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Abstract

In this thesis we present two themes. Firstly, for a compact Lie group G, we work
with the category of Continuous Weyl Toral Modules (CWTMG), where objects
are sheaves of Q modules over a G topological category TCG whose object space
consists of the closed subgroups of G. It is believed that an algebraic model for
rational G equivariant spectra (for any compact Lie group G) will be of the form
of CWTMG with some additional structure. We establish a very well behaved
monoidal model structure on categories like CWTMG allowing one to do homo-
topy theory there. We do this by using the fact that there is an injective model
structure on the category of chain complexes in a Grothendieck category.
Secondly, we provide an algebraic model for rational SO(3) equivariant spectra
by using an extensive study of interaction between the restriction – coinduction
adjunction and left and right Bousfield localisation. We start by splitting the cat-
egory of rational SO(3) equivariant spectra into three parts: exceptional, dihedral
and cyclic. This splitting allows us to treat every part seperately. Our passage for
the exceptional part is monoidal and it is applied to provide a monoidal algebraic
model for G rational spectra for any finite G. The passage for the cyclic part
is monoidal except for the last Quillen equivalence which simplifies the algebraic
model.
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Introduction

Rational equivariant cohomology theories

Cohomology theories are very important in algebraic topology as they are invariants
for topological spaces. A cohomology theory E∗ is a functor on spaces to the category of
graded abelian groups. Moreover, it has to satisfy Eilenberg- Steenrod axioms, except for the
dimension axiom.

Every cohomology theory E∗ is represented on the homotopy level by an object called spec-
trum and denoted by E. This means that for any topological space X, E∗(X) = [Σ∞X,E]∗

where Σ∞X denotes the suspension spectrum on X and square brackets denote homotopy
classes of maps. Therefore we might study cohomology theories by studying the correspond-
ing spectra. What is more, on the level of spectra the information we are interested in is up
to homotopy, that is we want to work with the homotopy category of spectra.

Unfortunately, the category of spectra is very complicated to work with and even the
homotopy level of information is very rich, mainly because of Z–torsion groups. To make it
simpler and be able to work with the category of spectra we rationalize it, to get rid of these
complications. We obtain a category of spectra which captures the information about rational
cohomology theories, i.e. those with values in Q–modules. It turns out that this category of
rational spectra is much easier, but still very useful.

Naturally, if we want to work with G–spaces (for G a compact Lie group) instead of just
spaces, ordinary cohomology theories will not capture the G–action on the space. However,
we can define G–equivariant cohomology theories which will take into account the G action
on spaces.

It turns out that G–equivariant cohomology theories are also representable on the homo-
topy level analogously to the non–equivariant setting and the representing objects are called
G–spectra. Therefore, instead of working with G–cohomology theories we might as well work
with G–spectra which represent them.

Very often topologists use the term "spectra" without mentioning which category exactly
they have in mind. This happens because we are interested in the homotopy level of informa-
tion and all categories of spectra that we might want to consider have equivalent homotopy
categories (see [SS03a, Section 7]).
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Modelling the category of rational equivariant spectra

The category of G–spectra is important for algebraic topologists as its homotopy category
is a good place to study G–equivariant cohomology theories. However, it is relatively difficult
to work with. Therefore we try to find a purely algebraic description of it, i.e. an algebraic
category which would be Quillen equivalent to the category of G–spectra. The nice part of
this approach is the fact that the conditions on the adjoint pair of functors to form a Quillen
equivalence are relatively easy to check.

The first idea is to rationalize the category of G–spectra, following the non-equivariant
ideas, as we want to get rid of the Z torsions (and moreover this would make some tools work).
Recall that a spectrum X is rational if its homotopy groups π∗(X) are rational. However, what
we mean by a category of rational G–spectra is the same category as the category of G–spectra,
but with a model structure being a left Bousfield localisation of the stable model structure.
New weak equivalences are maps which give isomorphisms after applying a rational homotopy
group functor, i.e. π∗(−)⊗Q.

Therefore we want to find a small algebraic category in which calculations would be pos-
sible, equipped with a model structure which would be Quillen equivalent to the category of
rational G–spectra. Note, that the level of accuracy we would like to get is "up to homo-
topy", therefore we don’t need equivalences of categories (which is usually difficult to get),
but (possibly a chain of) Quillen equivalences. If we find such a chain of Quillen equivalences
between the category of rational G–spectra and some algebraic category we say that we found
an "algebraic model" for rational G-spectra. Now we can work and perform constructions in
this new setting to get true results for the homotopy category of rational G–spectra.

Existing work

It is expected, that for any compact Lie group G there exist an algebraic category A(G)
which is Quillen equivalent to the rational G equivariant spectra.

There are many partial results, or examples for specific Lie groups G for which an algebraic
model has been given. Schwede and Shipley provided in [SS03b, Example 5.1.2] an algebraic
model for rational G equivariant spectra for finite G. Greenlees and Shipley presented in [GS]
an algebraic model for rational torus equivariant spectra. Also, an algebraic model for the free
rational G spectra was given in [GS14a] for any compact Lie group G.

However, there is no algebraic model known for the whole category of rational G-spectra
for an arbitrary compact Lie group G. There is however, a very important result which gives
an algebraic model for the category of non- equivariant rational spectra, which we refer to
as a Shipley’s theorem and which we state next. This theorem was used in proving some
equivariant results.
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Shipley’s theorem

In her paper [Shi07] Shipley proved the following:

Theorem 0.0.1. [Shi07, Theorem 1.1] Let R be a discrete commutative ring. Then the pro-
jective model category of unbounded differential graded R−algebras and stable model category
of HR−algebra spectra are Quillen equivalent.

The proof of this result goes by constructing a zig–zag of three monoidal Quillen equiv-
alences between the stable model category of HR modules and projective model category of
unbounded chain complexes of modules over R. The definition of the two intermediate cate-
gories uses the notion of a category of symmetric spectra in an arbitrary monoidal category,
which again is a monoidal category and can be equipped with a compatible model structure.
Because all categories in the zig–zag are monoidal and the three adjoint pairs of functors be-
tween them are weak monoidal Quillen equivalences they lift to the level of algebras, again as
Quillen equivalences.

It was proved earlier by Schwede and Shipley in [SS03b] that the categories of R−modules
and HR−modules are Quillen equivalent, however the functors used in this result did not
preserve the monoidal structure, therefore the Quillen equivalence could not be lifted to the
level of algebras.

The above theorem gives an algebraic model in particular for HQ−modules. As the ho-
motopy category of HQ−modules is equivalent to the homotopy category of rational spectra
we get an algebraic model in non–equivariant case.

Shipley’s result is used for example in providing an algebraic model for rational torus
equivariant spectra, as an intermediate step in the proof.

Rational Mackey functors vs sheaves

In the paper [Gre98a] Greenlees showed that the category of rational Mackey functors for
any compact Lie group G is equivalent to the category of continuous Weyl toral modules, which
denotes the category of sheaves with Weyl group actions over a specific topological category
TCG. The main advantage of this result is that we replaced a functor from a complicated
Burnside category BG by a functor from much easier category TCG.

The category TCG is a special subcategory of all closed subgroups of G and inclusions,
which has very few morphisms and all of them increase the size of subgroups. TCG is equipped
with a special topology, so that we obtain the topological category. We discuss this topological
category in more details and give several examples in Section 5.2.

An algebraic model for rational torus equivariant spectra

Suppose G is a torus, i.e. a compact, connected, abelian Lie group. In [GS] Greenlees and
Shipley proved that the category of rational G–spectra is Quillen equivalent to the category of
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differential graded objects in some abelian category A(G). The objects of the category A(G)
are sheaves of graded Q–modules with some additional structure. These sheaves are over the
space of closed subgroups of G denoted by Sub(G) and have the property that the fibre over
a closed subgroup H gives information about the H–fixed points.

The proof of this result goes by constructing a zig–zag of several Quillen equivalences.
It uses the ideas of cellularization described in Section 1.2 and model structures on diagram
categories described in Section 1.4. One of the Quillen equivalences in the zig–zag comes from
Shipley’s theorem mentioned above. Another one uses the idea of formality (or rigidity), which
under some assumptions allows one to get a Quillen equivalence between categories of modules
over two weakly equivalent rings.

The idea of this proof gives directions to prove more general result – the analogous theorem
for an arbitrary compact Lie group G.

Morita equivalences

Schwede and Shipley in [SS03b] provided a quite general tool for establishing a Quillen
equivalence between a spectral model category with a set of (homotopically) compact, cofi-
brant and fibrant generators and a certain category of modules over a ring with possibly many
objects. This machinery can be used in a case of G–equivariant spectra, where we obtain a
model for it, namely the cateory of modules over a ring with many objects, however the ring
itself is so complicated that this category is not useful to work with. Even if their machinery is
applied to the category of rationalG–equivariant spectra the outcome is still very complicated.

The idea mentioned above is discussed in details in Section 3.2.

An algebraic model for rational G–equivariant spectra for finite G

In [SS03b, Example 5.1.2] Schwede and Shipley provided an algebraic model for rational
G–equivariant spectra when G is finite. In [Bar09b] Barnes provided much simpler algebraic
model for rational G–equivariant spectra when G is finite. He was working with the category
of G–equivariant EKMM S–modules to start with. The idea was to split it into separate parts
using the idempotents of the rational Burnside ring, obtaining localised categories. Then he
showed that each of these localised categories is Quillen equivalent to a category of modules
over a commutative ring. The whole point of that approach was to use the monoidal version
of Morita equivalence. However, a work of McClure recently redeveloped by Hill and Hopkins
[HH13] shows that great care is needed when one deals with commutative rings. We present
a different approach.

An algebraic model for rational O(2)–equivariant spectra

Barnes provided an algebraic model for rational O(2)–equivariant spectra in [Bar13]. He
used the same tactics starting with splitting the category into two parts: cyclic and dihedral.
He used monoidal Morita equivalences for dihedral part and he followed Greenlees and Shipley’s
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approach for the cyclic part. However, again in both cases great care needs to be taken when
one deals with commutative rings. We present slightly different approach with the cyclic part
and dihedral part, however we were not able to provide a monoidal comparison for the dihedral
part.

Contents of this thesis

Homotopy theory of sheaves

The first results of this thesis provide tools to study homotopy theory of sheaves of chain com-
plexes of Q modules over a topological category using results from topos theory by Moerdijk
in [Moe88] and [Moe90]. We put a well behaved model structure on this category as well as
on the corresponding one with an action of a G, where G is any compact Lie group. Next,
we restrict attention to the category introduced by Greenlees in [Gre98a] of continuous Weyl
toral modules and put a well behaved model structure there.

We present the main theorems below (this is Corollary 6.2.1 and Theorem 8.2.9 respec-
tively):

Theorem 0.0.2. Suppose X is a topological category, then there exist a proper, cofibrantly
generated model structure on the category of Ch(Shv(Q − mod)/X) of chain complexes of
sheaves of Q-modules over a topological category X where

• the cofibrations are the injections,

• the weak equivalences are the homology isomorphisms and

• the fibrations are maps which have the right lifting property with respect to trivial cofi-
brations.

Theorem 0.0.3. Suppose G is a compact Lie group. Then there is a proper, stable, cofibrantly
generated, monoidal model structure on the category of chain complexes of continuous Weyl
toral modules for G, where weak equivalences are homology isomorphisms and cofibrations are
monomorphisms.

These results provide the foundations for establishing an algebraic model for rational G
equivariant spectra, where G is any compact Lie group, as it is believed that a model will be of
the form of a category consisting of continuous Weyl toral modules with additional structure.

As one of the examples, we show that the algebraic model for the dihedral part of SO(3)
spectra is equivalent to the category of continous Weyl toral modules restricted to the dihedral
part (see Example 8.2.3) and moreover that this equivalence of categories is compatible with
the model structures (see Remark 8.2.10).
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Induction – restriction and restriction – coinduction adjunctions

Suppose we have an inclusion i : H −→ G of a subgroup H in a group G. This gives a
pair of adjoint functors at the level of orthogonal spectra (see for example [MM02]), namely
induction, restriction and coinduction as below (the left adjoint is above the corresponding
right adjoint)

G− IS i∗ // H − IS
FH(G+,−)

kk

G+∧H−
ss

These two pairs of adjoint functors are Quillen pairs and restriction as a right adjoint is
used for example when we want to take H fixed points of G spectra, where H is not a normal
subgroup of G. The first step then is to restrict to NGH spectra and then take H fixed points.

It is natural to ask when the above pair of adjunctions passes to the localised categories.
The answer is surprisingly complex and is studied in Section 9.2. It turns out that induction
– restriction adjunction does not always pass to the Quillen adjuntion at the localised cate-
gories, even if we choose the idempotents on both sides to be "corresponding". However, with
the "corresponding" choice of idempotents the restriction – coinduction adjunction pasess to
Quillen adjunction at this level, for certain subgroups H. We discuss it below.

Restriction – coinduction adjunction

The main ingredient of our approach to an algebraic model is via studying the restriction –
coinduction adjunction for rational orthogonal spectra: LSQ(G−IS) and LSQ(H−IS), where
H < G and G is any compact Lie group. It turns out, that if we Bousfield localise both of
these categories of spectra with respect to idempotents related via restriction this adjunction
is a Quillen adjunction (this is Lemma 9.2.6 which we state below)

Lemma 0.0.4. Suppose G is any compact Lie group, i : H −→ G is an inclusion of a
subgroup and V is an open and closed set in F (G)/G, where F (G) denotes the space of closed
subgroups of G with finite index in their normalizer. Recall the rational Burnside ring A(G) =
C(F (G)/G,Q). Thus there is an idempotent eV corresponding to the characteristic function
on V . Then the adjunction

i∗ : LeV SQ(G− IS)
//
Lei∗V SQ(H − IS) : FH(G+,−)oo

is a Quillen pair.

We then investigate the behaviour of this adjunction for every part of rational SO(3)
spectra seperately, as we discuss below.
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Induction – restriction adjunction

The induction – restriction adjunction is not as well behaved with respect to localisation
as the previous adjunction. We will show in Proposition 9.2.3 that when H is an exceptional
subgroup of G which is NGH–bad (the terminology is explained in Section 9.1) and we consider
the category LeHSQ(G−IS) of localised, rational G orthogonal spectra and LeHSQ(NGH−IS),
this adjunction is not a Quillen adjunction.

However, it is a Quillen adjunction when considered for an exceptional subgroup H which
is NGH–good (see Proposition 9.2.2) and this result is used in the proof of Theorem 10.3.1.
Also, it is a Quillen adjunction for dihedral parts of rational SO(3) and O(2) spectra (see
Proposition 9.2.5), which is used in the proof of Theorem 11.3.1.

Application to SO(3) case

We aim to give an algebraic model for the category of rational SO(3) spectra LSQSO(3) −
IS. Our main tool will be the analysis of the restriction – coinduction adjunction, and to
apply it we first split the category LSQSO(3) − IS using the result of Barnes [Bar09a] and
idempotents of the rational Burnside ring A(SO(3)) as follows (see Section 9.2 for definitions
of the idempotents):

4 : G− ISQ
//
LecSQ(G− IS)× LedSQ(G− IS)× LeeSQ(G− IS) : Πoo

where G = SO(3). The above adjunction is a monoidal Quillen equivalence. We will call
LeeSQ(G−IS) the exceptional part, LedSQ(G−IS) the dihedral part and LecSQ(G−IS) the
cyclic part of LSQSO(3)− IS and later we will consider them seperately.

Exceptional part of rational SO(3) spectra

The first application of using restriction – coinduction adjunction in the passage towards
an algebraic model is for exceptional part of rational SO(3) spectra. This part can be split into
finitely many parts, each of which corresponds to localisation of the category of rational SO(3)
spectra at an idempotent corresponding to one of the (conjugacy classes of the) exeptional
subgroups. The splitting result allows us to deal with each exceptional subgroup seperately.

The first step towards an algebraic model for one such category LeHSQ(SO(3) − IS),
corresponding to the subgroup H, is to use the restriction – coinduction adjunction to pass
to the category LeHSQ(NGH − IS). The result is presented in Theorem 10.3.1 and Theorem
10.3.4 which we state below

Theorem 0.0.5. Suppose H is an exceptional subgroup of G = SO(3) and it is N = NGH–
good. Then the adjunction

i∗ : LeHSQ(G− IS)
//
LeHSQ(N − IS) : FN (G+,−)oo
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is a strong monoidal Quillen equivalence, where eH on the right hand side denotes the idempo-
tent of the rational Burnside ring A(N) corresponding to the characteristic function of (H)N .

Theorem 0.0.6. Suppose H is an exceptional subgroup of G = SO(3) and N = NGH. Then
the composition of adjunctions

LeHSQ(G− IS)
i∗ //

Li∗(eHSQ)(N − IS)
FN (G+,−)
oo

Id //
LeHSQ(N − IS)

Id
oo

is a strong monoidal Quillen equivalence, where eH on the further right hand side denotes the
idempotent of the rational Burnside ring A(N) corresponding to the characteristic function of
(H)N . Notice that if H is N -good then the right adjunction is trivial.

This is the most important ingredient in our approach, which allows us to provide a
monoidal algebraic model for the exceptional part of rational SO(3) spectra.

It will appear in Section 10.3 that to use this approach we need to establish a non-monoidal
passage via Morita equivalences first. This is used in the proof of Theorem 10.3.4. We also
note, that Theorem 10.3.1 follows from Theorem 10.3.4, however the first one is stated with
a self – contained proof, which is based on the good behaviour of the induction – restriction
adjunction in this case, and thus we decided to present it.

The main result of this part is Theorem 10.3.13:

Theorem 0.0.7. Suppose H is an exceptional subgroup of G = SO(3). Then there is a
zig-zag of monoidal Quillen equivalences from LeHSQ(G − IS) to Ch(Q[W ] − mod) where
W = NGH/H.

Exceptional part of any compact Lie group G

The proof presented in Chapter 10 works for the exceptional part of any compact Lie group
G as we state in Remark 10.3.14. Thus this new passage provides an algebraic model for an
exceptional part of any compact Lie group G.

Finite G

As a special case of the exceptional part of any compact Lie group G we can restrict
attention to G finite. In this case the whole category of rational G spectra is actually equal
to its exceptional part, and thus our passage provides a monoidal algebraic model for rational
G spectra when G is finite (this is Corollary 10.3.15, which we state below):

Corollary 0.0.8. Suppose G is a finite group. Then there is a zig-zag of monoidal Quillen
equivalences from LSQ(G− IS) to

∏
(H),H≤GCh(Q[WGH]−mod).
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Dihedral part of rational SO(3) spectra

Another application of the restriction – coinduction adjunction is in providing a passage
towards the algebraic model for the dihedral part of rational SO(3) spectra. This adjunction
is used as a first step, to pass to the dihedral part of rational O(2) spectra preserving monoidal
structures (this is Theorem 11.3.1, which we state below)

Theorem 0.0.9. Let i : O(2) −→ SO(3) be an inclusion and note that i∗(edSQ) = edSQ.
Then the following

i∗ : LedSQ(SO(3)− IS)
//
LedSQ(O(2)− IS) : FO(2)(SO(3)+,−)oo

is a strong monoidal Quillen equivalence, where both idempotents correspond to the set of all
dihedral subgroups of order greater than 4 and O(2) (in SO(3) and O(2) respectively).

Unfortunatelly we were not able to provide a monoidal algebraic model for dihedral part
of rational O(2) spectra. However, when this is accomplished the result above will complete a
proof of monoidal algebraic model for dihedral part of rational SO(3) spectra.

We decided to provide a non-monoidal algebraic model for dihedral part of rational SO(3)
spectra, working with Morita equivalences. The idea of the proof is based on the one presented
in [Bar13] and it is not monoidal.

The main result of this part is Theorem 11.2.16 (where the notation A(D) is explained in
Section 11.1):

Theorem 0.0.10. There exist a zig-zag of Quillen equivalences from LedSQ(SO(3) − IS) to
Ch(A(D)).

Cyclic part of rational SO(3) spectra

Again, the first step in the passage towards the monoidal algebraic model for cyclic part
of rational SO(3) spectra is to use the restriction – coinduction adjunction and pass to the
cyclic part of rational O(2) spectra. This is Theorem 12.2.3, which we state below

Theorem 0.0.11. Suppose K is the set of generators for LecSQ(SO(3)−IS) as established in
Proposition 12.2.1 together with all their suspensions and desuspensions. Then the following

i∗ : LecSQ(SO(3)− IS)
//
i∗(K)− cell− LecSQ(O(2)− IS) : FO(2)(SO(3)+,−)oo

is a strong monoidal Quillen equivalence, where the idempotent on the right hand side corre-
sponds to the family of all cyclic subgroups of O(2).



18 CONTENTS

We decided to present a complete passage towards the monoidal algebraic model for the
cyclic part of rational O(2) spectra, which is based on the work of Greenlees, Shipley and
Barnes. However, to make the passage monoidal we repeatedly use left Bousfield localisations
(see Section 12.3).

The main results in this part are Theorems 12.3.24, 12.4.1 and 12.4.3:

Theorem 0.0.12. There is a zig-zag of Quillen equivalences from LecSQ(O(2)−IS) to dA(O(2), c),
where dA(O(2), c) is a category of differential objects in A(O(2), c) considered with the dual-
isable model structure (see Section 12.1).

Theorem 0.0.13. There is a zig-zag of Quillen equivalences between LecSQ(SO(3)−IS) and
im(K)−cell−dA(O(2), c), where dA(O(2), c) is considered with the dualisable model structure.
Here im(K) denotes the derived image under the zig-zag of Quillen equivalences described in
Section 12.3 of the set of cells K described in Proposition 12.2.1.

Finally we present the result wich gives a much simpler algebraic model category as an
algebraic model for the cyclic part of rational SO(3) spectra. This is Theorem 12.4.3.

Theorem 0.0.14. The adjunction

F̃ : dA(SO(3), c)
//

im(K)− cell− dA(O(2), c) : R̃oo

defined in the statement of the Theorem 12.1.28 is a Quillen equivalence, where both categories
(before cellularisation on the right) are considered with the injective model structure. Here
im(K) denotes the derived image under the zig-zag of Quillen equivalences described in Section
12.3 of the set of cells K described in Proposition 12.2.1.

We summarise the results for exceptional, dihedral and cyclic parts of rational SO(3)
spectra in the following

Theorem 0.0.15. There is a zig-zag of Quillen equivalences between rational SO(3) spectra
LSQ(SO(3)− IS) and the category∏

(H)∈E

Ch(Q[WSO(3)H]−mod)× Ch(A(D))× dA(SO(3), c)

where E denotes the exceptional part of SO(3).

Organisation of this thesis

This thesis consists of three parts. The first part provides a background definitions as well
as an overview of major results used in Part II and Part III. Since, especially proofs presented
in Part III, use a lot of existing results and constructions, we decided to state many of them,
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and where necessary also give proofs. However, there are no original results in this part and
the proofs are given only for those statements, for which we didn’t find references. In Chapter
1 we provide an overview on the model categories, in Chapter 2 we discuss spectra and G–
spectra for a compact Lie group G. Then, in Chapter 3 we present some result on enriched
categories and finally, in Chapter 4 we summarise briefly the theory of sheaves.

Part II provides an introduction to the theory of G-sheaves of Q-modules over a G-
topological category, where G is any topological group. We build up the theory starting
with introducing topological categories in Chapter 5, then we proceed to sheaves over topolog-
ical categories in Chapter 6. Next, in Chapter 7 we discuss the G-sheaves over G-topological
spaces and finally in Chapter 8 we discuss the G-sheaves over G-topological categories and the
category of Continuous Weyl Toral Modules.

Part III provides an algebraic model for SO(3)-rational spectra. Firstly, in Chapter 9
we discuss the general results for the group SO(3), like the subgroup structure and some
properties of adjunctions relating SO(3) rational spectra. Then we use the splitting theorem,
which allows us to split SO(3) rational spectra into 3 parts: exceptional, dihedral and cyclic.
We proceed to building a passage towards the algebraic model of SO(3) rational spectra,
dealing with each part seperately. We provide a monoidal algebraic model for the exceptional
part in Chapter 10 using a completely new approach. Then we proceed to dihedral part
in Chapter 11, however this passage, since it uses Morita equivalences, is not monoidal. In
Chapter 12 we give a monoidal algebraic model for cyclic part, building on existing work
of Greenlees and Shipley [GS] and Barnes [Bar13]. However, to keep it monoidal we make
significant use of left Bousfield localisations. This gives a quite complicated monoidal algebraic
model for rational cyclic SO(3) spectra. In Section 12.1.2 we describe a relatively easy new
category which is then shown to provide an algebraic model for the cyclic part of rational
SO(3) spectra. This last passage however, is not monoidal.

Further work

Monoidal algebraic model for dihedral part of rational O(2) spectra

A natural direction of work would be to provide a monoidal algebraic model for the dihedral
part of O(2) spectra (and thus also SO(3) spectra) and therefore complete the monoidal model
for O(2) and SO(3) rational spectra. The idea is to try to split information into three parts,
in a way analogous to the one presented in Section 12.3 for cyclic part.

Restriction – coinduction adjunction

We need to check how the new approach of looking at the restriction - coinduction ad-
junction works for more general examples and what homotopically valid information it brings.
For instance, since for every compact Lie group G, the category of rational G equivariant
spectra splits into a cyclic part and the rest (see Section 9.3) we would like to check when
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this adjunction preserves the homotopical information of this part (under some conditions it
should be true, that the cyclic part of rational G spectra and the cyclic part of rational N
spectra are Quillen equivalent, where N is the normalizer of the maximal torus in G).

Another direction involves investigating the relationship of cyclic part of rational G spectra
and rational Ge spectra, for the identity component Ge of G from the view point of this
adjunction.

Induction – restriction adjunction

It would be useful to track the behaviour of induction–restriction adjunction in cases of
left Bousfield localisation or cellularization. As we have shown in Section 9.2, when H is
an exceptional subgroup of G which is NGH–bad this adjunction fails to be a Quillen pair.
However, the same adjunction is a Quillen adjunction when considered for an exceptional
subgroupH which isNGH–good (see Proposition 9.2.2) or for dihedral parts of SO(3) andO(2)
(see Proposition 9.2.5). We plan to investigate under what general conditions this adjunction
is a Quillen adjunction at the level of localised or cellularised categories of rational G spectra.

Further groups

Several more examples of groups G and algebraic models for rational G equivariant spectra
would help deduce more general results. The first group to investigate would be SU(2) as it
is a double cover of SO(3). We expect its analysis to be an application of results for SO(3).

Another related direction would involve looking at groups, for which the cotoral subgroups
(and thus morphisms in the topological category of toral chains, see Section 5.2) appear not
only in the cyclic part, i.e. subgroups of the maximal torus (up to conjugation). The simplest
example being C2 × SO(2).

Continuous Weyl Toral Modules

We plan to continue the work started in this thesis to investigate the relationship of the
existing algebraic models and Continuous Weyl Toral Modules (see Section 8.2). For this,
the following two paths may be taken. Firstly, we can work on relating the existing models
with the respective Continuous Weyl Toral Modules in a way which preserves homotopical
information.

Secondly, we may look for a passage, which can be generalised to the level of sheaves.
However, the second approach presents some difficulties coming from the fact that we don’t
know yet how to relate a category of rational G–spectra to the category of G–sheaves over a
G–topological category TCG.
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Notational conventions

We follow the general convention of writing the left adjoint arrow on top of the right one
whenever we consider an adjoint pair.

When C is a triangulated category we use [A,B]C for an abelian group of morphisms from
A to B in C and [A,B]C∗ for a graded abelian group of morphisms from A to B in C, i.e.
[A,B]Cn = [A[n], B]C where A[n] is the n-fold shift of A.

Whenever we consider a suspension G–spectrum for a G–space X we continue to use
notation X for it, instead of Σ∞X.
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Chapter 1

Model categories

Suppose we have a category C and a class of mapsW in C that we would like to formally invert.
Moreover we would like to obtain a universal such category. This construction is called the
localisation of C with respect to W and it may encounter set theoretical problems, as we may
end up with a class of maps between two objects, instead of a set. However, the construction
can be performed if W admits the calculus of left or right fractions.

Quillen in 1967, looking at the category of topological spaces Top and the class of weak
homotopy equivalences, described in [Qui67] for a category C and a class of maps W the
construction which lead to desired result. This construction can be performed provided one
can define a structure on C called the model structure. A model structure is a choice of three
classes of maps satisfying a list of axioms. One class is exactly those maps that we want to
invert, we call them weak equivalences. Other two classes, fibrations and cofibrations, play
auxiliary role. Quillen gives an explicit construction of localisation of C with respect to the
class of weak equivalences and calls it the homotopy category Ho(C).

If we have a model structure on a category C it gives us a tool to do "homotopy theory"
there- we obtain a good category to work with homotopy limits and we get an action of ho-
motopy category of simplicial sets Ho(sSet) on a category Ho(C). These results are described
in detail in [Qui67] and [Hov99]. This point of view proved to be very fruitful allowing to do
"homotopy theory" in categories far from topological.

1.1 Definitions

In this section we recall the basic definitions and properties of model categories. To get more
information about it see [DS95] and [Hov99]. The first 5 definitions in this section are after
[Hov99].

First note that given a category C we can consider a category MapC where objects are
maps from C and morphisms are commutative squares.

Definition 1.1.1. Let C be a category. A map f in C is a retract of a map g in C if and only
if there is a commutative diagram of the form

25
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X X

Y

Y ′

X ′ X ′

g

IdX

f f

IdX′

Definition 1.1.2. A functorial factorization in C is an ordered pair (α, β) of functors MapC −→
MapC such that f = β(f) ◦ α(f) for all f in MapC. In particular the domain of α(f) is the
domain of f , the codomain of α(f) is the domain of β(f) and the codomain of β(f) is the
codomain of f .

Definition 1.1.3. Suppose i : A −→ B and p : X −→ Y are maps in a category C. Then i
has the left lifting property with respect to p and p has the right lifting property with respect
to i if for every commutative diagram of the form

A X

B Y

f

i p

g

there exist a lift in this diagram, i.e. a map h : B → X such that both triangles commute:

A X

B Y

h

f

i p

g

Definition 1.1.4. A model structure on a category C consists of three subcategories of C,
called weak equivalences, fibrations and cofibrations, and two functorial factorisations (α, β)
and (γ, δ) satisfying the following conditions:

1. (2 out of 3) If f and g are morphisms in C such that gf is defined and two out of f, g, gf
are weak equivalences then so is the third.

2. (Retracts) If f and g are morphisms in C such that f is a retract of g and g is a weak
equivalence, fibration or cofibration then so is f .
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3. (Lifting) Define a map to be a trivial cofibration if it is both a weak equivalence and a
cofibration. Similarly, define a map to be a trivial fibration if it is both a weak equivalence
and a fibration. Then trivial cofibrations have the left lifting property with respect to
fibrations and cofibrations have the left lifting property with respect to trivial fibrations

4. (Factorisation) for any morphism f , α(f) is a cofibration, β(f) is a trivial fibration, γ(f)
is a trivial cofibration and δ(f) is a fibration.

Definition 1.1.5. A model category is a category C with all small limits and colimits together
with a model structure on C

We sometimes call a trivial cofibration an acyclic cofibration and similarly for trivial fibra-
tions, we sometimes call them acyclic fibrations.

As we mentioned in the introduction to this chapter, the model structure on a category
C allows one to construct a homotopy category Ho(C), with weak equivalences inverted. We
summarise the construction presented in [Hov99, Section 1.2] in the following

Theorem 1.1.6. Suppose C is a model category. Then there exists a category Ho(C) together
with a functor γ : C −→ Ho(C) with the property that γ(f) is an isomorphism if and only
if f is a weak equivalence in C. Moreover, if F : C −→ D is a functor that sends weak
equivalences to isomorphisms then there exists a unique functor Ho(F ) : Ho(C) −→ D such
that Ho(F ) ◦ γ = F .

Usually checking all the axioms in the definition of a model category is difficult. However,
very often model categories are cofibrantly generated, which means that the model structure
is completely determined by a set of generating cofibrations and a set of generating trivial
cofibrations. These two sets determine trivial fibrations and fibrations respectively in view of
lifting condition in Definition 1.1.4. Knowing that a model structure is cofibrantly generated
makes it easier to work with it.
To give the definition we first need some notation. The following notation and definition is
from [SS00]. Having a cocomplete category C and a class of maps I, we denote:

• I-inj (I- injectives) the class of maps which have the right lifting property with respect
to the maps in I

• I-cof (I- cofibrations) the class of maps which have the left lifting property with respect
to the maps in I-inj

• I-cofreg (regular I- cofibrations) the class of possibly transfinite compositions of pushouts
of maps in I. Hovey’s notation for this is I-cell.

Definition 1.1.7. A model category C is called cofibrantly generated if it is bicomplete
and there exist a set of cofibration I and a set of trivial cofibrations J such that:

• the fibrations are exactly J-inj

• the trivial fibrations are exactly I-inj
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• the domain of each map in I (respectively J) is small relative to the class of I-cofreg
(respectively in J-cofreg).

Moreover (trivial) cofibrations are exactly the I (J)- cof.

To complete this definition we need to explain the notion of "smallness".
For κ a cardinal we say that an ordinal λ is κ-filtered if it is a limit ordinal and moreover
A ⊆ λ with |A| ≤ κ then supA < λ.

Definition 1.1.8. [Hov99, Definition 2.1.3] Let C be a category with all small colimits, D a
class of morphisms in C, A an object of C and κ a cardinal. Then A is κ-small relative to D
if for all κ-filtered ordinals λ and all λ- sequences of maps in D:

X0 −→ X1 −→ ... −→ Xβ −→ ...

the canonical map of sets

colimβ<λC(A,Xβ) −→ C(A, colimβ<λXβ)

is an isomorphism. A is small relative to D if there exists κ such that A is κ- small relative
to D.

Working with cofibrantly generated model categories is much easier, and it is a notion
useful for performing certain constructions on the model category, such as localisation.

Provided we have two model categories C and D we would like to have a notion of a functor
between them which preserves the model structure, i.e. which induces a functor on the level
of homotopy categories. It turns out that it is best to talk about adjoint pairs of functors
between model categories.

Definition 1.1.9. Let C and D be model categories, and F : C � D : G a pair of adjoint
functors. Suppose that F preserves cofibrations and G preserves fibrations (or equivalently
F preserves cofibrations and trivial cofibrations, or equivalently G preserves fibrations and
trivial fibrations). Then we call F a left Quillen functor, G a right Quillen functor and
an adjoint pair (F,G) we call a Quillen pair.

Definition 1.1.10. [Hov99, Definition 1.3.6]
Let C and D be model categories.

• If F : C −→ D is a left Quillen functor then we define the total left derived functor
LF : Ho(C) −→ Ho(D) as a composition:

Ho(C) Ho(C) Ho(D)
Ho(ĉ) Ho(F )

• If G : D −→ C is a right Quillen functor then we define the total right derived functor
RG : Ho(D) −→ Ho(C) as a composition:
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Ho(D) Ho(D) Ho(C)
Ho(f̂) Ho(G)

Where ĉ and f̂ denote the cofibrant and fibrant replacement functor respectively.

We have the following result:

Theorem 1.1.11. [DS95, Theorem 9.7] Let C and D be model categories, and F : C � D : G
a pair of adjoint functors, where F is a left Quillen functor and G is a right Quillen functor.
Then the total derived functors

LF : Ho(C) //
Ho(D) : RGoo

exist and form an adjoint pair.
If in addition for each cofibrant object A of C and fibrant object X of D, a map f : A −→ G(X)
is a weak equivalence in C if and only if its adjoint f [ : F (A) −→ X is a weak equivalence
in D, then LF and RG are inverse equivalences of categories. In this situation we call the
adjoint pair of functors a Quillen equivalence.

We say that two model categories are Quillen equivalent if there is a finite zig–zag of
Quillen equivalences between them.

The condition from Theorem 1.1.11 is not always the easiest one to check. Therefore we
give a more useful criterion for checking when a given Quillen adjunction is a Quillen pair.

Proposition 1.1.12. [Hov99, Corollary 1.3.16] Let C and D be model categories, and let
F : C � D : G be a Quillen pair. The following are equivalent:

1. (F,G) is a Quillen equivalence

2. F reflects weak equivalences between cofibrant objects and, for every fibrant Y , the map
F ĉGY −→ Y is a weak equivalence

3. G reflects weak equivalences between fibrant objects and, for every cofibrant X, the map
X −→ Gf̂FX is a weak equivalence

Now we state a well known theorem, which is due to Kan and it allows to transfer a model
structure through the right adjoint functor.

Theorem 1.1.13. [Hir03, Theorem 11.3.2] SupposeM is a cofibrantly generated model cate-
gory with generating cofibrations I and generating trivial cofibrations J , C is a category closed
under small limits and colimits and we have an adjoint pair

F : M // C : Uoo

with F the left adjoint. Let FI = {Fα|α ∈ I} and similarly for FJ and suppose further that

• both sets FI and FJ permit the small object argument
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• U takes relative FJ-cell complexes to weak equivalences

then there is a cofibrantly generated model structure on C with generating cofibrations FI and
generating trivial cofibrations FJ . The weak equivalences and fibrations in C are these maps
which U takes to weak equivalences or fibrations (respectively). F,U is a Quillen adjunction
with respect to this model structure.

Later on we will work with W objects in a category C, where W is a finite group. We
denote this category by C[W ]. We can think of C[W ] as a category of functors from W , which
is a one object category with Hom(∗, ∗) = W to C, also known as CW . It turns out that
if C was a cofibrantly generated model category, then C[W ] can be equipped with a model
structure by appying Theorem 1.1.13 to the adjunction below:

LanU : C // CW : Uoo

Where LanU is the left Kan extension along U . Recall that U has also a right adjoint, but we
won’t be using that much. It is a straightforward observation that U preserves cofibrations.
Now we prove the following, well–known fact

Proposition 1.1.14. Suppose

F : C // D : Goo

is a Quillen equivalence. Then this adjunction restricted to W–objects in C and D (with model
structures transfered from that on C and D respectively) is a Quillen equivalence.

Proof. We have the following diagram

C[W ]

UC

��

FW // D[W ]

UD

��

GW
oo

C
F // D
G

oo

where UC and UD functors commute with both left and right adjoints. Moreover UC and UD
define weak equivalences and fibrations and they preserve cofibrant objects (they preserve
cofibrations and initial objects) and fibrant objects. A check of the condition from Definition
1.1.11 for the adjunction (FW , GW ) is just a diagram chaising.

