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Abstract 

 

The overall aim of this thesis is to demonstrate how food supply chain waste (FSCW) 

could be used as a renewable feedstock for a product-focused biorefinery. The 

volumes of FSCW produced as a result of common food processing operations have 

been estimated using a new methodology. The latter is based on sold manufactured 

goods published every year by the European Union (PRODCOM) and highlights the 

geographical waste hot spots for common food processing operations. The use of 

this methodology led to the selection of waste orange peel (WOP) as a raw material 

for the design of an integrated biorefinery. A SWOT analysis was carried out to 

analyse the opportunity for the design of a WOP valorisation process aimed at the 

extraction of a maximum of the chemical components, while avoiding the use of acid, 

additives or pretreatment. The successful development of a microwave biorefinery 

process centred on the valorisation of WOP was designed based on the integration 

of microwave assisted D-limonene extraction and a low temperature hydrothermal 

extraction of pectin.  

The work carried-out using microwave hydrothermal treatment proved that pectin 

can be extracted between 100 and 150 °C under acid-less conditions on a 100 mL 

scale. A competitive molecular weight distribution was obtained for pectin produced 

at a temperature of 110 and 120 °C using WOP from which D-limonene, flavonoids 

and sugar had been previously extracted. A CPMAS 1 3C-NMR technique was 

developed to determine the degree of esterification of pectin. D-limonene was 

extracted under microwave-assisted solvent-less conditions. The optimised 

conditions studied led to a yield of 1.09 ± 0.18% food grade D-limonene with a high 

reproducibility on a 1 L scale (500 mbars). Finally, the process used also allowed for 

the isolation and characterisation of flavonoids and monosaccharides. Following 

ethanol extraction, a mixture of polymethoxy flavonoids (tetra-O-methyl scutellarein, 

tangeritin, nobiletin and heptamethoxyflavone), hesperidin and sugar monosaccharides 

were obtained with yields of 5.87%, 0.24% and 18.35% respectively on a wet basis. 

The later fraction was composed of 74.21% glucose and 25.35% fructose, as 

determined by quantitative 13C NMR, showing the potential for this fraction as a 

fermentation feedstock. 
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1 Introduction 

 

Today fossil fuel resources supply 86% of our energy and 96% of organic 

chemicals.2 However, they are not renewed in a time interval relevant to our 

resource utilisation: according to our actual consumption, the future petroleum 

production is unlikely to meet our society’s growing needs. By 2025, our energy 

demands are expected to increase by 50%.3 Green chemistry is an area which is 

attracting increasing interest as it provides unique opportunities for innovation via 

the use of clean and green technologies, product substitution and especially the use 

of renewable feedstocks such as dedicated crops or food supply chain by-products 

for the production of bio-derived chemicals, materials and fuels.4 This chapter will 

provide an introduction to the concepts of green chemistry and the biorefinery, the 

use of waste as a biorefinery feedstock and the role of clean technology such as 

microwave technology followed by a discussion of the core concepts behind 

microwave heating in the area of biomass processing.  

 

1.1 Green chemistry and the biorefinery 

1.1.1 The 12 green chemistry principles 

 

“Green chemistry is the design of chemical products and processes that reduce or 

eliminate the use and generation of hazardous substances”.5, 6 The concept emerged 

20 years ago with the introduction by Paul T. Anastas and John C. Warner of the 12 

principles of green chemistry (see Table 1).  
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Table 1: The 12 Green Chemistry Principles.5, 6  

1. Prevention 

It is better to prevent waste than to 
treat or clean up waste after it has 

been created. 

7. Use of Renewable Feedstocks 

A raw material or feedstock should 
be renewable rather than depleting 

whenever technically and 
economically practicable 

2. Atom Economy 

Synthetic methods should be 
designed to maximize the 

incorporation of all materials used 
in the process into the final 

product. 

8. Reduce Derivatives 

Unnecessary derivatisation (use of 
blocking groups, protection/ 

deprotection, temporary 
modification of physical/chemical 
processes) should be minimized or 

avoided if possible, because such 
steps require additional reagents 

and can generate waste. 

3. Less Hazardous Chemical 
Syntheses 

Wherever practicable, synthetic 
methods should be designed to use 

and generate substances that 
possess little or no toxicity to 

human health and the 
environment. 

9. Catalysis 

Catalytic reagents (as selective as 
possible) are superior to 
stoichiometric reagents. 

4. Designing Safer Chemicals 

Chemical products should be 
designed to effect their desired 
function while minimizing their 

toxicity. 

10. Design for Degradation 

Chemical products should be 
designed so that at the end of their 

function they break down into 
innocuous degradation products and 

do not persist in the environment.  

5. Safer Solvents and Auxiliaries 

The use of auxiliary substances 
(e.g., solvents, separation agents, 

etc.) should be made unnecessary 
wherever possible and innocuous 

when used. 

11. Real-time analysis for 
Pollution Prevention 

Analytical methodologies need to be 
further developed to allow for real-

time, in-process monitoring and 
control prior to the formation of 

hazardous substances. 

6. Design for Energy Efficiency 

Energy requirements of chemical 
processes should be recognized for 
their environmental and economic 
impacts and should be minimized. 

If possible, synthetic methods 
should be conducted at ambient 

temperature and pressure. 

12. Inherently Safer Chemistry for 
Accident Prevention 

Substances and the form of a 
substance used in a chemical process 

should be chosen to minimize the 
potential for chemical accidents, 

including releases, explosions, and 
fires. 
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Efficiency being the key, the subject continues to develop strongly around the 

following principles in its pursuit of more sustainable processes: 7,8  

 maximum conversion of reactants into a targeted product,  

 minimum waste production through improved reaction design, 

 the use and production of non-hazardous raw materials and 

products, 

 safer and more energy efficient processes and  

 the use of renewable feedstocks.  

 

1.1.2 Green chemistry and Industry 

 

According to these principles, in an ideal case, a reaction would only produce the 

targeted product. Waste and pollutants would be prevented, improving the reaction 

yield and reducing losses, thus improving the overall economics of a process. Since 

our society and industries are governed by increasing efficiency and profit, green 

chemistry should theoretically fit every manufacturing company’s agenda, not only 

appealing to chemical producers.  

Today, the principles of green chemistry are still as meaningful as 20 years ago given 

the increasing interest this area of research attracts due to concerns over 

sustainability.9 The implementation of REACH legislation (Registration, Evaluation, 

Authorization and restriction of Chemicals or directive EC 1907/2006), ROHS 

legislation (Restriction of the Use of Certain Hazardous Substances in Electrical and 

Electronic Equipment or directive 2003/108/EC) together with other initiatives 

highlighting the hazardous character of some chemicals used in day-to-day 

consumer products such as the SIN list,10 are pushing hard for their replacement to 

avoid harm to human and/or environmental health. However, the substitutes used 

need to be genuinely safer across the whole life cycle, whilst also being as effective 

as their unsafe alter-ego. Investing in research and development focused on 

identifying truly greener substitutions, thus eliminating rushed and weak 

alternatives which often contain a greater number of formulation components to 

compensate for the lower performance of a given “greener” formulation. The same 

applies to the substitution of fossil-derived chemicals with more sustainable bio-

derived chemicals. When using renewable feedstocks such as biomass, we have to 

use clean and efficient synthetic routes, minimising the amount of unwanted by-

products and the use of scarce resources (i.e. scarce metals).11 Water available for 
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industrial operations is increasingly seen as a scarce resource but its use as a green 

solvent is increasingly envisaged due to its non- toxicity (amongst other benefits) in 

comparison to hydrocarbon-based solvents.12 Nevertheless, contaminated water is 

difficult, energy consuming and expensive to treat and re-use.  

Biodegradability is an important characteristic for “greener” products, but 

increasing the life-time of a molecule to promote its re-use could be another 

strategy, allowing for each molecule produced by nature to be used to its full 

potential.13  

Re-using and valorising resources available, including waste, is an area gaining in 

momentum. One of them is food supply chain waste (FSCW), which is a feedstock 

rich in functionalised molecules.4 Although it is biodegradable, it should be valorised 

as a source of renewable chemicals, materials and bio-fuels, leading towards waste 

minimisation and waste valorisation. Wasting resources should be avoided in any 

optimised process. 

The different strategies highlighted in Figure 1 show how important it is to assess 

the greenness of a process through every single step, including the upstream and 

downstream stages of production, raw material employed, its use, end-use and 

disposal and as a result, guaranteeing the true sustainability of a product.14  

 

Figure 1: Illustration of a product’s life-cycle. 

 

One change can affect several of these steps and it is important to assess a process 

through its full life cycle however time consuming and data dependent this is. Life 

cycle assessment can help assess the use of bio-processes versus chemo-processes 

for example. Many believe bio-processes are preferable to chemo-processes as they 

  Raw 
material 

      Product 
manufacturing 

 Product   
delivery 

 Use 
  Re-use 
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are superior in terms of environmental impact as they use non-toxic enzymes to 

selectively catalyse a reaction and yield the targeted product. Nielsen et. al. have 

highlighted how the production of enzymes is energy and resource intensive too, 

showing enzymatic processes are not necessarily the greenest option for the 

manufacturing of chemicals even though they represent a product selective 

process.15  

 

1.1.3 Drivers for change 

 

Current manufacturing practices are strained by a number of factors, most 

significant is the increasing price of feedstocks such as oil.16 This results in 

increasing costs of energy and petrochemicals. There is also the increasing cost of 

waste treatment and/or disposal.  

The increasing impact of legislation is also affecting almost all aspects of 

manufacturing supply chains (e.g. what can be made, the supply of raw material, 

manufacturing, end-use and disposal stages). It now affects the type of process, 

process steps, emissions, end treatment of waste, meaning every stage of the supply 

chain of a chemical product now has to be the least polluting possible (i.e. Integrated 

Pollution Prevention and Control legislation, IPPC).17 New regulations such as 

REACH have had an important impact on the industrial sectors like home and 

personal care products, the pharmaceutical industry and the agricultural sector. 

Resource acquisition is a stage in the product life cycle where green chemistry can 

have a major impact in the future. The use of renewable resources, typically 

biomass, instead of finite resources is now recognised as more environmentally 

sound. Biomass is a resource which can be renewed within a time interval which can 

compete with our resource consumption (as described in Figure 2), biomass being a 

“biological material derived from living, or recently living organisms”.18 16  
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Figure 2: Compared production cycles of chemicals derived from biomass and oil. 

 

The emergence of E.U. standards for bio-based products (Mandate M/429) will, in 

the near future, embrace life cycle considerations and introduce specifications along 

the entire supply chain for new and existing products. This should have the effect of 

further lowering the use of fossil fuel resources in favour of renewable feedstocks 

such as biomass including bio- wastes.  

The public, and consequently the retail sector, have increasingly been made aware 

of the issues associated with the use of some unsafe chemicals in consumer product 

formulations (i.e. volatile chlorinated compounds used in dry cleaning, sulfonated 

surfactants, polybrominated compounds in flame retardants). Manufacturers have 

been increasingly pressured to produce bio-derived chemicals and reduce the 

environmental impact of their production. This change in consumer behaviour led to 

the marketing of a greater number of green and renewable alternatives in many 

sectors, especially in home and personal care products.  

Furthermore, the European Commission proposed further steps for the creation of 

lead markets in 2006 with the introduction of a new policy aimed at supporting the 

development of high economic- and societal-value markets. Bio-based products are 

the subject of one of the identified lead markets and fall into this category for several 

reasons:19  

 “use of renewable and expendable resources,  
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 less dependency on limited and increasingly expensive fossil 

resources, 

 the potential to reduce greenhouse gas emissions (carbon 

neutral/low carbon impact), 

 the potential for sustainable industrial production, 

 increased industrial competitiveness through innovative eco-

efficient products, 

 support to rural development, 

 potentially improved population health,”19 and 

 potential for transfer to other regions of the world including the 

transfer of appropriate technologies discovered and proven in the 

E.U. 

All the above arguments are believed to catalyse the growth of the bio-economy in 

Europe in the future. 

 

1.1.4 The bio-based economy 

 

A recent study estimates that by 2025, over 15% of the $3 trillion global chemical 

market will be derived from bio-derived sources.20 Yet in 2011, the technical 

feasibility of substituting over 90% of the annual global plastic production (270 

million tonnes) by bioplastics had already been highlighted.21 “In 2005, bio-based 

products already accounted for 7% of global sales and around €77 billion in value in 

the chemical sector, with the E.U. industry accounted for approximately 30% of this 

value.”22 Estimates of the ad-hoc advisory group for bio-based products have 

identified “polymers & fibres, active pharmaceutical ingredients, cosmetics, organic 

chemicals and detergents as the most important segments.”19 Overall, the market for 

bio-derived products has been predicted to be worth €515 billion in 2020 in 

Europe.23 

 

1.1.5 Product-focused biorefinery 

 

It is crucial to ensure that the resources and the process technology used as well as 

the products made are environmentally acceptable. The 20th century saw the 
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development of processes designed for the production of energy and organic 

chemicals based on the oil refinery. The 21st century must see the development of 

similar processes based on the use of biomass. This is especially relevant as 

improvements of today’s modern formulating-based industries at the production 

stage of the life-cycle, is restricted (although moving towards renewable energy and 

zero waste is important and not trivial), the use of renewable feedstocks could offer 

an important margin for progress, especially for companies, such as fast moving 

consumer goods manufacturers, keen to dramatically improve the environmental 

performance (and decrease the CO2 emissions) of their products.  

 

A biorefinery is an analogue to the current petro-refinery, in the sense it produces 

energy and chemicals. The major difference lies in the raw material it will use, 

ranging from biomass to waste. The use of clean technology is another imperative 

for the biorefinery, ensuring its output(s) are truly sustainable, following LCA 

analysis. The IEA Bioenergy Task 42 defines biorefining as “the sustainable 

processing of biomass into a spectrum of bio-based products (food, feed, chemicals 

and/or materials) and bioenergy (biofuels, power and/or heat)”.24 Various 

biorefinery designs varying in size and output number will emerge commercially in 

the future,25 taking advantage of flexible technology, helping the concept of a 

biorefinery to process locally available biomass to its fullest extent in an integrated 

fuel-chemical-material-power cycle. This will help to improve cost-efficiency, the 

quality of life of the local population and lowering the environmental impact 

governed by the three dimensions of sustainability: environmental protection, social 

progress and economic development (see Figure 3). Flexibility is the key for a 

successful biorefinery as maximum throughput will only be achieved if they are 

adapted to the best technology for the feedstock available in a given geographical 

location. 

 

Figure 3: The three cornerstones of sustainability.  

Environmental 

protection 

 

Social progress 

 Economic 

development 
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The aim is to design an integrated process capable of generating a cost-effective 

source of energy and chemical feedstocks using biomass as a raw material. The 

chosen biomass should be available in high quantities and of a low cost, non-food 

type. Further selection criteria will be highlighted in chapter 2. It should be 

processed using green chemical technology; ensuring products obtained are truly 

green as well as sustainable. Technologies used should ideally be flexible enough to 

accommodate the natural variation of biomass associated with season or variety 

change.26 The efficiency of the process needs to be maximal: ideally every out-put 

has to have a use and a value/market. Practices based on industrial symbiosis 

looking at re-using the waste produced by one process to feed another one located 

near-by, converting waste into useful by-products with a marketable value 

represent an ideal scenario. The aim would be to achieve a zero waste biorefinery 

capable to compete economically with traditional oil-based refineries. Such a model 

has successfully been applied in Kalundborg, Denmark. There, a power station, a 

plasterboard factory, a pharmaceutical plant, an enzyme producer, an oil refinery, a 

waste company and Kalundborg Municipality exchange steam and water 

resources.27  

 

1.1.6 Technologies used 

 

Adding value to every output of the biorefinery can be achieved by combining 

several technologies together, using a sequential approach to extract chemicals 

before biomass is converted to energy.  

The main green extraction processes used to extract valuable compounds from 

biomass include: liquid and supercritical CO2, ultrasonic or microwave assisted 

extraction and accelerated extraction.28 Microwave-assisted extraction is a 

commercial reality with Crodarom® using this technique to extract purer and more 

degradation stable plant materials.29 The extraction can be followed by biochemical 

or thermochemical processes and internal recycling of energy and waste gaseous 

effluents. This approach ideally constitutes an economically sound starting point for 

the design of a biorefinery (Figure 4). 
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Figure 4: Scheme describing an integrated biorefinery as a mixed feedstock source 
of chemicals, energy, fuels and materials.  

 

Biomass contains an array of functionalised molecules, many of them having a 

market value. Compounds such as natural dyes or colorants (i.e. carotenoids), 

polyphenols, sterols, waxes, nonacosanol or flavonoids (i.e. hesperidin), amino acids 

and fatty acid derivatives can be extracted selectively using clean extraction 

techniques prior to the treatment of biomass by  biochemical and thermochemical 

processes. These compounds have known uses in cosmetics, as nutraceuticals or 

semiochemicals.13, 30  

Biochemical and thermochemical processes complement each other well, the former 

being very selective but slow compared to the later. Biochemical processes require 

low temperatures but pre-treatments are often required (e.g. ammonia fiber 

expansion or AFEX, dilute acid hydrolysis) to open-up biomass’s fibre structure and 

yield intermediates requiring further downstream processing.31, 32  Thermochemical 

processes, which include gasification, pyrolysis and direct combustion (Table 2), 

operate usually above 500 °C and are much less selective, yielding oils, gas, chars 

and ash.3 3  
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Table 2: Most common thermochemical and biochemical processes. 

 Process name 
Temperature 

(°C) 
Conditions Product(s) Application 

T
h

e
rm

o
ch

e
m

ic
al

 p
ro

ce
ss

es
 

Gasification 700 

Low 

oxygen 

level 

Syngas 

(mixture of 

H2, CO, CO2, 

CH4) 

Fuel or 

chemical 

intermediate 

to ethanol or 

dimethyl ether 

or isobutene 

Pyrolysis 300-600 No oxygen 

Bio-oil, 

char and 

low 

molecular 

weight 

gases 

Transportation 

fuel and 

chemicals 

B
io

ch
e

m
ic

a
l 

p
ro

ce
ss

e
s 

Fermentation 5< T °C <30 
Presence of 

oxygen 

Alcohol 

(e.g. 

ethanol), 

organic 

acids (e.g. 

succinic 

acid) 

Transportation 

fuel (e.g. 

ethanol) 

Anaerobic 

digestion 
30-65 No oxygen 

Biogas 

(CO2, CH4) 

Production of 

natural gas 

(>97% CH4) 

 

Biomass with a high acid, alkali metal and water content can be difficult to use in 

conventional thermal treatments. For example, the high water content can render 

pyrolysis or gasification processes very difficult and the acidity of the feedstock can 

hinder the use of the pyrolysis oil obtained. Microwave technology for the pyrolysis 

of straw was shown to improve the quality of bio-oils obtained at lower 

temperatures (typically below 200 °C), yielding bio-oils with properties comparable 

to commercial fuel additives with the advantage that the microwave bio-oils have a 

lower oxygen, alkali, acid and sulphur content.34  

 

1.1.7 Waste as a renewable feedstock 

 

Early research on renewable resources focused greatly on plants such as rapeseed, 

corn or sugar cane. However the controversial competition between food and non-

food uses of biomass had an negative effect on crop prices as well as on the public 
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perception on biofuels.35 Other sources of biomass are now studied and waste is 

increasingly considered as another renewable feedstock for the production of bio-

derived chemicals, materials and fuels.  

In times which increasingly value resource efficiency, waste has become a luxury., 

The Department of Environment, Food and Rural Affairs (DEFRA) in the UK, has 

estimated that businesses could save up to £23 billion by re-using resources more 

efficiently.36 In the E.U., the Landfill directive or Council Directive 99/31/EC, will 

drastically reduce the amount of landfill space available as the amount of 

biodegradable waste sent to landfill will have to reach 35% of 1995’s level by 2016 

in members countries. As a result, the landfill gate fee has increased from £40-£74 to 

£90-£110 per tonne (including landfill tax) in the UK between 2009 and 2014.37-39  

Policy makers support alternatives to landfill (e.g. value recovery from waste), 

especially in the context of achieving a zero waste economy and the vision of the 

European Bioeconomy 2030 within the context of a resource crisis.  38  To illustrate 

this argument, it has been estimated that “30% fewer resources [are needed] to 

produce one Euro or Dollar of GDP than 30 years ago; however, overall resource use 

is still increasing […] as we consume growing amounts of products and services”.40  

As traditional resources such as oil and minerals become scarcer, their availability is 

likely to be susceptible to highly politicised negotiations and pricing.  

Therefore, waste valorisation represents a promising research topic from both an 

environmental and economic point of view.41 Current waste management practices 

should be replaced by strategies allowing the recovery of marketable products for 

existing or new markets, thus offering added revenues for industry. Valorising waste 

also has the potential to lower a process’s carbon footprint and dependence on fossil  

fuel resources, increase its efficiency and cost-effectiveness and moving towards 

‘closed loop manufacturing’, one of E.U.’s clear strategies, highlighted in the Europe 

2020 strategy document.42,44 There is a growing recognition that the twin problems 

of waste management and resource depletion can be solved together through the 

utilisation of waste as a resource. However, despite the clear benefits, the utilisation 

of FSCW represents a challenge.43 A regular and consistent supply chain is important 

for the successful realisation of a biorefinery based on FSCW. But high accumulative 

volumes of waste are often only generated over a period of a couple of months per 

year, potentially affecting the year-round availability of chemicals and materials 

produced from FSCW. 
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Although the availability of some FSCW is clearly an advantage regarding security of 

supply, several limitations exist and need to be taken into account as part of the 

logistics needed to valorise this resource. FSCW can be/can have: 

 a heterogeneous and variable composition (lipids, carbohydrates, 

proteins),44  

 fluctuate in volumes available across the year,4 4  

 a high water content and41  

 a low calorific value.41 

The later characteristics of FSCW can rapidly become a disadvantage when trying to 

select a suitable technology for valorisation purposes, especially when dealing with 

high moisture contents. Microwave technology represents an ideal choice  given its 

good interaction with water-rich biomass feedstocks.45, 46 Biomass can be used wet, 

by-passing drying operations. The latter is critical given the high costs and energy 

requirements of drying operations. Proving the suitability of FSCW as a valuable 

renewable material was one aim of this project. Hence, microwaves have been 

selected as the core technology for this project.  

 

1.2 Fundamentals of microwave technology 

 

The microwave frequency and the magnetron were first used for radar technology 

during Second World War. After the end of the war, this technology was used as a 

source of heat to avoid limitations linked with the use of induction heating (i.e. 

thermal diffusivity and surface temperature). Microwaves are essentially a high 

frequency alternating wave produced by the combination of an electrical field and a 

magnetic field, resulting in an electromagnetic wave. For microwaves, the frequency 

of this wave must be between 0.3 GHz and 300 GHz.47 Above 300 GHz, it is the 

domain of infra red and below 0.3 GHz, it is the domain of radio waves according to 

the electromagnetic spectrum. The Intercontinental Telecommunications Union 

limits the frequency of microwave apparatus to 915 and 2450 MHz for industrial,  

scientific and medical use.47 The relationship between the energy E and the 

frequency ν of a microwave  is given by the Planck equation and is highlighted 

below, where h is the Planck constant, c the speed of light and λ is the wavelength.47  
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1.2.1 Heat production mechanisms under microwave conditions 

 

Heat production within a given substance using microwaves is the result of this 

substance’s dielectric properties. Upon polarisation of a dielectric material following 

the application of an electric current, the molecule’s permanent dipole tries to align 

itself with the oscillating microwave applied. The high specific frequency used 

creates a rapid reversal of the electromagnetic wave which is difficult to follow for 

the permanent dipole. A delay in alignment is observed and energy is lost from the 

molecule to the surroundings under the form of kinetic energy to re-orient the 

molecular dipole. This creates heat via friction at the molecular scale of the 

material.48 Heat generation is therefore the result of the energy released by the 

molecule to re-orient its dipolar moment. This heat generating mechanism is called 

the dipolar polarisation mechanism and is illustrated in Figure 5 for water.49  

 

Figure 5: Illustration of the effect of microwaves on a drop of water. 

 

This mechanism can only be applied to polar polarisable substances. The capacity of 

a substance to be polarised is characterised by its dielectric properties which are 

summarised in the equation below for the complex dielectric constant ε* in an 

alternating electrical field.47 
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In the equation above, ε0, ε’ and ε’’ respectively correspond to the dielectric 

permittivity of the vacuum (which is equal to a constant), the relative dielectric 

constant and the relative dielectric loss. The relative dielectric constant ε’ relates to 

a material’s capability to store electromagnetic energy (i.e. be polarised). ε’ is a real 

number and is a function of the permittivity of free space ε0.50 The relative dielectric 

loss (or loss factor) ε’’ relates to a material’s capability to convert the stored 

electromagnetic energy into heat.48, 50, 51  

 

They are specific for a material in a given state, microwave frequency and 

temperature.5 0  The ratio ε’’/ ε’ is called the loss tangent tan δ or the dissipation 

factor. It characterises the ability of a substance to absorb the electrical field and 

convert the electromagnetic energy into heat for a given frequency and 

temperature.5 2 The value of the loss tangent for a given material is proportional to 

its ability to absorb microwaves.49 Consequently, as the dielectric loss decreases 

with an increase in temperature, microwave absorption decreases and penetration 

depth increases.5 2 For glass, a microwave transparent material, tan δ is inferior to 

0.01.53 In the case of water, the dielectric loss of water decreases as temperature 

increases,54  increasing the penetration depth of microwaves which is interesting 

when operating at higher scale. Consequently, it is interesting to note that the value 

of the loss tangent are inversely proportional to the values of the temperature.49 

Furthermore, the loss tangent is proportional to ion concentration, ion size, 

microwave frequency and the viscosity of the reaction medium.52  

Following energy adsorption, the conversion of electromagnetic energy into heat is 

characterized by the dielectric power absorption P, which is expressed as a function 

of the relative dielectric loss ε’’. 

 

           

In the equation above, f and E correspond respectively to the applied frequency and 

strength of the electric field applied to the substances heated. The latter is only 

applicable to uniform electrical fields.  

A different heat generating mechanism has been identified. It applies to ion 

containing solutions only though. Upon oscillation of the charged ions of the solution 

following their interaction with microwaves, the incurred displacement of the 

charged ions generates an electric current. Hence heat is generated within the bulk 

of the solution as an energy dissipation mechanism. This mechanism is called ion 
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conduction and in an ion containing solution, its contribution is more important 

than the one of the dipolar polarisation mechanism.48, 49, 55  

 

1.2.1.1 Single and multimode microwaves 

 

Multimode and single mode microwave equipment is available. The choice lies upon 

design constraints. A single mode microwave relies on the production of a free-

standing wave which is directed towards the sample using a waveguide. Care is 

taken to design the microwave cavity to produce a standing wave (i.e. the incident 

and the reflected wave resonate producing a standing wave). This makes the 

position of the sample inside the microwave cavity crucial. In the case of a 

multimode microwave, a mode deflector is used to produce reflected waves which 

can either be constructive or destructive. This results in a less homogeneous field of 

irradiation in the case of multimode microwaves. Hot and cold spots or high and low 

field intensity spots can then occur, leading to temperature gradients.56 However 

this phenomenon can also be observed when using single mode microwaves. 

Typically, single mode microwave reactors can only be applied to samples of a 

volume below 50 mL.49 This is because at 2450 MHz, the wavelength of a single 

mode (half a wavelength) is of ~ 6 cm, making scale-up of mono-mode microwaves 

difficult.57 

 

1.2.1.2 Temperature control and super-heating 

 

Conventional and microwave heating essentially differ by their temperature profile. 

Fast heating of the bulk of the targeted material is one of the main advantages of 

microwave technology.49 This property is often used under closed vessel conditions, 

to heat a solvent past its boiling point.56 “Superheating” has been known to occur in 

the case of microwave heating: as the temperature increases, the value of the loss 

tangent increases too, causing the apparent boiling point of a given solvent to 

increase by up to 28 °C.55  

Under such conditions, efficient stirring is a necessity to ensure maximum 

reproducibility. 49 This is to avoid the formation zones of heterogeneous field which 

would result in the creation of temperature gradients within the sample causing 

“hot spots” or “super-heating”.52, 58 Additionally, providing temperature control is 

precise and efficient. Microwaves instantly respond, allowing fast power changes to 
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achieve constant temperature settings, which is an advantage compared to 

convection heating for example. Narrow and optimum temperature ranges are 

hence, easily accessible when using microwave technology. As a result, the “wall 

effect” observed under conventional heating conditions can be avoided, which is not 

the case when using conventional heating on a batch process.56 However, the 

geometry of the microwave cavity and the algorithm used to control the operational 

parameters used can cause a certain variability of the results when carrying-out the 

same experiments using different microwave equipments.49  

 

1.2.1.3 Application of microwave technology at larger scale 

 

Achieving precise temperature control is an important area of research when 

considering microwave technology. The determination of the exact temperature 

within the bulk of the sample is still discussed within the research community 

especially as the existence of a non-thermal “microwave effect” is still waiting to be 

proven. With the combined use of an external and an internal probe (i.e. typically an 

infra red and a fiber optic probe), a consensus has been reached within the research 

community.58  Such a set-up also provides accurate readings in the context of energy 

consumption measurements, especially when the microwave absorbing properties 

of the sample change upon heating. However, this solution only provides bulk 

temperature readings, hence short term localised hot spots would not be detected. 

 

When applied at a larger scale, the efficiency of the energy transfer is critical to 

ensure the best end-performance, rendering temperature measurement secondary.  

The measure of reflected energy then becomes essential, helping to determine how 

much energy is actually absorbed by the system. However, other parameters such as 

microwave penetration depth or the variation of the sample’s viscosity or dielectric 

properties are to be considered too. Often, microwave constructors will build 

specific equipment operating at a precise frequency to allow for a maximised energy 

transfer for a given application.56 Some benefits are associated with the scale-up of 

microwave technology. It is known that the penetration depth increases as the 

dielectric loss decreases, which is interesting at larger scale. However, the 

penetration depth of the microwaves decreases with the ability of the system to 

absorb microwaves.56 Typically, microwaves have a penetration depth of 1.4 cm in 

water at 25 °C and 5.7 cm at 95 °C (both at 2450 MHz), which needs to be taken into 

consideration when moving from lab scale to pilot scale. Sairem® has shown the use 
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of lower frequencies can circumvent low penetration depth beyond lab scale, 

improving energy efficiency too. Given the influence the microwave frequency, 

reactor size and geometry as well as the vessel material and size or the use of mono- 

or multi-mode microwave, optimisation is necessary for each change of scale, to 

optimise process parameters and minimise energy consumption. Just like for 

conventional heating, especially as magnetrons are usually designed for a 1000 kg 

load.55 However, one can argue that at larger scale the capacity to absorb microwave 

energy increases with mass for a given loss tangent, and the surface-to-volume ratio 

decreases minimising energy losses to the surrounding environment. Both factors 

will have for effect to increase energy efficiency. This however needs to be balanced 

by the conversion efficiency of electrical energy for example to heat using a 

magnetron.56  

 

1.2.2 Associated benefits of the use of microwaves on food supply chain 

waste 

 

The use of microwaves instead of conventional thermal heating has increasingly 

been studied, especially in the last 20 years.52 Advantages linked with the use of this 

technology include high heating rates, volumetric and contactless heating as well as 

a high control of the energy input.59 In chemistry, microwave heating is believed to 

offer selective heating as well as rapid heating times.5 6, 60 The latter has been 

recognised as a source of energy savings compared to conventional heating under 

small scale, closed-vessel conditions, under single mode conditions and when 

normalised on the basis of moles of product generated.61 Above 100 mL, multimode 

microwave reactors have been classified as more energy efficient at increasing 

scale.62 

The use of microwave technology was chosen for the particular valorisation of food 

supply chain waste for the reasons highlighted above. Additionally, this technology 

has other advantages: it is adaptable for use in continuous processes and scalable, 

potentially allowing for the design of an integrated conversion process. The 

technology has known uses in the food industry for sterilising or drying purposes 

under continuous conditions.63 In the food industry, the use of microwaves 

represents an advantage as air is not heated during drying operations for example, 

creating more selective heating conditions.  
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More importantly,  this technology is not limited by the high water content present 

in such feedstocks (up to 90%).64 This is quite the contrary, given the dielectric 

properties of water (i.e. at 25 °C and 1GHz, ε’ and ε’’ are of 77 and 5.2)65. This results 

in a good interaction between microwaves and water-based systems,66 which is 

important for future industrial scale applications given the importance of WOP 

drying costs.67 The criteria cited above show that microwave technology has the 

potential to allow the valorisation of a pre-consumer type of waste generated on a 

million tonne scale while using an integrated conversion process.   

Regarding biomass processing for chemical and fuel production, thermal 

decomposition of biomass under anaerobic conditions or pyrolysis, has been studied 

under microwave conditions, taking advantage of the high heating rates to increase 

biomass’s energy density.68 Such a process typically produces bio-char, bio-oil and 

gas (CO, H2, CO2 and CH4).46 The purpose of this work is to apply microwaves to a 

specific type of food supply chain waste. Citrus peels will be used as a feedstock to 

demonstrate the possible use of microwave technology for the extraction of D-

limonene, polymethoxylated flavonoids, hesperidin, glucose, fructose and pectin 

from non pre-treated peel. Less extreme conditions will be used compared to 

microwave pyrolysis, which typically occurs between 200 °C and 380 °C.4 6 The work 

presented in this thesis will use hydrothermal conditions relying on the dielectric 

properties of as a microwave absorber to extract chemicals from wet biomass below 

200 °C, defining the scope of this project.  

The next chapter will focus on the characteristics and the availability of food supply 

chain waste. The use of citrus peel waste as a resource and the opportunities offered 

by this feedstock in the context of the design of a microwave waste biorefinery will 

be highlighted in chapter 3. 
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2 The use of FSCW as a feedstock for the production of 

chemicals. Availability and location in Europe. 

 

Our society currently faces the twin challenges of resource depletion and waste 

accumulation leading to rapidly escalating raw material costs together with 

increasingly expensive and restrictive waste disposal legislation. The variety of food 

processes used in the food and drink industry globally generates FSCW on a multi 

tonne scale every year. This chapter will demonstrate the opportunity FSCW 

represents as a chemical feedstock and highlight the advantages of using FSCW as a 

raw material for the production of chemicals, materials and fuels. A method 

designed for the estimation of FSCW available in the E.U.-27 from food processing 

operations will also be developed upon and the main conclusions reached will be 

presented. 

 

2.1 Use of food supply chain waste (FSCW) as a resource  

2.1.1 Definition of the term food supply chain waste  

 

FSCW has been previously defined as “the organic material produced for human 

consumption that is discarded, lost or degraded. This includes waste arising because 

of pest degradation or food spoilage.”43 It is estimated that “as much as 50% of the 

food produced is lost or wasted before and after it reaches the consumer”.69 On a 

global scale, the latest FAO report suggests that “1.3 billion tonnes per year of food 

produced for human consumption is [being] lost or wasted”, representing a huge 

environmental, economic and social problem.70 Our food supply chain has recently 

been recognised as being inefficient, producing large and accumulative quantities of 

waste.71, 72 With “around 89 million metric tonnes of food waste are generated every 

year in the E.U.-27.”4 39% is generated by the manufacturing sector, 42% by the 

household sector (other sectors: 19%). In this case, food waste encompasses 

domestic, waste produced by individuals in their homes.73   

The paragraph above highlights one of the first issues encountered when attempting 

to work with such a type of resource: the definition of FSCW varies from one 

organisation to another and hence the data reported on the volumes available 

cannot be compared. In this thesis, FSCW will include all food wastes produced by 
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the supply chain, excluding food packaging. It will concentrate especially on non-

avoidable FSCW and it will include food losses produced as a result of poor stock 

management at a pre-consumer stage. Agricultural residues and industrial 

processing waste generated by the food processing industry are examples of types 

of waste selected for further study here. It would not include household waste, 

which is very heterogeneous in composition. Criteria will be developed to select 

suitable types of FSCW for valorisation using clean and green technologies (see 

section 2.2). Valorisation is defined here as gaining revenue from a co-product 

traditionally disposed of and/or lost within the value chain or as one with a current 

low value. 

 

2.1.2 Drivers for the use of FSCW as an alternative carbon feedstock for 

chemical production 

 

The food supply chain encompasses a wide range of manufacturing processes.  The 

seasonal nature of food production means that large quantities of FSCW, all of which 

are organic, can accumulate over short periods of time.  The latter contain valuable 

functionalised molecules such as flavonoids, amino acids, proteins, waxes, pigments, 

lipids, sugars, fibres, biopolymers (cellulose, starch) or fatty acids as shown in 

Figure 6. These will have uses in all sectors of the chemical industry, including 

cosmetics, foods, pharmaceuticals, textiles as well as in  fuels. 23 An exhaustive 

publication by Galanakis et. al. lists a large number of examples of sources of FSCW 

types for given chemical compounds and associated recovery techniques.74 

Functional compounds generated by food processing operations have also been 

reviewed by Schieber et. al.75 When using FSCW as a feedstock for 1st generation 

valorisation strategies, those chemical functionalities are lost or at best, 

underutilised. First generation strategies include electricity generation (i.e. through 

anaerobic digestion), fuel generation (e.g. conversion of cellulosic biomass to bio-

ethanol) or the production of animal feed. It has recently been reported that the 

conversion of biomass waste to bulk chemicals for example was  nearly 7.5 and 3.5 

times more profitable than its conversion to animal feed or transportation fuel 

respectively, highlighting the marginal value of 1st generation FSCW valorisation 

strategies.43, 76  
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Figure 6: Components present in FSCW and their uses in common end-user products 
showing how the use of FSCW as a renewable feedstock could have implications in 

all main sectors of the chemical industry (originally in colour). 

 

Maximising the chemical content extracted from FSCW is even more relevant in the 

light of the amount of fertilisers, pesticides, energy and water consumed for the 

production of food.77  In the U.S.A., the United States Department of Agriculture 

estimated that the American agricultural sector is responsible for the consumption 

of 80% of the country’s drinking water and occupies 50% of the surface of the 

usable land. Furthermore, “added to the waste of resources, there are also the 

consequences of having to manage large quantities of waste.”78 The loss of resources 

in the form of land, labour, energy needs to be considered as well.  The latter have 

been estimated on a global scale by the Food and Agriculture Organization of the 

United Nations for wasted edible and non-edible parts of foods.79 As one example of 

the amount of resources lost in 2008, 377 tonnes of tomatoes were lost from the 

food supply chain in the U.S.A., as estimated by Buzby et. al.80 The data they gathered 

is highlighted in Figure 7. 
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Figure 7: Estimation of the resources lost following the loss of 377 metric tonnes of 
fresh tomatoes (originally in colour). 

 

The growing demand for environmentally friendly chemicals and fuels together with 

stricter U.K. and E.U. legislation are encouraging the development of more 

sophisticated FSCW valorisation strategies, namely 2nd generation FCSW 

valorisation schemes. The second article of the European Union’s funding treaty 

declares the sustainable use of natural resources as one of the objectives of the E.U.-

27’s environmental policy.81 Major drivers include increasingly tighter European 

regulations and standards, associated with their compliance costs. Recent 

developments in legislation focus heavily on reducing volumes of waste produced. 

On a European level, the Integrated Pollution Prevention and Control (IPPC) 

legislation 96/61/EC and the Landfill directive 1999/31/EC respectively introduce 

the notion of “polluters pay” and landfill reduction of biodegradable waste.81  

Additionally, the REACH legislation will provide “chemicals manufacturers with an 

opportunity to provide innovative substitutes based on renewable feedstocks.”82 At 

the level of the U.K., the Pollution Prevention and Control Act was implemented to 

fulfil the requirements set by the IPPC and the landfill legislation.81 The combination 

of the use of new renewable feedstocks such as FSCW and clean technology will 

represent another achievement for the creation of a bio-economy. The latter is 

perfectly aligned with UK’s Low Carbon Transition Plan and the Climate Change Act. 

All are focused on reducing polluting emissions and therefore, waste. The Courtauld 

commitment (now in its 3rd  phase) represents an important development in the area 

of waste reduction in the U.K. This voluntary commitment has brought together 

more than 53 companies, all of which aim to reduce the environmental impact of the 

food retail sector by mainly looking through minimising packaging, the objective 
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being “a cumulative reduction of 1.1 million tonnes of waste and 2.9 million tonnes 

of CO2 emission” by 2015.83  

 

The potentially valuable chemical content of FSCW, recent developments in E.U.-27 

legislation together with the chemical industry’s shift towards higher sustainability 

and improve cost-effectiveness, process efficiency and its green credentials make 

the development of sustainable and innovative strategies for the valorisation of the 

chemical components present in FSCW an interesting research avenue. Valorisation 

of FSCW is especially important since the sustainability of the food chain is being 

questioned in the light of the ever increasing growth of the world’s population. 

However, despite the clear benefits, the utilisation of FSCW as a biorefinery 

feedstock is largely unexploited and represents a challenge. These issues will be 

highlighted in the next paragraph. 

 

2.2 FSCW selection criteria- Food for thoughts  

 

FSCW can be divided into two parts: pre-consumer and post-consumer FSCW. Figure 

8 describes the four main points of the FSC and the associated types of FSCW 

produced.  

