
 
 
 
 
 

 
Access to Electronic Thesis 

 
 
Author: Qian Zhang 

Thesis title:    Nature-Inspired Multi-Objective Optimisation and Transparent Knowledge 
Discovery via Hierarchical Fuzzy Modelling 

Qualification: PhD 

Date awarded: 19 January 2009 

 
 

This electronic thesis is protected by the Copyright, Designs and Patents Act 1988.  
No reproduction is permitted without consent of the author.  It is also protected by 
the Creative Commons Licence allowing Attributions-Non-commercial-No 
derivatives. 
 
 
 
 



Nature-Inspired Multi-Objective Optimisation and 

Transparent Knowledge Discovery via Hierarchical Fuzzy 

Modelling

Qian Zhang 

Department of Automatic Control and Systems Engineering 

The University of Sheffield 

A thesis submitted in partial fulfilment of the requirements 

for the degree of Doctor of Philosophy 

October 2008 



Abstract

Knowledge discovery is one of the most important human activities, which helps 

people recognise and understand some of the intricacies associated with the 

ancient and modern worlds. With the rapid development in the human capabilities 

to both generate and collect data, the discovery of knowledge from data has 

become a practical and popular research topic. In this thesis, knowledge discovery 

from data is conducted from the following two overarching viewpoints: first, 

developing prediction models using the data that represent input-output 

relationships; second, based on these developed prediction models, finding the 

optimal designs (solutions) from a set of predefined objectives. The theoretical 

aspects behind the previous two research facets are described and the associated 

experimental studies are carried out. 

A particular focus of this thesis is on a cooperative fuzzy modelling framework, 

which integrates transparent (interpretable) fuzzy systems with robust evolutionary 

computing based algorithms involving several techniques, such as data clustering, 

data mining, and multi-objective optimisation. Evolutionary optimisation 

algorithms are also developed on the basis of nature and social inspired ideas. 

Optimisation forms an essential part of the modelling framework and is employed 

in the direct optimal design problems as well. The proposed cooperative fuzzy 

modelling methodology and the devised evolutionary optimisation algorithms are 

then applied to knowledge discovery in terms of systems modelling and control 

(static optimisation via reverse-engineering), using simulation platforms as well as 

real industrial data. 

The experimental results show that the proposed modelling framework and 

optimisation algorithms outperform some of the other salient techniques; the 

proposed approaches can successfully work within the context of the high-

dimensional industrial applications, including modelling and optimal design 

problems. 
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Chapter 1 

Introduction

1.1 Background and Research Aims 

Knowledge discovery is one of the most important activities that, we humans, 

undertake almost on a daily basis. It helps people recognise and understand some 

of the intricacies of the ancient and modern worlds. In computer science, 

knowledge discovery is one of the most desirable end-products of computing and 

is also one of the most difficult computing challenges to undertake. 

For this purpose, one can identify two complementary approaches, which are 

knowledge acquisition from experts and knowledge discovery from data. 

�Knowledge acquisition from experts often includes discovery as a by-product, 

since the formalisation often uncovers new linkages. But that discovery also 

depends on human recognition of unexpected phenomena. Such discoveries must 

often be validated with broader tests, since a single expert typically has a narrow 
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view of the world.� [Fayyad et al. 1996]. In some of new and more complex 

systems, the knowledge cannot even be obtained from experts because of the lack 

of understanding of the systems themselves. 

Discovering knowledge from data can help to overcome the above limitations. 

During the last two decades, one would have witnessed an explosive growth in 

humans� capabilities to both generate and collect data. By analysing and 

summarising these data, one can extract �useful� knowledge from such 

information. Experts may have known one part of the knowledge, but the other 

part is totally new to us humans. 

To employ the idea of discovering knowledge from data, the format of knowledge 

expression must be determined first. In some particular domains, appropriate 

models exist and can be used in new knowledge expression. Experts can 

understand the new knowledge based on these models. But in some other domains, 

there are currently no models that can be used in a new knowledge expression. In 

this situation, fuzzy systems appear to be suitable for complex and uncertain 

environments. 

Fuzzy systems are known to be universal approximators [Wang 1992] and good at 

modelling complex, nonlinear, or partially unknown systems [Babuska 1998; 

Passino & Yurkovich 1998; Wang 1997]. These systems are normally based on 

linguistic knowledge expressions that are easy to be understood not only by an 

expert but also by an even wider audience. The advantages of fuzzy systems in 
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both adaptability and transparency make them suitable for knowledge discovery in 

this current research project. 

A Mamdani-type fuzzy system [Mamdani & Assilian 1975] is the first type of 

fuzzy systems, which is based on Zadeh's theories in human-machine interaction 

[Zadeh 1973]. It uses linguistic expressions in both the antecedent and consequent 

parts. Later, the TSK-type fuzzy system [Takagi & Sugeno 1985] was introduced 

by replacing the linguistic consequent parts of the Mamdani-type fuzzy system 

with mathematical functions. Because of their computational efficiency and their 

high accuracy, TSK-type fuzzy systems seem attractive and as a result abundant 

research has been carried-out based on their associated architectures in recent 

years. However, one cannot ignore the fact that on a linguistic level these 

numerically improved systems are somewhat meaningless to human operators. 

In fact, the most attractive property of fuzzy systems lies in their ability of 

processing information in linguistic terms. But it can be argued now that this 

aspect is somewhat neglected and sacrificed to numerical accuracy. In this current 

research project, more attention will be paid to building more transparent 

(interpretable) fuzzy systems. 

To implement a fuzzy system in a knowledge discovery context, it must cooperate 

with other paradigms that include some learning abilities. Two of the most 

successful attempts to hybridise fuzzy systems with learning and adaptation 

methods include neural fuzzy systems [Jang et al. 1997; Nauck et al. 1997; Fuller 
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1999] and genetic fuzzy systems [Pedrycz 1997; Cordon et al. 2001]. 

Neural fuzzy systems have been studied extensively in the last ten years while 

genetic fuzzy systems are still not fully developed. In recent years, better 

evolutionary computing based algorithms other than genetic algorithms (GAs) 

[Holland 1975] have been researched. These should be helpful in improving the 

learning abilities of fuzzy systems if used in cooperation with these algorithms. 

However, most of the current research still focuses on the hybridisation of fuzzy 

systems with only GAs. On the other hand, research about GA-based approaches 

focuses on simple problems and discovering knowledge at a low level, most of 

which are of two or three-input one-output systems. Only a few high-quality 

genetic fuzzy systems have been proposed and used in real industrial applications. 

Thus, in the research contained in this thesis, more emphasis will be directed 

forwards the cooperation of fuzzy systems with some effective evolutionary 

computing based optimisation algorithms. 

It is worth nothing that data-driven modelling based on fuzzy systems possesses 

two conflicting requirements: accuracy (precision) and transparency 

(interpretability). Accuracy is easy to embrace as it relates to the capability of 

representing a real system faithfully, this representing a fundamental requirement 

for models. In contrast, interpretability means that human beings should be able to 

understand a fuzzy system�s behaviour by inspecting its associated rule-base. The 

latter is crucial in the field of data mining and knowledge discovery, where 

information should be extracted from data bases and represented in a 
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comprehensible form, or for decision support systems where the reasoning process 

should be transparent to the users [Mikut et al. 2005]. To deal with this type of 

problems with conflicting objectives, multi-objective optimisation techniques [Deb 

2001] becomes a natural choice. Another advantage of the multi-objective 

optimisation technique is that it will lead to a set of Pareto-optimal models with 

different accuracy and interpretability levels, instead of only one solution if using 

other learning techniques. This should provide more options and add more 

flexibility to users. Therefore, designing efficient optimisation algorithms, 

including multi-objective optimisation algorithms, will form another task within 

this research project. 

Through the simulation of natural and social behaviours, researchers have 

succeeded in developing many successful approaches to solve complex problems. 

Artificial neural networks and evolutionary algorithms are two of the most salient 

representatives. Artificial neural networks imitate the structure of biological neural 

networks and mimic the process of human learning and memory to manage 

information. On the other hand, most of the introductions of evolutionary 

algorithms are also inspired by some natural or social behaviour. For example, 

Genetic Algorithms (GA) imitate the natural evolution, while Particle Swarm 

Optimisation (PSO) [Kennedy & Eberhart 1995] algorithms mimic the behaviour 

of birds �flock�. In the same way, more effort will be devoted to develop 

nature-inspired or social-inspired methods for optimisation problems. 

Once appropriate optimisation and modelling strategies have been designed, it is 
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necessary to validate them in real industrial problems. In this research project, the 

proposed methodologies will be applied to the modelling and design problems 

relating to the steel (metal) industry. 

In materials engineering, it is important to establish appropriate and reliable 

mechanical property prediction models for materials design and development. In 

the past, several mechanical property models were developed, which were mainly 

based on linear regression methods [Pickering 1978] or artificial neural networks 

[Hodgson 1996; Chen et al. 1998; Bakshi & Chatterjee 1998]. Linear models are 

only designed for specific classes of steels and specific processing routes, and are 

not sophisticated enough to account for more complex interactions, while neural 

networks can be seen as black-box techniques and the knowledge behind this kind 

of models cannot be understood fully. Thus, developing a fast, efficient and 

transparent data-driven modelling framework for material property prediction is 

still needed. In this situation, fuzzy modelling provides an ideal approach because 

of its interpretable structure and its excellent ability of learning from data. 

If intelligent models in the form of fuzzy systems were constructed to predict the 

mechanical test results for alloy steels, then these models can be implemented to 

facilitate the optimal design of alloy steels. In the steel industry, determining the 

optimal heat treatment regime and the required weight percentages for chemical 

composites to obtain the desired mechanical properties of the steel is always a 

challenging multi-objective optimisation problem. Usually, some objectives may 

conflict with each other, such as the Ultimate Tensile Strength (UTS) and the 

6



Chapter 1: Introduction 

ductility. By using the designed multi-objective optimisation algorithms and the 

developed prediction models, the design targets can be achieved. 

Above all, in this project, a cooperative fuzzy modelling framework is investigated, 

which integrates such transparent fuzzy systems with the effective evolutionary 

computing based algorithms and involves many techniques, such as data clustering, 

data mining, as well as multi-objective optimisation. Evolutionary optimisation 

algorithms are also developed following the nature-inspired or the social-inspired 

ideas, which are an essential part of the modelling framework and are employed in 

the optimal design problems as well. This cooperative fuzzy modelling 

methodology and the proposed evolutionary optimisation algorithms are then 

applied to knowledge discovery, in terms of system modelling and optimal design, 

using simulation platforms as well as real industrial data. 

1.2 Structure of the Thesis 

The next paragraphs will describe the key points covered by the various chapters 

in this thesis. 

Chapter 2 will introduce some basic knowledge relating to this project. This will 

include the basic concepts relating to fuzzy sets, fuzzy systems, optimisation and 

multi-objective optimisation. The frameworks relating to single objective and 

multi-objective optimisation algorithms will also be described. 
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Chapter 3 will propose a new nature-inspired optimisation algorithm, Reduced 

Space Searching Algorithm (RSSA). This algorithm will be validated using a set 

of well-known benchmark problems and compared with some recently developed 

and most salient optimisation algorithms, the Covariance Matrix Adaptation 

Evolution Strategy (CMA-ES), the Differential Evolution (DE) and the 

Generalised Generation Gap model with the Parent-Centric Recombination 

operator (G3-PCX). In addition, various parameter settings will be explored and 

the appropriate parameter configurations will be outlined. Furthermore, this new 

algorithm will be extended to the multi-objective optimisation case (MO-RSSA), 

in which the Random Weighted Aggregation (RWA) technique will be employed 

and a new approach named �cell selection� method will be introduced in order to 

keep a good diversity of the Pareto-optimal solutions. A comparative study 

between MO-RSSA and other MOEAs, such as the Pareto Archived Evolution 

Strategy (PAES), the Strength Pareto Evolutionary Algorithm (SPEA) and the 

Non-dominated Sorting Genetic Algorithm II (NSGA-II) will be carried-out based 

on a set of challenging problems, such as the ZDT and DTLZ series problems. 

In Chapter 4, a new social-inspired algorithm, the new Particle Swarm 

Optimisation (nPSO), will be proposed, which will introduce a new �momentum 

term� to replace the original inertia term of the standard PSO. This algorithm will 

be validated using a set of benchmark problems and will be compared with the 

standard PSOs and some other salient optimisation algorithms. In addition, various 

parameter settings will be explored in detail and the appropriate parameter 
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configurations will also be outlined. Furthermore, nPSO will be extended to the 

multi-objective optimisation case and the newly developed multi-objective PSO 

(nMPSO) will be compared with several well-known evolutionary multi-objective 

algorithms, such as PAES, SPEA and NSGA-II, via the ZDT and DTLZ series 

problems. 

Chapter 5 will propose a new framework for data-driven fuzzy modelling, named 

the Fuzzy Modelling approach with a Hierarchical Clustering algorithm and a 

Multi-objective Optimisation mechanism (FM-HCMO), in order to construct 

linguistic fuzzy models considering both the accuracy and the interpretability of 

fuzzy systems. In this methodology, a new agglomerative complete-link clustering 

algorithm will be first developed and applied to construct an initial fuzzy model. A 

new data selection technique will then be proposed to select the representative 

training data used to improve the modelling efficiency. A multi-objective 

optimisation mechanism will then be developed for the improvement of modelling 

performance, which will take into account both the accuracy and interpretability 

attributes. Finally, a method for computing the confidence bands relating to the 

model prediction analysis will be described. All of these proposed techniques will 

be validated via a series of experiments using real industrial data from the steel 

industry.

In Chapter 6, the proposed modelling framework FM-HCMO will be validated as a 

whole. The test problems will include the benchmark problems relating to the 

identification of nonlinear, static and dynamic systems, as well as the modelling 
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problems of the mechanical properties for alloy steels, namely the Ultimate 

Tensile Strength (UTS), Reduction of Area (ROA), Elongation and Impact Energy. 

In Chapter 7, RSSA and MO-RSSA will be applied to single objective and 

multi-objective optimal design of alloy steels. This research aims at determining 

the optimal heat treatment regime and the required weight percentages for 

chemical composites to obtain the desired mechanical properties of steel, such as 

UTS and ROA. In addition, the work will later be extended to include economic 

factors, such as the costs associated with the composites and the machining 

operation.

Finally, Chapter 8 will detail the conclusions resulting from the work within this 

project, together with future research directions. 
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Chapter 2 

Evolutionary Based Optimisation and 

Fuzzy Theories - A Background 

2.1 Optimisation 

2.1.1 Single Objective Optimisation 

In mathematics, the term optimisation refers to the study of problems in which one 

seeks to minimise or maximise a real function by systematically choosing the 

values of real or integer variables from within an allowed set. 

Normally, an optimisation problem can be represented in the following way: 

Given a function f : A R, seek a solution Ax *  such that )()( * xfxf

for all x  in A (minimisation) or such that )()( * xfxf  for all  in A

(maximisation). 

x
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Typically, A is the subset of the Euclidean space Rn and is often specified by a set 

of constraints, equalities or inequalities that the members of A should satisfy. The 

domain A of f is called the search space, while the elements x  of A are called 

candidate solutions or feasible solutions. The function f is called an objective 

function, or cost function. The feasible solution that minimises (or maximises, if 

that is the goal) the objective function is called an optimal solution. 

Generally, the optimisation problems may include some local minima or maxima, 

where a local minimum  is defined as a point, for which there exists some  > 0 

so that for all 

lx

x  where lxx , the expression )()( xfxf l  holds. That is to 

say, in some region around lx , all of the function values are greater than or equal 

to the value at the  point. Local maxima are defined similarly. lx

2.1.2 Multi-Objective Optimisation 

Multi-objective optimisation [Sawaragi et al. 1985; Steuer 1986], also known as 

multi-criteria optimisation, is the process of simultaneously optimising two or 

more conflicting objectives subject to certain constraints. 

In mathematical terms, the multi-objective problem can be written as follows: 

Find a vector  that will optimise the following vector function: *x

)](,),(),(),([)( 321 xfxfxfxfxf k
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subject to the m inequality constraints 0)(xg i , mi ,,3,2,1 , and the 

p equality constraints 0)(xh j , pj ,,3,2,1 , where x  is the vector 

of decision variables. 

If a multi-objective problem is well formed, there should not be a single solution 

that simultaneously optimises each objective to its fullest. Meanwhile, multiple 

solutions exist, for which each objective has been optimised to the extent that if 

one tries to optimise it any further, then the other objective(s) will suffer as a result. 

These solutions are regarded as the answer to the multi-objective optimisation 

problem, which are called Pareto-optimal solutions or non-dominated solutions 

[Sawaragi et al. 1985; Steuer 1986; Deb 2001]. 

Pareto-optimal solutions (non-dominated solutions) are those for which 

improvement in one objective can only occur with the worsening of at least one 

other objective. They are defined as follows (for a minimisation problem): 

One solution  is Pareto optimal, where A is the feasible solution 

space, if for every 

Ax

Ax  either )()( xfxf ii , ki , where k is the 

number of objectives, or there is at least one  such that 

.

ki

)()( xfxf ii

The above definition means that *x  is Pareto optimal if there is no feasible vector 

x  that would decrease some objective values without causing a simultaneous 

increase in at least one other objective value [Coello Coello 1999]. 
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Multi-objective optimisation problems can be found in various fields such as 

product and process design, finance, aircraft design, the oil and gas industry, 

automobile design, or wherever optimal decisions need to be taken in the presence 

of trade-offs between two or more conflicting objectives, for instance, maximising 

the profit and minimising the cost of a product; maximising the performance and 

minimising the fuel consumption of a vehicle; and minimising the weight while 

maximising the strength of a particular component. 

2.2 Evolutionary Computation 

Evolutionary computation [Eiben & Smith 2003; De Jong 2006] is a subfield of 

artificial intelligence that involves optimisation problems. It uses iterative progress 

with a growth or development in a population. This population is then selected in a 

guided random search using parallel processing to achieve the desired end. Such 

processes are often inspired by biological mechanisms of evolution. 

Evolutionary techniques mostly involve evolutionary algorithms (comprising 

genetic algorithms [Mitchell 1996], evolutionary programming [Eiben & Smith 

2003], evolution strategy [Beyer 2001], genetic programming [Langdon & Poli 

2002] and learning classifier systems [Bull & Kovacs 2005]), swarm intelligence 

(comprising ant colony optimisation [Dorigo & Stutzle 2004] and particle swarm 

optimisation [Kennedy et al. 2001]), self-organising maps [Kohonen 2001], 

differential evolution [Price et al. 2005], and artificial immune systems [De Castro 
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& Timmis 2002]. 

2.2.1 Evolutionary Algorithms 

In artificial intelligence, evolutionary algorithms (EA) are the generic population-

based metaheuristic optimisation algorithms, which are a subset of evolutionary 

computation. An EA uses some mechanisms (operators) inspired by biological 

evolution: reproduction, mutation, recombination, and selection. Candidate 

solutions to the optimisation problem play the role of individuals in a population, 

and the cost function determines the environment within which the solutions �live�. 

Evolution of the population then takes place after the repeated application of the 

above operators. 

Evolutionary algorithms consistently perform well in approximating solutions to 

all types of problems because they do not make any assumptions about the 

underlying fitness landscape. This generality is shown by successes in fields as 

diverse as engineering, art, biology, economics, marketing, genetics, operations 

research, robotics, social sciences, physics, politics, and chemistry. 

2.2.1.1 Genetic Algorithms 

Genetic Algorithms (GA) are the most widely known types of evolutionary 
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algorithms. They are inspired by evolutionary biology such as inheritance, 

mutation, natural selection, and recombination (or crossover). Over the last two 

decades, GAs have been extensively used as search and optimisation tools in 

various problem domains, including science, commerce and engineering. The main 

reasons for their success lie in their broad applicability, ease of use and global 

perspective [Goldberg 1989]. 

The concept of a genetic algorithm was first proposed by John Holland of the 

University of Michigan in 1975 [Holland 1975]. Most of the initial research work 

can be found in various early international conference proceedings and several 

textbooks [Goldberg 1989; Holland 1975; Michalewicz 1992; Back et al. 1997]. 

Some journals are dedicated to promote research in evolutionary algorithms, 

certainly including GAs, such as �Evolutionary Computation Journal� published by 

MIT Press, �Transactions on Evolutionary Computation� published by IEEE and 

�Genetic Programming and Evolutionary Computation� published by Kluwer 

Academic Publishers. New developments about GAs and other evolutionary 

algorithms can be found in these journals as well as in recent international 

conference proceedings. 

2.2.1.2 Evolution Strategies 

The idea behind Evolution Strategies (ES) represents a joint development of 

Bienert, Rechenberg and Schwefel in the 1960s at the Technical University of 
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Berlin (TUB) in Germany. The first application of ESs was experimental and 

attempted to solve the shape optimisation of a bended pipe, the drag minimisation 

of a jointed plate and the shape optimisation of a flashing nozzle. Thereafter, 

different versions of ESs were suggested, such as multi-membered ESs, 

recombinative ESs and self-adaptive ESs. More details can be found in 

[Michalewicz 1992; Schwefel & Rudolph 1995; Back et al. 1997]. 

Though the ESs� working principle is similar to that of a real-parameter GA used 

with selection and mutation operators only. The early ES is fundamentally 

different from the early binary GAs in mainly two ways: (1) ESs use real values 

for coding and (2) ESs do not use any crossover-like operator. In addition, the step 

size of ESs� mutation operator can adjust itself adaptively during the optimisation 

process. That gives ESs the capability of self-adaptation which GAs do not have. 

The latter is also the reason why there are still many researchers interested in ESs. 

2.2.2 Swarm Intelligence 

Swarm intelligence (SI) is an artificial intelligence based on the collective 

behaviour of decentralised, self-organised systems. The expression was introduced 

by Gerardo Beni and Jing Wang in 1989, in the context of cellular robotic systems 

[Beni & Wang 1989]. 

SI systems are typically made up of a population of simple agents interacting 
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locally with one another and with their environment. The agents follow very 

simple rules, and although there is no centralised control structure dictating how 

individual agents should behave, local interactions between such agents lead to the 

emergence of complex global behaviour. Natural examples of SI include ant 

colonies, bird flocking, animal herding, bacterial growth, and fish schooling. The 

most successful algorithms employing swarm intelligence are Ant Colony 

Optimisation (ACO) [Dorigo et al. 1996] and Particle Swarm Optimisation (PSO) 

[Kennedy et al. 2001]. 

2.2.2.1 Particle Swarm Optimisation (PSO) 

Particle swarm optimisation is a population-based evolutionary computing 

algorithm for problem solving. It is the type of swarm intelligence that is based on 

social-psychological principles and provides insights into social behaviour, as well 

as contributing to engineering applications. The particle swarm optimisation 

algorithm was first described in 1995 by James Kennedy and Russell C. Eberhart 

[Eberhart & Kennedy 1995; Kennedy & Eberhart 1995] and the techniques have 

evolved greatly since then. 

Since its introduction in 1995, the PSO method has become very popular due to its 

simplicity of implementation and ability to quickly converge to a reasonably good 

solution. A fair amount of research results have been reported in the literature and 

the first book dedicated to PSO [Kennedy et al. 2001] has been published in 2001. 
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2.2.3 Multi-Objective Optimisation Algorithms within Evolutionary 

Computation

Most real-world search and optimisation problems naturally involve multiple 

objectives. Knowledge discovery can also be seen as multi-objective. For example, 

one objective is that the knowledge discovered should be accurate and the other 

objective is that the knowledge should be transparent. These two objectives 

conflict with each other to a certain extent. With the accuracy of the knowledge 

increasing, the amount of the knowledge will also increase. This will make the 

knowledge less transparent for people to understand. If we want to decrease the 

amount of the knowledge for easier and better understanding, the accuracy should 

decrease. Zadeh termed this �principle of incompatibility� [Zadeh 1973]. To solve 

multi-objective problems in knowledge discovery, multi-objective optimisation 

techniques are needed. Here, several well-known evolutionary multi-objective 

optimisation algorithms which have been developed in recent years will be 

discussed.

2.2.3.1 Strength Pareto Evolutionary Algorithm 

The Strength Pareto Evolutionary Algorithm (SPEA) was introduced by Zitzler 

and Thiele [Zitzler & Thiele 1998] and was proposed as a way of integrating 

different Multi-Objective Evolutionary Algorithms (MOEAs). This algorithm 

introduces elitism by maintaining an archive to store non-dominated solutions 
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previously found, which is called an �external non-dominated set�. At every 

generation, newly found non-dominated solutions are compared with the existing 

external population and the best non-dominated individuals are copied to the 

external non-dominated set. For each individual in the external set, a strength 

value is calculated, which is proportional to the number of solutions to which the 

certain individual dominates. The fitness of each individual in the current 

population is calculated according to the strength of all external non-dominated 

solutions that dominates it. To maintain diversity, a clustering technique �average 

linkage method� is used. 

A second version of the original algorithm, Strength Pareto Evolutionary 

Algorithm 2 (SPEA2), was proposed in 2001 [Zitzler et al. 2001]. It has three main 

differences with respect to its predecessor: (1) it improves the fitness assignment 

scheme which, for each individual, takes into account how many individuals that it 

dominates and it is dominated by; (2) it incorporates a nearest neighbour density 

estimation technique which gives a more precise guidance for the search process, 

and (3) it uses an enhanced archive truncation method to guarantee the 

preservation of boundary solutions. 

2.2.3.2 Pareto Archived Evolution Strategy 

The Pareto Archived Evolution Strategy (PAES) was introduced by Knowles and 

Corne in 2000 [Knowles & Corne 2000]. In its simplest form, PAES consists of a 
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(1+1) evolution strategy, which means that a single parent generates a single 

offspring in every generation. In PAES, a historical archive, which is the elitist 

mechanism of the algorithm, is used to record some of the non-dominated 

solutions previously found. This archive works as a reference set against which 

each mutated individual is being compared. To maintain diversity, the algorithm 

uses a mechanism that consists of a crowding procedure that divides objective 

space in a recursive manner. Each solution is located in a certain grid based on its 

objective value. The number of solutions that reside in each grid location is 

recorded in an external memory. This information is used for the selection and the 

archiving processes. This method has two advantages over other methods used in 

some multi-objective GAs: Its computational cost is lower; it is adaptive and does 

not need the critical setting of other extra parameters except for the number of 

divisions of the objective space. 

2.2.3.3 Nondominated Sorting Genetic Algorithm II 

The Nondominated Sorting Genetic Algorithm II (NSGA-II) [Deb et al. 2002] was 

proposed by Deb et al., which represents a revised version of the Nondominated 

Sorting Genetic Algorithm (NSGA) [Srinivas & Deb 1994] and is more efficient 

than its predecessor. It employs a crowded tournament selection operator to keep 

diversity. In the elitist mechanism of NSGA-II, it does neither use an external 

memory nor does it specify any extra niching parameters as most of the other 

algorithms have to do. Instead, the elitist mechanism consists of combining the 
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best parents with the best offspring obtained. Because of NSGA-II�s elitist 

approach and less parameters needed, NSGA-II has become one of the best multi-

objective optimisation algorithms. 

There are some other evolutionary multi-objective optimisation algorithms 

proposed in recent years. More details can be found in the following books and 

papers [Coello Coello 1999; Deb 2001; Zitzler et al. 2002; Coello Coello 2003; 

Zitzler et al. 2003]. 

2.3 Fuzzy Sets and Fuzzy Systems 

2.3.1 Fuzzy Sets 

Fuzzy sets are sets whose elements have degrees of membership. Fuzzy sets have 

been introduced by Lotfi A. Zadeh [Zadeh 1965] at the University of California, 

Berkeley, as an extension of the classical notion of a �set�. In classical set theory, 

the membership of elements in a set is assessed in binary terms according to a 

bivalent condition - an element either belongs or does not belong to the set. By 

contrast, fuzzy set theory permits the gradual assessment of the membership of 

elements in a set; this is described with the aid of a membership function valued in 

the real unit interval [0, 1]. Fuzzy sets generalise classical sets, since the indicator 

functions of classical sets are special cases of the membership functions of fuzzy 

sets, if the latter only take values 0 or 1[Dubois & Prade 1988]. 
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A fuzzy set is a pair (A, A) where A is a set and A: A  [0, 1] is a membership 

function. For each , A(x) is the grade of membership of x.Ax

0)(),( xAxAx AA . If A = {z1, ..., zn}, the fuzzy set (A, A) can also 

be denoted as { A(z1) / z1, ..., A(zn) / zn}.

An element mapping to the value �0� means that the member is not included in the 

fuzzy set, value �1� describes a fully included member. Values strictly between 0 

and 1 characterise the fuzzy members. 

Generally, the membership functions A(x) use Gaussian functions, triangular-

shape functions or trapezoidal-shape functions, as shown in Figure 2-1. 

x

(x)
1

Figure 2-1. An example of membership functions 

2.3.2 Fuzzy Systems 

Fuzzy systems are knowledge-based or rule-based systems. They have been 
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applied to a wide variety of fields ranging from control, signal processing, 

communications, integrated circuit manufacturing, and expert systems to business, 

medicine, psychology, etc. 

A fuzzy system basically consists of four components: fuzzy rule-base, fuzzy 

inference engine, fuzzifier and defuzzifier. Figure 2-2 shows the diagram of a 

fuzzy system. 

Figure 2-2. The basic configuration of fuzzy systems 

The heart of a fuzzy system is the knowledge-base (rule-base) consisting of the so-

called fuzzy IF-THEN rules and all other components are used to implement these 

rules in a reasonable and efficient manner. A fuzzy IF-THEN rule is an IF-THEN 

statement in which some words are characterised by continuous membership 

functions. Specifically, the fuzzy rule-base comprises the following fuzzy IF-

THEN rules: 

Rulel: IF x1 is A1
l and � and xn is An

l, THEN y is Bl,

where l = 1, 2, �, M and M is the number of rules in the fuzzy rule-base; Ai
l and Bl
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are fuzzy sets in  and , respectively, and x = 

and  are the input and output (linguistic) variables of the fuzzy system, 

respectively. 

RU i RV Uxxx T
n ),,,( 21

Vy

The fuzzifier is defined as a mapping from a real-valued point x*  to a 

fuzzy set A* in U. Normally, three types of fuzzifiers are used, which are singleton 

fuzzifier, Gaussian fuzzifier and triangular fuzzifier [Wang 1997]. The defuzzifier 

is defined as a mapping from a fuzzy set B* in  (which is the output of the 

fuzzy inference engine) to a crisp point . Conceptually, the task of the 

defuzzifier is to specify a point in V that best represents the fuzzy set B*. Three 

mostly used defuzzifiers are centre of gravity defuzzifier, centre average 

defuzzifier and maximum defuzzifier [Wang 1997]. 

nRU

RV

Vy *

In a fuzzy inference engine, fuzzy logic principles are used to combine the fuzzy 

IF-THEN rules in the fuzzy rule-base into a mapping from a fuzzy set A* in U to a 

fuzzy set B*. For more information and details about the fuzzy inference engine, 

please refer to the book [Wang 1997]. 

2.4 Summary 

In this chapter, some basic knowledge relating to this research project was 

introduced. This includes the basic concepts relating to optimisation, multi-

objective optimisation, evolutionary computation, fuzzy sets, and fuzzy systems. 
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Meanwhile, some important single objective and multi-objective optimisation 

algorithms based on evolutionary computation principles were also introduced, 

which include Genetic Algorithms, Evolution Strategies, Particle Swarm 

Optimisation, Strength Pareto Evolutionary Algorithms, Pareto Archived 

Evolution Strategy, and Nondominated Sorting Genetic Algorithm II. The next 

chapter presents the development of a new optimisation algorithm in its single 

objective format as well as its multi-objective extension. 
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A New Reduced Space Searching 

Algorithm with Applications to Single 

Objective and Multi-Objective Problems 

3.1 Introduction to the Reduced Space Searching (RSS) Strategy 

Inspired by natural and social behaviours, researchers have developed many 

successful optimisation algorithms. For example, the Genetic Algorithm (GA) 

[Holland 1975; Goldberg 1989] originates from the simulation of natural evolution, 

while the Particle Swarm Optimisation (PSO) [Kennedy and Eberhart 1995; 

Eberhart and Kennedy 1995] algorithm is motivated by the simulation of the social 

behaviour of birds flock. In the same way, a new search and optimisation 

algorithm Reduced Space Searching Algorithm (RSSA) is reported in this chapter, 

which is inspired by the simple human experience when looking for an �optimal� 

solution. 
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If one approaches the optimisation issue from a totally unbiased angle it would be 

legitimate to postulate that �common� sense should dictate that when searching for 

a candidate solution under predefined objectives, a relatively large search space 

area must be initially targeted. When clues are available that the objective may be 

met in a particular area, the initial search area is then justifiably reduced. This 

simple principle is being widely used in our every-day life and has proved to be 

effective. In the light of the above, a strategy of constructing a new optimisation 

algorithm, named Reduced Space Searching (RSS) throughout, is proposed here. 