Definition 1.1.15. A model category C is stable if it is pointed (i.e. the initial object is
isomorphic to the terminal object) and the suspension functor

∑
is an equivalence of categories

on the level of homotopy category ofM, Ho(M).
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Proposition 1.1.16. [Hov99, Definition 7.1.1] A homotopy category of a stable model category
is triangulated.

The following are taken from [SS03b], Definition 2.1.2 and Lemma 2.2.1.

Definition 1.1.17. Let C be a triangulated category with infinite coproducts. A full trian-
gulated subcategory of C (with shift and triangles induced from C) is called localising if it is
closed under coproducts in C. A set P of objects of C is called a set of generators if the
only localising subcategory of C containing objects of P is the whole C. An object X in C is
(homotopically) compact if for any family of objects {Ai}i∈I the canonical map⊕

i∈I
[X,Ai]

C −→ [X,
∐
i∈I

Ai]
C

is an isomorphism. An object of a stable model category is called a (homotopically) compact
generator if it is so when considered as an object of the homotopy category.

To check if a set of compact objects generates a triangulated category we have the following
criterion

Proposition 1.1.18. [SS03b, Lemma 2.2.1] Let C be a triangulated category with infinite
coproducts and let P be a set of compact objects. Then P generates C in the sense of Definition
1.1.17 if and only if for any object X in C, X is trivial if and only if there are no graded maps
from objects of P to X, i.e. [P,X]∗ = 0 for all P ∈ P.

There is an easy condition for a Quillen adjunction between stable model categories with
sets of (homotopically) compact generators to be a Quillen equivalence

Lemma 1.1.19. Suppose F : C � D : U is a Quillen pair between stable model categories,
such that the right derived functor RU preserves coproducts. Then it is enough to check that
a derived unit or counit condition from Proposition 1.1.12 is satisfied for the set of compact
generators.

Proof. This follows from the fact that the homotopy category of a stable model category is
a triangulated category. As the derived unit and counit conditions are satisfied for a set of
objects K then they are also satisfied for every object in the localising subcategory for K.
Since K consisted of generators the localising subcategory for K is the whole category.

Notice that LF always preserves coproducts, as it is left adjoint.

Proposition 1.1.20. Suppose F : C � D : U is a Quillen pair between stable model categories.
Suppose further that K is a set of (homotopically) compact cofibrant generators for C. If F (K)
is a set of compact objects in D then RU preserves coproducts.

Proof. This is a well known fact, however we give here the proof of the statment.

As K is a set of compact generators for C it is enough to show that for every k ∈ K and
for every collection of objects Ai, i ∈ I in D the following map

⊕i∈I [k,RU(Ai)]
Ho(C)
∗ ∼= [k,

∐
i∈I

RU(Ai)]
Ho(C)
∗ −→ [k,RU(

∐
i∈I

Ai)]
Ho(C)
∗
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is an isomorphism. This map is isomorphic to the natural map

⊕i∈I [LF (k), Ai]
Ho(D)
∗ −→ [LF (k),

∐
i∈I

Ai]
Ho(D)
∗

which is the map from the definition of LF (k) = F (k) being a compact object. As we assumed
it is, that finishes the proof.

1.2 Localisation of model categories

The following definition will play an important role in localising homotopy categories. Material
in this section is taken from [Hir03].

Definition 1.2.1. We say that a model structure on a category C is proper iff a pullback of a
weak equivalence along a fibration is a weak equivalence and a pushout of a weak equivalence
along a cofibration is a weak equivalence.
Sometimes we will refer to the category which have only the first mentioned property as a
right proper (respectively left proper if it has only the second property).

This property of a model structure is required and mostly used when we want to further
localize the homotopy category Ho(C) with respect to some class of maps (see [Hir03].

Having a model category C, there are several ways of constructing new model structure on
C. We explain two of them, called Bousfield localisation and "cellularization" which will be
used later on.

In this section we are going to use some additional assumptions on the model category C,
therefore we give the following

Definition 1.2.2.

1. An object A in a category C is called compact iff the set of maps Hom(A,
∐
t∈T Xt)

from it into a coproduct is in bijection with the coproduct of maps
∐
t∈T Hom(A,Xt).

2. A morphism f : X −→ Y in a category C is called an effective monomorphism if:

• the pushout Y
⋃
X Y exists

• f is the equalizer of the pair of canonical maps Y ⇒ Y
⋃
X Y

Definition 1.2.3.
A model category C is cellular if it is a cofibrantly generated model category with a set of
generating cofibrations I and a set of generating acyclic cofibrations J , such that:

• all domains and codomains of maps from I are compact

• the domains of maps from J are small relative to I

• the cofibrations are effective monomorphisms.
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For example model categories on simplicial sets and Serre model category of topological
spaces are cellular.

We start with the Bousfield localisation. In this part we will introduce several definitions
after Hirschhorn:

Definition 1.2.4. [Hir03, Definition 3.1.1]
Suppose we have a model category C and a class of maps S. Then a left localisation of C
with respect to S is a model category LSC together with a left Quillen functor j : C −→ LSC
such that the two conditions are satisfied:

• the total derived functor Lj : Ho(C) −→ Ho(LSC) maps the images of S in Ho(C) into
isomorphisms

• if we have a model category N and a left Quillen functor φ : C −→ N such that its total
derived functor takes images of S in Ho(C) into isomorphisms then there exists a unique
left Quillen functor δ : LSC −→ N such that δj = φ.

Similarly we can define a right localisation using everywhere right Quillen functors in-
stead of left Quillen functors.

Definition 1.2.5. Suppose we have a model category C and a class of maps S.

• An object W in C is called S-local if W is fibrant and for every element f : A −→ B in
S the induced map of homotopy function complexes:

map(f,W ) : map(B,W ) −→ map(A,W )

is a weak equivalence.

• A map g : X −→ Y in C is called S-local equivalence if for every S-local object W the
induced map of homotopy function complexes:

map(g,W ) : map(Y,W ) −→ map(X,W )

is a weak equivalence.

Recall, that for any objects X and Y in a model category C, a homotopy function complex
map(X,Y ) is a simplicial set of maps in the homotopy category Ho(C) between these objects.
If a model category C is stable then we can rewrite the above definition using the graded set
of maps in the homotopy category of C instead of homotopy function complexes (see [BR14,
Remark 3.5]): g : X −→ Y is an S-local equivalence if and only if the map

[g,W ]C∗ : [Y,W ]C∗ −→ [X,W ]C∗

is an isomorphism of graded abelian groups for every S-local object W .

Now we are ready to give the definition of the left Bousfield localisation:
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Definition 1.2.6. Suppose C is a model category and S is a class of maps in C. The left
Bousfield localisation of C with respect to S (if it exists) is a model structure on C (denoted
by LSC) such that:

• weak equivalences in LSC are S-local equivalences

• cofibrations in LSC are the same as cofibrations in C

• fibrations in LSC are the maps with the right lifting property with respect to all maps
which are both cofibrations and S- local equivalences.

We are not saying that for every class of maps S in C there exists a left Bousfield localisation
of C with respect to S. However, if it exists, it is a left localisation of C with respect to S as
in Definition 1.2.4. The conditions under which left Bousfield localisation exists are given in
the following

Theorem 1.2.7. [Hir03, Theorem 4.1.1]
Suppose C is a left proper, cellular model category and S is a set of maps in C. Then the left
Bousfield localisation of C with respect to S exists.

We give some properties of the left Bousfield localisation:

Proposition 1.2.8. [Hir03, Proposition 3.3.3]
Suppose we have a model category C and a class of maps S in C. Then if LSC is the left
Bousfield localisation of C with respect to S then:

• every weak equivalence in C is a weak equivalence in LSC

• trivial fibrations are the same in C and LSC

• every fibration in LSC is a fibration in C

• every trivial cofibration in C is a trivial cofibration in LSC

From the above Proposition it immediately follows that if the left Bousfield localisation
LSC exists then the identity functors on C form a Quillen pair:

IdC : C //
LSC : IdCoo

Now we state a result about Quillen adjunction and equivalences passing to the left Bous-
field localised categories:

Theorem 1.2.9. [Hir03, Theorem 3.3.20] Let C and D be model categories and let F : C � D : R
be a Quillen pair. Suppose S is a set of maps in C, LSC is the left Bousfield localisation of C
with respect to S and LLFSD is the left Bousfield localisation of D with respect to LFS, where
LFS is the image of S under the left derived functor LF . Then

1. (F,R) is a Quillen pair when considered as functors between localised categories
F : LSC � LLFSD : R, and
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2. if (F,R) was a Quillen equivalence between C and D then it is also a Quillen equivalence
when considered as functors between localisations F : LSC � LLFSD : R

We start discussing the second construction- "cellularization". First we need some defini-
tions.

Definition 1.2.10. [Hir03, Definition 3.1.8]
Let K be a collection of objects of a model category C called "cells". A K- equivalence is a
map f : X −→ Y such that for every A ∈ K

map(A,X) −→ map(A, Y )

is a weak equivalence of homotopy function complexes.

Theorem 1.2.11. [Hir03, Theorem 5.1.1]
Let C be a right proper, cellular model category. Then there is a model structure K-cell-C on the
same category C, with the same fibrations as in C and weak equivalences - the K-equivalences.
Cofibrations are defined by the left lifting property.

This is a universal construction, in the sense of right localisation form of Definition 1.2.4.

We get the following result, which states that cellularization preserves Quillen pairs and
in some cases induces Quillen equivalences.

Theorem 1.2.12. [GS, Proposition A.6.]
Suppose we have a Quillen pair F : M� N : U between right proper, cellular stable model
categories. Let K be a set of (homotopically) compact, cofibrant objects of M. Then we have
a Quillen pair:

F : (K − cell −M)
//

(F (K)− cell −N ) : Uoo

If moreover A −→ Uf̂NF (A) is a weak equivalence for each A ∈ K then the above Quillen
pair is a Quillen equivalence. Recall that f̂N denotes fibrant replacement functor in N .

If in the above theorem we start with a Quillen equivalence, then we obtain a Quillen
equivalence without additional assumptions.

From this theorem follows a first attempt to transferring the model structure through the
left adjoint functor:

Corollary 1.2.13. [GS, Proposition A.6.]
If J is a set of (homotopically) compact, fibrant objects of N such that F ĉMU(B) −→ B is a
weak equivalence for every B ∈ J then there is a Quillen equivalence:

F : (U(J)− cell −M)
//

(J − cell −N ) : Uoo

Recall that ĉM is a cofibrant replacement functor inM.
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At the end of this section we give a brief characterization of the category Ho(K−cell−M).
First we need the following definition:

Definition 1.2.14. An object W ∈ M is K- cellular if map(W, f) is a weak equivalence of
simplicial sets for any K- equivalence f .

Following this notation Ho(K − cell −M) is a full subcategory of Ho(M) with objects:
K- cellular objects.

1.3 Monoidal model categories

Very often one has two structures on one category C: a model structure and a closed symmetric
monoidal structure (⊗, I). If we want to obtain the induced monoidal structure on the homo-
topy category Ho(C) with induced unit, we need to make sure that those two structures on
category C are compatible, i.e. satisfy two additional axioms, often called "pushout-product
axiom" and the "unit axiom". All definitions and results in this section are from [SS00] and
[SS03a].

Pushout- product axiom
Let f : A→ B and g : K → L be cofibrations in C. Then the map

f�g : A⊗ L ∪A⊗K B ⊗K → B ⊗ L

is also a cofibration. If in addition one of the maps f, g is a weak equivalence, then so is the
f�g.

Unit axiom
Let q : ĉI → I be a cofibrant replacement of the unit object I. Then for every cofibrant object
A, the morphism q ⊗ Id : ĉI ⊗A→ I ⊗A ∼= A is a weak equivalence.

Notice that the unit axiom is redundant if the unit is cofibrant.

Definition 1.3.1. A model category is a monoidal model category if it is equipped with
closed symmetric monoidal product (⊗, I) and satisfies the pushout–product axiom and the
unit axiom.

Having a monoidal model category C one might want to work with the category of monoids
in C (often denoted Mon(C)), the category of R−modules (for R - a monoid in C) or a category
of R−algebras (for R - a commutative monoid in C). This raises questions: whether one
can obtain induced model structures on those new categories and what conditions should be
satisfied to get these. It turns out we need some more properties from the category C:
Definition 1.3.2. A monoidal model category C satisfies the monoid axiom if every map
obtained by cobase change and possibly transfinite compositions from maps

{trivial cofibrations} ⊗ C

is a weak equivalence.
If I is a class of maps and C is a monoidal category, then I ⊗ C denotes the class of maps of
the form A⊗ Z → B ⊗ Z, where A→ B is in I and Z is an object in C.
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Remark 1.3.3. If, in particular, C is a cofibrantly generated model category then the pushout-
product axiom holds if it holds for the set of generating cofibrations and generating trivial
cofibrations. Similarly, the monoid axiom holds if it holds for the set of generating trivial
cofibrations.

The following theorem gives the desired model structures on the category of Mon(C),
R−modules and R−algebras:

Theorem 1.3.4. [SS00, Theorem 3.1]
Let C be a cofibrantly generated monoidal model category satisfying the monoid axiom. Assume
moreover that every object in C is small relative to the whole category. A morphism in Mon(C),
R−modules and R−algebras is defined to be a fibration or a weak equivalence if it is a fibration
or a weak equivalence in the underlying category C. A morphism is a cofibration if it has a left
lifting property with respect to all trivial fibrations.

1. Let R be a monoid in C, then the category of left R−modules is a cofibrantly generated
model category.

2. Let R be a commutative monoid in C, then the category of R−modules is a cofibrantly
generated monoidal model category satisfying the monoid axiom.

3. Let R be a commutative monoid in C, then the category of R−algebras is a cofibrantly
generated model category.

Notice, that point 3 in the theorem gives model structure on Mon(C) if we take R to be
the unit of tensor product I.

We will often say that in the cases presented in the above theorem, "forgetful functors
create model structures" for monoids, R−modules and R−algebras. This is an example of use
of the transfer theorem (see Theorem 1.1.13).

Now that we obtained model structures on the categories of R−modules and S−modules
we would like them to give equivalent homotopy categories for weakly equivalent monoids R
and S.

Definition 1.3.5. [SS03a, Definition 3.11]
Let (C,⊗, IC) be a monoidal model category such that there is an induced model structure on
the level of modules over any monoid. We say that Quillen invariance of modules holds
for C if for every weak equivalence of monoids in C, f : R → S, restriction and extension of
scalars along f induce a Quillen equivalence between the respective module categories:

− ∧R S : R−Mod
//
S −Mod : f∗oo

The following Theorem gives an easy to check condition on when the Quillen invariance of
modules holds for a category C:

Theorem 1.3.6. [SS00, theorem 3.3]
Assume that for any cofibrant left R–module N , − ⊗R N takes weak equivalences of right
R–modules to weak equivalences in C. If R → S is a weak equivalence of monoids, then the
restriction and extension of scalars functors give a Quillen equivalence.
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Similar result is true also for R and S - algebras.

Having two monoidal model categories C and D and model structures on the levels of
monoids, modules and algebras in those two categories we can ask for conditions on the
functors to preserve these new model structures. As the model structures on the categories
Mon(C), R−modules and R−algebras in C are defined in terms of the model structure on the
underlying category C it is natural to ask for the conditions on functors between C and D (to
obtain induced functors on the levels of monoids, modules and algebras).

For this purpose we need the notion of a weak and strong monoidal Quillen pair. A weak
monoidal Quillen pair gives necessary conditions for lifting the Quillen pair to the categories
of monoids and modules. Almost all of the following definitions and results are from [SS03a].

Definition 1.3.7. [ML98, Chapter 7.] A weak monoidal functor between monoidal categories
(C,∧, IC) and (D,⊗, ID) is a functor R : C → D together with a morphism v : ID → R(IC)
and a natural transformation

φX,Y : RX ⊗RY → R(X ∧ Y )

which are associative and unital. A weak monoidal functor is strong monoidal if v and all
φX,Y are isomorphisms.

A notion of a weak monoidal functor is the weakest condition on a functor to preserve
monoids and modules.

Definition 1.3.8. [SS03a, Definition 3.6]
A weak monoidal Quillen pair between monoidal model categories C and D is a Quillen
adjoint pair (λ : D � C : R) with the right adjoint a weak monoidal functor and such that the
following two conditions holds:

• for all cofibrant objects A,B in D the comonoidal map

φ̃ : λ(A⊗B)→ λA ∧ λB

is a weak equivalence in C, where the comonoidal map is adjoint to the map:

φλA,λB ◦ ηA ⊗ ηB : A⊗B → R(λA ∧ λB)

• for some (hence any) cofibrant replacement q : ĉID → ID of the unit object in D, the
composite map

ṽ ◦ λ(q) : λ(ĉID)→ λ(ID)→ IC

is a weak equivalence in C.

A strong monoidal Quillen pair is a weak monoidal Quillen pair for which comonoidal
maps φ̃, ṽ are isomorphisms. Note, that if ID is cofibrant and λ is a strong monoidal functor
then (λ,R) is a strong monoidal Quillen pair.
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A weak (respectively strong) monoidal Quillen pair is a weak (respectively strong) monoidal
Quillen equivalence if the underlying Quillen pair is a Quillen equivalence.

A weak monoidal Quillen pair induces a strong monoidal adjunction on the level of homo-
topy categories.

Notice that in the definition of a weak monoidal Quillen pair the right adjoint is assumed
to be weak monoidal to induce a functor on the level of monoids and modules. However, no
such assumptions are put on the left adjoint, which suggest that on the level of monoids and
modules the induced right adjoint will have different left adjoint functor, as we can’t induce
the left adjoint on this levels. First we state the theorem and then we explain different left
adjoint functors used in it:

Theorem 1.3.9. [SS03a, Theorem 3.12] Let R : C → D be the right adjoint of a weak monoidal
Quillen equivalence (λ, R). Suppose that the unit objects in C and D are cofibrant.

1. Consider a cofibrant monoid B in D such that the forgetful functors create model struc-
tures for modules over B and modules over LmonB. Then the adjoint functor pair

LB : B −Mod
//

(LmonB)−Mod : Roo

is a Quillen equivalence.

2. Suppose that Quillen invariance of modules holds in C and D. Then for any fibrant
monoid A in C such that the forgetful functors create model structures for modules over
A and modules over RA, the adjoint functor pair

LA : RA−Mod
//
A−Mod : Roo

is a Quillen equivalence. If the right adjoint R preserves weak equivalences between
monoids and the forgetful functors create model structures for modules over any monoid,
then this holds for any monoid A in C.

3. If the forgetful functors create model structures for monoids in C and D, then the adjoint
functor pair

Lmon : Mon(D)
//
Mon(C) : Roo

is a Quillen equivalence.

Note that we used the same symbol R for the right adjoint on the level of categories C and
D as well as for the functor on more structured levels.

The various left adjoints, which were used in the above theorem are explained in [SS03a,
Section 3.3].

Remark 1.3.10. If R is a right adjoint of a strong monoidal Quillen pair then Lmon = λ,
LB = λ and LA(−) = λ(−) ∧λ(RA) A.
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1.4 Generalized diagrams

First we need to recall some definitions (after Greenlees and Shipley see [GS13b]). We begin
with a diagram M : D −→ CAT . It means that for every d ∈ D we have a category M(d)
and for every morphism α : d −→ d′ ∈ D we have a functor α∗ : M(d) −→ M(d′). We then
consider a category of M– modules (generalised diagrams) denoted by M– mod. An object
in this category consist of an object X(d) ∈ M(d) for every d ∈ D together with a transitive
system of morphisms X̃(α) : α∗X(d) −→ X(d′), where α : d −→ d′ ∈ D.

If each α∗ have a right adjoint α∗ then the above system of morphisms is equivalent to the
adjoint system of morphisms consisting of X̂(α) : X(d) −→ α∗X(d′), where α : d −→ d′ ∈ D.
We call the first a left adjoint form and the second a right adjoint form.

We callM a diagram of model categories if eachM(d) is a model category and every α∗
has a right adjoint α∗ and α∗, α∗ form a Quillen pair.

We have the following result establishing an injective model structure onM–modules under
some assumptions, which appeared first in [HR08, Theorem 3.3.5].

Theorem 1.4.1. Let M : D −→ CAT be a diagram of model categories and left Quillen
functors, where D is an inverse category. Then there is a model structure on the category of
M–modules, called injective model structure, where

• F is a weak equivalences if ∀d∈D F (d) is a weak equivalence inM(d)

• F is a cofibration if ∀d∈D F (d) is a cofibration inM(d)

• F is a fibration if it satisfies the RLP with respect to all acyclic cofibrations.

Further on we will restrict our attention to the category of generalised diagrams indexed
by the following category:

a b c
α β

i.e. we consider a diagram of model categories and adjoint Quillen pairs M as follows (we
draw only left adjoints):

M(a) M(b) M(c)
α∗ β∗

The category ofM-modules will consists of quintuples (X, f, Y, g, Z) where X ∈ M(a), Y ∈
M(B), Z ∈ M(c), f : α∗(X) −→ Y and g : α∗(Z) −→ Y , where both morphisms are in
M(b). For the diagram of categoriesM as above we have the following
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Lemma 1.4.2. [Bar13, Section 4]Suppose for all d ∈ D,M(d) is a monoidal category and all
left Quillen functors in the diagramM are strong monoidal. Then the category ofM–modules
is monoidal, with the tensor product defined objectwise, i.e. M⊗M′(a) := M(a) ⊗M′(a).
This monoidal structure is closed.

Lemma 1.4.3. [Bar13, Lemma 4.1.3 and Lemma 4.1.5] Suppose for all d ∈ D, M(d) is a
proper, cellular, monoidal model category satisfying the monoid axiom. Suppose further that all
left Quillen functors in the diagram M are strong monoidal Quillen pairs. Then the category
ofM–modules with the weak equivalences the objectwise weak equivalences and the cofibrations
the objectwise cofibrations is proper, cofibrantly generated, cellular, monoidal model and it
satisfies the monoid axiom.

To establish an algebraic model for cyclic part of SO(3) spectra we will work with Quillen
adjunctions betweenM–modules and N–modules (indexed by the same category D) by work-
ing with Quillen adjunctions for every d ∈ D. We restrict attention to the case of the category
D specified above and state the conditions that allow us to deduce an adjunction between
categories of generalised diagrams (resp. equivalence) from adjunctions for all d ∈ D.

Suppose we have a following commutative diagram

M(a) M(b) M(c)

N (a) N (b) N (c)

αM∗

La Lb

βM∗

Lc

αN∗ βN∗

where every Li has a right adjoint Ri. If LbαM∗ is naturally isomorphic to αN∗ La and LbβM∗ is
naturally isomorphic to βN∗ Lc then the functor (La, Lb, Lc) is a left adjoint fromM-modules
to N -modules, with the right adjoint (Ra, Rb, Rc).

Remark 1.4.4. If we work with generalised diagrams of model categories with the injective
model structure and we have an adjunction of generalised diagrams which is a Quillen adjunc-
tion for every d ∈ D then it is automatically a Quillen adjunction with respect to injective
model structure (see Theorem 1.4.1). The same is true for Quillen equivalences.
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Chapter 2

Spectra and G-spectra

There are many constructions of categories of spectra equipped with model structures, such
that the homotopy category is equivalent to the usual stable homotopy category. However,
for thirty years mathematicians were trying to construct a category of spectra equipped with
a strictly associative monoidal product compatible with model structure so that its homotopy
category would be equivalent to the usual stable homotopy category with the smash product
known in algebraic topology.

There are several categories having this property, like the category of symmetric spectra
defined in [HSS00] and discussed in details in [Sch] or the category of orthogonal spectra
defined and described in [MM02]. The construction of both categories is similar. First we
construct a diagram of spaces (OR simplicial sets) indexed by some fixed category. Then we
define a tensor product on the category of diagrams and choose a monoid S. We define spectra
to be S-modules. Depending on the indexing category we get symmetric spectra or orthogonal
spectra.

We briefly discuss the first category in Section 2.1 together with a monoidal model struc-
ture. Section 2.2 is devoted to the category of G–orthogonal spectra, where we present a
monoidal model structure. In Section 2.3 we recall the original Bousfield localisation of spec-
tra. We finish this chapter with the splitting result of Barnes in Section 2.4.

2.1 Symmetric spectra

Our standard reference for this chapter is [HSS00]. First we define a symmetric sequence in
simplicial sets as follows.

Definition 2.1.1. A symmetric sequence X in simplicial sets is a collection of based simplicial
sets {Xn}n≥0 with the left action of Σn on Xn preserving the base point.

Definition 2.1.2. A symmetric spectrum X is a a symmetric sequence such that for every
n ≥ 0 there exist a structure map which is a base point preserving map S1∧Xn −→ Xn+1 such
that the map obtained by the composition of above: Sp∧Xn −→ Xn+p is Σp×Σn–equivariant,
where Σp permutes the factors of p-fold smash product Sp = (S1)∧p.

43
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Naturally, a map of symmetric spectra is a sequence of base point preserving Σn–equivariant
maps which commute with the structure maps. We use the notation SpΣ for the category of
symmetric spectra.

Notice that if we want to model the category of G–equivariant spectra, for a compact
Lie group G, then symmetric spectra cannot be used. We can however model G–equivariant
spectra with symmetric spectra when G is finite.

Now let us discuss the monoidal structure on symmetric spectra. There is a tensor product
of symmetric sequences defined as follows for every X,Y - symmetric sequences:

(X ⊗ Y )n =
∨

p+q=n

(Σn)+ ∧Σp×Σq (Xp ∧ Yq)

There is a sphere spectrum S such that Sn = Sn. Every Sn has an action of Σn by
permutation of factors in n-fold smash product. Notice that this is a monoid for this tensor
product and that every symmetric spectrum is a left S–module. Therefore we can define a
monoidal product of symmetric spectra (which would be tensoring over S) as a coequalizer:

X ⊗ S⊗ Y ⇒ X ⊗ Y → X ⊗S Y

This is a very similar construction to one done in algebra with tensoring over some commuta-
tive ring two modules over this ring.

We will call this new monoidal product a smash product of spectra. Obviously S is the
unit for the smash product.

The category of symmetric spectra with the smash product has a compatible model struc-
ture, i.e. it is a monoidal model category (see Section 1.3). Before we define it, we need to
recall some definitions:

Definition 2.1.3.
1. A spectrum X is an Ω–spectrum iff the adjoint of every structure map S1 ∧Xn −→ Xn+1

is a weak equivalence.
2. A spectrum X is injective if for any monomorphism and a level equivalence g : A −→ B
and a map f : A −→ X there is a map h : B −→ X such that hg = f .

The stable model structure on symmetric spectra is as follows. A map of spectra f : X −→ Y
is a

• weak equivalence iff for every injective Ω–spectrum A the induced map

[f,A] : [Y,A] −→ [X,A]

on homotopy classes of maps of spectra is an isomorphism
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• cofibration iff it has a left lifting property with respect to maps g which have the property
that every gn is an acyclic fibration of simplicial sets with respect to Serre’s model
structure

• fibration iff it has the right lifting property with respect to all acyclic cofibrations

We called the above weak equivalences stable equivalences. Fibrant objects are those symmet-
ric spectra X which are Ω–spectra.

For the later purposes we mention the Eilenberg-MacLane functor H : Ab −→ SpΣ. This
is a functor which associates to an abelian group A the spectrum HA with the property that
for every n ≥ 0, HAn is an Eilenberg-MacLane simplicial set of type (A,n) (i.e. a geometric
realization of HAn is an Eilenberg-MacLane space of type (A,n)).

It is important that the functor H can be made into a weak monoidal functor with respect
to the tensor product of abelian groups and the smash product of spectra. This implies that
H maps monoids into monoids, i.e. rings to ring spectra.

2.2 Orthogonal G-spectra

In this section we give the description of the category of orthogonal G–spectra after Chapter
II of [MM02] and list some of its properties.

For a given compact Lie group G we choose some finite dimensional irreducible real repre-
sentations of G and take U to be a direct sum of countably many copies of all these represen-
tations. We will call U a universe. A universe U is complete if it contains countably many
copies of every isomorphism class of finite dimensional real representation. A universe U is
trivial if it contains only copies of the trivial representation. Now let us take V ⊂ U to be a
finite dimensional sub–G–real inner product space in U and call it an indexing G–space in U .

Now we define a category IUG with objects real inner G–product spaces isomorphic to
indexing G–spaces in U and morphisms non-equivariant linear isometric isomorphisms with
a G action by conjugation. We can define a IUG–space as a functor (enriched over based G–
spaces) from the category IUG to based G–spaces. A morphism between two such functors is a
G–space enriched natural transformation. That defines a category of IUG–spaces.

To construct a monoidal product on this category we need some more work. There is a
notion of an external smash product on this category, so for two IUG–spaces X,Y we have

X Z Y : IUG × IUG −→ G− Top∗

We can now use the left Kan extension of this functor to get an internal smash product on the
category of IUG–spaces. We take a commutative monoid S with respect to this internal smash
product (where SV is SV ) and consider left S–modules.
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The G–orthogonal spectra are the left S–modules and we use the notation G−IS for this
category. The monoidal product on G− IS is defined as a smash product over S.

Before we present a model structure onG−IS, we need to define stable homotopy groups π∗
of spectra. First, notice that every G–orthogonal spectrum has an underlying G–prespectrum.

Definition 2.2.1. For a G–prespectrum X and H 6 G we define an H–stable homotopy
group of X to be

πHq (X) := colimV π
H
q (ΩV (X(V ))) if q > 0

where V runs over indexing spaces in U , and

πH−q(X) := colimV⊃Rqπ
H
0 (ΩV−Rq(X(V ))) if q > 0

A map of G–orthogonal spectra is a π∗–isomorphism if the map of underlying G–prespectra
is.

The following choices of maps are proven to give a model structure on orthogonal G–spectra
in [MM02, Theorem 4.2.]. A map of orthogonal spectra f : X −→ Y is a:

• weak equivalence iff it is a π∗–isomorphism (i.e. it is a πH∗ –isomorphism for all H 6 G)

• cofibration iff it has a left lifting property with respect to the level acyclic fibrations,
where a level acyclic fibration g : A −→ B is a map which is a Serre acyclic fibration for
every indexing space V : gV : AV −→ BV .

• fibration iff it has the right lifting property with respect to the acyclic cofibrations.

We call this the stable model structure on G− IS.

The stable model structure on the category of G–orthogonal spectra is a monoidal model
category as it is shown in [MM02], Chapter III, Proposition 7.4 and 7.5.

Later on we will mainly work with G–orthogonal spectra, so we need some properties of
the stable model structure. We summarise it in the following

Theorem 2.2.2. The stable model structure on the category of G–orthogonal spectra is cofi-
brantly generated, proper and cellular.

Proof. First two properties are proven in [MM02, Section III, Theorem 4.2]. The fact this is
cellular is mentioned in [BR14, Section 2].

Lemma 2.2.3. For any subgroup H in G, any orthogonal spectrum X and integers p ≥ 0 and
q > 0

[ΣpS0 ∧G/H+, X]G ∼= πHp (X)

[FqS
0 ∧G/H+, X]G ∼= πH−q(X)

where the left hand sides denote morphisms in the homotopy category of G − IS and Fq− is
the left adjoint to the evaluation functor at Rq, EvRq(X) = X(Rq).

Proof. This follows from [MM02, Chapter III, Theorem 4.16] and [Ada74, Part III, Proposition
2.8]



2.3. LOCALISATION OF SPECTRA 47

2.3 Localisation of spectra

In this section we present a special class of localisations of spectra, namely localisations at
objects. Our basic category to work with is the category G − IS of G–orthogonal spectra.
Localisation is our main tool to make the category of G–spectra easier, by firstly rationalising
it using the localisation at an object SQ, which is a rational sphere spectrum. Then, in case
of SO(3)–spectra we localise it further to capture different behaviour of cyclic, dihedral and
exceptional part, see Part III.

We start with some notation, then we state the result that the localisation at a cofibrant
object exists. We finish with several useful properties of localised categories which will be used
in Part III. Our standard reference for this chapter is [MM02].

Definition 2.3.1. [MM02, Chapter IV, Definition 6.2] Suppose E is a cofibrant object in
G− IS or a cofibrant based G–space. Let X,Y, Z be objects in G− IS. Then

1. A map f : X −→ Y is an E–equivalence if IdE ∧ f : E ∧ X −→ E ∧ Y is a weak
equivalence.

2. Z is E–local if [f, Z]G : [Y,Z]G −→ [X,Z]G is an isomorphism for all E–equivalences f .

3. An E–localisation of X is an E–equivalence λ : X −→ Y , where Y is an E–local object.

4. X is E–acyclic if the map ∗ −→ X is an E–equivalence.

Notice that an E–equivalence between E–local objects is a weak equivalence by [Bar08,
Lemma 2.1.2].

The following result is [MM02, Chapter IV, Theorem 6.3]

Theorem 2.3.2. Suppose E is a cofibrant object in G − IS or a cofibrant based G–space.
Then there exists a new model structure on the category G−IS, where a map f : X −→ Y is

• a weak equivalence if it is an E–equivalence

• cofibration if it is a cofibration with respect to the stable model structure

• fibration if it has the right lifting property with respect to all trivial cofibrations.

The E–fibrant objects are the E–local objects and E–fibrant approximation gives a Bousfield
localisation λ : X −→ LEX of X at E.

We use the notation LE(G− IS) for this category.

It is easy to see that identity functor Id : G−IS −→ LE(G−IS) is a left Quillen functor.

Definition 2.3.3. We say that a localisation with respect to E is smashing if for every
spectrum X the map IdX ∧L λ : X −→ X ∧L LES is an E–localisation. We use notation
X ∧L − for the left derived functor of X ∧ −.
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Barnes and Roitzheim showed in [BR14, Lemma 3.14] that if the localisation with respect
to E is smashing then LE(G−IS) is the left Bousfield localisation with respect to a particular
set of maps SE , where

SE = {Σnλ : Sn −→ LES
n|n ∈ Z}

Localised model categories have the following properties

Lemma 2.3.4. The model category LE(G−IS) is left proper, cofibrantly generated, monoidal
and it satisfies the monoid axiom. If localisation with respect to E is smashing then the model
category LE(G− IS) is cellular and right proper.

Proof. Everything except for right properness and cellular was proven in [Bar08, Section 2.1].
Right properness and cellular follows from Lemma 3.14 and Theorem 3.11 in [BR14].

Proposition 2.3.5. Let X be a cofibrant object in G − IS. Then X ∧ − is a left Quillen
functor.

Proof. It follows from the pushout-product axiom for G−IS that X∧− preserves cofibrations.
It preserves E–equivalences by the associativity of the smash product.

We have a useful, but quite obvious observation:

Proposition 2.3.6. Suppose E,F are cofibrant objects in G − IS. Then LE(LF (G − IS)),
LF (LE(G − IS)) and LE∧F (G − IS) are equal as model categories (i.e. all three classes of
maps are equal).

Note that LE(LF (G − IS)) above means the category of G orthogonal spectra first lo-
calised at F and then localised further at E.

The category of rational G–equivariant orthogonal spectra can be constructed as a localised
model structure on G−IS with respect to the rational sphere spectrum SQ, which is cofibrant.
The construction of SQ is presented in [Bar08, Section 1.5].

Notice that Proposition 2.3.6 implies that LeS(G− ISQ) is the same as LeSQ(G− IS).

Remark 2.3.7. localisation of G− IS with respect to SQ or with respect to eS, where e is an
idempotent of the Burnside ring (see next section) is smashing.

Once we have a Quillen adjunction between model categories it is interesting to see what
happens to it after localisation at some objects. We have the following result:

Lemma 2.3.8. Suppose that F : C � D : R is a Quillen adjunction of model categories where
the left adjoint is strong monoidal. Suppose further that E is a cofibrant object in C. Then

F : LEC
//
LF (E)D : Roo

is a strong monoidal Quillen adjunction. Moreover if the original adjunction was a Quillen
equivalence then the one induced on the level of localised categories is as well.
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Proof. Since the localisation didn’t change the cofibrations, the left adjoint F still preserves
them. To show that it also preserves acyclic cofibrations, take an acyclic cofibration f : X −→ Y
in LEC. By definition f ∧ IdE is an acyclic cofibration in C. Since F was a left Quillen functor
before localisation F (f ∧ IdE) is an acyclic cofibration in D. As F was strong monoidal we
have F (f ∧ IdE) ∼= F (f) ∧ IdF (E), so F (f) is an acyclic cofibration in LF (E)D which finishes
the proof of the first part.

To prove the second part we use Part 2 from Proposition 1.1.12. Since F is strong monoidal
and the original adjunction was a Quillen equivalence F reflects F (E)–equivalences between
cofibrant objects. It remains to check that the derived counit is an F (E)–equivalence. F (E)–
fibrant objects are fibrant in D and the cofibrant replacement functor remains unchanged by
localisation. Thus this follows from the fact that F,R was a Quillen equivalence.

We will use this result in several cases for the following two adjoint pairs of G–orthogonal
spectra. Notice that both left adjoint are strong monoidal, thus the result follow from the
Lemma above.

Corollary 2.3.9. Let i : N −→ G denote the inclusion of a subgroup and let E be a cofibrant
object in G− IS. Then

i∗ : LE(G− IS)
//
Li∗(E)(N − IS) : FN (G+,−)oo

is a strong monoidal Quillen pair.

Corollary 2.3.10. Let ε : N −→ W denote the projection of groups, where H is normal in
N and W = N/H. Let E be a cofibrant object in W − IS. Then

ε∗ : LE(W − IS)
//
Lε∗(E)(N − IS) : (−)Hoo

is a strong monoidal Quillen pair.

2.4 Splitting the category of rational G–spectra

In this section we present a very useful result due to Barnes which allows us to split the model
category of G − IS into a finite product of simpler model categories. The idea is to use the
idempotents of the Burnside ring to do that. We know that idempotents of the Burnside ring
split the homotopy category of G–spectra. Barnes’ result allows us to perform a compatible
splitting on the level of model categories.

Barnes’ result works for both Burnside ring and rational Burnside ring (actually his theo-
rem is stated in more generality than that), however we will use it in the context of rational
Burnside ring only. Therefore we start with a short reminder about the rational Burnside ring.
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2.4.1 Rational Burnside ring

The rational Burnside ring for a compact Lie group G is denoted A(G)Q and defined as follows:

A(G)Q := [S, S]G ⊗Q

where for two G-spaces X,Y , [X,Y ]G is an abelian group of maps in a stable G category from
a suspension spectrum of X to a suspension spectrum of Y .

Recall that Sub(G) is a space of all closed subgroups of a group G with Hausdorff metric
defining the topology. We can consider the subspace F (G) of those subgroups H of G which
have finite index in the normalizer NG(H). Both Sub(G) and F (G) are equipped with a G
action by conjugation. Therefore we can form quotient spaces (orbit spaces) Sub(G)/G and
F (G)/G.

