The
University
Of
Sheffield.

Access to Electronic Thesis

Author: Qian Zhang

Thesis title: Nature-Inspired Multi-Objective Optimisation and Transparent Knowledge
Discovery via Hierarchical Fuzzy Modelling

Qualification: PhD

Date awarded: 19 January 2009

This electronic thesis is protected by the Copyright, Designs and Patents Act 1988.
No reproduction is permitted without consent of the author. It is also protected by
the Creative Commons Licence allowing Attributions-Non-commercial-No
derivatives.



Nature-Inspired Multi-Objective Optimisation and
Transparent Knowledge Discovery via Hierarchical Fuzzy

Modelling

Qian Zhang

Department of Automatic Control and Systems Engineering
The University of Sheffield

A thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy

October 2008



Abstract

Knowledge discovery is one of the most important human activities, which helps
people recognise and understand some of the intricacies associated with the
ancient and modern worlds. With the rapid development in the human capabilities
to both generate and collect data, the discovery of knowledge from data has
become a practical and popular research topic. In this thesis, knowledge discovery
from data is conducted from the following two overarching viewpoints: first,
developing prediction models using the data that represent input-output
relationships; second, based on these developed prediction models, finding the
optimal designs (solutions) from a set of predefined objectives. The theoretical
aspects behind the previous two research facets are described and the associated

experimental studies are carried out.

A particular focus of this thesis is on a cooperative fuzzy modelling framework,
which integrates transparent (interpretable) fuzzy systems with robust evolutionary
computing based algorithms involving several techniques, such as data clustering,
data mining, and multi-objective optimisation. Evolutionary optimisation
algorithms are also developed on the basis of nature and social inspired ideas.
Optimisation forms an essential part of the modelling framework and is employed
in the direct optimal design problems as well. The proposed cooperative fuzzy
modelling methodology and the devised evolutionary optimisation algorithms are
then applied to knowledge discovery in terms of systems modelling and control
(static optimisation via reverse-engineering), using simulation platforms as well as

real industrial data.

The experimental results show that the proposed modelling framework and
optimisation algorithms outperform some of the other salient techniques; the
proposed approaches can successfully work within the context of the high-
dimensional industrial applications, including modelling and optimal design

problems.
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Chapter 1

Introduction

1.1 Background and Research Aims

Knowledge discovery is one of the most important activities that, we humans,
undertake almost on a daily basis. It helps people recognise and understand some
of the intricacies of the ancient and modern worlds. In computer science,
knowledge discovery is one of the most desirable end-products of computing and

is also one of the most difficult computing challenges to undertake.

For this purpose, one can identify two complementary approaches, which are
knowledge acquisition from experts and knowledge discovery from data.
“Knowledge acquisition from experts often includes discovery as a by-product,
since the formalisation often uncovers new linkages. But that discovery also
depends on human recognition of unexpected phenomena. Such discoveries must

often be validated with broader tests, since a single expert typically has a narrow
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view of the world.” [Fayyad et al. 1996]. In some of new and more complex
systems, the knowledge cannot even be obtained from experts because of the lack

of understanding of the systems themselves.

Discovering knowledge from data can help to overcome the above limitations.
During the last two decades, one would have witnessed an explosive growth in
humans’ capabilities to both generate and collect data. By analysing and
summarising these data, one can extract ‘useful’ knowledge from such
information. Experts may have known one part of the knowledge, but the other

part is totally new to us humans.

To employ the idea of discovering knowledge from data, the format of knowledge
expression must be determined first. In some particular domains, appropriate
models exist and can be used in new knowledge expression. Experts can
understand the new knowledge based on these models. But in some other domains,
there are currently no models that can be used in a new knowledge expression. In
this situation, fuzzy systems appear to be suitable for complex and uncertain

environments.

Fuzzy systems are known to be universal approximators [Wang 1992] and good at
modelling complex, nonlinear, or partially unknown systems [Babuska 1998;
Passino & Yurkovich 1998; Wang 1997]. These systems are normally based on
linguistic knowledge expressions that are easy to be understood not only by an

expert but also by an even wider audience. The advantages of fuzzy systems in



Chapter 1: Introduction

both adaptability and transparency make them suitable for knowledge discovery in

this current research project.

A Mamdani-type fuzzy system [Mamdani & Assilian 1975] is the first type of
fuzzy systems, which is based on Zadeh's theories in human-machine interaction
[Zadeh 1973]. It uses linguistic expressions in both the antecedent and consequent
parts. Later, the TSK-type fuzzy system [Takagi & Sugeno 1985] was introduced
by replacing the linguistic consequent parts of the Mamdani-type fuzzy system
with mathematical functions. Because of their computational efficiency and their
high accuracy, TSK-type fuzzy systems seem attractive and as a result abundant
research has been carried-out based on their associated architectures in recent
years. However, one cannot ignore the fact that on a linguistic level these

numerically improved systems are somewhat meaningless to human operators.

In fact, the most attractive property of fuzzy systems lies in their ability of
processing information in linguistic terms. But it can be argued now that this
aspect is somewhat neglected and sacrificed to numerical accuracy. In this current
research project, more attention will be paid to building more transparent

(interpretable) fuzzy systems.

To implement a fuzzy system in a knowledge discovery context, it must cooperate
with other paradigms that include some learning abilities. Two of the most
successful attempts to hybridise fuzzy systems with learning and adaptation

methods include neural fuzzy systems [Jang et al. 1997; Nauck et al. 1997; Fuller
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1999] and genetic fuzzy systems [Pedrycz 1997; Cordon et al. 2001].

Neural fuzzy systems have been studied extensively in the last ten years while
genetic fuzzy systems are still not fully developed. In recent years, better
evolutionary computing based algorithms other than genetic algorithms (GAs)
[Holland 1975] have been researched. These should be helpful in improving the
learning abilities of fuzzy systems if used in cooperation with these algorithms.
However, most of the current research still focuses on the hybridisation of fuzzy
systems with only GAs. On the other hand, research about GA-based approaches
focuses on simple problems and discovering knowledge at a low level, most of
which are of two or three-input one-output systems. Only a few high-quality
genetic fuzzy systems have been proposed and used in real industrial applications.
Thus, in the research contained in this thesis, more emphasis will be directed
forwards the cooperation of fuzzy systems with some effective evolutionary

computing based optimisation algorithms.

It is worth nothing that data-driven modelling based on fuzzy systems possesses
two conflicting requirements: accuracy (precision) and transparency
(interpretability). Accuracy is easy to embrace as it relates to the capability of
representing a real system faithfully, this representing a fundamental requirement
for models. In contrast, interpretability means that human beings should be able to
understand a fuzzy system’s behaviour by inspecting its associated rule-base. The
latter is crucial in the field of data mining and knowledge discovery, where

information should be extracted from data bases and represented in a
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comprehensible form, or for decision support systems where the reasoning process
should be transparent to the users [Mikut ef al. 2005]. To deal with this type of
problems with conflicting objectives, multi-objective optimisation techniques [Deb
2001] becomes a natural choice. Another advantage of the multi-objective
optimisation technique is that it will lead to a set of Pareto-optimal models with
different accuracy and interpretability levels, instead of only one solution if using
other learning techniques. This should provide more options and add more
flexibility to users. Therefore, designing efficient optimisation algorithms,
including multi-objective optimisation algorithms, will form another task within

this research project.

Through the simulation of natural and social behaviours, researchers have
succeeded in developing many successful approaches to solve complex problems.
Artificial neural networks and evolutionary algorithms are two of the most salient
representatives. Artificial neural networks imitate the structure of biological neural
networks and mimic the process of human learning and memory to manage
information. On the other hand, most of the introductions of evolutionary
algorithms are also inspired by some natural or social behaviour. For example,
Genetic Algorithms (GA) imitate the natural evolution, while Particle Swarm
Optimisation (PSO) [Kennedy & Eberhart 1995] algorithms mimic the behaviour
of birds ‘flock’. In the same way, more effort will be devoted to develop

nature-inspired or social-inspired methods for optimisation problems.

Once appropriate optimisation and modelling strategies have been designed, it is
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necessary to validate them in real industrial problems. In this research project, the
proposed methodologies will be applied to the modelling and design problems

relating to the steel (metal) industry.

In materials engineering, it is important to establish appropriate and reliable
mechanical property prediction models for materials design and development. In
the past, several mechanical property models were developed, which were mainly
based on linear regression methods [Pickering 1978] or artificial neural networks
[Hodgson 1996; Chen et al. 1998; Bakshi & Chatterjee 1998]. Linear models are
only designed for specific classes of steels and specific processing routes, and are
not sophisticated enough to account for more complex interactions, while neural
networks can be seen as black-box techniques and the knowledge behind this kind
of models cannot be understood fully. Thus, developing a fast, efficient and
transparent data-driven modelling framework for material property prediction is
still needed. In this situation, fuzzy modelling provides an ideal approach because

of its interpretable structure and its excellent ability of learning from data.

If intelligent models in the form of fuzzy systems were constructed to predict the
mechanical test results for alloy steels, then these models can be implemented to
facilitate the optimal design of alloy steels. In the steel industry, determining the
optimal heat treatment regime and the required weight percentages for chemical
composites to obtain the desired mechanical properties of the steel is always a
challenging multi-objective optimisation problem. Usually, some objectives may

conflict with each other, such as the Ultimate Tensile Strength (UTS) and the
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ductility. By using the designed multi-objective optimisation algorithms and the

developed prediction models, the design targets can be achieved.

Above all, in this project, a cooperative fuzzy modelling framework is investigated,
which integrates such transparent fuzzy systems with the effective evolutionary
computing based algorithms and involves many techniques, such as data clustering,
data mining, as well as multi-objective optimisation. Evolutionary optimisation
algorithms are also developed following the nature-inspired or the social-inspired
ideas, which are an essential part of the modelling framework and are employed in
the optimal design problems as well. This cooperative fuzzy modelling
methodology and the proposed evolutionary optimisation algorithms are then
applied to knowledge discovery, in terms of system modelling and optimal design,

using simulation platforms as well as real industrial data.

1.2 Structure of the Thesis

The next paragraphs will describe the key points covered by the various chapters

in this thesis.

Chapter 2 will introduce some basic knowledge relating to this project. This will
include the basic concepts relating to fuzzy sets, fuzzy systems, optimisation and
multi-objective optimisation. The frameworks relating to single objective and

multi-objective optimisation algorithms will also be described.
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Chapter 3 will propose a new nature-inspired optimisation algorithm, Reduced
Space Searching Algorithm (RSSA). This algorithm will be validated using a set
of well-known benchmark problems and compared with some recently developed
and most salient optimisation algorithms, the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES), the Differential Evolution (DE) and the
Generalised Generation Gap model with the Parent-Centric Recombination
operator (G3-PCX). In addition, various parameter settings will be explored and
the appropriate parameter configurations will be outlined. Furthermore, this new
algorithm will be extended to the multi-objective optimisation case (MO-RSSA),
in which the Random Weighted Aggregation (RWA) technique will be employed
and a new approach named ‘cell selection’ method will be introduced in order to
keep a good diversity of the Pareto-optimal solutions. A comparative study
between MO-RSSA and other MOEASs, such as the Pareto Archived Evolution
Strategy (PAES), the Strength Pareto Evolutionary Algorithm (SPEA) and the
Non-dominated Sorting Genetic Algorithm IT (NSGA-II) will be carried-out based

on a set of challenging problems, such as the ZDT and DTLZ series problems.

In Chapter 4, a new social-inspired algorithm, the new Particle Swarm
Optimisation (nPSO), will be proposed, which will introduce a new ‘momentum
term’ to replace the original inertia term of the standard PSO. This algorithm will
be validated using a set of benchmark problems and will be compared with the
standard PSOs and some other salient optimisation algorithms. In addition, various

parameter settings will be explored in detail and the appropriate parameter
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configurations will also be outlined. Furthermore, nPSO will be extended to the
multi-objective optimisation case and the newly developed multi-objective PSO
(nMPSO) will be compared with several well-known evolutionary multi-objective
algorithms, such as PAES, SPEA and NSGA-II, via the ZDT and DTLZ series

problems.

Chapter 5 will propose a new framework for data-driven fuzzy modelling, named
the Fuzzy Modelling approach with a Hierarchical Clustering algorithm and a
Multi-objective Optimisation mechanism (FM-HCMO), in order to construct
linguistic fuzzy models considering both the accuracy and the interpretability of
fuzzy systems. In this methodology, a new agglomerative complete-link clustering
algorithm will be first developed and applied to construct an initial fuzzy model. A
new data selection technique will then be proposed to select the representative
training data used to improve the modelling efficiency. A multi-objective
optimisation mechanism will then be developed for the improvement of modelling
performance, which will take into account both the accuracy and interpretability
attributes. Finally, a method for computing the confidence bands relating to the
model prediction analysis will be described. All of these proposed techniques will
be validated via a series of experiments using real industrial data from the steel

industry.

In Chapter 6, the proposed modelling framework FM-HCMO will be validated as a
whole. The test problems will include the benchmark problems relating to the

identification of nonlinear, static and dynamic systems, as well as the modelling
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problems of the mechanical properties for alloy steels, namely the Ultimate

Tensile Strength (UTS), Reduction of Area (ROA), Elongation and Impact Energy.

In Chapter 7, RSSA and MO-RSSA will be applied to single objective and
multi-objective optimal design of alloy steels. This research aims at determining
the optimal heat treatment regime and the required weight percentages for
chemical composites to obtain the desired mechanical properties of steel, such as
UTS and ROA. In addition, the work will later be extended to include economic
factors, such as the costs associated with the composites and the machining

operation.

Finally, Chapter 8 will detail the conclusions resulting from the work within this

project, together with future research directions.
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Evolutionary Based Optimisation and

Fuzzy Theories - A Background

2.1 Optimisation
2.1.1 Single Objective Optimisation

In mathematics, the term optimisation refers to the study of problems in which one
seeks to minimise or maximise a real function by systematically choosing the

values of real or integer variables from within an allowed set.

Normally, an optimisation problem can be represented in the following way:

Given a function f: A—R, seek a solution X' 4 such that f(x") = £(X)
for all ¥ in 4 (minimisation) or such that f(¥")= f(X) for all X in A4

(maximisation).
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Typically, 4 is the subset of the Euclidean space R" and is often specified by a set
of constraints, equalities or inequalities that the members of 4 should satisfy. The
domain A4 of fis called the search space, while the elements X of 4 are called
candidate solutions or feasible solutions. The function f is called an objective
function, or cost function. The feasible solution that minimises (or maximises, if

that is the goal) the objective function is called an optimal solution.

Generally, the optimisation problems may include some local minima or maxima,
where a local minimum %' is defined as a point, for which there exists some > 0

so that for all ¥ where ||55 —55’|| < ¥, the expression f(¥') = (%) holds. That is to

say, in some region around x', all of the function values are greater than or equal

to the value at the X' point. Local maxima are defined similarly.

2.1.2 Multi-Objective Optimisation

Multi-objective optimisation [Sawaragi et al. 1985; Steuer 1986], also known as
multi-criteria optimisation, is the process of simultaneously optimising two or

more conflicting objectives subject to certain constraints.

In mathematical terms, the multi-objective problem can be written as follows:

Find a vector % that will optimise the following vector function:

JE) =L, 55, [5(5), 05 [ (D]
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subject to the m inequality constraints g,(x) =0, i=1,2,3,...,m, and the
p equality constraints / j()'c’) =0, j-1,2,3,...,p, where x is the vector

of decision variables.

If a multi-objective problem is well formed, there should not be a single solution
that simultaneously optimises each objective to its fullest. Meanwhile, multiple
solutions exist, for which each objective has been optimised to the extent that if
one tries to optimise it any further, then the other objective(s) will suffer as a result.
These solutions are regarded as the answer to the multi-objective optimisation
problem, which are called Pareto-optimal solutions or non-dominated solutions

[Sawaragi et al. 1985; Steuer 1986; Deb 2001].

Pareto-optimal solutions (non-dominated solutions) are those for which
improvement in one objective can only occur with the worsening of at least one
other objective. They are defined as follows (for a minimisation problem):
One solution x” « A4 is Pareto optimal, where 4 is the feasible solution
space, if for every X« A either f,(¥)=f,(x"), Wi« k, where k is the
number of objectives, or there is at least one 7=k such that

[i(®) = fi(X).

The above definition means that X~ is Pareto optimal if there is no feasible vector
X that would decrease some objective values without causing a simultaneous

increase in at least one other objective value [Coello Coello 1999].
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Multi-objective optimisation problems can be found in various fields such as
product and process design, finance, aircraft design, the oil and gas industry,
automobile design, or wherever optimal decisions need to be taken in the presence
of trade-offs between two or more conflicting objectives, for instance, maximising
the profit and minimising the cost of a product; maximising the performance and
minimising the fuel consumption of a vehicle; and minimising the weight while

maximising the strength of a particular component.

2.2 Evolutionary Computation

Evolutionary computation [Eiben & Smith 2003; De Jong 2006] is a subfield of
artificial intelligence that involves optimisation problems. It uses iterative progress
with a growth or development in a population. This population is then selected in a
guided random search using parallel processing to achieve the desired end. Such

processes are often inspired by biological mechanisms of evolution.

Evolutionary techniques mostly involve evolutionary algorithms (comprising
genetic algorithms [Mitchell 1996], evolutionary programming [Eiben & Smith
2003], evolution strategy [Beyer 2001], genetic programming [Langdon & Poli
2002] and learning classifier systems [Bull & Kovacs 2005]), swarm intelligence
(comprising ant colony optimisation [Dorigo & Stutzle 2004] and particle swarm
optimisation [Kennedy et al. 2001]), self-organising maps [Kohonen 2001],

differential evolution [Price ef al. 2005], and artificial immune systems [De Castro



Chapter 2: A Background

& Timmis 2002].

2.2.1 Evolutionary Algorithms

In artificial intelligence, evolutionary algorithms (EA) are the generic population-
based metaheuristic optimisation algorithms, which are a subset of evolutionary
computation. An EA uses some mechanisms (operators) inspired by biological
evolution: reproduction, mutation, recombination, and selection. Candidate
solutions to the optimisation problem play the role of individuals in a population,
and the cost function determines the environment within which the solutions ‘live’.
Evolution of the population then takes place after the repeated application of the

above operators.

Evolutionary algorithms consistently perform well in approximating solutions to
all types of problems because they do not make any assumptions about the
underlying fitness landscape. This generality is shown by successes in fields as
diverse as engineering, art, biology, economics, marketing, genetics, operations

research, robotics, social sciences, physics, politics, and chemistry.

2.2.1.1 Genetic Algorithms

Genetic Algorithms (GA) are the most widely known types of evolutionary
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algorithms. They are inspired by evolutionary biology such as inheritance,
mutation, natural selection, and recombination (or crossover). Over the last two
decades, GAs have been extensively used as search and optimisation tools in
various problem domains, including science, commerce and engineering. The main
reasons for their success lie in their broad applicability, ease of use and global

perspective [Goldberg 1989].

The concept of a genetic algorithm was first proposed by John Holland of the
University of Michigan in 1975 [Holland 1975]. Most of the initial research work
can be found in various early international conference proceedings and several
textbooks [Goldberg 1989; Holland 1975; Michalewicz 1992; Back et al. 1997].
Some journals are dedicated to promote research in evolutionary algorithms,
certainly including GAs, such as ‘Evolutionary Computation Journal’ published by
MIT Press, ‘Transactions on Evolutionary Computation’ published by IEEE and
‘Genetic Programming and Evolutionary Computation’ published by Kluwer
Academic Publishers. New developments about GAs and other evolutionary
algorithms can be found in these journals as well as in recent international

conference proceedings.

2.2.1.2 Evolution Strategies

The idea behind Evolution Strategies (ES) represents a joint development of

Bienert, Rechenberg and Schwefel in the 1960s at the Technical University of
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Berlin (TUB) in Germany. The first application of ESs was experimental and
attempted to solve the shape optimisation of a bended pipe, the drag minimisation
of a jointed plate and the shape optimisation of a flashing nozzle. Thereafter,
different versions of ESs were suggested, such as multi-membered ESs,
recombinative ESs and self-adaptive ESs. More details can be found in

[Michalewicz 1992; Schwefel & Rudolph 1995; Back et al. 1997].

Though the ESs’ working principle is similar to that of a real-parameter GA used
with selection and mutation operators only. The early ES is fundamentally
different from the early binary GAs in mainly two ways: (1) ESs use real values
for coding and (2) ESs do not use any crossover-like operator. In addition, the step
size of ESs’ mutation operator can adjust itself adaptively during the optimisation
process. That gives ESs the capability of self-adaptation which GAs do not have.

The latter is also the reason why there are still many researchers interested in ESs.

2.2.2 Swarm Intelligence

Swarm intelligence (SI) is an artificial intelligence based on the collective

behaviour of decentralised, self-organised systems. The expression was introduced

by Gerardo Beni and Jing Wang in 1989, in the context of cellular robotic systems

[Beni & Wang 1989].

SI systems are typically made up of a population of simple agents interacting
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locally with one another and with their environment. The agents follow very
simple rules, and although there is no centralised control structure dictating how
individual agents should behave, local interactions between such agents lead to the
emergence of complex global behaviour. Natural examples of SI include ant
colonies, bird flocking, animal herding, bacterial growth, and fish schooling. The
most successful algorithms employing swarm intelligence are Ant Colony
Optimisation (ACO) [Dorigo ef al. 1996] and Particle Swarm Optimisation (PSO)

[Kennedy et al. 2001].

2.2.2.1 Particle Swarm Optimisation (PSO)

Particle swarm optimisation is a population-based evolutionary computing
algorithm for problem solving. It is the type of swarm intelligence that is based on
social-psychological principles and provides insights into social behaviour, as well
as contributing to engineering applications. The particle swarm optimisation
algorithm was first described in 1995 by James Kennedy and Russell C. Eberhart
[Eberhart & Kennedy 1995; Kennedy & Eberhart 1995] and the techniques have

evolved greatly since then.

Since its introduction in 1995, the PSO method has become very popular due to its
simplicity of implementation and ability to quickly converge to a reasonably good
solution. A fair amount of research results have been reported in the literature and

the first book dedicated to PSO [Kennedy et al. 2001] has been published in 2001.
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2.2.3 Multi-Objective Optimisation Algorithms within Evolutionary

Computation

Most real-world search and optimisation problems naturally involve multiple
objectives. Knowledge discovery can also be seen as multi-objective. For example,
one objective is that the knowledge discovered should be accurate and the other
objective is that the knowledge should be transparent. These two objectives
conflict with each other to a certain extent. With the accuracy of the knowledge
increasing, the amount of the knowledge will also increase. This will make the
knowledge less transparent for people to understand. If we want to decrease the
amount of the knowledge for easier and better understanding, the accuracy should
decrease. Zadeh termed this ‘principle of incompatibility’ [Zadeh 1973]. To solve
multi-objective problems in knowledge discovery, multi-objective optimisation
techniques are needed. Here, several well-known evolutionary multi-objective
optimisation algorithms which have been developed in recent years will be

discussed.

2.2.3.1 Strength Pareto Evolutionary Algorithm

The Strength Pareto Evolutionary Algorithm (SPEA) was introduced by Zitzler
and Thiele [Zitzler & Thiele 1998] and was proposed as a way of integrating
different Multi-Objective Evolutionary Algorithms (MOEAs). This algorithm

introduces elitism by maintaining an archive to store non-dominated solutions
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previously found, which is called an ‘external non-dominated set’. At every
generation, newly found non-dominated solutions are compared with the existing
external population and the best non-dominated individuals are copied to the
external non-dominated set. For each individual in the external set, a strength
value is calculated, which is proportional to the number of solutions to which the
certain individual dominates. The fitness of each individual in the current
population is calculated according to the strength of all external non-dominated
solutions that dominates it. To maintain diversity, a clustering technique ‘average

linkage method’ is used.

A second version of the original algorithm, Strength Pareto Evolutionary
Algorithm 2 (SPEA?2), was proposed in 2001 [Zitzler ef al. 2001]. It has three main
differences with respect to its predecessor: (1) it improves the fitness assignment
scheme which, for each individual, takes into account how many individuals that it
dominates and it is dominated by; (2) it incorporates a nearest neighbour density
estimation technique which gives a more precise guidance for the search process,
and (3) it uses an enhanced archive truncation method to guarantee the

preservation of boundary solutions.

2.2.3.2 Pareto Archived Evolution Strategy

The Pareto Archived Evolution Strategy (PAES) was introduced by Knowles and

Corne in 2000 [Knowles & Corne 2000]. In its simplest form, PAES consists of a
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(14+1) evolution strategy, which means that a single parent generates a single
offspring in every generation. In PAES, a historical archive, which is the elitist
mechanism of the algorithm, is used to record some of the non-dominated
solutions previously found. This archive works as a reference set against which
each mutated individual is being compared. To maintain diversity, the algorithm
uses a mechanism that consists of a crowding procedure that divides objective
space in a recursive manner. Each solution is located in a certain grid based on its
objective value. The number of solutions that reside in each grid location is
recorded in an external memory. This information is used for the selection and the
archiving processes. This method has two advantages over other methods used in
some multi-objective GAs: Its computational cost is lower; it is adaptive and does
not need the critical setting of other extra parameters except for the number of

divisions of the objective space.

2.2.3.3 Nondominated Sorting Genetic Algorithm II

The Nondominated Sorting Genetic Algorithm II (NSGA-II) [Deb et al. 2002] was
proposed by Deb et al., which represents a revised version of the Nondominated
Sorting Genetic Algorithm (NSGA) [Srinivas & Deb 1994] and is more efficient
than its predecessor. It employs a crowded tournament selection operator to keep
diversity. In the elitist mechanism of NSGA-II, it does neither use an external
memory nor does it specify any extra niching parameters as most of the other

algorithms have to do. Instead, the elitist mechanism consists of combining the
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best parents with the best offspring obtained. Because of NSGA-II’s elitist
approach and less parameters needed, NSGA-II has become one of the best multi-

objective optimisation algorithms.

There are some other evolutionary multi-objective optimisation algorithms
proposed in recent years. More details can be found in the following books and
papers [Coello Coello 1999; Deb 2001; Zitzler et al. 2002; Coello Coello 2003;

Zitzler et al. 2003].

2.3 Fuzzy Sets and Fuzzy Systems

2.3.1 Fuzzy Sets

Fuzzy sets are sets whose elements have degrees of membership. Fuzzy sets have
been introduced by Lotfi A. Zadeh [Zadeh 1965] at the University of California,
Berkeley, as an extension of the classical notion of a ‘set’. In classical set theory,
the membership of elements in a set is assessed in binary terms according to a
bivalent condition - an element either belongs or does not belong to the set. By
contrast, fuzzy set theory permits the gradual assessment of the membership of
elements in a set; this is described with the aid of a membership function valued in
the real unit interval [0, 1]. Fuzzy sets generalise classical sets, since the indicator
functions of classical sets are special cases of the membership functions of fuzzy

sets, if the latter only take values 0 or 1[Dubois & Prade 1988].
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A fuzzy set is a pair (4, 14) where A4 is a set and ty: A — [0, 1] is a membership
function. For each x=A4 , u4(x) is the grade of membership of x.
xe (A, p) i xeAdnp,(x)=0.If 4= {z, ..., z,}, the fuzzy set (4, 14) can also

be denoted as { t4(z1) / z1, ..., 2t4(zn) / 2Zu}.
An element mapping to the value ‘0’ means that the member is not included in the
fuzzy set, value ‘1’ describes a fully included member. Values strictly between 0

and 1 characterise the fuzzy members.

Generally, the membership functions u4(x) use Gaussian functions, triangular-

shape functions or trapezoidal-shape functions, as shown in Figure 2-1.

Aﬁ(x)

Figure 2-1. An example of membership functions

2.3.2 Fuzzy Systems

Fuzzy systems are knowledge-based or rule-based systems. They have been
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applied to a wide variety of fields ranging from control, signal processing,
communications, integrated circuit manufacturing, and expert systems to business,

medicine, psychology, etc.

A fuzzy system basically consists of four components: fuzzy rule-base, fuzzy
inference engine, fuzzifier and defuzzifier. Figure 2-2 shows the diagram of a

fuzzy system.

Fuzzy Rule Base

Fuzzifier Defuzzifier

xin U/ yin V

Fuzzy Inference
Engine

fuzzy sets in U/ fuzzy sets in I/

Figure 2-2. The basic configuration of fuzzy systems

The heart of a fuzzy system is the knowledge-base (rule-base) consisting of the so-
called fuzzy IF-THEN rules and all other components are used to implement these
rules in a reasonable and efficient manner. A fuzzy IF-THEN rule is an IF-THEN
statement in which some words are characterised by continuous membership
functions. Specifically, the fuzzy rule-base comprises the following fuzzy IF-
THEN rules:

Rule;: IF x; 1s Ay and ... and X, 18 A,,l, THEN y is Bl,

where /=1, 2, ..., M and M is the number of rules in the fuzzy rule-base; A/ and B'
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are fuzzy sets in U, _ R and V' _ R, respectively, and x = (xl,xz,...,x”)r U
and y eV are the input and output (linguistic) variables of the fuzzy system,

respectively.

The fuzzifier is defined as a mapping from a real-valued point X ..U _ R" to a
fuzzy set A" in U. Normally, three types of fuzzifiers are used, which are singleton
fuzzifier, Gaussian fuzzifier and triangular fuzzifier [Wang 1997]. The defuzzifier
is defined as a mapping from a fuzzy set B in V/ _ R (which is the output of the
fuzzy inference engine) to a crisp point y* « ¥ . Conceptually, the task of the
defuzzifier is to specify a point in ¥ that best represents the fuzzy set B™. Three

mostly used defuzzifiers are centre of gravity defuzzifier, centre average

defuzzifier and maximum defuzzifier [Wang 1997].

In a fuzzy inference engine, fuzzy logic principles are used to combine the fuzzy
IF-THEN rules in the fuzzy rule-base into a mapping from a fuzzy set A'inUtoa
fuzzy set B". For more information and details about the fuzzy inference engine,

please refer to the book [Wang 1997].

2.4 Summary

In this chapter, some basic knowledge relating to this research project was
introduced. This includes the basic concepts relating to optimisation, multi-

objective optimisation, evolutionary computation, fuzzy sets, and fuzzy systems.

25



Chapter 2: A Background

Meanwhile, some important single objective and multi-objective optimisation
algorithms based on evolutionary computation principles were also introduced,
which include Genetic Algorithms, Evolution Strategies, Particle Swarm
Optimisation, Strength Pareto Evolutionary Algorithms, Pareto Archived
Evolution Strategy, and Nondominated Sorting Genetic Algorithm II. The next
chapter presents the development of a new optimisation algorithm in its single

objective format as well as its multi-objective extension.
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A New Reduced Space Searching
Algorithm with Applications to Single

Objective and Multi-Objective Problems

3.1 Introduction to the Reduced Space Searching (RSS) Strategy

Inspired by natural and social behaviours, researchers have developed many
successful optimisation algorithms. For example, the Genetic Algorithm (GA)
[Holland 1975; Goldberg 1989] originates from the simulation of natural evolution,
while the Particle Swarm Optimisation (PSO) [Kennedy and Eberhart 1995;
Eberhart and Kennedy 1995] algorithm is motivated by the simulation of the social
behaviour of birds flock. In the same way, a new search and optimisation
algorithm Reduced Space Searching Algorithm (RSSA) is reported in this chapter,
which is inspired by the simple human experience when looking for an ‘optimal’

solution.
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If one approaches the optimisation issue from a totally unbiased angle it would be
legitimate to postulate that ‘common’ sense should dictate that when searching for
a candidate solution under predefined objectives, a relatively large search space
area must be initially targeted. When clues are available that the objective may be
met in a particular area, the initial search area is then justifiably reduced. This
simple principle is being widely used in our every-day life and has proved to be
effective. In the light of the above, a strategy of constructing a new optimisation

algorithm, named Reduced Space Searching (RSS) throughout, is proposed here.

