraction.

2.6 Parameterisation of whitecap fraction

2.6.1 Wind dependent parameterisation

Although numerous factors control whitecap formation and lifetime, wind speed is

the first-order controlling factor for wave breaking and the formation of whitecaps,
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and being readily measured, is often used to parameterize whitecapping through an

empirical expression, W = f(U10). Nearly all of these relationships are expressed as a

power law of the form aU b
10 with the exponent b typically close to 3 [Anguelova and

Webster, 2006]. One of the earliest W (U10) parameterisations was that of Monahan

[1971] in which W ∝ U3.4
10 .

The power-law dependency of W on U10 has been the subject of much debate. Cardone

[1969] hypothesized that whitecaps manifest the dissipation of excessive energy trans-

ferred from the air flow to the waves. Later, Wu [1979, 1988] argued this on analytical

grounds by noting that W can be related to the rate of energy supplied by the wind

(per unit sea surface area) i.e., W ∝ Ė. Ė can be expressed as a product of the wind

stress (τ) and surface drift current V , so that

W ∼ Ė = τV ∼ (C10U
2
10)(C

1/2
10 U10) ∼ U3.75

10 , (2.19)

after substituting in the common expressions for wind-stress and wind-induced surface

drift current. Using data obtained in the Atlantic Ocean by Monahan [1971] and

the Pacific Ocean by Toba and Chaen [1973], the whitecap fraction was expressed in

terms of the 10 metre wind speed as W = 1.7 × 10−6U3.75
10 . The exponent in such a

relationship is derived from the argument above (rather than being derived through

curve fitting), whereas the constant is related to the foam persistence, itself related

to the water temperature and atmospheric stability. Monahan and O’Muircheartaigh

[1980] later expressed reservations about this 3.75 power law, citing variation in the

power-law dependencies of relationships derived from different data sets and a general

need for an optimal empirically-based expression based on a statistical analyses.

Thirty wind speed dependent empirical expressions (published between 1971 and 2004)

are listed in Table 1 of Anguelova and Webster [2006]; the majority of these are wind

speed only parameterisations i.e., W (U10), and the remaining expressions are functions

of wind speed and an additional factor. Most of the whitecap data sets published

subsequent to the study have been used primarily to explore the dependency of W on

U10, but also friction velocity, u∗ [de Leeuw et al., 2011].

As numerous W (U10) parameterisations exist within the literature, it is often a mat-

ter of preference as to which formulation should be utilized in applications where W

needs to be specified. Despite being one of the earliest formulations, the Monahan
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and O’Muircheartaigh [1980] relationship (obtained using the robust biweight fitting

technique on a combination of field data reported in Monahan [1971] and Toba and

Chaen [1973]) has been widely adopted in the parameterisation of sea spray aerosol

production in models:

W (U10) = 3.84× 10−4U3.41
10 , (2.20)

where W is in %. The highest wind speed recorded in the combined dataset is 16.6

m s−1, but a maximum wind speed above which (2.20) is no longer suitable, is not

explicitly defined. However, the parameterisation is widely extrapolated to much higher

wind speeds.

The Callaghan et al. [2008a] relationship is a recent formulation resulting from analysis

of whitecap data obtained during the 2006 Marine Aerosol Production (MAP) cam-

paign in the North East Atlantic. By assuming that W can be related to U10 with a

power law of the form W = a(U10 + b)3, a linear regression on W 1/3 against U10 was

performed, resulting in the following relationships:

W (U10) = 3.18× 10−3(U10 − 3.70)3; 3.70 < U10 ≤ 11.25 m s−1,

W (U10) = 4.82× 10−4(U10 + 1.98)3; 9.25 < U10 ≤ 23.09 m s−1,
(2.21)

where W is percentage total (i.e., stage A plus stage B) whitecap cover. Note that data

has been divided into two overlapping groups according to the measured wind speed,

with a regression performed on each group.

In the study of Goddijn-Murphy et al. [2011], analysis of the MAP whitecap data set

was extended through use of in situ, model, and satellite data for wind and waves.

The following W (U10) relationship is reported when NASA QuikSCAT satellite wind

speed measurements are used:

W (U10) = 11.5× 10−3U1.86
10 . (2.22)

2.6.2 Inclusion of wave state

A strong dependency of W on wave field characteristics has been demonstrated in

numerous studies (e.g., [Kraan et al., 1996; Ross and Cardone, 1974; Zhao and Toba,

2001]). The wave field influence can be included in a parameterisation of W in different
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ways. First, W (U10) relations for different wave conditions can be proposed; this

approach has been used by Stramska and Petelski [2003] and Callaghan et al. [2008a]

(section 2.5.1) to account for the degree of wave development due to wind duration.

Second, W can be parameterised in terms of u∗ which itself can be estimated using a

wave-state dependent roughness scheme ([Hwang, 2005]). Third, one can replace U10

as the independent parameter and instead work with a wave or wind-wave parameter;

we review efforts on this last approach next.

2.6.2.1 Energy dissipation models

Ross and Cardone [1974] proposed that whitecap fraction should be proportional to the

rate of energy dissipation from the wave field. By estimating the total (i.e., integrated)

energy dissipation rate using the Phlliips equilibrium range theory [Phillips, 1985]

applied to wave buoy observations, Hanson and Phillips [1999] found that use of this

parameter in a standard power-law description of W decreased data scatter by two to

three orders of magnitude compared to wind speed parameterisation.

The utility of such a formulation relies on the availability of directional wave spectrum

information from which the wind sea part of the spectrum can be isolated (e.g., us-

ing the spectrum integration method of [Hwang et al., 2012]), before ε is calculated.

Addressing this concern, Hwang and Sletten [2008] expressed the energy dissipation

of wind-generated waves in terms of readily measurable, bulk quantities—wind speed,

significant wave height, and peak wave frequency—as

ε = αρaU
3
10

α = 0.2ω3.3
∗ η∗

(2.23)

where ρa is the density of air, and α is a wave parameter determined using non-

dimensional values for the frequency peak of the wave spectrum ω∗, and the surface

elevation η∗. Applying equation 2.23 to an extensive database of whitecap observations

results in the following relationship:

W = 0.014(ε− εc), (2.24)
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with threshold energy dissipation for whitecap detection εc between 0.013 and 0.038

W m−2.

2.6.2.2 Wave age

Kraan et al. [1996] found a relationship between the stage A whitecap fraction WA—as

opposed to total W which quantifies both active and decaying whitecaps—and wave

age, defined as ξ = cp/u∗ where cp denotes the phase velocity of the dominant waves,

and is equal to g/ωp. The authors find that WA scales with the inverse square of wave

age, though data scatter was high.

Guan et al. [2007] include a theoretical analysis of wave breaking dissipation models

in their discussion of whitecap coverage models. They conclude that single-parameter

models are insufficient to explain the variability of whitecap fraction, and propose

a model parameterised in terms of the wave age, β* = g/(u(∗)ωp) where g is the

acceleration due to gravity and ωp is the spectral peak angular frequency. The result

is a W ∝ β-2
* relationship, the same scaling as found by Kraan et al. [1996]. Lafon et al.

[2004] suggest a similar relationship, although the power-law exponent and constants

of the exact relationship are slightly different due to the different data sets used.

2.6.2.3 Wave Reynolds numbers

Zhao and Toba [2001] investigated the correlation between W and several different

variables, including a breaking-wave parameter,

RB =
u2

*

νaωp
, (2.25)

which was originally proposed by Toba and Koga [1986]. Here, va the kinematic

viscosity of air, and wp the spectral peak angular frequency of wind waves. This

non-dimensional parameter represents both a wind-forcing and wave property de-

pendence, and through fitting to a combination of various data sources, find that

W = 3.88 × 10-7R1.09
B . Another parameter considered was the wave age β = g/wpu∗,

where g is the acceleration due to gravity. Several whitecapping data sets were pooled

for this study, and analysed using the method of least squares. The breaking-wave

parameterisation above performed best, whilst a W ∼ β relationship had quite a low
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correlation coefficient. The authors conclude that although a wave-age dependence

does exist, it cannot be used to parameterise the whitecap fraction itself, and that RB

can effectively describe wave-breaking behaviour for wind-waves in local equilibrium

with the wind.

A similar non-dimensional wind-wave variable, the so-called breaking-wave Reynolds

number, has been proposed to give improved predictions of gas transfer velocities

[Woolf, 2005], but the model is tuned to fit range of empirical parameterisations and

has not been validated.

RHw =
u∗Hs

νa
, (2.26)

where Hs is the significant wave height, and νa the viscosity of air. Woolf [2005] later

adapted this parameter by exchanging the viscosity of air for that of water; this slight

alteration is an attempt to characterise the turbulence in the upper ocean, and is also

more consistent with an analysis of the temperature sensitivity of wave breaking. It

has been suggested that such a variable may be more successful than U10 alone in

accounting for variability in W .

There is continued effort to fit both new and existing field data with improved empirical

models. In the majority of recent W data sets, measures of the wave field have been

documented enabling W to be parameterised as a function of different wind-wave, or

wave variables. However, neither the use of friction velocity, nor inclusion of wave

field measures in parameterisation of W , have led to the reduction in scatter that was

perhaps indicated by previous studies [Goddijn-Murphy et al., 2011].

2.7 Whitecaps and the production of sea spray aerosol

One of the most important consequences of wave breaking and whitecap formation is

the production of sea spray droplets through bubble bursting, and via the wind tearing

of wave crests at higher wind speeds [Andreas, 1995; Blanchard, 1963; Monahan et al.,

1983]. Sea spray aerosol (SSA) can be defined as ‘a suspension, in air, of particles

that are directly produced at the sea surface’ [de Leeuw et al., 2011]. It is a key

aerosol constituent over much of the Earth’s surface, and is central to description of

Earth’s aerosol burden [Lewis and Schwartz, 2004]. Globally, the mass flux of SSA is

estimated to be 0.01–1×1014 kg yr−1 [Textor et al., 2006]. SSA particles often dominate
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Role Description References

Function readily as
CCN (Indirect

radiative forcing)

Due to hygroscopicity
and size. Determine

number concentration
and size distribution of
marine drops, in turn
affecting clouds and

their reflectance

[Andreae and
Rosenfeld, 2008;
Twomey, 1991]

Scattering of
electromagnetic
radiation (Direct
radiative forcing)

Dominant contribution
to light scattering by

aerosols in most ocean
regions. Cooling

influence cited as 0.08-6
Wm−2 †

[Dobbie et al., 2003;
Lewis and Schwartz,
2004; Quinn et al.,

1996]

Absorption of IR
radiation

Warming through
absorption of thermal

infrared radiation
[Reddy et al., 2005]

Interaction with
atmospheric gases &

particles

Serve as sink for
condensable trace

atmospheric gases and
for smaller aerosol

particles. Important
role in many chemical
reactions and cycles,

e.g. the marine sulphur
cycle

[Lewis and Schwartz,
2004] - section 2.1.5.2,

[O’Dowd and
de Leeuw, 2007]

Contribution to heat
and water vapour

transfer

Bubbles and spray
essentially increase

oceanic surface area,
enhancing transfer of

both heat and
moisture. This is true

for coarse SSA
(Dp > 10 µm), at

‘high’ wind speeds (
> 20 ms−1)

[Andreas, 1995;
Andreas and Monahan,

2000; Fairall et al.,
1994]

Table 2.1: Physical and chemical roles of SSA in the marine environment. † Estimate
from Lewis and Schwartz [2004]

the mass concentration of marine aerosol, especially away from continental sources of

anthropogenic aerosols and dust. As such, the chemistry and physics of the marine

environment are sensitive to the SSA concentration.

Table 2.1 lists the major roles that SSA plays once it is present in the marine boundary

layer. Many of these processes are inherently linked to one another—more so with the
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various feedbacks that come into play. In recent years, there has been a shift in the

literature to more inclusive studies of SSA (and other natural aerosols) and their role

in the climate system. Without this comprehensive understanding, we lack a sufficient

framework in which to better quantify the influence of anthropogenic aerosols on the

climate system, and their role in climate change. The effects of anthropogenic aerosols

have been identified as the greatest uncertainty in radiative forcing of climate change

over the industrial period by the Intergovernmental Panel on Climate Change (IPCC)

[Houghton et al., 2001, page 8]. In order to decrease this key uncertainty, we must first

better understand the interplay between natural aerosols and the climate system.

2.7.1 Production of sea spray aerosol

Bursting bubbles in the oceans are the main production mechanism for SSA particles

(e.g., Blanchard [1963]; Deane and Stokes [2002]; Lewis and Schwartz [2004]; Modini

et al. [2013]; Woodcock [1948]). During the bursting process, two types of drops are

produced [Resch et al., 1986] (Figure 2.10). Film drops are produced when the bubble

cap (or film) fragments with the resulting drops ejected over a wide range of angles

relative to the vertical. The number and size distribution of the film drops produced

largely depends on the size of the bursting bubble; one bubble can produce as many as

a thousand drops, with radii spanning five orders of magnitude—from 0.1 micrometers

to several hundreds of micrometers, though most are < 1 µm [de Leeuw et al., 2011].

In the subsequent stage of bursting, a vertical jet forms in the middle of the cavity left

by the bubble. On breaking up, the jet produces up to 10 jet drops which are ejected

close to vertically and can reach heights of ∼20 cm [Blanchard, 1983]. The majority of

SSA particles in the atmosphere with radii between 1 and 25 µm are likely jet drops

[de Leeuw et al., 2011].

Larger drops can be formed via an alternative mechanism—the tearing of wave crests

by the wind. These so-called spume drops can be transported vertically with the wind,

and have sizes ranging from tens of micrometers to several millimeters.
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Figure 2.10: Drop formation from bubble bursting. (a) A bubble rising from below
reaches the surface with formation of a bubble film, which will burst to produce film
drops (b). (c) The cavity left by the bubble decreases in size as it is filled by the
surrounding liquid with the formation of several jet drops from the breakup of the jet

(d). Figure modified from Lewis and Schwartz [2004].

2.7.1.1 Sizing convention and size distributions of sea spray aerosol

Upon injection into the lower atmosphere, the behaviour of SSA and their relative

importance in a host of different processes is a function of the particle size and compo-

sition. To facilitate this description of their behaviour, here we label SSA particles by

their equilibrium radius at a reference relative humidity of 80%, r80. Characterizing

size using r80 provides an unambiguous description of the amount of solute present in

the drop that is independent of local conditions, and is a physically relevant size, with

80% relative humidity (RH) being typical over the oceans [Lewis and Schwartz, 2004].

At this relative humidity, SSA particles are almost always present as liquid drops.

The smallest particulate matter ejected from a bursting bubble have radius of order 0.1

micrometers, whilst the largest particles are visible with radii of several millimeters.

Small particles (r80 ≤ 1 µm), having a residence times of the order of days, play a

vital role in the climate system both directly through the scattering of solar radiation

[Haywood et al., 1999], and indirectly by acting as cloud condensation nuclei, and thus

affecting cloud albedo [Andreae and Rosenfeld, 2008]. Larger particles (r80 ≥ 25 µm),

despite having short residence times of the order of seconds, can affect interfacial fluxes

of sensible and latent heat at high wind speeds [Andreas et al., 1995, 2008], and are

believed to affect the intensity of tropical cyclones [Andreas and Emanuel, 2001].

Several different size distributions can be formed once particles have been classified into

discrete size ranges. If one assumes (wrongly) that the solute composition of all SSA

particles, independent of their size, is that of seawater—which is near constant over the

oceans—then the size distribution of SSA number concentration constitutes a complete
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description of the aerosol [Lewis and Schwartz, 2004]. The number concentration can

be obtained by counting the number of SSA particles in a known volume of air in each

of the given size ranges, and is usually presented as valid for a given wind speed, or wind

speed range. The resulting distribution can be represented as n(r80) ≡ dN/dlogr80,

where particles are classified into intervals of logr80. This method of representing size

distributions is used for two reasons. First, counting the number of particles in different

size intervals is usually the first step in formulation any size distribution, regardless

of the final representation. Second, the choice of logr80 as the size interval of SSA

particles allows the size distribution to be reported over a wide range of sizes, and

ensures the size distribution of a quantity has the same units as the quantity itself

[Lewis and Schwartz, 2004]. The size distribution most relevant to this study is the

size-dependent production flux of SSA (section 2.7.2).

2.7.1.2 Composition and chemical description of sea spray aerosol

Knowledge of the chemical composition of marine aerosols as a function of their size

is needed to evaluate their role in the global climate system. Aerosol in the marine

environment (in areas remote from continental sources) is to a large degree of ma-

rine origin, and not aged continental aerosol [Fitzgerald, 1991]. The size-dependent

composition of marine aerosol reflects several factors, including (i) the original com-

position of the particle injected into, or on formation in, the atmosphere, and (ii) the

chemical modification of particles during their residence in the atmosphere. For SSA,

this means a concentration that is primarily determined by the chemical nature of the

seawater in which they have their origin, and by any subsequent chemical interactions

with other aerosol or gases (see O’Dowd and de Leeuw [2007]). Particles found in the

marine environment can be highly variable, with complex chemical signatures; a single

aerosol particle may consist of one species, or it may be a mixture of several distinct

chemical compounds [Saltzman, 2009]. As bulk seawater is largely a sodium chloride

/ magnesium sulphate brine, large SSA particles (with short atmospheric residence

times) share this chemical signature. Smaller particles, with longer residence times,

are susceptible to mixing non-sea-salt and organic containing particles, and so will

exhibit a much more diverse chemistry.
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It is known that organic material (mostly colloids and aggregates exuded by phyto-

plankton) present at the surface can be incorporated into SSA through the bursting

mechanism. In biologically productive waters, sea spray particles (especially those

with r80 ≤ 1 µm) can be considerably enriched in these substances. As early as 1948,

Woodcock [1948] showed that bubble bursting in areas with high concentrations of

plankton (in red tide) could result in ‘irritants’ being carried into the atmosphere.

Blanchard [1963] documented that organic matter can be enriched in sea spray, and

Hoffman and Duce [1976] made measurements of the organic content of sea spray in

laboratory studies.

Recently, there has been considerable effort to understand in more detail the role that

wave breaking, whitecap formation, and bubble bursting plays in the transfer of organic

matter from the ocean surface into the atmosphere (e.g., see de Leeuw et al. [2011];

Monahan and Dam [2001]; O’Dowd et al. [2004, 2008]; Vignati et al. [2010]). With

use of more sophisticated instrumental methods, quantification of the organic mass

fraction of SSA from field measurements [O’Dowd et al., 2004; Yoon et al., 2007] and

laboratory studies [Facchini et al., 2008; Fuentes et al., 2010; Keene et al., 2007] has

been possible.

2.7.2 Inferring the production flux of sea spray aerosol

To quantify the various roles that SSA plays in the climate system, knowledge of the

size-dependent production flux of SSA particles is required. Its numerical representa-

tion is the sea spray source function (SSSF) which can be formulated as:

f(r80) ≡ dF (r80)

d log10 r80
, (2.27)

where f(r80) denotes the number of particles in a given infinitesimal range of the

common logarithm of r80, injected into the lower atmosphere per unit area, per unit

time. F (r80) is the total number flux of particles with size less than r80 [de Leeuw et al.,

2011]. Given this definition of the production flux, it is clear that this quantity will

vary over scales the size of individual breaking waves. To formulate this quantity for

use as an input to global climate models for example, the production flux is averaged

over areas and times sufficiently large that rapid fluctuations caused by individual

breaking waves are smoothed out [de Leeuw et al., 2011]. At this point it is worth
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noting the distinction made between an interfacial flux (for which the height is zero),

and an effective flux at a given height (typically taken as 10 m above mean sea level).

Hereinafter, this distinction will be made through use of appropriate subscripts; Fint

for an interfacial flux, Feff for an effective flux.

To account for all possible factors capable of influencing the production flux, the expres-

sion in equation 2.27 should be extended so that it becomes a function of the driving

variables, and not just a function of aerosol radius. Identifying the relative importance

of these variables—and then developing new and improved flux parameterisations—

requires a complete understanding of the controlling processes [de Leeuw et al., 2011].

One would expect wind speed, as the dominant factor controlling wave generation, to

have a significant effect on the production flux and the vast majority of SSSFs are in

terms of U10. Other physical parameters that have been considered as possibly more

directly linked to SSA production include the wind stress on the surface, τ , and the

whitecap fraction, W.

Figure 2.11: A selection of parameterisations of the size-dependent SSA production
flux from the literature, evaluated for U10 = 8 m s-1. Also shown are central values
(curves) and uncertainty bands (shaded areas) presented in the review of Lewis and
Schwartz [2004]; green denote measurements made by investigators using the statis-
tical wet deposition method, blue for all steady state deposition estimates, and grey

for an average of all available methods. Figure taken from de Leeuw et al. [2011]
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Numerous parameterisations of the SSA source flux have been published in the lit-

erature. Figure 2.11 shows a selection of these SSSFs, and illustrates the range and

spread of the formulations, evaluated at a wind speed of 8 m s-1 which is close to

the global average. Various methods can be used to obtain a SSSF and the method

used is significant factor in the end result. One must distinguish between the different

methods used before we can make a clear comparison between the results. Included

in this figure are results from studies using the dry deposition method, statistical wet

deposition method, the steady state dry deposition method, as well as those using

the whitecap method and eddy-covariance method—the two methods most relevant to

this study. Despite these differences, the sizable spread between different SSSFs has a

physical basis, namely, a failure to consider any of the several other factors affecting the

production flux, for example sea state and wave field variability, atmospheric stability,

and sea surface temperature.

2.7.2.1 Eddy-covariance method

Eddy-covariance is the most direct method for measuring turbulent fluxes. However,

the technique can be challenging to apply to SSA particles mainly because of low num-

ber concentrations resulting in poor counting statistics. Whilst this technique has been

widely used to compute gas fluxes, only a handful of studies have attempted measure-

ments of SSA fluxes (de Leeuw et al. [2007]; Geever et al. [2005]; Nilsson et al. [2001];

Norris et al. [2012, 2008]). Many early studies lacked any size resolution and indeed

no means of distinguishing SSA particles from other species. Whilst the accuracy and

resolution of measurement systems (condensation nuclei counters and scattering spec-

trometers, for example) has subsequently evolved, the technique is still extremely tricky

to get right. However, eddy-covariance remains the most direct method of measuring

production flux of SSA over the open ocean.

The eddy-covariance technique aims at resolving the fluctuation in the quantity of

interest—in this case the SSA number concentration (N) and the vertical wind velocity

(w)—into mean values, N and w , and turbulent fluctuations, N ′ and w′ [Nilsson and

Rannik, 2001]. This decomposition allows determination of the net vertical flux due

to turbulent diffusion, N ′w′, usually averaged over 20–30 minute periods. The choice

of averaging period is a subject of much debate, but should be long enough that
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individual gusts or breaking waves do not influence the results, and short enough so

that environmental conditions do not change significantly during the period [Lewis

and Schwartz, 2004]. Uncertainties in time-averaged flux estimates are due to both

the stochastic nature of turbulence [Rannik and Vesala, 1999] and discrete counting of

aerosol particles [Fairall, 1984].

The measured N ′w′ (a net of upward and downward fluxes) are actually lower than the

source flux F , due to the downward fluxes of SSA particles from both dry deposition

and gravitational settling. The relationship is

dFeff

d log r80
= w′(

dN

d log r80
)′ + (

dN

d log r80
)× [vdd(r80)− vgrav(r80)], (2.28)

where the final term on the right hand side denotes the difference between the dry

deposition flux and the gravitational flux.

2.7.2.2 The whitecap method

The whitecap method—first described by Blanchard [1963]—is widely used to predict

SSA source fluxes. The source function of Monahan et al. [1986] obtained using this

approach, and subsequent modified forms (e.g., Gong [2003], and Jaeglé et al. [2011])

are routinely used in global chemical transport models such as GLOMAP ([Spracklen

et al., 2005]) and GEOS-Chem ([Gantt et al., 2012]). The interfacial production

flux is inferred by scaling an estimate of the production flux per unit area white-

cap dFwc(r80)/d log r80 often derived from laboratory measurements, by the whitecap

fraction W :
dFint

d log r80
= W × dFwc

d log r80
. (2.29)

Traditionally, in the absence of global measurements of W , estimates of W are obtained

using a W (U10) parameterisation, so that the total flux of particles dFint(r80)/d log r80

is a function of U10, implying that wind speed (alone) determines the magnitude of the

SSA source fluxes. The shape of the distribution (i.e., the variation of the source flux

with particle size) is dictated by the second term in equation 2.29.

Two methods of generating laboratory whitecaps have been employed. Here we focus

on the discrete whitecap method (DWM) (as opposed to the continuous whitecap
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method) pioneered by E. C Monahan and colleagues [Monahan et al., 1982, 1986].