 

Figure 8: Simplified diagram of the food supply chain highlighting the distinction 
between pre- and post- consumer FSCW (originally in colour). 
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Although post-consumer waste is often the most visible, especially on a daily basis 

from our society’s perspective, it is not only difficult to collect and segregate, but 

also challenging to valorise given its heterogeneous composition.43 Pre-consumer 

waste is generated in a more concentrated manner, especially when considering the 

ever increasing rate of global food production84 and processing.43 “More than 70 % 

of the agricultural goods produced in the E.U.-27 are used to be transformed into 

food industry products”.85 Consequently, pre-consumer FSCW would display a lower 

feedstock variability compared to post-consumer FSCW. In terms of logistics, FSCW 

such as agricultural residues or food processing residues should therefore be 

preferred for economic valorisation.  

Pre-consumer waste, such as food processing residues, represents a growing sector 

of waste production. In the U.K. for example, food manufacturers generate 4.1 

million tonnes of food waste out of the 8.8 million tonnes of waste produced 

annually along the food supply chain. As a matter of comparison, the catering sector 

and retailers generate respectively 1.6 and 3.0 million tonnes of waste.86  The food 

industry is omnipresent in our society: in 2010, the food and drink generated €953 

billion in sales.87 In comparison, the chemical sector contributes €491 billion in sales 

to the E.U.-27 economy (excluding pharmaceuticals).88  Second generation 

valorisation of FSCW for the production of bio-derived chemicals, materials and 

fuels could boost the efficiency and competitiveness of two major sectors of the 

European economy. The food and chemical industry could form a symbiotic 

relationship instead of competing against each other for the same resources, as 

highlighted by the food versus fuel debate.89  

 

However, several issues are linked with the use of FSCW as a renewable feedstock 

and their handling needs to be carefully considered. FSCW is mostly of organic 

nature (although they contain a number of useful inorganic compounds) and are 

characterised by high associated chemical and biological oxygen demand (COD and 

BOD)90 and a high water content.91 Additionally, it is prone to rapid bacterial 

contamination75 and accumulates very rapidly over a short harvesting season, all of 

which lead to disposal management problems71, 92  and consequently increasing 

disposal cost.38  

These limitations dictate the logistics needed for the efficient production of novel 

added-value materials, chemicals and fuels from FSCW. The use of transportable 

continuous processing technology is needed to avoid rapid fermentation/bacterial 

contamination without the need for stabilisation and pre-treatment (which, to some 
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extent, could be responsible for loss of functionality). This would also favour 

decentralised valorisation processes where FSCW is produced, limiting the 

transport of low value and low density material and reducing operating costs.   

The high water content often characterising FSCW should not be an obstacle to 2nd  

generation valorisation strategies as technologies allowing on-site conversion of 

waste without resorting to a drying stage exist. Microwave technology has been 

previously highlighted as a suitable type of technology (see chapter 1). Those 

technologies should then be coupled with sophisticated extraction techniques 

capable of selectively removing easily degraded compounds such as carotenoids or 

flavonoids from the biopolymer matrix that constitutes the bulk of FSCW.  Such a 

combination of technologies is key to the successful integration of FSCW as a raw 

material next to non food crops for example.  

Regardless of the potential efficiency of the valorisation process used, it would be 

rendered unproductive without careful selection of the type of FSCW used as a raw 

material. In order to qualify as a feedstock for chemical production, availability is 

key. Not only in terms of continuation of supply but also in terms of consistency. 

High, concentrated volumes of FSCW are needed to fit the large production capacity 

necessary to achieve economy of scale, making the use of in-situ valorisation 

technology even more important, especially if transport costs can be avoided. Those 

high volumes of FSCW should preferably occur around the globe (strengthening 

security of supply at a regional scale) and display the least variable composition (i.e. 

tomato pomace, wheat straw, rice husks, spent brewer’s grain). The available range 

of extractable chemicals and biopolymers is also important, as the combined 

production of several marketable components from a single feedstock is essential to 

guarantee the cost-effectiveness of the process.  

Finally, processing operations in the food sector can be classified into two 

categories: activities processing either animal-derived or plant-derived feedstocks. 

Fish and meat processing produce waste associated with a high sanitary risk and 

require strict handling and waste management legislation, making the valorisation 

of such agro-industrial residues less feasible. On the other hand, plant-derived FSCW 

represents a lower risk of bacterial and transmissible spongiform encephalopathie 

contamination and should therefore be favoured for the design of 2nd generation 

FSCW valorisation strategies.  
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2.3 Method for the evaluation of FSCW volumes produced by the 

food sector in Europe 

 

As mentioned earlier, the availability of high volumes of a given type of FSCW is of 

great importance: the possibility of securing a consistent and regular supply of a 

given type of FSCW will determine whether industry will start considering this raw 

material as a viable source of bio-derived chemicals. The drivers responsible for 

mapping volumes of FSCW available in the E.U.-27 are highlighted in Figure 9. 

 

Figure 9: Drivers pushing for the estimation of available volumes of FSCW 
prior to future use as a renewable feedstock in industry (originally in colour). 

 

Data on the exact amount of FSCW produced by the food supply chain is limited. As 

an example, no detailed data is issued on an annual basis by the E.U.-27 because of 

the commercial sensitivity of this information for the food industry. However 

published data exists, especially at a regional level,73, 81, 91, 93-9 7 but discrepancies 

occur due to  variations in the definition of waste and by-products used by the food 

sector and/or the author of the study for example. This renders a comparison 

exercise difficult across a geographical region. Published studies are the result of 

separate initiatives that vary in the methodology used and sometimes in their 

objectives (e.g. measuring and data gathering are two different endeavours). This 

will affect the boundaries of the study carried-out.98 Waste can be defined as 

edible/inedible food in the retail part of the food supply chain whereas in the 

processing sector this will come down to whether a given product can enter the 

value chain or not.98 The definition chosen for waste, if stated at all, will also 
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influence whether waste water, surpluses, off-spec material, packaging and/or by-

products suitable for animal feed use will be taken into account for example.  

As a result of these observations, a methodology has been designed to estimate the 

volumes of FSCW produced in the E.U.-27 for defined food processing operations, 

focusing especially on FSCW consistent with the selection criteria developed above. 

The objective was to obtain a database allowing for the comparison of FSCW 

volumes available by country with the aim of being able to identify hot spots, or 

locations concentrating a high volume of a given type of FSCW. Ultimately, a priority 

list could be obtained by country or for the whole of the E.U.-27, helping to focus the 

research effort on FSCW generated on an important scale. Such a method can be 

seen as a selection tool for further cradle-to-cradle assessment, using tools such as 

life cycle assessment or even techno-economic assessment. This will ensure FSCW 

will be used in a truly sustainable manner, bringing our society one step closer to a 

zero waste economy. 

 

2.3.1 Methodology used 

 

The novel methodology developed consisted in estimating FSCW arising following 

common food processing operations from statistical data. This allowed the 

utilisation of a large amount of data collected using a similar method, increasing 

comparability of the final study between countries. The data used in the present 

study was Prodcom data published by Eurostat. This data source reports sales 

volumes of manufactured goods for the E.U.-27 every year. Preceding studies in this 

area of research have used Eurostat data on volumes of waste produced for 

manufactured goods including food. Inconsistencies in data collection for the 

Eurostat database are a known issue: each country is free to choose its own method 

to complete the requested survey, which renders a comparison exercise difficult 

across countries.99 The original raw data could not be accessed for Prodcom data. 

However care has been taken to verify the quality of the data through the associated 

quality reports issued with Prodcom data. 

The objective of this piece of work was to estimate the volumes of FSCW arising for a 

known for types and food production processes by calculating the difference 

between the material input and the material output of the process considered. It was 

assumed the material output was equal to the sold manufactured product, the latter 

being obtained from Prodcom data.100 As a result, surplus and “off-spec” goods 
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produced are not included and have not been accounted as waste per se in the 

calculations presented here. On the other hand, no distinction is made between 

edible and inedible production streams here and the data will include by-products 

and “green wastes”.98 From an ethical point of view, such types of waste streams are 

avoidable and the priority should be their reduction rather their valorisation. In the 

U.K., it has been estimated 40% of farmers’ crops are wasted due to the 

implementation of aesthetic criteria for fruit and vegetables by retailers and by bad-

weather forecasting.83  

Prodcom data (or “PROduction COMmunautaire) is used for businesses and 

marketing analysis, for example to forecast market demand.101 Prodcom data is 

obtained by the National Statistical Institutes (NSIs) who conduct a survey of 

enterprises of 20 employees of more. Survey completeness has been reported to 

exceed 95%. It includes the volume of production sold during the targeted period 

for both the domestic and external markets.  

A common nomenclature is used for Prodcom, making the data comparable at a 

European level (i.e. definition of the population, the type of statistical unit, the 

definitions of the variables, the reporting on each type production).1 00-102  

Confidential data is suppressed at national level but included as appropriate at the 

E.U.-27 level to allow the calculations of totals for the whole of the European 

Union.100-102 If a Member State’s production represents less than 1% of the E.U.-27’s 

total for a given food product, then the data does not need to be collected and the 

production is reported as zero.100- 102  

Data checks are performed by the Eurostat office. They include value comparisons 

across countries and over the years. Abnormal variations or questionable accuracy 

are reported to the declarant country and further explanations and/or corrections 

are required. This is done by comparing mean value, the minimum/maximum value 

and the median value for the total production for example. Additionally, the 

coherence between monthly and annual data is checked, and its coherence with 

external sources (i.e. foreign trade data).100-102 Since the methodology presented 

herein is derived from statistical Prodcom data, the reliability of the methodology 

depends on the reliability of the underlying statistics. Prodcom data was deemed a 

reliable source of information which has the advantage of offering a mean of 

comparison across all E.U.-27 countries. 

Eurostat data were used in combination with product percentages obtained from 

published process flow sheets of common food processing operations. The input 
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volume was estimated using the product percentage of the process considered 

found in the literature1 03-108 and the amount of product sold. Peer-reviewed 

publications were preferred when possible to lower the error margin on the results. 

The input volume was then calculated by dividing the amount of product sold by the 

product percentage. The concept used is highlighted in Figure 10. 

 

Figure 10: Calculation method used to estimate relative volumes of FSCW 
 produced following food processing operations (originally in colour). 

 

The calculation used is further illustrated using frozen un-concentrated orange juice 

production in Spain as an example in Figure 11. If 44,450 tonnes of frozen un-

concentrated  juice are sold annually in Italy, the material input can be calculated by 

dividing this value by 49.95% which is the product percentage published for the 

production of frozen un-concentrated  juice.103 The material input is therefore equal 

to 88,989 tonnes. When subtracting the material input to this value, 44,539 tonnes 

of FSCW are produced each year in Italy as a result of the production of frozen un-

concentrated orange juice. 

 

Figure 11: Calculation method used to estimate relative volumes of FSCW 
 generated during the production of frozen un-concentrated orange juice in Italy 

(originally in colour). 
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The method allows the comparison of the FSCW data obtained over all the E.U.-27 

countries. This is one of the advantages linked with the use of Eurostat data. 

Furthermore, the database is very detailed, compiled systematically and updated 

every year, strengthening the ensemble. However, data is missing for some food 

processing operations, depending on the country considered. Some assumptions still 

had to be made for some food processes and need to be further refined. This is for 

example the case for some preserved foods where a 9.32% waste percentage was 

used for preserved mushrooms and preserved asparagus. It was obtained by 

averaging the waste percentage obtained for potato and carrot peel waste, since no 

data was available for those specific cases. 

Furthermore, material outputs reported in volume units represent a difficulty in 

converting to mass since finding precise density data for materials such as citrus 

pomace can be a challenge. In these specific cases, a density of 1.04 kg/L has been 

used for the conversion of the output material data from L to kg.109, 110 This value is 

valid at 20 °C for 10° Brix according to the data reported in the literature. 

Additionally, the database does not distinguish between different waste streams for 

a given processing operation. Given the limitations highlighted above, using this 

method should be used for relative comparisons only, not as estimations of absolute 

values. 

 

2.3.2 Main results obtained 

 

The methodology presented above allowed the creation of a database listing the 

amount of waste generated by country for each processed food type sold in the E.U.-

27 for the year 2012. Furthermore, a classification by waste type (cereal, dairy, fruit, 

vegetable, nut, oil crops, sugar production, bakery, candy and fermented drinks 

derived wastes) renders the database searchable by waste type in addition to by 

country and by processed food type.  

The combination of the database with Google mapsTM allows the identification of 

“hotspots” for a given FSCW type by country. An example is given in Figure 12 for 

the production of frozen un-concentrated orange juice. The hotspots shown for both 

Italy and Germany respectively account for 44,539 tonnes and 26,591 tonnes of 

waste produced as a result of the orange processing. Such a functionality is 

interesting when designing a biorefinery for example, as it allows governmental 

organisations to make informed decisions regarding the geographical location of the 
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valorisation technology used, minimising transport costs for example for a given 

resource. 

 

Figure 12: FSCW hotspots identified as a result of the production of frozen un-
concentrated orange juice (originally in colour). 

 

The method implemented also allows the creation of FSCW lists by country, ordering 

food processing operations by increasing amount of associated FSCW produced. The 

database is also useful to identify the food processing operations generating the 

highest amount of FSCW within the E.U.-27. A table highlighting the ten food 

products whose production is the least efficient is shown below as an example. 

Further developments on the database should allow the identification of food 

processing operations and associated FSCW produced according to the classification 

by waste type mentioned on the previous page.  
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Table 3: The top 10 types of waste generating foods in the E.U.-27 for the year 2012 
 and associated most important volumes (excluding meat and fish products).  

 
Type of FSCW Country 

Waste 
quantity 
(tonnes) 

1. Refined white cane or beet sugar in solid 
form 

France 26,343,300 

2. Molasses obtained from the extraction or 
refining of sugar (excluding cane molasses)  

Germany 19,868,700 

3. Raw cane and beet sugar in solid form, 
excluding flavouring & colouring 

Poland 10,161,500 

4. Grated, powdered, blue-veined and other 
non-processed cheese (excluding fresh 

cheese, whey cheese & curd) 
France 7,589,570 

5. Un-ripened or uncured cheese (including 
whey cheese & curd) 

Germany 5,968,260 

6. Refined palm oil and its fractions (excluding 
chemically modified) 

Netherlands 2,832,450 

7. Refined rape, colza or mustard oil and their 
fractions (excluding chemically modified) 

Germany 2,782,180 

8. Potato starch Germany 2,533,340 
9. Concentrated tomato puree & paste Italy 2,267,480 

10. Wheat & meslin flour Germany 1,959,840 
 

In the context of this thesis, the FSCW database generated by the methodology used 

allowed, for example, the quantification and the identification of the location of 

orange peel waste within the E.U.-27. A list of the top 5 countries generating the 

highest amount of FSCW associated to the production of concentrated orange juice 

n.e.c. (not elsewhere classified) is given in Table 4 to illustrate the results obtained 

using the methodology reported herein.  

Table 4: Quantity of FSCW associated with the production of orange juice n.e.c. in the 
E.U.-27 for the year 2012. 

 

Country 
FSCW quantity associated with the 

production of orange juice n.e.c. (tonnes) 

1. Spain 109,128 
2. U.K. 14,433 
3. Greece 7,006 
4. Italy 4,669 
5. Slovenia 1,369 

 

This comparison exercise highlighted an interesting fact: orange juice production is 

not simply limited to citrus producing countries. In the case of the U.K., which comes 

in second position, this country produces 13.23% of the quantity produced by Spain 

(14,433 versus 109,128 tonnes). This observation shows valorisation processes 
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need to be carefully planned ahead in order to be able to take advantage of all the 

resources available in all location. This is essential, for the efficient design of 2nd 

generation FSCW valorisation strategies.  

The method presented herein allows the relative quantification of volumes of FSCW 

produced by country for defined food processing operations. This method solely 

relies on database consultation (as opposed to database consultation and interviews 

for example) and offers a common methodology for all European countries. This 

makes possible the identification of the most problematic areas and the 

development of appropriate global 2nd generation FSCW valorisation strategies.  

Another methodology was designed by the Food and Agriculture Organization of the 

United Nations. Food balance sheets were designed for each type of food (whether 

processed or not and including primary commodities) and waste data was included. 

However they include the amount of waste “lost at all stages between the level at 

which production is recorded and the household (i.e. during storage, processing and 

transportation).”111 This data presents another disadvantage: the waste data is 

based on assumptions guided by “expert opinion” each country, making the data 

susceptible to regional variations of the definition of waste and a lack of 

systematisation.11 1  

 

2.4 Conclusion and future work 

 

FSCW has been identified as an under-utilised source of bio-derived chemicals. 

Several factors are favouring the development of 2nd generation valorisation 

schemes exploiting the chemical content of FSCW. The loss of energy, water, 

fertilisers, land and labour devoted to the production of food for the FSCW produced 

has been recognised. The environmental impact of waste production and its 

associated green house gas emissions have been deemed unacceptable and several 

pieces of legislation have recently been introduced to reduce our society’s 

environmental footprint. As a result an emphasis has been placed on reducing waste 

and finding re-use strategies for it if possible. FSCW is characterised by a high water 

content and a variable composition. However, it has been shown that through 

careful selection of the type of FSCW used, several logistical issues can be 

eliminated. The selection of plant-derived FSCW occurring in high volumes as a 
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result of food processing operations represents a source of un-avoidable waste 

streams which will offer security of supply.  

A methodology has been designed based on sold manufactured volumes of food 

products to evaluate the volumes of FSCW arising by country for common food 

processing operations. The latter data is systematically compiled and updated every 

year by the E.U.-27 for all member countries. In the future, the use of such a source 

of information will allow trends in FSCW generation by year to be obtained.  

Hopefully the measurement, recording and publication of these trends will act as a 

further spur for reductions in avoidable food waste and valorisation of unavoidable. 

As a result, the methodology presented could be considered as a way to monitor 

progress made in the area of FSCW. Ultimately, the FSCW inventory obtained is the 

first step towards better understanding the issues arising with the generation of 

FSCW, further allowing the identification of FSCW hotspots which will represent an 

opportunity in terms of chemical content and/or volume.  

In terms of further work, the application of this methodology should be broadened 

to the study to agricultural residues based on the same criteria used for FCSW 

arising from processed food. This would provide a more complete database. 

Beforehand, the variation of the data should be statistically analysed, multivariant 

data analysis could be used. 

In terms of bigger picture, the database generated could also be linked with data on 

the properties and the chemical content of the different FSCW streams considered. 

An online tool could then be developed allowing the matching of a type of waste 

with the best type of technology available for efficient valorisation according to the 

chemical content of the FSCW type considered. This concept is illustrated in Figure 

13. Such an initiative would provide focus to an emerging research area.  
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Figure 13: Interconnection of the criteria used to select suitable FSCW types for 2nd 
generation valorisation. 

 

This present chapter focused on the area of FSCW valorisation as a whole. The 

following chapter will be dedicated to the description of citrus processing, focusing 

on orange fruits and existing processing operations. The latter are going to be 

evaluated and the opportunity for an integrated microwave process for the 

valorisation of waste orange peel (WOP) produced post juicing will be presented, 

setting the scope of this thesis.  
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3 The Orange Peel Extraction Company. Opportunity for the 

valorisation of waste orange peel. 

 

The waste arising as a result of food processing operations is a good example of a 

pre-consumer waste generated at an important scale, in Europe especially. The scale 

and rate at which they are produced together with the fact they are putrescible 

represent a problem for the industry concerned.75  The processing of fruit and 

vegetables produces large amounts of wastes from processing activities(washing, 

peeling, blanching and sterilization processes).90 Classical waste management 

strategies include incineration, landfilling or use as cattle feed, but these do not take 

advantage of the chemical content of these specific types of waste. 

 

Following the presentation of the advantages linked with the use of clean technology 

(i.e. microwave technology) and by the presentation of the drivers motivating the 

use of FSCW as a renewable feedstock, this chapter will focus on the valorisation of 

citrus peel waste (CPW) and, more specifically,  on waste orange peel (WOP) 

obtained from juicing operations. After highlighting the amounts of WOP available 

following juice processing, this chapter will describe the chemicals present in WOP 

and their respective use together with the commercial processes that are currently 

used for their extraction. The assessment of the current situation will lead to the 

presentation of an integrated waste biorefinery aimed at the sequential extraction of 

three main components present in WOP, offering an improved process over the 

current process used. 

 

3.1 Availability of citrus peel waste around the world 

3.1.1 Amount of citrus waste produced by the top five producers of orange 

juice 

 

Citrus fruits are extensively cultivated around the world. They are considered as a 

commodity product, similar to coffee and tea in terms of international trade. They include 

oranges, lemons, limes, grapefruits and tangerines. Globally, 51.8 million metric tonnes 

of orange fruits were produced for the 2013-2014 harvesting season, 40% of which 

was grown for the sole purpose of being processed into juice.11 2 The processing 
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industry creates a large amount of waste by-product in the form of peel, seeds, rag 

(the membranes between the citrus segments) and pulp (juice sacs), representing ~ 

50-60% of the whole fruit being discarded after juicing.113 Assuming 50% of the 

weight of a citrus fruit is discarded in the form of peel when processed,114 the 

corresponding amounts of waste orange peel arising from the processing of orange 

fruits have been estimated based on the latest report published by the United States 

Department of Agriculture.112 The data can be found in Table 5. The data reported in 

the table show that of the top five orange processing nations, three are also the 

largest orange fruit growing nations. It should be noted that the data does not take 

into account either “off spec” orange fruits disposed of prior to processing or fruits 

destined for human consumption but destroyed to regulate the selling price (which 

is a regular practice in Spain for example). These fruits could also be used for 

valorisation purposes. The numbers show how citrus peel and more specifically 

orange peel, which is a by-product of the juicing industry, represent a high volume 

waste stream occurring on both hemispheres of the globe. 

 

Table 5: Estimated amounts of WOP produced in main citrus producing countries for 
the 2012-2013 harvesting season.112  

Country 
Amount of orange fruits 
produced for processing 
purposes (metric tonnes) 

Associated amounts of waste 
orange peel produced following 

processing (metric tonnes) 

Brazil 10,935,000 5,467,500 
U.S.A. 5,423,000 2,711,500 

E.U.-27 1,069,000 534,500 
Mexico 1,350,000 675,000 
China 600,000 300,000 

TOTAL: 19,377,000 9,688,500 
 

 

Through the course of this project, data was also gathered directly from industrial 

contacts. Recent data obtained in 2013 shows that a Scottish orange juice producer 

(GetJuiced®) generates up to 14,400 kg of CPW per week and is projecting to reach 

86,400 kg of CPW per week by March 2014. Such data is especially relevant as it 

shows the importance of citrus processing activities in citrus fruits importing 

countries (i.e. local fresh orange juice production in the U.K. for example). Hence 

making second generation valorisation strategies relevant to these countries too. 

Additionally, a smaller country such as Cyprus with a more modest citrus fruit 

production capacity also has the potential to generate relatively significant 
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quantities of CPW: two juicers located in Cyprus have been reported to produce 

every year 8,000-11,000 metric tonnes (sent mainly to animal feed) and 4,500 

metric tonnes (3,500 metric tonnes for orange peel and the remaining 1,000 metric 

tonnes for lemon and grapefruit peel) of CPW respectively.  

Furthermore, citrus fruits are grown around the globe, on either side of the equator and 

even though the harvesting season is fixed in specific locations around the globe,
115

 their 

harvest is spread around the globe throughout the year, ensuring a constant supply of 

CPW for valorisation purposes. 

 

3.1.2 Process flow sheet for the production of orange juice 

 

After the juice produced, WOP is the second largest output following juicing 

operations. Figure 14 highlights the general process used for orange juice 

production together with other outputs. Modifications to this process will occur 

according to the geographical location of the process. Outputs considered as waste 

are indicated in red and products entering the value chain are shown in orange. 

Typically a processor can expect to recover 45-55% of the fruit as juice, 45-55% as 

peel and 0.2-0.5% as essential oil (shown as D-limonene in Figure 14) from the 

citrus fruit.116
 The amount of water used for washing is very important for this 

process with a peel:water ratio is fixed to 1:1.10 3  

 



69 
 

 

Figure 14: Juice extraction process highlighting common by-products and WOP 
outputs.103, 117, 118  

 

Orange fruits harvested go through a lengthy process for juice extraction. Following 

fruit grading (including sizing), the fruits are washed and their juice is extracted by 

pressing. Peel oil is usually recovered as highlighted in the figure above.116 Molasses 

and hesperidin can be obtained too, but the inclusion of these steps is not ubiquitous 

and will depend on the level capital available for investment, the required pay-back 

period and the juicing equipment used. Therefore the process steps leading to the 

production of molasses have been put into brackets.117, 119  

 

In most cases, following juicing, the juice is finished to remove excess pulp to match 

required specification and then de-oiled to avoid damaging its organoleptic 

properties. This oil is not necessarily recovered. D-limonene containing oil can be 

obtained post-juicing by either cold pressing or steam distillation. The two different 

processes yield respectively a high purity/food grade and a technical grade of D-

limonene. The latter compound can also be extracted prior to juice extraction by 

pressing depending on the juicing technology employed.116 Following the pressing of 

the peel for the production of high purity/food grade D-limonene, molasses can also 

be obtained. The latter is rich in sucrose and reducing sugars. Molasses finds 
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applications as animal feed or as fermentation feedstocks for ethanol production for 

example.117, 118 The exhausted peel then obtained can be used for animal feed if 

further dried. 

The scale of operation for orange juice production will influence the recovery of 

additional by-products. Only above 50,000 metric tonnes of fruit processed per 

harvesting season, has it been estimated profitable to invest into peel drying 

equipment for animal feed production. Below the 50,000 metric tonnes threshold 

cited above, the peel has been reported to be disposed of or burnt in the field.120  In a 

few cases, further extractions are carried out to produce flavonoids such as 

hesperidin, however this is not automatic. 

According the literature the juicing process would benefit from further 

improvements: “current [CPW] processing is based upon processing technology that 

is at least 70 years old. It is largely unprofitable, grossly ineffective, and adds non-

combusted fuel oil to the peel mass when fuel oil is used as a direct fire heat source. 

The process is also a high user of energy and [is] very problematic to operate.”121 

Furthermore, “toxic chemical dewatering agents are used in current citrus peel 

processing operations, use of the end product of dried peel is limited to one 

product—a toxic cattle feed supplement."121 Lime is often used for this purpose.1 18  

Moreover, the high carbohydrate content of WOP is highly fermentable.94 The 

disposal of CPW usually represents a problem at industrial scale. In the U.S.A., citrus 

processors are not allowed to landfill citrus waste and therefore have to transform it 

into pelletized animal feed, which is not cost-effective due to the costly drying 

process needed to lower the moisture level of CPW.122 The added cost of storage and 

transport needs to be considered too. Overall, waste treatment represents a 

significant investment. Transformation of waste into value-added products could 

potentially allow companies to cut treatment costs, generate additional profits and 

improve their competitiveness. Moreover, 2nd generation valorisation of FSCW is 

becoming a necessity as part of the existing sustainable development and 

environmental protection required by legislation and by the consumer.123  

 

3.2 Orange peel waste composition and value 

 

Orange peel is of particular interest given the variety of compounds it contains (see 

Figure 15). It has been recognised as an interesting source of dietary fiber, natural 
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antioxidants, food colorants and flavours.124 D-limonene and pectin both have 

applications in the food and cosmetic industries amongst others; as a fragrance94 

compound and a thickener125 respectively. The sequential extractions of those 

compounds for valorisation purposes in the food and chemical sectors amongst 

others, represents an interesting research avenue, from both academic and 

economic angles. The main components present in orange peel are summarised in 

Figure 15 together with their associated weight percentage on a dry basis. WOP can 

contain up to 80% water.117, 119 In the following section, the current commercial 

extraction process used will be described. 

 

 

Figure 15: Main compounds of interest present in orange peel and their occurrence 
(wt% dry basis).126, 127  

 

The peel is mainly composed of pectin, hemicellulose and cellulose (50-70%). Lignin 

typically represents less than 10% of the peel on a dry weight basis.12 8 Glucose, 

fructose, sucrose and xylose constitute the water-soluble fraction of the peel.117, 118 

Of special interest is D-limonene, followed by pectin, the flavonoid hesperidin, 

polymethoxylated flavonoids and sugars which can be used as a fermentation 

feedstock to access more bio-derived platform molecules.1 29  

 

3.2.1 D-limonene and orange oil 

 

D-limonene can be obtained from whole fruits if the harvest is dedicated to oil 

production or as a by-product of juice production.119 By D-limonene, the material 

referred to often corresponds in the literature to the peel oil, or essential oil 

obtained by steam distillation. Figure 16 gives the detailed process flow sheet of the 
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extraction of this compound by steam distillation. This process will vary according 

to the geographical location of the operations and the size of the juicing plant.  

 

 

Figure 16: Process flow sheet for the commercial production of D-limonene.103 

 

Between 50,000 and 70,000 tonnes of D-limonene are reported to be produced yearly.
130, 

131
 The price of D-limonene is highly variable depending on supply and demand (i.e. 

£1.91-6.61/kg for D-limonene in 2013).132 This chemical is currently facing a huge 

demand. D-limonene finds uses as a starting compound for industrially relevant fine 

chemicals and flavour compounds (e.g. carveol, carvone, α-terpineol, perrillyl alcohol, p-

cymene and perillic acid).
94, 133

 Another of its uses includes the production of adhesive 

terpene resins via its polymerisation in toluene using AlCl3.
117

 It is also regarded as a 
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renewable and biodegradable solvent, although its biodegradability is similar to 

comparable synthetic hydrocarbons. With a Kauri-butanol  value of 67, D-limonene has 

good solvating properties.
131, 134

 Such properties explain its use in a large variety of 

consumer products, in addition to its flavour and fragrance properties.
113

  

 

3.2.2 Pectin 

 

Pectin is a complex carbohydrate mainly composed of chains of 1,4-polygalacturonic 

acid (polygalA) branched with sugar monomers. Its structure, chemical 

functionalities, properties and uses will be further discussed in chapter 4. This 

compound is mainly used for its gel forming properties when in water. It is 

commonly used as a gel forming agent in jams,135  bakery and sweet food products as 

well as a stabilizer in dairy drinks.136 New applications for this natural compound 

are continually being developed. The latest one concerns the development of an 

extraction method producing pectic oligosaccharide prebiotics.137  High methoxy 

pectin retails for around £10/kg120 and the global production for this 

macromolecule has been reported be 35,000 tonnes yearly.136, 138 The major sources 

of pectin used in industry include citrus peel (peel residue generated by the 

extraction of juice and sometimes oil) and apple pomace (juice residue). Lime and 

lemon peels are sometimes preferred although orange peel has a greater availability 

and application range. 139 Dry pectin can be obtained in yields of up to 20-30% of the 

dry weight of the citrus peel.125 Pectin is not generally a by-product of the juice 

production industry. It can be extracted from the peel residue following juice 

extraction, providing the peel is pasteurised (95-98 °C for ~ 10 minutes) and dried 

rapidly following juice extraction to avoid the degradation of its inherent pectin 

content by pectolytic enzymes present in the peel (i.e. methylesterase enzymes).118, 

140 Figure 17 highlights the process commercially used for pectin extraction.1 Pectin 

is extracted commercially by acid hydrolysis, generating quantities of acidic waste 

water.
141,116 Pectin production mostly takes place in Europe,  Israel and Brazil.116, 142,  

143 The U.S.A. used to manufacture pectin but the acidic and sugar rich effluents 

produced as a result of the acid hydrolysis process used were deemed to expensive 

to treat following  new regulations issued by the American Environment Protection 

Agency (E.P.A.) and all pectin manufacturing activities have since ceased in the 

U.S.A.144 The acid hydrolysis typically takes place at pH 1-3 and 50-90 °C for up to 12 

hours.1 A yield of 25-30% is generally expected. 10 to 15% of pectin is usually 

composed of neutral sugars.140  
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Several washing and purification stages are needed to remove soluble sugars and 

acids present in WOP.145 They make pectin production a wasteful and polluting 

process, with several different waste streams having to be treated for one process 

such as acidic waste water. As an example, during the concentration step, between 

100 and 170 kg of water need to be removed per kilogram of pectin produced.1 This 

is especially the case if aluminium salts are used for the precipitation of pectin.  

Figure 17: Process flow sheet for the commercial production of pectin 
via acid hydrolysis.1 
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Overall, the disadvantages associated with the traditional method of production of 

pectin are:  

 the use of a highly perishable feedstock, 

 a high energy demand (for the peel drying stage and the acid 

extraction of pectin),  

 the use of environmentally hazardous chemicals,  

 the production of acidic effluents and 

 the questionable safety of a batch process on a multi litre scale in the 

light of new developments on continuous processing.  

 

Microwave heating has been used previously in the extraction of pectin from citrus 

peels essentially to obtain higher quality pectin faster. It has also been shown that 

microwave heating improves the overall pectin properties including the degree of 

esterification, molecular weight, viscosity, gel strength and galacturonic acid (galA) 

content.146-148 However, all of these methods still involve the use of a strong mineral 

acid. Herein, microwave assisted production of pectin from WOP under acid-free 

conditions represents an interesting research avenue.  

 

3.2.3 Flavonoids  

 

The main flavonoids available in citrus peel are hesperidin (main flavonoid in 

orange peel, 2% dry weight)149, narirutin, naringin and eriocitrin. Flavonoids are the 

major source of naturally occurring polyphenols and hence, of antioxidants present 

in fruits and vegetables. Their polyphenolic skeleton allows them to act as “radical 

scavengers” due to their hydrogen and electron donating ability and metal chelating 

ability.150, 151 Given these properties these compounds have known 

pharmacological152 and food applications.150, 151 Between 1.7 and 2.0% of flavonoids 

are present in the peel of orange and grapefruits.1 49 To date, flavonoids are not 

routinely recovered at a significant scale commercially. This is due to the absence of 

an effective extraction protocol.153 The recovery of hesperidin and polymethoxy 

flavonoids will be of most interest here.  
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3.2.3.1 Hesperidin 

 

Hesperidin belongs to the class of citrus derived glycosides. This compound is the 

most abundant flavanone glycoside found in citrus peel.153 Between 3.6 and 4.5 kg 

per tonne of orange peel can be obtained. This equates to a 0.36-0.45% extraction 

yield.117, 154 A process flow sheet is given in Figure 18 for the extraction process used 

for hesperidin according to referenced material. The extraction is carried out at 

basic pH using calcium hydroxide followed by recrystallisation at pH 4.2-4.7 and 40-

45 °C or 55-60 °C and yields hesperidin with a purity of 70-80%. To reach a purity 

>95%, the recrystalisation is usually repeated. It should be noted that the moisture 

of the peel can be reduced prior to hesperidin extraction. In this case, a dewatering 

step is added between the grinding and the extraction steps, generating a great 

proportion of wastewater effluents.119, 155, 156 It is known hesperidin needs to be 

extracted prior to mineral acid extraction of pectin,155 making the recovery of 

hesperidin very difficult as a by-product of pectin extraction. 
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Figure 18: Process flow sheet for the commercial production of hesperidin.1 19, 155  

 

3.2.3.2 Polymethoxylated flavonoids  

 

Polymethoxy flavonoids such as tangeritin or sinensitin are found in citrus peels.150  

At this point, polymethoxylated flavonoids are not commercially extracted at a large 

scale from citrus fruits. This by-product has only recently attracted interest from the 

academic community due to amongst others, its antioxidant and anticancer 

properties. Industrial scale extraction from citrus peels is as yet not established. 

However, the literature mentions their extraction from molasses by peel maceration 

with lime with a 0.13% yield.157 
Molasses is the liquid phase resulting from pressing 

orange peel. They are a result of peel pressing from animal feed from WOP. 

However, molasses is not produced from WOP in all cases.158  
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3.3 Scope of this thesis 

 

The valorisation of WOP is the centre of a significant body of literature. The 

potential of this feedstock has long been recognised. Initial research established that 

WOP could yield dietary fibers,159 fuel127 and flavonoids (hesperidin, narirutin, 

naringin, eritrocin) in addition to the traditional by-products (silage and as a 

mosquito repellent). It can also be used as a fermentation substrate for single-cell 

protein production. 94, 117   

First generation biorefineries based on the use of WOP as a feedstock have also been 

designed. The literature reports methane production from WOP by thermophilic 

anaerobic digestion,113,160  and the combined production of bio-ethanol and D-

limonene and methane by sulphuric acid hydrolysis at 150 °C, The latter has been 

demonstrated as economically viable when methane is used to fuel the process.127, 

161  

In Florida, scientists have focused on the production of bio-ethanol from WOP,162 

following D-limonene extraction (D-limonene is detrimental to the activity of the 

enzymes used for the production of bio-ethanol). The only example of integrated 

valorisation of WOP was demonstrated in Sweden by Pourbafrani et. al. for the 

combined production of bio-ethanol, methane and limonene.1 27 None of the designs 

mentioned earlier report the recovery of pectin prior to fuel production though. 

As a result, the design of a sustainable and integrated process for the production of 

the highest number of marketable chemicals, materials and/or fuel with maximum 

efficiency represents an interesting research area, especially if the technology used 

is safe and transportable. This led to the idea of developing an integrated waste 

biorefinery capable of producing chemicals from the million tonnes of WOP 

generated every year globally. The design should have the following attributes:  

 avoid the use of a drying and pre-treatment stage 

 allow the use of wet biomass 

 avoid the use of acid and additives used in the process especially for 

pectin and hesperidin extraction 

 avoid or limit the use of solvent to food grade solvents only and  

 allow the valorisation of WOP in-situ. 

Microwave processing was chosen as the core technology of the biorefinery as it 

allowed the use a wet feedstock, by-passing a costly and energy-intensive drying 
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stage. Additionally, prior work in the area of separate D-limonene and pectin 

extraction using microwaves had been reported but it did not meet all the criteria 

mentioned above. Furthermore, their sequential extraction under acid-free 

conditions has not been reported, representing an opportunity for innovation (see 

Figure 19). This area will be properly discussed in chapter 4. Given the higher selling 

price of pectin compared to D-limonene together with the higher availability of 

pectin in WOP, the project first focused on the extraction of pectin under acid-free 

microwave conditions. Especially as it appeared early on that the profitability of the 

process would depend on the production of pectin and that continued investments 

by major pectin manufacturers in their processing capabilities.143, 16 3  

 

 

Figure 19: Illustration of the concept of a waste biorefinery centred on the use of 
WOP and microwave technology. 

 

A brief SWOT analysis (Strengths, Weaknesses, Opportunities and Threats) has been 

carried-out to specify the desirable features of a waste biorefinery focused on the 2nd  

generation WOP valorisation. The analysis is given in Figure 20. 
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Figure 20: SWOT analysis for the design of a WOP microwave biorefinery. 

 

The analysis of the strengths and opportunities shows that the anticipated growth of 

the biorefinery could lead to the application of the technology to other processed 

citrus fruits (i.e. limes and lemons). The analysis shows the weaknesses of the 

project can be minimised as some of the chemicals targeted already have a 

commercial value. The opportunity therefore lies in combining juice and D-limonene 

together with pectin production, which are traditionally two different business 

sectors. Flavonoids and sugar extraction using the same process would represent an 

additional opportunity, providing all components can be separated using food grade 

solvents. The main threat to the designed valorisation scheme is the uncertainty in 

crop yields and quality, influencing the amount of WOP produced and hence, the 

potential revenue. This last factor renders the diversification of the feedstock used 

even more important, minimising the influence on the biorefinery revenue of 

specific crop yields. The threat of the well-established current processes for D-

limonene and pectin extraction can be minimised if one of them invests in the 

biorefinery model, or if the stand alone biorefinery has a strong marketing and 

advertising strategy towards the buyers and legislation (i.e. proven greener 

credentials, lower waste treatment costs). Therefore, greenhouse gas analysis and 

full life cycle assessment are as important as a techno-economic assessment of the 
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biorefinery scheme designed to further validate the strategy imagined and verify the 

sustainability of the valorisation scheme chosen from cradle-to-grave. Proving the 

economical feasibility of a biorefinery process is as important as proving its 

sustainability. 

As a result of the SWOT analysis, the scope of this project was determined. The 

success of the development of a microwave biorefinery process centred on the 

valorisation of WOP will depend on the: 

 successful pectin extraction using a low temperature (below 200 °C) 

and acid-free hydrothermal treatment, 

 successful microwave assisted D-limonene extraction under solvent-

less conditions, 

 integration of both pectin and D-limonene extraction to design an 

integrated microwave process potentially fit for continuous 

processing and 

 extraction of flavonoids and sugars for additional revenue. 

The scope of this thesis was therefore to develop a low temperature microwave 

process allowing for the recovery of a maximum number of compounds present in 

WOP. This process should be appropriate for in-situ operation at a juicing plant. 

Pectin production under acid-free conditions was the primary objective and the 

development of suitable extraction conditions will be discussed in chapter 4. 

Research on the extraction of D-limonene will be discussed in chapter 5. The 

additional production of compounds such as hesperidin, polymethoxylated 

flavonoids and sugar monosaccharide was investigated and will be discussed in 

chapter 6. The entire process developed, namely the OPEC process, has been 

highlighted in Figure 21. 
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Figure 21: OPEC process used for the valorisation of WOP using acid-free, low 
temperature microwave hydrothermal condition 
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4 Microwave hydrothermal extraction of pectin from waste 

orange peel under acid free conditions 

4.1 Introduction to pectin 

 

Pectin is a structural hetero polysaccharide present in non-woody plant tissues and 

contributes to cell wall adherence and strength. It is responsible for the “firmness 

and structure of the plant tissue. It belongs to the primary cell wall structure. It is 

involved in cellular adhesion and forms highly entangled networks further stabilized 

by calcium and alkali-labile cross links”.164  

It is a component of protopectin which is naturally present in the cell wall.139 Figure 

22 depicts the chemical structure of pectin.165, 166 It is mainly composed of chains of 

D-galacturonic acid (galA) units linked together by α-(1→4) glycosidic bonds.  