The ‘rationale’ behind this RSS strategy is as follows: given an optimisation
problem, one should divide the initial search space into parts and rank these parts
according to the probability of the candidates satisfying the objective(s). First, a
search is conducted in the partial space where the probability is the highest
followed by the one with the lowest probability. The diagram of Figure 3-1

illustrates the idea behind the RSS strategy.

Following this simple idea, a new optimisation algorithm, Reduced Space
Searching Algorithm (RSSA), has been constructed. This algorithm has also been
extended to include the multi-objective case. More details about the new algorithm
and its experimental performance are given in the remaining parts of this chapter.
Section 3.2 outlines the various steps included in the new proposed algorithm.
Section 3.3 presents the results of applying the new algorithm to optimise some
well-known single objective benchmark functions. A comparative study between

RSSA and other three evolutionary algorithms, i.e. the Covariance Matrix
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Adaptation Evolution Strategy (CMA-ES) [Hansen et al. 2003], the Differential
Evolution (DE) [Storn & Price 1995] and the Generalised Generation Gap model
with a Parent-Centric Recombination operator (G3+PCX) [Deb et al. 2002], is also
conducted. In Section 3.4, the algorithm is extended to solve the multi-objective
optimisation problems. In Section 3.5, the proposed multi-objective optimisation
algorithm is then compared to other salient multi-objective evolutionary
algorithms in solving the well-known ZDT [Zitzler et al. 2000] and DTLZ [Deb et

al. 2001] series test problems. Finally, summary remarks are given in Section 3.6.

Initial Search Space

Divide thes Tubiisl Bearch
Spare imis Arbiirary Parin

&

D Baarrals witicl D Basral witirls D Badral wiirls
Wo v’ Wo v’ Wa v’
Balviko Fonad S Fouinl Balviior Foned
Simp 3 Fpri C Part A Part B Ppret I
I Bumk 2o Rk Teeld Reank At Bawh

Figure 3-1. The RSS strategy for dealing with optimisation problems
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3.2 The Reduced Space Searching Algorithm (RSSA)

3.2.1 The Basic Idea

To develop an algorithm following the RSS strategy described in the previous
section, one must first define how to divide the search space into parts and how to
rank them. In this work, a simple (but not simpler) method to achieve this purpose
is proposed. The basic idea is that the search space should be divided into two
parts: one part is located around the best solution found so far and the other part is
the space left. The partial space around the best solution should be ranked highly.
To simplify the method, the marginal partial space can be neglected and only the
space that includes the best solution is kept for search purposes. If the process of
dividing the search space into smaller parts is repeated sufficiently enough, then a
final relatively small search space as well as an ‘optimal’ solution to the problem

will be obtained.

3.2.2 Improvement of the Basic Idea

It was found that reducing the search space all the time is not the most effective
way of locating the optimal solution. Sometimes, a too-small search space will
decrease the speed of solution convergence and at the same time will reduce the
probability of the solution jumping out of the local optima. Thus, a search space

‘increase’ mechanism is proposed to cooperate with the original ‘decrease’
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mechanism. In this new mechanism, if no better solution can be found in the
optimisation search process, then the search space is reckoned to be too large for
such a search and should be decreased to reinforce the local search. If better
solutions can always be found in a particular reduced space, then the algorithm
may certainly have got trapped in a local optimal area. Given this situation, the
search space should be increased to reinforce the global search. This proposed
method attempts to strike a balance between the global and the local searches to

make the optimisation search process more adaptive.

3.2.3 An Example of the Search Space Decreasing or Increasing

Figure 3-2 shows an example of the size of the search space decreasing or
increasing in a two-dimensional problem. In Figure 3-2(a), the rectangular Region
1 is the search space of an optimisation problem. Solution ‘A’ is the best solution
hitherto located. If there are several continuous randomly selected candidate
solutions worse than ‘A’ in the fitness to the optimisation problem, as is shown in
Figure 3-2(b), then the size of the search space should be decreased around the
best solution ‘A’. The partial space (Region 2) containing ‘A’, as the centre, is set
to the new space one should perform the search in. On the other hand, if there are
several continuous randomly selected candidate solutions better than ‘A’ in the
fitness, which is shown in Figure 3-2(c), then the size of the search space should
be increased around the best solution ‘B’. The increasing space (Region 3)

containing ‘B’, as the centre, is set to the new space one should perform the search
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in. If there are better solutions (but not continuous) that can be found in the search
space (shown in Figure 3-2(d)), then the size of the search space should not be
changed and the centre of the search space (Region 4) will be moved to the new

best solution ‘C’.

] -]
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(c) (d)

Figure 3-2. An example of how to divide the search space in the case a two-
dimensional problem

In the light of the above considerations, one will obtain a good solution after a

finite number of repetitions. However, it must be stressed that the above method
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may only find a local optimal solution rather than a global optimal one. To obtain
a global optimal solution, a variation operator is employed to cooperate with the

RSS operator. Figure 3-3 shows the flow chart of the whole RSSA algorithm.

RSSA start

( )

.* RSS Operator
Carry out initial search
in problem space

Better solution found
in G, iterations?

Better solutions found in
series in C; iterations?

Increase size of
search space

Is search space
reduced enough?

No

Implement variation
operators

Yes

Better solution found?

No

Termination
criterion achieved?

Ye

RSSA end

Figure 3-3. Flow chart of the RSSA algorithm
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3.2.4 The Variation Operators

Three variation strategies are designed as follows:

1. One-dimensional variation: Only one element of the decision variable

vector will be varied. The position of this element will be randomly chosen

and the element will be set at a random value within the search bounds.

2. Multi-dimensional variation: The number of elements of the decision

variable that will be varied and the positions of these elements will be

randomly generated. These elements will then be set to some random

values.

3. All-dimensional variation: All the elements of the decision variable

vector will be randomly varied.

3.2.5 The RSSA Algorithm

Consider a single objective optimisation problem with N decision variables as

follows: Minimise f (X), X = [Xmin;, Xmax;] X [Xmin,, Xmax,] X...X [Xminy,

Xmaxy].

The proposed RSSA algorithm can be summarised as follows:
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1.

Randomly select one candidate solution Xa (xj, x,, ... , xy) in the original
search space and save it as the best solution Xbest = Xa. Set n = 0, which is

used to control the bounds of the search space.

Randomly select the candidate solutions Xb(s) in the current search space.
If Ci-continuous Xb(s) satisfies /' (Xb) < f (Xbest) and n > 1, then Xbest =
Xb and n=n - 1. If Cy-continuous Xb(s) satisfies 1 (Xb) > f (Xbest), then n =

n + 1. If non-continuous Xb(s) satisfies /' (Xb) < f (Xbest), then Xbest = Xb.

Change the size of the search space using the ratio K (0 < K < 1, in this
thesis K = 0.5 without any loss of generality). Xbest is located at the centre
of the new space. Ymin; is the lower bound of the ith decision variable in
the new search space and Ymax; is the upper bound. To avoid the new
bounds stepping outside the original constraints, the following equations
are used to define the new bounds:

Y min, max(_Xminl.,)ﬂ)est(i) K”L(i)),

Y max, — min[Xmaxi,X%est(i) + K”L(i)). 3.1
where i = 1,2, ... N; 0 = n < m; L(i) = Xmax;, Xmin,. m is a threshold
value that depends on the precision needed and relates to the value of K. If

K=0.5,avalue of m = 15 to 30 should prove adequate.

4. Repeat Steps 2 and 3 until n = m.

5. Perform the variation operator on Xbest and obtain Xc. If ' (Xc) < f (Xbest),
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then Xbest = Xc, n = 0 and repeat Steps 2 to 4. If Cs-continuous Xc(s)

satisfies f (Xc) > f (Xbest), then n = 0 and repeat Steps 2 to 4.

6. Repeat Step 5 until the ‘optimal’ solution is found or the termination

criterion is reached.

It is worth nothing that the decreasing parameter C; and the increasing parameter
C, play important roles in the RSSA algorithm. They are used to balance the

global search as well as the local search in the optimisation process.

3.3 Experimental Studies using RSSA

3.3.1 Benchmark Test Functions

In the field of evolutionary computation, it is common to compare different
algorithms using a large test set. When an algorithm is evaluated, one must look
for the type of problems where its performance is good, in order to characterise the
type of problems for which the algorithm is suitable. In this work, the test set with
some well-characterised functions is used as it allows one to obtain and generalise
the results regarding the kind of functions involved. All these functions are used as
minimisation problems and the following shows their expressions and the
summary of their features about separability and multimodality. Figures 3-4(a) to

3-4(n) show the 3-dimensional maps of these functions in the 2-dimensional case.
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1.

Sphere function (Unimodal, Separable and D-dimensional):

fi(x) ixf,xit—[ 10,10], min(f,) £(0,...,0) O.

Schwefel’s function 2.22 (Unimodal, Non-separable and D-dimensional):

fz(x)—Z|xl.|+H|xi|,xii—[ 10,10], min(f,) £,(0,..,0) 0.

Schwefel’s function 1.2 (Unimodal, Non-separable and D-dimensional):

%2

£1(x) fizx, ,x, +[ 10,10], min(£,) £,(0,..,0) 0.

il A

Schwefel’s function 2.21 (Unimodal, Non-separable and D-dimensional):

,1=i% D}, x <[ 10,10], min(f,) f£,(0,..,0) 0.

f2(x)  max]x,

. Rosenbrock’s function (Multimodal, Non-separable and D-dimensional):

fs (x) DZI‘(:IOO(XM _xi2 jz +[xi _1}2 _)’ X = [_2, 2]5

min(f;) fi(L,..1) 0.

Schwefel’s function 2.26 (Multimodal, Separable and D-dimensional):
b

L0 =Xl sin(? Tl x <1 500, 5007,
il

min( f,) f,(420.9687....,420.9687) -12569.5.
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7. Rastrigin’s function (Multimodal, Separable and D-dimensional):

£ (x) i{xf—10005(2ﬂxi}+10_}, x <[ 5,51, min(f,) £,(0,..,0) 0.

il

8. Ackley’s function (Multimodal, Non-separable and D-dimensional):

12 0 1L \
S (%) —206Xp‘ -0.2 —fo —exp| —Zcos(2ﬂxi) ‘+20—e,
' D5 _;J DT y

x, =[-30,30], min(f,) £,(0,...0) 0.

9. Griewank’s function (Multimodal, Non-separable and D-dimensional):

£5() 40002 Hcos\ (+1 x, €[ 600, 600],

i=1

min(f,) f,(0,..,0) 0.

10. Bohachevsky’s function (Multimodal, Separable and D-dimensional):

D 1
fio(®) = 32 =2x2, ~03cos(3ax,) - 0.4cos(4mx, ) +0.7),

il

x; «[-15,15], min(f,,) f,,(0,..,0) 0.

11. Schaffer’s function (Multimodal, Non-separable and D-dimensional):

D 1 . .
Fi ()= 3 (2 422 {sin*(50(x2 + x2,)*' )-1.0), x, =[-100, 100],

i=1

min(f,,) f,,(0,..,0) 0.
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12. Six-hump Camel-Back function (Multimodal, Non-separable and 2-

dimensional):
1
fip (%) —4x12 —2.1x14 _EX‘G + X, X, —43622 +4x;, x; [ 5,5],

min(f,,) f,,(0.08983,-0.7126) f,,(-0.08983,0.7126) 0.

13. Branin function (Multimodal, Non-separable and 2-dimensional):

foos1 o, s Y 1
fi (@) =) 2, = xi = 2x, =6 | +10[1-— |eosx, +10,
A 4z T ; '\ 8T

x, «[ 5,10], x, «[0,15], min(f,;) f,5(=3.142,12.275)

£,(3.1422.275)  £,(9.4252.425) 0.398.

14. Goldstein-Price function (Multimodal, Non-separable and 2-

dimensional):
£ (x) —(1+(x1 —x, —=1)>(19 —14x, —3x; —14x, — 6x,x, +3x§))
« (30 = (2x, =3x,)? (18 = 32x, +12x” +48x, —36x,x, +27x2)),

x, +[ 2,2], min(f,) f,(0,-1) 3.
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Figure 3-4. The 3-dimensional map for f; to fi4 in the 2-dimensional situation: (a)
to (n)

A function of D variables is separable if it can be rewritten as a sum of D functions
of just one variable. Non-separable functions are more difficult to optimise as the
accurate search direction depends on two or more variables. On the other hand,

separable functions can be optimised for each variable in turn. A function is
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multimodal if it has two or more local optima. The problem is more difficult if the
function is multimodal. The search process must be able to avoid the regions
around local optima in order to approximate, as far as possible, the global

optimum.

3.3.2 Effect of the Decreasing Parameter ‘Cy’

In this experiment, the RSSA algorithm was tested using the benchmark problems
i, /3, f7 and f1o with the settings of a constant increasing parameter (C, = 1) and the
various decreasing parameter (C; = 1, 2, 5, 10, 20 and 50). For each benchmark
problem, the dimension D was increased in the sequence to 2, 5, 10, 20 and 50,
and for each setting, 20 runs were conducted. In each run, the maximal function
evaluation number was set to 10° and the optimisation process was regarded as
successful and stopped, when the best solution Fb satisfied the following condition:

Fb <107 if the true global minimum Gb = 0 or |(Fb - Gb) / Gb| < 10” if Gb / 0.

In this case, the parameter m = 15 and both the one-dimensional variation strategy
(with the 50% probability of usage) and the multi-dimensional variation strategy

(with the 50% probability of usage) were used.
Table 3-1 shows the performance of RSSA with various decreasing parameters in

optimising the test problems with different dimensions. From this table, one can

observe that, for one optimisation problem, with the increasing number of
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dimensions in the problem, the algorithm needs a larger decreasing parameter. As

a result it is recommended that C, = C, % (D/2 + 8), where D is the dimension of

the test problem.
Table 3-1. The average number of function evaluations to find the optimum; the
bold values represent the best results.
Function | Dimension | C;=1 Ci=2 Ci=5 Ci=10 | C;=20 | C1=50
D=2 4603 2838 83 161 262 732
D=5 29289 | 25110 | 2094 259 468 1080
f D=10 145287 | 97843 | 13553 466 684 1538
D=20 389010 | 293490 | 62555 905 1286 2246
D=50 N/A N/A | 260492 | 13677 | 2694 4602
D=2 17074 | 2486 189 164 316 731
D=5 388700 | 230640 | 40265 902 569 1096
f D=10 N/A N/A | 614729 | 98663 1985 2165
D=20 N/A N/A N/A N/A 10810 | 6601
D=50 N/A N/A N/A N/A N/A 44682
D=2 26730 | 12690 678 862 1337 2000
D=5 258280 | 91105 | 16135 | 4456 5368 10988
f D=10 821180 | 453360 | 99204 | 14335 | 19743 | 31215
D=20 N/A N/A | 397555 | 280120 | 37054 | 92932
D=50 N/A N/A | 908190 | 311700 | 226977 | 349717
D=2 30562 | 11527 320 418 571 1163
D=5 398277 | 238140 | 71750 1366 2513 4501
fio D=10 N/A | 849800 | 140130 | 10785 | 9058 13389
D=20 N/A N/A | 468950 | 43818 | 30624 | 34431
D=50 N/A N/A N/A | 280172 | 126854 | 152310
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3.3.3 Effects of the Variation Strategies

Three types of variation operators were tested and compared in this experiment.
For this purpose, the 30-dimensional multimodal benchmark problems f5 to fi;
were used as test beds. The decreasing parameter C, was set to be 23 and the
increasing parameter C, was set to be 1. Other settings were similar to those of the

experiments conducted in Section 3.3.2.

From Table 3-2, it can be seen that the one-dimensional variation strategy
performs best on the functions fs, fs, f7, fs, fio and fi;, while the all-dimensional
variation strategy performs best on the problems fo. For a broad adaptation to
various problems, it is recommended to use both the one-dimensional and multi-

dimensional variation strategies simultaneously.

3.3.4 A Comparison between RSSA and Other Evolutionary Algorithms

In this section, experiments were carried-out between RSSA and other three salient
evolutionary algorithms, which are the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [Hansen et al. 2003], the Differential Evolution (DE) [Storn &
Price 1995] and the Generalised Generation Gap model with the Parent-Centric

Recombination operator (G3+PCX) [Deb ef al. 2002].
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Table 3-2.  Average performance of RSSA with different variation strategies in
optimising fs to fi;: The integer in every cell is the average function
evaluation number in successful runs; the value between the
parentheses is the average result in the unsuccessful runs; the
percentage value in the square brackets indicates the percentage of
the successful runs out of all the runs; the bold values represent the
best results.

. One-dimensional | Multi-dimensional | Multi-dimensional
Function L. . L.
Variation Variation Variation
N/A N/A N/A
fs (0.0017) (0.8025) (0.0043)
[0%] [0%] [0%]
76645 108630 N/A
f6 (N/A) (N/A) (-7712)
[100%] [100%] [0%]
88647 318860 N/A
1 (N/A) (N/A) (1.7491e+2)
[100%] [100%] [0%]
N/A N/A N/A
fs (1.2877e-5) (1.7127¢-5) (1.3796e+1)
[0%] [0%] [0%]
2788 2935 2753
fo (0.0193) (0.0158) (0.0108)
[40%] [50%] [55%]
46969 312660 N/A
fio (N/A) (N/A) (1.7105e+1)
[100%] [100%] [0%]
N/A N/A N/A
Ji (1.7736e+2) (1.8662¢+2) (2.0294¢+2)
[0%] [0%] [0%]

The parameter settings for these algorithms are described as follows:

1. RSSA: Ci1=D/2+8,C,=1,K=0.5, m=30, where D is the dimension of

the test problem. The variation operator worked as a combination of the
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one-dimensional variation strategy (with the 50% probability of usage) and
the multi-dimensional variation strategy (with the 50% probability of

usage).

2. CMA-ES: There are 8 parameters to be predefined for this algorithm. All
settings followed the instructions given in [Hansen 2007]. For instance, the
population size 4 = 4 + floor(3xInD), the parent number u = floor(+/2), etc.,
where floor(x) is the function that allows to round-off x to the nearest

integer towards -:%:.

3. DE: The DE/Rand/1 scheme was employed. The parameter settings
followed the instructions in [Storn 1996]. The population size N = 10xD;

the crossover probability CR = 0.9 and the weighting factor F'= 0.8.

4. G3+PCX: Following the papers by [Deb et al. 2002; Deb 2005], the
population size N = 10 x D; the parent size was set to 3; the offspring size
was set to 2 and the replacement size was set to 2. For the PCX operator,

the distribution parameter «-= 0.1 and n,=0.1.

The optimisation process was regarded as successful and stopped when the best
solution Fb satisfied the following condition: Fb < 107 if the true global minimum
Gb =0 or |(Fb - Gb) / Gb| < 10” if Gb # 0. For every individual experiment, the
result was obtained after 20 runs. For each run, the maximal function evaluation

number was set to 10°.
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Table 3-3 shows the optimisation results of different algorithms on various

problems. From this table, one can observe the following:

1.

For the unimodal problems f; to fa, CMA-ES performs best in most of the
situations. RSSA performs best using the fewest function evaluation for f;.
For f3, RSSA can achieve the minimum with a small function evaluation

number, but it cannot obtain the optima of the problems f; and f4.

For the high-dimensional multimodal problems f5 to f;;, RSSA performs
better than other algorithms. For instance, for f7, fs and f19, RSSA is able to
locate the global optimum with the fewest function evaluations; for fs and
fo, RSSA performs better than the other algorithms. In most of the
situations, RSSA can achieve the optima, while other algorithms often

cannot find the ‘true’ optimal solutions.

For the low-dimensional multimodal problems fi, to fi4, RSSA is able to

obtain the global optimum and needs fewer function evaluations, compared

with other algorithms.
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Table 3-3.  Average performance of various algorithms in optimising f; to fi4:
The integer in every cell is the average function evaluation number in
successful runs; the value between parentheses is the average result in
the unsuccessful runs; the percentage value in the square brackets
indicates the percentage of the successful runs out of all the runs; the
bold values represent the best results.

Function RSSA CMA-ES DE G3+PCX
1806 3207 391770 7140
i (N/A) (N/A) (N/A) (N/A)
[100%] [100%] [100%] [100%]
N/A 11751 655110 N/A
£ (0.0038) (N/A) (N/A) (12.0469)
[0%] [100%] [100%] [0%]
24287 10830 N/A 25937
£ (N/A) (N/A) (1.8527) (N/A)
[100%] [100%] [0%] [100%]
N/A 8929 N/A 117414
fa (0.0147) (N/A) (0.2004) (N/A)
[0%] [100%] [0%] [100%]
N/A 46072 N/A 140430
fs (0.0074) (N/A) (0.0158) (N/A)
[0%] [100%] [0%] [100%]
73451 N/A 616080 N/A
1o (N/A) (-6665) (N/A) (-6878)
[100%] [0%] [100%] [0%]
94499 N/A 940560 N/A
f (N/A) (106.1617) (N/A) (142.8754)
[100%] [0%] [100%] [0%]
209440 8575 694560 N/A;
fg (N/A) (19.3625) (N/A) (3.1199)
[100%] [40%] [100%] [0%]
2717 5586 586740 10983
fg (0.0112) (0.0100) (N/A) (0.0110)
[50%] [75%] [100%] [65%]
52774 N/A 510180 N/A
fio (N/A) (2.2897) (N/A) (15.1530)
[100%] [0%] [100%] [0%]
N/A N/A N/A N/A
fil (197.8232) (248.84) (0.1217) (184.4355)
[0%] [0%] [0%] [0%]
329 221 853 N/A
f12 (N/A) (-19.8160) (N/A) (-0.4128)
[100%] [95%] [100%] [0%]
322 224 1182 N/A
fis (N/A) (N/A) (N/A) (0.8862)
[100%] [100%] [100%] [0%]
366 253 777 N/A
f14 (N/A) (141.0000) (N/A) (35.3369)
[100%] [95%] [100%] [0%]
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3.4 Extension of RSSA to Multi-Objective Optimisation Problems

The RSSA algorithm proposed in this work seems an ideal candidate for multi-
objective optimisation because of the good performance ascertained in the single
objective optimisation case. To extend the RSSA to optimise multi-objective
problems, the Random Weighted Aggregation (RWA) technique [Murata et al.
1996] is employed and an archive [Knowles & Corne 2000] is also included to

preserve the Pareto-optimal solutions.

3.4.1 The Random Weighted Aggregation Approach

Assume a multi-objective problem that consists of finding a vector
X =(X) Xy X5 50y X)) (3.2)
that will optimise the following vector function:

FX) LA, LX), (XD, f (X1 (3.3)

The Weighted Aggregation is one of the most common approaches for solving
multi-objective problems. In this type of approach, all the objectives are summed

to a weighted combination as follows:
k k
F - E‘i—l Wif;' (X) ’ E’i—l Wl' - 1 ’ (34)

where w;, i =1, 2, ..., k, are non-negative weights.
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In the Conventional Weighted Aggregation (CWA) method, the above weights are
fixed during the optimisation process. By using CWA, only a single Pareto-
optimal solution can be obtained in every optimisation run. If one wishes to obtain
different Pareto solutions, the algorithm has to be repeated several times with
different weights settings. In addition, this method cannot locate the Pareto

solutions when there are concave regions in the true Pareto front.

Random Weighted Aggregation (RWA) can overcome the limitations of CWA. In
the RWA method, the weights are modified after every certain number of

iterations during the optimisation. The weights are defined by the following

equation:
LD if rem(tH) 1
w,(?) ‘Z-,»lm”dj(’) (3.5)
w,(t 1), else.

where ¢ is the index of iteration and / is the frequency of the weight changing;
rand(f) is a function to create a uniformly distributed random value in the range

[0, 1]; rem(¢, H) is a function to obtain the remainder from dividing ¢ by H.

3.4.2 Archive Design

In the RWA method, the population cannot keep all the found Pareto solutions.

Thus, an archive is used to record the Pareto solutions found so far during the

optimisation search. The pseudo-code for maintaining the archive is listed in
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Figure 3-5. To update the archive with appropriate Pareto solutions, a non-
dominated selection and a diversity selection mechanism are employed. The non-
dominated selection aims to obtain the Pareto solutions from the candidates. This
is easy to implement. The diversity selection tends to obtain the solutions with a
good diversity from the candidates. In this section, a simple method named ‘cell

selection’ is proposed to achieve this purpose.

For every interation
Add new solutions to the archive
Non-dominated selection
Diversity selection

End For

Figure 3-5. Pseudo-code for maintaining the archive

The cell selection method works as follows:

1. Divide the objective space, which includes the candidate solutions, into

equal parts; every part is a ‘cell’. For example, in a two-objective problem,

if one divides the objective space into gxg grids, then g2 cells are formed.

2. For every candidate solution, identify the cell that contains this solution.

3. One cell is only permitted to involve one solution. If more than one

solution are located in the same cell, the redundant solutions will be

51



Chapter 3: A New Reduced Space Searching Algorithm

randomly chosen and deleted.

This method can also restrict the number of solutions in the archive. For example,
in a two-objective problem, if the cells in this method are formed through the
division of a gxg grid, then it can be seen that after the non-dominated selection

and the cell selection, 2g solutions, at most, will remain.

Figure 3-6 illustrates an example of how the selection methods work in the archive
maintaining process. The ‘blue’ points in the figures represent the solutions
contained in the archive. Figure 3-6(a) shows the situation after some newly
generated solutions are added to the archive. In Figure 3-6(b), non-dominated
(Pareto) solutions, which are represented as the red-circled points, are selected. As
a result, these non-dominated solutions are selected again, using the cell selection
approach, which is shown as Figure 3-6(c). Finally, the Pareto-optimal solutions

with good diversity are obtained (see Figure 3-6(d)).

3.4.3 The Multi-Objective Reduced Space Searching Algorithm (MO-RSSA)

After applying the RWA method and maintaining an archive for preserving the
Pareto-optimal solutions, the RSSA is now extended to the multi-objective
optimisation case, which leads to the algorithm named throughout as Multi-

Objective Reduced Space Searching Algorithm (MO-RSSA).
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Flgure 3-6.  An example of non-dominated selection and diversity selection: (a)
The solutions before the selections; (b) Non-dominated selection;
(c) Cell selection; (d) The solutions after the selections

3.5 Experimental Studies using MO-RSSA

3.5.1 Comparison between MO-RSSA and Other Multi-Objective EAs

A comparison between MO-RSSA and some salient multi-objective evolutionary

algorithms, such as the Pareto Archived Evolution Strategy (PAES) [Knowles &

Corne 2000], the Strength Pareto Evolutionary Algorithm (SPEA) [Zitzler &
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Thiele 1998] and the Non-dominated Sorting Genetic Algorithm II (NSGA-II)
[Deb et al 2002], was carried-out using the well-known multi-objective

optimisation problems — the ZDT series benchmark problems [Zitzler et al. 2000].

3.5.1.1 Problems Description

The ZDT series benchmark functions are considered to be difficult to optimise,
especially ZDT2, ZDT3 and ZDT4. All of these functions represent two-objective
problems of minimising both f; and f;. They are described as follows [Zitzler ef al.

2000]:

1. ZDT1 (30-variable problem with a convex Pareto front):

fi—x,g 1+%ixi,f2 g[l— fl/g),Oiéxl.iél,n 30.
i 2

2. ZDT?2 (30-variable problem with a concave Pareto front):

9 i i
fi-x.g=1+—x. f, gl-(f/g)7), 05x, 21, n 30
i=2

3. ZDT3 (30-variable problem with a number of disconnected Pareto fronts):
9 .
fioweg 1+ f-gll= 7 Tg - (4 @)sinq0ar)),
i=2

0<x, <1, n 30.
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4. ZDT4 (10-variable problem with a Pareto front out of 100 local Pareto

fronts):
fi=x,¢ :1+10(n—1)+i:[xl.2 —1000s(4mcl.)}, s —g(l—wlfl/g),
i 2

0<x «1,-5=x,%5,i=2,3,...,n,n 10.

3.5.1.2 Performance Metrics

The Generational Distance (GD) performance metrics measures the closeness of
the obtained Pareto solution set Q from a known set of the Pareto-optimal set P. It

is defined as follows [Deb 2001]:

O] gm~\1/m
GD % (3.6)

For a two-objective problem (m = 2), d; is the Euclidean distance between the

solution i O and the nearest member of P. A set of (|P| = 500) uniformly

distributed Pareto-optimal solutions are used to calculate the closeness metric GD.

The Spread A measures the diversity of the solutions along the Pareto front in the

final population and is defined as follows:

gt 200 d, ~d|
n1dnt0ld

;m 1

(3.7)

where d; is distance between the neighbouring solutions in the Pareto solution set

Q. 4 is the mean value of all d;. d; is the distance between the extreme solutions
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of P and Q along the mth objective. It is worth nothing that for an ideal distribution

of the solutions (uniform distribution) A4 = 0.

3.5.1.3 Experimental Setup

For a meaningful comparison, the experiments configuration referred to the

experiments in [Deb 2001]. The maximal function evaluation for every experiment

was set to 25000. The result of every experiment was obtained after 10

independent runs. The parameter settings for different algorithms are listed as

follows:

1.

MO-RSSA: decreasing parameter C; = 3, increasing parameter C; = 1,
changing ratio K = 0.5, m = 15, frequency parameter / = 10000 and a
variation strategy of the combination of the one-dimensional variation
(with the 75% probability of usage) and the multi-dimensional variation

(with the 25% probability of usage).

Pareto Archived Evolution Strategy (PAES): Population size 100,

maximum generation 250, crossover probability 0.9 and mutation

probability 0.01.

Strength Pareto Evolutionary Algorithm (SPEA): Population size 80,

external population size 20, maximum generation 250, crossover
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probability 0.9 and mutation probability 1/80.

4. Non-dominated Sorting Genetic Algorithm II (NSGA-II) (binary-
coded): Population size 100, maximum generation 250, crossover
probability 0.9 and mutation probability 1/(string-length). 30 bits were used

to code each variable.

3.5.1.4 Experimental Results

The average GD and A values of 10 runs and the corresponding variances #” are
summarised in Tables 3-4 and 3-5 respectively. In these tables, the compared
results for PAES, SPEA and NSGA-II are obtained from [Deb 2001]. It can be
seen that MO-RSSA performs best in all the situations. It outperforms the other
three well-known multi-objective optimisation algorithms in terms of both

accuracy and diversity.

Figure 3-7 shows the graphical results produced by MO-RSSA. The true optimal
Pareto fronts of the problems are represented with a continuous ‘red’ curve and the
‘blue’ points are the solutions obtained using MO-RSSA. It can be observed that
the algorithm possesses very good convergence properties while maintaining a

good diversity among the Pareto solutions.
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Table 3-4. Mean and variance values of GD; the bold values represent the best
results.
Mean value of GD / (variance )
Problems
MO-RSSA PAES SPEA NSGA-II
4.07e-4 8.21e-2 1.25¢-3 8.94¢-4
ZDTI
0 (8.68e-3) (0) (0)
7.37e-4 1.26e-1 3.04e-3 8.24¢-4
ZDT2
0 (3.69¢-2) (2.00e-5) (0)
4.07e-4 2.39e-2 4.42¢-2 4.34¢-2
ZDT3
0 (1.00e-5) (1.90e-5) (4.20e-5)
1.82e-4 8.55e-1 9.51et+0 3.23e+0
ZDT4
0 (5.27e-1) (1.13e+1) (7.31e+0)
Table 3-5. Mean and variance values of A; the bold values represent the best
results.
Mean value of A/ (variance a°)
Problems
MO-RSSA PAES SPEA NSGA-II
4.68e-1 1.23e+0 7.30e-1 4.63e-1
ZDTI
(1.66e-3) (4.84e-3) (9.07e-3) (4.16e-2)
3.94e-1 1.17e+0 6.78e-1 4.35e-1
ZDT2
(8.10e-4) (7.68e-3) (4.48¢-3) (2.46¢-2)
4.97e-1 7.90e-1 6.66¢-1 5.76e-1
ZDT3
(5.30e-3) (1.65e-3) (6.66e-4) (5.08¢e-3)
4.78e-1 8.70e-1 7.32e-1 4.79e-1
ZDT4
(2.62¢-3) (1.01e-1) (1.13e-2) (9.84e-3)
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Figure 3-7. Pareto fronts obtained by MO-RSSA

3.5.2 Experiments Based on the DTLZ Series Problems

In this experiment, MO-RSSA was used to optimise the DTLZ series problems
[Deb et al. 2001]. All the DTLZ problems were set so as to include three
objectives. For a meaningful comparison with the optimisation results using
NSGA-II and SPEA2 in [Deb et al. 2001], MO-RSSA used the same number of
function evaluations as the experiments in the previous paper. The configuration of
the MO-RSSA algorithm was the same as the one used for optimising ZDT

problems, except the weight changing frequency parameter H, which is now taken
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to be 1000.