In these experiments, the increase in the number concentration of SSA particles per

unit logarithmic interval of r80, ∆n(r80), from a single laboratory breaking wave with

initial white area Awc enclosed in a tank of air volume V was measured. Aerosols

were counted and sized using a particle spectrometer. From this information, the size-

resolved distribution of total number of aerosol particles produced by bursting bubbles

during the entire lifetime (visible and post-visible stages) of a simulated whitecap is

dEwc

d log r80
=

∆n(r80)V

Awc
. (2.30)

To determine the rate of production of SSA particles in the open ocean, one needs to

extrapolate these laboratory findings. To do so, the production flux per unit white

area dEwc/d log r80 can be combined with W/τdecay where τdecay is the characteristic

e-folding time of the simulated whitecap with a value of 3.53 s from their experiments:

dFint

d log r80
=

W

τdecay
× dEwc

d log r80
. (2.31)

A key assumption of the DWM was that under steady state conditions, the rate of

decay of whitecap area per unit area sea surface is equal to the rate of whitecap

area formation per unit sea surface (see Monahan [1971]). It is also assumed that

(i) all whitecaps, regardless of their size, decay exponentially with the same decay

time, (ii) the whitecap timescale should only consider the decay time, and (iii) that

the shape and magnitude of dEwc/d log r80 is typically constant; Monahan et al. [1986]

recognized that in reality this term will vary with the characteristic of the breaking wave

producing the whitecap [Callaghan, 2013]. The production flux per unit white area will

also vary with the properties of the water (e.g., salinity, temperature, and surfactant

concentration), which will affect both the bubble population and the resulting aerosol

size and composition on bursting (see for example the laboratory studies of Keene et al.

[2007]; Mårtensson et al. [2003]; Modini et al. [2013]; Zábori et al. [2012]).
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2.8 Whitecaps and air-sea gas exchange

Air-sea gas exchange—the movement of gases both from the atmosphere into the oceans

and from the oceans into the atmosphere—plays an important role in the biogeochem-

ical cycles, atmospheric chemistry, marine productivity, climate, and human health.

In particular, the flux of gases such as oxygen, dimethylsulphide, carbon dioxide, and

volatile iodocarbons (VICs) across the interface is of importance. These exchanges are

quantified by the air-sea flux which is driven by the concentration gradient between

the two phases and a kinetic (or rate) term, known as the gas transfer coefficient (or

velocity).

In addition to the direct diffusion of gases across the air-sea interface and transfer driven

by microbreaking, the breaking of air-entraining surface waves plays a role in the air-

water exchange of gases (e.g., Keeling [1993]; Merlivat and Memery [1983]; Monahan

and Spillane [1984]; Woolf [1997]). The breaking event itself generates turbulence

which generally enhances transfer at the surface [Monahan and Spillane, 1984; Woolf,

1995], whilst the injection and surfacing of bubbles disrupts the surface microlayer and

so reduces or removes the barrier to air-sea exchange. However, for poorly soluble

gases—such as CO2—the greatest influence is from bubble-mediated transfer, which is

defined as the net transfer of gas across the surface of bubbles while they are submerged

and advected by motions in the upper oceans [Woolf and Thorpe, 1991]. Though these

mechanisms are physically different, and are each influenced by different physical and

environmental forcings, it is accepted that combined influence of wave breaking and

bubbles on air-sea gas exchange becomes increasingly important at high wind speeds

[Wanninkhof et al., 2009]. The evolution of a single bubble after entrainment is shown

in Figure 2.12; black arrows indicate interfacial and bubble-mediated exchange.

The contribution of bubble-mediated exchange to the total transfer velocity for a gas

depends on its solubility, as shown in Figure 2.13. The contribution is larger for

weakly soluble gases such as CO2; in the figure, the grey shaded region represents

additional, bubble-mediated transfer for CO2. Bubble-mediated exchange for more

soluble gases, such as dimethyl sulphide (DMS), is smaller, because bubbles quickly

come into equilibrium with the bulk seawater so that a bubble takes place in the

exchange only for a fraction of its lifetime. In this case, direct transfer across the

surface, via molecular and turbulent diffusion, is dominant.
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Figure 2.12: Schematic illustrating the different mechanisms of air-sea gas transfer
and bubble evolution following entrainment into the upper ocean. (Figure taken from

Woolf [1997])

2.8.1 Modelling bubble-mediated exchange

A common starting point in the modeling of bubble-mediated gas exchange is to con-

sider the total waterside transfer velocity Kw to be a linear sum of two contributions

[Woolf, 2005]—the non-breaking fraction (or ‘direct transfer’) with transfer velocity

Kd and the bubble-mediated fraction with transfer velocity Kb,

Kw = Kd +Kb, (2.32)

based on the fact that these two processes occur in parallel. Though the dependence

of Kd on its various forcings is not yet fully understood, it is generally accepted that

direct transfer will scale with u∗ (as wind stress is the primary source of turbulence

and roughness at the ocean surface), but the mean square slope 〈s2〉 has also shown

good agreement with gas transfer rates [Jähne et al., 1987]. As for bubbled-mediated

transfer, Woolf [1997] proposed a model in which Kb is proportional to the whitecap

fraction W i.e.,

Kb = aW, (2.33)
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Figure 2.13: The magnitude of the bubble effect on the normalised (Schmidt number
of 660) transfer velocity for the relatively soluble DMS compared to less soluble CO2.
Pink dots show eddy covariance estimates of the DMS transfer velocity, and grey
sqaures those for CO2. Also shown are estimated transfer velocities using the scheme
of Woolf [1997] for CO2 (solid black line) and DMS (dark pink solid line). The
pink shaded region represents the diffusive transfer, which is approximately equal for
the two gases. The grey shaded area represents additional bubble-mediated transfer
for CO2. Figure by M.T. Johnson, shared under creative commons license at http:

//dx.doi.org/10.6084/m9.figshare.92419.

where a is a coefficient which depends on the solubility of the gas. Therefore, Kw may

be described by a hybrid model:

Kw = Kd(u∗ or 〈s2〉) +Kb(W ), (2.34)

following [Woolf, 1997]. Note that here we acknowledge (i) that both mechanisms de-

pend on the Schmidt number, Sc; (ii) that bubble-mediated exchange further depends

on the solubility of the gas, and (iii) that part of the contribution to to direct transfer

may actually be related to W . An expression for Kb in terms of physiochemical vari-

ables remains elusive, despite the efforts of modelling studies (Memery and Merlivat

http://dx.doi.org/10.6084/m9.figshare.92419
http://dx.doi.org/10.6084/m9.figshare.92419
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[1985]; Woolf [2005]; Woolf and Thorpe [1991]) and laboratory measurements (Asher

et al. [1996]; Woolf et al. [2007]). This is largely due to the complicated dependence of

Kb on the solubility and molecular diffusion constant of the gas.

2.8.2 Quantifying role of whitecaps in gas-exchange

Both laboratory and field studies have found both correlation between gas transfer

and the areal extent of breaking waves, and a large enhancement of gas fluxes due to

breaking waves and bubble entrainment [Asher et al., 1996; McNeil and D’Asaro, 2007].

However, direct quantification of the role of breaking waves and bubble production is

a tricky task, as it is almost impossible to separate the different contributions to gas-

exchange in field measurements. As summarised by Wanninkhof et al. [2009]: ‘The

role of breaking waves at high wind speeds is recognized as important, but as yet there

remains no reliable way to accurately quantify the effect of breaking waves on gas

exchange.’

It has been argued that the role of breaking waves and bubbles should manifest as

non-linearity in the total gas transfer velocity K. If Kd is assumed constant with

U10, the departure from a linear dependence is likely to be largely a result of bubble-

mediated exchange [Woolf, 2005]. To validate this claim, one would have to rule

out a possible non-linear enhancement of Kw due to microscale breaking and/or a

homogeneous increase in upper ocean turbulence associated with wave breaking.

Field data has generally been used to explore the dependence of Kw on breaking waves

through inclusion of this dependence in a wind speed parameterisation of the total gas

transfer velocity. A functional form for Kw was obtained by [McGillis et al., 2001]:

Kw = a+ bU3
10. (2.35)

Several Kw(U10) relationships of this form have been published in the literature (e.g.,

McGillis et al. [2001, 2004]; Wanninkhof and McGillis [1999]), each with their own wind

speed dependence ranging from linear (e.g., Liss and Merlivat [1986]) to cubic (e.g.,

Wanninkhof and McGillis [1999]). The advantage of these formulations is that Kw

can be estimated using only U10 fields. Thus, they have been widely used to calculate

regional and global-scale fluxes. However, the resulting estimates of Kw are sensitive to
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the wind speed data used and applying these relationships over temporal and spatial

scales with varying winds can lead to incorrect application of the relationships and

discrepancies in comparisons of different flux estimates [Wanninkhof et al., 2009].

In the same way that wind speed alone is not expected to account for variability in

W on a global scale, it is recognised that various other forcings need to be considered

to accurately predict air-sea gas fluxes through their influence on both interfacial and

bubble-mediated transfer. These include the wave field and wave energy dissipation,

sea surface temperature, buoyancy fluxes, surfactants, fetch, and rain, among others

[Wanninkhof et al., 2009].

Based on the large spread in experimental estimates and different wind speed only pa-

rameterisations of the transfer velocity for poorly soluble gases, Woolf [2005] proposed a

sea state dependent model of gas transfer building on the hybrid model (equation 2.32)

with Kb ∼W . To account for the sea state dependence of the whitecap fraction, W is

parameterised in terms of the roughness Reynolds number RHw (equation 2.26). Thus,

model predicts transfer velocities that increase not only with wind speed, but with

fetch, through the dependence of RHw on Hs; at a given wind speed, Hs is larger for

more developed seas, and so too therefore are W and Kw.

Whether W is implicitly or explicitly part of a transfer velocity model, without direct

estimates one must rely on parameterisation of W . The use of direct measurements of

W that can capture at least some of these influences, rather than simple parameteri-

sations, is likely to improve the prediction of air-sea gas fluxes on regional and global

scales.
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Data Sources and Methodology

3.1 Satellite-based estimates of whitecap fraction

3.1.1 Whitecaps and ocean surface remote sensing

It has been recognized for some time that the presence of whitecaps affects the electro-

magnetic (EM) signature of the ocean surface in various portions of the electromagnetic

spectrum (section 2.2.2.2). This has a direct impact on remote sensing of the ocean

surface [Anguelova et al., 2009b], for example in the use of passive microwave radiome-

ters to obtain the sea surface wind vector [Bettenhausen et al., 2006] and sea surface

salinity [Camps et al., 2005]. Consideration of whitecaps is also required in optical

ocean color retrievals due to the masking of water-leaving radiance by foam patches

[Gordon and Wang, 1994]. In such applications, forward models to correct for the

effects of foam can be implemented.

Here, our interest is restricted to passive remote sensing of the ocean surface. Quan-

tification of the influence of whitecaps on passive microwave measurements can be

achieved by combining a surface emissivity model (e.g., Nordberg et al. [1971]; Smith

[1988]) with satellite measurements of brightness temperature TB (e.g., as in the work

of Pandey and Kakar [1982] and Wentz [1983]). Such an approach enables one to

quantify the influence—under given meteorological conditions—of whitecaps on the

satellite signature of a large sea-surface area [Monahan and O’Muircheartaigh, 1986].

A more comprehensive approach to correcting for the influence of whitecaps involves

51
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the use of a physically-based model. It was this work, within the framework of the

WindSat mission [Gaiser et al., 2004], which led to the Naval Research Laboratory

(NRL) developing a method to obtain whitecap fraction estimates from satellite-based

observations.

At the same time, increasing interest in the role that whitecaps play in air-sea in-

teraction processes prompted work to more accurately parameterise whitecap fraction

and its variability. To capture this variability, W needs to be measured globally and

throughout the year, something not achievable with in situ photographic measure-

ments. With the advent of new satellite technologies over the past few decades, it is

now possible to estimate W on a global scale using routine satellite measurements.

3.1.2 Passive microwave remote sensing of whitecaps

Microwave radiometry is a well developed passive remote sensing technique (as opposed

to active or radar remote sensing) that uses the natural emissivity of the ocean surface

in its various states—smooth, roughened by small and large scale waves, and covered

with sea foam [Ulaby et al., 1981, chap. 4]. Use of microwave frequencies is preferential

because atmospheric interference can be more easily corrected for in this region of the

spectrum [Gordon and Wang, 1994]. Detection of whitecaps by space-borne remote

sensors is through the microwave radiation emanating from the surface foam layer. The

depth of the layer contributing to the microwave signature varies with the frequency

detected by the radiometer, ranging from less than a millimeter at 37 GHz to several

centimeters at 6 GHz. This penetration depth is dictated by the foam layer structure

and the resulting dielectric properties of the bubble layer. It is worth noting that

satellite retrieval of whitecapping using passive microwave radiometry does not require

resolving individual whitecaps which have a characteristic length scale O(10 m). As

Anguelova and Webster [2006] state: ‘...what is of interest is how much the average

emission of a given ocean area changes with whitecaps appearance and how well these

changes can be retrieved from measured data.’
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3.1.3 The W (TB) algorithm

3.1.3.1 Physical concept

The brightness temperature of a partially foam covered surface may be decomposed

into foam-free and foam-covered regions, following the model of Stogryn [1972]. The

composite surface emissivity e, is just the composite of two contributions; the rough

sea emissivity, er, in areas free of whitecaps (1 −W ), and the foam emissivity ef , in

the remaining foam-covered regions, W ;

e = er(1−W ) + efW, (3.1)

After simple rearrangement, W can be calculated from

W =
e− er
ef − er

. (3.2)

Although this model appears simple, the development of an inversion algorithm to ob-

tain W estimates from remotely sensed data is complex. In equation 3.2, e is obtained

from satellite radiometer measured TB with appropriate atmospheric correction. Both

er and ef are computed using analytical or empirical models. The rough sea emissiv-

ity, er, is computed using a ‘two-scale’ emissivity model [Johnson, 2006; Yueh, 1997],

which accounts for changes of emissivity due to Bragg scattering from short gravity

and capillary waves. This emissivity should be completely free of the effects of foam

and so purely a result of changes due to roughness. The model is tuned so that the

output of the two-scale model represents er only. The foam emissivity, ef , can be

obtained using analytical or empirical models (discussed in the following sections).

3.1.3.2 Initial implementation

A feasibility study by Anguelova and Webster [2006] demonstrated a method of esti-

mating W from routine satellite measurements of TB at 19 GHz, horizontal polariza-

tion. This initial algorithm used TB observations from the Special Sensor Microwave

Imager (SSMI/I) [Wentz, 1997], a radiometer flown on satellite platforms F8 to F17 of

the United States Department of Defense since 1987 and operating at four frequencies
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between 19 GHz and 85 GHz. The algorithm for estimating W combines satellite TB

observations with models for the rough sea surface and foam-covered areas (whitecaps).

In addition, an atmospheric model is used to remove the influence of the atmosphere

from the satellite measured top-of-atmosphere TB, in order to obtain the changes in TB

at the ocean surface; this is usually termed the atmospheric correction. Wind speed

U10, wind direction Udir, SST at the ocean surface, and atmospheric variables such as

water vapour (V ) and cloud liquid water (L) are necessary as input to the atmospheric,

roughness, or foam models. In this initial implementation, the foam emissivity was ob-

tained with the Fresnel formula for foam reflectivity using foam permittivity with a

constant void fraction. Though various models and many variables are involved in the

algorithm estimating W , for simplicity, the computational procedure as a whole will

be denoted the W (TB) algorithm.

3.1.3.3 Development of the W (TB) algorithm: The ‘WindSat version’

This initial implementation of the W (TB) algorithm has recently been improved in

several respects [Anguelova et al., 2009a]. Use of independent data sets in the W (TB)

algorithm has been possible due to newly available TB observations since 2003—in

addition to those of SSM/I—from the microwave radiometric sensor WindSat (Fig-

ure 3.1), onboard the Coriolis satellite [Gaiser et al., 2004]. WindSat operates at five

frequencies, between 6 GHz to 37 GHz, thus providing more TB data suitable for re-

mote sensing of whitecaps than SSM/I [Anguelova and Gaiser, 2011]. The Coriolis

satellite completes 14 orbits per day, with ascending (northbound Equator crossing)

and descending (southbound Equator crossing) passes at local times of approximately

1800 and 0600, respectively. There are 80 pixels within the WindSat swath with an

approximate spacing of 12.5 km across the swath and along the spacecraft track [Bet-

tenhausen et al., 2006]. With the designed sampling procedures and data processing

at the lowest level, each pixel within the WindSat swath represents a TB (or W ) value

averaged over an area of 50 km × 71 km. Each W value resulting from such an intrin-

sic spatial averaging of satellite instantaneous samples is analogous to the temporal

averaging required to produce stable W values from instantaneous photographic data

(section 2.4.1). WindSat TB data at higher swath resolutions (i.e., pixel value averaged

over an area of 35 km × 53 km or 25 km × 35 km) are also available, but here W
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estimates at the low resolution are used because the increased computational expense

of using a lower resolution product are not counter-balanced by gains from their use.

Figure 3.1: Photograph of the WindSat payload (taken from http://www.nrl.navy.
mil/WindSat/Description.php).

Use of WindSat TB data in the W (TB) algorithm allows independent use of SSM/I

data (V and L) for the atmospheric correction. In addition, more physically robust

models for rough and foam-covered surfaces are now employed [Anguelova and Gaiser,

2013; Bettenhausen et al., 2006; Johnson, 2006], and the input variables U10, Udir,

and SST to the atmospheric, roughness, and foam models in the W (TB) algorithm

are also compiled from independent sources. This development has likely reduced

self-correlations between different input variables within the algorithm.

The updated computational procedure for obtaining satellite W is shown in Figure 3.2,

with ‘modelling’ procedures coloured green and ‘measurement’ procedures coloured

blue. Model or satellite input data are shown in white. Note that this chart gives

a general concept for the W (TB) algorithm, but specific implementations may dif-

fer. Ocean surface brightness temperature TB(WS) is obtained from WindSat top-of-

atmosphere TB measurements by solving a radiative transfer equation (which includes

an atmospheric correction stage with use of SSM/I data for V and L). The WindSat

forward model is used to obtain TB(2s), the ocean surface brightness temperature due

http://www.nrl.navy.mil/WindSat/Description.php
http://www.nrl.navy.mil/WindSat/Description.php
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Figure 3.2: Flow-chart illustrating measurement and model input to the retrieval
algorithm for computation of whitecap fraction.

to rough surface only (i.e., without including foam effects). Taking the difference be-

tween TB(WS) and TB(2s), one obtains ‘measured’ TBf; this differencing minimizes the

uncertainty due to atmospheric correction.

The brightness temperature due to foam is obtained as TBf = ef .Ts, where Ts is

obtained from model output and ef is the foam emissivity; this quantity is obtained

from a physically-based radiative transfer model [Anguelova and Gaiser, 2013] and

corresponds to the emissivity of an area 100% covered in foam. Referring back to

equation 3.2 we now have all the emissivity terms, though cast in terms of brightness

temperature rather than emissivities:

W =
TB(WS)− TB(2s)

TBf − TB(2s)
, (3.3)

which is equivalent to equation 3.2.
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3.1.3.4 Current state of the project

The data used in this study is obtained by running v.1.96 of the W (TB) algorithm,

which was finalised in 2007. The improvements to the algorithm described above

have reduced the somewhat noticeable differences between trends in the satellite and

photographic measurements (Figure 3.3). The new WindSat implementation gives a

more realistic behaviour than the initial implementation described in Anguelova and

Webster [2006], when comparing to a W (U10) relation from photographic data (that of

Monahan and O’Muircheartaigh [1980]), although the data still diverges at both high

and low wind speeds.

Figure 3.3: W as a function of U10 highlighting the difference in behaviour for
the updated retrieval algorithm (red curve) compared with an earlier version of
the retrieval algorithm (blue curve, [Anguelova and Webster, 2006]), and how these
compare with a fit to photographic data (yellow curve), and the Monahan and
O’Muircheartaigh [1980] W (U10) relationship, (equation 2.20, black curve). Figure

taken from Anguelova et al. [2006]).

Presently, development of the W (TB) algorithm continues at NRL. W estimates were

initially obtained for 2006 and various months of 2007 and 2008 (prompted by work on
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validating satellite estimates with in situ photographic data from ships). The process-

ing of data for subsequent years has stalled due to both the failure of QuikSCAT in

November 2009, and processing changes associate with input data from SSM/I. These

developments could not easily be accommodated with the current version of the algo-

rithm. Further, these changes prompted more radical changes to the forward model,

which has been in constant development at NRL since 2007. As of March 2013, further

work to improve the W (TB) algorithm has been funded; the revised SSM/I input data

will be incorporated, a suitable source for wind vector data will be identified, and the

revised forward model implemented.

3.2 Compiling a whitecap database

Whitecap fraction estimates were obtained by running the W (TB) algorithm (v1.96)

for all five WindSat frequencies and both horizontal and vertical polarizations at a

swath resolution of 50 km × 71 km. All available WindSat orbits for 2006 with both

ascending and descending passes were used. A subset of this vast pool of raw swath data

for whitecap fraction was then used to compile a more tractable database of satellite-

based W estimates, accompanied by six meteorological and oceanographic variables;

hereafter we refer to this database as the ‘W database’. The compilation of the W

database involved three main activities: (i) devising a criterion to choose a subset of

all W data; (ii) gridding the W values from swath resolution into regular global maps;

and (iii) matching additional variables to the gridded W values.

3.2.1 W estimates

The W database includes estimates of W at two frequencies—10 GHz and 37 GHz,

horizontal polarisation; the horizontal polarisation radiometric measurements are more

sensitive to changes in wind speed and breaking events than vertical polarisation. The

choice to work with only these two frequencies, instead of all five frequencies available

from WindSat, is based on two considerations. First, the W (TB) algorithm for satellite-

based W estimates is still a work in progress. This W database is an intermediate stage

in the W (TB) algorithm development which can be used to evaluate the utility of the

W data, and identify how best to improve the W (TB) algorithm. On a related note,
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it was deemed that the overall quality of calibration was lower for measurements at

some frequencies (including those from the 6 GHz channel). Second, recent work on

the electromagnetic properties of sea foam, including the penetration depth of different

microwave frequencies trough sea foam [Anguelova and Gaiser, 2011], shows that each

radiometric frequency has a different sensitivity to different stages of the whitecap.

While all WindSat frequencies would react to foam thicker than 1 cm, as the frequency

decreases from 37 GHz to 6 GHz, its sensitivity to thinner foam decreases. The lower

limit of detectable foam thickness for 37 GHz is around 1 mm; for 10 GHz it is 4 mm;

and for 6 GHz it is around 1 cm. Because thick foam is associated with the active

whitecaps while thin foam characterizes residual whitecaps [Anguelova and Gaiser,

2011], we expect that W estimates at 10 GHz will predominantly be representative of

active, stage A (section 2.3.1), whitecaps and to some extent residual foam (stage B)

when it is thicker, e.g., at higher wind speeds. At 37 GHz, W estimates will represent

total whitecap cover (stages A and B). Therefore, the frequency dependence of whitecap

fraction offered by W10 and W37 provides a way to at least roughly differentiate between

active and residual whitecaps and infer how the various relationships are affected by

the whitecap lifetime stages.
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Figure 3.4: Cell-by-cell number of ‘daily’ W estimates obtained for 2006.

The swath W values at 10 GHz and 37 GHz were gridded onto a 0.5o× 0.5o grid.

For each grid cell, an average value of all swath W samples falling within the cell is

calculated. These cell-averages for each frequency, hereafter referred to as W10 and
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W37, represent a mean estimate of whitecap fraction for the cell at the local time of

the satellite overpass. The total number of these individual (i.e., daily) W estimates

over a given time period varies from cell to cell, due to the availability of data used at

any stage of the W (TB) algorithm; the resulting somewhat uneven distribution of W

estimates for the whole of 2006 is show in Figure 3.4). The area south-east of Brazil

with a noticably lower count is an area where microwave measurements are affected

by reflected X-band emissions from geostationary communication satellites.

Figures 3.5a and 3.5b present daily global maps of W10 and W37 along both ascending

and descending passes for 1 October, 2006. The spatial coverage provided by WindSat’s

orbits can be seen as can the gaps of missing data within a single swath which are the

result of the patchy spatial matching between WindSat and QuikSCAT (section 3.2.2).

Complete swaths exemplify the good spatial coverage resulting from match-ups with

GDAS data. Figures 3.5c and 3.5d show monthly maps for October 2006.
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Figure 3.5: A daily map for 1st October 2006 of (a) W10 and (b) W37, and a monthly composite map for October 2006 of (c) W10 GHz, and (d)
W37.
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3.2.1.1 Error on W estimates

Explicit calculation of the error on individual W estimates is not currently available

due to the complex multi-variable nature of the W (TB) algorithm. However, where

applicable, we have used the statistics obtained during the gridding process to calculate

the root mean-square (rms) error, standard deviation σW , and count (the number of

individual swath samples averaged to obtain the daily mean W for the cell). These

statistics are subsequently used to screen for unreliable W estimates resulting from,

for example, a low count in a particular grid cell, or an exceptionally large spatial

variation between individual swath samples. In Figure 3.6 we show histograms (top

panels) of the relative standard deviation (RSD = σW /W ) and associated cumulative

frequency histograms (bottom panels) for W10 and W37 estimates covering 2006. It

can be seen that the RSD of W10 and W37 estimates are similar, but a slightly larger

fraction of W37 estimates have a low RSD value (for example, ∼95% of W37 estimates

have σW /W < 0.2, whereas this value is ∼87% for W10).
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tive frequency histograms for (left panels) W10 and (right panels) W37.
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3.2.2 Basic additional variables

Whitecap fraction data at swath resolution are matched in time and space with six

meteorological and oceanographic variables; wind speed U10, wind direction Udir, SST,

air temperature Ta, significant wave height Hs (defined as 4
√
E, where E is total

wave energy), and peak wave period Tp (defined as the period corresponding to the

highest peak in the one dimensional frequency spectrum of the wave field). These basic

additional variables are taken from different sources.