The �rationale� behind this RSS strategy is as follows: given an optimisation 

problem, one should divide the initial search space into parts and rank these parts 

according to the probability of the candidates satisfying the objective(s). First, a 

search is conducted in the partial space where the probability is the highest 

followed by the one with the lowest probability. The diagram of Figure 3-1 

illustrates the idea behind the RSS strategy. 

Following this simple idea, a new optimisation algorithm, Reduced Space 

Searching Algorithm (RSSA), has been constructed. This algorithm has also been 

extended to include the multi-objective case. More details about the new algorithm 

and its experimental performance are given in the remaining parts of this chapter. 

Section 3.2 outlines the various steps included in the new proposed algorithm. 

Section 3.3 presents the results of applying the new algorithm to optimise some 

well-known single objective benchmark functions. A comparative study between 

RSSA and other three evolutionary algorithms, i.e. the Covariance Matrix 
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Adaptation Evolution Strategy (CMA-ES) [Hansen et al. 2003], the Differential 

Evolution (DE) [Storn & Price 1995] and the Generalised Generation Gap model 

with a Parent-Centric Recombination operator (G3+PCX) [Deb et al. 2002], is also 

conducted. In Section 3.4, the algorithm is extended to solve the multi-objective 

optimisation problems. In Section 3.5, the proposed multi-objective optimisation 

algorithm is then compared to other salient multi-objective evolutionary 

algorithms in solving the well-known ZDT [Zitzler et al. 2000] and DTLZ [Deb et

al. 2001] series test problems. Finally, summary remarks are given in Section 3.6. 

Figure 3-1. The RSS strategy for dealing with optimisation problems 
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3.2 The Reduced Space Searching Algorithm (RSSA) 

3.2.1 The Basic Idea 

To develop an algorithm following the RSS strategy described in the previous 

section, one must first define how to divide the search space into parts and how to 

rank them. In this work, a simple (but not simpler) method to achieve this purpose 

is proposed. The basic idea is that the search space should be divided into two 

parts: one part is located around the best solution found so far and the other part is 

the space left. The partial space around the best solution should be ranked highly. 

To simplify the method, the marginal partial space can be neglected and only the 

space that includes the best solution is kept for search purposes. If the process of 

dividing the search space into smaller parts is repeated sufficiently enough, then a 

final relatively small search space as well as an �optimal� solution to the problem 

will be obtained. 

3.2.2 Improvement of the Basic Idea 

It was found that reducing the search space all the time is not the most effective 

way of locating the optimal solution. Sometimes, a too-small search space will 

decrease the speed of solution convergence and at the same time will reduce the 

probability of the solution jumping out of the local optima. Thus, a search space 

�increase� mechanism is proposed to cooperate with the original �decrease� 
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mechanism. In this new mechanism, if no better solution can be found in the 

optimisation search process, then the search space is reckoned to be too large for 

such a search and should be decreased to reinforce the local search. If better 

solutions can always be found in a particular reduced space, then the algorithm 

may certainly have got trapped in a local optimal area. Given this situation, the 

search space should be increased to reinforce the global search. This proposed 

method attempts to strike a balance between the global and the local searches to 

make the optimisation search process more adaptive. 

3.2.3 An Example of the Search Space Decreasing or Increasing

Figure 3-2 shows an example of the size of the search space decreasing or 

increasing in a two-dimensional problem. In Figure 3-2(a), the rectangular Region 

1 is the search space of an optimisation problem. Solution �A� is the best solution 

hitherto located. If there are several continuous randomly selected candidate 

solutions worse than �A� in the fitness to the optimisation problem, as is shown in 

Figure 3-2(b), then the size of the search space should be decreased around the 

best solution �A�. The partial space (Region 2) containing �A�, as the centre, is set 

to the new space one should perform the search in. On the other hand, if there are 

several continuous randomly selected candidate solutions better than �A� in the 

fitness, which is shown in Figure 3-2(c), then the size of the search space should 

be increased around the best solution �B�. The increasing space (Region 3) 

containing �B�, as the centre, is set to the new space one should perform the search 

31



Chapter 3: A New Reduced Space Searching Algorithm 

in. If there are better solutions (but not continuous) that can be found in the search 

space (shown in Figure 3-2(d)), then the size of the search space should not be 

changed and the centre of the search space (Region 4) will be moved to the new 

best solution �C�. 

   (a)                                                             (b) 

   (c)                                                             (d) 

Figure 3-2. An example of how to divide the search space in the case a two-
dimensional problem 

In the light of the above considerations, one will obtain a good solution after a 

finite number of repetitions. However, it must be stressed that the above method 
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may only find a local optimal solution rather than a global optimal one. To obtain 

a global optimal solution, a variation operator is employed to cooperate with the 

RSS operator. Figure 3-3 shows the flow chart of the whole RSSA algorithm. 

RSSA start

Carry out initial search 
in problem space

Better solution found
in C2 iterations?

Better solutions found in
series in C1 iterations?

Decrease size of 
search space

Increase size of 
search space

Yes

Is search space
reduced enough?

Implement variation 
operators

Better solution found?

Termination
criterion achieved?

RSSA end

Yes No

No

Yes

Yes

No

No

Yes

No

RSS Operator

Figure 3-3. Flow chart of the RSSA algorithm 
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3.2.4 The Variation Operators 

Three variation strategies are designed as follows: 

1. One-dimensional variation: Only one element of the decision variable 

vector will be varied. The position of this element will be randomly chosen 

and the element will be set at a random value within the search bounds. 

2. Multi-dimensional variation: The number of elements of the decision 

variable that will be varied and the positions of these elements will be 

randomly generated. These elements will then be set to some random 

values.

3. All-dimensional variation: All the elements of the decision variable 

vector will be randomly varied. 

3.2.5 The RSSA Algorithm

Consider a single objective optimisation problem with N decision variables as 

follows: Minimise f (X), X  [Xmin1, Xmax1] × [Xmin2, Xmax2] ×�× [XminN,

XmaxN].

The proposed RSSA algorithm can be summarised as follows: 
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1. Randomly select one candidate solution Xa (x1, x2, � , xN) in the original 

search space and save it as the best solution Xbest = Xa. Set n = 0, which is 

used to control the bounds of the search space. 

2. Randomly select the candidate solutions Xb(s) in the current search space. 

If C1-continuous Xb(s) satisfies f (Xb) < f (Xbest) and n > 1, then Xbest = 

Xb and n = n - 1. If C2-continuous Xb(s) satisfies f (Xb) > f (Xbest), then n =

n + 1. If non-continuous Xb(s) satisfies f (Xb) < f (Xbest), then Xbest = Xb.

3. Change the size of the search space using the ratio K (0 < K < 1, in this 

thesis K = 0.5 without any loss of generality). Xbest is located at the centre 

of the new space. Ymini is the lower bound of the ith decision variable in 

the new search space and Ymaxi is the upper bound. To avoid the new 

bounds stepping outside the original constraints, the following equations 

are used to define the new bounds: 

)()(,minmaxmin iLKiXbestXY n
ii ,

)()(,maxminmax iLKiXbestXY n
ii .                                 (3.1) 

where i = 1, 2, � N; 0 n m; L(i) = Xmaxi Xmini. m is a threshold 

value that depends on the precision needed and relates to the value of K. If 

K = 0.5, a value of m = 15 to 30 should prove adequate. 

4. Repeat Steps 2 and 3 until n = m.

5. Perform the variation operator on Xbest and obtain Xc. If f (Xc) < f (Xbest),
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then Xbest = Xc, n = 0 and repeat Steps 2 to 4. If C3-continuous Xc(s)

satisfies f (Xc) > f (Xbest), then n = 0 and repeat Steps 2 to 4. 

6. Repeat Step 5 until the �optimal� solution is found or the termination 

criterion is reached. 

It is worth nothing that the decreasing parameter C1 and the increasing parameter 

C2 play important roles in the RSSA algorithm. They are used to balance the 

global search as well as the local search in the optimisation process. 

3.3 Experimental Studies using RSSA 

3.3.1 Benchmark Test Functions 

In the field of evolutionary computation, it is common to compare different 

algorithms using a large test set. When an algorithm is evaluated, one must look 

for the type of problems where its performance is good, in order to characterise the 

type of problems for which the algorithm is suitable. In this work, the test set with 

some well-characterised functions is used as it allows one to obtain and generalise 

the results regarding the kind of functions involved. All these functions are used as 

minimisation problems and the following shows their expressions and the 

summary of their features about separability and multimodality. Figures 3-4(a) to 

3-4(n) show the 3-dimensional maps of these functions in the 2-dimensional case. 
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(a)                                                           (b) 

(c)                                                           (d) 

(e)                                                           (f) 

(g)                                                           (h) 
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(i)                                                           (j) 

(k)                                                           (l) 

(m)                                                           (n) 

Figure 3-4. The 3-dimensional map for f1 to f14 in the 2-dimensional situation: (a) 
to (n) 

A function of D variables is separable if it can be rewritten as a sum of D functions 

of just one variable. Non-separable functions are more difficult to optimise as the 

accurate search direction depends on two or more variables. On the other hand, 

separable functions can be optimised for each variable in turn. A function is 
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multimodal if it has two or more local optima. The problem is more difficult if the 

function is multimodal. The search process must be able to avoid the regions 

around local optima in order to approximate, as far as possible, the global 

optimum. 

3.3.2 Effect of the Decreasing Parameter �C1�

In this experiment, the RSSA algorithm was tested using the benchmark problems 

f1, f3, f7 and f10 with the settings of a constant increasing parameter (C2 = 1) and the 

various decreasing parameter (C1 = 1, 2, 5, 10, 20 and 50). For each benchmark 

problem, the dimension D was increased in the sequence to 2, 5, 10, 20 and 50, 

and for each setting, 20 runs were conducted. In each run, the maximal function 

evaluation number was set to 106 and the optimisation process was regarded as 

successful and stopped, when the best solution Fb satisfied the following condition: 

Fb < 10-5 if the true global minimum Gb = 0 or |(Fb - Gb) / Gb| < 10-5 if Gb  0. 

In this case, the parameter m = 15 and both the one-dimensional variation strategy 

(with the 50% probability of usage) and the multi-dimensional variation strategy 

(with the 50% probability of usage) were used. 

Table 3-1 shows the performance of RSSA with various decreasing parameters in 

optimising the test problems with different dimensions. From this table, one can 

observe that, for one optimisation problem, with the increasing number of 
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dimensions in the problem, the algorithm needs a larger decreasing parameter. As 

a result it is recommended that C1 = C2 × (D/2 + 8), where D is the dimension of 

the test problem. 

Table 3-1. The average number of function evaluations to find the optimum; the 
bold values represent the best results. 

Function Dimension C1=1 C1=2 C1=5 C1=10 C1=20 C1=50

D=2 4603 2838 83 161 262 732

D=5 29289 25110 2094 259 468 1080

D=10 145287 97843 13553 466 684 1538

D=20 389010 293490 62555 905 1286 2246

f1

D=50 N/A N/A 260492 13677 2694 4602

D=2 17074 2486 189 164 316 731

D=5 388700 230640 40265 902 569 1096

D=10 N/A N/A 614729 98663 1985 2165

D=20 N/A N/A N/A N/A 10810 6601

f3

D=50 N/A N/A N/A N/A N/A 44682

D=2 26730 12690 678 862 1337 2000

D=5 258280 91105 16135 4456 5368 10988

D=10 821180 453360 99204 14335 19743 31215

D=20 N/A N/A 397555 280120 37054 92932

f7

D=50 N/A N/A 908190 311700 226977 349717

D=2 30562 11527 320 418 571 1163

D=5 398277 238140 71750 1366 2513 4501

D=10 N/A 849800 140130 10785 9058 13389

D=20 N/A N/A 468950 43818 30624 34431

f10

D=50 N/A N/A N/A 280172 126854 152310
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3.3.3 Effects of the Variation Strategies 

Three types of variation operators were tested and compared in this experiment. 

For this purpose, the 30-dimensional multimodal benchmark problems f5 to f11

were used as test beds. The decreasing parameter C1 was set to be 23 and the 

increasing parameter C2 was set to be 1. Other settings were similar to those of the 

experiments conducted in Section 3.3.2. 

From Table 3-2, it can be seen that the one-dimensional variation strategy 

performs best on the functions f5, f6, f7, f8, f10 and f11, while the all-dimensional 

variation strategy performs best on the problems f9. For a broad adaptation to 

various problems, it is recommended to use both the one-dimensional and multi-

dimensional variation strategies simultaneously. 

3.3.4 A Comparison between RSSA and Other Evolutionary Algorithms

In this section, experiments were carried-out between RSSA and other three salient 

evolutionary algorithms, which are the Covariance Matrix Adaptation Evolution 

Strategy (CMA-ES) [Hansen et al. 2003], the Differential Evolution (DE) [Storn & 

Price 1995] and the Generalised Generation Gap model with the Parent-Centric 

Recombination operator (G3+PCX) [Deb et al. 2002]. 
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Table 3-2. Average performance of RSSA with different variation strategies in 
optimising f5 to f11: The integer in every cell is the average function 
evaluation number in successful runs; the value between the 
parentheses is the average result in the unsuccessful runs; the 
percentage value in the square brackets indicates the percentage of 
the successful runs out of all the runs; the bold values represent the 
best results. 

Function One-dimensional 
Variation

Multi-dimensional 
Variation

Multi-dimensional 
Variation

f5

N/A
(0.0017)

[0%]

N/A
(0.8025)

[0%]

N/A
(0.0043)

[0%]

f6

76645
(N/A)

[100%] 

108630
(N/A)

[100%]

N/A
(-7712)

[0%]

f7

88647
(N/A)

[100%] 

318860
(N/A)

[100%]

N/A
(1.7491e+2)

[0%]

f8

N/A
(1.2877e-5)

[0%] 

N/A
(1.7127e-5)

[0%]

N/A
(1.3796e+1)

[0%]

f9

2788
(0.0193)
[40%]

2935
(0.0158)
[50%]

2753
(0.0108)
[55%]

f10

46969
(N/A)

[100%] 

312660
(N/A)

[100%]

N/A
(1.7105e+1)

[0%]

f11

N/A
(1.7736e+2)

[0%]

N/A
(1.8662e+2)

[0%]

N/A
(2.0294e+2)

[0%]

The parameter settings for these algorithms are described as follows: 

1. RSSA: C1 = D/2 + 8, C2 = 1, K = 0.5, m = 30, where D is the dimension of 

the test problem. The variation operator worked as a combination of the 
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one-dimensional variation strategy (with the 50% probability of usage) and 

the multi-dimensional variation strategy (with the 50% probability of 

usage).

2. CMA-ES: There are 8 parameters to be predefined for this algorithm. All 

settings followed the instructions given in [Hansen 2007]. For instance, the 

population size  = 4 + floor(3×lnD), the parent number  = floor( /2), etc., 

where floor(x) is the function that allows to round-off x to the nearest 

integer towards - .

3. DE: The DE/Rand/1 scheme was employed. The parameter settings 

followed the instructions in [Storn 1996]. The population size N = 10×D;

the crossover probability CR = 0.9 and the weighting factor F = 0.8. 

4. G3+PCX: Following the papers by [Deb et al. 2002; Deb 2005], the 

population size N = 10 × D; the parent size was set to 3; the offspring size 

was set to 2 and the replacement size was set to 2. For the PCX operator, 

the distribution parameter  = 0.1 and  = 0.1. 

The optimisation process was regarded as successful and stopped when the best 

solution Fb satisfied the following condition: Fb < 10-5 if the true global minimum 

Gb = 0 or |(Fb - Gb) / Gb| < 10-5 if Gb  0. For every individual experiment, the 

result was obtained after 20 runs. For each run, the maximal function evaluation 

number was set to 106.
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Table 3-3 shows the optimisation results of different algorithms on various 

problems. From this table, one can observe the following: 

1. For the unimodal problems f1 to f4, CMA-ES performs best in most of the 

situations. RSSA performs best using the fewest function evaluation for f1.

For f3, RSSA can achieve the minimum with a small function evaluation 

number, but it cannot obtain the optima of the problems f2 and f4.

2. For the high-dimensional multimodal problems f5 to f11, RSSA performs 

better than other algorithms. For instance, for f7, f8 and f10, RSSA is able to 

locate the global optimum with the fewest function evaluations; for f6 and 

f9, RSSA performs better than the other algorithms. In most of the 

situations, RSSA can achieve the optima, while other algorithms often 

cannot find the �true� optimal solutions. 

3. For the low-dimensional multimodal problems f12 to f14, RSSA is able to 

obtain the global optimum and needs fewer function evaluations, compared 

with other algorithms. 
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Table 3-3. Average performance of various algorithms in optimising f1 to f14:
The integer in every cell is the average function evaluation number in 
successful runs; the value between parentheses is the average result in 
the unsuccessful runs; the percentage value in the square brackets 
indicates the percentage of the successful runs out of all the runs; the 
bold values represent the best results. 

Function RSSA CMA-ES DE G3+PCX

f1

1806 
(N/A) 

[100%]

3207 
(N/A) 

[100%] 

391770 
(N/A) 

[100%] 

7140 
(N/A) 

[100%] 

f2

N/A
(0.0038) 

[0%] 

11751 
(N/A) 

[100%]

655110 
(N/A) 

[100%] 

N/A
(12.0469) 

[0%] 

f3

24287 
(N/A) 

[100%] 

10830 
(N/A) 

[100%]

N/A
(1.8527) 

[0%] 

25937 
(N/A) 

[100%] 

f4

N/A
(0.0147) 

[0%] 

8929 
(N/A) 

[100%]

N/A
(0.2004) 

[0%] 

117414 
(N/A) 

[100%] 

f5

N/A
(0.0074) 

[0%] 

46072 
(N/A) 

[100%]

N/A
(0.0158) 

[0%] 

140430 
(N/A) 

[100%] 

f6

73451 
(N/A) 

[100%]

N/A
(-6665) 

[0%] 

616080 
(N/A) 

[100%] 

N/A
(-6878) 

[0%] 

f7

94499 
(N/A) 

[100%]

N/A
(106.1617) 

[0%] 

940560 
(N/A) 

[100%] 

N/A
(142.8754) 

[0%] 

f8

209440 
(N/A) 

[100%]

8575 
(19.3625) 

[40%] 

694560 
(N/A) 

[100%] 

N/A;
(3.1199) 

[0%] 

f9

2717 
(0.0112) 
[50%]

5586 
(0.0100) 
[75%] 

586740 
(N/A) 

[100%] 

10983 
(0.0110) 
[65%] 

f10

52774 
(N/A) 

[100%]

N/A
(2.2897) 

[0%] 

510180 
(N/A) 

[100%] 

N/A
(15.1530) 

[0%] 

f11

N/A
(197.8232) 

[0%] 

N/A
(248.84) 

[0%] 

N/A
(0.1217) 

[0%]

N/A
(184.4355) 

[0%] 

f12

329 
(N/A) 

[100%]

221 
(-19.8160) 

[95%] 

853 
(N/A) 

[100%] 

N/A
(-0.4128) 

[0%] 

f13

322 
(N/A) 

[100%] 

224 
(N/A) 

[100%]

1182 
(N/A) 

[100%] 

N/A
(0.8862) 

[0%] 

f14

366 
(N/A) 

[100%]

253 
(141.0000) 

[95%] 

777 
(N/A) 

[100%] 

N/A
(35.3369) 

[0%] 
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3.4 Extension of RSSA to Multi-Objective Optimisation Problems 

The RSSA algorithm proposed in this work seems an ideal candidate for multi-

objective optimisation because of the good performance ascertained in the single 

objective optimisation case. To extend the RSSA to optimise multi-objective 

problems, the Random Weighted Aggregation (RWA) technique [Murata et al.

1996] is employed and an archive [Knowles & Corne 2000] is also included to 

preserve the Pareto-optimal solutions. 

3.4.1 The Random Weighted Aggregation Approach 

Assume a multi-objective problem that consists of finding a vector 

),,,,( 321 DxxxxX                                                                          (3.2) 

that will optimise the following vector function: 

)](,),(),(),([)( 321 XfXfXfXfXf k .                                            (3.3) 

The Weighted Aggregation is one of the most common approaches for solving 

multi-objective problems. In this type of approach, all the objectives are summed 

to a weighted combination as follows: 

k

i ii XfwF
1

)( , 1
1

k

i iw ,                                                             (3.4) 

where wi, i = 1, 2, � , k, are non-negative weights. 
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In the Conventional Weighted Aggregation (CWA) method, the above weights are 

fixed during the optimisation process. By using CWA, only a single Pareto-

optimal solution can be obtained in every optimisation run. If one wishes to obtain 

different Pareto solutions, the algorithm has to be repeated several times with 

different weights settings. In addition, this method cannot locate the Pareto 

solutions when there are concave regions in the true Pareto front. 

Random Weighted Aggregation (RWA) can overcome the limitations of CWA. In 

the RWA method, the weights are modified after every certain number of 

iterations during the optimisation. The weights are defined by the following 

equation:

.),1(

;1),(,
)(

)(
)(

1

elsetw

Htremif
trand

trand
tw

i

k

j j

i

i                                            (3.5) 

where t is the index of iteration and H is the frequency of the weight changing; 

randi(t) is a function to create a uniformly distributed random value in the range 

[0, 1]; rem(t, H) is a function to obtain the remainder from dividing t by H.

3.4.2 Archive Design 

In the RWA method, the population cannot keep all the found Pareto solutions. 

Thus, an archive is used to record the Pareto solutions found so far during the 

optimisation search. The pseudo-code for maintaining the archive is listed in 

50



Chapter 3: A New Reduced Space Searching Algorithm 

Figure 3-5. To update the archive with appropriate Pareto solutions, a non-

dominated selection and a diversity selection mechanism are employed. The non-

dominated selection aims to obtain the Pareto solutions from the candidates. This 

is easy to implement. The diversity selection tends to obtain the solutions with a 

good diversity from the candidates. In this section, a simple method named �cell 

selection� is proposed to achieve this purpose. 

For every interation 

    Add new solutions to the archive 

    Non-dominated selection 

    Diversity selection 

End For 

Figure 3-5. Pseudo-code for maintaining the archive 

The cell selection method works as follows: 

1. Divide the objective space, which includes the candidate solutions, into 

equal parts; every part is a �cell�. For example, in a two-objective problem, 

if one divides the objective space into g×g grids, then g2 cells are formed. 

2. For every candidate solution, identify the cell that contains this solution. 

3. One cell is only permitted to involve one solution. If more than one 

solution are located in the same cell, the redundant solutions will be 
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randomly chosen and deleted. 

This method can also restrict the number of solutions in the archive. For example, 

in a two-objective problem, if the cells in this method are formed through the 

division of a g g grid, then it can be seen that after the non-dominated selection 

and the cell selection, 2g solutions, at most, will remain. 

Figure 3-6 illustrates an example of how the selection methods work in the archive 

maintaining process. The �blue� points in the figures represent the solutions 

contained in the archive. Figure 3-6(a) shows the situation after some newly 

generated solutions are added to the archive. In Figure 3-6(b), non-dominated 

(Pareto) solutions, which are represented as the red-circled points, are selected. As 

a result, these non-dominated solutions are selected again, using the cell selection 

approach, which is shown as Figure 3-6(c). Finally, the Pareto-optimal solutions 

with good diversity are obtained (see Figure 3-6(d)). 

3.4.3 The Multi-Objective Reduced Space Searching Algorithm (MO-RSSA) 

After applying the RWA method and maintaining an archive for preserving the 

Pareto-optimal solutions, the RSSA is now extended to the multi-objective 

optimisation case, which leads to the algorithm named throughout as Multi-

Objective Reduced Space Searching Algorithm (MO-RSSA). 
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(a)                                                            (b) 

(c)                                                            (d) 

FIgure 3-6. An example of non-dominated selection and diversity selection: (a) 
The solutions before the selections; (b) Non-dominated selection; 
(c) Cell selection; (d) The solutions after the selections 

3.5 Experimental Studies using MO-RSSA 

3.5.1 Comparison between MO-RSSA and Other Multi-Objective EAs 

A comparison between MO-RSSA and some salient multi-objective evolutionary 

algorithms, such as the Pareto Archived Evolution Strategy (PAES) [Knowles & 

Corne 2000], the Strength Pareto Evolutionary Algorithm (SPEA) [Zitzler & 
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Thiele 1998] and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

[Deb et al. 2002], was carried-out using the well-known multi-objective 

optimisation problems � the ZDT series benchmark problems [Zitzler et al. 2000]. 

3.5.1.1 Problems Description 

The ZDT series benchmark functions are considered to be difficult to optimise, 

especially ZDT2, ZDT3 and ZDT4. All of these functions represent two-objective 

problems of minimising both f1 and f2. They are described as follows [Zitzler et al.

2000]:

1. ZDT1 (30-variable problem with a convex Pareto front): 

11 xf ,
n

i
ix

n
g

21
91 , gfgf /1 12 , 10 ix , . 30n

2. ZDT2 (30-variable problem with a concave Pareto front): 

11 xf ,
n

i
ix

n
g

21
91 , 2

12 )/(1 gfgf , 10 ix , . 30n

3. ZDT3 (30-variable problem with a number of disconnected Pareto fronts): 

11 xf ,
n

i
ix

n
g

21
91 , )10sin()/(/1 1112 fgfgfgf ,

10 ix , . 30n
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4. ZDT4 (10-variable problem with a Pareto front out of 100 local Pareto 

fronts):

11 xf , ,
n

i
ii xxng

2

2 )4cos(10)1(101 gfgf /1 12 ,

10 1x , 55 ix , ni ,,3,2 , 10n .

3.5.1.2 Performance Metrics

The Generational Distance (GD) performance metrics measures the closeness of 

the obtained Pareto solution set Q from a known set of the Pareto-optimal set P. It 

is defined as follows [Deb 2001]: 

||
)( /1||

1

Q
d

GD
mm

i
Q
i                                                                                 (3.6) 

For a two-objective problem (m = 2), di is the Euclidean distance between the 

solution  and the nearest member of P. A set of (|P| = 500) uniformly 

distributed Pareto-optimal solutions are used to calculate the closeness metric GD.

Qi

The Spread  measures the diversity of the solutions along the Pareto front in the 

final population and is defined as follows: 

dQd
ddd
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Q

i
e
m
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m
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||

1

||
11                                                                  (3.7) 

where di is distance between the neighbouring solutions in the Pareto solution set 

Q. d  is the mean value of all di.  is the distance between the extreme solutions e
md
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of P and Q along the mth objective. It is worth nothing that for an ideal distribution 

of the solutions (uniform distribution)  = 0. 

3.5.1.3 Experimental Setup 

For a meaningful comparison, the experiments configuration referred to the 

experiments in [Deb 2001]. The maximal function evaluation for every experiment 

was set to 25000. The result of every experiment was obtained after 10 

independent runs. The parameter settings for different algorithms are listed as 

follows: 

1. MO-RSSA: decreasing parameter C1 = 3, increasing parameter C2 = 1, 

changing ratio K = 0.5, m = 15, frequency parameter H = 10000 and a 

variation strategy of the combination of the one-dimensional variation 

(with the 75% probability of usage) and the multi-dimensional variation 

(with the 25% probability of usage). 

2. Pareto Archived Evolution Strategy (PAES): Population size 100, 

maximum generation 250, crossover probability 0.9 and mutation 

probability 0.01. 

3. Strength Pareto Evolutionary Algorithm (SPEA): Population size 80, 

external population size 20, maximum generation 250, crossover 
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probability 0.9 and mutation probability 1/80. 

4. Non-dominated Sorting Genetic Algorithm II (NSGA-II) (binary-

coded): Population size 100, maximum generation 250, crossover 

probability 0.9 and mutation probability 1/(string-length). 30 bits were used 

to code each variable. 

3.5.1.4 Experimental Results 

The average GD and  values of 10 runs and the corresponding variances 2 are 

summarised in Tables 3-4 and 3-5 respectively. In these tables, the compared 

results for PAES, SPEA and NSGA-II are obtained from [Deb 2001]. It can be 

seen that MO-RSSA performs best in all the situations. It outperforms the other 

three well-known multi-objective optimisation algorithms in terms of both 

accuracy and diversity. 

Figure 3-7 shows the graphical results produced by MO-RSSA. The true optimal 

Pareto fronts of the problems are represented with a continuous �red� curve and the 

�blue� points are the solutions obtained using MO-RSSA. It can be observed that 

the algorithm possesses very good convergence properties while maintaining a 

good diversity among the Pareto solutions. 
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Table 3-4. Mean and variance values of GD; the bold values represent the best 
results.

Mean value of GD / (variance 2)
Problems 

MO-RSSA PAES SPEA NSGA-II 

ZDT1
4.07e-4

(0)
8.21e-2

(8.68e-3)

1.25e-3

(0)

8.94e-4

(0)

ZDT2
7.37e-4

(0)
1.26e-1

(3.69e-2)

3.04e-3

(2.00e-5)

8.24e-4

(0)

ZDT3
4.07e-4

(0)
2.39e-2

(1.00e-5)
4.42e-2

(1.90e-5)
4.34e-2

(4.20e-5)

ZDT4
1.82e-4

(0)
8.55e-1

(5.27e-1)

9.51e+0

(1.13e+1)

3.23e+0

(7.31e+0)

Table 3-5. Mean and variance values of ; the bold values represent the best 
results.

Mean value of  / (variance 2)
Problems 

MO-RSSA PAES SPEA NSGA-II 

ZDT1
4.68e-1

(1.66e-3)
1.23e+0
(4.84e-3)

7.30e-1
(9.07e-3)

4.63e-1
(4.16e-2)

ZDT2
3.94e-1

(8.10e-4)
1.17e+0
(7.68e-3)

6.78e-1
(4.48e-3)

4.35e-1
(2.46e-2)

ZDT3
4.97e-1

(5.30e-3)
7.90e-1

(1.65e-3)

6.66e-1

(6.66e-4)

5.76e-1

(5.08e-3)

ZDT4
4.78e-1

(2.62e-3)
8.70e-1

(1.01e-1)
7.32e-1

(1.13e-2)
4.79e-1

(9.84e-3)
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Figure 3-7.  Pareto fronts obtained by MO-RSSA 

3.5.2 Experiments Based on the DTLZ Series Problems 

In this experiment, MO-RSSA was used to optimise the DTLZ series problems 

[Deb et al. 2001]. All the DTLZ problems were set so as to include three 

objectives. For a meaningful comparison with the optimisation results using 

NSGA-II and SPEA2 in [Deb et al. 2001], MO-RSSA used the same number of 

function evaluations as the experiments in the previous paper. The configuration of 

the MO-RSSA algorithm was the same as the one used for optimising ZDT 

problems, except the weight changing frequency parameter H, which is now taken 
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to be 1000. 

1. DTLZ1: The difficulty of this problem lies in the convergence to the 

hyper-plane. The search space contains (115-1) local Pareto-optimal fronts. 