1.

DTLZ1: The difficulty of this problem lies in the convergence to the
hyper-plane. The search space contains (11°-1) local Pareto-optimal fronts.
Figure 3-8 shows the optimisation results using MO-RSSA in different
angles of view. One can see that, MO-RSSA can obtain the Pareto-optimal

solutions that possess a very good diversity.

MO-RSSA on DTLZ1 MO-RSSA onDTLZ1

Figure 3-8. The optimisation result of MO-RSSA on DTLZ1

DTLZ2: The difficulty of this problem relates to its concave Pareto-
optimal area. Figure 3-9 shows the optimisation results using the MO-
RSSA algorithm. It can be seen that MO-RSSA can converge to the Pareto-

optimal front with a good diversity.
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MO-RSSA on DTLZ2 MO-RSSA on DTLZ2

Figure 3-9. The optimisation result of MO-RSSA on DTLZ2

3. DTLZ3: The difficulty of this problem lies in the presence of several local
Pareto-optimal fronts. This problem has 3'°-1 local Pareto-optimal fronts
and one global Pareto-optimal front. All local Pareto-optimal fronts are
parallel to the global Pareto-optimal front and a Multi-objective
Evolutionary Algorithm (MOEA) can become trapped at any of these local
Pareto-optimal fronts during the optimisation process. The optimisation
result using MO-RSSA is shown in Figure 3-10. It can be seen that MO-
RSSA can achieve the true Pareto-optimal front, while the results in [Deb
et al. 2001] show that NSGA-II and SPEA2 cannot converge to the true

Pareto front.

MO-RSSA onDTLZ3

MO-RSSA on DTLZ3

Figure 3-10. The optimisation result of MO-RSSA on DTLZ3
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4. DTLZS: This problem will test MOEA’s ability to converge to a curve.
The optimisation result using MO-RSSA is shown in Figure 3-11. One can
see that MO-RSSA is able to converge to the Pareto-optimal front with a
good diversity. For this test problem, MO-RSSA can find the Pareto-

optimal solutions in the early stages of the optimisation process.

MO-RSSA on DTL25 MO-RSSA on DTL25

Figure 3-11. The optimisation result of MO-RSSA on DTLZS

5. DTLZ6: This problem is a modified version of DTLZ5, which becomes
more difficult to solve than DTLZS5. As the results in [Deb et al. 2001],
MO-RSSA also cannot converge to the true Pareto-optimal front, which is

shown in Figure 3-12.

Figure 3-12. The optimisation result of MO-RSSA on DTLZ6
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6. DTLZ7: This problem has a disconnected set of Pareto-optimal regions
and it will test the algorithm’s ability to maintain a subpopulation in
different Pareto-optimal regions. Figure 3-13 shows the optimisation result
using MO-RSSA to optimise DTLZ7. From this figure, it can be observed
that the new algorithm is able to find and maintain stable and distributed

subpopulations in all four disconnected Pareto-optimal regions.

MO-RSSA on DTLZ7 MO-RSSA on DTLZ7
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Figure 3-13. The optimisation result of MO-RSSA on DTLZ7

3.6 Summary

In this chapter, a new optimisation algorithm, Reduced Space Searching Algorithm
(RSSA), was introduced, which is inspired from the simulation of the simple
human societal behaviour when searching for optimal solutions in our daily
routines. This new algorithm has been validated using a set of well-known
benchmark problems. Compared with the recently developed and most salient

optimisation algorithms, CMA-ES, DE and G3-PCX, RSSA performs as well as
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and sometimes better than these algorithms. In addition, various parameter settings
have also been explored and the appropriate parameter configurations were

recommended.

Furthermore, RSSA was extended to the multi-objective optimisation case, in
which the Random Weighted Aggregation (RWA) was employed. In addition, a
new approach named ‘cell selection’” method was introduced in order to keep a
good diversity of the Pareto-optimal solutions. After a comparison between the
proposed Multi-Objective Reduced Space Searching Algorithm (MO-RSSA) and
several well-known evolutionary multi-objective algorithms, such as PAES, SPEA
and NSGA-II, which is based on a set of challenging problems ZDT and DTLZ
series problems, it can be concluded that MO-RSSA shows noticeable
improvements over these algorithms in terms of both accuracy and diversity of the

Pareto solutions.

The next chapter will introduce a new optimisation algorithm based on Particle

Swarm Optimisation [Kennedy & Eberhart 1995].

64



Chapter 4

A New Structure for Particle Swarm
Optimisation with Applications to Single

Objective and Multi-Objective Problems

4.1 Introduction to Particle Swarm Optimisation (PSO)

Particle swarm optimisation (PSO) is a powerful evolutionary computation
technique that was originally introduced by Kennedy and Eberhart [Kennedy &
Eberhart 1995; Eberhart & Kennedy 1995]. It was developed by the simulation of
a simplified animal social behaviour of birds flocking and fish schooling. This
technique is initialised with a population of random solutions, called particles.
Each particle flies through the search space with a velocity which is dynamically
adjusted according to its own and its companions’ historical behaviours. It is
expected that the particles have a tendency to fly towards better search areas

during the search process.
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Since its introduction in 1995, the PSO technique is becoming very popular due to
its simplicity of implementation and ability to quickly converge to a reasonably
good solution. Though PSO has many advantages, it still suffers from premature
convergence, by becoming trapped in local extrema. To solve this problem, a new
structure, based on the original PSO algorithm, is proposed in this chapter, where a
new component, named ‘momentum term’, is introduced to replace the ‘inertial

term’ of the original PSO.

This chapter is organised as follows. The remaining part of Section 4.1 will
provide a background knowledge about PSO. Section 4.2 will introduce the
proposed new structure for PSO in details. In Section 4.3, sets of experiments will
be carried-out to examine the optimisation performance of the new PSO. In
Section 4.4, this new algorithm will be extended to include a multi-objective case
and the results of applying the new multi-objective optimisation algorithm to some
well-known benchmark problems, namely the ZDT series and the DTLZ series
problems, will also be presented. Finally, summary remarks will be given in

Section 4.5.

4.1.1 Basic Concepts of PSO

In PSO, each particle represents an alternative solution in the multi-dimensional

search space. Initially, a population of particles is generated with random positions

and random velocities. Then, each particle flies through the search space with the
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velocity constantly updated according to its own flying experience and its
companions’ flying experience. Figure 4-1 shows an example of the particles’
movement in a 2-dimensional search space. In this case, the ‘blue’ dots represent
the particles’ positions in a certain iteration; a ‘yellow’ dot represents the historical
best position found hitherto for one particular particle; the ‘red’ dot is the best
position found so far among all particles. In addition to these, the related positions
are linked with the dashed lines; and the lines with the arrow marks indicate the
possible movements of these particles. It is shown that, in one iteration, one
particle has the tendency to fly towards its own best position that has been
experienced (‘yellow’ dot) and also the particle tends to fly towards the best
position experienced by all its companions (‘red’ dot). After one movement, all the
personal previous best positions and the global best position for all the particles are

evaluated and updated again.

@ Particle

{3 The best previous position of one particle

Figure 4-1.

@ The best particle

(2)

An example of the particles’ movements in two continuous

iterations in PSO
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Specifically, the position vector and velocity vector of the ith particle in a D-

dimensional search space can be represented as x; = [x;1, X, X33, ..., Xip]" and v; =
[Vil, Va2, Vi3, ..., vip]" respectively. According to a predefined fitness function, the
best previous position of the ith particle is p; = [pi, pa, pis ... pin]' (its

corresponding fitness value is named the ‘personal best’ ps.y) and the fittest
position among all the particles found so far is p, = [pg1, Pe2, Pe3s ---» pgD]T (its
corresponding fitness value is called the ‘global best’ gj.). The velocities and
positions of the particles are updated according to the following equations [Shi &

Eberhart 1998a]:

Vg (1) =wxv, () 16 =7y (01 D) % py () =2, (D)1 €, <Ry (¢ 1 D)% p (1) =x, () (4.1)
X (0 +1) = x;, (O) +v,, (1 +1) (4.2)
where d =1, 2, ..., D; t is the index of the iteration; w is the inertia weight; ¢; and

¢, are positive constants known as acceleration coefficients; and r;,(¢) and R;,(¢) are

two uniformly distributed random variables in the range [0, 1].

The first component of Equation (4.1) represents the previous velocity. It is used to
model the tendency of the particle to fly in the same direction that it has been
travelling. In this component, the inertia weight w controls the search behaviour of
the particles. It can either be a fixed value or it can be dynamically changing
[Eberhart & Shi 2000; Eberhart & Shi 2001b]. A higher inertia weight (for
example 0.9) allows the particles to move freely and it is helpful for the particles
to find the global optimum neighbourhood fast. A lower value of the inertia weight
(for instance 0.4) can narrow the search scope and enable the particles to converge

to local optima fast. In [Shi & Eberhart 1998b; Shi & Eberhart 1999], The authors
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suggested employing a linearly decreasing inertia weight, which aims to execute a
more global search (exploration) at the beginning and execute a more local search
(exploitation) at the end. However, the main disadvantage of this method is that
once the inertia weight is decreased, the swarm loses its ability to search new areas

because it is not able to recover its exploration mode.

The second part of Equation (4.1) is viewed as the ‘memory’ component. It
represents the personal thinking of one particle. This component attracts the
particle to fly towards its own best positions so far found. The third part of
Equation (4.1) is known as the ‘cooperation’ component, which represents the
cooperative effect of the particles in the optimisation search. This component
always encourages the particle to move towards the global best position. In these
two components, the two acceleration coefficients ¢; and ¢ are often set to be 2,
which is supposed to perform well [Eberhart et al. 2001a]. It is also important to
note that c¢; and ¢, should not necessarily be equal because the weights for
individual and group experience can vary according to the characteristics of

different problems [Del Valle et al. 2008].

Generally, a maximum velocity vector Vinax = [Vmaxl> Vmax2, Vmax3> ---» VmaxD] 1S
defined and acts as the upper limit for the achievable velocity of the particles,
where viaxa, d =1, 2, ..., D, are positive numbers. It works as follows:

If Via > Vinaxa, then vig = Vinaxa

Else if viy < -Vinaxa, then vig = ~Vimaxa. 4.3)
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It is important to note that the value of vy, should not be too large, as the particles
may move erratically and fly beyond a good solution; however, the value of vy,
should not be too small, as the particle’s movement may be restricted to short steps
and the optimal solution may be achieved after a long journey. Frequently, the vy

value is confined within the range of search space and defined as follows:

Vmax d {xmax d xmin d )/N b (44)

where Xmaxqs and xming are the maximum and minimum bands of the dth dimension
of the search space; N is a positive number where 1 = N = 10. In addition, research
work performed by [Fan & Shi 2001] showed that an appropriate dynamically

changing v, can also improve the performance of the PSO algorithm.

However, the particles may still occasionally fly to a position beyond the
predefined search space and produce an invalid solution. In this case, a simple
handling method is used in most of the PSO algorithms, which works as follows:

If Xia > Xmaxa> then Xig = Xmaxa;

Else if x4 < Xming, then Xig = Viing. 4.5)

Furthermore, other methods have also been proposed to solve the previous
problem. For instance, it is suggested in [Robinson & Rahmat-Samii 2004] to
enclose the search space with three different types of hypothetical boundaries each
with its own boundary condition, namely, absorbing boundaries, reflecting
boundaries and invisible boundaries. From this viewpoint, the method expressed in
(4.5) can be viewed as the absorbing boundary condition. In [Huang & Mohan

2005], another method of damping boundary condition is proposed, which
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combines the features of both the absorbing and reflecting boundaries.

In summary, the entire PSO algorithm can be described via the following

procedure:

1.

Initialise the swarm by assigning a random position to each particle within

the problem hyperspace.

According to the predefined objective function, evaluate the fitness for

each particle.

For each individual particle, compare the particle’s fitness value with its

Prest. I the current value is better than the pp., then set the current value as

the new ppesr and set the current particle’s position x; as the new p,.

Identify the particle that has the best fitness value. The value of its pp.s 18

identified as gy and its p; is identified as the p,.

Update the velocities and positions of all the particles using Equations (4.1)

and (4.2).

If the velocity of one particle exceeds the upper limit vy, then implement

Method (4.3).
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7. If the position of one particle exceeds the search bounds, then implement

Method (4.4).

8. Repeat Step 2 to Step 7 until a stopping criterion (e.g., a maximum number

of iterations or a sufficiently good fitness value) is achieved.

4.1.2 New Developments in PSO

In the open literature, several methods were suggested to tune the main parameters
of PSO so as to obtain a good performance for the algorithm. For instance, some
researchers added a random component to the inertia weight [Eberhart & Shi
2001b; Zhang & Hu 2003], and this was found to perform slightly better than the
constant inertia weight. In [Shi & Eberhart 2001], a simple fuzzy system was
applied to predict the appropriate inertia weight. Since the fuzzy rules and the
parameters of the fuzzy system were obtained from the authors’ own experience
(hand-crafted roles), this fuzzy system cannot be universally adaptive for all the
optimisation problems since different problems involve different characteristics. In
[Doctor et al. 2004], the authors used a secondary PSO algorithm to find the
optimal parameters of a primary PSO. Although this method may improve the
performance of PSO, it brings more complexity in computation and the algorithm
structure. In addition to the inertia weight factor, time-varying acceleration

coefficients (TVAC) were introduced in [Ratnaweera et al. 2004].
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In [Richard & Ventura 2004], an initialisation method was proposed to produce the
particles that are distributed as evenly as possible throughout the problem space. It
was concluded that this method ensures a broad coverage of the search space and
improves the performance of PSO compared with the original random

initialisation.

The cooperative PSO (CPSO), proposed by Van den Bergh and Engelbrecht [Van
den Bergh & Engelbrecht 2004], employs multiple swarms to optimise different
components of the solution vector cooperatively. In CPSO, the search space is
explicitly partitioned by splitting the solution vectors into smaller vectors. Two
algorithms were proposed, namely CPSO-S; and CPSO-H;. In the CPSO-S;
algorithm, a swarm with n-dimensional vectors is partitioned into k-swarms of
smaller vectors, with each swarm attempting to optimise a small component of the
solution vector. The advantage of the CPSO-S; approach is that only one
component is modified at a time, therefore, many combinations are formed using
different members from different swarms, yielding the desired fine-grained search
and a significant increase in the solution diversity. On the other hand, CPSO-H,
combines the two techniques of PSO and CPSO-S; by executing one iteration of

CPSO-S; followed by one iteration of the standard PSO algorithm.

In addition, to the previous research activities, other researchers investigated the
hybridisation by combining PSO with other search techniques to improve the
performance of PSO. Evolutionary operators, such as selection and mutation, have

been introduced within PSO to increase the diversity of the population and
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improve the ability to escape from local optima [Lovbjerg et al. 2001]. In
[Lovbjerg et al. 2001], the swarm was divided into subpopulations, and a breeding
operator was used within a subpopulation or between the subpopulations to
increase the diversity of the population. Negative entropy was used to discourage
the premature convergence in [Xie et al. 2002], while in [Parsopoulos & Vrahatis
2004], deflection, stretching, and repulsion techniques were used to find as many
optima as possible by preventing the particles from moving to a previously

discovered optimal region.

Improving PSQO’s performance by designing different types of topologies
represents another active research direction. In most of these new approaches, one
particle flies towards the neighbourhood best position instead of the global best
position. Kennedy [Kennedy 1999; Kennedy & Mendes 2002] claimed that PSO
with a small neighbourhood might perform better on complex problems, while the
PSO with a large neighbourhood would perform better on simple problems.
Suganthan [Suganthan 1999] applied a dynamically adjusted neighbourhood where
the neighbourhood of a particle gradually increases until it includes all the
particles. In [Hu & Eberhart 2002], the authors also used a dynamic
neighbourhood where m closest particles in the performance space are selected to
be its new neighbourhood in each generation. Peram et al. developed the fitness-
distance-ratio-based PSO (FDR-PSO) with near neighbour interactions [Peram et
al. 2003]. When updating each velocity dimension, the FDR-PSO algorithm
selects one other particle nbest, which has a higher fitness value and is nearer to

the particle being updated.
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Recently, several multi-objective PSO algorithms have been developed based on
the Pareto optimality concept. The main issue to be addressed is the selection of
the cognitive and social leaders (ppess and gp.sr) such that they can provide an
effective guidance to reach the most promising Pareto front region but at the same

time maintain the population diversity.

For the selection procedure, two typical approaches were suggested in the
literature: a selection based on quantitative standards and random selection. In the
first case, the leader is determined without any randomness involved, such as the
Pareto ranking scheme [Ray 2002], the sigma method [Mostaghim & Teich 2003]
or the dominated tree [Fieldsend et al. 2003]. However, in the random selection
approach, the selection is stochastic and proportional to certain weights assigned to
maintain the population diversity (crowding radius, crowding factor, niche count,

etc.) [Hu 2006].

Coello and Lechuga [Coello & Lechuga 2002] have also incorporated the Pareto
dominance into the PSO algorithm. In their method, the non-dominated solutions
are stored in a secondary population. The primary population uses the
neighborhood bests, which are randomly selected from this secondary population,

to update the velocities.
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4.1.3 Features of PSO

PSO is a computational and intelligence-based technique, which has some

advantages over other similar optimisation techniques, namely the following:

1. PSO is easier to implement and it includes fewer parameters to adjust.

2. PSO is not largely affected by the size and nonlinearity of the problem.

3. In PSO, every particle remembers its own previous best solution as well as
its companions’ information; therefore, it has a more effective memory

capability.

4.2 A New Structure for Particle Swarm Optimisation (nPSO)

Though PSO based algorithms have many advantages, they still suffer from
premature convergence. To solve this problem, one new term, named the
‘momentum term’ is introduced in this chapter to replace the inertial term of the
original PSO. This new component can help in avoiding such a premature
convergence and in encouraging each particle to jump out of any local minimum.
To provide the particles with more adaptability, a separate momentum weight is
assigned to each particle as it dynamically adjusts itself according to the particle’s

own search experience.
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4.2.1 Algorithm Formulation

In this new PSO (nPSO), a new ‘momentum term’ is introduced to replace the
original inertia term. As defined in the standard PSO algorithm, the position vector
and velocity vector of the ith particle in the D-dimensional search space can be
represented as x; = [Xi1, X2, Xi35 ..., x,D]T and v; = [vi1, Vi2, Vi3s .., viD]T respectively.
According to a predefined fitness function, the best previous position of the ith
particle and the fittest position among all the particles found so far are represented
as pi = [pi1, Piz» Pi3» -, pin]" and Pe = [Pgts Pg2s Da3s s pgD]T respectively. viax =
[Vmax1> Vmax2s Vmax3» ---» Vmaxp] 1S an upper limit for the achievable velocity of the

particles. The new algorithm can be described using the following equations:

Vgt +1) =w, (¢ =D =rl, ¢+ >y, +e xr2, ((+1)x [pid () —x;y (t)}

+o, 513, (=D x{p, (1) x, 1), (4.6)
X+ —x,@O)—v,(t+]), 4.7
where d =1, 2, ..., D; t is the index of the iteration; w;q is the momentum weight of

the ith particle in the dth search space dimension; ¢; and ¢, are positive constants
known as acceleration coefficients; r1;,(t), r2;4(t) and 73;,¢) are three uniformly

distributed random variables in the range [0, 1].

For minimisation problems, the momentum weight w;, is varied in the optimisation

process as follows:
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I.la lf Vid (t) o Vmaxd and
pos,(t+1) -1,

(t +1) wy () <my, if v, () = &=y, and 4.8)
W, - . .
l S (x;(0) = f(p,(r=D);

Wid (t) = mz s lf Vid (t) > E Vmax d and

x f(x,(0) = f(p,(z=1)).

where : is a small positive coefficient; m; and m, are two scaling parameters used
to control the range of magnitudes of the momentum weight varying, where m; is a
positive coefficient smaller than 1 and m; is a positive coefficient larger than 1;
posiq 1s a discrete variable used to control the direction in which the velocity of one
particle should be refreshed, where its value is 0 or 1; f{x) is the fitness function of

the minimisation problem.

The momentum term, which is the first component of Equation (4.6), aims at
giving one particle extra adjustable momentum in its optimal search process to
keep a balance between exploration (global search) and exploitation (local search).
When a particle converges to one solution, which is judged by whether the
velocity of the particle is too small or not, it may become trapped in a local
minimum. In this situation, the momentum weight is set at a big value ‘1’ to
encourage the particle to jump out from the local minimum. When a particle does
not converge, the momentum weight is dynamically adjusted according to the
particle’s own search experience: More specifically, if the particle can find a better
solution in the previous generation, it may be in a local optimum space and the
momentum should be increased to enhance the global search ability; if the particle
cannot find a better solution in the previous generation, it may wander in a large

space and the momentum should be reduced to enhance the local search ability.
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This mechanism is proved to be effective in balancing the global search and local

search and makes the optimisation search more adaptive.

Normally, & is set to 10" without any loss of generality, which means that if the
velocity of a particle is smaller than VmaXXIO'm, the particle is assumed to be
converging. In addition, m, is generally set to 0.5 and m; is set to 2, which means
that the momentum weight will reduce to the half of the previous value or increase
to the double of the previous value. The position parameter pos;, is used to control
the direction in which the velocity of the particle should be refreshed. In this work,
three strategies for setting the value for Pos; = (pos;1, posi, poss, ... , poSi;) are

proposed as follows:

1. One-directional refresh mechanism: In every iteration, for each particle,
only one of the elements in the position parameter vector Pos; will be
randomly chosen and set to the value ‘1°; other elements will be set to the

value ‘0’.

2. Multiple-directional refresh mechanism: The number of elements and
the positions of elements that will be set to 1 are both randomly generated;
other elements in the position parameter vector will be set to 0.

3. All-directional refresh mechanism: All the elements of Pos; will be set to

the value ‘1’ all the time.
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4.2.2 Advantages of nPSO

The advantages of nPSO, compared with the standard PSO, lie mainly in the

following three aspects:

1.

Both the momentum term in nPSO and the inertia term in the original PSO
aim to avoid premature convergence in the optimisation process. But the
new term is more adaptive for different problems than the original one. For
the standard PSO, different optimisation problems need different inertia
weight settings, while in nPSO, the momentum weight can adjust itself
adaptively. As it varies, it will find a suitable value for different
optimisation problems in the whole optimisation process. This guarantees a

fast convergence and concomitantly avoids premature convergence.

If the particles converge to local optima, the normal PSO cannot refresh the
velocities of particles and cannot encourage the particles to jump out from
local optima. But nPSO can do so through setting the momentum weight to

a new larger value.

In the standard PSO, different particles share one inertia weight. When
dealing with an optimisation problem, the change of inertia weight value
may be suitable for one part of the particles to direct their optimisation
search, but is unsuitable for the other part of particles; in nPSO, every

particle has its own momentum weight. One particle adjusts its weight
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according to its own experience and situation. This enables the movements

of particles to be efficient and hence giving the particles more adaptability.

4.3 Experimental Studies using nPSO

In the following experiments, the benchmark test functions which have already

been described in Section 3.3.1 are used.

4.3.1 Effect of the Population Size

In this experiment, the nPSO algorithm was tested using the benchmark problems
fi, 2, 3, 17, fs and fio with various settings of the population size (Np =2, 5, 10, 20,
50, 100, 200, 500 and 1000). For each benchmark problem, the dimension D was
increased in the sequence to 2, 5, 10, 20 and 50; and for each setting 20 runs were
conducted. In each run, the maximum number of function evaluation was set to 10°
and the optimisation process was regarded as successful and stopped, when the
best solution Fb satisfied: Fb < 107 if the true global minimum Gb = 0 or |(Fb -

Gb)/ Gb| <107 if Gb # 0.
In this case, the acceleration coefficients c¢; and ¢, were set to 1.5; the scaling
parameters m; and m, were set to 0.5 and 2 respectively; & = 10'10; Vimax = [Vmax1»

Vmax2, ---» VmaxD] = [O-SX(xmaxl 'xminl), 0.5 ><(xma)(Z'xminZ), ceey O-SX(xmaxD'xminD)]a
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where Xmaxs and Xming are the maximum and minimum bounds for the dth variable;
The position parameter pos;,; was updated using both the one-directional refresh
mechanism (with the 70% probability of usage) and the multiple-directional

refresh mechanism (with the 30% probability of usage), wherei =1, 2, ..., Np and

Tables 4-1 to 4-6 and Figure 4-2 show the performance of nPSO with different
population sizes in optimising the test problems with different dimensions. From

these tables and figures, the following has been observed:

1. In most of the situations, nPSO performs best when the population size is

relatively small (for example, Np =5, 10 and 20).

2. For low-dimensional problems (D = 2), nPSO with large population size
(for instance, Np = 100, 200 and 500) performs better in the majority of

cases.

Table 4-1. The average number of function evaluations to find the optimum on f;;
the bold values represent the best results.

D | Np=2 | Np=5 | Np=10 | Np=20 | Np=50 | Np=100|Np=200|Np=500|Np=1000
2 | 743 | 913 | 1165 | 1344 | 1500 | 2008 | 1348 | 2320 | 3980
5 | 661 | 531 | 675 | 1085 | 2321 | 4258 | 8168 | 18070 | 32740
10 | 808 | 662 | 962 | 1593 | 3405 | 6254 | 11584 | 26470 | 49980
20 | 1257 | 1281 | 1743 | 2772 | 5445 | 9568 | 17268 | 38510 | 71650
50 | 3246 | 3278 | 4307 | 6347 | 11643 | 19750 | 34220 | 72550 | 131300
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Table 4-2. The average number of function evaluations to find the optimum on f;;
the bold values represent the best results.

D | Np=2 | Np=5 | Np=10 | Np=20 | Np=50 | Np=100|Np=200|Np=500|Np=1000

2 | 12546 | 15040 | 15593 | 16640 | 18074 | 15732 | 8092 | 2300 4180

S| 1983 | 1473 | 1571 | 2186 | 4464 | 8178 | 15236 | 32330 | 56400

10 | 8826 | 5696 | 3218 | 3049 | 6145 | 11450 | 21350 | 49600 | 94850

20 | 48405 | 26383 | 20193 | 13142 | 15320 | 17480 | 31460 | 71200 | 135000

50 {281280|173840(123864|100284 (150105169840 |117500| 170250 | 270000

Table 4-3. The average number of function evaluations to find the optimum on f;;
the bold values represent the best results.

D | Np=2 | Np=5 | Np=10 | Np=20 | Np=50 | Np=100|Np=200|Np=500|Np=1000

2 | 1052 | 1013 | 1325 | 1776 | 1604 | 942 1512 | 2180 4080

S5 | 3897 | 3063 | 2362 | 1788 | 2758 | 4594 | 7912 | 17990 | 32620

10 | 10371 | 5864 | 5356 | 6583 | 8668 | 12045 | 16890 | 32375 | 54050

20 | 21831 | 19364 | 21804 | 26159 | 39833 | 57410 | 88820 | 156300 | 232300

50 (173390|123337|140094(178580|275580| 385300 [ 625120 N/A N/A

Table 4-4. The average number of function evaluations to find the optimum on f7;
the bold values represent the best results.

D | Np=2 | Np=5 | Np=10 | Np=20 | Np=50 | Np=100|Np=200|Np=500|Np=1000

2 | 2163 | 2907 | 2938 | 2702 | 3229 | 1882 | 1032 | 2180 4020

S| 2258 | 2410 | 2827 | 2702 | 5515 | 6510 | 11160 | 21600 | 35320

10 | 11449 | 11810 | 11847 | 15838 | 23713 | 31785 | 49890 | 93850 | 124900

20 | 54649 | 39779 | 36474 | 56296 | 75900 [ 109940 | 157640|266700| 438200

50 (401260|204067|171152(187576|302690|451340| N/A | N/A N/A
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Table 4-5. The average number of function evaluations to find the optimum on fs;
the bold values represent the best results.

D | Np=2 | Np=5 | Np=10 | Np=20 | Np=50 | Np=100|Np=200|Np=500|Np=1000

2 | 33461 | 33021 | 40008 | 37442 | 36913 | 16085 | 8050 | 2300 4000

S | 2413 | 1827 | 1875 | 2554 | 4898 | 8965 | 15270 | 39150 | 61150

10 | 8918 | 5551 | 4179 | 3793 | 6275 | 11680 | 21650 | 50400 | 95400

20 | 60416 | 31773 | 19523 | 16213 | 18679 | 27500 | 33380 | 69450 | 129350

50 {511950|324120{169570|122964|116950| 210635 | 256170 | 355250 | 487150

Table 4-6. The average number of function evaluations to find the optimum on
f10; the bold values represent the best results.

D | Np=2 | Np=5 |Np=10| Np=20 | Np=50 | Np=100| Np=200| Np=500| Np=1000

2 | 2469 | 2464 | 2673 | 3235 | 3714 | 3187 | 1908 | 2265 4150

5 | 1174 | 1071 | 1036 | 1529 | 3107 | 5698 | 10540 | 23680 | 42580

10 | 6776 | 5101 | 5162 | 5332 | 8500 | 9712 | 15090 | 35075 | 65600

20 | 37936 | 21697 | 20854 | 20718 | 27503 | 38080 | 48260 | 92550 | 132200

50 |239850{130176| 98510 |112520|122090| 162780 | 224000 | 447200 | 618600

84



Chapter 4: A New Structure for Particle Swarm Optimisation

# Sphwrm funclion # Schveful's Fumclion 222
] ]
]
—=—l
—g— 00
. 1 @
£ 1o ‘_f’: —d— 0 s
= ._ =
= =
o -
Pt i
= =
H 5
('S m' [T
Fo ||:|"f I i’ e i 0
Populaton Sies
(a) (b)
# Schwmfel's Funclion 1.2 # Restrigin's Funchon
] ]
A P ]
— —=—l = | ==
. e | 1D \ —— 10
gl T == ==
3 - T v ——
5 R g _’__f(-" 5 - .-fff‘.
= - o = e S ¥
Pt w i B A
= =
: g
[T [ :
\'\//l
Fo “lI:' I I: III:" ||:|"f o ||:|' o .|.|;|: ' m’ 0
Mapuler ok & 26 Populaton Sies
(c) (d)
" Aclday's Funchon o Bohachesin’s Function
1 T T 1 T T T
—— ] ——-ll
S |, Sl
- —s—00 - \\‘-‘ i —s—200
gmi- ,/.,..J-" i .,.ax.n_ gmi _‘._.‘r,-t’t : F a-acm_
3 = N E - n/.
] . o ] v
i o—y- - i 0 E o
- - 2 - L S //E'
= =
2 gt £ i |
N N Lo
A
II:In:l‘:I ||;|' ||;|‘ ||;|' i II:III:I':I ' ||;|‘ Il;I' 1
Poguletion Size Pogalstion Size
() )
Figure 4-2. The mean number of function evaluations to find the optimum

versus the population size with different problem dimension: (a) f,

(b) f2, (¢) f3, (d) f3, (e) /5 and (f) fro.