Additionally, the chain of poly α-1,4- D-galacturonic acid (polygalA) showcases 

neutral sugars such as rhamnose, galactose, arabinose fucose or xylose.114 The 

structure of pectin is believed to be organised in four different subunits. Three 

contain branched sugars grafted on the backbone of polygalA: rhamnogalacturonan I 

and II (respectively RG I and RG II) and xylogalacturonan (XGA). These are often 

referred to as the “hairy regions” of pectin. The un-branched backbone of polygalA is 

called HG or homogalacturonan and is commonly referred to as the “smooth 

region”.114 These four different subunits form branched blocks organised around the 

main polygalA chain. A full characterisation of this macromolecule is yet to be 

resolved.139 The composition of the pectin extracted will depend on the type and 

variety of biomass it originates from and the conditions of extraction.140 The acid 

hydrolysis extraction process based on the use of mineral acids will yield pectin 

mainly composed of “neutral sugar free” chains of galacturonic acid.139, 1 67 Under E.U. 

standards, pectin has to contain over 65% galA.139, 15 2  
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The ability for pectin to from a gel under controlled conditions is exploited in the 

food, cosmetic and pharmaceutical sectors. Pectin is used in the food industry as a 

gelling and thickening agent.125 It‘s ability to form a network capable of retaining 

water is used for jam manufacturing, it acts as a cloud stabilizer in fruit juices and 

milk drinks and as a fat replacement agent in reduced fat products.125 Other 

applications include drug delivery systems in the pharmaceutical industry or for 

medical adhesives for example.152  The gel-forming properties of pectin are due to 

the presence of a carboxyl functional group on the C-6 of galA. This carboxyl group 

can exist as a free acid or a methyl ester. A 50% DE represents the cut-off point 

between high and low DE pectins. Below 10% DE, it is called pectic acid.168 The DE is 

a particularly important parameter. It is used in the food industry to determine 

RG II HG XGA RG I 

poly α-1,4- D-

galacturonic acid 

“smooth region” 

“hairy region” 

Neutral sugars key: 

L-Rhamnose 
D-Glucuronic acid 
Kdo 
L-Arabinose 
D-Galactose 

L-Aceric acid 
D-Dha 
D-Apiose 
L-Fucose 
D-Xylose 

L-Galactose 
-O-Acetyl 
-O-Methyl 
Borate 

 

 

 

Figure 22: The different structural units of pectin and its components. 
This diagram was partly published in www.plantphysiol.org and is copyrighted 

by the American Society of Plant Biologists. It is reproduced with permission 
(originally in colour).  
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optimum gel forming conditions.  Two types of gel forming mechanisms for pectin 

are reported: one for high DE pectin (> 50 %) and one for low DE pectin (< 50 %). 

High DE pectin is typically used in jam and low DE pectin bakery goods. They are 

summarised in Table 6. Pectin gels at low pH 2.5–3.8 with a high sugar concentration 

(>55%).
169

 There are as many pectin formulations as there are products on the 

market including pectin in their ingredients list. Pectin’s properties for a given 

application can be “tuned” by pH variation, counter-ions addition, amidation (C6  

position), acetylation (O2 or/and O3 position),170  demethoxylation to optimise its 

performance for a wide range of applications.13 9  

Table 6: Characteristics of different gel forming mechanisms for pectin.  

DE 

(%) 

Type of 

pectin Gel type Gel formation 

mechanism  
Setting 

speed 
Setting 

pH 

70-80 
High 

methoxyl 

content 

Acid 
Hydrogen bonding & 

hydrophobic interaction 

Rapid set 2.8-3.4 

60-65 Slow set 2.8-3.2 

<50 

Low 

methoxyl 

content 

Calcium 

Inter pectin chain Ca2+ 

ions “bridges” between 

two pairs of carboxyl 

groups  

Slow set 2.8-6.5 

 

Other characterisation benchmarks and quality parameters include: 

 the degree of amidation (for specific applications),152 

 the degree of acetylation (for specific applications),152 

 molecular weight, 

 neutral sugar content and 

 viscosity measurements. 

 

4.2 Occurrence of pectin and traditional extraction of pectin 

 

The yield, quality and gelation properties of pectin varies according to the nature of 

the biomass it is extracted from. Pectin is commercially extracted from citrus peel, 

mainly lime and lemon peels as the pectin they produce is known to be of high 

quality.171 Dried apple pomace is used too though as well as beet pulp.152 Table 7 

compares the distribution of pectin in the different constituents of oranges and 

grapefruits. 



87 
 

 

Table 7: Repartition of the dietary fiber content in parts of oranges and grapefruits 
(g/100g of fresh material). 1 17  

 Orange Grapefruit  
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Pectin 3.7 4.0 4.8 3.0 4.8 4.0 4.9 4.0 

Hemicel- 
lulose 1.8 1.5 1.7 1.6 1.4 1.1 1.5 1.6 

Cellulose 
3.8 3.5 3.5 6.8 2.6 2.3 1.8 7.0 

Lignin 
0.3 0.7 1.0 3.2 1.2 0.7 0.9 3.3 

Total 9.6 9.7 11.0 14.6 10.0 8.1 9.1 15.9 

 

Pectin is traditionally extracted using acid hydrolysis, generating substantial quantities of 

acidic waste water.
141

 The industrial extraction process involves treating the raw material 

with hot dilute mineral acids for 3 to 12 hours.
1
 Insoluble peel particles are removed 

from the mixture and the solubilised protopectin is concentrated to 3-5% by 

vacuum evaporation. Pectin is recovered by precipitation using alcohol or 

aluminium salts. It is then washed with acidic alcohol. To be sold as a powder, the 

resulting purified pectin has to be pressed, therewith drying it further until a 6-10% 

moisture content is reached. It is then finely ground. Pectin can be standardised by 

blending with sucrose.1 Dry pectin can be obtained in up to yields of 25-30% of the 

dry weight of the citrus peel. The many washing and purification stages make pectin 

production a wasteful and polluting process, with several different waste streams, 

all needing individual treatment. This is especially true when aluminium salts are 

used for the precipitation of pectin.117   

Alternative methods to acid hydrolysis are currently being researched given the 

disadvantages associated with the traditional process (see chapter 3).  Enzymatic 

extraction is one method being researched. This method has been developed to try 

to extract pectin with a higher degree of polymerisation and a higher molecular 

weight, employing enzymes to obtain more controllable hydrolysis conditions with 

limited success.172   
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4.3 Precedents in acid-based microwave assisted extraction of 

pectin 

 

Microwave heating has also been investigated to extract pectin from citrus peel 

under acidic conditions. The use of this technology was primarily aimed at reducing 

the long extraction times associated with pectin acid hydrolysis. It has also been 

shown that microwave heating improves pectin properties including the DE 

molecular weight, viscosity, gel strength and galA content.146-148 Several publications 

exist in the area of microwave assisted acid hydrolysis. The most important pieces of 

work in this specific area are highlighted below. 

Fishman et. al. has reported that microwave-assisted extraction yields pectin of a 

higher quality.173 This author studied microwave heating under pressure (in a closed 

vessel) to extract pectin from the albedo of oranges. The pectin obtained had a 

higher average molar mass, size and intrinsic viscosity compared to pectin extracted 

using conventional heating methods. The DE and the galA content of the pectin 

obtained were higher too. 20.3% of pectin on a fresh-wet basis was extracted from 

the albedo. The conditions used were: microwave heating at 630 W, 2450 MHz, pH 2, 

using hydrochloridric acid as a solvent (albedo:solvent 1:25) and a 3 minutes 

reaction time in a closed vessel.148 The same author applied extended this 

(patented) method to the extraction of pectin from lime flavedo, albedo or pulp. 

Molar mass, viscosity and the radius of gyration all decreased with time of heating. 

Interestingly, in this piece of work, the authors concluded that heated dilute acid 

environments were necessary to extract pectin and that no pectin could be extracted 

from albedo dispersed in water under microwave conditions alone.173 Manabe et. al. 

first reported the extraction of pectin from mandarin orange pulp using microwaves 

in an open vessel.174 Kratchanova et. al. reports that extracting pectin using 

microwaves results in obtaining pectin in a higher yield and quality (DE, molecular 

mass and gel strength).146, 17 5 This has been attributed to partial disintegration of 

tissues, hydrolysis of the protopectin and the fast inactivation of the pectolytic 

enzymes in the raw material.147 In Kratchanova’s work, microwaves were used as a 

pre-treating method (5, 10 or 15 minutes at 0.45, 0.63 or 0.9 kW) and the pectin was 

then extracted at 80-82 °C with HCl (0.5 M) to lower the pH to 1.5. The same pH was 

used under microwave-assisted conditions by Bagherian et. al. They studied the 

influence of the heating time and microwave power on the pectin yield and a 

maximum yield of 26.3% pectin was obtained at 900 W following a heating time of 6 

minutes.17 6 At 500 W under the same pH conditions, a 18.23% yield of pectin was 
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obtained by Guo et. al.177 Microwave assisted extraction of navel orange albedo at 

150 °C for 15 minutes yielded 0.8% of pectin on the other hand ( 1.6% when 

calculated based on the dry yield of peel).135 Zhongdong et. al. uses the microwaves 

as a heating method for the extraction of pectin at pH 2 with HCl (85 °C for 4 

minutes, 2450 MHz, 1000 W). The author used scanning electron microscopy (SEM) 

analysis, to demonstrate that microwaves disorganise the orange peel organisation 

and loosens its structure as the microwaves cause cells to split due to the 

evaporation of the inherent water content of the peel.178 A summary of the 

observations reported in the literature on microwave-assisted extraction of pectin 

under acidic conditions can be found in Table 8. 

Table 8: Reported properties of pectin extracted under acidic microwave conditions. 

Pectin origin 
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Orange 80-82 450 20 
17.0 

g/100 
g peel  

67.1 72.9 
Kratchanova 
et. al., 2004 

Orange albedo 
Not 

measured 
630 3 20.2 93 93 

Fishman et. 
al., 2000 

Lime albedo 140 
Dynamic 

mode 
2.5 

6.2 
±0.1 

88 66 
Fishman et. 

al., 2006 

Navel orange 
albedo 

150 
Dynamic 

mode 
15 0.8 - - 

Liu et. al., 
2006 

Navel orange 80 500 21 
18.13 
±0.23 

72 82 
Guo et. al., 

2012 

Grapefruit  
Not 

measured 
900 10 

26.27 
±0.8 

68 72 
Bagherian 

et. al., 2011 

 

Results reported in the literature show pectin can be extracted under acidic 

conditions when using microwaves. Within the context of this work aimed at 

designing an integrated biorefinery process for the valorisation of WOP, the acid-

free extraction of pectin using microwaves was investigated first as microwave 

assisted extraction of D-limonene is already known. Additionally, the cost-
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effectiveness of the future biorefinery scheme being developed was considered early 

on and given the value of pectin compared to D-limonene (£10/kg for high-methoxy 

pectin40 versus £1.91-6.61/kg for D-limonene in 2013),132  it appeared early on 

during the project that the profitability of the process would depend on the 

production of pectin. Given the disadvantages linked with the use of acid hydrolysis 

for the extraction of pectin, acid-free conditions were investigated with the aim of 

producing pectin under low temperature hydrothermal conditions. Under such 

conditions, no acid was used during the extraction or the work-up of pectin. Within 

the scope of this project, pectin characterisation proved an interesting research 

avenue. The results obtained using standard methods used in the food industry were 

not satisfactory. A new application of nuclear magnetic resonance was hence 

developed as a result. The following section focuses on the analysis of acid-free 

pectin, highlighting the different techniques used and associated results.  

 

4.4 Characterisation of pectin 

 

Several parameters can be evaluated to determine the quality of the pectin 

extracted. The main ones are summarised in Table 9 according to their importance. 

Parameters such as the DE, galA and molecular mass distribution relate to the fine 

chemical structure of the pectin. They are characteristic of its functionality, and 

ultimately its applications. Finding analytical techniques available in house was 

particularly important for this project. Most analytical methods applied for the 

evaluation of pectin’s chemical and functional properties were originally designed 

for food scientists. The main ones are reported in Table 9.  
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Table 9: Pectin quality parameters and associated analysis methods.  

Priority 

order 

Quality 

parameter 
Indication Determination method 

1 DE 

The distribution & the 

pattern of the esterified 

carboxyl groups has a 

profound effect on the 

gelling mechanism & gel 

properties.125  

Phenolphthalein double 

titration,164, 179  

FT-IR,180-182 
13C NMR (solid and 

liquid).183, 184  

2 
galA 

content 

Provides an indication of 

purity. A 65% galA is 

necessary for pectin to be 

used as a food additive (as 

E440).152 

Phenolphthalein double 

titration,179  

Colorimetric method 

based on the use of 

carbazole185 or m-

hydroxydiphenyl.186 

3 

Molecular 

mass 

averages & 

molecular 

mass 

distributio

n 

Molecular weight data 

allows the determination of 

the functional behaviour of 

the pectin 

macromolecule187 as well 

as end-use performance 

evaluation.188  

Size exclusion 

chromatography.148, 186, 

187  

4 

Neutral 

sugar 

content 

The relative proportion of 

neutral sugars relates to 

the selectivity of the 

extraction method for 1→4 

bonds between galA 

units.189 The “kinks” caused 

by the presence of 

rhamnose residues within 

the pectin chains will affect 

the conformation190 and 

consequently the 

macromolecular properties 

of the gel formed herein for 

example. 

Gas chromatography- 

mass spectrometry 

analysis of 

trimethylsilylmethyl 

glycoside derivatives191 

and high Performance 

Anion Exchange 

Chromatography.192  

 

5 
Intrinsic 

viscosity 

Relates to the pectin chain 

length. 

Size exclusion 

chromatography with 

light scattering 

detector,148 

viscometer193 and 

dynamic oscillatory 

tests.194  

6 Ash content 

For pectin to be used as a 

food additive (as E440) it 

needs to contain a 

maximum of 1% 

contaminant.152  

Ashing at 500-600 °C.195  
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The following section will focus on the methods initially chosen to characterise 

microwave extracted pectin under acid-free conditions. Attenuated Total 

Reflectance Infra Red (ATR-IR) has first been used to systematically characterise 

pectin and determine the DE, followed by nuclear magnetic resonance (NMR). 

Solution and solid state NMR were applied. Gel permeation chromatography was 

also used to analyse the molecular mass distribution of the obtained pectin samples 

the results obtained by this technique will be developed in sections 4.5.1.1 and 4.5.4. 

 

4.4.1 ATR-IR characterisation of pectin 

 

ATR-IR was used to rapidly identify signature peaks of acid-free microwave 

extracted pectin under different conditions. ATR-IR is ideal for routine 

characterisation as virtually no sample preparation is required. However samples 

need to be carefully dried to avoid peak interference due to the presence of water. 

Otherwise an overlap with the bands associated with the carboxyl groups within the 

1750-1600 cm-1 region of the IR spectra. Hence thorough drying of pectin is very 

important. Commercial pectin samples derived from citrus fruits were used as a 

reference. In the case of pectin, transmission Fourier Transform Infra Red (FT-IR) 

spectroscopy has mainly been used to identify the signals associated with the free 

carboxyl, which can be identified at ~1620 cm-1, and the esterified carbonyl group at 

~1740 cm-1.196-198 The later data has been obtained using FT-IR where pectin 

samples have been pressed with KBr. FT-IR is an useful technique to use for pectin 

characterisation as it has been reported for the determination of the DE. The DE can 

be determined from the ratio of the peak area of –COOCH3 over the sum of the areas 

of –COOCH3 and -COOH.181, 182, 196 It has later been found that these peaks partially 

overlap. As a result, the quantitative data derived from such procedure has been 

found to not be reliable (Figure 23). 
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Figure 23: FT-IR spectra of P140, polygalacturonic acid and polygalacturonic acid 
sodium salt maximised within the range of 1900-800 cm-1 (originally in colour). 

 

The esterified and non-esterified carboxylic functions are known to overlap: Kumar 

et. al. reports both functional groups at 1749 cm-1.199 This has been confirmed by 

analysing the sodiated form of galA. Figure 24 shows how the ATR-IR analysis of 

sodiated polygalA displays a peak at ~1625 cm-1 which can be attributed to the 

carboxylate function and not to the free acid. Slightly different ranges have been 

reported too, where the peaks of the esterified and non-esterified carbonyls of galA 

appear at 1760-1730 cm-1 and 1750 cm-1 respectively .164, 181 This has been attributed 

to the presence of water, pH and hence, ionic conditions whereby the pectin can be 

acidified to eliminate the contribution of the carboxylate anion peak and display two 

distinct peaks for the acid and the ester form of galA.1 81 Another strategy has been 

reported to circumvent this problem. A modified method based on the ratio of the 

“asymmetric stretching of –CH3 at 1440 cm-1 and the galA backbone vibration at 

1010 cm-1” has been suggested to by-pass the disadvantage of the latter method.181  

However it is very difficult to attribute a peak with 100% certainty in the fingerprint 

region of the spectra (1200-800 cm-1).184  Thus, this method has not been applied 

here. Another diagnostic peak is the asymmetric stretching of -CH3 (1440 cm-1).181, 

196, 200 Additionally, absorption signals are observed for the ν(CO), ν (CC), γ(OCH) in 

the ring structure of poly galA chains can be observed ~1010 cm-1 (1016 cm-1 

here).181 Peaks seen at 3500-3300 cm-1 and ~2900 cm-1 are commonly attributed to 

the –OH and the C-H stretch in –CH2 respectively.197, 199, 201  Care should taken 
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nonetheless when comparing spectra obtained by transmission IR and ATR-IR since 

“a relative shift in band intensity and an absolute shift in frequency” can be observed 

when comparing bands in ATR-IR to transmission IR. A shift of up to 14.1 cm-1  has 

been reported.20 2  When comparing the data, a variability might be observed 

between data reported in the literature and experimental data reported herein. A 

representative ATR-IR spectrum of a sample obtained at 120 °C following a 10 

minutes heating time has been included in Figure 24 for comparison with a non-

standardised commercial pectin sample (NS Kelco). The match between the two 

samples is ideal: all peaks relative to the carboxyl function of galA are present, 

demonstrating pectin is extracted. Furthermore, the two samples are nearly 

identical, including the fingerprint region, confirming that the extracted compound 

is pectin. ATR-IR was therefore used routinely to characterise pectin alongside other 

techniques for this project.  

 

Figure 24: ATR-IR spectra of pectin sample P120-10 and commercial pectin NS 
Kelco (originally in colour). 

 

4.4.2 Determination of the degree of esterification of pectin by double 

titration 

 

ATR-IR was used to establish pectin could be extracted under microwave acid-free 

conditions. However another method had to be used to determine the DE. The DE 
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and galA content values obtained for microwave extracted pectin under acid-free 

can be determined via titrimetry using a method reported in the American Foods 

Chemical Codex. This method is considered a benchmark for the determination of 

pectin related DE and galA values and its use is standard practice in industry.179 The 

protocol used was listed in the Food Chemicals Codex and further optimised by 

Professor Pete A. Williams, Director of the Centre for Water Soluble Polymers at 

Glyndwr University. 

The reproducibility of the protocol was first assessed and the method was tested on 

a commercial pectin sample CU 301 (galA 84 %, DE 65 %). The best results obtained 

are summarised in Table 10. A good reproducibility and an error of 7% on the galA 

content were achieved at first, reaching a galA of 78.03% and 79.94% for two 

titrations carried-out in parallel. However upon repetition of the experimental 

protocol, the error on the galA content did not decrease below 20%. Even if 

considering an absolute value for the galA and the DE is not realistic, the value 

should still be comprised within a ± 10% range.  It should be noted that although a 

satisfying error percentage wasn’t achieved when trying to reproduce the results 

first obtained, the galA content was always consistently lower that the value given in 

the manufacturer’s specifications. 

 

Table 10: Summary of the results obtained for a commercial pectin sample using the 
Food Chemicals Codex method. 

 
CU 301 (galA 

84%, DE 65%) 
CU 301 (galA 

84%, DE 65%) 
Average 

Experimental 
galA content 

(mg) 
390.22 399.93 395.07 

Experimental 
galA content 

after acid 
treatment (%) 

78.03 79.94 78.98 

Error on galA 
content (%) 

7.11 4.84 5.97 

Experimental 
DE (%) 

59.70 62.14 60.92 

 

Several different alterations to the reported method were trialled to eliminate any 

possible source of error and obtain more consistent values between titration 

experiments. They are listed below: 

 The double titration was done over two days: the back titration 

was done on the 2nd day instead of 15 minutes after the 1st 
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titration to see whether the duration of the saponification had an 

influence on the result obtained. 

 The two titrations were done one after the other using a timer to 

make sure that the dissolution/stirring times were rigorously the 

same for each sample (upon timing). 

 Samples were degassed under nitrogen for up to 1h to remove 

any CO2 that might interfere with the result obtained.  

 The influence of pectin dissolution times were studied to see 

whether solubility of pectin and the formation of aggregates 

might be responsible for the poor results obtained.  

 The pectin was never left more than 10 minutes in the 2.7M HCl 

solution. 

 Care was taken to use only very recently boiled water to avoid 

adding unnecessary CO2 into the pectin solution. 

The protocol modifications listed above have not been found to improve the 

reproducibility and an alternative method was investigated. The use of nuclear 

magnetic resonance was investigated next.  

 

4.4.3 Pectin characterisation and determination of the degree of 

esterification by solution nuclear magnetic resonance (NMR) 

4.4.3.1 Characterisation by solution nuclear magnetic resonance 

 

Nuclear magnetic resonance spectroscopy (NMR) is a recognised technique used for 

the characterisation of chemical compounds, including polymers. This technique is 

based on the identification of each non-equivalent nucleus according to the 

behaviour of its electronic environment in a variable magnetic field. A signal is 

observed if the spin of a nuclei with an uneven number of protons is excited by the 

application of an electromagnetic radiation of an adequate frequency corresponding 

to the difference in energy between the relaxed and the excited spin state (the 

Larmor frequency). The relaxation of the spin causes the emission of a signal which 

is detected and converted to a chemical shift, generating an NMR spectra after 

Fourier transform. Figure 25 highlights the concepts used for this technique. It has 

previously been used for the identification of pectin derived from apple,1 93, 203  

pumpkin,184 papaya183, 19 3 and citrus fruits193. 
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Figure 25: Effect of the application of a magnetic field on the spin of an uneven 
numbered nucleus (originally in colour). 

 

At first, 1H NMR was explored. This technique is quantitative and provided suitable 

signals for pectin identification. However, due to the different conformers of sugar 

monosaccharides present in the side chains, multiple overlapping signals could be 

detected, rendering spectra interpretation difficult, even in the anomeric protons 

zone. Given the numbers of protons expected in the sugar region (5.5-3.4 ppm) for 

rhamnose, xylose, galactose, arabinose and furanose (12 for rhamnose  in D2O for 

example), a good resolution was difficult to obtain in the region showcasing 

anomeric protons (5.5- 4.4 ppm) and other protons on the sugar residues (4- 3.4 

ppm) at 400 MHz. The use of a 500 MHz spectrometer or a 700 MHz spectrometer 

combined with the use of long accumulation times and an increase in temperature 

from 298 K to 318 K and 348 K to see whether the dissolution of pectin could be 

improved by raising the temperature, did not improve the resolving power. Instead, 

13C NMR at 700 MHz was favoured as an alternative to 1H NMR since peak broadness 

is minimal with this nucleus compared to proton NMR, increasing peak resolution. 

13C NMR also has the advantage of potentially allowing the determination of the DE 

of pectin, providing that the peaks for the –COOCH3 and the –COOH groups are well 

separated under quantitative acquisition conditions.  

700 MHz 13C NMR spectroscopy proved to be useful to unequivocally confirm the 

presence of pectic polysaccharides. The technique was trialled on an experimental 
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sample generated at 140 °C under microwave acid-free conditions and a commercial 

pectin sample. Hereafter, the 1 3C NMR spectra of commercial orange pectin and 

P140-10 are respectively denoted as SA (Figure 26) and P140-10 (Figure 27). 

Following 13C NMR, issues were encountered regarding sample drying. In spite of 

the extensive drying at 30 °C in a vacuum oven, two clear ethanol peaks are being 

present for -CH2- at 58.05 ppm and -CH3  at 17.40 ppm. As a consequence, the -CH3  

peak of ethanol is overlapping with the most characteristic rhamnose peak as it 

appears at lower frequency. This issue will be resolved at a later stage with the use 

of a freeze-drier to remove all traces of solvent in pectin.  

 

 

Figure 26: 13C NMR of commercial citrus pectin in D2O (700 MHz) (originally in 
colour). 
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Figure 27: 13C NMR of sample P140-10 in D2O (700 MHz) (originally in colour). 

 

By comparing the two spectra in Figure 26 and Figure 27, one can confirm pectin is 

being extracted at 140 °C under acid-free conditions. Several observations 

strengthen this conclusion. The first one relates to the presence of signals typically 

associated with the carboxyl function: P140-10 shows two clear peaks at 175.59 and 

171.26 ppm. These refer respectively to the free acid carbonyl group and the methyl 

ester carbonyl. In the SA sample these two peaks show up at 174.45 and 171.27 

ppm. This unequivocally establishes the presence of the same methyl ester 

functionality in both P140-10 and SA (171.26  171.27 ppm). Local variations in 

the pectin are brought forward to explain for the shift at higher frequency of the acid 

functionality in P140-10, at 175.59 ppm, versus the one in SA, at 174.45 ppm. Our 

values are in agreement with those reported by Kostalova et. al. on pumpkin 

pectin.184 Indeed, they report the free acid carbonyl at 175.5 ppm and the methyl 

esterified one at 171.4 ppm. Westerlund et. al. states that the methyl ester carbonyl 

typically appears around 172.5 ppm and the free acid carbonyl in the 173-177 ppm 

range.183  Tamaki et. al. lists the methyl ester at 173 ppm and the free acid carbonyl 

at 177ppm.201 Similarly for Iacomini et. al., two low file signals at 174.81 and 170.68 

ppm have been attributed to the methyl ester and the free acid form of the 

carbonyl.204 
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Secondly, the signal traditionally attributed to the –O-CH3 group belonging to the 

ester function was located at 53.49ppm by 135 DEPT 13C NMR (see Figure 28). This 

compares very well to the shifts reported in the literature for this functionality: 

Kostalova et. al. (53.7 ppm), Tamaki et. al. (55.7 ppm), Iacomini et. al. at 52.86 ppm 

and Li et. al. at 51.84 ppm.205 In commercial pectin, the presence of a methyl ester is 

clearly visible at 53.48 ppm. 

 

Figure 28: DEPT135 13C NMR of sample P140-10 in D2O (700 MHz) (originally in 
colour). 

 

Thirdly, further analysis of the spectra confirm the presence of the sugar side chains. 

For mono- and polysaccharide analysis, the anomeric region around 90-110 ppm is 

particularly informative. P140-10 shows distinct peaks in this region at 108.13, 

108.04, 107.71, 104.98, 101.02, 100.73 and 100.14 ppm (see Figure 27). The peaks 

at 108.13, 108.04, 104.98 and 101.02 are the most pronounced ones. The DEPT 135 

spectrum classifies all of them as CH/CH3  but given their chemical shift, they can 

only be CH groups (see Figure 28). Commercial pectin shows distinct anomeric 

carbons at 104.97 ppm and ~100.88 ppm. The main difference thus lies in the 

existence of the 108 ppm peaks, which have been reported to belong to α-Araf 

residues.1 84  The dominant peak at 101.03 ppm is very close to the one at 100.9 ppm 

as reported by Kostalova et. al. for methyl esterified α-GalpA units. The same 

authors attributed a peak at 99.9 ppm to the free acid α-GalpA units which is very 
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close to the 100.11 ppm observed in P140-10. This confirms again the dominant 

presence of esterified residues of galA.  

Additionally, the DEPT 135 spectrum allows us to start attributing the peaks seen in 

the 60-50 ppm region carbons. They are believed to be the non-anomeric carbons of 

the neutral sugar side chains of pectin P140-10. The DEPT spectrum classifies them 

unequivocally as CH2 carbons. In the O-CH region, a greater number of peaks can be 

detected for P140-10 than for the commercial pectin sample used.  

P140-10 has been acquired quantitatively hereafter allowing for an estimation of 

the DE. A quantitative sequence was applied with a 10 seconds relaxation time. 

When comparing the integrations of the carbonyl signals at  175.59 (area of 0.14)  

and 171.26 (area of 1), a DE of ~86% can be determined. Interestingly, Catoire et al. 

states that the C1 of esterified galA can be distinguished from its free acid form. 

Based on their respective peak integrations of the C1 of unesterified (100.11 ppm, 

area of 0.28) and esterified α-GalpA units (101.03 ppm, area of 0.84),193  a similarly 

high DE of 78% can be calculated according to the reported work depending on the 

integration limits used. However, the high signal-to-noise ratio does not allow the 

determination of an absolute value for the DE. In commercial pectin, even though 

this spectrum is not run quantitatively, one can clearly see that it has a lower degree 

of methyl esters compared to P140-10. 

It has been observed that pectin has a rather low solubility in H2O (below 50 mg per 

NMR sample). The formation of viscous solutions of pectin have been previsouly 

reported.206 Some peak broadening can be observed due to the viscous, gel-like 

behaviour of the solubilised pectin in D2O. In addition, since the measurements have 

been done in a quantitative mode, applying a 10 seconds relaxation time instead of a 

standard 2.5 seconds, a partial precipitation of the sample during the NMR 

experiment could be observed given the lengthy analysis time required. When 

taking into account the high signal-to-noise ratio observed when carrying-out such 

NMR experiments, these phenomena could all be responsible for the difficult 

determination of the DE with high accuracy. Nevertheless, the results obtained by 

FT-IR, and 13C NMR all confirm pectin can be extracted under acid-free microwave 

conditions.  

Several methods have been developed over the years for the characterisation of 

pectin. Earlier tests were based on the ability of hexuronic acids, such as galA , to 

form chromophores  which are detectable by UV-VIS a quantifiable technique.164   
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Figure 29 describes the intermediary species obtained by decarboxylation of D-

galacturonic acid and dehydration to a furan with sulphuric acid.207, 208 The 

mechanism of the decarboxylation is not known.209  

-CO2

furan-2-carbaldehydeD-galacturonic acid

-H2O

 

Figure 29: Reaction pathway of D-galacturonic acid to furans under acidic pH 
(originally in colour). 

 

Carbazole, m-hydroxydiphenyl, 2-thiobarbituric are dyes which are known to form 

chromophores with the acid-hydrolysed products of galA. However, they are non-

specific as the total carbohydrate content reacts with the  dye (i.e. neutral sugars 

and cellulose), falsifying the results.164, 210 Given the potentially high neutral sugar 

content present in pectin under microwave acid-free conditions (see section 4.5.3), 

these methods have not been trialled. The double titration of the carboxyl groups 

before and after saponification of the ester groups of galA has not been conclusive 

either. Other methods involve the combined detection and quantification of galA 

together with the neutral sugar content determination by Gas Chromatography- 

Mass Spectrometry (GC-MS) and High Performance Anion Exchange 

Chromatography (HPAEC). However both methods rely on the hydrolysis of pectin 

to galA and saccharide monomers. Pectin can be difficult to “hydrolyse 

quantitatively when using H2SO4 and TFA given the difference in behaviour of sugar 

monosaccharides and polygalA under such conditions.” This is mainly attributed to 

the difference in bond strength between the galA chains and the neutral sugar 

chains in acid medium. This can lead to underestimated percentages of 

monosaccharides and low recovery percentages of galA as the latter is degraded to 

by-products such as lactones.192, 210, 211 Additionally, the sample preparation is 

laborious, prone to human error and time consuming which make these methods 

difficult to employ systematically for optimisation work. 186 This is particularly true 

in the case of GC-MS analysis of pectin monosaccharides where incomplete 

functionalisation can occur during monomer functionalisation.210 This was an 

important obstacle as together with the double titration, those methods allow both 

the determination of the DE and the galA content.  
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4.4.3.2 Solid state carbon nuclear magnetic resonance analysis 

 

Solid state NMR differs from solution NMR given the anisotropic nature of solids: the 

absence of molecular tumbling in solids causes peak broadening, resulting in the 

loss of the structural information obtained with solution NMR. Magic angle spinning 

is then used to counteract peak broadening by rotating the sample at an angle of 

54.74° to the magnetic field applied. Cross polarisation enhancement can 

additionally be applied to detect the nuclei whose properties render them less 

detectable. Cross polarisation magic angle spinning (CPMAS) NMR experiments are 

frequently used to transfer magnetisation from protons to carbons rather than using 

direct polarisation of the 13C nucleus.212, 213 The signal intensity observed with solid-

state NMR is known to be directly dependent upon the chemical environment. The 

number and proximity of protons linked to a carbon atom will influence the 

intensity of its peak. In addition to the proton environment, molecular dynamics and 

in this case, the rotation of the methyl group will influence peak intensity.214  

Given solubility issues encountered with pectin in water, quantitative solution 13C 

NMR was not possible for the determination of the DE given the high signal-to-noise 

observed then. As a result, solid state 13C NMR was trialled for the determination of 

the DE of pectin. 

Precedents exists on the use of 13C CPMAS for the determination of the DE: 206, 215,216 

Synytsya et. al. attempted to distinguish between the contribution of the –COOCH3 

and -OCOCH3 peaks. However, strong evidence is still required to obtain full 

resolution of the spectra. A later paper has been published using the same method 

as Synytsya et. al. The main issue with the later papers is that the estimation of the 

DE is based on the integration ratio of the -COOCH3 over the one corresponding to 

the ring carbons C1-C5. This does not distinguish between the C1-C5 of polygalA and 

the C1-C5 of other sugars, leading to an underestimation of the DE. Furthermore, few 

of these authors make mention of contact time and if or how this impacts the 

determination of the DE. 

Here it was assumed the DE could be calculated using the integrated intensities of 

the carboxylate (           and methoxy (       
  signals as highlighted below, 

where R can correspond to –H, –Na+ or –OCH3 groups.  
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This method presents the advantage of only considering peaks which can only be 

derived from the presence of polygalA. Hence, the presence of rhamnose for 

example, would not affect the calculated DE. The chemical shift range used for this 

experiment were of 165-180 ppm and 50-57 ppm which respectively corresponded 

to the –C(O)OR group and the –OCH3 group.  

A sample of polygalA was analysed first. The 13C CPMAS spectrum of as-purchased 

galA is shown in Figure 30. The carboxylic acid signal (173 ppm) is well resolved 

from the signals corresponding to the anomeric, C1 carbon (100 ppm) and the 

other ring carbons (65-85). On the other hand, the observed peak integrals 

(0.72:1:4.1) reveal a significant underrepresentation of the carboxylate carbons due 

to the absence of directly attached hydrogens, significating a correction factor will 

be needed. 

 

Figure 30: 13C CPMAS spectrum of polygalacturonic acid. 

 

In addition to as-purchased polygalA, a spectrum of polygalA after re-dilution in 

water and subsequent freeze-drying was acquired; replicating the conditions under 

which pectin samples were all produced. The two spectra are shown in Figure 31 for 

comparison. The spectrum of the freeze-dried sample exhibits significantly sharper 

resonances. The carboxylic acid carbon signal is 480 Hz broad (FWHM) for the as-

purchased sample and only 280 Hz after lyophilisation. 
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Figure 31: 13C CPMAS spectrum of polygalA 
as-purchased (above), and after freeze-drying (below). 

 

As a result of the observations made following the analysis of the polygalA sample, 

five commercial samples of pectin of known DE were analysed to assess the validity 

of the chosen technique for the determination of the DE of pectin. Their spectra are 

very similar in appearance to the as-purchased polygalA, except for the presence of 

an additional resonance at 54 ppm arising from the -OCH3 of the carboxylic acid 

groups which are esterified. The spectra of the commercial samples with varying 

degrees of esterification are shown in Figure 32. The chemical shifts displayed 

match the ones previously reported. No signal at ~ 20-25 ppm showcase the 

absence of acetyl groups.206  
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Figure 32: 13C CPMAS spectrum of commercial pectin samples 
highlighting the  carboxylate (172 ppm) and methoxy (53 ppm) carbon signals 

(originally in colour). 

 

However, as with the galA, we would expect the carboxylate carbon intensity to be 

under-represented due to the absence of directly linked hydrogen atoms, leading to 

an over-estimation of the DE. Cross polarisation is known for underestimating the 

13C nuclei in carbonyl groups given their low ability to couple with a proton.217 The 

mixing time was used to study the influence of 1H-13C coupling on the DE values 

obtained for commercial pectin. Plots of the measured DEs for the commercial 

samples versus the DE values provided by the supplier display this trend (see Figure 

33 and Figure 34). The best-fit curves to the data yielded slopes of 1.33+0.09 and 

1.13+0.07 for the 1 and 2 ms contact times, respectively. These values were 

subsequently used to correct the behavioural differences of the carbonyl and -OCH3 

environments of C6. The DE values obtained were corrected such as        

       . A correlation factor (R2 value) of 0.9595 and 0.8125 was obtained for the 

1 and 2 ms contact times, respectively. Hence, NMR values obtained for the DE at 1 

ms agreed with the values obtained with a conventional method used in the food 
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industry (i.e. phenolphthalein double titration). The correction factor is used to 

render the analysis quantitative. This accounts for the absence of protons on the 

carbonyl group, and for the rotation of the –CH3 group of the ester which interferes 

with the average dipole-dipole interaction and the cross polarisation process.  

 

 

Figure 33: Comparison of the 1 3C CPMAS determined DE for five commercial 
standards using a 1ms 1H-1 3C mixing time (originally in colour). 

 

 

Figure 34: Comparison of the 1 3C CPMAS determined DE for five commercial 
standards using a 2 ms 1H-13C mixing time (originally in colour). 
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The method was applied to a range of pectin experimental samples all obtained 

using an acid-free hydrothermal microwave process. All NMR spectra were acquired 

using both a 1 ms and a 2 ms contact time. The DE of these samples were then 

determined and corrected using polygalA or the commercial samples, generating 

two different data sets. The difference in the measured DE between the 1ms and 

2ms mixing time experiments for each corrector factor used were plotted in Figure 

35. The red unfilled bars show the difference in DE between 1 ms and 2 ms for the 

data sets corrected using the polygalA. The blue filled bars using the scaling factors 

obtained with the commercial samples.  

 

Figure 35: Difference in the measured DE between 1ms and 2ms mixing time 
(red for polygalA and blue for commercial samples) (originally in colour). 

 

Figure 35 shows how the data set corrected using commercial pectin samples is less 

prone to a systematic error. In the earlier data set, the difference in DE can reach an 

absolute value of 17 whereas it decreases to 10 for the later data set. The graph also 

displays a more random distribution, yielding both positive and negative DE 

differences. Consequently, the correction factor obtained via the spectra acquisition 

of five commercial pectin yields less biased DE values than the correction factor 

obtained via the spectra acquisition of polygalA. As a result, the correction factors 

using commercial pectin samples will be used.  

Regarding the choice of contact time used here onwards, a 1 ms contact time will be 

used since the linear regression fit gives a correlation factor of 0.9595 which was 

deemed more acceptable than the correlation factor of 0.8152 obtained for 2 ms 
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contact time, rendering the results more precise and more reliable. Regarding 

previous work reported, the correlation factor obtained here is higher than the one 

reported by Sinitsya et. al. (0.901).206 Besides, the absence of odd points with a 

contact time of 1 ms further justifies this decision. The results of the application of 

this method to experimental samples will be discussed in section 4.5.6. 

 

4.5 Hydrothermal microwave extraction of pectin 

 

One of the aims of this project was to improve the extraction of pectin based on 

previous work reported on microwave-assisted extraction of pectin from CPW. As 

seen previously, the use of acid produces polluting effluents requiring treatment 

prior to disposal. This could be avoided by simply using water under microwave 

hydrothermal conditions. This strategy would benefit from the use elevated 

temperatures (> 100 °C) under closed vessel conditions.  Water is known to 

dissociate as the temperature increases, between 273 K and 623 K.21 8 Figure 36 

shows the chemical equation of the dissociation of water. The dissociation constant 

Kw and pKw are given for a dilute solution of water (< 10-4 M).  

 

2 H2O H3O+ + OH-

Kw  = [H3O+] [OH-]

pKw  = - log10(Kw )
 

Figure 36: Water dissociation and associated dissociation constants.  

 

The variation of the pKw according to the temperatures highlighted in Figure 37. As 

the pKw decreases, the equilibrium of the equation shifts to the right and the number 

of the ions increases, lowering the value of the neutral pH as the temperature 

increases. The increasing concentration of H3O+ and OH- ions at higher temperatures 

under closed-vessel conditions could be exploited when extracting pectin under 

microwave acid-free conditions (i.e. neutral pH conditions).  
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Figure 37: variation of pKw  as a function of temperature at a pressure of 0.1 MPa 
(originally in colour).219 

 

Low temperature hydrothermal microwave treatment of WOP (waste orange peel) 

under acid-free conditions was investigated as an alternative to conventional acid-

mediated pectin extraction methods. No acid (or any other additive) was added for 

the extraction or the work-up of pectin. 

 

4.5.1 Small scale screening experiments 

 

Screening conditions were first investigated. The effect of the peel to water ratio, 

temperature and extraction time on the yield of pectin extracted were studied to 

determine optimised conditions at small scale on the CEM Discovery microwave 

equipment by M.Sc. student Xin Neh Beh (2010-2011 Green Chemistry MSc cohort). 