Wind vector (U10 and Udir) is taken from the SeaWinds microwave scatterometer

onboard the QuikSCAT satellite (http://winds.jpl.nasa.gov/missions/quikscat). The

SeaWinds scatterometer measures backscattered pulses from the earth’s surface; over

the ocean the returned signal is related to the ocean surface roughness and hence the

near-surface wind speed and direction. The matching criterion between WindSat and

SeaWinds measurements is that the data were observed within 25 km and 60 min-

utes. The resulting spatial match is patchy (section 3.1.4) because the ascending and

descending passes of the Coriolis and QuikSCAT satellites are out of phase.

When a SeaWinds matchup is not available, U10 and Udir from the model output (every

6 hours) of the Global Data Assimilation System (GDAS) of the National Centers for

Environmental Prediction (NCEP) is used. GDAS is the system used by NCEPs global

forecast model to place myriad observations (including those of QuikSCAT) into a grid-

ded model space for the purpose of initializing weather forecasts with observed data

(http://www.ncdc.noaa.gov/model-data/global-data-assimilation-system-gdas). We use

GDAS outputs closest in time and spatially interpolated to the location of the Wind-

Sat data; this results in good spatial coverage along the WindSat swath. Data for

SST and Ta (at 2 m above the surface) are also from GDAS. We follow Bettenhausen

et al. [2006] in using different sources for the wind vector because the W (TB) algorithm

uses the same roughness and atmospheric models employed by the WindSat retrieval

procedure.

Data for Hs and Tp are from NCEPs Wave Watch III (WW3) model. We have used

the historical archive of wave hindcast results produced with version 2.22 of WW3 at 3

hour intervals (http://polar.ncep.noaa.gov/waves/implementations.shtml). The input

variables for WW3 are from GDAS. The WW3 model also gives peak wave direction,

but it is not currently included in the database. The temporal and spatial matching

http://winds.jpl.nasa.gov/missions/quikscat
http://www.ncdc.noaa.gov/model-data/global-data-assimilation-system-gdas
http://polar.ncep.noaa.gov/waves/implementations.shtml
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criteria for WindSat and WW3 data are as those for GDAS. Table 1 summarizes

information for these variables, including their spatial resolutions, use, and access.

All these variables, matched up initially to WindSat data at swath resolution, are

gridded in the same way as the W estimates (as described in section 3.2). Mean daily

values, as well as statistics (root-mean-square error, standard deviation, and count),

are obtained for each variable for each grid cell. The distribution of data (covering

2006) for these variables are shown in Figures 3.7 and 3.7.
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Figure 3.7: Histograms showing the distribution of database Hs, Tp, SST, and Ta
entries covering 2006

3.2.2.1 Some notes on database wind vector data

As described above, database U10 estimates are obtained from either QuikSCAT or

GDAS. A distinction needs to be made between database wind estimates and the

actual (or true) wind speed, as would be measured in situ. True wind speeds are

stability-dependent i.e., the atmospheric stratification alters the wind profile. Both

QuikSCAT and GDAS provide estimates of the equivalent neutral wind at a 10-m
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reference height U10EN, rather than the true wind speed. U10EN can be defined in

several ways [Kara et al., 2008], but the definition provided by Tang and Liu [1996]

is perhaps more applicable to this study as scatterometery (which actually measures

surface stress) is used to obtain the satellite winds; the equivalent neutral wind is ‘the

wind speed calculated by using the stress and roughness length consistent with the

observed atmospheric stratification but setting the atmospheric stratification term in

the modified log-wind profile equal to zero.’ These estimates are therefore not identical

to the true U10 (unless the atmosphere’s stratification is neutral). Satellite winds are

also surface (rather than earth) relative, though the effect of surface motion is generally

not accounted for. Throughout this work, database estimates for U10 are assumed to

be representative of U10EN, whereas in situ (ship-based) estimates of U10 are considered

true/actual winds (despite often not being adjusted to account for flow distortion and

surface currents). Where applicable, the implications of this difference are discussed.

To ensure that use of two different wind speed sources does not introduce bias, we

explore the distribution of swath resolution U10 values from QuikSCAT and GDAS,

for October 1, 2006 (Figure 3.8a). The shapes of the probability density functions for

the two sources are similar. Differences of a few percent are visible at low wind speeds

(U10 < 5 m s−1) where QuikSCAT values are higher than those of GDAS; GDAS

values are higher for U10 > 11 m s−1. Note that this is not a comparison of paired

QuikSCAT-GDAS values for U10 at a given location; at each point we have either a

QuikSCAT or GDAS value. For the U10 values considered in Figure 3.8a, we find that

in general GDAS has more counts at high latitudes and low latitudes, while in the mid

latitudes, a larger count is from QuikSCAT values. It is therefore logical that GDAS

gives higher probability for high winds than QuikSCAT, while QuikSCAT gives higher

probability for low winds. Figure 3.8 shows a histogram of gridded wind speed values

coupled with W data for 2006.

We expect some correlation between W10 and W37 values and the basic additional

variables. The reason is that the same U10, Udir, and SST values used in the W (TB)

algorithm at swath resolution (section 3.1.1) are also entries in the W database in

gridded format. Some correlation is tolerated because there are no substantial gains

in seeking different sources for U10, Udir, and SST data. For instance, we aim to use

all available W estimates, of which there are more than 18 million; this would not

have been possible with a more selective temporal and spatial match-up with direct
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Figure 3.8: (a) Probability density function of swath resolution U10 values from
QuikSCAT and GDAS for October 1, 2006. Panel (b) shows the number of individual
gridded W estimates obtained for each 1 m s−1 wind speed bin over the course of

2006.

measurements from other satellites or buoys. Gains in using independent data would

have also been limited if model outputs different from those provided by GDAS [e.g.,

use of the European Centre for Medium-Range Weather Forecasts (ECMWF)] were

used, considering that assimilation of buoy and satellite measurements in any model

is a common practice. Indeed, assimilation of the QuikSCAT data in ECMWF and

NCEP have led to wind component values differing by at most 1.5 m s−1 [Chelton and

Freilich, 2005].

Wind direction is one of the basic variables in the W database (Table 1), but in this

study we do not analyse W as a function of Udir. Brightness temperature used to

obtain radiometric estimates of W varies with both wind speed and wind direction.

This directional dependence comes from the non-uniform distribution of the foam and

short (capillary) waves over the profile of the underlying large-scale waves, i.e., the

face of a breaking wave has higher emissivity than its back [Wentz, 1992]. Attempts

to model [Kunkee and Gasiewski, 1997] and measure [Padmanabhan et al., 2006] this

azimuthal dependence of foam have been made. Knowledge and reliable modeling of

it is important for the accuracy of geophysical retrievals [Johnson, 2006]. However, for

parameterizing air-sea interaction processes in terms of W , an account for the effect of

wind direction itself on W is not pertinent. Rather, the wind direction could be useful

as a means of determining the fetch of the wind so that the history of the wave field

can be inferred [Callaghan et al., 2008a]. Also, an increase or a decrease in whitecap

fraction can be observed if the wind is aligned with or against the waves and/or currents
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[Callaghan et al., 2008a; Sugihara et al., 2007]. To investigate such variability, one

needs the relative direction between wind and wave field or currents. Meaningful

information for the wave field directionality requires detailed spectral information,

such as directional wave spectra [Sugihara et al., 2007], usually provided by models

at specific regions but not on a global scale. At this stage of development, the W

database does not contain information necessary for systematic study of directional

W variability. Work on this topic, however, should be pursued as the W algorithm is

further improved.

3.2.3 Additional data and derived forcing parameters

We expanded our set of six basic variables in the current whitecap database with

two further parameters (i) estimates of ocean surface salinity Sal, and (ii) satellite

estimates of chlorophyll a concentration (Chl a). Both products are regridded to match

the resolution (0.5o x 0.5o) of the other database variables. For the salinity data, we

use monthly mean salinity fields from the NOAA World Ocean Atlas 2005 (WOA05)

(accessible online at www.nodc.noaa.gov/OC5/WOA05/pr woa05.html). Chl a data is

obtained from SeaWiFS sensor onboard the OrbView-II platform; we use daily global

level-3 standard mapped images at 9 km resolution (accessible online at oceandata.sci.

gsfc.nasa.gov/SeaWiFS/L3SMI). Note that in this study, satellite-derived Chl a fields

(being readily available) are used as a proxy for biological productivity and therefore

as an indicator of overall surfactant concentration, though it is acknowledged that

the correlation between Chl a and surfactant concentration is complicated by several

factors and that the relationship varies both temporally and from region to region.

In addition to the variables listed in Table 3.1 as entries in the W database, several

further parameters are constructed to assess their influence on W. Atmospheric surface

layer stability is indicated by the air-sea temperature difference ∆T = Ta − Ts. The

kinematic viscosity of water, νw, is calculated using a combination of daily SST fields

and monthly mean salinity fields.

Two dimensionless wind-wave variables are considered. First, the breaking-wave Reynolds

number, defined as

RB =
u2
∗

ωpνa
, (3.4)

www.nodc.noaa.gov/OC5/WOA05/pr_woa05.html
oceandata.sci.gsfc.nasa.gov/SeaWiFS/L3SMI
oceandata.sci.gsfc.nasa.gov/SeaWiFS/L3SMI
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Figure 3.9: Histograms showing the distribution of database ∆T , νw, salinity, and
Chl a estimates covering 2006

where ωp is the spectral peak angular frequency of wind waves, and νa is the kinematic

viscosity of air. The consideration of such a non-dimensional variable as an appropriate

parameter to describe wave breaking dates back to the work of Toba and Chaen [1973],

with RB in its above form first suggested as a parameter to describe whitecap fraction

by Toba and Koga [1986]. The roughness Reynolds number,

RHw =
u∗Hs

νw
. (3.5)

RHw is a slightly modified version of that of Zhao and Toba [2001], the only difference

being use of the kinematic viscosity of water νw instead of νa, following the suggestion

of Woolf [2005].

3.2.3.1 Measures of Wave Development

As summarised in section 2.5.1, recent in situ studies have strived to explicitly evaluate

the role of the wave field on variability in W . Wave age Φ—defined as cp/u∗, where
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cp is the wave phase velocity and u∗ the air-side friction velocity—can be used to infer

the stage of development of the sea. Φ can be expressed in terms of readily available

parameters [Hanley et al., 2010] as

Φ =
gTp

2π
√
cdU10

, (3.6)

by using cp = gTp/(2π) and u∗ =
√
cdU10. Here, the drag coefficient cd is calculated

using the widely-used relationship of Large and Pond [1981]. A related wind-wave

measure, fetch, has been used previously to infer the stage of wave development in

analysis of in situ W data. At this stage, the database lacks important information

(wave direction estimates) needed to estimate fetch, and so we proceed with use of

wave age as a measure of sea state.

We also calculate the mean wave slope (or significant steepness) MWS, a dimensionless

measure of the degree of wave development,

MWS =
2πHs

gT 2
p

. (3.7)

Note the use of the peak wave period in this formulation (the only available wave

period measure), as opposed to the mean wave period. Although it has been shown

that MWS alone cannot predict whether an individual wave will break [Holthuijsen,

2007], here we consider this quantity as a bulk measure of the wave field, combining

the effects of Hs and Tp. Furthermore, this variable is not explicitly dependent upon

wind speed, and so is included in our analysis of variability in W once the wind speed

dependence has been accounted for. The dependence of W on MWS has not previously

been considered.

3.2.3.2 Classification of wave field

A different approach to assessing the influence of the wave field involves categorizing

W estimates by degree of wave development. Ideally, spectral wave data is analysed to

reveal the presence (and relative intensity) of different regimes such as wind sea and

swell (e.g., Callaghan et al. [2012]; Sugihara et al. [2007]).

It is, however, possible to use the two wave measures available in the current database

(Hs and Tp), together with U10, to attempt a broad classification of W estimates by the
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Figure 3.10: Histograms showing the distribution database RB , RH , and MWS
entries covering 2006

stage of wave development. A similar approach was adopted in the study of Stramska

and Petelski [2003], where U10 and Hs measurements were used to classify data into

three groups; those obtained in undeveloped seas, those obtained in developed seas,

and those obtained under conditions of decreasing winds. The authors note that whilst

this criterion is not exact, it does allow an insight into the effects that sea state can have

on W . Indeed, the authors modified the relationship slightly to reflect inaccuracies in

their measurements of Hs, but stress that the qualitative conclusions should remain

unchanged.

Classification by significant wave height is as follows. At each individual grid cell, the

recorded value of Hs is compared with Hfd, the significant wave height that would be

expected given a fully developed sea in equilibrium with the wind. Hfd is calculated

from the wind-wave relation in the WAM model [Hasselmann et al., 1988],

Hfd = 1.614× 10−2U2
10; 0 < U10 ≤ 7.5,

Hfd = 10−2U2
10 + 8.134× 10−4U3

10; 7.5 < U10 ≤ 50.
(3.8)
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This relationship defines the sea state as either swell when Hs > Hfd or wind sea when

Hs < Hfd. At the threshold level, where Hs = Hfd, it is assumed that the seas have

just reached maturity.

Similarly, Tp can be used to partition W estimates. A relation predicting the peak

wave period of a fully developed sea is given by Carter [1982] as:

Tfd = 0.785U10. (3.9)
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Figure 3.11: (a) Density plot of U10 and Hs for all W estimates from 2006. Also
shown is the Hasselmann et al. [1988] theoretical relationship relating the two for a
fully developed sea (black dashed line). (b) As (a), but for U10 and Tp estimates, and

with the Carter [1982] relationship overlaid.

The frequency of occurrence of U10 and Hs is shown in Figure 3.11a. It is evident

that the vast majority of data points lie above the threshold for a fully developed sea,

indicating that a large portion of W estimates have been obtained in swell-dominated

seas. The same conclusion can be drawn from Figure 3.11b, where Tp estimates are

used to separate wind sea from swell cases using equation 3.9.

The results here echo those in the study of Chen et al. [2002], who note that there is

a systematic swell dominance in the world’s oceans, with swell occurring more than

80% of the time over vast areas. As such, this whitecap data set comprises mostly
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W estimates obtained under swell affected/dominated conditions. This is in contrast

to the many in situ data sets obtained in coastal or fetch-limited regimes. This is

an important point, and should be noted when comparing findings from this study

and those from previous in situ studies regarding the influence of the wave field on W

(section 5.2.1.1).
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3.3 Ship-based data

3.3.1 Overview of the UK-SOLAS SEASAW field campaign

This study draws upon measurements from the UK-SOLAS (Surface Ocean Lower At-

mosphere Study) SEASAW (Sea Spray, Gas Flux and Whitecaps) project. The project

involved two cruises in the North Atlantic on the NERC research ship RRSDiscovery.

The first, in November-December 2006 (D313), was a joint campaign with a related

study—the Deep Ocean Gas Exchange Experiment (DOGEE). The first cruise encoun-

tered severe storm conditions with hurricane force winds, which meant many of the

planned measurements were impossible to undertake. The second (D317) took place

in March-April 2007. The cruise tracks for D313 and D317 are shown in Figures 3.12

and 3.13, respectively.

Figure 3.12: The D313 cruise track

The overarching goal of the UK-SOLAS projects was to understand the processes con-

trolling physical exchanges at the air-sea interface [Brooks et al., 2009]. The SEASAW

project incorporated a wide range of measurements with the general aim of obtaining
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Figure 3.13: D317 cruise track with buoy deployments indicated by numbers

direct eddy covariance measurements of both sea spray and CO2 fluxes [Brooks, 2007];

RRS Discovery was instrumented with

� an AutoFlux system [Yelland et al., 2009], with twin sets of annemometers and

LICOR LI-7500 gas analyser units on the foremast platform;

� a second flux system including a CLASP (Compact Lightweight Aerosol Spec-

trometer Probe) unit;

� a suite of instruments to measure background aerosol spectra and composition;

� a set of digital SLR cameras to obtain images of the sea surface at 30 second

intervals.

In addition, one-dimensional wave spectra were obtained from a ship borne wave

recorder (SBWR) system, a tethered buoy used to make near-surface measurements of
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bubble and aerosol spectra, and infrared-based systems measured air and water partial

pressures of CO2.

3.3.2 Photographic whitecap data

During both SEASAW cruises, images of the sea surface were taken in daylight hours

by two Nikon Coolpix 8800 5 megapixel cameras looking directly abeam from the

ship’s bridge at a height of 13 metres and incidence angle of 22 degrees. Images with

a resolution of five mega pixels were obtained every 30 seconds during daylight hours.

Processing such a large amount of data requires some sort of automation. Here we use

the automated whitecap extraction (AWE) method [Callaghan and White, 2009] to

obtain W estimates from the photographic data. First, the colour images are converted

to greyscale. Next, a rectangular region from the centre of the image is selected to

eliminate brightness effects due to either the horizon or the ship wake. To separate

whitecaps from the background water, a suitable threshold intensity value unique to

each image is determined by varying the threshold and examining the rate of change

of resultant number of pixels selected. Once the threshold value is set, the area of the

whitecap (corresponding to the number of pixels with a brightness above this threshold)

can be obtained for each processed image. Figure 3.14 shows the typical output from

processing an image from a camera aboard RRSDiscovery on March 24th 2007, during

the D317 cruise.

The advantage of using the AWE method is that data processing is much faster than the

manual methods previously employed to obtain W from photographic data. However,

the quality control of processed images is still manual and therefore time-consuming.

A flag is set to indicate whether or not the image passes quality control tests and so

to determine whether or not it should be used in the subsequent analysis. Images are

rejected for various reasons, such as if there is contamination from sun glint, sky reflec-

tion, seabirds, uneven illumination of the image, or raindrops on the bridge window.

Due to the nature of these contaminants, several hours of contiguous data at a time

(corresponding to hundreds of images) can be rejected.
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Figure 3.14: (Top) A digital image of the sea surface taken during the SEASAW
(D317) cruise on RRS Discovery. (Bottom) The same image but after processing to

isolate the whitecaps using the algorithm of Callaghan and White [2009].

3.3.3 Meteorological and oceanographic measurements

During both SEASAW cruises, mean meteorological measurements were obtained from

the permanently installed instrumentation on RRS Discovery which includes—amongst

various other instruments—anemometers to obtain wind speed and direction, temper-

ature and humidity probes, and a barometer to obtain atmospheric pressure. The in

situ wind speed estimates used chapter 4 of this study are provided by this system, with

a time resolution of 30 seconds. Wind speed measurements are adjusted to a height of

10 m using the function of Large and Pond [1981]. Further, wind speed measurements

are corrected for the airflow distortion created by the ship’s hull and superstructure

using the direction-dependent results of Yelland et al. [2002].

3.4 Additional data

In section 6.2.1.1, data from the European Centre for Medium-Range Weather Fore-

casts (ECMWF) operational archive is used to drive whitecap parameterisations. Mod-

elled U10 fields (labelled the WIND parameter) for 2011 (consisting of 6-hourly records)

are used at a spatial resolution of (0.5o× 0.5o).





Chapter 4

Evaluation and validation of

satellite-based W estimates

In their feasibility study, Anguelova and Webster [2006] discuss three methods by which

the satellite estimates of W could be validated, namely:

� through comparison with individual estimates from historic photographic data

sets,

� by comparing with estimates obtained from an existing W (U10) parameterisation,

or

� by performing a direct comparison of matched-up (i.e., simultaneous and collo-

cated) satellite- and ship-based estimates.

The validation process is not as straight forward as it may first seem. The most

direct method is through a comparison of satellite-derived estimates of W and in

situ photographic estimates. In the first part of this chapter, a direct comparison

is undertaken using ship-based photographic W estimates from two field campaigns.

In the second part of this chapter, the wind speed dependence of satellite estimates

is investigated and their global distribution and seasonal dependence is compared to

those of W estimates derived using the widely used Monahan and O’Muircheartaigh

[1980] W (U10) parameterisation. We then discuss the results of these comparisons and

comment on the use of in situ data to validate and evaluate the satellite observations

of W .

79
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4.1 A direct comparison of satellite-based W with in situ

photographic estimates

4.1.1 Ship-based W estimates

Photographic W estimates were obtained by processing ship-based photographic data

from both SEASAW cruises, as described in section 3.3.2). Although the ship-borne

cameras were—for the most part—continually capturing digital images at a rate of

two per minute, the number of usable images obtained over a given period can vary

drastically. This is due to quality control stage, at which point images were rejected

(based on human assessment) for a number of reasons; these include poor lighting

conditions (such as sun glint), a questionable choice by the algorithm for the threshold

brightness, or contamination of the image, for example, by water on the ship’s win-

dows. Estimates of W obtained by averaging photographs over a varying time window

are shown in Figures 4.1 and 4.2. The figures illustrate variation in volume of data

obtained, with Figure 4.1 representative of a ‘good’ day where a large proportion of

the images passed the quality control tests, whereas Figure 4.2 is illustrative of a day

when a much larger fraction of the images have been rejected.
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Figure 4.1: Time-averaged estimates of W against number of photos averaged for
data obtained on 23rd March 2007 (Julian Day 082). Errorbars indicate the (positive

only) standard error about the means.
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Figure 4.2: Time-averaged W means against number of photos averaged for data
obtained on 30th November 2006 (Julian Day 334). Errorbars indicate the (positive

only) standard error about the means.

Increasing the averaging period generally increases the number of images averaged,

although in some cases variation in the quality of data throughout the day results in

some estimates obtained from more photos averaged over a shorter time window. In

both figures there is a trend of individual W estimates converging on a ‘characteristic’

value of W—which is likely representative of the true whitecap fraction—as the number

of photographs averaged in a period increases. However, this will not always be the

case as estimates spread more than several hours might diverge if conditions change

over time. As expected, the error (represented here as the standard error on the mean)

on an individual W estimate generally decreases as the number of photos averaged

increases.

4.1.1.1 Wind speed dependence

We investigate the wind speed dependence of SEASAW W data by working with

half-hour averaged estimates for W and U10. W estimates are obtained by averaging

individual W values (i.e., obtained by processing of a single photo) that pass the quality

control stage. U10 estimates are obtained by averaging the corresponding U10 values for

single photos; these are first obtained by averaging all 30 second U10 estimates that fall
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Figure 4.3: D313 (purple) and D317 (brown) half-hour averaged estimates of W
and their corresponding U10 estimate.

in a ten minute window prior to the time the digital image is obtained. A histogram of

the half-hour averaged U10 estimates is shown in Figure 4.4. Combining the D313 and

D317 data sets results in U10 estimates that range from 1 m s−1 to 21 m s−1, though

the range of wind speeds encountered during D313 is much larger than the range for

D317. A scatter plot (Figure 4.3) of W estimates against the corresponding estimate

for U10 illustrates the characteristically large scatter in W estimates, spanning up to

three orders-of-magnitude at a given wind speed.

We derive a W (U10) parameterisation of ship-based W estimates from SEASAW by

carrying out a non-linear regression to mean W estimates evaluated at each 1 m s−1

wind speed bin. The estimate of W for the range 20 m s−1 < U10 ≤ 21 m s−1 is based

on only one half-hour estimate and so is excluded from the fit. The resulting fit,

WSEASAW = 3.6× 10−3 × U2.42
10 , (4.1)

is valid up to a maximum wind speed of 20 m s−1. A comparison of the resulting

parameterisation with several of those in the literature (Figure 4.5), shows that the
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Figure 4.4: Distribution of U10 estimates corresponding to half-hour averaged means
of W for D313 and D317 data.

SEASAW W estimates have a similar magnitude to those predicted by the relationship

of Callaghan et al. [2008a] (equation 2.21), although their cubic wind speed dependence

is stronger than that of the SEASAW data. This is interesting, as their relationship

was derived from a set of measurements processed using the same AWE method, but

made using different systems on different ships. Difference in the wind speed depen-

dencies of the two parameterisations can be expected to arise due to the fact that the

Cal08 relationship is formulated using U10 estimates that were not corrected for flow

distortion. The relationships of Stramska and Petelski [2003] (SP03) and MM80 pre-

dict higher W than the SEASAW formulation over much of the wind speed range, and

have a stronger wind speed dependence, resulting in larger deviations from SEASAW

estimates in high winds (e.g., for U10 > 12 m s−1).