85



Chapter 4: A New Structure for Particle Swarm Optimisation

4.3.2 Effects of the Acceleration Coefficients

In this experiment, the nPSO algorithm was tested using the benchmark problems
/i to f14 with various settings of ¢; and ¢, (¢c; =c2 =1, 1.1, 1.2, ..., 2). For problems
/i to fi1, the dimension D was set to 30. For each setting, 20 runs were conducted
and averaged. For each run, the maximum number of function evaluation was set
to 10°. The population size of particles Np was set to 10 and other settings were the

same as the experiments in Section 4.3.1.

Table 4-7 shows the performance of nPSO with different acceleration coefficients.

It can be seen as follows:

1. Large acceleration coefficients (for example, ¢; = ¢; = 1.6 to 1.8) perform
well in difficult problems, such as the high-dimensional multimodal

problems.

2. Small acceleration coefficients (for example, ¢; = ¢; = 1.0 to 1.2) are more
suitable for simple problems, such as the low-dimensional problems with

few local extrema.

This means that large acceleration coefficients will enhance the exploration (global

search) ability and small acceleration coefficients can increase the exploitation

(local search) ability of the algorithm.
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Table 4-7. Average performance of nPSO with various acceleration coefficients
in optimising f; to fi4: The integer value in every cell is the average
function evaluation number in successful runs; the value in
parenthesis is the average result in the unsuccessful runs; the
percentage value in the square brackets indicates the percentage of the
successful runs out of all the runs; the bold values represent the best
results.

Cl = C
1.0 | 1.1 1.2 |13 1415116 |17 | 18 | 1.9 | 2.0

2772 | 2544 | 2464 | 2530 | 2553 | 2611 | 2805 | 3162 | 4403 | 13953 | 85080
fi (N/A) | (N/A) | (NWA) | (N/A) | (N/A) | (N/A) | (NJA) | (NVA) | (N/A) | (N/A) | (N/A)
[100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%]
99451 | 78157 | 69175 | 61803 | 52144 | 38744 | 35007 | 25606 | 17164 | 33118 | 153340
£ (N/A) | (N/A) | (N/A) | (N/A) | (N/A) | (N/A) | (NJA) | (NVA) | (N/A) | (N/A) | (N/A)
[100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%]
56569 | 52503 | 49848 | 48483 | 48108 | 49355 | 54028 | 74854 [122618(291296| N/A
f (N/A) | (N/A) | (N/A) | (N/A) | (N/A) | (NJA) | (NVA) | (N/A) | (N/A) | (N/A) [(0.0130)
[100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%]| [0%]
N/A |644324(506652| N/A |390060 | 402694 |335208 [ 275428 | 160232 | 385882 | N/A
i [(03167) (N/A) | (N/A) [(0.0032)(0.0087) (N/A) | (N/A) | (N/A) | (N/A) | (N/A) [(0.0032)
[0%] |[100%]|[100%]| [0%] | [80%] |[100%]|[100%][100%]|[100%]|[100%]| [0%]

NA | NA | NA | NA | NA | NA (51\12/;:‘1 NA | NA | NA | NA
5 [0:8108)(0.8042)(0.0039)(0.7994)(0.7987)/0.7982) A1 (0.7978)(0.0024) (1.4771)(43.097)
[0%] | [0%] | [0%] | [0%] | [0%] | [0%] [0%] [0%] | [0%] | [0%] | [0%]

(1]
NA | NA | NA | N/A | NJA | N/A | NA | NA | NA | N/A | NA
fo  |(-10864)(-11077)(-10959)(-10698)(-11101)(-10864)(-10722)(-10817)|(-10864)(-11042)/(-10757)
[0%] | [0%] | [0%] | [0%] | [0%] | [0%] | [0%] | [0%] | [0%] | [0%] | [0%]
407034 143905 | 104384 | 94201 | 96601 | 79670 | 75998 | 66297 | 52531 | 96235 | 386905
£ | A [ (NA) | (NIA) | (NIA) | (NIA) | (NIA) | (NIA) | (NJA) | (NIA) | (NIA) | (NIA)
[100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%]
82181 | 73467 | 53191 | 64546 | 51679 | 49585 | 48362 | 44917 | 32738 | 47774 | 247168
£l ova) | aua) | (A | (WA) | (NA) | (NIA) | (N/A) | (NIA) | (NIA) | (N/A) | (NIA)
[100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%]
5527 | 5012 | 4728 | 4390 | 4228 | 63587 | 4240 | 20453 | 20484 |220577| 187890
£ [(0.0091){(0.0128)[(0.0103)[(0.0088){(0.0099){(0.0116){(0.0154)(0.0127){(0.0196)[(0.0439){(0.0228)
[35%] | [50%] | [40%] | [55%] | [90%] | [30%] | [35%] | [45%] | [50%] | [30%] | [20%]
82150 | 74970 | 65383 | 55895 | 46030 | 38773 | 38623 | 30874 | 17295 | 25213 | 132778

fio (N/A) | (N/A) | (N/A) | (N/A) | (N/A) | (N/A) | (NJA) | (NVA) | (NJA) | (N/A) | (N/A)
[100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%]

Function

NA | NA | NA | NA | Na | Nva | A 91\;/;;)7 NA | NA | NA
At |(114.00)|(158.85)(150.40)((124.93){(109.67)((122.68)(0.0010) (X'10_4) (0.0013)[(0.0015){(0.0021)
[0%] | [0%] | [0%] | [0%] | [0%] | [0%] | [0%] [0%] [0%] | [0%] | [0%]
(1]

1287 | 1283 | 1384 | 1392 | 1467 | 1498 | 1854 | 1813 | 2933 | 3822 | 4950
fia | NA) | (NA) | (NA) | (N/A) | (N/A) | (N/A) | (N/A) | (N/A) | (N/A) | (N/A) | (N/A)
[100%] |[100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%]
1472 | 1495 | 1507 | 1682 | 1893 | 1673 | 1835 | 2291 | 2573 | 3611 | 4382
fis | A | (NA) | (N/A) | (N/A) | (N/A) | (NJA) | (N/A) | (N/A) | (N/A) | (N/A) | (N/A)
[100%]| [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%]
1458 | 1461 | 1704 | 1667 | 1796 | 1807 | 2092 | 2632 | 3177 | 3970 | 5024
fia | A | (NA) | (N/A) | (N/A) | (N/A) | (N/A) | (N/A) | (N/A) | (N/A) | (N/A) | (N/A)
[100%]| [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%] | [100%]
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4.3.3 Effects of Different Mechanisms for Position Parameters Refreshing

As already stated, the position parameter is used to control the direction in which
the velocity of one particle should be refreshed. Three strategies for setting the
value of the position parameters Pos; are compared here. In this experiment, the
30-dimension multimodal benchmark problems f5 to fi; were tested. The
population size Np was set to 10 and the acceleration coefficients ¢; and ¢, were
set to 1.8. Other settings were the same as those in the experiments of Section

4.3.1.

From Table 4-8, it can be seen that the one-directional refresh mechanism
performs best on the functions fs, f7, fs and fio, while the multiple-directional
refresh mechanism performs best on the problems f5, fo and fi;. For a broad
adaptation to various problems, it is recommended to use both the one-directional

and multiple-directional refresh mechanisms simultaneously.
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Table 4-8. Average performance of nPSO with different position parameter
refresh mechanisms in optimising fs to f11: The integer in every cell is
the average function evaluation number in successful runs; the value
in parenthesis is the average result in the unsuccessful runs; the
percentage value in the square brackets indicates the percentage of the
successful runs out of all the runs; the bold values represent the best

results.
Function One-directiona.tl Multiple-directiqnal All-directiona.l
Refresh Mechanism|Refresh Mechanism|Refresh Mechanism
N/A N/A N/A
fs (1.2365) (0.7989) (1.5999)
[0%] [0%] [0%]
N/A N/A N/A
f6 (-10698) (-10292) (-10504)
[0%] [0%] [0%]
46856 172372 163530
1 (N/A) (N/A) (33.165)
[100%)] [100%] [40%]
27960 47216 47238
/3 (N/A) (N/A) (N/A)
[100%)] [100%] [100%]
8387 14135 7176
fo (0.0130) (0.0240) (0.0197)
[30%] [60%] [30%]
12856 28999 33483
J1o (N/A) (N/A) (N/A)
[100%)] [100%] [100%]
N/A N/A N/A
f (0.0016) (0.0012) (39.907)
[0%] [0%] [0%]

4.3.4 Comparison between nPSO and Other Evolutionary Algorithms

In this section, experiments were carried-out using nPSO, two versions of normal
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PSO, which apply a linearly decreasing inertia weight (PSO-LD) [Shi & Eberhart
1999] and a randomly varying inertia weight (PSO-RV) [Eberhart & Shi 2001b],
and other three salient Evolutionary Algorithms, which are the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [Hansen et al. 2003], the Differential
Evolution (DE) [Storn & Price 1995] and the Generalised Generation Gap model

with the Parent-Centric Recombination operator (G3+PCX) [Deb ef al. 2002].

The parameter settings for these algorithms were as follows:

1. nPSO: Np =10; ¢; = ¢; = 1.8; m; = 0.5 and my = 2; # = 10™"%; posyy was
updated using both the one-directional refresh mechanism (with the 50%
probability of usage) and the multiple-directional refresh mechanism (with

the 50% probability of usage).

2. PSO-LD: Population size N = 10xD, where D is the dimension of the test
problem; ¢; = ¢; = 1.8; the inertia weight w varied from 0.9 at the
beginning of the search to 0.4 at the end of the search [Shi & Eberhart

1999].

3. PSO-RV: N=10xD; ¢; = ¢, = 1.8; w changed according to the equation: w

= 0.4 + rand()x0.5, where rand() is a uniformly distributed random number

within the range [0, 1] [Eberhart & Shi 2001b].

4. CMA-ES: There are 8 parameters to be predefined for this algorithm. All
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settings followed the instructions given in [Hansen 2007]. For instance, the
population size 4 = 4 + floor(3xInD), the parent number u = floor(+/2), etc.,
where floor(x) is the function that allows to round-off x to the nearest

integer towards -:%:.

5. DE: The DE/Rand/1 scheme was employed. The parameter settings
followed the instructions in [Storn 1996]. The population size N = 10xD;

the crossover probability CR = 0.9 and the weighting factor F'= 0.8.

6. G3+PCX: Following the papers by [Deb et al. 2002; Deb 2005], the
population size N = 10xD; the parent size was set to 3; the offspring size
was set to 2 and the replacement size was set to 2. For the PCX operator,

the distribution parameter #-= 0.1 and m, = 0.1.

For all the PSO algorithms, the maximum velocity vector Vimax = [Vmaxl> Vmax2, - -»

VmaxD] = [O-SX(xmaxl'xminl), O-Sx(xmaXZ'xminZ), ceey O-SX(xmaxD'xminD)], where Xmaxd

and xm;ng are the maximal and minimal bounds for the dth variable.

For every individual experiment, the result was obtained after 20 runs. For each
run, the maximal function evaluation number was set to 10° and the optimisation
process was regarded as successful and stopped, when the best solution Fb
satisfied: Fb < 107 if the true global minimum Gb = 0 or |(Fb - Gb) / Gb| < 107 if

Gb#0.

91



Chapter 4: A New Structure for Particle Swarm Optimisation

Table 4-9 shows the optimisation results of different algorithms on various

problems. From this table, one can observe the following:

1.

For unimodal problems f; to fi, CMA-ES performs best with the fewest
function evaluations; nPSO and G3+PCX perform second best among the

algorithms.

For high-dimensional multimodal problems fs to f;;, nPSO performs better
than other algorithms in most of the situations. For instance, for f7, fs and
fi0, nPSO is able to locate the global optimum with the fewest function
evaluations; for fs, fs and f1;, though nPSO cannot find the global optimum,
but among the unsuccessful algorithms, it still performs best with the

minimal fitness values.

For low-dimensional multimodal problems f;, to fi4, nPSO is able to obtain
the global optimum and performs moderate, compared with other

algorithms.

Compared nPSO with RSSA, in general, nPSO executes faster while RSSA is

more capable in finding global optimum.
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Table 4-9. Average performance of various algorithms in optimising f; to fi4: The
integer in every cell is the average function evaluation number in
successful runs; the value in parenthesis is the average result in the
unsuccessful runs; the percentage value in the square brackets
indicates the percentage of the successful runs out of all the runs; the
bold values represent the best results.

Function nPSO PSO-LD | PSO-RV | CMA-ES DE G3+PCX
4263 447150 101160 3207 391770 7140
i (N/A) (N/A) (N/A) (N/A) (N/A) (N/A)
[100%] [100%] [100%] [100%] [100%] [100%]
18660 503957 180420 11751 655110 N/A
5 (N/A) (13.3333) (N/A) (N/A) (N/A) (12.0469)
[100%] [70%] [100%] [100%] [100%] [0%]
125486 861350 958580 10830 N/A 25937
£ (N/A) (79.1666) | (20.0000) (N/A) (1.8527) (N/A)
[100%] [20%] [45%] [100%] [0%] [100%]
248638 813120 873960 8929 N/A 117414
fa (N/A) (N/A) (N/A) (N/A) (0.2004) (N/A)
[100%] [100%] [100%] [100%] [0%] [100%]
N/A N/A N/A 46072 N/A 140430
fs (0.0023) | (24.4833) | (31.2336) (N/A) (0.0158) (N/A)
[0%] [0%] [0%] [100%] [0%] [100%]
N/A N/A N/A N/A 616080 N/A
1o (-10840) (-9340) (-10202) (-6665) (N/A) (-6878)
[0%] [0%] [0%] [0%] [100%] [0%]
55341 N/A N/A N/A 940560 N/A
f (N/A) (46.0341) | (30.8072) | (106.1617) | (N/A) | (142.8754)
[100%] [0%] [0%] [0%] [100%] [0%]
37208 535500 193650 8575 694560 N/A;
1 (N/A) (N/A) (N/A) (19.3625) (N/A) (3.1199)
[100%] [100%] [100%] [40%] [100%] [0%]
52024 493425 146983 5586 586740 10983
1 (0.0222) | (0.0193) | (0.0148) | (0.0100) (N/A) (0.0110)
[55%] [40%] [60%] [75%] [100%] [65%]
23363 485389 143130 N/A 510180 N/A
fio (N/A) | (225.6000) | (N/A) (2.2897) (N/A) (15.1530)
[100%] [90%] [100%] [0%] [100%] [0%]
N/A N/A 228900 N/A N/A N/A
fil (0.0012) | (30.3990) | (21.8394) | (248.84) | (0.1217) | (184.4355)
[0%] [0%] [10%] [0%] [0%] [0%]
2715 15328 842 221 853 N/A
fi2 (N/A) (N/A) (N/A) | (-19.8160) | (N/A) (-0.4128)
[100%] [100%] [100%] [95%] [100%] [0%]
3601 10591 861 224 1182 N/A
fis (N/A) (N/A) (N/A) (N/A) (N/A) (0.8862)
[100%] [100%] [100%] [100%] [100%] [0%]
3373 14896 898 253 777 N/A
fia (N/A) (N/A) (N/A) | (141.0000) | (N/A) (35.3369)
[100%] [100%] [100%] [95%] [100%] [0%]
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4.4 Extension of nPSO to Multi-objective Optimisation Problems

To extend the nPSO algorithm for the multi-objective optimisation case, the same
method, which has been introduced in Section 3.4 to organise MO-RSSA, is
employed here. In this new developed algorithm, which is named the new multi-
objective PSO (nMPSO), both the Random Weighted Aggregation (RWA)
technique [Murata et al. 1996] and the designed archiving mechanism (see Section

3.4.2) are employed.

4.4.1 Experiments Based on the ZDT Series Problems

A comparative study between nMPSO and other multi-objective optimisation
algorithms is conducted using the well-known multi-objective optimisation
problems - ZDT series benchmark problems [Zitzler et al. 2000] (see Section
3.5.1.1). The other multi-objective algorithms related to the Multi-Objective
Reduced Space Searching Algorithm (MO-RSSA) (see Section 3.4), the Pareto
Archived Evolution Strategy (PAES) [Knowles & Corne 2000], the Strength
Pareto Evolutionary Algorithm (SPEA) [Zitzler & Thiele 1998] and the Non-

dominated Sorting Genetic Algorithm II (NSGA-II) [Deb et al. 2002].

To compare the performance of nMPSO with such algorithms, the two

performance metrics, namely the Generational Distance (GD) and the Spread (A)

(see Equations (3.6) and (3.7) in Section 3.5.1.2), are used.
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In the following experiments, the maximum function evaluation for every
experiment was set to 25000. The result of every experiment was obtained after 10
independent runs. The parameter settings for different algorithms were listed as

follows:

1. nMPSO: 10 particles, maximum generation 2500, « = 107, scaling
parameters m; = 0.5 and m, = 2, acceleration coefficients ¢; = ¢, = 1.5,
frequency parameter H = 2000 and one-directional refresh strategy for Pos;

setting.

2. MO-RSSA: decreasing parameter C; = 3, increasing parameter C; = 1,
changing ratio K = 0.5, m = 15, frequency parameter / = 10000 and a
variation strategy of the combination of the one-dimensional variation
(with the 75% probability of usage) and the multi-dimensional variation

(with the 25% probability of usage).

3. PAES: Population size 100, maximum generation 250, crossover

probability 0.9 and mutation probability 0.01.

4. SPEA: Population size 80, external population size 20, maximum

generation 250, crossover probability 0.9 and mutation probability 1/80.

5. NSGA-II (binary-coded): Population size 100, maximum generation 250,

crossover probability 0.9 and mutation probability 1/(string-length). 30 bits
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were used to code each variable.

The average GD and A values of 10 runs and the corresponding variances #” are
summarised in Tables 4-10 and 4-11 respectively. In these tables, the compared

results for PAES, SPEA and NSGA-II are obtained from [Deb 2001]. The

following remarks can be made:

1. nMPSO and MO-RSSA outperform the other three salient EAs in terms of

both accuracy and diversity.

2. For ZDT1, ZDT2 and ZDT3, nMPSO can achieve more accurate Pareto
solutions than MO-RSSA, while MO-RSSA performs better in optimising

ZDT4.

3. Both nMPSO and MO-RSSA can obtain the Pareto solutions with a good
diversity. Between these two algorithms, the results that nMPSO obtained

show a better distribution.

Figure 4-3 shows the graphical result produced by nMPSO. The true Pareto fronts
of the problems are represented with continuous curves and the ‘round’ dots are
the solutions obtained using nMPSO. It can be seen that the nMPSO can locate the

true Pareto fronts with very good diversities in a consistent way.
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Table 4-10. Mean and variance values of GD; the bold values represent the best

results.
Mean value of GD / (variance °)
Problems
nMPSO MO-RSSA PAES SPEA NSGA-II
3.29e-4 4.07e-4 8.21e-2 1.25¢-3 8.94¢-4
ZDT1
(0) (0) (8.68e-3) (0) (0)
2.66e-4 7.37e-4 1.26e- 3.04e-3 8.24e-4
ZDT2 )
(0) (0) 13.69¢-2) | (2.00e-5) (0)
3.29¢-4 4.07e-4 2.39¢-2 4.42e-2 4.34e-2
ZDT3
0 (0) (1.00e-5) (1.90e-5) (4.20e-5)
4.90¢-4 1.82¢-4 8. 55¢- 9.51e+0 3.23e+0
ZDT4 ’
(0) (0) 1(5.27e-1) | (1.13e+1) | (7.31et0)
Table 4-11. Mean and variance values of A; the bold values represent the best
results.
Mean value of A / (variance rrz)
Problems
nMPSO MO-RSSA PAES SPEA NSGA-II
ZDT1 3.96e-1 4.68¢-1 1.23e+0 7.30e-1 4.63¢-1
(1.48¢-3) | (1.66e-3) | (4.84e-3) | (9.07¢-3) | (4.16e-2)
3.76e-1 - 1.17e+0 6.78e-1 4.35¢e-1
7DT2 3.94e-1
(2.63e-3) | (8.10e-4) | (7.68e-3) | (4.48e-3) | (2.46¢-2)
4.84e-1 - 7.90e-1 6.66¢-1 5.76e-1
ZDT3 4.97e-1
(2.40e-3) | (5.30e-3) | (1.65¢-3) | (6.66e-4) | (5.08¢-3)
3.86e-1 i, 8.70e-1 7.32e-1 4.79e-1
7DT4 4.78e-1
(7.51e-4) | (2.62e-3) | (1.0le-1) | (1.13e-2) | (9.84e-3)
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Figure 4-3. Pareto fronts obtained by nMPSO

4.4.2 Experiments Based on the DTLZ Series Problems

In this section, nMPSO was used to solve the DTLZ series optimisation problems
[Deb et al. 2001]. All the DTLZ problems were set to include three objectives and
nMPSO used the same number of function evaluations as the experiments in [Deb
et al. 2001]. The configuration of the nMPSO algorithm was set to be similar to
the one used in optimising the ZDT problems, except the weight changing

frequency parameter H = 1000.
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1.

DTLZ1: The difficulty of this problem lies in the convergence to the
hyper-plane. The search space contains (11°-1) local Pareto-optimal fronts.
Figure 4-4 shows the optimisation results using nMPSO in different angles
of view. One can see that, nMPSO can obtain the Pareto-optimal solutions

that possess a very good diversity.

et et

Figure 4-4. The optimisation result of nMPSO on DTLZ1

DTLZ2: The difficulty of this problem relates to its concave Pareto-
optimal area. Figure 4-5 shows the optimisation results using the nMPSO
algorithm. It can be seen that nMPSO can converge to the Pareto-optimal

front with a good diversity.

I et

Figure 4-5. The optimisation result of nMPSO on DTLZ2
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3. DTLZ3: The difficulty of this problem lies in the presence of several local
Pareto-optimal fronts. This problem has 3'°-1 local Pareto-optimal fronts
and a multi-objective optimisation algorithm can easily get stuck at any of
these local Pareto-optimal fronts during the optimisation process. The
results in [Deb et al. 2001] show that NSGA-II and SPEA2 can become
trapped at some of these local Pareto-optimal fronts and cannot converge to
the true Pareto front, while it can be seen from Figure 4-6 that nMPSO can

achieve the true Pareto-optimal front.

et et

Figure 4-6. The optimisation result of nMPSO on DTLZ3

4. DTLZS: This problem will test MOEA’s ability to converge to a curve.
From Figure 4-7, one can see that nMPSO is able to converge to the true
Pareto-optimal front with a good diversity. For this problem, nMPSO can
find the Pareto-optimal solutions in the early stage of the optimisation

process.
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Figure 4-7. The optimisation result of nMPSO on DTLZ5

5. DTLZ6: This problem is a modified version of DTLZ5, which becomes
more difficult to solve than DTLZ5. In [Deb ef al. 2001], NSGA-II and
SPEA2 cannot converge to the true Pareto-optimal front, as well as the
proposed MO-RSSA (see Section 3.5.2). But nMPSO can achieve the true

Pareto-optimal front, which is shown in Figure 4-8.
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Figure 4-8. The optimisation result of nMPSO on DTLZ6

6. DTLZ7: This problem has a disconnected set of Pareto-optimal regions

and it will test the algorithm’s ability to maintain a subpopulation in
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different Pareto-optimal regions. Figure 4-9 shows the optimisation result
using nMPSO to optimise DTLZ7. It can be observed that the new
algorithm is able to find and maintain stable and distributed subpopulations

in all four disconnected Pareto-optimal regions.

Figure 4-9. The optimisation result of nMPSO on DTLZ7

4.5 Summary

In this chapter, a new structure for the particle swarm optimisation algorithm
(nPSO) is proposed, which introduces a new ‘momentum term’ to replace the
original inertia term. The advantages of nPSO compared with the standard PSOs
lie in its ability of avoiding premature convergence and its adaptability in different
situations. This algorithm was validated using a set of benchmark problems and is
shown to lead to a better performance than the standard PSOs and some other
salient optimisation algorithms. In addition, various parameter settings have been

well explored and the appropriate parameter configurations were also
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recommended. Furthermore, the new algorithm was extended to become a multi-
objective optimisation algorithm, nMPSO, by using the random weighted
aggregation technique and maintaining an archiving mechanism. A comparative
study between nMPSO and other MOEAs, such as PAES, SPEA and NSGA-II,
was carried-out based on the ZDT series problems. The nMPSO was then
employed to optimise the challenging DTLZ problems. The experimental results
led to the conclusion that nMPSO is effective in finding the Pareto-optimal
solutions and possesses advantages over some evolutionary algorithms in terms of

the accuracy and the diversity of the final solutions.

The next chapter will propose a new modelling approach which will utilise multi-

objective optimisation to reconcile model transparency with model accuracy.
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Chapter 5

A Fuzzy Modelling Approach with a
Hierarchical Clustering Algorithm and a
Multi-Objective Optimisation Mechanism

(FM-HCMO)

5.1 Introduction

For modelling problems, accurate mathematical models do not always exist or it is
difficult to derive them for all complex environments [Rojas et al. 2000], while at
the same time, the available data that represent input-output relationships may be
abundant. In this situation, model-free techniques such as artificial neural networks
(NNs) and data-driven fuzzy modelling are suitable for model construction.
Compared with black-box approaches such as artificial neural networks, fuzzy

systems have white-box characteristics and are more transparent to humans to
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interpret. This is one of the most attractive aspects that distinguish fuzzy modelling
from other black-box approaches. Nowadays, fuzzy rule-based systems are being
applied to a growing number of significant applications in a wide variety of fields
ranging from pattern recognition, data mining, classification, prediction, non-linear
system approximation, and process control [Mamdani & Assilian 1974; Bezdek
1981; Takagi & Sugeno 1985; Jang 1993; Sugeno & Yasukawa 1993; Wang 1994;

Marsili-Libelli & Muller 1996; Delgado et al. 1997].

In this chapter, a systematic data-driven fuzzy modelling methodology is proposed,
which allows to construct Mamdani (linguistic) fuzzy models considering both
accuracy (precision) and transparency (interpretability) of fuzzy systems. In this
methodology, a hierarchical clustering algorithm is employed for the initial fuzzy
model generation; a data selection mechanism is developed for selecting
appropriate and efficient training data; and a multi-objective optimisation
mechanism is developed for the fuzzy model improvement, which takes into

account both accuracy and interpretability performance of fuzzy models.

This chapter is organised as follows. The remaining part of Section 5.1 provides a
background knowledge about fuzzy modelling. Section 5.2 introduces the
framework of the proposed modelling approach. Section 5.3 describes the
proposed approach that concerns the generation of an initial fuzzy model using a
hierarchical clustering algorithm. The related experimental studies are also
presented. In Section 5.4, the proposed accuracy improvement and data selection

mechanism are introduced, while in Section 5.5, a multi-objective optimisation
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algorithm, which includes both the accuracy and the interpretability performance
of fuzzy models as attributes, is presented. In Section 5.6, a post-modelling
technique for computing the model confidence bands is proposed. Finally, Section

5.7 concludes this chapter.

5.1.1 Fuzzy Systems

The fundamental concept of fuzzy systems was first introduced by Zadeh in 1965
[Zadeh 1965] and later expanded upon in 1973 [Zadeh 1973]. Since then, fuzzy
systems continued to receive more and more attention from a wide section of the
research community. The main advantages of fuzzy systems consist of the

following:

1. Fuzzy systems are interpretable (transparent). They include an explicit
knowledge representation in the form of linguistic ‘If-Then’ rules, which
can easily be understood and explained by humans to allow them to gain a

deeper insight into complex and ill-defined systems.

2. Fuzzy systems are capable of handling complex, nonlinear, and uncertain
problems and yet still able to exhibit robust behaviour. They have proven
to be universal approximators able to perform nonlinear mappings between

inputs and outputs [Wang & Mendel 1992].
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3. Fuzzy systems are relatively easier to design and relatively inexpensive to

implement.

5.1.2 Fuzzy Modelling

Fuzzy modelling is a systems modelling with a fuzzy rule-based system. It is an
approach that allows to model systems using a descriptive language (linguistic ‘If-
Then’ rules, for instance) based on fuzzy logic and on fuzzy quantisation.
Currently, fuzzy modelling is increasingly becoming a serious contender for the

modelling of complex, nonlinear, and uncertain systems.

There are two complementary approaches in fuzzy modelling, namely knowledge
acquisition from human experts and knowledge discovery from data. The
knowledge acquisition approach lends itself to the design fuzzy models based on
existing expert knowledge. This is the natural and classical method, however, it is
not a trivial task for experts are not always available, and even if they are
available, the cost of obtaining such expert knowledge may sometimes be too high
or the knowledge itself is not consistent, and/or complete. On the other hand,
knowledge discovery from data, i.e. ‘data-driven’ fuzzy modelling, will enable one
to identify the structure and the parameters of fuzzy models from numerical data
automatically. This can help to overcome the limitations of the ‘knowledge
acquisition’ approach. The last two decades have witnessed an explosive growth in

both the generation and the collection of data. By analysing and summarising these
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data, one can extract knowledge from such data-driven information. Experts may
possess parts of the knowledge, but the other parts are totally new to humans.
From this viewpoint, data-driven fuzzy modelling can be viewed as a process of
discovering new knowledge expressed in the form of linguistic fuzzy statements

(rules).

5.1.3 Data-Driven Fuzzy Modelling

Broadly, the design of a data-driven fuzzy system can be a two-step process. The
first step consists of generating a crude approximation of the fuzzy model that
describes the system. This can be achieved via two methods: The first method uses
a grid-partitioning of the multidimensional space. This partitioning can be
generated from data or obtained from experts; it defines a number of fuzzy sets for
each variable, which are interpreted as linguistic labels and shared by all the rules.
Meanwhile, a training procedure optimises the grid structure, as well as the rule
consequences, according to data samples. In contrast, the second method includes
data clustering (grouping). In this method, the training data are gathered into
homogeneous groups and a rule is associated to each group. The fuzzy sets are not

shared by all the rules, but each set is mapped into one particular rule.

The second step consists of optimising the initial fuzzy sets and the initial rules to

lead to a finally retained fuzzy model. The main techniques for this work include

linear least-squares, nonlinear optimisation methods and machine learning based
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techniques. Two of the most successful attempts to implement these learning and
optimisation methods relate to neuro-fuzzy systems [Jang et al. 1997; Nauck et al.
1997; Fuller 1999] and evolutionary fuzzy systems [Pedrycz 1997; Sanchez et al.

1997; Cordon et al. 2001].

Neuro-fuzzy systems view fuzzy systems as a particular type of neural networks
and employ related neural networks’ training techniques, such as the Back-
Propagation algorithm (BP) [Rumelhart et al. 1986], to improve the parameters of
the fuzzy sets. On the other hand, evolutionary fuzzy systems employ evolutionary
algorithms, such as Genetic Algorithms (GAs) and Evolution Strategies (ESs), to
improve the initial fuzzy systems, because of their capability for searching
relatively large multidimensional solution spaces. Unlike neuro-fuzzy systems,
evolutionary fuzzy systems are able to realise improvements not only on the
parameters of the fuzzy sets but also on the structure of the fuzzy rules. Moreover,
multi-objective optimisation techniques within the evolutionary algorithms can
prove very helpful in studying the trade-off between the accuracy and the
interpretability of fuzzy models. Using a multi-objective evolutionary algorithm,
the accuracy and the interpretability of models can be incorporated into several
objectives in order to evaluate the final multiple Pareto-optimal solutions, each of

which represents an individual fuzzy model.
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5.1.4 Accuracy and Interpretability

Fuzzy modelling may be conducted under two contradictory requirements:
accuracy (significance) and interpretability (transparency). Accuracy is easy to
come to grips with as it relates to the capability of representing the real system
faithfully, this being a fundamental requirement for models. In contrast,
interpretability means that human beings are able to understand a fuzzy system’s
behaviour by inspecting its associated rule-base(s). It is crucial in the field of data
mining and knowledge discovery where information should be extracted from data
bases and represented in a comprehensible form, or for decision support systems

where the reasoning process should be transparent to the users [Mikut et al. 2005].