This approach is similar to the one reported by Bagherian et. al. The effect of the 

operational paramaters used on pectin will be studied by GPC analysis. For the next 

section, pectin experimental samples will be named according to the following code: 

PAAA-BB where AAA stands for the microwave extraction temperature used (in °C) 

and BB for the duration of the microwave extraction (in minutes) 

 

The first parameter investigated was the influence of the peel to water ratio 

(peel:water ratio) on the pectin yield. Experiments were carried out for 10 minutes 
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extraction time at 180 °C. Ethanol was used as a precipitation solvent since it is 

renewable and its use is allowed by international food standards.139  Results can be 

seen in Figure 38. It was found that the highest yield obtained (8.37%) required a 

1:10 peel:water ratio. 

 

Figure 38: Effect of peel:water ratio on the yield of pectin (% dry mass) extracted at 
180 °C for a heating time of 10 minutes (originally in colour). 

 

The extraction efficiency of pectin was also investigated within a 120-200 °C 

temperature range (Figure 39). The temperature range tested was deliberately 

taken above 100 °C to benefit from the increased acidity of water under pressure 

above 100 °C. The highest pectin yield was obtained at 140 °C for a heating time of 

10 minutes. Under these conditions, a maximum yield of 20.4% pectin was obtained.  

 

 

Figure 39: Effect of heating temperature on the yield of pectin extracted (% dry 
mass) for a heating time of 10 minutes using a 1:10 water:peel ratio (originally in 

colour). 
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The effect of the extraction time on the pectin yield was then studied (Figure 40). 

This experiment was performed at the optimal extraction temperature of 140 °C, as 

determined earlier. It was found that the pectin yield increased with extraction time. 

After one minute of heating a pectin yield of ~11% was obtained. Increasing the 

time of heating to 20 minutes doubled the amount of pectin extracted at 140 °C. A 

different trend was observed when varying the length of the extraction time at 

higher temperatures (e.g. 160 and 180 °C). Indeed, increasing the extraction time 

from 5 to 10 minutes results in a decrease of the pectin yield to 17 and 11% 

respectively. These results confirm the observations reported by Yeoh et. al. 

whereby pectin degrades during the extraction process when using high 

temperature, causing the yield of pectin to decrease. Lower heating temperatures 

are therefore favourable in order to obtain higher yields of pectin while avoiding 

decomposition during extraction. It is also important to note that the pectin yield 

obtained in this study is higher than the one obtained under microwave assisted 

acidic extraction: 5% of pectin were obtained under acidic conditions (1:16 

peel:water) versus 7.4% for 10 minutes at 120 °C.220 In comparison to classic acid 

hydrolysis, the conditions reported are interesting as traditional pectin extraction 

generally occurs over several hours. Whereas here, a 10 minutes extraction time 

only was necessary.  

 

 

Figure 40: Effect of heating times (1, 5 and 10 minutes) at 140, 160 and 180 °C on 
the yield of pectin extracted (% dry mass) for a 1:10 water:peel ratio (originally in 

colour). 
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The visual aspect of the pectin samples obtained also varied greatly according to the 

microwave extraction temperature used. Pectin samples obtained at different 

temperatures showed different physical properties, especially in terms of colour 

(Figure 41). Pectins obtained at 120 and 140 °C were grey-white. Those obtained at 

160, 180 and 200 °C were grey, light brown and dark brown respectively. The 

brown colouration appearing above 140 °C indicates a degradation process possibly 

occurring either via pyrrolysis of the OPW or degradation of the pectin extracted by 

depolymerisation catalysed by the presence of H3O+ and OH- ions produced during 

the dissociation of water in addition to the acids already present in the peel (kg of 

dry peel has been reported to contain 90 g of organic acids).128  

 

 

Figure 41: Effect of heating temperature on the visual aspect of pectin samples 

P120-10, P140-10, P160-10 and P180-10 (originally in colour). 

 

The combined action of heat and acidic pH conditions on carbohydrates can lead to 

the formation of furan derivatives via the dehydration of the sugar monomers 

present in pectin. Their subsequent condensation “with themselves or phenolics 

[present in the peel] produces dark coloured complexes”.186  Alternatively, the brown 

colouration of the samples could be due to a “browning” reaction at high 

temperature of the sugars extracted and present in the pectin sample following 

drying. As an example, D-glucose has a boiling point of 146 °C. Sugar 

monosaccharides could realistically be extracted from WOP alongside pectin under 

the conditions tested. Both sugars can undergo a conversion to a 1,2-enediol 

compound which can be dehydrated and form 5-hydromethyl furfural, which is light 
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brown (see Figure 42).221 Given the fact that non-coloured additives are preferred in 

the food industry, microwave heating temperatures up to 140 °C seem to be more 

favourable to pectin extraction. Regarding gel forming properties, upon addition of 

water, pectin extracted at 120 and 140 °C showcased gel-like properties. 

 

glucopyranose

glucose 1,2-enediol

fructose

-2H2O

5-hydromethy furfural

-H2O

-H2O

 

Figure 42: Formation mechanism of 5-hydroxymethyl furfural from glucose 
(originally in colour).222 
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4.5.1.1 Gel permeation chromatography analysis of pectin 

 

Gel permeation chromatography (GPC), or size exclusion chromatography (SEC), is a 

chromatographic method based on “the retention and migration of fraction of a 

heterogeneous, polymeric solute at different rates through a gel matrix, 

predominantly on the basis of size.”164 This method does not necessitate hydrolysis 

and/or derivatisation of pectin monomers like for GC-MS or ion exchange 

chromatography. An illustration of the principle of this analysis method can be 

found in Figure 43. 

 

Figure 43: Description of the experimental set-up used for GPC analysis of pectin 
(originally in colour). 

 

GPC was used in conjunction with a light scattering detector and a refractive index 

detector to determine the number and weight average molecular weight (Mw, Mn) 

together with the polydispersity index (PI). This technique is used extensively to 

check the quality and functional properties of polysaccharides used in food 

formulation. 187, 22 3 It is based on the use of the differential index of refraction dn/dc. 

It expresses the variation of the refractive index with the variation of the 

concentration and is expressed in mL/g. The value used for pectin was of 0.146 

mL/g, as previously reported in the literature.1 48 It is constant for a given polymer in 

a given solvent. It should be noted that if the true value of dn/dc was lower, then the 

calculated molecular weights would be higher. GPC analysis allows the complete 

description of the molar mass distribution. The distribution can be characterised by 
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using the number or the weight average molecular mass as well as by the 

polydispersity index PI. These parameters can be calculated using the equations 

below, where Ni is the number of molecules having a molecular weight Mi with i 

corresponding to the elution increment for the number average molecular weight 

Mn and the weight average molecular weight Mw. 

 

   
      

    
 

   
      

 
 

      
 

    
  

  
 

 

Microwave extracted pectin under acid-free conditions and commercial citrus 

derived pectin were compared using this method. It has also been proved to be 

useful to evaluate the quality of pectin when screening for optimised microwave 

parameters. 

It was found that pectin extracted at 120 °C for 10 minutes (sample P120-10) 

approached the characteristics determined under the same GPC conditions as 

commercial pectin. Indeed, the Mw and Mn values obtained for P120-10 are only 

slightly lower (see Table 11). Interestingly, the polydispersity index was found to be 

markedly lower for P120-10 compared to commercial pectin (2.8 versus 3.4).  

However the highest pectin yield was achieved at 140 °C when heating WOP in 

water for 10 minutes (20.4% for sample P140-10).  This is more than double 

compared to the yield of pectin obtained under the same conditions at 120 °C. 
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Table 11: Yield, molar weight averages and PI of pectin samples produced under 
microwave acid-free conditions. 

Sample # 
Temperature 

(°C) 
Time 

(min.) 
Yield 
(%) 

Mw 
(Da) 

Mn 
(Da) 

PI 
(Mw/Mn) 

P120-10 120 10 7.4 113,000 41,000 2.8 

P140-1 140 1 11.2 103,000 26,000 4 

P140-5 140 5 17.1 86,500 26,400 3.3 

P140-10 140 10 20.4 80,400 20,700 3.9 

P160-5 160 5 17.2 56,200 7,440 7.6 

P160-10 160 10 11.1 31,000 5,470 5.7 

P180-5 180 5 11 22,700 6,830 3.3 

P180-10 180 10 8.4 8,860 4,830 1.8 

Commercial 
pectin P9135 

N/A N/A - 119,000 34,700 3.4 

 

The molecular properties measured show how low temperature hydrothermal 

microwave heating under acid-free conditions allows the production of pectin with 

similar properties to commercial pectin. Compared to sample P9135, the Mw of 

sample P120-10 only differs by 5% and has a narrower molecular weight 

distribution even though the number of molecules detected is higher than for P9135 

with a Mn value of 41,000 Da compared to 34,700 for commercial pectin (see Table 

11).  

Although the Mw of P120-10 is lower than for P9135, the Mn (which corresponds to 

the chain length)194 of P120-10 is higher and the polydispersity of this sample is 

lower compared to P9135, resulting on a narrower molecular weight distribution 

for pectin sample P120-10. This could be explained by the processing method used 

for the collected data. Since Mw is based on Mi2 of the biopolymers detected after 

elution, an increase in high or low molecular weight fractions will cause the Mw 

average calculated to increase, explaining why the Mn of commercial pectin is lower 

even though the Mw is higher compared to sample P120-10. Additionally, if the 

pectin extracted is highly branched, the inclusion of neutral sugars such as 

rhamnose within the galA backbone of pectin is likely going to increase the 

molecular weight of the pectin chain and will influence values obtained for Mn and 

Mw as well as their hydrodynamic radius which will influence the separation by 

size-exclusion chromatography. This principle is illustrated in Figure 44.  
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Figure 44: Influence of the level of branching on the hydrodynamic radius 
(originally in colour). 

 

When studying the influence of the heating temperature between 120 and 160 °C 

and the variation of the microwave heating time between 1, 5  and 10 minutes, 

results in the rapid decrease of molecular properties such as Mw, Mn and a rapid 

increase of the polydispersity. When studying the influence of the heating 

temperature for a given extraction time of 10 minutes, the Mw and Mn, drop 

significantly above 120 °C. When using an extraction time of 10 minutes, the Mw 

drops from 113,000 to 31,000 Da from 120 to 160 °C. Mn values drop from 41,000 

to 5,470 Da over the same temperature range. Under the same conditions, the 

polydispersity increases from 2.8 to 5.7. When studying the influence of the reaction 

time at 140 °C, at one, five and ten minutes microwave heating. A similar trends is 

observed for the Mw and the Mn values. From one to 10 minutes, Mn decreases from 

103,000 to 80,400. A decrease from 26,000 to 20,700 Da is observed for Mn values. 

Interestingly, the polydispersity slightly decreases. However the values do not 

compete with commercial pectin. 

Results already published on the influence of microwave assisted pectin extraction 

confirm these observations. A decrease in molecular mass and DE was reported with 

increasing extraction temperature.175 Fishman et. al. reports a decrease in Mw, 

radius of gyration and viscosity of orange peel derived pectin over a reaction time of 

2 to 6 minutes (630 W, 1:25 peel:water ratio) under acidic microwave conditions. 

148, 224  

When considering all the parameters (yield, molecular weight data, polydispersity, 

DE, galA content and physical aspect) 120 °C is considered as the best extraction 

temperature for the microwave-assisted extraction of pectin in water under acid-

free conditions (1:10 peel:water ratio and 10 minutes microwave extraction time). 
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Results have shown this temperature yields pectin which is comparable in quality to 

commercial pectin. According to GPC analysis, P120-10 compares better with 

commercial pectin, but the conditions used yield a lower quantity of pectin 

compared to P140-10. Even though 20.4% pectin was extracted at 140 °C and 7.4% 

at 120 °C, conditions yielding pectin with a higher molecular weight are likely to be 

preferred, at least for some applications.  

A note of caution should be observed as it was later discovered that the solvent 

removal method used for pectin drying at small scale wasn’t effective. Therefore the 

pectin yields are to be treated with caution: following the problems observed with 

pectin drying (see section 4.5.3), there is a strong possibility that the pectin sample 

produced contained a least 20% of ethanol. However, this should be a systematic 

error and should not affect how the yields of pectin vary relative to each other, since 

they were all dried using the same method. Hence the conclusions reached on the 

best conditions for microwave-assisted pectin extraction under acid-free conditions 

are still valid. The process flow sheet for this step can be found in Figure 45.  
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Figure 45: Detailed process flow sheet of step 3 
(pectin extraction under microwave acid-free conditions) for sample P120-10. 

 

A mass balance was carried-out for the pectin extraction step (see Table 12). A 

difference of 27 g was observed between the amount of material coming in and the 

amount of material coming out. This difference is due to OPR2 being rehydrated 

during step 3. 

  



121 
 

Table 12: Mass balance for step 3 
(pectin extraction under microwave acid-free conditions) for sample P120-10. 

Mass balance based on wet mass for step 3 

IN OUT 

Material Mass (g) Material Mass (g) 

OPR2 12 

Pectin 0.88 

OPR3 

(wet) 
37.84 

H2O 600 H2O 600 

Ethanol 950 Ethanol 950 

Acetone 1900 Acetone 1900 

TOTAL 3462 TOTAL 3489 

 

Gel formation properties of pectin produced at 120 °C under acid-free conditions 

will be studied next. 

 

4.5.1.2 Gel formation properties of pectin extracted under acid less conditions 

 

Pectin is especially valuable as a gelling agent. Pectin’s main application relies on its 

gel forming abilities, especially in the food industry. Hence, demonstrating the gel 

forming properties of pectin extracted under acid-free conditions was an important 

milestone for the validation of the overall process . Pectin forms a gel in water as a 

result of the “combination of hydrophobic interactions between the methoxyl 

functionalities and hydrogen bond formation between carboxylate functionalities 

and secondary alcohol functionalities”.125, 140, 225 Junction zones are formed and 

water is trapped in the “pockets” formed (Figure 46). Finding the right balance for 

the combination of water, pectin, sugar and acid is important. Sucrose is needed to 

lower the attraction of pectin for water and increase pectin chain interaction.226,125 

However, gelation is only possible if pectin dissolves in water. Pectin solubility 
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mainly depends of the counter ion’s nature, the ionic strength of the cation-anion 

system and the pH.125  

 

 

Figure 46: Graphical representation of a 2D view of the junction zones (continuous 
lines) formed in a pectin gel (adapted).225, 226  

 

There are several gelation mechanisms for pectin. All are affected by the DE of 

pectin (see Table 13). The DE is one of the analytical parameter that allows the 

prediction of the gelling behaviour. The gelation process results of two types of 

interactions: for low methoxy pectins, gelation results from ionic interactions via 

Ca2+ ions connecting two carboxyl groups. In high methoxy pectins, hydrogen bonds 

and hydrophobic interactions are responsible for the gel forming properties.140  

Gelation is influenced by the following factors: soluble solids percentage (SS%), pH, 

molecular size, DE, arrangements of side chains  or “steric fit”,227 charge and density 

of the pectin macromolecule.140  
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Table 13: Reported gel forming conditions for high & low DE pectin.224, 225, 228, 229  

Gelling 
parameters 

High DE gelling 
mechanism  

Low DE gelling 
mechanism  

Pectin DE (%) >50%  <50%  

pH < 3.8 2-6 

SS (%) 55-85%  10-70%  

Notes 
Gelling T° increases 
with the DE%, the 
SS% and the Mw. 

Gelling T° increases as the 
DE% decreases, and 
increases with the 

concentration of Ca2+.  
The degree of blockiness is 

important.  
Does not require sucrose.  

 

It has previously been established that the microwave extracted pectin herein 

studied falls into the high DE category 50%. High DE gel conditions were therefore 

investigated to determine whether pectin produced at 120 °C under acid-free 

conditions could form a gel. Initial tests carried-out by an industrial collaborator at 

the Fraunhoffer institute showed that weak gels were formed when comparing 

samples P0004 and P0005 against commercial pectin.  

The standard method used to form a gel has been reported as followed:225, 230 

 A 1% pectin & 50-70% sucrose solution is prepared. 

 The mixture is heated to boiling point.  

 A pre-determined quantity of water is evaporated to reach the 

desired SS%. 

 The pH is then adjusted and the gel is left to set at or below room 

temperature.  

A high DE for pectin renders the gel formation delicate. The high number of 

esterified carbonyl groups lower the opportunity for junction zones to form 

between the non-esterified carboxyl groups, leaving the formation of the 3D 

network down to hydrophobic interactions. For example, pectin with a DE of >70%, 

the creation of water pockets will be rendered more difficult compared to pectin 

with a DE of 60%. Figure 47 illustrates this concept. HM pectin gel formation is 

believed to occur via an alignment of molecular helices which are associated to each 

other through hydrogen bonds forming between non–dissociated carboxyl and 
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secondary alcohol groups and hydrophobic interactions between methoxy 

groups.229  

 

 

Figure 47: Illustration of the impact of the degree of esterification on the formation 
of “water-pockets”. A 3D network formation is much harder for a DE of 80% for 

example, as the formation of “water-pockets” is more difficult (originally in colour). 

 

Several solutions have been reported in the literature regarding gel forming 

conditions for highly esterified pectin (< 75%). The addition of an excess of H+ ions 

to lower pH has been suggested in order to depress pectin ionisation139 (see Figure 

48) and improve pectin-pectin interactions. As a result, inter chain interactions are 

favoured by the absence of negative charges of the carboxylate group at low pH, 

lowering repulsion forces between pectin chains.125, 190  

 

-COOH + H2O -COO- + H3O+

 

Figure 48: Influence of pH on the dissociation equilibrium of free carboxyl acid 
functionalities. 

 

Several methods were investigated in order to find the appropriate gelling 

conditions for microwave extracted pectin under acid-free conditions. Two methods 

were first tested on commercial pectin (HerbstreiFth & Fox, CU201 and CU 301) 

with varying degrees of esterification. The strength of the gel formed was assessed 

qualitatively for all of the methods tested: the pectin/sucrose solution (or jelly 

mixture) was left to set in a beaker and would successfully pass the test if the gel 

would remain stuck at the bottom of the beaker when turned upside down. Any gels 

that were free flowing when the beaker was tilted and turned upside down were 
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considered a fail. The USA-SAG test was first trialled as an example of a standard 

method to be applied to high methoxy pectin for rheology measurements.230, 231,232  

Very weak gels were obtained with the USA-SAG method. It led to the use of a 

method previously reported by MacDougall et. al. The later author reported a 

protocol for high DE pectin requiring the presence of Ca2+ in small concentrations 

(30 μL of a 1M CaCl2 solution).233 The addition of Ca2+ to HM pectin has been 

reported to facilitate hydrophobic interaction by favouring inter-chain interaction 

between partly dissociated –COOH groups.2 34, 235  The addition of calcium ions has 

been reported to play an active role in the gelation mechanism observed for block 

wise distributed pectins but generally only applies to low methoxy pectins.234 Block-

wise distributed pectins are generally extracted from citrus fruits. It should also be 

noted that Ca2+ ions are also believed to be responsible for the binding effect of high 

DE pectin in the cell wall.236, 237 The protocol did not require the need for heating, 

nor the use of acid to lower the pH of the jelly mixture. Again, only weak gels were 

formed.  

 

Given the precise pH values reported for pectin gel forming conditions, pH control 

appeared to be an important factor. Decimal point variations of the pH have been 

reported to affect the gelation and strength of the pectin gel formed.224, 225, 229 The 

two previous methods used to test gel forming conditions did not allow precise 

control of the pH. Lofgren et. al. reported the use of a citrate buffer to define with 

greater precision the conditions used.234 This protocol was therefore used to also 

study a broader set of conditions. In addition to the use of citrate buffer of pH 2, 3 

and 4, the addition of Ca2+ ions and different sucrose content (60% and 70% since 

65% is standard)139 have been tested on a 25 mL scale. Each combination of 

pH/sucrose content was tested with and without the addition of Ca2+ ions as  it has 

been reported to enhance the gelation process via maximisation of the hydrophobic 

interactions of high DE pectin chains.235   The percentage of pectin used was kept 

constant at 0.75%, as reported in the literature, since 0.5-1% pectin is a normal 

threshold in food formulations containing pectin. All the tests carried out have been 

summarised together with associated observations in Table 14. 
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Table 14: Summary of the observations made following the Lofgren protocol to test 
pectin gel formation conditions. 

Gel test # 
Pectin 

(%) 
Sucrose 

(%) 
pH 

Addition of 
Ca2+ 

Gel 
formation? 

PGT15 0.75 60 3 
1.2 ml 0.15% 

CaCl2 
No 

PGT16 0.75 60 3 - Yes  

PGT17 0.75 70 3 
1.2 ml 0.15% 

CaCl2 
Yes  

PGT18 0.75 70 3 - Yes  

PGT25 0.75 70 3 - Yes  

PGT23 
(repeat of 

PGT17) 
0.75 70 3 

1.2 ml 0.2% 
CaCl2 

Yes  

PGT24 
(repeat of 

PGT18) 
0.75 70 3 - Yes  

PGT19 0.75 60 2 
1.2 ml 0.15% 

CaCl2 
No 

PGT20 0.75 60 2 - Yes  

PGT21 0.75 70 2 
1.2 ml 0.15% 

CaCl2 
No 

PGT22 0.75 70 2 - No 

PGT27 0.75 60 4 
0.81 ml 0.2% 

CaCl2 
Yes  

PGT28 0.75 60 4 - No 

PGT29 0.75 70 4 
0.81 ml 0.2% 

CaCl2 
Yes  

PGT30 0.75 70 4 - No 

 

 

One set of conditions was found to allow successful gel formation. The best 

conditions were the one applied for PGT18: pH 3 and 70% sucrose. The jelly mixture 

thickened very rapidly forming a gel as soon as the sucrose was added to the 

pectin/buffer mixture. Upon calcium addition, PGT17 formed a strong gel too, but at 

a lower speed than the one observed for PGT18. This indicates that the addition of 

Ca2+ slowed down gel formation at pH 3. The end result can be seen in Figure 49. The 

results obtained were successfully repeated with gel tests PGT23 and PGT24. 
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Figure 49: End-result of gel test PGT17 (right) & PGT18 (left) with pectin P0020 
using the Lofgren protocol (originally in colour). 

 

Jelly mixtures obtained at pH 3 but with a 60% sucrose performed less well 

compared to PGT17 and PGT18, forming only slightly thicker pectin solutions 

indicating a high sucrose content is necessary to form gels with high DE pectins.  

The same trends can be observed for jelly mixtures prepared at pH 2. Of the four 

tests done at pH 2, the one done with 70% sucrose and with no added calcium ions 

(PGT22), thickened the fastest and poured more slowly than PGT21, which 

contained Ca2+ ions (Figure 50). However the gels formed were not as strong as the 

ones formed at pH 3 with the same content of sucrose. This might be due to pre-

gelling, a phenomena leading to weaker gels, which is sometimes observed for high 

DE pectin at a lower pH.139 When lowering the sucrose content to 60% at pH 2, a 

weak gel was formed (PGT20), confirming the observations obtained at pH 3. The 

addition of calcium ions under the same conditions led to a weak gel too, confirming 

the weakening effect Ca2+ has on a gel formation, as for pH 3.  

 

 

Figure 50: End-result of gel test PGT21 (above) & PGT22 with pectin P0023 using 
the Lofgren protocol (originally in colour). 
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The best gel forming conditions seemed to be pH 3 and 70% sucrose (no addition of 

Ca2+ ions). This correlates well with the pKa value of galacturonic acid, which is 

3.51:238 at pH 3, galA will mostly be present as un-dissociated, which is desirable 

here as it will favour the formation of hydrophobic interactions. Above a pH of 3.51, 

the –COOH group of the galA will mostly be present in its dissociated form, forming –

COO- anion which will have for effect to repel pectin chains between themselves. The 

best gel forming conditions were successfully tested on commercial pectin (H&F 

CU201) as PGT25. The pectin gelled so rapidly after the addition of sucrose that a 

portion of the jelly mixture could not be transferred in the beaker following heating 

(Figure 51). 

 

 

Figure 51: End-result of gel test PGT25 with pectin CU201 using the Lofgren 
protocol (originally in colour). 

 

The influence of pH was further investigated (to determine how high the pH could 

be increased until no strong gel was formed. Further tests were done at pH 4. None 

of the conditions tested at pH 4, allowed the formation of a strong gel after 24 hours 

at 20 °C, as seen in Figure 52. A slightly stronger gel was formed when using 70% 

sucrose with the addition of Ca2+ ions. This is unusual compared to the results 

obtained for gel tests PGT17 & PGT2, the addition of calcium weakened the gel 

compared to PGT18 and PGT22. However after several minutes, the gel would start 

running down the walls of the beaker. The unsuccessful attempt to gel pectin at pH 4 

can be explained by the pKa of 3.51 of galA. The results obtained at pH 4 are in 

accordance with gelling conditions for high DE reported in the literature, confirming 

we obtain highly esterified pectin when using a microwave assisted process under 

acid-free conditions. However the incidence of the DE variation has not been taken 
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into consideration here as data on the DE of the experimental pectin sample used 

wasn’t available at the time of the experiment. Following the observations made, the 

gelling process of microwave extracted pectin as described in this report does not 

seem to be affected by the addition of calcium ions, regardless of the pH of the buffer 

solution used. This is indicative of a  low degree of blockiness as only pectin 

containing blocks of esterified positions are sensitive to calcium ions.239 The higher 

the degree of blockiness, the faster the gel will set (and the higher setting 

temperature), providing important complementary information.234 A high degree of 

blockiness for high DE pectin will provide enhanced protein stabilisation power in 

acidic dairy based beverages for example.24 0  

 

 

Figure 52: End-result of gel test PGT27, PGT28, PGT29 and PGT30 with pectin 
P0023 using the Lofgren protocol (originally in colour). 

 

In conclusion, the best gel conditions were found to be pH 3, 70% sucrose and no 

Ca2+ ions. These conditions have been successfully tested on microwave extracted 

pectin without additional acid and commercial pectin of high DE. Those conditions 

fit with the ones reported by Voragen et. al. and are indicative of a high DE pectin is 

extracted under our microwave conditions. Whether the presence of citrate in the 

buffer used to dissolve pectin has had an impact on gel formation is difficult to say. 

This could be due to citrate polyatomic anions C3H5O(COO)33− strengthening the gel 

formed via hydrogen bond formation.  
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4.5.2 Interaction of microwaves with orange peel waste- study of the 

reflected power 

 

As part of the preliminary screening experiments done on the microwave assisted 

extraction of pectin under acid-free conditions, the absorption of microwave power 

by fresh orange peel was tested. This was important in order to determine the 

quantity of energy transferred to the sample. It could be determined by calculating 

the difference between the emitted and the reflected power observed when 

irradiating a sample. Such an experiment was done with a Sairem Miniflow 200SS 

microwave equipment which allows the measurement of reflected power (see 

Figure 53). This equipment is capable of producing a very low controlled power 

output (0 to 200 W with 1 W power increments) together with the use of a precisely 

defined frequency range. This is possible due to the use of a solid-state microwave 

generator as opposed to a magnetron. The equipment uses a fiber optic probe to 

measure the temperature. 

 

Figure 53: Description of the Sairem MiniFlow 200SS microwave equipment used 
for the measurement of reflected power (reproduced with the permission of 

Sairem® SAS) (originally in colour). 

 

This equipment has the particular property of being able to measure the reflected 

energy for a given experiment via a Calex® PyroUSB 151 infrared sensor, allowing 

for the estimation of the energy efficiency of a hydrothermal process for example.  
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The system displays a waveguide can be used to adjust the resonance frequency of a 

monomode cavity, allowing the generation of a constructive wave, lowering the 

quantity of reflected energy for a given material being microwaved.   

The reflected power was measured on a water sample and orange peel containing 

water sample. At 100 W, 10 mL of distilled water in a closed vessel were 

microwaved at 115 °C and 130 °C. In both cases, a reflected power of 15 W was 

measured. Upon addition of 1 g OPW to the water, the reflected power decreased to 

from 15 W to 5 W at 115 °C. At 130 °C, the reflected power decreased from 15 W to 

7 W. Under the experimental conditions used, the results show how upon addition of 

orange peel, the system absorbed microwave power better than water. This 

suggests that for a typical hydrothermal extraction of orange peel, 95% of the 

microwave energy is effectively absorbed at 115 °C.  At 130 °C, it decreases to 93%. 

This observations implies that microwave energy will be used more efficiently 

within the lower end of the 100–150 °C range. This is an important point to consider 

especially when considering scaling-up the process.  

The later results are verified by the values of the relative dielectric loss factor ε’’ 

published for water and orange peel. Within the food industry, the dielectric 

properties of orange peel have been studied. The later together with reported 

electrical and physical properties of orange peel are summarised in Table 15.24 1  

 

Table 15: Electrical, physical and dielectric properties of orange peel and water 
corresponding to the temperature expressed in Kelvin (adapted from Birla et. al.)241. 

 
Thermal 

conductivity  
(W/m.K) 

Specific 
heat Cp  

(J/Kg.K) 

Relative 
dielectric 
constant ε’ 

Relative 
dielectric 

loss factor ε’’ 

Orange 
peel 

0.40 3300 -0.16T+82.53 3.94T+58.2 

Tap water 0.56 4180 -0.48T+84.74 0.33T+11.1 
 

 

When knowing that ε’’ is proportional to the quantity of radio frequency absorbed 

by the material, the data in the table above illustrates how well WOP will interact 

with microwaves compared to water, strengthening the results obtained when 

measuring the reflected power. 

 

The next section will present results produced on a larger scale, using a larger 

microwave set-up with two independent temperature measuring systems for better 
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control of the extraction parameters. The results obtained will be compared to 

several commercial pectin samples and acid hydrolysis extracted pectin.  

 

4.5.3 Big scale hydrothermal microwave extraction of pectin 

 

Working towards a larger scale was an intrinsic goal of the project from day one. 

The optimised conditions highlighted in section 4.5.1.1 were used as a stepping 

stone to further test the process using a higher throughput. This meant trialling the 

acid-free extraction conditions at a lower MMPD, lowering it from 800 W/L to 35 

W/L given the increased cavity size of the equipment. The aim of this work was to 

determine whether hydrothermal microwave-based extraction of pectin under acid-

free conditions could be scaled up from a millilitre scale at 800 W/L) to a decilitre 

scale at 35 W/L. Additionally, pectin samples were generated for a company 

interested in setting-up a pilot plant sized waste biorefinery (partly in India). 

 

4.5.3.1 Industrial application evaluation 

 

Two pectin samples (duplicate of the same conditions) were therefore generated at 

a power density of 35 W/L as a proof of principle for scale-up based on the 

preliminary work. 100 g of pectin were successfully generated at 120 °C (peel:water 

ratio of 1:10) using again wet defrosted virgin WOP. The temperature holding time 

was modified from 10 to 20 minutes since the shorter setting wasn’t possible on the 

microwave equipment used at larger scale. A flow diagram of the process can be 

seen in Figure 54. 
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Figure 54: Flow diagram of the process used for microwave-extracted pectin under 
acid-free conditions. 

 

4.5.3.2 GPC results 

 

The samples sent were evaluated by gel formation tests. Independent gel tests on 

the samples were carried-out by the Fraunhofer institute revealed that they 

performed poorly against commercial pectin. The main conclusions reached were 

the following: 

 the pectin was not sufficiently dried and an important fraction of 

ethanol was still present, hindering solubilisation and therefore 

gel formation properties of pectin, 

 insolubles were present in the microwave extracted pectin 

(percentage not given), 

 in terms of colour, the samples sent were of a darker beige than 

commercial pectin and this had an impact on the colour and the 

clarity of pectin in solution, 

 the gel strength of commercial pectin was superior (2.7 N) 

compared to microwave extracted pectin (0.15 N) and 

 the viscoelasticity of commercial pectin was superior compared 

to microwave extracted pectin (10.3 versus 3.6). 

Samples P0002 and P0003 were both analysed using GPC to study the variability of 

the molecular weight distribution between two identical samples. Each value 

reported is the average of a duplicate analysis. When comparing the number and 

weight average molar mass (Mn and Mw respectively) and polydispersity (Mw/Mn) 

between commercial pectin and microwave extracted pectin (see Table 16), higher 

Mw and Mn values are obtained for both P0002 and P0003 compared to P9135. 
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Polydispersity is slightly lower for P0002 (2.28 versus 2.83) but decreases to 1.90 

for P0003, which is good. Higher Mw and Mn values are obtained for P0003 

compared to P0002 but polydispersity of P0003 is lower. Reproducibility between 

samples P0002 and P0003 is good too although this does not correlate with the 

elution profile of P0003, indicating a much wider molecular weight dispersion (see 

Figure 55) for this later sample. 

 

Table 16: Comparison of Mw, Mn and PI (Mw/Mn) of microwave extracted pectin 
under acid-free conditions using virgin WOP (P0002 & P0003) against commercial 

pectin. 

 Mn (Da) Mw (Da) PI (Mw/Mn) 

P9135 3.15 x 104  8.93 x 104  2.83 

P0002 4.94 x 104  1.10 x 105  2.28 

P0003 9.00 x 104  1.68 x 105  1.90 

  

 

Figure 55: GPC/RI elution profiles of pectin samples P0002 (green), P0003 (black) 
and P9135 Aldrich citrus derived pectin (blue) (originally in colour). 

 

The analysis of the elution profile in Figure 55 shows that a smooth elution profile is 

obtained for P0002. This observation shows that P0002 as a markedly narrower 

molecular mass distribution. This is not the case for commercial pectin, for which 

the molecular weight distribution is much broader. GPC elution profiles of P0002 
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and P0003 are different:  P0003 displays an intermediate molecular weight 

distribution. This is attributed to the fact that these concern the analysis of natural 

polymers. However, the molecular weight distribution of the experimental samples 

is still narrower than for the standard used (P9135), which has no real pronounced 

maxima.  

No experimental data or protocol was provided by the Fraunhofer Institute 

regarding the tests done. No information on the grade of pectin used as a control 

sample could be obtained. Still, several hypotheses could be made as to why the 

pectin extracted at 35 W/L wasn’t comparing well against commercial pectin. The 

following suggestions will be used for further process optimisation.  

 Drying had to be improved: 

Washed pectin was dried under vacuum using a rota evaporator followed by further 

drying under high vacuum. Irrespective of the drying method used, pectin tended to 

form clumps. It was found that these clumps contained still significant amounts of 

ethanol inside them. This can be explained based on the amphiphilic nature of 

pectin.  

 The influence of pre-treatment: 

Using pre-treated WOP (PWOP) instead of wet defrosted virgin WOP could yield 

pectin with fewer impurities. The initial idea implied using wet defrosted virgin 

WOP which was first used for the extraction of D-limonene. Additionally, flavonoids 

could then be extracted from the peel using an acetone soxhlet extraction, stripping 

the peel from low molecular weight components. This could limit the number of 

components extracted alongside pectin and limit the beige colouration observed so 

far. The peel subjected to both extraction could then be used for microwave assisted 

pectin extraction. This three step process would allow the recovery of additional 

product streams. 

 The influence of microwave maximum power density (MMPD): 

The difference in MMPD between the CEM MARS (35 W/L) and the CEM Discovery 

(800 W/L) could explain difference between the chain length and the neutral sugar 

content of pectin produced on the CEM MARS and the CEM Discovery. This can be 

seen by comparing solution NMR spectrum of pectin samples produced under the 

same conditions on both CEM microwaves. This is especially important as the chain 

length and the neutral sugar content have an effect on the dissolution and gel 

forming properties of pectin.225 The MMPD  was calculated on the basis of the 
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volume of the microwave chamber and the maximum power produced by the 

magnetron (1800 W for the MARS and 300 W for the Discovery equipment). It was 

assumed that the MMPD emitted in dynamic mode retained the same ratio between 

the two different microwave equipments.  

 The influence of microwave temperature holding time:  

Additionally, the difference in microwave holding time might also have an influence 

on the quality of pectin. A 20 minute holding time at 120 °C could cause degradation 

of the pectin chain compared to 10 minutes.  

 

4.5.3.3 Biorefinery process improvements 

 

Changes to the solvent removal stage were done first. Drying was improved by using 

a freeze-drier to remove residual water and solvent after the precipitation of pectin. 

This change alone allowed to obtain pectin that was completely white with no trace 

of brown impurities as seen in Figure 56. According to the manufacturer, freeze-

drying yields samples with a moisture content below 1%. This is especially 

important when ATR-IR characterisation of the pectin samples is used. Additionally, 

the use of a freeze-drier instead of a heat induced drying method is a plus when 

drying pectin, as it is a heat labile type of material.14 0  

 

 

Figure 56: Difference in sample colouration between pectin dried in a rota 
evaporator (above) and using a freeze-drier (below) (originally in colour). 

 

Following the change of drying technique, further modifications were made to the 

pectin extraction process. The use of pre-treated WOP was trialled next with the aim 



137 
 

of producing a cleaner form of pectin. Regarding the use of pre-treated orange peel, 

a first trial was done using D-limonene and flavonoid extracted wet defrosted virgin 

WOP (referred from now on as pre-treated WOP or PWOP). The extraction of D-

limonene followed by the extraction of flavonoids will be further discussed in 

chapters 5 and 6. Figure 57 describes the whole process used. The evaluation of the 

quality of the pectin produced using the modified process was done using GPC 

analysis. 

 

Figure 57: Flow diagram of the OPEC process used for microwave-extracted pectin 
under acid-free conditions 

using D-limonene and flavonoid extracted WOP, or PWOP. 

 

Two duplicate samples of pectin have been produced under the same microwave 

conditions using PWOP: P0004 and P0005. ATR-IR was used to quickly assess 

whether pectin was actually isolated, judging the presence of signature peaks at 

1760-1730, 1750 and 1440 cm-1 corresponding respectively to the esterified 

carbonyl, the non-esterified carbonyl and the methyl group on the esterified 

carbonyl of galA (Figure 58).164, 181 The IR spectra confirm pectin has been extracted 

at 35 W/L and 120 °C. 
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Figure 58: ATR-IR spectra of pectin samples P0004, P0005 and commercial pectin 
P9135 (Sigma-Aldrich) (originally in colour). 

 

Both samples have also been subjected to the same GPC analysis (same method and 

equipment) and the results are reported in Table 17. Each value reported is the 

average of a duplicate analysis.  

 

Table 17: Influence of peel pre-treatment on Mw, Mn and PI of microwave extracted 
pectin under acid-free conditions against commercial pectin. 

 

 

 

 

 

 

When focusing on the uniformity and the narrower distribution of molar mass, 

samples P0004 and P005 are clearly of better quality than P0002 and P0003. The 

latter samples have a higher weight and number molecular weight than all the other 

samples (commercial pectin included) and a lower polydispersity, both of which are 

600 1100 1600 2100 2600 3100 3600 

Wavenumber (cm-1) 

Aldrich pectin P9135 P0005 P0004 

 
Biomass 

used 
Mn 

 (Da) 
Mw 
(Da) 

PI 
(Mw/Mn) 

P9135 - 3.15 x 104  8.93 x 104  2.83 

P0002 WOP 4.94 x 104  1.10 x 105  2.28 

P0003 WOP 9.00 x 104  1.68 x 105  1.90 

P0004 PWOP 1.43 x 105  2.29 x 105  1.62 

P0005 PWOP 1.31 x 105  2.23 x 105  1.71 
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highly desirable for pectin. Additionally, the reproducibility between P0004 and 

P0005 is enhanced compared to the P0002 and P0003 when using PWOP compared 

to WOP for both the Mw, Mn and Mw/Mn values. The molecular weight distribution 

diagram in Figure 59 confirms this observation. 

 

Figure 59: Molecular mass distribution of MW extracted pectin 
under acid-free conditions against commercial citrus-derived pectin using virgin 

WOP (P0002 & P0003) and PWOP (P0004 & P0005) (originally in colour). 

 

The effect of MMPD was studied next. Based on observations made on the work of a 

visiting student (Sebastian Keeß, Autumn term 2012), differences in the sugar 

region of the 13C NMR spectra could be observed between samples generated at 35 

and 800 W/L. The spectra obtained when using quantitative solution 13C NMR in 

D2O, showed a clear difference the neutral sugar region. Figure 60 displays two 13C 

NMR spectra corresponding to pectin extracted from PWOP at 800 W/L (sample 

P0018, A.) and 35 W/L (sample P0004, B.). Notable differences between the two 

spectra can be observed in the neutral sugar chains region (110-65 ppm).184 When 

comparing the ratio between the peak observed for the C1 of the galA unit (99.89 

ppm) and the anomeric carbons of neutral sugars (103-107 ppm), an indication of 

the neutral sugar content can be obtain relatively to the galA content.  
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Figure 60: 13C NMR spectra of samples P0018 (800 W/L) and P0004 (35 W/L) 
obtained in D2O (500 MHz). 

 

According to the spectra in Figure 60, a higher proportion of neutral sugar content is 

observable in sample P0018. Given that gel formation properties of pectin also 

depend on the steric fit of the pectin chains around the neutral sugar side chains,225,  

242 MMPD will have an influence on the properties of the pectin extracted. A higher 

proportion of neutral sugars could definitely be responsible for the observed 

enhanced dissolution of P0018 in D2O, improving the resolution of the spectra 

obtained. Three extraction parameters could explain the lower content of neutral 

sugars in P0004: the lower MMPD of the microwave equipment used, the 

temperature holding time (10 versus 20 minutes) and/or the difference in 

microwave extraction temperature used (120 °C versus 140 °C). 

A variation of MMPD from 35 W/L to 800 W/L could allow the extraction of pectin 

chains containing a lower proportion of neutral sugar monomers, only extracting the 

“smooth” section of the pectin chain as present in the cell wall (see Figure 22). 