Figure 3-8 shows the optimisation results using MO-RSSA in different 

angles of view. One can see that, MO-RSSA can obtain the Pareto-optimal 

solutions that possess a very good diversity. 
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Figure 3-8. The optimisation result of MO-RSSA on DTLZ1 

2. DTLZ2: The difficulty of this problem relates to its concave Pareto-

optimal area. Figure 3-9 shows the optimisation results using the MO-

RSSA algorithm. It can be seen that MO-RSSA can converge to the Pareto-

optimal front with a good diversity. 
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Figure 3-9. The optimisation result of MO-RSSA on DTLZ2 

3. DTLZ3: The difficulty of this problem lies in the presence of several local 

Pareto-optimal fronts. This problem has 310-1 local Pareto-optimal fronts 

and one global Pareto-optimal front. All local Pareto-optimal fronts are 

parallel to the global Pareto-optimal front and a Multi-objective 

Evolutionary Algorithm (MOEA) can become trapped at any of these local 

Pareto-optimal fronts during the optimisation process. The optimisation 

result using MO-RSSA is shown in Figure 3-10. It can be seen that MO-

RSSA can achieve the true Pareto-optimal front, while the results in [Deb 

et al. 2001] show that NSGA-II and SPEA2 cannot converge to the true 

Pareto front. 
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Figure 3-10. The optimisation result of MO-RSSA on DTLZ3 

61



Chapter 3: A New Reduced Space Searching Algorithm 

4. DTLZ5: This problem will test MOEA�s ability to converge to a curve. 

The optimisation result using MO-RSSA is shown in Figure 3-11. One can 

see that MO-RSSA is able to converge to the Pareto-optimal front with a 

good diversity. For this test problem, MO-RSSA can find the Pareto-

optimal solutions in the early stages of the optimisation process. 
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Figure 3-11. The optimisation result of MO-RSSA on DTLZ5 

5. DTLZ6: This problem is a modified version of DTLZ5, which becomes 

more difficult to solve than DTLZ5. As the results in [Deb et al. 2001], 

MO-RSSA also cannot converge to the true Pareto-optimal front, which is 

shown in Figure 3-12. 

Figure 3-12. The optimisation result of MO-RSSA on DTLZ6 
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6. DTLZ7: This problem has a disconnected set of Pareto-optimal regions 

and it will test the algorithm�s ability to maintain a subpopulation in 

different Pareto-optimal regions. Figure 3-13 shows the optimisation result 

using MO-RSSA to optimise DTLZ7. From this figure, it can be observed 

that the new algorithm is able to find and maintain stable and distributed 

subpopulations in all four disconnected Pareto-optimal regions. 
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Figure 3-13. The optimisation result of MO-RSSA on DTLZ7 

3.6 Summary 

In this chapter, a new optimisation algorithm, Reduced Space Searching Algorithm 

(RSSA), was introduced, which is inspired from the simulation of the simple 

human societal behaviour when searching for optimal solutions in our daily 

routines. This new algorithm has been validated using a set of well-known 

benchmark problems. Compared with the recently developed and most salient 

optimisation algorithms, CMA-ES, DE and G3-PCX, RSSA performs as well as 
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and sometimes better than these algorithms. In addition, various parameter settings 

have also been explored and the appropriate parameter configurations were 

recommended. 

Furthermore, RSSA was extended to the multi-objective optimisation case, in 

which the Random Weighted Aggregation (RWA) was employed. In addition, a 

new approach named �cell selection� method was introduced in order to keep a 

good diversity of the Pareto-optimal solutions. After a comparison between the 

proposed Multi-Objective Reduced Space Searching Algorithm (MO-RSSA) and 

several well-known evolutionary multi-objective algorithms, such as PAES, SPEA 

and NSGA-II, which is based on a set of challenging problems ZDT and DTLZ 

series problems, it can be concluded that MO-RSSA shows noticeable 

improvements over these algorithms in terms of both accuracy and diversity of the 

Pareto solutions. 

The next chapter will introduce a new optimisation algorithm based on Particle 

Swarm Optimisation [Kennedy & Eberhart 1995]. 
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Chapter 4 

A New Structure for Particle Swarm 

Optimisation with Applications to Single 

Objective and Multi-Objective Problems 

4.1 Introduction to Particle Swarm Optimisation (PSO) 

Particle swarm optimisation (PSO) is a powerful evolutionary computation 

technique that was originally introduced by Kennedy and Eberhart [Kennedy & 

Eberhart 1995; Eberhart & Kennedy 1995]. It was developed by the simulation of 

a simplified animal social behaviour of birds flocking and fish schooling. This 

technique is initialised with a population of random solutions, called particles. 

Each particle flies through the search space with a velocity which is dynamically 

adjusted according to its own and its companions� historical behaviours. It is 

expected that the particles have a tendency to fly towards better search areas 

during the search process. 
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Since its introduction in 1995, the PSO technique is becoming very popular due to 

its simplicity of implementation and ability to quickly converge to a reasonably 

good solution. Though PSO has many advantages, it still suffers from premature 

convergence, by becoming trapped in local extrema. To solve this problem, a new 

structure, based on the original PSO algorithm, is proposed in this chapter, where a 

new component, named �momentum term�, is introduced to replace the �inertial 

term� of the original PSO. 

This chapter is organised as follows. The remaining part of Section 4.1 will 

provide a background knowledge about PSO. Section 4.2 will introduce the 

proposed new structure for PSO in details. In Section 4.3, sets of experiments will 

be carried-out to examine the optimisation performance of the new PSO. In 

Section 4.4, this new algorithm will be extended to include a multi-objective case 

and the results of applying the new multi-objective optimisation algorithm to some 

well-known benchmark problems, namely the ZDT series and the DTLZ series 

problems, will also be presented. Finally, summary remarks will be given in 

Section 4.5. 

4.1.1 Basic Concepts of PSO 

In PSO, each particle represents an alternative solution in the multi-dimensional 

search space. Initially, a population of particles is generated with random positions 

and random velocities. Then, each particle flies through the search space with the 
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velocity constantly updated according to its own flying experience and its 

companions� flying experience. Figure 4-1 shows an example of the particles� 

movement in a 2-dimensional search space. In this case, the �blue� dots represent 

the particles� positions in a certain iteration; a �yellow� dot represents the historical 

best position found hitherto for one particular particle; the �red� dot is the best 

position found so far among all particles. In addition to these, the related positions 

are linked with the dashed lines; and the lines with the arrow marks indicate the 

possible movements of these particles. It is shown that, in one iteration, one 

particle has the tendency to fly towards its own best position that has been 

experienced (�yellow� dot) and also the particle tends to fly towards the best 

position experienced by all its companions (�red� dot). After one movement, all the 

personal previous best positions and the global best position for all the particles are 

evaluated and updated again. 

(a)                                                               (b) 

Figure 4-1. An example of the particles� movements in two continuous 
iterations in PSO 
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Specifically, the position vector and velocity vector of the ith particle in a D-

dimensional search space can be represented as xi = [xi1, xi2, xi3, �, xiD]T and vi = 

[vi1, vi2, vi3, �, viD]T respectively. According to a predefined fitness function, the 

best previous position of the ith particle is pi = [pi1, pi2, pi3, �, piD]T (its 

corresponding fitness value is named the �personal best� pbest) and the fittest 

position among all the particles found so far is pg = [pg1, pg2, pg3, �, pgD]T (its 

corresponding fitness value is called the �global best� gbest). The velocities and 

positions of the particles are updated according to the following equations [Shi & 

Eberhart 1998a]: 

)()()1()()()1()()1( 21 txtptRctxtptrctvwtv idgdidididididid    (4.1) 

)1()()1( tvtxtx ididid                                                                                 (4.2) 

where d = 1, 2, �, D; t is the index of the iteration; w is the inertia weight; c1 and 

c2 are positive constants known as acceleration coefficients; and rid(t) and Rid(t) are 

two uniformly distributed random variables in the range [0, 1]. 

The first component of Equation (4.1) represents the previous velocity. It is used to 

model the tendency of the particle to fly in the same direction that it has been 

travelling. In this component, the inertia weight w controls the search behaviour of 

the particles. It can either be a fixed value or it can be dynamically changing 

[Eberhart & Shi 2000; Eberhart & Shi 2001b]. A higher inertia weight (for 

example 0.9) allows the particles to move freely and it is helpful for the particles 

to find the global optimum neighbourhood fast. A lower value of the inertia weight 

(for instance 0.4) can narrow the search scope and enable the particles to converge 

to local optima fast. In [Shi & Eberhart 1998b; Shi & Eberhart 1999], The authors 
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suggested employing a linearly decreasing inertia weight, which aims to execute a 

more global search (exploration) at the beginning and execute a more local search 

(exploitation) at the end. However, the main disadvantage of this method is that 

once the inertia weight is decreased, the swarm loses its ability to search new areas 

because it is not able to recover its exploration mode. 

The second part of Equation (4.1) is viewed as the �memory� component. It 

represents the personal thinking of one particle. This component attracts the 

particle to fly towards its own best positions so far found. The third part of 

Equation (4.1) is known as the �cooperation� component, which represents the 

cooperative effect of the particles in the optimisation search. This component 

always encourages the particle to move towards the global best position. In these 

two components, the two acceleration coefficients c1 and c2 are often set to be 2, 

which is supposed to perform well [Eberhart et al. 2001a]. It is also important to 

note that c1 and c2 should not necessarily be equal because the weights for 

individual and group experience can vary according to the characteristics of 

different problems [Del Valle et al. 2008]. 

Generally, a maximum velocity vector vmax = [vmax1, vmax2, vmax3, �, vmaxD] is 

defined and acts as the upper limit for the achievable velocity of the particles, 

where vmaxd, d = 1, 2, �, D, are positive numbers. It works as follows: 

If vid > vmaxd, then vid = vmaxd;

Else if vid < -vmaxd, then vid = -vmaxd.                                                        (4.3) 
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It is important to note that the value of vmax should not be too large, as the particles 

may move erratically and fly beyond a good solution; however, the value of vmax

should not be too small, as the particle�s movement may be restricted to short steps 

and the optimal solution may be achieved after a long journey. Frequently, the vmax

value is confined within the range of search space and defined as follows: 

Nxxv ddd minmaxmax ,                                                                      (4.4) 

where xmaxd and xmind are the maximum and minimum bands of the dth dimension 

of the search space; N is a positive number where 1 N  10. In addition, research 

work performed by [Fan & Shi 2001] showed that an appropriate dynamically 

changing vmax can also improve the performance of the PSO algorithm. 

However, the particles may still occasionally fly to a position beyond the 

predefined search space and produce an invalid solution. In this case, a simple 

handling method is used in most of the PSO algorithms, which works as follows: 

If xid > xmaxd, then xid = xmaxd;

Else if xid < xmind, then xid = vmind.                                                           (4.5) 

Furthermore, other methods have also been proposed to solve the previous 

problem. For instance, it is suggested in [Robinson & Rahmat-Samii 2004] to 

enclose the search space with three different types of hypothetical boundaries each 

with its own boundary condition, namely, absorbing boundaries, reflecting 

boundaries and invisible boundaries. From this viewpoint, the method expressed in 

(4.5) can be viewed as the absorbing boundary condition. In [Huang & Mohan 

2005], another method of damping boundary condition is proposed, which 
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combines the features of both the absorbing and reflecting boundaries. 

In summary, the entire PSO algorithm can be described via the following 

procedure:

1. Initialise the swarm by assigning a random position to each particle within 

the problem hyperspace. 

2. According to the predefined objective function, evaluate the fitness for 

each particle. 

3. For each individual particle, compare the particle�s fitness value with its 

pbest. If the current value is better than the pbest, then set the current value as 

the new pbest and set the current particle�s position xi as the new pi.

4. Identify the particle that has the best fitness value. The value of its pbest is 

identified as gbest and its pi is identified as the pg.

5. Update the velocities and positions of all the particles using Equations (4.1) 

and (4.2). 

6. If the velocity of one particle exceeds the upper limit vmax, then implement 

Method (4.3). 
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7. If the position of one particle exceeds the search bounds, then implement 

Method (4.4). 

8. Repeat Step 2 to Step 7 until a stopping criterion (e.g., a maximum number 

of iterations or a sufficiently good fitness value) is achieved. 

4.1.2 New Developments in PSO 

In the open literature, several methods were suggested to tune the main parameters 

of PSO so as to obtain a good performance for the algorithm. For instance, some 

researchers added a random component to the inertia weight [Eberhart & Shi 

2001b; Zhang & Hu 2003], and this was found to perform slightly better than the 

constant inertia weight. In [Shi & Eberhart 2001], a simple fuzzy system was 

applied to predict the appropriate inertia weight. Since the fuzzy rules and the 

parameters of the fuzzy system were obtained from the authors� own experience 

(hand-crafted roles), this fuzzy system cannot be universally adaptive for all the 

optimisation problems since different problems involve different characteristics. In 

[Doctor et al. 2004], the authors used a secondary PSO algorithm to find the 

optimal parameters of a primary PSO. Although this method may improve the 

performance of PSO, it brings more complexity in computation and the algorithm 

structure. In addition to the inertia weight factor, time-varying acceleration 

coefficients (TVAC) were introduced in [Ratnaweera et al. 2004]. 
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In [Richard & Ventura 2004], an initialisation method was proposed to produce the 

particles that are distributed as evenly as possible throughout the problem space. It 

was concluded that this method ensures a broad coverage of the search space and 

improves the performance of PSO compared with the original random 

initialisation. 

The cooperative PSO (CPSO), proposed by Van den Bergh and Engelbrecht [Van 

den Bergh & Engelbrecht 2004], employs multiple swarms to optimise different 

components of the solution vector cooperatively. In CPSO, the search space is 

explicitly partitioned by splitting the solution vectors into smaller vectors. Two 

algorithms were proposed, namely CPSO-Sk and CPSO-Hk. In the CPSO-Sk

algorithm, a swarm with n-dimensional vectors is partitioned into k-swarms of 

smaller vectors, with each swarm attempting to optimise a small component of the 

solution vector. The advantage of the CPSO-Sk approach is that only one 

component is modified at a time, therefore, many combinations are formed using 

different members from different swarms, yielding the desired fine-grained search 

and a significant increase in the solution diversity. On the other hand, CPSO-Hk

combines the two techniques of PSO and CPSO-Sk by executing one iteration of 

CPSO-Sk followed by one iteration of the standard PSO algorithm. 

In addition, to the previous research activities, other researchers investigated the 

hybridisation by combining PSO with other search techniques to improve the 

performance of PSO. Evolutionary operators, such as selection and mutation, have 

been introduced within PSO to increase the diversity of the population and 
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improve the ability to escape from local optima [Lovbjerg et al. 2001]. In 

[Lovbjerg et al. 2001], the swarm was divided into subpopulations, and a breeding 

operator was used within a subpopulation or between the subpopulations to 

increase the diversity of the population. Negative entropy was used to discourage 

the premature convergence in [Xie et al. 2002], while in [Parsopoulos & Vrahatis 

2004], deflection, stretching, and repulsion techniques were used to find as many 

optima as possible by preventing the particles from moving to a previously 

discovered optimal region. 

Improving PSO�s performance by designing different types of topologies 

represents another active research direction. In most of these new approaches, one 

particle flies towards the neighbourhood best position instead of the global best 

position. Kennedy [Kennedy 1999; Kennedy & Mendes 2002] claimed that PSO 

with a small neighbourhood might perform better on complex problems, while the 

PSO with a large neighbourhood would perform better on simple problems. 

Suganthan [Suganthan 1999] applied a dynamically adjusted neighbourhood where 

the neighbourhood of a particle gradually increases until it includes all the 

particles. In [Hu & Eberhart 2002], the authors also used a dynamic 

neighbourhood where m closest particles in the performance space are selected to 

be its new neighbourhood in each generation. Peram et al. developed the fitness-

distance-ratio-based PSO (FDR-PSO) with near neighbour interactions [Peram et 

al. 2003]. When updating each velocity dimension, the FDR-PSO algorithm 

selects one other particle nbest, which has a higher fitness value and is nearer to 

the particle being updated. 
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Recently, several multi-objective PSO algorithms have been developed based on 

the Pareto optimality concept. The main issue to be addressed is the selection of 

the cognitive and social leaders (pbest and gbest) such that they can provide an 

effective guidance to reach the most promising Pareto front region but at the same 

time maintain the population diversity. 

For the selection procedure, two typical approaches were suggested in the 

literature: a selection based on quantitative standards and random selection. In the 

first case, the leader is determined without any randomness involved, such as the 

Pareto ranking scheme [Ray 2002], the sigma method [Mostaghim & Teich 2003] 

or the dominated tree [Fieldsend et al. 2003]. However, in the random selection 

approach, the selection is stochastic and proportional to certain weights assigned to 

maintain the population diversity (crowding radius, crowding factor, niche count, 

etc.) [Hu 2006]. 

Coello and Lechuga [Coello & Lechuga 2002] have also incorporated the Pareto 

dominance into the PSO algorithm. In their method, the non-dominated solutions 

are stored in a secondary population. The primary population uses the 

neighborhood bests, which are randomly selected from this secondary population, 

to update the velocities. 
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4.1.3 Features of PSO 

PSO is a computational and intelligence-based technique, which has some 

advantages over other similar optimisation techniques, namely the following: 

1. PSO is easier to implement and it includes fewer parameters to adjust. 

2. PSO is not largely affected by the size and nonlinearity of the problem. 

3. In PSO, every particle remembers its own previous best solution as well as 

its companions� information; therefore, it has a more effective memory 

capability.

4.2 A New Structure for Particle Swarm Optimisation (nPSO) 

Though PSO based algorithms have many advantages, they still suffer from 

premature convergence. To solve this problem, one new term, named the 

�momentum term� is introduced in this chapter to replace the inertial term of the 

original PSO. This new component can help in avoiding such a premature 

convergence and in encouraging each particle to jump out of any local minimum. 

To provide the particles with more adaptability, a separate momentum weight is 

assigned to each particle as it dynamically adjusts itself according to the particle�s 

own search experience. 
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4.2.1 Algorithm Formulation 

In this new PSO (nPSO), a new �momentum term� is introduced to replace the 

original inertia term. As defined in the standard PSO algorithm, the position vector 

and velocity vector of the ith particle in the D-dimensional search space can be 

represented as xi = [xi1, xi2, xi3, �, xiD]T and vi = [vi1, vi2, vi3, �, viD]T respectively. 

According to a predefined fitness function, the best previous position of the ith 

particle and the fittest position among all the particles found so far are represented 

as pi = [pi1, pi2, pi3, �, piD]T and pg = [pg1, pg2, pg3, �, pgD]T respectively. vmax = 

[vmax1, vmax2, vmax3, �, vmaxD] is an upper limit for the achievable velocity of the 

particles. The new algorithm can be described using the following equations: 

)()()1(2)1(1)1()1( 1max txtptrcvtrtwtv idididdididid

)()()1(32 txtptrc idgdid ,                                                        (4.6) 

)1()()1( tvtxtx ididid ,                                                                  (4.7) 

where d = 1, 2, �, D; t is the index of the iteration; wid is the momentum weight of 

the ith particle in the dth search space dimension; c1 and c2 are positive constants 

known as acceleration coefficients; r1id(t), r2id(t) and r3id(t) are three uniformly 

distributed random variables in the range [0, 1]. 

For minimisation problems, the momentum weight wid is varied in the optimisation 

process as follows: 
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where  is a small positive coefficient; m1 and m2 are two scaling parameters used 

to control the range of magnitudes of the momentum weight varying, where m1 is a 

positive coefficient smaller than 1 and m2 is a positive coefficient larger than 1; 

posid is a discrete variable used to control the direction in which the velocity of one 

particle should be refreshed, where its value is 0 or 1; f(x) is the fitness function of 

the minimisation problem. 

The momentum term, which is the first component of Equation (4.6), aims at 

giving one particle extra adjustable momentum in its optimal search process to 

keep a balance between exploration (global search) and exploitation (local search). 

When a particle converges to one solution, which is judged by whether the 

velocity of the particle is too small or not, it may become trapped in a local 

minimum. In this situation, the momentum weight is set at a big value �1� to 

encourage the particle to jump out from the local minimum. When a particle does 

not converge, the momentum weight is dynamically adjusted according to the 

particle�s own search experience: More specifically, if the particle can find a better 

solution in the previous generation, it may be in a local optimum space and the 

momentum should be increased to enhance the global search ability; if the particle 

cannot find a better solution in the previous generation, it may wander in a large 

space and the momentum should be reduced to enhance the local search ability. 
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This mechanism is proved to be effective in balancing the global search and local 

search and makes the optimisation search more adaptive. 

Normally,  is set to 10-10 without any loss of generality, which means that if the 

velocity of a particle is smaller than Vmax×10-10, the particle is assumed to be 

converging. In addition, m1 is generally set to 0.5 and m2 is set to 2, which means 

that the momentum weight will reduce to the half of the previous value or increase 

to the double of the previous value. The position parameter posid is used to control 

the direction in which the velocity of the particle should be refreshed. In this work, 

three strategies for setting the value for Posi = (posi1, posi2, posi3, � , posid) are 

proposed as follows: 

1. One-directional refresh mechanism: In every iteration, for each particle, 

only one of the elements in the position parameter vector Posi will be 

randomly chosen and set to the value �1�; other elements will be set to the 

value �0�. 

2. Multiple-directional refresh mechanism: The number of elements and 

the positions of elements that will be set to 1 are both randomly generated; 

other elements in the position parameter vector will be set to 0. 

3. All-directional refresh mechanism: All the elements of Posi will be set to 

the value �1� all the time. 

79



Chapter 4: A New Structure for Particle Swarm Optimisation 

4.2.2 Advantages of nPSO 

The advantages of nPSO, compared with the standard PSO, lie mainly in the 

following three aspects: 

1. Both the momentum term in nPSO and the inertia term in the original PSO 

aim to avoid premature convergence in the optimisation process. But the 

new term is more adaptive for different problems than the original one. For 

the standard PSO, different optimisation problems need different inertia 

weight settings, while in nPSO, the momentum weight can adjust itself 

adaptively. As it varies, it will find a suitable value for different 

optimisation problems in the whole optimisation process. This guarantees a 

fast convergence and concomitantly avoids premature convergence. 

2. If the particles converge to local optima, the normal PSO cannot refresh the 

velocities of particles and cannot encourage the particles to jump out from 

local optima. But nPSO can do so through setting the momentum weight to 

a new larger value. 

3. In the standard PSO, different particles share one inertia weight. When 

dealing with an optimisation problem, the change of inertia weight value 

may be suitable for one part of the particles to direct their optimisation 

search, but is unsuitable for the other part of particles; in nPSO, every 

particle has its own momentum weight. One particle adjusts its weight 
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according to its own experience and situation. This enables the movements 

of particles to be efficient and hence giving the particles more adaptability. 

4.3 Experimental Studies using nPSO

In the following experiments, the benchmark test functions which have already 

been described in Section 3.3.1 are used. 

4.3.1 Effect of the Population Size 

In this experiment, the nPSO algorithm was tested using the benchmark problems 

f1, f2, f3, f7, f8 and f10 with various settings of the population size (Np = 2, 5, 10, 20, 

50, 100, 200, 500 and 1000). For each benchmark problem, the dimension D was 

increased in the sequence to 2, 5, 10, 20 and 50; and for each setting 20 runs were 

conducted. In each run, the maximum number of function evaluation was set to 106

and the optimisation process was regarded as successful and stopped, when the 

best solution Fb satisfied: Fb < 10-5 if the true global minimum Gb = 0 or |(Fb - 

Gb) / Gb| < 10-5 if Gb  0. 

In this case, the acceleration coefficients c1 and c2 were set to 1.5; the scaling 

parameters m1 and m2 were set to 0.5 and 2 respectively;  = 10-10; vmax = [vmax1,

vmax2, �, vmaxD] = [0.5×(xmax1-xmin1), 0.5×(xmax2-xmin2), �, 0.5×(xmaxD-xminD)],
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where xmaxd and xmind are the maximum and minimum bounds for the dth variable; 

The position parameter posid was updated using both the one-directional refresh 

mechanism (with the 70% probability of usage) and the multiple-directional 

refresh mechanism (with the 30% probability of usage), where i = 1, 2, �, Np and 

d = 1, 2, �, D.

Tables 4-1 to 4-6 and Figure 4-2 show the performance of nPSO with different 

population sizes in optimising the test problems with different dimensions. From 

these tables and figures, the following has been observed: 

1. In most of the situations, nPSO performs best when the population size is 

relatively small (for example, Np = 5, 10 and 20). 

2. For low-dimensional problems (D = 2), nPSO with large population size 

(for instance, Np = 100, 200 and 500) performs better in the majority of 

cases.

Table 4-1. The average number of function evaluations to find the optimum on f1;
the bold values represent the best results. 

D Np=2 Np=5 Np=10 Np=20 Np=50 Np=100 Np=200 Np=500 Np=1000

2 743 913 1165 1344 1500 2008 1348 2320 3980

5 661 531 675 1085 2321 4258 8168 18070 32740

10 808 662 962 1593 3405 6254 11584 26470 49980

20 1257 1281 1743 2772 5445 9568 17268 38510 71650

50 3246 3278 4307 6347 11643 19750 34220 72550 131300
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Table 4-2. The average number of function evaluations to find the optimum on f2;
the bold values represent the best results. 

D Np=2 Np=5 Np=10 Np=20 Np=50 Np=100 Np=200 Np=500 Np=1000

2 12546 15040 15593 16640 18074 15732 8092 2300 4180

5 1983 1473 1571 2186 4464 8178 15236 32330 56400

10 8826 5696 3218 3049 6145 11450 21350 49600 94850

20 48405 26383 20193 13142 15320 17480 31460 71200 135000

50 281280 173840 123864 100284 150105 169840 117500 170250 270000

Table 4-3. The average number of function evaluations to find the optimum on f3;
the bold values represent the best results. 

D Np=2 Np=5 Np=10 Np=20 Np=50 Np=100 Np=200 Np=500 Np=1000

2 1052 1013 1325 1776 1604 942 1512 2180 4080

5 3897 3063 2362 1788 2758 4594 7912 17990 32620

10 10371 5864 5356 6583 8668 12045 16890 32375 54050

20 21831 19364 21804 26159 39833 57410 88820 156300 232300

50 173390 123337 140094 178580 275580 385300 625120 N/A N/A

Table 4-4. The average number of function evaluations to find the optimum on f7;
the bold values represent the best results. 

D Np=2 Np=5 Np=10 Np=20 Np=50 Np=100 Np=200 Np=500 Np=1000

2 2163 2907 2938 2702 3229 1882 1032 2180 4020

5 2258 2410 2827 2702 5515 6510 11160 21600 35320

10 11449 11810 11847 15838 23713 31785 49890 93850 124900

20 54649 39779 36474 56296 75900 109940 157640 266700 438200

50 401260 204067 171152 187576 302690 451340 N/A N/A N/A
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Table 4-5. The average number of function evaluations to find the optimum on f8;
the bold values represent the best results. 

D Np=2 Np=5 Np=10 Np=20 Np=50 Np=100 Np=200 Np=500 Np=1000

2 33461 33021 40008 37442 36913 16085 8050 2300 4000

5 2413 1827 1875 2554 4898 8965 15270 39150 61150

10 8918 5551 4179 3793 6275 11680 21650 50400 95400

20 60416 31773 19523 16213 18679 27500 33380 69450 129350

50 511950 324120 169570 122964 116950 210635 256170 355250 487150

Table 4-6. The average number of function evaluations to find the optimum on 
f10; the bold values represent the best results. 

D Np=2 Np=5 Np=10 Np=20 Np=50 Np=100 Np=200 Np=500 Np=1000

2 2469 2464 2673 3235 3714 3187 1908 2265 4150

5 1174 1071 1036 1529 3107 5698 10540 23680 42580

10 6776 5101 5162 5332 8500 9712 15090 35075 65600

20 37936 21697 20854 20718 27503 38080 48260 92550 132200

50 239850 130176 98510 112520 122090 162780 224000 447200 618600
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(a)                                                              (b) 

(c)                                                              (d) 

(e)                                                              (f) 

Figure 4-2. The mean number of function evaluations to find the optimum 
versus the population size with different problem dimension: (a) f1,
(b) f2, (c) f3, (d) f7, (e) f8 and (f) f10.
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4.3.2 Effects of the Acceleration Coefficients 

In this experiment, the nPSO algorithm was tested using the benchmark problems 

f1 to f14 with various settings of c1 and c2 (c1 = c2 = 1, 1.1, 1.2, �, 2). For problems 

f1 to f11, the dimension D was set to 30. For each setting, 20 runs were conducted 

and averaged. For each run, the maximum number of function evaluation was set 

to 106. The population size of particles Np was set to 10 and other settings were the 

same as the experiments in Section 4.3.1. 

Table 4-7 shows the performance of nPSO with different acceleration coefficients. 

It can be seen as follows: 

1. Large acceleration coefficients (for example, c1 = c2 = 1.6 to 1.8) perform 

well in difficult problems, such as the high-dimensional multimodal 

problems. 

2. Small acceleration coefficients (for example, c1 = c2 = 1.0 to 1.2) are more 

suitable for simple problems, such as the low-dimensional problems with 

few local extrema. 

This means that large acceleration coefficients will enhance the exploration (global 

search) ability and small acceleration coefficients can increase the exploitation 

(local search) ability of the algorithm. 
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Table 4-7. Average performance of nPSO with various acceleration coefficients 
in optimising f1 to f14: The integer value in every cell is the average 
function evaluation number in successful runs; the value in 
parenthesis is the average result in the unsuccessful runs; the 
percentage value in the square brackets indicates the percentage of the 
successful runs out of all the runs; the bold values represent the best 
results.

c1 = c2Function
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

f1

2772
(N/A)

[100%] 

2544
(N/A)

[100%] 

2464
(N/A)

[100%]

2530
(N/A)

[100%]

2553
(N/A)

[100%]

2611
(N/A)

[100%]

2805
(N/A)

[100%]

3162
(N/A)

[100%]

4403
(N/A)

[100%] 

13953
(N/A)

[100%] 

85080
(N/A)

[100%]

f2

99451
(N/A)

[100%] 

78157
(N/A)

[100%] 

69175
(N/A)

[100%]

61803
(N/A)

[100%]

52144
(N/A)

[100%]

38744
(N/A)

[100%]

35007
(N/A)

[100%]

25606
(N/A)

[100%]

17164
(N/A)

[100%] 

33118
(N/A)

[100%] 

153340
(N/A)

[100%]

f3
56569
(N/A)

[100%] 

52503
(N/A)

[100%] 

49848
(N/A)

[100%]

48483
(N/A)

[100%]

48108
(N/A)

[100%]

49355
(N/A)

[100%]

54028
(N/A)

[100%]

74854
(N/A)

[100%]

122618
(N/A)

[100%] 

291296
(N/A)

[100%] 

N/A
(0.0130)

[0%] 

f4

N/A
(0.3167)

[0%] 

644324
(N/A)

[100%] 

506652
(N/A)

[100%]

N/A
(0.0032)

[0%] 

390060
(0.0087)
[80%] 

402694
(N/A)

[100%]

335208
(N/A)

[100%]

275428
(N/A)

[100%]

160232
(N/A)

[100%] 

385882
(N/A)

[100%] 

N/A
(0.0032)

[0%] 

f5
N/A

(0.8108)
[0%] 

N/A
(0.8042)

[0%] 

N/A
(0.0039)

[0%] 

N/A
(0.7994)

[0%] 

N/A
(0.7987)

[0%] 

N/A
(0.7982)

[0%] 

N/A
(5.2941
×10-4)
[0%]

N/A
(0.7978)

[0%] 

N/A
(0.0024)

[0%] 

N/A
(1.4771)

[0%] 

N/A
(43.097)

[0%] 

f6

N/A
(-10864)

[0%] 

N/A
(-11077) (-10959)

[0%] 

N/A

[0%] 

N/A
(-10698)

[0%] 

N/A
(-11101)

[0%] 

N/A
(-10864)

[0%] 

N/A
(-10722)

[0%] 

N/A
(-10817)

[0%] 

N/A
(-10864)

[0%] 

N/A
(-11042)

[0%] 

N/A
(-10757)

[0%] 

f7

407034
(N/A)

[100%] 

143905
(N/A)

[100%] 

104384
(N/A)

[100%]

94201
(N/A)

[100%]

96601
(N/A)

[100%]

79670
(N/A)

[100%]

75998
(N/A)

[100%]

66297
(N/A)

[100%]

52531
(N/A)

[100%] 

96235
(N/A)

[100%] 

386905
(N/A)

[100%]

f8

82181
(N/A)

[100%] 

73467
(N/A)

[100%] 

53191
(N/A)

[100%]

64546
(N/A)

[100%]

51679
(N/A)

[100%]

49585
(N/A)

[100%]

48362
(N/A)

[100%]

44917
(N/A)

[100%]

32738
(N/A)

[100%] 

47774
(N/A)

[100%] 

247168
(N/A)

[100%]

f9

5527
(0.0091)
[35%] 

5012
(0.0128)
[50%] 

4728
(0.0103)
[40%] 

4390
(0.0088)
[55%] 

4228
(0.0099)
[90%]

63587
(0.0116)
[30%] 

4240
(0.0154)
[35%] 

20453
(0.0127)
[45%] 

20484
(0.0196)
[50%] 

220577
(0.0439)
[30%] 

187890
(0.0228)
[20%] 

f10
82150
(N/A)

[100%] 

74970
(N/A)

[100%] 

65383
(N/A)

[100%]

55895
(N/A)

[100%]

46030
(N/A)

[100%]

38773
(N/A)

[100%]

38623
(N/A)

[100%]

30874
(N/A)

[100%]

17295
(N/A)

[100%] 

25213
(N/A)

[100%] 

132778
(N/A)

[100%]

f11

N/A
(114.00)

[0%] 

N/A
(158.85)

[0%] 

N/A
(150.40)

[0%] 

N/A
(124.93)

[0%] 

N/A
(109.67)

[0%] 

N/A
(122.68)

[0%] 

N/A
(0.0010)

[0%] 

N/A
(9.8807
×10-4)
[0%]

N/A
(0.0013)

[0%] 

N/A
(0.0015)

[0%] 

N/A
(0.0021)

[0%] 

f12
1287
(N/A)

[100%] 

1283
(N/A)

[100%] 

1384
(N/A)

[100%]

1392
(N/A)

[100%]

1467
(N/A)

[100%]

1498
(N/A)

[100%]

1854
(N/A)

[100%]

1813
(N/A)

[100%]

2933
(N/A)

[100%] 

3822
(N/A)

[100%] 

4950
(N/A)

[100%]

f13
1472
(N/A)

[100%]

1495
(N/A)

[100%] 

1507
(N/A)

[100%]

1682
(N/A)

[100%]

1893
(N/A)

[100%]

1673
(N/A)

[100%]

1835
(N/A)

[100%]

2291
(N/A)

[100%]

2573
(N/A)

[100%] 

3611
(N/A)

[100%] 

4382
(N/A)

[100%]

f14
1458
(N/A)

[100%] 

1461
(N/A)

[100%] 

1704
(N/A)

[100%]

1667
(N/A)

[100%]

1796
(N/A)

[100%]

1807
(N/A)

[100%]

2092
(N/A)

[100%]

2632
(N/A)

[100%]

3177
(N/A)

[100%] 

3970
(N/A)

[100%] 

5024
(N/A)

[100%]
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4.3.3 Effects of Different Mechanisms for Position Parameters Refreshing 

As already stated, the position parameter is used to control the direction in which 

the velocity of one particle should be refreshed. Three strategies for setting the 

value of the position parameters Posi are compared here. In this experiment, the 

30-dimension multimodal benchmark problems f5 to f11 were tested. The 

population size Np was set to 10 and the acceleration coefficients c1 and c2 were 

set to 1.8. Other settings were the same as those in the experiments of Section 

4.3.1.