The following result is due to tom Dieck [tD79, 5.6.4, 5.9.13]:

Proposition 2.4.1. Let C(X,Q) denote the ring of continuous functions from a space X to
a discrete space Q. There is a map

α : [S0, S0]G ⊗Q −→ C(Sub(G)/G,Q)

where α(f)(H) is the degree of the H-fixed point map fH : S0 −→ S0. Moreover, the composite
of α and restriction is an isomorphism:

α : [S0, S0]G ⊗Q −→ C(F (G)/G,Q)

The above Proposition allows us to understand idempotents of the rational Burnside ring.
Note that any idempotent e ∈ A(G)Q corresponds to an open and closed subspace of F (G)/G
defined as its support S(e) := {(K) ∈ F (G)/G | α(e)(K) = 1} and every open and closed
subset U ⊆ F (G)/G defines an idempotent, i.e. the characteristic function of U , eU := 1U .

Another useful viewpoint on the rational Burnside ring is through the space Subf(G)/∼
where Subf(G) is equipped with the f -topology (discussed further in Section 5.2) where ∼
denotes the equivalence relation generated by the following : two subgroups H ≤ N ≤ G are
related H ∼ N if N/H is a torus. Then Subf(G)/∼ ∼= F (G).

By the above, idempotents correspond to a G invariant open and closed subspaces of
Subf(G)/∼.

This is particularly useful when we want to consider a map on idempotents of rational
Burnside rings induced from an inclusion of subgroup in a group i : H −→ G. If e is an
idempotent in A(G)Q with support S ⊆ Subf(G) then i∗(e) is an idempotent in A(H)Q
defined to correspond to the subspace i∗(S) = {K ≤ H|K ∈ S} ⊆ Subf(H). As a map
F (H)/H −→ Q it is non zero on these (K)H that K ∈ S.
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2.4.2 Splitting

The category of rational G-equivariant spectra can be split using the idempotents of the
Burnside ring A(G)Q. The following result is [Bar08, Corollary 3.2.5]. We state it in terms of
G–orthogonal spectra G− ISQ.

Theorem 2.4.2. Suppose {ei}i∈I is a finite set of idempotents of the rational Burnside ring
A(G)Q, giving an orthogonal decomposition 1 =

⊕
i∈I ei. Then the following adjunction, where

the left adjoint is a diagonal functor and the right one is a product

4 : G− ISQ
// ∏

i∈I LeiS(G− ISQ) : Πoo

is a strong symmetric monoidal Quillen equivalence with respect to the product model structure
(see below). In particular, for any G–orthogonal spectra X,Y we have the following natural
isomorphism

[X,Y ]GQ
∼=

⊕
i∈I

[eiX, eiY ]GQ

SupposeM1 andM2 are monoidal model categories. Then the product model structure
on M1 × M2 is defined as follows: a map (f1, f2) is a weak equivalence, a fibration or a
cofibration if it its every factor fi is so. Monoidal structure is defined as a monoidal structure
on every factor, i.e. (X1, X2) ⊗ (Y1, Y2) = (X1 ⊗ Y1, X2 ⊗ Y2). Moreover if both M1,M2

are proper, cofibrantly generated, monoidal, or satisfy the monoid axiom then so is (does)
M1 ×M2.
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Chapter 3

Enriched categories

In this chapter we recall some basic definitions of enriched category theory. The introduction
to the enriched category theory is in [Kel05]. Quite soon we will concentrate on V–model
categories, i.e. V–enriched categories with a model structure, where these two structures are
compatible. We give proofs of several well-known results which are going to be useful in Part
III. In the last Section we move to Morita equivalences in different settings.

Definition 3.0.1. A category C is enriched over a symmetric monoidal category (V,⊗, I) if
for every pair of objects X,Y in C there is a morphism V–object CV(X,Y ), for every object
X in C there is a map in V from the unit I to CV(X,X) and for every triple X,Y, Z of objects
in C there is an associative and unital composition map in V

CV(Y,Z) ∧ CV(X,Y ) −→ CV(X,Z)

Definition 3.0.2. A V–enriched functor F : C −→ D between two V–enriched categories is
given by a map on objects, i.e. for every object X in C, F (X) is an object of D, together with
morphisms in V for all pairs of objects X,Y in C,

CV(X,Y ) −→ DV(F (X), F (Y ))

which are coherently associative and unital maps.

Definition 3.0.3. A V–enriched category C is tensored over V if there is a bifunctor

−⊗ =: V × C −→ C

with a natural isomorphism CV(V ⊗X,Y ) ∼= V(V, CV(X,Y )) for all X,Y ∈ C and V ∈ V.

A V–enriched category C is cotensored over V if there is a bifunctor

(−)(=) : Vop × C −→ C

with a natural isomorphism CV(X,Y V ) ∼= V(V, CV(X,Y )) for all X,Y ∈ C and V ∈ V.

53
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3.1 Properties

In this section we discuss the properties of an enriched category and we start by stating a
result from [Dug06, Lemma A.7].

Theorem 3.1.1. Suppose we have an adjunction F : V � U : R between closed symmetric
monoidal categories such that the left adjoint F is strong monoidal. Then any tensored, coten-
sored and enriched U-category C becomes canonically enriched, tensored and cotensored over
V.

Proof. Suppose C is a tensored and cotensored U–category, i.e.

CU (u⊗ c, d) ∼= U(u, CU (c, d)) ∼= CU (c, du)

We define tensor, cotensor and internal hom over V as follows:

−? =: V × C −→ C by v ? c := F (v)⊗ c
{−,=} : Vop × C −→ C by {v, c} := cF (v)

CV(−,=) : Cop × C −→ V by CV(c, d) := RCU (c, d)

Then it’s just a check that we have required natural isomorphisms.

Whenever we have two structures on a category we would like them to be compatible.
In Section 1.3 we discussed monoidal model categories, which is just an example of a model
structure on a category enriched over itself, where the two structures are compatible.

We want to generalise this idea, when a category C is enriched over some monoidal model
category V. We restrict attention to V being the category of symmetric spectra SpΣ. The
following definition introduces a spectral version of a simplicial model category.

Definition 3.1.2. [SS03b, Definition 3.5.1] A spectral model category is a model category
C which is tensored, cotensored and enriched (denoted here by HomC) over the category of
symmetric spectra such that the analog of Quillen’s SM7 holds:
For every cofibration A −→ B and every fibration X −→ Y in C the induced map

HomC(B,X) −→ HomC(A,X)×HomC(A,Y ) HomC(B, Y )

is a stable fibration of symmetric spectra. If in addition one of the above maps is a weak
equivalence then the induced map is also a stable equivalence.
K ∧X and XK denote tensor and cotensor for X in C and K in SpΣ.

Note that we can phrase the above condition in an adjoint form using tensors: for every
cofibration f : A −→ B and every fibration g : X −→ Y in C the induced map

f�g : A⊗ Y ∪A⊗X B ⊗X −→ B ⊗ Y

is a cofibration in C. If in addition one of the above maps is a weak equivalence then the
induced map is also a weak equivalence in C.
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Lemma 3.1.3. [SS03b, Lemma 3.5.2] A spectral model category C is in particular a simplicial
and stable model category. For X cofibrant and Y fibrant in C there is a natural isomorphism
of graded abelian groups

πs∗HomC(X,Y ) ∼= [X,Y ]
Ho(C)
∗

We have the following, well known fact

Theorem 3.1.4. The category G− IS of G-orthogonal spectra (with stable model structure)
is a SpΣ-model category.

Proof. We use Theorem 3.1.1 to show that the category G−IS of G-orthogonal spectra may
be enriched, tensored and cotensored over SpΣ-model category. The proof is by constructing a
strong symmetric monoidal Quillen adjunction with left adjoint mapping from SpΣ to G−IS.
We do that by composing a series of strong symmetric monoidal Quillen adjunctions as follows.

Firstly we consider a Quillen equivalence on symmetric spectra in simplicial sets and topolo-
gial spaces induced by the geometric realisation and singular complex adjunction:

| − | : SpΣ //
SpΣ(Top) : Singoo

Now we pass to orthogonal spectra ISR∞ via the Quillen equivalence from [MMSS01,
Theorem 10.4]. The notation R∞ means that we use the universe R∞. We will have to keep
track of the universes when G is considered.

P : SpΣ(Top)
// ISR∞ : Uoo

The next step is to move to G orthogonal spectra indexed on the trivial universe R∞ using
the trivial action and G-fixed point adjunction, see [MM02, Chapter V, Section 3]

ε∗ : ISR∞ //
G− ISR∞ : (−)Goo

Now we move to G orthogonal spectra indexed on a complete universe U . We use the
notation i, where i : R∞ −→ U is the inclusion, see [MM02, Chapter V, Proposition 3.4].

i∗ : G− ISR∞ //
G− ISU : i∗oo

G − ISU is a monoidal model category, all above left adjoints are strong monoidal so by
Theorem 3.1.1 G− ISU is enriched, tensored and cotensored over SpΣ

+.
What remains to be checked is the analog of Quillen’s SM7. We use the tensor form of it and
the notation F for the composite of all above left adjoints. Now suppose that f : A −→ B
is a (trivial) cofibration in SpΣ and g : X −→ Y is a (trivial) cofibration in G − ISU . Then
f�g := F (f)�g. As F is a left Quillen functor it preserves cofibrations and trivial cofibrations
the result follows.

Corollary 3.1.5. Any localisation LE(G − IS) (if it exists) of G-orthogonal spectra is a
SpΣ-model category.
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Proof. We use Theorem 3.1.4 and the strong symmetric monoidal Quillen adjunction:

Id : G− ISU //
LE(G− ISU ) : Idoo

The last step is to show that Quilen’s SM7 holds. As cofibrations in LE(G − IS) and in
G−ISU are the same we just have to check the condition for f : A −→ B a trivial cofibration
in G− ISU and g : X −→ Y a (trivial) cofibration in LE(G− ISU ). Recall that f is a weak
equivalence in LE(G− ISU ) iff IdE ∧ f is a weak equivalence in G− ISU . E ∧ − commutes
with pushouts so (IdE ∧ f)�g ∼= IdE ∧ (f�g) and the last is a weak equivalence in G− ISU
by the pushout-product axiom, which means f�g is a weak equivalence in LE(G− IS)

3.2 Morita equivalences

Later we consider two cases when we apply Morita equivalences. The first one is in the
algebraic setting, when categories are enriched over Ch(Q) of chain complexes of Q–modules
and the second one is the topological setting when categories are enriched over symmetric
spectra. First we develop the theory for the topological setting, however the algebraic one
works analogously as discussed in [Bar09b, Section 4].

Schwede and Shipley proved in their paper [SS03b] that any spectral model category with a
set of (homotopically) compact generators is Quillen equivalent to the category of modules over
a ring with many objects. Before we are able to state the theorem we need some definitions.
The following are taken from [SS03b].

In this section an adjective “spectra” means enriched over the category SpΣ of symmetric
spectra. The following definition introduces the category of "modules over a ring with many
objects".

Definition 3.2.1. Suppose O is a spectral category. A right O–module M is a contravariant
spectral functor from O to the category SpΣ of symmetric spectra, i.e. a symmetric spectrum
M(X) for every object X in O and for all pairs of objects X,Y in O coherently associative
and unital maps of symmetric spectra

M(X) ∧ O(Y,X) −→M(Y )

A morphism of O-modules M −→ N consists of maps of symmetric spectra M(X) −→ N(X)
for all X in O strictly compatible with the action of O. We use the notation mod−O for the
category of O–modules. The representable module FX is defined by FY (X) := O(X,Y )

Notice that we already considered the category of enriched functors in the previous sec-
tion and we denoted it FunV(C,V). According to that notation, O–mod is the category
FunSpΣ(Oop, SpΣ).

The following theorem establishes the model structure on the category of O-modules
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Theorem 3.2.2. [SS03b, Theorem A.1.1] Let O be a spectral model category. Then the cat-
egory of O-modules with the objectwise stable equivalences, objectwise stable fibrations and
cofibrations defined by the lifting property is a cofibrantly generated spectral model category.
Moreover the free modules {FX}X∈O form a set of (homotopically) compact generators for the
homotopy category of O-modules.

Remark 3.2.3. If the category O satisfies the pushout-product or monoid axiom, then so does
the category of O–modules (see [Bar08, Theorem 5.3.9]) with respect to the model structure
on O–modules defined above.

Definition 3.2.4. A spectral functor Ψ : O −→ R between spectral categories is a stable
equivalence if it is a bijection on objects and for all objects o, o′ ∈ O the map

Ψo,o′ : O(o, o′) −→ R(Ψ(o),Ψ(o′))

is a stable equivalence of symmetric spectra.

Theorem 3.2.5. [SS03b, Theorem A.1.1] Let Ψ : O −→ R be a stable equivalence of spectral
categories. Then the restriction and extension of scalars along Ψ is a spectral Quillen equiv-
alence of categories of modules. (Where restriction of scalars is given by precomposition with
Ψ and extension of scalars is given by an enriched coend)

Definition 3.2.6. [SS03b, Definition 3.9.1] Let P be a set of objects in a spectral model
category C. Let E(P) denote the full spectral subcategory of C on objects P.
Define a functor Hom(P,−) : C −→ mod−E(P) by Hom(P, Y )(P ) := HomC(P, Y ) and define
a functor − ∧O(P) P : mod− E(P) −→ C by an enriched coend formula, i.e.

X ∧O(P) P := coeq[
∨

P,P ′∈P
X(P ′) ∧ C(P, P ′) ∧ P ⇒

∨
P∈P

X(P ) ∧ P ]

Definition 3.2.7. [SS03b, Definition 3.9.2] A spectral Quillen pair between two spectral model
categories C and D is a Quillen adjoint functor pair L : C � D : R together with a natural
isomorphism of symmetric spectra

HomC(A,RX) ∼= HomD(LA,X)

which on the vertices of the 0th level give the adjunction isomorphism.
A spectral Quillen pair is a spectral Quillen equivalence if the underlying Quillen functor pair
is a Quillen equivalence.

There is a more general version of the theorem below (which doesn’t assume that the
category is a spectral model category), but we will only need the following

Theorem 3.2.8. [SS03b, Theorem 3.9.3] Let C be a spectral model category and P a set
of cofibrant and fibrant (homotopically) compact generators for C. Then the pair of adjoint
functors

Hom(P,−) : C // mod− E(P) : − ∧E(P) Poo

is a spectral Quillen equivalence.
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Remark 3.2.9. Theorem 3.2.8 is true for dg-model categories, i.e. model categories with the
compatible enrichment in chain complexes of R–modules (see [Bar09b, Section 4]). The proof
works similarly as in the spectral case, and the main point is that homotopy categories of both
spectra and chain complexes are triangulated. In further chapters we will use both versions:
spectral and dg.



Chapter 4

Sheaves

In this chapter we recall some basic properties of the category Ch(Q) and the category of
sheaves of Ch(Q) over a space X. We will use them in Part II.

It is well known that the category Ch(Q) is bicomplete. Moreover all limits and colimits
are computed levelwise.

Definition 4.0.1. A differential graded algebra A is formal if it is quasi-isomorphic to its
homology, regarded as a dga with trivial differential. A differential graded algebra B is said
to be intrinsically formal if any other dga C with H∗(B) ∼= H∗(C) is quasi-isomorphic to B.

For example every algebra A in Ch(Q) with H∗(A) concentrated in degree zero is intrin-
sically formal. When c is in degree −2 then Q[c] with zero differentials is intrinsically formal.

Definition 4.0.2. A cocomplete abelian category C is called a Grothendieck category if it has
a (categorical) generator P and filtered colimits are exact. A (categorical) generator for an
abelian category is an object P , such that Hom(P,−) is a faithful functor.

In further chapters we will consider a topological group G and G–sheaves of Q–modules
over some G topological space (or category) X. As G has topology we should explain what
we mean by continuous G action on Q–modules. We give every Q–module a discrete topology,
therefore if G is not finite it acts through some finite quotient G/N , where N is a normal
subgroup of finite index in G. We denote the category of Q–modules with continuous G action
by Q[G]–modules.

4.1 Sheaves of Ch(Q) over a space X

In this section we briefly recall the definition of a sheaf over a topological space and discuss
an injective model structure on the category of chain complexes of sheaves. The standard
reference for this section is [Bre97].

A sheaf is a preasheaf with some additional properties. There is an easiest definition of a
sheaf when a codomain category has a forgetful functor to the category of Sets, but we chosen
a more general approach:
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Definition 4.1.1. Suppose C is a category with products. Then a sheaf F on a topological
space X with values in the category C is a a contravariant functor from the category of open
subsets of X with inclusions to C, satisfying the following "unique patching condition": for
every open U ⊆ X and for every cover {Ut}t∈T ,

⋃
t∈T Ut = U , F (U) is the equalizer:

F (U) −→
∏
t∈T

F (Ut)⇒
∏

(t,s)∈T×T

F (Ut ∩ Us)

where two parallel morphisms are the unique extensions into product of the two maps (we
present just one, in the other we use the projection to F (Us) and then restriction to F (Ut∩Us)):
for every t ∈ T projection on the t’th factor and then restriction:∏

t∈T
F (Ut) −→ F (Ut) −→ F (Ut ∩ Us)

We have an important example of model structure on the category of chain complexes in
an arbitrary Grothendieck category:

Theorem 4.1.2. [Hov01, Theorem 2.2] Suppose A is a Grothendieck category. Then there
exists a cofibrantly generated proper model structure on chain complexes in A: Ch(A) where
the cofibrations are injections, weak equivalences are quasi isomorphisms and the fibrations are
those maps which have the right lifting property with respect to all injective weak equivalences.
Moreover the homotopy category of this model structure is the derived category of A.

We recall that Shv(Q−mod)/X is a Grothendieck category (see [Gro57]).

The category of sheaves of Q–modules has some useful properties, which we now discuss.

Suppose we have a continuous map of topological spaces f : X −→ Y and Shv(Q)/X and
Shv(Q)/Y are categories of sheaves of Q modules over X and Y respectively. Then f induces
an adjoint pair of functors:

f∗ : Shv(Q)/Y
//
Shv(Q)/X : f∗oo

We present the following easy observation, which follows from the étale definition of a sheaf

Proposition 4.1.3. Pullback of a constant sheaf with discrete stalks is constant with the same
stalks.

A pullback functor along f commutes with colimits, as it is a left adjoint. Moreover it is
also an exact functor, which means it commutes with all finite limits.

Lemma 4.1.4. Suppose f : X → Y is a continuous map of topological spaces, Shv(Q)/X
and Shv(Q)/Y are categories of sheaves of Q modules over X and Y respectively. Then
f∗ : Shv(Q)/Y −→ Shv(Q)/X is a strong monoidal functor with respect to tensor product
over constant sheaf QX and QY .
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Proof. Suppose f : X → Y is a continuous map of topological spaces, A,B are two Q–module
sheaves over Y , where Q is a constant sheaf over Y with every stalk Q. First we show that we
have a stalkwise isomorphism:

(f∗(A⊗Q B))x ∼= (f∗(A)⊗f∗Q f∗(B))x

because
f∗(A⊗Q B)x ∼= (A⊗Q B)f(x)

∼= Af(x) ⊗Qf(x)
Bf(x)

and
(f∗(A)⊗f∗Q f∗(B))x ∼= (f∗(A))x ⊗(f∗Q)x (f∗(B))x ∼= Af(x) ⊗Qf(x)

Bf(x)

To get an isomorphism of sheaves we need a map of sheaves which will induce isomorphisms
on stalks, i.e. we want a map

g : (f∗(A)⊗f∗Q f∗(B))→ (f∗(A⊗Q B))

We will use here the étale definition of sheaves. Notice that with this definition we want to
obtain a map g into a pullback as in the diagram:

(f∗(A)⊗f∗Q f∗(B))

(f∗(A⊗Q B)) A⊗Q B

X Y

∃!g

π

Id

π1

π2

π
f

Where Id denotes a stalkwise identity map (but not an identity map of étale spaces). To
know that g as in the above diagram exists we need to show that Id is a continuous map,
i.e. that the preimage of an open subset of étale space A ⊗Q B is open. We know that open
subsets of étale spaces are sections over an open set U ⊆ Y . Moreover it is enough to check
this condition only for sections of the form s1 ⊗Q s2 =

⋃
y∈U s1y ⊗ s2y over U because Id is a

map of Q–modules on stalks. The preimage of this section with respect to Id is
⋃
x∈f−1(U) tx

where tx = s1f (x) ⊗ s2f (x). We want to show this is a union of sections of (f∗(A)⊗f∗Q f∗(B))

over open subsets of f−1(U). This will prove that the Id map is continuous and therefore
there exists a map of sheaves g : (f∗(A) ⊗f∗Q f∗(B)) → (f∗(A ⊗Q B)) which is a stalkwise
isomorphism.

We will show that every germ tx is locally represented by a section in the following way:
∀x∈f−1(U) we have a section t̃x over Vx–neighbourhood of x (Vx ⊆ f−1(U)) such that ∀p∈Vx
(t̃x)p = s1f (x) ⊗ s2f (x).

Before we choose such local representation for every germ tx, let us recall the inverse image
functor on sheaves:

f∗(A)(W ) = {s′|(s′x)x∈W where s′x ∈ Af(x) such that ∀x∈W ∃U3f(x),V x ∈ V ⊂ f−1(U)∩W and
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s ∈ A(U) such that s′z = sf(z) ∀z∈V }

By construction of the tensor product of sheaves and inverse image sheaf we can choose a
neighbourhood W1 of x such that there exists a section s̃1 over W1 of f∗(A) such that ∀p∈W1

(s̃1)p = s1f (p). Similarly we can get a section s̃2 of f∗(B) over some W2–neighbourhood of x.
Now take Vx = W1 ∩W2 ∩ f−1(U) and over this open neighbourhood of x we have a section
t̃x = [s̃1 ⊗ s̃2] which satisfies the desired condition, i.e. ∀p∈Vx (t̃x)p = s1f (x) ⊗ s2f (x). A union
of these sections over x ∈ f−1(U) is the preimage of the section s1 ⊗Q s2 under the map Id,
which finishes the proof.

Lemma 4.1.5. Suppose C is an abelian category. Then Ch(C) exists and if C was a Grothendieck
category, so is Ch(C).

Proof. Suppose P is a generator for C. Then the set of generators for Ch(C) is defined to be a
set of chain complexes {Pn}n ∈ Z where Pn is a chain complex which has P in degree n and
n + 1 with the identity differential and 0 everywhere else. Now a generator for Ch(C) is the
direct sum of all Pn’s. Directed colimits are exact in Ch(C), because they are exact in C and
colimits and exactness is done levelwise in chain complexes.

Corollary 4.1.6. The category Ch(Shv(Q)/X) ∼= Shv(Ch(Q))/X is a Grothendieck category.

We have the following useful observations

Proposition 4.1.7. [Hov01, Proposition 1.2] Every object in a Grothendieck category is small.

At the end of this section we present this well-known fact, which will be used in Part II.

Proposition 4.1.8. Open maps in Top are stable under pullbacks.

Proof. Suppose we have a pullback diagram

A
p //

f

��

X

g

��
B

q // Y

where g is open. Since A ⊆ B ×X the basis for topology on A is of the form (U × V )∩A
where U ∈ B open and V ∈ X open. To show that f is open it is enough to show that
f((U × V ) ∩ A) is open. Since the above diagram is a pullback (U × V ) ∩ A = {(u, v) ∈ U ×
V |g(v) = q(u)} = {(u, v) ∈ U×V |u ∈ q−1g(v)}. This shows that f((U×V )∩A) = U∩q−1g(V )
and since g was open it is open.
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Chapter 5

Topological categories

In this chapter we first recall the notion of a topological category and then we give several
examples. Next we proceed to G-topological categories, where G is any compact topological
group. The most important family of examples for us is the one presented in Section 5.2. The
introduction to internal categories is provided in [Bor94].

5.1 Definitions and examples

A topological category is an internal category in the category Top of topological spaces and
continuous maps. We can also think about it as a simplicial object in Top truncated above
level 2.

Definition 5.1.1. A topological category is a category C such that the set of objects C0 is
equipped with a topology, the set of morphisms C1 is equipped with a topology and all four
maps: domain (source) s : C1 −→ C0, codomain (target) t : C1 −→ C0, identity s0 : C0 −→ C1

and composition d1 : C1 ×C0 C1 −→ C1 are continuous with respect to this topologies. Notice
that we have also projections d0 : C1 ×C0 C1 −→ C1 and d2 : C1 ×C0 C1 −→ C1 onto the
second and first factor respectively.

The pullback above is formed over t and s respectively representing the set of pairs of
composable arrows.

Moreover we require the categorical (simplicial) identities to hold, i.e.

• source and target of identity morphisms s ◦ s0 = IdC0 , t ◦ s0 = IdC0 ,

• source and target of a composition s ◦ d1 = s ◦ d2, t ◦ d1 = t ◦ d0,

• associativity of the composition d1 ◦ (Id×C0 d1) = d1 ◦ (d1 ×C0 Id)

• unit laws for the composition d1 ◦ (s0 ×C0 Id) = d2, d1 ◦ (Id×C0 s0) = d0

Two obvious examples of topological categories are the ones where part of the data is trivial
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Example 5.1.2. A small category, considered as a topological category with discrete topology
on the set of objects and the set of morphisms.

A special case of the above:

Example 5.1.3. Suppose C is a small groupoid, i.e. a category with all morphisms being
isomorphisms. Then we can view it as a topological category with a discrete topology as
above.

Example 5.1.4. A topological space X considered as a topological category X with the space
of objects X0 = X, the space of morphisms consisting only of identity maps on the objects,
i.e. X1 = X with identity source, target and composition maps.

A more interesting family of examples comes from G–topological spaces, for G any compact
Lie group (we can define it for G any topological group, but we will use it later on only for G
compact Lie)

Example 5.1.5. Suppose X is a left G–topological space, i.e. there exists a continuous action
map G × X −→ X which is associative and unital in the usual sense. Then we can form a
topological category XG as follows:

• the space of objects is X

• the space of morphisms is G×X

• the identity map s0 : X −→ G×X is given by s0(x) = (1, x) where 1 is the unit in G.

• the source map s : G×X −→ X is given by s(g, x) = g−1x

• the target map t : G ×X −→ X is given by t(g, x) = x, i.e. t is the projection on the
second factor of the product.

• the composition map d1 : G×G×X −→ G×X is given by d1(g1, g2, x) = (g1g2, x)

It is useful to think about a pair (g, x) ∈ G×X representing a morphism as about a point x
and an arrow given by g with the codomain x.

Analogously, a G–topological category is an internal category in the category G-Top of
G–topological spaces and G–equivariant, continuous maps.

A continuous functor between two topological categories F : X −→ Y consists of two
continuous maps F0 : X0 −→ Y0 and F1 : X1 −→ Y1 such that all diagrams with source,
targets, identity and composition maps commute.

Analogously, a continuous G–functor between two G–topological categories F : X −→ Y
consists of two continuous G–maps F0 : X0 −→ Y0 and F1 : X1 −→ Y1 such that all diagrams
with source, targets, identity and composition maps commute.

Notice that there is a forgetful functor from the category of topological categories to the
category of topological spaces and it has both adjoints:
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TopCat TopU0

L

R

where the left adjoint L is defined as follows: for any topological space X, L(X) := X
where X is the topological category as in Example 5.1.4.

The right adjoint R is defined as follows: for a topological space X we put R(X) to be
a topological category with X as a space of objects and X × X as a space of morphisms
with sourse and target maps being projections on the first and the second factor respec-
tively. Composition is given by projection outside of the middle factor in trifold product
X ×X ×X −→ X ×X. Identity map is the canonical map into the product.

These two functors present two universal ways of constructing a category on a set of objects:
one is by viewing the set of objects as a discrete category with only identity maps and the
other is by viewing it as a dense category with exactly one morphism between any two objects
(which is then necessary an isomorphism).

5.2 Topological category of toral chains

The most important example of a topological category (or rather G–topological category) for
us is a category of toral chains. The category of toral chains TCG was defined in [Gre98a,
Section 8] for any compact Lie group G as a subcategory of the category of all closed subgroups
of G and inclusions (denoted by S(G)).

Definition 5.2.1. For a compact Lie group G the category TCG of toral chains consists of:

• Objects: all closed subgroups of G

• Morphisms: one morphism H −→ K whenever H is normal in K and K/H is a torus.

Identities exist in TCG as one element group is a torus, but it is still not completely
obvious that what we defined is a category, i.e. that there exist compositions. We get this by
the following:

Proposition 5.2.2. [Gre98a, Corollary 4.6]
If H is normal in K and K/H is a torus and moreover K is normal in K̂ and K̂/K is a torus
then H is normal in K̂ and K̂/H is a torus.

The category TCG is equipped with topology on the space of objects called f - topology,
which comes from the metric topology on the spaces F (H) for all H closed subgroups in G.
F (H) denotes the subspace of all closed subgroups in H consisting of those subgroups K which
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have finite Weyl group WH(K) = NH(K)/K. This space inherits the topology from the space
of all closed subgroups in H denoted by S(H), which has topology given by the Hausdorff
metric.

We need the following notations after [Gre98a] to give the description of generating open
sets in f - topology.

For a closed subgroup H in G and ε > 0 define a ball in F (H):

O(H, ε) = {K ∈ F (H) |d(H,K) < ε}

Given also a neighbourhood A of the identity in G define a set:

O(H,A, ε) =
⋃
a∈A

O(H, ε)a

where O(H, ε)a is the set of elements of O(H, ε) conjugated by a. We generate f - topology by
sets O(H,A, ε) as H,A and ε vary.

We are ready to present some examples

Example 5.2.3. Let G be a finite group. Then TCG is a finite set of points with a discrete
topology and only identity morphisms.

We present pictures illustrating examples of the categories TCG for two more groups G:

Example 5.2.4. Let G = SO(2). We get the following category TCG:

G •
...

•C3

•C2

•C1

Example 5.2.5. Let G = O(2). We get the following category TCG, where D2n −→ O(2):
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SO(2) •
...

•C3

•C2

•C1 D2

D4

D6

· · ·
O(2)

Note that in the two given examples of TCG above f–topology on the part related to SO(2)
is a discrete topology, but on the rest of O(2) example the f–topology is as it is presented on
the picture- the topology of a subspace of a plane with Euclidean metric. The picture presents
infinitely many concentric circles with radiuses tending to 0 together with a central point.

We state some properties of f–topology which help to understand it better. In the following
lemmas the subscript f was used to indicate that we consider the f–topology on the given
space. Recall that the set of objects in TCG and in S(G) is the same, therefore we can consider
the f–topology on S(G).

Lemma 5.2.6. [Gre98a, Lemma 8.6]
TCG with f -topology has the following properties:

1. the action of G on TCG by conjugation is continous

2. the inclusion map F (H) −→ Sf (G) is continuous

3. the identity map Sf (G) −→ S(G) is continuous

Proposition 5.2.7. Space of objects Sf (G) inherits all separation properties (It is Hausdorff,
regular, Tichonov, normal etc.) from the metric space S(G).

Proof. This follows from the continuity of the identity function in Part 3 of Lemma 5.2.6.
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Note that TCG as a category, has at most one morphism between any two objects. This will
make it easy to equip the space of morphisms with topology and check that a category defined
that way and topology defined as f–topology are compatible giving a topological category.

Lemma 5.2.8. [Gre98a, Lemma 8.7]
Suppose objects of TCG have f - topology and morphisms are topologized as a subspace of
Sf (G)× Sf (G). Then TCG is a topological category.

TCG is a G–topological category as the source, target, identity and composition maps are
G–equivariant with respect to the G action by conjugation.

At the end of this section we present a very useful observation

Lemma 5.2.9. [Gre98a, Proposition 8.8]
The source and target maps in TCG are open maps.

The topological category TCG has the following property

Lemma 5.2.10. For every point H in the space of objects S(G) there exists an open neigh-
bourhood UH of H with the property that s−1(UH) ∩ t−1(UH) = {IdK |K ∈ UH}

Proof. Set UH to be O(H,A, ε) for ε > 0 and A = G. Then suppose there is a non identity
map in UH , i.e. we have K,L ∈ UH such that K E L and L/K is a non-trivial torus. Then
by definition of O(H,A, ε) ∃g ∈ G such that Kg ELg ≤ H. Moreover NHK

g/Kg is finite and
Lg/Kg is infinite. Since Lg/Kg ≤ NHK

g/Kg we get a contradiction.

This tells us that around every point H there exists an open neighbourhood of H such that
the only maps in the category with source and target in this neighbourhood are identity maps.
So even though it is a categorically non-discrete topological category it is locally categorically
discrete.

This property also implies that the inclusion of identity morphisms into the space of all
morphisms is an open function. In other words, the subspace of the space of morphisms
consisting of all identity morphisms is open.

When G is any torus we make the following observation about the topology of Sf (G)

Proposition 5.2.11. Suppose G is a torus. Then S(G) with f -topology is a discrete space.

Proof. First, recall that f -topology is generated by open sets O(H,A, ε) =
⋃
a∈AO(H, ε)a, but

since G is abelian, this is just O(H, ε).

Any closed subgroup of a torus is of the form T × F where T is a torus and F is a finite
abelian group. Take H = T × F . We want to show that if K ≤ H, K 6= H and H/K is finite
then the Hausdorff distance between H and K is greater than 0. Since K is a subgroup of G
it is of the form T ′ × F ′ and since H/K is finite T ′ = T . Since K 6= H we have F ′ ≤ F and
F ′ 6= F . Both F, F ′ are finite groups so d(H,K) = d(F, F ′) > 0. This shows that S(G) is a
discrete space and by Part 3 of Lemma 5.2.6, f topology for a torus is descrete.



Chapter 6

Sheaves over topological categories

Looking at contravariant functors on the category and sheaves over a topological space one
might think about a generalisation of these two constructions viewed from the perspective of
a topological category. This gives an idea of a sheaf over a topological category.

Roughly speaking, a sheaf F over a topological category C with values in a category D
consists of the following data:

• A functor F : C −→ D

• A sheaf F on the topological space of objects of C denoted by C0 such that for every
object A in C the stalk at a point A ∈ C0 is the same as the value of the functor F on
A.

This states, that a sheaf over a topological category is a functor over it together with some
continuity condition encoded in a sheaf structure. We give the precise definition using the
language of sheaves:

Definition 6.0.1. A sheaf F over a topological category C is a sheaf F on the topological
space of objects C0 together with a map of sheaves over the topological space of morphisms
C1:

c : t∗F −→ s∗F

which satisfies the identity condition
s∗0(c) = Id

and the cocycle condition
d∗1(c) = d∗0(c)d∗2(c)

(this codifies transitivity, i.e. c(gf) = c(f)c(g) for two composable maps f, g ∈ C1). In this
definition we used the notation from Definition 5.1.1. We present the cocycle condition and
the identity condition in a commutative diagrams below (where isomorphisms come from the
categorical/simplicial identities):
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d∗1t
∗F d∗1s

∗F

d∗2t
∗F d∗0s

∗F

d∗2s
∗F d∗0t

∗F

d∗1c

∼=

d∗2c

∼=

d∗0c∼=

s∗0t
∗F s∗0s

∗F

(ts0)∗F (ss0)∗F

s∗0c

∼= ∼=
Id

If we have two sheaves over the same topological category we define a morphism between
them as follows

Definition 6.0.2. Suppose we have two sheaves (F, c), (H, c̃) over a topological category
C. A morphism of sheaves ν : (F, c) −→ (H, c̃) consist of a morphism of sheaves over C0:
ν : F −→ H such that the following diagram of morphisms of sheaves over C1 commutes:

t∗F s∗F

t∗H s∗H

c

t∗(ν) s∗(ν)

c̃

This gives a category of sheaves over a fixed topological category C.

The category of sheaves of sets over a topological groupoid G was studied for example in
[Moe88] and [Moe90] (where he used a different, but equivalent definition to the one presented
above and denoted the sheaves by étale G-spaces). Another paper mentioning sheaves over
topological categories is [Fri82].

6.1 Properties

Later on we restrict attention to the category of sheaves of Q–modules over a topological
category X and present formal properties of this category. But firstly, we make use of topos
theory, i.e. we consider the category of sheaves of sets over a topological category X, to deduce
some of the properties for the category of sheaves of Q–modules.

Firstly, we state an important
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Theorem 6.1.1. The category Shv(Sets)/X of sheaves of sets over a topological category X
is a Grothendieck topos.

Proof. This is stated in [Moe90, Remark 1.6]. The proof follows the same pattern as the proof
for sheaves of sets over a topological groupoid done in [Moe88, Section 2]. The idea is to show
that small colimits in the bicategory of Grothendieck toposes exist and to present the category
of sheaves of sets over a topological category as such a colimit.

When s, t are open maps we can construct generators by hand following the method of
[Moe90, Section 1.3], however we decided not to do that here, as we will only use the existence
of the generators later.

Theorem 6.1.2. Suppose (Q, id) is a constant sheaf of sets over X (with the structure map
being an identity) representing a commutative ring object (constant sheaf at Q). The category
of (Q, id)–modules in sheaves of sets over X is a Grothendieck category, i.e. it is an abelian
category which has a (categorical) generator and where directed colimits are exact.

Proof. This follows from [Joh77, Theorem 8.11 and remark before that], which says that a
category of R modules in a Grothendieck topos (for R - a commutative ring object) is a
Grothendieck category.

Proposition 6.1.3. The category of sheaves of Q–modues over X is equivalent to the category
of (Q, id)-modules in sheaves of sets over X.

Proof. The action map of Q over an open set U is just and action of Q on sections over U .
Since everything is compatible with restrictions this gives a sheaf of Q modules.

Since any pullback of a constant sheaf with discrete stalks is again constant with the same
stalks, the action of the map id on the structure map requires this structure map to be a map
of Q-modules.

From above theorem we deduce the following results

Corollary 6.1.4. The category Shv(Q−mod)/X of sheaves of Q-modules over a topological
category X is a Grothendieck category.

Corollary 6.1.5. The category Shv(Q−mod)/X of sheaves of Q-modules over a topological
category X has all small colimits and all small limits.

Proof. Every Grothendieck category is locally presentable by [Bek00, Proposition 3.10] and
thus it is complete and cocomplete by [AR94, Remark 1.56].