Bonds between the galA units and the neutral sugar units are known to be less acid-

resistant than bonds between two galA units.125, 189 If the variation of MMPD can 

affect the proportion of neutral sugars embedded in the pectin extracted, this would 

represent an opportunity to fine-tune the fine chemical structure of the extracted 

pectin, affecting the gel formation properties of pectin and its characteristics in food 
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product formulations. In the case of pectin, water solubility of natural 

polysaccharides tends to increase with the degree of chain irregularity or branching 

and the increase in molecular weight.194, 221 One way of checking the variation of 

neutral sugars would be to characterise and quantify the amount of neutral sugars 

by GC-MS (Gas Chromatography-Mass Spectrometry) or by HPAEC-PAD (High 

Performance Anion Exchange Chromatography-Pulsed Amperometric Detection).192, 

243  

4.5.4 Optimisation of pectin extraction at big scale 

4.5.4.1 Influence of extraction temperature, pre-treatment and MMPD on the 

molecular weight distribution of pectin 

 

GPC results obtained on pectin extracted at various temperatures at 800 W/L have 

shown pectin extraction at 120 °C yielded a product which competes with 

commercial pectin. The influence of MMPD could potentially be responsible for the 

higher proportion of neutral sugar chains present in pectin extracted at 35 W/L, 

explaining its lower solubility. As a result, GPC and monosaccharide analysis (MSA) 

were used to assess the pectin obtained at 800 W/L and 35 W/L to verify this 

hypothesis. The GPC results obtained are summarised in Table 18. With the 

exception of samples P0018 each set of conditions trialled was duplicated and the 

average molecular weight distribution data is reported.  

The effect of several operational parameters has been studied alongside MMDP. In 

order to complete the study, the effect of the variation of the microwave 

temperature and the effect of pre-treatment were studied next alongside the MMPD. 

The variation of the Mw, Mn and PI according to those parameters can be seen in 

Table 18. Two samples of commercial pectin obtained from two different pectin 

manufacturers were used to highlight the spread of the molecular weight 

distribution from one manufacturer to another.  

Microwave extraction temperature was the first factor to be studied on samples 

generated at 120 °C and 140 °C with a MMPD of 800 W/L. Samples corresponding to 

these conditions are P0018, P0020 and P0023. Mw and Mn values for P0018 at 140 

°C are the lower ones observed for the samples analysed, showing how a 20 °C 

increase in the extraction temperature negatively impacts the molecular mass 

distribution. P0018 has the highest polydispersity of all samples analysed, reaching 

a value of 3.69, which is over three times the polydispersity of the commercial pectin 

sample CU201. The best microwave extraction temperature to be selected therefore 
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is 120 °C, as highlighted before. This is in agreement with the literature: a weight 

average molecular weight comprised between 104 and 105 Da has previously been 

reported.221   

When excluding the polydispersity of sample P0018, the highest polydispersity 

reached by pectin samples analysed were of 2.54 and 3.33 for samples P0021 and 

P0022 respectively. These were obtained following conventional pectin extraction at 

pH 1.5 at 81 °C with HCl, using WOP (P0021) and PWOP (P0022). In comparison to 

acid hydrolysis, microwave extraction yields pectin with a lower PI. Furthermore 

Mn values for both P0020 and P0021 are lower than commercial pectin samples 

obtained under similar conditions. Thus, the results suggest that the pectin obtained 

under acid-free microwave conditions is superior to pectin extracted using acid 

hydrolysis. 
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Table 18: Summary of the GPC results obtained for pectin samples obtained under 
different microwave conditions. 

Pectin sample 
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Commercial 
pectin CU201 

N/A N/A N/A N/A 232,250 198,840 1.17 

Sigma Aldrich 
commercial 

pectin 
N/A N/A N/A N/A 125,600 100,100 1.26 

Acid-free 
microwave 
extraction 

       

P0002 WOP 35 120 14.03 110,000 494,000 2.28 

P0003 WOP 35 120 6.31 168,000 90,000 1.90 

Average N/A N/A N/A 10.17 139,000 292,000 2.09 
Standard 
deviation 

N/A N/A N/A 5.45 41,012 285,671 0.27 

P0004 PWOP 35 120 32.22 229,300 142,500 1.62 

P0005 PWOP 35 120 - 223,100 130,800 1.71 

Average N/A N/A N/A N/A 226,200 136,650 1.66 
Standard 
deviation 

N/A N/A N/A N/A 4,384 8,273 0.06 

P0018 PWOP 800 140 19.2 55,945 80,610 3.69 

P0020 PWOP 800 120 7.46 225,200 95,645 2.35 

P0023 PWOP 800 120 5.93 223,650 113,050 1.98 

Average N/A N/A N/A 6.70 224,425 104,348 2.17 
Standard 
deviation 

N/A N/A N/A 1.08 1,096 12,307 0.27 

Acid hydrolysis 
       

P0021 WOP N/A 81 2.12 299,650 118,200 2.54 

P0039 WOP N/A 81 6.59 394,000 365,450 1.14 

P0040 WOP N/A 81 4.37 430,450 378,600 1.14 

Average N/A N/A N/A 4.36 374,700 287,417 1.61 

Standard 
deviation 

N/A N/A N/A 2.23 67,502 146,693 0.81 

P0022 PWOP N/A 81 6.4 127,900 38,465 3.33 

P0026 PWOP N/A 81 7.18 420,300 383,350 1.10 

P0038 PWOP N/A 81 2.8 395,450 337,550 1.17 

Average N/A N/A N/A 5.46 314,550 253,122 1.87 
Standard 
deviation 

N/A N/A N/A 2.34 162,120 187,303 1.27 
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The influence of the pre-treatment of orange peel on a big scale was investigated 

next. At 35 W/L, the comparison between samples P0002 & P0003, obtained with 

WOP, and samples P0004 & P0005 obtained with PWOP shows how the 

reproducibility of the GPC results is enhanced when using as a raw material PWOP.  

The standard deviation on the average of Mw, Mn and PI decreases drastically when 

extracting pectin from PWOP. As an example, the standard deviation of Mn 

decreases from 285,671 to 8,273 Da when using PWOP. Whether this is entirely due 

to the pre-treatment step is difficult to fully establish even though the pectin 

samples have been produced in the same microwave equipment, at the same 

temperature and using the same raw material. The poor reproducibility between 

samples P0002 & P0003 does not allow to draw conclusions on the effect of WOP 

pre-treatment on the specific values of Mw and Mn. However it should be 

highlighted that pectin samples obtained from PWOP at 120 °C (excluding P0018) 

display a lower polydispersity, whether extracted at 35 or 800 W/L. Overall, the pre-

treatment step consisting of extracting D-limonene and flavonoids from the WOP 

prior to pectin extraction does not seem to be detrimental to the properties of the 

pectin. As the use of PWOP allows the separation of a greater number of compounds 

compared to WOP, valorising this raw material to its full potential, this conclusion 

represents an important milestone for this project aiming at designing a resource-

focused microwave biorefinery. 

The influence of the MMPD on the molecular weight was studied next at 120 °C. 

When comparing the sample sets P0004 & P0005 (35 W/L) against P0020 & P0021 

(800 W/L), the average Mw is slightly higher for samples obtained at 35 W/L. The 

same applies for the average Mn value, although a greater variation of the values 

obtained for Mn between the two sets of samples is observed. Additionally, a lower 

polydispersity is obtained for at 35 W/L.  

GPC analysis was also used to compare pectin samples obtained at 120 °C and 35 

W/L with two different commercial pectin samples. The average Mw value is 

situated within the same range as the Mw value obtained for sample CU201 

(226,200 versus 232,250). The corresponding Mn values for these same samples are 

much lower though (136,650 versus 198,840), indicating the obtention of shorter 

but more branched chains. Regarding the PI, low values have been attained: the 

average PI at 120 °C is of 1.66. This is an encouraging results because the typical 

polydispersity of the standards analysed is of ~ 1.2 and the PI of natural 

polysaccharides is usually comprised between 1.5-2.0.194 At 800 W/L and under the 

same temperature conditions, the average Mn value is lower, reaching 104,348 with 
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an average PI of 2.17. Consequently, the results imply that the pectin obtained at 35 

W/L posses a more uniform molecular weight distribution compared to pectin 

obtained at 800 W/L. The combined use of low MMPD microwave extraction 

conditions at 120 °C with the use of PWOP can yield a greater number of pectin 

chains of a uniform molecular weight distribution. 

This is advantageous as the CEM MARS microwave equipment has many advantages 

over the CEM Discovery: their vessels are three times larger, making the production 

of a couple of grams of pectin easier and less time consuming. It has both an IR and a 

fiber optic probe to measure the heating temperature, making the control of 

experimental conditions more precise, as recommended in the literature.58  

Additionally, when using the dynamic power mode, the power input of the CEM 

Discovery is much less controllable below 50 W. This conclusion will later be 

verified against the results obtained by monosaccharide analysis. Furthermore, the 

galA content analysis should be useful to check whether lower molecular weight 

values are due to a loss of neutral sugar chains from the hairy regions within the 

pectin chain for example. 

Pectin yields recovered are generally low for our experiments: comparatively, 

Bagherian et. al. have reported pectin yields reaching 26.27%  under “MW-assisted 

acid hydrolysis” type conditions at 900 W for a six minutes microwave treatment.244 

Further improvements of the yields could be achieved by using extraction 

temperature of 130 °C. 

 

4.5.4.2 Temperature optimisation of pectin extraction on a big scale 

 

After studying the influence of the MMPD and the effect of using pre-treated peel, a 

thorough investigation of yields of pectin extracted according to the microwave 

holding temperature was deemed necessary. Having established that 35 W/L 

represented the best MMPD, tests at 100, 110, 120 and 130 °C were carried out to 

extract pectin from PWOP. Triplicates were carried-out for each temperature except 

at 100 °C and the average molecular weight distribution data is discussed here (see 

Table 19). 
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Table 19: Influence of the microwave temperature on the molecular weight 
distribution of pectin 

generated from PWOP at 35 W/L under acid-free conditions. 

Pectin 
sample 

Temperature 
(°C) 

Yield 
(%) 

Mw (Da) Mn (Da) 
PI 

(Mw/Mn) 

Commercial 
pectin 
CU201 

- - 232,250 198,840 1.17 

Sigma 
Aldrich 

commercial 
pectin 

- - 125,600 100,100 1.26 

Acid-free 
microwave 
extraction 

     

P0028 100 0.98 289,650 139,050 2.09 

P0029 100 1.5 317,350 212,400 1.50 

Average N/A 1.24 303,500 175,725 1.80 

STDEV N/A 0.37 19,587 51,866 0.42 

P0031 110 5.89 267,750 159,900 1.62 

P0032 110 6.1 249,550 135,700 1.85 

P0034 110 5.87 238,450 152,400 1.57 

Average N/A 5.95 251,917 149,333 1.68 

STDEV N/A 0.13 14,793 12,388 0.15 

P0004 120 32.22 229,300 142,500 1.62 

P0005 120 - 223,100 130,800 1.71 

P0024 120 21.69 284,950 109,100 2.61 

P0033 120 11.11 265,650 97,720 2.72 

Average N/A 21.67 250,750 120,030 2.16 

STDEV N/A 10.55 29,531 20,315 0.58 

P0035 130 18.41 205,450 48,030 4.28 

P0036 130 15.24 172,600 35,725 4.83 

P0037 130 14.25 140,150 35,480 3.95 

Average N/A 15.97 172,733 39,745 4.35 

STDEV N/A 2.17 32,650.20 7,176 0.44 

 

The variation of the yield of pectin obtained according to the extraction temperature 

follows similar trends at 35 W/L and 800 W/L. In section 4.5.1., the yield of pectin 

was seen to drop above 140 °C. At 35 W/L the yield decreases from 21.67% at 120 

°C to 15.97% at 130 °C. Although the yield obtained at 130 °C is the second highest 

of the serie, the PI of pectin is very high under such conditions, rendering such 

conditions unsuitable for the obtention of pectin with a narrow molecular weight 

distribution.  
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When comparing samples produced at 110 °C and 120 °C, the same reasoning can be 

applied in the light of the results obtained: a significantly higher yield of pectin is 

obtained at 120 °C however the PI of 2.16 is still too high compared to commercial 

pectin. When considering the need to obtain pectin with a yield important enough to 

compete with commercial process alongside quality parameters, pectin obtained at 

110 °C displays the best molecular weight distribution. It has a Mw and a Mn of 

250,750 and 120,030 respectively. The PI is the lowest obtained for the extraction 

temperatures tested (1.68). These samples also present the lowest standard 

deviation on the Mw, Mn and PI values determined. Hence, 110 °C should be the 

preferred temperature used for further work in this area.  

 

4.5.5 Monosaccharide analysis of pectin 

 

A method to analyse and quantify the neutral and acid sugars of pectin is GC-EI-MS 

on depolymerised pectin. Six pectin samples have been analysed using this 

technique (see Table 20). Specific attention was given to the analysis of rhamnose, 

arabinose, galactose and galacturonic acid since they are the main components 

constituting pectin side chains (see Figure 61).125 The results reported have not 

been repeated and should be considered as preliminary work only. 

 

Table 20: Pectin samples analysed by monosaccharide analysis.  

Pectin sample Extraction conditions 

Commercial pectin CU201 N/A 

Non-standardised (NS) 

commercial pectin (Kelco) 
N/A 

P0004 120 °C, 35 W/L, WOP, 1:10 (peel:water) 

P0021 81 °C, pH 1 , PWOP, 1:10 (dry peel:water) 

P0022 81 °C, pH 1 , PWOP, 1:10 (dry peel:water) 

P0020 120 °C, 800 W/L, PWOP, 1:10  (peel:water) 

P0023 120 °C, 800 W/L, PWOP, 1:10 (peel:water) 
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Rhamnose (Rha) Arabinose (Ara)

H2O H2O H2OH2O

Galactose (Gal) Galacturonic acid (galA)

 

Figure 61: Structure of the sugar monomers considered for monosaccharide analysis 
(originally in colour). 

 

The results obtained for the MSA analysis are summarised in Table 21. Two 

commercial pectin samples of known galA content have been subjected to MSA to 

assess the reliability of the method. For sample CU201, the reported galA content of 

the commercial sample is of 88%. The analysis carried out determined a galA 

content of 92.89% which is slightly above the usual ± 5% error. For the NS Kelco 

sample, a galA content of 85.98% was obtained. The manufacturer reports a galA 

content of 82.6 %, which is within the ±5% error range, validating the results 

obtained for the MSA.  
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Table 21: Summary of the pectin characteristics and associated results obtained by 
MSA. 
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H&F pectin 

CU 201 
N/A N/A 92.89 0.90 5.46 0.75 7.11 100 

NS Kelco pectin N/A N/A 85.98 5.17 7.88 0.97 14.02 100 

Acid-free microwave 

extraction 
        

P0004 PWOP 35 75.20 13.12 10.50 1.18 24.80 100 

P0020 PWOP 800 9.44 15.71 9.44 0.96 26.11 35.55 

P0023 PWOP 800 79.18 12.06 7.73 1.03 20.82 100 

Acid hydrolysis         

P0021 WOP N/A 65.75 9.61 23.68 0.96 24.25 100 

P0022 PWOP N/A 78.07 4.45 16.12 1.36 21.93 100 

 

Regarding the NS content, NS Kelco pectin should contain a much lower amount of 

neutral sugars since it is not standardised with sucrose, unlike standardised pectin 

such as the H&F CU201. Standardised pectin samples can contain up to 50% sucrose 

(typically 25-30%).120 Samples could be re-run following hydrolysis in an acidified 

methanol solution, which should remove the sugar fillers.  

Regarding the analysis of experimental samples, initial results indicate that the 

reproducibility of the galA content between samples generated under the same 

conditions seems poor (see results for samples P0020 & P0023). All samples display 

a similar neutral sugar content comprised between 24.80% and 26.11%.  Compared 

to commercial samples, the later value are higher than the neutral sugar content of 

7.11 % and 14.02 % obtained for CU201 and NS Kelco respectively. More precisely, 

when considering samples CU201 and P0004, the later has a neutral sugar content 

almost 3.5 times higher than CU201. However, the MSA data also shows pectin is 

predominantly composed of galA. When excluding the value obtained for P0020, the 

galA content of microwave extracted pectin samples is consistently measured above 
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65%. Regarding the influence of MMPD on the galA and the neutral sugar content, a 

5.25 % difference is observed between the galA content of samples P0004 and 

P0023. This difference seems too low to explain any difference in properties 

between the two samples obtained respectively at 35 W/L and 800 W/L. However, if 

the samples are re-run to account for a greater number of monosaccharides (i.e. D-

apiose), a potential decrease of the galA content could then explain a difference in 

properties and MSA could be used to explain the difference in properties between 

pectin extracted at 35 or 800 W/L. 

The galA content measured seems to be slightly higher for the pectin extracted at 

800 W/L (P0023) compared to pectin extracted at 35 W/L (P0004). Additionally, 

the galA content measured for the two microwave extracted pectin samples (P0004 

& P0023) is above the legal requirement (65%). However no conclusion can be 

reached on the MMPD according to MSA data as further samples need to be run.  

A comparison exercise between the galA and the neutral sugar content obtained 

herein and data available in the literature has been done (see Table 22). The highest 

galA content has been achieved for sample P0023, reaching 79.18% which is within 

the range of the results reported in Table 22, showing a lower MMPD is preferable to 

achieve a higher galA content. 

 

Table 22: Reported results in the literature on MSA of citrus peel residues. 

Biomass 

extracted 

Extraction conditions 

(roughly) 

galA 

(%) 

Neutral 

sugar (%) 
Reference 

Orange 

peel 

MW pre-treated, HCl 

extracted (120min) 
73.2 - 175  

Orange 

albedo 

MW heating under pressure 

(2.5 min), HCl extraction 
96 4.2 148  

Citrus peel 

walls 
Water extraction 80.1 19.9 245  

Orange 

peel 
Water extraction 4.52 33.91 189  

Lemon peel Water extraction 1.68 53.07 189  

 

In conclusion, the galA contents obtained for P0004 and P0023 are encouraging, 

even though they are slightly lower than the ones found in the literature for acid-

mediated pectin extractions using microwaves as a method of pretreatment. 
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4.5.6 DE determination using 13C CPMAS 

 

Using CPMAS 13C NMR, the DE of pectin produced under acid-free microwave 

conditions at 35 W/L was determined. The results are given in Table 23. When 

considering the samples obtained by microwave extraction, virtually no variation of 

the DE can be observed when increasing the microwave holding temperature from 

100 to 130 °C. A DE of 68, 66, 69 and 69% has respectively been obtained at 100, 

110, 120 and 130 °C. When looking at the DE values obtained for pectin extracted by 

acid hydrolysis, little change can be observed with the values previously reported 

for microwave extraction. Whether WOP or PWOP is used, a DE of 68% and 71% 

respectively has been determined. The data does not appear to be inconsistent: a 

measure of the accuracy of the method has carried-out, and an error of ± 10% was 

determined, which was deemed reasonable, especially when compared to 

traditional methods used (i.e. phenolphthalein titration). Given the results obtained, 

the method designed using the integral ratio        
/          , this method proves 

to be fairly robust. 
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Table 23: DE of pectin extracted under acid-free microwave conditions 
(35 W/L) and by acid hydrolysis determined by CPMAS 13C NMR. 

 
Biomass 

used 
Temperature 

(°C) 
DE 
(%) 

Error 
(%) 

Acid-free 
microwave 
extraction 

    

P0028 PWOP 100 74 11 
P0029 PWOP 100 62 10 

Average 
  

68 
 

P0031 PWOP 110 78 12 
P0032 PWOP 110 61 9 
P0032r PWOP 110 62 10 
P0034 PWOP 110 63 10 

Average 
  

66 
 

P0004 PWOP 120 64 10 
P0005 PWOP 120 75 12 
P0024 PWOP 120 70 11 
P0033 PWOP 120 67 10 

Average 
  

69 
 

P0035 PWOP 130 74 11 
P0036 PWOP 130 69 11 
P0037 PWOP 130 63 10 

Average 
  

69 
 

Acid 
hydrolysis     

P0021 WOP 81 70 11 
P0039 WOP 81 70 11 
P0040 WOP 81 63 10 

Average 
  

68 
 

P0022 PWOP 81 68 11 
P0026 PWOP 81 73 11 

Average 
  

71 
 

 

The DE of pectin extracted using acid hydrolysis on both WOP and PWOP has also 

been carried-out. Very similar DE have been reached. In the case acid hydrolysis 

extraction of pectin on WOP an average DE of 68 has been obtained. In the case of 

PWOP, an average DE of 71 has been determined. Given the accuracy of the 

calibration curve previously reported in section 4.4.3.2, it was concluded that the 

results can be used as a good indication of the DE of pectin extracted under acid-free 

conditions. 
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4.6 Conclusion & further work 

 

In this chapter, the possibility to extract pectin under acid-less conditions using 

microwaves has been proven below 150 °C. This has been demonstrated on a 10 mL 

and a 100 mL scale, showing the process is scalable. Pectin has been successfully 

characterised by ATR-IR, solution and solid state 13C NMR. Gel forming properties of 

pectin have been demonstrated, validating the “proof-of-concept” work for the 

design of a waste biorefinery based on the use of WOP. 

The results obtained show that microwave-assisted extraction of pectin in water 

only is possible, offering competitive molecular weight distribution as analysed by 

GPC when compared against commercial standards.  

The utilisation of a clean and safe technology for the production of pectin, avoiding 

acidic waste water effluents is of particular interest. Especially as “environmentally 

friendly processing without any use of chemicals [acids in this case] can positively 

influence the consumer” when faced with the decision to buy a product over 

another.246  The method reported here would allow for the elimination of acidic 

wastewater treatment, rendering it safer and potentially less harmful to the 

environment. No dewatering agent such as lime is used either.  

Based on observations made using GPC analysis, microwave holding temperatures 

of 110 or 120 °C are ideal depending on the required yield and quality of pectin for a 

given type of application. These have been determined following use of a 35 W/L 

MMPD on peel previously used for D-limonene and flavonoid extraction. The added 

advantage of this method is the combined production of D-limonene and flavonoids 

as separate product streams prior to pectin extraction. This pretreatment do not 

seem to affect the properties and the quality of the pectin extracted, filling in the 

conditions pre-determined in chapter 3 according to the SWOT analysis. The later 

two product streams and associated production steps will be discussed separately in 

chapter 5 and 6 respectively. 

Hence, the conditions reported herein for pectin extraction can be very valuable for 

the production of high methoxy pectin and, based on results obtained following the 

development of a new technique for the determination of the DE. Following previous 

results reported in the literature, a CPMAS 13C-NMR technique was developed. This 

technique allowed a fairly accurate determination of the DE when compared to 

commercial samples of known DE. In the light of the literature review reported in 
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this chapter on previous methods used in food science to quantify pectin quality, it is 

believed CPMAS 13C-NMR offers a reliable and reasonably quick alternative which 

offers good accuracy and limiting human error compared to previous methods 

highlighted. 

Several improvements and process modifications should be done to complete the 

work reported in this chapter. Thinking chronologically, when considering the 

production stage first, the work-up of pectin could be improved by testing the 

properties of pectin obtained when using ethanol only for precipitation and 

washing. So far acetone has been used for washing following precipitation. But in 

order for pectin’s use to be approved in food products, ethanol and water are the 

only solvents this material can come into contact with. 

Further work can be done on the gel-forming properties of pectin. It should be noted 

that the results of the gel tests have only been assessed qualitatively. Rheology 

measurements should be done to quantitatively assess gel strength via the 

determination of visco-elastic properties for example. Gel strength can be assessed 

using a texture analyser, allowing the determination of the storage modulus G’ and 

the loss modulus G’’ by small amplitude oscillatory rheological tests.247 Additionally, 

the gelling point of the pectin produced under acid-free conditions, should be 

checked especially as “the gelation temperature of pectins depends not only on their 

botanical source, manufacturing conditions, molecular and materials properties but 

also on their gel preparation procedure and cooling conditions”.225 This shows how 

many parameters need to be considered to know exact gel forming conditions for a 

given type of pectin. 

Regarding the characterisation of the DE and the galA acid content of pectin, the 

results obtained by CPMAS 13C-NMR need to be confirmed using another technique 

based on a different principle. An example could be the quantification of the amount 

of CO2 produced during for different pectin samples of varying DE by 

thermogravimetric analysis coupled by IR (TG-IR).  

Regarding the application of pectin in food formulation, performance studies of 

pectin produced under acid-free conditions should be carried-out in collaboration 

with industry. 
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5 Microwave-assisted extraction of D-limonene 

 

Citrus peel is known for secreting a substance, commonly known as citrus peel 

essential oil. The main use of essential oils in the European Union is as flavour 

enhancers in foods, in perfumes and in pharmaceutical applications. Steam 

distillation is used on a commercial scale for its extraction.248, 249 The main 

component of orange oil is D-limonene (83-97% by weight), a non-oxygenated 

monoterpene made from the combination of two isoprene units.250 The present 

chapter aims to describe the work done on microwave-assisted extraction of D-

limonene as part of an integrated microwave biorefinery. Two types of extraction 

have been trialled: 

 Open vessel microwave-assisted extraction of D-limonene  

 Solvent-less open vessel microwave-assisted extraction of D-

limonene. 

The extraction of D-limonene is the first step in the OPEC process described in this 

thesis. Yields of D-limonene will be compared between the different experimental 

set-ups mentioned above. The extraction of D-limonene using microwave technology 

will be studied with the aim of reaching a high purity extract under solvent-less 

conditions. The D-limonene yield obtained for optimised solvent-less open vessel 

microwave-assisted extraction under vacuum will be compared against D-limonene 

extracted using conventional steam distillation and the composition of the D-

limonene containing extract will also be highlighted.  

 

5.1 Open vessel microwave-assisted extraction of D-limonene  

 

D-limonene (C10H16) is naturally present in over 300 essential oils, and especially in 

citrus fruit peels, in which it is the main component. It has been used for over 50 

years as a flavour and fragrance component and is now increasingly applied as a 

solvent in industry given its good degreasing properties. The degreasing agents are 

used for cleaning electrical circuits for example. D-limonene is usually obtained as a 

by-product of citrus juice production in Brazil and Florida. 251  

Conventional solvent extraction was studied first to establish a baseline for future 

experiments. This piece of work was designed as a proof of concept. The aim was to 
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obtain a significant volume of D-limonene at lab scale: 100 mL of D-limonene of a 

given purity was to be sent for analysis to an industrial collaborator. Figure 62 A, B 

and C show the set-up used for D-limonene extraction at a three litre scale as well as 

the extract obtained. More specifically, hexane was used to extract D-limonene at a 

three litre scale. Hexane was selected as an extraction solvent to both guarantee a 

maximum solubility of D-limonene, a cyclic terpene, and an easy recovery due to its 

low boiling point. Interestingly, D-limonene has previously been reported as an 

alternative to hexane for rice bran oil extraction, demonstrating D-limonene’s 

excellent oil solubility properties.252 Cause for concern exists over the use of hexane 

for several reasons and a suitable alternative is actively being researched in 

academia.253  

 

Following the conditions described, a 1.52% yield of D-limonene was determined on 

a wet basis was obtained when working at this scale. Steam distillation of the 

resulting orange oil allowed for the recovery of D-limonene (Figure 63). A 13C NMR 

spectrum confirmed its identity (see experimental chapter).  

 

A B C 

Figure 62: A) Three litre round-bottom flask containing macerated orange peel in 
hexane; B) CEM MARS microwave equipment used (open vessel configuration); C) 

obtained D-limonene containing extract (originally in colour). 
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Figure 63: Steam distillation set-up used for D-limonene purification 
(originally in colour). 

 

Following purification of the D-limonene obtained by hexane extraction, the 

formation of an orange precipitate was observed during the steam distillation. Using 

ElectroSpray Ionisation (ESI) mass spectrometry it was found to consist of 4 

different polymethoxyflavones; these being tangeritin, nobiletin, tetra-O-

methylscutellarein and heptamethoxyflavone (see Figure 64) which precipitated in 

water as D-limonene was removed by steam distillation. 1H NMR was used to 

identify functional groups indicative of the nature of the extract obtained. Since the 

detected polymethoxy flavonoids (PMFs) are present in a mixture, 1H NMR spectrum 

could not be decisively interpreted but does show several very strong aromatic 

methoxy signal at ~3.97 ppm (see Figure 65). Further analysis of this spectrum will 

be provided in chapter 6 which will specifically focus on the isolation and 

characterisation of orange peel related flavonoids. Aromatic methoxy groups are 

characteristic of all the above mentioned polymethoxyflavones. PMFs are a subclass 

of flavonoids. Citrus-derived flavonoids, “especially polymethoxyflavones (PMFs), 

have been of particular interest because many of these flavonoids exhibit a broad 

spectrum of biological activity.”254 However, few reports exist on their 

pharmaceutical activities, especially in vivo. This is mainly due to their high trading 

price: as an example, 3,5,6,7,8,3’,4’-heptamethoxyflavone reached a value of 

$300/mg.255  
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Figure 64: ESI spectrum of the precipitate formed in the aqueous phase of the 
orange oil extracted using hexane following purification by steam distillation.  

 

 

Figure 65: 1H NMR of the acetone soluble, water insoluble orange oil precipitate 
obtained following D-limonene purification by steam distillation (originally in 

colour). 

 

The high value of the flavonoids detected motivated the modification of the overall 

OPEC process to recover them using a dedicated step. Based on the difference in 
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volatility between D-limonene (176 °C) and PMFs (~550 °C), it was thought D-

limonene could be recovered using a microwave-based steam distillation step. The 

D-limonene extracted peel (OPR1) could then be used for the extraction of 

flavonoids in a separate step using a soxhlet extraction, as previously mentioned in 

chapter 4. As well as allowing for the recovery of the said flavonoids, this step 

“stripped” the peel of low molecular weight organic compounds, facilitating the 

work-up of pectin extracted thereafter. The recovery, separation and 

characterisation of the extracted flavonoids will be discussed in further depth in the 

next chapter.  

Further work was done in an attempt to phase out the use of hexane for the 

extraction of D-limonene.  Hexane is known as a neurotoxin and is classified as a 

hazardous air pollutant according to the Environmental Protection Agency (EPA).256, 

257 Preliminary work and optimisation of the aforementioned microwave-assisted 

extraction technique for D-limonene will be developed in the following paragraphs. 

The results will be compared against D-limonene extracted by steam distillation. 

 

5.2 Open vessel solvent-less microwave-assisted extraction of D-

limonene 

5.2.1 Preliminary work  

 

Hexane based extraction of D-limonene in the microwave yielded 1.52% of D-

limonene. Given the risks associated with hexane, the research effort shifted to 

solvent-less extraction technique. With the latter in mind, trials were first done 

microwave steam distillation. This technique is known for its application on the 

extraction of essential oils: results on lavender, rosemary, lemon oils have been 

reported amongst others.258- 260 Microwave steam distillation is known to be faster 

due to a more efficient heating process, fast temperature control and reduced 

thermal gradients via a fast interaction of the water with the microwaves given its 

high dielectric constant.64 Up to three fold reductions in extraction time have been 

reported for the extraction of lemon essential oil using microwave assisted steam 

distillation  (MASD) compared to steam distillation.258   

MASD was tested by Kai Shute (visiting student for the October-November 2012 period) 

with defrosted WOP on the Milestone ROTOSYNTH microwave. All oil yields are 

quoted on a wet basis. Two experimental parameters were evaluated. First the 
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peel:water ratio (1:1, 1:0.5 and 1:0) and secondly, the duration of the microwave 

treatment (1200 W for 6 minutes followed by 800 W for 10, 15, 20, 25 or 30 

minutes).  The influence of the peel:water ratio was studied first.  

Figure 66 illustrates the obtained results. The data shows how the yield of oil 

collected is inversely proportional to the amount of water used. The maximum yield 

of oil is reached with a peel:water ratio of 1:0.5 (over the range tested). Under these 

conditions, 0.41% of oil was obtained using a microwave power of 100 W.  

 

Figure 66: Oil yield collected by MASD as a function of the peel:water used at 100 W 
(originally in colour). 

 

The influence of the time of extraction for MASD was also investigated for a 

peel:water ratio of 1:1 ( 

Figure 67) and 1:0.5 (Figure 68). By varying the extraction times, it was clear the 

extraction yield reached a plateau after 25 minutes.  In both cases, the oil yield 

increased with the time of extraction until it reached 25 minutes. Extraction times 

over 25 minutes led to pyrolysis as by then all the free water had been removed thus 

heating predominantly the biomass components.  After 25 minutes, a smell of 

burning and a brown colouration appeared on the peel present in the vessel. The 

maximum yields obtained are very similar in both cases: 0.94% and 0.96% were 

achieved with a peel:water ratio of 1:1 and 1:0.5 respectively.  The latter results 

represent a two folds improvement over the 0.41% yield obtained previously at 100 

W. The results show that the peel:water ratio has a minimal influence on the yield of 

oil obtained. Consequently, MASD of WOP alone was trialled, without any additions 

of water. The experiment proved to be successful: a 1.08% oil yield was attained 

under solvent-less conditions. Although the use of water was already a good 
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alternative to hexane in terms of reducing the toxicity, flammability, VOC emissions 

and handling hazards associated with this hydrocarbon solvent (especially at an 

industrial scale), the use of water as a solvent presents different challenges. The 

recovery of this solvent is difficult due to its high heat capacity and boiling point. 

This has the effect of rendering the use of water as a solvent “costly and energy-

intensive”.261 In 1996, it was even reported that in Florida, many citrus-processing 

plants “have avoided recovering cold pressed oil totally or partially, because of the 

significant impact this has on waste water treatment investments.”262  

 

Figure 67: Oil yield collected by MASD as a function of the extraction time used for a 
peel:water ratio of 1:1 (originally in colour). 

 

 

Figure 68: Oil yield collected by MASD as a function of the extraction time used for a 
peel:water ratio of 1:0.5 (originally in colour). 
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5.2.2 Solvent-less extraction of D-limonene under microwave conditions at 

100 mbars 

 

Based on the observations and good results obtained, for the MASD extraction of 

citrus oil under solvent-less conditions, the use of this technique under vacuum was 

thought of as a way to further increase the yield of D-limonene collected.  Such a 

technique has been previously used by Budarin et. al. to fractionate the volatiles 

produced during microwave activation of wheat straw.34 Here, the main objective 

was to further lower the boiling points of compounds traditionally found in essential 

oils (200-300 °C)263 and trap a maximum of organic compounds extracted in the 

round-bottom flask, avoiding their loss in the pump traps. The experimental set-up 

is highlighted in Figure 69 A, B and C).   

 

 

Figure 69: Pictures of the D-limonene extraction set-up 
A) pump; B) extract condenser system; C) microwave equipment (Milestone 

RotoSYNTH) (originally in colour). 

 

For a first experiment, 2569.11 g of WOP were used and a vacuum of 100 mbars on 

average was applied during the microwave-assisted extraction. The WOP had a 

moisture content of 18.23%. The energy consumption was measured using a power 

meter for each run: on average 0.91 kWh were consumed by the whole system. This 

includes the microwave unit, the chiller and the vacuum pump. The maximum 

temperature reached at 1200 W was of 58 °C and 61 °C when lowering the 

microwave power to 800 W (see power ramp used for the extraction in the 

experimental section). The whole process for this step is described in Figure 70. 

  

A B C 
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Figure 70: Detailed process flow sheet of step 1 (D-limonene extraction DL002 at 
100 mbars) (originally in colour). 

 

D-limonene was quantified using GC-FID, employing ethyl benzene as an internal 

standard (IS). The concentration range used was of 0.07- 0.20 molar. The details of 

the analysis can be found in Table 24.  

Table 24: GC-FID data for the calculation of the D-limonene concentration extracted 
with a response factor of k = 0.8377 (sample DL002) at 100 mbars.  

 
Boiling 

point (°C) 

Retention 

time (min.) 

Peak 

area 

Concentration 

(mol/L) 

Ethyl benzene 

(IS) 

C6H5CH2CH3 

136 4.84 3859.8 0.094 

D-limonene 

C10H16 
176 8.23 2985.8 0.08 

 

The conditions trialled allowed the recovery of 2.96 g of D-limonene per litre of 

liquid phase. Since 1528.23 g of liquid phase has been collected, 4.52 g of D-

limonene has been extracted. The wet yield therefore amounts to 0.18% (0.22% on a 

dry basis). On a wet basis, 70.98% of the original weight of the WOP was collected 

under the form of water. The latter will also contain volatile components other than 
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D-limonene; these have not be quantified or characterised as this wasn’t defined as 

part of the scope of this project.  

In order to verify no gases were lost following the extraction, a mass balance was 

done for this step (see Table 25). A difference of 195.18 g was observed between the 

amount of material coming in and the amount of material coming out. The GC-FID 

chromatogram does not display many other compounds other than ethyl benzene 

and D-limonene (see experimental section). Since D-limonene has a non-negligible 

volatility, the difference in mass might be due to a high portion of volatiles being left 

in the vacuum traps by the high vacuum used. The yield of D-limonene extracted 

could therefore be improved by decreasing the vacuum applied to the extraction 

vessel, leaving room for optimisation.  

 

Table 25: Mass balance for step 1 (D-limonene extraction DL002 at 100 mbars). 

IN OUT 

Material Mass (g) Material Mass (g) 

OP (wet basis, 
18.23% H20) 

2569.11 
D-limonene 4.52 

OPR1 843.22 
H20 1526.19 

TOTAL 2569.11 TOTAL 2373.93 

 

The experiment was repeated a second time for reproducibility purposes (sample 

DL001). A wet yield of 0.16% (0.22% on a dry basis) was obtained.  

Both yields are the same on a dry basis, demonstrating the good reproducibility of 

the experiment under the conditions trialled. In order to further improve the yields 

obtained, a lower vacuum (i.e. 500 mbars instead of a vacuum of 100 mbars) could 

be used. A higher yield would also allow for an easier collection of the organic layer 

by liquid-liquid separation. This is especially important on a larger scale when 

solvent extraction can be avoided, rendering the process safer and more-

environmentally friendly.  

Generally, current processing removes a relatively small amount of citrus oil from 

the peel prior to juicing operations. Less than ~15% of the total available quantity is 

removed this way.264 Eventually it should be possible to extract a greater portion of 

D-limonene. Orange essential oil contains between 83 and 90% D-limonene.265  It has 

been estimated that 5 kg of oil can be recovered from 1000 kg of oranges (wet 

waste). This corresponds to a yield of  0.5% (on a wet basis) for the essential oil that 

could therefore be recovered.113, 117 In a worst case scenario, a minimal yield of 
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0.42% (on a wet basis) of D-limonene is expected when accounting for a 83% D-

limonene content. The yields obtained at 100 mbars are far off the minimal yield 

calculated above for steam distillation of the peel used for juice production. Hence, 

the decrease of the vacuum used represents a promising change in the experimental  

conditions used and will be tested next.  

 

5.2.3 Optimisation of MASD at 500 mbars 

  

Following the results obtained at 100 mbars for the microwave-assisted extraction 

of D-limonene under solvent-less conditions, further experiments were carried-out 

using a 500 mbars vacuum with the aim of increasing the yield of D-limonene 

extracted with improved reproducibility.  Extractions were performed in triplicates 

except at 100 mbars. The yields were determined by GC-FID, using a correlation 

factor of 0.791 for a D-limonene concentration ranging from 0.004 molar to 0.101 

molar. Additionally, the results obtained were compared to steam distillation. All 

yields obtained have been summarised in Table 26. 

  



167 
 

Table 26: D-limonene extraction conditions and associated yield (D-limonene was abbreviated to DL here). 

Extraction 
conditions 

Sample 
ID 

WOP water 
content 

(%) 

Mass OP 
used (g) 

wet 

Mass OP 
used (g) 

dry 

Mass DL 
extracted 

(g) 

Dry 
yield 

DL (%) 

Average 
dry DL 

yield (%) 

Standard 
deviation on 
dry DL yield 

Wet 
yield DL 

(%) 

Average 
wet DL 

yield (%) 

Standard 
deviation on 
wet DL yield 

Microwave             
100 mbars 

DL001 17.13 1734.56 1437.43 2.81 0.20 
0.20 0.01 

0.16 
0.17 0.01 

DL002 17.13 2569.11 2129.02 4.52 0.21 0.18 

Microwave             
500 mbars 

DL003 19.95 3589.56 2873.44 32.52 1.13 

1.28 0.25 

0.91 

1.03 0.20 DL004 19.30 942.89 760.91 11.92 1.57 1.26 

DL005 19.30 970.50 783.19 8.86 1.13 0.91 

Steam 
distillation 

SD1 20.59 100.00 79.41 0.82 1.03 

0.61 0.37 

0.82 

0.49 0.29 SD2 20.59 100.00 79.41 0.27 0.34 0.27 

SD3 20.59 100.00 79.41 0.37 0.47 0.37 
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In comparison with values found in the literature for orange  peel, Ferhat et. al. 

report yields of essential oil of 0.42 ± 0.02% and 0.39 ± 0.02% for microwave 

assisted extraction and hydro distillation respectively,64 both of which are much 

lower than the D-limonene 1.03% yield obtained for the experiment done under a 

500 mbars vacuum. Regarding the recovery of lemon essential oil by cold pressing 

and steam distillation, yields of 0.05 ± 0.01% and 0.21 ± 0.01% have been 

reported.258  

Although interesting, the results obtained at 500 mbars should be put in perspective 

with the ones previously obtained at atmospheric pressure. The latter conditions 

yielded 1.08% of D-limonene which does not represent an improvement compared 

to when a vacuum of 500 mbars is used (1.03%). However it does still demonstrates 

how a microwave-assisted extraction can be an improvement over the traditional 

extraction method in terms of reproducibility but also in terms of process speed.  A 

microwave-assisted extraction of WOP required half the time of a steam distillation 

for over five times the quantity of peel extracted (Figure 71). Additionally, no 

solvent was required. 