From Table 4-8, it can be seen that the one-directional refresh mechanism 

performs best on the functions f6, f7, f8 and f10, while the multiple-directional 

refresh mechanism performs best on the problems f5, f9 and f11. For a broad 

adaptation to various problems, it is recommended to use both the one-directional 

and multiple-directional refresh mechanisms simultaneously. 
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Table 4-8. Average performance of nPSO with different position parameter 
refresh mechanisms in optimising f5 to f11: The integer in every cell is 
the average function evaluation number in successful runs; the value 
in parenthesis is the average result in the unsuccessful runs; the 
percentage value in the square brackets indicates the percentage of the 
successful runs out of all the runs; the bold values represent the best 
results.

Function One-directional 
Refresh Mechanism

Multiple-directional 
Refresh Mechanism

All-directional 
Refresh Mechanism

f5

N/A
(1.2365)

[0%]

N/A
(0.7989)

[0%] 

N/A
(1.5999)

[0%]

f6

N/A
(-10698)

[0%] 

N/A
(-10292)

[0%]

N/A
(-10504)

[0%]

f7

46856
(N/A)

[100%] 

172372
(N/A)

[100%]

163530
(33.165)
[40%]

f8

27960
(N/A)

[100%] 

47216
(N/A)

[100%]

47238
(N/A)

[100%]

f9

8387
(0.0130)
[30%]

14135
(0.0240)
[60%]

7176
(0.0197)
[30%]

f10

12856
(N/A)

[100%] 

28999
(N/A)

[100%]

33483
(N/A)

[100%]

f11

N/A
(0.0016)

[0%]

N/A
(0.0012)

[0%] 

N/A
(39.907)

[0%]

4.3.4 Comparison between nPSO and Other Evolutionary Algorithms 

In this section, experiments were carried-out using nPSO, two versions of normal 
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PSO, which apply a linearly decreasing inertia weight (PSO-LD) [Shi & Eberhart 

1999] and a randomly varying inertia weight (PSO-RV) [Eberhart & Shi 2001b], 

and other three salient Evolutionary Algorithms, which are the Covariance Matrix 

Adaptation Evolution Strategy (CMA-ES) [Hansen et al. 2003], the Differential 

Evolution (DE) [Storn & Price 1995] and the Generalised Generation Gap model 

with the Parent-Centric Recombination operator (G3+PCX) [Deb et al. 2002]. 

The parameter settings for these algorithms were as follows: 

1. nPSO: Np = 10; c1 = c2 = 1.8; m1 = 0.5 and m2 = 2;  = 10-10; posid was 

updated using both the one-directional refresh mechanism (with the 50% 

probability of usage) and the multiple-directional refresh mechanism (with 

the 50% probability of usage). 

2. PSO-LD: Population size N = 10×D, where D is the dimension of the test 

problem; c1 = c2 = 1.8; the inertia weight w varied from 0.9 at the 

beginning of the search to 0.4 at the end of the search [Shi & Eberhart 

1999].

3. PSO-RV: N = 10×D; c1 = c2 = 1.8; w changed according to the equation: w

= 0.4 + rand()×0.5, where rand() is a uniformly distributed random number 

within the range [0, 1] [Eberhart & Shi 2001b]. 

4. CMA-ES: There are 8 parameters to be predefined for this algorithm. All 
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settings followed the instructions given in [Hansen 2007]. For instance, the 

population size  = 4 + floor(3×lnD), the parent number  = floor( /2), etc., 

where floor(x) is the function that allows to round-off x to the nearest 

integer towards - .

5. DE: The DE/Rand/1 scheme was employed. The parameter settings 

followed the instructions in [Storn 1996]. The population size N = 10×D;

the crossover probability CR = 0.9 and the weighting factor F = 0.8. 

6. G3+PCX: Following the papers by [Deb et al. 2002; Deb 2005], the 

population size N = 10×D; the parent size was set to 3; the offspring size 

was set to 2 and the replacement size was set to 2. For the PCX operator, 

the distribution parameter  = 0.1 and  = 0.1. 

For all the PSO algorithms, the maximum velocity vector vmax = [vmax1, vmax2, �, 

vmaxD] = [0.5×(xmax1-xmin1), 0.5×(xmax2-xmin2), �, 0.5×(xmaxD-xminD)], where xmaxd

and xmind are the maximal and minimal bounds for the dth variable. 

For every individual experiment, the result was obtained after 20 runs. For each 

run, the maximal function evaluation number was set to 106 and the optimisation 

process was regarded as successful and stopped, when the best solution Fb

satisfied: Fb < 10-5 if the true global minimum Gb = 0 or |(Fb - Gb) / Gb| < 10-5 if 

Gb  0. 
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Table 4-9 shows the optimisation results of different algorithms on various 

problems. From this table, one can observe the following: 

1. For unimodal problems f1 to f4, CMA-ES performs best with the fewest 

function evaluations; nPSO and G3+PCX perform second best among the 

algorithms. 

2. For high-dimensional multimodal problems f5 to f11, nPSO performs better 

than other algorithms in most of the situations. For instance, for f7, f8 and 

f10, nPSO is able to locate the global optimum with the fewest function 

evaluations; for f5, f6 and f11, though nPSO cannot find the global optimum, 

but among the unsuccessful algorithms, it still performs best with the 

minimal fitness values. 

3. For low-dimensional multimodal problems f12 to f14, nPSO is able to obtain 

the global optimum and performs moderate, compared with other 

algorithms. 

Compared nPSO with RSSA, in general, nPSO executes faster while RSSA is 

more capable in finding global optimum. 
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Table 4-9. Average performance of various algorithms in optimising f1 to f14: The 
integer in every cell is the average function evaluation number in 
successful runs; the value in parenthesis is the average result in the 
unsuccessful runs; the percentage value in the square brackets 
indicates the percentage of the successful runs out of all the runs; the 
bold values represent the best results. 

Function nPSO PSO-LD PSO-RV CMA-ES DE G3+PCX

f1

4263 
(N/A) 

[100%] 

447150 
(N/A) 

[100%] 

101160 
(N/A) 

[100%] 

3207 
(N/A) 

[100%]

391770 
(N/A) 

[100%] 

7140 
(N/A) 

[100%] 

f2

18660 
(N/A) 

[100%] 

503957 
(13.3333) 

[70%] 

180420 
(N/A) 

[100%] 

11751 
(N/A) 

[100%]

655110 
(N/A) 

[100%] 

N/A
(12.0469) 

[0%] 

f3

125486 
(N/A) 

[100%] 

861350 
(79.1666) 

[20%] 

958580 
(20.0000) 

[45%] 

10830 
(N/A) 

[100%]

N/A
(1.8527) 

[0%] 

25937 
(N/A) 

[100%] 

f4

248638 
(N/A) 

[100%] 

813120 
(N/A) 

[100%] 

873960 
(N/A) 

[100%] 

8929 
(N/A) 

[100%]

N/A
(0.2004) 

[0%] 

117414 
(N/A) 

[100%] 

f5

N/A
(0.0023) 

[0%] 

N/A
(24.4833) 

[0%] 

N/A
(31.2336) 

[0%] 

46072 
(N/A) 

[100%]

N/A
(0.0158) 

[0%] 

140430 
(N/A) 

[100%] 

f6

N/A
(-10840) 

[0%] 

N/A
(-9340) 
[0%] 

N/A
(-10202) 

[0%] 

N/A
(-6665) 
[0%] 

616080 
(N/A) 

[100%]

N/A
(-6878) 

[0%] 

f7

55341 
(N/A) 

[100%]

N/A
(46.0341) 

[0%] 

N/A
(30.8072) 

[0%] 

N/A
(106.1617) 

[0%] 

940560 
(N/A) 

[100%] 

N/A
(142.8754) 

[0%] 

f8

37208 
(N/A) 

[100%]

535500 
(N/A) 

[100%] 

193650 
(N/A) 

[100%] 

8575 
(19.3625) 

[40%] 

694560 
(N/A) 

[100%] 

N/A;
(3.1199) 

[0%] 

f9

52024 
(0.0222) 
[55%] 

493425 
(0.0193) 
[40%] 

146983 
(0.0148) 
[60%] 

5586 
(0.0100) 
[75%]

586740 
(N/A) 

[100%] 

10983 
(0.0110) 
[65%] 

f10

23363 
(N/A) 

[100%] 

485389 
(225.6000) 

[90%] 

143130 
(N/A) 

[100%] 

N/A
(2.2897) 

[0%] 

510180 
(N/A) 

[100%] 

N/A
(15.1530) 

[0%] 

f11

N/A
(0.0012) 

[0%] 

N/A
(30.3990) 

[0%] 

228900 
(21.8394) 

[10%]

N/A
(248.84) 

[0%] 

N/A
(0.1217) 

[0%] 

N/A
(184.4355) 

[0%] 

f12

2715 
(N/A) 

[100%] 

15328 
(N/A) 

[100%] 

842 
(N/A) 

[100%] 

221 
(-19.8160) 

[95%]

853 
(N/A) 

[100%] 

N/A
(-0.4128) 

[0%] 

f13

3601 
(N/A) 

[100%] 

10591 
(N/A) 

[100%] 

861 
(N/A) 

[100%] 

224 
(N/A) 

[100%]

1182 
(N/A) 

[100%] 

N/A
(0.8862) 

[0%] 

f14

3373 
(N/A) 

[100%] 

14896 
(N/A) 

[100%] 

898 
(N/A) 

[100%] 

253 
(141.0000) 

[95%]

777 
(N/A) 

[100%] 

N/A
(35.3369) 

[0%] 
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4.4 Extension of nPSO to Multi-objective Optimisation Problems 

To extend the nPSO algorithm for the multi-objective optimisation case, the same 

method, which has been introduced in Section 3.4 to organise MO-RSSA, is 

employed here. In this new developed algorithm, which is named the new multi-

objective PSO (nMPSO), both the Random Weighted Aggregation (RWA) 

technique [Murata et al. 1996] and the designed archiving mechanism (see Section 

3.4.2) are employed. 

4.4.1 Experiments Based on the ZDT Series Problems 

A comparative study between nMPSO and other multi-objective optimisation 

algorithms is conducted using the well-known multi-objective optimisation 

problems - ZDT series benchmark problems [Zitzler et al. 2000] (see Section 

3.5.1.1). The other multi-objective algorithms related to the Multi-Objective 

Reduced Space Searching Algorithm (MO-RSSA) (see Section 3.4), the Pareto 

Archived Evolution Strategy (PAES) [Knowles & Corne 2000], the Strength 

Pareto Evolutionary Algorithm (SPEA) [Zitzler & Thiele 1998] and the Non-

dominated Sorting Genetic Algorithm II (NSGA-II) [Deb et al. 2002]. 

To compare the performance of nMPSO with such algorithms, the two 

performance metrics, namely the Generational Distance (GD) and the Spread ( )

(see Equations (3.6) and (3.7) in Section 3.5.1.2), are used. 
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In the following experiments, the maximum function evaluation for every 

experiment was set to 25000. The result of every experiment was obtained after 10 

independent runs. The parameter settings for different algorithms were listed as 

follows: 

1. nMPSO: 10 particles, maximum generation 2500, = 10-3, scaling 

parameters m1 = 0.5 and m2 = 2, acceleration coefficients c1 = c2 = 1.5, 

frequency parameter H = 2000 and one-directional refresh strategy for Posi

setting.

2. MO-RSSA: decreasing parameter C1 = 3, increasing parameter C2 = 1, 

changing ratio K = 0.5, m = 15, frequency parameter H = 10000 and a 

variation strategy of the combination of the one-dimensional variation 

(with the 75% probability of usage) and the multi-dimensional variation 

(with the 25% probability of usage). 

3. PAES: Population size 100, maximum generation 250, crossover 

probability 0.9 and mutation probability 0.01. 

4. SPEA: Population size 80, external population size 20, maximum 

generation 250, crossover probability 0.9 and mutation probability 1/80. 

5. NSGA-II (binary-coded): Population size 100, maximum generation 250, 

crossover probability 0.9 and mutation probability 1/(string-length). 30 bits 
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were used to code each variable. 

The average GD and  values of 10 runs and the corresponding variances 2 are 

summarised in Tables 4-10 and 4-11 respectively. In these tables, the compared 

results for PAES, SPEA and NSGA-II are obtained from [Deb 2001]. The 

following remarks can be made: 

1. nMPSO and MO-RSSA outperform the other three salient EAs in terms of 

both accuracy and diversity. 

2. For ZDT1, ZDT2 and ZDT3, nMPSO can achieve more accurate Pareto 

solutions than MO-RSSA, while MO-RSSA performs better in optimising 

ZDT4.

3. Both nMPSO and MO-RSSA can obtain the Pareto solutions with a good 

diversity. Between these two algorithms, the results that nMPSO obtained 

show a better distribution. 

Figure 4-3 shows the graphical result produced by nMPSO. The true Pareto fronts 

of the problems are represented with continuous curves and the �round� dots are 

the solutions obtained using nMPSO. It can be seen that the nMPSO can locate the 

true Pareto fronts with very good diversities in a consistent way. 
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Table 4-10. Mean and variance values of GD; the bold values represent the best 
results.

Mean value of GD / (variance 2)
Problems 

nMPSO MO-RSSA PAES SPEA NSGA-II

ZDT1
3.29e-4

(0)
4.07e-4

(0)

8.21e-2

(8.68e-3)

1.25e-3

(0)

8.94e-4

(0)

ZDT2
2.66e-4

(0)
7.37e-4

(0)
1.26e-

1(3.69e-2)
3.04e-3

(2.00e-5)

8.24e-4

(0)

ZDT3
3.29e-4

(0)
4.07e-4

(0)
2.39e-2

(1.00e-5)
4.42e-2

(1.90e-5)
4.34e-2

(4.20e-5)

ZDT4
4.90e-4

(0)
1.82e-4

(0)
8.55e-

1(5.27e-1)
9.51e+0

(1.13e+1)

3.23e+0

(7.31e+0)

Table 4-11. Mean and variance values of ; the bold values represent the best 
results.

Mean value of  / (variance 2)
Problems 

nMPSO MO-RSSA PAES SPEA NSGA-II

ZDT1
3.96e-1

(1.48e-3)
4.68e-1

(1.66e-3)
1.23e+0
(4.84e-3)

7.30e-1
(9.07e-3)

4.63e-1
(4.16e-2)

ZDT2
3.76e-1

(2.63e-3)
3.94e-1

(8.10e-4)
1.17e+0

(7.68e-3)

6.78e-1

(4.48e-3)

4.35e-1

(2.46e-2)

ZDT3
4.84e-1

(2.40e-3)
4.97e-1

(5.30e-3)
7.90e-1

(1.65e-3)

6.66e-1

(6.66e-4)

5.76e-1

(5.08e-3)

ZDT4
3.86e-1

(7.51e-4)
4.78e-1
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Figure 4-3. Pareto fronts obtained by nMPSO 

4.4.2 Experiments Based on the DTLZ Series Problems

In this section, nMPSO was used to solve the DTLZ series optimisation problems 

[Deb et al. 2001]. All the DTLZ problems were set to include three objectives and 

nMPSO used the same number of function evaluations as the experiments in [Deb 

et al. 2001]. The configuration of the nMPSO algorithm was set to be similar to 

the one used in optimising the ZDT problems, except the weight changing 

frequency parameter H = 1000. 
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1. DTLZ1: The difficulty of this problem lies in the convergence to the 

hyper-plane. The search space contains (115-1) local Pareto-optimal fronts. 

Figure 4-4 shows the optimisation results using nMPSO in different angles 

of view. One can see that, nMPSO can obtain the Pareto-optimal solutions 

that possess a very good diversity.

Figure 4-4. The optimisation result of nMPSO on DTLZ1 

2. DTLZ2: The difficulty of this problem relates to its concave Pareto-

optimal area. Figure 4-5 shows the optimisation results using the nMPSO 

algorithm. It can be seen that nMPSO can converge to the Pareto-optimal 

front with a good diversity. 

Figure 4-5. The optimisation result of nMPSO on DTLZ2 
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3. DTLZ3: The difficulty of this problem lies in the presence of several local 

Pareto-optimal fronts. This problem has 310-1 local Pareto-optimal fronts 

and a multi-objective optimisation algorithm can easily get stuck at any of 

these local Pareto-optimal fronts during the optimisation process. The 

results in [Deb et al. 2001] show that NSGA-II and SPEA2 can become 

trapped at some of these local Pareto-optimal fronts and cannot converge to 

the true Pareto front, while it can be seen from Figure 4-6 that nMPSO can 

achieve the true Pareto-optimal front. 

Figure 4-6. The optimisation result of nMPSO on DTLZ3 

4. DTLZ5: This problem will test MOEA�s ability to converge to a curve. 

From Figure 4-7, one can see that nMPSO is able to converge to the true 

Pareto-optimal front with a good diversity. For this problem, nMPSO can 

find the Pareto-optimal solutions in the early stage of the optimisation 

process.
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Figure 4-7. The optimisation result of nMPSO on DTLZ5 

5. DTLZ6: This problem is a modified version of DTLZ5, which becomes 

more difficult to solve than DTLZ5. In [Deb et al. 2001], NSGA-II and 

SPEA2 cannot converge to the true Pareto-optimal front, as well as the 

proposed MO-RSSA (see Section 3.5.2). But nMPSO can achieve the true 

Pareto-optimal front, which is shown in Figure 4-8. 

Figure 4-8. The optimisation result of nMPSO on DTLZ6 

6. DTLZ7: This problem has a disconnected set of Pareto-optimal regions 

and it will test the algorithm�s ability to maintain a subpopulation in 
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different Pareto-optimal regions. Figure 4-9 shows the optimisation result 

using nMPSO to optimise DTLZ7. It can be observed that the new 

algorithm is able to find and maintain stable and distributed subpopulations 

in all four disconnected Pareto-optimal regions. 

Figure 4-9. The optimisation result of nMPSO on DTLZ7 

4.5 Summary 

In this chapter, a new structure for the particle swarm optimisation algorithm 

(nPSO) is proposed, which introduces a new �momentum term� to replace the 

original inertia term. The advantages of nPSO compared with the standard PSOs 

lie in its ability of avoiding premature convergence and its adaptability in different 

situations. This algorithm was validated using a set of benchmark problems and is 

shown to lead to a better performance than the standard PSOs and some other 

salient optimisation algorithms. In addition, various parameter settings have been 

well explored and the appropriate parameter configurations were also 
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recommended. Furthermore, the new algorithm was extended to become a multi-

objective optimisation algorithm, nMPSO, by using the random weighted 

aggregation technique and maintaining an archiving mechanism. A comparative 

study between nMPSO and other MOEAs, such as PAES, SPEA and NSGA-II, 

was carried-out based on the ZDT series problems. The nMPSO was then 

employed to optimise the challenging DTLZ problems. The experimental results 

led to the conclusion that nMPSO is effective in finding the Pareto-optimal 

solutions and possesses advantages over some evolutionary algorithms in terms of 

the accuracy and the diversity of the final solutions. 

The next chapter will propose a new modelling approach which will utilise multi-

objective optimisation to reconcile model transparency with model accuracy. 
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Chapter 5 

A Fuzzy Modelling Approach with a 

Hierarchical Clustering Algorithm and a 

Multi-Objective Optimisation Mechanism 

(FM-HCMO)

5.1 Introduction 

For modelling problems, accurate mathematical models do not always exist or it is 

difficult to derive them for all complex environments [Rojas et al. 2000], while at 

the same time, the available data that represent input-output relationships may be 

abundant. In this situation, model-free techniques such as artificial neural networks 

(NNs) and data-driven fuzzy modelling are suitable for model construction. 

Compared with black-box approaches such as artificial neural networks, fuzzy 

systems have white-box characteristics and are more transparent to humans to 
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interpret. This is one of the most attractive aspects that distinguish fuzzy modelling 

from other black-box approaches. Nowadays, fuzzy rule-based systems are being 

applied to a growing number of significant applications in a wide variety of fields 

ranging from pattern recognition, data mining, classification, prediction, non-linear 

system approximation, and process control [Mamdani & Assilian 1974; Bezdek 

1981; Takagi & Sugeno 1985; Jang 1993; Sugeno & Yasukawa 1993; Wang 1994; 

Marsili-Libelli & Muller 1996; Delgado et al. 1997]. 

In this chapter, a systematic data-driven fuzzy modelling methodology is proposed, 

which allows to construct Mamdani (linguistic) fuzzy models considering both 

accuracy (precision) and transparency (interpretability) of fuzzy systems. In this 

methodology, a hierarchical clustering algorithm is employed for the initial fuzzy 

model generation; a data selection mechanism is developed for selecting 

appropriate and efficient training data; and a multi-objective optimisation 

mechanism is developed for the fuzzy model improvement, which takes into 

account both accuracy and interpretability performance of fuzzy models. 

This chapter is organised as follows. The remaining part of Section 5.1 provides a 

background knowledge about fuzzy modelling. Section 5.2 introduces the 

framework of the proposed modelling approach. Section 5.3 describes the 

proposed approach that concerns the generation of an initial fuzzy model using a 

hierarchical clustering algorithm. The related experimental studies are also 

presented. In Section 5.4, the proposed accuracy improvement and data selection 

mechanism are introduced, while in Section 5.5, a multi-objective optimisation 
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algorithm, which includes both the accuracy and the interpretability performance 

of fuzzy models as attributes, is presented. In Section 5.6, a post-modelling 

technique for computing the model confidence bands is proposed. Finally, Section 

5.7 concludes this chapter. 

5.1.1 Fuzzy Systems 

The fundamental concept of fuzzy systems was first introduced by Zadeh in 1965 

[Zadeh 1965] and later expanded upon in 1973 [Zadeh 1973]. Since then, fuzzy 

systems continued to receive more and more attention from a wide section of the 

research community. The main advantages of fuzzy systems consist of the 

following:

1. Fuzzy systems are interpretable (transparent). They include an explicit 

knowledge representation in the form of linguistic �If-Then� rules, which 

can easily be understood and explained by humans to allow them to gain a 

deeper insight into complex and ill-defined systems. 

2. Fuzzy systems are capable of handling complex, nonlinear, and uncertain 

problems and yet still able to exhibit robust behaviour. They have proven 

to be universal approximators able to perform nonlinear mappings between 

inputs and outputs [Wang & Mendel 1992]. 
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3. Fuzzy systems are relatively easier to design and relatively inexpensive to 

implement. 

5.1.2 Fuzzy Modelling 

Fuzzy modelling is a systems modelling with a fuzzy rule-based system. It is an 

approach that allows to model systems using a descriptive language (linguistic �If-

Then� rules, for instance) based on fuzzy logic and on fuzzy quantisation. 

Currently, fuzzy modelling is increasingly becoming a serious contender for the 

modelling of complex, nonlinear, and uncertain systems. 

There are two complementary approaches in fuzzy modelling, namely knowledge 

acquisition from human experts and knowledge discovery from data. The 

knowledge acquisition approach lends itself to the design fuzzy models based on 

existing expert knowledge. This is the natural and classical method, however, it is 

not a trivial task for experts are not always available, and even if they are 

available, the cost of obtaining such expert knowledge may sometimes be too high 

or the knowledge itself is not consistent, and/or complete. On the other hand, 

knowledge discovery from data, i.e. �data-driven� fuzzy modelling, will enable one 

to identify the structure and the parameters of fuzzy models from numerical data 

automatically. This can help to overcome the limitations of the �knowledge 

acquisition� approach. The last two decades have witnessed an explosive growth in 

both the generation and the collection of data. By analysing and summarising these 
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data, one can extract knowledge from such data-driven information. Experts may 

possess parts of the knowledge, but the other parts are totally new to humans. 

From this viewpoint, data-driven fuzzy modelling can be viewed as a process of 

discovering new knowledge expressed in the form of linguistic fuzzy statements 

(rules). 

5.1.3 Data-Driven Fuzzy Modelling 

Broadly, the design of a data-driven fuzzy system can be a two-step process. The 

first step consists of generating a crude approximation of the fuzzy model that 

describes the system. This can be achieved via two methods: The first method uses 

a grid-partitioning of the multidimensional space. This partitioning can be 

generated from data or obtained from experts; it defines a number of fuzzy sets for 

each variable, which are interpreted as linguistic labels and shared by all the rules. 

Meanwhile, a training procedure optimises the grid structure, as well as the rule 

consequences, according to data samples. In contrast, the second method includes 

data clustering (grouping). In this method, the training data are gathered into 

homogeneous groups and a rule is associated to each group. The fuzzy sets are not 

shared by all the rules, but each set is mapped into one particular rule. 

The second step consists of optimising the initial fuzzy sets and the initial rules to 

lead to a finally retained fuzzy model. The main techniques for this work include 

linear least-squares, nonlinear optimisation methods and machine learning based 
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techniques. Two of the most successful attempts to implement these learning and 

optimisation methods relate to neuro-fuzzy systems [Jang et al. 1997; Nauck et al.

1997; Fuller 1999] and evolutionary fuzzy systems [Pedrycz 1997; Sanchez et al.

1997; Cordon et al. 2001]. 

Neuro-fuzzy systems view fuzzy systems as a particular type of neural networks 

and employ related neural networks� training techniques, such as the Back-

Propagation algorithm (BP) [Rumelhart et al. 1986], to improve the parameters of 

the fuzzy sets. On the other hand, evolutionary fuzzy systems employ evolutionary 

algorithms, such as Genetic Algorithms (GAs) and Evolution Strategies (ESs), to 

improve the initial fuzzy systems, because of their capability for searching 

relatively large multidimensional solution spaces. Unlike neuro-fuzzy systems, 

evolutionary fuzzy systems are able to realise improvements not only on the 

parameters of the fuzzy sets but also on the structure of the fuzzy rules. Moreover, 

multi-objective optimisation techniques within the evolutionary algorithms can 

prove very helpful in studying the trade-off between the accuracy and the 

interpretability of fuzzy models. Using a multi-objective evolutionary algorithm, 

the accuracy and the interpretability of models can be incorporated into several 

objectives in order to evaluate the final multiple Pareto-optimal solutions, each of 

which represents an individual fuzzy model. 
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5.1.4 Accuracy and Interpretability 

Fuzzy modelling may be conducted under two contradictory requirements: 

accuracy (significance) and interpretability (transparency). Accuracy is easy to 

come to grips with as it relates to the capability of representing the real system 

faithfully, this being a fundamental requirement for models. In contrast, 

interpretability means that human beings are able to understand a fuzzy system�s 

behaviour by inspecting its associated rule-base(s). It is crucial in the field of data 

mining and knowledge discovery where information should be extracted from data 

bases and represented in a comprehensible form, or for decision support systems 

where the reasoning process should be transparent to the users [Mikut et al. 2005]. 

Whereas the definition of accuracy in a certain application is straightforward, the 

definition of interpretability is rather problematic. Most researchers and 

practitioners should agree on interpretability involving the following aspects 

[Mikut et al. 2005]: 

1. The number of rules should be small enough to be comprehensible. 

2. The rule-base should be formed from the rules describing the relevant local 

relationships. Furthermore, the rules should be consistent (similar premises 

lead to similar conclusions). 

3. The rule premises should be simple in structure and contain only a few 
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features (input variables). 

4. The linguistic terms should be intuitively comprehensible. The form and 

parameters of the membership functions should correspond to the 

understanding of the linguistic expressions. 

5. The inference mechanism should produce technically and intuitively 

correct results. 

It is obvious that the ideal scenario would be for the model to satisfy both the 

accuracy and the interpretability criteria to the highest possible degrees but, since 

these are contradictory attributes, this scenario is generally not possible. In recent 

years, many researches have been devoted to the study of the trade-offs between 

accuracy and interpretability [Guillaume 2001; Jimenez et al. 2001; Ishibuchi & 

Yamamoto 2003; Wang et al. 2005; Kim et al. 2006; Gonzalez et al. 2007]. 

5.1.5 Optimisation of Fuzzy Modelling 

From the viewpoint of optimisation, the design of a fuzzy model can be formulated 

as a search problem in a multidimensional space where each solution represents a 

possible fuzzy model with different rule structures, membership functions, and 

related parameters. According to specific performance criteria given by the 

designer, the performance of different fuzzy models forms a hypersurface. Thus, 
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designing an optimal fuzzy model can be considered as finding the optimal 

location of this hypersurface. 

In most of the papers relating to fuzzy modelling problems which were published 

in 1990�s, only the parameters of fuzzy models were optimised while the model 

structure itself was fixed [Horikawa et al. 1992; Jang 1993]. Since then, some 

other approaches [Setnes et al. 1998; Yen et al. 1998; Jin 2000; Jimenez et al.

2001; Ishibuchi & Yamamoto 2004; Wang et al. 2005] have been developed, in 

which both the parameters and the model structures were improved simultaneously 

by encoding all the information simultaneously into the solutions. 

The fuzzy modelling approaches [Horikawa et al. 1992; Jang 1993; Cordon et al.

2001] that optimise the parameters can only be viewed as optimising the following 

single-objective problem: 

Maximise: Accuracy(S),                                                                         (5.1) 

where Accuracy(S) is an accuracy measure of the fuzzy system. 

Figure 5-1 illustrates this optimal search. In this figure, the search direction is 

represented by the arrow; a single fuzzy system, which is represented by a green 

dot, is obtained as the final solution by maximising the accuracy. It can be seen 

that the final solution performs well in �accuracy� but badly in �interpretability�, 

because accuracy improvements are usually achieved at the expense of 

interpretability. More specifically, accuracy improvements often increase the 

complexity of systems and tune the topology of fuzzy sets so that they become 
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overlapping.