Remark 6.1.6. If s, t, s0 are open maps we can show directly that the category of sheaves of
Q modules over the topological category X is a Grothendieck category. We can work with
the definition to show that this category is abelian and that it has all limits and colimits. It
is also a check that directed colimits are exact (since we can show that exactness is checked
at the level of sheaves of Q modules over the topological space X0). To obtain a generator
we transfer it from the category of sheaves of sets over the topological category X via the
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left adjoint to the forgetful functor from (Q, id)-modules to Shv(Sets)/X. (This is the free
(Q, id)-module functor, and the transfer of a generator is a generator since the right adjoint
is faithful).
Remark 6.1.7. For further references it is quite useful to note that all finite limits and all
colimits are defined as underlying limits and colimits (respectively) in the category of sheaves
over the space of objects equipped with the unique structure map which is also a finite limit
or colimit of structure maps. This observation holds because to define structure maps we use
pullback functors (s∗ and t∗) and they are always exact and as left adjoints they commute
with all colimits.

Remark 6.1.8. In case s, t, s0 are open maps we present the construction of infinite products.
They are defined as underlying infinite products of sheaves over topological space of objects,
but the structure map is a bit more complicated.

Proposition 6.1.9. Suppose X is a topological category with s, t, s0 open maps. Then the
infinite products exist and are defined as follows:∏

i

(Ai, ψi) := (
∏
i

Ai,
∏̃
i

ψi)

where
∏̃
i ψi is the (unique) lift (dotted line) in the diagram:

t∗(
∏
iAi) s∗(

∏
iAi)

∏
i t
∗Ai

∏
i s
∗Ai∏

i ψi

!γ

∏̃
i ψi

!β

where β, γ are the unique maps into products induced by images of projections under functors
t∗ and s∗ respectively.

Proof. Firstly, we need to show that the lift in above diagram exists, that is:
1. γ is a monomorphism
2. Im(

∏
i ψi ◦ β) ⊆ Im(γ)

Then we need to prove that the product constructed above:
3. has the universal property of a product.
4. satisfies cocycle condition and identity condition.

1. We want to show that

γ =
∏
i

s∗(πi) : s∗(
∏
i

Ai) −→
∏
i

s∗Ai
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is a monomorphism. Suppose there is an open set U ⊆ X0 and two sections p, r ∈ s∗(
∏
iAi)(U)

such that γ(p) = γ(r). Section p comes from gluing compatible sections pj = (pji)i ∈∏
iAi(s(Uj)) for some open cover {Uj}j of U . Sections agree on the overlaps if they agree

on the overlaps for all i. Analogously section r comes from gluing compatible sections
rk = (rki)i ∈

∏
iAi(s(Vk)) for some open cover {Vk}k of U .

Any map of sheaves is compatible with restrictions, i.e. resj(γ(p)) = ([pji])i and resk(γ(r)) =
([rki])i.

For fixed i all sections pji ∈ Ai(s(Uj)) form a compatible family, so they give a section
([p∗i])i ∈

∏
i s
∗Ai(U). Similarly, for fixed i all sections rki ∈ Ai(s(Uk)) form a compatible

family, so they give a section ([r∗i])i ∈
∏
i s
∗Ai(U) By unique gluing property for sheaves we

have
([p∗i])i = γ(p) = γ(r) = ([r∗i])i

thus for all i [p∗i] = [r∗i]. That means for every i there exist a subcover of {Uj}j and {Vk}k
call it {Ṽα}α (depending on i) such that pji|Ṽα = rki|Ṽα . From the unique gluing property we
get [pji]|Uj∩Vk = [rki]|Uj∩Vk so we can choose subcover {Ṽα}α to be non-empty intersections
Uj ∩ Vk. We can do it for all i and the subcover does not depend on i.

We get that {[(pji)i]}j forms a compatible family of sections which glues to give p where
[(pji)i] ∈ s∗(

∏
iAi)(Uj) and similarly {[(rki)i]}k forms a compatible family of sections which

glues to give r where [(rki)i] ∈ s∗(
∏
iAi)(Vk). We know those two compatible families are equal

because their restrictions to the subcover Uj ∩ Vk are equal. Therefore p = r ∈ s∗(
∏
iAi)(U).

That shows γ is a monomorphism of sheaves.

2.We will prove that Im(
∏
i ψi ◦ β) ⊆ Im(γ)

From above result we know β is also a monomorphism. The image of γ will consist of all those
sections of the product over U which come from gluing families of sections of Ai’s compatible
for the same cover of U for all i’s. Similarly for the image of β.

Now suppose we have a section ([pi])i ∈
∏
i t
∗Ai(U) which is in the image of β, i.e. for all i

it comes from gluing compatible family of sections ([pji])i over Uj where {Uj}j is an open cover
of U independent of i. All maps ψi are maps of sheaves, so they commute with restrictions:

[pi] ψi(U)([pi])

pji ψi(Uj)(pji)

resjresj

where pji ∈ Ai(sUj). The family of sections {ψi(Uj)(pji)}j is compatible because it is a
restriction of a section. The cover {Uj}j does not depend on i, therefore the same argument
works for all i. The family of sections {(ψi(Uj)(pji))i}j is compatible and it glues back to the
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section
∏
i ψi(([pi])i) =

∏
i ψi([pi]). This section is clearly in the image of γ, as it comes from

gluing a family of sections of Ai’s compatible for the same cover of U for all i’s.

Now we have a lift, so that completes the construction of the product. We need to prove
it has the universal property.

3. Suppose we have for every i a map fi : (Z,ψZ) −→ (Ai, ψi). Because product is defined
as product of underlying sheaves over X0 we get the unique map f : Z −→

∏
iAi in the

category of sheaves over X0. It remains to show that this map commutes with structure maps,
i.e. that the top square below commutes:

t∗Z s∗Z

t∗(
∏
iAi) s∗(

∏
iAi)

t∗Ai s∗Ai

∏
i t
∗Ai

∏
i s
∗Ai

ψi

ψZ

t∗(f)

t∗(fi)

β

t∗(πi)

∏
i ψi

π̃i

γ
s∗(πi)

π̃i

s∗(fi)

s∗(f)∏̃
i ψi!δ !σ

The top square commutes after postcomposition with γ. We know γ is a monomorphism, thus
the top square commutes.

4.Now it remains to show that the map
∏̃
i ψi satisfies the cocycle and identity conditions

if for all i maps ψi do.

We begin with the cocycle condition. Since for all i, ψi satisfies the cocycle condition, we
can form the following commuting diagram:
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∏
i d
∗
1t
∗Ai

∏
i d
∗
1s
∗Ai

∏
i d
∗
2t
∗Ai

∏
i d
∗
0s
∗Ai

∏
i d
∗
2s
∗Ai

∏
i d
∗
0t
∗Ai

∏
i d
∗
1ψi

∼=

∏
i d
∗
2ψi

∼=

∏
i d
∗
0ψi∼=

Now we relate the above to the diagram for
∏
iAi using unique maps into products, as follows:

d∗1t
∗∏

iAi d∗1s
∗∏

iAi

d∗1
∏
i t
∗Ai d∗1

∏
i s
∗Ai

d∗1t
∗Ai d∗1s

∗Ai

∏
i d
∗
1t
∗Ai

∏
i d
∗
1s
∗Ai

d∗1
∏̃
i ψi

d∗1
∏
i ψi

d∗1ψi

∏
i d
∗
1ψi

!

The front rectangle (the one relating d∗1t∗
∏
iAi, d

∗
1s
∗∏

iAi,
∏
i d
∗
1t
∗Ai and

∏
i d
∗
1s
∗Ai ) com-

mutes after postcomposing with ! (for every i), so from the universal property of the product
it commutes. This shows that the cocycle diagram for

∏
iAi commutes after postcomposing

with a unique map
d∗0s
∗
∏
i

Ai −→
∏
i

d∗0s
∗Ai

and since this map is a monomorphism (because both d0, s are open maps), it commutes.

Now we proceed to show the identity condition. Since all ψi satisfy the identity condition
we have the following commuting diagram

∏
i s
∗
0t
∗Ai

∏
i s
∗
0s
∗Ai

∏
i(ts0)∗Ai

∏
i(ss0)∗Ai

∏
i s
∗
0ψi

∼= ∼=
Id

We relate this diagram with one for
∏
iAi as follows:
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s∗0t
∗∏

iAi s∗0s
∗∏

iAi

s∗0
∏
i t
∗Ai s∗0

∏
i s
∗Ai

s∗0t
∗Ai s∗0s

∗Ai

∏
i s
∗
0t
∗Ai

∏
i s
∗
0s
∗Ai

s∗0
∏̃
i ψi

s∗0
∏
i ψi

s∗0ψi

∏
i s
∗
0ψi

Again, the same argument as before shows that the front rectangle commutes (the one relating
s∗0t
∗∏

iAi, s
∗
0s
∗∏

iAi,
∏
i s
∗
0t
∗Ai and

∏
i s
∗
0s
∗Ai ), and thus the identity condition diagram

commutes after postcomposing with the unique map

(ss0)∗
∏
i

Ai −→
∏
i

(ss0)∗Ai

and since this map is a monomorphism (because both s0, s are open maps), it commutes. This
finishes the proof.

From Remarks 6.1.7 and 6.1.8 we see that (under the assumption that s, t, s0 are open
maps) all limits and colimits are preserved by the forgetful functor to sheaves over the space
of objects (which is forgetting the structure map)

U : Shv/X −→ Shv/X0

U(F, c) = F

This observation implies that U has both adjoints when viewed as a functor between sheaves
of Q –modules and it follows from the Theorem below (Recall that a category is wellpowered if
every object has a set of subobjects. The category C is well-copowered if Cop is wellpowered).

Theorem 6.1.10. Let L : C −→ D be a functor between two Grothendieck categories. If L
preserves colimits then it has a right adjoint. If in addition it preserves limits then it has a
left adjoint.

Proof. First part follows from the Freyd’s special adjoint functor theorem (see [ML98, Chapter
V, Section 8]) and the fact that every Grothendieck category is cocomplete, well-copowered
and has a (categorical) generator. (The only non obvious point is about the category being
well-copowered, but that follows from [AR94, Theorem 1.58]).

The second part follows from [AR94, Theorem 1.66].
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When X = TCG, then by the property from Lemma 5.2.10 U is induced by an open
inclusion of G–topological subcategory (with only identity morphisms) into G–topological
category TCG.

We can generalise this functor to get a restriction functor as follows: Suppose X is a
topological category such that s, t are open maps. Then for every open set U in X0 we have
a restriction functor

(−)|U : Shv(Q−mod)/X→ Shv(Q−mod)/U

where U denotes the full subcategory of X on the space of objects U . The space of morphisms
in U is U1 = s−1(U) ∩ t−1(U). Without confusion we can index this functors by open sets U
in X0.

The restriction functor is defined as follows: for any V ⊆ U and any sheaf of Q–modules
(A,ψA) over X

A|U (V ) := A(V )

and for any open set W ⊆ U1 we define the structure map to be

ψA|U (W ) := ψA(W )

We can generalise this construction further. Suppose we have a continuous functor between
topological categories: F : X −→ Y. Then there is a pullback functor induced on the level of
sheaves: F∗ : Shv/Y −→ Shv/X defined as follows:

F∗(A,ΨA) := (F ∗0A,F
∗
1 (ΨA) : t∗Y F

∗
0A
∼= F ∗1 t

∗
XA −→ F ∗1 s

∗
XA
∼= s∗Y F

∗
0A)

It is now an easy check that F∗ preserves colimits since both F ∗0 and F ∗1 do and the respective
structure maps are isomorphic by the same argument as in Lemma 6.1.15. Thus F∗ has a
right adjoint, which we call F∗. In general F∗ does not preserve infinite products, so it is not
a right adjoint itself.

Recall that an open embedding F consists of a pair of continuous maps F0, F1, such that
they induce homeomorphisms of X0 with an open subspace of Y0, and X1 with an open
subspace of Y1. If F : X −→ Y is an open embedding then F∗ has a left adjoint (and thus
it has both adjoints) as both F ∗0 and F ∗1 have both adjoints (they are canonically naturally
isomorphic to restriction functors, which have left adjoints - extensions by 0) and thus they
both preserve all limits and colimits.

Remark 6.1.11. Every restriction (−)|U for U an open subset of X0 is an example of a functor
induced by an open inclusion and therefore it has both adjoints.

Now we can proceed to investigating chain complexes of Q–modules.
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Lemma 6.1.12. There is an isomorphism of categories

Ch(Shv(Q−mod)/X) ∼= Shv(Ch(Q−mod))/X

that is the category of chain complexes in the category of sheaves of Q-modules over a topological
category X is isomorphic to a category of sheaves of chain complexes of Q-modules over the
same topological category X.

Proof. We will construct two functors

G : Shv(Ch(Q−mod))/X→ Ch(Shv(Q−mod)/X)

and
H : Ch(Shv(Q−mod)/X)→ Shv(Ch(Q−mod))/X

such that both compositions will give identities.

For every n there exists a functor (−)n : Ch(Q−mod)→ Q−mod which restricts to the
n-th level of the chain complex.

Take (B,ψB) ∈ Shv(Ch(Q − mod))/X. For every open set U ⊆ X0 we can apply the
above functor to B(U) getting B(U)n. This gives a presheaf Bn(U) := B(U)n. We need to
check it is a sheaf. Recall that sheaf condition is in terms of products and equalizers, and as
those are computed levelwise in Ch(Q−mod) and B was a sheaf we get a sheaf Bn. We define
differentials as follows: dn is a map of sheaves such that dn(U) = dn from B(U). (B(U) is a
chain complex, so we take its n-th differential). di ◦ di+1 = 0 as it equals zero on every open
U .

It remains to show that every Bn can be equipped with a structure map obtained from ψB.
For every open V ⊆ X1 we can apply the (−)n functor to get the map ψBn : (t∗B)n → (s∗B)n.
Moreover, as sheafification is done in terms of limits and colimits which are calculated levelwise
in chain complexes we get the isomorphisms: t∗(Bn) ∼= (t∗B)n and s∗(Bn) ∼= (s∗B)n. ψn
composed with those isomorphisms is the required structure map for Bn.

It will satisfy the cocycle condition because ψB did and it will commute with di’s because
ψB did, so that di’s become maps of sheaves over X. We set G((B,ψB)) := {(Bn, ψBn), dn}n

Any map f : (B,ψB)→ (C,ψC) gives rise to a map of chain complexes, which on the level
n is obtained by applying the functor (−)n for every open set of X0: fn : Bn → Cn. It will
commute with structure maps ψBn and ψCn because f commutes with ψB and ψC . Therefore
we set G(f) := {fn}n.

We now construct the functor H as follows.
Take {(An, ψAn), dn}n ∈ Ch(Shv(Q − mod)/X). We want to construct a sheaf of chain
complexes. Let us put
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A(U) := ... An(U) An−1(U) ...
dn+1(U) dn−1(U)dn(U)

i.e. a new sheaf at open set U ⊆ X0 will have the chain complex of (An, ψn) evaluated at U .

For every inclusion of open sets V ⊆ U ⊆ X0 we get the restriction map - restriction of An
on the level n. This map commutes with differential, because it did in the sheaf A. Moreover
di(U) ◦ di+1(U) = di ◦ di+1(U) = 0, so we obtain a presheaf of chain complexes. It is a sheaf
because every An was a sheaf and the sheaf condition is in terms of products and equalizers,
which are done levelwise in chain complexes.

Now we need to equip the sheaf A with the structure map obtained from ψAn : t∗(An)→
s∗(An). Sheafification in chain complexes is done levelwise, so we have an isomorphism t∗(A) ∼=
{t∗(An)}n, where {t∗(An)}n is a chain complex because t∗(dn) ◦ t∗(dn+1) = t∗(dn ◦ dn+1) =
t∗(0) = 0 . This allows us to put the structure map ψA : t∗A→ s∗A over the open setW ⊆ X1

to be ψ(W )n := ψAn(W )

Set H({(An, ψAn), dn}n) := (A,ψA)

Any map {fn : (An, ψAn)→ (Bn, ψBn)}n gives rise to a map F : A→ B of sheaves of chain
complexes, which for an open set U ⊆ X0 is obtained by putting F (U)n = fn(U) : A(U)n →
B(U)n. It will commute with structure maps ψA and ψB because {fn}n commutes with ψA
and ψB. Therefore we set H({fn}n) := F

It is easy to see that G ◦H = Id and H ◦G = Id.

We are interested in forming a monoidal model structure on the category Ch(Shv(Q−mod)/X).
We begin with the monoidal structure.

Lemma 6.1.13. There is a symmetric monoidal structure on the category Shv(Q−mod)/X
of sheaves of Q-modules over a topological category X constructed from a symmetric closed
monoidal structure on the category of sheaves over topological space of objects X0 of the topo-
logical category X.

Proof. We define the tensor product of two sheaves of Q–modules over X as a tensor product
of modules over a constant sheaf (Q, id). This can be defined directly as follows:

(A,ψA)⊗ (B,ψB) := (A⊗B,ψA ⊗ ψB)

where, by abuse of notation we call ψA ⊗ ψB the following composite:

t∗(A⊗B) t∗A⊗ t∗B s∗A⊗ s∗B s∗(A⊗B)
∼= ψA ⊗ ψB ∼=
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The two isomorphisms above are natural in both variables and follow from the fact that
pullback functors are strong symmetric monoidal with respect to the tensor product of sheaves
over X0 defined as tensoring over the constant sheaf Q and with respect to the tensor product
of sheaves over X1 defined as tensoring over the constant sheaf Q.

This tensor product is associative, because tensoring of sheaves over the constant sheaf Q
is associative over X0 and X1. The unit is (Q, id), i.e. a constant sheaf Q with identity as the
structure map.

Moreover this tensor product is symmetric, i.e. for any two sheaves of Q–modules over X
(A,ψA), (B,ψB)) if γA,B : A⊗B → B⊗A is the symmetry isomorphism between the sheaves
over X0 then we need to show that this map commutes with structure maps ψA, ψB, but it’s
easy to see that it does stalkwise.

Corollary 6.1.14. There is a symmetric monoidal structure on the category Ch(Shv(Q −
mod)/X) of chain complexes of sheaves of Q-modules over a topological category X constructed
from the one on the category Shv(Q−mod)/X.

Proof. We extend the above tensor product to chain complexes in the usual way:

(X ⊗ Y )n = ⊕p+q=nXp ⊗ Yq

and the differential is given by the formula: d(x⊗ y) = dx⊗ y + (−1)px⊗ dy where p = |x|.
Unit is the unit for Shv(Q − mod)/X concentrated in degree 0. Associativity follows from
associativity for Shv(Q − mod)/X and symmetry is induced by the symetry on Shv(Q −
mod)/X and a sign convention: X ⊗ Y −→ Y ⊗X where x ⊗ y 7→ (−1)pqy × x, p = |x|, q =
|y|.

Lemma 6.1.15. Tensor product on Shv(Q−mod)/X and on Ch(Shv(Q−mod)/X) commutes
with colimits in both variables.

Proof. Since the tensor product is symmetric, it is enough to show it commutes with colimits in
the first variable. Thus we want to show that ((colimiAi)⊗B, (colimi φi)⊗φB) is isomorphic to
(colimi(Ai⊗B), colimi(φi⊗φB)). Since tensor of sheaves of Q–modules over a space commutes
with colimits, we see that (colimiAi)⊗B ∼= colimi(Ai ⊗B). It remains to show that the two
structure maps are isomorphic. The first map is defined via commuting square

t∗((colimiAi)⊗B) s∗((colimiAi)⊗B)

t∗(colimiAi)⊗ t∗B) s∗(colimiAi)⊗ s∗B)

colimi t
∗Ai ⊗ t∗B colimi s

∗Ai ⊗ s∗B

∼=

∼=

∼=

∼=
(colimi φi)⊗ φB

The second map is defined via commuting square
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t∗(colimi(Ai ⊗B)) s∗(colimi(Ai ⊗B))

colimi t
∗(Ai ⊗B) colimi s

∗(Ai ⊗B)

colimi(t
∗Ai ⊗ t∗B) colimi(s

∗Ai ⊗ s∗B)

∼=

∼=

∼=

∼=
colimi(φi ⊗ φB)

To show that these are isomorphic, first notice that we have the following commuting square

colimi t
∗Ai ⊗ t∗B colimi s

∗Ai ⊗ s∗B

colimi(t
∗Ai ⊗ t∗B) colimi(s

∗Ai ⊗ s∗B)

∼=

(colimi φi)⊗ φB

∼=
colimi(φi ⊗ φB)

since colimits commute with the tensor product of sheaves of Q-modules over a topological
space. It remains to show that the following diagram (and the respective one for s∗) commutes:

colimi(t
∗Ai ⊗ t∗B) colimi t

∗(Ai ⊗B)

(colimi t
∗Ai)⊗ t∗B t∗ colimi(Ai ⊗B)

t∗(colimiAi)⊗ t∗B t∗((colimiAi)⊗B)

∼=

∼=

∼=

∼=
∼=

∼=

where maps are induced by the unique maps from colimits or come from t∗ being strong
monoidal or come from the fact that colimits commute with the tensor product of sheaves of
Q-modules over a topological space. Since these two paths are induced by the same map from
every object t∗Ai ⊗ t∗B, they are equal as the unique map from the colimit.

Proposition 6.1.16. The monoidal structures on Shv(Q − mod)/X and on Ch(Shv(Q −
mod)/X) are closed.

Proof. By Lemma 6.1.15 both tensor products defined above commute with colimits of sheaves
over X in both variables.

By Theorem 6.1.10 a functor which preserves colimits between Grothendieck categories
has a right adjoint, thus internal hom functors exist and there is a usual adjunction giving a
closed symmetric monoidal product.
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Lemma 6.1.17. Suppose we have a continuous functor between two topological categories
F : X −→ Y. Then F ∗ is strong monoidal when viewed as a functor between categories of
sheaves of Q–modules over topological categories.

Proof. We want to show that F∗(A⊗B,φA⊗φB) := (F ∗0 (A⊗B), F ∗1 (φA⊗φB)) is isomorphic
to F∗(A, φA) ⊗ F∗(B,φB) := (F ∗0A ⊗ F ∗0B,F ∗1 φA ⊗ F ∗1 φB). F ∗0 and F ∗1 are strong monoidal
functors between sheaves over topological spaces, so F ∗0A⊗ F ∗0B ∼= F ∗0 (A⊗B). It remains to
show that the two structure maps are isomorphic. This follows the same pattern as proof of
Lemma 6.1.15, where the last diagram is replaced by the following commuting diagram

F ∗1 t
∗A⊗ F ∗1 t∗B F ∗1 t

∗(A⊗B)

t∗F ∗0A⊗ t∗F ∗0B t∗F ∗0 (A⊗B)

=

∼=

=

∼=

Recall that t∗F ∗0 = F ∗1 t
∗ since both functors are defined via pulling back using the same map

t ◦ F0 = F1 ◦ t.

6.2 Model structure

The following results allow us to give a description of a homotopy category of Ch(Shv(Q −
mod)/X) with respect to weak equivalences being homology isomorphisms.

We establish a monoidal model structure on the category Ch(Shv(Q−mod)/X)

Corollary 6.2.1. Suppose X is a topological category, then there exist a proper, cofibrantly
generated model structure on the category of Ch(Shv(Q − mod)/X) of chain complexes of
sheaves of Q-modules over a topological category X where

• the cofibrations are the injections,

• the weak equivalences are the homology isomorphisms and

• the fibrations are maps which have the right lifting property with respect to trivial cofi-
brations.

Proof. This follows from the fact that Shv(Q−mod)/X is a Grothendieck category (see Corol-
lary 6.1.4) and from [Hov01, Theorem 2.2]. Properness is shown using a standard homological
algebra argument, given for example in the proof of [CD09, Theorem 2.1].

We will refer to the above model structure as the "injective" model structure.

Lemma 6.2.2. The injective model structure on the category of Ch(Shv(Q − mod)/X) of
chain complexes of sheaves of Q-modules over a topological category X is a monoidal model
structure, i.e. it satisfies the pushout-product axiom and the unit axiom.
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Proof. The pushout-product axiom follows from the fact that this model structure is exactly
the same as the flat model structure in this category, i.e. a model structure given by a cotorsion
pair (flat, cotorsion) which is the same as the injective cotorsion pair (all, injective), because
everything is flat in Ch(Shv(Q−mod)/X).

Recall that by [Gil06, Theorem 5.7] the flat model structure on the category of chain
complexes of sheaves of Q–modules overX0 (X1 respectively) is monoidal. Cofibrations, trivial
cofibrations and tensor product are defined in the underlying category of chain complexes of
sheaves of Q–modules over X0, so after forgetting to this category the pushout product axiom
is satisfied. Pushouts are also preserved by the forgetful functor, thus we have the following
situation:

Suppose f∗ : (A∗, ψA∗) −→ (B∗, ψB∗) and g∗ : (C∗, ψC∗) −→ (D∗, ψD∗) are cofibrations in
Ch(Shv(Q−mod)/X) then we have a diagram in Ch(Shv(Q−mod)/X)

(A∗, ψA∗)⊗ (C∗, ψC∗) (B∗, ψB∗)⊗ (C∗, ψC∗)

•

(A∗, ψA∗)⊗ (D∗, ψD∗) (B∗, ψB∗)⊗ (D∗, ψD∗)

f∗ ⊗ Id

Id⊗ g∗

f∗ ⊗ Id

h

Id⊗ g∗

Where bullet denotes the pushout. After forgetting to the category Ch(Shv(Q −mod)/X0)
we get the following diagram:

A∗ ⊗ C∗ B∗ ⊗ C∗

•

A∗ ⊗D∗ B∗ ⊗D∗

f∗ ⊗ Id

Id⊗ g∗

f∗ ⊗ Id

h

Id⊗ g∗

where h is a cofibration because pushout product axiom holds in this category. It follows that
h is a cofibration in Ch(Shv(Q−mod)/X). Similar proof works for acyclic cofibrations. That
shows the pushout product axiom is satisfied in Ch(Shv(Q−mod)/X).
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The unit axiom follows from the pushout-product axiom and the fact that every object in
Ch(Shv(Q−mod)/X) is cofibrant.

Proposition 6.2.3. The injective model structure on Ch(Shv(Q−mod)/X) is cellular.

Proof. First we show that cofibrations are effective monomorphisms. By [Hir03, Proposition
10.9.4] it is enough to show that every cofibration is an equaliser of two parallel maps. Cofi-
brations are exactly monomorphisms and every monomorphism is a kernel of its cokernel, thus
it is an equaliser of its cokernel and a parallel zero map.

If A is a Grothendieck category then Ch(A) is as well and in every Grothendieck category
all objects are small (see Proposition 4.1.7).

Since we want to transfer the model structure on the category of modules over any monoid
R and algebras over any commutative monoid R (in particular we will obtain the model
structure on the category of monoids) we need to check that assumptions of [SS00, Theorem
3.1] are satisfied.

Proposition 6.2.4. The monoid axiom is satisfied in Ch(Shv(Q−mod)/X) with the injective
model structure.

Proof. Since every object is cofibrant the monoid axiom follows from the pushout-product
axiom.

Now we are ready to transfer the model structure to R modules

Lemma 6.2.5. There is a cofibrantly generated model structure on the category of left R–
modules for any monoid R in Ch(Shv(Q −mod)/X), where the morphism is defined to be a
fibration or a weak equivalence of left R–modules if it is a fibration or a weak equivalence in
the underlying category Ch(Shv(Q−mod)/X).

Proof. This is [SS00, Theorem 3.1 Part 1].

Lemma 6.2.6. There is a cofibrantly generated, monoidal model structure on the category of
R–modules for any commutative monoid R in Ch(Shv(Q−mod)/X), where the morphism is
defined to be a fibration or a weak equivalence of left R–modules if it is a fibration or a weak
equivalence in the underlying category Ch(Shv(Q−mod)/X). Moreover the monoid axiom is
satisfied in the category of R–modules.

Proof. This is [SS00, Theorem 3.1 Part 2].

Lemma 6.2.7. Let R be a commutative monoid in Ch(Shv(Q−mod)/X). Then the category
of R–algebras is a cofibrantly generated model category where a map is defined to be a fibration
or a weak equivalence of R–algebras if it is a fibration or a weak equivalence in the underlying
category Ch(Shv(Q−mod)/X).

Proof. This is [SS00, Theorem 3.1 Part 3]



Chapter 7

G-sheaves over G-topological spaces

For Chapter 7 and 8 we assume G is a topological group and the action of G is continuous.

In order to use some of the results from non–equivariant case, we show the equivalence of
the usual definition of a G–sheaf of Q-modules over a G–topological space X (Definition 7.0.1
below) and Definition 7.0.2 below.

Definition 7.0.1. A G–sheaf over a G–topological space X is a sheaf F over X together with
a continuous action of G on the étale space F such that the projection map π : F → X is
G–equivariant. We call this an étale definition.

Definition 7.0.2. Suppose X is a G–topological space. Then we introduce the following
continuous maps:

e0 : G×G×X → G×X where e0(g1, g2, x) = (g2, g
−1
1 x)

e1 : G×G×X → G×X where e1(g1, g2, x) = (g1g2, x)
e2 : G×G×X → G×X where e2(g1, g2, x) = (g1, x)

d0 : G×X → X where d0(g, x) = g−1x
d1 : G×X → X where d1(g, x) = x

s0 : X → G×X where s0(x) = (1, x) and 1 is the unit in G.

A G–sheaf over a G–topological space X is a sheaf E together with an isomorphism of sheaves
over G×X:

φ : d∗1E −→ d∗0E

satisfying the cocycle condition on G×G×X, i.e. e∗1φ = e∗0φ ◦ e∗2φ and the identity condition
s∗0φ = idE .

A G–equivariant morphism of G–sheaves (E , φ), (F , ϕ) is a morphism α : E −→ F of
sheaves such that d∗1α ◦ φ = ϕ ◦ d∗0α.

Lemma 7.0.3. Definitions 7.0.1 and 7.0.2 are equivalent.

87
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Proof. First, I will sketch the implication Definition 7.0.1 =⇒ Definition 7.0.2.

Suppose F is a G–equivariant sheaf on X with respect to Definition 7.0.1 and let π : F −→
X be the corresponding ètale space. Then d∗0F is an ètale space G × F with projection map
π0 : G × F −→ G × X such that π0(g, f) = (g, gπ(f)). Similarly, d∗1F is an ètale space
G × F with projection map π1 : G × F −→ G × X such that π1(g, f) = (g, π(f)). Now the
isomorphism of sheaves φ : d∗1F −→ d∗0F corresponds to an isomorphism of ètale spaces over
G × X, i.e. a homeomorphism which commutes with projection maps π0, π1. Let us define
φ(g, f) := (g, g−1f). This is clearly a homeomorphism and it commutes with projection maps.
What remains to show is that it satisfies the identity and cocycle conditions, but this is a
straightforward computation.

For the other implication:
Suppose we have a G–sheaf E in terms of Definition 7.0.2, i.e. we have a sheaf E over X
together with an isomorphism ψ : d∗1E → d∗0E satisfying cocycle and identity conditions.
This gives an étale space E with the projection π : E → X and the isomorphism ψ gives
an isomorphism of ètale spaces ψ : G × E → G × E over G × X. Composing ψ with the
second projection π2 we get a map φ : G × E → E such that for all (g, f) ∈ G × E we get
g−1π(f) = π(φ(g, f)). Let us define φ̃(g, f) = φ(g−1, f), then we get an "operation" of G on
E such that π is G–equivariant. We need to check that this "operation" is a continuous action
of G on E, i.e ∀f ∈ E, g, h ∈ G we have φ̃(1, f) = f and φ̃(g, φ̃(h, f)) = φ̃(gh, f).

For all f in E, φ̃(1, f) = φ(1, f) = π2 ◦ ψ(1, f) = π2(1, f) = f as we know ψ(1, f) = (1, f)
from the identity condition s∗0ψ = idE (note that s0 is an inclusion, therefore s∗0 is a restriction
of ψ to the {1} × E).

To show φ̃(g, φ̃(h, f)) = φ̃(gh, f) we assume f is over x and we will recall what the cocy-
cle condition means stalkwise:

e∗1ψ(g,h,x) = ψ(gh,x)

e∗0ψ(g,h,x) = ψ(h,g−1x)

e∗2ψ(g,h,x) = ψ(g,x)

e∗1ψ(g,h,x) = e∗0ψ(g,h,x) ◦ e∗2ψ(g,h,x)

ψ(gh,x) = ψ(h,g−1x) ◦ ψ(g,x)

We have the following equalities:

φ̃(g, φ̃(h, f)) = φ(g−1, φ(h−1, f)) = π2 ◦ ψ(g−1, π2 ◦ ψ(h−1, f)) =

π2 ◦ ψ(g−1, ψ(h−1,x)(f)) = ψ(g−1,hx) ◦ ψ(h−1,x)(f)

and
φ̃(gh, f) = φ(h−1g−1, f) = π2 ◦ ψ(h−1g−1, f) = ψ(h−1g−1,x)(f)

By cocycle condition they are equal, so we get an action of G on E.



89

Continuity of this action follows from the fact that φ̃ is a composition of three continuous
maps φ̃ = i ◦ π2 ◦ ψ where i : G× E → G× E, such that i(g, f) = (g−1, f).

Since Definitions 7.0.1 and 7.0.2 agree, we use the common terminology of G-sheaves over
a G-topological space to denote these objects (we will not distinguish between étale and non-
étale definition). Later on it will come useful to have an étale description as well as the
formulation using topological categories.

Note, that both d0, d1 maps in Definition 7.0.2 are open and this definition is a particular
case of the definition of a sheaf over a topological category with structure map being an
isomorphism.

Next we present three obvious examples of categories of G–sheaves over G–topological
spaces

Example 7.0.4. Suppose X is a topological space with a trivial G action. Then the category of
sheaves over topological category XG is equivalent to the category of sheaves over topological
space X with G action on stalks. If G is finite and we consider sheaves of Q modules over XG

then it is equivalent to the category of sheaves of Q[G]-modules over X.

Example 7.0.5. Suppose Y is a topological space with transitive G action. Then the category
of sheaves over YG is equivalent to the category of sheaves over a point with an action of a
stabiliser of a point y ∈ Y on the stalk.

Example 7.0.6. Suppose Z is a topological space with a free G action. Then the category of
sheaves over ZG is equivalent to the category of sheaves over the orbit space Z/G.

This equivalence of definitions above allows us to deduce the following results for the
category of G–sheaves of Q–modules over a G–topological space X from analogous results for
sheaves over a topological category:

Lemma 7.0.7. For a topological group G the category G−Shv(Q−mod)/X of G–sheaves of
Q–modules over a G–topological space X is a Grothendieck category.

Corollary 7.0.8. For a topological group G the category G−Shv(Q−mod)/X of G–sheaves
of Q–modules over a G–topological space X has all small limits and colimits.

Lemma 7.0.9. For a topological group G there is an isomorphism of categories

Ch(G− Shv(Q−mod)/X) ∼= G− Shv(Ch(Q−mod))/X

that is the category of chain complexes in the category of G–sheaves of Q-modules over a G–
topological space X is isomorphic to a category of G–sheaves of chain complexes of Q-modules
over the same G–topological space X.
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Now we mention restriction and extension by zero functors. It turns out that the restriction
to any G–invariant open subset U ⊆ X and extension by 0 from U to X functors form an
adjoint pair.

Restriction of a G–sheaf B over X to U is defined as B|U (V ) := B(V ) for all open V in U .
It is clearly a G–sheaf over U . Extension by zero from a G–sheaf AU over U to X is defined
as the sheafification of the following presheaf

E(AU )(V ) :=

{
A(V ), if V ⊆ U open.
0, otherwise.

It is clearly a G–sheaf over X and we use the notation E(AU ) for it. We have a bijection
natural in both variables

HomG−Shv/X(E(AU ), B) ∼= HomG−Shv/U (AU , B|U )

defined in the same way as for non–equivariant sheaves (restriction of a map and extension of
a map by 0).

Now we are ready to put a model structure on the category Ch(G− Shv(Q−mod)/X)

Corollary 7.0.10. Let G be a topological group. There exists a proper, stable, cofibrantly
generated model structure on the category of Ch(G−Shv(Q−mod)/X) of chain complexes of
G–sheaves of Q-modules over a G–topological space X where the cofibrations are the injections,
the weak equivalences are the homology isomorphisms and the fibrations are maps which have
the right lifting property with respect to trivial cofibrations.

Proof. This is a Grothendieck category so it follows from [Hov01, Theorem 2.2].

We need a notion of a tensor product on this category, so we define it as in the previous
section and we get the following:

Lemma 7.0.11. For any topological group G there is a closed symmetric monoidal structure
on the category G− Shv(Q−mod)/X of G–sheaves of Q-modules over a G–topological space
X constructed from one on the category of sheaves over X.

It seems that the condition for structure maps to be isomorphism is strong enough to allow
us to prove the following directly:

Theorem 7.0.12. The symmetric monoidal structure on G–sheaves of Q-modules over a G–
topological space X is closed.

Proof. We can prove this theorem by the existence of the right adjoint. However, in this case
we can give an explicit construction of the internal hom. To do this we use the equivalence of
two definitions of G–sheaves of Q-modules over a G–topological space X. We prove it while
working with Definition 7.0.1.
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The natural candidate for internal hom object from sheaf A over X to sheaf B over X is
the usual internal hom homShv/X(A,B): an ètale space homShv/X(A,B) together with the
usual projection π to X and equipped with a continuous G action such that this projection is
G–equivariant.

Recall that for U ⊆ X open we have

homShv/X(A,B)(U) := HomShv/U (A|U , B|U )

Let us define an action of G on homShv/X(A,B) by:

ψ : G× homShv/X(A,B) −→ homShv/X(A,B)

ψ(g, f) = [g ◦ f ◦ g−1, gU ]

where f is a point over x in homShv/X(A,B), i.e. it is represented by a section over an open
neighbourhood of x: [f, U ]. This is well defined (by definition of germs), continuous action
and the projection map is G–equivariant. It also extends to an action of G on the sections,
as follows: for f ∈ homShv/X(A,B)(U) we have ψ(g, f) = g ◦ f ◦ g−1 ∈ homShv/X(A,B)(gU).
That shows clearly that the action is continuous. We want to show that preimage of an open set
is open. It’s enough to check it for basic open sets: suppose we have s ∈ homShv/X(A,B)(U)

then ψ−1(s) = ∪g∈G{g} × gsg−1 ∼= G× s which is open.

It remains to show that homShv/X(A,B) together with the action ψ has the universal
property (We denote the internal hom from A to B in the category of G–sheaves over X by
homG−Shv/X(A,B)):For all G–sheaves A,B,C over X we wan to show:

HomG−Shv/X(A⊗B,C) ∼= HomG−Shv/X(A, homG−Shv/X(B,C))

In the underlying category of sheaves over X this is true. We need to show that the adjoint to
a G–equivariant map of sheaves α : A⊗B −→ C is again G–equivariant and that the adjoint
to a G–equivariant map of sheaves β : A −→ homG−Shv/X(B,C) is again G–equivariant. To
show that we will prove that the unit and counit of the adjunction on the level of sheaves
over X are G–equivariant maps. First recall that the action of G on A ⊗ B is diagonal, i.e.
(g, a⊗ b) 7→ ga⊗ gb.