4.1.2 Comparison of ship-based and satellite-based W

4.1.2.1 Method to obtain matchups

A spatial-temporal approach [Ichoku et al., 2002] is used to obtain matchups between

in situ and satellite estimates of W . The first step is to determine validation points for
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Figure 4.5: A comparison of the SEASAW derived W (U10) relationship (solid black
line) with several published parameterisations. Errorbars (positive only shown) show
the standard deviation of the bin-averaged means of W . The outlier shown circled is

excluded from the fit.

which collocated and simultaneous in situ and satellite W estimates exist, and then to

obtain an estimate for satellite-based W ; the procedure is as follows:

1. Determine approximately the latitude (lat) and longitude (lon) for each matching

point;

2. Take an area of N◦×N◦ degree centered at the validation point;

3. Find WindSat swath resolution data in this area;

4. Calculate a mean W by averaging all values in the box.

For each of the validation (matchup) points, each N×N box contains a certain number

of spot samples from the WindSat swath (Figure 4.6), depending on the box size and

its position within the swath; here, data at a swath resolution of approximately 40

km × 60 km is used. Distances between the samples in the center and in the wings

of the swath are different. The average of all samples falling in the spatial box will
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Figure 4.6: A sample box with WindSat swath spot W estimates (at 18 GHz, H
pol.) from April 2007; the N×N box in this instance is 1◦ latitude by 1.5◦ longitude.
Note that W is given as a fraction, rather than a percentage. Figure courtesy of M.

Anguelova (NRL)

provide one satellite-based value of W for the matching point in the center (indicated

by the black dot). An acceptable size of the box is an area commensurate with the

footprint of the WindSat measurements at the working resolution i.e., approximately

0.5◦× 0.5◦. Here, we work with 1◦ latitude by 1.5◦ longitude boxes, though in some

cases larger or smaller boxes are chosen depending on the number of WindSat spot

samples (section 4.1.2.2).

Next, in situ photographic data must be temporally averaged to obtain a ship-based

estimate of W . To determine over what time period the in situ data need to be av-

eraged, the following considerations are taken into account: Winds with a speed of

10 m s−1 will traverse a ∼50 km distance in roughly 1.4 hours; assuming that other

influencing factors change slowly over this distance, the wind field will generate a spe-

cific whitecap fraction over this area. For low winds (e.g., 5 m s−1) the corresponding

time period is 2.8 hours. For higher winds, 15 and 20 m s−1, the time windows are

54 minutes and 42 minutes, respectively. It follows that to cover a wide range of wind

speeds it seems reasonable to choose a time window of 3 hours over which to average

in situ data. On the other hand, such long period of averaging may introduce bias

toward lower winds and whitecap fraction. One other consideration for the length of
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the time window concerns time of WindSat overpass. Ideally, the time window should

be centered at the time of WindSat overpass. However, the WindSat equator crossing

times are such that it passes in the areas of interest (i.e., the North Atlantic) in the

morning or in the evening; thus, our time windows may cover periods of insufficient

daylight during which the cameras were not collecting data. Thus, in the best case

scenario, we have photographic W data covering this time period, which is centered

at the time of WindSat measurement. In other instances, full coverage will not be

obtained. Based on these considerations, we choose a 2 hour window period centered

at the validation time in an effort to maximize the number of photographs obtained

during the time window.

A corresponding ship-based U10 estimate is obtained by averaging U10 estimates (i.e.,

those corresponding to each individual photo) over the same time window.

4.1.2.2 Results

A summary of the matchup information for the D313 (5 matchups) and D317 (10

matchups) field campaigns is shown in Table 4.1, and a log-log 1:1 plot of matched-up

pairs of in situ and satellite estimates of W is shown in Figure 4.13. Although a total of

15 matchups are identified, data for only 12 matchups are shown in the plot. For three

of the matchup points (matchup 4 from D313 and matchups 6 and 11 from D317),

Wphoto is estimated to be zero after averaging a very small number of photos in each

case (2, 8 and 3 photos, respectively). For this reason, we exclude these data from our

analysis.

Despite the small number of data points, a general trend of overestimation of satellite

W at low wind speeds, and underestimation at high wind speeds can be seen. The

deviations (Wsat −Wphoto) for W10 and W37 are plotted in Figure 4.8, bottom) for all

matchups except matchup 1 from D313 which are deemed to be outlier values with

large biases of -5.84 % for W10 and -5.01 % for W37. The matchup deviations are

also shown as a function of ship-based U10 measurements (Figure 4.8, bottom). In

general, the deviations are larger as U10 increases, though the bias for matchups at the

highest wind speeds (U10 > 15 m s−1) are in fact smaller than several of those in the

range 10 m s−1 < U10 < 15 m s−1. Although no wind speed information goes into the

estimates of W , it is interesting to compare the ship- and satellite-based estimates of
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Figure 4.7: A 1:1 comparison of paired in situ and satellite W estimates. Matchup
points for D313 are shown with squares, and those from D317 by circles.

U10 (Figure 4.8, top). Note that this figure compares QuikSCAT equivalent-neutral U10

to ship-based estimates of ‘true’ U10. Though the paired U10 data show a reasonably

high correlation (R = 0.77), differences between the two estimates can be as large

as 55% (matchup 7). The bias between the paired U10 estimates are a result of (i)

errors associated with ship-based and satellite estimation, (ii) errors associated with

the temporal and spatial averaging and (iii) difference between stability-dependent and

equivalent neutral wind speed estimates.

It is hard to draw any firm statistical conclusions from such a limited data set. However,

it is worth noting that if a linear fit is applied to the 12 matchups, the resulting fits

have the following form (all values in %):

W10 = 1.02 + 0.21×Wphoto

W37 = 1.65 + 0.25×Wphoto,
(4.2)

indicating that although estimates of both W10 and W37 lie higher at low winds and
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Figure 4.8: (Top panel) A 1:1 plot of satellite- and ship-based U10 estimates for all
15 matchups. (Bottom panel) Wind speed dependence of the matchup bias (Wsat −

Wphoto).

lower at high winds, the W37 estimates are more largely biased with respect to the 1:1

line. The correlation coefficient R between Wphoto and W10 for the 12 data points is

0.52. For W37, the value is 0.56. Removal of one data point (matchup 1, where Wphoto

is much higher than W10 and W37) increases the correlation dramatically, to 0.83 for

W10 and 0.81 for W37.

4.1.3 Discussion

The results here are in line with the analysis of matchups with in situ data from

the High Wind Air-Sea Exchanges (HiWASE) project, presented in Anguelova et al.

[2009a], which also showed the same trend of overestimation of satellite-based W at
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low winds, and underestimation at high winds. There are three plausible reasons for

the overestimation of Wsat at lower whitecap fraction values. In situ data is fundamen-

tally different, in that it represents the optically measured foam fraction, whereas the

satellite estimates are radiometric. Specifically, Wsat estimates are—by the virtue of

their principle of measurement—more sensitive to both active and residual whitecaps.

Thus, a satellite-based method to measure whitecaps is prone to register more foam in

places where optical observation may underestimate decaying foam. This sensitivity

to the thickness (thus type) of the foam depends on the frequency, and so too therefore

does the magnitude of the overestimation—being smaller at 10 GHz and increasing

for 37 GHz. In this respect, it is worthwhile trying to ascertain what frequency (or

combination of frequencies) is most representative of the optical measurement. A short

discussion on this topic is presented in Anguelova et al. [2009a]. Second, expected defi-

ciencies in the retrieving algorithm would most likely add to the overestimation at low

whitecap coverage values. These include shortcomings of the atmospheric correction,

difficulties in the modeling of the rough sea surface, and inadequate choice in the foam

emissivity model [Anguelova et al., 2009a]. Finally, the estimates used to ground truth

the satellite estimates are subject to large errors themselves (section 4.1.1). Errors

will, in most cases, be relatively larger in low wind, low W conditions, where extrac-

tion of whitecap fraction from video records can be problematic. Once a larger number

of matchups has been achieved, it may be worth quantifying the effect of comparing

in situ W estimates paired with stability dependent wind speed estimates to satellite

estimates of W paired with U10EN values.

The direct validation exercise is limited by the small number of matchups, despite col-

lating validation points from two field campaigns. This is due to the nature of satellite-

ship matchups; if the ship’s position is outside of the satellite swath, no matchup can

be obtained. However, the spatial-temporal approach used here is perhaps the best

possible method available for validating satellite-based observations using ship-based

in situ data. Whilst satellite matchups provide the opportunity of direct validation of

the retrieval estimates, it is not clear how spatially averaged satellite estimates should

compare with temporally averaged in situ estimates. The effect of the averaging used

in this method should be further evaluated, for example, by varying the temporal and

spatial intervals used.

Further work on the direct validation of satellite-based W estimates using in situ
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estimates should be pursued in order to minimise the error on radiometric estimates.

The ship-satellite matchup approach can also clarify the source of differences between

optical and radiometric estimates, including quantification of the level of uncertainty

in the W estimates from both methods to ascertain whether it is appropriate to use

photographic data to calibrate the retrieval. For the time being, the main approach to

minimise error in satellite estimates of W is to develop the retrieval algorithm further

[Anguelova et al., 2009a].

4.2 Indirect validation: Wind speed dependence of satellite-

based W , and comparison with W (U10) parameterisa-

tions

4.2.1 Correlation between satellite-based W and U10

To investigate how well wind speed alone accounts for the variability in satellite-derived

estimates of whitecap fraction, we consider the strength and spatial characteristics

of the correlation between whitecap fraction (both W10 and W37) and U10 from the

whitecap database. We calculate a cell-by-cell Pearson product-moment correlation

coefficient R from a series of W and wind speed pairs. The maximum number of

individual W estimates used to calculate R for a grid cell is 317, the minimum is 3,

and the average 140.

Figure 4.9 shows the correlation coefficient for W10 and wind speed is > 0.95 at over

95% of grid cells; for W37 over 89% of cells have R > 0.95. The small number of

cells below these thresholds are generally either close to land, or have a low count rate

over the year. Correlation with wind speed is higher for W10, suggesting that more

variability in W37 can be attributed to factors other than U10. Furthermore, as R is

a measure of the strength of a linear relationship, the correlations reported here may

be biased low, more so in the case of W10 which has a more nonlinear dependence on

wind speed.

Some spatial structure is evident in Figure 4.9. Correlation between U10 and W10 is

highest in low-latitude regions, such as the equatorial Atlantic and eastern equatorial

Pacific. Slightly lower values of R are found in the mid-latitudes, where the variability
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Figure 4.9: Global maps of cell-by-cell Pearson’s correlation coefficient R for U10

and (a) W10, and (b) W37. Sources for W and U10 are listed in Table 3.1. Data
comprises all estimates from 2006.

in wind speed (and wave field) is higher. Correlation is more variable for W37, with

areas of lower correlation found in both low average wind speed regions (equatorial

Pacific) and regions where wind speed is on average much higher (Southern Ocean).

We note that the spatial patterns in R are not explained by differences in the U10 range

which has potential to distort the statistic.

4.2.2 Wind speed dependence of satellite W estimates

4.2.2.1 Comparison with traditional W (U10) formulations

To explore the wind speed dependence of satellite-derived W , all estimates in the range

0 < U10 ≤ 30 m s−1 are averaged into wind speed bins of 1 m s−1 width. A histogram of

the U10 values used was previously shown in Figure 3.8b.The wind speed bin-averaged
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means of W10 (blue crosses) and W37 (green crosses) are compared to three W (U10)

parameterisations; that of Monahan and O’Muircheartaigh [1980] (MM80), Callaghan

et al. [2008a] (Cal08), and Goddijn-Murphy et al. [2011] (GM11) in Figure 4.10a. It is

apparent that both W10 and W37 have a weaker wind speed dependence than MM80

and Cal08 formulations based on in situ U10 values, indicative of overestimation of

satellite retrieved W at low wind speeds, and underestimation at higher wind speeds.

However, W10 is close to the GM11 formulation, which uses the same data set of W

estimates as Callaghan et al. [2008a], but satellite (rather than in situ) U10 data. At

U10 > 20 m s−1, W37 begins to level off, causing W37 to fall lower than W10. This

behaviour is not physically viable given the interpretation of the two different estimates

(section 3.1.2) and therefore points to an issue with the retrieval, one that should be

explored in future work if this feature persists.
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Figure 4.10: (a) Wind speed dependence of W10 and W37, two W (U10) parameter-
isations from in situ data—that of Monahan and O’Muircheartaigh [1980] (MM80)
and Callaghan et al. [2008a] (Cal08)—and a W (U10) parameterisation using satellite
winds Goddijn-Murphy et al. [2011] (GM11). Error bars indicate the standard de-
viation on the bin-averaged means. The absolute difference between W10 and W37

and the Cal08 relationship is shown in panel (b). Panel (c) is as panel (b) but the
comparison is made with the GM11 parameterisation.

At moderate wind speeds (7 m s−1 < U10 < 12 m s−1), the satellite retrievals compare
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reasonably well with the Callaghan W (U10) parameterisation (Figure 4.10b). At the

global average oceanic wind speed of U10 = 7 m s−1, W10 is very close to W predicted

by the Callaghan et al. [2008a] parameterisation, differing by only 0.2%, whereas for

W37 the difference is 0.8% at this wind speed.

Figure 4.10c highlights good agreement between the satellite W estimates and those

from the GM11 parameterisation. Absolute differences between W10 and GM11 are

very close to zero for wind speeds lower than 12 m s−1; beyond this point the difference

grows, reaching 0.9% at U10 = 24 m s−1. The difference between W37 estimates and

those using GM11 grows with increasing wind speed to a maximum of 1.5% at U10 =

20 m s−1.

At high wind speeds (i.e., U10 > 20 m s−1) we must be cautious with regards to the

comparison between satellite and in situ W estimates, due to the sparseness of in situ

estimates. It is hard to judge the validity of the retrieval at high wind speeds by

comparing with the two in situ W (U10) formulations, one of which (MM80) has been

extrapolated to wind speeds above those from which it was derived. The fact that the

wind speed dependence of W10 and W37 is much closer to that of GM11 points to the

importance of the wind speed source in formulating a W (U10) parameterisation.

There is no signal for W10 below 2 m s−1, whereas for W37 there is a small signal in

the two bins below, the result of a handful of instances where foam has been detected.

These winds speeds are below the suggested threshold for whitecapping of ∼ 4 m s−1

[Callaghan et al., 2008a], a value obtained from analysis of photographic data. Whilst

there is likely to be little (or no) wave breaking at these wind speeds, microwave ra-

diometers may detect small amounts of residual long-lived foam from previous breaking

events, which are typically missed in photographic analysis.

4.2.2.2 Wind speed parameterisations

To parameterise the satellite-based estimates of W in terms of U10, a power-law re-

lationship has been fitted to mean W estimates at each wind speed bin in the range

2 < U10 ≤ 20 m s−1. We fit both W10 and W37 over the same wind speed range,

thus excluding mean W37 values for the first two bins for which W10 estimates (and

thus bin-averaged means) are always zero. The functions are valid up to a maximum
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wind speed of 20 m s−1; the decision to restrict the parameterisations to this range is

based on considerations of data statistics and the validity of satellite-based estimates

of W (and U10) in high wind conditions (discussed further in section 4.2.3). The fits

are given by

W10 = 4.6× 10−3 × U2.26
10 ; 2 < U10 ≤ 20 m s−1,

W37 = 3.97× 10−2 × U1.59
10 ; 2 < U10 ≤ 20 m s−1,

(4.3)

and are shown as coloured solid lines in Figure 4.10a. The shape of the functional

forms of the above relationships differ from those of previous in situ parameterisations,

the majority of which exhibit a roughly cubic dependence on wind speed. The W10

relationship is closer to those from in situ parameterisations, with an exponent of 2.26,

whereas the exponent is 1.59 for W37. Again, it is worth noting that the U10 estimates

used to construct these parameterisations are equivalent neutral winds, and so the

functions should be forced with values for U10EN.

4.2.3 Discussion

The satellite retrieval of W10 is biased high with respect to the traditional W (U10) pa-

rameterisations of Monahan and O’Muircheartaigh [1980] and Callaghan et al. [2008a]

at low wind speeds, but falls below them for winds above about 10 m s−1. W37 is even

higher at low winds, but increases more slowly than W10. At winds above 20 m s−1

W37 actually begins to fall with increasing U10 and fall below W10; this behavior can

be explained only by an unidentified issue in the retrieval algorithm. The general wind

speed behavior is similar to that reported by Anguelova and Webster [2006] in spite of

substantial modifications to the retrieval algorithm. Both W10 and W37 are closer to

the parameterisation of Goddijn-Murphy et al. [2011]—which uses satellite winds with

the same in situ whitecap imagery used by Callaghan et al. [2008a]—than to the purely

in situ functions. Indeed, the exponent of GM11 (1.86) lies almost halfway between

that of the W10 and W37 formulations presented here.

Potential sources of relative bias between the different functions are systematic differ-

ences in the estimation of whitecap fraction and wind speed via different techniques,

and from averaging over different ranges or probability distributions of secondary fac-

tors. We note that the best agreement between all the different functions is for winds

in the range 5–10 m s−1, those most commonly encountered over the ocean [Ebuchi,
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1999]. Both the satellite winds and whitecap fraction estimates are spatial averages,

while in situ winds are time averages at a single point and in situ whitecap fractions

are joint time and spatial averages, albeit over a much more restricted area.

The Goddijn-Murphy et al. [2011] function is even more strongly biased high (low)

with respect to MM80 and Cal08 at low (high) wind speeds than W10. This suggests

that the differences between the different functions may depend as much, or more, on

biases between the wind speed estimates as on the whitecap fraction measurements. A

potentially significant factor here is that satellite winds are not estimates of the true

10-m wind speed, but of an equivalent neutral wind speed. There are also known issues

such as the saturation of QuikSCAT for U10 > 20 m s−1 [Quilfen et al., 2007]. In situ

winds are not necessarily without biases; ship-based measurements require correction

of both their speed and effective altitude because of distortion of the air flow over

the ship [Moat et al., 2006; Yelland et al., 2002], something only recognized relatively

recently and not applied by earlier studies. Determining the correction is difficult

however, and is not always undertaken even today—Cal08 do not correct their winds

for flow distortion.

The accuracy of both the satellite-derived parameterisations and traditional in situ

parameterisations at high wind speeds should be questioned; the validity of traditional

parameterisations may suffer due to the sparsity of in situ W data in this range, whilst

satellite-derived W parameterisations may suffer from errors in U10 values, due to for

example, the known saturation of QuikSCAT at U10 > 20 m s−1 [Quilfen et al., 2007].

4.3 Global distribution and seasonal dependence of satellite-

based W estimates

In this section, we use a full year (2006) of satellite estimates of whitecap fraction

to assess the spatial distribution and seasonal dependence of W . We compare this

global distribution with that derived from the MM80 parameterisation and discuss

implications for models and retrieval algorithms.

To date, studies of global and seasonal distributions of whitecaps have been possible

only by driving W (U10) parameterisations with global wind distributions. Blanchard
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[1963] showed the latitudinal variation of W by estimated zonal means for June–August

and December–February; these varied from a minimum of ∼2% in the tropics to ∼9%

at 45◦S during June–August. The seasonal contrast was highly asymmetric. In the

southern hemisphere, zonal means of W in summer were roughly 2% lower than winter

values across the hemisphere with W peaking at around 45◦S for both seasons. In

the northern hemisphere, there was a strong seasonal cycle; W peaked just above

8% at 55◦N in winter but had a near-uniform value of about 2% across the entire

hemisphere in summer. It is worth noting that these results derived from a W (U10)

parameterisation based on an extremely limited data set of just five aerial photographs

of the sea surface in the Caribbean, at wind speeds between approximately 4 and 20

m s−1.

A monthly global climatology of W was presented by Spillane et al. [1986], based on a

rate of wind work parameterisation of W and ship observations of surface wind speed

and stability dependent drag coefficient. Highest W (3–4%) occurred in the North

Atlantic in winter. The relatively lower values (1.5–2%) for the Southern Ocean even

during the austral winter were attributed to undersampling of high wind conditions by

the ships. At low to mid latitudes (up to 40◦N and ◦S) W never exceeds 1%.

Erickson III et al. [1986] used the W (U10) function of Monahan and O’Muircheartaigh

[1980] (MM80) and global monthly mean winds at 5◦ resolution. They found a similar

general seasonal distribution and highlighted geographic regions of persistently high

whitecap fraction over periods of months, such as the Indian Ocean during the monsoon

season and high-latitude storm-tracks.

4.3.1 Method

For a given grid cell, the number of estimates of W10 and W37 varies with the num-

ber of matchups between different source measurements; for calculation of seasonal

means, this number ranges from 1 to 130, with an average of 34–40 depending on

the season. Latitudinal variations are presented with zonal mean profiles of whitecap

fraction. Zonal means were obtained by averaging all values within each 0.5◦ lati-

tude band. Seasons are defined as northern hemisphere spring (March–May, hereafter

MAM), summer (June–August, JJA), autumn (September–November, SON), and win-

ter (December–February, DJF).
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We compare satellite-based W estimates with those predicted by the W (U10) rela-

tionship of MM80 (equation 2.20) We use (2.20) with U10 values from W database

to obtain WMM80 values matched to each W10 and W37 estimate; these were similarly

averaged. This parameterisation is chosen because it is widely used, forming part of

the Monahan et al. [1986] sea spray source function and several others adapted from it,

including those of Gong [2003] and Mårtensson et al. [2003], which are used to calculate

sea spray aerosol source fluxes in many aerosol and climate models [Spracklen et al.,

2005; Textor et al., 2006]. MM80 or similar formulations are also used in sea surface

reflectance models for aerosol [Sayer et al., 2010] and wind speed [Harmel and Chami,

2012] retrievals.

4.3.2 Seasonal dependence of geographic distribution

The seasonal global distributions of W10 and W37 (Figure 4.11) follow similar patterns,

with W37 always higher, as expected. Highest seasonal W occurs in bands centered

around 50◦N and 50◦S, where mean wind speeds are highest [Sayer et al., 2010]. The

southern hemisphere band is persistent, with W10 > 1.5% and W37 > 2% over much of

the Southern Ocean throughout the year. This feature was apparent in the monthly

maps of W presented in Spillane et al. [1986]. Over much of the low-latitude ocean

(equatorward of 30◦N and S), seasonal means of W10 are usually <0.5% while W37

seasonal means are typically above 0.5%. Like Erickson III et al. [1986], we find

enhanced W in the Arabian Sea during summer, with mean W10 ≈ 1.5% and mean

W37 ≈ 2%.

4.3.3 Latitudinal variation of zonal means

The latitudinal variation of W10 and W37 for the four seasons is shown in Figure 4.12,

along with that for WMM80. W10 and W37 follow roughly the same latitudinal trends,

with zonal means of W37 larger than those for W10 by a factor of 1.5–2. In the

equatorial region, W10 is consistently around 0.3%, with W37 at ∼0.6%. There is

a general trend of increasing W from the equator to high latitudes, and a consistent

asymmetry between the two hemispheres. Interseasonal variations are much stronger in

the northern hemisphere; at 50–60◦N, where W peaks, W10 is a factor of three and W37

a factor of approximately two higher in DJF than in JJA. In the southern hemisphere,
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Figure 4.11: Seasonal means of W10 (left column) and W37 (right column).

W peaks around 50◦S; here, W10 varies less than 30% and W37 less than 20% over the

year. This result is in agreement with the findings of Blanchard [1963] and Erickson III

et al. [1986]. The asymmetric distribution in mean W is a consequence of the larger

seasonal variations of temperature and winds in the northern hemisphere (driven by

the stronger response of land surface temperature) and persistent high winds and long

fetches in the Southern Ocean, both of which result from the asymmetric distribution

of land masses between the hemispheres.
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Figure 4.12: Latitudinally variation of seasonal means of W10, W37, and WMM80.
Shaded areas represent standard deviation on means.

4.3.4 Comparison of global distribution

Aggregating individual W estimates over the full year, we obtain the mean difference

(MD) between WMM80 and both W10 and W37, MD = W −WMM80, together with the

normalised mean difference (NMD), NMD = 100×MD/WMM80.
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Figure 4.13: Mean difference (MD = W −WMM80) and normalised mean difference
(NMD = 100×MD/WMM80) between WMM80 and (a and c) W10 and (b and d) W37.

The MD between WMM80 and both W10 and W37 are shown in Figures 4.13a and 4.13b.

Over much of the mid and lower latitudes (between 30◦N and 30◦S) MD is close to zero
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for W10; for W37, MD positive and reaches 0.8% in low wind speed regions. At higher

latitudes, MD increases in magnitude, reaching -2.4% in regions of the Southern Ocean

for W10. These are high wind speed regions, where WMM80 is consistently higher than

W10. In these regions, MD for W37 is generally not as large because W37 estimates are

higher than W10.

Figures 4.13(c, d) show normalised mean differences between WMM80 and W10 and

W37, respectively. NMD for W10 lies between -50% and 50% over much of the oceans.

A somewhat different behavior is seen for W37; in equatorial regions and low latitudes,

NMD can be as large as 240%, reflecting the large relative difference between W37

and WMM80. The difference between the two frequencies results from the physically

different nature of the properties they respond to—the foam in actively breaking waves,

and the slowly decaying surface foam. This imposes both a large difference in mean

W , and differences in response to environmental conditions.