Figure 5-1. Modelling within the context of a Cartesian representation between 
accuracy and interpretability � the accuracy maximisation 

In the approaches proposed in late 1990�s [Setnes et al. 1998; Yen et al. 1998; Jin 

2000], although both accuracy and interpretability were considered, these two 

objectives were combined to form one objective and the final solution will still 

represent a single fuzzy rule-based system. These studies can be viewed as 

optimising the following weighted sum of objective functions: 

Maximise: w1 × Accuracy(S) + w2 × Interpretability(S),                       (5.2) 

where Accuracy(S) and Interpretability(S) are the accuracy and the interpretability 

measures of the fuzzy system; w1 and w2 are objective weights. 
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As shown in Figure 5-2, a single fuzzy model is obtained as the final solution by 

maximising the weighted sum of the objective functions. The search direction 

represented by the arrow in Figure 5-2 is specified by the weight vector [w1, w2].

In this situation, the specification of the weight vector is not easy and is problem-

dependent. Thus, the decision maker must have prior knowledge of the priority of 

each objective before aggregating them into one single objective. If multiple 

solutions are needed, different priorities need to be assigned and the same problem 

needs to be solved again. 

Figure 5-2. Modelling within the context of a Cartesian representation between 
accuracy and interpretability � the optimisation of the weighted sum 
of objective functions 

In recent years, the trade-off between the accuracy and the interpretability of fuzzy 

114



Chapter 5: FM-HCMO 

systems has been the subject of many published papers [Jimenez et al. 2001; 

Ishibuchi & Yamamoto 2004; Wang et al. 2005]. Because of such conflicting 

objectives, the fuzzy modelling problem has always been viewed as a multi-

objective optimisation problem by its very nature. To this effect, multi-objective 

optimisation techniques, especially those allied to multi-objective evolutionary 

algorithms, have been considered as possible candidates for fuzzy modelling. 

These studies can be viewed as being equivalent to the following two-objective 

problem: 

Maximise: Accuracy(S) and, 

Maximise: Interpretability(S).                                                                (5.3) 

Figure 5-3 illustrates the multi-objective optimisation search process for a number 

of fuzzy models with various accuracy-interpretability trade-offs. The search 

direction can be in every feasible direction. The finally obtained solutions are 

called multiple Pareto-optimal (non-dominated) solutions. After obtaining these 

final solutions (models), the decision maker should be able to choose the most 

appropriate solution for the current situation. For example, some users may prefer 

a �simpler� model with a high interpretability; other may prefer a �more complex� 

one with a high accuracy. Moreover, the knowledge of several other Pareto-

optimal solutions can also be useful for later use, when the current situation has 

changed and a new solution is required. 
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Figure 5-3. Modelling within the context of a Cartesian representation between 
accuracy and interpretability � the multi-objective optimisation 

5.1.6 Features of the Proposed Modelling Methodology 

The main aim of this chapter is to develop a systematic fuzzy modelling approach, 

which can be used for constructing a set of fuzzy models from sample data. The 

important features of this approach will consist of the following: 

1. Mamdani fuzzy models (linguistic fuzzy models) are used in the proposed 

approach. Most recent research in the field of fuzzy modelling concentrated 

extensively on the use of Takagi-Sugeno-Kang (TSK) [Takagi & Sugeno 

1985] fuzzy models because of their high accuracy. But compared to 
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Mamdani fuzzy models, TSK models are less transparent. 

2. A hierarchical clustering algorithm, which is an agglomerative complete-

link clustering algorithm, is employed to generate the initial fuzzy system. 

To reduce the computational complexity of this normally involved 

algorithm, a new version agglomerative complete-link clustering algorithm 

is devised. The algorithm should prove to be more efficient and perform 

better than other well-known clustering algorithms, such as the well- 

known fuzzy c-means (FCM) clustering algorithm [Dunn 1973; Bezdek 

1981].

3. A data selection mechanism is proposed for selecting the appropriate data 

for training the models. 

4. Both the accuracy and the interpretability of fuzzy models are included in 

the list of objective functions to be optimised. In this work, a multi-

objective optimisation mechanism, which is based on the previously 

developed efficient optimisation algorithm nMPSO (see Chapter 4), is 

proposed and employed in order to obtain a set of Pareto-optimal fuzzy 

models with different accuracy and interpretability levels. 

5. The proposed fuzzy modelling approach is developed to solve not only 

low-dimensional modelling problems but also high-dimensional modelling 

problems. The fuzzy modelling of high-dimensional systems is always 
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challenging because the model complexity grows exponentially as the input 

dimension increases. In this proposed approach, an efficient hierarchical 

clustering algorithm and a data selection mechanism are designed and a 

high-performance evolutionary computation based algorithm, nPSO (see 

Chapter 4), is also employed. All these paradigms cooperate together to 

tackle the high-dimensional modelling problem efficiently. 

5.2 The Framework of the Proposed Modelling Methodology 

Figure 5-4 shows the flow chart of the proposed fuzzy modelling approach. This 

approach is named throughout the Fuzzy Modelling approach with a Hierarchical 

Clustering algorithm and a Multi-objective Optimisation mechanism (FM-

HCMO). It can be divided into several parts and the execution steps can be 

described as follows: 

1. Data clustering: A data clustering algorithm, the agglomerative complete-

link clustering algorithm, is employed to process the training data in order 

to obtain the information of clusters. 

2. Initial model construction: The information about clusters is then used to 

construct an initial fuzzy model. 
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Figure 5-4. A framework for the proposed fuzzy modelling approach 

3. A crude data selection: The information about clusters is also used for the 

selection of the training data. Following this operation, a representative 

training data set is selected. 

4. Accuracy optimisation and missing data selection: In this step, the initial 

fuzzy model is improved in terms of accuracy and a further representative 

training data set is selected. After this step, an accurate fuzzy model is 

119



Chapter 5: FM-HCMO 

obtained and a reduced training data set is formed. 

5. Multi-objective optimisation: By using a multi-objective optimisation 

algorithm nMPSO, the previous fuzzy model is optimised according to the 

accuracy and interpretability objectives. Finally, a set of Pareto-optimal 

fuzzy models should be obtained. 

5.3 Data Clustering and Initial Fuzzy Model Construction 

5.3.1 Data Clustering 

5.3.1.1 Basic Concepts 

Clustering is an unsupervised form of classification of data (patterns, observations, 

or feature vectors) into different clusters (groups). Each cluster consists of data 

that are similar between themselves and dissimilar to those data of other clusters. 

In other words, the data in one cluster share some common traits, which are often 

related to some defined distance measure. On the other hand, data clustering can 

also be viewed as a process of modelling data by its clusters. Representing many 

data by fewer clusters may lead to the loss of some details, but it achieves a 

simplification for data analysis. 

An example of data clustering is depicted in Figure 5-5. In this example, the input 
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data are shown in Figure 5-5(a); the desired clusters are shown in Figure 5-5(b); 

the data points belonging to the same cluster are given the same label. 

(a)                                                              (b) 

Figure 5-5. Examples of data clustering 

It is important to get to grips with the difference between data clustering 

(unsupervised classification) and discriminant analysis (supervised classification) 

[Jain et al. 1999]. In supervised classification, a collection of labelled (pre-

classified) patterns are provided; the problem is to label a newly encountered and 

unlabeled pattern. In this case, the given labelled patterns are used to learn the 

descriptions of classes which in turn are used to label a new pattern, while in the 

case of data clustering, the problem is to group a given collection of unlabelled 

patterns into meaningful clusters. In data clustering, labels are also associated with 

clusters, but these category labels are data driven; that is, they are obtained solely 

from the data. 

In data clustering techniques, similarity is fundamental to the definition of a 
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cluster. The measure of similarity (distance measure) will influence the shape of 

the clusters [Jain et al. 1999]. Because of the variety of feature types and scales, 

the distance measure must be chosen carefully. Generally, the Euclidean distance 

(2-norm distance) is the most common distance measure and is widely used. 

In recent years, data clustering has become a common technique for statistical data 

analysis and has been used in many fields, including data mining, machine 

learning, pattern recognition and image analysis. 

5.3.1.2 Types of Data Clustering Algorithms 

Traditionally, clustering techniques have always been broadly divided into the 

hierarchical and the partitional categories. Hierarchical clustering is further 

subdivided as agglomerative or divisive. In hierarchical clustering, the clusters are 

built gradually as crystals are grown. More details about hierarchical clustering 

will be given in the next section. 

On the other hand, partitional clustering infers the clusters directly and it 

determines all the clusters at once. In doing so, it either tries to discover clusters by 

iteratively relocating data between subsets, or attempts to identify them as areas 

which are highly populated with data. Algorithms of the first type (partition 

relocation clustering) concentrate on how well data fit into their clusters and tend 

to build clusters of proper convex shapes. Partitional clustering algorithms of the 
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second type (density-based clustering) try to discover dense connected components 

of data, which are flexible in terms of their shapes. 

Hierarchical clustering based algorithms are more versatile than partitional 

clustering algorithms, whereas a typical partitional algorithm works well only on 

the data sets which include isotropic clusters [Nagy 1968]. For partition relocation 

clustering algorithms, they are simple and fast, but not accurate enough. For 

instance, they can not yield the same result with each run, since the resulting 

clusters depend on the initial random assignments. For density-based clustering 

algorithms, they usually work with low-dimensional data of numerical attributes, 

known as spatial data. 

5.3.1.3 Hierarchical Clustering Algorithms 

Hierarchical clustering builds a cluster hierarchy or, in other words, a tree of 

clusters [Berkhin 2006]. Every cluster node contains child clusters and the sibling 

clusters classify the data points covered by their common parent. This tree can be 

cut at a desired similarity level to form a partition (clustering), which is identified 

by completely connected components in the corresponding tree. This approach 

allows exploring data on different levels of granularity. 

For example in Figure 5-6 [Maksim 2006], suppose the data {a}-{f} are to be 

clustered, and the Euclidean distance is the distance measure. The hierarchical 
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clustering dendrogram is as shown in Figure 5-7 [Sideris 2005]. For hierarchical 

clustering, cutting the tree at a given height (similarity) will give a clustering at a 

selected precision. In this example, cutting after the second row will yield the 

clusters {a} {b c} {d e} {f}; and cutting after the third row will obtain the clusters 

{a} {b c} {d e f}, which is a coarser clustering, with a smaller number of larger 

clusters.

Generally, hierarchical clustering methods can be categorised into agglomerative 

and divisive approaches. An agglomerative clustering method starts with one-point 

(singleton) clusters and recursively merges two or more most appropriate clusters. 

A divisive clustering method starts with one cluster of all data points and 

recursively splits the most appropriate cluster. The merging or splitting process 

continues until a stopping criterion (frequently, the requested number of clusters) 

is achieved. 

Figure 5-6. Data samples of a clustering problem 
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Figure 5-7. The hierarchical clustering dendrogram of the data samples shown 
in Figure 5-6 

The hierarchical agglomerative clustering algorithm can be described as follows 

[Jain et al. 1999]: 

1. Compute the proximity matrix containing the distance between each pair of 

patterns. Treat each pattern as a cluster. 

2. Find the most similar pair of clusters using the proximity matrix. Merge 

these two clusters into one cluster. Update the proximity matrix after this 

merging operation. 
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3. If the stopping criterion is achieved, then stop; otherwise, go to Step 2. 

In the light of the above, a variety of agglomerative algorithms can be designed. In 

particular, most hierarchical clustering algorithms can be divided into three 

categories, the single-link [Sneath & Sokal, 1973], complete-link [King 1967], and 

minimum-variance [Ward 1963; Murtagh 1984] algorithms, in which the single-

link and complete-link algorithms are most popular. These algorithms differ in the 

way they characterise the similarity between a pair of clusters. For instance, in the 

single-link method, the distance between two clusters is the minimum of the 

distances between all pairs of patterns drawn from the two clusters (one pattern 

from the first cluster, the other from the second). In the complete-link algorithm, 

the distance between two clusters is the maximum of all pair wise distances 

between the patterns in the two clusters. In either case, two clusters are merged to 

form a larger cluster based on the minimum distance measure. 

In [Baeza-Yates 1992], it is explained that the complete-link algorithm produces 

tightly bound or compact clusters. The single-link algorithm, by contrast, suffers 

from a chaining effect [Nagy. 1968]. It has a tendency to produce clusters that are 

straggly or elongated. From a pragmatic viewpoint, it has been observed that the 

complete-link algorithm produces more useful clusters in many applications than 

the single-link algorithm [Jain & Dubes 1988]. 
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5.3.1.4 The Proposed New Agglomerative Complete-Link Clustering 

Algorithm

As described in the previous section, the agglomerative complete-link clustering 

algorithm produces tight bounds and compact clusters. This characteristic makes 

the agglomerative complete-link algorithm more suitable for modelling purposes. 

Thus, this algorithm is employed to build the initial fuzzy model in this work. 

However, hierarchical clustering algorithms, in general, suffer from a problem of 

high computational complexity. For example, if the number of training data is N,

the computational complexity will be O(N2). To reduce the computational 

complexity of the original agglomerative complete-link algorithm, the following 

methodology is adopted: 

1. Define the desired number of clusters Nc and a threshold Nmax. This 

threshold is an integer number used to estimate whether the training data 

set is too large for computation. To ensure that this method works 

adequately, the threshold is set as Nmax > N1/2.

2. If N Nmax, then apply the normal agglomerative complete-link clustering 

algorithm to classify the training data into Nc clusters, and terminate the 

whole clustering process; If N > Nmax, go to Step 3. 

3. Divide the training data set randomly and equally into i groups. i = Ceil (N
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/ Nmax), where Ceil(x) is a function that rounds off x to the nearest integer 

towards + .

4. For every group out of i groups, classify the N/i training data into j sub-

clusters using the normal agglomerative complete-link algorithm, where j = 

Floor (Nmax / i) and Floor(x) is a function that rounds off x to the nearest 

integer towards - .

5. For every sub-cluster out of i×j clusters, select the centric datum, which is 

closest to the cluster�s centre among all the data in this sub-cluster, as the 

representative data. 

6. Combine all the representative data to form a representative data set, in 

which the number of data is i×j and smaller than Nmax.

7. Apply the normal agglomerative complete-link algorithm to clustering the 

representative data into Nc clusters. 

8. Replace each representative datum with the original training data in its 

corresponding sub-cluster. 

If the value of Nmax is smaller than N, the computational complexity of the 

proposed method becomes O(N×Nmax), where O(N3/2) < O(N×Nmax) < O(N2). It can 

be seen that, by designing an adequate threshold value, the computational 

128



Chapter 5: FM-HCMO 

complexity of this clustering method is as low as O(N3/2). From this viewpoint, the 

proposed method should improve the clustering efficiency greatly; thus it will be 

used in the modelling process throughout. 

5.3.2 Initial Fuzzy Model Construction 

By using the agglomerative complete-link clustering algorithm, a predefined 

number of clusters can be obtained from the training data. The information that 

these clusters will provide is then used to construct an initial fuzzy model. In this 

modelling approach, one cluster corresponds to one fuzzy rule; the centres of 

membership functions are defined using the information of their corresponding 

clusters� centre positions; other parameters relating to the membership functions 

are defined under the principle that one membership function must cover all the 

training data, which are included in its corresponding cluster. 

5.3.2.1 An Example of Constructing the Initial Fuzzy Model 

Figure 5-8 shows an example of how to construct initial fuzzy model from the 

information of clusters: 

1. One fuzzy rule corresponds to one cluster. For instance, for the right upper 

cluster in Figure 5-8, the corresponding fuzzy rule should be: IF input is 
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A1
3, THEN output is A2

3.

2. The membership functions� centres correspond to the clusters� centres. As 

shown in Figure 5-8, the green dashed-dotted lines represent the centres of 

clusters and they are used to define the membership functions� centres. 

3. The membership functions� widths correspond to the clusters� widths, 

which are shown as red dashed lines in Figure 5-8. For the parameters that 

relate to the covering range of membership functions, they are defined 

under the clusters� width restriction. 

Figure 5-8. An example of the initial fuzzy model construction 
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5.3.2.2 Fuzzy System Definition and Notation 

A generic multi-input and single-output (MISO) fuzzy model is represented as a 

collection of fuzzy rules in the following form: 

Rule Rk: IF x1 is A1
k and x2 is A2

k � and xD is AD
k, THEN y is Bk,

where Rk is the label of the kth fuzzy rule; x = [x1, x2, �, xD]T U1×U2×�×UD

are input linguistic variables; Al
k are the antecedent fuzzy sets of the universes of 

discourse Ul, where l = 1, 2, �, D; Vy  is the output linguistic variable; and Bk

is a consequent fuzzy set of the universe of discourse V.

In this work, Gaussian functions are chosen as the membership functions (without 

any loss of generality), i.e.: 

2

2)(exp)( cxxA ,                                                                       (5.4) 

where A is the membership function of x belonging to the fuzzy set A; parameters 

c and  represent the centre and the width of this membership function, where  is 

a positive number. Besides this, the product inference engine and the centre 

average defuzzification method [Wang 1997] are also implemented in the fuzzy 

systems of this work. 

5.3.2.3 The Fuzzy Model Extraction Approach 

Assume a modelling problem being based on a collection of (D+1)-dimensional 
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input-output (D-input and 1-output) training data {p1, p2, �, pN}. pm = [x1
m, x2

m,

�, xD
m, ym]T, where m = 1, 2, �, N; N is the number of training data. 

By using the agglomerative complete-link clustering algorithm, a predefined 

number of clusters can be obtained from the training data. Let Cn represent the nth 

cluster and Cn = {pn1, pn2, �, pn(NDn)}, where n = 1, 2, �, Nc and NDn is the 

number of data in the nth cluster. 

In this modelling approach, the rule-base is obtained and is composed of Nc fuzzy 

rules. The fuzzy rule corresponding to the cluster Cn can be represented as follows: 

Rn: IF x1 is A1
n and x2 is A2

n � and xD is AD
n, THEN y is Bn.

where n = 1, 2, �, Nc; x = [x1, x2, �, xD]T are input linguistic variables; Ai
n are 

antecedent fuzzy sets, where i = 1, 2, �, D; y is the output linguistic variable; and 

Bn is a consequent fuzzy set. 

Considering one fuzzy set Ai
n, the Gaussian membership function of Ai

n includes

two parameters ci
n and i

n. ci
n can be calculated using the following equation: 

NDnxc
NDn

j

nj
i

n
i

1
.                                                                                  (5.5) 

It is worth nothing that the membership function should cover all the training data 

contained in its corresponding cluster. In other words, for every data included in 

this cluster, its membership degree should be high enough to ensure the data maps 

into this rule. Based on this requirement, the membership parameter i
n is designed 
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to satisfy the following equation: 

Thcxx n
i

n
i

nj
i

j

nj
iAj

n
i 2

2

)(
)(expmin)(min ,                                     (5.6) 

where j = 1, 2, �, NDn. This equation means that, for all the data included in the 

nth cluster, the membership degrees are higher than a threshold Th. The value of 

Th is set to 0.5 in this work without any loss of generality. The previous equation 

can be rewritten as follows: 

)ln(
)max(

Th
cx n

i
nj
in

i ,                                                                               (5.7) 

where j = 1, 2, �, NDn. Using this equation, the parameter i
n is determined. 

5.3.3 Experimental Studies 

5.3.3.1 Comparison of Clustering Algorithms for Fuzzy Modelling Problems 

For this comparison study, the fuzzy c-means (FCM) [Dunn 1973; Bezdek 1981] 

clustering algorithm, which has been used in many fuzzy modelling problems 

[Kim et al. 1997; Emami et al. 1998; Chen & Linkens 2001], and the 

agglomerative complete-link clustering algorithm proposed in this chapter, were 

applied to solve three modelling problems. 

The first problem consists of approximating the following two-input and single-

output nonlinear function, which is taken from [Sugeno & Yasukawa 1993]: 
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25.1
2

2
1 )1( xxy ,                                                                              (5.8) 

where 1 x1, x2  5. The input data set consists of 50 data points [x1
k, x2

k]T, where 

k = 1, 2, �, 50, and they are the same as the data points described in [Sugeno & 

Yasukawa 1993]. 

The second problem aims to model a mechanical property of alloy steels, the 

reduction of area (ROA). The ROA data include 15 inputs and one output and it is 

considered to be a high-dimensional problem for modelling purposes. In this 

experiment, 250 ROA data are used for modelling. 

The third problem relates to modelling another mechanical property of alloy steels, 

the ultimate tensile strength (UTS). This problem is also a high-dimensional 

problem and includes 15 inputs and one output. In this experiment, 1000 UTS data 

are used in the modelling process. 

In these experiments, the clustering algorithms were applied first to generate a 

number of clusters. This cluster information was then used to construct a set of 

simple Mamdani-type fuzzy systems using the approach described in Section 

5.3.2.3. From the performance of these fuzzy models, one can judge the merits of 

all the clustering techniques. 

In order to compare the performance of the clustering algorithms across different 

levels of granularity, the experiments were carried-out using various settings of the 

cluster number (fuzzy rule number). For each experiment, the average result of 10 
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runs is regarded as the final outcome. 

To evaluate the performance of fuzzy models, the accuracy measure, represented 

by the Root Mean Square Error (RMSE), is used throughout. It is described as 

follows: 

N

yy
RMSE

N

l

p
l

m
l

1

2

,                                                                       (5.9) 

where yl
m is the measured output data and yl

p is the predicted output data, l = 1, 2, 

�, N; N is the total number of data. 

Tables 5-1, 5-2 and 5-3 list the modelling performance using these two clustering 

methods for the function approximation, ROA modelling and UTS modelling 

problems, respectively. 

From Table 5-1, it can be seen that, for this function approximation problem, the 

agglomerative complete-link clustering algorithm performs better than FCM in all 

the situations, except when the cluster number is 4. Furthermore, with the increase 

of the cluster number, the modelling performance of the agglomerative complete-

link algorithm is improved significantly compared to FCM. 
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Table 5-1. Comparative results of different clustering algorithms for Mamdani 
fuzzy systems construction with the function approximation problem 

RMSE of 50 Training Data 
Number of Clusters 
(Number of Rules) FCM Agglomerative Complete-

link Clustering 

4 0.5600 0.5617

6 0.4855 0.4443

8 0.4482 0.3854

10 0.3721 0.3305

15 0.3772 0.2003

20 0.3172 0.1773

30 0.2323 0.1097

Table 5-2. Comparative results of different clustering algorithms for Mamdani 
fuzzy systems construction with the ROA modelling problem 

RMSE of 250 Training Data (%) 
Number of Clusters 
(Number of Rules) FCM Agglomerative Complete-

link Clustering 

6 6.1171 6.3490

8 6.1117 6.1331

10 6.1588 6.0361

15 6.2054 5.7806

20 6.0942 5.2121

30 6.0115 4.8238

50 5.9062 3.6695
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Table 5-3. Comparative results of different clustering algorithms for Mamdani 
fuzzy systems construction with the UTS modelling problem 

RMSE of 1000 Training Data (MPa) 
Number of Clusters 
(Number of Rules) FCM Agglomerative Complete-

link Clustering 

8 136.3927 171.8730

10 135.5494 139.7599

15 136.5325 135.0249

20 137.2658 121.8931

30 139.3152 113.1180

50 138.6608 96.9054

100 137.4576 63.5138

From Table 5-2, it can be seen that, when modelling the ROA problem, the 

agglomerative complete-link algorithm performs better than FCM in most of the 

situations, while FCM performs better when the cluster number is 6 or 8. 

Furthermore, with the increase of the cluster number, the modelling performance 

of the agglomerative complete-link algorithm is improved significantly, as 

compared to FCM. 

From Table 5-3, it can be seen that, for this UTS modelling problem, the 

agglomerative complete-link algorithm performs better when the cluster number is 

relatively large (15 to 100); and FCM performs better when the cluster number is 

relatively small (8 to 10). With the increase of the cluster number, the modelling 

performance of the agglomerative complete-link algorithm is still improved 

greatly, when compared to FCM. 
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From these above experiments, it can be concluded that the proposed hierarchical 

clustering algorithm can lead to better clustering information for fuzzy modelling 

problems than FCM and therefore it is more suitable for fuzzy modelling purposes. 

5.3.3.2 Effects of Various Weights of Distance Measure 

For a clustering algorithm, the distance measure should be defined first. Generally, 

the distance measure between two data points pm = [x1
m, x2

m, �, xD
m, ym]T and pn = 

[x1
n, x2

n, �, xD
n, yn]T can be defined using the following equation: 

2

1

2
)()( nmO

D

i

n
i

m
iIi yywxxwDis ,                                  (5.10) 

where wI = [wI1, wI2, �, wID] is the vector of the input distance weights and wO is 

the output distance weight. 

The distance weights wI1, wI2, �, wID and wO can influence the clustering 

compactness in different dimensions and thus influence the generated fuzzy 

model�s sensitivity to different input variables. Specifically, one high weight value 

means that the data in this dimension are more important than those data in other 

dimensions with small weight values. Normally, a high weight value for the output 

data is suitable for the modelling purpose. 

Three experiments were carried-out to test the influence of different distance 

weights in fuzzy modelling. These experiments are based on the proposed 
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agglomerative complete-link algorithm and use the same training data as those 

experiments in the previous section (Section 5.3.3.1). In the first experiment, the 

fuzzy systems (with 8 rules) are generated from 50 function approximation data. In 

the second experiment, the fuzzy systems (with 15 rules) are elicited from 250 

ROA data. In the third experiment, the fuzzy systems (with 30 rules) are generated 

using 1000 UTS data. For these three experiments, different distance weights for 

input and output data are tested. The performances of the generated fuzzy models 

are shown in Tables 5-4, 5-5 and 5-6. 

Table 5-4. Comparative results of different distance weights for Mamdani fuzzy 
systems (with 8 rules) construction with the function approximation 
problem; the bold values represent the best results. 

Distance
weights

wI = 1 
wO = 0.25 

wI = 1 
wO = 0.5 

wI = 1 
wO = 0.75 

wI = 1 
wO = 1 

wI = 1 
wO = 1.5 

RMSE of 
50 Data 0.5605 0.5175 0.5240 0.3854 0.3958

Distance
weights

wI = 1 
wO = 2 

wI = 1 
wO = 2.5 

wI = 1 
wO = 3 

wI = 1 
wO = 4 

wI = 1 
wO = 5 

RMSE of 
50 Data 0.3712 0.3673 0.4347 0.4869 0.4562

Distance
weights

wI = 1 
wO = 6 

wI = 1 
wO = 7 

wI = 1 
wO = 8 

wI = 1 
wO = 9 

wI = 1 
wO = 10 

RMSE of 
50 Data 0.4577 0.4755 0.4755 0.5109 0.5138
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Table 5-5. Comparative results of different distance weights for Mamdani fuzzy 
systems (with 15 rules) construction with the ROA modelling 
problem; the bold values represent the best results. 

Distance
weights

wI = 1 
wO = 0.25 

wI = 1 
wO = 0.5 

wI = 1 
wO = 0.75 

wI = 1 
wO = 1 

wI = 1 
wO = 1.5 

RMSE of 
250 Data 

(%)
5.9889 6.0353 6.0831 5.7806 5.0042

Distance
weights

wI = 1 
wO = 2 

wI = 1 
wO = 2.5 

wI = 1 
wO = 3 

wI = 1 
wO = 4 

wI = 1 
wO = 5 

RMSE of 
250 Data 

(%)
4.8186 4.1899 4.3433 4.1449 4.2940

Distance
weights

wI = 1 
wO = 6 

wI = 1 
wO = 7 

wI = 1 
wO = 8 

wI = 1 
wO = 9 

wI = 1 
wO = 10 

RMSE of 
250 Data 

(%)
4.7766 4.6331 4.5474 4.3009 4.5514

Table 5-6. Comparative results of different distance weights for Mamdani fuzzy 
systems (with 30 rules) construction with the UTS modelling 
problem; the bold values represent the best results. 

Distance
weights

wI = 1 
wO = 0.25 

wI = 1 
wO = 0.5 

wI = 1 
wO = 0.75 

wI = 1 
wO = 1 

wI = 1 
wO = 1.5 

RMSE of 
1000 Data 

(MPa)
109.6063 110.1273 108.4278 113.1180 113.1682

Distance
weights

wI = 1 
wO = 2 

wI = 1 
wO = 2.5 

wI = 1 
wO = 3 

wI = 1 
wO = 4 

wI = 1 
wO = 5 

RMSE of 
1000 Data 

(MPa)
97.4785 81.9490 86.8525 81.2002 80.7164

Distance
weights

wI = 1 
wO = 6 

wI = 1 
wO = 7 

wI = 1 
wO = 8 

wI = 1 
wO = 9 

wI = 1 
wO = 10 

RMSE of 
1000 Data 

(MPa)
83.4777 63.2239 80.6791 84.5728 84.9728

From these tables, it can be seen that a large distance weight for the output 

variable is more suitable for fuzzy modelling; it is worth nothing that the weight 
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should not be too large. In the first experiment, good performances are observed 

when wO lies in the range between 1 and 2.5 and the best performance is registered 

when wO is 2.5. In the second experiment, the model performs well when wO is in 

the range from 2.5 to 5 and the best performance appears when wO is 4. In the third 

experiment, good performances can be observed when wO is between 4 and 8 and 

the model performs best when wO is 7. It is suggested that, for low-dimensional 

problems, wO value should be selected between 1 and Dim, where Dim is the 

dimension number of the modelling problem. For high-dimensional problems, wO

value should be selected between 2 and Dim/2.

5.4 Accuracy Optimisation and Data Selection 

5.4.1 Accuracy Optimisation 

The initial fuzzy model elicited by a clustering method generally shows a poor 

performance in accuracy. To make the initial fuzzy model meaningful and 

effective for application, one should concentrate on the improvement of accuracy. 

To the question of why not use a multi-objective optimisation for optimising both 

accuracy and interpretability, one would answer that at this stage as follows: if a 

multi-objective optimisation is employed, then this would inevitably increase the 

computational complexity and render the optimisation inefficient. Another reason 

for using accuracy optimisation at this stage is that this procedure can cooperate 
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with a data selection approach to choose the most representative training data set. 

In this work, the single objective evolutionary algorithm, nPSO (see Chapter 4), is 

employed. This algorithm is applied here to search for the optimal parameters of 

the membership functions in combination with the performance index of the Root 

Mean Square Error (RMSE).

5.4.1.1 The Validation Mechanism 

To avoid the problem of overtraining (or overfitting) [Tetko et al. 1995] in the 

optimisation process, a validation mechanism is designed for this phase. One part 

of the data is separated and is used for validation only. In particular, the validation 

mechanism works as follows: In the optimisation process, after a certain number of 

function evaluations (NEv), the model will be evaluated once, using the validation 

data; Compared with the previous model performance (which is T×NEv function 

evaluations before, where T is a small integer), if the performance of the present 

model on the validation data is improved, then the optimisation will be allowed to 

continue, otherwise, the optimisation procedure will be terminated. 

The following is an example of how this validation mechanism works. In the 

previously mentioned UTS modelling problem (15-input and 1-output), there are a 

total of 2820 available data vectors and 10% of the data are separated and used for 

validation. For this example, NEv = 1000 and T = 5. Thus, in the optimisation 

process, after every 1000 function evaluations, the fuzzy model is examined once, 
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using the validation data. If the performance of the present model is worse than 

that of the former model (5000 function evaluations in the past), the optimisation 

process will be terminated. The model that performs best on the validation data is 

viewed as the optimisation solution. Figure 5-9 shows the model performance 

throughout the whole optimisation process based on the validation data. At the 

time that is identified as a red square in this figure, the RMSE of the validation data 

is larger than that at the time of 5000 function evaluations before, which is shown 

as a green round mark in the figure. Following the principle of the validation 

mechanism, the optimisation algorithm stops at the time of the square mark and 

the solution at the time of the round mark is the final solution for this optimisation. 

Figure 5-9. RMSE of the validation data in the optimisation process 
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5.4.2 Data Selection 

It is well-known that more training data will not necessarily lead to a better 

performance for data-driven models. Normally, one can identify two typical 

scenarios:

1. The training data are not enough: There are only a few data points (vectors) 

available for model construction. In this situation, more training data will 

provide more information to the modelling algorithm and the constructed 

model will be more accurate. 