 

 

Figure 71: Advantages of MASD over classic steam distillation (originally in colour). 

  

On the other hand, if we compare MASD at 500 mbars against microwave-assisted 

extraction in hexane, the yields of D-limonene obtained in hexane are still higher by 

32.68% (1.53% versus 1.03%). However the lower MASD yield could be outweighed 

again by the fact that no solvent is be used at all, cutting out CAPEX costs on solvent 

recovery and use when applying the process at commercial scale. 

MASD: 

25 minutes 

900-1000 g OP 

No solvent required 

Steam distillation: 

5 hours 

100 g OP 

H2O required 

166 167 168 168 
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Table 27 summarises results reported in the literature on microwave-assisted 

extraction of citrus oil from fruits such as oranges, lemons and limes with a focus on 

microwave solvent-less extraction. Under solvent-less conditions, the yield of 1.03% 

is situated in the higher end of the results reported, even though the peel used for 

the experiments reported herein has been extracted post-juicing. A yield of 1.6% is 

reported for lemon peel by Bousbia et. al.  This is a very high yield and compared to 

other values reported for lemons, and seems to be unrealistically high. However, the 

variety of the fruits used and the maturity of the fruit at the time of extraction can 

have an important influence on the yields of oil collected, as shown by the data 

reported by Bousbia et. al. for lemons. It is not however the sole factor influencing 

yields. From the data shown in Table 27, it seems clear that the high yield of 1.03% 

is mainly due to the high microwave power applied during the extraction. Compared 

to the work of Ferhat et. al. where a power of 200 W is used (500 W for Bousbia et. 

al.), this factor seems to be determinant.  



 
 

Table 27: Summary of D-limonene yields reported in the literature for microwave assisted extraction techniques applied to varied citrus fruits 
(solvent-less conditions for 1.-3., solvent-less microwave hydro diffusion & gravity for 4.-9. and microwave steam diffusion for 10. and 11.) 

 Biomass used 
Biomass initial 

moisture content (%) 
Extraction conditions 

D-limonene containing 
fraction yield (%) 

D-limonene 
content (%) 

Reference 

1. 
Orange fruits of 
different variety 

collected post-juicing 

19.52 
(average taken) 

6 min. at 1200 W & 19 
min. at 800 W at 500 

mbars  
1.03 ± 0.20 - 

Own experimental 
results  

2. 
Orange (Citrus 

sinensis L. Osbeck) 
Valencia late.  

90 
200 W for 30 min. at 

atmospheric pressure. 
0.42 ± 0.02 

 
76.7 Ferhat et. al.(2006) 

3. 
Lemon (Citrus limon 

(L.) 
- 

200 W for 30 min. at 
atmospheric pressure. 

0.24 ± 0.01 69.65 Ferhat et. al.(2007) 

4. 
Lime (Citrus 

aurantifolia) Swing 
- 

500 W for 15 min. at 
atmospheric pressure. 

0.8 60.56 Bousbia et. al. (2009) 

5. 
Lemon (Citrus limon 

L.) Eureka 
- 

500 W for 15 min. at 
atmospheric pressure. 

0.7 69.65 Bousbia et. al. (2009) 

6. 
Lemon (Citrus limon 

L.) Villa Franca 
- 

500 W for 15 min. at 
atmospheric pressure. 

1.6 60.56 Bousbia et. al. (2009) 

7. 
Orange (Citrus sensis 

L.) Tarocco 
- 

500 W for 15 min. at 
atmospheric pressure. 

1.2 95.19 Bousbia et. al. (2009) 

8. 
Orange (Citrus sensis 

L.) Valencia late 
- 

500 W for 15 min. at 
atmospheric pressure. 

1.0 94.64 Bousbia et. al. (2009) 

9. 
Orange (Citrus sensis 

L.) Washington Naval  
- 

500 W for 15 min. at 
atmospheric pressure. 

0.9 95.20 Bousbia et. al. (2009) 

10. 

Orange (Citrus 
sinensis L. Osbeck) 

Valencia late collected 
post juicing.  

90 

200 W at atmospheric 
pressure with a mass 

flow rate of steam of 25 
g/min for 12 min.  

1.54 94.88 Farhat et. al.(2011) 

11. 

Orange (Citrus 
sinensis L. Osbeck) 

Valencia late collected 
post juicing.  

75 

200 W at atmospheric 
pressure with a mass 

flow rate of steam of 14 
g/min for 6 min.  

5.43 (dry basis)  
 

96.20 Sahraoui et. al. (2011) 
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Unfortunately, a thorough comparison between the experiments highlighted in 

Table 27 is not possible given the differences, in microwave set-ups, power, 

extraction times and peel moisture content. The same applies to D-limonene content 

originally present in the biomass. The table also details results obtained by 

microwave steam diffusion. It is interesting to note that in this case, yields of 

recovered oil are much higher. But whether the experiment is done under solvent-

less conditions is debatable given the use of a steam generator which is maintained 

to temperature using microwaves. From an environmental standpoint, the use of 

this technique is subject to discussion as a higher quantity of water will have to be 

treated and extra energy is required to produce steam prior to microwave 

extraction. 

The extraction mechanism of oil from CPW under MASD has previously been 

reported by Ferhat et. al. The heating of the inherent water content of the peel 

caused the oil glands present in the peel to burst, releasing the oil as the water 

contained in the peel is vaporised.64, 2 58, 266  This was proven by cytology analysis of 

fragments of peel stained with acid-Schiff’s reagent under the microscope.123, 2 58, 266  

Kinetic studies have shown microwave treatment of the peel under microwave 

steam diffusion facilitates oil extraction.123, 267  

In terms of energy consumption, steam distillation consumes 4.32 kWh over 5 hours 

on average. For MASD at 500 mbars, 0.93 kWh are consumed over 26 minutes. This 

corresponds to 0.014 and 0.036 kWh per minute for steam distillation and MASD 

respectively. As a result, MASD is over two times more energy intensive. However 

MASD is over ten times faster, even when working with a volume of WOP nearly 10 

times larger. It should be noted that there is not a big difference between the energy 

consumption between 100 mbars and 500 mbars, which is interesting.  

Finally, the mass balance of the optimised conditions developed for D-limonene 

extraction has been determined (see Table 28). 
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Table 28: Mass balance for step 1 (D-limonene extraction DL003 at 500 W, 4 
microwave runs in total). 

IN OUT 
Material Mass (g) Material Mass (g) 

OP (wet basis, 
19.95% H20) 

3589.68 
D-limonene 32.52 

OPR1 1846.78 
H20 1710.38 

TOTAL 3589.68 TOTAL 3589.68 

 

Figure 72 describes step 1 at 500 mbars together with the energy consumption. The 

mass balance shows that the amount of material coming in is equal to the amount of 

material coming out. This is an improvement over the MASD at 100 mbars and 

allowed the resolution of the loss of material in the pump traps.  

 

Figure 72: Detailed process flow sheet of step 1 (D-limonene extraction DL003 at 
500 mbars) (originally in colour). 

 

5.2.4 GC-MS analysis and comparison between the extracts obtained at 100 

and 500 mbars against steam distillation 

 

The terpene composition of each D-limonene fraction was determined for every 

extraction condition tested. This was done by GC-MS analysis for the extracts 

generated at 500 mbars and 100 mbars as well as for D-limonene obtained by steam 

distillation of WOP. GC-TOF was used to determine the grade of limonene produced 
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and see which other volatiles were extracted. This technique is routinely used. “Most 

of the commercialized essential oils are chemotyped by gas chromatography and 

mass spectrometry analysis.”249  

The latter could be used to verify whether the use of microwave technology has any 

influence on the composition of the D-limonene extract produced. D-limonene is 

classified into three categories depending on the extraction method used: high 

purity, food grade and technical grade. The technical grade “is often un-standardised 

and therefore D-limonene contents may vary from 60%-90%.” High purity and food 

grade extracts respectively have to attain a D-limonene content superior or equal to 

98.5% and 95% as determined by HPLC analysis. The latter two are obtained by cold 

pressing. In practical terms, following cold pressing of peels, more D-limonene can 

be further extracted by steam distillation, yielding the technical grade.2 68,269 All three 

grades differ by price, with the food grade reaching up to a 19% premium. Providing 

that the right grade can be produced, MASD has the potential to replace both cold 

pressing and steam distillation, generating a competitive advantage with a cost-

effective microwave process that gives a high yield and high purity D-limonene.  

The GC-TOF analysis was run in collaboration with Tony Larson (CNAP, department 

of biology at the University of York). The use of this technique was aimed at 

estimating the relative percentage of D-limonene present alongside other major 

components present. Elucidating the detailed composition of all three extracts 

wasn’t within the scope of the project. However the content variation of the major 

terpene components will be estimated. 

Three samples were analysed using GC-TOF: DL002, DL004 and SD1. DL002 and 

DL004 were respectively generated at 100 mbars and a 500 mbars under MASD 

conditions. SD1 is the result of a steam distillation. Each sample was run three times 

and average values are reported. The D-limonene content was compared first 

between samples. The analysis technique chosen established that D-limonene is the 

main component of the three extracts. The highest D-limonene content was obtained 

for sample DL004 (95.38% ± 0.80), followed by SD1 (84.27% ± 10.10) and DL002 

(42.44% ± 15.53). The higher D-limonene content value obtained for DL004 

compares well with previous work reported on MASD on orange peel.  Farhat et. al. 

and Sahraoui et. al. respectively report a D-limonene content of 94.88% and 

96.20%.266 Bousbia et. al. obtained a D-limonene content of 94.64% by microwave 

hydrodiffusion.270 All the latter authors report D-limonene as the main component of 

the extract obtained under microwave conditions. More importantly, the results 

obtained show that under optimised microwave conditions at 500 mbars, the D-
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limonene fraction obtained falls into the food grade category. This is interesting as 

traditionally, food grade D-limonene is obtained by cold pressing and only technical 

grade D-limonene (the lowest grade of D-limonene) is obtained under heating (i.e. 

steam distillation). 

Regarding the variation of D-limonene between samples DL002 and DL004, the 

much higher D-limonene content obtained for DL004 shows how the use of a 

moderate vacuum improves the D-limonene content. This confirms the hypothesis 

that the high vacuum setting affects negatively the D-limonene content. 

Alongside D-limonene, other compounds have been identified by using 

corresponding standards. The content in α-myrcene , α- and ß- pinene, p-cymene, α-

terpineol and linalool have been estimated using standards of the latter compounds 

alongside a standard of D-limonene. The latter components have all been identified 

in the literature as the main terpene constituents present in orange oil. Other 

compounds detected were reported as unknown. The percentage peak areas 

corresponding to each standard have been reported in Table 29.  

The method was applied to samples DL004 and SD1. The results obtained show that, 

when excluding the unknown components, the fraction of oxygenated compounds 

represents 0.16% of the terpene content in DL004. In sample SD1, this value almost 

doubles, reaching 0.31%. This difference in the quantity of oxygenated terpene will 

impart a different scent profile to the oil. Furthermore, the monoterpene content is 

significantly different between sample DL004 and sample SD1. In the former it 

reaches 96.96% and 85.76% for the latter sample. Overall, the results obtained show 

that under optimised conditions, MASD yields a limonene fraction that has a 

characteristically different composition profile including a higher proportion of 

monoterpenes over oxygenated terpenes. From the standards run, none of the 

fractions differ in composition regarding the main terpene content.  
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Table 29: GC-TOF results obtained for samples DL004 and SD1.  

 
Extraction ion chromatogram peak area (%)  

DL004 SD1 

Monoterpenes 96.96 85.76 

D-limonene 95.38 84.27 
α-myrcene 0.91 0.74 
α-pinene 0.44 0.39 
ß-pinene 0.20 0.21 

p-cymene 0.02 0.15 

Oxygenated 
monoterpenes 

0.16 0.26 

linalool 0.15 0.15 
α-terpineol  0.01 0.11 

Total:  97.12 86.02 

Other compounds: 2.88 13.98 

 

The D-limonene content is much higher in the case of MASD, establishing MASD as a 

more efficient extraction technique in comparison to steam distillation. This 

observation was initially confirmed by carrying out a mass and an energy balance on 

step 1.  

 

5.3 Conclusion & further work 

 

MASD of WOP under solvent-less conditions was proven as an effective method for 

the extraction of D-limonene. No drying or pre-treatment of the WOP prior to 

extraction was needed. Under optimised conditions at 500 mbars, a 1.09% yield of 

D-limonene was achieved, with a standard deviation of ± 0.18% on the average 

yield. In comparison, steam distillation and MASD at 100 mbars yielded respectively 

only 0.49% and 0.17% D-limonene. Good reproducibility was also demonstrated at a 

500 mbars and a scale of 1 L. In this chapter, it has been demonstrated that 

microwave technology presents distinct advantages for the fast and reproducible 

production process of food grade D-limonene. The work presented in this chapter 

shows MASD under solvent-less conditions is reproducible and has the potential to 

be scaled-up, eliminating the need for solvent, offering lower energy consumption 

and greater purity compared to traditional steam distillation. The results obtained 

show how the first step of the OPEC process can be successfully carried-out at a 
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scale of up to 1 litre, fulfilling one of the aim of this project, as determined in chapter 

3. 

A huge challenge remains though: some progress still needs to be done on the 

isolation and purification method for D-limonene. At this point, it was detected and 

quantified following solvent extraction. This is a disadvantage knowing the 

extraction can be done under solvent-less conditions. Solvent-less conditions are 

especially useful to avoid the presence of solvent residues in the extract. This is not 

negligible for an extract used in food or cosmetic products, as the composition of 

those consumer products is heavily legislated. The absence of residues can also have 

the potential to increase the value of the extract obtained. Thinking ahead, the cost-

efficiency of a process can also be increased by the use of a solvent-less process 

since solvent removal can represent an important CAPEX investment for the scaled-

up plant in terms of equipment and later in terms of operation costs for energy-

consumption. If the isolation issue is resolved, microwave technology will have the 

potential to carry out “full reproducible extractions […] in seconds and minutes with 

high reproducibility, reducing the consumption of solvent [and the risks associated 

with their use] simplifying manipulations and work-up, […] and eliminating post-

treatment of waste water.”259 The influence of lower powers on D-limonene yields 

should also be further investigated as in the case of lavender oil extraction by 

microwave assisted steam diffusion, there was little difference between maximum 

yields obtained at 200 W or 400 W (~4.4%), even in terms of speed of extraction.259  

In order to further gain information on the application of D-limonene in consumer 

products, MASD extracted D-limonene should be tested independently in food 

products as a flavour or as a fragrance in cosmetic products. Regarding its use as a  

fragrance component, the difference in scent might be due to the presence of L-

limonene, which has a scent which is closer to pine than to citrus. The ratio between 

(S)-limonene (L-limonene) and (R)-limonene (D-limonene) could be determined by 

chiral chromatography for example. The presence of L-limonene could also explain 

the slight difference in scent noticed for the D-limonene fraction extracted according 

to the method reported herein.120  

Finally, in order to thoroughly assess the scalability of step 1, the reproducibility of 

the developed D-limonene MASD extraction method should be trialled on fresh 

waste orange peel as opposed to defrosted WOP. This is especially important as the 

latter will have lost a great quantity of water following freezing-defreezing. This 

might influence the yield of D-limonene recovered. Such tests will also represent a 

good opportunity to study the variability introduced by different feedstock history. 
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It would also be interesting to verify the D-limonene yield varies as a function of the 

orange variety used. Additionally, it would be interesting to see whether the use of a 

lower power for MASD can improve reproducibility. 
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6 Flavonoids and sugar extraction  

6.1 Introduction to flavonoids 

 

Alongside D-limonene, CPW contains other valuable components. Flavonoids are 

secondary plant metabolites present in the peel and leaves of fruits.271 They are part 

of a large group of naturally present polyphenolic compounds with anti-cancer, 

antiatherogenic, antimicrobial and anti-inflammatory properties.150 Citrus peel is a 

known source of flavonoids: the flavonoid content of an industrial by-product from 

sweet orange peel has been reported to vary from 4.50% to 11.00% by dry 

weight.126 They have physiological and pharmaceutical properties which imparts 

notable health benefits, mainly associated with their antioxidant activity. 272, 273 

Flavonoids not only differ by the nature of their B ring but also by their substituents 

which can be hydrolxyl or methoxyl groups.  When methoxy substituents are 

present on the benzo-γ-pyrone ring (C6-C3-C6), the flavonoids fall into the sub-class 

of polymethoxyflavonoids (PMFs) or polymethoxy flavones. These compounds are 

often found in citrus fruits.2 74, 275  Structurally, they are characterised by two 

aromatic rings connected by a pyrone ring (see Figure 73).  

 

Figure 73: Basic chemical structures of flavonoids distinguishing flavones from 
flavanones. 

 

In biomass, the function of flavonoids ranges from pigment source, to UV and insect 

protection.276 The main flavonoids (or flavanone glycoside) available in citrus are 

hesperidin, narirutin, naringin and eriocitrin (see chemical structures in Figure 74).  
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Citrus fruit peel also contains PMFs, which are known for their interesting medicinal 

properties.277 -279 However, their pharmacokinetic properties have rarely been 

studied, due to their high cost (see chapter 5).255 This chapter will be centred on step 

2 of the OPEC process: the extraction of the PMF molecules previously detected 

when purifying a fraction of D-limonene, as seen in chapter 5. It will highlight the 

optimum extraction method selected, the solvent used as well as the isolation and 

the characterisation of PMFs alongside with other molecules that are  co-extracted 

from OPR1 (D-limonene extracted peel). Hesperidin was extracted together with a 

monosaccharide containing fraction. Both have been characterised and the sugar 

fraction has been quantified using 13C NMR. 

As part of the first round of experiments carried-out for an industrial collaborator  

(the production of 100 mL of D-limonene using microwave-assisted extraction), the 

formation of a precipitate in water was observed following purification by steam 

distillation of solvent extracted orange oil. Using ESI mass spectrometry, the mixture 

was found to consist of 4 different PMF compounds namely tangeritin, nobiletin, 

tetra-O-methylscutellarein and heptamethoxyflavone (see chapter 5). The 
1
H NMR 

spectrum of the mixture could not be used to precisely identify each PMF detected by 

ESI. However, the presence of peaks between 3.8 and 4.2 ppm is indicative of aromatic 

Hesperidin Narirutin 

Naringin 

Eriocitrin 

Figure 74: Chemical structures of some of the most common flavonoids 
found in citrus fruits (hesperidin, narirutin, naringin and eriocitrin) (originally in 

colour). 
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methyl ethers (Figure 75). Peaks corresponding to aromatic protons can also be seen in 

the 6-7.5 ppm region. This observation instantly rules out compounds such as ß-

carotene, as the presence of alkene conjugated protons could not be detected between 5.3 

and 5.8 ppm, even though aliphatic –CH- signals can be detected ~ 1.25 ppm. The peak 

seen at 2.16 ppm is due to residual ethanol being present in the sample.  

 

 

Figure 75: Detail of the methoxy group region of the 1H NMR spectra 
(400 MHz, CDCl3) of the flavonoid precipitate isolated following D-limonene 

purification by steam distillation (originally in colour). 

 

This, together with soft ionisation mass spectrometry data, confirms the presence of 

PMFs as opposed to carotenes, another common component present in orange peel. 

Tangeretin, heptamethoxyflavone, nobiletin, heptamethoxyflavone and sinensitin 

are amongst the major PMFs found in citrus fruits and can be extracted “using non 

polar solvents such as hexane and polar solvents such as water, ethanol and 

methanol.”280 Their structures are given in Figure 76. 
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Figure 76: Chemical structures of tetra-O-methylscutellarein, tangeritin, nobiletin 
and heptamethoxyflavone (originally in colour). 

 

Following the results obtained after sending the second set of pectin samples for an 

industrial collaborator (see chapter 4 section 4.6.), the decision was taken to include 

a soxhlet extraction step to extract the PMFs detected. The soxhlet extraction was to 

be added to the process between D-limonene extraction (step 1) and pectin 

extraction (step 3). This appeared to represent an opportunity to extract the PMFs 

detected by ESI and NMR, adding another product stream to the process. A soxhlet 

extraction was chosen as it would have the double advantage of extracting 

flavonoids and removing acetone soluble low molecular weight substances such as 

monosaccharides present in the peel following D-limonene extraction. This strategy 

was chosen knowing that pre-treating peel prior to pectin extraction using a 

washing step with 96% alcohol to “remove alcohol-soluble low molecular weight 

substances and for inactivation of endogenous enzymes” has been previously 

reported.189  Acetone was first chosen as an extraction solvent as the precipitate 

obtained previously displayed the best solubility in acetone and its low boiling point, 

ensuring good recovery of the solvent following extraction. 
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6.2 Soxhlet extraction technique 

 

Soxhlet extraction is a well known continuous “solid-liquid extraction” technique 

used to transfer a given compound in the liquid phase, allowing for its 

characterisation and/or quantification. It was developed in 1879 and has since 

become the standard extraction method for solid-liquid extraction against which 

new extraction techniques are evaluated.28 1 Although it is an established and 

effective continuous extraction method, the volumes of solvent and energy 

consumed have motivated further improvements to this technique over the years.281 

The combination of soxhlet extraction together with microwaves or ultra-sounds 

have been reported.2 81  

A soxhlet relies on the siphon to operate continuously: upon heating, as the 

condensed solvent vapour is collected in the extraction chamber, the level of solvent 

rises up to the point when it reaches the over-flow level of the siphon. The 

extraction chamber then empties itself, releasing the extract in the bulk of the 

solvent. Once the solvent reaches its boiling point again, the same cycle repeats itself 

until the heating is turned off, exposing the sample to fresh solvent. Figure 77 

depicts the equipment used for a conventional soxhlet extraction. 

 

Figure 77: Conventional soxhlet extractor (originally in colour). 
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This extraction method was chosen here to extract the PMFs detected as well as 

other low molecular weight components with the hope of simplifying the 

purification process of pectin. It was also selected for the high throughput of 

biomass this technique can handle.  

 

6.3 Acetone soxhlet extraction 

 

The extraction was carried out on a 3 L scale using the set-up represented in Figure 

77 with acetone as an extraction solvent and the orange peel residue OPR1 (D-

limonene extracted peel). Following acetone removal, a thick orange paste was 

obtained. Solubilisation tests of the obtained extract were done in different solvents 

with the aim to determine a selective and efficient work-up procedure for the PMFs. 

Water, acetone and ethanol were all tested first. The outcome of each solvent 

solubility test was assessed by ESI. The composition of the different extracts could 

then be quickly determined to understand the distribution of compounds in the 

different solvents tested according to their solubility properties. Care was taken to 

select renewable solvents which could be easily removed, bearing in mind toxicity 

and biocompatibility issues. A work-up method was then designed following two 

main observations: PMFs were solubilised in ethanol, a renewable food grade 

solvent which allowed for a white precipitate to form. Figure 78 shows a picture of 

the precipitate in ethanol. 

 

 

Figure 78: Ethanol precipitate observed following isolation of the PMF mixture 
(originally in colour). 
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By using ATR-IR spectroscopy, the white solid was identified as hesperidin. The 

exact characterisation of this compound will be discussed in section 6.5.2. A 

solubility test using water also revealed that monosaccharides contained in the 

extract could be separated by filtration as the rest of the mixture is water insoluble. 

Since flavonoids have a limited solubility in cold water, the latter solvent was used 

first before solubilisation in ethanol to remove monosaccharides from the water-

insoluble flavonoid mixture. Water removal was done using a freeze-drier and 

yielded a brown, rock hard solid. The solid was later identified as a mixture of 

fructose and glucose by 13C NMR (see 6.5.3). The whole process used is highlighted 

in Figure 79 along with every product stream obtained and their associated work-

up. The work-up procedure designed allowed isolation of the mixture of four PMF 

compounds, hesperidin and a mixture of sugars with yields of 2.22%, 0.14% and 

4.34% respectively on a wet basis. On a dry basis, the yields for the four PMF 

compounds, hesperidin and a mixture of sugars with yields of 2.32%, 0.15% and 

4.52% respectively. The characterisation of the obtained products will be discussed 

in section 6.5. The experiment was repeated and the same products were obtained.  
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Figure 79: Detailed process flow sheet of step 2 
(flavonoids extraction using an acetone soxhlet, experiment SO1) (originally in 

colour). 

 

A mass balance was carried-out for the flavonoid extraction step (see Table 30). A 

difference of 132.79 g was observed between the material input and the material 

output. This difference corresponds to 1.88% of the total mass materials going in for 

step 2, which is negligible when working on a 3 L scale. The difference in mass was 

most probably due to human error.  
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Table 30: Mass balance for step 2 (flavonoids extraction SO1). 

IN OUT 

Material Mass (g) Material Mass (g) 

OPR1 1383.05 

Polymethoxy 

flavonoids 
30.75 

Sugar fraction 60.01 

Hesperidin 2 

OPR2 1157.5 

Acetone 2373 Acetone 2373 

H2O 400 H2O 400 

Ethanol 316 Ethanol 316 

TOTAL 4472.05 TOTAL 4339.26 

 

Marin et. al. reports peel produced as a result of orange juice production contains up 

to 4.50% of flavonoids (dry weight) following HPLC analysis (value obtained post-

juicing).126 This value seems high when knowing that processing operations have 

been reported to decrease the flavonoid content by up to 50% (i.e. leaching by 

water).272 

Alternatively, Manthey et. al. have reported a flavonoid content of 1.7-2% on dry 

basis for orange and grapefruit peel.149 This value seems more reasonable following 

the results obtained by acetone soxhlet extraction. Nevertheless, the results 

obtained show there is still scope for improvement. A possible solvent change might 

improve extracted yields but could also lower the selectivity of the method for the 

targeted PMFs. 

 

6.4 Ethanol soxhlet extraction 

 

The results obtained when stripping OPR1 in an acetone soxhlet led to one main 

modification for step 2. Acetone was replaced by ethanol to enhance the yield of 

PMFs recovered and eliminate the use of a non-food grade solvent. The latter is 

especially important as PMFs and pectin cannot be in contact with a non-food grade 

solvent given their targeted applications in the food or the pharmaceutical sector. 

This change was further motivated by the use of ethanol for the work-up of the 
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soxhlet extract, reducing the number of solvents needed. Methanol has been 

reported as an extraction solvent for PMFs but ethanol was preferred as it is less 

toxic and more easily bio-derived. 

The use of ethanol for PMF extraction is known: 75% ethanol in water and 100% 

ethanol were reported to give 100 % extraction efficiency for PMFs  for example.280 

Using such a solvent combination might change the nature of the extract though. 

When using acetone the PMF and the hesperidin are easily separated using liquid-

solid extraction with renewable solvents such as water and ethanol. This could 

change if phenolics such as galic, vanillic or p-coumaric acid are also extracted, 

complicating the work-up protocol. 

In addition to the change of solvent, it was decided to use OPR2 obtained following 

the extraction of D-limonene at 500 mbars whereas OPR2 obtained from a 100 

mbars extraction was used in both cases for the acetone extraction. Although this 

represents two process modifications instead of one, making it difficult to attribute 

the change in yields to either parameter, this decision has been taken as it would 

allow a more precise picture of the optimised OPEC process to be drawn within the 

time frame given. Figure 80 shows the soxhlet equipment used for the extraction 

when using ethanol. 

 

 

Figure 80: Ethanol soxhlet (originally in colour). 
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The change in solvent and the use of OPR1 extracted at 500 mbars gave better 

results than previously observed. The same three different types of products were 

isolated when using ethanol as an extraction solvent. The mixture of four PMF 

compounds, hesperidin and a mixture of sugars were obtained with yields of 5.40%, 

0.24% and 18.35% respectively on a wet basis. On a dry basis, the yields for the four 

PMF compounds, hesperidin and a mixture of sugars with yields of 6.15%, 0.26% 

and 19.92% respectively. On a dry basis, the yields obtained with ethanol represent 

an outstanding improvement by a factor of 2.6 for the PMF compounds, 1.73 for 

hesperidin and 4.4 for the sugars compared with the results obtained with acetone. 

A table highlighting all yields obtained for every product stream in both acetone and 

ethanol is given below. 

Table 31: Summary of the yields obtained for all product fractions 
following acetone and ethanol soxhlet extraction on a dry and wet basis.  

 Yields given on a wet basis (%) Yields given on a dry basis (%) 

Product 

stream 
PMFs Hesperidin Sugars PMFs Hesperidin Sugars 

Acetone 2.22 0.14 4.34 2.32 0.15 4.52 

Ethanol 5.40 0.24 18.35 6.15 0.26 19.92 

 

The characterisation of those compounds will be discussed in section 6.5. A photo of 

the extract can be seen in Figure 81. 

 

Figure 81: PMF fraction obtained following ethanol soxhlet extraction (originally in 
colour). 
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The results obtained with ethanol show that the change of solvent did not affect the 

type of products extracted: the nature of the fractions isolated is consistent between 

the two solvents with yields significantly higher than for acetone. Figure 82 details 

the process used.  

Little literature can be found on extraction yields of PMFs from citrus peels. Most of 

the reported data in this area focuses on flavonoid detection and separation as they 

are often found as part of the molasses obtained following juicing operations.149, 157  

When their extraction is investigated, a mixture of flavonoids is often reported and 

the research effort focuses on their identification and separation. When reported, 

quantitative analysis is expressed in the form of a total phenolic content in ppm or 

as concentrations. This links with the research done on the activity and the 

flavonoid composition in juice products.272  Although the yield of polymethoxy 

flavonoids seems low, it has been reported that 1.3 kg of total polymethoxylated 

flavones can be produced from 1000 kg of 65° brix Valencia orange molasses, which 

corresponding to a 0.13% yield. In this context, the wet yield of 5.87% obtained for 

PMFs represents an important achievement over the traditional method extraction 

(lime maceration of the peel).157  

Additionally, soxhlet extraction allows for the production of PMFs without the use of 

lime, potentially lowering the environmental impact of the production of this class of 

compounds.  Regarding previous reported soxhlet extractions of sweet orange peel: 

Lee et. al. reported the extraction of PMFs using 85% aqueous ethanol for four 

hours. Under these conditions, 14.34 mg of nobiletin and tangeritin were obtained 

per gram of peel, strengthening the work reported here.274  It seems the MASD of D-

limonene prior to PMF extraction by an ethanol soxhlet has a positive influence of 

the amount of PMFs extracted when comparing it to the conventional method and 

conventional soxhlet extraction.  
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Figure 82: Detailed process flow sheet of step 2 
(flavonoids extraction using an ethanol soxhlet, experiment SO3) (originally in 

colour). 

 

Following the obtention of the ethanol extract, a mass balance was calculated for the 

ethanol soxhlet extraction, as seen in Table 32). A difference of 10.08 g was 

observed between the amount of material coming in and the amount of material 

coming out. This difference corresponds to less than 1% of the total mass of 

materials entering step 2, which is negligible, especially when working on a 3 L 

scale. 
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Table 32: Mass balance for step 2 (flavonoids extraction SO3). 

IN OUT 

Material Mass (g) Material Mass (g) 

OPR1 1157.84 

Polymethoxy 
flavonoids 

62.58 

Sugar fraction 212.41 

Hesperidin 2.75 

OPR2 870.02 

Ethanol 2683 Ethanol 2683 

H2O 400 H2O 400 

TOTAL 4240.84 TOTAL 4230.76 

 

It is interesting to note that out of the different species of flavonoids present in OP, 

PMFs only are extracted. No non-methoxylated flavonoids have been detected (i.e. 

naringin, narrutin). In order to understand the influence of the MW extraction of D-

limonene on the results observed for soxhlet extraction, the soxhlet extraction 

should be carried out on virgin orange peel. This would have allowed us to see 

whether hydroxylated flavonoids are degraded during the microwave extraction of 

D-limonene. Hydroxyl groups on the benzo-γ-pyrone ring act as “radical scavengers” 

due to their hydrogen and electron donating and metal chelating ability.150, 151   

Flavonoids displaying methoxy functions will likely have a higher stability than 

hydroxylated flavonoids, possibly explaining the sole extraction of polythoxylated 

flavonoids after microwave treatment.  

 

6.5 Quantification & characterisation of key extracted 

components 

 

Each fraction isolated was carefully characterised using a minimum two techniques 

of different nature whenever possible. The polymethoxy flavonoids were 

characterised by ESI, HPLC-MS and 13C NMR following separation by supercritical 

carbon dioxide chromatography. Hesperidin was characterised by ATR-IR, 13C NMR 

and elemental analysis. Sugars have been identified by 13C NMR and quantified using 

an internal standard. 
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6.5.1 Polymethoxylated flavonoids 

6.5.1.1 Electrospray Ionisation Mass Spectrometry analysis 

 

Electrospray Ionisation (ESI) Mass Spectrometry is a soft ionisation technique used 

at atmospheric pressure. When developed, the technique was used for protein 

molecular weight determination. ESI is often used as a detector when coupled with 

separation techniques such as HPLC (HPLC/ESI-MS).282 The application of liquid 

chromatography-electrospray ionisation-mass spectrometry is known on PMFs for 

example.254  Ionisation is accomplished by the loss or gain of a proton, generating a 

molecular ion. No fragmentation of the molecule analysed occurs. This technique 

relies on the the Coulombic fission: a high voltage (2000-5000 V) is applied to a 

capillary containing the analyte, causing the formation of charged droplets which 

will split eventually forming desolved ions in the vapour phase from the molecule 

initially injected. This is possible as the repulsion forces between the charges 

formed exceed the surface tension of the solvent. Their separation is then carried-

out in vacuum based on their m/z via a mass analyser.28 3 Figure 83 highlights the 

set-up used for the ionisation of the analyte in ESI.  

 

 

Figure 83: Production of molecular ions by ESI (originally in colour). 

 

ESI analysis is a fast and convenient method requiring only minimum sample 

preparation. The only prerequisites are the use of a polarisable analyte and the use 

of an protic solvent such as ethanol, water or acetone to allow the formation of the 

[M-H]+ ion (in the positive mode).  
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The polymethoxy flavonoid fraction (labelled SO1daf) was recovered, dried from the 

extraction solvent and analysed by ESI. The analysis confirmed the presence of the 

four PMFs previously detected during the purification of D-limonene (see Table 33).  

 

Table 33: ESI results for sample SO1daf and SO4daf.  

Sample 
name 

Measured 
m/z 

(mDa) 

Attributed 
molecular 

formula 

Corresponding 
m/z (mDa) 

Error 
(mDa) 

Identified 
compound 

SO1daf 
(acetone) 

343.1181 C19H19O6 343.1176 -0.4 
Tetra-O -methyl 

scutellarein 
373.1282 C20H21O7 373.1282 -0.3 Tangeri tin 
403.1385 C21H23O8 403.1387 0.2 Nobiletin 

433.1494 C22H25O9 433.1493 0.0 
Heptamethoxy 

flavone 

SO4daf 
(ethanol) 

343.1177 C19H19O6 343.1176 -0.1 
Tetra-O -methyl 

scutellarein 
373.1280 C20H21O7 373.1282 0.2 Tangeri tin 
403.1389 C21H23O8 403.1387 -0.2 Nobiletin 

433.1500 C22H25O9 433.1493 -0.7 
Heptamethoxy 

flavone 

 

Tetra-O-methyl scutellarein, tangeritin, nobiletin and heptamethoxy flavone were all 

identified using this technique in both extracts, whether acetone or ethanol was used. 

Each m/z peak for the molecular ion was attributed to the given PMF within ± 0.5 mDa 

error in both fractions, successfully identifying the above PMFs in the extract obtained 

following work-up.  

To further confirm the ESI mass spectroscopy results, the analysis of both extracts 

obtained in acetone and ethanol were analysed by High Performance Liquid 

Chromatography coupled to a Mass Spectrometry detector (HPLC-MS). 

 

6.5.1.2 High Performance Liquid Chromatography - Mass Spectrometry HPLC-

MS 

 

High Performance Liquid Chromatography coupled to an Atmospheric Pressure 

Chemical Ionisation (APCI) ion source is a standard technique used here for the 

identification of polymethoxylated flavonoids.282 In comparison to gas 

chromatography (GC), HPLC is a separation technique appropriate for heat labile 

non-volatile molecules. Separation is occurs based on the difference of affinity for a 

given analyte for the stationary and mobile phase. The polarity of the mobile phase 
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used to elute the analytes one by one can be changed on line. The coupling of liquid 

chromatography with mass spectrometry allowed the obtention of structural 

information further allowing the use of chromatography for characterisation of 

mixture components.284 The APCI is an atmospheric pressure ionisation technique 

allowing the formation of non-fragmented molecular ions at atmospheric pressure 

comparable to ESI. Ionisation is triggered by the formation of N2
·+ and O2

·+ species 

which will the transfer their protons to the analytes.282  

HPLC-MS/APCI analysis was carried out at Centre for Novel Agricultural Products 

(CNAP). This particular LC-MS method has been previously used by CNAP to detect 

sesquiterpenes (C15H24) from Artemisia annua extracts. A C18 reverse phase column 

was used under gradient conditions with a methanol based mobile phase. It has 

been proven to successfully separate and detect three PMFs present in this species, 

the predominant compound being casticin C19H18O8.  HPLC-MS/APCI  has been 

previously used to identify oxygen heterocycles in citrus essential oil.118 This 

method was applied to the flavonoid mixture obtained under the conditions 

reported herein in order to confirm the structures of flavonoids detected by ESI and 

attempt to separate them. The results can be seen in Table 34.  
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Table 34: Summary of the results obtained by HPLC-MS of sample SO1daf. 

Sample 
name 

Compound 
name 

Systematic 

name 

Molecular 

formula 

Molecular 

mass 

(g/mol) 

Expected molecular 

mass (M+H)
+
 ion 

(g/mol) 

HPLC-MS 

match 

Retention 

time 

(seconds) 

SO1daf 

Tetra-O-
methyl-

scutellarein 

4’,5,6,7-
tetramethoxy 

flavone 
C19H18O6 342.34 343.34 

m/z 343.1176 C19H19O6 
 (error: 0.1613 ppm) 

59.77 

Tangeritin 

4’,5,6,7,8-
pentamethoxy 

flavone 
C20H20O7 372.37 373.37 

m/z 373.1282 C20H21O7  
(error: 0.1613 ppm) 

 
m/z 373.1283 C20H21O7  

(error: 0.1613 ppm) 

53.23 and 
66.14 

Nobiletin 

3’,4’,5,6,7,8-
hexamethoxy 

flavone 
C21H22O8 402.39 403.39 

m/z 403.1385 C21H23O8  
(error: -0.5487 ppm)  

 
m/z 403.1385 C21H23O8  

(error: -0.1613 ppm) 

60.24 and 
55.70 

Heptamethoxy 
flavone 

2’, 3, 
3’,4’,5,7,8-

heptamethoxy
flavone 

C22H24O9 432.42 433.42 
m/z 433.1489 C22H25O9 

(error: -0.886 ppm) 
62.51 
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Nobiletin, tetra-O-methyl-scutellarein and heptamethoxyflavone have been 

successfully identified, confirming the results obtained by ESI mass spectroscopy. 

Furthermore, two new flavonoid components were identified using HPLC-MS in 

comparison to ESI: two chromatographically resolved candidates for isomers of 

tangeritin and nobiletin were identified. The use of HPLC-MS allowed the detection 

of two peaks corresponding to a molecular weight of ~ 373 g/mol and ~ 403 g/mol. 

Given the difference in retention time, the two peaks must correspond to different 

compounds with the same molecular formula, or in other words, isomers. For the 

isomer of tangeritin, a possible match might be sinensetin, or 3',4',5,6,7-

pentamethoxyflavone, which only differs by the position of the five methoxy groups 

on the C6-C3-C6 rings. The structure of sinensetin is given below in Figure 84.  

 

Figure 84: Chemical structure of sinensitin or 3’,4',5,6,7-pentamethoxyflavone 
(originally in colour). 

 

The isomer of nobiletin could be 3,3’,4’,5,6,7-hexamethoxyflavone. This compound 

possesses the same number of methoxy groups on the C6-C3-C6 rings and the same 

molecular formula.  Another possible match might be 3',4',5',5,6,7-

hexamethoxyflavone. The structures of the possible isomers of nobiletin are given in 

Figure 85. The isomers for tangeritin and nobiletin could be attributed using MS2 

fragmentation data if the -OH and -OCH3 groups are switched between rings. 

 

Figure 85: Possible chemical structures of the isomers of nobiletin 3,3’,4’,5,6,7-
hexamethoxyflavone –left; 3',4',5',5,6,7-hexamethoxyflavone –right (originally in 

colour). 
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A good approximation of the PMFs relative proportions can be deduced from the 

HPLC-MS data as relative percentages of the absolute Extracted Ion Chromatogram 

(XIC) areas obtained for each mass tag. Nobiletin, tetra-O-methyl-scutellarein, 

heptamethoxyflavone and tangeritin/sinensitin account respectively for 34.13%, 

9.10%, 15.19% and 19.80% of the sample analysed. Therefore PMFs represent 

78.21% of the sample SO1daf. A typical ion chromatogram is given in the figure 

below.