4.3.5 Discussion

Latitudinal variations of W10 are in close agreement with WMM80 at low latitudes

(Figure 4.12). At higher latitudes (poleward of 40◦N and 40◦S), WMM80 is much larger

than W10, particularly so in the winter. Large differences here are driven primarily by

the difference in wind speed dependence between satellite estimates (U2.26
10 and U1.59

10

for W10 and W37, respectively and MM80 (U3.41
10 ). The extrapolation of MM80 to wind

speeds beyond those from which it was formulated is likely the source of significant

high bias in the resulting W estimates. Only during northern hemisphere summer are

seasonal means of W10 and WMM80 in agreement at high latitudes. Zonal means of

W37 are higher than WMM80 over much of the global ocean; the reverse is true during

DJF in the high northern latitudes and in JJA at around 50◦S.

The global distribution and seasonal dependence of whitecap fraction at two microwave

frequencies (W10 and W37) have been described. Seasonal means of the two estimates

have similar geographical distributions, with W37 seasonal means a factor 1.5–2 higher

than those for W10. At low latitudes (equatorward of 30◦N and S), seasonal means

rarely reach 1% for W10 and 1.5% for W37. Seasonal changes in mid to high lati-

tudes are stronger in the northern hemisphere than in the southern hemisphere; this

reflects the effects of the asymmetry in distribution of continental land masses between
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the hemispheres. Highest seasonal W occurs in DJF in the North Atlantic and JJA

Southern Ocean.

Differences between satellite-based estimates of W and those obtained from the widely

used W (U10) relationship of Monahan and O’Muircheartaigh [1980] are driven primar-

ily by their differing wind speed dependence, which is weaker for the satellite-based

estimates. This results in satellite estimates higher than those obtained from MM80

in the tropics, but lower than MM80 in high latitudes where mean wind speeds are

higher. Overestimation of MM80 due to extrapolation beyond its range of validity is

likely a key bias at high wind speeds. The satellite-based parameterisations are derived

from W estimates on a global scale and so their wind speed dependence will in part

reflect the influence of factors other than wind speed which co-vary with the wind geo-

graphically; for example SST, biological surfactant concentration, and fetch-dependent

wave state.
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Variability in satellite-based

estimates of whitecap fraction

As described in section 2.5, it has hitherto not been possible to extensively evaluate

the influence of secondary forcings on W due the limitations of in situ data sets.

The satellite-based approach to estimation of W provides a significantly larger volume

of data which enables an assessment of global variability in whitecap fraction. In this

chapter, we describe variability analyses that were performed to both qualitatively and

quantitatively assess variability in W due to secondary forcing parameters associated

with both the wave field and environmental conditions.

5.1 Analyses to investigate variability

Whitecap fraction representative of predominantly active plus partially residual white-

caps (W10), and total active plus residual whitecaps (W37) is analysed in conjunction

with seven basic variables (U10, Ta, SST, Hs, Tp, S, Chl a) and six derived forcing

parameters (∆T, νw, RB, RHw, Φ, and MWS). In the first analysis, variability in

W due to various forcing factors is explored after first accounting for the dominant

wind speed dependence (5.1.1). In the second analysis, the relative contribution of

each forcing factor to variability in W is evaluated using principal component analysis

(5.1.2) on both a global and regional scale.

103
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5.1.1 Quantifying effects of various factors

To investigate sources of variability in W , the strong wind speed dependence must first

be accounted for. Prior to this procedure (outlined below), we consider the gridding

statistics, and omit all individual W estimates that have a relative standard deviation

(σW /W ) above 0.3. This cut-off value is somewhat arbritrary but as can be seen in

Figure 3.6, this value is will into the ‘tail’ of the distribution for both W10 and W37. W

estimates with RSD > 0.3 mostly occur in low winds, close to the threshold value for

whitecapping to occur (∼ 4 m s−1). We choose to work with all remaining W estimates

for which 4 m s−1 ≤ U10 ≤ 20 m s−1, thus excluding both very low and very high wind

speed regimes, where data is much sparser and removal of a mean wind speed trend

would be dubious.

Elimination of known gross influences is necessary to meaningfully investigate sec-

ondary effects on a given quantity. This can be done in many ways, but the simplest

approaches to represent deviations of a quantity from some reference value (e.g., its

mean) is by anomaly (difference) or by normalisation (scaling). An important differ-

ence between these two representations is the use of absolute verses relative deviations.

The removal of the wind speed trend is as follows. All accepted estimates from 2006

are first binned by wind speed. For this analysis, we use wind speed bins of width

0.5 m s−1 to reduce the sensitivity of W to changes in U10 over the range of each

individual wind speed bin. A mean whitecap fraction W is calculated for each wind

speed bin. Then, all W estimates in each of the 32 wind speed bins are further binned

by the corresponding measurement for the variable under investigation, and a mean

whitecap fraction W is obtained for each-sub bin. Normalizing each sub-bin mean by

W results in the ratio W/W , essentially showing the deviation from the mean wind

speed behavior over the range of each secondary forcing variable.

The decision to represent our results in terms of normalized whitecap fraction is made

through two considerations. We know that W depends strongly on wind speed and

expect that the effects of the secondary forcing parameters would be to either enhance

or suppress the wind speed effect. The ratio above can represent well such enhancement

or suppression of the wind speed influence by the secondary factors. When W/W >

1, the secondary factor enhances whitecapping produced by the wind speed for which

W is obtained. When W/W < 1, the secondary factor suppresses whitecapping.
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A second consideration is that at this intermediate stage of the whitecap database

(section 3.2), use of relative, rather than absolute, values is more pertinent. As the

W (TB) algorithm continues to develop and improve, the absolute values will likely

change. Meanwhile, the trends seem to be robust considering that the observation of

more uniform latitudinal distribution of W documented with the initial implementation

[Anguelova and Webster, 2006] remains for satellite-based estimates W37, that account

for total (active plus residual) whitecap fraction.

In the following analysis of the influence of secondary factors (Figures 5.2, 5.4, 5.6,

and 5.7), the panels for normalized W10 and W37 have the same y-scales for easy

comparison. Two main features in all the figures are considered. One is the overall

trend of normalised whitecap fraction W/W over the full range of possible values of

each forcing variable and its deviation above and below unity. Another is the spread

within a family of curves colour coded to show these deviations by wind speed bin.

5.1.2 Principal component analysis

Principal component analysis (PCA) is a statistical procedure that can be used to

investigate the variance of a multivariate data set. Here, we use PCA to quantify

how successful each forcing variable is in describing variability in W [Anguelova et al.,

2010]. This can be achieved by comparing how much variance is ‘explained’ by the

first principal component (PC1), which can be thought of graphically as the ‘direction’

of maximum variance. The PC1 score quantifies the amount (percentage) of variance

explained by this direction; the higher the score, the more variance that is explained.

For this analysis, all database entries covering 2006 are used.

PCA is first performed on data sets comprising W and each of the 13 forcing variables.

Then, to ensure that the dominant U10 signal does not mask fully the variance explained

by additional factors, PCA is also performed on data sets comprising W, U10, and each

forcing variable (eleven data sets). To perform PCA, it is first required that all data

are standardized—a transformation is applied so that each dataset has a mean of zero

and a variance of one [Preisendorfer and Mobley, 1988].

In additional to performing PCA on the global dataset, we repeat the analysis for three

localised regions (Figure 5.1) over the same time period (2006). The selection of the
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Table 5.1: The mean and standard deviation of U10, Hs and SST for three different
oceanic regions.

Region U10 (m s−1) Hs (m) SST (◦C)

Mean Std. dev. Mean Std. dev. Mean Std. dev.

North Atlantic 9.40 3.85 3.43 1.72 14.74 4.23

Equatorial Pacific 7.03 1.92 2.32 0.51 27.68 1.37

Southern Ocean 10.54 3.69 4.16 1.47 5.52 4.55

 120
o
W    0

o
   120

o
E 

  60
o
S 

   0
o
  

  60
o
N 

Figure 5.1: The three areas selected for the regional PCA study: North Atlantic
(yellow region), Equatorial Pacific (blue region), and Southern Ocean (red region).

three regions is somewhat arbitrary, but each region is characterised by different wind,

wave, and environmental conditions and their variability throughout the year. The

mean and standard deviation of U10, Hs, and SST for these regions are documented

in Table 5.1. Both the North Atlantic and Southern Ocean regions have variable wind

and wave regimes throughout the year in comparison to the Equatorial Pacific region,

though the Southern Ocean region has on average a much lower SST than the North

Atlantic. The Equatorial Pacific is characterised by relatively lower winds and wave

heights, both of which are less variable, and a much higher mean SST than the other

two regions.
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5.2 Results

5.2.1 Dependence on secondary forcings

5.2.1.1 Dependence of whitecap fraction on wave variables

The variability of whitecap fraction as a function of wave parameters is assessed by

plotting W/W as a function of Hs, Tp, and MWS (Figure 5.2). It is evident that

the influence of secondary factors on W10 (Figure 5.2a, c, e) is much weaker than that

on W37 (Figure 5.2b, d, f), in regards to both the magnitude of the trends observed

and the spread in these trends with wind speed. Additionally, secondary influences are

generally stronger with increasing U10.

There is a small (∼6%), approximately linear, increase in W 10/W 10 over the range of

Hs (Figure 5.2a). W 37/W 37 increases much more with Hs, particularly in the range

2 m < Hs < 6 m (Figure 5.2b). In the range 3 m < Hs < 5 m (depending on the

wind speed), there is a leveling off, or even reduction in W 37/W 37 at low and moderate

wind speeds, while at the highest wind speeds, W 37/W 37 continues to increase, but

at a much slower rate. The change in W 37/W 37 increases from 15% to 20% over the

range of Hs with increasing wind speed.

As for Hs, the influence of Tp is small for W10 (Figure 5.2c) but larger for W37 (Figure

5.2d). For normalized W10 there is little variation with Tp at low wind speeds, whereas

at the highest wind speeds W 10/W 10 shows a slight ( 5%) increase with Tp. Likewise,

deviations from the mean for W 37/W 37 over the Tp range are much more pronounced

for high wind speeds; W 37/W 37 can increase by as much as 20% as we move from a

wave period of 5 s to 10 s. At lower wind speeds (U10 < 12 m s−1), W 37/W 37 peaks

at Tp = 11 s. For Tp > 13 s, changes to normalized W are minimal.

Mean wave slope combines information for Hs and Tp, and so reflects joint changes in

both variables. This variable serves as an indicator of the degree of wave development

with MWS reducing as waves develop (MWS > 0.03), reach wind-wave equilibrium

(MWS ∼ 0.03), and finally become over-developed (MWS < 0.03) [Bourassa et al.,

2001]. Again, variations in normalized W10 are small (Figure 5.2e). There is a clear

peak in normalized W37 (Figure 5.2f) for a given wind speed, with the peak values

occurring in the range 0.025 < MWS < 0.035. At the lowest wind speeds, W 37/W 37
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Figure 5.2: The dependence of W 10/W 10 (a, c, e) and W 37/W 37 (b, d, f) on
significant wave height (top two panels), peak wave period (middle panels), and mean

wave slope (bottom panels).
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begins to rise again at MWS > 0.045. The peak in normalized W at or close to the

threshold marking wind-wave equilibrium indicates that sea states in equilibrium with

the wind result in the largest values of W at a given wind speed.

5.2.1.2 Degree of wave development

The results in the previous section provide a coarse assessment of changes to W due to

the wave field, characterised by three different variables. We examine the dependence

of W on Hs, Tp, and MWS again in Figure 5.4, but with further classification of

the data as either wind sea (yellow/red curves) or swell (blue curves). To do so, the

relationships in section 3.2.3.2 are used to form a classification system through which

the influence of wave development on W can be assessed. W estimates are classified

as representative of a fully developed sea if (Hfd − 0.5) < Hs ≤ (Hfd + 0.5), and

(Tfd − 1) < Tp ≤ (Tfd + 1). Estimates are classified as wind sea cases if Hs ≤ Hfd − 0.5

and Tp ≤ Tfd − 1. Finally, W estimates are classed as swell if Hs > Hfd + 0.5 and

Tp > Tfd + 1. There are a small number of cases where data cannot be classified as

either swell or wind sea due to data being categorised as swell based on Hs and wind

sea based on Tp, or vice-versa. The distributions of these select cases follow those for

the unpartitioned data and so these data are most likely marginal cases (i.e., only just

making one criteria or another) rather than extreme cases (e.g., limited to the lowest

or highest U10 values only). These cases (approximately 10%) are omitted from the

analysis.

In line with the analysis of Sugihara et al. [2007], we further partition the wind sea

cases by the degree of wave development through grouping cases by the corresponding

estimate of wave age (equation 3.6). Wave ages for wind sea cases have a range 5 ≤ Φ ≤

31, with an almost symmetric distribution around the peak frequency of occurrence at

Φ = 22 (Figure 5.3). We divide the data classified as wind sea into three groups: 5

≤ Φ < 20, 20 ≤ Φ < 25, and 25 ≤ Φ ≤ 31, so that the number of data in each group

becomes approximately equal.

The trends in normalized W10 due to change in Hs are quite similar for wind sea and

swell-dominated cases. For normalized W37 (Figure 5.4b), there is some evidence to

suggest that the leveling off of normalized W with higher Hs is mostly confined to swell
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Figure 5.3: Distribution of wave age estimates for W estimates classified as wind
sea.

cases, whereas for wind sea conditions, normalized W continues to increase although

at a decreasing rate with increasing Hs.

Trends with Tp are somewhat harder to evaluate due to the grouping of wind sea data

at low Tp, and swell at high Tp. The influence of Tp on W10 at a given wind speed

is minimal in swell conditions. A trend of increasing W 10/W 10 is seen for wind sea,

whereas for swell there is little change. For W37 the largest deviations from the mean

wind speed behavior can be seen for wind seas at Tp < 8 s, where seas are likely to be

under-developed. Suppression of W37 is strongest in this regime at the highest wind

speeds; under these conditions, seas will be significantly under-developed.

The results for MWS show that W10 is suppressed slightly for wind sea and swell cases

either side of MWS = 0.03, but with no clear separation between the behavior of the

two cases. In conditions where MWS > 0.03, nearly all W estimates are classified as

wind sea. Here, normalized W37 increases with MWS at low winds, whereas at higher

wind speeds there is a strong decrease with increasing MWS. The latter results in a

large suppression of W37; in such conditions, the magnitude of the wind in excess of

equilibrium is at its largest [Bourassa et al., 2001]. We expect cases for which MWS <
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Figure 5.4: As Figure 5.2 but with data further classified into wind sea (yellow/red
curves) and swell dominated cases (blue curves).
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0.03 to correspond to well-developed seas; however, W estimates can still be classified

as wind sea based on the classification using Hs and Tp values. In this MWS regime,

there is a decrease in normalized W37 with decreasing MWS for both swell and wind

sea cases, although this decrease is more rapid in wind seas.

We further assess the influence of the wave field in Figure 5.5 by classifying data

as either swell, fully developed, or wind seas, with wind seas further classified by

wave age (section 3.2.2). Using 1 m s−1 bins to increase the number of W estimates

in individual bins, we calculate wind speed bin-averaged means, W , for each of the

classes. The ratios W/W fd are calculated for swell and three wave age ranges of

wind sea to quantify enhancement or suppression of W , at a given wind speed, due

to under-developed (wind sea) or over-developed (swell) wave states with respect to a

fully developed wave field. These are shown in Figure 5.5a for W10, and Figure 5.5b

for W37.

For W10, deviations from Wfd in swell and wind seas are almost negligible for 9 m

s−1 < U10 < 20 m s−1. For 3 m s−1 < U10 < 7 m s−1, there is enhancement of W10 for

wind seas compared to fully developed sea states. However, this trend could be a result

of the limitations of such a classification for low wind speeds; W estimates for U10 <

7 m s−1 are almost always classified as swell-dominated, with only 1–2% classified as

fully developed. Therefore, calculation of W fd at these wind speeds may suffer from

poor statistics.

For W37 ( Figure 5.5b), deviations from Wfd are generally larger. Over much of the

wind speed range, W is enhanced in swell-dominated conditions, and suppressed in

wind seas. Interestingly, for 7 m s−1 < U10 < 13 m s−1, the largest suppression of W37

occurs in wind seas with highest wave ages (25 ≤ Φ ≤ 31). At higher wind speeds

(U10 > 14 m s−1), W37 is suppressed most in the youngest wind seas (5 ≤ Φ < 20),

with W ∼10% lower than W fd.

5.2.1.3 Dependence on other environmental factors

The dependence of W upon SST and the viscosity of water are examined in Figure 5.6.

The viscosity of water, although strongly related to SST, also takes into account the

effect of salinity. This parameter may be considered to be more fundamentally related
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Figure 5.5: Ratio of wind speed averaged W10 (a) and W37 (b) to W fd for swell and
wind sea cases, with wind sea further classified by wave age.

to the dynamic wave breaking process than SST itself, due to, for example, its role in

determining the surface tension of the surface water.

The influence of SST on W10 is very small, with a slight reduction in W 10/W 10 at the

highest values of SST and for the highest wind speeds only (Figure 5.6a). Normalized

W37 is near constant for SST < 20oC, but drops off rapidly for SST > 20oC (Figure

5.6b). Whitecap fraction is enhanced at a given wind speed by up to 12% at low

temperatures. These deviations gradually decrease for SST ranging from 5 to 20oC.

Whitecap fraction is suppressed by up to 25% for SST > 20oC.

When plotted as a function of νw (Figure 5.6d), the effect on normalized W37 is as

expected from the results for SST. We stress the relatively small influence these factors

have (no larger than 5%) on normalized W10 (Figure 5.6c). There is however slightly



Chapter 5: Variability in W 114

W
/
W

U
10

 (m s
−1

)
4 6 8 10 12 14 16 18 20

0.8 1 1.2 1.4 1.6 1.8

x 10
−6

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

ν
w

 (m
2
/s)

(d)

 

 

0.8 1 1.2 1.4 1.6 1.8

x 10
−6

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

ν
w

 (m
2
/s)

(c)

0 5 10 15 20 25 30

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

SST (
o
C)

(b)

0 5 10 15 20 25 30

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

SST (
o
C)

(a)

Figure 5.6: The dependence of W 10/W 10 (a, c) and W 37/W 37 (b, d) on SST, (top
panels), and viscosity of water (bottom panels).

more uniform behavior between the trends in normalized W10 and W37 at the higher

wind speeds (red), than that seen for SST.

We explore the dependence of W upon air temperature and the air-sea temperature

difference, ∆T , in Figure 5.7. The trends in both W10 and W37 for Ta (Figure 5.7a,

b) are very similar to those found for SST; this is most likely due to near surface air

temperature coming into (near) equilibrium with SST over much of the ocean.

The influence of ∆T on W is less clear. The overall influence on W10 (Figure 5.7c) is

again less than 5%; a slight peak in normalized W can be seen (at least for moderate to

high wind speeds) just below ∆T = 0, and a weak (5%) suppression for stronger unsta-

ble conditions. For W37 (Figure 5.7d), at moderate and high wind speeds, normalized

W decreases as ∆T goes from unstable towards stable conditions. At the lower wind

speeds, W 37/W 37 shows enhancement for strongly unstable conditions, then falls off
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Figure 5.7: The dependence of W 10/W 10 (a, c) and W 37/W 37 (b, d) on Ta (top
panels) and ∆T (bottom panels).

quickly as we go from unstable to near neutral conditions, but then increases slightly

when ∆T becomes positive. In the most stable of conditions, normalized W37 is sup-

pressed most at high wind speeds. The enhancement of normalized W37 is smaller in

magnitude (∼5% at 14 m s−1) than its suppression (∼10% at 14 m s−1).

The influence of Chl a on W is shown in Figure 5.7. Note that for this variable,

wind speed bins of width 1 m s−1 are used due to the relatively sparse availability

of Chl a estimates—a consequence of loss of coverage due to sunglint contamination

and atmospheric correction issues—in comparison to the majority of other database

variables for which near global coverage exists on a daily basis. The influence of Chl

a on W 10/W 10 is dependent on the wind speed (Figure 5.8a); at low winds there is

reduction in normalized W10 as Chl a increases, but as wind speed increases the trend

turns positive. Trends in normalized W37 (Figure 5.8b) also vary greatly with wind

speed. At low winds, W 37/W 37 only begins to deviate from the mean wind speed
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Figure 5.8: The dependence of W 10/W 10 (a) and W 37/W 37 (b) on Chl a.

behaviour at Chl a ∼ 2 g m−3, peaks at ∼ 3 g m−3, before falling off. At higher wind

speeds, trends follow a linear increase in normalized W37 with increasing Chl a up

until Chl a reaches ∼ 3 g m−3. The plateauing of W 37/W 37 around this value of Chl

a is reasonably robust with varying U10. W37 can deviate from the mean wind speed

behaviour by as much as 15% at moderate to high wind speeds (12 m s−1 < U10 < 16

m s−1).

5.2.2 Relative contribution of forcing factors

The relative contribution of the different factors to variability in W is evaluated us-

ing prinicipal component analysis. We show, for both W10 and W37, the variance

explained by the first principal component (PC1) for wave and wind-wave variables

(Figure 5.9a), and other environmental factors (Figure 5.9b). All forcing parameters

are considered, including those which have an explicit dependence on wind speed, such

as the two Reynolds numbers. In the figures, variables are ordered by the percent

variance explained by PC1.

The highest ranking variable is U10 for both W10 and W37. Two of the wind-wave

variables (the breaking-wave and roughness Reynolds numbers) perform almost as

well, with significantly higher scores than the other wind-wave variables considered.
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Figure 5.9: Percent variance explained by the first principal component PC1 for
data sets combining W with various other factors (solid lines), and the corresponding

data sets when wind speed is included (dashed lines).

The next best performing wave variable is Hs, followed by Φ, and MWS. Tp accounts

for only 50% of the variance of both W10 and W37.

Ta, SST, and νw all describe roughly the same percent variance. Notably, these three

variables also show the biggest difference in variance explained by PC1 between W10

and W37, accounting for ∼4% more variance in W37 than in W10. This supports the

findings in section 5.2.1.3 that SST (or viscosity of water) has a more pronounced

impact on W37 than on W10. Note that this difference is not as large as one might

expect because here we consider estimates covering almost the whole globe, whereas

large changes to W resulting from SST changes are probably confined to very warm

waters (equatorial regions). In the case of the breaking wave Reynolds number and

the roughness Reynolds number, variance explained by PC1 for W37 is slightly lower
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than that for W10. Because both Reynolds numbers combine information on the wind

field and wave field, they may be better predictors of the variability of active foam

(W10), and not quite as successful when residual foam is included (W37). The finding

that the Reynolds numbers account for slightly less variance than wind speed alone is

in stark contrast to a recent study of eddy covariance sea spray fluxes [Norris et al.,

2013a], which found that a wave roughness Reynolds number explained up to twice the

variance in the sea spray flux as wind speed alone. The slightly poorer performance

of the Reynolds numbers here might result from inadequacies in model estimates of

wave properties, the necessarily indirect estimate of u∗, or a degree of self-correlation

between W and U10 introduced through the whitecap retrieval itself.

When wind speed is included in the data sets (dashed lines), the ranking of the per-

cent variance explained by PC1 is preserved, despite changes in the absolute values. In

general, inclusion of wind speed lifts the variance explained by PC1—confirming that

combining individual variables with wind speed is more effective in describing variabil-

ity in W than the variable alone is. This is not the case for the two Reynolds numbers,

for which inclusion of wind speed slightly lowers the percent variance explained by

PC1; this is likely due to the dependence of both Reynolds numbers on wind speed

through the friction velocity.

5.2.2.1 Regional PCA results

Results for the regional PCA are shown in Figure 5.10. Note that for clarity, for

the regional study PCA is performed on data sets comprising W and each of the 13

forcing variables only, i.e., the effect on PC1 scores of including U10 information is not

considered. Through comparison of the top and bottom panels, it is clear that between

regions variations in PC1 scores are much larger for environmental variables (bottom

panel) compared to wave variables (top panel). For each wave variable, PC1 values

vary by less than 10% between regions. PC1 scores for wave variables are especially

close for the Southern Ocean and Equatorial Pacific regions, with PC1 lying slightly

higher for numerous variables in the North Atlantic region.

For environmental variables, variations in PC1 scores between regions are as large as

25%, as is the case for Ta. Largest variation between regions exists for Ta, SST, and
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Figure 5.10: Percent variance explained by PC1 for data sets combining W with
various other factors (solid lines).

νw. For both the Eq. Pacific and North Atlantic regions, the PC1 values for W37 are

noticeably higher for W37 than W10.

5.3 Discussion

5.3.1 Influence of secondary factors

Secondary factors may perturb the whitecap fraction from the mean for a given wind

speed in several distinct ways: by changing the scale or frequency of wave breaking

events, by modifying the bubble plume properties, and by modifying the surface foam
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properties. In all the cases studied, W37 (active and residual foam) shows a stronger

response to secondary factors than does W10 (predominantly active whitecaps).

Some care should be taken when interpreting Figures 5.2, 5.5, 5.6, 5.7, and 5.8. The

ratio of the observed W at a given value of both wind and secondary factor to the

mean for each wind speed are shown. The means are calculated from the individual

contributing values and are thus dependent on the probability distributions of the

secondary factors. Offsets between the lines at different wind speeds may occur purely

because of differences in these probability distributions at different wind speeds—for

example the range of significant wave heights observed is very different at high and low

winds speeds, so that the mean W occurs at different values of Hs for different wind

speeds. Relative trends in W/W are thus more informative than the absolute values.