The unit map η : A −→ homG−Shv/X(B,A⊗B) is defined as follows:

η(U)(a)(V ) := b⊗ a|V

where a ∈ A(U) and b ∈ B(V ) and V ⊆ U . Moreover η(gU)(ga)(gV ) := gb ⊗ ga|gV =
g(b⊗ a|V ), as g defines an isomorphism from sections of B over V to sections of B over gV .

Suppose now we have a G–equivariant map of sheaves α : A ⊗ B −→ C. Then the map
homG−Shv/X(B,α) is again G–equivariant by direct calculation: take γ ∈ homG−Shv/X(B,A⊗
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B)(U), then homG−Shv/X(B,α)(γ) = α(U) ◦ γ. Similarly ψ(g, γ) ∈ homG−Shv/X(B,A ⊗
B)(gU) and homG−Shv/X(B,α)(gU)(ψ(g, γ)) = α(gU) ◦ ψ(g, γ) = gαg−1gγg−1 = gα ◦ γg−1.

Therefore the adjoint of α denoted by α̃ is G–equivariant as it is the composition of G–
equivariant maps:

A homG−Shv/X(B,A⊗B)

homG−Shv/X(B,C)

η

α̃
homG−Shv/X(B,α)

The counit map ε : homG−Shv/X(B,C) ⊗ B −→ C is defined as follows: for γ(U) :

B|U −→ C|U and b ∈ B(U) ε(γ, b) := γ(U)(b). We have ε(g(γ(U), b)) = ε(gγ(U)g−1, gb) =
gγ(U)g−1(gb) = gγ(U)(b), which shows that counit is G–equivariant.

Suppose we have a G–equivariant map of sheaves β : A −→ homG−Shv/X(B,C). Then the
map β ⊗ IdB is again G–equivariant by direct calculations. For a⊗ b a germ of A⊗B over x
we have β ⊗ IdB(a⊗ b) = β(a)⊗ b and β ⊗ IdB(g(a⊗ b)) = β ⊗ IdB(ga⊗ gb) = β(ga)⊗ gb =
gβ(a)⊗ gb = g(β(a)⊗ b).

Therefore the adjoint of β denoted by β̃ is G–equivariant as it is the composition of G–
equivariant maps:

A⊗B homG−Shv/X(B,C)⊗B

C

β ⊗ IdB

β̃

ε

That finishes the proof of the universal property of internal hom from B to C homG−Shv/X(B,C).
The construction is natural in both variables.

From two above results we get in a standard way the closed monoidal structure on the
category of chain complexes of G–sheaves of Q-modules over a G–topological space X:

Lemma 7.0.13. There is a closed symmetric monoidal structure on the category of chain
complexes G–sheaves of Q-modules over a G–topological space X constructed from one on the
category of G–sheaves of Q-modules over a G–topological space X.

The injective model structure is monoidal, in particular it satisfies the pushout-product,
unit and monoid axioms and the proof is again the same as for the category of sheaves over
the topological category. Similarly, the proof of transfer theorem to the category of monoids
and modules for any monoid follows directly from work by Schwede and Shipley [SS00] as in
Chapter 6.



Chapter 8

G-sheaves over G-topological
categories

Let us recall that for G a topological group, a G–topological category is an internal category
in the category of G-equivariant topological spaces, i.e. topological spaces with a continuous
G action.

Definition 8.0.1. A G–sheaf S over a G–topological category C is a G–sheaf S over the
G–space C0 and a G–equivariant map of G–sheaves over C1: c : t∗S −→ s∗S which satisfies
the identity condition

s∗0(c) = Id

and the cocycle condition:
d∗1(c) = d∗0(c)d∗2(c)

In this definition we used the notation from Definition 5.1.1.

8.1 Properties

To deduce all the necessary properties of the category of G sheaves over a G topological
category, we will use the fact that it is equivalent to the category of sheaves over a topological
category built from the original one by encoding the G action into the space of morphisms (in
a similar way as in Example 5.1.5 for G–topological spaces). This reduces the situation to one
described in Chapter 6. Knowing that, we can deduce all the properties that were true for the
category of sheaves over a topological category. The following construction is from [Moe90,
Section 3].

Definition 8.1.1. Suppose C is a G–topological category. Then we construct a topological
category CG as follows. The space of objects of CG is the same as for C, i.e. CG0 = C0. The
space of morphisms of CG is constructed as the following pullback in the category of spaces
(and not G spaces):

93
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(G× C0)×C0 C1 G× C0

C1 C0

π1

π2

s

ac

Where ac denotes the action map.

Now we describe source, target, identity and composition maps.

(G× C0)×C0 C1

t◦π2

��

proj◦π1

��
C0

Source map is defined to be proj ◦ π1, where proj is the projection from the product G × C0

to the second factor. Target map is defined to be t ◦ π2. Identity map is defined using the
identity map C0 −→ C1 and identity element for G: C0 −→ G× C0.

Now we define the composition map on elements:

((G× C0)×C0 C1)×C0 ((G× C0)×C0 C1) −→ ((G× C0)×C0 C1)

((g, x), f), ((h, f(g(x))), f̃) 7→ ((h ◦ g, x), f̃ ◦ h(f))

The intuitive way of thinking about maps in CG is via ordered pairs: an element of a
group and a map from C1. Since an element of a group doesn’t have a specified domain and
codomain, but it acts on the whole space of objects C0 we have to encode a point at which we
consider this element of the group (as a morphism).

The following picture presents the map ((g, x), f) ∈ CG1

x
(g,x) // g(x)

f // f(g(x))

The composition of two maps ((h, f(g(x))), f̃) ◦ ((g, x), f) ∈ CG1 is shown below. Notice that

to obtain the composition we need to use the G action on the map f as below, as we need the
first map to be in G× C0 and the second to be in C1.
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x
(g,x) //

(h◦g,x)

!!

g(x)
f //

(h,g(x))

��

f(g(x))

(h,f(g(x)))

��
h(g(x))

h(f) // h(f(g(x)))
f̃ // f̃(h(f(g(x))))

Where (h, g(x)) ◦ (g, x) = (h ◦ g, x) ∈ G× C0 and f̃ ◦ h(f) ∈ C1. Since they are composable,
they define the required composition.

In the above construction the G action on C0 is encoded in the definition of the space of
morphisms of CG and the G action on C1 is encoded in the composition map when we take
g = e and f̃ = Id. This is an intuitive reason for the following

Theorem 8.1.2. [Moe90, Proposition 3.9] Suppose C is a G–topological category. Then the
category G−Shv(Sets)/C is equivalent to the category Shv(Sets)/CG, where CG is a topological
category described in Definition 8.1.1.

From the above theorem we can deduce the following

Corollary 8.1.3. For a topological group G the category G− Shv(Q−mod)/C of G–sheaves
of Q–modules over a G–topological category C is a Grothendieck category, so in particular it
is an abelian category.

As before, several properties follow immediately

Corollary 8.1.4. For a topological group G the category G− Shv(Q−mod)/C of G–sheaves
of Q–modules over a G–topological category C has all small limits and colimits.

Corollary 8.1.5. For a topological group G there is an isomorphism of categories

Ch(G− Shv(Q−mod)/C) ∼= G− Shv(Ch(Q−mod))/C

that is the category of chain complexes in the category of G–sheaves of Q-modules over a
G–topological category C is isomorphic to a category of G–sheaves of chain complexes of Q-
modules over the same G–topological category C.

Again, it follows from [Hov01, Theorem 2.2] that we have a model structure

Corollary 8.1.6. For a topological group G there exist a proper, cofibrantly generated model
structure on the category of Ch(G − Shv(Q −mod)/C) of chain complexes of G–sheaves of
Q-modules over a G–topological category C where the cofibrations are the injections, the weak
equivalences are the homology isomorphisms and the fibrations are maps which have the right
lifting property with respect to trivial cofibrations.

We call this model structure the injective model structure.
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We need a notion of a monoidal product on this category, so we define it as in Chapter 6.

(A, φA)⊗ (B,φB) := (A⊗B,φA ⊗ φB)

for (A, φA), (B,φB) ∈ G − Shv(Q −mod)/C, where A ⊗ B denotes the tensor product of G
sheaves over a G topological space C0 as in Chapter 7.

Lemma 8.1.7. For any topological group G the tensor product defined above gives a closed
symmetric monoidal structure on the category G−Shv(Q−mod)/C of G–sheaves of Q–modules
over a G–topological category C.

Proof. This follows from the fact that this is a Grothendieck category and tensor product
preserves colimits in both variables (by an argument analogous to the one in Lemma 6.1.15),
thus it has a right adjoint – the internal hom.

Theorem 8.1.8. The injective model structure on the category Ch(G− Shv(Q−mod)/C) is
a monoidal model structure, i.e it satisfies both pushut-product and unit axioms.

Proof. The proof works along the same lines as the one for Lemma 6.2.2. Since the forgetful
functor commutes with pushouts and both cofibrations and trivial cofibrations are created by
this forgetful functor it is enough to check the pushout-product axiom at the level of sheaves
over C0 (without G action). Since this holds, it holds also in the category of G sheaves oves
G topological category C.

Since every object is cofibrant the unit axiom follows from the pushout-product axiom.

At the end of this section we present that a continuous homomorphism between topological
groups induces an adjoint pair between corresponding categories of sheaves of Q–modules.

Proposition 8.1.9. Suppose f : H −→ G is a continuous homomorphism between topological
groups. Suppose further that C is a G topological category. Then we can view C as an H
topological category via restriction along f and we obtain the following forgetful (restriction)
functor:

F ∗ : G− Shv(Q−mod)/C −→ H − Shv(Q−mod)/C

which has a right adjoint.
Note that on the right C is viewed as an H topological category.

Proof. The right adjoint exists since F ∗ preserves colimits and both domain and codomain are
Grothendieck categories.

8.2 Continuous Weyl toral modules

Finally we consider the category we are most interested in. It is conjectured that an algebraic
model for any compact Lie group G will be of the form of chain complexes of continuous Weyl
toral modules for G with some additional structure.
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We begin this section with a definition of a continuous Weyl toral module, then we present
some examples, and at the end we show that the category of chain complexes of continuous
Weyl toral modules can be equipped with an injective model structure.

Definition 8.2.1. For G a compact Lie group, a continuous Weyl toral module is a G–sheaf
of Q–modules over the G–topological category TCG with the additional property that for an
object H in TCG, H acts trivially on the stalk over H.

This notion was first introduced in [Gre98a]. For fixed G, continuous Weyl toral modules
form a category which we denote CWTMG. We present two examples.

Example 8.2.2. Suppose G is finite. Then the category CWTMG is equivalent to the category∏
(H)≤GQ[WGH]−mod. This is an equivalence of categories of sheaves over two topological

spaces induced by inclusion of a subspace (consisting of one point for every orbit) into a space.
Note that TCG in that case is a disjoint union of conjugacy classes of subgroups of G. For a
single orbit orbH we have the following equivalence of categories:

res : G− Shv(Q−mod)/orbH // Shv(Q[WGH]−mod)/{H} : ext
oo

Notice that chain complexes in
∏

(H)≤GQ[WGH]−mod (with weak equivalences = homol-
ogy isomorphisms) give the algebraic model for G rational spectra.

Example 8.2.3. Since we know that TCO(2) splits into disjoint union of two pieces, cyclic
TCC(O(2)) and dihedral TCD(O(2)) (see Example 5.2.5), we can consider continuous Weyl toral
modules over the dihedral part TCD(O(2)). Note that we have the following equivalence of
categories:

res : G− Shv(Q−mod)/TCD(O(2)) // Shv(Q[W ]−mod)/D(O(2)) : ext
oo

where the category on the right consists of sheaves with trivialW action over the orbit of O(2)
and the space D(O(2)) on the right consists of O(2) and one D2n for every n coherently chosen
(see below). Notice that both TCD(G) and D(O(2)) are just topological spaces (i.e. there are
no non-identity morphisms). Also right adjoint restriction functor is induced by pulling back
along the inclusion of space of the subgroups D2n (where all D2n subgroups are chosen to be
the symmetry groups of standard regular n-gon on an xy-plane) and O(2) into TCD(G)

Note that the category on the right is isomorphic to the category A(D) described in
Section 11.1, and that Ch(A(D)) gives the algebraic model for the dihedral part of rational
O(2)–equivariant spectra (where weak equivalences are homology isomorphisms).
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We are interested in putting a monoidal model structure on the category of Ch(CWTMG)
with weak equivalences the homology isomorphisms. One way to do this would be to show
that the corresponding category of G sheaves of sets over TCG with the restriction on the
stalks has generators and thus is a Grothendieck topos. However, there is another way, which
uses the following result from [Gre98a]

Theorem 8.2.4. [Gre98a, Theorem A and B] Let G be a compact Lie group. There is an
equivalence of categories between rational Mackey functors for G and continuous Weyl toral
modules for G, CWTMG.

Remark 8.2.5. This is the composition of functors from Theorem A and Theorem B from
[Gre98a]. Notice that the functors from Theorem A and Theorem B are not equivalences of
categories, however its composition is. This is discussed in [Gre01].

Recall that a rational Mackey functor for a compact group G can be defined as enriched
over Q-modules contravariant functor from the stable orbit category sOop

G to Q–modules (see
for example [Gre98a, Section 3]). The stable orbit category is the enriched over Q category
on objects G/H+, for H closed subgroups of G and enriched homs

HomQ(G/H+, G/K+) := [Σ∞G/H+,Σ
∞G/K+]⊗Q

From the above theorem we can deduce the properties of CWTMG. First of all, we know
that the category of rational Mackey functors is an abelian category, and it has (categorical)
generators, namely the representable functors (to show they are categorical generators we use
enriched Yoneda lemma). Thus

Corollary 8.2.6. The category of continuous Weyl toral modules is a Grothendieck category,
in particular it is abelian.

Proof. We need to show that filtered colimits are exact. Since they are in the category of
G − Shv(Q − mod)/TCG and they are calculated in the same way in the subcategory of
CWTMG, they are exact.

Corollary 8.2.7. The category of continuous Weyl toral modules has all colimits and all limits.

We define a tensor product on the category of continuous Weyl toral modules in the same
way as for G sheaves of Q-modules over a G topological category. The only thing to check
is whether the tensor of two objects is still a continuous Weyl toral module, i.e. we need to
check the condition with the trivial action from Definition 8.2.1.

Suppose (A, φA), (B,φB) are in CWTMG. Then we want to show that

(A, φA)⊗ (B,φB) := (A⊗B,φA ⊗ φB)

is also in CWTMG. We know that for any H ∈ TCG, H acts trivially on AH and BH .
Since the action on AH ⊗ BH is diagonal, H acts trivially on AH ⊗ BH . Since we know that
(A⊗B)H ∼= AH⊗BH , the tensor product of two continuous Weyl toral modules is a continuous
Weyl toral module.
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Proposition 8.2.8. Tensor product in CWTMG defined above is a closed symmetric monoidal
product.

Proof. This follows from the same argument as for Lemma 8.1.7.

Theorem 8.2.9. Suppose G is a compact Lie group. Then there is a proper, stable, cofibrantly
generated, monoidal model structure on the category of chain complexes of continuous Weyl
toral modules for G, where the weak equivalences are the homology isomorphisms and the
cofibrations are the monomorphisms.

Proof. This follows from the same pattern as Corollary 8.1.6 and Theorem 8.1.8.

Remark 8.2.10. The equivalence of categories presented in Example 8.2.3 is a Quillen equiv-
alence when both categories are considered with the injective model structure. This follows
since we can view any of these two injective model structures as a left induced transfer of the
other and since this is an equivalence of categories we get a Quillen equivalence.
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Chapter 9

General results for SO(3)

We start this chapter by considering closed subgroups of SO(3) in Section 9.1. We discuss
the space F (G)/G, which is the orbit space of all closed subgroups with finite index in their
normaliser, where the topology is induced from the Hausdorff metric.

In Section 9.2 we discuss the idempotents of the rational Burnside ring A(SO(3)) and
the induced splitting of rational SO(3) equivariant orthogonal spectra. The main part of
Section 9.2 consists of analysis of two adjunctions: the induction - restriction and restriction
- coinduction with relation to the localisation of categories of spectra.

In Section 9.3 we present a general result showing that there is always an idempotent
picking the cyclic (maximal torus) part of any compact Lie group G.

9.1 Closed subgroups of SO(3)

In this chapter we use a simplified notation. We set G = SO(3), i.e. a group of rotations of
R3. We choose a maximal torus in SO(3) with rotation axis being the z-axis and we use the
notation T for it.

We divide all closed subgroups of G into 3 parts: exceptional E, dihedral D and cyclic
(toral) C.

There are 5 conjugacy classes of subgroups which we call exceptional, namely G itself, the
symmetry group Σ4 of a cube, the symmetry group A4 of a tetrahedron, the symmetry group
A5 of the dodecahedron and D4 which is a dihedral group of order 4. Thus exceptional part
consists of subgroups with finite Weyl group in SO(3), i.e. WSO(3)H = NSO(3)H/H is finite.
Normalisers of these exceptional subgroups are as follows: Σ4 is equal to its normaliser, A5 is
equal to its normaliser, the normaliser of A4 is Σ4. The Normaliser of D4 is Σ4.

The dihedral part consists of all dihedral subgroups D2n of SO(3) where n is greater than
2, together with all O(2). Note that O(2) is a normaliser for itself in SO(3) and all dihedral
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subgroups of order 2n, n > 2 are conjugate in SO(3), i.e. there is one conjugacy class of
dihedral subgroups for each order greater than 4. The normaliser of D2n is D4n.

The cyclic part consist of all tori in SO(3) and all cyclic subgroups of those tori. Note
that for any order there is one conjugacy class of the subgroups from the cyclic part of that
order in G.

Remark 9.1.1. Note that an exceptional part consists of finitely many conjugacy classes of
subgroups, so we could add first finitely many finite dihedral subgroups to the exceptional
part (i.e. D6, D8, ...), but we cannot add all of them, as the splitting result does not allow us
to split the category of spectra into infinitely many pieces.

We present the space F (G)/G of conjugacy classes of subgroups of SO(3) with finite index
in their normalisers with topology induced by the Hausdorff metric, which we will use for
choosing idempotents of the rational Burnside ring in the next section.

Space F (G)/GPart

E G Σ4 A4 A5 D4

C T

D D6 D8 D10 D12D14 ...
O(2)

The topology on E is discrete, C consists of one point T and D forms a sequence of points
converging to O(2).

Before we go any further with the construction we cite the result of Greenlees which shows
what the algebraic model for the homotopy category of rational SO(3)- spectra is.

Theorem 9.1.2. [Gre01, Theorem 2.2] There is an equivalence of triangulated categories

Ho(G− spectra) '
∏

(H),H∈E

(graded−Q[WGH]−modules)×D(A(D))× D(A(G, c))

where the first product is over conjugacy classes of exceptional subgroups, A(D) is described
in Section 11.1 and A(G, c) is described in Section 12.1. For an abelian category A, D(A)
denotes its derived category.
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We devote the last part of this section for the discussion on good and bad subgroups.

Definition 9.1.3. [Gre01, Definition 6.3] Suppose H is a closed subgroup of G. We say that
K ⊆ NGH is H–bad in G if there exist g /∈ NGH such that g−1Kg ⊆ H.
K ⊆ NGH is called H–good in G if it is not H–bad.

Remark 9.1.4. [Gre01, Remark 6.4] K is H–bad if and only if (G/H)K 6= NGH/H.

Next we state an obvious, but useful observation
Remark 9.1.5. Any subgroup H in a compact Lie group Γ is H–good in Γ.

For closed subgroups of SO(3) we have the following

Lemma 9.1.6. For exceptional subgroups in G = SO(3) we have the following relation between
H and its normaliser NGH:

1. SO(3) is SO(3)–good in SO(3)

2. A5 is A5–good in SO(3)

3. Σ4 is Σ4–good in SO(3)

4. A4 is Σ4–good in SO(3)

5. D4 is Σ4–bad in SO(3)

Proof. Part 1 is trivial, Part 2 and 3 follow from the fact that A5 is its own normaliser in
SO(3) and Σ4 is its own normaliser in SO(3). Part 4 follows from the fact that there is one
conjugacy class of A4 in Σ4, as there is just one subgroup of index 2 in Σ4. Part 5 follows
from the observation that there are 2 subgroups of order 4 in D8 (so also in Σ4) and they are
conjugate by an element g ∈ D16, which is the generating rotation by 45 degrees (thus g /∈ D8

and thus g /∈ Σ4).

9.2 Idempotents of the rational Burnside ring and splitting

By the result of tom Dieck (see Section 2.4.1) we know that idempotents of rational Burnside
ring of SO(3) correspond to open and closed subspaces of the space F (G)/G above.

We use the following idempotents in the Burnside ring of SO(3): ec corresponding to
the characteristic function of the cyclic part C, i.e. the conjugacy class of the torus T , ed
corresponding to the characteristic function of the dihedral part D and ee corresponding to
the characteristic function of the exceptional part E . E is a disjoint union of 5 points, so ee is
in fact a sum of 5 idempotents, one for every subgroup in the exceptional part: eG, eΣ4 , eA4 ,
eA5 and eD4 .

The first step on the way towards the algebraic model is to split the category of rational
G-equivariant spectra using the above idempotents of the Burnside ring A(G). By Theorem
2.4.2 of Barnes this gives the monoidal Quillen Equivalence:
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4 : G− ISQ
//
LecSQ(G− IS)× LedSQ(G− IS)× LeeSQ(G− IS) : Πoo

where G− ISQ denotes the category of rational G orthogonal spectra.

We use the name H–equivalence for a weak equivalences in the category LeHSQ(G−IS) (or
LeHSQ(N−IS), depending on a context) andH–fibrant replacement for the fibrant replacement
there. Similarly, we use the name D–equivalence for a weak equivalences in the category
LedSQ(G− IS) and C–equivalence for a weak equivalences in the category LecSQ(G− IS).

Now we consider each category from the right hand side product separately. We start
with the exceptional part in the next chapter. Before we do that we state a very useful result
which gives a characterisation of weak equivalences in each localised category of rational G–
orthogonal spectra mentioned above.

Lemma 9.2.1. A map f

1. between eHSQ - local objects is a weak equivalence in LeHSQ(G − IS) iff πH∗ (f) is an
isomorphism.

2. between edSQ - local objects is a weak equivalence in LedSQ(G − IS) iff πD∗ (f) is an
isomorphism for every subgroup D ∈ D.

3. is a weak equivalence in LecSQ(G− IS) iff πC∗ (f) is an isomorphism for every subgroup
C ∈ C.

Proof. To prove part 1, first notice that a map f is, by definition, a weak equivalence in
LeHSQ(G− IS) iff eHSQ ∧ f is a πK∗ –isomorphism for every subgroup K 6 G. We know that
this holds iff ΦK(eHSQ ∧ f) is a non-equivariant equivalence for all K 6 G. As geometric
fixed point functor commutes with smash product that is equivalent to ΦH(eHSQ∧ f) being a
non-equivariant equivalence, i.e. π∗(ΦH(eHSQ∧f)) being an isomorphism. Since f is between
eHSQ- local objects

π∗(Φ
H(eHSQ ∧ f)) ∼= πH∗ (f)

that finishes the proof of part 1.

It also can be proven as Part 2 below.

To show Part 2 first note that C together with all subgroups D4 in SO(3) forms a family of
subgroups (we use notation C ∪D4 for it) and so does the set of all conjugates to subroups of
O(2) together with all O(2) (we use notation [6G O(2)] for it). Now, LedSQ(G−IS) is equiv-
alent to LẼ(C∪D4)(LE[6GO(2)](G − IS)) as monoidal model categories. We know by [MM02,
Chapter IV, Proposition 6.7] that f is a weak equivalence in LE[6GO(2)](G − IS) iff πH∗ (f)
is an isomorphism for every subgroup H ∈ [6G O(2)] (see for example [LMSM86, Definition
2.10] for EF and ẼF).
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Now if we further localise this category as above and consider f to be a map between local
objects then by [MM02, Chapter IV, Theorem 6.13] πH∗ on the domain and codomain of f will
be 0 for every H ∈ C ∪D4 thus we can conclude.

As C forms a family of subgroups, Part 3 follows from [MM02, Chapter IV, Proposition
6.7].

Since we will be interested in taking H fixed points of G spectra, we need to pass to NGH
spectra first. The natural choice of adjunction between G spectra and NGH spectra would
be the induction and restriction functors. However, this turns out to be a Quillen adjunction
only in some cases relevant for us.

Proposition 9.2.2. Suppose H is an exceptional subgroup of G which is N = NGH-good in
G. Then

i∗ : LeHSQ(G− IS) // LeHSQ(N − IS) : G+ ∧N −oo

is a Quillen adjunction.

Proof. This was a Quillen adjunction before localisation by [MM02, Chapter V, Proposition
2.3] so the left adjoint preserves cofibrations. It preserves acyclic cofibrations as G+ ∧N −
preserved acyclic cofibrations before localisation and we have a natural (in an N–spectrum
X) isomorphism (see [MM02, Chapter V, Proposition 2.3]):

(G+ ∧N X) ∧ eHSQ ∼= G+ ∧N (X ∧ i∗(eHSQ))

Note that, since H is N -good in G, i∗(eH) ∼= eH (see Section 2.4.1 for definition of i∗(eH))
where the later is the idempotent corresponding to (H)N in A(N).

Proposition 9.2.3. Suppose H is an exceptional subgroup of G which is N = NGH-bad in
G. Then

i∗ : LeHSQ(G− IS) // LeHSQ(N − IS) : G+ ∧N −oo

is not a Quillen adjunction.

It is worth mentioning that although the above adjunction does not behave well with
respect to model structures, the one with restriction and coinduction does as it is shown in
Corollary 9.2.7 below.

Proof. It is enough to show that G+∧N − does not preserve acyclic cofibrations. Firstly, since
H is N -bad in G then there exists H ′ such that (H)G = (H ′)G and (H)N 6= (H ′)N .

Take a map f to be the inclusion into coproduct N/H+ −→ N/H+∨N/H ′+. This is a weak
equivalence since ΦH(N/H+) = ΦH(N/H+ ∨N/H ′+). It is also a cofibration as a pushout of
a cofibration ∗ −→ N/H+ along the map ∗ −→ N/H ′+. Applying the left adjoint gives the
map G+ ∧N f : G/H+ −→ G/H+ ∨ G/H ′+ which is an inclusion into the coproduct. Now
ΦH(G/H+ ∨G/H ′+) = N/H+ ∨N/H ′+ 6= N/H+ since (H)G = (H ′)G. Note that N/H+ 6' S0

as N/H is a finite set of points and never just a point (as H is N -bad by assumption).
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Example 9.2.4. D4 in SO(3) is Σ4-bad as discussed in Lemma 9.1.6.

Proposition 9.2.5. Suppose ed is the idempotent of A(SO(3)) corresponding to all dihedral
supgroups of order greater than 4 and all O(2). Then

i∗ : LedSQ(SO(3)− IS) // Lei∗dSQ(O(2)− IS) : G+ ∧N −oo

is a Quillen adjunction, where ei∗d is the idempotent for rational O(2) spectra corresponding
to all dihedral subgroups of order grater than 4 and the O(2).

Proof. The proof follows the same pattern as the proof of Proposition 9.2.2.

It turns out that the restriction and function spectrum adjunction gives a Quillen adjunc-
tion under general conditions, as we present at the end of this section

Lemma 9.2.6. Suppose G is any compact Lie group, i : H −→ G is an inclusion of a subgroup
and V is an open and closed set in F (G)/G such that i∗V is not empty in F (H)/H. Then
the adjunction

i∗ : LeV SQ(G− IS)
//
Lei∗V SQ(H − IS) : FH(G+,−)oo

is a Quillen pair. We use notation eV here for the idempotent corresponding to the character-
istic function on V .

Proof. Before localisations this was a Quillen pair by [MM02, Chapter V, Proposition 2.4].
It is a Quillen pair after localisation by Lemma 2.3.8, the fact that i∗ is strong symmetric
monoidal and the equivalence SQ ∼= i∗(SQ). We use the notation i∗V for preimage of V under
the inclusion on spaces of subgroups induced by i, i.e. Subf(H)/∼ −→ Subf(G)/∼ (see Section
2.4.1).

In the next chapters we will repeatedly use the above lemma, mainly in situations where
after further localisation of the right hand side we will get a Quillen equivalence. To prepare
for that, we state the following four cases

Corollary 9.2.7.

1. Suppose H is an exceptional subgroup of G (any compact Lie group). Then

i∗ : LeHSQ(G− IS)
//
LeHSQ(N − IS) : FN (G+,−)oo

is a Quillen adjunction.

2. Let D denote dihedral part of SO(3) and ed denote the idempotent corresponding to it.
Then

i∗ : LedSQ(SO(3)− IS)
//
LedSQ(O(2)− IS) : FO(2)(SO(3)+,−)oo

is a Quillen adjunction. The idempotent on the right hand side ed corresponds to the
dihedral part of O(2) excluding all subgroups D2 and D4.
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Proof.

Part 1 for H which is N = NGH–good follows from the fact that the idempotent on the
right hand side eH = i∗(eH) = ei∗H . For H which is N = NGH–bad it is true since the left
hand side is a further localisation of Lei∗HSQ(N − IS) at the idempotent eH :

LeHSQ(G− IS)
i∗ //

Li∗(eH)SQ(N − IS)
FN (G+,−)
oo

Id //
LeHSQ(N − IS)

Id
oo

Note that since H is N–bad, eH 6= i∗(eH) and eHi∗(eH) = eH .
Part 2 follows since the idempotent on the right hand side ed = ei∗d.

Similar result is also true for cyclic part, but we decided to state it in Chapter 12 as we
will proceed with cellularisation of that part straight away.

9.3 Idempotent for the cyclic part

Suppose that G is any compact Lie group. We show that there is always an idempotent in
the rational Burnside ring A(G) corresponding to the cyclic part, i.e. to the characteristic
function for all subgroups subconjugate to the maximal torus T .

Our standard reference for Lie groups is [BtD85]. Recall that a maximal torus in a compact
Lie group G is a maximal, connected abelian subgroup T . Every compact Lie group G has at
least one maximal torus. Since any two maximal tori in a compact connected Lie group G are
conjugate we have the following observations

Lemma 9.3.1. The subset UT of F(G)/G consisting of all subconjugates of T is open and
closed.

Proof. We apply [Gre98a, Lemma 3.3] to the maximal torus T in G.

Corollary 9.3.2. Suppose G is any compact Lie group. Then there exists an idempotent eT
in the rational Burnside ring A(G) corresponding to the cyclic part of G, i.e. corresponding
to the characteristic function of UT .
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Chapter 10

Exceptional part

The exceptional part of rational SO(3) equivariant orthogonal spectra has the form of a finite
product so this allows us to split it further and work with one exceptional subgroup at a time.
Because almost every step is the same for all exceptional subgroups we will use the notation
H for an exceptional subgroup of G, and we will work with one category LeHSQ(G − IS).
We note that some steps of this general approach might become easier or even trivial for a
particular subgroup H, however we choose to describe the comparison generally to show that
the same approach works for an exceptional part of any compact Lie group. As a special case,
this approach covers all finite groups G.

The proof of the non - monoidal algebraic model for the exceptional part follows the same
steps as the proof of the algebraic model for any finite G from [Bar09b]. We need to stress
that this proof as it stands is not monoidal. Since we are interested in preserving monoidal
structures as well, we also construct a zig-zag of monoidal Quillen equivalences in Section 10.3,
which will use in the proof of Theorem 10.3.4 the fact that we have a non-monoidal comparison
already in place. We were not able to find a proof which works directly.

Below we present short sketches of steps in both comparisons to outline general ideas.
Before we concentrate on the monoidal comparisons in Section 10.3 we present some details
of the algebraic model in Section 10.1 and we give the details of non monoidal approach in
Section 10.2.

Non - monoidal comparison:

Fix an exceptional subgroup H. The plan for this part is as follows.

First we choose the generator f̂G/H+ for the category LeHSQ(G − IS) which is fibrant
and cofibrant. Here f̂ is the fibrant replacement functor in the localised category.

The second step is to show that the category LeHSQ(G−IS) is a spectral model category,
where the enrichment is in the category of symmetric spectra SpΣ with the stable model struc-
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ture.

Now we use Morita equivalence to pass from LeHSQ(G− IS) to a category mod− EHtop of
right modules over EHtop, where EHtop is the enriched endomorphism symmetric spectrum of the
generator f̂G/H+.

The next step is the passage from the topological world to the algebraic setting using the
result of Shipley. This gives a change of the ring symmetric spectrum EHtop into a ring ratio-
nal chain complex EHt . We follow the notation of Greenlees and Shipley and also Barnes of
subindex top which suggest that the category is topological and subindex t which suggests
that the category is algebraic but with the topological origin.

There is not much control over the ring EHt , however we can compute its homology. Since
it’s concentrated in degree zero, we get intrinsic formality of the ring EHt . Thus we obtain a
Quillen equivalence between the category of EHt -modules and the category of H∗(EHt )-modules.
That gives the algebraic model for LeHSQ(G− IS).

In the proof of Theorem 10.2.8 we present a diagram which shows every step of this
comparison. The reader may wish to refer to this diagram now, but the notation will be
introduced as we proceed.

Monoidal comparison:

This proof will use several of the above steps, but in a different order. The main difference
is in replacing Morita equivalence by the fixed point - inflation adjunction. The plan for this
part is as follows. Fix an exceptional subgroup H.

First we move from the category LeHSQ(G−IS) to the category LeHSQ(N −IS) using the
restriction - coinduction adjunction. Recall that N denotes the normalizer NGH.

The second step is to use the fixed point - inflation adjunction between LeHSQ(N − IS)
and Le1SQ(W −IS), where W denotes the Weyl group N/H. Recall that W is finite, as H is
an exceptional subgroup of G.

Next we use the identity adjunction and restriction of universe to pass from Le1SQ(W−IS)
to free W orthogonal spectra indexed by a trivial W universe. This category is equivalent as
a monoidal model category to the category IS[W ] of orthogonal spectra with W action.

Now we pass to symmetric spectra with W action using the forgetful functor from orthog-
onal spectra. Next we move to HQ-modules with W action in symmetric spectra. From here
we use the result of Shipley to get to Ch(Q)[W ], the category of rational chain complexes
with W action, which is equivalent as monoidal model category to Ch(Q[W ]), the category
of chain complexes of Q[W ]-modules. That gives an algebraic model which is compatible
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with the monoidal product, i.e. the zig-zag of Quillen equivalences induces a strong monoidal
equivalence on the level of homotopy categories.

After Theorem 10.3.13 we present a diagram which shows every step of this comparison.
The reader may wish to refer to this diagram now, but the notation will be introduced as we
proceed.

10.1 The category Ch(Q[W ]−mod)

Suppose W is a finite group. In this section we discuss briefly the category of chain complexes
of Q[W ] left modules.

Firstly, this can be equipped with the projective model structure, where weak equivalences
are homology isomorphisms and fibrations are levelwise surjections. Cofibrations are levelwise
split monomorphisms with cofibrant cokernel. This model structure is cofibrantly generated
by [Hov99, Section 2.3].

Note that Q[W ] is not generally a commutative ring, however it is a Hopf algebra with
cocommutative coproduct given by ∆ : Q[W ] −→ Q[W ] ⊗ Q[W ], g 7→ g ⊗ g. This allows us
to define an associative and commutative tensor product on Ch(Q[W ]−mod), namely tensor
over Q, where the action on the X ⊗Q Y is diagonal. The unit is a chain complex with Q at
the level 0 with trivial W action and zeros everywhere else and it is cofibrant in the projective
model structure. Monoidal product defined this way is closed, where the internal hom is given
by an internal hom over Q formula with W action by conjugation.

This category is equivalent to the category of W -objects in a category of Ch(Q-mod), and
we can transfer the projective model structure on Ch(Q-mod) to the category of W objects
there using Theorem 1.1.13.

It remains to show that this is a monoidal model category satisfying the monoid axiom.
This is [Bar09b, Proposition 4.3]

10.2 Non - monoidal comparison

We start this section by establishing the background for the Morita equivalence.

Lemma 10.2.1. G/H+ is a (homotopically) compact, cofibrant generator for LeHSQ(G−IS).

Proof. G/H+ is cofibrant, because ∗ −→ G/H+ is a generating cofibration the for stable model
structure on G− IS (see [MM02, Chapter III, Definition 1.1]).
We start with the calculations below (where X is an object in LeHSQ(G−IS) and superscript
LeHG denotes the homotopy category of LeHSQ(G− IS)).

[G/H+, X]
LeHG
Q∗

∼= [G/H+, eHSQ ∧X]GQ∗
∼= πH∗ (eHSQ ∧X)
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and πK∗ (eHSQ ∧X) ∼= 0 for all K ⊆ G,K 6= H. Now assume that [G/H+, X]
LeHG
Q∗ = 0, then

eHSQ ∧X ' ∗ and since eHSQ ∧X is H - equivalent to X we get that X is H - equivalent to
∗.
To show that G/H+ is (homotopically) compact we work with the definition. Suppose we
have a collection of objects Yi in LeHSQ(G − IS). Then, since idempotents commute with
coproducts, we have

[G/H+,
∨
i∈I

Yi]
LeHG
Q∗

∼= [G/H+, eHSQ ∧ (
∨
i∈I

Yi)]
G
∗
∼= [G/H+,

∨
i∈I

(eHSQ ∧ Yi)]G

∼=
⊕
i∈I

[G/H+, Yi]
LeHG
Q∗ (10.2.2)

Thus it follows that G/H+ is a generator for LeHSQ(G− IS).

Lemma 10.2.3. The category LeHSQ(G−IS) is a spectral model category, where the enrich-
ment is in symmetric spectra SpΣ.

Proof. Apply Corollary 3.1.5.

Now that we have a spectral model category and the cofibrant and fibrant (homotopically)
compact generator f̂G/H+ we can proceed to Morita equivalence.

Define EHtop to be the enriched endomorphism symmetric spectrum of the generator f̂G/H+

in LeHSQ(G− IS), i.e.
EHtop := HomSpΣ(f̂G/H+, f̂G/H+)

We use the notation mod− EHtop for the category of right modules over EHtop, see Section 3.2.

Theorem 10.2.4. The adjunction

Hom(f̂G/H+,−) : LeHSQ(G− IS) // mod− EHtop : − ∧EHtop
f̂G/H+

oo

is a Quillen equivalence.