Whereas the definition of accuracy in a certain application is straightforward, the

definition of interpretability is rather problematic. Most researchers and

practitioners should agree on interpretability involving the following aspects

[Mikut et al. 2005]:

1. The number of rules should be small enough to be comprehensible.

2. The rule-base should be formed from the rules describing the relevant local

relationships. Furthermore, the rules should be consistent (similar premises

lead to similar conclusions).

3. The rule premises should be simple in structure and contain only a few
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features (input variables).

4. The linguistic terms should be intuitively comprehensible. The form and
parameters of the membership functions should correspond to the

understanding of the linguistic expressions.

5. The inference mechanism should produce technically and intuitively

correct results.

It is obvious that the ideal scenario would be for the model to satisfy both the
accuracy and the interpretability criteria to the highest possible degrees but, since
these are contradictory attributes, this scenario is generally not possible. In recent
years, many researches have been devoted to the study of the trade-offs between
accuracy and interpretability [Guillaume 2001; Jimenez et al. 2001; Ishibuchi &

Yamamoto 2003; Wang ef al. 2005; Kim et al. 2006; Gonzalez et al. 2007].

5.1.5 Optimisation of Fuzzy Modelling

From the viewpoint of optimisation, the design of a fuzzy model can be formulated
as a search problem in a multidimensional space where each solution represents a
possible fuzzy model with different rule structures, membership functions, and
related parameters. According to specific performance criteria given by the

designer, the performance of different fuzzy models forms a hypersurface. Thus,
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designing an optimal fuzzy model can be considered as finding the optimal

location of this hypersurface.

In most of the papers relating to fuzzy modelling problems which were published
in 1990’s, only the parameters of fuzzy models were optimised while the model
structure itself was fixed [Horikawa er al. 1992; Jang 1993]. Since then, some
other approaches [Setnes et al. 1998; Yen et al. 1998; Jin 2000; Jimenez et al.
2001; Ishibuchi & Yamamoto 2004; Wang ef al. 2005] have been developed, in
which both the parameters and the model structures were improved simultaneously

by encoding all the information simultaneously into the solutions.

The fuzzy modelling approaches [Horikawa et al. 1992; Jang 1993; Cordon et al.
2001] that optimise the parameters can only be viewed as optimising the following
single-objective problem:

Maximise: Accuracy(S), (5.1)

where Accuracy(S) is an accuracy measure of the fuzzy system.

Figure 5-1 illustrates this optimal search. In this figure, the search direction is
represented by the arrow; a single fuzzy system, which is represented by a green
dot, is obtained as the final solution by maximising the accuracy. It can be seen
that the final solution performs well in ‘accuracy’ but badly in ‘interpretability’,
because accuracy improvements are usually achieved at the expense of
interpretability. More specifically, accuracy improvements often increase the

complexity of systems and tune the topology of fuzzy sets so that they become

112



Chapter 5: FM-HCMO

overlapping.
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Figure 5-1.  Modelling within the context of a Cartesian representation between
accuracy and interpretability — the accuracy maximisation

In the approaches proposed in late 1990’s [Setnes ef al. 1998; Yen et al. 1998; Jin
2000], although both accuracy and interpretability were considered, these two
objectives were combined to form one objective and the final solution will still
represent a single fuzzy rule-based system. These studies can be viewed as
optimising the following weighted sum of objective functions:

Maximise: w; x Accuracy(S) + wy X Interpretability(S), (5.2)
where Accuracy(S) and Interpretability(S) are the accuracy and the interpretability

measures of the fuzzy system; w; and w, are objective weights.
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As shown in Figure 5-2, a single fuzzy model is obtained as the final solution by
maximising the weighted sum of the objective functions. The search direction
represented by the arrow in Figure 5-2 is specified by the weight vector [w), ws].
In this situation, the specification of the weight vector is not easy and is problem-
dependent. Thus, the decision maker must have prior knowledge of the priority of
each objective before aggregating them into one single objective. If multiple
solutions are needed, different priorities need to be assigned and the same problem

needs to be solved again.
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Figure 5-2.  Modelling within the context of a Cartesian representation between
accuracy and interpretability — the optimisation of the weighted sum
of objective functions

In recent years, the trade-off between the accuracy and the interpretability of fuzzy

114



Chapter 5: FM-HCMO

systems has been the subject of many published papers [Jimenez et al. 2001;
Ishibuchi & Yamamoto 2004; Wang et al. 2005]. Because of such conflicting
objectives, the fuzzy modelling problem has always been viewed as a multi-
objective optimisation problem by its very nature. To this effect, multi-objective
optimisation techniques, especially those allied to multi-objective evolutionary
algorithms, have been considered as possible candidates for fuzzy modelling.
These studies can be viewed as being equivalent to the following two-objective
problem:
Maximise: Accuracy(S) and,

Maximise: Interpretability(S). (5.3)

Figure 5-3 illustrates the multi-objective optimisation search process for a number
of fuzzy models with various accuracy-interpretability trade-offs. The search
direction can be in every feasible direction. The finally obtained solutions are
called multiple Pareto-optimal (non-dominated) solutions. After obtaining these
final solutions (models), the decision maker should be able to choose the most
appropriate solution for the current situation. For example, some users may prefer
a ‘simpler’ model with a high interpretability; other may prefer a ‘more complex’
one with a high accuracy. Moreover, the knowledge of several other Pareto-
optimal solutions can also be useful for later use, when the current situation has

changed and a new solution is required.
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Figure 5-3.  Modelling within the context of a Cartesian representation between

accuracy and interpretability — the multi-objective optimisation

5.1.6 Features of the Proposed Modelling Methodology

The main aim of this chapter is to develop a systematic fuzzy modelling approach,

which can be used for constructing a set of fuzzy models from sample data. The

important features of this approach will consist of the following:

Mamdani fuzzy models (linguistic fuzzy models) are used in the proposed
approach. Most recent research in the field of fuzzy modelling concentrated
extensively on the use of Takagi-Sugeno-Kang (TSK) [Takagi & Sugeno

1985] fuzzy models because of their high accuracy. But compared to
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Mamdani fuzzy models, TSK models are less transparent.

2. A hierarchical clustering algorithm, which is an agglomerative complete-
link clustering algorithm, is employed to generate the initial fuzzy system.
To reduce the computational complexity of this normally involved
algorithm, a new version agglomerative complete-link clustering algorithm
is devised. The algorithm should prove to be more efficient and perform
better than other well-known clustering algorithms, such as the well-
known fuzzy c-means (FCM) clustering algorithm [Dunn 1973; Bezdek

1981].

3. A data selection mechanism is proposed for selecting the appropriate data

for training the models.

4. Both the accuracy and the interpretability of fuzzy models are included in
the list of objective functions to be optimised. In this work, a multi-
objective optimisation mechanism, which is based on the previously
developed efficient optimisation algorithm nMPSO (see Chapter 4), is
proposed and employed in order to obtain a set of Pareto-optimal fuzzy

models with different accuracy and interpretability levels.

5. The proposed fuzzy modelling approach is developed to solve not only
low-dimensional modelling problems but also high-dimensional modelling

problems. The fuzzy modelling of high-dimensional systems is always
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challenging because the model complexity grows exponentially as the input
dimension increases. In this proposed approach, an efficient hierarchical
clustering algorithm and a data selection mechanism are designed and a
high-performance evolutionary computation based algorithm, nPSO (see
Chapter 4), is also employed. All these paradigms cooperate together to

tackle the high-dimensional modelling problem efficiently.

5.2 The Framework of the Proposed Modelling Methodology

Figure 5-4 shows the flow chart of the proposed fuzzy modelling approach. This
approach is named throughout the Fuzzy Modelling approach with a Hierarchical
Clustering algorithm and a Multi-objective Optimisation mechanism (FM-
HCMO). It can be divided into several parts and the execution steps can be

described as follows:

1. Data clustering: A data clustering algorithm, the agglomerative complete-

link clustering algorithm, is employed to process the training data in order

to obtain the information of clusters.

2. Initial model construction: The information about clusters is then used to

construct an initial fuzzy model.
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Figure 5-4. A framework for the proposed fuzzy modelling approach

3. A crude data selection: The information about clusters is also used for the

selection of the training data. Following this operation, a representative

training data set is selected.

4. Accuracy optimisation and missing data selection: In this step, the initial

fuzzy model is improved in terms of accuracy and a further representative

training data set is selected. After this step, an accurate fuzzy model is
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obtained and a reduced training data set is formed.

5. Multi-objective optimisation: By using a multi-objective optimisation
algorithm nMPSO, the previous fuzzy model is optimised according to the
accuracy and interpretability objectives. Finally, a set of Pareto-optimal

fuzzy models should be obtained.

5.3 Data Clustering and Initial Fuzzy Model Construction

5.3.1 Data Clustering

5.3.1.1 Basic Concepts

Clustering is an unsupervised form of classification of data (patterns, observations,
or feature vectors) into different clusters (groups). Each cluster consists of data
that are similar between themselves and dissimilar to those data of other clusters.
In other words, the data in one cluster share some common traits, which are often
related to some defined distance measure. On the other hand, data clustering can
also be viewed as a process of modelling data by its clusters. Representing many
data by fewer clusters may lead to the loss of some details, but it achieves a

simplification for data analysis.

An example of data clustering is depicted in Figure 5-5. In this example, the input

120



Chapter 5: FM-HCMO

data are shown in Figure 5-5(a); the desired clusters are shown in Figure 5-5(b);

the data points belonging to the same cluster are given the same label.

(a) (b)

Figure 5-5. Examples of data clustering

It is important to get to grips with the difference between data clustering
(unsupervised classification) and discriminant analysis (supervised classification)
[Jain et al. 1999]. In supervised classification, a collection of labelled (pre-
classified) patterns are provided; the problem is to label a newly encountered and
unlabeled pattern. In this case, the given labelled patterns are used to learn the
descriptions of classes which in turn are used to label a new pattern, while in the
case of data clustering, the problem is to group a given collection of unlabelled
patterns into meaningful clusters. In data clustering, labels are also associated with
clusters, but these category labels are data driven; that is, they are obtained solely

from the data.

In data clustering techniques, similarity is fundamental to the definition of a
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cluster. The measure of similarity (distance measure) will influence the shape of
the clusters [Jain et al. 1999]. Because of the variety of feature types and scales,
the distance measure must be chosen carefully. Generally, the Euclidean distance

(2-norm distance) is the most common distance measure and is widely used.

In recent years, data clustering has become a common technique for statistical data
analysis and has been used in many fields, including data mining, machine

learning, pattern recognition and image analysis.

5.3.1.2 Types of Data Clustering Algorithms

Traditionally, clustering techniques have always been broadly divided into the
hierarchical and the partitional categories. Hierarchical clustering is further
subdivided as agglomerative or divisive. In hierarchical clustering, the clusters are
built gradually as crystals are grown. More details about hierarchical clustering

will be given in the next section.

On the other hand, partitional clustering infers the clusters directly and it
determines all the clusters at once. In doing so, it either tries to discover clusters by
iteratively relocating data between subsets, or attempts to identify them as areas
which are highly populated with data. Algorithms of the first type (partition
relocation clustering) concentrate on how well data fit into their clusters and tend

to build clusters of proper convex shapes. Partitional clustering algorithms of the
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second type (density-based clustering) try to discover dense connected components

of data, which are flexible in terms of their shapes.

Hierarchical clustering based algorithms are more versatile than partitional
clustering algorithms, whereas a typical partitional algorithm works well only on
the data sets which include isotropic clusters [Nagy 1968]. For partition relocation
clustering algorithms, they are simple and fast, but not accurate enough. For
instance, they can not yield the same result with each run, since the resulting
clusters depend on the initial random assignments. For density-based clustering
algorithms, they usually work with low-dimensional data of numerical attributes,

known as spatial data.

5.3.1.3 Hierarchical Clustering Algorithms

Hierarchical clustering builds a cluster hierarchy or, in other words, a tree of
clusters [Berkhin 2006]. Every cluster node contains child clusters and the sibling
clusters classify the data points covered by their common parent. This tree can be
cut at a desired similarity level to form a partition (clustering), which is identified
by completely connected components in the corresponding tree. This approach

allows exploring data on different levels of granularity.

For example in Figure 5-6 [Maksim 2006], suppose the data {a}-{f} are to be

clustered, and the Euclidean distance is the distance measure. The hierarchical
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clustering dendrogram is as shown in Figure 5-7 [Sideris 2005]. For hierarchical
clustering, cutting the tree at a given height (similarity) will give a clustering at a
selected precision. In this example, cutting after the second row will yield the
clusters {a} {bc} {d e} {f};and cutting after the third row will obtain the clusters
{a} {bc} {d e f}, which is a coarser clustering, with a smaller number of larger

clusters.

Generally, hierarchical clustering methods can be categorised into agglomerative
and divisive approaches. An agglomerative clustering method starts with one-point
(singleton) clusters and recursively merges two or more most appropriate clusters.
A divisive clustering method starts with one cluster of all data points and
recursively splits the most appropriate cluster. The merging or splitting process
continues until a stopping criterion (frequently, the requested number of clusters)

1s achieved.

Figure 5-6. Data samples of a clustering problem

124



Chapter 5: FM-HCMO

Figure 5-7.  The hierarchical clustering dendrogram of the data samples shown
in Figure 5-6

The hierarchical agglomerative clustering algorithm can be described as follows

[Jain et al. 1999]:

1. Compute the proximity matrix containing the distance between each pair of

patterns. Treat each pattern as a cluster.

2. Find the most similar pair of clusters using the proximity matrix. Merge

these two clusters into one cluster. Update the proximity matrix after this

merging operation.
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3. [If the stopping criterion is achieved, then stop; otherwise, go to Step 2.

In the light of the above, a variety of agglomerative algorithms can be designed. In
particular, most hierarchical clustering algorithms can be divided into three
categories, the single-link [Sneath & Sokal, 1973], complete-link [King 1967], and
minimum-variance [Ward 1963; Murtagh 1984] algorithms, in which the single-
link and complete-link algorithms are most popular. These algorithms differ in the
way they characterise the similarity between a pair of clusters. For instance, in the
single-link method, the distance between two clusters is the minimum of the
distances between all pairs of patterns drawn from the two clusters (one pattern
from the first cluster, the other from the second). In the complete-link algorithm,
the distance between two clusters is the maximum of all pair wise distances
between the patterns in the two clusters. In either case, two clusters are merged to

form a larger cluster based on the minimum distance measure.

In [Baeza-Yates 1992], it is explained that the complete-link algorithm produces
tightly bound or compact clusters. The single-link algorithm, by contrast, suffers
from a chaining effect [Nagy. 1968]. It has a tendency to produce clusters that are
straggly or elongated. From a pragmatic viewpoint, it has been observed that the
complete-link algorithm produces more useful clusters in many applications than

the single-link algorithm [Jain & Dubes 1988].
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5.3.1.4 The Proposed New Agglomerative Complete-Link Clustering

Algorithm

As described in the previous section, the agglomerative complete-link clustering
algorithm produces tight bounds and compact clusters. This characteristic makes
the agglomerative complete-link algorithm more suitable for modelling purposes.

Thus, this algorithm is employed to build the initial fuzzy model in this work.

However, hierarchical clustering algorithms, in general, suffer from a problem of
high computational complexity. For example, if the number of training data is N,
the computational complexity will be O(Nz). To reduce the computational
complexity of the original agglomerative complete-link algorithm, the following

methodology is adopted:

1. Define the desired number of clusters N, and a threshold Np.x. This
threshold is an integer number used to estimate whether the training data
set is too large for computation. To ensure that this method works

adequately, the threshold is set as Ny, > N 12
2. If N = Nmax, then apply the normal agglomerative complete-link clustering
algorithm to classify the training data into N, clusters, and terminate the

whole clustering process; If N> Ny, go to Step 3.

3. Divide the training data set randomly and equally into i groups. i = Ceil (N
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/ Nmax), Where Ceil(x) is a function that rounds off x to the nearest integer

towards +x.

4. For every group out of i groups, classify the N/i training data into j sub-
clusters using the normal agglomerative complete-link algorithm, where j =
Floor (Nmax/ i) and Floor(x) is a function that rounds off x to the nearest

integer towards -:%:.

5. For every sub-cluster out of i%j clusters, select the centric datum, which is
closest to the cluster’s centre among all the data in this sub-cluster, as the

representative data.

6. Combine all the representative data to form a representative data set, in

which the number of data is iXj and smaller than Npmax.

7. Apply the normal agglomerative complete-link algorithm to clustering the

representative data into N, clusters.

8. Replace each representative datum with the original training data in its

corresponding sub-cluster.

If the value of Nyax is smaller than N, the computational complexity of the

proposed method becomes O(N*XNp,x), Where O(N3/ 2) < O(N*Nmax) < O(Nz). It can

be seen that, by designing an adequate threshold value, the computational
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complexity of this clustering method is as low as O(N*?). From this viewpoint, the
proposed method should improve the clustering efficiency greatly; thus it will be

used in the modelling process throughout.

5.3.2 Initial Fuzzy Model Construction

By using the agglomerative complete-link clustering algorithm, a predefined
number of clusters can be obtained from the training data. The information that
these clusters will provide is then used to construct an initial fuzzy model. In this
modelling approach, one cluster corresponds to one fuzzy rule; the centres of
membership functions are defined using the information of their corresponding
clusters’ centre positions; other parameters relating to the membership functions
are defined under the principle that one membership function must cover all the

training data, which are included in its corresponding cluster.

5.3.2.1 An Example of Constructing the Initial Fuzzy Model

Figure 5-8 shows an example of how to construct initial fuzzy model from the

information of clusters:

1. One fuzzy rule corresponds to one cluster. For instance, for the right upper

cluster in Figure 5-8, the corresponding fuzzy rule should be: IF input is
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A,*, THEN output is 4.

2. The membership functions’ centres correspond to the clusters’ centres. As
shown in Figure 5-8, the green dashed-dotted lines represent the centres of

clusters and they are used to define the membership functions’ centres.

3. The membership functions’ widths correspond to the clusters’ widths,
which are shown as red dashed lines in Figure 5-8. For the parameters that
relate to the covering range of membership functions, they are defined

under the clusters’ width restriction.

Figure 5-8. An example of the initial fuzzy model construction
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5.3.2.2 Fuzzy System Definition and Notation

A generic multi-input and single-output (MISO) fuzzy model is represented as a
collection of fuzzy rules in the following form:

Rule Ry IF x; is A;" and x, is 45" ... and xp is Ap", THEN y is By,
where Ry is the label of the kth fuzzy rule; x =[xy, x2, ..., xD]T e UxUyx...xUp
are input linguistic variables; Af are the antecedent fuzzy sets of the universes of
discourse U;, where [ =1, 2, ..., D; y <V 1is the output linguistic variable; and By

is a consequent fuzzy set of the universe of discourse V.

In this work, Gaussian functions are chosen as the membership functions (without

any loss of generality), i.e.:

(x-¢)*

fen

, (5.4)

#,(x)  exp| -

where 14 is the membership function of x belonging to the fuzzy set 4; parameters
c and n represent the centre and the width of this membership function, where « is
a positive number. Besides this, the product inference engine and the centre
average defuzzification method [Wang 1997] are also implemented in the fuzzy

systems of this work.

5.3.2.3 The Fuzzy Model Extraction Approach

Assume a modelling problem being based on a collection of (D+1)-dimensional
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input-output (D-input and 1-output) training data {p1, pa, ..., Pn}. Pm = [x1", X2",

e xD’”,ym]T, where m =1, 2, ..., N; N is the number of training data.

By using the agglomerative complete-link clustering algorithm, a predefined
number of clusters can be obtained from the training data. Let C, represent the nth
cluster and C, = {pu1, Pn2, ---» Punpmy}, Where n =1, 2, ..., N, and NDn is the

number of data in the nth cluster.

In this modelling approach, the rule-base is obtained and is composed of N, fuzzy

rules. The fuzzy rule corresponding to the cluster C, can be represented as follows:
R, IF x;is A\" and x, is A," ... and xp is Ap", THEN y is B,.

where n =1, 2, ..., N, x = [x1, X2, ..., xD]T are input linguistic variables; 4" are

antecedent fuzzy sets, where i = 1, 2, ..., D; y is the output linguistic variable; and

B, is a consequent fuzzy set.

Considering one fuzzy set 4;", the Gaussian membership function of 4," includes

two parameters ¢;" and n;". ¢;" can be calculated using the following equation:

NDn )
o > /NDn : (5.5)

J1

It is worth nothing that the membership function should cover all the training data
contained in its corresponding cluster. In other words, for every data included in
this cluster, its membership degree should be high enough to ensure the data maps

into this rule. Based on this requirement, the membership parameter ;" is designed
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to satisfy the following equation:

. ) f Ir". (xr/j Cr/ 2 "I"I
min{;t y (xl”’)) min| exp = ~————"—
joot A ! J | |\ (D-i ) z.;,l

Th, (5.6)

where j = 1, 2, ..., NDn. This equation means that, for all the data included in the
nth cluster, the membership degrees are higher than a threshold 74. The value of
Th is set to 0.5 in this work without any loss of generality. The previous equation

can be rewritten as follows:

nj n
. max(x” —c

" J-In(Th)

where j =1, 2, ..., NDn. Using this equation, the parameter ;" is determined.

(5.7)

5.3.3 Experimental Studies

5.3.3.1 Comparison of Clustering Algorithms for Fuzzy Modelling Problems

For this comparison study, the fuzzy c-means (FCM) [Dunn 1973; Bezdek 1981]
clustering algorithm, which has been used in many fuzzy modelling problems
[Kim et al. 1997, Emami et al. 1998; Chen & Linkens 2001], and the
agglomerative complete-link clustering algorithm proposed in this chapter, were

applied to solve three modelling problems.

The first problem consists of approximating the following two-input and single-

output nonlinear function, which is taken from [Sugeno & Yasukawa 1993]:
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y= (L 4x50), (5.8)
where 1 < x1, x = 5. The input data set consists of 50 data points [x1k, xzk]T, where

k=1,2, ..., 50, and they are the same as the data points described in [Sugeno &

Yasukawa 1993].

The second problem aims to model a mechanical property of alloy steels, the
reduction of area (ROA). The ROA data include 15 inputs and one output and it is
considered to be a high-dimensional problem for modelling purposes. In this

experiment, 250 ROA data are used for modelling.

The third problem relates to modelling another mechanical property of alloy steels,
the ultimate tensile strength (UTS). This problem is also a high-dimensional
problem and includes 15 inputs and one output. In this experiment, 1000 UTS data

are used in the modelling process.

In these experiments, the clustering algorithms were applied first to generate a
number of clusters. This cluster information was then used to construct a set of
simple Mamdani-type fuzzy systems using the approach described in Section
5.3.2.3. From the performance of these fuzzy models, one can judge the merits of

all the clustering techniques.

In order to compare the performance of the clustering algorithms across different
levels of granularity, the experiments were carried-out using various settings of the

cluster number (fuzzy rule number). For each experiment, the average result of 10
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runs is regarded as the final outcome.

To evaluate the performance of fuzzy models, the accuracy measure, represented
by the Root Mean Square Error (RMSE), is used throughout. It is described as

follows:

RMSE (5.9)

where y," is the measured output data and y/ is the predicted output data, [ =1, 2,

..., NV; N is the total number of data.

Tables 5-1, 5-2 and 5-3 list the modelling performance using these two clustering
methods for the function approximation, ROA modelling and UTS modelling

problems, respectively.

From Table 5-1, it can be seen that, for this function approximation problem, the
agglomerative complete-link clustering algorithm performs better than FCM in all
the situations, except when the cluster number is 4. Furthermore, with the increase
of the cluster number, the modelling performance of the agglomerative complete-

link algorithm is improved significantly compared to FCM.
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Table 5-1. Comparative results of different clustering algorithms for Mamdani
fuzzy systems construction with the function approximation problem

Number of Clusters

RMSE of 50 Training Data

(Number of Rules) FCM Agglomerative Cgmplete-
link Clustering
4 0.5600 0.5617
6 0.4855 0.4443
8 0.4482 0.3854
10 0.3721 0.3305
15 0.3772 0.2003
20 0.3172 0.1773
30 0.2323 0.1097

Table 5-2. Comparative results of different clustering algorithms for Mamdani
fuzzy systems construction with the ROA modelling problem

Number of Clusters
(Number of Rules)

RMSE of 250 Training Data (%)

Agglomerative Complete-

FCM link Clustering
) 6.1171 6.3490
. 6.1117 6.1331
0 6.1588 6.0361
s 6.2054 37806
0 6.0942 32121
% 6.0115 4.8238
% 5.9062 3.6695
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Table 5-3. Comparative results of different clustering algorithms for Mamdani
fuzzy systems construction with the UTS modelling problem

RMSE of 1000 Training Data (MPa)
Number of Clusters

(Number of Rules) Agglomerative Complete-

FCM . )

link Clustering

8 136.3927 171.8730

10 135.5494 139.7599

15 136.5325 135.0249

20 137.2658 121.8931

30 139.3152 113.1180

50 138.6608 96.9054

100 137.4576 63.5138

From Table 5-2, it can be seen that, when modelling the ROA problem, the
agglomerative complete-link algorithm performs better than FCM in most of the
situations, while FCM performs better when the cluster number is 6 or 8.
Furthermore, with the increase of the cluster number, the modelling performance
of the agglomerative complete-link algorithm is improved significantly, as

compared to FCM.

From Table 5-3, it can be seen that, for this UTS modelling problem, the
agglomerative complete-link algorithm performs better when the cluster number is
relatively large (15 to 100); and FCM performs better when the cluster number is
relatively small (8 to 10). With the increase of the cluster number, the modelling
performance of the agglomerative complete-link algorithm is still improved

greatly, when compared to FCM.
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From these above experiments, it can be concluded that the proposed hierarchical
clustering algorithm can lead to better clustering information for fuzzy modelling

problems than FCM and therefore it is more suitable for fuzzy modelling purposes.

5.3.3.2 Effects of Various Weights of Distance Measure

For a clustering algorithm, the distance measure should be defined first. Generally,
the distance measure between two data points p,, = [x1”, x2", ..., xp", Vu]" and p, =

[x1", x2", ..., xp", ya]" can be defined using the following equation:

Dis ~ JZ (v G = )F + by 2 (0, = )F (5.10)

il
where wy; = [wn, wp, ..., wip] is the vector of the input distance weights and wy is

the output distance weight.

The distance weights wy, wp, ..., wp and wp can influence the clustering
compactness in different dimensions and thus influence the generated fuzzy
model’s sensitivity to different input variables. Specifically, one high weight value
means that the data in this dimension are more important than those data in other
dimensions with small weight values. Normally, a high weight value for the output

data is suitable for the modelling purpose.

Three experiments were carried-out to test the influence of different distance

weights in fuzzy modelling. These experiments are based on the proposed
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agglomerative complete-link algorithm and use the same training data as those
experiments in the previous section (Section 5.3.3.1). In the first experiment, the
fuzzy systems (with 8 rules) are generated from 50 function approximation data. In
the second experiment, the fuzzy systems (with 15 rules) are elicited from 250
ROA data. In the third experiment, the fuzzy systems (with 30 rules) are generated
using 1000 UTS data. For these three experiments, different distance weights for
input and output data are tested. The performances of the generated fuzzy models

are shown in Tables 5-4, 5-5 and 5-6.

Table 5-4. Comparative results of different distance weights for Mamdani fuzzy
systems (with 8 rules) construction with the function approximation
problem; the bold values represent the best results.

Distance wr=1 wr=1 wr=1 wr wr=1
Weights wo = 0.25 wo = 0.5 wo =0.75 wo = wo=1.5
RMSE of 0.5605 0.5175 0.5240 0.3854 0.3958
50 Data

Distance wr=1 wr=1 wr=1 wr=1 wr=1
Weights wo =2 wo =2.5 wo =3 wo=4 wo =15

RMSE of 0.3712 0.3673 0.4347 0.4869 0.4562
50 Data

Distance wr= wr=1 wr=1 wr= wr=
Weights wo=6 wo="17 wo = wo=9 wo = 10

RMSE of 0.4577 0.4755 0.4755 0.5109 0.5138
50 Data
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Table 5-5. Comparative results of different distance weights for Mamdani fuzzy
systems (with 15 rules) construction with the ROA modelling
problem; the bold values represent the best results.

Distance wr=1 wr=1 wr=1 wr= wr=1

Weights wo=0.25 wo=0.5 wo=0.75 wo = wo=1.5

RMSE of

250 Data 5.9889 6.0353 6.0831 5.7806 5.0042
(%)

Distance wr=1 wr=1 wr=1 wr= wr=

Weights wo =2 wo =2.5 wo =3 wo=4 wo =15

RMSE of

250 Data 4.8186 4.1899 4.3433 4.1449 4.2940
(%)

Distance wr=1 wr=1 wr=1 wr=1 wr=1

Weights wo=6 wo="17 wo wo=9 wo = 10

RMSE of

250 Data 4.7766 4.6331 4.5474 4.3009 4.5514
(%)

Table 5-6. Comparative results of different distance weights for Mamdani fuzzy

systems (with 30 rules) construction with the UTS modelling
problem; the bold values represent the best results.

Distance wr=1 wr=1 wr=1 wr= wr=1
Weights wo = 0.25 wo = 0.5 wo =0.75 wo = wo=1.5

RMSE of

1000 Data 109.6063 110.1273 108.4278 113.1180 113.1682
(MPa)

Distance wr=1 wr=1 wr=1 wr=1 wr=1
Weights wo =2 wo = 2.5 wo = wo =4 wo =

RMSE of

1000 Data 97.4785 81.9490 86.8525 81.2002 80.7164
(MPa)

Distance wr=1 wr=1 wr=1 wr=1 wr=1
Weights wo=06 wo = wo = wo = wo =10

RMSE of

1000 Data 83.4777 63.2239 80.6791 84.5728 84.9728
(MPa)

From these tables, it can be seen that a large distance weight for the output

variable is more suitable for fuzzy modelling; it is worth nothing that the weight
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should not be too large. In the first experiment, good performances are observed
when wo lies in the range between 1 and 2.5 and the best performance is registered
when wp is 2.5. In the second experiment, the model performs well when wy is in
the range from 2.5 to 5 and the best performance appears when wy is 4. In the third
experiment, good performances can be observed when wy is between 4 and 8 and
the model performs best when wg is 7. It is suggested that, for low-dimensional
problems, wp value should be selected between 1 and Dim, where Dim is the
dimension number of the modelling problem. For high-dimensional problems, wo

value should be selected between 2 and Dim/2.

5.4 Accuracy Optimisation and Data Selection

5.4.1 Accuracy Optimisation

The initial fuzzy model elicited by a clustering method generally shows a poor
performance in accuracy. To make the initial fuzzy model meaningful and

effective for application, one should concentrate on the improvement of accuracy.

To the question of why not use a multi-objective optimisation for optimising both
accuracy and interpretability, one would answer that at this stage as follows: if a
multi-objective optimisation is employed, then this would inevitably increase the
computational complexity and render the optimisation inefficient. Another reason

for using accuracy optimisation at this stage is that this procedure can cooperate
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with a data selection approach to choose the most representative training data set.

In this work, the single objective evolutionary algorithm, nPSO (see Chapter 4), is
employed. This algorithm is applied here to search for the optimal parameters of
the membership functions in combination with the performance index of the Root

Mean Square Error (RMSE).