5.3.1.1 Influence of the wave field on W

The results in Figures 5.2-5.5 relate the whitecap fraction to various measures of wave

state. There exists considerable subtlety in the response of W to wave state, with W10

and W37 sometimes showing different behavior.

Both W10 and W37 are generally suppressed in developing wind seas (low Hs and/or

Tp) (Figure 5.4a-d); the suppression is greatest when wind and waves are far from

equilibrium as can be seen under conditions with moderate to high wind speed but

very low Tp (Figure 5.4d). At low and moderate wind speeds, W peaks at Tp ∼11 s;

this peak shifts to higher Tp with increasing U10 for wind seas (Figure 5.4c, d).

W tends to be largest when the wind and waves are in, or close to, equilibrium with the

local wind. This enhancement close to wind-wave equilibrium is most clearly observed

when MWS is used to define the wave field; peak W occurs at ∼0.03, corresponding to

waves in equilibrium with the wind. In wind sea conditions, the peak shifts to higher

MWS (less well developed waves) as the wind speed decreases. In wind seas at low

wind speeds, W37 appears to continue to increase with MWS, but this may reflect a

lack of data at sufficiently high MWS.

When we compare W with that for a fully developed sea state for the local wind

(Figure 5.5), we find no appreciable differences in W10 over much of the wind speed

range. However, we again find a general trend of suppression of W37 in wind seas; at
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moderate wind speeds, largest suppression of W37 occurs in wind seas with highest

wave age; at higher wind speeds largest suppression occurs in the youngest wind seas.

The results above are consistent with recent studies showing enhancement of W in de-

veloped seas relative to that in under developed seas [Callaghan et al., 2008b; Goddijn-

Murphy et al., 2011; Stramska and Petelski, 2003], and of increasing W with wave age

in wind seas [Sugihara et al., 2007].

Using MWS to characterise the degree of wave development, we find suppression of

W at a given wind speed in well-developed seas (MWS < 0.03) (Figure 5.4e, f); this

suppression increases as the waves become increasingly over-developed. This picture

is consistent both with recent studies showing evidence for suppression of W in the

presence of swell [Callaghan et al., 2008b; Sugihara et al., 2007].

However, when we classify W estimates based on comparison of Hs and Tp with those

expected for fully-developed seas, we find that W37 is largest in swell-dominated seas

(Figure 8b). This result may at first seem at odds with the results shown in Fig-

ure 5.4e, f. We must note the difference between use of MWS as an indicator of the

wave state, and classification of W estimates based on comparing Hs and Tp to values

expected for fully developed seas. The latter requires no information on local wind

speed, and so cannot be judged as a definitive measure of the degree of wave devel-

opment. In contrast, classification based on a comparison of Hs to Hfd and Tp to Tfd

inherently considers the local wind speed. Different measures of wave development can

give apparently contradictory impressions; this results from the partial picture pro-

vided by averaging different subsets of the data, suggesting the need for more detailed

information on wave spectra to fully resolve the wave influences on whitecap fraction.

For wind sea dominated conditions, the increase in W with wave state is readily inter-

preted as resulting simply from larger waves and consequently either larger individual

breakers or more frequent breaking events. For swell-dominated conditions, the behav-

ior is more complicated with W having a more or less distinct peak at some mid-range

of wave state, decreasing for both less well and better developed wave states. We

speculate that this results from changes in wave-wave interactions between the wind

sea and swell as a function of the difference between their respective wavelengths.
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Both wind waves and swell are dispersive, and grow and break suddenly as a con-

sequence of wave-wave interactions as individual waves pass through a wave group

[Donelan and Pierson Jr., 1987]. The steepening of waves during such interactions

is greatest when the wavelengths are similar, decreasing as the difference in wave-

length increases. Swell dominated cases where the swell and wind waves are similar in

wavelength would thus be expected to enhance wave breaking, while those where the

wavelengths were very different would not. We note that W10 follows this pattern with

Tp but not with Hs; we attribute this to the fact that Tp provides a better measure of

separation on wind sea and swell scales, while the Hs results are averaged over a range

of wave and swell scales combined.

We have considered the success of several wind-wave and wave variables in accounting

for variability in W . Of these, the two Reynolds numbers perform best. It has been

shown previously that the primary contribution to wave breaking and resulting white-

caps comes from the high frequency components of the wave spectrum, and not the

dominant waves [Dulov et al., 2002; Gemmrich et al., 2008; Plant, 2012]. Therefore,

the success of wind-wave variables in accounting for variability in W may be improved

with use of wave measurements describing the wind sea part of the spectrum only,

e.g., the peak wave period for wind-waves, rather than peak wave period of the total

spectrum. This hypothesis could be tested with expansion of the database to include

wave measures quantifying a partitioned spectrum.

5.3.1.2 SST and water viscosity effects

Both normalized W10 and normalized W37 show a clear decrease in whitecap fraction

for SSTs greater than about 15–20oC; the suppression is much stronger for normalized

W37. The findings could be explained following the argument of Monahan et al. [1983],

namely that rise times of bubbles are longer in colder waters, resulting in longer white-

cap lifetimes and hence greater values of W under the same meteorological conditions.

However, Leifer et al. [2000] have shown that for clean bubbles the SST effect on the

bubble rise velocity is size dependent. This suggests that SST would influence the

whitecap fraction not just through the decay rate, but also by changing the bubble

size distribution that contributes to the surface foam layer. Because Anguelova and

Gaiser [2011, 2013] have shown that foam emissivity and thus TB due to whitecaps
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depends on the void fraction and thickness of the foam layers, one could expect W10

and W37 to be sensitive to such an influence. Studies of such intriguing connections

would require data on bubble size distributions from regions with different seawater

temperatures—this is only possible for in situ studies, not satellite based retrievals.

Our results for W37 could be further explained by a reduction in the decay time of

residual foam patches with increasing SST [Bortkovskii and Novak, 1993], while those

for W10 remain harder to explain. The relatively flat response to SST below 15–20oC

is consistent with Stramska and Petelski [2003], who found no SST response between

2 and 13oC.

Another possibility is that the observed SST dependence is a result of a spatial cor-

relation between SST and some other factor affecting whitecap properties such as the

concentration of organic surfactants in the surface water (section 5.3.1.4). Finally, we

cannot entirely exclude the possibility that uncertainty in the models used in the W

algorithm may contribute to the observed temperature dependence.

The impact of viscosity largely reflects that of SST, although there is a little less

scatter, particularly for W37; this may result from the inclusion of salinity as well as

temperature.

5.3.1.3 Atmospheric stability effects

The air temperature dependence of W10 and W37 follows that of the SST dependence.

Since air and water temperatures do not usually differ by more than a few degrees

Celsius over much of the ocean [Kara et al., 2007], it is likely that results are largely

due to the SST dependence.

We find W10 is largest for weakly unstable conditions at most wind speeds; there is

little change for ∆T < −3oC, but a decrease with increasing stability. W37 displays

even more complex behavior; for U10 above about 13 m s−1, the behavior is similar to

that for W10, with slight decrease for stronger instabilities and a greater decrease with

increasing stability. At low wind speeds, W37 is generally lowest for weakly unstable

conditions, with largest enhancement of W for the most unstable conditions.
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Previous studies have found an increase in W for unstable conditions [Monahan and

O’Muircheartaigh, 1986; Monahan and Woolf, 1988; Wu, 1988]. This is plausibly ex-

plained by an increase in u∗ at a given wind speed because of the additional turbulence

generated by convection. Some caution is needed when interpreting our results, how-

ever; the satellite winds used here are not true local values, but the equivalent wind

under neutral conditions. Scatterometer backscatter depends on short surface waves,

which respond rapidly to the local wind stress, rather than wind speed, and are cal-

ibrated to give the equivalent neutral wind that would provide the same wind stress

[Tang and Liu, 1996]. Thus our measurements should not be expected to exhibit the

same wind speed/stress dependence on stability as in situ measurements. The stability

dependence of W10 and W37 must thus have some other cause.

We speculate that one possible cause is a change in the spatial distribution of wind

stress with stability within the satellite footprint. Under unstable conditions, the su-

perposition of large scale convective motions on the mean wind may lead to highly

variable local surface winds, and wind stress, due to convergent flow at the base of

updrafts at scales much smaller than the footprint of the brightness temperature mea-

surement. This will lead to spatially variable whitecap formation, and because white-

cap fraction is a highly nonlinear function of the local wind, the spatially averaged W

will be higher than that for the same spatially averaged mean wind. The nature of the

spatial variability will change with both the strength of the instability and with the

mean wind speed, and may include more or less randomly distributed, isolated thermal

plumes, organized cellular convection with open or closed cells, and linearly organized

boundary layer rolls.

5.3.1.4 Surfactant concentration effects

The influence of surfactant concentration on W has been evaluated using satellite-based

estimates of chlorophyll a concentration. It is interesting that at low wind speeds W10

decreases slightly with increasing Chl a. If this is a robust trend, it could indicate

a possible influence of surfactant concentration on the active wave breaking process,

mediated by either (i) surface tension effects, or (ii) changes to the bubble properties

in active breakers that are sufficient to affect the retrieval algorithm.



Chapter 5: Variability in W 125

Generally, W37 increases with increasing Chl a at a given wind speed, with the influ-

ence being larger for moderate and high winds. This is likely due to the influence of

surfactant concentration (here quantified using Chl a) on the lifetime of residual decay-

ing foam layers. Callaghan et al. [2013] confirmed that the presence of surfactants acts

to stabilize surface bubbles and so increase whitecap decay times. For satellite-based

observations, this would manifest as an increase in W37 (which captures the thinnest

foam layers).

We cannot rule out the possibility that trends in Chl a are in fact due to the depen-

dency of surfactant concentration on SST. In the open ocean, the primary source of

natural surfactant compounds are phytoplankton exudates, which can be transported

to the surface through diffusion and via rising bubbles [Žutić et al., 1981]. Surfactant

concentrations tend to be higher in cooler waters where nutrients are more plentiful

and primary production is higher. This inverse correlation between SST and phyto-

plankton concentration [Falkowski et al., 1998; McClain et al., 2004] might thus be

expected to contribute to a relative reduction in the lifetime of residual foam in warm

waters. It is also possible that covariation between the two actually results in the

trends being mistakenly identified as due to Chl a when they are in fact due to water

temperature effects.

5.3.2 Radiometric frequency dependence of W estimates

The operational radiometric frequency is an important aspect of satellite estimates

of whitecap fraction, with different frequencies able to discriminate, at least approx-

imately, between foam layers depending on their thickness (section 3.2). Our results

show unambiguously that wind speed and secondary factors affect W10 and W37 dif-

ferently.

Importantly, these differences can be plausibly explained with different influences of

the secondary factors on foam layers associated with different whitecap lifetime stages.

This lends support to the notion that W10 and W37 represent different mixes of active

and residual whitecaps. This is also an independent confirmation of the conclusions

regarding the frequency sensitivity to foam layer thicknesses which Anguelova and

Gaiser [2011] obtained on the basis of purely physical considerations. Whitecap fraction

is currently used to parameterise numerous bubble-dependent air-sea processes, but it
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is expected that these parameterisations could be improved through use of measures of

W that discriminate between active breakers and residual foam. As such, microwave

measurements of whitecap fraction could prove beneficial to parameterisation of such

processes.
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Improved representation of

whitecaps for applications using

whitecap fraction

A ‘one-size-fits-all’ approach has prevailed with regards to the use of W in both remote

sensing and air-sea interaction applications. Simple wind speed only parameterisations

of W have been used to quantify a variety of different processes including the produc-

tion of sea spray aerosol, air-sea gas exchange rates, and changes to the ocean surface

albedo due to the presence of whitecaps. Over previous decades, the focus much of

the research on whitecaps has been on obtaining more accurate parameterisations of

W , by increasing the accuracy and data volume of in situ estimates on which they are

based. Despite these developments, the parameterisations remain inherently limited,

and cannot be expected to predict W to the desired level of accuracy (section 2.4.1.2).

One a more fundamental level, questions regarding the complex relationship between

observations of W and its determining factors have been asked. In particular, recent

work by Callaghan and coworkers (see Callaghan [2013]; Callaghan et al. [2012, 2013])

has shown that W is largely determined by foam decay times, with decay rates con-

trolled by bubble plume degassing and/or stabalisation of the surface bubbles. The

results have implications for the parameterisation of air-sea exchange processes, for

linking W to energy dissipation from breaking waves, and for the interpretation of

measurements of whitecap fraction itself [Callaghan et al., 2012].

127
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However, it remains the case that W provides a convenient approach to inferring in-

formation on important processes such as marine aerosol production and gas exchange

[Woolf and Goddijn-Murphy, 2012], which are known to be dependent upon wave

breaking and whitecapping. The significant amount of work involved with developing

a novel satellite-based approach to estimation W is testament to the importance of

the whitecap fraction as a measureable quantity. Whilst further development of the

satellite-based approach is necessary, the technique is a significant improvement on the

use of parameterisations based on a limited amount of photographic data.

In light of recent developments and results—regarding in situ and laboratory work,

together with the analysis presented in this study—it is worth asking the question:

how can we improve representation of whitecaps (for example, through relating W

more closely to physical processes)? The most obvious first step is to explore possible

approaches toward an improved understanding of the relationship between W and the

different physical processes and mechanisms associated with whitecapping. This issue

is explored in the first part of this chapter.

In the second part of this chapter, we reappraise use of W by the air-sea community,

with focus on the prediction of SSA source fluxes, and bubble-mediated gas exchange,

given the implications of both recent results and future operational use of satellite-

based estimates of whitecap fraction.

6.1 Interpretation and measurement of whitecap fraction:

Differentiating contributions from stage A and B white-

caps

Whitecaps provide a convenient visual expression of wave breaking. As such, W has

been used to quantify various phenomena associated with breaking, ranging from dy-

namic processes such as bubble plume formation and ambient noise generation [Mon-

ahan and Lu, 1990], the production of spume droplets Mueller and Veron [2009], tur-

bulent mixing and air-sea gas transfer, to climatically relevant processes such as the

whitecap albedo effect [Frouin et al., 2001].
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It has been argued that the majority of these air-sea interaction processes are likely

more fundamentally linked to either (i) the energy dissipated by surface gravity wave

breaking (visible or not) or (ii) parameters quantifying air-entrainment and bubble

plume production. With regards to the former, W cannot be considered as a di-

rect representation of the occurrence (frequency) and scale of surface wave breaking

which—to first order—dictate the breaking contribution to energy dissipation rates.

W , as currently estimated using either visible photographs or radiometric satellite-

based measurements, remains an indirect, bulk representation of breaking. Further,

W is not an unequivocal measure of total wave energy dissipation; in estimation of

W , all information on the scales of the breaking waves contributing to W is lost,

though the contributions are from breakers across the spectrum. This information

is of fundamental importance for the development of more rational models of air-sea

mass, momentum, and energy transfer and mixed layer dynamics [Kleiss and Melville,

2010]. Observations of W (using traditional methods) alone do not provide the level

of information needed to more accurately quantify these air-sea interaction processes,

and while important parameters pertinent to wave breaking, air entrainment, bubble

plume evolution, and bubble bursting can be measured in the laboratory, this informa-

tion is often not readily measurable and/or not applicable (or scalable) to open ocean

conditions.

Alternatively, it may be possible to take advantage of recent advances in the measure-

ment and modelling of W to better relate whitecap fraction to these physical processes.

Specifically, there is a need to ‘resolve’ the different lifetime stages of whitecaps and

quantify their contribution to W . As a first step towards this goal, there is a require-

ment to separate the contribution of whitecaps associated active breaking crests (WA)

from the total whitecap fraction W which is what is generally measured or predicted.

This has been attempted previously using photographic data, according to the different

visible signatures of stage A and B whitecaps. However, this is often a crude and in-

consistent approach, and provides little insight into the relationship between whitecaps

and the wave breaking process.

In this section, two approaches towards this goal, both presently the subject of develop-

ment, are outlined and discussed: (i) a radiometric approach exploiting the dependence

of the radiometric signature of foam on its thickness, and (ii) an approach based on

the relationship between W and the statistics and dynamics of individual breaking
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waves. For the second approach, we bring together recent results pertaining to the

life-cycle of individual whitecaps and breaking wave statistics, which enables one to

distinguish between estimates of total W , and the whitecap fraction resulting from

actively breaking wave crests only, WA.

6.1.1 Radiometric approach

The sensitivity of microwave frequencies to foam layer thicknesses has important impli-

cations for the remote sensing of (the surface expression of) whitecaps. Anguelova and

Gaiser [2011] show that this sensitivity can be explained physically through consid-

eration of radiometric and structural properties of sea foam, and that foam thickness

depends on both the environmental conditions and the lifetime stage of the white-

caps. The results presented in chapter 5 on the different responses of W10 and W37

to secondary forcings, provide support to the idea that use of different radiometric

frequencies in the W (TB) algorithm can crudely distinguish between different stages

of foam lifetime.

The next step is to move from mere detection of the foam at different microwave

frequencies, towards inferring further information on the foam layers [Anguelova and

Gaiser, 2011]. The primary aim would be to qualitatively link the radiometric signature

of the foam to its lifetime stage (active or decaying). Though it has been shown that

as the radiometric frequency decreases from 37 GHz to 6 GHz its sensitivity to thinner

foam decreases, the microwave signature is not a simple function of foam thickness.

More work is needed to investigate the complex relationships between the physical and

radiometric properties of oceanic foam and lifetime stage, before more assertive claims

regarding this feature can be made.

The focus of this study is the end product of the satellite algorithm, W10 and W37.

Though it is clear that ‘resolving’ active and decaying whitecaps using the radiomet-

ric approach requires further work, including significant development of the retrieval

algorithm, it is worthwhile comparing estimates of W at the two different microwave

frequencies. Figure 6.1 shows maps of the ratio W37/W10, illustrating the varying re-

lationship between the two W estimates for given forcing conditions (wind, wave, and

environmental conditions) on a seasonal timescale. Therefore, variations in W37/W10
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Figure 6.1: Seasonal maps of the ratio W37/W10 for (a) December–February, (b),
March–May, (c) June–August, and (d) September–November.

are related to the radiometric signature of the foam layers detected at the two fre-

quencies. Following the arguments above, as the ratio increases, the area covered by

thinner foam layers is increasing, relative to thicker foam layers. If one assumes that

changes to the emissivity signal are driven primarily by foam layer thickness, the ratio

of the two estimates is related to the persistence of the thinner foam layers.

W37/W10 is generally larger in mid latitude regions (especially along the Equator)

where mean wind speeds are lowest. Localised regions, such as off the western coast

of Mexico, where W37/W10 > 2.8 throughout the year are apparent. Interestingly, the

ratio is appreciably larger over much of the northern high latitude oceans for JJA than

for the rest of the year. The ratio reaches its lowest value (approximately 1) in regions

where mean wind speeds are highest, such as the Southern Ocean. Visual inspection

of these maps reveals distinct patterns that could be related to a variety of factors

including the distribution of mean values for U10, SST, and perhaps even Chl a. The

December–February mean wind speed (U10) dependence of W37/W10 as a function of

seasonal mean SST is shown in Figure 6.2. W37/W10 is highest (reaching a value of ∼

4) when SST is highest and U10 lowest. The ratio falls off as U10 increases, with a rate

that is proportional to the mean SST; the higher mean SST is, the quicker the rate of

fall off. In regions where mean wind speeds are highest (U10 > 14 m s−1), the ratio
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Figure 6.2: W37/W10 as a function of U10 for December–February, with data
coloured by the mean SST over the period.

approaches 1. The exact cause(s) of this dependence should be investigated in future

work. Specifically, more work is required to determine whether the enhancement of

W37 relative to W10 in low wind, high SST conditions has a physical basis, for example,

stabilisation of decaying foam by surfactants.

In summary, as a direct result of the radiometric frequency dependence of satellite-

based observations of W , comparing the magnitude of W10 and W37 estimates (as the

currently available end product of the W (TB) algorithm) may be related to the per-

sistence of the thinnest foam layers. However, to achieve the overall goal of using a

radiometric approach to accurately quantify the contribution to total whitecap cover-

age from foam layers in different life cycle stages and with different physical properties,

it is likely that more fundamental, low-level, development of the W (TB) algorithm is

required. In a recent experimental study [Savelyev et al., 2014], it was shown that

there is a strong sensitivity of the rate of aerosol production from oceanic whitecaps

to the brightness temperature polarization difference, a parameter obtained from ra-

diometric measurements. This is a significant finding; an air-sea interaction processes

(in this case SSA production) has been shown to be well correlated with a parameter

related to brightness temperature, but not explicitly related to the areal coverage of
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the surface foam layer (i.e., W ). It is therefore possible that SSA source fluxes can be

accurately parameterised using radiometric measurements of brightness temperature

without converting TB measurements to W estimates. Finally, radiometric measure-

ments of oceanic whitecaps are not limited to visible and microwave frequencies; the

possibility of using infra-red signature of whitecaps to infer further information on sur-

face foam and wave breaking dynamics has previously been illustrated (e.g., Jessup and

Phadnis [2005]; Marmorino and Smith [2005]. Importantly, the observed differences

between the infrared signature of whitecaps in active and decaying stages are related

to the distinct differences between the structure and evolution of the two foam types,

and so can be used to distinguish between the two.

6.1.2 Approach based on a dynamical model of W

There has been renewed interest recently in relating W to breaking wave dynamics

via the Phillips parameter, a statistical quantity characterising wave breaking (sec-

tion 2.3.2.1), which is in turn can be related to the momentum flux and energy dissi-

pation due to breaking [Duncan, 1981; Phillips, 1985]. The Phillips concept therefore

provides means of obtaining information on wave breaking and energy dissipation using

whitecap observations.

Recall from section 2.3.2.1, it was shown by Phillips [1985] that

W = TPhillips

∫
c
cΛ(c)dc, (6.1)

where TPhillips is a time factor related to the bubble persistence time which was orig-

inally speculated by Phillips to be constant. The model was enhanced by Reul and

Chapron [2003], who noted that TPhillips is not a constant but rather depends on the

scale (i.e., breaking speed) of the underlying breaker, with the breaker speed related to

the period of the breaking wave, T . Indeed, choice of the factor determines the foam

layers that contribute to the whitecap fraction as calculated using equation 6.1. In the

following section, we relate TPhillips to whitecap timescales (section 2.2.3.2), which are

determined from a model for the areal evolution of an individual whitecap of a given

scale. These whitecap timescales are then combined with the dynamical model for W

to obtain estimates of WA and W .
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6.1.2.1 Modelling the time-evolution of an individual whitecap’s area

A dynamical model A(c, t) for the areal evolution of an individual whitecap over its

lifetime is set out such that

A(c, t) = β(c)t for 0 ≤ t ≤ τ∗,

A(c, t) = Amax exp

(
−(t− τ∗)

τ

)
for t ≥ τ∗.

(6.2)

where t is time and c is the speed of the breaking front. The model combines a

linear growth phase (as observed by Callaghan [2013]; Kennedy and Snyder [1983];

Koepke [1984] amongst others) with the well-documented exponential decay phase,

characteristic by the decay time τ . The active breaking duration τ∗ marking the time

of transition between the two phases. The model mirrors the dynamical model for

foam layer thickness presented by Reul and Chapron [2003] but our interest is the

areal coverage of whitecaps associated with individual breakers, rather than on the

foam layer thickness, though the two are known to be related (section 2.2.3.1).

The scheme for the time evolution of whitecap area (equation 6.2) is illustrated in

Figure 6.3, for whitecaps produced by breakers with different scales. In the top panel,

the breaker has c = 3 m s−1 and L = 2 m, whereas the bottom panel shows the

time evolution of a larger whitecap produced by a breaker for which c = 5 m s−1 and

L = 4 m.

6.1.2.1.1 Growth phase

The key assumption in the above model is that the scale of a whitecap formed from a

wave with breaking crest length L can be described using c only. β(c) defines the rate

of growth of an individual whitecap’s area. Following the arguments of Kleiss [2009],

the rate of growth of area β(c) = cL. Integrating this over the duration of active

breaking (τ∗), at which time the whitecap obtains its maximum area Amax, gives

Amax(c, L) = cLτ∗. (6.3)

The parameter τ∗(c) is the duration of the breaking event and is therefore a function

of the breaking front speed c. This parameter has been shown to be proportional to
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Figure 6.3: Schematic showing the growth and decay phases of two different white-
caps, resulting from a breaking wave with breaking crest length of (top panel) 2 m
and (bottom panel) 4 m, advancing at a speed of (top panel) 3 m s−1 and (bottom
panel) 5 m s−1. For the decay phase, the area evolution is characterised using either

a constant or variable characteristic decay time τ)

the period of the underlying waves T [Melville and Matusov, 2002; Phillips et al., 2001;

Rapp and Melville, 1990], such that

τ∗ = αT, (6.4)

where α is a constant of proportionality. Estimates for α generally range from 0.7

[Rapp and Melville, 1990] to 0.8 [Phillips et al., 2001]. Using the dispersion relation

for gravity waves in deep water, the period of the wave can be related to cp, the phase

speed of the underlying carrier waves:

T =
2πcp
g

, (6.5)

so through combining the two equations;

τ∗(cp) =
2παcp
g

. (6.6)
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The breaking speed c is not always equal to the phase speed of the carrier waves; it

was shown by Stansell and MacFarlane [2002] that the two are related as c/cp = γ

where γ = 0.8–0.95 depending on the nature of the breaking wave Substituting this in

to equation 6.6, one obtains a final expression for the duration of the breaking event:

τ∗(c) =
2παc

γg
, (6.7)

where in this work γ = 0.85.