Proof. This follows from the Morita equivalence [SS03b, Theorem 3.9.3], see also Section 3.2
Theorem 3.2.8. Refer to Definition 3.2.6 for constructions of both functors.

To use the result of Shipley, EHtop needs to be a ring in HQ-modules. Since HQ ∧ − is
a spectral functor from EHtop to HQ ∧ EHtop which induces a stable equivalence from EHtop to
HQ ∧ EHtop by [SS03b, Theorem A.1.1], the restriction and extension of scalars along HQ ∧ −
forms a Quillen equivalence of module categories. To simpify the notation we keep using EHtop

for HQ ∧ EHtop.

Morita equivalence puts all the equivariance into the ring over which we consider the
modules. However we are still in the topological setting (the ring is the ring symmetric
spectrum). The following theorem provides the passage to the algebraic world.
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Theorem 10.2.5. There is a zig-zag of Quillen equivalences between the following two cat-
egories: mod-EHtop and mod-EHt , where EHt is a ring rational chain complex with the property
that H∗(EHt ) ∼= π∗(EHtop).

Proof. This follows from [Shi07, Part 2 of Corollary 2.15] .

Let us now calculate π∗(EHtop). Note that S in the first expresion is a sphere symmetric
spectrum.

π∗(EHtop) ∼= [S,HomSpΣ(f̂G/H+, f̂G/H+)] ∼= [S,SingU(i∗F (f̂G/H+, f̂G/H+))H ]

∼= [S,U(i∗F (f̂G/H+, f̂G/H+))H ] ∼= [S, (i∗F (f̂G/H+, f̂G/H+))H ]

∼= [S, i∗F (f̂G/H+, f̂G/H+)] ∼= [S, F (f̂G/H+, f̂G/H+)]

∼= [f̂G/H+, f̂G/H+] ∼= [G/H+, f̂G/H+] ∼= π∗((f̂G/H+)H) (10.2.6)

Now we have to calculate π∗((f̂G/H+)H). We know that f̂G/H+ is H–weakly equivalent
to E〈H〉 ∧ G/H+, so we have isomorphisms π∗((f̂G/H+)H) ∼= π∗((E〈H〉 ∧ G/H+)H) ∼=
π∗(Φ

H(G/H+)) where ΦH denotes geometric H–fixed points.

We know that geometric fixed point functor commutes with the suspension functor in the
sense that ΦH(Σ∞G/H+) ∼= Σ∞((G/H+)H) and (G/H+)H ∼= WGH which, by assumption on
H is a finite set. Thus rational stable homotopy groups of suspension spectrum of finite set
of points is just Q[WGH]

The long calculation above follows from the derived adjunctions presented in Theorem
3.1.4 and the fact that S in the first line is cofibrant, i.e. derived left adjoint are the same as
left adjoints. We skipped the notation suggesting in which homotopy category every part is,
as that follows from the context.

AsH∗(EHt ) ∼= π∗(EHtop) we know thatH∗(EHt ) is concentrated in degree zero we use methods
of [Bar13, Theorem 7.5 and 7.6] to get the following

Lemma 10.2.7. There is a zig-zag of Quillen equivalences between mod-EHt and mod-H∗(EHt )
induced by stable equivalences EHt ←− C0EHt −→ H∗EHt where C0 is the (−1)-connected cover.

Now we can summarise the result of this section in the

Theorem 10.2.8. There exist a zig-zag of Quillen equivalences from LeHSQ(G− IS) to
Ch(Q[W ]−mod).

Proof. This follows from Lemma 10.2.1, Lemma 10.2.3, Theorem 10.2.4, Theorem 10.2.5 and
Lemma 10.2.7.
To illustrate the whole path we sketch below a diagram showing every step discussed above.
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LeHSQ(G− IS)

Hom(f̂G/H+,−)

��
mod− EHtop

−∧EHtop
f̂G/H+

OO

Quillen equivalences

��
mod− EHt

zig−zag of

OO

zig−zag of

��
mod−H∗(EHt ) ∼= Ch(Q[W ])

Quillen equivalences

OO

We stress again that the above comparison is not monoidal. We present a monoidal
comparison in the next section, which we believe is conceptually different and our proof relies
on the fact that we have an algebraic model established already.

10.3 Monoidal comparison

At the beginning of this approach we would like to use the fixed point - inflation adjunction.
However, as H is not necessary normal in G first we need to move to the category of N -
orthogonal spectra, where N = NGH. Notice that this passage needs to be monoidal.

There is an inclusion of a subgroup i : N −→ G which induces two adjoint pairs between
corresponding categories of orthogonal spectra. The first choice would be to work with the
induction and pullback functor adjunction. However this is not always a Quillen adjunction
as we discussed in details in Section 9.2. The pullback functor i∗ is strong monoidal, so we
choose to work with it as a left adjoint, where the right adjoint is the function spectrum
functor. We showed in Section 9.2 that this is always a Quillen adjunction for localisations at
an exceptional subgroup. Moreover it is automatically strong monoidal. We begin by proving
the following

Theorem 10.3.1. Suppose H is an exceptional subgroup of G and it is N = NGH–good.
Then the adjunction

i∗ : LeHSQ(G− IS)
//
LeHSQ(N − IS) : FN (G+,−)oo

is a strong monoidal Quillen equivalence, where eH on the right hand side denotes the idempo-
tent of the rational Burnside ring A(N) corresponding to the characteristic function of (H)N .
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Proof. Firstly, if H was an exceptional subgroup of G with an idempotent eH then it is
represented by a characteristic G–function for conjugates of H in the G–topological space
Sub(G). Inclusion of N into G induce an inclusion of N–spaces i : Sub(N) −→ Sub(G). Now
eH in A(N) is equal to i∗(eH).

This is an adjunction by [MM02, Chapter V, Proposition 2.4]. Moreover the same proposi-
tion shows that i∗ preserves cofibrations, because they remain unchanged by the localisation.
Clearly smash product also remains unchanged by the localisation, so i∗ is still strong monoidal.

This is a Quillen adjunction by Part 1 of Corollary 9.2.7 .
We claim that i∗ preserves all H–equivalences. Suppose f : X −→ Y is an H–equivalence

in LeHSQ(G − IS), i.e. IdeHSQ ∧ f : eHSQ ∧ X −→ eHSQ ∧ Y is a π∗–isomorphism. As
i∗ is strong monoidal i∗(IdeHSQ ∧ f) ∼= Idi∗(eHSQ) ∧ i∗(f) ∼= IdeHSQ ∧ i∗(f) and i∗ preserves
π∗–isomorphisms we can conclude.

To show this is a Quillen equivalence we will use Part 2 from Proposition 1.1.12. It is easy
to see that i∗ reflects H–equivalences using the fact it is strong monoidal and the isomorphism
[N/H+, i

∗(X)]N ∼= [G/H+, X]G.

As i∗ preserves all H–equivalences the derived counit condition becomes the counit con-
dition. Thus we have to check that for every fibrant Y ∈ LeHSQ(N − IS) the counit map
εY : i∗FN (G+, Y ) −→ Y is an H–equivalence (in N–spectra), i.e it is a πH∗ –isomorphism of
N–spectra.

First we check that domain and codomain have isomorphic stable H homotopy groups:

πH∗ (i∗FN (G+, Y )) ∼= πH∗ (FN (G+, Y )) ∼= [G/H+, FN (G+, Y )]G∗
∼= [i∗(G/H+), Y ]N∗

∼= [N/H+, Y ]N∗
∼= πH∗ (Y ) (10.3.2)

The second but last isomorphism follows from the fact that the map N/H+ −→ G/H+

(induced by inclusion N −→ G) is an H–equivalence in N–spectra, i.e an equivalence in
LeHSQ(N − IS).

Since i∗(f̂G/H+) is H-equivalent to N/H+ which is compact, we can use Proposition
1.1.20. It is therefore enough to check the counit condition for a generator. We will check it
for the spectrum i∗(f̂G/H+), which is a generator for localised N–spectra. StableH homotopy
groups of this generator is Q[WGH] in degree 0, where WGH is the Weyl group for H in G,
so in particular Q[WGH] is a finite dimensional vector space.

Now it is enough to show that [N/H+, εi∗(f̂G/H+)]
N is surjective. One of the triangle

identities on i∗(f̂G/H+) for the adjunction is stating that the following diagram commutes
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i∗(f̂G/H+)

i∗FN (G+, i
∗(f̂G/H+)) i∗(f̂G/H+)

Idi∗(ηf̂G/H+
)

εi∗(f̂G/H+)

Thus postcomposition with εi∗(f̂G/H+) is surjective on the homotopy level. It follows that the
counit map is an H–equivalence of N–spectra for every fibrant Y which finishes the proof.

Remark 10.3.3. The assumptions of Theorem 10.3.1 are satisfied for subgroups A5, A4 and Σ4

of SO(3).

If H is an exceptional subgroup of G which is NGH–bad then we need to alter the above
statement slightly. We would like to point out that the main point of the proof is different
than in the proof of the previous theorem.

The argument above will not work in the context where i∗ does not preserve fibrant re-
placements. However we found the proof amusing, so we decided to present it, even though the
proof below can be applied also in the case where H is an exceptional NGH–good subgroup
of G.

Below we use the existence of a zig-zag of Quillen equivalences established already in
Section 10.2 (non-monoidally), which gives us the algebraic model for its homotopy category,
so in particular we know what a certain derived functor (namely Li∗ below) induces on the
homotopy level.

Theorem 10.3.4. Suppose H is an exceptional subgroup of G. Then the composition of
adjunctions

LeHSQ(G− IS)
i∗ //

Li∗(eHSQ)(N − IS)
FN (G+,−)
oo

Id //
LeHSQ(N − IS)

Id
oo

is a strong monoidal Quillen equivalence, where eH on the further right hand side denotes the
idempotent of the rational Burnside ring A(N) corresponding to the characteristic function of
(H)N . Notice that if H is N -good then the right adjunction is trivial.

Proof. First notice that if H is N–bad i∗(eHSQ) 6' eHSQ as localised N–spectra. The reason
for that is that (H)G restricts to more than one conjugacy class of subgroups of N . That is
why we need a further localisation - we only want to consider the (H)N .

Above composition of adjunctions forms a Quillen adjunction by Part 1 of Corollary 9.2.7.
We need to show that the composition is a Quillen equivalence. We use Part 3 from Proposition
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1.1.12. Firstly FN (G+,−) preserves and reflects weak equivalences between fibrant objects.
Let X be a fibrant object in LeHSQ(N − IS). Then FN (G+, X) is also fibrant and

[G/H+, eHFN (G+, X)]G ∼= [G/H+, FN (G+, X)]G

∼= [i∗(G/H+), X]N ∼= [eHi
∗(G/H+), eHX]N ∼= [N/H+, eHX]N (10.3.5)

Now we need to show that the derived unit is a weak equivalence on the cofibrant generator
for LeHSQ(G− IS), which is eHG/H+. This is

eHG/H+ −→ FN (G+, f̂ i
∗(eHG/H+))

To check that this is a weak equivalence in LeHSQ(G− IS) it is enough to check that on the
homotopy level the induced map

[G/H+, eHG/H+]G −→ [G/H+, FN (G+, f̂ i
∗(eHG/H+))]G

is an isomorphism. This map fits into a commuting diagram below

[G/H+, eHG/H+]G

[G/H+, FN (G+, f̂ i
∗(eHG/H+))]G [i∗G/H+, f̂ i

∗(eHG/H+)]N

Li∗

∼=

Since the horizontal map is an isomorphism it is enough to show that Li∗ is an isomorphism.
Now we know that H is an exceptional subgroup in both N and G, thus from the section 10.2
we know that the algebraic model for G spectra localised at eH is isomorphic to the algebraic
model for the N spectra localised at eH . Moreover we know that the Li∗ is induced by the
map of rings id : Q[WNH] −→ Q[WGH], which means it is the identity map. Thus Li∗ is an
isomorphism on the hom sets at the homotopy level which finishes the proof.

Now we use the fixed point - inflation adjunction. Recall that W below denotes the
Weyl group N/H and by assumption on H it is finite. Moreover there is a projection map
ε : N −→W which induces the left adjoint below.

Theorem 10.3.6. The adjunction

ε∗ : Le1SQ(W − IS)
//
LeHSQ(N − IS) : (−)Hoo

is a strong monoidal Quillen equivalence.
Here e1 is the idempotent of the rational Burnside ring A(W ) corresponding to the character-
istic function for the trivial subgroup.
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Proof. This is an adjunction by [MM02, Chapter V, Proposition 3.10] and by the same result
the left adjoint preserves cofibrations. As the localisation didn’t change the smash product,
ε∗ is still a strong monoidal functor.
To prove this is a Quillen pair we refer to [GS14b, Proposition 3.2] which states that (in
notation adapted to our case):

ε∗ : (W − IS)
//
L
Ẽ[6⊇H]

(N − IS) : (−)Hoo

is a Quillen equivalence. Now we localise this result further at the e1SQ on the side of W
spectra and eHSQ on the side of N spectra. It follows from Lemma 2.3.8 that this is a Quillen
adjunction and in fact a Quillen equivalence. The right hand side after this localisation is
equivalent to LeHSQ(N − IS).

Next we move from Le1SQ(W − IS) to free W rational orthogonal spectra by the identity
functor. First recall that a free model structure on W rational orthogonal spectra is defined
as follows:

• A map f is a weak equivalence in free−W −ISQ iff π1
∗Q(f) is an isomorphism. 1 denotes

the trivial subgroup in W . (equivalently, f is a weak equivalence in free−W − ISQ iff
EW+ ∧ f is a π∗ rational isomorphism)

• a cofibration is a map obtained from the original generating cofibrations by restricting
to the orbit W+

• Fibrations are defined via lifting property.

free−W − ISQ is a cofibrantly generated, proper, monoidal model category.

Lemma 10.3.7. The adjunction

Id : free−W − ISQ
//
Le1SQ(W − IS) : Idoo

is a strong monoidal Quillen equivalence. We use the subindex Q to denote the category
localised at SQ.

Proof. This is [MM02, Chapter IV, Theorem 6.9]. It is obvious this is monoidal.

Next we restrict W -universe from the complete to the trivial one. We adapt slightly the
notation from Chapter V in [MM02].

Lemma 10.3.8. The adjunction

Ict : free−W − ISQt
//

free−W − ISQc : Itc = resoo

is a strong monoidal Quillen equivalence. We use the subindex t to remind us that we consider
the trivial W -universe and Itc to denote the restriction (denoted also res above) from the com-
plete W–universe to the trivial one. Ict denotes the extension from the trivial W–universe to
the complete one.
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Proof. This is a strong monoidal adjunction by [MM02, Chapter V, Theorem 1.5].
First we note that the left adjoint preserves generating cofibrations and generating acyclic
cofibrations, since IctFV

∼= FV by [MM02, Chapter V, 1.4].

The right adjoint res preserves and reflects all weak equivalences since in both model
structures they are defined as those maps which after forgeting to non equivariant spectra are
π∗Q isomorphisms. The derived unit for the cofibrant generator W+ (in this case categorical
unit is also the derived unit) is an isomorphism and this follows from [MM02, Chapter V,
Theorem 1.5], and thus for any cofibrant object it is an weak equivalence. By Part 3 of
Proposition 1.1.12 this is a Quillen equivalence.

We know that free − W − ISQt is equivalent as a monoidal category to the category
ISQ[W ] of rational orthogonal spectra with W action:

Lemma 10.3.9. There is an equivalence of monoidal model categories between free−W−ISQt
and ISQ[W ].

Proof. These two categories are equivalent as monoidal categories. However we had to take
free model structure on the left hand side to make it into an equivalence of monoidal model
categories. Suppose X is an object of free −W − ISQt , i.e. for every indexing space Rn
(trivial W–space), X(V ) has a W action compatible with the suspension. That gives a W
action on the whole X considered as an object of IS. Going in the other direction we extract
W–action for every indexing space Rn from one W action on X. By slight abuse of notations
we can consider these two functors to be identities.

We need to show that this two categories have the same model structure, i.e. all three
classes of maps are the same. Firstly, weak equivalences on both sides are just non-equivariant
π∗Q–isomorphisms. Secondly, generating cofibrations in both model structures are the same,
so we can deduce that these model categories are equivalent.

We removed all dificulties comming from the equivariance with respect to a topological
group. What is left now is a finite group action on the rational orthogonal spectra. It follows
from Shipley’s result that rational chain complexes model rational orthogonal spectra. Thus
we apply Proposition 1.1.14 to the zig-zag of known Quillen equivalences below to get thatW -
objects in ISQ are modelled by W -objects in rational chain complexes, i.e. chain complexes
of Q[W ]-modules.

To apply the resut of Shipley we need to work with rational symmetric spectra of the form
of HQ-modules. We pass to this category using the next two lemmas.

First we pass to symmetric spectra with a W action using the composition of forgetful
functor and the functor induced by singular complex:

Lemma 10.3.10. The adjunction

P ◦ | − | : SpΣ
Q[W ]

// ISQ[W ] : Sing ◦ Uoo
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is a strong monoidal Quillen equivalence.

Proof. This pair of functors give a monoidal Quillen equivalence on the categories without W
action (see for example Section 7 in [SS03a] and proof of Theorem 3.1.4). Thus by Proposition
1.1.14 it is a Quillen equivalence when restricted to W–objects.

Next we move to HQ-modules in symmetric spectra with W action.

Lemma 10.3.11. The adjunction

HQ ∧ − : SpΣ
Q[W ]

//
(HQ−mod)[W ] : Uoo

is a strong monoidal Quillen equivalence. U denotes forgetful functor and the model structure
on (HQ−mod)[W ] is the one created from SpΣ[W ] by the right adoint U .

Proof. As the model structure on the right hand side is created by U this is a Quillen adjunc-
tion. It is a Quillen equivalence when considered as the adjunction between categories without
W–action since HQ is weakly equivalent to SQ. Thus by Proposition 1.1.14 it is a Quillen
equivalence when restricted to W–objects.

Notice that the smash product on the right is over HQ which makes the left adjoint strong
monoidal.

From here we use the result of Shipley to get to Ch(Q)[W ] with the projective model
structure, which is equivalent as a monoidal model category to Ch(Q[W ]) with the projective
model structure (see Section 10.1).

Lemma 10.3.12. There is a zig-zag of monoidal Quillen equivalences between the category
(HQ−mod)[W ] and the category Ch(Q[W ]).

Proof. Apply Proposition 1.1.14 to the zig zag of Quillen equivalences from the Theorem 0.0.1
in case R = Q.

We can sumarise the results of this section in the theorem below.

Theorem 10.3.13. There is a zig-zag of monoidal Quillen equivalences from LeHSQ(G−IS)
to Ch(Q[W ]−mod).

To illustrate the whole path we sketch below a diagram showing every step of the zig-zag.
We put left Quillen functors on the left.
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LeHSQ(G− IS)

i∗

��
LeHSQ(N − IS)

FN (G+,−)

OO

(−)H

��
Le1SQ(W − IS)

ε∗

OO

Id change of model structure

��
free−W − ISQc

Id

OO

Itc change of universe

��
free−W − ISQt

Ict

OO

∼=

��
ISQ[W ]

of monoidal model categories

OO

Sing◦U

��
SpΣ

Q[W ]

P◦|−|

OO

HQ∧−

��
(HQ−mod)[W ]

U

OO

zig−zag of

��
Ch(Q[W ])

Quillen equivalences

OO

Remark 10.3.14. Note that we can do all of the above steps for any subgroupH of any compact
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Lie group G, provided that WG(H) is finite, H does not contain any subgroups cotoral in H
and there exist an idempotent eH corresponding to the conjugacy class of H in G.

For any such H the forgetful functor from H part of G − IS to H part of NGH − IS is
a left adjoint of a Quillen equivalence. The rest of the construction follows the same pattern.
That result provides a monoidal algebraic model for the exceptional part of rational G- spectra
for any compact Lie group G. We define an exceptional part here to consists of finitely many
conjugacy classes of exceptional subgroups.

If G is finite then every subgroup of G is exceptional and the category of G rational spectra
splits as a finite product of categories, each localised at a conjugacy class of a subgroup of G.
This observation allows us to deduce the following

Corollary 10.3.15. Suppose G is a finite group. Then there is a zig-zag of monoidal Quillen
equivalences from LSQ(G− IS) to

∏
(H),H≤GCh(Q[WGH]−mod).

Proof. This follows from the splitting result [Bar09a] and Theorem 10.3.13.



Chapter 11

Dihedral part

The algebraic model for the dihedral part is almost identical to the algebraic model of the
dihedral part for O(2). The difference comes from two things.

Firstly, in SO(3) every dihedral subgroup of order 2, namely D2 is conjugate to cyclic
subgroups C2. Secondly, the normaliser of D4 in SO(3) is a subgroup Σ4. That excludes
subgroups conjugate to D2 and subgroups conjugate to D4 from our dihedral part D.

We know from [Gre01] that the algebraic model for the homotopy category of the dihedral
part of SO(3) - equivariant rational spectra will be of the form of certain sheaves over an orbit
space for D. We use the notation A(D) for it and we devote Section 11.1 to this category.

We describe a zig-zag of non-monoidal Quillen equivalences, because we are not able to
replace non -monoidal Morita equivalence by a monoidal one - we encounter the same problem
as for the exceptional part of the model. We follow the approach from [Bar13], however we
change the original proof slightly to avoid working with commutative ring spectra. We also
choose to work with orthogonal spectra rather than S–modules [EKMM97].

The plan for this part is as follows. Let Ch(A(D)) denote the category of chain complexes
in A(D).

First we choose a set of generators G for LedSQ(G − IS) which consists of one element
f̂(eD2nSQ ∧ SO(3)/D2n)+ for every conjugacy class of dihedral subgroups D2n from D and
f̂(edSQ ∧ SO(3)/O(2))+. Recall that f̂ denotes fibrant replacement and the idempotent eD2n

is an idempotent of the Burnside ring A(SO(3)) corresponding to the characteristic function
on the conjugacy class of the subgroup D2n.

Now we show that LedSQ(G − IS) is a spectral model category, where the enrichment is
over the symmetric spectra.

Using Morita equivalence we pass to the category mod− Etop of modules over Etop, where
Etop is the enriched endomorphism symmetric spectrum on the set of generators G.

125
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The next step is to use the result of Shipley (see [Shi07]) to pass from the category enriched
over symmetric spectra to one enriched over rational chain complexes mod− Et.

Now we calculate the homology groups of the chain complexes enrichment of Et. As they
all are concentrated in degree zero we can replace the category mod−Etop by a Quillen equiv-
alent category mod−H∗(Et).

The last two steps are obtained starting from the algebraic end. We do the Morita equiv-
alence for the category Ch(A(D)) choosing a set of generators Ga. That gives us a category
mod− Ea, where Ea is the enriched endomorphism chain complex category on the set of gen-
erators Ga.

In the last part we find the comparison between the enrichmed Ch(Q) categories Ea and
H∗(Et). That leads to the final Quillen equivalence at the level of module categories and the
algebraic model for the dihedral part.

After Theorem 11.2.16 we present a diagram which shows every step of this comparison.
The reader may wish to refer to this diagram now, but the notation will be introduced as we
proceed.

11.1 The category Ch(A(D))

First we recall the construction of A(D) (see [Gre01]) , then we concentrate on the model
structure on Ch(A(D)) and show it is a dg model structure, i.e. it is a category enriched,
tensored and cotensored in Ch(Q−mod) and satisfying the analogue of the pushout-product
axiom or Quillen’s SM7, where simplicial sets are replaced by symmetric spectra (see Definition
3.1.2).

Material in this section is based on [Bar13, Section 6.1], however we had to slightly adjust
the definition of A(D) presented there. We define it below. Let W be a group of order two.

Definition 11.1.1. Define a category A(D) as follows.

An object M consists of a Q–module M∞, a collection Mk ∈ Q[W ]–mod for k > 3 and
a map (called the germ map) of Q[W ]–modules σM : M∞ −→ colimn>2

∏
k>nMk, where W

action on M∞ is trivial.

A map f : M −→ N in A(D) consists of a map f∞ : M∞ −→ N∞ of Q–modules and a
collection of maps of Q[W ]–modules fk : Mk −→ Nk which commute with germ maps σM and
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σN :
M∞

f∞

��

σM // colimn>2
∏
k>nMk

colimn>2
∏
k>n fk

��
N∞

σN // colimn>2
∏
k>nNk

Definition 11.1.2. Define a category Ch(A(D)) to be the category of chain complexes in
A(D) and gA(D) to be a category of graded objects in A(D).

An object M of Ch(A(D)) consists of rational chain complex M∞, a collection of chain
complexes of Q[W ]–modules Mk for k > 3 and a germ map of chain complexes of Q[W ]–
modules σM : M∞ −→ colimn>2

∏
k>nMk, where W action on M∞ is trivial.

The following definition is from [Bar13] (after [Gre98b]) and describes a functor from the
homotopy category of rational O(2) spectra to gA(D) called πD∗ :

Definition 11.1.3. Let X be an O(2)–spectrum with rational homotopy groups. We define
an object πD∗ (X) of gA(D) as follows:

πD∗ (X)k = eD2k
πD2k
∗ (X)

where eD2k
∈ A(O(2)) and

πD∗ (X)∞ = colimn>2(fnπ
O(2)
∗ (X))

where fn = eD −
∑n−1

k=1 ek.
If k > n there is a map

fnπ
O(2)
∗ (X) −→ eD2k

πD2k
∗ (X)

induced by the inclusion D2k −→ O(2) and the application of eD2k
, so we get a map

fnπ
O(2)
∗ (X) −→

∏
k>n

eD2k
πD2k
∗ (X)

and thus a germ map

colimn>2fnπ
O(2)
∗ (X) −→ colimn>2

∏
k>n

eD2k
πD2k
∗ (X)

This defines a functor πD∗ : Ho(O(2)− SpectraQ) −→ gA(D).

To obtain a functor from Ho(SO(3) − SpectraQ) to gA(D) we need to precompose with
the pullback functor along the inclusion i : O(2) −→ SO(3), i.e.

i∗ : Ho(SO(3)− SpectraQ) −→ Ho(O(2)− SpectraQ)

We don’t need to take the derived functor, because i∗ preserves all weak equivalences.

It is useful to consider several adjoint pairs involving the category Ch(A(D)):
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Definition 11.1.4. [Bar13, Definition 6.1.7] Let A ∈ Ch(Q), X ∈ Ch(Q[W ]) and M ∈
Ch(A(D)). We define the following functors:

• ik : Ch(Q[W ]) −→ Ch(A(D)) by (ik(X))∞ = 0 and (ik(X))n = 0 for n 6= k and
(ik(X))k = X.

• pk : Ch(A(D)) −→ Ch(Q[W ]) by pk(M) = Mk

• c : Ch(Q) −→ Ch(A(D)) by (cA)k = A, (cA)∞ = A and σcA to be the diagonal map
into the product.

Then (ik, pk), (pk, ik) and (c,CW ) form adjoint pairs, where the functor CW is defined below.

The functor CW is defined as follows: let M ∈ Ch(A(D)). Then CWM is defined as the
W fixed points of the pullback of the diagram below in the category Ch(Q[W ])–modules:∏

k>3Mk

��
M∞

σM // colimn
∏
k>nMk

where W–action is trivial on M∞ and the vertical arrow is the map into the colimit induced
by the inclusion of the first term.

We should think about the functor CW as a global sections functor: we pick an element of
the stalk at ∞ point and elements of all the other stalks in a compatible way, which gives us
a global section. Compatibility condition is captured by the pullback square.

There is a closed monoidal structure on the category Ch(A(D)) defined as follows: Let
M,N be objects in Ch(A(D)), then (M ⊗N)k := Mk ⊗Q Nk and (M ⊗N)∞ := M∞ ⊗Q N∞
and the germ map is given by the following composite:

M∞⊗N∞ −→ colimn

∏
k>n

Mk⊗colimn

∏
k>n

Nk −→ colimn(
∏
k>n

Mk⊗
∏
k>n

Nk) −→ colimn

∏
k>n

(Mk⊗Nk)

where the second map is an isomorphism.
The internal hom is defined for k–part as follows:

Hom(M,N)k := HomQ(Mk, Nk)

Internal hom over∞–part is defined to be aW fixed points of a stalk over (O(2)) of an internal
hom of sheaves of chain complexes of Q[W ]–modules M,N over a space D. (Every object M
of Ch(A(D))) can be viewed as a sheaf of chain complexes of Q[W ]–modules over D.) Recall
that D denotes conjugacy classes of subgroups from dihedral part of SO(3).

The category Ch(A(D)) is bicomplete by [Bar13, Lemma 6.1.6] so we can proceed to
defining a model structure on it:
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Proposition 11.1.5. [Bar13, Proposition 6.1.10] There exists a symmetric monoidal model
structure on the category Ch(A(D)) where f is a weak equivalence or fibration if f∞ and
each of fk are weak equivalences or fibrations respectively. This model structure is cofibrantly
generated, proper and satisfies the monoid axiom.

We call the above model structure a projective model structure on Ch(A(D)). The
generating cofibrations are of the form cIQ and ikIQ[W ] for k > 3 and generating acyclic
cofibrations are of the form cJQ and ikJQ[W ] for k > 3. IQ and JQ denote generating cofi-
brations and generating trivial cofibrations (respectively) for the projective model structure
on Ch(Q), and IQ[W ], JQ[W ] denote generating cofibrations and generating trivial cofibrations
(respectively) for the projective model structure on Ch(Q[W ]).

With the above definition of monoidal model structure the adjunctions from Definition
11.1.4 are strong symmetric monoidal Quillen pairs.

We finish this chapter by stating that Ch(A(D)) is a dg–model category

Proposition 11.1.6. [Bar13, Corollary 6.1.12] The construction CWHom(−,=) defines an
enrichment of Ch(A(D)) in Ch(Q) compatible with the model structure on Ch(A(D)).

Lemma 11.1.7. [Bar13, Lemma 6.1.13] The collection ikQ[W ] for k > 3 and cQ form a set
of (homotopically) compact, cofibrant and fibrant generators for the category Ch(A(D)) with
a projective model structure.

11.2 Comparison

We begin by establishing the necessary conditions for the first step, Morita equivalence. We
start from the topological end.

Lemma 11.2.1. Suppose we have a Quillen adjunction between two stable model categories

F : C // D : Uoo

such that there is a set {σi}i∈I of cofibrant, (homotopically) compact generators (in the sense
of Definition 1.1.17) for C, U reflects weak equivalences between fibrant objects and the derived
functor of U (also denoted RU) commutes with coproducts. Then the images under F of
{σi}i∈I form a set of (homotopically) compact, cofibrant generators for D.

Proof. Suppose {σi}i∈I is a set of cofibrant, (homotopically) compact generators for C. By
Proposition 1.1.18 this is equivalent to the condition that for any object X ∈ C, X is trivial
iff [σi, X]∗ = 0 for all i ∈ I.

{F (σi)}i∈I is a set of (homotopically) compact objects by the same argument as in Propo-
sition 1.1.20 since RU commutes with coproducts. We use the above criterion for checking
that the set of (homotopically) compact objects is a set of generators. Take Y in D, and
assume ∀i∈I [F (σi), Y ]Ho(D) = 0 then

[F (σi), Y ]Ho(D) ∼= [σi, Uf̂(Y )]Ho(C)
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where f̂ denotes fibrant replacement functor in D. Since {σi}i∈I was a set of cofibrant,
(homotopically) compact generators for C we get that Uf̃(Y ) is trivial in C. Since U reflects
weak equivalences between fibrant objects f̃(Y ) is trivial in D and thus Y is trivial in D which
finishes the proof.

Lemma 11.2.2. The set Ĝ consisting of one spectrum eD2nSO(3)/D2n+ for every conjugacy
class of dihedral subgroups D2n from D and SO(3)/O(2)+ is a set of (homotopically) compact,
cofibrant generators for LedSQ(SO(3)− IS).

Proof. We can check the required conditions directly, but instead we use Lemma 11.2.1 for
the adjunction (SO(3)+ ∧O(2) −, i∗) and result of [Bar13] for the O(2)-spectra. First notice
that i∗ satisfies both conditions of Lemma 11.2.1. It preserves all weak equivalences because
it is both left and right Quillen functor by Corollary 9.2.7 and Proposition 9.2.5. Therefore
Ri∗ = i∗ and since it is a left adjoint it preserves coproducts.

i∗ reflects all weak equivalences by the observation: i∗(f) is a weak equivalence iff i∗(f) ∧
edSQ ∼= i∗(f∧edSQ) is a π∗ isomorphism. Since, by adjunction on the homotopy level πH∗ (i∗(f∧
edSQ)) ∼= πH∗ (f ∧ edSQ) we can conclude.

By [Bar13, Lemma 6.2.1] compact generators for the dihedral part of O(2)–spectra are of
the form eD2nO(2)/D2n+ and edS. Applying SO(3)+ ∧O(2) − to them finishes the proof:

SO(3)+ ∧O(2) (eD2nO(2)/D2n+) ∼= eD2nSO(3)/D2n+

by Proposition 2.3 from Chapter V in [MM02], as below:

SO(3)+ ∧O(2) (eD2nO(2)/D2n+) ∼= SO(3)+ ∧O(2) (O(2)/D2n+ ∧ eD2nS)

∼= SO(3)/D2n+ ∧ eD2nS
∼= eD2nSO(3)/D2n+ (11.2.3)

We used here that i∗(eD2n) = eD2n and that i∗(ed) = ed where last idempotent corresponds to
the set of all dihedral subgroups of O(2) with order greater than 4 and O(2).

To finish discussion about generators, we present the following result about objects in
LedSQ(O(2)− IS), namely that i∗ preserves generators up to weak equivalence.

Proposition 11.2.4.

1. The map f : O(2)/O(2)+ −→ i∗(SO(3)/O(2)+) induced by inclusion O(2) −→ SO(3) is
a weak equivalence in LedSQ(O(2)− IS).

2. The map f2n : eD2nO(2)/D2n+ −→ i∗(eD2nSO(3)/D2n+) for n > 2 induced by inclusion
O(2) −→ SO(3) is a weak equivalence in LedSQ(O(2)− IS)
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Proof. For Part 1 to show that the map f : O(2)/O(2)+ −→ i∗(SO(3)/O(2)+) is a weak
equivalence, by definition we need to show that edf is an equivariant rational π∗ isomorphism.
To do that we need to check that for all subgroups H ≤ O(2) the H-geometric fixed points

ΦH(edf) : ΦH(edO(2)/O(2)+) −→ ΦH(edi
∗(SO(3)/O(2)+))

is a non-equivariant rational π∗-isomorphism.

Since geometric fixed points commute with smash product and suspensions, for every
subgroup H 6∈ D, ΦH(edf) is a trivial map between trivial objects.
For H = O(2) it is an identity on S0 since O(2) is its own normaliser in SO(3) and O(2) is
O(2)–good in SO(3).
For H = D2n it is also an identity on S0 since every D2n is O(2)–good in SO(3) (there is just
one conjugacy class for every n of D2n subgroups in O(2)).

Part 2 follows the same pattern, however the domain and codomain of the map f2n are
already D-local, so f ∼= edf . Since the idempotent used is eD2n the only non-trivial geometric
fixed points will be for the subgroup H = D2n. The result follows from simple observation:
every D2n is D2n–good in SO(3) and O(2). Thus the map on geometric fixed points for D2n

is the identity on D4n/D2n+. That finishes the proof.

We establish the enrichment necessary to proceed with Morita equivalence

Lemma 11.2.5. LedSQ(G − IS) is a spectral model category, where the enrichment is in
symmetric spectra SpΣ.

Proof. Apply Corollary 3.1.5.

Now that we have a spectral model category and the set of cofibrant and fibrant generators
G consisting of fibrant replacements of elements from Ĝ, we can proceed to Morita equivalence.

Define Etop to be the enriched endomorphism symmetric spectrum subcategory of LedSQ(G− IS)
on the set of generators G. We use the notation mod− Etop for the category of modules over
Etop.

Theorem 11.2.6. The adjunction

Hom(G,−) : LedSQ(G− IS) // mod− Etop : − ∧Etop G
oo

is a Quillen equivalence.

Proof. This follows from [SS03b, Theorem 3.9.3], see also Theorem 3.2.8.

Similarly as for non-monoidal exceptional comparison, to apply result of Shipley, Etop

needs to be in HQ-modules. The same argument as for exceptional part (see discussion below
Theorem 10.2.4) works and we use the notation Etop for HQ ∧ Etop.

Morita equivalence puts all the equivariance into the ring (with many objects) over which
we consider the modules. However we are still in the topological setting (the ring is the ring
symmetric spectrum). The following theorem provides the passage to the algebraic world.
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Theorem 11.2.7. There is a zig-zag of Quillen equivalences between the following two cat-
egories: mod–Etop (enriched over SpΣ

Q) and mod–Et enriched over Ch(Q–mod), where Et is
a ring rational chain complex with the property that there is an isomorphism of categories
enriched over graded Q modules H∗(Et) ∼= π∗(Etop).

Proof. This follows from the result of Shipley where we use a version for rings with many
objects mentioned in [Shi07, Corollary 2.16] and described also in [Bar09b, Theorem 6.5].

Let us now calculate π∗(Etop). By construction, for any two objects a, b ∈ G, π∗(Etop)(a, b) is
naturaly isomorphic to [a, b]

LedSQ (SO(3)−IS) (this was explicitly calculated in 10.2.6). Thus we
have the results below, where the second isomorphism in every line follows from the calculations
from Proposition 11.2.4 and [Bar13, Proposition 6.2.9 and 6.2.10]

π∗(Etop)(edSQ ∧ SO(3)/O(2)+, edSQ ∧ SO(3)/O(2)+)) ∼=
[edSQ ∧ SO(3)/O(2)+, edSQ ∧ SO(3)/O(2)+]∗ ∼= [cQ, cQ]gA(D) ∼= edA(O())Q

(11.2.8)

and for every n > 2

π∗(Etop)(eD2nSQ ∧ SO(3)/D2n+, eD2nSQ ∧ SO(3)/D2n+)) ∼=
[eD2nSQ ∧ SO(3)/D2n+, eD2nSQ ∧ SO(3)/D2n+]∗ ∼= [i2nQ[W ], i2nQ[W ]]gA(D) ∼= Q[W ]

(11.2.9)

π∗(Etop)(edSQ ∧ SO(3)/O(2)+, eD2nSQ ∧ SO(3)/D2n+)) ∼=
[edSQ ∧ SO(3)/O(2)+, eD2nSQ ∧ SO(3)/D2n+]∗ ∼= [cQ, i2nQ[W ]]gA(D) ∼= Q (11.2.10)

π∗(Etop)(eD2nSQ ∧ SO(3)/D2n+, edSQ ∧ SO(3)/O(2)+)) ∼=
[eD2nSQ ∧ SO(3)/D2n+, edSQ ∧ SO(3)/O(2)+]∗ ∼= [i2nQ[W ], cQ]gA(D) ∼= Q (11.2.11)

And finally, for n 6= k we have

π∗(Etop)(eD2nSQ ∧ SO(3)/D2n+, eD2k
SQ ∧ SO(3)/D2k+)) ∼=

[eD2nSQ ∧ SO(3)/D2n+, eD2k
SQ ∧ SO(3)/D2k+]∗ ∼= [i2nQ[W ], i2kQ[W ]]gA(D) ∼= 0 (11.2.12)

As H∗(Et) is isomorphic to π∗(Etop), it is concentrated in degree zero so we apply methods
from [Bar09b, Theorem 7.5 and 7.6] to get the following
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Lemma 11.2.13. There is a zig zag of Quillen equivalences of Ch(Q) model categories

mod− Et // mod− C0Et
oo //

mod−H∗Etoo

induced by the zig-zag of quasi-isomorphisms of Ch(Q)-categories

Et ←− C0Et −→ H∗Et

where C0 is the (−1)–connected cover functor on Ch(Q). The first map above is the inclusion
and the second one is the projection on enriched homs.