2. The training data are abundant: These data points are concentrated in a 

small area of the input/output space. In this situation, if all the data are used 

in the training phase, then the extracted model will be very sensitive in the 

areas that include these training data and not sensitive in the areas that 

include only a few of these training data, which means that the extracted 

model will be accurate in some areas but not accurate in other areas. To 

avoid this situation, it is required to select parts of these data that are 

representative and make use of them in the training phase. 

Scenario 2 can also be regarded as a problem of different data densities in different 

areas. The areas with high data densities will be trained well and the areas with 

low data densities will be trained less so. To balance the training in different areas, 

one needs to reduce the training data in the areas with high data densities and some 
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of the most representative data should be held and used later. 

Obviously, another important advantage of the data selection mechanism is that it 

will save effort and time for training, since the data selection will reduce the size 

of the training data set. 

5.4.2.1 Rough Data Selection 

As already stated, the selected training data should be representatives of all the 

training data. They should include all the important information on the training 

data. From this viewpoint, the clustering technique may prove helpful. In data 

clustering, all the data are classified into several clusters with different features. In 

other words, the data in different clusters contain different information. Thus, the 

representative data should be selected from each cluster. To balance the influence 

of different clusters, the number of the selected data from each cluster should be 

approximately equal. 

For every cluster, the data with a minimal or maximal value in any dimension are 

very important. They provide one with the information of the cluster boundaries. 

The generated model using this type of data can avoid the problem associated with 

generalisation. Therefore, these data should be included in the selected training 

data set. 
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In the previous initial fuzzy model extraction approach, the hierarchical clustering 

algorithm has been employed. The clustering result can be applied to select the 

training data directly and the clustering algorithm does not need to be executed 

again.

In summary, this selection method can be described as follows: For every cluster, 

the data including the minimal or maximal value in any one input or output 

dimension are selected as the training data. If the data including the minimal or 

maximal value in one particular dimension is more than one, only one data point 

(vector) is randomly chosen and kept in the training data set. As a result, if the 

number of clusters is Nc and the dimension of the problem is D+1 (D-input and 1-

output), then the number of the selected training data will be less than 

2×Nc×(D+1).

An experiment which consists of modelling the mechanical property UTS of steel 

is described next. The UTS data include 15 inputs and one output, and the initial 

number of fuzzy rules is set to 20. In this experiment, if the data selection method 

were not to be used, the number of training data would be 2820. If the previous 

described data selection method used them, the number of training data is reduced 

to 448. Figure 5-10 shows the prediction results of all the training data and the 

selected training data using the initial elicited fuzzy model. Comparing Figure 5-

10 (b) with Figure 5-10 (a), one can see that: first, the data distribution in Figure 5-

10 (b) is better than that in Figure 5-10 (a); second, the data in Figure 5-10 (b) may 

be good representatives of the data in Figure 5-10 (a). In this case, the RMSE of all 
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the training data is 88.72 MPa and the RMSE of the selected training data is 105.27 

MPa.

(a)

(b)

Figure 5-10. The initial fuzzy model�s predicted UTS versus measured UTS: (a) 
all the training data (2820 data), (b) the selected training data (448 
data)
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5.4.2.2 Missing Representative Data Selection 

The training data selection method in Section 5.4.2.1 is able to find a set of 

training data with some representative features, but it may still miss some 

important data. First, if more than one datum includes the minimal or maximal 

value in one specific input or output dimension, then only one datum is randomly 

selected and retained for future use. The neglected data may however contain some 

important information. Second, the data located inside the clusters, which do not 

have any minimal or maximal value, are also likely to contain some useful 

information for modelling. 

Compared with the data that have already been selected, the missing data 

representative must possess some different features. Thus, the prediction model, 

which is trained based on the data that have already been selected, must be 

inaccurate as far as the missing data are concerned. As a result, the following 

method is proposed which is used to detect the missing representative data to be 

added to the training data set: 

1. Train the initial fuzzy model using the data selected by the method of 

Section 5.4.2.1. This model does not need to be well trained. 

2. Calculate the output prediction of all the available training data using the 

trained model. Find a set of data with the biggest differences between the 

predicted output value and the true output value. 
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3. The data found in Step 2 are added to the training data set and the new 

training data set is used to improve the existing fuzzy model. 

Following the UTS modelling experiment in Section 5.4.2.1, the initial fuzzy 

model is trained using the roughly selected training data. The nPSO optimisation 

algorithm is used for model training with 20,000 function evaluations. Figure 5-11 

shows the prediction results of all the training data and the selected training data 

using the improved fuzzy model, respectively. From this figure, it can be seen that 

even though this trained model performs very well for the selected training data, it 

cannot predict some training data correctly out of all the possible training data, 

which means that the selected training data set misses some important and 

representative data including useful information for model construction. In this 

case, the RMSE of all the training data is 47.70 and the RMSE of the roughly 

selected training data is 47.65. 

In the light of the above, the data selection method described in this section can be 

applied to detect the missing representative data. As shown in Figure 5-12, the 

circled data are some examples of the ones with the biggest differences between 

the predicted output and the truly measured output. They are viewed as the missing 

representative data and should be added to the selected training data set. 

It should be noted that the above missing data selection procedure may need to be 

repeated several times to ensure that all the representative data are included in the 

final selected training data set. 
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(a)

(b)

Figure 5-11. The trained fuzzy model�s predicted UTS versus measured UTS: (a) 
all the training data (2820 data), (b) the selected training data (448 
data)
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Figure 5-12. Examples of the missing representative data 

5.4.3 The Joint Mechanism of Accuracy Optimisation and Data Selection 

By combining the initially selected training data and the subsequently detected 

training data, one can obtain the final training data, which are the representatives 

of all the training data which can then be used in the next model improvement 

stage. Figure 5-13 shows the flow chart of the joint mechanism for accuracy 

optimisation and data selection. Normally, the termination criterion for this 

mechanism is designed so that the loop iteration achieves a predefined number. 
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Figure 5-13. Flow chart of the mechanism for accuracy optimisation and data 
selection 

Following the previous UTS modelling experiment described in Section 5.4.2.2, 

the fuzzy model, which has been initially trained, is then trained using the newly 

formed training data. nPSO is employed for this training procedure and 70,000 

function evaluations are used. Figure 5-14 shows the prediction results of all the 

training data and the final selected training data using the well-trained fuzzy 

model. From this figure, it can be seen that the trained model performs very well 

for all the training data while only parts of these training data are truly involved in 

the training process. Following this experiment, the achieved RMSE for all the 

training data is 38.21 and the RMSE for the selected training data is 37.65. 
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(a)

(b)

Figure 5-14. The well-trained fuzzy model�s predicted UTS versus measured 
UTS: (a) all the training data (2820 data), (b) the selected training 
data (480 data) 
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5.5 Simultaneous Multi-Objective Optimisation of Accuracy and 

Interpretability 

After the accuracy optimisation and data selection, an accurate fuzzy model and a 

reduced number of training data are obtained. The focus is shifted next to 

improving the interpretability (transparency) of the fuzzy system while 

maintaining a good accuracy. 

5.5.1 Interpretability Improvement 

The improvement of the interpretability of fuzzy systems is tantamount to reducing 

the number of fuzzy rules, reducing the length of fuzzy rules, reducing the number 

of fuzzy sets, and adjusting these sets to be evenly distributed along the universes 

of discourse. These tasks can be achieved using the following four-step operation: 

5.5.1.1 Removing Redundant Fuzzy Rules 

This operation can reduce the number of fuzzy rules. At the same time, some fuzzy 

sets, which are only involved in these redundant rules, are also removed. For 

instance, in the case of Figure 5-15, a redundant rule exists which is: IF input is 

A1
3, THEN output is A2

1.
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Figure 5-15. An example of a redundant rule 

To evaluate whether a fuzzy rule is redundant or not, two evaluation measures are 

used, namely confidence and support [Ishibuchi et al. 2001]. In the area of data 

mining, these two measures have been used for evaluating association rules in the 

pattern classification problem [Ishibuchi & Yamamoto 2004]. Let C be the set of N

training patterns pi, where pi = [xi, yi]T = [x1
i, x2

i, �, xD
i, yi]T and i = 1, 2, �, N.

The confidence of rule A B is defined as follows: 

)(
)()(

)(
A

A
A

C
BCC

Bconf ,                                                            (5.11) 

where |C(A)| is the number of training patterns that are compatible with the 

antecedent A, and |C(A) C(B)| is the number of training patterns that are 

compatible with both the antecedent A and the consequent B. The confidence
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indicates that conf×100% of the training patterns that are compatible with the 

antecedent A are also compatible with the consequent B. In [Ishibuchi et al. 2001], 

the confidence measure is extended to the fuzzy case and can be rewritten as 

follows: 
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where A(xi) is the compatibility grade of the input vector xi with the antecedent 

part A = [A1, A2, �, AD]T of the fuzzy rule R, and B(yi) is the compatibility grade 

of the output value yi with the consequent part B of R. A(xi) is usually defined by 

the minimum operator or the product operator. Such as: 
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where Aj(xj
i) is the membership function of the antecedent fuzzy set Aj.

On the other hand, the support of A B is defined as follows: 

C
BCC

Bsupp
)()(
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A

A ,                                                            (5.15) 

where |D| = N. It indicates that supp×100% of all training patterns are compatible 

with the association rule A B. Similarly to the confidence, the support of a 

fuzzy rule can be rewritten as follows: 
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.                      (5.16) 
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In this work, the product of support and confidence is used as the criterion for the 

fuzzy rule selection. A threshold Th1 for this rule selection is also defined. If the 

product criterion of one rule is smaller than the threshold Th1, then this fuzzy rule 

is deemed redundant, and as a consequence the fuzzy rule and the fuzzy sets that 

are only included by this redundant rule are removed. Generally, Th1 is defined in 

the range [0, 0.01]. 

5.5.1.2 Merging Similar Fuzzy Rules 

This operation can reduce the number of fuzzy rules. At the same time, the fuzzy 

sets involved within similar rules are also merged. For example, the following two 

fuzzy rules may be thought of as similar: 

R1: IF x1 is �small� and x2 is �big� and x3 is �small�, THEN y is �big�; 

R2: IF x1 is �small� and x2 is �big� and x3 is �medium�, THEN y is �big�.

These can be merged into one rule as follows: 

Rnew : IF x1 is �small� and x2 is �big� and x3 is �slightly small�, THEN y is 

�big�.

To decide whether two fuzzy rules are similar enough for combination or not, one 

only needs to evaluate the similarity of the antecedent parts of the rules. Two fuzzy 

rules with very similar antecedents but different consequents usually indicate that 

these two rules conflict with each other. Therefore, we should either merge these 

rules into one new rule or delete one of them. 
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To calculate the similarity degree of the antecedents of two fuzzy rules, the 

similarity of every fuzzy set pair should be checked. For the kth fuzzy rule Rk, the 

corresponding preconditions are A1
k, A2

k, �, AD
k. Similarly, the corresponding 

antecedents of the lth rule Rl are A1
l, A2

l, �, AD
l. Thus, the similarity measure can 

be characterised as follows: 

D

m

l
m

k
mlkR AASRRS

1

),(),( ,                                                                 (5.17) 

where S(Am
k, Am

l) is the similarity of two fuzzy sets Am
k and Am

l and it is defined in 

Section 5.5.1.4. 

Once SR(Rk, Rl) reaches a threshold value Th2, then these two fuzzy rules as well as 

the fuzzy set pairs of these two rules are considered to be similar. The two fuzzy 

rules are then merged into a new rule Rnew. The new antecedents and consequent of 

Rnew are obtained by merging the fuzzy sets (see Section 5.5.1.4). Normally, 

threshold Th2 is defined in the range [0.01, 1]. 

5.5.1.3 Removing Redundant Fuzzy Sets 

This operation can reduce the number of fuzzy sets and remove some fuzzy sets 

that cover others. In addition, this operation can shorten the length of fuzzy rules 

because some of their premises, which include redundant fuzzy sets, should also 

be removed from the fuzzy rules simultaneously. Figure 5-16 shows an example of 

the membership function relating to a redundant fuzzy set. 
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Figure 5-16. An example of the membership function relates to a redundant 
fuzzy set 

In this method, the similarity for each fuzzy set An to the universal set U ( U(x)=1) 

is calculated. If the similarity value is greater than a threshold value Th3, then this 

fuzzy set is counted as a redundant fuzzy set. As a result, the associated fuzzy set 

should be removed. If Gaussian membership functions are involved, then the 

similarity of one fuzzy set to the universal set can be represented using the 

parameter n. Generally, Th3 is defined in the range [0.5, 2]. 

159



Chapter 5: FM-HCMO 

5.5.1.4 Merging Similar Fuzzy Sets 

This operation can keep the number of fuzzy sets low and also tune the fuzzy sets 

so as not to overlap. Figure 5-17 shows an example of similar fuzzy sets. It can be 

seen that the two blue membership functions are very similar in location and 

extension range. To simplify the fuzzy model and improve the interpretability, 

these functions are merged into one membership function, which can represent the 

characteristics of both of them. The red dashed membership function shows a 

possible solution following such a merger. 

Figure 5-17. An example of membership functions of similar fuzzy sets 

From an evaluation viewpoint, a similarity measure should be defined. There are 
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several fuzzy similarity measures [Cross 1993; Setnes 1995; Setnes et al. 1998], 

one of which is based on the following distance measure: 

),(1
1),(

21
21 AAd

AAS ,                                                                      (5.18) 

where d(A1, A2) is the distance between two fuzzy sets A1 and A2.

If Gaussian membership functions are used, then the following simple expression 

can be used to approximate the distance between the two fuzzy sets: 

2
21

2
2121 )()(),( ccAAd .                                                   (5.19) 

A threshold Th4 for merging similar fuzzy sets is then defined, where Th4  (0, 1]. 

If S(A1, A2) > Th4, i.e., the fuzzy sets A1 and A2 are highly overlapping, then these 

two fuzzy sets should be merged into one new fuzzy set Anew, where cnew = (c1 + c2)

/ 2 and new = ( 1 + 2) / 2. Because the fuzzy sets in the antecedent part and the 

fuzzy sets in the consequent part have a different influence on the performance of 

the fuzzy model, different thresholds Th4 and Th5 should be predefined for the 

antecedent part and the consequent part respectively. Normally, Th4 and Th5 are set 

to values in the range [0.8, 1]. 

5.5.2 Experimental Studies 

5.5.2.1 An Example of Using the Interpretability Improvement Approach 

To validate the effectiveness of the proposed strategy for improving 
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interpretability, it was applied to the problem of modelling the mechanical 

property UTS of steel (15-input and 1-output; 2820 data). The initial number of 

fuzzy rules is set to 20 and Th1 - Th5 are set to 0.001, 0.1, 0.6, 0.9 and 0.95, 

respectively. 

Table 5-7 shows the main parameters of the fuzzy models, which were obtained 

following the different operation steps during the interpretability improvement 

process. In this table, rule length refers to the total number of antecedent 

conditions; it can be seen that the interpretability improvement approach 

succeeded in reducing the number of fuzzy rules, the number of fuzzy sets and in 

generally simplifying the structure of the fuzzy rules. 

Table 5-7. The main parameters of the UTS fuzzy models following the different 
stages of the interpretability improvement 

Fuzzy model 
Number 
of fuzzy 

rules

Number of fuzzy sets in 
every input and output 

dimension 

Rule length of 
every fuzzy rule 

RMSE of
training

data

Before the 
interpretability 
improvement 

15

Inputs: [15; 15; 15; 15; 15; 
15; 15; 15; 15; 15; 15; 15; 

15; 15; 15] 
Output: 15 

[15; 15; 15; 15; 
15; 15; 15; 15; 
15; 15; 15; 15; 

15; 15; 15] 

31.04

After Step 
5.5.1.2 12

Inputs: [12; 12; 12; 12; 12; 
12; 12; 12; 12; 12; 12; 12; 

12; 12; 12] 
Output: 12 

[15; 15; 15; 15; 
15; 15; 15; 15; 
15; 15; 15; 15] 

35.87

After Step 
5.5.1.3 12

Inputs: [10; 10; 10; 11; 11; 
9; 9; 12; 10; 10; 9; 8; 10; 7; 

10]
Output: 12 

[12; 9; 13; 14; 
11; 15; 13; 9; 

13; 12; 12; 13] 
47.01

After Step 
5.5.1.4 12

Inputs: [4; 6; 6; 7; 6; 6; 3; 
8; 7; 7; 4; 4; 7; 7; 5] 

Output: 8 

[12; 9; 13; 14; 
11; 15; 12; 9; 

13; 12; 12; 13] 
66.75
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Figure 5-18 shows the membership functions of Input 14 and Input 15 before the 

interpretability improvement, and Figure 5-19 shows the same membership 

functions after the interpretability improvement. Comparing these figures, it can be 

seen that the distributions of membership functions have improved significantly. 

(a)                                                             (b) 

Figure 5-18. The membership functions of Inputs 14 and 15 before the 
interpretability improvement 

(a)                                                              (b) 

Figure 5-19. The membership functions of Inputs 14 and 15 after the 
interpretability improvement
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5.5.2.2 Effects of the Thresholds of the Interpretability Improvement 

Approach

In the proposed interpretability improvement approach, there are five thresholds 

that need to be set in the 4-step operation. To inspect their effects on the system 

performance, a set of experiments have been carried out. These experiments are 

based on the UTS data (2820 data) with the initial number of fuzzy rules being set 

to 12. 

1. The first step of the interpretability improvement is to remove the 

redundant fuzzy rules. Th1 is used to define whether one rule is redundant 

or not. Th1 was set to be variable in the range 0 Th1  0.05 and other 

thresholds and parameters were fixed at Th2 = 1; Th3 = 1; Th4 = 1; Th5 = 1. 

Figure 5-20 shows the system performance with different Th1 values. 

From Figure 5-20, it can be seen that, with the increase of Th1, the RMSE

of the obtained system increases while the number of rules, the number of 

fuzzy sets and the total rule length decrease. This means that, with the 

increase of Th1, the resulting model accuracy decreases and its 

interpretability increases. 
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(a)                                                             (b) 

(c)                                                            (d) 

Figure 5-20. The performance of fuzzy models following the interpretability 
improvement with different Th1: (a) RMSE versus Th1; (b) the 
number of rules versus Th1; (c) the number of fuzzy sets versus Th1;
(d) the total length of rules versus Th1

2. The second step of the interpretability improvement is to merge similar 

fuzzy rules. Th2 is used to define whether two rules are similar enough to 

be merged. In this experiment, Th2 was set to be variable in the range 0.01 

Th2  1 and other thresholds and parameters were fixed at Th1 = 0; Th3 = 

1; Th4 = 1; Th5 = 1. Figure 5-21 shows the model performance with various 

Th2 values. 

From Figure 5-21, it can be seen that, with the increase of Th2, the RMSE
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values of the obtained fuzzy model tend to decrease while the number of 

rules, the number of fuzzy sets and the total rule length tend to increase, 

which means that the obtained model accuracy tends to increase and its 

interpretability tends to decrease. 

(a)                                                             (b) 

(c)                                                             (d) 

Figure 5-21. The performance of fuzzy models following the interpretability 
improvement with different Th2: (a) RMSE versus Th2; (b) the 
number of rules versus Th2; (c) the number of fuzzy sets versus Th2;
(d) the total length of rules versus Th2

3. The third step of the interpretability improvement is to remove redundant 

fuzzy sets. Th3 is used to define whether one fuzzy set is redundant. In this 

experiment, Th3 was set to be variable in the range 0.5 Th3  1 and other 
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thresholds and parameters were fixed at Th1 = 0; Th2 = 1; Th4 = 1; Th5 = 1. 

Figure 5-22 shows the system performance with different Th3.

From this figure, it can be seen that, with the increase of Th3, the RMSE of 

the result model tends to decrease; the number of rules does not change; the 

number of fuzzy sets and the total rule length increase. This means that the 

obtained model accuracy tends to increase while its interpretability 

decreases.

(a)                                                              (b) 

(c)                                                              (d) 

Figure 5-22. The performance of fuzzy models following the interpretability 
improvement with different Th3: (a) RMSE versus Th3; (b) the 
number of rules versus Th3; (c) the number of fuzzy sets versus Th3;
(d) the total length of rules versus Th3
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4. The last step of interpretability improvement is to merge similar fuzzy sets. 

Th4 and Th5 are used to define whether two fuzzy sets are similar enough to 

be merged. Because Th4 and Th5 have the same effect, only Th4 was tested 

in this experiment. Also, it was set to be variable in the range 0.8 Th4  1 

and other thresholds and parameters were fixed at Th1 = 0; Th2 = 1; Th3 = 

1; Th5 = 1. Figure 5-23 shows the model performance with different Th4.

From this figure, it can be seen that, with the increase of Th4, the RMSE of 

the obtained model has the tendency of decreasing; the number of rules and 

the total rule length do not change; the number of fuzzy sets increases, 

which means that the obtained model accuracy tends to increase while its 

interpretability decreases. 

From these experiments, it can be seen that the thresholds Th1 ~ Th5 can greatly 

affect the system performance in terms of accuracy as well as interpretability. 
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(a)                                                              (b) 

(c)                                                              (d) 

Figure 5-23. The performance of fuzzy models following the interpretability 
improvement with different Th4: (a) RMSE versus Th4; (b) the 
number of rules versus Th4; (c) the number of fuzzy sets versus Th4;
(d) the total length of rules versus Th4.

5.5.3 The Multi-Objective Optimisation Mechanism 

Based on the proposed four-step interpretability improvement approach, a multi-

objective optimisation mechanism, which is intended to optimise both the accuracy 

and the interpretability of fuzzy systems, is developed. Figure 5-24 outlines the 

steps behind the proposed multi-objective optimisation mechanism. It works 

according to the following steps: 
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1. Initial threshold values generation: Randomly generate the thresholds� 

values within the predefined bounds. 

2. Interpretability improvement: Based on the reduced training data, 

improve the previous fuzzy model in interpretability using the proposed 4-

step improvement approach. In this step, the input rule-base is fixed and 

remains as such while the parameters of the membership functions and the 

thresholds vary after each loop. Following this step, a new fuzzy model is 

elicited. 

3. Performance evaluation: The new fuzzy model is evaluated using the 

designed fitness functions (objective functions). 

4. Pareto-optimal fuzzy models preservation: Compare the fitness of every 

generated model, preserve the adequate Pareto-optimal models via the 

archive mechanism in nMPSO. 

5. New parameters and thresholds generation: This task is accomplished 

by the nMPSO algorithm based on some particular principles, which are 

related to the fitness values and the location of individual solutions. 

6. Termination estimation: If the termination criteria are achieved, stop the 

mechanism and return the final Pareto-optimal fuzzy models; otherwise, 

replace the old membership function�s parameters and threshold values 
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with new ones and go back to Step 2. 

Figure 5-24. The framework of the proposed multi-objective optimisation 
mechanism 

Normally, the termination criteria are designed so that the number of function 

evaluations achieves a predefined value. 
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5.5.4 The Designed Objective Functions for Fuzzy Modelling 

The multi-objective optimisation includes two aspects: One is the accuracy of the 

fuzzy model, which can be evaluated using the Root Mean Square Error (RMSE)

index. This index has already been described in Section 5.3.3.1. Another aspect is 

the interpretability of the fuzzy model, which is affected by the number of fuzzy 

rules (Nrule), the number of fuzzy sets (Nset) and the total length of fuzzy rules 

(Lrule).

To normalise these two objectives and make them similar and comparable in scale, 

they are formulated as follows: 

Objective 1: 
IRMSE

RMSE
;

Objective 2: 
III Lrule

Lrule
Nset
Nset

Nrule
Nrule

;                                              (5.20) 

where RMSEI  is the root mean square error of the fuzzy model that is not 

optimised using the multi-objective optimisation mechanism; NruleI, NsetI and 

LruleI represent the number of fuzzy rules, the number of fuzzy sets and the total 

rule length of this fuzzy model, respectively. 

5.6 Confidence Band Analysis 

Once the final fuzzy models have been elicited, confidence bands relating to 

predictions are computed. In other words, when given a prediction by a data-
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driven fuzzy model, one wishes to know how confident can one be in such a 

prediction.

Normally, the standard deviation of the prediction errors of all the training data is 

computed in order to represent the confidence band. But this can only inform on a 

generalised view about the model. Specifically, it cannot provide particular 

guidance for one specific prediction. 

In this work, a confidence band named %-range confidence band is designed. It is 

calculated as follows: 

1. When given a prediction value yp, define a prediction scope S where the 

lower bound is yp-0.005× ×Lp and the upper bound is yp+0.005× ×Lp, with 

Lp being the total range of the prediction values and it equals to the 

maximal prediction value minus the minimal prediction value. 

2. From all the training data, find the ones pi with their prediction output 

values yi
p including in the scope S, which is Sy p

i , where i = 1, 2, �, Ns

and Ns is the number of training data pi.

3. The %-range confidence band CB is defined using the standard deviation 

of the prediction errors of the training data pi:

s

N

j j

N

errorerror
ErrorStdCB

s
2

1
)(

)( ,                          (5.21) 
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where Error = {error1, error2, �, errorNs}; errorj = yj
p - yj

m; yj
m are the 

measured output values of pi; i = 1, 2, �, Ns.

For an obtained model, it is not realistic to calculate the %-range confidence band 

for every possible prediction. Generally, some averagely distributed prediction 

values are selected to provide some confidence bands which will be viewed as the 

representatives of all the possible prediction values. 

Figure 5-25 shows an example of the %-range confidence band, which is based 

on a fuzzy model of UTS prediction (12 rules). In this case,  is set to 5 and 200 

evenly distributed prediction values are chosen and calculated for the confidence 

bands. Figure 5-25(a) shows the prediction performance of the fuzzy model for all 

the training data (2820 data). Figure 5-25(b) gives the confidence bands of this 

model. From this figure, one can infer more details of how confident one can be 

about a prediction. For instance, when a prediction is 1500, which is shown with 

the red dashed line in the figures, its confidence band is around 108; while the 

prediction 800 has a confidence band of only 32, which is shown with the green 

dashed-dotted line. 
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(a)                                                                (b) 

Figure 5-25. Example of the %-range confidence band: (a) the prediction 
performance of the UTS model; (b) the %-range confidence band 
of the UTS model. 

5.7 Summary 

In this chapter, a framework for data-driven fuzzy modelling is proposed in order 

to construct linguistic fuzzy models considering both accuracy and interpretability 

of fuzzy systems. In this methodology, a new agglomerative complete-link 

clustering algorithm is first developed and applied to construct the initial fuzzy 

model. A new data selection technique is then proposed to select representative 

training data used to improve the modelling efficiency. A multi-objective 

optimisation mechanism is developed for the performance improvement of such 

models, which takes into account both the accuracy and the interpretability 

attributes. Finally, a method for computing the confidence band relating to the 

model prediction analysis is proposed. All the above proposed techniques were 

validated via a series of experiments using real data, from the steel industry. The 
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next will focus specifically on how such techniques can be applied to modelling 

problems. 
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Application of FM-HCMO to Fuzzy 

Modelling Problems 

6.1 Introduction 

In order to validate the effectiveness of the proposed modelling strategy named 

FM-HCMO (see Chapter 5), the associated algorithm was applied to the modelling 

of two benchmark problems, one is a problem of static nonlinear system 

approximation and the other is a dynamical system identification problem. 

Furthermore, FM-HCMO was applied to the modelling of the mechanical 

properties of alloy steels using real industrial data. 

6.2 The Nonlinear Function Approximation 

In this experiment, the proposed fuzzy modelling approach was used to 
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approximate the following two-input-single-output nonlinear static system, which 

is also introduced in [Sugeno & Yasukawa 1993]: 

25.1
2

2
1 )1( xxy , 5,1 21 xx .                                                       (6.1) 

In order to establish a quantitative comparison with the results obtained in various 

papers, the training data set was selected as being the same as the one described in 

[Sugeno & Yasukawa 1993], which consists of 50 data points. Furthermore, 

another 50 randomly generated data points were used for model testing. 

In this case, the initial fuzzy model was obtained using 8 clusters, resulting in a 

model with 8 rules and 24 fuzzy sets; the maximum number of function evaluation 

for nPSO and nMPSO were set to 20,000 and 20,000 respectively. Two 

optimisation objectives used by nMPSO have already been introduced in Section 

5.5.4, which is as follows: 

Objective 1: 
IRMSE

RMSE ;

Objective 2: 
III Lrule

Lrule
Nset
Nset

Nrule
Nrule ;                                                 (6.2) 

where RMSEI  is the root mean square error of the fuzzy model that is not 

optimised using the multi-objective optimisation mechanism; NruleI, NsetI and 

LruleI represent the number of fuzzy rules, the number of fuzzy sets and the total 

rule length of this fuzzy model, respectively. 

After the final multi-objective optimisation, a set of Pareto-optimal fuzzy models 
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was obtained. Figure 6-1 shows their performances with respect to various indices, 

including the root mean square error, the number of fuzzy rules, the number of 

fuzzy sets and the length of the fuzzy rules. 
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Figure 6-1. The performance of the optimised Pareto-optimal fuzzy models for 
the nonlinear function approximation problem (6.1) 

Table 6-1 describes the experimental results compared with those published via 

other research studies. Three models out of all the Pareto-optimal models, which 

include 8, 6 and 4 rules respectively, are chosen as the representatives and are 

listed in this table. It can be seen that FM-HCMO performs better than the other 

methods, whose strategy is based on linguistic fuzzy systems [Sugeno & Yasukawa 

1993]; for the method based on singleton fuzzy systems [Rojas et al. 2000], it 
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needed more fuzzy rules to reach the same accuracy level as that of FM-HCMO. 

For the methods based on TSK fuzzy systems [Kim et al. 1997; Chen & Linkens 

2004, Wang et al. 2005], sometimes, they may perform slightly better than FM-

HCMO in accuracy. But compared with linguistic fuzzy models, TSK fuzzy 

models are not transparent and interpretable enough, since linear equations, instead 

of the linguistic terms, operate as the consequent part of the fuzzy rules. 

Figure 6-2 shows the prediction performance of the initial as well as the three 

selected fuzzy models and Figure 6-3 illustrates the distribution of their 

membership functions relating to two inputs (x1 and x2). It can be seen that, for 

these optimised models, more rules and more parameters will bring more accuracy 

while the models with fewer rules and parameters are simpler in structure and 

easier to understand. 
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Table 6-1. The performance comparison of various models for the nonlinear 
function approximation problem 

Fuzzy model Number of 
fuzzy rules 

Number of fuzzy 
sets for input and 

output parts 

Total 
rule

length

RMSE of 
training

data

RMSE of 
testing

data

6 (initial) 
Input: 12 
Output: 6 

12 0.564 N/A
[Sugeno & 
Yasukawa 

1993],
Linguistic

models
6 (optimised) 

Input: 12 
Output: 6 

12 0.281 N/A

[Kim et al.
1997], TSK 

model
3 Input: 6 6 0.140 N/A

9 (case 1) Input: 6 18 0.513 N/A

16 (case 2) Input: 8 32 0.176 N/A

[Rojas et al.
2000],

Singleton
models 25 (case 3) Input: 10 50 0.066 N/A

4 (initial) Input: 8 N/A N/A 0.066

4 (optimised) Input: 5 N/A N/A 0.088

3 (optimised) Input: 5 N/A N/A 0.138

[Chen and 
Linkens 2004], 

TSK models 
2 (optimised) Input: 4 N/A N/A 0.275

6 (initial) Input: 12 12 0.176 N/A

7 (optimised) Input: 6 14 0.030 N/A

4 (optimised) Input: 3 6 0.052 N/A

[Wang et al.
2005], TSK 

models
3 (optimised) Input: 2 4 0.072 N/A

8 (initial) 
Input: 16 
Output: 8 

16 0.527 0.527

8 (optimised) 
Input: 14 
Output: 7 

13 0.026 0.082

6 (optimised) 
Input: 11 
Output: 6 

12 0.059 0.114 
FM-HCMO

4 (optimised) 
Input: 7 

Output: 4 
8 0.084 0.162
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(a)

(b)

(c)

(d)
Figure 6-2. The fuzzy models� predicted outputs versus the measured outputs 

with the nonlinear function approximation problem: (a) the initial 
model, (b) an optimised model with 8 rules, (c) an optimised model 
with 6 rules, and (d) an optimised model with 4 rules; the green and 
red lines represent the +10% and -10% error bands respectively. 
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Figure 6-3. The fuzzy models� membership functions with the nonlinear 

function approximation problem: (a) the initial model, (b) an 
optimised model with 8 rules, (c) an optimised model with 6 rules, 
and (d) an optimised model with 4 rules 
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To provide more details about these Pareto-optimal models, Figure 6-4 shows the 

rule-base relating to the optimised system, which is the one associated with 8 rules, 

its other information being included in Table 6-1, Figures 6-2(b) and 6-3(b). For 

this fuzzy model, the linguistic hedges approach [Zadeh 1972; Fukuyama & 

Sugeno 1989; Chen & Linkens 2001; Chen & Linkens 2004] can be employed to 

derive the corresponding linguistic rules as follows: 

R1: IF x2 is small, THEN y is quite large.