5.4.1.1 The Validation Mechanism

To avoid the problem of overtraining (or overfitting) [Tetko ef al. 1995] in the
optimisation process, a validation mechanism is designed for this phase. One part
of the data is separated and is used for validation only. In particular, the validation
mechanism works as follows: In the optimisation process, after a certain number of
function evaluations (NVEv), the model will be evaluated once, using the validation
data; Compared with the previous model performance (which is 7x/NEv function
evaluations before, where 7T is a small integer), if the performance of the present
model on the validation data is improved, then the optimisation will be allowed to

continue, otherwise, the optimisation procedure will be terminated.

The following is an example of how this validation mechanism works. In the
previously mentioned UTS modelling problem (15-input and 1-output), there are a
total of 2820 available data vectors and 10% of the data are separated and used for
validation. For this example, NEv = 1000 and 7 = 5. Thus, in the optimisation

process, after every 1000 function evaluations, the fuzzy model is examined once,
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using the validation data. If the performance of the present model is worse than
that of the former model (5000 function evaluations in the past), the optimisation
process will be terminated. The model that performs best on the validation data is
viewed as the optimisation solution. Figure 5-9 shows the model performance
throughout the whole optimisation process based on the validation data. At the
time that is identified as a red square in this figure, the RMSE of the validation data
is larger than that at the time of 5000 function evaluations before, which is shown
as a green round mark in the figure. Following the principle of the validation
mechanism, the optimisation algorithm stops at the time of the square mark and

the solution at the time of the round mark is the final solution for this optimisation.

?D T L] T T L] T T T
RMSE
O Stop Point
B5 F ©  Best Solution |4
60 - 4
%
E 55 = a |
@
50 - Al 4
45 - 4
—B~— e — |
AD L | 1 L L A L L
0 1 2 3 4 5 & i 8 a
Number of Function Evaluations <10t

Figure 5-9. RMSE of the validation data in the optimisation process
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5.4.2 Data Selection

It 1s well-known that more training data will not necessarily lead to a better
performance for data-driven models. Normally, one can identify two typical

scenarios:

1. The training data are not enough: There are only a few data points (vectors)
available for model construction. In this situation, more training data will
provide more information to the modelling algorithm and the constructed

model will be more accurate.

2. The training data are abundant: These data points are concentrated in a
small area of the input/output space. In this situation, if all the data are used
in the training phase, then the extracted model will be very sensitive in the
areas that include these training data and not sensitive in the areas that
include only a few of these training data, which means that the extracted
model will be accurate in some areas but not accurate in other areas. To
avoid this situation, it is required to select parts of these data that are

representative and make use of them in the training phase.

Scenario 2 can also be regarded as a problem of different data densities in different
areas. The areas with high data densities will be trained well and the areas with
low data densities will be trained less so. To balance the training in different areas,

one needs to reduce the training data in the areas with high data densities and some
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of the most representative data should be held and used later.

Obviously, another important advantage of the data selection mechanism is that it
will save effort and time for training, since the data selection will reduce the size

of the training data set.

5.4.2.1 Rough Data Selection

As already stated, the selected training data should be representatives of all the
training data. They should include all the important information on the training
data. From this viewpoint, the clustering technique may prove helpful. In data
clustering, all the data are classified into several clusters with different features. In
other words, the data in different clusters contain different information. Thus, the
representative data should be selected from each cluster. To balance the influence
of different clusters, the number of the selected data from each cluster should be

approximately equal.

For every cluster, the data with a minimal or maximal value in any dimension are
very important. They provide one with the information of the cluster boundaries.
The generated model using this type of data can avoid the problem associated with
generalisation. Therefore, these data should be included in the selected training

data set.
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In the previous initial fuzzy model extraction approach, the hierarchical clustering
algorithm has been employed. The clustering result can be applied to select the
training data directly and the clustering algorithm does not need to be executed

again.

In summary, this selection method can be described as follows: For every cluster,
the data including the minimal or maximal value in any one input or output
dimension are selected as the training data. If the data including the minimal or
maximal value in one particular dimension is more than one, only one data point
(vector) is randomly chosen and kept in the training data set. As a result, if the
number of clusters is N, and the dimension of the problem is D+1 (D-input and 1-
output), then the number of the selected training data will be less than

2XNX(D+1).

An experiment which consists of modelling the mechanical property UTS of steel
is described next. The UTS data include 15 inputs and one output, and the initial
number of fuzzy rules is set to 20. In this experiment, if the data selection method
were not to be used, the number of training data would be 2820. If the previous
described data selection method used them, the number of training data is reduced
to 448. Figure 5-10 shows the prediction results of all the training data and the
selected training data using the initial elicited fuzzy model. Comparing Figure 5-
10 (b) with Figure 5-10 (a), one can see that: first, the data distribution in Figure 5-
10 (b) is better than that in Figure 5-10 (a); second, the data in Figure 5-10 (b) may

be good representatives of the data in Figure 5-10 (a). In this case, the RMSE of all
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the training data is 88.72 MPa and the RMSE of the selected training data is 105.27

MPa.
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Figure 5-10. The initial fuzzy model’s predicted UTS versus measured UTS: (a)
all the training data (2820 data), (b) the selected training data (448
data)
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5.4.2.2 Missing Representative Data Selection

The training data selection method in Section 5.4.2.1 is able to find a set of
training data with some representative features, but it may still miss some
important data. First, if more than one datum includes the minimal or maximal
value in one specific input or output dimension, then only one datum is randomly
selected and retained for future use. The neglected data may however contain some
important information. Second, the data located inside the clusters, which do not
have any minimal or maximal value, are also likely to contain some useful

information for modelling.

Compared with the data that have already been selected, the missing data
representative must possess some different features. Thus, the prediction model,
which is trained based on the data that have already been selected, must be
inaccurate as far as the missing data are concerned. As a result, the following
method is proposed which is used to detect the missing representative data to be

added to the training data set:

1. Train the initial fuzzy model using the data selected by the method of

Section 5.4.2.1. This model does not need to be well trained.

2. Calculate the output prediction of all the available training data using the

trained model. Find a set of data with the biggest differences between the

predicted output value and the true output value.
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3. The data found in Step 2 are added to the training data set and the new

training data set is used to improve the existing fuzzy model.

Following the UTS modelling experiment in Section 5.4.2.1, the initial fuzzy
model is trained using the roughly selected training data. The nPSO optimisation
algorithm is used for model training with 20,000 function evaluations. Figure 5-11
shows the prediction results of all the training data and the selected training data
using the improved fuzzy model, respectively. From this figure, it can be seen that
even though this trained model performs very well for the selected training data, it
cannot predict some training data correctly out of all the possible training data,
which means that the selected training data set misses some important and
representative data including useful information for model construction. In this
case, the RMSE of all the training data is 47.70 and the RMSE of the roughly

selected training data is 47.65.

In the light of the above, the data selection method described in this section can be
applied to detect the missing representative data. As shown in Figure 5-12, the
circled data are some examples of the ones with the biggest differences between
the predicted output and the truly measured output. They are viewed as the missing

representative data and should be added to the selected training data set.

It should be noted that the above missing data selection procedure may need to be

repeated several times to ensure that all the representative data are included in the

final selected training data set.
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Figure 5-11. The trained fuzzy model’s predicted UTS versus measured UTS: (a)

all the training data (2820 data), (b) the selected training data (448
data)
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Figure 5-12. Examples of the missing representative data

5.4.3 The Joint Mechanism of Accuracy Optimisation and Data Selection

By combining the initially selected training data and the subsequently detected
training data, one can obtain the final training data, which are the representatives
of all the training data which can then be used in the next model improvement
stage. Figure 5-13 shows the flow chart of the joint mechanism for accuracy
optimisation and data selection. Normally, the termination criterion for this

mechanism is designed so that the loop iteration achieves a predefined number.
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Figure 5-13. Flow chart of the mechanism for accuracy optimisation and data
selection

Following the previous UTS modelling experiment described in Section 5.4.2.2,
the fuzzy model, which has been initially trained, is then trained using the newly
formed training data. nPSO is employed for this training procedure and 70,000
function evaluations are used. Figure 5-14 shows the prediction results of all the
training data and the final selected training data using the well-trained fuzzy
model. From this figure, it can be seen that the trained model performs very well
for all the training data while only parts of these training data are truly involved in
the training process. Following this experiment, the achieved RMSE for all the

training data is 38.21 and the RMSE for the selected training data is 37.65.
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The well-trained fuzzy model’s predicted UTS versus measured

UTS: (a) all the training data (2820 data), (b) the selected training
data (480 data)
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5.5 Simultaneous Multi-Objective Optimisation of Accuracy and

Interpretability

After the accuracy optimisation and data selection, an accurate fuzzy model and a
reduced number of training data are obtained. The focus is shifted next to
improving the interpretability (transparency) of the fuzzy system while

maintaining a good accuracy.

5.5.1 Interpretability Improvement

The improvement of the interpretability of fuzzy systems is tantamount to reducing
the number of fuzzy rules, reducing the length of fuzzy rules, reducing the number
of fuzzy sets, and adjusting these sets to be evenly distributed along the universes

of discourse. These tasks can be achieved using the following four-step operation:

5.5.1.1 Removing Redundant Fuzzy Rules

This operation can reduce the number of fuzzy rules. At the same time, some fuzzy

sets, which are only involved in these redundant rules, are also removed. For

instance, in the case of Figure 5-15, a redundant rule exists which is: IF input is

A®, THEN output is A>".
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Figure 5-15. An example of a redundant rule

To evaluate whether a fuzzy rule is redundant or not, two evaluation measures are
used, namely confidence and support [Ishibuchi et al. 2001]. In the area of data
mining, these two measures have been used for evaluating association rules in the
pattern classification problem [Ishibuchi & Yamamoto 2004]. Let C be the set of N
training patterns p;, where p; = [x;, vl =[x xd, oo, xp, yi]tandi=1, 2, ..., N.
The confidence of rule A — B is defined as follows:

[C(HNC(B)

conf(A—+B) - |C(A)|

, (5.11)

where |C(A4)| is the number of training patterns that are compatible with the
antecedent A, and |C(A)I1C(B)| is the number of training patterns that are

compatible with both the antecedent 4 and the consequent B. The confidence
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indicates that confx100% of the training patterns that are compatible with the
antecedent 4 are also compatible with the consequent B. In [Ishibuchi et al. 2001],
the confidence measure is extended to the fuzzy case and can be rewritten as
follows:

i[ﬂA(xi)xﬂB(yi)}
conf(A—B) = |C(A)HC(B)| Ll , (5.12)

c) > %)

where 14(x;) is the compatibility grade of the input vector x; with the antecedent
part A = [4,, A>, ..., AD]T of the fuzzy rule R, and 5(y;) is the compatibility grade
of the output value y; with the consequent part B of R. ri4(x;) is usually defined by

the minimum operator or the product operator. Such as:
i,(x) min(_,u:AI ()5 £ty (X3)seves 2y (xi))] or (5.13)
#(x;) - Ay (xll) Ay, (xlz) ARRRRN R (xi)) ) (5.14)

where 14/(x;) is the membership function of the antecedent fuzzy set 4;.

On the other hand, the support of A — B is defined as follows:

[C(ANC(B)

supp(A — B) = |C|

, (5.15)

where |D| = N. It indicates that suppx100% of all training patterns are compatible
with the association rule 4 — B. Similarly to the confidence, the support of a

fuzzy rule can be rewritten as follows:

|C(A)HC(B)| Z{#A(xi)wﬂzi(yi)}

A—B) = i1 . 5.16
supp(A —+ B) q N (5.16)
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In this work, the product of support and confidence is used as the criterion for the
fuzzy rule selection. A threshold 7%, for this rule selection is also defined. If the
product criterion of one rule is smaller than the threshold 7%, then this fuzzy rule
is deemed redundant, and as a consequence the fuzzy rule and the fuzzy sets that
are only included by this redundant rule are removed. Generally, 7Th; is defined in

the range [0, 0.01].

5.5.1.2 Merging Similar Fuzzy Rules

This operation can reduce the number of fuzzy rules. At the same time, the fuzzy
sets involved within similar rules are also merged. For example, the following two
fuzzy rules may be thought of as similar:

Ry: IF x1 is “small” and x; is “big” and x3 is “small”, THEN y is “big”;

Ry: TF x s “small” and x; is “big” and x3 is “medium”, THEN y is “big”.
These can be merged into one rule as follows:

Rye 2 IF x1 18 “small” and x; is “big” and x3 is “slightly small’, THEN y is

“big,,'

To decide whether two fuzzy rules are similar enough for combination or not, one
only needs to evaluate the similarity of the antecedent parts of the rules. Two fuzzy
rules with very similar antecedents but different consequents usually indicate that
these two rules conflict with each other. Therefore, we should either merge these

rules into one new rule or delete one of them.
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To calculate the similarity degree of the antecedents of two fuzzy rules, the
similarity of every fuzzy set pair should be checked. For the kth fuzzy rule Ry, the
corresponding preconditions are Ak, A, L AR~ Similarly, the corresponding
antecedents of the /th rule R, are All, Azl, e Ap. Thus, the similarity measure can

be characterised as follows:

D
S.(R,,R)) HS(A;;,A;), (5.17)

m 1
where S(Amk, Aml) is the similarity of two fuzzy sets A," and 4, and it is defined in

Section 5.5.1.4.

Once Sg(Ry, R)) reaches a threshold value 7h,, then these two fuzzy rules as well as
the fuzzy set pairs of these two rules are considered to be similar. The two fuzzy
rules are then merged into a new rule R,.,. The new antecedents and consequent of
R, are obtained by merging the fuzzy sets (see Section 5.5.1.4). Normally,

threshold 7%, is defined in the range [0.01, 1].

5.5.1.3 Removing Redundant Fuzzy Sets

This operation can reduce the number of fuzzy sets and remove some fuzzy sets
that cover others. In addition, this operation can shorten the length of fuzzy rules
because some of their premises, which include redundant fuzzy sets, should also
be removed from the fuzzy rules simultaneously. Figure 5-16 shows an example of

the membership function relating to a redundant fuzzy set.
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Figure 5-16. An example of the membership function relates to a redundant
fuzzy set

In this method, the similarity for each fuzzy set 4, to the universal set U (:u(x)=1)
is calculated. If the similarity value is greater than a threshold value 743, then this
fuzzy set is counted as a redundant fuzzy set. As a result, the associated fuzzy set
should be removed. If Gaussian membership functions are involved, then the
similarity of one fuzzy set to the universal set can be represented using the

parameter #,. Generally, Ths is defined in the range [0.5, 2].
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5.5.1.4 Merging Similar Fuzzy Sets

This operation can keep the number of fuzzy sets low and also tune the fuzzy sets
so as not to overlap. Figure 5-17 shows an example of similar fuzzy sets. It can be
seen that the two blue membership functions are very similar in location and
extension range. To simplify the fuzzy model and improve the interpretability,
these functions are merged into one membership function, which can represent the
characteristics of both of them. The red dashed membership function shows a

possible solution following such a merger.
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Figure 5-17. An example of membership functions of similar fuzzy sets

From an evaluation viewpoint, a similarity measure should be defined. There are
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several fuzzy similarity measures [Cross 1993; Setnes 1995; Setnes et al. 1998],
one of which is based on the following distance measure:

1

SA,A . >
(4, 4) 1+d(4,,4,)

(5.18)

where d(A4;, A>) is the distance between two fuzzy sets A, and A4,.

If Gaussian membership functions are used, then the following simple expression

can be used to approximate the distance between the two fuzzy sets:

d(4y, 4,) = (¢, —¢,)* + (o, —a,)* . (5.19)

A threshold Thy4 for merging similar fuzzy sets is then defined, where Thy = (0, 1].
If S(41, A2) > Tha, i.e., the fuzzy sets A, and A4, are highly overlapping, then these
two fuzzy sets should be merged into one new fuzzy set 4., Where c,e = (c1 + ¢2)
/ 2 and ., = (71 + m) / 2. Because the fuzzy sets in the antecedent part and the
fuzzy sets in the consequent part have a different influence on the performance of
the fuzzy model, different thresholds 7hs and Ths should be predefined for the
antecedent part and the consequent part respectively. Normally, 7hs and Ths are set

to values in the range [0.8, 1].

5.5.2 Experimental Studies
5.5.2.1 An Example of Using the Interpretability Improvement Approach

To wvalidate the effectiveness of the proposed strategy for improving
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interpretability, it was applied to the problem of modelling the mechanical
property UTS of steel (15-input and 1-output; 2820 data). The initial number of
fuzzy rules is set to 20 and Th; - Ths are set to 0.001, 0.1, 0.6, 0.9 and 0.95,

respectively.

Table 5-7 shows the main parameters of the fuzzy models, which were obtained
following the different operation steps during the interpretability improvement
process. In this table, rule length refers to the total number of antecedent
conditions; it can be seen that the interpretability improvement approach
succeeded in reducing the number of fuzzy rules, the number of fuzzy sets and in

generally simplifying the structure of the fuzzy rules.

Table 5-7. The main parameters of the UTS fuzzy models following the different

stages of the interpretability improvement

Number | Number of fuzzy sets in RMSE of
: Rule length of .
Fuzzy model | of fuzzy | every input and output training
: ) every fuzzy rule
rules dimension data
Inputs: [15; 15; 15; 15; 15;|[15; 15; 15; 15;
int]zef;’erfag;ﬁt s 15151515, 15,15:15; [ 15:15:15,15; | 4,
imrfovementy 15; 15; 15] 15; 15; 15; 15; '
P Output: 15 15; 15; 15]
Inputs: [12; 12; 12; 12; 12; e 1e. 1z,
After Step 12;12;12; 12; 12; 12; 12; [15; 15; 15; 15;
12 15;15; 15;15; | 35.87
5.5.1.2 12; 12; 12] 15 15: 15: 15]
Output: 12 T T
Inputs: [10; 10; 10; 11; 11;
0. 12 10- 10- 0- & 10- 7.| [125 95 135 145
After Step 12 9;9;12;10; 10;9; 8; 10; 7; 115 15: 13:9: | 47.01
5.5.1.3 10] 13:12:12: 13]
Output: 12 T
Inputs: [4; 6; 6;7; 6;6;3; | [12;9; 13; 14;
A?‘;rlsfp 12 8:7:7:4:4: 7,75 | 11;15:12:9; | 66.75
R Output: 8 13;12; 12; 13]
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Figure 5-18 shows the membership functions of Input 14 and Input 15 before the

interpretability improvement, and Figure 5-19 shows the same membership

functions after the interpretability improvement. Comparing these figures, it can be

seen that the distributions of membership functions have improved significantly.
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5.5.2.2 Effects of the Thresholds of the Interpretability Improvement

Approach

In the proposed interpretability improvement approach, there are five thresholds
that need to be set in the 4-step operation. To inspect their effects on the system
performance, a set of experiments have been carried out. These experiments are
based on the UTS data (2820 data) with the initial number of fuzzy rules being set

to 12.

1. The first step of the interpretability improvement is to remove the
redundant fuzzy rules. Th, is used to define whether one rule is redundant
or not. Th; was set to be variable in the range 0 = Th; = 0.05 and other
thresholds and parameters were fixed at Thy = 1; Ths=1; Tha = 1; Ths = 1.

Figure 5-20 shows the system performance with different 74, values.

From Figure 5-20, it can be seen that, with the increase of Th,, the RMSE
of the obtained system increases while the number of rules, the number of
fuzzy sets and the total rule length decrease. This means that, with the
increase of Th;, the resulting model accuracy decreases and its

interpretability increases.
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Figure 5-20. The performance of fuzzy models following the interpretability

improvement with different 7h;: (a) RMSE versus Th;; (b) the
number of rules versus 74;; (c) the number of fuzzy sets versus Th;;
(d) the total length of rules versus 74,

2. The second step of the interpretability improvement is to merge similar
fuzzy rules. Th; is used to define whether two rules are similar enough to
be merged. In this experiment, 7h, was set to be variable in the range 0.01
“ Thy < 1 and other thresholds and parameters were fixed at Th, = 0; Th; =
1; Thy=1; Ths = 1. Figure 5-21 shows the model performance with various

Th, values.

From Figure 5-21, it can be seen that, with the increase of Th,, the RMSE
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values of the obtained fuzzy model tend to decrease while the number of

rules, the number of fuzzy sets and the total rule length tend to increase,

which means that the obtained model accuracy tends to increase and its

interpretability tends to decrease.

A —
e | lll f
= | ) i
| |I = |
! E = "
;'1 150 5 -III ‘: £ I"II
= 1 T; E —
I8 s _'-‘ = -"I
\ 1o
: 5 )
L
i:-“ iy [ 1 L) =
e e
(a) (b)
. 4 . 4
(L] ; (L] "l
S S
E 14 | ;—:ﬁ 14 |
E‘IIJ 2 1] éln _F"_'. ol
? 1 — E 1 o
Set Bor ¢
~i | |
£ I'. ,"II ekl ,"II
"' "r:;,- 1 1" "r:;,- 1
(© (d)
Figure 5-21. The performance of fuzzy models following the interpretability

improvement with different 7h,: (a) RMSE versus Thy; (b) the
number of rules versus 74,; (c) the number of fuzzy sets versus Thy;
(d) the total length of rules versus 74,

3. The third step of the interpretability improvement is to remove redundant

fuzzy sets. Th; is used to define whether one fuzzy set is redundant. In this

experiment, Th; was set to be variable in the range 0.5 = Ths = 1 and other
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thresholds and parameters were fixed at Thy =0; Thy = 1; Thy=1; Ths = 1.

Figure 5-22 shows the system performance with different 7%;.

From this figure, it can be seen that, with the increase of Th;, the RMSE of
the result model tends to decrease; the number of rules does not change; the
number of fuzzy sets and the total rule length increase. This means that the

obtained model accuracy tends to increase while its interpretability

decreases.
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Figure 5-22. The performance of fuzzy models following the interpretability
improvement with different 7Ths;: (a) RMSE versus Ths; (b) the
number of rules versus 743; (c) the number of fuzzy sets versus Ths;
(d) the total length of rules versus 743
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4. The last step of interpretability improvement is to merge similar fuzzy sets.
Thy and Ths are used to define whether two fuzzy sets are similar enough to
be merged. Because Th4 and Ths have the same effect, only 7h4 was tested
in this experiment. Also, it was set to be variable in the range 0.8 < Thy = 1
and other thresholds and parameters were fixed at Th; = 0; Thy, = 1; Thy =

1; Ths = 1. Figure 5-23 shows the model performance with different 7.

From this figure, it can be seen that, with the increase of Ths, the RMSE of
the obtained model has the tendency of decreasing; the number of rules and
the total rule length do not change; the number of fuzzy sets increases,
which means that the obtained model accuracy tends to increase while its

interpretability decreases.

From these experiments, it can be seen that the thresholds Th; ~ Ths can greatly

affect the system performance in terms of accuracy as well as interpretability.

168



Chapter 5: FM-HCMO

Fifty
Aarnbar ol B g

W n-

= e E B e T 1 -] [N EPR EE L 1 = e E B e T 1 -] [N EPR EE L 1
- -

(2) (b)

Humrbel of Fuzzy 33

e 1 1k nn [E] - [EF R B B ] 1 ) e 1 1k nn [E] - [EF R B B ] 1
he he

(©) (d)

Figure 5-23. The performance of fuzzy models following the interpretability
improvement with different Ths: (a) RMSE versus Ths; (b) the
number of rules versus 7h4; (c) the number of fuzzy sets versus Tha;
(d) the total length of rules versus 7.

5.5.3 The Multi-Objective Optimisation Mechanism

Based on the proposed four-step interpretability improvement approach, a multi-
objective optimisation mechanism, which is intended to optimise both the accuracy
and the interpretability of fuzzy systems, is developed. Figure 5-24 outlines the
steps behind the proposed multi-objective optimisation mechanism. It works

according to the following steps:
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1.

Initial threshold values generation: Randomly generate the thresholds’

values within the predefined bounds.

Interpretability improvement: Based on the reduced training data,
improve the previous fuzzy model in interpretability using the proposed 4-
step improvement approach. In this step, the input rule-base is fixed and
remains as such while the parameters of the membership functions and the
thresholds vary after each loop. Following this step, a new fuzzy model is

elicited.

Performance evaluation: The new fuzzy model is evaluated using the

designed fitness functions (objective functions).

Pareto-optimal fuzzy models preservation: Compare the fitness of every
generated model, preserve the adequate Pareto-optimal models via the

archive mechanism in nMPSO.

New parameters and thresholds generation: This task is accomplished
by the nMPSO algorithm based on some particular principles, which are

related to the fitness values and the location of individual solutions.

Termination estimation: If the termination criteria are achieved, stop the

mechanism and return the final Pareto-optimal fuzzy models; otherwise,

replace the old membership function’s parameters and threshold values
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with new ones and go back to Step 2.
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Models

Figure 5-24. The framework of the proposed multi-objective optimisation
mechanism

Normally, the termination criteria are designed so that the number of function

evaluations achieves a predefined value.
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5.5.4 The Designed Objective Functions for Fuzzy Modelling

The multi-objective optimisation includes two aspects: One is the accuracy of the
fuzzy model, which can be evaluated using the Root Mean Square Error (RMSE)
index. This index has already been described in Section 5.3.3.1. Another aspect is
the interpretability of the fuzzy model, which is affected by the number of fuzzy
rules (Nrule), the number of fuzzy sets (Nset) and the total length of fuzzy rules

(Lrule).

To normalise these two objectives and make them similar and comparable in scale,
they are formulated as follows:

RMSE
RMSE,’

Objective 1:

Nrule N Nset N Lrule
Nrule, ~ Nset, Lrule,’

Objective 2: (5.20)

where RMSE; is the root mean square error of the fuzzy model that is not
optimised using the multi-objective optimisation mechanism; Nrule;, Nset; and
Lrule; represent the number of fuzzy rules, the number of fuzzy sets and the total

rule length of this fuzzy model, respectively.

5.6 Confidence Band Analysis

Once the final fuzzy models have been elicited, confidence bands relating to

predictions are computed. In other words, when given a prediction by a data-
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driven fuzzy model, one wishes to know how confident can one be in such a

prediction.

Normally, the standard deviation of the prediction errors of all the training data is
computed in order to represent the confidence band. But this can only inform on a
generalised view about the model. Specifically, it cannot provide particular

guidance for one specific prediction.

In this work, a confidence band named %-range confidence band is designed. It is

calculated as follows:

1. When given a prediction value )”, define a prediction scope S where the
lower bound is )”-0.005%+xL,, and the upper bound is )”+0.005x:xL,, with
L, being the total range of the prediction values and it equals to the

maximal prediction value minus the minimal prediction value.

2. From all the training data, find the ones p; with their prediction output
values y/ including in the scope S, which is y” « S, where i =1, 2, ..., N,

and N, is the number of training data p;.

3. The w%-range confidence band CB is defined using the standard deviation

of the prediction errors of the training data p;:

N, —2
Z_,— 1(errorj —error)

N

s

CB Std(Error) , (5.21)
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where Error = {error\, error,, ..., errorys}; error; = yf - y/"; y/" are the

measured output values of p;; i =1, 2, ..., N..

For an obtained model, it is not realistic to calculate the ««%-range confidence band
for every possible prediction. Generally, some averagely distributed prediction
values are selected to provide some confidence bands which will be viewed as the

representatives of all the possible prediction values.

Figure 5-25 shows an example of the «%-range confidence band, which is based
on a fuzzy model of UTS prediction (12 rules). In this case, « is set to 5 and 200
evenly distributed prediction values are chosen and calculated for the confidence
bands. Figure 5-25(a) shows the prediction performance of the fuzzy model for all
the training data (2820 data). Figure 5-25(b) gives the confidence bands of this
model. From this figure, one can infer more details of how confident one can be
about a prediction. For instance, when a prediction is 1500, which is shown with
the red dashed line in the figures, its confidence band is around 108; while the
prediction 800 has a confidence band of only 32, which is shown with the green

dashed-dotted line.
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Figure 5-25. Example of the «%-range confidence band: (a) the prediction

performance of the UTS model; (b) the ««%-range confidence band
of the UTS model.

5.7 Summary

In this chapter, a framework for data-driven fuzzy modelling is proposed in order
to construct linguistic fuzzy models considering both accuracy and interpretability
of fuzzy systems. In this methodology, a new agglomerative complete-link
clustering algorithm is first developed and applied to construct the initial fuzzy
model. A new data selection technique is then proposed to select representative
training data used to improve the modelling efficiency. A multi-objective
optimisation mechanism is developed for the performance improvement of such
models, which takes into account both the accuracy and the interpretability
attributes. Finally, a method for computing the confidence band relating to the
model prediction analysis is proposed. All the above proposed techniques were

validated via a series of experiments using real data, from the steel industry. The
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next will focus specifically on how such techniques can be applied to modelling

problems.
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Application of FM-HCMO to Fuzzy

Modelling Problems

6.1 Introduction

In order to validate the effectiveness of the proposed modelling strategy named
FM-HCMO (see Chapter 5), the associated algorithm was applied to the modelling
of two benchmark problems, one is a problem of static nonlinear system
approximation and the other is a dynamical system identification problem.
Furthermore, FM-HCMO was applied to the modelling of the mechanical

properties of alloy steels using real industrial data.

6.2 The Nonlinear Function Approximation

In this experiment, the proposed fuzzy modelling approach was used to
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approximate the following two-input-single-output nonlinear static system, which

is also introduced in [Sugeno & Yasukawa 1993]:

y=A+x7 +x7"7), 1<x,x, <5, (6.1)

In order to establish a quantitative comparison with the results obtained in various
papers, the training data set was selected as being the same as the one described in
[Sugeno & Yasukawa 1993], which consists of 50 data points. Furthermore,

another 50 randomly generated data points were used for model testing.

In this case, the initial fuzzy model was obtained using 8 clusters, resulting in a
model with 8 rules and 24 fuzzy sets; the maximum number of function evaluation
for nPSO and nMPSO were set to 20,000 and 20,000 respectively. Two
optimisation objectives used by nMPSO have already been introduced in Section
5.5.4, which is as follows:

RMSE
RMSE,

Objective 1:

9

Objective 2; vrle  Nset , Lrule (6.2)
Nrule, Nset, Lrule,

where RMSE; is the root mean square error of the fuzzy model that is not
optimised using the multi-objective optimisation mechanism; Nrule;, Nset; and
Lrule; represent the number of fuzzy rules, the number of fuzzy sets and the total

rule length of this fuzzy model, respectively.

After the final multi-objective optimisation, a set of Pareto-optimal fuzzy models
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was obtained. Figure 6-1 shows their performances with respect to various indices,

including the root mean square error, the number of fuzzy rules, the number of

fuzzy sets and the length of the fuzzy rules.
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The performance of the optimised Pareto-optimal fuzzy models for
the nonlinear function approximation problem (6.1)

Table 6-1 describes the experimental results compared with those published via

other research studies. Three models out of all the Pareto-optimal models, which

include 8, 6 and 4 rules respectively, are chosen as the representatives and are

listed in this table. It can be seen that FM-HCMO performs better than the other

methods, whose strategy is based on linguistic fuzzy systems [Sugeno & Yasukawa

1993]; for the method based on singleton fuzzy systems [Rojas ef al. 2000], it
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needed more fuzzy rules to reach the same accuracy level as that of FM-HCMO.
For the methods based on TSK fuzzy systems [Kim ef al. 1997; Chen & Linkens
2004, Wang et al. 2005], sometimes, they may perform slightly better than FM-
HCMO in accuracy. But compared with linguistic fuzzy models, TSK fuzzy
models are not transparent and interpretable enough, since linear equations, instead

of the linguistic terms, operate as the consequent part of the fuzzy rules.