Next we start work from the algebraic side. The idea is to perform a Morita equivalence
in the algebraic setting for the category Ch(A(D)) which is a Ch(Q) model category by
Proposition 11.1.6. We use the notation Ga for the set of generators for Ch(A(D)) from
Lemma 11.1.7.

Define Ea to be the enriched endomorphism rational chain complex subcategory of Ch(A(D))
on the set of generators Ga. We use the notation mod − Ea for the category of modules over
Ea.

We proceed to algebraic version of Morita equivalence:

Theorem 11.2.14. The adjunction

Hom(Ga,−) : Ch(A(D)) // mod− Ea : − ∧Ea Ga
oo

is a Quillen equivalence.

Proof. This is enriched in chain complexes of Q modules version of Morita equivalence [SS03b,
Theorem 3.9.3]

The last missing link is the comparison between mod − H∗Et and mod − Ea as model
categories. This is shown in

Proposition 11.2.15. There is an isomorphism of categories enriched over Ch(Q) given by
i∗◦πD∗ : H∗Et −→ Ea (where πD∗ is described in Definition 11.1.3 ), which gives an isomorphism
of module categories

mod−H∗Et −→ mod− Ea

Proof. This follows from [Bar13, Proposition 6.2.8 and 6.2.9].
First note that πD∗ ◦ i∗(SO(3)/O(2)+) = cQ and πD∗ ◦ i∗(eD2nSO(3)/D2n+) = i2nQ[W ] and
that πD∗ ◦ i∗ induces isomorphisms on enriched homs on the generators:

Firstly, it follows from Proposition 11.2.4 that after applying i∗ we get the generators
for dihedral part of O(2) from [Bar13]. Secondly, by Theorem 11.3.1 i∗ is an equivalence on
homotopy categories (dihedral parts), thus it induces isomorphisms on enriched homs on the
generators. Calculations from [Bar13, Proposition 6.2.8] finish the proof.

Now we summarise the result of this section in the following
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Theorem 11.2.16. There exist a zig-zag of Quillen equivalences from LedSQ(G − IS) to
Ch(A(D)).

To illustrate the whole path we present below a diagram showing every step of the zig-zag.
Left adjoints are placed on the left.

LedSQ(G− IS)

Hom(G,−)

��
mod− Etop

−∧EtopG

OO

Quillen equivalences

��
mod− Et

zig−zag of

OO

zig−zag of

��
mod−H∗(Et)

Quillen equivalences

OO

isomorphism of

��
mod− Ea

model categories

OO

−∧EaGa

��
Ch(A(D))

Hom(Ga,−)

OO

We stress again that the above comparison is not monoidal.

11.3 Monoidal comparison

To obtain monoidal comparison for the dihedral part of SO(3) spectra it is enough to get
the monoidal comparison for the dihedral part of O(2) spectra, as the restriction functor is a
monoidal Quillen equivalence between these dihedral parts:

Theorem 11.3.1. Let i : O(2) −→ SO(3) be an inclusion and note that i∗(edSQ) = edSQ.
Then the following

i∗ : LedSQ(SO(3)− IS)
//
LedSQ(O(2)− IS) : FO(2)(SO(3)+,−)oo
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is a strong monoidal Quillen equivalence, where the idempotent on the right hand side corre-
sponds to the set of all dihedral subgroups of order greater than 4 and O(2).

Proof. This is a Quillen adjunction by Corollary 9.2.7 and moreover i∗ is also a right Quillen
functor by Proposition 9.2.5 since i∗(edSQ) = edSQ. The left adjoint is strong monoidal as
localisation didn’t change the monoidal structures.

To show that this is a Quillen equivalence we use similar argument to the one for the
general exceptional N subgroup (see Theorem 10.3.4).

Firstly, FO(2)(SO(3)+,−) preserves and reflects weak equivalences between fibrant objects
by the same argument as in Theorem 10.3.4.

Now we need to show that the derived unit is a weak equivalence on cofibrant objects in
LedSQ(SO(3)− IS). This is

Y+ −→ FO(2)(SO(3)+, f̂ i
∗(Y ))

To check that this is a weak equivalence in LedSQ(SO(3)− IS) it is enough to check that on
the homotopy level the induced map

[X,Y ]LdSO(3) ∼= [X, edY ]SO(3) −→ [X,FO(2)(SO(3)+, f̂ i
∗(edY ))]SO(3)

is an isomorphism for every generatorX of LedSQ(SO(3)−IS). This map fits into a commuting
diagram below

[X, edY ]SO(3)

[X,FO(2)(SO(3)+, f̂ i
∗(edY ))]SO(3) [i∗X, f̂i∗(edY )]O(2)

i∗

∼=

Since the horizontal map is an isomorphism it is enough to show that i∗ is an isomorphism
on hom sets, where the domain is a generator for LedSQ(SO(3) − IS). We do this by using
the second Quillen adjunction between these two categories, namely (SO(3)+ ∧O(2) −, i∗).

We have the following commuting diagram

[eHSO(3)/H+, edY ]SO(3)

[eHO(2)/H+, i
∗(edY )]O(2) [i∗(eHSO(3)/H+), i∗(edY )]O(2)

i∗∼=

− ◦ η
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where H above denotes the finite dihedral subgroup or O(2) (When H is O(2) we understand
eH as ed).

η above denotes the categorical unit on cofibrant generators, which is the map

ηeHO(2)/H+
: eHO(2)/H+ −→ eHi

∗(SO(3)/H+)

induced by an inclusion O(2) −→ SO(3).

By Proposition 11.2.4 this is a weak equivalence in LedSQ(O(2) − IS) for all H in D and
thus −◦η is an isomorphism on homotopy level. From this it follows that i∗ is an isomorphism
on hom sets and thus the derived unit of the adjunction where i∗ is the left adjoint is a weak
equivalence in LedSQ(SO(3)− IS) and this adjunction is a Quillen equivalence.



Chapter 12

Cyclic part

In this chapter we follow the approach of [Bar13] and [GS] to find an algebraic model for the
cyclic part of SO(3)-spectra.

We begin by describing the category d(A(SO(3), c)) in Section 12.1. Then we proceed
to establishing the comparison between the cyclic part of rational SO(3) equivariant orthog-
onal spectra and d(A(SO(3), c)). This comparison is monoidal up to the category cell −
A(O(2), c). We simplify this category and get d(A(SO(3), c)), however this last comparison
is not monoidal.

12.1 The category d(A(SO(3), c))

Before we are ready to describe the category A(SO(3), c) we have to introduce the category
A(O(2), c). We give a description of A(O(2), c) as a category on the objects of A(SO(2))
with W action. Recall that W is a group of order 2. We later pass to A(SO(3), c) using the
adjunction described in Theorem 12.1.28.

12.1.1 The category A(O(2), c)

Material in this section is based on [Gre99] and [Bar13, Section 3].
Firstly, we need some definitions

Definition 12.1.1. Let F denote the family of all finite cyclic subgroups in O(2). Then we
define a ring in Q[W ] modules

OF :=
∏
H∈F

Q[cH ]

where each cH has degree −2 and w acts on each cH by −1. For simplicity in further notation
we set c := c1.

We use the notation E−1OF for the following colimit of localisations:

colim
k
OF [c−1, c−1

C2
, ..., c−1

Ck
]

137
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where the maps in the colimit are the inclusions. Notice that we can do the similar construction
on the ring ÕF := (1− e1)OF and call it Ẽ−1OF , where e1 is the projection on the first factor
in the ring OF . Then another way to define E−1OF is as Q[c, c−1]× Ẽ−1OF .

This last description of E−1OF will be useful when we compare this model to the one for
cyclic part of SO(3) spectra.

Definition 12.1.2. An object of A(O(2), c) consists of a triple (M,V, β) where M is an OF
module in Q[W ] modules, V is a graded rational vector space with a W action and β is a map
of OF modules (in Q[W ] modules)

β : M −→ E−1OF ⊗ V

such that E−1OF ⊗OF β is an isomorphism of OF modules.

A morphism between two such objects (α, φ) : (M,V, β) −→ (M ′, V ′, β′) consists of a map
of OF modules α : M −→ M ′ and a map of graded Q[W ]-modules such that the relevant
square commutes.

Notice that instead of modules over OF in Q[W ] modules we can consider modules over
OF [W ] in Q modules, where OF [W ] is a group ring with a twisted W action (namely W acts
on each cH by −1). We will use this description in the next section.

Definition 12.1.3. An object of d(A(O(2), c)) is an object of A(O(2), c) equipped with a
differential and a morphism in this category is a morphism in A(O(2), c) which commutes
with the differentials.

Next we proceed to discussing the properties of the category d(A(O(2), c)).

Proposition 12.1.4. All limits and colimits exist in d(A(O(2), c)).

Proof. This follows from [Bar13, Definition 3.2.4].

Definition 12.1.5. [Bar13, Definition 3.2.5] There is a symmetric monoidal product in d(A(O(2), c)),
which for two objects (M,V, β) and (M ′, V ′, β′) is defined as the following composite:

β ⊗ β′ : M ⊗OF M
′ −→ (E−1OF ⊗ V )⊗OF (E−1OF ⊗ V ′) ∼= E−1OF ⊗ (V ⊗Q V

′)

where W action is diagonal.

The tensor product defined above is closed and the function object construction is given
by the same construction as in [Bar13, Definition 3.2.7].

Now we proceed to discuss model structures and the following follows from [Gre99, Ap-
pendix A]

Theorem 12.1.6. There is a stable, proper, monoidal, model structure on the category d(A(O(2), c))
where the weak equivalences are homology isomorphisms. The cofibrations are the injections
and the fibrations are defined via the right lifting property. We call this model structure the
injective model structure.
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Theorem 12.1.7. [Bar13, Theorem 3.4.2] There is a cofibrantly generated, stable, proper,
monoidal model structure on the category d(A(SO(2))) with weak equivalences the homology
isomorphisms. The generating cofibrations have the form

Sn−1 ⊗ P −→ Dn ⊗ P

for P ∈ P and n ∈ Z where P is the set of representatives for the isomorphisms classes of
dualisable objects. We call this model structure the dualisable model structure.

Theorem 12.1.8. [Bar13, Theorem 3.5.4] There is a cofibrantly generated, stable, proper,
monoidal model structure on the category d(A(O(2), c)) with weak equivalences the homology
isomorphisms. Fibrations are these maps which forget to fibrations in the dualisable model
structure on d(A(SO(2))). We call this a dualisable model structure.

12.1.2 The category A(SO(3), c)

Looking at the cyclic part of the spaces of subgroups of SO(3) and O(2) we see that the
stabiliser of the trivial subgroup is connected in SO(3), while it is not in O(2). This seems
to be the main ingredient playing a role in capturing the difference between these algebraic
models.

Let us denote by FSO(3) the family of all finite cyclic subgroups in SO(3). Then we use
the notation OF := OFSO(3)

, by which we mean a graded ring
∏

(H)≤FSO(3)
Q[c(H)] where c1 is

in degree −4 and all other c(H) are in degree −2. W acts on it by fixing c1 and sending c(H)

to −c(H) for all subgroups H ≤ SO(3), H 6= 1. For simplicity we will use the notation d := c1

in that ring. We define the ring OF [W ] as a group ring with the twisted W action away from
e1 and e1OF [W ] = Q[d].

We define the category A(SO(3), c) as follows

Definition 12.1.9. An object in A(SO(3), c) consists of a triple (M,V, β) where M is an
OF [W ] module in Q modules, V is a graded rational vector space with a W action and β is a
map of OF [W ] modules

β : M −→ E−1OF ⊗ V

such that the adjoint E−1OF⊗OFM −→ E
−1OF⊗V is an isomorphism of E−1OF [W ] modules.

A morphism between two such objects (α, φ) : (M,V, β) −→ (M ′, V ′, β′) consists of a map
of OF [W ] modules α : M −→M ′ and a map of graded Q[W ]-modules such that the relevant
square commutes.

Notice that the condition on the map β implies that the image of e1M lies in (Q[c, c−1]⊗ V )W .

We define the category Â(SO(3), c) to consist of triples (M,V, β) where M is an OF [W ]
module in Q modules, V is a graded rational vector space with a W action and β is a map of
OF [W ] modules

β : M −→ E−1OF ⊗ V
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A morphism between two such objects (α, φ) : (M,V, β) −→ (M ′, V ′, β′) consists of a map of
OF [W ] modules α : M −→ M ′ and a map of graded Q[W ]-modules such that the relevant
square commutes.

Now we construct a functor Γ which will be a right adjoint to the inclusion functor i :
A(SO(3), c) −→ Â(SO(3), c).

Suppose X = (γ : M −→ E−1OF ⊗ V ) is an object in Â(SO(3), c). Then we define Γ(X)
in two steps.

Step 1. We start by adjoining γ:

X = (γ : OF ⊗OF M −→ E
−1OF ⊗ V )

Note that this is an object of Â(O(2), c). Now we apply Γ for the O(2) case to it, which by
construction is the following pullback (see [Gre99, Definition 20.2.2] for definition of V ′ and
γ′):

(OF ⊗OF M)′

��

γ′ // E−1OF ⊗ V ′

��
OF ⊗OF M // E−1OF ⊗OF M

where we use the notation ’ for the result of Γ in O(2) case.

Step 2. There is a unit map M −→ OF ⊗OF M , so we form the second pullback square

M ′′ //

��

(OF ⊗OF M)′

��

γ′ // E−1OF ⊗ V ′

��
M

unit // OF ⊗OF M // E−1OF ⊗OF M

Γ(X) is defined to be the top row of the above diagram, i.e. γ′′ : M ′′ −→ E−1OF ⊗ V ′.

We need to show that this is an object of A(SO(3), c). It is clear that the second pullback
construction is the identity away from the idempotent e1.
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Firstly we define M † by the following pullback:

M †

��

// E−1OF ⊗ V ′

��
M // E−1OF ⊗OF M

where E−1OF = Q[d, d−1]× Ẽ−1OF . Now we get

OF ⊗OF M
† ∼= (OF ⊗OF M)′

Using these observations, we see that the second pullback diagram used for defining Γ
above, has the following form:

M †

��

// OF ⊗OF M
†

��
M

unit // OF ⊗OF M

since the right vertical map is of the form OF ⊗OF − applied to a map M † −→ M the top
map is also a unit. Thus γ′′ is the following composite

M †
unit // OF ⊗OF M

† γ′ // OF ⊗OF E
−1OF ⊗ V ′ = E−1OF ⊗ V ′

Recall that by the construction the adjoint of γ′, i.e. a map

E−1OF ⊗OF OF ⊗OF M
† −→ E−1OF ⊗ V ′

is an isomorphism of E−1OF [W ] modules. Since the adjoint of γ′′ is the same as adjoint of γ′

we can conclude.

Remark 12.1.10. Notice that the construction above is the same as defining Γ as the composite
G◦ Γ̃◦ F̂ from the diagram below, where Γ̃ is the right adjoint to the inclusion for cyclic part of
O(2) algebraic model. The horizontal adjunctions are defined after Definition 12.1.26. Notice
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that the diagram of left adjoints commutes.

A(SO(3), c)

F=OF⊗OF− //

i

��

A(O(2), c)
G=(−)W×Id
oo

ĩ

��
Â(SO(3), c)

F̂=OF⊗OF− //

Γ

OO

Â(O(2), c)
Ĝ=(−)W×Id

oo

Γ̃

OO

Lemma 12.1.11. Γ constructed above is the right adjoint to the inclusion functor

i : A(SO(3), c) −→ Â(SO(3), c)

Proof. By the remark above we get a natural bijection:

HomA(SO(3),c)(X,G ◦ Γ̃ ◦ F̂ (Y )) ∼= HomÂ(O(2),c)(̃i ◦ F (X), F̂ (Y ))

and by commutativity of the square of left adjoints we get

HomÂ(O(2),c)(̃i ◦ F (X), F̂ (Y )) ∼= HomÂ(O(2),c)(F̂ ◦ i(X), F̂ (Y ))

Since F̂ is faithful that is HomÂ(SO(3),c)(i(X), (Y )), which finishes the proof.

Proposition 12.1.12. All small limits and colimits exist in A(SO(3), c).

Proof. Suppose we have a diagram of objects Mi −→ E−1OF ⊗ Vi in A(SO(3), c) indexed by
a category I. The colimit of this diagram is

colim
i

Mi −→ E−1OF ⊗ (colim
i

Vi)

The limit is formed in a category Â(SO(3), c) first, and then we apply Γ. The limit of the
above diagram in Â(SO(3), c) is f : M −→ E−1OF ⊗ (limi Vi) constructed using the following
pullback:

M

f

��

// limiMi

��
E−1OF ⊗ (limi Vi) // limi(E−1OF ⊗ Vi)
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Now we define two functors which will be used in the next Lemma.
Let e : Q[W ]−mod −→ A(SO(3), c), where Q[W ]−mod denotes the category of graded Q[W ]
modules, be defined by

e(V ) := (P −→ E−1OF ⊗ V )

where e1P = Q[d, d−1]⊗ V + ⊕ Σ2Q[d, d−1]⊗ V − and (1− e1)P = (1− e1)E−1OF ⊗ V . Here
V + is the W -fixed part of V and V − is −1 eigenspace.

Let f : tors −OF [W ]f −mod −→ A(SO(3), c), where tors −OF [W ]f −mod denotes the
category of F-finite torsion OF [W ]-modules, be defined by

f(N) := (N −→ 0)

Recall that an OF [W ]-module M is F-finite if it is a direct sum of its submodules e(H)M :

M =
⊕

(H)∈F

e(H)M

Proposition 12.1.13. For any object X = (γ : M −→ E−1OF ⊗V ) in A = A(SO(3), c), any
V in Q[W ]−mod and any N in tors−OF [W ]f −mod we have natural isomorphisms:

HomA(X, e(V )) = HomQ[W ](U, V )

HomA(X, f(N)) = HomOF [W ](M,N)

Remark 12.1.14. The above proposition implies that an object e(V ) is injective for any V and
if N is an injective F-finite torsion OF [W ]-module then f(N) is also injective.

Lemma 12.1.15. The category A(SO(3), c) is a (graded) abelian category of an injective
dimension 1. Moreover it is split, i.e. every object X of A(SO(3), c) has a splitting X =
X+ ⊕X− so that Hom(Xδ, Yε) = 0 and Ext(Xδ, Yε) = 0 if δ 6= ε and (ΣX)δ = Σ(Xδ+1)

Proof. This category is enriched in abelian groups and by construction (and existence) of all
limits and colimits we can conclude that it is an abelian category.

For an object X = (γ : M −→ E−1OF ⊗ V ) we construct the injective resolution of length
1 as follows: let TM := kerγ, which is torsion, and thus there is an injective resolution

0 // TM // I ′ // J ′ // 0

where I ′, J ′ are injective F finite torsion OF [W ] modules, since Q[d] and all Q[c(H)][W ] are
of injective dimension 1.

Let us use a simplified notation below. Let P denote the OF module from the definition
of e(V ) presented above.
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If Q is the image of γ then J ′′ = P/Q is divisible and an F finite torsion OF module and
hence injective. We form a diagram

0

��

0

��

0

��
0 // TM //

��

M //

��

Q //

��

0

0 // I ′ //

��

I ′ ⊕ P //

��

P //

��

0

0 // J ′ //

��

J ′ ⊕ J ′′ //

��

J ′′ //

��

0

0 0 0

and hence a diagram:

0 //M //

��

I ′ ⊕ P //

��

J ′ ⊕ J ′′ //

��

0

0 // E−1OF ⊗ V // E−1OF ⊗ V // 0 // 0

which is the required resolution.
Finally, the splitting is given by taking even graded part and odd graded part and this

satisfies the required conditions since the resolution above of an object Xδ is entirely in parity
δ.

By the [Gre99, Proposition 4.1.3] we can construct the derived category of A(SO(3), c) by
taking differential objects in A(SO(3), c) and inverting the homology isomorphisms.

Now we define a closed symmetric monoidal product

Definition 12.1.16. There is a symmetric monoidal product on A(SO(3), c) defined analo-
gously to the one presented in Definition 12.1.5. For two objects (M,V, β) and (M ′, V ′, β′) it
is defined as the following composite:

β ⊗ β′ : M ⊗OF M
′ −→ (E−1OF ⊗ V )⊗OF (E−1OF ⊗ V ′) ∼=

(E−1OF ⊗OF E
−1OF )⊗ (V ⊗ V ′) −→ E−1OF ⊗ (V ⊗ V ′) (12.1.17)

where W action is diagonal and the second arrow is induced by the counit on E−1OF . The
unit for this tensor product is OF −→ E−1OF ⊗Q.
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Lemma 12.1.18. The tensor product defined above is closed.

Proof. Suppose A = (γ : M −→ E−1OF ⊗ U) and B = (γ′ : M ′ −→ E−1OF ⊗ U ′) are two
objects in A(SO(3), c). Then the internal hom Hom(A,B) is constructed by applying Γ to
the object δ : Q −→ E−1OF ⊗HomQ(U,U ′) defined by the pullback square below:

Q
δ //

��

E−1OF ⊗HomQ(U,U ′)

��
HomOF (E−1OF ⊗ U, E−1OF ⊗ U ′)

��
HomOF (M,M ′) // HomOF (M, E−1OF ⊗ U ′)

Definition 12.1.19. An object of d(A(SO(3), c) consists of OF [W ]-moduleM equipped with
a differential and a chain complex of Q[W ] modules V together with a map γ : M −→
E−1OF ⊗V which commutes with differentials. A differential on a OF [W ]-module M consists
of maps dn : Mn −→Mn−1 such that dn−1 ◦ dn = 0 and cdn = dn−2c where c is the sum of all
elements c2

(H) for varying (H) ∈ F , H 6= 1 and d.
A morphism in this category is a morphism in A(SO(3), c) which commutes with the

differentials.

Notice that all above constructions (Γ, limits and colimits, tensor product and internal
hom) pass to the category d(A(SO(3), c).

Theorem 12.1.20. There is an injective model structure on the category d(A(SO(3), c).

Proof. Since the category A(SO(3), c) is abelian of injective dimension 1 we can use the
construction from [Gre99, Appendix A].

To show that this model structure is right proper we need to show that there are enough
"wide spheres" in A(SO(3), c)

Definition 12.1.21. We define dn to be an element of E−1OF of the form (c2n, c2n, c2n, c2n, ....)
and we call it an Euler class. Notice, that we can view an Euler class as an element of OF of
the form (dn, c2n, c2n, c2n, ....), hence the name.
We define cn to be an element of E−1OF of the form (c2n+1, c2n+1, c2n+1, c2n+1, ....) and we
call it a c-Euler class.

Definition 12.1.22. A wide sphere in A(SO(3), c) is an object P = (S −→ E−1OF ⊗ T )
where T is a graded Q[W ]-module, which is finitely generated as a Q-module on elements
t1, ..., td, where each ti is either W -fixed or W acts on ti by −1 and deg(ti) = ki. S is an OF
submodule of E−1OF⊗T generated by elements c̃ai⊗t1, ..., c̃ad⊗td where c̃ai is either an Euler
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classes if ti is W fixed or a c-Euler class if W acts on ti by −1, and an element
∑d

i=1 σi ⊗ ti
of E−1OF ⊗ T . It is also required that the structure map is the inclusion.

Proposition 12.1.23. There are enough wide spheres in A(SO(3), c)

Proof. We need to show that for any object X = (β : N −→ E−1OF ⊗U) in A(SO(3), c) and
any n ∈ N there exists a wide sphere P and a map P −→ X such that n is in the image and
for any u ∈ U there exists a wide sphere P and a map P −→ X such that u is in the image.
Since adjoint of β is an isomorphism it is enough to show the above condition for any n ∈ N .

Take X = (β : N −→ E−1OF ⊗ U) in A(SO(3), c) and n ∈ N . Then β(n) =
∑d

i=1 σi ⊗ ti.
We may assume that every ti is either W fixed or W acts on ti by −1. Then notice that since
e1β(n) is W fixed e1σi will be of the form c2k if ti was W fixed or c2k+1 if W acts on ti by −1
(k is any integer).

For each i there exist pi ∈ N s.t. β(pi) = dbi ⊗ ti (dbi is an Euler class) if ti was W fixed or
β(pi) = cbi⊗ti (cbi is a c-Euler class) ifW acts on ti by −1. Set f = db1+...+bd . We may assume
that bi’s were chosen so that σidb1+...+bd/dbi is in OF if ti was W fixed and σic−1db1+...+bd/dbi

is in OF if W acts on ti by −1.
Now we have

β(
+∑
σid

b1+...+bd/dbipi +
−∑
σic
−1db1+...+bd/dbipi) =

d∑
i=1

σif ⊗ ti = β(fn)

where
∑+ denotes the sum over all ti which are W fixed and

∑− denotes the sum over all
the others.

Since adjoint of β is an isomorphism there exists an Euler class db such that

db(
+∑
σid

b1+...+bd/dbipi +
−∑
σic
−1db1+...+bd/dbipi) = dbfn

We take db to be the smallest such Euler class.

We take a wide sphere P = (S −→ E−1
OF ⊗ T ) where T is a Q vector space generated by ti

for i = 1, ..., d, deg(ti) = ki and S is an OF submodule of E−1
OF ⊗ T generated by

∑d
i=1 σi ⊗ ti

and dbf ⊗ ti if ti is W fixed and dbc−1f ⊗ ti if W acts on ti by −1. The structure map is the
inclusion.

To finish the proof we set a map from P to X by sending
∑d

i=1 σi ⊗ ti to n and dbf ⊗ ti
to dbdb1+...+bd/dbipi if ti is W fixed and dbc−1f ⊗ ti to dbc−1db1+...+bd/dbipi if W acts on ti by
−1.

The Euler classes db and f are needed to ensure that the relation between n and pi’s after
applying β is replicated in the wide sphere.
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Proposition 12.1.24. The injective model structure on d(A(SO(3), c)) is proper.

Proof. Since cofibrations are monomorphism it is left proper. To show that it is right proper
notice that among trivial cofibrations there are maps 0 −→ Dn ⊗ P , for any P ∈ P, where
Dn ⊗ P denotes an object built from P and ΣP with the differential being the identity map
from suspension of P to P and P denotes the set of isomorphism classes of wide spheres.
Thus fibrations are in particular surjections. Right properness follows from the fact that in
d(Â(SO(3), c)) pullbacks along surjections of homology isomorphisms are homology isomor-
phisms and Γ preserves homology isomorphisms by [Bar13][Proposition 3.4.6].

Corollary 12.1.25. The category d(A(SO(3), c)) is a Grothendieck category.

Proof. Since directed colimits are exact in d(A(SO(3), c)) it remains to show that there is
a (categorical) generator. We take J :=

⊕
P∈P P where P is a set of all wide spheres. By

Proposition 12.1.23 Hom(J,−) is faithful and thus J is a categorical generator.

Next we define a set of objects which will be (homotopical) generators for the category
d(A(SO(3), c)) with the injective model structure

Definition 12.1.26. We define a set K in d(A(SO(3), c)) to consist of all suspensions and
desuspensions of the following objects:

Q1 −→ 0

{Q[W ](H) −→ 0}H∈F−{1}
where Q[W ] is on a place corresponding to (H) and an object

M −→ E−1OF ⊗Q[W ]

where e1M consists of Q[d] ⊕ Σ2Q[d], (1 − e1)M = (1 − e1)OF ⊗ Q[W ] and the map is the
inclusion.

We proceed to study the adjunction relating d(A(SO(3), c)) and d(A(O(2), c)).

The map of rings Q[d] −→ Q[c] defined by d 7→ c2 extends to the map of rings

f : OF −→ OF

(with the identity on all the factors except for the first one). This induces the following
adjunction:

F = OF ⊗OF − : d(A(SO(3), c))
//
d(A(O(2), c)) : R = (−)W × Idoo

where the left adjoint is defined as follows.
Take X = (γ : M −→ E−1OF ⊗ V ) in d(A(SO(3), c)). Then

F (X) := (γ : OF ⊗OF M −→ E
−1OF ⊗ V )
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It is easy to see that this construction gives an object in d(A(O(2), c)), since the adjoint
of γ is the same as adjoint of γ and thus it is an isomorphism.

The right adjoint is defined as follows.
Take Y = (δ : N −→ E−1OF ⊗ U) in d(A(O(2), c)). Then

R(Y ) := (δ ◦ i : (e1N)W × (1− e1)N −→ N −→ E−1OF ⊗ U)

where i is the inclusion.
Now we show that the adjoint condition for δ ◦ i holds. Thus we want to show that

δ ◦ i : E−1OF ⊗OF ((e1N)W × (1− e1)N) −→ E−1OF ⊗ U

is an isomorphism of E−1OF [W ] modules.

Notice that we have a natural map

E−1OF ⊗OF (εN ) : E−1OF ⊗OF ((e1N)W × (1− e1)N) −→ E−1OF ⊗OF (N)

where ε is the counit of the adjunction:

OF ⊗OF − : OF [W ]−mod
// OF [W ]−mod : (−)W × Idoo

After applying e1 this map is an isomorphism for finitely generated modules e1N and since
every module is a colimit of finitely generated ones and ⊗ commute with colimits it is an
isomorphism. Since it is an isomorphism away from e1 it is an isomorphism. To complete the
argument notice that the following diagram commutes:

E−1OF ⊗OF ((e1N)W × (1− e1)N)
E−1OF⊗OF (εN )

//

δ◦i

**

E−1OF ⊗OF (N)

δ

��
E−1OF ⊗ U

It is easy to see that this is an adjoint pair as it is enough to check that we have a natural
bijection of sets after applying e1. Now we have the following

Lemma 12.1.27. The above adjunction is a Quillen pair when we consider both categories
with the injective model structures.

Proof. The left adjoint is exact, so it preserves cofibrations and H∗ isomorphisms.
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Theorem 12.1.28. The composition

d(A(SO(3), c))
F //

d(A(O(2), c))
R

oo
−⊗Q̃ //

d(A(O(2), c))
−⊗Q̃

oo

is a Quillen pair when we consider both model categories with the injective model structures
(where F and R are defined above). Moreover the composite right adjoint preserves all weak
equivalences and the unit is a weak equivalence for every element of K, where K is given in
Definition 12.1.26. Thus the following is a Quillen equivalence, where we denote the composite
functors by F̃ and R̃ respectively:

K − cell− d(A(SO(3), c))
F̃ //

F̃ (K)− cell− d(A(O(2), c))
R̃

oo

Proof. The only part which needs a proof is that the derived unit is an isomorphism for every
element of K. Since the right adjoint preserves all weak equivalences it is enough to show that
the categorical unit is a weak equivalence. We apply F̃ to cells from K (ignoring suspensions
as they work in the same way in both categories):

F̃ (Q1 −→ 0) = Q̃⊕ Σ−2Q −→ 0

where c sends Q̃ to Q
F̃ (Q[W ](H) −→ 0) = Q[W ]H −→ 0

where the left Q[W ] is in the place corresponding to (H) and the resulting Q[W ] is in the
place corresponding to H. This holds for all (H) ∈ F except for H = 1.

F̃ (M −→ E−1OF ⊗Q[W ]) = Σ2Q̃ +OF ⊗Q[W ] −→ E−1OF ⊗Q[W ]

where c acts on Q̃ in degree 2 by sending it to Q ⊆ Q[W ] in degree 0 and the map is the
inclusion.

Notice that for all cells σ ∈ K we have R̃F̃ (σ) = σ and thus the unit of this adjunction is
a weak equivalence on all σ ∈ K.

It follows from the Cellularisation Principle [GS, Proposition A.6.] (see also Theorem
1.2.12) that the adjunction F̃ , R̃ between cellularised model categories is a Quillen equivalence.

It remains to show that the model structure K − cell − d(A(SO(3), c)) is equal to the
injective model structure on d(A(SO(3), c)). To do that we will show that the set of cells K
is a set of generators for the injective model structure on d(A(SO(3), c)).

Theorem 12.1.29. The set of all suspensions and desuspensions of the following cells

σ1 := (Q1 −→ 0)
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where Q is at the place indexed by the trivial subgroup, for every H ∈ F , H 6= 1

σ(H) := (Q[W ](H) −→ 0)

where Q[W ] is at the place indexed by the conjugacy class of a subgroup H, and

σT := (M −→ E−1OF ⊗Q[W ])

where e1M = Q[d] ⊕ Σ2Q[d] and (1 − e1)M = (1 − e1)OF , in d(A(SO(3), c)) is the set of
(homotopically) compact generators for the category d(A(SO(3), c)) with the injective model
structure.

Proof. First note that σT = (OF −→ E−1OF⊗Q)⊕(N −→ E−1OF⊗Q̃), where e1N = Σ2Q[d]

and (1 − e1)N = (1 − e1)OF ⊗ Q̃ and both structure maps are inclusions. We will call the
first summand S0 and the second σ−T . Therefore it is enough to show that all suspensions and
desuspensions of σ1, σH , σ

−
T , S

0 for all H ∈ F , H 6= 1 form a set of generators. We will call
this set L.

We need to show that these cells are homotopically compact objects. All cells are ho-
motopically compact since they are compact and the fibrant replacement commutes with the
direct sum.

We will show that if [σ,X]A∗ = 0, for all σ ∈ L then H∗(X) = 0 and thus X is weakly
equivalent to 0. By Lemma 12.1.15 and [Gre99, Lemma 4.2.4] we can use the following short
exact sequence (Adams short exact sequence) to calculate the maps in the derived category of
A = A(SO(3), c) from X to Y in dA:

0 // ExtA(ΣH∗(X), H∗(Y )) // [X,Y ]A∗ // HomA(H∗(X), H∗(Y )) // 0

Let us make the following observation: for every X ∈ d(A(SO(3), c)), where

X = (γ : P −→ E−1OF ⊗ V )

we have the following fibre sequence

X̂ // X // e(V )

where e(V ) is the functor described before Proposition 12.1.13 and X̂ is the fibre of the map
X −→ e(V ).

By definition, a structure map in e(V ) is an inclusion, and thus it is a torsion free object.
Let us simplify the notation: Let

EF+ =
⊕

H∈F ,H 6=1

((Σ−2Q[cH , c
−1
H ]/Q[cH ]) −→ 0)⊕ (Σ−2Q[d, d−1]/Q[d] −→ 0)

We call the H summand in the above by αH
now

X̂ := EF+ ⊗X
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Now observe that every summand αH in EF+ is built as a sequential colimit from suspen-
sions of αnH = (Q[cH ]/cH

n −→ 0) and inclusions, or if it is the last summand α1 it is built as
a sequential colimit of αn1 = (Q[d]/dn −→ 0) and inclusions, and thus

[σK , X̂]A∗ = [σK , EF+ ⊗X]A∗
∼= [σK ,

⊕
H

(αH ⊗X)]A∗
∼=

⊕
i

[σK , αH ⊗X]A∗

where the last isomorphism follows since σK is a (homotopically) compact object. For all H,
αnH is a dualisable object (by [Gre99][Corollary 2.3.7 and Lemma 2.4.3]), and thus we can
proceed:

[σK , αH⊗X]A∗
∼= [σK , colim

n
αnH⊗X]A∗

∼= colim
i

[σK , Hom(D(αnH), X)]A∗
∼= colim

i
[D(αnH)⊗σK , X]

since D(αnH)⊗σK = 0 if K 6= H and every D(αnH)⊗σH is finitely built from σH we have that
[D(αnH)⊗ σH , X] = 0 and thus [σH , X̂]A∗ = 0 for all H ∈ F .

Now take X to be an object in d(A(SO(3), c)) and assume that [σ,X]A∗ = 0 for all σ ∈ L.
By the above calculation it follows that [σH , X̂]A∗ = 0 for all H ∈ F .

From the Adams short exact sequence we get that

HomA(H∗(σH), H∗(X̂)) = HomA(σH , H∗(X̂)) = 0 = eHH∗(X̂) = 0

Since H∗(X̂) =
⊕

H∈F eHH∗(X̂) we get that X̂ is weakly equivalent to 0 and thus
[S0, X̂]A∗ = 0 and [σ−T , X̂]A∗ = 0.

Now, by the fibre sequence and the fact that every fibre sequence induces a long exact
sequence on [E,−] we get that [σ, e(V )]A∗ = 0 for every σ ∈ L. From the Adams short exact
sequence we get that

HomA(H∗(S
0), H∗(e(V ))) = HomA(S0, H∗(e(V ))) = H+

∗ (e(V )) = 0

HomA(H∗(σ
−
T ), H∗(e(V ))) = HomA(σ−T , H∗(e(V )) = H−∗ (e(V )) = 0

where H+
∗ (e(V )) is theW fixed part of H∗(e(V )) and H−∗ (e(V )) denotes −1 eigenspace. Since

H∗(e(V )) = H+
∗ (e(V ))⊕H−∗ (e(V )) we get that e(V ) is weakly equivalent to 0. Since the fibre

sequence induces a long exact sequence in homology we conclude that H∗(X) = 0 and thus X
is weakly equivalent to 0 which finishes the proof.

The following result follows from Theorem 12.1.28 and Theorem 12.1.29

Corollary 12.1.30. The following is a Quillen equivalence, where K is given in Definition
12.1.26 and d(A(SO(3), c)) is considered with the injective model structure:

d(A(SO(3), c))
F̃ //

F̃ (K)− cell− d(A(O(2), c))
R̃

oo
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12.2 Restriction to the cyclic part of O(2) rational spectra

One idea for the comparison is to restrict the cyclic part of the category of SO(3)–orthogonal
spectra to the cyclic part of the category of O(2)–orthogonal spectra. It is important to use
the functor i∗ as a left adjoint, because the adjunction (SO(3)+ ∧O(2) −, i∗) is not a Quillen
pair for the model categories localised at the cyclic part (by a similar argument as the one in
Proposition 9.2.3).