6.1.2.1.2 Decay phase

Two different decay times characterising the exponential decay phase in the model

are considered: (i) a constant (scale-independent) decay time (τ = τMon = 3.53 s)

[Monahan et al., 1982, 1986], and (ii) a scale-dependent τ . For the purpose of the

above illustration, we obtain (ii) using the empirical relation of Callaghan et al. [2012]:

τ(Amax) = K0A
k1
max, (6.8)

where the exponent K1 is 0.43 and the factor K0 = 1.97. These values for K1 and

K0 are the means of those reported by Callaghan et al. [2012] over four different

measurement periods. Note that this is by no means a universal relationship. It does

however, provide observational evidence that the characteristic decay time does indeed

vary on a wave-by-wave basis, and so the result is at odds with use of a constant

characteristic decay time, such as τMon. The relationship dictates that the larger the

maximum area of whitecap, the slower the rate of decay. This finding is intuitively

reasonable, as it would be expected that larger whitecaps entrain bubbles deeper and

thus have longer decay times. Importantly, Callaghan et al. [2012] also found that the

mean value of τ also varies between observational periods i.e., under different wind-

wave and environmental forcings. The issues associated with finding appropriate values

(or a scaling relation) for τ is discussed in section 6.1.3.1.

6.1.3 Dynamical model for W and WA using whitecap timescales

With a model for the time evolution of an individual whitecap, one can obtain an

expression for WA by considering only the contribution of individual waves during
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the active breaking stage [Kleiss and Melville, 2010]. Replacing TPhillips with our

characteristic whitecap formation timescale τform, one obtains

WA = τform

∫
c
cΛ(c)dc, (6.9)

where τform is defined by equation 2.3. Since the whitecap formation phase is linear,

τform(c) = τ∗(c)/2. As this term is a function of c, equation 6.9 can therefore be written

as

WA =

∫
c

τ∗(c)

2
cΛ(c)dc, (6.10)

so that with our definition of τ∗ (equation 6.7), one obtains

WA =
απ

γg

∫
c
c2Λ(c)dc. (6.11)

It follows that the stage A whitecap fraction is proportional to the second moment

of the Phillips’ parameter, based on the assumption that the formation time scales

with the breaking front velocity c [Kleiss, 2009; Kleiss and Melville, 2010; Reul and

Chapron, 2003].

Following the same argument, the total whitecap fraction W can be determined by

replacing TPhillips with τwc, to obtain

W = τwc

∫
c
cΛ(c)dc, (6.12)

where τwc = τform+τdecay (section 2.2.3.2). As τform has already been obtained, the task

is now to find an appropriate value for the timescale τdecay, as defined by equation 2.4.

6.1.3.1 Choice of τdecay

Referring back to our model for the time evolution of the area of an individual whitecap,

there are two choices for the characteristic decay time τ . Note that τ is by definition

equivalent to τdecay—that is, our whitecap timescale is the characteristic decay time.

In the first instance using a constant characteristic decay time τdecay = τMon, the

combined timescale for growth and decay is

τwc(c) =
απc

γg
+ τMon =

απc

γg
+ 3.53. (6.13)
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which when combined with equation 6.12 leads to

W =
απ

γg

∫
c
c2Λ(c)dc+ 3.53

∫
c
cΛ(c)dc = WA + 3.53

∫
c
cΛ(c)dc, (6.14)

where the integral of the first moment of c is equivalent is an integration over the

spectral rate of whitecap formation per unit area (s−1).

In the second instance using a variable decay rate, the (generic) timescale for a whitecap

produced by a breaker at advancing at speed c is:

τwc(c) =
απc

γg
+ τdecay, (6.15)

where the exact form of τdecay is yet to be specified, but it is in some way depen-

dent on the scale of the breaking wave that produced the whitecap. As noted above,

Callaghan et al. [2012] observed that τdecay scales with the maximum area of a whitecap

(equation 6.8) on a wave-to-wave basis. Interestingly, the authors actually found poor

correlation between τdecay and c, indicating that ‘the decay time of whitecap foam may

be independent of the speed of the breaker that formed the initial whitecap.’ Due to

the dependence of Amax on both L and c (equation 6.3), it is not possible to obtain an

appropriate scaling relationship for τdecay in terms of c alone.

In their calculations, Reul and Chapron [2003] did not consider τdecay directly but

rather assumed that the total persistence time for whitecap foam scales with the period

of the breaking wave T , and therefore also c. Noting that the ‘reported static-foam

coverage should correspond to the sum of individual sea surface area swept by each

breaking wave front during approximately 5 wave periods’, the authors set TPhillips =

5T in their calculations. No evidence of experimental verification of this relationship is

given by the authors, but the resulting durations are close to time scales characterising

bubble injection depth as reported by Rapp and Melville [1990]. Note that this is

the same scaling used to predict the active breaking time τ∗ (equation 6.4), but with

α = 5, rather than 0.8. It is not clear what exactly the ‘total persistence time’ refers

to, but here it is assumed that this is equivalent to the combined whitecap timescale

for growth and decay:

τwc(c) =
5πc

γg
, (6.16)
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and thus using this expression in equation 6.12, one obtains

W =
5π

γg

∫
c
c2Λ(c)dc =

5

0.8
×WA, (6.17)

and the result that total W is linearly proportional to WA. This should be true at

least for constant environmental conditions [Leckler et al., 2013], and so the effects of

varying environmental conditions on the lifetime of surface foam are not considered in

the model for τwc(c).

6.1.3.2 Choice for Λ(c)

The Λ(c) distribution is directly related to the expected energy loss at a given scale

[Phillips, 1985]. In wave models, this quantity is related to the dissipation source

term in the wave action balance equation. Therefore, the Phillips distribution can be

obtained in wave models via a wave spectrum definition [Leckler et al., 2013; Reul

and Chapron, 2003], a feature of the most recent version of NCEP’s WAVEWATCH

III model. The distribution can also be measured empirically using video images of

breaking waves. From the literature, field estimates of the Phillips Λ(c) distribution

are collated, and include those of Melville and Matusov [2002], Kleiss and Melville

[2011], Gemmrich et al. [2008], and Callaghan et al. [2012] (Figure 6.4).

To obtain a W (U10) formulation based on the Phillips parameter, one requires a func-

tional form for Λ(c) i.e., Λ(c)(U10), rather than point measurements of the distribution

corresponding to given wind and wave conditions. Therefore, we are forced to use ei-

ther the empirical relation of Melville and Matusov [2002] or Kleiss and Melville [2011].

Both parameterisations were obtained from measurements made using a similar exper-

imental method, and the parameterisations have the same functional form, with the

distributions proportional to the cube of U10 and having an exponential dependence

on the breaker speed c. The distribution of Melville and Matusov [2002] (MM02) is

given by

Λ(c, U10) =

(
U10

10

)3

× 3.3× 10−4e−0.64c, (6.18)

and is used in the subsequent analysis. Though the e-folding scale is a constant in

their parameterisation, Melville and Matusov [2002] predict that it is likely a function

of fetch (or alternatively, the degree of wave development). Due to constant fetch
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Figure 6.4: Published Λ(c) from various authors, coloured according to the U10

value or range under which they were obtained / are applicable. The solid and dashed
lines show the Melville and Matusov [2002] and Kleiss and Melville [2011] Λ(c)(U10

parameterisations, respectively, evaluated at U10 = 5, 10, and 20 m s−1. The grey
area is from Kleiss and Melville [2011]. Gemmrich et al. [2008] and Callaghan et al.
[2012] present individual estimates of Λ which are not parameterised in terms of U10.

conditions in their study, this dependence was not built in to the function. In more

recent work, scaling relationships for Λ(c) in terms of both wind and wave variables

have been suggested [Sutherland and Melville, 2013], based on the spread in estimates

in Λ(c) over much of the range of breaker speeds that contribute to W . This would

be a significant step towards empirical or model parameterisation of breaking wave

statistics as quantified by the Phillips distribution.

6.1.4 Results: Calculations to obtain WA and W

Before equations 6.11, 6.14, and 6.17 can be evaluated using MM02, one needs to make

choices for the integration limits cmin and cmax. As MM02 was obtained in developed

wave conditions, we set cmax = cp, the peak phase speed, where cp = gTp/2π. Tp can

be calculated (for wind and waves in equilibrium) using the Carter [1982] relationship,
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Tp = 0.75U10. Therefore,

cp(U10) =
0.75gU10

2π
(6.19)

A constant lower limit for cmin is chosen as 0.1cp, which is a suitable lower limit for

detectable breakers [Gemmrich et al., 2008]. As our focus is on prediction of W , this

lower limit should restrict the scale of breakers to those that form whitecaps, even

though including the microscale breaking range has a large effect on the value of Λ(c)

at low c [Sutherland and Melville, 2013] (this is somewhat evident in Figure 6.4).

Sutherland and Melville [2013] state that visible (and infrared) measurements fail for

breakers with speeds below 2–3 m s−1, likely due to lack of air entrainment. Using

this choice for cmin results in a value of approximately 1 m s−1 for U10 = 9 m s−1,

close to the lower limit of detected breaker speeds contributing to MM02 [Melville and

Matusov, 2002].

Note that the integration window [cmin, cmax] could be varied. This adds flexibility to

the model because it has been shown that the scales over which breakers occur varies

with the degree of wave development as measured relative to wind-wave equilibrium

[Gemmrich et al., 2008].

In Figure 6.5, top, WA predicted as a function of U10 from the dynamical model

is compared with several WA(U10) relationships from the literature, together with

W10(U10) (equation 4.2). Though lying slightly lower once U10 reaches ∼ 8 m s−1,

predictions of WA from the dynamical model are close to the WA(U10) relations of

Monahan and Woolf [1988] and Asher and Wanninkhof [1998] which are based on

photographic data. Though predictions from the W10(U10) parameterisation lie higher,

the U10 exponent lies in between the quadratic dependence of the Monahan and Woolf

[1988] W10(U10) formulation, and cubic dependence of the Asher and Wanninkhof

[1998] parameterisation (note that this parameterisation goes as WA ∝ (U10− 1.77)3).

The dynamical model, using the MM02 parameterisation of the Phillips distribution,

predicts a stage A whitecap fraction of approximately 5% at U10 = 20 m s−1.

The wind speed dependencies of predictions of W from the dynamical model (with both

constant and variable decay rate) are compared with those of two in situ based W (U10)

parameterisations and of the W37(U10) relationship (equation 4.2) in Figure 6.5, bot-

tom. There is good agreement between W37(U10) and predictions from the dynamical

model with a variable decay rate, with regards to both the magnitude of estimates
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rameterisation. (Bottom panel) As top panel, but for total whitecap fraction W , and
with the W37(U10) (rather than W10(U10)) parameterisation shown for comparison.

and the U10 dependence. Predictions of W from MM80 lie slightly lie higher than

those from the dynamical model with a variable decay rate, though the wind speed

dependence (U3.41
10 ) is much stronger.

It is interesting to see the disparity between predictions from the dynamical model

using either a variable or fixed decay rate. The model with a fixed decay rate predicts

values of W that seem unreasonably high, reaching ∼ 30% at U10 = 18 m s−1. The

wind speed dependence is much stronger than that of the W37 parameterisation, that of

MM80, and that of dynamical model using a variable τ(c). Recall that the dynamical
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model is formulated using MM02, which has a cubic wind speed dependence; this is

not, however, the sole factor determining the final wind speed dependence of the model

predictions. Interestingly, the model with variable τ results in estimates and a wind

speed dependence of W close to that of W37.

The comparison is limited to U10 < 20 m s−1. As noted in chapter 4, at higher

wind speeds the validity of in situ parameterisations and satellite-based estimates is

questionable. The same is true for the dynamical model, at least in its current usage, as

the MM02 parameterisation of Λ(c) was formulated from measurements in conditions

where the mean U10 < 14 m s−1. It is interesting to compare the results in Figure 6.5 to

those of Holthuijsen et al. [2012], who presented results on the wind speed dependence

of whitecap fraction well into the high wind (hurricane-like) regime. W showed a

near cubic dependence on wind speed for U10 < 24 m s−1. However, for wind speeds

above this value the authors see no systematic dependency on wind speed, with W

fluctuating around 4% for 24 m s−1 < U10 > 46 m s−1. Though predictions for W

from the dynamic model will continue to grow with U10 past this point (i.e., there

is no built-in behaviour which would lead to the values ‘plateauing’), the value of W

predicted (using a variable decay rate) at this wind speed is 4.6%.

6.1.5 Discussion

A semi-empirical approach based on a dynamic model of whitecap formation and decay

can be used to relate whitecap fraction to breaking wave statistics. The framework

incorporates recent experimental results on the whitecap evolution and provides a

more direct link between whitecap fraction and breaking waves. Though based on

several assumptions, the framework can be further extended to link whitecap fraction

to breaking-induced energy dissipation which is directly related to air entrainment and

detrainment [Long et al., 2011], and therefore bubble-mediated air-sea gas transfer and

(perhaps) SSA production via bursting bubbles.

In recent work, Leckler et al. [2013] used whitecap properties (areal coverage and foam

thickness) to validate breaking wave statistics predicted by two different wave dissipa-

tion parameterisations in the spectral wave model WAVEWATCH III. The model is

run and the Phillips distribution is obtained. The Phillips distribution was then used

to compute a modelled total whitecap fraction via equation 6.1, with TPhillips obtained
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following Reul and Chapron [2003]. Finally, modelled W was compared to both radio-

metric estimates of W—the same as used here—and predictions from Monahan and

Woolf [1988] in an attempt to provide a constraint on model dissipation source terms

(which control the breaking wave statistics in the model).

In this work, a similar comparison has been performed, though here the aim of com-

paring predictions from the three different approaches is to explore the ability of the

dynamical model (using an empirical parameterisation of the Phillips distribution) to

make predictions of WA and W by considering the scale-dependent areal evolution of

individual whitecaps. In previous work, the growth phase of whitecaps has been shown

to be dependent on the scale of the breaking wave (and therefore wave breaking speed).

Quantifying the decay phase is far more complex; though well described by an expo-

nential behaviour, the characteristic decay time varies considerably. Decay rates are

controlled by the dynamics of subsurface (bubble-plume) processes (which are largely

determined by the breaking event), and mechanisms (such as surface stabilisation of

bubbles by surfactants) that are not directly related dynamical processes or to the

scale or intensity of breaking. The relative contribution of these different mechanisms

to whitecap decay rates is not yet fully understood; until these contributing factors can

be separated out, the total whitecap fraction cannot be directly related to breaking

wave statistics. Due to the importance of foam decay times in determining total W ,

estimates of WA remain better indicators of the magnitude of dynamic processes as-

sociated with wave breaking. It follows that WA estimates predicted by such a model

are likely much more constrained than those for total W .

To enable a comparison with ‘traditional’ W (U10) parameterisations, and those for

W10 and W37, a wind speed parameterisation of Λ(c) has been used in the dynam-

ical model; the resulting predictions are of course highly dependent on the choice

one makes for the Phillips distribution. The model—using the Melville and Matusov

[2002] parameterisation of Λ(c)—predicts WA values that have magnitudes and a wind

speed dependence in line with predictions from two WA(U10) parameterisations based

on photographic data. The wind speed parameterisation for W10, derived earlier in

this work, has been shown for comparison given that it primarily quantifies thicker

foam associated with active breaking; W10(U10) predictions are higher than those of

the dynamical model and in situ parameterisations, and have a stronger wind speed

dependence. As discussed in chapter 4, this is likely due to a combination of factors
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including (i) the fundamentally different nature of the measurements (ii) the influence

of secondary forcings which are inherent in estimates of W used to formulate the pa-

rameterisation, and (iii) W10 characterising some residual foam in addition to dynamic,

stage A whitecaps. Predictions for total W from the model have been obtained using

either a constant or scale-dependent decay rate. Use of a constant decay rate leads

to estimates of W that are much higher than predictions from MM80, the W37 wind

speed parameterisation, and the dynamic model using a variable decay rate.

6.1.5.1 Limitations and development of the dynamical model

The dynamical model relates the areal coverage of whitecaps to breaking wave statis-

tics. The ultimate aim of this approach would be to develop a model that could predict

the magnitude of air-sea processes (gas transfer coefficients, energy dissipation rates,

etc.) from remotely sensed measurements of whitecaps. To achieve this goal, several

limitations need to be addressed:

� The areal coverage of foam layers can only be related to breaking wave statistics

(quantified using the Phillips distribution) via use of an appropriate time factor

which accounts for the persistence time of foam on the surface. As demonstrated

above, under certain conditions, the physical dependence of W on breaking wave

statistics is distorted by foam lifetime effects. The relationship between foam

decay times and breaking waves of different scales and intensities needs to be

better understood through laboratory and, if possible, open ocean experiments.

� More measurements of the Phillips distribution are needed to better constrain it,

and to eventually enable its parameterisation in terms of wind and wave variables.

Given that the Λ(c) distribution can be non-dimensionalised over a wind range

of wind and wave conditions, if supplemented with detailed information on the

wave field, breaking wave statistics could be parameterised in terms of readily

measurable wind and wave quantities, without use of W .

� The Phillips framework not only relates whitecaps to breaking wave statistics, but

further links these statistics to breaking wave energy dissipation. A relationship

between whitecap fraction and wave energy dissipation is more direct than one

in terms of wind speed. However, the Phillips concept relating the breaking crest
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length distribution to energy and momentum dissipation is based on numerous

assumptions and includes several poorly constrained parameters related to the

breaking process [Schwendeman et al., 2014].

� If such a dynamical model is to be used to predict the magnitude of air-sea inter-

action processes, it needs to be expanded and combined with relevant parameters

characterising the subsurface properties of breaking waves, such as bubble void

fractions and size distributions. If such information is not attainable on a global

scale, the radiometric remote sensing of whitecaps at different frequencies may

provide a means by which information on subsurface properties of breaking waves

can be ‘extracted’ from the radiometric signature of foam layers.

6.2 Use of W in air-sea interaction applications

W is used to quantify and parameterise physical air-sea interaction processes that are

dependent upon the production and decay of whitecaps. Perhaps the most important

of these processes from the standpoint of weather and climate are sea spray aerosol

production via bubble bursting and bubble-mediated exchange of trace gases. Both

of these mechanisms can be quantified following the ‘whitecap method’ in which the

whitecap fraction (parameterised as a function of controlling variables) is used as a

dimensionless scaling factor. This approach was initially formulated as a method to

obtain the sea spray source flux (SSSF); its application remains the most viable method

of determining interfacial SSA source fluxes on a global scale. (see section 2.7.2.2).

6.2.1 Prediction of sea spray aerosol source fluxes

An important application is the use of W to estimate the sea spray aerosol source flux

(SSSF) in aerosol and climate models through application of the whitecap method.

The source flux is obtained by scaling an estimate of the production flux per unit area

whitecap dFwc(r80), often derived from laboratory measurements, by W . Traditionally,

W is obtained at a given wind speed using a W (U10) formulation, so that the source

function as a function of radius and U10 is given by

dFint(U10, r80)

d log r80
= W (U10)× dFwc(r80)

d log r80
. (6.20)
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Relevant to this study is the effect on SSA source flux estimates of changing the scaling

term on the right hand side of equation 6.20, rather than exploring the effects of im-

plementing a new shape function, dFwc(r80). The majority of SSSFs formulated using

the whitecap method make use of the MM80 relationship (2.20). Use of MM80 results

in fluxes with a U3.41
10 dependence and potentially large uncertainties as uncertainty in

W transfers directly to the flux estimates.

6.2.1.1 Modification of sea spray source functions

Satellite-based estimates of W can be incorporated into SSSFs by simply replacing

the parameterised estimates of W (obtained using formulations such as MM80) by

satellite-based estimates to obtain a modified source function:

dFint(U10, r80)

d log r80
= Wsat ×

dFwc(r80)

d log r80
. (6.21)

Presently, values for Wsat could be one of four possibilities: direct estimates of W10

or W37, or alternatively estimates obtained using a parameterisation thereof. Wind

speed parameterisations of W10 and W37 were presented in chapter 4, and in chapter

5 it was showed that variability in satellite-based estimates of W (at least those that

make up the whitecap database as used in this work) is well described by U10 alone

(section 5.2.2). If direct satellite-based estimates are not readily available, parameter-

isations of W10 and W37 can be easily implemented.

Predictions of the SSA source flux obtained using direct satellite-based estimates can

be expected to be more realistic than those obtained using traditional W (U10) formu-

lations, as they are formulated from measurements of W on a global scale. Likewise,

use of parameterisations of W10 or W37 in equation 6.21 should also lead to improve-

ments to estimates of source fluxes as they are obtained using global source data for

a full year; the parameterisations should capture major co-variations between U10 and

secondary factors, and so are preferable to in situ based formulations derived from

spatially and temporally limited measurements.

Evaluation of the benefits of using satellite-based W estimates in SSSFs obtained

through implementation of the whitecap method is not straight forward. Some possi-

ble approaches are comparison with direct flux measurements, indirect estimates using
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other methods, or via ‘derived’ quantities such as the integrated mass flux. However,

the magnitude of the predicted fluxes scale linearly with W , and so with the shape

function fixed, changes to the source flux (and derived quantities) are equivalent to

changes to W . Therefore, changes to the magnitude and spatial distribution of es-

timated source fluxes can be visualised by comparing W estimates from MM80 and

satellite-based parameterisations.
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Figure 6.6: Seasonal maps of W 10/WMM80

To explore these effects, a comparison is made—on a seasonal timescale—between val-

ues predicted by MM80 and parameterised satellite-based W estimates obtained from

the W (U10) relationships (equations 4.3). Figure 6.6 shows the ratio of the two means

(W 10/WMM80). The comparison is analogous to that detailed in section 4.3.1, though

here the ratio (rather than differences) is considered, seasonal maps are presented

(rather than a year map), and parameterised W10 estimates are used rather than di-

rect daily estimates. Also note that W10 is used for the comparison, in preference to

W37. This decision is based on both the expected relationship between radiometric

and traditional photographic estimates, and speculation on the applicability of the

satellite-based estimates to parameterisation of air-sea processes. Finally, the param-

eterisations are driven by ECMWF operational mode global U10 fields at a 6-hourly

time resolution, covering 2011. Use of modelled U10 fields provides additional coverage
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than that provided by U10 entries in the W database, though the product is at the

same resolution (0.5o× 0.5o) as the database fields.

The resulting plots, as expected, lead to the same conclusions as those described in

section 4.3.1. On a seasonal timescale, satellite W is higher, by up to a factor or 3.5,

in regions where the mean wind speed is low (such as regions close to the equator),

whereas in regions where mean wind speeds are moderate to high (Southern Ocean,

North Pacific, and North Atlantic), W10 is as low as 30% of WMM80. The distribution

of the ratio changes with season, though the general pattern of enhanced satellite

W in the low latitudes and lower satellite-based W in higher latitudes, is constant

throughout the year.

6.2.1.2 Discussion

Though various SSSFs obtained using the whitecap method have been published in the

literature over the past several decades, all are based on W (U10) parameterisations,

such as MM80, which are known to have several limitations. Although the satellite-

based parameterisations are in terms of U10 alone, the wind exponents carry informa-

tion for the geographical variations of whitecap fraction because equations 4.3—unlike

MM80 and other in situ formulations—are based on W data covering meteorological

and environmental conditions over the entire globe over a full year.

The highly non-linear wind speed dependence of SSSFs formulated using MM80 or

similar parameterisations yields large source fluxes at high winds, and results in mod-

eled sea salt number and mass concentrations typically higher than those measured

[de Leeuw et al., 2011; Ovadnevaite et al., 2012]. Tsyro et al. [2011] found that model

estimates based on the SSSFs of Mårtensson et al. [2003] and Gong [2003] overestimate

atmospheric concentrations of Na by as much as 46% compared to observations. Simi-

larly, through a comparison of modeled and ship measured sea salt mass concentrations,

Witek et al. [2007] found that modeled concentrations were biased high—increasingly

so with U10. Jaeglé et al. [2011] found that the GEOS-Chem model consistently un-

derestimates SSA concentrations in the tropics (SST > 25◦C), and overestimates at

higher latitudes (SST < 10◦C).
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That the uncertainty of the SSA flux drives substantial geographical biases has also

been noted in model estimates of derived quantities. Using a lower limit for sea salt

concentrations, Haywood et al. [1999] could not reconcile modelled and measured val-

ues of solar irradiance. Use of higher sea salt concentrations brought balance over

much of the globe, but overestimation at high latitudes. Such overestimation at high

latitudes for aerosol optical depth (AOD), accompanied with underestimation at low

latitudes, persisted in models in which the SSSF uses the MM80 W (U10) parameter-

isation [Chin et al., 2002]. Smirnov et al. [2011] found that modeled AODs south of

40◦S are consistently higher than sunphotometer measurements; many of the models

compared use the MM80 W (U10) parameterisation as well.