Figure 6-2 shows the prediction performance of the initial as well as the three
selected fuzzy models and Figure 6-3 illustrates the distribution of their
membership functions relating to two inputs (x; and x»). It can be seen that, for
these optimised models, more rules and more parameters will bring more accuracy
while the models with fewer rules and parameters are simpler in structure and

easier to understand.
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Table 6-1.

function approximation problem

The performance comparison of various models for the nonlinear

Number of fuzzy| Total | RMSE of | RMSE of
Number of . . :
Fuzzy model fuzzy rules  |5€8S for input and| rule | training testing
Y output parts | length data data
[Sugeno & . Input: 12
Yasukawa 6 (initial) Output: 6 12 0.564 N/A
1993], : =
. . . t:
Linguistic | ¢ (optimised) | . P° 12 | 0281 N/A
models Output: 6
[Kim et al.
1997], TSK 3 Input: 6 6 0.140 N/A
model
[Rojas et al. 9 (case 1) Input: 6 18 0.513 N/A
2000], .
Singleton 16 (case 2) Input: 8 32 0.176 N/A
models 25 (case 3) Input: 10 50 0.066 N/A
4 (initial) Input: 8 N/A N/A 0.066
[Chenand | 4 (optimised) Input: 5 NA | NA 0.088
Linkens 2004],
TSK models | 3 (optimised) Input: 5 N/A N/A 0.138
2 (optimised) Input: 4 N/A N/A 0.275
6 (initial) Input: 12 12 0.176 N/A
[Wang et al. | 7 (optimised) Input: 6 14 0.030 N/A
2005], TSK —
models 4 (optimised) Input: 3 6 0.052 N/A
3 (optimised) Input: 2 4 0.072 N/A
Input: 16
8 (initial) Py 16 | 0527 | 0527
Output: 8
.. Input: 14
8 (optimised) 13 0.026 0.082
Output: 7
FM-HCMO
.. Input: 11
6 (optimised) 12 0.059 0.114
Output: 6
Input: 7
4 (optimised) by 8 0.084 | 0.162

Output: 4
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The fuzzy models’ predicted outputs versus the measured outputs
with the nonlinear function approximation problem: (a) the initial
model, (b) an optimised model with 8 rules, (c) an optimised model
with 6 rules, and (d) an optimised model with 4 rules; the green and
red lines represent the +10% and -10% error bands respectively.
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(d)
The fuzzy models’ membership functions with the nonlinear
function approximation problem: (a) the initial model, (b) an
optimised model with 8 rules, (¢) an optimised model with 6 rules,
and (d) an optimised model with 4 rules
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To provide more details about these Pareto-optimal models, Figure 6-4 shows the

rule-base relating to the optimised system, which is the one associated with 8 rules,

its other information being included in Table 6-1, Figures 6-2(b) and 6-3(b). For

this fuzzy model, the linguistic hedges approach [Zadeh 1972; Fukuyama &

Sugeno 1989; Chen & Linkens 2001; Chen & Linkens 2004] can be employed to

derive the corresponding linguistic rules as follows:

R]Z
Rzi

R3Z

Ra4:
Rs:
Re:
R7:

Rgi

IF x; is small, THEN y is quite large.

IF x; is small AND x; is large, THEN y is medium.

IF x, is more or less quite large AND x; is slightly small, THEN y is
slightly small.

IF x; is small, THEN y is large.

IF x; is medium AND x; is quite large, THEN y is small.

IF x is slightly small AND x;, is medium, THEN y is slightly small.

IF x; is large, THEN y is small.

IF x, is large AND x; is medium, THEN y is small.

Figure 6-5 shows the three-dimensional input/output surfaces of the actual system.

The 8-rule fuzzy system and its 5%-range confidence band (see Section 5.6) are

displayed in Figure 6-6.
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IF X X THEN y
1 1
0.5 0.5
R1 \
0 0
0 2 4 2 4 6
1 1 1
0.5 0.5 0.5
R,
0 0 0
0 2 4 0 2 4 2 4 6
1 1 1
0.5 0.5 0.5
R3
0 0 0
0 2 4 0 2 4 2 4 6
1 1
R4 0.5 0.5
0 0
0 2 4 2 4 6
1 1 1
0.5 0.5 0.5
Rs
0 0 0
0 2 4 0 2 4 2 4 6
1 1 1
0.5 0.5 0.5
Rs
0 0 0
0 2 4 0 2 4 2 4 6
1 1
R 0.5 0.5
7
0 0
0 2 4 2 4 6
1 1 1
0.5 0.5 0.5
Rg
0 0 0
0 2 4 0 2 4 2 4 6

Figure 6-4. The optimised 8-rule fuzzy model for the nonlinear function
approximation problem
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Figure 6-5. Response surfaces for the nonlinear function approximation
problem: (a) the actual system and (b) the optimised 8-rule fuzzy

system
&l Mt
. PR 123
5 S
15 v C e 13
- .
= P z
|
z - e d Y |I||
£ i 2 | !
E 5
= B 2 g |
3 i = |
N '
% ':.:"’-"x = | ! I
- - J .t
P - - ' 1
ot e, (T II Pl
S £ | IR I|I
ot d 1
. . D L I I S
1 s 8 zE 0 35 4 5 i i1 5 8 zE 0 iF o+ 4E §  EE
b eazaurad Cutsa Pradiztad Cutsan
(a) (b)

Figure 6-6. (a) The prediction performance and (b) the 5%-range confidence
band of the optimised 8-rule fuzzy model for the nonlinear function
approximation problem

6.3 The Identification of a Dynamic System

In this problem, the modelling target is a nonlinear second-order plant, which has
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been studied in [Yen & Wang 1998; Yen & Wang 1999; Wang & Yen 1999; Setnes
& Roubos 2000],

yk) - glylk=1),y(k =2))+u(k), (6.3)
where

(k=Dy(k=2)ly(k=1) 0.5)

— —_ ! y
gly(k =1, y(k-2)) 132 (=) = > (k-2)

(6.4)

where y() is the output of the system; g() is a nonlinear component; u() is the input

signal; & is the index of the input signals.

The output of this system depends on both its past values and the current input.
The modelling goal is to approximate the nonlinear component g(y(k — 1), y(k — 2)),
which is usually called the ‘unforced system’ in the control literature. Similarly to
the settings reported in [Setnes & Roubos 2000], 400 simulated data points were
generated from the plant model (6.3). With the starting equilibrium state (0, 0), 200
samples of training data were obtained by using a random input signal u(k) that is
uniformly distributed in the interval [-1.5, 1.5], while the rest 200 samples of
testing data were generated using a sinusoidal input signal u(k) = sin(2wk/25).

These 400 simulated data points are shown in Figure 6-7.
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Figure 6-7. The input u(k), unforced system g(k), and output y(k) of the plant (6.3)

In this case, the initial fuzzy model was also obtained with 8 clusters; the maximal

function evaluation numbers for nPSO and nMPSO were both set to be 20,000.

After the optimisation scheme, 13 non-dominated solutions (fuzzy models) were
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obtained. Figure 6-8 demonstrates the trade-offs among the multiple objectives and
criteria within these non-dominated fuzzy system solutions. The upper left figure
gives the trade-off relationship between the designed accuracy objective and
interpretability objective (see Section 5.5.4); the upper right figure illustrates the
trade-off between the accuracy criterion (RMSE) and the fuzzy rules number; the
lower left figure is for the trade-off between the accuracy and the number of fuzzy
sets and the lower right one shows the relationship between the accuracy and the

total length of fuzzy rules.
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Figure 6-8. The performance of the optimised Pareto-optimal models for the

dynamical system identification problem

Table 6-2 compares the experimental results with some other studies previously
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reported in the literature [Yen & Wang 1998; Wang & Yen 1999; Yen & Wang
1999; Setnes & Roubos 2000]. Three optimised models out of all the Pareto-
optimal models, which include 6, 4 and 3 rules respectively, together with the
initial generated model are listed in this table. It can be seen that FM-HCMO is
able to produce more compact and simpler models compared to the other methods,
since the modelling strategies reported in [Yen & Wang 1998; Wang & Yen 1999;
Yen & Wang 1999] needed more fuzzy rules and fuzzy sets to achieve the same
accuracy level as that of FM-HCMO. In other words, this proposed approach
strikes a good balance between numerical accuracy and model simplicity,

compared to the above mentioned fuzzy modelling methods.

The prediction performance of the initial and the three selected fuzzy models is
shown in Figure 6-9. The distribution of their membership functions relating to the
inputs y(k — 1) and y(k — 2) is displayed in Figure 6-10. It can be observed that
these Pareto-optimal models exhibit fuzzy sets pattern behaviour, which means

that they provide a wider choice of different solutions to users.
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Table 6-2. The performance comparison of various models for the dynamical
system identification problem

Number of Number of fuzzy | Total | RMSE of | RMSE of
Fuzzy model fuzzy rules | S for input and | rule training testing
y output part length data data
[Yen & 36 (initial) Input: 12 72 0.005 0.072
Wang 199§],
Singleton 23
models (optimised) Input: 12 46 0.006 0.038
[Yen & 25 (initial) Input: 25 50 0.015 0.020
Wang 1999],
Singleton 20
models (optimised) Input: 20 40 0.026 0.015
[Wang & 40 (initial) Input: 40 80 0.018 0.026
Yen 1999],
Singleton 28
models (optimised) Input: 28 56 0.018 0.024
[Setnes & 7 (initial) Input: 14 14 0.126 0.035
Roubos
20007],
Singleton | 7 (optimised) Input: 14 14 0.055 0.022
models
o Input: 16
8 (initial) 16 0.171 0.292
Output: 8
o Input: 8
6 (optimised) 12 0.017 0.028
Output: 6
FM-HCMO
o Input: 7
4 (optimised) 8 0.063 0.084
Output: 4
o Input: 3
3 (optimised) 4 0.096 0.114

Output: 3
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the dynamical system identification problem: (a) the initial model,
(b) an optimised model with 6 rules, (c) an optimised model with 4
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lines represent the +10% and -10% error bands respectively.
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Figure 6-10. The fuzzy models’ membership functions with the dynamical
system identification problem: (a) the initial model, (b) an optimised
model with 6 rules, (¢) an optimised model with 4 rules, and (d) an

optimised model with 3 rules

193



Chapter 6: Application of FM-HCMO in Modelling Problems

To provide more details about these non-dominated models, the fuzzy rule-base of
an optimised model, which includes 8 rules, is shown in Figure 6-11. Other details
about this model can also be found in Table 6-2, Figures 6-9(b) and 6-10(b). For
this fuzzy model, the following linguistic rules can be derived by using the
linguistic hedges approach [Zadeh 1972; Fukuyama & Sugeno 1989; Chen &
Linkens 2001; Chen & Linkens 2004]:
Ri: IF y(k— 1) is small AND y(k — 2) is quite large, THEN g(k) is large.
Ro: IF y(k — 1) is large AND y(k — 2) is quite large, THEN g(k) is quite
large.
Rs: IF y(k — 1) is small AND y(k —2) is slightly small, THEN g(k) is small.
R4: IF y(k — 1) is medium AND y(k — 2) is more or less small, THEN g(k) is
medium.
Rs: IF y(k— 1) is large AND y(k — 2) is slightly small, THEN g(k) is slightly
small.
Re: IF y(k — 1) is medium AND y(k — 2) is quite large, THEN g(k) is

medium.

Figure 6-12 shows the three-dimensional response surfaces of the actual system
and the optimised 6-rule fuzzy system. It can be observed that these two surfaces
are perfectly matched. The 6-rule model’s training and testing errors and its 5%-

range confidence band are displayed in Figures 6-13 and 6-14, respectively.
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IF y(k—1) y(k—2) THEN g(k)
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Figure 6-11. The optimised 6-rule fuzzy model for the dynamical system
identification problem
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Figure 6-12. Response surfaces for the dynamical system identification problem:
(a) the actual system and (b) the optimised 6-rule fuzzy model
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Figure 6-13. Training and testing errors of the optimised 6-rule fuzzy model for
the dynamical system identification problem
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Figure 6-14. (a) The prediction performance and (b) the 5%-range confidence
band of the optimised 6-rule fuzzy model for the dynamical system
identification problem

6.4 Mechanical Property Prediction of Alloy Steels

In material engineering, it is important to establish appropriate and reliable
property prediction models for materials design and development. In the past,

several mechanical property models were developed which were mainly based on
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linear regression methods [Pickering 1978] or artificial neural networks [Hodgson
1996; Chen et al. 1998; Bakshi & Chatterjee 1998]. The linear models are only
designed for specific classes of steels and specific processing routes, and not
sophisticated enough to account for more complex interactions, while neural
networks are black-box techniques and the knowledge behind this kind of models
cannot be understood fully. Thus, developing a fast, efficient and transparent data-
driven modelling framework for material property prediction is still needed. In this
situation, fuzzy modelling, such as the proposed FM-HCMO, provides an ideal
approach because of its interpretable structure and its excellent ability of learning

from data.

In general, the problem of modelling the properties of metal materials can be
broadly stated as follows: given a certain material which undergoes a specified set
of manufacturing processes, what are the final mechanical properties of this
material [Chen & Linkens 2001]? Typical final mechanical properties that one may
be interested in are Ultimate Tensile Strength (UTS), Reduction of Area (ROA),

Elongation, and Impact Energy.

6.4.1 Ultimate Tensile Strength (UTS)

In this modelling case, 3760 UTS data were used, 75% of the data were used for

training, 10% of the data were used for validation (for validation mechanism, see

Section 5.4.1.1) and the remaining 15% were used for final testing. These UTS
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data include 15 inputs and one output, which is considered to be a high-
dimensional problem for modelling purposes. The inputs consist of the weight
percentages for the chemical composites, namely Carbon (C), Silica (Si),
Manganese (Mn), Sulphur (S), Chromium (Cr), Molybdenum (Mo), Nickel (Ni),
Aluminium (Al) and Vanadium (V), the test depth, size and the site where the
processing of the alloy steel took place, the cooling medium, as well as the

hardening and tempering temperatures.

In this experiment, the initial number of clusters was set to 15, which means that
the initial fuzzy model was generated using 15 rules. For the optimisation
algorithms nPSO and nMPSO, the maximum numbers of function evaluation were
both set to 50,000. After the operation of the training data selection mechanism
(see Section 5.4.2), 440 data points out of 2820 data points (all the training data)
were selected. They were used in the following training process and worked as the

representatives of all the training data.

Finally, a set of non-dominated solutions (fuzzy models) were obtained. Figure 6-
15 demonstrates the trade-offs among the multiple objectives and criteria,
including the RMSE, the number of fuzzy rules, the number of fuzzy sets and the

total length of fuzzy rules, within these Pareto-optimal fuzzy models.
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Figure 6-15. The performance of the Pareto-optimal UTS models

Table 6-3 includes the main parameters of the initial model and the two optimised
models, which are selected from all the Pareto-optimal models with 13 and 10
rules respectively. Figure 6-16 shows the prediction performance of these models
and Figure 6-17 shows the distribution of the membership functions relating to
Input 4 (weight percentage for Carbon), which is an instance of all the membership
functions. From Figure 6-16, it can also be seen that the selected training data
work well as the representatives of all the training data. By using these reduced

data instead of all the training data, much time and effort can be saved.
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Table 6-3. Main parameters of the obtained UTS models

Number of fuzzy | Rule length of| M5 OF | pasSE of | RMSE of
Fuzzy : reduced . :
sets for every input | every fuzzy .. training | testing
model training
and output rule data data
data
Inputs: [15; 15; 15; 1515 1
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rules 15; 15] 15; 15; 15; 15;
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Output: 15
Inputs: [13; 11; 10;
Optimised | 115 10; 12; 123 13; | [15: 13 11;
model with ;L 95 1E L e 1a Al 4827 42.59 46.26
13 rules 10; 13] 15,15 13; 14,
13; 14]
Output: 13
o Inputs: [10; 8; 7; 7;
Optlrnlsed 8:9:9:10: 10: 9: 7: [15, 12, 11,
model with 9;9;7; 10] 12; 11; 15; 12;|  54.76 44.65 46.03
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The UTS models’ predicted outputs versus measured outputs: (a) the
initial model, (b) an optimised model with 13 rules, and (c) an
optimised model with 10 rules; the green and red lines represent the
+10% and -10% error bands respectively.
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Figure 6-17. The UTS models’ membership functions: (a) the initial model, (b)

an optimised model with 13 rules, and (c) an optimised model with
10 rules

To provide more details about these Pareto-optimal UTS models, Figure 6-18
shows two rules (the 4™ rule and the 7™ rule) out of the rule base of the optimised
10-rule model. For these fuzzy rules, they can be rewritten as the following

linguistic rules using the linguistic hedges approach:

Ry4: IF Test Depth is slightly small AND Size is medium AND C is small

AND Mn is medium AND S is more or less small AND Cr is

slightly small AND Mo is more or less small AND Ni is very small

202



Chapter 6: Application of FM-HCMO in Modelling Problems

AND Al is very small AND V is small AND Hardening
Temperature is medium AND Tempering Temperature is large,

THEN UTS is very small.

R7: IF Test Depth is slightly small AND Site Number is quite large AND C
is medium AND Si is medium AND Mn is more or less small AND
Cr is more or less large AND Mo is slightly small AND Ni is
medium AND V is medium AND Hardening Temperature is more or
less slightly small AND Cooling Medium Number is /arge AND

Tempering Temperatures is large, THEN UTS is quite large.

To verify the physical interpretation of the obtained models, Figure 6-19 shows the
three-dimensional response surfaces of the 10-rule UTS model. These surfaces are
achieved by plotting two varying input variables against the output while keeping
other input variables constant. The constant variables are set to the average values
of the dominant steel grade, which is the 1%CrMo steel grade [Tenner 1999].
These plots in Figure 6-19 are consistent with those variable effect plots in [ Tenner
1999], which have been verified to follow the expected behaviour as predicted by
theory or by expert knowledge. This 10-rule model’s 5%-range confidence band is

shown in Figure 6-20.
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Figure 6-18. Rules of the optimised 10-rule UTS model
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Figure 6-20. (a) The prediction performance and (b) the 5%-range confidence
band of the optimised 10-rule UTS model

6.4.2 Reduction of Area (ROA)

In this experiment, 3710 ROA data were used, 75% of the data were used for
training, 10% of the data were used for validation and the remaining 15% were
used for testing. The ROA data include 15 inputs and one output, which are the

same as those already reviewed for the UTS data (see Section 6.4.1).

In this case, the initial fuzzy model was obtained using 20 clusters; the maximum
number of function evaluation for nPSO and nMPSO were both set to be 50,000.
After the operation of the data selection mechanism (see Section 5.4.2), only 630
data points out of 2783 data points (all the training data) were selected as the
representative training data. After the optimisation scheme, 12 Pareto-optimal
models were obtained. Figure 6-21 shows the models’ performance using various

indices relating to the objective functions, the RMSE, the number of fuzzy sets, the
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number of fuzzy rules, and the length of the fuzzy rules.
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Table 6-4 shows the main parameters of the initial ROA model and two optimised
ROA models, which are selected from all the Pareto-optimal models and include
15 and 7 rules respectively. Figure 6-22 shows the prediction performance of these

models. Figure 6-23 illustrates the distribution of the membership functions
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Figure 6-21. The performance of the Pareto-optimal ROA models

relating to Input 4 (weight percentage for Carbon).
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Table 6-4. Main parameters of the obtained ROA models

Number of fuzzy | Rule length of | RMSE of | RMSE of | RMSE of
Fuzzy f f dJuced . .
model  sets for every every fuzzy reduce training | testing
input and output rule training data| data data
Inputs: [20; 20; 115, 15; 15; 15;
.. 20; 205 20; 20; 205{ 15: 15: 15: 15:
Initial model > 10y 195 1D,
20; 205 20; 205 203| 15: 15; 15; 15; 7.45 5.92 5.44
(20 rules) 22;20;20] 115 15; 15; 15;
Output: 20 15, 15, 15, 15]
Inputs: [14; 12;
Optimised |13; 145 13; 14; 11; [11;1; 1134; 112;1133;
model with | 145 135 15, 6; 10; | %> 2> 05 02 3.92 3.46 3.75
I5mules | 13:12:13] | 1% 1415 10;
14; 13; 14]
Output: 13
o Inputs: [5; 4; 3; 4;
Optimised |54, 4;5; 6,4, 4; |[13; 11; 14,13, aal | 440
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Figure 6-23. The ROA models’ membership functions: (a) the initial fuzzy model,
(b) an optimised fuzzy model with 15 rules, and (c) an optimised
fuzzy model with 7 rules

Figure 6-24 displays the three-dimensional response surfaces of the 15-rule ROA
model by setting two of the input variables to be varying and other input variables
to be the constant average values of the dominant steel grade, which is the
1%CrMo steel grade [Tenner 1999]. These surfaces are consistent with the variable
effect plots in [Tenner 1999], and this means that the models built by FM-HCMO
follow the theoretical and experts’ expectation in this example. For this 15-rule

model, its 5%-range confidence band is shown in Figure 6-25.
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Figure 6-25. (a) The prediction performance and (b) the 5%-range confidence
band of the optimised 15-rule ROA model

6.4.3 Elongation

3804 Elongation data were used in this case, 75% of the data were used for
training, 10% of the data were used for validation and the remaining 15% were
used for final testing. These data include 16 inputs, which consist of the weight
percentages for the chemical composites, for instance Carbon (C), Silica (Si),
Manganese (Mn), Chromium (Cr), Molybdenum (Mo), etc., the test depth, size and
site of the alloy steel, the cooling medium, as well as the hardening and tempering

temperatures.

In this case, the initial fuzzy model was obtained with the setting of 15 clusters;
the maximum number of function evaluation for nPSO and nMPSO were both set
to be 50,000. After data selection, 500 representative data points out of 2853 data

points were selected and then used in the following training process. Finally, a set
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of Pareto-optimal Elongation models were constructed. Figure 6-26 shows the

trade-offs among the multiple criteria within these non-dominated fuzzy models.
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Figure 6-26. The performance of the Pareto-optimal Elongation models

Table 6-5 describes the main parameters of the initial Elongation model and two
optimised Elongation models with 10 and 8 rules respectively. Figure 6-27 shows
the prediction performance of these models and Figure 6-28 illustrates the
distribution of the membership functions for Input 16 (tempering temperature),

which is an instance of all other membership functions.
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Table 6-5. Main parameters of the obtained Elongation models

Number of fuzzy Rule leneth of fggﬁfezf RMSE of| RMSE of
Fuzzy model |sets for every input £ . training | testing
every fuzzy rule| training
and output data data data
Inputs: [15; 15; 15;
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10 rules T 13; 12]
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Figure 6-27. The Elongation models’ predicted outputs versus measured outputs:
(a) the initial model, (b) an optimised model with 10 rules, and (c)
an optimised model with 8 rules; the green and red lines represent
the +10% and -10% error bands respectively.
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Figure 6-28. The Elongation models’ membership functions: (a) the initial fuzzy

model, (b) an optimised fuzzy model with 10 rules, and (c) an
optimised fuzzy model with 8 rules

The response surfaces of the 10-rule Elongation model are shown in Figure 6-29.
The constant variables are set to be the average values of the 1%CrMo steel grade.
These surfaces reveal a consistent match with the variable effect plots in [Tenner
1999], and this means the constructed models follow the expected behaviour as
predicted by theory or by expert knowledge. The 5%-range confidence band of this

10-rule model is displayed in Figure 6-30.
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Figure 6-29. Response surfaces of the optimised 10-rule Elongation model
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Figure 6-30. (a) The prediction performance and (b) the 5%-range confidence
band of the optimised 10-rule Elongation model

6.4.4 Impact Energy

In this example, 1661 Impact Energy data were employed, 75% of the data were
used for training, 10% of the data were used for validation and the remaining 15%
were used for final testing. 16 inputs and one output are included in these data. The
inputs consist of the weight percentages for the chemical composites, namely
Carbon (C), Silica (Si), Manganese (Mn), Sulphur (S), Chromium (Cr),
Molybdenum (Mo), Nickel (Ni), Aluminium (Al) and Vanadium (V), the test depth,
size and site of the alloy steel, the cooling medium, as well as the hardening,

tempering and impact test temperatures.

In this experiment, the initial fuzzy model was obtained with 15 clusters; the
maximal function evaluation numbers for nPSO and nMPSO were both set to be

50,000. Following a data selection exercise, 455 data points out of 1246 data

218



Chapter 6: Application of FM-HCMO in Modelling Problems

points were selected for the following model training. After the optimisation, some
non-dominated solutions were obtained. Figure 6-31 shows the trade-offs among

the multiple objectives and criteria within these non-dominated fuzzy system

solutions.
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Figure 6-31. The performance of the Pareto-optimal Impact Energy models

Table 6-6 shows the main parameters of the initial Impact Energy model and two
optimised Impact Energy models with 15 and 8 rules respectively. Figure 6-32
shows the prediction performance of these models and Figure 6-33 shows the

membership functions of Input 5 (weight percentage for Silica).
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Table 6-6. Main parameters of the obtained Impact Energy models

Number of fuzzy |Rule length of fgﬁf@‘c’f RMSE of | RMSE of
Fuzzy model |sets for every input| every fuzzy trainin training | testing
and output rule & data data
data
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Figure 6-32. The Impact Energy models’ predicted outputs versus measured

outputs: (a) the initial model, (b) an optimised model with 15 rules,
and (c) an optimised model with 8§ rules; the green and red lines
represent the +10% and -10% error bands respectively.
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Figure 6-33. The Impact Energy models’ membership functions: (a) the initial
fuzzy model, (b) an optimised fuzzy model with 15 rules, and (c) an

optimised fuzzy model with 8 rules

Figure 6-34 shows the three-dimensional response surfaces of the 15-rule Impact
Energy model. The constant variables are set to the average values of the 1%CrMo
steel grade. These figures reveal a consistent match with the variable effect plots in
[Tenner 1999], which have been verified to follow the theoretical or expert

knowledge. In Figure 6-35, the 5%-range confidence band of this 15-rule model is

shown.
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Figure 6-34. Response surfaces of the optimised 15-rule Impact Energy model

223



Chapter 6: Application of FM-HCMO in Modelling Problems

all Catm

Prodiczad Outact
Conlcence Bend

' '
a5 il L= 1

A té0 e | 50
easurad Cuisan Trezicied Culput

(2) (b)

Figure 6-35. (a) The prediction performance and (b) the 5%-range confidence
band of the optimised 15-rule Impact Energy model

6.5 Summary

The experimental validation carried-out in this chapter shows that the proposed
approach FM-HCMO works effectively in eliciting accurate and interpretable
models. Initially, FM-HCMO was applied to the modelling of two benchmark
problems, a static nonlinear system approximation problem and a dynamical
system identification problem. The experimental results revealed that, compared to
other modelling methods, FM-HCMO is able to produce more compact and
simpler models; the obtained Pareto-optimal models using FM-HCMO provide a
wider choice of different solutions to users. Furthermore, the modelling of the
mechanical properties for alloy steels demonstrated that this proposed approach
works well within the context of a high-dimensional industrial application. The
physical interpretation of the obtained models has been shown to be consistent

with the expected behaviour as predicted by theory or by expert knowledge. In
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addition to the above, it is worth noting that the linguistic models constructed
using FM-HCMO has a good generalisation ability, which is evidenced by the
smooth input/output response surfaces obtained using the elicited models. Thus, it
can be concluded that FM-HCMO provides a simple and effective framework for
system identification and prediction. The next chapter will highlight how such
robust prediction models can be exploited in a reverse-engineering fashion to

identify ‘optimal’ recipes for system design.
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Chapter 7

Application of RSSA and MO-RSSA for

Alloy Steel Design Problems

7.1 Introduction

In the steel industry, determining the optimal heat treatment regime and the
required weight percentages for the chemical composites to obtain the desired
mechanical properties of the steel is always a challenging multi-objective
optimisation problem. Usually, some objectives may conflict with each other, such
as the ultimate tensile strength (UTS) and the ductility. The steel ductility can also
be reflected by its Reduction of Area (ROA). In this chapter, details relating to the
optimisation of UTS and ROA using the RSSA and MO-RSSA algorithms (see

Chapter 4) are presented and discussed.

In Chapter 6, the intelligent models based on fuzzy systems had been developed to

predict the mechanical test results for the steels covered by a wide range of
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training data. These models can be used to facilitate the findings relating to the
optimal heat treatment regime and the weight percentages for the chemical
composites to obtain the desired mechanical properties. Figure 7-1 shows the
prediction results of one UTS model and one ROA model, whose RMSE(s) are
34.59 and 2.86 respectively. In the following studies, all alloy design experiments

are conducted based on these two developed fuzzy models.
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Figure 7-1.  The prediction performance of the UTS model and the ROA models
used in this chapter; the red and green lines delimit the +10% and
-10% confidence bands respectively.

In this chapter, all parameter settings for RSSA and MO-RSSA (see Chapter 3)
assumed the following parameters throughout: the decreasing parameter C; = 3,
the increasing parameter C, = 1, the threshold value m = 15; the variation operator
works as a combination of the one-dimensional variation strategy (with the 75%
probability of usage) and the multi-dimensional variation strategy (with the 25%
probability of usage) (see Section 4.2.4); for MO-RSSA, the weight changing

frequency parameter H = 10000.
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7.2 The Optimal Design of UTS for Alloy Steels

In this case, the aim is to find the optimal solution for achieving a predefined
target UTS value. The decision vector consists of weight percentages for the
chemical composites, namely Carbon (C), Silica (Si), Manganese (Mn), Sulphur
(S), Chromium (Cr), Molybdenum (Mo), Nickel (Ni), Aluminium (Al) and
Vanadium (V), the test depth, the size and the site of the alloy steel, the cooling

medium, as well as the hardening and tempering temperatures.

The objective function was designed to be as follows:

o (UTS ~UTS; e |
Minimise J, =| ———== (7.1)
900 )

where UT ST, 15 the target UTS value.

In the first experiment, the UTS7,.q.; Was set to 900 MPa. Figure 7-2 shows the
optimisation process and Table 7-1 provides the optimisation results relating to 10
different runs. The average function evaluation number used in the RSSA
algorithm is only 36. From Table 7-1, it can be seen that the differences between
the 10 solutions are somewhat stark, which means that there are many possible

solutions satisfying the same defined objective.
In the second experiment, the UTS7,.¢.: Was set to 1100 MPa. Figure 7-3 shows the

fitness variation in the optimisation process and Table 7-2 shows the optimisation

results in 10 different runs. For this experiment, the average function evaluation
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number used in the RSSA algorithm is 34. From Table 7-2, it can be seen that

there are more additional feasible solutions to this optimisation problem and RSSA

can find these very quickly.

Figure 7-2.