 

Figure 86: TIC and XIC obtained for the HPLC-MS of sample SO1daf. 
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The same process was applied to the PMF fraction obtained using an ethanol soxhlet 

to confirm the results obtained using ESI. The HPLC-MS results obtained for this 

fraction are summarised in Table 35. The same four compounds were detected in 

the ethanol fraction, confirming the results obtained by ESI. Relative retention times 

between the same peaks observed differed by 2.5 and 3.07 seconds further 

strengthening this conclusion. However, in this case, nobiletin and tetra-O-methyl 

scutellarein were found to co-elute.  A separate peak for tetra-O-methyl scutellarein 

could not be detected. Instead, the peak previously identified as nobiletin and 

eluting at 63 seconds contains a masstag for a molecular ion with a m/z of 343 

g/mol previously attributed to tetra-O-methyl scutellarein (see Figure 87). This can 

be explained by the increased age of the column between the analysis of samples 

SO1daf and SO4daf. The quality of the separation was inferior explaining the 

inability of the column to separate analytes with a difference in retention time of ~ 1 

second. Nonetheless, this is still within the ± 5 ppm limit acceptable for high 

resolution MS. 



201 
 

Table 35: Summary of the results obtained by HPLC-MS of sample SO4daf. 

Sample 
name 

Compound 
name 

Systematic 

name 

Molecular 

formula 

Molecular 

mass (g/mol) 

Expected molecular 

mass (M+H)
+
 ion 

(g/mol) 
HPLC-MS match 

Retention 

time 
(seconds) 

SO4daf 

Tangeritin 

4’,5,6,7,8-
pentamethoxy 

flavone 
C20H20O7 372.37 373.37 

m/z 373.1272 C20H21O7  
(error: -2.6973 ppm) 

 
m/z 373.1273 C20H21O7  

(error: -2.4049 ppm) 

56.3 and 
68.9 

Nobiletin/ 
Tetra-O-
methyl-

scutellarein 

3’,4’,5,6,7,8-
hexamethoxy 

flavone/ 
4’,5,6,7-

tetramethoxy 
flavone 

C21H22O8 402.39 403.39 

m/z 403.1375 C21H23O8  
(error: -3.6476 ppm) 

 
m/z 403.1377 C21H23O8 

(error: -3.0922 ppm) 

(contains Tetra-O-methyl-
scutellarein) 

58.2 and 63 

Heptamethoxy-
flavone 

2’, 3, 
3’,4’,5,7,8-

heptamethoxy
flavone 

C22H24O9 432.42 433.42 
m/z 433.1482 C22H25O9  

(error: -2.4425 ppm) 
65.2 
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Figure 87: Extraction ion chromatogram (XIC) of the nobiletin peak eluting at 63 

seconds for sample SO4daf (originally in colour). 

 

The proportion of the PMFs has been estimated from the HPLC-MS data as relative 

percentages of the absolute Extracted Ion Chromatogram (XIC) areas for each m/z 

value. Nobiletin/tetra-O-methyl-scutellarein, heptamethoxyflavone and 

tangeritin/sinensitin account to give 26.56%, 11.70% and 14.59% respectively. 

These values should be regarded as relative and should not be used as absolute 

values. PMFs represent 52.85% of the sample SO4daf. Compared to SO1daf, this 

represents a decrease of ~ 33% in the content of PMF present in the fraction. Taking 

into account the change in solvent from acetone to ethanol led to a 2.5 increase in 

the yield of PMF recovered, it is an interesting result, highlighting the difference in 

selectivity between the two solvents for this step. 

In each PMF fraction obtained, a significant proportion of compounds are not flavonoids. 

In SO1daf this amounts to 21.79% and in SO4daf it corresponds to 47.15%. ESI analysis 

of each PMF fraction dissolved in ethanol allowed qualitative analysis of the rest of the 

components present. In each case, major peaks were present at 203.05 Da and 231.08 Da. 

They could be allocated to the following molecular formulas respectively: C6H12NaO6 

and C8H16NaO6. In each case, the error was below 5 mDa. The results obtained for the 

sodiated molecular ions show the presence of C6 sugar monosaccharides and ethyl D-

glucopyranoside. C6 sugars are expected to be extracted in ethanol. The latter molecule, 

ethyl D-glucopyranoside, has been known to form under acidic conditions starting from 

D-glucose in ethanol at 100 °C over 200 mg Silica-SO3H.
285
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6.5.1.3 Supercritical Fluid Chromatography (SFC) separation 

 

Experimental observations confirmed by the literature have shown that the 

extraction of PMFs can be carried out using hexane-based solvent extraction.277, 286  

Hexane is commonly used to mimic the non-polar properties of supercritical carbon 

dioxide (scCO2) for extraction or separation at atmospheric pressure. This led to the 

trial of Supercritical Fluid Chromatography (SFC) for the separation of the PMFs 

extracted with scCO2.287 Obtaining a pure fraction of one PMF would allow its 

characterisation by 13C NMR for example, confirming the results obtained by HPLC-

MS.  On the other hand, demonstrating the possible separation of the compounds 

could be of interest, generating additional revenue to the biorefinery. The extraction 

and isolation of PMF is especially valuable  since “due to their potential use as a 

chemopreventive agent based on in vitro studies, a rapid reproducible method for 

the purification of PMF’s is critical.”277 The supply of a large quantity of individual 

PMFs is particularly desired, notably for in vivo studies.255, 288  

Carbon dioxide SFC is based on the ability of CO2 to exist in a supercritical state 

above 31 °C and 73 bars. These specific conditions are called the “supercritical 

point” where “the densities of both gas and liquid become identical,” generating a 

hybrid state for carbon dioxide.284, 289 SFC used in conjunction with carbon dioxide 

functions on the same principle as liquid chromatography except the mobile phase 

here is scCO2 and a modifier. The separation of non-volatile analytes still occurs 

based on their affinity for both the mobile and the stationary phase. The density of 

carbon dioxide is affected by varying the pressure and temperature. Additionally, 

the amount of polar modifier used can increase the polarity of scCO2, making it a 

tunable solvent. SFC particularly suits the separation of heat sensitive, non-volatile 

components.284, 289  A diagram of the experimental set-up used for SFC separation is 

given in Figure 88. 
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Figure 88: SFC chromatography equipment.  

 

Typically, CO2 in its supercritical state is regarded as polar as hexane although the 

polarity of the mobile phase can then be modulated using pressure and temperature. 

The polarity of scCO2 can also be fine-tuned using co-solvents such as methanol or 

ethanol.290 Although energy requirements of scCO2 are high, the technology has been 

commercially used for hop extraction, decaffeination of coffee and dry cleaning.291 

This technique possesses other practical advantages: the low viscosity of scCO2 

insures good diffusivity and allows the use of high flow rates with low back 

pressures. The depressurisation of scCO2 ensure the mobile phase can be removed 

quickly and efficiently for the collected analyte with minimal residues.2 92 This, 

together with the fact that carbon dioxide is considered as a cheap, recyclable, 

renewable, non-flammable food grade solvent (it has obtained a GRAS status and 

has a toxicity threshold limit value set at 5000 ppm), asserts the privileged position 

this technique has for the extraction and isolation of plant metabolites for 

example.293 Ultimately large volumes of organic solvents typically used for liquid 

chromatography are not necessary when using SFC technology. This represents an 

advantage, especially at larger scale. 

Separation resolution is affected by the flow rate of the mobile phase, the pressure 

and the percentage of modifier used. An increase in resolution can be achieved by 

decreasing the flow rate, lowering the pressure and the amount of modifier used. A 

variation of temperature affects the density of carbon dioxide primarily: as the 

temperature increases, the density of CO2 decreases, and the retention time of a 

given compound increases.2 89  

Based on this knowledge, the pressure, flow rate of the mobile phase together with 

the nature and percentage of polar modifier were used to design a separation 
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method for the PMFs obtained following soxhlet extraction with acetone and 

ethanol. A first set of conditions were identified as promising: using a total flow rate 

of 3 mL/min modified with 20% ethanol as modifier at 75 bars and 40 °C. Figure 89 

displays the chromatogram obtained when using these conditions.  

 

 

Figure 89: SFC chromatogram of SO1daf (originally in colour). 

 

Following the collection of the fraction separated and NMR analysis it was 

established that the separation wasn’t 100% efficient and that further optimisation 

work had to be carried-out. A dominant PMF molecule was identified in each 

fraction corresponding to each peak but cross-contamination still occurred. It was 

decided to try to lengthen the chromatography method allowing better separation 

while trying to keep a sharp resolution. This can be achieved by lowering the 

pressure, the flow rate and/or the percentage of co-modifier. 

Further tests were carried out and ultimately an optimised separation method was 

obtained by lowering the percentage of ethanol to 8%. Samples SO1daf and SO4daf 

were analysed using this method yielding very similar chromatograms, except for 

the non-UV active compounds. In this section of the chromatogram, a lower number 

of peaks were detected for SO4daf which was obtained using an ethanol soxhlet, 
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yielding a cleaner mixture. Consequently, and given the same retention times were 

observed for the UV-active peaks of interest, efforts were concentrated on sample 

SO4daf only. Especially as a higher PMF yield was obtained for this sample, which 

extracted using ethanol. Figure 90 displays the chromatogram obtained. 

 

 

Figure 90: SFC chromatogram of SO4daf following optimisation (originally in 
colour). 

 

Little work has been reported on the separation of PMFs using SFC. The first paper 

published in this area was a feasibility study on the separation of PMFs in citrus oil. 

Using 10% methanol as a polarity modifier, tangeretin, nobiletin, sinensitin and 

tetramethylisoscutellarein were separated under 8 minutes at 35 °C, 222.92 bars 

and with a carbon dioxide flow rate of 3 mL/min.294 SFC has also been applied on a 

commercial extract following flash chromatography to separate tangeritin from 

heptamethoxyflavone (50% methanol) and nobiletin from 5, 6, 7, 4’-

tetramethoxyflavone (45% methanol) at 30 °C, 100 bars, 70 mL/min.255 The 

separation was carried-out in under 8 minutes. However, it can be argued that the 

conditions used are below the critical point with the modifier being employed at 

such a high loading. This is especially true as the temperature used is below 35 °C. 

This separation is useful but does not fall into the category of CO2 SFC.  Another type 
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of flavonoids were separated by SFC: isorhamnetin, kampcetin, quercetin and fisetin 

were separated on a phenyl column at 50 °C, 250 bars, with a 1.05 mL/min flow rate 

of scCO2 containing 9.98% ethanol. The separation was run in 14 minutes.295  

Comparatively, the separation of polyhydroxylflavonoids using HPLC is run in 

approximately one hour.271, 29 6 The full automation of the analysis and the possibility 

of performing stacked injections with SFC renders the production of several mg of 

compound feasible in a convenient fashion and a relatively short amount of time.  

In conclusion, based on previous published work, a novel method was designed to 

separate the PMF content of an experimental extract, namely sample SO4daf. 

Although a complete separation method was developed, 13C NMR data for each PMF 

present in the mixture could not be obtained due to lack of time on the project. 13C 

NMR data would however be useful to confirm the results obtained by HPLC-MS and 

identify the isomers of the nobiletin and tangeritin providing they are separated 

using sc CO2. 

 

6.5.2 Hesperidin 

 

A second product stream has been detected during the work-up the polymethoxy 

flavonoids. Following solubilisation in ethanol of the water insoluble fraction, a 

white solid was filtered off the PMF containing mixture. The ethanol insoluble solid 

was dried and subjected to ATR-IR analysis with the aim to identify functional 

groups which could help determine its identity. Following information found in the 

literature it was successfully compared against a commercial sample of hesperidin 

(see section 6.5.2.1). Hesperidin is one of the main flavanone glycosides present in 

sweet oranges.153 The hesperidin content of citrus fruits diminishes as the fruit 

matures.297 It is known for its anti-cancer activity and its antioxidant properties.298 

The molecule has been identified as one of the factors causing “cloudiness” in fruit 

juices.272  

Hesperidin belongs to another class of flavonoids: flavanones. They differ from 

flavones by the absence of unsaturation on the B ring (see Figure 73). Flavonones 

exist in two forms; the glycone and the aglycone, of which the glycone corresponds 

to the flavonoid grafted with a sugar monomer such as glucose or rhamnose. It is the 

latter form which is mostly present in nature.272, 2 99 In the case of hesperidin, the 

monosaccharide residue is constituted of rhamnose and glucose and is named 6-O-

α-L-rhamnosyl-D-glucoside. The common name of the dissacharide residue is 
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rutinose.297 The use of an alcohol such as ethanol for the separation of hesperidin 

from the PMF mixture is important as it can be directly crystallised out of ethanol 

below 10 °C.300 

This section will focus on the characterisation of the two experimental samples of 

hesperidin obtained following soxhlet extraction with acetone and ethanol. In each 

case, the compound was isolated with a yield of 0.14 and 0.24% respectively. 

Although the yield of PMF obtained seemed high in comparison to previous values 

quoted in the literature, the highest yield of hesperidin extracted only represents a 

small portion of the available compound in peel: hesperidin has been reported to 

account for ~ 4% of mature blood orange fruits.298 As a matter of comparison, 

extraction using a saturated solution of Ca(OH)2 yielded 3.1% hesperidin.298 Under 

closed-vessel microwave assisted extraction conditions at 140 °C in a 70% aqueous 

solution of ethanol, 19.4 ± 4 mg of hesperidin were extracted by gram of peel.300 The 

literature results indicate the yield of hesperidin so far reported in this work could 

be increased by changing the extraction technique implemented. There is an 

opportunity to use microwave technology for the recovery of hesperidin, increasing 

the yield obtained for this specific compound and avoid a switch in technology in the 

middle of the process, as both step 1 and 3 are both microwave based. This would 

have the advantage of allowing the design of a more integrated process.  

In the next sections, ATR-IR and 13C NMR will be used to confirm the identity of the 

solid obtained following ethanol solubilisation of the water insoluble fraction of the 

extract.  

 

6.5.2.1 ATR-IR analysis of hesperidin  

 

ATR-IR was primarily used to identify the class of compound the white solid 

belonged to. Sample preparation being minimal with this technique, ATR-IR permits 

a fast determination of functional groups such as carbonyls, alkanes or amines, and 

identification against a standard for example, as most substances show a 

characteristic spectrum that can be directly recognised. The spectra obtained for 

samples SO1e and SO4e can be found in Figure 91. SO1e has been obtained following 

acetone soxhlet extraction and SO4e has been obtained following ethanol soxhlet 

extraction. The spectrum was compared to a commercial sample of hesperidin (see 

molecular structure in Figure 92). Good correlation between the four spectra was 
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observed, particularly below 1500 cm-1, in the fingerprint region, where the position 

of absorption bands is specific to the stretching vibrations of a defined compound.30 1  

 

Figure 91: Comparison of the ATR-IR spectra of sample SO1e and SO4e 
against a commercial sample of hesperidin (Acros Chemicals) (originally in colour). 

 

 

Figure 92: Molecular structure of hesperidin (C28H34O15). 

 

Figure 91 shows absorption bands corresponding to –OH groups (stretching 

vibration, 3420 cm-1), -CH3 groups (stretching vibration, 2950-2850 cm-1), the -OCH3  

groups (stretching vibration, 2850-2810 cm-1) and the ketone function (1700-1650 

cm-1).302 Peaks associated with Ar-H groups (3040-3010 cm-1) are often hidden. The 

absorbance observed at 3540 cm-1 could correspond to free O-H stretching and 
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bending bond vibrations as it is sharper than the broad than the band observed for 

H-bonded O-H. The signal at 1609 cm-1 has been previously tentatively attributed to 

the ν(C=C) on the aromatic ring. The same applies for the δ (COH), ν (C–O–C) 

appearing at 1285 cm-1.30 3 Very little infra red data was available for the analysis of 

hesperidin. A lack of information was especially observed regarding the wavelength 

of the functional groups present in the disaccharide unit of the molecule (i.e. –CH2, -

CH-OH, -C-O-C-). Therefore the compound isolated was further characterised using 

NMR. 

 

6.5.2.2 13C NMR analysis of hesperidin 

 

NMR analysis was used to further confirm the extraction of hesperidin. It was 

especially important to verify the glycone (hesperidin) of the molecule was isolated, 

as opposed to the aglycone (hesperetin). A commercial sample of hesperidin was 

used as a standard. The chemical shifts obtained for all samples have been compared 

to the ones obtained by Inoue et. al. to allocate the peaks obtained for SO1e and 

SO4e and the standard. All the chemical shifts are given in Table 36.300, 302  
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Table 36: Chemical shifts obtained via 1 3C NMR for samples SO1e, SO4e 
and a commercial sample of hesperidin (d-DMSO, 500 MHz, 1024 scans at 60 °C). 

Carbon 
position 

Inoue 
et. al. 
δ(ppm) 

Hesperidin 
Acros Organics 

δ(ppm) 

SO1e 
δ(ppm) 

SO4e 
δ(ppm) 

-OCH3 56.3 55.69 55.69 55.69 
2 78.7 78.07 78.10 78.07 
3 42.5 41.87 41.89 41.87 
4 197.2 196.48 196.54 196.49 
5 163.5 162.78 162.82 162.79 
6 97.0 96.31 96.32 96.31 
7 165.6 164.99 165.01 164.99 
8 96.1 95.43 95.44 95.43 
9 162.9 162.24 162.28 162.30 

10 103.9 103.20 103.22 103.20 
1’ 131.5 130.90 130.91 130.91 
2’ 114.6 113.98 114.00 113.99 
3’ 147.1 146.41 146.43 146.42 
4’ 148.5 147.81 147.83 147.81 
5’ 112.9 112.30 112.28 112.30 
6’ 118.2 117.55 117.60 117.56 
1’’ 100.1 99.52 99.52 99.52 
2’’ 76.1 75.46 75.48 75.47 
3’’ - - - - 
4’’ 71.3 70.62 70.64 70.63 
5’’ 76.8 76.20 76.21 76.20 
6’’ 66.6 65.94 65.96 65.94 
1’’’ 101.0 100.40 100.42 100.40 
2’’’ 70.2 69.54 69.55 69.54 
3’’’ 70.7 70.08 70.11 70.08 
4’’’ 73.5 72.88 72.89 72.88 
5’’’ 68.7 68.06 68.09 68.06 
6’’’ 18.1 17.47 17.51 17.47 

 

By comparing the chemical shifts between the experimental samples and the 

commercial sample, one can effectively verify the identity of a molecule. A consistent 

difference between the experimental and the standard chemical shift across all 

peaks can be used to confirm the identity of a molecule. When comparing SO1e 

against the standard, the chemical shifts obtained for SO1e differ by a maximum of 

0.03 ppm with the exception of peaks at 196.54, 165.01, 162.28 and 117.60 ppm. A 

DEPT experiment was done on SO1e and permitted to attribute the peaks at 41.89 

and 65.96 ppm to the C3 and the C6’’ respectively which are the only two –CH2 

groups present in hesperidin, confirming the results reported in the literature. The 

spectra is given in Figure 93. 
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Figure 93: 13C NMR DEPT spectra of hesperidin sample SO1e 
(d-DMSO, 500 MHz, 1024 scans at 60 °C) (originally in colour). 

 

The match between sample SO4e and then standard is even better. With the 

exception of the peak at 162.30 ppm, the difference in chemical shift observed does 

not exceed 0.02 ppm. These results confirm hesperidin has been isolated following 

soxhlet extraction with acetone (SO1e) and ethanol (SO4e). The final experimental 

products are shown in Figure 94 alongside a commercial sample of hesperidin. The 

full 13C NMR spectra for sample SO4e is given in Figure 95. 
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Figure 94: Experimental samples of hesperidin SO1e and SO4e 
against commercial hesperidin (originally in colour). 

 

 

Figure 95: 13C NMR spectra of hesperidin sample SO4e 
(d-DMSO, 500 MHz, 1024 scans at 60 °C) (originally in colour) 
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6.5.3 Quantification & characterisation of sugar components 

 

Sugar monosaccharides are the building blocks of the biopolymer content of 

biomass. Common sugar monosaccharides include glucose, rhamnose, galactose, 

mannose, xylose and arabinose for example. They all follow the molecular formula 

CnH2nOn where n is equal to 3, 5 or 6. Monosaccharides fall into two sub-categories 

depending on the chemical nature of the anomeric carbon (C1). If it is an aldehyde, 

the monosaccharide is classified as an aldose and if it is a ketone, it is classified as a 

ketose. 

The analysis of the crude acetone extracted mixture was subjected to ESI analysis 

(Figure 96). Alongside the PMFs, the presence of sugar monosaccharides was 

detected under the form of molecular ions at 203 Da.  

 

 

Figure 96: ESI spectrum of the acetone soxhlet extract from OPR1. 

 

Following soxhlet extraction, the isolation of a water soluble monosaccharide rich 

fraction was obtained after freeze-drying. As seen in sections 6.3 and 6.4, both 

acetone and ethanol extraction allowed the obtention of a brown solid with a yield 

of 4.34% and 18.35% on a wet basis. Dry yields corresponded to 4.52% for acetone 

and 19.93% for ethanol. A sample has been photographed in Figure 97. The switch 

from acetone to ethanol and from 100 mbars to 500 mbars D-limonene extracted 

peel proved to have an important effect on the yield of the monosaccharide fraction 

recovered. The change in solvent and starting material is responsible for a four fold 

flavonoids

monosaccharides:

180 + Na+ (23)
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increase in yield for this specific fraction. It represents the greatest increase in yield 

out of the three fractions recovered following soxhlet extraction. This is beneficial 

for the development of the OPEC process at larger scale. Sugar monosaccharide are 

valuable as they can be used as a fermentation feedstock for the production of bio-

ethanol or as a substrate for the production of platform chemicals such a diacids (i.e. 

succinic acid, levulinic acid), representing another marketable product stream.12 9  

 

Figure 97: Water-soluble fraction obtained by ethanol soxhlet extraction (originally 
in colour). 

 

Given the extraction conditions used, the type of biomass extracted and the 

solubility of the compounds in acetone and water, the presence of sugars is 

expected. Following ESI analysis 13C NMR should further help to characterise and 

quantify this particular fraction to understand how much monosaccharides are 

present and in which relative proportion. 13C NMR experiments in D2O were carried 

out to identify the sugars present. 13C NMR was preferred to 1H NMR as a simplified 

spectra would be obtained. 

Glucose and fructose were identified as the two sole monosaccharides present in the 

mixture. Their presence was confirmed by the use of glucose and fructose standards 

against which the experimental samples SO1H2O and SO4H2O respectively 

extracted in acetone and ethanol, were compared.  Figure 98 shows a representative 

13C NMR spectra obtained for sample SO4H2O. 
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Figure 98: 13C NMR spectra of fraction SO4H2O 
(quantitative run, 500 MHz, D2O, 30 seconds delay and 1024 scans) (originally in 

colour). 

 

Peak attribution was carried-out by comparison of the chemical shifts obtained with 

standards run in D2O. The chemicals shifts are given in Table 37 and Table 38. In 

each case, the majority of the peaks are attributed to glucose and fructose. In each 

sample, the difference in chemical shift between the values obtained for the 

experimental samples and the standards are below 0.1 ppm in absolute value. 

Additionally, the difference in chemical shift between the experimental sample and 

each standard is relatively constant. These two observations univocally confirm the 

presence of glucose and fructose in the water soluble fraction of the extract.   
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Table 37: Chemical shifts observed for fraction SO1H2O following 13C NMR 
(500 MHz, D2O, 30 seconds delay and 1024 scans) (originally in colour). 

SO1H2O 
chemical 

shifts (ppm) 

Glucose chemical 
shifts (ppm) 

Difference 
(ppm) 

Fructose 
chemical shifts 

(ppm) 

Difference 
(ppm) 

101.45 
  

101.4 0.05 

99.02 
    

98.07 
  

98.09 -0.02 

97.99 98 -0.01 
  

95.86 95.91 -0.05 
  

92.09 92.1 -0.01 
  

80.64 
  

80.67 -0.03 

75.94 75.95 -0.01 
  

75.75 75.73 0.02 
  

75.34 
  

75.3 0.04 

74.4 
  

74.38 0.02 

74.13 74.14 -0.01 
  

72.74 72.76 -0.02 
  

71.48 71.48 0 
  

71.42 71.44 -0.02 
  

71.13 
    

69.67 
  

69.6 0.07 

69.64 69.65 -0.01 
  

69.59 69.6 -0.01 
  

69.2 
  

69.15 0.05 

68.33 
    

67.53 
  

67.49 0.04 

63.85 
  

63.86 -0.01 

63.35 
  

63.33 0.02 

62.63 
  

62.54 0.09 

62.37 
  

62.31 0.06 
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Table 38: Chemical shifts observed for fraction SO4H2O following 13C NMR 
(500 MHz, D2O, 30 seconds delay and 1024 scans) (originally in colour). 

SO4H2O 
chemical 

shifts (ppm) 

Glucose 
chemical 

shifts 
(ppm) 

Difference 
(ppm) 

Fructose 
chemical shifts 

(ppm) 

Difference 
(ppm) 

101.49 
  

101.4 0.09 

99.01 
    

98.07 
  

98.09 -0.02 

98.05 98 0.05 
  

95.91 95.91 0 
  

92.09 92.1 -0.01 
  

80.67 
  

80.67 0 

75.94 75.95 -0.2 
  

75.75 75.73 -0.39 
  

75.34 
  

75.35 -0.01 

74.4 
  

74.41 -0.01 

74.13 74.14 -0.01 
  

74.1 
    

72.76 72.76 0 
  

71.48 71.48 0 
  

71.43 71.44 -0.01 
  

69.68 
    

69.64 69.65 -0.01 
  

69.59 69.6 -0.01 
  

69.2 
  

69.15 0.05 

67.53 
  

67.49 0.04 

63.87 
  

63.86 0.01 

63.35 
  

63.33 0.02 

62.63 
  

62.54 0.09 

62.37 
  

62.31 0.06 

 

An internal standard was selected to carry-out the quantification of glucose and 

fructose. A known amount of N,N-dimethyl formamide (DMF) was used to compare 

the integration obtained for the equivalent methyl groups belonging to DMF with 

the integration obtained for the α- and ß- anomeric carbons of glucose and fructose. 

Figure 99 gives the chemical structure of the standard used. This method has been 

previously used for the quantification of glucose produced during the microwave 

assisted hydrolysis of cellulose. In this case, the solvent, deuterated DMSO, was used 

as an internal standard and a reference.304  
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CH3

CH3  

Figure 99: Chemical structure of N,N-dimethyl formamide (originally in colour). 

 

The ratio of the sum of the integration of each monosaccharide anomeric carbon 

over the integration of the methyl groups belonging to DMF allowed correlation 

between the number of moles of DMF and the number of moles of each 

monosaccharide identified. Using this method, the percentage of glucose and 

fructose present in fraction SO1H2O was of 19.10% and 25.99%. The experimental 

data is given Table 39. The total percentage of monosaccharides in the sample was 

therefore equal to 45.08%. When using ethanol as an extraction solvent, those 

values were notably increased: for sample SO4H2O, the percentage of glucose and 

fructose present was of 74.21% and 25.35%. The experimental data is given in Table 

40. The total percentage of monosaccharides in the sample was therefore equal to 

99.55%. This is interesting as the high content in sugar mono saccharide extracted 

when using ethanol could potentially be used without any further separation and/or 

purification as a fermentation substrate.  
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Table 39: Experimental data used for the monosaccharide quantification by 13C NMR for sample SO1H2O (originally in colour). 

 

Glucose 
standard 
chemical 

shift 
(ppm) 

Integration 
Difference 

(ppm) 

Fructose 
standard 
chemical 

shift 
(ppm) 

Integration 
Difference 

(ppm) 

N,N-DMF 
chemical 

shift (ppm) 
Integration 

Difference 
(ppm) 

Sum of 
integration 

for each 
compound 

101.23 
   

101.4 1.85 -0.17 
   6.75 

97.8 
   

98.09 4.9 -0.29 
   

95.66 95.91 2.95 -0.25 
      4.96 

91.83 92.1 2.01 -0.27 
      

31.13 
      

31.4 39.13 -0.27 - 

 

Table 40: Experimental data used for the monosaccharide quantification by 13C NMR for sample SO4H2O (originally in colour). 

 

Glucose 
standard 
chemical 

shift 
(ppm) 

Integration 
Difference 

(ppm) 

Fructose 
standard 
chemical 

shift 
(ppm) 

Integration 
Difference 

(ppm) 

N,N-DMF 
chemical 

shift (ppm) 
Integration 

Difference 
(ppm) 

Sum of 
integration 

for each 
compound 

101.21 
   

101.4 3.11 -0.19 
   8.16 

97.76 
   

98.09 5.05 -0.33 
   

95.61 95.91 9.83 -0.3 
      23.89 

91.79 92.1 14.06 -0.31 
      

31.16 
      

31.4 45 -0.24 - 
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6.6 Conclusion and future work 

 

In this chapter, the extraction and isolation of four PMFs (tetra-O-

methylscutellarein, tangeritin, nobiletin and heptamethoxyflavone) which can all be 

separated using SFC, hesperidin which is a molecule with known antioxidant 

properties and a mixture of glucose and fructose (> 97% monosaccharides) was 

demonstrated using food grade solvents only. Continuous liquid-solid extraction 

was carried-out using a soxhlet equipment on a 3 L scale.  The following yields were 

respectively obtained on a wet basis for the mixture of four PMFs, hesperidin and a 

mixture of sugars: 5.87%, 0.24% and 18.35%. 

These results represent an important achievement compared to the molasses 

usually recovered following treatment of the peel with inorganic salts. This step 

change has the potential to allow for the efficient extraction and separation of 

compounds usually obtained together, using renewable food grade solvents instead 

of polluting inorganic salts. 

The PMFs were characterised by ESI and HPLC-MS. The latter technique allowed for 

the separation of the compounds and the identification of tangeritin and nobiletin. 

Supercritical CO2 chromatography was used for separation of the compounds with 

the aim of further allowing the characterisation of the separated PMFs by 13C 

solution NMR. This technique was also used in combination to ATR-IR for the 

characterisation of hesperidin. Furthermore, glucose and fructose have been 

quantified by 1H quantitative NMR while using DMF as an internal standard. This 

technique showed glucose and fructose respectively accounted for 74.21% and 

25.35% of the sample weight, making possible the production of a high purity 

fermentation feedstock alongside the extraction of valuable flavonoids. It was 

concluded that the soxhlet extraction of OPR1 was a good addition to the overall 

process for the valorisation of WOP. The use of ethanol in the work-up to isolate the 

mixture of PMFs indicated it would also be suitable extraction solvent. This would 

have the advantage of simplifying solvent recovery at large scale as acetone would 

no longer be used and second solvent recovery system wouldn’t be necessary. 

In terms of future work, additional experiments should be carried-out to evaluate 

the suitability of an alternative solid-liquid extraction technique based on 

microwave technology. This will enable further integration of the process and 

should be the next step towards the scale-up. Continuous microwave extraction is 

known and has been reported as an efficient alternative to soxhlet extraction. In 
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addition, the use of microwave technology to prevent “the binding of polyphenols to 

the plant matrix” is also known.51 Microwave-assisted extraction of hesperidin has 

been reported as a faster and more efficient process for this particular compound 

under “hot and pressurised conditions (< 180 °C)”.300 Furthermore, reproducibility 

of the results should be assessed and all extractions should be re-run at least twice, 

to obtain standard deviation data, especially for the extraction experiment carried-

out in ethanol with D-limonene peel extracted at 500 mbars.  
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Materials and Methods 
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Materials and methods  

Materials & reagents 

Biomass used 

 

Experiments were conducted using waste orange peels (Citrus sinensis or sweet 

oranges) of mixed varieties obtained from a London-based juicer, Sundance. Upon 

deliverance to our facilities, they were frozen within 12 hours following juicing at -

18 °C. Before use, WOPs were defrosted at 4 °C and milled using a Retsch™ Knife 

Mill Grindomix GM300 food processor (<5 mm particles). Whenever stated, fresh 

WOP has also been used for specific experiments. This relates to WOP which was 

used fresh as opposed to following defrosting. 

 

Cleaning procedure 

 

Dedicated glassware was used for the extraction of D-limonene, the flavonoids or 

pectin whenever possible to avoid contamination with any residual acid. Large 

pieces of glassware which could not solely be used for the purpose of this project 

(e.g. 1 L pyrex microwave vessel, 3 L soxhlet) were thoroughly washed with hot 

water and soap to avoid any bacterial contamination from degrading waste orange 

peel between batches. Lastly, an ethanol rince was used to remove traces of organic 

components. This method was also applied to wash glassware between experiments. 

NMR tubes were washed with acetone to remove d-DMSO whenever used. 

Otherwise acetone was used on them.  5 mm 7’’ Select Series NMR tubes used were 

purchased from Norell (S-5-400-7). 

 

Commercial samples and standards 

 

All the chemicals were used as received. All purity percentages are given as a weight 

percentage and have been obtained from the chemical retailer. De-ionised water 

was used as supplied by chemistry stores.  
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D-limonene extraction 

 

D-limonene (97% purity) was purchased from Sigma Aldrich and used as a standard 

for 1H NMR, GC-FID and GC-MS identification and quantification. Ethyl benzene 

(>97% purity) which was used as an internal standard was also purchased from 

Sigma Aldrich. Cyclopentyl methyl ether (99.90％  purity minimum) used for the 

liquid-liquid extraction was obtained from ZEON Corporation. 

Standards of α-myrcene , α- and ß- pinene, p-cymene, α-terpineol and linalool were 

used for characterisation purposes for GC-TOF analysis of the D-limonene fractions 

obtained by steam distillation and microwave assisted solvent-less extraction. They 

were all obtained from Sigma-Aldrich (>98% purity). 

 

Flavonoids extraction 

 

A sample of hesperidin (>97% purity) was used for comparison purposes and 

purchased from Acros Organics Chemicals.  

 

Sugar monosaccharides extraction 

 

Glucose, fructose, mannose, arabinose, galactose, xylose and galacturonic acid 

standards were all purchased from Sigma-Aldrich (>99% purity) and used as 

references for 1H NMR analysis and GC-MS analysis. N,N-dimethyl formamide (>99% 

purity) was purchased for Sigma Aldrich and used as an internal reference for the 

quantification of glucose and fructose by quantitative 1H solution NMR. 

 

Pectin extraction 

 

Seven different commercial pectin samples were used for comparison purposes. 

Citrus derived commercial pectin P3935(>74% galA) was purchased from Sigma 

Aldrich. Pectin sample CU201 (DE 72%; galA content of 83%), CU301 (DE 65%; galA 

content of 84%), CU401 (DE 63%; galA content of 87%), CU501 (DE 56%) and 
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CU701 (DE 38%; galA content of 85%) were provided by Herbstreight & Fox.  Non-

standardised high methoxy commercial pectin was obtained from Kelco (DE 77.2%; 

galA content of 82.6%). All samples were accompanied by a specification sheet from 

the pectin manufacturer. 

 

Deuterated solvents 

 

Deuterated water (99.9% atom D) and dDMSO (≥99.9% ) were used as such for NMR 

analysis. Both were purchased from Sigma Aldrich.  

 

Buffers and other solvents: 

 

Buffers were used for gel formation tests. They were all produced by Fluka and 

purchased from Sigma-Aldrich, alongside tartaric acid. The list of the three buffers 

tested can be found below: 

 Buffer concentrate pH 2.00 for 500 mL buffer solution, citric acid / 

hydrochloric acid / sodium chloride. 

 Buffer concentrate pH 3.00 for 500 mL buffer solution, citric acid / 

sodium hydroxide / sodium chloride solution. 

 Buffer concentrate pH 4.00 for 500 mL buffer solution, citric acid / 

sodium hydroxide / sodium chloride solution. 

Acetone and ethanol (99.9% purity) were purchased from VWR Company. 

 

Equipment used 

CEM Discovery SP microwave, 300 W, 2.45 GHz: 

 

CEM Discover SP-D closed vessel system with attached auto-sampler (CEM 

EXPLORER 48, 72, & 96). 35 mL Pyrex® vials were used with silicon caps as reaction 

vessels. All equipment can be seen in Figure 100. It possessed an IR temperature 

probe for temperature measurement. All experiments performed in this microwave 

were done with a maximum power mode switched off (a setting which would 
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maintain steady microwave power, with cooling achieved using compressed air) at 

several holding temperatures. Before each experiment, the IR temperature probe 

was calibrated at 120 °C using glycerol. 

 

 

 

CEM MARS 6 microwave, 1800 W, 2.45 GHz: 

 

Pectin extraction was carried-out in a CEM MARS 6 with One Touch™ Technology 

microwave, using EasyPrep™ Plus Easy Prep Teflon 100 mL closed vessels. This 

equipment was used in power dynamic mode. This microwave was fitted with a dual 

IR probe (within the microwave cavity) and fibre optic probe (positioned in a glass 

insert on the control vessel as seen in Figure 101) for accurate temperature 

measurements following automatic calibration. Pressure feedback was available for 

safely control.  

 

 

Figure 100: CEM Discovery SP microwave equipment 
- left and CEM Discovery 35 mL Pyrex® vial with corresponding silicon cap- 

right (originally in colour).  

Figure 101: CEM MARS 6 equipment 
–left, and control vessel & support –right (originally in colour). 
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Sairem Mini Flow 200SS, 200 W, 2.45 GHz: 

 

This device was used to gain accurate information on the energy efficiency of 

microwave-assisted hydrothermal experiments. This equipment was used in power 

dynamic mode. It possessed a built-in optic fibre temperature probe. Two 

experiments were carried out in pyrex glass closed vessels (20 mL). The 

temperature was also measured externally using a Calex® PyroUSB 151 IR sensor. 

The IR sensor had an emissivity of 0.1 to 1.0, adjustable via software. Two samples 

were analysed: a blank one (de-ionised water) and an aqueous pectin solution (1 g 

in 10 mL). Each vessel was irradiated at 100 W (fixed forward power) until a 

determined temperature was reached, at which point the reflected power was 

measured on the Sairem equipment. 

 

Milestone ROTO SYNTH, 1200 W, 2.45 GHz: 

 

The D-limonene extraction was carried out in a Milestone RotoSYNTH microwave 

reactor, a 45° rotative solid-phase microwave reactor.  The Milestone microwave 

was used in conjunction with a 2 L Pyrex® vessel (see Figure 102). The pump used to 

apply vacuum to the system was a CVC2 mode vacuum pump made by Vacuubrand®. 

The process vacuum was monitored at all times. Liquid fractions were collected in a 

series of round bottom flasks fitted within the vacuum line. This equipment was only 

used in a fixed power mode. 

 

 
Figure 102: Milestone ROTOSYNTH equipment 

containing WOP for the purpose of the D-limonene microwave extraction 
–left and 1 L Pyrex® glass reactor –right (originally in colour). 
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NMR spectrometry equipment: 

 

Different NMR spectrometer were used for the recording of NMR spectra. They are 

listed below: 

 Jeol ECS 400 MHz console, with a narrowbore 9.4T Oxford AS400 

shielded superconducting magnet a TH5 (Jeol) 5mm NMR probe with 

pulsed-field gradients along Z and running Delta 4.3.6.  

 400 MHz Bruker Avance III HD spectrometer equipped with a Bruker 

4 mm H(F)/X/Y triple-resonance probe and 9.4T Ascend® 

superconducting magnet. 

 Bruker Avance 500 MHz console, with a narrowbore 11.7T 

superconducting magnet and a 5mm BBI probe with pulsed-field 

gradients along Z and running the Topspin 2.1.  

 Bruker Avance II 700 MHz console, with a narrowbore 16.4T 

shielded superconducting magnet and a 5mm BBO probe with 

pulsed-field gradients along Z and running Topspin 3.0.  

 

Balance: 

 

Two balances were used according to the scale at which the work was carried out. A 

Kern Analytical Balance  ACJ 220-4M with an internal calibration system was used for 

weights between 0.01 and 220 g (± 0.0001 g). For masses between 0.5 and 610 g, a 

Mettler Toledo PB602-S balance was used (± 0.01 g). 

 

Freeze-drier: 

 

A VirTis SP Scientific Sentry 2.0 freeze-drier was used to dry the pectin obtained in 

step 3 (chapter 4) as well as the glucose and fructose mixture obtained in step 2 

(chapter 6). All drying experiments were done at -103.3 °C and at a pressure of 29 

mTorr. All samples were freeze-dried from water for a duration of 48 hours in 500 

mL or 250 mL Pyrex round-bottom flasks. Prior to freeze-drying, all samples were 

frozen in liquid nitrogen  
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Rotary evaporator: 

 

Solvent removal was carried out using a HeidolphTM Hei-VapTM rotary evaporator. 

The vacuum was achieved an ILMVAC pump. 

 

Centrifuge: 

 

Liquid-solid separation carried out for the work-up of pectin was done using a 

Thermo Scientific Heraeus Megafuge 40R centrifuge. It was set at 3600 rpm for 20 

minutes at room temperature. The acceleration and deceleration rates were set at 9 

and 6 rpm, respectively. 

 

Food processor: 

 

A Retsch™ Knife Mill Grindomix GM300 was used for the size reduction (<5 mm 

particles) of WOP prior to D-limonene extraction (Figure 103). 

 

 

Figure 103: Macerated WOP prior to D-limonene extraction (originally in colour). 
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Condensing chiller 

 

A Thermo Scientific HAAKE DC10-K10 3-liter Digital Refrigerated Circulating Water 

Bath was connected to the condenser to cool the liquid phase obtained during the 

extraction of D-limonene when using the ROTO SYNTH microwave equipment. 

 

Powermeter: 

 

Energy consumption measurements were carried out using a plug-in Power and 

Energy Monitor Prodigit 2000MU. It was used for all three steps under the best 

conditions determined following optimisation. All results were reported in kWh 

with an accuracy of 30 ppm, as stated by the manufacturer (Prodigit). 

 

Oven: 

 

The moisture content of peel residues WOP, OPR1, OPR2 and OPR3 was all 

determined following oven drying in a PF60 (200) oven manufactured by Carbolite. 