R2: IF x1 is small AND x2 is large, THEN y is medium.

R3: IF x1 is more or less quite large AND x2 is slightly small, THEN y is 

slightly small.

R4: IF x1 is small, THEN y is large.

R5: IF x1 is medium AND x2 is quite large, THEN y is small.

R6: IF x1 is slightly small AND x2 is medium, THEN y is slightly small.

R7: IF x2 is large, THEN y is small.

R8: IF x1 is large AND x2 is medium, THEN y is small.

Figure 6-5 shows the three-dimensional input/output surfaces of the actual system. 

The 8-rule fuzzy system and its 5%-range confidence band (see Section 5.6) are 

displayed in Figure 6-6. 
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Figure 6-4. The optimised 8-rule fuzzy model for the nonlinear function 
approximation problem 
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(a)                                                             (b) 

Figure 6-5. Response surfaces for the nonlinear function approximation 
problem: (a) the actual system and (b) the optimised 8-rule fuzzy 
system 

(a)                                                            (b) 

Figure 6-6. (a) The prediction performance and (b) the 5%-range confidence 
band of the optimised 8-rule fuzzy model for the nonlinear function 
approximation problem 

6.3 The Identification of a Dynamic System 

In this problem, the modelling target is a nonlinear second-order plant, which has 
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been studied in [Yen & Wang 1998; Yen & Wang 1999; Wang & Yen 1999; Setnes 

& Roubos 2000], 

)()2(),1()( kukykygky ,                                                          (6.3) 

where

)2()1(1
5.0)1()2()1()2(),1( 22 kyky

kykykykykyg .                           (6.4) 

where y() is the output of the system; g() is a nonlinear component; u() is the input 

signal; k is the index of the input signals. 

The output of this system depends on both its past values and the current input. 

The modelling goal is to approximate the nonlinear component g(y(k � 1), y(k � 2)), 

which is usually called the �unforced system� in the control literature. Similarly to 

the settings reported in [Setnes & Roubos 2000], 400 simulated data points were 

generated from the plant model (6.3). With the starting equilibrium state (0, 0), 200 

samples of training data were obtained by using a random input signal u(k) that is 

uniformly distributed in the interval [-1.5, 1.5], while the rest 200 samples of 

testing data were generated using a sinusoidal input signal u(k) = sin(2 k/25). 

These 400 simulated data points are shown in Figure 6-7. 

187



Chapter 6: Application of FM-HCMO in Modelling Problems 

0 50 100 150 200 250 300 350 400
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

k

0 50 100 150 200 250 300 350 400
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

k

0 50 100 150 200 250 300 350 400
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

k

Figure 6-7. The input u(k), unforced system g(k), and output y(k) of the plant (6.3) 

In this case, the initial fuzzy model was also obtained with 8 clusters; the maximal 

function evaluation numbers for nPSO and nMPSO were both set to be 20,000. 

After the optimisation scheme, 13 non-dominated solutions (fuzzy models) were 
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obtained. Figure 6-8 demonstrates the trade-offs among the multiple objectives and 

criteria within these non-dominated fuzzy system solutions. The upper left figure 

gives the trade-off relationship between the designed accuracy objective and 

interpretability objective (see Section 5.5.4); the upper right figure illustrates the 

trade-off between the accuracy criterion (RMSE) and the fuzzy rules number; the 

lower left figure is for the trade-off between the accuracy and the number of fuzzy 

sets and the lower right one shows the relationship between the accuracy and the 

total length of fuzzy rules. 
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Figure 6-8. The performance of the optimised Pareto-optimal models for the 
dynamical system identification problem 

Table 6-2 compares the experimental results with some other studies previously 
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reported in the literature [Yen & Wang 1998; Wang & Yen 1999; Yen & Wang 

1999; Setnes & Roubos 2000]. Three optimised models out of all the Pareto-

optimal models, which include 6, 4 and 3 rules respectively, together with the 

initial generated model are listed in this table. It can be seen that FM-HCMO is 

able to produce more compact and simpler models compared to the other methods, 

since the modelling strategies reported in [Yen & Wang 1998; Wang & Yen 1999; 

Yen & Wang 1999] needed more fuzzy rules and fuzzy sets to achieve the same 

accuracy level as that of FM-HCMO. In other words, this proposed approach 

strikes a good balance between numerical accuracy and model simplicity, 

compared to the above mentioned fuzzy modelling methods. 

The prediction performance of the initial and the three selected fuzzy models is 

shown in Figure 6-9. The distribution of their membership functions relating to the 

inputs y(k � 1) and y(k � 2) is displayed in Figure 6-10. It can be observed that 

these Pareto-optimal models exhibit fuzzy sets pattern behaviour, which means 

that they provide a wider choice of different solutions to users. 
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Table 6-2. The performance comparison of various models for the dynamical 
system identification problem 

Fuzzy model Number of 
fuzzy rules 

Number of fuzzy 
sets for input and 

output part 

Total 
rule

length

RMSE of 
training

data

RMSE of 
testing
data

36 (initial) Input: 12 72 0.005 0.072[Yen & 
Wang 1998], 

Singleton
models

23
(optimised) Input: 12 46 0.006 0.038

25 (initial) Input: 25 50 0.015 0.020[Yen & 
Wang 1999], 

Singleton
models

20
(optimised) Input: 20 40 0.026 0.015

40 (initial) Input: 40 80 0.018 0.026[Wang & 
Yen 1999], 
Singleton
models

28
(optimised) Input: 28 56 0.018 0.024

7 (initial) Input: 14 14 0.126 0.035[Setnes & 
Roubos
2000],

Singleton
models

7 (optimised) Input: 14 14 0.055 0.022

8 (initial) 
Input: 16 
Output: 8 

16 0.171 0.292

6 (optimised) 
Input: 8 

Output: 6 
12 0.017 0.028

4 (optimised) 
Input: 7 

Output: 4 
8 0.063 0.084

FM-HCMO

3 (optimised) 
Input: 3 

Output: 3 
4 0.096 0.114 
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(a)

(b)

(c)

(d)
Figure 6-9. The fuzzy models� predicted outputs versus measured outputs with 

the dynamical system identification problem: (a) the initial model, 
(b) an optimised model with 6 rules, (c) an optimised model with 4 
rules, and (d) an optimised model with 3 rules; the green and red 
lines represent the +10% and -10% error bands respectively. 
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Figure 6-10. The fuzzy models� membership functions with the dynamical 

system identification problem: (a) the initial model, (b) an optimised 
model with 6 rules, (c) an optimised model with 4 rules, and (d) an 
optimised model with 3 rules 
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To provide more details about these non-dominated models, the fuzzy rule-base of 

an optimised model, which includes 8 rules, is shown in Figure 6-11. Other details 

about this model can also be found in Table 6-2, Figures 6-9(b) and 6-10(b). For 

this fuzzy model, the following linguistic rules can be derived by using the 

linguistic hedges approach [Zadeh 1972; Fukuyama & Sugeno 1989; Chen & 

Linkens 2001; Chen & Linkens 2004]: 

R1: IF y(k � 1) is small AND y(k � 2) is quite large, THEN g(k) is large.

R2: IF y(k � 1) is large AND y(k � 2) is quite large, THEN g(k) is quite 

large.

R3: IF y(k � 1) is small AND y(k � 2) is slightly small, THEN g(k) is small.

R4: IF y(k � 1) is medium AND y(k � 2) is more or less small, THEN g(k) is 

medium.

R5: IF y(k � 1) is large AND y(k � 2) is slightly small, THEN g(k) is slightly 

small.

R6: IF y(k � 1) is medium AND y(k � 2) is quite large, THEN g(k) is 

medium.

Figure 6-12 shows the three-dimensional response surfaces of the actual system 

and the optimised 6-rule fuzzy system. It can be observed that these two surfaces 

are perfectly matched. The 6-rule model�s training and testing errors and its 5%-

range confidence band are displayed in Figures 6-13 and 6-14, respectively. 
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Figure 6-11. The optimised 6-rule fuzzy model for the dynamical system 
identification problem 

(a)                                                             (b) 

Figure 6-12. Response surfaces for the dynamical system identification problem: 
(a) the actual system and (b) the optimised 6-rule fuzzy model 
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Figure 6-13. Training and testing errors of the optimised 6-rule fuzzy model for 
the dynamical system identification problem 
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Figure 6-14. (a) The prediction performance and (b) the 5%-range confidence 
band of the optimised 6-rule fuzzy model for the dynamical system 
identification problem 

6.4 Mechanical Property Prediction of Alloy Steels 

In material engineering, it is important to establish appropriate and reliable 

property prediction models for materials design and development. In the past, 

several mechanical property models were developed which were mainly based on 
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linear regression methods [Pickering 1978] or artificial neural networks [Hodgson 

1996; Chen et al. 1998; Bakshi & Chatterjee 1998]. The linear models are only 

designed for specific classes of steels and specific processing routes, and not 

sophisticated enough to account for more complex interactions, while neural 

networks are black-box techniques and the knowledge behind this kind of models 

cannot be understood fully. Thus, developing a fast, efficient and transparent data-

driven modelling framework for material property prediction is still needed. In this 

situation, fuzzy modelling, such as the proposed FM-HCMO, provides an ideal 

approach because of its interpretable structure and its excellent ability of learning 

from data. 

In general, the problem of modelling the properties of metal materials can be 

broadly stated as follows: given a certain material which undergoes a specified set 

of manufacturing processes, what are the final mechanical properties of this 

material [Chen & Linkens 2001]? Typical final mechanical properties that one may 

be interested in are Ultimate Tensile Strength (UTS), Reduction of Area (ROA), 

Elongation, and Impact Energy. 

6.4.1 Ultimate Tensile Strength (UTS) 

In this modelling case, 3760 UTS data were used, 75% of the data were used for 

training, 10% of the data were used for validation (for validation mechanism, see 

Section 5.4.1.1) and the remaining 15% were used for final testing. These UTS 
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data include 15 inputs and one output, which is considered to be a high-

dimensional problem for modelling purposes. The inputs consist of the weight 

percentages for the chemical composites, namely Carbon (C), Silica (Si), 

Manganese (Mn), Sulphur (S), Chromium (Cr), Molybdenum (Mo), Nickel (Ni), 

Aluminium (Al) and Vanadium (V), the test depth, size and the site where the 

processing of the alloy steel took place, the cooling medium, as well as the 

hardening and tempering temperatures. 

In this experiment, the initial number of clusters was set to 15, which means that 

the initial fuzzy model was generated using 15 rules. For the optimisation 

algorithms nPSO and nMPSO, the maximum numbers of function evaluation were 

both set to 50,000. After the operation of the training data selection mechanism 

(see Section 5.4.2), 440 data points out of 2820 data points (all the training data) 

were selected. They were used in the following training process and worked as the 

representatives of all the training data. 

Finally, a set of non-dominated solutions (fuzzy models) were obtained. Figure 6-

15 demonstrates the trade-offs among the multiple objectives and criteria, 

including the RMSE, the number of fuzzy rules, the number of fuzzy sets and the 

total length of fuzzy rules, within these Pareto-optimal fuzzy models. 
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Figure 6-15. The performance of the Pareto-optimal UTS models 

Table 6-3 includes the main parameters of the initial model and the two optimised 

models, which are selected from all the Pareto-optimal models with 13 and 10 

rules respectively. Figure 6-16 shows the prediction performance of these models 

and Figure 6-17 shows the distribution of the membership functions relating to 

Input 4 (weight percentage for Carbon), which is an instance of all the membership 

functions. From Figure 6-16, it can also be seen that the selected training data 

work well as the representatives of all the training data. By using these reduced 

data instead of all the training data, much time and effort can be saved. 
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Table 6-3. Main parameters of the obtained UTS models 

Fuzzy
model

Number of fuzzy 
sets for every input 

and output 

Rule length of 
every fuzzy 

rule

RMSE of 
reduced
training

data

RMSE of 
training

data

RMSE of
testing
data

Initial model
with 15 

rules

Inputs: [15; 15; 15; 
15; 15; 15; 15; 15; 
15; 15; 15; 15; 15; 

15; 15] 

Output: 15 

[15; 15; 15; 
15; 15; 15; 15; 
15; 15; 15; 15; 
15; 15; 15; 15]

124.04 117.32 119.58 

Optimised 
model with 

13 rules 

Inputs: [13; 11; 10; 
11; 10; 12; 12; 13; 
12; 11; 9; 11; 11; 

10; 13] 
Output: 13 

[15; 13; 11; 
12; 11; 11; 15; 
15; 15; 13; 14; 

13; 14] 

48.27 42.59 46.26

Optimised 
model with 

10 rules 

Inputs: [10; 8; 7; 7; 
8; 9; 9; 10; 10; 9; 7; 

9; 9; 7; 10] 
Output: 10 

[15; 12; 11; 
12; 11; 15; 12; 

14; 13; 14] 
54.76 44.65 46.03

(a)
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(b)

(c)

Figure 6-16. The UTS models� predicted outputs versus measured outputs: (a) the 
initial model, (b) an optimised model with 13 rules, and (c) an 
optimised model with 10 rules; the green and red lines represent the 
+10% and -10% error bands respectively. 
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Figure 6-17. The UTS models� membership functions: (a) the initial model, (b) 
an optimised model with 13 rules, and (c) an optimised model with 
10 rules 

To provide more details about these Pareto-optimal UTS models, Figure 6-18 

shows two rules (the 4th rule and the 7th rule) out of the rule base of the optimised 

10-rule model. For these fuzzy rules, they can be rewritten as the following 

linguistic rules using the linguistic hedges approach: 

R4: IF Test Depth is slightly small AND Size is medium AND C is small

AND Mn is medium AND S is more or less small AND Cr is 

slightly small AND Mo is more or less small AND Ni is very small
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AND Al is very small AND V is small AND Hardening 

Temperature is medium AND Tempering Temperature is large,

THEN UTS is very small.

R7: IF Test Depth is slightly small AND Site Number is quite large AND C 

is medium AND Si is medium AND Mn is more or less small AND 

Cr is more or less large AND Mo is slightly small AND Ni is 

medium AND V is medium AND Hardening Temperature is more or 

less slightly small AND Cooling Medium Number is large AND 

Tempering Temperatures is large, THEN UTS is quite large.

To verify the physical interpretation of the obtained models, Figure 6-19 shows the 

three-dimensional response surfaces of the 10-rule UTS model. These surfaces are 

achieved by plotting two varying input variables against the output while keeping 

other input variables constant. The constant variables are set to the average values 

of the dominant steel grade, which is the 1%CrMo steel grade [Tenner 1999]. 

These plots in Figure 6-19 are consistent with those variable effect plots in [Tenner 

1999], which have been verified to follow the expected behaviour as predicted by 

theory or by expert knowledge. This 10-rule model�s 5%-range confidence band is 

shown in Figure 6-20. 

203



Chapter 6: Application of FM-HCMO in Modelling Problems 

� R4 � R7 �

IF Test Depth is 
0 50 100

0

0.5

1

0 50 100
0

0.5

1

AND Size is 
0 100 200 300 400

0

0.5

1

AND Site Number is 
1 2 3 4 5 6

0

0.5

1

AND C is 
0.2 0.4 0.6

0

0.5

1

0.2 0.4 0.6
0

0.5

1

AND Si is 
0.1 0.15 0.2 0.25 0.3
0

0.5

1

AND Mn is 
0.5 1 1.5

0

0.5

1

0.5 1 1.5
0

0.5

1

AND S is 
0 0.05 0.1 0.15 0.2

0

0.5

1

AND Cr is 
0 1 2 3

0

0.5

1

0 1 2 3
0

0.5

1

AND Mo is 
0 0.5 1

0

0.5

1

0 0.5 1
0

0.5

1

AND Ni is 
0 1 2 3 4

0

0.5

1

0 1 2 3 4
0

0.5

1

AND Al is 
0 0.5 1

0

0.5

1

AND V is 
0 0.1 0.2 0.3

0

0.5

1

0 0.1 0.2 0.3
0

0.5

1

AND Hardening 
Temperature is 

800 850 900 950 1000
0

0.5

1

800 850 900 950 1000
0

0.5

1

AND Cooling 
Medium Number is 

1 1.5 2 2.5 3
0

0.5

1

AND Tempering 
Temperature is 

200 400 600
0

0.5

1

200 400 600
0

0.5

1

THEN UTS is 
500 1000 1500 2000
0

0.5

1

500 1000 1500 2000
0

0.5

1

Figure 6-18. Rules of the optimised 10-rule UTS model 
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Figure 6-19. Response surfaces of the optimised 10-rule UTS model 
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(a)                                                             (b) 

Figure 6-20. (a) The prediction performance and (b) the 5%-range confidence 
band of the optimised 10-rule UTS model 

6.4.2 Reduction of Area (ROA) 

In this experiment, 3710 ROA data were used, 75% of the data were used for 

training, 10% of the data were used for validation and the remaining 15% were 

used for testing. The ROA data include 15 inputs and one output, which are the 

same as those already reviewed for the UTS data (see Section 6.4.1). 

In this case, the initial fuzzy model was obtained using 20 clusters; the maximum 

number of function evaluation for nPSO and nMPSO were both set to be 50,000. 

After the operation of the data selection mechanism (see Section 5.4.2), only 630 

data points out of 2783 data points (all the training data) were selected as the 

representative training data. After the optimisation scheme, 12 Pareto-optimal 

models were obtained. Figure 6-21 shows the models� performance using various 

indices relating to the objective functions, the RMSE, the number of fuzzy sets, the 
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number of fuzzy rules, and the length of the fuzzy rules. 
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Figure 6-21. The performance of the Pareto-optimal ROA models 

Table 6-4 shows the main parameters of the initial ROA model and two optimised 

ROA models, which are selected from all the Pareto-optimal models and include 

15 and 7 rules respectively. Figure 6-22 shows the prediction performance of these 

models. Figure 6-23 illustrates the distribution of the membership functions 

relating to Input 4 (weight percentage for Carbon). 
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Table 6-4. Main parameters of the obtained ROA models 

Fuzzy
model

Number of fuzzy 
sets for every 

input and output 

Rule length of 
every fuzzy 

rule

RMSE of 
reduced

training data

RMSE of 
training

data

RMSE of
testing
data

Initial model

(20 rules) 

Inputs: [20; 20; 
20; 20; 20; 20; 20; 
20; 20; 20; 20; 20; 

22; 20; 20] 

Output: 20 

[15; 15; 15; 15; 
15; 15; 15; 15; 
15; 15; 15; 15; 
15; 15; 15; 15; 
15; 15; 15; 15]

7.45 5.92 5.44

Optimised 
model with 

15 rules 

Inputs: [14; 12; 
13; 14; 13; 14; 11; 
14; 13; 15; 6; 10; 

13; 12; 13] 
Output: 13 

[14; 14; 15; 13; 
14; 13; 14; 13; 
12; 14; 15; 10; 

14; 13; 14] 

3.92 3.46 3.75

Optimised 
model with 

7 rules 

Inputs: [5; 4; 3; 4; 
5; 4; 4; 5; 6; 4; 4; 

5; 5; 3; 4] 
Output: 6 

[13; 11; 14; 13; 
10; 11; 11] 5.13 4.41 4.40

(a)
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(b)

(c)

Figure 6-22. The ROA models� predicted outputs versus measured outputs: (a) 
the initial model, (b) an optimised model with 15 rules, and (c) an 
optimised model with 7 rules; the green and red lines represent the 
+10% and -10% error bands respectively. 
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Figure 6-23. The ROA models� membership functions: (a) the initial fuzzy model, 
(b) an optimised fuzzy model with 15 rules, and (c) an optimised 
fuzzy model with 7 rules 

Figure 6-24 displays the three-dimensional response surfaces of the 15-rule ROA 

model by setting two of the input variables to be varying and other input variables 

to be the constant average values of the dominant steel grade, which is the 

1%CrMo steel grade [Tenner 1999]. These surfaces are consistent with the variable 

effect plots in [Tenner 1999], and this means that the models built by FM-HCMO 

follow the theoretical and experts� expectation in this example. For this 15-rule 

model, its 5%-range confidence band is shown in Figure 6-25. 
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Figure 6-24. Response surfaces of the optimised 15-rule ROA model 
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(a)                                                            (b) 

Figure 6-25. (a) The prediction performance and (b) the 5%-range confidence 
band of the optimised 15-rule ROA model 

6.4.3 Elongation 

3804 Elongation data were used in this case, 75% of the data were used for 

training, 10% of the data were used for validation and the remaining 15% were 

used for final testing. These data include 16 inputs, which consist of the weight 

percentages for the chemical composites, for instance Carbon (C), Silica (Si), 

Manganese (Mn), Chromium (Cr), Molybdenum (Mo), etc., the test depth, size and 

site of the alloy steel, the cooling medium, as well as the hardening and tempering 

temperatures. 

In this case, the initial fuzzy model was obtained with the setting of 15 clusters; 

the maximum number of function evaluation for nPSO and nMPSO were both set 

to be 50,000. After data selection, 500 representative data points out of 2853 data 

points were selected and then used in the following training process. Finally, a set 
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of Pareto-optimal Elongation models were constructed. Figure 6-26 shows the 

trade-offs among the multiple criteria within these non-dominated fuzzy models. 
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Figure 6-26. The performance of the Pareto-optimal Elongation models 

Table 6-5 describes the main parameters of the initial Elongation model and two 

optimised Elongation models with 10 and 8 rules respectively. Figure 6-27 shows 

the prediction performance of these models and Figure 6-28 illustrates the 

distribution of the membership functions for Input 16 (tempering temperature), 

which is an instance of all other membership functions. 

213



Chapter 6: Application of FM-HCMO in Modelling Problems 

Table 6-5. Main parameters of the obtained Elongation models 

Fuzzy model
Number of fuzzy 

sets for every input 
and output 

Rule length of 
every fuzzy rule

RMSE of 
reduced
training

data

RMSE of 
training

data

RMSE of
testing
data

Initial Model

(15 rules) 

Inputs: [15; 15; 15; 
15; 15; 15; 15; 15; 
15; 15; 15; 15; 15; 

15; 15; 15] 

Output: 15 

[16; 16; 16; 16; 
16; 16; 16; 16; 
16; 16; 16; 16; 

16; 16; 16] 

2.90 2.39 2.23

Optimised 
model with 

10 rules 

Inputs: [8; 6; 9; 7; 
8; 9; 9; 3; 9; 9; 7; 

6; 5; 9; 9; 9] 
Output: 9 

[16; 15; 15; 15; 
15; 14; 16; 13; 

13; 12] 
1.87 1.78 1.76

Optimised 
model with 8

rules

Inputs: [5; 4; 5; 2; 
5; 5; 6; 3; 4; 4; 5; 

2; 4; 5; 5; 5] 
Output: 7 

[13; 14; 13; 12; 
16; 12; 13; 10] 2.15 1.78 1.65

(a)
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(b)

(c)

Figure 6-27. The Elongation models� predicted outputs versus measured outputs: 
(a) the initial model, (b) an optimised model with 10 rules, and (c) 
an optimised model with 8 rules; the green and red lines represent 
the +10% and -10% error bands respectively. 
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Figure 6-28. The Elongation models� membership functions: (a) the initial fuzzy 
model, (b) an optimised fuzzy model with 10 rules, and (c) an 
optimised fuzzy model with 8 rules 

The response surfaces of the 10-rule Elongation model are shown in Figure 6-29. 

The constant variables are set to be the average values of the 1%CrMo steel grade.  

These surfaces reveal a consistent match with the variable effect plots in [Tenner 

1999], and this means the constructed models follow the expected behaviour as 

predicted by theory or by expert knowledge. The 5%-range confidence band of this 

10-rule model is displayed in Figure 6-30. 
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Figure 6-29. Response surfaces of the optimised 10-rule Elongation model 
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(a)                                                             (b) 

Figure 6-30. (a) The prediction performance and (b) the 5%-range confidence 
band of the optimised 10-rule Elongation model 

6.4.4 Impact Energy 

In this example, 1661 Impact Energy data were employed, 75% of the data were 

used for training, 10% of the data were used for validation and the remaining 15% 

were used for final testing. 16 inputs and one output are included in these data. The 

inputs consist of the weight percentages for the chemical composites, namely 

Carbon (C), Silica (Si), Manganese (Mn), Sulphur (S), Chromium (Cr), 

Molybdenum (Mo), Nickel (Ni), Aluminium (Al) and Vanadium (V), the test depth, 

size and site of the alloy steel, the cooling medium, as well as the hardening, 

tempering and impact test temperatures. 

In this experiment, the initial fuzzy model was obtained with 15 clusters; the 

maximal function evaluation numbers for nPSO and nMPSO were both set to be 

50,000. Following a data selection exercise, 455 data points out of 1246 data 
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points were selected for the following model training. After the optimisation, some 

non-dominated solutions were obtained. Figure 6-31 shows the trade-offs among 

the multiple objectives and criteria within these non-dominated fuzzy system 

solutions. 
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Figure 6-31. The performance of the Pareto-optimal Impact Energy models 

Table 6-6 shows the main parameters of the initial Impact Energy model and two 

optimised Impact Energy models with 15 and 8 rules respectively. Figure 6-32 

shows the prediction performance of these models and Figure 6-33 shows the 

membership functions of Input 5 (weight percentage for Silica). 
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Table 6-6. Main parameters of the obtained Impact Energy models 

Fuzzy model
Number of fuzzy 

sets for every input 
and output 

Rule length of 
every fuzzy 

rule

RMSE of 
reduced
training

data

RMSE of 
training

data

RMSE of
testing
data

Initial Model

(15 rules) 

Inputs: [15; 15; 15; 
15; 15; 15; 15; 15; 
15; 15; 15; 15; 15; 

15; 15; 15] 

Output: 15 

[16; 16; 16; 
16; 16; 16; 16; 
16; 16; 16; 16; 
16; 16; 16; 16]

31.56 30.54 31.44

Optimised 
model with 

15 rules 

Inputs: [12; 15; 14; 
14; 13; 15; 13; 12; 
14; 13; 12; 13; 15; 

13; 11; 15] 

Output: 11 

[16; 16; 15; 
16; 16; 16; 13; 
14; 14; 16; 16; 
15; 16; 13; 16]

16.32 14.35 17.10

Optimised 
model with 8 

rules

Inputs: [8; 8; 8; 7; 
6; 7; 7; 8; 7; 7; 7; 

5; 7; 7; 4; 7] 
Output: 8 

[16; 16; 16; 
15; 15; 16; 16; 

16]
21.36 17.85 19.03

(a)
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(b)

(c)

Figure 6-32. The Impact Energy models� predicted outputs versus measured 
outputs: (a) the initial model, (b) an optimised model with 15 rules, 
and (c) an optimised model with 8 rules; the green and red lines 
represent the +10% and -10% error bands respectively. 
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Figure 6-33. The Impact Energy models� membership functions: (a) the initial 
fuzzy model, (b) an optimised fuzzy model with 15 rules, and (c) an 
optimised fuzzy model with 8 rules 

Figure 6-34 shows the three-dimensional response surfaces of the 15-rule Impact 

Energy model. The constant variables are set to the average values of the 1%CrMo 

steel grade. These figures reveal a consistent match with the variable effect plots in 

[Tenner 1999], which have been verified to follow the theoretical or expert 

knowledge. In Figure 6-35, the 5%-range confidence band of this 15-rule model is 

shown.
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Figure 6-34. Response surfaces of the optimised 15-rule Impact Energy model 
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(a)                                                             (b) 

Figure 6-35. (a) The prediction performance and (b) the 5%-range confidence 
band of the optimised 15-rule Impact Energy model 

6.5 Summary 

The experimental validation carried-out in this chapter shows that the proposed 

approach FM-HCMO works effectively in eliciting accurate and interpretable 

models. Initially, FM-HCMO was applied to the modelling of two benchmark 

problems, a static nonlinear system approximation problem and a dynamical 

system identification problem. The experimental results revealed that, compared to 

other modelling methods, FM-HCMO is able to produce more compact and 

simpler models; the obtained Pareto-optimal models using FM-HCMO provide a 

wider choice of different solutions to users. Furthermore, the modelling of the 

mechanical properties for alloy steels demonstrated that this proposed approach 

works well within the context of a high-dimensional industrial application. The 

physical interpretation of the obtained models has been shown to be consistent 

with the expected behaviour as predicted by theory or by expert knowledge. In 
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addition to the above, it is worth noting that the linguistic models constructed 

using FM-HCMO has a good generalisation ability, which is evidenced by the 

smooth input/output response surfaces obtained using the elicited models. Thus, it 

can be concluded that FM-HCMO provides a simple and effective framework for 

system identification and prediction. The next chapter will highlight how such 

robust prediction models can be exploited in a reverse-engineering fashion to 

identify �optimal� recipes for system design. 
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Chapter 7 

Application of RSSA and MO-RSSA for 

Alloy Steel Design Problems 

7.1 Introduction 

In the steel industry, determining the optimal heat treatment regime and the 

required weight percentages for the chemical composites to obtain the desired 

mechanical properties of the steel is always a challenging multi-objective 

optimisation problem. Usually, some objectives may conflict with each other, such 

as the ultimate tensile strength (UTS) and the ductility. The steel ductility can also 

be reflected by its Reduction of Area (ROA). In this chapter, details relating to the 

optimisation of UTS and ROA using the RSSA and MO-RSSA algorithms (see 

Chapter 4) are presented and discussed. 

In Chapter 6, the intelligent models based on fuzzy systems had been developed to 

predict the mechanical test results for the steels covered by a wide range of 
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training data. These models can be used to facilitate the findings relating to the 

optimal heat treatment regime and the weight percentages for the chemical 

composites to obtain the desired mechanical properties. Figure 7-1 shows the 

prediction results of one UTS model and one ROA model, whose RMSE(s) are 

34.59 and 2.86 respectively. In the following studies, all alloy design experiments 

are conducted based on these two developed fuzzy models. 

Figure 7-1. The prediction performance of the UTS model and the ROA models 
used in this chapter; the red and green lines delimit the +10% and 
-10% confidence bands respectively. 

In this chapter, all parameter settings for RSSA and MO-RSSA (see Chapter 3) 

assumed the following parameters throughout: the decreasing parameter C1 = 3, 

the increasing parameter C2 = 1, the threshold value m = 15; the variation operator 

works as a combination of the one-dimensional variation strategy (with the 75% 

probability of usage) and the multi-dimensional variation strategy (with the 25% 

probability of usage) (see Section 4.2.4); for MO-RSSA, the weight changing 

frequency parameter H = 10000. 
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7.2 The Optimal Design of UTS for Alloy Steels 

In this case, the aim is to find the optimal solution for achieving a predefined 

target UTS value. The decision vector consists of weight percentages for the 

chemical composites, namely Carbon (C), Silica (Si), Manganese (Mn), Sulphur 

(S), Chromium (Cr), Molybdenum (Mo), Nickel (Ni), Aluminium (Al) and 

Vanadium (V), the test depth, the size and the site of the alloy steel, the cooling 

medium, as well as the hardening and tempering temperatures. 

The objective function was designed to be as follows: 

Minimise 
2

arg
1 900

etTUTSUTS
J                             (7.1) 

where UTSTarget is the target UTS value. 

In the first experiment, the UTSTarget was set to 900 MPa. Figure 7-2 shows the 

optimisation process and Table 7-1 provides the optimisation results relating to 10 

different runs. The average function evaluation number used in the RSSA 

algorithm is only 36. From Table 7-1, it can be seen that the differences between 

the 10 solutions are somewhat stark, which means that there are many possible 

solutions satisfying the same defined objective. 