Figure 7-3.
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Table 7-1. Optimisation solutions of 10 independent runs for the UTS design
problem with UTS7,4e; = 900 (MPa)

Solutions 1 2 3 4 5 6 7 8 9 10

Test Depth

61.8 | 67.8 |111.4]| 41.9 |129.6| 58.1 | 78.6 | 18.8 | 93.9 | 74.2
(mm)

Size (mm) |268.9| 88.1 {283.2| 41.5 |271.3|136.6|206.7|137.6|279.6|254.9

Site Number| 2 5 5 2 5 3 6 3 3 4

C (wWt%) |0.364(0.440{0.50310.182]0.354{0.2030.496|0.220|0.413|0.354

Si(wt%) ]0.112]0.235]0.216/0.270{0.285|0.174|0.272|0.289|0.204 [ 0.319

Mn (wt%) |1.554]1.1890.939|0.954|1.397|0.6440.521|0.488 | 0.742|0.940

S (wt%) |0.100{0.096|0.127{0.1690.080|0.112|0.066|0.036 [0.148|0.132

Cr (wt%) [0.263/0.589{3.025(0.613|2.733|0.615|0.790|0.650 | 0.140 | 0.489

Mo (wt%) |0.079]0.735]0.780{0.157|0.111]0.659|0.094 | 0.335[0.231|0.327

Ni (Wt%) [0.609]2.069(0.2410.379(3.765|0.312|2.967 |2.557|2.003 | 1.023

Al (wt%) |0.641[0.028|0.029|0.842|0.190|0.093|0.086|0.253 {0.260 | 0.495

V (wt%) [0.163/0.149]0.095(0.181|0.047|0.225|0.043 {0.0300.203 | 0.077

Hardening
Temperature| 970.3|971.9|908.6|979.4|860.2|907.6| 889.1|975.2|933.1|923.8
°C)

Cooling
Medium 2 3 2 3 2 1 2 1 1 2
Number

Tempering
Temperature| 497.5|644.8|590.6 | 475.8|596.1 | 660.8|625.3|704.0|629.7|651.9
°C)

UTS (MPa) [900.1 | 899.9|899.9|899.9 (900.0 | 899.6 | 899.9|899.8 | 899.9900.0
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Table 7-2. Optimisation solutions of 10 independent runs for the UTS design
problem with UTS7,¢.; = 1100 (MPa)

Solutions 1 2 3 4 5 6 7 8 9 10

Test Depth

97.8 619 |135.1| 9.2 | 74.4|107.3| 62.1 | 22.6 | 93.4 | 78.2
(mm)

Size (mm) | 15.9 | 44.7 |106.2|226.7|251.2|166.2(269.8235.5| 29.6 | 87.8

Site Number | 4 2 3 1 2 2 3 4 4 3

C (wt%) 10.194/0.306/0.551/0.618]0.186{0.409|0.236[0.161|0.228|0.341

Si(wt%) [0.194|0.161]0.128|0.149]0.23410.349/0.330/0.272|0.250{0.203

Mn (wt%) [0.718(0.565|1.1180.455{0.500|1.123(1.274{1.153|0.600|0.956

S (wt%) 10.049]0.144/0.143|0.184|0.056|0.14410.205]0.095(0.1420.177

Cr (wt%) |0.485|0.208{1.793{0.389]0.236(0.095|1.627|0.252]0.351|0.981

Mo (wt%) ]0.318(0.0440.648/0.082|0.622|0.114|0.087{0.442|0.337|0.381

Ni (wt%) |1.148(2.364[0.726(1.915|0.475|2.905|1.466(1.070|3.155|1.733

Al (wt%) [0.570/0.185]|0.187|0.524|0.550]0.622{0.700 [0.060 | 0.688|0.049

V (wt%) [0.105|0.212{0.229{0.140]0.130(0.104|0.0980.267|0.036 | 0.240

Hardening
Temperature |{890.6|897.7|824.01913.0(841.6|887.3|853.7|877.1|953.5|940.1
°C)

Cooling
Medium 2 2 1 2 2 1 2 1 3 3
Number

Tempering
Temperature |362.3|353.8|597.9|677.8|280.9|360.6|637.1|523.9|587.8|710.7
°C)

UTS (MPa) (1100.0{1099.7|1100.1{1100.0{1099.9({1099.8|1099.8{1099.8{1100.0{1100.1
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7.3 The Optimal Design of ROA

In this section, details relating to finding the optimal solution for achieving a
predefined target ROA value are presented. In this case, the decision vector is the
same as the one used for the UTS design problem in Section 7.2. The optimisation

objective function was designed as follows:

.. IFIROA - ROATarget i
Minimise J, | (7.2)
\ 60 .

where ROA14r4e: 18 the target ROA value.

In the first experiment, the ROAryqer Was set to 60%. Table 7-3 provides the
optimisation results for 10 different runs and Figure 7-4 shows the variation of the
average fitness of these 10 runs during the optimisation process. The average

function evaluation number used in the RSSA algorithm is only 28.

Fitness

L L L L L
0 5 10 15 20 25 30 35 40 45
Mumber of Function Evaluations

Figure 7-4.  Average fitness of 10 runs versus function evaluation for the ROA
design problem with ROA r4rge: = 60 (%)

232



Chapter 7: Application of RSSA and MO-RSSA

Table 7-3. Optimisation solutions of 10 independent runs for the ROA design
problem with ROA 7rge: = 60 (%)

Solutions 1 2 3 4 5 6 7 8 9 10

Test Depth

62.4 {102.1| 21.0 |137.8| 59.7 | 20.0 |110.7| 59.2 | 71.8 | 68.8
(mm)

Size (mm) | 74.4 |351.6251.9| 71.5 | 101.0|310.7|250.6| 94.6 |303.6|276.9

Site Number| 1 3 4 4 4 4 3 4 1 2

C (wt%) 10.434]0.249|0.246(0.2480.517 {0.191]0.243]0.204|0.240 | 0.239

Si(wt%) ]0.297(0.295[0.129/0.226| 0.222 |0.193|0.154|0.2270.1570.281

Mn (wt%) |1.321/1.339|1.164{0.805|0.823 |0.809|1.156{0.391|1.191|1.141

S (wt%) 10.033|0.041{0.128]0.208|0.114 {0.158{0.181{0.189(0.012{0.095

Cr (wt%) |1.874]1.952]1.794(2.293|1.645|2.830(2.462(2.315|1.549|1.468

Mo (wt%) |0.207/0.747|0.384|0.151|0.024 |0.152]0.335|0.667|0.955|0.797

Ni (wt%) [0.317]3.024(3.116(2.525|1.138 [1.699/0.959(2.926|0.131|2.323

Al (wt%) 0.262/0.339]0.491{0.983|0.4190.706|0.479{0.018]0.1210.164

V (wt%) [0.180{0.079(0.139/0.233 | 0.096 |0.045(0.172{0.187|0.2370.177

Hardening
Temperature [ 924.4|958.21901.6|885.2| 823.9 [893.6|880.0|936.9|962.21962.3
°C)

Cooling
Medium 1 1 2 2 1 2 1 2 1 1
Number

Tempering
Temperature | 534.2|300.4|413.1|513.2| 640.4 |316.6|383.1|595.2|289.0|680.1
°C)

ROA (%) [60.07]60.06(59.96|59.92160.019({59.93|59.97|59.96|60.01 | 59.98
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In the second experiment, the ROAryqer Was set to 70%. Figure 7-5 shows the
optimisation process and Table 7-4 lists the optimisation results relating to 10
different runs. The average function evaluation number employed in locating the

optimal solutions is 28.

From the results of the above two experiments, it can be seen that, for the
optimisation problem of achieving a predefined target ROA, there are many
feasible solutions and the RSSA algorithm can find these optimal solutions in

different runs using only a few function evaluations.

Fitness

L L L L L
0 5 10 15 20 25 30 35 40 45
Mumber of Function Evaluations

Figure 7-5.  Average fitness of 10 runs versus function evaluation for the ROA
design problem with ROA r4rge: = 70 (%)
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Table 7-4. Optimisation solutions of 10 independent runs for the ROA design
problem with ROA 74rge: = 70 (%)

Solutions 1 2 3 4 5 6 7 8 9 10

Test Depth

12531 76.9 (1134|573 | 9.2 | 34.1 | 21.2 | 81.5 |110.4|130.7
(mm)

Size (mm) |238.2|136.4|318.9| 43.7 | 162.0|219.1|248.5(204.3|287.5| 82.6

Site Number] 1 5 4 5 5 5 3 2 3 5

C (wt%) |0.309|0.450(0.536|0.571| 0.304 |0.360|0.4240.346|0.538 0.148

Si (wt%) [0.251]0.138/0.336(0.189| 0.331 {0.244|0.312|0.120{0.334|0.136

Mn (wWt%) |1.22910.383|1.322]0.643 | 1.074 | 0.645[0.356|0.695|0.943 {0.425

S (wt%) 10.032(0.152]0.046|0.108| 0.153 |0.030(0.170]0.103|0.120|0.056

Cr (wt%) |1.677|2.212|1.868|3.435|2.584 |1.371|2.188|2.850{2.590|0.094

Mo (wt%) |0.905[0.856{0.271|0.067| 0.100 [0.773{0.938|0.210{0.430[0.955

Ni (Wt%) [2.405{0.730|1.708 |3.689| 2.213 {0.797|0.534|1.273|1.275|1.640

Al (wt%) 10.290(0.91210.612|0.258| 0.730 | 0.191 | 0.628 | 0.542|0.241 | 0.749

V (wt%) [0.084]0.143/0.030(0.173] 0.219 {0.194|0.2130.1280.133{0.097

Hardening
Temperature| 921.2|968.91943.21938.6| 937.6 [926.2931.6|881.3|948.4|863.5
°C)

Cooling
Medium 3 2 1 3 2 1 2 2 2 2
Number

Tempering
Temperature| 371.8|567.6|719.8492.0| 326.8 | 708.4|669.2|279.4|670.2 |385.5
°C)

ROA (%) [70.09{69.96|69.99|69.99 (69.904(70.05 | 70.03 | 69.94|69.92 | 69.92
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7.4 The Optimal Design of both UTS and ROA

In the design of alloy steels, sometimes it is required to achieve a predefined target
UTS value and a predefined target ROA value simultaneously. For this problem,
one should first judge whether such requirements are possible. If the answer is
‘yes’, then the problem can be solved as a single objective optimisation problem
by combining these two objectives into a weighted sum formulation. However, if
the answer is ‘no’, then the problem should be solved using the multi-objective
optimisation technique, which is able to offer a set of approximate candidate

solutions (Pareto-optimal solutions). In order to ascertain both scenarios, the

achievable minimum and maximum boundaries are needed.

In this section, the decision vector of these design problems consists of weight
percentages of Carbon (C), Manganese (Mn), Chromium (Cr), Molybdenum (Mo),

and tempering temperature.

7.4.1 Boundaries for the UTS and ROA Design

To obtain the mechanical property boundaries for alloy steels design, the
multi-objective optimisation technique was employed. Two distinct relevant
multi-objective optimisation problems were defined as follows:

1. Minimising UTS and ROA simultaneously, i.e.:

Objective 1: Minimise UTS
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Objective 2: Minimise ROA (7.3)
2. Maximising UTS and ROA simultaneously, i.e.:
Objective 1: Maximise UTS

Objective 2: Maximise ROA (7.4)

The MO-RSSA algorithm was employed to optimise the above problems and the
maximum function evaluations number was set to 10,000. The obtained Pareto
fronts using MO-RSSA are displayed in Figure 7-6. The region between the two

fronts is where one can design the properties (UTS and ROA).
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Figure 7-6. The maximum and minimum boundaries (Pareto fronts) for the
problem of designing UTS and ROA simultaneously
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7.4.2 The Single Objective Optimisation

If the target UTS and ROA are located between the design boundaries, then the
single objective optimisation technique can be used to obtain the desired solution

by optimising the following objective function:

w2
arget

(UTS -UTS, ., ‘f ROA ROA,
+
900 60

b, . b, .

Minimise J; — (7.5)

where UTS7,4e: 15 the target UTS value and ROA 7,4 15 the target ROA value.

For instance, if UTS74rqe; 15 900 MPa and ROAr,ge 1s 60%, it can be seen from
Figure 7-6 that the targets are located between the design boundaries. Table 7-5
shows the results of applying RSSA to optimise Problem (7.5) for 10 different

runs. The average number of function evaluations needed for these 10 runs is 133.

Table 7-5. Optimisation solutions of 10 independent runs for the design problem
with UTS7rge: = 900 (MPa) and ROA 7rge: = 70 (%)

Solutions 1 2 3 4 5 6 7 8 9 10

C (wt%) (0.427]0.530(0.516|0.453]0.438|0.503 | 0.404 | 0.436 | 0.426 | 0.502

Mn (wt%) [1.642|1.484(1.160|1.281|1.511|0.362|1.189 | 1.561 | 0.692 | 1.047

Cr (wt%) [1.341(0.136|0.436{0.583|1.186(1.116|0.316|1.196 | 0.431 | 0.639

Mo (wt%) [0.886(0.230{0.2080.252|0.884|0.233 | 0.633 | 0.879|0.848|0.183

Tempering
Temperature [868.7(940.3(917.31906.0{897.5(925.4|945.0 | 890.8 | 888.5|936.3
°C)

UTS (MPa) [900.0/900.6{899.5/900.3/900.5| 899.9 | 899.1 | 900.6 | 900.2 | 900.3

ROA (%) [59.94(60.03|59.99(59.94|59.99| 60.00 | 59.98 | 59.99 | 60.04 | 60.02
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7.4.3 The Multi-objective Optimisation

If the target UTS and ROA are located outside the design boundaries, then no
precise solutions can be found to satisfy the desired targets. In this case, the
multi-objective optimisation technique can be used to obtain a set of
Pareto-optimal solutions, which are regarded as the possible candidate solutions.

The design problem can be described as follows:

i S ‘UTS UTS;,p V'
Objective 1: Minimise J, ‘ S
" 900 )

. . . e IROA ROATarget \|2
Objective 2: Minimise J, ‘ 50 ! (7.6)
| ;

where UTS7,4e: 15 the target UTS value and ROA 7,4 15 the target ROA value.

For example, if the design targets UTS7,qe; 1s 600 MPa and ROA 7,4e; 1s 50%, then
from Figure 7-6 it can be seen that the targets are beyond the lower design
boundary. In this type of a situation, the multi-objective optimisation algorithm
MO-RSSA should suitably be employed to optimise the above Problem (7.6) with
a maximum function evaluations number being set to 10,000 for instance. The
obtained Pareto-optimal solutions are shown in Figure 7-7 and Table 7-6 provides

details of 10 of these solutions.
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Figure 7-7. The performance of the Pareto-optimal solutions for the design
problem of UTSryger = 600 (MPa) and ROArureer = 50 (%) with
respect to (a) the Objective 1 and the Objective 2 and (b) the UTS
and the ROA

Table 7-6. Pareto-optimal solutions for the design problem with UT Sz = 600
(MPa) and ROA 74rge: = 50 (%)

Solutions 1 2 3 4 5 6 7 8 9 10

C (wt%) |0.528{0.211{0.474]0.408|0.235(0.209(0.225[0.224|0.226|0.136

Mn (wt%) [0.523|1.485|1.668|1.535|1.157(1.535[0.731|1.128|0.474|0.634

Cr (wt%) |1.706|3.130(1.874(2.158(1.218|2.158|0.253|0.278|0.257|1.933

Mo (wt%) [0.751]0.679|0.987{0.988|0.897[0.9880.662|0.063|0.056 |0.890

Tempering
Temperature [969.3903.5|978.9|941.5|880.2|839.8(847.0|847.1|847.0(914.4
°C)

UTS (MPa) [985.9/853.9|817.4|812.9|665.6{619.0|610.8600.0(599.9[591.8

ROA (%) [50.43]49.41|52.02(52.02|53.29|60.70|67.52|69.80|71.35|69.22

From the experimental results in this section, the following can be observed:

1. For an optimal design problem with two conflicting targets, MO-RSSA

is able to find the design boundaries, which is used to ascertain two
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different design scenarios.

2. If the target values locate between the design boundaries, RSSA can be

used to obtain the desired precise solutions successfully.

3. If the target values are located outside the design boundaries,
MO-RSSA can be used to obtain a set of approximate candidate

solutions (Pareto-optimal solutions) successfully.

7.5 The Optimal Alloy Design Considering both the Mechanical Properties

and the Economical Factors

This study consists of finding the optimal chemical compositions and
heat-treatment process parameters in order to obtain the required UTS and ROA
while minimising the production costs. The production costs of heat-treated steels
include the costs of the addition of alloying elements, such as Cr, Mo, V, etc. and

the costs of energy consumption during the heat-treatment process.

In this experiment, five decision variables, C, Mn, Cr, Mo and Tempering
Temperature, have been considered although other composites and temperatures
could also be included. The factors contributing to the cost of heat treatment

operation are summarised in Tables 7-7, 7-8 [Mahfouf et al. 2002].
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Table 7-7. Contribution of composites to the cost of heat treatment

Composite Cost (USS per tonne)

Manganese 18

Chromium 42
Molybdenum 52

Table 7-8. Contribution of tempering (annealing) to the cost of heat treatment

Cost
Item
(USS$: 1.3GJ/tonne at 600° C)
Annealing (tempering) 4.88

7.5.1 The Optimal Design Considering both UTS and the Cost

According to the contribution of the chemical composites and the tempering
process to the cost of heat-treated steels, a new objective function to reflect such

costs was introduced as follows:

K
V

|18Mn+42C'r+52Mo-+488Temp/600"*|2

J
cost I\ 1 00 J

(7.7)

By taking into account such economic consideration, the problem of designing an
alloy steel with a predefined target UTS property becomes a two-objective

optimisation problem described as follows:

T arget

900

o o ‘UTS-UTS, Y
Objective 1: Minimise J, | ———

A
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Objective 2: Minimise  Jqost (7.8)

Figure 7-8 displays the obtained Pareto-optimal solutions in the objective space
with the UTS target value UTS7,g = 900 (MPa). Ten (10) various solutions
around the UTS target value are selected from the Pareto-optimal solutions and

listed in Table 7-9.
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Figure 7-8. The performance of the Pareto-optimal solutions for the design
problem of UTSryger = 900 (MPa) and minimising the heat
treatment cost with respect to (a) Objective 1 and Objective 2; (b)
UTS and Cost
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Table 7-9. Ten of the Pareto-optimal solutions for the design problem of
UTS14rger = 900 (MPa) and minimising the heat treatment cost

Solutions 1 2 3 4 5 6 7 8 9 10

C (wt%) (0.619/0.618/0.619|0.618{0.619|0.619{0.619[0.619(0.619|0.619

Mn (wt%) [1.661(0.738/1.101|1.031|0.921|0.853|0.846[0.799[0.734|0.694

Cr (wt%) [0.050{0.050{0.051{0.061{0.050{0.050|0.060|0.050|0.060|0.051

Mo (wt%) [0.010{0.205|0.050/0.047|0.053|0.051{0.017{0.010{0.010/0.010

Tempering
Temperature [821.9|822.4|821.6(823.6|823.1|821.7|821.7|821.6|821.3|821.9
°C)

UTS (MPa) [900.0[891.5(877.4(870.8|860.6|850.7|838.0|827.8819.3(811.3

Cost (US$) [39.22(32.75(31.30(30.33[28.20|26.81|25.38(23.73|22.96|21.88

7.5.2 The Optimal Design Considering both ROA and the Cost

By considering both the ROA and the economical factors, the following

two-objective optimisation problem can be set:

“ROA-ROA,. Y

arget I

\ 60 !

Objective 1: Minimise .J,

Objective 2: Minimise  Jqos (7.9)

Figure 7-9 shows the obtained Pareto-optimal solutions in the objective space,

where the ROA target value ROA7zarqer 1S 60%. Ten different solutions around the

ROA target value are selected from the Pareto-optimal solutions and listed in

Table 7-10.
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Figure 7-9. The performance of the Pareto-optimal solutions for the design

problem of ROArurger = 60 (%) and minimising the heat treatment
cost with respect to (a) Objective 1 and Objective 2; (b) ROA and
Cost

Table 7-10. Ten of the Pareto-optimal solutions for the design problem of
ROA74get = 60 (%) and minimising the heat treatment cost

Solutions

4

10

C (wt%)

0.436

0.611

0.467

0.599

0.607

0.607

0.614

0.562

0.562

0.562

Mn (wt%)

0.839

0.820

0.995

0.454

0.597

0.579

0.448

0.351

0.351

0.351

Cr (wWt%)

0.242

0.149

0.089

0.050

0.113

0.076

0.050

0.050

0.050

0.050

Mo (wt%)

0.126

0.194

0.058

0.169

0.010

0.025

0.010

0.010

0.010

0.010

Tempering
Temperature
°C)

960.2

870.7

888.6

882.3

868.6

867.0

830.3

862.7

820.8

820.1

ROA (%)

60.04

60.57

62.07

62.67

63.10

63.28

63.51

63.75

63.95

64.87

Cost (US$)

39.65

38.23

31.94

26.27

23.11

22.03

17.44

15.96

15.62

15.61
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7.5.3 The Optimal Design Considering UTS, ROA and the Cost

Taking into account all the three factors, i.e. UTS, ROA and the cost of the heat

treatment, the problem of designing an alloy steel can be described as follows:

- o ‘UTS UTS; g V'
Objective 1: Minimise J, ‘ - g
" 900

arget I

60 J

o L ‘ROA ROA,,,, "\
Objective 2: Minimise .J, —‘
\

Objective 3: Minimise  Jeost (7.10)

An optimisation experiment has been conducted based on the above objectives
where the target values UTS7,.qe; = 900 (MPa) and ROA74ger = 60 (%). The result
of this experiment is shown in Figure 7-10. Ten (10) solutions out of all the

obtained Pareto-optimal solutions are selected and listed in Table 7-11.

From the above experiments, it can be seen that, for the optimal design problems
that consider both the mechanical properties and the economical factors,
MO-RSSA is able to obtain a set of optional solutions (Pareto-optimal solutions),
which are close to the predefined UTS and/or ROA targets while providing various

levels of heat treatment costs.
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Figure 7-10.

The performance of the Pareto-optimal solutions for the design
problem of UTSruger = 900 (MPa), ROAruee: = 60 (%) and
minimising the heat treatment cost with respect to (a) Objective 1
and Objective 3; (b) Objective 2 and Objective 3; (c) UTS and
Cost; and (d) ROA and Cost
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Table 7-11. Ten of the Pareto-optimal solutions for the design problem of
UTStarger = 900 (MPa), ROA1urgec = 60 (%) and minimising the heat
treatment cost

Solutions 1 2 3 4 5 6 7 8 9 10

C (wt%) (0.612]0.602{0.604|0.598 (0.441|0.613|0.606|0.536/0.531|0.619

Mn (wt%) [0.6080.740|1.3320.796 {0.701|0.903|0.4580.811/0.795|0.998

Cr (wt%) [0.357]0.295(0.050]0.050{0.878(0.050(0.3660.244|0.208 | 0.050

Mo (wt%) [0.23310.195]0.1180.253 {0.325]0.143|0.199|0.287/0.276|0.012

Tempering
Temperature [892.1]895.2|849.3 840.9|898.8852.21862.4|849.6|856.5|831.9
°C)

UTS (MPa) [921.4(906.8900.6 [894.5 [891.9 |882.5|877.4|873.9853.3|851.7

ROA (%) [60.24]61.23|64.00|64.32|59.87|63.69|62.2960.07|59.80 | 64.44

Cost (US$) |45.34(43.21(39.14|36.45|73.75|32.73 |41.05 |46.71 | 44.44|27.51

7.6 Summary

In this chapter, RSSA and MO-RSSA have been successfully applied to single
objective and multi-objective optimal design of alloy steels. This research aims at
determining the optimal heat treatment regime and the required weight percentages
for the chemical composites to obtain the desired mechanical properties of steel
such as UTS and ROA. In addition, the work was later extended to include
economic factors, such as the costs associated with the composites and the
tempering operation. The simulation results showed that MO-RSSA is able to
produce a range of well-spread optional solutions around the property targets while

maintaining reasonable production cost.
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8.1 Summary of Main Results

In this thesis, a new nature-inspired optimisation algorithm, Reduced Space
Searching Algorithm (RSSA) was proposed. The inspiration behind this
optimisation algorithm originated from the simulation of a simple human societal
behaviour when searching for optimal solutions in our daily routines. This new
algorithm was validated using a set of well-known challenging benchmark
problems. Compared with the recently developed and most salient optimisation
algorithms, CMA-ES, DE and G3-PCX, RSSA performed as well as and
sometimes better than these algorithms. Furthermore, RSSA was extended to the
multi-objective optimisation case (MO-RSSA) by using the Random Weighted
Aggregation (RWA) technique and maintaining an archiving mechanism for the
solutions. A comparative study based on the ZDT and DTLZ series problems

showed that MO-RSSA is effective in finding the Pareto-optimal solutions and
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possesses advantages over some evolutionary algorithms, such as PAES, SPEA

and NSGA-II, in terms of accuracy and diversity of the final solutions.

Another new optimisation algorithm, nPSO, was then proposed. It introduced a
new ‘momentum term’ to replace the original inertia term of the standard PSO.
The advantages of nPSO lie in its ability to avoid premature convergence and its
adaptability in different situations. This algorithm has been validated using a set of
benchmark problems and was shown to lead to a better performance than the
standard PSOs and some other salient optimisation algorithms. Furthermore, nPSO
was extended to the multi-objective optimisation case, in which the RWA
technique was employed and a new approach named ‘cell selection’ method was
introduced in order to keep a good diversity of the Pareto-optimal solutions. After
a comparison between the new multi-objective PSO (nMPSO) and several well-
known evolutionary multi-objective algorithms, such as PAES, SPEA and NSGA-
II, it was concluded that nMPSO shows noticeable improvements over these
algorithms in terms of both accuracy and diversity of the Pareto solutions when

using the set of challenging benchmarks ZDT and DTLZ series problems.

Based on the developed optimisation algorithms, the framework for data-driven
fuzzy modelling, FM-HCMO, was proposed in order to construct linguistic fuzzy
models considering both the accuracy and the interpretability of fuzzy systems. In
this methodology, a new agglomerative complete-link clustering algorithm was
first developed and applied to construct the initial fuzzy model. A new data

selection technique was then proposed to select representative training data used to
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improve the modelling efficiency. Furthermore, a multi-objective optimisation
mechanism was developed for the performance improvement of the initial model,
which takes into account both the accuracy and the interpretability attributes.
Finally, a method for computing the confidence bands relating to the model

prediction analysis was also proposed.

FM-HCMO was validated via some benchmark problems, which include the
identification of nonlinear, static or dynamic systems. It can be concluded that
FM-HCMO provides a simple and effective framework for system identification
and prediction and the linguistic models constructed using it lead to good

generalisation properties.

FM-HCMO was then applied to model the mechanical properties of alloy steels
using the real data from the steel industry. It was demonstrated that this proposed
approach works effectively in eliciting accurate and interpretable models within

the context of high-dimensional industrial applications.

Finally, RSSA and MO-RSSA were successfully applied to the single objective
and the multi-objective optimal design of alloy steels. This research aimed at
determining the optimal heat treatment regime and the required weight percentages
for the chemical composites to obtain the desired mechanical properties of steel
such as TS and ROA. In addition, this work was extended to include economic
factors, such those costs associated with the composites and the tempering

operation. The simulation results showed that MO-RSSA was able to produce a

251



Chapter 8: Conclusion and Future work

range of well-spread optional solutions around the property targets while
maintaining reasonable production costs. These findings indicate that the
algorithms, RSSA and MO-RSSA, can effectively be used for industrial

optimisation problems and will be beneficial for the steel industry as a whole.

8.2 Future Work

With the availability of the data-driven modelling methodology and the
optimisation algorithms, one can apply them into various applications. To facilitate
the usage of these modelling and optimisation tools, a Graphical User Interface
(GUI), which will allow the information extraction and analysis through simple

operations, is needed.

Figure 8-1 shows a tentative version of the fuzzy modelling tool, which has
integrated and implemented parts of the proposed techniques. This GUI tool can be
used to construct a fuzzy model from a set of loaded data, which is shown in
Figure 8-2. In addition, as shown in Figure 8-3, the basic analysis functions for the

loaded data and the obtained models are also provided.

Future developments will focus on the design and implementation of this flexible
GUI software tool that embodies all the proposed algorithms and methods with
possibility of further extension to include newly devised techniques. This tool will

allow the application of the proposed techniques for solving the modelling and
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optimisation problems emanating from the real world in a more convenient way.
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Figure 8-1. The layout of the designed fuzzy modelling GUI

W T
T hep =
E |
1l s !
s s,
[ — ik "-_"
Damnd
(1]
T B
ey e =
Lo " —
B | e P T - Tm—
frer——— ¢ £ T E] F
e =
rap e = L e L e B e |
| bmmtem | b . e W g )y ||
| o P N ivarciov st re i yn oewa il 1 ey

R S L 4 | i |-|-o||-nn|- e T

PR S TEATE el i COID g B
e el 8 B e T R

(2) (b)

P £ Ty B )

| s Bt Fn |
e TR R . B R, e R T B T T B T R R T
—_— by, secd it (Trmeg Cmts s sl (g [Taersssg (g
o PR Form. Bap— ciowa
| Choes e | 1 e o s iy ey 2] o e s 130 | [ | v e | 1 M w00 R B W e A 13 | ]
[ | a1 = e T e s
| Pepeswe | 1 Iy oy e wmh e reain 1 e ! . —— i —
T R ' —
M0N0 D011 by | | OO MRy OCION e FT M Sk GO T BTN Y ey | | PEECImSg . Di e 000 g RS
z A I 114 T B el CETR el WER R G0 el g 00w
rerre— L | | il i s S e L5

(©) (d)

Figure 8-2. An example of the modelling process using the designed fuzzy
modelling GUI: (a) loading data, (b) running the optimisation, (c)
displaying the prediction performance of the training data and (d)
output predicting from a set of provided discrete inputs
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Figure 8-3. An example of analysing the loaded data and the obtained model
using the designed fuzzy modelling GUI: (a) the training data with
variable ID(s) being 1 and 3, (b) the histograms of the density of the
training data with variable ID(s) being 1 and 3, (c) the measured
outputs vs. the predicted outputs of the training data, and (d) the
inputs and output sensitivity plot (response surface) with various
variable ID(s) being 1 and 2

Besides the above work, the following paragraphs summarise some most
remarkable research trends in the field of evolutionary optimisation and fuzzy

modelling (from the author’s perspective):

1. Theoretical foundations for EAs (including MOEAs): In the future,

more research work should be carried-out to develop the theoretical
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foundations of EAs. The theoretical aspects of EAs are important,
which can help to understand why they work. The generation of new
algorithms and associated operators can also take the advantage of the
theoretical understanding of EAs. So far, only little research have been
carried out in this area; for instance, Rudolph and Agapie [2000] have

proved the convergence properties of some EAs using Markov Chains.

2. The integration of domain knowledge into modelling and
optimisation: In the modelling and/or optimisation problems that
include two or more conflicting objectives, providing all the Pareto-
optimal solutions may not be the most effective way of solving the
problems. In this situation, the problem domain information, which
may be represented as the users’ preference [Deb & Sundar 2006;
Ishibuchi & Nojima 2007], can be introduced into the modelling and/or
optimisation procedure. This integration has the potential to improve

the effectiveness and the accuracy in modelling and optimisation.

3. The extension of fuzzy modelling with the inclusion of stochastic
modelling: With the inclusion of stochastic reasoning, some successful
optimisation algorithms, such as the Estimation of Distribution
Algorithms (EDAs) [Larranaga & Lozano 2001] and the RSSA
algorithm (see Chapter 3) were developed. These stochastic processes
provide the algorithms with more adaptation abilities. In the same way,

some stochastic techniques and statistical learning theories [Cherkassky
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& Mulier 1998], such as Bayesian networks [Jensen 2001], may
cooperate with fuzzy modelling (a deterministic method). This will
improve the generalisation ability of fuzzy systems and will offer a
better adaptation to fuzzy modelling in dealing with some complex

problems, especially those characterised by high degrees of uncertainty.

8.3 Conclusion

In this research project, two evolutionary optimisation algorithms, namely the
Reduced Space Searching Algorithm (RSSA) and the new Particle Swarm
Optimisation algorithm (nPSO), were developed. Based on these proposed
optimisation algorithms, a data-driven modelling methodology, named the Fuzzy
Modelling approach with a Hierarchical Clustering algorithm and a Multi-
objective Optimisation mechanism (FM-HCMO), was designed. The FM-HCMO
approach was successfully implemented within an industrial application, which
consists of eliciting prediction models of the mechanical properties of alloy steels
using real industry data. Using these developed models, the proposed optimisation
algorithms were successfully applied to single objective and multi-objective

optimal designs of alloy steels.
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