Samples were dried at a maximum temperature of 70 °C until constant weight was 

reached. Samples were allowed to reach room temperature inside a desiccator 

before weighting. 

 

Laboratory & Analysis techniques 

Microwave assisted D-limonene extraction and quantification 

D-limonene extraction using microwave technology with hexane 

 

D-limonene was extracted using an average of 3.5 kg of WOP per experiment in the 

presence of 1.5 L of hexane. The CEM MARS microwave was used in an open vessel 

configuration. For each extraction a microwave power of 1800 W was used for 5 to 9 

minutes, depending on how fast the solvent used started to condense. All 
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experiments were done under a blanket of nitrogen. After two runs, hexane was 

separated from the peel by filtration and the extracted orange oil was recovered 

after hexane evaporation. This oil was then subjected to steam distillation to isolate 

D-limonene for 4 hours. The yield of oil recovered following purification was 

determined by mass in relation to the wet mass of WOP peel used. 

 

                  
                         

                   
     

 

The latter was characterised using 13C NMR. The obtained spectrum was recorded 

on a 400 MHz Jeol spectrometer at 100 MHz using the central resonance of CDCl3 as 

a reference (C = 77.16 ppm). 256 scans and a relaxation time of 10 seconds were 

used. The chemical shifts are given in the table below (Table 41). 

 

Table 41: Chemical shifts obtained for the characterisation of D-limonene 
obtained by microwave assisted extraction in hexane (CDCl3, 100 MHz). 

Compound carbon number 13C shift (ppm) 

 

C1 30.75 
C2 133.89 
C3 23.62 
C4 120.80 
C5 30.96 
C6 41.24 
C7 150.42 
C8 20.96 
C9 108.50 

C10 28.07 
 

D-limonene extraction using microwave technology in presence of water 

 

The MASD was carried out using a Milestone RotoSYNTH microwave reactor and 

WOP. For each run, between 800 and 900 g of WOP were weighted into a microwave 

Pyrex® 
vessel. The later was then connected to two condensers placed in line outside the 

microwave cavity. Between them, a separating funnel was used as collection flask.  The 

second condenser was then fixed to a trap and connected to a cooler (-1 °C; HAAKE 

DC10-K10). To carry out the extraction, WOP was first irradiated with microwaves 

at 1200 W for 6 minutes. The power was then decreased to 800 W for the desired 

1

2

3

4

5

6

7

8

9

10
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amount of time, following the collection of the first drop of distillate in the 

separation funnel. The liquid phase produced was directly collected into a 

separating funnel. The glassware was allowed to stand for a few hours to allow the 

D-limonene containing oil phase to separate from the water phase. Yields of D-

limonene containing oil were calculated based on wet WOP according to the 

equation below. 

 

                  
               

                   
     

 

Typically, four microwave runs were separately carried out on fresh batches of WOP 

and their extraction product were combined. The influence of the WOP:H2O ratio 

was studied with ratios of 1:1, 1:0.5 and 1:0. Furthermore, in order to find the 

optimal extraction time, the length of the MWSD was studied (10, 15, 20, 25 and 30 

minutes) to find the optimal conditions for the steam distillation. This was done 

using a specific WOP:H2O ratio 1:1. Characterisation was done by GC-FID. 

 

D-limonene extraction using microwave technology under solvent-less 

conditions 

 

The extraction was carried out at in a Milestone RotoSYNTH microwave reactor. The 

same set-up was used as in section 0. The set-up only differed by its connection to the 

vacuum. Four microwave runs were carried-out on fresh batches of WOP separately 

and their extraction product were combined. 850 ± 50 g of WOP were used per run. 

The microwave vessel was subjected to vacuum (100 or 500 mbars) and then 

irradiated with microwaves at 1200 W for 6 minutes. The power was decreased to 

800 W for 19 minutes, following optimisation experiments.  

After the irradiation process was finished, microwave heating was switched off and 

the vacuum was stopped. The whole system was left to reach atmospheric pressure 

before opening the system to avoid the loss of any volatiles. Following microwave 

treatment, the liquid fraction was mixed with cyclopentyl methyl ether in order to 

extract the oil phase. The solvent-extract mixture obtained was all added to 500 mL 

volumetric flasks prior to GC analysis. The purified D-limonene fraction was stored 
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at 5 °C and further characterised using GC-FID and GC-TOF. Each experiment was 

carried out twice at 100 mbars and three times at 500 mbars. Four to six runs were 

carried-out per experiment. The orange peel residue obtained after D-limonene 

extraction (OPR1) was subsequently used for flavonoid extraction. Energy 

consumption of the system composed of the microwave, chiller and pump was 

measured using the powermeter described in section  0.  

The orange peel residue obtained after D-limonene and flavonoid extraction (OPR2) 

was subsequently used for pectin extraction.  

 

Conventional D-limonene extraction by steam distillation 

 

100 g of defrosted and milled WOP were extracted by steam distillation using 1 L of 

water. Prior to the steam distillation, the moisture content of the WOP was 

measured. The extraction was carried-out for 240 minutes at 100 °C until no more 

oil was obtained. The purified D-limonene fraction was stored at 5 °C and further 

characterised using GC-FID and GC-TOF following liquid-liquid extraction with 

cyclopentyl methyl ether. This experiment was repeated three times. Energy 

consumption of the system composed of the microwave, chiller and pump was 

measured using the power meter described in section 0. 

 

Flavonoid and sugar extraction and work-up: 

 

The flavonoids were extracted using an acetone or an ethanol soxhlet on a 3 L scale. 

All yields were determined based on a wet weight of OPR1. For each soxhlet carried 

out, between 450 and 475 g of D-limonene extracted WOP (OPR1) were used. Every 

soxhlet extraction was left to complete over four extraction cycles (the sample 

containing soxhlet body was allowed to fill/empty 4 times).  After acetone soxhlet 

extraction, acetone was removed at 40 °C and 556 mbars using a rotary evaporator. 

The extract was then worked-up to recover two types of flavonoids as well as 

sugars. In the case of ethanol soxhlet extraction, ethanol was removed at 60 °C and 

175 mbars in a rotary evaporator. 

Following the removal of the extraction solvent, the crude extract was dissolved in 

de-ionised water to allow the precipitation of flavonoids present in the crude extract 
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from the soluble sugars, which will be water soluble. The flavonoid containing 

mixture was then filtered off and rinsed with water repeatedly to remove all sugars. 

The water-soluble fraction was freeze-dried to obtain a mixture of glucose and 

fructose. 

The water insoluble fraction was then solubilised in ethanol, forming two phases 

isolated by filtration. The ethanol soluble fraction would yield the mixture of PMFs 

whereas the ethanol insoluble phase will contain hesperidin. Hesperidin was filtered 

off the PMF containing ethanol solution using a Buchner funnel over vacuum. QL100 

Fisher Scientific filter papers were used (product code 11566873). It was repeatedly 

washed with two portions of ethanol (50 mL). Following their separation, ethanol 

was removed by evaporation from the PMF mix at 60 °C and 175 mbars in a rotary 

evaporator. All products were kept below 5 °C prior to their characterisation. 

Energy consumption of the soxhlet heater was measured using the power meter 

described in section 0. 

 

Pectin extraction and work-up 

Microwave assisted pectin extraction under acid-free conditions 

 

D-limonene and flavonoids extracted peel (OPR2) or PWOP and fresh WOP were 

used for pectin extraction under acid-free microwave conditions. PWOP 

corresponded to D-limonene and flavonoids extracted peel (OPR2). Pectin extraction 

was carried out using two different types of microwave equipment: the CEM 

Discovery microwave, which was used on a 35 mL scale, and the CEM MARS, which 

was used on a 100 mL scale. In both cases a combination of different operational 

parameters were trialled: the variation of the peel:water ratio (w./v.), microwave 

irradiation temperature, microwave temperature holding time and MMPD were 

investigated. At a 100 mL scale, a 1:10 peel:water ratio was always used. In this case, 

7 g of fresh WOP were used together with 70 mL of de-ionised water. For PWOP, 

taking into account the reduced moisture content, 1.4 g of PWOP in 70 mL of de-

ionised water were used. The different microwave methods used can be found in 

Table 42. 
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Table 42: Microwave methods used at 120 °C for acid-free pectin extraction 
for both the CEM Discovery and the CEM MARS microwave equipment. 

 
CEM Discovery 

microwave 
CEM MARS 
microwave 

Power mode Dynamic Dynamic 
Stirring high high 

Hold temperature (°C) 120 120 
Temperature hold time 

(minutes) 
10 15 

Number of vessels per run  1 6 
Average number of runs per 

experiment 
20 6 

 

Upon completion of microwave heating, samples were cooled using compressed air. 

When room temperature was achieved, the liquid phase was then recovered by 

solid-liquid filtration.  Pectin containing extracts were worked-up following a 

modified version of the method used by Fishman et. al.148 Pectin was precipitated 

with 96% ethanol, using twice the volume of the pectin containing aqueous phase. 

On a 35 mL and a 100 mL sample scale, this amounted respectively to 2 and 5 litres 

of ethanol. The precipitation mixture was left to stand overnight. Following 

precipitation, the ethanol was removed using a centrifuge (Thermo Scientific 

Heraeus Megafuge 40R) set at 3500 rpm for 20 minutes. The recovered pectin was 

washed twice using an excess of acetone (1 litre in each case) followed by hot 

ethanol filtration (0.75 L in each case) to remove neutral sugars monomers, organic 

acids, low molecular weight peptides and amino acids amongst others.18 6, 30 5-307 Care 

was taken never to leave pectin more than 10 minutes in refluxing ethanol (78 °C). 

Between each step, the washing solvent was removed using centrifugation (same 

settings as above). Following hot filtration, the pectin sample was dissolved in a 100 

mL of water. Finally, pectin was dried using a freeze-drier. Pectin yields were 

calculated on a wet basis according to the equation below.  

 

                  
                                  

                   
     

 

For samples P0002 and P0003, an ethyl acetate extraction step was included 

between the ethanol precipitation and the acetone washing steps. It was eliminated 

for samples P0004 and onwards as it was time consuming and did not make a 

difference on the pectin end result. In all cases, a sample of the peel residue (OPR3) 

post pectin extraction was kept and frozen (~10 g). 
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Study of the reflected power on a system composed of WOP in water 

 

The absorption of microwave power by fresh orange peel was studied on a Sairem 

Miniflow 200SS microwave equipment. 15 mL Pyrex closed-vessels were used. The 

equipment uses a fiber optic probe to measure the temperature via a Calex®  

PyroUSB 151 infrared sensor. The experiment was done on a reference sample 

containing 10 mL of water only and another one containing 1 g of fresh WOP in 10 

mL of water. The microwave power was set to 100 W. The reflected power was 

recorded at 115 °C and 130 °C based on previous work done on acid-free pectin 

extraction on the CME Discovery microwave equipment. 

 

Conventional pectin extraction via acid hydrolysis: 

 

Both dried WOP and PWOP were used for conventional acid hydrolysis extraction 

using the adapted protocol reported by Kratchanova et. al.146 Briefly, 25 g of dried 

WOP were added to 250 mL of de-ionised water. The pH was lowered to 1.5 using 

0.5 M HCl. The pH was verified using pH paper. The mixture was then heated to 81°C 

for an hour, after which solid-liquid filtration was used to collect the pectin 

containing liquid phase. The same protocol used than in section 0 was used for the 

isolation and work-up of pectin. 

After cooling, the filtrate was coagulated using twice the volume of ethanol and left 

to stand overnight. The coagulated pectin was separated by centrifugation, washed 

again with ethanol and then twice with acetone. Between each step, the solvent was 

removed using centrifugation. Finally a hot ethanol filtration was performed to 

remove neutral sugars.1 86, 307  Pectin was then dried using a freeze-drier. Two ethanol 

washes were used to make sure no acid remained in the pectin, making sure the 

stainless steel tank of the freeze-drier would not be corroded by the acid. The same 

procedure was used for PWOP except 20 g of peel were used in 100 mL of distilled 

water for the extraction. A sample of the peel residue post pectin extraction (OPR3) 

was kept in all cases and frozen at –18 °C (~10 g). 
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Biomass moisture content: 

 

The moisture content of WOP, PWOP, OPR1, OPR2 and OPR3 was determined 

following air drying in a 70 °C oven until constant weight was reached. Following 

cooling in a closed vial, the equation below was used for the calculation of the 

moisture content: 

 

                      
                           

                          
      

 

The average of two duplicate drying experiments is reported in Table 43 for 

moisture content of the peel samples studied.  

Table 43: Average moisture content of the extracted peel residues over two samples.  

Peel residue used for extraction  Moisture content (%) 

Fresh WOP 77.36 
Defrosted WO P 17.68 

OPR1 
(following D-limonene extraction)  

4.16 

OPR2 
(following D-limonene & flavonoid extraction)  

0.11 

 

The figure below illustrates the different peel residues extracted for this project. 

 

 

 

A. B. C. 

Figure 104: WOP examples used for the different extraction steps 
A) WOP for D-limonene extraction, B) OPR1 for flavonoids and sugars 

extraction and C) OPR2 for pectin extraction (originally in colour). 
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Analysis technique 

GC-FID analysis for the quantification of D-limonene content: 

 

GC-FID was performed using an Agilent Technologies 6890N Network gas 

chromatograph system equipped with the 7638B series Agilent injector. In the case 

of solvent-less microwave extraction and steam distillation extraction of D-

limonene, GC-FID was used for the determination of the D-limonene content. 

Following the recovery of the D-limonene containing organic fraction of cyclopentyl 

methyl ether in a 500 mL volumetric flask together with 2.51g of the internal 

standard ethyl benzene (IS), a 1 mL sample of the later mixture was then analysed 

by GC-FID to determine quantitatively the amount of D-limonene extracted and 

calculate a yield of D-limonene extracted. 

The chromatography conditions are described as follows: a 1 μL injection volume 

was used (splitless injection) with He as a carrier gas at 300 °C, 23.27 PSI and a flow 

of 114 mL.min-1. A ZB-5HT (30 x 0.25 X 0.25 m) column was used with an initial flow 

of 2 mL.min-1. The oven temperature was initially set at 60 °C (5 minute holding 

time) and increased to 300° C (5 minute holding time) using a 15 °C.min-1 ramp 

(total running time of 26 minutes) 

The mass of D-limonene extracted was obtained following the equation below where 

k corresponds to the response factor: 

 

                 

                 
   

         

         
 

 

The response factor was determined by doing a calibration curve using D-limonene 

and ethyl benzene as an IS using varying known concentrations. The chromatograms 

obtained are shown in Figure 105. 



240 
 

 

 

Figure 105: GC-FID chromatograms obtained for samples DL001 (chromatogram A) 
and DL002 (chromatogram B) (originally in colour). 

 

The exact calculations used for the determination of the D-limonene content are 

highlighted for sample DL001 obtained at 100 mbars (Table 44). 1.001 g of D-

limonene were extracted per litre of liquid phase obtained. 2,81 g of liquid phase 

have been collected following the extraction, meaning 2.81 g of D-limonene had 

been extracted in total. The wet yield therefore amounts to 0.16% (0.22 % on a dry 

basis) based on the extraction of 1734.56 g of wet WOP (17.13 %, 1437.43 g WOP on 

a dry basis). 

  

A 

B 

Solvent 

Ethyl benzene 

D-limonene 



241 
 

Table 44: GC-FID data for the calculation of the D-limonene concentration extracted 
with a response factor of k = 0.8482 (sample DL001) at 100 mbars.  

 
Boiling 

point (° C) 

Retention time 

(minutes) 

Peak 

area 

Concentration 

(mol/L) 

Ethyl benzene 

(IS) 

C6H5CH2CH3 

136 4.80 2728.9 0.061 

D-limonene 

C10H16 
176 8.18 561 1.001 

 

GC-TOF analysis of D-limonene fractions 

 

GC-TOF analysis was carried-out on an Agilent 6890 GC coupled to a  Pegaus IV TOF 

mass spectrometer (Leco).  The GC was fitted with a 30 m x 0.25 mm Rxi-5Sil MS 

column (Thames Restek). The film thickness was of 0.25 µm. The carrier gas was He. 

It was used in constant flow mode at 1 mL.min-1.  A 1 µL sample was injected at a 

100:1 split ratio.  The oven program was isothermal at 40 °C for 2 minutes then 

ramped at 5°C.min-1 to 300 °C and held for 2 minutes.  Electron impact mass spectra 

were generated at 230 °C and 70 eV.  Data was collected at unit mass resolution over 

the range 20 - 450 m/z and 20 scan.s-1. Data was analysed using the ChromaTof 4.5 

software (Leco).  Compounds were identified by reference to authentic standards or 

by spectral matches to the NIST 05 and Wiley 7 libraries.  

 

ESI analysis of polymethoxy flavonoids 

 

Analysis was carried out at the Center of Excellence for Mass Spectroscopy of the 

University of York by Karl Heaton. ESI analysis was carried-out on a Brucker 

microTOF mass spectrometer (orthogonal Time of Flight) coupled to an Agilent 

series 1200 liquid chromatograph with a 108 position autosampler and a 

photodiode array with a wavelength range from 190 nm to 640 nm. The mass 

spectrometer included a nominal mass range of 3,000 and a 10,000 FWHM. The flow 

rate regulated by the injector pump ranged typically from > 1 μL.min-1 to 100 

μL.min-1.  Samples were typically diluted in ethanol for identity confirmation. 
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HPLC-MS of polymethoxy flavonoids: 

 

Analysis was carried out independently by Dr. Tony Larson at the CNAP laboratory 

from the Biology Department of the University of York. Ethanol was used to dissolve 

the samples: typically, 10.5 mg of flavonoid mixture were dissolved in 1 mL of 

solvent. HPLC-MS was performed on a Waters Acquity Ultra Performance LC 

coupled with a Thermo LTQ-Orbitrap detector with APCI ionization source 

operating in full scan positive mode, scanning 150-900 Da. The resolution of the 

detector was set to 7500 FWHM at m/z 400 with a 4 Hz scan rate.  [M+H]+  ions were 

obtained with a mass accuracy inferior to 5 ppm , allowing to calculate an empirical 

formula for the eluted compound. 2 µL samples were injected in full loop mode at 5 

°C and separated on a 50 x 2.0 mm Phenomex Luna HST 2.5 μm C18 column set at a 

temperature of 60 °C (reverse phase). The gradients used for the combination of 

mobile phase A (5% methanol and 0.1 % formic acid in water (v./v.)) and mobile 

phase B (0.99 % methanol and 0.1 % formic acid (v./v.) ) are given in Table 45.  

 

Table 45: Mobile phase linear gradient used for the HPLC-MS analysis of the 
polymethoxylated flavonoids extracted. 

Time 
(minutes) 

Mobile 
phase A 

(%) 

Mobile 
phase B 

(%) 

Column flow 
rate 

(mL.min-1) 

0 60 40 0.6 

1.3 0 100 0.6 

1.8 0 100 0.6 

2 60 40 0.6 

 

Separation of the polymethoxy flavonoids by supercritical CO2 

chromatography 

 

All supercritical fluid chromatography was carried out on a Thar SuperPure 

Discovery Series SFC with a Water 2995 photodiode array detector 

(ultraviolet/visible light spectrophotometer) and a Water 2424 Evaporative Light 

Scattering detector. Optimisation work was carried out using a  Phenomex Luna 

Silica (100 Å, 3 µm) column (50 mm x 4.6 mm) was used. For optimised work, the 

separations were performed on a Waters SunFire Silica Semi prep column (250 mm 
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x 10 mm) packed with 5 µm silica (100 Å). All were normal phase separations. An 

injection loop of 100 µL was used and the sample injection volume was of 20 µL. 

The mobile phase used was carbon dioxide (99.8% purity from BOC). Methanol and 

ethanol were both tested as co-solvents. A Thar SuperPure Automated Back 

Pressure regulator (Discovery serie) was used for fractionation of the targeted 

compounds. 

Typically a sample containing 65 mg of the polymethoxy flavonoids mixture 

obtained following soxhlet extraction was dissolved in 1 mL of ethanol. The 

pressure, flow rate and modifier percentage were optimised until a satisfactory 

separation was achieved. All analysis was done at a standard temperature of 40 °C. 

All data was obtained three times to check for reproducibility issues. Following 

satisfactory reproduction of the optimised separation method, collection of the 

separated analytes was performed on the Waters SunFire Silica Semi prep column, 

using a flow rate of 9 mL.min- 1, an injection volume of 100 µL, an ethanol percentage 

of 8% at 75 bars and 40 °C.  

 

Fourier-Transform Infrared Spectroscopy 

 

DRIFT-IR analysis of samples was carried out on a Bruker Vertex 70 instrument 

equipped with “Specac” Golden Gate Single Reflection Diamond ATR probe. Sample 

spectra were collected with a resolution of 4 cm-1 between 400 and 4000 cm-1. 

Spectrums of commercial pectin galacturonic acid, galacturonic acid sodium salt, 

polygalacturonic acid and polygalacturonic acid sodium salt were also obtained to 

determine the peaks of the functional groups in pectin samples. This technique was 

also used to identify hesperidin against a commercial standard. All finely milled 

samples were used as received. 

 

Solution NMR 

Polymethoxy flavonoids 

 

1H NMR was used on the mixture of polymethoxy flavonoids to identify functional 

groups and establish the class of compounds extracted. The NMR was run in CDCl3  
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on a 400 MHz Jeol spectrometer at room temperature and using 1,024 scans and a 

relaxation time of 4 seconds. 

 

Hesperidin: 

 

13C NMR spectra of experimental hesperidin samples were obtained in dDMSO at 60 

°C using 1,024 scans (Brucker 500 MHz). A standard relaxation time of 2 seconds 

was used. The number of scans was increased to 1,024 in order to increase the S/N 

ratio as hesperidin was notably difficult to dissolve, even in deuterated DMSO. The 

analysis was done at 60 °C to avoid hesperidin precipitating out of the dDMSO over 

the duration of the experiment. The 13C spectra of commercial hesperidin was 

obtained at room temperature using 256 scans and a relaxation time of 2 seconds on 

a 400 MHz spectrometer (Jeol 400 MHz) in dDMSO. 

 

Quantification of sugar monosaccharides 

 

The protocol used was adapted from a method initially used by Fan et. al.304 The 

integration area of a peak can be correlated to the mass of a compound present in 

the mixture when compared to the integration area of a standard of known mass. In 

this case, N,N-dimethylformamide was used as an internal standard. The signals 

considered can be found in Table 46. 

 

Table 46: Chemical shifts of glucose, fructose and DMF together with the integration 
range used for each peak considered, as used for their respective quantification. 

Reference 
compound 

Chemical shift 
reference (ppm) 

Integration range 
used (ppm) 

α-fructose 101.25 101.22-101.28 

ß-fructose 97.80 97.79-97.85 

ß-glucose 95.66 95.62-95.72 

α-glucose 91.83 91.80-91.88 

DMF 31.13 31.00-31.21 

 

The composition in mass percentage of glucose and fructose was determined by 

using the average integration ratio of the signal obtained for anomeric carbon of 

each sugar (α- and ß-) over the average integration ratio obtained for the –CH3 group 
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of the tertiary amine of DMF. The equation below describes the calculation used for 

glucose as an example: 

 

               
                              

                          

                      
 

   
   

 

The mass percentage of glucose present in the extract was then determined as 

follow: 

 

             
                

               
     

 

The protocol was first tested on 4 samples containing known varying amounts of 

glucose and fructose together with a known DMF. Following application of an 

integration method, 1.79% for glucose and 15.34% for fructose was determined.  

Regarding the preparation of the experimental sample, typically, a 70 mg sample of 

extract was prepared in D2O. 40 mg of DMF were added for the sample to be run. 

The quantitative 13C NMR spectra was recorded on a 500 MHz spectrometer (Jeol) at 

125 MHz using a relaxation delay of 30 seconds and 1,024 scans. All spectra were 

acquired in D2O and samples were processed using the same integration range 

(including the standards). 

 

Pectin 

GPC analysis for small scale pectin extraction: 

 

The analysis was carried out independently at RAPRA by Dr. Steve Holden. The 

column set-up consisted of an Agilent PLaquagel-OH Guard plus column and 2 

Plaquagel-OH Mixed-H columns (30 cm, 8μm). The eluent was a x/y mixture of 0.2 M 

NaNO3 and 0.01 M NaH2PO4 aqueous solutions adjusted to pH 7. The nominal flow 

rate was 1.0 mL.min-1  and the temperature was set at 30 °C. Triple detection was 

used consisting of a Malvern/Viscotek Triple Detector Array TDA301 , a refractive 

index detector and right angle light scattering. The system was calibrated using 

Malvern/Viscotek Pullulan standard for triple detection and a series of individual 

Agilent PL Pullulan standards,223 with 10 individual standards having molecular 

weights ranging between 180 and 708,000. Sample solutions were prepared to 

accurate concentrations by dissolving ~20 mg of pectin in 10 mL of eluent. Samples 
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were stirred overnight assuring maximal dissolution of the pectin. Following, the 

sample was filtered through a 0.45 μm PVDF membrane Data was collected and 

analysed using the “OminSec” software provided by Malvern/Viscotek. The GPC 

results (molecular weight distribution) were based on back-calculated 

concentrations: a calibration curve (log Mw=f(retention volume)) was determined 

using the light scattering detector and the absolute Mw was determined for each 

size-exclusion chromatography elution volume increment. The calibration curve was 

then used to determine the average molecular weights and their distribution.  

 

GPC analysis for large scale pectin extraction: 

 

The analysis was carried out independently by the Centre for Water Soluble 

Polymers at Glyndwr University (Prof. Peter Williams). The GPC system consisted of 

a Suprema column (dimensions 300 mm x 8 mm; Polymer Standards Service GmbH) 

with 10 micron beads with a 300 10-1 0 m pore size, protected by a Guard column 

(Polymer Standards Service GmbH: 10 microns). The eluent used was 0.1M NaCl 

containing 0.005% sodium azide and was filtered with a GSWP 0.22 µm filter/ 

Millipore filter and degassed before use (Vacuum degasser CS 1615/Cambridge 

Scientific Instrument, Ltd). 1% solutions of control and experimental pectin samples 

were prepared in a 0.22 µm filtered aqueous solution of 0.1M NaCl and by tumbling 

overnight at 25 ˚C. If the dissolved pectin solutions contained insolubles (i.e. 

aggregates) solutions were centrifuged for one hour using a Heraeus Centrifuge 

Biofuge 28RS (speed at 4800 rpm) to remove the insoluble material. The eluent flow 

rate was set at 0.5 mL.min-1  using a Waters Corporation 515 HPLC pump and the 

loop volume was 200 μL (Rheodyne model: 7125). Dawn® DSP Laser Photometer 

and OPTILAB DSP Interferometric Refractometer (Wyatt Technology Corporation) 

detectors were used in conjunction with the Agilent 1100 series UV detector (280 

nm)  (Agilent Technologies). Samples were passed through a 0.22 µm pore size 

nylon syringe filter before being injected onto the column. Measurements were 

performed in duplicate. The molecular weight was determined using Astra for 

Windows 4.90.08 QELSS 2.XX. The Debye model was used for all evaluation 

analyses. A value of 0.146 was used for the refractive index increment (dn/dc).169 

 

Pectin titration: 
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The protocol was adapted from one used at the Centre for Water Soluble Polymers 

at Glyndwr University (Prof. Peter Williams). A mixture of 5 mL of 2.7M HCl and 100 

mL of 60% ethanol in water was added to 2 g of sample in a 250 mL glass bottle and 

agitated for 10 minutes. The solution was transferred to a fritted-glass filter tube 

(30 to 60 mL capacity), washed with six 15 mL portions of the same HCl-60% 

ethanol mixture, followed by 60% ethanol until the filtrate was free of chloride and 

finally washed with 20 mL of ethanol. 2 g of material (initial weight) were dried at 

105 °C for 2.5 hours and the percentage of final material recovered was determined. 

0.5 g of the residue were transferred to a 250 ml conical flask and was moistened 

with 2 mL of ethanol. 100 mL of recently boiled and cooled water were added to the 

residue and swirled until a complete solution was formed. 5 drops of 1% of 

phenolphthalein in ethanol were added to the sample solution and titrated with 0.1 

M of sodium hydroxide. The result was recorded as the initial titre (v1). 20 mL of 0.5 

M sodium hydroxide was added and the sample solution was shaken vigorously in a 

stoppered flask and left to stand for overnight. 20 mL of 0.5 M HCl were added to the 

sample solution which was shaken until colour change was observed. The sample 

solution was then titrated with 0.1 M of sodium hydroxide to a faint pink colour that 

persisted after vigorous mixing with high speed magnetic stirrer. The result was 

recorded as the saponification titre (v2). Measurements were performed in 

duplicate. The DE was then calculated following the equation below. 

              
  

     

  

GC-EI-MS monosaccharide analysis of pectin samples: 

 

The quantification of both neutral and acidic sugars present in pectin is provided by 

GC-EI-MS analysis of the trimethylsilyl glycoside derivatives of the glycosyl residues 

originating from the pectin’s monosaccharides obtained by methanolysis. The 

conversion of the sugars into their corresponding alditol acetate and trimethylsilyl 

(TMS) ether has been a widely used method for gas chromatography analysis of 

sugar monosaccahrides.308 The analysis consisted of the following steps:309  

 pectin depolymerisation using anhydrous methanol containing HCl 

producing the corresponding methyl glycosides residue 

(methanolysis), followed by 
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 conversion of the methyl glycosylated derivatives of the 

monosaccharides obtained to their trimethylsilyl methyl glycosides 

derivatives. 

The analysis was carried out independently by Dr. Jerry Thomas at the 

Biotechnology Facility of the Biology Department at the University of York. The 

protocol used was reported by Doco et. al.191 Methanol containing 0.5 M HCl was 

prepared by adding acetyl chloride (140 μL) to anhydrous methanol (1 mL). 

Monosaccharides and polysaccharides (100–500 μg) were suspended in 

methanol/HCl (0.5 mL) and kept for 16 hours at 80 °C. The cooled solutions were 

concentrated to dryness at 40 °C under a stream of nitrogen gas. An excess of TriSil® 

reagent (0.3 ml) was added and the solutions kept for 20 minutes at 80 °C. The 

reagents were removed at 40 °C with a stream of nitrogen gas. The residue was then 

extracted with hexane (1 mL). The extract was concentrated to 50 μL and 2 μL were 

used for GC-EI-MS analysis. All analyses were performed in triplicate. Pectin samples 

were hard to depolymerise using anhydrous methanol containing HCl. Instead the 

pectin samples were treated with a 2% molar aqueous solution of TFA at 121 °C for 

one hour and then subjected to methanolysis yielding the alditol acetate derivative 

of the glycoside. A similar procedure was used by Georgiev et. al.189 

GC-MS was performed using an Agilent 7890A gas chromatograph together with a 

5975C Mass Selective Detector (MSD). The detector was used in full scan mode, 

targeting a mass range of 50-500 Da.  Extracted ion chromatograms were used for 

quantification: ions at m/z 204 and 217 (sugars) were compared against ions at m/z 

305 from inositol, which was used as an internal standard.  Two DB-1 fused-silica 

capillary columns (30 m×0.25 μm i.d., 0.25 μm film thickness, J&W Scientific) were 

coupled to a single injector inlet. A hydrogen flow (2 ml.min-1, average velocity 

58 cm.s-1) was used as a carrier gas. Samples were injected in the pulsed split mode 

with a split ratio of 20:1. The injector and the FID were operated at 250 °C. The 

transfer line to the MSD was set at 280 °C. The GC heating ramp was set to 120–145 

°C at 1 °C.min-1, 145–180°C at 0.9 °C.min-1, and 180–230 °C at 50 °C.min-1. EI mass 

spectra were obtained from m/z 50–650 every 2.48 s in the total ion-monitoring 

mode using a source temperature of 230 °C, a quadrupole temperature of 106 °C, a 

filament emission current of 34.6 μA and an ionization voltage of 70 eV. All the w./w. 

percentages reported the different monosaccharide contents were calculated on a 

moisture free basis. 
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Solution 1H and 13C NMR: 

 

Both 1H and 13C NMR spectra were recorded.  Commercial citrus pectin sample 

P140-10 was run on a Bruker 700 MHz spectrometer (including the DEPT135). All 

spectra were acquired in D2O at 298K. To ensure quantitative data was recorded for 

13C solution NMR, spectra were recorded with a relaxation time of 10 seconds using 

1,024 scans. Samples P0004 and P0018 were run on a 500 MHz spectrometer 

(Brucker) at 300K with a relaxation time of 2 seconds and 1,024 scans. 

 

Solid state 13C NMR: 

 

All MAS spectra were acquired using a 400 MHz Bruker spectrometer. CP dynamics 

were investigated for all samples for contact times ranging from 50-3050 μs. 1 3C203  

CPMAS spectra with linearly-ramped contact pulses of 1 and 2 ms duration were 

used for quantification. They were acquired at spinning rates of 10000 ± 2 Hz, 

recycle delays of 5-8 seconds, spinal-64 heteronuclear decoupling at νrf = 85 kHz and 

are a sum of 512 co-added transients. The calibration curve obtained using 13C 

CPMAS for the determination of the DE was done using five commercial pectin 

samples (see section 0 of this chapter). 

 

Pectin gel formation: 

The USA-SAG protocol: 

 

The protocol used was adapted from Cox et. al.230, 23 1 Pectin powder was left to 

dissolve in de-ionised water for 1 hour under stirring. The solution formed was 

rapidly heated to 100 °C before a defined amount of sucrose was added. A pre-

determined amount of water was evaporated from the mixture using a Dean-Stark 

apparatus, to reach a SS% of 60%. The jelly mixture was then poured in a clean glass 

beaker containing a 48.8% tartaric acid solution and the gel was left to set at 25 °C 

for 24 hours. 

The method reported was adapted according to the amount of pectin available for 

gel formation testing. The exact quantities of pectin, sucrose, water and tartaric acid 
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solutions are reported in Table 47. It should be noted that the setting temperature 

was of 26 °C instead of 25 °C as the samples were left to set in the instrument room.  

Table 47: Gel formation conditions tested using the USA-SAG protocol. 

 
Commercial 

pectin CU201 

Commercial 
pectin 
CU301 

P0004 P0020 

Gel test # PGT1 PGT2 PGT3 PGT4 
Scale-down 

factor 
2 2 4 10 

Pectin (g) 1.375 1.375 0.6861 0.274 
H2O (g) 179 179 107.5 43 

Sucrose (g) 323.625 323.625 161.8 62.72 
SS% 70 70 65 65 

48.8% 
tartaric acid 

solution (mL) 
3.5 3.5 1.75 0.7 

Amount of 
water 

collected 
(mL) 

36 36 18 8.8 

Setting 
temperature/ 

room 
temperature 

(°C) 

26.5 26.5 26.5 26.5 

Observations 
after 24h at 

26 °C 

Already started 
to gel 10 min. 

after the heating 
was stopped. 

Formed a 
stronger gel than 

CU301. 

Weak gel 
formed 

Weaker 
gel 

formed 
than 

CU301 
and 

P0020 

Weak 
gel 

formed 

 

 

The MacDougall protocol:  

 

The method used was adapted from the protocol published by MacDougall et. al.233, 

236 300-600 mg of a 0.2% (w./w.) pectin solution were sampled using a 1 mL plastic 

syringe. The needle hole was blocked using parafilm to allow the removal of the 

plunger. 30 μL of a 1 mol.L-1 CaCl2 solution was added to the pectin solution and the 

plunger was replaced on the syringe to avoid spilling. The syringe tubes were stored 

upright at 4 °C for 24-48 hours. The graduation on the syringe was used as an 

arbitrary way of determining how much pectin solution was sampled within the 

300-600 mg range. The exact quantities of pectin and CaCl2 solutions are reported in 
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Table 48 for each test carried-out using this protocol. A picture illustrating the 

experimental set-up is displayed in Figure 106. 

 

Table 48: Gel formation conditions tested using the MacDougall protocol. 

Gel test # 
0.2%  pectin 
solution (mg) 

CaCl2 solution 
(μL) 

PGT5 364.2 30 
PGT6 507.7 30 
PGT7 650.8 30 
PGT8 321.7 15 
PGT9 625.4 30 

PGT10 358.7 15 
PGT11 654.3 30 

 

 

 

Figure 106: Experimental set-up for the gel formation test using the MacDougall 
protocol (originally in colour). 

 

The Lofgren protocol: 

 

The protocol used was adapted from a publication by Lofgren et. al.234 A 0.75% 

(w./v.) pectin solution in a citrate buffer (pH 2, 3 or 4) was made. This solution was 

left to stir for two hours to ensure total dissolution of the pectin. Afterwards the 

solution was heated to boiling point using a condenser to avoid any water 

evaporation, keeping the SS% constant during heating. A defined amount of sucrose 

was added to reach a 60 or 70 SS%. Whenever necessary, CaCl2 was added to the 

solution. The solution was left to reach 100 °C again, at the point which the mixture 
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was poured in a clean glass beaker and left to set at room temperature for 24 hours. 

All the gel formation conditions tested are summarised in Table 49. 

 

Table 49: Gel formation conditions tested using the Lofgren protocol. 

Gel test 
# 

Pectin 
sample 

used 

Pectin 
(%) 

Pectin 
(g) 

Sucrose 
(%) 

Sucrose 
(g) 

pH 
Buffer 

(g) 
Addition 

of Ca2+ 

PGT15 P0020 0.75 0.1861 60 15 3 9.81 
1.2 ml 
0.15% 
CaCl2  

PGT16 P0023 0.75 0.186 60 15 3 9.81 - 

PGT17 P0023 0.75 0.186 70 17.5 3 7.31 
1.2 ml 
0.15% 
CaCl2  

PGT18 P0023 0.75 0.1867 70 17.5 3 7.31 - 

PGT19 P0023 0.75 0.1863 60 15 2 9.81 
1.2 ml 
0.15% 
CaCl2  

PGT20 P0023 0.75 0.1864 60 15 2 9.81 - 

PGT21 P0023 0.75 0.1867 70 17.5 2 7.31 
1.2 ml 
0.15% 
CaCl2  

PGT22 P0023 0.75 0.1861 70 17.5 2 7.31 - 

PGT23 
(repeat 

of 
PGT17) 

P0023 0.75 0.187 70 17.5 3 7.31 
1.2 ml 
0.2% 
CaCl2  

PGT24 
(repeat 

of 
PGT18) 

P0023 0.75 0.1868 70 17.5 3 7.31 - 

PGT25 CU201 H&F 0.75 0.1858 70 17.5 3 7.31 - 

PGT26 CU201 H&F 0.75 0.1869 70 17.5 2 7.31 - 

PGT27 P0023 0.75 0.125 60 10.08 4 6.60 
0.81 ml 

0.2% 
CaCl2  

PGT28 P0023 0.75 0.125 60 10.08 4 6.60 - 

PGT29 P0023 0.75 0.125 70 11.76 4 4.92 
0.81 ml 

0.2% 
CaCl2  

PGT30 P0023 0.75 0.125 70 11.76 4 4.92 - 
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List of abbreviations 

 

Table 50: List of abbreviations used. 

APCI - Atmospheric Pressure Chemical Ionisation 

Ara - Arabinose 

ATR-IR - Attenuated Total Reflectance Infra Red 

BOD - Biological Oxygen Demand 

CNAP - Centre for Novel Agricultural Products 

COD - Chemical Oxygen Demand 

CPW - Citrus Peel Waste 

DE - Degree of Esterification 

DMF - Dimethyl formamide 

DMSO - Dimethyl Sulfoxide 

EPA - Environmental Protection Agency 

ESI - ElectroSpray Ionisation 

E.U.-27 - European Union 

FT-IR - Fourier Transform Infra Red 

FSCW - Food Supply Chain Waste 

Gal - Galactose 

galA - Galacturonic acid  

GC - Gas Chromatography 

GC-MS - Gas Chromatography- Mass Spectrometry 

GC-TOF - Gas Chromatography Time of Flight 

GPC - Gel Permeation Chromatography 

HPAEC - 
High Performance Anion Exchange 

Chromatography 

HPLC-

MS 
- 

High Performance  Liquid Chromatography - 

Mass Spectrometry 

IPPC - Integrated Pollution Prevention and Control  

IR - Infra-red 

IS - Internal Standard 

MASD - Microwave Assisted Steam Distillation 

min. - Minute 

Mn - Number Average Molecular Weight 

Mw - Weight Average Molecular Weight 
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MW - Microwave 

MMPD - Microwave Maximum Power Density 

MSA - Monosaccharide Analysis 

n.e.c. - not elsewhere classified 

NMR - Nuclear Magnetic Resonance 

NSIs - National Statistical Institutes 

OPEC - Orange Peel Exploitation Company  

OPR1, 2 

& 3 
- Orange Peel Residue 1, 2 & 3 

PAD - Pulsed Amperometric Detector 

PI - Polydispersity Index 

PMF - Polymethoxy flavonoid 

PMFs - Polymethoxy flavonoids 

polygalA - Poly α-1,4- D-galacturonic acid 

PWOP - Pre-treated Waste Orange Peel 

Rha - Rhamnose 

RI - Refractive Index 

SEC - Size Exclusion Chromatography  

SEM - Scanning Electron Microscopy 

SFC - Supercritical Fluid Chromatography 

SS% - Soluble Solids (%) 

TGA - Thermo Gravimetric Analysis 

TG-IR - Thermogravimetric Infra Red Spectroscopy 

TIC - Total Ion Chromatogram 

U.K. - United Kingdom 

U.S.A. - United States of America 

WOP - Waste Orange Peel 

XIC - eXtracted Ion Chromatogram 
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