Such biases in modelled sea salt concentrations and derived quantities cannot be solely

attributed to biases in SSA source flux estimates—transport and removal processes also

play a role, as does the quality of the wind speed data driving the parameterisation.

However, the geographical biases outlined in section 3.2 are consistent with our findings

regarding the differences between MM80 and satellite retrievals of W . In high-latitude

regions such as the North Atlantic and Southern Ocean, where mean wind speed is

highest, mean W10 is up to 60% lower than mean WMM80, while mean W37 is up to

40% lower. In low-latitude regions where wind speeds are consistently low, the 1-year

mean of W10 is up to 50% larger than WMM80 whereas mean W37 can be as much as

240% higher. As modeled SSA source fluxes scale linearly with W , use of satellite-

based W estimates (either directly measured or parameterised) instead of MM80 in a

SSSF would result, on average, in larger SSA fluxes in low wind speed regimes and

smaller fluxes in high winds, by the factors shown in Figure 4.13. Because W10 and

W37 capture the natural variability of whitecap formation and lifetime, our results

imply that discrepancies between modelled and measured quantities can be, at least

partially, reconciled with the use of satellite-based estimates of W .

With regards to the use of satellite-based estimates for obtaining SSA emissions using

the whitecap method, we are not yet able to say whether W10, W37, or indeed some

combination of both, is the most appropriate measure. One might presume W37 is a

preferable measure, as it quantifies both active and residual whitecap stages, both of

which involve bubble bursting and SSA production. However, a number of caveats

hamper reliable characterisation of SSA production. Different production fluxes per

unit area of whitecap in active and decaying phases are expected to be necessary,
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since the bubble size distributions and rate of bursting will be different in each; these

have not been characterised. Further, the relative contribution to the total production

flux should be weighted by their respective decay times using W/τ [Monahan et al.,

1982, 1986], but more measurements are necessary to quantify the decay times. In

laboratory studies, Woolf et al. [1987] observed aerosol production to continue after

the decay of a visible whitecap signature. This is likely the result of a small flux of

bubbles small enough to remain in the water column for an extended period and which

burst too rapidly at the surface for a foam layer to be maintained. Their concentration

and size distribution ought, however, to be related to their rate of production and

hence whitecap formation and W10. Furthermore, the production flux per unit area

whitecap is expected to change with the scale and intensity of individual breaking

waves [Monahan et al., 1986]; recently Norris et al. [2013b] showed a sizeable wind-

speed dependence of the production flux per unit area whitecap for small particles

but no distinguishable change for large particles over individual whitecaps. It is also

possible that the relevance of W10 and W37 could vary with emitted SSA particle

size: smaller particles (produced by film droplets) are associated with the bursting

of larger bubbles which rise to the surface rapidly and are thus more concentrated in

recent/active breakers; on the other hand, larger particles (produced by jet droplets)

are associated with smaller bubbles which can stay mixed in surface layer much longer,

and may reach the surface over a longer period. Thus W10 may be more relevant to

the production of smaller particles whilst W37 could be better related to production

of larger particles. Finally, the stabilisation of bubbles by biological surfactants is a

factor known to influence foam in its decaying stage [Callaghan et al., 2013], and so

can be expected to affect W37 estimates and their SSA production rate more than the

W10 estimates.

Consideration of all of the above factors suggests that use of the whitecap method

to predict SSA source fluxes needs to be re-evaluated. In the meantime, if satellite-

based W estimates are to be used to predict source fluxes, we suggest that use of

W10 is preferable to W37. This is based on (i) an assumption that the currently

used production rates are more likely representative of thicker, active whitecaps (as

quantified by W10), and (ii) the closer agreement between the wind speed dependence

of W10 and traditional parameterisations.
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6.2.2 Bubble mediated gas-exchange

In a similar sense as above, the whitecap method has been applied to estimate the

magnitude of bubble-mediated gas exchange. However, the method is not as well

developed as it is for calculations of SSA source fluxes. First, it is not clear exactly what

quantity should correlate best with whitecap fraction; in models and experimental data,

W has been related to both the total gas transfer velocity (K) and the bubble-mediated

component (Kb) alone. This reflects issues associated with separating contributions

to the total transfer velocity from different processes; as noted by Zhao et al. [2003],

‘In practical applications it is also difficult to distinguish the transfer mediated by

turbulence and bubbles because both of them are proportional to wind speed.’

Assuming a hybrid-model that separates direct transfer from bubble-mediated transfer

[Woolf, 1997], one can relate Kb to whitecap fraction:

Kb = aW, (6.22)

where a is a function of several variables. Such a model is implemented in the

Coupled Ocean Atmosphere Response Experiment (COARE) bulk gas flux algorithm

(COAREG3.1) [Fairall et al., 2011], with (total) W calculated using MM80 (equa-

tion 2.20). The proportionality factors are adjusted to allow ‘calibration’ of the model

to observed fluxes.

6.2.2.1 Development of W -based models and use of satellite-based esti-

mates of W

Issues related to the use whitecap fraction as a surrogate for the direct production and

mixing of bubbles are well documented. Several alternative schemes, based on different

forcing parameters, have been presented (see below). In the same way that U10 is an

indirect factor affecting wave breaking and bubble plume production, W—specifying

the areal coverage of foam—alone cannot be expected to quantify the enhancement of

gas exchange to bubble plumes.

However, there is scope for development of whitecap-based models of bubble-mediated

gas transfer. More physically-based models should be implemented; as a first step this
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could involve relating Kb to WA rather than total W . Although both W and WA have

been related to Kb, there is general agreement that WA may be more applicable [Mona-

han and Torgersen, 1991; Zhang, 2012], based on consideration of typical coverages and

bubble rise velocities of stage A and B whitecaps; approximately 98% of air entrained

is vented through a whitecap in its active phase. W should be more explicitly linked

to bubble processes, or combined with further information on the bubble plume. For

example, in their study on the role of bubbles on air-sea heat and moisture exchange,

Andreas and Monahan [2000] consider the spatially average flux of bubbles to the sur-

face, which is the product of W with the air volume flux inside a unit area whitecap

Va. Va can be estimated by integrating the product of the bubble rise velocity and the

volume distribution of bubbles, though these quantities themselves need to be better

linked to the energetics of the breaking process and environmental parameters.

Remotely sensed W provides a convenient approach to inferring gas transfer velocities

(or at least the contribution associated with whitecapping). A move from parame-

terised values for WA (or W ) to use of direct measurements of W10—or, if desired,

W37—in models for Kb should lead to improved agreement between models and ob-

servations. Though values for W predicted by the W (TB) algorithm will likely see

some change as the algorithm develops, it is expected that values and the resulting

spatial distribution of Kb obtained using satellite W should be more realistic because

satellite-based estimates of W incorporate the effects of various secondary forcings.

The supposed benefit should be verified through comparison of predicted gas trans-

fer velocities using satellite-based W with field measurements, though isolating the

’bubbled-mediated’ contribution to field measurements of gas transfer velocities re-

mains a limiting factor.

The effect of using satellite-based estimates of W in equation 6.22, as far as changes

to magnitudes and the spatial distribution go, will be analogous to the effect on SSA

source fluxes described in section 6.2.1.1. This is because both models are linear in W ,

and the same W (U10) relations that are used to specify W in many SSSFs are the same

used to specify W in models for Kb. If one takes MM80 as the W (U10) formulation,

one can consider Figure 6.6 as representative of the seasonal distributions of the ratio

of the predicted Kb values (i.e., satellite-based Kb estimate over predicted Kb using

MM80).
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At this stage, we speculate that W10 (rather than W37) should be considered as a better

representation of whitecaps suitable for the parameterisation of bubble-mediated gas

transfer processes, based on (i) the wind speed characteristics of W10 and W37 (ii) their

expected relation to stage A and B whitecap coverage as traditionally measured, (iii)

the physical link between active breaking and bubble plume production, and (iv) the

important roles that surface processes (such as stabilisation by surfactants) have on

thinning foam layers (and thus W37) which alter W but have no direct relation to air

entrainment and bubble plume processes.

6.2.2.2 Use of alternative forcing parameters

The limitations of using W to parameterise gas transfer velocities (such as the spread

in W estimates from traditional W (U10 formulations) have led some to consider pa-

rameterisations in terms of other, more physically-based variables. Generally, interest

remains focused on parameters that incorporate information on wind-wave coupling,

such as the wind friction velocity. Zhao et al. [2003]—who suggest that ‘the large

uncertainties in the traditional relationship of gas transfer velocity with wind speed be

ascribed to the neglect of the effect of wind waves’—proceed to parameterise the total

gas transfer velocity in terms of the breaking wave Reynolds number RB (equation 3.4)

based on arguments relating the parameter to the intensity of turbulence induced by

wind waves.

Woolf [2005] developed an existing W -based model for Kb by introducing Reynolds’

number parameterisations forW . This approach—though not tackling the assumptions

inherent to the Kb(W ) model—leads to a sea-state dependent Kb which could explain

the diversity of transfer velocities at a given wind speed.

Various other possibilities enabling the inclusion of wave state in models for gas transfer

are viable. One approach that may be favourable is use of wave energy dissipation

estimates (either modelled or parameterised). As discussed in Fairall et al. [2011], a

Kb(ε) model is physically viable because the rate of entrainment of air into water Fent

scales with ε [Long et al., 2011]. Another possibility involves relating Kb to breaking

wave statistics via the Phillips distribution which is linked to the spectral rate of energy

dissipation.
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6.2.2.3 Summary

The full benefit of a move towards use of radiometric estimates of W in prediction of gas

transfer velocities can only be realised if more refined models for air-sea gas-exchange

are developed. Further information is needed to better relate breaking waves and

bubble plume production to transfer coefficients. For example, wave information (wave

height and slope) is required to better quantify transfer enhanced by wave breaking

dissipation mechanisms. Likewise, bubble plume information (such as penetration

depth, and bubble size distribution) needs to be considered for better representation

of both exchange across bubble surfaces and exchange due to disruption of the surface

microlayer by bubble surfacing and bursting.





Chapter 7

Summary and recommendations

7.1 Summary

This study has presented an analysis of whitecap fraction estimated from satellite-based

radiometric observations at microwave frequencies of 10 GHz (W10) and 37 GHz (W37).

Results and conclusions have been framed in the context of more traditional approaches

to the measurement, interpretation, and parameterisation of W . By providing global

coverage, along with a several order of magnitude increase in the number of individual

estimates of W compared to historical in situ data, the satellite-based approach is

unquestionably a significant step in the quest to obtain more accurate estimates of

whitecap fraction which in turn will lead to improved representation of whitecaps in

models and remote sensing applications.

W10 and W37 estimates have been directly validated against ship-based photographic

estimates from two cruises. In situ W estimates were calculated by temporally aver-

aging photographic data obtained from ship-borne digital cameras. Large day-to-day

variation in the volume and quality of data was apparent; during several days it was

not possible to obtain the number of photographs needed to converge on a statis-

tically stable characteristic value of W over the time-averaging window. The wind

speed dependence of the in situ estimates is similar to the Callaghan et al. [2008a]

W (U10) relationship, which was obtained using the same automated processing al-

gorithm. Other published W (U10) parametrisations, such as that of Stramska and

Petelski [2003] and Monahan and O’Muircheartaigh [1980] predict higher W than the

157
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SEASAW formulation over much of the wind speed range, and have a stronger wind

speed dependence, resulting in larger deviations from SEASAW estimates in high winds

(i.e., U10 > 12 m s−1). To directly validate the retrieval, a spatial-temporal approach

was used to obtain matchups between temporally-averaged in situ data and spatially

averaged satellite data. Despite the small number of data points, (only fifteen ship-

satellite matchups were identified), it was possible to determine that satellite-based W

is biased high at low wind speeds (more so for W37) and low at high wind speeds when

compared to photographic W estimates. The bias between satellite and photo-based

estimates is generally larger for W37 than for W10, and generally increases as wind

speed increases. Differences in U10 estimates (i.e., ship-based estimates of ‘true’ U10

versus the QuikSCAT equivalent-neutral U10 estimates paired with satellite W data)

is likely the cause of some of the bias.

The global distribution and seasonal dependence of satellite-based W have been de-

scribed. Seasonal means of the two estimates have similar geographical distributions,

with W37 seasonal means a factor 1.5–2 higher than those for W10. At low latitudes

(equatorward of 30◦N and S), seasonal means rarely reach 1% for W10 and 1.5% for

W37. Seasonal changes in mid to high latitudes are stronger in the northern hemisphere

than in the southern hemisphere; this reflects the effects of the asymmetry in distribu-

tion of continental land masses between the hemispheres. Highest seasonal W occurs

during the boreal winter (December–February) in the North Atlantic and during the

austral winter months (June–August) in the Southern Ocean.

A comparison has been made between satellite-based W estimates and those obtained

from the widely used W (U10) relationship of Monahan and O’Muircheartaigh [1980]

(MM80). Differences are driven primarily by their differing wind speed dependence,

which is weaker for the satellite-based estimates. The weaker wind-speed dependence

results in satellite estimates higher than those obtained from MM80 in regions (such as

the tropics) where mean wind speeds are low (U10 ≤ 8 m s−1), but lower than MM80

in high latitudes where mean wind speeds are higher. Overestimation of MM80 due

to extrapolation beyond its range of validity is likely a key bias at high wind speeds.

These differences are robust if a comparison is made between MM80 W estimates and

estimates from wind speed parameterisations of W10 and W37. The satellite-based pa-

rameterisations have been derived from W estimates on a global scale and so their wind

speed dependence will in part reflect the influence of factors other than wind speed
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which co-vary with the wind geographically; for example SST, biological surfactant

concentration, and fetch-dependent wave state. As the dataset of satellite-based W es-

timates is not yet freely available for use, the satellite-based W (U10) parameterisations

can be used in lieu of observed W10 and W37 estimates.

Estimation of satellite-derived whitecap fraction is dependent upon the retrieval’s ra-

diometric wavelength. Different frequencies are able to discriminate—albeit somewhat

crudely—between foam layers depending on their thickness. Our results show un-

ambiguously that wind speed and secondary factors affect W10 and W37 differently.

Importantly, these differences can be plausibly explained with different influences of

the secondary factors on foam layers associated with different whitecap lifetime stages.

This lends support to the notion that W10 and W37 represent different mixes of active

and residual whitecaps. This is also an independent confirmation of the conclusions

regarding the frequency sensitivity to foam layer thicknesses which Anguelova and

Gaiser [2011] obtained on the basis of purely physical considerations. Again it should

be stressed that ‘microwave radiometry is suitable for remote sensing of the surface

foam layers which represent the horizontal extent of (i.e., the area covered by) the

whitecaps. That is, passive microwave remote sensing measures predominantly the

surface expression of breaking waves’ [Anguelova, 2008].

Using collocated and concurrent measurements of a variety of physically relevant quan-

tities in addition to wind speed, the influence of secondary factors on whitecap fraction

has been quantified. At a given wind speed, variability due to secondary factors is more

pronounced for W37 than for W10 with W37 changing by as much as 20% when wave

height, wave period, or the mean wave slope are considered, and by up to 25% when

SST or Ta are considered. This clear SST trend is largely due to the strong suppres-

sion of W37 in high SST (low viscosity) waters. The influence of the degree of wave

development has also been assessed by partitioning the W estimates according to the

relationship between the bulk wave parameters available as part of the database (sig-

nigicant wave height and peak wave period), and U10. The results have been discussed

in the context of the inconclusive findings of several previous studies using in situ data.

At a given wind speed, satellite-based W is lower in conditions of a developing sea com-

pared with a fully developed sea. The effect on W of the wave state in swell conditions

is more complex; these findings require further investigation with more detailed wave
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measurements including directional information, and ideally, measures quantifying the

wind sea and swell parts of the wave spectrum separately.

Based on the magnitude of the influence of secondary forcing factors on W10 and W37,

we conclude that much of the variability in foam layer might be due to the behavior

of the thinner, decaying foam patches, variability that is not captured by the retrieval

using the 10 GHz channel. Variability in W is smaller for active whitecaps (W10) and

larger for total whitecap fraction which includes both active and residual whitecaps

(W37). Within each secondary dependence, the effect of the secondary parameter is, in

most cases, stronger at higher winds than at lower, supporting the findings from the

in situ studies of Callaghan et al. [2008a] and Goddijn-Murphy et al. [2011].

Principal component analysis has been used to assess the success of wind speed and

secondary forcing parameters in accounting for variability in W . Though we show that

the influence of secondary factors on W can be appreciable (especially for W37), the

PCA results suggest that wind speed alone accounts for most of the variability in both

W10 and W37. Interestingly, two Reynolds number parameters—combining measures

of wind speed, wave height or period, and viscosity—perform almost as well as wind

speed alone. Different measures of the degree of wave development (wave age and

mean wave slope) can account for between 80 and 85% of variability in W . The first

principal component for air temperature, SST, and the viscosity of water account for

roughly the same level of variance in W ; 71% for W10, and 74% for W37.

Whitecap fraction is currently used to parameterise numerous bubble-dependent air-sea

processes, but it is expected that these parameterisations could be improved through

use of measures of W that discriminate between active breakers and residual foam. As

such, microwave measurements of whitecap fraction could prove beneficial to parame-

terization of such processes. It has been shown that use of W (U10) parameterisations

based on limited in situ data can lead to biases in the global distribution of W . This in

turn leads to biases in predictions of the magnitude and spatial distribution of several

bubble-dependent processes which are parameterised in terms of W . Such biases are

consistent with recent results showing both general overestimation of modeled SSA

concentrations in high latitudes and underestimation in the tropics. These biases can

be reduced with use of satellite-based estimates of W to estimate SSA source fluxes.

An improved representation of the spatial and temporal distribution of W will also
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benefit parameterisations of air-sea interaction processes and the accuracy of remote

sensing retrievals. Routine satellite observations of whitecap fraction can provide such

improved spatial and temporal distribution of W .

Recent results on the time evolution of individual whitecaps have been combined with

a dynamical model of whitecap fraction based on breaking wave statistics. The frame-

work enables one to more closely relate whitecap fraction to the dynamics and statis-

tics of breaking waves. It has been shown that such a semi-empircal approach may be

favourable to constraining active whitecap fraction WA which is thought to be more

closely related to the dynamic processes associated with wave breaking (such as pro-

duction of spume droplets) and bubble plume generation (such bubble-mediated gas

exchange). Measured total W depends explicitly on the foam decay mechanism; in

some situations—for example, when whitecap decay rates are controlled by surfactant

stabilisation—estimates of W will be strongly influenced by factors that are not di-

rectly related to the active dynamics of the breaking waves. Consideration of both a

constant decay rate and one that scales with properties of the breaking waves illus-

trates the large effect that different decay rate schemes have one estimates of total W

(stage A and B whitecaps).

Though our discussion on the utility of satellite-based W estimates in predicting the

magnitude of air-sea interaction processes focuses mainly on efforts to improve SSA

source flux predictions, we stress that satellite-based estimates of W will also benefit

modeling of other air-sea interaction processes associated with whitecaps. These in-

clude gas exchange, storm intensification, global radiation budget, and ocean albedo.

It would also improve the accuracy of remote sensing retrievals of geophysical variables

such as wind vector, sea surface salinity, and ocean color. Though whitecap fraction

is an indirect, bulk measure of wave breaking, it provides a convenient approach to

predicting the magnitude of bubble-related air-sea mechanisms. However, W needs

to be more explicitly linked to these different processes; improved measurement and

parameterisation of W needs to be complemented with a more refined understanding

of the links between wave breaking, bubble plume production, formation and decay or

surface foam layers, and related physical processes.
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7.2 Recommendations

7.2.1 Recommendation 1: Continued development of the W (TB) al-

gorithm

All satellite-based whitecap fraction estimates used in this study were obtained by

running the W (TB) algorithm (v1.96), as described in chapter 3. The method of

obtaining satellite-based W estimates is still in development. Continual development

of various aspects of the retrieval algorithm, such as the foam emissivity model and

atmospheric correction procedure, will lead to more accurate estimates of W .

It is anticipated that the features and trends illustrated here—such as the weaker lati-

tudinal variation of W—are likely to persist, even as changes to the retrieval algorithm

affect the magnitude of individual W estimates. The variability analyses carried out

in this study should be applied to future (improved) satellite-based estimates of W ,

and the results compared to the findings presented here. On a related note, should the

method of obtaining satellite-based estimates of W be pushed forward to operational

use, or at least be routinely available as part of long-term reanalysis type data sets,

the effect on predictions of SSA source fluxes, bubble-mediated gas exchange, ocean

albedo and global radiation budget, should be evaluated.

7.2.2 Recommendation 2: Further investigation into variability of

satellite-based W and improved parameterisations

In its current form, the W (TB) predicts W estimates that are well described by U10,

especially in the case of W10. As shown in this study, wind speed parameterisations

of W10 and W37 can be used in lieu of direct estimates with little loss in accuracy. It

may be the case that the benefit of including secondary forcing parameters in param-

eterisations of satellite-based W is outweighted by the ‘costs’ involved with sourcing

and matching-up data for these variables.

The findings presented here—specifically, the much larger influence of secondary forc-

ings on W37 than W10, and the trends seen for different forcing factors—should be

further evaluated, for example on a regional basis. A more thorough evaluation of

these influences can be achieved through expanding the current W database with
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datasets for directional wave spectra, currents (speed and direction), and improved

proxies for surfactant concentration. The utility of the database could be enhanced

if supplemented with data for underwater bubble plumes and their characteristics, or

sea spray production rates. All these additional data can be used to more specifically

determine causes for variability in W , and can validate (or disprove) the hypotheses

put forward in this work regarding the physical basis of such influences.

7.2.3 Recommendation 3: Further validation of satellite-based esti-

mates of W

A larger scale direct validation of the satellite approach to obtaining W should be

sought. Though data volume is limited due to the scarcity of ship-satellite matchups,

such comparisons should be made. The recent Waves, Aerosol, and Gas Exchange

Study (WAGES), includes three years of near-continuous measurements of W in dif-

ferent ocean regions, and therefore the possibility of obtaining significantly more ship-

satellite matchups. The finer details regarding the relationship of radiometric estimates

(at different frequencies) to photographic-based estimates need to be evaluated. Such a

comparison will also lead to a better understanding of the dependency of W estimates

on the measurement technique.

As an alternative or supplementary approach, satellite-based estimates can be com-

pared to both radio radiometric and video estimates of W from aircraft measurements.

Though there are practical issues associated with aerial measurements, they provide a

half-way point between ship-based and satellite measurement insofar as measurement

resolution, sampling area, and statistics are concerned.

Recent work to compare wave model predictions of W with radiometric estimates

should be continued as the results can be illuminating. However, use of satellite-based

(and traditional) estimates of W as a tool to constrain model dissipation source terms

may be more valid and valuable one the relationship between breaking waves and their

surface expression is better understood.



Chapter 7: Summary and recommendations 164

7.2.4 Recommendation 4: Re-evaluation of the use of whitecap frac-

tion to predict air-sea processes

The validity of using W to quantifying wave energy dissipation and bubble-mediated

processes should be further assessed in laboratory and field studies. Given the complex

relationship between the whitecap fraction and its various determining factors—as

illustrated in recent work—specific attention should be paid to evaluating the link

between W and wave breaking on the scale of individual waves and for a given wave

field under different environmental conditions. Laboratory and field studies should be

used in combination with models to achieve this goal.

It is worth keeping in mind that W provides only a measure of the areal coverage

of foam layers; wave breaking is a three-dimensional processes, but knowledge of the

relationship between whitecaps and the dynamics and physical processes beneath the

foam is limited. It may be the case that such ‘information’ needs to be used together

with W to better parameterise different air-sea interaction processes. Alternatively,

measurements at different radiometric frequencies can be exploited to provide a win-

dow on subsurface processes; changes to bubble plume dynamics and properties will

manifest as changes to properties of the foam layer above; when these differences induce

changes to the radiometric signature of foam, radiometric measurements can provide

a window on subsurface processes. It may be the case that the method is developed

to fully exploit this extra information carried by observations at different radiometric

frequencies.

In theory, the whitecap method provides an effective and useful approach to deter-

mining the magnitude of processes driven by air-entrainment by breaking waves. The

approach is routinely used to predict SSA source fluxes and can likewise be used to

predict the magnitude of bubble-mediated gas exchange. Despite continual develop-

ment by the marine aerosol community, the basic approach has remained the same

since its inception. Despite inherent limitations of the method not being addressed by

simply switching from use of traditional W (U10) parameterisations to direct satellite-

based estimates of W , this change will be a key development which should improve

predictions obtained via the whitecap method.
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In summary, our understanding of individual whitecaps, their contribution to the ob-

served whitecap fraction, and the link between W and wave breaking needs to be

better understood. Only then can more physically-based models of SSA production,

bubble-mediated gas exchange, and breaking-induced energy dissipation be developed.
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