Then we can proceed with the slight modification of the proof of the algebraic model for
cyclic part of O(2)–spectra done in [Bar13] cellularizing the zig-zag of Quillen equivalences
along the way. We modify the proof from [Bar13] to avoid working with commutative ring
spectra. To do that we make more use of left Bousfield localisations.

Another method for comparison would be to apply the strategy of [Bar13] from the begin-
ning and work with diagrams of SO(3)–spectra. General ideas would be the same, but subtle
modifications would again be needed for the methods from [Bar13].

We choose to work using the first method. We start by establishing generators for the
cyclic part of SO(3) rational spectra.

Proposition 12.2.1. A set K consisting of one SO(3)–spectrum SO(3)/Cn+ for every natural
n > 0 and an SO(3)–spectrum SO(3)/SO(2)+ is a set of cofibrant (homotopically) compact
generators for the category LecSQ(SO(3)− IS).

Proof. All objects in K are homotopically compact in LecSQ(SO(3)− IS) by the same calcu-
lation as 10.2.2. This is a set of generators for LecSQ(SO(3)− IS) by Proposition 1.1.18 and
[MM02, Chapter IV, Proposition 6.7].

Now we restrict to the cyclic part of O(2) rational spectra.

Proposition 12.2.2. Let i : O(2) −→ SO(3) be an inclusion. Then the following

i∗ : LecSQ(SO(3)− IS)
//
LecSQ(O(2)− IS) : FO(2)(SO(3)+,−)oo

is a strong monoidal Quillen adjunction, where the idempotent on the right hand side corre-
sponds to the family of all cyclic subgroups of O(2).

Proof. This follows from Proposition 9.2.6 and the following composition of Quillen adjunc-
tions:

LecSQ(SO(3)− IS)
i∗ //

Li∗(ecSQ)(O(2)− IS)
FO(2)(SO(3)+,−)
oo

Id //
LecSQ(O(2)− IS)

Id
oo

Note that i∗(ecSQ) has non-trivial geometric fixed points not only for all cyclic subgroups of
O(2) but also for D2, as D2 is conjugate to C2 in SO(3). To get rid of that and take into
account only cyclic part we use the further localisation.
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Theorem 12.2.3. Suppose K is the set of generators for LecSQ(SO(3)−IS) as established in
Proposition 12.2.1 together with all their suspensions and desuspensions. Then the following

i∗ : LecSQ(SO(3)− IS)
//
i∗(K)− cell− LecSQ(O(2)− IS) : FO(2)(SO(3)+,−)oo

is a strong monoidal Quillen equivalence, where the idempotent on the right hand side corre-
sponds to the family of all cyclic subgroups of O(2).

Proof. The fact this is a Quillen adjunction follows from Proposition 12.2.2 and a cellular-
ization principle from [GS, Appendix A] for K and i∗(K). Notice that since K was a set
of generators for the category LecSQ(SO(3) − IS) cellularization with respect to K will not
change this model structure.

Firstly, all of the generators from K are (homotopically) compact and cofibrant by Propo-
sition 12.2.1. Now we need to check that their images with respect to i∗ are homotopically
compact, i.e. suspension spectra of SO(3)/Cn+ for all n and SO(3)/SO(2)+ as cyclic O(2)
spectra. By Lemma 11.2.1 it is enough to show they are homotopically compact as O(2)
spectra and this follows from the fact that a smooth, compact G-manifold admits a structure
of a finite G-CW complex ([Ill00]) and a suspension spectrum of a finite G-CW complex is
homotopically compact.

It remains to show that the derived unit maps on generators are weak equivalences. As in
the proof for exceptional subgroup (Theorem 10.3.4) it is enough to check the induced map
on the level of homotopy categories. This is equivalent to showing that the derived Li∗ is an
isomorphism on hom sets. This holds by [Gre01, Theorem 6.1] which states that if X ∼= ecX
then Li∗ is an isomorphism:

[X,Y ]SO(3) −→ ec[i
∗X, i∗Y ]O(2)

which implies that

Li∗ : [X,Y ]LecSO(3) ∼= [ecX, ecY ]SO(3) −→ ec[i
∗(ecX), i∗(ecY )]O(2) ∼= [i∗X, i∗Y ]LecO(2)

is an isomorphism. From this it follows that the adjunction is a Quillen equivalence.

To show that this is a strong monoidal Quillen equivalence we refer to the monoidal version
of cellularization principle from [Bar13, Section 5]. Firstly, we notice that K is a monoidal
set of cofibrant objects and the unit is cofibrant in LecSQ(SO(3)− IS). Since the left adjoint
is strong monoidal, and this is a Quillen adjunction by non-monoidal cellularisation principle,
the unit in i∗(K) − cell − LecSQ(O(2) − IS) is also cofibrant. Thus, by [Bar13, Proposition
5.2.7] this is a symmetric monoidal Quillen equivalence.

It is enough now to give the monoidal algebraic model for the cyclic part of O(2) rational
spectra, since the above monoidal Quillen equivalence provides a link to the cyclic part of
SO(3) rational spectra. Below we present the slight modification of the construction from
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[Bar13, Section 4]. To provide the algebraic model for SO(3) rational spectra we need to
cellularise every step of this passage with respect to derived images of i∗(K) from Theorem
12.2.3. Notice, that by [Bar13, Proposition 5.2.7] the set i∗(K) is a stable monoidal set of
cofibrant objects, thus the resulted cellularisation will be monoidal.

12.3 Comparison for cyclic part of O(2) rational spectra

12.3.1 Generalized diagrams

Let us recall that a family of subgroups of a Lie group G is a collection of subgroups closed
under conjugation and taking subgroups. For every family F there is a universal G-space
(G-CW complex) EF (see for example [LMSM86, Definition 2.10]) such that:

EFH '

{
∗, if H ∈ F .
∅, otherwise.

where (−)H denotes H fixed points and ' means nonequivariantly equivalent.

Now let us take F to be the family consisting of the torus and its subgroups in O(2). We
take an O(2)-space EF+ together with a map to S0 which sends basepoint to the basepoint
and everything else to the other point EF+ −→ S0. We can take a cofibre of this map and
we call it ẼF ( see for example [LMSM86, Definition 2.10] ). Notice that

ẼFH '

{
S0, if H /∈ F .
∗, otherwise.

We define a commutative ring spectrum DEF+ := F (EF+, S), where F (EF+, S) denotes
the functional spectrum, i.e. right adjoint to smashing with an O(2) space EF+ applied to S.
There is a unit map λ : S −→ DEF+.

Definition 12.3.1. We defineM to be the following diagram of model categories and adjoint
Quillen pairs with left adjoints on the top:

LecSQ(DEF+ −mod)
Id //

LecSQ∧ẼF (DEF+ −mod)
Id

oo
λ∗

// LecSQ∧ẼF (O(2)− IS)
DEF+∧(−)oo

Localisation of DEF+−mod at ecSQ is understood to be the localisation at ecSQ∧DEF+.
We decided to keep the shorter notation.

Now we consider the categoryM–mod of generalised diagrams (see Section 1.4). The idea
in that step is to separate the behaviour of finite cyclic subgroups from the behaviour of the
torus. It is not possible to completely seperate these two parts, as we don’t have idempotents
of the rational Burnside ring to do this. However, the leftmost localised category of DEF+-
mod captures the behaviour of finite cyclic subgroups. The rightmost category captures the
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behaviour of the torus. The middle category and the maps in the diagram show how the two
previous categories interact.

Note that all three model categories are proper by [BR14, Proposition 3.7], stable and
cofibrantly generated. Therefore by Theorem 1.4.1 there is an injective model structure on
the categoryM-mod which is cofibrantly generated, proper stable monoidal and satisfies the
monoid axiom, see Lemma 1.4.3.

Notice further that all three categories are cellular, which means that the category of
M-modules is cellular.

Before we proceed, we need to describe the set of cofibrant generators for LecSQ(O(2)−IS)

Lemma 12.3.2. The set J consisting of one O(2)–spectrum O(2)/Cn+ for every natural
n, n > 0 and a O(2)–spectrum O(2)/SO(2)+ is a set of cofibrant (homotopically) compact
generators for the category LecSQ(O(2)− IS).

Proof. The same as proof of Proposition 12.2.1.

Now we construct an adjoint pair between M-mod and LecSQ(O(2) − IS). Suppose we
have an object X of LecSQ(O(2) − IS). Then we construct an object of M-mod, denoted
M∧X as follows:

M∧X := (DEF+ ∧X, Id, DEF+ ∧X, Id, X)

This functor has a right adjoint, called pb, which sends a generalized diagramM = (m,α, n, β, l)
to the pullback of the following diagram (in LecSQ(O(2)− IS)):

l

λ∧l

��
DEF+ ∧ l

β

��
m α

// n

We get the following comparison between a categoryM-mod and LecSQ(O(2)−IS) , where
we considerM-mod with the injective model structure as discussed above.

Proposition 12.3.3. There is a strong symmetric monoidal Quillen adjoint pair

M∧ (−) : LecSQ(O(2)− IS)
// M−mod : pboo

Proof. It is clear that the left adjoint preserves cofibrations and acyclic cofibrations.
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Generators for the category LecSQ(O(2)− IS) are of the form presented in Lemma 12.3.2
and these are all (homotopically) compact objects.

Their images under the left adjoint M ∧ (−) are homotopically compact by the same
argument as in the proof of [Bar13, Proposition 4.2.4]. We use the notation Jtop for the image
of the set of the generators J for LecSQ(O(2)− IS) under the functorM∧ (−).

Proposition 12.3.4. The following adjunction

M∧ (−) : LecSQ(O(2)− IS)
// Jtop − cell−M−mod : pboo

is a strong symmetric monoidal Quillen equivalence.

Proof. This follows from the cellularisation principle [GS, Appendix A]. We need to show that
the derived unit is a weak equivalence on the set J of generators for the left hand side.

Since all cells from J are cofibrant, the derived left adjoint is just a left adjoint M∧−.
Now the right derived functor on objects M∧ j for j ∈ J is weakly equivalent to taking a
homotopy pullback of the following diagram:

ecSQ ∧ ẼF ∧ j

Id∧Id∧λ∧Id

��
ecSQ ∧ ẼF ∧DEF+ ∧ j

Id

��
ecSQ ∧DEF+ ∧ j

Id∧!∧Id∧Id
// ecSQ ∧ ẼF ∧DEF+ ∧ j

where the map ! is the map S0 −→ ẼF . Since homotopy pullbacks commute with smash
products, the pullback of the above is weakly equivalent to the homotopy pullback of

ẼF

��
DEF+

// DEF+ ∧ ẼF

(in the category O(2) − IS) smashed with ecSQ ∧ j. Since the homotopy pullback of the
last diagram is just a sphere spectrum (see [GS, Section 4D]), the derived unit is a weak
equivalence (in LecSQ(O(2)− IS)) on the cells j ∈ J .

We use conditions from [Bar13, Section 5] to deduce the adjunction is strong monoidal.
Notice that left hand side is cellularised with respect to the set of generators K, which does
not make any change to the model category, and since it is a monoidal category the set J is
a monoidal set of cells.
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12.3.2 Inflation and T -fixed point adjunction

First let us recall the T -fixed point functor from O(2) orthogonal spectra to W orthogonal
spectra. Let T be a torus in O(2) and let ε : O(2) −→ O(2)/T be the projection onto
the quotient. This induces the left adjoint to the T–fixed points functor below (see [MM02,
Chapter V, Proposition 3.10]):

W − IS
ε∗ //

O(2)− IS
(−)T

oo

where ε∗ denotes the inflation functor.
This adjunction passes to the Quillen adjunction on the localised model categories and we

have the following diagram

Le1SQ(W − IS)
ε∗ //

LecSQ(O(2)− IS)
(−)T

oo

As ε was a strong monoidal functor before localisation the above adjunction is compatible
with the smash product after localisation. Right adjoint is weak monoidal.

By [SS03a, Theorem 3.12] for any fibrant monoid A in O(2) − IS we have the induced
adjoint Quillen pair between AT modules and A modules, where the left adjoint is denoted
ε∗A see Section 1.3 for construction.

We consider several cases, when this adjunction for a certain ring, after further localisation
becomes a Quillen equivalence.

We start with the following

Proposition 12.3.5. The adjunction

ε∗DEF+ : DEFT+ −mod
//
DEF+ −mod : (−)Too

is a symmetric monoidal Quillen adjunction.

Now we localise the above adjunction at the e1SQ on the left and ecSQ on the right hand
side to obtain a Quillen equivalence

Proposition 12.3.6. The adjunction

ε∗DEF+ : Le1SQ(DEFT+ −mod)
//
LecSQ(DEF+ −mod) : (−)Too

is a symmetric monoidal Quillen equivalence.
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Proof. Firstly, a homotopically compact generator for the left hand side is DEFT+ ∧W+ (since
the generators can be transfered through the left adjoint by Lemma 11.2.1) and it is cofibrant
in DEFT+ -modules.

Secondly, a homotopically compact generator fot the right hand side is DEF+ ∧O(2)/T+.
This follows from the fact that DEF+ ∧ O(2)/Cn+ , for all n can be built up from DEF+ ∧
O(2)/T+ by cofibre sequences and suspensions by representations. This in turn is a conse-
quence of [GS, Lemma 13.6].

Since the right adjoint preserves all weak equivalences, instead of derived unit it is enough
to show that the categorical unit is a weak equivalence. Notice also that, since O(2)/T+ is
T -fixed we have (DEF+ ∧O(2)/T+)T ∼= DEFT+ ∧W+.

Since ε∗ was strong monoidal, the left adjoint on a generator is of the form

DEF+ ∧ε∗(DEF+)T ε
∗(DEFT+ ∧W+) ∼= DEF+ ∧ε∗(DEFT+ ) ε

∗(DEFT+) ∧O(2)/T+

∼= DEF+ ∧O(2)/T+ (12.3.7)

It follows that the categorical unit on the generator is a weak equivalence.

By the arguments given above the categorical counit on the generator is also a weak
equivalence. This shows that the derived adjunction is an equivalence of categories and thus
the adjunction on the level of model categories is a Quillen equivalence.

We localise the adjunction further at a map DEF+ −→ DEF+ ∧ ẼF on the right hand
side (we call it f) and the corresponding derived right adjoint applied to it (we call it (f)T )

Proposition 12.3.8. The adjunction

ε∗DEF+ : L{(f)T }Le1SQ(DEFT+ −mod)
//
L{f}LecSQ(DEF+ −mod) : (−)Too

is a symmetric monoidal Quillen equivalence.

Proof. Since it was a symmetric monoidal Quillen equivalence before this last localisation, it
is still so after by [Hir03, Theorem 3.3.20, part 1b].

Proposition 12.3.9. The adjunction

ε∗ : W − IS //
O(2)− IS : (−)Too

is a symmetric monoidal Quillen adjunction.

Proof. This is [MM02, Section V, Proposition 3.10].

We localised the above to obtain a Quillen equivalence
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Proposition 12.3.10. The adjunction

ε∗ : Le1SQ(W − IS)
//
LecSQ∧ẼF (O(2)− IS) : (−)Too

is a symmetric monoidal Quillen equivalence.

Proof. Since ε∗ is strong monoidal and ε∗(e1SQ) = ecSQ the above adjuncton is a composite of
two adjunctions, the second being identity adjunction between LecSQ(O(2)− IS) and further
localisation at ẼF , namely LecSQ∧ẼF (O(2)− IS).

To verify that this is a Quillen equivalence we will work with the derived unit and the
derived counit on generators. The generator for the left hand side is W+ and the generator
for the right hand side is O(2)/T+ (as all the other generators for LecSQ(O(2)−IS) are of the
form O(2)/H+ for H ≤ F and they are weakly equivalent to a point in LecSQ∧ẼF (O(2)−IS)).

It is worth noticing that the right derived functor acts as a geometric fixed point functor,
because φN (X) = (X ∧ Ẽ[ 6⊇ N ])N . Now, W+ is sent to O(2)/T+ and then back to W+.
O(2)/T+ is sent to W+ and back to itself. By derived triangle identities postcomposition with
the derived counit on O(2)/T+ is surjective:

εε∗W+ ◦ − : [O(2)/T+, ε
∗(ε∗W+)T ] −→ [O(2)/T+, ε

∗W+]

and since both sides are finitely generated (Q[W ]) it is an isomorphism. Since O(2)/T+ is the
generator it follows that the εε∗W+ is a weak equivalence. From the other triangle identity on
the homotopy level it follows that also the derived unit on W+ is an isomorphism. It follows
that this adjunction is a Quillen equivalence.

We can extend the functor (−)T to the level of generalized diagrams.

Definition 12.3.11. We define Mtop to be the following diagram of model categories and
adjoint Quillen pairs:

Le1SQ(DEFT+ −mod)
Id //

L{(f)T }Le1SQ(DEFT+ −mod)
Id

oo
U

// Le1SQ(W − IS)
DEFT+∧−oo

where U denotes the forgetful functor.

Now we consider the categoryMtop-mod of generalized diagrams and we have the following
comparison

Proposition 12.3.12. The adjunction

ε∗• :Mtop −mod
// M−mod : (−)Too

is a symmetric monoidal Quillen equivalence, where both categories are considered with the
injective model structure.
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Instead of the categoryM−mod we want to consider Jtop − cell−M−mod, so we have
to cellularise the above equivalence. We use the notation J Ttop for the image of the set of
generators Jtop under the derived functor of (−)T . Recall that Jtop is the image of the set J
from Lemma 12.3.2 under the functorM∧−.

By the cellularisation principle (see [GS, Appendix A] and monoidal version see [Bar13,
Proposition 5.2.8] ) we have the following

Proposition 12.3.13. The adjunction

ε∗• : J Ttop − cell−Mtop −mod
// Jtop − cell−M−mod : (−)Too

is a symmetric monoidal Quillen equivalence.

12.3.3 Passage to algebra

Now we apply four Quillen equivalences extended to the level of generalised diagrams. Firstly
we restrict theW universe of all three categories in the diagramMtop from complete to trivial,
and since all three categories were localised at e1 it will be a Quillen equivalence. Secondly,
we change the category to W objects in non-equivariant orthogonal spectra and extend this
to the generalised diagrams. Then we use the adjunction with the forgetful functor to pass to
symmetric spectra with the W action and finally we apply − ∧ HQ to end in HQ modules.
This is the category necessary for the next step, namely the passage to algebra.

Since all the above steps are Quillen equivalences, they will remain so after cellularising
with respect to derived images of the set of cells Jtop along the way (see [GS13a, Corollary
2.7]).

Now we proceed as in the monoidal passage for exceptional subgroups (see Lemma 10.3.7)
and change the model structure on all three categories into a free model structure. We keep
the notation the same,Mtop.

This step is needed for the following

Proposition 12.3.14. The adjunction

res• :Mtop −modc // Mtop −modt : inf•oo

is a strong symmetric monoidal Quillen equivalence where the left adjoint inf denotes a functor
on the generalised diagrams which is inflation on the category Le1SQ(W −IS) and it’s induced
from that at the level of modules over DEFT+ .

Proof. Since the right adjoint of a right vertical Quillen equivalence (see Lemma 10.3.8) is
strong monoidal, we have the Quillen equivalence at the level of modules over DEFT+ and
res(DEFT+) (which we still denote by DEFT+ below).
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free(DEFT+ −mod)c
Id //

res

��

L{(f)T }free(DEFT+ −mod)c
Id

oo
U

//

res

��

free(W − IS)c
DEFT+∧−oo

res

��
free(DEFT+ −mod)t

Id //

inf

OO

L{(f)T }free(DEFT+ −mod)t
Id

oo
U

//

inf

OO

free(W − IS)t
DEFT+∧−oo

inf

OO

The category in the middle is localised at the derived image of {f}T and the adjunction
remains a Quillen equivalence. Thus the adjunction on the level of generalised diagrams is a
Quillen equivalence.

Now we remove the equivariance outside the spectrum level by an equivalence of categories
(which is also a Quillen equivalence) below

Proposition 12.3.15. There is an equivalence of categories (which is also a Quillen equiva-
lence) between Mtop −modt and W objects in generalised diagrams in a category of rational
orthogonal spectra (which we denote byM[W ]-mod ).

Proof. Follows from Lemma 10.3.9.

Since this is an equivalence of categories we keep the notation in the diagrams the same.

Now we pass to rational symmetric spectra with W action. First recall that U is the
forgetful functor from orthogonal spectra to symmetric spectra and P is its left adjoint. We
abuse the notation below and skip the geometric realisation and a singular simplicial set
functors.

Proposition 12.3.16. The adjunction

U• :M[W ]−mod // UM[W ]−mod : P•oo

is a strong symmetric monoidal Quillen equivalence.

Proof. The diagram categoryM[W ]−mod is as in Proposition 12.3.15, which we write as

DEFT+ −mod
Id //

L{(f)T }(DEFT+ −mod)
Id

oo
U

// ISQ[W ]
DEFT+∧−oo

and the diagram category UM[W ]−mod is

UDEFT+ −mod
Id //

L{U(f)T }(UDEFT+ −mod)
Id

oo
U

// SpΣ
Q[W ]

UDEFT+∧−oo
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As in Proposition 12.3.14 we have a Quillen equivalence at the level of categories (vertical
adjunction on the right hand side of the diagram below) and since left adjoint is strong
monoidal, it is also a Quillen equivalence at the level of modules. Thus the middle one is a
Quillen equivalence.

DEFT+ −mod
Id //

U

��

L{(f)T }(DEFT+ −mod)
Id

oo
U

//

U

��

ISQ[W ]
DEFT+∧−oo

U

��
UDEFT+ −mod

Id //

P

OO

L{U(f)T }(UDEFT+ −mod)
Id

oo
U

//

P

OO

SpΣ
Q[W ]

UDEFT+∧−oo

P

OO

Thus we get a strong monoidal Quillen equivalence of the generalised diagrams.

The last step in this section is to pass from symmetric spectra to HQ modules.

Proposition 12.3.17. The adjunction

HQ ∧ −• : UM[W ]−mod
//
HQ ∧ UM[W ]−mod : U•oo

is a strong symmetric monoidal Quillen equivalence, where U denotes the forgetful functor,
right adjoint to HQ ∧ −.

Proof. Since the left adjoint HQ ∧ − is strong monoidal, we get commuting diagrams (one
with the left adjoints and the other with the right adjoints) as follows

UDEFT+ −mod
Id //

HQ∧−

��

L{U(f)T }(UDEFT+ −mod)
Id

oo
U

//

HQ∧−

��

SpΣ
Q[W ]

UDEFT+∧−oo

HQ∧−

��
HQ ∧ UDEFT+ −mod

Id //

U

OO

L{HQ∧U(f)T }(HQ ∧ UDEFT+ −mod)
Id

oo
U
//

U

OO

(HQ−mod)[W ]
UDEFT+∧−oo

U

OO

The right vertical adjunction is a Quillen equivalence by Lemma 10.3.11, so by [SS03a,
Theorem 3.12, part 1] the left adjunction is a Quillen equivalence. Thus the middle one is
also a Quillen equivalence and the adjunction at the level of generalised diagrams is a Quillen
equivalence.

Now we are ready to use the results from [Shi07] to move from topology to algebra on
generalised diagrams. The passage involves several Quillen equivalences, so we state it as
follows
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Proposition 12.3.18. There is a zig-zag of Quillen equivalences between the category
HQ ∧ UM[W ]−mod and the category θ(HQ ∧ UM[W ])−mod, where θ denotes the derived
functor described in [Shi07, Section 2.2].

Proof. It follows from [Shi07, Corollary 2.15 part 2] that the zig-zag on the right hand side of
the diagram (vertical adjunction) is a zig-zag of Quillen equivalences. The same is true for the
left hand side of the diagram (vertical adjunction) and thus we still get Quillen equivalences
after localising the middle category of each step at the derived image of the set of maps
{HQ ∧ U(f)T }.

All Quillen equivalences presented above are still Quillen equivalences after cellularising at
the derived images of the cells from the set J Ttop. We denote the derived images of cells from
the set J Ttop in θ(HQ ∧ UM[W ])−mod by J Tt .

12.3.4 Intrinsic formality

First notice that θ(HQ ∧ UM[W ])−mod is already an algebraic category, however not a
very explicit one. The only thing we know is the homology of the rings that we consider the
modules to be over. This turns out to be enough, since each of this rings is weakly equivalent
to its homology and that result allows us to replace every ring by its homology in a Quillen
equivalent way.

Following the approach in [Bar13] we create a zig-zag of two Quillen equivalences linking
our category of generalised diagrams obtained from Proposition 12.3.18 to a more approachable
category of generalised diagrams.

For simplicity of the notation we set R1 := θ(HQ ∧ UDEFT+) and R2 := θS. We know
from [Bar13, Lemma 4.5.1] that H∗(R1) = OF and H∗(R2) = Q as rings in Q[W ] modules.
We recall from [Bar13, Section 4.5] an intermediate ring for R1, call it P1 together with the
maps making the following diagrams commute :

R1

h

��

R2α
oo

Id

��
P1 R2

β
oo

OF

g

OO

Q
unit map
oo

unit map

OO

where α is an image of the unit map under all the functors presented in comparison so far and
β is the composition of α and h (we describe P1 and h below).

P1 is defined as follows: since H∗(R1) = OF , for every H ∈ F there is a cycle xH inside
R1 representing eH in homology. Since we want to choose a cycle representation for eH which
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is W invariant we set yH = 1/2(xH + wxH). Now, H∗(R1[(yH)−1]) = eHH∗(R1) so we define
P1 :=

∏
H∈F R1[(yH)−1].

Map h in the diagram above is defined to be the canonical map into the product R1 −→ P1.
It remains to define g from the above diagram. For every H ∈ F we choose a cycle represen-
tative aH in R1[(yH)−1] for the homology class cH . Since we want W to act as −1 on the rep-
resentative for this class, we set bH := 1/2(aH −waH). We have a map Q[cH ] −→ R1[(yH)−1]
which sends cH to bH . We define g to be the product over H of the above maps.

Notice that with these definitions, all vertical arrows in the above diagram are homology
isomorphisms.

For further convinience we denote by Mâ-mod the category of the generalised diagrams,
whereMâ is:

OF −mod
Id //

Lf̃ (OF −mod)
Id

oo
U

// Q[W ]−mod
OF⊗−oo

Notice that {f̃} denotes the derived image of the maps {θ(HQ ∧ U(f)T )} via the functors
of extension and restriction of scalars along h and g respectively. Notice further that this
is equivalent to the set of maps {OF −→ E−1OF}, by which we mean all suspensions and
desuspensions of the inclusion map OF −→ E−1OF (see [Bar13, Lemma 4.5.1]).

From the construction above we can deduce the following

Proposition 12.3.19. The above maps of rings induce two adjoint pairs of extension and
restriction of scalars between θ(HQ ∧ UM[W ])−mod and Mâ − mod which are symmetric
monoidal Quillen equivalences.
If Jâ denotes the derived image of cells J Tt under the extension along f and restriction along
g on the level of generalised diagrams, then the above pair of adjoin functors induce Quillen
equivalences between J Tt − cell− θ(HQ ∧ UM[W ])−mod and Jâ − cell−Mâ −mod.

Now we notice that our middle category involves localisation, thus we present the following
two results

Lemma 12.3.20. Two model structures LE−1OF (OF −mod) and L{OF−→E−1OF}(OF −mod)
are the same. Notice that the last category is understood as localised at the specified map and
all its suspensions.

Proof. Both localisations keep cofibrations the same, so it is enough to show that the classes
of weak equivalences in these model structures are equal. This is shown in [BR14, Lemma
3.14].

Lemma 12.3.21. The adjunction induced by the inclusion of rings j : OF −→ E−1OF is a
Quillen adjunction

E−1OF ⊗OF − : OF −mod
// E−1OF −mod : j∗oo
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where both categories are with projective model structures. Moreover it induces a Quillen
equivalence

E−1OF ⊗OF − : LE−1OF (OF −mod)
// E−1OF −mod : j∗oo

Proof. The adjunction is a Quillen pair after the left hand side is localised at E−1OF , since
the cofibrations didn’t change and new weak equivalences are exactly the maps f , such that
H∗(E−1OF ⊗OF f) is an isomorphism. Thus the left adjoint preserves and reflects all "new"
weak equivalences.

By Part 2 of Proposition 1.1.12 to prove this is a Quillen equivalence it is enough to show
that the (categorical) counit map on a fibrant generator for E−1OF−mod is aH∗ isomorphism.
Since E−1OF is a fibrant generator for E−1OF−mod, the categorical counit is an isomorphism:

E−1OF ⊗OF E
−1OF −→ E−1OF

Now we use one more Quillen equivalence to replace the middle category in the generalised
diagram (which is a localisation) by one which is just modules over a different ring.

Quillen equivalence presented in Lemma 12.3.20 and Lemma 12.3.21 fit into the Quillen
equivalence between generalised diagrams (where two other vertical adjunctions are identities
and U below denotes forgetful functor):

OF −mod
Id //

Id

��

LE−1OF (OF −mod)
Id

oo
U

//

E−1OF⊗OF−

��

Q[W ]−mod
OF⊗−oo

Id

��
OF −mod

E−1OF⊗OF−//

Id

OO

E−1OF −mod
j∗

oo
U

//

j∗

OO

Q[W ]−mod
E−1OF⊗−oo

Id

OO

We denote the bottom row byMa and we summarise the above in the following

Proposition 12.3.22. The adjunction (described above)

E−1OF ⊗OF − : Mâ −mod
// Ma −mod : j∗oo

is a symmetric monoidal Quillen equivalence, and thus the adjunction

E−1OF ⊗OF − : Jâ − cell−Mâ −mod
// Ja − cell−Ma −mod : j∗oo

is a symmetric monoidal Quillen equivalence, where Ja is the derived image of Jâ under the
left adjoint.
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12.3.5 Algebraic model for cyclic O(2) rational spectra

Now we are ready to link the category Ja − cell−Ma −mod with the category described in
Section 12.1.1. Firstly we define an adjoint pair of functors between the category of generalised
diagrams and dA(O(2), c) after [Bar13, Section 4.6] as follows.

We define the left adjoint l∗ to send an object β : M −→ E−1OF ⊗ V of dA(O(2), c) to
the quintuple (M, Id, E−1M, (E−1OF ⊗OF β)−1, V ), an object in the categoryMa −mod.

Now we define the right adjoint to be Γ = Γh ◦ Γv, where Γh is the right adjoint to the
inclusion dA(O(2), c) −→ dÂ(O(2), c) (see [Bar13, Section 3]). Γv on an object (a, α, b, γ, c)
is defined using the pullback of the following diagram (in the category of OF -modules in
Q[W ]-modules)

a // E−1OF ⊗OF a // b E−1OF ⊗ coo

namely we get δ : P −→ E−1OF ⊗ c, which is an object in dÂ(O(2), c).

Proposition 12.3.23. The adjunction

Γ : Ja − cell−Ma −mod // dA(O(2), c) : l∗oo

is a symmetric monoidal Quillen equivalence, where the category of generalised diagrams is
considered with projective - injective model structure and the other category is considered with
the dualizable model structure.

Proof. This is [Bar13, Proposition 4.6.2].

As a consequence of all the results presented in this section we get the following

Theorem 12.3.24. There is a zig-zag of Quillen equivalences from LecSQ(O(2) − IS) to
dA(O(2), c), where dA(O(2), c) is considered with the dualisable model structure.

On the next page we present a diagram which summarises the passage from LecSQ(O(2)−
IS) to dA(O(2), c)
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LecSQ(O(2)− IS)

M∧−

��
Jtop − cell−M−mod

pb

OO

(−)T

��
J Ttop − cell−Mtop −mod

ε∗•

OO

res•

��
J Ttop − cell−Mtop −modt

inf

OO

equivalence

��
J Ttop − cell−M[W ]−mod

of monoidal model categories

OO

P

��
P(J Ttop)− cell− UM[W ]−mod

U•

OO

HQ∧−

��
HQ ∧ P(J Ttop)− cell−HQ ∧ UM[W ]−mod

U

OO

zig−zag of

��
J Tt − cell− θ(HQ ∧ UM[W ])−mod

Quillen equivalences

OO

zig−zag of

��
Jâ − cell−Mâ −mod

Quillen equivalences

OO
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and we continue:
Jâ − cell−Mâ −mod

E−1OF⊗OF−

��
Ja − cell−Ma −mod

j∗

OO

Γ

��
dA(O(2), c)

l∗

OO

The above passage is monoidal.

12.4 Algebraic model for cyclic SO(3) rational spectra

To obtain an algebraic model for cyclic part of rational SO(3) spectra we cellularise the above
zig-zag of Quillen equivalences at the derived images of the cells described in Proposition
12.2.1, called K. This preserves Quillen equivalences and results in the following:

Theorem 12.4.1. There is a zig-zag of Quillen equivalences from LecSQ(SO(3) − IS) and
im(K)−cell−dA(O(2), c), where dA(O(2), c) is considered with the dualisable model structure.
Here im(K) denotes the derived image under the zig-zag of Quillen equivalences described in
Section 12.3 of the set of cells K described in Proposition 12.2.1.

The above result gives an algebraic model for the cyclic part of rational SO(3) equivariant
spectra. However, it is not easy to work with. We show that the above model is Quillen
equivalent to the simpler, algebraic category described in Section 12.1.2. Unfortunately, the
following two adjunctions are not monoidal.

Lemma 12.4.2. The identity adjunction between im(K)−cell−dA(O(2), c) where dA(O(2), c)
was considered with the dualisable model structure and im(K) − cell − dA(O(2), c) where
dA(O(2), c) was considered with the injective model structure is a Quillen equivalence.

Theorem 12.4.3. The adjunction

F̃ : dA(SO(3), c)
//

im(K)− cell− dA(O(2), c) : R̃oo

defined in the statement of the Theorem 12.1.28 is a Quillen equivalence, where both categories
(before cellularisation on the right) are considered with the injective model structure. Here
im(K) denotes the derived image under the zig-zag of Quillen equivalences described in Section
12.3 of the set of cells K described in Proposition 12.2.1.

Firstly we will simplify the set im(K).
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Take L to be the set of all suspensions and desuspensions of the following cells in the
category LecSQ(SO(3)− IS): SO(3)/SO(2)+, SO(3)+ and for every natural n > 1

σn = SO(3)+ ∧Cn eCnS0

We call L the set of basic cells.
Notice that cellularisation of dA(O(2), c) with respect to im(K) gives the same model

structure as cellularisation of dA(O(2), c) with respect to im(L). Since

SO(3)/Cn+ =
∨

Cm⊆Cn

σm

which is a consequence of [Gre99, Lemma 2.1.5], the set L is a set of generators for K-cell-
LecSQ(SO(3)− IS) and thus K-cell-LecSQ(SO(3)− IS) = L-cell-LecSQ(SO(3)− IS).

Proof. of Theorem 12.4.3.
Now it is enough to show that im(L) consists of the same objects as F̃ (K), where K is the
set described in Definition 12.1.26. We show that in Lemma 12.4.4 below. The result follows
then from Corollary 12.1.30.

Lemma 12.4.4. The set im(L) consists of the same objects as F̃ (K), where K is the set de-
scribed in Definition 12.1.26 and im(L) denotes the derived image under the zig-zag of Quillen
equivalences described in Section 12.3 of the set of cells L described after Theorem 12.4.3.

Proof. Firstly, notice that for every n > 1 σn is weakly equivalent in LecSQ(O(2) − IS) to
O(2) ∧Cn eCnS0. The map is induced by the inclusion of O(2) into SO(3) and we will show
that it induces an isomorphism on all πH∗ for H ∈ C. We will use the notation N = O(2) and
G = SO(3) below.

πH∗ (N ∧Cn eCnS0) = [N/H+, FCn(N+, S
LN (Cn) ∧ eCnS0)]N = [N/H+, S

LN (Cn) ∧ eCnS0]Cn

since the codomain has only geometric fixed points for H = Cn we get a non zero result only
for H = Cn:

[ΦCn(N/Cn+),ΦCn(SLN (Cn))]1 = [S1 ∨ S1, S1] = Σ(Q[W ])

where LN (Cn) is the tangent Cn representation at the identity coset of N/Cn and thus it is 1
dimensional trivial representation. and similarly:

πH∗ (G ∧Cn eCnS0) = [G/H+, FCn(G+, S
LG(Cn) ∧ eCnS0)]G = [G/H+, S

LG(Cn) ∧ eCnS0]Cn

since the codomain has only geometric fixed points for H = Cn we get non zero result only
for H = Cn:

[ΦCn(G/Cn+),ΦCn(SLG(Cn))]1 = [S1 ∨ S1, S1] = Σ(Q[W ])

since LG(Cn) is 3 dimensional, but it has one dimensional Cn fixed subspace.
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The images of the cells in A(O(2), c) are therefore

im(G ∧Cn eCnS0) = im(N ∧Cn eCnS0) = (ΣQ[W ]Cn −→ 0)

by [Gre99, Example 5.8.1] where ΣQ[W ] is in the place Cn.

Now we will use the functors πA∗ described in [Gre99]. Since SO(3)+ is free we get

πA∗ (SO(3)+) = (πT∗ (SO(3)+) −→ 0) = (π∗(ΣSO(3)/T+) −→ 0) =

(π∗(ΣS(R3)+) −→ 0) = (Σ3Q̃⊕ ΣQ −→ 0) (12.4.5)

where Σ3Q̃ ⊕ ΣQ is in the place corresponding to the trivial subgroup 1 and c sends Q̃ in
degree 3 to Q in degree 1.

And finally SO(3)/T+ = S(R3)+ as an O(2) space is built from the following cells:

N/T+ ∨N/D2+ ∪N+ ∧ e1

Thus the cofibre sequence

N+ −→ N/T+ ∨N/D2+ −→ G/T+

gives the long exact sequence

(ΣQ[W ] −→ 0) −→ (OF [W ] −→ E−1OF ⊗Q[W ])⊕ (ΣQ −→ 0) −→ im(G/T+)

and hence
(1− e1)im(G/T+) = (1− e1)(OF [W ] −→ E−1OF ⊗Q[W ])

and
e1im(G/T+) = Σ2Q̃⊕Q[c][W ]

where c acts on Q̃ in degree 2 by sending it to Q in degree 0.

Notice that these images are exactly the cells (up to suspension) in F̃ (K) which finishes
the proof.
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