In the second experiment, the UTSTarget was set to 1100 MPa. Figure 7-3 shows the 

fitness variation in the optimisation process and Table 7-2 shows the optimisation 

results in 10 different runs. For this experiment, the average function evaluation 
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number used in the RSSA algorithm is 34. From Table 7-2, it can be seen that 

there are more additional feasible solutions to this optimisation problem and RSSA 

can find these very quickly. 
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Figure 7-2. Average fitness of 10 runs versus function evaluation for the UTS 
design problem with UTSTarget = 900 (MPa) 
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Figure 7-3. Average fitness of 10 runs versus function evaluation for the UTS 
design problem with UTSTarget = 1100 (MPa) 
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Table 7-1. Optimisation solutions of 10 independent runs for the UTS design 
problem with UTSTarget = 900 (MPa) 

Solutions 1 2 3 4 5 6 7 8 9 10

Test Depth 
(mm) 61.8 67.8 111.4 41.9 129.6 58.1 78.6 18.8 93.9 74.2

Size (mm) 268.9 88.1 283.2 41.5 271.3 136.6 206.7 137.6 279.6 254.9

Site Number 2 5 5 2 5 3 6 3 3 4

C (wt%) 0.364 0.440 0.503 0.182 0.354 0.203 0.496 0.220 0.413 0.354

Si (wt%) 0.112 0.235 0.216 0.270 0.285 0.174 0.272 0.289 0.204 0.319

Mn (wt%) 1.554 1.189 0.939 0.954 1.397 0.644 0.521 0.488 0.742 0.940

S (wt%) 0.100 0.096 0.127 0.169 0.080 0.112 0.066 0.036 0.148 0.132

Cr (wt%) 0.263 0.589 3.025 0.613 2.733 0.615 0.790 0.650 0.140 0.489

Mo (wt%) 0.079 0.735 0.780 0.157 0.111 0.659 0.094 0.335 0.231 0.327

Ni (wt%) 0.609 2.069 0.241 0.379 3.765 0.312 2.967 2.557 2.003 1.023

Al (wt%) 0.641 0.028 0.029 0.842 0.190 0.093 0.086 0.253 0.260 0.495

V (wt%) 0.163 0.149 0.095 0.181 0.047 0.225 0.043 0.030 0.203 0.077

Hardening
Temperature 

(°C)
970.3 971.9 908.6 979.4 860.2 907.6 889.1 975.2 933.1 923.8

Cooling
Medium 
Number 

2 3 2 3 2 1 2 1 1 2

Tempering 
Temperature 

(°C)
497.5 644.8 590.6 475.8 596.1 660.8 625.3 704.0 629.7 651.9

UTS (MPa) 900.1 899.9 899.9 899.9 900.0 899.6 899.9 899.8 899.9 900.0

230



Chapter 7: Application of RSSA and MO-RSSA 

Table 7-2. Optimisation solutions of 10 independent runs for the UTS design 
problem with UTSTarget = 1100 (MPa) 

Solutions 1 2 3 4 5 6 7 8 9 10

Test Depth 
(mm) 97.8 61.9 135.1 9.2 74.4 107.3 62.1 22.6 93.4 78.2

Size (mm) 15.9 44.7 106.2 226.7 251.2 166.2 269.8 235.5 29.6 87.8

Site Number 4 2 3 1 2 2 3 4 4 3

C (wt%) 0.194 0.306 0.551 0.618 0.186 0.409 0.236 0.161 0.228 0.341

Si (wt%) 0.194 0.161 0.128 0.149 0.234 0.349 0.330 0.272 0.250 0.203

Mn (wt%) 0.718 0.565 1.118 0.455 0.500 1.123 1.274 1.153 0.600 0.956

S (wt%) 0.049 0.144 0.143 0.184 0.056 0.144 0.205 0.095 0.142 0.177

Cr (wt%) 0.485 0.208 1.793 0.389 0.236 0.095 1.627 0.252 0.351 0.981

Mo (wt%) 0.318 0.044 0.648 0.082 0.622 0.114 0.087 0.442 0.337 0.381

Ni (wt%) 1.148 2.364 0.726 1.915 0.475 2.905 1.466 1.070 3.155 1.733

Al (wt%) 0.570 0.185 0.187 0.524 0.550 0.622 0.700 0.060 0.688 0.049

V (wt%) 0.105 0.212 0.229 0.140 0.130 0.104 0.098 0.267 0.036 0.240

Hardening
Temperature 

(°C)
890.6 897.7 824.0 913.0 841.6 887.3 853.7 877.1 953.5 940.1

Cooling
Medium 
Number 

2 2 1 2 2 1 2 1 3 3

Tempering 
Temperature 

(°C)
362.3 353.8 597.9 677.8 280.9 360.6 637.1 523.9 587.8 710.7

UTS (MPa) 1100.0 1099.7 1100.1 1100.0 1099.9 1099.8 1099.8 1099.8 1100.0 1100.1

231



Chapter 7: Application of RSSA and MO-RSSA 

7.3 The Optimal Design of ROA 

In this section, details relating to finding the optimal solution for achieving a 

predefined target ROA value are presented. In this case, the decision vector is the 

same as the one used for the UTS design problem in Section 7.2. The optimisation 

objective function was designed as follows: 

Minimise 
2

arg
2 60

etTROAROA
J                           (7.2) 

where ROATarget is the target ROA value. 

In the first experiment, the ROATarget was set to 60%. Table 7-3 provides the 

optimisation results for 10 different runs and Figure 7-4 shows the variation of the 

average fitness of these 10 runs during the optimisation process. The average 

function evaluation number used in the RSSA algorithm is only 28. 
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Figure 7-4. Average fitness of 10 runs versus function evaluation for the ROA 
design problem with ROATarget = 60 (%) 
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Table 7-3. Optimisation solutions of 10 independent runs for the ROA design 
problem with ROATarget = 60 (%) 

Solutions 1 2 3 4 5 6 7 8 9 10

Test Depth 
(mm) 62.4 102.1 21.0 137.8 59.7 20.0 110.7 59.2 71.8 68.8

Size (mm) 74.4 351.6 251.9 71.5 101.0 310.7 250.6 94.6 303.6 276.9

Site Number 1 3 4 4 4 4 3 4 1 2

C (wt%) 0.434 0.249 0.246 0.248 0.517 0.191 0.243 0.204 0.240 0.239

Si (wt%) 0.297 0.295 0.129 0.226 0.222 0.193 0.154 0.227 0.157 0.281

Mn (wt%) 1.321 1.339 1.164 0.805 0.823 0.809 1.156 0.391 1.191 1.141

S (wt%) 0.033 0.041 0.128 0.208 0.114 0.158 0.181 0.189 0.012 0.095

Cr (wt%) 1.874 1.952 1.794 2.293 1.645 2.830 2.462 2.315 1.549 1.468

Mo (wt%) 0.207 0.747 0.384 0.151 0.024 0.152 0.335 0.667 0.955 0.797

Ni (wt%) 0.317 3.024 3.116 2.525 1.138 1.699 0.959 2.926 0.131 2.323

Al (wt%) 0.262 0.339 0.491 0.983 0.419 0.706 0.479 0.018 0.121 0.164

V (wt%) 0.180 0.079 0.139 0.233 0.096 0.045 0.172 0.187 0.237 0.177

Hardening
Temperature 

(°C)
924.4 958.2 901.6 885.2 823.9 893.6 880.0 936.9 962.2 962.3

Cooling
Medium 
Number 

1 1 2 2 1 2 1 2 1 1

Tempering 
Temperature 

(°C)
534.2 300.4 413.1 513.2 640.4 316.6 383.1 595.2 289.0 680.1

ROA (%) 60.07 60.06 59.96 59.92 60.019 59.93 59.97 59.96 60.01 59.98
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In the second experiment, the ROATarget was set to 70%. Figure 7-5 shows the 

optimisation process and Table 7-4 lists the optimisation results relating to 10 

different runs. The average function evaluation number employed in locating the 

optimal solutions is 28. 

From the results of the above two experiments, it can be seen that, for the 

optimisation problem of achieving a predefined target ROA, there are many 

feasible solutions and the RSSA algorithm can find these optimal solutions in 

different runs using only a few function evaluations. 
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Figure 7-5. Average fitness of 10 runs versus function evaluation for the ROA 
design problem with ROATarget = 70 (%) 
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Table 7-4. Optimisation solutions of 10 independent runs for the ROA design 
problem with ROATarget = 70 (%) 

Solutions 1 2 3 4 5 6 7 8 9 10

Test Depth 
(mm) 125.3 76.9 113.4 57.3 9.2 34.1 21.2 81.5 110.4 130.7

Size (mm) 238.2 136.4 318.9 43.7 162.0 219.1 248.5 204.3 287.5 82.6

Site Number 1 5 4 5 5 5 3 2 3 5

C (wt%) 0.309 0.450 0.536 0.571 0.304 0.360 0.424 0.346 0.538 0.148

Si (wt%) 0.251 0.138 0.336 0.189 0.331 0.244 0.312 0.120 0.334 0.136

Mn (wt%) 1.229 0.383 1.322 0.643 1.074 0.645 0.356 0.695 0.943 0.425

S (wt%) 0.032 0.152 0.046 0.108 0.153 0.030 0.170 0.103 0.120 0.056

Cr (wt%) 1.677 2.212 1.868 3.435 2.584 1.371 2.188 2.850 2.590 0.094

Mo (wt%) 0.905 0.856 0.271 0.067 0.100 0.773 0.938 0.210 0.430 0.955

Ni (wt%) 2.405 0.730 1.708 3.689 2.213 0.797 0.534 1.273 1.275 1.640

Al (wt%) 0.290 0.912 0.612 0.258 0.730 0.191 0.628 0.542 0.241 0.749

V (wt%) 0.084 0.143 0.030 0.173 0.219 0.194 0.213 0.128 0.133 0.097

Hardening
Temperature 

(°C)
921.2 968.9 943.2 938.6 937.6 926.2 931.6 881.3 948.4 863.5

Cooling
Medium 
Number 

3 2 1 3 2 1 2 2 2 2

Tempering 
Temperature 

(°C)
371.8 567.6 719.8 492.0 326.8 708.4 669.2 279.4 670.2 385.5

ROA (%) 70.09 69.96 69.99 69.99 69.904 70.05 70.03 69.94 69.92 69.92
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7.4 The Optimal Design of both UTS and ROA 

In the design of alloy steels, sometimes it is required to achieve a predefined target 

UTS value and a predefined target ROA value simultaneously. For this problem, 

one should first judge whether such requirements are possible. If the answer is 

�yes�, then the problem can be solved as a single objective optimisation problem 

by combining these two objectives into a weighted sum formulation. However, if 

the answer is �no�, then the problem should be solved using the multi-objective 

optimisation technique, which is able to offer a set of approximate candidate 

solutions (Pareto-optimal solutions). In order to ascertain both scenarios, the 

achievable minimum and maximum boundaries are needed. 

In this section, the decision vector of these design problems consists of weight 

percentages of Carbon (C), Manganese (Mn), Chromium (Cr), Molybdenum (Mo), 

and tempering temperature. 

7.4.1 Boundaries for the UTS and ROA Design 

To obtain the mechanical property boundaries for alloy steels design, the 

multi-objective optimisation technique was employed. Two distinct relevant 

multi-objective optimisation problems were defined as follows: 

1. Minimising UTS and ROA simultaneously, i.e.: 

Objective 1: Minimise UTS 
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Objective 2: Minimise ROA                           (7.3) 

2. Maximising UTS and ROA simultaneously, i.e.: 

Objective 1: Maximise UTS 

Objective 2: Maximise ROA                          (7.4) 

The MO-RSSA algorithm was employed to optimise the above problems and the 

maximum function evaluations number was set to 10,000. The obtained Pareto 

fronts using MO-RSSA are displayed in Figure 7-6. The region between the two 

fronts is where one can design the properties (UTS and ROA). 
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Figure 7-6. The maximum and minimum boundaries (Pareto fronts) for the 
problem of designing UTS and ROA simultaneously 
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7.4.2 The Single Objective Optimisation 

If the target UTS and ROA are located between the design boundaries, then the 

single objective optimisation technique can be used to obtain the desired solution 

by optimising the following objective function: 

Minimise 
2

arg
2

arg
3 60900

etTetT ROAROAUTSUTS
J         (7.5) 

where UTSTarget is the target UTS value and ROATarget is the target ROA value. 

For instance, if UTSTarget is 900 MPa and ROATarget is 60%, it can be seen from 

Figure 7-6 that the targets are located between the design boundaries. Table 7-5 

shows the results of applying RSSA to optimise Problem (7.5) for 10 different 

runs. The average number of function evaluations needed for these 10 runs is 133. 

Table 7-5. Optimisation solutions of 10 independent runs for the design problem 
with UTSTarget = 900 (MPa) and ROATarget = 70 (%) 

Solutions 1 2 3 4 5 6 7 8 9 10

C (wt%) 0.427 0.530 0.516 0.453 0.438 0.503 0.404 0.436 0.426 0.502

Mn (wt%) 1.642 1.484 1.160 1.281 1.511 0.362 1.189 1.561 0.692 1.047

Cr (wt%) 1.341 0.136 0.436 0.583 1.186 1.116 0.316 1.196 0.431 0.639

Mo (wt%) 0.886 0.230 0.208 0.252 0.884 0.233 0.633 0.879 0.848 0.183

Tempering 
Temperature 

(°C)
868.7 940.3 917.3 906.0 897.5 925.4 945.0 890.8 888.5 936.3

UTS (MPa) 900.0 900.6 899.5 900.3 900.5 899.9 899.1 900.6 900.2 900.3

ROA (%) 59.94 60.03 59.99 59.94 59.99 60.00 59.98 59.99 60.04 60.02
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7.4.3 The Multi-objective Optimisation 

If the target UTS and ROA are located outside the design boundaries, then no 

precise solutions can be found to satisfy the desired targets. In this case, the 

multi-objective optimisation technique can be used to obtain a set of 

Pareto-optimal solutions, which are regarded as the possible candidate solutions. 

The design problem can be described as follows: 

Objective 1: Minimise 
2

arg
1 900

etTUTSUTS
J

Objective 2: Minimise 
2

arg
2 60

etTROAROA
J                 (7.6) 

where UTSTarget is the target UTS value and ROATarget is the target ROA value. 

For example, if the design targets UTSTarget is 600 MPa and ROATarget is 50%, then 

from Figure 7-6 it can be seen that the targets are beyond the lower design 

boundary. In this type of a situation, the multi-objective optimisation algorithm 

MO-RSSA should suitably be employed to optimise the above Problem (7.6) with 

a maximum function evaluations number being set to 10,000 for instance. The 

obtained Pareto-optimal solutions are shown in Figure 7-7 and Table 7-6 provides 

details of 10 of these solutions. 
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Figure 7-7. The performance of the Pareto-optimal solutions for the design 
problem of UTSTarget = 600 (MPa) and ROATarget = 50 (%) with 
respect to (a) the Objective 1 and the Objective 2 and (b) the UTS 
and the ROA 

Table 7-6. Pareto-optimal solutions for the design problem with UTSTarget = 600 
(MPa) and ROATarget = 50 (%) 

Solutions 1 2 3 4 5 6 7 8 9 10

C (wt%) 0.528 0.211 0.474 0.408 0.235 0.209 0.225 0.224 0.226 0.136

Mn (wt%) 0.523 1.485 1.668 1.535 1.157 1.535 0.731 1.128 0.474 0.634

Cr (wt%) 1.706 3.130 1.874 2.158 1.218 2.158 0.253 0.278 0.257 1.933

Mo (wt%) 0.751 0.679 0.987 0.988 0.897 0.988 0.662 0.063 0.056 0.890

Tempering 
Temperature 

(°C)
969.3 903.5 978.9 941.5 880.2 839.8 847.0 847.1 847.0 914.4

UTS (MPa) 985.9 853.9 817.4 812.9 665.6 619.0 610.8 600.0 599.9 591.8

ROA (%) 50.43 49.41 52.02 52.02 53.29 60.70 67.52 69.80 71.35 69.22

From the experimental results in this section, the following can be observed: 

1. For an optimal design problem with two conflicting targets, MO-RSSA 

is able to find the design boundaries, which is used to ascertain two 
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different design scenarios. 

2. If the target values locate between the design boundaries, RSSA can be 

used to obtain the desired precise solutions successfully. 

3. If the target values are located outside the design boundaries, 

MO-RSSA can be used to obtain a set of approximate candidate 

solutions (Pareto-optimal solutions) successfully. 

7.5 The Optimal Alloy Design Considering both the Mechanical Properties 

and the Economical Factors 

This study consists of finding the optimal chemical compositions and 

heat-treatment process parameters in order to obtain the required UTS and ROA 

while minimising the production costs. The production costs of heat-treated steels 

include the costs of the addition of alloying elements, such as Cr, Mo, V, etc. and 

the costs of energy consumption during the heat-treatment process. 

In this experiment, five decision variables, C, Mn, Cr, Mo and Tempering 

Temperature, have been considered although other composites and temperatures 

could also be included. The factors contributing to the cost of heat treatment 

operation are summarised in Tables 7-7, 7-8 [Mahfouf et al. 2002]. 
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Table 7-7. Contribution of composites to the cost of heat treatment 

Composite Cost (US$ per tonne) 

Manganese 18

Chromium 42

Molybdenum 52

Table 7-8. Contribution of tempering (annealing) to the cost of heat treatment 

Item 
Cost

(US$: 1.3GJ/tonne at 600 C) o

Annealing (tempering) 4.88

7.5.1 The Optimal Design Considering both UTS and the Cost 

According to the contribution of the chemical composites and the tempering 

process to the cost of heat-treated steels, a new objective function to reflect such 

costs was introduced as follows: 

2

cos 100
600/88.4524218 TempMoCrMnJ t                (7.7) 

By taking into account such economic consideration, the problem of designing an 

alloy steel with a predefined target UTS property becomes a two-objective 

optimisation problem described as follows: 

Objective 1: Minimise 
2

arg
1 900

etTUTSUTS
J
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Objective 2: Minimise  Jcost                                (7.8) 

Figure 7-8 displays the obtained Pareto-optimal solutions in the objective space 

with the UTS target value UTSTarget = 900 (MPa). Ten (10) various solutions 

around the UTS target value are selected from the Pareto-optimal solutions and 

listed in Table 7-9. 
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Figure 7-8. The performance of the Pareto-optimal solutions for the design 
problem of UTSTarget = 900 (MPa) and minimising the heat 
treatment cost with respect to (a) Objective 1 and Objective 2; (b) 
UTS and Cost 
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Table 7-9. Ten of the Pareto-optimal solutions for the design problem of 
UTSTarget = 900 (MPa) and minimising the heat treatment cost 

Solutions 1 2 3 4 5 6 7 8 9 10

C (wt%) 0.619 0.618 0.619 0.618 0.619 0.619 0.619 0.619 0.619 0.619

Mn (wt%) 1.661 0.738 1.101 1.031 0.921 0.853 0.846 0.799 0.734 0.694

Cr (wt%) 0.050 0.050 0.051 0.061 0.050 0.050 0.060 0.050 0.060 0.051

Mo (wt%) 0.010 0.205 0.050 0.047 0.053 0.051 0.017 0.010 0.010 0.010

Tempering 
Temperature 

(°C)
821.9 822.4 821.6 823.6 823.1 821.7 821.7 821.6 821.3 821.9

UTS (MPa) 900.0 891.5 877.4 870.8 860.6 850.7 838.0 827.8 819.3 811.3

Cost (US$) 39.22 32.75 31.30 30.33 28.20 26.81 25.38 23.73 22.96 21.88

7.5.2 The Optimal Design Considering both ROA and the Cost 

By considering both the ROA and the economical factors, the following 

two-objective optimisation problem can be set: 

Objective 1: Minimise 
2

arg
2 60

etTROAROA
J

Objective 2: Minimise  Jcost                                (7.9) 

Figure 7-9 shows the obtained Pareto-optimal solutions in the objective space, 

where the ROA target value ROATarget is 60%. Ten different solutions around the 

ROA target value are selected from the Pareto-optimal solutions and listed in 

Table 7-10. 
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Figure 7-9. The performance of the Pareto-optimal solutions for the design 
problem of ROATarget = 60 (%) and minimising the heat treatment 
cost with respect to (a) Objective 1 and Objective 2; (b) ROA and 
Cost

Table 7-10. Ten of the Pareto-optimal solutions for the design problem of 
ROATarget = 60 (%) and minimising the heat treatment cost 

Solutions 1 2 3 4 5 6 7 8 9 10

C (wt%) 0.436 0.611 0.467 0.599 0.607 0.607 0.614 0.562 0.562 0.562

Mn (wt%) 0.839 0.820 0.995 0.454 0.597 0.579 0.448 0.351 0.351 0.351

Cr (wt%) 0.242 0.149 0.089 0.050 0.113 0.076 0.050 0.050 0.050 0.050

Mo (wt%) 0.126 0.194 0.058 0.169 0.010 0.025 0.010 0.010 0.010 0.010

Tempering 
Temperature 

(°C)
960.2 870.7 888.6 882.3 868.6 867.0 830.3 862.7 820.8 820.1

ROA (%) 60.04 60.57 62.07 62.67 63.10 63.28 63.51 63.75 63.95 64.87

Cost (US$) 39.65 38.23 31.94 26.27 23.11 22.03 17.44 15.96 15.62 15.61
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7.5.3 The Optimal Design Considering UTS, ROA and the Cost 

Taking into account all the three factors, i.e. UTS, ROA and the cost of the heat 

treatment, the problem of designing an alloy steel can be described as follows: 

Objective 1: Minimise 
2

arg
1 900

etTUTSUTS
J

Objective 2: Minimise 
2

arg
2 60

etTROAROA
J

Objective 3: Minimise  Jcost                               (7.10) 

An optimisation experiment has been conducted based on the above objectives 

where the target values UTSTarget = 900 (MPa) and ROATarget = 60 (%). The result 

of this experiment is shown in Figure 7-10. Ten (10) solutions out of all the 

obtained Pareto-optimal solutions are selected and listed in Table 7-11. 

From the above experiments, it can be seen that, for the optimal design problems 

that consider both the mechanical properties and the economical factors, 

MO-RSSA is able to obtain a set of optional solutions (Pareto-optimal solutions), 

which are close to the predefined UTS and/or ROA targets while providing various 

levels of heat treatment costs. 
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Figure 7-10. The performance of the Pareto-optimal solutions for the design 
problem of UTSTarget = 900 (MPa), ROATarget = 60 (%) and 
minimising the heat treatment cost with respect to (a) Objective 1 
and Objective 3;  (b) Objective 2 and Objective 3; (c) UTS and 
Cost; and (d) ROA and Cost 
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Table 7-11. Ten of the Pareto-optimal solutions for the design problem of 
UTSTarget = 900 (MPa), ROATarget = 60 (%) and minimising the heat 
treatment cost 

Solutions 1 2 3 4 5 6 7 8 9 10

C (wt%) 0.612 0.602 0.604 0.598 0.441 0.613 0.606 0.536 0.531 0.619

Mn (wt%) 0.608 0.740 1.332 0.796 0.701 0.903 0.458 0.811 0.795 0.998

Cr (wt%) 0.357 0.295 0.050 0.050 0.878 0.050 0.366 0.244 0.208 0.050

Mo (wt%) 0.233 0.195 0.118 0.253 0.325 0.143 0.199 0.287 0.276 0.012

Tempering 
Temperature 

(°C)
892.1 895.2 849.3 840.9 898.8 852.2 862.4 849.6 856.5 831.9

UTS (MPa) 921.4 906.8 900.6 894.5 891.9 882.5 877.4 873.9 853.3 851.7

ROA (%) 60.24 61.23 64.00 64.32 59.87 63.69 62.29 60.07 59.80 64.44

Cost (US$) 45.34 43.21 39.14 36.45 73.75 32.73 41.05 46.71 44.44 27.51

7.6 Summary

In this chapter, RSSA and MO-RSSA have been successfully applied to single 

objective and multi-objective optimal design of alloy steels. This research aims at 

determining the optimal heat treatment regime and the required weight percentages 

for the chemical composites to obtain the desired mechanical properties of steel 

such as UTS and ROA. In addition, the work was later extended to include 

economic factors, such as the costs associated with the composites and the 

tempering operation. The simulation results showed that MO-RSSA is able to 

produce a range of well-spread optional solutions around the property targets while 

maintaining reasonable production cost. 
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Conclusion and Future work 

8.1 Summary of Main Results 

In this thesis, a new nature-inspired optimisation algorithm, Reduced Space 

Searching Algorithm (RSSA) was proposed. The inspiration behind this 

optimisation algorithm originated from the simulation of a simple human societal 

behaviour when searching for optimal solutions in our daily routines. This new 

algorithm was validated using a set of well-known challenging benchmark 

problems. Compared with the recently developed and most salient optimisation 

algorithms, CMA-ES, DE and G3-PCX, RSSA performed as well as and 

sometimes better than these algorithms. Furthermore, RSSA was extended to the 

multi-objective optimisation case (MO-RSSA) by using the Random Weighted 

Aggregation (RWA) technique and maintaining an archiving mechanism for the 

solutions. A comparative study based on the ZDT and DTLZ series problems 

showed that MO-RSSA is effective in finding the Pareto-optimal solutions and 
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possesses advantages over some evolutionary algorithms, such as PAES, SPEA 

and NSGA-II, in terms of accuracy and diversity of the final solutions. 

Another new optimisation algorithm, nPSO, was then proposed. It introduced a 

new �momentum term� to replace the original inertia term of the standard PSO. 

The advantages of nPSO lie in its ability to avoid premature convergence and its 

adaptability in different situations. This algorithm has been validated using a set of 

benchmark problems and was shown to lead to a better performance than the 

standard PSOs and some other salient optimisation algorithms. Furthermore, nPSO 

was extended to the multi-objective optimisation case, in which the RWA 

technique was employed and a new approach named �cell selection� method was 

introduced in order to keep a good diversity of the Pareto-optimal solutions. After 

a comparison between the new multi-objective PSO (nMPSO) and several well-

known evolutionary multi-objective algorithms, such as PAES, SPEA and NSGA-

II, it was concluded that nMPSO shows noticeable improvements over these 

algorithms in terms of both accuracy and diversity of the Pareto solutions when 

using the set of challenging benchmarks ZDT and DTLZ series problems. 

Based on the developed optimisation algorithms, the framework for data-driven 

fuzzy modelling, FM-HCMO, was proposed in order to construct linguistic fuzzy 

models considering both the accuracy and the interpretability of fuzzy systems. In 

this methodology, a new agglomerative complete-link clustering algorithm was 

first developed and applied to construct the initial fuzzy model. A new data 

selection technique was then proposed to select representative training data used to 

250



Chapter 8: Conclusion and Future work 

improve the modelling efficiency. Furthermore, a multi-objective optimisation 

mechanism was developed for the performance improvement of the initial model, 

which takes into account both the accuracy and the interpretability attributes. 

Finally, a method for computing the confidence bands relating to the model 

prediction analysis was also proposed. 

FM-HCMO was validated via some benchmark problems, which include the 

identification of nonlinear, static or dynamic systems. It can be concluded that 

FM-HCMO provides a simple and effective framework for system identification 

and prediction and the linguistic models constructed using it lead to good 

generalisation properties.

FM-HCMO was then applied to model the mechanical properties of alloy steels 

using the real data from the steel industry. It was demonstrated that this proposed 

approach works effectively in eliciting accurate and interpretable models within 

the context of high-dimensional industrial applications. 

Finally, RSSA and MO-RSSA were successfully applied to the single objective 

and the multi-objective optimal design of alloy steels. This research aimed at 

determining the optimal heat treatment regime and the required weight percentages 

for the chemical composites to obtain the desired mechanical properties of steel 

such as TS and ROA. In addition, this work was extended to include economic 

factors, such those costs associated with the composites and the tempering 

operation. The simulation results showed that MO-RSSA was able to produce a 
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range of well-spread optional solutions around the property targets while 

maintaining reasonable production costs. These findings indicate that the 

algorithms, RSSA and MO-RSSA, can effectively be used for industrial 

optimisation problems and will be beneficial for the steel industry as a whole. 

8.2 Future Work 

With the availability of the data-driven modelling methodology and the 

optimisation algorithms, one can apply them into various applications. To facilitate 

the usage of these modelling and optimisation tools, a Graphical User Interface 

(GUI), which will allow the information extraction and analysis through simple 

operations, is needed. 

Figure 8-1 shows a tentative version of the fuzzy modelling tool, which has 

integrated and implemented parts of the proposed techniques. This GUI tool can be 

used to construct a fuzzy model from a set of loaded data, which is shown in 

Figure 8-2. In addition, as shown in Figure 8-3, the basic analysis functions for the 

loaded data and the obtained models are also provided. 

Future developments will focus on the design and implementation of this flexible 

GUI software tool that embodies all the proposed algorithms and methods with 

possibility of further extension to include newly devised techniques. This tool will 

allow the application of the proposed techniques for solving the modelling and 
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optimisation problems emanating from the real world in a more convenient way. 

Figure 8-1. The layout of the designed fuzzy modelling GUI 

(a)                                                             (b) 

(c)                                                             (d) 

Figure 8-2. An example of the modelling process using the designed fuzzy 
modelling GUI: (a) loading data, (b) running the optimisation, (c) 
displaying the prediction performance of the training data and (d) 
output predicting from a set of provided discrete inputs 
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(a)                                                             (b) 

(c)                                                             (d) 

Figure 8-3. An example of analysing the loaded data and the obtained model 
using the designed fuzzy modelling GUI: (a) the training data with 
variable ID(s) being 1 and 3, (b) the histograms of the density of the 
training data with variable ID(s) being 1 and 3, (c) the measured 
outputs vs. the predicted outputs of the training data, and (d) the 
inputs and output sensitivity plot (response surface) with various 
variable ID(s) being 1 and 2 

Besides the above work, the following paragraphs summarise some most 

remarkable research trends in the field of evolutionary optimisation and fuzzy 

modelling (from the author�s perspective): 

1. Theoretical foundations for EAs (including MOEAs): In the future, 

more research work should be carried-out to develop the theoretical 
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foundations of EAs. The theoretical aspects of EAs are important, 

which can help to understand why they work. The generation of new 

algorithms and associated operators can also take the advantage of the 

theoretical understanding of EAs. So far, only little research have been 

carried out in this area; for instance, Rudolph and Agapie [2000] have 

proved the convergence properties of some EAs using Markov Chains. 

2. The integration of domain knowledge into modelling and 

optimisation: In the modelling and/or optimisation problems that 

include two or more conflicting objectives, providing all the Pareto-

optimal solutions may not be the most effective way of solving the 

problems. In this situation, the problem domain information, which 

may be represented as the users� preference [Deb & Sundar 2006; 

Ishibuchi & Nojima 2007], can be introduced into the modelling and/or 

optimisation procedure. This integration has the potential to improve 

the effectiveness and the accuracy in modelling and optimisation. 

3. The extension of fuzzy modelling with the inclusion of stochastic 

modelling: With the inclusion of stochastic reasoning, some successful 

optimisation algorithms, such as the Estimation of Distribution 

Algorithms (EDAs) [Larranaga & Lozano 2001] and the RSSA 

algorithm (see Chapter 3) were developed. These stochastic processes 

provide the algorithms with more adaptation abilities. In the same way, 

some stochastic techniques and statistical learning theories [Cherkassky 
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& Mulier 1998], such as Bayesian networks [Jensen 2001], may 

cooperate with fuzzy modelling (a deterministic method). This will 

improve the generalisation ability of fuzzy systems and will offer a 

better adaptation to fuzzy modelling in dealing with some complex 

problems, especially those characterised by high degrees of uncertainty. 

8.3 Conclusion 

In this research project, two evolutionary optimisation algorithms, namely the 

Reduced Space Searching Algorithm (RSSA) and the new Particle Swarm 

Optimisation algorithm (nPSO), were developed. Based on these proposed 

optimisation algorithms, a data-driven modelling methodology, named the Fuzzy 

Modelling approach with a Hierarchical Clustering algorithm and a Multi-

objective Optimisation mechanism (FM-HCMO), was designed. The FM-HCMO 

approach was successfully implemented within an industrial application, which 

consists of eliciting prediction models of the mechanical properties of alloy steels 

using real industry data. Using these developed models, the proposed optimisation 

algorithms were successfully applied to single objective and multi-objective 

optimal designs of alloy steels. 
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